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Abstract 

Both in the field of design and architecture origami is 

often taken as a reference for its kinetic proprieties and 

its elegant appearance. Dynamic facades, fast 

deployment structures, temporary shelters, portable 

furniture, retractile roofs, are some examples which can 

take advantage of the kinetic properties of the origami. 

While designing with origami, the designer needs to 

control shape and motion at the same time, which 

increases the complexity of the design process. This 

complexity of the design process may lead the designers 

to choose a solution where the patterns are mere copies 

of well-known patterns or to reference to the origami 

only for ornamental purposes. The origami-inspired 

projects that we gathered and studied in the fields of 

architecture, manufacturing and fashion, confirmed this 

trend. We observed that the cause of this lack of variety 

could also be attributed to insufficient knowledge, or to 

inefficiency of the design tools. Many researchers 

studied the mathematical implications of origami, to be 

able to design specific patterns for precise applications. 

However, this theoretical knowledge is hard to apply 

directly to different practical projects without a deep 

understanding of these theorems. Thus, in this thesis, we 

aim to narrow the gap between potentialities of this 

discipline and limits of the available designing tools, by 

proposing a simplified synthetic constructive approach, 

applied with a parametric modeller, which allows the 

designers to bypass scripting and algebraic formulations 

and, at the same time, it increases the design freedom. 

Among the cases studies, we propose some fabrication-

aimed examples, which introduce the subjects of thick-

origami, distribution of stresses and analysis of 

deformations of the folded models.  

Nei campi dell’architettura e dell’industrial design, 

l’origami è spesso preso come riferimento per le sue 

proprietà cinetiche e le sue forme eleganti. Facciate 

dinamiche, strutture pieghevoli, rifugi temporanei, 

arredi portatili, tetti retrattili, sono alcuni esempi di 

progetti che potrebbero beneficiare delle proprietà 

cinetiche dell’origami. Progettare con l’origami richiede 

di controllare forma e movimento contemporaneamente; 

ciò aumenta la complessità del processo progettuale. 

Questa difficoltà progettuale può portare i progettisti a 

scegliere soluzioni che non sono altro che mere copie di 

pattern noti o a considerare l’origami come riferimento 

solo per ragioni ornamentali. I progetti ispirati 

all’origami che abbiamo raccolto ed analizzato nei 

campi di architettura, industria manifatturiera, e moda, 

confermano questo trend. Abbiamo osservato che la 

causa di questo mero utilizzo potrebbe essere attribuibile 

a preparazione insufficiente del progettista o a 

inefficienza degli strumenti progettuali. Diversi 

ricercatori hanno studiato le implicazioni matematiche 

dell’origami, per poter progettare specifici pattern per 

precise applicazioni. Nonostante ciò, questa conoscenza 

teorica è difficile da applicare direttamente ad altri 

progetti pratici senza una profonda comprensione di 

questi teoremi. Questa tesi punta quindi a ridurre il 

divario tra potenzialità di questa disciplina e limiti 

imposti dagli strumenti progettuali disponibili, 

proponendo un approccio sintetico e costruttivo 

semplificato, che permetta ai progettisti di evitare 

scripting e formulazioni algebriche, aumentando allo 

stesso tempo la libertà progettuale. Tra i casi studio, 

proponiamo anche alcuni esempi mirati alla 

fabbricazione che introducono il tema dell’origami a 

spessore non nullo, della distribuzione delle forze e 

dell’analisi delle deformazioni sui modelli piegati. 
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1. CHAPTER I: Aims, Tools and Background 

1.1. Introduction 

Both in the fields of manufacturing and architecture, origami was taken as a reference for its kinetic proprieties, its 

elegant and geometric shapes, for its capability to rationalize the creative process following precise geometric rules and 

specific spatial references and its capacity to combine shape and motion in a functional way. If the crease is replaced with 

a hinge and the paper with a panel of a rigid material, or the hands of the origami artist with a CNC machine, it is not hard 

to imagine the numerous possible application of this art and technique. Dynamic facades, deployable structures, temporary 

shelters, portable furniture, retractile roofs, unfoldable boxes, are some examples of kinetic designs that can take 

advantage of origami constructions. Differently from structures with bars and panels, the origami can be used to obtain 

continuous surfaces without assembling different parts, optimizing the constructive process, the transportation, and the 

cost, at the expense of the designing time, in fact designing with origami makes the shape and movement harder to control 

with the contemporary professional computer applications. 

“In the design process of such applied origami, it is very difficult for the designer to control the form to fit design 

contexts while preserving the necessary functionalities of the original patterns. Therefore, without sufficient knowledge 

or intelligent design systems, the result designs would end up in either just a mere copy and paste of an existing origami 

pattern or an ‘origami-inspired’ design which is not using the proprieties of origami in functional ways” (Demaine & 

Tachi, 2010). 

In this research, we analysed many existing origami-inspired designs, and we noticed that the major part of these projects 

uses mere copies of well-known origami patterns. In accordance with Tachi and Demaine’s studies, we observed that the 

cause of this lack of variety could be attributed to insufficient knowledge, or to the inefficiency of the design tools. When 

designing with these types of surfaces it is necessary to control both shape and motion at the same time without losing 

the developability, consequently, some mathematical or geometrical rules must be considered. This increases complexity 

and time consumption when designing with origami. 

1.2. Aims of the Research 

Many researchers studied the mathematical implications of origami, but they are hardly directly applicable to a creative 

process. In this research, we propose simplified methods to design origami-like geometries, using a synthetic approach1 

based on constructions typical of the descriptive geometry, applied with a parametrical node-based application. Working 

with geometrical constructions and spatial references is more natural for most of the professionals that operate in the 

fields of manufacturing and architecture because it is related to the representation method, which is the synthetic method2 

usually used by architects and designers. 

We are going to use the visual parametric node-based modeller called Grasshopper (and relative add-ons) as a tool to 

construct all the algorithms3. We chose to solve all the presented cases with the same tool because we wanted to limit as 

much as possible the problems generated by the file conversion between different software, which is not recommended 

in a professional workflow. 

The variety of possibilities that the origami offers is boundless, for this reason, the aim is not to produce a specific 

command or a piece of software that performs specific tasks, because this would limit the designer’s freedom. 

Contrariwise, we want to present a series of case studies and operative guidelines which will help optimizing the design 

process that involves origami geometries. 

All these materials are aimed at those professionals interested in origami design but without a specific background in 

mathematics or computer science, thus we minimize the use of scripting and algebraic formulations as much as possible. 

                                                           
 

1 The meaning of “Synthetic method” is reported in section 1.5.1. 
2 A comprehensive comparison between the synthetic and the analytical methods is made in section 1.5.1 and 1.5.2 
3 A detailed definition of “Algorithm” is stated in section 4.3.2. 
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1.3. Research Field 

The origami world for his capability to combine technique and art, static nature and dynamism, straight lines and 

curves, recursive patterns and sculpted figures, planar configurations and three-dimensional objects, stiffness and 

flexibility, is versatile and applicable in a vast number of fields like engineering, manufacturing, astronomy, medicine, 

chemistry, architecture, robotics, computer science, art, fashion, design. The application fields are innumerable as well 

as the researchers that use origami constructions to improve some aspect of their projects. 

One of the most influential researchers in the field of applied origami is Tomohiro Tachi. He investigates the paper 

folding since the first decade of the 21th century (Tachi, n.d.-a). He developed some of the most versatile and powerful 

computer applications focused on the design of origami, his aim is to simplify the origami design process to make it 

accessible to a vaster number of designers. He developed several mathematical theorems about origami, and he 

demonstrated their usefulness applying them in many practical applications, such as the “Rigid-origami table” which 

folds and unfolds in a single rigid motion or the “Vault structure” designed with rigid-foldable4, curved tubular arches. 

He also developed some techniques to thicken the zero-thickness study model while preserving the kinematics of the 

original pattern (Tachi, 2011b). 

With similar aims and approaches, in the last few years, some researches in the “Sapienza” University of Rome in 

Italy explored the kinematic proprieties of origami from the point of view typical of the descriptive geometry, and they 

searched for solutions suitable to be applied to the field of kinetic architecture (Casale & Calvano, 2012; Casale, Valenti, 

& Calvano, 2013) 

Erik Demaine, computer scientist, mathematician, artist and professor at MIT, has a pluriannual experience into 

origami science, he is nowadays one of the most active and influential theorists in the field of computational origami, 

he contributed to the development of some computer applications that solve some specific origami problems related to 

pattern design, rigid-foldability, flat-foldability and curve-folding.  

Because computer applications for designing origami are lacking, many different researchers started developing their 

own digital tools, such as Tomohiro Tachi, Jun Mitani, Ke Liu and Glaucio H Paulino, Zhonghua Xi, only to name a 

few5. However, the first who developed a computer application to help the designers to optimize and create their own 

origami patterns was Robert J. Lang. 

Lang is considered one of the most important origami scientist and artist of all times. He contributed to refine and 

extend some of the most advanced techniques still used by scientists and artists to design complex origami patterns. He 

also worked on several projects for aerospace applications which represent probably the most interesting and advanced 

frontier of this art and technique. For example, he contributed to the design of the “Eyeglass” telescope for Lawrence 

Livermore National Laboratory and to the “Starshade” project for NASA, which are respectively a foldable lens for a 

space-based telescope and an occulter for the sunlight that will be used to look for planets orbiting faraway stars (Feder, 

2018). He also contributed developing an algorithm to optimize the air-bag flattening in collaboration with the EASi 

airbag company (Lang, 2015a).  

Some other interesting uses of origami into practical applications are the “Origami-Based Deployable Ballistic 

Barrier” by Seymour et al. (Seymour et al., 2018); the “Deployable Locomotive Fairing” designed to improve the 

aerodynamics of the locomotives by Tolman et al. (Tolman, Crampton, Stucki, Mayenes, & Howell, 2018); and the 

origami stent by Kuribayashi et al., that facilitate the insertion of the stent inside the human body by folding it in a 

specific way (Kuribayashi et al., 2006). All these applications were possible also thanks to Thomas Hull, Toshikazu 

Kawasaki, Humiaki Huzita, Koshiro Hatori, Koryo Miura and many others who contributed to set the basis and extended 

the fundamental theorems of the origami mathematics. 

This thesis wants to add a small contribution in this vast landscape of projects and theories, trying to narrow the gap 

between theories and applications, and opening this field full of possibilities to all those professionals and designers, 

without a specific background in engineering, mathematics and computer science, who want to use origami 

functionalities in their projects. 

                                                           
 

4 A detailed definition of rigid-foldability is given into section 3.4. 
5 A more comprehensive analysis of existing computer applications for origami design can be found in section 1.5.3 
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1.4. Structure of the Thesis 

CHAPTER I: Aims, Tools and Background  

In the first part of this chapter, we discuss the aims of the research, the structure of the thesis, the tools that we will use, 

and we introduce the research field. Then we present the background of the field of the applied origami, starting from a 

synthesis of the origami history and its implications in mathematics, education and art. This part is aimed at those readers 

who have no background in applied or traditional origami, and it briefly traces the state of art of this field. This chapter 

is also aimed to clarify the whole philosophy of the thesis, and the storyline we want to tell. Furthermore, we try to outline 

clearly the connections between the different parts. 

CHAPTER II: Origami-Inspired Designs 

This part is focused on gathering and analysing projects inspired by origami to outline a trend for many different 

application fields. We divide the gathered projects into five different groups: “Permanent architecture”, “Temporary 

architecture”, “Installations”, “Goods and Furniture” “Fashion and Clothing”. We catalogued and characterized each 

project specifying which aspects are inspired by origami and why. As a result of this analysis, we highlight possible 

problems and potentialities about using origami-like solutions in each field. 

CHAPTER III: Definitions and Theorems 

 In this chapter, we deal with the following topics:  Fold-angle, Developability, Degree of Freedom (DOF), Rigid-

foldability, Flat-foldability, Non-flat-foldability. We define every term, and for each one of them, we introduce the main 

known mathematical theorems. In the subsequent chapters of the thesis, we will refer to these terms and theories widely. 

CHAPTER IV: Constructive Method for Solving the Kinematics of Origami 

In this section, we propose a set of procedures aimed to animate some given creased unfolded patterns. We start 

analysing the easier cases such as patterns with a single crease, up to patterns with multiple internal vertices with several 

converging creases. These algorithms could help designers who need to animate rigidly known patterns preserving their 

initial shape, thus they are particularly useful for kinetics applications. 

CHAPTER V: Pattern Design from a Given Shape 

This part of the thesis is focused on design-aimed algorithms. It contains a catalogue of case studies, which aim to 

exemplify some applications starting from given environmental, framework or background conditions. These algorithms 

do not return the fold animation, but they are aimed to return always developable patterns following precise generative 

processes by using strict rules, applied in a precise order, which guarantee the creation of an already folded surface which 

is developable.  

CHAPTER VI: Fabrication-Aimed Designs 

In this chapter, we present Two case studies: a foldable chair and a foldable ladder. Their design processes are presented 

from start to finish, trying to highlight the design thinking behind each one of them, which is different case by case 

depending on the aim and boundary conditions. The fabrication of an origami-like geometry raises the issues of the 

thickening of the conceptual zero-thickness model and the problems of stability and structural stiffness under certain 

loads. 

1.5. Tools 

To model folded surfaces in a three-dimensional digital environment and to integrate them into the design of a building 

or a piece of furniture, it is highly preferred the use of computer applications which can exchange files with the software 

used by architects and designer. The less the exchanges between different computer programs the better. This is important 

to limit time consumption and conversion problems. 
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Parametric modelling is the widespread solution that is usually used to control such type of complex geometries and 

integrate them into the projects while speeding up the shape-finding process at the same time. Traditional 3D modelling 

computer programs can produce parametrical models through the integrated scripting interface, which is usable by users 

that can script in the programming language that the software requires. This kind of applications are tricky to use, and 

the programming language usually changes from one software to the other, complicating the portability between 

different applications. Thus, they are usually harder to learn than the logic environment of a graphical parametric node-

based modeller, such as Dynamo, a plug-in for Autodesk Revit (Autodesk, n.d.), or Grasshopper, a plug-in for 

Rhinoceros (Rutten, n.d.). This kind of applications converts code strings in visual “nodes” that can be connected 

reciprocally to compose complex algorithms for documentation, fabrication, coordination, simulation and analysis. The 

research of the tools has been carried out analysing the international professional and academic landscape. Grasshopper 

has been chosen for this research for many reasons. The choice has been influenced by the capacity of being integrated 

with software used by both architects and designers, the versatility, the price, the usability, the number of add-ons, the 

active online community, the efficient assistance, the possibility to integrate missing nodes by scripting. Although, any 

other software can be used to achieve similar results. In this thesis, we will try to explain the procedures in the most 

general way, explaining them systematically, so that they can be easily transposed in a different software with a different 

interface. 

According to the initial statement, the generative algorithms in this thesis will be carried out trying to limit as much 

as possible scripting and mathematical formulations, thus we will base all the definitions on geometric constructive 

procedures, using visual references and geometric primitives as construction tools. 

This approach is comparable to the “Synthetic method”. The synthetic method has been used for centuries by 

mathematicians and scientists as an alternative to the analytical method and it can be compared to the field known today 

as “Descriptive geometry” extensively studied and disseminated by the geometer and mathematician Gaspard Monge 

(1746-1818) (Cardone, 2017). From that time, where ruler and compass were the most used tools, the methods and the 

solutions are greatly improved. Riccardo Migliari et al. into the book “Geometria descrittiva” (Migliari, 2009b, 2009a) 

proposes several methods to solve some old and new problems of descriptive geometry with three-dimensional 

modelling applications. Today we can work into three-dimensional space, and we can move the point of view in space 

to verify spatial relations easier. We can also measure distances and angles without needing to project them into auxiliary 

planes, which does not only simplify the visualization of the problems, but it also may simplify the actual constructions 

needed to solve those problems. Furthermore, nowadays, the accuracy when drawing with this kind of applications is 

incredibly high, this gives to the synthetic method great possibilities when looking for new problems and new solutions. 

The researchers of the Roman school, to which Migliari belong, studied for many decades, until nowadays, the 

synthetic method and its implications, and they use it to study and solve complex modern geometrical problems or to 

verify problems from the past (Carlevaris, De Carlo, & Migliari, 2012; Fallavollita, 2008; Fallavollita & Salvatore, 

2013; Migliari, 2008b, 2008a, 2012; Salvatore, 2012). An interesting contribution from the Roman school, related to 

the topic of this thesis, is the book “Architettura delle superfici piegate” written by Andrea Casale and Graziano Mario 

Valenti (Casale et al., 2013) who use geometric constructions applied with the computer to solve the kinematics of 

origami. Our contribution is strictly related to this school of thinking, thus, the case studies that we will present will be 

carried out with the synthetic method applied with parametric 3D-applications. 

In the following section, we will clarify the meaning of the word ”Synthetic” and we will show that the synthetic 

method has the same dignity as the analytical method, and it can be considered as a research tool capable of proving 

and visualizing things with the same power (and for some aspects even more) as the analytical method. We will report 

the definitions of both methods clarifying them with examples, and we will conclude by reporting the pros and cons of 

both.  

 Comparing “Synthetic” and “Analytical” Methods6 

The word “Synthetic” has many different meanings depending on the field where it is used. The Oxford English 

dictionary and the Merriam Webster American dictionary reports the following definitions: 

- “Having truth or falsity determinable by recourse to experience. Compare with analytic”, 

                                                           
 

6 In this section we translated reported and commented the contents of the chapter X of the book by Gino Loria “Metodi 

matematici: essenza, tecnica, applicazioni; and some extracts from the book “Dei due metodi analitico e sintetico 

discorso dell'abate” by Federico Maria Zanelli (Loria, 1935) 
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- “Relating to or involving synthesis: not analytic”, 

- “Attributing to a subject something determined by observation rather than analysis of the nature of the 

subject and not resulting in self-contradiction if negated”. 

 

The word “Method” means:  

- “A particular procedure for accomplishing or approaching something, especially a systematic or 

established one.“, 

- “A way, technique, or process of or for doing something”.  

 

The IGI global dissemination of knowledge gives very exhaustive definitions of the two words combined “Synthetic 

method”: 

- “The synthetic method starts like induction from the observed facts and the inferred theory (but it can 

also start like deduction from a set of assumptions). On this basis, the synthetic method engineers an 

artificial system, the objective being that, while operating, this system will behave like the real one, thus 

confirming the tested theory”. 

 

Considering these definitions, we can say that a synthetic method is the counterpart of the analytical method. Thus, to 

fully understand what synthetic method means, we also need to define the analytical method. An interesting comparison 

between the analytical and the synthetic methods was made by Federico Maria Zinelli in the book “Dei due metodi 

Analitico e Sintetico Discorso dell’Abate”7 (Zinelli, 1832) (Figure 1). 

 

Figure 1: definition of the Synthetic method written by Federico Maria Zanelli, from the book "Dei due metodi analitico e sintetico 

discorso dell'abate" 1832. 

Zinelli asserts that the synthetic method is: “A natural way to proceed from known to unknown… given some principles, 

taken from our knowledge or from experience, or from reasoning, combining them with association of ideas, we can 

deduct some consequences with logic, this is the synthetic method.” 

                                                           
 

7 “Abbot’s speech about the two methods Analytical and Synthetic” 
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Figure 2: definition of the Analytical method written by Federico Maria Zanelli, from the book "Dei due metodi analitico e sintetico 

discorso dell'abate" 1832. 

He defines the analytic method as “A method suitable to find an unknown truth… when a thing is not known, but it is 

known the relations between that thing and other known things. The unknown thing can be understood by going from a 

relation to an easier one and so on, so we proceed to the discovery of the truth with the analytic method”.  

 

Figure 3: comparison between the two methods written by Federico Maria Zanelli, from the book "Dei due metodi analitico e 

sintetico discorso dell'abate" 1832. 

He also compares the two methods saying that in the analytical method if we want to use a fact as a base to prove 

another fact, if it is not proved previously, we must proceed to prove it in the first place. Therefore, it may make the 

analytical demonstration longer than the synthetic one.  

To further clarify the differences between the two methods, we report an example proposed by Gino Loria into the 

book “Metodi Matematici: essenza, techinca, applicazioni”8. He asserts that to analytically prove the existence of the 

regular convex polyhedra we can use the following formulation, which is known as the Euler's polyhedron formula: 

𝐹 + 𝑉 = 𝐸 + 𝜒. (1) 

where F is the number of the faces, V is the number of vertices, E is the number of edges and χ is the Euler’s 

characteristic, which is a number that describes topological shape and structure of a polyhedron. This equation is known 

as the Euler's polyhedron formula. For every convex polyhedron we have: 

𝐹 + 𝑉 − 𝐸 = 2. (2) 

                                                           
 

8 “Mathematical methods: essence, technique, applications” 
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and if we call n the number of the edges of every face and m the number of edges connected to each solid angle, we will 

have: 

𝑛𝐹 = 2𝑆, 𝑚𝑉 = 2𝑆. (3) 

Then if we combine these with the previous formulation we will have: 

𝑆 =
1

1

𝑚
+

1

𝑛
−

1

2

, 𝐹 =
2

𝑛
1

𝑚
+

1

𝑛
−

1

2

, 𝑉 =
2

𝑚
1

𝑚
+

1

𝑛
−

1

2

 . (4) 

These numbers must be positive, and integers and m and n must satisfy the relations: 

1

𝑚
+

1

𝑛
−

1

2
> 0       𝑜𝑟       (𝑚 − 2)(𝑛 − 2) < 4. (5) 

Thus, the only possible values for m and n are the ones that satisfy the following relations: 

(𝑚 − 2)(𝑛 − 2) = 1, (𝑚 − 2)(𝑛 − 2) = 2, (𝑚 − 2)(𝑛 − 2) = 3. (6) 

And because 𝑚, 𝑛 ≥ 3 the only possible solutions of m and n are given by the following pair of numbers: 

3,3                           3,4                           4, 3                           3,5                           5,3 

Now if we calculate F, V, S they will be all integer and positive numbers as reported in the following table: 

Table 1: regular polyhedra geometrical properties. 

 F V S 

Tetrahedron 4 4 6 

Hexahedron (Cube) 6 8 12 

Octahedron 8 6 12 

Dodecahedron 12 20 30 

Icosahedron 20 12 30 

 

From that, we can say that the only possible regular polyhedra are five and they are: the tetrahedron, the hexahedron 

(cube), the octahedron, the dodecahedron and the icosahedron. 

 

To prove the existence of platonic solids with the Synthetic method, Loria proposes the following example by using 

only geometrical constructions. 

Tetrahedron – Construct an equilateral triangle ABC given the edge l and the centre O; the perpendicular line to the 

plane of the triangle from the point O is the set of points equidistant to the vertices; thus if we draw a sphere with centre 

O and radius l and we call D the point of intersection between the sphere and the perpendicular line, the four triangles 

DBC, DCA, DAB and ABC will be equal, and they will define a regular tetrahedron. 

Hexahedron – Construct a square ABCD with edge l; from its vertices trace the lines perpendicular to its lying plane. 

From the same side of the plane draw the four segments AA1, BB1, CC1, DD1, all the segments are equal to l. The points 

A1, B1, C1, D1 belong to the same plane and with the points, A, B, C, D they are the vertices of a polyhedron defined by 6 

equal squares as we wanted. 

Octahedron – Construct a square ABCD with edge l; find the centre O by drawing the diagonals; draw the perpendicular 

line to its lying plane passing from O; this line is the set of points equidistant from the vertices of the square; then we call 
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E, F the intersections of that perpendicular line to the sphere centred in A and with radius l; the eight resultant triangles 

EAB, EBC, ECD, EDA, FAB, FBC, FCD, FDA are the faces of the regular octahedron. 

Dodecahedron – ABCDE is a regular pentagon with each edge equal to l; we call α (=108°) each angle of the Pentagon. 

From A, trace a line which makes with the edges AB and AE angles equal to α; on that line mark the segment AA1=l. 

Draw the segments BB1, CC1, DD1, EE1 in the same way all on the same side of the plane where the Pentagon lies; we 

close the polyline A1ABB1 with two new segments B1P and A1P so that they form a regular planar pentagon. In the same 

way, we draw the regular pentagons BB1QC1C, CC1LD1D, DD1ME1E, EE1NA1A; in this way we have obtained a poly-

surfaces formed by six regular equal pentagons which end with a decagonal skewed polyline A1PB1QC1LD1ME1N that 

does not lie on a plane. Now if we construct another poly-surface equal to the first one, and we place it so that their 

decagonal naked edges match, we will obtain a regular polyhedron with twelve equal pentagonal faces with all the 

characteristics of the regular dodecahedron whose existence we wanted to prove. 

Icosahedron – ABCDE is again a regular pentagon with edge l and centre O. The perpendicular line to the plane 

passing from O is the set of points equidistant from the vertices of the Pentagon. If F is the intersection of that 

perpendicular line with the sphere centred in A with radius l, we will be able to construct five equal triangles around the 

point F. Now, because form the point B we can see starting three segments BA, BF, BC, that makes angles of 60° one 

to each other, we can add two new segments BG and BH that forms angles of 60° one to each other and with the pre-

existent segments starting from B. In this way we will be able to draw three new equilateral triangles that share the 

vertex B. Now, if we draw a segment with length l from C that forms with the segments CD and CH angles of 60° and 

we will be able to draw two new equilateral triangles equal to all the other triangles. In total, we have ten triangles that 

make an open polysurface. Construct a new open polysurface equal to the first one and place it so that the naked edges 

match perfectly; in this way, we obtained a regular polyhedron that possesses all the characteristics of an Icosahedron. 

Thus, also the existence of the icosahedron is proved. 

 Conclusions About the “Synthetic method” 

In conclusion, using Loria’s words, we can say that if we want to prove something with the analytical approach we 

start from the solution and walking backwards we reduce the problem to minimal components that we compare to other 

easier problems already proved before or with already known solutions. Contrariwise, with the synthetic method, we 

build a series of considerations that step by step leads to the desired purpose. We can say that the analytical method is 

a process of research as well as the synthetic method, and the synthetic method by no means have to be considered less 

scientific or accurate than the analytical method, in fact, using Loria’s words, “It is the classical process to present any 

truth from an ordered series of facts”. Nevertheless, we can say that the analytical method is usually longer than the 

synthetic method, but for those who know the mathematical language, it is clear and straight. Contrariwise, the synthetic 

method is easy to transmit and understand when it is visualized with physical models, or by drawing, but when it is 

explained using only words it may become difficult to follow. 

 Existing Software for Designing Origami 

Architects, designers, engineers, and artists interested in origami, have until today developed their own tools for 

designing origami. Ron Resh was the pioneer of computer science applied to origami: 

“... the design is a kind of feedback loop between the artist and the environment... the computer can really speed up 

this kind of loop, (design) and I think it greatly aid creativity... the excitement for me is to try to develop the computer 

as a medium for exploration and as a medium for expression.” (Resh, 1992). 

As Resh stated, the computer does not only speed up the creative process, but it becomes a medium for expression 

and exploration. Kostas Terzidis shares the same point of view when he says:  

“We shouldn’t consider the computer as an extension of the mind, but rather as a partner in the design process with 

fundamentally different aptitudes and ways to reason” (Terzidis, 2006). And “Computers should be acknowledged not 

only as machines for imitating and appropriating what is understood but also as vehicles for exploring and visualizing 

what is not (yet) understood.” (Terzidis, 2009) 

Thus, using the computer not only optimizes and speed up our design processes but also opens new unexpected 

possibilities. In fact, at the beginning of the twenty-first century, when computer applications for the design of origami 

started spreading, the complexity of the new origami models increased rapidly. 

Robert J. Lang was the first to develop a stand-alone computer application to generate origami crease patterns called 

Treemaker (Lang, 2015c). This software was made for designing crease patterns using the circle river packing 
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technique9. In 1998 with version 4.0 this software was released outside the academic sector. Tomohiro Tachi developed 

several pieces of software to analyse and design origami-like geometries. Some of them are aimed to design non-flat 

foldable patterns or aimed to analyse the folding motion of any rigid-foldable pattern. The software developed until now 

by Tachi are: Freeform Origami, Origamizer, Rigid Origami Simulator, which allow the users to develop modify and 

analyse origami models with intuitive 2D and 3D interfaces (Tachi, n.d.-b). Jun Mitani developed: Oriref and Orirevo, 

made to design origami with reflections (Mitani & Igarashi, 2011) and revolutions (Mitani, 2009), and Oripa, which is a 

software to design planar origami patterns and returns their collapsed flat-folded configuration. All these apps can be 

found on Mitani’s official web page (Mitani, n.d.). Tess is a software aimed to design origami tessellations developed by 

Bateman (Bateman, n.d.). Pepakura is not properly an origami software for purists, but it is somehow related to origami, 

because it works with folds, other than cuts, to make 2D pattern starting from a generic three-dimensional mesh (Tamasoft, 

n.d.). Another interesting recent application that returns the folding animation of a given origami pattern is the Origami 

Simulator by Amanda Ghassaei (Ghassaei, n.d.), which run directly on the internet browser. We want also to cite Merlin 

2 by Ke Liu and Glucio. H. Paulino which is a versatile powerful tool for the analysis of origami structures (Kawaguchi, 

Ohsaki, Takeuchi, Liu, & Paulino, 2016; Liu & Paulino, 2018). 

In the following table, we report some of the most important applications that concern origami and folding, at the present 

moment. 

 

1998 

Treemaker 

Robert J. Lang 

 

(Unknown date, probably around 

2000) 

Pepakura 

Tama Software 

 

2003 

Reference finder 

Robert J. Lang 

 

2007 

Tess 

Alex Bateman 

 

2007 

Rigid Origami Simulator 

Tomohiro Tachi 

 

2008 

Origamizer 

Tomohiro Tachi 

 

2010 

Freeform Origami 

Tomohiro Tachi 
 

2011 

Oripa 

Jun Mitani 

 

2011 

Oriref 

Jun Mitani 

 

2011 

Orirevo 

Jun Mitani  

2011 

Orirevo Morph 

Jun Mitani 

 

2013 

Single Vertex Rigid Origami Simulator 

Zhonghua Xi 

 

2014 

Origami Pattern Designer 

Zhonghua Xi 

 

2014 

Tes Generator 

Zhonghua Xi 

 

2014 

Rigid Origami Folder 

Zhonghua Xi 

 

2015 

Origami Folder 

Zhonghua Xi 

 

2017 

Origami Simulator 

Amanda Ghassaei 
 

2017 

Merlin 

Ke Liu and Glucio. H. Paulino 

 

2018 

Merlin 2 

Ke Liu and Glucio. H. Paulino 

 

2018 

DeltaMod 

Naoya Tsuruta 

  

These applications (and many others not reported here), simplify the design of origami-inspired geometries and 

mechanisms to be used in architecture and manufacturing, but a deep theoretical origami knowledge is needed to properly 

use most of them. Furthermore, some applications often absolve only one single task. They are useful tools, nevertheless, 

they require numerous exporting and importing operations to be able to use them into a real professional workflow. These 

file conversions may cause loss of data while moving the model from one software to another, e.g. the mountain valley 

assignments, the folded or unfolded state, the folding animation, the overlapping sequence of the layers, the colour or the 

shader of the surface. Some researchers are already working trying to partially solve this problem through the creation of 

a file extension specific for origami. This innovation could revolutionize the design of these folded patterns. The file 

extension is called “.fold” from the GitHub repository by E. Demaine, it is defined as follows: “FOLD (Flexible Origami 

                                                           
 

9 Refer to section 1.6.3 for a brief explanation of the circle river packing technique. 
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List Data-structure) is a file format (with extension .fold) for describing origami models: crease patterns, 

mountain/valley patterns, folded states, etc. Mainly, a FOLD file can store a mesh with vertices, edges, faces, and links 

between them, with optional 2D or 3D geometry, plus the topological stacking order of faces that overlap geometrically. 

A mesh can also easily store additional user-defined data.” (Demaine, n.d.). 

While we wait for the enhancing of the interoperability between these applications, the solution that this thesis 

proposes is trying to clarify how a designer needs to think while designing with origami and what strategies he needs to 

follow to make a creative and interesting origami-based design. To do so we will propose a variety of algorithms and 

case studies using a parametric modelling software so that any designer would be able to work in the same platform 

without needing to move the file from one software to the other saving time and preventing data loss. 

1.6. Background  

 Brief History of Origami 10  

Origami has no certain origins. The paper degrades easily, for this reason, it is probably impossible to know who was 

the first who folded a piece of paper or when origami has been invented. The implications of the origin of traditional 

origami on the field of origami applied to architecture and manufacturing are minimal because the origami as we know 

today is very different from the one practised in ancient times. Despite that, we chose to start from here to give a wider 

point of view and to understand where this art came from. 

There are many theories about origami origins. Someone says that origami originated in China concurrently with the 

paper invention around 2000 years ago, this theory is based on the fact that many believe that paper was born in 105 

BCE, when the Chinese official of Han dynasty, Cai Lun, wrote a document that explained the procedure to produce 

paper used at the time. Koshiro Hatori in his article “History of Origami in the East and the West before Interfusion” 

(Hatori, 2011) states that all these assumptions are wrong, because there is no evidence of origami from that period and, 

furthermore, the paper wasn’t invented in China in that period. Hatori reports recent studies, by Imami Sakamoto, which 

dates high-quality foldable bark paper around 5000 years BCE, and there are proves of a similar type of rough paper 

found in different parts of the world at that time (Meso-America, Hawaii, Southeast Asia). Furthermore, even if they 

folded the paper in half or more it is hard to consider that as an actual origami. This philosophical observation about the 

number of folds needed to consider a folded sheet as a proper origami makes even harder trying to date its origins. This 

does not mean that an independent Chinese origami tradition does not exist. For example, the “Yuan bao” is a traditional 

Chinese origami representing a golden nugget which was invented by an unknown probably earlier than the tenth 

century CE when it was already a tradition folding it and burn it at funerals (Mitchell, n.d.). There is also who believe 

that origami originated in Japan in the Heian era (794-1192). The theory is based on traditional anecdote where Abe-no 

Seimei took a piece of paper and he transmuted it into a real heron. However, even this hypothesis is not sufficient to 

prove that they were talking about origami as we know them nowadays, because, according to what Hatori reports, some 

version of the stories says that the heron was made by knotting the paper or drawing or cutting it instead of folding it. 

In addition, Hatori explains that the Japanese paper strips, “Shade” and “Heisoku”, used in Shinto rituals and the paper 

dolls, “hitogata”, were not made of paper in ancient Japan, and they are not necessarily folded even now. The word “ori-

gami”, came from “oru” meaning “to fold” and “kami” meaning “paper” or “divinity”. This leads us to think that there 

is a strict relationship between Japanese religion and the art of paper folding, but in ancient Japanese language the 

pronunciation of those words were different, so Hatori believe that it is hard to see a connection even between the 

traditional origami and the Japanese religion. 

                                                           
 

10 The main reference that we used to trace the ancient history of origami was the paper “History of Origami in the East 

and the West before Interfusion” by Koshiro Hatori. 
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Figure 4: different type of Noshi. Source: noshi collection by Yamanaka Kyoko (1850-1928). 

 

Figure 5: Mecho and Ocho models used as decorations on sake bottles. 

The oldest unequivocal document about origami in Japan is a short poem composed by Ihara Saikaku in 1680, where 

he speaks about “Origami butterflies in Rosei’s dreams”. He refers to origami “Ocho” and “Mecho” which are male and 

female butterflies, Japanese people still use those folded paper models to ornate bottles at weddings. This means that 

origami was already deep-rooted in Japanese culture when the poem was written, in fact, the samurai warriors between 

1603 and 1868 were supposed to fold wrapping paper, shaping it in a symmetric regular figure. Such type of folded figure 

named “Noshi” is probably dated between 1333-1573 and it was gifted as a token of good luck. What is surprising is that 

an older document reported by Viciente Palacios where we can recognize an origami boat was probably edited in Venice 

for the first time in the 13th century. It is the “Tractatus de Sphaera Mundi” by Giovanni Sacrobosco, according to Viciente, 

the image of the boat on the bottom has been found in the 1490 edition, but it could have been present even in an earlier 

edition. However, even in this case, Hatori discourages to take it as a certain clue because there is no written evidence of 

origami in Europe in that period, and the picture could also have represented a simple stylized boat instead of an accurate 

origami boat. 

 

Figure 6: “Tractatus de Sphaera Mundi” written by Giovanni Sacrobosco, paper boats zoom. (Source: History of origami. Origami 

resource centre. http://www.origami-resource-center.com/history-of-origami.html). 
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Figure 7: German baptismal certificate from the eighteenth century. Source “History of Origami in the East and the West before 

Interfusion” (Hatori, 2011). 

Another European document that proves that origami was present in Europe in ancient times, which is probably 

unrelated to Japanese origami tradition, was the baptismal certificate which was folded in a way that is known today as 

the “double blintz base”, and it can be dated back to the sixteenth century before the protestant reformation. In addition, 

there are several examples of love letters dating back to the early nineteenth century folded in a similar way which could 

be related to an autonomous European tradition of paper folding. 

What is almost certainly true is that there is not a univocal place or time where and when origami was born, but it 

probably had a concurrent diffusion in many different countries and ages because the paper by its nature invites to 

folding it. Nevertheless, it is still an open problem, which we probably will never be able to solve due to the lack of 

evidence. 

What is certain is that the origami, even if it could not be born exclusively in Japan, nowadays is considered strictly 

related to Japanese culture. The reason for this can be related, on the one hand, to the higher number of references to 

origami in the ancient and modern Japanese art compared to other countries; for example the first known book about 

ornamental origami is the Japanese book “Hiden Senbazuru Orikata” first published in 1797; and on the other hand, it 

can be related to the work of many Japanese artists who lived in 20th  to 21st century such as Akira Yoshizawa (1911, 

2005) who is considered the father of modern origami and the one who redefined the graphical system which is used 

today to represent the folding procedures of origami, known as “Yoshizawa-Randlett system”. He probably created 

more than 50.000 original models, of which only a small amount was published in his 18 books. For his contribution, 

as an ambassador of the Japanese culture in the world, he has been awarded from Emperor Hirohito with the “Order of 

the Rising Sun”, which is the highest honour conferred in Japan. 

 

Figure 8: “Hiden Senbazuru Orikata”, the first known book about origami, first published in 1797. 

 Origami in Education – Art, Design and Math11 

In the past, origami was not only used for artistic or ceremonial purposes. Thanks to its intrinsic geometrical properties, 

it was often used for educational purposes. One of the first well-documented examples of origami used in classes was 

                                                           
 

11 This section could have been divided in two distinct parts: education for art and design, education for math, and it 

could have been interesting to study it more in depth; although we decided to synthetize and unify these topics into 
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the experience of Joseph Albers who used origami as a tool to experience construction at Bauhaus in the 1920s. Quoting 

the artist Hans Beckmann words on his experience in Joseph Albers’s basic design course at Bauhaus “I remember vividly 

the first day of Vorkurs, Josef Albers entered the room, carrying with him a bunch of newspapers. … he then addressed 

us saying: Ladies and gentlemen, we are poor, not rich. We cannot afford to waste materials or time. We have to make 

the most out of the least. All art starts with a material, and therefore we have first to investigate what our material can 

do. So, at the beginning, we will experiment without aiming at making a product. At the moment, we prefer cleverness to 

beauty. … Our studies should lead to constructive thinking. … I want you now to take the newspapers … and try to make 

something out of them that is more than you have now. I want you to respect the material and use it in a way that makes 

sense — preserve its inherent characteristics. If you can do without tools like knives and scissors, and without glue, the 

better.” (Roth, Pentak, & Lauer, 2013). 

 

Figure 9: Josef Albers Discussing Paper Sculptures presented by his students during the basic design course at the Bauhaus 

(retrieved from Bauhaus archives). 

In the book “Geometric folding algorithms: linkages, origami, polyhedra” by Demaine and O’Rourke, the authors report 

an interesting and extensive research about the history of origami in math. They report a contribution precedent to the 

Bauhaus experience that used origami with educational purposes, which was the geometry essay by Rev. Dionysius 

Lardner written in 1840. This book illustrates several geometric concepts using paper folding. Furthermore, Sundara Row 

in 1893 wrote a contribute where origami has been used as a tool to make geometrical constructions and they have been 

compared to ruler and compass constructions. These writings can also be considered as the firsts known contributions to 

origami in the field of mathematics, even if in these cases the origami is used as a tool and not as the focus of the study 

(Demaine & O’Rourke, 2007). In 1936 is dated the first known contribute signed by Margherita Piazzola Beloch, which 

considers origami as the focus of a research about mathematics. In this book, she starts the investigation of the origami 

axioms, which later will be investigated further by Humiaki Huzita, the Japanese-Italian mathematician who, in 1985, 

presented the first 6 of the 7 axioms which define the operation that can be made with a single piece of paper, folded with 

linear creases with no cuts and completed on a plane. Someone believed that the 7th axiom was discovered in 2002 by 

Koshiro Hatori, a Japanese folder who found a new type of single fold alignment which could not be attributed to any of 

the Huzita axioms. From that moment, the 7 axioms started to be known as “Huzita-Haori” axioms, but according to 

Robert J. Lang’s point of view12, the seven axioms should have been named “Huzita-Justin axioms” (Lang, 2016), because 

in fact it turned out later that all the 7 axioms were already been completed by a French researcher Jacques Justin in 1989, 

who published the paper “Resolution par le pliage de l'equation du troisieme degre et applications geometriques” in which 

he enumerated 7 possible combinations of one single fold alignments. This fact instilled the doubt in Lang that the axioms 

could have been not concluded, thus a few years later he proved their completeness mathematically (Lang, 2015b). The 

full set of axioms is reported in Table 2. 

Table 2: Huzita-Justin Axioms 

                                                           
 

one single section for the sake of brevity and in order to not compare it with the other more relevant sections which 

are more pertinent and related to the area of study of the thesis. 
12 This point of view has now been accepted from the scientific community. 
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HUZITA-JUSTIN AXIOMS 

01 Given two points p1 and p2 we can fold a line connecting them. 

02 Given two points p1 and p2 we can fold p1 onto p2 

03 Given two lines l1 and l2, we can fold line l1 onto l2 

04 Given as point p1 and a line l1, we can make a fold perpendicular to l1 passing through the point p1 

05 Given two points p1 and p2 and a line l1, we can make a fold that places p1 onto l1 and passes through the point p2 

06 Given two points p1 and p2 and two lines l1 and l2 we can make a fold that places p1 onto line l1 and places p2 onto line l2 

07 Given a points p1 and two lines l1 and l2, we can make a fold perpendicular to l2 that places p1 onto line l1 

For those who are interested to study further the origami axioms, more details can be found in the following contributes 

by different authors: “Origami and geometric constructions” and “Huzita-Justin axioms” by Robert J. Lang (Lang, 

2015b, 2016), “The mathematics of origami” by Sheri Yin (Yin, 2009), “Some results to the Huzita axioms” by H. R. 

Khademzadeh and H. Mazaheri (Khademzadeh & Mazaheri, 2007), “Rèsolution par le pliage de l'équation du troisieme 

degrè et applications géométriques” by J. Jaques (Jacques, 1989), and “Geometric folding algorithms: linkages, origami, 

polyhedra” by E. Demaine and J. O'Rourke (Demaine & O’Rourke, 2007). A lot of studies about axioms, and about 

geometrical constructions that are possible thanks to the origami axioms, can be also found on Thomas Hull’s web page 

and other publications by him (Hull, n.d., 2003b, 2003a, 2006). 

Even if the seven axioms of origami are not easily directly applicable to practical designs in the field of engineering, 

manufacturing and architecture, they are the basics of the “mathematics of paper folding”. Starting from these basic 

axioms, the scientific community became more and more interested in origami mathematics. The studies were extended 

to many different problems, such as the flat-foldability, the definition of generalized techniques to design any shape 

only by folding, the degree of freedoms of a pattern and so on. There are many theorems about flat-foldability, 

extensively studied by Jun Maekawa, Toshikazu Kawasaki, Jacques Justin13. Later Thomas Hull continued their work 

on flat-foldability from the early nineties until today. Contrariwise, there is not a large bibliography about non-flat 

foldable patterns, one of the few references is the paper written by David A. Huffman “Curvature and Creases: A Primer 

on Paper” (Huffman, 1976). One of the first examples of computational origami is attributable to by Ronald Resh. 

Between the late 1950s and early 1970s, he worked with paper folding both artistically and computationally. In the 70s 

he developed a computer program at the University of Huta that converted any space curve in a curve-folded edge 

(Schmidt & Stattmann, 2009). 

Robert J. Lang developed around 1993 an algorithm, which became later a standalone software, to design crease 

patterns, this contribution determines a conjunction point between the origami intended as an art and the origami 

intended as a technique, but probably the most important Lang’s contribution is his book “Origami design secrets” 

(Lang, 2003, 2011). The first edition dates back to 2003 re-edited in 2011. His “magnum opus” on origami design 

methods was extended by another recent publication “Twists, Tilings and Tessellations. Mathematical methods for 

Geometric Origami.” (Lang, 2018) which extends the previous publications with new methods to design tessellations, 

twists and corrugations. Erik Demaine asserted that “Lang’s work may be viewed as the start of the recent trend to 

explore computational origami” (Demaine & O’Rourke, 2007). 

The next frontier of the origami mathematics will probably be focused on the curved folding, which has already been 

approached by Tachi and Demaine et al. (Demaine, Demaine, Huffman, Koschitz, & Tachi, 2015, 2018; Demaine, 

Demaine, Koschitz, & Tachi, 2011; Tachi, 2011a, 2013) but it still has a lot of open problems. Lang also asserted that 

he is interested in studying further this topic, which is still mostly unexplored. 

 Math Meets Art - Most Known Methods to Design Origami 

All the theorems developed since the second half of the twentieth century until today were not only a matter of 

mathematicians, engineers and scientists, also the artistic community started applying some of those theorems to 

increase their design possibilities. The result of that was a surprising increase in the complexity of the figurative origami 

models. This gave birth to a new artistic design approach based on mathematical rules. 

Before this revolution, the traditional method to design origami usually consisted of a trial-and-error process. This 

method is still used by the most part of origami designers, and it starts by fixing the subject to design; then the designers 

try to get a schematic geometric figure by using their experience and a trial-and-error method. The geometrical base 

                                                           
 

13 That we will discuss later in section 3 
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must be as much close to the desired subject as possible so that they can shape and sculpt it to achieve a more realistic 

look. The design method is focused on finding clear folding steps and reference easy points in spite of looking for an 

optimized crease pattern (CP). 

Sometimes the process can also be reversed, the artist folds a random base without having in mind a particular subject 

searching for the inspiration while folding it, and only after folded the base he/she searches for a figure that could match 

the base and he/she starts shaping it accordingly. 

The most recent mathematically-based approach is characterized by applying mathematical or graphical rules to draw 

an accurate crease pattern before even folding a single crease, only after the pattern is finished the artist will find the 

folding sequence. Sometimes there is not an easy step by step process to collapse complex patterns, and sometimes it is 

necessary to collapse it all at once making it way more difficult to fold then a traditional step-by-step sequence. The first 

approach is usually used for simple models, the second one is necessary for very complex models because the design time 

would be too long if approached with the trial-and-error method. 

Ryujin by Kamiya Satoshi, for example, is one of the most complex models ever created. It is folded from a 2m x 2m 

single square sheet of paper and represents an eastern style scaled dragon with several claws horns and fangs. It took 

Kamiya many months to design and fold its final version, and without a precise design strategy, and solid mathematical 

basis, Kamiya would not probably be able to realize it. 

 

Figure 10: Ryujin 3.5, designed by Kamiya Satoshi folded by Atilla Yurtkul. 

Many different widespread mathematically-based approaches exist, some of them aim to optimize the paper usage, 

others aim to simplify the design process, others want to push to another level the possibilities of origami even if the 

method is not convenient for the folders, some of them want to be as flexible and reliable as possible. The most known 

are explained in Lang’s book “Origami design secrets” (Lang, 2011), most of them come from the analysis of traditional 

techniques, enriched by Lang’s experience. He explains how to design any origami figure, just by modifying a traditional 

known pattern, or by assembling different pieces of known patterns that he calls “tiles” or “molecules”. 

To understand how to mate two tiles it is necessary to understand the rivers and circle rules, which will not be explained 

in depth here. Suffice it to say that circles represent flaps and points, and rivers represent connectors between flaps and 

points in the folded geometric base model. To obtain a flat foldable origami composed by different tiles it is necessary to 

line up all the rivers and the circles of the adjacent tiles. The natural consequence of a tiles-based method (molecule 

method) is to investigate all the possible ways to arrange the tiles (thus the river and the circles) on the plane (the sheet 

of paper). The answer to this problem is a geometrical well-known problem called circle packing, which is defined as the 

study of the arrangement of circles on a given surface such that no overlapping occurs and so that all circles touch one 

another. 

The tree theory explained by Lang is an evolution of the circle packing and molecule technique, and it consists in 

drawing a schematic figure where the lengths of the limbs are the lengths of the flaps, and thus, they are the radii of the 

circles which have to be arranged on the unfolded sheet as a guide to draw the crease pattern. Once drawn all the creases 

the verse of each crease must be assigned (valley or mountain) which can be done through the rules of flat foldability that 

we are going to explain in section 3.5. When connecting with creases the packed circles, the angles between creases are 

often odds, and thus it can be very hard to find references just by folding. 

The box pleating technique became famous between origami artists to avoid this problem, due to its simplicity both in 

terms of designability and foldability. This technique was born to design box-like origami and evolved becoming a self-

standing technique which can be used to design any kind of flat-foldable or non-flat-foldable origami. In the “box 

pleating” method, angles which are not multiple of 45° are not allowed thus it solves the problem of odd angles greatly 

simplifying the pre-creasing process. However, it partially limits the design freedom; Lang says “Because of their simple 

angles, box-pleated crease patterns can be much easier to develop linear folding sequences for. They come with a cost, 

however; not all circle patterns possess box-pleatable molecules.” (Lang, 2011). 
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In architecture, manufacturing and engineering, the design processes differ from the ones used by artists. Usually, the 

shape-finding process starts from the context or it is aimed at finding particular movements to be applied in particular 

situations instead of finding a specific shape. The necessity to control the movement makes the design process longer 

and harder. In these fields, it is not easy to identify a set of known approaches because they usually differ case by case. 

However, for sure the common ground is the use of computer applications and/or math, to generate, control, modify 

and analyse the behaviour of rigid-foldable surfaces. 
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2. CHAPTER II: Origami-Inspired Designs 

In this chapter, we report the study of existent projects that take inspiration from origami for a diversity of aspects. This 

study has the aim to outline the general trend of the selected application fields that are the focus of this thesis.  

To collect the projects sorted into the following synoptic tables we analysed the fields of permanent architecture, 

temporary architecture, artistic installations, furniture and manufacturing, and fashion. In the conclusions of this chapter, 

we will formulate some critical observations. 

The catalogue of projects does not in any way claim to provide a comprehensive and exhaustive cataloguing of all the 

existing origami-related projects because the number of objects suitable with regards to the assumed criteria would be too 

wide to be listed in this context. Therefore, we decided to narrow the collection of references to a limited number of 

objects, but vast enough to make some robust considerations. 

In accordance to all of these assumptions, the gathered projects will be subdivided into the 5 sub-groups: “Permanent 

Architecture”, “Temporary Architecture”, “Installations”, “Goods and Furniture”, “Fashion and Clothing”.  

 

 

2.1. Classification Criteria 

      

Kinematics Packing Fast deployment Stiffness Developability Ornamental 

      

 

In the next sections, we will present some synoptic tables where the collected project have been sorted, and we will 

analyse each project and highlight for each one of them the characteristics inspired by origami. According to this principle, 

we defined six main classes of origami-related functions: “Ornamental”, “Stiffness”, “Kinematics”, “Packing, “Fast 

Deployment” and “Developability”. Every project will be described by one or more of them. 

The “Ornamental” class includes all the designs which take inspiration from origami for aesthetical reasons. This class 

will be organized in 2 columns: one will count all the works inspired to origami, the other one will count the works 

inspired by origami exclusively for ornamental reasons. We make this distinction only for this class because the projects 

that take the origami as a reference exclusively for aesthetical reasons do not need origami theories to be designed and 

they do not follow origami rules, thus their design workflows are free of geometrical constraints and they would not 

benefit from the design methods that we are going to propose next. For “Stiffness” are intended those works which use 

Permanent 

Architecture 

Temporary 

Architecture 

Installations Goods and 

Furniture 

Fashion 

and Clothing 
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folds to get a stronger structure. The “Kinematics” class includes those works that use origami rules to achieve specific 

movements. In the “Packing” class are included those works that exploit origami mechanisms to reduce their dimensions 

for transportation stocking or for space optimization. The “Fast deployment” class includes all those works where the 

origami mechanisms are used to pack and deploy rapidly the structure. The “Developability” class include all those 

works which use a developable pattern to build the final object starting from a single sheet of a specific material or from 

a modular composition of single folded pieces. It does not necessarily need to be unfoldable after being folded the first 

time to be included in this class. The developability characteristic is often used to optimize the cutouts and the scraps 

during the production and to optimize the assembling time. 

To classify the selected projects, we tried to be as objective as possible, although some cases are hard to be assigned 

to one or the other class univocally. However, the objective of this analysis is not to extract a precise number of projects 

in one or the other class, but it is to trace a trend, thus even if a small number of projects may be not univocally 

classifiable, the high number of case studies considered will globally flatten out this uncertainty, and the outlined trend 

of each group of projects will not lose relevance. 

2.2. Permanent Architecture - Synoptic Tables 

 

 1923 

-Hangars of the Orly Airport 

-Paris, FR 

-Eugène Freyssinet 

www.arquiscopio.com 

  

 1953-1958 

-Assembly Hall of the UNESCO 

Headquarters 

-Paris, FR 

-Pierluigi Nervi and Zehrfuss 

www.archimaps.tumblr.com 

 

 

 1958 

-American Concrete Institute 

Building 

-Detroit, US 

-Minoru Yamasaki 

www.michiganmodern.org 

 

 

 1962 

-Steel Pre-Fab Houses 

-Palm Springs, CA, US  

-Donald Wexler  

www.archdaily.com 

  

 1962 

-USFA Cadet Chapel 

-El Paso, CO, US 

-Walter Netsch of Skidmore, 

Owings, & Merrill 

www.archdaily.com 

 

 

 1963 

-Miami Marine Stadium 

-Miami, US 

-Hilario Candela 

www.archdaily.com 

 

 

 1966 

-Shelter for sulphur factory 

-Pomezia, IT 

-Renzo Piano Studio 

www.archdaily.com 

  

 1966-68 

-St. Paulus Neuss Church 

-Mito, Ibaraki, JP 

-Fritz Schaller and Stefan 

Polonyi 

www.baukunst-nrw.de 

 

 

 1973 

-Teatro Regio di Torino 

-Torino, IT 

-Carlo Mollino 

www.italianways.com 

 

 

 1985 

-Ernstings Warehouse 

-Coesfeld-Lette, DE 

-Santiago Calatrava 

www.archi-pedia.blogspot.it 

  

 1990 

-Art Tower Mito 

-Mito, Ibaraki, JP 

-Arata Isozaki 

www.arttowermito.or.jp 

  

 2000 

-M-house 

-Gorman, California, USA 

-Michael Jantzen 

www.arcspace.com 

 

 

 2002 

-Meguro Persimmon Hall 

-Tokio, JP 

-Nihon Sekkei 

www.nagata.co.jp 

  

 2002 

-Rehearsal room in Tannhausen 

-Stuttgart, DE 

-Regina Schineis 

www.forum-holzbau.ch/ 

  

 2003 

-Bengt Sjostrom Starlight 

Theatre 

-Rockford, IL, US 

-Studio Gang Architects  

www.archdaily.com 

 

 

 2007 

-CaixaForum 

-Madrid, ES 

-Herzog & de Meuron 

www.archdaily.com 

  

 2007 

-Dom mieszkalny w 

Doktorgässchen 

-Niemcy, Augsburg, DE 

-Regina Schineis Architecten 

BDA  

www.equitone.pl 

 

 

 2007 

-Fuji television wangan studio 

-Tokyo, JP 

-Kajima design 

www.kajima.co.jp 

 

http://www.arquiscopio.com/
http://www.archimaps.tumblr.com/
http://www.michiganmodern.org/
http://www.archdaily.com/
http://www.archdaily.com/
http://www.archdaily.com/
http://www.archdaily.com/
http://www.italianways.com/
http://www.archi-pedia.blogspot.it/
http://www.arttowermito.or.jp/
http://www.arcspace.com/
http://www.nagata.co.jp/
http://www.forum-holzbau.ch/
http://www.archdaily.com/
http://www.archdaily.com/
http://www.equitone.pl/
http://www.kajima.co.jp/


Algorithmic modelling of folded surfaces CHAPTER II: Origami-Inspired Designs 

 

 

Pag. | - 31 - 

 

 

 

 2007 

-Monaco House 

-Melbourne VIC, AU 

-McBride Charles Ryan 

www.archdaily.com 

  

 2007 

-Nestlé Chocolate Museum 

-Toluca de Lerdo, MX 

-Rojkind Arquitectos  

www.archdaily.com 

  

 2007 

-Spertus Institute of Jewish 

Studies 

-Chicago, Illinois, US 

-Krueck & Sexton Architects 

www.archdaily.com 

 

 

 2008 

-Klein Bottle house 

-Mornington Peninsula, VIC, 

AU 

-McBride Charles Ryan 

www.archdaily.com 

 

 

 2008 

-Cafè-Resturant OPEN 

-Amsterdam, NL 

-De Architekten Cie  

www.architecturelist.com 

  

 2008 

-Karuizawa Museum Complex 

-Karuizawa, JP 

-YASUI HIDEO ATELIER 

www.archdaily.com 

 

 

 2009 

-Autobahn Church Siegerland 

-Wilnsdorf, DE 

-Schneider+Schumacher  

www.archdaily.com 

  

 2009 

-Horten Headquarters 

-Copenhagen, DK 

-3XN 

www.archdaily.com 

  

 2009 

-Neo Solar Power Corporation 

-Hsinchu City, TW 

-J. J. Pan & Partners, Architects 

& Planners (JJPP) 

www.solaripedia.com 

 

 

 2010 

-Arthouse 

-Hangzhou, Zhejiang, CN 

-Joey Ho Design 

www.archdaily.com 

  

 2010 

-Kiefer Technic Showroom  

-Bad Gleichenberg, AT 

-Ernst Giselbrecht + Partner 

www.e-architect.co.GB 

  

 2010 

-Museum of Art Amir Building 

-Tel Aviv, IL 

-Preston Scott Cohen 

www.archdaily.com 

 

 

 2010 

-Office Building In Istanbul 

-Istanbul, TR 

-Tago Architects   

www.archdaily.com 

  

 2010 

-Q1, ThyssenKrupp Quarter  

-Essen, DE 

-JSWD Architekten, Chaix & 

Morel et Associés 

www.archdaily.com 

 

 

 2011 

-CIB, Biomedical Research 

Center 

-Pamplona, ES 

-Vaíllo & Irigaray & Galar 

www.archilovers.com 

 

 

 2011 

-Glasgow Riverside Museum of 

Transport 

-Glasgow, GB 

-Zaha Hadid Architects  

www.archdaily.com 

 

 

 2011 

-House 77  

-Póvoa de Varzim, PT 

-dIONISO LAB 

www.archdaily.com 

  

 2011 

-Origami  

-Paris, FR  

-Manuelle Gautrand Architecture  

www.e-architect.co.GB 

 

 

 2011 

-Perry and Marty Granoff Center 

for the Creative Arts 

-Providence, Rhode Island, US  

-Diller Scofidio + Renfro    

www.archdaily.com 

 

 

 2011 

-Stadshuis Nieuwegein  

-Nieuwegein, NL 

-3XN 

www.archdaily.com 

  

 2011 

-Vivida 

-Hawthorn, Melbourne, AU 

-ROTHELOWMAN 

www.archdaily.com 

 

 

  2012 

-Al Bahar Towers 

-Abu Dhabi, AE 

-Aedas Architects 

 www.architizer.com 

  

 2012 

-Dalian International Conference 

center 

-Dalian, CN 

-Coop Himmelb(l)au 

www.archdaily.com 

 

 

 2012 

-Factory Building on the Vitra 

Campus 

-Weil am Rhein, DE 

-SANAA 

www.archdaily.com 
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 2012 

-FECHAC Regional Office 

-Ciudad Juarez, MX 

-Grupo ARKHOS 

www.archdaily.com 

  

 2012 

-Festival Hall of the Tiroler 

Festspiele 

-Erl, AT 

-Delugan Meissl Associated 

Architects 

www.archdaily.com 

 

 

 2012 

-Hooke Park Big Shed 

-Dorset, GB 

-AA Design & Make 

www.archdaily.com 

 

 

 2012 

-Kilden 

-Kristiansand, NO 

-ALA Architects 

www.archdaily.com 

  

 2012 

-Mülimatt Sports Education and 

Training Centre in Windisch 

-Brugg, CH 

-Studio Vacchini Architetti  

www.archdaily.com 

 

 

 2012 

-Naturum Kosterhavet 

-Ekenäs, SE 

-White Arkitekter 

www.archdaily.com 

 

 

 2012 

-Roberto Cantoral Cultural 

Center 

-Coyoacán México DF, MX 

-Broissin Architects 

www.archdaily.com 

 

 

 2012 

-Salon Urbain 

-Montreal, QC, CA 

-Ædifica + Sid Lee Architecture 

www.coloribus.com 

  

 2013 

-Aix en Provence Conservatory 

of Music 

-Aix-en-Provence, FR 

-Kengo Kuma and Associates  

www.archdaily.com 

 

 

 2013 

-Assemble Studio 

-Northcote, VIC, AU 

-Assemble  

www.archdaily.com 

  

 2013 

-Dear Ginza 

-Chuo, Tokyo, JP 

-Amano design office 

www.archdaily.com 

  

 2013 

-High School Crinkled Wall 

-Kufstein, AT 

-Wiesflecker Architecture 

www.archdaily.com 

 

 

 2013 

-HygroSkin - Meteorosensitive 

pavilion, 

-FRAC Centre Orleans, FR 

-Achim Menges, Oliver David 

Krieg and Steffen Reichert 

icd.uni-stuttgart.de/?p=9869 

 

 

 2013 

-Innovation and Technical and 

Technological Transfer Park 

-Chihuahua, MX 

-Grupo ARKHOS 

www.archdaily.com 

 

 

 2013 

-Muqarnas Tower  

-Riyadh SA 

-Skidmore, Owings & Merrill, 

SOM  

www.archdaily.com 

 

 

 2013 

-Siemens HQ in Masdar City  

-Masdar City - Abu Dhabi - AE 

-Sheppard Robson 

www.archdaily.com 

  

 2013 

-Textilmacher 

-Munich, DE 

-tillicharchitektur 

www.archdaily.com 

  

 2014 

-Commercial Foyer Space, 105 

Wigmore Street 

-London, GB 

-Paul Nulty Lighting Design 

www.illumni.co 

 

 

 2014 

-New Wave Architecture 

Designs Rock Gym for Polur 

-Polur, IN 

-New Wave Architecture  

www.archdaily.com 

 

 

 2014 

-SDU Campus Kolding 

-Kolding, DK 

-Henning Larsen Architects  

www.archdaily.com 

  

 2014 

-Velenje Car Park 

-3320 Velenje, SI 

-ENOTA  

www.archdaily.com 

 

 

 2014 

-Yokohama International 

Passenger Terminal 

-Yokohama, JP 

-Foreign Office Architects (FOA 

www.archdaily.com 

 

 

 2015 

-Bespoke Theatre 

-Xishuangbanna, Yunnan, CN 

-Stufish Entertainment 

Architects  

www.archdaily.com 

 

 

 2015 

-Cozzarelli price stage, National 

Academy of Science 

- Washington DC 

www.paulino.ce.gatech.edu/cozz

arelli2015.html 
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 2015 

-Qingdao Cruise Terminal 

-Qingdao, Shandong, CN 

-CCDI - Mozhao Studio & Jing 

Studio 

www.archdaily.com 

 

 

 2016 

-Poly International Plaza 

-Beijing Shi, CN 

-Skidmore, Owings & Merrill 

www.som.com 

  

 2016 

-Széll Kálmán Square 

-Budapest, HU 

-Építész Stúdió, Lépték-Terv 

www.archdaily.com 

 

 

 2016 

-Tokyu plaza 

-Tokyo, JP 

-Nikken Sekkei 

http://www.archdaily.com 

  

 2017 

-Low Carbon Energy Centre 

-London, GB 

-C.F. Møller Architects 

www.archdaily.com 

  

 

 2013 

-Kyushu Geibunkan 

-Fukuoka, JP 

-Kengo Kuma 

www.talfriedman.com 

 

2.3. Temporary Architecture - Synoptic Tables 

 

 1964 

-Pavillion Wehrhafte Schweiz 

-Lausanne, CH 

-Carl Fingerhuth 

www.eda.admin.ch 

 
 

 1967 

-Plydome at Flash Peak camp 

-Indio, CA 

- Herbert Yates, Hirshen Van der 

Ryn Architects 

https://goo.gl/YYYZx5 

  

 

 2000 

-Origami Shelter sculpture 

-JP 

-Yuko Nishimura 

www.yukonishimura.com 

 

 

 2005 

-Jumbo Origamic Arch White 

-Jakarta (Indonesia, Pescara, IT 

-Atelier Bow-Wow 

www.bow-wow.jp 

 
 

 2005 

-Jumbo Origamic Arch Orange 

-Kobe Art Village Center, 

Hyogo, JP 

-Atelier Bow-Wow 

www.bow-wow.jp 

 

 

 2006 

-dB folding disco 

-BR 

-Fernanda Dolabella Dubal 

www.designboom.com 

 

 

 2008 

-Embedded Project 

-Shanghai, CN 

-HHD_FUN + Xu Wenkai 

www.dezeen.com 

 
 

 2008 

-Chapel for the Deaconesses 

-Hôpital de St-Loup, CH 

-Localarchitecture + Danilo 

Mondada 

www.archdaily.com 

 

 

 2009 

-Cardboard banquet paper 

pavilion 

-Cambridge, GB 

-Cambridge University 

www.iconeye.com 

 

 

 2011 

-Bloomberg Pavilion 

-Tokyo, JP 

-Akihisa Hirata 

www.designboom.com 

 
 

 2011 

-Winnipeg Skating Shelters 

-Winnipeg, MB, CA 

-Patkau Architects 

www.archdaily.com 

 
 

 2012 

-Burning Man yurt 

-Black Rock City, US 

-Joerg Student - ideoLABS 

www.labs.ideo.com 

 

 

 2012 

-Canary Wharf Kiosk 

-London, GB 

-Make Architects 

www.makearchitects.com 

 
 

 2012 

-Insrtant Flat-Pack Origami -

Shelter 

-Doowon Suh, KR 

weburbanist.com 

 
 

 2012 

-Public Toilets 

-Uster, CH 

-Gramazio & Kohler 

www.archdaily.com 

 

 

 2012 

-The Bowooss Temporary 

Pavilion 

- Saarbrücken, DE 

-The School of Architecture at 

Saarland University 

www.arch2o.com 

 

 

 2013 

-ArboSkin Pavilion 

-Stuttgart, DE 

-ITKE 

www.inhabitat.com 

 
 

 2013 

-Cardborigami, temporary 

cardboard shelter 

-Santa Monica, California, US 

-Callison LLC 

www.cardborigami.org 
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 2013 

-Emergency Shelter 

-Melbourne, AU 

-Woods Bagot 

www.notesontheroad.com 

 
 

 2013 

-Ferrocement Shelter 

-IN 

-Anupama Kundoo 

www.cusp-design.com 

 
 

 2013 

-Indo-German Urban Mela 

pavillions 

-Pune, IN 

-Markus Heinsdorff 

www.DE-and-IN.com 

 

 

 2013 

-Plate house 

-Oxford, GB 

-Jo Gattas and Zhong You 

joegattas.com/plate-house 

 
 

 2013 

-Pop-up Dome Prototype 

-Delft, DE 

-University of Techology 

www.designplaygrounds.com 

 
 

 2014 

-FFolded Bamboo + Paper 

House concept 

-CN 

-Ming Tang 

www.archdaily.com 

 
 

 

 2014 

-Flat-pack disaster housing 

-AU 

-Alastair Pryor 

www.mnn.com 

 
 

 2014 

-Ha-Ori Shelter 

-Bolinas, CA 

-Joerg Student - ideoLABS 

www.labs.ideo.com 

 
 

 2017 

-Look! Look! Look! 

-Herefordshire, GB 

-Studio Morison 

www.archdaily.com 

 

2.4. Installations - Synoptic Tables 

 

 2000 

-La Patata 

-DE 

-Volker Flamm & Wolfgang 

Ohnmacht 

www.detail.de 

 

 

2002 

-Your spiral view 

-Fondation Beyeler, Basel, CH 

-Olafur Wliasson 

https://olafureliasson.net/ 

 
 

 2008 

-Life Tunnel 

-The Hayward, London, UK 

-Atelier Bow Wow 

www.edgeoftheplank.com 

 

 

2009 

-Ecological Installations 

-Greenmeme 

www.ponoko.com 

  

 2010 

-Move: Choreographing You 

exhibition design 

-London, UK 

-Amanda Levete ARchitects 

www.dezeen.com 

 

 

 2011 

-Le Fabrique Sonore 

-Reims, FR 

-Hyoung-Gul Kook, Ali Momeni  

and Robin Meier  

www.design-

afterhours.blogspot.it 

 

 

 2011 

-Overliner 

-MIT, US 

-Joel Lamere, Cynthia Gunadi 

www.arts.mit.edu 

 
 

 2011 

-Resonant chamber 

-University of Michigan, US 

-RVTR 

www.archdaily.com 

 
 

 2011 

-Tessel, kinetic sound 

installation 

-Lyon, FR – Brussels, BE 

-David Letellier and Lab[au] 

www.designplaygrounds.com 

 

 

 2012 

-Arum Shell 

-Biennale di Venezia, IT 

-Zaha Hadid Architects 

 www.robofold.com 

 
 

 2012 

-Curved Folding, Metal Twins 

-Bangalore, IN 

-S. Chandra; S. Bhooshan; M. 

El-Sayed; 

www.arcode.blogspot.it 

 

 

 2012 

-INVOLUTION 

-Savannah, Georgia, US 

-(LAB)normal, Larry O. Martin 

www.arch2o.com 

 

 

 2012 

-Rainbow Gateway 

-Burnley,GB 

-Tonkin Liu 

www.tonkinliu.co.uk 

 
 

 2013 

-Computational parabolic 

origami Shelter 

-Komaba Museum, Tokio, JP 

-Tomohiro Tachi 

www.tsg.ne.jp 

 

 

 2013 

-Rigid foldable generalized 

Miura 

-Komaba Museum, Tokio, JP 

-Tomohiro Tachi 

www.tsg.ne.jp 
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 2014 

-Blumen Lumen 

-Black Rock City, US 

-Joerg Student - ideoLABS 

www.labs.ideo.com 

 
 

 2014 

-One Fold 

-CA 

-Patkau Architects 

 www.straight.com 

 
 

 2015 

-Curved-Line Folding Workshop 

-School of Architecture, London, 

UK 

- Michael Weinstock, Axel 

Körner, Suryansh Chandra 

axelkoerner.com/portfolio 

 

 

 2015 

-Computing Curved-Folded 

Tessellations through Straight 

Folding Approximation. 

-University of Stuttgart, DE. 

- Michael Weinstock, Axel 

Körner, Suryansh Chandra 

www.researchgate.net 

 

 

 2016 

-Origami Pavilion. 

-Detmold University, DE. 

-Tal Friedman. 

www.inhabitat.com 

 
 

 2016 

-“Surface to Form” pavillion. 

-University Innsbruck, AU. 

-Rupert Maleczek, et al. 

www.maleczek.info/portfolio 

 

 

 2016 

-Arch(k)inetik workshop. 

-University of Stuttgart, DE. 

-Contemporary Architects 

Association Tehran, Axel Körner 

et al. 

www.axelkoerner.com/portfolio 

 

 

 2017 

-Curved folded wooden 

assemblies. 

-Holzbau Saurer, Höfen, AU. 

-Rupert Maleczek, Gabriel Stern, 

et al. 

https://www.researchgate.net/pu

blication/328899419 

 

 

 2018 

-Curved-Folded Assemblies. 

-University of Innsbruck, AU. 

-Rupert Maleczek and Axel 

Körner 

www.maleczek.info/portfolio 

 

2.5. Goods and Furniture - Synoptic Tables 

 

 
-3D Surface 

-Caos 

-TRG, TRB 

www.3dsurface.it 

 
 

 
- Petrucci Adrien 

-Paper cast teapot 

-Ceramic 

www.pinterest.com 

 
 

 
-Alice Minkina 

-Chair AMi 

-Fabric and plywood  

www.behance.net 

 

 

 
-Anthony Dickens & Tony 

Wilson 

-Origami table 

-Steel 

www.anthonydickens.com 

 

 

 
-Ariel Zuckerman 

-Wood And Light Origami 

-Wood 

www.yankodesign.com 

 
 

 
-ARTEMIDE, Issey Miyake 

-Mendori 

-Paper 

www.artemide.com 

 

 

 
-Bell Phillips 

-Origami stairs 

-Stainless steel 

www.dezeen.com 

 
 

 
-Ben Ryuki Miyagi 

-Elephant Seating 

-Felt 

www.wearedesignbureau.com 

 
 

 
-Boaz Mendel 

-Loop Chair 

-Wood and metal 

www.aadesignspace.blogspot.it 

 

 

 
-Brett Mellor 

-Facetation Butterfly Chair 

-Fabric and metal 

www.behance.net 

 
 

 
-Brett Mellor 

-Flat Stanley Origami Chair 

-Wood, Canvas and Vinyl 

www.behance.net 

 
 

 
-Brett Mellor 

-The Morgan Felt Folding Stool 

-Felt impregnated with resin 

www.behance.net 
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-BUILT 

-Origami Wine Tote 

-Neoprene 

www.builtny.com 

 
 

 
-Cut and Fold by Andrea Kordos 

& Tony Round 

-Aperture Pendant 

-Metal and wood 

www.cut-fold.com 

 

 

 
-Cut and Fold by Andrea Kordos 

& Tony Round 

-Origami Chair 

-Metal and wood 

www.cut-fold.com 

 

 

 
-Daniel Milchtein Peltsverger 

-Biombo Chair 

-Wood 

www.bookofjoe.com 

 
 

 
-Daniel Schipper 

-Green Green House 

-Recyclable plastic 

www.yankodesign.com 

 
 

 
-DegreesOfFreedomCo  

by Brian Ignaut 

-Loop table 

-Wood 

www.etsy.com 

 

 

 
-DegreesOfFreedomCo  

by Brian Ignaut 

-Legged wooden origami table 

-Wood 

www.instagram.com 

 

 

 
DegreesOfFreedomCo  

by Brian Ignaut 

Kinetic Ring Box 

Wood 

www.instagram.com 

 

 

 
-DOMUS by Tobias Krafczyk 

-Origami Intersections 

-Paper 

www.onlab.ch 

 

 

 
-Donn Koh 

-Origami for superheroes - 

pencil sharpener 

-Stainless steel 

www.yankodesign.com 

 

 

 
-FiberStore 

-Bubble 

-Polypropylene 

www.etsy.com 

 
 

 
-FiberStore 

-Pebble 

-Paper 

www.etsy.com 

 

 

 
-FiberStore 

-Poetry 

-Paper 

www.etsy.com 

 
 

 
-FiberStore 

-Ramekin 

-Paper 

www.etsy.com 

 
 

 
-FiberStore 

-Volant 

-Paper 

www.etsy.com 

 

 

 
-Florian Kräutli 

-Magnetic origami curtain 

-Fabric, metal, magnets 

www.kraeutli.com 

 
 

 
-FLUX 

-Flux Chair 

-Plastic 

www.fluxfurniture.com 

 
 

 
-Foldschool 

-Cardboard kid forniture 

-Cardboard 

www.foldschool.com 

 

 

 
-FOSCARINI 

-Diesel Rock Light 

-ABS, Metal, nylon 

www.foscarini.com 

 
 

 
-Four-o-nine 

-Pleat Diner chair 

-Polyethylene 

www.nienkamper.com 

 
 

 
-Fox & Freeze 

-Lounge Chair 

-Felt 

www.designboom.com 

 

 

 
-Fredrik Färg 

-The COAT Chair 

-Felt 

www.contemporist.com 

 
 

 
-Gant Lights 

-Concrete hanging lamp 

-Concrete 

www.etsy.com 

 
 

 
-Gold Leaf Design Group 

-Origami Paper Lamps 

-Paper 

www.goldleafdesigngroup.com 
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-HOID 

-Pleat Box 

-Ceramic, glazed enamel, metal 

www.marset.com 

 
 

 
-Ignatov Architects 

-News Coffee Table 

-Aluminium 

www.interiorholic.com 

 
 

 
-Ilan Garibi 

-Tessellated origami mirrors 

-Aluminium 

www.garibiorigami.com 

 

 

 
-Ilan Garibi 

-Tessellated origami Table Lamp 

-Paper and Wood 

www.garibiorigami.com 

 
 

 
-Ilan Garibi 

-Tessellated origami tables 

-Wood 

www.garibiorigami.com 

 
 

 
-INC Architecture & Design 

-Origami Stairs 

-Metal 

www.designbuzz.it 

 

 

 
-Issey Miyake 

-Fukurou Lamp 

-Recycled polyester fibre fabric 

www.artemide.com 

 
 

 
-Issey Miyake 

-Minomushi Terra Lamp 

-Recycled polyester fibre fabric 

www.artemide.com 

 
 

 
-Issey Miyake 

-Mogura Lamp 

-Recycled polyester fibre fabric 

www.artemide.com 

 

 

 
-Issey Miyake 

-Tatsuno-Otoshigo Lamp 

-Recycled polyester fibre fabric 

www.artemide.com 

 
 

 
-James Slack 

-ORI 

-Cardboard 

www.themag.it 

 
 

 
-Jan Sekuła 

-Cardboard Playground 

-Cardboard 

www.behance.net 

 

 

 
-Jiangmei Wu 

-Torus Folded Lamp 

-Recycled cotton paper 

www.mocoloco.com 

 
 

 
-Joseph Joseph 

-Folding Colander 

-Plastic 

www.josephjoseph.com 

 
 

 
-Jurmol Yao 

-Venom 

-Metal and carbon fibre 

www.yankodesign.com 

 

 

 
-Kaj Franck 

-Origami Plate - K F 2 

-Ceramic 

www.etsy.com 

 
 

 
-KARTON 

-Cardboard Furniture 

-Cardboard 

www.kartongroup.com.au 

 
 

 

 
-KARTON 

-Twist Table 

-Cardboard 

www.kartongroup.com.au 

 

 

 
-Keiji Ashizawa 

-Flat Pack Wall Magazine 

Holder 

-Steel 

www.keijidesign.com 

 

 

 
-Kelly Lohr 

-Origami Chair 

-PETG thermoplastic polymer 

www.behance.net 

 
 

 
-KNOLL 

-Washington Prism, Lounge 

chair 

-Urethane moulded foam, Baltic 

Birch plywood panels covered in 

plastic 

www.knoll.com 

 

 

 
-Krings & Sebastian Mühlhäuser 

-Casulo 

-Cardboard 

www.mein-casulo.de 

 
 

 
-Kyungeun Ko 

-Bentley tailormade 

-Aluminium 

www.yankodesign.com 

 
 

 
-Lapalma, Shin Azumi 

-AP Foot stool 

-Wood 

www.designboom.com 

 

http://www.marset.com/
http://www.interiorholic.com/
http://www.garibiorigami.com/
http://www.garibiorigami.com/
http://www.garibiorigami.com/
http://www.designbuzz.it/
http://www.artemide.com/
http://www.artemide.com/
http://www.artemide.com/
http://www.artemide.com/
http://www.themag.it/
http://www.behance.net/
http://www.mocoloco.com/
http://www.josephjoseph.com/
http://www.yankodesign.com/
http://www.etsy.com/
http://www.kartongroup.com.au/
http://www.kartongroup.com.au/
http://www.keijidesign.com/
http://www.behance.net/
http://www.knoll.com/
http://www.mein-casulo.de/
http://www.yankodesign.com/
http://www.designboom.com/
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-Le Klint 

-Pendant 150 

-Lampshade foil 

www.leklint.com 

 
 

 
-Le Klint 

-Pendant 153 

-Plastic Foil 

www.leklint.com 

 
 

 
-Le Klint 

-Pendant 169 

-Plastic Foil 

www.leklint.com 

 

 

 
Le Klint 

Pendant 172 

Plastic Foil 

www.leklint.com 

 
 

 
Le Klint 

Pendant 178 

Plastic Foil 

www.leklint.com 

 
 

 
Le Klint 

Pendant 181 

Plastic Foil 

www.leklint.com 

 

 

 
-Lim Ruiwen 

-Origami Shade 

-Fabric 

www.yankodesign.com 

 
 

 
-Matsuoka furniture 

-Origami Chest 

-New Guinea Walnut 

www.matsuokafurniture.com 

 
 

 
-Max Hauser 

-Trifold 

-Anodised Aluminium 

www.trifoldtable.com 

 

 

 
-McEwen Lighting Studio 

-Gear Ceiling Fixture 

-Satin Nickel 

www.mcewenlighting.com 

 
 

 
Michael Sholk 

Foldable wooden Spoon 

Wood 

www.yankodesign.com 

 
 

 
-Polygons Measuring Spoon 

-Rahul Agarwal  

www.yankodesign.com 

 

 

 
-Kristina Wißling 

-Miura ori world map 

-Paper 

www.flickr.com/photos/wissling

_origami 

 

 

 
-Matteo Signorini 

-Origami Boat 

www.yankodesign.com 

  

 
-Max Frommeld & Arno 

Mathies 

-Folding Boat 

-Plastic 

www.maarno.com 

 

 

 
-Milk Design Limited 

-Origami Glow 

-Paper and wood 

www.yankodesign.com 

 
 

 
-Moritz Menacher 

-Urban Origami Bike 

-Aluminium cut from a single 

sheet 

www.5osa.com 

 

 

 
-NEO design studios 

-Vanity 

-Fabric 

www.neo-studios.de 

 

 

 
-Novague 

-EDGE chair 

-Aluminium 

www.novague.com 

 
 

 
-Patricia Urqiola 

-Antibody Chair 

-Reversible felt, wool fabric, 

stainless steel 

www.kmpfurniture.com 

 

 

 
-Phil Cuttance 

-FACETURE lamps 

-Resin 

www.philcuttance.com 

 

 

 
-Phil Cuttance 

-FACETURE vases 

-Resin 

www.philcuttance.com 

 
 

 
-Po Shun Leong 

-Cookie stool, Counter Stool, Po 

Chair 

-Wood 

www.poshunleong.com 

 

 

 

 
-TO DO Product design 

-Papero lamp 

-ABS, polypropylene 

www.behance.net 

 

http://www.leklint.com/
http://www.leklint.com/
http://www.leklint.com/
http://www.leklint.com/
http://www.leklint.com/
http://www.yankodesign.com/
http://www.matsuokafurniture.com/
http://www.trifoldtable.com/
http://www.mcewenlighting.com/
http://www.yankodesign.com/
http://www.yankodesign.com/
http://www.flickr.com/photos/wissling_origami
http://www.flickr.com/photos/wissling_origami
http://www.yankodesign.com/
http://www.maarno.com/
http://www.yankodesign.com/
http://www.5osa.com/
http://www.neo-studios.de/
http://www.novague.com/
http://www.kmpfurniture.com/
http://www.philcuttance.com/
http://www.philcuttance.com/
http://www.poshunleong.com/
http://www.behance.net/
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-Rami Tareef 

-Foldigon, Outdoor Sofa 

-Wood and Textile 

www.vurni.com/foldigon-coffee-

table-sofa 

 

 

 
-Ran Amitai 

-Folded aluminium chair 

-Aluminium 

www.designboom.com 

 
 

 
-Sebastian Burdon 

-Sawn Table 

-Aluminium and glass 

www.pinterest.com 

 

 

 
-Semi Skimmed milk 

-Milk curved packaging 

-Cardboard 

www.Pinterest.com 

 
 

 
-Shin Yamashita 

-Land Peel 

www.shinple.com 

  

 
-Showroom Finland 

-Cardboard furniture 

-Cardboard 

www.showroomfinland.fi 

 

 

 
-SLAMP 

-Bach 

-Opaflex 

www.slamp.com 

 
 

 
-SLAMP 

-Chapeau 

-Metallized-Mirror 

Polycarbonate 

www.slamp.com 

 

 

 
-SLAMP 

-Diamond 

-Opaflex 

www.slamp.com 

 

 

 
-So Takahashi 

-Origami Chair 

-Steel 

www.dezeen.com 

 
 

 
-Sooin Kim 

-Origami Chair 

-Plastic and Velcro 

www.yankodesign.com 

 
 

 
-Studio Ayaskan 

-GROWTH, an origami-like pot 

that grows with plant 

-Polypropylene 

www.ayaskan.com 

 

 

 
-Studio Dror 

-Pick Chair 

-Wood and Metal 

www.studiodror.com 

 
 

 
-Studio Snowpuppe 

-Chestnut wooden origami lamp 

-Birchwood veneer 

www.studiosnowpuppe.nl 

 
 

 
-Taewon Hwang 

-Flat Pack Mouse 

-Polycarbonate, Silicone, Plastic 

www.yankodesign.com 

 

 

 
-Tobias Labarque 

-Perforated aluminium folded 

chair 

-Aluminium 

www.tobiaslabarque.com 

 

 

 
-Tobias Labarque 

-Perforated aluminium folded 

chair 

-Aluminium 

www.tobiaslabarque.com 

 

 

  
-Tomohiro Tachi 

-Rigid foldable table 

-rigid panels with membrane 

hinges 

www.tsg.ne.jp 

 

 

 
-Van Esch by Matthias 

Demacker 

-Origami Table 

-Aluminium 

www.stylepark.com 

 

 

 
-Vondom by Karim Rashid 

-VERTEX Chair 

-recyclable plastic 

www.vondom.com 

 
 

 
-Uria Graver 

-CHAIR-IGAMI 

-Metal 

www.yankodesign.com 

 

 

 
-Yuji Fujimura 

-ORIC, origami chair 

-Plastic 

www.themag.it 

 
 

 
-Zhang Zhoujie 

-Triangulation Series Furniture 

-Aluminium 

www.zhangzhoujie.com 

 
 

 
-Zipper 8 Lighting 

-Large Dakota Pendant Light 

-Paper 

www.amazon.com 

 

http://www.vurni.com/foldigon-coffee-table-sofa
http://www.vurni.com/foldigon-coffee-table-sofa
http://www.designboom.com/
http://www.pinterest.com/
http://www.pinterest.com/
http://www.shinple.com/
http://www.showroomfinland.fi/
http://www.slamp.com/
http://www.slamp.com/
http://www.slamp.com/
http://www.dezeen.com/
http://www.yankodesign.com/
http://www.ayaskan.com/
http://www.studiodror.com/
http://www.studiosnowpuppe.nl/
http://www.yankodesign.com/
http://www.tobiaslabarque.com/
http://www.tobiaslabarque.com/
http://www.tsg.ne.jp/
http://www.stylepark.com/
http://www.vondom.com/
http://www.yankodesign.com/
http://www.themag.it/
http://www.zhangzhoujie.com/
http://www.amazon.com/
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2.6. Fashion and Clothing - Synoptic Tables 

 

 
-EIN-TRITT 

-Catherine Meuter 

-Canvas and other materials 

www.virtualshoemuseum.com 

 
 

 
-Tridimentional Origami Phone 

-Chengyuan Wei 

-Cardboard 

www.yankodesign.com 

 
 

 
-Paper Bowtie 

-FiberStore 

-Paper 

www.etsy.com 

 

 

 
-Melt 

-HOID 

-Cotton jersey, Iron on interface 

www.saatchiart.com 

 
 

 
-MUYBRIDGE PT.2 

-HOID 

-Cotton jersey, Iron on interface 

www.saatchiart.com 

 
 

 
-NO 419 

-HOID 

-Cotton jersey, Iron on interface 

www.saatchiart.com 

 

 

 
-H+Bag 

-Hyo Jun Jeon 

-Paper 

www.yankodesign.com 

 
 

 
-Tessellated origami ring 

-Ilan Garibi 

-Gold 

www.garibiorigami.com 

 
 

 
-Tessellated origami necklace 

-Ilan Garibi 

-Gold 

www.garibiorigami.com 

 

 

 
-Tessellated origami bracelet 

-Ilan Garibi 

-Metal and wood 

www.garibiorigami.com 

 
 

 
-Paper bags 

-Ilvy Jacobs 

-Paper 

www.ilvyjacobs.nl 

 
 

 
-Origami dresses 

-Jum Nakao 

-Paper 

www.jumnakano.com 

 

 

 
-Sa Umbrella 

-Justin Nagelberg 

-Recyclable plastic polymers 

www.designboom.com 

 
 

 
-Folding Leather Stool 

-Louis Vuitton, Atelier Oi 

-Leather 

www.atelier-oi.ch 

 
 

 
-Collapsible Cycling Helmet 

-Mike Rose 

-Metal fabric and plastic 

www.yankodesign.com 

 

 

 
-Folded plate shirt 

-MILIVOJEVIC MILOS 

-Cotton 

www.milivojevicmilos.com 

 
 

 
-Ecstatic Spaces collection 

-Tara Keens Douglas 

-Paper 

www.dezeen.com 

 
 

 
-Ecstatic Spaces collection 

-Tara Keens Douglas 

-Paper 

www.dezeen.com 

 

 

 
-Flux Snowshoe 

-Eric Burnt 

www.core77.com 

 
 

 
-Iittala X bag 

-Issey Miyake 

www.finnishdesignshop.it 

 

 

 
-Silver-tone 'Prism' tote bag 

-Issey Miyake 

www.farfetch.com 

 

 

 
-123 5. standard 

-Issey Miyake 

www.isseymiyake.com 

 
 

 
-Frame Pleats Bag 

-Issey Miyake 

www.isseymiyake.com 

 
 

 
-Luna Pleats 

-Issey Miyake 

www.isseymiyake.com 

 

 

 
-Origami Fashion 

-Diana Gamboa 

www.abitiscultura.wordpress.co

m/2013/06/12/diana-gamboa/ 

 
 

 
-Paper couture 

-Sylwia Lewandowska 

designdautore.blogspot.com 

 
 

 
-Nintai, Origami-Inspired 

,Geometric Dresses 

-Mercedes Arocena and Lucia 

Benitez 

strictlypaper.com 

 

http://www.virtualshoemuseum.com/
http://www.yankodesign.com/
http://www.etsy.com/
http://www.saatchiart.com/
http://www.saatchiart.com/
http://www.saatchiart.com/
http://www.yankodesign.com/
http://www.jumnakano.com/
http://www.designboom.com/
http://www.atelier-oi.ch/
http://www.yankodesign.com/
http://www.milivojevicmilos.com/
http://www.dezeen.com/
http://www.dezeen.com/
http://www.finnishdesignshop.it/
http://www.isseymiyake.com/
http://www.isseymiyake.com/
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2.7. Data Processing – Trend of Each Field 

 

 
 

In the field of “Permanent Architecture”, it is evident that a major part of projects is inspired by origami only for 

ornamental reasons without any other functional purpose. The Tokyu Plaza, the Fuji television Wangan studio, the stage 

of the Cozzarelli price at the National Academy of Science and the Yokohama International Passenger Terminal are 

examples of this category. All these examples are clearly using folded surfaces only for ornamental purposes because, in 

this cases, the folding is neither contributing making the structure stiffer, nor to make the surface movable, nor to optimize 

the assembling or transportation. 

When designing with origami, the designer often needs to control the shapes in a dynamic way, and not all architects 

are specialized in using advanced 3D-animation applications. In addition, static architecture cases are way more numerous 

than kinetic architecture ones, because they are less expensive and easier to maintain, but even if we analyse only the 

kinetic architecture field, the origami mechanisms are always simple and often copied from traditional well-known 

patterns. These numbers tell us that there is the desire of using the origami as a reference because of its beautiful 

appearance and useful functionalities, but due to the complexity of designing origami mechanisms at that scale, and due 

to the lack of tools which could simplify the process, the examples of buildings that are referenced to origami in a 

functional way are still rare. 

Contrariwise, comparing “Permanent Architecture” to “Temporary Architecture”, we notice that kinematic and 

mechanical proprieties of origami are way more used as tools to improve the projects functionalities, and the projects 

inspired from origami exclusively for ornamental purposes are rarer. One interesting example of origami-inspired 

temporary architecture is the “Plate house” by Gattas and You (Gattas & You, 2016) who used origami techniques to 

design a self-supporting sandwich structure made by cardboard. 

 One of the reasons for this higher number of origami-inspired projects for functionality purposes, in the field of 

temporary architecture, is probably related to the scale of the objects. Smaller dimensions allow the designers to use the 

self-supporting properties of the materials, moreover, the developability is used a lot more because it can cut the 

production costs and time. Furthermore, the temporary architecture examples, by their nature, need to be moved, so the 

deployment and the packing characteristics become more relevant compared to the aesthetics. Nevertheless, the risk, 

highlighted earlier, of falling into the mere copy of traditional patterns while designing with origami is still an element 

strongly present also in this kind of projects. In fact, designers often search for solutions into existing patterns and standard 

constructions probably because of the lack of design tools or a lack in their knowledge and familiarity with origami 

constructions. 
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In the field of “Installations”, however, we can see increased efforts to find innovative solutions and patterns. For 

example, the Resonant chamber by RVTR (Thün, Velikov, Ripley, Sauvé, & McGee, 2012) is a virtuous example of 

applied origami, where the origami properties are used to make a morphing suspended ceiling capable of changing its 

shape according to the variable acoustic conditions of the space where it is installed into. 

Other interesting examples are the “Computing Curved-Folded Tessellations through Straight Folding 

Approximation” (Chandra, Körner, et al., 2015) and the “Curved folding metal twins” installation by Chandra et al. 

(Chandra, Bhooshan, & El-Sayed, 2015), where they used curved folding as a tool to design nice looking curved stiff 

sculptures by folding a developable surface. In this case, the creases are not used to generate motion, but they are utilised 

to optimize the fabrication process and to increase the stiffness of the structure. 

The same researchers (in collaboration with Zaha Hadid Architects) also designed the “Arum Shell” installation, 

exhibited at the “Biennale di Venezia” in 2012 (Bhooshan, 2016), which is a beautiful example of modular structure 

constructed with curved-folded developable metal plates folded with robotized mechanical arms at RoboFold company 

(Epps, n.d., 2014; Epps & Verma, 2013). These projects are usually academic works or experimentations made by 

groups of researchers and artists. Sometimes they have the only function of displaying design skills or advertise some 

architecture firm. Often the projects focus just on exploring the shape or on testing the properties of the material or the 

efficiency of a certain technology. In many cases, we have noticed that the prototyping phase proceeds in parallel with 

the creation of the generative algorithms and the analysis of the digital model. In this way, the correctness of the model 

can be tested through a comparison between the digital surface and the physical prototype. 
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Differently, from what happens in the field of “Permanent Architecture”, in the “Goods and Furniture” and “Fashion” 

fields, we found a higher percentage of projects that take advantage of origami design techniques, rather than projects 

that use origami exclusively for ornamental purposes. For example, the developability is a relevant point in both fields, 

not only for the possibility to produce an object from a single sheet of the same material but also to optimize the space 

consumption and the assembling time. The reason of this difference is probably due to the fact that in large-scale projects 

inspired by origami even if the folded surface is designed to be globally developable, it would require to be assembled 

instead of being cut and folded from one single sheet of the same material. Thus, the global developability does not really 

bring a real advantage in architectonic-scale origami. Furthermore, even if it would be found a way to produce and fold a 

large-scale sheet of the same material (which is already a difficult task), the material should be flexible enough to be 

foldable while being stiff enough to be self-supporting, which is not an easy target to reach for large-scale continuous 

surfaces. 

2.8. Designing with Folded Surfaces - Critical Observations 

According to the collected projects, and considering the analysed data, what we can observe is that it is more common 

to find small-scale projects rather that architectonic-scale projects that use origami as a reference for many different 

functional purposes and not only for ornamental purposes. Furthermore, in both the fields of manufacturing and 

architecture, we can find a multitude of designs that use well-known patterns taken from traditional origami designs, or 

from previous projects (e.g. the Yoshimura pattern, the Miura pattern, the water-bomb base pattern). There are many 

different reasons that may explain that. The first is probably due to the scale of the objects because using origami for 

large-scale projects involves the problem of thickness, and it becomes harder to fold a large-scale surface from a single 

sheet of the same material. Furthermore, in big-size projects, the typical continuous surfaces proper of origami designs 

introduces new issues about the mechanical resistance of the joints or about the shape and the dimensions of the hinges 

that could possibly replace the creases. Moreover, origami mechanisms may have moving parts which are harder, more 

expensive and more time-consuming to design and maintain compared to static projects. Lastly, small-size designs can 

be prototyped by using directly the physical models instead of passing through digital simulations. Contrariwise, for large-

scale projects the accuracy needed is much higher, thus the digital models of the folded surfaces are necessary. This makes 

the workflow harder because to be able to simulate digitally the folding animation of origami, the designer must deal with 

the kinematics of the specific mechanism that he is trying to design. This requires a deep understanding of the origami 

theories. Furthermore, the moving parts influence the design process from earlier stages. 
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IDEA 
 

SKETCH 
 

TECHNICAL DRAWING 
 

PROTOTYPE 
 

FINAL OBJECT 

Figure 11: an example of a design process of a traditional static chair. 

For example, if we want to design a traditional static chair the design process would be similar to the one schematized 

into Figure 11. The design process would usually follow a linear sequence of steps starting from the idea, up to the final 

object, passing through the sketch, the technical drawing (2D drawings and 3D model) and the prototype. 

 

 

 

 

Figure 12: an example of a design process of an origami-inspired foldable chair. 

If we compare this process with the one of a foldable chair, the design workflow would appear similar to the one 

illustrated in Figure 12. The sketch would have marginal importance because it would only contribute to the design of 

preliminary aesthetic aspects, which are not as crucial as the kinematics aspects. The preliminary conceiving phase 

would probably see the substitution of the sketch with a paper model which would already help the designer to reflect 

on some important aspects like the developability, the rigid-foldability, the blocking creases, and the DOF. The 

preliminary prototype, however, usually does not consider the thickness of the panels, which is something that it is 

usually postponed in a later step when a more accurate and rigid advanced prototype is built.  However, the preliminary 

and advanced prototypes together are not sufficient to test every single aspect of the project, because the panels of which 

they are made may have a different elasticity compared to the one of the final object. Furthermore, the rigid-foldability 

and the DOF are difficult to verify only by using physical models, thus a digitalization of the prototype may help to 

make an accurate analysis of these aspects. The conversion of the physical prototype into a digital model may be 

achieved by 3D scanning the model14 or by constructing and animating it by following the mathematical rules that 

regulate its pattern which would return much more versatile results with much higher accuracy. 

However, also the digital model has some limits. For example, it is hard to simulate accurately the folding motion 

considering thickness, friction, elasticity and deformations. Furthermore, it might be easy to run into self-intersected 

configurations which are possible in the digital model but not allowed in the real one. Thus, if not checked carefully, 

this may cause the final object to block at a certain point because of a non-perfect rigid-foldability or overlooked 

collisions and self-intersections. Thus, once verified the real behaviour of the advanced prototype, the designer may 

have to update and eventually implement the analysis of the mathematical model or the discrete model developed 

previously. Because of all these reasons, we can clearly see that the design process is much harder, and it is not a linear 

process anymore. 
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3. CHAPTER III: Definitions and Theorems 

In this chapter, we are going to define some focal topics raised by the origami constructions such as: 

- Fold-angle 

- Developability 

- Rigid-foldability 

- Degree of Freedom (DOF) 

- Flat-foldability 

- Non-flat-foldability. 

 

In the following chapters of the thesis, we will refer widely to these terms and concepts. Thus, we clarify them in this 

section in advance, explaining carefully the mathematical or conceptual basis of every one of them. 

3.1. Fold Angle 

For “Fold angle” it is intended the dihedral angle between two consecutive faces divided by a crease at any moment 

of the folding motion. The dihedral angle is an angle between two planes in a third plane which is perpendicular to the 

intersection lines between the former two planes. To measure the fold angle, we can measure the actual angle between 

the two planes from surface to surface, or we can measure the angle between their normal vectors. In the former case, 

the fold angle of a flat-foldable origami with one single linear crease goes from 180° (unfolded flat configuration) to 0° 

(folded configuration) or from 180° to 360° depending on the mountain/valley assignment. In the latter, the fold angle 

goes from 0° (unfolded flat configuration) to ±180° (folded configuration). Usually, the scientific community favours 

the normal-to-normal measuring method. 

 Fold Angle Over Time - From Plot Analysis 

 

Figure 13: fold angle without folding verse information. 

In Figure 13 you can see the plotted graph of the fold angle over time, however, it does not consider the sign of the 

crease or the verse of rotation of one or the other face. That happens because we asked the software to measure and 

return the angle between the normal vectors, and as a result, it plotted the smaller possible angle frame-by-frame. The 

two faces rotate around the crease, and at 180° they pass through each other and continue their motion until they reach 

the flat unfolded state again. After passing 180° the verse of the valley fold reverses instantly and it transforms to 

mountain, but in the graph,  there is no evidence of that. We would have the same function shape if the two surfaces, 
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once reached 180°, would reverse their verse of rotation returning to the unfolded state without passing one through each 

other. Therefore, we need to add a piece of new information to define the fold angle. 

We can, for example, multiply for -1 the angle value once the rotation angle is greater than 180°15. This is sufficient to 

define the mountain valley assignment. Mathematically it can be solved as follows. Consider a unit vector along the 

direction of the crease line, multiply it with the unitized cross product between the normal vectors of the two faces. This 

will return ±1 according to the verse of the crease in relation to the verse of the normal vectors of the surfaces. Multiplying 

this value with the angle between the normal vectors of the faces will return a signed angle according to the folding verse 

of the crease, as shown in Figure 14. The formula used to obtain the graph in the figure is the following: 

𝜌𝑠 = 𝑠𝑖𝑔𝑛 (||𝑉𝑏 , 𝑉𝑎 , 𝑉𝑜||) ∙ 𝜌. (7) 

Which, in the explicit form is:  

𝜌𝑠 = 𝜌 ∙
𝑉𝑏×𝑉𝑎

||𝑉𝑏×𝑉𝑎||
∙ 𝑉𝑜. (8) 

Where: 

𝜌𝑠 is the signed angle between the normal vectors  𝑉𝑎 and  𝑉𝑏 according to the verse of the fold; 

ρ is the angle between the normal vectors  𝑉𝑎 and  𝑉𝑏; 

𝑉𝑎 is the normal vector to face A; 

𝑉𝑏 is the normal vector to face B; 

𝑉𝑜 is the vector along the direction of the fold. 

 

Figure 14: signed angle between normals. 

As you can see the plotted function of the angle jumps from 180° to -180° at t1, which is what we were looking for 

because the jump corresponds to the instant flip of the verse of the fold at the moment of the self-intersection. In this case, 

the function is periodical, and every time it hit 0° it restarts equal to itself. Therefore, it gives us evidence about the 

mountain/valley assignment, but it does not keep track of the number of total rotations. Thus, if we want to also add that 

information, we need to implement the formula as follows: 

𝜌𝑡 = 𝜌 + 90° − (90° ∙
𝑉𝑏×𝑉𝑎

||𝑉𝑏×𝑉𝑎||
∙ 𝑉𝑜). (9) 

                                                           
 

15 In grasshopper it can be simply done using a “Larger than” node and a “Multiplication” node. 
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Figure 15: keeping track of the total rotation of the faces. 

The graph shown in Figure 15 keeps track of the total reciprocal rotations of the faces A and B, and the fold changes 

verse when the function intersects the ordinates values multiples of 180° (π). To be able to keep track of rotations bigger 

than 360° (2π) though, the formula needs to be updated as follow: 

𝜌𝑡 = 360° ∙ 𝑛 + 𝜌 + 90° − (90° ∙
𝑉𝑏×𝑉𝑎

||𝑉𝑏×𝑉𝑎||
∙ 𝑉𝑜). (10) 

Where: 𝑛 is the number of complete turns. 

 

Now if we apply this method to measure the fold angles of every crease in a more complex pattern we would have 

something similar to the graph shown in Figure 16, which represents the plots of the fold angles over time of a degree-

4 single vertex16. 

 

Figure 16: analysis of the fold angle speed for each fold in a degree-4 vertex CP (crease pattern). 

The plot shown in figure follows the expression (8), therefore, when the function lies in the negative side of the 

Cartesian plane it means that the crease is mountain folded, contrariwise, when it lies in the positive side, the crease is 

valley folded. In Figure 16 the fold angle ρAB, which is the controller fold angle, has been animated with constant speed, 

therefore its function is the only one with a linear path, but it is not the one that hit 180° first. In fact, at the time t 

included in the Δt domain, one of the other folds flips and its function jumps from the positive space to the negative 

space of the Cartesian plane. The time t represents the moment when the vertex self-intersects and the verse of the fold 

AE (once the two faces adjacent to it passes through each other) instantly flips changing its mountain/valley assignment. 

                                                           
 

16 The degree-4 vertex is an internal vertex of a pattern with four creases converging into the same point. A 

comprehensive discussion about flat-foldable and non-flat-foldable degree-4 vertices will be carried out into section 

3.5 and 3.6.  
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To find the values of the maximum fold angles for each crease, it is sufficient to intersect all the fold angle functions 

with the abscissa t and extrapolate the relative ordinate values. Furthermore, in the same way, it is possible to extrapolate 

all the fold angle values for each fold at any t. 

3.2. Developability 

The developability is the property of any surface to be unfolded or unrolled into a plane without distortions or cuts. 

Conversely, it is a non-planar surface which can be shaped by transforming a plane by folding, rolling. The developable 

surfaces are always ruled surfaces, but not every ruled surface is developable, for example, the hyperboloid is a ruled 

surface which is not developable (Migliari, 2009a). Ruled surfaces that are developable are for example cylinders or 

cones. A developable surface mathematically is a surface with zero Gaussian curvature, contrariwise non-developable 

surfaces have double curvature or non-zero Gaussian curvature. The Gaussian curvature in differential geometry is called 

K and represents the product of the principal curvatures K1 and K2 at a given point of the surface. 

For example, a sphere has a Gaussian curvature equal to 1/r2 in every point of its surface. Contrariwise, a plane or a 

cylinder have Gaussian curvature equal to 0 everywhere. In these examples, the Gaussian curvature is equal in every point 

of the surfaces, but in general, it can be different from point to point, for example, a torus has negative Gaussian curvature 

in the inside and positive in the outside. 

Because an origami is made by planar faces, we cannot use the Gaussian curvature to judge its developability. In 

origami, the developability of a given pattern is measured by summing all the sector angles between the creases at every 

vertex. If all the summations of all the sector angles at every vertex are equal to 360° the pattern is developable. 

Traditional origami is always developable because it starts from a flat sheet of paper, but in the last few years some 

researchers started to study the possible applications of non-developable vertices into origami-like mechanisms, for 

example in the paper “Folding Mechanisms with Discriminate Extremal Configurations for Structural Purposes” Buffart 

et al. (Buffart et al., 2018) make some considerations about using non-developable non-flat-foldable vertices to design 

movable mechanisms with given extremal configurations. Also, Tachi proposed a method using degree-4 non-

developable vertices to convert three-dimensional polyhedra (cut along some edges) into one-DOF mechanisms that can 

fold and unfold with a smooth motion without bifurcations (Tachi & Horiyama, 2018). 

The vertices with the sector angles that sum up to an angle smaller than 360° can be configured into synclastic 

configurations (or pyramidal), The vertices with the sector angles that sum up to an angle bigger than 360° can be 

configured into anticlastic configurations (hyperbolic paraboloid, or saddle state). If they are degree-4, both the non-

developable synclastic or anticlastic vertices have two extremal configurations that can be reached through a folding 

motion without bifurcations (because there is not any flat state), and the extremal configurations can be both flat-folded, 

or both non-flat-folded, or one flat-folded and one non-flat-folded. This characteristic increase greatly the design 

possibilities, but it is harder to design and fabricate than a developable vertex. 

 

Figure 17: non-developable anticlastic degree-4 vertices – types. 
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Figure 18: non-developable synclastic degree-4 vertices – types. 

3.3. Degree of Freedom (DOF) 

The “Degree of freedom” (DOF) of a system is the number of parameters that can vary independently. For example, 

a point in a plane has two degrees of freedom, which represent the possible translation axis or the coordinates which are 

needed to identify all the possible positions of the point. A non-infinitesimal object will have more than three degrees 

of freedom because it can also rotate in space. For example, a segment in three-dimensional space has six DOF, three 

for translations and three for rotations. 

In rigid folding, the DOF usually represent the number of fold angles that can vary independently without bending, 

flexing or ripping the faces. The identification of the degree of freedom of folded surfaces is a problem which has not 

been generalized yet. Nevertheless, a rigid origami pattern can be compared to a rigid linkage, and there are many 

approaches that allow calculating the DOF of linkages. However, most of the times with symmetric and periodical 

patterns these methods give wrong results due to the occurrence of special conditions. For example, if we calculate the 

DOF of the Miura-ori17, without considering its symmetry conditions, it is apparently not foldable at all, but because of 

the symmetry conditions, the pattern still has 1 single DOF. In the Miura-ori case, as well as in all the cases with closed 

loops of faces, there are redundancies into the definition of the fold angles of each crease, which means that the same 

fold angle is constrained multiple times from different directions, but because of the symmetry conditions if the over-

constrained angles are equals from all the directions then there are no inconsistencies and the mechanism can move 

anyway (Tachi, 2011a). 

To calculate the DOF of a simple accordion it is sufficient to count all the creases, each one of them will increase the 

DOF by one. Thus, we can say that: if a pattern has some creases which do not converge to internal vertices, and there 

are no closed loops of faces, each new crease increases the global DOF by one. Another method to find the DOF of a 

pattern consists of counting the naked edges of the pattern and subtract 3 to that number, this approach works only with 

patterns with only triangular faces (e.g. Yoshimura pattern). 

But why is the DOF analysis so important for the animation of origami geometries? In the Miura-ori case, it is well 

known that it is sufficient to constrain only one single fold angle to control the whole folding motion because folding 

two consecutive faces will propagate the motion to all the other faces in the pattern univocally18. This means that you 

need to change only one input fold angle, to control the folds of the entire surface, being able to shape the folded surface 

in all the possible available configurations. If we consider a straight accordion with only two non-intersecting linear 

folds, we need to control the two fold angles separately to be able to shape the folded surface in any possible 

                                                           
 

17 For an extensive description of the Miura-ori refer to section 4.7.4 
18 The motion is univocal if the mountain/valley assignment is given, thus it may generate problems at flat state. 
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configuration. This means that each fold angle which can move independently from the others increases the DOF by one 

and requires one more controller input to configure the surface in all its possible configurations. 

For accordions and symmetrical cases, it is relatively easy to foresee the number of necessary controller inputs by trial-

and-error. However, in more complex patterns, it is harder. For this reason, it is important to analyse the DOF in advance. 

Unfortunately, there is not a general method to calculate the DOF yet. An easy approach to test the degree of freedom of 

any pattern is by building a rigid physical model, but it may be deceptive for wide patterns or when the material is not 

rigid enough. Another approach is by simulating the animation digitally through physics engines, for example using the 

software “Freeform origami” by Tachi or with Grasshopper and its plug-in Kangaroo Physics. This last solution is more 

reliable than the physical model, however, both methods give only qualitative results. They do not return automatically 

exactly the DOF of the pattern if it is more than one. 

It must be said that special cases are often the most interesting cases for movable mechanisms, thus it would be important 

and interesting to study further this aspect of paper folding and develop a generalized method that does not necessarily 

need physical simulations and trial-and-error methods. One of the most interesting one-DOF origami mechanism known 

is the rigid-foldable degree-4 single vertex, a vertex where only four creases meet19. 

3.4. Rigid-Foldability 

An origami pattern is rigid-foldable when it can be folded and unfolded without bending, stretching or cutting the faces. 

This kind of origami structure is not like the paper origami, because the faces must be infinitely rigid. They are, instead, 

more related to the thick-origami20, because in the real world the stiffness is strictly related to the area of the section.  

Thus, the question now is how to judge if a pattern is rigid-foldable or not. There are some special cases where the rigid-

foldability can be easily evaluated only by watching the distribution of the creases in the CP and their mountain/valley 

assignments. For example,  in a developable degree-4 single vertex pattern, the rigid-foldability is guaranteed if and only 

if there are three creases with the same mountain/valley assignment spaced with sector angles smaller than 180°, plus one 

crease with the opposite sign (Abel et al., 2016). 

Another example of a rigid-foldable, one-DOF pattern which is easily recognizable is a pattern composed by multiple 

degree-4 rigid-foldable vertices joined in a linear array (without making closed loops). Tachi refers to these patterns as a 

“2×n quadrangle array(s)”, and he says that they are always one-DOF rigid-foldable mechanisms, he also asserts that an 

“m×n (where m>2) quadrangle array… yields over-constrained static structure or a redundant one-DOF mechanism 

because fold angles are multiply defined” (Tachi, 2011a). Thus, how do we judge if whether an m×n quadrangle array is 

rigid-foldable or not?  

 Abel et al. give us a preliminary answer: “Rigid foldability has been represented using extrinsic parameters of the 

folded state, e.g., the existence of a set of fold angles satisfying compatibility conditions, or the existence of intermediate 

state” (Abel et al., 2016). With this statement, Abe et al. refer to two different methods to judge rigid-foldability of a 

pattern. The first approach refers to the method presented by Belcastro and Hull (Belcastro & Hull, 2002), where they 

evaluate the rigid-foldability by calculating the fold angle of a closed loop of creases, if the fold angles of the loop are all 

compatible, then the pattern is rigid-foldable. The second method reported by Abe et al. was stated by Tachi as follows 

(Tachi, 2010a): “If and only if BDFFPQ mesh, homeomorphic to a disk with more than one interior vertex, has one 

intermediate folded state, the surface is finitely rigid- foldable.”, which means that in an origami pattern if a flat-unfolded 

configuration and at least an intermediate folding configuration21 exist, then it is guaranteed that the faces during the 

whole motion do not deform. 

We can try applying a qualitative approach based on this last assumption. However, to be able to test this condition 

qualitatively, we need to simulate the folding motion of the pattern, usually we do this operation with physical models or 

with digital simulators (like the software Freeform origami), but in both cases we do some errors related to the elasticity 

of the material or to the tolerance of the software. Thus, this kind of tests based on simulations may return positive results 

even if the pattern is not rigidly foldable for a small amount.  

                                                           
 

19 More about degree-4 vertices at sections 3.5, 3.6, 4.6, 4.7, 6.3.3. 
20 We will study further thick origami, and how to convert a zero-thickness origami into an origami with thick panels in 

section 6.1 
21 The intermediate folding configuration must be free of deformations and cuts. 
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If we merge the two approaches in one, we can judge if a pattern is rigid-foldable precisely by calculating the fold 

angles of all the closed loops of a crease pattern in only one intermediate configuration, and if the compatibility is 

confirmed then the pattern is rigid-foldable.  

 

Figure 19: examples of a rigid-foldable and non-rigid-foldable degree-4 vertices. 

 

 Reciprocal Diagram to Judge the First-Order Rigid-Foldability 

 

Figure 20: zero-area reciprocal diagram of a degree-4 single vertex pattern. 

The reciprocal diagram is a well-known and powerful graphical tool for understanding and designing structural 

systems. It also has applications in the origami field, in which it has been introduced, for the first time, by D. A. Huffman 

in 1977 (Huffman, 1977) . The reciprocal diagram is composed by straight segments perpendicular to each crease line 

in a CP, the perpendicular segments form a closed loop around the vertex, such that the direction of the perpendicular 

segment is ±90° relatively to the direction of the creases. The sign, and thus the verse of the vector, depends on the 

mountain/valley assignment of the folds. The area of the resulting self-intersecting polygon must be equal to zero, as 

shown in Figure 20. 

The reciprocal diagram has been investigated more recently by Demaine et al. in the paper “Zero-Area Reciprocal 

Diagram of Origami”, where they assert that the reciprocal diagram can be used to investigate the first order 

approximation of rigid origami: “We can view a polyhedral lifting as the first-order approximation of rigid origami, 

i.e., an origami surface is composed of rigid panels and rotational hinges connecting them together. Hence, it seems 

proper to use the reciprocal diagram for the analysis of rigid foldability and the design of rigidly foldable structures. 

However, it turns out soon that the existence of reciprocal diagram alone is a poor tool to judge rigid foldability of 

origami. For example, a degree-3 vertex has a nontrivial reciprocal diagram, but there is no valid folding for this 

pattern” (Demaine et al., 2016). 

According to what Demaine et al. assert the reciprocal diagram cannot be used to judge the rigid foldability in general, 

but it can be used as a tool to test the infinitesimal rigid-foldability which is the property of an infinitely rigid creased 

surface to behave like a movable mechanism when it is close to the unfolded state. 
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We will see later in section 3.5.3 an alternative use of the reciprocal diagram as a tool to animate a degree-4 flat-foldable 

vertex. 

3.5. Flat-Foldability 

The flat-foldability is the property of an origami pattern to be collapsible into a plane without cutting, stretching or 

adding new creases to the pattern. Almost all the traditional figurative origami are flat-foldable because the folding steps 

are performed flattening the model into a flat surface. Mathematically the flat foldability is described by simple rules that 

we are going to explain briefly in the next section. 

 Four Rules of Flat-Foldability - Kawasaki and Maekawa Conditions 

The flat foldability of a crease pattern follows 4 simple rules22: 

- At any interior vertex, M - V = ±2: mountain and valley creases always differ by 2, 2 more or 2 less. 

- 2 colourability: crease patterns can be coloured with just two colours without ever having the same colour 

meeting. 

- Alternate angles around a vertex sum to a straight line: considering angles between creases around a vertex 

of the crease pattern, numbering the angles on a circle all the even numbers head up to a straight line, the 

same happens for the odd numbers. 

- No self-intersection at overlaps: no matter how you stack folds and sheets, a sheet can never penetrate a fold 

 

Figure 21: four rules of flat foldability. 

These four simple rules are everything we need for judging a flat foldable origami. They are based on mathematical 

theorems discovered in the last four decades. The first rule is described mathematically by the Maekawa theorem. 

 

Theorem 1: Maekawa-Justin (Hull, 2003a) 

𝑀 − 𝑉 = ±2. (11) 

Where: M and V are respectively the mountain and valley creases adjacent to a vertex in a flat origami CP. 

 

It means that the mountain folds and the valley folds in a flat-folded single vertex pattern differ always by 2. The second 

and third rules are described by the Kawasaki theorem. It was discovered by Kawasaki in 1989, although was also 

discovered independently by Justin in the same year. It gives a criterion to determine if a single vertex crease pattern can 

be folded to form a flat figure. The theorem statement is the following: 

 

Theorem 2: Kawasaki-Justin theorem (Demaine & O’Rourke, 2007; Hull, 2003a) 

                                                           
 

22 Which were briefly and easily explained by Robert Lang in his presentation at “TED talks” in 2008 (Lang, 2008) 
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A single-vertex crease pattern defined by angles 𝜃1 +𝜃2 +·· ·+𝜃𝑛 = 360° is flat foldable if and only if n is even and 

the sum of the odd angles (𝜃2𝑖+1) is equal to the sum of the even angles (𝜃2𝑖), or equivalently, either sum is equal to 

180◦: 

𝜃1  + 𝜃 3 + ··· +𝜃𝑛−1 =  𝜃2  + 𝜃 4 +··· +𝜃𝑛 =  180°. (12) 

It can also be written as follows: 

𝜃1  − 𝜃2  + 𝜃 3  −··· −𝜃2𝑛  = 0. (13) 

The fact that the creases must be even implies that, for any flat-foldable crease pattern (even with multiple internal 

vertices), it is always possible to colour the regions between the creases with two colours, such that each crease separates 

two areas of different colours, this is always true for each side of the paper. Also, the fact that the sum of odd and even 

angles must be equal implies that either odds and evens angles sum to a straight line. 

The Kawasaki theorem for developable flat-foldable vertices was generalized by Demaine in 2007 for non-

developable pieces of paper as follows: 

 

Theorem 3: Kawasaki-Justin-Demaine generalized for non-flat pieces of paper (Demaine & O’Rourke, 2007) 

A single-vertex crease pattern defined by angles 𝜃1, 𝜃2, ... , 𝜃𝑛 is flat foldable if and only if n is even and the alternating 

sum of the angles 𝜃𝑖 is equal to 0, 360◦, or −360◦: 

𝜃1 − 𝜃2  + 𝜃3  − 𝜃4  +··· +𝜃𝑛−1 − 𝜃𝑛  = ∑ (−1)𝑖  𝜃𝑖  ∈ {0, 360°, −360°}
𝑛

𝑖=1
. (14) 

The theorem 2 (Kawasaki-Justin) is included in the theorem 3 (Kawasaki-Justin-Demaine) and can be only used when 

working with flat pieces of paper. 

For what concerns the self-intersection rule the problem can be approached dividing the cases into two simple groups 

of crease patterns: a pattern with parallel creases, and a pattern with creases incident in a single vertex. The flat-

foldability of the pattern depends on many factors: the order of mountain and valley creases, the distance or the angle 

between consecutive creases. For example, if the pattern is composed by all parallel folds with alternated verses, it is 

always foldable, but if there are consecutive folds with the same verse the foldability depends on the sequence of the 

verses of the folds, and on the distances between the folds. The same can be said for a case where the creases converge 

in a single vertex, but instead of the distances, we must consider the angles between them. For a much comprehensive 

explanation in mathematical terms and more bibliographic references refer to the extensive investigation made by 

Demaine, in his book “Geometric folding algorithms: linkages, origami, polyhedral” (Demaine & O’Rourke, 2007). 

 Flat-Foldable Degree-4 Single Vertex – Relations Between Fold Angles 

 

Figure 22: flat-foldable degree-4 vertex notation. 

A particularly interesting flat-foldable pattern is the flat-foldable degree-4 single vertex. It is flat-foldable when it is 

characterized by a particular symmetry condition between opposite creases as shown in Figure 22. Because this 

particular pattern has only one-DOF every fold angle is univocally related to all the other fold angles. In this section, 

we are going to report the well-known formulations that relate the fold angles in a degree-4 vertex, and we are going to 

apply them to a folded surface with a Grasshopper’s definition to test their correctness. 
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The relationship between the fold angles in a degree-4 vertex has been studied by many researchers such as David A. 

Huffman, Thomas C. Hull, Robert J. Lang and Tomohiro Tachi (Huffman, 1976; Hull, 2006; Lang, Magleby, & Howell, 

2016; Tachi, 2009). In particular, Lang in his paper “Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers” 

asserts that the vertex is flat foldable if and only if: 

𝜃1 + 𝜃3 = 𝜃2 + 𝜃4 = 𝜋. (15) 

and for flat foldable vertices the major fold angles are equal: 

𝜌2 = 𝜌4. (16) 

and the minor fold angles are equal but with a different sign: 

𝜌1 = −𝜌3. (17) 

Furthermore, he derives the known formulations of the fold angles of a flat-foldable degree-4 vertex proposing a 

particularly simple23 expression that describes the relationship between adjacent fold angles as follows: 

𝑡𝑎𝑛
1

2
𝜌2

𝑡𝑎𝑛
1

2
𝜌1

= −
𝑡𝑎𝑛

1

2
𝜌2

𝑡𝑎𝑛
1

2
𝜌3
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𝑡𝑎𝑛
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2
𝜌4

𝑡𝑎𝑛
1

2
𝜌1

= −
𝑡𝑎𝑛

1

2
𝜌4

𝑡𝑎𝑛
1

2
𝜌3

=
𝑠𝑖𝑛

1

2
(𝜃1+𝜃2)

𝑠𝑖𝑛
1

2
(𝜃1−𝜃2)

. (18) 

 This expression can be used to animate the pattern with Grasshopper by writing the following rearrangement of the 

expression (Expression 19) into the “Expression” component and using the result as the rotation value of the 

corresponding adjacent faces, as shown in Figure 23 (the full algorithm is also reported in Appendix A.1). The expression 

must be written in the following form, in order to be readable by the software: 

2 ∗ 𝐴𝑡𝑎𝑛(𝑠𝑖𝑛((𝐻1 + 𝐻2)/2)/(𝑠𝑖𝑛((𝐻1 − 𝐻2)/2)) ∗ 𝑡𝑎𝑛(𝑅1/2)) = 𝑅2. (19) 

Where: 

𝐴𝑡𝑎𝑛 (… ) is 𝑡𝑎𝑛 − 1 (… ) 

𝐻1 is 𝜃1 

𝐻2 is 𝜃2 

𝑅1 is 𝜌1 

𝑅2 is 𝜌2 

 

Whit this expression we calculate  𝜌2  from 𝜌1, 𝜃1 and 𝜃2, and because  𝜌3 = −𝜌1  and  𝜌4 = 𝜌2   we already have all the 

four angles and we can animate all the faces of the degree-4 flat-foldable vertex24. 

                                                           
 

23 Its defined as “particularly simple” because it is much easier than the formulation for the non-flat-foldable degree-4 

vertices that we show in 3.6.1. 
24 In section 4.6 we will see how to animate the same degree-4 vertex with synthetic method avoiding mathematical 

formulations. 
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Figure 23: generative algorithm that animates a degree-4 flat-foldable vertex by calculating the fold angles with mathematical 

formulations. 

 Flat-Foldable Degree-4 Single Vertex – Reciprocal Diagram and Fold 

Angles 

We anticipated in section 3.4.1 that the reciprocal diagram can also be used as a tool to identify the fold angles of a 

flat-foldable degree-4 vertex, this is possible because the lengths of the segments of the reciprocal diagram are strictly 

related to the sector angles, thus they have a relation to the expression (18). 

The formulation (18) that relates consecutive angles can be rearranged in the following form: 

𝜌𝑖 = 2 𝑡𝑎𝑛−1(𝑘 ∗ 𝑡𝑎𝑛
𝜌𝑖±1

2
). (20) 

Where k is: 

𝑘 =
𝑠𝑖𝑛

1

2
(𝜃1+𝜃2)

𝑠𝑖𝑛
1

2
(𝜃1−𝜃2)

. (21) 

By experimental method, we discovered that the constant k, in a flat-foldable degree-4 vertex, can also be calculated 

by dividing the length of the longest segment with the length of the shortest segment of the reciprocal diagram as 

follows: 

𝑘 =  
𝑚𝑎𝑥 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑚𝑖𝑛 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
. (22) 

To draw parametrically a reciprocal diagram, we need to identify the single crease with opposite sign and draw a 

vector with an angle equal to +90° relatively to that crease. We do the same thing with the other three creases but 

rotating the relative vectors by an angle of -90°. Then we draw a line along the direction of each vector, and we extend 

each one of them until they meet the relative adjacent two lines, like so we find 4 intersection points. We connect the 4 

points with a polyline following the verse of the vectors, obtaining a self-intersecting closed loop of four edges shaped 

like a ribbon. The ribbon forms two triangular areas which need to be equalized to make a proper reciprocal diagram 

with zero-area. To equalize the areas, we translate one of the edges keeping it parallel to itself while extending the two 

adjacent edges of the ribbon until the two triangles have the same area. As shown in Figure 20, if we fix the position of 

the vectors 02*, 03*, 04* we can find the position of 01* by calculating d using the internal angles of the polygon as 

follows: 

𝑑 = √
2𝑆 𝑠𝑖𝑛 𝛾1

𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽1
. (23) 
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Once drawn the reciprocal diagram, we calculate k by measuring the maximum and minimum lengths of the edges25. 

With k, obtained with parametrical method (as shown in the full generative algorithm shown in Figure 24 and Appendix 

A.2)., we can now calculate all the fold angles at any folded state in any flat-foldable degree-4 vertex. 

 

Figure 24: generative algorithm for the animation of a flat-foldable degree-4 vertex calculating k by using the reciprocal diagram. 

 Calculating k Through Reciprocal Diagram – Proved by Experimental 

Method  

As stated in the previous section we proved by experimental method that the reciprocal diagram can be used to calculate 

the constant k needed in the equation 20 which allows to calculate all the fold angles of a flat-foldable degree-4 vertex. 

We proved it with the parametrical approach as follows. 

Construct parametrically the reciprocal diagram of a given degree-4 vertex and calculate the constant k as explained in 

section 3.5.3. Choose one controller crease and fix its fold angle to a value between 0° and 180°. Calculate the fold angle 

of one of the adjacent creases applying the expression 20 using the constant k just calculated. Because the opposite fold 

angles in a degree-4 vertex are always equal we already have all the fold angles that we need to univocally define the 

position of each face of the degree-4 vertex. Now we rotate the faces around the adjacent creases to configure the flat 

pattern into the target folded configuration that matches the fold angle of the controller fold. If the angles are correct the 

faces will be configured into a closed loop of planar faces with no deformations in the faces. 

Now, because the whole process is parametric, we can animate the folding and unfolding of the vertex by changing the 

input fold angle. By animating the vertex, we can prove that the faces always make a closed loop at any value of the 

controller fold angle. The preservation of the shape of the faces is guaranteed by construction, the preservation of the 

closed loop, instead,  is verified by setting off the animation and testing the continuity between adjacent faces frame-by-

frame. To prove that this approach works with every flat-foldable vertex we tested different flat-foldable degree-4 patterns 

at limit cases and at intermediate symmetric cases26 as shown in Figure 25. 

Of course, we can prove this also by the analytical method by relating the expression 20 with the construction of the 

reciprocal diagram by applying simple trigonometry rules and proportions between angles and lengths. 

                                                           
 

25 In a flat-foldable degree-4 single vertex pattern the reciprocal diagram is always symmetric, thus there are two equal 

segments that are the longest and two equal segments that are the shortest, we just pick one of each pair of segments 

to calculate k. 
26 We avoided trivial cases like symmetry reflections of the patterns and flipped mountain/valley assignment. 
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Figure 25: Examples of test cases of asymmetric and symmetric flat-foldable vertices animated by calculating the constant k by 

dividing the longest and shortest segment of the reciprocal diagram. 

3.6. Non-Flat-Foldability27 

A non-flat-foldable pattern is a pattern that cannot be flat-collapsed into the plane without adding new creases. It is 

the counterpart of the flat-foldable pattern introduced in the previous section, and it has some interesting properties that 

may be used into a movable mechanism. One of the most useful property is that it blocks at a certain three-dimensional 

configuration. If the pattern has one-DOF the configuration is univocal (considering a given mountain/valley 

assignment) and this makes it very useful to design deployable or compactable objects. Two examples of self-blocking 

foldable mechanisms,  designed using non-flat-foldable degree-4 vertices, are presented in section 6.3 and section 6.2 

and they are a rigid-foldable chair and a rigid-foldable ladder. 

The blocked configuration is often called “locked”, “arrested” (Buffart et al., 2017), or “binding” (Lang, 2018). We 

use “blocked” (Klett & Drechsler, 2011) because some of the terms already used may be interpreted as configurations 

where the movement is obstructed in both directions28.  

 Non-Flat-Foldable Degree-4 Single Vertex - Huffman’s Formulations 

Flat-foldable degree-4 vertices are special cases of generic degree-4 vertices. If we trace 4 creases that converge into 

a point with random angles, it is more probable to come up with a non-flat-foldable degree-4 vertex instead of a flat-

foldable one. Thus, we can say that the major part of degree-4 vertices is non-flat-foldable. Furthermore, as we 

previously stated, non-flat-foldable vertices may be very useful for practical applications, for this reason, we want to 

                                                           
 

27 Some parts of this sections are also published into the paper “Designing Self-Blocking Systems with Non-Flat-

Foldable Degree-4 Vertices” (Foschi & Tachi, 2018) written by the author of this thesis and the co-supervisor 

Tomohiro Tachi. The paper has been presented at the 7-OSME (The 7th International Meeting on Origami in Science, 

Mathematics and Education). The meeting took place in Oxford between 5th and 7th September 2018. 
28 As an additional reference, we also want to mention that the block fold has been recently called “Blockfaltung” by 

Lang (Lang, 2018). 
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explain carefully how they work and how to treat them mathematically (in this section) and geometrically (in sections 

4.6.2 and 4.6.3). 

 

Figure 26: non-flat-foldable degree-4 single vertex notation. 

Huffman in the paper “Curvature and Creases: A Primer on Paper” (Huffman, 1976) generalised the formulation, 

reported in section 3.5.2, for every degree-4 vertex. In fact, the formulations for flat-foldable degree-4 vertices are a 

simplification of the Huffman’s formulations which work both for flat and non-flat foldable vertices. 

The following formulations relate 𝜌4 to 𝜌2 and 𝜌3 to 𝜌1: 

𝑠𝑖𝑛2𝜌4
2

𝑠𝑖𝑛2𝜌2
2

=
𝑠𝑖𝑛 𝜃2 𝑠𝑖𝑛 𝜃1

𝑠𝑖𝑛 𝜃3 𝑠𝑖𝑛 𝜃4
. (24) 

𝑠𝑖𝑛2𝜌3
2

𝑠𝑖𝑛2𝜌1
2

=
𝑠𝑖𝑛 𝜃4 𝑠𝑖𝑛 𝜃1

𝑠𝑖𝑛 𝜃2 𝑠𝑖𝑛 𝜃3
. (25) 

Huffman also associates 𝜌2 to 𝜌3 by a “very difficult”29 derivation: 

[1 ∓ √
𝑠𝑖𝑛 𝜃3 𝑠𝑖𝑛 𝜃1

𝑠𝑖𝑛 𝜃2 𝑠𝑖𝑛 𝜃4

√
1−

𝑠𝑖𝑛 𝜃2 𝑠𝑖𝑛 𝜃1
𝑠𝑖𝑛 𝜃3 𝑠𝑖𝑛 𝜃4

𝑠𝑖𝑛2𝜌2
2

1−𝑠𝑖𝑛2𝜌2
2

] ∙ [1 ± √
𝑠𝑖𝑛 𝜃3 𝑠𝑖𝑛 𝜃1

𝑠𝑖𝑛 𝜃2 𝑠𝑖𝑛 𝜃4

√
1−

𝑠𝑖𝑛 𝜃4 𝑠𝑖𝑛 𝜃1
𝑠𝑖𝑛 𝜃2 𝑠𝑖𝑛 𝜃3

𝑠𝑖𝑛2𝜌1
2

1−𝑠𝑖𝑛2𝜌1
2

] =

             = 1 −
𝑠𝑖𝑛 𝜃3 𝑠𝑖𝑛 𝜃1

𝑠𝑖𝑛 𝜃2 𝑠𝑖𝑛 𝜃4
. 

(26) 

Rearranging these formulations in the forms 𝜌2, 𝜌3 = 𝑓(𝜌1, 𝜃1, 𝜃2, 𝜃3, 𝜃4 ) and (once found 𝜌2) 𝜌4 =

𝑓(𝜌2, 𝜃1, 𝜃2, 𝜃3, 𝜃4 ) we can find all the fold angles knowing only 𝜌1 and the sector angles 𝜃1, 𝜃2, 𝜃3, 𝜃4 . 

Unfortunately, it is not trivial rearranging these functions, so we solved them with the help of mathematical software to 

calculate all the alternative forms and the possible solutions which could be more than one depending on the symmetry 

conditions. 

For the rearranged forms, to be able to input them into Grasshopper, we used the original notation by Huffman even if 

it is not the standard notation of a degree-4 vertex, because it uses ASCII characters which are the only character that the 

“Expression” component in Grasshopper accepts, thus the factors change as follows: 

𝜌1 = 𝑞, 𝜌2 = 𝑛, 𝜌3 = 𝑝, 𝜌4 = 𝑚, 𝜃1 = 𝐷, 𝜃2 = 𝐶, 𝜃3 = 𝐴, 𝜃4 = 𝐵. 

So, knowing n, A, B, C, D we can calculate q, p and m. For the purposes of this algorithm, we only consider interesting 

solutions30. The variable q has two interesting solutions, one for each possible folding mode, variable p is related to q. 

For flat-foldable degree-4 vertices, the interesting solution is only one as well as the folding mode. The variable m has 

                                                           
 

29 Huffman himself defines it as “very difficult”. 
30 We intend as “interesting solutions” the solutions which are not simple mirror reflections of the only 2 possible 

folding modes, that can be found simply changing the sign of the result of the interesting solutions. 
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only one interesting solution. Below we report the solutions of q, p, and m transcribed in ASCII characters solved in 

function of n, A, B, C, D. The fold angle n is the angle of the controller crease which is conveniently also the crease that 

blocks first in this case. 

 

Fold angle q, solution 1, in function of n, A, B, C, D. 

-2*Acos(-1.*Pow(-1.*Pow(Sin(C),-1) - 2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(C),-

1),3)*Pow(Sin(D),2) - Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-

1),3)*Pow(Sin(B),2)*Pow(Sin(D),2) - 2.*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-

1)*Pow(Sin(D),2)*Pow(Tan(n/2.),2) + 2.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-1)*Pow(Sin(B),-

1)*Pow(Sin(D),3)*Pow(Tan(n/2.),2) - 2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-

1),2)*Pow(1.*Pow(Sin(C),-1),3)*Pow(Sin(D),4)*Pow(Tan(n/2.),2) - 1.*Pow(1.*Pow(Sin(A),-

1),4)*Pow(Sin(C),-1)*Pow(Sin(D),4)*Pow(Tan(n/2.),4) + 1.*Pow(1.*Pow(Sin(A),-

1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),-1)*Pow(Sin(D),5)*Pow(Tan(n/2.),4) + 

1.*Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(C),-1),4)*Pow(Sin(A),-1)*Pow(Sin(D),3)*Sin(B) + 

2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-1),3)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(D),3)*Pow(Tan(n/2.),2)*Sin(B) + 1.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),-

1)*Sin(A)*Sin(D) + 2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Sin(B)*Sin(D),0.5)*Pow(-1.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Sin(C),-1) - 2*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(1.*Pow(Sin(C),-1),3)*Pow(Sin(D),2) - 1.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-

1),2)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),2)*Pow(Sin(C),-1)*Pow(Sin(D),2) - 2.*Pow(Sin(C),-

1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 

1.*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5) + 2.*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(Sin(C),-1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-

1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-1)*Pow(Sin(B),-

1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5) - 4.*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-

1)*Pow(Sin(D),2)*Pow(Tan(n/2.),2) + 2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-

1),2)*Pow(Sin(C),-1)*Pow(Sin(D),2)*Pow(Tan(n/2.),2) + 2.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Sin(D),3)*Pow(Tan(n/2.),2) - 2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-

1),2)*Pow(1.*Pow(Sin(C),-1),3)*Pow(Sin(D),4)*Pow(Tan(n/2.),2) + 2.*Pow(1.*Pow(Sin(A),-

1),2)*Pow(Sin(C),-1)*Pow(Sin(D),2)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-

1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-1)*Pow(Sin(B),-

1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Pow(Tan(n/2.),2) - 1.*Pow(1.*Pow(Sin(A),-1),3)*Pow(Sin(B),-

1)*Pow(Sin(D),3)*Pow(Tan(n/2.),4) + 1.*Pow(1.*Pow(Sin(A),-1),3)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(B),-1)*Pow(Sin(D),5)*Pow(Tan(n/2.),4) + 1.*Pow(1.*Pow(Cos(n/2.),-

1),4)*Pow(1.*Pow(Sin(C),-1),4)*Pow(Sin(A),-1)*Pow(Sin(D),3)*Sin(B) + Pow(1.*Pow(Sin(A),-

1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(D),3)*Pow(Tan(n/2.),2)*Sin(B) + 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(D) - 2.*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(1.*Pow(Sin(A),-

1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Pow(Tan(n/2.),2)*Sin(D) + 

1.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),-1)*Sin(A)*Sin(D) + 4.*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(Pow(Sin(C),-1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D) - 1.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Sin(B)*Sin(D) - 1.*Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Sin(B)*Sin(D) - 2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 

1.*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Sin(B)*Sin(D) + 

2.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-

1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-1)*Pow(Sin(B),-

1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Sin(B)*Sin(D),-0.5)) 

Fold angle q, solution 2 in function of n, A, B, C, D. 

2*Acos(1.*Pow(-1.*Pow(Sin(C),-1) - 2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(C),-

1),3)*Pow(Sin(D),2) - Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(A),-1),2)*Pow(1.*Pow(Sin(C),-

1),3)*Pow(Sin(B),2)*Pow(Sin(D),2) - 2.*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-

1)*Pow(Sin(D),2)*Pow(Tan(n/2.),2) + 2.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-1)*Pow(Sin(B),-

1)*Pow(Sin(D),3)*Pow(Tan(n/2.),2) - 2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-

1),2)*Pow(1.*Pow(Sin(C),-1),3)*Pow(Sin(D),4)*Pow(Tan(n/2.),2) - 1.*Pow(1.*Pow(Sin(A),-

1),4)*Pow(Sin(C),-1)*Pow(Sin(D),4)*Pow(Tan(n/2.),4) + 1.*Pow(1.*Pow(Sin(A),-

1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),-1)*Pow(Sin(D),5)*Pow(Tan(n/2.),4) + 

1.*Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(C),-1),4)*Pow(Sin(A),-1)*Pow(Sin(D),3)*Sin(B) + 

2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-1),3)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(D),3)*Pow(Tan(n/2.),2)*Sin(B) + 1.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),-

1)*Sin(A)*Sin(D) + 2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Sin(B)*Sin(D),0.5)*Pow(-1.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Sin(C),-1) - 2*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(1.*Pow(Sin(C),-1),3)*Pow(Sin(D),2) - 1.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-

1),2)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),2)*Pow(Sin(C),-1)*Pow(Sin(D),2) + 2.*Pow(Sin(C),-

1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 

1.*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5) - 2.*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(Sin(C),-1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-

1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-1)*Pow(Sin(B),-

1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5) - 4.*Pow(1.*Pow(Sin(A),-1),2)*Pow(Sin(C),-

1)*Pow(Sin(D),2)*Pow(Tan(n/2.),2) + 2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-

1),2)*Pow(Sin(C),-1)*Pow(Sin(D),2)*Pow(Tan(n/2.),2) + 2.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Sin(D),3)*Pow(Tan(n/2.),2) - 2*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(1.*Pow(Sin(A),-

1),2)*Pow(1.*Pow(Sin(C),-1),3)*Pow(Sin(D),4)*Pow(Tan(n/2.),2) - 2.*Pow(1.*Pow(Sin(A),-
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1),2)*Pow(Sin(C),-1)*Pow(Sin(D),2)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-

1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-1)*Pow(Sin(B),-

1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Pow(Tan(n/2.),2) - 1.*Pow(1.*Pow(Sin(A),-1),3)*Pow(Sin(B),-

1)*Pow(Sin(D),3)*Pow(Tan(n/2.),4) + 1.*Pow(1.*Pow(Sin(A),-1),3)*Pow(1.*Pow(Sin(C),-

1),2)*Pow(Sin(B),-1)*Pow(Sin(D),5)*Pow(Tan(n/2.),4) + 1.*Pow(1.*Pow(Cos(n/2.),-

1),4)*Pow(1.*Pow(Sin(C),-1),4)*Pow(Sin(A),-1)*Pow(Sin(D),3)*Sin(B) + Pow(1.*Pow(Sin(A),-

1),3)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(D),3)*Pow(Tan(n/2.),2)*Sin(B) + 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(D) + 2.*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(1.*Pow(Sin(A),-

1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-

1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Pow(Tan(n/2.),2)*Sin(D) + 

1.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(B),-1)*Sin(A)*Sin(D) + 4.*Pow(1.*Pow(Cos(n/2.),-

1),2)*Pow(Pow(Sin(C),-1),2)*Pow(Sin(A),-1)*Sin(B)*Sin(D) - 1.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Sin(B)*Sin(D) - 1.*Pow(1.*Pow(Cos(n/2.),-1),4)*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Sin(B)*Sin(D) + 2.*Pow(1.*Pow(Cos(n/2.),-1),2)*Pow(Pow(Sin(C),-1),2)*Pow(Sin(A),-

1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 

1.*Pow(Sin(A),-1)*Pow(Sin(B),-1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Sin(B)*Sin(D) - 

2.*Pow(1.*Pow(Sin(C),-1),2)*Pow(Sin(A),-1)*Pow(1.*Pow(Sin(A),-1)*Pow(Sin(C),-

1)*Sin(B)*Sin(D),0.5)*Pow(Pow(1.*Pow(Cos(n/2.),-1),2) - 1.*Pow(Sin(A),-1)*Pow(Sin(B),-

1)*Pow(Tan(n/2.),2)*Sin(C)*Sin(D),0.5)*Sin(B)*Sin(D),-0.5)) 

Fold angle p is in function of q, A, B, C, D. 

2*Asin(Pow((Pow(Sin(q/2),2)*Sin(A)*Sin(D))/(Sin(C)*Sin(B)),0.5)) 

Fold angle m in function of n, A, B, C, D. 

2*Asin(Pow((Pow(Sin(n/2),2)*Sin(C)*Sin(D))/(Sin(A)*Sin(B)),0.5)) 

These textual solutions have been generated using the software Mathematica by Wolfram research (WolframResearch, 

n.d.). Obviously they could have been simplified with subfunctions or they could have been written in a slimmer manner 

using alternative forms, but we decided to leave them as they have been returned by Mathematica because this is what 

the application returns as a first calculation step, which might convince a nonprofessional user to judge it as too complex 

to handle, making him/her giving up at this stage. 

This kind of intimidating steps is less likely to happen while approaching the same problem with the geometrical 

constructive approach, that we are going to present in sections 4.6.2 and 4.6.3. 

This case study is a clear example of the greater complexity of the algebraic approach compared to the graphical 

constructive approach.  

 The Blocking Crease 

The blocking crease is the first crease that hit 180° in a CP. In a degree-4 non-flat-foldable single vertex the blocking 

crease is always one, but they can be more than one in a CP with multiple vertices or multiple degrees of freedom. The 

identification of the blocking crease is important for animating the folding and unfolding of a one-DOF pattern because 

if it is used as the controller crease and the domain of its fold angle is limited between 0° and 180° it prevents the pattern 

to self-intersect. 

To identify the blocking crease before folding the pattern we could use the well-known Huffman formulations that 

would allow us to find the maximum fold angles of every crease, but because those formulations are valid at any time t, 

they are unnecessarily complex for finding only the fold angles at blocked state. 

Thus, in the following sections, we present a simplified method using spherical trigonometry and triangular inequalities 

on the sphere, that will allow us to identify the crease that blocks first from the unfolded pattern, in a degree-4 single 

vertex, analysing exclusively the blocked state. 

Adding this procedure at the beginning of the algorithms explained in 4.6.3 or 3.6.1 would solve the problem of the 

identification of the crease that blocks first before folding anything. This would allow us to choose the optimal controller 

crease from early stages of the animation process. Before explaining this new approach, we need to recall some concepts 

of the kinematics of a degree-4 vertex. 

 Understanding the Kinematics of a Non-Flat-Foldable Developable 

Degree-4 Vertex 

A non-flat-foldable degree-4 developable vertex is a vertex with four incident creases forming a convex angle to 

adjacent ones, which does not satisfy Kawasaki’s condition, i.e., the alternating sum of angles does not sum to 0°. The 

fold angle 𝜌 ∈ [−180°, 180°] is the angle between the normal vectors of adjacent faces. The sector angle 0 <  𝜃 < 180° 

is the angle between adjacent creases. First, we briefly characterize the kinematics of a non-flat-foldable degree-4 vertex. 
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In the following statements, it is assumed that the faces can pass through each other, and any state with two coplanar 

faces is called a “blocked state”. 

- A non-flat-foldable degree-4 vertex forms a one-DOF mechanism with no bifurcations in its fold angle 

function except at the completely unfolded states.  

- At the unfolded states, at most two folding modes intersect. The mountain/valley assignment of each 

folding mode always has three creases with the same signs forming a “Y” shape (convex angle to each 

other) and one crease with opposite sign (Abel et al., 2016). For non-flat-foldable degree-4 vertices, 

exactly two creases can be the oppositely signed crease, one for each folding mode. 

- In either mode, only one single crease folds flat first, and it blocks the movement when self-intersections 

are avoided. Hence, the state is called the “first blocked state”. 

- Ignoring self-intersection, if the folding motion continues, the faces can pass through each other and the 

single vertex pattern will reach another configuration where two different faces are coplanar, thus we call 

it the “second blocked state”. 

- The signs flip after the self-intersection, and the second blocked state is equivalent to the first blocked 

state of the other folding mode (refer to Figure 27). 

 

Figure 27: folding animation snapshots, and fold angle plots of a given degree-4 vertex (the folding mode one has the same 

kinematics as mode two played backwards with mirrored mountain valley assignment). Notice that the unfolded state in t4 is flipped 

(upside-down compared to the flat-folded state in t0). 

Figure 27 shows the fold angles variation over time when 𝜌𝐴 is the controller crease represented as a linear function 

of time. The fold angle functions of the other creases depend on the controller crease because it is a one-DOF 

mechanism. Focus on folding mode two. The folded state reaches the first blocked state at t1 when the 𝜌𝐷 function jumps 

from +180° (π) to −180° (-π). The jump happens because after that point, the faces pass through each other and the 

sign of the crease flips (passing from valley to mountain in this case). In t2, the folded surface reaches the second 

blocking configuration when 𝜌𝐴 jumps from +180° to −180°. While two creases A and D rotate  360°, the other creases 
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B and C rotate to some amount smaller than 180° and go back to 0. Function 𝜌𝐵 reaches its maximum at t1, and 𝜌𝐶  reaches 

its minimum at t2. At 0 and t4, all the fold angles go to 0 at the same time, because at 0 and t4 the vertex is completely 

unfolded. 

Because of the two creases 𝜌𝐴 and 𝜌𝐷 flipped their signs, when the pattern again reaches the flat state (at t4), the 

mountain/valley assignment has changed to that of mode one except that all the signs are flipped. Thus, folding mode 1 

is given by the backward play of folding mode two with mirrored mountain/valley assignment. 

 First Blocking Crease in a Developable Degree-4 Vertex 

 

Figure 28: only two possible blocked cases in a generic degree-4 vertex (in the upper one the blocking crease is O2; in the bottom 

one the blocking crease is O4). 

The following considerations prove that in a developable non-flat-foldable degree-4 single vertex pattern there are only 

two possible creases that can be the candidate creases among which there is only one that hit 180° first. 

- Focus on the first blocking state. The mountain/valley assignment must guarantee rigid foldability from 

the unfolded state, so there must be three creases with the same sign and one crease with opposite sign 

(Abel et al., 2016). Assume that they are three valleys and one mountain, without loss of generality. 

- In the blocked state, only one crease is flat-folded in non-flat-foldable cases. This is true because if at 

least two creases are flat at the same time, then all four creases are coplanar in this configuration, and the 

pattern would be flat-foldable. 

- Refer to Figure 28. Consider the first blocked state. Because only one crease is fully folded, a three-faced 

pyramid (OABC) is formed. Two edges of the pyramid (OA̅̅ ̅̅  and OB̅̅ ̅̅ ) are formed by faces adjacent in the 

unfolded state, and one edge (OC̅̅ ̅̅ ) is formed by two faces non-adjacent in the unfolded state but touching 

in the folded state. The former two edges have the same mountain/valley assignment, which is valley, 

and the other edge (OC̅̅ ̅̅ ) is made by two creases of opposite signs (O1̅̅̅̅  and O2̅̅̅̅  or O1̅̅̅̅  and O4̅̅̅̅ ), one of 

which folds flat. 

- The turn angle at C is positive (valley) because ABC is a spherical triangle, but this should be equal to 

the summation of fold angles of the two creases forming OC̅̅ ̅̅ . This means that the crease hitting 180° (the 

one with bigger absolute value) is positive (valley). So, the crease that hits 180° first must be subsequent 

or precedent to the crease with opposite sign. This limits the solutions to two possible candidate flat-

folded creases (O2̅̅̅̅  or O4̅̅ ̅̅ ). 
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Figure 29: testing which crease blocks the movement first, among the two possible candidates. 

Consider having an unfolded pattern where the crease that blocks the movement is still unknown (Figure 29). 

Considering the previous assumptions, it is known that the crease that hits 180° first is always one of the two valley 

creases adjacent to the single mountain crease. The following formulations are aimed to test which of the two identified 

candidate creases is the actual one that hits 180° first, without the need of folding the pattern. Spherical trigonometry 

and triangular inequality on a sphere are used. The pyramid can be considered as a spherical triangle on a unit sphere. 

Triangular inequality on a sphere is given by: 

+𝑏 > 𝑐  and 𝑏 + 𝑐 > 𝑎 and 𝑐 + 𝑎 > 𝑏. (27) 

Because: 

𝑎, 𝑏, 𝑐 < 180°. (28) 

The mountain crease is called 1, and the valley creases are called 2, 3, and 4 counterclockwise. Considering the 

previous assumptions, the flat-folded crease is in general either 2 or 4. If crease 2 folds flat first, then creases 3 and 4 

form edges OA̅̅ ̅̅  and OB̅̅ ̅̅ . Therefore, 𝑎 = 𝜃4, 𝑏 = 𝜃2 − 𝜃1, 𝑐 = 𝜃3, and this should satisfy 𝜃2 + 𝜃4 > 𝜃1 + 𝜃3. If crease 

4 folds flat first, then creases 2 and 3 form edges OA̅̅ ̅̅  and OB̅̅ ̅̅ . Therefore 𝑎 = 𝜃3 − 𝜃4, 𝑏 = 𝜃1, 𝑐 = 𝜃2, and thus it should 

satisfy 𝜃2 + 𝜃4 < 𝜃1 + 𝜃3. Conversely, judging from the given set of angles, the following tests can be used: 

 

If:  𝜃2 + 𝜃4 > 𝜃1 + 𝜃3 then 𝑂2̅̅ ̅̅  folds flat first. (29) 

If:  𝜃2 + 𝜃4 < 𝜃1 + 𝜃3 then 𝑂4̅̅ ̅̅  folds flat first. (30) 

If: 𝜃2 + 𝜃4 = 𝜃1 + 𝜃3 the degree-4 vertex is flat-foldable (limit case). (31) 

Thus, if we want to use the crease that blocks first as controller crease into a Grasshopper definition, we can insert 

one of these very easy inequations into the “Expression” component of grasshopper, setting as input the sector angles, 

and with a “Key/Value search” component we can substitute to the “False” or “True” result the index of the crease O2̅̅̅̅  

or O4̅̅̅̅  as shown in Figure 30 (or Appendix A.4). This index will afterwards be used to select the crease that will be the 

first axis of rotation and we will set the domain of the rotation angle of its adjacent faces from 0° to 180°. 
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Figure 30: identification of the index of the crease that blocks first. 

 Other Fold Angles at Blocked State – With the Spherical Law of Cosine 

 

Figure 31: spherical trigonometry standard notation compared with the degree-4 vertex notation when O2 blocks first. 

Once the crease that blocks the movement is identified, its fold angle is equal to 180° at the blocked state. The next 

question is how to calculate the fold angles of the other creases at the blocked state. Refer to Figure 31. Assume that the 

blocking crease is O2̅̅̅̅ . (For cases where the blocking crease is O4̅̅̅̅ , the notation is a mirror reflection). Then, by the cosine 

rule of spherical trigonometry, 

𝑐𝑜𝑠 𝐴 =  
𝑐𝑜𝑠 𝑎−𝑐𝑜𝑠 𝑏 𝑐𝑜𝑠 𝑐

𝑠𝑖𝑛 𝑏 𝑠𝑖𝑛 𝑐
. (32) 

Applying this to the fold angles in the degree-4 vertex we will get: 

𝜌1 = − 𝑐𝑜𝑠−1 𝑐𝑜𝑠 𝜃3−𝑐𝑜𝑠(𝜃2−𝜃1) 𝑐𝑜𝑠 𝜃4

𝑠𝑖𝑛(𝜃2−𝜃1) 𝑠𝑖𝑛 𝜃4
. (33) 

𝜌2 =  180°. (34) 

𝜌3 =  180° − 𝑐𝑜𝑠−1 𝑐𝑜𝑠 𝜃4−𝑐𝑜𝑠 𝜃3 𝑐𝑜𝑠(𝜃2−𝜃1)

𝑠𝑖𝑛 𝜃3 𝑠𝑖𝑛(𝜃2−𝜃1)
. (35) 

𝜌4 = 180° − 𝑐𝑜𝑠−1 𝑐𝑜𝑠(𝜃2−𝜃1)−𝑐𝑜𝑠 𝜃4 𝑐𝑜𝑠 𝜃3

𝑠𝑖𝑛 𝜃4 𝑠𝑖𝑛 𝜃3
. (36) 

These expressions to calculate the fold angles are valid only at the blocked state. We can use this approach to design 

patterns of developable foldable three-dimensional structures with specific fold angles as shown in section 6.2.2. 
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3.7. Conclusions – Relation Between Origami Functionality 

and Real Applications 

Some of these definitions highlight possible connections with the functionality of the origami when applied to real 

projects. For example, designing considering developability may be a way to reduce the cutouts and scraps from the 

production, or it may be a way to produce assembling-free objects reducing the production costs and eventually the 

assembling time and issues. Furthermore, the rigid-foldability is strictly related to the fabrication with rigid panels and 

stiff materials, also the non-flat-foldability is related to patterns that block at a certain non-planar configuration thus 

realizing something with folded rigid panels will open new possibilities in the creation of mechanisms that self-block 

at a certain three-dimensional configuration or that can use blocking folds to increase the structural stiffness and 

stability. The study of the DOF could be useful to design deployable systems, for example designing a one-DOF 

mechanism helps preventing unexpected behaviour, it would also prevent the mechanisms to jam because of bifurcations 

in its folding and unfolding, it would decrease the amount of the necessary actuators and motors to move the mechanism. 

Lastly, designing considering flat-foldability may be an efficient way to design objects that have to be stored in a small 

space for transportation or stoking. All these relations are clearly reflected in the projects that we collected and analysed 

in CHAPTER II. 
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4. CHAPTER IV: Constructive Methods for 

Solving the Kinematics of Origami 

4.1. Families of Folded Surfaces 

 

Figure 32: families of folded surfaces that we studied in this section. 

In the book “Architettura delle superfici piegate” Casale et al. assert that the infinite variety of configurations that can 

be obtained folding a planar surface can be divided into three groups: “Chaotic”, “Shape-oriented”, “Structured”.  

In the “Chaotic” family, the surface is crossed by a dense mesh of irregular creases. Once collapsed, the surface can 

be configured in various three-dimensional irrational shapes, this behaviour is hard to control and to foresee. 

Furthermore, in architecture, there is no reason to try to analyse it from a kinematic point of view. “If we take a sheet of 

paper and we crumple it strongly with our hands, we can force it to assume infinite different configurations, opening it 

and stretching it properly. The more is dense the starting crease pattern, the more the surface will be capable to adapt 

to specific configurations. Apart from the obvious difficulty in determining the relationship between the initial 

subdivision and the final shape, it is equally difficult and meaningless searching for the geometrical relationship 

between the parts participating in this kind of spatial configuration.” (Casale et al., 2013). 
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In the “Shape-oriented” family, the plane is divided into a multitude of different polygons, placed side by side to 

generate a pattern that must assume a specific spatial configuration. Figurative traditional origami and packaging can be 

categorized in this group. Some of the projects, among the ones that we selected in section 2, which could be added to 

this category are, for example, the “Origami pavilion” by Tal Friedman, the “Common Ground” by Zaha Hadid Architects 

(Bhooshan, 2016), the “Folding Table” by Tachi or the “Curved Folding Metal Twins” by Chandra, Bhooshan, El Sayed, 

et. al. (Bhooshan, 2015; Chandra, Bhooshan, et al., 2015). 

The “Structured” family is defined by groups of equal tiles. The surface can be configured into a lot of different shapes, 

using a little number of different tiles, this characteristic makes this family of folded surfaces easier to animate and to 

design. The well-known solar panel by Koryo Miura (Miura, 1985), the self-deployable cardiac stent by Kuribayashi et 

al. (Kuribayashi et al., 2006), or the “Resonant Chamber” by RVTR (Thün et al., 2012), are related to this family of 

surfaces. In general, the tessellations and the corrugations from traditional origami, are perfect examples of this family of 

folded surfaces. In this thesis, we will focus only on the “Shape-oriented” and “structured” families. The structured folded 

surfaces are easy to design because they are characterized by groups of equal faces, also the variety of shapes that they 

can assume is limited, thus the algorithms will be more focused on the animation of the surfaces instead of being focused 

on the final folded shape. The “Structured” family will be explored in this chapter (CHAPTER IV). The “Shape-oriented” 

family will be addressed in CHAPTER V and VI. 

To study the “Structured” family, we divided it into six sub-classes of patterns which will be presented following a 

growing complexity criterion. The sub-classes synthetized in Figure 32 are patterns with: a single linear crease, multiple 

non-intersecting linear creases, a single degree-4 internal vertex, a chain of degree-4 vertices, multiple internal degree-4 

vertices and multiple degree>4 vertices. 

4.2. Operative Tools 

All the crease patterns proposed will be created and animated with a constructive synthetic approach applied with a 

parametric three-dimensional modeller, Grasshopper31 (Rutten, n.d.), a node based parametric modeller integrated into 

Rhinoceros 6 by McNeel associates (McNeel, n.d.). Because of that, for clarity sake, sometimes we will refer to specific 

components of Grasshopper or Rhino. Nevertheless, we will try to put the reader in the condition to reproduce the same 

constructions also with different parametric modellers explaining the processes and describing the algorithms step by 

step. 

4.3. Analogy with Computer Programming and Terminology 

Clarification 

 Clustering and Nesting 

In computer programming, a widespread practice that helps to keep the code simple and clear is to divide the code into 

clusters and save them for future uses. This type of approach is very common in object-oriented-programming (OOP), 

where these clusters of code are called objects and classes. This approach is useful when scripting because it allows the 

programmer to keep the code short and clear and more importantly to find the errors faster because there is no need to 

test the previously tested clusters of code. Furthermore, it helps to keep the script easily readable, transmissible and 

editable. 

To make digital three-dimensional parametric animated folded surfaces, it can be followed a similar approach, starting 

from elementary cases grouped in families, up to harder ones by referring to already solved simpler problems adding 

variables and components to them. The algorithms will be presented with a growing complexity criterion, starting from 

patterns with one or more single non-intersecting linear creases, followed by patterns with one or more internal degree-4 

vertices and patterns with vertices with a degree greater than 4. For this reason, the first cases may appear trivial, but they 

are the necessary building blocks for the following algorithms of higher complexity. 

                                                           
 

31 In version Rhinoceros 5 or previous versions, Grasshopper was an external standalone plugin (Rutten, n.d.). In Rhino 

6 or newer Grasshopper became a built-in tool. 
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The operation of grouping some nodes inside a single new component is called “nesting”, we will refer to these nested 

nodes as “clusters” as they are called in Grasshopper. Furthermore, we will refer to a small part of a folded surface as a 

“molecule”, because we consider it as a group of “atoms” (creases and faces) that can be joined to make bigger patterns 

or “macro-molecules”32. 

 Definition of “Algorithm” 

We consider the “Algorithm” as a process or set of rules that we need to follow to reach an expected result. Another 

interesting definition of “Algorithm” is the one given by Kostas Terzidis in his book “Algorithmic architecture”: “An 

algorithm is a computational procedure for addressing a problem in a finite number of steps. It involves deduction 

induction, abstraction, generalization, and structured logic, it is the systematic extraction of logical principles and the 

development of a generic solution plan. Algorithmic strategies utilize the search for repetitive patterns, universal 

principles, interchangeable modules, and inductive links... An algorithm may be compared to the steps in a recipe; the 

steps of gathering the ingredients, preparing them, combining them, cooking, and serving are algorithmic steps in the 

preparation of food... Theoretically, an algorithm is the abstraction of a process and serves as a sequential pattern that 

leads towards the accomplishment of a desired task.” (Terzidis, 2006). 

In computational modelling, the word “Algorithm” is often used to refer to the parametric generative procedures. 

4.4. Single Linear Crease 

We start the study of the animation of the folded surfaces with the most elementary crease pattern, which is composed 

of one single linear crease. This kind of fold has been called by Casale et al. “First fold” (Casale et al., 2013). A 

rectangular piece of paper can be folded in half along its middle line generating two rectangular equal faces, or it can 

be folded along any other line, dividing the piece of paper into trapezoidal, parallelogrammical, or triangular faces. 

Even if the fold line is only one, there are many possible ways to animate the folding of a single creased piece of paper. 

For example, we can simply rotate the faces around the crease, or we can intersect the paths of the vertices or the edges 

of the faces and use the intersections as geometric references. Furthermore, we can anchor different parts of the piece 

of paper to the construction plane, for example, we can make the crease lifting from the construction plane while 

constraining the opposite edges to slide on the plane. Or we can anchor a face, the crease, or an edge to the construction 

plane rotating the unconstrained elements out of plane. We can even use a reference curve or a curved surface as a rail 

on which the edges would slide. We will explore many different methods and we will apply them on patterns with a 

single crease line before approaching more complex cases. 

 Single Linear Crease Between Equal Rectangular Faces, Two Edges Slide 

on Construction Plane – Intersecting Circles 

This method uses intersecting circles as geometric references to find all the possible configurations. The circles 

represent the paths of the vertices opposed to the crease when the adjacent faces rotate around it. This approach works 

only if the starting rectangular surface is folded in half generating equal rectangular faces. We perform a symmetrical 

motion of the two faces making the opposite edges sliding on the construction plane of the same amount while lifting 

the crease from the plane. The following method refers to Figure 33. 

                                                           
 

32 In many origami design methods, we find the word “molecule” to define a part of a pattern composed by many 

different folds, in particular in the book “Origami design secrets” by Robert J. Lang (Lang, 2011) we can find a 

comprehensive explanation of a design method based on the stitching of different molecules. 
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Figure 33: single linear crease between rectangular faces with intersecting circles. The input slider controls the distance from C to B 

and from F to B. 

Draw two rectangular surfaces, then draw the crease AB, and the edges BC and BF33, we will use these geometries as 

inputs of the Grasshopper’s definition. Now, reparametrize the domain of the curves BC and BF between 0 and 134. Match 

the parameter 1 of each curve with the point B and the parameters 0 with points C and F. On an input slider (that we call 

“Folding percentage”) set a value between 0.00 and 1.00 and extract a point on both BC and BF curve at that parameter 

and call those points C’ and F’. Draw two circles on C’ and F’. The circle radii are equal to the length of the edges BC 

and BF35. The circles are drawn on a plane perpendicular to the crease AB36. If we move the cursor of the slider, we will 

see the circles moving along the edges BC and BF. At this point, intersect the circles getting two points, and select the 

upper one or the lower one37. This last operation allows us to switch between mountain and valley folding. We call B’ the 

chosen intersection of the circles. Lastly, draw a polyline passing through C’, B’, and F’ and extrude it along AB. In this 

way, we construct the rectangular faces and we can see them folding and unfolding by moving the cursor of the folding-

percentage slider. The 0.00 and the 1.00 values38 on the slider represent the unfolded state (0%) and the completely folded 

state (100%). We can notice that with this method the edges DC and EF slide on the construction plane and the crease 

AB leaves the plane moving along the Z axis. The full algorithm with the used nodes is shown in Figure 34 (and Appendix 

B.1). 

                                                           
 

33 We could also have started from a single rectangular surface extracting the edges and the crease by splitting and 

exploding it, but we decided to start drawing the single elements directly into the rhino workspace and using them 

directly as inputs of the grasshopper’s definition to keep the process easier. 
34 In Grasshopper we can reparametrize a curve between 0 and 1 just by right clicking on the input of the following 

node and clicking on reparametrize. 
35 In this case the radii are equal because we considered having two equal rectangular faces. 
36 We can do that because we considered having rectangular faces, thus the edges of the rectangles are already 

perpendicular to the crease. 
37 In grasshopper we can use the “Boolean toggle” component or the “Value List” component to make the selection. 
38 We could also use integer values, but adding decimals makes the animation more fluid. 
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Figure 34: generative algorithm for the single linear crease between equal rectangular faces with intersecting circles. 

 Single Linear Crease Between Asymmetric Rectangular Faces, Two Edges 

Slide on Construction Plane – Intersecting Circles 

In the previous example, we solved the kinematics of a rectangular surface creased exactly in half. But what if we 

move the crease a bit toward one side or the other? We can use intersecting circles to identify the position of the crease 

as we did in the last example. However, if we want to constrain the opposite edges (CD and EF) to slide on the 

construction plane, we cannot consider a vertical symmetry. So, the algorithm works as follows. 

 

Figure 35: single linear crease between asymmetric rectangular faces animated with intersecting circles, making the edges EF 

sliding on the construction plane. 

First, draw the edges CB and BF and draw the crease AB. Set a slider between 0.00 and 1.00 and remap the output 

value to a domain between 0 and the length of the segment BF. Multiply this value by two and use the result to move 

the point F along the segment CF. Like so the point F will never be farther than its original distance from point B. Now, 

draw two circles on C and the moving point F with radii respectively equal to the initial edges CB and FB. Move the 

point F together with its relative circle and intersect the two circles. Select one intersection point and draw a polyline 

passing through the points CBF as we did in the previous algorithm. Extrude the polyline to generate the folded surface. 

The full generative algorithm is shown in Appendix B.2. 

 Single Linear Crease Between Rectangular Faces, Crease on Construction 

Plane – Varying Fold Angle 

In this section, we show a different approach. Now we use the fold angle as a variable parameter instead of moving 

and intersecting two circles on the construction plane. This method is conceptually easier to understand but it gives a 

different result. Compared to the method with intersecting circles, the method with fold angle returns a fold animation 

of the surface where the crease stays on the construction plane and the edges leave the plane along an arch of 

circumference centred in B. Furthermore, we use an angular input instead of a percentage value. 



Algorithmic modelling of folded surfaces CHAPTER IV: Constructive Methods for Solving the 

Kinematics of Origami 

 

 

Pag. | - 73 - 

 

 

 

Figure 36: single linear crease between rectangular faces with the fold angle as a variable input. 

The algorithm is developed as follows. Refer to Figure 36. Draw two rectangular faces and the crease AB. After that, 

rotate both faces around the crease AB, face 1 clockwise, and face 2 counterclockwise. To match the input angle to the 

exact angle between the normal vectors of the two faces, it is necessary to divide it by two before plugging it into the 

corresponding “Rotate axis”39 components. This step is necessary because we plugged the same angle into both the 

“Rotate axis” nodes to have vertical symmetry. Contrariwise if we would have rotated only one face keeping the other on 

the plane, we would not have needed to halve the angle. 

To animate the folding process of the surface it is sufficient to move the angle slider which has as boundaries 0° and 

+180°. We could also set the domain boundaries from -180° to +180° so that the crease assignment would flip from valley 

to mountain once passed the flat state. Nevertheless, if we choose bigger absolute values to limit the domain, the surface 

would self-intersect after passed 180°. Figure 37 (and Appendix B.3) shows the complete generative algorithm. 

 

Figure 37: generative algorithm for single linear crease between equal rectangular faces with fold angle input.  

 Single Linear Crease Between Triangular Faces, Crease on Construction 

Plane – Varying Fold Angle 

The single linear crease between triangular faces (Figure 38) is conceptually no different from the single linear crease 

between rectangular faces (Figure 36) explained in section 4.4.3, because we rotate the two faces around the fold line on 

the construction plane as we did in the previous case. However, we decided to present also this case because we used a 

little different method to generate faces. Furthermore, this algorithm will be part of a more advanced algorithm later. In 

particular, we used the “Extrude Point” node instead of the “Extrude” node. The “Extrude Point” node creates a triangular 

face starting from a segment and a point which is a faster solution to re-create the faces in this case. As in the case of the 

single linear crease between rectangular faces, we considered vertical symmetry, and we divided the input angle by two 

                                                           
 

39 “Rotate 3D” component can be used as alternative. 
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to make the slider value matching exactly the angle between the normal vectors of the two faces. In Figure 39 (and 

Appendix B.4) it is shown the full generative algorithm.  

 

 

Figure 38: single linear crease between triangular faces animated by varying the fold angle. 

 

 

Figure 39: generative algorithm for the single linear crease on triangular faces animated with fold angle AB. 

 Single Linear Crease Between Triangular Faces, Two Edges Slide on 

Construction Plane – Intersecting Circles 

 

 

Figure 40: single linear crease between triangular faces with intersecting circles, the outer edges slide on the construction plane. 

In this case, we use again intersecting circles to find the only two possible positions of the crease while constraining 

the edges AC and AD to slide on the construction plane. However, this time the circles are drawn on different planes 

because the crease and the outer edges are not parallel anymore. 

The algorithm works as follows. Draw the crease AB, the edges AC and AD. Measure the absolute value of the angle 

between AC and AD (we will use this value in a moment). Project the point B on the edges AC and AD finding the 
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relative points J and K. Draw the two planes passing through the points J and K and perpendicular respectively to AC and 

AD. Draw one circle on each plane with centres respectively on J and K and radii equal to JB and KB. Set one input slider 

with a domain that goes from 0.00 to 1.00 and remap the output value to a domain that goes from 0.00 to the angle between 

AC and AD just measured. Rotate the edges AC and AD around the point A (on the construction plane) of half of the 

remapped value and rotate with them the relative circles centred on J and K. Find the intersection points between the two 

circles and chose one of them. That point is now the new position of B. Draw a polyline passing from the moved points 

CBD and extrude it toward point A. Like so we generated the two triangular faces that we can animate by moving the 

slider from 0.00 to 1.00. In most of the definitions that use intersecting circles, at the limit cases, the circles perfectly 

overlap (when the surface is 100% folded in this case), this causes the “Curve | Curve” node (which solves intersection 

events between two input curves) to return a “null” value. To solve this problem, we can both extend the generative 

algorithm with an “if” statement that triggers only when the problematic configuration occurs, or it can be simply limited 

the domain of the input slider to stop a bit earlier of the critical values (99,999% in this case). This last method is the one 

we used in the generative algorithm shown in Figure 41 (and Appendix B.5). 

 

Figure 41: generative algorithm for the single linear crease between triangular faces with intersecting circles, the outer edges slide 

on the construction plane. 

 Single Linear Crease Between Trapezoidal Faces, Two Edges Slide on the 

Construction Plane – Intersecting Circles 

 

Figure 42: single linear crease between trapezoidal faces, built and animated with intersecting circles. 

The method to build and animate two trapezoidal faces with outer edges and crease converging to a point, while 

constraining the edges EC and FD to slide on the construction plane, is analogous to the triangular faces case shown in 

section 4.4.5. The trapezoidal faces can be asymmetric, but the edges EC and FD and the crease AB must converge to the 

same point L so that we can use the same approach used for the triangular faces, because the trapezoid faces would be 

simply a slice of two triangular faces. 

In general, if we have two trapezoid faces that do not have the outer edges and the crease converging to the same point, 

we would not be able to force the edges EC and FD to slide on the same plane (wile rigid-folding the surface) because 

the edges would belong to the same plane only at completely unfolded configuration. 



Algorithmic modelling of folded surfaces CHAPTER IV: Constructive Methods for Solving the 

Kinematics of Origami 

 

Pag. | - 76 - 

 

  

Contrariwise if we do not want to keep the outer edges CE and DF on the same plane, we can apply the method that 

uses the fold angle as the only variable input, as shown in section 4.4.3 and 4.4.4. In that way, any combination of 

trapezoidal faces would work. 

 The algorithm that we used to animate the surface shown in Figure 42 has the same structure of the algorithm 

presented in section 4.4.5 with some additional nodes that cut the triangular faces into two trapezoidal faces. Refer to 

Figure 43 (and Appendix B.6) for the full algorithm. 

 

Figure 43: generative algorithm for the folding animation of two trapezoidal faces with outer edges and crease converging into the 

same point. The outer edges are constrained to slide on the construction plane. 

4.5. Patterns with Multiple (Non-Intersecting) Linear Creases  

If we fold a piece of paper with two non-intersecting creases, we obtain a crease pattern with two DOF. Adding another 

non-intersecting crease, the DOF will increase to 3, and so on. Thus, an ideal parametric generative algorithm should 

have an input controller parameter for every DOF. This approach would guarantee the maximum shaping freedom, and 

the surface could be conformed to every possible configuration. When the creases are a small number this is feasible, 

but when the pattern has a high number of creases, even if having a controller for each fold would be the most versatile 

solution, working with it would rapidly become cumbersome. However, we can forcefully limit the number of 

controllers to make it more manageable. For example, we can force all the creases to fold of the same amount at the 

same time, by using as inputs the same fold angle for every crease. Or if we want a more versatile behaviour, we can 

make the surface sliding along a linear or a curved rail. We can also set a mathematical rule to control automatically the 

propagation of the fold angle non-linearly.  

What is important to keep in mind is that using a smaller number of input parameters compared to the number of DOF 

would reduce the available configurations into which the pattern could be shaped. Furthermore, if we want to fabricate 

a pattern with more than one DOF where several creases must move at the same time of a precise amount, we must add 

an actuator for each one of those creases, even if in our algorithm we used the same input angle. In this section we 

propose some examples starting from the straight accordion, up to the triangulated accordion, animated with specific 

fold angles applied to groups of creases, or constraining the creases to slide on a curved and linear rails. 
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 Straight Accordion – Array of “Single Linear Crease Between 

Rectangular Faces” Molecules 

 

Figure 44: straight accordion joining rectangular molecules animated with fold angles. 

In section 4.4.1 we have shown how to make a base generative algorithm to animate a surface folded into two equal 

rectangular faces. Now, that we have the base molecule, it is easy to make a sequence of parallel linear creases. To do 

that, we join multiple base molecules linearly. The new generative algorithm starts with the clustered algorithm shown in 

Figure 37. Then extract the bounding box of the base molecule finding its dimensions along X, Y, and Z axes. After that, 

use the X dimension as the input of the “Linear array” node which uses it to space the consecutive copies of an amount 

equal to the animated base molecule width. In this way, the distance is related to the fold angle, that reaches its maximum 

at the completely unfolded state and its minimum at its completely folded state. The full generative algorithm is shown 

in Figure 45 (and Appendix B.7). This algorithm returns an animated straight accordion where all the fold angles are 

equal and fold at the same time with constant propagation, but, as we said this does not cover all the possible 

configurations of a straight accordion, because its DOF is higher than the number of the controller inputs used. Thus, to 

increase the animation freedom in the next section we will show how to make the accordion sliding on a linear and a 

curved rail. 

 

Figure 45: generative algorithm for the straight accordion joining 9 molecules with a single linear crease. Inside the initial cluster 

node, there is the generative algorithm shown in Figure 37. 

 Straight Accordion Sliding on a Rail – Intersecting Circles 

 

Figure 46: straight accordion, uniform motion on a linear rail. 
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Figure 47:  straight accordion, folding and unfolding along a curved path. 

In Figure 46 it is synthesized the construction of a straight accordion made with intersecting circles. This approach 

gives a similar result to the one shown in Figure 44, but it is much more versatile, because the molecules are not equal 

copies, thus they can be conformed not only to a linear segment but also to a curved path as shown in Figure 47.  

The generative process is similar to the one explained in section 4.4.1, but it starts with a curved rail. This curve (it 

can also be a straight line) is divided in “n” parts (5 in this case), which represent the number of mountain folds (or 

valley). Between adjacent points, there must be the same linear distance. To achieve this result, we used Grasshopper’s 

“DivDist” node. On each point we draw a circle, the construction plane of the circle is perpendicular to the creases, and 

their radii are equal to half the initial distance between two consecutive points on the curve40. Then, all the points are 

moved uniformly along the curve to make all the circles intersecting. The intersection points are filtered and used to 

build and animate the surface with the same approach used in section 4.4.1. The full definition is shown in Figure 48 

and Figure 49 (and Appendix B.8). 

 

Figure 48: generative algorithm to animate a straight accordion on a linear or curved rail - Part 1. 

                                                           
 

40 As input for the radii of the circles, it is important to use the distance between the points on the curve before moving 

them, because otherwise the circles would change their radii and they would never intersect. 
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Figure 49: generative algorithm to animate a straight accordion on a linear or curved rail - Part 2. 

 Straight Accordion on a Rail with Non-Uniform Fold Angle Distribution – 

Intersecting Circles and “Graph Mapper” 

 

Figure 50: straight accordion animation with non-uniform fold angle distribution on a linear rail. 

To increase even more the shaping freedom without increase too much the number of controller inputs we can remap 

non-uniformly the fold angles on each fold without necessarily controlling them one by one. We can do that with the 

“Graph Mapper” component, this component remaps the values of a list according to a chosen mathematical function. In 

this example, we used a Bezier function. We set as the input of the graph mapper the parameters of each point along the 

curve so that we can remap and use them as new parameters that define the new position of each point along the curve. 

When the Bezier is a linear function all the points stay at the original position, when we move the Bezier control points 

the surface starts folding non-uniformly because the points on the curve are no more uniformly spaced. In this way, we 
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can partially fold some section of the surface leaving completely unfolded other sections as shown in Figure 50. It must 

be pointed out that with this approach to get correct behaviours, we must know which shape of the remapping function 

are usable and which are not, with some particular shape of the Bezier curve, the points, when remapped, may be too 

far one from the other and the surface would lose its developability or behave in an unpredictable way. To avoid this 

kind of inconveniences it is suggested to use a Bezier curve and to move one control point at a time checking in real 

time if the surface does not stretch or self-intersect as shown in Figure 50. The full definition for the animation of a 

straight accordion with non-uniform fold angle distribution is shown in Appendix B.9. 

 Accordion on Two Circular Rails – Intersecting Circles 

The accordion on two circular rails has a behaviour similar to the straight accordion on a linear or a curved rail, but 

the unfolded pattern has the creases converging into a point rather than being parallel to each other, thus the faces are 

trapezoids instead of rectangles. The approach used here starts from multiple adjacent “Single linear crease between 

trapezoidal faces” molecules constructed following the same approach used in section 4.4.6. An accordion with parallel 

creases can be conformed only into a cylindrical surface. Contrariwise, the accordion with all the creases converging 

into a point can be conformed into a cone. An example of the conical motion is shown in Figure 51. 

The animated surface is obtained from a generative algorithm that takes as inputs two concentric circles used as rails, 

and an integer numeric slider which defines the number of folds that are distributed at equal distances along the two 

circles. The circles can be coplanar, or they can belong to two different parallel planes. The circles are divided into a 

given number of parts, the points so obtained are remapped to make them slide along the circular paths, similarly to 

what done in section 4.5.2. To do so, the domain of each circle is reparametrized between 0.00 and 1.00, then the 

parameter of the curve where each point is located is extracted. Afterwards, all the parameters are remapped to a new 

domain smaller than 1, and they are redistributed again on the circles. Moving continuously the top boundary of the 

domain between 1.00 and 0.00 will make the point slide on the circle. The point located on the start of the circular path 

will remain fixed. The other points, when remapped, will tend to compress getting closer to the initial point sliding 

along the reference curve. On each odd point, we draw a circle that at the completely unfolded state is tangent to the 

adjacent circles drawn centred on the adjacent odd points. When the points slide on the rails, they get closer and every 

circle intersect the adjacent ones in two points. Only one of two intersecting points is chosen for each pair of adjacent 

circles (the upper or the bottom one). Choosing one or the other intersection will flip the mountain /valley assignment 

of the surface and will make it fold inside or outside the reference cone defined by the two starting circular rails. Once 

selected all the intersections all the points are connected to make a zig-zag line that alternates the intersection points 

and the odd points on the circles. Lastly, the two zig-zag lines are plugged into a “Loft” component which generates a 

surface between each segment of the upper zig-zag line with the correspondent aligned segment of the zig-zag line 

constructed on the bottom circle41. To animate the surface, it is sufficient to move the top boundary of the remapped 

domain with a slider with a range that goes from 0.00 to 1.00. When the top boundary of the remapped domain is 0.5 

the surface is exactly halfway to be completely folded, so the slider that controls that number can be considered as a 

percentage of the folding motion. The full generative algorithm for the accordion on two circular rails with intersecting 

circles is shown in Appendix B.10.  

 

Figure 51: radial accordion sliding on  two non-coplanar circular rails. 

                                                           
 

41 In general, we need to be careful when using a loft command to generate an animation of a folded surface, because if 

the two polylines used as input sections of the loft are not precisely drawn it may give wrong results. However, in this 

case all the relative edges of each polyline are parallel at every folded state, this is true because the upper circle is 

simply a scaled down version of the bottom circle, thus the relative mated segments always have the same direction 

and the resulting face would be planar. 
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 Triangulated Accordion – Joining Multiple “Single Linear Crease 

Between Triangular Faces” Molecules 

 

Figure 52: two equal molecules joined that can fold independently making a macro-molecule composed of 4 faces. 

A triangulated accordion is an accordion where all the faces are triangular, and the mountain valley assignment is 

alternated. Thus, the liner folds are not parallel anymore and they touch on the perimeter of the paper. To model and 

animate it we can join many “Single linear crease between triangular faces” molecules (explained in section 4.4.5). We 

can both use as input a single slider that controls the fold angles of all the molecules at once, or we can use one input 

slider for each newly attached molecule. The former approach returns a less versatile result in terms of shaping freedom. 

In this section, we propose a method where two different sliders are used to control separately the folding of all the odd 

and even triangular molecules. In this way, the formers can be folded independently from the latter molecules and this 

approach allows to configure the folded surface into a fan, as shown in Figure 55. Figure 53 shows the full generative 

algorithm to join 2 molecules of 2 triangular faces. The clustered nodes contain the algorithm proposed in section 4.4.5. 

The two molecules can be folded independently by moving the sliders that control the folding amount of each one of 

them. The algorithm is developed as follows (refer to Figure 52 for notation). We refer to the vertices of the first molecule 

as A1, B1, C1, D1, and the vertices of the copied molecule as A2, B2, C2, D2. Copy the first molecule and move it42  along 

the A1D1 edge matching the vertex A2 of the copied molecule with the vertex D1 of the first molecule, then rotate the 

copied molecule around the vertex D1 of the first molecule to match the vertex D2 of the second molecule with the vertex 

A1 of the first molecule. Now the two molecules are joined, and they can be controlled with different input sliders. Now 

the vertices D1 and A2 become D, the vertices A1 and D2 become A, the vertices C1 and B1 become C and B, and the 

vertices C2 and B2 become F and E. 

 

Figure 53: joining 2 equal molecules controlled by 2 different fold angle (%) sliders. 

                                                           
 

42 In Grasshopper the move and copy transformations are made with the same node (“Move”), because the geometry 

generated from the previous nodes never disappear. To perform a simple move operation the input geometry must be 

turned off, to perform a move and copy operation both geometries must be kept visible. 
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The new macro-molecule (with vertices ABCDEF) is made by 2 smaller molecules of two faces each. We can now 

mate as many macromolecules as we want to make a chain of them where the odd ones fold together independently 

from the even ones as shown in Figure 55. Grasshopper, unfortunately, does not allow looping or recursive definitions, 

so each molecule must be copied manually as many times as needed. A more elegant alternative can be achieved using 

a plug-in called Anemone43. Anemone implements Grasshopper with 2 new nodes that perform loops. The “Loop Start” 

that needs as input one or more variables (in our case the animated macro-molecule of 4 faces) and the “Loop End” that 

records the data from each cycle and resend the resultant data to the “Loop Start” component. The number of cycles can 

be set attaching an integer number as an input into the “Loop Start” node. In-between the two nodes there must be 

connected the definition that needs to be repeated. In our case the copy and rotation of the macro-molecule (Ai+1 and 

Ci+1 must be matched with Di and Fi). The loop definition (that follows the definition shown in Figure 53) is shown in 

Figure 54 (the full generative algorithm is reported in Appendix B.11). It must be pointed out that in the solution that 

uses Anemone, the animation has a flickering problem. Every time that the cursor of the slider that animates the surface 

moves, the surface disappears for an instant because the loop definition needs to update. For a flicker-free animation, 

the copy and paste method (with no loops) is suggested. 

 

Figure 54: Looping generative algorithm that repeats the cycle 4 times. The definition that is cycled copies and rotates the macro-

molecule 4 times starting every time from the newly created macro-molecule. The two upper nodes, with two arrows in their icons, 

are from Anemone plug-in for Grasshopper. 

The cases in Figure 55 and Figure 56 are particular cases where all the faces are equal, but with a different the 

orientation of the diagonals, thus the kinematics of the surface changes. They both can be folded starting from straight 

accordions creased along the diagonal of each face. A faster and easier approach to triangulate and animate a straight 

accordion is by reflecting a straight accordion with respect to a plane that cuts all the faces along their diagonals44 as 

shown in Figure 57. However, this method is limited in terms of possible configurations compared to the one explained 

above, because in this method we use only one single slider to control all the folds at once.  

 

 

Figure 55: triangulated accordion, alternated diagonals, non-uniform motion. 

 

                                                           
 

43 http://www.food4rhino.com/app/anemone 
44 The accordion must have a uniform fold angle distribution and all the faces must be equal to each other to be able to 

have all the alternated vertices on the same plane so that we can reflect the accordion obtaining equal triangular faces. 
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Figure 56: triangulated accordion, parallel diagonals, uniform motion. 

 

Figure 57: triangulated accordion obtained by reflecting the straight accordion, uniform motion. 

4.6. Single Degree-4 Vertex45 

Now that we explored the animation of patterns with multiple linear non-intersecting creases, according to the increasing 

complexity criterion, we investigate patterns with a single internal vertex. The simplest rigid-foldable pattern with only 

one internal vertex is the degree-4 vertex as demonstrated by Abel Z. et al. in the paper “Rigid Origami Vertices: 

Conditions and Forcing Sets” (Abel et al., 2016). They also proved that any degree-4 vertex must have one and only one 

crease with the opposite verse with respect of the other three to be rigidly foldable. Also, they asserted that “A single-

vertex crease pattern (C,µ) can be continuously parameterized in a family of rigid origami folds if and only if (C,µ) 

contains a bird’s foot.”. This means that in a degree-4 vertex there must be a “Y” shaped family of three folds to be rigid-

foldable. 

As the reader can see, the problem increased rapidly in complexity. The patterns with more non-intersecting creases 

studied previously, only involved animation problems related to the increasing DOF and controller inputs. Contrariwise, 

now we cannot focus only on the animation of the pattern, but also with the correct pattern design. Furthermore, in patterns 

with internal vertices, the fold angle of each crease may be influenced by the adjacent creases. In fact, the degree-4 single 

vertex as we saw in section 3.5.2 is a one-DOF mechanism (Tachi, 2011a), thus, to animate it, we do not need to deal 

with an increasing number of controller inputs. 

                                                           
 

45 The reader may find confusing the fact that in this section we used a different notation compared to the one used in 

sections 3.5.2, 3.5.3, 3.6.1, although in the generative algorithms there are already a lot of nodes containing integer 

numbers, thus for the sake of clarity the use of number to indicate points it is not suggested. Furthermore, we used a 

rectangular perimeter instead of a disc perimeter because some of the algorithms that generates a single vertex will be 

used as building blocks to generate more complex patterns where the rectangular shape is preferable. 
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 Symmetric Reverse Fold – Reflecting a Single Linear Crease 

 

Figure 58: symmetric reverse fold on a single linear fold molecule by reflection with respect of the plane passing through COD 

points. 

The easiest way to make and animate a degree-4 vertex is by reflecting a “single linear fold” molecule. This kind of 

approach, based on reflection, has been extensively used also for curve folded designs by Mitani et al. (Mitani & 

Igarashi, 2011). This type of fold in traditional origami is called “Reverse fold”. The “Reverse fold” can be performed 

reflecting any completely flat-folded or partially folded surface with respects of a reflection plane46. Casale et al. call it 

“Second fold” and they define it as a valley or mountain zig-zag crease47 running in a transversal direction relative to a 

set of linear folds which they call “First folds” (Casale et al., 2013). This kind of terminology (first and second folds) 

focuses the attention on the order of the steps of the folding process, contrariwise, the traditional terminology (reverse 

fold) focuses the attention on the nature of the fold itself. When the first creases intersect the second creases, the verse 

of the first creases flips changing from valley to mountain or vice-versa. The reverse fold can generate flat-foldable or 

non-flat-foldable patterns depending on the angle of the reflection plane and the configuration of the set of first creases. 

Performing a reverse fold to a pattern with “n” non-intersecting creases will change its DOF from “n” to one. For 

example, if we add to a straight accordion with five linear creases, a transversal reverse zig-zag crease intersecting all 

the linear creases, the DOF changes from 5 to 1. 

In section 4.4 we learned how to solve the kinematics of patterns with a single linear crease, starting from those 

algorithms we can easily construct a symmetric reverse fold by reflection. The method used here is based on splitting 

the original poly-surfaces and reflect it with respects of an angled plane48. 

Refer to Figure 58. First, draw on the two given faces (face 1 and face 2) two symmetrical segments, OC and OD, 

with respects of the single given linear crease AB. Because OC and OD are symmetric, the pattern is flat-foldable. Copy 

the transformation of each face (simple rotation around an axis) and apply it to the relative segments OC and OD so that 

they will move together with their relative faces49. After that, construct a plane passing through the animated segments 

(OC, OD) and split and mirror the faces with respect of the plane. Now, to animate the vertex just change the fold angle 

value continuously. The full generative algorithm is shown in Figure 59 (and Appendix B.12). 

                                                           
 

46 We used the same technique to make the triangulated accordion in the previous section (4.5.5). The triangulated 

accordion is a limit cases of a reverse fold. 
47 The segments making the polygonal chain which is the second fold in the unfolded pattern, must be not aligned along 

a single line. This is a limit case that has a different kinematics. 
48 This method works on faces of any shape (e.g. triangle, rectangle, trapezoids) and orientation as far as they share a 

single linear crease. 
49 The “Transform” component of Grasshopper copies the rotation of the faces 1 and 2 and apply it on each one of the 

two new segments (OC, OD), so that the segments move together with their reference faces. 
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Figure 59: symmetric reverse fold on a single linear fold molecule by reflection, generative algorithm. The initial cluster contains the 

algorithm explained in 4.4.2. 

 Asymmetric Reverse Fold – Reflection and Collision Detection 

 

Figure 60: asymmetric reverse fold animated with the reflection method when ρAB is equal to 97.5° the folded surface blocks because 

ρOC hits 180°. After that point, if we continue folding the surface will self-intersect. The intersection between the faces 1.1 and 2.2 is 

highlighted in green. 

The construction method for the asymmetric reverse fold is analogous to the method explained in the previous section 

(4.6.1). However, if we do not limit the domain of the controller fold angle properly, the surface will self-intersect after 

passed the blocking configuration as shown in Figure 60. Thus, if we want to know which angles make the vertex self-

intersecting, we can apply the following method. 

First, explode the input 4 faces 1.1, 1.2, 2.1, 2.2 (not animated), and count how many collisions there are between the 

unfolded faces50 (with the “Collisions Many|Many” component). Then, perform the reverse fold as explained 4.6.1. 

Partially fold the vertex and test the collisions again. Compare the collisions at flat state with the collisions at folded state. 

If the collisions increased the algorithm will return “True”, if they remain unvaried it will return “False”. When we change 

the fold angle value ρAB if it is “True”, then we passed the blocking point, or we are exactly on the blocking point.  

Now if we want to synthetically and automatically extract the maximum value that we can assign to ρAB without self-

intersecting the vertex, we can apply the following method. Move slowly the cursor of the slider ρAB from 0% to 100%51, 

and record frame by frame (with a “Data recorder” component), in two separate parallel lists, the values of ρAB and the 

relative Boolean values52 resultant from the test of the collisions. Now compare the two lists and erase all the angular 

values that correspond to “True” (with a “Cull pattern” component). Sort the angles from the smallest to the largest and 

choose the largest one. In this way, we just found an approximation of the blocking angle. The accuracy of the maximum 

angle value is proportional to the number of frames between the flat and the folded state. The full definition is shown in 

Figure 61 (and Appendix B.13). 

                                                           
 

50 The number of collisions will be greater than 0 also at non-self-intersecting configurations because the adjacent faces 

are touching. 
51 You can also automatize this operation by animating the cursor of the slider by right clicking on it. 
52 The Boolean values are “True” and “False” or respectively “1” or 0”. 
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We can also use the maximum fold angle found to limit the domain of the ρOB value by inputting the calculated 

maximum ρOB and the fold angle slider into the same “Minimum” component as shown in Figure 62. In this way, even 

if we set a fold angle greater than the maximum ρOB, the output value will stop at the maximum ρOB.  

 

 

Figure 61: the generative algorithm for the identification of the maximum fold angle, testing the animated surface for collisions; the 

maximum fold angle is generated within a given tolerance, thus it is an approximation; the cluster contains the definition shown in 

Figure 59. 

 

Figure 62: re-animating the second fold molecule avoiding self-intersections, the extracted max fold angle node is the result of the 

algorithm in Figure 61. 

 Generic Degree-4 Vertex – Intersecting Cones 

 

 Figure 63: animation of a degree-4 single vertex CP. 

The reflection method shown in the previous sections is an easy approach, but it does not solve all the possible degree-

4 vertices. It can be used only to animate vertices where the opposite mountain and valley creases are colinear. The 
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vertex shown in Figure 63, for example, cannot be solved with the reflection method. In this section, we propose a different 

approach to animate any rigid-foldable degree-4 vertex. 

The algorithm is visualized in Figure 64 and Figure 65 and it works as follows. Draw 4 adjacent faces ABFC, ACGD, 

ADHE and AEIB as shown in Figure 6353. Revolve the crease AD using as axis the fold AE generating a cone with apex 

in A. Similarly revolve the AD fold around the axis AC54. Rotate the faces ABFC and ACGD around the crease AB 

clockwise, and the faces AEIB and ADHE around the same axis of the same amount but counterclockwise. Doing so the 

vertex D will split in D’ and D’’ and the two cones intersect generating 2 segments, meeting into the apex of the cones55. 

These two segments represent the possible positions of the AD fold so that rotating the faces ACGD and ADHE to that 

point their AD edge would perfectly match. Choose the intersection line AK’ which matches the mountain valley 

assignment of the given pattern56. Rotate AD’’HE around AE to mate D’’ with K’. Do the same thing with the face 

ACGD’ rotating it around the AC axis mating D’ with K’. The algorithm is finished. 

Now, if we change the value of ρ𝐴𝐵  we will be able to animate the surface. If the pattern is non-flat-foldable, and if the 

controller fold AB is not the fold that hit 180° first, the model will self-intersect during motion, we can solve it by testing 

the collisions as shown in the previous section (4.6.2). The full definition is reported in Appendix B.14. 

 

Figure 64: three-dimensional modelling and animation of a generic degree-4 single vertex with intersecting cones - Part 1. 

                                                           
 

53 The faces must be drawn considering the rigid-foldability conditions of a degree-4 vertex presented in section 3.4. 
54 When the model is unfolded the intersection between the two cones is a single line, which corresponds to the crease 

AD, this obviously means that it exists only one flat unfolded state. 
55 If we intersect two cones that share the same apex in Rhinoceros and Grasshopper, instead of returning two lines, it 

does not return any line. This is a known bug that when this thesis has been written was not fixed yet. Thus, to 

generate this algorithm we had to use a walkaround looking for the intersection points of the two circular bases of the 

cones and connecting them to the apex of the cones to generate the two segments AK’ and AK’’. The bug has been 

fixed in Rhino 6. 
56 Choosing the other intersection line will flip the mountain/valley assignment of some creases of the pattern. 
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Figure 65: three-dimensional modelling and animation of a generic degree-4 single vertex with intersecting cones - Part 2. 

4.7. Multiple Degree-4 Vertices 

In section 3.3 we introduced some concepts about the DOF, and in section 3.5 and 3.6 we explained the kinematics of 

degree-4 vertices. As we said, patterns with multiple degree-4 vertices may not be rigid-foldable if some symmetry 

conditions do not occur. However, it is not always easy to recognize those patterns. Furthermore, testing the 

compatibility of every fold angle in every closed loop of faces may be a very time consuming and cumbersome 

operation. Thus, in this section, we will start solving the kinematics of easy symmetric well-known patterns with 

multiple degree-4 vertices that are known to be rigid-foldable. 

 Joining “Symmetric Reverse Fold” Molecules – Critical Observations 

About Global Rigid-Flat-Foldability 

 

Figure 66: reverse fold on straight accordion, joining “symmetric reverse fold” molecules. 

A straight accordion without reverse folds has more than one DOF. If we add one reverse fold to the same accordion, 

as shown in Figure 66, its DOF will decrease to one. Furthermore, if every segment of the reverse fold is symmetric 

with respect to the adjacent linear first folds, the pattern is also flat-foldable. 

To animate a flat-foldable straight accordion with a single reverse fold, we can reflect a straight accordion with 

respects of a reflection plane following the same approach explained in section 4.6.1, or we can perform a linear array 

of a “symmetric reverse fold” molecule following the same approach that we proposed in section 4.5.1 (the definition 

using this approach is shown in Figure 68 and Appendix B.15).  

If we want to use the former approach (the “reflection of a straight accordion” method), we need to pay attention to 

the fact that the straight accordion must be animated using the same fold angle for every crease, so that we can reflect 
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the first two consecutive animated faces of the accordion as shown in 4.6.1 and using the same animated plane to reflect 

all the other faces.  

If we want to apply the second method (the linear array of “symmetric reverse fold” molecules), we can follow two 

main approaches: we can join the molecules side-by-side or along their linear first folds. If they are mated side by side 

we will have a pattern with one long single zig-zag shaped reverse fold as shown in Figure 66, if we mate them along 

their linear first fold we will have a surface with more V-shaped reverse folds and one single first fold, as shown in Figure 

67. A pattern with more than one reverse fold can be shaped in different ways depending on the orientation of the 

molecules and the angle of the reverse folds. 

 

Figure 67: different behaviour during the collapsing, depending on the direction of the second folds. 

If we join more than one “symmetric reverse fold” molecule along their linear first crease with alternated orientation, 

we would risk of ending up having self-collisions between the ending molecules at the opposite sides of the pattern, and 

it would be impossible to complete the folding motion without self-intersecting or flexing the faces, as shown in Figure 

69. This means that it is not sufficient to attach rigid-flat-foldable molecules to have a guaranteed globally rigid-foldable 

pattern. Furthermore, if we attach side by side two molecules with symmetric second folds but different angles, we obtain 

a globally non-fat foldable pattern because the new internal vertex (resulting from the attaching of the two molecules) 

does not respect the Kawasaki’s condition, as shown in Figure 70. The problem of global rigid-flat-foldability avoiding 

stretches and self-intersections, for a generic pattern, is proven to be at least NP-hard (Akitaya et al., 2016), thus simulating 

the folding motion, for now, is one of the most reliable methods to test if a pattern is rigid-flat-foldable or not. 

 

Figure 68: generative algorithm for the symmetric reverse fold on a straight accordion, joining “symmetric reverse fold” molecules, 

the cluster on the right contains the generative algorithm explained in section 4.6.1. 
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Figure 69: possible and impossible rigid flat-foldability due to self-intersections, even if the Kawasaki theorem is verified in every 

internal vertex. 

 

Figure 70: stitching two different symmetric flat foldable molecules side by side generates a globally non-flat-foldable pattern. 

 Joining “Asymmetric Reverse Fold” Molecules 

 

Figure 71: joining asymmetric molecules, the first case on the left is unfoldable, the second and third cases are non-flat-foldable. 

In section 4.7.1 we placed side by side a series of “Symmetric reverse fold” molecules making a reverse-folded flat-

foldable accordion. With the “Asymmetric reverse fold”, the result will be non-flat-foldable, but the procedure is similar. 

However, the molecules must be mated matching the endpoints of the reverse fold instead of aligning their outer 

perimeter. Alternatively, to match the endpoints of the reverse fold and also the outer perimeter of adjacent molecules, 

we can mirror the even or odd molecules as shown in Figure 71. Alternatively, instead of mating equal molecules side-

by-side we can reflect a straight accordion with an angled plane as we do in the following algorithm. 
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Figure 72: animation of an asymmetric reverse fold on a straight accordion, with the reflection of a straight accordion with respects 

of a mirror plane constructed on CO and DO. 

Refer to Figure 72. First, animate the straight accordion as explained in 4.5.1. Then, draw two asymmetric creases OC 

and OD on the first two faces. Reverse fold the first two faces of the accordion following the method explained in section 

4.6.1 and 4.6.2. After that, slice the whole accordion with the same plane and reflect it consistently with the first two 

faces. The full generative algorithm is shown in Figure 73 and Appendix B.16. To keep the structure of the nodes simple 

and clear we animated the surface with self-intersections. However, if there is the need to stop the animation at the blocked 

state, we can apply the collision detection method explained in 4.6.2. 

 

Figure 73: generative algorithm to animate a straight accordion with an asymmetric reverse fold the cluster on the right contains the 

algorithm explained in section 4.4.2. 

 Reverse Fold on Triangulated Accordion – Joining “Symmetric Reverse 

Fold” Molecules 

 

Figure 74: reverse fold on a triangulated accordion - construction and animation of the macro-molecule. 

The reverse fold on a triangulated accordion is comparable to the reverse fold on a straight accordion, but in the starting 

rectangular molecule, the first fold is drawn along the diagonal AD instead of along the symmetry vertical axis of the 

rectangle. The algorithm works as follows. 

Refer to Figure 74. Animate the faces AED and ABD by rotating them around the crease-line AD symmetrically. Draw 

the creases FO and CO to be symmetrical with respects of the crease AD. Once drawn the two creases apply the reflection 

method to perform a reverse fold as shown in section 4.6.1. Now draw a plane passing from B, C and D and use it as a 



Algorithmic modelling of folded surfaces CHAPTER IV: Constructive Methods for Solving the 

Kinematics of Origami 

 

Pag. | - 92 - 

 

  

reflection plane to mirror the first molecule57. We now obtained a symmetrical macro-molecule with 8 faces, which we 

are going to copy and paste one after another, as shown in Figure 75, using a looping definition. We use a looping 

definition because the macro-molecules need to be rotated other than translated to match perfectly the following 

molecule edges, thus we cannot use a simple translational array as we did in the previous section. The looping definition 

is shown in Figure 77 and it consists into matching the two planes constructed on the points A, F and E and the plane 

passing from their respective reflected points A’, F’ and E’. 

 

Figure 75: joined macro-molecules to make a longer triangulated accordion with the reverse fold. 

 

 

Figure 76: generative algorithm for a reverse-folded triangulated accordion – Part 1. 

Even in this case, it is not easy to foresee if the surface will self-intersect just by watching its CP. It is much easier to 

judge it by animating the surface. In fact, not every configuration of the reverse-fold gives rigid folding motions from 

start to finish. For example, in Figure 78 we can see two examples of flat-foldable reverse folded triangulated accordions 

with different behaviours. Both can be folded in-plane, but in the second case, the surface can fold flat and rigidly, 

without colliding or self-intersecting. Contrariwise in the first case, the surface is rigid-foldable only for a certain 

amount, and once reached a specific fold angle it starts self-intersecting. Thus, to be able to reach the flat configuration 

continuing the folding motion without self-intersecting the surface, it would be necessary to flex the faces or slide a bit 

the fold-lines (as it would happen into a real model made by paper). In Figure 79 we can see an example of a paper 

model that apparently can be folded rigidly, but the digital simulation proves the opposite. This misalignment between 

the two models is caused by the fact that the paper is flexible, and the digital model is not. Furthermore, in the paper 

model the creases try to self-correct shifting from the original position for a small amount so that the initial pattern 

would slightly change and in some cases, it would be barely perceptible. 

                                                           
 

57 At the unfolded state the plane is not univocally defined because B, C, D are colinear and we can construct an infinite 

star of planes passing from the same three aligned points. Thus, if we want to keep the reflected faces on the same 

plane of the two reference faces at the unfolded state, we may need to force it to be perpendicular to the construction 

plane. However as soon as they are animated the plane will be univocally defined because B, C, D will be no more 

colinear. 



Algorithmic modelling of folded surfaces CHAPTER IV: Constructive Methods for Solving the 

Kinematics of Origami 

 

 

Pag. | - 93 - 

 

 

Testing the rigid foldability is very important especially if we want to use the pattern for real applications made by rigid 

patterns, because using a pattern that is not perfectly rigid-foldable may cause serious problems over the short or the long 

term. For example, if the faces are very rigid and connected with hinges, but the used pattern is not perfectly rigid-foldable 

(even for a small amount as in Figure 79), given that we are able to fold it forcefully exploiting the elasticity of the 

material, every time the mechanism is folded and unfolded, it would be subject to stresses and deformations caused by 

the colliding faces and that may cause faster deterioration of the joints. 

 

Figure 77: generative algorithm for a reverse-folded triangulated accordion – Part 2. 

 

Figure 78: non-flat-rigid-foldability and rigid-flat-foldability of the triangulated accordion, varying the angle of the reverse fold. 
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Figure 79: apparent incongruence between the digital and physical models; the faces of the former self-intersect, the faces of the 

latter remain apparently planar. 

 The Miura Pattern – Planar Rectangular Array of “Symmetric Reverse 

Fold” Molecules – Intersecting Circle with Plane of Symmetry 

 

Figure 80: Miura pattern. 

The Miura pattern, or Miura-ori, is probably the most famous and most used corrugations of all times, it has been 

studied and used for actual applications in several fields. Its diffusion is due to the fact that it is a one-DOF mechanism 

and it has a particular property of expanding and contracting with negative Poisson’s ratio. The Japanese engineer Koryo 

Miura, in the mid-80s, studied this pattern, which derives from the uniform compression buckling pattern of a thin plate 

(Miura, 1997), to create a solar panel deploying system. This system was revolutionary because the solar panel so folded 

was able to unfold univocally with minimal fold actuators and without the help of the human interaction (Miura, 1985), 

for this reason, it has been renamed with his name. However, according to what recently stated by Hellmuth Stachel, 

the Miura ori might already have been known before: “However, already before K. Miura, this technique was known; 

according to a personal communication with Gy. Darvas, it was kept as a military secret in Russia in the thirties of the 

last century. There are many applications of Miura-ori.” (Stachel, 2015). 
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The Miura-ori pattern is composed of equal parallelogram faces, this guarantees that the surface has an in-plane 

expansion and contraction. Recent studies developed methods to modify the traditional pattern but preserving the rigid 

foldability, in order to give to the surface different spatial configuration (Tachi 2010b; Tachi 2009). 

The traditional Miura pattern can be divided into elemental equal molecules composed by four adjacent faces and it can 

be digitally modelled and animated by reflecting many times a straight accordion, or by joining many equal molecules of 

four equal parallelogrammical faces. In this section, we are going to follow the second approach. 

We can use the method explained in section 4.6.1 to animate the molecules, but the faces must be all equal and with a 

parallelogrammical perimeter before applying a rectangular array. However, we highlighted that this method generates 

problems in the flat-folded configuration because when the two segments of the reverse fold converge into one (at flat-

folded state) the reflection plane would be no more univocally identified. Thus, the algorithm at that limit case could 

behave in an unexpected way. In the same section we solved this problem limiting the domain of the controller fold angle, 

however, in this section we want to propose an alternative method to solve the problem at the limit configurations without 

limiting the domain or using cumbersome “if statements”. 

 

Figure 81: single Miura-ori face used to model the symmetrical molecule of the Miura-ori. 

 

In Figure 81 it is represented one single Miura molecule. We can further simplify the problem focusing only on one 

single face (ABCD), because the faces are all equal, thus any other face is a simple translation or reflection of the same 

reference face. To be able to obtain an XY in-plane expansion of the Miura-ori during folding we want the segment AD 

to stay on the XY plane and the segment AB on the YZ plane. 

 The algorithm for the construction of the parametric animatable Miura-ori works as shown in Figure 82. Define a 

construction plane XY. Define point A in the origin of the plane, copy and move that point along X and Y to define other 

3 points: B, C and D to form a rectangle. Move the points C and D along Y to shear the rectangle to get a rhomboid. 

Connect three sliders to these nodes to be able to control the width the length, and the amount of shear of the rectangle58. 

Rotate clockwise ABCD around the Z-axis passing from A. Set the angular domain between the segment AD and the Y-

axis. The rotation angle will be remapped in 0-100 domain to be controlled with a slider that we call “Collapsing (%)”. 

Draw a circle on the plane perpendicular to AD passing from B. Intersect the circle with the plane YZ obtaining 2 points, 

one over the XY plane (I’) and one under the XY plane (I’’). Select the upper point59. Rotate the polygon ABCD around 

the AD axis to match B to I’. Mirror ABCD along YZ plane and mirror the two polygons together along XY plane. Then, 

translate the last two polygons along AB. The Miura molecule is finished. To make a wider Miura-ori pattern just copy 

and move this molecule as many times as you need along the direction X and Y. To animate the collapsing of the Miura-

ori just move the Collapsing% slider, and to change the initial Miura pattern proportions, move the sliders connected to 

the “Width (cm)”, “Length (cm)” and “Shear (cm)” inputs. With this method, the circle has always one or at most two 

intersection points with the plane, so that the limit cases are univocally defined, and the algorithm never returns 

                                                           
 

58 Instead of drawing each point parametrically we could have set as input directly the parallelogrammical face 

extracting the needed points. Nevertheless, with this method we are constructing a completely parametrical symmetric 

Miura-ori which is more versatile. 
59 If selected the bottom point, mountain and valley assignments would be reversed. The “value list” component can be 

used to select I’ or I’’ and change the verse of the folds anytime: set Mountain = 0 and Valley = 1 and use these values 

as searching indices in the list containing I’ and I’’. 
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unexpected behaviours. This approach works only for modular symmetric flat-foldable Miura-ori. The full generative 

algorithm is reported in Appendix B.18. 

 

Figure 82: Miura-ori constructions and animation. 

 The sink fold – Reflecting the tip of a degree-4 vertex 

 

Figure 83: sink fold obtained by reflection. 

Another known pattern with multiple degree-4 vertices is the sink fold. It consists into a closed loop of creases around 

a single vertex. Consecutive edges of the loop are symmetrical with respects of the crease that they touch. In particular 

we are going to sink fold a degree-4 vertex. The sink fold is a traditional fold that pushes a folded vertex inside the 

model using the reflection method. There are two types of sink folds in traditional origami, the closed sink and the open 

sink. The former does not fold rigidly, thus we will only consider the open sink in this section. The sink fold is called 

by Casale (et. al.) “third fold”. They define it as the fold that articulates the structure in the points where the direction 

of the configuration changes, thus in concomitance with the intersection between what they call “second fold” and “first 

fold”. They assert that this fold changes the formal quality of the surface and changes its structural characteristics, 

because adding ribs to the structure affects its static behaviour, but it does not change the DOF or the global behaviour 

of the previous pattern during motion, it only changes the local geometry (Casale et al., 2013). Nevertheless, sometimes 

the global rigid-flat-foldability could be compromised, depending on the configuration of the sink fold. 

To make a sink fold with paper in the traditional way it is sufficient to fold a piece of paper making a single flat-folded 

vertex, at this point fold and unfold its tip marking a new crease through multiple layers of paper. Once unfolded the 

whole pattern we see a closed loop of new creases around the vertex which have to be marked as a mountain. Lastly, 

we reverse all the creases inside the loop of new creases and fold again the vertex pushing the tip inside the model. 

In digital reconstruction, we can perform the same action using a reflection plane. However, even if we start from a 

flat-foldable degree-4 vertex, not every reflection plane guarantees a flat-rigid-foldable sink-folded pattern, because 

once pushed the tip of the vertex inside the model if the plane has not a specific orientation, it could cause collisions 
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during folding. The following exemplification will help us understanding how the angle of the reflection plane may affect 

the rigid-flat-foldability of the pattern. 

In the example shown in Figure 84, we perform a sink fold on a molecule with a single symmetric reverse fold 

constructed with the method proposed in section 4.6.1 and reflected with respect of a plane. To prevent the pattern with 

sink fold to be no more rigid-flat-foldable the angle between the reverse-folded linear crease and the sink fold plane must 

be bigger than 0° and smaller than 90°. In general, an easy way to construct a sink folded degree-4 vertex preserving the 

same kinematic of the original pattern without sink fold60 is to fold the pattern all the way to reach its blocking 

configuration, at this point reflect the tip of the degree-4 vertex with respect of the chosen reflection plane. The reflection 

plane must be angled making sure that self-intersections are avoided. If there are no self-intersections at the blocked state 

(or flat-folded state), then the kinematics of the mechanism is preserved, and the surface will not intersect during the 

whole motion. 

Another issue that it needs to be considered when making a digital simulation of a sink fold, is that the reflection plane 

must intersect all the creases of the vertex inside the boundaries of the surface because, differently, it would generate a 

pair of new reverse folds instead of a sink fold (Figure 85). 

 

Figure 84: rigid-flat-foldability condition for the sink fold on reverse folded degree-4 vertex. 

 

Figure 85: sink fold that degenerates into two simple reverse folds. This happens when the reflection plane does not intersect all the 

creases of the initial degree-4 vertex. 

                                                           
 

60 Thus, preserving also its rigid-foldability. 
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Figure 86: sink fold by reflecting a reverse folded molecule explained in 4.6.1. 

To animate a pattern with sink fold we start from the reverse fold molecule and we reflect the tip of the degree-4 

vertex. Refer to Figure 86 for the notation. First, start from a flat-foldable degree-4 vertex pattern, then add to that 

pattern some new creases that form a closed loop around the single vertex. The segments of the newly drawn loop of 

creases must be symmetric with respects of the creases that they touch61. Then use the same definition shown in 4.6.1 

to animate the molecule with “symmetric reverse fold”. After this, move and rotate two of the segments of the sink fold 

drawn on the plane by copying and re-applying the rotations and translations of the relative faces to which they belong62. 

In this case, we copy the transformations of the faces 1.1 and 2.1 of the original reverse fold molecule to the new 

segments EF and EH. Draw a plane passing through EF and EH segments and use it to split the surface. The folded 

surface is now split into two independent poly-surfaces which are called in Grasshopper B-reps63 they are split along 

the EFGH planar polygon. Pick the upper or the lower B-rep and reflect it with respects of the same plane. Lastly, we 

can animate the surface with the sink fold by moving the cursor of the slider that controls the fold angle. With this 

approach, the kinematics of the original starting molecule without sink fold is preserved. The generative algorithm is 

shown in Figure 87 (and Appendix B.19) and the initial cluster contains the algorithm explained in 4.6.1. 

 

Figure 87: generative algorithm of the sink fold molecule animated with reflection with respect of a plane passing from at least two 

segments of the sink fold, the cluster node contains the algorithm explained in section 4.6.1. 

4.8. Patterns with Single or Multiple Degree>4 Vertices  

So far, all the patterns with internal vertices that we studied were made only by degree-4 vertices, and they had only 

one-DOF and for this reason, we were able to animate them with only one single controller crease that propagated its 

motion to all the other creases univocally. But how can we animate all the other patterns with vertices with a degree 

greater than four and with a DOF greater than one? 

                                                           
 

61 In our algorithm we draw only the creases EC and ED. FG and HD are extracted automatically from successive steps 

of the algorithm. 
62 We do not need to re orient also the other two segments of the sink fold because we need only two to define the 

reflection plane. 
63 B-reps stands for “Boundary representation”, it is a representation method widespread in CAD software where the 

surfaces are limited by geometric entities like boundaries and edges. In Grasshopper any surface or polysurfaces is 

called B-rep. 
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The possibilities are several, and the complexity of the problem increases drastically. At the present moment, the 

approach which is mostly used by the scientific community to animate a generic origami pattern is based on physical 

simulations that iteratively distribute the errors on every face and crease, preserving its developability and rigidity of the 

faces according to a certain tolerance. The software Freeform Origami by Tachi (Tachi, 2010b) works with this principle, 

as well as the web-based application Origami Simulator by Amanda Ghassaei (Ghassaei, n.d.). These simulators try to 

fold the crease pattern all at once. To do so, the surface is stretched and displaced during motion and it temporarily loses 

its developability for a small amount. These deformations are due to forces exerted by mountain and valley creases. 

Because there are forces involved, we often refer to this kind of simulations as physical simulations. 

Even if some applications that fold almost any origami pattern exist, they are hard to include into a professional 

designing pipeline, due to the reasons we highlighted in section 1.5.3. Furthermore, integrating the simulation into the 

original design context would open new possibilities about the interaction with the context and other parts of the project 

that are not necessarily origami-related. 

Fortunately, even if Grasshopper does not have built-in components for physical simulations, a plug-in called Kangaroo 

physics (Piker, n.d.) scripted by Daniel Piker will allow us to work with such type of simulations into Grasshopper without 

the necessity of scripting our own custom components. Kangaroo Physics is a “live physics engine for interactive 

simulation, form-finding, optimization and constraint solving”. This plugin implements in Grasshopper a set of new tools 

that facilitate working with (e.g.) forces, meshes, point clouds, and interconnected points. It also implements a wide set 

of “Goal nodes” which constrain some properties of the input geometry during the simulation, and a “Kangaroo Solver” 

which animates a given geometry according to the forces and constraints set by the goal nodes. Once set off the simulation, 

the solver generates a set of motion vectors for each goal node plugged into the “GoalObjects” input. The move vectors 

are applied to each particle they act on (e.g. the vertices of a mesh, the endpoints of some segments, the origin points of 

a group of solids), and the solver iteratively minimises the total sum of the weighted squares of all the move distances. 

With this method all the constraints have a certain amount of error inversely proportional to the strength we set for each 

of them, thus the error is distributed non-uniformly to all the constraints. 

The formulation that the Kangaroo solver uses to calculate the position P of each point is the following: 

𝑃𝑖,𝑛𝑒𝑤 = 𝑃𝑖,𝑐𝑢𝑟 +
∑ 𝜔𝑗∙𝐺𝑗

𝑛
𝑗=1

∑ 𝜔𝑗
𝑛
𝑗=1

. (37) 

Where: i refers to the particle index, n is the number of goals acting on that particle, ω is the 

weighting and G is the moving vector for goal j (Brandt-Olsen, 2016).  

 

For example, we can set the strength of the nodes that constrains the preservation of the developability of the original 

pattern to a very high value, and we can set the strength of the node that constrains the fold angle of each crease to a 

certain given fold angle with a lower strength. Like so even if the real fold angles of each crease may be different from 

the one that we set while preserving the invariance of the shape and planarity of the faces as much as possible. 

This approach is similar to the one used by Tachi and Ghassaei in their applications, it is fast and efficient to calculate 

because it performs the folding of each fold all at once, but it stretches and deforms a bit the surface during motion. The 

same approach could solve all the cases shown in the previous sections faster, but with lower accuracy, thus it can be 

considered an alternative method but with different aims and needs. 

 Degree>4 Vertices – Physical Simulation 

The aim of the algorithm presented in this section is to simulate the folding animation of an origami pattern with one or 

more degree-4 vertices or vertices with a degree greater than four, and a DOF greater than one, with a given 

mountain/valley assignment. To help the designer controlling the animated surface we implement the possibility of 

anchoring some points and sliding some other points on a given plane. Furthermore, for vertices with a DOF greater than 

one it will be possible to set a different fold angle for each crease or group of creases. The first part of the algorithm is 

focused on identifying the creases which are mountain, valley or unassigned, the second part is focused on setting some 

constraints that will be inputted into the “Kangaroo Solver” component. As a result, we will obtain the real-time folding 

simulation of the given pattern. 
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Figure 88: an example of a degree>4 vertex, animated with physical simulation, applying different fold angles to the creases, in this 

way the animation is asymmetric even if the pattern is symmetric. 

In Figure 88 we show an exemplification pattern with a generic degree-6 vertex with a DOF greater than one. The 

crease AB is left unassigned, the creases AO, BO, CO, DO are set to be folded with a positive given fold angle, the 

same angle, but negative, is assigned to FO. EO is a mountain crease as FO but its fold angle is set to be the double of 

the other crease angles. In this way, we experiment asymmetric folding motions on symmetric patterns. 

The steps of the algorithm are the following. First, set the inputs of the definition: a planar surface which can be 

compared to the piece of paper that we are going to fold, and a set of straight lines arranged on the surface which are 

going to form the CP64. Now divide the creases into two lists: mountain and valley65. Then slice the surface along the 

creases so that each face of the crease pattern is a separate piece. Join all the surfaces into a single poly-surfaces (B-rep) 

and convert it into a simple mesh66. Now, compare the position of each input valley crease and mountain crease to the 

position of each edge of the mesh and divide them in two separate lists. To do so, use the “Closest Points” component 

comparing the mid-point of each mesh edge to the mid-point of each crease line. Extract for each mountain or valley 

edge of the mesh the two adjacent mesh faces. As a result of these steps, we obtained two branched lists67. Each branch 

represents the mesh edge index and it contains a list made of two elements which are the two indices of the two adjacent 

faces. To do this last step more easily we used the Sandbox plugin for Grasshopper (Schwinn, n.d.) which analyses the 

input mesh topology and returns for each edge the list of adjacent faces automatically. Lastly, triangulate the mesh, 

because if the faces are all triangular it is sufficient to constrain the length of each edge to be able to preserve the 

developability of the surface. 

Now we have all we need to set up the Kangaroo goal nodes. The goal nodes that we are going to use are: “CoPlanar”, 

“Length(line)”, “Anchor”, “OnPlane”, “NoFoldThrough”, “Hinge”, “Show” and “Grab”. The “CoPlanar” and 

“Length(line)” nodes are used to constrain the surface to remain developable and rigid. These two components are 

sufficient to guarantee and preserve the rigid-foldability of the surface because the “Length(line)” takes as input the 

edges of the triangulated mesh so that the developability is preserved, and the “CoPlanar” node takes as input the edges 

of each face of the mesh before the triangulation, so that the original faces will try to remain planar preserving the 

rigidity of the faces. Then we use the “Anchor” and “OnPlane” goal nodes to lock the surface in one place or to constrain 

the expansion and contraction of the surface along one particular plane so we prevent the surface to navigate the three-

dimensional space uncontrollably while folding. Specifically, the “Anchor” node tries to keep a group of points on a 

                                                           
 

64 If we draw the lines randomly, the pattern could be unfoldable, thus we suggest starting to test the algorithm with 

known patterns. 
65 To facilitate this operation, divide the mountain creases and the valley creases in two different layers. Furthermore, 

split all the creases into separate segments. 
66 We convert the polysurfaces into a mesh because Kangaroo does not accept as input a polysurfaces or a nurbs 

surfaces. 
67 They are called branched because they are organized into a tree structure that have more than one level of hierarchy, 

practically they are lists of lists. 
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given location68, and the “OnPlane” node tries to keep a group of points on a given plane69. The “OnPlane” node is 

different from the “CoPlanar” node, because the “OnPlane” node tries to keep the points on a given plane, if no plane is 

set as input it considers the XY plane as target attractor plane, the “CoPlanar” node instead, tries to keep the points on a 

plane (recomputed for each iteration) that is the interpolation of the input point cloud. The “NoFoldThrough” and “Hinge” 

nodes are the components responsible of the folding motion, the former prevents the surface to intersect once the adjacent 

faces reach their maximum fold angle, the latter takes two triangular faces as input and rotates them around the common 

edge of a certain given angle. We need two different “Hinge” nodes to perform mountain and valley folds, we multiply 

to -1 the angle that is inputted into the mountain “Hinge” node. 

We said that only triangular faces can be processed by the “Hinge” node but also patterns with polygonal faces can be 

animated. It is sufficient to split their faces into triangles before plugging them into the “Hinge” node. However, we need 

to add an additional “Coplanar” constraint to keep the triangular faces that belong to the same polygonal face on the same 

plane because otherwise, the pattern would fold as if we added new unassigned creases. The higher the strength of this 

constraint is, the stiffer the faces are; and if we want the surface to behave more elastically, we can simply decrease the 

strength of this constraint. 

To make some creases folding faster or slower than other as shown in Figure 88 we need a third “Hinge” node which is 

going to take as input the same angle multiplied or divided by a certain number (in this case we multiplied it by two). 

There is no limit to the number of “Hinge” nodes that can be used. We potentially could add one hinge node for every 

crease, setting a different fold angle for every one of them. In this way, we would increase the shaping freedom at the 

expenses of easier operability. In the example shown in the figure, we added only one additional “Hinge” node as an 

exemplification. 

Lastly, we use the “Show” node to set the geometry that we want to see during the simulation, and the “Grab” node to 

add the possibility to interact with the surface in real time into the Rhino viewport by grabbing the vertices with the mouse 

pointer. This node is useful to help the designers judging the DOF of the surface or helping the surface to fold properly if 

it gets stuck for any reason. The generative algorithm is shown in Appendix B.20. This algorithm can be used to simulate, 

potentially, the folding animation of any foldable pattern, even one-DOF patterns. This versatility makes this approach 

very effective. 

 Testing the Algorithm with Different Patterns 

In the last section, we asserted that the folding animation based on physical simulation is very efficient and versatile. 

Once built the generative algorithm, the simulation is easy to set up because we only need to draw the CP and divide the 

creases into groups: mountain, valley and unassigned (and faster mountain and valley if needed). In this section we show 

some tests we did on well-known traditional patterns, to prove its efficiency and versatility. In Figure 89 and Figure 90 

we simulated the folding of the traditional “magic ball” and “Yoshimura” patterns, both patterns have more than one 

DOF, thus we tested them with uniform and non-uniform fold-angle distribution. As the reader can see, the surface can 

be folded symmetrically or asymmetrically just by changing the fold angle speed of some designated creases. 

 

 

Figure 89: folding physical simulation of a traditional "magic ball" origami pattern, with uniform and non-uniform fold angle 

distribution. 

                                                           
 

68 We fix only the vertices of one single face on the original location. Fixing the vertices of many faces could prevent 

the surface to fold and unfold properly. 
69 It is important to constrain only the vertices that we know that they are capable of staying on the same plane while 

folding, otherwise we could prevent the surface to fold and unfold properly. 
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Figure 90: folding physical simulation of a traditional "Yoshimura" origami pattern, with uniform and non-uniform fold angle 

distribution. 

We verified the preservation of the developability of the pattern during and after the simulation, and we compared the 

area of the surface and the unfolded pattern before and after the animation, and as expected it loses the developability 

only for a small amount during motion. Nevertheless, once reached the equilibrium state, the global error is minimal, 

and, in most scenarios, it would be already acceptable. However, we can minimize the developability and rigidity errors 

even more, by increasing the strengths of the “CoPlanar” and “Length(line)” nodes by a great amount. Nevertheless, if 

we increase the strengths of these two nodes too much the animation would slow down drastically because the forces 

applied by the “Hinge” nodes would be overwhelmed by the forces applied by the “CoPlanar” and “Length(line)” 

components. Thus, to minimize the developability and rigidity errors without slowing down the animation too much, 

we can balance the strength of the various goal nodes during the simulation, and once reached the desired configuration, 

we can make the strengths of the goal nodes equal to zero all at once except for the strength of the “CoPlanar” and 

“Length(line)” nodes. In this way, the forces applied on the surface disappear except for the forces responsible of 

preserving the developability and the rigidity properties, so that the surface self-adjusts finding a new equilibrium 

configuration which is almost equal to the previous equilibrium configuration, but with minimal geometry errors. 

 

 

Figure 91: folding simulation of two discretized curve creases (with a different discretization degree) with physical simulation. 

In Figure 91 it is shown the simulation of a pattern with two discretized curved creases. The patterns on the left and 

on the right start from the same two curve creases but with different discretization degrees. The ruling of the curved 

surface has mountain or valley assignments, in this way the folding animation is more stable, nevertheless it could also 

be left unassigned and they would assume a mountain or valley assignment automatically from the adjacent creases with 

an assigned verse. This example approximates a curve crease because with discretization all the vertices are degree-4, 

thus the surface has only one-DOF. Nevertheless, in the real world, the curved creases can be performed only on flexible 

materials and they are usually made without deciding the ruling in advance, thus the ruling can change over time and 

the DOF would be more than one. This case is an easy special case that uses two concentric arcs of circumference as 

curved creases, thus the ruling match the direction of the radii of the circles, however for more complex curved creases 

the calculation of the ruling that is necessary to connect the curves while preserving the rigid foldability of the 

discretized pattern may not be as easy to calculate as in this case. There are some interesting studies about this problem 
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(Bhooshan et al., 2015; Demaine et al., 2015, 2018; Dias, Dudte, Mahadevan, & Santangelo, 2012; Kilian et al., 2008; 

Tachi, 2013; Tachi & Epps, 2011) but there is not a generalized theory yet.70 

 Limits of the Algorithm and Known Problems – Pop-Up and Pop-Down 

 

Figure 92: self-folding animation of a wide “magic ball” pattern, without and with the pop-up assignment problem. 

Unfortunately, the physical simulation is not always reliable, the reason of that is that folding all the creases at the same 

time may cause some defects and problems on some vertices, it happens especially when there are a big number of creases 

in the pattern. We can try to tweak the strength values of the goal nodes or move the slider that animates the folding very 

slowly or grabbing the surface directly from the Rhinoceros viewport71 trying to correct the defects while they occur, and 

most of the times these tricks work, but sometimes the simulation still fail for a known problem which sometimes occurs 

in self-foldable origami. This problem is caused by the fact that most of the origami vertices can be folded in two different 

ways without changing the mountain/valley assignment. These two possible configurations are known as “pop-up” and 

“pop-down” states (Tachi & Hull, 2016). Some origami single vertex patterns can be folded pushing the central vertex 

upward or downward without changing their mountain/valley assignment, and the bifurcation of the motion happens at 

the completely unfolded state. Thus, when we try folding a pattern just by constraining the mountain valley assignment 

there are equal chances to get a pop-up or pop-down result if no other forces are applied. Furthermore, in patterns with a 

big number of vertices, because the physical simulation for its nature displace the vertices for a small amount while 

distributing the errors, it makes the surface behaving as a flexible surface, thus some vertices could take the path of the 

“pop-up” state and some other of the “pop-down” state even if they are not compatible, blocking the folding of the surface 

as shown in Figure 92. 

To solve the problem, we can used many different methods, for the “magic ball” pattern shown in figure it was sufficient 

to slow down the animation of a big amount giving the necessary time to the Kangaroo solver to distribute the error to all 

the faces and to let the surface self-adjusting before passing the point of no-return where some vertices take the wrong 

pop-up/down assignment. Other methods could use attractor forces that may help the vertices to move in the correct 

direction from the first instant, or we could decrease the stiffness of the edges making the pattern more willing to self-

correct exploiting the flexibility of the faces. Anyway, this kind of solutions has to be evaluated and tested case by case. 

This kind of defects does not happen only in digital simulations, but also in the real world if the surface is flexible 

enough. The implications of these defects on real folded materials has been extensively studied by Silverberg et al. who 

consider a Miura-ori defected pattern as a case study to make some considerations about the design of reprogrammable 

mechanical metamaterials (Silverberg et al., 2014). 

                                                           
 

70 An interesting tool to study curve folding is the “Origami Simulator” by Amanda Ghassaei (that we mentioned in 

Section 1.5.3).This application allows to simulate the folding and unfolding of complex curve folded patterns even 

with imperfect ruling, however it must be pointed out that fixing a ruling in curve folding is always an approximation 

and it limits the possible configurations in which a curved folded pattern could be configured, thus it is preferable to 

precisely design the ruling according to specific rules to achieve particular results. 
71 We can drag the geometry during the simulation only if we add a “Grab” node to the goal nodes of Kangaroo. 
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5. CHAPTER V: Pattern Design from a 

Given Shape 

Designing an origami-inspired object does not always require solving its kinematics and digitally simulate the folding 

and unfolding of the surface. Animating the surface is useful for example for rigid-foldable kinetic mechanisms. 

However, movable mechanisms, even if they are one of the most important targets of applied origami, are not the only 

cases that may benefit from origami properties. For example, for a paper lampshade, or a cardboard box, we do not 

necessarily need to simulate the folding and unfolding of the pattern, but we may want to manipulate the three-

dimensional object in space while preserving its developability. Thus, in this part of the thesis, we present some case 

studies that exemplify the design of objects or buildings inspired by already existing projects, through the use of specific 

algorithms developed with Grasshopper (Rutten, n.d.; Tedeschi, 2014) that are aimed to achieve a three-dimensional 

folded configuration that is developable. Thus, instead of starting from the unfolded pattern, we start from reference 

geometries in space (e.g. curves, surfaces, meshes) that we consider as attractors, guides or rails, and we build the folded 

geometry on them while following strict rules that guarantee the developability of the CP. These case studies are mainly 

focused on the construction of the generative algorithms, and they do not solve all the issues that may arise from 

fabrication. We will focus on the fabrication problems in CHAPTER VI. 

5.1. Lampshade – Vertices Extrusion and Reflection 

 

Figure 93: Le Klint lamp n° 306, the versatile lamp. 

Imagine having an old lamp by Le Klint like the one shown in Figure 93 (Le Klint, n.d.), that is missing its original 

shade, and we want to renew it by making a different shade that fits perfectly the old structure. Because we already have 

a reference structure, we cannot use any accordion-shaped piece of paper because with a high probability it would not 

perfectly fit on it. For example, we cannot use a straight accordion, because, as we saw in section 4.5.2 it is conformable 

into cones72. We could instead use the method explained in section 4.5.4 to design an accordion with converging creases 

that would fit perfectly on a cone. However, that solution leaves no room for creativity, thus, because the design 

possibilities are endless, in this section we propose a more versatile procedure that allows us to manipulate the folded 

shape constraining it to the two circular rails while preserving its developability. We start generating a triangulated 

accordion between the two rails, and to make it more appealing we reflect the bottom points with respects of specifically 

placed reflection planes, and we deform and manipulate the global shape to make it asymmetric. 

                                                           
 

72 If we don’t consider elastic deformation of the faces. 
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Figure 94: folded lamp shade algorithm, steps. 

Refer to Figure 94. First, draw two concentric circles on the same plane, then move on the Z axis one of the two circles73. 

Draw an equal number of equally spaced points on the two circles. Take the even points of the upper circle and move 

them away from the circle along the radii directions. Do the same thing with the odd points of the bottom circle. Connect 

the points of the upper circle to make a zig-zag-shaped closed polyline. Do the same thing with the bottom points. Select 

the two segments adjacent to each even point of the upper polyline and extrude them to the relative even point of the 

bottom polyline making triangular faces. Do the same thing with the bottom polyline but using the odd points. With this 

method, we constructed a “1 × n” chain of triangular faces that is guaranteed to be a developable surface because the 

triangles are always planar. Thus, starting from this developable surface, to push even further the research of an appealing 

shape, we reflect the bottom points inside with planes passing from pairs of even points and a third point, not on the 

horizontal plane. Now the algorithm is ready, and we can play with the inputs to explore different shapes. We can add 

more faces, or change the angle of the reflection planes, or even rotate independently the upper and bottom circles to get 

a twisted look74. It is also possible to add variation to the design by adding “Graph Mappers” nodes as shown in section 

                                                           
 

73 The radii are given, and they are equal the radii of the circles of the reference structure 
74 Be careful to not twist it too much, it may causes self-intersections. 
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4.5.3 to distribute non-uniformly distances, lengths and angles. In the example shown in Figure 95 we reported two 

examples of possible shapes that can be obtained with this approach. The full definition is shown in Appendix C.1. 

            

Figure 95: two possible solutions of lampshades for the same support structure, achieved with the same algorithm. 

 The last thing to do to be able to fabricate this lamp cover is to develop on a plane the folded surface and check if 

there are no overlapping parts on the unfolded pattern. If some parts are overlapping, we can either split the pattern into 

different parts and assemble them later, or we can change a bit the design, for example lowering the number of points 

or shortening the moving distances of the points, to be able to get a CP which does not overlap.  

5.2. Folded Facade – Vertices Extrusion from Reference 

Curved Rails 

 

Figure 96: Biomedical Research Center by Vaillo & Irigaray Architects. 

The same technique used for the lampshade can be used to design any other geometry that uses triangulated accordions 

placed on support rails, like the façade of the Biomedical Research Center by Vaillo & Irigaray Architects (Figure 96). 

In this section we show a variation of the project by Vaillo and Irigaray, using curved support rails instead of straight 

ones. In this case, the property of being developable is probably not crucial for construction purposes due to the bigger 

dimensions, but it may be useful for decreasing the waste and trims from the production phase. The algorithm has the 

same structure of the algorithm shown in section 5.1, but we add variation by drawing additional reference curve rails 

instead of using “Graph Mapper” nodes. 
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Figure 97: folded triangulated façade algorithm, steps. 

Refer to Figure 97. Draw one straight line, copy it and move it along the Z axis. Draw two freeform curves close to the 

straight lines. Divide the curves into an equal number of pieces. Connect the even points of the bottom freeform curve 

with the odd points of the relative closest straight line. Do the same thing with the upper points but with inverted even/odd 

assignment. Explode the upper polyline in independent segments and split the list of segments into sub-lists with two 

elements each. Extrude each pair of segments to the relative closest even point of the bottom straight line. Do the same 

thing with the bottom segments. As well as the algorithm shown in 5.1, this algorithm generates a developable  “1 × n” 

chain of triangular faces. The developability is guaranteed by the fact that the triangles are always planar and there are 

not internal vertices in the CP. The full generative algorithm is shown in Appendix C.2. In Figure 98 it is shown a possible 

application where many folded patches are anchored to a generic building façade. 

 

Figure 98: an example of a foldable facade shaped like a triangulated accordion on curved rails. 
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5.3. Building Envelope – Reflection of a Creased Developable 

Surface 

 

Figure 99: temporary chapel for the Deaconesses of St-Loup, Localarchitecture + Danilo Mondada. 

The project by Localarchitecture and Danilo Mondada of the temporary chapel for the Deaconesses in Saint-Loup is 

one beautiful example of architecture designed with origami rules. In this case, it has been used the reflection method75 

(Mitani & Igarashi, 2011) as a tool for the shape-finding phase (Buri & Weinand, 2008). In this case, from a structural 

point of view, the developability property may even have a negative impact because being developable entails the fact 

that it may tend to slide until it lies on a plane, which is not desirable for a structure that must be self-supporting. 

However, with properly designed anchor points this factor may have no relevance at all. Nevertheless, developability 

may play an important role in the manufacturing process. For example, for a wood and hinges structure, the panels 

might be assembled on the ground and lifted up all at once in a single motion limiting the need of  scaffoldings and 

cranes; or if built in concrete, the panels may be pre-casted in situ, placing them one next to each other, without empty 

spaces between them, with minimal shuttering, minimal soil occupation, and minimal costs of transportation. 

In this section we explore an approach to design this inspiring and versatile shape proposed by Buri and Weinand, 

starting from a polyline path and a section profile. 

Refer to Figure 100. Draw a polyline with the first point on 0 on the XZ plane (this will be the path). Draw a polyline 

with the first point on 0 on the XY plane (this will be the profile). Build the first reflection plane on the first kink point 

of the path, its normal vector is directed like the bisector of the angle between the first two segments of the path. Now 

project the profile points to the reflection plane along the direction of the first segment of the path, and draw a new 

polyline passing through them. Now perform a straight loft with the first profile and the projected profile as sections. 

The first section of the folded surface is built, and it is an accordion with parallel creases. To build the restart sections 

we need to repeat this process on all the other segments of the path. To do so, we need to exclude the first segment of 

the path and switch the original profile with the new projected profile and apply the same algorithm over and over until 

all the segments of the path are processed. To perform this kind of looping definitions in grasshopper, we need to use 

the Anemone plug-in that we already introduced in section 4.5.5. 

The algorithm explained above fails when it reaches the last segment because there is not a subsequent segment to 

calculate the bisector, thus, to solve this problem, when only one segment remains, the projection plane can either be 

set as the plane perpendicular to the last segment or as the XY plane76. We solved the selection of the correct plane only 

for the last segment as follows. Every time the algorithm repeats, it erases the first segment of the path, when only one 

segment remains it returns “True”. “True” in Grasshopper can also be interpreted as a 1, and False as a 0, 1 and 0 are 

also the indices of the list containing the two planes, if the algorithm returns “True” use the XY plane, if it is “False” 

build the plane perpendicular to the bisector of two consecutive segments. The full algorithm is shown in Appendix C.3. 

 

                                                           
 

75 We have shown an example of application of the reflection method in 4.6.1 
76 In this case we chose the latter solution, where the projection plane is set to be the XY plane, so that the folded 

surface will lay on a planar surface. 
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Figure 100: folded roof by reflection, steps of the algorithm. 

 

Figure 101: building envelope example shaped like a reflected accordion.77 

                                                           
 

77 In this figure we also thickened the folded surface, the method is quite straight forward in this case because there are 

no folds that hit 180°. Thus, we simply extruded the faces to the outside and we tapered the panels in correspondence 

of the valley creases, with an angle equal to half the fold angle of that specific crease. For an in-depth study about the 

thickening of origami, refer to section 6.1. 
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5.4. Curve-Folded Table 

 Reflection of a Developable Curved Surface 

 

Figure 102: rigid foldable table by Tomohiro Tachi. 

The reflection method shown in section 5.3 is not only valid to make reverse folds starting from folded surfaces with 

linear creases, but it can also be used to reverse fold generic developable ruled surfaces (Mitani & Igarashi, 2011) 

generating curved creases. For example, we can use the reflection method to design a curved folded table similar to the 

one designed by Tachi (shown in Figure 102) applying the method shown in Figure 103. 

 

Figure 103: curve-folded table algorithm, steps. 

The method works as follows. Draw a planar horizontal polygon (a square in this case). Extrude the edges along 

curved paths tangent to the surface78. Draw vertical planes with origins coincident to the vertices of the polygon and 

rotate them around their relative Z axes to make them intersect both the adjacent surfaces (the planes are perpendicular 

to the relative angle bisector in this case). Split the poly-surface and erase the outer split as shown in the figure. Move 

the planes along their local Z-axis to make them intersect the horizontal polygon and the four curved legs. Then, split 

                                                           
 

78 To easily draw a curved extrusion path that is tangent to the horizontal surface it is sufficient to draw a curve placing 

the first two or more control points on the horizontal plane. 
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the polysurface again with the planes paying attention to not intersect the curved sections. Mirror the outer splits with 

respect of the relative splitting plane, so that we obtained a developable surface with curved creases. As we show in Figure 

104, we can achieve different results by changing the number of sides, the shape of the initial polygon or the orientation 

of the reflection planes. The full definition is shown in Appendix C.4. 

 

 

Figure 104: curve-folded table variations and unrolled CPs. 

 Discretization of the Curved Crease 

 

Figure 105:discretization of a curve-folded table. 

The pattern that we obtained could already be used as a cutting template to be fed to a CNC machine that would return 

a pre-creased thin sheet of metal ready to be folded. However, folded metal has a limited number of folding cycles, thus, 

to make a kinetic deployable table this might not be the optimal solution. An alternative solution, more suitable for making 

moving mechanisms, might be the discretization of the curved surface into planar quadrangular faces. In general, the 

discretization of a curved folded surface into planar faces is not an easy problem to solve. However, it becomes very easy 

if we generate the curve fold by reflecting a developable cylinder or cone. This is because in general, in a developable 

surface, two consecutive linear generatrices do not always lie on the same plane unless they are infinitesimally spaced. 
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Cylinders and cones however are special cases where all the consecutive generatrices lie on the same plane regardless 

of the distance between them. This means that we can simply convert the curved surfaces that we already used in the 

previous algorithm into a discretized polysurface where all the faces are planar and quadrangular, and we can reflect it 

with the same planes of reflection. We started from the same algorithm presented in the last section and we implemented 

it as follows. 

Refer to Figure 105. Draw a developable polysurface shaped like a table as we did in section 5.4.1. Extract the lateral 

boundary curve of each leg and divide it into a certain number of parts. We want to add more points where the curvature 

is high. There are many approaches to solve this problem, because we do not need to have a perfect relation between 

the position of points and the curvature, we can use the following walkaround. Create a very dense polyline that 

approximate the curve and reduce it with the “Reduce polyline” component79. After that extrude the polyline to generate 

a polysurface that approximates the initial curved surface. The polysurface so generated is a developable surface made 

by planar rectangular faces, thus we can use the reflection method as we did in the previous section.  In figure 106 we 

show the correct unfolding of the discretized pattern 

 

Figure 106: unfolding of the discretized curve-folded table, which is only made by planar quadrangular faces. 

5.5. Conformable Corrugated Suspended Ceiling80 

 

Figure 107: Tessel by David Letellier and LAb[au] on the left, and Resonant chamber by RVTR on the right. 

The installations “Tessel” by David Letellier and Lab[au] and “Resonant chamber” by RVTR, are two perfect 

examples of sculptures in form of suspended ceilings that make use of a folded corrugated surface as a tool to create 

interesting shapes and movements. Both installations are kinetic sculptures that change their shape interacting with the 

perception of sound in a certain space. The first one, “Tessel”, is programmed to react to the sound and “dancing” with 

it. The aim of this sculpture is “…combining influences that question the link between geometry, movement and chaos, 

thus continuing the quest for beauty in the synesthetic perception of sound and spatial phenomena.” (Letellier, 2010). 

Perceptively it creates a beautiful visual and acoustic effect that is similar to the behaviour of an almost living creature. 

                                                           
 

79 This component compare the angles between the segments adjacent to each point and according to a certain tolerance 

keeps or erase the point. 
80 This section is excerpts from the paper “Conformation of a flexible Miura pattern on a double curvature surface” 

written by the author of this thesis. The paper has been presented at the AFGS 2017 (the 11th Asian forum On Graphic 

Science). The meeting took place in Tokyo between 6th and 10th August 2017. The paper is part of the results of the 

research carried out during the PhD course (Foschi, 2017). 
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The second project, “Resonant chamber”, has a more sophisticated behaviour and connects a beautiful geometric and 

enigmatic appearance to the practical need of acoustic optimization. It also combines the principles of rigid origami and 

dynamic, spatial, material and electro-acoustic technologies (Furuto, 2012). The intention of this project is creating a 

continuous surface that changes automatically according to the sound conditions to influence its perception in the 

environment where it is placed, one of the possible application fields pointed out by the designers is a theatre or any other 

place  with a variable audience, where the acoustic conditions are very important and they may vary in relation to the 

distribution and number of the spectators. 

ù  

Figure 108: Resonant chamber, example of a possible use (source: www.arch2o.com). 

Some of the most obvious challenges that the designers of these sculpture had to face were how to control the motion 

of these surfaces; and how to hang them with an optimized number of cables. First of all, they have chosen patterns with 

more than one single DOF, to be able to increase the shaping possibilities, then they connected motors to the hinges, or 

they used retractile cables to be able to change the shape of the surface dynamically. In this section we are going to explore 

this type of concept through parametric design, to be able to conform the shape as a given reference surface and to optimize 

the number of necessary cables to keep the shape in position once hanged. 

 Conformation of a Rigid Creased Surface to a Curved Surface 

First of all, we focus on the shaping of the corrugation. The aim of the following method is to change the shape of a 

given creased rigid surface conforming it to a given curved surface without changing the pattern. To do so we are going 

to use Kangaroo Physics (Piker, n.d.), the plug-in for Grasshopper we already introduced in 4.8, where it has been used 

to animate the folding and unfolding of degree>4 CPs. Contrary to what we did in 4.8, this time we are not going to set 

mountain/valley assignment, because we are more concerned about the global shape of the corrugation.  

First of all, draw a planar surface. Then, draw the creases, split the surface with them, generating a polysurface, and 

convert the polysurface into a mesh. In this case, we draw the creases to generate only triangular faces. Draw a reference 

curved surface in the proximity of the original surface with similar proportions, this surface will be the attractor surface. 

Now we need to set up the Kangaroo nodes as shown in Figure 110 in order to move the mesh vertices to the attractor 

surface along the lines that connects the vertices and their relative closest point on the surface and at the same time 

preserving the developability of the mesh. To do so, we add a “Length(Line)” and an “OnMesh” goal nodes and connect 

them to the Kangaroo solver. The “Length(Line)” node constrains the length of the edges of the mesh, and the “OnMesh” 

node will try to bring the mesh vertices on the surface. Because the Kangaroo solver, once set off, tries to minimize the 

errors of the goal nodes by weighing them with the strength input of each node, we need to set the strength of the 

“Length(Line)” node much higher than the strength of the “OnMesh” node in order to prioritize the preservation of the 

developability of the surface more than the minimization of the distances between attracted points and surface. Like so, 

when the simulation starts, the mesh vertices start moving toward the surface while keeping their relative distance, thus 

keeping the faces of the surface rigid. By changing the attractor surface, the corrugation updates its shape trying to 

conform as better as possible to the new configuration. 
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Figure 109: conformation of a corrugation to curved surfaces without changing the CP. 

 

In this case study, we used only triangular faces as in the “Tessel” reference, but what if we wanted to use a CP with 

quadrangular faces? We know that degree-4 vertices may generate patterns with only one-DOF. Thus, first of all, we 

need to test if the DOF of the CP is one or more. This is important because if it is one, the surface will not be able to be 

conformed to a freeform surface, thus a one-DOF pattern would not be suitable for this kind of applications. If it is more 

than one and we want to keep the quadrangular faces planar we need to add a “CoPlanar” node81 setting as input every 

vertex relative to each face of the mesh so that the faces will remain planar. Also, we will need to triangulate the mesh 

before setting it as input for the “Length(Line)” node, as shown in Appendix C.5.1. Constraining the diagonals lengths 

and keeping the boundaries of the quadrangular faces planar we guarantee the preservation of the developability and 

rigidity of the faces. 

 

Figure 110: generative algorithm of the conformation of a corrugation to a curved surface using Kangaroo. 

                                                           
 

81 The “CoPlanar” node must have a high strength as the “Length(Line)” node. 
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 Conformation of a Flexible Miura-Ori to a Curved Surface 

Not only an unfolded pre-creased pattern can be conformed to curved surfaces, but also semi-pre-folded patterns. With 

semi-pre-folded pattern, however, we cannot make all the vertices of the mesh being attracted from the surface, because 

otherwise, the corrugation would flatten out completely, losing the mountain/valley assignment, trying to conform as best 

as it can to the curved surface. In the case of the Miura-ori, shown in Figure 111, the vertices that are attracted from the 

surface are all the bottom vertices. Furthermore, the Miura-ori is a pattern with one single DOF, thus we had to triangulate 

all the faces to increase the DOF allowing non-uniform out-of-plane deformations of the global shape. We treated the 

diagonals as loose hinges as all the other creases. However, we can also simulate a flexible behaviour of the Miura-ori by 

adding a rotational stiffness to the faces adjacent to the diagonals. We can do that by adding a “Hinge” node that tries to 

keep the dihedral angles between the triangles divided by the diagonal equal to 180°. Thus, the quadrangular faces would 

have a more or less flexible behaviour according to the “Strength” value set to be very high for a stiffer behaviour, or low 

for a more flexible behaviour. We also added a “SphereCollide” node among the goal nodes, to avoid collisions between 

faces. See the complete generative algorithm in Appendix C.5.2. 

 

Figure 111: conformation simulation keyframes. 

 

Figure 112: “SphereCollide” node that avoids collisions between mesh faces; and “Hinge” used to control the flexibility of the 

Miura-ori. 

Most of the origami pattern cannot be conformed to any curved surface. The accuracy of the conformation depends on 

the pattern itself or from its scale in relation to the local curvature of the attractor surface. For example, in Figure 113 the 

triangulated Miura-ori pattern is conformed to the same cylindrical surface with different results according to the different 

orientation of the pattern in relation to the surface. In the first case, the Miura ori conforms better than in the second case. 

The average distance between the attracted points and the surface in the former is approximately ten times smaller than 

the one in the latter. The average distance between the attracted points and the surface is an important factor that 

contributes evaluating the quality of the conformation, but most of the times not every section of the corrugation conforms 

equally to the surface, so how can we visualize better the error distribution? 
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Figure 113: different results due to the different orientation of the pattern compared to the attractor surface. 

To visualize better the error distribution we applied a gradient texture map on the surface coloured in grey scale that 

colours with black the areas of the surface close to the projection of the most distant points from the negative side of 

the surface, with white the areas close to the projection of the most distant points from the positive side of the surface 

and with grey the areas close to the projections of the most accurate points, as shown in Figure 115. In Figure 114 it is 

shown the generative algorithm to colour a surface with Grasshopper on the left, and the histogram of the error 

distribution of the configuration shown in Figure 115 on the right. 

 

Figure 114: gradient error map, generative algorithm, and the histogram of the error distribution. 
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Figure 115: gradient error map on a single curvature curved surface. Axonometric and top view. 

 Optimization of Supporting Cables and Anchor Points 

The most trivial way of hanging a corrugated surface while keeping its shape perfectly is by anchoring all the vertices 

of the mesh, attaching them to wires with specific lengths. The lengths are given by the distances of the vertices themselves 

and their relative projected points on the ceiling. Because the force of gravity pulls the vertices vertically, they try to move 

downward, but because all the loads are absorbed entirely by the wires, the system is balanced and there is no residual 

movement. However, for complex tessellations and corrugations hanging hundreds of vertices may be not optimal in the 

real world. However, most of the corrugations built with loose hinges are impossible to hang with fewer cables than 

vertices, while keeping perfectly their shape, thus we need to choose either if anchoring all vertices, or if partially lose 

the initial shape. This is true for corrugations with faces built for example with wood attached with hinges, but it is not 

necessarily true for corrugations folded for example with cardboard. Usually, a continuous material creased does not have 

a loose behaviour, because the creases still have some sort of stiffness, thus we can exploit that stiffness to lower the 

number of anchor points while preserving their global shape. Furthermore, some corrugations have a lower number of 

DOF and they behave more rigidly than others. Therefore, we need to analyse case by case to be able to find the optimal 

solution. In the digital world is very hard to make a physically accurate simulation of a creased sheet made by a continuous 

material, because in the real world a crease correspond to a plastic deformation, thus the stresses and the internal forces 

are hard to foreseen and to replicate precisely digitally, because they may be not homogeneous according to how much 

strength we used while creasing or how many times we folded and unfolded that specific crease. Thus, for those cases 

where we need to hang a corrugation made by a folded sheet of continuous material, once tested if the conformation is 

possible with that pattern on a specific curved surface, it is preferred to realize the prototype of the surface with the same 

material at a similar scale and make tests in the real world. For those cases with loose hinges, however, we can simulate 

their behaviour more easily. 

In this section, we are going to test some specific set of anchor points on a conformed Miura-ori by adding the force of 

gravity to our digital environment82. The algorithm that we used to add the wires and to test the equilibrium of the system 

with the force of gravity is shown in Appendix C.5.3 and it works as follows. 

First, set up the standard nodes of Kangaroo as shown in previous sections. Among the standard goal nodes used to 

preserve the developability of the corrugation, add another “Length(Line)” node for the wires with a lower strength 

compared to the “Length(Line)” node used for the Miura-ori edges. Then, add a “Load” node which pulls the assigned 

vertices along an assigned vector (we assigned a vector directed as the Z-axis with an amplitude of -1, and we set as input 

                                                           
 

82 The results we found are specific for this case study, we may have different solutions for other corrugations or other 

conformation of the same corrugations. 
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all the vertices of the Miura-ori). Then project all the Miura-ori vertices to a virtual planar ceiling, placed above the 

conformed Miura-ori, and anchor those points in place adding an “Anchor” goal node. 

By setting off the Kangaroo solver now, we would not see any change into the system, because all the vertices are 

anchored, and all the forces are balanced, thus we need first to decrease the number of wires to see some changes. 

Decrease the number of wires by culling some vertices among the list of vertices that are projected to the ceiling plane, 

while doing that try to find a set of vertices that, once attached to the wires and hanged, preserves the global shape of 

the corrugation without making it collapse. After tested many sets of vertices, we found out that anchoring the first ring 

of vertices of the Miura-ori is not sufficient to keep the global shape, however, anchoring the second ring of vertices is 

sufficient to find an equilibrium state which is very close to the initial configuration as shown in Figure 116. In the 

figure we set the Miura-ori to have loose hinges, in fact even if the global shape is preserved while anchoring the second 

ring of vertices, the outer vertices sometimes collapse, it is particularly evident for the vertices of the outer left border. 

In the algorithm in Appendix C.5.3, we show how to anchor both the first and the second rings of vertices to enhance 

the stability of the system even with completely loose hinges. 

 

Figure 116: gravity simulations comparison of a conformed  Miura-ori with different patterns of anchored vertices. On the left we 

anchored the upper ring of external vertices and the system is in an equilibrium state, on the right we anchored the bottom ring of 

external vertices and the system collapse. 

 

Figure 117: anchoring the second ring of vertices to find an equilibrium state once applied the force of gravity. 

In Figure 117 contrariwise we added a little bit of reciprocal rotational stiffness to the faces adjacent to the diagonals, 

simulating a behaviour qualitatively similar to a flexible Miura-ori folded with paper, and as you can see only by 

anchoring the second ring of vertices the global shape is almost perfectly preserved in all the cases we tested. 

Because we added some reciprocal rotational stiffness to the faces simulating a behaviour similar to a sheet of paper, 

anchoring the second ring of vertices entirely is probably an over-kill. Thus, the next question is how can we find a 

more optimized solution without necessarily guessing a better set of anchored vertices? To optimize even more the 

vertices without guessing, we propose a method that compares the lengths of the wires before and after applying gravity, 

so that we can identify the wires that are completely or almost completely unloaded and exclude them. Because the 

lengths of the cables are constrained with a “Line(length)” node also known as “spring” node, they behave exactly like 

springs. This means that they obey the relationship:  

𝐹 =  𝑘𝑥 . (38) 
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Where F is the Force, k is the stiffness and x is the extension (or Δ length). Thus, Δ length and tension are proportional. 

Therefore, we can use the length variation to apply a colour to the wires and visualize qualitatively the tension applied to 

each cable using the standard gradient map for tensions that goes from green to yellow to red as shown in Figure 118. 

 

Figure 118: generative algorithm for colouring cables from green to red according to their load and deformation. 

 

Figure 119: optimization of the cables through tension analysis. 

After erasing unloaded (or almost unloaded) wires we can run the simulation again and check if the corrugation keeps 

its shape as shown in and Figure 119. If we try to apply this method before erasing some cables by guessing we would 

not have found any unloaded cable, thus it may not work properly. Furthermore, in some corrugations even erasing a 

single wire would change its shape greatly, thus every case must be analysed specifically. 

 Changing shape to the Surface - Adjusting Cables Lengths 

In section 5.5.1 and 5.5.2 we show how to conform a creased surface to a curved reference surface and in section 5.5.3 

we show how to hang it with wires. In this section, we are going to propose a reversed approach, that starts from a hanged 

un-conformed surface that we conform changing the lengths of the cables. 
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Figure 120: moving the surface changing cables lengths using a “Graph Mapper” node. 

In Figure 120 we show how a semi-pre-creased Miura-ori can be shaped by using the “Graph Mapper” node. The full 

generative algorithm can be consulted in Appendix C.5.4 and it works as follows. 

Import the semi-pre-creased Miura-ori as a mesh. Extract all the vertices of the mesh, sort the list of vertices according 

to their z position and select all the upper vertices. Project the vertices on a plane placed above the corrugation. Connect 

with a line the upper vertices and their relative projection. Rescale the lines using as base points the relative projected 

points. To rescale the wires gradually and following the shape of a function, use a “Graph Mapper” node. Then set up 

the Kangaroo nodes like explained in section 5.5.3 adding “Anchor”, “Load” and “Length(Line)” goal nodes attached 

to the Kangaroo “Bouncy Solver”. Before setting off the simulation set a Bezier function in the “Graph Mapper” and 

move all the control points on the top to make it shaped like a constant function y=1 so that the wires as the simulation 

begins are non-scaled. After setting off the simulation change the function shape in the “Graph Mapper” moving the 

control points of the Bezier curve. As the points are moved, the wire length changes and the corrugation while being 

pulled down by the force of gravity and pulled up by the cables, finds a new equilibrium state changing its shape 

according to the cables lengths.  
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6. CHAPTER VI: Fabrication-Aimed Designs 

The case studies that we presented so far were all focused on the creation of patterns aiming to achieve a specific 

movement or aiming to a specific shape, but we always visualized and studied them through zero-thickness conceptual 

models. However, in the manufacturing and architecture fields, we may need to produce rigid-foldable mechanisms, or 

folded structures able to resist to certain loads. Rigid-folding and structural properties are strictly related to the stiffness 

of the material used, and as a matter of fact, the stiffness of any material is strictly related to its elasticity and to the area 

of its section (thus to its thickness). Thus, in this section we will study the origami-like mechanisms from another point 

of view, considering thickness, bending, forces, gravity, stability. In this chapter, we are going to present two case studies: 

a foldable ladder and a deployable chair. Both projects are originally designed, and we present them from start to finish 

focusing especially on the fabrication issues and on the possible solutions. 

6.1. Known Origami Thickening Methods – State of the Art83 

A zero-thickness surface is a good approximation to model an origami-like geometry folded with paper. However, in 

manufacturing, architecture and engineering, is often necessary to use thick panels to enhance stiffness and rigidity of the 

folded mechanism. Most of the times the designers start modelling using zero-thickness surfaces, focusing only on the 

kinematics of the mechanism, but when they get to the prototyping phase, they cannot disregard the thickness. Thus, the 

problem that they face, is finding a way to add thickness to the zero-thickness surface without losing the original 

kinematics, preserving the DOF and avoiding self-intersections or collisions between the panels that would stop the 

folding motion. Many solutions have been already studied, proposed and used by many researchers. The most relevant 

known techniques are: 

- “Offset panels” (Edmondson, Lang, Morgan, Magleby, & Howell, 2015; Lang, Tolman, Crampton, 

Magleby, & Howell, 2018) 

- “Hinge shifting”, also known as “Axis shifting” (Chen, Peng, & You, 2015; Lang et al., 2018; Tachi, 

2011b) 

- “Tapered panels” (Tachi, 2011b) 

- “Constant thickness attached panels” (Tachi, 2011b) 

- “Membrane hinges” (Lang et al., 2018; Zirbel et al., 2013) 

- “Rolling contacts” or “SORCE technique” (Lang et al. Patent No. US 2017/0219007 A1, 2017; Lang, 

Nelson, Magleby, & Howell, 2017; Lang et al., 2018) 

- “Strained joint” (Lang et al., 2018; Pehrson, Magleby, Lang, & Howell, 2016) 

- “Double hinge” (Ku & Demaine, 2016; Lang et al., 2018) 

- “Symmetric Miura-ori vertex by shifted hinges and carved panels” (Hoberman, Patent No. 4780344, 

1988; Lang, Tolman, Crampton, Magleby, & Howell, 2018; Tachi, 2011b) 

- “Slidable Hinges” (Lang et al., 2018; Tachi, 2011b; Trautz & Kunstler, 2009) 

- “Double line” (Hull & Tachi, 2017) 

                                                           
 

83 The study of the thickening methods presented in this chapter was in a large part referenced to the paper “A Review 

of Thickness-Accommodation Techniques in Origami-Inspired Engineering” by Lang et al. (Lang et al., 2018) and 

“Considering Manufacturing in the Design of Thick-Panel Origami Mechanisms” by Crampton (Crampton, 2017); we 

extended the study of these methods and we commented them case by case. 
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 Offset Panels 

 

Figure 121: “Offset panels” method. 

The “Offset panels” method, theorised by Edmondson et al. (Edmondson et al., 2015), is a versatile method that works 

with both flat-foldable and non-flat-foldable vertices. It allows the overlap of multiple layers, but it must be necessarily 

assembled, and the unfolded configuration does not lie on a plane. Furthermore, self-collisions are very common, and 

they must be checked carefully during the design phase. To avoid self-collisions, it may be necessary to carve out or 

cuts some parts from the faces, thus the mechanism may present holes which is not optimal for applications that require 

material continuity. Refer to section 6.2.3 for an example of this technique applied to a deployable ladder. 

 Hinge Shifting 

 

Figure 122: “Hinge shifting” technique. 

The “Hinge shifting” is one of the oldest known techniques for thickening origami, and it is cited by Lang et al. and 

Tachi in their reviews on thickening methods (Lang et al., 2018; Tachi, 2011b), and extensively studied by Chen et al. 

(Chen et al., 2015). This technique is easy to apply for a single linear crease, and it consists into moving the hinge on 

the valley side of the fold after thickened the panel. It may seem easy at a first glance, but it becomes trickier when it is 

used to solve patterns with internal vertices. Furthermore, the panels often need to be carved in some areas or fabricated 

with different thicknesses to be able to reach the perfectly flat-folded state. The dihedral angles between the adjacent 

faces are preserved, but because the hinges are shifted, the relative translations are not preserved, thus some holes 

generate in correspondence of the internal vertices when we start folding, and the DOF may change because we moved 

the creases out of plane. 

 Tapered Panels 

 

Figure 123: ”Tapered panels” method. 
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The “Tapered panels” method proposed by Tachi (Tachi, 2011b), is one of the best methods to preserve the original 

kinematics84 of the zero-thickness model, because it is easy to design and it preserves the position of the hinges, thus the 

thickened surface lies flat on a plane when unfolded. Furthermore, this method preserves the continuity of the material 

without generating holes. It can be built by marking or carving the crease lines85 from a single panel of the same material. 

However, there are some major cons such as the fact that it is not possible to overlap more than two faces and the fact 

that the blocking creases cannot reach their maximum fold angle. The maximum collapsing amount can be regulated by 

changing the tapering angles of the panels, the smaller the tapering angles are, the smaller the collapsing amount is; the 

bigger the tapering angles are, the greater the collapsing amount is, and the thinner the panels become. 

 Constant Thickness Attached Panels 

 

Figure 124: "Constant thickness attached panels" method. 

The “Constant thickness attached panels” is a direct consequence of the “Tapered panels” method demonstrated by 

Tachi (Tachi, 2011b). It consists into substituting each tapered panel by glueing together two non-tapered panels with a 

constant thickness equal to half the thickness of the substituted tapered panel. This is possible only when the top and 

bottom faces of the tapered panel overlap for a significant amount. The mechanism so configured can be produced, by 

sandwiching a strong fabric or film between the two shifted panels (not by  folding or carving a single panel). This method 

is easier to fabricate by hand rather than the tapered panel method. That is why is often used for prototyping. However, it 

suffers the same problems of the “Tapered panels” technique, about the limited fold angle. Furthermore, the mechanism 

at the folded state tends to work like a lever which tries to pull apart the film and the attached panels, thus the durability 

is strongly dependent on the film and glue quality. 

 Membrane Hinges 

 

Figure 125: "Membrane hinges" method. 

The “Membrane hinges” technique explored by Zirbel et al. (Zirbel et al., 2013) is easier to assemble and apply 

compared to other thickening techniques. However, once applied, the structure becomes floppy, because the faces are 

glued to a flexible membrane leaving a little space in correspondence of the valley (or mountain) creases equal to double 

the thickness86 of the panels, which makes the hinges loose and flexible. This technique has been proposed for structures 

that have to move in zero-gravity, where the stiffness is not as crucial as in other circumstances. 

                                                           
 

84 Both relative rotations and translations of adjacent faces. 
85 With a specific tapering angle, which is equal to half the relative fold angle at the chosen partially-folded 

configuration. 
86 Or even more than twice the thickness for cases where there are multiple overlapping layers.  
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 Rolling Contact or “SOURCE” Technique 

 

Figure 126: "Rolling contact" or “SOURCE” technique. 

The “Rolling contacts” method, also known as “SORCE technique” has been demonstrated and patented by Lang et 

al. (Lang et al., Patent No. US 2017/0219007 A1, 2017). It is a method inspired by Jacob’s ladder toy, and similar 

mechanisms have been used in spinal implants, robot fingers and prosthetic knee joints. Lang et al. in the paper 

“Thickness-Accommodation Techniques in Origami-Inspired Engineering.” assert that “A notable aspect of the SORCE 

technique is that it marries a fully flat unfolded state… with a folded state incorporating arbitrary offsets between 

panels; furthermore, the DOF of the mechanism exactly reproduces the DOF of the zero-thickness model.” (Lang et al., 

2018). 

However, like other thickening techniques, also this method has some cons such as the fact that flexible membranes 

are used to keep together the rolling contact hinges, thus the elasticity of the membranes may increase the unexpected 

deformations of the theoretical model. Furthermore, this kind of mechanisms must be assembled, and their robustness 

is strictly related to the assembling quality.  Relating to this problem Lang also asserts that “While conceptually simple 

to implement, modelling flexible membrane hinges is considerably more complicated than mechanisms with discrete 

hinges. Also, the curvature and convexity of the rolling contact surfaces and the tolerances must be considered during 

design to ensure robust joints.” (Lang et al., 2018) 

 Strained Joint 

 

Figure 127: "Strained joint" Technique. 

The “Strained joint” technique, is a method demonstrated by Pehrson et.al (Pehrson et al., 2016). 

Lang et al. in the paper “A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering” assert 

that “The strained joint technique for accommodating thickness… is related to the membrane technique. Instead of using 

a thin membrane, the thick material itself acts as an effective membrane, i.e., one in which the “fold” is distributed 

across a region, rather than being a discrete revolute joint. In this case, the panel material itself is dissected so as to be 

flexible along desired hinge lines” (Lang et al., 2018). The main con of this method is that we need to use different 

materials to realize a mechanism with strain-able joints while having rigid panels, which makes the fabrication harder 

than other methods that uses one single material. Instead of mixing different materials with different elasticity, there is 

a monolithic alternative that makes use of particular cuts in correspondence of the creases area. The system consists of 

dissecting the panels isolating some linked bars that can be flexed and twisted which makes the connections behaveing 

like flexible joints. The larger the holes and the thinner the bars are , the more flexible will be the joint. However, if we 

chose to apply the dissection technique, we must use a flexible enough material, otherwise, the joints would break after 

a few folding cycles. This means that, to be able to have flexible hinges also the faces would be a little bit flexible, thus 

the rigid-motion would not be perfect. 
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 Double Hinge 

 

 

Figure 128: "double hinge" method. 

The “Double hinge” method explored by Ku et al. (Ku & Demaine, 2016), is a method studied to thicken flat foldable 

patterns by doubling all the creases similarly to what happens in thick cardboard boxes. They proved that a double hinged 

solution for flat-foldable patterns with a single-vertex always exists, but the problem of thickening a flat-foldable pattern 

with multiple-vertices is still open. The main con of this method is that it needs holes to solve the internal vertices. 

 Symmetric Miura-Ori Vertex by Shifted Hinges and Carved Panels 

 

Figure 129: ”Symmetric Miura-ori vertex by shifted hinges and carved panels” method. 

The method patented by Hoberman in 1988 (Hoberman, Patent No. 4780344, 1988) was cited by Tachi as a thickening 

method in “Rigid-Foldable Thick Origami” (Tachi, 2011b). It is a special application of the “Hinge shifting” method as 

explained by Lang et al. (Lang et al., 2018). A limit of this method is that only symmetric Miura-like degree-4 vertices 

(bird’s foot vertices) can be thus accommodated. 

 Slidable Hinges 

 

Figure 130: "Slidable hinges" method. 
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The “Slidable hinges” method has been studied for the first time by Trautz and Kunstler (Trautz & Kunstler, 2009) 

on degree-4 vertices and it consists in sliding the faces longitudinally in relation to the adjacent faces along the common 

crease lines while folding the pattern. The more the panels slide, the more the collapsing amount increases. The main 

cons of this method are that it cannot be built with material continuity, it does not reach the completely collapsed state, 

it generates holes during folding, and the technology to realize slidable hinges is very likely more complex and more 

subject to friction than traditional hinges. 

 Double Line 

 

Figure 131: "Double line" technique. 

The last method we review here is the “Double line” method proposed by Hull and Tachi (Hull & Tachi, 2017). This 

method is probably the most versatile even if it is probably harder to apply than most of the other methods. The “Double 

line” method consists in splitting some critical creases87 into two parallel creases88, like in the “double hinge” method 

proposed by Ku (Ku & Demaine, 2016), but with additional creased structures at the vertex. The additional creased 

structure at the vertex is a set of new flat-foldable vertices that solves the intersection of the doubled creases and the 

other non-doubled creases  that converged in the same vertex. The new vertices are connected with a single polyline 

(which generates an additional planar face if it forms a closed loop). Once doubled those creases the faces can be 

thickened and tapered following the same approach used in the “Tapered panels” method. Doubling the correct creases 

allows to space the touching faces while keeping their relative orientation during motion, creating room for thickening 

the faces. The main pros of this method are that it can be produced by a monolithic single panel. The crease lines can 

be marked by carving or stamping as it happens in the “Tapered panels” method, but with lower tapering angles, which 

is better to preserve the thickness and stiffness of the panels. The collapsing amount is not limited, and the relative 

rotation of adjacent faces is preserved. Also, all the mountain and valley creases can be marked from the same side of 

the panel with half-cuts if they are mountain and triangular-groves if they are valley. Traditional CNC machines or hot-

stamping machines can be used to mark the creases and there is no need to build specifically designed machines helping 

to decrease the production costs. Furthermore, without any assembling phase, the product is ready to use. For all these 

reasons, this method is very suitable for industrial production. The main cons of this method are that it is harder to apply 

than most of the other methods we reviewed, and it preserves the kinematics of the mechanism only for what concerns 

                                                           
 

87 The creases that needs to be doubled are, mainly, the creases that block and some incident creases. In flat-foldable 

patterns all the creases are doubled. 
88 They call those creases “double lines”. 
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the reciprocal rotation of the faces, not the translation. Furthermore, because every internal vertex split into multiple 

degree-4 flat-foldable vertices the DOF of the pattern may change to one. However, even if the translations are not 

preserved, no holes appear during motion, because the structure at the vertex of the split line has its own rigid cinematic 

that preserve material continuity. Lastly, because doubling the lines spaces the faces, to be able to achieve a result with 

the same dimensions of the original non-doubled model, the original faces must be resized and rearranged case by case 

after doubling the critical creases. In the following case studies, we tested different thickening method, but we ended up 

always using the “Double line” method by Tachi and Hull because, for our purposes, it was more efficient than other 

techniques. 

6.2. Case Study - One-DOF, Developable, Non-Flat Rigid-

Foldable Ladder89 

The first case study we propose is a one-DOF, developable, rigid non-flat-foldable ladder. This design is an 

exemplification of a one-DOF thick structure with multiple blocking degree-4 vertices. The structure self-blocks (or self-

arrests) when the blocking creases reach the maximum fold-angle of 180°. The main issues raised during the design phase 

were: making a one-DOF rigid foldable mechanism that self-blocks at a ladder-shaped configuration; dimensioning the 

steps correctly while preserving the developability of the ladder; thicken the panels without losing the original kinematics 

and making it self-supporting and self-balanced. 

All these issues will be discussed further in the next sections, but what we want to highlight is that all these points 

influenced the design of the chair from the early design phase, thus even if we will present the design process as a linear 

sequence of steps for clarity’s sake, the reader should keep in mind that most of the stages of the process were developed 

in parallel, and they were redesigned and discussed several times before reaching the final product.   

 Preliminary Paper Prototype and Digitalization 

 

Figure 132: study models of the ladder made with printer paper. 

One of the first steps when designing something that follows origami rules is almost always the folding of the paper 

prototype. It helps to materialize the idea and testing if it works as imagined. Also, it helps to make small changes to the 

initial pattern because, as long as the paper does not rip, the developability of the paper is preserved and guaranteed. This 

preliminary phase is crucial, and it helps the designer understanding fast how the global shape would look. However, 

because the paper model is flexible, it may mislead the understating of some formal or kinetic aspects, especially for what 

concerns the rigid foldability and the identification of the blocking configuration. Thus, is highly suggested as from now, 

                                                           
 

89 The ladder design is also published into the paper “Designing Self-Blocking Systems with Non-Flat-Foldable Degree-

4 Vertices” written by the author of this thesis and Tomohiro Tachi, presented at the 7OSME (The 7th International 

Meeting on Origami in Science, Mathematics and Education). The meeting took place in Oxford between 5th and 7th 

September 2018. The paper is part of the results of the research carried out during the period abroad encouraged by 

the PhD course (Foschi & Tachi, 2018). 
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converting the paper model into a much more accurate digital model. The preliminary digital model is not only useful 

to verify the rigid foldability and to make the first considerations about the shaping and folding motion, but it is the 

basic requirement for later accurate proportioning, and it is the fundamental starting point for the thickening phase. 

 The three models shown in Figure 132 are a selection of three among the multitude of paper study models that we 

folded before moving to the digitalization phase. The concept of the ladder came from the grafting of a Miura-ori pattern 

as shown in Figure 133. Similar patterns are used in the aerospace industry for making ultra-light sandwich panels (Klett 

& Drechsler, 2011), here we use a little portion of it for a completely different purpose. The preliminary digitalized 

prototype of the ladder was designed by trial-and-error method. Because the model is very simple, it is possible to get 

sufficiently accurate results using only reference points and simple graphical constructions. By trial-and-error method 

we tried to give a first rough shaping to the ladder. We angled the rises of the steps to make it steeper while keeping the 

treads long enough to fit a foot, and we dimensioned the steps to make the external corners aligned to the same oblique 

crease generated from the exceeding paper of the highest step as shown in Figure 134. 

 

 

Figure 133: ladder concept by grafting a chain of three Miura-like vertices. 

 

Figure 134: the unfolding of the preliminary digitalized model of the ladder with angled rises. 

 Fine-Tuning the Dimensions of the Ladder with Trigonometry 

Because the model is very simple, it is possible to get sufficiently accurate results by applying the trial-and-error 

method, only using reference points and simple graphical constructions. Although, to enhance even more the accuracy 

and to have total control on the shape and proportions of the model, we propose below a method based on simple 

mathematical formulations that allow the designer to get the wanted blocked state with fixed proportions without even 

needing to fold the CP. This method is a more accurate alternative of the trial-and-error method, but it may return similar 

results. 

We start fixing some parameters90 according to the desired shape, refer to Figure 135: 

- The angle 𝜌4 between each riser and tread of each step is fixed (𝜌4 = 80°). 

- Each riser and tread must be rectangular (𝜃4 = 𝜃3 = 90°). 

                                                           
 

90 We could choose any other value. Here we chose a height and a depth of 30 cm for every step, because the ladder was 

supposed to be a steep 3-step generic indoor portable ladder design. 
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- The risers and the treads lengths (l) must be equal (to have the ribs O2̅̅̅̅  and 65̅̅̅̅  aligned at blocked state). 

- Each step height (h) is fixed (30 cm). 

 

 

Figure 135: ladder design fixing some variables (𝜃4 = 𝜃3 = 90°, 𝜃2 = 180° − 𝜃1, ℎ = 30𝑐𝑚, 𝜌4 = 80°). 𝜃1 must be found. 

Because the ladder has mirror symmetry, we can focus on one half of the pattern. The half pattern presents a chain of 

degree-4 vertices which is known to be a one-DOF mechanism (Tachi, 2011a). Also, because all the vertices have the 

same pattern, they all block at the same time. This allows us to focus only on one vertex (refer to vertex O in Figure 135). 

The creases O1̅̅̅̅ , O3̅̅̅̅ , and O4̅̅̅̅  have fixed lengths and angles, thus the only crease that needs to be tuned is O2̅̅̅̅ , which is also 

the crease that blocks the degree-4 vertex. To find the O2̅̅̅̅  direction, either 𝜃1 or 𝜃2 are needed. Because 𝜃1 + 𝜃2 = 180°, 

we have 𝜃2 = 180° − 𝜃1. So, finding 𝜃1 is all we need to solve the problem. The fixed parameters are the fold angle 𝜌4 =

80°, the angles 𝜃4 = 𝜃3 = 90°, 𝜃2 = 180° − 𝜃1, and 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4 = 360°. If we substitute these values into the 

equation 19 and rearranging it, we obtain the following simplified expression: 

𝜃1 =
180°−𝜌4

2
. (39) 

Once we know all the angles, we can calculate the riser and the tread length (l), fixing h and 𝜌4: 

𝑂1̅̅ ̅̅ = 𝑂3̅̅ ̅̅ = 𝑂4̅̅ ̅̅ = 𝑙 =
ℎ

𝑠𝑖𝑛 𝜌4
=

30 𝑐𝑚

𝑠𝑖𝑛 80°
= 30.46 𝑐𝑚. (40) 

𝑂2̅̅ ̅̅ = 2(𝑂1̅̅ ̅̅ ) 𝑐𝑜𝑠 𝜃1 = 2 × 30.46 𝑐𝑚 × 𝑐𝑜𝑠 50°  = 39.16 𝑐𝑚. (41) 

It is also possible to calculate O1̅̅̅̅ , O3̅̅ ̅̅ , O4̅̅ ̅̅ = 𝑙 and 𝜌4 fixing h and d using the Pythagorean theorem and trigonometry: 

𝑂1̅̅ ̅̅ , 𝑂3̅̅ ̅̅ , 𝑂4̅̅ ̅̅ = 𝑙 =
ℎ2+𝑑2

2𝑑
 . (42) 

𝜌4 = 90° − 𝑐𝑜𝑠−1 (
ℎ

𝑙
). (43) 

 Thickening – “Offset Panels” Method 

Once defined the zero-thickness pattern we moved to the thickening phase. The first method we tested was the “Offset 

panels” method. The Figure 136 shows the steps that we followed to design the first thick version of the ladder. To be 
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able to offset the panels properly we folded and unfolded continuously the ladder, so we were able to visualize and 

measure better the correct offset distances and position of the vertical connections of the joints. This method is 

convenient because it allows the designer to animate the thickened surface (Figure 137) by matching the transformations 

of the original zero-thickness animated folded surface. This is possible because the kinematics of the faces is perfectly 

preserved after thickening91. However, due to the multiple overlapping layers, we had to cut numerous parts in 

correspondence of the hinges to avoid collisions, this problem caused the physical prototype to have much floppier 

behaviour than expected. Furthermore, the overlapping layers forced us to double the offset distance of the panel for 

every step, this caused the unfolded model to be too thick and not very useful for actual applications. For all these cons, 

we had to move to another thickening method. 

 

Figure 136: thicken the ladder with “Offset panels”. 

 

Figure 137: folding of the ladder thickened with "Offset panels" technique. 

 Thickening – “Tapered Panels” Method 

 

Figure 138: correcting the pattern to make the top and the side faces blocking at a fold angle greater than 90°. 

The next thickening method we tested was the “Tapered panels” method. This method is convenient because it does 

not require to move the faces or the creases. The method consists into extruding the faces in one direction (perpendicular 

                                                           
 

91 Both rotation and translations of adjacent faces are preserved. 
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to the plane of the unfolded model) and taper the panels along the bisecting planes, relative to each pair of adjacent faces, 

at the blocked configuration. So far, everything appears easy and straightforward, however, at the blocked configuration, 

there are faces that touch, and because the bisecting plane of two touching faces lies into the same plane of the two faces 

themselves, we cannot add thickness to those faces at their maximum fold angle. So, we must stop folding before reaching 

the blocking configuration so that the faces are spaced of a certain amount allowing us to thicken and taper the faces 

without self-intersections or excessive tapering angles. Stopping the folding before reaching the blocking configuration, 

however, will prevent the model to reach the three-dimensional configuration that we designed in the first place. Thus, to 

be able to apply this thickening technique we must change a little bit the pattern to be able to reach the wanted three-

dimensional configuration before reaching the blocked state. In Figure 138 you can see how we corrected the pattern of 

each vertex. With this new pattern, the face on the side reaches the vertical position before reaching the blocking 

configuration so that there is room to add a certain thickness between the faces ABOG and BCO. Then, we corrected the 

whole pattern according to the single-vertex test, and we folded it to reach the semi-folded configuration as shown in 

Figure 139. After that, we thickened the panels by extruding them along the direction of their normal vectors to the inside, 

and we tapered them slicing the extruded panels with the bisecting planes between each pair of adjacent faces as shown 

in Figure 140. 

 

 

Figure 139: thickened ladder from the top, with tapered panels method. 

 

Figure 140: thickened ladder from the bottom, with tapered panels method. 

This method is efficient and reliable; however, the adjacent panels are contacting only along the faces of the panels 

resultant from the tapering. Thus, the new blocked configuration is less stable than the previous blocked configuration 

because the contacting areas are smaller, and this may generate additional stresses on the hinges. 

We may find a more stable blocked configuration by spacing for a smaller amount the blocking faces while keeping the 

same thickness of the panels, or by keeping the same semi-folded configuration and increasing the thickness. In both 

ways, after tapered the panels, the contacting area would be larger. However, such type of tapered panels is harder to 

fabricate, because traditional folding machines are not designed to taper the panel on such a wide area. It may be possible 

to fabricate the ladder with this thickening solution by tapering the panels one by one by CNC milling and glueing them 

onto a thin membrane or film, but because we wanted to limit the assembling, we decided to test a different thickening 

method.  
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 Thickening – “Double Line” Method 

The last thickening method we applied was the “Double line” method by Hull and Tachi. In the original approach that 

they propose, all the creases are doubled and the internal vertices resulting from the doubling process are forced to be 

always flat-foldable, in this way there is only one possible solution for any flat-foldable CP. However, the ladder is a 

non-flat-foldable special case, thus we discovered that there is no need to double all the creases to be able to add 

thickness while preserving the maximum fold angle. Furthermore, to increase the design freedom, we did not constrain 

the internal vertices to be flat-foldable. 

The ladder has mirror symmetry and even if all the vertices have the same CPs, some of them have inverted 

mountain\valley assignments. Thus, there are only two types of degree-4 non-flat-foldable vertices. If we add thickness 

to the panels downwards, we can solve the vertices with the valley blocking fold simply applying the “Tapered panels” 

method, thus we focused only on the vertex with the mountain blocking fold as shown in Figure 141. 

 

Figure 141: valid "Double line" solutions of a degree-4 vertex when the crease 01 is mountain and blocks. 

We started doubling the mountain blocking crease, and after that, we solved the intersections with other existing 

creases by doubling only one of the other creases92. In Figure 141 we illustrated two possible solutions with two doubled 

creases. Nevertheless, the ladder has multiple vertices connected, thus the illustrated solution where the creases 01 and 

04 are doubled, is not applicable, because to continue the pattern of the ladder we should attach the crease 04 to the 

crease 02 of the adjacent molecule, which are not compatible because they are respectively a doubled and non-doubled 

creases. Thus, the solution where the creases 01 and 03 are doubled is the only valid solution in this case. After we 

decided which were the creases that needed to be doubled and because we chose to not constrain the internal vertices to 

be flat-foldable, we had to choose the offset distance and the angle of the crease connecting the two new vertices. In 

Figure 142 two possible solutions are illustrated. The creases AJ and BK are parallel, and their offset distance is equal 

in both cases. What it is changing are the angles θj1,2 and θk1,2,  that make in the first case two non-flat-foldable vertices, 

and in the second case two flat-foldable vertices. Changing the internal angles of the vertices changes the distance of 

the parallel faces AHIJ and BCK at blocked state, thus the maximum allowed thickness of the panels also changes. The 

case with internal flat-foldable vertices is apparently more efficient because with the same offset we can get a result 

where there is more space between the faces AJHI and BCK, thus apparently, we can use thicker panels . However, the 

thickness of the face EFJK93 is almost halved because of a higher tapering angle. Keeping tapering angles small makes 

the thickness more homogeneous, and thus also the loads are better distributed. Furthermore, with smaller tapering 

angles it is easier to be produced by CNC or folding machines. Moreover, in the first case the face EFJK is more 

perpendicular to the ground, thus it can transmit the load better to the bottom face. 

Once designed the single vertex, we repeated the same structure to every equal vertex of the ladder. This method 

allowed us to preserve the relative rotations of the thick faces while keeping thin enough the unfolded configuration. 

However, the conversion from thin to thick model while keeping the same height and width of the steps was not trivial. 

                                                           
 

92 We call those creases “critical creases”, which are those creases that need to be doubled to be able to solve the 

internal vertices, but they are not necessarily blocking creases. 
93 Which is one of the most stressed during use because it is the element placed right under the step edge which tend to 

bend under the user weight. 
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After doubled the critical creases and solved all the internal vertices, we followed the process illustrated in Figure 143 to 

rectify the shape and dimension of the ladder matching the concept model dimensions. 

 

 

 

Figure 142: comparison of different internal vertices after doubling the internal critical crease in a single degree-4 corner. 

 

Figure 143: design process of the ladder, from the concept to the model with thick panels. 

First, we identified the critical creases that we needed to double, and we added new strips of paper (light blue) to the 

surface following the angles defined previously on the single vertex. Then, because we expanded the surface and we 

added some creases, the final dimensions and overall shape at folded state changed a little bit, thus we rectified it by 

adding missing parts and resizing everything to match the concept prototype as much as possible. Lastly, we added the 
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thickness and we tapered the panels by bisecting the angles at folded configuration. As a final step before building the 

prototype, we simulated the folding and unfolding with thick panels. We checked and corrected possible problems like 

self-intersections, colliding panels, missing tapers, missing parts etc. 

 

Figure 144: folding of the ladder thickened with "Double line" method. 

We built the first prototype by 3D printing the tapered panels and assembling them by stitching them with common 

adhesive tape. After verified that it worked as expected, we built a full-size prototype by CNC milling wooden panels 

and gluing them on a thin membrane. The prototype gave us some hints about the stiffness of the structure and the 

possible problems that we will discuss in the next section. 

 

Figure 145: thick rigid non-flat foldable developable ladder with one-DOF, study 3D printed preliminary prototype. 

 

Figure 146: full-scale wooden prototype, folding test. 

 Stability Problems and Possible Solutions 

The first problem we tried to solve was that the ladder tended to collapse when loaded. Because of its shape and its 

particular kinematics, surprisingly applying loads on the front two vertices of the first two steps did not interfere with 

the equilibrium state. However, when we applied two loads on the two back corners of the last step, it caused the 

collapsing of the whole ladder (as shown in Figure 147).  
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Figure 147: collapsing of the model of the ladder under given loads. 

The three solutions in Figure 148 are possible locking systems that preserve the CP and prevent the collapsing of the 

ladder once loaded. All three systems: hooks, clips, and belt, are aimed to keep the ladder in position when loaded and 

they are all removable mechanisms which allow to fold and unfold the ladder fast. A different solution that helps keeping 

the ladder at blocked configuration is the solution proposed in Figure 149. This solution does not need any additional 

device but requires anchoring the ladder to a vertical support like a wall or a self-supported panel. This solution utilizes 

the gravity to keep the ladder at the folded configuration It is based on the fact that anchoring the side panel distributes 

the loads in a way that when a user steps on it the ladder tends to fold and to lock. The ladder so anchored once reached 

the blocked configuration, will tend to keep it as long as we apply a vertical force from the bottom directed upward. 

Another possible solution may be aimed to change a bit the pattern to angle the side faces and make them converge toward 

the base so that the forces transmitted to the side faces will point inward and will help keeping the ladder closed, however, 

this solution may fail with elastic panels and it would decrease the area of the footing making it less stable. 

 

Figure 148: possible systems to keep the ladder at the blocked state even under load. 

 

Figure 149: self-supporting ladder attached to a wall, it keeps the folded configuration by gravity. 

Another issue, raised by the physical simulations, was a problem encountered while folding the ladder caused by the 

well-known pop-up and pop-down problem that we already mentioned in 4.8.3. This problem is critical, and it may cause 

the one-DOF mechanism to fold incorrectly or even to jam or break. This problem is caused by the fact that the degree-4 
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vertices have two possible folding modes where the mountain/valley assignment changes. At completely flat state there 

is no way to know whether a crease will start folding as a valley or a mountain crease. And even if a single crease starts 

folding with a wrong assignment it will cause a jam in the mechanism. A possible solution may be, for example, shaping 

the wall in a way that it would be impossible to unfold completely the ladder. This would solve the problem because 

there are no bifurcations in the motion except at the unfolded state, thus skipping the unfolded state will exclude the 

critical points where pop-up and pop-down problems occur. Another solution may be using non-developable non-flat-

foldable vertices that skips the completely unfolded state94 making it impossible to change the pop-up or pop-down 

assignment. However, these solutions have been both excluded for portable ladder because not having a completely flat 

configuration would have compromised the portability and the stocking efficiency . This design, thus, is preferable for 

ladders with a small number of steps where the pop-up\pop-down assignment can be controlled manually.95 

6.3. Case Study - One-DOF, Developable, Non-Flat Rigid-

Foldable Chair96 

Designing an origami-like chair, presents some issues similar to the ones encountered while designing the ladder, like 

the rigid foldability, the DOF, the proportions, the thickness and stiffness of the panels, the centre of gravity and the 

equilibrium conditions, but in this case also the aesthetics and the ergonomics must be taken into account. For simpler 

designs, it is possible to modify directly the unfolded CP being able to foresee the folded result easily without necessarily 

using complex mathematical formulations, as we did for the ladder. However, while designing a piece of furniture, 

especially when there is ergonomics involved, it would be better for designers to develop a system to control the shape 

at the blocked configuration directly in three-dimensions, while preserving the developability, without necessarily 

needing to work on the unfolded CP. Nevertheless, modifying the folded state without losing the developability may 

not be trivial, because moving a single vertex of the model, without particular precautions, will change the planar angles 

summation at the vertex making the model no more developable instantly. Therefore, in the next sections, we show the 

workflow we followed that allowed us to realize a one-DOF developable rigid-foldable self-blocking chair working 

directly in three-dimensional space while preserving the developability of the unfolded planar CP. 

 Preliminary Paper Prototype 

In section 6.2.6 we saw that, if not correctly designed, a pattern may be not suitable to self-lock under certain loads 

conditions. For the ladder we solved that problem by glueing the side face to a wall so that we were able to achieve a 

result where once added loads on the steps, the faces tended to push one against the other making it block firmly; or we 

studied some other portable solutions involving additional locking systems like clips, hooks, and belts. However, to 

simplify the usability of the chair, we tried to avoid external locking systems by exploiting the kinematics of the pattern 

itself and the force of gravity making it self-lockable97. Thus, this time, we considered this necessity from the early 

stages, and, after a certain number of paper test prototypes, we found a solution that apparently was working as wanted. 

                                                           
 

94 Because a planar unfolded configuration does not exist into non-developable vertices. 
95 We are still working on the upgrading of this design and we are achieving interesting results using non-developable 

single-flat-foldable vertices. This topic may be a future publication of the author of this thesis. 
96 The chair design is also published into the paper “Designing Self-Blocking Systems with Non-Flat-Foldable Degree-4 

Vertices” written by the author of this thesis and Tomohiro Tachi, presented at the 7OSME (The 7th International 

Meeting on Origami in Science, Mathematics and Education). The meeting took place in Oxford between 5th and 7th 

September 2018. The paper is part of the results of the research carried out during the period abroad encouraged by 

the PhD course (Foschi & Tachi, 2018). 
97 We will show later that in the first full-size prototype this was not be possible, because we had to stabilise the chair 

with external locking systems. However, we still think that a perfect self-locking chair is possible with the right 

manufacturing process and selection of materials. 
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Figure 150: study models of the chair made with paper and cardboard. 

In Figure 150 there is a selection of some of the preliminary study models. However, those models were not returning 

the results we expected, because even with very small forces the paper bent and the chair collapsed. Thus, to test the 

behaviour with rigid faces, we digitalized the model (Figure 151) we tested its rigid kinematics by folding and unfolding 

it with the same algorithm we presented in 4.8.1, then we added loads on the front vertices while keeping the faces planar 

and rigid as we did for the ladder. The simulation confirmed that the chair is very stable under vertical loads as shown in 

Figure 152, and as more loads, we add as more it tends to tighten at blocked configuration. We also tested the structural 

stability under rotating torsional movement around the Z-axis through the centre of gravity, but as far as the faces remain 

rigid the digital model of the chair does not collapse. Nevertheless, without properly rigid panels this perfect rigid 

behaviour may fail, thus the prototyping phase and the testing phase with different materials and thicknesses are crucial. 

A more specific analysis about the collapsing conditions under certain stresses, considering elasticity, and precise analysis 

of deformations may also be useful, but we decided to skip these digital simulations and test the resistance and the elastic 

deformations directly on the physical full-scale prototype. 

 

Figure 151: the unfolding of the preliminary digitalized model of the chair. 

 

Figure 152: digital physical simulation of the chair under given loads; the more loads we add, the more the chair tighten at blocked 

configuration as far as the faces remain rigid. 
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 Thickening – “Double Line” Method 

 

Figure 153: design process of the chair, from the concept to the model with thick panels. 

To further enhance the ergonomics, to verify the stiffness and to correct the dimensioning of the chair we realized a 

prototype at human-scale. Thus, we converted the zero-thickness prototype to a thick prototype, and based on the 

experience with the ladder, we used the “Double line” method, which appeared to be the most suitable also for this 

application. The workflow we followed for thickening the chair is illustrated in Figure 15398. In “Double line” method 

we need to double the critical creases and some connected creases, and the first prototype of the chair had only two 

blocking vertices in the seat, with only two blocking creases. Thus, we doubled the two blocking creases and we solved 

the two blocking vertices by doubling also the crease that connects them. Even if in this case it is not crucial, we designed 

the two resulting vertices as flat foldable vertices. The back part did not need any double crease because none of its 

creases blocks and the only double crease shared with the seat is one of the boundary creases of the glued faces, thus it 

is sufficient to offset that crease toward the unglued face to be able to not interfere with the back part. After doubled the 

creases, we refolded the model matching the original maximum fold angle of the model without double creases, and we 

added thickness to the panels. The maximum thickness of the panels that we can use without intersecting the panels, is 

half the distance between the blocking faces99. However, the offset distance of the doubled creases in the CP does not 

correspond to the distance of the faces when doubled the creases100, as shown in Figure 154. Because of that, in order 

to calculate the offset distance, given the thickness of the panels, we need to calculate or measure the fold angles of the 

two doubled creases101 (Figure 155) and apply the simple trigonometry formulations reported below. 

 

                                                           
 

98 Even if it is possible to fold the chair from a single sheet of paper, we divided it in two pieces, one for the back and 

one for the seat, attached together by gluing the bottom three faces. To make it with just one sheet we can flip the seat 

upside down and stitch the bottom edges which will become a single linear mountain crease.  
99 Which are now spaced due to the added double lines, thus there is room for adding thickness. 
100 Unless both the fold angles of the doubled creases are equal to 90°. 
101 Because the maximum fold angles of the doubled creases depend on the two new internal vertices, even if it is not 

crucial it is suggested to use flat-foldable vertices to simplify the formulations needed to calculate the fold angles 

starting from the unfolded CP (crease pattern). Although in our case we preferred to measure the angles directly from 

the folded three-dimensional model instead of calculating them. 
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Figure 154: changing the offset of the double lines changes the space between the blocking faces. 

 

 

Figure 155: section A and B, and general notation. 

Apply the following formulation to calculate the offset distance 𝑑 given the thickness of the panels 
ℎ

2
 and the fold angles 

𝜌1 and  𝜌2: 

𝑑 =
ℎ

𝑠𝑖𝑛 𝑎
 (44) 

Where: 

a = 180°− 𝜌2 

h = 2 × thickness of the panel  

d = double line offset distance 

 

Once doubled the critical creases with the correct offset, we thickened the panels and tapered them. The tapering angle 

is given by half the fold angle at blocked state. The preliminary prototype shown in Figure 156 has been fabricated by 

3D-printing the tapered panels that we glued to a sheet of plastic film (Tyvek). Subsequently, we glued the bottom three 

faces of the seat and the back. After verified the correct behaviour of the small-scale model, we realized a prototype at 

human-scale with a plastic sandwich panel with a thickness of 9 mm, that we folded and cut with CNC machine. 
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Figure 156: one-DOF thick rigid non-flat-foldable developable chair, prototype. 

 Blocked Degree-4 Vertex – From a Non-Developable Corner of 3 Faces 

The tests we made on human-sized prototype highlighted some issues about the ergonomics, the weight, the 

portability, the stiffness and the size. We started correcting all these problems by re-modelling the zero-thickness digital 

model starting from the blocking vertices. To enhance the stiffness of the seat, we decided to change the pattern of the 

structure on the front making all the four vertices of the seat blocking at the same time, to do so we had to develop a 

method to work directly on the three-dimensional model while preserving the developability of the pattern. 

The method we propose here is based on graphical constructions and a few trivial algebraic calculations. This method 

allows the designer to transform any non-developable corner of three faces into a developable degree-4 non-flat-foldable 

vertex. In this way, the designer can work directly on the three-dimensional folded model instead of working only on 

the unfolded CP. This method uses a zero-thickness mesh with planar faces, thus the thickness of the panels is not 

considered yet. 

Any three-faces non-developable corner can be developed by cutting along any of the three edges splitting two faces. 

Thus, when we develop it, a gap will form between the two split faces. 

Because we want to make it developable, we must fill that gap by extending one of the two split faces matching the 

bisector of the gap and adding an additional face in the remaining empty angle. Once refolded the three-faces corner the 

added face and the extended face will exceed outside the corner along the same plane of the extended faces. For each 

edge, there are only two possible directions to which the exceeding part can be oriented. Thus, the possible developable 

degree-4 single vertex patterns, into which any three-faces corner can be transformed, are six in total as shown in Figure 

157. 

 

Figure 157: on the left: all the possible developments of the same three-faces corner cutting along the 3 edges; on the right: all the 

possible degree-4 single vertex patterns without cuts. 

To transform any non-developable corner of three faces into a developable degree-4 vertex by graphical approach, 

apply the following steps. (1) Chose the edge to be cut, of a given three-faces three-dimensional corner (three possible 

choices). (2) Extend one of the faces adjacent to the chosen edge (two possible choices). (3) Measure the total angle at 

the corner of the 3 starting faces, subtract that angle to 360°, and divide the result by two. (4) Draw a reference line 

along the chosen edge. (5) Rotate the reference line around the corner of the calculated angle (the rotation happens in 

the same plane of the extended face, with the centre of rotation in the corner). (6) Cut the extended face with the rotated 

reference line. (7) Draw an overlapped triangle on the outside triangular extrusion to close the loop of 4 faces. (8) This 

poly-surface made by 4 faces can now be developed in-plane without ripping, stretching or bending it. The proposed 

method has been implemented using Grasshopper (Rutten, n.d.) and the full definition can be consulted in Appendix 
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D.1. Applying this method to differently connected vertices allows the designer to obtain a CP where different multiple 

vertices block exactly at the same time. 

 Adjusting Shape and Dimensions to Improve ergonomics and Stability 

 

Figure 158: designing the chair seat with 4 symmetric degree-4 self-blocking vertices. 

The method explained in the previous section (6.3.3) comes in handy to redesign the chair seat. Given that the chair has 

mirror symmetry, we focused only on one half of it, modelling only two of the four vertices of the seat as shown in Figure 

158. The dimensions, the shape and the global proportions of the three-dimensional zero-thickness model were corrected 

according to the problems highlighted by the prototype at human-size. After redesigned all the four corners of the seat as 

blocking vertices, the perimeter of the pattern was not rectangular, so with minor additional tweaking, we were able to 

restore the rectangular perimeter of the CP as shown in Figure 159 without losing the blocking four vertices. Lastly, we 

added some details like the hole for the handle, and the curve cuts for the armrests and we re-applied the thickening 

method based on “Double line” technique explained in 6.3.2.  

 

Figure 159: Improved version of the foldable chair, all the degree-4 vertices of the seat block at the same time, and the perimeter of 

the unfolded CP is rectangular. 
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 Human-Size Prototype of the Chair - Critical Observations 

 

Figure 160: corrected design with better size, weight and ergonomics. 

In Figure 160 we reported the final digital model which was subsequently produced by Kawakami Sangyo company 

by CNC cutting and attaching two plastic sandwich boards that they call “Plaperl”. This sandwich panel consists of two 

plastic boards with vacuum-formed cylinder in between. It has excellent rigidity and lightweight and it is made of 

polyolefin that does not create toxic gases such as hydrogen chloride and dioxin. Thus, it is environmentally friendly 

and excellent in recycling 102. However, this material may not be the optimal choice for what concerns the aesthetics, 

because once creased or cut it exposes the inside core which is not very appealing. A close-up picture of exposed inside 

core of this material is shown in Figure 161. The final physical prototype at human-scale is shown in Figure 162 and 

Figure 163 

 

Figure 161: detail of a section of the full-size prototype of the chair; to temporarily solve the limitations of the CNC machine, the 

company decided to take off one of the two protective layers to loosen up the hinges and partially solve a problem caused by the 

limited maximum angle of cut, when in use this area will be occluded to the view. 

                                                           
 

102 http://www.putiputi.co.jp/en/ 
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Figure 162: unfolded and folded chair prototype at human-scale. 

 

Figure 163: chair prototype in use. 

The human-size prototype works almost as expected, but it has some critical points that should be studied further, 

discussed and improved. We report below some observations about the human-scale prototype that were also possible 

thanks to the comments of the users that examined the product103. 

- It has a unique original look that exposes the production process and folding function without losing the ergonomic 

shape and its elegant attractive simplicity. However, the sandwich panel exposes the core section at the edges of 

the panels, and in some other areas, which is acceptable for study experimental models or temporary use, but not 

for a final product and long-term use. The research of a better material is still in progress, we are thinking to use a 

semi-rigid felt-based material which is light enough, comfortable, but still rigid, easy to crease and durable even 

if folded and unfolded several times. 

- The structural stability of the chair at folded state is satisfactory, it has no tendency of instability in rotational 

movement around the vertical axis, but when loaded it tends to generate a local buckling at the midpoint of the 

front mountain fold in the seat. We expected this kind of elastic/plastic deformations in some areas of the chair, 

                                                           
 

103 In particular these observations where possible thanks to Prof. Yoshinobu Miyamoto who reviewed carefully the 

thesis and the chair. 
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the prototype was also made to verify this kind of problems in all day use. To solve it we could use a thicker panel 

for the seat or add a reinforced ribbon where the deformations occur104. 

- The minimal thickness when unfolded is remarkable, however, the overall dimension at flat state is 

three times larger than a typical foldable chair with armrests. To solve this problem the pattern may be 

improved by adding one or more transversal creases that activate only at flat state to be able to fold it 

in half once flattened. An additional crease in the middle may help to avoid the buckling effect 

mentioned earlier, however, it may also compromise the stiffens at folded state, more tests are needed 

before drawing any conclusions. 

- The panels used are not perfectly rigid, thus the bending of the faces causes the chair to not behave like 

a perfect rigid one-DOF mechanism. Unfortunately, we have no examples of realized origami 

mechanisms that behave like perfect one-DOF rigid mechanisms as in the simulations, thus a non-

perfect rigid behaviour was expected. Filipov, Tachi and Paulino studied an approach to improve the 

preservation of rigidity during folding and unfolding by over-constraining the faces, glueing more 

folded sheets together with particular orientations to counterbalance the dynamic deformations 

(Filipov, Tachi, & Paulino, 2015). However, this approach, for now, has been only tested on tubular 

structures, which are not comparable to the chair at its actual version. Nevertheless, in this project, there 

are a small number of internal vertices, and the actuation of the folding and unfolding can be easily 

helped by the user even if it is not a perfect rigid one-DOF mechanism. Thus, we considered acceptable 

a non-perfect rigid behaviour for now. In addition, the chosen material, and the manufacturing process 

are not optimal yet, thus improving these points would probably improve also the overall kinematics of 

the chair. 

- Residual deformation tends to open the chair at flat state. This problem is probably also solvable 

changing the material, however, the residual deformation in this type of foldable furniture can be 

considered as an advantage because the memory of the material helps to avoid pop-up and pop-down 

problems at the beginning of the folding phase. We added a clip and a belt to keep the model flat, the 

same belt is used to stabilize the chair at the folded configuration 

- Wrong cut angles make the adjacent panels to push one against each other causing a resistance when 

almost reached the folded configuration. This is a crucial problem, the tapering of the panels is strictly 

related to the fold angle at folded configuration, thus a wrong tapering angle may cause instability, or 

it may cause the mechanism to block before reaching the final configuration. Fortunately, even if the 

CNC machine used is not designed to cut at any angle, we were able to achieve a satisfactory result 

exploiting the elasticity of the material. However, there is still room of improvement, because the 

pushing panels causes the chair to hardly keep the folded configuration and it causes a misalignment of 

some panels (especially in the armrests), we solved this problem by adding external locking devices as 

we did for the ladder design, which help to stabilize and lock the chair at the correct folded 

configuration. 
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104 To prevent, or at least limit, the occurrence of this kind of problems also to the first prototype the chair could have 

been modeled in advance with rigid architectural materials in 3D software such as Inventor or Fusion360. 
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Conclusions 

As a first step into the field of origami applied to architecture and industrial design, we built a catalogue of projects 

and designs inspired by this universal art. This analysis confirmed that origami is often taken as a reference in 

architecture, furniture, manufacturing and fashion. Nevertheless, especially in the large-scale architectural projects, we 

observed that it is rarely used with functional intents. This may be caused by four main reasons: the lack of digital tools 

specifically designed for origami modelling; the fact that designing with origami is hard; the lack of specialized 

workforce that can build origami-like structures at architectonic scale; and the fact that kinetic architecture has higher 

costs of realization and maintenance than static architecture. 

We focused on trying to solve the former two problems, which are a matter of drawing with the tools of descriptive 

geometry. Because origami has endless possibilities, and the available applications to design origami are limited in 

terms of design freedom, we aimed to extend the available tools without constraining them into a predefined set of new 

commands or into an application that performed a set of limited tasks. Thus, the new tools that we presented are in the 

form of a collection of original algorithms, procedures, examples and case studies that the designers can use as starting 

points or as references for their projects. These algorithms should help designers to understand what a good practice 

could be when designing with origami that requires to control shape and motion at the same time. To do that, we 

extensively investigated three main topics: solving the kinematics of given patterns, defining procedures to design a 

pattern working directly on the three-dimensional folded shape guaranteeing its developability, and solving some 

problems that may arise from the fabrication phase. 

We studied these topics with the synthetic approach, which is the approach usually used by architects and designers, 

and which is the counterpart of the analytical approach. In most of the cases involving designing with origami, the 

synthetic method is highly preferable to the analytical  method because it permits to visualise, and thus understand better 

procedures and results. Furthermore, it is easier to be used by who do not have a background in mathematics or computer 

science and, at the same time, we believe (supported by ancient and recent thinkers) that, in some cases, it has the same 

power and dignity of the analytical method. Therefore, it can be used not only as a visualization tool but also as a 

researching tool. To study and present the procedures solved with the synthetic method, we used Grasshopper (and 

relative add-ons), because it is one of the most used tools that architects and designers already use for parametric and 

computation modelling. Specific applications for designing origami exist, and we studied, used and reviewed most of 

them, but they usually absolve specific tasks that limit the design freedom. Contrariwise, with the parametrical approach, 

the possibilities are practically endless, and we can integrate the origami model directly into the environment where it 

is applied. In this way, we can directly extract pieces of information from other objects, like the distance from other 

buildings, the proportions and shape of the structure, the position of the sun and the direction of the light, the length of 

anchoring cables or support rails, and use them as design constraints or as references and inputs of our generative 

algorithms. We also highlighted the importance of working with software already used by professionals, because 

limiting the file conversions between different applications helps decreasing problems like incompatibility and data loss 

that may slow down or even obstruct the working process.  

Before starting working on these topics, we put some effort into defining some fundamental aspects of origami theory 

that everyone who wants to approach this field should know. The fundamental aspects of origami that we carefully 

defined are the fold angle, the developability, the degree of freedom, the rigid-foldability, the flat-foldability and the 

non-flat-foldability. We reported the textual definition and the known algebraic formulations (where present and 

needed) of each subject, clarifying their meaning for a clearer and smoothing reading of the following chapters. These 

definitions are not only to be considered as an introductory part, but they were useful to carry out the comparison 

between the analytical algebraic method and the synthetic method. While studying known problems we also developed 

a new algebraic simplified approach that solves the problem of identifying the blocking crease and relative fold angles 

at blocked state in a non-flat-foldable degree-4 single vertex. This discovery was an original contribution for the study 

of the degree-4 non-flat-foldable vertices. 

With these premises, we made a catalogue of algorithms aimed to generate and solve the kinematics of specific rigid-

foldable patterns, starting from easiest cases (patterns with a single crease) up to more complex cases (patterns with 

multiple internal degree>4 vertices). These algorithms should help the designers solving the kinematics of the  most 

known and useful patterns that they may want to use in their projects while designing kinetic structures inspired by 

origami. Subsequently, we verified the validity, robustness and usefulness of the presented catalogue of generative 

algorithms by exemplifying their use into possible design workflows of buildings, furniture and objects, reproducing 

some existing projects, choosing them among the ones that we collected. We used parametrical strategies for modifying 

the output folded shapes and obtaining new shapes and looks. The main purpose of these workflows was not to solve 
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the kinematics of the patterns, but to design a specific CP from some given framework conditions or reference shapes 

rails and structures, by following precise constructive procedures that guaranteed the generation of a folded developable 

surface.  

Lastly, we focused on finding out which are the main problems that could arise from fabrication and how to solve them. 

We described the constructive processes of two original projects: a foldable chair and a foldable ladder. We presented 

them from start to finish describing carefully every generative step, from the idea to the prototyping, passing from the 

study of kinematics, stability, flexibility, anchoring, locking and thickening. We studied and tested many different 

thickening known methods, and we concluded that, for our cases, the “Double line” method by Tachi and Hull was the 

most efficient and versatile. It consists into doubling the critical creases (the blocking crease or creases, and one or more 

adjacent crease if needed) at every internal vertex and solving the intersections of the newly generated creases by making 

a closed loop of new creases that generates only flat-foldable degree-4 vertices. This method has three main 

characteristics. It guarantees material continuity without the need of adding holes at internal vertices and without needing 

any assembling. It preserves the original kinematics of the faces of the original zero-thickness pattern. Furthermore, it lies 

on the same plane when unfolded and all the creases can be marked by half cutting, carving or stamping generating 

grooves with specific tapering angles on the same side of the panel. For these reasons, the pattern, that results by applying 

the double line method, is easier to fabricate compared to other thickening methods, with automated processes like milling 

(with CNC machines) or folding (with folding machines). We highlighted the importance of designing by comparing the 

physical paper prototype with the digital model because both of them approximate some aspects of the final thick-panels 

prototype. Both the physical and the digital models are not self-sufficient, and we must always compare them to limit the 

risk of misinterpretation and bad designing. 

Outlook 

Future works may focus on non-developable degree-4 vertices. Their characteristic of being single-flat-foldable or 

double-flat-foldable has not been extensively studied yet. It may open new possibilities to solve the pop-up and pop-down 

problem in one-DOF mechanisms. At the same time, degree-4 non-developable vertices can preserve or even improve the 

compactness of the folded and unfolded pattern while still having a self-blocking configuration. Both the ladder and the 

chair designs could benefit from this type of vertices. The improvement of the chair and the ladder will probably be a 

future work of the author. In addition, some companies have demonstrated interest to produce them for commercial 

purposes. Furthermore, it may be challenging and inspiring to further develop the field of responsive folded surfaces, as 

we did not explore it in depth in this thesis, and it is a major topic in the field of architecture. Another interesting topic 

worthy of study is the implementation of accurate elastic deformations into the virtual simulations. We could implement 

it into Grasshopper (and relative plugs-ins like Karamba) or other software like Fusion 360, Merlin2 and Inventor. 

 

In conclusion, our wish is that this thesis could help developing new origami-related projects more efficiently and, could 

inspire researchers who are just beginning their journey into this interesting scientific and artistic field. 
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Appendix A.  

Definitions and Theorems – Generative 

Algorithms 

In this appendix are listed all the generative algorithms of the algorithms explained in CHAPTER III. 

 

 Flat-Foldable Degree-4 Single Vertex - Animation with 

Mathematical Formulations 
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 Flat-Foldable Degree-4 Single Vertex – Reciprocal 

Diagram Analysis as an Alternative Animation Method 
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 Non-Flat Foldable Degree-4 Single Vertex Pattern 

Analysis and Animation with Mathematical 

Formulations 
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 Identification of the First Blocking Crease in a 

Developable Degree-4 Vertex 
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Appendix B.  

Constructive Methods for Solving the 

Kinematics of Origami – Generative 

Algorithms  

The present appendix contains all the generative algorithms explained in CHAPTER IV, some of them are also inserted 

inside the text of the thesis, others appear for the first time in this appendix. 

 

 Single Linear Crease Between Equal Rectangular 

Faces, Two Edges Slide on Construction Plane – 

Intersecting Circles 
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 Single Linear Crease Between Asymmetric 

Rectangular Faces, Two Edges Slide on Construction 

Plane – Intersecting Circles 
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 Single Linear Crease Between Rectangular Faces, 

Crease on Construction Plane – Varying Fold Angle 

 

 Single Linear Crease Between Triangular Faces, 

Crease on Construction Plane – Varying Fold Angle 
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 Single Linear Crease Between Triangular Faces, Two 

Edges Slide on Construction Plane – Intersecting 

Circles 

 

 Single Linear Crease Between Trapezoidal Faces, Two 

Edges Slide on the Construction Plane – Intersecting 

Circles 
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 Straight Accordion – Array of “Single Linear Crease 

Between Rectangular Faces” Molecules 

 

 Straight Accordion Sliding on a Rail – Intersecting 

Circles 
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 Straight Accordion on a Rail with Non-Uniform Fold 

Angle Distribution – Intersecting Circles and “Graph 

Mapper” 
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 Accordion on Two Circular Rails – Intersecting Circles 
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 Triangulated Accordion – Joining Multiple “Single 

Linear Crease Between Triangular Faces” Molecules 

 

 

 Symmetric Reverse Fold – Reflecting a Single Linear 

Crease 
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 Asymmetric Reverse Fold – Reflection and Collision 

Detection 
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 Generic Degree-4 Vertex – Intersecting Cones 
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 Joining “Symmetric Reverse Fold” Molecules – 

Critical Observations About Global Rigid-Flat-

Foldability 

 

 

 Joining “Asymmetric Reverse Fold” Molecules 
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 Reverse Fold on Triangulated Accordion – Joining 

“Symmetric Reverse Fold” Molecules 
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 The Miura Pattern – Planar Rectangular Array of 

“Symmetric Reverse Fold” Molecules – Intersecting 

Circle with Plane of Symmetry 
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 The sink fold – Reflecting the tip of a degree-4 vertex 
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 Degree>4 Vertices – Physical Simulation 
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Appendix C.  

Pattern Design from a Given Shape – 

Generative Algorithms 

In the present Appendix, we reported all the generative algorithm shown in CHAPTER V 
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 Lampshade – Vertices Extrusion and Reflection 
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 Folded Facade – Vertices Extrusion from Reference 

Curved Rails 
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 Building Envelope – Reflection of a Creased 

Developable Surface 
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 Curve-Folded Table 

 Reflection of a Developable Curved Surface 
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 Discretization of the Curved Crease  
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 Conformable Corrugated Suspended Ceiling 

 Conformation of a Rigid Creased Surface to a Curved Surface 
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 Conformation of a Flexible Miura-Ori to a Curved Surface 
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 Optimization of Supporting Cables and Anchor Points 
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 Changing shape to the Surface - Adjusting Cables Lengths 
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Appendix D.  

Fabrication-aimed designs – Generative 

algorithms 

In this appendix, we reported all the generative algorithms presented in CHAPTER VI. 
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 Blocked Degree-4 Vertex – From a Non-Developable 

Corner of 3 Faces 
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Appendix E. Glossary 

Accordion: 
A sequence of alternated mountain and valley creases. 

Algorithm: 
A process or a set of rules to be followed to reach an expected result.  

Array: 
Collection of elements values or variables identified by an index. 

Asymmetric reverse fold: 
A reverse fold which is not flat-foldable. 

Base: 
A folded geometrical shape that has a structure which simplifies the desired subject. 

Blocking crease: 
The crease that hit 180° first in a pattern and arrests the motion of the whole mechanism. 

They can be more than one (e.g. in flat-foldable patterns all the creases hit 180° at the 

same time). 

Boolean value: 
A value which is “1” or “0” or reciprocally “True” or “False”. 

Box pleating: 
A folding technique which allows only the use of creases multiple of 45°, they are usually 

built on a grid. 

B-rep: 
B-rep stands for “Boundary representation”. In solid modelling and computer-aided 

design, it represents a collection of connected surfaces which defines the boundary 

between solid and non-solid. 

Chaotic type: 
It is a family of folded surfaces which has a crease pattern characterized by an irregular 

mesh of creases. 

Circle packing: 
Placing circles on a surface so that they do not overlap. 

Circle river method: 
A folding technique that constructs the crease pattern by packing non-overlapping circles 

and rivers into the surface which is usually a square. 

Closed sink fold: 
A sink fold which locks after folding. It usually cannot be performed rigidly, it needs to 

exploit the paper flexibility often crumpling or forcing the point while pushing it inside. 

Cluster: 
A group of items nested into a single new item. 

Collapse: 
This term describes the action of folding a crease pattern all at once to form the folded 

base. 

Corrugation: 
A particular type of tessellation that has no triple or more layers overlapped. The entire 

original surface of the paper is usually visible. The most common corrugations are in 

form of a wave with alternated peaks and valley. 

CP: 
Crease Pattern. 

Crease: 
The mark that appears on the paper after folding and unfolding it. 

Crease assignment: 
Determination if a crease is mountain or valley. 

Crease pattern: 

 

The scheme of creases on a flat sheet that is necessary to fold a particular base. 
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Crimp fold: 
A sequence of symmetric valley and mountain creases with respects of a central pre-

existing crease. 

Curved fold: 
A fold that starts from a curved crease and exploits the flexibility of the material to 

configure the surface into a curved shape. It can be performed only with a flexible sheet 

of material unless the ruling is predetermined, thus the curve has to be discretized into a 

polygonal chain. 

Degree-4 vertex: 
A point inside a crease pattern where only four creases meet. 

Degree>4 vertex: 
A point inside a crease pattern where more than four creases meet. 

Developable: 
That can be unrolled/unfolded on a plane. 

Dihedral angle: 
The angle between two faces adjacent to the same crease, it is defined as the angle 

between the normal vectors of the faces. 

DOF: 
Degree of freedom. 

Edge: 
A single linear segment which is on the perimeter of a face or a sheet of paper. 

Flap: 
A region paper which is usually attached to the rest of the base by a single edge. It can be 

composed of one or more layer of folded paper. 

Flat-foldable: 
A pattern that can be folded in the plane. 

.fold: 
Acronym of “Flexible Origami List Data-structure” is a file format (with extension .fold) 

for describing origami models with meshes. Developed by E. D. Demaine, J. S. Ku and 

R. J. Lang. 

Fold angle: 
The angle between the limbs of a fold. Usually, it is measured by measuring the angle 

between the normal vectors of the faces adjacent to the crease. 

Folding mode: 
Way to rigid-fold a pattern with a specific mountain/valley assignment. Any pattern 

usually has more than one folding mode. 

Generative algorithm 
A sequence of operations that generates a particular result 

Generatrix: 
A moving point, line, or surface forming a line, surface, or solid. 

Grafting: 
Modifying a crease pattern by slicing it along existing creases and adding a strip of new 

paper in order to add new features. 

Hex pleating: 
A design technique similar to box pleating but that uses only angles multiple of 30°. It 

usually starts from a grid made by equilateral triangles. 

Hinge: 
A movable joint which connects adjacent faces or flaps. 

Huzita-Justin axioms: 
A set of rules related to the mathematical principles of paper folding. They explain the 

operations that can be made while folding a piece of paper in the plane. 

Inside reverse fold: 
A type of reverse fold which changes the direction of the tip of a flap keeping its layers 

inside the rest of the flap. 

List: 
Several connected items that are written consecutively one below the other. 
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Macro-molecule: 
A group of molecules. 

Miura pattern: 
Or Miura ori. It is a pattern made by rhomboid faces. It is famous to be one of the easiest 

one-DOF corrugations. It has been used by the engineer Koryo Miura to optimize the 

packing of solar panels for space travels. 

Molecule: 
Part of a crease pattern that can be attached to another molecule by matching the outer 

edges and vertices of the crease pattern with corresponding edges and vertices of a 

different molecule. 

Mountain fold: 
A crease that is convex from the observer point of view. It is usually drawn with a red 

dot-dot-dash line or dash-dotted line. 

Node: 
The endpoint of a line in a scheme structured as a tree. In Grasshopper, the nodes are the 

components which perform specific operations that can be connected one to each other 

with wires. 

Nodal definition: 
A group of linked nodes that make an algorithm in Grasshopper. Once set off, these 

definitions perform specific operations in a digital environment. 

Non-developable: 
That cannot be unrolled/unfolded on a plane. 

Non-flat-foldable: 
A pattern that can not be folded in the plane. 

Nurbs: 
Acronym for “Non-uniform rational basis spline”. It is a mathematical model commonly 

used in computer graphics for generating and representing curves and surfaces. 

Offset base: 
A base with a shifted crease pattern compared with the traditional. The shifting preserves 

the angle between the creases and it creates space in some location of the crease pattern 

which can be used to add features. 

Origami: 
Japanese word formed by “Ori” meaning “Folding” and “Kami” meaning “Paper”. It is 

the art of folding paper usually performed without cutting or glueing. It is usually 

associated with Japanese culture. 

Open sink fold: 
A sink fold which does not lock after folding. It can usually be performed without flexing 

or crumpling the paper. 

Outside reverse fold: 
A type of reverse fold which changes the direction of the tip of a flap keeping its layers 

outside the rest of the flap. 

Petal fold: 
A combination of two squash folds narrowed to form a rhomboid shape. It is used to fold 

the petals of the traditional iris flower. 

Planar curved fold: 
A curved fold that lies on a plane. It is usually performed by reflecting a developable 

ruled surface with respect of a slicing plane. 

Pleat fold: 
A sequence of alternated mountain and valley creases through one or more layers of 

paper. 

Pre-creasing: 
Folding and unfolding a crease before collapsing it. It is preferred to perform a pre-

creasing before complex steps. 

Rabbit-ear fold: 
A type of folding that makes a flap from a triangular face by folding along the three 

bisectors of the triangle. 

Reciprocal diagram: 
A graphical tool for understanding and designing structural systems. In origami is used 

to investigate the first order approximation of rigid origami and other kinetic properties. 

Recursive tessellations: 
Is a particular type of tessellation where the same folds are repeated in a smaller scale 

following the principles of fractals figures. (The hydrangea of Fujimoto is one of the most 

famous). 

Reverse fold: 
A type of fold that changes the direction of a flap by partially inverting the direction of 

the central mountain or valley crease. 
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Rigid-foldable: 
Something that is foldable without flexing or stretching the faces. 

River: 
A curved or rectangular constant-width region of paper that space the flaps in a crease 

pattern. 

Self-arrests: 
When a rigid origami structure reaches a state where at least one crease hit a fold angle 

of 180°, thus the two adjacent faces are colliding and co-planar. 

Self-blocks: 
See “Self-arrests”. 

Semi-pre-folded: 
It is said about origami patterns which are configured in an intermediate folding state 

which is not unfolded nor completely folded. 

Shape-oriented type: 
It is a family of folded surfaces which has a crease pattern characterized by creases 

arranged specifically to make a particularly shaped figure. 

Shaping: 
The act of sculpting the abstract geometric base to form the finished model. In shaping 

sometimes, the paper is stretched or folded with free-form or curved creases. 

Single linear crease: 
A non-curving crease that does not intersect any other crease. 

Sink fold: 
A fold performed on an internal vertex which forms a pointy flap. It consists in mirroring 

the point inside the model, by inverting the mountain valley assignment of the last tip of 

the point and pushing it inside while collapsing it. 

Squash fold: 
A type of fold where a single multi-layered-flap is opened and its layers are spread and 

flattened (usually) symmetrically. 

Structured type: 
It is a family of folded surfaces which has a crease pattern characterized by groups of 

equal tiles. 

Swivel fold: 
The asymmetric version of the squash fold, where usually there is a pivot point on one of 

the creases, around which the whole flap rotates while being spread and flattened. 

Tessellation: 
It is a particular type of origami made by equal molecules that can be spread in all the 

directions, the limit is only the dimension of the paper used. Tessellations are usually 

exhibited showing the front and back side or with backlight. 

Tile: 
A portion of a crease pattern that can be assembled into crease patterns by matching 

circles and river boundaries. 

Tree structure: 
The branched structure that contains lists or items at different hierarchy levels. 

Triangulated accordion: 
An accordion where all the quadrangular faces are divided along the diagonals and all the 

creases are redefined with an alternated mountain/valley assignment. 

Unfold: 
Open a folded model obtaining, as a result, a creased sheet of paper. 

Unfoldable: 
Something that cannot be folded. 

Unsink: 
Removing a sink fold. 

Valley fold: 
A crease that is concave from the observer point of view. It is usually drawn with a blue 

dashed line. 

Vertex: 
A point in a crease pattern where more than one crease converges. 

Wire: 
A line, thread or string that connects two nodes. In Grasshopper, wires are used to input 

into one or more nodes the outputs of other nodes. They move data in form of single 

items, lists, or trees. 
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