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Abstract 
 

Stratigraphic paleobiology - a relatively new approach for investigating fossiliferous sedimentary 

successions - is rooted on the assumption that the fossil record cannot be read at face value, being 

controlled not only by biotic, but also by sedimentary processes that control deposition and erosion 

of sediments. By applying the stratigraphic paleobiology tenets, this Ph.D. project focused on 

acquisition and analyses of macrofossils data to assess the response of late Quaternary ecosystems 

to environmental changes and enhance stratigraphic interpretations of fossiliferous successions. A 

primary activity of my Ph.D. research involved assembling a macrobenthic dataset from the latest 

Pleistocene glacial succession of the near-Mid Adriatic Deep (Central Adriatic, Italy). This dataset 

once combined with its counterpart from the Po coastal plain (Holocene), will offer a unique 

perspective on mollusk faunas and their dynamics during the current glacial-interglacial cycle. This 

thesis includes four papers. The first one assessed the quality and resolution of the macrofossil record 

from transgressive Holocene deposits of Po plain (Italy). The second paper focused on the Holocene 

fossil record of the Po coastal plain to evaluate the response of trematode parasites to high-frequency 

sea-level oscillations. The third study investigated distribution of last occurrences of macrobenthic 

species along a down-dip transect in the Po coastal plain and evaluate potential effects of sequence 

stratigraphic architecture on mass extinction pattern. The fourth is a case study to test the robustness 

of the paleoecological pattern derived by the application of different ordination analyses (DCA and 

nMDS) and to assess the main environmental driver(s) of faunal turnover in marine settings. In 

summary, my Ph.D. demonstrates that even if the fossil record cannot always be read literally, the 

stratigraphic paleobiology approach to the geologic record makes it possible to interpret biological 

trends from the fossil record and enhance the stratigraphic resolution of fossiliferous successions. 
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“It is interesting to contemplate an entangled bank, 

clothed with many plants of many kinds, with birds singing on the bushes 

with various insect flitting about,  

and with worms crawling through the damp earth, 

and to reflect that these elaborately constructed forms, 

so different from each other, and dependant on each other in so complex manner, 

have all been produced by laws acting around us […]. 

There is a grandeur in this view of life, 

with several powers, having been originally breathed into a few forms or into one; 

and that, whilst this planet has gone cycling on according to the fixed law of gravity, 

from so simple a beginning endless forms, 

most beautiful and most wonderful have been, 

and are being, 

evolved”. 

 

Charles Darwin 

On the Origin of Species 
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Introduction 
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1. Introduction 
 

Since the last few decades, a new approach for investigating fossiliferous sedimentary successions 

has gained approval throughout the paleontological scientific community. This recent development 

in the field of paleontology relies on the assumptions that the fossil record cannot be read at face 

value and that fossil dynamics through time and space are easier to interpret when analyzed in 

conjunction with their stratigraphic context (e.g., Kidwell, 1993; Holland, 1995, 2000; Scarponi and 

Kowalewski, 2004; Dominici and Kowalke, 2007; Patzkowsky and Holland, 2012; Terry and Novack, 

2015; Danise and Holland, 2017). This relatively new paradigm to the investigation of the fossil 

record is known as stratigraphic paleobiology (Patzkowsky and Holland, 2012), which is rooted on 

the postulation that interpretation of the fossil record should also consider a modern understanding 

of the principles of sediment accumulation (Patzkowsky and Holland, 2012). Indeed, the distribution 

of fossil taxa in time and space is controlled not only by biotic processes (e.g., taxa niches, taxa 

evolutionary strategies, extinctions/originations) but also by physical processes that govern where 

and when fossiliferous sedimentary bodies are deposited and preserved. Teasing apart the effects of 

these two suites of processes on structuring fossil associations or at least acknowledgement of their 

conjunct effects, is pivotal for understand and reconstructing the dynamics of environments and 

their organisms through time. This is the core of stratigraphic paleobiology. Such an integrated 

approach is intended primarily to augment the potential of paleontological investigations to answer 

core questions that lays buried in the geological record of the Earth.  

A clear example on the assessment and magnitude of stratigraphic controls on fossil distribution is 

provided by Holland (1995). Here the author shows, by means of model data, that previously 

described paleobiologic patterns concerning mass extinction and evolutionary dynamics may be 

partly stratigraphic artifacts originating from the stratigraphic architecture of investigated 

successions. Specifically, the first and last occurrences (FOs and LOs, respectively) of marine fossil 

taxa cluster within intervals of strong time condensation or along sequence boundaries. This 

produces a distortion of the real time of appearance or extinction so that in the fossil record, such 

FOs and LOs will appear to be simultaneous even if they are not. Examples of such stratigraphic 

forcing on fossil records have been reported for decades (Patzkowsky and Holland, 1999; Holland, 

2000; Kidwell and Holland, 2002; Scarponi and Kowalewski, 2007; Holland and Allen, 2008) and 

have reached full recognition in Patzkowsky and Holland (2012). The authors pointed out that the 

introduction of sequence stratigraphy concepts, which lead to a better understanding of sedimentary 

basin dynamics, will help to sort true biological signals from stratigraphic artifacts that shaped the 

fossil record. The last few years saw a growing wealth of case studies showing that fossil dynamics 

are strictly linked to the sequence stratigraphic framework of the encasing sedimentary successions 

(e.g., Bonelli and Patzkowsky, 2008; Scarponi et al., 2013; Boessenecker et al., 2014; Huntley et al., 

2014; McMullen et al., 2014; Huntley and Scarponi, 2015; Danise and Holland, 2017; Dominici et 
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al., 2017) and that spatial and temporal completeness of the fossil record is scale dependent (Foote 

and Raup, 1996; Foote, 1996; Valentine, 2004). However, is widely accepted that even if the fossil 

record is not a perfect recorder of history of life, that is, it cannot be read literally, important 

biological and environmental signals can be interpreted. On the contrary, consideration of the 

sedimentary succession as a perfect recorder of history is unrealistic and is a scenario that we have 

always known to be incorrect. In summary, stratigraphic paleobiology approach to the geologic 

record has proved to be of paramount importance for detecting biological trends and enhancing the 

stratigraphic interpretation of sedimentary successions worldwide. My Ph.D. research focuses on 

gathering data and applying the stratigraphic paleobiology approach to Quaternary sedimentary 

successions. 

 

1.1. The Quaternary fossil record: an ideal laboratory for stratigraphic 

paleobiology 

The dualistic stratigraphic paleobiology approach to the investigation of the fossil record has gained 

traction among paleontologists who investigate bio-sedimentary dynamics during the late 

Quaternary, which is a period characterized by strong climate fluctuations that had profound impacts 

on structuring the Earth’s sedimentary and biological systems (Holland et al., 2001; Scarponi and 

Kowalewski, 2004; Holland and Christie, 2013). Indeed, late Quaternary climate-driven sedimentary 

successions represent an invaluable testing ground for evaluating tenets and applying tools of 

stratigraphic paleobiology. These successions are also dominated by extant taxa with well-

understood ecology, biology and biogeography. This enable precious insight to be gained on the scale, 

magnitude, and significance of several past biological key issues such as the ecological response of 

communities to climate transitions, while providing a refined understanding of how allo- and auto-

cyclic changes in sea-level affect the formation of sedimentary bodies. In addition, detailed 

reconstructions of past ecological and environmental dynamics relative to high-frequency climate 

fluctuations provide a reference baseline for evaluating the severity and significance of 

anthropogenic processes that threaten present-day ecosystems and their biodiversity.  

Among the multitude of currently forming basins on the Earth, the Po Plain-Adriatic Sea system 

represents an ideal venue for investigating bio-sedimentary dynamics and for developing and testing 

investigative methodologies for sedimentary geology. Indeed, Quaternary successions of the Po Plain 

and Adriatic Sea record a strong climatic-driven cyclicity and were deposited in a subsiding setting 

that preserved an expanded record of high-quality stratigraphic and paleontological data (Ridente 

and Trincardi, 2002; Kowalewski et al., 2015; Amorosi et al., 2017; Pellegrini et al., 2017a, 2018 and 

references therein). Hence, the youngest geological record of the targeted system is uniquely 

complete, finely studied and resolved, and the least ambiguous to interpret. In addition, 14C and 

racemization calibrated dating have been successfully used to establish a robust geochronological 
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framework for the entire targeted system (Piva et al., 2008; Maselli et al., 2010; Trincardi et al., 2011; 

Scarponi and Kowalewski, 2013; Amorosi et al., 2017). 

 

1.2. Mollusk fauna as a tool for stratigraphic paleobiology  

The Quaternary mollusks fauna is the object of this investigation. Mollusks constitute one of the 

largest and most diverse phyla in the animal kingdom with a remarkable fossil record that dates back 

to the early Cambrian, about 541 Ma (Ponder and Lindberg, 2008; Li et al., 2017). The extant species 

of marine mollusks number at around 50,000 (Oliverio, 2003; Bouchet, 2006; Bouchet et al, 2016 

but see Haszprunar and Wanninger, 2012). Among Mollusca, many classes are characterized by 

organisms bearing an endo- or exoskeleton; hence, their potential of fossilization is high. Mollusks 

have adapted to nearly all habitats and conditions, from arid terrestrial to deep marine settings, and 

are highly sensitive to environmental variables (Morton, 1967; Gutierrez et al., 2003; Bolotov et al., 

2012). Hence, their environmental plasticity along with their abundance and diversity in the fossil 

record makes this group an excellent descriptor of past and present benthic biocenoses and an 

excellent proxy for biodiversity studies through time (Gambi et al., 1982; Wells, 1998; Mikkelsen 

and Craft, 2001; Gladstone, 2002; Tyler and Kowalewski, 2017). Moreover, Mediterranean mollusk 

fauna have been widely investigated since the last century for various applications (see Table I in 

Oliverio, 2003). This century-long activity has yielded an impressive accumulation of ecological, 

biological and biogeographic data. Specifically, most of the common species retrieved in targeted 

sedimentary successions are well documented in terms of their bathymetric and environmental 

requirements (e.g., Nordsieck, 1968, 1972, 1982; Parenzan, 1970; 1974, 1976; ENEA, 2017).  

 

1.3. The Milankovitch and sub-Milankovitch cyclicity 

Earth’s orbital geometry around the Sun is defined by three main astronomical parameters: 

precession, obliquity, and eccentricity. Taken in together, variations of these parameters modulate 

the solar radiation received by Earth, with averaged periodicities of ca. 23, 41 and 100 ka respectively 

(Bradley, 1999; Ruddiman, 2014). As postulated by Milankovitch (1930, 1941) and later by Berger 

(1988), long-term changes in solar radiation determine cyclical climatic oscillations on Earth that in 

turn trigger eustatic sea-level fluctuations (Chappell, 1974; Schwarzacher, 2000). Changes in Earth’s 

orbit during the late Quaternary are considered to be the main drivers of climate shifts at the glacial-

interglacial time-scale. On much a shorter time-scale of 101yr-103yr, drivers of climate variation are 

commonly attributed to stochastic processes occurring in the climate system (e.g., volcanic dust 

loading), random phenomena outside the Earth’s system (e.g., solar variability) and internal 

iterations/feedback between the multiple sub-systems of Earth, such as oceanic global circulation 

and ice-sheet dynamics. These millennial- or lower-scale perturbations of the climate system, such 

as Dansgaard- Oeschger or Bond events, are of smaller amplitude compared with those produced by 
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Milankovitch forcing (Fig. 1); pairwise, however, they can leave traces in the geologic record as well 

(Cruz et al., 2005; Deplazes et al., 2013). In general, climate changes that have periodicity or quasi-

periodicity of less than 15 ka and durations of few thousand years to a few centuries, are commonly 

attributed to the sub-Milankovitch frequency band. 

 

Figure 1 - Milankovitch and sub-Milankovitch cyclicity and sea-level oscillations during the last 450 ka 

(after Lobo and Ridente, 2014). Numbers in the upper panel represent the marine isotope stages (MIS). 

The lower panel displays a detail of the last 150ka (after Grant et al., 2012). Blue crosses represent relative 

sea-level, whereas the gray shaded areas record the maximum-probability of relative sea-level. The red 

line represents the rates of sea-level variation within the 95% confidence interval (pink shading). The rates 

of high sea-level variation (+12 and -8 m/ka) are indicated by horizontal dashed lines, whereas the red 

arrows point to sea-level variation higher than +12 m/ka. 

 

In the past decades, increasing efforts have been spent on reconstructing the Milankovitch cyclicity 

within Quaternary shelf successions (e.g., Somoza et al., 1997; Carey et al., 1998; Bernè et al., 2004; 

Bassetti et al., 2008; Lobo and Ridente, 2014). Owing to their shallow depth, these deposits enable 

acquisition of reliable seismic imaging and are relatively obtainable by coring activities. Generally 
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speaking, the continental margins during the late Quaternary, were shaped by high-frequency and 

repeated astronomically-driven climatic oscillations. As reported by Lobo and Ridente (2014), the 

late Quaternary stratigraphic architecture of continental margins shows a dominant eccentricity 

cycle periodicity (about 100 ka), expression of major ice-volumes changes (Lisiecki and Raymo, 

2005) - even though the depositional architecture of the Upper Pleistocene is better explained by 

precession-related signals of about 20 ka. These ~20 ka sea-level oscillations are well recorded in the 

sedimentary record of the last 125 ka, where they briefly interrupt the overall declining trend of sea-

level by short pulses of sea-level increase (Lobo and Ridente, 2014).  

Recently, high-resolution investigation of the recent sedimentary succession has revealed evidence 

that highlights the presence of short-lived prograding units framed by flooding surfaces that record 

sea-level fluctuations at the millennial time-scale. These sub-Milankovitch fluctuations coincide with 

quasi-periodic climate pulses and are known as Heinrich events (HE; Maslin et al., 2001; Bassetti et 

al., 2008; Sierro et al., 2009; Andrews and Voelker, 2018). These events are traceable in the 

sedimentary record of the North Atlantic by debris discharged by melting icebergs during their 

southward migration (Ziemen et al, 2018). These episodes are the results of the oscillations in the 

volume of warm and saline-rich tropical water conveyed by the thermohaline convective current 

from equatorial to polar regions (Little et al., 1997), under the background of unstable ice-sheets 

that rimmed the North Atlantic. Among the numerous proposed explanations (Little et al., 1997; 

Seidov and Maslin, 2001, Maslin et al., 2001), the overgrowth and collapse of Laurentide and Eurasia 

ice sheets, is one of the most often cited mechanisms responsible for destabilization of the 

thermohaline current (e.g., Broecker and Denton, 1989; Paillard and Labeyriet, 1994; Little et al., 

1999; Zhang et al., 2014). The armadas of melting icebergs supplied an incredible volume of less-

dense fresh water into the northern Atlantic Ocean, hampering the capability of the thermohaline 

current to sink and to maintain the convective overturn. This caused an abrupt cooling and renewed 

strong ice-sheet expansion with perturbation on the global climate (Little et al., 1997). In contrast 

with the hypothesis of the Laurentide ice-cap collapse, Rahmstorf and colleagues (2005) more 

recently proposed hysteresis in thermohaline circulation as an explanation for HEs. This means that 

profound variation in the pattern of global circulation was caused even by smaller changes in the 

fresh water supply in the North Atlantic region.  

Between Heinrich events – which occurred on average every 7200 ± 2400 calendar years (Maslin et 

al., 2001), detailed investigation of ocean sediments and Greenland ice cores detected higher 

frequency episodes recurring every ~1500 years; such events are known as Dansgaard-Oeschger (D-

O; Dansgaard et al., 1993; Bond et al., 1997). These events, roughly framed between two HEs, 

occurred 25 times during the Last Glacial and share the same causative mechanisms as those of HEs 

(Dowdeswell et al., 1995; Maslin et al., 2001; Marshall and Koutnik, 2006; Petersen et al., 2013).  

The presence of sub-Milankovich climatic fluctuations have also been documented during the 

Holocene and are known as Bond events. Bond and colleagues (1997) argued that these events, 

identifiable primarily by ice-rafting debris, can be defined as the interglacial counterparts of the D-
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O glacial events and share the same forcing mechanism of quasiperiodic climate cyclicity as well as 

a comparable time of occurrence of ~1470 years.  

These climatic fluctuations at the Milankovitch and sub-Milankovitch scale have been largely 

recognized also in the Adriatic and in the Po Plain sedimentary successions. For the Adriatic, Piva et 

al. (2008) recognized the signal related to glacial-interglacial fluctuations showing periodicities of 

100 ka and 23 ka in the borehole PRAD 1-2. Within the last glacial interval, the authors were able to 

detect a sub-Milankovitch cyclicity interpreted as the Adriatic counterpart of the D-O events. 

Amorosi et al. (1999, 2004, 2008) reported that within the Po Plain, eight T-R cycles of the last 800 

ka were produced in response to fourth-order cyclicity. More recently, Amorosi et al. (2017), 

identified a series of overall-prograding stratigraphic units (i.e., parasequences) showing short-term 

millennial-scale periodicity within the Holocene interglacial Po coastal sedimentary wedge. 
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2. The Po Plain-Adriatic Sea system 
 

The Po Plain‒Adriatic Sea represents a unique and complex system of sedimentary basins that acts 

as a foreland for distinct mountain chains (Fig. 2.1). The Po Plain represents a foreland for the 

Southern Alps to the north and the Northern Apennine to the south (Ori et al., 1986; Vannoli et al., 

2015). In contrast, the Adriatic Sea acts as a foreland region for both the Apennine to the west and 

the Dinarids to the east (Zecchin et al., 2015). The pre-Quaternary stratigraphic evolution of the Po 

Plain–Adriatic Sea system is dominated by a deposition of a thick succession of basin-floor turbidites 

owing to the growth of the Apennine chain (Rizzini and Dondi, 1979; Mattavelli et al., 1983; Ricci 

Lucchi, 1986, 1990; Antonioli et al., 2009; Ghielmi et al., 2013). During the Quaternary, the 

decreased uplift and reduced migration of the Apennines defined a switch of the Po Plain–Adriatic 

Sea toward a system in which the Po River was the most important sediment source (Amorosi et al., 

2015). Thus, during this time, the targeted system experienced a progressive infilling by 

progradational marine and continental successions, along the basin major axis (i.e., northwest 

toward southeast; Fontana, et al., 2014; Amorosi et al., 2015). 

 

Figure 2.1 –Location and physiographic setting of the Po Plain‒Adriatic Sea system at present (A-B) and (C) 

during the Last Glacial Maximum. Inset (D) shows the present-day morphology of the Po Delta along with 

its major distributaries. Red rectangles indicate the locations of the main study areas, and the red dashed 

line shows the coastline during the Holocene maximum marine ingression (after Amorosi et al., 2015, and 

Pellegrini et al., 2017a, slightly modified).  
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At present, the eastern area of the Po Plain is characterized by a relatively thin layer of continental 

deposits constituting the topset of the overall prograding sedimentary complex. The Po Plain passes 

eastward to a shallow epicontinental sea characterized by a gently dipping continental shelf 

(Cattaneo et al., 2003; Maselli et al., 2011). The shelf break is located approximately 300 km 

southeast of the modern Po Delta and marks the passage to the deeper Mid Adriatic Deep (MAD) 

basin (Fig. 2.1). 

The two main sedimentary bodies of interest for this study are i) the Holocene coastal/shallow 

marine succession of the Po Delta and its southern coastal plain and ii) the late Pleistocene‒Holocene 

succession of the Po Delta deposited close to the MAD basin during the last glacial phase (Fig. 2.1). 

Although they are connected in their geological and sedimentological evolution, particularly during 

the late Quaternary, these two key areas are treated separately in this thesis. This choice was dictated 

by the will to offer a clearer picture of these complex regions with main sediment accumulation 

phases occurring at different times. Indeed, the Po Delta/coastal plain records an expanded marine 

sedimentary succession that was deposited mainly during sea-level highstands, the MAD records an 

expanded marine succession that was stacked during sea-level lowstands (Amorosi et al., 2004; 

Pellegrini et al., 2018). 

 

2.1. The Po Delta and its southern coastal plain  

The Po Plain, with an extension of 46,000 km2, is the largest alluvial plain in Europe (Astori et al., 

2002) and is cut in two by the Po River, the longest and most relevant watercourse in the country 

(Vannoli et al., 2015). The modern Po Delta, with a surface of 54,000 ha, forms the largest complex 

of wetlands in Italy and is localized at the border between the Emilia-Romagna and Veneto regions 

(~ lat. 44.919937°N; ~ long. 12.387254°E; Fig. 2.1). The Po Delta includes an extensive delta plain, 

a wave-influenced delta front, and a broad asymmetric composite prodelta. The sediment dispersal 

is controlled by six main distributary channels including the Gnocca, Goro, Levante, Maestra, Pila, 

and Tolle (Correggiari et al., 2005) which form an equal number of main prodelta lobes.  

The modern Po Delta is a relatively recent geomorphologic/geographic feature that evolved during 

the last 500 years in response to the Porto Viro diversion (1604 AD; Correggiari et al., 2005). The 

Porto Viro diversion was commissioned by the Doge of Venice to divert the main distributary channel 

southward to stop the gradual migration of the delta system toward the Venice lagoon. Since then, a 

30 km coastal progradation of the area has been recorded (Correggiari et al., 2005). South of the Po 

Delta, the coastal plain shows a triangular shape and occupies a surface of approximately 244,000 

ha extending from Pontelagoscuro (Ferrara) to the Adriatic Sea to the north and tapering southward, 

where the Apennine chain meets the coastline.  
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2.1.1. Tectonic setting 

The modern Po Plain is a subaerial expression of the most recent foreland originating from the 

lithospheric flexure and was created by the tectonic load of the southern-verging Alps, to the north 

and the north eastern-verging Apennine chain to the south (Vannoli et al., 2015). Vannoli and 

colleagues (2015 and references therein) indicated a stronger subsidence associated with the tectonic 

load of the northern Apennines front compared with that brought from the Alps. Over the past 5 Ma, 

this uneven crustal flexing resulted in a basin-scale thickening of the Po Plain deposits southward, 

where a large accommodation space was generated in a complex system of elongated foredeeps 

parallel to the Apennine front (Bartolini et al., 1996; Ghielmi et al., 2013; Vannoli et al., 2015). Thus, 

the Plio‒Quaternary sedimentary succession reaches up to 8000 m (Pieri and Groppi, 1981) in the 

southern depocenters (Fig. 2.2) but it is reduced to a few hundred meters in correspondence of 

buried anticlines that represent the most advanced compressional structures of the northern 

Apennines (Burrato et al., 2003).  

 

 

Figure 2.2 – Composite subsurface stratigraphy of the Po Plain reconstructed from integrated seismic lines 

and cores. In the inset, the black line indicates the position and orientation of the transect (after Regione 

Lombardia and ENI-Divisione Agip, 2002). 

 

Such complex and widespread folding and thrusting has been recorded by geophysical investigation 

along the Apennine front (Pieri and Groppi, 1981). During the overall eastward migration of the 

Apennine thrust fronts, some of these structures resulted sub-emergent and were responsible for the 

local deformation and uplift of the overlying Quaternary deposits (Bigi et al., 1992; Astori et al., 
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2002; Ghelmi et al., 2013; Vannoli et al., 2015). In contrast, the buried central Alpine margin is 

characterized by a simpler geometry represented by the Pedealpine homocline, a gently southward 

dipping E‒W-trending structure extending from Milan to Garda Lake (Burrato et al., 2003). 

 

Figure 2.3 - Simplified structural setting of the Po Basin (gray area) showing the complex organization of 

buried folds, faults, and thrusts. The black dashed line is the trace of the transect reported in figure 2.4. 

(Burrato et al., 2003, slightly modified). 

 

Regarding the Apennine front, several high-resolution seismic profiles acquired over years (Pieri and 

Groppi, 1981; Picotti et al., 2007; Picotti and Pazzaglia, 2008 and references therein) have enabled 

detailed reconstruction of its tectonic complexity and its impact on the sedimentary successions 

deposited in the Po Plain foreland (e.g., Rossi, 2017). Three large thrust sheets, arc-shaped in plain 

view, have been recognized (Pieri and Groppi,1981; Castellarin, 2013; Livani et al. 2018) as the 

buried expression of the articulated northern Apennine front including the Monferrato, Pavia and 

Ferrara-Romagna arcs from west to east. Costa (2003) highlighted a different deformation style 

along each arc side such that, the western side of the arc is characterized by NW-verging thrusts, 

whereas the north-eastern side presents high-angle en-echelon reverse faults interpreted as dextral 

shear zones. The strike-slip component associated with these dextral shear zones is an inevitable 

result of the progressive activation and eastward migration of these arc-shaped structures, from the 

Oligocene to the Pliocene (Butler, 1982; Costa, 2003). In addition, Picotti and Pazzaglia (2008) 

determined that sedimentary successions deposited along the arc fronts lie in two different types of 

basins: a classic wedge-shaped type and a more symmetrical sag type. Specifically, in the western Po 

Plain, the growth of the Monferrato arc folded the Oligocene to Quaternary deposits into anticlines 
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and synclines, the latter typical of sag basin geometry (Kingston et al., 1983; Selley and Sonnenberg, 

2014). Eastward in the central Po Plain, the arc growth is associated with a progressive transition 

from wedge-shaped to asymmetrical sag-type basins beginning from the Messinian. However, by the 

Middle Pleistocene, the wedge-shaped basins had evolved to sag-type throughout the Po Plain 

foreland; this suggests a stall in the convergence rates of the Apennine thrusts, followed by their 

subsidence (Picotti and Pazzaglia, 2008). 

2.1.2. Late Quaternary stratigraphic architecture  

Owing to the wealth of data derived by seismic, well-log, and borehole-based investigations, the 

large-scale stratigraphic and structural architecture of the Po Plain is well established (Fig. 2.4; Pieri 

and Groppi, 1981; Regione Emilia Romagna and ENI-AGIP, 1998; Muttoni et al., 2003; Garzanti et 

al., 2011).  

 

Figure 2.4 – Composite seismic profile across the Po Plain. The orientation and position of the transect are 

given in figure 2.3. The Adriatic Sea is on the right (after Garzanti et al., 2011). 

 

In the Po Plain, the southward crustal tilting related to stacking of the Apennine enabled since the 

late Miocene strong subsidence in its southern foredeep (up to 2.4 mm/y; Antonioli et al., 2009; 

DeCelles and Giles, 1996; Fantoni and Franciosi, 2010). Hence, owing to this sustained rate of 

tectonic subsidence, the Quaternary deposits in the south-eastern Po Plain display an incredible 

maximum thickness of 2 km (Antonioli et al., 2009). This noticeable example of expanded 

stratigraphic record has been targeted in subsurface investigations for the last 50 years, since oil and 

water-driven geophysical research facilitated the first large-scale stratigraphic and structural 

reconstruction of the Po Plain Quaternary succession (AGIP, 1977; Aquater, 1976, 1977, 1978; 

Aquater-ENEL, 1981).  

This integrated stratigraphic approach has had a noticeable impact on the geological reconstruction 

of the targeted area. The late Quaternary sedimentary succession of the Po Plain is currently 

subdivided into a series of basin-scale, third-order unconformity-bounded stratigraphic units (Fig. 

2.2; UBSU in Regione Lombardia and ENI divisione AGIP, 2002; Amorosi et al., 2013). The 

recognized stratigraphic unconformities, which are dated around 1.6 Ma, 1.24 Ma, and 0.87 Ma 
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corresponding to blue, green, and red lines in Fig. 2.2, respectively, underlines strong phases of 

tectonic activity that resulted in significant modification of the basin geometry. Overall, the basin-

infill shows progressively decreasing deformation from the bottom to top (Regione Lombardia and 

ENI divisione AGIP, 2002; Amorosi et al., 2008).  

The post-0.87 Ma Quaternary succession (~800m thick beneath the Po coastal plain) represents the 

Po Supersynthem. This unit has been recently subdivided into a Lower and Upper Po Synthem by a 

fourth regional unconformity dated at 0.45 Ma (yellow line in Fig. 2.2; black line in Fig. 2.5). These 

synthems, in turn, include sub-synthems represented by sedimentary units tens of meters-thick that 

recorded a strong glacio-eustatic imprint (Fig. 2.6; Regione Emilia Romagna and ENI-AGIP, 1998; 

Amorosi et al., 1999; 2004; 2008; 2016; Scarponi and Kowalewski, 2004; Francani et al., 2016).  

 

Figure 2.5 – Schematic stratigraphy of the Po Supersynthem, which is subdivided into Lower and Upper 

Po Synthem by means of the lower-rank regional unconformity dated 0.45 Ma. The internal organization 

of each synthem enable definition of a series of sub-synthems (after Amorosi et al., 2008). 

 

The sub-synthems show characteristic wedge-shaped geometry as a result of the backstepping of 

transgressive nearshore-settings during the phases of rapid sea-level rise. This was followed by 

phases of aggradation and progradation of the coastal-deltaic systems during the deceleration phases 

of sea-level rise and subsequently sea-level fall and lowstand (Fig. 2.6). The internal stratigraphic 

architectures of the individual sub-synthems can be tracked from fluvial to marine realms through 
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identification of prominent bounding surfaces representing the onset of transgressive events (Fig. 

2.6; Muttoni et al., 2003; Amorosi et al., 2008; 2016).  

 

 

Multidisciplinary investigations, based on integrated data of sedimentology; fauna such as mollusks, 

ostracods, and benthic foraminifers; and pollen document a strong climate-driven influence on 

stratigraphic architecture of the late Quaternary succession (Amorosi et al., 2008, 2014). The 

coastal-marine, landward-thinning bodies recorded in the subsurface of the Po coastal plain, 

represent the stratigraphic expression of shoreline transgression and ensuing deltaic progradation 

that occurred during interglacial phases (TST + HST in Fig. 2.6). Whereas, the pluri-decametric thick 

alluvial successions are related to phases of falling and lowstand of sea-level that occurred during 

glacial intervals (FSST + LST in Fig. 2.6).  

Within the latest Quaternary (<150ka), two wedge-shaped coastal sedimentary bodies were located 

at respective core depths of approximately 0-30 m and 95-120 m (Fig. 2.7). These bodies show 

comparable T-R stacking patterns and were deposited during the two major transgressive pulsations 

and subsequent sea-level highstands of the last 150 ka (Amorosi et al., 2004; Amorosi and Colalongo, 

2005). These two sedimentary bodies, assigned respectively to the Tyrrhenian marine isotope stage 

(MIS) 5e and the Holocene MIS 1, are separated by a 50-100 m thick succession of alluvial and fluvial 

sediments recording the overall sea-level fall and lowstand that occurred between about 116 ka and 

14 ka, and resulted in extensive basinward shifts of alluvial facies.  

 

Figure 2.6 – Schematic reconstruction of the fourth-order transgressive – regressive sequences driven by 

Milankovitch cyclicity at 100 ka (after Amorosi et al., 2016). 
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Figure 2.7 – (A) Location map of the investigated section. (B) Sketch of the subsurface facies architecture of 

the Po coastal plain for the last 150 ka and its correlation with δ18O isotope stages (after Kowalewski et al., 

2015). 

 

This prolonged phase of overall sea-level fall (FSST = MIS 5d to 2) was punctuated by higher 

frequency transgressive pulses (see also paragraph 1.3), which led to widespread deposition of thin 

packages of organic-rich, lagoonal and swamp deposits chronologically constrained to MISs 5c, 5a, 

and 3 (Fig. 2.7; Amorosi et al., 2004; Kowalewski et al., 2015; Campo et al., 2017). At maximum 

glacial interval (MIS 2), the Po delta system was located in proximity to the Mid Adriatic Deep (MAD; 

Pellegrini et al., 2018) and the present-day Po coastal plain recorded a succession of laterally 

extensive sand fluvial bodies associated to pedogenically altered floodplain deposits (Bruno et al., 

2017). Upward, the superposition of poorly-drained floodplain onto pedogenically altered deposits, 

marks the onset of an overall retrogradational stacking pattern of facies. This contact has been 

interpreted as the transgressive surface (TS) or maximum regressive surface (MRS; sensu 

Catuneanu, 2017), bounding at the base the currently forming fourth-order post-LGM T-R sequence 

(Fig. 2.7). The TS, being associated with a series of weakly developed paleosols attributed to the 

Younger Dryas cold event (McClennen et al., 1997; Amorosi et al., 1999, 2014; Bruno et al., 2016), 

is a striking regional stratigraphic surface that can be easily recognized in cores (Amorosi et al., 

2004). The post-LGM T-R sequence was recently subdivided into eight millennial-scale depositional 

units (parasequences). Some of these units present a further recognizable internal subdivision, being 
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nested with higher frequency units bounded by flooding surfaces of centennial time-scale (Fig. 2.8; 

Amorosi et al., 2017). 

 

 

Figure 2.8 – Correlation panel (after Amorosi et al., 2017) showing the Holocene stratal architecture of the 

Po coastal plain. The eight Holocene parasequences are numbered in red, and the maximum flooding surface 

corresponds to the green line separating parasequences 3 and 4. 

 

A parasequence is a stratigraphic unit composed of a relatively conformable succession of 

genetically-related strata, bounded by a flooding surface across which a substantial facies dislocation 

is present (Van Wagoner, 1995; Amorosi, 2017; see also Catuneanu, 2017). It is widely accepted that 

a parasequence internal stacking pattern commonly displays a shallowing-upward trend 

representing an episode of progradation. However, in a high subsidence setting such as the Po coastal 

plain, the lowermost portion of these sequence-stratigraphic units might record a deepening upward 

trend (Zecchin and Catuneanu, 2013; Amorosi et al., 2017). 

Following Amorosi et al. (2017; Fig. 2.8), parasequences 1 to 3 show clear retrogradational stacking 

of alluvial to estuarine and marginal marine facies across the targeted area, which is in agreement 

with a stepped post-glacial eustatic sea-level rise (Boyd et al., 2006; Amorosi et al., 2016). Units 4 to 

8 show a multifaceted and aggradational-to-increasingly-pronounced progradational pattern of 

coastal/deltaic facies that developed under the action of more local autogenic forcing factors 

(Amorosi et al., 2017). The maximum flooding surface, marking the turnaround between 

transgressive and normal regressive stacking patterns, is placed at the base of parasequence 4 (Fig. 

2.8) 

1. Parasequence 1 (~11.5 to ~9.2 cal ka BP), records mainly poorly-drained floodplain deposits 

passing upward to swamp/salty-marshes/inner lagoon facies (Amorosi et al., 2017). The 

organic-rich deposits of parasequence 1 can be correlated to a transgressive barrier system 
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(~10.5 ka BP) locally preserved at a water depth of 42 m in the Adriatic Sea (Trincardi et al., 

1994; Cattaneo and Steel, 2003; Correggiari et al., 2005; Storms et al., 2008). 

2. Parasequence 2 (~ 9.2 to ~7.7 cal ka BP), is nested with several higher frequency (centennial-

scale) parasequences. Seaward, the stacking pattern of these centennial units is distinctly 

retrogradational, as supported by the transition from poorly drained floodplain to lagoon and 

to transgressive sand sheets facies. Landward, these higher frequency units record 

alternating poorly drained floodplain and swamp facies (Amorosi et al., 2017).  

3. Parasequence 3 (7.7 to 7.0 cal ka BP) preserves the maximum landward shift of the shoreface 

along the transect. In proximal settings, the development of a large bay-head delta filling the 

lagoon-barrier system has been detected. In distal settings the onset of a prolonged sediment 

starvation phase, will lead to the development of a multi-millennial condensed interval only 

a few decimeters-thick.  

4. Parasequence 4 (~ 7.0 to 5.2 cal ka BP) is bounded at the base by the maximum flooding 

surface (MFS) that shows a strong degree of diachroneity both down-dip and across-strike 

(Amorosi et al., 2005, 2017). Indeed, Amorosi et al. (2017) reported that the initial 

progradation of the shoreline is paralleled inland by the 15 km landward expansion of the 

back-barrier settings.  In proximal coastal and brackish settings, high-frequency centennial 

scales parasequences are also recorded (Fig. 2.8).  

5. Parasequence 5 (~ 5.2 to 2.8 cal ka BP) records a phase of lobe switching, with main 

distributary channels delivering coarse sediment-loads in both southward and northward 

directions relative to the modern-day Po Delta. In the coastal settings, the stacking patterns 

of facies displays a slight progradational trend, as evidenced by the infill of the lagoons and 

the development of a wave dominated delta system. In the distal sector (i.e., shallow marine 

settings) substantial condensation was still observed.  

6. Parasequence 6 (~ 2.8 to 1.5 cal ka BP) is still characterized by slow progradational rates. 

The parasequence was built up under the influence of sediment redistribution by longshore 

currents from the Adige River, as evidenced by geochemical data (Amorosi et al., 2007, 

2017). 

7. Parasequence 7 to 8 (< 1.5 cal ka BP) shows comparable internal architecture and display a 

strong progradation of the nearshore and upper delta plain environments. Parasequence 7 

marks the transition from a wave dominated to river dominated delta. The fastest 

progradation rates were observed in unit 8, at time of the modern Po Delta building. 

Indeed, during the last 500 ka the delta front line advanced about 30 km in the Adriatic Sea.  
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The unparalleled resolution of these stratigraphic investigations provides a detailed picture of 

Holocene millennial- to sub-millennial-scale depositional dynamics of the Po coastal plain, which 

represents an ideal venue for investigating macrobenthic bio-sedimentary dynamics.  
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2.2. The Adriatic Sea and the Mid Adriatic Deep (MAD) 

The Adriatic Sea occupy an ~800 km elongated and narrow semi-enclosed epicontinental basin, 

divided roughly in northern, central, and southern sectors (Fig 2.9). The northern sector of the basin 

is characterized by a wide shelf with a low topographic gradient of 0.02° and extends southward for 

~350 km from the Gulf of Venice (Cattaneo et al., 2003; Ridente et al., 2008a, b).  

 

Figure 2.9 – Digital model of the Adriatic Sea and the main structural elements (after Maselli et al., 2011). 

The wide low-angle northern shelf limited the Mid Adriatic Deep (MAD) to the North, and the narrower 

shelf areas surround the Gargano Promontory. The digital model of the land surface is derived from SRTM 

90m Digital Elevation Data (http://srtm.csi.cgiar.org). 

 

The central sector of the basin, which is confined to the south by the Gallignani-Pelagosa ridge 

(Maselli et al., 2011), displays a narrower shelf at a maximum of 50 km, with steeper gradient of 0.2° 

to 0.5° that border a small remnant basin known as the Mid Adriatic Deep (MAD) (Fig. 2.9). During 

the late Quaternary this formerly larger and deeper basin has been partially filled by the Po River 

when, at times of sea-level lowstand, the Po Delta was repeatedly located at the edge of the MAD 

(Pellegrini et al., 2017a, 2018). The southern Adriatic sector, south of Pelagosa Sill has a maximum 

depth of 1200 m. The sea bottom in this area shows a very steep and narrow shelf (Cattaneo et al., 

2002) with irregular topography characterized by such tectonic structures as the Gondola 

Fault/Gondola anticline, the Dauno seamount (Ridente et al., 2008a; Pellegrini et al., 2016) and the 

Bari Canyon; the latter acts as the main sediment conduit on the southwestern side of the Adriatic 

Sea (Ridente et al., 2007; Pellegrini et al., 2016). In the southernmost part of the Adriatic, the 

Otranto Strait enables connection with the Mediterranean Sea. As reported by Artegiani and 
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colleagues (1997a, b) this narrow passage (72 km wide, 780 m deep) plays a pivotal role in 

controlling the modern-day circulation pattern not only in the Adriatic but across the entire 

Mediterranean Sea (Storms et al., 2008). 

2.2.1. Tectonic setting 

The Adriatic Sea is the distal area of the Po Plain-Adriatic Sea system and acts as a foreland for the 

Apennines on the north-western margin and for the Dinaric orogen on the south-eastern margin (Ori 

et al., 1986; Cattaneo et al., 2003; Pace et al., 2015). From the Oligocene until the Pleistocene, a 

series of foredeep basins was created along the eastern border of the Apennine outer thrust arc (Ricci 

Lucchi, 1986; Doglioni et al., 1994, 1996; Ridente et al., 2008b). As the thrusts belt migrated 

eastward, deformation of the Miocene-Pliocene foredeep successions led to the formation of a series 

of piggy-back basins filled by late Pliocene to Pleistocene sediments (Ori and Friend, 1984; Bigi et 

al., 2013) whereas adjacent foredeep systems were created along the northeast edge of the Adriatic 

Sea (Fig 2.10).  

 

Figure 2.10 – Section of southern Po basin based on seismic profile realized by Agip. The piggy-back basin 

that originated by eastward thrusting of the growing Apennines. Shown on the right side of the figure is 

the outer thrust arc that represents the foredeep of the Apennine chain (redrawn and modified after Ori 

and Friend, 1984). 

 

In this scenario, the modern central Adriatic is the most recent of a series of foredeep basins (Ricci 

Lucchi, 1986; Royden et al., 1987; Artoni, 2007; Bigi et al., 2013). Plio-Quaternary in age, this 

modern foredeep has an arcuate shape and is separated into two sub-depocenters by the Ancona 

structural high (Fig. 2.11; Ori et al., 1986; Argnani and Gamberi, 1995). The late Quaternary 

sedimentation in these sub-basins is controlled by the increased subsidence and sustained sediment 

supply, both due to the high rates of Apennine uplift (Cattaneo et al., 2003). The exceptional 

thickness (~8 km) of the Plio-Quaternary sedimentary succession preserved in these Adriatic 
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depocenters should be also linked to the presence of two areas overlying minimum Boguer anomalies 

(Pieri and Groppi, 1981; Bally et al., 1986; Cattaneo et al., 2003).  

 

Figure 2.11 – Schematic reconstruction of the main tectonic lineaments within the Po plain– Adriatic Sea 

and the location of the main foredeep basins. Redrawn and modified after Fantoni and Franciosi (2010). 

 

During the Quaternary, intense tectonic activity (Doglioni et al., 1994; Tinti et al., 1995; Trincardi 

and Correggiari, 2000) led to crustal deformation and uplift of structural highs in the central and 

southern portions of the Adriatic, to form the Gargano Promontory, Tremiti structural high and 

Gallignani Ridge (Figs. 2.9-2.12; Trincardi and Correggiari, 2000; Cattaneo et al., 2003; Ridente and 

Trincardi, 2006). 

The Gargano area during the Pliocene was characterized by a wide and subsiding foredeep basin that 

surrounded the Gargano Promontory (Torre et al., 1988). Since the late Pliocene, the development 

of a NE-SW oriented transpressive lineament known as the Tremiti Line led to the growth of the 

Tremiti structural high (Fig. 2.12). This tectonic feature acted as a lateral transfer zone, separating 

two portions of the Adriatic plate that thus underwent distinct subduction histories (Fig. 2.12; 

Doglioni et al, 1994; de Alteriis, 1995).  
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Figure 2.12 – Structural maps of the central/southern Adriatic Sea. Shown in the figure is the transpressive 

structure of the Tremiti Line, north of the Gargano Promontory, which acts as a transfer zone separating 

the two domains with different tectonic, subsidence and sedimentary evolution (after Doglioni et al., 1994).  

 

As confirmed by the structural map, the northern area underwent tilting and experienced high 

subsidence rates through the Quaternary owing to the incipient position of the Apennine thrusts 

(Doglioni et al., 1994; Trincardi and Correggiari, 2000). In contrast, south of the Gargano 

Promontory, the Apennine thrusts were located inland and the foredeep insists on the Bradanic 

trough (Maselli et al., 2011). Thus, the southern area underwent low rates of subsidence owing to 

the mid-Quaternary uplift triggered by lithosphere buckling caused by the more inland stacking of 

the Apennine thrusts (Doglioni et al., 1994; Ridente et al., 2008a). Slightly south of the Gargano 

Promontory, reactivation and inversion of Mesozoic extensional faults formed the Gargano 

Deformation Belt, which controlled the tectonic deformation in the Pliocene. Inland its main 

lineament is represented by the Monte S. Angelo – Mattinata Fault, whereas offshore, it extends to 

the W-E oriented Gondola Fault (Ridente et al., 2008a). The Gondola Fault is roughly 140 km long 

and is subdivided in two sectors, with slightly different orientations (Fig. 2.13). This orientation 

discrepancy led to the formation of a compressional structure during the late Miocene to the Early 

Pliocene known as Grifone, which is roughly oriented NW-SE (Alteriis, 1995). Seaward with respect 

to the Tremiti High, the Gallignani Ridge is a NW-SE-oriented complex structure formed by buckling 

of the subdued lithosphere around the peripheral bulge. This lineament folds and faults both 

Pliocene and Quaternary deposits and acted as a boundary for sedimentation in the central Adriatic 

shelf area (Trincardi and Correggiari, 2000). 
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Figure 2.13 – Topographic map featuring the Monte S. Angelo - Mattinata Fault (MF) and its offshore 

extension, the Gondola Ridge. The map also shows the compressional structure of Grifone formed by the 

transpressive reactivation of this Mesozoic lineament (after Alteriis, 1995). 

 

2.2.2. Late Quaternary stratigraphic architecture 

A dense network of high-resolution Uniboom 3.5-khz and Chirp-sonar profiles (e.g. Trincardi et al., 

1996; Cattaneo et al., 2003; Pellegrini et al., 2017a), combined with lithostratigraphic data from 

several short cores (Trincardi and Correggiari, 2000) and a few long cores (i.e., PRAD 1-2; Piva et 

al., 2008; Ridente et al., 2008b; Ridente et al., 2009; Pellegrini et al., 2017a, 2018), formed the basis 

for a detailed reconstruction of the Central Adriatic and MAD stratigraphic framework during the 

late Quaternary (Fig. 2.14). This stratigraphic framework is additionally constrained chronologically 

by numerous previously dated foraminifera bioevents, tephra layers and magnetostratigraphic 

polarity units (Asioli, 1996; Asioli et al., 2001; Ridente et al., 2008b; Bourne et al., 2010). Similar to 

that in the Po coastal plain, the middle Pleistocene to Holocene succession of the central Adriatic 

western margin records a cyclic staking pattern with alternating coastal-to-shallow marine and deep 

marine deposits that accumulated during glacial and interglacial periods, respectively, described as 

eccentricity-driven depositional cycles in Ridente et al. (2008b) and Ghielmi et al. (2010). Indeed, 

during the late Quaternary, the Adriatic underwent repeated rearrangements owing to Quaternary 

strong eustatic fluctuations of 100-130 m that, during glacial periods, exposed the entire Northern 

Adriatic shelf. With reference to the Last Glacial Maximum in the targeted area, the huge amount of 

sediments transported by the Po River led to construction of the Po River Lowstand Wedge (PRLW), 

a ~350 m thick succession that prograded of about 40 km southward into the MAD in ~17 ka (Fig. 

2.16; Trincardi et al., 2004; Pellegrini et al., 2017a, 2018). 

29



 
 

 

Figure 2.14 – Schematic reconstruction of the stratigraphy of the central Adriatic and MAD based on the 

high-resolution multichannel profile and PRAD 1-2 boreholes (detailed on the right; after Ridente et al., 

2008b).  

 

The southward progradation of the PRLW was accompanied by contemporary construction of minor 

sedimentary wedges on top of narrow shelves surroundings the flanks of the MAD (Ciabatti et al., 

1987; Trincardi et al., 1994; Trincardi and Correggiari, 2000). These minor wedges were fed by 

rivers of the central Apennine chain (Trincardi and Correggiari, 2000). This concerted wedge 

building severely reduced the MAD extension and its depth from ~450m (Pellegrini et al., 2018) to 

the modern-day ~260m (Trincardi et al., 1996; Zecchin et al., 2015).  
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Figure 2.15 - Lithological interpretation of the boreholes PRAD 1-2 (left) and summarized stratigraphy of 

PRAD 1-2 (right) with integration of magnetostratigraphy, marine isotope stages (MIS) and abundance 

curve for planktonic foraminifera for the last 1.2 Ma (after Ridente et al., 2008b). 

 

The PRLW is delimited at the base by the sequence boundary (SB in Fig. 2.16; dated at ~ 31.8 ka BP; 

Pellegrini et al. 2017b) and at the top by the TS (or MRS in Fig. 2.16) dated ~ 14 ka BP (Pellegrini et 

al., 2017a). The internal stratal architecture of the PRLW is composed of three main clinothem types 

shown as A-C in Fig. 2.16. In turn, they are organized in clinothem sets characterized by an overall 

progradational-to-aggradational stacking pattern (Pellegrini et al., 2017a). 

Each clinothem type is characterized by peculiar features concerning topset geometry, shelf-edge 

and onlapping trajectory, internal structure (seismic-inferred) and bottomset geometry (Fig. 2.16). 

These different clinothem morphologies have been connected to significant eustatic, climate and 

environmental changes that punctuated the last glacial phase. 
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Figure 2.16 – Top: Downdip multichannel profile LSD22 showing the Po River lowstand wedge clinothem 

architecture, along the main direction of progradation. Bottom: Along-strike profile LSD04 showing the 

succession in the basins. The three types of clinothems are described as A, B, and C. The red line indicates the 

sequence boundary (SB), and red orange and blue dots indicate the shelf-edge for type A, B and C clinothems, 

respectively. The white triangles indicate the onlap of type B clinothems. The insets show details of the basin 

facies associated with the different clinothems as highlighted by seismic reflectors (after Pellegrini et al., 

2017a). 

 

Briefly, type A clinothems show a topset with continuous strata. The high-amplitude reflectors of the 

topset diverge down-dip and then correlate with the bottomset deposits characterized by low-

amplitude and discontinuous reflectors. The ascending shelf-edge trajectory records a maximum 

vertical offset of ~10m, which is indicative of low rates of sedimentation and progradation. The 

geometry of the type B clinothem differs from that of the type A because of the truncated toplap 

geometry that passes basinward to semi-continuous high-amplitude bottomset reflectors. Contrary 

to type A, the shelf-edge trajectory is descendant (meters over horizontal distance of kilometers). 

This is indicative of high sedimentation rates and the fastest progradation of the clinothems. Finally, 

type C clinothems feature continuous seismic reflectors within the topset and bottomset. Contrary 

to that of the topset reflectors, which is always at high amplitudes, the bottomset one is characterized 

by high and low amplitudes. Type C clinothems record the lowest progradation and sedimentation 

rates. Further details of these clinothem types are given in Pellegrini et al. (2017a, 2018). 
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The briefly outlined overall geometry of the above clinothems enabled them to be grouped into two 

sets. Pellegrini and colleagues (2017a, 2018) described the lower set as being composed mainly of 

the clinothem types A and B. These units indicate sustained progradation with a flat shelf-edge 

trajectory that led to progressive filling of the MAD depocenter. A moderate aggradation has been 

also recognized (Fig. 2.16). Conversely, the upper clinothem set is represented by two type C units 

that record limited progradation and strong aggradation as evidenced by the strong ascending 

trajectory of the shelf-edge that developed during the initial phase of sea-level rise following the Last 

Glacial Maximum, which occurred between 18 and ~14 ka BP (Pellegrini et al., 2017a, 2018).  

Thus, during the last glacial phase, the MAD and central Adriatic shelf experienced sustained 

sedimentation in coastal to marine depositional settings, whereas the northern Adriatic was exposed 

completely and recorded episodic continental accumulation as evidenced by the development of a 

meter-thick alluvial succession. The subsequent deposition of the late Pleistocene-Holocene 

transgressive sedimentary succession occurred in the context of non-monotonic relative sea-level 

rise. In the central and especially the northern Adriatic, the resulting transgressive meter-thick 

deposits are represented by patchy sandy intervals with a coarsening-upward trend, overlaying 

widespread peat layers and topped by silty-muddy bay-to-marine deposits with highly irregular 

thickness (Correggiari et al., 1996; Storms et al., 2008; Amorosi et al., 2016; Trobec et al., 2018). 

The coarser bodies have been interpreted as almost completely recycled sand-barriers of drowned 

and rapidly backstepping barrier-lagoon-estuary complexes (Trincardi et al., 1994; Correggiari et 

al., 1996; Storms et al., 2008). Conversely, near the MAD, a rapid transgression associated with Melt-

Water Pulse 1A (Amorosi et al., 2015 and references therein), produced a condensed, rapidly 

deepening upward coastal to marine and thin but generally thickening north-eastward marine 

succession that recorded the first of many rapid phases in sea-level rises through the latest 

Pleistocene and early Holocene.  

At time of the highstand the northern and central Adriatic Sea experienced the deposition of a 

decametric-thick mud-dominated and fluvio-influenced sedimentary succession confined 

southward of the Po River Delta, in a narrow belt parallel to the modern eastern shoreline (Trincardi 

et al., 1996; Ridente and Trincardi, 2005; Goudeau et al., 2013; Amorosi et al., 2016). This muddy 

wedge passes eastward to thin muddy drapes 1-2m thick. Correggiari et al. (1996) reported that large 

parts of the northeast Adriatic shelf lack highstand units, and transgressive deposits have been found 

on the seafloor. For the MAD area, only the western shelf (i.e., the one closer to the HST mud wedge) 

records thin deltaic and shallow-marine progradational units composed of fine-grained sigmoidal 

clinoforms with gently dipping foresets of typically 0.5–1°. These units are likely a product of 

subaqueous progradation of muddy deposits supplied by the Po River and Apennine rivers. However, 

other sectors of the MAD lack a proper highstand unit and record only the distal condensed 

equivalent (Trincardi et al., 1996). 
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3. Research Outlines 
 

The research activities developed over the course of my Ph.D. research and presented in this thesis 

explore how integrated paleontological and sedimentological investigations of the geologic record 

can enhance the understanding of sedimentary succession architecture as well as past and future 

biotic trends, mainly within the Po Plain-Adriatic Sea system. My research activity and the obtained 

results are tied by a common application of the stratigraphic paleobiology principles in the 

investigation of late Quaternary marine fossil assemblages and their encasing sedimentary 

successions.  

The main goal of this Ph.D. was to acquire and use macrofossils to assess the response of late 

Quaternary ecosystems to environmental changes and to enhance the stratigraphic interpretations 

of fossiliferous sedimentary successions. Concerning data acquisition, my research activity focused 

on assembling an important dataset (chapter 4) from latest Quaternary succession of the Central 

Adriatic Sea (i.e., near Mid Adriatic Deep-MAD). In addition to the newly acquired macrobenthic 

dataset, this thesis presents four published papers that represent the fruitful results of stratigraphic 

paleobiology approach to Quaternary fossiliferous successions. They range from quantification of 

quality and resolution of the fossil record along an onshore-offshore transect (chapter 5), to 

assessment of host-parasite dynamics in relation to sea-level changes (chapter 6), to evaluate the 

impact of stratigraphic architecture on the shape of mass-extinction events (chapter 7). Finally, a 

brief methodological study focuses on the need to integrate different multivariate techniques to 

obtain robust stratigraphic paleobiological trends (chapter 8). A short introduction to the main 

results reported in this Ph.D. thesis is given below.  

 

Mid Adriatic Deep - Macrobenthic dataset (chapter 4) 

Azzarone M., and Scarponi D. 

A relevant part of my Ph.D. activities was dedicated to assembling a dataset on the species retrieved 

in the central area of the Adriatic Sea, near the MAD (Italy). This targeted area is currently 100 m – 

150 m below sea level. During the last glacial phase, however, it recorded the Po Delta and coastal 

dynamics at the time of lowstand. The MAD dataset has been completed and is composed of 187 

samples and 12,126 specimens grouped in 190 species. This dataset will be merged with a previously 

acquired dataset recording Po Delta and costal dynamics during the present and previous interglacial 

periods. This composite glacial/interglacial Po dataset will enable a historical perspective to be 

formed on modern ecosystems that have been shaped by long-term (glacial/interglacial) climatic 

oscillations. Moreover, an understanding of the long-term dynamics of those ecosystems (i.e., 

resilience, persistence or stochastic reassembly) to the long-term natural changes will provide an 
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important reference framework for assessing recent anthropogenic changes affecting deltaic 

ecosystems. 

Manuscript 1 (chapter 5) 

Systematic vertical and lateral changes in quality and time resolution of the macrofossil record: 

Insights from Holocene transgressive deposits, Po coastal plain, Italy 

Scarponi D., Azzarone M., Kusnerik K., Amorosi A., Bohacs K. M., Drexler T. M. and Kowalewski M. 

Marine and Petroleum Geology 87, 128-136 

This study, based on macrobenthic data from cored transgressive deposits, integrates taphonomic, 

bathymetric, and fossil density patterns to characterize Holocene spatio-temporal trends in 

taphonomic degradation along a 30 km onshore-offshore depositional profile. The joint 

consideration of quantitatively-derived eco-taphonomic trends enhanced interpretation of past 

sedimentary environments and past biotic trends and enabled identification of surfaces/intervals of 

sequence stratigraphic significance.  

Manuscript 2 (chapter 6) 

Surges in trematode prevalence linked to centennial-scale flooding events in the Adriatic 

Scarponi D., Azzarone M., Kowalewski M., and Huntley J.W. 

Scientific Reports 7(1), 5732 

The study utilizes the high-resolution stratigraphic and (sub-) fossil record of Holocene-aged lagoon 

and estuarine environments in northern Italy to test the responses of complex life cycle parasites 

over geological short-lived, but societally-relevant, sea-level oscillations. We find that using the most 

recent geological deposits to gain insight into biotic responses to climate change has distinct 

advantages over ecological studies of shorter temporal scales. These advantages include a longer time 

scale of observation, a high-resolution record of ecosystem response, and the potential for 

elucidating the roles of numerous biotic and abiotic factors on this pattern and their changes through 

sea level changes.  

 

Manuscript 3 (chapter 7) 

Stratigraphic signature of mass extinction: ecological and sedimentary determinants 

Nawrot R., Scarponi D., Azzarone M., Dexter T. A., Kusnerik M. K., Wittmer J. M., Amorosi A., and 

Kowalewski M. 

Proceedings of the Royal Society B, 285(1886), 20181191  
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The fossil record is the principal source of information on the causes and consequences of mass 

extinctions. This work investigated last occurrences (LOs) of macrobenthic species in four cores 

along a down-dip transect within the stratigraphically and chronologically well-resolved Holocene 

succession of the Po coastal plain. Given that a hypothetical catastrophic event caused the extinction 

of all molluscan fauna of the Adriatic Sea in recent times, this paper focuses on evaluating whether 

the observed LO positions follow an apparent gradual extinction pattern (i.e., Signor-Lipps effects) 

or if complex but entirely false patterns can emerge owing to sea-level driven facies shifts and non-

random distributions of fossil-rich deposits.  

 

Manuscript 4 (chapter 8) 

Early-Middle Pleistocene benthic turnover and oxygen isotope stratigraphy from the central 

Mediterranean (Valle di Manche, Crotone Basin, Italy): Data and trends 

Azzarone M., Ferretti P., Rossi V., Scarponi D., Capraro L., Macrì P., Huntley J.W., and Faranda C. 

Data in Brief, 17, 1099-1107  

This fourth paper presents a methodological study applied on the fossil Pleistocene benthic fauna 

from the Valle di Manche section (southern Italy). The availability of an integrated mollusk and 

ostracod dataset from a candidate section for the Middle Pleistocene Subseries drove my 

investigation on this area although not connected with the Po Adriatic Sea system. This integrated 

mollusk and ostracod dataset provides a unique opportunity to test the robustness of the 

paleoecological pattern derived by the application of various ordination analyses and to assess the 

main environmental driver(s) of faunal turnover. To this end, detrended correspondence analysis 

(DCA) and non-metric multidimensional scaling (nMDS) were performed on a set of abundance 

matrices derived by varying sample and taxon thresholds. The investigation concludes that - even 

varying the analytical sample threshold - stratigraphic plots of nMDS and DCA axis 1 sample scores 

yielded consistent faunal trends, that in accordance with previously conducted investigation on Po 

Plain-Adriatic Sea system, invariably indicate bathymetry as the main driver of faunal turnover along 

shelf settings. 

  

37



 
 

Chapter 4 
The MAD 

macrobenthic 

dataset 
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4. The Mid Adriatic Deep (MAD) dataset 
 

The MAD dataset described in this section and available on AMS Acta 

(http://doi.org/10.6092/unibo/amsacta/6101; protected access until 29 March 2022), is part 

of an ongoing larger project that aims to build a comprehensive macrobenthic dataset from the Po 

Plain‒Adriatic Sea system by sampling both sedimentary successions and present-day depositional 

surfaces. During my Ph.D. research, I processed samples taken from the MAD and near-MAD cored 

sedimentary succession in the central Adriatic, that contain marine lowstand deltaic and costal 

deposits from the last glacial time interval. Although an abundance of data has been gathered from 

the sedimentary succession of the Adriatic Sea, the dynamics of the macrobenthic community 

preserved there has been little investigated. The MAD dataset will represent a keystone for enhancing 

the knowledge of the molluscan fauna during the last glacial period. 

 

Figure 4.1– A) Network of seismic lines acquired in the last decades by Istituto di Scienza Marine – 

Consiglio Nazionale delle Ricerche (ISMAR-CNR) in the Adriatic Sea (after Amorosi et al., 2015). (B)-(D) 

Location of the investigated cores in the central Adriatic Sea and MAD (Pellegrini C. unpublished 

material). 

 

4.1. MAD data collection 

During the last 20 years, several oceanographic cruises conducted by Istituto di Scienze Marine 

(ISMAR-CNR) in Bologna collected a database of 80,000 km of high-resolution seismic profiles 
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obtained mainly by the Chirp Sub Bottom Profiler (Amorosi et al., 2015; Pellegrini et al., 2018). 

Morpho-bathymetric data were acquired by using a multibeam echosounder system. Moreover, more 

than 800 gravity and piston short cores (<10 m) and two borehole long cores (PRAD1 and PRAD2) 

were collected along the Adriatic Sea (Fig. 4.1). The MAD dataset was assembled by examining cores 

taken from the MAD and surrounding areas mainly during the cruise LSD2-2015 operated by the 

Research Vessel Minerva 1. The cruise resulted in a collection of 22 cores including piston, gravity, 

and vibro cores and six Van Veener grab samples. In addition, four previously acquired cores, one 

collected during the INVAS 2012 cruise and three collected during the AN 1997 cruise were 

considered. All of the investigated cores were stored in a refrigerated cell at ISMAR-CNR in Bologna 

and subdivided in 1m long segments. For each targeted core, ISMAR-CNR personnel provided 

lithological and facies descriptions, magnetic susceptibility profiles and a preliminary sequence 

stratigraphic interpretation.  

 

Core Name Latitude Longitude Device Water Depth (m) Recovery (m) # of samples 

LSD2-04 42.856494°N 14.626905°E PC 10 m 230 8.97 14 

LSD2-05 42.883066°N 14.602752°E PC 10 m 199 8.33 14 

LSD2-09 43.012104°N 14.806459°E GC 6 m 136.7 2.32 5 

LSD2-17 42.886148°N 14.600467°E GC 6 m 192 3.06 5 

LSD2-19 43.569592°N 14.232994°E VC 6 m 84 5.3 11 

LSD2-21 43.563881°N 14.316475°E VC 6 m 87 5.69 6 

LSD2-22 43.561092°N 14.317009°E VC 6 m 88 5.9 15 

LSD2-24 43.569952°N 14.377668°E VC 6 m 84 5.6 7 

LSD2-25 43.192624°N 14.286502°E VC 6 m 83.1 5.6 10 

LSD2-26 43.081668°N 14.440637°E VC 6 m 98.6 5.21 8 

LSD2-27 42.895910°N 14.592332°E VC 6 m 146 5.4 9 

LSD2-28 42.896907°N 14.591559°E VC 6 m 145 5.6 12 

LSD2-35 43.042674°N 14.848213°E VC 6 m 123 5.7 10 

LSD2-36 43.073539°N 14.822226°E VC 6 m 130 5.7 9 

LSD2-37 43.049098°N 14.842841°E VC 6 m 117 5.4 12 

LSD2-38 42.008205°N 16.281927°E VC 6 m 64 5.6 9 

AN97-31 43.669890°N 14.339024°E GC 2.8m 80.5 2.29 6 

AN97-32 43.669890°N 14.339357°E GC 2.8m 80.5 2.8 5 

AN97-40 43.588388°N 14.336859°E GC 2.8m 86.2 2.35 5 

INV-05 42.994021°N 14.831556°E PC 10m 140 6.90 15 

       

Table 4.1 – List of the 20 cores investigated for acquiring the MAD macrobenthic dataset. PC = piston corer, 

VC = vibrocorer, GC = gravity corer. 

 

Unfortunately, not all cores were available or suitable for sampling: 20 out of 25 of the targeted cores 

mentioned above were sampled. Specific information on each targeted core is given in Table 4.1. The 
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resulting sampling effort consisted of 187 bulk samples (about 150 cm3 each), acquired from the 

targeted cores (Table 4.1) with average vertical spacing of 0.5 m. The samples were commonly taken 

from near the top and the bottom of each core-segment. In the case of fossiliferous intervals an 

additional sample was taken from the middle portion of the targeted segment. The samples were 

processed at the Department of Biological, Geological and Environmental Sciences of Bologna 

University. Each sample was soaked in ca. 10% H2O2 for 12 h or more, depending on the lithology. 

The resulting processed sediment was wet sieved by using 1 mm screens. For each sample, all 

mollusk specimens were identified to the species level (when possible) and were counted. In the case 

of bivalves, each valve was counted as one specimen. Only complete macrobenthic fossils or unique 

fossil fragments (e.g., umbo for bivalves and apex for gastropods) were counted. The sampling effort 

yielded 190 species grouped in 174 genera consisting of 12,126 specimens of mainly bivalves and 

gastropods. Details are given in Table 4.2. 

 

# cores investigated 20 

# samples collected 187 

# taxa 294 

# identified genera 174 

# identified species 190 

# bivalves species (total) 130 (44.2%) 

# gastropods species (total)  155 (52.7%) 

# other molluscs species (total) 9 (3.1%) 

# specimens  12126 

 

Table 4.2 – Salient abundance information about the MAD dataset. Results are clear showing the strikingly 

dominance of Gastropods and Bivalves, that together cover more than 95% of the recorded taxa. 

 

4.2. MAD dataset structure  

The MAD macrobenthic dataset consists of two main parts. The first part (i.e., the first 15 columns), 

reports all of the relevant chronological, environmental, geographic and stratigraphic information 

for each collected sample because, the main purpose of the MAD dataset is to explore mollusk 

dynamics in relation to time and space. For each sample, the main stratigraphic, temporal and 

geographic qualifiers are reported along with a brief explanation in Table 4.3. 
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Region Italian region from which the core was taken 

Samp_date Date of collection (dd/mm/yyyy) 

Depth_sampling_(m) 
Sample stratigraphic depth in meters along the core, the sea-bottom = 0 

m 

Collector Name of the sample collector 

Sheet Sheet of the geological map of Italy in which the core is located 

Well Core label 

Systems_Tract Sample’s sequence stratigraphic characterization 

Age Inferred time interval of deposition (i.e., Holocene or late Pleistocene) 

Substrate Substrate recorded by the sample 

Depositional_element 
Sedimentary body or assemblage of bodies genetically related and 

deposited by the same medium 

Facies_associations 
Group of sedimentary facies used to define a particular sedimentary 

environment 

Latitude Core/sample coordinate expressed in grades and fraction of grades 

Longitude Core/sample coordinate expressed in grades and fraction of grades 

Site_Altitude (m) Distance in meters of the site with respect to modern sea-level 

  

Table 4.3 – Summary of temporal and geographical qualifiers reported in the dataset 

 

The second part reports the sample taxonomic and abundance composition. The dataset is available 

on the AMS Acta repository (http://doi.org/10.6092/unibo/amsacta/6101; protected access 

until 29 March 2022). In addition, the relevant information is provided for each taxon identified. 

Specifically, the sample and species ID labels include a unique numerical or alphanumerical 

attribute (e.g., taxon-28), respectively. The Ecosystem label gives a broad environmental 

characterization for each taxon retrieved. Table 4.4 gives the identifiers adopted and the relative 

environmental characterization.  

 

Ecosystems Label Explanation 

L Land 

F Freshwater 

F/B Freshwater/Brackish 

B Brackish 

B/M Brackish/Marine 

M Marine 

 

Table 4.4 - Environmental labels employed to characterize MAD taxa 
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Then, four commonly employed taxonomic ranks are reported separately and in descending order of 

class, family, genus and species. Although the higher taxonomic level employed here has been 

recognized for all specimens retrieved in the MAD samples (Table 4.5), increasingly higher 

percentages of fossil were not attributed to lower ranks and were left in open nomenclature. For 

example, about 35% of the total species are in open nomenclature mainly owing mainly to poor 

preservation of the examined specimens. Then, for each species name, its original author and date 

identifiers are reported to distinguish between homonyms of species-group names.  

 

Class label Explanation 

P Polyplacophora 

G Gastropoda 

C Cephalopoda 

B Bivalvia 

S Scaphopoda 

Po Polychaeta 

Ma Maxillopoda 

Br Brachiopoda 

Ec Echinoidea 

 

Table 4.5 - Class rank employed to characterize MAD taxa. 

 

The MAD dataset also reports, for each species considered the relevant auto-ecological information 

in order to characterize its life mode. Specifically, each species has been assigned (based on available 

literature) to generalized guilds in terms of: a) type of feeding; b) substrate preference; c) 

degree of activity. For point (c), a further classification has been provided in the case of immobile 

taxa. Table 4.6 gives specific information on each identifier employed for the afore-mentioned guilds. 

 

Substrate relationship label Explanation 

IN Infaunal 

SI Semi-infaunal 

EP Epifaunal 

WB Borer, nestler, …, within burrows 

EP-IN Epifaunal to infaunal 
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NC Nekton 

Mobility label Explanation 

IM Immobile 

SE Sedentary 

AM Actively mobile 

Shell fixation label Explanation 

UN Unattached 

BA Byssally (or other means) attached 

CE Cemented, by the shell or byssal cementation 

Feeding type label Explanation 

SU Suspension feeder 

DE (sub)surface (chemo symbiotic) deposit feeder 

HE Herbivores on rock plant, algal substrates 

CAR Carnivore 

OM Omnivorous 

PAR Parasite 

SU-DE Suspension (sub)surface (chemosymbiotic) deposit feeder 

HE-CAR Herbivore and carnivore 

PAR-CAR Parasite and carnivore 

 

Table 4.6 – Life mode retrieved in MAD taxa 

 

Finally, family ID, genus ID and species ID labels are identifiers that are invariant for each taxa-

group at the taxonomic level considered (here, family, genus or species). That is, all taxa belonging 

to the same taxonomic-group at the level of family (e.g., Spaeriidae), genus (e.g., Pisidium) or species 

(e.g., Pisidium obtusale and Pisidium cf. obtusale) will share the same ID. Open nomenclature taxa 

are not assigned an ID.  

 

4.3. Future applications and outreach 

Molluscan assemblages proved to be a powerful environmental tracker of high-frequency sea-level 

fluctuation that shaped the Quaternary history of coastal areas worldwide, meanwhile allowing high-

resolution paleoenvironmental reconstructions (Meldahl et al., 1990; Roy et al., 1996; Schone et al., 

2003; Goodwin et al., 2003; Tyler and Kowalewski, 2014; Bösken et al. 2018; West et al., 2018). For 

example, multivariate ordination of marine mollusk assemblages provided reliable depth estimates 
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for Quaternary depositional environments of the Po coastal plain (Scarponi and Kowalewski, 2004; 

Wittmer et al., 2014; Kowalewski et al., 2015; Scarponi et al., 2017). Hence, one of the purposes of 

this dataset is to test whether mollusk turnover in deeper marine succession of the MAD and central 

Adriatic, strongly correlate with their preferred depth as in the proximal basin area (the Po coastal 

plain). In fact, species turnover in offshore-settings could not be influenced by bathymetry as 

strongly as that of proximal settings. In addition, this dataset will provide an opportunity to depict 

Adriatic molluscan assemblages during the last glacial phase.  

At the broader scale, the combined proximal-distal datasets (i.e., Po coastal plain-MAD) will provide 

documentation of marine macrobenthic ecosystems of the Adriatic across the last glacial-interglacial 

cycle and will be used to assess the ecological response of deltaic communities to long-term climate 

changes. In this respect, a previous study (Kowalewski et al., 2015) that compared deltaic mollusk 

assemblages between the present and previous interglacial periods, proved that marine communities 

of the penultimate interglacial reassembled unchanged following the last ice age. This recurrence of 

the same associations, in term of dominant species and other community descriptors, can indicate 

strong resilience if the community disintegrated upon perturbation (i.e., the last glacial maximum), 

but then recovered to a similar or even identical form after some time. Alternatively, it can indicate 

ecological persistence if the targeted associations continue through the perturbation. In this light, 

the MAD dataset that records coastal/deltaic dynamics of macrobenthic Adriatic communities at the 

time of the last glacial phase will shed light on and discriminate between the aforementioned long-

term dynamics of Adriatic shallow marine communities.  

In summary, the information reported in this dataset will enable reconstruction of the ecological 

response of the macrobenthic communities to climatic-driven late Quaternary sea-level oscillations. 

This will, in turn provide a reference framework for evaluating the severity and significance of 

anthropogenic climate changes on marine ecosystems. 
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a b s t r a c t

In siliciclastic marine settings, skeletal concentrations are a characteristic feature of transgressive in-
tervals that provide insights into biological and sequence-stratigraphic processes. To investigate taph-
onomic signatures of transgressive intervals, we analysed three cores along a depositional profile from
the high resolution chrono- and stratigraphic framework of the Holocene Po coastal plain, in northern
Italy. Coupled multivariate taphonomic and bathymetric trends delineated spatial and temporal gradi-
ents in sediment starvation/bypassing, suggesting that quality and resolution of the fossil record vary
predictably along the studied depositional profile. Moreover, integration of taphonomic, bathymetric,
and fossil density trends across the study area reveals distinctive signatures useful in characterizing
facies associations and determining surfaces and intervals of sequence-stratigraphic significance. Within
the southern Po plain succession, taphonomic degradation of macroskeletal remains increases from
proximal/nearshore to distal/offshore locations. This trend is discernible for both biologically-driven
(bioerosion) and physically-driven (e.g., dissolution, abrasion) shell alterations. Compared to the up-
dip (most proximal) core, the down-dip core is distinguished by shell-rich lithosomes affected by
ecological condensation (co-occurrence of environmentally non-overlapping taxa) and by higher taph-
onomic alteration. The onshore-offshore taphonomic trend likely reflects variation in sediment-
accumulation along the depositional profile of the Holocene Northern Adriatic shelf, with surface/
near-surface residence-time of macroskeletal remains increasing down dip due to lower accumulation
rates. These results indicate that, during transgressive phases, changes in sea level (base level) are likely
to produce down-dip taphonomic gradients across shelves, where the quality and resolution of the fossil
record both deteriorate distally. Radiocarbon-calibrated amino acid racemisation dates on individual
bivalve specimens and the chronostratigraphic framework for this profile suggest jointly that the high
levels of taphonomic degradation observed distally developed over millennial time scales (~8ky).
Whereas in proximal setting overall low taphonomic degradation and geochronologic constrains point to
centennial-scale time-averaging during the late transgression phase. Patterns documented in the Ho-
locene transgressive (and lowermost regressive) deposits of the southern Po Plain may be characteristic
of siliciclastic-dominated depositional systems that experience high-frequency, base-level fluctuations.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In marine settings, skeletal concentrations often represent the
geologic by-product of a complex interplay between the rate of
poni).
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production of skeletal material (biogenic) and variations in clastic
sediment supply/accumulation (Kidwell, 1986; Toma�sových et al.,
2006). In siliciclastic-dominated depositional settings, the close
association of skeletal-rich deposits with prominent sequence-
stratigraphic surfaces (e.g., Holland, 2000; Patzkowsky and
Holland, 2012; Amorosi et al., 2014; Scarponi et al., 2014; Aucoin
et al., 2016; Danise and Holland, 2017) suggests that
taphonomically-complex, fossil-rich lithosomes are primarily a
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product of the interaction between sedimentation and accommo-
dation. Consequently, variations in the taphonomic signature of
siliciclastic fossiliferous deposits may be driven primarily by sedi-
mentary inputs and depositional processes (i.e., R-sediment model
of Kidwell, 1985, 1986), or by variations in the production rate of
biogenic skeletal remains (i.e., the R-hardpart model; see
Toma�sových et al., 2006). This assumption has been successfully
corroborated by qualitative and quantitative studies of several
Quaternary (and older) siliciclastic successions around the globe
(Kidwell, 1989; Meldahl, 1990; Abbott et al., 2005; Cantalamessa
et al., 2005; Toma�sových et al., 2006; Scarponi and Kowalewski,
2007; Zecchin and Caffau, 2011; �Avila et al., 2015; Scarponi et al.,
2016; Brady, 2016).

Given these considerations, taphonomic characterization of
marine fossil assemblages could aid environmental interpretation
and may offer a potentially useful tool for identifying and delin-
eating sequence-stratigraphic units and their bounding surfaces
(e.g., Brett, 1998; Holland, 2000; Dominici, 2001; Huntley and
Scarponi, 2012; Zecchin and Catuneanu, 2013; Horodyski et al.,
2014; Giannetti and Monaco, 2015). This is especially true when
stratigraphic interpretations are based on cores, for which infor-
mation on the geometry of sedimentary bodies is exceedingly
limited. In such cases the study of taphonomic and paleoecologic
attributes of skeletal concentrations can provide an additional
strategy for assessing the formational histories and stratigraphic
development of cored successions. Here, we focus on the quanti-
tative taphonomy of mainly transgressive fossiliferous lithosomes
(with particular emphasis on marine deposits) from cores in the
Holocene Po Plain succession (northern Italy) within the context of
previously established, high-resolution facies, chronostratigraphic,
and sequence-stratigraphic frameworks (Fig. 1; see Amorosi et al.,
2017). Specifically, this study aims to: (1) compare taphonomic
attributes of skeletal concentrations within and across genetically-
related segments of the ~30-km long nearshore to shallow-marine
dispersal system developed during the Holocene transgression;
and (2) employ ecologic and taphonomic features of fossil assem-
blages to identify prominent sequence-stratigraphic surfaces (e.g.,
maximum flooding surface MFS) and intervals (e.g., condensed
section CS), as well as investigate systematic changes along the
studied profile.

2. Sequence-stratigraphic framework of the latest
Quaternary Po plain succession

The latest Quaternary deposits (<30ky) of the southern Po Plain
represent a few tens of meters thick succession of siliciclastic
sediments. Extensive subsurface investigations conducted during
the past few decades have led to a detailed reconstruction of the
region's stratigraphic architecture (e.g., Amorosi et al., 1999;
Scarponi and Kowalewski, 2004; Correggiari et al., 2005; Stefani
and Vincenzi, 2005; Storms et al., 2008; Amorosi et al., 2016;
Bruno et al., 2016; Calabrese et al., 2016; Scarelli et al., 2017). The
lowermost part of this succession consists of alluvial facies
deposited during the Last Glacial Maximum (30-18ky BP) and initial
eustatic rise (18-14ky BP) phases, when sea level was approxi-
mately 120-to-90 m lower than today. Its upper portion (mainly
Holocene in age), is dominated by a variety of transitional to
shallow-marine deposits, accumulated during rapid eustatic rise
(14-7ky BP) and subsequent highstand (6ky BP onward). In the
study area, these genetically-related strata, up to 40 m in thickness,
represent the Last Glacial Maximum (LGM) depositional sequence
(Amorosi et al., 2017) which is dominated by aggradational
alluvial and upper coastal plain facies associations (Lowstand sys-
tems tractdLST). The LST transitions upwards into retrogradational
muddy lower coastal plain to shallow-marine deposits
49
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(Transgressive systems tractdTST) overlain by a mosaic of deltaic
to coastal plain deposits reflecting the subsequent Holocene pro-
gradation (Highstand systems tractdHST). Eight higher-order
depositional successions (meter-thick parasequences) that devel-
oped over centennial-to-millennial time scales characterize the
internal structure of the LGM sequence (Fig. 1B). These para-
sequences, geochronologically well-constrained (Fig. 1B), can be
defined by their characteristic bounding surfaces, internal stacking
patterns, and geometric relations to surrounding strata (see
Amorosi et al., 2017).

3. Methods

Three cores along a ~30-km down-dip transect across the
southern Holocene Po Plain were investigated in this study (Fig. 1).
Detailed (20-cm scale) stratigraphic description of the investigated
portion of each core provides the depositional context for the
fossiliferous deposits. Core 205-S6 is proximal to the shoreline at
the time of maximum marine ingression (<5 km from shoreline),
core 205-S9 is intermediate (~18 km), and core EM-S4 is distal
(~30 km; Fig. 1). The brackish-to-marine (TST) and lowermost
marine (HST) core sections were sampled at high resolution (~5 cm
intervals, ~250 cm3 of sediment, commonly every 25 cm or more
closely spaced in richly fossiliferous intervals) to quantitatively
evaluate faunal composition, ecologic characteristics, and tapho-
nomic attributes of macroskeletal assemblages (raw data are pro-
vided in supplementary material). In total, 50 samples were dried
for 24 h at 40 �C, then soaked in ~4% H2O2 (�12 h, depending on
lithology) and wet sieved (see also Scarponi and Angeletti, 2008).
The laboratory treatment is unlikely to have induced any notable
alterations of the sampled shell material because we used a highly-
diluted peroxide for a short interval of time. Sample-level bathy-
metric estimates were derived by employing non-metric multidi-
mensional scaling (nMDS) of species abundance data. These water
depth estimates were integrated with high-resolution facies ana-
lyses (Fig. 1). Lowermost HST deposits were investigated to
constrain, at dm-scale resolution, the turnaround between trans-
gressive and regressive stacking patterns.

nMDS is a dimension-reducing multivariate technique that or-
dinates samples in a reduced space of 2 or 3 dimensions using
arbitrarily scaled scores. This approach was also used to recognize
and characterize backstepping-nearshore (here the main focus)
from aggrading-shallow marine deposits (TST vs. lowermost HST).
The nMDS ordinationwas conducted on a matrix of relative species
abundance using BrayeCurtis distance. The acceptable value of
stress (<0.20) resulted from nMDS performed in two dimensions
(2 k). Bathymetric estimates were obtained by regressing nMDS 1
sample scores against sample-level bathymetric data obtained by
specimen-weighted averaging of a subset of species with known
bathymetric distribution. This method is fully explained inWittmer
et al. (2014); see EG-DC: posterior calibration of ordination scores
using preferred depth of taxa; see also Tables S1 and S2 in sup-
plementary material).

In order to investigate taphonomic-degradation patterns within
cores and across the depositional gradient, percent volume of
skeletal remains retrieved in each sample was recorded and 60
shells, or fragments larger than 2 mm, were randomly selected
from each sample and inspected for taphonomic damage. Samples
with scarce fossils content (n < 60 fragments/shells) were not
examined. A total of 45 samples yielded sufficient material for
taphonomic investigations. Each specimen was examined with a
binocular microscope using 10� magnification, and six variables
were recorded and scored following the protocol defined in Table 1.
Fragments/shells varied in dimension from 2 to 40 mm. As shell/
fragment size could potentially introduce an area-related bias (i.e.,
50
larger fragments offer more surface for examination), the analyses
were computed focusing only on the more abundant size classes
(2e6 mm). Sample size [n] remained reasonably adequate after the
culling of specimens larger than 6mm (n range: 35e59, mean n: 51;
2290 fragments/specimens total). The multivariate taphonomic
relations between all samples were also explored using nMDS. The
pairwise distances between samples were based on multivariate
Euclidean distances using z-scored % values of taphonomic vari-
ables. That is, for each sample, a relative abundance score for each
taphonomic state was computed separately for each taphonomic
variable. For each taphonomic state, relative abundances were z-
standardized (scaling to zero mean and unit variance) to ensure
comparable weighting of all variables. The nMDS ordination was
employed to visualize relative similarities of all samples in terms of
their taphonomic signatures. The nMDS performed in 2 k returned
a good value of stress (0.123). For each core, nMDS-derived taph-
onomic profiles were plotted along stratigraphic architecture to
help delineate taphonomic trends and contrasted with nMDS-
derived bathymetric profiles. Note that in the intermediate core,
due to previously collected samples around MFS, transgressive
deposits were explored only partly.

Finally, five 14C-calibrated amino-acid-racemisation ages were
estimated for bivalves, including specimens of upper shoreface
Lentidium and offshore Corbula. These specimens were recovered
from within the top-most sample collected from a ~25 cm thick,
densely packed fossiliferous interval in the offshore distal sector
(EM-S4). These dates, along with others previously published
(Scarponi et al., 2013; Campo et al., 2016, Fig. 1B), provide direct
numerical insights into the geochronology and temporal resolution
of the fossil record of the investigated region. Analyses were per-
formed at the Amino Acid Geochronology Laboratory - Northern
Arizona University (USA). All statistical analyses were performed
using R (R Development Core, 2016) and PAST (Hammer et al.,
2001) softwares.

4. Results

The nMDS ordination of taphonomic variables indicates that
nMDS axis 1 is positively correlated with taphonomic damage: low
axis-1 values point toward high taphonomic alteration of samples
(Fig. 2). Specifically, samples with high axis-1 scores are typified by
the absence or scarcity of bioerosion, dissolution, ornamentation
loss, and immuration. A high degree of bioerosion, color alteration,
and complete ornamentation loss characterize samples with lower
(negative) nMDS axis-1 scores.

Samples are regularly distributed along axis 1 of the ordination
plot (Fig. 2). Samples from proximal (205-S6) and intermediate
(205-S9) cores are located in the mid-upper right quadrant of the
nMDS plot and form adjacent, highly overlapping groups in the
ordination space (Fig. 2). Samples retrieved from the distal (EM-S4)
core are more widely dispersed in the nMDS space, but show only
limited overlap with the intermediate core samples and no overlap
with the proximal core samples (Fig. 2). Plots of nMDS axis-1
sample scores along core depth show that taphonomic profiles
are variable from site to site, the overall taphonomic damage,
however, tends to increase from proximal to distal locations
(Figs. 3e4). In both proximal and distal cores, the major peak in the
taphonomic damage is recorded in the facies associations related to
deeper settings (i.e., shoreface transition and offshore, respec-
tively), and in agreement with the maximum depth estimate
(Fig. 3). In the intermediate core, peak damage occurs within the
transgressive sand sheetda meter-scale lithosome with strong
evidence of physical reworking. However, no samples at the level of
estimated maximum water depth (Fig. 3) were available for taph-
onomic analyses. Minor peaks in nMDS axis-1 scores are also



Table 1
Taphonomic variables and damage states used to score skeletal items from the Holocene Po Plain succession.

Taphonomic primer

Variable Evaluation of State

Ornamentation(orn.) sculpture state of shell/fragment 0 ¼ pristine or well preserved; 1 ¼ worn; 2 ¼ lost/completely erased;
3 ¼ smooth shell

Immuration (imm.) precipitation of minerals on skeletons
(e.g., carbonates or gypsum)

0 ¼ pristine; 1 ¼ traces; 2 ¼ in part; 3 ¼ coated

Fragmentation (frag.) skeleton breakage 0 ¼ whole valve or specimen; 1 ¼ fragment,
Color (col.) colors and patterns on shell surface 0 ¼ pristine/fresh; 1 ¼ faint/traces; 2 ¼ discolored/not visible;

3 ¼ secondary color/pattern
Dissolution (diss.) dissolution on skeletal 0 ¼ not visible, 1 ¼ initial stage, 2 ¼ advanced stage
Bioerosion (bioer.) perforation or encrustation degree 0 ¼ not visible; 1 ¼ in part, 2 ¼ completely covered

Fig. 2. nMDS in two dimensional space, based on Euclidean distance for z-standard-
ized relative abundances of taphonomic variables of samples from the Holocene Po
plain succession. Both taphonomic variables and samples are displayed.
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observed at all three sites associated with facies shifts or across
stratal boundaries (Fig. 3).

Finally, both bathymetric and taphonomic nMDS-derived trends
coupled with ecologic information of recovered species appear to
be diagnostic of the transgressive facies associations.

Specifically, lagoon/bay deposits commonly show barren or
sparse, macroskeletal remains of mainly brackish taxa (e.g., Cera-
stoderma glaucum, Abra segmentum; Fig. 4C, F and I). These deposits
are characterized by an overall invariant and/or upward decreasing
(well to fairly preserved) taphonomic degradation coupled with
invariant to deepening-upward bathymetric profiles (Fig. 3). 14C-
calibrated shelly material from outer-lagoon deposits from a com-
panion core yielded centennial time estimates of time averaging
(see Scarponi et al., 2013 locality 4). Minor spikes in the taphonomic
damage profile are mainly associated with lithofacies changes.

Transgressive sand sheetdTrSS intervals are characterized by
fossiliferous, ecologically mixed assemblages of brackish to shallow
marine taxa (e.g., Cerastoderma, and tellinids respectively; Fig. 4E
and H), with intermediate taphonomic degradation that increases
basinwards (Fig. 3BeC). Previously 14C-calibrated amino acid rac-
emisation (AAR) dates from the topmost of this fossiliferous sand
sheet in the intermediate core yielded age-offset of ~3.9 ky
(Scarponi et al., 2013, Fig. 3B). Within this facies association the
vertical changes in taphonomic damage follow a v-shaped pattern
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characterized by an increasing and then decreasing-upward trend
(Fig. 3BeC). These taphonomic changes developed within a
bathymetrically invariant setting in the intermediate core (Fig. 3B).
In the distal core, the bathymetric profile initially appears sub-
stantially invariant (i.e., observed changes are within the uncer-
tainty of the estimate ±1.8 m in Fig. 3), followed by shallowing. In
contrast, fossiliferous and lithologically similar lower-shoreface
deposits that also developed across a bathymetrically invariant
trend, can be easily distinguished from TrSS by their overall low
shell damage, reversed taphonomic degradation trend (first
decreasing and then increasing upward; Fig. 3A), and ecologically
coherent (lower shoreface) monotaxic Chamelea gallina assem-
blages (Fig. 4B), framed within a centennial-scale parasequence.
This latter is nested within millennial-scale parasequence 2 (no
radiometric data available; Fig. 1, Campo et al., 2016).

Offshore facies show variable taphonomic damage in relation to
their position along the depositional profile (i.e., intermediate vs.
distal). That is, offshore samples from the intermediate core show
notably lower taphonomic degradation than offshore samples from
the distal core (Figs. 3A, C and 4D, G). Only in the distal core we did
observe a densely packed skeletal concentration (~25 cm thick) of
highly-degraded (e.g., bioeroded and abraded) and ecologically
non-overlapping mollusks in association with maximum water
depth (>20 m; Figs. 3C, 4G and 5). These assemblages are domi-
nated by species typical of Adriatic coralligenous assemblages that
thrive in areas of minimal clastic sediment accumulation, low light
and relatively low benthic-energy levels (Ballesteros, 2006). The
14C-calibrated amino acid racemisation (AAR) ratios of the five
shells did not include any outliers with aberrant amino acid sig-
natures (see screening procedure in Scarponi et al., 2013). The ages
were consistent within each of the two analysed species. Specif-
ically, upper shoreface Lentidium valves yielded age estimates be-
tween 9.2 and 9.6ky, whereas, ages of offshore Corbula specimens
ranged between 0.9 and 1.2ky (see Table S1 in supplementary
material). These layers of ecologically mixed and highly damaged
faunal remains (Fig. 3C) suggest the presence of a fossiliferous
condensed sectiondCS in the distal core (Figs. 4G and 5).
5. Discussion and conclusion

5.1. Eco-taphonomic patterns and their driving factors

In back-barrier settings, taphonomic patterns are relatively
consistent along the investigated depositional onshore-offshore
profile. Scattered skeletal remains, characterized by low or
decreasing upward taphonomic degradation, framed within a
centennial-scale residence time, suggest relatively high net-
accumulation rates. Preliminary estimates indicate average sedi-
mentation rates of 2e6 mm/yr in transgressive back-barrier set-
tings (Scarponi et al., 2013; Campo et al., 2016).



Fig. 3. Temporal trends across the three analysed cores. From left to right the columns represent (1) interpreted facies association and parasequence stack following Amorosi et al.,
2017 (dashed, grey rectangle represents the portion of the core where parasequences are not resolvable), (2) core lithology; (3) vertical changes in faunal composition estimated by
nMDS (Bray-Curtis distance) axes 1 scores based on faunal composition of samples; the red bar marks standard error (±1.8 m) in the water depth estimates (see also Tables S1e2 in
supplementary material); (4) vertical changes in taphonomic signatures estimated by nMDS (Euclidean distance), axes 1 scores based on z-standardized mean taphonomic scores of
samples; (5) Density (% sample volume) of skeletal remains across cores. The boxes on the right side of the plots summarize sequence-stratigraphic interpretation based on the
examined eco-taphonomic features. Abbreviations: TSTdtransgressive systems tract; HSTdhighstand systems tract; RSdravinement surface; FSdflooding surface; MFSdmax-
imum flooding surface. In the distal core, reported ages are mean ages based on 14C-calibrated amino acid racemisation rates of Corbula (lower date) and Lentidium specimens (see
also Table S3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Examples of macrofossil assemblages and taphonomic signatures retrieved along the depositional profile and across cores. A) Scattered fairly preserved, ecologically
coherent assemblage (16.00 m core depth): 1dSpisula subtruncata specimen with decolored and smooth shell; 2dFabulina fabula specimen with altered color. B) Richly fossil-
iferous, overall well preserved and monotaxic Chamelea gallina assemblage (17.80 m core depth): 1dC. gallina unique fragment with worn sculpture; 2dNassarius specimen with
well preserved sculpture and traces of color. C) Scattered, overall well preserved, assemblage (18.70 m core depth): 1dCerastoderma glaucum specimen with traces of color. D)
Scattered, well preserved assemblage (25.45 m core depth): 1dTurritella communis fragment discolored, but otherwise well preserved. E) Richly fossiliferous, ecologically mixed
assemblage showing overall intermediate taphonomic degradation (26.90 m core depth): 1dbrackish C. glaucum and 2dupper shoreface Donax, common fragment with altered
colors; 3dOstrea fragment decolored and bioeroded. F) Scattered, overall well-preserved ecologically-coherent assemblage (28.30 m core depth): 1djuvenile C. glaucum valve with
altered color; 2dbrackish Abra segmentumwell preserved. G) Richly fossiliferous assemblage recording highest taphonomic damage (26.75 m core depth): 1dTrochidae specimen,
partly immurated, discolored, bioeroded; 2dPectinidae, completely encrusted by calcareous algae. H) Richly fossiliferous and ecologically mixed assemblage with intermediate
taphonomic damage (27.75 core depth): 1d C. glaucumworn specimen showing advanced stages of dissolution; 2doffshore Atlantella specimen well preserved with traces of color.
I) Sample devoid of molluscs, only plant debris were retrieved (core depth 28.90 core depth). Scale bar ¼ 10 mm. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Within the marine TST, taphonomic patterns change predictably
along the depositional profile and show increasingly higher time-
condensation, even for those samples that belong to the same
facies association (i.e., TrSS and offshore) and show comparable
faunal turnover and overlapping bathymetric profiles (e.g., the in-
termediate and distal portions; see Fig. 3). The basinward increase
in taphonomic degradation coupled with increasingly poorer time
resolution, suggests that changes in clastic supply, likely controlled
by increasing distance from the shoreline and cyclonic
oceanographic-circulation patterns (Amorosi et al., 2016), were the
major drivers in shaping the taphonomic signature of skeletal as-
semblages, especially in intermediate and distal cores (i.e., >17 km
offshore). These factors control the duration of sea-floor exposure
of skeletal remains (Figs. 1 and 3BeC) and facilitate the
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development of taphonomic feedback (sensu Kidwell and Bosence,
1991, Fig. 4G) and intense degradation. Found in intermediate and
distal cores, a meter-thick transgressive sand sheet (TrSS;
Figs. 3BeC and 5) represents ecologically-mixed fossiliferous sed-
iments (Fig. 4E, H) and exhibits intermediate levels of fossil pres-
ervation. These characteristics of TrSS suggest that physical and
biological reworking of skeletal-rich and skeletal-poor intervals
outpaced net-accumulation rates for a substantial period, esti-
mated 3e4 ky (see chapter 4). However, fairly preserved associa-
tions characterizing top TrSS in both intermediate and distal cores
(Fig. 3BeC), point to episodic progradation during an overall
transgression (see also Cattaneo and Steel, 2003). In the distal core
this interpretation is also supported by a slight shallowing-upward
tendency within uppermost TrSS and by a poorly fossiliferous thin



Fig. 5. Vertical stacking of facies associations in distal core EM-S4 (30 km offshore)
with relevant sequence-stratigraphic units and surfaces as identified by taphonomic
investigations. Core segments are 1 m in length. RSdravinement surface; CSdcon-
densed section; MFSdmaximum flooding surface.
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and laminated interval of silt/fine sand occasionally observed on
top of the TrSS (see EM-S4, 27.10e27.20 m in Figs. 3C and 5).
Additionally in the distal sector, the presence of an ecologically
condensed interval overlying the TrSS (Fig. 4G) suggests that low
accumulation rates persisted even longer, although this core is
located only ~30 km offshore of its coeval shoreline (core EM-S4).
Here, rates of net accumulation are difficult to quantify, but are
estimated to be <<1 mm/yr (see Campo et al., 2016).

The results reported here demonstrate that fossil condensation
is clearly delineated within marine deposits of distal location, by
highly degraded and polytaxic skeletal concentrations that mix
together ecologically non-overlapping species (Fig. 4G). This strong
taphonomic signature recorded in this particular interval of core
EM-S4 developed in less than 10ky (according to radiometric
derived ages, Fig. 1; Table S3). Conversely, facies associations and
the bathymetric changes across core 205-S6 (Fig. 3A) indicate that
backstepping deposits developed close to the shoreline (<5 km)
throughout the entire marine transgressive phase. Here, clearly
defined highly fossiliferous horizons are recorded. These horizons
contain ecologically coherent faunal assemblages, framed within
centennial scale parasequences, with the relatively lowest levels of
taphonomic degradation (Figs. 1 and 4B). The unexpectedly low
level of taphonomic alteration e given the relatively high-energy
setting (lower shoreface) in which those fossil horizons formed e

highlights the overriding importance of clastic sediment supply
that lowers the residence time of shells within the taphonomically
active zone, as well as high biological productivity in nearshore
settings at the time of late transgression. An overall high rate of
clastic-sediment supply in such settings is also implied by the
presence of scattered, fairly-preserved fossil remains in the deepest
proximal facies (shoreface transition at time of maximum trans-
gression; Figs. 1 and 4A). Here, given ecologically coherent associ-
ations characterizing these nearshore deposits (see also section
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5.2), the net-sedimentation rates are inferred to be at least com-
parable with those recorded in back-barrier settings throughout
the entire transgressive phase. This outcome is consistent with the
predictions of the R-sedimentation model of Kidwell (1985, 1989).
In the proximal portion of the gradient (<5 km offshore), however,
variations in the production rate of biogenic skeletal remains (i.e.,
the R-hardpart model; Toma�sových et al., 2006) may have also
played a role in forming fossiliferous assemblages.

5.2. Eco-taphonomic patterns and implications for paleobiology

Back-barrier settings are characterized by ecologically
congruent fossil assemblages with low levels of taphonomic alter-
ation, which are indicative of relatively high net-sedimentation
rates in a low-energy depositional environment. These ecological
and taphonomic attributes indicate that back-barrier facies repre-
sent a high-quality and high-resolution fossil record, consistent
with sub-millennial time-averaging of individual fossil horizons
previously estimated via 14C-calibrated amino acid dating (Scarponi
et al., 2013). Back-barrier deposits are capped by a sligthly dia-
chronous ravinement surface [RS], which records marine flooding
of older brackish depositional environments and is clearly sepa-
rated from the transgressive surface [TS] recognized on top of the
Younger Dryas paleosol (Campo et al., 2016). The reworked taxa
with, at most, intermediate taphonomic degradation associated
with the RS indicate a reduced temporal resolution, which is
consistent with the time-averaging indicated by numerical dating
of the RS shell lag (2-3ky in Scarponi et al., 2013). Lithosomes above
the RS, capped by the MFS along dip, are suggestive of different
patterns of sediment dispersal (see section 5.1).

These patterns indicate that the resolution and quality of the
fossil record change predictably down-dip. Specifically, the prox-
imal area is characterized by ecologically congruent, fairly pre-
served, monospecific fossil assemblages (Fig. 4B) due to sediment
trapping at the time of maximum marine ingression. These as-
semblages have centennial-scale resolution, as they occur within
the centennial-scale parasequence 2d (Figs. 1B and 3A). In contrast,
richly fossiliferous transgressive sand sheets (205-S9 and EM-S4
cores), are characterised by ecological mixing and generally inter-
mediate preservation that deteriorates down-dip (Fig. 4E and H).
These characteristics indicate an overall decline in the quality and
resolution of the fossil record offshore (~18 km from shoreline).
Quantitative estimates of time averaging in the topmost part of
the trangressive sand sheet (TrSS) of 205-S9 core indicate sub-
stantial (multi-millennial) temporal mixing (~4 ky based on dif-
ference between means of dated Lentidium and Corbula shells; see
horizon 6 g in Scarponi et al., 2013). In the distal core (EM-S4),
vertically stacked TrSS and a condensed section contain highly
degraded skeletal assemblages (Figs. 3C and 5) affected by strong
taphonomic feedbacks (Fig. 4G), implying greater deterioration of
the fossil record for the distal sector. Preliminary C14-calibrated
AAR dating on Corbula and Lentidium specimens retrieved from
the top part of the CS indicates extensive time-averaging spanning
at least 8ky (Fig. 3C, Table S3). This estimate is also in good
agreement with the radiometrically calibrated chronostratigraphic
framework for this profile (~7ky, Amorosi et al., 2017) and previ-
ously published radiometric data from a nearby core (Scardovari
core in Correggiari et al., 2005 and references therein). In summary,
transgressive lagoon/bay and nearshore facies are characterized
by relatively high resolution and quality of the macrofossil
record, whereas the more distal settings record stronger tapho-
nomic alteration and record higher levels of temporal mixing. In
the offshore distal setting, eco-taphonomic trends point to the
development of strong taphonomic feedbacks and highest tapho-
nomic degradation (suggestive of both stratigraphic and fossil
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condensation). Amino acid racemisation dating indicates that such
intense alteration can occur in a relatively short time span, less than
10ky.

5.3. Eco-taphonomic patterns and implication for sequence
stratigraphy

The joint consideration of taphonomic, bathymetric, and fossil-
density trends across the study cores provides a record of distinc-
tive signatures that are useful in characterizing facies associations
and identifying surfaces and intervals of sequence-stratigraphic
significance.

Ravinement surfacedRS. This ravinement surface, located a few
meters above the TS, is associated with a sharp lithologic change
within the TST (Figs. 3 and 5) across the study area. RS is commonly
highlighted by a cm-thick interval of ecologically mixed taxa that
record a bathymetric shift toward deeper settings (Fig. 3). Along the
depositional profile, the RS is characterized by variable fossil
packing and non-systematic fluctuations in taphonomic degrada-
tion. The lack of clear proximal-distal trend could reflect the pri-
mary influence of local conditions, such as local scours or inherited
topography, that may have influenced the taphonomic signature
and fossil packing.

Maximum Flooding SurfacedMFS. In the deepest-water facies
(shoreface transition) of the proximal core, a nMDS recorded
deepening coupled with a peak in taphonomic damage suggest the
position of theMFS at ~16.00m core depth (Fig. 3A). In contrast, the
fossil density profile does not show any distinctive signature
(Fig. 3A), and the MFS is associated with sparse, fairly preserved
macroskeletal remains (Fig. 4A). Conversely, in the distal part, the
MFS lies within a ~15 cm thick, increasingly fossiliferous silty in-
terval with highly-degraded remains in the lower part of the
ecologically condensed section (26.90e27.05 m in Figs. 3C, 4G and
5). In the proximal and distal cores, the decreasing trend in
bathymetric and taphonomic profiles associated with the low
density of macrofaunal remains, marks the base of the highstand
systems tract, which is represented by a thick, prograding delta
front (proximal) to prodelta (intermediate-seaward) succession
(Figs. 3 and 5).

Minor transgressive flooding surfacesdIn the proximal core, 205-
S6, bathymetric and taphonomic profiles fail to indicate any
flooding surface other than the RS and MFS. However, at 16.60 m
core depth, the sharp contact between fine/medium-grained sands
and alternating silts and fine sand layers suggests a landward shift
of facies (lower shoreface to shoreface transition) and points to a
flooding event (Fig. 3A).

In the intermediate core, 205-S9, a significant bathymetric shift,
coincident with a minor spike in fossil density (i.e., 26.15 m core
depth Fig. 3B), suggests a flooding surface within the marine TST.
However, only in the proximal portion of the depositional profile,
the marine sedimentary package sandwiched between the RS and
MFS can be subdivided into parasequences based on integrated
eco-taphonomic and lithologic signatures. Conversely, in the distal
and intermediate sectors, especially within the TrSS, the variability
of investigated nMDS bathymetric estimates and a non-systematic
variation in taphonomy and fossil density, may reflect stochastic
fluctuation in assembling of macrofaunal remains (Fig. 3). This
makes it difficult to clearly identify individual flooding surfaces
(only a shallowing-upward trend characterizes the uppermost part
of the TrSS).

5.4. Closing remarks

The integrated analyses of facies associations, taphonomic data,
and their lateral changes along bathymetric profiles, made it
55
possible to characterize spatio-temporal trends in taphonomic
degradation. These trends point to predictable changes in the
quality and resolution of the fossil record, both spatially along the
local depositional profile, and temporally through the transgressive
systems tract: (1) transgressive nearshore deposits preserve a
higher proportion of taphonomically pristine, internally simple and
arguably less time-averaged skeletal concentrations than their
distal counterparts; (2) taphonomic degradation along the inves-
tigated profile is inversely related to net sediment accumulation
rates and positively related to distance offshore. This indicates that
the quality and resolution of the macrofossil record improves
proximally along the depositional profile.

These inferences may be applicable not only to the studied
areada siliciclastic, semi-enclosed, shallow basin influenced by a
major river, but are likely transferrable to older successions accu-
mulated within comparable depositional contexts. Finally, the
quantitative approach applied here offers an independent
strategy for testing sequence-stratigraphic interpretations and
augmenting core-based sedimentary analyses with quantitative
eco-taphonomic proxies.
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Manuscript 1 Online Supplementary Material 

“Systematic vertical and lateral changes in quality and time resolution of the macrofossil record: 

Insights from Holocene transgressive deposits, Po coastal plain, Italy” 

Table S1—Summary of present-day mean bathymetric estimates of common species retrieved in our dataset 
and present also in the ENEA ecological dataset (see 
http://www.santateresa.enea.it/wwwste/malaco/home.htm). The ENEA census is part of a coordinated effort 
from multiple surveys that catalogued their collections of the Mediterranean molluscs and made them publicly 
available. The ENEA database includes information on: locality, sampling methods (dredging, immersion, 
etc.), water depth (m), substrate (sandy, rocky, muddy, etc.), and the number of individuals collected (both live 
and dead). These data were used to acquire independent quantitative estimates (weighted -by-specimens 
average) of the preferred water depth for species found in the core material (further details in Wittmer et al., 
2014). Rank refers to abundance in the fossil Po Plain dataset. 
 

Rank Genus Species EG (m) 

1 Abra alba -5.9 

2 Acteon tornatilis -8 

3 Anomia ephippium -25 

4 Atlantella distorta -19.5 

5 Bittium reticulatum -10.8 

7 Cerastoderma glaucum -1.3 

8 Chamelea gallina -7.7 

9 Donax semistriatus -1.4 

10 Dosinia lupinus -5.6 

11 Ecrobia* ventrosa -0.95 

13 Fustiaria rubescens -15.8 

14 Kurtiella bidentata -13.1 

16 Lentidium mediterraneum -2.9 

17 Loripinus fragilis -15.1 

18 Lucinella divaricata -14.9 

19 Mimachlamys varia -14.9 

23 Nassarius pygmaeus -9.8 

28 Nucula nitidosa -19.4 

29 Papillicardium papillosum -16.9 

31 Parvicardium exiguum -9.7 

35 Pitar rudis -16.7 

47 Spisula subtruncata -6.6 

58 Timoclea ovata -53.2 

59 Turritella communis -18.3 

92 Corbula gibba -13.5 
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Table S2 - Sample - Bathymetric estimates were obtained by regressing nMDS 1 sample scores (column c) 
against first approximation sample-level bathymetric data (column b) obtained by specimen weighted 
averaging of a subset of species per sample, with known bathymetric distribution (Table S1). As some samples 
are dominated by taxa for which EG estimates are not available, their sample depth estimate (column d) could 
be unreliable. Regressing nMDS1 samples scores against their preliminary bathymetric estimate returned 
more robust estimates, also congruent with the stratigraphic architecture of the examined succession. 
Ordinary least squares regression coefficients and tests employed for estimating sample water depth: slope 
59.754; intercept = -8.536; r2 = 0.75 p(uncorr.)=6.9E-10; standard error of the estimate = 1.8m. 

 

Core Sample nMDS1 Sample bathymetry 

label depth sample score preliminary definitive 

E-S4 -26.45 -0.11127 -15.8 -15.2 

E-S4 -26.66 -0.11218 -17.5 -15.2 

E-S4 -26.71 -0.10178 -14.4 -14.6 

E-S4 -26.77 -0.1593 -25.5 -18.1 

E-S4 -26.9 -0.20807 -28.9 -21.0 

E-S4 -26.96 -0.22719 -25.9 -22.1 

E-S4 -26.99 -0.25736 -14.9 -23.9 

E-S4 -27.05 -0.2503 -7.7 -23.5 

E-S4 -27.15 -0.14933 -23.3 -17.5 

E-S4 -27.22 -0.011836 -9.3 -9.2 

E-S4 -27.49 -0.030347 -9.4 -10.3 

E-S4 -27.79 -0.059577 -10.6 -12.1 

E-S4 -28.14 -0.050552 -10.0 -11.6 

E-S4 -28.4 -0.042198 -9.2 -11.1 

E-S4 -28.61 -0.072426 -11.0 -12.9 

S9 -24.4 -0.057832 -13.7 -12.0 

S9 -24.9 -0.063887 -14.8 -12.4 

S9 -25.4 -0.032914 -14.1 -10.5 

S9 -25.9 -0.052786 -13.8 -11.7 

S9 -26.4 -0.013184 -10.6 -9.3 

S9 -26.9 -0.031693 -12.1 -10.4 

S9 -27 -0.026503 -10.6 -10.1 

S9 -27.45 0.0093278 -9.1 -8.0 

S9 -27.9 -0.0014569 -9.9 -8.6 

S9 -28.9 -0.0063341 -7.8 -8.9 

S6 -13.2 0.055439 -5.1 -5.2 

S6 -14 0.069198 -4.9 -4.4 

S6 -14.75 0.036573 -7.6 -6.4 

S6 -15.6 0.025202 -6.1 -7.0 

S6 -16 -0.026809 -6.7 -10.1 

S6 -16.3 -0.0059943 -8.2 -8.9 

S6 -17 -0.0082538 -5.7 -9.0 

S6 -17.4 -0.017171 -7.2 -9.6 

S6 -18 -0.011726 -6.9 -9.2 

S6 -18.7 0.048067 -6.1 -5.7 

S6 -19 0.11509 -3.2 -1.7 
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Table S3 - Number, identification code, species name, amino acid racemization values, locality and sample 

depth along core, estimated ages, covariance screening for each analyzed right valve and mean ages per group 

of specimens. Age calibration procedure is explained in Scarponi et al. (2013). Abbreviation: Obs─number of 

analyzed valves per sample; Asp─aspartic acid; Glu─glutamic acid; Aspx─Asp D/L derived age; Glux─Glu D/L 

derived age; x─the exponent that best linearizes the time versus D/L data; Y25%─specified cut off value 

between Asp and Glu derived ages, calculated on mean Asp and Glu D/L derived age; Yes─specimen that shows 

good Asp and Glu derived age covariation, the difference between the two ages is < 250 yr or 25% of its mean 

derived age.  

Obs Sample Species D\L ratio Core Amino acid  D/L age (yr) Y25% Y20% Yes=retained Group  

   tag   Asp  Glu  
label 

depth 
(m) Aspx Glux Mean [Aspx-Glux] (yr) (yr) No=discarded 

mean 
age (yr) 

1 12766A 

Lentidium 

0,311 0,164 
EM-
S4 

26,7 

8938 9982 9460 1044 2365 1892 YES 

9414 2 12766B 0,283 0,156 8637 9812 9224 1175 2306 1845 YES 

3 12766C 0,322 0,168 9064 10054 9559 990 2390 1912 YES 

4 12767A Varicorbula 0,197 0,046 EM-
S4 

26,7 941 953 947 12 237 189 YES 1090 
5 12767B 0,212 0,052 1189 1277 1233 89 308 247 YES 
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Surges in trematode prevalence 
linked to centennial-scale flooding 
events in the Adriatic
Daniele Scarponi1, Michele Azzarone1, Michał Kowalewski2 & John Warren Huntley3

The forecasts of increasing global temperature and sea level rise have led to concern about the response 
of parasites to anthropogenic climate change. Whereas ecological studies of parasite response to 
environmental shifts are necessarily limited to short time scales, the fossil record can potentially 
provide a quantitative archive of long-term ecological responses to past climate transitions. Here, we 
document multi-centennial scale changes in prevalence of trematodes infesting the bivalve host Abra 
segmentum through multiple sea-level fluctuations preserved in brackish Holocene deposits of the Po 
Plain, Italy. Prevalence values were significantly elevated (p < 0.01) in samples associated with flooding 
surfaces, yet the temporal trends of parasite prevalence and host shell length, cannot be explained by 
Waltherian facies change, host availability, salinity, diversity, turnover, or community structure. The 
observed surges in parasite prevalence during past flooding events indicate that the ongoing global 
warming and sea-level rise will lead to significant intensification of trematode parasitism, suppressed 
fecundity of common benthic organisms, and negative impacts on marine ecosystems, ecosystem 
services, and, eventually, to human well-being.

Understanding the historical impact of climate variability on heterocious parasites is prerequisite for forecasting 
parasite-host interactions in the near future and assessing the potential implications for ecosystem health, eco-
system services, and human well-being1–6. However, ecological research on the response of parasites to anthropo-
genic warming is necessarily limited to short time scales of the most recent months and years7, 8. In this respect, 
the most promising avenue is offered by the latest Quaternary fossil record where, thanks to highly-resolved 
sequence and chrono-stratigraphic frameworks9–16, past parasite-host interactions can be examined over geolog-
ically short (102–103 years), societally relevant time scales.

Digenean trematodes typically display a complex lifecycle with three hosts. The first intermediate host, 
where the parasite performs asexual reproduction of larvae (cercariae), is always a mollusk species. The newly 
emerged cercariae larvae infest the second intermediate host where the parasite is in an encysted, latent stage 
(metacercaria), waiting to be ingested by the third, definitive host, which is always a vertebrate organism that 
enables sexual reproduction of the adult parasite. A peculiarity of many trematode species, within the family 
Gymnophallidae, is that they have the same first and second intermediate individual hosts, skipping the inter-
mediary, free-living cercariae stage15. It is usually in the second intermediate host stage that digeneans affect shell 
secretion in their molluscan hosts. Gymnophallids induce the active growth of characteristic pits with raised rims 
on the interior of their bivalve host’s shells (Fig. 1)17–19 and schistosomatids and echinostomatids may alter the 
geochemical composition of their host’s shells20, 21. Gymnophallid-induced pits are known from live-collected 
bivalve hosts and are readily preserved in the fossil record, providing a proxy for infestation by microscopic, 
non-biomineralized parasites22.

Previous quantitative analysis of a 9.6 ky record of Holocene estuarine deposits of the Pearl River23 demon-
strated that trematode prevalence peaked in the lower part of paralic transgressive deposits recording the gen-
eralized inundation of the regional coastal system coincident with Meltwater Pulse 1c, that took place between 
9.5 and 9.2 ky24. Similarly, significantly higher trematode prevalence was documented in host taxa from 
sediment-starved northern Adriatic strandline death assemblages, relative to that documented from comparable 
assemblages from the Po delta shoreline25. These two coastal regimes serve respectively as modern analogues for 
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Holocene transgressive and prograding settings26. This putative link between overall sea-level rise and prevalence, 
if demonstrated on societally relevant time scales, could serve as an analogue for the response of parasitism to 
global warming in the coming decades to centuries. Here we explicitly test the link between short term (102–103 
years) flooding pulses and upsurges in parasite prevalence using the fossil record of bivalve hosts from a cored 
Holocene back-barrier succession (Fig. 1; Po coastal plain, Italy). Additionally, we test for correlative relationships 
between parasite prevalence and other environmental and ecological factors to identify or rule out driving factors 
of this pattern.

Coastal Po Plain Succession.  The post-Last Glacial Maximum (post-LGM) transgressive-regressive 
sequence of the coastal Po Plain is a wedge-shaped genetically related package of latest Pleistocene-to-Holocene 
strata. In the studied core 204-S7, the T-R sequence is a few tens of meters thick (Fig. 1), with its base defined by 
the transgressive surface resting on top of a weakly developed, Younger Dryas age paleosol (Online Methods). 
Several higher-order depositional cycles (parasequences), defined by their characteristic bounding surfaces, 
internal stacking patterns, and geometric relations to surrounding strata, characterize the internal structure of 
the post-LGM sequence (Fig. 1)27. These parasequences record high-frequency shifts in the local sea-level28, 29 and 
a high-resolution chronostratigraphic framework indicates that they formed on millennial (and shorter) time 
scales (Online Methods). The strata in core 204-S7, from bottom to top, are composed of stacked fluvial channel 
facies associations (>9 ky; parasequence 1 in ref. 27), passing upwards into poorly-drained floodplain/wetland 
facies alternations, overlain by brackish (lagoon/estuary) and thinning upward swamp facies associations (parase-
quences 2-4; Figs 1A,B and 2B, Extended Data Fig. 1). The subsequent middle-to-late Holocene (parasequences 
5-7; Fig. 2) record a mosaic of floodplain and wetland deposits (lower delta plain; <6 ky), which are overlain by 
parasequence 8 that details renewed brackish settings related to the most recent shift of the Po delta toward its 
present position27.

Results
We collected 61 bulk samples from the top 20 meters of core 204-S7 (Fig. 2A; Online Methods). Forty-five out 
of 61 samples contained mollusk fossils (Extended Data Fig. 1), resulting in a matrix of 3,151 individuals from 
26 genera and 31 species (Online Methods; Extended Data Table S1). A non-metric Multidimensional Scaling 
(nMDS) ordination displays a pronounced gradient with species distributed along the nMDS1 axis according to 
their salinity tolerance (Online Methods; Extended Table S2). These results were robust to a variety of filters and 
other ordination types (see Online Methods; Extended Data Figs 3 and 4; Table S3). The resulting nMDS1 sample 
scores positively correlate with preferred salinity values for extant taxa in modern ecosystems (see Extended Data 
Fig. 3 for taxon salinity data; Tables S3 and S4), and are, therefore, a proxy for salinity (Online Methods), a com-
mon ecological driver in back barrier settings30.

The temporal trend of nMDS1 sample scores displays multiple orders of cyclicity. At the overall scale of the 
sedimentary package (Fig. 2B), the scores support the control of glacio-eustatic forcing on the development of 
the post-LGM sequence. Specifically, samples from parasequence one to four record the landward increasing 
influence of the Adriatic sea, while from parasequence four onward, the general trend toward lower salinity values 
is consistent with Po deltaic progradation into the Adriatic Sea (Figs 1B and 2A,B). At a higher resolution, the 
stratigraphic trajectory of nMDS1 sample scores highlights five flooding pulses depicted by major increases in 
salinity (in accordance with parasequence bounding surfaces of ref. 27), followed by a gradual return to reduced 
salinities (Fig. 2B). These abrupt and major salinity shifts are interpreted to represent non-Waltherian facies dis-
locations, with the overlying facies recording increased marine influence rather than a simple lateral shift to an 
adjacent environment relative to the underlying facies. The three salinity shifts recognized at 15.5, 12.3, and 1.1 m 
core depth (Fig. 2A) represent parasequence bounding surfaces developed over millennial time scales, whereas 
the remaining two are interpreted as higher frequency, centennial-scale pulses27 representing short-lived, rapid 
transition from mesohaline to polyhaline dominated environments (Fig. 2B). Accordingly, parasequence 4, which 

Figure 1.  Location map, cross-section, and images of parasitized Abra segmentum valves. (A) Location map of 
investigated Po coastal plain sector, Italy (B) Schematic cross section (along dip) illustrating the stratigraphic 
stacking of facies across the investigated portion of the Holocene post-Last Glacial Maximum T-R sequence and 
location of the 204-S7 core. (C) Photomicrographs of A. segmentum with trematode-induced pits (black/white 
arrows). TS: transgressive surface, TST: transgressive systems tract, MFS: maximum flooding surface, RST: 
regressive systems tract, T-R: transgressive-regressive.
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marks the turnaround from retrogradation to progradation (Fig. 2B), consists of a set of three higher frequency 
(centennial scale) units bounded by stratigraphically significant (i.e., non-Waltherian) shifts of facies (Fig. 2B).

The thin-valved Abra segmentum–a genus which is parasitized by Parvatrema rebecqui in modern envi-
ronments31 – is the dominant species in core 204-S7 and displays a high prevalence of trematode-induced pits 
(34.4%; 348 infested of the total 1,012 valves). Anterior-posterior length of A. segmentum ranged between 1.5 and 
22.3 mm (Extended Data Fig. 6). Single sample prevalence values range from 7.1% to 75.0% and display signifi-
cant temporal variation (Fig. 2; Extended Data Table S4). At the systems tract level (i.e., a multi-millennial obser-
vational scale), there was a significant (i.e., outside the 95% confidence bounds estimated via randomization) 
difference in trematode prevalence values between the TST (44.9%) and RST (34.2%; Fig. 2E), consistent with 
previous findings23, 26. At the parasequence level, significantly elevated prevalence estimates are located in prox-
imity to the millennial-scale flooding surface at 12.3 m and the centennial-scale flooding surfaces at 9.3 and 10.3 
m (Fig. 2A,B). Significantly depressed prevalence estimates all occurred within these small-scale units (Fig. 2C).

Discussion
The results demonstrate a repeated association between significantly elevated prevalence and centennial scale 
flooding events, support the link between sea-level rise and increasing trematode activity, and can serve as his-
torical analogues for ongoing and future anthropogenic climate change. Despite evidence for the consistent rela-
tionship between transgression and trematode prevalence, it is doubtful that a relative rise in sea level alone drove 
this pattern. Many factors that can influence the biota, including temperature, nutrient availability, salinity, host 
availability, diversity, and community structure, co-vary with sea level changes and should be tested as driving 
factors32, 33. Increasing temperature has been shown to increase reproductive output and infectivity of a diverse 
array of pathogens and parasites3, 4 (but see refs 7, 8 and 34). As parasites derive nutrition from their hosts, it is 
not clear that changes in nutrient availability/productivity would directly control their distribution, however bio-
logical diversity is often related to productivity and its mode of delivery across a variety of scales and systems35, 36.  
Diversity and productivity often increase in concert until a tipping point above which diversity begins to decline, 
varying with the influence of consumers and disturbance level37. In this way productivity could control the 
distribution and abundance of many taxa that might serve as intermediate or definitive hosts, though likely 

Figure 2.  Detailed architectural, stratigraphic and bio-sedimentary (nMDS, A. segmentum trematode 
prevalence and shell length) features of core 204-S7. (A) Detailed stratigraphic column with 8 small-scale 
(millennial-scale sedimentary packages—parasequences defined in ref. 27 and the position of the studied 
samples: hollow circles represent samples with fewer than 15 specimens. (B) nMDS derived salinity trends along 
core highlighting back-barrier small-scale sedimentary packages and their internal architecture. Green field 
represents Standard Error of the Estimate (SEE) resulting from the RMA regression (see Extended Data Fig. S5) 
of nMDS derived salinity trends. (C) Prevalence of trematode pits among single samples recording more than 
4 valves of Abra segmentum. (D) Mean log10-transformed anterior-posterior length of single samples of A. 
segmentum. (E) Prevalence values of data pooled by TST and RST (defined by nMDS derived trend along core). 
(F) Reference scale for Practical Salinity Units (PSU) with associated type of water and legend for lithology 
and samples. Dark and light grey fields on panels C, D, and E represent 95% and 99% confidence intervals (CI) 
derived from 10,000 iteration randomizations, respectively. Red circles indicate values greater than 95% CI, blue 
circles indicate values less than 95% CI, and hollow circles (in panels C and D) indicate values that fall within 
95% CI. FS indicates back barrier correlative of flooding surfaces; nMDS: non Metric Multidimensional Scaling.

64

http://6
http://S4
http://S5


www.nature.com/scientificreports/

4Scientific Reports | 7: 5732  | DOI:10.1038/s41598-017-05979-6

in a non-linear manner. Salinity is a primary environmental driver of mollusk turnover in the studied system 
(Fig. 2B), and free-swimming larval (cercaria) production and survival time tend to decrease significantly in 
lowered salinity regimes in paralic environments; thereby reducing infestation of intermediate and/or definitive 
hosts38, 39. Here, however, as in ref. 23, the lack of correlation between salinity proxy and prevalence estimates 
(Table 1) suggests that salinity is not a strong driving factor of trematode prevalence at this spatial and temporal 
scale of observation.

The absence of correlation between preferred host (A. segmentum) abundance and prevalence (Table 1) rules 
out fluctuating host availability as a limiting factor of trematode distribution23. The median shell length of infested 
valves of A. segmentum was significantly larger than that of their non-infested counterparts (Mann-Whitney U, 
p = 2.21E-34), likely due to the accumulation of parasites through ontogeny. Prevalence values were positively 
and significantly correlated with host shell length (r = +0.68, p = 0.004), however there were no significant asso-
ciations between shell length and either flooding pulses or nMDS1 scores (Fig. 2C and Table 1). This suggests that 
other environmental or ecological factors, acting as drivers of host shell length, were unlikely to have indirectly 
driven the temporal trend of trematode prevalence. Similarly, the lack of correlative relationships between preva-
lence and standardized richness, dominance, and Shannon diversity (Table 1) suggests that fluctuating biodiver-
sity did not exhibit direct/linear control over trematode-bivalve interactions.

The role of more complex, community-level factors that may have influenced the distribution of trematode 
parasites can be examined by evaluating the distribution of samples and their constituent taxa in the nMDS space 
and assessing faunal similarity using Bray-Curtis pairwise comparisons to measure faunal turnover throughout 
the length of the core (Fig. 3A). Samples retrieved from brackish muds only (8.50–12.25 m core depth) display a 
comparable amount of turnover to that identified when comparing samples from both freshwater and brackish 
environments. However, the dendrogram derived from the Q-mode cluster analysis of the samples included in 
the nMDS ordination demonstrates that samples recording elevated or subdued trematode prevalence were dis-
tributed haphazardly across the dendrogram topology. Consequently, community structure/turnover (Fig. 3B) is 
unlikely to have been a driving factor of trematode prevalence within Holocene lagoonal facies.

Arcsine Prevalence nMDS1

A. segmentum abundance ns R = +0.73, p = 0.001

Mean shell length R = +0.68, p = 0.004 ns

Standardized Richness (n = 15) ns R = +0.81, p = 0.0001

Dominance ns R = −0.76, p = 0.0007

Shannon (H) ns R = +0.78, p = 0.0004

Too fragmented to be certain ns R = −0.76, p = 0.0007

Salinity ns R = +0.76, p = 0.0006

nMDS1 ns —

nMDS2 ns ns

Table 1.  Spearman rank correlation coefficients and p-values (when p < α = 0.05; otherwise indicated as ns: 
non-significant) between arcsine-transformed trematode prevalence values of Abra segmentum from the 204-
S7 core; nMDS1 sample scores; and environmental, ecological, and taphonomic variables. nMDS1: Non metric 
Multidimensional Scaling axis 1.

Figure 3.  Turnover and ecological similarity of assemblages across core 204-S7. (A) Turnover estimated by 
pairwise comparison of Bray-Curtis similarity indices and environmental distance (nMDS1 salinity). Solid 
circles indicate pairwise comparisons between lagoonal muddy samples from core depths of 8.50–12.25 meters 
and the black line indicates the ten point running average. Hollow circles indicate all other comparisons. The 
red line indicates the ten point running average for all comparisons. (B) Q-mode cluster analysis (UPGMA 
algorithm, Bray-Curtis similarity). Samples with trematode prevalence values of Abra segmentum greater 
than and less than the 95% CI are indicated in red and blue, respectively. Note how the samples of either 
exceptionally low or high prevalence values are randomly distributed across the dendrogram.
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Sample nMDS1 scores were negatively correlated with the proportion of Abra valves that were too fragmented 
to evaluate in terms of infestation status. This pattern raises the question of how fragmentation might have influ-
enced the parasite record (i.e., were valves with trematode pits more prone to fragmentation than non-infested 
valves?). All Abra valves were classified as either whole or broken, and the broken valves were further categorized 
into either “sufficiently complete” or “too fragmented” to determine infestation status. There was no significant 
difference in trematode prevalence values of whole and “sufficiently complete” broken valves (Χ2, p = 0.16). These 
results suggest that the proportion of “too fragmented” valves was unlikely to represent an important confound-
ing factor in reconstructing the stratigraphic record of trematode dynamics.

Another potential factor affecting parasite prevalence is the fluctuating availability of habitat-area for trema-
todes during sea-level cycles. The geologically rapid creation of new habitat during flooding pulses and their sub-
sequent destruction during progradation could exert a first order control on trematode prevalence during high 
frequency cycles. As sea level continues to rise, some settings will be more strongly influenced than others. For 
instance, densely populated lowlands, estuarine, and riverine settings would likely display the greatest increase in 
trematode habitat-area during relative sea level rise as a direct effect of flooding and, indirectly, by the landward 
rise of the groundwater table40. Therefore, we hypothesize that gymnophallid trematode prevalence will be more 
strongly influenced by the creation of new habitat in brackish and freshwater settings than in shallow marine set-
tings. Though not the direct topic of research here, an increase in wetlands created by sea level rise would generate 
new habitat for the gastropod intermediate hosts of Schistosoma41, the trematodes responsible for schistosomiasis 
in humans.

The fossil record of the northern Adriatic points to a significant association between the prevalence of hetero-
cious parasites and flooding events recording repeated climate-driven sea level shifts. From this historical per-
spective we posit that the ongoing anthropogenic warming and sea-level rise should trigger a significant upsurge 
in gymnophallid trematode prevalence and the expansion of wetland habitats ideal for schistosomatid interme-
diate hosts. The forecasted changes are expected to suppress the fecundity of common benthic organisms, exert 
negative impacts on ecosystems, impede ecosystem services, and, eventually, negatively affect human well-being.
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Methods 

Sixty-one 10cm-thick bulk samples were collected on average every 22 cm from the top 20 meters of 

core 204-S7 (Fig. 2A), dried at 45˚C, soaked in ~4% H2O2, and washed through a 1mm sieve 

(Scarponi and Angeletti, 2008). A total of 45 out of 61 samples contained mollusk fossils (Extended 

Data Fig. S1). For each of the fossiliferous samples, all complete or unique individual specimens (i.e., 

bivalve umbo/gastropod apex) were identified to the species level (when possible). The resulting 

taxon abundance matrix included 3,151 individuals from 26 genera and 31 species (Extended Data 

Table S1). Of the total matrix abundance 50% (i.e., 1012 out of 2022 valves) were represented by the 

brackish, deposit-feeding and infaunal bivalve Abra segmentum (Récluz, 1843). All A. segmentum 

valves were examined with an Askania stereo microscope (at 63x magnification) for the presence of 

oval- to irregular-shaped pits with raised rims (Fig. 1C), which are indicative of trematode infestation 

(Ruiz and Lindberg, 1989). Each valve was classified as parasitized, non-parasitized, or too 

fragmented to be certain. Prevalence was calculated as the number of parasitized valves divided by 

the total number of valves in a sample. Anterior-posterior length (APL) was measured for all whole 

valves. For all fragmented valves, APL was estimated based on chondrophore length by reduced 

major axis regression (RMA). A set of 23 right and 19 left complete valves (Extended Data Fig. S2) 

was used to relate chondrophore length to APL.  

Multivariate ordinations were performed to explore the relationships between faunal composition 

and environmental gradients. Detrended Correspondence Analyses and non-metric 

Multidimensional Scaling (nMDS) ordinations returned comparable patterns while varying the 

taxon and sample thresholds; Extended Data Figs S3A-B; S4). Here we report the results of nMDS 

in 2-dimensions based on Bray-Curtis distances (metaMDS function; “vegan” package in R) with 

singleton taxa, monospecific samples, and samples with fewer than 15 specimens excluded from 

analysis. In the case of bivalves, each valve or unique fragment was counted as a 0.5 specimen 

(Kowalewski and Bambach, 2000). The final matrix for the nMDS ordination was composed of 20 

samples, 17 species, and 2023 specimens (median sample size 75 specimens). Only nMDS axis 1 

sample scores, obtained from a log-transformed matrix of specimen raw counts (which consider both 

shape and size of the count vectors), are reported here (Fig. 2; see Extended Data Fig. S4A-F for more 

detailed results).  

An independent sample-level salinity proxy was calculated via the weighted average of a sub-set of 

taxa for which optimum salinity values were known (Extended Data Table S2). An RMA regression 

model between sample-level salinity estimates and nMDS1 scores was calculated so that a salinity 

proxy could be estimated for samples that were comprised of less than 30% of specimens from taxa 

for which optimum salinity values were known (Extended Data Table S3; Extended Data Fig. S5).  

The extent of faunal turnover among samples along the core was assessed by the pairwise 

comparison of Bray-Curtis similarity values between samples and salinity estimates used as a proxy 

of “environmental distance” (Anderson et al., 2011). A Q-mode cluster analysis with paired-group 

UPGMA algorithm and Bray-Curtis similarity measure was applied to the data matrix utilized in the 

nMDS to determine the relationship between community structure and trematode prevalence. 

Finally, Spearman rank correlation analyses were carried out to test for potential interdependence 

between prevalence estimates and environmental and bio-ecological estimators (nMDS1 scores, 

shell length, indices of diversity and fragmentation). Randomizations (10,000 iterations each) were 

conducted for prevalence and shell length estimates to assess the range of values (95% and 99% 

confidence intervals) expected under the null model of no change through time. The analyses where 

carried out in R (R Development Core, 2016), PAST v.2.17c (Hammer et al., 2001), and SAS v.9.3 

(Der and Everit, 2015). 
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Sequence Stratigraphic Framework Of The Latest Quaternary Po Plain Succession 

The latest Quaternary (<30ky) succession of the Po Plain is a few tens of meters thick and extensive 

subsurface investigations conducted during the last decades have led to a detailed reconstruction of 

its stratigraphic architecture (e.g., Amorosi et al., 2005; Scarponi and Angeletti, 2008; Amorosi et 

al., 2014; Scarponi et al., submitted). This genetically related, wedge-shaped package of strata 

represents the Last Glacial Maximum (LGM) depositional sequence. The laterally extensive fluvial-

channel and associated floodplain deposits of the lower part of the succession are interpreted to 

record progradation and aggradation during the LGM and early sea-level rise (30-14ky). LGM 

deposit are overlaid by a few meters of rapidly retrogradational stack of nearshore (barrier-lagoon-

estuary system) to shallow marine fossil rich mudstones, in part filling the coastal accommodation 

created during rapid sea-level rise (14-7ky). Ensuing aggradation followed by progradation into the 

Adriatic Basin represents a distinctive stacking pattern generated by increasingly strong riverine 

sedimentation enhanced by the middle-late Holocene deceleration of sea-level rise (>6ky). Hence, 

in distal locations, the coastal accommodation created by the synergistic influence of eustasy, 

compaction, and subsidence during the early to middle Holocene was filled by a tract of shallowing 

upward marine and progradational deltaic facies. Whereas, in proximal locations, i.e. the targeted 

area of this study, the stratigraphic architecture of the LGM depositional sequence is dominated by 

aggradational alluvial and upper coastal plain facies associations, passing upwards into 

retrogradational muddy coastal plain to brackish deposits followed by a complex interplay of 

brackish and subaerial/freshwater (lower delta) plain deposits recording the relative decrease in 

Holocene sea-level rise.  

Recurrent stacking of bedsets and their bounding surfaces have been mapped across shallow marine 

deposits of the coastal successions targeted here and have been traced landward. Following previous 

and ongoing investigations, several higher-order depositional cycles defined by their characteristic 

bounding flooding surfaces, internal stacking patterns, and geometric relations to surrounding strata 

characterize the internal structure of the LGM sequence and are interpreted here as parasequences 

(Amorosi et al., 2017). High-resolution chronostratigraphic control indicates that the majority of the 

parasequences formed on millennial time scales (with durations of about 2000 yrs), and a subset 

formed on centennial time periods (Scarponi et al., 2013; Amorosi et al., 2017).   

Stratigraphic framework of core 204-S7 

Core 204-S7, 40 meters-long (Extended Data Fig. S1), was drilled 0.5 m above sea level (Latitude 

44.725577º N, Longitude 11.940878º E), south of Ostellato, Italy. The bottom of the core is 

comprised of two meters thick sedimentary package with sparse freshwater macrofossils and display 

an overall fining upward tendency (from medium sand to silty-clay), interpreted as fluvial-channel 

deposit. These coarse-grained deposits are capped by eight meters of multi-coloured (yellow to 

brown), macrofossil-barren, clay to silty-clay (~31 to ~38 m core depth), intercalated by thin sandy 

layers are interpreted as well-drained floodplain succession deposited during pre-glacial (>32ky) 

times (Amorosi et al., 2005).  

The overlying 31.0-24.7m interval primarily records late glacial dynamics (i.e., lowstand deposition) 

and is characterized by a ~3m thick fluvial channel body, consisting of amalgamated medium sands 

with an erosional base resting on top of a stiff calcareous horizon (inceptisol). The sharp erosional 

surface located at 31m core depth on top of the inceptisol represents the sequence boundary of the 

Last Glacial Maximum 4th order depositional sequence (Amorosi et al, 2005). Whereas, the upper 

boundary of this fluvial package records a sharp transition to clayey-silt and silty-clay, in turn 

overlain by a two-meter-thick multi-coloured (yellow to brown) deposits characterized by relatively 

abundant macrofossil (mainly fragments) of land and freshwater mollusks, otherwise showing 

comparable features to those retrieved between 38-31m core depth. Hence, suggestive of overbank 

and well-drained floodplain deposits.  
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Between 24.7 and 20.8m core depth, emplaced on top of underlying muds, a 4m thick, amalgamated 

and coarse-grained but fining-upward body showing scanty freshwater mollusks is retrieved. This 

body is interpreted as the sedimentary output of a fluvial channel and the sharp contact delimitating 

this coarse-grained unit from underlying floodplain deposits is interpreted as the regional 

transgressive surface (TS) (Bruno et al., 2016). The ~1.0-meter-thick homogenous dark brown silty-

clay with scanty freshwater mollusks reflect the first record in the core of coastal plain poorly drained 

deposits and/or temporary standing water bodies. At 19.60m, a sharp facies shift is recorded at the 

base of a ca. 1.3m thick medium sand with multiple centimeter-scale silt intercalations. This sandy 

lithosome records the first appearance in the core of scattered specimens of brackish taxa: 

Cerastoderma glaucum and Abra segmentum (Extended Data Table S1). Hence, the shift of facies 

from poorly drained floodplain/swamp to brackish settings is retained to represent a flooding 

surface.  Another flooding surface identified by means of micro-sedimentary inferences (Amorosi et 

al., 2017), is located at 16.20m core depth, on top of a thin peat layer. The ~2m thick dark organic 

rich clay with silty intercalations recording freshwater gastropod (hydrobiids and Teodoxus 

fluviatilis) bracketed between coarse sand and the peat layer, records the rapid transition from a 

brackish setting to a poorly drained floodplain/swamp. The overlying ~4m thick grey clay interval 

(16.20 to 12.25m core depth) bearing scanty macrofossils records, based on micro-sedimentary 

inferences, a further parasequence boundary around 14.30m core depth. This flooding surface 

separates swamp deposits below from brackish to swamp deposits above. 

The interval 12.60-7.70m core depth is characterized by fine to medium decimetric to metric sand 

bodies alternating with clay-silt organic rich deposits organized into stacking patterns of meter scale, 

coarsening-upward, of back barrier facies. This staking pattern and the associated stock of brackish 

species that tend to decrease in abundance from fine to coarse deposits represents the set of three 

small scale cycles thoroughly investigated in this study. The uppermost one is capped by grey, fine 

to medium sand fluvial package, 1.0m thick with internal fining-upward trends. This body is 

interpreted to reflect sand inputs into the lagoon by fluvial channels and it progressively infill. 

Between 6 and 1.5m core depth is characterized by an overall aggradational and cyclic staking 

pattern of muddy to sandy deposits with scattered freshwater and or pulmonate molluscs. Based on 

microfaunal and sedimentary inferences this interval records the repeated alternation of swamp, 

floodplain and overbank deposits ranging from one to few meters thick and recording the alternating 

development coastal plain dynamics related mainly to autogenic Po Delta dynamics. Within this 

interval three flooding surfaces delimiting millennial scale cycles are recognized at 6.2, ~5.0 and 

~3.0m core depth. A last flooding surface at 1.5m core depth is clearly recorded by a sharp transition 

from poorly drained floodplain muds and silty-muds recording the brackish bivalve Abra 

segmentum representing the last developments of short-lived lagoon.  

Biofacies-Refined Interpretation of Sequence Stratigraphic Architecture 

The vertical trend of nMDS1 sample scores and their strong correlation with salinity, a common 

ecological driver in back barrier settings (see Amorosi et al., 2014), further demonstrates the utility 

of macrofossil data to augment stratigraphic interpretation in cored deposits.  

At the scale of the overall sedimentary package examined (Fig. 2), the nMDS-derived salinity pattern 

supports the control of glacio-eustatic forcing on the development of the Late Glacial Depositional 

sequence.  Specifically, the lower part (i.e., 20 to 10.30m in Fig. 2) of the v-shaped nMDS-derived 

salinity profile records the increasing influence of the sea (supported by the overall increase in 

salinity), which is consistent with a retrogradational stacking pattern of back barrier facies (i.e., 

floodplain to lagoon settings). Whereas the upper shift toward lower salinity values, recorded after 6 

ky BP (see Amorosi et al. 2017), is consistent with progradational to aggradational stacking patterns 

of brackish, freshwater and poorly drained floodplain deposits of the regressive systems tract (Figs 

1b-2a, b). 
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At a higher resolution, the stratigraphic trajectory of nMDS1 sample scores highlights five flooding 

pulses depicted by major increases in salinity (here interpreted as parasequence bounding surfaces), 

followed by a gradual return to previous conditions (see Fig. 2). These abrupt contacts (e.g., ~12‰ 

salinity shift at 9.5m core depth in Fig. 2), are interpreted to represent non-Waltherian facies 

dislocations, with the overlying facies recording increased marine influence rather than a simple 

lateral shift to an adjacent environment relative to the underlying facies. 

The three salinity shifts recognized at 15.5, 12.3, and 1.1m core depth (Fig. 2) represent 

parasequence bounding surfaces developed over millennial time scales. Whereas the remaining two 

are interpreted as higher frequency (centennial) pulses representing short lived, conditions of these 

back-barrier settings. Accordingly, it is possible to subdivide parasequence 4, developed at the time 

of maximum marine ingression (Fig. 2B), into a set of three higher frequency (sub-millennial scale) 

units bounded by significant (i.e., non-Waltherian) shifts of facies indicating rapid transition from 

mesohaline to polyhaline dominated paleoenvironments (Fig. 2B). 

 

Extended Data Table S1—Mollusc dataset: sixty-five bulk samples (10cm thick), collected at a vertical 

spacing of no more than 50 cm from core 204-S7 drilled ~24 km west of the modern shoreline. Nineteen of the 

65 samples were barren, the remaining 46 samples yielded 3171 individuals from 26 genera and 32 species. 

Note: Ecrobia groups a stock of taxa very similar (Ecrobia and Hydrobia), mainly distinguishable by means 

of soft tissues. 

Family 
Well depth (m) 24.05 23.05 22.05 21.05 20.05 19.75 19.5 19.05 18.95 

Genus/Species                   

SEMELIDAE Abra segmentum 0 0 0 0 0 0 0 1 4 

SEMELIDAE Abra sp. 0 0 0 0 0 0 0 0 0 

CARDIIDAE Cerastoderma glaucum 0 0 0 0 0 0 1 1 1 

CORBULIDAE Lentidium mediterraneum 0 0 0 0 0 0 0 0 0 

LUCINIDAE Loripes orbiculatus 0 0 0 0 1 0 0 2 0 

MYTILIDAE Modiolus sp. 0 0 0 0 0 0 0 0 0 

MONTACUTIDAE Kurtiella bidentata 0 0 0 0 0 0 0 0 0 

SPHAERIDAE Pisidium amnicum_cf 1 0 0 0 0 0 0 0 0 

SPHAERIDAE Pisidium subtruncatum_cf 0 0 0 0 2 0 0 0 0 

VENERIDAE Polititapes aureus 0 0 0 0 0 0 0 0 0 

VENERIDAE Polititapes sp. 0 0 0 0 0 0 0 0 0 

MACTRIDAE Spisula sp. 0 0 0 0 0 0 0 0 0 

PLANORBIDAE Anisus leucostoma 0 0 3 0 0 0 0 0 0 

PLANORBIDAE Anisus vortex 0 0 1 0 0 0 0 0 0 

BITHYNIIDAE Bithynia tentaculata_cf 2 0 8 0 0 0 0 0 0 

Cerithiopsidae Certithiopsis sp. 0 0 0 0 0 0 0 0 0 

CERITHIIDAE Bittium reticulatum 0 0 0 0 0 0 0 1 1 

CERITHIIDAE Cerithium vulgatum 0 0 0 0 0 0 0 0 0 

CERITHIIDAE Cerithium sp. 0 0 0 0 0 0 0 0 0 

PYRAMIDELLIDAE Chrysallida interstincta 0 0 0 0 0 0 0 0 0 

PYRAMIDELLIDAE Chrysallida sp.1 0 0 0 0 0 0 0 0 0 

HYDROBIIDAE Ecrobia ventrosa_gr. 0 0 0 0 0 0 2 1 2 

NASSARIIDAE Nassarius nitidus 0 0 0 0 0 0 0 0 0 

NASSARIIDAE Nassarius sp. 0 0 0 0 0 0 0 0 0 

SUCCINEIDAE Oxyloma sp. 0 0 0 0 0 0 0 0 0 

RISSOIDAE Pusillina lineolata 0 0 0 0 0 0 0 0 0 

RISSOIDAE Pusillina marginata 0 0 0 0 0 0 0 0 0 

RISSOIDAE Pusillina sp. 0 0 0 0 0 0 0 0 0 

RETUSIDAE Retusa mammillata 0 0 0 0 0 0 0 0 0 
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RISSOIDAE Rissoa ventricosa 0 0 0 0 0 0 0 0 0 

RISSOIDAE Rissoa membranacea 0 0 0 0 0 0 0 0 0 

RISSOIDAE Rissoa sp. 0 0 0 0 0 0 0 0 0 

RISSOIDAE indet 0 0 0 0 0 0 0 0 0 

NERITIDAE Smaragdia viridis 0 0 0 0 0 0 0 0 0 

SUCCINEIDAE Succinella oblonga 0 0 2 0 0 0 0 0 0 

NERITIDAE Theodoxus fluviatilis 0 0 0 0 0 0 0 0 0 

PYRAMIDELLIDAE Turbonilla lactea 0 0 0 0 0 0 0 0 0 

VALVATIDAE Valvata piscinalis 2 0 2 0 0 2 0 0 0 

sample abundance 5 0 16 0 3 2 3 6 8 

 

18.55 18.05 17.55 17.05 16.55 16.05 15.9 15.6 15.15 14.35 14.05 13.5 13.4 13.05 12.98 

                              

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 18 0 0 0 0 0 0 0 0 0 0 0 3 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 10 61 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 4 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 18 0 0 1 15 62 2 2 0 1 0 0 4 
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12.55 12.45 12.25 12.05 11.95 11.55 11.35 11.05 10.85 10.55 10.25 10.16 10.05 9.9 9.55 

                              

2 1 35 98 50 8 1 33 14 0 218 80 21 51 16 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 2 10 11 15 0 1 9 2 0 44 28 7 12 0 

0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

0 1 30 67 46 2 3 11 3 0 240 73 19 31 0 

0 0 1 0 0 0 0 0 0 0 3 2 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 3 1 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 2 0 0 0 0 0 0 1 0 3 

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

0 0 6 27 45 3 2 3 4 0 118 33 14 24 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 3 2 0 3 0 

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

0 0 16 24 59 2 6 2 4 0 120 17 5 18 6 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 7 0 4 0 0 0 0 0 20 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

0 0 0 1 1 0 0 1 0 0 7 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 2 0 0 0 0 2 12 1 3 0 

0 0 0 0 6 0 0 0 1 0 0 0 1 0 0 

0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 5 105 234 227 19 13 59 28 0 787 252 70 145 25 

 

9.27 9.05 8.95 8.85 8.65 8.5 8.4 8.05 7.85 7.55 7.05 6.55 6.05 5.95 5.45 

                              

44 18 1 47 59 124 54 4 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

5 6 0 34 31 29 18 0 0 0 0 0 0 0 0 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

39 28 0 23 16 30 29 3 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 3 4 3 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 10 6 63 3 31 4 0 0 0 0 0 0 0 0 

0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 3 0 16 16 39 22 10 8 0 1 0 0 1 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 6 1 9 0 0 0 0 0 0 0 0 0 

0 0 0 5 3 0 0 0 0 0 0 0 0 0 0 

2 2 0 0 0 3 0 0 0 0 0 0 0 0 0 

0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

131 68 13 204 139 268 131 17 8 0 2 0 0 1 0 

 

5.05 4.55 4.05 3..45 3.05 2.55 2.05 1.59 0.96 0.85 0.55 species 

                      abundance 

0 0 0 0 0 0 0 0 3 17 5 1012 

0 0 0 0 0 0 0 0 0 0 0 3 

0 0 0 0 0 0 0 0 2 3 4 278 

0 0 0 0 0 0 0 0 0 0 2 7 

0 0 0 0 0 0 0 0 0 0 0 697 

0 0 0 0 0 0 0 0 0 0 0 7 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 0 10 

0 0 0 0 0 0 0 0 0 0 0 5 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 3 

0 0 0 0 0 0 0 0 0 0 0 1 

0 1 1 0 0 0 1 0 0 0 1 41 

0 0 0 0 0 0 0 0 0 0 0 2 
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0 0 0 0 0 0 0 0 0 0 0 418 

0 0 0 0 0 0 0 0 0 0 0 4 

0 0 0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 0 11 

0 0 0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 1 11 12 513 

0 0 0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 37 

0 0 0 0 0 0 0 0 0 0 1 6 

0 0 0 0 0 0 0 0 0 0 0 3 

0 0 0 0 0 0 0 0 0 0 0 29 

0 0 0 0 0 0 0 0 0 0 0 8 

0 0 0 0 0 0 0 0 0 0 0 28 

0 0 0 0 0 0 0 0 0 0 0 12 

0 0 0 0 0 0 0 0 3 0 0 6 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 0 5 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 0 0 1 5 

0 1 1 0 0 0 2 0 9 31 26   

 

 

Extended Data Table S2—Summary of present-day salinity data used for environmental calibration of the 

mollusc nMDS axis 1 sample scores (nMDS1). The seven species used here were selected based on their 

abundance in 204-S7 core dataset (Extended Data Table S1) and to ensure continuous coverage along nMDS1. 

Preferred salinity of species (optima) and salinity range (min - max) were obtained from literature data 

(References). Midpoint is referred (if available) to the preferred salinity range (optima) of a targeted species. 

 

      
Taxon Salinity (psu) References 

 
mi

n 

max optimal midpoint 
 

Loripes orbiculatus 7 >35 20-35 27.5 Anistratenko 2011; Encyclopedia of Life, 2016;  
Cilenti et al., 2008 

Cerastoderma glaucum 3 61 5.0-38.0 21.5 Gontikaki et al.,  2003; Boyden and Russel, 1972 

Bithynia tentaculata 0 6.3 0-4.2 2.1 Berezina, 2003 

Abra segmentum 3 >35 (41) 9.0-12.0 10.5 CSB Database, 2016; Gontikaki et al., 2003 

Bittium reticulatum 15 >35(38.4

) 

* 31.5 Nabozhenko, 2013;  Encyclopedia of Life, 2016;  

Altobelli et al., 2008 

Retusa mammillata 11 34 15.0-25.0 20 Zettler and Gosselck 2006; Chaban, 2004; Fleischer and 

Zettler, 2009 

Chrysallida interstincta 15 >35 * 25 Funder S. et al., 2002; Rosemberg and Gofas, 2012 

* No optimal salinity range recovered. 
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Extended Data Table S3—Sample salinity approximation based on weighted averaged salinity optima of 

the sub-set of the seven key species (Extended Data Table S2) retrieved in each sample. Abbreviation: # 

number, psu practical salinity unit. Highlighted in red those samples for which species preferred salinity 

estimate was available for only one or two species representing less 30% of total specimen abundance. 

 

Core 

depth 

(m) 

nMDS  

dataset 

sample 

species 
richness 

# key species 

available for salinity 

computation 

% specimens employed 

for first approximation 

sample salinity 

computation 

Sample 

weighted average 

salinity estimate 

(psu) 

nMDS score 

15.60 2 1 1.6 21.5 -0.75963 

12.25 7 4 64.7 20.4 0.105331 

12.05 7 5 82.4 20.9 0.238195 

11.95 8 5 61.4 24.6 0.333406 

11.05 6 5 94.1 17.7 0.076108 

10.85 5 4 77.8 19.7 -0.24324 

10.25 12 6 72.1 23.3 0.666585 

10.16 9 6 82.0 22.4 0.427953 

10.05 7 5 87.0 23.0 0.07666 

9.90 7 5 78.1 22.3 0.270657 

9.55 3 2 64.7 8.2 -0.81188 

9.27 7 4 72.7 22.6 0.246792 

9.05 7 5 88.1 23.8 0.185443 

8.85 10 6 83.7 25.0 0.401588 

8.65 13 5 69.0 17.1 0.26466 

8.40 8 5 75.0 19.3 0.425677 

8.50 7 5 70.4 18.7 0.103709 

8.05 3 2 26.7 19.0 -0.74554 

0.85 3 2 50.0 12.5 -0.54542 

0.55 6 3 30.0 12.8 -0.71706 
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Extended Data Table S4—Trematode prevalence data for Abra segmentum from core 204-S7 samples. n 

= number of valves. 

Core depth 

(m) 

n n with 

trematode 

pits 

n too fragmented to 

determine infestation 

status 

Prevalence Prevalence  

Arcsine-transformed 

18.95 4 3 1 0.750 1.047 

12.25 35 17 12 0.486 0.771 

12.05 98 49 22 0.500 0.785 

11.95 39 25 7 0.641 0.928 

11.35 1 0 0 0.000 0.000 

11.05 30 3 9 0.100 0.322 

10.85 14 1 5 0.071 0.271 

10.35 212 111 53 0.524 0.809 

10.16 73 29 24 0.397 0.682 

9.9 51 20 15 0.392 0.677 

9.29 42 29 3 0.690 0.981 

8.85 40 20 7 0.500 0.785 

8.65 27 5 0 0.185 0.445 

8.5 111 21 32 0.189 0.450 

8.4 32 4 6 0.125 0.361 

0.96 3 2 0 0.667 0.955 

0.85 20 8 5 0.400 0.685 

0.55 5 1 1 0.200 0.464 
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Extended Data Table S5—Results of trematode prevalence 10,000 randomization iterations of individual 

valves. nvalves = number of valves examinable in a sample; Prevalence = number of valves with trematode pits 

divided by nvalves. 

 

Sample 

core depth 

(m) 

N 

valves 
Prevalence 

Results of 10,000 randomization iterations of 
individual valves for trematode prevalence 

Mean 0.5% 2.5% 97.5% 99.5% 

0.55 5 0.200 0.413 0.000 0.000 0.800 1.000 

0.85 20 0.400 0.415 0.150 0.200 0.650 0.700 

8.40 32 0.125 0.415 0.219 0.250 0.594 0.656 

8.50 111 0.189 0.416 0.297 0.324 0.505 0.541 

8.65 27 0.185 0.416 0.185 0.222 0.593 0.667 

8.85 40 0.500 0.416 0.225 0.275 0.575 0.625 

9.29 42 0.690 0.417 0.238 0.262 0.571 0.619 

9.90 51 0.392 0.415 0.235 0.275 0.549 0.588 

10.16 73 0.397 0.414 0.274 0.301 0.534 0.575 

10.35 212 0.524 0.415 0.330 0.349 0.481 0.505 

10.85 14 0.071 0.414 0.071 0.143 0.643 0.786 

11.05 30 0.100 0.415 0.200 0.233 0.600 0.633 

11.95 39 0.641 0.416 0.231 0.256 0.564 0.615 

12.05 98 0.500 0.416 0.286 0.316 0.510 0.541 

12.25 35 0.486 0.415 0.200 0.257 0.571 0.629 

18.95 4 0.750 0.407 0.000 0.000 1.000 1.000 
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Extended Data Figure 1—204-S7 stratigraphic log showing position of samples, sequence boundary and 

flooding surfaces (millennial—thick line, and sub-millennial—thin line, time-scales). FS flooding surface; TS 

transgressive surface, SB sequence boundary. 
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Extended Data Figure 2—Abra segmentum valves were classified as either left or right, and anterior-

posterior length (APL) was measured for all complete specimens. In the case of broken valves, we employed 

the chondrophore length (external portion; Fig. 1C) as a proxy for APL by means of reduced major axis 

regression (RMA). RMA was performed with intercept centered to 0 value and on a set of (a) 23 right, and (b) 

19 left valves, and (c) a set of all valves measured. The RMA model of all valves was utilized for estimating APL 

of fragmented valves whose designation as a right or left valve was not possible. Estimation of anterior-

posterior length was not employed for fragmented valves lacking the umbonal region. A) RMA regression for 

right valves. Regression coefficient and tests: Pearson r = 0.97; r2 = 0.94; p(uncorr.) <<0.05; Slope 9.9566 

(95% bootstrapped C.I. 9.46-10.34 based on 1999 iterations), Standard error 0.212. B) RMA regression for 

right valves. Regression coefficients and tests: Pearson r = 0.99; r2 = 0.97; p(uncorr.) <<0.05; Slope 9.1483 

(95% bootstrapped C.I. 8.54-9.57 based on 1999 iterations), Standard error 0.232. C) RMA regression for all 

valves. Regression coefficient and tests: Pearson r = 0.98; r2 = 0.96; p(uncorr.) <<0.05; Slope 9.5008 (95% 

bootstrapped C.I. 9.06-9.86 based on 1999 iterations), Standard error 0.16659. Ant.=Anterior; 

Post.=posterior 
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Extended Data Figure 3—Non-metric Multidimensional Scaling (nMDS) ordination was used to investigate 

the primary environmental gradient along which the samples could be ordinated. Only small samples (n<15 

specimens), singletons (1 occurrence), and congeneric specimens without species designations removed. Bray-

Curtis similarity was used to develop nMDS ordinations; both (a) 2 dimension and (b) 3-dimensions outputs 

are reported. In both outputs, the indirect ordination analyses of the core data revealed a pronounced gradient, 

with species ordinated along the first nMDS axis, according to their salinity tolerance. 
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Extended Data Figure 4—non-metric Multidimensional Scaling (nMDS) and Detrended Correspondence 

Analysis ordinations varying rare taxa or sample thresholds returned comparable patterns. A-b) Matrix log-

transformed, minimum sample size ≥15 specimens (valves counted as 0.5), only species occurring in one 

sample and samples with one species were excluded. C-d) As above, but minimum sample size ≥20 specimens 

(valves counted as 0.5). E-f) Matrix log-transformed, minimum sample size ≥15 specimens (valves counted as 

1), only species occurring in less than three samples and samples with one species were excluded. The nMDS 

profile in green is reported in Figure 2. 
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Extended Data Figure 5—The species preferred salinity was independently estimated using the modern 

ecological data for mollusk (Extended Data Tables S2-3), and then correlated with the sample nMDS score 

along axis 1. Indeed, a recent study on comparable successions and based on averaging and Detrended 

Correspondence approaches, demonstrated that a posteriori ordination scores are a robust predictor of salinity 

for both samples and species across Holocene paralic succession of the Arno Plain (see Amorosi et al. 2014).  

The reduced major axis (RMA) linear regression (red line) is shown. The thick horizontal bottom line 

represents nMDS sample scores (Fig. Extended Data S3A) calibrated by means of RMA linear regression 

function. Abbreviations: nMDS1 = non-Metric Multidimensional Scaling axis one; n = sample size; p non 

param = permutation test on correlation; psu = practical salinity unit; r2 = coefficient of determination; SEE 

= standard error of the estimate; PSSE = provisory sample salinity estimate (see Extended Data Table S3). 
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Extended Data Figure 6—Size frequency distribution of Abra segmentum recovered in core 204-S7 

classified by presence/absence of trematode-induced pits. 
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Stratigraphic patterns of last occurrences (LOs) of fossil taxa potentially

fingerprint mass extinctions and delineate rates and geometries of those

events. Although empirical studies of mass extinctions recognize that random

sampling causes LOs to occur earlier than the time of extinction (Signor–

Lipps effect), sequence stratigraphic controls on the position of LOs are rarely

considered. By tracing stratigraphic ranges of extant mollusc species preserved

in the Holocene succession of the Po coastal plain (Italy), we demonstrated that,

if mass extinction took place today, complex but entirely false extinction pat-

terns would be recorded regionally due to shifts in local community

composition and non-random variation in the abundance of skeletal remains,

both controlled by relative sea-level changes. Consequently, rather than follow-

ing an apparent gradual pattern expected from the Signor–Lipps effect, LOs

concentrated within intervals of stratigraphic condensation and strong facies

shifts mimicking sudden extinction pulses. Methods assuming uniform recov-

ery potential of fossils falsely supported stepwise extinction patterns among

studied species and systematically underestimated their stratigraphic ranges.

Such effects of stratigraphic architecture, co-produced by ecological, sedimen-

tary and taphonomic processes, can easily confound interpretations of the

timing, duration and selectivity of mass extinction events. Our results highlight

the necessity of accounting for palaeoenvironmental and sequence stratigraphic

context when inferring extinction dynamics from the fossil record.
1. Introduction
Stratigraphic distributions of last occurrences (LOs) of fossil taxa in sedimentary

successions have been used to quantify onsets, durations and intensities of mass

extinctions (e.g. [1–4]), track geographical and environmental variation in

extinction rates [4–6], and relate those rates to concurrent changes in geochem-

ical and sedimentological proxies [2,4,5]. This type of palaeontological data has

been thus crucial for high-resolution reconstructions of the temporal and eco-

logical dynamics of mass extinction events and identification of their extrinsic

drivers. Nevertheless, the observed stratigraphic position of the LO of a species

typically predates its actual time of extinction [7]. In addition, as demonstrated

by Signor & Lipps [8], artificial truncation of the observed stratigraphic range of

a taxon can simply arise from a random sampling process, which can make

abrupt extinction events appear gradual in the fossil record. To correct for
89
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this ‘Signor–Lipps effect’ [9], the timing and pattern of

extinctions have been commonly estimated from stratigraphic

data by assuming that fossil occurrences are essentially

random and controlled primarily by sampling [7].

However, the focus on random sampling effects alone does

not fully account for the complexity of the geological record

and non-random nature of stratigraphic patterns [10]. Most

outcrop- and core-based extinction studies implicitly assume

that the positions of LOs logged at a given location provide

an accurate chronology of extirpation or extinction events,

especially so, if corrected for the Signor–Lipps effect. However,

the local distribution of LOs is not only affected by sampling

intensity, but also by systematic changes in facies and sediment

accumulation rates that occur in response to regional or global

drivers such as tectonic subsidence and eustatic change [11].

Consequently, a local stratigraphic expression of temporal

variation in extinction rates is superimposed on ecological

responses to lateral shifts of habitats through time, manifested

in geological sections as vertical changes in composition and

diversity of fossil assemblages. These changes can appear as

sudden pulses in faunal turnover due to abrupt facies shifts,

as well as due to non-deposition, stratigraphic condensation

and erosion, often coincident with facies boundaries.

Numerical simulations that integrate eco-evolutionary

and sequence stratigraphic models support those predictions:

eco-stratigraphic processes can produce clusters of LOs con-

centrated at specific stratigraphic horizons such as flooding

surfaces, surfaces of forced regression and sequence boundaries

[10,12–15]. Such surfaces are typically associated with deposi-

tional hiatuses, stratigraphic condensation and non-Waltherian

facies shifts [11,16]. Moreover, depositional architecture

influences the stratigraphic distribution, taphonomic character-

istics and temporal resolution of fossil concentrations [17–20],

thus constraining the quantity and quality of palaeontological

data retrievable from any given horizon.

The sequence stratigraphic control on fossil occurrences is

worrisome because the fossil record of many prominent

extinction events coincides with major sequence stratigraphic

surfaces, suggesting that interpretations of these events may

be partly, or even entirely, confounded by the stratigraphic

architecture [10,21–23]. On the other hand, because trends

in biodiversity and stratigraphic architecture may both be

driven by common causative processes such as sea-level

and climatic changes [24], it is difficult to distinguish clusters

of LOs caused by elevated extinction rates from those gener-

ated by stratigraphic processes [10]. To avoid these

uncertainties, we employ here the Holocene fossil record of

living species to test the impact of the stratigraphic architec-

ture on our ability to reconstruct the timing and tempo of

past extinction events.

We evaluate how faithfully stratigraphic ranges of extant

Adriatic molluscs are recorded in a series of cores that were

drilled through a 40-metre-thick package of genetically

related alluvial, coastal and shallow-marine strata of the Po

Plain (northwest Italy). If the time when a given taxon was

in existence was always accurately reflected by its strati-

graphic range observed in local sections, LOs of extant

species should coincide with the top of the succession. How-

ever, such a perfect record is implausible [8,25]. Here we test

if the observed stratigraphic distribution of LOs can be

explained by a random sampling alone (i.e. the Signor–

Lipps effect), or is more consistent with combined effects of

sampling and systematic variation in fossil occurrence rates
90
as predicted by the sequence stratigraphic model. Our

approach can also be directly linked to mass extinction studies

by following a simple thought experiment [25]: imagine that a

catastrophic event has just wiped out all shallow marine and

brackish molluscan fauna of the Adriatic Sea. The extinction

horizon would then correspond to the modern sedimentary

surface preserved in the rock record by subsequent sedimen-

tation. We ask if this hypothetical extinction event could be

correctly reconstructed from cores drilled across the Po Plain.

By tracing the stratigraphic occurrences of extant species with

known ecological preferences, in the context of the established

regional depositional and sequence stratigraphic frameworks

[26], we can directly assess the imprint of facies control, strati-

graphic architecture and sampling on the stratigraphic

distribution of LOs.
2. Material and methods
(a) Study area
The topmost 40-metre-thick succession of the Po coastal plain has

been interpreted to represent the Last Glacial Maximum depositional

sequence, which is currently accumulating in the Po Plain–Adriatic

Sea system [27]. In the study area, the lowstand systems tract is

primarily composed of fluvial and floodplain deposits of Late

Pleistocene age. Overlying transgressive systems tract (TST) and

highstand systems tract (HST) consist mainly of Holocene strata

forming a transgressive–regressive, wedge-shaped succession,

recently subdivided into a series of centennial units embedded

within eight millennial-scale depositional units (parasequences in

[26]; see ‘Geological setting’ in electronic supplementary material).

The Holocene molluscan assemblages were studied in four cores

for which environmental, sequence stratigraphic and chronostrati-

graphic interpretation have been previously established

[19,20,26,28]. These cores form an L-shaped transect 35 km long

that captures lateral variation in LO patterns along the depositional

dip and strike (electronic supplementary material, figure S1). Fossili-

ferous deposits preserving estuarine, deltaic and marine

assemblages occur up to the modern sedimentary surface in all

four cores.

(b) Dataset
A total of 229 bulk samples, each representing an approximately

10 cm core interval, were collected with an average vertical spacing

of 0.57 m (range 0.05–1.52 m). The standardized volume of

samples allows us to track changes in fossil abundance (i.e. the

density of identifiable fossils per unit of a core). See Kowalewski

et al. [29] for the details of sample processing. Specimens lacking

species-level identification and all terrestrial or exclusively fresh-

water species were excluded, resulting in the dataset

encompassing 119 species and 38 093 specimens (electronic sup-

plementary material, dataset S1). Stratigraphic ranges of species

observed in the cores were extended to the Late Pleistocene

based on their occurrence in the underlying marine strata of the

Last Interglacial (Marine Isotope Stage 5e [29]).

(c) Estimating bathymetric preferences of species
We focused on water depth because it is one of the major factors

controlling the distribution of marine benthic assemblages [15].

The independent estimates of the present-day bathymetric prefer-

ences of species were derived from the Italian Mollusc Census

Database of the Italian National Agency for New Technologies,

Energy and Sustainable Economic Development (ENEA; http://

www.santateresa.enea.it/wwwste/malaco/home.htm), a compi-

lation of benthic surveys along the Italian coast [30]. We only
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considered sampling stations located on the Adriatic Sea shelf.

The restricted dataset consisted of 403 samples collected from 0

to 124 m water depth and containing approximately 240 000

individuals of 439 species in total.

The bathymetric preference of a species was estimated as the

mean water depths across all sampling stations at which that

species was found, weighted by the number of specimens at

each of those stations. Because brackish habitats tend to be

underrepresented in the ENEA database, this procedure may over-

estimate water depths of species reaching peak abundance in

brackish conditions. The counts of both live and dead individuals

were combined to assure that the calculated parameters reflect an

environmental distribution of a species as would be observed in

the fossil record. Preferred water depth was estimated for 72 out

of 119 species (60.5%) recorded in the cores which were present

at five or more sampling stations in the ENEA database.
.B
285:20181191
(d) Analytical methods
We tested whether the time and pattern of extinctions can be

correctly estimated from the stratigraphic record under a simple

model of a random distribution of fossil occurrences and constant

sampling probability (uniform recovery potential) through time

[7,31]. As recently noted by Wang & Marshall [7], this class of prob-

abilistic methods continue to dominate palaeontological analyses,

including the most recent studies.

First, we used empirically calibrated resampling simulations to

assess if the stratigraphic patterns in LOs observed in the cores

deviate significantly from the patterns that would be expected

under uniform recovery potential of fossils. We designed two null

models. The first model assumes a random distribution of species

and uniform sampling intensity throughout the stratigraphic suc-

cession. The second model relaxes the latter condition by allowing

the sample size to vary according to the trends in fossil abundance

actually observed in the cores. See the electronic supplementary

material for the details of the resampling procedures.

Second, we applied several methods of testing for abrupt

versus stepwise or gradual extinction patterns: (i) a simple graphi-

cal approach based on the relationship between stratigraphic

abundance (proportion of samples in which a given species was

observed) and position of LO [25], (ii) a likelihood-ratio test for

the simultaneous extinction of all species [32], and (iii) a two-

step algorithm estimating the number of extinction pulses [33]

(see the electronic supplementary material for details). We evalua-

ted the ability of those methods to correctly identify the single

simultaneous extinction event in each of the studied cores.

Finally, to test how accounting for systematic variation in fossil

occurrence rates affects estimates of extinction times, we compared

the performance of two methods for calculating confidence inter-

vals (CIs) on the position of stratigraphic range endpoints. The

classical method of Strauss & Sadler [34] assumes uniform recov-

ery potential of fossils, while its generalization [35] allows

recovery potential to vary with stratigraphic position according

to a predefined recovery function. Following procedures of Hol-

land [36], we estimated sample-level collection probabilities for

each species using multivariate ordination (see the electronic sup-

plementary material). For species with at least four occurrences in

a given core, we calculated 50% and 95% CIs using both methods

and compared the proportion of taxa for which the estimated

range endpoint fell below the topmost sample in the core (the

extinction horizon in our hypothetical scenario). All analyses

were performed in R [37].
3. Results
Out of 119 extant species recorded in the cores, only six (5%)

reach the top of the sedimentary succession (i.e. our
91
hypothetical extinction horizon). Thus, taken at face value,

the observed stratigraphic ranges would provide a strongly

distorted record of the timing and pattern of extinctions

(figure 1). Moreover, LOs do not follow a simple gradual

pattern predicted by the Signor–Lipps effect [8,25]. Instead,

LOs form distinct clusters, the number and stratigraphic

position of which depend on the location of the core along

the depositional profile (figures 1 and 2a).

In the two proximal cores, a major peak at 7–9.5 m core

depth precedes the cluster of LOs corresponding to the

hypothetical extinction horizon at the top of the cores (figures 1

and 2a). The older cluster occurs below the shift from lagoonal

to swamp facies association and above a series of closely

spaced centennial-scale flooding surfaces within the earliest

HST (parasequence 4). In the core 205-S5, another cluster of

LOs is located in the middle part of the TST (16–18 m; parase-

quence 2), which also consists of a set of centennial-scale units

deposited in back-barrier settings. The same interval in core

204-S7, located further updip, records swamp and floodplain

deposits mostly devoid of macrofossils (figure 1).

In the downdip cores, LOs are strongly clustered around

the maximum flooding surface (MFS; figures 1 and 2a). This

interval includes a metre-thick, highly fossiliferous transgres-

sive sand sheet, recording a millennial-scale condensation,

and, in its lower part, ecologically mixed (reworked) faunal

assemblages [19,20]. The unit is capped by a thin veneer of

offshore clays and silts recording the maximum water depths

within the studied succession [26,38], followed by a thick

package of sparsely fossiliferous prodelta muds. Above them,

a smaller peak in LOs is located around the centennial-

scale flooding surface within the HST (8.5–10.5 and 15.5–

18 m in core 205-S9 and 205-S14, respectively; parasequence

7). This cluster precedes the onset of a progradation of the

southern Po delta lobes (Spina and Volano) and deposition of

coarser-grained delta front facies.

Combining fossil occurrences across the cores reduces the

magnitude of range truncation: for 30 out of 64 species

recorded in more than one core, the positions of their LOs

shifted upward to a younger parasequence (electronic sup-

plementary material, figure S2). However, even for data

merged across all four cores, only 16 species (13%) reach the

youngest parasequence 8, and 67 species (56%) do not range

beyond the condensed interval around the MFS. Capturing

the full extent of their stratigraphic ranges would require

sampling of sections located even further downdip recording

more offshore environments.

Given that all sampled species are still living in the region,

truncations of their stratigraphic ranges must reflect incom-

plete sampling or change in the local habitat (i.e. facies

shifts). Facies control on the stratigraphic distribution of LOs

can be assessed using bathymetric preferences of individual

species derived from independent surveys of recent benthic

fauna. While shallow-water and brackish-tolerant species are

recorded up to the very top of the cores, LOs of taxa preferring

more offshore conditions are concentrated in the late TST and

earliest HST (figure 2b). The disappearance of deeper-water

species from the upper part of the sequence can be linked to

the onset of a fast regional progradation during the HST (para-

sequences 7–8). In the two distal cores, this progradation led to

deposition of a thick, shallowing-upward deltaic wedge [26]

(electronic supplementary material, figure S1). The same

shallowing trend is manifested in the two proximal cores by

a reduction of marine influence in back-barrier settings.

http://rspb.royalsocietypublishing.org/
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Systematic changes in fossil abundance represent another

factor controlling the stratigraphic distribution of species.

Because the volume of sediment sampled from each core

interval was held constant, changes in shell density directly

affect the number of specimens available for study and thus

the likelihood of recording rare taxa. As a result, LOs of

rare species should cluster in shell-rich horizons, where

they are more likely to be sampled. Indeed, the position of

LO clusters follows peaks in fossil abundance (figure 3a,d;

electronic supplementary material, figures S3a,d ).

The observed stratigraphic patterns in LOs depart signifi-

cantly from the null model assuming both facies-independent

distribution of species and uniform sampling intensity (model

1 in figure 3; electronic supplementary material, figure S3).

Under those conditions, the probability of recording a given

species depends only on its total abundance and remains con-

stant throughout a core. In this model, the random truncation

of stratigraphic ranges and differential sampling of rare versus

common species lead to the classical Signor–Lipps pattern of

downward smearing of LOs, stratigraphically manifested as a

gradual decline in species diversity. By contrast, simulations

incorporating vertical changes in fossil abundance always pro-

duce stepwise LOs patterns (model 2 in figure 3; electronic

supplementary material, figure S3) and correctly predict the

position and magnitude of many, though not all, LO clusters

observed in the proximal cores. This suggests that some of

the clusters of LOs can simply reflect a stratigraphic distri-

bution of fossil-rich deposits. However, the distribution of

LOs observed in the two distal cores is incongruent with the

predictions of model 2. Variation in fossil abundance is thus

insufficient to explain the position of LO clusters in these
92
cores underscoring the importance of facies control on the

distribution of LOs.

Model 1 in our simulations corresponds to the assumption

of uniform preservation and recovery of fossils that underlies

many probabilistic methods for estimating the actual time or

pattern of extinctions from fossil occurrences [7,31]. Such

methods do not account for sequence stratigraphic control on

LO patterns. The relationship between stratigraphic abundance

and position of LOs [25] suggests two extinction pulses

(electronic supplementary material, figure S4). False stepwise

extinction patterns are also favoured by the maximum-

likelihood estimates for the number of extinction pulses [33]

(electronic supplementary material, figure S5), while the

likelihood-ratio test [32] incorrectly rejects the hypothesis

of simultaneous extinction of all species in three out of

the four cores ( p ¼ 0.17 for core 205-S5 and p , 0.001 for the

remaining cores). Because all species are extant, the CIs on

their stratigraphic range endpoints should extend to the

modern sedimentary surface. However, the classical method

[34] based on the assumption of random fossil occurrence,

systematically underestimates the extent of species ranges

(electronic supplementary material, figure S6). Incorporation

of facies-dependent occurrence probabilities derived from

multivariate ordination [35,36] (electronic supplementary

material, figures S8 and S9) reduces the bias in the estimates

of extinction time (electronic supplementary material, figure

S7). While the classical 95% CIs do not reach the top of the suc-

cession for 44%, 55%, 74% and 79% of species in core 205-S5,

204-S7, 205-S14 and 205-S9, application of the ordination-

based CIs reduces these numbers to 0%, 12%, 52% and 23%

of species, respectively.
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4. Discussion
Non-random truncation of stratigraphic ranges of extant

species observed in the Holocene strata of the Po Plain reveals

pervasive effects of stratigraphic architecture on the distri-

bution of LOs preserved in the fossil record. LOs of taxa tend

to concentrate within intervals of stratigraphic condensation

and strong facies shifts associated with flooding surfaces in

the TST and lower HST (figures 1 and 2a). Literal reading of

these patterns would falsely suggest a multiphase extinction

event: a regionally synchronous interval of highly elevated

extinction rates around the time of maximum marine ingres-

sion followed by smaller extinction pulses (figure 2a).

Moreover, the relationship between the stratigraphic position

of LOs and ecological affinities of species (figure 2b), if con-

sidered without a reference to the vertical facies changes,

could be mistaken as a signature of habitat-selective extinction:

early extinction of offshore taxa followed by a more protracted,

stepwise decline of shallow-water and brackish fauna.

Such sequence stratigraphic control on the distribution of

LOs, easy to identify in the Holocene strata, can severely

hamper interpretations of more ancient records, especially

when outcrop area is restricted to a narrow portion of a deposi-

tional profile, temporal resolution is low, and ecology of extinct

taxa poorly known [10,21,22]. Because the nature and intensity

of stratigraphic controls depend on the location along a
93
depositional profile, sequence architecture and tectonic setting

[10,15,39], as well as on ecological and taphonomic character-

istics of taxa [23,39–41], a variety of patterns in LOs can arise

depending on the local context and taxonomic group under

study. Indeed, contrasting interpretations of the number and

timing of extinction pulses during the End-Permian mass extinc-

tion have been suggested to reflect different degrees to which

sampling, facies control and stratigraphic incompleteness

affect fossil occurrence patterns in individual sections [42].

The observed stratigraphic positions of LO clusters are

consistent with the predictions of numerical simulations

that modelled fossil occurrences as a function of bathymetry-

dependent distribution of taxa and sequence stratigraphic

architecture [10]. This agreement indicates that the effects of

stratigraphic controls can be deduced from basic ecological

and sequence stratigraphic principles, even when the models

and empirical systems are only partly compatible. Whereas

the numerical models simulated deposition over 106–107

years [10,12,14,39], the investigated succession represents

only the last approximately 12 000 years. However, when

considered in terms of the spatial extent, thickness of the

strata, stratigraphic architecture and amplitude of the eustatic

sea-level change, the studied succession is comparable to

higher-order depositional sequences formed over much

longer time scales. Consequently, the Quaternary fossil record

of the Po Plain can serve as a good analogue for the field- or

http://rspb.royalsocietypublishing.org/
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core-based mass extinction studies. Likewise, the discrepancy

between the time interval covered by this study and typical

species duration in molluscs (106–107 years) does not affect

the results. Owing to its short temporal scale, the studied Holo-

cene system is not affected by background extinctions, explicitly

incorporated in the numerical models. Therefore, the observed

clustering of LOs is produced solely by non-random truncation

of stratigraphic ranges below a single mass extinction event (the

modern sediment surface in our study). According to the

models [10,12,13], the same types of sequence stratigraphic

surfaces, at which these clusters were recorded, are expected

to accumulate LOs of taxa even when extinction rate is constant

through time. Consequently, the stratigraphic record of a mass

extinction should be distorted even more severely in sedimen-

tary successions spanning longer time scales, because LOs of

the actual victims of a mass extinction would be clustered

together with LOs of species that went extinct prior or after

the event [10].

The stratigraphic distribution of species in Po Plain cores is

controlled by both changes in depositional environments and

vertical trends in fossil density. The first factor determines

the composition of fossil assemblages that can be sampled at

any given horizon, the second factor constrains the available

sample size. Changes in environmental conditions and in

fossil density are both driven by responses of sedimentary
94
systems to relative sea-level changes and are thus closely corre-

lated: stratigraphic intervals marked by strong facies shifts and

faunal turnover represent horizons where net sedimentation

rates are reduced and skeletal accumulations are more likely

to form [17,18,20]. Clustering of LOs at these horizons results

from the combined effects of (i) direct environmental control

on species distribution and hard part production rates,

and (ii) taphonomic and sedimentary processes underlying

formation and preservation of fossil concentrations.

Shell-rich beds should on average capture a greater share of

the regional species pool relative to shell-poor strata, even if

regional diversity remains stable through time and sample

size is held constant. This inflation in sample-level richness is

expected due to effects of higher time-averaging [43,44], posi-

tive feedback between bioclast accumulation and local

epibenthic diversity [45,46] and enhanced preservation poten-

tial of skeletal elements [47]. This interplay between facies

control and sampling bias is illustrated by the prominent

peak in LOs bracketing the MFS in the two distal cores

(figure 2a). Owing to environmental condensation [19,20],

LOs of both offshore and shallow-water species are clustered

together in this interval (figure 2b). The disappearance of off-

shore species results from the subsequent shallowing, while

the concentration of LOs of shallow-water forms reflects

over-sampling of rare species due to high fossil densities.

http://rspb.royalsocietypublishing.org/
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Our null models suggest that even in a highly unlikely scen-

ario of identical environmental preferences of all species, non-

random stratigraphic distribution of skeletal concentrations

can produce clusters of LOs that mimic sudden or stepwise

extinction patterns (model 2 in figure 3). Thus, distinct patterns

in LOs can result solely from changes in fossil abundance

produced by stratigraphic variation in sedimentation rates,

fossil preservation and habitat-dependent hard part pro-

duction rates, all of which can be controlled by stratigraphic

architecture. In other words, rather than being uniform and

randomly distributed, the effects of sampling are closely tied

to the stratigraphic architecture and covary with patterns

caused by facies changes. More intensive collecting effort con-

centrated only around the postulated extinction horizon is thus

unlikely to mitigate the problem.

In contrast to our results, Meldahl [25] observed the classic

gradual pattern of LOs produced by the Signor–Lipps effect in

cores taken from a tidal channel in Bahia la Choya, northern

Gulf of California. However, the 70-cm-long cores used in

that study captured a single facies association and remained

fossiliferous throughout their length. Our numerical simu-

lations (model 1 in figure 3) show that gradual backward

smearing of LOs below the extinction horizon would occur

only under assumptions of (i) continuous and uniform

sampling, and (ii) facies-independent distribution of species

or constant environment through time. Such ideal conditions,

translating to uniform recovery potential of fossil, are unrealis-

tic in sedimentary successions deposited over time scales

relevant for mass extinction studies [11]. Yet methods based

on this simplifying assumption are still widely used to infer

timing of extinctions from stratigraphic data [7]. Such methods

fail to correctly reconstruct the actual extinction pattern

among investigated mollusc species (electronic supplementary

material, figures S4–S6), demonstrating that accounting for

random sampling alone is not enough to avoid the effects of

stratigraphic controls on LOs.

Systematic changes in occurrence rates and sampling

probabilities of fossil are the rule rather than exception

[13,48]. As a result, reliance on statistical procedures that

account for the incomplete fossil record by assuming a

uniform recovery potential of fossils can lead to incorrect

inferences on the timing and mode of mass extinction

events. Methods that relax this unrealistic assumption

(e.g. [49,50]) or incorporate independent information on

facies-specific occurrence rates and/or sampling effort

[35,36,51] may provide more reliable estimates of extinction

times, as demonstrated by our results (electronic supplemen-

tary material, figure S7). However, datasets restricted to

individual outcrops or local composite sections are unlikely

to fully capture an environmental and stratigraphic distri-

bution of a taxon (electronic supplementary material, figure

S2), while extrapolation of locally observed patterns to

regional or global scales is problematic [23]. Combining

data from multiple sections spanning different basins and

depositional environments may reduce the effects of facies

and sampling [42]. Such analyses cannot rely on biostrati-

graphic correlations, as important index fossil groups are

not immune to the effects of stratigraphic architecture [22,23].

Overcoming sequence stratigraphic controls on fossil occur-

rence, although challenging, is not impossible [15,23,52,53].

Several strategies for distinguishing extinction-generated

pulses of LOs from those produced by stratigraphic architecture

have been suggested [10]: (i) clusters of LOs not associated with
95
sequence stratigraphic surfaces are likely to reflect elevated

extinction rates; (ii) data from depositionally updip or downdip

sections can verify if a locally observed LOs correspond to the

actual extinctions rather than facies-related disappearances;

and (iii) fossil assemblages from environmentally equivalent

strata located below and above a postulated extinction pulse

can be compared to test if the extinction rates across this interval

exceed background extinction rates. Also, multivariate analyses

can be used to compare the magnitude of faunal turnover across

the postulated event to the variation in assemblage composition

that is expected from changes in depositional environments or

stacking patterns [23]. Novel quantitative approaches for esti-

mating environmental affinity of fossil taxa [53,54] should

further increase our ability to disentangle consequences of

mass extinction events from ecological responses to lateral

habitat migration.
5. Conclusion
Stratigraphic distribution of extant species demonstrates that

interactions between ecological preferences of organisms and

processes of sediment accumulation produce systematic

changes in occurrence rates and sampling probabilities of

taxa along a sedimentary succession. The resulting non-

random truncation of stratigraphic ranges leads to clustering

of LOs at specific sequence stratigraphic positions distorting

the relative chronology of species extinctions. Such patterns

can easily confound interpretations of the timing, duration

and ecological selectivity of mass extinction events. Impor-

tantly, the effects of these eco-stratigraphic processes cannot

be removed by methods that correct the Signor–Lipps

effect under a model of uniform preservation and recovery

of fossils.

Research strategies that account for the effects of strati-

graphic architecture are data-intensive and rely on placing

fossil occurrences in a rigorous palaeoenvironmental and

sequence stratigraphic framework. They also typically require

integration of data across multiple sections or sedimentary

basin, thus often sacrificing temporal and spatial resolution.

These challenges imposed by the nature of the stratigraphic

record must be acknowledged and addressed before high-

resolution reconstructions of past extinction dynamics are

attempted. However, more conservative interpretations of

the stratigraphic distribution of fossil taxa will maximize the

accuracy of palaeobiological interpretations and reduce

the risk of using false extinction patterns to formulate and

test eco-evolutionary hypotheses.
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47. Tomašových A, Schlögl J. 2008 Analyzing variations
in cephalopod abundances in shell concentrations:
the combined effects of production and density-
dependent cementation rates. Palaios 23,
648 – 666. (doi:10.2110/palo.2008.p08-033r)

48. Holland SM. 2016 The non-uniformity of fossil
preservation. Phil. Trans. R. Soc. B 371, 20150130.
(doi:10.1098/rstb.2015.0130)

49. Roberts DL, Solow AR. 2003 Flightless birds: when
did the dodo become extinct? Nature 426, 245.
(doi:10.1038/426245a)

50. Wang SC, Everson PJ, Zhou HJ, Park D, Chudzicki DJ.
2016 Adaptive credible intervals on stratigraphic ranges
when recovery potential is unknown. Paleobiology 42,
240 – 256. (doi:10.1017/pab.2015.37)

51. Labandeira CC, Johnson KR, Wilf P. 2002 Impact of
the terminal Cretaceous event on plant – insect
associations. Proc. Natl. Acad. Sci. USA 99,
2061 – 2066. (doi:10.1073/pnas.042492999)

52. Zuschin M, Harzhauser M, Mandic O. 2011
Disentangling palaeodiversity signals from a biased
97
sedimentary record: an example from the Early to
Middle Miocene of Central Paratethys Sea. Geol. Soc.
Lond. Spec. Publ. 358, 123 – 139. (doi:10.1144/SP358.9)

53. Sheets HD, Mitchell CE, Melchin MJ, Loxton J, Štorch
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1. Geological setting 

Many previous studies describe in detail the stratigraphic architecture of the Po-Adriatic Sea 

systems, especially for the latest Quaternary (e.g., [1–8]). Here we provide a brief outline focused 

only on the main stratigraphic features of the targeted area. For an in-depth discussion of stratal 

geometries and environmental evolution of the investigated succession, we refer to the above-

mentioned papers and references therein. 

The Pliocene-Quaternary sedimentary infill of the basin beneath the Po coastal plain is >7 km thick 

and records a stacking of 3rd order tectono-stratigraphic sequences bounded by major 

unconformities, each representing a major event of deformation related to the structuring of the 

Apennine foredeep [7,9]. High-resolution studies of the latest Quaternary succession of the study 

region [10,11] documented a set of higher frequency (4th order) wedge-shaped packages of strata, in 

which internal organization was interpreted as being driven primarily by glacio-eustatic changes. 

Within the study area, the topmost 40-m-thick succession has been interpreted to represent the Last 

Glacial Maximum (LGM) depositional sequence [3]. The sequence boundary was placed at a notable 

paleosol developed at the beginning of the last maximum glacial phase (<34 ka cal BP [2]). The 

lowstand systems tract (LST) is mainly composed of laterally extensive sand fluvial bodies associated 

with pedogenically modified floodplain deposits. The onset of an overall retrogradational stacking 

pattern (represented by a vertical transition from coastal to marginal marine facies) highlights the 

transgressive surface (TS) or maximum regressive surface. The TS, being associated with a weakly 

developed palaeosol attributed to the Younger Dryas cold spell, is the most distinct surface that can 

be recognized regionally in cores [8]. Above the TS, the Holocene deposits of the Po coastal plain 

record a transgressive-regressive, wedge-shaped succession, recently subdivided into a series of 

centennial units embedded within eight millennial-scale depositional units (parasequences in [3]). 

Parasequences 1 to 3 show a distinct retrogradational stacking pattern of alluvial to estuarine and 

marginal marine depositional systems in tune with a stepped post-glacial eustatic sea-level rise. 

Parasequences 4 to 8, in turn, are characterized by a multifaceted and aggradational to increasingly 

progradational pattern of coastal/deltaic depositional systems. The maximum flooding surface 

(MFS), marking the turnaround between transgressive and normal regressive stacking patterns, is 

interpreted to be at the base of parasequence 4 ([3]; figure S1) 

To track the lateral variation in the stratigraphic distribution of species along the depositional dip 

and strike, we focused on four cores forming a 35-km-long L-shaped transect across the southern Po 

Plain (figure S1). The two proximal (updip) cores (204-S7 and 205-S5) located in proximity to the 

maximum extent of Holocene marine ingression are dominated by floodplain, coastal swamp and 

brackish (lagoon/bay) facies associations. The downdip cores (205-S9 and 205-S14) represent a 

more distal setting, ~18 km seaward from the shoreline during the maximum ingression, and record 

transition from brackish, through nearshore to shallow-marine depositional environments.  

 

2. Resampling models 

We designed two null models aimed at separating the effects of random range truncations, 

stratigraphic trends in fossil abundance, and facies control on species occurrence. The first model 

makes two assumptions: random distribution of species and uniform sampling intensity (constant 

number of individuals sampled per horizon) throughout the stratigraphic succession. The second 

model relaxes the second of those assumptions by allowing the sample size to vary vertically 
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according to the trends in fossil abundance actually observed in the cores. The assumption of random 

distribution of fossils made by both models corresponds to a scenario in which either (1) the 

probability of species occurrence is uniform across all facies (i.e. species lack any environmental 

preferences and their preservation potential is the same in all environments), or (2) sedimentary 

environment remains constant though time.     

For both models, all samples in a given core were first pooled together. For each core depth 

corresponding to an actually sampled horizon, a random sample of individuals was taken from the 

pool without replacement, while preserving their species identities. In the first model, the number 

of randomly drawn individuals was constant and equal to the average sample size in the core. In the 

second model, the number of specimens was set to be the same as actually observed at the particular 

core depth. Such random samples were assigned to all horizons sampled in the core. The simulated 

dataset was then used to construct a range chart and identify the stratigraphic positions of LOs for 

each species. This procedure was repeated 10,000 times. Repeated simulations indicated that 

analytical outcomes were highly reproducible at 10,000 iterations. 

The number of LOs that was actually observed at each sampled stratigraphic horizon was compared 

to the median number of LOs at that depth calculated across all resampling iterations. The 

corresponding 95% confidence intervals were calculated using the percentile method [12]. The 

observed pattern of stratigraphic range end-points was compared to the null expectation by first 

ranking all species in simulated range charts according to their LOs and then calculating for each 

rank the median core depth at which the LO occurred together with corresponding 95% confidence 

intervals. 

 

3. Inferring time and pattern of extinctions from fossil occurrences 

We tested whether the effects of sequence-stratigraphic controls can be removed by methods that 

correct for the Signor–Lipps effect by estimating the time or pattern of extinctions from fossil 

occurrences under a simple model of uniform preservation and recovery of taxa. As noted by Wang 

& Marshall [13], this class of probabilistic methods continue to dominate palaeontological analyses, 

including the most recent studies. Whereas several methods relaxing the assumption of uniform 

fossil recovery has been proposed (e.g., [14–18]), they remain rarely used in empirical studies [13]. 

A systematic evaluation of different statistical approaches used to estimate times of extinction from 

stratigraphic data is beyond the scope of our study (see reviews in [13,19]). 

 

(a) Assessing the pattern of extinctions. We applied a simple graphical method proposed by 

Meldahl [20] to distinguish between gradual, stepwise, and sudden extinction patterns based on the 

relationship between stratigraphic abundance and position of LO (figure S4). Stratigraphic 

abundance is the proportion of stratigraphic intervals (core samples in our case) in which a given 

species was observed. Because the magnitude of artificial truncation of stratigraphic ranges is likely 

to be smaller for common taxa (i.e., those with high stratigraphic abundance), their LOs should 

better approximate the stratigraphic positions of extinction events. Simulations suggest that gradual, 

stepwise, and sudden extinction pattern produce different graphical relations between stratigraphic 

abundance and LO [20]. This method implicitly assumes that probability of collecting a taxon is 

constant throughout a stratigraphic section. However, if a given species is tied to a specific facies, 

both its stratigraphic abundance and the position of the LO may primarily reflect the stratigraphic 

distribution of that facies. 

We supplement the qualitative approach of Meldahl [20] with a formal test of the null hypothesis of 

the simultaneous extinction of all species using the likelihood ratio test of Wang and Everson [21]. 

The null hypothesis is true in our hypothetical scenario: given that all species found in the cores are 

known to be extant in the region, their true stratigraphic range-end points correspond to the modern 

sedimentary surface. We also applied the recently proposed generalization of this method [22], 
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which directly estimates the number of extinction pulses. In both cases, species recorded only once 

in a given core were excluded prior to the analyses. For each core, we calculated the relative support 

for extinction scenarios ranging from a single (i.e., simultaneous extinction) to five extinction pulses 

(figure S5) using the original R code provided in the supplementary material to Wang and Zhong’s 

[22] paper. 

The two-step algorithm of Wang and Zhong [22], first determines the maximum likelihood estimate 

(MLE) for each possible number of pulses. In the second step, MLEs for different number of pulses 

are compared using Akaike information criterion (AIC) and Bayesian information criterion (BIC). 

To increase the accuracy of the estimated number of pulses, a k-nearest neighbour classifier is 

applied to the set of AIC and BIC weights (see [22] for details). The algorithm predicts the number 

of extinction pulses most consistent with the observed fossil occurrences under the assumption of 

uniform preservation and recovery of fossils throughout the extent of their stratigraphic ranges. It 

also estimates the confidence level associated with each number of pulses, which can be interpreted 

as posterior probabilities in Bayesian framework.  

 

(b) Confidence limits on stratigraphic ranges. We compared the performance of two methods 

for calculating confidence intervals on the position of the true end-points of stratigraphic ranges: the 

classical method of Strauss and Sadler [23], which assumes random occurrence and thus constant 

sampling probability of fossil, and its generalization [15], which allows recovery potential to vary 

with stratigraphic position according to a predefined recovery function. We estimated species 

recovery functions using multivariate ordination [24] (see below). For species with at least four 

occurrences in a given core, we calculated 50% and 95% confidence intervals using both methods 

(figures S6 and S7) and compared the proportion of taxa for which the estimated range end-point 

fell below the topmost sample in the core (the extinction horizon in our hypothetical scenario).  

We calculated the stratigraphic length (measured in thickness of strata) of the confidence interval 

(rc) as a fraction (α) of the observed stratigraphic range (R) [19,23]:   

𝑟𝑐  =  𝛼𝑅 (1) 

This fraction depends on the number of horizons at which a taxon was found (H) and on the chosen 

confidence level (C) [23]: 

𝛼 =  (1 − 𝐶)−1 (𝐻−1)⁄ − 1 (2) 

As demonstrated by Marshall [15], equation (1) can be generalized as the relationships between the 

probability of collecting a taxon within its known stratigraphic range (R) and the probability of 

observing it within a distance (rc) beyond that range. These probabilities can be expressed as 

integrals of the fossil recovery potential curve [15]: 

∫ 𝑓(ℎ)
𝑏+𝑟𝑐

𝑏

𝑑ℎ =  𝛼 ∫ 𝑓(ℎ)
𝑏

𝑎

𝑑ℎ (3) 

where a is the stratigraphic position of the first occurrence of a taxon, b is the position of the LO, α 

is given by equation (2), and f(h) is the density distribution function of fossil recovery potential, i.e. 

the function describing how the probability of collecting a taxon varies with stratigraphic position. 

Calculation of generalized confidence intervals requires establishing fossil recovery potential of a 

species. Following Holland [24], we estimated sample-level collection probabilities for each species 

using a multivariate ordination technique, detrended correspondence analysis (DCA). DCA places 

samples and species in the same ordination space in a way that maximizes the compositional 

variation in the dataset along the first ordination axis. DCA axis 1 scores can be thus considered as a 

measure of the relative position of samples along the primary environmental gradient controlling 

taxonomic composition of the assemblages. In marine settings axis 1 usually corresponds to water 

depth and environmental variables that are correlated with it [25,26]. Parameters of species 

response curves, which describe how the probability of collecting a given species changes along this 
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gradient, can be estimated from DCA results using a simple Gaussian model [24,27,28]. The model 

is based on three parameters: preferred environment (PE; mean of the Gaussian curve), 

environmental tolerance (ET; standard deviation of the Gaussian curve), and peak abundance of a 

species (PA; the probability of finding the species at its PE represented by the height of Gaussian 

curve). PE can be estimated by the DCA axis 1 score of the species, ET by the standard deviation of 

axis 1 scores of all samples containing the species, and PA by the proportion of samples in which the 

species was found located within one ET of the PE of that species (see [24] for further details). 

DCA ordination of the total dataset was performed with R package “vegan” [29]. Prior to the analysis, 

samples that were devoid of fossils or contained only a single species, as well as species occurring in 

only one sample were removed [28], resulting in the dataset containing 83 species and 143 samples. 

The relative abundance data were log-transformed to down-weight the effects of very abundant 

species. In the resulting DCA ordination samples tend to be distributed along axis 1, according to 

their position along the onshore-offshore gradient (figure S8). Specifically, samples representing 

swamp and lagoon/bay facies associations tend to have negative axis 1 scores, beach ridge/delta 

front samples have intermediate scores, and prodelta and offshore transition samples have high axis 

1 scores. Higher axis 1 scores can be thus interpreted as indicating an increase in marine influence 

and/or water depths. Moreover, axis 1 scores of species are positively correlated with their preferred 

water depth (r = 0.50; 95% confidence interval: 0.28–0.68; P < 0.001). The correlation is weaker 

then observed in the previous quantitative bathymetric models for Po Plain Quaternary succession 

[4,11]. This reflects our focus on species rather than genera (used in the previous studies), inclusion 

of rare taxa, and a large share of samples from the proximal cores (204-S7 and 205-S5). These 

onshore cores capture predominately floodplain and back-barrier habitats, in which assemblage 

composition is controlled by environmental factors that can be poorly correlated with water depth, 

like salinity [4,30].  

Based on the above evidence, DCA axis 1 can be used as a quantitative proxy for tracking shifts in 

the position of each core along the onshore-offshore gradient throughout the stratigraphic 

succession (figure S9). Probability of collecting a species from a given sampling horizon can be 

estimated based on the axis 1 score of that sample and species response curves derived from the 

DCA. These estimates can be used to track stratigraphic changes in species recovery potential (figure 

S9B) and thus allow for estimating the generalized confidence intervals on stratigraphic ranges [24]. 

For a given species, we summed recovery potential across all sampling horizons that were located 

within the observed stratigraphic range of the species. The resulting sum was multiplied by factor α 

[as defined in equation (2)] to obtain the total recovery potential expected within the extent of a 

confidence interval rc above the observed range [equation (3)]. To find the top of the confidence 

interval we cumulatively added recovery potentials for samples located above the observed LO of a 

species, from the lowermost to the highest sampling horizon, until the summed recovery potential 

was greater than or equal to that recorded within the observed range [31]. The stratigraphic position 

of the last sample included in this procedure marked the top of the confidence interval. If the sum of 

recovery potentials across all samples located above the LO of a species, including the topmost 

sample in the core, was still smaller than the total recovery potential within the observed range, we 

assumed that the confidence interval extends beyond the modern sedimentary surface. This 

procedure was done separately for each of the four cores. 
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Supplementary figures 

 

 

 

Figure S1. Location of the investigated cores (a) and cross-section of the latest Pleistocene–Holocene 

succession of the Po coastal plain (b; based on [3] and unpublished data of L. Bruno and B. Campo) illustrating 

the regional facies architecture and sequence-stratigraphic framework. Millennial-scale parasequences are 

numbered in red. See figure 1 for the key to sequence stratigraphic units.  
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Figure S2. Tangled-fence diagram showing variation in the timing of LOs across individual cores. Lines 

connect stratigraphic positions of the LO of a single species in different cores. Only species recorded in more 

than one core are shown. Shading delineates approximately isochronous core intervals correlated based on the 

parasequence framework (see [3] for details). In the two distal cores (205-S9 and 205-S14), individual 

parasequences cannot be distinguished around the MFS due to strong condensation. This condensed interval 

(shaded in dark gray) correlates with the a much more stratigraphically expanded interval in the proximal 

cores that encompasses multiple parasequences ranging from the upper part of parasequence 2 to the 

parasequence 6. PS 1, parasequence 1; PS 2a, lowermost part of the parasequence 2; CI, condensed interval; 

PS 7, parasequence 7; PS 8, parasequence 8. 

  

105



 
 

 

Figure S3. Stratigraphic trends in fossil abundance (number of identifiable specimens per sample; a, d) in 

cores 204-S7 and 205-S14, and the results of two resampling models for the expected number of last 

occurrences (b, e) and distribution of stratigraphic range end points (c, f). See figure 3 for further details and 

figure 1 for the key to sequence stratigraphic units.   
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Figure S4. Plots of stratigraphic abundance (proportion of samples in which a species was recorded) versus 

the stratigraphic position of last occurrence support stepwise extinction pattern in three of the studied cores. 

In core 205-S14 the observed distribution in more consistent with a gradual extinction scenario. See figure 1 

for the key to sequence stratigraphic units. 
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Figure S5. Maximum likelihood estimates for the positions of extinction pulses in each core for scenarios 

involving 1–5 pulses (upper rows) and corresponding confidence levels (lower rows) calculated using the two-

step algorithm of Wang and Zhong [22]. Species recorded only once in a given core were excluded prior to the 

analyses. With the exception of core 205-S5, stepwise extinction scenarios are overwhelmingly better 

supported compared to a single extinction event.  
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Figure S5. Stratigraphic ranges with their 50% (diamonds) and 95% confidence intervals (triangles) for 

mollusc species with at least four occurrences in a given core. Confidence intervals were calculated using the 

classical method of Strauss and Sadler [23], which is assuming random occurrence and thus constant sampling 

probability through the taxon’s range. The percentage of species for which the 95% confidence interval do not 

reach the topmost sample in a given core (Pr) is also shown. Note, that since all species are extant, the resulting 

range extensions of all species should reach the top of the succession (dashed horizontal line; the position of a 

sudden extinction event in our hypothetical scenario).   
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Figure S7. Stratigraphic ranges with their 50% (diamond) and 95% confidence intervals (triangles) for 

mollusc species with at least four occurrences in a given core. Confidence intervals were calculated following 

the procedures of Holland [24] by using sample-level estimates of species occurrence rates derived from the 

DCA ordination of the complete dataset. The percentage of species for which the 95% confidence interval do 

not reach the topmost sample in a given core (Pr) is also shown. Although this approach yields improved 

estimates compared to classical confidence intervals (figure S6), it tends to underestimate the ranges of taxa 

confined to the transgressive sand sheet in the two distal cores, suggesting that mixing of ecologically non-

overlapping species in these deposits hampers the correct estimation of the parameters of their response 

curves. For 13 species (marked in red), the parameters of response curves, and consequently the confidence 

intervals on their stratigraphic ranges, could not be estimated from the ordination results. The DCA axis 1 

scores of these species lie far outside the observed range of sample scores, which may indicate that their 

preferred habitat is not represented in the studied cores [28].  
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Figure S8. Detrended correspondence analysis (DCA) ordination of samples (a) and species (b) based on log-

transformed relative abundance data. Samples tend to be distributed along the DCA axis 1 according to their 

position along the onshore-offshore gradient, with higher axis 1 scores corresponding to stronger marine 

influence or greater water depths. Samples in (a) are colour-coded according to the depositional environment. 

See Dataset S1 for the numerical codes of species. 
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Figure S9. Stratigraphic patterns in DCA axis 1 sample scores along the four cores (a) and examples of 

recovery potential curves (b) for two species of corbulid bivalves (Lentidium mediterraneum and Varicorbula 

gibba) with contrasting environmental preferences. Note that the recovery potential of these species is neither 

constant, nor changing monotonically along the sedimentary succession. The observed fossil occurrences are 

shown to the left of the recovery potential curves (filled dots). In the distal cores (205-S9 and 205-S14), the 

two species co-occur within the condensed deposits below the MFS containing ecologically mixed faunal 

assemblages. See figure 1 for the key to sequence stratigraphic units. 
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Mediterranean region (Valle di Manche, Southern Italy): biotic and
stratigraphic implications” Rossi et al. [1].

& 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Earth Science

ore specific subject
area
Palaeoecology and Oxygen Isotope Stratigraphy
ype of data
 Tables, Figures and Text file

ow data were acquired
 Field and dissecting microscope observations. Isotope ratio mass

spectrometry

ata format
 Raw and analysed

xperimental factors

xperimental features

ata source location
 San Mauro Marchesato (Crotone, Southern Italy)

ata accessibility
 The data are available with this article
D

Value of the data

� Valle di Manche (VdM) is a key-section within the Mediterranean Basin as it straddles the Early-
Middle Pleistocene boundary and contains a record of the Matuyama–Brunhes reversal. The
abundance data of benthic organisms here presented complement the available documentation for
the VdM section.

� The multidisciplinary approach adopted provides a viable strategy for quantifying stratigraphic and
palaeontological patterns, which allowed for an improved reconstruction of depositional
environments.

� The data here presented could be compared to other Mediterranean siliciclastic successions that
record Early-Middle Pleistocene high frequency sea level fluctuations.
1. Data

We report data from ostracod fauna (39 samples, 43600 valves; Appendix 1) and stable isotope
data from the benthic foraminifera Uvigerina peregrina sampled at high resolution along the 38m-
thick investigated interval of the Valle di Manche section (Crotone Basin, Southern Italy [2,3]).
2. Experimental design, materials and methods

Concerning the ostracod fauna, each valve was counted as one individual (Appendix 1). Uvigerina
peregrina specimens were picked from the 4150 μm coarse fraction of 229 sediment samples
(Table 2 in [3]), which were previously disaggregated using distilled water.

2.1. Unconstrained gradient analysis

Detrended correspondence analysis (DCA) and non-metric multi-dimensional scaling (nMDS) are
two widely employed indirect ordination methods in palaeoecology. As both ordination techniques
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Fig. 1. Non-metric multidimensional scaling outputs performed on data matrices with different taxonomic and numerical
resolution. A) Samples Z20 specimens and species recorded in more than one sample (i.e., 34 samples/51 species matrix). B)
Samples Z20 specimens and species recorded in more than two samples (i.e., 17 samples/34 species matrix; Fig. 1B). Square
and circle symbols represent sample and species, respectively.
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have different strengths and weaknesses, the best approach is to use both methods as a crosscheck on
the robustness of the outputs [4,5]. Faunal counts were log-transformed to prevent distortion due to
very abundant species. Then, DCA and nMDS were performed on a set of abundance matrices derived
varying sample and taxon thresholds. In this work, we focus on nMDS outputs (2-dimensions and
based on Bray-Curtis distance; Fig. 1, Table 1A), as for DCA outputs we refer to [1]. Stratigraphic plots
of nMDS and DCA axis-1 sample scores are also displayed (Table 1A; Fig. 2 A, C, E and B, D, F
respectively). Ordination analyses were performed in R 3.3.2 [6] with “vegan” package and PAST
software [7].

2.2. Ostracod and mollusc faunal trends along Valle di Manche (VdM) section

Reduced Major Axis (RMA) regression was performed to explore the relationship between ostra-
cod and mollusc faunal composition along the Valle di Manche section (Table 1). The multiple DCA
and nMDS axis 1 sample scores obtained from ostracods (Table 1A) were correlated via RMA to the
scores previously obtained from DCA on the mollusc matrix (see [8]; Table 1A). All analyses returned
high and significant correlation coefficients (Table 1B).

2.3. Oxygen isotope stratigraphy and age model

Between 10 and 15 specimens of U. peregrina were analysed in order to reduce statistical varia-
bility. After being lightly crushed, to remove organic contaminants, the selected specimens were
soaked in hydrogen peroxide (3%). Then, analytical grade acetone was added, and the samples cleaned
ultrasonically, after which the excess liquid was removed. All stable isotope analyses were carried out
on an automated continuous flow carbonate preparation GasBench II device, attached to a Thermo
Scientific Delta V Advantage Isotope Ratio Mass Spectrometer. Measurements of δ18O were deter-
mined relative to the Vienna Peedee belemnite (VPDB) standard, with an analytical precision that is
better than 0.1‰.

The chronology for the Valle di Manche section was developed by tuning the Uvigerina peregrina
δ18O signal to the stacked planktonic oxygen isotope record derived from the Mediterranean Sea
[9,10]. In the initial stages, we produced an alternative age model by making use of the time scale of
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Table 1
A - Sample information and major axis sample scores obtained from non-Metric Multidimensional Scaling (nMDS) and Detrended Correspondence Analysis (DCA) on Valle di Manche
ostracod and mollusc datasets. A1) Mollusc sample label. A2) DCA axis 1 sample score; A3) Stratigraphic offset with respect to the adjacent ostracod sample. A4) Ostracod sample label. A5–
6) nMDS axis 1 sample score obtained from a reduced ostracod matrix (employing absolute—Abs and relative—Rel abundances) comparable to the mollusc one (i.e., 17 samples see Scarponi
et al., 2014). Stress values ¼ 0.19 and 0.16, respectively. A7–8) As for A5–6 but employing DCA. A9–10) nMDS axis 1 sample score obtained from the 51×34 ostracod matrix employing
absolute—Abs and relative—Rel abundances. Stress values ¼ 0.20 and 0.19, respectively. A11–12) As for A9–10 but employing DCA. B. Linear correlation (RMA) coefficients (r—Pearson) and
p-values (α¼0.05) between ordination of ostracod matrices (i.e., DCA- 1 or nMDS-1) and mollusc DCA axis 1 sample score (after [8]).

A) Ordination analyses and sample information from the Valle di Manche section

Ostracod samples
after Scarponi et al. (2014) Matrix 17 samples Matrix 34 samples

Label DCA-1 S-offset Label nMDS-1 DCA-1 nMDS-1 DCA-1

(cm) Abs Rel Abs Rel Abs Rel Abs Rel
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12)

Bk22 196 20 SMA50 -0.24433 -0.25854 22 0 0.121 0.128 15 31
Bk21 117 0 SMA42 -0.05252 -0.04989 87 73 0.012 0.014 94 74
Bk20 95 -40 SMA38 0.14789 0.084843 143 127 -0.067 -0.047 135 137
Bk19 122 0 SMA30 -0.10886 -0.10742 67 57 0.051 0.052 79 80
Bk18 67 -10 SMA18 -0.03471 -0.02284 109 61 0.043 0.042 83 88
Bk17 0 40 SMA10 0.41237 0.41683 264 237 -0.307 -0.282 255 238
Bk16 9 -30 SMA8 0.31321 0.33418 206 218 -0.245 -0.237 235 195
Bk15 51 0 SMA4 0.16096 0.18789 173 151 -0.133 -0.160 174 152
Bk14 90 40 SMA-8 0.073954 0.078073 142 106 -0.051 -0.072 118 102
Bk13 98 -20 SMA-14 -0.16361 -0.16797 91 41 0.055 0.048 80 76
Bk12 223 10 SMB14 -0.18192 -0.21069 29 11 0.145 0.145 20 8
Bk11 198 10 SMB20 -0.14185 -0.15454 56 14 0.090 0.095 38 56
Bk9 164 30 SMB40 -0.24981 -0.20625 0 30 0.117 0.096 45 26
Bk8 80 20 SMB52 -0.04612 -0.05474 96 70 0.026 0.019 91 99
Bk7 59 10 SMB56 -0.02318 0.030985 84 157 0.037 0.025 134 137
Bk6 4 0 SMB60 0.35609 0.32507 181 257 -0.224 -0.229 267 236
Bk5 272 60 SMB76 -0.21757 -0.22499 2 5 0.136 0.136 24 20

B) Linear correlation: ordination axis 1 ostracod-sample scores vs. DCA axis 1 mollusc-sample score
Ostracod (17 samples matrix) vs. Mollusc matrix Ostracod (34 samples matrix) vs. Mollusc matrix
nMDS-1 absolute abundance r ¼ -0.844, p«0.05 nMDS-1 absolute abundance r ¼ 0.849, p«0.05
nMDS-1 relative abundance r ¼ -0.873, p«0.05 nMDS-1 relative abundance r ¼ 0.864, p«0.05
DCA-1 log-transformed raw values r ¼ -0.881, p«0.05 DCA-1 log-transformed raw value r ¼ 0.894, p«0.05
DCA-1 relative abundance r ¼ -0.880, p«0.05 DCA-1 relative abundance r ¼ -0.905, p«0.05
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Fig. 2. Multiple stratigraphic plots of Detrended Correspondence Analysis (A, C, E) and non-Metric Multidimensional Scaling
(B, D, F) axis 1 sample scores. A-B) Sample Z20 specimens and species singletons excluded. C-D) Sample Z25 specimens and
species occurrence Z5 samples. E-F) Ostracod dataset comparable (in sample size and sampling resolution) to the mollusc
dataset reported in [13]; sample size Z20 specimens and species singletons excluded.
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Table 2
A) Sample information and ostracod DCA sample axis 1 score obtained from the 51 species/34 samples matrix of Valle di
Manche section (DCA performed with PAST 3.11). B) Bathymetric calibration of ostracod samples. Reduced major axis
regression coefficients: slope a¼0.46884; intercept b¼24.175; r¼ -0.92; p¼7.87 10-6; standard error of the estimates¼14.3m.
C) Pearson linear correlation coefficient (r) and p (uncorr.) values (α¼0.05) between DCA 1 sample scores and % of sand in each
sample are shown. Regression models performed with PAST 3.11.

A) Ostracod Samples: age, grain size and DCA score B) Water depth

Label Position (m) Age (ka) Sample
weight
(gr)

Sand fraction
(463 μm)

DCA1 sample
score

Water depth
(m)

(gr) (%)

SMA53 12.81 741.8 46.9 2.67 5.7 164 101
SMA50 12.06 744.4 48.0 6.14 12.8 15 31
SMA46 11.06 747.8 50.8 1.44 2.8 4 26
SMA42 10.06 751.2 46.9 8.57 18.3 94 68
SMA38 9.06 754.6 48.8 3.26 6.7 135 87
SMA34 8.06 758.0 47.4 9.01 19.0 34 40
SMA30 7.06 761.2 45.4 14.39 31.7 79 61
SMA26 6.21 764.0 47.7 5.13 10.8 55 50
SMA22 5.31 767.0 54.9 1.48 2.7 41 43
SMA18 4.31 770.1 55.0 3.33 6.1 83 63
SMA14 3.31 773.4 57.2 3.20 5.6 242 138
SMA10 2.31 777.5 55.3 3.43 6.2 255 144
SMA8 1.81 780.0 56.2 5.11 9.1 235 134
SMA4 0.81 784.5 55.0 1.89 3.4 174 106
SMA2 0.31 786.3 58.5 1.52 2.6 238 136
SMA-1 0.00 787.5 51.8 2.58 5.0 151 95
SMA-8 �1.75 794.0 46.6 3.91 8.4 118 79
SMA-14 �3.25 795.6 46.4 6.79 14.6 80 62
SMB4 �4.25 796.7 54.9 11.41 20.8 0 24
SMB8 �5.25 797.7 57.1 7.82 13.7 2 25
SMB14 �6.75 799.3 56.2 3.52 6.3 20 34
SMB20 �8.25 800.9 55.1 4.81 8.7 38 42
SMB40 �14.00 811.6 54.0 4.96 9.2 45 45
SMB44 �15.00 813.8 50.1 19.76 39.4 20 34
SMB48 �16.00 827.3 54.5 21.30 39.1 66 55
SMB52 �17.00 839.4 55.5 6.05 10.9 91 67
SMB56 �18.00 846.3 55.0 18.22 33.1 134 87
SMB58 �18.50 850.6 53.8 6.11 11.4 240 137
SMB60 �19.00 855.8 56.4 6.79 12.0 267 149
SMB64 �20.00 861.9 53.5 1.30 2.4 204 120
SMB68 �21.00 863.6 54.9 6.80 12.4 162 100
SMB72 �22.00 865.3 54.9 4.57 8.3 52 49
SMB74 �22.50 866.1 50.4 4.05 8.0 25 36
SMB76 �23.00 867.0 54.6 8.54 15.6 24 35

C) DCA score vs. % of sand - linear correlation
r ¼ 0.291 r2 ¼ 0.085 p ¼ 0.094
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Konijnendijk and collaborators [11], which is also based on a stacked and averaged suite of oxygen
isotope records from the eastern Mediterranean, in this case from benthic foraminifera. This initial
tuning approach was based on the assumption that the correlation of the benthic δ18O signal from the
VdM succession to a benthic record from the Mediterranean region appeared to be a more advisable
choice than the use of a planktonic δ18O stack as a tuning target. However, the benthic δ18O from VdM
and the benthic δ18O stack of [11] have little in common at either low or high frequency, as the suite of
cores used by [11] reflects the dynamics of different (i.e. deeper) water masses. Serious discrepancies
between the dataset from VdM and the benthic δ18O stack in the time interval from ca. 860 to 815 ka
(MIS 21), lead to difficulties in developing a tuned timescale (see Figure 10 in [3]). This is an interval
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Fig. 3. Data summary of the high-resolution chronostratigraphic and palaeoenvironmental inferences retrieved at Valle di
Manche (VdM). A) Physical stratigraphy of VdM section along with location of the 229 collected samples, in bold the 39
samples analysed for the ostracod fauna. B) Ostracod ecological groups distinguished on the basis of different ecological
preferences, in terms of substrate and oxygen conditions, of the species recorded along the VdM section. C) Stratigraphic
pattern in DCA-calibrated water depth based on the 34×51 ostracod matrix (see also Fig. 2A). D) U. peregrina oxygen isotope
stratigraphy of the VdM section. E) Marine Isotope Stages (MIS) straddling the Early-Middle Pleistocene transition. Red dots
represent the control points employed for reconstructing the VdM section age model. Panel A is plotted versus stratigraphic
depth. Panels B-E are plotted versus age.
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when some sources of uncertainty arise in the time scale developed by [11], as changes in insolation
forcing are generally relatively small between 700–950 ka, no sapropel layers are present, and proxies
lack a characteristic pattern to tie to insolation, making the resulting chronology dubious [12]. For
these reasons, this initial age model was rejected.

On the other hand, transfer of the time scale by Wang and collaborators [9] proved very
straightforward. As each version of the age model was developed, the age of every sample was
estimated by linear interpolation between the control points. We closely monitored changes in
sedimentation rate when defining age-depth correlations. If substantial changes in sedimentation
rates were generated by the use of specific age controls, we evaluated whether the implied changes in
the flux of biogenic and/or detrital sediment were reasonable and justified within the geological
setting of the VdM section. According to our age model, the studied record spans the time interval
from ca. 870 ka to 740 ka (Table 2A and Fig. 3). For more information on U. peregrina oxygen isotope
data, we refer to [3].
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2.4. Environmental proxies calibration

Sand percentages within samples (a proxy for substrate texture) is interpreted as a driver of
ostracod turnover along sedimentary successions. In this work, sand percentage was plotted against
DCA axis-1 sample scores (Table 2A) via linear correlation (least squares) to evaluate the role of
substrate in driving ostracod faunal changes (Table 2C). Sand fraction includes both biotic and abiotic
grains 463 µm (Table 2A).

A linear correlation model (RMA) was also applied for bathymetry estimates of ostracod samples
(Table 2B). Given the lack of quantitative water-depth information on ostracods species here recov-
ered, water-depth calibrations rely on bathymetry inferences available for mollusc species retrieved
in concomitance or proximity of the horizons sampled for ostracods (Table 1A column 3).

Sample-level bathymetry was calculated via the weighted average of a sub-set of extant mollusc
species for which optimum bathymetry values were known (see Appendix 2 in [8]). Among the 14
extant taxa reported in [8], all cemented species (i.e., Anomia ephippium, Heteranomia squamula) were
excluded from calibration, as they commonly show low association between ordination scores and
bathymetry [13,14]. Then, a RMA regression between sample-level bathymetry estimates and DCA
axis-1 ostracod sample scores was calculated (Table 2B).

Information collected at Valle di Manche and relative climatic, environmental and chronostrati-
graphic inferences are summarised in Fig. 3.
Funding sources

This research was funded by the University of Padova (Progetto di Ateneo 2011 and Dotazione
Ordinaria della Ricerca (DOR) to LC) and University of Bologna (Ricerca Fondamentale Orientata, 2016
D. Scarponi).
Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2018.02.017.
Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2018.02.017.
References

[1] V. Rossi, M. Azzarone, L. Capraro, C. Faranda, P. Ferretti, P. Macrì, D. Scarponi Response of benthic marine communities to
Early-Middle Pleistocene environmental changes and sequence stratigraphic implications (Valle di Manche section,
Southern Italy), Palaeogeogr. Palaeoclimatol. Palaeoecol. (in press).

[2] L. Capraro, P. Macrì, D. Scarponi, D. Rio, The lower to Middle Pleistocene Valle di Manche section (Calabria, Southern Italy):
state of the art and current advances, Quat. Int. 383 (2015) 36–46. http://dx.doi.org/10.1016/j.quaint.2014.08.055.

[3] L. Capraro, P. Ferretti, P. Macrì, D. Scarponi, F. Tateo, E. Fornaciari, G. Bellini, G. Dalan, The Valle di Manche section (Calabria,
Southern Italy): a high-resolution record of the Early-Middle Pleistocene transition (MIS 21-MIS 19) in the Central Medi-
terranean, Quat. Sci. Rev. 165 (2017) 31–48. http://dx.doi.org/10.1016/j.quascirev.2017.04.003.

[4] D. Scarponi, M. Azzarone, M. Kowalewski, J.W. Huntley, Surges in trematode prevalence linked to centennial-scale flooding
events in the Adriatic, Sci. Rep. 7 (2017) 5732. http://dx.doi.org/10.1038/s41598-017-05979-6.

[5] M. Zuschin, R. Nawrot, M. Harzhauser, O. Mandic, A. Tomašových, Taxonomic and numerical sufficiency in depth-and
salinity-controlled marine paleocommunities, Paleobiology (2017) 1–16. http://dx.doi.org/10.1017/pab.2016.49.

[6] R. Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,
AustriaURL 〈https://www.R-project.org/〉, 2016.

[7] Ø. Hammer, D.A.T. Harper, Paleontological Data Analysis, Wiley-Blackwell, New York (2005) 368.
122

http://dx.doi.org/10.1016/j.dib.2018.02.017
http://dx.doi.org/10.1016/j.dib.2018.02.017
http://dx.doi.org/10.1016/j.dib.2018.02.017
http://dx.doi.org/10.1016/j.dib.2018.02.017
http://dx.doi.org/10.1016/j.quaint.2014.08.055
http://dx.doi.org/10.1016/j.quaint.2014.08.055
http://dx.doi.org/10.1016/j.quaint.2014.08.055
http://dx.doi.org/10.1016/j.quascirev.2017.04.003
http://dx.doi.org/10.1016/j.quascirev.2017.04.003
http://dx.doi.org/10.1016/j.quascirev.2017.04.003
http://dx.doi.org/10.1038/s41598-017-05979-6
http://dx.doi.org/10.1038/s41598-017-05979-6
http://dx.doi.org/10.1038/s41598-017-05979-6
http://dx.doi.org/10.1017/pab.2016.49
http://dx.doi.org/10.1017/pab.2016.49
http://dx.doi.org/10.1017/pab.2016.49
https://www.R-project.org/
http://refhub.elsevier.com/S2352-3409(18)30133-1/sbref5


M. Azzarone et al. / Data in Brief 17 (2018) 1099–1107 1107
[8] D. Scarponi, J.W. Huntley, L. Capraro, S. Raffi, Stratigraphic paleoecology of the Valle di Manche section (Crotone Basin,
Italy): a candidate GSSP of the Middle Pleistocene, Palaeogeogr. Palaeoclimatol. Palaeoecol. 402 (2014) 30–43. http://dx.doi.
org/10.1016/j.palaeo.2014.02.032.

[9] P. Wang, J. Tian, L.J. Lourens, Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records, Earth
Planet. Sci. Lett. 290 (3-4) (2010) 319–330. http://dx.doi.org/10.1016/j.epsl.2009.12.02.

[10] L.J. Lourens, Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the d18O,
tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1Myr, Paleoceanography 19 (2004)
PA3010. http://dx.doi.org/10.1029/2003PA000997.

[11] T.Y.M. Konijnendijk, M. Ziegler, L.J. Lourens, On the timing and forcing mechanisms of late Pleistocene glacial terminations:
insights from a new high-resolution benthic stable oxygen isotope record of the eastern Mediterranean, Quat. Sci. Rev. 129
(2015) 308–320. http://dx.doi.org/10.1016/j.quascirev.2015.10.005.

[12] T.Y.M. Konijnendijk, M. Ziegler, L.J. Lourens, Chronological constraints on Pleistocene sapropel depositions from high-
resolution geochemical records of ODP Sites 967 and 968, Newslett. Stratigr. 47/3 (2014) 263–282. http://dx.doi.org/
10.1127/0078-0421/2014/0047.

[13] D. Scarponi, M. Kowalewski, Stratigraphic paleoecology: bathymetric signatures and sequence overprint of mollusk
associations from upper Quaternary sequences of the Po Plain, Italy, Geology 32 (2004) 989–992. http://dx.doi.org/
10.1130/G20808.1.

[14] J.M. Wittmer, T.A. Dexter, D. Scarponi, A. Amorosi, M. Kowalewski, Quantitative bathymetric models for late quaternary
transgressive-regressive cycles of the Po Plain, Italy, J. Geol. 122 (6) (2014) 649–670. http://dx.doi.org/10.1086/677901.
123

http://dx.doi.org/10.1016/j.palaeo.2014.02.032
http://dx.doi.org/10.1016/j.palaeo.2014.02.032
http://dx.doi.org/10.1016/j.palaeo.2014.02.032
http://dx.doi.org/10.1016/j.palaeo.2014.02.032
http://dx.doi.org/10.1016/j.epsl.2009.12.02
http://dx.doi.org/10.1016/j.epsl.2009.12.02
http://dx.doi.org/10.1016/j.epsl.2009.12.02
http://dx.doi.org/10.1029/2003PA000997
http://dx.doi.org/10.1029/2003PA000997
http://dx.doi.org/10.1029/2003PA000997
http://dx.doi.org/10.1016/j.quascirev.2015.10.005
http://dx.doi.org/10.1016/j.quascirev.2015.10.005
http://dx.doi.org/10.1016/j.quascirev.2015.10.005
http://dx.doi.org/10.1127/0078-0421/2014/0047
http://dx.doi.org/10.1127/0078-0421/2014/0047
http://dx.doi.org/10.1127/0078-0421/2014/0047
http://dx.doi.org/10.1127/0078-0421/2014/0047
http://dx.doi.org/10.1130/G20808.1
http://dx.doi.org/10.1130/G20808.1
http://dx.doi.org/10.1130/G20808.1
http://dx.doi.org/10.1130/G20808.1
http://dx.doi.org/10.1086/677901
http://dx.doi.org/10.1086/677901
http://dx.doi.org/10.1086/677901


 
 

Manuscript 4 Online Supplementary Material 

“Early-Middle Pleistocene benthic turnover and oxygen isotope stratigraphy from the Central 

Mediterranean (Valle di Manche, Crotone Basin, Italy): Data and trends. 

 
 

** 
 

** 
  

** 
 

** ** 
 

** 

Ostracod taxon/Sample position (m) SMA53 SMA50 SMA46 SMA42 SMA38 SMA34 SMA30 SMA26 SMA22 SMA18 SMA14 

12.81 12.06 11.06 10.06 9.06 8.06 7.06 6.21 5.31 4.31 3.31 

Aurila convexa (Baird, 1850) 0 8 16 7 2 43 33 19 35 9 0 

Cimbaurila cimbaeformis (Seguenza, 
1883)  ** 

0 0 0 0 0 0 0 0 0 0 0 

Aurila cruciata (Ruggieri, 1950)  */** 0 0 0 0 0 0 0 0 0 0 0 

Aurila interpretis (Uliczny, 1969)  */** 0 0 0 0 0 0 0 0 0 0 0 

Aurila prasina (Barbeito-Gonzalez, 1971) 0 0 0 1 0 0 0 0 0 0 0 

Aurila punctata (Münster, 1830)  ** 0 0 5 0 0 0 0 0 3 0 0 

Aurila sp.  */** 0 0 0 0 0 0 0 0 0 1 0 

Callistocythere group (Ruggieri, 1953)  
*/** 

2 0 2 0 4 2 24 8 0 6 0 

Carinocythereis carinata (Roemer, 1838)  
*/** 

0 0 0 0 0 0 0 0 0 0 0 

Cluthia keiyi (Neale, 1975) 0 0 0 0 0 0 3 2 1 4 0 

Costa edwardsii (Roemer, 1838)  ** 1 0 0 0 0 0 0 0 0 0 0 

Cytherois sp.  */** 0 0 0 0 0 0 0 0 0 0 0 

Cytheromorpha nana (Bonaduce, Ciampo 
and Masoli, 1975)  */** 

0 0 0 0 0 0 0 0 0 0 0 

Cytheromorpha fuscata (Brady, 1869)  
*/** 

0 0 0 0 0 0 0 0 0 0 0 

Eucythere curta (Ruggieri, 1975)  */** 0 0 0 0 0 0 0 0 0 0 0 

Eucythere pubera (Bonaduce, Ciampo and 
Masoli, 1975)  */** 

0 0 0 0 0 0 0 0 0 0 0 

Eucytherura orthogonia (Colalongo and 
Pasini, 1980) 

0 0 0 0 0 0 2 5 2 0 0 

Hiltermannicythere rubra (G.W. Muller, 
1894) 

0 2 0 0 0 0 1 0 0 0 0 

Hiltermannicythere turbida (G.W. Muller, 
1894)  ** 

0 0 0 0 0 0 0 0 0 0 0 

Loxoconcha geometrica (Bonaduce, 
Ciampo and Masoli, 1975)  */** 

0 0 0 1 0 0 0 0 0 0 0 

Loxoconcha minima(Bonaduce et al., 1975)  
** 

1 0 0 0 0 0 0 0 0 0 0 

Loxoconcha parallela (G.W. Muller, 1894)  
** 

0 0 0 0 0 0 0 0 0 0 0 

Loxoconcha gr. rhomboidea (Fischer, 
1855)  ** 

0 0 0 0 0 0 0 0 0 0 0 

Loxoconcha sp.  */** 0 0 0 0 0 0 0 0 0 0 0 

Macrocypris sp.  */** 0 0 0 0 0 0 2 0 0 0 0 

Neocytherideis subspiralis (Brady, 
Crosskey and Robertson, 1874)  ** 

0 0 0 0 0 1 0 0 0 0 0 

Neocytherideis sp.  */** 0 0 0 0 0 0 0 0 0 0 0 

Occultocythereis sp.  */** 0 0 0 1 0 0 0 0 0 0 0 

Paracytheridea hexalpha (Doruk, 1980) 0 0 0 0 0 2 2 0 0 0 0 

Paracytheridea sp.  */** 0 0 0 0 0 0 0 0 0 0 0 

Pontocypris acuminata (G.W. Muller, 
1894) 

0 0 0 0 0 0 0 0 0 0 0 

Pontocythere turbida (G.W. Muller, 1894) 0 0 0 0 0 1 2 0 0 0 0 

Propontocypris pirifera (G.W. Muller, 
1894)  ** 

0 0 0 0 0 1 0 0 0 0 0 

Sagmocythere versicolor (G.W. Muller, 
1894) 

2 3 0 0 7 15 6 7 8 27 7 

Semicytherura acuticostata (G.O. Sars, 
1866) 

0 0 0 0 0 0 0 0 0 0 0 

Semicytherura incongruens (G.W. Muller, 
1894)  ** 

0 0 0 0 1 0 0 0 0 0 0 

Semicytherura marialuisae (Faranda and 
Gliozzi, 2008)  */** 

0 0 0 0 0 0 0 0 0 0 0 

Semicytherura paradoxa (G.W. Muller, 
1894) 

0 4 0 0 0 0 2 0 0 0 0 

Semicytherura rarecostata (Bonaduce, 
Ciampo and Masoli, 1975) 

0 1 0 0 0 4 4 0 0 0 0 

Semicytherura ruggierii (Pucci, 1955) 0 48 1 13 5 29 17 22 5 12 0 

Semicytherura sulcata (G.W. Muller, 1894)  
*/** 

0 0 0 0 0 0 0 0 0 0 0 

Semicytherura sp.  */** 0 0 0 0 0 0 0 0 0 0 0 

Hemicytherura diaforei (Ruggeri, 1953) 2 0 0 0 0 0 3 0 0 0 0 

Microcytherura angulosa (Seguenza, 
1880)  */** 

0 0 0 0 0 0 0 0 0 0 0 

Microcytherura nigrescens (G.W. Muller, 
1894) 

0 0 0 0 0 0 0 0 1 0 0 

Microcytherura sp.  */** 0 0 0 0 0 0 0 0 0 0 0 

Monoceratina mediterranea (Sissingh, 
1972 )  */** 

0 0 0 0 0 0 0 0 0 0 0 

Tuberculocythere quadrituberculata 
(Colalongo and Pasini, 1980) 

0 0 0 0 0 0 0 0 0 0 0 
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Microxestoleberis nana (G.W. Muller, 
1894) 

0 0 0 0 0 0 4 0 0 0 0 

Microxestoleberis xenomys (Barbeito-
Gongalez, 1971)  */** 

0 0 0 2 0 0 0 0 0 0 0 

Urocythereis cf. U. flexicauda (Bonaduce, 
Ciampo and Masoli, 1975) 

0 2 0 2 0 0 0 0 0 0 0 

Xestoloberis communis (G.W. Muller, 
1894) 

0 0 0 0 0 2 2 0 1 0 0 

Xestoloberis sp.  */** 0 0 0 0 0 0 0 0 0 1 0 

Palmoconcha turbida (G.W. Muller, 1894) 0 2 0 1 0 3 3 0 0 1 0 

Palmoconcha subrugosa (Ruggieri 1967) 3 0 0 11 2 2 2 0 2 5 0 

Pterygocythereis coronata (Roemer, 1838) 0 0 0 0 0 0 2 0 0 2 2 

Pterygocythereis jonesii (Baird 1850) 0 0 0 0 0 0 0 0 0 0 0 

Pterygocythereis sp.  */** 0 0 0 0 0 0 0 0 0 0 0 

Leptocythere bacescoi (Rome 1942) 0 2 0 2 0 0 2 0 0 0 0 

Leptocythere levis (G.W. Muller, 1894)  
*/** 

0 0 0 0 0 0 0 0 0 0 0 

Leptocythere macella (Ruggieri, 1975)  
*/** 

0 0 0 0 0 0 0 0 0 0 0 

Leptocythere multipunctata (Seguenza 
1883) 

0 8 0 0 0 8 8 2 2 5 0 

Leptocythere ramosa (Rome 1942) 0 0 0 1 0 0 1 0 0 1 0 

Leptocythere rara (G.W. Muller, 1894)  
*/** 

0 0 0 0 0 0 0 0 0 0 0 

Leptocythere transiens (Pucci, 1956)  */** 0 0 0 0 0 0 0 0 0 0 0 

Leptocythere sp.  */** 0 0 0 0 0 0 0 0 0 0 0 

Cytherella alverium (Bonaduce, Ciampo 
and Masoli, 1975)  */** 

0 0 0 2 0 0 0 0 0 0 0 

Cytherella gibba (Aiello, Barra, Bonaduce 
and Russo, 1996) 

2 5 0 7 0 0 3 2 0 0 8 

Cytherella robusta (Colalongo and Pasini, 
1980) 

0 0 0 0 0 0 0 0 1 0 0 

Cytherella vulgatella (Aiello, Barra, 
Bonaduce and Russo, 1996) 

0 0 0 12 0 2 0 0 0 0 2 

Cytherella sp.  */** 0 0 0 0 0 0 0 0 0 1 0 

Argilloecia acuminata (G.W. Muller, 1894) 2 1 0 2 0 8 5 0 0 0 0 

Argilloecia minor (G.W. Muller, 1894) 0 1 0 2 0 0 0 0 2 0 0 

Argilloecia robusta (Bonaduce, Ciampo 
and Masoli, 1975)  */** 

0 0 0 0 0 0 0 0 0 0 0 

Argilloecia sp.  */** 0 0 0 0 0 0 0 0 1 0 0 

Bairda conformis (Terquem, 1878) 0 0 0 0 0 0 0 0 0 0 2 

Bairda sp.  */** 0 0 0 0 0 0 0 0 0 0 0 

Bosquetina tarentina (Baird, 1850) 2 2 0 0 5 0 0 6 1 0 16 

Bosquetina sp.  */** 0 0 0 0 1 0 0 0 0 0 0 

Cytheropteron aduncum (Colalongo and 
Pasini, 1980)  */** 

0 0 0 0 0 0 0 0 0 0 0 

Cytheropteron agile (Colalongo and Pasini, 
1980)  */** 

0 0 0 0 0 0 0 0 0 0 0 

Cytheropteron alatum (Sars, 1866) 0 0 0 0 0 0 1 0 0 0 0 

Cytheropteron cf. C. ionicum (Colalongo 
and Pasini, 1980)  */** 

0 0 0 0 0 0 0 0 0 0 0 

Cytheropteron latum (G.W. Muller, 1894) 0 0 0 0 0 0 0 0 0 1 0 

Cytheropteron monoceros (Bonaduce, 
Ciampo and Masoli, 1975) 

0 0 0 4 2 0 13 4 0 4 7 

Cytheropteron pseudoalatum (Colalongo 
and Pasini, 1980)  ** 

0 0 0 0 0 0 1 0 4 0 0 

Cytheropteron rectum (Colalongo and 
Pasini, 1980)  */** 

0 0 0 0 0 0 0 0 0 6 0 

Cytheropteron ruggierii (Pucci 1955) 6 4 0 2 0 4 4 0 0 0 3 

Cytheropteron trapezium (Colalongo and 
Pasini, 1980)  */** 

0 0 0 0 0 0 0 0 0 0 0 

Cytheropteron sp.  */** 0 0 0 0 0 0 1 0 0 0 1 

Henryhowella sarsii (G.W. Muller, 1894) 0 0 0 0 2 0 8 0 0 0 23 

Krithe group (Brady, Crosskey and 
Robertson, 1874)  */** 

21 6 1 13 11 2 3 12 5 0 75 

Parakrithe group (van den Bold, 1958)  
*/** 

0 1 0 9 0 0 9 4 1 0 7 

Paracytheroismediterranea (Bonaduce, 
Ciampo and Masoli, 1975)  

0 0 0 0 0 0 0 1 0 8 0 

Triebielina raripilia (G.W. Muller, 1894) 0 0 0 0 0 0 0 0 0 0 0 

Total Abundance 44 100 25 95 42 129 173 94 75 94 153 

 
   

** ** */** 
  

** ** ** 
 

*/** */** 

SMA10 SMA8 SMA4 SMA2 SMA-1 SMA-4 SMA-8 SMA-
14 

SMB4 SMB8 SMB14 SMB20 SMB26 SMB32 

2.31 1.81 0.81 0.31 0.00 -0.75 -1.75 -3.25 -4.25 -5.25 -6.75 -8.25 -10.5 -12.00 

0 0 2 0 0 0 9 0 9 24 20 27 0 9 

0 0 0 0 0 0 0 0 8 11 4 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 2 0 0 0 9 6 7 10 9 2 0 12 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 

2 0 3 0 0 0 0 2 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 6 3 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 2 3 0 0 0 

0 0 0 0 0 0 0 0 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 2 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 3 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 4 0 4 0 6 3 4 8 11 4 0 0 

0 0 2 0 0 0 0 0 2 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 4 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 4 2 3 1 0 0 

0 2 0 0 0 0 3 24 41 9 7 11 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 2 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 3 2 4 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 2 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 3 1 3 2 0 0 0 

0 0 0 0 0 0 0 2 1 3 1 0 0 0 

0 0 0 0 0 0 2 0 1 0 0 0 0 0 

0 4 1 0 1 0 0 0 0 2 6 0 0 2 

0 5 21 19 2 0 6 3 0 3 0 6 0 0 

2 19 10 2 6 0 0 3 1 1 0 0 0 0 

0 0 2 0 1 0 0 2 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 2 2 2 0 0 8 6 15 15 12 0 0 

0 0 0 0 1 0 0 1 0 5 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 20 5 5 2 0 12 10 2 1 1 0 0 0 

0 0 0 3 0 0 0 0 0 0 1 0 0 0 

2 4 6 0 0 0 3 2 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 4 0 0 0 0 1 0 0 0 2 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 2 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 2 1 0 0 0 0 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 0 0 0 0 

3 24 9 4 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 2 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 1 0 0 0 

2 7 17 2 0 0 14 0 1 1 0 2 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 6 6 4 2 0 13 2 3 1 5 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 32 2 30 1 1 0 1 1 0 1 0 0 0 

43 65 33 17 3 0 42 7 3 2 8 10 0 5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 4 0 0 3 2 0 1 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 1 0 0 0 

67 183 135 94 27 4 117 102 113 124 107 85 0 32 

 

*/** 
 

** ** 
  

** 
 

*/** ** ** ** ** 
 

SMB36 SMB40 SMB44 SMB48 SMB52 SMB56 SMB58 SMB60 SMB62 SMB64 SMB68 SMB72 SMB74 SMB76 

-13.00 -14.00 -15.00 -16.00 -17.00 -18.00 -18.50 -19.00 -19.50 -20.00 -21.00 -22.00 -22.50 -23.00 

5 25 10 50 24 11 8 2 0 3 6 9 10 19 

0 0 0 0 0 0 0 0 0 0 0 0 2 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 3 

0 0 0 2 0 7 0 0 0 1 7 12 1 0 

0 0 0 0 0 0 0 0 0 0 0 2 0 0 

0 0 3 4 3 2 0 2 0 1 2 14 10 8 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 4 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 2 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 4 0 0 0 0 0 0 0 2 

0 5 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 2 0 0 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 1 2 1 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 2 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 2 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 6 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 1 0 0 0 

0 5 0 0 0 0 0 0 0 0 0 3 0 0 

0 0 0 0 0 0 0 3 0 0 0 0 3 0 

0 3 0 9 10 6 0 2 0 2 10 0 0 0 

0 3 0 0 4 0 0 0 0 0 1 3 0 4 

0 0 0 2 0 0 0 0 0 0 0 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 4 

0 0 6 2 0 1 0 0 0 0 9 4 16 2 

4 19 38 19 6 11 0 0 0 0 11 17 24 21 

0 0 0 0 3 0 0 0 0 0 0 0 0 0 

0 2 0 0 3 0 0 1 0 0 0 2 3 0 
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0 0 0 0 0 2 2 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 9 2 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 6 0 0 0 0 0 0 0 

0 0 0 0 0 0 2 0 1 5 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 3 0 0 0 0 0 0 0 0 0 0 0 8 

0 0 3 0 0 7 3 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 3 4 0 

0 0 9 16 11 0 2 2 0 1 7 10 0 4 

0 0 0 8 0 2 2 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 1 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 22 0 0 0 0 0 0 0 0 0 4 8 8 

0 9 0 0 0 0 0 0 0 0 0 0 0 0 
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9. Concluding remarks 
 

The case studies reported in this Ph.D. thesis utilize the stratigraphic paleobiology approach to 

investigate mollusk-dominated fossil benthic associations retrieved from Quaternary sedimentary 

successions of Italy. The research described in these chapters offers an improved understanding of 

how to collect and use macrofossil to assess the response of late Quaternary ecosystems to climate-

driven environmental changes. On one hand, these studies focus on how stratigraphic imprint can 

distort biological dynamics recorded in the geological record. On the other hand, investigations 

carried out during my Ph.D. highlight the importance of the macrobenthic record to interpret 

environmental gradients and thus refine (sequence) stratigraphic interpretation of the investigated 

sedimentary record. 

The Mid Adriatic Deep dataset (Chapter 4) when merged with the previously assembled Po plain 

dataset, will be pivotal for acquiring a historical perspective on modern ecosystems that have been 

shaped by long term (glacial/interglacial) climatic oscillations. Furthermore, the understanding of 

long-term dynamics of macrobenthic communities (i.e., resilience, persistence or stochastic 

reassembly) to long-term natural changes will provide us with an important reference framework for 

assessing recent anthropogenic changes affecting deltaic ecosystems.  

In the first case study (Chapter 5) the high-resolution sequence stratigraphic architecture of the 

transgressive succession of the Po coastal plain served as a framework for evaluating taphonomic 

trends and time resolution of the macrofossil record along a down-dip profile: nearshore to shallow 

marine settings. Along the investigated profile, resolution and quality of the macrofossil record both 

decline down-dip. Compared to distal settings, proximal settings (<5 km from shoreline at time of 

maximum marine ingression) are distinguishable by high (centennial-scale) resolution and overall 

well-preserved and ecologically coherent fossil assemblages. The onshore-to-offshore degradation of 

quality and resolution of the macrobenthic record likely reflects increasing surface/near-surface 

resident time of macroskeletal remains down-dip, due to decreasing sediment accumulation rates. 

Individually dated mollusks suggest that the strong taphonomic degradation and ecological 

condensation affects distally developed successions with the estimated time-averaging manifested 

over multi-millennial time scales (~8 ka). In addition, the integrated taphonomic, bathymetric and 

fossil density trends highlight distinctive signatures useful in interpreting past environments and 

identifying surfaces/intervals of sequence stratigraphic significance. 

The second case study (Chapter 6), targets Holocene bivalves within brackish succession of the Po 

coastal plain. These deposits represent a well-preserved fossil record, framed within a high-

resolution chronostratigraphic framework (see Chapter 5). The research focuses on documenting 

parasite-host dynamics over geological short-lived (centennial scale) and small amplitude sea-level 

oscillations. Specifically, we investigated the parasite-induced malformations (pits) visible on the 
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inner part of the valves of the thin-shelled Abra segmentum, which is the most abundant bivalve in 

the targeted cored succession. The study documents that prevalence values of trematodes parasites 

infesting the bivalve host Abra segmentum were significantly elevated (p << 0.05) in samples 

associated with centennial-time scale flooding surfaces. These evidences suggest that the fossil 

record can provide a quantitative archive also of parasite-host interactions developed at societally-

relevant time scales. Furthermore, the historical perspective acquired here could be used to shed 

light on the response of heterocious parasites to ongoing anthropogenic warming and sea-level rise. 

The third study (Chapter 7) investigates distribution of Last Occurrences (LOs) of macrobenthic 

species along a down-dip transect in the Po coastal plain transgressive-regressive succession to 

examine potential effects of the sequence stratigraphic architecture on mass extinction patterns. The 

results show that if a hypothetical mass extinction took place today, the LOs would not always follow 

the gradual smearing-backward predicted by the Signor-Lipps effect. Instead, the LOs would 

typically cluster along intervals of stratigraphic condensation/strong facies-shifts, mimicking 

sudden extinction pulses. These clusters of LOs are particularly evident in the two distal cores in 

accordance with the results highlighted in Chapter 5, which documented multi-millennial time and 

stratigraphic condensation in the distal part of the studied profile. The resultant complex but 

completely false extinction pattern highlights the necessity of accounting for paleoenvironmental 

and sequence stratigraphic context when inferring extinctions from the fossil record. The sequence 

stratigraphic architecture of relevant fossiliferous successions could easily confound the timing, 

duration and selectivity of mass-extinction events. 

The fourth case study (Chapter 8) focused on the well-known Pleistocene benthic fauna from Valle 

di Manche section (Southern Italy). This succession - with its well-established stratigraphic and 

chronological frameworks - offers the opportunity to test the robustness of paleoecological patterns 

derived by the application of different ordination analyses. Concomitantly, these analyses also serve 

to assess the main environmental driver(s) of faunal turnover. The investigation concluded that, even 

when notably varying the analytical sample threshold, stratigraphic plots of axis-1 sample scores 

obtained by detrended correspondence analysis (DCA) and non-metric multidimensional scaling 

(nMDS) yielded consistent outcomes, which invariably pointed to bathymetry as the main driver of 

faunal turnover.  Consequently, the results suggest that combined use of DCA and nMDS can help to 

assess the robustness of the analytical outcomes to the choice of the ordination method used and 

help us to better define the main environmental driver of faunal turnover. 
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