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Abstract
In the present thesis I have described my research work in particle phenomenol-

ogy and cosmology, arising mainly from a class of string models called fibre inflation.
The work is presented as a merge of models. It is divided into two parts. In the
first part, inflation from string theory, we show the construction of explicit exam-
ples of fibre inflation models which are globally embedded in type IIB orientifolds
with chiral matter on D7-branes and full closed string moduli stabilisation, which
has never been built before. For the second part, dark matter from string theory,
we present two independent models describing dark matter. One work shows how
a single-field string inflationary model, which allows the generation of primordial
black holes in the low mass region, can account for a significant fraction of the dark
matter abundance, while in the second one we present how stringy axions can be
used to described the 3.5 keV line observed in galaxy clusters.
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Preface

The history of our universe had been described for several decades. The appealing
to unveil the unknown or ask questions such as how do we got here? or what are
we made from? are natural and they have been wandering for hundreds of years.
Just to even find a glimmering look of how they could be solved is really exciting.
For that reason, we have focused so much work and resources to have a drop of that
‘glimmering true’. In order to do so, we have developed different tools and methods
to try to unravel all the mystery with the minimal amount of ambiguity.

Several years of theoretical research and experimental measurements [4, 5, 6] have
established the ΛCDM model as the standard model of cosmology. A few facts are
known about our Universe, in particular in the ΛCDM model the Universe is filled
with 68% of dark energy (DE), 27% of dark matter (DM), and only 5% of baryonic
mass (ordinary atoms) [7]. Despite the lack of knowledge an important fact, which is
well understood, is that our Universe is well-described by the Friedmann-Robertson-
Walker metric

ds2 = −dt2 + a2(t)dx2, (1)

where a(t) is the scale factor. In the Universe described by the ΛCDM model,
causal signal travels a finite distance between the time of the initial singularity and
the time of formation of the first neutral atoms. Although, it has been observed that
Cosmic Microwave Background (CMB) anisotropies have powerful correlations to
scale grater that this finite distance. Such correlation remains unexplained by this
model. In the beginning of the 1980s inflation was introduced to explain different
problems of the ΛCDM model, such as these possible correlations on large scales,
also known as the Horizon problem; together with the lack of explanation of the
overall homogeneity, isotropy, and flatness of the Universe [8, 9]. Inflation is an
early phase of a quasi-de Sitter evolution that drives the primordial Universe towards
these conditions. Quantum fluctuations during this period of exponential accelerated
expansion are the origin of all structures in the Universe [10, 11]. Many models
have been made trying to give a microscopic description of inflation, [12, 13, 14, 15]
but until today there has not been a definitive answer. The inflationary models
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constructed so far are mainly embedded in a low energy effective theory and are
based on the premise that a single field (or multi-field), called the inflaton, drives
the inflationary evolution. Two methods are generally used to build these models,
the ‘top-down’ and the ‘bottom-up’ approaches. In the ‘top-down’ approach one
starts with a completed theory in the ultraviolet (UV) and try to derive inflation
as a low energy consequence. In the case of the ‘bottom-up’ approach a low energy
theory is given and degrees of freedom are added in a controlled way to complete
the UV theory. In both cases a potential for the inflaton is generated or given. For
a single field inflation this potential has certain features. In particular, a flat region
and a global minimum.

The inflaton potential might suffer from fundamental problems such as insta-
bilities of the flat region due to extra quantum corrections. Therefore, the most
natural step is to embed inflation in a theory where the potential is protected by
the presence of symmetries against possible quantum corrections which can spoil
its flatness, a ‘top-down’ approach. An example of these theories is given by string
theory. String theory is the best candidate known so far to give a complete UV
description of the standard model of particle physics (SM) and general relativity
(GR). For physical consistency the theory needs to be formulated in 10 dimensions.
In order to make contact with the usual 4-dimensional physics that is testable in the
current labs like the Large Hadron Collider (LHC) in Switzerland, 6 out of those
10 dimensions need to be compactified. The 6 dimensional space is taken to be a
compact with a size usually of order ∼ (10−33 cm)6. Regrettably the 4-dimensional
physics that is generated will depend on the compact space. However, regardless of
the compact space, the presence of these extra-dimensions gives rise to several scalar
field uncharged by the SM, called moduli, that might play the role of the inflaton.

This thesis was created as a merge of models that try to give an explanation
to various puzzles inside the standard model of cosmology, using string theory as
the main playground for the solutions. Initially, we gave a basic introduction to
the concept needed to understand each one of the models. We explained the basics
aspects of the standard model of cosmology, together with a brief introduction of
inflation and dark matter. After that we reviewed some basic knowledge of string
compactification later used in the development of the models within this thesis.

The main text of this work is organized in two parts. The first part is dedi-
cated to inflation, and is called inflation from string theory. In this chapter, we
construct explicit examples of fibre inflation models which are globally embedded in
type IIB orientifolds with chiral matter on D7-branes and full closed string moduli
stabilisation. One of the interesting features this model is that is the first one to in-
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clude full moduli stabilisation with a chiral matter sector. The second part is called
dark matter from string theory. This section is divided into two works. The first
one is called primordial black holes from string inflation, where we described how
a single-field string inflationary model, which allows the generation of primordial
black holes in the low mass region, can account for a significant fraction of the dark
matter abundance. In the second one we show how axion like particles coming from
string compactifications can be used to described the 3.5 keV line observed in galaxy
clusters. The model described in this chapter explain the morphology of the 3.5 keV
signal and its non-observation in dwarf spheroidal galaxies, involving a 7 keV dark
matter particle decaying into a pair of ultra-light axions that convert into photons
in the magnetic field of the clusters.

Finally, we finish with an overall summary and conclusion of the thesis. We
include as well few appendices where we further developed some of the topics in
each chapter. This work is more than just a merge of models, is the unification of
two amazing areas of physics which for long time it was thought to be impossible
to put together. These areas are phenomenological cosmology and string theory. I
hope it is useful and easy to read.
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Chapter 1

Introduction

In this chapter we introduce some aspects needed for the development of the models
in this thesis. Initially, we give an brief summary of the standard model of cosmology
and its shortcomings, to give rise to the introduction of the period of inflationary
expansion of the Universe at early times, also called Inflation. We also give a brief
description of dark matter and its possible candidates. After we have finished with
the cosmological description we moved on to the review of the best candidate to
embed all these cosmological models, which is string theory. We give a short review
of string compatification and moduli stabilisation.

1.1 The standard model of cosmology

The standard model of cosmology was created by the combination of the standard
model of particle physics and general relativity describing gravity at the classical
level. In this section we focus in the description of the general relativity building
block. In general the dynamics of the space-time is described by a metric tensor
gµν . The equation of motion for the metric is derived by taking the variation of the
Einstein-Hilbert action

SEH =
M2

p

2

∫
d4x
√
−g R , (1.1)

with g = det(gµν) and R is the Ricci scalar. The coupling constant Mp is called the
reduced Mass Planck and is given by

Mp =
1√
8πG

' 2.4 · 1018 GeV , (1.2)
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where G is the universal gravitational constant. Taking the variation respect to the
metric of (1.1), we find the Einstein equations

Rµν −
1

2
Rgµν = 0 , (1.3)

with Rµν the Ricci tensor. The above equation is valid in absence of extra sources
in the action (1.1), when we have extra terms in the action, the equation (1.3) cease
to be homogeneous and can be written in general as

Rµν −
1

2
Rgµν = 8πGTµν , (1.4)

where Tµν is the energy-momentum tensor associated to the extra sources.

The standard model of cosmology assume the Universe started hot and dense
which adiabatically expands. The first assumption is that the space-time can be
described by the metric

ds2 = dt2 − a(t)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
. (1.5)

Also called the Friedamann-Robertson-Walker metric (FRW). This metric describes
a slicing of the space-time where the spatial section is re-scaled by the scale factor
a(t). The constant k takes the values k = {−1, 0, 1}, which represent a hyperbolic,
flat, and spherical spaces respectively. Basically, the dynamics of this model is
attached to the evolution of the scale factor. The form of the scale factor depends
on the source of energy which dominate the Universe at a given time. We can classify
the sources of energy mainly in three classes and these are: radiation, matter, and
dark energy associated to the Cosmological Constant Λ. Due to the form of the
metric (1.5) and the symmetries of the space-time we can write the equation (1.4)
in a perfect fluid form where

Tµν =


ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P

 , (1.6)

with P the pressure and ρ the energy density. Therefore, the general 10 equations
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reduce to just two equations

H2 =

(
ȧ

a

)2

=
8πG

3

[
ρ− 3 k

8πGa2

]
; (1.7)

Ḣ +H2 =
ä

a
= −4πG

3
(ρ+ 3P ) , (1.8)

where we have defined the Hubble parameter H = ȧ/a. The above equations are
also known as the Friedamann equations. Here the energy density ρ can be written
as ρ = ρradiation + ρmatter + ρΛ, where each term corresponds to the contribution of
each class of energy density mentioned before. Combining the equation (1.7) and
(1.8), we find the energy conservation law

dρ

dt
+ 3H(ρ+ P ) = 0 , (1.9)

which can also be found from the Bianchi identity ∇µTµν = 0. Assuming that the
equation of state takes the form

P = ωρ , (1.10)

where ω a constant, we can see from the equation (1.9) that

ρ ∝ a−3(1+ω) (1.11)

and

a(t) ∝

{
t

2
3(1+ω) , ω 6= −1

eHt , ω = −1
. (1.12)

The value of ω describe which class of energy density we have. For example, for
radiation ω = 1/3 which implies ρradiation ∝ a−4 and for matter ω = 0 having
ρmatter ∝ a−3.

Using (1.11) we can re-write the first Friendamann equation (1.7) in terms of the
current fraction of energy density

Ωi =
ρi
ρcr

, Ωcurv = − k

a2
0H

2
0

, (1.13)

where i = {matter, radiation,Λ}. Here, we have defined the critical energy density
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ρcr = 3
8πG

H2
0 = 5 · 10−6 GeV/cm3, then (1.7) is given by(

H

H0

)2

=

[
Ωmatter

(a0

a

)3

+ Ωradiation

(a0

a

)4

+ ΩΛ + Ωcurv

(a0

a

)2
]
. (1.14)

At present time we have
∑
i

Ωi + Ωcurv = 1. From the above equation we can ac-

tually deduce which energy density was dominating in a given period of time. For
example, it is clear that at early time, when a � a0, the radiation was domi-
nating the Universe. Subsequently a matter dominated era began around a time
tmatter ' 105 yrs. Finally, an epoch of dark energy, a period in which the contribu-
tion of the cosmological constant Λ dominates, started around a time tΛ ' 7 · 109

yrs. Although, the power corresponding to the curvature fraction is greater than
the one of dark energy this one is suppressed by experimental observation where
|Ωcurv| < 0.005. At the present time this fractions are given by [7]

Ωmatter ' 0.315 , Ωradiation ' 5 · 10−5 , ΩΛ ' 0.685 , and |Ωcurv| < 0.005 .(1.15)

The fraction corresponding to the matter can be divided into two classes

Ωbaryonic ' 0.045 and ΩDM ' 0.27. (1.16)

Here, Ωbaryonic correspond to the fraction of baryonic matter which include atoms of
any sort, and ΩDM correspond to the fraction of Dark Matter.

Although, the standard model of cosmology has been well tested, still it has
few problems specially related to initial conditions. The evolution of any dynamical
system is governed by its initial conditions. The Universe itself is consider a system,
where the matter is distributed homogeneously and isotropically on scales larger
than several megaparsecs. Therefore, it is natural to ask what were the initial
conditions that lead such homogeneity and isotropy.

In order to solve this question, we need to made few assumptions, such as [16]:

• In-homogeneity cannot be dissolved by expansion;

• Non-perturbative quantum gravity does not play any role at sub-Planckian
curvatures.

Once we have made these assumptions, we can try to characterize the initial condi-
tions. There are two independent sets that describe matter in our universe:

1. The spatial distribution of matter in the system that can be described by the
energy density ρ(x);
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2. The initial velocities of the distribution.

Trying to unveil the origin of these two independent sets, we find that they lead to
two very well-known problems of the standard model of cosmology. These are:

• The horizon problem. Let us assume that the Universe started at some time ti.
Then, the maximum distance travelled by light, also called particle horizon, is
given by

χp(t) =

∫ t

ti

dt′

a(t′)
=

∫ a

ai

da

Ha2
∼ a(1+3ω)/2 − a(1+3ω)/2

i , (1.17)

where we have used the equation (1.12). During the standard Big Bang evo-
lution, ä < 0 and the comoving Hubble radius (aH)−1 = (ȧ)−1 grows with
time. For values of ω > −1/3 we notice that the particle horizon grows in
time and is dominated by late times. This means that at every instant of
time new regions enter in causal contact. Therefore, If the Universe started
in a homogeneous state, they should look very different from one to another.
However, it has been observed that the Universe seems to be homogeneous on
scales that came in causal contact recently.

• The flatness problem. The Universe today appears to be extremely flat, with
|Ωcurv| < 0.005. Given the current content of matter it seems that in the early
times it was even closer to zero of the order ρ(ti)

ρcr
∼ 10−61. We can connect this

high fine-tuning of the initial density energy with the total energy of the system
(and clearly its velocity). We can see that for a given energy density distribu-
tion the initial Hubble velocities must be adjusted so that the huge negative
gravitational energy, associated to gravitational self-interaction, is compen-
sated by a huge positive kinetic energy to an order of 10−59%. Therefore,
an error exceeding this percentage implies: either the Universe re-collapses or
become empty too early.

Together with these fundamentals problems there exists other issues within the
standard model of cosmology. For example, the monopole problem which states
that topological defects such as monopoles would have been created in the early
universe. Since they are stable objects, they should be still present to date in such
a quantity that they would dominate the energy density of the universe, but still
they have not been observed. As well as the unexplained CMB anisotropies which
are small temperature fluctuations in the black body radiation left over from the
Big Bang. Therefore, we need to extend or propose a new model where all these
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problems might be solved. Here is where the introduction of a transient phase of
accelerated expansion arrive. This phase of the early Universe is known as Inflation.

1.2 Inflation

Nowadays Inflation has become a standard topic in cosmology books. We give a brief
review on this subject. Mainly we described single-field inflation, but this can be
easily be generalize in a multi-field case. For further reading we refer to [16, 17, 18].

As we mentioned in the previous section for values of ω > −1/3 the particle
horizon is dominated by contributions from late times. So, if we postulate that
the comoving Hubble radius was decreasing on time, the particle horizon would be
dominated by early times, it would give us an additional span of conformal time
between the initial singularity of the Big Bang and the creation of neutral atoms.
This imply that all points in the CMB originate from a causally connected region,
solving in principle the Horizon problem. The assumption of shrinking comoving
Hubble radius implies

d

dt
(aH)−1 = −1

a

[
Ḣ

H2
+ 1

]
< 0 ⇒ ε ≡ − Ḣ

H2
< 1. (1.18)

The definition of inflation can be stated as the period where the Hubble parameter
evolves slowly, ε < 1. Therefore, in the case where we have a de Sitter space (ε→ 0),
the space grows exponentially a(t) ∝ eHt. So, from the equation (1.12), we see that
this correspond to a period dominated by an equation of state with ω = −1. The
simplest example to generate such equation of state is given by the addition of a
single scalar field, φ called inflaton, on top a rather flat potential. This is realized
by the adding to the action (1.1), the following terms

Sφ =

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ− V (φ)

]
, (1.19)

where V (φ) is the scalar potential. For simplification, we will work in the units
where Mp = 1, and Mp will be appropriately restored when we discuss cosmological
applications. Assuming the scalar field is homogeneous φ(t,x) = φ(t), the equation
of motion can be written as

δSφ
δφ

=
1√
−g

∂µ
(√
−g gµν∂νφ

)
+
∂V (φ)

∂φ
= 0 ⇒ φ̈+ 3Hφ̇+

∂V (φ)

∂φ
= 0 ,(1.20)
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and the Friedamann equations can be written as

H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
, (1.21)

ä

a
= H2

(
1− φ̇2

H2

)
. (1.22)

If we assume a perfect fluid form, we can easily identify the energy density and the
pressure as

ρφ =
1

2
φ̇2 + V (φ) , (1.23)

Pφ =
1

2
φ̇2 − V (φ) . (1.24)

Then, we can see that the ω parameter can be written as

ωφ =
Pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.25)

An equation of state with ωφ ' −1, would require φ̇2 � V (φ), i.e. the potential
energy dominates the evolution of the scalar field, and the field ‘rolls slowly’. This
condition can be also written as

ε = − Ḣ

H2
∼ φ̇

V (φ)
� 1. (1.26)

If the friction is term in equation (1.20) is large enough then φ̇ ∼ 1
3H

∂V
∂φ

is an
attractor solution. To be in this trajectory we would need to satisfy

η = − φ̈

Hφ̇
� 1 . (1.27)

Both conditions (1.26) and (1.27) are called slow-roll conditions, and characterize
the well-known ‘slow-roll inflation’. Once we adapt the slow-roll solution, we can
express all parameter in terms of the scalar potential as

ε ' 1

2

(
∂φV

V

)2

� 1 , η ' (∂φφV )2

V
� 1 . (1.28)

As well we have that

H2 ' V

3
' const. , a ∼ eHt . (1.29)
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This period of accelerated expansion ends when ω cease to be -1, i.e. when ε ∼ η ∼ 1.
We have seen how we can solve the horizon problem creating this new period

before the Big Bang. However, how can we address the flatness problem? In order
to see this, we need to look at the energy density fraction of the curvature Ωcurv,
which is given by

Ωcurv = − k

a2H2
→ 0 during inflation. (1.30)

Therefore, if we start with a given value at the beginning of inflation, lets say
Ωcurv(ain) = 1, at the end of inflation is given by

Ωcurv(aend) = Ωcurv(ain)
a2
in

a2
end

∼ a2
in

a2
end

= e−2N , (1.31)

where N is the number of e-folding defined as N = log
(
aend
a

)
and it’s used as a clock

to measure the duration of inflation. So, if we observe that at the epoch of the Big
Bang Nucleosynthesis (BBN), period where the first nuclei were form, the fraction
is given by Ωcurv(aBBN) ∼ 10−18 and this epoch just started after inflation. The
duration of the accelerated expansion should last around 20 e-folds but this value
could change depending on the initial temperature of the Universe. In general if the
temperature is around the GUT scale (1016 GeV), inflation should last around 60
e-folds.

All the previous discussion was purely at the classical level and described a
uniform Universe, which is not what we observe. We still need to explain the tem-
perature anisotropies found in the CMB as well as try to explain the formation of
large scales structures. All these phenomena can be explained as consequences of
quantum fluctuations of the inflaton field δφ and the metric δgµν around the homo-
geneous background. These fluctuations have substantial amplitudes only on scales
close to the Planck length, but during the inflationary expansion they get stretched
to galactic scales with almost unchanged amplitudes. Therefore, inflation links the
large-scales structure with the microscopical aspects of the theory. Also we can give
a clean explanation and prediction for the CMB anisotropies tracing them through
the spectrum of these inhomogeneities. The most important measures of these fluc-
tuations are the power spectrum Pk and Ph, associated to the scalar and tensor
fluctuations respectively,

Pk = ∆2
R(k) , 〈RkRk′〉 = (2π)3δ(k + k′)

2π2

k3
∆2
R(k) ; (1.32)

Ph = ∆2
h(k) , 〈hk hk′〉 = (2π)3δ(k + k′)

π2

k3
∆2
h(k) , (1.33)
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where R is the comoving curvature perturbation and h represent the degrees of
freedom of the metric. Here, the subscript k denotes the Fourier mode expansion
of R and h. The explicit form of the dimensionless power spectrum in the slow-roll
approximation is given by

∆2
R(k) =

1

8π2

H4
∗

φ̇2
∗

, ∆2
h(k) = 2

(
H∗
π

)2

. (1.34)

Here the ∗ denotes the quantities are evaluated at horizon exit, i.e. when k = aH.
Fluctuations that are scale invariant would require ∆2

R(k) = constant. Therefore,
deviation of this can be measure by the spectral tilt

ns − 1 ≡ d ln ∆2
R

d ln k
. (1.35)

For vanishing slow-roll parameter we would have never ending inflationary epoch
and ns ≈ 1. Then, we expect a deviation of unity. In fact, the observed comological
data is given by [7]

Obs. constraints at k∗ = 0.05Mpc−1 with 68% CL
ns 0.9650± 0.0050
dns
d ln k

−0.009± 0.008

These observational constraints are important in order to construct a successful
model of inflation. Still inflation is a hypothesis but until now there has not been
a better explanation for the observed anisotropies of the Universe. In the section
1.4, we will introduce one of the possible playgrounds in which inflation could be
realized. Inflation give us a possible explanation of some of the problems within the
standard model of cosmology, however there is another unexplained puzzle in the
ΛCDM which is the origin of Dark Matter (DM).

1.3 Dark Matter

DM is one of the largest and gravitationally dominant components of the Universe.
Its origin, as we mentioned, is unknown. All the evidence for the existence of DM
and constraints on its nature come from astronomy. We can infer from the CMB and
large-scale structures that DM comprise around 27% of the density energy of the
Universe. The electromagnetic properties of DM are severely constrained, because
if dark matter had small electric charge, and either a small electric or magnetic
dipole moment, it would couple to the photon-baryon fluid before recombination,
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thus altering the sub-degree-scale features of the CMB as well as the matter power
spectrum.

DM is part of a new sector of physics. We expect that is self-interacting or just
interact with other new particles beyond the standard model (BSM). Even though
these new BSM particles just interact within the ‘hidden sector’ and have no coupling
with the SM, they might affect some astrophysical phenomena such as the structure
of DM halos observe in galaxy clusters [19].

There has been a lot of proposal for the origin of this new particle, we enumerate
few of the possible candidates as follows:

1. Weakly-interacting massive particles (WIMPs). This class of model
was originally introduced by Steigman & Turner [23]. The model assumes the
DM as a BSM particle, which is stable, initially in thermal equilibrium in the
early Universe, and decoupling as a non-relativistic species. An interesting
feature of the model is that it might make up for all DM in the Universe. If
WIMPs are in thermal bath in the early Universe with other particles, having
been born out of decays of the inflaton, then we can solve Boltzmann equa-
tions to find that WIMPs ‘freeze out’ at a comoving density that is inversely
proportional to the WIMP annihilation cross section σa. Unless decays are
important, this comoving number density is fixed for all future time. Using
dimensional analysis, the annihilation cross section should be σ ∝ α2/m2, with
α ∼ 0.01 and m the mass. Replacing this cross section into the early-Universe
Boltzmann equations, the comoving number density of WIMPs matches the
number density inferred from cosmological observations. This matching is
known as ‘the WIMP miracle’.

Due to the fact that WIMPs only interact gravitationally and weakly, they are
really difficult to detect. Basically, there exist two ways for their detection:

• Direct detection: This type of detection refers to observations of effects
of a WIMP-nucleus collision as the DM passes through a detector in
an Earth laboratory. There exist several techniques for this type of
detections, such as Cryogenic Crystal Detectors used in the Cryogenic
Dark Matter Search (CDMS), as well as Noble Gas Scintillators used by
XENON and LUX-ZEPLIN experiments [20, 21].

• Indirect detection. Unlike direct detection that focused in detection in
a laboratory, indirect detection focusses on locations where WIMP DM
is thought to be more present such as: in centres of galaxies and galaxy
clusters. Experiments essentially search for gamma rays excess, which are
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predicted by Compton scattering. Problems with this type of detection is
that the bounds will be model dependent. Experiments that have manage
to put some bounds on WIMP annihilation is the Fermi-LAT gamma ray
telescope [22].

2. QCD axion. Another candidate as DM particles is the QCD axion. The QCD
axion was introduced by Pecci and Quinn (PQ) [24] as a possible solution of
the CP problem of the strong interactions. The solution essentially come from
the Chern-Simons term

LθQCD =
θQCD
32 π2

TrGµν G̃
µν , (1.36)

where Gµν is the gluon field and G̃µν = εµνσρGσρ is the Hodge-dual. Here the
trace is over the color indices of the SU(3) color group, and θ in this case is a
constant. The extra contribution (1.36) does not affect the equation of motion
of the G field, hence its name topological. The important feature of (1.36)
is that it violates CP invariance explicitly, explaining the CP violation of the
strong interaction. In order to restore the CP symmetry, we just need to set
θQCD = 0. The way in which PQ solve the CP problem was introducing two
essential ingredients which are: the Goldstone theorem and non-perturbative
effects. A global chiral U(1)PQ symmetry is introduced, which is broken spon-
taneously. Then, the Goldstone boson φ,the axion, with a vacuum expectation
value (VEV) 〈φ〉 = fa/

√
2, with fa the axion ‘decay constant’. In the quan-

tum theory the U(1)PQ symmetry is anomalous. Via the anomaly, the axion
is couple to the QCD Chern-Simons term (1.36), where θQCD ∝ φ/fa. Since
the only other term in the axion action is the kinetic term, we are free to
shift the axion field by an arbitrary constant and absorb the value of θQCD
into φ by a field redefinition, making φ/fa dynamical. The non-perturbative
effects come into play for the generation of the axion mass, through instantons
contributions, which are classical solutions of the field equations. By dilution
of these instantons a potential energy for the vacuum energy is generated

Vvac ∝
[
1− cos(C φ

fa
)

]
, (1.37)

where C is the color anomalous coefficient. The potential is easily minimize
for C 〈φ〉

fa
= 0 mod 2π, explaining why θQCD has such a small value. In the

early universe, there is no reason for the QCD axion to sit exactly at the CP
conserving minimum, and it is usually assumed that the initial position, φ∗/fa,
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is of order of unity. Then, the QCD axion starts to oscillate about the CP
conserving minimum around the QCD phase transition, and the coherently
oscillating axion becomes DM.

3. String axions. In general, we can defined axions as pseudoscalars fields
enjoying the U(1)PQ PQ symmetry. Not necessarily they have to be the QCD
axion explained above. For example, axions ai arise in string compactifications
from the integration of p-form gauge potentials Ap over p-cycles Cp,i of the
compact space

ai =

∫
Cp,i

Ap . (1.38)

In type IIB string theory, there are axions associated with the NS-NS two form
B2, and the R-R forms C2, C4. The generation of these fields will be discussed
in section 1.4. These important fields can be used as building blocks for the
construction of DM models, as we will present in the chapter 4.

4. Primordial black holes (PBHs). The only major non-particle candidate for
DM are primordial black holes. PBHs are Black Holes (BHs) formed when local
over density collapsed due to gravitational instabilities. The formation of these
PBHs relies on the amplification of the density perturbations during inflation
of order δρ ∼ 0.1 ρ collapsing to form a BH at horizon re-entry[25]. Recent
detection of gravitational waves (GWs) emitted by a BH binary observed by the
LIGO/VIRGO collaboration re-opened the consideration of DM as PBHs[26,
27].

As we can see we have a plethora of candidates for DM. In this work, we focus
mainly on axions, as well as PBHs. All the models presented come from string
compactifications. Therefore, it is natural to give some basic introduction to string
theory.

1.4 String theory

As we just saw in section 1.2, the dynamics of the inflationary models are fully
dependent of the scalar potential V of the inflaton field φ. The inflaton potential
might suffer from fundamental problems such as instabilities of the flat region due to
extra quantum corrections. Then, we need to build models where this flat region is
protected by symmetries. A ‘top-down’ approach is one of the best ways to achieve
such task. An example of these theories is given by string theory. String theory
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can be defined as a theory in which the elementary objects are not point-like as in
particle physics, but rather they are one-dimensional objects with a given length.
In this section we want to give a brief review of string compactification. For further
reading we recommend the following references [28, 29, 30, 31].

1.4.1 String compactification

The critical dimension of supersymmetric string theories is D = 10, which arise
from the conservation of Lorentz invariance as a global symmetry. The dimension
in string theory presents a big problem for the construction of possible realistic
models. However, there exist some mechanisms, for instance, Kaluza-Klein (KK)
compactification [32], in which the 10-dimensional spaceM10 can be written as the
product of a 4-dimensional space M4 times a compact space X6, that is, M10 =

M4 × X6. By making this assumption, we are saying that the metric of the full
10-dimensional space can be split as

ds2
10 = gµν(x) dxµdxν + g̃mn(y) dymdyn, (1.39)

where xµ and ym are local coordinates on M4 and X6 respectively. A possible
generalization of this ansatz is considering the warped metric

ds2
10 = e2A(y) gµν(x) dxµdxν + e−2A(y)g̃mn(y) dymdyn, (1.40)

where A(y) is called the warp factor.

Under the branching ofM10, the Lorentz group SO(1, 9) breaks into

SO(1, 3)× SO(6), (1.41)

inducing a change in the transformation laws of different fields. For example, a
vector AM , M = 0, . . . , 9, transforming in the fundamental representation 10 of
SO(10) will be split in 10 = (4,1) ⊕ (1,6), where the first entry of the brackets
represent the dimension of a SO(1, 3) representation and the second a representation
of dimension of SO(6). In terms of fields, this branching means the presence of a
vector Aµ, where µ = 0, . . . , 3, ofM4 transforming in the (4,1) of SO(1, 3)×SO(6)

and six scalars Am, where m = 4, . . . , 9, ofM4 transforming in the (1,6).

The procedure applied above for a vector can be performed on spinors of SO(1, 9)

with the peculiar difference that spinors on M10 will transform only as a spinors
on M4. For example, a Weyl spinor ψ in D = 10 transform in the 16 of SO(1, 9)
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under the branching given in (1.41). More precisely,

16 = (2L,4)⊕ (2R,4), (1.42)

where 2L and 2R denote the left- and right-handedness under SO(1, 3). Hence, we
can see that KK compactification of spinors leads only to spinors onM4.

Our main interest is to review compactifications which preserve supersymmetry.
The condition of supersymmetry invariance under the compactification is non-trivial
and quite restrictive and can be described as follows. In type II theories, we have 32
supercharges transforming locally onM10 in the spinor representation of SO(1, 9). If
we want to have supersymmetry onM4 after the compactification, a subset of these
supercharges have to be well defined on X6, that is, only the subset of supercharges
that remain invariant under a parallel transport through a closed path C will lead
to supersymmetry onM4. Hence, the condition of supersymmetry invariance after
the compactification is translated to the existence of 6-dimensional Killing spinors
ξ(ym) on X6, which satisfies

∇X6
ξ(ym) = 0, (1.43)

where ∇X6
= ∂m + ωABm

1
4
ΓAB, where A,B,m = 1, . . . , 6, ΓAB is the generator of

the spinor representation of SO(6), and ωABm is the spin connection.

The existence of the Killing spinors to preserve supersymmetry on the compact-
ification can be seen in terms of the holonomy group H of X6. The set of rotations
suffered by the spinors for all possible closed paths C on X6, in general given by
SO(6), is called holonomy group H of X6. The case in which H = SO(6), any of
the spinors get unrotated, as we can see in (1.42) (none of the spinors are singlets of
SO(6)). In order to preserve supersymmetry onM4, X6 have to be a manifold with
special holonomy group H ′. A simple example is the case when we take H ′ = SU(3)

(SO(6) ⊃ SU(3)), then after the compactification we have

SO(1, 9), −→ SO(1, 3)× SO(6), −→ SO(1, 3)× SU(3),

16, (2L,4)⊕ (2R,4), (2L,3)⊕ (2R,3)⊕ (2L,1)⊕ (2R,1).
(1.44)

Choosing H ′ = SU(3), we manage to find 2 spinors Qα and Qα̇ transforming into
2L, 2R of SO(1, 3), respectively, hence leading to N = 2 supersymmetry onM4.
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1.4.2 Calabi-Yau manifolds

A set of manifolds with SU(N) holonomy groups have been classified and are called
Calabi-Yau manifolds or Calabi-Yau N -folds (CYN). A Calabi-Yau manifold is a
2N -dimensional Ricci-flat Kähler manifold. There are several examples of these
spaces. A very simple and often used example is the torus T2 with SU(1) holonomy.
Another famous example is the Z-manifold which can be found by solving the sin-
gularities of the T6/Z3 orbifold. The last example is the K3 complex surface which
has SU(2) holonomy.

In the following discussion, we will focus only on compact Calabi-Yau 3-folds but
this can be easily generalized to Calabi-Yau N -folds. Every compact CY3 manifold
is equipped with a mixed tensor Inm, where m,n = 1, . . . , 6, satisfying Imn In` = −δm`
which is called the complex structure, and a (3, 0) holomorphic harmonic form Ω3

called the complex volume form. On a real basis (yj, ỹj), where j = 1, 2, 3, Inm can
be written as

I =

(
0 I3

−I3 0

)
. (1.45)

Making use of Inm and (yj, ỹj), we can construct a set of local complex coordinates
(zj, z̄j) with j = 1, 2, 3, as

dzj = dyj + iIji ỹ
i , dz̄j = dyj − iIji ỹi. (1.46)

In this basis, the only non zero components of the metric g̃mn are the ones with
mixed indices gij̄, where the index i (j̄) means the components contracted with dzi

(dz̄j). Therefore, using the metric to lower down one index of Iji , we find a (1,1)
form. Then, we can write

J = igij̄ dz
i ∧ z̄ j̄, (1.47)

where the factor i is just convention. If J is a closed form (dJ = 0), then it is called
the Kähler form. On this basis the volume forms Ω3 can be written as

Ω3 = (dy1 + iI1
i ỹ

i) ∧ (dy2 + iI2
i ỹ

i) ∧ (dy3 + iI3
i ỹ

i). (1.48)

For example, on a torus T6 = T2 × T2 × T2 is

Ω3 = (dy1 + iU1ỹ
1) ∧ (dy2 + iU2ỹ

2) ∧ (dy3 + iU3ỹ
3), (1.49)
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where Ui are called the complex structure moduli of the torus T2
i .

The Kähler form will play an important role in the development of the stories
within this book. As we can see in (1.47), J is described in terms of the metric gij̄.
So, its natural to ask how many free parameters has gij̄ in order to be an SU(3)

holonomy metric. The answer of this question relies on some topological invariants
called the hodge numbers. The hodge numbers hp,q are the generalization of the betti
numbers bp on a complex manifold. The betti numbers bp are the numbers of inde-
pendent harmonic p-forms which are equals to the numbers of irreducible p-cycles
of a given real manifold. Hence, bp = dimHp (Hp), where Hp (Hp) is the cohomol-
ogy (homology) group of the manifold. In the complex case, the classification of
the p-forms can be studied in terms of its holomorphic and antiholomrphic part.
For example, the 3-cohomology group H3(X6) can be split in a sum of H3,0(X6),
H2,1(X6), H1,2(X6), and H0,3(X6), where Hp,q(X6) is the cohomology group of forms
with p holomorphic and q antiholomrphic indices. Using the analogy with the betti
numbers, the hodge numbers give hp,q = dimHp,q.

In our case, where X6 is a Calabi-Yau 3-fold, the hodge numbers are arranged
in the so-called hodge diamond where some of them are displayed below.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

=

1

0 0

0 h1,1 0

1 h2,1 h1,2 1

0 h1,1 0

0 0

1

(1.50)

Another useful quantity to know is the Euler characteristic χ which is defined as

χ(X6) ≡
3∑

p,q=0

(−1)p+q hp,q(X6) = 2
(
h1,1(X6)− h1,2(X6)

)
. (1.51)

As a connection with the discussion in the Section 1.4.1, the existence of 6-
dimensional invariant Killing spinors ξ is required to preserve supersymmetry in
compactifications. We can use these spinors and construct the forms

Jij̄ = −iξ†ΓiΓj̄ξ , Ωijk = ξTΓiΓjΓkξ , (1.52)

where Γi are the generalize Dirac gamma matrices. This is a natural description
in the context of string compactification, where it can be proved that these forms
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satify the correct geometrical properties.

1.4.3 Moduli space

As mentioned in Section 1.4.1, the splitting of the 10-dimensional space-timeM10

implies the branching of the metric as shown in (1.39). We can see this branching as
the dimensional reduction of the metric, that is, we can look for the zero modes of
the 10-dimensional metric. These zero modes are exactly the 4-dimensional metric
gµν , and a set of scalars g̃mn (from the 4-dimensional point of view), which give
origin to the internal metric.

Since, we are interested in supersymmetric invariant compactifications, which
implies compactifications on Calabi-Yau manifolds having a special holonomy met-
ric. Studying fluctuations of this metric, we can find a number of ways in which the
background metric can be deformed preserving supersymmetry and its Calabi-Yau
topology. The vev’s of these deformations are called moduli fields.

In order to study the metric fluctuations, we just have to analyze small variations
of the metric

g̃mn −→ g̃mn + δg̃mn, (1.53)

and demand that the new background still satisfies the Calabi-Yau conditions. In
particular,

R(g̃ + δg̃) = 0. (1.54)

Imposing this condition leads to differential equations of δg. The number of solutions
of these equations give the number of independent ways in which the metric can
be deformed preserving supersymmetry and the topology. Using the basis (zj, z̄j)

introduced in (1.46), it can be proved that the equations for the mixed components
δgij̄ and the pure components δgij decouple. Each of these solutions have different
geometric meaning, which is explained below.

• δgij̄

The deformations δgij̄ are closely related to fluctuations of the Kähler form J ,
because Jij̄ = igij̄. To discuss these fluctuations is equivalent to discuss about
Kähler form deformations. To ensure positiveness of the metric, we need to
impose ∫

C

J > 0 ,

∫
S

J ∧ J > 0 ,

∫
X6

J ∧ J ∧ J > 0, (1.55)
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for any path C and surface S on X6. The Kähler form can not be an exact
form, (J 6= df) because

∫
J ∧ J ∧ J ∝ volume of X6. Precisely,

V =
1

6

∫
X6

J ∧ J ∧ J, (1.56)

where V is the volume of X6. Since J is not an exact form, this implies that
it is cohomologically non-trivial. Then, J can be written in a basis ωa of
H1,1(X6) as

J =
h1,1∑
a=1

taωa, (1.57)

where the coefficients ta are called the Kähler moduli. The geometric inter-
pretations of these moduli is that they control the size of the 2-cycles of X6.

On string theory, in particular on type IIB compactifications, the Kähler form
receives a contribution from the compactificacion of the Ramond/Ramond 4-
form Ĉ4.

• δgij

In this case, the fluctuations δgij are related to symmetric deformations of the
holomorphic or anti-holomorphic form Ω3. We can not expand δgij on a basis
of H2,0(X6) because h2,0 = 0. Making use of Ω3 we can put H2,0(X6) in one
to one correspondence with H1,2(X6) in the following way

δgij =
i

‖Ω3‖2
Ūα (χ̄α)ik̄ ¯̀Ωk̄ ¯̀

j , (1.58)

where ‖Ω3‖2 = ΩijkΩ̄
ijk/3! and χα is a basis for H1,2(X6) with α = 1, . . . , h1,2.

The coefficients Uα are called the complex structure moduli.

In the end, at tree level, the full moduli space can be separated as

Mmoduli =MK
h1,1 ×Mcs

h1,2 , (1.59)

whereMK andMcs are spaces parametrized by ta and Uα, respectively.

1.4.4 Orientifolds

The idea of orientifolds came from the construction of orbifold compactifications in
which the worldsheet parity Ω is gauged away. The worldsheet parity Ω interchanges
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the left movers with the right movers. Gauging away this symmetry leads to a
colletion of non-oriented surfaces spanned by string propagation. These ideas have
been carried out on Calabi-Yau compactifications. In these cases, together with the
parity Ω an internal symmetry σ, which acts solely on X6 and leaveM4 untouched,
is modded out. One can show that for 3-folds, σ leaves the Kähler form J invariant
but acts non-trivially on Ω3. Depending on the transformation properties of Ω3 two
different symmetry operations O can be modded out, that is,

Oε = (−1)εFL Ωσ∗ , σ∗Ω3 = (−1)ε Ω3 , ε = 0, 1. (1.60)

Here, FL is the space-time fermion number in the left moving sector and σ∗ denotes
the action of σ on forms. Modding out by O0, leads to the possibility of having O5-
and O9-planes while O1 allows O3- and O7-planes.

We are interested in studying the orientifold compactifications of type IIB string
theory. Before going through the orientifold compactification, let us review the
simplest compactification of type IIB string theory on a Calabi-Yau 3-fold. The
massless spectrum of type IIB string theory in D = 10 consists in:

• NSNS sector: the dilaton ϕ, a 2-form B̂2, and the graviton (metric) ĝ;

• RR sector: the axion C0, a 2-form Ĉ2, and a 4-form Ĉ4 with field strength
self-dual.

Under the compactification on a Calabi-Yau 3-fold, these 10-dimensional field
will change. For instance, the dilaton and the axion will remain massless scalar
fields under the compactification but the metric g is splited as (1.39). On the other
hand, the forms on the spectrum have the following decomposition:

• NSNS sector.

In the NSNS sector, we only have the form B̂2.

B̂2 :

Decomposition Degeneracy
Bµν 1

Bµm h1,0 + h0,1 = 0

Bmn h2,0 + h1,1 + h0,2 = h1,1

(1.61)

where µ, ν = 0, . . . , 3 and m,n = 1, . . . , 6. Using the basis ωa of H1,1(X6), we
can write

B̂2 = B2(x) + ba(x)ωa , a = 1, . . . , h1,1. (1.62)
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Here, B2 is a 4-dimensional two form and ba’s are a set of 4-dimensional scalar
fields.

• RR sector.

In this case, we have two forms Ĉ2 and Ĉ4. The decomposition of Ĉ2 is exactly
same as B̂2. Therefore, we show only the decomposition of Ĉ4.

Ĉ4 :

Descomposition Degeneracy
Cµνσρ 1

Cµνσm h1,0 + h0,1 = 0

Cµνmn h2,0 + h1,1 + h0,2 = h1,1

Cµmn` h3,0 + h1,2 + h2,1 + h0,3 = 2h1,2 + 2

Cmn`p h2,2 = h1,1

(1.63)

As before, we can write Ĉ2 and Ĉ4 as

Ĉ2 = C2(x) + ca(x)ωa , a = 1, . . . .h1,1 (1.64)

Ĉ4 = Da
2(x) ∧ ωa + V K(x) ∧ αK −QK(x) ∧ βK + ρa(x)ω̃a , K = 0, . . . , h1,2.

(1.65)

Here, we are using a basis ω̃a of H2,2(X6), which is dual to ωa, and a real
symplectic basis (αK , β

K) of H3(X6), which satisfies∫
αK ∧ βL = δLK ,

∫
αK ∧ αL =

∫
βK ∧ βL = 0. (1.66)

The 4-dimensional fields appearing in (1.64) and (1.65) are the scalar fields
ca(x), ρa(x), the 1-forms V K(x), QK(x), and the 2-forms C2(x), Da

2(x). The
4-form Cµνσρ has no dynamics because is proportional to the 4-dimensional
volume form εµνσρ. The self-duality of the field stretch of Ĉ4 removes half of
the degrees of freedom. In favour of V K and ρa , we choose to eliminate Da

2

and QK . The other choice is possible, which leads to a different spectrum but
we are not considering this case. We need to keep in mind that we still have
the geometric moduli ta and Uα coming from the metric deformations.

Altogether, the N= 2 massless 4-dimensional spectrum of type IIB on a Calabi-
Yau 3-fold consists in:

• one gravity multiplet (gµν , V
0);

26



• h1,2 vector multiplets (V α, Uα);

• h1,1 hypermultiplets (ta, ba, ca, ρa);

• one double tensor multiplet (B2, C2, ϕ, C0);

• one 4-form C4.

Every multiplet has its fermionic components, which are not shown here. To get
the orientifold compactification we need to mod out the non-invariant states under
the action of (−1)εFL Ωσ∗. The projection of the states is explained in the following
section.

1.4.5 N = 1 Type IIB Orientifold

The models present in the next chapters are based on one type of orientifold com-
pactification, we will focus only on ε = 1 having possible O3/O7-planes. To project
out the states in the spectrum, we need to know how (−1)FL Ωσ∗ acts on the fields.
The field transformations under Ω and FL are well known. Under the worldsheet
parity, Ω the fields ϕ, ĝ, and Ĉ2 are even while B̂2, C0 and Ĉ4 are odd. The operator
(−1)FL leaves NSNS fields invariant but changes the sign in the RR sector. The new
ingredient is the addition of the internal symmetry σ., which acts on the Calabi-Yau
but leavesM4 invariant. Other requirements of σ are: to be an involution (σ2 = 1)
and to act holomorphically on the Calabi-Yau coordinates. With all these informa-
tion, we can easily check that ϕ, C0, ĝ, and Ĉ4 are even under (−1)FL Ω while B̂2

and Ĉ2 are odd. Therefore, we can deduce the action of σ∗ on the 10-dimensional
forms as

σ∗ ϕ = ϕ , σ∗C0 = C0,

σ∗ ĝ = ĝ , σ∗ Ĉ2 = −Ĉ2,

σ∗ B̂2 = −B̂2 , σ∗ Ĉ4 = Ĉ4.

(1.67)

keeping in mind that σ has to satisfy σ∗ J = J and σ∗Ω3 = −Ω3.
Since σ is a holomorphic involution, the cohomology groups Hp,q(X6) split into

two eigenspaces under σ∗, that is

Hp,q(X6) = Hp,q
+ (X6)⊕Hp,q

− (X6), (1.68)

where the + (−) shows whether the elements of the group are even (odd) under
the action of σ∗. The dimension of Hp,q(X6) became hp,q = hp,q+ + hp,q− , where
hp,q+ = dimHp,q

+ (X6) and hp,q− = dimHp,q
− (X6). All of these hodge numbers are not
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independent. The action of σ∗ fix them. For instance, in a Calabi-Yau 3-fold we
have:

• h1,1
± = h2,2

± because the Hodge ∗-operator commutes with σ∗;

• h2,1
± = h1,2

± due to the holomorphicity of σ;

• h3,0
+ = h0,3

− = 0 and h3,0
− = h0,3

− = 1 because we need to satisfy σ∗Ω3 = −Ω3;

• h0,0
+ = h3,3

+ = 1 and h0,0
− = h3,3

− = 0 because the volume form, which is
proportional to Ω3 ∧ Ω̄3, is σ∗ invariant.

Collecting all the transformation laws under the action of (−1)FL Ωσ∗, we can
write the invariant in each sector as:

• NSNS sector.

In this sector the invariant states are the dilaton ϕ and the metric g splits
as described in (1.39), where deformations of g̃mn give rise to the geometric
moduli ta and Uα. Under the projection σ∗, the Kähler form is even while the
(3,0)-form is odd. Then, we can write

J = ta+(x)wa+ , a+ = 1, . . . , h1,1
+ . (1.69)

For deformations of the metric δgij, we find that

δgij =
i

‖Ω3‖2
Ūα− (χ̄α−)ik̄ ¯̀Ωk̄ ¯̀

j , α− = 1, . . . , h1,2
− . (1.70)

Here we are using bases ωa+ and χ̄α− of H1,1
+ (X6) and H1,2

− (X6), respectively.
Using (1.67), we can mod out all the even components of B̂2 on (1.62) which
gives

B̂2 = ba−(x)ωa− , a− = 1, . . . , h1,1
− , (1.71)

where ωa− is a basis for H1,1
− (X6).

• RR sector.

In this case, we have to perform the projection (1.67) on the forms C0, Ĉ2,
and Ĉ4. We find that C0 is invariant, and only the odd part of Ĉ2 and the
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even part Ĉ4 survive. Therefore, we can write

Ĉ2 = ca−(x)ωa− , a− = 1, . . . , h1,1
− (1.72)

Ĉ4 = D
a+

2 (x) ∧ ωa+ + V κ(x) ∧ ακ −Qκ(x) ∧ βκ + ρa+(x)ω̃a+ , κ = 1, . . . , h1,2
+ .

(1.73)

Here we are using the bases ωa− and ω̃a+ of H1,1
− (X6) and H2,2

+ (X6), respec-
tively. Also we introduced a sympletic basis (ακ, β

κ) of H3(X6), which satisfies
(1.66) with K,L→ κ, λ.

The 4-dimensional fields on (1.71), (1.72), and (1.73) are three scalar fields
ba−(x), ca−(x), and ρa+(x), two 1-forms V κ(x), Qκ(x), and one 2-form D

a+

2 (x).
Again the self duality of the field strength of Ĉ4 removes half of the degrees of free-
dom and keep only (V κ, ρa+). Altogether theN= 1 massless 4-dimensional spectrum
consist in:

• One gravitational multiplet gµν ;

• h1,2
+ vector multiplets Vκ;

• h1,1 + h1,2
− + 1 chiral multiplets (ba− , ca− , ρa+ , t

a+ , Uα− , ϕ, C0).

After the compactification, we will work with the 4-dimensional low energy ef-
fective theory. It is established that the N= 1 4-dimensional supergravity action is
expressed in terms of the Kähler potential K, a holomorphic superpotential W , and
a holomorphic gauge-kinetic coupling functions f , which is given by [33]

S(4) = −1

2

∫
R∗1 +KIJ̄DΦI∧∗DΦ̄J̄ + Refab F a∧∗F b + Imfab F a∧F b + 2V∗1,(1.74)

where

V = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
+

1

2
(Ref)−1κλDκDλ. (1.75)

Here, R is the Ricci scalar, ΦI is the set of scalars fields (ba− , ca− , ρa+ , t
a+ , Uα− , ϕ, C0),

and KIJ̄ is a Kähler metric satisfying KIJ̄ = ∂I∂J̄K(Φ, Φ̄). It is important to say
that the powers ofMp will be restored when cosmological applications are discussed.
The potential V is given in terms of the covariant derivative DIW = ∂IW+(∂IK)W

and the D-terms given as

Dκ =

[
KI +

WI

W

]
(Tκ)IJ ΦJ , (1.76)

29



where Tκ are the generators of the gauge group.
The fields ΦI in the action (1.74) are not necessarily (ba− , ca− , ρa+ , t

a+ , Uα− , ϕ, C0).
For O3/O7-planes, one finds [34]

• The axion/dilaton S = e−ϕ − iC0
1;

• Two-form moduli Ga− = ca− − iSba− , a− = 1, . . . , h1,1
− ;

• Complex structure moduli Uα− , α− = 1, . . . , h1,2
− ;

• Kähler moduli

Ta+ = τa+ −
1

2(S + S̄)
ka+b−c− G

b−(G− Ḡ)c− + iρa+ . (1.77)

The variable τa+ must be understood as a function of the ta+ and is given by

τa+ =
∂V
∂ta+

, (1.78)

where V is the volume of X6 given by (1.56). The coefficients ka+b−c− are called the
intersection numbers and are defined as

ka+b−c− =

∫
X6

ωa+ ∧ ωb− ∧ ωc− . (1.79)

In terms of the intersection numbers V can be written as V = 1
6
kabct

atbtc. Then,

τa+ =
1

2
ka+b−c−t

b−tc− . (1.80)

With these new variables, the Kähler potential can be written as

Ktree = Kk(S, T,G) +KS(S, S̄) +Kcs(U, Ū)

= −2 ln[V ]− ln
[
S + S̄

]
− ln

[
−i
∫

Ω3(U) ∧ Ω̄3(Ū)

]
, (1.81)

where the volume V = V(T + T̄ ).
From now on, we will only consider compactifications with h1,1

− = 0, which
implies h1,1 = h1,1

+ . Therefore, the Kähler form can be written as (1.57) and the
Kähler moduli became

Ta = τa + iρa. (1.82)

1Also there exist the definition τ = iS = C0 + ie−ϕ.
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For the case in which h1,1
+ = 1 its easy to find the form of the Kähler potential

Kk(S, T,G), which becomes

Kk = −3 ln
[
T + T̄

]
. (1.83)

With all this information, the resulting moduli space to work (at tree level) is

Mmoduli =Mcs
h1,2
−
×MK

h1,1 + 1, (1.84)

where the 1 inMK is the axion/dilaton.

Let us consider the low energy approximation of the type IIB string theory
compactified on a Calabi-Yau in presence of a non-trivial background composed by
NSNS and RR 3-forms H3 and F3, respectively. The interaction of these forms is
purely gravitational which shows that the 10-dimensional spaceM10 does not split
in the productM4 ×X6. The full solution is described as follows.

The 10-dimensional action of type IIB supergravity in Einstein frame is given by
[31]

SIIB =
1

2κ2
10

∫
d10x
√
−g
(
R− ∂Mτ∂

M τ̄

2(Imτ)2
− 1

2
|F1|2 −

|G3|2

2 Imτ
− 1

4
|F̃5|2

)
+

1

2κ2
10

∫
C4 ∧

G3 ∧ Ḡ3

4i Imτ
+ Slocal. (1.85)

Here 2κ2
10 = (2π)7 α′4, with α′ = 1

2π T
where T is the string tension. The fields in

the action (1.85) are

τ = C0 + ie−ϕ , G3 = F3 − τH3, (1.86)

with H3 = dB2 and F3 = dC2, and

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3, (1.87)

with F5 = dC4. The self-duality condition ∗10F̃5 = F̃5 is imposed at the level of
the equations of motion. The term Slocal is the action of localized objects of the
10-dimensional supergravity fields, for instance, D3-branes or O3-planes.

We are considering compactifications with warped metric (1.40) and components
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of G3 only along the compact directions. Precisely,

ds2
10 = e2A(y) ηµν dx

µdxν + e−2A(y)g̃mn(y) dymdyn, (1.88)

LG = − 1

4κ2
10

∫
d10x
√
−g |G3|2

Imτ
= − 1

8κ2
10

∫
X6

d6y
G3 ∧ ∗6Ḡ3

Imτ
. (1.89)

In addition, we set F1 = 0 and τ = constant. Furthermore, we require H3 and F3 to
be source-less (dH3 = 0, dF3 = 0) and to satisfy the Dirac quantization condition

1

2πα′

∫
γ

F3 ∈ 2πZγ ,
1

2πα′

∫
γ

H3 ∈ 2πZγ, (1.90)

where γ’s are 3-cycles in X6. Assuming 4-dimensional Poincaré invariance, we pro-
pose

F̃5 = (1 + ∗10)
[
dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

]
, (1.91)

where the function α only depends on the compact directions ym with m = 1, . . . , 6.

We want to find restrictions for the ansatz (1.88), (1.89), and (1.91), that is,
restrictions for the form G3, the function α(y), and the warp factor A(y). It is
known that under these assumptions G3 is an imaginary self-dual (ISD) form and
α = e4A [35]. In order to prove this statement we use of the equations of motion.

The equation of motion for the non-compact components of the metric is2

Rµν = −ηµνe2A

(
GmnpḠ

mnp

48 Imτ
+
e−8A

4
∂mα∂

mα

)
+ κ2

10

(
T loc
µν −

1

8
ηµνe

2A T loc
)
.(1.92)

For the contractions of the indices m, n, and p, we use the Calabi-Yau metric g̃mn.
Using the ansatz for the metric (1.88), we can compute the non-compact components
of the Ricci tensor Rµν , given by

Rµν = −ηµνe4A
(
∂n∂

nA+ Γ̃mmn∂
nA
)
≡ −ηµνe4A∇̃2A, (1.93)

where Γ̃pmn are the Christoffel symbols using the metric g̃mn. We can rewrite the
equation (1.93) as

−ηµνe4A∇̃A = −1

4

(
∇̃2e4A − e−4A∂me

4A∂me4A
)
. (1.94)

2The computation of the equations of motion for the action (1.85) are in the Appendix A.
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Replacing this equation in (1.92) and then tracing, we find

∇̃2e4A = e2A GmnpḠ
mnp

12 Imτ
+ e−6A

[
∂mα∂

mα + ∂me
4A∂me4A

]
+
κ2

10

2
e2A
(
Tmm − T µµ

)loc
.(1.95)

In addition, we have the equation of motion/Bianchi identity for the RR 5-form

dF̃5 = d ∗10 F̃5 = H3 ∧ F3 + 2κ2
10µ3ρ

loc
3 , (1.96)

where µ3ρ
loc
3 is the localized source contribution coming from the D3-branes and

O3-planes. In terms of the function, α, (1.96) can be written as

∇̃2α = ie2A Gmnp(∗6Ḡ
mnp)

12 Imτ
+ 2e−6A∂mα∂

me4A + 2κ2
10e

2Aµ3ρ
loc
3 . (1.97)

Now, subtracting equations (1.95) with (1.97), we obtain

∇̃2(e4A − α) =
e2A

12 Imτ
|iG3 − ∗6G3|2 + e−6A|∂(e4A − α)|2 + 2κ2

10e
2A

[
1

4

(
Tmm − T µµ

)loc
−µ3ρ

loc
3

]
. (1.98)

By integrating the above expression over X6, we find that the left-hand side becomes
zero and all the terms in the right-hand side are positive, assuming 1

4

(
Tmm − T µµ

)loc
=

µ3ρ
loc
3 . Therefore, we obtain conditions for G3 and α, which are:

• Imaginary self-duality (ISD): ∗6G3 = iG3;

• α = e4A.

As we will see in the section 2.2, the ISD condition is important for having super-
symmetric invariant 4-dimensional space.

From the Bianchi equation (1.96), we find another important condition, which
has to be satisfied. This condition constraints the values of the number of D3-branes
and O3-planes in the theory. We can find it as follows. Integrating the equation
(1.96) over the compact space X6 gives

1

2κ2
10µ3

∫
X6

H3 ∧ F3 +Qloc
3 = 0, (1.99)

where Qloc
3 is the total charge of the localized objects, for examples, D3-branes and

O3-planes. Recalling the definitions of 2κ2
10 = (2π)7α′4, µ3 = (2π)−3α′−2, and the
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charge of O3-planes −1
4
µ3, we can write [31]

1

2
Nflux +ND3 −

1

4
NO3 = 0. (1.100)

Here, ND3 and NO3 are the number of D3-branes and O3-planes, respectively. The
quantity Nflux is defined as

Nflux =
1

((2π)2α′)2

∫
X6

H3 ∧ F3. (1.101)

The equation (1.100) is known as the RR tadpole cancellation condition and restrict
the number of D3-branes and O3-planes in the theory.

From imaginary self-duality of G3 one can prove that the contribution of the
fluxes Nflux to the RR tadpole condition has to be positive. Precisely, we can write
the ISD condition of G3 as

e−ϕ ∗6 H3 = −(F3 − C0H3). (1.102)

Then, replacing this equation into (1.101), we obtain

Nflux =
e−ϕ

((2π)2α′)2

∫
X6

H3 ∧ ∗6H3 =
e−ϕ

((2π)2α′)2

∫
X6

|H3|2 > 0. (1.103)

Hence, the RR tadpole cancellation condition require the presence of negative D3-
branes charges, making this ansatz a suitable scenario for string theory because
these objects are present in this theory, for example, O3-planes.

1.4.6 Supersymmetry and no-scale structure

We want to study the 4-dimensional effective supersymmetric theory of the construc-
tion explained in the section 2.1, in particular, we want to discuss the structure of
the scalar potential and the conditions to preserve supersymmetry. As we mentioned
in section 1.2.1, the 4-dimensional effective theory is expressed in terms of the Käh-
ler potential K, a holomorphic superpotential W , and a holomorphic gauge-kinetic
coupling functions f ’s. The form of the superpotential is given by [35]

Wtree(S, U) =

∫
X6

G3 ∧ Ω3. (1.104)

This superpotential is known as the Gukov-Vafa-Witten (GVW) superpotential.
In the following discussion, we will consider only the case of one Kähler moduli
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T and κ2
4 = 1. In this case, we know that the Kähler potential is of the form

K = −3 ln
[
T + T̄

]
− ln

[
S + S̄

]
− ln

[
−i
∫

Ω3(U) ∧ Ω̄3(Ū)

]
, (1.105)

and the scalar potential is

V = eK
[
KSS̄DSWDS̄W̄ +KUαŪβDUαWDŪβW̄ +KT T̄DTWDT̄ W̄ − 3|W |2

]
,(1.106)

where K is the Kähler potential (1.105). The dependence of W and the form of the
Kähler potential K implies the existence of a no-scale structure of the potential V ,
that is, a potential of the form

V = eK
[
KSS̄DSWDS̄W̄ +KUαŪβDUαWDŪβW̄

]
. (1.107)

We can see in the above equation that V ≥ 0. Therefore, in order to have a
supersymmetric preserving minimum, we need to satisfy the equation

DIW = 0, (1.108)

where I = {S, Ui, Tj}.

The supersymmetric conditions in our case take the following form:

The condition for the axion/dilaton is

DSW = − 1

S + S̄

∫
X6

Ḡ3 ∧ Ω3 = 0. (1.109)

For the complex structure moduli, we use the relation

∂UαΩ3 = KUαΩ3 + χα, (1.110)

where KUα = ∂αK and χα is a basis for (2,1)-forms. Therefore,

DUαW =

∫
X6

G3 ∧ χα = 0. (1.111)

We also have the condition for the Kähler moduli

DTW = − 3

T + T̄

∫
X6

G3 ∧ Ω3 = 0. (1.112)
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All these equations implies the following conditions over G3

G3|(3, 0)
= 0 , G3|(1, 2)

= 0 , G3|(0, 3)
= 0, (1.113)

where (p, q) indicates the (holomorphic, anti-holomorphic) components ofG3. There-
fore, we conclude that in order to have supersymmetric invariant minimum, we need
a G3 ∈ H2,1(X6), where G3 is ISD and G3 ∧ J = 0. The last condition comes from
the fact that in a Calabi-Yau 3-fold there is not 5-form.

The presence of fluxes allows the stabilisation of the complex structure moduli
Uα and the axion dilaton S at the SUSY global minimum. However, the Kähler
moduli remained as flat directions. Intuitively speaking the presence of fluxes force
the ISD condition of G3 but this condition is invariant under rescaling of the in-
ternal metric in ∗6, the Hodge-dual map in 6-dimension. Therefore, rescaling the
size of internal cycles is allowed. However, we could add corrections, perturbative
and non-perturbative, that break this freedom of rescaling and then give a non-
vanishing potential to the Kähler moduli. These corrections can be encoded in the
superpotential W and in the Kähler potential K, schematically we can write

W = W0 +Wnp and K = K0 +Kp +Knp . (1.114)

Here, the subscript p and np correspond to perturbative and non-perturbative con-
tributions respectively. The superpotential can only receive non-perturbative cor-
rections due the non-renormalization theorem.

As we just said the introduction of this extra corrections break SUSY and the
non-scale structure of the theory, generating a non-vanishing scalar potential for
the Kähler moduli. From the 10-dimensitional perspective, the corrections produce
non-vanishing components for G(3, 0)

3 , G(1, 2)
3 , and G

(0, 3)
3 . An interesting feature is

that they are produced at sub-leading order in the effective field theory, because the
Kähler scalar potential is generated at order O(V−3) while the SUSY fluxes at order
O(V−2). For the large volume regime, V � 1, they are considered a perturbation
around the SUSY minima.

We can enumerate few of these corrections as:

1. α’-corrections. These contributions come from higher order derivative cor-
rections of the effective action in 10 dimensions. In particular, one of the
possible contributions come from the tensorial structure of the Ricci scalar R4

in 10 dimensions. This tensorial structure is completely understood and give
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rise to a correction to the tree level Kähler potential of the form [36]

K ⊃ −2 log

(
V +

ξ̂

2

)
, (1.115)

where ξ̂ = − (α′)3 ζ(3)χ(X6)

25/2 (2π)3 (S + S̄)3/2 with χ(X6) the Euler characteristic of the
CY 3-fold X6, and ζ(3) ' 1.202. Extra contributions coming from orientifold
planes might affect the equation (1.115) by shifting the Euler characteristic to
[37]

χ(X6) → χ(X6) + 2

∫
X6

DO7 ∧DO7 ∧DO7 , (1.116)

where DO7 is the divisor wrapped by the O7-plane.

2. String loop corrections. The 10 dimensional effective action for type IIB
strings also receive string loop contributions. These contributions are unknown
in a generic CY compactification. Despite of the lack of information, we can
classify them into two classes [38, 39, 40, 41, 42]:

• KK-correction. These contributions come from the exchange between
D3-branes (or O3-planes) and D7-branes (or O7-planes) of closed strings
which carry KK momentum. Schematically we can write their contribu-
tion in the Kähler potential as

δKKK
(gs) ∝

h1,1∑
i=1

CKKi (U, Ū)

Re(S)V
t⊥i , (1.117)

where CKKi (U, Ū) are unknown coefficients depending on the complex
structure moduli Uα, and t⊥i are the cycles controlling the distance be-
tween the D3-branes/O3-planes and D7-branes/ O7-planes.

• Winding corrections. In this case, the contributions are generated from
the exchange of winding strings between intersecting stacks of D7-branes
(or between intersecting D7-branes and O7-planes). Their contribution
to the scalar potential can be written as

δV W
(gs) ∝ −

gsW
2
0

V2

∑
i

CWi (U, Ū)

t∩i
, (1.118)

where gs is the sting loop coupling constant, W0 is the tree level super-
potential, CWi (U, Ū) are unknown coefficients depending on Uα, and t∩i is

37



the volume of the cycle intersected by the D7-branes and the O7-planes.

3. Non-perturbative corrections. Mainly the non-perturbative contributions
come from instantons. Instantons are classical solutions of the classical field
equations in Euclidean space with finite action. For example, for D3-brane
instantons the superpotential takes the form

W = W0 +
∑
j

Aj(U, φ, S) e−ajTj . (1.119)

This form of the superpotential can be also obtained by gaugino condensation
of stacks of D7-branes. Here, Aj(U, φ, S) is a coefficient that depends on
the complex structure moduli Uα, the axion/dilaton S, and possible fields φ
parametrizing the positions of stack of D7-branes wrapping the cycle tj. The
values of aj will depend on the generation of the correction. For example for
D3-branes instantons aj = 2π and for gaugino condensation aj ∼ 2π

N
with N

the number of D7-branes in the stack.

The first example which used these corrections to stabilise the Kähler moduli
in the large volume regime is given in the references [43, 44], and it is also called
the LARGE Volume Scenario (LVS). The LVS has become a standard topic in the
branch of moudli stabilisation, we recommend the reader to check the reference
[43, 44], for full review in the topic. The models constructed in this thesis are based
on the LARGE volume together with the addition of the string loop corrections. We
adapt the CY manifold accordingly in each model in order to build the cosmological
models. Each chapter is self-contained and easy to read. We hope you enjoy them.
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Part II

Inflation
from String Theory
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Chapter 2

Chiral Global Embedding of Fibre
Inflation Models

Cosmic inflation is an early period of accelerated expansion of our universe which
can provide a solution to the flatness and horizon problems of standard Big Bang
cosmology. Moreover, quantum fluctuations during inflation can source primordial
perturbations that caused the formation of large scale structures and the tempera-
tures anisotropies observed in the cosmic microwave background.

From a microscopic point of view, inflation is expected to be driven by the dy-
namics of a scalar field undergoing a slow-roll motion along a very shallow potential
that mimics a positive cosmological constant. An important feature of inflationary
models is the distance travelled by the inflaton in field space during inflation since it
is proportional to the amount of primordial gravitational waves which get produced
[45]. From an effective field theory point of view, in small field models with a sub-
Planckian inflaton excursion, dimension six operators can easily spoil the flatness
of the inflationary potential. On the other hand, quantum corrections to large field
models with a trans-Planckian field range lead to an infinite series of unsuppressed
higher-dimensional operators which seem to bring the effective field theory approach
out of control.

These dangerous operators can be argued to be absent or very suppressed only
in the presence of a symmetry whose origin can only be postulated from an ef-
fective field theory perspective but can instead be derived from an underlying UV
complete theory. For this reason inflationary model building in string theory has
received a lot of attention [46, 47, 13, 48]. Besides the presence of additional sym-
metries, string compactifications naturally provide many 4D scalars which can play
the rôle of the inflaton. Promising inflaton candidates are type IIB Kähler moduli
which parametrise the size of the extra dimensions and enjoy non-compact rescaling

41



symmetries inherited from the underlying no-scale structure [49].

Identifying a natural inflaton candidate with an appropriate symmetry that pro-
tects the flatness of its potential against quantum corrections is however not suffi-
cient to trust inflationary model building in string compactifications. In fact, three
additional requirements to have a successful string inflationary model are (i) full
moduli stabilisation, (ii) a global embedding into consistent Calabi-Yau orientifolds
with D-branes and fluxes and (iii) the realisation of a chiral visible sector.

The first condition is crucial to determine all the energy scales in the model and
to check the stability of the inflationary dynamics by controlling the behaviour of
the scalar directions orthogonal to the inflaton one. The second condition is instead
fundamental to guarantee the consistency of the inflation model from the microscopic
point of view by checking the cancellation of all D-brane tadpoles and Freed-Witten
anomalies and the actual generation of all the effects needed to stabilise the moduli
and to develop the inflationary potential. Finally the requirement of having a model
which can give rise to inflation and reproduce at the same time a chiral visible sector
is crucial for two main reasons: to ensure the absence of any dangerous interplay
between chirality and moduli stabilisation which can forbid the generation of D-
terms or non-perturbative effects needed to fix the moduli [50], and to determine
the post-inflationary evolution of our universe starting from the reheating process
where the inflaton energy density gets converted into the production of visible sector
degrees of freedom [51, 52, 53, 54]. Other important post-inflationary issues which
can affect the predictions of important inflationary observables like the number
of efoldings Ne, the scalar spectral index ns and the tensor-to-scalar ratio r are
periods of matter domination due to light moduli [55, 56, 57], the production of
axionic dark radiation from moduli decays [58, 59, 60, 61], non-thermal dark matter
[62, 63, 63, 64, 221], moduli-induced baryogenesis [65, 66] and the interplay between
the inflationary and the supersymmetry breaking scale [67, 68, 69, 70].

A comprehensive global chiral model which satisfies all these conditions for mod-
els where the inflaton is a local blow-up mode [71] has been recently constructed in
[72]. The chiral visible sector lives on D3-branes at an orientifolded singularity and
full closed string moduli stabilisation in a dS vacuum is achieved by following the
LVS procedure [43, 42]. The main limitation of this model is the emergence of an
η-problem associated with the presence of large gs corrections to the effective action
which tend to spoil the flatness of the inflationary potential if their flux-dependent
coefficients are not tuned small.

In this regard, fibre inflation models [14] look more promising. In these construc-
tions, the inflaton is a fibration modulus which remains exactly massless when only
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the leading order no-scale breaking effects are included. The inflationary potential
is then generated only at subleading order by a combination of string loop correc-
tions [39, 40, 73, 74] and higher derivative terms [75, 76]. This hierarchy of scales
is guaranteed by the extended no-scale cancellation and provides a natural solution
to the η-problem [41]. This solution can also be understood from the point of view
of an effective non-compact rescaling symmetry for the Kähler moduli [49].

Different versions of fibre inflation models have been constructed so far depend-
ing on the microscopic nature of the effects which drive the inflationary dynamics:
Kaluza-Klein and winding string loops [14], Kaluza-Klein loops and O(α′3) F 4 terms
[77], and winding gs loops combined with higher derivative terms [78]. In all cases
the inflationary potential is plateau-like and takes a simple form with a constant
term and negative exponentials. Additional positive exponentials show up with
coefficients which are naturally very small and give rise to a rising behaviour at
large field values. Ref. [79] provided a generalised description of fibre inflation
models showing how they can reproduce the correct spectral index observed by
Planck [80, 7] while the predicted value of the tensor-to-scalar ratio is in the range
0.001 . r . 0.01. Such a large value of r is compatible with the fact that these
are large field models where the inflaton range is around 5 Planck units. An effec-
tive supergravity description of fibre inflation models as α-attractors has also been
recently given in [81].

Despite all these successes, fibre inflation models are still lacking a complete
global embedding into chiral string compactifications. However a first step forward
has already been made in [82] where these inflationary models have been successfully
embedded in consistent type IIB orientifolds with moduli stabilisation but without
a chiral visible sector. In order to have a viable inflationary and moduli stabilisation
mechanism, the internal Calabi-Yau manifold has to have at least h1,1 = 3 Kähler
moduli and its volume form has to feature a K3 or T 4 fibration over a P1 base and
a rigid shrinkable blow-up mode [42, 83]. Starting from concrete Calabi-Yau three-
folds with these topological properties, ref. [82] provided several different examples
with an explicit choice of orientifold involution and D3/D7 brane setups which are
globally consistent and can generate corrections to the 4D effective action that can
fix all closed string moduli inside the Kähler cone and reproduce the form of the
inflationary potential of fibre inflation models. However the case with h1,1 = 3 is
too simple to allow for non-trivial D7 worldvolume fluxes which give rise to chiral
matter. In fact, non-zero gauge fluxes induce moduli dependent Fayet-Iliopoulos
terms which, in combination with soft term contributions for U(1)-charged matter
fields, would lift the leading order flat direction, making the inflaton too heavy to
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drive inflation.
In this chapter we shall extend the results of [82] by considering more compli-

cated Calabi-Yau threefolds with h1,1 = 4 in order to build global fibre inflation
models with a chiral visible sector. After analysing the topological conditions on
the underlying compactification manifold to allow a successful chiral global embed-
ding of fibre inflation models, we find that the simplest examples involve Calabi-Yau
threefolds with 3 K3 divisors and a toroidal-like volume with a diagonal del Pezzo
divisor suitable to support non-perturbative effects to freeze the moduli. The in-
ternal volume is therefore controlled by 3 Kähler moduli and can equivalently be
seen as different K3 fibrations over 3 different P1 bases. After searching through
the Kreuzer-Skarke list of Calabi-Yau manifolds embedded in toric varieties [84], we
find several concrete examples which admit these topological features.

We then focus on one of them and describe several possible choices of orientifold
involution, D-brane setup and gauge fluxes which satisfy global consistency condi-
tions and generate perturbative gs and α′ corrections to the 4D Kähler potential
and non-perturbative effects in the superpotential that are suitable to both stabilise
the moduli and reproduce the typical potential of fibre inflation models. In par-
ticular, non-zero gauge fluxes induce chiral matter on D7-branes wrapped around
smooth combinations of the four-cycles which control the overall volume.1 More-
over, a moduli-dependent Fayet-Iliopoulos term lifts one of the Kähler moduli, so
that after D-term stabilisation the effective number of Kähler moduli is reduced to
3 and the internal volume simplifies to the standard expression of fibre inflation
models used in the examples of [82].

After computing all relevant loop and higher derivative effects in full detail, we
analyse the resulting inflationary dynamics finding an interesting result: the Kähler
cone bounds set severe constraints on the allowed inflaton field range when they
are combined with other phenomenological requirements, like the generation of the
correct amplitude of the power spectrum by the inflaton quantum fluctuations, and
consistency conditions like the stability of the inflaton evolution against possible or-
thogonal runaway directions, the fact that the gravitino mass remains always smaller
than any Kaluza-Klein scale in the model and finally that dangerous higher deriva-
tive effects do not spoil the flatness of the inflationary potential before achieving
enough efoldings of inflation.2 Because of this tension, we also perform a full multi-
field numerical analysis of the inflationary evolution showing how an early period of

1We do not consider K3 fibred cases where the visible sector lives on D3 branes at singularities
since they would lead to dark radiation overproduction [85].

2These last two consistency conditions are qualitatively similar since the superspace derivative
expansion is under control if m3/2 �MKK [86].
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accelerated expansion occurs generically. On the other hand, the inflaton quantum
fluctuations can generate the right amplitude of the density perturbations only if
the microscopic parameters take appropriate values.

We believe that our results make fibre inflation models more robust since they
represent the first concrete models which are globally consistent and chiral. Nonethe-
less several issues still need to be investigated further. The most important ones are
the inclusion of an explicit uplifting mechanism to realise a dS vacuum, a thorough
derivation of the perturbative corrections to the 4D effective action and a better
determination of the Calabi-Yau Kähler cone, going beyond its approximated ex-
pression inherited from the toric ambient space. We leave the study of these issues
for the future.

This chapter is organised as follows. In Sec. 2.1, after presenting a basic review
of fibre inflation models, we summarise the minimal requirements that are needed for
the construction of a fully consistent global embedding with a chiral visible sector.
In Sec. 2.2 we provide a concrete Calabi-Yau example, describing the orientifold
involution, the D-brane setup, the choice of gauge fluxes and the resulting chiral
spectrum, Fayet-Iliopoulos term and inflationary potential generated by gs and α′

effects. The inflationary evolution is analysed in full detail in Sec. 2.3 by focusing
first on the single-field approximation and by studying then the multi-field dynamics.
In Sec. 2.4 we draw our conclusions and we discuss a few open issues. App. B
contains additional explicit chiral global examples.

2.1 Chiral global inflationary models

Let us begin by briefly reviewing the setup of fibre inflation and proceed afterward
by displaying the minimal requirements for a successful chiral global embedding of
fibre inflation models.

2.1.1 Fibre inflation in a nutshell

Fibre inflation models are based on a class of type IIB orientifold flux compactifica-
tions with D3/D7-branes and O3/O7-planes where the Calabi-Yau (CY) threefold
takes a so-called ‘weak Swiss-cheese’ form:

V = f3/2(τj)−
Nsmall∑
i=1

λiτ
3/2
i with j = 1, ..., Nlarge , (2.1)
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where h1,1 = Nlarge+Nsmall and f3/2 is a homogeneous function of degree 3/2. In these
models, the stabilisation of the Kähler moduli is performed in two steps. Firstly, the
total volume V as well as the volumes of the Nsmall rigid blow-up divisors τi are fixed
following the LVS procedure [43, 42] where the leading order α′3 corrections to the
Kähler potential [36, 37, 87] are balanced against non-perturbative contributions to
the superpotential [88]. This leaves Nflat = Nlarge−1 = h1,1−Nsmall−1 flat directions
which are natural inflaton candidates. These directions can receive a potential at
subleading order by gs corrections due to the exchange of Kaluza-Klein (KK) and
winding modes [39, 40, 73, 74, 41] as well as by (α′)3 F 4-terms [75, 76]. In the
simplest fibre inflation models h1,1 = 3 and Nsmall = 1, so that Nflat = 1. This
leading order flat direction corresponds to a Kähler modulus τf which parametrises
the volume of a K3 surface and the total scalar potential schematically looks like
[14, 77, 78, 79]:

V = VLV S(V , τs) + VdS(V) + Vinf(V , τs, τf ) , (2.2)

where Vinf(V , τs, τf ) = V KK
gs + V W

gs + VF 4 � VLV S(V , τi) is the inflationary potential.
VLV S is the leading order LVS potential which fixes V and τs, VdS is an uplifting
contribution to get a dS vacuum which can originate from anti D3-branes [88, 89,
90, 91, ?], hidden sector T-branes [92] or non-perturbative effects at singularities
[93], while V KK

gs , V W
gs and VF 4 are respectively KK and winding string loops and F 4

terms.
In fibre inflation models, the underlying CY threefold is a K3 fibration over a P1

base which has two decompactification limits, corresponding to either the K3 fibre
or the base growing large. Thus, kinematically it is expected that the fibre volume
can traverse several Planck units. These LVS inflationary models present a variety
of distinct features that make them very promising candidates to realise large field
inflation and to discuss explicit global embeddings:

1. The de Sitter uplift is independent of the inflaton. This is contrary to a hypo-
thetical KKLT embedding [88], where the uplift would be inflaton-dependent
and, thus, large field inflation would typically destroy the KKLT minimum.

2. The back-reaction of heavy moduli is incorporated and under control, in par-
ticular, due to the fact that moduli stabilisation is done in two steps and the
leading order potential is independent of the inflaton because of the extended
no-scale cancellation [41]. This is in contrast with the majority of large field
models of inflation [94].

3. The possibility to achieve tensor-to-scalar ratios between r ∼ 0.01 and r ∼
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0.001 which can be tested by future CMB observations [95, 96].

An explicit realisation of fibre inflation not only places several constraints on the
underlying CY geometry, but also on the setup of D-branes and O-planes. In the
following section we list the sufficient requirements to build a viable global model
which also allows for a chiral visible sector.

2.1.2 Requirements for chiral global embedding

The simplest global embedding of fibre inflation models requires at least three Kähler
moduli [82]. However, in order to incorporate also a chiral visible sector we need
at least h1,1 = 4 Kähler moduli. Here we will focus on obtaining chiral matter on
D7-branes wrapped around a suitable divisor with world-volume gauge fluxes turned
on. In this case D7 gauge fluxes induce a D-term potential for the Kähler moduli
that fixes a particular combination thereof. Thus, D-term fixing and the leading
order LVS stabilisation mechanism leave just a single flat direction, in our case a
K3 fibre, which will play the rôle of the inflaton. In order to obtain a viable chiral
global model we require the following ingredients and consistency conditions:

1. A Calabi-Yau with h1,1 = 4 featuring three large cycles and a shrinkable rigid
divisor, so that the internal volume takes the form (2.1) with Nsmall = 1. In
the explicit example described in Sec. 2.2 the volume simplifies further to:

V = ca
√
τ1 τ2 τ3 − cb τ 3/2

s , (2.3)

with ca > 0 and cb > 0. Each of the 3 moduli τ1, τ2 and τ3 controls the volume
of a K3 surface while τs parametrises the size of a ‘diagonal’ del Pezzo divisor
[83]. D-term stabilisation will fix τ3 ∝ τ2 while the standard LVS procedure
will freeze the overall volume V ' ca

√
τ1 τ2 τ3 and the blow-up mode τs. The

leading order flat direction can be parametrised by τ1 which will drive inflation.

2. An orientifold involution and a D3/D7-brane setup with gauge fluxes on the
visible D7-brane stacks such that tadpole cancellation is satisfied with enough
room for bulk three-form fluxes to be turned on for complex structure and
dilaton stabilisation. The D-brane and O-plane setup must also allow for
the generation of KK- and/or winding string loop corrections which have the
correct form to generate a suitable inflationary potential.

3. A choice of world-volume fluxes which cancels all Freed-Witten anomalies [97,
98] but leads, at the same time, to just a single moduli-dependent Fayet-
Iliopoulos (FI) term [99, 100] in order to leave a leading order inflationary
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flat direction by lifting just one of the two flat directions leftover by the LVS
stabilisation mechanism.

4. There should be no chiral intersection between the visible sector and the del
Pezzo divisor supporting non-perturbative effects required for LVS moduli fix-
ing as otherwise the prefactor of the non-perturbative superpotential would be
vanishing [50]. The absence of these dangerous chiral intersections should be
guaranteed by an appropriate choice of gauge fluxes.

5. Moduli stabilisation and inflation have to take place inside the CY Kähler cone
and the effective field theory should be well under control with 〈V〉 � 1 and
gs � 1.

6. In order to trust inflationary model building within an effective field theory,
the following hierarchy of scales should be satisfied from horizon exit to the
end of inflation:

minf < H < m3/2 < M
(i)
KK < Ms < Mp , (2.4)

where minf is the inflaton mass, H is the Hubble constant, m3/2 is the grav-
itino mass which sets the mass scale of all the heavy moduli during inflation,
M

(i)
KK denote various KK scales associated with bulk modes and open string

excitations on D7-branes wrapped around four-cycles, Ms is the string scale
and Mp is the reduced Planck mass Mp = 2.4 · 1018 GeV. Notice that, apart
from Mp, all these energy scales are moduli dependent and so evolve during
inflation. After stabilising V and τs à la LVS and fixing one large modulus in
terms of another large direction via setting the FI-term to zero, we find that
the ‘reduced’ moduli space of the inflationary direction is in fact a compact
interval. Therefore the field space available for inflation is kinematically finite
(albeit in general trans-Planckian), a feature of the model which has so far
been overlooked. We will state the precise phenomenological and consistency
conditions for successful inflation in Sec. 2.3.

2.2 A chiral global example

In this section, we shall present all the topological and model-building details of the
global embedding of fibre inflation models into explicit chiral CY orientifolds with
h1,1 = 4.
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2.2.1 Toric data

Let us consider the following toric data for a CY threefold whose volume takes the
form V = ca

√
τ1 τ2 τ3 − cb τ 3/2

s discussed above:

x1 x2 x3 x4 x5 x6 x7 x8

4 0 0 0 1 1 0 0 2
4 0 0 1 0 0 1 0 2
4 0 1 0 0 0 0 1 2
8 1 0 0 1 0 1 1 4

dP7 NdP11 NdP11 K3 NdP11 K3 K3 SD

The Hodge numbers are (h2,1, h1,1) = (98, 4), the Euler number is χ = −188,
while the Stanley-Reisner ideal is:

SR1 = {x1x4, x1x6, x1x7, x2x7, x3x6, x4x5x8, x2x3x5x8} .

This corresponds to the polytope ID #1206 in the CY database of Ref. [101]. A
detailed divisor analysis using cohomCalg [102, 103] shows that the divisor D1 is a
del Pezzo dP7 while each of the divisors {D4, D6, D7} is a K3 surface. Moreover,
each of the divisors {D2, D3, D5} is a ‘rigid but not del Pezzo’ surface with h1,1 = 12

which we denote as NdP11 while D8 is a ‘special deformation’ divisors with Hodge
diamond:

SD ≡

1
0 0

23 160 23
0 0

1

The intersection form in the basis of smooth divisors {D1, D4, D6, D7} can be written
as:

I3 = 2D4D6D7 + 2D3
1 . (2.5)

Writing the Kähler form in the above basis of divisors as J = t1D1 + t4D4 + t6D6 +

t7D7 and using the intersection polynomial (2.5), the CY overall volume becomes:

V = 2 t4 t6 t7 +
t31
3
. (2.6)

The Kähler cone conditions can be derived from the following generators of the
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Kähler cone:

K1 = −D1 +D4 +D6 +D7 , K2 = D7 , K3 = D4 , K4 = D6 . (2.7)

Expanding the Kähler form as J =
∑4

i=1 riKi, the Kähler cone is defined via the
following conditions on the two-cycle moduli:

r1 = − t1 > 0 , r2 = t1+t7 > 0 , r3 = t1+t4 > 0 , r4 = t1+t6 > 0 . (2.8)

Notice that this expression of the CY Kähler cone is only approximate since it is
inherited from the Kähler cone of the ambient toric variety.3 However this proce-
dure can either overcount some curves of the CY threefold, for example if they do
not intersect with the CY hypersurface, or miss some of them, if they cannot be
obtained as the intersection between two divisors of the ambient space and the CY
hypersurface. Hence the actual CY Kähler cone can turn out to be either larger
or smaller. This analysis would require a deeper investigation which is however be-
yond the scope of this chapter.4 Here we just mention that this analysis has been
performed in detail in [104] where the CY Kähler cone turned out to be larger than
the approximated version.

The four-cycle moduli, which can be computed as τi = ∂tiV , look like:

τ1 = t21 , τ4 = 2 t6 t7 , τ6 = 2 t4 t7 , τ7 = 2 t4 t6 , (2.9)

and so, using the Kähler cone conditions (2.8), the overall volume reduces to:

V = t4τ4 −
1

3
τ

3/2
1 = t6τ6 −

1

3
τ

3/2
1 = t7τ7 −

1

3
τ

3/2
1 =

1√
2

√
τ4 τ6 τ7 −

1

3
τ

3/2
1 , (2.10)

which shows clearly that the CY threefold X features three K3 fibrations over dif-
ferent P1 bases. The second Chern class of X is given by:

c2(X) = D4D5 + 4D2
5 + 12D5D6 + 12D5D7 + 12D6D7 , (2.11)

3If the same CY threefold can be realised as a hypersurface embedded in different ambient
spaces, the CY Kähler cone is approximated as the intersection of the Kähler cones of the different
toric varieties [101].

4We however expect that the CY Kähler cone cannot get smaller. In fact, if this were the case,
there should exist an extra constraint from requiring the positivity of a curve of the CY which
is trivial in the ambient space. But this does not seem to be possible since each CY divisor is
inherited from a single toric divisor (i.e. we do not have a toric divisor which splits into two CY
divisors, and so where h1,1 of the CY is larger than h1,1 of the ambient space). In fact, if this
trivial curve existed, it should have a dual divisors, and so h1,1 of the CY should be larger than
h1,1 of the ambient case, which is however not the case.
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which results in the following values of the topological quantities Πi =
∫
X
c2 ∧ D̂i:

Π1 = 8 , Π2 = Π3 = 16 , Π4 = 24 , Π5 = 16 , Π6 = Π7 = 24 , Π8 = 128 .

(2.12)
The intersection curves between two coordinate divisors are given in Tab. 2.1 while
their volumes are listed in Tab. 2.2.

D1 D2 D3 D4 D5 D6 D7 D8

D1 C3 T2 T2 ∅ T2 ∅ ∅ C3

D2 T2 P1 t P1 P1 t P1 T2 P1 t P1 T2 ∅ C3

D3 T2 P1 t P1 P1 t P1 T2 P1 t P1 ∅ T2 C3

D4 ∅ T2 T2 ∅ ∅ T2 T2 C9

D5 T2 P1 t P1 P1 t P1 ∅ P1 t P1 T2 T2 C3

D6 ∅ T2 ∅ T2 T2 ∅ T2 C9

D7 ∅ ∅ T2 T2 T2 T2 ∅ C9

D8 C3 C3 C3 C9 C3 C9 C9 C81

Table 2.1: Intersection curves of two coordinate divisors. Here Cg denotes a curve
with Hodge numbers h0,0 = 1 and h1,0 = g.

D1 D2 D3 D4 D5 D6 D7 D8

D1 2 t1 −2 t1 −2 t1 0 −2 t1 0 0 −4 t1
D2 −2 t1 2 t1 2(t1 + t4) 2 t6 2(t1 + t6) 2 t4 0 4(t1 + t4 + t6)
D3 −2 t1 2(t1 + t4) 2 t1 2 t7 2(t1 + t7) 0 2 t4 4(t1 + t4 + t7)
D4 0 2 t6 2 t7 0 0 2 t7 2 t6 4(t6 + t7)
D5 −2 t1 2(t1 + t6) 4(t1 + t7) 0 2 t1 2 t7 2 t6 4(t1 + t6 + t7)
D6 0 2 t4 0 2 t7 2 t7 0 2 t4 4(t4 + t7)
D7 0 0 2 t4 2 t6 2 t6 2 t4 0 4(t4 + t6)
D8 −4 t1 4(t1 + t4 + t6) 4(t1 + t4 + t7) 4(t6 + t7) 4(t1 + t6 + t7) 4(t4 + t7) 4(t4 + t6) 8(t1 + 2(t4 + t6 + t7))

Table 2.2: Volumes of intersection curves between two coordinate divisors.

2.2.2 Orientifold involution

We focus on orientifold involutions of the form σ : xi → −xi with i = 1, ..., 8 which
feature an O7-plane on Di and O3-planes at the fixed points listed in Tab. 2.3. The
effective non-trivial fixed point set in Tab. 2.3 has been obtained after taking care
of the SR ideal symmetry. Moreover, the total number of O3-planes NO3 is obtained
from the triple intersections restricted to the CY hypersurface, while the effective

51



Euler number χeff has been computed as:5

χeff = χ(X) + 2

∫
X

[O7] ∧ [O7] ∧ [O7] . (2.13)

In what follows we shall focus on the orientifold involution σ : x8 → −x8 which
features just a single O7-plane located in D8 and no O3-plane .

σ O7 O3 NO3 χ(O7) χeff

x1 → −x1 D1 {D2D3D4, D2D4D6, D2D5D6, 14 10 -184
D3D4D7, D3D5D7,

D4D6D7, D5D6D7}
x2 → −x2 D2 tD7 D1D3D5 2 38 -192
x2 → −x3 D3 tD6 D1D2D5 2 38 -192
x4 → −x4 D4 tD5 D1D2D3 2 38 -192
x5 → −x5 D4 tD5 D1D2D3 2 38 -192
x6 → −x6 D3 tD6 D1D2D5 2 38 -192
x7 → −x7 D2 tD7 D1D3D5 2 38 -192
x8 → −x8 D8 ∅ 0 208 -28

Table 2.3: Fixed point set for the involutions which are reflections of the eight
coordinates xi with i = 1, ..., 8.

2.2.3 Brane setup

If the D7-tadpole cancellation condition is satisfied by placing four D7-branes on
top of the O7-plane, the string loop corrections to the scalar potential can involve
only KK effects between this D7-stack and O3-planes or D3-branes since winding
contributions are absent due to the absence of any intersection between D7-branes
and/or O7-planes. Thus loop effects are too simple to generate a viable inflationary
plateau. They might even be completely absent in our case since there are no
O3-planes and the D3-tadpole cancellation condition could be satisfied without the
need to include D3-branes (i.e. just switching on appropriate background three-form
fluxes). We shall therefore focus on a slightly more complicate D7-brane setup which
gives rise to winding loop effects. This can be achieved by placing D7-branes not

5The effective Euler number controls the strength of N = 1 O(α′3) corrections due to O7-planes
[37].
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entirely on top of the O7-plane as follows:

8[O7] ≡ 8([D8]) = 16 ([D2] + [D4] + [D6]) . (2.14)

This brane setup involves three stacks of D7-branes wrapped around the divisors
D2, D4 and D6. Moreover, the condition for D3-tadpole cancellation becomes:

ND3 +
Nflux

2
+Ngauge =

NO3

4
+
χ(O7)

12
+
∑
a

Na (χ(Da) + χ(D′a))

48
= 38 ,

showing that there is space for turning on both gauge and background three-form
fluxes for complex structure and dilaton stabilisation.6 As shown in [105], three-
form fluxes stabilise also D7 position moduli and open string moduli living at the
intersection between two different stacks of D7-branes since they generate soft super-
symmetry breaking mass terms for each of these scalars. On the other hand, there
are no Wilson line moduli in our model since h1,0(D2) = h1,0(D4) = h1,0(D6) = 0.

Let us point out that other orientifold involutions which could allow for D7-
branes not entirely on top of the O7-plane are x4 → −x4, x6 → −x6 or x7 → −x7.
In each of these cases, the O7-plane is located on a K3 surface. However, given that
D4 = D1 + D5, D6 = D1 + D3 and D7 = D1 + D2, from Tab. 2.1 and 2.2 we see
that the resulting D7-brane stacks are either non-intersecting (and so no winding
corrections are generated) or the volumes of the intersection curves depend just on
the ‘small’ dP7 divisor (and so winding loops are inflaton-independent). This is the
reason why we chose the involution x8 → −x8 where the O7-plane is located on
the ‘special deformation’ divisor D8 which gives more freedom for D7-brane model
building.

2.2.4 Gauge fluxes

In order to obtain a chiral visible sector on the D7-brane stacks wrapping D2, D4

and D6 we need to turn on worldvolume gauge fluxes of the form:

Fi =
h1,1∑
j=1

fijD̂j −
1

2
c1(Di)− ι∗DiB with fij ∈ Z and i = 2, 4, 6 , (2.15)

where the half-integer contribution is due to Freed-Witten anomaly cancellation
[97, 98].

6We focus on flux vacua where the dilaton is fixed in a regime where our perturbative type IIB
analysis is under control.
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However we want to generate just one moduli-dependent Fayet-Iliopoulos term in
order to fix only one Kähler modulus via D-term stabilisation. In fact, if the number
of FI-terms is larger than one, there is no light Kähler modulus which can play the
rôle of the inflaton. Moreover we wrap a D3-brane instanton on the rigid divisor D1

in order to generate a non-perturbative contribution to the superpotential which is
crucial for LVS moduli stabilisation. In order to cancel the Freed-Witten anomaly,
the D3-instanton has to support a half-integer flux, and so the general expression of
the total gauge flux on D1 becomes (with c1(D1) = −D̂1):

F1 =
h1,1∑
j=1

f1jD̂j +
1

2
D̂1 − ι∗DiB with f1j ∈ Z . (2.16)

However a non-vanishing F1 would not be gauge invariant, and so would prevent a
non-perturbative contribution to the superpotential. We need therefore to check if
it is possible to perform an appropriate choice of B-field which can simultaneously
set F4 = F6 = 0 (we choose to have a non-vanishing gauge flux only on D2 to have
just one moduli-dependent FI-term) and F1 = 0. Recalling that both D4 and D6

are K3 surfaces which are spin divisors with c1(D4) = c1(D6) = 0 (since the K3 is a
CY two-fold), if we set:

B =
1

2
D̂1 , (2.17)

the condition F1 = F4 = F6 = 0 reduces to the requirement that the following forms
are integer:

ι∗D4

(
1

2
D̂1

)
and ι∗D6

(
1

2
D̂1

)
, (2.18)

since in this case the integer flux quanta fij can always be adjusted to yield vanishing
gauge fluxes. Taking an arbitrary integer form A ∈ H2(Z, X) which can be expanded
as A = ajD̂j with aj ∈ Z, the pullbacks in (2.18) give rise to integer forms if:

b4 ≡
∫
X

(
1

2
D̂1

)
∧ D̂4 ∧ A ∈ Z

b6 ≡
∫
X

(
1

2
D̂1

)
∧ D̂6 ∧ A ∈ Z

Using the intersection polynomial (2.5) we find b4 = b6 = 0, showing how the choice
of B-field in (2.17) can indeed allow for F1 = F4 = F6 = 0. The only non-zero gauge
flux is F2 whose half-integer contribution can be cancelled by adding an additional
term to the B-field of the form 1

2
D̂2. Given that all the intersection numbers are

even, this new term in B does not modify our previous results on the pullbacks of
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the B-field on D1, D4 and D6. Moreover the pullback of the B-field on D2 will also
generate an integer flux contribution. We shall therefore consider a non-vanishing
gauge flux on the worldvolume of D2 of the form:

F2 =
h1,1∑
j=1

f2jD̂j with f2j ∈ Z . (2.19)

2.2.5 FI-term and chirality

Given that the divisor D2 is transversely invariant under the orientifold involution
and it is wrapped by eight D7-branes, it supports an Sp(16) gauge group which is
broken down to U(8) = SU(8) × U(1) by a non-zero flux F2 along the diagonal
U(1). This non-trivial gauge flux F2 induces also a U(1)-charge qi2 for the i-th
Kähler modulus of the form:

qi2 =

∫
X

D̂i ∧ D̂2 ∧ F2 . (2.20)

Thus F2 6= 0 yields (using D2 = D7 −D1):

q12 = −2f21 q42 = 2f26 q62 = 2f24 q72 = 0 , (2.21)

together with a flux-dependent correction to the gauge kinetic function which looks
like:

Re(f2) = α−1
2 =

4π

g2
2

= τ2 − h(F2)Re(S) , (2.22)

where:
h(F2) =

1

2

∫
X

D̂2 ∧ F2 ∧ F2 =
1

2
(f21q12 + f24q42 + f26q62) . (2.23)

Moreover a non-vanishing gauge flux F2 induces a moduli-dependent FI-term of the
form:

ξ =
1

4πV

∫
X

D̂2 ∧ J ∧ F2 =
1

4πV

h1,1∑
j=1

qj2 tj =
1

4πV
(q12 t1 + q42 t4 + q62 t6) . (2.24)

For vanishing open string VEVs (induced for example by non-tachyonic scalar masses),
a leading-order supersymmetric stabilisation requires ξ = 0 which implies:

t4 = −q12

q42

t1 −
q62

q42

t6 . (2.25)
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This U(1) factor becomes massive via the Stückelberg mechanism and develops an
O(Ms) mass by eating up a linear combination of an open and a closed string axion
which is mostly given by the open string mode.

Besides breaking the worldvolume gauge group and inducing moduli-dependent
FI-terms, non-trivial gauge fluxes on D7-branes generate also 4D chiral modes. In
fact, open strings stretching between the D7-branes on D2 and the O7-planes or the
image branes give rise to the following zero-modes in the symmetric and antisym-
metric representations of U(8):

I
(S)
2 = −1

2

∫
X

D̂2 ∧ [O7] ∧ F2 −
∫
X

D̂2 ∧ D̂2 ∧ F2 = 2q12 − q42 − q62 , (2.26)

I
(A)
2 =

1

2

∫
X

D̂2 ∧ [O7] ∧ F2 −
∫
X

D̂2 ∧ D̂2 ∧ F2 = q42 + q62 . (2.27)

Due to the absence of worldvolume fluxes on the D7-branes wrapped around D4

and D6, both of these two D7-stacks support an Sp(16) gauge group (since both
D4 and D6 are transversely invariant) which are both unbroken. Thus open strings
stretched between the D7-branes on D2 and D4 or D6 (or their image branes) give
rise to 4D chiral zero-modes in the bi-fundamental representation (8,16) of U(8) and
Sp(16) whose number is:

I24 =

∫
X

D̂2 ∧ D̂4 ∧ F2 = q42 , I26 =

∫
X

D̂2 ∧ D̂6 ∧ F2 = q62 . (2.28)

We need finally to check that there are no chiral intersections between the D7s on
D2 and the instanton on D1 to make sure that the prefactor of the non-perturbative
contribution to the superpotential is indeed non-zero. This is ensured if:

I21 =

∫
X

D̂2 ∧ D̂1 ∧ F2 = q12 = −2f21 = 0 . (2.29)

This condition can be easily satisfied by choosing f21 = 0. In turn, this choice
simplifies the D-term constraint (2.25) to:

t4 = −q62

q42

t6 ≡ α t6 . (2.30)

2.2.6 Inflationary potential

Using the D-term fixing relation (2.30), the Kähler cone conditions (2.8) simplify
to t7 > −t1 > 0 together with t6 > −t1 > 0 if α ≥ 1 or αt6 > −t1 > 0 if α ≤ 1.
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Moreover the CY volume (2.6) reduces to:

V = 2αt7t
2
6 +

t31
3

= t7τ7 −
1

3
τ

3/2
1 =

1√
2α

√
τ7 τ6 −

1

3
τ

3/2
1 . (2.31)

Given that this form is linear in t7, the effective CY volume after D-term stabilisation
looks like a single K3 fibre τ7 over a P1 base t7 and reduces to the typical form used in
fibre inflation models. The blow-up mode τ1 and the overall volume V are stabilised
in the LVS fashion by means of a non-perturbative correction to W generated by an
Euclidean D3-brane instanton wrapping D1. This leaves the fibre modulus τ7 as a
flat direction which receives a potential at subleading order.

Let us now focus on the inflationary potential. The winding loop corrections can
be written as (with κ = gs/(8π) for eKcs = 1):

V W

gs = −2κ
W 2

0

V3

∑
i

CW
i

t∩i
, (2.32)

where t∩i are the volumes of the two-cycles where D7-branes/O7-planes intersect.
Notice that if two coordinate divisors Di and Dj are wrapped by D7-branes and/or
O7-planes, the scalar potential receives t∩-dependent winding loop corrections only if
their intersection curve contains non-contractible 1-cycles, i.e. if h1,0(Di ∩Dj) 6= 0.
In our case, we have an O7-plane located on D8 and three stacks of D7-branes
wrapping D2, D4 and D6. Using Tab. 2.1 and 2.2, we see all D7s intersect with
each other and with the O7 and that winding corrections can arise from any of these
intersections. Thus we end up with:

V W

gs = −κ W
2
0

V3

[
1
√
τ7

(
CW − C̃W(τ7)

)
− τ7

V

(
|CW

3 | − ĈW(τ7)
)]

, (2.33)

where (setting t4 = αt6, CW
3 = −|CW

3 | < 0 and CW
4 = −|CW

4 | < 0):

CW =
√

2α

(
CW

1 +
CW

2

α

)
C̃W(τ7) =

|CW
4 |

(α + 1)

√
α

2

1−
√

2α

(α + 1)

√
〈τ1〉
τ7

−1

,

(2.34)
and:

ĈW(τ7) =
CW

5

2

(
1 +

1√
2α

τ
3/2
7

V

)−1

+
CW

6

2

(
1 +

√
α

2

τ
3/2
7

V

)−1

. (2.35)

Due to the absence of O3-planes (we also assume that the D3-tadpoles are cancelled
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without including any spacetime-filling D3-branes) and the fact that all D7s intersect
with each other and with the O7-plane, there are no 1-loop corrections due to the
exchange of closed strings carrying KK momentum.7

On the other hand, higher derivative α′3 F 4 corrections to the scalar potential
can be written as [75]:8

VF 4 = −κ2 λW 4
0

g
3/2
s V4

h1,1∑
i=1

Πi ti , (2.36)

where λ is an unknown combinatorial factor which is expected to be of order 10−3

[75, 76] and the topological quantities Πi are given in (2.12). After imposing the
D-term condition (2.30), the F 4 contributions can be rewritten as (ignoring the
t1-dependent term):

VF 4 = −24κ2 λW 4
0

g
3/2
s V3

[
(α + 1)√

2α

√
τ7

V
+

1

τ7

]
. (2.37)

Therefore the total inflationary potential becomes:

V = V W

gs + VF 4 = κ
W 2

0

V3

(
A1

τ7

− A2√
τ7

+
B1
√
τ7

V
+
B2 τ7

V

)
, (2.38)

where (with λ = −|λ| < 0):

A1 =
3

π

|λ|W 2
0√

gs
A2 = CW− C̃W(τ7) B1 =

(α + 1)√
2α

A1 B2 = |CW

3 |− ĈW(τ7) .

2.3 Inflationary dynamics

In this section we shall analyse the inflationary dynamics by studying first the single-
field approximation and then by focusing on the full multi-field evolution.

7Strictly speaking, there might be 1-loop corrections associated with the exchange of KK modes
between the Euclidean D3-instanton on D1 and the D7-branes which do not intersect D1. However,
we expect such corrections to be exponentially suppressed and, thus, not relevant for the analysis.

8This expression displays merely the leading orderO(V−4) terms which are corrected at sublead-
ing order in inverse volume by additional corrections as discussed in [78]. Furthermore, additional
higher-derivative corrections mediated by the auxiliary fields sitting in the supergravity multiplet
might emerge at order O(V−5) [78, 106].
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2.3.1 Single-field evolution

In order to realise single-field slow-roll inflation where the potential for the inflaton
τ7 features a plateau-type region [14, 78], the overall volume has to be approximately
constant during the whole inflationary dynamics. Therefore, in order to get enough
efoldings before reaching the dangerous limit where the base of the fibration t7

becomes smaller than the string scale, we need to focus on the region in field space
where the inflaton minimum is of order 〈τ7〉 � V2/3. For gs . O(0.1), |λ| ∼ O(10−3)

and natural O(1) values of the coefficients of the string loop effects, in the vicinity
of the minimum the terms in (2.38) proportional to B1 and B2 are therefore both
negligible with respect to the terms proportional to A1 and A2. Numerical estimates
show that we need values of order 〈τ7〉 ∼ O(1) and V ∼ O(104) which, in turn, imply
W0 ∼ O(100) in order to match the observed amplitude of the density perturbations.

The scalar potential (2.38) written in terms of the canonically normalised inflaton
shifted from its minimum φ = 〈φ〉+ φ̂, where τ7 = 〈τ7〉 ekφ̂ with k = 2/

√
3, becomes:

V = κ
A2W

2
0

V3
√
〈τ7〉

(
CdS + c e−kφ̂ − e−

kφ̂
2 +R1 e

kφ̂
2 +R2 e

kφ̂
)
, (2.39)

where:
c =

3

π
(
CW − C̃W(τ7)

) |λ|W 2
0√

gs〈τ7〉
∼ O(1) ,

while for 〈τ7〉 ∼ O(1)� V2/3:

R1 =
(α + 1)c√

2α

〈τ7〉3/2

V
� 1 and R2 =

(
|CW

3 | − ĈW(τ7)
)

(
CW − C̃W(τ7)

) 〈τ7〉3/2

V
� 1 .

Notice that in (2.39) we added a constant CdS = 1 − c − R1 − R2 to obtain a
Minkowski (or slightly dS) vacuum. It is important to say that at this stage we are
working in units whereMp = 1, for the later cosmological discussion we will restored
the power of Mp.

Given that no O3-planes are present in our model, the usual uplift mechanism
where an anti D3-brane is located in a resolved conifold region of the extra dimen-
sions would require additional effort to implement. We leave the explicit embedding
of the source of uplift to future research.

The two negative exponentials in (2.39) compete to give a minimum at 〈τ7〉 ∼
O(1) while the two positive exponentials cause a steepening behaviour at large
φ̂. Thus we need to make sure that both R1 � 1 and R2 � 1 to prevent the
two positive exponentials from destroying the inflationary plateau before achieving
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enough efoldings of inflation.9 The condition R1 � 1 could be satisfied for c � 1,
for example for W0 ∼ O(1) and 〈τ7〉 � 1, in which case the minimum could be
obtained by balancing the two terms in the coefficient A2. However, as we shall see
below, if 〈τ7〉 � 1, the Kähler cone bounds restrict the allowed field space so much
that it becomes impossible to realise enough efoldings of inflation. Hence we shall
focus the region where R1 � 1 and R2 � 1 are satisfied by 〈τ7〉 ∼ O(1) � V2/3

(and possibly by allowing some tuning of the complex structure moduli-dependent
coefficients of the loop corrections or by considering |λ| � 1).

Turning now to the explicit numerical examples, let us formulate the necessary
conditions that have to be satisfied in order to have a viable model:

1. Stringy effects can be neglected if each four-cycle in string frame has a volume
larger than the string scale: Vol1/4s �

√
α′. Given that string and Einstein

frame volumes are related as Vols = gsVolE = gsτE`s with `s = 2π
√
α′, we end

up with the condition:

ετi ≡
1

gs(2π)4 τi
� 1 ∀ i . (2.40)

2. The whole inflationary dynamics should take place inside the Kähler cone.
This implies in particular that:

2α〈τ1〉 < τ7 <
V√
〈τ1〉

if α ≥ 1 ,

2

α
〈τ1〉 < τ7 <

V√
〈τ1〉

if α ≤ 1 . (2.41)

Notice that these conditions guarantee the absence of any singularity in the
inflationary potential (2.39) which could originate from the shrinking of a
two-cycle to zero size. Rewriting these conditions in terms of the canonically
normalised inflaton field, we end up with:

√
3

2
ln

(
2α〈τ1〉
〈τ7〉

)
< φ̂ <

√
3

2
ln

(
V

〈τ7〉
√
〈τ1〉

)
if α ≥ 1 ,

√
3

2
ln

(
2〈τ1〉
α〈τ7〉

)
< φ̂ <

√
3

2
ln

(
V

〈τ7〉
√
〈τ1〉

)
if α ≤ 1 . (2.42)

In order to be able to describe within a consistent EFT, not just inflation but

9If this is the case, these steepening terms could then be responsible for an interesting power
loss at large angular scales [107].
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also the post-inflationary evolution of our model, φ̂ should reach its minimum
before hitting the lower bounds in (2.42). Moreover the inflaton should drive
enough efoldings of inflation before hitting the upper bounds in (2.42).

3. Horizon exit at φ̂ = φ̂∗ should yield the required number of efoldings:

Ne ' 57 +
1

4
ln (r∗ V∗)−

1

3
ln

(
Vend

Trh

)
, (2.43)

where the reheating temperature Trh can be estimated in terms of the inflaton
mass at the minimum mφ̂ as:

Trh '
(

90

π2g∗(Trh)

)1/4√
Γφ̂Mp ' 0.1mφ̂

√
mφ̂

Mp

. (2.44)

4. Horizon exit at φ̂ = φ̂∗ should reproduce the observed amplitude of the density
perturbations:

V 3
∗

V ′2∗
' 2.6 · 10−7 . (2.45)

5. The α′ expansion of the potential can be trusted only if:

εξ =
ξ

2g
3/2
s V

� 1 . (2.46)

6. The effective field theory is under control if throughout all the inflationary
dynamics:

minf < H < m3/2 < M
(i)
KK < Ms < Mp ∀i = bulk, 2, 4, 6 , (2.47)

whereminf is the inflaton mass, H ' V
3M2

p
is the Hubble scale,m3/2 = eK/2W0 =

√
κ W0

V Mp is the gravitino mass which sets the mass scale of all complex struc-
ture moduli, the dilaton and the Kähler modulus T1 = τ1 + i

∫
D1
C4 and

M
(i)
KK =

√
π√

V τ1/4
i

Mp are the different KK scales in the model associated with

bulk KK modes for τ 3/2
bulk = V and KK replicas of open string modes living

on D7-branes wrapped around D2, D4 and D6. The bulk KK scale should
be below the string scale Ms = g

1/4
s
√
π√
V Mp while we do not need to impose

V 1/4 < M
(i)
KK since no energy can be extracted from the vacuum during an

adiabatic inflationary expansion where H �M
(i)
KK.

7. Besides the two ultra-light axions associated with the base and the fibre which
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develop just negligible isocurvature fluctuations during inflation if they do not
contribute significantly to dark matter, only the volume mode has a mass
below m3/2. In order to trust our single field approximation, we need therefore
to check that the mass of the volume mode mV does not become smaller than
the Hubble scale H. This condition boils down to:

δ =
H

mV
'
√

V∗
3Vα′

. 1 , (2.48)

where Vα′ is the leading O(α′3) contribution to the scalar potential and reads
[36]:

Vα′ = κ
3ξW 2

0

4g
3/2
s V3

with ξ = −ζ(3)χ(X)

2(2π)3
. (2.49)

If δ ' 1, the inflationary energy density can either destabilise the volume direc-
tion or cause a significant shift of the volume minimum. Hence the inflationary
dynamics can effectively become a multi-field evolution. However, as analysed
in [14], the motion might still remain mainly along the τ7 direction, and so
the predictions for the inflationary observables could be basically unaltered
apart from the fact that the number of allowed efoldings slightly increases.
Notice also that in LVS models the CY Euler number together with the string
coupling fixes the minimum of the blow-up mode τ1 as: 〈τ1〉 = (3ξ/2)2/3 g−1

s .
This value is important to evaluate the Kähler cone conditions in (2.42).

We shall now focus on single-field slow-roll inflation where:

ε(φ̂) =
1

2

(
V ′

V

)2

� 1 and η(φ̂) =
V ′′

V
� 1 .

Notice that the condition η � 1 guarantees that the inflaton is lighter thanH during
inflation. In order to illustrate the main features of our inflationary model, we shall
now consider two different choices of the underlying parameters characterised by
different values of the coefficients ξ and λ which control the strength of the O(α′3)

corrections to the effective action at O(F 2) and O(F 4). According to [37], N = 1

O(α′3) corrections due to O7-planes cause a shift of the CY Euler number χ(X)

to χeff(X) defined in (2.13) and given in Tab. 2.3. From (2.49) this modification
would give ξ = 0.067. Moreover the coefficient λ of higher derivative O(α′3) effects
has been estimated to be negative and of order 10−3 [75, 76]. Hence the first set of
parameters will be characterised by ξ = 0.067 and λ = −0.001. However both of
these corrections still lack a full supersymmetric analysis, and so in the second case
we shall focus on a situation where the CY Euler number is not modified, and so
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ξ = 0.456, and the size of the coefficient λ is much smaller: |λ| . 10−6.

Case 1: ξ = 0.067 and |λ| = 0.001

Let us now provide an explicit numerical example set to demonstrate the features
of our inflationary model:

α = 1 , CW

1 = CW

2 = 15 , |CW

3 | = 0.013 , |CW

4 | = 18 , CW

5 = CW

6 = −5 ,

gs = 0.114 , V = 104 , 〈τ1〉 = 1.91 , W0 = 80 , |λ| = 0.001 , (2.50)

with χ(X) = χeff(X) = −28 in (2.49) which gives ξ = 0.067. Notice that the tuning
of the steepening term here is mild since the difference between the largest and the
smallest winding coefficient is between one and two orders of magnitude. The form
of the inflationary potential is plotted in Fig. 2.1 and it is characterised by:

Figure 2.1: Plot of the inflationary potential for the example set (2.50). The red
vertical lines correspond to the walls of the Kähler cone while the dashed vertical
lines denote horizon exit and the end of inflation where ε = 1. We work in units of
Mp = 1.

• 〈τ7〉 = 4.002 leading to ε〈τ7〉 = 0.0014. Moreover 2〈τ1〉 ' 3.8, and so the
distance of the minimum from the lower bound of the Kähler cone is ∆τ7 '
0.178 which is still larger than the string scale since, using (2.40), we have
that:

ε∆τ7 =
1

gs(2π)4∆τ7

' 0.03 . (2.51)

• The Kähler cone bounds (2.42) in terms of the canonically normalised inflaton
become φ̂min ' −0.04 < φ̂ < φ̂max ' 6.49. Inflation ends at φ̂ = φ̂end ' 0.96

where ε(φ̂end) = 1 and Vend ' (7 · 1015 GeV)
4. Horizon exit takes place at
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φ̂ = φ̂∗ ' 6.24 where r = 16ε = 0.009, ns = 1 + 2η∗ − 6ε∗ = 0.983, V∗ '
(1 · 1016 GeV)

4 and the amplitude normalisation (2.45) is satisfied. Notice
that such a largish value of the scalar spectral index is in perfect agreement
with Planck data in the presence of dark radiation since, using ∆Neff = 0.39

as a prior, [7] gives as best fit ns = 0.983±0.006. This prior is fully justified in
string models like ours where reheating is driven by the decay of the lightest
modulus which naturally tends to produce extra axionic contributions to dark
radiation [58, 59, 60, 61].

• Horizon exit occurs well inside the Kähler cone since from (2.41) we have:

τ ∗7 = eκ(〈φ〉+φ̂∗) ' 5404.82 < τmax
7 =

V√
〈τ1〉
' 7231.87 ⇒ τmax

7 −τ ∗7 ' 1827.06 .

• The mass of the inflaton around the minimum is mφ̂ ' 4.25 · 1013 GeV which
from (2.44) implies a reheating temperature Trh ' 1.8 · 1010 GeV.

• The number of efoldings computed as:

Ne =

∫ φ̂∗

φ̂end

V

V ′
dφ̂ , (2.52)

gives Ne = 52 as required by the estimate (2.43). The maximum number of
efoldings between φ̂end and φ̂max is Nmax

e ' 60.

• The α′ expansion is under control even if in our inflationary model the inflaton
travels over a trans-Planckian distance of order ∆φ̂ = φ̂∗ − φ̂end = 5.28 since
we have εξ ∼ 10−4.

• The mass of the volume mode is of order the Hubble scale during inflation
since δ ' 1.6. Hence the inflationary energy density could either cause a sig-
nificant shift of the original LVS minimum or destabilise the volume direction.
A definite answer to this question would require a more careful multi-field
analysis. As mentioned above, a similar situation has been studied in [14],
where the authors found that for δ ∼ 1 the minimum for the volume mode
gets a large shift but the inflationary evolution still remains mostly single-field
since minf � mV ∼ H. However if δ ∼ 1, the inflationary potential generated
by string loops and α′3 F 4 terms is of the same order as the α′3 F 2 contri-
bution, and so one also should carefully check if additional higher derivative
corrections can be safely neglected.
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• The effective field theory approximation is valid during the whole inflationary
evolution since H ' 2 · 1013 GeV < m3/2 ' 1 · 1015 GeV < Mbulk

KK ' 9 ·
1015 GeV < Ms ' 2.5 · 1016 GeV.

Figure 2.2: Comparison between the different KK masses, m3/2 and the inflationary
energy density V 1/4 from horizon exit to the end of inflation. Note thatM (4)

KK = M
(6)
KK

which is why only one of them is displayed here.

We display the evolution of the different KK masses as compared to the gravitino
mass and the inflationary scale Minf = V 1/4 in Fig. 2.2. Notice, in particular, that
at the end of inflation the inflationary scale is of order Mbulk

KK and, above all, mildly
exceeds the KK scale M (4)

KK by a factor of roughly 1.3. As we stressed above, during
an adiabatic expansion no energy can be extracted from the vacuum, and so our
EFT is still valid even if some KK scales become smaller than V 1/4 since they are
all always larger than m3/2 which is, in turn, larger than H. However, since all the
inflationary energy density could instead be converted into particle production at
reheating, one should make sure that there is enough Hubble friction between the
end of inflation and reheating to bring the inflaton energy density below the relevant
KK scale. This effect can be estimated by noticing that from:

ρ(φ) =
1

2
φ̇2 + V (φ) = 3H2M2

p ⇔ ∂tρ(φ) = −3Hφ̇2 , (2.53)

we can obtain the following relation between the energy density at the end of inflation
and at reheating:

ρrh = ρend − 3〈φ̇2〉
∫ rh

end

da

a
= ρend − 3Nrh〈φ̇2〉 , (2.54)
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where 〈φ̇2〉 is the time average between the end of inflation and reheating and Nrh =

ln(arh/aend) is the number of efoldings of the reheating epoch. At the end of inflation
when ε = 1 we have:

1

2
φ̇2 = H2M2

p ⇔ ρend =
3

2
Vend ' 10

(
M

(4)
KK

)4

. (2.55)

On the other hand at reheating V (φrh) ' 0, and so ρrh ' φ̇2
rh/2. If we then write

the time-average kinetic energy as 〈φ̇2〉 = φ̇2
rh/x ' 2ρrh/x with x > 0, we end up

with the following bound:

ρrh '
10

1 + 6
x
Nrh

(
M

(4)
KK

)4

<
(
M

(4)
KK

)4

. (2.56)

Using the fact that:

Nrh '
1

3
ln

(
H2

endM
2
p

T 4
rh

)
− 1

3
ln

(
π2g∗
90

)
' 16 , (2.57)

the bound (2.56) becomes x < 2
3
Nrh ' 10. Our model should satisfy this bound since

we expect φ̇end to approach φ̇rh relatively quickly due to the steepness of the potential
near the end of inflation. However a definite answer would require a detailed study
of the post-inflationary epoch which is beyond the scope of this chapter.10

Let us also mention that, due to the absence of KK corrections, this scenario
represents a chiral global embedding of the α′-inflation models discussed in [78].
Moreover, no KK scale becomes smaller than the gravitino mass even if r ' 0.01

and ∆φ̂ ' 5 in Planck units. In fact, if we focus for example on the KK scale M (2)
KK

associated with the K3 fibre (similar considerations apply to the KK scale M (6)
KK

associated with the base), we have:

m3/2

M
(2)
KK

= α1 e
α2φ ' 0.03 eα2φ , (2.58)

with:

α1 =

√
W0

2π

( gs
2π

)1/4
√
m3/2

Mp

' 0.03 and α2 =
1

2
√

3
. (2.59)

10Let us also point out that, even if ρrh &
(
M

(4)
KK

)4
, our model is not necessarily ruled out but

we would just need to describe reheating within a 6D EFT where the base of the fibration is much
larger than the characteristic size of the fibre. It would also be interesting to find brane setups
where this problem is automatically absent since there is no D7-brane wrapped around the base.
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If we set φ = φ0 + φ̂he ' 7.44, the ratio in (2.58) becomes m3/2/M
(2)
KK ' 0.26, and

so the KK scale M (2)
KK is always larger than the gravitino mass throughout all the

inflationary dynamics. Notice that this result seems to be in slight disagreement
with the swampland conjecture of [108, 109] where the underlying parameters α1

and α2 were generically assumed to be of order unity.
As explained above, given that in this case δ ' 1.6, the inflationary dynamics

can be fully trusted only after determining the proper multi-field evolution. Due
to the difficulty to perform a full numerical analysis, in the next section we shall
instead still focus on a single-field case where δ ∼ 0.05 since ξ is larger, and so the
volume mode mass is larger, while |λ| is smaller, and so F 4 steepening terms can
be easily neglected throughout the whole inflationary dynamics. The full three-field
evolution for both of these cases will then be presented in Sec. 2.3.2.

Case 2: ξ = 0.456 and |λ| = 10−7

According the discussion above, we shall now focus on the following different choice
of the underlying parameters:

α = 1 , CW

1 = CW

2 = 0.034 , |CW

3 | = 10−5 , |CW

4 | = 0.068 , CW

5 = CW

6 = −0.024 ,

gs = 0.25 , V = 4500 , 〈τ1〉 = 3.10 , W0 = 150 , |λ| = 10−7 , (2.60)

with χ(X) = χeff(X) = −188 in (2.49) which gives ξ = 0.456. A larger value of the
coefficient ξ is helpful to increase the control on the single-field approximation since,
as can be seen from (2.49), the leading O(α′3) contribution to the scalar potential is
proportional to ξ. The form of the inflationary potential is plotted in Fig. 2.3 and
it is characterised by:

• 〈τ7〉 ' 6.41 leading to ε〈τ7〉 ' 0.0004 and 〈φ〉 ' 1.61. Moreover 2〈τ1〉 ' 6.2,
and so the minimum is located close to the walls of the Kähler cone but at
a distance ∆τ7 ' 0.21 which is still larger than the string scale since, using
(2.40), we have that:

ε∆τ7 =
1

gs(2π)4∆τ7

' 0.01 . (2.61)

• The Kähler cone bounds (2.42) in terms of the canonically normalised inflaton
become φ̂min ' −0.028 < φ̂ < φ̂max ' 5.19. Inflation ends at φ̂ = φ̂end ' 0.93

where ε(φ̂end) = 1 and Vend = (4.4 · 1015 GeV)
4. Horizon exit takes place

at φ̂ = φ̂∗ ' 5.10 where r = 16ε = 0.0014, ns = 1 + 2η∗ − 6ε∗ = 0.963,
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Figure 2.3: Plot of the inflationary potential for the example set (2.60). The red
vertical lines correspond to the walls of the Kähler cone while the dashed vertical
lines denote horizon exit and the end of inflation where ε = 1. We work in units of
Mp = 1.

V∗ = (6.2 · 1015 GeV)
4 and the amplitude normalisation (2.45) is satisfied.

Notice that horizon exit occurs far away from the upper bound of the Kähler
cone since from (2.41) we have:

τ ∗7 = eκ(〈φ〉+φ̂∗) ' 2325.79 < τmax
7 =

V√
〈τ1〉
' 2554.55 ⇒ τmax

7 −τ ∗7 ' 228.76 .

• The mass of the inflaton around the minimum is mφ̂ ' 1.85 · 1013 GeV which
from (2.44) implies a reheating temperature Trh ' 5.16 · 109 GeV.

• The number of efoldings computed as:

Ne =

∫ φ̂∗

φ̂end

V

V ′
dφ̂ , (2.62)

gives Ne = 51 as required by the estimate (2.43). The maximum number of
efoldings between φ̂end and φ̂max is Nmax

e ' 57.5.

• The α′ expansion is under control even if in our inflationary model the inflaton
travels over a trans-Planckian distance of order ∆φ̂ = φ̂∗ − φ̂end = 4.17 since
we have εξ ' 0.0004.

• The single-field approximation is under control since δ ' 0.05.

• The effective field theory approximation is valid during the whole inflationary
evolution since H ' 7 · 1012 GeV < m3/2 ' 8 · 1015 GeV < Mbulk

KK ' 1.6 ·
1016 GeV < Ms ' 4.5 · 1016 GeV.
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Figure 2.4: Comparison between the different KK masses, the gravitino mass m3/2

and the inflationary energy V 1/4 from horizon exit to the end of inflation. Note that
M

(4)
KK = M

(6)
KK which is why only one of them is displayed here.

We display the evolution of the different KK masses as compared to the gravitino
mass and the inflationary energy density Minf = V 1/4 in Fig. 2.4. Notice that,
contrary to case 1 where r = 0.01, all KK scales remain above Minf throughout all
the inflationary dynamics. The reason is that in this scale the tensor-to-scalar ratio,
and so also the inflationary scale, is smaller since r = 0.001. Moreover, as stressed
above, no energy can be extracted from the vacuum during an adiabatic expansion,
and so the consistency condition to be imposed during inflation is H �M

(i)
KK which

is clearly satisfied since H = Minf√
3

(
Minf

Mp

)
< Minf . Moreover, no KK scale becomes

smaller than the gravitino mass m3/2 ' 8 · 1015 GeV. If we focus for example on the
KK scale M (2)

KK associated with the K3 fibre (similar considerations apply to the KK
scale M (6)

KK associated with the base of the fibration), we have:

m3/2

M
(2)
KK

= α1 e
α2φ ' 0.126 eα2φ , (2.63)

with:

α1 =

√
W0

2π

( gs
2π

)1/4
√
m3/2

Mp

' 0.126 and α2 =
1

2
√

3
. (2.64)

If we set φ = φ0 + φ̂he ' 6.71, the ratio in (2.63) becomes m3/2/M
(2)
KK ' 0.87,

and so the KK scale M
(2)
KK is always larger than the gravitino mass throughout

all the inflationary dynamics. This result seems to be more in agreement with
the swampland conjecture of [108, 109] than the one of case 1 since r is smaller,
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r ' 0.001, and the field range is slightly reduced, ∆φ̂ ' 4. Moreover larger values
of φ would bring the effective field theory approach out of control.

Even if this example satisfies all consistency and phenomenological constraints
and the single-field inflationary analysis is under control, in Sec. 2.3.2 we shall
perform a more precise multifield analysis where the motion along the orthogonal
directions enlarges the field space as well as the allowed number of efoldings.

2.3.2 Multi-field evolution

The following five consistency conditions require generically a multi-field study of the
inflationary evolution (which might however still be mainly along a single direction
in field space):

1. The whole inflationary dynamics takes place well inside the Kähler cone de-
scribed by the conditions in (2.41);

2. The quantum fluctuations of the inflaton produce a correct amplitude of the
density perturbations at horizon exit;

3. The directions orthogonal to the inflaton are not destabilised by the inflation-
ary dynamics. This is guaranteed if inflation occurs in field space along a
through which can however bend;

4. Throughout all the inflationary dynamics, no Kaluza-Klein scale becomes
smaller than the gravitino mass;

5. The steepening of the inflationary potential due to F 4 corrections is negligible,
so that enough efoldings can be obtained before destroying slow roll inflation.

If V ∼ 103 and W0 ∼ O(1), the last four conditions can be easily satisfied but the
Kähler cone conditions (2.41) for such a small value of the volume would give an
upper bound on the inflaton direction which would not allow to generate enough
efoldings. In order to enlarge the inflaton field space, the value of the volume has
therefore to be larger, of order V ∼ 104. In the large volume regime where we can
trust the 4D EFT, the inflationary potential then becomes more suppressed, and so
the COBE normalisation condition (2) above can be satisfied only if W0 ∼ O(100).
However, given that the gravitino mass is proportional to W0, for such a large value
of the flux-generated superpotential, it is hard to satisfty the fourth condition above
keeping m3/2 below all KK scales during the whole inflationary evolution. Moreover,
it becomes harder to suppress higher derivative corrections (condition (5) above)
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unless their numerical coefficient λ turns out to be extremely small: |λ| . 10−6.
This is the example of case 2 above of Sec. 2.3.1.

Another option for V ∼ 104 could be to keep W0 ∼ O(1), so that the grav-
itino mass can remain small and the F 4 terms are still negligible, and to tune the
background fluxes to increase the complex structure-dependent coefficients of the
winding loop corrections. This would however make the inflaton-dependent poten-
tial of the same order of magnitude of the leading order α′ correction. Hence the
mass of the volume mode becomes of order the Hubble scale during inflation. This
is the example of case 1 of Sec. 2.3.1 where δ ' 1.6. This situation could either
cause a considerable shift of the original LVS minimum or even a destabilisation,
and so in this case one should perform a careful multi-field analysis to check that
the condition (3) above is indeed satisfied.11

In what follows we shall therefore focus on the multifield case with V ∼ 104,
W0 ∼ O(100) and |λ| . 10−6. We shall also present an example with W0 ∼ O(1)

and |λ| ∼ 10−3 which satisfies all conditions above except for condition (2) since the
amplitude of the density perturbations turns out to be too small. The correct value
could be generated by the quantum fluctuations of the two light bulk axions which
could play the rôle of curvaton fields [111]. This study is however beyond the scope
of this work, and so we leave it for future work.

We analyse now the full three-field cosmological evolution involving the Kähler
moduli τ7, V and τ1. Their dynamics is governed by the following evolution equations
for non-canonically normalised fields:{

φ̈i + 3Hφ̇i + Γijkφ̇
jφ̇k + gij ∂V

∂φj
= 0,

H2 =
(
ȧ
a

)2
= 1

3

(
1
2
gijφ̇

iφ̇j + V
)
,

(2.65)

where the φi’s represent the scalar fields τ7, V and τ1, a is the scale factor and Γijk
are the target space Christoffel symbols using the metric gij for the set of real scalars
φi such that ∂2K

∂ΦI∂Φ∗J
∂µΦI∂µΦ∗J = 1

2
gij∂µφ

i∂µφj.

For numerical purposes it is more convenient to express the cosmological evolu-
tion of the fields as a function of the number of efoldings N rather than time. In
fact, by using a(t) = eN and d

dt
= H d

dN
, we can directly obtain τ7(N), V(N) and

τ1(N) without having to solve for the scale factor. The equations of motion turn

11A similar situation arises in Kähler moduli inflation where however a detailed multifield analysis
shows that the minimum of the volume mode is shifted during inflation without developing a
runaway direction [72, 110].
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out to be (with ′ denoting a derivative with respect to N):

τ ′′7 = − (Lkin + 3)

(
τ ′7 + τ7V

V,V
V

+ 2τ 2
7

V,τ7
V

+ 2τ7τ1
V,τ1
V

)
+
τ ′27

τ7

+
τ7τ
′
1

V

(
τ ′1√
τ1

− τ ′7
2
√
τ7

)
,

V ′′ = − (Lkin + 3)

(
V ′ + 3V2

2

V,V
V

+ τ7V
V,τ7
V

+ τ1V
V,τ1
V

)
+
V ′2

V
, (2.66)

τ ′′1 = − (Lkin + 3)

(
τ ′1 + τ1V

V,V
V

+ 2τ7τ1
V,τ7
V

+ 4V
√
τ1
V,τ1
V

)
+

τ ′ 21

4τ1

+
τ1V ′

V

(
τ ′1
τ1

− τ ′7
τ7

)
+
τ1τ
′
7

2τ7

(
3τ ′7
2τ7

−
√
τ1

V
τ ′1

)
,

where the kinetic Lagrangian reads:

Lkin =
1

2

(
−V

′ 2

V2
+
V ′τ ′7
Vτ7

− 3τ ′ 27

4τ 2
7

+

√
τ1τ
′
7τ
′
1

2Vτ7

− τ ′ 21

4V√τ1

)
, (2.67)

and the full inflationary potential V is given by the sum of the standard LVS po-
tential, the gs loops and F 4 terms given in (2.38) and an uplifting contribution
proportional to δup which could come from an anti D3-brane at the tip of a warped
throat:

V = κ

[
32A2

sπ
2

√
τ1

V
e−4πτ1 − 8πAs

W0τ1

V2
e−2πτ1 +

3ζ

4g
3/2
s

W 2
0

V3

+
W 2

0

V3

(
A1

τ7

− A2√
τ7

+
B1
√
τ7

V
+
B2 τ7

V

)
+

δup

V4/3

]
. (2.68)

|λ| = 10−6 and correct amplitude of the density perturbations

Setting α = 1 and performing the following choice of the underlying parameters:

As = 6 · 105 χ = −188 ⇒ ζ = −ζ(3)χ(X)

2(2π)3
= 0.456 W0 = 50 gs = 0.25

CW

1 = CW

2 = 0.05 |CW

3 | = 10−4 |CW

4 | = 0.1 CW

5 = CW

6 = −0.05 λ = −10−6 ,

the total potential (2.68) admits a Minkowski global minimum at:

〈V〉 = 2690.625 , 〈τ7〉 = 6.503 〈τ1〉 = 3.179 for δup = 5.9598 · 10−4 .

Notice that this minimum is inside the Kähler cone since 〈τ7〉 > 2〈τ1〉 = 6.358, which
respects the lower bound in (2.41). At this level of approximation, the closed string
axions associated to V and τ7 are flat directions. They receive a tiny potential from
highly suppressed non-perturbative effects, and so they remain very light. Being so
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light, they do not affect the inflationary dynamics but would acquire isocurvature
fluctuations of order H during inflation. If they do not play the rôle of dark matter,
their final contribution to the amplitude of the isocurvature perturbations is neg-
ligible. On the other hand, if they are heavy enough to decay, their isocurvature
fluctuations get converted into standard density perturbations, and so these bulk
axions could behave as curvaton fields [111].

Let us now shift τ7 away from its minimum at the initial condition τ7(N = 0) =

〈τ7〉 + 2030 and recompute the new minimum for the other two directions 〈V〉(τ7)

and 〈τ1〉(τ7). These values would set the initial conditions for these fields, ensuring
that the inflationary dynamics takes place along a stable trough in field space:

V(0) = 〈V〉(τ7(0)) = 3671.432 , τ7(0) = 2036.503 , τ1(0) = 〈τ1〉(τ7(0)) = 3.227 .

Notice that these initial conditions are again inside the Kähler cone since τ7(0) <
V(0)√
τ1(0)

= 2043.7, which satisfies the upper bound in (2.41). We shall also focus on

vanishing initial velocities for all scalar fields: V ′(0) = τ ′7(0) = τ ′1(0) = 0.
Considering this set of initial conditions, we solved the system of equations of

motion (2.66) finding the cosmological evolution of each scalar field as a function of
the number of efoldings N . Inflation occurs in the region in field space where the
generalised ε-parameter:

ε(N) = − 1

4LkinV 2
(V,V V ′ + V,τ7 τ

′
7 + V,τ1 τ

′
1)

2
, (2.69)

is much smaller than unity. As can be seen from Fig. 2.5, ε� 1 during the first 57

efoldings and then quickly increases and reaches ε = 1 at N = 57.93 where inflation
ends.

Figure 2.5: Evolution of the ε-parameter as a function of the number of efoldings N
for (left) the entire inflationary dynamics and (right) for the last efolding.
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Using the variable N to parametrise the cosmological evolution of the scalar
fields and denoting by Ne the physical number of efoldings of inflation, Ne = 52, as
estimated in Sec. 2.3.1, at N∗ = 5.93. This is the point of horizon exit in field space
where ε(N∗) = 1.456·10−4 which yields a tensor-to-scalar ratio r = 16ε(N∗) = 0.0023.
The amplitude of the scalar power spectrum is:

√
P (N∗) =

1

10π

√
2V (N∗)

3 ε(N∗)
= 1.035 · 10−5 , (2.70)

reproducing the reference COBE value
√
PCOBE ' 2 · 10−5 with a good accuracy.

Moreover the scalar spectral index is given by:

ns(N∗) = 1 +
d

dN
lnP (N)

∣∣∣∣
N=N∗

= 0.9701 , (2.71)

in good agreement with Planck data [80, 7].
Fig. 2.6, 2.7 and 2.8 show the cosmological evolution of the three scalar fields

τ7, V and τ1 during the whole inflationary dynamics and their final settling into
the global minimum after a few oscillations. Fig. 2.9 shows instead the path of
the inflationary trajectory in the (τ7,V)-plane (on the left) and in the (τ7, τ1)-plane
(on the right). Clearly, as expected from the single-field analysis of Sec. 2.3.1, the
inflaton travels mainly along the τ7-direction.

Finally Fig. 2.10 presents a plot with the cosmological evolution of all KK mass
scales, the inflationary scale Minf = V 1/4 and the gravitino mass m3/2 from horizon
exit to the final settling into the global minimum. The fact that Minf remains
always below all the KK scales, ensures that the Hubble scale during inflation H =
Minf√

3

(
Minf

Mp

)
< Minf is also always below each KK scale. The gravitino mass also

remains always smaller than M
(i)
KK ∀i. This guarantees that the 4D effective field

theory is under control. In particular, M (2)
KK , M

(6)
KK and the inflationary scale evolve

from M
(2)
KK (N∗) ' 1.1 ·1016 GeV, M (6)

KK (N∗) ' 2.1 ·1016 GeV and Minf(N∗) ' 5.3 ·1015

GeV at horizon exit to M (2)
KK (N = 60) ' 6.2 · 1016 GeV, M (6)

KK (N = 60) ' 1.3 · 1016

GeV and Minf(N = 60) ' 9.3 · 1014 GeV around the final minimum. On the other
hand the other scales remain approximately constant during the whole inflationary
evolution around: H ' 5 · 1012 GeV < m3/2 ' 4 · 1015 GeV < Mbulk

KK ' 2 · 1016 GeV.

|λ| = 10−3 and negligible amplitude of the density perturbations

We shall now relax the condition of generating the correct amplitude of the density
perturbations from the inflaton quantum fluctuations. As explained above, the right
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Figure 2.6: Evolution of τ7 as a function of the number of efoldings N for (left) the
entire inflationary dynamics and (right) for the last 2 efoldings. The dashed red line
represents the position of the final global minimum. We work in units of Mp = 1.

Figure 2.7: Evolution of V as a function of the number of efoldings N for (left) the
entire inflationary dynamics and (right) for the last 6 efoldings. The dashed red line
represents the position of the final global minimum. We work in units of Mp = 1.

COBE value of the amplitude of the power spectrum could instead be reproduced in a
non-standard way by a curvaton-like mechanism involving the quantum fluctuations
of the two light bulk axions [111]. In this case we can focus on V ∼ 5·103,W0 ∼ O(1),
λ ∼ 10−3 and relatively small values of the coefficients of the winding loop corrections
which generate the plateau, so that all the remaining four conditions listed at the
beginning of Sec. 2.3.2 are fully satisfied.

We shall set α = 1 and perform the following choice of the underlying parameters:

As = 1 · 104 χ = −188 ⇒ ζ = −ζ(3)χ(X)

2(2π)3
= 0.455 W0 = 1 gs = 0.25

CW

1 = CW

2 = 0.05 CW

3 = −10−4 CW

4 = −0.1 CW

5 = CW

6 = −0.05 λ = −0.001 ,
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Figure 2.8: Evolution of τ1 as a function of the number of efoldings N for (left) the
entire inflationary dynamics and (right) for the last 6 efoldings. The dashed red line
represents the position of the final global minimum.

Figure 2.9: Plot of the whole inflationary evolution in the (τ7,V)-plane (on the left)
and in the (τ7, τ1)-plane (on the right). Notice that the scales are different on the
two axes since the inflaton travels mainly along the τ7-direction.

which yield a global Minkowski minimum inside the Kähler cone at:

〈V〉 = 3220.899 , 〈τ7〉 = 6.403 〈τ1〉 = 3.179 for δup = 1.76588 · 10−7 .

The initial conditions for the inflationary evolution are again derived in the same
way: the fibre modulus τ7 is shifted away from its minimum at τ7(N = 0) = 〈τ7〉+

2450 and the other two directions 〈V〉(τ7) and 〈τ1〉(τ7) are set at the new minimum:

V(0) = 〈V〉(τ7(0)) = 4436.094 , τ7(0) = 2456.403 , τ1(0) = 〈τ1〉(τ7(0)) = 3.228 .

Notice that these initial conditions are inside the Kähler cone since τ7(0) < V(0)√
τ1(0)

=
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Figure 2.10: Evolution of all KK masses (with M (4)
KK = M

(2)
KK ), the inflationary scale

Minf = V 1/4 and the gravitino mass m3/2 in GeV units from horizon exit to the final
settling into the global minimum.

2468.95, which satisfies the upper bound in (2.41). Focusing again on vanishing
initial velocities for all scalar fields, i.e. V ′(0) = τ ′7(0) = τ ′1(0) = 0, we worked out
the cosmological evolution of each scalar field as a function of N by solving the
system of equations of motion (2.66). Looking for a slow-roll region in field space
where the generalised ε-parameter (2.69) is much smaller than unity, we found that
ε � 1 during the first 69 efoldings and then quickly increases and reaches ε = 1

at N = 69.15 where inflation ends. The point of horizon exit corresponding to a
physical number of efoldings of inflation Ne = 52 is localised at N∗ = 17.15 where
ε(N∗) = 1.36 · 10−4. The main cosmological observables at horizon exit take the
following values:

ns(N∗) = 1 +
d

dN
lnP (N)

∣∣∣∣
N=N∗

= 0.9676 , r = 16ε(N∗) = 0.0022 ,

√
P (N∗) =

1

10π

√
2V (N∗)

3 ε(N∗)
= 1.64 · 10−7 .

The scalar spectral index ns and the tensor-to-scalar ratio r are in good agreement
with Planck data [80, 7] while the amplitude of the scalar power spectrum, as ex-
pected, is much smaller than the reference COBE value

√
PCOBE ' 2 · 10−5. As

can be seen from Fig. 2.11, in this case the low-energy 4D effective field theory is
fully under control since throughout all the inflationary evolution all KK scales are
much higher than both the gravitino mass and the inflationary scale (and so also
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the Hubble scale).

Figure 2.11: Evolution of all KK masses (with M (4)
KK = M

(2)
KK ), the inflationary scale

Minf = V 1/4 and the gravitino mass m3/2 in GeV units from horizon exit to the final
settling into the global minimum.

In particular, M (2)
KK , M

(6)
KK and the inflationary scale evolve from M

(2)
KK (N∗) '

9.8 · 1015 GeV, M (6)
KK (N∗) ' 1.8 · 1016 GeV and Minf(N∗) ' 6.5 · 1014 GeV at horizon

exit to M
(2)
KK (N = 70) ' 5.5 · 1016 GeV, M (6)

KK (N = 70) ' 1.2 · 1016 GeV and
Minf(N = 70) ' 1.4 · 1014 GeV around the final minimum. On the other hand the
other scales remain approximately constant during the whole inflationary evolution
around: H ' 8 · 1011 GeV < m3/2 ' 6 · 1013 GeV < Mbulk

KK ' 2 · 1016 GeV.

2.4 Summary

The study of large field inflationary models is particularly interesting from both a
phenomenological and a theoretical point of view. In fact, from one side the next
generation of CMB observations will be able to test values of the tensor-to-scalar
ratio in the window 0.001 . r . 0.01, while on the other hand trans-Planckian
inflaton excursions need a symmetry mechanism to trust the effective field theory
approach.

Natural inflaton candidates from type IIB string compactifications are Kähler
moduli which enjoy non-compact shift-symmetries [49]. In particular, fibre infla-
tion models provide promising plateau-like potentials which seem to fit Planck data
rather well and lead to the prediction of observable tensor modes [14, 77, 78, 79].
These inflationary models are built within LVS moduli stabilisation scenarios and
can be globally embedded in K3-fibred Calabi-Yau manifolds [82].
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In this chapter we found that the inflationary dynamics is strongly constrained
by the Kähler cone conditions which never allow for enough efoldings of inflation if
the internal volume is of order V ∼ 103. For larger values of the Calabi-Yau volume
of order V ∼ 104, the Kähler cone becomes large enough for the inflaton to drive
Ne ' 52 efoldings, as required by an estimate of the post-inflationary evolution.
However such a large value of V tends to suppress the amplitude of the density
perturbations below the reference COBE value. This can be avoided by considering
large values of either the coefficients of the winding loops which generate the plateau,
or the flux superpotential W0. Let us stress that in the string landscape this choice
is guaranteed to be possible by the fact that both of these microscopic parameters
are flux-dependent.

However, as shown in Sec. 2.3.1, large values of the coefficients of the winding
gs corrections make the Hubble scale during inflation of the same order of magni-
tude of the mass of the volume mode. This could either cause a large shift of the
original LVS minimum or even a problem for the stability of the inflationary direc-
tion against orthogonal runaway directions. A definite answer to this issue hence
requires a proper multi-field analysis even if the two-field study of [14] revealed that
the inflationary motion is still mostly single-field.

On the other hand, if the flux superpotential is of order W0 ∼ 100, the gravitino
mass can become too close to some KK scale in the model, destroying the 4D effective
field theory. Moreover, F 4 terms are proportional to |λ|W 4

0 . Thus if W0 is large,
these higher derivative effects can spoil the flatness of the inflationary potential
before achieving enough efoldings of inflation if |λ| is not small enough. Hence in
Sec. 2.3.1 we presented a model withW0 ∼ 100 and a very small value of |λ| of order
|λ| = 10−7 which makes the F 4 terms harmless. The gravitino mass also turns out to
be slightly smaller than any KK scale throughout the whole inflationary dynamics.
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Part III

Dark Matter
From String Theory
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Chapter 3

Primordial Black Holes from String
Inflation

The origin of dark matter remains one of the biggest mysteries in fundamental
physics. One of the simplest explanations, which would rely neither on the presence
of new particles nor on modifications of the gravitational interaction, is black holes.
An interesting region in parameter space where the contribution of black holes to
the total dark matter abundance could be between 10% and 100% depending on
astrophysical uncertainties is 10−17M� .MBH . 10−13M� [124, 25, 116], where the
lower bound comes from extra-galatic γ rays produced due to Hawking evaporation
[117]. This region, even if it is far from the one probed by LIGO, is very interesting
since there is no known astrophysical explanation for black hole formation in this
small mass window.1 On the other hand, these tiny black holes could be seeded by
the dynamics of the early universe [121, 122]. A tantalizing idea for the formation
of these primordial black holes (PBHs) relies on an amplification of the density
perturbations during inflation of order δρ ∼ 0.1 ρ which then collapse to form PBHs
at horizon re-entry.

This enhancement of the scalar power spectrum has to take place at momentum
scales which are much larger than the ones associated with CMB observations where
δρ ∼ 10−5ρ. From the theoretical point of view, it is therefore important to identify
mechanisms to generate the necessary enhancement at the right scales. Guided again
by simplicity, we focus on single-field inflationary models which also reproduce the

1Depending on the interpretation of astrophysical and cosmological data, X-ray and CMB
observations seem to rule out the case where black holes in the LIGO mass region can constitute
a fraction of the dark matter abundance above 10% [118, 119, 120]. Moreover the single-field
inflationary dynamics seems to be very unlikely to generate black holes with masses as large as a
few solar masses when the scalar spectral index is required to be compatible with CMB data [25].
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Planck data rather well [80].2 It has already been pointed out that the required
inflationary potentials feature a slow-roll behaviour followed by a near inflection
point region where the power spectrum is amplified since the system enters an ultra
slow-roll regime [126, 127, 128, 129, 25].

Despite the fact that dark matter as PBHs formed during single-field inflation
might seem a very appealing idea, its explicit realisation in concrete models has
turned out to be rather complicated since the inflationary potential has to possess
enough tuning freedom to allow for such dynamics [130]. Examples based on a ra-
diative plateau have been recently studied in [128, 129, 25]. This is a bottom up
perspective which tries to single out the simplest potential which allows for PBH for-
mation via an inflationary plateau followed by a near inflection point. However this
approach ignores the fundamental issue of deriving the model from a UV consistent
theory.

In this chapter we shall instead take a more top down approach and search for
concrete examples of inflationary models in string theory whose structure is rich
enough to allow for PBH formation. One of the main advantages of embedding
inflation in string theory is the possibility to motivate the presence of a symmetry
which can protect the inflaton potential against quantum corrections which can
spoil its flatness [47, 48]. Particularly interesting cases include inflaton candidates
which are pseudo Nambu-Goldstone bosons associated with slightly broken shift
symmetries. Abelian symmetries involves both axions [131], which are associated
to compact U(1) factors, and Kähler moduli [13], which are associated with non-
compact rescaling symmetries [49].3

This global rescaling symmetry is explicitly realised at tree-level in type IIB no-
scale models since the Kähler moduli τ remain exact flat directions but needs to
be slightly broken to generate the inflationary potential. This can be done either
by non-perturbative effects or by perturbative power-law corrections which become
exponential in terms of the canonically normalised inflaton: V0/τ

n ∼ V0 e
−nφ/f .

Notice that the shape of the inflationary potential is determined by both the ef-
fective ‘decay constant’ f , i.e. the geometry of the moduli space (determined by
the topology of the divisor whose volume is parameterised by the inflaton) and n,
i.e. the exact moduli-dependence of the symmetry-breaking effects which develop
the inflationary potential [79]. Once a proper uplifting to dS has been achieved via
the addition of a constant contribution (which can have several dynamical origins
[88, 89, 90, 91, 132, 192, 92, 93]), these models tend to give rise to an inflationary

2For PBH formation in multi-field inflationary models see [123, 124, 125].
3The non-Abelian case leads to a multi-field inflationary scenario which tends to be disfavoured

by non-Gaussianity observations [80].
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potential of the schematic form [79]:

Vinf = V0

(
1− e−nφ/f

)
. (3.1)

These models go under the name of Fibre Inflation since the underlying Calabi-Yau
compactification manifold has a typical fibration structure [14, 77, 78]. They are
interesting since they drive inflation successfully via a plateau-like region at large
φ and also allow for a detailed analysis of the post-inflationary evolution [54, 113,
114]. Moreover they provide string theory embeddings of Starobinsky inflation [133]
and supergravity α-attractors [134, 135, 136] (where in our notation α ' (f/n)2).
Nevertheless the potential (3.1) is too simple to generate PHBs via a period of ultra
slow-roll dynamics towards the end of inflation. However recent global constructions
of fibre inflation models in concrete Calabi-Yau orientifolds with explicit brane setup
and closed string moduli stabilisation have revealed the existence of new string loop
corrections which look schematically like [82, 2]:

δVinf = −ε1V0
e2nφ/f

1 + ε2 e3nφ/f
, (3.2)

where ε1 � 1 and ε2 � 1 are two parameters which are tunable since they depend
on background fluxes and the Calabi-Yau intersection numbers, and turn out to be
naturally small since they are suppressed by inverse powers of the compactification
volume, an exponentially large quantity [43, 42]. Thanks to the additional pertur-
bative contribution (3.2), we will show that fibre inflation models are rich enough to
produce a near inflection point region before the end of inflation which is perfectly
suitable to generate PBHs in the mass window 10−17M� .MPBH . 10−13M� where
they could constitute a significant fraction of the total dark matter abundance.

As pointed out in [137, 129, 25, 138], the slow-roll approximation ceases to be
valid in the near inflection point region. The primordial power spectrum has to
be computed by solving the Mukhanov-Sasaki equations for the curvature pertur-
bations [139, 140]. By following this procedure, we shall show that the primordial
power spectrum can feature the required enhancement for appropriate values of the
underlying parameters. Let us stress that even if the choice of microscopic param-
eters needed for successful PBH formation looks very non-generic from the string
landscape point of view, the values of these parameters are technically natural since
they are protected against large quantum corrections by the effective rescaling shift
symmetry typical of these models [49].

This chapter is organised as follows. In Sec. 3.1 we provide a very brief review of
fibre inflation models while in Sec. 3.2 we describe the mechanism of PBH generation
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in some detail. In Sec. 3.3 we then perform a careful analysis of the process of PBH
formation in fibre inflation by implementing the Mukhanov-Sasaki formalism to
derive the primordial power spectrum. We finally discuss our results and present
our conclusions in Sec. 4.4.

3.1 Fibre inflation models

Fibre inflation is a class of string inflationary models built within the framework
of type IIB flux compactifications [14, 77, 78, 79]. The inflaton τK3 is a Kähler
modulus controlling the size of a K3 divisor fibred over a P1 base with volume tP1 .
The simplest fibre inflation models feature a Calabi-Yau (CY) volume which looks
like:

V = tP1τK3 − τ 3/2
dP , (3.3)

where τdP is the volume of a diagonal del Pezzo divisor which supports non-perturbative
effects. Several effects come into play to stabilise the Kähler moduli in a typical
large volume scenario (LVS) vacuum [43, 42]. At leading order in a 1/V � 1 ex-
pansion only two directions, V and τdP, are lifted by non-perturbative contributions
to the superpotential W [88] and perturbative α′ corrections to the Kähler poten-
tial K [36, 37, 87].4 Hence the remaining flat direction, which can be parametrised
by τK3, represents a very promising inflaton candidate since it enjoys an effective
non-compact rescaling symmetry which can be used to protect the flatness of the
inflationary potential against quantum corrections [49].5

In order to generate the inflationary potential, this effective shift symmetry has
to be slightly broken. This is realised by open string 1-loops which depend on all
Kähler moduli [39, 40, 73, 74] but are subdominant with respect to the leading
α′ effects thanks to the extended no-scale structure typical of these models [41].
Higher loops are expected to be suppressed by positive powers of the string coupling
gs � 1 and negative powers of the exponentially large volume V � 1 [14, 79]. Other
contributions to the inflationary potential arise from higher derivative α′ effects

4At this level of approximation, also the axionic partner of τdP is fixed by non-perturbative
effects.

5There are actually other two flat directions corresponding to the axions associated with the base
and the fibre which turn out to be much lighter than τK3 since they acquire tiny masses only at non-
perturbative level (suppressed with respect to the mass of τK3 by e−πτK3 ∼ e−πV

2/3 ∼ 10−137 � 1
for V ∼ 103 from Tab. 3.1). Hence these fields are in practice massless and acquire isocurvature
fluctuations during inflation. However present strong bounds on isocurvature fluctuations do not
apply to our case since these axions tend to be too light to behave as dark matter (see eq. (B.16)
of [187]). On the other hand, these ultra-light axions could behave as extra relativistic degrees of
freedom produced from the inflaton decay [60].
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[75, 76] but these are also V-suppressed if the superspace derivative expansion is
under control [86]. Moreover, all these corrections give rise to an AdS vacuum
which needs to be uplifted to dS by the inclusion of anti-branes [88, 89, 90, 91],
hidden sector T-branes [132, 192, 92] or non-perturbative effects at singularities
[93]. It is important to stress that all these uplifting effects are inflaton-independent
since they depend just on the overall volume V . Thus they give rise to a constant
contribution to the inflationary potential which is crucial to develop a plateau-like
behaviour at large inflaton values.

After canonical normalisation of the inflaton field, the resulting potential is qual-
itatively very similar to the one of Starobinsky inflation [133] and α-attractor su-
pergravity models [134, 135, 136]. In fact, fibre inflation models require a trans-
Planckian field range to obtain enough e-foldings of inflationary expansion, and so
they can predict a tensor-to-scalar ratio as large as r ∼ 0.005− 0.01. These models
are particularly interesting also because they can be embedded into globally consis-
tent CY orientifold compactifications with an explicit brane setup and chiral matter
[82, 2]. In the study of concrete CY realisations of string models where the inflaton
is a Kähler modulus, it has been recently realised that the underlying Kähler cone
conditions set strong geometrical constraints on the allowed inflaton range [112]. In-
terestingly, it has been found that the distance travelled by inflaton in field space can
generically be trans-Planckian only for K3-fibred CY threefolds which are exactly
the necessary ingredients to construct fibre inflation models.

The two moduli which are stabilised at leading order in 1/V are heavier than the
Hubble constant whose size is set by the uplifting contribution. Hence V and τdP do
not play a significant rôle during inflation which is instead driven mainly by the light
field τK3. Fibre inflation models are therefore, to a very good level of approximation,
single-field inflationary models whose potential looks like [14, 77, 78]:

Vinf =

(
Cup

V4/3
+ g2

s

CKK

τ 2
K3

+
W 2

0√
gs

εF4

V τK3

− CW

V√τK3

+ g2
s DKK

τK3

V2
+ δF4

W 2
0√
gs

√
τK3

V2

)
W 2

0

V2
,

(3.4)
where gs � 1 is the string coupling and W0 ∼ O(1 − 10) is the superpotential
generated by background fluxes which is constant after the dilaton and the complex
structure moduli are stabilised at tree-level. Cup controls the uplifting contribution
and, depending on the particular mechanism employed it can have a different de-
pendence on the internal volume V , background or gauge fluxes. CKK > 0, DKK > 0

and CW are the coefficients of 1-loop open string corrections which have been con-
jectured to come respectively from the tree-level exchange of closed Kaluza-Klein
strings between non-intersecting stacks of branes, and winding closed strings be-
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tween intersecting branes [39, 40, 73, 74]. These constants are also functions of the
vacuum expectation values of the complex structure moduli and are expected to be
of order unity: CKK ∼ DKK ∼ CW ∼ O(1). On the other hand, εF4 and δF4 are the
coefficients of higher derivative α′ F 4 effects which depend just on the topological
properties of the underlying geometry and are expected to be positive but relatively
small: εF4 ∼ δF4 ∼ O(10−3) [75, 76].

The potential (3.4) is rich enough to generate a minimum for small τK3, an
inflationary plateau-like behaviour at large τK3 and finally a steepening region at
very large τK3 where the system is in a fast-roll regime.6 In order to perform a
proper study of the inflationary dynamics, the field τK3 has to be written in terms
of its canonically normalised counterpart φ as [14]:

τK3 = e
2√
3
φ

= 〈τK3〉 e
2√
3
φ̂
, (3.5)

where we have expanded φ around its minimum as φ =
√

3
2

ln〈τK3〉+ φ̂. Substituting
(3.5) in (3.4), we end up with:

Vinf = V0

(
C1 + C2 e

− 4√
3
φ̂

+ C3 e
− 2√

3
φ̂ − e

− 1√
3
φ̂

+ C4 e
2√
3
φ̂

+ C5 e
1√
3
φ̂
)
, (3.6)

where, parameterising the inflaton minimum as 〈τK3〉3/2 ≡ γ V , we have:

V0 =
CW W

2
0

γ1/3V10/3
, C1 = γ1/3 Cup

CW

, C2 = g2
s

CKK

γ CW

,

C3 =
W 2

0

γ1/3CW

√
gs

εF4

V1/3
, C4 = γ g2

s

DKK

CW

, C5 = γ C3
δF4

εF4
. (3.7)

Notice that we work in units of Mp = 1. The potential (3.6) can have a plateau-
like region which can support enough efoldings of inflation only if the coefficients of
the positive exponentials are suppressed, i.e. C4 � 1 and C5 � 1, which, in turn,
requires γ � 1. This is naturally achieved if the three negative exponentials compete
to give a minimum since this can happen when γ ∼ g2

s � 1. The inflationary
plateau is then generated mainly by the fourth term in (3.6). Notice that the
Hubble constant during inflation is set by V0 and scales as H2 ∼ M2

p/V10/3.7 The
mass of the inflaton around the minimum is of order H but then quickly becomes
exponentially smaller than H for φ̂ > 0.

Even if (3.6) is a very promising potential to drive inflation, it is not rich enough

6Pre-inflationary fast to slow-roll transitions in fibre inflation models can give rise to a power
loss at large angular scales [107, 141].

7Mp denotes the reduced Planck mass Mp = 1/
√
8πG ' 2.4 · 1018 GeV.
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to generate primordial black holes due to the requirement of a significant enhance-
ment of the power spectrum at large momentum scales. However recent explicit
constructions of fibre inflation models in concrete type IIB CY compactifications
with D3/D7-branes and O3/O7-planes have reproduced the potential (3.4) in a
slightly generalised form since [82, 2]:

• In general the coefficient CW is not a constant but a function of the fibre
modulus τK3 of the form:

CW → CW(τK3) = CW −
AW

√
τK3√

τK3 −BW

, (3.8)

where the parameters CW ∼ O(1) and AW ∼ O(1) depend on the vacuum
expectation values of the complex structure moduli, while BW ∼ O(1) depends
on topological properties of the underlying CY threefold like the intersection
numbers and the Euler number.

• The effective action features additional winding 1-loop corrections to the in-
flationary potential which will turn out to be crucial for the formation of
primordial black holes and look like:

δVW = W 2
0

τK3

V4

DW −
GW

1 +RW

τ
3/2
K3

V

 , (3.9)

where again DW ∼ O(1) and GW ∼ O(1) become constants only after complex
structure moduli stabilisation, while RW ∼ O(1) depends on the topological
features of the extra dimensions.

Depending on the details of a given brane setup (in particular the presence of inter-
sections between D-branes and O-planes and the topological properties of two-cycles
where different stacks can intersect), several contributions to the generic scalar po-
tential (3.4), supplemented with (3.8) and (3.9), can be absent by construction. In
what follows, we shall therefore focus just on winding 1-loop corrections that repre-
sent the simplest situation which can lead to a successful generation of primordial
black holes. This is justified for example by the fact that the global chiral embedding
of fibre inflation presented in [2] does not feature any Kaluza-Klein loop correction,
i.e. CKK = DKK = 0.8 Moreover higher derivative F 4 terms tend also to be negligible

8Even if both CKK and DKK are non-zero, in a vast region of the parameter space, Kaluza-Klein
loops would still be subdominant with respect to winding loops due to the extra factors of g2s � 1
in (3.7). This is due to the fact that Kaluza-Klein loops feature an extended no-scale cancellation,
and so they contribute to the scalar potential effectively only at 2-loop order [41].
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since, as can be seen from (3.7), they should be suppressed by both inverse volume
powers and by εF4 � 1 and δF4 � 1. Hence in Sec. 3.3 we shall study primordial
black hole formation for the following simplified inflationary potential:

Vinf =
W 2

0

V3

 Cup

V1/3
− CW√

τK3

+
AW√

τK3 −BW

+
τK3

V

DW −
GW

1 +RW

τ
3/2
K3

V

 , (3.10)

which, when expressed in terms of the canonically normalised inflaton shifted from
its minimum, takes the form:

Vinf = V0

[
C1 − e

− 1√
3
φ̂

(
1− C6

1− C7 e
− 1√

3
φ̂

)
+ C8 e

2√
3
φ̂

(
1− C9

1 + C10 e
√

3φ̂

)]
,

(3.11)
with:

C1 = γ1/3 Cup

CW

∼ O(1) , C6 =
AW

CW

∼ O(1) , C7 =
BW

γ1/3V1/3
∼ O(1) ,

C8 = γ
DW

CW

� 1 , C9 =
GW

DW

∼ O(1) , C10 = γ RW � 1 . (3.12)

Notice that the potential (3.11) scales as V0 ∼ H2M2
p ∼M4

p/V10/3 while the leading
order potential which gives mass to V and τdP scales as Vlead ∼M4

p/(g
3/2
s V3) [43, 42].

Hence for gs � 1 and V � 1, the dynamics which generates PBHs is effectively
single-field.

3.2 PBH formation

Primordial black holes form when large and relatively rare density perturbations
re-enter the Hubble horizon and undergo gravitational collapse. The fraction of the
total energy density in PBHs with mass M at PBH formation is given by:

βf(M) =
ρPBH(M)

ρtot

∣∣∣
f
. (3.13)

The curvature perturbations are assumed to follow a Gaussian distribution with
width σM ≡ σ(M).9 The probability of large fluctuations leading to the formation

9See [142] for the case when non-Gaussianity effects cannot be neglected.
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of PBHs with mass M is then given by:

βf(M) =

∫ ∞
ζc

1√
2π σM

e
− ζ2

2σ2
M dζ , (3.14)

where ζc denotes the critical value for the collapse into a PBH to take place and
plays a fundamental rôle in this discussion. It is usually taken to be close to unity,
see e.g. [25, 138, 129].10 For such a Gaussian distribution σ2

M ∼ 〈ζζ〉 which on CMB
scales is O(10−9). As we will show below, σM � ζc and so we can approximate (3.14)
as:

βf(M) ∼ σM√
2π ζc

e
− ζ2c

2σ2
M . (3.15)

If PBHs are to be a significant fraction of dark matter, the fluctuations that give rise
to them must not be too rare, meaning that σM cannot be arbitrarily smaller than
ζc. This implies that on smaller distance scales the scalar power spectrum must be
orders of magnitude larger than on CMB scales. Let us quantify this statement and
discuss how it may be achieved in single field models of inflation.

The mass of a PBH forming when a large density perturbation re-enters the
horizon is assumed to be proportional to the horizon mass:

M = γG

4π

3

ρtot

H3

∣∣∣
f

= 4πγG

M2
p

Hf

, (3.16)

where γG is a correction factor which depends on the details of the gravitational
collapse and Hf denotes the Hubble parameter at the moment the perturbation re-
enters the horizon. Noting that PBHs behave as matter, the fraction of the total
energy density in PBHs at formation time (3.13) can be related to the present PBH
energy density as:

βf(M) =

(
H0

Hf

)2
ΩDM

a3
f

fPBH(M) , (3.17)

where af denotes the scale factor at PBH formation time, H0 is the Hubble scale
today, ΩDM = 0.26 is the present fraction of the total energy density in dark matter
and fPBH(M) is the fraction of the total dark matter energy density in PBHs with
mass M today. PBHs in the low mass region, which can be interesting dark matter
candidates, get formed before matter-radiation equality in an epoch of radiation

10We note that some authors [127, 128] take it to be of the order 10−1 or 10−2. Given the
exponential dependence of β on ζc this significantly decreases the level of tuning required of the
inflationary potential in models where PBHs are created within single field inflation.
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dominance. Hence the Hubble scale at PBH formation redshifts as:

H2
f = Ωr

H2
0

a4
f

(
g∗f
g∗0

)−1/3

, (3.18)

where Ωr = 8× 10−5 is the present fraction of the total energy density in radiation,
while g∗0 and g∗f are respectively the number of relativistic degrees of freedom today
and at PBH formation time. Combining (3.16) with (3.18), (3.17) can be rewritten
in terms of present day observables and in units of the solar mass M� as [143, 144]:

βf(M) ' 4
√
γG

× 10−9

(
g∗f
g∗0

)1/4
√

M

M�
fPBH(M) . (3.19)

We can now get an estimate of the level of enhancement of the power spectrum
required to have PBHs which constitute a significant fraction of dark matter. Setting
γG = 1 to be conservative and assuming that only SM degrees of freedom are present
so that g∗0 = 3.36 and g∗ = 106.75, if PBHs with mass M constitute all of dark
matter, i.e. fPBH(M) = 1 , (3.19) reduces to:

βf(M) ' 10−8

√
M

M�
. (3.20)

If we now focus on a mass distribution sharply peaked at M = 10−15M�, we find
βf(M) ' 3 × 10−16. Comparing (3.20) with (3.15) for ζc = 1, we finally obtain
σM = 0.12. This implies that the scalar power spectrum must be enhanced to
O(10−2), a value 7 orders of magnitude larger that its value on CMB scales.11 This
large enhancement can in principle be achieved within single field inflationary models
by inducing an extremely flat and sufficiently long region in the scalar potential.
Therefore the problem of PBHs in single field inflation is one of having a sufficiently
rich structure in the scalar potential and the freedom to tune in a flat plateau in
the later part of inflation.

Let us finally make two important observations:

• In the estimate above of the enhancement of the power spectrum, we consid-
ered PBHs with a given mass M . However, more generically, the PBH mass
function is broadly peaked, and so the fraction of the total dark matter density

11Had we assumed ζc = 0.1, we would have found σ = 0.012, in agreement with the estimates of
[127, 128]. This corresponds to an enhancement of the power spectrum by 5 orders of magnitude
between PBH and CMB scales and requires less tuning of the inflationary potential.
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in PBHs looks like [145, 116]:

fPBH =

∫
dfPBH(M) =

∫
dfPBH(M)

d lnM
d lnM , (3.21)

where dfPBH(M) is the fraction of PBHs with mass betweenM andM+d lnM ,
and the integration domain is bounded below by Hawking evaporation of very
light PBHs and above by the mass corresponding to PBHs which re-enter the
horizon after matter-radiation equality, see e.g. [138].

• Assuming that the Hubble scale during inflation Hinf is approximately con-
stant, (3.16) and (3.18) can be used to write the number of efoldings between
CMB and PBH horizon exit as [138]:

∆NPBH

CMB = ln

(
aPBHHinf

aCMBHinf

)
= ln

(
afHf

0.05 Mpc−1

)
= 18.4− 1

12
ln

(
g∗
g∗0

)
+

1

2
ln γG −

1

2
ln

(
M

M�

)
. (3.22)

Setting again γG = 1, g∗0 = 3.36 and g∗ = 106.75 as in the SM case, the
formation of PBHs with masses in the [10−16, 10−14]M� range implies that
PBH scales leave the horizon approximately 34.2 to 36.5 efoldings after the
CMB scales.

3.3 PBHs from Fibre inflation

In order to produce a significant fraction of PBHs from inflationary density per-
turbations, we shall use the rich structure of the fibre inflation potential (3.10) to
induce a near inflection point close to the minimum as depicted in Fig. 3.1 .

Based on the scaling of each term in eq. (3.10) with the fibre modulus τK3 one
can see that the second and third terms dominate at small field values and induce
a minimum for the modulus around:

〈τK3〉 ∼
CWB

2
W

(
√
CW −

√
AW)2

. (3.23)

The forth term, being proportional to τK3, dominates V at large field values, while
the fifth term has a maximum at 22/3

(RW/V)2/3 and scales as −τK3 at small and as −τ−1/2
K3

at large field values respectively. It is this last term that will be instrumental in
generating the enhancement in the scalar power spectrum that will ultimately lead
to the formation of primordial black holes in this setup. This can be achieved for
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Figure 3.1: Scalar potential for the parameter set P2 of Tab. 3.1.

certain values of GW and RW such that the potential has a very flat region close to
the post-inflationary minimum as illustrated in Fig. 3.1.

Since in slow-roll Pk ∝ H2/εV , an enhancement of the scalar power spectrum is
in principle possible in the limit εV ≡

V 2
φ

2V 2 → 0. Actually the situation is a little more
involved since in the plateau the dynamics of the Universe deviates significantly from
slow-roll, a fact that has been pointed out in [129] (see also [138]), and that calls for
a more careful analysis of the observational signatures of such models, see e.g. [25].
Observables must therefore be computed from solutions to the Mukhanov-Sasaki
equation for the rescaled curvature perturbations:

u′′k(η) +
(
k2 − z′′/z

)
uk(η) = 0 , (3.24)

where η denotes conformal time, z ≡
√

2ε a from which we find that the effective
mass of the curvature perturbations is:

z′′

z
= (aH)2

[
2− ε+

3

2
η − 1

2
εη +

1

4
η2 +

1

2
ηκ

]
, (3.25)

where:

ε = − Ḣ

H2
, η =

ε̇

εH
, κ =

η̇

ηH
, (3.26)

are the Hubble slow-roll parameters.

One assumes that deep inside the horizon, the perturbations behave as if in flat
space, which fixes the initial conditions to be of the Bunch-Davies type [146]:

lim
kη→−∞

uk(η) =
e−ikη√

2k
. (3.27)
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This determines the solution to be given by a Hankel function of the first kind:

uk(η) =

√
−πη
2

H(1)
ν (−kη) , (3.28)

with index ν determined from eq. (3.25) once a given background is chosen.

For comparison with observations one is interested in the dimensionless power
spectrum, defined as:

Pk =
k3

2π2

∣∣∣uk
z

∣∣∣2 , (3.29)

which in the superhorizon limit kη → 0 can be written as:

Pk =
H2

8π2ε

22ν−1|Γ(ν)|2

π

(
k

aH

)3−2ν

. (3.30)

On CMB scales this is bound to be Pk
∣∣
CMB

= 2 × 10−9 and as shown in Sec. 3.2
it must be significantly enhanced on smaller scales if PBHs are to be significant
fraction of all dark matter.
Up to this point the discussion of the behaviour of the perturbations assumed noth-
ing about the type of background in which they evolve. In order to produce a
significant amount of PBH from a inflection point in single field inflation, we will
see that the universe has to evolve from a slow-roll inflation phase into a transient
constant-roll background, where the scalar field acceleration plays an important role.
These backgrounds are characterised by the parameter α defined as [147, 148]:

φ̈ ≡ −(3 + α)Hφ̇ . (3.31)

Solutions with α = 0 are called ultra slow-roll [149, 150, 151], whereas vanilla slow-
roll inflation corresponds to α = −3. The transient constant-roll period arises due
the presence of an extremely flat region in the potential that causes the scalar field
to brake upon reaching it, leading to a non negligible acceleration in the Klein-
Gordon equation and consequently a departure from the slow-roll background. This
behaviour is illustrated in Fig. 3.2 where we plot the evolution of the slow-roll
parameters for evolution in the potential of Fig. 3.1, corresponding to the parameter
set P2 of Tab. 3.1. It is evident that the system undergoes a transition from slow-roll
(Ne > 19) to constant-roll (15 < Ne < 19) and finally to a large η slow-roll phase
(Ne < 15).

In slow-roll ε, η, κ � 1, and consequently the effective mass takes the form
z′′/z ≈ 2

η2 (2 + 3ε+ 3η), or equivalently ν = 3/2 + ε + η/2. One can then see
that the curvature perturbations ζ = u/z remain constant on super-horizon scales
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Figure 3.2: Slow-roll parameters as functions of the number of efoldings Ne from
the end of inflation for parameter set P2. It is clear that the background evolves
from slow-roll (Ne > 19) to constant-roll (15 < Ne < 19) and back to slow-roll again
(Ne < 15). Dashed lines represent 10, 6 and 1.

and the two point function can therefore be evaluated at horizon crossing, yielding
the familiar slow-roll result:

Pk =
H2

8π2ε

∣∣∣
k=aH

. (3.32)

Eq. (3.30) also captures the momentum dependence of the two point function, which
can be written in terms of the spectral index ns and its running α, given by:

ns ≡
d lnPk
d ln k

= 1− 2ε− η , (3.33)

and:
dns
d ln k

= −2εη − ηκ . (3.34)

Both these quantities are subject of tight observational constraints [80]. For this
work we take:

ns = 0.9650± 0.0050 and
dns
d ln k

= −0.009± 0.008 (3.35)

at 68%CL and at a scale k∗ = 0.05 Mpc−1.

In the transient constant-roll regime one has η ≈ −2(3 + α − ε) which implies
ε ∝ a−2(3+α). In the cases we consider α ∈ [0, 1]. In such a background the super-
horizon behaviour of the power spectrum is determined by:

Pk ∝ H |2α+3|−1a3+2α+|3+2α| . (3.36)

Note that since ε is small and decreasing rapidly with the expansion (for α > −3),
one can take H to be constant. We therefore see that for −3 ≤ α < −3/2 the
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curvature perturbations are frozen beyond the horizon (this includes the previously
discussed case of slow-roll inflation, α = −3), whereas for α > −3/2, Pk ∝ a2(3+2α),
signaling the presence of a growing solution to the MS equation, and the breakdown
of the approximation of (3.32). In order to determine the two-point function in such
backgrounds one must therefore solve the MS equation and evaluate Pk at the end
of inflation.
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Figure 3.3: Power spectrum (3.29) for the potential of Fig. 3.1 with parameter set
P2. The dashed line represents the slow-roll estimate of (3.32) while the continuous
line is obtained from the solutions to the MS equation. The circle correspond to the
CMB scales if the peak is to be associated with PBH of mass M = 10−14M�.

In Fig. 3.3 we plot the power spectrum for scalar perturbations for the potential
of Fig. 3.1 (parameter set P2) calculated from the solutions of (3.24) (continuous
line) and the slow-roll estimate of (3.32) (dashed line). As expected the slow-roll
approximation breaks down for modes that cross the horizon close to the onset of
the constant-roll phase. Crucially for the production of PBH, the slow-roll result
underestimates the power spectrum by several orders of magnitude in this range of
momentum modes. This is to be expected given the existence of a growing mode
solution in constant-roll backgrounds with α ∈ [0, 1]. The presence of the growing
mode also implies that the actual position of the peak in the power spectrum is
shifted towards larger scales/PBH masses with respect to the slow-roll estimate.12

In Fig. 3.4 we plot the evolution of the power spectrum for modes leaving the
horizon 53 and 22 efoldings before the end of inflation, corresponding to CMB and
PBH scales respectively. While both scales are affected by the growing mode during

12These results are qualitatively similar to the findings of [25] since both models feature the
same dynamics.
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the constant roll phase, their superhorizon growth is determined by k
aH

at the onset
of the constant roll period. This quantity is minute for modes on CMB scales but
not for those on the PBH region. As a result the CMB mode essentially follow
the slow-roll estimate of (3.32) after crossing the horizon, while on small scales we
see that there is a large amplification of Pk leading to a breakdown of the slow-
roll approximation. Finally let us note that the O(1) deviation from the slow-roll
estimate for modes on the smallest scales (Ne . 15) can be attributed to the fact
that in the final phase of expansion before the end of inflation, η = O(1).
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Figure 3.4: Evolution of the curvature perturbations on different scales for example
P2. On the left panel a mode that corresponds to CMB scales, leaving the horizon
53 efoldings before the end of inflation, and keeping a constant value thereafter.
On the right panel a mode that corresponds to PBH scales, leaving the horizon 22
efoldings before the end of inflation and undergoing super-horizon growth during
the constant-roll phase (the same evolution was found in Fig. 2 of [152]). In both
plots the dashed line corresponds to the slow-roll estimate of (3.32).

In Tables 3.1 and 3.2 we present three numerical examples corresponding to cases
where all DM is composed of 10−14M� PBHs, assuming ζc = 1. We stress that the
choices of the underlying parameters are in line with their microscopic origin as
explained in Sec. 3.1.and that the desire to have PBH DM does not constrain the
compactification volume, which varies by several orders of magnitude in between
the three examples. All the digits presented in Tab. 3.1 are required in order to
fully reproduce our results. In particular, GW and RW control the position of the
near inflection point and the velocity with which the field goes through that region.
Changing any of these two quantities will change the amplitude and position of the
peak of Fig. 3.3, and therefore the mass and abundance of PBHs.

All examples lead to a spectral index that is slightly more than 3 sigma redder
than the current best fit, while giving rise to a spectral index running and a tensor
fraction that are in line with current bounds. Notice that, for sake of simplicity,
we did not analyse the full potential (3.4) but we just considered the simplest form
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which gives rise to PBH formation. However, if we had included terms which behave
as 1/τK3, we would have obtained larger values of ns which would alleviate the tension
with present observational constraints.

CW AW BW GW RW 〈τK3〉 〈V〉
P1 1/10 2/100 1 0.1398533 0.706811 3.89 107.3
P2 4/100 2/100 1 3.080548× 10−2 0.7071067 14.30 1000
P3 1.978/100 1.65/100 1.01 4.628858× 10−3 0.7070 168.03 5× 104

Table 3.1: Examples of parameters leading to the production of PBHs with a mass
peaked at 10−14M�, together with geometrical compactification data. All examples
exhibit DW = 0 which can be guaranteed by construction via a proper choice of
intersections between stacks of D7-branes [82, 2]. Otherwise DW has be tuned to
values of O(10−6) via an appropriate choice of background fluxes.

ns r dns
d ln k

∆NPBH
CMB Pk|peak

P1 0.9457 0.015 −0.0017 34.5 0.01365
P2 0.9437 0.015 −0.0017 34.5 0.03998
P3 0.9457 0.015 −0.0019 34.5 0.013341

Table 3.2: Inflationary observables on CMB and PBH scales for the examples of
Tab. 3.1. CMB scales correspond to 53 efoldings before the end of inflation.

3.4 Summary

In this chapter we have presented the first explicit example of a string inflationary
model which can potentially be consistent with cosmological observations at CMB
scales and, at the same time, can generate PBHs at small distance scales via an
efficient enhancement of the power spectrum due to a period of ultra slow-roll. Our
model leads to PBHs in the low-mass region where they constitute a significant
fraction of the total dark matter abundance.

Three interesting features of fibre inflation models relevant for PBH formation
are the following: (i) the coefficients of the different contributions to the inflationary
potential depend on microscopic parameters like background fluxes and Calabi-Yau
intersection numbers which take different values in the string landscape, and so give
a very large tuning freedom that can be used to generate a near inflection point;
(ii) the potential enjoys an approximate Abelian rescaling symmetry inherited from
the underlying extended no-scale structure which suppresses quantum corrections
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to the inflationary dynamics; (iii) the contribution to the inflationary potential
responsible for the emergence of a near inflection point at large momentum scales
has been derived in global embeddings of fibre inflation models in explicit Calabi-Yau
compactifications with chiral brane setup compatible with moduli stabilisation.

Moreover our model is characterised by a trans-Planckian field range during
inflation, and so it predicts a large tensor-to-scalar ratio of order r ∼ 0.01 which
might be detected by the next generation of cosmological measurements. Similarly to
previous works on PBH formation in single-field inflation [128, 25], the scalar spectral
index turns out to be a bit too red since it is more than 3σ away from the Planck
reference value. This tension might be resolved by the inclusion of non-zero neutrino
masses which might make our result compatible with CMB data within just 2σ

[25, 153]. The tension in the values of ns can also decrease in compactifications where
the approach to the inflationary plateau occurs faster than the 1/

√
τK3 considered

here, a possibility in potentials of the form (3.4). Another interesting cosmological
observable in our model is the running of the spectral index which turns out to be
sizable.

Notice that the tension with the observed value of the scalar spectral index is
the main reason why our mechanism cannot produce PBHs in the large mass region
probed by LIGO since they would correspond to scales which are too close to CMB
scales. Hence the large enhancement required for PBHs to be a significant fraction
of DM, would make ns in strong conflict with present data. Given that the results
of previous works focused on PHB formation in similar setups are qualitatively
equivalent [25], the generation of PBHs in the small mass window seems to be a
generic property of single-field models with an inflationary plateau followed by a
near inflection point.
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Chapter 4

The 3.5 keV Line from Stringy
Axions

Recently several studies have shown the appearance of a photon line at E ∼ 3.5

keV, based on stacked X-ray data from galaxy clusters and the Andromeda galaxy
[161, 162]. The line has been detected in galaxy clusters by the X-ray observatories
XMM-Newton, Chandra and Suzaku [163, 164] and in Andromeda with XMM-
Newton [162]. The Hitomi satellite would have been able to study the 3.5 keV line
with unprecedented energy resolution. However, unfortunately Hitomi was lost after
only a few weeks in operation and the limited exposure time on the Perseus cluster
only allows to put upper bounds on the 3.5 keV line which are consistent with the
detection of the other satellites [165]. The findings of [161, 162] have inspired further
searches in other astrophysical objects such as the galactic center [166, 167, 168, 169],
galaxies [170], dwarfs [171, 172, 173] and other galaxy clusters [174, 175].1 Currently,
a compelling standard astrophysical explanation, e.g. in terms of atomic lines of the
(cluster) gas is lacking.2 This gives rise to the possibility that the 3.5 keV line is a
signal related to dark matter (DM) physics.

A much explored model is that of dark matter decay, e.g. a sterile neutrino with
mass mDM ∼ 7 keV decaying into an active neutrino and a photon [178, 179]. In
this case, the photon flux from an astrophysical object is solely determined by the
lifetime of the dark matter particle and the dark matter column density. The width
of the line is due to Doppler broadening. There are several observational tensions, if
one wants to explain the (non-)observation of the 3.5 keV line in currently analysed
astrophysical objects. Most prominently, these are:

• Non-observation of the 3.5 keV line from dwarf spheroidal galaxies [171, 172,
1For a summary of observations and models on the 3.5 keV line see [176].
2See however [167, 177].
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173]. The dark matter density of these objects is rather well known and the X-
ray background is low, making dwarf spheroidals a prime target for detecting
decaying dark matter.

• Non-observation of the 3.5 keV line from spiral galaxies [170], where again the
X-ray background is low. According to the dark matter estimates of [170], the
non-observation of a 3.5 keV signal from spiral galaxies excludes a dark matter
decay origin of the 3.5 keV line very strongly at 11σ.

• The radial profile of the 3.5 keV line in the Perseus cluster peaks on shorter
scales than the dark matter profile, rather following the gas profile than the
dark matter profile [161, 169]. However, the observed profile with Suzaku is
only in mild tension with the dark matter profile [164].

These tensions, even though they could be potentially explained by uncertainties in
the dark matter distributions in these objects [176], motivate different dark matter
models than direct dark matter decay into a pair of 3.5 keV photons.

A dark matter model that is consistent with all the present (non-)observations
was given in [180]. A dark matter particle with mass mDM ∼ 7 keV decays into an
almost massless (mALP . 10−12 eV) axion-like particle (ALP) with energy 3.5 keV
which successively converts into 3.5 keV photons that are finally observed. Compared
to direct dark matter decay into photons, the observed photon flux does not depend
just on the dark matter column density, but also on the probability for ALPs to
convert into photons. This is determined by the size and coherence scale of the
magnetic field and the electron density in e.g. a galaxy cluster.

The 3.5 keV emission is stronger in astrophysical regions with relatively large
and coherent magnetic field. This is verified by the experimental fact that cool core
clusters like the Perseus cluster have stronger magnetic fields than non-cool core
clusters and also a higher 3.5 keV flux is observed from such an object. Furthermore,
the fact that central regions of a cool core cluster host particularly strong magnetic
fields explains the radial morphology of the 3.5 keV flux from Perseus as the signal
comes disproportionally from the central region of the cluster. The model has made
the prediction that galaxies can only generate a non-negligible 3.5 keV photon flux if
they are spiral and edge-on as for instance the Andromeda galaxy [180]. In this case,
the full length of the regions with regular magnetic field can be used efficiently for
ALP to photon conversion. These predictions agree with the experimental results
of non-observation of the 3.5 keV signal from generic (edge-on and face-on) spiral
galaxies and dwarf galaxies [181].3

3Despite the successful interpretation of all these observations, this model would not be able
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Given that the 4D low-energy limit of string compactifications generically leads
to several light ALPs [183, 184, 185, 186, 187], it is natural to try to embed the model
of [180] in string theory. This is the main goal of this chapter where we focus in
particular on type IIB flux compactifications where moduli stabilisation has already
been studied in depth.

In 4D string models, ALPs can emerge either as closed string modes arising
from the dimensional reduction of 10D anti-symmetric forms or as phases of open
string modes charged under anomalous U(1) symmetries on stacks of D-branes
[183, 184, 185, 186, 187]. Some of these modes can be removed from the low-
energy spectrum by the orientifold projection which breaks N = 2 supersymmetry
down to N = 1, others can be eaten up by anomalous U(1)’s via the Green-Schwarz
mechanism for anomaly cancellation or can become as heavy as the gravitino if
the corresponding saxions are stabilised by the same non-perturbative effects which
give mass to the axions. However the axions enjoy a shift symmetry which is broken
only at non-perturbative level. Therefore when the corresponding saxions are frozen
by perturbative corrections to the effective action, the axions remain exactly mass-
less at this level of approximation. They then develop a mass via non-perturbative
effects which are however exponentially suppressed with respect to perturbative cor-
rections. Hence whenever perturbative contributions to the effective scalar potential
play a crucial rôle for moduli stabilisation, the axions are exponentially lighter than
the associated saxions [63]. Notice that this case is rather generic in string com-
pactifications for two main reasons: (i) if the background fluxes are not tuned,
non-perturbative effects are naturally subleading with respect to perturbative ones;
(ii) it is technically difficult to generate non-perturbative contributions to the su-
perpotential which depend on all moduli (because of possible extra fermionic zero
modes [188], chiral intersections with the visible sector [50] or non-vanishing gauge
fluxes due to Freed-Witten anomaly cancellation [98]).

String compactifications where some moduli are fixed by perturbative effects are
therefore perfect frameworks to derive models for the 3.5 keV line with light ALPs
which can behave as either the 7 keV decaying DM particle or as the ultra-light
ALP which converts into photons. The main moduli stabilisation mechanism which
exploits perturbative corrections to the Kähler potential is the LARGE Volume
Scenario (LVS) [43, 44, 42]. We shall therefore present an LVS model with the
following main features (see Fig. 4.1 for a pictorial view of our microscopic setup):

• The underlying Calabi-Yau (CY) manifold is characterised by h1,1 = 5 Kähler

to explain the dip around 3.5 keV in the Perseus AGN spectrum which might arise from Chandra
data [182].

103



moduli Ti = τi + ici where the ci’s are closed string axions while the τi’s
control the volume of 5 different divisors: a large four-cycle Db, a rigid del
Pezzo four-cycle Ds which intersects with a ‘Wilson divisor’ Dp (h0,1(Dp) = 1

and h0,2(Dp) = 0) and two non-intersecting blow-up modes Dq1 and Dq2 .

• The two blow-up modes Dq1 and Dq2 shrink down to zero size due to D-
term stabilisation and support D3-branes at the resulting singularities. These
constructions are rather promising to build a semi-realistic visible sector with
SM-like gauge group, chiral spectrum and Yukawa couplings [189, 190]. If Dq1

and Dq2 are exchanged by the orientifold involution, the visible sector features
two anomalous U(1) symmetries (this is always the case for any del Pezzo
singularity) [104, 191, 192], while if the two blow-up modes are separately
invariant, one of them supports the visible sector and the other a hidden
sector [193, 72]. Each of the two sectors is characterised by a single anomalous
U(1) factor.

• A smooth combination of Ds and Dp is wrapped by a stack of D7-branes
which give rise to string loop corrections to the Kähler potential K [39, 40,
41]. Moreover, non-vanishing world-volume fluxes generate moduli-dependent
Fayet-Iliopoulos (FI) terms [99, 100]. An ED3-instanton wraps the rigid divisor
Ds and generates standard Ts-dependent non-perturbative corrections to the
superpotentialW . A second ED3-instanton wraps the Wilson divisor Dp. Due
to the presence of Wilson line modulini, this ED3-instanton contributes to the
superpotential only via Tp-dependent poly-instanton effects [194, 195].

• At leading order in an inverse volume expansion, the moduli are fixed super-
symmetrically by requiring vanishing D- and F-terms. These conditions fix the
dilaton and the complex structure moduli in terms of three-form flux quanta
together with the blow-up modes τq1 and τq2 in terms of charged open string
fields, and hidden matter fields on the D7-stack in terms of τp.

• Quantum corrections beyond tree-level break supersymmetry and stabilise
most of the remaining flat directions: α′ corrections to K [36] and single non-
perturbative corrections to W [88] fix τb, τs and cs, while soft supersymmetry
breaking mass terms and gs loop corrections to K fix τp.

• Subdominant Tp-dependent poly-instanton corrections toW stabilise the local
closed string axion cp while a highly suppressed Tb-dependent non-perturbative
superpotential fixes the bulk closed string axion cb. Sequestered soft term
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contributions stabilise instead the radial component of U(1)-charged matter
fields C = |C| ei θ living on the D3-brane stacks.

• Both cb and cp are exponentially lighter than the gravitino, and so could play
the rôle of the decaying DM particle with mDM ∼ 7 keV. On the other hand
the ultra-light ALP with mALP . 10−12 eV which converts into photons is
given by the open string phase θ. Notice that if Dq1 and Dq2 are identified
by the orientifold involution, there are two open string phases in the visible
sector: one behaves as the standard QCD axion, which is however heavier than
10−12 eV, and the other is the ultra-light ALP θ. If instead Dq1 and Dq2 are
separately invariant under the involution, θ is an open string axion belonging
to a hidden sector.

• The coupling of the closed string axions cb and cp to the open string ALP θ is
induced by kinetic mixing due to non-perturbative corrections to the Kähler
potential. However we shall show that the scale of the induced DM-ALP
coupling can be compatible with observations only if the DM candidate is the
local closed string axion cp.

• If the ultra-light ALP θ belongs to the hidden sector, its coupling to ordinary
photons can be induced by U(1) kinetic mixing which gets naturally generated
by one-loop effects [196]. Interestingly, the strength of the resulting interaction
can easily satisfy the observational constraints if the open string sector on the
D3-brane stack is both unsequestered and fully sequestered from the sources
of supersymmetry breaking in the bulk.

• The branching ratio for the direct axion DM decay into ordinary photons is
negligible by construction since it is induced by kinetic mixing between Abelian
gauge boson on the D7-stack and ordinary photons on the D3-stack which gives
rise to an interaction controlled by a scale which is naturally trans-Planckian.

This chapter is organised as follows. In Sec. 4.1 we first discuss the phenomenol-
ogy of the dark matter to ALP to photon model for the 3.5 keV line and its obser-
vational constraints, and then we describe how these phenomenological conditions
turn into precise requirements on the Calabi-Yau geometry, the brane setup and
gauge fluxes, the 4D fields which can successfully play the rôle of either the DM
particle or the ultra-light ALP, the form of the various interactions and the result-
ing low-energy 4D supergravity. Sec. 4.2 provides a thorough discuss of moduli
stabilisation showing how different sources of corrections to the effective action can
fix all closed string moduli and the U(1)-charged open string modes. In Sec. 4.3
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Figure 4.1: Pictorial view of our setup: a stack of D7-branes wraps the combination
τs + τp, two ED3-instantons wrap respectively the rigid cycle τs and the Wilson
divisor τp while two stacks of D3-branes at singularities support the visible and a
hidden sector. The DM particle is the closed string axion cp which acquires a 7
keV mass due to tiny poly-instanton effects and decays to the ultra-light open string
ALP θ that gives the 3.5 keV line by converting into photons in the magnetic field
of galaxy clusters.

we first derive the expressions for the canonically normalised fields and their masses
and then we use these results to work out the strength of the DM-ALP coupling
before presenting our conclusions in Sec. 4.4. Several technical details are relegated
to App. C.

4.1 Phenomenology and microscopic realisation

In this section we first discuss the observational constraints of the model of [180]
for the 3.5 keV line, and we outline the main phenomenological features of our
embedding in LVS type IIB flux compactifications. We then provide the technical
details of the microscopic realisation of the DM to ALP to photon model for the
3.5 keV line. We start by illustrating the geometry of the underlying Calabi-Yau
compactification manifold. We then present the brane setup and gauge fluxes, and
we finally describe the main features of the resulting low-energy 4D effective field
theory.
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4.1.1 Observational constraints

The effective Lagrangian of the dark matter to ALP to photon model for the 3.5

keV line can be described as follows:

L = −1

4
F µνFµν −

aALP
4M

F µνF̃µν +
1

2
∂µaALP∂

µaALP −
1

2
m2

ALPa
2
ALP

+
aDM

Λ
∂µaALP∂

µaALP +
1

2
∂µaDM∂

µaDM −
1

2
m2

DMa
2
DM , (4.1)

where aALP is an ALP with mass mALP that converts into photons in astrophysical
magnetic fields via the coupling suppressed byM . aDM is a pseudoscalar which is the
dark matter particle with massmDM ∼ 7 keV. It decays via the kinetic mixing term in
(4.1) with characteristic scale Λ. In order for ALP-photon conversion to be efficient
in galaxy cluster magnetic field environments, we require mALP . 10−12 eV which is
the characteristic energy scale of the electron-photon plasma [180]. Otherwise, the
ALP to photon conversion is suppressed by ∼ (10−12 eV/mALP )4. Therefore aALP is
too light to be the standard QCD axion but it has instead to be a stringy axion-like
particle.

The observed photon flux at an X-ray detector is given by:

FDM→ aALP→ γ ∝ ΓaDM→aALP aALP PaALP→γ ρDM , (4.2)

where ρDM is the dark matter column density and:

ΓaDM→aALP aALP =
1

32π

m3
DM

Λ2
, (4.3)

is the dark matter decay rate and PaALP→γ is the ALP to photon conversion prob-
ability. It is given as PaALP→γ ∝ M−2 and furthermore depends on the electron
density in the plasma, the energy of the ALP/photon, the coherence length and
the strength of the magnetic field. Hence, FDM→aALP→γ ∝ Λ−2M−2. For the ALP
to photon conversion conditions in the Perseus cluster magnetic field, the observed
3.5 keV flux then implies [180]:

Λ ·M ∼ 7 · 1028 GeV2 . (4.4)

The scales M and Λ are subject to certain constraints. There is a lower bound
M & 1011 GeV from observations of SN1987A [197, 198, 199], the thermal spectrum
of galaxy clusters [200] and active galactic nuclei [201, 202, 203]. This lower bound
implies an upper bound on Λ via (4.4). To get sufficiently stable dark matter,
we assume that the dark matter particle has a lifetime larger than the age of the
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universe, i.e. Λ & 5 · 1012 GeV. This implies an upper bound on M via (4.4). To
summarise, the parametersM and Λ have to satisfy (4.4) together with the following
phenomenological constraints:

1011 GeV . M . 1016 GeV , 5 · 1012 GeV . Λ . 7 · 1017 GeV . (4.5)

Notice that ultra-light ALPs with intermediate scale couplings to photons will be
within the detection reach of helioscope experiments like IAXO [204] and potentially
light-shining-through-a-wall experiments like ALPS [205].

4.1.2 Phenomenological features

The phenomenological requirements for a viable explanation of the 3.5 keV line from
dark matter decay to ALPs which then convert into photons, can be translated into
precise conditions on the topology and the brane setup of the microscopic realisation.
We shall focus on type IIB flux compactifications where moduli stabilisation has
already been studied in depth. According to (4.4) and (4.5), we shall focus on the
parameter space region where the DM to ALP coupling is around the GUT/Planck
scale, Λ ∼ 1016-1018 GeV, whereas the ALP to photon coupling is intermediate:
M ∼ 1011-1013 GeV. This region is particularly interesting since an ALP with this
decay constant could also explain the diffuse soft X-ray excess from galaxy cluster via
axion-photon conversion in the cluster magnetic field [206]. This phenomenological
requirement, together with the observation that mDM ∼ 10 keV while mALP . 10−12

eV, sets the following model building constraints:

• ALP as an open string axion at a singularity: From the microscopic
point of view, aALP can be either a closed or an open string axion. In the case of
closed string axions, aALP could be given by the reduction of C4 on orientifold-
even four-cycles or by the reduction of C2 on two-cycles duals to orientifold-odd
four-cycles. As explained in [184, 187] and reviewed in App. C.0.1, since axions
are the imaginary parts of moduli, Ti = τi+i ci (ci is a canonically unnormalised
axion), whose interaction with matter is gravitational, they tend to be coupled
to photons with Planckian strength. However this is true only for bulk axions
which have M 'Mp, while the coupling to photons of local axions, associated
to blow-up modes of point-like singularities, is controlled by the string scale:
M ' Ms. Ms ∼ Mp/

√
V can be significantly lower than Mp if the volume of

the extra dimensions in string units V is very large, and so local closed string
axions could realise M ∼Ms ∼ 1011-1013 GeV.

A moduli stabilisation scheme which leads to an exponentially large V is the
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LARGE Volume Scenario [43, 44, 42] whose simplest realisation requires a
Calabi-Yau volume of the form:

V = τ
3/2
b − τ 3/2

s . (4.6)

The moduli are fixed by the interplay of the leading order α′ correction to
the Kähler potential and non-perturbative effects supported on the rigid cycle
τs. The decay constant of the axionic partner of τs, which we denote as cs,
is set by the string scale, M ∼ Ms, but this mode develops a mass of order
the gravitino mass mcs ∼ m3/2 ∼ Mp/V . The large divisor τb is lighter than
the gravitino due to the underlying no-scale structure of the 4D effective field
theory, mτb ∼ m3/2/

√
V , but it has to be heavier than about 50 TeV in order

to avoid any cosmological moduli problem. Hence the local axion cs is much
heavier than 10−12 eV, and so cannot play the rôle of aALP . Moreover, the bulk
axion cb cannot be the desired ALP as well since, even if it is almost massless,
its coupling scale to photons would be too high: M ∼Mp.

We are therefore forced to consider an open string axion realisation for aALP .
Anomalous U(1) factors appear ubiquitously in both D7-branes wrapped around
four-cycles in the geometric regime and in D3-branes at singularities. In the
process of anomaly cancellation, the U(1) gauge boson becomes massive by
eating up an axion [207]. As explained in [63], the combination of axions
which gets eaten up is mostly given by an open string axion for D7-branes and
by a closed string axion for D3-branes. The resulting low-energy theory below
the gauge boson mass, features a global U(1) which is an ideal candidate for
a Peccei-Quinn like symmetry. In the case of D3-branes at singularities, the
resulting D-term potential looks schematically like:

VD = g2
(
q|Ĉ|2 − ξ

)2

, (4.7)

where we focused just on one canonically normalised charged matter field
Ĉ = |Ĉ| ei θ whose phase θ can play the rôle of an axion with decay constant
set by the VEV of the radial part |Ĉ|. The FI term ξ ∼ τq/V is controlled
by the four-cycle τq which gets charged under the anomalous U(1) and whose
volume resolves the singularity. A leading order supersymmetric solution fixes
|Ĉ|2 = ξ/q, leaving a flat direction in the (|Ĉ|, τq)-plane. This remaining flat
direction is fixed by subdominant supersymmetry breaking contributions from

109



background fluxes which take the form [192]:

VF (|Ĉ|) = c2m
2
0|Ĉ|2 + c3A|Ĉ|3 +O(|Ĉ|4) , (4.8)

where c2 and c3 areO(1) coefficients. If we parametrise the volume dependence
of the soft scalar masses as m0 ∼ Mp/Vα2 and the trilinear A-term as A ∼
Mp/Vα3 , and we use the vanishing D-term condition to write τq in terms of
|Ĉ| as τq ∼ |Ĉ|2V , the matter field VEV scales as:

(i) If c2 > 0 |Ĉ| = 0 ⇔ τq = 0 ,

(ii) If c2 < 0 |Ĉ| ' Mp

V2α2−α3
⇔ τq '

1

V4α2−2α3−1
.

Only in case (ii) the matter field |Ĉ| becomes tachyonic and breaks the Peccei-
Quinn symmetry, leading to a viable axion realisation. In the presence of
flavour D7-branes intersecting the D3-brane stack at the singularity, the soft
terms are unsequestered and α2 = α3 = 1 [208], giving |Ĉ| ∼ Mp/V ∼ m3/2

and τq ' V−1 � 1 which ensures that τq is still in the singular regime. If the
internal volume is of order V ∼ 108, the large modulus τb is heavy enough to
avoid the cosmological moduli problem: mτb ∼ 100 TeV. In turn the gravitino
mass, all soft terms and the axion decay constant faALP = |Ĉ| are around 109

GeV. Setting θ = aALP/faALP , the axion to photon coupling then takes the
form:

g2

32π2

aALP
faALP

FµνF̃
µν ⇔ M =

32π2 faALP
g2

=
32π2 faALP

gs
∼ 1012 GeV ,

(4.9)
since for D3-branes the coupling g−2 = Re(S) = g−1

s is set by the dilaton S

which controls also the size of the string coupling that we assume to be in the
perturbative regime: gs ' 0.1.

On the other hand, in the absence of flavour D7-branes the soft terms are
sequestered with α3 = 2 and α2 = 3/2 or α2 = 2 depending on the form of
the quantum corrections to the Kähler metric for matter fields and the effects
responsible for achieving a dS vacuum [209, 210]. Notice that possible non-
perturbative desequestering effects from couplings in the superpotential of the
formWnp ⊃ Omatter e

−asTs with Omatter a gauge-invariant operator composed of
matter fields, cannot actually change the volume dependence of either the soft
scalar masses or the A-terms [211]. Thus if α2 = 3/2 we have faALP = |Ĉ| '
Mp/V and τq ∼ V−1 � 1, while if α2 = 2 the open axion decay constant scales
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as faALP = |Ĉ| ' Mp/V2 and τq ∼ V−3 � 1. In both cases without flavour
D7-branes the gaugino masses scale as M1/2 ∼ 0.1Mp/V2 and lie around the
TeV scale for V ∼ 107. Considering this value of the volume, the axion-photon
coupling therefore becomes:

(a) If α2 =
3

2
M =

32π2 faALP
gs

∼ 103m3/2 ∼ 1013 GeV , (4.10)

(b) If α2 = 2 M =
32π2 faALP

gs
∼ 103 m3/2

V
∼ 106 GeV . (4.11)

• ALP-photon coupling induced by U(1) kinetic mixing: We have shown
above that, if the matter field |Ĉ| charged under the anomalous U(1) develops
a non-zero VEV due to a tachyonic soft scalar mass contribution, the open
string axion θ can have an intermediate scale coupling to photons. However
θ in general plays the rôle of the standard QCD axion which becomes much
heavier than mALP . 10−12 eV due to QCD instanton effects. Hence the
simplest realisation of an ultralight ALP with the desired phenomenological
features to reproduce the 3.5 keV line requires the existence of at least two
open string axions. The Calabi-Yau volume (4.6) has then to be generalised
to:

V = τ
3/2
b − τ 3/2

s − τ 3/2
q1
− τ 3/2

q2
, (4.12)

where τq1 and τq2 are both collapsed to a singularity via D-term fixing and
support a stack of D3-branes. There are two possibilities to realise a viable
aALP :

1. The two blow-up modes τq1 and τq2 are exchanged by the orientifold in-
volution [104, 191, 192]. The resulting quiver gauge theory on the visible
sector stack of D3-branes generically features two anomalous U(1) sym-
metries. This is for example always the case for del Pezzo singularities.
Hence the visible sector is characterised by the presence of two open string
axions: one behaves as the QCD axion while the other can be an almost
massless aALP with M ∼ 1011-1012 GeV as in (4.9) or (4.10). In this case
the matter field |Ĉ| which develops a VEV of order the gravitino mass has
to be a Standard Model gauge singlet in order not to break any visible
sector gauge symmetry at a high scale.

2. The two blow-up divisors τq1 and τq2 are invariant under the orientifold
involution [193, 72]. Therefore one D3-stack has to reproduce the visible
sector while the other represents a hidden sector. Each of the two sectors
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features an anomalous U(1) which gives rise to an open string axion with a
coupling to the respective photons controlled by the scaleM . The visible
sector axion plays the rôle of the QCD axion while the hidden sector open
string axion can behave as aALP . Its coupling to ordinary photons can be
induced by a U(1) kinetic mixing of the form [196, 212, 213]:

L ⊃ −1

4
FµνF

µν− 1

4
GµνG

µν +
χ

2
FµνG

µν− aQCD
4Mvis

FµνF̃
µν− aALP

4Mhid

GµνG̃
µν ,

(4.13)
where we denoted the QCD axion as aQCD, the kinetic mixing parameter
as χ and the visible sector Maxwell tensor as Fµν while the hidden one
as Gµν . The kinetic mixing parameter is induced at one-loop level and
scales as:

χ ∼ gvisghid

16π2
=

gs
16π2

' 10−3 . (4.14)

After diagonalising the gauge kinetic terms in (4.13) via Gµν = G′µν +

χFµν , aALP acquires a coupling to ordinary photons of the form:

L ⊃ −χ
2 aALP

4Mhid

FµνF̃
µν ⇔ M ' Mhid

χ2
�Mhid . (4.15)

Given that M � Mhid, aALP can be a hidden sector open string axion
only in case (4.11) where the scale of the coupling to hidden photons of
order Mhid ∼ 106 GeV is enhanced via U(1) kinetic mixing to M ∼ 1012

GeV for the coupling to ordinary photons.

• DM as a local closed string axion fixed by poly-instanton effects: In
order to produce a monochromatic 3.5 keV line, the DM mass has to be around
mDM ∼ 7 keV. Such a light DM particle can be a sterile neutrino realised as an
open string mode belonging to either the visible or the hidden sector. However
we shall focus on a more model-independent realisation of the decaying DM
particle as a closed string axion. A generic feature of any 4D string model
where the moduli are stabilised by perturbative effects, is the presence of
very light axions whose mass is exponentially suppressed with respect to the
gravitino mass [63]. Thus closed string axions are perfect candidates for ultra-
light DM particles. In LVS models, there are two kinds of axions which remain
light:

1. Bulk closed string axion cb since the corresponding supersymmetric part-
ner τb is fixed by α′ corrections to the Kähler potential K. This axionic
mode develops a tiny mass only via Tb-dependent non-perturbative con-
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tributions to the superpotential W : mcb ∼ mτb e
−πτb � mτb ∼ m3/2/

√
V .

2. Local closed string axion cp whose associated modulus τp is stabilised by gs
loop corrections to K. This can happen for so-called ‘Wilson divisors’ Dp

which are rigid, i.e. h2,0(Dp) = 0, with a Wilson line, i.e. h1,0(Dp) = 1

[195]. Under these topological conditions, an ED3-instanton wrapping
such a divisor does not lead to a standard non-perturbative contribution
to W but it generates a non-perturbative correction to another ED3-
instanton wrapping a different rigid divisor τs. This gives rise to poly-
instanton corrections to W of the form [194]:

Wnp = As e
−2π(Ts+Ape−2πTp) ' As e

−2πTs − 2πAsAp e
−2πTse−2πTp . (4.16)

In LVS models, the blow-up mode τs is fixed by the dominant non-
perturbative correction in (4.16) since the leading loop contribution to
the scalar potential is vanishing due to the ‘extended no-scale’ struc-
ture [41]. Thus the corresponding axion cs becomes too heavy to play
the rôle of aDM since it acquires a mass of the same order of magni-
tude: mτs ∼ mcs ∼ m3/2. On the other hand, the Tp-dependent non-
perturbative correction in (4.16) has a double exponential suppression,
and so τp gets frozen by perturbative gs effects [39, 40]. Given that cp en-
joys a shift symmetry which is broken only at non-perturbative level, this
axion receives a potential only due to tiny poly-instanton contributions
toW which make it much lighter than τp. Hence cp is a natural candidate
for aDM since mcp ∼ mτp e

−πτp/2 � mτp ∼ m3/2. Notice that the presence
of a ‘Wilson divisors’ τp would modify the volume form (4.12) to [195]:

V = τ
3/2
b − τ 3/2

s − (τs + τp)
3/2 − τ 3/2

q1
− τ 3/2

q2
. (4.17)

• DM to ALP decay induced by non-perturbative effects in K: A DM
to ALP coupling controlled by the scale Λ of the form shown in (4.1) can arise
from the kinetic mixing between a closed string DM axion and an open string
ALP. Given that the kinetic terms are determined by the Kähler potential,
a kinetic mixing effect can be induced by non-perturbative corrections to the
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Kähler metric for matter fields which we assume to take the form:4

Knp ⊃ Bi e
−biτi cos(bici)CC̄ , (4.18)

where i = b if aDM is a bulk closed string axion or i = p if aDM is a local
closed string axion fixed by poly-instanton effects. As we shall show in Sec.
4.3.3 after performing a proper canonical normalisation of both axion fields,
the resulting scale which controls the DM-ALP coupling is given by:

Λ ∼


ebbτb

Bb V4/3
Mp ∼

ebbV
2/3

Bb V4/3
Mp �Mp for aDM = cb

ebpτp

Bp V7/6
Mp ∼

Mp

Bp V7/6−κ/N for aDM = cp

(4.19)

where bp = 2π/N , κ = τp/τs and we have approximated V ∼ τ
3/2
b ∼ e2πτs .

From (4.19) it is clear that Λ can be around the GUT/Planck scale only if
the DM particle is a local closed string axion stabilised by tiny poly-instanton
corrections to W which can give it a small mass of order mDM ∼ 7 keV.

4.1.3 Calabi-Yau threefold

As explained in Sec. 4.1.2, the minimal setup which can yield a viable microscopic
realisation of the aDM → aALP → γ model for the 3.5 keV line of [180], is characterised
by a Calabi-Yau with h1,1 = 5 Kähler moduli and a volume of the form (4.17). A
concrete Calabi-Yau threefold built via toric geometry which reproduces the volume
form (4.17) for h1,1 = 4 (setting either τq1 = 0 or τq2 = 0) is given by example C of
[195]. We therefore assume the existence of a Calabi-Yau threefold X with one large
divisor controlling the overall volume Db, three del Pezzo surfaces, Ds, Dq1 and Dq2

and a ‘Wilson divisor’ Dp.

We expand the Kähler form J in a basis of Poincaré dual two-forms as J =

tbD̂b − tsD̂s − tq1D̂q1 − tq2D̂q2 − tpD̂p, where the ti’s are two-cycle volumes and we
took a minus sign for the rigid divisors so that the corresponding ti’s are positive.

4Similar non-perturbative corrections to K induced by ED1-instantons wrapped around two-
cycles have been computed for type I vacua in [214] and for type IIB vacua in [215], while similar
non-perturbative effects in K from an ED3-instanton wrapped around the K3 divisor in type I′
string theory, i.e. type IIB compactified on K3×T 2/Z2, have been derived in [216].
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The Calabi-Yau volume then looks like:

V =
1

6

∫
X

J ∧ J ∧ J =
1

6

[
kbbbt

3
b − ksss (ts + λtp)

3 − µt3p − kq1q1q1t3q1 − kq2q2q2t
3
q2

]
,

(4.20)
where the coefficients λ and µ are determined by the triple intersection numbers
kijk =

∫
X
D̂i ∧ D̂j ∧ D̂k as:

λ =
kssp
ksss

=
kspp
kssp

and µ = kppp −
k3
ssp

k2
sss

.

The volume of the curve resulting from the intersection of the del Pezzo divisor Ds

with the Wilson surface Dp is given by:

Vol(Ds ∩Dp) =

∫
X

J ∧ D̂s ∧ D̂p = − (ksspts + kspptp) = −kssp (ts + λtp) . (4.21)

The volume of this curve is positive and the signature of the matrix ∂2V
∂ti∂tj

is guar-
anteed to be (1, h1,1 − 1) (so with 1 positive and 4 negative eigenvalues) [217] if
kssp < 0 while all the other intersection numbers are positive and ts +λtp > 0.5 The
four-cycle moduli can be computed as:

τi =
1

2

∫
X

J ∧ J ∧ D̂i , (4.22)

and so they become:

τb =
1

2
kbbb t

2
b , τq1 =

1

2
kq1q1q1 t

2
q1
, τq2 =

1

2
kq2q2q2 t

2
q2
,

τs =
1

2

(
ksss t

2
s + kspp t

2
p + 2kssp tstp

)
=

1

2
ksss (ts + λtp)

2 , (4.23)

τp =
1

2

(
kppp t

2
p + kssp t

2
s + 2kspp tstp

)
=

1

2
kssp (ts + λtp)

2 +
1

2
µt2p .

The overall volume (4.20) can therefore be rewritten in terms of the four-cycle moduli
as:

V = λbτ
3/2
b − λsτ 3/2

s − λp (τp + xτs)
3/2 − λq1τ 3/2

q1
− λq2τ 3/2

q2
, (4.24)

where:

λi =
1

3

√
2

kiii
, ∀ i = b, s, q1, q2 , λp =

1

3

√
2

µ
and x = −kssp

ksss
> 0 .

5This analysis includes example C of [195] where ksss = kspp = −kssp = 9 and kppp = 0.
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Notice that (4.24) reproduces exactly the volume form (4.17).

4.1.4 Brane set-up and fluxes

As explained in Sec. 4.1.2, aALP can be realised as an open string axion belonging
either to the visible sector or to a hidden sector. In the first case the two rigid
divisors Dq1 and Dq2 are exchanged by a proper orientifold involution whereas in
the second case they are invariant. As we shall see more in detail in Sec. 4.2.1,
these two blow-up modes shrink down to zero size due to D-term stabilisation and
support a stack of D3-branes at the resulting singularity.

Full moduli stabilisation requires the presence of non-perturbative corrections to
the superpotential. We shall therefore consider an ED3-instanton wrapped around
the ‘small’ rigid divisorDs which generates a standard non-perturbative contribution
to W , together with another ED3-instanton wrapped around the Wilson surface Dp

which gives rise to poly-instanton effects. In order to make τp heavier than the DM
axion cp, we need also to include a D7-stack that generates τp-dependent string loop
corrections to the Kähler potential. This can be achieved if a stack of D7-branes
wraps the divisor DD7 (which we assume to be smooth and connected) given by:

DD7 = msDs +mpDp , with ms,mp ∈ Z . (4.25)

In what follows we shall assume the existence of a suitable orientifold involution
and O7-planes which allow the presence of such a D7-stack in a way compatible
with D7-tadpole cancellation. The cancellation of Freed-Witten anomalies requires
to turn on half-integer world-volume fluxes on the instantons and the D7-stack of
the form [98]:

FD7 = fs D̂s + fp D̂p +
1

2
D̂D7 , Fs =

1

2
D̂s , Fp =

1

2
D̂p , (4.26)

with fs, fp ∈ Z. In order to guarantee a non-vanishing contribution to W , the total
flux Fj = Fj − ι∗jB (with ι∗jB the pull-back of the NSNS B-field on Dj) on both
instantons has to be zero: Fs = Fp = 0. This can be achieved if the B-field is chosen
such that:

B =
1

2
D̂s +

1

2
D̂p , (4.27)

and the pull-back of D̂s/2 on Dp and of D̂p/2 on Ds are both integer forms since
in this case we can always turn on integer flux quanta to cancel their contribution
to the total gauge flux. This is indeed the case if, for an arbitrary integer form
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ω = ωiD̂i ∈ H2(Z, X) with ωi ∈ Z, we have that:

1

2

∫
X

D̂s ∧ D̂p ∧ ω =
1

2
(kssp ωs + kspp ωp) ∈ Z . (4.28)

This condition can be easily satisfied if both kssp and kspp are even.
The total gauge flux on the D7-stack instead becomes:

FD7 = fs D̂s + fp D̂p +
1

2
(ms − 1) D̂s +

1

2
(mp − 1) D̂p = fs D̂s + fp D̂p ,

where without loss of generality, we have chosen ms = mp = 1 so that FD7 is an
integer flux. The presence of this flux has several implications:

• The blow-up moduli Ts and Tp get charged under the diagonal U(1) of the
D7-stack with charges:

qi =

∫
X

FD7 ∧ D̂D7 ∧ D̂i = fs (kssi + kspi) + fp (kspi + kppi) , i = s, p , (4.29)

which implies qp = µfp − x qs.

• The coupling constant of the gauge theory living on DD7 acquires a flux-
dependent shift of the form:

g−2
D7 = τs + τp − h(FD7) Re(S) , (4.30)

where Re(S) = e−ϕ = g−1
s is the real part of the axio-dilaton while the flux-

dependent shift reads:

h(FD7) =
1

2

∫
X

FD7 ∧ FD7 ∧ D̂D7 =
fs
2
qs +

fp
2
qp . (4.31)

• FD7 generates a moduli-dependent FI-term which looks like:

ξD7 =
1

4π V

∫
X

J ∧ FD7 ∧ D̂D7 =
1

4π V
(qs ts + qp tp) . (4.32)

• A non-vanishing gauge flux on DD7 might induce chiral intersections between
the D7 stack and the instantons on Ds and Dp. Their net number is counted
by the moduli U(1)-charges as:

ID7-E3 =

∫
X

FD7∧D̂D7∧D̂s = qs , ID7-poly =

∫
X

FD7∧D̂D7∧D̂p = qp . (4.33)
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The relations (4.33) imply that, whenever an instanton has a non-vanishing chiral
intersection with a stack of D-branes, the four-cycle modulus Tinst wrapped by the
instanton gets charged under the diagonal U(1) on the D-brane stack. Therefore a
non-perturbative contribution to the superpotential of the form Wnp ⊃ e−Tinst would
not be gauge invariant. Thus a proper combination of U(1)-charged matter fields
φi has to appear in the prefactor in order to make the whole contribution gauge
invariant: Wnp ⊃

∏
i φi e

−Tinst . If however the φi are visible sector matter fields,
they have to develop a vanishing VEV in order not to break any Standard Model
gauge group at high energies [50]. In our case the absence of chiral intersections
between the instantons on Ds and Dp and the visible sector is guaranteed by the
structure of the intersection numbers since ksqij = 0 and kpqij = 0 ∀j for either i = 1

or i = 2.

On the other hand, as can be seen from (4.33), there are chiral intersections
between the hidden D7-stack on DD7 and the two instantons on Ds and Dp. We
could kill both of these intersections by setting FD7 = 0. However this choice of
the gauge flux on DD7 would also set to zero the FI-term in (4.32) which is instead
crucial to make τp heavier than the DM axion cp. We shall therefore perform a
choice of the gauge flux FD7 which sets ID7-E3 = qs = 0 but leaves ID7-poly = qp 6= 0

so that ξD7 can develop a non-trivial dependence on τp. This can take place if the
flux quanta fp and fs are chosen such that:

fp = −ksss + kssp
kssp + kspp

fs ⇔ qs = 0 and qp = µfp . (4.34)

The FI-term in (4.32) then becomes:

ξD7 =
qp
4π

tp
V

=
fp
√

2µ

4π

√
τp + xτs
V

, (4.35)

while the shift of the gauge coupling in (4.31) simplifies to h(FD7) = µ
2
f 2
p . Due

to non-zero chiral intersections between the D7-stack and the divisor Dp, the poly-
instanton contribution to the superpotential comes with a prefactor that depends
on a U(1)-charged matter field φ. In Sec. 4.2.1 we will show that the interplay
between D-terms and string loop effects can fix φ at a non-zero VEV, so that the
poly-instanton correction is non-vanishing. Notice that φ belongs to a hidden sector,
and so it can safely develop a non-zero VEV at high energies without violating any
phenomenological requirement.
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4.1.5 Low-energy 4D theory

Type IIB string theory compactified on an orientifold of the Calabi-Yau threefold
described in Sec. 4.1.3 with the brane setup and gauge fluxes of Sec. 4.1.4 gives
rise to an N = 1 4D supergravity effective field theory characterised by a Kähler
potential K and a superpotential W of the form:

K = Kmod +Kmatter and W = Wtree +Wnp , (4.36)

where:

• The moduli Kähler potential receives perturbative α′ and gs corrections beyond
the tree-level approximation:

Kmod = Ktree +Kα′ +Kgs , (4.37)

with:

Ktree = −2 lnV +
τ 2
q1

V
+
τ 2
q2

V
, Kα′ = − ζ

g
3/2
s V

, Kgs = gs
∑
i

CKK
i t⊥i
V

.

(4.38)
In (4.38) we neglected the tree-level Kähler potential for the dilaton S = e−ϕ−
iC0 and the complex structure moduli Ua− , a− = 1, · · · , h1,2

− and we expanded
the effective theory around the singularities obtained by collapsing the two
blow-up modes τq1 and τq2 (hence the volume V in (4.38) should be thought
of as (4.24) with τq1 = τq2 = 0). Moreover, we included only the leading
order α′ correction which depends on ζ = − ζ(3)χ(X)

2(2π)3 [36] since in the large
volume limit higher derivative α′ effects yield just subdominant contributions
[75]. Finally in Kgs we considered only string loop corrections arising from the
exchange of Kaluza-Klein modes between non-intersecting stacks of D-branes
and O-planes (CKK

i are complex structure dependent coefficients and t⊥i is the
two-cycle controlling the distance between two parallel stacks of D-branes/O-
planes) while we did not introduce any gs effects coming from the exchange of
winding modes since these arise only in the presence of intersections between
D-branes which are however absent in our setup [41, 39, 40].

• In the matter Kähler potential we focus just on the dependence on the matter
fields which will develop a non-zero VEV. These are two U(1)-charged matter
fields: φ = |φ| eiψ which belongs to the hidden D7-stack on DD7 and C = |C| eiθ

which can be either a visible sector gauge singlet (if Dq1 and Dq2 are exchanged
by the orientifold involution) or a hidden sector field (if both Dq1 and Dq2 are
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invariant under the orientifold involution) living on a D3-brane stack [218, 219]:

Kmatter =
φφ̄

Re(S)
+ K̃(Ti, T̄i)CC̄ . (4.39)

In (4.39) we wrote down just the tree-level Kähler metric for φ while we shall
consider both perturbative and non-perturbative corrections to the Kähler
metric for C which we assume to take the form:

K̃(Ti, T̄i) =
f(S, U)

V2/3
+ K̃pert +Bi e

−biτi cos(bici) with i = b, p , (4.40)

where f(S, U) is an undetermined function of the dilaton and complex struc-
ture moduli, K̃pert represents perturbative corrections which do not depend
on the axionic fields because of their shift symmetry and the last term is a
non-perturbative correction which can in principle depend on either the large
or the poly-instanton cycle. This term induces a kinetic mixing between the
open string axion θ and either of the two ultra-light closed string axions cb
and cp. As we shall see in Sec. 4.2.1, the open string axion ψ gets eaten up by
the anomalous U(1) on the D7-stack, and so light closed string axions cannot
decay to this heavy mode. This is the reason why we did not include any
non-perturbative effect in the Kähler metric for φ.

• The tree-level superpotential Wtree =
∫
X
G3∧Ω, with Ω the Calabi-Yau (3, 0)-

form, is generated by turning on background three-form fluxes G3 = F3−iSH3

and depends just on the dilaton and the U -moduli but not on the T -moduli
[35].

• The non-perturbative superpotential receives a single contribution from the
ED3-instanton wrapped around Ds together with poly-instanton effects from
the ED3-instanton wrapped around the Wilson surface Dp and takes the same
form as (4.16):

Wnp = As e
−2πTs − 2πAsAp e

−2πTse−2πTp . (4.41)

The prefactors As and Ap depend on S and U -moduli. Given that Tp is charged
under the anomalous diagonal U(1) on the D7-stack, Ap has to depend also on
the charged matter field φ in order to make Wnp gauge invariant. If we make
the dependence of Ap on φ explicit by replacing Ap → Apφ

n with arbitrary n,
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and we use the fact that φ and Tp behave under a U(1) transformation as:

δφ = i qφ φ and δTp = i
qp
2π

, (4.42)

the variation of Wnp under a U(1) transformation becomes:

δWnp = Wnp

(
n
δφ

φ
− 2πδTp

)
= iWnp (n qφ − qp) . (4.43)

Hence W is gauge invariant only if n = qp/qφ. Notice that n > 0 since, as we
shall see in Sec. 4.2.1, a consistent D-term stabilisation can yield a non-zero
VEV for φ only if qφ and qp have the same sign.

4.2 Moduli stabilisation

In this section we shall show how to stabilise all closed string moduli together with
the two charged open string modes φ and C. The total N = 1 supergravity scalar
potential descending from the K and W described in Sec. 4.1.5, includes both F-
and D-term contributions of the form:

V = VF + VD = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
+
g2
D7

2
D2
D7 +

g2
D3

2
D2
D3 , (4.44)

where the Kähler covariant derivative is DIW = ∂IW +W∂IK, the gauge coupling
of the field theory living on the D7-stack is given by (4.30) while g−2

D3 = Re(S) for
the quiver gauge theory on the D3-stack. The two D-term contributions look like:

DD7 = qφ φ
∂K

∂φ
− ξD7 , and DD3 = qC C

∂K

∂C
− ξD3 , (4.45)

where the FI-term for the D7-stack is given by (4.35) whereas the FI-term for the
D3-brane stack is:

ξD3 = qi
∂K

∂Tqi
= qi

τqi
V

for either i = 1 or i = 2 . (4.46)

In LVS models the Calabi-Yau volume is exponentially large in string units, and so
1/V � 1 is a small parameter which can be used to control the relative strength of
different contributions to the total scalar potential (4.44). Let us analyse each of
these contributions separately.
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4.2.1 Stabilisation at O(1/V2)

As can be seen from the volume scaling of the two FI-terms (4.35) and (4.46), the
total D-term potential scales as VD ∼ M4

p/V2 ∼ M4
s . Therefore its leading order

contribution has to be vanishing since otherwise the effective field theory would not
be under control since the scalar potential would be of order the string scale. As we
shall see in more detail below, this leading order supersymmetric stabilisation fixes
|φ| in terms of τ̃p ≡ τp+xτs and τqi in terms of |C|. The open string axion ψ and the
closed string axion cqi are eaten up by the two anomalous U(1)’s living respectively
on the D7 and D3-stack. Additional O(1/V2) tree-level contributions to the scalar
potential arise from background fluxes which stabilise the dilaton and the complex
structure moduli in a supersymmetric manner at DSWtree = DUa−

Wtree = 0 [35].
At this level of approximation the Kähler moduli are still flat due to the no-scale
cancellation. They can be lifted by subdominant corrections to the effective action
which can be studied by assuming a constant tree-level superpotential W0 = 〈Wtree〉
that is naturally of O(1). Summarising the total O(1/V2) contribution to the scalar
potential looks schematically like (we show the dependence just on the scalar fields
which get frozen):

VO(1/V2) = VD(|φ|, τqi) + V tree
F (S, U) . (4.47)

Let us focus in particular on the dynamics of the total D-term potential which from
(4.35), (4.44) and (4.46) reads:

VD =
g2
D7

2

(
qφ
|φ|2

Re(S)
− fp
√

2µ

4π

√
τ̃p

V

)2

+
g2
D3

2

(
qC K̃(Ti, T̄i) |C|2 − qi

τqi
V

)2

. (4.48)

Supersymmetry is preserved if:

qφ
|φ|2

Re(S)
=
fp
√

2µ

4π

√
τ̃p

V
and qC K̃(Ti, T̄i) |C|2 = qi

τqi
V
. (4.49)

These two relations fix one direction in the (|φ|, τ̃p)-plane and one direction in the
(|C|, τqi)-plane. Each of these two directions corresponds to the supersymmetric
partner of the axion which is eaten up by the relative anomalous U(1) gauge boson
in the process of anomaly cancellation. The axions which become the longitudinal
components of the massive gauge bosons are combinations of open string axions with
decay constant fop and closed string axions with decay constant fcl. The Stückelberg
mass of the anomalous U(1)’s scales as [220]:

M2
U(1) ' g2

(
f 2

op + f 2
cl

)
, (4.50)
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where:

D7 case: f 2
op =

|φ|2

Re(S)
=
fp
√

2µ

4π qφ

√
τ̃p

V
� f 2

cl =
1

4

∂2K

∂τ 2
p

=
1

4
√

2µ

1

V
√
τ̃p
,

D3 case: f 2
op = K̃(Ti, T̄i) |C|2 =

qi
qC

τqi
V
� f 2

cl =
1

4

∂2K

∂τ 2
qi

=
1

2V
, (4.51)

for:
τ̃p � zp ≡

π qφ
2µfp

and τqi � zqi ≡
qC
2qi

. (4.52)

In Sec. 4.2.2 and 4.2.3 we shall explain how to fix the remaining flat directions,
showing that the conditions in (4.52) can be satisfied dynamically. These conditions
imply that for the D7 case the combination of axions eaten up is mostly given by
the open string axion ψ, and so (4.49) should be read off as fixing |φ| in terms of τ̃p,
while for the D3 brane case the combination of axions eaten up is mostly given by
the closed string axion cqi which means that (4.49) fixes τqi in terms of |C|. Notice
that from (4.52) the U(1) gauge bosons acquire a mass of order the string scale:
MU(1) ∼Mp/

√
V ∼Ms.

4.2.2 Stabilisation at O(1/V3)

As we shall explain more in detail below, O(1/V3) effects arise from both the leading
α′ and τ̃p-dependent gs corrections to K in (4.38) together with the single instanton
contribution in (4.41). They give rise to a scalar potential which depends on τs, cs, τp
and τb but not on the associated axions cp and cb since both Tp- and Tb-dependent
non-perturbative corrections to W are much more suppressed due to the double
exponential suppression of poly-instanton effects and the exponentially large value
of τb ∼ V2/3. TheseO(1/V3) contributions alone would yield an AdS minimum which
breaks supersymmetry spontaneously [43, 44, 42]. Additional contributions of the
same order of magnitude can arise rather naturally from a hidden D7 T-brane stack
[92] or from anti-D3 branes at the tip of a warped throat [88, 90, 91] and can be tuned
to obtain a dS vacuum. The Kähler moduli develop non-zero F-terms and mediate
supersymmetry breaking to each open string sector via gravitational interactions.
Matter fields on the D7-stack are unsequestered, and so acquire soft masses of order
m3/2. After using the vanishing D-term condition to write |φ| in terms of τ̃p, the
resulting F-term potential for the matter fields also scales as O(1/V3). Thus the full
O(1/V3) scalar potential behaves as:

VO(1/V3) = V α′

F (V) + V gs
F (V , τ̃p) + V E3

F (τs, cs,V) + V matter
F (V , τ̃p) + Vup(V) . (4.53)
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All these O(1/V3) contributions take the following precise form:

V α′

F (V) =
3 ζ

32π
√
gs

W 2
0

V3
, V gs

F (V , τ̃p) =
3 gs λp
64π

(
gsC

KK

p

)2 W 2
0

V3
√
τ̃p
,

V E3

F (τs, cs,V) =
4gsπA

2
s

3λs

√
τs e
−4πτs

V
+ gsAs cos(2πcs)

W0 τs e
−2πτs

V2
,

V matter
F (V , τ̃p) = m2

3/2

|φ|2

Re(S)
=

3 gs λp
64πzp

W 2
0

√
τ̃p

V3
, (4.54)

where the string loop potential includes only the leading Kaluza-Klein contribution
from Kgs in (4.38) which is given by [41]:

V gs
F (V , τ̃p) =

( gs
8π

) (
gsC

KK

p

)2 W 2
0

V2

∂2K

∂τ 2
p

,

and in V matter
F we substituted the relation (4.49) which expresses |φ| in terms of τ̃p.

Summing up the four contributions in (4.54), the total scalar potential at O(1/V3)

has a minimum at (for 2πτs � 1):

cs = k +
1

2
with k ∈ Z , V =

3λs
8πAs

W0

√
τs e

2πτs , (4.55)

τs =

(
ζ

2λs

)2/3
1

gs
(1 + ε) ∼ 1

gs
, τ̃p = zp (gsC

KK

p )2 ∼ 1

gs
,

for CKK
p ∼ g

−3/2
s � 1 and:

ε =

(
2λp
3ζzp

)
g3/2
s

√
τ̃p ∼ g5/2

s CKK

p ∼ gs � 1 . (4.56)

Notice that the condition τ̃p � zp in (4.52), which ensures that the closed string
axion cp is not eaten up by the anomalous U(1) on the D7-stack and so can play the
rôle of DM, can be easily satisfied if CKK

p ∼ g
−3/2
s � 1. We point out that the coef-

ficients of the string loop corrections are complex structure moduli dependent, and
so their values can be tuned by appropriate choices of background fluxes. Therefore
for zp ∼ O(1), τ̃p ∼ τs ∼ τp ∼ g−1

s � 1. This behaviour justifies also the scaling of
the small parameter ε in (4.56).

As stressed above, this minimum is AdS but can be uplifted to dS via several dif-
ferent positive definite contributions. Two examples which emerge rather naturally
in type IIB flux compactifications are T-branes [92] or anti-D3 branes [88, 90, 91].
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4.2.3 Stabilisation at O(1/V3+p)

Taking into account all contributions to the scalar potential up to O(1/V3), there
are still four flat directions: the charged matter field |C|, the open string axion θ

and the two closed string axions cp and cb. We shall now show how to stabilise
the DM axion cp and |C| which sets the decay constant of the ALP θ and fixes τqi
from (4.49). The bulk closed string axion cb receives scalar potential contributions
only from Tb-dependent non-perturbative corrections, and so it is almost massless:
mcb ∼ mτb e

−π V2/3 ∼ 0.

The closed string axion cp and the open string matter field |C| receive a potential
respectively via poly-instanton corrections to the effective action and soft supersym-
metry breaking terms. As we shall see below, these terms scale as O(1/V3+p) with
p > 0. The only exception which leads to p = 0 is the case where flavour D7-branes
desequester the open string sector on the D3-brane at a singularity. However, as
shown in Sec. 4.1.2, these effects would not modify the VEV of |C| which sets the
open string axion decay constant, and so, without loss of generality, we shall consider
just the sequestered case. The resulting O(1/V3+p) scalar potential looks schemati-
cally as (showing again just the dependence on the fields which get stabilised at this
order in the inverse volume expansion of V ):

VO(1/V3+p) = V poly
F (cs) + V matter

F (|C|) . (4.57)

The leading order expression of the C-dependent soft supersymmetry breaking terms
is given by (4.8). A more complete expression in terms of the canonically normalised
field Ĉ = |Ĉ| eiθ =

√
K̃ C (see Sec. 4.3.1 for more details) is (the ci’s are O(1)

coefficients) [192]:

VF (|Ĉ|) = c2m
2
0|Ĉ|2 + c3A|Ĉ|3 + c4λ|Ĉ|4 +O(|Ĉ|5) + c5

τ 2
qi

V3

[
1 +O

(
1

V

)]
, (4.58)

where the first three terms originate from expanding the F-term potential in powers
of |Ĉ| up to fourth order, whereas the last term comes from the fact that the τqi-
dependent term in (4.38) breaks the no-scale structure. Using (4.49) we can rewrite
the last term in (4.58) in terms of |Ĉ| and parameterising the soft terms in Planck
units as m0 ∼ V−α2 , A ∼ V−α3 and λ ∼ V−α4 , we obtain (up to fourth order in |Ĉ|):

VF (|Ĉ|) =
c2

Vα2
|Ĉ|2 +

c3

Vα3
|Ĉ|3 +

k4

Vα4
|Ĉ|4 with k4 = c4λ+

4c5z
2
qi

V1−α4
. (4.59)
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If the soft masses are non-tachyonic, the VEV of the matter field |Ĉ| is zero, and so
the open string axion θ cannot play the rôle of the ALP aALP which gives the 3.5

keV line by converting into photons in astrophysical magnetic fields. On the other
hand, as explained in Sec. 4.1.2, if c2 < 0 |Ĉ| can develop a non-vanishing VEV.
Open string modes living on D3-branes localised at singularities are geometrically
sequestered from the sources of supersymmetry breaking in the bulk, resulting in
α3 = 2, α4 = 1 and α2 = 3/2 or α2 = 2 depending on the exact moduli dependence of
K̃pert in (4.40) and the details of the uplifting mechanism to a dS vacuum [209, 210].
The VEVs of |Ĉ| and τqi from (4.49) are therefore:

α2 =
3

2
case: |Ĉ| = faALP =

Mp

V
⇔ τqi =

2 zqi
V
� zqi , (4.60)

α2 = 2 case: |Ĉ| = faALP =
Mp

V2
⇔ τqi =

2 zqi
V3
� zqi , (4.61)

where we have identified the open string axion θ with the ALP aALP = faALP θ.
Notice that the ALP decay constant in (4.60) reproduces exactly the ALP coupling
to gauge bosons in (4.10) while the faALP in (4.61) gives the coupling in (4.11). We
stress that (4.60) and (4.61) show also how the condition τqi � zqi in (4.52) is easily
satisfied for 1/V � 1. This ensures that the blow-up mode τqi is indeed collapsed
to a singularity. Let us remind the reader that i can be either i = 2 or i = 3. When
τq1 and τq2 are identified by the orientifold involution, an open string axion is the
standard QCD axion aQCD while the other is aALP with |Ĉ| a Standard Model gauge
singlet with a large VEV. On the other hand, when the two blow-up modes τq1 and
τq2 are separately invariant under the involution, Ĉ belongs to a hidden sector and,
as described in Sec. 4.1.2, its axion θ has a coupling to ordinary photons of the form
(4.15) which is induced by U(1) kinetic mixing.

The axionic partner cp of the Kähler modulus τp which controls the volume of
the Wilson divisor supporting poly-instanton effects, receives the following scalar
potential contributions from the second term in (4.41) with Ap → Apφ

n and n =

qp/qφ:

V poly
F (cp) = −2gsπAsApφ

n

[
8(1− x)πAs

3λs
cos(2πcp)

√
τs e
−2πτs

+ W0 cos[2π(cs + cp)]
((1− x)τs + τ̃p)

V

]
e−2πτs e−2πτp

V
,

which, after using the first D-term relation in (4.49) and substituting the VEVs in
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(4.55), reduces to (setting without loss of generality φ = |φ| with ψ = 0):

V poly
F (cp) =

A

V3+p
cos(2πcp) , (4.62)

where:

A =
3gsλsAp

4

(
3λpC

KK
p

8
√
zp

)n/2(
3λs
√
τs

8πAs

)κ
τ̃p
√
τsW

2+κ
0 ,

with:
κ ≡ τp

τs
> 0 and p =

n

2
+ κ > 0 . (4.63)

Therefore the DM axion cp is stabilised at O(1/V3+p) at cp = 1/2 + k with k ∈ Z
and A > 0.

4.3 Mass spectrum and couplings

In this section we shall first determine the expressions for all canonically normalised
fields and their mass spectrum, and then we will compute the strength of the cou-
pling of the light DM axion cp to the open string ALP θ which is induced by non-
perturbative corrections to the matter Kähler metric in (4.40).

4.3.1 Canonical normalisation

Similarly to the scalar potential, also the kinetic Lagrangian derived from the Kähler
potential for the moduli given by the three terms in (4.38) and for the matter fields
given by (4.39), can be organised in an expansion in 1/V � 1. Hence the kinetic
terms can be canonically normalised order by order in this inverse volume expansion.
The detailed calculation is presented in App. C.0.2 and here we just quote the
main results which are useful to work out the strength of the DM-ALP coupling.
The expressions for the canonically normalised fields at leading order look like (the
moduli and the matter fields are dimensionless while canonically normalised scalar
fields have standard mass dimensions):

|Ĉ|
Mp

=
√

2K̃|C| , aALP = |Ĉ|θ = faALP θ ,
|φ̂|
Mp

=

√
2

Re(S)
|φ| , φqi

Mp

=
τqi√
V
,

φb
Mp

=

√
3

2
ln τb ,

ab
Mp

=

√
3

2

cb
τb
,

φs
Mp

=

√
4λs
3V

τ 3/4
s , (4.64)

as
Mp

=

√
3λs

4V√τs
cs ,

φ̃p
Mp

=

√
4λp
3V

τ̃ 3/4
p ,

ãp
Mp

=

√
3λp

4V
√
τ̃p
c̃p ,
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where we did not include the axions ψ and cqi which are eaten up by two anomalous
U(1)’s on the D7- and D3-brane stack respectively. Notice that the Kähler modulus
Tp = τp + i cp is given by the following combinations of the canonically normalised
fields Φs = φs + i as and Φ̃p = φ̃p + i ãp:

τp = τ̃p − xτs =

(
3V
4

)2/3
 1

λ
2/3
p

(
φ̃p
Mp

)4/3

− x

λ
2/3
s

(
φs
Mp

)4/3
 , (4.65)

and:

cp = c̃p − xcs =

√
4V
3

(
τ̃

1/4
p√
λp

ãp
Mp

− xτ
1/4
s√
λs

as
Mp

)
. (4.66)

4.3.2 Mass spectrum

The mass matrix around the global minimum and its eigenvalues are derived in detail
in App. C.0.3. Here we just show the leading order volume scaling of the mass of all
moduli and charged matter fields for gs ∼ 0.1 (in order to trust our approach based
on perturbation theory) and V ∼ 107. As explained in Sec. 4.1.2, this choice of
the internal volume leads naturally to TeV-scale soft terms for sequestered scenarios
with D3-branes at singularities, while it guarantees the absence of any cosmological
moduli problem for unsequestered cases with flavour D7-branes. The resulting mass
spectrum looks like:
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mcqi
∼ mτqi

∼ mψ ∼ m|φ| ∼Ms ∼ g1/4
s

√
π
Mp√
V
∼ 1015 GeV ,

mτs ∼ mcs ∼
√
gs
8π

Mp

V
lnV ∼ 1011 GeV ,

m3/2 ∼
√
gs
8π

Mp

V
∼ 1010 GeV ,

mτ̃p ∼
√
gs
8π

Mp

V
√

lnV
∼ 109 GeV ,

mτb ∼
√
gs
8π

Mp

V3/2
√

lnV
∼ 106 GeV ,

m|C| ∼
√
gs
8π

Mp

V2
∼ 1 TeV , (4.67)

mcp ∼
√
gs
8π

Mp

V1+p/2

√
lnV ∼ 10 keV for p =

9

2
,

mθ ∼
Λ2

hid

faALP
. 10−12 eV ,

mcb ∼
√
gs
8π

Mp

V2/3
e−π V

2/3 ∼ 0 ,

where we focused on the sequestered case with α2 = 2 illustrated in Sec. 4.2.3 and
Λhid represents the scale of strong dynamics in the hidden sector which gives mass to
the open string axion θ = aALP/faALP whose decay constant is faALP = |Ĉ| 'Mp/V2.
As explained in Sec. 4.1.2, this decay constant leads to a coupling to hidden photons
controlled by the scaleMhid ∼ 106 GeV that can yield a coupling to ordinary photons
via U(1) kinetic mixing given by (4.15) which can be naturally suppressed by an
effective scale of order M ∼ 1012 GeV. Notice that the DM axion cp can acquire a
mass from poly-instanton effects of order mcp ∼ 10 keV if p = n

2
+ κ = 9

2
, which can

be obtained for any O(1) value of n by appropriately choosing the flux dependent
underlying parameters so that κ ≡ τp

τs
= 1

2
(9− n).

4.3.3 DM-ALP coupling

As shown by the mass spectrum in (4.67) and by the coupling to ordinary photons
in (4.15), the open string axion θ is a natural candidate for the ALP mode aALP
which converts into photons in the magnetic field of galaxy clusters and generates
the 3.5 keV line. However a monochromatic line requires the decay into a pair of
ALP particles of a DM particle aDM with mass mDM ∼ 7 keV. According to the mass
spectrum in (4.67) aDM could be either the local closed string axion cp or the bulk
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closed string mode cb (if Tb-dependent non-perturbative effects do not suppress its
mass too much). We shall now show that non-perturbative corrections to the matter
Kähler metric in (4.39) can induce a coupling of the form aDM

Λ
∂µaALP∂

µaALP due to
kinetic mixing between the closed string axion aDM and the open string axion aALP .
We shall also work out the value of the coupling Λ, finding that it can lie around
the Planck/GUT scale only if the DM particle is the local axion cp (cb would give
a trans-Planckian Λ). Finally we will explain how in our model a direct DM decay
to photons induced by potential couplings of the form aDM

4MDM
F µνF̃µν is naturally

suppressed by construction.

In order to compute the DM-ALP coupling, let us focus on contributions to the
kinetic Lagrangian of the form:

Lkin ⊃
∂2K

∂C∂C̄
∂µC∂

µC̄ = K̃(Ti, T̄i)
(
∂µ|C|∂µ|C|+ |C|2 ∂µθ∂µθ

)
. (4.68)

If we now expand the closed string axions ci and the charged open string mode
C = |C| ei θ around the minimum as:

ci(x)→ 〈ci〉+ ci(x) , |C|(x)→ 〈|C|〉+ |C(x)| , θ(x)→ 〈θ〉+ θ(x) , (4.69)

the kinetic terms (4.68) become:[
〈K̃〉 −Bi e

−biτi
(

cos(bi〈ci〉)
bi
2
ĉ2
i + sin(bi〈ci〉) biĉi

)] (
∂µ|C|∂µ|C|+ |C|2 ∂µθ∂µθ

)
.

(4.70)
If we now express the open string mode C in terms of the canonically normalised
fields Ĉ and aALP using (4.64), (4.70) contains DM-ALP interaction terms of the
form:

Bi

2〈K̃〉
e−bi〈τi〉

(
cos(bi〈ci〉)

bi
2
ĉ2
i + sin(bi〈ci〉) bi ĉi

)
∂µaALP∂

µaALP , (4.71)

showing that, in order to obtain a three-leg vertex which can induce a two-body DM
decay into a pair of ultra-light ALPs, the VEV of ci has to be such that bi〈ci〉 =

(2k + 1)π
2
with k ∈ Z. Let us therefore focus on this case and consider separately

the two options with either i = b or i = p:

• i = b case: Plugging in (4.71) the canonical normalisation for cb from (4.64),
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we find a DM-ALP coupling of the form:

ab
Λ
∂µaALP∂

µaALP with Λ =

√
6〈K̃〉
Bbbb

ebb〈τb〉

〈τb〉
Mp ∼

ebbV
2/3

Bb V4/3
Mp �Mp ,

(4.72)
which reproduces the value of Λ in (4.19) for aDM = cb. According to the
phenomenological constraints discussed in Sec. 4.1.1, cb cannot play the rôle
of the DM particle since the scale of its ALP coupling is trans-Planckian.

• i = p case: Writing bp = 2π
N

and using the fact that the minimum for cp lies
at 〈cp〉 = 1

2
+ k1 with k1 ∈ Z, the condition bp〈cp〉 = (2k2 + 1)π

2
with k2 ∈ Z

can be satisfied if N
2

= (2k1+1)
(2k2+1)

. Hence in the simplest case with k1 = k2 = 0 we
just need N = 2. Plugging in (4.71) the canonical normalisation for cp from
(4.66), the DM-ALP coupling turns out to be:

ãp
Λ
∂µaALP∂

µaALP with Λ =

√
3λp

τ̃
1/4
p

〈K̃〉
Bpbp

ebp〈τp〉√
V

Mp ∼
Mp

Bp V7/6−κ/N ,

(4.73)
which reproduces the value of Λ in (4.19) for aDM = cp. This scale of the DM-
ALP coupling can easily be around the Planck/GUT scale. For example if
N = 2 and the underlying parameters are chosen such that κ ≡ τp/τs = 2, Λ ∼
Mp/V1/6 ∼ 1017 GeV for V ∼ 107 and Bp ∼ O(1). Due to the poly-instanton
nature of the non-perturbative effects supported by the Wilson divisor Dp, the
prefactor Bp can however be exponentially small. Comparing Tp-dependent
poly-instanton corrections to the superpotential in (4.41) with Tp-dependent
non-perturbative corrections to the matter Kähler metric in (4.40), Bp at the
minimum could scale as Bp ∼ O(V−1). In this case Λ can be below the Planck
scale only if κ� N .

Let us conclude this section by showing that the branching ratio for direct DM
decay into ordinary photons is negligible. Using the fact that the gauge kinetic
function for the D7-stack is given by fD7 = Ts + Tp (we neglect the flux dependent
shift) and the canonical normalisation (4.66), the closed string axion cp = 〈cp〉+ ĉp

couples to Abelian gauge bosons living on the hidden D7-stack via an interaction
term of the form:

ĉp
4 (〈τs〉+ 〈τp〉)

F µν
hidF̃

hid
µν ∼

ãp
4Ms

F µν
hidF̃

hid
µν . (4.74)

One-loop effects generate a kinetic mixing between hidden photons on the D7-stack
and ordinary photons on the D3-stack which is controlled by the mixing parameter
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χ ∼ 10−3 given in (4.14). Thus the DM axion cp develops an effective coupling to
visible sector photons which from (4.15) looks like:

ãp
4MDM

FµνF̃
µν ∼ χ2 ãp

4Ms

FµνF̃
µν ⇔ MDM ∼

Ms

χ2
∼ 105 Mp√

V
∼ 1020 GeV ,

(4.75)
which is naturally much larger than the scale Λ controlling the DM coupling to
ALPs.

4.4 Summary

In this chapter we described how to perform a successful global embedding in type
IIB string compactifications of the model of [180] for the recently observed 3.5 keV
line from galaxy clusters. The main feature of this model is the fact that the
monochromatic 3.5 keV line is not generated by the direct decay of a 7 keV dark
matter particle into a pair of photons but it originates from DM decay into ultra-
light ALPs which subsequently convert into photons in the cluster magnetic field.
Therefore the final signal strength does not depend just on the DM distribution
but also on the magnitude of the astrophysical magnetic field and its coherence
length which, together with the ALP to photon coupling, determine the probability
for ALPs to convert into photons. These additional features make the model of
[180] particularly interesting since it manages to explain not just the observation
of a 3.5 keV line from galaxy clusters but also the morphology of the signal (e.g.
the intensity of the line from Perseus seems to be picked at the centre where the
magnetic field is in fact more intense) and its non-observation in dwarf spheroidal
galaxies (due to the fact that their magnetic field is not very intense and has a
relatively small spatial extension). These phenomenological features seem to make
this model more promising than standard explanations where DM directly decays
into a pair of photons.

Despite this observational success, the model of [180] for the 3.5 keV line did
not have a concrete microscopic realisation. In this work we filled this gap by de-
scribing how to construct an explicit type IIB Calabi-Yau compactification which
can reproduce all the main phenomenological features of the DM to ALP to photon
model. We focused in particular on LVS models since they generically lead to very
light axions because some of the moduli are stabilised by perturbative corrections to
the effective action. The DM particle is realised as a local closed string axion which
develops a tiny mass due to poly-instanton corrections to the superpotential. By an
appropriate choice of background and gauge fluxes, the DM mass can be around 7
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keV. The ultra-light ALP is instead given by the phase of an open string mode living
on D3-branes at singularities. The ALP decay constant is set by the radial part of
this open string mode which is charged under an anomalous U(1). Thus the radial
part gets fixed in terms of a moduli-dependent FI-term. In sequestered models with
low-energy supersymmetry, the resulting decay constant is naturally in the right
ballpark to reproduce a coupling to ordinary photons via U(1) kinetic mixing which
is around the intermediate scale, in full agreement with current observations. No-
tice that future helioscope experiments like IAXO might be able to detect ultra-light
ALPs with intermediate scale couplings to photons [204]. Moreover the DM-ALP
coupling is generated by kinetic mixing induced by non-perturbative corrections to
the Kähler potential. For suitable choices of the underlying flux dependent parame-
ters, the scale which controls the associated coupling can be around the GUT/Planck
scale, again in good agreement with present observational constraints.
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Part IV

Conclusions
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Chapter 5

Summary and final remarks

Let us give a brief summary with possible extensions of the models in this thesis:

• In the chapter 2, we extended previous work by constructing the first ex-
plicit realisations of fibre inflation models in concrete type IIB Calabi-Yau
orientifolds with consistent brane setups, full closed string moduli fixing and
chiral matter on D7-branes. The underlying compactification manifold fea-
tures h1,1 = 4 Kähler moduli which after D-term stabilisation gets effectively
reduced to the standard 3 moduli of fibre inflation models.

Due to the fact that in the single-field case not all our approximations are
fully under control, in Sec. 2.3.2 we performed a complete numerical analysis
of the 3-field cosmological evolution. For W0 ∼ 100 and |λ| = 10−6, the multi-
field analysis of Sec. 2.3.2 revealed that the accuracy of our approximations
improves. In particular, the allowed number of efoldings of inflation increases
due to the extra motion along the volume and blow-up directions. Hence
inflation can successfully work also for smaller values of V which cause a smaller
Kähler cone for the fibre modulus. This, in turn, requires smaller values of
W0 to match the COBE normalisation of the density perturbations, which
enlarges the hierarchy between m3/2 and the KK scales in the model.

We point out however that some of the underlying parameters are not flux-
dependent, and so are not tunable in the string landscape. Two examples of
this kind of parameters are the effective Euler number χeff which controls the
strength of O(α′3) corrections due to O7-planes [37] and the combinatorial
factor λ which is the coefficient of O(α′3) higher derivatives [75]. Both of
these microscopic parameters have not been computed in full detail yet, even
if λ has been estimated to be of order 10−3 [76]. Hence in Sec. 2.3.2 we also
presented a case with |λ| = 0.001 where it is hard to obtain enough efoldings
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inside the Kähler cone and generate, at the same time, the correct amplitude
of the density perturbations in a framework where all the approximations
are fully under control. Hence we chose the flux superpotential so that the
contribution of the inflaton quantum fluctuations to the scalar power spectrum
is negligible. In this case a viable inflationary phenomenology can therefore be
achieved only in the presence of a non-standard mechanism for the generation
of the density perturbations. A promising case could be the curvaton scenario
where the initial isocurvature fluctuations could be produced by the quantum
oscillations of the two light bulk closed string axions [111].

Besides a complete computation of the exact value of both χeff and λ, and
the detailed derivation of a curvaton-like mechanism, there are several other
important open issues for future work. A crucial one is a better determina-
tion of the actual Calabi-Yau Kähler cone since the one that we used is just
an approximation inherited from the Mori cone of the ambient toric variety.
It would also be interesting to develop a more systematic study of the con-
straints that the Kähler cone sets on the inflationary dynamics by performing
a complete scan over all h1,1 = 3 and h1,1 = 4 K3 fibred CY threefolds with
at least a del Pezzo divisor [112]. Moreover, our chiral global models still lack
an explicit implementation of a mechanism responsible for the realisation of a
dS vacuum. Finally, the study of the post-inflationary cosmological evolution
of our universe is of primary importance in order to discriminate among dif-
ferent models that feature the same inflationary predictions of fibre inflation
models. A first step forward towards understanding (p-)reheating has been
taken in [113, 114]. A full understanding of this mechanism requires further
investigation of the underlying microscopic dynamics.

• In chapter 3, we investigated the possibility to generate PBHs from string
inflation by taking the most conservative point of view since we focused on
models which are effectively single-field and, above all, we considered PBH
formation with horizon re-entry in a radiation dominated era. However, two
generic features of string compactifications are the presence of several scalar
fields which might play an important rôle during inflation [154, 155, 156, 157,
110, 111, 158, 159], and light moduli with only gravitational couplings to
ordinary matter which are long-lived and tend to give rise to early periods of
matter domination [62, 65, 58, 59, 63, 55, 56, 66]. Hence in the future it would
be very interesting to study the impact on PBH formation in string models of
additional light fields, like for example the axionic partner of the inflaton of
fibre inflation models.
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We finally mention the fact that PBHs can be generated with the required
efficiency only if δρ ∼ 0.1 ρ at small distance scales. It would therefore be
important to perform a more careful analysis of stochastic effects since the
perturbative expansion might not be fully justified [160]. Finally, we stress that
non-gaussianities in large momentum fluctuations might alter significantly the
PBH production mechanism and, in turn, their present abundance [142]. We
leave a deeper study of both stochastic and non-gaussianity effects for future
investigation.

• In the chapter 4, we have discussed in full depth moduli stabilisation, the
mass spectrum and the resulting strength of all relevant couplings but we just
described the geometrical and topological conditions on the underlying Calabi-
Yau manifold without presenting an explicit example built via toric geometry.
Let us however stress that the construction of a concrete Calabi-Yau example
with all the desired features for a successful microscopic realisation of our
model for the 3.5 keV line is crucial to have a fully trustworthy scenario.
Moreover, it would be very interesting to have a more concrete computation
of non-perturbative corrections to the 4D N = 1 Kähler potential.

Another aspect which would deserve further investigation is the cosmological
history of our setup from inflation to the present epoch. Here we just point
out that the rôle of the inflaton could be played by a small blow-up mode
like τs [72, 71]. On the other hand, reheating might be due to the volume
mode τb which gets displaced from its minimum during inflation [56] and later
on decays giving rise to a reheating temperature of order Trh ∼ 1 − 10 GeV
[63]. Such a low reheating temperature would dilute standard thermal WIMP
dark matter and reproduce it non-thermally [63]. Given that in sequestered
models with unified gaugino masses the WIMP is generically a Higgsino-like
neutralino with an under-abundant non-thermal production in vast regions of
the underlying parameter space [64, 221], an additional DM component in the
form of a very light axion like cp would be needed. Finally, one should make
sure that tight dark radiation bounds are satisfied since τb could decay both
to a pair of ultra-light closed string axions cb and to a pair of DM axions
cp which could behave as extra neutrino-like species [58, 61]. It is important
to notice, however that the decay of τb to open string axions θ living on D3-
branes at singularities is negligible since it is highly suppressed by sequestering
effects [58]. The DM axions cp are produced non-thermally at the QCD phase
transition via the standard misalignment mechanism. Given that the decay
constant of the local closed string axion cp is of order the string scale which
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from (4.67) is rather high, i.e. Ms ∼ 1015 GeV, axion DM overproduction can
be avoided only if the initial misalignment angle is very small. This might
be due to a selection effect from the inflationary dynamics [222]. We finally
stress that if inflation is driven by a blow-up mode like τs, the Hubble scale
during inflation is rather low, H ∼ mτb ∼ 106 GeV, and so axion isocurvature
perturbations would not be in tension with CMB data [223].

The models within this thesis are just one prove of how to reconcile phenomeno-
logical cosmology and string theory. One of the main characters in this work was
fibre inflation. In fact, fibre inflation has been shown one of the most useful models
within string theory to reproduce cosmological data. The ‘simplicity’ of the model
makes it more appealing and easier to work. One further step in the advancement of
these works could be a full unification with the standard model of particle physics.
We could try to construct a working model with fibre inflation where we could have
the chiral matter and the gauge group present in the standard model. There is still
a lot of work that needs to be done but this thesis tells us the beginnings of the
wonderful adventures of the fibre inflationary model and its use into cosmology. We
hope that this thesis in fact inspire to construct more adventures of this wonderful
theory.
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Appendix A

Warped Type IIB SUGRA:
equations of motion

In this appendix, we compute the equations of motion for the fields in the action
(1.85). Precisely,

SIIB =
1

2κ2
10

∫
d10x
√
−g
(
R− ∂Mτ∂

M τ̄

2(Imτ)2
− 1

2
|F1|2 −

|G3|2

2 Imτ
− 1

4
|F̃5|2

)
+

1

2κ2
10

∫
C4 ∧

G3 ∧ Ḡ3

4i Imτ
+ Slocal. (A.1)

We consider the anzat F1 = 0, (1.88), (1.89), and (1.91), that is,

ds2
10 = gµν(y) dxµdxν + gmn(y) dymdyn, (A.2)

LG = − 1

4κ2
10

∫
d10x
√
−g |G3|2

Imτ
= − 1

8κ2
10

∫
X6

d6y
G3 ∧ ∗6Ḡ3

Imτ
, (A.3)

F̃5 = (1 + ∗10)
[
dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

]
. (A.4)

Here, gµν = e2A(y) ηµν and gmn = e−2A(y)g̃mn. Now, the equations of motion to be
computed are:

1. equation for gMN with M,N = 0, . . . , 9;

2. equation for the 5-form F̃5.

Now, we will compute these equation one by one.
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A.0.1 Equation of motion for the metric gMN

To find the equation of motion for gMN , we perform

− 2√
−g

δSIIB

δgMN
= 0 ⇒ RMN −

1

2
gMNR = κ2

10TMN , (A.5)

where RMN is the 10-dimensional Ricci tensor, R is the Ricci scalar, and TMN =

T sugra
MN + T local

MN . The term TMN is the total stress tensor of the supergravity fields
and the localized objects. We can rewrite the equation (A.5) as the trace reversed
Einstein equation, given by

RMN = κ2
10

(
TMN −

1

8
gMNT

)
, (A.6)

where T = gMNTMN . From equation (A.2), we can see that only the compact and
non-compact components of gMN are different from zero. In this work, the compact
components are not necessary. For that reason, we only compute the non-compact
ones. Setting M,N → µ, ν in (A.6), we obtain

Rµν = κ2
10

(
Tµν −

1

8
gµνT

)
. (A.7)

The stress tensor T sugra
µν is given by

T sugra
µν = − 2√

−g
δ

δgµν

[
e−8A

2κ2
10

√
−g ∂mα∂mα−

√
−g GmnpḠ

mnp

24κ2
10 Imτ

]
= −gµν

κ2
10

(
GmnpḠ

mnp

24 Imτ
+
e−8A

2
∂mα∂

mα

)
. (A.8)

Here, the compact indices m, n, and p are contracted using the metric g̃mn. There-
fore, replacing (A.8) in (A.7), we find

Rµν = −gµν
(
GmnpḠ

mnp

48 Imτ
+
e−8A

4
∂mα∂

mα

)
+ κ2

10

(
T loc
µν −

1

8
gµν T

loc
)
. (A.9)

From the anzat for the metric (A.2), we can compute the components of the
Ricci tensor. To do that, we compute the Christoffel symbols, given by

ΓLMN =
1

2
gLP (∂MgNP + ∂NgMP − ∂PgMN) . (A.10)
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The only non-zero components of the Cristoffel symbols are{
Γmµν = −1

2
ηµνe

2Ag̃mn∂n(e2A) , Γµmν = 1
2
δµν e
−2A∂m(e2A),

Γmn` = Γ̃mn` + 1
2

[
δm` ∂n(e−2A) + δmn ∂`(e

−2A)− g̃n`∂m(e−2A)
]
.

(A.11)

Therefore, the Ricci tensor is given by

Rµν = ∂m Γmµν + ΓmmnΓnµν + ΓρρnΓnµν − ΓmµρΓ
ρ
mν − ΓρµmΓmρν

= −1

2
ηµν

[
e2A∂m(e2A)

(
Γ̃nnm + 3e2A∂m(e−2A)

)
+ 2∂m

(
e2A∂mA

)
+ ∂m(e2A)∂m(e2A)

]
.

(A.12)

Then, using (A.11) in (A.12), we obtain

Rµν = −ηµνe4A
(
∂n∂

nA+ Γ̃mmn∂
nA
)

= −ηµνe4A∇̃2A

= −1

4

(
∇̃2e4A − e−4A∂me

4A∂me4A
)
. (A.13)

Finally, replacing (A.13) in (A.9) and tracing, we find

∇̃2e4A = e2A GmnpḠ
mnp

12 Imτ
+ e−6A

[
∂mα∂

mα + ∂me
4A∂me4A

]
+
κ2

10

2
e2A
(
Tmm − T µµ

)loc
.(A.14)

A.0.2 Equation of motion for the 5-form F̃5

The equation of motion for F̃5 is given by

d ∗10 F̃5 = J, (A.15)

where J is a 6-form source for F̃5. The source J is given by the form of the action
(A.1), which is given by

J = H3 ∧ F3 + 2κ2
10µ3ρ

loc
3 . (A.16)

Here, we use as an action of localized source given by

Slocal = −µ3

∫
M4×Σ

√
−gd4χ+ µ3

∫
M4×Σ

C4, (A.17)

where Σ is a 3-cycle on X6. The condition d∗10 F̃5 = dF5 comes from the self duality
of the F̃5.
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Appendix B

Another chiral global example

B.0.1 Toric data

Let us consider the following toric data for a CY threefold with h1,1 = 4 which is a
K3-fibration over a P1 base along with a so-called ‘small’ divisor:

x1 x2 x3 x4 x5 x6 x7 x8

8 0 0 0 1 1 1 1 4
6 0 0 1 0 1 0 1 3
6 0 1 0 0 0 1 1 3
4 1 0 0 0 0 0 1 2

dP5 NdP11 NdP11 dP7 K3 K3 SD1 SD2

with Hodge numbers (h2,1, h1,1) = (106, 4) and Euler number χ = −204. The
Stanley-Reisner ideal is:

SR = {x1x4, x1x7, x3x5, x4x5, x2x3x7, x2x6x8, x4x6x8} .

This corresponds to the CY threefold used in [115] to build global models with chiral
matter on D7-branes and Kähler moduli stabilisation but without any inflationary
dynamics. A detailed divisor analysis using cohomCalg [102, 103] shows that the
divisor D4 is a del Pezzo dP7 which we find to be shrinkable after investigating
the CY volume form. Further, each of the divisors {D2, D3} are non-diagonal del
Pezzo surfaces and {D5, D6} are two K3 surfaces while the divisors {D7, D8} are
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two ‘special deformation’ divisors with Hodge diamond:

SD1 ≡

1
0 0

3 38 3
0 0

1

and SD2 ≡

1
0 0

25 172 25
0 0

1

The intersection form in the basis of smooth divisors {D1, D4, D5, D6} can be written
as:

I3 = 2D1D5D6 − 2D2
1 D5 − 2D2

1 D6 + 2D3
4 + 4D3

1 . (B.1)

Writing the Kähler form in the above basis of divisors as J = t1D1 + t4D4 + t5D5 +

t6D6 and using the intersection polynomial (B.1), the CY overall volume takes the
form:

V = 2 t1 t5 t6 − t21 t5 − t21 t6 +
t34
3

+
2

3
t31 . (B.2)

In order to express V in terms of four-cycle moduli, we need to know the Kähler
cone conditions which can be determined from the following Kähler cone generators:

K1 = D1 +D5 +D6, K2 = D1 −D4 +D5 +D6, K3 = D5, K4 = D6 . (B.3)

Expanding the Kähler form J in these Kähler cone generators as J =
∑4

i=1 riKi

results in the following conditions for the two-cycle moduli:

r1 = t1+t4 > 0 , r2 = −t4 > 0 , r3 = t5−t1 > 0 , r4 = t6−t1 > 0 . (B.4)

Using the four-cycle moduli, τi = ∂tiV , given by:

τ1 = 2 (t5 − t1)(t6 − t1), τ4 = t24, τ5 = t1(2 t6 − t1), τ6 = t1(2 t5 − t1) , (B.5)

the overall volume can be rewritten as:

V =
1

3

(
t1τ1 + t5τ5 + t6τ6 − τ 3/2

4

)
. (B.6)

The second Chern class of the CY threefold X is instead given by:

c2(X) = 2D6D8 + 8D7D8 − 2D2
6 − 4D6D7 − 12D2

7 , (B.7)
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which results in the following values of the topological quantities Πi’s:

Π1 = 4, Π2 = Π3 = 16, Π4 = 8, Π5 = Π6 = 24, Π7 = 44, Π8 = 136 .

The intersection curves between two coordinate divisors are given in Tab. B.1 while
their volumes are listed in Tab. B.2.

D1 D2 D3 D4 D5 D6 D7 D8

D1 C5 P1 P1 ∅ P1 P1 ∅ T2

D2 P1 P1 t P1 P1 t P1 T2 T2 ∅ P1 C3

D3 P1 P1 t P1 P1 t P1 T2 ∅ T2 P1 C3

D4 ∅ T2 T2 C3 ∅ ∅ T2 C3

D5 P1 T2 ∅ ∅ ∅ T2 C2 C9

D6 P1 ∅ T2 ∅ T2 ∅ C2 C9

D7 ∅ P1 P1 T2 C2 C2 C3 C19

D8 T2 C3 C3 C3 C9 C9 C19 C89

Table B.1: Intersection curves of two coordinate divisors. Here Cg denotes a curve
with Hodge numbers h0,0 = 1 and h1,0 = g.

D1 D2 D3 D4 D5 D6 D7 D8

D1 4t1 − 2(t5 + t6) 2(t5 − t1) 2(t6 − t1) 0 2(t6 − t1) 2(t5 − t1) 0 2(t5 + t6)− 4t1
D2 2(t5 − t1) 2t4 2(t1 + t4) −2t4 2t1 0 2(t5 + t4) 2(t1 + 2t4 + 2t5)
D3 2(t6 − t1) 2(t1 + t4) 2t4 −2t4 0 2t1 2(t6 + t4) 2(t1 + 2t4 + 2t6)
D4 0 −2t4 −2t4 2t4 0 0 −2t4 −4t4
D5 2(t6 − t1) 2t1 0 0 0 2t1 2t6 2(2t6 + t1)
D6 2(t5 − t1) 0 2t1 0 2t1 0 2t5 2(2t5 + t1)
D7 0 2(t5 + t4) 2(t6 + t4) −2t4 2t6 2t5 2(t4 + t5 + t6) 4t4 + 6(t5 + t6)
D8 2(t5 + t6)− 4t1 2(t1 + 2t4 + 2t5) 2(t1 + 2t4 + 2t6) −4t4 2(2t6 + t1) 2(2t5 + t1) 4t4 + 6(t5 + t6) 4[t1 + 2t4 + 4(t5 + t6)]

Table B.2: Volumes of intersection curves between two coordinate divisors.

B.0.2 Orientifold involution

We focus on orientifold involutions of the form σ : xi → −xi with i = 1, ..., 8 which
feature an O7-plane on Di and O3-planes at the fixed points listed in Tab. B.3. The
effective non-trivial fixed point set in Tab. B.3 has been obtained after taking care
of the SR ideal symmetry. Moreover, the total number of O3-planes NO3 is obtained
from the triple intersections restricted to the CY hypersurface, while the effective
Euler number χeff has been computed as:

χeff = χ(X) + 2

∫
X

[O7] ∧ [O7] ∧ [O7] . (B.8)
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In what follows we shall focus on the orientifold involution σ : x7 → −x7 which
features two non-intersecting O7-planes located in D1 and D7 and two O3-planes at
{D2D3D4} .

σ O7 O3 NO3 χ(O7) χeff

x1 → −x1 D1 tD7 {D2D3D4} 2 54 -192
x2 → −x2 D2 {D1D6D8, D3D4D7, D6D7D8} {2, 2, 6} 14 -208
x3 → −x3 D3 {D1D5D8, D2D4D7, D5D7D8} {2, 2, 6} 14 -208
x4 → −x4 D4 {D1D2D3, D1D5D6, {2, 2, 4, 4, 2 } 10 -200

D2D5D8, D3D6D8, D5D6D7}
x5 → −x5 D5 {D1D3D8, D3D7D8, D2D4D8} {2, 2, 4} 24 -204
x6 → −x6 D6 {D1D2D8, D2D7D8, D3D4D8} {2, 2, 4} 24 -204
x7 → −x7 D1 tD7 {D2D3D4} 2 54 -192
x8 → −x8 D8 ∅ 0 224 -28

Table B.3: Fixed point set for the involutions which are reflections of the eight
coordinates xi with i = 1, ..., 8.

B.0.3 Brane setup

If the D7-tadpole cancellation condition is satisfied by placing four D7-branes on top
of the O7-plane, the string loop corrections to the scalar potential involve only KK
effects since winding contributions are absent due to the absence of any intersection
between D7-branes and/or O7-planes. Thus loop effects are too simple to generate
a viable inflationary plateau. We shall therefore focus on a slightly more complicate
D7-brane setup which gives rise also to winding loop effects. This can be achieved
by placing D7-branes not entirely on top of the O7-plane as follows:

8[O7] ≡ 8([D1] + [D7]) = 8 (2[D1] + [D2] + [D5]) . (B.9)

This brane setup involves three stacks of D7-branes wrapped around the divisors
D1, D2 and D5. Moreover, the condition for D3-tadpole cancellation becomes:

ND3 +
Nflux

2
+Ngauge =

NO3

4
+
χ(O7)

12
+
∑
a

Na (χ(Da) + χ(D′a))

48
= 14 ,

showing that there is space for turning on both gauge and background three-form
fluxes for complex structure and dilaton stabilisation.
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B.0.4 Gauge fluxes

In order to obtain a chiral visible sector on the D7-brane stacks wrapping D1, D2

and D5 we need to turn on worldvolume gauge fluxes of the form:

Fi =
h1,1∑
j=1

fijD̂j +
1

2
D̂i − ι∗DiB with fij ∈ Z and i = 1, 2, 5 , (B.10)

where the half-integer contribution is due to Freed-Witten anomaly cancellation
[97, 98].

However we want to generate just one moduli-dependent Fayet-Iliopoulos term in
order to fix only one Kähler modulus via D-term stabilisation. In fact, if the number
of FI-terms is larger than one, there is no light Kähler modulus which can play the
rôle of the inflaton. Moreover we wrap a D3-brane instanton on the rigid divisor D4

in order to generate a non-perturbative contribution to the superpotential which is
crucial for LVS moduli stabilisation. In order to cancel the Freed-Witten anomaly,
the D3-instanton has to support a half-integer flux, and so the general expression of
the total gauge flux on D4 becomes:

F4 =
h1,1∑
j=1

f4jD̂j +
1

2
D̂4 − ι∗DiB with f4j ∈ Z . (B.11)

However a non-vanishing F4 would not be gauge invariant, and so would prevent a
non-perturbative contribution to the superpotential. We need therefore to check if
it is possible to perform an appropriate choice of B-field which can simultaneously
set F1 = F2 = 0 (we choose to have a non-vanishing gauge flux only on D5 to have
just one moduli-dependent FI-term) and F4 = 0. If we set:

B =
1

2
D̂1 +

1

2
D̂2 +

1

2
D̂4 , (B.12)

the condition F1 = F2 = F4 = 0 reduces to the requirement that the following forms
are integer:

ι∗D1

(
1

2
D̂2 +

1

2
D̂4

)
ι∗D2

(
1

2
D̂1 +

1

2
D̂4

)
ι∗D4

(
1

2
D̂1 +

1

2
D̂2

)
, (B.13)

since in this case the integer flux quanta fij can always be adjusted to yield vanishing
gauge fluxes. Taking an arbitrary integer form A ∈ H2(Z, X) which can be expanded
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as A = ajD̂j with aj ∈ Z, the pullbacks in (B.13) give rise to integer forms if:

b1 ≡
∫
X

(
1

2
D̂2 +

1

2
D̂4

)
∧ D̂1 ∧ A ∈ Z

b2 ≡
∫
X

(
1

2
D̂1 +

1

2
D̂4

)
∧ D̂2 ∧ A ∈ Z

b4 ≡
∫
X

(
1

2
D̂1 +

1

2
D̂2

)
∧ D̂4 ∧ A ∈ Z

Using the intersection polynomial (B.1) we find b1 = a5 − a1 ∈ Z, b2 = b1 − a4 ∈ Z
and b4 = −a4 ∈ Z, showing how the choice of B-field in (B.12) can indeed allow for
F1 = F2 = F4 = 0. The only non-zero gauge flux is F5 which does not feature any
half-integer contribution since c1(D5) = 0 given that D5 is a K3 surface. Given that
all the intersection numbers are even, the pullback of the B-field on D5 does also
not generate an half-integer flux. We shall therefore consider a non-vanishing gauge
flux on the worldvolume of D5 of the form:

F5 =
h1,1∑
j=1

f5jD̂j with f5j ∈ Z . (B.14)

B.0.5 FI-term and chirality

Given that the divisor D5 is transversely invariant under the orientifold involution
and it is wrapped by four D7-branes, it supports an Sp(8) gauge group which is
broken down to U(4) = SU(4) × U(1) by a non-zero flux F5 along the diagonal
U(1). This non-trivial gauge flux F5 induces also a U(1)-charge qi5 for the i-th
Kähler modulus of the form:

qi5 =

∫
X

D̂i ∧ D̂5 ∧ F5 . (B.15)

Thus F5 6= 0 yields:

q15 = 2(f56 − f51) q45 = q55 = 0 q65 = 2f51 , (B.16)

together with a flux-dependent correction to the gauge kinetic function which looks
like:

Re(f5) = α−1
5 =

4π

g2
5

= τ5 − h(F5)Re(S) , (B.17)

where:
h(F5) =

1

2

∫
X

D̂5 ∧ F5 ∧ F5 =
1

2
(f51q15 + f56q65) . (B.18)
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Moreover a non-vanishing gauge flux F5 induces a moduli-dependent FI-term of the
form:

ξ =
1

4πV

∫
X

D̂5 ∧ J ∧ F5 =
1

4πV

h1,1∑
j=1

qj5 tj =
1

4πV
(q15 t1 + q65 t6) . (B.19)

For vanishing open string VEVs (induced for example by non-tachyonic scalar masses),
a leading-order supersymmetric stabilisation requires ξ = 0 which implies:

t6 = −q15

q65

t1 =

(
1− f56

f51

)
t1 ≡ α t1 . (B.20)

This U(1) factor becomes massive via the Stückelberg mechanism and develops an
O(Ms) mass by eating up a linear combination of an open and a closed string axion
which is mostly given by the open string mode.

Besides breaking the worldvolume gauge group and inducing moduli-dependent
FI-terms, non-trivial gauge fluxes on D7-branes generate also 4D chiral modes. In
fact, open strings stretching between the D7-branes on D5 and the O7-planes or the
image branes give rise to the following zero-modes in the symmetric and antisym-
metric representations of U(4):

I
(S)
5 = −1

2

∫
X

D̂5 ∧ [O7] ∧ F5 −
∫
X

D̂5 ∧ D̂5 ∧ F5 = −
(
q15 +

q65

2

)
, (B.21)

I
(A)
5 =

1

2

∫
X

D̂5 ∧ [O7] ∧ F5 −
∫
X

D̂5 ∧ D̂5 ∧ F5 = −I(S)
5 . (B.22)

Due to the absence of worldvolume fluxes on the D7-branes wrapped around D1

and D2, the gauge groups supported by these two D7-stacks are respectively SO(16)

(since D1 is an O7-locus) and Sp(8) (since D2 is transversely invariant) which are
both unbroken. Thus open strings stretched between the D7-branes on D5 and D1

(or its image brane) give rise to chiral zero-modes in the bi-fundamental represen-
tation (4,16) of U(4) and SO(16) whose number is:

I51 =

∫
X

D̂5 ∧ D̂1 ∧ F5 = q15 . (B.23)

On the other hand, the number of 4D chiral zero-modes in the bi-fundamental
representation (4,8) of U(4) and Sp(8) (corresponding to open strings stretching
between the D7s on D5 and D2) is:

I52 =

∫
X

D̂5 ∧ D̂2 ∧ F5 = q65 . (B.24)
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We need finally to check that there are no chiral intersections between the D7s on
D5 and the instanton on D4 to make sure that the prefactor of the non-perturbative
contribution to the superpotential is indeed non-zero. This is ensured by the fact
that:

I54 =

∫
X

D̂5 ∧ D̂4 ∧ F5 = 0 . (B.25)

B.0.6 Inflationary potential

Using the D-term fixing relation (B.20), the Kähler cone conditions (B.4) simplify
to t5 > t1 > −t4 > 0 and α > 1. Moreover the CY volume (B.6) reduces to:

V = (2α− 1) t5t
2
1 −

(
α− 2

3

)
t31 +

t34
3

= tbτf −
1

3
τ

3/2
4 . (B.26)

Given that this form is linear in t5, the effective CY volume after D-term stabilisation
looks like a K3 fibre τf over a P1 base tb whose volumes are given by:

τf = τ5 = (2α− 1) t21 and tb = t5 −
(
α− 2

3

)
(2α− 1)

t1 . (B.27)

Notice that the Kähler cone condition t5 > t1 can be rewritten as:

τf < σ(α)V2/3 , (B.28)

where:

σ(α) ≡ (2α− 1)

(
3

3α− 1

)2/3

with α > 1 . (B.29)

In terms of the canonically normalised inflaton shifted from its minimum, the con-
dition (B.28) reads:

τf = 〈τf〉 e2φ̂/
√

3 < σ V2/3 ⇔ φ̂ <

√
3

2
ln

(
σ

〈τf〉
V2/3

)
. (B.30)

Let us now focus on the inflationary potential. The winding loop corrections look
like (with κ = gs/(8π) for eKcs = 1):

V W

gs = −κW
2
0

V3

CW√
τf
, (B.31)

where:
CW =

√
2α− 1

(
CW

1 +
CW

2

α

)
. (B.32)
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On the other hand, the KK loop corrections read (neglecting τ4-dependent terms
which yield subdominant contributions):

V KK

gs = κg2
s

W 2
0

V2

∑
i,j=1,5,6

CKK

i CKK

j Kij . (B.33)

After substituting t6 = αt1, we obtain:

ZV2
∑
i,j

CKK

i CKK

j Kij = at21 + C2
5 t5 (t5 − t1)− (1− Z)

(
bt21 + ct1t5 +

C2
5

2
t25

)
,

where:

a = C1 (C1 + C5 + C6) + C5

(
C6 +

C5

2

)
+ C2

6

(
α2 − α +

1

2

)
b = αC1C6 +

α2

2
C2

6 +
C2

1

2
c = C5 (C1 + αC6) ,

and:
Z = 1− 2

3α− 1

( τf
σ V2/3

)3/2

.

Notice that the Kähler cone conditions τf < σ V2/3 and α > 1 imply 0 < Z < 1.
This guarantees the absence of any singularity in the Kähler metric. Expressing the
scalar potential in terms of the 4-cycle moduli, we end up with:

V KK

gs = κg2
s

W 2
0

ZV2

[
C2

5

τ 2
f

− 2

3 (2α− 1)3/2

C2
5

V√τf
+ d

τf
V2

(
1− h

τ
3/2
f

V

)]
, (B.34)

where h = u/d with:

d =
a

(2α− 1)
− 2

3

c

(2α− 1)2 −
C2

5

(2α− 1)3

(
α2 − α

3
− 2

9

)
u =

2 b

3 (2α− 1)5/2
+

2 c

3

(
α− 2

3

)
(2α− 1)7/2

+
C2

5

3

(
α− 2

3

)2

(2α− 1)9/2
.

If all the coefficients of the KK corrections take natural O(1) values, the term in
(B.34) proportional to h is suppressed by h� 1, and so it can be safely neglected.

On the other hand, higher derivative α′3 F 4 corrections take the form (neglecting
the t4-dependent term and setting t6 = αt1):

VF 4 = −4κ2 λW
4
0

g
3/2
s V4

[(6α + 1)t1 + 6t5] , (B.35)
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which in terms of four-cycle moduli looks like:

VF 4 = −4κ2 λW
4
0

g
3/2
s V4

[
12α2 + 2α− 5

(2α− 1)3/2

√
τf + 6

V
τf

]
. (B.36)

Therefore the total inflationary potential becomes:

V = V W

gs + V KK

gs + VF 4 = κ
W 2

0

V2

(
A1

τ 2
f

+
A2

Vτf
− A3

V√τf
+
B1
√
τf

V2
+
B2 τf
V2

)
, (B.37)

where (with λ = −|λ| < 0):

A1 =
g2
s

Z
C2

5 A2 =
3

π

|λ|W 2
0√

gs
A3 = CW +

g2
s

Z

2C2
5

3 (2α− 1)3/2
' CW (B.38)

and:
B1 =

12α2 + 2α− 5

6(2α− 1)3/2
A2 B2 =

g2
s d

Z
. (B.39)

The potential (B.37) could support single-field slow-roll inflation driven by τf [14,
78]. In order to get enough efoldings before hitting the walls of the Kähler cone
given in (B.30), we need to focus on the region in field space where the inflaton
minimum is of order 〈τf〉 � V2/3. Numerical estimates show that we need values
of order 〈τf〉 ∼ O(1) and V ∼ O(104) which, in turn, imply W0 ∼ O(100) in order
to match the observed amplitude of the density perturbations. For gs . O(0.1),
|λ| ∼ O(10−3) and natural O(1) values of the coefficients of the string loop effects,
the terms in (B.37) proportional to B1 and B2 are both negligible with respect to
the first three terms in the vicinity of the minimum where τf ∼ O(1)� V2/3.

The scalar potential (B.37) written in terms of the canonically normalised infla-
ton φ = 〈φ〉+ φ̂ looks like (with k = 2/

√
3):

V = κ
A1W

2
0

〈τf〉2V2

(
CdS + e−2kφ̂ + λ1Z e

−kφ̂ − λ2Z e
− kφ̂

2 +R1Z e
kφ̂
2 +R2 e

kφ̂
)
, (B.40)

where we added a constant CdS = λ2Z−λ1Z−1−R1Z−R2 to obtain a Minkowski
(or slightly dS) vacuum and:

λ1 =
3〈τf〉
πC2

5

|λ|W 2
0

g
5/2
s V

∼ O(1− 10) λ2 '
〈τf〉3/2

C2
5

CW

g2
s V
∼ O(1− 10) ,
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while:

R1 =
12α2 + 2α− 5

6(2α− 1)3/2

λ1〈τf〉3/2

V
� 1 R2 =

〈τf〉3

C2
5

d

V2
� 1 .

The three negative exponentials in (B.40) compete to give a minimum at 〈τf〉 ∼ O(1)

while the two positive exponentials cause a steepening behaviour at large φ̂.
In this appendix we shall not present a detailed quantitative analysis of inflation.

We however point out that, if the approximated expression (B.30) is correct, in this
case the Kähler cone bounds seem to be more constraining than in the case discussed
in the main text since the inflaton direction τf is bounded by V2/3 instead of V/√τs.
Thus a viable inflationary dynamics in this case would require a more severe tuning of
the underlying parameters and a better understanding of the validity of our effective
field theory approach.
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Appendix C

Computational details

C.0.1 Closed string axion decay constants

In type IIB string compactifications on Calabi-Yau orientifolds axion-like particles
emerge in the low-energy N = 1 effective field theory from the dimensional reduction
of the Ramond-Ramond forms Cp with p = 2, 4. The Kaluza-Klein decomposition
under the orientifold projection of these forms is given by [224]:

C2 = ci−(x) D̂i− and C4 = ci+(x)D̃i+ +Q
i+
2 (x)∧D̂i+ +V a+(x)∧αa+−Ṽa+(x)∧βa+ ,

where i± = 1, ..., h1,1
± , a+ = 1, ..., h1,2

+ , D̃i+ is a basis of H2,2
+ dual to the (1, 1)-forms

D̂i+ and (αa+ , β
a+) is a real, symplectic basis of H3

+ = H1,2
+ ⊕H

2,1
+ .

As explained in Sec. 4.2.1, in our model the orientifold-odd axions ci− , if present,
are eaten up by anomalous U(1)’s in the process of anomaly cancellation. We shall
therefore focus on the case with h1,1

− = 0 where the Kähler moduli take the simple
expression Ti = τi + i ci with i = 1, ..., h1,1

+ = h1,1.
The coupling of orientifold-even closed string axions to F ∧ F can be derived

from the Kaluza-Klein reduction of the Chern-Simons term of the D-brane action.
Moreover, the periods of the canonically unnormalised axions ci are integer multiples
of Mp and their kinetic terms read [187]:

Lkin = Kij∂µci∂
µcj =

1

8
ηi ∂µc

′
i∂
µc′i , (C.1)

where the c′i’s are the axions which diagonalise the Kähler metric Kij and ηi are
its eigenvalues. A proper canonical normalisation of the kinetic terms can then be
easily obtained by defining:

1

8
ηi∂µc

′
i∂
µc′i ≡

1

2
∂µai∂

µai with ai =
1

2

√
ηi c
′
i , (C.2)
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which shows that the canonically normalised axions ai acquire periods of the form:

2
√
ηi
ai =

2
√
ηi
ai +Mp ⇒ ai = ai +

√
ηi

2
Mp . (C.3)

We can then set the conventional axionic period as:

ai = ai + 2πfai with fai =

√
ηiMp

4π
, (C.4)

where fai is the standard axion decay constant. Closed string axions which propagate
in the bulk of the extra dimensions have a decay constant of order the Kaluza-
Klein scale MKK ∼ Mp/V2/3, whereas the decay constant of closed string axions
whose corresponding saxion parameterises the volume of localised blow-up modes is
controlled by the string scale Ms ∼Mp/

√
V :

fai '

{
Mp/τi ∼MKK bulk axion
Mp/
√
V ∼Ms local axion

(C.5)

Notice however that the axion coupling to the Abelian gauge bosons living on the
D-brane wrapping the four-cycle whose volume is controlled by the associated saxion
τi, is given by:

g2
i

32π2

ai
fai

F (i)
µν F̃

µν
(i) =

1

32π2

ai
τifai

F (i)
µν F̃

µν
(i) , (C.6)

since the gauge coupling is set by the saxion as g2
i = τi. Hence combining (C.5) with

(C.6) we realise that that the coupling of bulk closed string axions to gauge bosons
is controlled by M ∼ τifai ∼ Mp, in agreement with the fact that moduli couple
to ordinary matter with gravitational strength. On the other hand the coupling of
local closed string axions to gauge bosons is set by the string scale Ms which in
LVS models with exponentially large volume can be considerably smaller than the
Planck scale.

C.0.2 Canonical normalisation

The kinetic terms for all Kähler moduli and the charged open string modes φ and C
can be derived from the total Kähler potential K = Kmod +Kmatter, where Kmod is
given by the three contributions in (4.38) and Kmatter is shown in (4.39) and (4.40),
as follows:

Lkin =
∂2K

∂χi∂χ̄j̄
∂µχi∂

µχ̄j̄ , (C.7)

158



where χi denotes an arbitrary scalar field of our model. As can be seen from (4.39),
the D7 open string mode φ mixes only with the dilaton S, and so can be easily
written in terms of the corresponding canonically normalised field φ̂ as:

φ̂

Mp

=

√
2

Re(S)
φ . (C.8)

From the first term in (4.38) we also realise that cross-terms between the blow-up
mode τqi and any of the other Kähler moduli are highly suppressed when evaluated
at the minimum for τqi ' 0 (more precisely, as discussed in Sec. 4.2.3, depending
on the level of sequestering of soft masses, we can have either τqi ∼ V−1 � 1

or τqi ∼ V−3 � 1). Hence it is straightforward to write also τqi in terms of the
corresponding canonically normalised field φqi as:

φqi
Mp

=
τqi√
V

for i = 1, 2 . (C.9)

The remaining fields Tb, Ts, Tp and C mix with each other, leading to a non-trivial
Kähler metric whose components take the following leading order expressions for
V ' λbτ

3/2
b � 1:

KTiT̄j̄
' 3

8V


2λb√
τb

− 3
τb

(
λs
√
τs + xλp

√
τ̃p
)
− 3
τb
λp
√
τ̃p

− 3
τb

(
λs
√
τs + xλp

√
τ̃p
)

λs√
τs

+ x2λp√
τ̃p

xλp√
τ̃p

− 3
τb
λp
√
τ̃p

xλp√
τ̃p

λp√
τ̃p


KTbC̄ ' − K̃

2 τb
C , KTsC̄ '

K̃

2V

(
λs
√
τs + xλp

√
τ̃p

)
C ,

KTpC̄ ' K̃

2V
λp
√
τ̃pC , KCC̄ = K̃ .

In the large volume limit, different contributions to the kinetic Lagrangian can be
organised in an expansion in 1/V � 1 as follows:

Lkin = LO(1)
kin + LO(V−1)

kin + LO(V−4/3)
kin ,
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where, trading Tp for T̃p = Tp + xTs, we have:

LO(1)
kin =

3

4 τ 2
b

∂µτb∂
µτb ,

LO(V−1)
kin =

3

8V

[
λs√
τs

(∂µτs∂
µτs + ∂µcs∂

µcs) +
λp√
τ̃p

(∂µτ̃p∂
µτ̃p + ∂µc̃p∂

µc̃p)

]
− 9

4V
∂µτb
τb

(
λs
√
τs ∂

µτs + λp
√
τ̃p ∂

µτ̃p

)
,

LO(V−4/3)
kin =

3

4 τ 2
b

∂µcb∂
µcb .

At leading order the kinetic terms become canonical if τb is replaced by φb defined
as:

φb
Mp

=

√
3

2
ln τb , (C.10)

whereas LO(V−1)
kin becomes diagonal if the small modulus Ts and the Wilson modulus

T̃p are substituted by:

φs
Mp

=

√
4λs
3V

τ 3/4
s ,

as
Mp

=

√
3λs

4V√τs
cs ,

φ̃p
Mp

=

√
4λp
3V

τ̃ 3/4
p ,

ãp
Mp

=

√
3λp

4V
√
τ̃p
c̃p , (C.11)

and the canonical normalisation (C.10) for τb gets modified by the inclusion of a
subleading mixing with τs and τ̃p of the form:

φb
Mp

=

√
3

2
ln τb −

√
2

3

1

V
(
λsτ

3/2
s + λpτ̃

3/2
p

)
. (C.12)

Finally the kinetic term in LO(V−4/3)
kin are canonically normalised if the bulk axion cb

gets redefined as:
ab
Mp

=

√
3

2

cb
τb
. (C.13)

The U(1)-charged open string mode C appears in the kinetic Lagrangian only at
O(|C|2V−2/3) which according to (4.60) and (4.61) can scale as either V−8/3 or V−14/3.
This part of the kinetic Lagrangian looks like:

Lkin ⊃ K̃ |C|2
(
∂µ|C|
|C|

∂µ|C|
|C|

+ ∂µθ∂
µθ − ∂µτb

τb

∂µ|C|
|C|

)
, (C.14)
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and becomes diagonal by redefining:

|Ĉ|
Mp

=
√

2K̃|C| and aALP = |Ĉ|θ = faALP θ .

C.0.3 Mass matrix

As described in Sec. 4.2.1, the moduli stabilised at tree-level are τqi and |φ| while
the corresponding axions are eaten up by two anomalous U(1)’s. Given that they
fixed at O(1/V2), all these modes develop a mass of order the string scale:

mτqi
∼ mcqi

∼ m|φ| ∼ mψ ∼Ms = g1/4
s

√
π
Mp√
V
. (C.15)

On the other hand, τb, τs, τ̃p and the closed string axion cs are stabilised at O(1/V3).
The masses of the corresponding canonically normalised fields derived in App. C.0.2
are given by the eigenvalues of the mass matrix evaluated at the minimum of the
O(1/V3) scalar potential. The leading order contributions of all the elements of this
4× 4 matrix read:

∂2V

∂φb∂φb
=

( gs
8π

) 9λs τ
3/2
s

2

W 2
0

V3
,

∂2V

∂φb∂φs
=

( gs
8π

) 3
√

2λs τ
3/4
s√
V

(
W0

V

)2

(2πτs) ,

∂2V

∂φs∂φs
=

∂2V

∂as∂as
= 4

( gs
8π

)(W0

V

)2

(2πτs)
2 ,

∂2V

∂φ̃p∂φ̃p
=

( gs
8π

) 1

4zpτ̃p

(
W0

V

)2

,

∂2V

∂φb∂φ̃p
=

∂2V

∂φb∂as
=

∂2V

∂φs∂φ̃p
=

∂2V

∂φs∂as
=

∂2V

∂φ̃p∂as
= 0 ,

The eigenvalues of this mass matrix turn out to be:

m2
φs = m2

as = 4
( gs

8π

)(W0

V

)2

(2πτs)
2 ' m2

3/2 (lnV)2 ,

m2
φ̃p

=
( gs

8π

) π

2zp

(
W0

V

)2
1

2πτ̃p
'
m2

3/2

lnV
and m2

φb
= 0 , (C.16)

where the gravitino mass is given by:

m2
3/2 = eK |W |2 '

( gs
8π

)(W0

V

)2

. (C.17)
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The mass of the canonically normalised large modulus φb becomes non-zero once we
include subleading 1/(2πτs) ∼ 1/ lnV � 1 corrections to the elements of the mass
matrix, and scales as (with c an O(1) numerical coefficient):

m2
φb

= c λsτ
3/2
s

( gs
8π

)W 2
0

V3

1

2πτs
'

m2
3/2

V lnV
. (C.18)

As explained in Sec. 4.2.3, the charged matter field |C| is fixed by soft supersymme-
try breaking contributions to the scalar potential and can acquire a mass of order
m3/2/

√
V or m3/2/V depending on the level of sequestering. The corresponding

phase θ = aALP/faALP behaves as an open string ALP which develops a mass of
order:

maALP ∼
Λ2

hid

faALP
∼ Λ2

hid

|Ĉ|
, (C.19)

where Λhid is the scale of strong dynamics effects in the hidden sector. In order
to obtain a phenomenologically viable value maALP . 10−12 eV, we need to have
Λhid . 104 eV if faALP ∼ m3/2 ∼ 1010 GeV or Λhid . 1 eV if faALP ∼ m3/2/V ∼ 1

TeV.
The DM axion cp is stabilised by tiny poly-instanton corrections at O(1/V3+p).

Using the fact that K−1
TpT̄p
∼ V

√
τ̃p and the expression (4.62) for the scalar potential

for cp, its mass can be easily estimated as:

m2
ãp ∼ K−1

TpT̄p

∂2V poly
F (cp)

∂c2
p

∼
( gs

8π

) W 2
0

V2+p
2πτ̃p ∼

m2
3/2

Vp
lnV . (C.20)

If the volume is of order V ∼ 107, this mass can be around 10 keV if p = 9/2.
As explained in Sec. 4.3.2 this value of p can be accommodated by an appropriate
choice of underlying flux parameters. Finally the axion cb of the large modulus
Tb = τb + i cb can receive a potential only from highly suppressed non-perturbative
contributions to the superpotential of the formWnp ⊃ Ab e

−2πTb which can be shown
to lead to a mass for the axion cb that scales as:

m2
ab
∼
( gs

8π

) M2
p

V4/3
e
− 2π

λ
2/3
b

V2/3

∼ 0 . (C.21)
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