
AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa

DOTTORATO DI RICERCA IN

Computer Science & Engineering

Ciclo XXI

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/01 - INFORMATICA

SOCIO–TECHNICAL SOFTWARE ENGINEERING:
A QUALITY–ARCHITECTURE–PROCESS PERSPECTIVE

Presentata da: Daniel RUSSO

Coordinatore Dottorato

Supervisore

Prof. Paolo Ciaccia Prof. Paolo Ciancarini

Esame finale anno 2019

ii

“Particularly alarming is the seemingly unavoidable fallibility of large software.”

Ed David and A.G. Fraser, 1968 NATO Conference

iii

ALMA MATER STUDIORUM

Abstract
School of Science

Department of Computer Science & Engineering

Doctor of Philosophy

Socio–Technical Software Engineering:

a Quality–Architecture–Process Perspective

by Daniel Russo

This dissertation provides a model, which focuses on Quality, Architecture, and Pro-
cess aspects, to manage software development lifecycles in a sustainable way. Here,
with sustainability is meant a context-aware approach to IT, which considers all rel-
evant socio-technical units of analysis. Both social (e.g., at the level of the stake-
holders community, organization, team, individual) and technical (e.g., technological
environments coding standards, language) dimensions play a key role to develop IT
systems which respond to contingent needs and may implement future requirements
in a flexible manner. We used different research methods and analyzed the prob-
lem from several perspectives, in a pragmatic way, to deliver useful insights both to
the research and practitioners communities. The Software Quality, Architecture, and
Process (SQuAP) model, highlights the key critical factors to develop systems in a
sustainable ways. The model was firstly induced and then deduced from a longitudinal
research of the financial sector. To support the model, SQuAP-ont, an OWL ontology
was develop as a managerial and assessment tool. A real-world case study within a
mission-critical environment shows how these dimensions are critical for the devel-
opment of IT applications. Relevant IT managers concerns were also covered with
reference to software reuse and contracting problems. Finally, a long-term contribu-
tion for the educational community presents actionable teaching styles and models to
train future professionals to act in a Cooperative Thinking fashion.

HTTP://WWW.UNIBO.IT
http://www.unibo.it
http://www.disi.unibo.it

v

Acknowledgements
This research journey was not straightforward from many perspectives. It may sounds
pleonastic, but I would not be here, writing these acknowledgments, without the help
of great people. Surely, I would not be the scholar I am now without the continuous
mentoring of Corrado Mangione. He believed and supported me when few people
did at that time. Indeed, Corrado is my model of university professor. My greatest
achievement would become, one day, like him.

My relation to Computer Science can be seen as a love story. Until I was 26, I
was quite unimpressed from technology, which I truly considered a commodity. For
this reason I studied (with great passion) Economics & Management. I do not regret
this decision, even today, since I believe that it provided me great insights for my
research. Moreover, I learned to find interesting problems to work on, and make them
interesting also for other people. After my Master’s, I got aware about the impact
and the role technology in general, and Computer Science in particular, will have on
our daily lives. I am very grateful to Giancarlo Succi to have mentored me in this
crucial phase of my life.

Starting a PhD in Computer Science & Engineering with a MSc in Innovation
& Entrepreneurship, and a BSc in Politics, Philosophy, and Economics was not an
obvious move. For some unclear reasons, Paolo Ciancarini took me with him to
Bologna. Beyond being my advisor, Paolo is much more a mentor. He educated
me to become a computer scientist, reshaping my mindset. He taught me what is
important and what is not in Computer Science research, and how to contribute
to the community’s discussions. Remarkably, he never exercised a strong degree of
control on my work. I experienced what academic freedom means. Still he supported
and criticized in a constructive way my choices.

Moreover, I would like to thank for the useful suggestions the members of my PhD
committee: Roberto Baldoni, Fabio Vitali, and Maurizio Sobrero. For his steady
availability and help, I like to thank also the coordinator of the PhD program in
Computer Science & Engineering, Paolo Ciaccia and all its members.

My visiting period at the Wirtschaftsuniversität Wien, in Jan Mendling’s group
was truly inspiring. Working with an international group of people, at the highest
academic level taught me the real sense of being part of an academic community.

My academic achievements would not have been possible without the support
and work of my co-authors. Here, I would like to thank Paolo Ciancarini, Franco
Raffaele Cotugno, Tommaso Falasconi, Franco Fiore, Saverio Giallorenzo, Ivan Lanese,
Vincenzo Lomonaco, Angelo Messina, Marcello Missiroli, Andrea Giovanni Nuzzolese,
Francesco Poggi, Valentina Presutti, Mario Ruggiero, Alberto Sillitti, Giancarlo Succi,
Gerolamo Taccona, Massimo Tomasi, and Paolo Torricelli.

I had also the great luck to work with a great teaching team at the Faculty of
Humanities in the Computer Science courses, thanks to Aldo Gangemi, Damiana
Luzzi, Federico Montori, Matteo Pascoli, Francesco Poggi, and Elisa Turrini.

I learned a lot how to become a computer scientists also from my fellow colleagues
of the Hardcore Underground. For the (something more and something less) inspiring
discussions I am grateful to Luca Bedogni, Francesco Gavazzo, Saverio Giallorenzo,
Micheal Lodi, Vincenzo Lomonaco, Vincenzo Mastroandrea, Federico Montori, Ste-
fano Giovanni Rizzo, Luca Sciullo, Liu Tong, Angelo Trotta, Stefano Pio Zingaro, and
obviously the BergaBot.

ACM SIGSOFT and the Heidelberg Laureate Forum Foundation granted me full
scholarships for the participation to two world class Computer Science events which
were truly inspiring for my PhD: the 50th Turing Award Ceremony and the 2018

vi

Heidelberg Laureate Forum. To such awarding institutions I am particularly thankful
for those opportunities.

I also like to acknowledge the Autonomous Region of South Tyrol (Italy), which
provided me the financial support for this PhD.

Living between Bologna, Bolzano, Milano, and Vienna was not easy. Not only
for me but also for my family. My parents never missed to support me in any of my
enterprises since my early years: Grazie papà e mamma! Laura, amore della mia vita,
thank you for all these great years. You were at my side for every decision I took,
supporting and my bearing moods.

It was a truly great time in Bologna. Indeed, it was one of the most enjoyable
period of my life. For all the people which made this experience so great I want just
to say: grazie di cuore!

vii

Contents

Abstract iii

Acknowledgements v

1 Research Objectives 1

1.1 Motivation and Problem Statement . 1
1.2 Contribution . 2
1.3 Thesis Organization . 3

1.3.1 Chapter 2 . 3
1.3.2 Chapter 3 . 4
1.3.3 Chapter 4 . 4
1.3.4 Chapter 5 . 5
1.3.5 Chapter 6 . 5
1.3.6 Chapter 7 . 6
1.3.7 Chapter 8 . 6
1.3.8 Chapter 9 . 6

2 Mapping Socio-Technical Software Engineering 9

2.1 Introduction . 9
2.2 Research Method . 10

2.2.1 Research Questions . 10
2.2.2 Systematic Mapping . 11
2.2.3 Threats to Validity . 13

2.3 Socio–Technical Systems . 14
2.3.1 Overview . 14
2.3.2 Socio–Technical Software Engineering 15

2.4 Classification Schemes . 16
2.5 Mapping . 16

2.5.1 Research Area of Software Engineering 17
Software Engineering Management 18
Software Design . 21
Software construction . 23
Software requirements . 25
Software Engineering process 25
Systems engineering . 25
Project management . 27
Software Engineering economics 27
Software configuration management 28
Software testing . 28
General management . 28

2.5.2 Publication Fora . 28
2.5.3 Citations per publication types 29

2.6 Discussion . 31

viii

2.7 Conclusions . 32

3 The Software Quality–Architecture–Process Model 33

3.1 Introduction . 33
3.2 Literature Review . 35

3.2.1 Information Systems Quality 35
3.2.2 Software Quality . 36
3.2.3 Software Process . 36
3.2.4 Software Architecture . 37
3.2.5 Relationships Among Dimensions 38

Process and Quality . 38
Process and Architecture . 38
Architecture and Quality . 38
Quality – Process – Architecture 39

3.2.6 The IT financial market . 39
3.2.7 Systems’ scope . 40

3.3 Research Design . 41
3.3.1 The Delphi-like Method . 42
3.3.2 Selection of Delphi Panelists . 42
3.3.3 Data Collection and Analysis 46

3.4 Results . 47
3.5 Discussion . 61

3.5.1 Theoretical Coding . 62
3.5.2 A Model for Information Systems Quality 63

3.6 Theoretical and Practical Contribution 63
3.7 Conclusions and Limitations . 67

4 The SQuAP Ontology 71

4.1 Introduction . 71
4.2 Related Works . 72
4.3 Relational quality factors: the SQuAP Model 73
4.4 SQuAP-Ont: an OWL formalisation of SQuAP 75

4.4.1 Ontology description . 75
4.4.2 Formalisation . 77
4.4.3 Implementation details . 78

4.5 How to use SQuAP-Ont . 79
4.6 Potential impact . 81
4.7 Conclusion and future development . 82

5 Knowledge Engineering for Socio–Technical Software Engineering 83

5.1 Introduction . 83
5.2 Complex software systems specification 84

5.2.1 Evolution of a Mission Critical Information System through Agile 85
5.3 Requirements engineering, management & tracking 89
5.4 Use of KBS and OBS within iAgile . 92

5.4.1 An Ontology-based Architecture for C2 Systems 93
5.4.2 Developing domain ontologies from user stories with iAgile . . . 95

5.5 Conclusions . 97

ix

6 Agile Contracting 99

6.1 Introduction . 99
6.2 Related Work . 100
6.3 The Law & Economics of Agile contracts 101
6.4 The Italian Case . 106

6.4.1 The object of the contract . 106
6.4.2 The structure of the contract 107
6.4.3 The competition . 108
6.4.4 Economic value . 109
6.4.5 Provision of accountable variations 109
6.4.6 Verification . 110

6.5 Setting up the contracts . 110
6.5.1 Contracts with Function Points 110
6.5.2 Contracts with Scrum Sprints 112

6.6 Case Study . 113
6.7 Conclusions . 113

7 Legal Implications of Software Reuse 115

7.1 Introduction . 115
7.2 Background: Types of software clones 116
7.3 Short comparison of two legal frameworks 116

7.3.1 IPRs in the US . 117
7.3.2 IPRs in the EU . 119
7.3.3 Consequences for software cloning 119

7.4 The case law . 120
7.4.1 Research Protocol . 120
7.4.2 First considerations about the outcome 121
7.4.3 The United States . 121
7.4.4 Software and hardware cloning related to physical devices . . . 123
7.4.5 Software cloning related to competition and antitrust issues . . 123
7.4.6 Software cloning related to misappropriation of trade secrets

and copyright infringements . 124
7.4.7 Other cases related to the United States 125
7.4.8 The European Union case law 125

7.5 An ECJ disruptive ruling . 127
7.6 Impact on software . 128
7.7 Conclusions . 130

8 Cooperative Thinking 133

8.1 Introduction . 133
8.2 Related works . 134
8.3 Research Methodology . 135
8.4 Results . 136

8.4.1 Individual learning . 136
8.4.2 Paired learning . 137
8.4.3 Directed group learning . 138
8.4.4 Self-directed group learning . 140

8.5 Implications for practice . 141
8.5.1 Learning path . 143
8.5.2 The influence of the context . 144

8.6 Discussion . 145

x

8.7 Conclusions . 146

9 An Empirical Validation of Cooperative Thinking 149

9.1 Introduction . 149
9.2 Related Work . 151
9.3 Research Model and Hypotheses . 152

9.3.1 Effect of Computational Thinking on Cooperative Thinking . . 153
9.3.2 Effect of Agile Values on Cooperative Thinking 153
9.3.3 Effect of Cooperative Thinking on Complex Problem Solving . 154

9.4 Research Design . 155
9.4.1 Research Questions . 155
9.4.2 Partial Least Square path modeling 155
9.4.3 Scale Development . 156
9.4.4 Data Collection . 156

9.5 Results . 157
9.5.1 Measurement Model . 158
9.5.2 Structural Model . 159

9.6 Discussion . 160
9.6.1 Implications . 161
9.6.2 Limitations . 162

9.7 Conclusions . 163

10 Concluding Remarks 165

10.1 Discussion . 165
10.2 Conclusion . 166
10.3 Future works . 167

A Research Materials 169

A.1 Questionnaire . 169
A.1.1 Constructs . 169
A.1.2 Demographic Information Questionnaire 170

Bibliography 171

xi

List of Figures

2.1 Systematic mapping search protocol and outcome 12
2.2 Map of Methodological Philosophy on Socio-Technical Software Engi-

neering. Methodological Philosophy on the Y axis; Research Method
on the left side of the X axis, and Area of Software Engineering on the
right type of the X axis . 17

2.3 Distribution over SE research Areas . 17
2.4 Publication Distribution over years . 18

3.1 Delphi–like administration process . 43
3.2 SQuAP (Software Quality-Architecture-Process) meta-model 66

4.1 Factor 26: Data analysis vs. Functional analysis. This factor is defined
as a relation between three quality characteristics of a software project:
Functional Correctness (ISO 25010), Architectural View (ISO 45010),
and Development (ISO 12207). 74

4.2 Core classes of SQuAP-Ont. 76
4.3 Execution of a DL query on the RDF sample. 80

5.1 Sprint representation, inspired by [399] 86
5.2 The ontology of the application domain and the system requirements

are derived from user stories . 93
5.3 A snapshot of the C2 ontology during its development with Protege.

The class and property hierarchies are shown on the left, while other
contextual information (e.g. annotations, instances and relevant prop-
erties) are shown on the right. 94

5.4 The C2 system is modeled around the star architecture pattern. The
domain ontology is the center of such architecture, and is used to inte-
grate different resources and systems. 95

5.5 User stories collected with iAgile are used to develop the system domain
ontology . 96

5.6 A fragment of the developed domain ontology. Three general concepts
are represented (i.e. logistic item, location and convoy), and the tra-
jectory pattern has been used to model positional information 97

6.1 Iron Triangle [22] . 105
6.2 Structure of the contract . 107
6.3 SiFP definition structure . 111
6.4 Effectiveness of the contract structure 113

7.1 Copyright protected and not protected reengineering according to the
ECJ. 129

8.1 Teaching activities mapped to learner types, following the taxonomy of
[261] . 142

xii

8.2 Cooperative Thinking, Computational Thinking and Agile values break-
down (according to Computing at School [115] and [43]) 147

9.1 Theoretical framework and hypotheses 154
9.2 Structural model with Path coefficients and p values 160

xiii

List of Tables

2.1 Coverage of SWEBOK’s Knowledge Areas 18
2.2 Distribution of research SE Areas’s evolution per year 19
2.3 Papers on Software Engineering management – 1 20
2.4 Papers on Software Engineering management – 2 22
2.5 Papers on Software design . 23
2.6 Papers on Software construction . 24
2.7 Papers on Software requirements . 26
2.8 Papers on Software Engineering process 26
2.9 Papers on Systems engineering . 27
2.10 Papers on Project management . 27
2.11 Papers on Software Engineering economics 27
2.12 Papers on Software configuration management 28
2.13 Papers on Software testing . 28
2.14 Papers on General management . 28
2.15 Distribution of publication fora 1 . 29
2.16 Distribution of publication fora 2 . 30
2.17 Acknowledgment of previous works per publication types 30

3.1 Panel composition . 44
3.2 Target-Panel composition . 45
3.3 Concerns and results of the Delphi-like study 48
3.4 Extra-concerns and results of the Delphi-like study 49
3.5 Factor mapping according to ISO/IEC 25010 – System and software

quality models . 64
3.6 Factor mapping according to ISO/IEC 12207 – Software Life-cycle Pro-

cesses . 65
3.7 Factor mapping according to ISO/IEC 42010 – Architecture description 65

4.1 Competency questions used for modelling SQuAP-Ont. 75
4.2 Alignments between the classes of SQuAP-Ont and DOLCE UltraLight. 77
4.3 Alignments between the properties of SQuAP-Ont and DOLCE Ultra-

Light. 77

6.1 Divergent interests . 104

7.1 Clone types in Rattan et al. (2013) . 117
7.2 Advantages and disadvantages of code cloning 117
7.3 Chapters of Title 17 (Copyright Act) 118
7.4 Appendixes of Title 17 (Copyright Act) 118
7.5 EU Directives regarding Copyright . 119
7.6 Main differences between the US and EU legal system concerning this

chapter . 120
7.7 Number of cases per cloning area . 122

xiv

7.8 Other US case law. 126
7.9 Copyright protection within the EU and the US 130

8.1 Investigation list . 136
8.2 Learning model influence on learner and teacher’s role 141

9.1 Demographics . 157
9.2 Outer Loadings . 158
9.3 Construct Reliability and Validity . 159
9.4 Fornell–Lacker Criterion . 159
9.5 Heterotrait-Monotrait Ratio of Correlations (HTMT) 159
9.6 Paths Coefficients . 160

A.1 Items list . 169
A.2 Demographics questionnaire . 170

xv

List of Abbreviations

AV Agile Values
CT Computational Thinking
CooT Cooperation Thinking
ISQ Information Systems Quality
IPR Intellectual Propriety Rights
KBS Knowledge Based Systems
OWL Ontology Web Language
PLS Partial Least Squares
SE Software Engineering
SEM Structural Equation Mmodelling
SQuAP Software Quality Architecture Process model
SWEBOK SoftWare Engineering Body Of Knowledge
STSE Socio Technical Software Engineering

1

Chapter 1

Research Objectives

1.1 Motivation and Problem Statement

Software Engineering is a human–intensive activity. As such, different social and
technical aspects are involved while engineering software. Collaboration among de-
velopers, and cooperation with different stakeholders are crucial activities to lead
complex software projects to success [377]. Indeed, the relation between software
development and the structure of the organizations where the software is effectively
developed, has been empirically observed several times in literature [331, 451]. This
kind of relation is among the oldest Software Engineering laws, known as Conway’s
Law. Melvin Conway discovered in 1967 that “organizations which design systems [...]
are constrained to produce designs which are copies of the communication structures
of these organizations” [107]. According to this insight, software is almost isomorphic
to the organizational communication structure, where it is build.

The consequences of this wisdom has a great impact on the entire Software Engi-
neering management area. Recently, a long list of scholars and contributions, which
are partially listed in the next chapters, supported this critical issue in different ways.
In order to have a broad idea of the types of contributions, consider that Nagappan
et al provided evidence for causation between organizational structures and software
quality [331]. Similarly, Tamburri et al discovered patterns of sub-optimality across
organizational structures [451]. Cataldo et al formalized socio-technical congruence,
intended as the degree to which technical and social dependencies match when coor-
dination is needed, and empirically investigated its impact on software quality [86].
Bird et al used a social network analysis among developers to discover socio–technical
dependencies [56]. Whereas, de Souza et al focused on coordination to maintain legacy
systems [430].

Indeed, the impact of sub–optimal coordination on software quality is the biggest
concern in literature. A better management of socio–technical dependencies through
the coordination activity is considered as a key activity to improve software quality,
both for development and maintenance. Several solutions have been proposed by
literature to tackle this issue. Chapter 2 provides a mapping, where such approaches
have been listed.

However, a comprehensive perspective of the subject matter is still missing. This
means that there is no Software Engineering model to deal with the quality of infor-
mation systems. It is a matter of perspectives and unit of analysis. Especially for
complex or legacy systems managing dependencies means to deal with different unit
of analysis at the level of methods, classes, files, packages, or even systems. Therefore,
solutions proposed by scholars can hardly cover the degree of complexity of such sub-
ject matter. In particular, conceptual analysis and conceptual implementation papers
obviously addressed single issues of the debate. Several layers of both technical (e.g.,
technology used, granularity of dependencies) and social (e.g., organizational issues,

2 Chapter 1. Research Objectives

communication, cultural barriers) nature are involved in Socio–Technical Software
Engineering. For this reason there is no such one ‘silver bullet’ in this area due to its
complexity.

Although we will not solve all problems related to Socio–Technical Software En-
gineering, this dissertation proposes a model to firstly understand and manage the
subject matter, with particular regard to quality issues. Moreover, typical barriers of
practical nature are addressed with the idea to serve, in particular, the practitioners
community. Among others, we explained a real-world case study where socio–technical
concerns have been solved through a Knowledge Engineering approach. Moreover, two
key legal issues, like that related to contracting and software cloning are considered
to improve software quality from an organizational perspective. Indeed, the way soft-
ware developers cooperate with an organization impacts on systems’ quality. Thus, we
developed a contractual framework to improve software quality. Also, we provide guid-
ance for developers regarding software cloning related to Intellectual Property Rights
issues. Finally, we considered the pedagogical of future computer scientists generations
to solve computationally-complex problems in a cooperative fashion. Even though it
might be a neglected topic in this research area, we can not think to tackle socio-
technical congruence without educating future professional what cooperation means,
since we use to teach students to program in an individual way, and not in teams.

1.2 Contribution

This dissertation provides to the reader an understanding on how socio-technical issues
can be treated in several ways. Clear take-aways are provided at the end of each
chapter, of particular interest for practitioners. Most work done is of empirical nature,
following well-defined methodological approaches, described in each chapter.

Among the most relevant contribution of this thesis is the Quality-Architecture-
Process model, induced and deduced in Chapter 3, and conceptualized through an
OWL ontology in Chapter 4. However, we did not narrow the discussion on Quality,
Architecture, and Process aspects and their interaction. Rather we were interested to
investigate socio-technical related aspects of the Quality-Architecture-Process model.
The model, as such, suggests key constructs of software artifacts and their relations.

This work offers a perspective on managing software through Software Engineer-
ing’s key constructs Quality, Architecture, and Process; and key actions to support
this perspective. In our view, socio-technical means that software is a (computer-
aided) social artifact, which relies on technically-recognized constructs. Accordingly,
engineering software means to develop artifacts which are build in a Quality, Archi-
tecture, and Process reliable fashion. As highlighted in Chapter 3, we do not focus on
these constructs per se. Respective standards have been developed by the community
and are deeply discussed in literature. Interestingly, as any construct, they change
over time, and are not fixed. Although this might sound surprising, it is not. Before
the XXI century, Waterfall was considered the most reliable process. After the Agile
Manifesto [209] this is not true anymore. Similarly, monolithic mainframe architec-
tures were mainstream before the Service-Oriented or Microservices paradigms. Alike
quality attributes, which evolved other time.

Nevertheless, Quality, Architecture, and Process (in their evolution) are at the
center of the Software Engineering process. Moreover, it is still a man-made process.
In this perspective, software can be considered as a social construct, intended as
an object that has been developed and accepted by people in a given environment.
As such, Software Engineering deals with several units of analysis of social nature:

1.3. Thesis Organization 3

organization, team, individual; and of technical ones: code, test, documentation,
design, etc. The reason is that is that it is a complex and interconnected discipline.
As Mel Conway pointed out in 1968, software can not be considered as detached
from its (organizational, social and technological) environment. Thus, in this context,
sustainability is intended to adopt a holistic socio-technical perspective on engineering
software, having care on all its unit of analysis. A bug-free software with useless
requirements for the own organization is useless. However, also a software that have
implemented all functional requirements for an organization without any consideration
of architectural layering or non-functional requirements will be hardly maintainable.

For these reasons, we are concerned to develop new research insights which help
to manage software in a sustainable way. Accordingly, the Meta Research Question
(MRQ) of this dissertation is the following:

• MRQ: How can we engineer software in a sustainable fashion?

Reasonably, we do not provide a deterministic answer to our MRQ. Since the
concept itself of sustainability changes in time, this question will remain reasonably
unanswered. The reason may appears quite straightforward. Assuming that software
is a social construct, its characteristics evolve according to future challenges. Here, the
understanding of the context plays a major role. Pretending to develop one-catch-all
solutions may lead to severe pitfalls. Addressing functional aspects without an under-
standing of e.g., the organization, customers, developers, as also coding and testing
standards, environment, libraries; is misleading, especially for critical applications.
Indeed, there is a growing understanding in the community that through the context–
awareness of a domain, it is possible to recognize, explain, experiment, and build
systems in a sustainable way. Recently, Gail Murphy suggested that “study, definition
and use of context can improve the flow of software development work” [329]. In her
vision, software development is not an abstract and deterministic process, rather it
is deeply shaped by socio-technical aspects. Therefore, the notion of sustainability
is here of particular importance, since it takes into account the need to embed the
awareness of the context within the development process, to deliver useful functional-
ities (for users) which are also easily maintainable. Thus, providing a holistic vision
over the engineering process is a contingent need for all IT managers.

For this reason, this work focuses on providing actionable models, tools, case
studies to (some) practitioners’ contingent needs.

1.3 Thesis Organization

This thesis includes eight chapters, plus the present introduction and the conclusion
and future works chapter. All chapters benefited from a joint contribution of fellow
colleagues, with the only exception of Chapter 2. In order to address our MRQ, we
investigated several aspects of our subject matter. Consequently, our methodological
approaches were tailored to our different research questions, according to our prag-
matic research perspective [358, 113]. Therefore, each chapters outlines and explains
the followed approach. Hence, each chapter in contextualized in its problem state-
ment and related literature. At the end of each chapter, we present our preliminary
conclusions, outlying future directions.

1.3.1 Chapter 2

A literature review is provided in a systematic way. Considering the broadness of
the topic, we used an appropriate research method, namely a Systematic Mapping or

4 Chapter 1. Research Objectives

Scoping study. Here, we addressed Socio–Technical Software Engineering (STSE) as
the way to manage, design, develop, test, and maintain complex software systems with
a high degree of technical and human dependencies. This chapter aims at surveying
existing research on Socio–Technical Software Engineering to identify the literature
debate about this broad topic, providing a rigorous starting point for future contri-
butions. Our systematic mapping is launched to find as much literature as possible,
finding 94 chapters, which were classified according to their Software Engineering
Area, Methodological Philosophy, and Research Method. Most areas of Software En-
gineering are concerned with STSE, although 90% of the chapters deals with issues
related to Software Engineering management, Software design, Software construction,
and Software requirements. Leading publication fora are ICSE, CHASE and IST.
Only 29% of the articles recognized at least one relevant contributions, suggesting
poor theorization. Most papers are concept implementation, conceptual analysis and
literature reviews. To conclude, better theorization and theoretical understanding is
needed for scholars working in this area, since the picture is too jeopardized.

1.3.2 Chapter 3

Information Systems Quality (ISQ) is a critical source of competitive advantages for
organizations and a primary Socio–Technical Software Engineering issue. In a scenario
of increasing competition on digital services, ISQ is a competitive differentiation asset.
In this regard, managing, maintaining, and evolving IT infrastructures has become a
primary concern of organizations. Thus, a socio–technical perspective on ISQ provides
a useful guidance to meet current challenges. The financial sector is paradigmatic,
since it is a traditional business, with highly complex business–critical legacy systems,
facing a tremendous change due to market and regulation drivers. We carried out a
Mixed-Methods study, performing a Delphi-like study on the financial sector. We
developed a specific research framework to pursue this vertical study. Data were col-
lected in four phases starting with a high level randomly stratified panel of 13 senior
managers and then a target-panel of 124 carefully selected and well-informed domain
experts. We have identified and dealt several quality factors; they were discussed in a
comprehensive model inspired by the ISO 25010, 42010, and 12207 standards, corre-
sponding to software quality, software architecture, and software process, respectively.
Our results suggest that the relationship among quality, architecture, and process is a
valuable technical perspective to explain the quality of an information system. Thus,
we introduce and illustrate a novel meta-model, named SQuAP (Software Quality,
Architecture, Process), which is intended to give a comprehensive picture of ISQ by
abstracting and connecting detailed individual ISO models.

1.3.3 Chapter 4

Building on the previouse chapter, In Chapter 4, we formalized SQuAP-Ont. The
SQuAP model (Software Quality, Architecture, Process) describes twenty-eight main
factors that impact on software quality in financial systems, and each factor is de-
scribed as a relation among some characteristics from the three ISO standards, since
their interaction has been scarcely studied, so far. Hence, SQuAP makes such relations
emerge rigorously, although informally. In this chapter, we present SQaAP-Ont, an
OWL ontology designed by following a well established method based on the re-use of
Ontology Design Patterns (i.e. ODPs). SQuAP-Ont formalises the relations emerging

1.3. Thesis Organization 5

from SQuAP in order to represent and reason via Linked Data about Software Engi-
neering in a three-dimensional model consisting of quality, architecture, and process
ISO characteristics.

1.3.4 Chapter 5

Chapter 5 explains explains how cooperation issues were solved through ad hoc tech-
nologies, namely Knowledge-Based System (KBS). Here, we discuss how a mission
critical KBS has been designed and implemented for a real case study of a governa-
mental organization. This case study represents a factual reality, where KBS have
been used in a real-world scenario, where requirements were changing rapidly and de-
velopers’ effort to implement them were non–trivial. The KBS is based on an ontology
used to merge the different mental models of users and developers. Moreover, the on-
tology of the system is useful for interoperability and knowledge representation. Both
the ontology and the main mission critical functionalities have been developed in agile
iterations. The KBS has been used for three development activities: (i) requirement
disambiguation, (ii) interoperability with some legacy systems, and (iii) information
retrieval and display of multiple informative sources. Moreover, the KBS has been
developed using a specific agile software development method inspired by Scrum but
tailored for Command and Control systems. Due to fast changing operational scenar-
ios and volatile requirements, traditional procedural development methods perform
poorly. Thus, a Scrum-like method, called iAgile, has been exploited.

1.3.5 Chapter 6

Contracting issues have often been neglected by software engineer. However, legal
concerns are compelling to improve socio-technical congruence, in particular collab-
oration, within real-world contexts. As discussed in the previous chapter, Agile is a
suitable methodology to improve collaboration both among development teams and
management. Although Agile is a well established software development paradigm,
major concerns arise when it comes to contracting issues between a software consumer
and a software producer. How to contractualize the Agile production of software, espe-
cially for security & mission critical organizations, which typically outsource software
projects, has been a major concern since the beginning of the “Agile Era.” In literature,
little has been done, from a foundational point of view regarding the formalization of
such contracts. Indeed, when the development is outsourced, the management of the
contractual life is non–trivial. This happens because the interests of the two parties
are typically not aligned. In these situations, software houses strive for the minimiza-
tion of the effort, while the customer commonly expects high quality artifacts. This
structural asymmetry can hardly be overcome with traditional “Waterfall” contracts.
In this work, we propose a foundational approach to the Law & Economics of Agile
contracts. Moreover, we explore the key elements of the Italian procurement law and
outline a suitable solution to merge some basic legal constraints with Agile require-
ments. Finally, a case study is presented, describing how Agile contracting has been
concretely implemented in the Italian Defense Acquisition Process. This work is in-
tended to be a framework for Agile contracts for the Italian public sector of critical
systems, according to the new contractual law (Codice degli Appalti).

6 Chapter 1. Research Objectives

1.3.6 Chapter 7

During the development, most code is reused from previous projects, frameworks or
libraries. A compelling cooperation problem is to manage properly Intellectual Propri-
ety Rights (IPRs). Although Software Cloning is a widely studied aspect of Software
Engineering, little research has been done in its analysis from an IPR perspective
An interdisciplinary approach is crucial to better understand the legal implications of
software in the IPR context. Interestingly, the academic community of software and
systems deals much more with such IPR issues than courts themselves. In this chap-
ter, we analyze some recent legal decisions in using software clones from a Software
Engineering perspective. In particular, we survey the behavior of some major courts
about cloning issues. As a major outcome of our research, it seems that legal fora do
not have major concerns regarding copyright infringements in software cloning. The
major contribution of this work is a case by case analysis of more than one hundred
judgments by the US courts and the European Court of Justice. We compare the US
and European courts case laws and discuss the impact of a recent European ruling.
The US and EU contexts are quite different, since in the US software is patentable
while in the EU it is not. Hence, European courts look more permissive regarding
cloning, since “principles,” or “ideas,” are not copyrightable by themselves.

1.3.7 Chapter 8

Effective cooperation should be properly taught in Computer Science classes. Accord-
ingly, we explore the concept of Computational Thinking in a Software Engineering
perspective. Computational Thinking is probably one of the most important skills
for XXI centuries citizens, in particular for programmers and software engineers but
also for scientists at large. The current teaching practices focus on Computational
Thinking and individual programming first, and only later address students to work in
teams. However, training students to Computational Thinking might not be enough
to tackle contemporary complex challenges in software development, especially those
which cannot be won individually. Based on prior studies, we describe and compare
four software development learning approaches: solo programmer, pair programmers,
self-organized teams, and directed teams. These approaches have been explored in a
number of teaching experiments, involving hundreds of students, over several years.
We show that Computational Thinking can be effectively enhanced with with Agile
values, extending it with social skills and teaming practices. We introduce a model
of a competence that we call Cooperative Thinking, grounded in literature and vali-
dated by our experiments. This paper provides a research synthesis of previous works
contextualized in a pedagogical framework, and proposes a new learning paradigm for
Software Engineering education.

1.3.8 Chapter 9

In this chapter we use an exploratory Structural Equation Modeling technique to
introduce and analyze Cooperative Thinking (CooT), a model of team-based compu-
tational problem solving. Computational Thinking (CT) and Agile Values (AV) focus
respectively on the individual capability to think in an algorithmic way, and on the
principles of collaborative coding. Although these two dimensions of Computer Sci-
ence education complement each other, very few studies explored the interaction of
CT and AV. We ground our model on the existing literature and validate it through
Partial Least Square modeling. Cooperative Thinking is not just the sum of CT and

1.3. Thesis Organization 7

AV, rather it is a new overarching competence suitable to deal with complex Com-
puter Science problems. This chapter suggests to tackle the CooT construct as an
education goal, to train new generations to Pareto-optimize both their individual and
teaming performances.

9

Chapter 2

Mapping Socio-Technical Software

Engineering

2.1 Introduction

Several aspects of both social and technical nature come into question when devel-
oping software. How to collaborate with fellow developers, stakeholders, testing and
review activities, design, requirements elicitation, are just a few problems software
organizations face every day. The aim of the emerging Socio-Technical Software En-
gineering (STSE) paradigm is to provide a solution to problems which includes both
social and technical aspects of engineering software. Indeed, most of the Empirical
Software Engineering effort deals with this topic, at large. Thus, clearly defining this
area would misleading. Rather, it might be of interest to understand how the term
socio-technical is used in literature, finding out how such literature refer to previous
works. With all the limitations of this approach, this is a pragmatic approach to map
the debate about STSE.

Also defining previous work is not a trivial task. After a first round analysis of
the selected literature, we knowledge three major works, which had a clear impact on
literature. In 1968 Mel Conway introduced the idea of software as a socio-technical
problem [107]. He recently affirmed that “Conway’s law was [...] a valid sociological
observation, [...] a consequence of the fact that [...] interface structure of a software
system necessarily will show a congruence with the social structure of the organization
that produced it”1. Later on, Fred Brooks built on this wisdom for his pivotal work,
providing software management insights [77]. Brooks recognized the management
corollaries of Conway’s law, suggesting that “structuring an organization for change is
much harder than designing a system for change” [77, p. 242]. Conway’s and Brooks’
ideas highlight the fact that software is a human-made abstraction, and as such, a
social construct based on the collective experiences and actions of a community of
developers merging with technical instances of the underlying technology involved.
The last relevant work on this topic is proposed by Cataldo et al. in 2008 [86]. They
build on the idea of congruence, to examine the relationship between the structure
of technical and work dependencies, as also the impact of dependencies on software
development productivity.

STSE is a interdisciplinary topic, where little systematization has been pursued
up to now in literature. Considering the very nature of the topic, it is very hard
to find an unified definition about what is meant with socio-technical. Moreover,
there is no general agreement about the notion of socio-technical within Software
Engineering. Although most empirical studies deals with social and technical aspects,
they might use different notions of phrasing. Indeed, many authors may refer to it

1www.melconway.com Accessed on 10.03.2018

10 Chapter 2. Mapping Socio-Technical Software Engineering

without explicitly mention it. As a result, there are probably thousands of studies
dealing with this paradigm. For such reason, claiming to map the entire field of STSE
would be an overstatement. However, providing an understanding of how scholars use
the notion of STSE, and while doing it, which relevant work they are referring to,
still provide a first understanding on the subject matter. Building on this awareness,
future researcher will be advised in positioning their work within the domain of STSE.

For this reason, planning a mapping study on this subject matter has several in-
herent limitations. Accordingly, we have just to focus on these papers who explicitly
acknowledged Socio-Technical Software Engineering within the paper’s narrative. Al-
though it is a big shortcut, it is a pragmatic solution to map the literature debate.
Scholars, which use this paradigm, do not always refer explicitly to a recognized theo-
retical framework. The analysis of the bibliography suggests a high variety of different
references when hinting to the STSE paradigm. This is a clear signal that a work pro-
viding a first mapping of the literature is needed. In order to get a picture of existing
literature, we launched a systematic mapping study on the use of the notion of STSE.

Therefore, our aim is to get an overview of existing research in order to find deeper
insights about the use of this emerging paradigm and identify future research needs.

Systematic mapping is an alternative research method compared to systematic
reviews. Especially if the topic is too broad or poorly systematized for a systematic
review, systematic mapping is feasible a methodological approach. Indeed, mapping
studies are typically performed at a higher granularity level, mainly to identify research
gaps and future research direction. From a methodological perspective, guidelines for
systematic mapping have been proposed for the Software Engineering domain since
2008 by Petersen et al. [362], and afterwards expanded by Kitchenham et al. in
different contributions [257, 258, 362, 361]. Accordingly, relevant studies has been
pursued on Software Engineering topics, like Software Product Lines testing [151].
This chapter follows the recommendation by [362]. To improve reproducibility, we
tried to be as compliant as possible to the chapter structure of [151], adapting the
mapping scheme for our topic.

This chapter is organized as follows. The methodology of our mapping is explained
in Section 2.2. In Section 2.3 a brief literature review on Socio Technical Systems and
Software Engineering is provided. The classification scheme is discussed in Section
2.4. Then, in Section 2.5, all studies are discussed by the categories proposed in the
SWEBOK. The answer to the research questions are discussed in Section 2.6. Finally,
we outline our conclusion in Section 2.7 along with our future works.

2.2 Research Method

2.2.1 Research Questions

The goal of this study is to get an overview of the use of the notion of Socio–Technical
Software Engineering. Accordingly, we identified the following research questions
(RQ):

• RQ1 Which area of Software Engineering have been investigated and to what
extent by using the STSE paradigm? Indeed, STSE relates to several areas
of Software Engineering (with reference to the SWBOK [71]), so our aim is to
identify which ones have been addressed in previous research, in order to support
complementary research.

• RQ2 Which is the most used methodological philosophy and research method?
Methodological aspects are the basis for new investigations. This is a pivotal

2.2. Research Method 11

aspects to strengthen the credibility of research contributions and suggest future
space for investigation.

• RQ3 Which research fora publish topics where the notion of Socio-Technical Soft-
ware Engineering is used? Notably, there is no one forum devoted to it. Thus,
future scholars may be find interesting where to submit their contributions.

• RQ4 Does the community recognize milestone contributions? Three works shaped
the Software Engineering Socio-Technical paradigm: Conway’s intuition that the
way people communicate and collaborate frames software design [107]; Brook’s
experience with complex development [77]; and the socio-technical congruence
framework of software projects by Cataldo et al [86]. In order to advance inves-
tigations on this topic, awareness on crucial literature is important to criticize
or build on it.

• RQ5 Which topics regarding Socio-Technical Software Engineering have been
identified by studies using this notion? Challenges for STSE may be identified
in several works, helping us to identify relevant past and future research.

2.2.2 Systematic Mapping

Socio-Technical Software Engineering is broad and interdisciplinary topic which would
benefit from a first systematization. Accordingly, we carried a systematic mapping
study as alternative to a systematic review for the following reasons, as suggested by
[362, 361].

Our goal is not to establish the state of evidence, since we did not study papers in
great detail. Rather, we focused on classification, Software Engineering area analysis,
and identifying publication fora. Moreover, we did not consider where particular
evidence is missing or is insufficiently reported in existing articles.

The research process is also different compared to systematic reviews. Indeed,
we did not evaluate papers as such, as we would have made with a literature review.
We just assured a baseline quality provided by peer-review and quality indexing by
reliable scholarly repositories. From a data extraction perspective, we focused on
thematic analysis, to see which areas of Software Engineering are covered by the use
of the STSE paradigm. Systematic literature reviews include a deeper level of data
selection and extraction to draw homogeneous conclusions based on the same specific
subject matter.

As a consequence, there is a difference in breadth and depth. We analyzed a
large number of papers, compared to a review. The search string and inclusion criteria
reflect this, since our aim was to find as many studies as possible to provide to the
community the broadest picture. Reviews have a much more stringent search string
and exclusion criteria, since the aim is to filter only the most qualified articles for the
chosen subject matter.

Also in terms of classification per topic area and research approach maps
have a broader understating of the subject matter. For this reason we used the
SWEBOK areas, which are quite broad, while systematic reviews focus only on one
particular sub-area. Nevertheless, we spent also some effort to make a finer granular
analysis, depicting also the topic. Similarly, we mapped both research philosophy and
the research methods used. We believe that this choice strengthen our work, since it
provides at a both high and low level a factual representation about STSE. Again, our
aim was not to filter studies and represent only the relevant one for e.g., a comparison

12 Chapter 2. Mapping Socio-Technical Software Engineering

Figure 2.1: Systematic mapping search protocol and outcome

about fault prediction metrics [380]; but to provide an overview of ongoing research
within one subject matter.

For all these reasons, we pursed a systematic mapping study, pursuing the following
activities: search for relevant publications, definition of a classification scheme, and
mapping of publications, as suggested by [362].

To do so, we followed the search protocol represented in Figure 2.1. It is composed
by two phases, the first defines the search criteria, the second applies them, filtering
the results according to them. Each phase has three steps, which narrows the search
protocol.

At the very beginning of our research journey we questioned about what literature
meant with Socio-Technical Software Engineering. Is it a homogeneous paradigm?
Which areas are mostly involved? Which are the most relevant advances? Which are
publication fora? How does the community deal with STSE from a methodological
perspectives? All these question led to the development of our five research question,
listed in Sub Section 2.2.1.

Since this is a mapping study, we tried to be as inclusive as possible, still main-
taining an acceptable quality standard, to not bias our outcome. Consequently, our
criteria were the following:

• Inclusion: Peer reviewed publications (including short papers) with a focus on
Socio-Technical Software Engineering.

• Exclusion: Publications completely out of focus, with no relation to either socio-
technical issues or to Software Engineering. Non-peer reviewed publications.
Articles not written in English. Posters, doctoral symposium, editorials, panel
summaries, and keynotes, since they do not implement a research process.

Also the search string represented the general inclusiveness of our mapping. We
searched for ((“socio technical” OR “socio-technical”) AND “Software Engineering”)
applied for all titles, abstracts, main texts, and bibliographies. We excluded articles
not in English. No time limitation were set in the search.

The choice of the databases was based on the criteria of quality and reproducibility.
Accordingly, we choose ACM Digital Library, IEEE Explorer, Scopus, and ISI Web
of Science. We explicitly excluded Google Scholar, since it is non-deterministic and
does not exclude non–peer review publications.

Once the protocol set up of Phase 1 was completed, we moved to the next one.
The first outcome of our string in the chosen repositories produced 225 hints. We
did this operation on April, 30 2018. All results are updated to that date. Relevant
contributions after that date are not considered in our mapping.

2.2. Research Method 13

We excluded 36 duplicates. Indeed, we found some semantic inconsistencies among
the results of our four repositories. Therefore, we double checked results by both title
and DOI. So, duplicates were discarded and abstracts analyzed.

The relevance of the abstract followed the Inclusion/Exclusion criteria rational.
We labeled it accordingly, reading each single abstract. To ensure the validity of this
screening, the labeling was pursued a second time after one month. In that occasion,
the outcome of the first labeling were unknown to the author, to avoid biases. When
unclear cases emerged (6 cases), the full paper were read to find out the degree of
relevance to our mapping. Borderline papers were kept for this phase. As suggested
in [362], we draw a preliminary classification scheme through keywording of abstracts
and data extraction.

Finally, we read all full papers. Here, all posters, doctoral symposium, editorials,
panel summaries, and keynotes papers, which were not eliminated in the previous
step were excluded. The classification scheme were finalized. Two borderline papers
were discarded since they were too far from Software Engineering topics. At the end
we analyzed 94 articles, which is in line with other similar studies (e.g., Engström
& Runeson found 64 contributions for their mapping [151]). Therefore, considering
the high number of relevant hits, compared also to other benchmarking studies, the
inclusiveness of our search query, we concluded that the search for publications was
sufficiently extensive and that the set of publications gives a good picture of the state
of art in Socio–Technical Software Engineering. For this reason, we did not opt for
snowballing-like techniques [490] in this study.

After all relevant papers were found and the classification scheme were in place,
articles were sorted and data extraction took place into the scheme. To maximize
validity, this operation was repeated three months later by the author, without know-
ing the initial mapping to avoid biases. Disagreements about mapping choices were
solved with the help of a senior scholar, which led to reclassification and revalidation
of previously classified publications.

2.2.3 Threats to Validity

We analyze our threats to the validity, according to the taxonomy used in [151]:
construct validity, reliability, internal validity and external validity.

Construct validity has been considered, in order to be sure that the studied
object represents what we wanted to investigate, and if it is coherent with our RQs.
In this regard, we notice that the Socio–Technical paradigm in Software Engineering,
intended as the link between social and technical dimension, is quite established. Still,
a unified use of the notion of STSE missing. Most empirical studies may investigate
the social and technical dimension of Software Engineering, without explicitly recog-
nizing the notion of STSE. Since the topic is per se of interdisciplinary nature, and
the Software Engineering domain is quite broad, reasonably, different aspects of the
paradigm are investigated by literature. Moreover, we took into consideration also
the assurance that all relevant papers regarding the mapping have been retrieved. To
do so, we relied on all major Computer Science repositories, namely ACM DL, IEEE
Explorer, Scopus, and ISI Web of Science, which index most well reputed publication
peer-reviewed fora. We believe that the long list of the founded publication fora is a
significant indicator that the width of the searching is enough.

Reliability, to assure repeatability of the study has also been considered. Search
strings and outcomes have been made publicly available. We explicitly did not use
non-deterministic databases (i.e., Google Scholar) to avoid non-straightforward re-
sults. Although Google Scholar entails a huge volumes of scholarly publication, we

14 Chapter 2. Mapping Socio-Technical Software Engineering

compensated it by using relevant and transparent databases. Furthermore, our re-
search was quite broad, since we pursued a mapping study, and not a systematic
literature review. Therefore, our inclusion and exclusion criteria were not really strin-
gent. Our main point was to retrieve peer-reviewed publications regarding the Socio–
Technical paradigm in Software Engineering. With regard to the classification, we are
aware that other scholars may come up with slightly different schemes. However, we
tried to strengthen our scheme by using standard classification labels (e.g., from the
SWEBOK), and validating it after three months of the first mapping, also with the
help of a senior scholar.

Internal validity is not considered harmful, since it is mostly related to the data
analysis. In this regard, we just used some quite basic descriptive statistics. To plot
figures, we used R and MS Excel.

External validity is also not considered harmful for our mapping study, since we
do not draw any generalization. Rather, we describe the state of the art, answering
to our five research questions.

In summary, the most severe limitation of this study is to take into account only
papers that explicitly mention the term socio-technical. However, defining the topic
in such a way is the only feasible way to investigate the use of this notion by the
literature. As such, we do not overstate conclusions regarding STSE, rather the way
scholars use it and refer themselves to literature.

2.3 Socio–Technical Systems

2.3.1 Overview

Socio–Technical Software Engineering can be considered a sub-discipline of Socio–
Technical Systems, since most of its insights have been transferred to Software Engi-
neering. The importance of socio–technical aspects in the work organization emerged
in 1951, in contrast to the scientific management principles of Taylor [460]. According
to this paradigm, any production process is primarily human-driven and can not be
rigidly planned in advanced [7]. The focus is on the role of people to turn needs into
products or services. So, self–organization is a key driving factor for socio–technical
systems. Teams adopting this paradigm have both the knowledge and the authority
to set goals and accomplish them [328].

Four are the research streams of Socio–Technical Systems [40]:

1. Work & Work organization. Scholars in this area focus on the work design
to support human-centric manufacturing systems [327]. After the introduction
of computers on the workplace, this stream moved towards the analysis of its
impact on the new work organization [141].

2. Management Information Systems. This stream is concerned about the use
of information systems within organizations, thus these scholars [453] stressed
firstly the relevance of socio-technical issues. Most effort is posed on the inte-
gration side of these systems within the business, rather than computer-aided
work implementation aspects [24].

3. Computer–Supported Cooperative Work. Researchers investigate, mainly
through ethnographic approaches, the way of working thorough computers [443].
Cooperation and collaboration issues on a qualitative level are analyzed to im-
prove work quality, without considering the impact of organizations’ systems
requirements and design [197].

2.3. Socio–Technical Systems 15

4. Cognitive Systems Engineering. The relationship between human and orga-
nizational issues and systems failure is the focus of this area [212]. Information
systems as such are not greatly studied, scholars of this domain are mainly
concerned with control and health care systems.

2.3.2 Socio–Technical Software Engineering

Also the Computer Science community started to raise concerns about the way of
engineering software, since it is a complex human–intensive activity. The increase of
complexity and the degree of interdependencies among systems raised the importance
of this paradigm. According to Badham et al [28], five are the characteristics of such
systems:

1. Components interdependence.

2. Adaptation to external environments.

3. Interdependence with technical and social subsystems.

4. Systems goals are achieved by more than one means where design decisions are
taken during the development (equifinality).

5. Performance based on the joint optimisation of the technical and social subsys-
tems, since the focus on one subsystem would degraded the overall performance.

Accordingly, Socio–Technical Software Engineering addresses the way to manage,
design, develop, test, and maintain such systems.

Nowadays, nearly all big organization rely on large legacy software systems with a
huge number of interoperable components causing greatest concerns to IT managers
[405, 404]. The degree of dependencies are one of these reasons [413]. As a corollary
of Conway’s Law [107], the best possible way to manage effectively dependencies, in
order to build high quality software with a resilient design, is through coordination.
Therefore, the coordination of developers whose technical dependencies affect respec-
tively their subsystem improves system’s quality. Consequently, the alignment of the
technical structure with social interactions is the ground of socio–technical congruence
[203].

Socio–technical congruence has been defined as the match between the coordina-
tion needs established by the technical domain and the coordination among developers
[87]. In this scenario a gap emerges if developers have a coordination need but do not
actually coordinate. Research in this domain is concerned to let such gaps emerge
to minimize them through a variety of techniques aiming to improve coordination or
decrease technical dependencies [410].

To conclude, although socio–technical congruence has probably gained more mo-
mentum within the community, still the paradigm of Socio–Technical Software Engi-
neering is quite broad. Any investigation which focus on Software Engineering issues
regarding complex systems probably deals at leas with one aspect of Socio–Technical
Software Engineering, although they might not recognized it. The way developers
interact [72], how they acquire knowledge [148], or deal with geographical separation
[152] are STSE concerns. In this sense, Socio–Technical Software Engineering can be
intended as a traversal research domain of complex human-driven software systems.

16 Chapter 2. Mapping Socio-Technical Software Engineering

2.4 Classification Schemes

We classified our publications into the following three dimensions: Area of Software
Engineering, according to the SWEBOK; Research Philosophy, to see if studies are
rather inductive, deductive, or if they follow a Mixed Methods approach; and Research
Method, based on the classification scheme of 22 methods by Glass et al [176].

Since STSE impacts potentially on several areas of the Software Engineering do-
main, a first concern is about the studies distribution, to address RQ1. From the 22
(15 knowledge areas and 7 related areas) Areas of the SWEBOK [71], 11 were rel-
evant for our mapping, namely Software Engineering management, Software design,
Software construction, Software requirements, Software Engineering process, Systems
engineering, Project management, General management, Software testing, Software
Engineering economics, and Software configuration management.

Methodological Philosophy and Research Method of the articles are useful indica-
tors to assess already pursued research and build new one. Indeed, a complementarity
of approaches suggests an advanced level of research on the subject matter. The
philosophical instances we found were: Deductive, Inductive, and a mix of both.
With regard to the Method, we followed the taxonomy of Glass et al [176] according
to which we found 11 types, namely: Case study, Literature review/analysis, Con-
cept implementation, Field study, Discourse analysis, Ethnography, Grounded theory,
Laboratory experiment (human subjects), and Simulation. We used this taxonomy,
in stead of that one proposed by Wieringa et al. [485], since we wanted to provide
a deeper understanding about the research methods used. Indeed, great effort have
been made to map correctly the papers, to answer RQ2, since our aim is to high-
light methodological instances of STSE. In doing so, we believe to stick better to out
research question, being more precise.

Finding out where articles where published and of which type (Journal, Confer-
ence, Workshop, Magazine) does also provide an interesting insight for future scholar.
They could specifically target those venues, having already a pre-screening of the pub-
lications. As suggested by RQ3, this is quite valuable, when writing down the related
literature section.

According to RQ4, through a bibliography review, we looked if authors considered
the following publications of: Conway [107], Brooks [77], and Cataldo et al [86].

Topics discussed in literature were also mapped at a high level, to provide a fast
and effective reference to each work, following the rational of RQ5.

2.5 Mapping

The map of our study is represented in Figure 2.2. Following the recommendations
of [362], and the example of [151], we used a bubble plot (two scatteplots with bub-
bles in category intersection, plotted with GGPLOT2 in R) with the following three
variables: Methodological Philosophy, Research Method, and Area of Software Engi-
neering, where the size of the bubbles is proportional to the number of papers that
are in the pair categories corresponding to the bubble coordinates.

An overview of the Area of Software Engineering, where STSE paradigm is more
relevant is presented in Section 2.5.1. Accordingly, we discuss all relevant papers
in the relative Subsections, per Area. Afterward, in Section 2.5.2 we discuss the
publication fora which host STSE discussions. Finally, we analyze which research
type acknowledges more relevant works, in Section 2.5.3.

2.5. Mapping 17

Figure 2.2: Map of Methodological Philosophy on Socio-Technical
Software Engineering. Methodological Philosophy on the Y axis; Re-
search Method on the left side of the X axis, and Area of Software

Engineering on the right type of the X axis

2.5.1 Research Area of Software Engineering

A first distribution of the most relevant research areas of Software Engineering in-
volved to develop the notion of Socio–Technical Software Engineering is presented
in Figure 2.3. From this first insight, almost half of the papers are concerns with
Software Engineering management issues. Adding also Software design, construction,
and requirements, almost 90% of all articles are covered from these four areas. A
first conclusion we can draw from this evidence is that although STSE covers 11 SE
research areas, only 4 of them were relevant by previous scholars.

Figure 2.3: Distribution over SE research Areas

Although some papers may have cited e.g., quality or maintenance aspects, they
were not the focus of the paper. The assignment to an Area is unique, i.e., we made a
choice whenever one paper’s contribution was more relevant to one Area or another.

18 Chapter 2. Mapping Socio-Technical Software Engineering

Table 2.1: Coverage of SWEBOK’s Knowledge Areas

SWEBOK V.3 KAs Covered

Software Engineering management X
Software design X
Software construction X
Software requirements X
Software Engineering process X
Systems engineering X
Project management X
General management X
Software testing X
Software Engineering economics X
Software configuration management X
Software maintenance X
Software configuration management X
Software Engineering models and methods X
Software Engineering professional practice X
Computing foundations X
Mathematical foundations X
Engineering foundations X

In order to provide an overview of the covered Knowledge Areas (KAs), according to
Version 3 of the SWEBOK, we marked them accordingly in Table 2.1.

Moreover, contributions over years show a peak of interest between 2011 and 2016,
as a general positive trend, like displayed in Figure 2.4.

Figure 2.4: Publication Distribution over years

To provide a better understanding when and on which area previous researchers
contributed to the STSE paradigm, Table 2.2 shows at a lower granularity the article’s
distribution per year and area.

Software Engineering Management

Both Table 2.3 and Table 2.4 list articles on Software Engineering management. Con-
sidering the amount of papers, we split the two tables.

With reference to Table 2.3, Balasubramanian et al [30] described and explained
implementation of Agile in Botswana by observing behavioral patterns. Bider et al [53]

2.5. Mapping 19

Table 2.2: Distribution of research SE Areas’s evolution per year

Research focus 1998 2002 2003 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total Percentage

Software Engineering management 1 1 2 2 3 3 2 2 5 2 5 3 3 5 3 42 45%
Software design 1 2 1 1 1 2 4 1 1 14 15%
Software construction 2 1 2 1 2 1 1 2 1 13 14%
Software requirements 1 1 1 1 2 2 2 1 1 12 13%
Software Engineering process 1 1 2 4 4%
Systems engineering 1 2 3 3%
Project management 1 1 2 2%
General management 1 1 1%
Software testing 1 1 1%
Software Engineering economics 1 1 1%
Software configuration management 1 1 1%
Total 1 1 2 3 2 6 7 4 6 12 8 8 7 10 10 6 1 94 100%

developed a modeling technique to explicate and represent various kinds of distances
between the functional components to determine which of them constitute risk factors.
Tamburri et al[451] found out that social debt is strongly correlated with technical
debt and both forces should be reckoned with together during the software process.
Yu et al [498] performed a confirmation study of the ability to designate risks through
dimension of task, actors, structure and technology. Howinson et al [216] developed a
theory of collaboration through open superposition: the process of depositing motiva-
tionally independent layers of work on top of each other over time. Gallina et al [162]
pursued a model-based analysis that allows analysts to interpret humans and organi-
zations in terms of components and their behavior in terms of failure logic, building
on the CHESS-FLA tool for component-based system architectures. Storey et al [440]
examined the past, present, and future roles of social media in Software Engineering.
Damian et al [119] found out that communication only partially matched task depen-
dencies and that team members that are boundary spanners have extensive domain
knowledge and hold key positions in the control structure. Mac Kellar et al [298]
described a tool that uses socio-technical congruence measures to support and give
advice to students who are learning how to effectively coordinate activities on a group
project. Betz et al [51] got the insight that changes in the communication structure
alone sooner or later trigger changes in the design structure of the software products
to return the socio-technical system into the state of congruence. According to Syeed
et al [448], the congruence measure is significantly high in OSS and the congruence
value remains stable as the project matured. The paper by Dorn et al [137] proposes
a language and methodology for specifying and simulating large-scale collaboration
structures, example individual and aggregated pattern simulations, and evaluation of
the overall approach. Wen et al [478] performed a socio-technical study of how Swedish
municipalities utilizes information channels to handle the OSS security incident and
their security posture before, during and after the incident. Global Teaming process
areas and associated threats presented in the paper by Richardson et al [385] pro-
vides both a guide and motivation for software managers to better understand how to
manage technical talent across the globe. A proposal of an aggregated socio-technical
congruence measurement that can be used to specify multiple relationships, such as
awareness relationships, as interactions that satisfy technical dependencies was out-
lined by Kwan et al [272]. Zhou et al [501] supported the importance of the initial
environment in determining the future of the developers and may lead to better train-
ing and learning strategies in software organizations. Kwan et al [273] discovered that
there is a relationship between socio-technical congruence and build success probabil-
ity, but only for certain build types; in some situations, higher congruence actually
leads to lower build success rates. Kazam et al [248] presented the Metropolis Model,
which attempts to capture and provide a framework for reasoning about this new
and increasingly important form of software-intensive system production. According
to Al et al [14], development processes adopted to develop tools need to reflect the
cooperative dimension. Trainer et al [459] supported that mentees working on user

20 Chapter 2. Mapping Socio-Technical Software Engineering

Table 2.3: Papers on Software Engineering management – 1

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Balasubramanian
et al [30]

An evaluation to determine the extent and
level of Agile Software Development Method-
ology adoption and implementation in the
Botswana Software Development Industry

Inductive Case Study N N N

Bider et al [53]

Modeling a global software development
project as a complex socio-technical system
to facilitate risk management and improve
the project structure

Deductive Conceptual anal-
ysis N N N

Tamburri et
al[451]

Social debt in Software Engineering: insights
from industry Inductive Grounded Theory Y Y N

Yu et al [498] The roots of executive information system de-
velopment risks Inductive Field study N N N

Howinson et al
[216] Collaboration through open superposition Inductive Case Study N N N

Gallina et al
[162]

Towards safety risk assessment of socio-
technical systems via failure logic analysis Deductive Concept imple-

mentation N N N

Storey et al
[440]

The (r) evolution of social media in Software
Engineering Inductive Literature Re-

view/ Analysis N N Y

Damian et al
[119]

The role of domain knowledge and cross-
functional communication in socio-technical
coordination

Mixed Methods Field study Y N N

Mac Kellar et al
[298]

Analyzing coordination among students in a
Software Engineering project course Deductive Concept imple-

mentation Y N N

Betz et al [51]
An evolutionary perspective on socio-
technical congruence: The rubber band
effect

Deductive Literature Re-
view/ Analysis Y Y N

Syeed et al [448] Socio-technical congruence in OSS projects:
Exploring Conway’s law in FreeBSD Deductive Case Study Y Y Y

Dorn et al [137]
Analyzing design tradeoffs in large-scale
socio-technical systems through simulation of
dynamic collaboration patterns

Deductive Conceptual anal-
ysis N N N

Wen et al [478] A Case Study: Heartbleed Vulnerability
Management and Swedish Municipalities Inductive Field study N N N

Richardson et al
[385]

A process framework for global Software En-
gineering teams Inductive Case Study N N N

Kwan et al [272] Extending socio-technical congruence with
awareness relationships Mixed Methods Case Study Y N N

Zhou et al [501] Does the initial environment impact the fu-
ture of developers? Deductive Case Study Y Y N

Kwan et al [273]
Does socio-technical congruence have an ef-
fect on software build success? a study of
coordination in a software project

Deductive Case Study Y Y N

Kazam et al
[248]

The metropolis model and its implications for
the engineering of software ecosystems Inductive Discourse analysis N N N

Al et al [14]
Continuous coordination within the context
of cooperative and human aspects of Software
Engineering

Deductive Case Study N N Y

Trainer et al
[459]

e-mentoring for Software Engineering: a
socio-technical perspective Inductive Field study N N N

Meneely et al
[306]

Socio-technical developer networks: Should
we trust our measurements? Deductive Simulation N N N

facing, interdependent software form a balance of ties that facilitate both goals, while
mentees working on non-user facing software mostly form ties important for building
technical skill. For Meneely et al [306], connections in the developer’s network are
statistically associated with the collaborators whom the developers name.

Passing to Table 2.4, Whitworth et al [484] supported an understanding of how so-
cial identity and collective effort are supported by agile methods. Nakakoji et al [333]
presented a framework to describe a participative system capable to characterize the
evolution of an OSS community through changing the participants’ perceived value
and types of engagement. Dignum et al [130] provided a conceptual framework to in-
tegrate organizational and individual perspectives, such that agent-based models for
simulation and the engineering of multi-agent systems can be integrated. Boxer at al
[72] presented a case study within the military domain. Scacchi [415] reviewed what is
known about free and open source software development work practices, development
processes, project and community dynamics, and other socio-technical relationships.
Paruma et al [354] provided evidence about the existence of some relationships among

2.5. Mapping 21

personality traits projected by the committers through their e-mails and the social
and technical activities they undertake. According to Herbsleb [202], many tools and
practices could be effective for multi-site work, but none seemed to work under all
conditions. A proposal of a deductive measure of socio-technical congruence as an in-
dicator of the performance of an organization in carrying out a software development
project was proposed by Valetto [463]. Key barriers to collaboration are geographic,
temporal, cultural, and linguistic distance; the primary solutions to overcoming these
barriers include site visits, synchronous communication technology, and knowledge
sharing infrastructure to capture implicit knowledge and make it explicit, according
to Noll et al [341]. Balijepally et al [31] illustrated the utility of social capital, orga-
nizational learning and knowledge based view of the firm by articulating a research
model that captures the IT value created by software development teams practicing
different methodologies. For Sawyer et al [414] software development methods reflect
theories of how people should behave, how groups of people should interact, the tasks
that people should do, the order of these tasks, the tools needed to achieve these tasks,
the proper outcomes of these tasks. Brier [76] presented tools which can help in the
analysis and synthesis of change which impacts on an organisation’s socio-technical
systems. Cataldo et al [86] is the most significant work on STSE which build on the
idea of congruence, to examine the relationship between the structure of technical and
work dependencies and the impact of dependencies on software development produc-
tivity. Svanæs et al [447] suggested that user-centered-design projects give priority
to an early identification of factors in the context of design that pose risks to end-
product usability. For Bendik et al [45] early integration increases the likelihood of
implementation success, it also increases the complexity of the projects. Herrmann
et al [207] found out that every pattern of a groupware application has to combine
the description of social as well as technical structures, and that a single pattern can
only be understood in the context of a pattern language. Lyytinen et al [296] ex-
amined software risk management, emphasizing the ways in which managers address
software risks through sequential attention shaping and intervention. According to
Arumugam et al [21], a Socio Technical Systems responsibility model is designed for
global practitioners to exhibit the relationship between global practitioners within an
organization structure and represent the risk of global practitioners using a set of
graphical notations. Finally, Hall et al [192] proposed a design theory for Software
Engineering, extending it to a design theory for socio-technical systems.

Software Design

Papers on Software design are displayed in Table 2.5. Here, the focus is primarily of
architectural nature. Ahmad et al [10] pursued a systematic literature review on us-
ability guidelines for smartphone applications, studying 148 articles which proposed a
total of 359 usability guidelines. Lentzsch et al [285] presented a method which allows
multiple stakeholders to reflect on process models they design collaboratively over
multiple sessions. Baraki et al [33] proposed patterns to address interdisciplinary con-
cerns in a tightly interwoven manner and are intended to facilitate the development
of accepted and acceptable applications that in particular deal with sensitive user
context information. Martini et al [300] proposed a taxonomy of the most dangerous
socio-technical items for software design. Ogunyemi et al [346] found out that there is
a knowledge limit regarding HCI practices in Nigerian software industry. Simpson et
al [425] revised the concept of responsibility modeling, which models social technical
systems as a collection of actors who discharge their responsibilities, whilst using and

22 Chapter 2. Mapping Socio-Technical Software Engineering

Table 2.4: Papers on Software Engineering management – 2

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Whitworth et al
[484] The social nature of agile teams Inductive Grounded Theory N N N

Nakakoji et al
[333]

Understanding the Nature of Collaboration in
Open-Source Software Development Deductive Case Study N N N

Dignum et al
[130]

Multi agent simulation for control and auton-
omy in complex socio-technical systems Deductive Conceptual anal-

ysis N N N

Boxer at al [72] Building organizational agility into large-
scale software-reliant environments Deductive Case Study N N N

Scacchi [415]
Free/open source software development: re-
cent research results and emerging opportu-
nities

Inductive Literature Re-
view/ Analysis N N N

Paruma et al
[354]

Finding relationships between socio-technical
aspects and personality traits by mining de-
veloper e-mails

Deductive Case Study N N N

Herbsleb [202]
Building a socio-technical theory of coordi-
nation: why and how (outstanding research
award)

Inductive Field study Y Y Y

Valetto [463]
Using software repositories to investigate
socio-technical congruence in development
projects

Deductive Concept imple-
mentation Y Y N

Noll et al [341] Global software development and collabora-
tion: barriers and solutions Inductive Discourse analysis N N N

Balijepally et al
[31]

IT value of software development: A multi-
theoretic perspective Inductive Literature Re-

view/ Analysis N N N

Sawyer et al
[414]

Methods as theories: evidence and arguments
for theorizing on software development Inductive Literature Re-

view/ Analysis N N N

Brier [76] Problem-based analysis of organisational
change: a real-world example Deductive Concept imple-

mentation N N N

Cataldo et al
[86]

Socio-technical congruence: a framework for
assessing the impact of technical and work de-
pendencies on software development produc-
tivity

Deductive Conceptual anal-
ysis X Y Y

Svanæs et al
[447]

Understanding the context of design: towards
tactical user centered design Inductive Case Study N N N

Bendik et al [45]
Four integration patterns: IS development as
stepwise adaptation of technology and organ-
isation

Inductive Case Study N N N

Herrmann et al
[207]

Concepts for usable patterns of groupware ap-
plications Deductive Conceptual anal-

ysis N N N

Lyytinen et al
[296]

Attention shaping and software risk– A cate-
gorical analysis of four classical risk manage-
ment approaches

Inductive Literature Re-
view/ Analysis N N Y

Arumugam et al
[21]

Global Software development: An approach
to design and evaluate the risk factors for
global practitioners

Inductive Literature Re-
view/ Analysis N N N

Hall et al [192] A design theory for Software Engineering Inductive Discourse analysis N N N

2.5. Mapping 23

Table 2.5: Papers on Software design

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Ahmad et al [10]
Perspectives on usability guidelines for smart-
phone applications: An empirical investiga-
tion and systematic literature review

Deductive Literature Re-
view/ Analysis N N N

Lentzsch et al
[285]

Integrating a Practice Perspective to Privacy
by Design Inductive Field study N N N

Baraki et al [33] Interdisciplinary design patterns for socially
aware computing Deductive Concept imple-

mentation N N N

Martini et al
[300]

The danger of architectural technical debt:
Contagious debt and vicious circles Inductive Case Study N N N

Ogunyemi et al
[346]

HCI practices in the Nigerian software indus-
try Inductive Field study N N N

Simpson et al
[425]

Formalising Responsibility Modelling for Au-
tomatic Analysis Deductive Conceptual anal-

ysis N N Y

Dorn et al [138]
Coupling software architecture and human
architecture for collaboration-aware system
adaptation

Mixed Methods Conceptual anal-
ysis Y Y N

Taveter et al
[452]

Engineering societal information systems by
agent-oriented modeling Deductive Case Study N N N

Georgas et al
[171]

STCML: an extensible XML-based language
for socio-technical modeling Deductive Concept imple-

mentation N N N

dos Santos et al
[409]

Revisiting the concept of components in Soft-
ware Engineering from a software ecosystem
perspective

Deductive Descriptive/ ex-
ploratory Survey N N Y

Fabiano et al
[154]

Applying Tropos to Socio-Technical System
Design and Runtime Configuration Deductive Case Study N N N

Bicocchi et al
[52]

A self-aware, reconfigurable architecture for
context awareness Deductive Case Study N N N

Norta et al [342] An agent-oriented method for designing large
socio-technical service-ecosystems Deductive Case Study N N N

Lock et al [290] Modelling and Analysis of Socio-Technical
System of Systems Deductive Concept imple-

mentation N N N

producing resources in the process. Mapping mechanism and corresponding frame-
work that enables a system adaptation manager to reason upon the effect of software
level changes on human interactions and vice versa was proposed by Dorn et al [138].
Taveter et al [452] proposed agent-oriented modeling as a suitable Software Engineer-
ing approach for developing open and adaptive societal information systems. Georgas
et al [171] presented STCML: an XML-based, highly-extensible modeling language
that makes extensive use of linking and inheritance in order to provide an interoper-
able data representation with particular support for architectural concerns. Dos San-
tos et al [409] revisits the concept of components in Software Engineering through a
socio-technical construction. Fabiano et al [154] illustrate a number of Tropos features
to support the development and runtime reconfiguration of Socio-Technical Systems.
Bicocchi et al [52] suggests a framework to evaluate a meta-classification scheme based
on state-automata for improving energy efficiency, improving classification accuracy
and improving Software Engineering of aware systems. For Norta et al [342] there is
a lack of socio-technical design methods for generating agent-based architectures that
get deployed on platforms as a service in clouds. Finally, a presentation of an ap-
proach to help end users graphically identify and analyze the hazards and associated
risks that can arise in complex Socio-Technical System of Systems, with particular
emphasis on the role of system dependencies is pursued by Lock et al [290].

Software construction

Regarding software construction, Table 2.6 presents all 13 articles. They focus on
coding, verification, unit testing, integration testing, and debugging. The main con-
tribution of Santos et al [408] was to treat non-technical issues of component reposi-
tories in the software ecosystems context. Kilamo et al [252] presented the evolution
of social dimensions in the light of Software Engineering methodologies and associ-
ated tools. Oliva et al [348] identified key developers and characterize them in terms

24 Chapter 2. Mapping Socio-Technical Software Engineering

Table 2.6: Papers on Software construction

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Santos et al
[408]

Supporting negotiation and socialization for
component markets in software ecosystems
context

Deductive Conceptual anal-
ysis N N N

Kilamo et al
[252]

The social developer: now, then, and tomor-
row Deductive Descriptive/ ex-

ploratory Survey N Y N

Oliva et al [348]
Evolving the system’s core: a case study on
the identification and characterization of key
developers in Apache Ant

Deductive Case Study Y Y N

Syeed et al [449] Socio-technical congruence in the ruby
ecosystem Deductive Case Study Y Y Y

Wang et al [475] Which bug should I fix: helping new develop-
ers on board a new project Deductive Concept imple-

mentation N N N

Bird et al [55] Empirical Software Engineering at Microsoft
research Inductive Discourse analysis N Y Y

Kuhn [268]
Immediate Search in the IdE as an Exam-
ple of Socio-Technical Congruence in Search-
driven development

Deductive Case Study N N N

Wermelinger et
al [480]

Using formal concept analysis to construct
and visualize hierarchies of socio-technical re-
lations

Deductive Concept imple-
mentation N Y N

de Souza et al
[429]

An empirical study of software developers’
management of dependencies and changes Inductive Ethnography N N N

Borici et al [68]
Proxiscientia: Toward real-time visualization
of task and developer dependencies in collab-
orating software development teams

Deductive Concept imple-
mentation Y Y N

Ye et al [496] A socio-technical framework for supporting
programmers Deductive Concept imple-

mentation N N N

Sarma et al
[411]

Tesseract: Interactive visual exploration of
socio-technical relationships in software de-
velopment

Deductive Concept imple-
mentation Y Y N

de Souza et al
[430]

Supporting collaborative software develop-
ment through the visualization of socio-
technical dependencies

Deductive Concept imple-
mentation N Y N

of their social activity and contributions. Syeed et al [449] provided an empirical
study of the relationships between the development coordination activities and the
project dependency structure in the Ruby ecosystem. Wang et al [475] enabled users
to identify bugs of interest, resources related to that bug, and visually explore the
appropriate socio-technical dependencies for the selected bug in an interactive man-
ner. Bird et al [55] presented the Empirical Software Engineering (ESE) group at
Microsoft Research. Kuhn [268] explored the socio-technical congruence of immediate
search, i.e. unification of tasks and breakpoints with method calls, which leads to
simpler and more extensible development tools. Wermelinger et al [480] presented
an application of formal concept analysis, in order to compute and visualize the hi-
erarchical ordering of socio-technical relations. De Souza et al [429] described the
strategies used by software developers to handle the effect of software dependencies
and changes in their work. Borici et al [68] introduced ProxiScientia, a visualization
tool that provides awareness support to developers, as they engage in collaborative
software development activities. Ye et al [496] proposed the STePIN (Socio-Technical
Platform for In situ Networking) framework to guide the design of systems that sup-
port information seeking during different phases of programming. Sarma et al [411]
developed Tesseract, an interactive exploratory environment that utilizes cross-linked
displays to visualize the myriad relationships between artifacts, developers, bugs, and
communications. De Souza et al [430] developed Ariadne, a plug-in for Eclipse that
analyzes software projects for dependencies and collects authorship information about
projects relying on configuration management repositories.

2.5. Mapping 25

Software requirements

Table 2.7 is concerned with software requirements papers, which deals with establish-
ing the needs of stakeholders solved by software through the STSE paradigm. Kim
et al [253] proposed a methodology for systematically organizing knowledge with a
security requirements recommendation framework using the Problem Domain Ontol-
ogy. While Hassine et al [195] proposed a structural metric to measure actor external
dependencies in GRL (Goal-oriented Requirement Language) models. Dalpiaz et al
[118] presented in their work a requirements driven architecture, which extend the
Tropos goal models to diagnose failures as well as to identify alternative strategies to
meet requirements. Dos Sanots et al [139] explained an approach to support software
ecosystems definition and modeling based on their domains. Morales et al [321] pur-
sued a retrospective analysis of the requirements engineering process of a project in
the domain of ambient assisted living, where several techniques were used to elicit the
requirements of a Socio-Technical System. Schneider et al [419] present an approach
supporting organizational learning on security requirements by establishing company-
wide experience resources and a socio-technical network to benefit from them. Ac-
cording to Kamaruddin et al [243], the application of Activity Theory (which focuses
the human practices of development process, both the individual and social levels)
is ideally suited to handle mobile application requirement. Bourimi et al [70] intro-
duced the AFFINE framework which considers non-functional requirements early in
the development process, balance end-users’ with developers’ needs, and provide a ref-
erence architecture support for non-functional requirements. Gregoriades et al [182]
described a method and a tool for validating nonfunctional requirements in complex
Socio-Technical Systems. Pedell et al [357] presented a method for using ethnographic
field data to substantiate agent-based models for socially-oriented systems. Bresciani
et al [75] introduced an agent-based Requirements Engineering Framework (REF), de-
vised to deal with Socio-Technical Systems, and support stakeholders’ participation.
Sutcliffe et al [445] presented an approach to develop a probabilistic model of system
reliability as a Bayesian Belief Network.

Software Engineering process

With regard to process issues, Table 2.8 represent the relevant papers. According to
Kakar [242], the level of self-organization varies across Agile projects, on each of the
nine dimensions the level of self-organization in agile teams was found to be signifi-
cantly higher than those using plan-driven methods. Furthermore, self-organization
was found to positively affect the motivation and innovativeness of software develop-
ment teams. The model proposal by Jiang et al [228] uses three congruence measures
to examine the levels of social-technical congruence in software development processes.
Hudert et al [219] proposed a service-centric life cycle model acting as a conceptual
basis for automated service management at both, build and run time. Finally, Wen
[479] found out that system verification is the most cited security area in OSS re-
search; the socio-technical perspective has not gained much attention in this research
area; no research has been conducted focusing on the aspects of security knowledge
management in OSS development.

Systems engineering

A few papers focused also on how to design and manage complex systems over their life
cycles. Table 2.9 presents the following works. Nardin et al [334] proposed a sanction
typology and a conceptual sanctioning process model providing a functional structure

26 Chapter 2. Mapping Socio-Technical Software Engineering

Table 2.7: Papers on Software requirements

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Kim et al [253]
Analytical study of cognitive layered ap-
proach for understanding security require-
ments using problem domain ontology

Mixed Methods Conceptual anal-
ysis N N N

Hassine et al
[195]

Measurement of Actor External Dependen-
cies in GRL Models Deductive Concept imple-

mentation N N N

Dalpiaz et al
[118]

Adaptive socio-technical systems: a
requirements-based approach Deductive Conceptual anal-

ysis N N N

dos Sanots et al
[139]

On the Impact of Software Ecosystems in Re-
quirements Communication and Management Inductive Literature Re-

view/ Analysis N N N

Morales et al
[321]

Revealing the obvious?: A retrospective ar-
tifact analysis for an ambient assisted-living
project

Deductive Case Study N N N

Schneider et al
[419]

Enhancing security requirements engineering
by organizational learning Deductive Case Study N N N

Kamaruddin et
al [243]

Using activity theory in analyzing require-
ments for mobile phone application Deductive Case Study N N N

Bourimi et al
[70]

AFFINE for enforcing earlier consideration
of NFRs and human factors when build-
ing socio-technical systems following agile
methodologies

Deductive Concept imple-
mentation N N N

Gregoriades et
al [182]

Scenario-based assessment of nonfunctional
requirements Deductive Concept imple-

mentation N N N

Pedell et al [357] Substantiating agent-based quality goals for
understanding socio-technical systems Inductive Ethnography N N N

Bresciani et al
[75]

The Agent at the Center of the Requirements
Engineering Process Deductive Conceptual anal-

ysis N N N

Sutcliffe et al
[445]

Validating functional system requirements
with scenarios Deductive Conceptual anal-

ysis N N N

Table 2.8: Papers on Software Engineering process

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Kakar [242] Assessing Self-Organization in Agile Software
Development Teams Deductive Descriptive/ ex-

ploratory Survey N N Y

Jiang et al [228] Assessing team performance from a socio-
technical congruence perspective Deductive

Laboratory ex-
periment (human
subjects)

Y Y N

Hudert et al
[219]

A Proposal for a Life Cycle Model for Elec-
tronic Service Markets Deductive Case Study N N N

Wen [479] Software security in open source develop-
ment: A systematic literature review Deductive Literature Re-

view/ Analysis N N N

2.5. Mapping 27

Table 2.9: Papers on Systems engineering

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Nardin et al
[334]

Classifying sanctions and designing a con-
ceptual sanctioning process model for socio-
technical systems

Inductive Literature Re-
view/ Analysis N N N

Gulden et al
[187]

A Research Agenda on Visualizations in In-
formation Systems Engineering Inductive Literature Re-

view/ Analysis N N N

Baxter et al [40] Socio-technical systems: From design meth-
ods to systems engineering Inductive Literature Re-

view/ Analysis N N N

Table 2.10: Papers on Project management

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Harrison et al
[193]

Collaboration infrastructure for the learning
organization Inductive Literature Re-

view/ Analysis N N N

Crofts et al [114]
Using the Sociotechnical Approach in Global
Software Developments: Is the Theory Rele-
vant today?

Inductive Literature Re-
view/ Analysis N N N

for sanctioning in Socio-Technical Systems. Gulden et al [187] outlined a research
agenda on visualizations for socio-technical artifacts. Baxter et al [40] identified inter-
disciplinary research problems that address how to apply socio-technical approaches
in a cost-effective way, and how to facilitate the integration of Socio-Technical Systems
engineering with existing systems and Software Engineering approaches.

Project management

Although not strictly related to the Software Engineering domain, the papers rep-
resented in Table 2.10 provide two interesting contribution on project management
issues. Harrison et al [193] affirmed that the Human Interaction Management, the Hu-
man Interaction Management System, and Goal-Oriented Organization Design pro-
vide the basis for a collaboration infrastructure that is conducive to the Learning
Organization and that exemplifies good socio-technical design. While Crofts et al
[114] discussed about theory use in socio-technical research with particular reference
to Global Software Engineering.

Software Engineering economics

Two papers were also concerned with economics issues. In particular, Kim et al [255]
support the concept of a social platform, the importance of core technology, and key
properties of the ICT ecosystems. And Cevenini et al [88] elaborated on the articulate
aspects of anonymization where a balancing between legal and technical aspects could
possibly ensure the system efficiency while preserving the individual right to privacy.
Those papers are represented in Table 2.11.

Table 2.11: Papers on Software Engineering economics

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Kim et al [255]
A socio-technical analysis of software policy
in Korea: Towards a central role for building
ICT ecosystems

Inductive Field study N N N

Cevenini et a
[88]

Privacy Through Anonymisation in Large-
Scale Socio-Technical Systems: Multi-lingual
Contact Centres Across the EU

Inductive Literature Re-
view/ Analysis N N N

28 Chapter 2. Mapping Socio-Technical Software Engineering

Table 2.12: Papers on Software configuration management

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Bider et al [54] Becoming Agile in a Non-disruptive Way-Is
It Possible? Mixed Methods Case Study N N N

Znamenskij et
al [502]

Effect driven Evolution: Information Systems
Architecture for Large Dynamic Organiza-
tions

Deductive Conceptual anal-
ysis N N N

Table 2.13: Papers on Software testing

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Martin et al
[299] Cooperative work in software testing Inductive Ethnography N N N

Software configuration management

Papers of Table 2.12 deal with tracking and controlling tasks in software. Bider et al
[54] developed a non-disruptive method of transition to Agile, while using a knowledge
transformation perspective to identify the main features of an Agile mindset and how
it differs from the one of traditional methodologies. While Znamenskij et al [502]
advanced a new approach for evolutionary information system engineering to provide
high-quality support for large and complex Socio-Technical Systems.

Software testing

One article is about testing, in Table 2.13. Martin et al [299] considered cooperative
work crucial to get testing done.

General management

Finally, Drozdowski et al [140] were concerned that the Indian government has pro-
vided substantial economic liberalization to support their software industries, though
continued reform is necessary to ensure that they remain a software superpower, in
Table 2.14.

2.5.2 Publication Fora

Publication fora for papers using the notion of Socio–Technical Software Engineer-
ing are very diversified, with 70 identified venues. However, their significance is very
skewed. Only 10 venues published more than one paper about STSE, and the In-
ternational Conference on Software Engineering (ICSE) alone hosted 9 contributions.
In total, the following venues: International Conference on Software Engineering; In-
ternational Workshop on Cooperative and Human Aspects of Software Engineering;
Information and Software Technology; Foundations of Software Engineering; Asia-
Pacific Software Engineering Conference; IEEE Transactions on Software Engineer-
ing; International Conference on Human Aspects of Information Security, Privacy,

Table 2.14: Papers on General management

Article Title
Methodological

Philosophy

Research

Method

Cataldo

et al
Conway Brooks

Drozdowski et
al [140]

India’s Rise as a Software Power: Govern-
mental Policy Factors Inductive Discourse analysis N N N

2.5. Mapping 29

Table 2.15: Distribution of publication fora 1

Venue
Venue

Type
#

International Conference on Software Engineering Conference 9
International Workshop on Cooperative and Human Aspects of Software Engineering Workshop 6
Information and Software Technology Journal 4
Foundations of Software Engineering Conference 3
Asia-Pacific Software Engineering Conference Conference 2
IEEE Transactions on Software Engineering Journal 2
International Conference on Human Aspects of Information Security, Privacy, and Trust Conference 2
International Conference on Supporting Group Work Conference 2
International Workshop on Social Software Engineering Workshop 2
Requirements Engineering Journal 2
ACM Inroads Magazine 1
Agile conference Conference 1
Americas Conference on Information Systems Conference 1
Australasian Conference on Information Systems Conference 1
Computing and Informatics Journal 1
Confederated International Conferences On the Move to Meaningful Internet Systems Conference 1
Conference of Open Innovations Association Conference 1
Conference on Commerce and Enterprise Computing Conference 1
Conference on Computer Supported Cooperative Work Conference 1
Conference on Manufacturing Modelling, Management, and Control International Federa-
tion of Automatic Control Conference 1

Conference on Software Engineering Education and Training Conference 1
European Conference of Information Systems Conference 1
European Conference on Software Architecture Conference 1
Future of Software Engineering Conference 1
Human-Computer Interaction Conference 1
Information Systems Research Journal 1
Interacting with Computers Journal 1
International Conference on Advances in Computing and Communication Engineering Conference 1
International Conference on Autonomous Agents and Multiagent Systems Conference 1
International Conference on Business Information Systems Conference 1
International Conference on Engineering of Complex Computer Systems Conference 1
International Conference on Enterprise Information Systems Conference 1
International Conference on Evaluation of Novel Software Approaches to Software Engi-
neering Conference 1

and Trust; International Conference on Supporting Group Work; International Work-
shop on Social Software Engineering; Requirements Engineering, published 34 articles,
which represent 36% of total papers.

Table 2.15, and Table 2.16 provide a plastic representation of publication fora
ordered per number of articles published and venue type.

2.5.3 Citations per publication types

The works by Conway, Cataldo et al, and Brooks, seem to be poorly recognized. Table
2.17 shows that only 19% of the analyzed papers refer to Conway, 17% to Cataldo et
al, and just 12% to Brooks’ book. Since three works referred explicitly to at least one
of the reference articles, we included them. In particular, Herbsleb [202] cited Conway
through his previous publication [204]. Sarma et al [411] acknowledge both Conway
and Cataldo et al in other works. Similary did Valetto [463] with Cataldo et al.

In terms of publication type, we found 17 Journal papers, 56 Conference papers,
1 Magazine paper, and 20 Workshop papers.

The majority of the mapped articles did not refer to a specific theoretical Socio–
Technical Software Engineering paradigm. Mostly, they referred to STSE as the com-
bination of social and technical issues.

30 Chapter 2. Mapping Socio-Technical Software Engineering

Table 2.16: Distribution of publication fora 2

Venue
Venue

Type
#

International Conference on Global Software Engineering Conference 1
International Conference on Human-Centred Software Engineering Conference 1
International Conference on Internet Science Conference 1
International Conference on Networking, Sensing and Control Conference 1
International Conference on Open Source Systems Conference 1
International Conference on Requirements Engineering Conference 1
International Conference on Software and System Process Conference 1
International Conference on Software Engineering and Knowledge Engineering Conference 1
International Symposium on Empirical Software Engineering and Measurement Conference 1
International Symposium on Open Collaboration Conference 1
International Symposium on Software Reliability Engineering Workshops Workshop 1
International Systems Conference Conference 1
International Workshop on Advances and Applications of Problem Frames Workshop 1
International Workshop on Empirical Requirements Engineering Workshop 1
International Workshop on Mining Software Repositories Workshop 1
International Workshop on Replication in Empirical Software Engineering Research Workshop 1
International Workshop on Software Engineering for Large-Scale Multi-Agent Systems Workshop 1
iStar Workshop 1
Italian Workshop dagli Oggetti agli Agenti Workshop 1
Journal of Ambient Intelligence and Smart Environments Journal 1
Journal of Computer Information Systems Journal 1
Journal of Internet Services and Applications Journal 1
Latin American Computing Conference Conference 1
Malaysian Conference in Software Engineering Conference 1
MIS Quarterly Journal 1
Nordic Conference on Human-Computer Interaction Conference 1
Portland International Conference on Management of Engineering and Technology Conference 1
Requirements Engineering @ Brazil Workshop 1
Social Inclusion: Societal and Organizational Implications for Information Systems Conference 1
Symposium on Computers and Communication Conference 1
Telecommunications Policy Journal 1
The Knowledge Engineering Review Journal 1
Working Conference on Software Architecture Conference 1
Workshop on Enterprise and Organizational Modeling and Simulation Workshop 1
Workshop on Future of Software Engineering Research Workshop 1
Workshop on Search-driven Development: Users, Infrastructure, Tools and Evaluation Workshop 1
World Congress on Services Conference 1

Table 2.17: Acknowledgment of previous works per publication types

Type of publication Conway Cataldo et al Brooks

Conference 11 9 7
Journal 3 3 2
Workshop 4 4 2
Total 18 16 11
Percentage 19% 17% 12%

2.6. Discussion 31

This outcome suggest space for improvement in order to identify theoretical in-
stances of STSE.

2.6 Discussion

The surveyed research indicates that the use of the notion of Socio–Technical Software
Engineering is a diversified area of investigation, skewed on a few areas and venues.

Answering RQ1 is quite straightforward, since about 90% of all articles are about
Software Engineering management, Software design, Software construction, and Soft-
ware requirements. Other areas are quite marginal. Especially management issues are
the biggest concerns of scholars. Collaboration, cooperation, and work organization
are key topics of STSE. Both analysis and solutions on this area focus to improve
the gap between the way people work and interact to provide technology solutions.
However, the way scholars discuss about this gap are quite broad and target on several
topics and specific solutions. Indeed, in Section 2.5.1 the RQ5 addresses a detailed
discussion about each paper per area.

Publication fora are also very skewed on 10 venues. Although we found 70 fora,
most of them published just one article about STSE. However, the most relevant
venues for such type of contribution is Software Engineering’s leading venue ICSE,
with 9 papers. Another significant fora is the International Workshop on Coopera-
tive and Human Aspects of Software Engineering (CHASE), which focus especially
cooperation topics. Instead, the most important journal is Elsevier’s Information and
Software Technology (IST), with 4 articles. The reason seems quite clear, since IST
focus on contributions concerning software management, to improve software devel-
opment practices. So, RQ3 can by answered by saying that there is no specific fora
for STSE topics. However, cross–area Software Engineering venues, like ICSE appear
to be the best suited publication target. Nevertheless, when targeting highly specific
issues (like cooperation), more specific venues, like CHASE, are also suitable.

The lack of systematization is evident, after having pursued a bibliography review.
Indeed, just 27 papers (29% of the total) recognized at least one of relevant past
contributions, and just four recognize all three of them, suggesting that there is not
a common view about the STSE paradigm. Since more than 70% of analyzed works
did not acknowledge properly key works for articles’ theorization, we answer RQ4

negatively.
Most papers are case studies, concept implementation, conceptual analysis and lit-

erature reviews. This finding is fairly similar to that of Glass et al. [176]. So, 64% of
the papers mainly tend to develop tools to support or assess collaboration among de-
velopers, find new forms of formalization, explore socio–technical issues in real world
contexts and undergo critical reflections through literature reviews. Interestingly,
although most of them use a deductive–quantitative approach, a significant 38% pro-
vided inductive–qualitative contributions. According to Glass’s results, Computer
Science is a traditionally deductive community [176]. A wider use of methodologi-
cal philosophies, which enriches Computer Science contributions is a positive note.
Researchers used for their investigation a broad use of methods, also mixing them.
However, we have to say that very rarely, papers committed explicitly to one philoso-
phy, or method. Mostly, the methodological section was omitted or given for granted.
Nevertheless, with regard to RQ2, we can affirm that both research philosophy and
methods use are quite diversified, suggesting a methodological maturity of scholars in
this area, although they need to improve methodological clarity.

32 Chapter 2. Mapping Socio-Technical Software Engineering

2.7 Conclusions

The aim of this chapter was to systematize the broad and diversified literature around
the use of the notion of Socio–Technical Software Engineering. This emerging paradigm
is quite often used, and given often for granted. Since there is no unanimous and ho-
mogeneous use of STSE, a systematic literature review was not a suitable research
approach. According to our scope, we launched a systematic mapping study, identi-
fying 94 articles published over 20 years.

The picture from our research suggests that the Software Engineering community
is seriously concerned to improve the way developers face collaboration to build new
software. Moreover, there is also an increasing awareness towards social issues in
Software Engineering. The type and topics of these contributions are quite broad and
diversified. In addition, the debate about what is Socio–Technical Software Engineer-
ing is quite jeopardized. Relevant literature is mostly missing and poor theoretical
support is provided by scholars in this domain. On one hand, researchers explore
collaboration aspects to improve technical solutions, on the other hand, they are not
concerned about theoretical aspects of collaboration in order to improve their solu-
tions.

Although we surveyed only the use of the term STSE, and can not draw general
conclusions about the the entire research dealing with both social and technical aspects
of Software Engineering, findings are significant from several aspects. It provides a
fair overview of the way the term STSE was used, from several dimensions (e.g., area,
methodological), identifying paper’s research goal. Furthermore, it offers a first insight
about the use of STSE, highlighting the relation to previous literature. Finally, it can
considered a good proxy for researchers dealing with socio-technical issues to find out
the most suited publication venue and relevant literature.

All in all, this mapping study is a pragmatic way to get insight about what the
community’s debate around Socio-Technical Software Engineering.

Future research will focus on two directions. Firstly, theorization works should
provide a homogeneous model for STSE. To do so, all provided frameworks of the pa-
pers have to be systematized, discussed and compared. Secondly, find new relations
from other areas to support cross–fertilization. Indeed, STSE is not a strictly Soft-
ware Engineering paradigm, several of its insights are mutated from social sciences.
Therefore, a deeper understanding of these relations underpins STSE and enriches it.

33

Chapter 3

The Software

Quality–Architecture–Process

Model

3.1 Introduction

The quality and flexibility of Information Systems are among the most relevant sources
of competitive advantage [372, 464]. While new digital ‘platform’ companies arise,
disrupting traditional business models and entire industries, established companies are
striving to compete with these new entrants [360]. Incumbent organizations developed
their information systems over years with long-lasting IT plans with mainframe-like
systems [251]. Considering the level of pervasiveness of software, which is increasing at
a path we have never experienced before, the digitalization of services and products
are the new challenges of incumbents. While consumers are becoming more keen
to use technology for their daily applications, businesses are rethinking the values
they offer to customers and the corresponding business models for their competitive
differentiation [50]. Thus, ISQ assurance is the grounding asset to meet customers’
expectations. Indeed, the ISQ performance enables greater systems’ reliability and
flexibility, improving users’ satisfaction and technology acceptance [489].

Information Systems research dealt widely with the notion of quality, intended
as the sum of the high-level constructs of Information Quality, Systems Quality, and
Service Quality [125]. The Software Engineering (SE) and Management Information
Systems (MIS) communities provide complementary perspectives, addressing IT usage
in organizations. The point is that they emphasize on different activities and methods
for controlling and improving ISQ. In fact, according to [466], the borderline between
the quality of a software system and that of an information system is rather subtle,
since software normally refers to programs whereas an information system is the orga-
nizational context in which software is used. Although several frameworks have been
developed to evaluate ISQ [320, 364], we did not find recent papers with a focus on
the IT-related characteristics. We gathered several concerns in these years about low
information systems quality of an ever–increasing number of financial applications.
However we did not find a comprehensive picture of the problem in literature. This
chapter addresses this contingent research gap.

As a matter of fact, the motivation of this study comes from the industrial prac-
tice. Several domain experts raised concerns about critical issues, e.g., the growing
complexity of the information systems, unjustified applicative layers and middleware
stratification, difficult reverse engineering of their legacy software, and costs explo-
sion. We started to explore effective techniques able to tackle the problems raised by
the customer community. In doing so, we realized that a comprehensive model, to

34 Chapter 3. The Software Quality–Architecture–Process Model

address informants’ concerns related to the quality of their information systems were
still missing. Consequently, we started this journey to approach this research gap.
This leads to major concerns about “what is inside” any financial information system.

Thus, we are interested to find suitable answers to the following research questions
(RQs):

• RQ1: What are the major IT-related concerns of the financial sector?

• RQ2: Are these concerns shared among the community of experts of the IT
financial sector?

In this chapter we do not highlight technical problems and solutions as such. Our
aim is to provide a valuable model to analyze and understand this compelling issue
for the financial community. We identified the most relevant IT quality factors, inves-
tigating the concerns of several stakeholders i.e., banks and outsourcing companies,
system integrators, software vendors, and consultants. Our focus is industry specific.
We have chosen the financial sector for the following reasons. Firstly, a longitudinal
study would have been too generic, whereas we wanted to grasp in depth details of
the phenomenon. Secondly, the financial sector is a traditional business, with highly
complex legacy systems, which is facing a radical transformation due to market and
regulation drivers. Finally, due to its industry structure, it is a quite homogeneous
sector. In order to pursue the study we surveyed the opinions of two panels of experts.
For the panels’ composition, we used the well-profiled contacts of an established IT
consulting firm. The panels included more than one hundred senior IT financial ex-
perts who are mostly in top managerial positions. At the end of the research process,
we gathered results that we consider highly valuable and generalizable. We used an
innovative research method, based on the epistemological paradigm of Mixed Methods
research [112]. Finally, we report on the emergence of a meta model, which links soft-
ware quality, architecture, and process. Our study may be helpful in understanding
in depth and with high internal and external validity (due to the Mixed Methods ap-
proach) IT quality and problems related to systems evolution and maintenance. For
this reason the first stage of our research is inductive, since we wanted to elicit the rel-
evant items of concerns related to ISQ. We used a research methodology which merged
inductive research (through Delphi) with a deductive one (survey-like), to provide a
comprehensive analysis of the problem. In these terms, we integrated both forms of
data collection within the same research. So, we embedded one form of data within
another to analyze different types of research questions [112]. Finally, we mapped the
induced factors into the ISO standards 25010, 42010, and 12207, which refer to the
three categories of software quality, software architecture, and software process. We
argue that the developed model is of actual use, since it provides an abstract and
general reference for ISQ, grounded in empirical evidence.

The structure of this chapter is as follows. In Section 3.2 we pursue the literature
review, highlighting the research gap. Moreover, we explain our motivation along with
IT financial market similarities, to motivate our research journey and its generaliza-
tion. Then, we present the research design and details of the Delphi–like study that
we conducted, in Section 3.3. This is followed by a presentation of the results of our
study in Section 3.4. In Section 3.5 we expose our findings, and present the SQuAP
(Software Quality-Architecture-Process) model, as also implications for research and
practice. The theoretical contribution of this study is discussed in Section 3.6. Finally,
in Section 3.7 we conclude our chapter, discussing its limitations. Furthermore, we
outline future research. Our main considerations are summarized after each section.

3.2. Literature Review 35

3.2 Literature Review

The definition of Information Systems is blurred and changed in time [210]. Infor-
mation Systems referred to datalogical and infological systems [275], reporting and
control systems [59], formal specified technical systems [455], inquiry systems [96],
behavioral systems [129], socio-technical systems [326], and human-activity systems
[89].

Generally speaking, “Information Systems research is to study the effective design,
delivery, use, and impact of information technologies on organizations and society”
[250, p. 3]. Accordingly, our research focused on quality aspects of information
technologies, related to financial organizations, in the spirit of [466].

ISQ appeared to be from the first moment of our research journey a highly sensitive
issue. This concern is also largely shared in literature. Typically, billions of dollars
are spent in IT projects since their success is an important competitive advantage of
any organization [180]. Scholars argue that IT quality is the most important success
factor of information systems – “Software quality can determine the success or failure
of a software product in today’s competitive market” [458, p. 84]. The quality of the
software developed for information systems is an important source of competitive ad-
vantages for contemporary companies [375]. An analysis of the Software Engineering
literature highlights the importance of product quality “in use” for industries, which
strategically exploit software functions. The available literature also largely supports
the view that a critical success factor for most of the initiatives in a domain like the IT
sector is the information available to guide and support the management of software
quality efforts [181].

The importance of the three dimensions of software quality, software development
process, and software architecture to manage and evolve information systems has been
extensively reported in literature [377]. Accordingly, the three related communities
proposed significant advances to structure, assess, and improve the respective domains.

Therefore, we will now analyze the most relevant literature of the Software Engi-
neering and information systems research communities, highlighting the research gap
in Subsection 3.2.5.

3.2.1 Information Systems Quality

In literature, information systems quality has been linked by DeLone & McLean to the
concept of information systems success [124, 125]. It is composed of system quality,
information quality, and service quality. System quality measures users’ perception of
adaptability, availability, reliability, response time, and usability [125]. Information
quality relates to the content issue, and can be measured with the item completeness,
ease of understanding, personalization, relevance, and security [125]. Finally, service
quality measures the overall support delivered by the service provider with assurance,
empathy, and responsiveness [125]. Subsequent literature explored and validated these
constructs as key IS success factors [488, 153, 366].

However, these contributions strictly related to the individual perception and use
of information systems. Their focus is on the social pillar, rather than the technical
one [360].

In an epistemic view of complementary contribution of the two Software Engi-
neering and Management Information Systems communities to address IT usage in
organizations [466], also the technical pillar needs to be solid and studied. Conse-
quently, in the next Subsections, we address such a research gap.

36 Chapter 3. The Software Quality–Architecture–Process Model

3.2.2 Software Quality

The most important reference for software quality is the ISO/IEC 25010:2011 standard
on the quality of software products and their usage (in use quality). This standard is
based on eight characteristics which qualify a software product and five characteristics
which assess its quality in use.

The empirical validation of quality characteristics has been carried out in literature
in several ways. Software quality assessment has been one of the first concerns of
software-related literature [317]. A survey-based study of 75 end users and developers
to assess the standard structure was conducted in 2004 with ambiguous results [239].
In 2007 a similar study lead to the same conclusions, which were helpful for the
ISO/IEC 9126 standard revision [238].

The need to decrease software life cycle costs, at the same time enhancing software
quality, is a very well-known issue, which leads primarily the research on this topic
[64]. Since the quality issue impacts directly companies, one of the first comprehensive
software quality assessment model (SQM) was developed by NEC [444]. They used
the Goal–Question–Metric (GQM) structure to define the Factor (e.g., correctness),
Criteria (e.g., traceability), and Metric.

Software Engineering literature had also growing expectation for integrated ap-
proaches to quality modeling. Scholars proposed to use meta models as a ground to
develop a base quality model [472]. Notably, quantitative quality models have been
developed taking into consideration several quality metrics, suggested by the standard
itself [474], [473]. Nevertheless, several other software quality metrics tools have been
developed [83], inspired by the ISO 25010 standard, introducing also new software
quality related metrics, like SQUALE [322].

Management Information Systems literature gives a limited contribution to under-
stand the software quality dimension. The quality construct relates usually to some
definition of Product Quality [32], which we found is not very useful for assessment
purposes.

3.2.3 Software Process

A structure for the software process life cycle has been defined by the industrial
standard ISO/IEC 12207:2008, to outline the tasks required for developing and main-
taining software [426]. Regardless from the development methodology chosen (i.e.,
Agile or Waterfall [377]), this standard includes all the relevant concepts of the life
cycle. Therefore, it is a useful structured tool for software houses, to assess if they
have undertaken all recommended actions or not. Nevertheless, the Software Engi-
neering literature developed also other process assessment tools, e.g., Software Process
Improvement and Capability Determination (SPICE) [136]. Derived from ISO 12207
concepts, SPICE has become a new standard i.e., ISO/IEC 15504. It was built on
already existing software assessment methods, such as the Capability Maturity Model
(CMM) by the Software Engineering Institute [356], TRILLIUM developed by the Bell
laboratories in Canada [20], among the most known ones. Rather than depicting the
concepts of a software process, CMM focuses on the maturity of the process itself. In
other words, it provides a framework to assess a process through six capability levels,
ranging from 0 (ad hoc) to 5 (optimizing). So, it is possible to evaluate an organi-
zation’s capability to deliver software artifacts through an objective assessment. Ad
hoc processes are occasional and chaotic, without any proof that any kind of process
quality was guaranteed; on the other side of the maturity spectrum optimized pro-
cesses are continuously improved through innovation, benchmarking, simplification,
controlling, and change management [149].

3.2. Literature Review 37

However, the ISO 15505 is not a static framework. Several advancements have been
proposed with the successor of the CMM, the Capability Maturity Model Integration
(CMMI), which aimed to improve the usability of maturity models by integrating
many different models into one framework [454]. Although SPICE is considered to
be the leading reference for process assessment, several other frameworks have been
proposed by scholars [461]. Still, the use of these other frameworks in industrial
environments is doubtful [461].

Management Information Systems researchers do usually not focus directly on
software process as a model, rather as a variable to understand other factors (e.g.,
Competitive Performance [338] or Project Performance [339]). High level constructs
like process flexibility [353] and process predictability [73] are used to define software
process, derived per analogy from the Software Engineering and manufacturing litera-
ture [339]. Nevertheless, there is a clear idea that the quality of software development
processes are crucial for the performance of organizations and their competitive ad-
vantages [340]. Other scholars take as a reference the CMM model and try to build
on that a higher model [123] to assess a project performance. Generally speaking,
MIS literature sees the software development process as input for e.g., Project Perfor-
mance rather as an outcome of different characteristics, like the Software Engineering
literature does.

3.2.4 Software Architecture

Also the dimension of software architecture has a reference standard, ISO/IEC 42010:11.
This is basically a glossary where the most relevant terms of software architectures
are defined and put in context. Traditional Software Engineering literature is focused
on the well–known suitable patterns for software design [424]. Hence, typical research
in this domain is about how architectural patterns and guidelines impact software
components and configurations [167]. A survey study analyzes in this perspective
architectural patterns to identify potential risks and to verify which quality require-
ments have been addressed in the design [134]. With regard to software architecture
evaluation, intended as a way to achieve quality attributes (i.e., maintainability and
reliability in a system), some approaches have emerged, mainly ATAM proposed by
the Software Engineering Institute [249, 105, 47, 44]. More recently an approach based
on quality requirements has been introduced, in order to offer guidance on the choice
of the most appropriate method for an evaluation [27, 316]. Similarly, also the practi-
tioner’s communities developed their frameworks, see for instance [4]. However, none
of these techniques are related to the ISO 42010 standard. Apparently, the debate
about the assessment of software architecture is less mature compared to the software
quality and process domains.

From an Management Information Systems research perspective, several advances
have been made in literature regarding Enterprise Architecture Management assess-
ment [11, 487]. Such a research stream focuses on the the activities carried out in
an organization to install, maintain, and develop the Enterprise architecture, to deal
with its different architectural layers and foster a holistic and integrated view of the
enterprise IT architecture [11]. This approach studies the interaction between the
technological components of the information systems and the organization, to achieve
common business objectives [241]. While this framework defined initially a quite con-
ceptual perspective [69], recently empirical studies are gaining momentum [487]. High
level constructs (i.e., Product Quality, Infrastructure Quality, Service Delivery Qual-
ity, Organizational Anchoring, Intention to Use, Organizational & Project Benefits)
are empirically assessed [274] to depict the level of IT-business alignment [295].

38 Chapter 3. The Software Quality–Architecture–Process Model

3.2.5 Relationships Among Dimensions

With regard to the mutual relationships of the three dimensions of software quality,
process, and architecture we found scarce empirical literature. Most papers refer to
the obviousness of the interaction of these dimensions, providing little evidence for
such statements, like “[...] it would be extremely unusual to find a high quality software
system with a poor design” [303, p. 471].

Process and Quality

Software quality and process are among the most studied issues. The very idea itself of
process maturity is closely related to quality, one of the most relevant issues studied by
the Software Engineering Institute at Carnegie Mellon [221]. How we have seen before,
such research efforts developed the Capability Maturity Model [356] and its evolutions
[95]. This kind of interaction is also the most evident. In fact, recent literature lets
emerge empirically this kind of relationship [405]. Similar studies noticed how this
kind of relationship is magnified with a Continuous Development methodology [393].
In models like CMM, architecture is considered exogenous. It is given for granted,
thus the model focuses on the development process to enhance quality. Moreover, it
has also to be noted that the effort to structure software development in order to be in
control of its quality went back to the 1960s by the US Department of Defense (DoD).
Accordingly, SEI was started up at Carnegie Mellon by the US military in the 1980s,
where the first version of CMM was published in 1988 [221]. The first architecture
standard IEEE 1471, on the other hand, was issued just on August 1995. The reason
might be that software architecture, as a discipline started to rise years later with
respect to process and quality, which were considered more important.

Process and Architecture

The relationship between software process and architecture has been studied in several
ways, mainly as a consequence of the process model. According to this view, the
architecture supports a structural decomposition of the development cycle into tasks,
and the decomposition continues until each defined task is performed by an individual
or single management unit [221]. The idea is still that of an exogenous element.
Similarly, iterative [61] and non-iterative [398] software process models consider the
software design as an element of the process. Notably, with the Twin Peaks model
[344] software process and architecture are on the same level, since one influenced the
other. It is also the theoretical ground for Agile architecting [104]. Consequently, with
the Agile movement, the differences between the development phases narrowed down
[209]. So, software process and architecture were considered as one comprehensive
issue [26]. However, recent studies show how this idea was poorly adopted by the
Agile developers, since none of the architecting approaches has been widely used in
combination with Agile practices [495].

Architecture and Quality

Regarding the relationship between software quality and architecture, some theoretical
contributions were made to understand how an architecture is inspired and even driven
by quality concerns [249]. A good reference for this relationship and its value in
practice is Bass et al.[38]. A recent book highlights the importance of software quality
analysis for software architecting [316]. Still, this remains a relationship actively in

3.2. Literature Review 39

evolution, especially in the context of the novel proposal of DevOps processes for cloud
and microservices architectures [39].

Quality – Process – Architecture

At our best knowledge, no comprehensive model to study information systems as the
triple interaction of software quality, process, and architecture has been developed in
literature, identifying a clear research gap.

In the last decade, there has been a considerable effort, especially by the Man-
agement Information Systems research community, to study the phenomenon of the
alignment of business and information system’s architecture [8]. What emerged is the
importance of such alignment for both business’ competitiveness and technical effi-
ciency. In fact, when it comes to integrate new solutions, modules or interfaces such
alignment is of key importance. Several other scholars found similar results, suggest-
ing the importance of standard governance defining key architecture roles, involving
key stakeholders through liaison roles and direct communication, institutionalizing
monitoring processes and centralizing IT key decisions [65].

Especially in the financial sector, architectural governance is a key issue for IT
efficiency and flexibility [416]. Generally speaking, this finding is also largely shared
beyond the financial sector [274]. The need for people from different backgrounds
(mainly business and technical ones), to align the organization is the greatest insight
of this research stream. This pattern has been firstly theorized by DeLone & McLean
[124] and then revised in 2003 [125] by the same authors. A recent literature review
shows how in over 90 studies this pattern has been empirically observed as successful
[364].

In this regard, also special tools have been developed to monitor the alignment
and co-evolution of business process and enterprise software systems to estimate the
change propagation caused by a change request in business processes or software
systems based on the software architecture and the process design [396], [395].

3.2.6 The IT financial market

Information systems effectiveness in general, and quality in particular, has always
been considered by MIS literature a key strategic issue for the financial sector [310].
We recognize that key determinants of banking service quality, which includes ISQ
have been proposed by literature [237]; however, a general framework for ISQ of this
crucial sector is missing.

To improve reader’s context understanding, we pinpoint the two most relevant
homogenization drivers of this sector: market and regulation.

From a market perspective cost cutting needs are the same at least for EU and
US banks due to low interest rates level set by the European Central Bank (ECB)
and the Federal Reserve (FED) and insolvency issues in the mortgage market. This
reduces sensibly bank’s margins and profitability, leading to generalized internal cost
cutting. The maintenance and evolution of information systems of financial organiza-
tions are influenced by such business goal by delivering with lower budget (and time,
due to fast regulatory changes). Same custom applications and software packages are
implemented in European banks because software vendors sell standardized industry
solutions. COTS (Commercial Off-the-Shelf products) market is quite similar word-
wide since it offers industry solutions to get benefit from the low marginal cost of
software [116]. Typically, if one competitor offers one new application, also others are
willing to follow in order to avoiding the lose crucial market shares. Finally, banks are

40 Chapter 3. The Software Quality–Architecture–Process Model

among the most globalized businesses, so same information systems are shared among
more branch countries. For this reason they share the same problems.

From a regulatory perspective, similarities become even more clearer. Currently,
the most important financial regulations are standardized within the European Union,
e.g. MiFID, and the European financial Authority is coordinating the national author-
ities, so the regulation differences among countries are decreasing. IT concerns among
banks are quite similar, since most regulation is provided by shared European finan-
cial regulators. More precisely, all the efforts in the direction of a European financial
framework are pushing information systems of financial organizations towards new
issues, like the Payment Service Directive (PSD 1) [2]. Since the goal is to integrate
a Single Euro Payments Area (SEPA), major efforts are asked to European banks
and their information systems to interoperate properly, leading also to new financial
business models. In this regard, the Payment Service Directive 2 (PSD 2) is offer-
ing novel architectural challenges, since it will provide third parties, through bank’s
APIs, to establish new payment channels with the customer’s account, breaking the
traditional monopoly of the the bank over its own channels [3]. In other words, third
parties will have access to a customer’s account via APIs to connect a merchant and
the bank directly. This will dramatically impact in the near future the financial in-
formation system architecture, leading to new payment service models [432]. On this
regard, the European financial Authority (EBA) recently issued the Regulatory Tech-
nical Standards on strong customer authentication and secure communication under
PSD2 [467] for enhancing the security level of payment services across the European
Union. These Technical Standards, as other regulations, compel banks of the Euro
Payments Area to comply with uniform protocols and procedures of their information
systems to support the Free Movement of Capital EU principle, according to articles
63 to 66 of the Treaty on the Functioning of the European Union (TFEU).

Moreover, since banks are de facto global businesses as their mission is to operate
world-wide (e.g., global wire transfer), they have to comply with common standards.
The Bank for International Settlements (BIS), whose purpose is the collaboration
among central bank authorities is the most relevant organization which supports global
financial standardization. BIS also supported the development of crucial industrial
standards for the financial sector. Just to cite a few, we remember the ISO 19092-1
Financial Services - Biometrics - Part 1: Security framework, ISO/IEC 15944-8:2012
Information technology – Business operational view – Part 8: Identification of pri-
vacy protection requirements as external constraints on business transactions. Those
standards have been developed to support modeling international requirements for
identifying and providing privacy protection of personal information throughout any
kind of information and communications technology (ICT) based business transaction.

3.2.7 Systems’ scope

When we refer to financial information systems, we mean all systems which support
financial operations in different market segments (e.g., retail, corporate, private, port-
folio management) and different products/services (e.g., deposits, payments, loans),
internal governance (e.g., risk management, communications), internal administra-
tion (e.g., accounting, balance sheet), internal support processes (e.g., passive cycle,
asset management, real estate management, HR) and regulation requirements (e.g.,
anti-laundering communications).

This list of applications and services is huge. Typically, these information systems
are composed by millions of lines of code, built along several years with different
technologies. For instance, even today an important part of the applications are

3.3. Research Design 41

developed in COBOL, CICS, or DB2 in IBM mainframe environments, due to their
robustness for financial purposes.

Financial information systems are usually organized in different functional areas:

• Guidance systems: they centralize and aggregate all customers’ and banking
data, like clients’ registry, contracts, products, conditions, credits, and guaran-
tees.

• Channels: they run the front-end system for the management of ATMs, call
center, phone banking and internet banking. They act as intermediaries between
customers (retail, private and corporate) and the bank. Thus, channels allow
typical banking operations e.g., execution of transactions. They take also care
of sales force automation and customer relation management systems.

• Legacy systems: they manage various types of relations, contracts and opera-
tions, like deposits, securities back office and payment systems.

• Finance area systems: they manage the different bank’s positions in securities
and derivatives exposure.

• Control systems: they support management controlling instruments, like risk
management and strategic marketing.

• Support systems: such systems support the passive cycle, assets, real estate,
staff, HR and general purpose support applications.

3.3 Research Design

As researchers, we have our epistemological bias, which usually remains hidden or
implicit, even if they deeply influence our research [428]. Since we approached this
research, we decided to use Pragmatism. It derives from the work of Peirce, James,
Mead, and Dewey, and arises out of actions, situations, and consequences rather than
antecedent conditions (as in postpositivism) [90], [37]. It focuses on the research
problem, rather than the method. This is the philosophical ground for the Mixed
Methods approach.

These four scholars paved the epistemological ground of our approach. Although
with different point of views, they complemented the pragmatic approach.

According to Peirce (1839-1914), human concepts are defined by their consequences
[358]. So, people’s independence of will to decide the actions to undertake is crucial
in any experimentation. Ideas and concepts are the main drivers for truth.

On the other hand, James (1842-1909) highlights the pluralistic view which recog-
nizes the multiplicity of human truth. Due to his psychology background, he argued
that human thought may be revealed only in action.

The Logic of Controlled Inquiry was proposed by Dewey (1859-1952) [127]. He
argued that reasoning by itself can not provide change. Only the combination of
action and reasoning reorders the setting.

Finally, Mead (1862-1931) suggests that any human action is socially reflective
[302]. Any human behavior that elicits responses from another individual constitutes
a social act. The social consciousness is the reflection of ourselves, mirrored in the
reactions of others.

The pragmatic view does not commit to any system of philosophy and reality.
Like Mixed Methods, both quantitative and qualitative assumptions are used. This

42 Chapter 3. The Software Quality–Architecture–Process Model

is related to the view that the world has an absolute unity. Truth is what works
at the time, it is not based in a duality between reality independent of the mind or
within the mind [112]. Therefore, in Mixed Methods research, investigators use both
quantitative and qualitative data because they aim at the best understanding of a
research problem [112].

This chap reports the results of a Delphi-like study modeled on the Delphi method-
ology (qualitative) and survey (quantitative). The first research phase has been de-
voted to address RQ1, to let emerge the most compelling IT quality concerns. In the
second phase, the elicited concerns were validated by the expert community at large,
to give an answer to RQ2. In order to investigate the concerns we used a phenomeno-
logical approach [324]. Moreover, the survey is a semi-structured one so, beside closed
questions based on an hybridized-Likert scale, experts are asked to express openly
their opinions about any single item. Thus, the survey itself is mixed quantitative
and qualitative.

Generally speaking, empirical Software Engineering is developing new research de-
signs according to its research questions, which may cross the threshold of traditional
borders of the discipline due to the pervasiveness of software [102], [99]. The Delphi
method is becoming a popular tool in the Software Engineering discipline [263], even
though it is still not well–known. On the other hands, Likert–based surveys are a
popular quantitative research method in information systems [94]. We first present
a brief discussion of the Delphi method, since it is the underpinning method of this
research. Then we discuss how the Delphi panel was selected, and provide details of
the Delphi process i.e., threats validation and the survey one. Finally, we discuss the
outcomes.

3.3.1 The Delphi-like Method

The Delphi method has proven to be a popular tool in Software Engineering [263] and
more in general in Information Systems research [74], [418], [196], [325], [418]. It allows
to capitalize the experiences of the expert panel in identifying key issues of software
developers, identifying the most important factors by continuous feedbacks. The
objective is to create valuable information through a structured process of knowledge
collection from a panel of experts with controlled opinion feedbacks [135]. The process
consists of a series of rounds in which each expert communicates his opinion through
a structured form i.e., questionnaire, structured interview, collected by the researcher.
It is an inductive data–driven approach, ideal for explanatory studies for which little
empirical evidence is available [188]. Using a step–wise methodology the research
question is narrowed down, from a multitude of issues, to a bunch of a few consensus-
based factors [417].

After gathering experts’ concerns on the IT financial sector we consolidated it into
28 factors (RQ1) with a Delphi style methodology. Then, we collected opinions and
evaluations about the factors with a “target-panel” of 124 profiled experts (RQ2). The
administration of the whole process is represented in Figure 3.1.

3.3.2 Selection of Delphi Panelists

We are aware that the selection of panelists is the most critical aspect of Delphi,
especially with respect to the validity threats: a lousy panel selection may compromise
the whole qualitative research.

Thus, we mitigated this risk exploiting an established private dataset of an affirmed
consultant firm; moreover, the use of a double panel using Mixed Methods enforces

3.3. Research Design 43

Figure 3.1: Delphi–like administration process

the validation of both the questions and the answers. However, it still remains the
most important yet most neglected aspect of the Delphi method [347]. Methodological
literature agrees upon the fact that the choice of experts is the single most difficult
factor in panel selection [236].

Hence, our greatest efforts were devoted to the selection of the first and then the
second panel. Since we intended to perform a vertical study (i.e., sector specific), we
put a lot of care to the choice of experts invited to participate to the panels.

We started from a privileged position. In fact, we could use an expert pool of an
established IT consulting firm, specialized in the financial sector, which works with
all main financial groups. So, we were able to address personally highly qualified
experts from the IT financial industry. This makes our panel highly reliable and
representative.

The first panel was chosen using a stratified random sampling. Strata were defined
upfront, to define the sample population. Companies and roles were chosen to have a
fair representation of the IT financial sector.

The first panel did not mirror the population representation task regarding expe-
rience, since we addressed explicitly senior experts, in agreement with [236]. Also the
target-panel was chosen with a stratified random sampling, but inside a larger pool.

We asked panelists to give their opinions about the sector composition (companies
and roles) and also the name of other experts. Therefore, we adjusted the sample pop-
ulation representation along with our research journey, following a suggestion found in
[112]. However, also for the target-panel we looked for more senior opinions, adapting
the research method to our purposes [113].

In Table 3.1 we describe the demographic composition of the first panel and in
Table 3.2 that of the target-panel. We profiled our panels in great detail, much more
than traditional Delphi studies. The guarantee of anonymity we gave to all experts
allowed a very open and truthful discussion.

44 Chapter 3. The Software Quality–Architecture–Process Model

%

Company

Consultants 7 25%
Bank 6 21%
System Integrator 6 21%
Outsourcing 5 18%
SW Vendors 4 14%
Total 28 100%

Experience

11–20 years 4 31%
21–30 years 8 62%
More than 30 years 1 8%
Total 13 100%

Role

CEO/CIO 6 29%
Chief Data Officer 5 24%
Appl. Maint. Group Exp. 4 19%
IT Architect 4 19%
Maintenance Manager 2 10%
Sales 0 0%
Total 21 100%

Table 3.1: Panel composition

We took into consideration three dimensions: (i) years of experience, (ii) sector
in which the experts worked, and (iii) relevant roles they served in their careers.
Obviously, sector and role may be more than one per expert, since it is normal to
change job during any career path. In detail, these are the dimensions and sub-
dimensions surveyed:

Experience. For the Panel composition, we used only senior informants. Thus,
we had three groups, composed by experts with more than 10 years and less 21 years,
between 21 and 30 years and more than 30 years of experience. We divided the experts
into five groups in the target–Panel: less than 5 years, between 5 and 10 years, between
10 and 20 years, between 20 and 30 years, and more than 30 years of experience. The
greatest majority of our experts have more than 20 years of experience in the sector.
Thus, we consider the opinions of our panel of high value.

Companies. We profiled also different company types, involved in the IT financial
sector. Most experts declared some experience as interns within a bank. The compa-
nies second by relevance are system integrators, since a high degree of customization
is needed for bank products. Consultants and Outsourcing companies are also very
important actors for the IT financial sector, since most work is outsourced to exter-
nal workers or companies. Software vendors deliver software packages products for
banks. As stated before, software packages are commonly used by small/medium sized
financial institutes to either address specific needs (e.g. loans, deposit or transaction
accounts) or support common processes (e.g. accounts payable and receivables). Ac-
cording to our experience, the composition of both the panel and the target-panel
represent a trustful representation and distribution of companies in the IT financial
sector.

Role. (CEO/CIO) The Chief Executive Officer is the top manager of software
integrator or vendor companies, while the Chief Information Officer is a board mem-
ber, in charge of the information system of the bank. The Maintenance Manager is in

3.3. Research Design 45

%

Company

Bank 72 35%
System Integrator 41 20%
SW Vendors 34 17%
Consultants 33 16%
Outsourcing 23 11%
Total 203 100%

Experience

0–5 years 8 6%
6–10 years 1 1%
11–20 years 23 19%
21–30 years 72 58%
More than 30 years 20 16%
Total 124 100%

Role

Appl. Maint. Group Exp. 59 39%
CEO/CIO 32 21%
IT Architect 18 12%
Chief Data Officer 18 12%
Maintenance Manager 13 9%
Sales 8 5%
Other 2 1%
Total 150 100%

Table 3.2: Target-Panel composition

charge of the development and maintenance of IT financial systems. The Application
Maintenance Group Expert is responsible for complex groups of IT financial applica-
tions. The expert in charge of the IT financial architecture is the IT Architect. Sales
is a senior manager of the sales department of a software vendor or system integrator.
Finally, the Chief Data Officer is an expert in industry standards and methodologies
(e.g., IEEE, ISO, ITIL, DAMA) and in charge of the bank’s data governance. Also
the distribution of roles within both the panel and target-panel is representative of
the IT financial sector, at our best professional knowledge.

The methods we used to compose the two panels varied slightly. For example, we
took into consideration for the target-panel the role of sales managers, not considered
before. We had feedbacks that their role is also critical for the IT financial sector,
so we adjusted it along the research process (following [112]). Senior experts were
chosen for the first panel, with at least 10 years of experience within the sector. In
the target-panel we wanted a wider and trustworthy representation of the sector, so
we included also junior people in the target-panel. However, about two-thirds of the
target-panel had more than 20 years of experience.

Most of our panelists and target-panelists experienced more than one position in
more than one company. We did not find it meaningful to show just e.g., their last job,
or the longest one. Experts expressed their opinion according to their general knowl-
edge of the domain, which was gained through different professional experiences. This
enriches the research, since experts were able to judge the factors from different, highly
qualified, viewpoints within the same sector. This complies with our epistemological
paradigm and research approach.

46 Chapter 3. The Software Quality–Architecture–Process Model

3.3.3 Data Collection and Analysis

The Delphi–like study took over a year for the four phases (see Figure 3.1), which
are described next. According to the Mixed Methods approach, this research includes
both qualitative and quantitative approaches. In order to develop the qualitative part
the first three phases focused on identifying the relevant items. Then, we used a
survey-based approach to validate the panel’s items by a wider panel (target-panel).

The qualitative research started in October 2014 and lasted until April 2015. The
survey took less time, from June 2015 up to November 2015.

Phase 1: Brainstorming. After collecting the demographic information from
our pool, and composing the panel, we conducted a brainstorming round to elicit as
many concerns as possible. This phase was helpful to broadly understand the problem
and seek concerns. It was an unstructured process, where more than 50 items were
solicited. Afterwards, exact duplicates were removed, leaving 50 items. Finally, items
were combined and grouped.

Phase 2: Narrowing Down. In the second phase, further iterations involved the
panel to validate the items. Relations among items and their grouping were discussed,
again in an unstructured way. Experts were asked to discuss the grouping.Items were
represented in sticky notes on a blackboard. This helped the discussion over the items
and their relations. Afterwards, we wrote down the items list, in the terms discussed
by the panel. Finally, the panelists discussed about the target-panel composition and
also proposed other experts to invite.

Phase 3: Validation. The goal of the third phase was to validate the items. The
panel considered more than 30 concerns but it came finally to an agreement about
the 28 concerns we will discuss in this chapter. Since we were able to have have all
our panelist within one room, there was no need to use statistical techniques to assess
their level of agreement. Typical Delphi studies, where informants are distributed,
ask panelists to rank concerns according to their importance and then aggregate them
through e.g., Kendall’s coefficient of concordance (W) to assess the degree of consen-
sus among the panelists themselves [417]. We had a narrow group of highly qualified
experts and managed them as a working group. The introduction of statistical meth-
ods for the validation of the final items were not grounded in our phenomenological
approach. We wanted to grasp the essence of their experiences as described by the
participants [324]. At the end of this phase a full consensus was reached on 15 items.
The panelists did not always agree on the degree of such consensus (i.e., strongly agree
or just agree). However, the baseline (i.e., agree) was always met for each item.

There were then 13 more items which did not reached full consensus but were
strongly advocated by some panelists. Although both brainstorming and narrowing
down phases involved a lot of personal confrontation, these 13 extra items were either
advocated or opposed by at least one panelist. While some panelists supported one
item, some others argued that for their respective industrial segment the proposed
item was not relevant. Therefore, during the validation phase, there was a consolidated
opinion about the first 15 items and mixed feelings about the 13 extra ones.

We were interested to evaluate also such 13 extra items. We included them in
our survey since we wanted to evaluate if the panelists’ opinions were shared by the
financial community. Finally, some demographic information about the target-panel
was collected.

Phase 4: Evaluation. The last phase concerned the quantitative inquiry ap-
proach, to evaluate the concerns by a larger stratified sample group (target-panel).
We prepared an on-line survey with the concerns and made personal invitations to
experts. Target-panelists could start the survey only after they inserted their personal

3.4. Results 47

credentials, given by e-mail or phone. To have control over the research and the ran-
domized stratified sampling, no answer was anonymous. We used an hybridized-Likert
scale for the concerns’ evaluation. The aim was to compute semantic differentials (i.e.,
“Strongly Agree”, “Agree”, “Disagree”, “Strongly Disagree”) to define the level of agree-
ment, typical of Likert scales [283]. We hybridized the Likert scale with even bipolar
values (negative and positive), symmetric to 0, without an average effect. To stress
possible differences, we gave higher values to both extremes, also to avoid an aver-
age effect. So, we assigned the following values: “Strongly Agree”= 3, “Agree”= 1,
“Disagree”= -1, “Strongly Disagree”= -3. The idea was to highlight different semantic
values of the two extremes and suggest equidistance between the center point of the
scale and the two extremes. To overcome the bias that can result from the order items
were presented, we randomized the questions and did not tell to the participants about
the difference between items and extra-items.

3.4 Results

The Delphi–like study resulted in a set of 15 concerns presented in Table 3.3 along
with the target-panel evaluation. All concerns were shared, at least, by 70% of the
target-panelists with a different intensity degree (measured with the hybridized-Likert
scale). In Table 3.4 we represent the 13 extra-items. Interestingly, all these extra-
items have a lower share degree than those in Table 3.3. The reason may be that
the mixed feelings of the first panel was also shared among the target-panel. This
generally confirms that a high consensus degree of a Delphi panel reflects also an
eventual validation. However, we found the concerns which emerged from Table 3.4
of interest and show them separately.

To improve our theorization, we abstracted the explicit informants’ concerns into
corresponding factors. We are aware of the fact that dealing with 28 factors provides
a huge amount of knowledge and is not really parsimonious. However, we only dealt
with unique items. This means that for our panelist the 28 concerns had to be treated
differently. Thus, to be consistent with our research design, we had to managed them
separately. Finally, according to [156], in order to broaden the generalization, we
pursued a mapping of the concerns into high-level constructs proposed by industrial
ISO standards.

Each factor is summarized followed by a short discussion where panelists’ and
target-panelists’ opinions are directly quoted. For the sake of readability, only in
this section, we use the terms panelist, target-panelist, informants, and experts as
synonyms.

Factor 1: Module interfaces complexity.
A financial information system is characterized by a high number of modules; if

these are strongly coupled this increases the number of interfaces and their complexity.
One panelist mentioned the spaghetti like architecture stating that “we are experi-

encing a growing complexity in delivering new projects due to past implementation of
point-to-point architectures delivered in the last years”. Integration costs and higher
complexity compared to a green field makes the business case less effective. Even
worse, another one said that “sometimes the interfaces to be updated are so complex
that an ad hoc middleware is required”. The lack of knowledge seems to be another root
cause since a third panelist said “I believe that the lack of knowledge about application
functionalities led to code duplication over the years”.

Factor 2: Interfaces architectural complexity.

48 Chapter 3. The Software Quality–Architecture–Process Model

Concern

“Agree”

and

“Strong

Agree”

Average

score

1

Software modules interfaces are characterized by a
high level of complexity and represent an important
part of each module in terms of number of objects and
LOC.

96% 1,95

2
Interfaces among modules are developed in a stratified
way in time. This brought to a complex architecture
hardly manageable and not future-proof.

96% 2,47

3 Software quality for custom development is decreasing
in the last years (especially Cobol / CICS / DB2). 77% 1,15

4

SW Maintenance & enhancements evolution costs and
time of information systems are increasing due to the
(i) stratification of software, (ii) poor documentation
and (iii) low quality of the source code.

82% 1,58

5
Low software quality depends on increasing pressure
for enhancements evolutions in shorter time with lower
budget.

79% 1,57

6 Low software quality depends on a poor level of func-
tional and technical analysis and detail. 79% 1,00

7 System analysis is hindered by an inadequate docu-
mentation and database. 87% 1,70

8 It is difficult to build and maintain effective documen-
tation because of low budget and time shortening. 84% 1,46

9
New software packages have more functionalities than
in the past but their increased complexity leads to dif-
ficult evolution management.

83% 1,58

10 Software packages are poorly documented for effective
maintenance and evolution. 82% 1,30

11

Software packages documentation main gap is due to
a poor description of the data managed by the system
(i.e., not only the record layout, but also the fiscal and
logical data model, the data dictionary.).

77% 1,09

12 “Application Maintenance” contracts do not improve
the software documentation. 77% 1,15

13 International software applications are of higher qual-
ity but are not per se more maintainable. 76% 1,29

14
Domestic software applications are characterized by
more functionalities and lower quality without any sig-
nificant impact on software maintainability.

75% 0,92

15 Software quality can not be reliably measured through
tools and methodologies 70% 0,93

Table 3.3: Concerns and results of the Delphi-like study

3.4. Results 49

Concerns

“Agree”

and

“Strong

Agree”

Average

score

16 Lower software quality is related to decreasing skills of
IT professionals. 48% 0,04

17 The use of external developers increases the difficulty
to assess developers’ skills. 66% 0,71

18 Software Engineering methodologies and tool to assess
software’s quality are not reliable. 70% 0,93

19
It is hard to agree with software vendors on Software
Engineering methodology to enhance quality and to
assess it.

66% 0,57

20
Lower IT professionalism depends on the poor use of
Software Engineering methodologies due to shrinking
IT budget and time.

72% 0,94

21 Lower IT professionalism depends on decreasing pro-
fessional rates. 58% 0,62

22
Web technologies are developed with fewer Soft-
ware Engineering rigor, also misinterpreting the Agile
paradigm.

70% 0,85

23 Low software quality depends on unclear user require-
ments. 72% 0,86

24 Unclear user requirements depend on poor business &
IT elicitation processes. 63% 0,75

25 Unclear user requirements depend on different “jargon”
of IT & business departments. 58% 0,59

26
Poor data analysis (in terms of data modeling and
data structure) influences directly the overall func-
tional analysis.

70% 0,93

27 Fine-granular functional analysis is hindered by poor
data modeling and data structuring. 73% 0,98

28 There are no effective software documentation
methodologies and tools. 61% 0,36

Table 3.4: Extra-concerns and results of the Delphi-like study

50 Chapter 3. The Software Quality–Architecture–Process Model

This second factor is a direct consequence of the first one. Module interfaces com-
plexity led to a typical anti-pattern [79]. According to a panelist, “stratified software
interfaces affect old developed applications; only using Service Oriented Architectures
we took advantage of the strong benefits related to an integrated architecture”. Legacy
layered software is a remarkable problem as stated by another panelist “there is a
well–known problem related to platform software, which was developed years ago and
never replaced. Only a tactical update with a short run perspective” was carried out.
Continuous update of legacy layered software seems an attractive and affordable way,
but long-term sustainability is questioned. Most concerns were related to the main-
tainability of such architecture. No refactoring solution was seriously taken into con-
sideration, due to cost. However, this short-term view did not decrease costs because
it is very likely that the system will stop working properly in a medium period and
the replacement cost could be very high. Moreover, this leads also to unexpected
problems which usually rise with such complex systems. A third panelist said “we
decided to replace the client data module and its interfaces, since we reached a point
where we were unable to manage the evolution required by the business”. Due the high
degree of coupling of these modules (Factor 1), proper reverse engineering is required.

The next factors will show how the lack of documentation hinders reverse engi-
neering. All these elements make it difficult to improve the bank’s information system.

Factor 3: Custom software quality.
Apparently, the quality of custom software applications is decreasing. Moreover,

several modules were developed with old programming languages like COBOL, which
are still widely adopted in the financial industry, while there is a lack of junior experts
because such languages are not included in the current formal IT education programs.

A panelist explained that “the number of developers able to develop in COBOL
is rapidly decreasing due to retirement. New developers are not skilled enough with
COBOL and other mainframe languages because they are focused on the newer lan-
guages like Java”.

The interaction among old and new coding paradigms is another point raised by the
panelists. One said that “software quality is getting worse because we developed using a
stack paradigm, adding new software adapting layers on old software. Unfortunately,
this paradigm prevents the use of new technologies”. Furthermore, the decrease of
quality “is perceived also in all other used programming languages” according to other
panelists. This may also depend on the actual training of developers. According to
one expert “several developers we hired did not go through a formal computer science
education”. This may be due to the high demand on the job market of software
developers who however get low salaries. Skilled developers have usually many job
offers and tend to choose the most profitable one.

Factor 4: Increase of maintenance costs.
Some factors have a direct impact on maintenance costs. The overall architec-

tural complexity, the decreasing software quality and incomplete documentation are
the most important drivers of high maintenance costs and time. As declared by a
panelist, “during the last six years our software modules have been impacted by a deep
reengineering project and the most heavy effort was related to building new documen-
tation”.

Another reason of the growing costs seems to be linked to skills: a panelist pointed
out poor competences as primary cause of frequent module rebuilds that cause an
increase in the application complexity. This is related to the use of different tech-
nologies “it often happens that instead of updating the software, new applications are
built on it. The coexistence of different technologies is an important cause of high
maintenance costs”. According to one panelist “most costs are related to continuous

3.4. Results 51

regulatory changes requested i.e. by the ECB”. This is, apparently, another element of
stratification and architectural complexity.

Factor 5: Quality vs. Time & Budget.
The whole panel agreed unanimously that there is a direct relationship among

quality and time and budget. One expert stated that “a relevant cause of poor soft-
ware quality is related to time constraints, these aspects have impact on quality”. More
time and budget to develop and evolve software properly would increase quality and
decrease maintenance costs. In fact, “an already well-written code could be evolved
with low budget, while a stratified software which has been poorly written makes up-
dating difficult, increasing costs and time”. This is a chain-effect, one said that “poor
software quality is related also to software stratification due to low investments and
the obsolescence of the information system. Poor implementation of Software Engi-
neering methodologies due to low budget magnifies this crucial issue day after day”.
Another element which emerged is the relationship between the organization struc-
ture of banks and its impact on the information system. One panelist stated that
“it is of high relevance the organization structure of the customer to define the proper
information system”. Apparently, this element impacts on the quality of the system
itself.

Factor 6: Quality vs. System analysis.
Even though the design phase is perceived as the most important up-front activity,

it is poorly implemented. One panelist stated that “it is necessary to invest in this
phase, to get benefits within the whole life-cycle”. However, “it is poorly carried out, due
to shrinking budget and time”, said another informant. The problem may depend on
the fact that often the role of IT departments is not perceived as highly critical by top
management. So, “there is not an adequate collaboration between business functions
and the IT departments”. Therefore, system analysis activity is often skipped because
it is hardly tangible. Stakeholders are not willing to invest in some activities where
they do not see an immediate return. This leads to long term problems, as identified
before. Another element is the that the formalization of the business requirements
and a complete and effective vision of the information system is difficult. In this
regard, one panelist affirmed that “customers usually give poor and not coordinated
requirements, leading to silos-like solutions instead of a fully integrated development”.

Factor 7: System analysis vs. Documentation.
Inadequate documentation impacts on the system analysis and so on software

quality. One expert stated that “documentation is inadequate to the scope, being or
too technical or too business-like with poor information abut the system”. Moreover,
a wrong interpretation of Agile methodologies results into poor documentation, in
fact “along with the stratification problem the misleading interpretation of Agile led
to a poor and ineffective documentation”. It is important to underline that the lack
of data models’ documentation and metadata definition “leads to an inadequate and
dangerous system analysis”.

Factor 8: Documentation vs. Time & Budget.
Time and budget constraints have a direct impact on software documentation. Due

to low budget for new developments and urgency for new applications, documentation
is the first element which is skipped. A panelist said that is impossible to keep
documentation aligned with software both for the frequency of software update and
the lack of methodologies used to develop and manage software. According to another
panelist, “constraints on project costs and time causes poor or no documentation. In
fact, the documentation is usually delivered only if you have enough budget”. Due
to budget limitation, often banks prefer to skip documentation if they are offered a
discount on the application cost. Also time plays an important role. Often, there

52 Chapter 3. The Software Quality–Architecture–Process Model

is no time for documentation or, even worse, it is perceived as a waste of time. A
panelist explained that “budget constraints clearly impact on documentation, since we
are not able to justify the budget required to keep documentation aligned. The only
affordable way is to insert control points on the software development process (SDLC)
to define the least amount of information necessary for maintenance”. In this regard,
documentation tools appear to play an important role. Another panelist declared
that “we can limit the problems that we have in software documentation thanks to the
adoption of new generation tools (thanks i.e. to metadata) and the Agile approach”.

Factor 9: New packages functionalities vs. Complexity.
For the reasons analyzed before, the demand for more functionalities rose in the

last years, along with their complexity. Moreover, software vendors do not always
apply industry standards. One panelist explained that “new software packages require
methodologies and standards that only few big vendors can adopt. In this situation
when we want to customize those packages we must rely on those big vendors but with
a low degree of control and the danger of lock in”. Some experts also said that “recent
packages are too complex and have lower quality than in the past”. This factor explains
the relationship between the market trend i.e., more functionalities with architectural
complexity (factor 2) and dependency on vendors (factors 10-12).

Factor 10: Packages vs. Documentation.
The lack of documentation for software packages is perceived as a “commercial

strategy of suppliers to lock-in customers”. This appears natural, since “the devel-
opment is often given to software houses”. For one expert “documentation is always
lacking” and it is not uncommon to “buy packages without any kind of technical and
functional documentation”. Another reason may be the fact that “suppliers tend to
hide technical documentation as IPR protection strategy, delivering only the functional
documentation”. However, as another expert said, “this problem needs to be tackled
with a good Service Level Agreement”, according to an expert.

Factor 11: Packages documentation vs. System analysis.
The lack of documentation in packages impacts directly on the logical data model

and quality controls. As stated by a panelist “information about data is one of the
biggest problems, as well as the role that data plays on business lines”. Moreover,
“process logic is needed to achieve a correct level of documentation. Just data are not
enough”. Also this factor suffers from low budget and scarce time.

Factor 12: Application & Maintenance contracts vs. Documentation.
Application & Maintenance (AM) contracts are set to outsource the development

and maintenance, to decrease internal costs. Typically, they do not provide an ad-
equate documentation. Therefore, when the supplier is changed, system evolution
becomes rather difficult. Lock-in situations are very common since “suppliers want to
defend their know-how to maintain their competitive advantages”. Like factor 10, “a
good Service Level Agreement is key to overcome problems”. However, what happens
is that SLA are not respected properly, to get higher discounts on services.

Factor 13: International applications vs. Quality & Maintainability.
According to the panel, there is a difference between domestic and international

software products, which is partially a concern. Apparently, international applications
are more maintainable but have less functionalities. The reason seems to be that
“international applications are less flexible than domestic ones because they implement
simpler functions and not because they are written or designed better”. One panelist
stated that for a well–known, specific software application “a low level of customization
usually means lower license and maintenance costs”.

Factor 14: Domestic applications vs. Quality & Maintainability.

3.4. Results 53

Regarding domestic applications, they appear to have more functionalities but
incur in higher maintenance costs. For one panelist, the reason seems to be that
“Domestic applications are really rich of functionalities due regulatory requirements
defined by the financial Authority”. One expert expressed a specific concern, stating
that “software applications should comply with international standards. Before the
acquisition each customer has to test this compliance. In reality, this never happens,
and if it were the case most would fail. The only exception are applications delivered
to NASA, US Air Force and so on, but at which costs?”.

Factor 15: Measurement of software quality.
Losing control over the system quality is a concern. First of all, “poor use of

Software Engineering methodologies are the first killer of quality”, according to one
panelist. According to another expert “even though methodologies are well–known and
some tools are available, they are not implemented within the software development
process”. The discussion about tools was quite interesting. “Tools do exist but are
extremely expensive and not suited for small banks” stated one panelist. For another
informant “a tool suited for us does not exist on the market place, so we built one
ourselves”. Finally, an expert very frankly explained that “tools and methodologies are
well–known, however neither customers nor suppliers use them since none is willing
to pay for them”.

Factor 16: Lower developers’ expertise and professionalism.
This was one of the most debated factors. Experts have quite a different opinion on

such a topic. The confrontation on this issue gave some extremely interesting insights.
The problem is quite broad and complex. The general view is that the software
development landscape changed dramatically along the years. So, developers could
not be blamed for poor quality work. Again, short time to market expectations and
shrinking IT budget is generally considered the main reason for low software quality.
One panelist was able to give us a comprehensive view on the topic. According to this
person, reasons should be found in:

• decreasing developers’ daily rates and an extensive use of junior professionals;

• low quality and superficial functional analysis given to developers;

• compression of the development time following business needs (e.g., regulatory
constraints, C-level decision, strategy);

• weak methodology and programming skills.

Our experts complained about low IT budget and use of junior professionals for
highly complex applications. “Software quality decreases because developers’ daily rates
decreased in the last years” stated one informant. This opinion is largely shared among
our panel. In fact, many others informants shared similar statements, like “the IT
supply ecosystem changed dramatically in the last years. The pressure on unit prices led
to the proliferation of a purely tactical development. So, long term-view maintenance
& evolution (with a higher unit price) has been penalized, increasing future system’s
cost”. Or “shrinking time to market of software projects contribute to the low level
of software quality. Moreover, the decrease of daily developer’s rates forces vendors
and consultants to hire people which accept very low rate. Typically, they are not the
best developers on the market”. “In my opinion, the contraction of IT budget costs
and lower salaries payed to developers is the main cause of the decline of software
quality, driving to an overall increase in the total cost of ownership of the information
system”, stated another. Since “shrinking IT budget leads to lower developers’ daily

54 Chapter 3. The Software Quality–Architecture–Process Model

rates, senior figures are less involved in crucial projects”. Not surprisingly, one expert
complained that “software vendors and consultants use for our projects only junior
professionals with no supervision, so, the result respects this aspects. We really have
to control their work step by step”. According to another informant, “more than a
result of a decline in individual professionalism, I would say that it is a drop in quality
of delivery of increasingly smaller teams to cost cutting”. Finally, one said that “I did
not notice a decrease of individual professionalism. Rather I observe poor deliveries
by shrinking teams due to lower IT budget”.

Moreover, our experts found that low software quality is due to poor (or miss-
ing) Software Engineering methodologies. “In my experience, technical skills (i.e.,
knowledge of the programming language) is not lacking. Poor Software Engineer-
ing skills are the problem. Developers write directly the code, without planning and
test it. So, testing is carried out by the customer after the release”. Another infor-
mant said that “I observe a shrinking quality in such environments where stringent
time to market requirements are set without an organizing proper development process,
including testing, according to state of the art best practice (e.g., DevOps)”. More-
over, “poor management of requirements in the demand phase leads to poor functional
analysis and software quality”, according to another panelist. Also, “the fast deploy
(with low testing) of new functionalities impacts negatively on the entire software life
cycle”. Probably, “the complex information system architecture forces developers to
sub-optimal solutions”. Finally, “more that lacking professionalism, what is missing
are proper integration methodologies for system integration required by our complex
information system”.

However, some are also complaining for lacking of specific skills. “On older ar-
chitectures (i.e., mainframes) developers are not enough skilled”. Or “lacking legacy
system management skills as also a poor vision of end-to-end multiplatform develop-
ment are the cause of low quality”.

Complexity, of both regulation and application’s environment impacts negatively
on software quality, according to other panelists. “We have to consider that infor-
mation system’s complexity raised exponentially in the last years. Thus, the level of
professionalism has to be considered also on this regard”. Concerning regulation, “the
most relevant issue is the stringent financial compliance, which changes rapidly. So,
the information system needs to be updated with a really tight time to market”.

Also IT-business alignment is considered to be a reason of low software quality.
“In my opinion, it is a side effect of complaining with business goals, losing the ar-
chitectural and strategic view on the information system, more than people individual
skills”.

Factor 17: Contracting & Skills.
Our informants had different opinions and held a variety of positions concerning

contracting and assessment. For some, outsourcing is the main cause of poor software
quality. “According to my opinion this is the key problem. Outsourcing policies of
the last years are the reason of poor software”. Similarly, another person stated that
“the depletion of internal personnel skill, in favor of outsourcing will hurt long term
sustainability. I always suggest to outsource only non-critical functionalities”.

Other are quite in favor of outsourcing projects, since they are easily assessable.
“Contracts with good KPIs which ensure objectivity of delivery’s evaluation is a vi-
able and crucial solution. Such kind of artifacts are more manageable and of better
quality than internally developed software”. Or “with a well defined sourcing model
and metrics projects are fairly manageable”. For another informant “there are method-
ologies which enables a good control on suppliers”. And “to ensure proper control on
information system management there is the need for a good IT governance; through

3.4. Results 55

which each process related to the evolution and maintenance of the software is man-
aged and controlled” stated also on panelist. Generally speaking “for Time & Material
contracts, previous skills assessment is very important for project’s success. Whereas,
in traditional contracts, the focus is shifts on the quality of the deliverable and to its
process”.

Other experts generally supported outsourcing, with some criticality. “A good
initial setup is crucial for a good project management. However, I saw a more sloppy
management in the last years, so that most project’s aspects are disregarded”. Or
“recurring to vendors and consultants leads to more complex project management but
ensures the right skills and experience to get the job done. However, internal personnel
is pivotal to control vendor’s artifact quality”.

Finally, some others expressed a more neutral opinion on the factor. “There is no
such right or wrong solution. Outsourcing development, evolution and maintenance
needs to be carefully evaluated case by case”.

Factor 18: Lacking tools & Methodologies.
We gathered different opinions for this factor. As usual, the broadness of the

domain shows various positions. Some fully support the factor, stating that “since
we didn’t find an adequate tool on the market, we developed it by ourselves. We are
experiencing enormous benefits from it”. Others, complain (again) with tight schedules
“I agree in those contexts with “forced” tight time to market deployments”. And others
already started the path of full methodology and tool implementation. “Our bank is
already implementing methodologies (i.e., DevOps) to improve software quality through
a testing phase of new applications”.

However, the relation between tools and Software Engineering methodology is
quite broadly stressed. When the process method is poor also the best tool will
fail. “Now effective tools are available on the market. However, they require a strong
methodological and organizational support. Software quality measurement by itself is
useless if not supported by a Software Engineering culture and knowledge”. Or, “before
lacking tools, I would argue that it’s the poor Software Engineering methodology which
“kills” software quality”. Moreover, “there are adequate tools and methodologies, the
problem is that they are not applied within the software life cycle” said another panelist.
Training is also an issue. One informant said that his organization don’t have skilled
employees to use highly complex tools. So, this is a key reason why they are not
implemented. “There may be adequate tools but using them is quite a complex task.
Yo need to be very skilled to use them”.

Another interesting aspect is the trade off between software quality assessment
and costs. “There are methodologies but fully implementing them is quite expensive”.
Another stated that “I think there are enough tools and methodologies, the problem is
that software quality assessment is rather expensive, so none is willing to pay for it.
Thus, they are simply not used”. Especially small banks complained about licensing
costs. “For our small bank, existing tools are too expensive”. And “there are enough
tools but they are very expensive”.

Finally, vendors complain about the market maturity and ability to value both
tools and methodologies as viable solution for software quality. “There are tools and
methodologies but it’s the market which lacks to recognize them”.

Factor 19: Establishment of internal and external development pro-

cesses.
The establishment of internal and external development processes appears not to

be an issue per se. “It’s possible to codify them contractually” affirmed one panelist.
Another affirmed that “I think that Software Engineering methodologies and tools are
mature enough to guarantee a good software quality for both internal and external

56 Chapter 3. The Software Quality–Architecture–Process Model

developments“. Furthermore, one highlighted how the process definition needs some
iteration to be efficient. “Processes need to evolve according to needs and experience.
However, you need proper custom tools to verify the compliance. In that way, the
developers become accountable for their work”. Rather the problem is on monitoring
and assessment. “You have just to impose a set of guidelines to outsources, but then
you have to be monitor them by internal employees. I think here is the problem, since
the IT does not have an internal audit structure”. Or, “I think that besides asking for
process guidelines, you have also to assess them”. Some experts noted that customers
may not be enough skilled to negotiate standards with a big software house. “I question
myself whenever software quality guidelines need to be negotiated, especially with highly
certified software houses”.

According to some, on the other hand, it is very difficult to establish the process
externally. “For outsourced custom software, this is rather difficult to assess, since any
software house uses its internal standards”. At least, you have to differentiate. “You
have to differentiate internal and external development. In the first case you have to
manage it properly accordingly to business goals and costs. In the second case you can
not impose process decision but you may pretend a certain quality standard”.

Internal skills are quite important for this task. “The most relevant aspect is that
internal employees do not properly review outsourced developed software due to lack of
time and skill”. Organizations which puts value on such skills reported quite positive
experiences, “it depends on the business culture. If the organization retained internally
IT functionalities, it is easily assessable, with very good outputs for system’s quality;
otherwise it is not”. Also the use of state of the art tools is suggested by one expert
in this regard. “Innovative Software Engineering tools should be more exploited within
organizations. There are already automatic testing tools which are very helpful”.

Typically, IT cost-benefit trade off is a constant issue. In fact, “it depends on
how much you want to invest for good software quality (trade off between costs and
benefits)”, said one informant. Schedule is also here an issue, “often the time to market
is detrimental for continuous testing of IT projects”.

Finally, one informant shared his experience with suppliers. “The point is not the
process definition, which is quite consolidated in best practices, but the assessment and
accountability of suppliers. According to my experience there are three patterns:

• suppliers who do not follow the agreed methodology;

• suppliers who already use an adequate methodology/best practice, negotiate it
with the customer according to his needs;

• suppliers who already use an adequate methodology/best practice, but do not find
an appropriate agreement with the customer.

The best solution is always an agreed process and its monitoring with adequate tools”.
Factor 20: Developer’s professionalism vs. Skills.
The aim of this factor is to understand the relationship between decreasing devel-

oper’s professionalism with the use of Software Engineering methodologies and best
practice due to time and budget constraints. Some experts argued that “decreas-
ing professionalism does not depend on budget, rather on education”. Other saw the
problem as domain specific, “this may be true in other domains, not in digital–web
ones”.

Other experts related this factor to process issues. For example, one informant
said that “most of the time is devoted to the requirement understanding, thus time
dedicated to the development shrinks”. Another expert stated that “since software is

3.4. Results 57

intangible, it is very hard to manage properly its purchasing from vendors. On the
other side, vendors still struggle to find a good trade off between quality (intended as
use of standards and best practices) and cost”.

However, education is considered a central issue by most experts. “Junior devel-
opers are not experienced with concurrency and integration since they are trained with
stand-alone platforms”. Similar statements emerged quite frequently. “I would also
add that there is a larger use of low skilled developers”. Or, “I strongly believe that
this is a central issue. However, I also noticed the use of developers with no technical
background”.

Probably, again, we may explain this phenomena with shrinking budgets. “Sourc-
ing policies had a great impact on that”. And “often, due to strict time-to-market
schedule, quality is sacrificed”. Since there are not adequate resources to invest in
education and to train developers with no formal education in IT, just because they
are willing to accept lower wages is a sound interpretation of this factor. “I agree
that time and budget are key issues to understand this tendency”, affirmed another
panelist.

Factor 21: Developer’s professionalism vs. Rates.
The aim of this factor is to understand the relationship between decreasing de-

veloper’s professionalism with the decrease of professional rates. Apparently, experts
expressed quite a variegated picture on the topic. “Professionalism in general is not
decreasing. However, choosing cheaper suppliers leads to some compromises”. On the
contrary, another stated that “I agree in general but I disagree in particular, since we
have very skillful experts in our organization”. Another, shared that “today customers
are willing to pay more for more quality”.

With regard to system integrators, “as long as I can remember, system integrators
learn the job by doing it, while we never argued about senior’s professional rates”.
Training appears to be a qualified issue also for others, “My company invests a lot in
developer’s training, regardless of their daily rate. We believe that this is the reason
because we sell a lot of software products and system integration services”. The issue
appears to be more complex than the problem statement. In fact, an expert said that
“you can not relate professional rates to training. Internal policies are too complex to
understand the phenomenon. In a market economy, where a company wants to increase
its customer, value creation through its employee is key to its survival. Otherwise, it
would be substituted by other companies”.

Finally, an informant suggested that it is not about individual professionalism,
rather team composition. “I do not think this is just a problem of training, rather of
sizing and team management due to low budget. Project management, Business Analy-
sis e Design (System and Module Design) are penalized in favor of purely development
tasks”.

Factor 22: Web technologies vs. Methodologies.
With this factor, panelist expressed their opinions concerning the use of web tech-

nologies with development paradigms. There is the idea that the adoption of such
technologies lead to less rigorous approach to Software Engineering. In this regard,
Agile is considered a scapegoat of such sloppiness. “Agile software development is
largely misunderstood. Documentation is automatically extracted by metadata but the
design is completely lacking”. Or, “behind the Agile buzzword people hide methodologi-
cal shortcuts”. Similarly, “this problem rises when methodologies are not understood or
applied, like Agile ones”. Others made more punctual observation, stating that “the
use of Agile works very good for prototyping. However, it is a time bomb for the design
of patterns or architectures”. There is apparently a scarce culture about Agile. “In my
experience, I only saw Waterfall methodologies. This because the customer rarely is

58 Chapter 3. The Software Quality–Architecture–Process Model

able to express clearly requirements”, said another expert. This could be a reason why
is not seen as a methodology, rather a shortcut to Waterfall. Culture is apparently
an important (and lacking) issue.

Others noticed that “I do not think it depends on technologies, rather on low at-
tention about quality”. And, “Web technologies lead to high subjectivity in the devel-
opment. Developers tend to use less Software Engineering methodologies within the
development phase”. Moreover, “some new technologies may change something (like
Big Data) but not the way in general to develop software”. With respect to the use of
tools one said that “this aspect relates also to wizard development tools, where person-
alizations are managed without a methodology”. And to development environments
“I think that the development on open environment leads to more flexibility with re-
spect to host ones. However, this leads to less rigor, so companies have to manage it
properly’.

Finally, a clear recommendation by one expert. “The customer has to choose the
methodology. Otherwise, the supplier will provide software developed with different
standards and methodologies”.

Factor 23: Quality vs. Requirements.
This factor analyzes the relationship between low software quality and clarity

of user requirements as provided by the customer. The idea is that poorly defined
requirements lead to misunderstandings with software developers, which will deliver
lower quality software. The functional quality will be low if the requirements’ clarity
is low.

“I would say that it is quite obvious”. Or, “It is very hard to have high software
quality if requirements are not clear”. For some informant, it is a key issue of profes-
sionalism. “It is correct, but IT professionalism means to me to transform business
objectives in viable requirements”.

Other panelists expressed different viewpoints. “To me it seems much more like
an alibi”. Or shift the responsibility. “The IT should be accountable to understand the
right requirements”.

With regard to the user requirements elicitation from our experts emerged in-
teresting viewpoints. “I do not think that user requirements are generally not clear
enough, rather it is the process to capture and formalize them which has been reduced
to a simple wish list”. And, with reference to specific professional key figures one
informant said that “this is particularly true in the financial sector, where key figures
like Demand e Service Manager, which are able to translate business language into
technical requirements, are lacking. Usually, managers talk directly to developers with
frequent incomprehensions”. Also the quality of interaction matters. “It depends on
the interaction between customer and developer. A good developer (with more expe-
rience) will interpret better businesses’ needs, however, he won’t be cheap”. As also,
“developers should be more proactive and ask if they do not correctly understand one
requirement”. More generally, “this is a very important cause, since the clarity of the
demand cycle is very important for a robust development phase”.

Finally, an important element which emerged is the difference between functional
and non-functional dimensions of software quality. “It is partially true. If the re-
quirement is badly or partially defined, it does not mean that software is per se of low
quality. It will just work as it was (partially) defined”. Moreover, “I partially agree.
Even though functional requirements are of low quality (due to misunderstanding), it
does not mean that also non-functional ones are also of low quality”. So, if generally
experts affirmed that there is relationship between requirements clarity and functional
requirements quality, this may not influence the non-functional dimension.

Factor 24: Requirements vs. Methodologies.

3.4. Results 59

This factor analyzes the relationship between badly defined user requirements
provided by the customer and the available Software Engineering methodologies to
elicit them. The idea is to see if poor methodologies to elicit business goals and needs
lead to the definition of unclear software requirements. One panelist expressed this
concern. “Requirements are usually elicited orally. Organizations are rarely structured
to develop properly business needs into software requirements according to Software
Engineering methodologies and best practices”.

The relation between the business and the IT appears to be a critical issue to
explain this point. “Poor requirements depend on the fact that often the customer
does not know what he wants!” Thus, startups with less defined organizational routines
[335] seems to be more flexible and have less problem on requirements elicitation. “New
organizations reduced the distance between business and IT, so, requirements are more
easily elicited”.

Although elicitation methodologies are considered important, the collaboration
with business is perceived are pivotal. “A robust process of Demand Management
is alone not the answer to bad requirements elicitation. Rather, the business has to
express clearly its goals and expectations”. Moreover, “processes and methodologies are
important to manage the demand properly and to turn businessesF’ needs into software
requirements. However, these needs should be expressed with enough clarity”.

Customers skills are also considered crucial for high functional requirements qual-
ity. “Poor customer culture and skills lead to badly defined user requirements. There
is the need to educate and support the business to define them better”. And, “according
to my opinion the problem lies in a low professionalism at the business side, which ask
for more specialized consultancy”. The cause may also be poor prototyping. “I agree.
I think it depends also on the difficulty to provide a viable prototype to show how the
future application will work”.

Interestingly, one informant expressed his concerns to consider the topic as just
procedural. “In my experience bad requirements are due to several factors related to
doing teamwork. It is much better to focus on collaboration and work through goal
oriented target rather than use highly structured protocols and methodologies which
enhances barriers among people”. By the way, contemporary paradigms, especially
Agile and DevOps ones are build according to this believe.

Generally speaking we noticed how our informants let emerged Humphrey’s law,
according to which requirements are not known by the customer until he will use
them.

Factor 25: Requirements vs. Technical jargon.
Communication among different professional figures is usually not trivial. This

factor explores the impact of the (mis-)use of technical jargon of different departments
for requirement elicitation.

Although this may be true for many, since “IT experts do not know business pro-
cesses, they know about technology” and I think that there is the need of a “translation”
phase”, it appears to be very much related to the single business culture. “The use
of jargon is related to the business culture”. So, organizations which are aware of
it tend to solve the problem upfront. “When business and IT teams are co-located
requirements are elicited effectively. Traditional silos approaches do not work”. Or,
“it is an old issue, nowadays business and IT speak the “same language”, especially in
our organization”. Moreover, “I would agree if collaboration among IT and business is
poor. With regard to my personal experience interaction and collaboration works very
well, so we developed a common “dialect” within the company”.

One panelist suggested that excessive specialization may also be an important
issue. “I think that especially in the financial industry, people with a cross-cutting

60 Chapter 3. The Software Quality–Architecture–Process Model

view on both business and IT processes are lacking. This may depend on excessive
vertical specialization, so that there are no people around with the broad picture. To
have such picture you have to put around a table many different figures to define the
requirements, which is quite difficult. This is the reason why it is so difficult to elicit
requirements”.

Other explained that prototyping and preliminary analysis is of crucial importance
for good functional requirement definition. “I think that poor prototyping is a major
issue of this topic. They enhances incredibly requirements specifications”. And “if
there is a good common preliminary analysis, elicitation is not a big issue”.

Finally, new professional figures are merging. “It is true, for this reason new fig-
ures like the CDO (Chief Digital Officer) are emerging”. So, linking functions are
quite important. “A good demand manager is the “trait d’union” between both depart-
ments. This figure has to be strengthen using best practice tool, like business glossaries,
metadata and impact analysis”.

Factor 26: Data analysis vs. Functional analysis.
This factor explores whenever poor data analysis influences functional analysis and

consequently the system integrity. “The “functional centric” view is quite misleading,
since it relegates the importance of data. Data give the “static view” of existing func-
tionalities, which is very important for the functional analysis. One software product
may have all possible functionalities required by the user but lacking of fundamental
data its deployment and system integration becomes impossible”. Moreover, “data anal-
ysis skills are generally lacking and poorly used in functional analysis”. Apparently,
this issue is present market wide. “In my opinion, in the market there is a lacking
perception about the importance of data analysis as preliminary phase of functional
analysis”.

However, other experts disagree. “Saying that poor analysis are due to poor data
understanding is a quite generic (it is obvious that data processing is the main IT
goal) and old issue”. Other issues are also relevant to understand the factor. “Also
knowing what different data means is important”. And “it is not only an issue of poor
technical skills”. Furthermore, “personally, I saw poorer knowledge of banks’ operation
processes”.

Apparently, there was a shift after 2010 which give interesting insights. “It is true
for applications developed before 2010. Data governance is now more relevant and
data analysis is performed before the functional one. So I see a clear discontinuity
with the past”.

Factor 27: Functional analysis vs. Data modeling.
Our panelists generally stated that difficulties in functional analysis lies in bad data

modeling and identification of data sources. “In our bank, we need a data mapping,
otherwise any further analysis would be useless”. The reason may be that for many
“the knowledge of data is the real starting point”.

The deep knowledge of data sources is considered a main driver for software quality,
since it enhances functional requirements.

Factor 28: Documentation standards and tools.
In this last factor, the issue of lacking software documentation standards and tools

emerged. Experts expressed that poor documentation hinders software maintainabil-
ity and increases evolution costs. “I think that the real problem is the time/effort trade
off. If developers are pushed just to write some code, without documenting it prop-
erly, it becomes a problem in the medium run. Maintenance and evolution are critical
since, due to developers’ turnover, it is hard to have control over the software”. And,
“following development and architectural standards, enables those who did not write
the software to manage it properly afterwards”.

3.5. Discussion 61

However, other panelists affirmed that both standards and tools already exist,
they just need to be implemented. “There are already dedicated documentation tools,
also open source ones, like “Alfresco”, you just have to use them”. And, “there are
tools but developers have to use them. From alone they do not work”. Furthermore,
“there are very effective standards, but often they are not used”. Or, “there are valuable
tools and the market need to recognize them. Software development is very similar to
an assembly line of mechanical products. Tools and methodologies increase quality
and reduce cost”. One company also developed for its own purposes a documentation
tool. “Recently, we developed an “ad hoc” documentation tool which is very effective”.
However, an expert disagreed on this point. “In my company, we already defined
documentation standards. However, we still did not find an adequate tool to increase
documentation efficiency”.

Also here training appears to be a crucial point. “Often standards are defined
but no training is planned for developers”. So also, “the real problem is that minimal
development standards are not followed”.

Finally, the role of the IT department is stressed by one informant. He used
the word “dignity” in the sense that such technical decision may not lie in another
departments hand or even be the results of top-down decisions. “I would argue that it
is the IT department which should have the “dignity” to impose standards, not waiting
decisions from the business side”.

3.5 Discussion

Our research questions aimed to identify (RQ1) and validate (RQ2) the main quality
related concerns in the IT financial sector. What emerged is a strong relationship
among software quality, software architecture, and software process. Cost cutting
had a direct impact on architectural aspects (both on ex-ante planning and ex-post
analysis/reverse engineering), documentation and data modeling. Traditional quality
models appear to be insufficient to explain these outcomes. Moreover, none of our in-
formants affirmed to use any comprehensive quality model for their systems, reporting
to struggle with their IT infrastructure.

Indeed, legacy systems are the most important ones for the day-to-day business
operations [251]. The old-fashioned COBOL language is predominant for such systems
since it is very efficient to process millions of batch transactions per day, which is the
core activity of any financial organization. Such systems are truly business critical.
They are reliable and have been running for decades, have been well tested in time
and run virtually with no errors.

Unfortunately, we report the tendency to stratify core systems, in order to imple-
ment rapidly new functionalities due to budget constraints. Architectural integrity
has been challenged by two opposed drivers: new requirements and scarce resources.
Testing and documentation are often skipped. Reverse engineering becomes a highly
complex and expensive activity.

Furthermore, the coexistence of codes written in different times and different pro-
gramming paradigms is perceived as a barrier to software evolution and maintenance.
The use of languages like COBOL impacts negatively the code understandability, as
also the possibility to be translated in a more modern language. Moreover, none of
the organizations we interviewed admitted to have a complete overview and map of
the source code running on their information systems. Although we have to say that
a considerable portion of information systems of financial organizations are provided

62 Chapter 3. The Software Quality–Architecture–Process Model

by vendors with COTS products under licenses, code ownership is fragmented and
not centralized.

This raises also another issue: the total cost of ownership [122]. The levels of ap-
plication complexity, system stratification and fragmented ownership increase tremen-
dously the total cost of ownership of information systems of financial organizations.
CIOs do often prefer incremental working solutions, rather than a comprehensive ap-
proach to such issue. Informants suggested that this behavior is caused by a fast
turnover of C-levels and a short-term view. They do not have real incentives to tackle
this problem, rather they focus on short-term, quarterly goals. This pattern has also
been observed in literature [157].

Generally speaking, information systems of financial institutions appear to be
characterized by a highly complex and stratified architecture, with a sinking quality.
Moreover, with respect to the past, experts’ opinions let emerge gloomy scenarios, due
to an increase of functionalities driven both by market and regulations requirements
and inadequate budget provisions.

3.5.1 Theoretical Coding

Although we did not commit to Grounded Theory [174], we used theoretical coding
to map the items to the relevant literature [441]. According to our pragmatic Mixed
Methods approach, we were able to build a valuable model from empirical evidence.
In Grounded Theory theoretical codes are formalized after open and axial coding,
since they are the highest level constructs [173]. Indeed, theoretical codes are flexible
and do not explain just one theoretical construct, rather they link several constructs.
Glasser explained how “they are not mutually exclusive, they overlap considerably...
[and] one family can spawn another” [174, p. 73]. The use of theoretical coding
provides a sharp analytical edge in the results. It helps to provide clarity, coherence
and theoretical relevance of data.

Since 28 items are not parsimonious for a model development, we clustered the
factors into high-level categories, following [156]. So, we did not just provide the
description of the elicited items, we mapped them into some relevant ISO standards.
Using ISO standards instead of literature has several advantages in our case.

Information systems of financial organizations are supposed to comply with such
standards. We dealt with concepts which were very well–known to our informants,
enabling a homogeneous and coherent model. Another advantage of dealing with stan-
dards is that they are de facto second-order theories, built on grounded pre-existing
ones and shared among scholar’s and practitioner’s communities. Three categories
emerged from our study: software quality, software process, and software architec-
ture. The 28 factors we identified were mapped in the corresponding standards. With
regard to software quality, we mapped our factors within the Product Quality Model
of the standard ISO/IEC 25010:2011, as shown in Table 3.5. To map the factors re-
garding software process the ISO/IEC 12207:2008 standard for the Software life cycle
processes was used, shown in Table 3.6. Finally, to see the most relevant elements
related to software architecture, we performed our mapping over the ISO/IEC/IEEE
42010:2011 standard in Table 3.7.

To map our factors to sub-characteristic we used a Delphi approach derived from
software cost estimation [62]. We elaborated autonomously the categorization. After
that phase, we met personally, and took for granted the unanimous cases. The other
cases, where we were in disagreement, were discussed until consensus was reached.
Since the factors which came out from the panel where rather cross-cutting along

3.6. Theoretical and Practical Contribution 63

different quality characteristics, we assigned some factors on more than one charac-
teristic. We choose to be not restrictive in our categorization since the aim was to
see if the standards are sufficiently comprehensive for the identified factors. The final
factor mapping, as described in Tables 3.5, 3.6 and 3.7, is the unanimous outcome
of the iterations.As a result, multidimensional and overlapping concepts provided by
experts were referenced to relevant theory, developing, de facto, a model which is
intended to give a comprehensive picture of ISQ by abstracting and connecting from
more detailed individual ISO models contained within it (i.e., a meta-model [308]).

3.5.2 A Model for Information Systems Quality

A meta dimension of quality emerged from empirical evidence. We specifically propose
the prefix meta-, intended to define another subject that analyzes the original one but
at a more abstract, and higher level [1]. Indeed, factors may be explained through
a cross-cutting analysis of the three standards, since they are not related just to one
category (i.e., quality, architectural, or process). So, having a comprehensive idea
about ISQ means to manage a meta–view on these three categories. Basically, each
category influences the others and has an impact on them.

For instance, business goals have a direct impact on the information system. For
example, IT cost cutting by a bank executive board to invest in other departments or
to be more profitable the next quarter is a clear business goal. Short term-view deci-
sions or even not-taken decisions are business goals which influence all three categories
of quality, architecture, and process. As a result of our research, non-IT executives
are willing to pursue short-term goals, according to our experts, increasing the total
cost of ownership. We did not collect non-IT experts’ opinions in our study, so we can
not detail this phenomenon. However, literature tried to explain this common pattern
[157]. Like the panelists remarked, this led to low maintainability & evolution capabil-
ities as also to some architectural anti-patterns. Several quality aspects are influenced
by such business goals, like quality, maintenance & evolution, processes, and archi-
tecture. In other words, the proposed ISQ model is able to provide a comprehensive
view about the key quality characteristics of an information system. Furthermore, it
helps to trace the impact of decisions on one category into the others.

Therefore, we do not induce (intended as the outcome of a qualitative research)
another quality dimension of IT systems. We induce, instead, a new meta model for
information systems quality composed by software quality, software architecture, and
software process.

Our contribution is of qualitative nature: we inductively report emerging factors
of IT quality into the three categories of the ISQ model which have not been observed
before in a real-world context. The proposed SQuAP (Software Quality, Architecture
and Process) meta-model is represented in Figure 3.2 and it links to the ISO/IEC
25010 standard regarding software quality, ISO/IEC 42010 about architecture de-
scription, and ISO/IEC 12207 regarding software life-cycle processes.

3.6 Theoretical and Practical Contribution

From a research perspective, this work makes a theoretical contribution by provid-
ing a new model of ISQ based on the three categories of software quality, software
architecture, and software process. Also, the explanation of the links between these
categories, into ISO standards’ sub-categories and experts’ IT quality factors has been
provided in Tables 3.5, 3.6, and 3.7. Additionally, it relates an organization’s behavior
and its impact on ISQ, through the relationships among the categories.

64 Chapter 3. The Software Quality–Architecture–Process Model

Characteristics Sub-characteristics Factors

Functional suitability

Functional completeness 6, 7, 12, 23, 24
Functional correctness 6, 7, 12, 15, 24, 25, 26
Functional appropriateness 3, 6, 7, 27

Performance efficiency

Time behavior 5
Resource utilization 5
Capacity

Compatibility
Co-existence 5
Interoperability 5

Usability

Appropriateness recognizability 7
Learnability 8
Operability 3, 9
User error protection
User interface aesthetics
Accessibility

Reliability

Maturity 8, 15, 18, 19, 20, 21, 22
Availability
Fault tolerance 7
Recoverability

Security

Confidentiality
Integrity 2, 7, 15
Non-repudiation 15
Accountability 2, 7, 15
Authenticity

Maintainability

Modularity 1, 2, 10, 18
Reusability 4, 8, 9, 10, 13, 14, 18, 28
Analysability 4, 5, 6, 8, 9, 10, 11, 12, 18
Modifiability 2, 4, 5, 8, 10, 11, 12, 18
Testability 4, 5, 8, 10, 18

Portability

Adaptability 4, 8, 9, 10, 13, 14, 28
Installability 10, 13, 14
Replaceability 4, 6, 8, 9, 10, 11, 12, 13, 14

Table 3.5: Factor mapping according to ISO/IEC 25010 – System
and software quality models

3.6. Theoretical and Practical Contribution 65

Characteristics Sub-characteristics Factors

Primary

Maintenance 1, 24, 5, 9, 10, 12, 13, 14
Operation
Development 2, 5, 18, 22, 23, 24, 25, 26, 27
Supply 13, 14, 16 17, 19, 20, 21
Acquisition 3, 13, 14, 17, 19

Supporting

Documentation 4, 7, 8, 10, 11, 12, 28
Configuration Management 9
Quality Assurance 1, 2, 3, 6, 12, 13, 14, 15, 18, 19
Verification 3, 9, 15
Validation 15
Joint Review
Audit 15
Problem Resolution 9

Organizational

Management 5, 8, 12, 20, 21, 25
Infrastructure 17
Improvement 12, 17
Training 16, 17, 20

Table 3.6: Factor mapping according to ISO/IEC 12207 – Software
Life-cycle Processes

Characteristics Sub-characteristics Factors

Objective

Model Kind
Architecture Model 1, 2, 18, 26
Architecture View 1, 6, 15, 18, 23, 26, 27
System-of-Interest 1, 11, 12
Architecture Rational 1, 8
Correspondence 4, 14, 22
Correspondence Rules 4, 9, 13, 22, 24, 28
Architecture Framework 9, 13, 26, 27

Subjective

Concern 3, 5, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 28
Stakeholder 1, 3, 6, 15, 12, 16, 24, 25
Architecture Viewpoint 10, 23
Environment 11, 21, 22
Architecture Description 1, 7, 8, 10, 18, 28

Table 3.7: Factor mapping according to ISO/IEC 42010 – Architec-
ture description

66 Chapter 3. The Software Quality–Architecture–Process Model

Figure 3.2: SQuAP (Software Quality-Architecture-Process) meta-
model

3.7. Conclusions and Limitations 67

Literature highlights that software quality aspects and architecture are tightly
coupled [377]. Conscious or unconscious faulty decisions on an architectural level,
lead to low system-wide quality attributes, in particular poor maintainability and
evolution capabilities [287]. We were able to validate this literature insight also in
our research. We observed a tendency to stratify applications, rather than to evolve
the existing ones. This is performed for several reasons due to poor documentation,
testing, and reverse engineering capabilities.

As for practice, our model provides a management tool to map business decisions
into IT categories, to trace their impact on the system at large. SQuAP thus becomes
a tool that can structure strategic decisions. This may lead to a general rethinking of
IT-business alignment. Typically, the failure of IT to deliver value, poor understand-
ing of IT by business executives, lack of a clear vision with respect to IT, different
views of business executives and technology specialists, lack of a shared vision in re-
lation to IT, poor technical skills of CIOs, and criticism of legacy IT are the reasons
of such a structural misalignment [267]. Mutual understanding of CIOs with other
C–levels is considered in literature as a main driver to IT-business alignment [48]. Not
surprisingly the relationship between IT–business alignment and competitive advan-
tages is a well–known topic in research, since it leverages business capabilities through
automation and business intelligence [374].

SQuAP addresses how to deal both the managerial and the technical perspectives,
and their IT-business alignment, and in particular the total cost of ownership of infor-
mation systems of financial organizations. It is intended to bridge the understanding
of IT to non–IT C–levels. Indeed, a wider use of standards (i.e., IEEE/ISO/IEC) is
an accountable way to move in this direction. In this regard, a model like SQuAP,
based on industrial standards, is useful to visualize and assess the relevant assets of
information systems.

3.7 Conclusions and Limitations

This study used a qualitative Delphi-like methodology to identify IT quality concerns
regarding information systems of financial institutions. The concerns were validated
through a survey of a large target-panel composed of carefully selected domain experts.
The picture which came out of our research is a consequence of the short-term vision of
C-levels. This short-sightedness impacts the strategies of maintenance and evolution of
information systems of financial organizations. All concerns made explicit or implicit
reference to software quality, process, or architecture issues. Thus, we mapped them
within the ISO 25010, 42010, and 12207 standards. A new meta model for ISQ emerged
from our inductive research approach regarding the IT financial sector. Such model
explains the tight relationships between software quality, process, and architecture.
We have followed an inductive, theory-building approach. The focus is not on the
single standard, rather on the interactions among them, proposing a cross-cutting
view. This model provides valuable insights to map and assess ISQ.

Limitations were our concerns during this study, since we used a new inquiry
methodology through Mixed Methods. We use both qualitative and quantitative va-
lidity paradigms. To analyze the qualitative dimension, we adopt: credibility, transfer-
ability, dependability, and confirmability, following [185]. For the quantitative dimen-
sion we use traditional statistical conclusion, internal, construct, and external validity,
as suggested by [491]. Even though validity dimensions of qualitative and quantita-
tive researches are different, we aggregated them but discussed them separately due

68 Chapter 3. The Software Quality–Architecture–Process Model

to epistemological reasons. The research was homogeneous and both qualitative and
quantitative dimensions gained trustworthiness one from another.

Credibility & Internal. Factors identified are all credible. We identified them
through a Delphi-like process which lasted about one year. Panelists were sector
experts, with a daily exposure to the researched concerns. The whole panel had
the chance to discuss, refine, and group the elicited items, through different phases.
None of the experts argued that any of the concerns should be excluded. Extra-
items, which did not reach full consensus among the Panel, were isolated and treated
properly. Moreover, they are presented separately from the first 15 items. However,
target-panelist were asked to validate all 28 items through survey randomized items.
Random stratified assignment of the research subjects, were designed to maximize
internal validity. Representativeness of the sample is high for two reasons. Experts
were chosen among a highly qualified pool of an established IT consulting firm of the
financial sector. Strata were first assumed by our experience and than integrated into
the panel. Moreover, the guarantee of anonymity given to both panelists and target-
panelists allowed a unbiased and frank discussion. This increased the credibility of
the study, since experts were able to answer and express openly their knowledge.

Transferability & External. The Mixed Methods approach aims to explore
and build new theory (induction) and also to validate it (deduction). The degree
to which the results of qualitative research are transferable to other settings may
be interesting. Admittedly, we focused on one sector, to enhance internal validity,
however our findings are still fairly generalizable. The financial industry is one of the
most standardized sectors worldwide due to market and regulations similarities. All
those points were discussed in Subsection 3.2.6. Therefore, it is reasonable to believe
that most concerns are largely shared among the entire industry, for the reasons before
described. Furthermore, our findings may also be generalizable for other industries
with similar characteristics. This study focuses on the most important factors which
threaten the IT financial sector. Threats to external validity are not considered very
harmful since we consider a standardized industry.

Dependability & Construct. Experts were carefully chosen through a stratified
randomized sampling, using the highly refined pool of an established IT consulting
firm, specialized in the financial sector. We described the three dimensions (experi-
ence, company, and role) and sub-dimensions, as also the stratification of the samples.
At the end of the qualitative research, a target-panel of 124 experts carefully selected
through stratified randomized sampling were asked to evaluate the panel’s outcome.
The outcome was a substantial consensus on all concerns with a degree of agreement
above 70% for all first 15 concerns, with high average scores. However, even though
the first 15 concerns were highly shared among target-panelists, this does not mean
that these are the most relevant for them. Thus, following our research approach we
added also 13 extra-items not fully shared by the panel. Interestingly, such extra-
items have a lower agreement degree among the target-panel. However, this approach
provided a full pragmatic picture of our research journey.

We remark that the concerns were elaborated by a high level panel of experts in
a three-phase round. The aim of the quantitative part was to verify the construct.
Hence, we fully comply with our Mixed Methods approach.

Confirmability & Statistical conclusion. All items were discussed within
the first panel, through different phases, which led to a continuous check. After the
whole qualitative research process, concerns were evaluated by a large target-panel
composed of 124 experts. We computed our results with MS Excel using representative
sample sizes to increase statistical power. Measures and treatment implementation
are considered reliable.

3.7. Conclusions and Limitations 69

It was concluded that the threats would not to be regarded as critical. As we
know, there is a constant trade-off between internal and external validity [491], and
our sampling strategy took this into account. With Mixed Methods, we aim to get
useful insights for theory building (external validity and transferability), while we also
try to validate it within the same study (internal validity and credibility).

Our research will continue in several directions. Mixed Methods research is needed
to validate and extend this model to other industries. Several software quality met-
rics, as also managerial and organizational evaluation techniques can be exploited.
We are exploring the support of semantic technologies, especially ontologies, to pro-
vide a formal knowledge representation layer on top of which different methods and
technologies can be validated and developed. Finally, empirical validation through
case study research may broaden the use of the model as a central reference for ISQ.

71

Chapter 4

The SQuAP Ontology

4.1 Introduction

Industrial standards are widely used in the Software Engineering practice: they are
built on pre-existing literature and provide a common ground to scholars and prac-
titioners to analyze, develop, and assess software systems. As far as software quality
is concerned, the reference standard is the ISO/IEC 25010:2011 (ISO quality from
now on), which defines the quality of software products and their usage (i.e., in-use
quality). The ISO quality standard introduces eight characteristics that qualify a
software product, and five characteristics that assess its quality in use. A characteris-
tic is a parameter for measuring the quality of a software system-related aspect, e.g.
reliability, usability, performance efficiency. The quantitative value associated with a
characteristic is measured by means of metrics that are dependent on the context of
a specific software project, and defined in established literature.

The ISO quality standard only focuses on the resulting software product without
explicitly accounting for the process that was followed or the implemented architecture.
However, there is wide agreement [377] about the importance of the impact of three
combined dimensions: software quality, software development process, and software
architecture, on the successful management and evolution of information systems. In
this respect, the industrial standard ISO/IEC 12207:2008 defines a structure for the
software process life cycle, and outlines the tasks required for developing and maintain-
ing software [426]. Regardless of the chosen methodology (i.e., Agile or Waterfall ones
[377]), this standard identifies the relevant concepts of the life cycle and provides a
useful tool for software developers to assess if they have undertaken all recommended
actions or not. Each lifecycle concept can be evaluated according to its maturity
level by means of established metrics, e.g. the Capability Maturity Model Integration
(CMMI) [454]. As for the architectural dimension, the ISO/IEC 42010:2011 standard
provides a glossary for the relevant objects of a software architecture. With regard
to software architecture evaluation, intended as a way to achieve quality attributes
(i.e., maintainability and reliability in a system), some approaches have emerged, the
most prominent being ATAM, proposed by the Software Engineering Institute [249,
105, 47, 44]. Typical research in this domain is about how architectural patterns and
guidelines impact software components and configurations [167]. A survey study [134]
analyzes architectural patterns in order to identify potential risks, and to verify the
quality requirements that have been addressed in the architectural design of a system.

The mutual relations among the three dimensions and their impact on the quality
of software systems has been poorly addressed in literature, but recent empirical
studies [405] in the domain of Software Banking Systems pointed out the importance
of those relations. The study involved 13 top managers of the IT Banking sector in a
first phase, and 124 additional domain experts in a second validation phase. The result
is a model named SQuAP that describes these relations in terms of quality factors.

72 Chapter 4. The SQuAP Ontology

According to [181] the information available to guide and support the management of
software quality efforts is a critical success factor for domains such as IT. Considering
the broad coverage of its empirical provenance, a formalisation of SQuAP may serve
as a reference resource and practical tool for scholars and practitioners of Software
Engineering, to assess the quality of a software system, to drive its development in
order to meet a certain quality level, as well as to teach Software Engineering.

The SQuAP model builds on the concept of quality factor : a n-ary relation between
software quality characteristics that cover the three dimensions of software product,
process, and architecture, based on the three reference standards ISO/IEC 25010:2011,
ISO/IEC 12207:2008, and ISO/IEC 42010:2011 respectively. A SQuAP quality factor
can be described as a complex quality characteristic (or parameter) that provides a
three-dimensional view for assessing software quality. The model identifies twenty-
eight quality factors.

Our contribution consists in a resource named SQuAP-Ont, an ontology that for-
mally represents the concept of quality factor by reusing existing ontology design
patterns (e.g., Description and Situation [378, 163]), instantiates all factors identi-
fied so far, and axiomatises them in order to infer measurable factors based on the
characteristics available at hand. In addition, the ontology has been annotated with
OPLa1 (Ontology Design Pattern representation language) to increase its reusabil-
ity. SQuAP-Ont is publicly available online2 with accompanying documentation that
describes the factors, under a CC-BY-4.0 license.

In the rest of the chapter, after discussing relevant related work (Section 4.2), we
provide additional details about the SQuAP model by presenting two sample factors
in Section 4.3; we describe the SQuAP-Ont ontology: its main concepts and axioms,
the adopted design methodology and the reused ontology design patterns (Section
4.4); we provide examples of how to use it in Section 4.5; and discuss the resource
potential impact (Section 4.6) before concluding and identifying future developments,
in Section 4.7.

4.2 Related Works

The use of ontologies in the Software Engineering domain is very common [81, 499,
240]. The ISO standards referenced in Section 4.1 have been the subject of several
ontological studies. For example, useful guidelines for their ontological representation
are proposed by [199, 179].

An ontology-based approach to express software processes at the conceptual level
was proposed in [288] and implemented in e.g. [431] for CMMI [95]. Software quality
attributes have been modeled in [247], while an ontology for representing software
evaluation is proposed in [85]. A formalisation of the ISO 42010, describing software
architecture elements, is developed in [150] and in [270]. While [19] argues that
different architecture domains can be integrated and analyzed through the use of
ontologies.

Most [288, 431, 95, 150] of the aforementioned works focus on a strict repre-
sentation of standards in terms of ontologies. Other scholars [247, 85] provide only
preliminary ontological solutions for modelling quality characteristics or software eval-
uation and, to the best of our knowledge, they overlook the reuse of ontology design
patterns. In contrast, our work focuses on the relation between the different ISO
standards (system quality, software development process, and software architecture)

1http://ontologydesignpatterns.org/opla/
2https://w3id.org/squap/

h
h

4.3. Relational quality factors: the SQuAP Model 73

for supporting the assessment of software system quality, with the added value of
following a rigorous pattern-based ontology design approach.

Also at a higher level, an ontology to harmonize different hierarchical process levels
through multiple models such as CMMI, ISO 90003, ITIL, SWEBOK, COBIT was
presented in [352].

Ontologies referred to software quality focus primarily on quality attributes [247].
One quality evaluation, based on the ISO 25010 standard, is enhanced by taking into
consideration several object-oriented metrics [323]. Similarly, [85] reuse current quality
standards and models to present an ontology for representing software evaluations.

The ISO 42010 standard regarding software architecture already a formalization of
architecture framework within the ontology of the standard [150]. An ontological rep-
resentation of architectural elements has also been expanded by [270]. With particular
reference to the architecture rationale, some visualization and comparison techniques
with semantic web technologies have been proposed in literature [292]. Moreover,
scholars showed that different architecture domains can be integrated and analyzed
through the use of ontologies [19]

Finally, the Semantic Web community proposed also guidelines regarding the rep-
resentation ISO standards of Software Engineering with ontologies [199, 179]. These
two papers use a domain ontology, proposing the creation of a single underpinning ab-
stract domain ontology, from existing ISO/IEC standards. According to the authors,
an adoption of a single ontology will permit the re-engineering of existing International
Standards as refinements from this domain ontology so that these variously focused
standards may inter-operate.

4.3 Relational quality factors: the SQuAP Model

The motivation for developing SQuAP is based on the understanding, in both Software
Engineering and information systems communities, that assessing software quality for
contemporary information systems requires to take into consideration the relations
between different dimensional perspectives, namely: software quality, process and
architecture [377]. Accordingly, we conducted an empirical study in the banking
sector [405]: In a first phase, based on the Delphi method [117], we involved 13
top managers of this sector to express their greatest software quality concerns. The
result was a set of distinct 28 quality factors emerging from the elicited concerns,
after a consensus–based negotiation phase (part of the Delphi method). In a second
phase, we involved 124 domain experts that validated the 28 factors with a high level
of agreement. Each factor has been then linked to a number of characteristics or
elements defined in the three different standards i.e., ISO 25010, ISO 42010, and ISO
12207, for software quality, architecture, and process respectively. We followed the
theoretical coding approach [441] to map the factors to the ISO standards 3.

The selection criteria and demographics of the experts involved in both phases, the
inclusion and exclusion criteria, the agreement figures as well as the industry coverage
are explained in Chapter 3. In the same chapter, we provide further details about the
methodological approach and an exhaustive description of the 28 factors. A list of
them is also published on the resource website4 along with a short textual description,
and by tables depicting their mappings to ISO standards.

3Standards are de facto second-order theories, built on grounded pre-existing ones and shared
among scholar’s and practitioner’s communities.

4https://w3id.org/squap/documentation/factors.html

h

74 Chapter 4. The SQuAP Ontology

Figure 4.1: Factor 26: Data analysis vs. Functional analysis. This
factor is defined as a relation between three quality characteristics of
a software project: Functional Correctness (ISO 25010), Architectural

View (ISO 45010), and Development (ISO 12207).

The 28 SQuAP factors have been rigorously although informally defined in our
previous work [405]. These definitions are the main input for the development of
SQuAP-Ont, hence it is relevant to report here at least one them. The definition of
a factor consists of a set of quotes from the experts involved in the study followed by
an analysis (based on theoretical coding) on what are the main characteristics and
elements from the standards that emerged as components of the factor. We choose
randomly one factor (26) to explain the underlying logic of the factor mapping.

Factor 26: Data analysis vs. Functional analysis. This factor explores
whenever poor data analysis influences functional analysis and so, system integrity.
“The “functional centric” view is quite misleading, since it relegates the importance of
data. Data give the “static view” of existing functionalities, which is very important
for the functional analysis. One software product may have all possible functionalities
required by the user but lacking of fundamental data its deployment and system inte-
gration becomes impossible”, said one surveyed expert. Moreover, “data analysis skills
are generally lacking and poorly used in functional analysis”, affirmed another one.
Apparently, this issue is present market wide. “In my opinion, in the market there
is a lacking perception about the importance of data analysis as preliminary phase of
functional analysis”. However, other experts disagree. “Saying that poor analysis are
due to poor data understanding is a quite generic (it is obvious that data processing
is the main IT goal) and old issue”. Other issues are also relevant to understand the
factor. “Also knowing what different data means is important”. And “it is not only
an issue of poor technical skills”. Furthermore, “personally, I saw poorer knowledge of
bank’s operation processes”. Apparently, there was a shift after 2010 which give inter-
esting insights. “It is true for applications developed before 2010. Data governance is
now more relevant and data analysis is performed before the functional one. So I see
a clear discontinuity with the past”.

Theoretical coding analysis: experts stressed the importance of data and func-
tional analysis, impacting on the dimensions of Functional Correctness (software
quality), Development (software process), and Architecture View (software ar-
chitecture). In fact, they refer to the functional suitability of applications through
correctness. This impacts the development process, which is supported by such anal-
ysis. The architecture view addresses the concern of a suitable system held by the
system’s stakeholders. Figure 4.1 shows a graphical representation of Factor 26.

4.4. SQuAP-Ont: an OWL formalisation of SQuAP 75

4.4 SQuAP-Ont: an OWL formalisation of SQuAP

The SQuAP Ontology (SQuAP-Ont) is designed by reusing ontology design patterns
(ODPs) [165] according to an extension of the eXtreme Design methodology [379, 58].
This extension mainly focuses on providing ontology engineers with clear strategies for
ontology re-use. According to the guidelines provided by [379], we adopt the indirect
re-use: ODPs are re-used as templates. At the same time, the ontology guarantees
interoperability by keeping the appropriate alignments with the external ODPs, and
provides extensions that satisfy more specific requirements. The ontology addresses
a set of competency questions [184], listed in Table 4.1, identified by analysing the
SQuAP model (cf. Section 4.3) and by discussing with domain experts.

Table 4.1: Competency questions used for modelling SQuAP-Ont.

ID Competency question
CQ1 What are the quality characteristics of

a software system at software, process,
and architectural level?

CQ2 What are the factors, the assessment of
which, is affected by a certain quality
characteristic?

CQ3 What are the quality characteristics
that affect the assessment of a certain
factor?

CQ4 What is the unit of measure (i.e. met-
ric) associated with a certain quality
characteristic?

CQ5 What is the value computed for assess-
ing a certain quality characteristic?

In addition, it has been noted that in order to assess a factor at least one of its
affecting quality characteristics must have been measured.

4.4.1 Ontology description

Figure 5.6 shows a diagram of SQuAP-Ont. We use the namespace https://w3id.
org/squap/. SQuAP-Ont re-uses as templates the following ontology design pat-
terns [378]: Description and Situation (D&S)5 [164], and Parameter Region6.

The D&S pattern allows to represent the conceptualisation of a n-ary relation (i.e.
description) and its occurrences (i.e. situations) in the same domain of discourse. For
example, it is used for representing the description of a plan (D) and its actual execu-
tions (S), the model of a disease (D, e.g. its symptoms) and the actual occurrence of
it in a patient (S), etc. SQuAP-Ont reuses this pattern for modeling quality factors
with the class :SoftwareQualityFactor, a subclass of :Description. The actual
occurrences of quality factors assessed in a specific software project are modelled with
the class :FactorOccurrence, a subclass of :Situation. Both :Description and
:Situation are core elements of the D&S pattern. According to the D&S pattern a
:Description defines a set of :Concepts. In the context of SQuAP-Ont we say that
a :SoftwareQualityFactor uses a set of :SoftwareQualityCharacteristic. This
relation is modelled by the property :usesQualityCharacteristic. We model three
types of :SoftwareQualityCharacteristic: :SoftwareQuality, the class :Archi-
tecturalAlignment), and the class :ProcessMaturity. They classify the characteris-
tics associated with the three different ISO standards and their respective perspectives,
i.e. software quality, architecture, and process. In a similar way, a set of entities are in

5http://ontologydesignpatterns.org/cp/owl/descriptionandsituation.owl
6http://ontologydesignpatterns.org/cp/owl/parameterregion.owl

https://w3id.org/squap/
https://w3id.org/squap/
http://ontologydesignpatterns.org/cp/owl/descriptionandsituation.owl
http://ontologydesignpatterns.org/cp/owl/parameterregion.owl

76 Chapter 4. The SQuAP Ontology

Figure 4.2: Core classes of SQuAP-Ont.

the setting provided by a :Situation. In the context of SQuAP-Ont we say that a set
of :MeasurementResult affects the assessment of a :FactorOccurrence. We model
three types of :MeasurementResult with the classes :SoftwareQualityMeasurement-
Result, :ArchitecturalAlignmentResult, and :ProcessMaturityResult which are
instantiated with result measurements computed for assessing the quality characteris-
tics of a specific software system. A :MeasurementResult has a :Value and a reference
:Metric. For example, we may want to represent that the Reliability of a software
system is associated with a specific degree value according to a certain metric. This
part of the model reuses the Parameter Region ontology design pattern as template.

In D&S each entity that is in the setting of a :Situation is classified by a
:Concept. In the context of SQuAP-Ont we specialised this relation by saying that
a :MeasurementResult assesses a :SoftwareQualityCharacteristic. Based on the
:MeasurementResults that compose a :FactorOccurrence it may satisfy one or more
:SoftwareQualityFactors (cf. modelled by the property :satisfiesFactor.

:SoftwareQualityFactors are represented in SQuAP both as individuals and
classes, by exploiting OWL punning. In the first case, the factors are represented as
instances of the class :SoftwareQualityFactor. All factors identified by the SQuAP
model are instantiated in the ontology. In the second case, the factors are repre-
sented as subclasses of :SoftwareQuality-Factor. The benefit from modeling factors
with punning is the possibility to use both DL axioms or rules (e.g., SPARQL CON-
STRUCT) to infer new knowledge. SQuAP-Ont models the three types of :Software-
QualityCharacteristics in a similar way: a set of individuals extracted from the
SQuAP model, according to the three reference ISO standards (cf. Section 4.3), are

4.4. SQuAP-Ont: an OWL formalisation of SQuAP 77

included in the ontology. They are also modelled as classes so as to make the ontology
extensible with possible specific axioms). Furthermore, :SoftwareQualityCharac-
teristics are organised hierarchically by means of the object property :specializes.

SQuAP-Ont is annotated with the OPLa ontology [211] for explicitly indicating
the reused patterns. We use the property opla:reusesPatternAsTemplate to link
SQuAP-Ont to the two patterns we adopted as template i.e. D&S and Parameter
Region. Similarly, we use the property opla:isNativeTo to indicate that certain
classes and properties of SQuAP-Ont are core elements of specific ontology patterns.
This annotations enable the automatic identification of the patterns reused by SQuAP-
Ont, e.g. with SPARQL queries, hence facilitating the correct reuse of the ontology.

Finally, SQuAP is aligned, by means of an external file, to DOLCE+DnS Ultra-
Light 7. Tables 4.2 and 4.3 report the alignments axioms between the classes and the
properties of the two ontologies, respectively.

Table 4.2: Alignments between the classes of SQuAP-Ont and
DOLCE UltraLight.

SQuAP class Align. axiom DOLCE class

:Region owl:equivalentClass dul:Region
:Value owl:subClassOf dul:Amount
:Parameter owl:equivalentClass dul:Parameter
:Concept owl:equivalentClass dul:Concept
:Situation owl:equivalentClass dul:Situation

Table 4.3: Alignments between the properties of SQuAP-Ont and
DOLCE UltraLight.

SQuAP prop. Align. axiom DOLCE prop.

:classifies owl:equivalentProperty dul:classifies
:isClassifiedBy owl:equivalentProperty dul:isClassifiedBy
:usesConcept owl:equivalentProperty dul:usesConcept
:isConceptUsedIn owl:equivalentProperty dul:isConceptUsedIn
:satisfies owl:equivalentProperty dul:satisfies
:isSatisfied owl:equivalentProperty dul:isSatisfied
:specializes owl:equivalentProperty dul:specializes
:isSpecializedBy owl:equivalentProperty dul:isSpecializedBy
:isSettingFor owl:equivalentProperty dul:isSettingFor
:value owl:subPropertyOf dul:hasRegionDataValue

4.4.2 Formalisation

The following is the formalisation of SQuAP-Ont described in Section 4.4.1. The
formalisation is expressed in Description Logics. For brevity, we use the terms Sw-
QualityChar for SowftwareQualityCharacteristic, ArchAlign for Architectural-
Alignment, ProcMat for ProcessMaturity, SwQuality for SoftwareQuality, Sw-
QualityFactor for SoftwareQualityFactor, MeasureRes for MeasurementResult,
ProcMatRes for ProcessMaturityResult, and MeasureQualityRes for Measurement-
QualityResult.

7http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

78 Chapter 4. The SQuAP Ontology

V alue v Regionu =1value.Literal

Concept 6⌘ Description t Situation

SwQualityChar v Concept

SwQualityChar ⌘ ArchAlign

t P rocMat

t SwQuality

ArchAlign v SwQualityChar

ArchAlign 6⌘ P rocMat t SwQuality

P rocMat v SwQualityChar

P rocMat 6⌘ ArchAlign t SwQuality

SwQuality v SwQualityChar

SwQuality 6⌘ ArchAlign t P rocMat

Description 6⌘ Concept t Situation

SwQualityF actor v Description

u 8uses.SwQualityChar

u 9uses.SwQualityChar

MeasureRes v 8assess.SwQualityChar

u =1hasV alue.V alue

u =1hasMetric.Metric

ArcAlignmentRes v MeasureRes

P rocMatRes v MeasureRes

MeasureQualityRes v MeasureRes

F actorOccurrence v Situation

u 9isAffectedBy.MeasureRes

u 9satisfies.SwQualityF actor

uses � specializes v usesConcept

4.4.3 Implementation details

The namespace https://w3id.org/squap/ identifies the ontology and enables per-
manent identifiers to be used for referring to concepts and properties of the ontology.
Additionally, we setup a content negotiation mechanism that allows a client to request
the ontology either (i) as HTML (e.g. when accessing the ontology via a browser) or
(ii) as one of the possible serialisations allowed (i.e. RDF/XML, Turtle, N-triples).
The alignments with DOLCE+DnS UltraLight (DUL) are published in a separate
OWL file8, which imports both SQuAP-Ont and DUL. This allows one to use either
SQuAP-Ont alone or its version aligned with and dependent on DUL.

The resource, including the core ontology, the alignments, and the usage examples,
is under version control on a GitHub repository9.

SQuAP-Ont is published according to the Creative Commons Attribution 4.0 In-
ternational (CC-BY-4.0) license10. The license information is included in the ontology
by using the VOID vocabulary 11.

8https://w3id.org/squap/squap-dul.owl
9https://github.com/anuzzolese/squap

10https://creativecommons.org/licenses/by/4.0/
11http://vocab.deri.ie/void

https://w3id.org/squap/
https://w3id.org/squap/squap-dul.owl
https://github.com/anuzzolese/squap
https://creativecommons.org/licenses/by/4.0/
http://vocab.deri.ie/void

4.5. How to use SQuAP-Ont 79

4.5 How to use SQuAP-Ont

Flexibility is among the most relevant characteristic of this ontology. Although the
higher levels of this ontology, regarding the standard and the factors mapping are fixed,
its measurement model can be adapted to the most suited scenario. In particular, the
proposed way to evaluate information systems characteristics is just an explanatory
example, which can be adapted to for any kind of assessment purposes.

As a usage example of the SQuAP ontology, we show a real world example con-
sisting in the evaluation of a banking application by means of the Goal-Question-
Metric (GQM) approach [36]. GQM defines a measurement model on three levels i.e.
Conceptual level (Goal), Operational level (Question), Quantitative level (Metric).
This method offers a hierarchical assessment framework, where goals are typically de-
fined and stable in time, and metrics may be adapted according to new measurement
advances. So, we stress the fact that this chapter does not focus on the measure-
ment model, rather on the knowledge representation of SQuAP for assessment and
benchmarking purposes. So, we provide the following synthetic RDF data about the
assessment. The data are expressed as RDF serialised in TURTLE12.

@prefix : <https://w3id.org/squap/examples/gqm/> .
@prefix arc:

<https://w3id.org/squap/ArchitecturalAlignment/> .
@prefix sw:

<https://w3id.org/squap/SoftwareQuality/> .
@prefix prc:

<https://w3id.org/squap/ProcessMaturity/> .
@prefix squap: <https://w3id.org/squap/> .

:compatibility-result a
squap:SoftwareQualityMeasurementResult ;
squap:assesses sw:Compatibility ;
squap:basedOnMetric :sonarqube-sw-quality ;
squap:hasValue :sonarqube-value-b .

:correspondenceresult
a squap:ArchitecturalAlignmentMeasurementResult ;
squap:assesses arc:Correspondence ;
squap:basedOnMetric :likert-scale-1-7 ;
squap:hasValue :likert-value-7 .

:documentation-result
a squap:ProcessMaturityMeasurementResult ;
squap:assesses prc:Documentation ;
squap:basedOnMetric :likert-based-prc-maturity ;
squap:hasValue :likert-value-6 .

:sonarqube-sw-quality a squap:Metric ;
squap:hasParameter :sonarqube-params .

:sonarqube-params a squap:Parameter ;
parametrizes :sonarqube-value-a ,

:sonarqube-value-b ,
:sonarqube-value-c .

likert-based-prc-maturity a squap:Metric ;
squap:hasParameter :likert-scale-1-7 .

:likert-scale-1-7 a squap:Parameter ;
parametrizes

:likert-value-1 , :likert-value-2 ,
:likert-value-3 , :likert-value-4 ,
:likert-value-5 , :likert-value-6 ,
:likert-value-7 .

12The RDF is available at https://w3id.org/squap/examples/gqm

https://w3id.org/squap/examples/gqm

80 Chapter 4. The SQuAP Ontology

:sonarqube-value-b a squap:Value ;
squap:grade "B" .

:likert-value-7 a squap:Value ;
squap:value 7 .

:likert-value-6 a squap:Value ;
squap:value 6 .

The example describes a banking system associated with three assessments about
the dimensions of software quality, architectural alignment, and process maturity.
The specific measurement results are: :compatibility-result, which assesses the
characteristic sw-quality:Compatibility (software quality), :correspondenceres-
ult, which assesses the characteristic arc-alignment:Correspondence (architectural
alignment), and :documentation-result, which assesses the characteristic prc-ma-
turity:Documentation (process maturity). Those measurement results are associ-
ated with a value (e.g. :likert-value-7, which identifies the value 7 of a Likert
scale) and a metric (e.g. :likert-scale-1-7, which identifies a Likert scale ranging
from 1 to 7). Each value is reported with a literal representation and its associated
with a metric. It is possible to use the axioms defined in SQuAP-Ont in order to gather
all the factors that can be enabled by the available measured quality characteristics
(e.g. sw-quality:Compatibility). This can be done, for example, by executing a
Protégé DL query, the result of which is shown in Figure 4.3.

In this example, different standards’ items represent the Goals, which are measured
with one or several (also concurrent) software quality metrics. In order to do so, we
followed literature recommendations [474, 83]. The result is the sum of different
evaluators, which represent a measurement of the three standards.

Figure 4.3: Execution of a DL query on the RDF sample.

Alternatively, it is possible to define productive rules in order to materialise the
factors that are enabled by the available measured quality characteristics. The fol-
lowing SPARQL CONSTRUCT is a possible productive rule for our example.

PREFIX squap: <https://w3id.org/squap/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
CONSTRUCT {

?measurementResult
:affectsMeasurementOf ?factorOccurrence .

?factorOccurrence
a squap:FactorOccurrence;

4.6. Potential impact 81

squap:satisfiesFactor ?factor
}
WHERE{

?factor
squap::usesQualityCharacteristic ?char;
rdfs:label ?factorLabel .

?measurementResult
squap:assesses ?char

BIND(IRI(
CONCAT("https://w3id.org/squap/example/gqm/",

?factorLabel))
AS ?factorOccurrence)

}

We remark that factors and quality characteristics are defined in SQuAP-Ont both
as classes and individuals by means of OWL punning. Hence, one can decide to use
DL reasoning or rules defined in any other formalism depending by the specific case,
e.g. SPARQL CONSTRUCT.

4.6 Potential impact

In the last decade there has been a considerable effort, especially by the Management
Information Systems research community, to study the phenomenon of the align-
ment of business and information systems [8]. What emerged is the importance of
such alignment for both business’ competitiveness and technical efficiency. In fact,
when it comes to integrate new solutions, modules, or interfaces, such alignment is
of key importance. Several other scholars found similar results, suggesting the im-
portance of standard governance defining key architecture roles, involving key stake-
holders through liaison roles and direct communication, institutionalizing monitoring
processes and centralizing IT key decisions [65]. Especially in the financial sector,
architectural governance is a key issue for IT efficiency and flexibility [416]. Generally
speaking, this finding is also largely shared beyond the financial sector [274]. The
need for people from different backgrounds (mainly business and technical ones) to
align the organization is the greatest insight of this research stream.

To tackle the issue of information systems quality from an empirical perspective
we started in 2014 to survey banking application maintenance group experts, Chief
Executive Officers, Chief Information Officers, IT architects, technical sales accounts,
Chief Data Officers, and maintenance managers [405]. This ongoing project is pursued
with a leading consultancy firm, according to which we were able to cover with our
representative sample the IT banking sector. Consequently, the need for a knowledge
representation of different measurement models is perceived as contingent, and re-
quested by the IT banking community in this broad project on information systems’
quality. One crucial insight that emerged from the factors is the difficulty to assess
their applications, also due to the diversity and complexity of measurement models.
Indeed, the three standards measure three different dimensions. Quality measures
the software as a product; Process as a process; and Architecture the alignment to
a taxonomy. Accordingly, metrics and predictors reflect these differences. Therefore,
the development of this ontology is a direct request from practitioners.

Since this research journey started from an industry’s need, an ontology, intended
as the knowledge representation of different measurement models is of pivotal impor-
tance, and a first tool to systematize the assessment of banking information systems’
quality. Thus, this ontology will be used for consultancy purposes, to implement the
SQuAP quality model. Moreover, it is also useful to trace changes of quality in time,
and suggest specific improvements. So, this ontology is the knowledge layer over which

82 Chapter 4. The SQuAP Ontology

this quality model is built. Consultancy firms (like that ones we are working with)
expressed their interest in a knowledge representation tool which can be displayed to
customers in the assessment phase, to tailor their consultancy efforts. However, also
bank’s IT departments will use it for similar purposes. They can also tailor made and
modify this ontology and the underlying metrics suggested by the literature, according
to their specific needs.

For this reason we used a CC-BY-4.0 license, open to commercial use. Our in-
dustrial partners consider the use and reuse of this ontology as a great value for the
practitioners’ community.

4.7 Conclusion and future development

In this chapter we have described SQuAP-Ont, an ontology to assess information sys-
tems of the banking sector. SQuAP-Ont a) guides its users through the (ongoing)
assessment phases suggested by Software Engineering literature; b) helps identify-
ing critical quality flaws within applications; and c) extends and integrates existing
work on software ISO ontology terms, diagram visualizations and ontology revisions.
SQuAP-Ont has been developed for commercial use, within an industrial project on
quality of banking information systems. Nevertheless, like all ontologies it is an evolv-
ing effort, and we are open to suggestions proposed by the broad researchers and
practitioners community. In fact, we have already addressed several issues raised in
previous studies, and according to industry’s expectations.

Our future work aims to facilitate enrichment and refine the ontology continuously
along with standards and literature recommendation changes. Another important as-
pect is to validate and monitor the application of SQuAP in domains and software
projects different from the Banking System context. This may lead to the identifi-
cation of additional factors as well as to the enrichment and refinement of the ones
already identified.

83

Chapter 5

Knowledge Engineering for

Socio–Technical Software

Engineering

5.1 Introduction

The most critical phase in system design is the one related to the full analysis and un-
derstanding of “User Requirements”. Difficulties arise especially where the ambiguity
on the functions to implement is a continuous challenge. Due to the volatility of the
user needs, changing of scenarios, and the intrinsic complexity of software products,
requirement engineering benefits from an Agile approach in terms of (i) attainment
with user’s contingent needs, (ii) velocity, and (iii) cost reduction.

Formal methods for requirement engineering have primarily been conceived to
drive efficiently the link between customers and developers [142]. They focus on
reducing the management risk connected with the initial software production phase.
The results achieved by these strategies are controversial and not always cost effective
[294]. The diffusion of the use of Agile practices in the software production process is
putting the human factor as the key asset to capture and understand the user needs
[9].

We experienced an extensive use of methodologies to identify the “unexpressed
dimension” of the user requirements and to surface the “implicit” knowledge of users
within a real case study of an Italian governmental Agency.

The underlying principle is the methodological formalization of the non-linear
human thinking into requirements in the form of agile “User Stories”. Such an approach
was successfully implemented within a mission critical organization to develop critical
software applications. User stories are sentences written in natural language and have
a very simple structure. The vocabulary used to write a user story depends on which
user describes her need, thus is some sense it depends on the mental model the user
has of her needs [456]. Capturing the essence of the users mental models [370] and
overcoming the intrinsic ambiguity of the natural language are the two main goals of
our study. Multiple dimensions to build a dynamic representation of requirements are
the core innovative aspect of this work.

We give a problem definition of how to structure the description of user stories
following Agile principles. The lessons we learned and some considerations about
the importance of ontology based solutions for Knowledge Based Systems (KBS) in
this context are discussed. The proposed approach is useful not only for requirement
engineering but also to structure a highly interoperable knowledge representation ar-
chitecture which enables a fast and flexible use in mission critical contexts.

84 Chapter 5. Knowledge Engineering for Socio–Technical Software Engineering

This chapter is organized as follows. In Section 5.2 we review the most critical
aspects of the use of KBS in mission critical systems; we also recall the basics of the
iAgile process. Section 5.3 shows how we manage requirements using an ontology.
The use of KBS technologies by the sponsoring organization is explained in Section
5.4. Finally, we draw our conclusions, summing up our findings in Section 5.5.

5.2 Complex software systems specification

In mission critical domains, the velocity of release delivery is often considered as one
of the most valuable assets. A release will usually be a partial version of the final
product, but the important issue is that it already works usefully for its users. An on-
field command view of a military operation (i.e., user view of a Command & Control
system) typically is: “I want the right information at the right time, disseminated and
displayed in the right way, so that Commanders can do the right things at the right
time in the right way” [41].

Important functionalities may be developed or refined in the first few sprints, due
to the continuous interaction between users and developers. The primary objective
of this constant dialogue within the development team is the rise of the implicit and
unexpressed knowledge, which will be translated by developers into software artifacts.

One typical example in mission critical contexts is the “situational awareness”. It
may be described as: “The processes that concern the knowledge and understanding
of the environment that are critical to those who need to make decisions within the
complex mission space” [41].

Such a sentence contains a huge quantity of implicit knowledge. For example,
the interpretation of “those who need to make decisions” has to be clarified. More
generally, in a typical agile user story words like “situational awareness” would be
written as “as the one who needs to make decisions, I want to achieve the knowledge
and understanding of the environment that are critical to accomplish my mission”.
This statement is, of course, still overloaded with implicit knowledge.

In our case study, this issue was overcome through a careful composition of the
team including domain experts. Continuos face to face and on-line interactions allowed
to minimize information asymmetry [Akerlof1995] and align the different mental
models [370]. The main shared target was to deliver effective software to end users in
a fast way.

To understand better the main use cases, consider that a military C2 Informa-
tion System (IS) for mission critical purposes is essentially built on the exercise of
authority and direction by a properly designated commander over assigned forces in
the accomplishment of the mission [446].

In order to deliver this capability several integrations have to be taken into account,
i.e., hardware, software, personnel, facilities, and procedures/routines. Moreover, such
a system is supposed to coordinate and implement processes, like information col-
lection, personal and forces management, intelligence, logistics, communication, etc.
These functions need to be displayed properly, in order to effectively support command
and control actions [433].

The IS we are reporting on has been based upon the development of mission specific
services, called Functional Area Services (FAS), which represent sequences of end-to-
end activities and events, to execute System of Systems (SoS) capabilities. These
mission oriented services are set up as a framework for developing users’ needs for new
systems. Furthermore, mission services are characterized by geographical or climate
variables, as cultural, social and operative variables, which represent functional areas

5.2. Complex software systems specification 85

or special organization issues. Mission services of the C2 system have been developed
according to the NATO–ISAF CONOPS (Concept Of Operations), as required by
management of the governmental agency we cooperate with:

• Battle Space Management (BSM)

• Joint Intelligence, Surveillance, Reconnaissance (JISR)

• Targeting Joint Fires (TJF)

• Military Engineering - Counter Improvised Explosive Devices (ME-CIED)

• Medical Evacuation (MEDEVAC)

• Freedom of Movement (FM)

• Force protection (FP)

• Service Management (SM)

Thus a C2 system is made of a set of functional areas which in turn respond to a
number of user stories.

5.2.1 Evolution of a Mission Critical Information System through

Agile

The mission critical information system we have studied is a Command & Control
system which was capable to support on-field missions according to the NATO–ISAF’s
framework. The initial idea was to develop a Network Centric Warfare system (NCW)
[15]. This system supports many of the operational functions defined in the contest
of the NCW, according to the requirement documentation. The system has been
employed in many exercises and operations and went through several tests. Today
the system is serving mission critical purposes in NATO–ISAF operations e.g., the
Afghanistan Mission Network.

However, several difficulties and limitations arose. The acquisitions were done ac-
cording to Waterfall procedures, started in the early 2000s and went on until recently.
The obsolescence of the components and related functionalities, along with the main-
tenance and follow-up costs connected to the Waterfall software life cycle are a big
issue. Several problems are related to the impossibility to develop quickly new func-
tionalities required by on-field personnel in a fast-changing mission critical scenario
e.g., a modern asymmetric warfare. This led the use of agile software development
paradigms which are supposed to overcome this crucial constraints.

Therefore, since 2014 a new “Main Command and Control System” (Main C2)
to support the former system (Tactical Command and Control System or Tactical
C2) has been developed. It was urgent to support the evolution of the Command
and Control system, assuring a higher customer satisfaction in a volatile requirement
situation. Moreover, due to budget cuts, the new system had to perform better with
less resources. Costs related to both development and maintenance had to shrink
rapidly.

Functional Area Services (FAS) are web-based services with a client–server ar-
chitecture. Any FAS software component can be separately modified to respond to
specific mission needs, as defined by users. The Main C2 has been validated in NATO
exercise for the first time at CWIX 20151, with positive results. Core services are build

1www.act.nato.int/cwix

86 Chapter 5. Knowledge Engineering for Socio–Technical Software Engineering

Figure 5.1: Sprint representation, inspired by [399]

to maximize interoperability with all the relevant NATO software packages available
and COTS product. Therefore, Main C2 is both flexible to implement rapidly user
needs, with high interoperability of already existing systems, like the Tactical C2.

To develop it, a new methodology was implemented, applying the principles of the
“Agile Manifesto” [9] to both increase the customer satisfaction and reduce software
cost. After the Agency’s top management decided to go Agile, there was some dis-
cussion about the method to use. There was the need to exploit Agile’s values and
capability but within a mission-critical environment.

Scrum was found as the most suited, since it allows a high degree of accountability
[421]. This methodology is very successful in commercial environments and the most
widespread Agile methodology [465]. Moreover, it was the methodology which was
the best known within the Agency. Therefore, other methodologies were not really
taken into consideration, even though they might have given similar results.

The teams are mixed: they include developers from the defense industry and
governmental officials, based at the Agency’s Headquarter in Rome. The initial pro-
duction phase was extremely successful and even the start up “Sprint” (production
cycle of five weeks) was able to deliver valuable software [110].

What happened was that the expectation of the Agency’s stakeholder grew rapidly.
From 2014 to 2016, the methodology was refined, to respond to mission & security
critical needs of the operations domain. Thus, an ad hoc Scrum-like methodology was
developed with the name of iAgile, and tested for the development of the main C2
system [307].

This methodology, depicted in Fig. 5.1, has been developed for critical appli-
cations, where requirements change already during the first specification and after
delivering the first release. The adaptation of Scrum for the special needs of C2
software systems has also been proposed in [194].

A well known approach to analyzing ephemeral requirements consists of formaliz-
ing and prototyping the requirement specification using a suitable language, like for
instance Prolog [437]. The Humphrey’s Requirements Uncertainty Principle remins us
that, for a new software system, the requirement (the user story) will not be completely
known until after the users have used it [446]. Thus, within iAgile, Ziv’s Uncertainty

5.2. Complex software systems specification 87

Principle in Software Engineering is applied, considering that uncertainty is inherent
and inevitable in software development processes and product.

The incremental development approach enables easily any change of requirements
even in the later development iterations. In our case study, due to the close interaction
between the “requirement chain” i.e., from the customer to the development team, FAS
were delivered with a high degree of the customer satisfaction.

The Scrum methodology developed within the Agency fully supports the change of
requirements according to contingent mission needs. The traditional command chain
was adapted to the development needs. Both structured and horizontal characteristics
of Scrum are particular effective in a critical environment. These two characteristics
are embedded in the model.

Mission critical organizations need to comply with a vertical organizational chain,
to empower different stakeholders to their duties. In the field where we had this
experience, a hierarchy enforces clear responsibility and accountability within the
command chain. So, the customer becomes the accountable official for the mission
needed requirement. However, to develop different mission critical requirements, it is
crucial to have a straightforward and direct communication and collaboration with
final users, according to the Agile Manifesto. Therefore, in the methodology, some user
representative becomes part of the development team, allowing a better understanding
of the needs and a faster development of the feature.

One of the key strengths of the methodology is its flexibility. The process is
defined only at a high level, to be adapted in any theater of operation. It defines
values, principles, and practices focused on close collaboration, knowledge sharing,
fast feedback, and tasks automation.

The main stakehlder is the Product Owner (PO), who gives to the developing team
the first input which is a product’s vision. It is a high level definition to address the
task that will be refined during the development cycle through the Backlog Grooming.

The Backlog Grooming is a key activity which lasts over the whole development
process. It focuses the problem definition, refining redundant and obsolete require-
ments. Moreover, it prioritizes requirements according to contingent mission needs.
The acceptance criteria and the scenario definition are set by the PO in the user
stories.

The developing team used by the Agency is composed as follows (such team com-
position is an adaptation of standard Scrum roles within a mission critical context).

• The Product Owner is the governmental official in charge of a specific mission
critical function which has to be developed. He provides the general vision of the
final functionalities to the whole team i.e., what the system has to do. It may
be that PO delegates its role to another official of his team. In this case, the PO
becomes a team of people that has to decided about the systems functionalities
and discuss them within the development team. Ideally, the PO team has to be
representative of the final user, thus it should be made also of real users.
This crucial role is pivotal for the positive outcome of the sprint. De facto, the
shortening of the “requirement chain” through the involvement of end users and
the constant feedbacks of the PO during the sprint is a key success factor.
In our case study the stakeholders were initially barely aware about the de-
velopment process. Due to a constant involvement within the iterations, the
stakeholders became aware of the development methodology and aligned their
expectations increasing their satisfaction. Through this involvement, there is
an alignment of both interests and expectations that raises the quality of the

88 Chapter 5. Knowledge Engineering for Socio–Technical Software Engineering

final artifact. So, the final product may not be fancy but down to earth with
a high degree of immediate usability by a final user. Therefore, the degree of
user involvement is of highest importance since it has a direct impact on the
development itself and a ground for building a sense of ownership of the final
product which is essential for the acceptation of the final product.

• The Scrum Master (SM) is a domain expert and is supposed to lead the develop-
ment team and the Product Backlog management. The SM shapes the process
according to mission’s needs, leading continuous improvement like in any Agile
team. He has to shield the development team from any external interferences as
also to remove any hinder which may occur. What typically happens in mission
critical organization is that information is shared only through very structured
processes. So, there could be a loss of productivity, due the waste of time to
obtain relevant information for the development process. The SM knows how to
gain such information and is in charge of sharing it when needed, with no waste
of time from the development side.
According to the critical domain, he is accountable for the team’s output. So,
he is a facilitator but he takes the control of the team, considering also the
different backgrounds of the members. Both PO and SM collaborate closely to
refine requirements and get early feedbacks. Furthermore, his role is to build
and sustain effective communications with customer’s key staff involved in the
development. Finally, he is in charge of the overall progress and take responsi-
bility for the methodology used within the development cycles. So, he may do
some corrections within the team to deliver the expected output.

• The Development Team composed by both military and civil contractors is in
charge of the effective development. The team members are collectively respon-
sible for the development of the whole product. Within the team there are no
specialized figures (e.g., architects, developers, testers), and it is the team that
organizes itself internally and takes responsibility over the entire product.
The self organization empowers the team for the execution of the Sprint Backlog,
i.e., the developed Product Backlog within the sprint, based on the prioritization
by the PO. The team members are lead by the SM who is mainly a problem
solver and interfaces with the organization which needed the mission critical
product.
The number of team members is between three and five highly skilled software
developers. The absence of a specialization is due the fact that any member is
supposed to have a good knowledge about the system developed with a clear
vision on the final artifact. Finally, they are also involved in the testing phase,
which is carried out by an independent audit commission.

• The Coach is an employee of the civilian main contractor and is in charge of
the management of contractual issues. Since the typical contractual form for
developing contractors is body rental, the Coach facilitates organizational issues
which may occur during the development cycles. Her role is to smoothen problem
which may rise, to get the team oriented to the development of the artifact.

After each sprint a deployable release of the system is delivered. In order to
assure security standards of mission critical applications extra testing is pursued.
This activity is carried out before the deployment within the mission critical network.
So, before deployment three steps are carried out as follows:

5.3. Requirements engineering, management & tracking 89

1. The development team runs a first test in the development environment and
then in a specific testing environment (stage), having the same characteristics
of the deployment environment.

2. Afterwards, testing activities are performed by Agency’s personnel involved in
test bed based activities, in limited environments to validate the actual effective-
ness of the developed systems in training and real operating scenarios (Integrated
Test Bed Environment).

3. Finally, testing activities on the field performed to verify the compliance of
the developed systems to the national and international standards and gather
operational feedback to improve the system’s performance and usability.

Only after the positive check of these three steps the functionality is deployed.
At the end and beginning of a new Sprint, all interested stakeholders discuss about
positive and negative aspects, to improve the next iteration. Therefore, it is an in-
cremental process, which changes with the operational scenario. It is not a frozen
methodology, but it evolves along with Agency’s needs.

Finally, a quite important outcome of this approach is the cost reduction in all the
system’s lifecycle. A first assessment of the product cost per “line of code equivalent”
with respect to other comparable internally-produced software showed a cost reduction
by 50%. To consider those costs we computed a comparable software by dimension
(LOC) and functional area (command and control). We considered all relative cost
of personnel, documentation and maintenance costs and fix cost for office’s utilities.
The assessment after two years showed more significant cost reduction.

Generally speaking, we know from past experiences that, on average, cost per
ELOC in similar C2 domains is about 145 dollars; with regard to ground operation the
cost is about 90 dollars [383]. This study, in particular, was carried out for Waterfall in
a procedural context. Based on Reifer’s study, we carried out our evaluation regarding
iAgile cost. It was quite surprising to realize that the software we measured had an
average cost of 10 dollars per ELOC.

This was possible cutting maintenance and documentation costs, which represent
the most relevant part of software development costs [377]. The cost reduction came
mainly from the minor rework due to requirement misunderstanding (project risk
reduction) connected to the short delivery cycle and to the integration of subject
matter experts into the agile teams (asymmetric pair programming typical of iAgile).
Moreover, the reduction of non-developing personnel played also an important role.

Since project management responsibilities were in charge of the Agency, the use
of internal personnel reduced the cost of hiring industry’s senior figures. Also the
increase of teams’ effectiveness from sprint to sprint led to cost cuts. Due to the
incremental domain knowledge acquisition gained through domain experts and user’s
feedbacks developers were able to produce artifacts which were attained to customer’s
expectation, decreasing sensibly rework.

5.3 Requirements engineering, management & tracking

Agile software methodologies like Scrum put the development team at the center of
the development process removing the major part of the procedural steps of the legacy
methods and the connected “milestone evidence” mainly consisting of documents and
CASE artifacts [46]. Agility is supposed to increase the production effectiveness and,
at the same time, to improve the quality of the product.

90 Chapter 5. Knowledge Engineering for Socio–Technical Software Engineering

However, in order to go Agile, a Waterfall-like static requirement documentation
can not be replaced simply with a product backlog. The old-fashioned Waterfall
frozen requirement document is no longer effective to capture the user needs in quickly
changing mission critical environments. Replacing structured and consolidated text
with volatile lists of simple sentences may result, in the case of complex systems, in
a sensible loss of knowledge. Traceability of how the solutions are found and both
the user and the developer growth may become “implicit and unexpressed knowledge”
which are key elements within a high quality software development process.

Several studies suggest to overcome requirements misunderstanding as soon as
possible, in order to improve the project results and to decrease development and
maintenance costs within its life cycle [63]. This is one of the reason why the Agency
started to develop some mission critical software in an Agile way, in order to “shorten
the requirement chain”, fostering software quality and cost reduction.

The ambiguity concerning the functions to implement is an everyday challenge.
Due to the volatility of the user needs, changing of scenarios, and the intrinsic com-
plexity of software products, a dynamic requirement engineering worked very well in
an Agile environment [168]. However, the most challenging task is to identify the
“tacit dimension” of the user requirements and to surface the “implicit” knowledge of
users [335].

In most agile approaches requirements are given in the form of “User Stories”, which
are short sentences in natural language usually describing some value to be computed
in some scenario in favor of some typical class of users. Such formalization drives
non-linear human thinking in a standardized form where users have to explain how
they imagine the system. This approach has been implemented for mission critical
applications. Capturing users requirements and overcome the intrinsic ambiguity of
the natural language are two of the main goals of this effort. Fully refined requirement
specification documents are no longer meaningful; instead they should incorporate
some guidelines to help the developers to effectively measure the quality of the features
so that these can be improved. The result is a novel proposal based on an evolution
of the “Scrum type” Product Backlog, here represented:

• User Story. A structured sentence which summarizes the functionality. Exam-
ple:
As <role>
I want to <functionality description>
in order to <goal to pursue>.

• Business Value. Describes the business value of the desired functionality.

• User Story Elaboration. It is an extended user story and it details how the
functionality has to be implemented.

• Acceptance Criteria. Non functional requirements are given, necessary to ac-
cept the functionality (e.g., security, compliance to standards, interoperability
issues). Moreover, also functional requirements have to be verified, to accept
the developed software. Tests are typically focused on these functionalities.

• Definition of Done. It is when the story can be considered fully implemented.
The Definition of Done includes the Acceptance Critera and anything that the
PO believes is necessary that the team does on the code before it can be released.

• Expected Output. It is a list of expected outputs from the functionality, once
implemented.

5.3. Requirements engineering, management & tracking 91

Software development methodologies should be inspired by their organization’s
needs and not by programming concepts. Well aware of Conway’s principle [107] it is
the mission need that shapes the information system. Not the structure of the orga-
nization, which in our case is highly hierarchic and in its communication flows reflects
the Waterfall paradigm. Due to the constant iteration between the users’ community,
through the Product Owner, and the development team, required applications attains
users’ expectations. Our experience has shown the effectiveness to overcome the lim-
itations of existing alternatives of a Waterfall like requirement engineering, which is
ineffective for complex user requirements, especially in the mission critical domain.

If continuous interaction, typical of Agile, is crucial to overcome structural infor-
mation asymmetry, which is present in any human interaction [12], experience showed
that it is not enough. Any software project, especially Agile, involves different people,
with different backgrounds and experiences. In other terms, we all have our “mental
models” [234], which are the source of this information asymmetry. Mental models
are psychological representations of real, hypothetical, or imaginary situations, iden-
tified by Kenneth Craik [111]. They are mental constructs of the world around us. A
mental model is a representation of the world around us and shapes our behavior and
approach to problem solving. Like a pattern, once we experimented that the solution
works, we tend to replicate it. It helps us to not restart from zero any time we have to
face a problem. Thus, it is a simplification. So, it is a mind construct of “small-scale
models” of the reality, to anticipate events, to reason, and to underlie explanation
[111].

To give an example of the difference between the semantic meaning of a nominal
identical concept (i.e., difference in mental models) let us consider the notion of “battle-
space geometry”. Starting from a user story, a PO may write: “as a commander I want
to be able to represent the forward line of my sector on a map to see the deployed
materials”.

The user has in mind a “line” whose geometrical elements (waypoints, start, finish
and type) are decided by a superior command post that is given to him as part of
a formatted order packet which he expects to appear on the map by a single click
of his mouse and to be updated as the tactical situation changes. The developer’s
first comprehension will be “drawing” tools able to produce a line by simply calling
some graphic libraries. The focus is on how to implement it writing the least possible
quantity of new code. This is just an example but it qualifies the differences between
the two worlds very well.

For the user the image on the video is just a representation of the real world, for
instance a real portion of land where the operation is taking place. Instead, for the
developer the same object is the result of a series of interactions showing a map on
a video where he has to provide a design tool. As trivial as they may seem these
differences are at the root of the software requirement specification problem that in
the past has been tackled by freezing the requirement text and operating a certain
number of translations into formal representations without reconciliation of the two
different mental models.

Some concepts developed in conceptual semantics explain how the representation
of the world expressed in natural language is the result of a mediation between the
speaker’s perception of the world and the current setup of his own mind (i.e., mental
models). This poses the question on what we really do communicate about require-
ments when we use natural language. In [224] this problem is studied, and a solution
based on feature maps is proposed.

In our case what emerged is a common ontology used by both users and devel-
opers. We found out that working on the ontology in the initial production process

92 Chapter 5. Knowledge Engineering for Socio–Technical Software Engineering

(i.e., Product Backlog) improved the effectiveness of the Agile approach. In fact, the
development of a Command and Control ontology, useful as knowledge representation
tool as described in the next section, is also effective to merge different mental models
and to support requirements traceability [462].

5.4 Use of KBS and OBS within iAgile

The use of Ontology-Based Systems (OBS) for managing requirements and user stories
when applying Agile methods has been explored many times, but it is still an unre-
solved issue [271, 297]. Some literature suggests that ontology driven development
should be the norm, both in general and specifically in the Agile arena [259].

The use of OBS is of paramount importance in a mission critical context. We have
experienced it in peace-keeping operations, where rapid information flows coming
from different actors (e.g. military, NGOs, citizens, press.) have to be processed.
The different needs, contexts, and objectives of these actors are often reflected into
a wide range of viewpoints and assumptions, producing different, overlapping and/or
mismatched concepts and structures that essentially concern the same subject matter.

Different “organizational routines” [Nelson2009] lead to different communication
standards, along with “tacit knowledge” [367]. Thus, there is the need to organize
the different “mental models” [370] around the development process. Ontologies are a
powerful tool to overcome this lack of a shared understanding, providing an unifying
framework for the different viewpoints and mental models that coexist in vast and
heterogeneous contexts.

As described in [462], this shared understanding provides many practical benefits,
such as serving as the basis for human communication (reducing conceptual and ter-
minological confusion), improving the interoperability among systems with different
modeling methods, paradigms, languages and software tools, and supporting the main
system engineering principles (such as reusability, reliability, requirements identifica-
tion, system specification, etc.). The adoption of ontologies as a core components of
software architectures [98] in conjunction with Agile methodology development prin-
ciples has proven its effectiveness in changing and variable contexts.

An overall idea of the main elements of the development process is depicted in
Figure 5.2. Both KBS and OBS are build on users’ mental models. This means
that requirements and the ontology represent user’s view and needs. So, the user
stories collected are the core elements. Following Agile methodologies principles, such
artifacts are fundamentals to distill both information about the system to develop,
and knowledge on the domain in which such system is expected to operate. User
stories have been used to extract the requirements of the C2 system, and to develop
an ontology for representing the main concepts of the mission critical domain.

So, the backlog grooming (i.e., the refinement of the user stories) becomes the
instant where users stories split. Requirements are defined and the ontology is devel-
oped. This split is not straightforward. Considering that ontology’s entities definition
is very helpful to define better user’s expectations, requirements documents are de-
veloped separately from the ontology. While requirements are developed manually
by the development team, the ontology is developed by Protégé2 [260]. As shown in
Figure 5.3, developers already exposed to semantic technologies use this standard tool
to develop the domain specific ontology.

2http://protege.stanford.edu

5.4. Use of KBS and OBS within iAgile 93

Figure 5.2: The ontology of the application domain and the system
requirements are derived from user stories

5.4.1 An Ontology-based Architecture for C2 Systems

One of the main challenges in the mission critical domain is the ability of managing in a
precise and accurate way the complexity, variability and heterogeneity of information.
In particular, the ability of integrating different sources of information, extracting the
most relevant elements and putting them into the context is of paramount importance
for supporting the tasks of control and decision making. In our approach, ontologies
and related technologies are the main tools for facing both the methodological and
technological aspects of such context.

Similarly to other scenarios, also in the the mission critical domain people, organi-
zations, and information systems must communicate effectively. However, the various
needs, contexts and objectives are often reflected into a wide range of viewpoints and
assumptions, producing different, overlapping and/or mismatched concepts and struc-
tures that essentially concerns the same subject matter. Ontologies are often used to
overcome this lack of a shared understanding, providing an unifying framework for
the different viewpoints that coexist in vast and complex C2 systems.

As described in [462], this shared understanding provides many practical benefits,
such as serving as the basis for human communication (reducing conceptual and ter-
minological confusion), improving the interoperability among systems with different
modeling methods, paradigms, languages and software tools, and supporting the main
system engineering principles (such as reusability, reliability, requirements identifica-
tion, system specification).

The central role played by ontologies is summarized by Fig.5.4, which depicts the
overall architecture of the C2 system. The ontology we have developed describes the
data model contained in a Knowledge Base (KB), which contains all the information
needed by the C2 system. The KB is populated by ad hoc software components
(i.e. adapters), that extract information from all the different sources (e.g. legacy

94 Chapter 5. Knowledge Engineering for Socio–Technical Software Engineering

Figure 5.3: A snapshot of the C2 ontology during its development
with Protege. The class and property hierarchies are shown on the
left, while other contextual information (e.g. annotations, instances

and relevant properties) are shown on the right.

tactile systems, news or ONG CMS, etc.), and convert it in semantic statements that
conforms to the ontology. The frequency of the KB populating processes varies from
sources to sources. Where possible, triggering mechanisms have been used to identify
modifications in the sources and activating the data extraction. Otherwise, adapters
performs the data extraction at fixed (and configurable) intervals. Of course, high
data quality is a major issue here [97].

The KB contains provenance information defining:

• the origin of the data;

• the agent (usually a software component) responsible for the data extraction;

• other useful metadata (e.g. time information, type - such as insertion, deletion,
update - of the KB modification, etc.).

The main advantages of having such information are the ability to discern among
different authority levels, the capability of performing comparisons and advanced fil-
ters, just to cite a few. Moreover, from a technical point of view, provenance infor-
mation are of paramount importance to have full control over the KB state during
the whole system lifecycle (from the inception and development phases to the final
operating period).

The Main C2 system is depicted at the upper vertex of the star architecture. It
implements all the functionalities required by the users and described in the collected
user stories. All the data required to expose such functionalities to the users are

5.4. Use of KBS and OBS within iAgile 95

Figure 5.4: The C2 system is modeled around the star architecture
pattern. The domain ontology is the center of such architecture, and

is used to integrate different resources and systems.

retrieved from the KB by means of standard semantic queries. The same mechanism
is used for adding new information in the KB (e.g. for keeping track of the output of
the system users’ analysis and decision processes).

5.4.2 Developing domain ontologies from user stories with iAgile

Ontologies play a crucial role in the development of the framework. The primary
objective is to develop an ontology that is capable of modeling the complexity of
mission critical domains. The starting point and primary source of information for
this task is the set of 600 user stories collected from the system final users and domain
experts. User stories have been grouped in small buckets (having between 5 and 10
user stories each). The process started by considering a first bucket, that has been
used to develop an initial model. Finally, the ontology has been developed iteratively,
by adding a new user story bucket to the set of already considered ones at each cycle.

At the end of each cycle, a small dataset (test dataset) is created according to the
current ontology and considering the user stories under examination. Such a dataset
is used to perform a quality check on the current ontology. In practice, tests are
a series of queries that are derived by analyzing the functionalities described in the
user stories. A query test must be executed on the test dataset to check the ontology
validity after the modifications performed in the last cycle. In case of a positive result,
a new user story bucket is considered and another development cycle is performed.
Otherwise, the ontology is refactored and modified until the quality check is satisfied.

In order to clarify the ontology development process, we present in Figure 5.5 a
bucket composed by eight real user stories collected for the C2 system.

96 Chapter 5. Knowledge Engineering for Socio–Technical Software Engineering

US 2825 (2656)

As <system user>I want <to figure out if the track relative to an object (equipment)
represented on the map has been updated, or if the position has just been
changed.><Such a status would be highlighted by a green border around the icon
on the object. This function should be enabled or disabled by the user.>

US 2828(2659)

As <commander of the logistics>I want <to view a summary, in both tabular and
graphical format (e.g. histogram), of the efficiency logistic items.><The total of
logistics items and the level of efficiency should be displayed in percentage of the
total.>

US 2829(2660)

As <commander of the logistics>I want <to be able to view on a geographical map
the geographical distribution of identified logistical items (e.g. equipment, materials,
etc.).><The map shall display the concentrations of materials at the logistic centers,
represented by a specific colored icon associated with the type of material. The color
should reflect the overall efficiency of the logistic item. For each logistic center, it
should be possible to view the amount items, with an histogram graph showing both
total items along with the percentage of efficiency.

US 2822(2653)

As <system user>I want <that the system can receive and display information about
convoy (e.g. trucks, helicopters, planes, etc.) - for example Moving Convoy, Halted
Convoy, etc.>

US 2821(2652)

As <system user>I want <that the system can store information about convoy (e.g.
Moving Convoy, Halted Convoy, etc ...).>

US 2820(2651)

As <FAS web user>I want <to be able to view on a geographical map the ge-
ographical distribution of identified logistical items.><The map shall display the
concentrations of materials at the logistic centers, represented by a specific colored
icon associated with the type of material. The color should reflect the overall ef-
ficiency of the logistic item. For each logistic center, it should be possible to view
the amount items, with an histogram graph showing both total items along with the
percentage of efficiency.>

US 2819(2645)

As <FAS web user>I want <to be able to view on a geographical map the ge-
ographical distribution of identified logistical items.><The map shall display the
concentrations of materials at the logistic centers, represented by a specific colored
icon associated with the type of material. The color should reflect the overall ef-
ficiency of the logistic item. For each logistic center, it should be possible to view
the amount items, with an histogram graph showing both total items along with the
percentage of efficiency.>

US 2711(2296)

As <system user>I want <to display on the map the trajectory and the last positions
of a specific object. This functionality should be enabled or disabled by the user.>

Figure 5.5: User stories collected with iAgile are used to develop the
system domain ontology

5.5. Conclusions 97

Figure 5.6: A fragment of the developed domain ontology. Three
general concepts are represented (i.e. logistic item, location and con-
voy), and the trajectory pattern has been used to model positional

information

Each user story is identified by a unique identifier. User stories have a common
fixed structure, where users’ roles, objectives and user story specifications are eas-
ily identifiable. During a further step of analysis, the concepts that are the main
candidates for becoming classes in the domain ontology have been underlined.

An excerpt of the ontology developed starting from the eight user stories is depicted
in Figure 5.6. Three general concepts are modeled: logistic item, location and convoy.
Well known ontology engineering principles and best practices described in [178] have
been used throughout the whole process. As shown in the ontology fragment, for
example, the trajectory pattern [218] has been used to model objects positions and
movements. This is an elegant solution for attaching trajectories composed of segment
with a geographical or physical extents to any object of the domain.

The process of ontologically modeling the domain has many practical benefits. For
example, we successfully converted requirements and constraints to the data model in
semantic assertions. Such restrictions can be automatically checked by using popular
semantic tools (e.g. reasoners). For instance, we can imagine to add an assertions that
states the segments of a trajectory should not be in overlap with respect of both the
time and space dimensions. In another words, we can impose that an object should
not have two different positions at the same time. All the cases that do not respect
such limitations in the data are automatically identified as inconsistencies stated by
the semantic reasoners.

5.5 Conclusions

Knowledge Based Systems and Ontology Based Systems are key elements for the
development of software-intensive mission critical systems. We reported about a real
case study concerning a mission critical system developed for an Italian governmental
Agency. Volatile requirements and fast changing operational scenarios led to the choice
of a new development process model, transitioning from Waterfall to Agile. However,
Agile is not a panacea per se but needs to be adapted for complex mission critical
purposes. We customized Scrum into iAgile, developing a flexible but structured
paradigm. Ad hoc steps were designed to comply with both velocity and security.
Moreover, we found that such methodology led to an important saving of development
and maintenance costs.

The role of the KBS we have used is double: to disambiguate requirements and to
build an ontology for interoperability and knowledge representation. The ontology was
designed using semantic tools during the requirement specification. Moreover, at the

98 Chapter 5. Knowledge Engineering for Socio–Technical Software Engineering

same time, the user story elaboration is carried out for the functionality development.
This process allowed to align the different mental models of users and developers.
Therefore, after the first formalization of entities, it supported the next Sprint backlogs
with a high relevance to users’ expectations.

The big advantage of the use of an ontology derives from the interoperability
with other legacy systems. In a real-world operational scenario, the mission critical
information system is fed by information of different provenance. As shown, also
non-governmental actors may deliver useful elements for an up to date situational
awareness. So, from different sources it is possible gather data in a flexible and in-
cremental way improving the information completeness, necessary to take mission
critical decisions. Moreover, through the relationship between ontologies of other gov-
ernmental or intergovernmental agencies both interoperability or replacement of such
system is highly simplified. Since the Agency is supposed to offer security services in
multilateral and multinational operations, interoperability is of strategic importance.
Therefore, the presented approach is an important driver for a smooth and effective
system deployment in a mission critical environment.

Future research will go in several directions.
A comprehensive approach to OBS, based on the acquired experience, will be

implemented within the Agency with the aid of knowledge-based tools. Moreover,
a Machine Learning approach in which requirements are automatically processed to
assist the continuous development with Scrum [403] has also to be developed. Also,
the use of concurrent development methodologies to support velocity and reliability
has to be improved [401], along with a flexible system’s architecture. Especially,
the reliability in terms of systems “antifragility” of mission critical applications needs
further investigation [402], [406]. Although we are aware of the relationship between
the software quality dimension and its architecture [405], still efforts need to be pursue
to figure out how Agency’s business goals (e.g., velocity, cost reduction) impact on
the system. Finally, also issues related to software reuse have to be explored [102, 99],
since the cloning practices, also in critical systems, is quite common.

99

Chapter 6

Agile Contracting

6.1 Introduction

In several commercial domains Agile development has been effective for building new
software systems or to evolve an existing one rapidly, decreasing development costs.
The role of IT, intended as value-focused support for the design and implementa-
tion of digital technologies, disrupted new product and service developments [371,
372]. While consumers are becoming more keen to use technology for their daily ap-
plications, businesses are rethinking about customers value and the relative business
models for their competitive differentiation [50]. Therefore, entire industries restruc-
tured their business processes to deliver new capabilities and goals to the new business
model [345]. As software becomes more essential to the world’s day-to-day activities,
the community is calling to move Agile software development beyond a “craft–based
approach to become a true engineering discipline” [226].

In this scenario, a business area of particular relevance for the size and the num-
ber of opportunities are mission & security critical systems, especially for defense
applications [101]. These applications are usually very expensive and are managed
with specific care from public administrations which bid contracts to external soft-
ware houses. Apparently, a Waterfall software development process model responds to
some fundamental needs in such organizations, like (i) a clear definition of the costs,
(ii) early requirement definition, (iii) predefined schedule, and (iv) tracing liability if
something goes wrong.

However, when costs rise exponentially during maintenance due to poor software
quality of the deliverables or the loose requirement implementation, Waterfall shows
all its limits. Moreover, velocity is a crucial factor for such organizations. Military op-
erations need do be deployed within a very short time range on very different scenarios
[MFRCR16, 100]. Information systems have to evolve accordingly. Waterfall, is not
a suitable paradigm, since it is not enough flexible, expensive, and it fails frequently
[434].

Although there are industry–scale Agile development techniques for the devel-
opment of critical systems, like SAFe [284, 143], contractual aspects are typically
overlooked. With regard to contractual issues, the adVANTAGE framework is a po-
tential model for commercial organizations [67]. When a project is executed following
a contract compliant with the adVANTAGE framework, a priority list of requirements
in the form of user stories - namely a backlog - is managed jointly with the customer.
Such a backlog is addressed in a sequence of Sprints. Each Sprint is a project phase
of fixed duration, usually from two to four weeks, and realizes the software satisfying
some of the top requirements found in the backlog. The development services are
billed according to the quality of the software delivered at the end of each Sprint. If
the contractor fails to realize the user stories agreed for a certain Sprint within the
available jointly agreed target budget, the additional costs will be charged at reduced

100 Chapter 6. Agile Contracting

daily rates. This approach or one similar is often followed in contracts between private
companies.

However, the lack of concrete proposals, their experimentations, and discussions
in technical and scientific forums of Agile contractual models suitable also for the
public sector is one of the reasons why top managers are not keen to this development
method. Accordingly, this work is an attempt to overcome such limitation.

We propose a foundational approach connecting the theory of how contracts should
be organized with Agile practices, using the Italian context as a reference, and also
identifying the key issues of Agile contracting which need further development.

The chapter has the following structure. Related work are presented in Section 6.2.
In Section 6.3 Law & Economics of contract theory are briefly explained to understand
the underling logic of software contracts. This interdisciplinary approach is crucial to
understand the economics of contracts, i.e., alignment of interests, which is the most
tricky part of Agile contracting. In Section 6.4 we deepen the Italian case, defining
the key elements of the procurement law. After gaining a short understanding about
the basic legal boundaries for Agile public contracting, we illustrate two approaches
(Section 6.5); the first one (6.5.1) is based on Function Point Analysis; the second
(6.5.2) is based on Scrum Sprints. A case study detailing how Agile contracting has
been concretely implemented in the Italian Defence Acquisition Process is described
in Section 6.6. Finally, in Section 6.7 we sum up our main proposal and envision some
further work.

6.2 Related Work

The problem of Agile contracting is old. Basically, the main difference with respect to
contracts for Waterfall developments, that are based on measuring and compensating
effort spent during the process, is that fixed price seems more adequate for agile
developments. The Agile fixed price is a contractual model which includes an initial
phase after which budget, delivery dates, and the way of defining the scope of the
system being built is agreed upon.

For instance in 2006 Alistair Cockburn published online an intriguing discussion
of some typical Agile contracts1. His page lists several possibilities, like the following
ones:

• fixed price, fixed scope, fixed time;

• fixed price, fixed time, negotiable scope;

• paying for effort as it gets spent. If the requirements are volatile and there is
mutual trust among producer and consumer this is the best situation;

• max price with payment on incremental acceptance: it works with stable re-
quirements;

• incremental delivery with payment on incremental acceptance

• price for each unit delivered, for instance a fixed fee for function point;

• base fee for each unit delivered, plus a low fee per hour, in order to incentive
developers to early delivery.

1http://alistair.cockburn.us/Agile+contracts, retrieved on September 19, 2017

http://alistair.cockburn.us/Agile+contracts

6.3. The Law & Economics of Agile contracts 101

Similar contractual cases are also discussed in the work of Pilios [365]. Further
aspects of an Agile contracts are risk share (customers and developers compensate
the additional expenses for unexpected changes equally amongst themselves) or the
option of either party leaving the contract at any stage (exit points).

Indeed, Agile methods tackle those issues, trying to align the interests of the
development team and the customer. Our interest here is for Agile applied to mission
critical systems sponsored by public institutions, with specific application to Italian
public institutions.

In some earlier works we have reviewed the enactment of Agile software devel-
opment methods within mission & security critical organizations, especially military
ones [MFRCR16, 100, 401, 403]. Moreover, in the last years the debate around the
use of Agile contracting also for commercial uses became a trending topic [23, 349, 66,
67]. In [23] the authors criticize traditional contracts for software development, which
increase the risk of failure because requirements are frozen due to the sequential work
flow, leading to a low quality of design, and causing a poor return on investment. The
book [349] suggests fixed price or maximum price contracts for Agile developments,
in contracts structured as follows. The contract has to describe to what extent, in
percentage, the costs incurred by the supplier will be charged to the customer when
the maximum price range is exceeded. A period of n Sprints is agreed upon as the
test phase of cooperation. The final milestone is a checkpoint whereby the customer
and supplier can enter into the real development of the project or maybe exit in a
controlled manner. Another, more recent book [67] expanded a contractual model
called adVANTAGE for Agile Developments, already sketched in [66]. This model
puts specific focus on the willingness of the contractor to take some of the (apparent)
risks of development that come with Agile practices. Still, it is not suited for pub-
lic administrations, since it does not consider constitutional specificities, outlined in
Section 6.4.

Recently the US government has devoted a lot of attention to the problem of Agile
contracts. The Software Engineering Institute (SEI) has released in the last five years
several reports concerning Agile for producing software products in particular for the
military [278, 350, 277, 336, 337, 493]. It has also published some guidelines for Agile
contracts for software acquired by the US DoD [492, 279]. These guidelines compare
traditional developments with Agile developments for critical military systems. The
major recommendation consists of post-award documenting contractor’s performance
throughout each Sprint and release e.g., using metrics like SQALE [286] for measur-
ing technical debt in terms of effort, or bug defect rates, length of throughput time
compared to contractor estimates, speed of time to value.

Nevertheless, despite these efforts, the problem of understanding how to lay down
contracts for Agile development for mission critical products is still at its infancy.

6.3 The Law & Economics of Agile contracts

Contracts are agreements between two parties, with different interests, written down
to fix such interests, alongside with some results compensation. Generally speaking,
for a free-market economy, the ability of two parties to enter into voluntary agree-
ments, namely contracts, is the key element for the market equilibrium [206]. Contract
law and law enforcement procedures are fundamental for the efficiency of any economic
system. Thus, contract law has to be intended as a set of rules for exchanging indi-
vidual claims to entitlements (i.e., interests). In this way, it enforces the extent to
which society gains from this agreement due to an efficient economic system.

102 Chapter 6. Agile Contracting

When one party is unsure about the other party’s behavior, contracts may mit-
igate this asymmetry. In our case, contracts are helpful when advance commitment
enhances the value of an artifact by enabling reliance by the beneficiary [373].

From a Law & Economics viewpoint, there are several issues regarding the impor-
tance of contracting [206].

• Coordination. The most common reason to engage in a contract is to coordinate
independent actions in a situation of multiple equilibria. The most straightfor-
ward example is the well known Prisoner’s dilemma. Without coordination, two
parties with different and independent interests will choose the scenario where
both are worse off (i.e., both confess their crime and accuse the other party,
in order to reduce the imprisonment time as a benefit). With coordination, on
the contrary, both would get the better payoff, not admitting the crime, gam-
bling the law system, escaping from a long imprisonment time. If the parties
are well coordinated by a contract, they will get both the best trade-off, not
going to jail at all. A contract to play this efficient equilibrium guarantees a
positive outcome. This is also known as Nash equilibrium, where modern con-
tracting theories get most of their inspiration. The coordination scenarios based
on contracts are excellent models to understand institutions [330].

• Exchange implementation. Especially in situations of hidden informations (i.e.,
information asymmetry occurring when one party has an information which the
other party does not have), contracts may mitigate such asymmetry [12]. To
avoid adverse selection, which impedes market efficiency, contracts may provide
warranties, to assuring the high quality of the product. This is very typical in
software, where the vendors know the details of the product, while the customer
is totally unaware of the code (usually obfuscated, if it is a licensed product)
but only aware about its functionalities told by the vendor. Thus, alongside
with software, there is usually a warranty about the product. In this way the
customer potential downsize (bugs) will be fixed by the vendor and no special
code awareness is needed before buying the software.

However, there are also some major drawbacks of contracting [206]. The most
important from our point of view are:

• Ex post: specification cost. Writing down all possible contingencies which could
arise within the future contractual relationship is extremely expensive. Poten-
tial contingencies of contractual obligations are usually very broad. Therefore,
contracts are often left open and incomplete. In such cases there are two main
scenarios. It could happen that the contract just fails to provide information
for contingencies, since nothing was agreed upfront. In this case, parties have
to decide what happens after a contingency. In the second case the contract
could cover a broad number of contingencies but not fine-tuning them. In such
way, parties still have to decide what to do, since contingencies are not de-
fined precisely enough. Anyway, in both scenarios, contracts fail to assure the
commitment of the parties.

• Ex ante: dynamic inconsistency. This is the classic investment problem. One
party may be willing to bargain and to modify the contracts when it has pursued
investments. Suppose that a vendor has found that the software can easily
have more functionality or higher quality even with limited additional costs.
However, the price has been set, so the motivations to deliver such higher value

6.3. The Law & Economics of Agile contracts 103

are minimal if the customer is not ready to agree, which is in turn difficult
because the intangible nature of software may make difficult for the customer
to understand the nature of such modifications (see the next point). In essence,
vendors may not have any incentives to do investments, i.e., spend money to
develop high quality code.

• Unverifiable actions. Even after entering into a contractual commitment, one
party may be unable to determine whatever the agreement has been kept or
broken. This is the typical case of intangible goods, like software. It is a not
trivial task to assess with objectivity if what promised has been carried out
according to the contract.

While we analyse Agile contracting, we should avoid the risk of overstating its
problems and overlooking normative and incentive aspects, typical of any contractual
relationship. The economics of contracting has both upsides (i.e., coordination and
exchange implementation) and downsizes (i.e., specification cost, dynamic inconsis-
tency, and unverifiable actions). What we learn from the Law & Economics theories
of contracts is that any contract has its loopholes, thus also Waterfall ones.

Waterfall contracts are well known, in a sense they are easy to agree initially,
because parties are usually fully aware of them and there is a history of people using
them - meaning that it is more difficult for a manager to be subject to criticism for
adopting them2. Both specification costs and unverifiable actions have a big impact
on the cost of contracting. Traditional software contracts are very expensive; along-
side with high specification costs due to very detailed requirements, there is also the
difficulty to assess with objectivity the artifact to build. Such barriers have a direct
impact on both the contract cost and market efficiency. In Waterfall contracts there
are indeed “hidden” costs that indirectly increase the cost of software products. The
perceived “reliability” of Waterfall has apparently scarce evidence in practice. What
we do know is that Waterfall usually increases the maintenance costs, which are hid-
den costs belonging to the software’s life cycle [377]. However, as mentioned, while
there are established routines concerning how to carry out a Waterfall contract, there
are very few guidelines about Agile.

First of all we will depict the divergent interests of a software contract, represented
in Table 6.1. As seen before, contracts facilitate market equilibrium through coordina-
tion and exchange implementation. In software this means that the two parties which
suffer from an information asymmetry reach an agreement through a legal binding
paper (the contract). A generic organization does not always have the expertise or
the man-power to carry out the software, while contractors do. There is asymmetry
in the sense that both parties are not aware of the same relevant information, i.e., the
(i) price willing to pay, (ii) technological complexity and feasibility, (iii) code reuse,
(iv) implicit needs of the customer which may not correspond to requirements. Such
problems are overcome with a binding agreement.

2Remember the old adage “None has been fired for using IBM.” which fully expresses the criticism
manages can have by trying new, not yet consolidated, approaches. This phenomena is also exploited
by vendors as it is well explained in the Wikipedia page on “Fear, uncertainty and doubt” accessed
at URL: https://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt on Sept. 10, 2017.

https://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt

104 Chapter 6. Agile Contracting

Table 6.1: Divergent interests

Organization Contractor

Requirement

interpretation

Broad Narrow

Time to market As soon as
possible

Depending on several
issues

Quality & Security Best Good enough to get
paid

Cost As low as
possible

As high as possible

However, some latent interests are not aligned by any contract, due to specification
costs, unverifiable actions, and dynamic inconsistency. If time and cost are fixed,
requirements have a degree of interpretation but they are easily quantifiable; it is
quality and security which belong to an arbitrary or “subjective” dimension which are
the most difficult parts to fix in any software contract. Loose quality and security
software means unsustainable raising maintenance cost in the long run. Especially
mission critical organizations may loose operational capability due to the complexity
and low quality of their multi-party systems. Therefore, there is a stringent need in
any field to align organizations and contractors interests, in terms of customer needs,
quality & security, costs, and time.

From a project management perspective, divergent interests can also be explained
with the Iron Triangle [22], represented in Figure 6.1. Scope, schedule and budget are
typically opposite concepts, where the optimum is represented by a balanced relation
[22]. The variable that does not change is quality, which is the major concern of every
software project. A software project with a broad scope, and tight schedule and bud-
get will reasonably be of poor quality. Similarly, in the case of high budget availability
but with a stiff schedule and broad scope will also deliver poor quality software due
to general low predictability of software project management for short time frames.
Finally, the scenario where a software project has to be completed within a short time
and low budget with a broad scope is quite unrealistic. Still, the Iron Triangle is
extremely useful to understand the three project management drivers for a software
system with certain quality standards. When parties with divergent interests engage
in a contractual relationship, both need realistic expectations. An unbalanced rela-
tionship, which may be considered with favor in a first moment, will unlikely deliver
a satisfactory outcome, in terms of software quality. Consequently, the substantial
aim of Agile contracting is both to understand and to align such divergent interests.
However, those interests are rarely clear ex ante, at the beginning of the contractual
relation. Therefore, the continuous specification of those interests are pivotal for a suc-
cessful project outcome. Clearly, this wisdom fits particularly well to systems which
scope evolve in time. So, to tailor the scope (i.e., requirements specification), along
with adequate budget and schedule, multiple contractual agreements are needed to
formalize each Agile iteration. Consequently, we propose in Section 6.4 a double–level
contracting structure to enhance the ongoing interest alignment.

Our idea is to develop a bonus-malus reward system. In such a model, the price is
fixed and represents the maximum awardable amount. According to the development
process and product quality obtained, the contractor is paid according to what is
delivered and measured. To do so, there must be a quantifiable measure of some kind

6.3. The Law & Economics of Agile contracts 105

Figure 6.1: Iron Triangle [22]

of software size dimension. With all their limitations, we do believe that Function
Points [16, 407], or some related variants like Simple Function Points (SiFP) [158],
represent a measure that is good enough for our purposes. To avoid specification
costs, contracts should have a loose - in some way open - requirements list, but a
fixed, predetermined SiFP estimate. Moreover, a bonus-malus mechanism should be
added alongside within the pricing. After each iteration i.e., implementation of user
stories, SiFP are consumed and paid. The bonus-malus pricing mechanism in this case
means that with a high quality code, contractors get a bonus, up to the maximum
(fixed) amount. Instead if they deliver a release which exposes some technical debt
contractors get some kind of fine, to be recovered after the debt is repaid. Clearly, a
critical issue is how to measure the technical debt. Some modern tools like SonarQube
are able to measure technical debt [83]. As any metrics, both FP and SiFP have some
limitations. For this reason we do not claim that they are the ultimate solution to solve
the problem. However, SiFP is an easy measurable metric for business functionalities,
which are very close to the Agile definition of User Story. Code quality control is
still necessary, to avoid the malicious use of low quality functions, just to increase
pricing. Therefore, it is of greatest importance to fix such test and metrics within
the contract, even if not implemented. Based on our experience, we suggest that
security and code quality should be defined as non-functional requirements in the
development process. Especially in mission critical organizations we see how some
redundancy of competences within the process improves code quality and security
[307]. Thus, a TDD (Test Driven Development) approach set in the contract seems
quite suitable for Agile contracting. Within each iteration, the Product Owner (PO)
and the contracting development team start with a test oriented development, which
has to correspond to the user story development.

Our main idea is that continuous “tensions” and new equilibria between the two
parties are the best mitigation drivers that underly to any contract. Continuous
discussions, bargaining, and agreement do motivate both parties to carry on their
respective tasks. In such way, we think that we can obtain the following results:

• Specification costs are limited, since Agile contracts do not only specify the
very general task at the beginning but they agree the details of every user story
upfront each iteration; this is a sort of overarching or framework contract.

• Dynamic inconsistency is attenuated through a reward based payment. Con-
tractors will have the economic interest to get the “bonus”, which is awarded
according to their performances.

106 Chapter 6. Agile Contracting

• Unverifiable actions are mitigated by a TDD approach, since “quality metrics”
i.e., tests, are agreed by the parties within the iterative development process.

Such approach is particularly effective for public administrations, which by our
law must use a bidding base. Following our proposal it is possible to define a budget a
priori and, at the same time, contractors will work for better quality software, trying
to gain the whole amount. Organizations and project owners gain from velocity and
requirement satisfaction. From an operational point of view, this solution tackles each
critical point that Waterfall does not structurally solve.

Finally, from a contractual perspective, i.e., the economics of the contract, this
solution gets all the benefits of contracting, namely coordination and exchange imple-
mentation. At the same time some major problems of Waterfall contracts (specifica-
tion cost, dynamic inconsistency and unverifiable actions) are substantially reduced.

6.4 The Italian Case

Although we are now referring specifically to the Italian case, these considerations are
of use also for other countries based on European public procurement rules. In fact,
regulation may slightly change, but the constitutional assumptions and procurement
characteristic are basically the same or, at least, comparable. For this reason we
believe that this research is of good use also beyond Italian borders.

The structure of the procurement law follows some basic constitutional principles,
comprehending:

1. free competition,

2. equal treatment and non-discrimination,

3. transparency,

4. adequacy and proportionality.

These are substantial issues, which are always reflected in any concrete application
of the law. In the following subsections we will try to explain how to structure an
Agile contract, according to those pillars.

6.4.1 The object of the contract

The contractual object has to be determinate or determinable, according to art. 1346
of the Italian civil code (cc in short). So, the object of the contract needs to be clearly
identifiable without further arbitrary decisions. This means that a collaboration pro-
gram can not be just agreed upfront, if it is not sufficiently determined. At least, some
characteristics of the future software product have to be defined. Moreover, according
to the procurement law (D.Lgs. nr 50/2016, art. 23.15) the public bid should include
a technical annex, composed by:

1. calculation of the alleged cost;

2. financial statement of total charges;

3. specific descriptive and performance specifications;

4. minimum bid requirements;

5. awarding criteria;

6.4. The Italian Case 107

Figure 6.2: Structure of the contract

6. possible variations;

7. the possible circumstances of (non substantial) change of the negotiating condi-
tions.

The technical annex is of pivotal importance for Agile contracting, since it is
the document (or the set of documents) where the public customer describes the
required system and prescribes the methodology. Interestingly, the procurement law
applies easily to Waterfall-like contracts but does not hinder Agile contracting per se.
Consequently, the object of Agile contracts (i.e., the software system to developed,
evolve or maintain) needs to be defined ex ante at least in functional terms, with the
possibility to refine requirements along the way. Thus, a corresponding well fitting
structure of the contractual relationship is now proposed.

6.4.2 The structure of the contract

Our proposed solution for Agile contracts consists of a double-level contracting.
To clarify our idea, see Figure 6.2, which exemplifies the proposed structure.

In European public procurement law, this is allowed by the rules concerning the
framework agreements. According to article 33 of the directive 2014/24 EU, a con-
tracting authority may conclude such an agreement, observing the procedures provided
by the directive (i.e. the ordinary awarding procedures). In fact:

“In general terms a framework agreement means an agreement between
one or more contracting authorities and one or more economic operators,
the purpose of which is to establish the terms governing contracts to be
awarded during a given period, in particular with regard to price and, where
appropriate, the quantity envisaged.” §33.1, Directive 2014/24 EU.

The purpose is to establish the two–level contractual governance. In our case, such
a structure between one or more authorities and a single operator is appropriate. The
first level contract defines, in general terms, all customer’s needs, and in particular
the context in which the software will be used to meet such needs:

• the high level definition of software’s functionalities and architecture;

• the quality and performance standards to be reached (minimum standards and
higher ones, possibly to be paid more by the customer);

108 Chapter 6. Agile Contracting

• the criteria for the the product evaluation and possibly the definition of done;

• the time frame;

• the general terms of the compensation.

The framework agreement should be limited in time: e.g., not exceeding 4 years.
With second level contracts, parties agree the specifications within a variable number
of iterations, considering the points listed before, as sketched in Figure 6.2. Before
each iteration both parties fine tune the first level issues, in order to meet iteration’s
scope. In particular, the object of each iteration is specified, along with software’s
functionalities, performance standard, product evaluation, terms of compensation and
time frame. In other words, the framework agreement (first level contract) opens the
way to a number of subsequent detailed contracts for the execution of the whole
project, each of which can be adjusted according to the results of the previous ones.

The mentioned public procurement rules permit the awarding of such single con-
tracts to the contractor, under the framework agreement, without any new competitive
procedure. The only exception is if the contracting authority changes, or if the object
of the framework agreement is substantially modified. The key provision therefore
can be found in the European directive, according to which:

“Where a framework agreement is concluded with a single economic oper-
ator, contracts based on that agreement shall be awarded within the limits
of the terms laid down in the framework agreement” and “For the award of
those contracts, contracting authorities may consult the economic operator
party to the framework agreement in writing, requesting it to supplement
its tender as necessary” §33.3, Directive 2014/24 EU.

Indeed, the possibility to design a multi–level contract, where specifications are
negotiated before each iteration, is an important legal tool for Agile purposes. From
our point of view, supplementing the tender would mean negotiating and finding an
agreement on the fine tuning aspects necessary before each one of the progressive
functional steps or scrum sprints Moreover, such a double-level structure of the con-
tractual relationship between the customer and the contractor has the advantage that
the framework agreement does not oblige the customer to engage in the second level
contracts.By this way, the customer always has the power to terminate the relation-
ship, after each iteration. This may happen for several reasons, like for instance
any dissatisfaction of the relationship, although the general budget of the framework
agreement has not been fully spent.

6.4.3 The competition

The competition is a key element for public procurements since it guarantees con-
stitutional rights, such as open concurrency, impartiality, and accountability. It is
basically a trade-off between such rights and the utility of the contract. In other
words, although it would be more effective to deregulate the competition through ad
hoc designs, constitutional rights need to be uphold. Thus, the competition should
ideally be a Pareto-optimal solution between these contrasting forces. The law guar-
antees certain degrees of flexibility, in order to find the best partner.

In our case, such an opportunity arises from the fact that the competitive awarding
procedure would be limited at the level of the framework agreement with its above
indicated general elements of the project. In practice, an efficient and effective se-
lection of the general elements is pivotal to make sure that the advantages of the

6.4. The Italian Case 109

best offer will be fully reflected afterwards. Doing so will assure that the second level
contracts will be best suited for the general scope of the software system, considering
the afterwards non competitive negotiation between the parties for the fine tuning of
any iteration. Achieving such a goal needs some caution, especially about the link
between quality and performance standards, on one hand, and compensation on the
other.

6.4.4 Economic value

The determination of the economic value has to be clear and effective. In the case
of framework agreements and subsequent second level contracts, it is possible and
appropriate to set binding general rules about compensation. This should be clearly
stated in the framework agreement, and applied in the negotiation of the second level
contracts. Thus, in the first level contract, the parties should fix the compensation
structure, detailing the cases of special awards and penalties.

As an example, they could agree that for each iteration, a mix of a fix rate and
a decremental person-day rate (in order to encourage the contractor to be efficient in
execution) could be negotiated. Moreover, a quality-related awarding system may also
be helpful to enhance project’s quality, such as a bonus-malus mechanism. On such
a basis, second level contracts that are continuously negotiated before each further
iteration should respect the general awarding schema. However, small modification to
adjust specific necessities may be further negotiated to fully align divergent interests.
In other terms, once the general criteria are set in the first level contract, the price
for each iteration derives from the corresponding negotiated estimation of the cost
of the software system, along with the upon agreed calculation criteria. This means
that proper evaluation techniques for Agile contracts are not only possible, but also
recommended for the reasons explained in Section 6.3. Indeed, the most important
issue to preserve in an Agile relationship is the alignment of interests. Since most of
possible discussions may be around the effective value of the software, identifying an
accountable and clear way to define the economic value, within the exposed provisions
concerning compensation of the contractor, motivates both parties to work together
to get the best possible outcome.

6.4.5 Provision of accountable variations

Variations are of great interest for Agile contracts, since they introduce the necessary
flexibility along contract life. Generally speaking, public procurement rules make vari-
ations of contracts possible, but with clear limits. Any variation should be forbidden
if one of these cases occur:

1. if the variation causes a modification such that a competitor could had won
the competition, or if other competitors could had participated to the selection
process;

2. if the economic equilibrium of the contract changes significantly;

3. if the object of the contract is heavily extended and/or modified.

This applies to the framework agreement and to any amendment of it. Fine
tuning of second level contracts would not mean any variation. Our solution simply
consists in limited specifications concerning each iteration. Of course, variations may
be possible in the case that the system’s scope of the iteration is consistently different
with the first level contract and can not match the general terms. For such an event,

110 Chapter 6. Agile Contracting

the general limits to variations should be respected. Although this legal tool is an
element of flexibility, a parsimonious use of it is recommended. In fact, a frequent
use of variation may harm the general contractual governance. This would introduce
opacity in the relationship which should avoided to enhance information symmetry
between the parties.

6.4.6 Verification

Finally, also the verification needs to fulfill some legal requirements. Once built, or
even during its development, the software should be inspected to see if it fulfills the
software’s scope. Such inspection should be accountable and the techniques defined
upfront.

This complies very well with the Agile philosophy. Since the verification process
is transparent, interests alignment is facilitated. The implementation of non-invasive
tools is considered an effective way to enhance accountability along all the development
process.

6.5 Setting up the contracts

In this section of the chapter we are going to sketch two possible implementation of
our proposal, based on the contracting of Function Points and Scrum Sprints. These
two examples should be embedded in the first level contract to determine the terms
of compensation.

A key point for the contractual governance is the agility of the assessment of the
economic value. Too complex metrics are not suited for such an environment, since
it clashes with the need for speed of Agile iterations. Ideally, any assessment metric
which assure fast and reliable (i.e., objective) outcomes is suitable for this purposes.
Accordingly, we propose here two valuable but different examples. Functional size
measurement methods focus on the code, while Scrum Sprints on the process. Clearly,
both have upsides and downsizes briefly discussed. Although there may not be one best
solution, rather several Pareto–optimal ones, it is of pivotal importance to understand
the own contractual environment under which the software system is developed to use
one of the proposed solutions or even new ones.

6.5.1 Contracts with Function Points

Function Point Analysis (FPA) [16, 450] provides enough objectivity in the evaluation
process, independently from the used technology. This is the reason why FPA is a
suitable option to guarantee the proper flexibility of the Agile methodology within
the Italian constitutional framework discussed before. For the sake of simplification,
also novel estimation techniques based on FPA, like Simple Function Points (SiFP)
[158, 281], may represent a suitable and easy measurable metric, as already discussed
in Section 6.3.

The definition process of SiFP - a quite straightforward functional size measure-
ment method - is represented in Figure 6.3. The idea behind SiFP is to provide a good
evaluation of the functional size of an application, without redundant basic functional
components (BFC) i.e., DET - Data Element Type, FTR - File Type Referenced, and
RET - Record Element Type. Therefore, only two BFCs are needed, according to this
method:

• Unspecified Generic Data Group (UGDG)

6.5. Setting up the contracts 111

Figure 6.3: SiFP definition structure

• Unspecified Generic Elementary Process (UGEP)

Consequently, BFCs are of only two types: data object type, and transactional
object type. Hence, the size of any software application may be expressed as the
number of SiFP:

SiFP = MUGDG + MUGEP (6.1)

Where MUGDG and MUGEP indicate the measures of the size of BFCs, as a result of
IFPUG measurement rules. Interestingly, FPA measurements take into consideration
e.g., new development, functional enhancement, and software assets, which SiFP does
not. Still, SiFP are convertible to traditional FPA (like IFPUG), due to the high
correlation through a regression analysis [5]. Therefore, from a practical perspective
SiFP are convertible to any FPA, since functional size measurement methods are
strongly correlated from a structural point of view.

Moreover, besides the simplification of BFCs, measurement weights are fixed, with
respect to IFPUG. In particular, [281] propose that:

SiFP = 4.6UGDG + 7UGEP (6.2)

Where SiFP are 4.6 times the number of elementary processes, without considering
the primary intent, and 7 times the number of logical data files, without considering
if they are internal or external.

Another strong point in favor of Function Points is that these are known and
already used within the Italian public sector3. This means that it would be quite
effective to write an Agile contract, based on the already acquired experience. FPA
provides the right tension between interests in order to let align them, since it is an
accountable process. Moreover, a bonus-malus effect would also help towards this di-
rection. This mechanism should induce the provider to deliver not just average quality
functionalities but high-value ones. We remark that although the delivered function-
ality can be first estimated and then assessed by FPA, there is limited guarantee for
quality. In fact, FPA does not assess quality itself but only if the software computes
a certain number of functionalities. Exceptional delivered quality has to be econom-
ically recognized, beyond the delivered functionalities. Similarly, also low quality
should be discouraged. For this reason the use of a non-invasive quality tool to assess
ongoing quality of software products is of greatest importance. It does not represent
a legal issue, since the customer can easily include this methodological requirement
in the competition call. Such a tool may compute not only the number of developed

3See for instance http://www1.interno.gov.it/mininterno/export/sites/default/it/
assets/files/22/0011_disciplinare_di_gara.pdf retrieved on Aug. 23, 2017

http://www1.interno.gov.it/mininterno/export/sites/default/it/assets/files/22/0011_disciplinare_di_gara.pdf
http://www1.interno.gov.it/mininterno/export/sites/default/it/assets/files/22/0011_disciplinare_di_gara.pdf

112 Chapter 6. Agile Contracting

functionalities but also judge their quality, according to industrial benchmarks (i.e.,
ISO/IEC 25010:2011). An example of such a tool is SonarQube [CamPap13].

So, also the development methodology becomes of importance, since it is comple-
mentary to the non-invasive tool. Furthermore, the Test Driven Development (TDD)
method [42] provides a useful approach to develop mission critical software with the
highest attention to quality and security. For this reason we now sum up the three
keystones of an Agile contract with FPA. In our proposal Law & Economics aspects of
contracts are maximized, upholding constitutional duties of the contracting authority.

1. Specification costs are minimized by the methodology. After several iterations
fine-granular functionalities are negotiated.

2. Dynamic inconsistency is is mitigated by a bonus-malus mechanism.

3. Non verifiable actions are mitigated by a Test Driven Development and the
implementation of non invasive metrics.

These are the main characteristics for a transparent relationship which maximize
the contract utility.

6.5.2 Contracts with Scrum Sprints

Another suitable way to write Agile contracts for the public administration are Sprint-
based ones. In this case, Scrum Sprints are the base for terms of compensation.
So, as in the other case, functionalities are described at a high level in the object
of the contract but the economic value is not determined by the FPA but by the
development iterations. It is a sort of body rental contract, where man-hours are
organized in Sprints. Thus, for a team with 5 people for an iteration of 5 weeks
(considering a 40 hours week), each Sprint will account for 5000 hour/person. The
requirements refinement (through User Stories and continuous iterations), is part of
the contract life. Both parties should be aware of the methodology, not only to avoid
misunderstanding but also to prevent miscalculation of the effort. The aim is to build
a win-win relationship, where parties are aligned to the goal and are treated fairly.
A win-lose solution would be rather suboptimal, since there is no guarantee for a
long-term engagement.

1. Sprint definition has to be clear in terms of temporal duration and people com-
mitted. In such contracts people play the greatest role. The level of expertise,
seniority, and skill should be taken into consideration while designing Scrum
teams.

2. The chosen Agile method has to be clear to both customer and provider to orga-
nize and setup the development. User Stories estimation is a sensible issue here.
An overestimation, but also a underestimation may lead to misinterpretations
between the parties as also frustration.

3. The bonus-malus mechanism described in the previous section should be clearly
stated.

4. The use of monitoring and non-invasive tools is also an important issue to both
interests alignment of all parties and improving accountability, as explained in
the last section.

6.6. Case Study 113

Figure 6.4: Effectiveness of the contract structure

6.6 Case Study

The ideas exposed in this chapter have been elaborated and evaluated in a contract
with the Italian Defense Acquisition Process, partially described in [MFRCR16]. For
this project we did not use the proposed contractual schema, although some principles
were implemented (e.g., the bonus-malus mechanism).

The reference project has been the LC2Evo technology demonstrator. The project
lasted about 87 weeks of work, that is, about two years. Sprints lasted 4 or 5 weeks
each. Overall, the cost of the project was about 2.6 Million Euro. In this case instead
of Function Points, Scrum Sprints have been used to define the contract. After each
Sprint, the Definition of Done and acceptance criteria were assessed by external Army
engineers. Their assessment were also useful for the subsequent Sprint planning.

A generic +50% increment factor was applied to take into account the better effec-
tiveness and the reduced risk associated to the LC2Evo improved Agile development
environment, with respect to the previous Waterfall development cycle.At the end of
the project this +50% increment factor has proven to be pessimistic, since the ef-
fectiveness of the improved Agile development cycle was much better than expected.
Moreover, due to an important cost reduction, leftover funds where used for extra
hardware improvements.

Using a time and material estimation for a predetermined number of iterations
(six to eight as we refer to LC2Evo) may be seen as a sort of “body rental” contract,
where man-hours and materials are allocated in Sprints. The requirements refine-
ment (through User Stories evolution and continuous iterations) was included in the
contract. Both parties were trained and fully aware of the Scrum method, to avoid
misunderstanding and prevent miscalculation of the effort. Figure 6.4 summaries the
results that have been obtained using this approach. Unfortunately, specific details
are classified for national security reasons. However, the resulting proportion provides
a fairly accurate visualization of what happened. After an initial phase, the produc-
tivity increase of the new Agile approach was quite evident. Still, the merit of such
productivity improvement can not be merely attributed to the different contracting
structure, since the project followed a more traditional Arms & Materials contract.
However, organizing the contract in an Agile fashion was a clear prerequisite for the
project’s success.

Finally, this case study gave us the relevant experience to design the new Agile
contractual scheme, suitable for the Italian public administrations.

6.7 Conclusions

This chapter is an attempt to carry out a foundational work about Agile contracts.
Starting from the Law & Economics of contracts, we explained how relevant principles

114 Chapter 6. Agile Contracting

should be wider understand by the Software Engineering community. We pointed out
how, through the alignment of interests, reduction of asymmetry and flexibility, Agile
could be wider use in today’s Software Engineering environment, especially within
the Public Sector. Indeed, the awareness of software engineers about the economic
motivations behind a contractual relationship is of pivotal importance to enhance
software quality. Information symmetry is of greatest importance for Agile software
development, due to structural reasons related to the day-by-day relationship with
the customer and the short development–deployment iterations.

Companies which strive for competitive advantages can easily customize Agile
contracts according to the contractual freedom principle (i.e., art. 1322 cc). This is
not the case for public administrations which need to follow strict constitutional duties
regarding public procurements. However, also these organizations (especially in the
defence & security domain) need their software systems to evolve rapidly, to address
new-world scenarios. Therefore, this chapter provides the first discussion about Agile
contracting for the Public Sector.

Doing so, we highlighted the keystone for Agile contracting within the Italian
public administration. These recommendations have a direct impact on all civil law
countries, since they face similar procurement law principles. To contextualize bet-
ter our proposal, we used a case study where Agile contracting principles has been
implemented. The outcomes of the presented project are positive and significant.

Future work will proceed in two main directions. Firstly, both foundational as
empirical studies about the implications and implementation of Agile contracts will
be carried out. Accordingly, a detailed framework for an Agile contract for the Italian
public administration will be presented in the near future. Secondly, the empirical
validation of such contracts needs to be further studied. In particular elements related
to the assessment of non-invasive measurements, effort estimation based on Sprints
or SiFP, as well as social aspects of the negotiation should be considered for further
studies.

115

Chapter 7

Legal Implications of Software

Reuse

7.1 Introduction

A software clone is a fragment of source or executable code, that is copied in the same
program or in a different one, whereas the act of copy is called software cloning [382].

Software cloning is a form of software reuse; in fact clones are identical or simi-
lar pieces of code, designs, or other artifacts exploited during the development of a
software system. The copy-paste of someone else’s code fragments into a different au-
thor’s software program is a widely used programming practice, ranging from 5%-15%
of the code base [397] up to 50% [386]. On average, the reuse of other people’s code
in large software programs is estimated around 20%-30% of code [29].

There are several ways of reusing code that are more formal (such as software
components [183], web services [376], etc.) in which licensing problems are addressed
explicitly (e.g., in open source software [363]). However, developers sometimes prefer
different and more informal approaches [384]. There are many reasons why pro-
grammers copy software fragments and these reasons are largely studied in technical
literature [245]. Several authors have already explored a model that studies the in-
teraction and tracking of software licenses. For example, [172] developed a model
which describes the interconnection of components from a legal point of view, using
document integration patterns that are commonly used to solve the license mismatch
problem in practice. For Open Source licenses, [359] proposes an approach to auto-
matically track changes occurring in the licensing terms of a system. However, those
reasons are not the focus of this study; what we want to address here are not the
technical advantages or disadvantages of cloning software but the behavior of courts.
In fact, this work is a study on the main rulings of software cloning from a Software
Engineering perspective, following an approach started in [49], where the focus was
on how software patents can influence software designers.

The issue of reuse by cloning is widely studied in Software Engineering, for in-
stance, [382] lists hundreds of papers; however, in some situations cloning is consid-
ered unlawful. In fact, since in several countries, and especially in Europe, software is
protected by the copyright law, software cloning is a form of plagiarism. We found this
topic particularly relevant from a society’s perspective, since this aspect of Software
Engineering has wide cross effects, well beyond the technical dimension.

However, the definition of plagiarism for software is controversial. For instance,
software clones are known to be closely related to various issues in the design of soft-
ware for games, especially with respect to originality and creativity, qualities that
have to be evaluated when an investigation of plagiarism takes place. For instance,
in some competitions for software designers, notably in the World Computer Chess

116 Chapter 7. Legal Implications of Software Reuse

Championship, there is an “originality" rule, which requires that all competing pro-
grams must either be original or quote other programmers whose work was used. Such
a rule has been invoked a number of times, accusing some author of cheating by pla-
giarizing code to create a program [103]. These discussions about plagiarism are even
more intriguing in the case of open source software [205, 388]. “If to plagiarize is to
borrow too much code, then one needs to decide exactly how much is too much” [103].

Deciding about plagiarism is difficult. Trying to demonstrate that a program
has been copied is not simple, for instance there are clones that reproduce only the
functionality of a program, while the source code is different.

We did not find in literature a similar research dealing with court’s perspective.
We are only aware of a similar paper published in 1996 which outlines some legal
implication regarding software reuse in general within the European Union [442]. The
main contribution of this work is to survey the case law of these issues, as the court’s
point of view.

With this chapter we want to offer an insight for researchers and practitioners to
understand the ‘way of thinking’ of US and EU courts when dealing with software
cloning and, more generally, to IPR issues.

The main considerations are summarized after each section. The structure of this
chapter is as follows. In Section 7.2 a brief explanation of the different clone types
is given. To understand the main reference points of courts, in Section 7.3 a brief
overview of the main laws are depicted. In Section 7.4 we carried out all relevant US
and European Court of Justice case laws. A manual analysis of both case law was
performed. Moreover, an analysis of the European Court of Justice was carried out,
to compare both jurisprudential leanings of the courts. We found out that one ruling
has a particularly disruptive nature, thus, in Section 7.5 we discuss it since we believe
it will have a huge impact on software copyright in general. In Section 7.6 we discuss
some of the major implication of this chapter. Eventually, we conclude and outline
some future research in Section 7.7.

7.2 Background: Types of software clones

Software clones are not just copy-paste fragments of different codes. Rattan et al.
[382] identify four types of clones, summarized in Table 7.1.

Assessing the lawfulness of the reuse of program fragments is not straightforward.
Clone detection tools, even the most reliable ones, are based on heuristic methods, i.e.,
they make probabilistic judgments, so it is legally impossible to use them to state the
existence of cloning, beyond reasonable doubt. Since the provision of the reasonable
doubt is a fundamental human right, courts have some obvious difficulties in assessing
legal responsibilities when a software contains clones of type 4 (functional clones) but
also of type 3 (near miss clones).

Since cloning is a complex issue, a priori it is neither a good, nor a bad habit to
clone software fragments. In Table 7.2 we summarize some of the main remarks in
literature about cloning. This is relevant for the analysis of the case law as it shows
the level of maturity of the debate from a Software Engineering perspective.

7.3 Short comparison of two legal frameworks

Courts do not take subjective decisions, they interpret the law. Here, we briefly de-
scribe the legal frameworks of the US and the EU regarding software’s IPRs. Both US

7.3. Short comparison of two legal frameworks 117

Table 7.1: Clone types in Rattan et al. (2013)

Type Main characteristics

1–Exact Clones
Program fragments which are identical,
with the only exception of white lines and
comments

2–Parameterized Clones
Program fragments structurally or syntac-
tically similar, with exception for identi-
fiers, literals, types, and layouts

3–Near Miss Clones

Program fragments copied with some
modifications in the source code, i.e state-
ments insertions/deletions, besides identi-
fiers, literals, types, and layouts

4–Semantic Clones Functionally similar program fragments,
which are not formally identical

Table 7.2: Advantages and disadvantages of code cloning

Advantages Disadvantages

Clones are useful if different customers
share similar requirements [256] High maintenance costs [318]

Some programming languages encour-
age the use of templates, which result
in software cloning [256]

Propagation of bugs: if a clone
contains an error, it will spread
rapidly over other parts of the
program [232]

The use of clones can respond, some-
times, to efficiency requirements in the
development [244]

Cloning discourages the use of
refactoring, leading to a bad de-
sign of the system [282]

Using clones reduces the time required
to develop a program [244] [245]

Using clones increases the size of
the code, leading to a less efficient
system [262]

and EU copyright laws very briefly described, to give a short overview and references
about courts’ starting points.

7.3.1 IPRs in the US

The US law system is based on “Common Law”: this means that previous judgments
are binding. Therefore, there are several past cases that are relevant for a court to
issue its judgment. Nevertheless, there is a structured codex, where all courts shall
take reference to. For copyright cases it is the Title 17 of 1976 and its amendments.
The last one is the Reauthorization Act of 2014. Title 17 is composed by 13 chapters
and 14 appendixes. Each chapter regards a specific issue of copyright, as described in
the following Table 7.3.

118 Chapter 7. Legal Implications of Software Reuse

Table 7.3: Chapters of Title 17 (Copyright Act)

Chapter Subject

Chapter 1 Subject Matter and Scope of Copyright
Chapter 2 Copyright Ownership and Transfer
Chapter 3 Duration of Copyright
Chapter 4 Copyright Notice, Deposit, and Registration
Chapter 5 Copyright Infringement and Remedies
Chapter 6 Importation and Exportation
Chapter 7 Copyright Office
Chapter 8 Proceedings by Copyright Royalty Judges
Chapter 9 Protection of Semiconductor Chip Products
Chapter 10 Digital Audio Recording Devices and Media
Chapter 11 Sound Recordings and Music Videos
Chapter 12 Copyright Protection and Management Systems
Chapter 13 Protection of Original Designs

Table 7.4: Appendixes of Title 17 (Copyright Act)

Appendix Subject

Appendix A The Copyright Act of 1976
Appendix B The Digital Millennium Copyright Act of 1998

Appendix C The Copyright Royalty and Distribution Reform
Act of 2004

Appendix D The Satellite Home Viewer Extension and Reautho-
rization Act of 2004

Appendix E The Intellectual Property Protection and Courts
Amendments Act of 2004

Appendix F The Prioritizing Resources and Organization for In-
tellectual Property Act of 2008

Appendix G The Satellite Television Extension and Localism
Act of 2010

Appendix H Title 18 - Crimes and Criminal Procedure, U. S.
Code

Appendix I Title 28 - Judiciary and Judicial Procedure, U. S.
Code

Appendix J Title 44 - Public Printing and Documents, U. S.
Code

Appendix K The Berne Convention Implementation Act of 1988
Appendix L The Uruguay Round Agreements Act of 1994

Appendix M GATT Trade-Related Aspects of Intellectual Prop-
erty Rights (TRIPs) Agreement, Part II

Appendix N Definition of Berne Convention Work

Appendixes concern integrations with international standards and agreements and
amendments of the Copyright Act of 1976. They are composed as detailed in Table
7.4.

Courts may take into consideration other laws. For instance, anti-monopoly pro-
visions may apply for cases where functional cloning is permitted, to restore market

7.3. Short comparison of two legal frameworks 119

competition. Moreover anti-fraud laws could be claimed in cases where hardware-
software is cloned.

In short, even though software cloning is most closely related to copyright infringe-
ments, it is not exclusive. Also other laws and provisions could be used by courts to
restore justice. Hence, the issue of cloning is more complex and broader than just
copyright infringement.

7.3.2 IPRs in the EU

Similarly, the European Court of Justice (ECJ) has to follow the EU law. Moreover,the
ECJ acts like a Supreme Court of all EU Member States. The particularity is that each
Member State has its own national law, which is different from the others. However,
each ECJ judgment has to be considered binding for each Member State’s court. We
can consider the EU law system as a mixed civil law and common law system. The
most common EU laws regarding copyright are represented in Table 7.5.

Table 7.5: EU Directives regarding Copyright

Directive Subject

Council Directive
93/83/EEC

Copyright and related rights: satellite broadcasting
and cable retransmission

Directive
98/84/EC Protecting electronic pay services against piracy

Directive
96/9/EC Legal protection: databases

Directive
2001/29/EC Copyright and related rights in the information society

Directive
2001/84/EC

Resale right for the benefit of the author of an original
work of art

Directive
2006/116/EC Copyright and related rights: term of protection

Directive
2006/115/EC

Rental, lending and certain other rights related to
copyright in the field of intellectual property

Directive
2009/24/EC Legal protection: computer programs

Directive
2012/28/EU Wider access to copyright material — Orphan works

7.3.3 Consequences for software cloning

The two legal systems deal differently with software cloning, as summarized in Table
7.6. For our purposes, the differences mean that the concept of “software cloning" in
the US is quite mature compared to the European one. Since US courts are bound
to a common law legal system, their judgments reflect in some sense the Zeitgeist,
namely the spirit of the time. Such judgments are based on both previous court’s
decisions and on the judge’s interpretation of the case. Therefore, common law judges
are much more exposed to the spirit of the time than the EU ones. In fact, several
judgments refer directly to such concept, so we can find easily such judgments in the
legal databases. Instead, the ECJ is much younger than the US legal system. Since
the EU legal system is based on a civil law system, all software cloning judgments

120 Chapter 7. Legal Implications of Software Reuse

Table 7.6: Main differences between the US and EU legal system
concerning this chapter

US EU

Common Law (Judicial decisions are
binding – decisions of the highest court
can generally only be overturned by
that same court or through legislation)

Civil Law (Only legislative enactments
are considered binding for all. However,
ECJ ruling are considered to be binding
in all Member States of the Union)

Long lasting judicial tradition Recent establishment (1952)
Extensive freedom of contract, courts
are more sensitive to the Zeitgeist.
Judges may interpret the undergoing is-
sue according to ’language’ of the coun-
terparties to reestablish the rule of law.

Less freedom of contract and reference
to the law. Courts may reestablish the
rule of law according to the legislative
interpretation on which counterparties
are bound

have to be explicitly related to the IPR acts. Unfortunately, none EU law treats
“software cloning" as such. This means that in the Eur-lex database used to perform
our investigation we expect to find most judgments about software cloning under the
keywords “software & copyright".

7.4 The case law

7.4.1 Research Protocol

Adapting a Systematic Literature Review (SLR) for law cases has strong limitations,
since case law is not comparable to literature articles. Moreover, articles can be found
in the editor’s database (e.g., Springer, Elsevier, IEEE, ACM); whereas rulings do
not have editors. Rulings are written by judges, after that employees of commercial
databases (e.g., LexisNexis) put them on line. Therefore, some rulings are not into
any database. Especially rulings issued by lower courts are hardly collected, since
they are considered of low relevance.

Moreover, search criteria for a SLR are different from a case law research. In SLR
keywords used represents the scientific topic the article addresses. Case law induce a
technical keywords, but from the law domain, not Software Engineering ones. If, with
a SLR we have a direct technical feedback about the chapter’s topic, searching within
case law it is always a question of the right interpretation, judgment per judgment.

The arbitrary dimension in the analysis of case law is ineluctable. Nevertheless,
we elaborate a design for a case law research protocol to systematize our research
[102]. To comply as much as possible with the empirical software analysis tradition
we modeled our design according to the framework proposed by [400]. We elaborated
and followed this protocol:

1. identification of the country/legal system where to carry out the analysis;

2. definition of an appropriate database for the case law;

3. definition of an appropriate query, according to the legal system;

4. manual identification of the relevant cases:

(a) exclusion criteria: not relevance to the topic;
(b) inclusion criteria: relevance to the topic;

7.4. The case law 121

5. manual analysis of the relevant cases.

According to our research protocol, we choose to analyze and compare the US and
the EU legal system’s leaning to the cloning issue.

The database identified for the US is LexisNexis, which is one of the most complete
and reliable law databases for the US case law1. For the EU we used Eur-Lex2. Eur-
Lex has one big advantage, it is the official Law database of the European Court of
Justice. So, any judgment of the ECJ is available in the Eur-Lex database.

The query chosen for for the US was “software & cloning" in the Academic Search
for State and Federal Cases of all available judgments of all US courts. The outcome
were 85 cases. The identified query for the EU was “software & copyright” in the
textual research and the output were 27 cases. Both queries were carried out on July
29th, 2015. As explained before in Subsection 7.3.3 the two legal systems are different.
To respect these diversities we had to adapt our queries, according to our protocol. No
EU law refers directly to “software cloning", but to “software copyright". Similarly,
the US adopt better the Zeitgeist and are more confident to speak about software
cloning as such.

Both outcomes of 85 cases for the US and 27 for the EU were reproduced in two
tables, one for the US3 and one for the EU4 with all relevant identifiers. After that,
case by case were manually analyzed.

In total, the excluded cases were 51 for the US and 23 for the EU. The inclusion, or
exclusion of cases were carried out by the authors on a qualitative basis. However, also
the excluded cases were clearly mentioned within the tables, explaining why they were
exclude. The motivation of exclusion was the non relevance of the subject matter.
The remaining relevant cases were then chosen for the manual analysis.

Relevant cases were analyzed one by one. In total, analyzed cases were 34 for the
US and 4 for the EU.

7.4.2 First considerations about the outcome

The chosen queries were kept as general as possible to catch the highest number of
relevant cloning cases. As a consequence,the relevant cases are a minority of the
dataset.

However, we are aware of at least 5 more cases, which were not captured by our
query. We found them by serendipity, while studying the topic. For completeness we
analyzed also these cases.

Moreover, we took just these two systems, because we are most aware of, also due
to the language. Definitively it would have been interesting to study also other legal
system regarding cloning issues. Unfortunately, there is a huge language barrier that
we have to overcome.

We remark that we only considered case law at EU level, since each Member State
has its own case law in its own language.

7.4.3 The United States

Claims regarding software cloning are rare, probably because they are very difficult to
prove. We analyzed all 85 output cases on LexisNexis about “software & cloning" and

1www.lexisnexis.com
2www.eur-lex.europa.eu
3For the US Case Law: www.cs.unibo.it/~cianca/wwwpages/dataxpapers/US_Case_Law_

LexisNexis_After_1944_software_cloning.pdf
4For the EU Case Law: www.cs.unibo.it/~cianca/wwwpages/dataxpapers/EU_Case_Law_

EUR-LEX_software_copyright.pdf

www.cs.unibo.it/~cianca/wwwpages/dataxpapers/US_Case_Law_LexisNexis_After_1944_software_cloning.pdf
www.cs.unibo.it/~cianca/wwwpages/dataxpapers/US_Case_Law_LexisNexis_After_1944_software_cloning.pdf
www.cs.unibo.it/~cianca/wwwpages/dataxpapers/EU_Case_Law_EUR-LEX_software_copyright.pdf
www.cs.unibo.it/~cianca/wwwpages/dataxpapers/EU_Case_Law_EUR-LEX_software_copyright.pdf

122 Chapter 7. Legal Implications of Software Reuse

Table 7.7: Number of cases per cloning area

Type of Software Cloning # Cases

A: Software and Hardware cloning issues related to
physical devices 13

B: Software cloning issues related to competition and
antitrust issues 7

C: Software cloning issues related to misappropriation
of trade secrets and copyright infringements 14

NA: Not Applicable. This is not a case related to
software cloning 51

created the table US Case Law. Interestingly, as shown by our table, the US case law
regarding cloning issues in software is wavering and considers mainly copyright issues.
There is no single judgment of the Supreme Court about the issue. This means that
there is no unequivocal interpretation about cloning, but courts judge, case by case,
according to the specific issue (our A, B or C cluster).

We found no case about software clones of types 1, 2, and 3; instead the US courts
dealt with functional clones (type 4), as shown in the table. Courts tend to judge over
general issues regarding copyright, and do not enter technically in the cloning issue.

Interestingly, courts seems to use common pattern. Therefore we cluster the cases
according to these patterns. It was quite surprising to discover that, with regard to
software cloning, US courts lead their judgment within one of three cluster. This is
probably due the fact that sticking to the law, the type of evaluation needs a certain
level of homogeneity. The choice of putting one case in a cluster were made by the
authors, according to the relevance. Since any case is describe, the relevance to the
cluster may be confirmed also by the reader.

So, to analyze better the Case Law, we clustered the cases into three areas in
Table 7.7. In the next subsections a general description of each cluster will perused,
to motivate our findings.

According to our research, in the US, we found no relevant case regarding software
cloning of types 1, 2, and 3. We do not know if no one has ever claimed a court about
the resolution of a cloning issue or courts do not judge over these issues due to their
technical complexity. Probably, according to the plaintiff’s strategy, it is better to
appeal the court for some more evident issues (like a similar GUI) rather than a piece
of code. Courts want to deal, apparently with what they see, like Graphical User
Interfaces, rather than discuss about the likelihood of a clone detection match. The
only case law we found regards type 4 clones (indeed, with a negative outcome for
the plaintiff). Apparently, courts tend to consider the broader picture of a program’s
features. Even though there are, at the state of the art, excellent detection techniques5
Courts do not judge over heuristic techniques, even though they are considered highly
reliable, thus preferring to judge over generic issues, like graphical interfaces.

This seems contradictory. If semantic clones are the most difficult ones to identify,
why is all the available case law about these clones? Again, a reasonable explanation
is that for a court it is easier to judge about the output of a code (like a GUI, or
general functionalities) rather that deciding on which degree a code has been copied.

5For a comprehensive and recent survey, see [382].

7.4. The case law 123

In the next three subsections we deepen our case cluster. The case law is rep-
resented in the table US Case Law. Please consider that we put together court’s
statements regarding cloning issues.

In Subsection 7.4.4 we analyzed cloning issues related to physical devices which
may not be strictly related to software cloning. However, we found it interesting,
because it shows how courts deal with cloning of technological issues. This gives us
some insights about court’s behavior. In Subsection 7.4.5 courts deal with the well
known issue of antitrust and monopoly in the technology market. Here, judges weight
the interests of free market competition and individual propriety rights. Subsection
7.4.6 is the more straightforward case of software cloning and copyright infringements.

7.4.4 Software and hardware cloning related to physical devices

Interestingly, cases belonging to the first cluster A (Software and Hardware cloning
issues related to physical devices) are all concentrated before 2000, so among the first
ones. Between 1990 and 2000 almost all cases were about software and hardware
cloning of phone and television devices. Out of 18 relevant cloning cases in the last
decade of XX century, 12 were related to such issues6 Only in 2012, in United States
v. Harris, a US court treated a cloned device issue.

However, this case is related to a cloned software and hardware tool that enables
a free and faster Internet access.

In United States v. Davis of 1992, Davis was convicted of violating various federal
statutes and copyright infringement regarding cable television and its satellite-signal
system. Once completed, Davis’s modifications made it possible for the cloned mod-
ules to descramble and decrypt satellite programming without the knowledge of the
cable companies. The modifications also made it all but impossible to use the device
in any legitimate fashion.

Similarly, in United States v. Yates of 1995, the court held that cloning involved
reprogramming a cellular telephone so that its electronic serial number and mobile
identification number combination was identical to a legitimate customer’s account.
The court ruled that the defendant violated the law because cloning involved the use
of an altered telecommunications instrument to obtain access to pay services for the
purpose of defrauding the carrier.

In these cases, the outcome for the defendant was rather negative. Courts defined
these cases within other legal domains (e.g., telecommunication law), with crimes
clearly defined by the law.

7.4.5 Software cloning related to competition and antitrust issues

Case Law of the B cluster (Software cloning issues related to competition and antitrust
issues) started at the very beginning of the XXI century. These cases are interesting
because they show how courts (re)act to monopolistic behaviors. Usually, functional
cloning is permitted (also encouraged) to create competition.

The most relevant cases involve Microsoft Corporation. Probably, the most in-
teresting case is the first one: the 1999 United States v. Microsoft Corp. The US
government claimed that Microsoft violated antitrust provisions of the Sherman Act,
which is the most relevant antitrust law. The court concluded that Microsoft had
monopoly power in the strategic market of PCs because the defendant could substan-
tially raise its prices without losing business to a commercially viable alternative, since
Microsoft’s market share was large and stable, and the related market was protected by

6For a comprehensive overview please cfr. the table US Case Law.

124 Chapter 7. Legal Implications of Software Reuse

a high barrier of entry. The court further found that Microsoft purposefully leveraged
its monopoly power in the market to thwart competition in other software markets.
Specifically, through restrictive OS licensing agreements with computer manufactur-
ers, Microsoft achieved a higher market share in the web browser market. Microsoft
protected its monopoly and hindered innovation by imposing barriers to entry against
various cross-platform software, “middleware", and network applications.

Here, cloning does not have a major importance, since the court intended to protect
market competition. In fact, in cluster B cases, usually courts tend to see cloning as
positive, since it creates competition, which is more important than property rights
(e.g., copyright) [301]. Antitrust is one of the most studied subjects in Law and
Economics literature [223]. Courts tend to restore equilibrium in the market, which
is a common good.

Therefore, any possible act of competition is encouraged (directly on indirectly),
even functional cloning.

Microsoft was sued by several other public bodies, for very similar accuses, like New
York v. Microsoft Corp. in 2002 or Massachusetts v. Microsoft Corp. in 2004. Also
common in cluster B are the cases of private corporations sueing other corporations
for unfair competition. In Sun Microsystems, Inc. v. Microsoft Corp. in 2000, the
court granted a preliminary injunction, finding that Sun had a reasonable chance of
success on the merits, the hardship to Sun of Microsoft’s continuing its potentially
unfair competition outweighed the burden on Microsoft, and Microsoft was likely to
continue harming Sun if the injunction were not granted.

7.4.6 Software cloning related to misappropriation of trade secrets

and copyright infringements

The last cluster - cluster C - of rulings related to misappropriation of trade secrets
and copyright infringements is, probably, the most connected to software issues. It
includes cases from 1990 to 2014.

We found no clear trend followed by the courts, because they protect the plaintiff
or the defendant, case by case. More precisely, we cannot clearly state that courts
tend to protect inventors from software cloning.

The oldest case in this cluster is Lotus Development Corporation v. Borland
International, Inc. of 1990. The court dealt with generic issues, i.e., whether the
copyright does extend to the text or layout of a program’s menus, stating that it is
not extendable. The court held that if the expression of an idea had elements that
went beyond all functional elements of the idea itself, and beyond the obvious, and if
there were numerous other ways of expressing the non-copyrightable idea, then those
elements of expression, if original and substantial, were copyrightable.

Also the FASA Corp. v. Playmates Toys case of 1994 is related to the cloning
of playing symbols. The court indicated that a comparison of the game materials
revealed that there were marked similarities between the two sets of playing symbols
programmed in the games, but no substantial evidence of copyright infringement.

On the contrary, in United States v. Manzer, the jury determined that computer
programs sold by Manzer were derivative of copyrighted material, and that the soft-
ware contained sufficient notice of its protected status. Likewise, Tradescape.com v.
Shivaram of 1999. Tradescape sued Shivaram for copyright infringement and theft of
trade secrets concerning online day trading computer software. Shivaram, a software
consultant that used to work for Tradescape, developed a software program that al-
lowed for online day trading. Tradescape established a likelihood of success on the

7.4. The case law 125

merits on its copyright infringement and theft of trade secrets claims because it pro-
vided sufficient direct and circumstantial evidence of copying of protected material.

Another important case is Oracle Am., Inc. v. Google Inc. of 2012. Oracle
wrote 37 packages of Java source code, published their “application programming in-
terfaces” (API), and licensed them to others for writing “apps” for computers, tablets,
smartphones, and other devices. Oracle alleged that Google’s Android mobile oper-
ating system infringed Oracle’s patents and copyrights. The jury found no patent
infringement, but ruled that Google infringed copyrights in the 37 Java packages and
a specific routine, “rangeCheck”. Hence, copyright protection extends to all elements
of an original work of computer software, including a system or method of operation,
that an author could have written in more than one way.

The 14 cases in cluster C are interesting because there is not a clear positive or
negative jurisprudential trend followed by the courts. Evaluating case by case, courts
tend to value positively or negatively cloning issues. Usually, there are considered
much more elements than just a simple “copied” or “non copied” answer. There is
always a human, arbitrary element in any judgment. Thus, any kind of reasonable
expectations of an outcome of similar cases are rather difficult.

7.4.7 Other cases related to the United States

In this chapter we study the behavior of courts when they have to deal with software
cloning. However, some cases of software cloning are not classified “software & cloning"
inside legal databases. Therefore, analyzing all cases of software cloning, strictly
speaking, is nearly impossible, since we should analyze any law case where software
is involved. Moreover, even after the analysis of such cases, still you have not the
guarantee that you took all, since not all cases are imported in such databases.

By serendipity search we found five other relevant cases where software cloning is
involved. These cases are listed and explained in Table 7.8. They are all related to
copyright infringements or other infringements. Since they do not fall in the chosen
query “software cloning”, we kept it separately. These five cases, de facto confirm our
previous analysis.

The use of graphical user interface (GUI) elements that are similar between two
systems were examined Apple Computer, Inc. v. Microsoft Corporation and Hewlett-
Packard Co.; the court stated that such a (re)use does not represent an infringement.
These claims do not deal with clone type 1, 2, or 3 but only with functional ones.

We believe that US courts do not clearly protect a copyright holder. In fact they
have a waving aptitude, from case to case, according, mainly, to jurisprudential issues.
This is not the case of the European Court of Justice case law, discussed in the next
section.

7.4.8 The European Union case law

Only four cases relate to software cloning. The others deal with jurisprudential issues
of abuse of dominant position7. Other cases regards patent or copyright registration
issues. Since the Office for Harmonisation in the Internal Market (OHIM) is a Euro-
pean agency, any cases regarding such issues is of competence of the ECJ. Moreover,
we have some cases regarding data protection and public competition against the EU
issues.

7Consider that the European Commission was established to create the Single Market. Actions
against abuse of dominant position are among the most frequent ones, to foster the European com-
petition [213].

126 Chapter 7. Legal Implications of Software Reuse

Table 7.8: Other US case law.

Case Court Year Relevant output

Step-Saver Data Systems,
Inc. v. Wyse Technology 3rd Cir. 1991

Characterizing the transac-
tion as a license to use soft-
ware is a habit which do
not correspond to today’s
world.

Computer Associates Int.
Incv̇. Altai Inc. 2d Cir. 1992

to claim for a copyright
infringements there has to
be claimed substantial sim-
ilarities.

Lewis Galoob Toys, Inc. v.
Nintendo of America, Inc. 9th Cir. 1992

Any consumer can do
changes to licensed com-
puter games for personal
use.

Apple Computer, Inc. v.
Microsoft Corp. 9th Cir. 1994

Certain components of a
GUI do not underly to
copyright law.

Meshwerks, Inc. v. Toyota
Motor Sales U.S.A., Inc., et
al.

10th Cir. 2008
3D models are not pro-
tected by copyright even if
they represent the original.

Regarding the case law, the ECJ has relevant rulings regarding software cloning
just for type 4. So, easily detectable clones (of type 1, 2, or 3) are not relevant at for
the EU court.

What distinguishes the EU from the US is the different approach to copyright.
The ECJ fully recognizes the legal dignity of computer programs as copyrightable
goods (UsedSoft GmbH v. Oracle International Corp.). However, at the same time,
it gave a loose protection to functional cloning (Bezpecnostni softwarova asociace v
Ministerstvo kultury.). Moreover, the ECJ went way beyond with the SAS Institute
Inc. v World Programming Ltd. case, which has several disruptive elements regarding
copyright law, which will be analyzed in the next section.

Furthermore, consider that these sentences are a Supreme Court pronouncement,
thus binding for all Member State jurisdictions.

Both US and EU courts never judged about type 1, 2, or 3 clones, which are
relatively easy to detect with state of the art heuristic tools. The available case
law concerns only type 4 clones (semantic ones) and other, general, copyright issues.
Synthetically, we can say that:

• courts have an apparent difficulty to deal with clone detection issues;

• we did not find one single law case about clones of type 1, 2, or 3;

• the only cases treated by courts concern type 4 (functional) clones;

• the few cases regarding functional clones have, within the EU, a ‘loose’ copyright
protection.

7.5. An ECJ disruptive ruling 127

7.5 An ECJ disruptive ruling

After the SAS Institute v. World Programming Ltd8 ruling by the European Court of
Justice the legal consideration of the EU justice system about copyright of software
changed radically.

This ruling introduced diverse major consequences about how to interpret software,
from a legal perspective. The implications for software programs and related lawsuits
are of greatest relevance for the software community in Europe.

Going into details, the ECJ stated three important principles regarding the inter-
pretation of Directives 91/250 and 2001/29:

1. The first, and most important part of this ruling is that the Court, stating that
the legal protection of computer programs is to be interpreted as meaning that
the functionalities of a computer program and the programming language are not
eligible, as such, for copyright protection. It will be for the national court to
examine whether, in reproducing these functionalities in its computer program,
the author of the program has reproduced a substantial part of the elements of the
first program which are the expression of the author’s own intellectual creation.
So, since software’s features are considered as “principles” or “ideas,” by the
Court they are not copyrightable expressions by themselves. The copyright of
software is so, no more considered an absolute assumption but a relative one.
This does not mean that computer programs are not copyrightable. They are
a form of expression of the intellectual creation of the programmer but the
“principles” or “ideas,” themselves are not protected by law.

2. Moreover, regarding reverse engineering for interoperability issues, the ECJ af-
firms that it is not regarded as an act subject to authorization for a licensee to
reproduce a code or to translate the form of the code of a data file format so
as to be able to write, in his own computer program, a source code which reads
and writes that file format, provided that that act is absolutely indispensable for
the purposes of obtaining the information necessary to achieve interoperability
between the elements of different programs. That act must not have the effect of
enabling the licensee to recopy the code of the computer program in his own pro-
gram, a question which will be for the national court to determine. [...] Acts of
observing, studying or testing the functioning of a computer program which are
performed in accordance with that provision must not have the effect of enabling
the person having a right to use a copy of the program to access information
which is protected by copyright, such as the source code or the object code. The
direct consequence of this statement is that any software engineer, who acquired
a license of a software can freely observe, study or test it to fix interoperability
or for education purposes. So, any software, which has been acquired legally,
can be studied and the copyright holder is not able to prevent it. Interestingly,
even though someone would study the program, to copy it, this could not be
considered a copyright infringements.

3. The last paragraph of the ruling, which is less relevant from our perspective, is
about the copyright of the user manual. According to the ECJ, the reproduc-
tion, in a computer program or a user manual, of certain elements described in
the manual for another computer program may constitute an infringement of the
copyright in the latter manual if – a question which will be for the national court
to determine – the elements reproduced in this way are the expression of their

8C-406/10, 02.05.2012

128 Chapter 7. Legal Implications of Software Reuse

author’s own intellectual creation. Also for this case, the expression, original
creation of the author, is protected by copyright law. Not protected are key-
words, syntax, commands and combinations of commands, options, defaults and
iterations singularly, but the choice, sequence and combination of such elements
that the author may express his creativity in an original manner and achieve a
result which is an intellectual creation.

The disruptive nature of this ruling is quite clear. Even though before there were
no real case law regarding cloning or copying issues, about copyright infringements,
this sentence has a big impact in the computer science community because it states
relevant issues that have a direct impact for programmers, at least in Europe. With
the SAS judgment we can figure out the following direct consequences for software
engineers:

• it is possible to reproduce “principles” or “ideas” of other people’s software pro-
grams;

• it is possible to profit from others’ “principles” or “ideas,” since they are not
protected by copyright;

• my own “principles” or “ideas” are not copyrightable, so everyone can get full
inspiration from them;

• European courts are not the right place where to defend “principles” or “ideas”
because no legal paradigm protects them;

• courts within the EU may intervene if the source or object code itself is copied;

• the source or object code of any program can be studied, without any permission
of the licensor for “study” purposes. Therefore, if someone studies the source
code of a program to get its “principles” or “ideas” to exploit them, no one can,
de facto prevent it. Even though the court handles with the case which regard
reverse engineering for interoperability issues, it is easy to bypass this case. In
principle, any programmer could claim to have “studied” it for interoperabil-
ity. So, even if nothing would come out (in terms of interoperability) still the
programmer could have been studied the program, without any restriction. Fi-
nally, no one could claim copyright issues if he gets “principles” or “ideas” of that
program, for his own program.

• it is legal (at least in Europe) to copy/clone “principles” or “ideas” of any pro-
gram, also for profit.

7.6 Impact on software

This chapter shows how an interdisciplinary approach to software may bring enriching
elements to the community discussion. In this case, bridging legal considerations
within the clone literature brings some relevant insights about an everyday aspect of
software: its legal protection. Here, we represented the behavior of US and EU courts
when it comes to software cloning and, more generally, to IPR issues. In Table 7.9 we
outlined the main differences between the two legal systems, with respect to software
cloning.

For the US we found out that, at the moment, the Supreme Court has not issued
a ruling regarding cloning issues in software. This means that first and second level

7.6. Impact on software 129

Figure 7.1: Copyright protected and not protected reengineering
according to the ECJ.

courts will continue to use the pattern identified and discussed in Subsection 7.4.3.
So, new cases of software cloning in the US will fall under cluster A, B or C.

For all EU Member States, the SAS Institute v. World Programming Ltd ruling
will have a disruptive impact regarding reverse engineering. So, from academic, non
profit or FOSS application, up to commercial, closed source and business applications,
reengineering has to be considered, at least permitted. Anyone can use “principles” or
“ideas” of another software artifact for the proper use. And no one can legally claim
an IPR protection if someone else exploit the own original “principles” or “ideas” used
in someone else artifact. If the software community in Europe wants to have a more
stringent protection about the software, European courts (of all Member States) are
not the suited place to get this protection.

One big issue is the architecture visualization of a system [166]. In literature, there
are different visualization tools proposal, to cope with the complexity of computer
programs [276]. But to what extend, from a legal point of view, a software engineer
can apply these visualization tools to study and understand better the architecture of
a program? Which kind of authorization has he to ask for? According to the ECJ the
answer is simple: there is no limitation. Anyone can de facto study the architecture for
any purposes. First of all for interoperability issues but also for education ones. This
means, basically everything. Furthermore there is no need for any kind of permission
to do that.

Furthermore, it is of highest interest interpreting in an operative way the SAS
ruling. The ECJ refers explicitly to “principles” or “ideas”. So, direct derived work is
still to consider protected by copyright, since it is much more then not just “principles”
or “ideas” . The typical example is the relationship of the source code and the object
code, explained in Figure 1. The object code O1 is automatically derived by the source
code S1, elaborated by a compiler. Therefore, also the object code is protected by
copyright, as it is an automatic execution of a human creative activity, namely the
source code.

130 Chapter 7. Legal Implications of Software Reuse

Table 7.9: Copyright protection within the EU and the US

EU US

Difficulties to deal with cloning issues X X
Courts do not judge over cloning cases of type 1, 2 or 3 X X
Clear clustering of case law X X
Software is patentable X X
The use of “principles” or “ideas” belonging to other people
is permitted X X

It is possible to profit from others “principles” or “ideas” X X
Courts are the right place to defend your own “principles” or
“ideas” X X

Going ahead, what happens to an object code O2 which is decompiled in a source
code S2, which is slightly different with regard to e.g., the identifiers? Is it still a
copyright protected artifact? The answer is yes. As the automatic compilation, also
the decompilation is an automatic and directed process to get to a derivative product
S2 from an original S1 protected one.

But what happens is if the relationship is not automatic or direct? Well, the
answer is it depends. However, we can reasonably state that if the change to the
software exposed to reverse engineering is not trivial and the new artifact X follows
just “principles” or “ideas” of S1, it is for the ECJ a new artifact with no legal relation
to S1 or S2.

Ultimately, the fine line between derived artifacts protected by copyright (S2) or
new one (X) inspired by the original one, depends on the “degree of derivation”. If the
derivation is verry loose, and the X artifact recalls just “principles” or “ideas” of S1,
the ECJ would not claim any copyright infringment. On the other hand, if this recall
is more than just a simply “inspiration”, well the ECJ would seen this as infringment.

Unfortunately, there is not a easy answer to this issue. Since we are dealing with
courts, there will always be a degree of arbitrarity. Nonetheless, we found out that
copyright protection of software within the EU is relatively loose.

For all EU Member States, the SAS Institute v. World Programming Ltd ruling
will have a disruptive impact regarding software cloning issues. What we define as
functional cloning or type 4 clones are perfectly admitted in all thinkable use. So,
from academic, non profit or FOSS application, up to commercial, closed source and
business applications, functional cloning has to be considered, at least permitted.
The use of “principles” and “ideas” of software is free and may be used for the proper
purposes. No one can legally claim an IPR protection if someone else exploit the own
original “principles” or “ideas” used in someone else artifact.

What the community needs to understand very clearly is that all courts of EU’s
Member States are not the suited places for a stringent protection of software artifacts.
Such a conclusion has a wide overall impact on society.

7.7 Conclusions

In this chapter we analyzed the difference in behavior of US and EU courts.
Courts, usually, do not enter in cloning issues concerning program fragments that

are identical. The case law we found is all is about semantic clones, which only
clone detection heuristics can figure out. However, courts seem not to rely on such

7.7. Conclusions 131

techniques, using, for their judgments, more general principles, like the use of software
as method of operations.

The US courts have a waiving attitude and decide over software’s copyright pro-
tection case by case. Furthermore, no Supreme Court ruling relevant for software
cloning issue was found.

The approach of the European Court of Justice appears looser in terms of degree
of legal protection of software’s copyright. Undoubtedly, the SAS judgment has to be
considered as disrupted in term of copyright protection. This has a wide relevance
not only for the Software Engineering community but also for everyone dealing with
intellectual propriety. According to the ECJ position, all Member States courts within
the European Union, have to align their future rulings, since it is a pronouncement
of a higher court. The Court stated that cloning of “principles” or “ideas” (semantic
clones) can not be an infringement of copyright, since “principles” or “ideas” are not
copyrightable.

Therefore, the question “how much is too much”, at least for courts, makes little
sense. Both, US district and federal courts and the ECJ disregards cloning cases,
strictly speaking i.e., type 1, 2 or 3. The only relevant cases are functional cloning
ones.

A further interdisciplinary research effort may investigate future rulings of lower
court within the EU. So, we could analyze the level and type of interpretation given by
these courts to the SAS ruling. What we want to state is that the right interpretation
of interdisciplinary issues in Software Engineering, like the effect of courts into the
protection of the propriety of software is crucial, since it has a big impact on the
community on both copyright and commercialization aspects. In particular, it could
be of interest to analyze how European software houses complies with this new leaning
of courts. Moreover, a wider analysis of more legal systems (e.g., India, China) could
give us better insights about court’s behavior in cloning cases.

133

Chapter 8

Cooperative Thinking

8.1 Introduction

Literacy is a personal skill, needed by any citizen to interact with society. The indi-
vidual scope of literacy has deeply influenced teaching methodologies and especially
students’ evaluations, concentrating most educational efforts on the individuals; see
for instance [435] for a discussion about individual social differences in the acquisition
of literacy.

Computational Thinking is a new form of literacy [486]. It is a concept that has
enjoyed increasing popularity during the last decade, especially in the educational
field. Computational Thinking is also considered an individual skill, and practiced
and trained as such [233, 494].

However, such an approach does not match current teaming structures of both
science and business, where problems and projects have become so complex that a
single individual cannot handle them within a reasonable time frame. To handle the
increasing complexity, especially in engineering software systems, developers should
be educated to act and operate as a team [144]. This is already happening in the
business world. In fact, teaming is considered the key driver to Digital Transformation,
where solutions are not provided by individuals but by self-organizing teams [145].
Digital Transformation is often subject to“wicked problems”, which do not have an
unique solution but many Pareto-optimal ones [391]. This also applies to software
development when complexity becomes very high [161].

In Software Engineering, the role of the team and teamwork in general is especially
crucial when Agile methods are used. The Agile principles acknowledge that impor-
tant information and know-how might not be available at the beginning of a project
[387]. Reaching the development goal requires several iterations, to build incremental
solutions of increasing value for the users.

A key agile team–building factor is self-organization, meaning that any member
of the developing team contributes with her knowledge, ability, and technical skills in
order to work out a solution. Since each team member is responsible for the project
as a whole, it is in everybody’s interest to organize work at best – not bounce respon-
sibilities. Moreover, teams are not static but they modify their structure according
to necessities, which change over time. Not surprisingly, some organizations have
built their competitive advantage and success on this model [18]. They comply with
Conway’s Law, according to which “organizations which design systems [...] are con-
strained to produce designs which are copies of the communication structures of these
organizations” [107]. A consequence of this observation is that organizations have to
modify their communication structures accordingly to the problem which need to be
solved. Therefore, flexible and self-organizing teams are best suited to comply with
such pivotal evidence for any organization.

134 Chapter 8. Cooperative Thinking

We argue that Agile principles and values should enrich the current efforts to
establish Computational Thinking as a fundamental literacy ability. We call such a
combination Cooperative Computational Thinking, or Cooperative Thinking for short.
From a pedagogical perspective, it is grounded in Johnson & Johnson’s Cooperative
Learning approach, where students must work in groups to complete tasks collectively
toward academic goals [229]. We suggest a team-oriented approach to educate software
engineers in Computational Thinking. Educators should not just promote some good
Software Engineering practices; rather, they should foster collaboration skills and
train student teams to cooperate on wicked problems. Programming skills are usually
considered personal ones; in most cases — job interviews, university exams, official
certifications — the focus is always the performance of the individual. We lack a
general approach to enable group skills in this context. Even if this idea may be
widely shared by the community, we did not find any evidence of a comprehensive
approach to it. This is probably due to the lack of explicit awareness of such concept
as enabler of Digital Transformation processes: we may use it implicitly without
recognizing it.

In this chapter we analyze processes and interactions in four different learning
modalities that mirror some standard software development models: solo programmer,
pair programmers, self-organized teams, and directed teams. We report differences,
practical and educational issues, their relative strengths with respect to developing
Computational Thinking skills on one hand and how they impact Agile team-related
skills, that form the base of Cooperative Thinking, on the other.

As a result, we developed a model for Cooperative Thinking, contextualizing in
relevant pedagogical theories. We provide results based on empirical and theoretical
evidence; they can be applied to daily teaching practices.

This chapter is organized as follows. Section 8.2 provides background information
on related research on Computational Thinking and Agile education. In Section 8.3
we present the methodological framework used for this research synthesis. Section 8.4
presents the investigations we performed in teaching Cooperative Thinking comparing
four modalities for organizing software development classes. Aggregated insights from
our synthesis are presented in Section 8.5, where we propose actionable solution for
educational practitioners. We discuss the synthesis of our research in Section 8.6,
presenting the details of the extension of Computational Thinking with Agile practices,
that we call Cooperative Thinking: self-organized teams are an effective way to enact
and support Cooperative Thinking. Finally, in section 8.7, we summarize our vision,
outline our future research, and draw our conclusions.

8.2 Related works

Computational Thinking has generated a lot of interest in the scientific commu-
nity [486]. It is related to problem solving [368] and algorithms [246], because it
is the ability of formulating a problem and expressing its solution process so that a
human or a machine can effectively find a solution to the stated problem.

However, several scholars argue whether the Computational Thinking concept is
too vague to have a real effect. For instance, a recent critique has been advanced
by [126]. He claims that Computational Thinking is too vaguely defined and, most
important in an educational context, its evaluation is very difficult to have practical
effects. This same idea can be found in the CS Teaching community. [34] and [214]
for example, try to decompose the Computational Thinking idea itself, in order to
have an operative definition. [198] notes that computing education has been too slow

8.3. Research Methodology 135

moving from the computing programming model to a more general one. [57] even
wonders if the Computational Thinking concept is at all useful in Computer Science,
since it puts too much importance on abstracts ideas. It is also remarkable that there
is some research trying to correlate CS and learning styles [215, 457, 17], but generally
inconclusive.

Though the Agile approach to software development is eventually going main-
stream in the professional world, teaching the Agile methodology is still relatively un-
common, especially at the K-12 level. Moreover, a Waterfall-like development model
is often the main development strategy taught in universities [266]. Moreso, it is usu-
ally limited to an introductory level and rarely tested firsthand. In practice, Agile is
learned “on the field”, often after attending ad hoc seminars. Interest in the field is
however rising, and curricula are being updated to reflect this [436, 265]. An inter-
esting and complete proposal has been proposed by [304]. The chapter presents the
“Agile Constructionist Mentoring Methodology” and its year-long implementation in
high school; it considers all aspects of software development, with a strong pedagogical
support.

To summarize, programming remains a difficult topic to learn and even to teach,
both at university and high school level; the ability to design and develop software
remains an individual skill and taught as such.

Some studies, however, tackle the idea that hard skills expertise should be com-
plemented with soft skills, possibly introducing active and cooperative learning [231].
For example, in [392], a long list of so-called soft skills expertise is paired with various
developer roles. In [84] the problem is well analyzed, but arguably the proposed solu-
tion is not comprehensive. [305] presents an example of how to promote cooperation
within a software project; however generalizing the proposed scheme seems difficult.
We note however that the approach is hardly systematic, and no general consensus
exists on how to proceed along this line.

8.3 Research Methodology

Meta-analysis is a widely known and old research procedure, firstly methodologically
supported by the work of [175]. The first meta-analysis was probably carried out
by Andronicus of Rhodes in 60 BC, editing Aristotle’s 250 year older manuscripts,
concerning the work The Metaphysics. The prefix meta- was then used to design
studies whose aim is to provide new insights by grouping, comparing, and analyzing
previous contributions. Accordingly, we use the term meta-analysis to indicate an
analysis of analyses. In this sense, there are a variety of analysis of analyses, like
systematic literature reviews, systematic mapping studies, and research synthesis.

According to [109], a research synthesis can be defined as the conjunction of a par-
ticular set of literature review characteristics with a different focus and goal. Research
synthesis aim to integrate empirical research in order to generalize findings. The first
effort to systematize from a methodological perspective a research synthesis was per-
formed by [108], building on the work of [225], proposing a multi-stage model. The
stages are the following: (i) problem definition, (ii) collection of research evidence,
(iii) evaluation of the correspondence between methods, (iv) analysis of individual
studies, (v) interpretation of cumulative evidence, and (vi) presentation of results.

Following the multi-stage framework suggested in [108], we provide our problem
definition, framed as research question (RQ).

• RQ1: Is Computational Thinking scalable to teamwork?

136 Chapter 8. Cooperative Thinking

Table 8.1: Investigation list

Title Focus of Experiment # Subjects Ref

Learning Agile software development
in high school: an investigation

Pair Programming,
Timeboxing,
User Stories,
Team Development

84 [312]

Teaching Test-First Programming:
assessment and solutions

Pair Programming,
Social dynamics 102 [315]

Agile for Millennials:
a comparative study

User Stories, Scrum,
Waterfall,
Team Development,
Timeboxing

160 [314]

To answer this question, we looked back to some previous works of ours, investi-
gating the phenomenon on different perspectives.

All analyzed papers are both homogeneous and comparable, as depicted in Table
8.1.

We both provided insights on single papers in Section 8.4, and provide an inter-
pretation of cumulative evidence in Section 8.5.

As an outcome we propose a new educational framework, namely Cooperative
Thinking, which we use to answer to our research question in Section 8.6.

8.4 Results

We performed some experiments collecting several insights regarding teaming for solv-
ing computational problems, as listed in Table 8.1.

For the purpose of this research synthesis, we abstracted our empirical knowledge
and mapped learning models to learner types. To do so, we used the well–known
Kolb’s learning style inventory [261, 235], consisting in:

• Individual learning (best suited to Assimilators)

• Paired learning (best suited to Convergers)

• Directed group learning (best suited to Divergers)

• Self-determined group learning (best suited to Accommodators)

This classification supports our inductive epistemological approach, allowing us to
contextualize already collected evidence into a broader theoretical framework. Here-
after, we make our considerations for the four learner groups.

8.4.1 Individual learning

Directed Individual learning (short: Individual Learning) corresponds to the most
common form of teaching, practiced everywhere in practically every subject and most
often associated to Directed Instruction.The typical form consists of a lecture on a
new topic, followed by individual study and exercises, then finalized in some kind of
assessment (test and/or capstone project); teaching is generally sequential, each con-
cept built on previously acquired knowledge. The main advantages of this model are
its simplicity and efficiency; a single individual can teach a full class of people at the
same time; moreover, we all already have have plentiful experience with this method.

8.4. Results 137

More recently, by using modern technology this model can scale almost indefinitely.
Practical examples include the Khan Academy, Udacity, and other MOOCs. An inter-
esting aspect is that the sequential progression is ideal for stimulating Computational
Thinking concepts — especially Problem Solving. Once a topic is mastered, it can
be used to tackle more complex concepts or deepen and reinforce the significance of
an acquired one. Another advantage is assessment; for instance, it is very easy to
evaluate a program written by a student thanks to standard testing frameworks, to
the point that automatic evaluation is becoming more and more common — a decisive
point in case of e-learning on very large classes.

This model is dominant, however it has several limitations. One of most important
ones is the fairness of the assessment. The difficulty of the assessment test is usually
tailored upon the average student, resulting in a Gaussian curve grade distribution.
In this model, students falling behind at the beginning of the course rarely have the
capacity to catch up, as the time allotted is the same for every student; additional
information, requirements, time–demanding exercises pile up very quickly. People
experiencing learning difficulties have very few options. Those who can afford it resort
to privately paid tuition, but for the rest the road a failing grade is almost certain. A
consequence is the so called “Ability Myth”: it states that each of us is born with a
set of abilities that hardly change during our lifetime [438]; in fact, this phenomenon
is in most cases the effect of accumulated advantages [435].

Another drawback is the absence of positive social interaction. Direct teacher/
student communication is constrained by the available time. Student/student inter-
action rarely includes exchanges of ideas or effective cooperation; more often than
not, it results in direct competition or in nonconstructive and illegal help (i.e. cheat-
ing). All of this might have a negative influence on overall motivation, especially in
less-than-average performing students.

In our experiments [312, 314, 313], we simulated a working day in a software
house; the teacher assumed the role of the software house boss, and selected a number
of students who were previously categorized as either “good”, “average” or “poor”
programmers. Each student was given a moderately difficult task using a new work
methodology (either TFD or User stories) within a limited time-frame. Without
much surprise, both performance and the perceived utility of the activity mirrored
their current skill level.

Individual learning help foster Computational Thinking but it is not useful (or
maybe detrimental) to develop social skills needed for Cooperative Thinking. Ac-
cording to Kolb’s learning inventory [261], this teaching model best suits Assimilia-
tive learners, since they like organized and structured understanding and respect the
knowledge of experts. They also prefer to work alone.

8.4.2 Paired learning

Paired learning (also called Dyadic Cooperative Learning Strategy [427]) is also a
common technique but far less popular than the previous one. The basic principle
involves the teacher posing a question or presenting a problem, then the students
discuss in pairs and find their own way toward the solution; pair members are often
switched, sometimes even during the activity.

The role of the teacher in this case is quite limited, as she acts as a general
coordinator and facilitator of the class of pairs. In the software development field, we
find an obvious transposition of this model in Pair Programming, one of the key Agile
programming practices and, to a lesser extent, in some training techniques (Randori
and Code Retreats among others [394]).

138 Chapter 8. Cooperative Thinking

According to [121], this model has beneficial influence on retention, understanding,
recall, and elaborate skills at the cognitive level; it is particularly effective on mood
and social skills, and introduces the idea of software being an iterative, evolutionary
process. As it promotes knowledge sharing, it can help less skilled individuals to
improve themselves taking inspiration from their partners. However, it is more difficult
to develop a teaching progression using only this model, and in any event, it would be
rather slow. In addition, psychological and personal factors become important, since
partner incompatibilities and social difficulties might dramatically change both the
learning outcomes and the quality of the code produced. Assessment is more difficult
than in the previous case; though automatic evaluation is still possible, some extra
steps are required by the teacher to deduce the effective contribution of each member
of the pair to the final work.

We tested firsthand this effect in our experiments [312, 315]. We proposed the
same method and problems stated in Sect. 8.4.1, but in this case we paired students
according to six possible pair types, classified as homogeneous (good-good, average-
average, poor-poor) or as non-homogeneous (good-average, average-poor, good-poor).

According to our results, homogeneous pairs performed generally equal or worse
than their solo counterparts, but non-homogeneous pairs had statistically better re-
sults. In the latter case a form of epistemic curiosity [230] appeared, possibly uncon-
sciously, and was a key motivating factor for the pair; the resulting interaction helped
both to solve the task at hand and to develop social skills. Computational Thinking
was also stimulated, but a little less than with the previous model, since the “effort”
was split and each single task was not really challenging, requiring expertise more
than logical reasoning.

In addition, both students and teachers praised the new methodology and its
positive effect on mood. However, the retention rate was very low, much worse than
expected; in an interview conducted some time after the experiment was over, students
generally only had a vague idea of the techniques used and only about 5% of them
was able to name them correctly.

To summarize, paired learning has beneficial effects on social skills related to Agile
development, and generally is useful in leveling skills upwards. Knowledge building
will however be much slower than in the traditional approach. This teaching model
better suits Convergent learner types, since they want to learn by understanding how
things work in practice, like practical activities and seek to make things efficient by
making small and careful changes.

8.4.3 Directed group learning

Group learning is one of the many facets of Cooperative Learning, which is becoming
fairly common in modern, constructivist-influenced education [78]. It is also a common
practice in some working environments, notably in the health context for nurses [482].
Group learning in a Software Engineering lab class is best exploited by developing
a full software project, not simple exercises or abstract analyses. So, it is natural
to join Group Learning and Project-Based Learning strategies, especially using the
Jonassen variant [222]: a complex task taken from real-life with authentic evaluation,
comprehensive of all phases of development.

We are aware that many software development methodologies exist, and each of
them can be transposed in an educational context promoting different behaviors and
skills. One of them is the Waterfall model, probably the oldest one but still quite
popular in the industry.

8.4. Results 139

Waterfall embodies in many ways all the tenets of our prevailing culture, such as
linear hierarchies, top-down decision making, accepting the assumptions, acquire all
information in order to prepare a detailed plan and then following it — values that
have forged the way traditional education was conceived and in most cases is still
carried out.

A Waterfall school project will see the teacher assume the role similar to that of
a senior project leader, assigning tasks and roles to students according to their skill,
knowledge, and ability and applying a certain degree of control. The teacher’s role
will be very important at the beginning of the project, as students generally lack the
ability to perform a thorough analysis and comprehensive design phase. As the project
continues its course, the role will be more oriented to control, checking that documents
are properly written, modules developed and tested, directing the flow of the entire
operation. Assessing a group project is considerably more complex that both previous
model, since it involves not only the final product, but also the process used and the
interaction among the student and their relative contributions. To resolve it, usually
a combination of traditional evaluation (automated or not), direct teacher observation
and peer evaluation is used, forcing students to evaluate and reflect on the quality of
their work.

In a different experiment, we decided to give students a very challenging task,
almost impossible to solve. They had to build from scratch a complete dynamic
website, a task we estimated in about 30 man-hours to complete when handled by
experts. We only gave them 6 hours. This forced teams to make hard decision as
to what was the most suitable course of action in order to make the best use of the
allotted time and resources.

Then some extra restraints were imposed on the group, such as:

• A rich set of artifacts, such as a complete SRS, ER-diagrams, management
priorities, UI-Mockups.

• Specific roles (programmer, UI-expert, tester, . . .) and hierarchies (chief pro-
grammer, for example) were imposed.

• A predefined time schedule.

From an educational viewpoint, the target product was definitely outside a single
student’s zone of proxymal development [471], but was theoretically doable as a team
effort. From a different viewpoint, such a target looks like a wicked problem, since
students lacked the knowledge and the competence to complete the task, and were
requested to acquire them along the way [476]. The great amount of information and
in general the directive role of the teacher gives the opportunity to highlight whatever
learning goal is deemed important.

Results show that, under these conditions, groups tend to concentrate on non-
functional requirements and process-related goals instead of pursuing the main goal:
delivering a working product to the “customer”. The products, on average, had very
few working features, but the defects were hidden under a pleasant user interface,
close to the one proposed by the “management”. Roles were interpreted rather closely
to the given instructions (barring a few cases of internal dissent), timing was impec-
cable, and even the documentation was acceptable. Teacher-student interactions were
not intense, but rather limited to simple yes-no questions. Students reported great
satisfaction for both the activity and the product realized, asserting it was an activity
both useful and fun [314].

To summarize, this teaching model promotes the use of social skills, while leaving
the steering wheel in the hand of the teacher. This power can be used to provide a

140 Chapter 8. Cooperative Thinking

meaningful learning path, though slower that Individual Learning and with a non-
trivial evaluation method. It also does not seem to stimulate enough other interesting
skills, such as decision making. It better suits Divergent learner types, since they and
will start from detail to logically work up to the big picture. They like working with
others but prefer things to remain calm.

8.4.4 Self-directed group learning

This model is a different version of Group Learning, radically different than the pre-
vious one in that students have a strong degree of autonomy. It applies to K-12, adult
education and business/industrial environments, for example [186].

In this case, the teacher becomes a mentor and a facilitator, and invests a large
amount of trust on the learners.

Most of what we said on Project-Based Learning in the previous subsection holds.
In this case, the granted freedom can be a powerful weapon in the hands of the group,
but it might also backfire.

It is easy to see that several Agile values are connected to this learning model: most
prominently, shared responsibility and courage. Agile strongly promotes an adaptive
approach to software development, where each iteration acts as a feedback for the
next one. Teams should be self-organized, and great emphasis is put on communica-
tion, both within the team and with the stakeholders. This means that the teacher
must become part of the team in order to maintain a high level of communication. It
also means that the teacher cannot distribute grades in a standard way, as he will be
directly involved in the process (effectively becoming a ‘pig‘, and not a ‘chicken‘, re-
ferring to the classic Agile metaphor). Grades should therefore come from reflections,
group and/or personal and peer evaluation, and must include an evaluation of teacher
work, as any other team member.

In our experiment, we kept the same general structure outlined in section 8.4.3,
but within the same class we assigned the same project to a different, potentially
equivalent, team. This allowed for a direct comparison of results, since it ruled out
biases due to different teachers, learning environments, or curricula. We have chosen
the Scrum methodology, because it is arguably very different from Waterfall and it
does not really mandate any practices, giving maximum freedom to the teams [399].
The teacher assumed the role of the Product Owner in this specific case; alternatively,
the Scrum Master role could be chosen as well [314].

The teams were given much less information and limitations with respect to Wa-
terfall teams:

• A list of prioritized user stories.

• A ‘definition of done’ (as in Scrum): it is a definition of how a result can be
considered to have some value, in terms of simple activities like writing code in
a standard format, adding comments, performing unit testing, etc.

• The sprint length.

Everything else was to be decided by the team. Scrum teams also had the ad-
ditional difficulty of having no experience with self-organization, whereas traditional
Waterfall methodologies and roles were taught as part of standard curriculum.

Results show that Agile teams performed generally better than their Waterfall
counterpart in the same class with respect to overall product completion and number
of featured delivered. This is not surprising, since Agile privileges the functional
dimension over the non-functional ones. It is interesting to note that many chose

8.5. Implications for practice 141

challenging but interesting tasks, possibly failing along the way. However, with respect
to code quality, Agile teams fared worse than their counterparts. First, code was less
readable and with worse Cyclomatic Complexity evaluation; second, the final product
on average had severe usability problems, since this was not an explicitly stated goal.
In general, teams underestimated the effort needed on the first sprint but guessed much
better their second sprint, during which they were much more productive. Teacher-
student interaction was also not very intense – suddenly cooperating at peer level with
an older, experienced superior is not an easy task for anyone. Students reported great
satisfaction for this activity, slightly more than for the previous model.

So, both types of Group learning (directed like Waterfall and self-directed like
Scrum) missed the main point of the activity, which was to provide a valuable product
for the customer. What is interesting is the motivation for such failures. Scrum teams
concentrated their effort to reach a goal, possibly a difficult one, displaying Courage,
a key XP value. Waterfall groups tended to “play safe”, and concentrated on less risky
objectives (user interface, process oriented goals) and working on what they most
comfortable with, a pattern more in line with logical reasoning.

The self-directed group model strongly promotes the use of social skills and other
qualities relevant to Cooperative Thinking. However, the learning rate could be ex-
ceedingly slow; moreover, evaluation requires great attention and balance. It better
suits Accomodative learner types, since they display a strong preference for doing
rather than thinking. They do not like routine tasks and will take creative risks to
see what happens.

8.5 Implications for practice

Kolb’s model identifies four basic types of learning experiences (Active Experimen-
tation, Concrete Experience, Reflective Observation) and four basic types of learners
(Converging, Accommodating, Diverging, Assimilating). Kolb suggests to alternate
these learning modalities in order to stimulate different aspects of the learners’ mind,
even if an individual is more oriented to a specific king of learning activity. We there-
fore classified four types of learning experiences specifically related to lab classes that
can be appealing to a particular learner type, as shown in Fig. 8.1.

Table 8.2 summarizes the content of this section. Traditional teaching concentrates
on individual learning, thus favoring Assimilating students; we argue that a more
balanced approach is beneficial in general, and in particular can stimulate and develop
focused social skills that are essential for developing an effective Cooperative Thinker.

We understand that Kolb’s classification is crude, as it cannot capture the com-
plexity of teaching and learning in a social environment, be it at school or on the
workplace; yet, even this simple model is powerful enough to analyze the situation
and plan activities to reach our goals.

Cooperative Thinking is a general theoretical concept, just like Computational
Thinking. Educators should do their best in order to have students understand and

Table 8.2: Learning model influence on learner and teacher’s role

Teacher

Role

Learning

Path

Computational

Thinking

Social

skills

Agile

skills

Ease of

Evaluation

Preferred Kolb

Learner Type

Individual Learning Boss +++ ++ – – ++ Assimilator
Paired Learning Facilitator - + + ++ + Convergent
Directed

group learning

Project
Leader + = ++ + - Divergent

Self-directed

group learning
Teammate - = +++ +++ – Accommodator

142 Chapter 8. Cooperative Thinking

Figure 8.1: Teaching activities mapped to learner types, following
the taxonomy of [261]

be able to put theory into practice. Is the educational system able to accept this
change? Our discussion concentrates on teaching software development lab classes.

Usually, only individual performances are evaluated in lab classes of both high
schools and colleges alike: it is less common to evaluate the teamwork. We will now
describe some teaching models that can be used to promote the emergence of the two
pillars of Cooperative Thinking: Computational Thinking and Agile practices. We
have evaluated the impact on students designing and performing a series of learning
experiments that exposed software development students to Agile practices and values.

In this chapter we analyzed a series of teaching strategies for software development,
each with advantages and disadvantages and having a different impact on cognitive,
reasoning and social skills that collectively concur to create what we called Cooperative
Thinking.

Traditionally, education has considered literacy and knowledge in a broad sense.
Consequently, the quality of education is often tied to fundamental skill expertise;
one of the most recognized indicator is the result of the international PISA test, that
evaluates how effective a country has been at deploying their prescribed math, science,
and reading curricula. In this perspective, it makes perfect sense for educational
institutions worldwide (and universities foremost) to favor individual learning as the
primary – if not only – teaching strategy. For instance, a consequence of this is
that several efforts are spent in schools on overcoming individual differences among
students: see for instance the well known discussion of the “Matthew effect” in [435],
which is a social selection process resulting in a concentration of resources and talent.

However, in the future, “pure” knowledge might become less important, even to
the point of becoming a commodity, and soft skills could raise in importance. An
educational system focusing on hard, technical skills could have difficulties in pro-
moting soft skills. As [500] pointed out, there is an inverse correlation between PISA
test scores and entrepreneurial capacity, a measured by the Global Entrepreneurship
Monitor (GEM), the world’s largest entrepreneurship study. Specifically, the coun-
tries with the top PISA scores had an average GEM:PISA ratio of less than half of the
mid- and low-scoring countries, indicating a potential shortfall in PISA’s measuring
purpose to understand if students are “well-prepared to participate in society” [355].
And this might as well be true in Computer Science.

Notably, the ability to solve complex issues or wicked problems, is a requirement for
new product development and innovation & entrepreneurship in general [80]. Wicked

8.5. Implications for practice 143

problems usually have no single perfect solution but many Pareto-optimal solutions.
The traditional educational paradigm is not tailored to train people able to handle
similar situations; PISA-like evaluations are meaningless to determine the educational
system’s efficiency, since the only offers an evaluation of the individual.

So, the gap between a formal educational background and real-life wicked and
complex problems becomes larger. Actually, it will increase along with Digital Trans-
formation processes, where the level of predictability decreases and uncertainties in-
creases [381].

Therefore, the introduction of other teaching strategies that foster social skills and
cooperation is very important, and should also be factored in grading activities. Note
that we do not advocate a complete suppression of the Individual Learning strategy;
on the contrary, it should be complemented with other strategies in order to obtain
an overall balanced and blended mix tailored to specific situations – there is no silver
bullet in education. This proposal will also have the extra bonus of potentially appeal
to all learner types, even those that traditionally are less inclined to pick Computer
Science as their course of study.

Given all the above considerations, we recommend all strategies we mentioned
be used in teaching software development, in order to promote different but equally
important skills and possibly favoring different learning styles. This strategy mix
should begin as soon as possible and continue throughout the entire study path, up
to and including the university tier. Otherwise, it might be too late to develop the
full potential of Agile-related skills and, consequently, Cooperative Thinking.

8.5.1 Learning path

We assume that most CS courses are strongly oriented toward individual learning,
the goal being to introduce and grasp the basic elements of CS and, specifically,
programming; a short to medium-length programming project of average difficulty is
usually included.

As soon as possible, Pair Learning should also be presented. Specifically, Pair
Programming should be introduced first and actively enforced as one of the main
practices for class exercises throughout the course. Other Agile practices could be
introduced (such as Test-First Development, Continuous integration, ...) along with
the necessary software tools (like git or Jira). A project that verifies what students
learned should be simple in terms of programming complexity but rich in process
experiences, in that elements of Agile must be used and their use verified.

Next, forming the team is an important factor. We know that simply putting
together people and telling them to work on a project is not enough to have an
even decently efficient group. Preparation is in order, requiring some careful people
selection, team-building exercises, and some short project to test how the teams work.
Finally, a team-oriented project of moderate to high difficulty and length should be
realized by the students.

The final step is, of course, proposing a demanding project to the teams and give
them ample freedom. At this point students should have a solid knowledge of the
programming language and development methods, a grasp of basic Agile practices,
and some working experience with all necessary tools; moreover teams should know
their strengths and weaknesses. This activity can actually be a course capstone project
and should contribute significantly to the students’ grade.

Our proposal requires formalization, testing, and formal validation. Though every
step is nothing new or complicated, the overall teach process is. Our research group

144 Chapter 8. Cooperative Thinking

is currently working on a comprehensive proposal and its field testing in both K-12
and university classes.

8.5.2 The influence of the context

We discuss now the validity of this study in the different contexts of High School and
University classes.

First, we examine some distinctive features of learning in high school:

• The learning activities encompass several years. During this long time period,
teachers and learners get to know well each other and develop a relationship
that has strong effect on the quality of their cooperation.

• The evaluation of the students is based on several factors. One is certainly the
overall performance (tests, lab results), but many other aspects are factored in:
initial level, handicaps, effort, proper behavior. This implies that the teacher
must exert some form of control and surveillance, even due to age considerations.

• Learning goals tend to be broad-scoped, leaving advanced topics only to the
best students.

The University learning context seems to be completely different. Instructors usu-
ally teach for a single semester, a time insufficient to establish a personal relationship.
Performance evaluation is far more important, overshadowing other factors; standard-
ized tests and procedures are used, focused on both general and specific topics. Higher
levels of personal responsibility and self-organization are expected, so teacher control
is generally limited.

However, in the specific case at hand, differences are not so well marked. We
performed our experiments in high school courses (total: about 250 students) which
are programming intensive, featuring around nine programming hours - labs included -
per week for three full years. They cover basic and intermediate programming issues,
including dynamic data structures, recursion, and databases for an average of 300
programming class hours per year, personal study not included. While we do not
claim that this kind of education to software development is equivalent to a standard
undergraduate level lab class in software development, it is undoubtedly comparable,
on average compensating subject depth and personal motivation with more time spent
in practical experiences. Our experiments on undergraduate students (total: about
90 students) confirm these impressions.

Not surprisingly, we found that our teaching strategies had to be adapted to the
different educative levels. For example, students in high schools require learning
activities on Agile to be repeated and, at least partially, integrated into standard
teaching activities. Failing to do so inexorably results in limited long-term retention,
as some interviews sadly demonstrated. Moreover, students must concentrate on
Agile practices rather than on the overall development process; they are only able to
handle a software project of limited scope and complexity, so setting up a full-fledged
development environment (be it Agile or else) looks like an overkill.

Conversely, undergraduates are able to make the most out of one-shot activities;
they are expected to reinforce their knowledge and skills with personal work, and
most of them indeed do. They have sufficient capabilities and time to properly apply
a standard Agile development cycle, especially in capstone projects. The problem in
this case is the large amount of topics to cover: the instructor has the responsibility
to select the topics that must be taught. In addition, undergraduates have a higher
degree of freedom, so they cannot be forced to adopt a given method or practice. The

8.6. Discussion 145

effective use of Agile by students depends on their personal and, for some part, on the
charisma of the instructors.

8.6 Discussion

In 2006, Jeannette Wing’s paper defined and popularized the concept of Compu-
tational Thinking [486], portrayed as a fundamental skill in all fields, not only in
Computer Science. It is a way to approach complex problems, breaking them down
in smaller problems (decomposition), taking into account how similar problems have
been solved (pattern recognition), ignoring irrelevant information (abstraction), and
producing a general, deterministic solution (algorithm).

Even after more than a decade, the impact of this idea is strong. Eventually, some
governments realized that future citizens should be creators in the digital economy,
not just consumers, and also become active citizens in a technology-driven world.

Computational Thinking needs to be properly learned and, therefore, is being
inserted as a fundamental topic in school programs worldwide. This is a welcomed
change away from old educational policies that equated computer literacy in schools to
the ability of using productivity tools for word processing, presenting slide shows, rote
learning of basic concepts. Though useful in the past, they are currently outdated and
even possibly harmful. The US initiatives “21st Century Skills” [146] and curriculum
redefinition, along with “Europe’s Key Skills for Lifelong Learning” [106] should be
viewed in this perspective.

However, these approaches might not be sufficient in the long run. Current educa-
tional approaches concentrate on coding (as an example, consider the Hour of Coding
initiative), but this it not the end to it. Computational Thinking is made of complex,
tacit knowledge, that overcomes limited resources and requires deep engagement, lots
of deliberate practice, and expert guidance. Coding is one aspect, and not necessarily
the most important one.

Tasks solved by software systems are becoming more complex by the day, and
many of these in the real world could be classified as wicked problems [391]. There
is no single “best solution” to many such problems, only Pareto-optimal ones which
may change over time. In this situation, satisfying expectations and requirements
becomes harder and harder as they are beyond the limit of solvability for any single
programmer.

This is well known in the fields of Science and Business. The most common ap-
proach to trying to solve wicked problems in these fields is by forming teams including
people with complementary backgrounds, trained to face problems and reach the goal
– together. These new cooperative entities benefit from a high degree of independence
and autonomy to deal with the assigned task; the idea is to solve a problem attacking
it from different points of view.

Even if Computational Thinking has been defined as a problem-solving skill, and
has benn taken as the basis for several ongoing activities, by itself alone it does
not offer the variety of viewpoints required to solve difficult or wicked problems.
Computational Thinking has traditionally been considered an individual skill, and
taught as such. Teamwork and soft skills are generally not factored in, and even
shunned as “cheating” in some introductory programming courses.

In our view, the general approach to Computational Thinking needs to be updated,
by enhancing it with a complementary concept: Agile values and practices. The Agile
Manifesto was published in 2001, just a few years before Wing’s paper. In just 68
words, it proposed a quite original perspective on software development, recalling

146 Chapter 8. Cooperative Thinking

values that clashed with the established culture of time, based on top-down hierarchies,
linear decision making and, in general, pursuing unsustainable management plans.
The most significant change introduced by the Agile movement is the paramount
importance assigned to face-to-face communication and social interaction, superseding
the internal organizational rigidity, documentation, contracts, roles, and more [387].

Including some Agile principles and learning-as-execute experiences in training
for Computational Thinking is beneficial. We name Cooperative Thinking this Agile
extension of Computational Thinking, and define it as follows:

“Cooperative Thinking is the ability to
describe, recognize, decompose, and computationally solve problems

teaming in a socially sustainable way”

This definition joins the basic values of both Computational Thinking and the
Agile Manifesto.

Computational Thinking is based on the power of abstraction, problem recog-
nition and decomposition, and algorithms. Agile principles include self-organizing
teams, interaction and communication, and shared responsibility. Both Computa-
tional Thinking and Agile value the concepts of evolution and reflection of problems
and solutions. Both approaches share the idea of problem solving by incremental prac-
tices based on learning by trial and error. Moreover, our definition of Cooperative
Thinking underlines sustainability, since “solutions” as such have little impact, if not
related to the available resources.

In sum, Computational Thinking is the individual skill to solve problems in an
effective way. We found that Agile values are central not only for developers but
also for educating individuals. Cooperative Thinking adds a variety of points of view
required to solve really demanding and complex tasks. Enhancing Computational
Thinking with Agile values and principles allows to exploit the power of a team of
diverse backgrounds towards a common goal. Being mentally flexible, understanding
the others’ points of view and synthesizing a common solution are crucial skills for
teaming developers.

8.7 Conclusions

In this chapter we explored Cooperative Thinking, a concept that expands Computa-
tional Thinking embracing Agile values. The proposal is graphically summarized in
Fig. 8.2.

Cooperative Thinking is the extension of Computational Thinking with Agile Val-
ues. We considered the skill breakdown proposed for Computational Thinking by
Computing at School [115] and grouped the skills into three broad categories: Problem
solving, Evolution, and Reflection. Correspondingly, we considered Kent Beck’s XP
values and practices list [BecAnd04] as representative of Agile values and practices
in general; list items were also grouped in three categories: Social Skills, Evolution,
and Reflection.

Cooperative Thinking is a complex skill to acquire and master, but in our view, is
the way to go to obtain teaming individuals able to tackle and resolve the challenges
and questions that the future will present them.

We examined four different learning models, each with a different balance of tradi-
tional, Agile, and Cooperative learning, showing the impact they had on students in
developing Cooperative Thinking. Specifically, Individual learning is strongly related

8.7. Conclusions 147

Figure 8.2: Cooperative Thinking, Computational Thinking and Ag-
ile values breakdown (according to Computing at School [115] and [43])

to Problem Solving, Social Skills to Self-directed group learning; all other aspects have
a varying degree of relationship to the different models.

Our experiments showed a significant effect on the learning outcomes. Coopera-
tive Thinkers will enjoy an edge on the job marketplace, making them more flexible,
socially aware, and more able to handle future challenges, be they related to software
development or not.

In order to educate students to Cooperative Thinking, we suggest that a mix of
learning strategies be used, in order to expose students to Agile practices and values
and develop teaming skills without forgetting basic Computational Thinking skills,
such as abstraction. While we do not claim the superiority of Agile practices as such,
we do observe their effectiveness as enablers of Cooperative Thinking, since they
promote interaction, force efficient resource handling, and are strongly goal-oriented,
substantially more than individual learning.

We propose to define and evaluate innovative educational programs promoting Co-
operative Thinking. Mixed methods assessments for educational construct validation
with Structural Equation Modeling as also fine granular performance indicator for
Pareto-optimal solutions need to be validated. However, finding the exact blend of
teaching strategies will be the real challenge for the Software Engineering community;
this is exactly what we are investigating now, both at K-12 and undergraduate level.

Another line of research that we intend to pursue concerns the constructs which
constitute Cooperative Thinking, especially concerning teaming [133]. For instance,
the dynamic structure of teams is interesting: we have seen in our experiments that
in pair programming asymmetry of competences is quite effective. In teams including
more people, say four or five students, we intend to study the emergence of mentors
as facilitators rather than leaders, and the impact of such figures on self-organization
of teams.

149

Chapter 9

An Empirical Validation of

Cooperative Thinking

9.1 Introduction

New skills are required for the future workforce to get employed in the Computer
Science (CS) domain [477]. Several technological trends support novel requirements -
mobile Internet and cloud technology, advances in Big Data, advanced robotics and
autonomous transport, artificial intelligence and machine learning, advanced manu-
facturing and 3D printing and High Performance Computing, new materials, biotech-
nology and genomics, just to cite a few [477]. Future workers will need to think
differently, to solve their working problems: those solved by software systems are be-
coming more complex by the day. Some problems in the real world can be classified
as wicked problems which usually do not have an unique solution but many Pareto-
optimal ones [391]. In other words, these problems outline trade-off situations, where
the notion of Pareto optimality is applied to the selection of alternatives: each option
is first assessed, and then a subset of those options is identified, with the property
that no other option can outperform any of the chosen options.

Accordingly, the education system needs to train students on such new challenges.
Novel initiatives were promoted by institutions in several countries, like for instance
the US “21st century skills” [146] and “Europe’s Key skills for Lifelong Learning” [106]
initiatives, that prompted the redefinition of Computer Science curricula:

[...] to empower all [...] students to learn Computer Science and be
equipped with the computational thinking skills they need to be creators
in the digital economy, not just consumers, and to be active citizens in
our technology-driven world. Our economy is rapidly shifting, and both
educators and business leaders are increasingly recognizing that Computer
Science is a “new basic” skill necessary for economic opportunity and social
mobility. 1

The idea of a “new basic skill”, according to this view, derives from the fact that
computational proficiency became a traversal skill for all domains, complementing the
soft skill areas. Modern education theories, such as Constructionism [351], promote
critical thinking as opposed to mere memorization; teaching practices such as Coop-
erative Learning [231] and Problem-based learning [222] also introduce organizational
and social skills in the educational process.

However, an analysis about the educational constructs used in CT and AV is miss-
ing in literature. Single constructs were presented, like Computational Thinking (CT)

1https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all. Accessed on
22.01.2018.

150 Chapter 9. An Empirical Validation of Cooperative Thinking

[486] for the Computer Science domain, in general, and Agile Values (AV) [43] for the
Software Engineering one in particular. Surprisingly, a study about a comprehensive
educational implementation of such constructs is lacking.

CT and AV represent complementary skills of Computer Science education for soft-
ware development [...]: respectively, the individual ability to produce computationally
efficient code, and the social ability to interact with both peers and stakeholders to
deliver valuable software. Nevertheless, CT and AV have also practical implications
in the broader Computer Science domain. The rise of complexity (and wicked prob-
lems) is not only a problem of Software Engineering, but engages all Computer Science
areas. The interdisciplinary interaction between different hardware and software com-
ponents, along with a context–dependent knowledge is a common scenario for most
areas. As an illustrative example, IoT is moving to new paradigms due to raising com-
plexity of computing (e.g., fog computing, context-aware computing) [319]. Here, the
role of teams are crucial to address these topics, since they are both interdisciplinary
and complex.

We argue that these two core skills are part of the higher level skill of Cooperative
Thinking (CooT), which is, in our view, the ability to describe, recognize, decompose
problems and computationally solve them in teams in a socially sustainable way [...].

We have developed the concept of CooT working with both high school and uni-
versity students. Our initial idea was to exploit an agile approach to let teams to
solve problems requiring Computational Thinking [...]. We started with teams com-
posed of pairs, then scaled to self-organizing groups up to six students. We realized
that socially sustainability is important: in particular we found that heterogeneous
groups are more effective than homogeneous groups [...]. We noticed that such groups
were able to handle complex problems more effectively, due to their ability to team
up through peer education and communication. Especially for software developers,
communication structures are essential to understand the way they design software:
this is called the Conway law [107]. Since communication impacts the way they design
software systems, it is necessary educating future developers to manage properly their
organization of work (i.e., dealing with customers, rely upon fellow developers, be able
to discuss algorithms, etc.). It should be socially sustainable, since a developer should
be able not only to deliver her specific task (e.g., developing some piece of code),
she should also interact effectively with her social context (e.g., internal and external
project’s stakeholders, laws and regulations). Educating students to deal responsibly
with their social context means to make them aware that a socially sustainable work
organization is important to solve complex problems. We are less interested to edu-
cate solo developers who provide fast algorithmic solutions, regardless of their social
communication structures. Indeed, social sustainability is a new element which is
additional to both Computational Thinking and Agile Values.

CooT is not a specific technical skill, as such. It focuses on cooperative problem
solving of technical contents. So, CooT is not just the sum of two constructs, rather
it “explains” other crucial educational constructs, like for instance continuous learning
and social adaptability. We will discuss in Section 9.6 how CooT influences these and
other educational constructs. To evaluate this assumption and test the model we have
developed, we used Partial Least Squares Structural Equation Modeling (PLS–SEM).
This research method enables researchers to assess if the relationships among different
theoretical constructs are statistically significant in the surveyed population.

This chapter is organized as follows. In Section 9.2 we present the related litera-
ture. Subsequently, in Section 9.3 we discuss our research model with the underlying
hypothesis. Then, we describe our research methodology in Section 9.4, along with
a brief explanation of PLS. Afterwards, we validate the results obtained with PLS in

9.2. Related Work 151

Section 9.5. The analysis of our findings with the study limitations is in Section 9.6.
Finally, we outline future works and our conclusions in Section 9.7.

9.2 Related Work

There is a growing belief that complex problem solving, critical thinking, creativity,
people management, and coordinating with others will become the most important
job skills by 2020 [477]. According to the World Economic Forum, future companies
will actively search for employees who can master “capacities used to solve novel, ill-
defined problems in complex, real-world settings” and “motivate, develop and direct
people as they work, identifying the best people for the job, also adjusting actions in
relation to others’ actions” [477]. So, skills to think in a computational friendly way
and to solve them in a social and sustainable manner are both required. Apparently,
CT and AV skills are strictly connected for companies, as suggested by the World
Economic Forum [477].

Since 1945, several scholars have been theorizing ante litteram about Computa-
tional Thinking [368, 291]. The idea of “algorithm” became popular after 1960 when
Katz suggested that automated processes would spread well beyond the Computer
Science domain and would influence all fields [246].

In 2006, Jeannette Wing’s paper introduced the concept of Computational Think-
ing [486], portrayed as a fundamental skill in all fields, not only in Computer Science.
It is a way to approach complex problems, breaking them down in smaller prob-
lems (decomposition), taking into account how similar problems have been solved
(pattern recognition), ignoring irrelevant information (abstraction), and producing a
general, deterministic solution (algorithm). Today, governments are realizing its im-
portance, and update school programs worldwide (like the US initiative “21st century
skills” [146]).

However, more and more scholars argue whether the CT concept is too vague to
have a real effect [126]. Denning claims that CT is too vaguely defined and, most
important in an educational context, its evaluation is very difficult to have practical
effects [126]. This same idea can be found in the CS Teaching community. [34] and
[214], for example, try to decompose the CT idea itself, in order to have an operative
definition. [198] notes that computing education has been too slow moving from the
computing programming model to a more general one. [57] even wonders if the CT
concept is at all useful in Computer Science, since it puts too much importance on
abstract ideas. We also noted that, barring some limited work [215, 457, 17], there is
not much research on CT and learning styles.

Though the Agile development is eventually going mainstream in the professional
world, teaching the Agile methodology is still relatively uncommon, especially at the
K-12 level; there are a few exceptions [436, 265]. A Waterfall-like development model
is often the only development strategy taught in universities [266]. Moreso, it is usu-
ally limited to an introductory level and rarely tested firsthand. In practice, Agile is
learned “on the field”, often after attending ad hoc seminars. Interest in Agile is how-
ever rising, and curricula are being updated to reflect this [436, 265]. An interesting
and complete proposal has been advanced by [304], where the “Agile Constructionist
Mentoring Methodology” and its year-long implementation in high school is presented.
It considers all aspects of software development, with a strong pedagogical support.

In general, CS skills, like programming, are considered a personal skill and taught
as such. Not many researchers were challenged by this idea, with few exceptions [84].

152 Chapter 9. An Empirical Validation of Cooperative Thinking

We noted however that the approach is hardly systematic, and no general consensus
exists on how to proceed along this line.

Generally speaking, the traditional educational paradigm is not tailored to educate
people to handle complex issues or wicked problems [80]. PISA-like evaluations are
meaningless to determine the educational system’s efficiency in this respect, since they
consider the individual performance of students. So, the gap between students’ formal
educational background and real life wicked problems and the related complex task
becomes larger as the level of predictability decreases and uncertainty increases [381].

Some studies tackled the idea that hard skills expertise should be complemented
with soft skills, possibly introducing active and cooperative learning to CS [231]. For
example, in [392], a long list of so-called soft skills expertise are paired with various
developer’s roles. In [84] the problem is well analyzed, but arguably the proposed solu-
tion is not comprehensive. [305] presents an example of how to promote cooperation
within a software project; however generalizing the proposed scheme seems difficult.
There is some field testing of Team-based learning [309] applied to CS courses [280];
as however this approach requires a full and radical change of teaching methodology
it is not much widespread.

Although the scientific literature has made a substantial contribution to our un-
derstanding of Computational Thinking and Agile Values, knowledge in this area,
with respect to Cooperative Thinking, remains fragmented.

We have recently introduced the idea of an overarching competence for team coders
[...]. This stream of research is based on several experiments [...]. suggesting that
effective coding teamwork in educational environments leads to improved learning
outcomes and even to software of better quality. Nevertheless, good teamwork is not
sufficient, per se, to solve complex tasks - individual problem solving competencies
are also needed. In previous works, we found that the best outcomes were provided
in cases where both such competences (i.e., teamwork and problem solving skills)
were effectively implemented [...]. Recently, these problems have been addressed by
theoretical contributions. Indeed, [...] defined a conceptual model for Cooperative
Thinking, providing a theoretical support.

Substantial questions remain open, like which is the best way to educate CS stu-
dents to manage both teaming and software development skills, or the best educational
practices to use in this regard. In response to these questions, we proposed a first
validation of CooT, based on the conceptual model proposed in [...], and grounding
it in empirical evidence.

9.3 Research Model and Hypotheses

Based on the prior discussion, we forward our basic thesis. Future workers will need
a new set of skills to be competitive on tomorrow’s job market. Ad hoc educational
curricula need to be developed to prevent skill shortage. Apparently, CT and AV alone
are not sufficient to educate students to solve wicked problems [476]. The development
of a new overarching competence may lead students to describe, recognize, decompose
problems and computationally solve them in teams in a socially sustainable way. This
competence, which we named Cooperative Thinking, is not just the sum of the two
underlying constructs of CT and AV. We propose to consider it as a social dimension
of Computer Science Education.

For the sake of this chapter, we used the definition of Complex Problem Solving
to identify the most relevant skills, as suggested by the [477].

9.3. Research Model and Hypotheses 153

This is an exploratory study to assess whenever formalized constructs have a sig-
nificant relationship with each other. As a SEM study, constructs are grounded in
literature or experience [191]. Therefore, we are hypothesizing relationships which
have a theoretical explanation but were never assessed, which is an important novelty
contribution of this chapter.

In the next subsections we are motivating our hypotheses, supported by [...].

9.3.1 Effect of Computational Thinking on Cooperative Thinking

As explained in Section 9.2, in order to enhance the new construct Cooperative Think-
ing, some individual Computational Thinking skills need to be developed to interact
in a constructive way within the group, to suggest useful insights. Following [486],
several frameworks have been proposed to operationalize it in an educational system
[469, 468, 470]. The general idea is to train students to think in a computational–
friendly way to improve their problem–solving skills. As such, it is a pivotal individual
skill–set that any future worker will bring to its team. Team performance is strictly
related to quality of its individual assets [35]. Therefore, the quality of the developed
CT skills will affect positively future teams performance.

According to this background, we formulate our first hypothesis:

H1: Computational Thinking positively influences Cooperative Thinking

9.3.2 Effect of Agile Values on Cooperative Thinking

While Computational Thinking is the specific skill useful to individuals to solve prob-
lems, Agile Values educate people to team together. Agile Values offer a variety of
points of view useful to solve difficult or wicked problems. Usually there is no sin-
gle “best solution” to such problems, but several Pareto-optimal ones, whose value
moreover may change over time — as is the case in the field of Science and Business
[82].

With particular regard to Software Engineering, the design of a complex system
whose requirements are unstable is a typical wicked problem [497]. Satisfying unpre-
dictable customer’s expectations and ephemeral requirements is beyond the limit of
solvability for any single programmer.

Delivering valuable software on time has been one of the major efforts of software
development methodologies in the last years [132]. Although the definition of “on
time” may look clear (since it is related to a deadline), it is strictly correlated to
“valuable”, which is a more vague definition. With reference to the ISO 25010:2011
standard on software quality, the customer may perceive as valuable aspects related
to the Quality in Use dimension. Nevertheless, a software with high Quality in Use
but a low e.g., maintainability (which is related to the Product Quality) could not
be really defined “valuable”. The aspect of maintainability may be related to poor
refactoring due to time constraints.

In this (trivial) example, it is clear that value and time are two sides of one coin.
Mastering such challenges requires a specific skill–set.

The Agile Manifesto proposed a new perspective on software development, based
on values that clashed with the established culture of time, based on multi-level hi-
erarchies, top-down decision making and, in general, accepting the given methods
without voicing dissent or criticism [9]. The most significant change invoked by the
Agile movement is the paramount relevance assigned to communication and social in-
teraction, superseding any internal organizational rigidity, documentation, contracts,
roles, and more.

154 Chapter 9. An Empirical Validation of Cooperative Thinking

This led to the formalization of important concepts (such as changing require-
ments, self-organizing teams, personal responsibility, . . .) and programming practices
(pair programming, test-first development, continuous integration, . . .). The Agile
approach has proven in several contexts its usefulness, and it is now an established
development model and its adoption is steadily growing [289].

Consequently, Agile Values are an important skill–set for Cooperative Thinking,
leading to our second hypothesis:

H2: Agile Values positively influence Cooperative Thinking

9.3.3 Effect of Cooperative Thinking on Complex Problem Solving

As proposed with H1 & H2, the construct Cooperative Thinking is mainly explainable
with Computation Thinking and Agile Values. Nevertheless, we do not believe that
it is just the sum of these constructs. Rather it is a useful proxy to develop further
fundamental skills.

The intuition is that some of crucial future skills can not be taught with an old–
fashioned curriculum. The most significant future skill for future worker in 2020 is,
according to the World Economic Forum, Complex Problem Solving [477]. According
to its definition it is “Developed capacities used to solve novel, ill-defined problems
in complex, real-world settings”. In other words, it is another way to define wicked
problems.

From a pedagogical perspective we started questioning ourselves how to train our
best students to manage wicked problems. With regard to Computational Thinking
and Agile Values we realized that, separately, they are not sufficient. CT deals with
individual capabilities and is deeply routed in the traditional educational system of
“solo” learners. On the other hand, AV per se, are not enough to deal with such
problems. Good social interaction is a valuable driver but not the asset to solve
wicked issues.

The idea of Cooperative Thinking, as defined in Section 9.2, is that of a construct
which is able to teach students to tackle Complex Problem Solving as a proxy of
wicked problems. Therefore, our last hypothesis is:

H3: Cooperative Thinking positively influences Complex Problem Solving

The relationships among our three hypotheses can be represented as in Figure9.1.

Figure 9.1: Theoretical framework and hypotheses

9.4. Research Design 155

9.4 Research Design

Structural Equation Modeling is strongly influenced by Popper’s post-positivist view,
according to which social observations should be treated as entities like physical phe-
nomena [369]. The researcher is detached from the observed constructs, since social
science inquiry should be objective and hypotheses should be empirically validated to
justify them. Typically research outcomes are generalizable, independently from time
and context [332].

As this is an exploratory study we are here interested to test the significance of the
proposed model. For this reason, post-positivism is the best suited meta-theoretical
stance, since we are dealing with the falsification (i.e., significance verification) of our
hypotheses. As researchers, we obviously have our epistemological bias, which usually
remain hidden or implicit, even if they deeply influence our research [428]. Therefore,
empiric (i.e., statistic) procedures are of greatest importance to mitigate researcher’s
biases [369].

9.4.1 Research Questions

We are interested to find out these two issues: a) is CooT grounded in empirical
evidence, and b) does it explain other new constructs? This leads us to our first
research question:

• RQ1: Is Cooperative Thinking grounded as a new overarching theoretical con-
struct of Computational Thinking and Agile Values?

Our second research question regards the “explanation” power of our construct:

• RQ2: Is Cooperative Thinking a significant construct, to teach students how to
deal with wicked problems?

This research journey let emerge some explicit dimensions which were initially
implicit. Thus, beyond the proposal of a new construct which should be considered
for curricular purposes, we validate it through a well established statistical method.

9.4.2 Partial Least Square path modeling

The use of PLS–SEM for the validation of latent unobserved variables with multiple
observed indicators [93] is an emerging research trend within the Computer Science
Education domain [293, 422, 177, 423, 160]. Other research communities have even
a longer tradition with PLS–SEM and made several advances for theoretical model
testing, in Management [220], Information Systems Research [128] and Organizational
Behavior [208]. “SEM has become de rigueur in validating instruments and testing
linkages between constructs” [169, p. 6], since it allows to distinguish between mea-
surement and structural models, taking also measurement error into account. SEM
distinguish itself between two families: the first one are covariance-based techniques
(LISREL – CB-SEM); the second one are variance-based techniques i.e., among which
partial least squares (PLS) path modeling is the most used one [201]. So, CB-SEM
estimates model parameters to minimize the estimated and sample covariance matri-
ces differences; while PLS–SEM estimates model parameters to maximize the variance
of endogenous constructs. Therefore, CB assumes multivariate normality with high
sample sizes and PLS works with small sample sizes, since it makes no distribu-
tional assumptions. Accordingly, model convergence is, in PLS the point at which no

156 Chapter 9. An Empirical Validation of Cooperative Thinking

substantial difference happens from one iteration to the next one; while in CB it is
the increase or decrease in the function value beyond a certain threshold. The PLS
technique is used to test causal relations, maximizing the explained variance of the
dependent latent constructs. This enables to exploring cause–effect relations between
latent constructs. It offers several advantages compared to CB, beyond those already
stressed. Especially for complex models CB seldom converges, especially while dealing
with small sample sizes or non-normal data; this is not the case of PLS. Operational
research scholars consider PLS as a “silver bullet” for estimating causal models in
many theoretical models and empirical data situations [190]. Indeed, it is flexible in
the construction of unobserved latent variables and modeling relations among different
predictor criteria and variables [92].

9.4.3 Scale Development

As any SEM study, the choice of scale was developed with the greatest care. Following
also the example of [293], items were based on the existing literature and measured
with a 7-point Likert scale. For any construct some existing frameworks were used to
frame the items. In particular, we used for Computational Thinking the framework
proposed by Computing at School, a subdivision of the British Computer Society [115].
For Agile Values, Kent Beck formalized the construct in [43]. Complex Problem Solv-
ing has been defined by the World Economic Forum in his pivotal report of future
skills need [477]. Finally, Cooperative Thinking is the result of our studies about
the education of Agile student developers to enhance their Computational Thinking
capabilities [...]. The items list with the related literature is presented in A.1.1. Items
were developed independently by the authors and refined iteratively until full con-
sensus was reached. After that, a pre-test with five potential-target respondents (i.e.,
graduate students) was conducted to test the usability of the survey, its rationale, and
also the wording. Usability was assessed positively, while minor rationale and wording
issues emerged and were consequently fixed.

9.4.4 Data Collection

Firstly, we ran an a priori power test [155], to define the minimum sample size for a
linear multiple regression F–test, which is a good approximation for a PLS analysis.
With an effect size of 15%, and 10% significance, the minimum sample is 82. Then, a
stratified convenience sampling technique was used.

To validate the latent variable, grounded in the conceptual model of [...], we used
informants which have been already exposed to both Agile practices and Computa-
tional Thinking training. This procedure supports the idea that Cooperation Thinking
is derived from the combination of AV and CT. Thus, to enhance the construct va-
lidity, we targeted students who have been exposed to both Agile practices and CT
education along their studies. According to that, the improvement of the reliability of
our formative and exogenous constructs enhanced the endogenous and reflective con-
structs. Strata were designed accordingly, focusing on undergraduate and graduate
students of European Universities (missing for review). To enhance the generalizabil-
ity of the study we also included a significant strata of High School students which
were also exposed both to CT and AV during their education. To any subgroup was
assigned an ID code for strata definition.

The respondents’ rate was 70%, since the survey was directly administered during
class by teaching personnel.

9.5. Results 157

% #

Population

Grad. & Undergrad. students 63% 74
High School students 37% 44

Programming experience

Less than 1 year 8% 10
2-3 years 47% 55
4-6 years 26% 31
7-10 years 4% 5
11-20 years 8% 10
21-35 years 3% 4
More than 35 years 3% 3

Complete software projects

1 12% 14
2-4 42% 50
5-10 30% 35
11-20 4% 5
20+ 11% 13

Agile methods experience

Daily 12% 14
Used in some projects 43% 51
Did some experiment 18% 21
I studied it 26% 31

Largest team participated in

0-2 8% 9
3-5 31% 36
6-8 24% 28
9-12 8% 9
13+ 9% 11

Table 9.1: Demographics

Finally, demographics variables relevant to the context and strata were controlled
and represented in Table 9.1. Survey’s questions are displayed in A.1.2 for the sake
of reproducibility. In total we had 118 respondents, well above the minimum require-
ment. Undergraduate and Graduate students were 74 (63%), while High School stu-
dents were 44 (37%). We collected several factors, like the programming experience,
completed software projects, Agile method experience, and large team participation
to identify sample’s skill–set. These are useful indicators for Computational Thinking
and Agile Values.

9.5 Results

To compute our model we used Smart PLS 3.0 [390] to estimate the path weight-
ing scheme. Positively, our model converges after 10 iterations. We applied also
non-parametric bootstrapping to obtain standard error’s estimates [91, 147]. Also
Blindfolding was used to calculate Stone-Geisser’s Q square value, which represents

158 Chapter 9. An Empirical Validation of Cooperative Thinking

AV CPS CT CooT

AV_3 0,830
AV_4 0,884
AV_5 0,655
CooT_1 0,701
CooT_2 0,693
CooT_3 0,865
CooT_4 0,709
CPS_1 0,801
CPS_2 0,648
CPS_3 0,891
CT_1 0,745
CT_2 0,756
CT_5 0,756
CT_6 0,794

Table 9.2: Outer Loadings

an evaluation criterion for the cross-validated predictive relevance of the PLS path
model [170, 439].

9.5.1 Measurement Model

All item loadings above the cut-off value of 0.65 were considered, as represented in
Table 9.2, and were significant at p<0,001 (with the only exception of CPS with a
p<0,05, since it is the highest construct). Following [191], those items below the cut-
off value were rejected (i.e., AV 1, AV 2, AV 6, AV 7, CT 3, CT 4, CooT 5). The good
average of items loading and a narrower range of difference for such an exploratory
study, provide an adequate base for the items in measuring the underlying construct
[191]. Items are not redundant, since the outer variance inflation factor (VIF) ranges
between 1,165 and 1,832, well below the cut-off value of 5 [191]. Thus, we conclude
to have an appropriate item reliability.

The construct reliability and validity is composed by the reliability of constructs,
composite reliability and average variance extracted (AVE) [159]. To assess the con-
struct reliability we used Cronbach’s alpha, which measures the homogeneity of items
in a construct based on the assumption that each item in the scale contributes equally
to the latent construct. The composite reliability depends on the item loadings es-
timated in the measurement model to compute the measure of internal consistency
[481]. According to [343] both Cronbach’s alpha and composite reliability should have
at least a value of 0,70 to be acceptable. Rhoa is another reliability measure devel-
oped by [131], according to which the most conservative critical value should be above
0,7. For AVE a value above 0,5 is desirable, since it reflects the variance captured
by indicators. If this is the case, it means that the variance captured by indicators
is greater than the measurement errors. As we can see in Table 9.3, all literature’s
requirements are met, also for formative constructs, which is rather uncommon [227].

We assess discriminant validity to analyze the relationships between latent vari-
ables with both Fornell–Lacker Criterion and Heterotrait–Monotrait Ratio of Corre-
lations (HTMT) [389]. According to the Fornell–Lacker Criterion the square root of
AVE must be greater than the correlation of the construct with all other constructs in
the structural model [159]. In this way we can see if constructs do not share the same

9.5. Results 159

Constructs
Cronbach’s

Alpha
rho_A

Composite

Reliability
AVE

CooT 0,734 0,775 0,832 0,556
CT 0,762 0,763 0,848 0,582
CPS 0,721 0,904 0,827 0,618
AV 0,704 0,740 0,836 0,633

Table 9.3: Construct Reliability and Validity

AV CPS CT CooT

AV 0,796
CPS 0,354 0,786
CT 0,331 0,612 0,763
CooT 0,570 0,285 0,397 0,745

Table 9.4: Fornell–Lacker Criterion

type of items and are so conceptually different from each other. As shown in Table
9.4, the lowest square root of AVE is 0,745 (CooT–CooT), which is greater than the
highest correlation value of 0,612 (CPS–CT). With regard to HTMT, all values are
below the most conservative threshold of 0,85 [200], as shown in Table 9.5.

Finally, we can conclude that the measurement model provides evidence of ade-
quate reliability and validity for both reflective and formative constructs.

9.5.2 Structural Model

After the test of our measurement model we assess the validity and exploratory power
of the structural model.

The first step is to test whenever the inner variance inflation factor values (VIF)
are below the threshold value of 5 to discard redundant inner–model constructs [191].
We see that those values are between 1 and 1,23 so well below the critical value.

After that we measure path’s significance through biased–corrected and acceler-
ated bootstrapping. Since it is an exploratory study we assumed a two–tailed test
with a significance level of 10%. As we can see from Table 9.6, all indicators comply
with their respective critical values. In particular T–statistics are above 1,96 for all
paths and the p–values are below the reference level of 0,1 (for 10% significance) and
also below the more conservative value of 0,1 [191]. Therefore, we can conclude that
all paths in the model are significant. This supports all our three hypothesis H1, H2,
H3.

Passing now to the evaluation of the R-square values of the two endogenous vari-
ables we see that Computational Thinking and Agile Values explains very well the
construct Coopertative Thinking with a value of 0,374. Interestingly, Complex Prob-
lem Solving has a relative low R-square value of 0,081 for several reasons [191]. The

AV CPS CT CooT

AV

CPS 0,444
CT 0,456 0,803
CooT 0,764 0,340 0,513

Table 9.5: Heterotrait-Monotrait Ratio of Correlations (HTMT)

160 Chapter 9. An Empirical Validation of Cooperative Thinking

Paths
Orig. Sam-

ple
Mean St. Dev. T p

AV->CooT 0,492 0,498 0,066 7,474 0,000
CT->CooT 0,235 0,249 0,085 2,770 0,006
CooT->CPS 0,285 0,288 0,134 2,127 0,034

Table 9.6: Paths Coefficients

Figure 9.2: Structural model with Path coefficients and p values

first one is statistic. Since CPS is derived by another endogenous construct, the
statistical explanation power is mitigated by the mid-construct CooT. So, it is ob-
vious to have a relatively lower value. The second is conceptual. Although CooT
is a useful proxy for wicked problems, since the p-value is significant, CPS may not
be enough. We should go back to the literature to define more constructs related to
wicked problems. Doing so, we would have several constructs which are well explained
by Cooperative Thinking.

To confirm those findings we look now at the f-square values. This metrics indicates
how well each exogenous construct explains the endogenous ones. Here we have that
the relationship AV->CooT has the highest value of 0,35 which suggests a very high
effect, according to literature standards [191]. The relationship CT->CooT has a
moderate effect, but still significant since it is above the threshold of 0,02 [191], with
a value of 0,08. The same for the the relationship CooT->CPS with a value of 0,09.

Now we to test the predictive validity of the model, to see if the exogenous con-
structs explains significantly the endogenous ones [13]. To do so, we use run blindfold-
ing with an omission distance of 7 to measure the Stone–Geisser’s Q-square through
Construct Crossvalidated Redundancy [439, 170]. Here, the Q-square should be big-
ger than 0 [191]. We have for both for CooT (Q2: 0,177) and CPS (Q2: 0,029) the
match of this criterion.

Overall, we can conclude that our structural model, represented in Figure 9.2,
is significant and predicts all tested constructs. Nevertheless, the low R2 of CPS
indicates that the model is not fully complete. Still, it is significant and is a solid
ground to build new theory on. Therefore, we also conclude that CooT is a significant
proxy to teach wicked problems. Significance and explanatory values of CooT suggest
that AV and CT are good explanatory construct on which to build this new skill.

9.6 Discussion

Our structural model suggests a positive answer for both our Research Questions,
according to these statistical considerations:

9.6. Discussion 161

• RQ1: the high R2 of CooT indicates a high explanatory power of the new
construct. This means that both CT and AV are significant components of this
new overarching construct. Moreover, path coefficients of H1 and H2 are highly
significant. So, they influence the new construct in a statistically significant
way.

• RQ2: CooT does explain in a significant way CPS, due to its path coefficient.
Also H3 is significant, considering path’s p- and absolute value. Since the R2 is
not a relevant indicator in this case, for the above–mentioned reasons, we can
state that it does well explain CPS, so wicked problems.

From this evidence we can conclude that both CT and AV are building constructs
of CooT, which is able to explain independently a new construct, namely Complex
Problem Solving.

Consistently with our research design, we outline now the educational implications
of this study and its limitations.

9.6.1 Implications

Our findings support the idea that CT and AV reinforce each other to sustain the new
construct of Cooperative Thinking. Now we outline some educational practices that
could be included in current curricula to foster Cooperative Thinking.

These activities are all linked to the various components that constitute the Co-
operative Thinking construct. All the proposed practices are deeply grounded in the
pedagogical literature. Cooperative Thinking can be operationalized through estab-
lished educational practices. The educational scope is to tackle key concepts of prob-
lem description, recognition, decomposition, in order to solve them computationally
in teams, stressing social sustainability. This reinforces the theoretical ground of this
construct, since it is both backed in literature and is empirically significant. Practices,
as such, are not new; new is the educational scope we are interested in. Since the
educational goal is to teach students to deal with complex and ill-defined problems for
their future working life, a gradual approach should be introduced, according to the
education grade. Students should experience in an incremental way wicked problems
to learn useful patterns to reuse for future problems.

We propose the following categories of practices to foster CooT in everyday activ-
ities:

• Complex Negotiation: Students should be able to propose, discuss, and evalu-
ate ideas and solutions, considering different point of views on stratified topics.
Deriving from Agile negotiation [43] and negotiation pedagogy [25], this skill
aims to develop adequate capabilities to deal with stratified issues and different
opinions. Finding a group-wise sustainable way (i.e., Pareto-optimal) to devise a
solution of a problem, taking into consideration a variety of useful (and useless)
points of view is the aim of this skill. Key activities include: structured Brain-
storming, Architectural design and code contests, Randoris and Code retreats
[412].

• Continuous Learning: Both individuals and their groups should be ready to
develop the skills needed to solve a given problem at hand. Education should
be centered on enhancing the students’ ability related to “reflection–in–action”
[420], practicing continued learning and problem solving throughout their entire
career. Activities such as Peer Learning and Exploratory learning are well suited
to this task.

162 Chapter 9. An Empirical Validation of Cooperative Thinking

• Group Awareness: This indicates the capability to be part of a group. It
covers knowledge and perception of behavioral, cognitive, and social context
information within a group [60]. It requires reflective activities (such as [264]
Lego Serious Play) and group games in order to develop a “team spirit” and
promote the self-organizing skill of the team.

• Group Organization: It refers to the ability to develop software as a group, i.e.
deliver a working product collaboratively. This goal can be achieved by regularly
applying Group-oriented Project-based learning, starting with small, toy project
and scaling to complex ones. It is grounded within the domain of peer learning,
to generate productive instructional dialogues for joint problem solving, relying
on intrinsic rather than extrinsic rewards, discouraging competition between
students [120].

• Social Adaptability: It refers to the skill needed to handle groups’ internal and
external social dynamics. Especially for adolescents this kind of competence is a
pivotal aspect of education; it will determine how future adults will be oriented
to express social sensitivity [6]. Activities include role play, group exercises,
project simulations, and even stress tests, as in [269].

These activities, collectively, address all aspects of a meaningful learning model
[217], and promote Cooperative Thinking.

9.6.2 Limitations

As inherent of any scientific method [491], this study has several limitations.
The first issue is about the use of cross–sectional data (i.e., observation of the

population through data collection of many subjects at the same point of time) for
the empirical assessment of the model. Hence, results may reflect associations rather
than causality between constructs. Moreover, it is not possible to predict if the causal
relationship will change over time. However, a longitudinal study may overcome this
limitation. Generally speaking, we tackled these issues through a sound theoretical
derivation, which is the best way to minimize these limitations [191].

Secondly, we measured our constructs from a subjective perspective through a
single–informant approach. So, the constructs represent students’ perspective. Re-
spondents may not have answered the question accurately or with some biases. For
this reason the survey was anonymous and no grades were assigned for the partici-
pation at this research. Moreover, a sample size of 118 observation through different
European environments minimized the common method bias [254].

Third, we used perceptual measures, rather than objective ones, asking students
to state their level of agreement on literature–derived items. So, the measurements
may not fully reflect the real world accurately due to potential respondent bias and
random errors. Therefore, items were adapted from previous studies and literature
and subject to various examinations for ensuring their quality. However, continuous
item development and validation is needed to update the constructs.

Finally, the last limitation regards the sampling technique. We used a stratified
convenience sampling technique, were strata were defined accordingly to the acquired
skill–set. Students were already exposed to both CT and AV exogenous constructs
along their educational career, in order to assess the level of endogeneity of CooT
and CPS. In doing so, we asked European partner Universities we already collaborate
with to administer the survey. Those Universities adopted curricula that fostered CT
and AV and were therefore considered suitable targets for our strata definition. Our

9.7. Conclusions 163

research did not focus non–European educational environments; this may weaken the
generalizability of our results, since the empirical results might not fully represent
the constructs elsewhere. Cultural factors may have also played a role, which we
did not considerate in this study. Generally, non-responses may have lead to sample
selection bias if a systematic and unobservable difference exists between respondents
and non-respondents [483].

All in all, we consider our limitations acceptable for this exploratory study, espe-
cially because we took several precautions to minimize them. As validated in Section
9.5, all statistical indicators suggest the conceptual validity of the model. Still, we
are aware that this is a starting point, not an ending one; further research is needed
to generalize the model and to better define its sub–dimensions.

9.7 Conclusions

With this chapter we validated the theoretical model of Cooperative Thinking to train
teams of students to manage Computer Science problems. Computational Thinking
and Agile Values are the pillars on which Cooperative Thinking is built. Nevertheless,
it is not just the sum of these constructs. It is a new one, which educational curricula
should deal with. In fact, Cooperative Thinking is able to tackle significantly Complex
Problem Solving, which we used as a proxy construct of wicked problems.

To validate the proposed educational model we used Structural Equation modeling
with Partial Least Squares. Exploiting this technique we were able to test the sta-
tistical significance of the relationships between constructs as also their explanatory
power. Indeed, PLS–SEM has important potentials in Computer Science to test the
significance of theoretical social constructs.

This study provided a model for our future empirical investigations on the new
educational construct. Our future work will focus on both theoretical and pedagogical
aspects.

Some generalization efforts need to be undertaken to consider Cooperative Think-
ing as a real universal competence. This study could be administered also in non-
European countries. To uncover unobserved heterogeneity in the inner (structural)
model a Finite Mixture Partial Least Squares (FIMIX-PLS) segmentation test should
be run [189]. This will capture heterogeneity by estimating the probabilities of segment
memberships for each observation and simultaneously estimate the path coefficients
of all segments. Doing so, an improved understanding of constructs performance on
different segments (i.e., groups of students) is possible. Thus, it is possible to tailor
educational curricula, according to each segments’ sensibility, according to respec-
tive differences (e.g., performance, culture, gender, age, students’ level). Moreover,
this can be supported by finer granular studies, based on students’ composition, to
analyze those pedagogical differences. Literature work is further needed to refine mea-
surements and sub–dimensions of all constructs. We used Complex Problem Solving
as proxy of wicked problem. However, this assumption needs further insights to be
validated. In a possible extension of the model, wicked problems may be represented
by other parent–constructs of CPS to make their representation more trustworthy.

From a pedagogical perspective, Cooperative Thinking practices and educational
curricula need to be outlined in more depth respect to what we did in this chap-
ter. Indeed, it is possible that an ad hoc curriculum on Cooperative Thinking will
help students to improve model fitting. For instance, developing the proposed con-
structs of Complex Negotiation, Continuous Learning, Group Awareness, and Group
Organization.

165

Chapter 10

Concluding Remarks

10.1 Discussion

There are many ways to engineer software in a sustainable fashion. Moreover, no one
can pretend to have the ‘silver bullet’ to address such challenge.

Sustainability, intended as a socio-technical perspective over the software devel-
opment and maintenance cycle, means to align technological solutions to the social
context. It means to manage a variety of units of analysis of both technical (which
is the most suited design, design patterns, coding standards, language, etc.) and so-
cial nature (coordination among developers, meeting organization’s needs, usability
aspects by end users, etc.). It is very hard to manage simultaneously these units of
analysis, since they are quite heterogeneous and they might not always apply to each
context. Again, there is no single solution to the problem. Rather, each IT man-
ager should consider which are the most relevant sustainability issue for the specific
organization and set accordingly Key Performance Indicators (KPIs).

What we provided with this work is a model to tackle socio-technical aspects when
engineering software. At a high level, we identified three key factors to develop and
maintain software in a sustainable way, namely Quality, Architecture, and Process. We
do not advance a model, intended as a new standard, which practitioners should stick
to. Fairly, we advise to consider these three key factors when engineering sustainable
software. Indeed, as we have shown, when one of these factors is missing in the
managerial process, and they emerge rather by chance (or in a random way), this
leads unsustainable IT systems. The way the SQuAP model should be customized
still relies on IT managers, since they have the full overview of the social context, as
on technical specifications.

Nevertheless, we formalized the high-level SQuAP model into an OWL ontology,
intended to serve as an assessment tool for practitioners. Similarly, a relevant Knowl-
edge Engineering case study shows how Quality, Architecture, and Process aspects
have been considerate to deliver mission-critical software. More administrative and
legal aspects have also been analyzed, since they are daily concerns of IT managers,
aiming to deliver sustainable systems. Managing Socio–Technical Software Engineer-
ing is a complex task, since it deals with heterogeneous units of analysis. Thus, we
should also consider educational aspects, to train properly the next generation of IT
professionals. Assuming that the degree of complexity will raise at a steady state
along with software’s pervasiveness, education will become also a key point to engi-
neer software in a sustainable fashion. Accordingly, we found of pivotal importance
to address also the way students should be trained to work in a cooperative way,
understanding the surrounding environment. Hence, we proposed the Cooperative
Thinking paradigm.

Surely, there are several ways to engineer software in a context-aware sustain-
able fashion. However, we believe to have provided both a high-theoretical, and

166 Chapter 10. Concluding Remarks

low-implementation perspectives on our MRQ, namely how to engineer software in a
sustainable fashion. Nonetheless, we suggest that any possible different approach can
be mapped in our model, at least at a high-level.

10.2 Conclusion

This dissertation analyzed several aspects of Socio–Technical Software Engineering.
In particular, we elaborated on the idea of sustainability, intended as a context-aware
management of software, covering both social and technical units of analysis; where,
with management we meant the act of control, decision, and organization over the
software development process.

Our aim was not to provided ad hoc solutions to single problems, rather we wanted
to represent the debate within the community through a scoping study and address
compelling practitioners concerns met during our research journey. As a result, we
developed a model for sustainable information systems and formalized it as an OWL
ontology.

Keeping high software quality for rapidly changing mission-critical requirements
is a typical Socio–Technical Software Engineering problem. Thus, we described a
real world case study where we tackled this issue through a Knowledge Engineering
approach. This case study is exemplary of a typical situation where multiple mental
models both of developers and different stakeholders have been aligned in a context
of high volatility, where quality and security were a primary concern.

Similarly, the legal nature of cooperation has been considered. Law & Economics
aspects were analyzed to align divergent interests of the different actors. Developers,
as any human beings, are driven by incentives to be better-off. Similarly, this is the
same behavior of organizations which hire developers or software houses to build their
systems. Since the interests of these two actors are typically opposed, contracts are a
working solution to mitigate such divergent views. For this reason, IT managers may
greatly benefit from our work, which has been evaluated in a real world context, to
set up collaborations which upholds both developers’ interests and systems’ quality
and integrity. In addition to this work, we also provided relevant managerial insights
related to software cloning and Intellectual Propriety Rights in general. In fact, to
add new functionalities, a good idea is to integrate existing libraries or packages or
reuse well-working pre-existing code. As already stated, the average reuse of code
in large software systems is around 20%-30%, up to 50%. It is considered a good
coding practice, but it also generates new dependencies which have to be properly
managed. Nevertheless, our goal was to address questions like, on what extend may
I reuse some others code? Which type of cloning is legally accepted? Can I reverse
engineer some others code? In particular, we did not consider what the Software
Engineering community thinks about those crucial issues but courts in the US and
Europe. Ethical opinions are not relevant in a court trial. Therefore, we surveyed
courts’ orientation through the existing case law. This should help both IT managers
and developers to adapt their IPR strategies. Interestingly, we found two different
positions from European Union’s courts and that of the United States. In the US,
courts have a waiving attitude and decide over software’s copyright protection case by
case. While the European Court of Justice appears more liberal in terms of degree of
legal protection of software’s copyright, stating that cloning of “principles” or “ideas”
(semantic clones) can not be an infringement of copyright, since “principles” or “ideas”
are not copyrightable.

10.3. Future works 167

Finally, we studied education aspects of cooperation, which we consider pivotal to
incrementally address socio-technical problems. The main insight is that if developers
are not supported to acquire collaboration skills, they will be less prone to collaborate.
Conversely, to improve socio-technical congruence, a cooperation-based development
approach, named Cooperative Thinking is a viable solution. Accordingly, we devel-
oped both a theoretical and pedagogical framework which can be used by instructors
to develop Cooperative Thinking skills. We grounded Cooperative Thinking from
our previous contributions through a research synthesis and systematized it in the
framework of Kolb’s learning style inventory. Moreover, we validated the construct
of Cooperative Thinking along with relevant teaching practices with Partial Least
Squares Structural Equation modeling.

To conclude, our investigation did not provide a single solution to Socio–Technical
Software Engineering problems. Rather, we proposed a perspective on Socio–Technical
Software Engineering, which focuses on Quality, Architecture, and Process. We found
out, and discussed it along the chapters, that engineering software, taking care of
socio-technical aspects, means to focus on Quality–Architecture–Process aspects; and
more in particular on their relations and connections. Without a view on these three
elements it is likely that socio-technical congruence will dramatically decrease, with
gloomy scenarios on the maintenance and evolution on such systems. This idea
emerged in a clear way in Chapter 3, where substantial software quality concerns
emerged due to loosely congruence of the different modules and poor attention on
Quality–Architecture–Process issues.

Quality, impacts on the code. Poor software quality means to harm future main-
tenance and evolution of your system. It depends both on the way people work and
on the design of such system.

Architecture, impacts on the design of the system. Consciously or unconsciously
omitted architectural choices drives to tremendous system’s layering with poor future
maintenance and evolution capabilities. It is caused by poor software quality, which
does not consider dependencies, and by people, who do not coordinate properly to
hinder it.

Process, impacts on the way people build a system. If people do not cooperate with
stakeholders to deliver valuable functionalities to the business, or do not coordinate
among them selves to develop a coherent and consistent system. It is related to
cooperation and code ownership practices; thus, effective communication among the
different actor will be reflected in the system’s design at an agreed quality level.

Building sustainable software means to manage these three key factors.

10.3 Future works

In this research area, there are several future directions. We will focus on two of
them, which are the focus of this investigation: socio-technical aspects of Software
Engineering, and the transferability of the Quality–Architecture–Process paradigm.

The first open-ended research journey will rely on interdisciplinary and cross-
fertilization from Software Engineering areas, as well as others (e.g., psychology, man-
agement, engineering). It is a growing debate, where different contributions are needed
to support sustainable Software Engineering practices. At the end of each chapter,
some of these directions have been outlined.

The second direction we see regards the transferability of the model. We are
interested to see if our model can be applicable to other contexts, or domains. If
this model seems to work well in the Software Engineering domain, also other related

168 Chapter 10. Concluding Remarks

disciplines could benefit from this perspective. Potentially, any domain which relies
socio-technical contributions is a target. Indeed, when there is a process to manage,
a structure to implement, which works only if a certain quality is provided, the model
could work. Data Science could be an example. It is a new and rising discipline which
involves all three key factors. Data quality is highest priority, since bad data quality
could highly biases results. The value extraction process need also to be properly
manage by a process. Finally, the architecture of the most suitable model to respond
to Initial Hypotheses have to be implemented.

In sum, this dissertation supported the vision that most software problems are of
socio-technical nature. Although we narrowed our research to the Software Engineer-
ing domain, other research areas could benefit from this perspective.

169

Appendix A

Research Materials

A.1 Questionnaire

A.1.1 Constructs

Construct [source] Labels Items Questions

Cooperative Thinking [311]

COOT_1 Complex negotiation During design, I like to discuss with peo-
ple who have different ideas, in order to
develop the best solution.

COOT_2 Continuous learning Programming in team taught me some-
thing I didn’t know.

COOT_3 Group awareness I like to be part of a software developing
team.

COOT_4 Group organization When I work in team, results are better
than when I work alone.

COOT_5 Social sensitivity During development, I work fine even with
teammates with whom I have personal dif-
ficulties.

Agile Values [43]

AV_1 Timeboxing and estimation I can estimate precisely the time needed
to complete a developing task.

AV_2 Simple solution It is important to find a solution, regard-
less how, also if not generally applicable.

AV_3 Programming practices I use Agile practices during software de-
velopment

AV_4 Agile SDLC I prefer Agile methods to traditional ones.
AV_5 On-site customer When I work in a team, I join fre-

quently conversations with teammates or
clients/stakeholders.

AV_6 Face-to-face communication I prefer direct, face-to-face, communica-
tion to emails or messages.

AV_7 Courage During a discussion with teammates, I am
able to well defend my point of view.

Computational Thinking [115]

CT_1 Logical reasoning I get good results in logical-mathematical
tests and exercises.

CT_2 Algorithmic thinking I can usually decompose a problem in pre-
cise and sequential steps.

CT_3 Generalization I discard details not essential to solving
design problems.

CT_4 Evaluation I like to modify a working solution to im-
prove it, even risking to waste a lot of time.

CT_5 Patterns I can easily identify and evaluate recurring
patterns or behaviors.

CT_6 Decomposition I can always decompose a complex Prob-
lem into simpler ones.

Complex Problem Solving [477]
CPS_1 Curiosity I’m good at working on problems I never

tackled before.
CPS_2 Creativity I can solve ill-defined problems.
CPS_3 Tenacity I like to solve real, complex problems.

Table A.1: Items list

170 Appendix A. Research Materials

Question Type Options

Institution name Open

Occupation Closed High School Student,
University Student

Programming Experi-
ence Closed 1y, 2-3y, 4-6y, 7-10y, 11-20y,

21-35y, 35+y
Completed SW Projects Closed 0,1,2-4, 5-10, 11-20, 20+

Agile Experience Closed None, Studied, Experimented,
Some Project, Daily Use

Largest team size par-
ticipated in Open

Table A.2: Demographics questionnaire

A.1.2 Demographic Information Questionnaire

We present the questions used to assess the answering population, along with answer
choices (if present).

171

Bibliography

[1] meta . Oxford Dictionary Of English. 3th. Oxford University Press, 2013.
[2] European Parliament and of the Council. Directive 2007/64/EC.

http : / / eur - lex . europa . eu / legal - content / EN / TXT / ?uri = CELEX :
02007L0064-20091207. 2007.

[3] European Parliament and of the Council. Directive 2015/2366/EU.
http : / / eur - lex . europa . eu / legal - content / EN / TXT / ?uri = CELEX :
32015L2366. 2015.

[4] G. Abowd et al. Recommended Best Industrial Practice for Software Architec-
ture Evaluation. Tech. rep. Software Engineering Institute, 1997.

[5] A. Abualkishik et al. “A study on the statistical convertibility of IFPUG Func-
tion Point, COSMIC Function Point and Simple Function Point”. In: Informa-
tion and Software Technology 86 (2017), pp. 1–19.

[6] G. Adams. “Social competence during adolescence: Social sensitivity, locus of
control, empathy, and peer popularity”. In: Journal of Youth and Adolescence
12.3 (1983), pp. 203–211.

[7] P. Adler and R. Cole. Designed for learning: A tale of two auto plants. Sloan
Management Review, 1995.

[8] A. T. M. Aerts et al. “Architectures in context: on the evolution of business,
application software, and ICT platform architectures”. In: Information & Man-
agement 41.6 (2004), pp. 781–794.

[9] AgileAlliance. Agile manifesto. 2001.
[10] N. Ahmad, A. Rextin, and U. Kulsoom. “Perspectives on usability guidelines for

smartphone applications: An empirical investigation and systematic literature
review”. In: Information and Software Technology 94 (2018), pp. 130–149.

[11] S. Aier, B. Gleichauf, and R. Winter. “Understanding Enterprise Architec-
ture Management Design – An Empirical Analysis”. In: Proc. 10th Int. Conf.
Wirtschaftsinformatik. 2011.

[12] G. Akerlof. “The market for "lemons": quality uncertainty and the market
mechanism”. In: The Quarterly Journal of Economics (1970), pp. 488–500.

[13] S. Akter, J. D’Ambra, and P. Ray. “An evaluation of PLS based complex
models: the roles of power analysis, predictive relevance and GoF index”. In:
Proceedings of the Americas Conference on Information Systems. 2011, pp. 1–
7.

[14] B. Al-Ani et al. “Continuous coordination within the context of cooperative and
human aspects of software engineering”. In: International Workshop on Coop-
erative and Human Aspects of Software Engineering (CHASE). ACM. 2008,
pp. 1–4.

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02007L0064-20091207
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02007L0064-20091207
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2366
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015L2366

172 BIBLIOGRAPHY

[15] D. S. Alberts, J. J. Garstka, and F. P. Stein. Network Centric Warfare: De-
veloping and Leveraging Information Superiority. Tech. rep. DTIC Document,
2000.

[16] A. Albrecht and J. Gaffney. “Software function, source lines of code, and devel-
opment effort prediction: a software science validation”. In: IEEE Transactions
on Software Engineering 9.6 (1983), pp. 639–648.

[17] J. Allert. “Learning style and factors contributing to success in an introductory
computer science course”. In: Advanced Learning Technologies, 2004. Proceed-
ings. IEEE International Conference on. IEEE. 2004, pp. 385–389.

[18] T. Amabile, C. Fisher, and J. Pillemer. “IDEO?s Culture of Helping”. In: Har-
vard Business Review 92.1-2 (2014), pp. 54–61.

[19] G. Antunes et al. “Using ontologies to integrate multiple enterprise architec-
ture domains”. In: International Conference on Business Information Systems.
Springer. 2013, pp. 61–72.

[20] A. April and F. Coallier. “Q. Bell Canada, “Trillium: A model for the assess-
ment of Telecom software system development and maintenance capability””.
In: Proc. Software Engineering Standards Sym. 1995.

[21] C. Arumugam and B. Kaliamourthy. “Global Software development: An ap-
proach to design and evaluate the risk factors for global practitioners.” In: In-
ternational Conference on Software Engineering and Knowledge Engineering.
2016, pp. 565–568.

[22] R. Atkinson. “Project management: cost, time and quality, two best guesses
and a phenomenon, its time to accept other success criteria”. In: International
Journal of Project Management 17.6 (1999), pp. 337–342.

[23] S. Atkinson and G. Benefield. “Software Development: Why the Traditional
Contract Model Is Not Fit for Purpose”. In: Proc. HICSS46, Software Track.
Hawaii: IEEE Computer Society Press, 2013, pp. 330–339.

[24] D. Avison, R. Baskerville, and M. Myers. “Controlling action research projects”.
In: Information Technology & People 14.1 (2001), pp. 28–45.

[25] K. Avruch. “Culture and negotiation pedagogy”. In: Negotiation Journal 16.4
(2000), pp. 339–346.

[26] M. A. Babar, A. W. Brown, and I. Mistrík. Agile Software Architecture: Align-
ing Agile Processes and Software Architectures. Newnes, 2013.

[27] M. A. Babar, L. Zhu, and R. Jeffery. “A framework for classifying and compar-
ing software architecture evaluation methods”. In: Proc. Australian Software
Engineering Conference. IEEE. 2004, pp. 309–318.

[28] R. Badham, C. Clegg, and T. Wall. “Socio-technical theory”. In: Handbook of
Ergonomics. Wiley, 2000.

[29] B. S. Baker. “On Finding Duplication and Near-duplication in Large Software
Systems”. In: Proceedings of the Second Working Conference on Reverse En-
gineering. WCRE ’95. Washington, DC, USA: IEEE Computer Society, 1995,
pp. 86–95. isbn: 0-8186-7111-4.

[30] L. Balasubramanian and E. Mnkandla. “An evaluation to determine the extent
and level of Agile Software Development Methodology adoption and imple-
mentation in the Botswana Software Development Industry”. In: Advances in
Computing and Communication Engineering (ICACCE), 2016 International
Conference on. IEEE. 2016, pp. 320–325.

BIBLIOGRAPHY 173

[31] V. Balijepally, S. Nerur, and R. Mahapatra. “IT value of software develop-
ment: A multi-theoretic perspective”. In: Americas Conference on Information
Systems. IGI Global, 2009, pp. 96–110.

[32] R. D. Banker, I. Bardhan, and O. Asdemir. “Understanding the impact of
collaboration software on product design and development”. In: Information
Systems Research 17.4 (2006), pp. 352–373.

[33] H. Baraki et al. “Interdisciplinary design patterns for socially aware comput-
ing”. In: International Conference on Software Engineering (ICSE). Vol. 2.
IEEE. 2015, pp. 477–486.

[34] V. Barr and C. Stephenson. “Bringing computational thinking to K-12: what is
Involved and what is the role of the computer science education community?”
In: ACM Inroads 2.1 (2011), pp. 48–54.

[35] M. R Barrick et al. “Relating member ability and personality to work-team pro-
cesses and team effectiveness.” In: Journal of Applied Psychology 83.3 (1998),
pp. 377–391.

[36] V. R. Basili. Software modeling and measurement: the Goal/Question/Metric
paradigm. Tech. rep. 1992.

[37] R. Baskerville and M. D. Myers. “Special issue on action research in information
systems: Making IS research relevant to practice: Foreword”. In: MIS Quarterly
(2004), pp. 329–335.

[38] L. Bass, P. Clemens, and R. Kazman. Software Architecture in Practice. 3rd ed.
Addison-Wesley, 2012.

[39] L. Bass, I. Weber, and L. Zhu. DevOps: A Software Architect’s Perspective.
Addison-Wesley, 2015.

[40] G. Baxter and I. Sommerville. “Socio-technical systems: From design methods
to systems engineering”. In: Interacting with Computers 23.1 (2011), pp. 4–17.

[41] J. Bearden. Command and Control Enabling the Expeditionary Aerospace Force.
Tech. rep. DTIC Document, 2000.

[42] K. Beck. Test Driven Development By Example. Addison-Wesley, Boston, 2003.
[43] K. Beck and C. Andres. Extreme programming explained: embrace change - 2nd

edition. Addison–Wesley, 2004.
[44] S. Bellomo, I. Gorton, and R. Kazman. “Toward agile architecture: Insights

from 15 years of ATAM data”. In: IEEE Software 32.5 (2015), pp. 38–45.
[45] B. Bendik, P. Nielsen, and B. Munkvold. “Four integration patterns: IS devel-

opment as stepwise adaptation of technology and organisation”. In: European
Conference of Information Systems. 2005, pp. 26–29.

[46] L. Benedicenti et al. “Applying scrum to the army: a case study”. In: Proceed-
ings of the 38th International Conference on Software Engineering Companion.
ACM. 2016, pp. 725–727.

[47] P. Bengtsson et al. “Architecture-level modifiability analysis (ALMA)”. In:
Journal of Systems and Software 69.1 (2004), pp. 129–147.

[48] A. Benlian and I. Haffke. “Does mutuality matter? Examining the bilateral
nature and effects of CEO–CIO mutual understanding”. In: The Journal of
Strategic Information Systems 25.2 (2016), pp. 104–126.

174 BIBLIOGRAPHY

[49] J. A. Bergstra and P. Klint. “About “trivial” software patents: The IsNot case”.
In: Science of Computer Programming 64.3 (2007), pp. 264–285. issn: 0167-
6423.

[50] S. Berman. “Digital transformation: opportunities to create new business mod-
els”. In: Strategy & Leadership 40.2 (2012), pp. 16–24.

[51] S. Betz et al. “An evolutionary perspective on socio-technical congruence: The
rubber band effect”. In: International Workshop on Replication in Empirical
Software Engineering Research (RESER). IEEE. 2013, pp. 15–24.

[52] N. Bicocchi, D. Fontana, and F. Zambonelli. “A self-aware, reconfigurable ar-
chitecture for context awareness”. In: Symposium on Computers and Commu-
nication (ISCC). IEEE. 2014, pp. 1–7.

[53] I. Bider and H. Otto. “Modeling a global software development project as a
complex socio-technical system to facilitate risk management and improve the
project structure”. In: International Conference on Global Software Engineering
(ICGSE). IEEE. 2015, pp. 1–12.

[54] I. Bider and O. Söderberg. “Becoming Agile in a Non-disruptive Way-Is It
Possible?” In: International Conference on Enterprise Information Systems.
2016, pp. 294–305.

[55] C. Bird et al. “Empirical software engineering at microsoft research”. In: Con-
ference on Computer Supported Cooperative Work. ACM. 2011, pp. 143–150.

[56] C. Bird et al. “Putting it all together: Using socio-technical networks to predict
failures”. In: Proc. International Symposium on Software Reliability Engineer-
ing. IEEE. 2009, pp. 109–119.

[57] A. Blackwell, L. L. Church, and T. R. T. Green. “The abstract is ’an en-
emy’: Alternative perspectives to Computational Thinking”. In: Proc. 20th
Annual Workshop of the Psychology of Programming Interest Group. Vol. 8.
2008, pp. 34–43.

[58] E. Blomqvist et al. “Experimenting with eXtreme Design”. In: (Lisbon, Portu-
gal). Springer, 2010, pp. 120–134.

[59] S. C Blumenthal. Management information systems; a framework for planning
and development. Tech. rep. 1969.

[60] D. Bodemer and J. Dehler. “Group awareness in CSCL environments”. In:
Computers in Human Behavior 27.3 (2011), pp. 1043–1045.

[61] B. Boehm. “A spiral model of software development and enhancement”. In:
IEEE Computer 21.5 (1988), pp. 61–72.

[62] B. Boehm, C. Abts, and S. Chulani. “Software development cost estimation
approaches–A survey”. In: Annals of Software Engineering 10.1-4 (2000), pp. 177–
205.

[63] B. Boehm and V. R. Basili. “Software Defect Reduction Top 10 List”. In: Com-
puter 34.1 (2001), pp. 135–137.

[64] B. Boehm, J. R. Brown, and M. Lipow. “Quantitative evaluation of software
quality”. In: Proc. 2nd Int. Conf. on Software Engineering (ICSE). ACM/IEEE.
1976, pp. 592–605.

[65] W. Boh and D. Yellin. “Using enterprise architecture standards in managing
information technology”. In: Journal of Management Information Systems 23.3
(2006), pp. 163–207.

BIBLIOGRAPHY 175

[66] M. Book, V. Gruhn, and R. Striemer. “adVANTAGE: A fair pricing model
for agile software development contracting”. In: Agile Processes in Software
Engineering and Extreme Programming. Ed. by C. Wohlin. Malmo, Sweden:
Springer, 2012, pp. 193–200.

[67] M. Book, V. Gruhn, and R. Striemer. Tamed Agility. Springer, 2016.
[68] A. Borici et al. “Proxiscientia: Toward real-time visualization of task and devel-

oper dependencies in collaborating software development teams”. In: Interna-
tional Workshop on Co-operative and Human Aspects of Software Engineering.
IEEE Press. 2012, pp. 5–11.

[69] V. Boucharas et al. “The contribution of enterprise architecture to the achieve-
ment of organizational goals: Establishing the enterprise architecture benefits
framework”. In: Department of Information and Computing Sciences, Utrecht
University, Utrecht (2010).

[70] M. Bourimi et al. “AFFINE for enforcing earlier consideration of NFRs and
human factors when building socio-technical systems following agile method-
ologies”. In: International Conference on Human-Centred Software Engineering.
Springer. 2010, pp. 182–189.

[71] P. Bourque et al. Guide to the software engineering body of knowledge (SWE-
BOK (R)): Version 3.0. IEEE, 2014.

[72] P. Boxer. “Building organizational agility into large-scale software-reliant en-
vironments”. In: International Systems Conference. 2009.

[73] A. C. Boynton, B. Victor, and P. J. “New competitive strategies: Challenges
to organizations and information technology”. In: IBM Systems Journal 32.1
(1993), pp. 40–64.

[74] J. Brancheau, B. Janz, and J. Wetherbe. “Key Issues in Information Systems
Management: 1994-95 SIM Delphi Results”. In: MIS Quarterly 20.2 (1996),
pp. 225–242.

[75] P. Bresciani and P. Donzelli. “The Agent at the Center of the Requirements
Engineering Process”. In: International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems. Springer. 2003, pp. 1–18.

[76] J. Brier, L. Rapanotti, and J. Hall. “Problem-based analysis of organisational
change: a real-world example”. In: International Workshop on Advances and
Applications of Problem Frames. ACM. 2006, pp. 13–18.

[77] F. P Brooks. The mythical man-month. Essays on software engineering. Addison-
Wesley, 1982.

[78] S. Brown. 500 tips on group learning. Routledge, 2014.
[79] W. Brown et al. AntiPatterns: refactoring software, architectures, and projects

in crisis. John Wiley & Sons, Inc., 1998.
[80] R. Buchanan. “Wicked problems in design thinking”. In: Design issues 8.2

(1992), pp. 5–21.
[81] C. Calero, F. Ruiz, and M. Piattini. Ontologies for software engineering and

software technology. Springer, 2006.
[82] J. C Camillus. “Strategy as a wicked problem”. In: Harvard Business Review

86.5 (2008), p. 98.
[83] G. Campbell and P. Papapetrou. SonarQube in action. Manning Publications

Co., 2013.

176 BIBLIOGRAPHY

[84] L. Carter. “Ideas for Adding Soft Skills Education to Service Learning and
Capstone Courses for Computer Science Students”. In: Proceedings of the 42Nd
ACM Technical Symposium on Computer Science Education. SIGCSE ’11. Dal-
las, TX, USA: ACM, 2011, pp. 517–522. isbn: 978-1-4503-0500-6.

[85] R. Castro et al. “An Ontology Model to Support the Automated Evaluation of
Software”. In: International Conference on Software Engineering and Knowl-
edge Engineering. Knowledge Systems Institute Graduate School, 2010.

[86] M. Cataldo, J. Herbsleb, and K. Carley. “Socio-technical congruence: a frame-
work for assessing the impact of technical and work dependencies on software
development productivity”. In: International Symposium on Empirical Software
Engineering and Measurement. ACM. 2008, pp. 2–11.

[87] M. Cataldo et al. “Identification of coordination requirements: implications for
the Design of collaboration and awareness tools”. In: Conference on Computer
Supported Cooperative Work. ACM. 2006, pp. 353–362.

[88] C. Cevenini et al. “Privacy Through Anonymisation in Large-Scale Socio-
Technical Systems: Multi-lingual Contact Centres Across the EU”. In: Interna-
tional Conference on Internet Science. Springer. 2016, pp. 291–305.

[89] P. Checkland. Systems thinking, systems practice. John Wiley, 1981.
[90] C. Cherryholmes. “Notes on pragmatism and scientific realism”. In: Educational

researcher 21.6 (1992), pp. 13–17.
[91] W. W. Chin. “Issues and Opinion on Structural Equation Modeling”. In: MIS

Quarterly 22.1 (1998).
[92] W. Chin and P R. Newsted. Structural Equation Modeling Analysis with Small

Samples Using Partial Least Square. Sage, 1996.
[93] W. W. Chin. “The partial least squares approach to structural equation mod-

eling”. In: Modern Methods for Business Research 295.2 (1998), pp. 295–336.
[94] T. Chow and D. Cao. “A survey study of critical success factors in agile software

projects”. In: Journal of Systems and Software 81.6 (2008), pp. 961–971.
[95] M. B. Chrissis, M. Konrad, and S. Shrum. CMMI guidlines for process integra-

tion and product improvement. Addison-Wesley Longman Publishing Co., Inc.,
2003.

[96] C. Churchman. The Design of Inquiring Systems Basic Concepts of Systems
and Organization. Basic Books, 1971.

[97] P. Ciancarini, F. Poggi, and D. Russo. “Big Data Quality: a Roadmap for
Open Data”. In: 2nd IEEE International Conference on Big Data Service (Big-
DataService). IEEE. 2016, pp. 210–215.

[98] P. Ciancarini and V. Presutti. “Towards ontology driven software design”.
In: Radical Innovations of Software and Systems Engineering in the Future.
Springer, 2004, pp. 122–136.

[99] P. Ciancarini et al. “A Guided Tour of the Legal Implications of Software
Cloning”. In: Proceedings of the 38th International Conference on Software En-
gineering Companion. ICSE ’16. ACM. 2016, pp. 563–572.

[100] P. Ciancarini et al. “Agile Knowledge Engineering for Mission Critical Software
Requirements”. In: Knowledge Engineering and Software Engineering - Meth-
ods, tools, and case studies. Ed. by G. Nalepa and J. Baumeister. Springer-
Verlag, Berlin, 2017, pp. 1–21.

BIBLIOGRAPHY 177

[101] P. Ciancarini et al., eds. Proc. 5th Int. Conf. on Software Engineering for De-
fense Applications. Vol. 717. Advances in Intelligent Systems and Computing.
Springer, 2018.

[102] P. Ciancarini et al. “Reverse engineering: a European IPR perspective”. In:
Proceedings of the 31st Annual ACM Symposium on Applied Computing. ACM.
2016, pp. 1498–1503.

[103] P. Ciancarini and G. P. Favini. “Detecting clones in game-playing software”.
In: Entertainment Computing 1.1 (2009), pp. 9–15. issn: 1875-9521.

[104] J. Cleland-Huang et al. “The twin peaks of requirements and architecture”. In:
IEEE Software 30.2 (2013), pp. 24–29.

[105] P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures.
Addison-Wesley, Boston, 2002.

[106] E. Communities. “Key competences for lifelong learning: European Reference
Framework”. In: (2007).

[107] M. Conway. “How do committees invent”. In: Datamation 14.4 (1968), pp. 28–
31.

[108] H. Cooper. “Scientific guidelines for conducting integrative research reviews”.
In: Review of Educational Research 52.2 (1982), pp. 291–302.

[109] H. Cooper, L. Hedges, and J. Valentine. The handbook of research synthesis
and meta-analysis. Sage, 2009.

[110] F. R. Cotugno and A. Messina. “Adapting Scrum to the Italian Army: Methods
and (Open) Tools”. In: IFIP International Conference on Open Source Systems.
Springer. 2014, pp. 61–69.

[111] K. Craik. The nature of exploration. 1943.
[112] J. Creswell. Research design: Qualitative, quantitative, and mixed methods ap-

proaches. Sage, 2013.
[113] J. Creswell, V. Clark, and L. Plano. Designing and conducting Mixed Methods

research. Wiley, 2007.
[114] M. Crofts, B. Fraunholz, and M. Warren. “Using the Sociotechnical Approach

in Global Software Developments: Is the Theory Relevant today?” In: Aus-
tralasian Conference on Information Systems (2008), pp. 250–260.

[115] A. Csizmadia et al. Computational thinking: A guide for teachers. 2015.
[116] M. A. Cusumano. The Business of Software: What every manager, programmer,

and entrepreneur must know to thrive and survive in good times and bad. Simon
and Schuster, 2004.

[117] N. C. Dalkey, B. B. Brown, and S. Cochran. The Delphi method: An experi-
mental study of group opinion. Vol. 3. Rand Corporation Santa Monica, CA,
1969.

[118] F. Dalpiaz, P. Giorgini, and J. Mylopoulos. “Adaptive socio-technical systems:
a requirements-based approach”. In: Requirements Engineering 18.1 (2013),
pp. 1–24.

[119] D. Damian et al. “The role of domain knowledge and cross-functional com-
munication in socio-technical coordination”. In: International Conference on
Software Engineering (ICSE). IEEE. 2013, pp. 442–451.

178 BIBLIOGRAPHY

[120] W. Damon and E. Phelps. “Critical distinctions among three approaches to
peer education”. In: International Journal of Educational Research 13.1 (1989),
pp. 9–19.

[121] D. F. Dansereau. “Cooperative learning strategies”. In: Learning and study
strategies: Issues in assessment, instruction, and evaluation (1988), pp. 103–
120.

[122] J. S. David, D. Schuff, and R. St Louis. “Managing your total IT cost of own-
ership”. In: Communications of the ACM 45.1 (2002), pp. 101–106.

[123] C. Deephouse et al. “Software processes and project performance”. In: Journal
of Management Information Systems 12.3 (1995), pp. 187–205.

[124] W. DeLone and E. McLean. “Information systems success: The quest for the
dependent variable”. In: Information Systems Research 3.1 (1992), pp. 60–95.

[125] W. DeLone and E. McLean. “The DeLone and McLean model of information
systems success: a ten-year update”. In: Journal of Management Information
Systems 19.4 (2003), pp. 9–30.

[126] P. J. Denning. “Remaining trouble spots with computational thinking”. In:
Communications of the ACM 60.6 (2017), pp. 33–39.

[127] J. Dewey. Logic: the theory of inquiry. Holt, 1938.
[128] J. Dibbern et al. “Information systems outsourcing: a survey and analysis of

the literature”. In: ACM Sigmis Database 35.4 (2004), pp. 6–102.
[129] G. W Dickson. “Management information-decision systems: A new era ahead?”

In: Business Horizons 11.6 (1968), pp. 17–26.
[130] V. Dignum and Y. Tan. “Multi agent simulation for control and autonomy in

complex socio-technical systems”. In: International Conference on Networking,
Sensing and Control (ICNSC). IEEE. 2011, pp. 62–67.

[131] T. K. Dijkstra and J. Henseler. “Consistent and asymptotically normal PLS
estimators for linear structural equations”. In: Computational Statistics & Data
Analysis 81 (2015), pp. 10–23.

[132] T. Dingsøyr and C. Lassenius. “Emerging themes in agile software develop-
ment: Introduction to the special section on continuous value delivery”. In:
Information and Software Technology 77 (2016), pp. 56–60.

[133] T. Dingsøyr et al. “Team Performance in Software Development: Research Re-
sults versus Agile Principles”. In: IEEE Software 33.4 (2016), pp. 106–110.

[134] L. Dobrica and E. Niemela. “A survey on software architecture analysis meth-
ods”. In: IEEE Transactions on Software Engineering 28.7 (2002), pp. 638–
653.

[135] E. Doke and N. Swanson. “Decision variables for selecting prototyping in in-
formation systems development: A Delphi study of MIS managers”. In: Infor-
mation & Management 29.4 (1995), pp. 173–182.

[136] A. Dorling. “SPICE: Software process improvement and capability determina-
tion”. In: Software Quality Journal 2.4 (1993), pp. 209–224.

[137] C. Dorn, G. Edwards, and N. Medvidovic. “Analyzing design tradeoffs in large-
scale socio-technical systems through simulation of dynamic collaboration pat-
terns”. In: Confederated International Conferences On the Move to Meaningful
Internet Systems. Springer. 2012, pp. 362–379.

BIBLIOGRAPHY 179

[138] C. Dorn and R. Taylor. “Coupling software architecture and human architec-
ture for collaboration-aware system adaptation”. In: International Conference
on Software Engineering. IEEE Press. 2013, pp. 53–62.

[139] R. Dos Santos and C. Werner. “On the Impact of Software Ecosystems in Re-
quirements Communication and Management.” In: Requirements Engineering
@ Brazil. Citeseer. 2013.

[140] T. Drozdowski et al. “India’s Rise as a Software Power: Governmental Policy
Factors”. In: Portland International Conference on Management of Engineering
and Technology. IEEE. 2007, pp. 2811–2819.

[141] K. Eason. Information technology and organisational change. CRC Press, 2014.
[142] S. Easterbrook et al. “Experiences using lightweight formal methods for re-

quirements modeling”. In: IEEE Transactions on Software Engineering 24.1
(1998), pp. 4–14.

[143] C. Ebert and M. Paasivaara. “Scaling Agile”. In: IEEE Software 6 (2017),
pp. 98–103.

[144] A. Edmonson. Teaming to Innovate. Wiley, 2013.
[145] A. Edmonson. “Wicked Problem Solvers”. In: Harvard Business Review 94.June

(2016), p. 52.
[146] T. G. of Education Reform. 21st century skills. http://edglossary.org/21st-

century-skills/. 2016.
[147] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC Press,

1994.
[148] K. Ehrlich and K. Chang. “Leveraging expertise in global software teams: Going

outside boundaries”. In: International Conference on Global Software Engineer-
ing. IEEE. 2006, pp. 149–158.

[149] K. E. Emam, W. Melo, and J.-N. Drouin. SPICE: The theory and practice of
software process improvement and capability determination. IEEE, 1997.

[150] D. Emery and R. Hilliard. “Every architecture description needs a framework:
Expressing architecture frameworks using ISO/IEC 42010”. In: Conference on
Software Architecture. IEEE. 2009, pp. 31–40.

[151] E Engström and P. Runeson. “Software product line testing–a systematic map-
ping study”. In: Information and Software Technology 53.1 (2011), pp. 2–13.

[152] A. Espinosa et al. “Team knowledge and coordination in geographically dis-
tributed software development”. In: Journal of Management Information Sys-
tems 24.1 (2007), pp. 135–169.

[153] J Etezadi-Amoli and A. Farhoomand. “A structural model of end user comput-
ing satisfaction and user performance”. In: Information & Management 30.2
(1996), pp. 65–73.

[154] D. Fabiano et al. “Applying Tropos to Socio-Technical System Design and
Runtime Configuration”. In: Italian Workshop dagli Oggetti agli Agenti. 2008.

[155] F. Faul et al. “Statistical power analyses using G* Power 3.1: Tests for cor-
relation and regression analyses”. In: Behavior Research Methods 41.4 (2009),
pp. 1149–1160.

[156] D. Feeny, M. Lacity, and L. Willcocks. “Taking the measure of outsourcing
providers”. In: MIT Sloan Management Review 46.3 (2005), p. 41.

180 BIBLIOGRAPHY

[157] D. F. Feeny, B. R. Edwards, and K. M. Simpson. “Understanding the CEO/CIO
relationship”. In: MIS Quarterly (1992), pp. 435–448.

[158] F. Ferrucci, C. Gravino, and L. Lavazza. “Simple function points for effort
estimation: a further assessment”. In: Proc. 31st ACM Symposium on Applied
Computing. 2016, pp. 1428–1433.

[159] C. Fornell and D. F. Larcker. “Evaluating structural equation models with
unobservable variables and measurement error”. In: Journal of Marketing Re-
search (1981), pp. 39–50.

[160] E. Fraj-Andrés, L. Lucia-Palacios, and R. Pérez-López. “How extroversion af-
fects student attitude toward the combined use of a wiki and video recording
of group presentations”. In: Computers & Education 119 (2018), pp. 31 –43.

[161] R. France and B. Rumpe. “Model-driven Development of Complex Software: A
Research Roadmap”. In: Future of Software Engineering. FOSE ’07. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 37–54. isbn: 0-7695-2829-5.

[162] B. Gallina, E. Sefer, and A. Refsdal. “Towards safety risk assessment of socio-
technical systems via failure logic analysis”. In: International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE. 2014, pp. 287–
292.

[163] A. Gangemi. “Norms and plans as unification criteria for social collectives”. In:
Autonomous Agents and Multi-Agent Systems 17.1 (2008), pp. 70–112. doi:
10.1007/s10458-008-9038-9. url: https://doi.org/10.1007/s10458-
008-9038-9.

[164] A. Gangemi and P. Mika. “Understanding the semantic web through descrip-
tions and situations”. In: OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems". Springer, 2003, pp. 689–706.

[165] A. Gangemi and V. Presutti. “Ontology Design Patterns”. In: Springer, 2009,
pp. 221–243.

[166] E. Gansner and S. North. “An open graph visualization system and its appli-
cations to software engineering”. In: Software: practice and experience 30.11
(2000), pp. 1203–1233.

[167] D. Garlan and D. E Perry. “Introduction to the special issue on software archi-
tecture”. In: IEEE Transaction on Software Engineering 21.4 (1995), pp. 269–
274.

[168] S. Gazzerro et al. “Capturing User Needs for Agile Software Development”.
In: Proceedings of 4th International Conference in Software Engineering for
Defence Applications. Springer. 2016, pp. 307–319.

[169] D. Gefen, D. Straub, and M.-C. Boudreau. “Structural equation modeling and
regression: Guidelines for research practice”. In: Communications of the AIS
4.1 (2000), p. 7.

[170] S. Geisser. “A predictive approach to the random effect model”. In: Biometrika
61.1 (1974), pp. 101–107.

[171] J. Georgas and A. Sarma. “STCML: an extensible XML-based language for
socio-technical modeling”. In: International Workshop on Cooperative and Hu-
man Aspects of Software Engineering. ACM. 2011, pp. 61–64.

[172] D. M. Germán and A. E. Hassan. “License integration patterns: Addressing
license mismatches in component-based development”. In: 2009 IEEE 31st In-
ternational Conference on Software Engineering (2009), pp. 188–198.

http://dx.doi.org/10.1007/s10458-008-9038-9
https://doi.org/10.1007/s10458-008-9038-9
https://doi.org/10.1007/s10458-008-9038-9

BIBLIOGRAPHY 181

[173] B. G Glaser. Basics of grounded theory analysis: Emergence vs forcing. Sociol-
ogy Press, 1992.

[174] B. G Glaser. Theoretical sensitivity: Advances in the methodology of grounded
theory. Sociology Press, 1978.

[175] G. Glass. “Primary, secondary, and meta-analysis of research”. In: Educational
Researcher 5.10 (1976), pp. 3–8.

[176] R. Glass, I. Vessey, and V. Ramesh. “Research in software engineering: an
analysis of the literature”. In: Information and Software Technology 44.8 (2002),
pp. 491–506.

[177] S. Goggins and W. Xing. “Building models explaining student participation
behavior in asynchronous online discussion”. In: Computers & Education 94
(2016), pp. 241 –251.

[178] A. Gomez-Perez, M. Fernández-López, and O. Corcho. Ontological Engineering:
with examples from the areas of Knowledge Management, e-Commerce and the
Semantic Web. Springer Science & Business Media, 2006.

[179] C. Gonzalez-Perez et al. “An Ontology for ISO software engineering standards:
2) Proof of concept and application”. In: Computer Standards & Interfaces 48
(2016), pp. 112–123.

[180] N. Gorla and S. C. Lin. “Determinants of software quality: A survey of infor-
mation systems project managers”. In: Information and Software Technology
52.6 (2010), pp. 602–610.

[181] N. Gorla, T. Somers, and B. Wong. “Organizational impact of system quality,
information quality, and service quality”. In: The Journal of Strategic Informa-
tion Systems 19.3 (2010), pp. 207–228.

[182] A. Gregoriades and A. Sutcliffe. “Scenario-based assessment of nonfunctional
requirements”. In: IEEE Transactions on Software Engineering 31.5 (2005),
pp. 392–409.

[183] H.-G. Gross, M. Melideo, and A. Sillitti. “Self-certification and Trust in Com-
ponent Procurement”. In: Sci. Comput. Program. 56.1-2 (Apr. 2005), pp. 141–
156. issn: 0167-6423.

[184] M. Grüninger and M. S. Fox. “The role of competency questions in enterprise
engineering”. In: Benchmarking–Theory and practice. Springer, 1995, pp. 22–
31.

[185] E. Guba. “Criteria for assessing the trustworthiness of naturalistic inquiries”.
In: Educational Communication and Technology Journal 29.2 (1981), pp. 75–
91.

[186] L. M. Guglielmino and P. J. Guglielmino. “Practical experience with self-
directed learning in business and industry human resource development”. In:
New Directions for Adult and Continuing Education 1994.64 (1994), pp. 39–46.

[187] J. Gulden, D. van der Linden, and B. Aysolmaz. “A Research Agenda on Visual-
izations in Information Systems Engineering”. In: International Conference on
Evaluation of Novel Software Approaches to Software Engineering. SciTePress.
2016.

[188] U. G. Gupta and R. E. Clarke. “Theory and applications of the Delphi tech-
nique: A bibliography (1975–1994)”. In: Technological forecasting and social
change 53.2 (1996), pp. 185–211.

182 BIBLIOGRAPHY

[189] C. Hahn et al. “Capturing Customer Heterogeneity Using A Finite Mixture Pls
Approach”. In: Schmalenbach Business Review 54.3 (2002), pp. 243–269.

[190] J. F. Hair, C. M. Ringle, and M. Sarstedt. “PLS-SEM: Indeed a silver bullet”.
In: Journal of Marketing theory and Practice 19.2 (2011), pp. 139–152.

[191] J. F. Hair Jr et al. A primer on partial least squares structural equation modeling
(PLS-SEM). Sage Publications, 2016.

[192] J. Hall and L. Rapanotti. “A design theory for software engineering”. In: In-
formation and Software Technology 87 (2017), pp. 46–61.

[193] K. Harrison-Broninski and J. Korhonen. “Collaboration infrastructure for the
learning organization”. In: International Conference on Business Information
Systems. Springer. 2012, pp. 120–131.

[194] D. Harvie and A. Agah. “Targeted Scrum: Applying Mission Command to Agile
Software Development”. In: IEEE Transactions on Software Engineering 42.5
(2016), pp. 476–489.

[195] J. Hassine and M. Alshayeb. “Measurement of Actor External Dependencies in
GRL Models.” In: iStar. Citeseer. 2014.

[196] S. Hayne and C. Pollard. “A comparative analysis of critical issues facing Cana-
dian information systems personnel: A national and global perspective”. In:
Information & Management 38.2 (2000), pp. 73–86.

[197] C. Heath et al. “Unpacking collaboration: the interactional organisation of
trading in a city dealing room”. In: Computer Supported Cooperative Work 3.2
(1994), pp. 147–165.

[198] P. B. Henderson. “Ubiquitous Computational Thinking”. In: IEEE Computer
42.10 (2009).

[199] B. Henderson-Sellers et al. “An ontology for ISO software engineering stan-
dards”. In: Computer Standards & Interfaces 36.3 (2014), pp. 563–576.

[200] J. Henseler, C. M. Ringle, and M. Sarstedt. “A new criterion for assessing dis-
criminant validity in variance-based structural equation modeling”. In: Journal
of the Academy of Marketing Science 43.1 (2015), pp. 115–135.

[201] J. Henseler, C. M. Ringle, and R. R. Sinkovics. “The use of partial least squares
path modeling in international marketing”. In: New challenges to international
marketing. Emerald Group Publishing Limited, 2009, pp. 277–319.

[202] J. Herbsleb. “Building a socio-technical theory of coordination: why and how
(outstanding research award)”. In: Foundations of Software Engineering. ACM.
2016, pp. 2–10.

[203] J. Herbsleb. “Global software engineering: The future of socio-technical coor-
dination”. In: Future of Software Engineering. IEEE. 2007, pp. 188–198.

[204] J. Herbsleb and R. Grinter. “Architectures, coordination, and distance: Con-
way’s law and beyond”. In: IEEE Software 16.5 (1999), pp. 63–70.

[205] H. J. van den Herik et al. “Plagiarism in game programming competitions”. In:
Journal of Entertainment Computing 5 (3 2014), pp. 173–187.

[206] B. Hermalin, A. Katz, and R. Craswell. “The Law and Economics of Contracts”.
In: Handbook of Law and Economics. Ed. by M. Polinsky and S. Shavell. Else-
vier, 2007, pp. 3–138.

BIBLIOGRAPHY 183

[207] T. Herrmann et al. “Concepts for usable patterns of groupware applications”.
In: International Conference on Supporting Group Work. ACM. 2003, pp. 349–
358.

[208] C. A. Higgins, L. E. Duxbury, and R. H. Irving. “Work-family conflict in the
dual-career family”. In: Organizational Behavior and Human Decision Pro-
cesses 51.1 (1992), pp. 51–75.

[209] J. Highsmith and M. Fowler. “The Agile manifesto”. In: Software Development
Magazine 9.8 (2001), pp. 29–30.

[210] R. Hirschheim and H. K Klein. “Tracing the history of the information systems
field”. In: The Oxford handbook of management information systems: Critical
perspectives and new directions (2011), pp. 16–61.

[211] P. Hitzler et al. “Towards a simple but useful ontology design pattern repre-
sentation language”. In: Proc. of the WOP2017. CEUR-ws, 2017.

[212] E. Hollnagel and D. Woods. Joint cognitive systems: Foundations of cognitive
systems engineering. CRC Press, 2005.

[213] M. Horspool and M. Humphreys. European Union Law. Oxford University
Press, 2012.

[214] A. Hoskey and S. Zhang. “Computational Thinking: what does it really mean
for the K-16 computer science education community”. In: Journal of Computing
Sciences in Colleges 32.3 (2017), pp. 129–135.

[215] R. A. Howard, C. A. Carver, and W. D. Lane. “Felder’s learning styles, Bloom’s
taxonomy, and the Kolb learning cycle: tying it all together in the CS2 course”.
In: ACM SIGCSE Bulletin. Vol. 28. ACM. 1996, pp. 227–231.

[216] J. Howison and K. Crowston. “Collaboration through open superposition”. In:
MIS Quarterly 38.1 (2014), pp. 29–50.

[217] J. L. Howland, D. H. Jonassen, and R. M. Marra. Meaningful learning with
technology. Pearson Upper Saddle River, 2012.

[218] Y. Hu et al. “A geo-ontology design pattern for semantic trajectories”. In: Inter-
national Conference on Spatial Information Theory. Springer. 2013, pp. 438–
456.

[219] S. Hudert, S. Konig, and T. Eymann. “A Proposal for a Life Cycle Model
for Electronic Service Markets”. In: Conference on Commerce and Enterprise
Computing (CEC). IEEE. 2011, pp. 371–378.

[220] J. Hulland. “Use of partial least squares (PLS) in strategic management re-
search: A review of four recent studies”. In: Strategic Management Journal
(1999), pp. 195–204.

[221] W. S. Humphrey. “Characterizing the software process: a maturity framework”.
In: IEEE Software 5.2 (1988), pp. 73–79.

[222] W. Hung, D. H. Jonassen, R. Liu, et al. “Problem-based learning”. In: Handbook
of research on educational communications and technology 3 (2008), pp. 485–
506.

[223] K. N. Hylton, ed. Antitrust Law and Economics. Edward Elgar Publishing,
2010. url: https://EconPapers.repec.org/RePEc:elg:eebook:13001.

[224] N. Itzik, I. Reinhartz-Berger, and Y. Wand. “Variability Analysis of Require-
ments: Considering Behavioral Differences and Reflecting Stakeholders”. In:
IEEE Transactions on Software Engineering 42.7 (2016), pp. 687–706.

https://EconPapers.repec.org/RePEc:elg:eebook:13001

184 BIBLIOGRAPHY

[225] G. Jackson. “Methods for integrative reviews”. In: Review of Educational Re-
search 50.3 (1980), pp. 438–460.

[226] I. Jacobson, I. Spence, and E. Seidewitz. “Industrial-scale agile: from craft to
engineering”. In: Communications of the ACM 59.12 (2016), pp. 63–71.

[227] C. B. Jarvis, S. B. MacKenzie, and P. M. Podsakoff. “A critical review of
construct indicators and measurement model misspecification in marketing and
consumer research”. In: Journal of Consumer Research 30.2 (2003), pp. 199–
218.

[228] L. Jiang, K. Carley, and A. Eberlein. “Assessing team performance from a socio-
technical congruence perspective”. In: International Conference on Software
and System Process. IEEE Press. 2012, pp. 160–169.

[229] D. Johnson and R. Johnson. Learning together and alone: Cooperative, com-
petitive, and individualistic learning. Prentice-Hall, 1987.

[230] D. Johnson, R. Johnson, and K. Smith. Active learning: Cooperation in the
college classroom. ERIC, 1998.

[231] D. Johnson et al. Cooperative learning in the classroom. ERIC, 1994.
[232] J. H. Johnson. “Substring matching for clone detection and change tracking”.

In: Proceedings 10 International Conference on Software Maintenance. 1994,
pp. 120–126.

[233] M. Johnson. Should My Kid Learn to Code? http://googleforeducation.
blogspot.gr/2015/07/should-my-kid-learn-to-code.html. 2015.

[234] P. N. Johnson-Laird. Mental models: Towards a cognitive science of language,
inference, and consciousness. 6. Harvard University Press, 1983.

[235] S. Joy and D. A. Kolb. “Are there cultural differences in learning style?” In:
International Journal of Intercultural Relations 33.1 (2009), pp. 69–85.

[236] R. Judd. “Use of Delphi methods in Higher Education”. In: Technological Fore-
casting and Social Change 4.2 (1972), pp. 173–186.

[237] M. Jun and S. Cai. “The key determinants of internet banking service quality:
a content analysis”. In: International Journal of Bank Marketing 19.7 (2001),
pp. 276–291.

[238] H. W. Jung. “Validating the external quality subcharacteristics of software
products according to ISO/IEC 9126”. In: Computer Standards & Interfaces
29.6 (2007), pp. 653–661.

[239] H. W. Jung, S. G. Kim, and C. S. Chung. “Measuring software product quality:
A survey of ISO/IEC 9126”. In: IEEE Software 21.5 (2004), pp. 88–92.

[240] E. Kabaale et al. “An Axiom Based Metamodel for Software Process Formalisa-
tion: An Ontology Approach”. In: International Conference on Software Process
Improvement and Capability Determination. Springer. 2017, pp. 226–240.

[241] S. H. Kaisler, F. Armour, and M. Valivullah. “Enterprise architecting: Crit-
ical problems”. In: Proc. 38th Annual Hawaii Int. Conf. on System Sciences
(HICSS). IEEE. 2005, 224b.

[242] A. K. Kakar. “Assessing Self-Organization in Agile Software Development Teams”.
In: Journal of Computer Information Systems 57.3 (2017), pp. 208–217.

[243] K. Kamaruddin, N. Yusop, and M. Ali. “Using activity theory in analyzing
requirements for mobile phone application”. In: Malaysian Conference in Soft-
ware Engineering (MySEC). IEEE. 2011, pp. 7–13.

http://googleforeducation.blogspot.gr/2015/07/should-my-kid-learn-to-code.html
http://googleforeducation.blogspot.gr/2015/07/should-my-kid-learn-to-code.html

BIBLIOGRAPHY 185

[244] C. J. Kapser and M. W. Godfrey. ““Cloning considered harmful” considered
harmful: patterns of cloning in software”. In: Empirical Software Engineering
13.6 (2008), p. 645. issn: 1573-7616.

[245] C. J. Kapser and M. W. Godfrey. “Supporting the analysis of clones in software
systems”. In: Journal of Software Maintenance and Evolution: Research and
Practice 18.2 (), pp. 61–82. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/smr.327.

[246] D. L. Katz. “Conference report on the use of computers in engineering class-
room instruction”. In: Communications of the ACM 3.10 (1960), pp. 522–527.

[247] A. Kayed et al. “Towards an ontology for software product quality attributes”.
In: International Conference on Internet and Web Applications and Services.
IEEE. 2009, pp. 200–204.

[248] R. Kazman and H.-M. Chen. “The metropolis model and its implications for
the engineering of software ecosystems”. In: Workshop on Future of Software
Engineering Research. ACM. 2010, pp. 187–190.

[249] R. Kazman et al. “SAAM: A method for analyzing the properties of software ar-
chitectures”. In: Proc. Int. Conf. on Software Engineering (ICSE). ACM/IEEE.
1994, pp. 81–90.

[250] P. G. Keen. “MIS research: Current status, trends and needs”. In: Information
systems education: Recommendations and implementation (1987), pp. 1–13.

[251] R. Khadka et al. “How do professionals perceive legacy systems and software
modernization?” In: Proc. of the 36th Int. Conf. on Software Engineering.
ACM/IEEE. 2014, pp. 36–47.

[252] T. Kilamo, M. Leppänen, and T. Mikkonen. “The social developer: now, then,
and tomorrow”. In: International Workshop on Social Software Engineering.
ACM. 2015, pp. 41–48.

[253] B.-J. Kim and S.-W. Lee. “Analytical study of cognitive layered approach for
understanding security requirements using problem domain ontology”. In: Asia-
Pacific Software Engineering Conference (APSEC). IEEE. 2016, pp. 97–104.

[254] D. Kim and E. Cavusgil. “The impact of supply chain integration on brand
equity”. In: Journal of Business & Industrial Marketing 24.7 (2009), pp. 496–
505.

[255] H. Kim, D.-H. Shin, and D. Lee. “A socio-technical analysis of software policy
in Korea: Towards a central role for building ICT ecosystems”. In: Telecommu-
nications Policy 39.11 (2015), pp. 944–956.

[256] M. Kim et al. “An ethnographic study of copy and paste programming prac-
tices in OOPL”. English (US). In: Proceedings – 2004 International Symposium
on Empirical Software Engineering, ISESE 2004. Dec. 2004, pp. 83–92. isbn:
0769521657.

[257] B. Kitchenham, D. Budgen, and P. Brereton. “Using mapping studies as the
basis for further research–a participant-observer case study”. In: Information
and Software Technology 53.6 (2011), pp. 638–651.

[258] B. A. Kitchenham, D. Budgen, and P. Brereton. Evidence-based software engi-
neering and systematic reviews. Vol. 4. CRC Press, 2015.

[259] H. Knublauch. “Ramblings on Agile methodologies and ontology-driven soft-
ware development”. In: Workshop on Semantic Web Enabled Software Engi-
neering (SWESE). Galway, Ireland, 2005.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.327
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.327

186 BIBLIOGRAPHY

[260] H. Knublauch et al. “The Protégé OWL plugin: An open development environ-
ment for semantic web applications”. In: International Semantic Web Confer-
ence. Springer. 2004, pp. 229–243.

[261] D. Kolb. Learning Style Inventory technical manual. McBer Boston, MA, 1976.
[262] R. Koschke. “Frontiers of Software Clone Management”. In: Proceedings of the

2008 Frontiers of Software Maintenance, FoSM 2008. Nov. 2008, pp. 119–128.
[263] M. Krafft, K. Stol, and B. Fitzgerald. “How Do Free/Open Source Developers

Pick Their Tools?: A Delphi Study of the Debian Project”. In: Proc. 38th Int.
Conf. on Software Engineering (ICSE). ACM/IEEE. 2016, pp. 232–241.

[264] P. Kristiansen and R. Rasmussen. Building a better business using the Lego
serious play method. John Wiley & Sons, 2014.

[265] M. Kropp and A. Meier. “New sustainable teaching approaches in software en-
gineering education”. In: Proc. IEEE Global Engineering Education Conference
(EDUCON). 2014, pp. 1019–1022.

[266] M. Kropp and A. Meier. “Teaching agile software development at university
level: Values, management, and craftsmanship”. In: Proc. 26th IEEE Conf. on
Software Engineering Education and Training (CSEE&T). 2013, pp. 179–188.

[267] V. Krotov. “Bridging the CIO-CEO gap: It takes two to tango”. In: Business
Horizons 58.3 (2015), pp. 275–283.

[268] A. Kuhn. “Immediate Search in the IDE as an Example of Socio-Technical
Congruence in Search-driven development”. In: Workshop on Search-driven De-
velopment: Users, Infrastructure, Tools and Evaluation. ACM. 2010, pp. 25–
28.

[269] M. Kuhrmann and J. Münch. “When teams go crazy: An environment to experi-
ence group dynamics in software project management courses”. In: Proceedings
of the International Conference on Software Engineering. ACM. 2016, pp. 412–
421.

[270] K. Kumar and T. Prabhakar. “Pattern-oriented knowledge model for architec-
ture design”. In: Conference on Pattern Languages of Programs. ACM. 2010,
p. 23.

[271] M. Kumar, N. Ajmeri, and S. Ghaisas. “Towards Knowledge Assisted Agile
Requirements Evolution”. In: Proc.e 2Nd Int. Workshop on Recommendation
Systems for Software Engineering. RSSE ’10. Cape Town, South Africa: ACM,
2010, pp. 16–20.

[272] I. Kwan and D. Damian. “Extending socio-technical congruence with aware-
ness relationships”. In: International Workshop on Social Software Engineering.
ACM. 2011, pp. 23–30.

[273] I. Kwan, A. Schroter, and D. Damian. “Does socio-technical congruence have an
effect on software build success? a study of coordination in a software project”.
In: IEEE Transactions on Software Engineering 37.3 (2011), pp. 307–324.

[274] M. Lange, J. Mendling, and J. Recker. “An empirical analysis of the factors
and measures of Enterprise Architecture Management success”. In: European
Journal of Information Systems 25.5 (2016), pp. 411–431.

[275] B. Langefors. Theoretical analysis of information systems. Tech. rep. 1973.
[276] M. Lanza and S. Ducasse. “Polymetric views-a lightweight visual approach

to reverse engineering”. In: IEEE Transactions on Software Engineering 29.9
(2003), pp. 782–795.

BIBLIOGRAPHY 187

[277] M. Lapham, M. Bandor, and E. Wrubel. Agile Methods and Request for Change
(RFC): Observations from DoD Acquisition Programs. Tech. rep. CMU-SEI-13-
TN-31. Software Engineering Institute, Carnegie Mellon University, 2014.

[278] M. Lapham et al. Agile Methods: Selected DoD Management and Acquisi-
tion Concerns. Tech. rep. CMU-SEI-11-TN-2. Software Engineering Institute,
Carnegie Mellon University, 2011.

[279] M. Lapham et al. RFP Patterns and Techniques for Successful Agile Contract-
ing. Tech. rep. CMU-SEI-13-SR-25. Software Engineering Institute, Carnegie
Mellon University, 2016.

[280] P. Lasserre and C. Szostak. “Effects of team-based learning on a CS1 course”.
In: Proc. 16th Annual Joint Conf. on Innovation and technology in Computer
Science Education. ACM. 2011, pp. 133–137.

[281] L. Lavazza and R. Meli. “An evaluation of simple function point as a replace-
ment of IFPUG function point”. In: Proc. Joint Conference of the International
Workshop on Software Measurement and the International Conference on Soft-
ware Process and Product Measurement. IEEE. 2014, pp. 196–206.

[282] T. Lavoie, M. Eilers-Smith, and E. Merlo. “Challenging Cloning Related Prob-
lems with GPU-based Algorithms”. In: Proceedings of the 4th International
Workshop on Software Clones. IWSC ’10. Cape Town, South Africa: ACM,
2010, pp. 25–32. isbn: 978-1-60558-980-0.

[283] P. Lavrakas. Encyclopedia of survey research methods. Sage, 2008.
[284] D. Leffingwell. SAFe R� 4.0 Reference Guide: Scaled Agile Framework R� for

Lean Software and Systems Engineering. Addison-Wesley Professional, 2016.
[285] C. Lentzsch et al. “Integrating a Practice Perspective to Privacy by Design”. In:

International Conference on Human Aspects of Information Security, Privacy,
and Trust. Springer. 2017, pp. 691–702.

[286] J. Letouzey and M. Ilkiewicz. “Managing technical debt with the SQALE
method”. In: IEEE Software 29.6 (2012), pp. 44–51.

[287] Z. Li, P. Liang, and P. Avgeriou. “Architectural technical debt identification
based on architecture decisions and change scenarios”. In: Proc. 12th Work.
Int. Conf on Software Architecture (WICSA). IEEE. 2015, pp. 65–74.

[288] L. Liao, Y. Qu, and H. Leung. “A software process ontology and its application”.
In: Workshop on Semantic Web Enabled Software Engineering. 2005, pp. 6–10.

[289] Y. Lindsjørn et al. “Teamwork quality and project success in software devel-
opment: A survey of agile development teams”. In: Journal of Systems and
Software 122 (2016), pp. 274–286.

[290] R. Lock and I. Sommerville. “Modelling and Analysis of Socio-Technical System
of Systems”. In: International Conference on Engineering of Complex Computer
Systems (ICECCS). IEEE. 2010, pp. 224–232.

[291] M. Lodi, S. Martini, and E. Nardelli. “Abbiamo davvero bisogno del pensiero
computazionale?” In: Mondo Digitale 72 (2017), pp. 1–15.

[292] C. López et al. “Visualization and comparison of architecture rationale with
semantic web technologies”. In: Journal of Systems and Software 82.8 (2009),
pp. 1198–1210.

[293] E. Y. Lu et al. “Wireless Internet and student-centered learning: A Partial
Least-Squares model”. In: Computers & Education 49.2 (2007), pp. 530 –544.

188 BIBLIOGRAPHY

[294] G. Lucassen et al. “Improving agile requirements: the quality user story frame-
work and tool”. In: Requirements Engineering 21.3 (2016), pp. 383–403.

[295] J. Luftman and H. S. Zadeh. “Key information technology and management
issues 2010–11: an international study”. In: Journal of Information Technology
26.3 (2011), pp. 193–204.

[296] K. Lyytinen, L. Mathiassen, and J. Ropponen. “Attention shaping and software
risk—a categorical analysis of four classical risk management approaches”. In:
Information Systems Research 9.3 (1998), pp. 233–255.

[297] J. Machado et al. “OntoSoft Process: Towards an agile process for ontology-
based software”. In: 49th Hawaii International Conference on System Sciences
(HICSS). IEEE. 2016, pp. 5813–5822.

[298] B. MacKellar. “Analyzing coordination among students in a software engineer-
ing project course”. In: Conference on Software Engineering Education and
Training (CSEE&T). IEEE. 2013, pp. 279–283.

[299] D. Martin et al. “Cooperative work in software testing”. In: International Work-
shop on Cooperative and Human Aspects of Software Engineering (CHASE).
ACM. 2008, pp. 93–96.

[300] A. Martini and J. Bosch. “The danger of architectural technical debt: Conta-
gious debt and vicious circles”. In: Working IEEE/IFIP Conference on Software
Architecture (WICSA). IEEE. 2015, pp. 1–10.

[301] P. A. McNutt. Law, economics and antitrust: towards a new perspective. Ed-
ward Elgar, 2005.

[302] G. H. Mead. “The social self”. In: The Journal of Philosophy, Psychology and
Scientific Methods 10.14 (1913), pp. 374–380.

[303] N. Medvidovic and R. N. Taylor. “Software architecture: foundations, theory,
and practice”. In: Proc. Int. Conf. Software Engineering (ICSE). ACM/IEEE.
2010, pp. 471–472.

[304] O. Meerbaum-Salant and O. O. Hazzan. “An Agile Constructionist Mentoring
Methodology for Software Projects in the High School”. In: ACM Transactions
on Computing Education 9.4 (2010), n4.

[305] A. Meier, M. Kropp, and G. Perellano. “Experience Report of Teaching Ag-
ile Collaboration and Values: Agile Software Development in Large Student
Teams”. In: Proc. 29th IEEE Conf. on Software Engineering Education and
Training (CSEE&T)). 2016, pp. 76–80.

[306] A Meneely and L. Williams. “Socio-technical developer networks: Should we
trust our measurements?” In: International Conference on Software Engineer-
ing. ACM. 2011, pp. 281–290.

[307] A. Messina et al. “A New Agile Paradigm for Mission-Critical Software De-
velopment”. In: The Journal of Defense Software Engineering (CrossTalk) 6
(2016), pp. 25–30.

[308] metamodel. Oxford Dictionary Of English. 3th. Oxford University Press, 2013.
[309] L. K. Michaelsen, A. B. Knight, and L. D. Fink. Team-based learning: A trans-

formative use of small groups. Greenwood publishing group, 2002.
[310] J. Miller and B. A Doyle. “Measuring the effectiveness of computer-based in-

formation systems in the financial services sector”. In: MIS Quarterly (1987),
pp. 107–124.

BIBLIOGRAPHY 189

[311] M. Missiroli, D. Russo, and P. Ciancarini. “Cooperative Thinking, or: Compu-
tational Thinking Meets Agile”. In: Proceedings of the Conference on Software
Engineering Education and Training. IEEE. 2017, pp. 187–191.

[312] M. Missiroli, D. Russo, and P. Ciancarini. “Learning Agile software develop-
ment in high school: an investigation”. In: Proc. 38th Int. Conf. on Software
Engineering. ICSE ’16. ACM. 2016, pp. 293–302.

[313] M. Missiroli, D. Russo, and P. Ciancarini. “Una didattica Agile per la program-
mazione”. In: Mondo Digitale 15.64 (2016).

[314] M. Missiroli, D. Russo, and P. Ciancarini. “Agile for millennials: a compar-
ative study”. In: Proceedings of the 1st International Workshop on Software
Engineering Curricula for Millennials. IEEE. 2017, pp. 47–53.

[315] M. Missiroli, D. Russo, and P. Ciancarini. “Teaching Test-First Programming:
assessment and solutions”. In: COMPSAC, 2017. IEEE, 2017.

[316] I. Mistrik et al., eds. Relating System Quality and Software Architecture. Mor-
gan Kaufmann, 2014.

[317] S. N. Mohanty. “Models and measurements for quality assessment of software”.
In: ACM Computing Surveys 11.3 (1979), pp. 251–275.

[318] A. Monden et al. “Software quality analysis by code clones in industrial legacy
software”. In: Proceedings Eighth IEEE Symposium on Software Metrics. 2002,
pp. 87–94.

[319] F. Montori, L. Bedogni, and L. Bononi. “A collaborative Internet of Things
architecture for smart cities and environmental monitoring”. In: IEEE Internet
of Things Journal 5.2 (2018), pp. 592–605.

[320] D. Moody. “Theoretical and practical issues in evaluating the quality of con-
ceptual models: current state and future directions”. In: Data & Knowledge
Engineering 55.3 (2005), pp. 243–276.

[321] I. Morales-Ramirez et al. “Revealing the obvious?: A retrospective artefact
analysis for an ambient assisted-living project”. In: International Workshop on
Empirical Requirements Engineering (EmpiRE). IEEE. 2012, pp. 41–48.

[322] K. Mordal-Manet et al. “The squale model–A practice-based industrial quality
model”. In: Proc. Int. Conf. on Software Maintenance (ICSM). IEEE. 2009,
pp. 531–534.

[323] S. Motogna et al. “Improving software quality using an ontology-based ap-
proach”. In: OTM Confederated International Conferences. Springer. 2015, pp. 456–
465.

[324] C. Moustakas. Phenomenological research methods. Sage, 1994.
[325] P. Mulligan. “Specification of a capability-based IT classification framework”.

In: Information and Management 39.8 (2002), pp. 647–658.
[326] E. Mumford. “Computer systems and work design: Problems of philosophy and

vision”. In: Personnel Review 3.2 (1974), pp. 40–49.
[327] E. Mumford. Designing human systems. 1983.
[328] E. Mumford. “The story of socio-technical design: Reflections on its successes,

failures and potential”. In: Information Systems Journal 16.4 (2006), pp. 317–
342.

[329] G. Murphy. The Need for Context in Software Engineering. Keynote at the
International Conference on Automated Software Engineering. 2018.

190 BIBLIOGRAPHY

[330] R. Myerson. “Justice, Institutions, and Multiple Equilibria”. In: The Chicago
Journal of International Law 5 (2004), p. 91.

[331] N. Nagappan, B. Murphy, and V. Basili. “The influence of organizational struc-
ture on software quality”. In: Proc. International Conference on Software En-
gineering. IEEE. 2008, pp. 521–530.

[332] T. Nagel. The view from nowhere. Oxford University Press, 1986.
[333] K. Nakakoji, K. Yamada, and E. Giaccardi. “Understanding the Nature of Col-

laboration in Open-Source Software Development”. In: Asia-Pacific Software
Engineering Conference. IEEE. 2005, pp. 827–834.

[334] L. Nardin et al. “Classifying sanctions and designing a conceptual sanction-
ing process model for socio-technical systems”. In: The Knowledge Engineering
Review 31.2 (2016), pp. 142–166.

[335] R. Nelson and S. Winter. An evolutionary theory of economic change. Harvard
University Press, 2009.

[336] K. Nidiffer, S. Miller, and D. Carney. Agile Methods in Air Force Sustainment:
Status and Outlook. Tech. rep. CMU-SEI-14-TN-9. Software Engineering Insti-
tute, Carnegie Mellon University, 2014.

[337] K. Nidiffer, S. Miller, and D. Carney. Potential Use of Agile Methods in Se-
lected DoD Acquisitions: Requirements Development and Management. Tech.
rep. CMU-SEI-13-TN-6. Software Engineering Institute, Carnegie Mellon Uni-
versity, 2014.

[338] S. Nidumolu. “The effect of coordination and uncertainty on software project
performance: residual performance risk as an intervening variable”. In: Infor-
mation Systems Research 6.3 (1995), pp. 191–219.

[339] S. Nidumolu and G. W. Knotts. “The effects of customizability and reusability
on perceived process and competitive performance of software firms”. In: MIS
Quarterly 22.2 (1998), pp. 105–137.

[340] S. Nidumolu and M. Subramani. “The matrix of control: Combining process
and structure approaches to managing software development”. In: Journal of
Management Information Systems 20.3 (2003), pp. 159–196.

[341] J. Noll, S. Beecham, and I. Richardson. “Global software development and
collaboration: barriers and solutions”. In: ACM Inroads 1.3 (2010), pp. 66–78.

[342] A. Norta et al. “An agent-oriented method for designing large socio-technical
service-ecosystems”. In: World Congress on Services (SERVICES). IEEE. 2014,
pp. 242–249.

[343] J. Nunnally. Psychometric methods. McGraw-Hill, 1978.
[344] B. Nuseibeh. “Weaving together requirements and architectures”. In: IEEE

Computer 34.3 (2001), pp. 115–119.
[345] OECD. “Stimulating digital innovation for growth and inclusiveness”. In: (2016).
[346] A. Ogunyemi et al. “HCI practices in the Nigerian software industry”. In:

Human-Computer Interaction. Springer. 2015, pp. 479–488.
[347] C. Okoli and S. Pawlowski. “The Delphi method as a research tool: an example,

design considerations and applications”. In: Information & management 42.1
(2004), pp. 15–29.

BIBLIOGRAPHY 191

[348] G. Oliva et al. “Evolving the system’s core: a case study on the identification
and characterization of key developers in Apache Ant”. In: Computing and
Informatics 34.3 (2015), pp. 678–724.

[349] A. Opelt et al. Agile Contracts. Wiley, 2013.
[350] S. Palmquist et al. Parallel Worlds: Agile and Waterfall Differences and Simi-

larities. Tech. rep. CMU-SEI-13-TN-21. Software Engineering Institute, Carnegie
Mellon University, 2014.

[351] S. Papert and I. Harel. Situating constructionism. Vol. 36. Ablex Publishing
Corporation, 1991, pp. 1–11.

[352] C. Pardo et al. “An ontology for the harmonization of multiple standards and
models”. In: Computer Standards & Interfaces 34.1 (2012), pp. 48–59.

[353] R. Parthasarthy and S. Sethi. “The impact of flexible automation on business
strategy and organizational structure”. In: Academy of Management Review
17.1 (1992), pp. 86–111.

[354] O. Paruma-Pabón et al. “Finding relationships between socio-technical aspects
and personality traits by mining developer e-mails”. In: International Workshop
on Cooperative and Human Aspects of Software Engineering. ACM. 2016, pp. 8–
14.

[355] S. Pasupathy, A. Asad, and P. Y. Teng. Rethinking K–20 Education Trans-
formation for a New Age. https://www.atkearney.com/about-us/social-
impact/related-publications-detail/-/asset_publisher/EVxmHENiBa8V/
content/rethinking-k-20-education-transformation-for-a-new-age/
10192.

[356] M. C. Paulk et al. “Capability maturity model, version 1.1”. In: IEEE Software
10.4 (1993), pp. 18–27.

[357] S. Pedell et al. “Substantiating agent-based quality goals for understanding
socio-technical systems”. In: International Conference on Autonomous Agents
and Multiagent Systems. Springer. 2011, pp. 80–95.

[358] C. S. Peirce. “The architectonic construction of pragmatism”. In: Collected
Papers of Charles Sanders Pierce 5 (1905), pp. 3–6.

[359] M. D. Penta et al. “An exploratory study of the evolution of software licensing”.
In: ICSE (1). ACM, 2010, pp. 145–154.

[360] J. Peppard and J. Ward. The strategic management of information systems:
Building a digital strategy. Wiley, 2016.

[361] K. Petersen, S. Vakkalanka, and L. Kuzniarz. “Guidelines for conducting sys-
tematic mapping studies in software engineering: An update”. In: Information
and Software Technology 64 (2015), pp. 1–18.

[362] K. Petersen et al. “Systematic Mapping Studies in Software Engineering.” In:
International Conference on Evaluation and Assessment in Software Engineer-
ing. Vol. 8. 2008, pp. 68–77.

[363] E. Petrinja, A. Sillitti, and G. Succi. “Comparing OpenBRR, QSOS, and OMM
Assessment Models”. In: Open Source Software: New Horizons. Ed. by P. Åger-
falk et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 224–238.
isbn: 978-3-642-13244-5.

[364] S. Petter, W. DeLone, and E. McLean. “Measuring information systems suc-
cess: models, dimensions, measures, and interrelationships”. In: European Jour-
nal of Information Systems 17.3 (2008), pp. 236–263.

https://www.atkearney.com/about-us/social-impact/related-publications-detail/-/asset_publisher/EVxmHENiBa8V/content/rethinking-k-20-education-transformation-for-a-new-age/10192
https://www.atkearney.com/about-us/social-impact/related-publications-detail/-/asset_publisher/EVxmHENiBa8V/content/rethinking-k-20-education-transformation-for-a-new-age/10192
https://www.atkearney.com/about-us/social-impact/related-publications-detail/-/asset_publisher/EVxmHENiBa8V/content/rethinking-k-20-education-transformation-for-a-new-age/10192
https://www.atkearney.com/about-us/social-impact/related-publications-detail/-/asset_publisher/EVxmHENiBa8V/content/rethinking-k-20-education-transformation-for-a-new-age/10192

192 BIBLIOGRAPHY

[365] E. Pilios. “Contracting practices in traditional and agile software development”.
PhD thesis. University of Leiden, NL, 2015.

[366] L. F. Pitt, R. T. Watson, and C. B. Kavan. “Service Quality: A Measure of
Information Systems Effectiveness.” In: MIS Quarterly 19.2 (1995), pp. 173–
187.

[367] M. Polanyi. The Tacit Dimension. 1966.
[368] G. Polya. How to solve it: A new aspect of mathematical method. Princeton

University Press, 1957.
[369] K. Popper. The logic of scientific discovery. Routledge, 2005.
[370] J. F. Porac and H. Thomas. “Taxonomic Mental Models in Competitor Defi-

nition”. In: The Academy of Management Review 15.2 (1990), pp. 224–240.
[371] M. Porter and J. E Heppelmann. “How smart, connected products are trans-

forming companies”. In: Harvard Business Review 93.10 (2015), pp. 96–114.
[372] M. Porter and V. E. Millar. “How information gives you competitive advan-

tage”. In: Harvard Business Review 63.4 (1985), pp. 149–160.
[373] R. Posner. “Gratuitous Promises in Economics and Law”. In: Journal of Legal

Studies 6.2 (1977), pp. 411–426.
[374] T. C. Powell and A. Dent-Micallef. “Information technology as competitive

advantage: The role of human, business, and technology resources”. In: Strategic
Management Journal (1997), pp. 375–405.

[375] C. K. Prahalad and M. S. Krishnan. “The new meaning of quality in the infor-
mation age.” In: Harvard Business Review 77.5 (1998), pp. 109–18.

[376] P. Predonzani, A. Sillitti, and T. Vernazza. “Components and data-flow ap-
plied to the integration of Web services”. In: IECON’01. 27th Annual Confer-
ence of the IEEE Industrial Electronics Society (Cat. No. 37243). Vol. 3. 2001,
pp. 2204–2207.

[377] R. Pressman. Software Engineering: a Practitioner’s Approach. McGrawHill,
2014.

[378] V. Presutti and A. Gangemi. “Dolce+D&S Ultralite and its main ontology
design patterns”. In: Ontology Engineering with Ontology Design Patterns -
Foundations and Applications. Ed. by P. Hitzler et al. Vol. 25. Studies on the
Semantic Web. IOS Press, 2016, pp. 81–103.

[379] V. Presutti et al. “The role of Ontology Design Patterns in Linked Data
projects”. In: Springer, 2016, pp. 113–121.

[380] D. Radjenović et al. “Software fault prediction metrics: A systematic literature
review”. In: Information and Software Technology 55.8 (2013), pp. 1397–1418.

[381] M. Raskino and G. Waller. Digital to the Core: Remastering Leadership for
Your Industry, Your Enterprise, and Yourself. Routledge, 2016.

[382] D. Rattan, R. Bhatia, and M. Singh. “Software clone detection: A systematic
review”. In: Information and Software Technology 55.7 (2013), pp. 1165–1199.
issn: 0950-5849.

[383] D. Reifer. “Industry software cost, quality and productivity benchmarks”. In:
The DoD SoftwareTech News 7.2 (2004), pp. 3–19.

[384] T. Remencius, A. Sillitti, and G. Succi. “Assessment of Software Developed by
a Third-party”. In: Inf. Sci. 328.C (Jan. 2016), pp. 237–249. issn: 0020-0255.

BIBLIOGRAPHY 193

[385] I. Richardson et al. “A process framework for global software engineering
teams”. In: Information and Software Technology 54.11 (2012), pp. 1175–1191.

[386] M. Rieger, S. Ducasse, and M. Lanza. “Insights into System-Wide Code Du-
plication”. In: Proceedings of the 11th Working Conference on Reverse Engi-
neering. WCRE ’04. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 100–109. isbn: 0-7695-2243-2.

[387] D. Rigby, J. Sutherland, and H. Takeuchi. “Embracing Agile”. In: Harvard
Business Review May.May (2016).

[388] S. Riis. “What makes a chess program original? Revisiting the Rybka case”. In:
Entertainment Computing 5 (Aug. 2014), pp. 189–204.

[389] C. M. Ringle, M. Sarstedt, and D. Straub. “A critical look at the use of PLS-
SEM in MIS Quarterly”. In: MIS Quarterly 36.1 (2012), pp. iii–xiv.

[390] C. M. Ringle, S. Wende, and J.-M. Becker. “SmartPLS 3”. In: Boenningstedt:
SmartPLS GmbH (2015).

[391] H. Rittel and M. M. Webber. “2.3 planning problems are wicked”. In: Polity 4
(1973), pp. 155–169.

[392] J. G. Rivera-Ibarra, J. Rodríguez-Jacobo, and M. A. Serrano-Vargas. “Compe-
tency framework for software engineers”. In: Proc. 23rd IEEE Conf. on Software
Engineering Education and Training (CSEE&T). 2010, pp. 33–40.

[393] P. Rodriguez et al. “Continuous deployment of software intensive products and
services: A systematic mapping study”. In: Journal of Systems and Software
123 (2017), pp. 263–291.

[394] J. Rooksby, J. Hunt, and X. Wang. “The theory and practice of Randori coding
dojos”. In: Proc. 15th Int. Conf. on Agile Software Development (XP2014).
Ed. by G. Cantone and M. Marchesi. Vol. 179. Lecture Notes in Business
Information Processing. Springer, 2014, pp. 251–259.

[395] K. Rostami et al. “Architecture-based assessment and planning of change re-
quests”. In: Proc. 11th Int. Conf. on Quality of Software Architectures (QoSA).
ACM. 2015, pp. 21–30.

[396] K. Rostami et al. “Architecture-Based Change Impact Analysis in Information
Systems and Business Processes”. In: Proc. Int. Conf. on Software Architecture
(ICSA). IEEE. 2017, pp. 179–188.

[397] C. K. Roy and J. R. Cordy. A Survey on Software Clone Detection Research.
Tech. rep. Report 2007–541. Ontario, Canada: Queen’s School of Computing
Tech., 2007.

[398] W. Royce. “Managing the development of large software systems: concepts and
techniques”. In: Proc. Int. Conf. Software Engineering (ICSE). ACM/IEEE.
1987, pp. 328–338.

[399] K. S. Rubin. Essential Scrum: a practical guide to the most popular agile pro-
cess. Addison-Wesley, 2012.

[400] P. Runeson, and M. Höst. “Guidelines for conducting and reporting case study
research in software engineering”. In: Empirical Software Engineering 14.2 (2008),
pp. 131–164. issn: 1573-7616.

[401] D. Russo. “Benefits of Open Source Software in Defense Environments”. In:
Proceedings of 4th International Conference in Software Engineering for De-
fence Applications. Vol. 422. Springer, Advances in Intelligent Systems and
Computing. 2016, pp. 123–131.

194 BIBLIOGRAPHY

[402] D. Russo and P. Ciancarini. “A Proposal for an Antifragile Software Manifesto”.
In: Procedia Computer Science 83 (2016). The 7th Int. Conf. on Ambient Sys-
tems, Networks and Technologies (ANT 2016), pp. 982–987.

[403] D. Russo, V. Lomonaco, and P. Ciancarini. “A Machine Learning Approach for
Continuous Development”. In: Proceedings of 5th International Conference in
Software Engineering for Defence Applications. Springer, 2018, pp. 109–119.

[404] D. Russo et al. “A Meta-Model for Information Systems Quality: A Mixed
Study of the Financial Sector”. In: ACM Transactions on Management Infor-
mation Systems 9.3 (2018), p. 11.

[405] D. Russo et al. “Software Quality Concerns in the Italian Bank Sector: the
Emergence of a Meta-Quality Dimension”. In: Proc. 39th Int. Conf. on Software
Engineering. ICSE ’17. ACM/IEEE. 2017.

[406] D. Russo and P. Ciancarini. Towards Antifragile Architectures. Tech. rep. 2017.
[407] C. Santana et al. “Using Function Points in Agile Projects”. In: Agile Processes

in Software Engineering and Extreme Programming. Vol. 77. Lecture Notes in
Business Information Processing. Springer, May 2011, pp. 176–191.

[408] R. Santos et al. “Supporting negotiation and socialization for component mar-
kets in software ecosystems context”. In: Latin American Computing Confer-
ence (CLEI). IEEE. 2016, pp. 1–12.

[409] R. dos Santos and C. Werner. “Revisiting the concept of components in software
engineering from a software ecosystem perspective”. In: European Conference
on Software Architecture. ACM. 2010, pp. 135–142.

[410] A. Sarma, J. Herbsleb, and A. Van Der Hoek. “Challenges in measuring, under-
standing, and achieving social-technical congruence”. In: Socio-Technical Con-
gruence Workshop. 2008.

[411] A. Sarma et al. “Tesseract: Interactive visual exploration of socio-technical re-
lationships in software development”. In: International Conference on Software
Engineering. IEEE Computer Society. 2009, pp. 23–33.

[412] D. T. Sato, H. Corbucci, and M. V. Bravo. “Coding dojo: An environment for
learning and sharing agile practices”. In: Proceedings of the Agile Conference.
IEEE. 2008, pp. 459–464.

[413] S. Sawyer. “Software development teams”. In: Communications of the ACM
47.12 (2004), pp. 95–99.

[414] S. Sawyer and H. Annabi. “Methods as theories: evidence and arguments for
theorizing on software development”. In: Social Inclusion: Societal and Orga-
nizational Implications for Information Systems. Springer, 2006, pp. 397–411.

[415] W. Scacchi. “Free/open source software development: recent research results
and emerging opportunities”. In: Foundations of Software Engineering. ACM.
2007, pp. 459–468.

[416] C. Schmidt and P. Buxmann. “Outcomes and success factors of enterprise IT
architecture management: empirical insight from the international financial
services industry”. In: European Journal of Information Systems 20.2 (2011),
pp. 168–185.

[417] R. Schmidt. “Managing Delphi Surveys Using Nonparametric Statistical Tech-
niques”. In: Decision Sciences 28.3 (1997), pp. 763–774.

BIBLIOGRAPHY 195

[418] R. Schmidt et al. “Identifying software project risks: An international Delphi
study”. In: Journal of Management Information Systems 17.4 (2001), pp. 5–36.

[419] K. Schneider et al. “Enhancing security requirements engineering by organiza-
tional learning”. In: Requirements Engineering 17.1 (2012), pp. 35–56.

[420] D. Schön. Educating the reflective practitioner: Toward a new design for teach-
ing and learning in the professions. Jossey-Bass, 1987.

[421] K. Schwaber. Agile Project Management With Scrum. Microsoft Press, 2004.
[422] L. O. Seman, R. Hausmann, and E. A. Bezerra. “On the students’ perceptions

of the knowledge formation when submitted to a Project-Based Learning en-
vironment using web applications”. In: Computers & Education 117 (2018),
pp. 16 –30.

[423] M. Shakroum, K. W. Wong, and C. C. Fung. “The influence of Gesture-Based
Learning System (GBLS) on Learning Outcomes”. In: Computers & Education
117 (2018), pp. 75 –101.

[424] M. Shaw and D. Garlan. Software architecture: perspectives on an emerging
discipline. Prentice Hall Englewood Cliffs, 1996.

[425] R. Simpson and T. Storer. “Formalising Responsibility Modelling for Auto-
matic Analysis”. In: Workshop on Enterprise and Organizational Modeling and
Simulation. Springer. 2015, pp. 125–140.

[426] R. Singh. “International Standard ISO/IEC 12207 software life cycle processes”.
In: Software Process Improvement and Practice 2.1 (1996), pp. 35–50.

[427] R. Slavin. “Cooperative learning”. In: Learning and Cognition in Education
(2011), pp. 160–166.

[428] B. Slife and R. Williams. What’s Behind the Research?: Discovering Hidden
Assumptions in the Behavioral Sciences. Sage, 1995.

[429] c. de Souza and D. Redmiles. “An empirical study of software developers’ man-
agement of dependencies and changes”. In: International Conference on Soft-
ware Engineering. IEEE. 2008, pp. 241–250.

[430] C. de Souza et al. “Supporting collaborative software development through the
visualization of socio-technical dependencies”. In: International Conference on
Supporting Group Work. ACM. 2007, pp. 147–156.

[431] G. Soydan and M. Kokar. “An OWL ontology for representing the CMMI-SW
model”. In: Workshop on Semantic Web Enabled Software Engineering. 2006.

[432] D. I. S.p.A. Payments Service Directive 2 (PSD2): Il nostro approccio. Tech.
rep. Deloitte Consulting, 2016.

[433] C. of the Joint Chiefs of Staff. Interoperability and Supportability of Informa-
tion Technology and National Security Systems. Tech. rep. CJCSI 6212.01E.
Department of Defence (United States of America), 2008.

[434] StandishGroup. The CHAOS report. 2016. url: http://www.standishgroup.
com/outline.

[435] K. Stanovich. “Matthew effects in reading: Some consequences of individual dif-
ferences in the acquisition of literacy”. In: Reading Research Quarterly (1986),
pp. 360–407.

[436] J.-P. Steghöfer et al. “Teaching Agile: addressing the conflict between project
delivery and application of Agile methods”. In: Proc. 38th Int. Conf. on Soft-
ware Engineering (ICSE). ACM. 2016, pp. 303–312.

http://www.standishgroup.com/outline
http://www.standishgroup.com/outline

196 BIBLIOGRAPHY

[437] L. Sterling, P. Ciancarini, and T. Turnidge. “On the Animation of Not Exe-
cutable Specifications by Prolog”. In: Int. Journal on Software Engineering and
Knowledge Engineering 6.1 (1996), pp. 63–88.

[438] G. Stobart. The Expert learner. McGraw-Hill Education (UK), 2014.
[439] M. Stone. “Cross-validatory choice and assessment of statistical predictions”.

In: Journal of the Royal Statistical Society. Series B (Methodological) (1974),
pp. 111–147.

[440] M.-A. Storey et al. “The (r) evolution of social media in software engineering”.
In: Future of Software Engineering. ACM. 2014, pp. 100–116.

[441] A. Strauss and J. M Corbin. Grounded theory in practice. Sage, 1997.
[442] G. Succi and M. Ronchetti. “Legal issues regarding software use and reuse

within the European Union legislation”. In: Journal of Computing and Infor-
mation Technology 4 (Jan. 1996), pp. 179–186.

[443] L. Suchman. Plans and situated actions: The problem of human-machine com-
munication. Cambridge University Press, 1987.

[444] T. Sunazuka, M. Azuma, and N. Yamagishi. “Software quality assessment tech-
nology”. In: Proc. 8th Int. Conf. on Software Engineering (ICSE). ACM/IEEE.
1985, pp. 142–148.

[445] A. Sutcliffe and A. Gregoriades. “Validating functional system requirements
with scenarios”. In: International Conference on Requirements Engineering.
IEEE. 2002, pp. 181–188.

[446] J. Sutherland. “Agile can scale: Inventing and reinventing Scrum in five com-
panies”. In: Cutter IT Journal 14.12 (2001), pp. 5–11.

[447] D. Svanæs and J. Gulliksen. “Understanding the context of design: towards
tactical user centered design”. In: Nordic Conference on Human-Computer In-
teraction. ACM. 2008, pp. 353–362.

[448] M. Syeed and I. Hammouda. “Socio-technical congruence in OSS projects:
Exploring Conway’s law in FreeBSD”. In: International Conference on Open
Source Systems. Springer. 2013, pp. 109–126.

[449] M. M. Syeed et al. “Socio-technical congruence in the ruby ecosystem”. In:
International Symposium on Open Collaboration. ACM. 2014, p. 2.

[450] C. Symons. “Function Point Analysis: Difficulties and Improvements”. In: IEEE
Transactions on Software Engineering 14.1 (1988), pp. 2–11.

[451] D. Tamburri et al. “Social debt in software engineering: insights from industry”.
In: Journal of Internet Services and Applications 6.1 (2015), p. 10.

[452] K. Taveter, H. Du, and M. Huhns. “Engineering societal information systems
by agent-oriented modeling”. In: Journal of Ambient Intelligence and Smart
Environments 4.3 (2012), pp. 227–252.

[453] J. Taylor. “Designing an organization and an information system for" Cen-
tral Stores": A study in participative socio-technical analysis and design.” In:
Systems Object Solutions 2.2 (1982), pp. 67–76.

[454] C. P. Team. “Capability Maturity Model R� Integration (CMMI), Version 1.1–
Continuous Representation”. In: (2002).

[455] D. Teichroew. “A survey of languages for stating requirements for computer-
based information systems”. In: Proc. Fall Joint Computer Conference. ACM.
1972, pp. 1203–1224.

BIBLIOGRAPHY 197

[456] C. Thamrongchote and W. Vatanawood. “Business process ontology for defin-
ing user story”. In: IEEE/ACIS 15th International Conference on Computer
and Information Science (ICIS). Japan, 2016, pp. 1–4.

[457] L. Thomas et al. “Learning styles and performance in the introductory pro-
gramming sequence”. In: ACM SIGCSE Bulletin. Vol. 34. ACM. 2002, pp. 33–
37.

[458] J. Tian. “Quality-evaluation models and measurements”. In: IEEE Software
21.3 (2004), pp. 84–91.

[459] E. Trainer, A. Kalyanasundaram, and J. Herbsleb. “e-mentoring for software
engineering: a socio-technical perspective”. In: International Conference on
Software Engineering. IEEE. 2017, pp. 107–116.

[460] E. Trist and K. Bamforth. “Some social and psychological consequences of the
longwall method of coal-getting: An examination of the psychological situation
and defences of a work group in relation to the social structure and techno-
logical content of the work system”. In: Human Relations 4.1 (1951), pp. 3–
38.

[461] M. Unterkalmsteiner et al. “Evaluation and measurement of software process
improvement–a systematic literature review”. In: IEEE Transactions on Soft-
ware Engineering 38.2 (2012), pp. 398–424.

[462] M. Uschold and M. Gruninger. “Ontologies: Principles, methods and applica-
tions”. In: The Knowledge Engineering Review 11.2 (1996), pp. 93–136.

[463] G. Valetto et al. “Using software repositories to investigate socio-technical con-
gruence in development projects”. In: International Workshop on Mining Soft-
ware Repositories (MSR). IEEE. 2007, p. 25.

[464] N. Venkatraman. “IT-enabled business transformation: from automation to
business scope redefinition”. In: Sloan Management Review 35.2 (1994), p. 73.

[465] VersionOne. 11th Annual State of Agile Survey. 2016. url: http://stateofagile.
versionone.com/..

[466] L. Von Hellens. “Information systems quality versus software quality a discus-
sion from a managerial, an organisational and an engineering viewpoint”. In:
Information and Software Technology 39.12 (1997), pp. 801–808.

[467] A. Vv. Regulatory Technical Standards on strong customer authentication and
secure communication under PSD2. Final Draft. European Banking Author-
ity/RTS/2017/02, 2017.

[468] Vv.Aa. Computational Thinking: A Guide for Teachers by the British Computer
Society. 2015. url: http://community.computingatschool.org.uk/files/
6695/original.pdf.

[469] Vv.Aa. ISTE Standards for Students by the International Society for Technology
in Education. 2016. url: http://www.iste.org/standards/standards/for-
students-2016.

[470] Vv.Aa. Operational Definition of Computational Thinking by the ACM Com-
puter Science Teachers Association. 2011.

[471] L. Vygotsky. “Zone of proximal development”. In: Mind in society: The devel-
opment of higher psychological processes 5291 (1987), p. 157.

[472] S. Wagner and F. Deissenboeck. “An integrated approach to quality modelling”.
In: Proc. 5th Int. Workshop on Software Quality. IEEE Computer Society. 2007,
pp. 1–6.

http://stateofagile.versionone.com/.
http://stateofagile.versionone.com/.

198 BIBLIOGRAPHY

[473] S. Wagner et al. “Operationalised product quality models and assessment:
The Quamoco approach”. In: Information and Software Technology 62 (2015),
pp. 101–123.

[474] S. Wagner et al. “The Quamoco product quality modelling and assessment
approach”. In: Proc. 34th Int. Conf. on Software Engineering. ICSE. 2012,
pp. 1133–1142.

[475] J. Wang and A. Sarma. “Which bug should I fix: helping new developers on-
board a new project”. In: International Workshop on Cooperative and Human
Aspects of Software Engineering. ACM. 2011, pp. 76–79.

[476] E. P. Weber and A. M. Khademian. “Wicked problems, knowledge challenges,
and collaborative capacity builders in network settings”. In: Public administra-
tion review 68.2 (2008), pp. 334–349.

[477] WEF. The Future of Jobs: Employment, Skills and Workforce Strategy for the
Fourth Industrial Revolution. 2016. url: http://www3.weforum.org/docs/
WEF_Future_of_Jobs.pdf.

[478] S.-F. Wen and S. Kowalski. “A Case Study: Heartbleed Vulnerability Man-
agement and Swedish Municipalities”. In: International Conference on Human
Aspects of Information Security, Privacy, and Trust. Springer. 2017, pp. 414–
431.

[479] S.-H. Wen. “Software security in open source development: A systematic lit-
erature review”. In: Conference of Open Innovations Association (FRUCT).
IEEE. 2017, pp. 364–373.

[480] M. Wermelinger, Y. Yu, and M. Strohmaier. “Using formal concept analysis
to construct and visualise hierarchies of socio-technical relations”. In: Interna-
tional Conference on Software Engineering. IEEE. 2009, pp. 327–330.

[481] C. E. Werts, R. L. Linn, and K. G. Jöreskog. “Intraclass reliability estimates:
Testing structural assumptions”. In: Educational and Psychological Measure-
ment 34.1 (1974), pp. 25–33.

[482] P. White, A. Rowland, and I. Pesis-Katz. “Peer-led team learning model in
a graduate-level nursing course”. In: The Journal of Nursing Education 51.8
(2012), pp. 471–475.

[483] J. C. Whitehead, P. A. Groothuis, and G. C. Blomquist. “Testing for non-
response and sample selection bias in contingent valuation: Analysis of a com-
bination phone/mail survey”. In: Economics Letters 41.2 (1993), pp. 215–220.

[484] E. Whitworth and R. Biddle. “The social nature of agile teams”. In: Agile
conference (AGILE). IEEE. 2007, pp. 26–36.

[485] R. Wieringa et al. “Requirements engineering paper classification and evalua-
tion criteria: a proposal and a discussion”. In: Requirements Engineering 11.1
(2006), pp. 102–107.

[486] J. Wing. “Computational thinking”. In: Communications of the ACM 49.3
(2006), pp. 33–35.

[487] R. Winter, C. Legner, and K. Fischbach. “Introduction to the special issue on
enterprise architecture management”. In: Information Systems and e-Business
Management 12.1 (2014), pp. 1–4.

[488] B. Wixom and H. Watson. “An empirical investigation of the factors affecting
data warehousing success”. In: MIS Quarterly (2001), pp. 17–41.

http://www3.weforum.org/docs/WEF_Future_of_Jobs.pdf
http://www3.weforum.org/docs/WEF_Future_of_Jobs.pdf

BIBLIOGRAPHY 199

[489] B. H. Wixom and P. A. Todd. “A theoretical integration of user satisfaction
and technology acceptance”. In: Information Systems Research 16.1 (2005),
pp. 85–102.

[490] C. Wohlin. “Guidelines for snowballing in systematic literature studies and a
replication in software engineering”. In: International Conference on Evaluation
and Assessment in Software Engineering. ACM. 2014, p. 38.

[491] C. Wohlin et al. Experimentation in software engineering. Springer Science &
Business Media, 2012.

[492] E. Wrubel and J. Gross. Contracting for Agile Software Development in the
Department of Defense: An Introduction. Tech. rep. CMU-SEI-15-TN-06. Soft-
ware Engineering Institute, Carnegie Mellon University, 2015.

[493] E. Wrubel et al. Agile Software Teams: How They Engage with Systems En-
gineering on DoD Acquisition Programs. Tech. rep. CMU-SEI-14-TN-13. Soft-
ware Engineering Institute, Carnegie Mellon University, 2014.

[494] A. Yadav et al. “Computational Thinking as an Emerging Competence Do-
main”. In: Competence-based Vocational and Professional Education. Ed. by
M. Mulder. Vol. 23. Technical and Vocational Education and Training: Issues,
Concerns and Prospects. Springer, 2017, pp. 1051–1067.

[495] C. Yang, P. Liang, and P. Avgeriou. “A systematic mapping study on the
combination of software architecture and agile development”. In: Journal of
Systems and Software 111 (2016), pp. 157–184.

[496] Y. Ye, Y. Yamamoto, and K. Nakakoji. “A socio-technical framework for sup-
porting programmers”. In: Foundations of Software Engineering. ACM. 2007,
pp. 351–360.

[497] R. T Yeh. “System development as a wicked problem”. In: International Journal
of Software Engineering and Knowledge Engineering 1.02 (1991), pp. 117–130.

[498] C.-P. Yu et al. “The roots of executive information system development risks”.
In: Information and Software Technology 68 (2015), pp. 34–44.

[499] Y. Zhao, J. Dong, and T. Peng. “Ontology classification for semantic-web-
based software engineering”. In: IEEE Transactions on Services Computing
2.4 (2009), pp. 303–317.

[500] Y. Zhao. World class learners: Educating creative and entrepreneurial students.
Corwin Press, 2012.

[501] M. Zhou and A. Mockus. “Does the initial environment impact the future
of developers?” In: International Conference on Software Engineering. ACM.
2011, pp. 271–280.

[502] S. Znamenskij. “Effect driven Evolution: Information Systems Architecture
for Large Dynamic Organizations”. In: Conference on Manufacturing Mod-
elling, Management, and Control International Federation of Automatic Con-
trol. Vol. 46. 9. Elsevier, 2013, pp. 1061–1066.

