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Abstract	

Conventional distribution networks were designed to be operated as passive networks, but 

with the increasing penetration of renewable energy sources new opportunities and new 

issues have been appeared. The distributed operation of parts of the system denoted as 

microgrids or, more generally, as local energy communities could be an effective answer to 

the issues posed by the increasing complexity of the modern power distribution systems 

scenarios. 

The research carried out during this Ph.D. project can be divided into three main parts. The 

first one deals with the modeling and analysis of low voltage power distribution networks 

feeding residential, commercial and small-scale industrial consumers including distributed 

generation units and storage systems. It focuses on an optimization model that has been 

applied to the energy management system of the experimental microgrid built at the 

University of Applied Sciences and Arts of Western Switzerland, HES-SO Valais-Wallis, Sion. 

For this purpose, a mixed integer linear programming model is developed and presented, 

which takes into account the unbalanced operation of the LV network and the presence of the 

neutral wire. The validation of the accuracy of the model through the mentioned experimental 

microgrid and an analysis of some simulation results for a 24 hours horizon are presented 

too. 

The second part focuses on the day-ahead operational planning of a microgrid with the 

presence of several prosumers equipped with generating units, local loads and battery 

storage systems, which are assumed able to implement transactive energy control actions. 

This type of grid-connected microgrids are often referred to as local energy communities 

(LEC). The day-ahead optimization is important indeed for the scheduling of the batteries, 

since we assume that the distributed generation is mainly not dispatchable, as is the case for 

photovoltaic units. The problem has been addressed by means of two different optimization 

procedures, namely a centralized mathematical programming model and a specific distributed 

optimization procedure based on the adoption of the alternating direction method of 

multipliers (ADMM). Both approaches, centralized and distributed, provide the scheduling of 

the batteries in order to limit the balancing action of the external grid and allocate the power 

losses in the local network to the various transactions. The distributed procedure is 

characterized by novel aspects with respect to the approaches already presented in the 



literature: the application of the ADMM for the case of a local energy community with various 

energy storage systems and the inclusion of the power loss of the local network without the 

need of a central coordinator. The results obtained for various case studies by means of the 

distributed approach are compared with those obtained by using the centralized model. 

 The third part deals with the day-ahead optimization of the operation of a local energy 

system consisting of photovoltaic units, energy storage systems and loads aimed at 

minimizing the electricity procurement cost considering the uncertainties in the load and 

generation forecasts. The local energy system may refer either to a small industrial site or to a 

residential neighborhood. Two mixed integer linear programming models are adopted, each 

for a different representation of the battery: a simple energy balance constraint and the 

Kinetic Battery Model. The chapter describes the generation of the scenarios, the construction 

of the scenario tree and the intraday decision-making procedure based on the solution of the 

multistage stochastic programming. Moreover, the daily energy procurement costs calculated 

by using the stochastic programming approach are compared with those calculated by using 

the Monte Carlo method. The comparison is repeated for two different sizes of the battery and 

for two load profiles. 

The final chapter of the thesis is devoted to the conclusions and to the definition of some 

research objectives for the continuation of the activities. 

 

Keywords: Alternating Direction Method of Multipliers (ADMM); Distributed Optimization; 

Energy Management; Energy Scheduling; Kinetic Battery Model; Local Energy Community; 

Low Voltage Network; Microgrid; Monte Carlo Method; Renewable Energy; Mixed Integer 

Linear Programming (MILP); Network Power Loss; Stochastic Programming. 
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1. Introduction 

1.1. Toward	Smart	Grids	

 

1.1.1. Power	Distribution	Systems	Evolution	

The electrical power distribution system was designed to meet the needs of users and few 

large producers in a slow-changing regime. The liberalization of the electricity markets in the 

last decade and the proliferation of prosumers, have produced a rapid evolution by 

introducing elements of novelty as well as many new issues for the Distribution System 

Operators (DSOs). Therefore, the electrical power networks are evolving to respond 

dynamically, efficiently and flexibly to the increased demand (also due to the rise of the use of 

heat pumps and electric vehicles) and to the growing penetration of renewable energies 

(active users have exceeded 800,000 units in Italy, mostly equipped with solar generators).  It 

is necessary to develop new operating strategies and smart network management algorithms 

in order to allow and support the complete integration of distributed generation (DG) 

technologies.  The benefits of the DG penetration growth are: 

- the diversifications of energy sources; 

- the reduction of greenhouse gas emissions; 

- the power quality and reliability improvement; 

- the increase of the flexibility of electricity market. 

The new grid architecture, known by the name of Smart Grid (SG) or intelligent grid, will 

benefit from the progress in control theory, and information - communication technologies. 

Two-way flows of electricity and information will be enabled to provide enhanced energy 

efficiency and power delivery stability (Wang	et	al., 2015). The progress of the system must 

integrate several functions, e.g., monitoring, control/optimization, communication, and 

protection, taking into account the operational security, the technical sustainability, and costs, 

with the implementation of hierarchical control strategies, targeted for the various voltage 

levels, and modern energy management techniques. One of the SG biggest potentials is to 
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allow a more flexible power system management, opening new business opportunities and 

operational possibilities specially regarding the integration of renewable energy sources 

(RES) into distribution systems. The new generation of power distribution systems is 

designed to obtain higher efficiency of control and operation with respect to conventional 

ones. They will be capable to: 

- safely integrate more RES and in general DGs into the network, i.e., enhancing the hosting 

capacity of the distribution systems;  

- deliver power more efficiently and reliably through demand response and comprehensive 

control and monitoring capabilities;  

- use automatic reconfiguration of the network to prevent outages or quickly restore (self-

healing capabilities);  

- enable consumers to have larger control over their electricity consumption and to actively 

participate in the electricity market. 

1.1.2. Micro‐Grids	as	a	key		

In this context, the development of a small power grid, constituted by users and producers 

connected to the same low voltage network, which perform a synergic interaction with the 

external grid, is expected to produce significant benefits. This kind of small power grid is 

known as microgrid (MG). In Figure 1-1 a general scheme of a MG is represented. On the one 

hand, producers and users would become more independent, can maximize self-consumption 

and minimize the exchange with the utility network (in order to minimize the procurement 

costs); on the other hand, the DSO could mitigate the effects of intermittent and fluctuating 

production of RES, postpone the network reinforcement and the installation of centralized 

storage systems, increase the system reliability and resiliency, and decrease the network 

losses.  

More precisely, a MG can be defined as a part of an electric power distribution system that is 

located downstream of the distribution substation. It includes an assortment of DGs, 

distributed storage units and different end users, e.g., residential buildings, commercial 

centers, and industrial sites (Katiraei,	F.	,	Iravani,	R.,	Hatziargyriou	N.,	and	Dimeas, 2008). The 

electrical connection point of the microgrid to the utility system constitutes the microgrid 

point of common coupling (PCC).   
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Figure 1-1. General scheme of a MG. 
 

Some of the major benefits associated with MGs include: 

- providing energy services tailored to end users’ requirements; 

- allowing the operations with the utility grid for the energy exchange and ancillary 

services; 

- enabling an improved reliability through coordinated response during emergency 

situations to serve critical loads and to reduce outage impacts; 

- deferring capital investments for grid assets; 

- allowing the adoption of new energy technologies and services; 

- reducing grid usage with the help of energy storage. 

Recently, many initiatives have been carried out in the field of MGs, as documented in e.g., 

Mengelkamp	et	al., 2018 and Hossain	et	al., 2014. 

MGs can work in two different ways: grid connected through the PCC and off-grid in which the 

MG is disconnected and operates in islanded conditions. In some cases, MG does not provide 

PCC for connection to the main network and works stand-alone (Ippolito	et	al., 2014). This 

thesis focuses on grid-connected MGs. 

In MGs, the adoption of Energy Storage System (ESS) is crucial. A short description of the 

advantages of ESSs is the following (Wang	et	al., 2015). 
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- Support of RES penetration: since RES production cannot always match power demand, 

the reliability of MGs increases if the extra power produced during off-peak times is saved 

for usage in peak demand. 

- Reduction of peak demand and the levelling of grid load profile: the use of ESS can 

improve the utilization factor of the system by reducing the differences of the demand in 

different hours. 

- Improvement of the performances of existing power system: the use of ESSs may reduce 

line-congestion and power loss in peak times, thus alleviating the need of grid expansion.  

- Support of the electrification of urban transportation: the ESS use can provide the mean to 

meet the demand requirements of a large number of concurrent charging of electric 

vehicles (EVs).  

- Increase of the overall grid resilience, also in the occasion of extreme environmental 

conditions and emergencies. 

In the past, the commercial development of ESSs was hindered from the cost and efficiency 

restrictions. However, as described in Appendix A, the rapid technological improvement in 

recent years (especially for electrochemical storage units) has significantly improved the 

efficiency and the costs. Consequently, there is an exponential increase in the applications.  

1.1.3. Local	Energy	Community	

A prosumer  (producer and user at the same time) operates its available units with the aim to 

reduce its dependence on the main grid and to minimize the energy bill. The enhancement of 

the self-consumption of the energy produced is becoming a very important topic and in this 

regard a patent has been developed by myself (Lilla, 2015). In this framework, a study on 

residential prosumers in the European Union is available in European	Commission, 2017. 

Prosumers are actively engaged in producing more energy than they would utilize in order to 

trade the excess to others. Prosumers can act either on their own or collectively through 

aggregators, as energy service companies, contractors or cooperatives. It is possible for a 

prosumer to optimize financial returns by directly trading with other prosumers through an 

energy exchange platform. Energy trading and sharing among prosumers could also improve 

the balance of energy supply and demand (Jogunola	et	al., 2017). Thus, the concept of Local 

Energy Community (LEC) systems has recently started to gain attention.  
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It is possible to define a LEC as the economic and operational participation and/or ownership 

of DGs and ESSs by citizens or members of the community. From the organization point of 

view, a LEC is any combination of at least two of the following elements:  

- local stakeholders own the majority or all the resources;  

- voting control keep on a community-based organization;  

- the majority of social and economic benefits are distributed locally. 

The benefits of a LEC system include increased efficiency and reduced operating costs, due to 

economies of scale, increased reliability, reduced emissions and a broader choice of fuels 

(including RES and low-grade heat) (Teotia	&	Bhakar, 2016). In Van	Der	Schoor	&	Scholtens, 

2015 others social aspects are investigated. 

1.1.4. Energy	Management	Systems		

The design of the control and management structures of MGs is a difficult engineering task. 

This is due to the different types of variables to be monitored (active power, reactive power, 

dispatching, voltage deviations, limitation of currents, etc.), to the complexity of the 

optimization problem, the large number of units, and the extension of the grid. A general 

overview of Energy Management Systems (EMS) objective functions and optimization models 

is represented in Figure 1-2. 

  

Figure 1-2. EMS objective functions. Adapted by Ahmad	Khan	et	al., 2016 
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 Figure 1-3 presents a general overview about MGs control with hierarchical structure 

(Olivares	et	al., 2014). 

 

Figure 1-3. General overview MG control. 
 

This thesis is mainly concerned with the energy management of MGs, therefore it is framed in 

the secondary control. Generally, loads and DG forecast, ESS state of charge (SoC) and DGs 

operational condition are the input of the system, meanwhile dispatch commands to loads and 

DG are the output.  

The MG Energy Management System (EMS) is responsible for the reliable, secure and 

economical operation. The objective of the EMS consists of finding the optimal (or near 

optimal) Unit Commitment and the scheduling of the available DG units so that prefixed 

objectives are reached. In MGs, the EMS functions must be performed by an automatic system.   

About the EMS architecture, two main methods can be identified: 

- hierarchical centralized structure (analogous to those used in large grid); 

- distributed structure (agent base control, distributed optimal power flow, etc.). 

A centralized architecture (Figure 1-4) is composed of a central unit that collects the 

appropriate information from every DG unit, loads, and the utility grid (e.g., costs, limitations, 

parameters, etc.), as well as the forecast (e.g., load and solar irradiance) to determine an 

appropriate UC and dispatch of the resources according to the designated objectives. The 

central controller can make decisions using either real-time calculations of the optimal 

operation, or pre-defined and continuously-updated databases that contain the information 
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relevant to the suitable operating conditions provided by offline calculations (e.g. day-ahead 

scheduling) or other approaches. 

 

Figure 1-4. Centralized architecture of MG. Adapted by Olivares	et	al., 2014. 
 

The centralized control method requires data collection from users by the MG control center.  

All the computing and control tasks are performed in the control center. Centralized control 

method may lead to user privacy issues and delayed operations in MGs with many prosumers.  

A decentralized control carries out the energy management function by a decomposition into 

subproblems to be solved locally by each user, to achieve utility exchange minimization, load 

smoothing, and privacy protection, while providing the highest possible autonomy for DG 

units and loads (Olivares	et	al., 2014). Distributed approach grants the following advantages: 

- it solves the problem in a distributed manner with local information; 

- it does not require disclosure of the user’s utility function and its parameters; 

- each user behaves independently in the power grid; 

- each user can individually take part to the market; 

- possible use of blockchain methods to trade energy (as shown in e.g., Munsing	et	al., 2017, 

and Zizzo	et	al., 2018). 
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Figure 1-5. Decentralized ADMM architecture of MG. 
 

One of the most adopted methods of decomposition is the Alternating Direction Method of 

Multipliers (ADMM), used in Chapter 3. 

A further classification of the EMS function is based on the inclusion of the uncertainties of the 

generation and load forecast. We can distinguish between deterministic and stochastic 

approaches. The first part of the thesis presents deterministic models, which implicitly 

consider that the forecast is reliable. In chapter 4 the thesis presents a stochastic model to 

incorporate renewable source and loads uncertainties in the analysis.  

 

1.2. Description	of	the	structure	of	the	thesis	

Chapter	one introduces the topic with the general description of the processed issues and the 

specific contributions. 

Chapter	 two deals with the modeling and analysis of low voltage (LV) power distribution 

networks feeding residential, commercial and small-scale industrial consumers including 

distributed generation units and storage systems. It focuses on real-time optimization model 

to be included in the EMS for the experimental microgrid built at the University of Applied 

Sciences and Arts of Western Switzerland, HES-SO Valais-Wallis, Sion. For this purpose, a 

mixed integer linear programming (MILP) model is presented, which takes into account the 

unbalanced operation of the LV network and the presence of the neutral wire. The validation 

of the accuracy of the model through the mentioned experimental microgrid and an analysis 

of some simulation results for a 24 hours horizon are presented too. 
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Chapter	 three is focused on the day-ahead operational planning of a microgrid with the 

presence of several prosumers equipped with generating units, local load and battery storage 

systems able to implement transactive energy control actions. This type of grid-connected 

microgrids are often referred to as LEC. In these communities, the day-ahead optimization is 

very important for the scheduling of the use of the batteries, particularly when the distributed 

generation (DG) is mainly not dispatchable, as in the case of small-size PV units. The problem 

has been addressed with both the solution of a centralized mathematical programming model 

and with the design of a specific distributed optimization procedure based on the adoption of 

the ADMM. 

Chapter	four deals with the day-ahead optimization of the operation of a local energy system 

consisting of PV units, ESSs and loads aimed at minimizing the electricity procurement cost. 

The local energy system may refer either to a small industrial site or to a residential 

neighborhood. Two MILP models are adopted, each for a different representation of the 

battery: a simple energy balance constraint and the Kinetic Battery Model. The chapter 

describes the generation of the scenarios, the construction of the scenario tree and the 

intraday decision-making procedure based on the solution of the multistage stochastic 

programming. Moreover, the daily energy procurement costs calculated by using the 

stochastic programming approach are compared with those calculated by using the Monte 

Carlo method. The comparison is repeated for two different sizes of the battery and for two 

load profiles. 

Chapter	five concludes the thesis and summarizes the main results. 

 

1.3. Literature	review	

In the following, we provide a review of previous contributions relevant to each chapter of the 

thesis. 

As mentioned, Chapter 2 deals with the real time management of the experimental platform 

developed at the University of Western Switzerland. The optimization model of a low voltage 

(LV) distribution network to be included in the energy management system is conceived to 

improve the use of energy resources for the minimization of the power exchange with the 

external utility network and voltage control. With respect to other solution approaches, the 
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use of a MILP model in the case of LV networks, has been used e.g., in Zhu	et	al., 1998 for load 

balancing, in Bahramirad	&	Daneshi, 2012 for planning purposes, in Liu	et	al., 2013 for the 

definition of electric vehicles charging strategy. In Parisio	 et	al., 2014 a model predictive 

control (MPC) approach based on a MILP optimization is applied to the operation of a system 

with storage units. Quadratic programming models are proposed in e.g. Ratnam	et	al., 2015a, 

Ratnam	et	al., 2015b for the coordination of ESS with PV generators in order to minimize the 

impact of the residential system on the grid, by reducing the network peak demand and non-

compliant voltage deviations. Other approaches have been also investigated in the literature 

(see e.g., Schweickardt	et	al., 2016 and Bennett	et	al., 2015 and the references therein).  

The MILP model presented in chapter 2 takes into account the unbalanced operation of the LV 

network and the presence of the neutral wire to reduce the degree of unbalance, as dealt with 

in e.g., Caldon	et	al., 2014 in order to exploit the capability of inverter-interfaced units to 

reduce the degree of unbalance.  

Chapter 3 analyzes the implementation of an EMS function for the optimal use of the available 

resources in a local energy community (LEC). There are several studies regarding real 

implementation of the LEC concept, e.g. the Brooklyn microgrid project (Mengelkamp	et	al., 

2018). As mentioned, chapter 3 focuses on the centralized optimization approach based on a 

MILP model and on the distributed one based on the ADMM. ADMM is one of the most 

frequently adopted consensus algorithms (Boyd	 et	 al., 2011) and it has been recently 

investigated for the solution of scheduling problems in microgrids (e.g., Zheng	et	al., 2018, Liu	

et	al., 2018, and references therein). In particular, both Zheng	et	al., 2018 and Liu	et	al., 2018 

deals with similar multi-microgrid systems as the one considered in this work, with the 

presence of local generation and battery energy storage (BES) systems and the possibility to 

exchange energy with an external utility grid. Moreover, Liu	 et	 al., 2018 addresses the 

uncertainty of renewable energy, load consumption, and energy prices through a robust 

optimization approach. In Ma	 et	 al., 2018 the uncertainty is addressed by using regret 

minimization. In Zhao	 et	 al., 2018b the use of a primal Benders decomposition approach 

instead of Lagrangian-based dual decomposition, such as the ADMM, has been presented. 

Other approaches adopt hierarchical architectures with a central controller that coordinates 

the power exchange among microgrids and the trading with the utility grid, as described in, 

e.g., Zhao	et	al., 2018a and references therein. 
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In chapter 4, the considered MG includes a PV unit capable to provide a significant part of the 

local energy consumption and it is also equipped with an energy storage unit to fully exploit 

the available renewable energy source even for the case of a limited capability of the external 

utility network which the system is connected to. This scenario is realistic in many actual 

situations, as shown in Graditi	et	al., 2016, van	Leeuwen	et	al., 2017 and references therein. 

In chapter 4, we focus on the solution of the day-ahead scheduling, which is in general 

associated with a real time control of the integrated PV-ESS, as dealt with in e.g., Conte	et	al., 

2017 and Lilla	et	al., 2017.  

Since the forecasts of both PV production and load consumption are affected by significant 

uncertainties, either stochastic optimization approaches or Monte Carlo simulations are 

typically adopted to solve this kind of problems (e.g., Reddy	et	al., 2017; Lazaroiu	et	al., 2016; 

Yuan	et	al., 2011).  In chapter 4 both approaches are used and compared.  

Moreover, two different ESS models are compared: a simple energy balance and the kinetic 

battery model (KiBaM) as indicated in Manwell	&	McGowan, 1993; Daniil	et	al., 2015; Bordin	et	

al., 2017 (also adopted in the Homer Energy software) for the representation of the battery 

state of charge. Other detailed models have been proposed in e.g. Sakti	et	al., 2017. 

 

1.4. Specific	contribution	of	the	thesis	

With regard to the EMS for the real time operation, a MILP model of a low voltage network, 

specifically developed for the Energy Management Systems of the experimental network, has 

been implemented as described in Chapter 2. It is able to control active and reactive power of 

the dispatchable resource (DG and BSS) and takes into account the unbalanced operation of 

the LV network. The work also includes the implementation of the optimization algorithm in 

the supervisory control and data acquisition (SCADA) architecture of the experimental system 

and the execution of the tests. 

For day-ahead scheduling of a LEC presented in Chapter 3, with centralized and distributed 

(ADMM-based) approaches, the specific contributions are: 

- the proposed method allocates the losses in the local network to each energy transaction; 

- the ADMM approach provides results close to those obtained by using a MILP centralized 

approach that includes the same constraints and the power loss allocation; 
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- the structure of the proposed scheduling functions is consistent with the billing procedure 

and the metering units installed in the LEC. 

As presented in Chapter 4, multistage stochastic programming (SP) based on k-means 

clustering method for the day-ahead and intraday scheduling in local energy systems provides 

improved results with respect to the application of the Monte Carlo method. The SP approach 

is also applicable to models that include a detailed representation of the battery under the 

assumption that the MILP characteristics of the model are preserved.  
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2. Energy management system for the real 

time operation of a low voltage network 

2.1. Introduction		

The chapter deals with an optimization model of a LV distribution network to be included in 

the EMS of the GridLab district experimental platform1 developed at the HES-SO Valais-Wallis 

in Sion, Switzerland. The optimization model is conceived to improve the use of energy 

resources for both the minimization of the power exchange with the external utility network 

and voltage control. 

With respect to other solution approaches, the use of a MILP model can benefit from the 

existence of very efficient solvers (such as those available in Cplex and Gurobi), which allow 

for the solution of problems of considerable size with limited computation time.  

The MILP model presented in this chapter takes into account the unbalanced operation of the 

LV network and the presence of the neutral wire. 

 

2.2. Description	of	the	experimental	microgrid	

Within the features installed in the GridLab laboratory at the HES-SO Valais-Wallis in Sion, the 

so-called GridLab District is a 400-V modular platform which allows developing and assessing 

intelligent solutions in order to operate more efficiently a distribution network in presence of 

prosumers, i.e., sites that can both absorb or inject active and reactive power in the LV 

network, through local generation and storage systems. The GridLab district reproduces a 

simplified residential distribution network composed of four LV feeders as shown in Figure 

2-1. 

                                                        

1 The GridLab of the HES-SO Valais-Wallis is the Swiss member of DERlab (www.der-lab.net), the European network of 
laboratories dedicated to the study of integration of renewables into grid. 
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The behavior of each prosumer (12 in total) is reproduced by means of 15-kVA three-phase 

AC bidirectional static converters (ABB ACS800-11 series) with power outputs that can be 

monitored and changed in real time via an Ethernet link.  

 

Figure 2-1. Schematic view of the GridLab District. 
 

Of the four feeders, feeder B reproduces a buried line (UG) whereas feeders A, C and D 

reproduce overhead distribution lines (OH). As shown in Figure2-1, a feeder is composed by 

four 95 mm2 500 m-long line models each represented by a pair RL–XL realized by resistors 

and inductors with RL = 150 mΩ and XL = 141.4 mΩ for feeders A, C, D and XL = 40.2 mΩ for 

feeder B.  

In addition, each feeder includes a series power electronic AVR (Automatic Voltage 

Regulator), developed at the HES-SO Valais-Wallis in Sion, which are all assumed by-passed in 

this work. 
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In order to allow equipment testing, or to compare the effectiveness of different technical 

solutions, each feeder can host an external connection in correspondence of the measurement 

points PM4 shown in Figure 2-1. 

The modular concept of the GridLab District allows validating numerous optimization 

strategies by acting on the reactive power of each prosumer, by defining the share of local 

storage, or by acting on each feeder with the corresponding AVR. The general architecture of 

the GridLab for Supervisory Control and Data Acquisition (SCADA) system is shown in Figure 

2-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-2. GridLab SCADA: general block diagram. 

 

2.3. Tuning	and	preliminary	measurements	of	the	

experimental	microgrid	

The GridLab is only a small part of the LV network of the school. A Thévenin equivalent is 

introduced in the model. The equivalent impedance (𝑅௧, 𝑋௧) has been derived from the 

following equations: 
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 cos 0re im
th th th LR I X I V V- - + =  (2.1) 

 sin 0im re
th th thR I X I V + - =  (2.2) 

where 𝑉௧ is the no-load voltage, 𝑉 is the voltage in last accessible bus (e.g. A5 for feeder A) 

and 𝛿  is the angle between 𝑉௧  and 𝑉 . 𝑅௧  and  𝑋௧  are inferred by the least-square 

optimization for a system of equations (2.1) and (2.2) for different measurement tests. 

Preliminary validation of the optimization model has been carried out using a single feeder of 

the GridLab. Difference between calculated end measured values of V (at the buses) and I 

(injected/withdrawn by prosumers) results in reasonably good agreement with particular 

reference to the voltage values. More details are reported in Appendix B. 

 

2.4. Description	of	the	Optimization	Model	

The MILP model of the LV voltage network is based on the models presented in Borghetti, 

2012, 2013 and Borghetti	et	al., 2015 for the case of medium voltage (MV) feeders.  

The voltages of each node and the currents of each branch are represented by the Cartesian 

coordinates of their phasors: (Vre, Vim) and (Ire, Iim), respectively. All the equations are written 

in per unit (p.u.). Let N	= {1, 2, …, nend} the set of buses of the network, the Cartesian 

coordinates of the voltages between the bus k and the bus j, for each phase (phase a), are: 

 , , , ,    ,re re re im
k j k j k j k j k jV V R I X I k j N- = - " Î  (2.3) 

 , , , ,    ,im im re im
k j k j k j k j k jV V X I R I k j N- = - " Î  (2.4) 

and the Cartesian coordinates of the current in the bus k are: 

 , ,    ,re re re
k j j k k

j N j N

I I I k j N
Î Î

- = " Îå å  (2.5) 

 , ,    ,im im im
k j j k k

j N j N

I I I k j N
Î Î

- = " Îå å  (2.6) 

The corresponding relations for the phases b and c include the 2/3π phase shift. 

The model aims at minimizing the production costs associate with DGs and storage units, the 

power exchange with the external network and the voltage deviations with respect to the 
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rated values in a time horizon T (24 periods, Δt of one hour in the simulations shown in this 

chapter). 

Two different thresholds below and above the rated voltage value Vn are introduced in the 

objective function with different penalty coefficients, namely  

- first range threshold: 𝑉௫ଵ =1.03 𝑉 and 𝑉ଵ=0.97 𝑉 (Std.	 D‐A‐CH‐CZ	 working	 group, 

2007); 

- second range threshold: 𝑉௫ଶ=1.1 𝑉 and 𝑉ଶ=0.85 𝑉 (Std.	EN	50438:2013/IS1, 2015). 

The objective function is: 

 
( ), ,

1 ,1 1 ,1 2 ,2 2 ,2

, , , ,

P Q imp imp exp exp
DG B DG B

t t t

max up min down max up min down
V k V k V k V k

t k t k t k t k

OF C C p E p E

p V p V p V p V   

= + + - +

+ + + +

å å å

å å å å
 (2.7) 

where: 

- 𝐶ீ,
  and 𝐶ீ,

ொ  are the global cost associated with active and reactive energy production 

by dispatchable DG units and charging/discharging operation of storage systems (€); 

- 𝑝 and 𝑝௫ are the prices (€/kWh) relevant to the active energy imported and 

exported; 

- 𝐸, 𝐸௫, are the active energies absorbed and injected into the grid (kWh); 

- 𝑝
௫ଵ, 𝑝

௫ଶ  and 𝑝
ଵ, 𝑝

ଶ  are the penalty coefficients (€/V) for maximum and 

minimum voltage violation (first and second limit); 

- ∆𝑉
௨ଵ, ∆𝑉

௨ଶ and ∆𝑉
ௗ௪ଵ, ∆𝑉

ௗ௪ଶ are the nonnegative values of the violations (first and 

second limit) of the voltage RMS value at bus k with respect to 𝑉௫ଵ, 𝑉௫ଶ and  

𝑉ଵ, 𝑉ଶ. 

Both real and imaginary parts of the bus k voltages are represented as the sum of the 

corresponding p.u. values at the slack bus ( 0
reV , 0

imV ) and their respective deviations 

 0
re re re

k kV V V= +       and      0
im im im

k kV V V= +  (2.8) 

As mentioned in the Introduction, the model takes into consideration the presence of the 

neutral conductor, grounded at the secondary side of the MV/LV transformer. A three-phase 

symmetrical system of voltages characterizes the slack bus, which represents the connection 



Chapter 2 – Energy management system for the real time operation of a low voltage network       26                       
 
 

 
 

to the external grid. The voltage phasor of phase a at the slack bus is assumed to lay on the 

real axis. The model includes the linear constraints of voltage drops in all the phase 

conductors and the neutral, as well as the current balances in all the network nodes. 

The model allows handling both active and reactive power injection of dispatchable units as 

optimization variables. For the active and reactive power outputs (P and Q) of the 

dispatchable resources, the MILP model includes the following constraints: 

- P and Q capability curves of DG units are assumed rectangular; 

- for PV units, only Q is assumed to be dispatchable; 

- the on-off state of DGs, associated with binary variables, is an optimization variable of 

the model; 

- a limited number of on-off operations is allowed. 

 

Figure 2-3. Iterative procedure to calculate the dispatchable variables P and Q. 

In the dispatchable constraints units, the non-linear relationships between powers, voltages 

and currents are iteratively approximated by using the voltage values obtained in the 

previous iteration. The first calculation is performed by assuming the rated value (Figure 2-3). 

In order to improve convergence, starting from the second iteration, the OF includes two 

additional terms that prevents the change of the power set points of the DGs, if a significant 

improvement of the OF is not expected: 
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 (2.9) 

where ∆𝑃ఔ  and ∆𝑄ఔ are the differences between the active and reactive power set points of 

dispatchable DGs at the ν‐th iteration with respect to the previous one and 𝑘ఔ is a coefficient 

progressively increased at each iteration. The procedure (Figure 2-3) ends when all the 

powers changes fall below a defined threshold (typically few watts or vars). 

The calculation of the state of charge of the storage units takes into account a simplified linear 

representation of batteries and converters losses. Active and reactive powers 𝑃 and 𝑄 

provided by the batteries at the AC side are dispatchable variables and are constrained by the 

relevant rectangular capabilities. 

The model of the batteries is represented by 

 0

1

( )              , 1

(1 ) ( )    , 1

imp exp
max b b b

max t imp exp
max t b b b

E SoC P L L t b t
E SoC

E SoC P L L t b t


-

ìï - + + " =ï=íï - - + + " >ïî
 (2.10) 

where 𝐸௫ is the battery storage capacity (kWh), 𝑆𝑜𝐶௧ is the state of charge at the period t 

(in p.u.), 𝑆𝑜𝐶 is the initial state of charge (in p.u.), and δ is the self-discharging rate (in p.u.). 

𝐿
 and  𝐿

௫ are variables that account for the battery’s losses, during charges and 

discharges, respectively, 

 exp

(1 )

 ,1

imp
b c b

d
b b

d

L P

b t
L P






-

+

= -
"-

=
 (2.11) 

where 𝜂 and 𝜂ௗ are the batteries efficiency factor (p.u.) for charges and discharges, 𝑃
ି  and 

𝑃
ା are nonnegative variables that represent the active power during charges and discharges, 

respectively. The use of both 𝑃
ି  and 𝑃

ା is introduced in order to avoid binary variables 

Dabbagh	et	al., 2016, hence: 𝑃 ൌ  𝑃
ା െ 𝑃

ି.  

Further constraints are introduced for representing the behavior of the batteries: initial and 

final SoC values are defined and power outputs are limited by the rated values. 

The representation of the non-dispatchable loads and generators is adapted from Borghetti	et	

al., 2015. The constant power behavior is approximated by using a linear model (for phase a) 
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2 2
0 0 0

re re imk k k
k k kre

P P Q
I V V

V V V
 = - -  (2.12) 

 
0 0 0

2 2
0 0 0

im im rek k k
k k kre

Q P Q
I V V

V V V
 =- + +  (2.13) 

where re
kI and im

kI are the current Cartesian coordinates at each bus k and for each phase, 0
kP  

and 0
kQ  are the active and reactive power consumed/generated at rated voltage 0V . In 

Borghetti	et	al., 2015 the linear approximated representations relevant to constant current 

and constant impedance behavior are also reported. 

The minimum and maximum branch current constraints are defined by using the method 

described in e.g. Borghetti, 2013 that makes use of polygons for representing the feasible 

regions for voltages and currents.  

A regular polygon with 𝑧ூ  sides is adopted for the linear representation of the maximum 

current limit in branch b (Figure 2-4-a). Each of the vertices of the polygon has coordinates 

 cos[( 1 / 2) ] ,     sin[( 1 / 2) ]re im
b bI i I i - -   (2.14) 

with 𝑖 ൌ 1,2, … 𝑧ூ and  𝛼 ൌ 2𝜋/𝑧ூ. 

As the polygon should be inscribed in the circle with equation 
2 2 2max re im

b b bI I I+ =  then the 

radius of the circle inscribed in the polygon is equal to max cos( / 2)bI  . The set of linear 

constraints that represent the polygon are given by the equations of lines tangent to the 

inscribed circle. The model enforces the phasor coordinates to be inside all the linear 

constraints, i.e. 

 cos( ) sin( ) cos( )      1, 2,....re im max
b b b Ii I i I I i z  + £ /2 " =  (2.15) 

a)                 b)             c) 

Figure 2-4. a) Minimum and maximum branch current constraints approach – b, Maximum voltage constraints 
and c) minimum voltage constraints approaches. 
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A similar model is adopted for violations ∆𝑉
௨ of the voltage RMS value at bus k with respect 

to 𝑉௫(Figure 2-4-b). Assuming that the maximum voltage phase difference between a bus 

and the slack bus is lower than π/18 (i.e. 10 degrees), angle α is now defined as 𝛼 ൌ 𝜋/9ሺ𝑧 െ

1ሻ, being 𝑧 the odd number of sides of the polygon considered in the model. The set of 

constraints that define ∆𝑉
௨ for phase a is 

max1 1
cos 1 sin 1 cos( )   1, 2,....

2 2
re im upV V

k k k V

z z
i V i V V V i z  

é ù é ùæ ö æ ö- -÷ ÷ç çê ú ê ú- - + - - - £ /2 " =÷ ÷ç ç÷ ÷ç çê ú ê úè ø è øë û ë û
(2.16) 

For the case of ∆𝑉
ௗ௪, as shown in Borghetti, 2013, the constraint would require the 

introduction of additional binary values. In this treatment we have simplified the constraint 

(Figure 2-4-c) and we impose for phase a that  

 re down min
k kV V V+ ³    (2.17) 

The corresponding constraints for the other two phases (b and c) include the 2/3π phase 

shift. 

The model has been implemented in AIMMS (Advanced Interactive Multidimensional 

Modelling System) optimization environment and the CPLEX solver has been used. 

 

2.5. Model	Validation	

The validation of the model has been carried out reproducing different scenarios in the full 

configuration of the GridLab District illustrated in Figure 2-1, with the AVRs by-passed. 

The results obtained by the MILP algorithm in terms of P, Q profiles of the dispatchable 

resources are sent to the prosumers of the GridLab District. Each prosumer is able to 

exchange active and reactive power with the feeder in a programmable way. Several 24-h 

scenarios have been reproduced on an accelerated time scale in the GridLab. The monitoring 

system performs the measurements of powers, voltages, and currents at the connection point 

of each prosumer.  

As an example, the comparison between measured and calculated values for the active and 

reactive power outputs of prosumer 1 connected to feeder B are shown in Figure 2-5 and 

Figure 2-6, whilst in Figure 2-7 shows the comparison of the voltage behavior measured and 

calculated at bus A3. 
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Figure 2-5. Comparison between measured and calculated values of the active power output of prosumer B1. 

 

 
Figure 2-6. Comparison between measured and calculated values of the reactive power output of prosumer B1. 

 

Figure 2-7. Comparison between measured and calculated values of the voltage at bus A3. 
 

In Table 2-1, the deviations between measured and calculated data for the two considered 

tests are reported. The table shows the mean values for the 24 periods. In each of the four 
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feeders the configuration is characterized by the presence of the following units: a 10 kVA 

non-dispatchable generator, two dispatchable 12 kVA generators, three 9 kVA loads. The 

same configuration is assumed in the second test that includes also a three-phase battery 

connected to feeder A, prosumer 3.  

TABLE 2-1 – DEVIATIONS BETWEEN MEASURED AND CALCULATED VALUES 

 
Configuration	1	 Configuration	2	

Buses	 P	%		 Q	%		 V	%		 P	%		 Q	%		 V	%		

A1	 3.46 8.07 1.03 1.64 1.89 1.05 

A2	 5.68 4.91 1 3.38 6.6 1.08 

A3	 4.52 6.72 1.13 4.19 6.24 0.79 

B1	 4.57 8.44 0.66 3.61 4.57 0.67 

B2	 3.14 4.83 0.57 3.23 3.76 0.7 

B3	 2.45 7.01 0.62 4 10.39 0.72 

C1	 5.54 3.47 1.08 3.6 5.25 1.25 

C2	 3.98 3.27 1.1 4.87 6.41 1.39 

C3	 3.64 3.81 1.2 4.05 5.88 1.57 

D1	 6.9 6.4 1.27 3.98 8.37 1.14 

D2	 3.83 5.68 1.09 6.61 4.02 1.37 

D3	 3.17 7.78 1 4.6 8.55 1.57 

 

For small power values (less than 1 kW or 1 kvar) some deviations are noticed, mainly due to 

harmonics produced by the ABB ACS converters. Moreover, the converters activate an 

automatic power limitation when the voltage exceeds the inside threshold (as shown in 

Figure 2-5 and Figure 2-6 between hour 10 to hour 12). However, in general, the 

measurements are in reasonably good agreement with the calculated values, as also 

confirmed by further comparison performed with different loads, DGs and batteries. 

 

2.6. Simulation	Results	

Several simulations have been performed with different load configurations, with and without 

the presence of dispatchable generators and batteries.  

In Table 2-2, the prices and penalty coefficients used in the simulations are reported whilst 

Table 2-3 describes the various configurations considered in this work. The first configuration 

is characterized by the presence of both dispatchable and non-dispatchable units. The second 
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one is identical to the previous but with the presence of distributed three-phase batteries. The 

PF for non-dispatchable units has been chosen equal to 0.9. The initial and final SoC of the 

batteries are equal to 1. 

TABLE 2-2 – PRICES AND PENALTY COEFFICIENTS   

Quantity	 Price	

Active energy imported 0.1 (€/kWh) 

Active energy exported 0.05 (€/kWh) 

Active energy produced by dispatchable generators and exchanged by batteries 0.08 (€/kWh) 

Reactive energy produced by dispatchable generators and exchanged by batteries 0.08 (€/kvarh) 

Voltage violation (second limit) 1 (€/V) 

Voltage violation (first limit) 0.1 (€/V) 

 
TABLE 2-3 – DESCRIPTION OF THE CONFIGURATIONS   

Input	Data	 Bus	connection	 Rate	

Configuration	1	    

Loads A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3 9 kVA 

Non-dispatchable DG A3, B3, C3, D3 10 kVA 

Dispatchable DG A1(PV), A2, B1(PV), B2, C1(PV), C2, D1(PV), D2 12 kVA 

Batteries none  

Configuration	2	    

Loads A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3 9 kVA 

Non-dispatchable DG A3, B3, C3, D3 10 kVA 

Dispatchable DG A1(PV), A2, B1(PV), B2, C1(PV), C2, D1(PV), D2 12 kVA 

Batteries  A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3 8 kW / 8 kWh 

 

In order to avoid the inclusion of a constraint enforcing a minimum value of the power factor 

at the connection to the external grid, also the reactive power exchange is penalized in the 

objective function.  

The profiles of the total active and reactive power relevant to the first configuration are 

reported in Figure 2-8 and Figure 2-9, respectively, whilst the ones relevant to configuration 2 

are shown in Figure 2-10 and Figure 2-11. The comparison between Figure 2-8 and Figure 

2-10 shows that the presence of distributed batteries provides a significant contribution to 

the reduction (peak and mean value) of the power exchanged with the grid. The incidence of 
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the batteries also results in a reduction of the power supplied by dispatchable generators. The 

same considerations apply for the case of reactive power (Figure 2-9 and Figure 2-11). 

 

Figure 2-8. Configuration 1: overall active power profiles. 
 

 
Figure 2-9. Configuration 1: overall reactive power profiles. 

 

 

The results of the simulations are summarized in Table 2-4, where the values of the energy 

exchanged with the grid indicates the sum of both the imported energy and the exported one, 

whilst the cost of active energy exchanged with the network indicates the difference between 

the cost associated with the imported energy and the revenue due to the exported energy, 

namely ( )imp imp exp exp

t

p E p E-å  in (2.7). 
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The presence of the batteries decreases the active and reactive energy exchanged with the 

grid by 21% and 58%, respectively. The corresponding reduction of active and reactive 

energy produced by dispatchable DG is 30% and 81%, respectively. Due to the significant cost 

associated with the operation of the batteries (assumed here equal to the prices of the 

dispatchable DGs), their presence does not decrease the energy procurement costs but has a 

significant impact on the voltage profile: the costs due to voltage violations in configuration 2 

are 67% lower than in configuration 1. 

 

Figure 2-10. Configuration 2: overall active power profiles. 

 

Figure 2-11. Configuration 2: overall reactive power profiles. 
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TABLE 2-4 – RESULTS OF THE SIMULATIONS 

Results	 Config.	1	 Config.	2	

Iterations 3 2 

Solving time (s) 65.81 31.31 

Active Energy exchanged with the grid (kWh) 616.99 486.32 

Reactive Energy exchanged with the grid (kvarh) 283.2 120.14 

Active energy produced by disp. DGs (kWh) 742.17 519.89 

Reactive energy produced by disp. DGs (kvarh) 301.39 57.04 

Batteries active energy exchange (kWh) 0 243.43 

Batteries reactive energy exchange (kvarh) 0 343.41 

Batteries losses (kW) 0 25.45 

Network losses (kW) 35.63 34.44 

Cost of active energy exchanged with the grid (€) 6.86 23.17 

Cost of active and reactive energy of DGs (€) 83.48 46.15 

Cost of active and reactive energy of batteries (€) 0 46.94 

Cost of bus voltage violation (€) 129.76 42.42 

 

2.7. Conclusions	of	chapter	2	

A MILP model for the operation of a low voltage network, specifically developed to be 

computationally compatible with its use in energy management systems, has been presented 

and validated. In particular, the MILP model has been conceived in order to be integrated in 

the energy management of the experimental network GridLab district of the HES-SO Valais-

Wallis in Sion, Switzerland.  

The MILP model represents single-phase and three-phase small loads, distributed generation 

units, and storage systems. It takes into account the unbalanced operation of the LV network 

and the presence of the neutral wire. 

The comparison between the model results and the measurements gathered by means of the 

GridLab experimental network shows that the accuracy of the implemented model is 

reasonably adequate. 

Appendix C describes the general characteristics of the AIMMS modelling language and the 

developed algorithms. 
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3. Day-ahead scheduling of a local energy 

community  

3.1. Introduction	

We consider a local energy community (LEC), i.e., a set of residential or small industrial sites 

each acting as a prosumer, including, in general, generation and battery energy storage (BES) 

units other than loads. All the prosumers are connected to the same low-voltage (LV) 

distribution network, which is the internal network of the LEC and it is connected to the 

external utility grid. In a LEC, each prosumer uses the available energy resources in 

cooperation with the others to minimize the energy procurement cost of the LEC. 

The economic justification for the formation of a LEC is mainly due to the difference between 

the price of the energy supplied by the utility grid and the price of the energy provided to the 

utility grid. This difference can be significant, e.g. due to the costs of the ancillary services. 

The operation of a LEC requires the implementation of an energy management system (EMS) 

for the optimal exploitation of the available resources (Pandzic	 &	 Bobanac, 2018), with 

particular reference to the storage units.  

This chapter focuses on an algorithm for the day-ahead scheduling of the BES units, by 

assuming that all the generation units of the LEC are photovoltaic (PV) systems. The algorithm 

is based on the alternating direction method of multipliers (ADMM). The EMS scheduling is 

based on the forecast of PV production and load of each prosumer during the following day. 

This chapter does not address the issues of the uncertainty associated with these forecasts, as 

accomplished, for instance, in Orozco	et	al., 2018 and references therein. 

The EMS function can be structured as a centralized optimization problem or as a distributed 

procedure. The centralized approach is the classical one. The central control unit needs to 

know all the operating characteristics of the prosumers and their forecasts. With respect to a 

centralized approach, distributed approaches, as the ADMM, are considered more reliable and 

reduce the need for each prosumer to communicate all characteristics and forecasts of their 

own units and loads to the other prosumers or to a coordinating unit. Moreover, a distributed 
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procedure is more appropriate for implementing new transaction methods based on, e.g., 

blockchain, or, more generally, on distributed ledger technologies. 

We describe first the centralized optimization approach based on a mixed integer linear 

programming (MILP) model and then we focus on the distributed one. The ADMM approach is 

one of the most frequently adopted consensus algorithms and it is proposed for the day-ahead 

scheduling of a LEC and power loss in the distribution network are taken into account. 

The specific characteristics of the distributed procedure proposed in this chapter are: 

- it aims at minimizing the energy procurement cost of the LEC, considering the power loss 

in the internal network; 

- the internal network losses are allocated to each energy transaction; 

- the ADMM distributed algorithm is compared with a MILP centralized model that includes 

the same constraints and the power loss allocation; 

- the structure of the proposed scheduling procedure is consistent with the billing 

procedure and the metering units installed in the LEC. 

The structure of the chapter is the following. Section 3.2 is devoted to the formulation of the 

problem and the description of a centralized approach based on a MILP model. Section 3.3 

presents the formulation of the proposed distributed procedure based on the ADMM 

algorithm. Section 3.4 illustrates the results of numerical tests obtained by using both the 

abovementioned approaches. Section 3.5 concludes the chapter. 

 

3.2. Problem	formulation	–	centralized	approach	

Figure 3-1 illustrates the scheme of a typical LEC. The point of common coupling (PCC) with 

the medium voltage (MV) utility grid is represented by the low voltage (LV) side of the 

distribution transformer. The grid meter Mg, positioned at the PCC, is bidirectional and 

measures the energy exchanged by the LEC with the utility grid in each time interval. 

Aim of the LEC is to minimize the need to buy or sell energy to the utility grid and to balance 

local generation and load. Each prosumer trades energy with other prosumers and the utility 

grid, according to a peer to peer trading scheme without intermediation.  
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For the implementation of the distributed optimization approach, each prosumer i is 

equipped with a local bidirectional meter Mi that measures the energy that the specific 

prosumer exchanges (sell or buy) with the internal network in the time interval. A prosumer 

cannot act as producer and a consumer in the same time interval. 

The day ahead scheduling dealt with in this chapter provides a plan of the optimal use of the 

LEC energy resources during the next day, with particular reference to the BES units, and 

calculates the prices of the energy transactions between prosumers. The prices of the 

exchanges with the utility grid are assumed to be predefined, though varying based on the 

time of the day. 

 

Figure 3-1. Scheme of a LEC with the internal network, prosumers, and meters. 
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The electricity billing procedure, for each time interval, can be described as follows:  

a) in each time interval, if the LEC buys energy from the utility grid (measured by Mg), the 

relevant cost is allocated to each consumer i (i.e., a prosumer that consume energy in 

excess of the local generation in that time interval) proportionally to the ratio of its 

consumption measured by Mi and the total consumption in the LEC, i.e., the sum of the 

measured energies of all the prosumers acting as consumers; 

b) if the LEC sells energy to the utility grid (measured by Mg), the relevant revenue is 

allocated to each producer j (i.e., a prosumer that produces energy in excess of the local 

load in that time interval) proportionally to the contribution of j to the total LEC 

production, i.e., the ratio between the energy measured by Mj and the sum of the 

measurements of all the prosumers acting as producers; 

c) each consumer i is also charged for the energy bought from the producers of the LEC, i.e., 

the energy given by the difference between the measurement of Mi and the energy 

allocated to consumer i in step a). The corresponding revenue of producer j is estimated 

proportionally to the contribution of j to the total LEC production as in step b). The day 

ahead scheduling procedure calculates the prices of each prosumer j that produces energy. 

Both the centralized and the distributed approach of the day-ahead scheduling procedure are 

divided in two stages. Initially the optimization is carried out without considering the power 

loss in the internal network. Then, the network power loss is calculated and allocated to each 

power transaction between two prosumers or between a prosumer and the utility grid. 

3.2.1. First	stage:	ideal	network		

By denoting as Ω = {1, 2, …, N} the set of prosumers i and as Τ = {1, 2, …, tend} the set of periods 

t of the optimization time horizon, the centralized LEC scheduling, without considering the 

network power loss, is described by the following mixed integer linear programming (MILP) 

model.  

Objective function (OF) (3.1) minimizes the total cost associated with the power exchanges 

with the utility grid in time horizon T: parameters t
buy  and t

sell   are the prices (in €/kWh) of 

the energy that the LEC buys from and sells to the utility grid, respectively; buy_Grid 
t

iP  and 

sell_Grid 
t

iP  are the power bought from and the power sold to the utility grid (in kW), 

respectively; parameter t  is the time step (in h). 
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The constraints are: 
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 { }buy_Grid buy ,

sell_Grid sell ,
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 max max
buy_Grid buy sell_Grid sell 0     0    ,t t

i i i iP P P P t T i £ £ £ £ Î Î  (3.5) 

 max max
buy , buy sell , sell 0     0   ,  and t t

i j i i j iP P P P t T i j £ £ £ £ Î Î  (3.6) 

 1
BES BES ch ch dis dis( / )        , 1 t t t t
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{ }ch BES BES 

dis BES 

0  if   u 0    u 1,0

0  if   u 1    

t t t
i i i

t t
i i

P

P i 

ìï = = Îïïíï = = Îïïî
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 max max
BES_dis BES BES_ch BES0   0 ,t t

i i i iP P P P t T i £ £ £ £ Î Î  (3.10) 

 min max
BES BES BES ,t

i i iE E E t T i £ £ Î Î  (3.11) 

Constraint (3.2) represents the equilibrium between the total power bought by the other 

prosumers from producer i and the power sold by producer i to the other prosumers. The 

Lagrangian multiplier t
i  associated to (3.2) is the price of producer i in time interval t (the 

price is independent of the buying prosumer). 

Constraint (3.3) represents the power balance for the i-th prosumer: parameters G 
t

iP  and D 
t

iP

are the PV power generation and the demand of i (in kW), respectively; non-negative 
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variables ch 
t

iP , dis 
t

iP  are the charging and discharging power of the BES of prosumer i (in kW); 

non-negative variable buy ,
t

i jP  is the power bought by i from j (in kW); non-negative variable 

sell ,
t

i jP  is the power sold by i to j (in kW).  

Indicator constraints (3.4), with binary variable ut
i , are used to avoid concurrent purchase 

and selling by the same prosumer. 

The possibility of prosumer i to buy or sell energy is limited by constraints (3.5) and (3.6) 

where max
sell iP  is the largest value between 0 and max

G D BES 
t t

i i iP P P- + , and max
buy iP  is the largest value 

between 0 and max
D G BES 
t t

i i iP P P- + . max
BES iP  is the maximum power output of the BES of i.  

The state of the energy (SoE) of each storage is defined by (3.7) and (3.8), where BES 
t

iE  is the 

SoE at time t (in kWh) and ch , dis are the battery efficiencies during charge and discharge, to 

take power loss into account. In (3.8) we assume that BES system is fully charged at the 

beginning and at the end of the day, where max
BES iE is the capacity of the i-th storage. 

The power during charge and discharge is limited through parameter max
BESP  by constraint 

(3.10). The SoE  ( BES 
t

iE ) is bounded between the minimum level min
BES iE and the maximum 

level max
BES iE by constraint (3.11). In order to prevent simultaneous charge and discharge of the 

batteries, indicator constraints (3.9) with a binary variable BESu t are included.  

In the literature accurate MILP models of the BES are described (e.g., in Orozco	et	al., 2018, 

Pandzic	&	Bobanac, 2018, Sakti	 et	 al., 2017 and Bordin	 et	 al., 2017) that can replace the 

simpler model represented by (3.7)-(3.11). 

The second stage considers the power loss in the internal network by using coefficients K that 

represent the contribution of each power transaction to the power loss in each branch.  To 

calculate these coefficients, the rms bus voltage values are assumed to be equal to the rated 

value, the network is assumed to be balanced, and reactive power flows are neglected. Let 

B = {1, 2, …, bend} be the set of branches of the network, the power loss in the branch b is: 

 ( )2

, 23
t tb
b i b

n

L F
V

Ræ ö÷ç ÷ç ÷ç ÷çè ø
=  (3.12) 
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where bR is the resistance of branch b, Vn is the line-to-line rated voltage value and t
bF  is the 

three-phase power flow in branch b. 

The power flow t
bF  in each branch b is positive when the power is directed from the 

substation to the end of the feeder. t
bF  is calculated as follows: 

 
buy_Grid Grid , sell_Grid Grid , buy , , ,

t t t t
b i b i i b i i j b i j

i i i j

F P A P A P A
   Î Î Î Î

= - +å å åå  (3.13) 

where Grid ,b iA  and , ,b i jA  are the matrices that describe the network configuration:  Grid ,b iA

elements are 1 for the branches interested by the power flow exchanged with the external 

network and 0 otherwise; , ,b i jA elements are 1 for the branches in which buy ,
t

i jP  flows in the 

positive and -1 in the negative directions, and 0 if branch b is not linked with flow buy ,
t

i jP .  

For the configuration of Figure 3-1, where the nodes are numbered in ascending order along 

the feeders, when branch b is linked with buy ,
t

i jP , then , ,b i jA  elements are 1 for i j<  and  -1 

for i j> . 

For the power loss allocation, the power flow in branch b is proportionally attributed to each 

power exchange that has the same direction of the total-flow in the branch. The total net flow 

TOT 
t

bF in branch b at time interval t is defined as: 

 TOT buy_Grid sell_Grid Pros 
t t t t

b b b bF F F F- +=  (3.14) 

where   

 buy_Grid Grid ,

buy_Grid

 if  0

0 otherwise

t t
i b i bt
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P A F
F Î

ìï >ïï= íïïïî

å
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sell_Grid Grid ,

sell_Grid

 if  0

0 otherwise

t t
i b i b

t
ib

P A F
F Î

ìï <ïï=íïïïî

å
 (3.16) 

 
buy , , , , ,

,
Pros 

  if  ( )

0                      otherwise

t t
i j b i j b b i j

t
i j

b

P A sign F A
F Î

ìï =ïï= íïïïî

å
 (3.17) 
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are the contribution to the total net flow of the power exchanged by the prosumers with the 

external network (bought and sold) and the contribution of the power exchanged among the 

various prosumers. 

As proposed in, e.g., Conejo	et	al., 2002 and Zizzo	et	al., 2018, the power loss in branch b is 

allocated to each power transaction according the corresponding coefficient K defined as the 

ratio between the power exchanged between prosumer i and the grid, or between prosumer i 

and j, at time interval t and the total net flow TOT 
t

bF  in branch b: 

 buy_Grid Grid , TOT 
buy_Grid ,

/  if  0

0      otherwise

t t t
i b i b bt

b i

P A F F
K

ìï >ïï= íïïïî

 (3.18) 

 sell_Grid Grid , TOT 
sell_Grid ,

/  if  0

0       otherwise

t t t
i b i b bt

b i

P A F F
K

ìï <ïï= íïïïî

   (3.19) 

 buy , , , TOT , ,
buy , ,

/  if  ( )  

0              otherwise

t t t
i j b i j b b b i jt

b i j

P A F sign F A
K

ìï =ïï=íïïïî

 (3.20) 

Stage 2 relies on the assumption that the power flows in the real network (with losses) are 

not much different from those already calculated for the ideal case.  

3.2.2. Second	stage:	network	with	losses	

The MILP model of the second stage includes the losses of each power exchange. Therefore 

constraints (3.3) is replaced by 

 

G BES_dis buy_Grid buy_Grid , buy ,

D BES_ch, sell_Grid sell_Grid , sell , buy , ,

                                                   

t t t t t
i i i b i i j

jb B
j i

t t t t t t
i i i b i i j b j i
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j i j i
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P P P L P L
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¹
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                   ,t T i Î Î

  (3.21) 

where buy_Grid ,
t

b iL , sell_Grid ,
t

b iL , and buy , ,
t

b j iL  are the losses in branch b attributed to the power 

bought by prosumer i from the utility grid, to the power sold by i to the utility grid, and to the 

power sold by i to j, respectively. For each power transaction, the losses attributed to each 

transaction are obtained by the product of the corresponding coefficient K and the total value 

of the power loss t
bL  in branch b: 
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        buy_Grid , buy_Grid , , ,t t t
b i b i bL K L t T i b BÎ Î Î=  (3.22) 

       buy_Grid , buy_Grid , , ,t t t
b i b i bL K L t T i b BÎ Î Î=  (3.23) 

        buy , , buy , , ,   and ,t t t
b i j b i j bL K L t T i j b BÎ Î Î=  (3.24) 

According to (3.21), prosumer i should compensate the power loss due to the power exchange 

with the utility grid. Moreover, we assume that both buy ,
t

i jP  and sell ,
t

i jP , which correspond to 

buy ,
t

j iP , are measured at the connection of the buying prosumer with the internal network. 

Therefore, according to (3.21) when i sells energy to j, losses are ascribed to prosumer i. 

With respect to the first stage, the model of the second stage includes additional constraints to 

avoid transactions not present in the first stage solution, under the assumption that the power 

flow distribution in the network is not significantly affected by the losses. These constraints 

are  
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where parameters buy_Grid iT , sell_Grid iT , and buy ,i jT  are equal to 0 if in the first stage solution i 

buys from the utility grid, sells to the utility grid, and buys from j, respectively; otherwise, 

these parameters are equal to 1. 

Moreover, the second stage model includes the constraints for the piecewise linear 

approximation of t
bL , i.e. the power loss in each branch b (Williams, 1990). A set L of segments 

for the linearization is created and constraints (3.13) are included, for each branch b and time 

interval t. The allowed range of the power flow in the various branches is divided in N 

intervals with 1N +  breakpoints Flow
tH . The corresponding breakpoints for the losses Loss

tH  

are given by (3.12). The piecewise linear approximation of t
bL  is given by 

 , Flow ,     ,   t t t
b b l b l

l L

F a H t T b B
Î

= Î Îå   (3.26) 

 , Loss , ,     ,   t t t
b b l b lb l

l L

L a H t T b B
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l L

a t T l L
Î
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where  ,
t
b la  are SOS2 variables, i.e., they are linked with special ordered set of type 2 

constraints so that force at most two and consecutive variables can be non-zero. 

 

3.3. Problem	formulation	–	distributed	approach	

As mentioned, the distributed approach is based on the ADMM. The optimization is iteratively 

carried out by each prosumer k. At each ADMM iteration, the power bought or sold by each 

prosumer calculated in the previous iteration is made known to all the prosumers. These 

values are considered as parameters in the optimization problem solved by prosumer k at the 

current iteration and they are denoted by a hat in the model described in this section. 

3.3.1. First	stage:	ideal	network	

The objective function to minimize by prosumer k is 

[ buy buy_Grid sell sell_Grid buy , sell ,min ( )t t t t t t t t t
k k k j k j k k j k

t T j j
j k j k

OF P t P t P t tP   
 

    
Î Î Î

¹ ¹

ù= - + + úû-å å å  (3.29) 
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m P P P P
 


Î Î
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- + -å å  (3.30) 

Equation (3.29) is obtained by the decomposition for each prosumer k of the Lagrangian, 

which incorporates OF (3.1) and constraints (3.2) multiplied by the relevant Lagrange 

multiplier t
i , augmented by the squared norm of the same constraints multiplied by  positive 

penalty parameter ρ and fixed scale factor m, as shown in (3.30). 

OFk  can be seen as the summation of the costs of the energy bought by k from the utility grid 

at price buy
t  and from each other prosumer j at price t

j  minus the sum of the revenues due to 

the energy sold by k to the utility grid at price sell
t  and to the other prosumers at price t

k . 

Once the procedure converges, t
k  is zero and the value OF for the entire system is the sum of 

the ones solved for each prosumer k: 
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k

OF OF
Î
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The optimization problem of prosumer k includes constraints (3.3) - (3.11) for i=k. 

Moreover, the convergence of the ADMM procedure is improved if the following constraints 

are added starting from the second iteration: 
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At each iteration ν, after the solution of all the optimization problems, one for each prosumer 

k, the ADMM includes the update of Lagrangian multipliers t
k  and of penalty parameter ρ. 

Let kr
  be the primal residual term for prosumer k, equal to the vector of dimension T with 

elements 

 buy , sell ,
t t t

k j k k j
jj
j kj k

r P P
 ÎÎ

¹¹

= -åå  (3.34) 

the T dimensional vector of Lagrangian multipliers k
 , with elements t

k , is updated as: 

 1 2 with    t
k k k km r r     + + ⋅ ⋅ >=  (3.35) 

and the procedure is repeated until the absolute value of all residuals t
kr  is lower than 

tolerance ε (which is assumed to be 5 W in all the numerical tests of this chapter). At the 

beginning of the ADMM procedure, the prices t
k  are initialized to be equal to ( )buy sell1/ 2 t t + . 

The penalty parameters are updated as follows (Boyd	et	al., 2011): 
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where 
2

  is the Euclidian norm and the T dimensional vector ks  is the dual residual term 

with elements 
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To accelerate the convergence, the initial value of m, which is equal to 5·10-5, is multiplied by 

10 when the maximum value of the total mismatch 

 k
k

r r =å ,  (3.38) 

becomes lower than 1 kW, and furtherly multiplied by 10 when ( )max 100t
kr <  W. 

3.3.2. Second	stage:	network	with	losses	

The losses allocation follows the same rules and criteria described for the centralized 

approach. In order to avoid the introduction in the ADMM optimization model of constraints 

(3.13) and (3.26) - (3.28), which link the purchase and selling decision of all the prosumers, 

we introduce the calculation of the efficiencies of each energy transaction (between prosumer 

k and the grid or between k and j):  

 
buy_Grid ,

buy_Grid
buy_Grid

 1

t
b k

t b B
k t

k

L

t T
P

 Î Î= -
å

  (3.39) 

 
sell_Grid ,

sell_Grid
sell_Grid

 1

t
b k

t b B
k t

k

L

t T
P

 Î Î= -
å

 (3.40) 

 
buy , ,

buy ,
buy ,

, ,1

t
b k j

t b B
k j t

k j

L

t T j j k
P

 Î Î Î ¹= -
å

 (3.41) 

where buy_Grid ,
t

b iL , sell_Grid ,
t

b iL , and buy , ,
t

b j iL  are calculated at the end of the first stage, by using (3.22) – 

(3.24) and the values of t
bL  given by (3.12). 

The efficiency parameters are included in the balance constraint of each prosumer k. Then 

constraints (3.21) become: 
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Also the models of the second stage of the ADMM procedure include constraints (3.25) for k=i 

in order to prevent new energy transactions with respect to those of the first stage. 

 

3.4. Implementation	and	test	results	

The models have been implemented in the AIMMS Developer modelling environment and 

tested by using the Cplex V12.8 solver on a 2-GHz Intel-i7 computer with 8 GB of RAM, 

running 64-bit Windows 10. The MILP solver is used for the centralized model and the MIQP 

(mixed integer quadratic programming) solver for the ADMM model.  

All the calculations refer to a time window of 1 day, split in 96 periods of 15 min each. 

The test system is composed of two LV feeders. Each feeder is composed by five lines, each 

with resistance bR  = 189 mΩ.  

Five prosumers are connected to each feeder: prosumers 1-5 to a feeder and prosumers 6-10 

to the other. Each prosumer is equipped with a PV system and a load. We repeat the 

calculations two times, once assuming the system without BES units and the other by 

assuming that each prosumer is also equipped with a BES unit. The load profiles adopted for 

each prosumer are shown in Figure 3-2. For the PV generation, we have assumed the same 

profile of the ratio between power production and panel surface for each prosumer shown in 

Figure 3-3. The area of the PV panel of each prosumer is given in Table 3-1. 

Figure 3-3 also shows the profile of the price of the energy bought from the utility grid buy
t . 

We assume that the price of the energy sold by the LEC to the utility grid, i.e., sell
t , is half of 

buy
t . The sizes of the BES systems are reported in Table 3-2. 
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Figure 3-2. Load profile for each prosumer. 
 

 

Figure 3-3. Profile of the PV production and grid purchase price. 
 

TABLE 3-1 - PV PANEL SURFACE FOR EACH PROSUMER 

Prosumer	 1 2 3 4 5 6 7 8 9 10 

PV	surface	(m2)	 32 14 21 32 28 14 42 32 14 42 
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TABLE 3-2 – SIZES OF THE BES UNITS 

prosumer	 1 2 3 4 5 6 7 8 9 10 

Size	(kWh)	 5 3 4 2 3 1 2 2 2 6 

 

3.4.1. Scenario	1:	prosumers	without	batteries	

Table 3-3 shows the values of OF for both stages and the total network losses in the 24 hours, 

for the centralized problem and the distributed one without BES units. The distributed model 

requires a solution time around 13 s / 12 iterations for stage 1 and 17 s / 9 iterations for stage 

2. The solution of the centralized model without BES units needs around 0.5 s for each of both 

stages. 

TABLE 3-3 - COMPARISON BETWEEN CENTRALIZED MODEL AND ADMM.  SCENARIO 1 

  
OF	(€)	 Losses	(kWh)	

stage 1 stage 2 stage 2 

Centralized	 26.58 27.06 2.66 

ADMM	 26.58 27.03 2.62 

 

To illustrate the convergence behavior of the ADMM procedure,  Figure 3-4 shows the average 

value of the primal residuals t
kr 	denoted by R, the values of the augmented OF	according to 

(3.31), and the value of the part of OF corresponding to the energy bought from and sold to 

the utility grid, i.e. (3.1), at each iteration. 

 

Figure 3-4. ADMM convergence in stage 1 for scenario 1: augmented OF, part of OF corresponding to the power 
exchanged with the utility grid, average of primal residuals at each iteration. 
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As shown in Figure 3-5 the profiles of the power exchanged by the LEC with the utility grid 

calculated by using the two approaches are quite similar. 

 

Figure 3-5. Comparison of the power flow exchanged with the utility grid (positive if consumed by the LEC) at 
the end of stage 2 (solid line: centralized model, dashed line: distributed model). 
 

Figure 3-6, shows the energy sold by each prosumer to the others at the end of stage 2 

calculated by using the centralized model and the ADMM approach. 

The reasonable accuracy of the power loss representation in the second stage of both the 

centralized and distributed optimization models is confirmed by the limited values of the 

maximum percentage difference between the power loss calculated at the end of stage 2 for 

each period and the corresponding values obtained by (3.12): around 1.5% for the centralized 

procedure and 4% for the ADMM approach. 
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Figure 3-6. Comparison of the power flows from every prosumer when it sells to the others (excluding the utility 
grid) at the end of stage 2 for scenario 1 (solid line: centralized model, dashed line: distributed model). 
 

3.4.2. Scenario	2:	prosumers	with	batteries	

Table 3-4 compares the results of OF	for both stages and the total network losses in the 24 

hours obtained by including the BES units in the models. The distributed model needs a 

solution time around 170 s / 26 iterations for stage 1 and 25 s /13 iterations for stage 2. The 

solution of the centralized model needs around 5 s for stage 1 and around 8 s for stage 2. 

TABLE 3-4 - COMPARISON BETWEEN CENTRALIZED MODEL AND ADMM. SCENARIO 2 

  
OF	(€)	 Losses	(kWh)	

stage 1 stage 2 stage 2 

Centralized	 17.84 18.27 2.86 

ADMM	 17.98 18.36 3.06 

The convergence performance of the ADMM procedure is illustrated in Figure 3-7. 
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Figure 3-7. ADMM convergence in stage 1 for scenario 2: augmented OF, part of OF corresponding to the power 
exchanged with the utility grid, average of primal residuals at each iteration. 

The total power exchanged by the LEC with the utility grid and the profiles of the energy sold 

between the various prosumers are reported in Figure 3-8 and Figure 3-9 for the centralized 

and ADMM approaches, respectively.  

 

Figure 3-8. Comparison of the power flow exchanged with the utility grid (positive if consumed by the LEC) at 
the end of stage 2 (solid line: centralized model, dashed line: distributed model). 
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Figure 3-9. Comparison of the power flow from every prosumer when it sells to the others (excluding the utility 
grid) at the end of stage 2 for scenario 2 (solid line: centralized model, dashed line: distributed model). 

 

Figure 3-10. Battery SoE for each prosumer at the end of stage 2 for scenario 2 (solid line: centralized model, 
dashed line: distributed model). 
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Figure 3-11. Comparison of the total energy in the batteries of the LEC obtained by the centralized and the 
distributed approach. 
 

Figure 3-10 shows the profile of the SoE values of the BES units of all the prosumers in each 

period. Figure 3-11 shows the comparison between the profiles of the total energy contained 

in the BES units of the LEC as given by the centralized model and the distributed one. 

As mentioned, the prices t
i  of each prosumer i that sells to other prosumers of the LEC are 

calculated in different ways in the two approaches. In the centralized MILP model, the prices 

are the Lagrangian multipliers of constraints (3.2). In the ADMM distributed procedure, the 

prices are updated at each iteration by (3.35). Although these differences, the profiles of the 

prices obtained by using the two models are similar for both the cases with and without the 

presence of BES units. 

 

3.5. Conclusions	of	chapter	3	

The chapter has presented a distributed optimization procedure for the day-ahead scheduling 

of a Local Energy Community with generation, loads and battery storage systems that 

incorporates the calculation of the losses and their allocation to each transaction.  

The distributed approach is based on the ADMM algorithm and allows to limit the confidential 

information that each prosumer must provide to the other prosumers or a central 

coordinating unit. 
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The results obtained by using the proposed distributed procedure have been compared with 

those from a centralized approach based on a MILP model.  

Both centralized and distributed approaches provide comparable results with an acceptable 

computation effort. The values of the objective function, the profiles of the power exchanged 

with the utility grid and the profiles of the energy stored in the batteries match.  

The structure of the day-ahead scheduling procedures is consistent with the billing scheme 

and the metering units of the LEC. 

Appendix C describes the developed algorithms.  
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4. Multi-stage stochastic optimization for the 

operation of local energy systems  

4.1. Introduction	

This part of the research deals with an electric local energy system with the presence of 

renewables, such as the power system of an industrial site or of a residential neighborhood. 

The considered system includes a PV unit capable to provide a significant part of the local 

energy consumption and it is also equipped with an energy storage unit to fully exploit the 

available renewable energy source even for the case of a limited capability of the external 

utility network to which the system is connected. The daily operation of the battery unit is 

addressed as an optimization problem with a 24h horizon, with the aim to minimize the 

electricity procurement cost. The inputs are the forecasting of the PV production and of the 

local loads.  

In this chapter the stochastic optimization and the Monte Carlo approach are compared by 

using a mixed integer linear programming model of the local energy system, having the two 

following characteristics: 

- 15 minutes time discretization, which appears more suitable for the energy management 

of the local system than the usual 1-hour time step; 

- the use of the Kinetic Battery Model (KiBaM) for the representation of the battery state of 

charge, which is more detailed than the simple energy balance one. 

In order to better adapt the day-ahead solution to the actual intraday operating conditions, 

the stochastic optimization problem is formulated as a multistage decision problem in which 

the battery output set points are decided at the beginning of the day and subsequently other 

three times during the day (every 6 hours). The five-stage stochastic optimization problem 

(where the decisions are taken at the beginning of each stage) needs a scenario tree model 

that is built by using the k-means clustering method.  

The structure of the chapter is the following. Section 4.2 describes the linear programming 

model of the local energy system. Section 4.3 describes the multistage stochastic 
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programming (SP) procedure with the scenario generation and the construction of the 

scenario tree. Section 4.4 illustrates the test results and the comparison between the daily 

energy procurement costs calculated by using the five-stage stochastic optimization with 

those calculated by using the Monte Carlo solution (i.e., the average of the optimal decisions 

provided by the deterministic solution of each of the scenarios used for the construction of the 

tree). Section 4.5 concludes the chapter. 

 

4.2. 	Model	of	the	local	energy	system	

We focus here on the solution of the day-ahead scheduling, which is in general associated with 

a real time control of the integrated PV-storage system, as dealt with in e.g., Conte	et	al., 2017, 

Lilla	et	al., 2017. 

A typical aim of the energy management system is the minimization of the production costs 

associate with PV, storage units and the power exchange with the external network to feed 

the internal load in a time horizon T:  

 ( )imp imp exp exp
t t t t

t T

OF p P p P t
Î

= -å  (4.1) 

where: 

- parameters imp
tp  and exp

tp  are the prices (in €/kWh) of the energy exchanged with the 

external grid (bought and sell, respectively); 

- nonnegative variables imp
tP  and exp

tP  are the values of the power absorbed and injected 

into the external grid (in kW); 

- parameter t is the 15-minutes time step (in h). 

4.2.1. Model	with	a	simple	representation	of	the	battery	state	of	charge		

The constraints of the model, to be described next, are the following for all the time intervals t. 

 0pv b grid load
t t t t tP P P P L- + - - =  (4.2) 

 b c d
t t tP P P= -  (4.3) 

 (1 )c b b
t tP u M£ -  and d b b

t tP u M£  (4.4) 

 b b b
r t rP P P- £ £  (4.5) 
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 expgrid imp
t t tP P P= -  (4.12) 

 (1 )imp grid grid
t tP u M£ -      and     exp grid grid

t tP u M£  (4.13) 

 grid grid grid
r t rP P P- £ £  (4.14) 

where pv
tP is the active power injected into the system by the PV unit, load

tP is the power 

adsorbed by the internal loads; b
tP  is the battery power output (nonnegative c

tP  and d
tP  are 

the battery power outputs during charges and discharges, respectively); t
gridP  is the power 

exchanged with the external network (nonnegative imp
tP  and exp

tP  are the imported power 

and exported power, respectively), tL  are the losses of the battery converter ( c
tL and d

tL  are 

losses during charges and discharges); b
tE is the energy level in the battery; SOCt is the battery 

state of charge. 

The definition of the parameters and, in parenthesis, the corresponding values adopted in the 

numerical tests are: b
rP is the rated value of the battery output (630 kW), maxE  is the battery 

capacity (630 kWh); c and d are the converter efficiency factors for charges and discharges 

(0.95 and 0.97, respectively); grid
rP is the maximum power that can be exchanged with the grid 

(1.5 MW), SOCmin and SOCmax are the minimum and maximum state of charge (0.1 and 1 p.u., 

respectively), SOC0 and SOCend are the initial value and the required final value of the state of 

charge (both assumed equal to 1 p.u. in the numerical tests). 
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The constraints represent: the power equilibrium (4.2); the power output of the battery with 

the big-M formulation in order to avoid concurrent charge and discharge ( b
tu is a binary 

variable and b
rM is equal to b

rP ) (4.3)-(4.5); the energy stored and the state of charge of the 

battery (4.6)-(4.9); the losses in the battery converter (4.10)-(4.11); the exchange with the 

external grid (4.12)-(4.14), where grid
tu is a binary variable and gridM is equal to grid

rP . 

4.2.2. Model	with	the	kinetic	battery	model	

The refined model that includes the KiBaM replaces constraints (4.7) with the following 

constraints 

 1 2b
t t tE q q= +  (4.15) 

 11
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where  1 ( 1 )k t
qk c k t e  -= ⋅ - + , 2 (1 )( 1 )k t

qk c k t e  -= - - +  

The constraints represent: the definitions of readily available charge 1tq  and bound charge 

2 tq (4.15)-(4.18); the battery power outputs limitations during charges and discharges 

phases (4.19)-(4.21). In Figure 4-1 the hydraulic equivalent scheme is represented. 

The definition of the parameters and, in parenthesis, the corresponding values adopted in the 

numerical tests are the following: b is the batteries efficiency factor (p.u.) for charges and 
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discharges (0.9), k is the battery rate constant (9.51 h-1), c is the battery capacity ratio (0.61), 

a is the battery maximum charge rate (2 A/Ah). 

 

Figure 4-1. Kinetic Battery Model: hydraulic equivalent approach; adapted from Daniil	et	al., 2015. 

Figure 4-2 shows the results of a deterministic solution of the optimization problem for the 

considered test system, equipped with a 1 MW PV unit, a storage system of 630 kW and 

630 kWh, and a local load with a power consumption of 1.5 MW.  

     a)   

b)     

Figure 4-2. Deterministic solution: a) Profile of the PV production, load, and grid price; b) state of charge of the 

battery calculated by using the simple and kinetic model for profile load 1. 
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Figure 4-2 compares the results obtained by using the Kinetic energy model, which uses the 

parameters value indicated in Bordin	et	al., 2017, with those obtained by the simple battery 

model in which the state of charge is determined by the energy balance. The solution is 

completed by using Cplex in some tens of milliseconds for both models, with the OF values 

equal to € 36.70 for the simple model and equal to € 61.21 with the KiBaM. 

 

4.3. Multi‐stage	stochastic	optimization	procedure	

We assume that both the load profile and the PV generation are uncertain, whilst, to limit the 

complexity of the model, prices imp
tp  and exp

tp  are assumed known.  

The decision variable is b
tP . The decision is taken at the beginning of the day (which is the 

scheduling horizon) for all the periods of the first 6 hours and they are updated every 6 hours. 

The 6-hour periods represent the stages following the first one. The values of the other 

variables are calculated at the end of each stage, for all the periods of the stage. 

Denoting the set of scenarios with Ω, the scenario index with ω, and the probability of 

scenario ω with πω, the deterministic equivalent of the multistage stochastic problem is the 

recourse model 

 min
t

bP
OF 




Î

⋅å   (4.22) 

with constraints (4.2)-(4.14) for the simple battery model and with constraints (4.2)-(4.6) and 

(4.8)-(4.21) for the model that includes the KiBaM, other than the non-anticipativity 

constraints that represent the inability to anticipate the future by forcing the same decisions 

to be taken for scenarios with the same history. 

In the following, we describe the procedures adopted for the generation of set Ω, for 

construction of the scenario tree that is used in the recourse model, and the intraday decision-

making procedure to adapt the solution of the multistage stochastic problem to the actual PV 

generation and load request. 
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4.3.1. Generation	of	scenarios	

In general, the number of scenarios for adequately describing this kind of stochastic process 

should be appropriately large. For the test, 200 scenarios are generated to limit the 

computational time required by the Monte Carlo method. 

For the scenario generation, we have applied the procedure described in e.g. Osório	et	al., 

2015, which includes a Markov-process to represent the autocorrelation that exists between 

consecutive observations. Starting from the forecasted profiles pv
tP  and load

tP , at first they are 

normalized by using the corresponding mean value and standard deviation; then, for each 

scenario ω, the normalized time series pv
ty  and load

ty  are given by 

 , ,

, , 1 ,

t t t

t t t

z x y

x x
 

   -

= +

= ⋅ +
 (4.23) 

where ϕ is the one-lag autocorrelation parameter, assumed to be equal to 0.999, and ,t  is a 

Gaussian white noise with mean zero and standard deviation 21 - . The PV production and 

load profiles for each scenario ω ( ,
pv

tP  and ,
load

tP ) are obtained by applying the inverse 

transform method assuming a normal distribution, with the constraint that both profiles 

cannot be negative and that the difference between each profile and the corresponding 

forecast should not exceed 20% (in all the periods for the load and 75% of the periods for PV 

production). 

Figure 4-3 shows the scenarios for the loads and the PV generated according to the above-

mentioned criteria. 

 



Chapter 4 – Multi-stage stochastic optimization for the operation of local energy systems 64 
  

 
 

a)  

b)  

Figure 4-3. Scenarios: a) PV production; b) load. 

 

4.3.2. Construction	of	the	scenario	tree		

Each of the generated scenarios is assumed to be equiprobable and it is defined by the 

normalized difference between the PV production and the load:  

 , ,
,

pv load
t t

t pv load
t t

P P

P P
 


-

=
-

 (4.24) 

The scenario tree is built by the consecutive application of the k-means clustering method, as 

described in e.g. Pranevicius	&	Šutiene, 2007. The main steps of this method are the following. 

At stage s=1 (that includes only period t=0), all scenarios have the same value of parameter, 

i.e. , 0 0t = =  
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At stage s=2 (t=1…24), the set of individual scenarios is divided in the predefined number K of 

desired clusters k
sC  (in the numerical tests, we compare the results obtained by using K=3 or 

K=4). At first, the initial K centers k
t  are randomly selected; then each scenario ,t  is 

assigned to cluster k
sC  so to minimize the dissimilarity measure  

 , , 2
( , )    1...

s

k k
t t t t

t T

d k K    
Î

= - " =å  (4.25) 

where 
2

    indicate the Euclidean distance and Ts is the set of periods in stage s. After, the 

center of each cluster is updated as the mean of all the scenarios assigned to the cluster and 

the procedure is repeated until the centers of the clusters are not modified in two consecutive 

iterations. 

The probability of each cluster at the considered stage k
s  is the sum of the probabilities of 

the individual scenarios belonging to the cluster. All the scenarios of the same cluster are 

replaced by the relevant center, i.e. ,
k

t t =  st T" Î  if ,
k

t sC Î . 

At the stages following the second one, the k-means clustering algorithm is applied 

independently to each cluster defined in the previous stage. 

The above-described procedure generates the scenario tree consisting, at each stage s, of 

nodes 
s

k
t T Î  with the associated probabilities and the branches that connect nodes at different 

stages. The scenario tree used in the numerical tests for K=3 is shown in Figure 4-4. 

The solution of the recourse model provides the optimal value of the decision variable in each 

node of the scenario tree at stage 1 (i.e. at t=0) and the beginning of each of the following 

stages from 2 to 5 (i.e., t=24, t=48, and t=72). The values of all other variables are calculated 

also at the end of each stage. 

4.3.3. Intraday	decision‐making	procedure	

The solution of the recourse model provides multiple possible decisions at each stage 

following the first one (i.e., during the day). Therefore, for the actual operation, a decision-

making procedure is needed for the choice of the most appropriate decision at each stage 

among those indicated by the stochastic problem solution, on the basis of the current PV 

generation and load. 
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At stage s=2, the decision-making procedure finds the scenario of the tree that is the most 

similar to the profile of the difference between PV generation and load in the previous 6 

hours, on the basis of the Euclidean distance. Then it decides the set point values of the 

battery power output for each 15-minutes time intervals of the following 6-hours. 

At stages s=3 and s=4, the decision-making procedure finds the scenario of the tree that is the 

most similar to the profile of the difference between PV generation and load in the previous 6 

hours, only among those directly connected to the node chosen in the previous stage. 

 

 

 

 

Figure 4-4. Scenario tree obtained for 200 initial scenarios and 3 centroids. In red, an example of the solution 

provided by the decision-making function. 
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4.4. Numerical	tests	

The optimization procedures have been implemented in AIMMS Developer and tested by 

using the Cplex V12.8 MIP solver on 2-GHz processors with 8 GB of RAM, running 64-b 

Windows.  

Table 4-1 compares the OF values of the stochastic solution of the two models (the one simple 

battery representation and the one including the KiBaM) by using the scenarios trees 

obtained through the k-means clustering procedure (with 3 and 4 centroids) applied to 200 

initial equiprobable PV generation and load profiles.  

TABLE 4-1 – SP SOLUTIONS AND METRICS FOR THE CASE WITH A 630 KWH BATTERY. 

Battery	model	 Simple KiBaM 

Number	of	centroids	 3 4 3 4 

OF	(€)	 38.02 38.25 61.67 61.80 

VSS	(€)	 2.59 2.84 1.11 1.12 

EVPI	(€)	 0.85 1.08 0.47 0.56 

Number	of	scenarios	in	the	tree	 64 139 64 139 

Solution	time	(s)	 1.54 2.97 3.47 8.26 

 

Table 4-1 also shows the Value of Stochastic Solution (VSS) and the Expected Value of Perfect 

Information (EVPI), which are widely used metrics of the performance of using SP models 

(Escudero	et	al., 2007). 

VSS is the difference between the expected value solution (EEV) and the stochastic solution 

(i.e., the OF value). EEV is obtained by a two-step calculation: at first, the values of b
tP  for each 

t are given by the solution of the deterministic model obtained by replacing all random 

variables by their expected values; then, these b
tP  are set as a fixed parameters and EEV is 

given by the solution of the stochastic problem. 

EVPI is the difference between the stochastic solution and the wait and see (WS) solution. WS 

is the expected value of the deterministic solutions of each scenario in the tree. 

As expected, the higher the number of centroids the longer the computational effort due to the 

enlargement of the tree, as shown by the comparison of the solution times and the number of 

scenarios in the trees reported by Table 4-1 for K=3 and K=4. However, a more detailed 
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clustering increases the VSS, even with an initial set of scenarios not very large with respect to 

the final dimensions of the tree.  

Table 4-1 shows that the use of the more refined model of the battery increases both the OF 

values and the computation time, as expected. 

We have performed the same calculations also for a smaller battery (315 kWh instead of 630 

kWh). The results are summarized in Table 4-2 and, they show a significant increase of OF 

values, since the battery effect is less noticeable, and a decrease of both VSS and EVPI. 

TABLE 4-2 – SP SOLUTIONS AND METRICS FOR THE CASE WITH A 315 KWH BATTERY. 

Battery model Simple KiBaM 

Number of centroids 3 4 3 4 

OF (€) 65.97 66.13 80.69 80.80 

VSS (€) 1.95 2.09 0.98 0.98 

EVPI (€) 0.48 0.63 0.43 0.52 

Solution time (s) 1.17 3.47 2.97 7.39 

 

As mentioned, we compare the SP approach with the Monte Carlo simulation technique, in 

which the deterministic model is solved for each initial scenario and then the b
tP  values are 

set equal to the average of the corresponding values obtained by the deterministic solutions. 

 

Figure 4-5. Comparison between the values of the objective function for each scenario of the tree obtained by 

applying the k-means clustering with 3 centroids (630 kWh battery). 
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Figure 4-5 shows, for each scenario in the tree obtained with 3 centroids, the comparison 

between the OF values calculated by using the Monte Carlo decisions and those given by the 

intraday decision-making procedure based on the SP solution. The figure also includes the OF 

values of the deterministic solutions. SP provides in general better results with respect to 

Monte Carlo and this is confirmed also by Figure 4-6 that shows the same comparison for 50 

scenarios different from those included in the initial set. For the case of the small tree 

obtained by using 3 centroids the adoption of the SP approach needs also a shorter solution 

time, since the Monte Carlo simulations require around 5 s for the case of the simple battery 

model and 18 s if KiBaM is adopted, without parallel computing. 

 

Figure 4-6. Comparison between the values of the objective function for 50 new scenarios (630 kWh battery).  

 

Table 4-3 shows the average values of the following differences for the scenarios of the tree, 

for the initial set of 200 scenarios, and for 50 scenarios different from those of the previous 

set: 

- SP-MC: difference between the OF values given by the intraday decision-making procedure 

and the Monte Carlo solution; 

- SP-WS: difference between the OF values given by the intraday decision-making procedure 

and the deterministic solution. 

The results of Table 4-3 show the advantage of using the SP and the benefit of a more accurate 

clustering procedure. We have repeated the comparisons also for the case of the 315-kWh 

battery and the results, shown in Table 4-4, confirm in general the advantages of using 4 

centroids although the average differences are smaller than in Table 4-3. 
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TABLE 4-3 – COMPARISON BETWEEN SP AND MONTE CARLO SIMULATIONS AND BETWEEN SP AND DETERMINISTIC SOLUTIONS 
(630 KWH BATTERY). 

Battery	model	 Simple KiBaM 

Number	of	centroids	 3 4 3 4 

Scenarios	tree	
SP	–	MC (€)	 -2.51 -2.55 -0.71 -0.69 

SP	–	WS (€)	 0.97 1.13 0.55 0.60 

Set	of	initial	
scenarios	

SP	–	MC (€)	 -2.05 -2.47 -0.23 -0.34 

SP	–	WS (€)	 5.17 2.70 1.81 1.70 

Set	of	new	scenarios	
SP	–	MC (€)	 -2.28 -2.29 -0.26 -0.24 

SP	–	WS (€)	 4.85 4.84 1.91 1.92 

 

TABLE 4-4 – PERFORMANCE COMPARISON FOR THE BATTERY OF 315 KWH 

Battery	Model	 Simple KiBaM 

Number	of	Centroids	 3 4 3 4 

Scenarios	Tree	
SP	–	MC (€)	 -1.61 -1.58 -0.60 -1.58 

SP	–	WS (€)	 0.56 0.66 0.49 0.55 

Set	of	initial	
Scenarios	

SP	–	MC (€)	 -1.13 -1.44 -0.26 -0.35 

SP	–	WS (€)	 2.21 1.91 1.60 1.50 

Set	of	New	
Scenarios	

SP	–	MC (€)	 -1.12 -1.14 -0.30 -1.14 

SP	–	WS (€)	 2.81 2.79 1.67 2.79 
 

Finally, in order to show the performance of the SP approach under different conditions, the 

results obtained by using a new set of load scenarios of Figure 4-7 (that replace those of 

Figure 4-3-b) are summarized in Table 4-5 (OF values and metrics) and Table 4-6 

(comparison between SP and Monte Carlo simulations and between SP and deterministic 

solutions over several sets of scenarios). 
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Figure 4-7. Scenarios obtained for a different load profile forecast. 

 

Table 4-5 – SP solutions and metrics for the case with a 630 kWh battery and load scenarios of Figure 4-7. 

Battery Model Simple KiBaM 

Number of Centroids 3 4 3 4 

OF (€) -2.94 -2.33 9.54 9.84 

VSS (€) 1.75 2.52 1.93 2.66 

EVPI (€) 2.66 3.19 0.96 1.19 

Number of scenarios in the tree 74 169 74 169 

Solution time (s) 1.53 4.45 3.91 8.87 

 

TABLE 4-6 – COMPARISON BETWEEN SP AND MONTE CARLO SIMULATIONS AND BETWEEN SP AND DETERMINISTIC SOLUTIONS 
(630 KWH BATTERY AND LOAD SCENARIOS OF FIGURE 4-7). 

Battery	Model	 Simple KiBaM 

Number	of	Centroids	 3 4 3 4 

Scenarios	Tree	
SP	–	MC (€)	 -1.37 -1.84 -1.33 -1.94 

SP	–	WS (€)	 3.71 3.37 1.29 1.14 

Set	of	initial	
Scenarios	

SP	–	MC (€)	 -0.28 -1.06 -0.84 -1.40 

SP	–	WS (€)	 7.19 6.41 4.45 3.89 

Set	of	New	
Scenarios	

SP	–	MC (€)	 0.64 -0.39 -0.83 -1.30 

SP	–	WS (€)	 9.35 8.33 4.50 4.03 

 

The results confirm the advantages of the SP. Only in the case of the 50 new scenarios and the 

simple battery model using 3 Centroids, the average performance for the stochastic solution is 

higher than the one obtained by using the Monte Carlo solution. The use of 4 centroids 
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increases the VSS and allows to reach improved results with respect to the Monte Carlo 

technique. 

 

4.5. Conclusions	of	chapter	4	

Multistage SP represents an attractive method for the day ahead scheduling in local energy 

systems and provides improved results with respect to the application of the Monte Carlo 

method. 

The construction of the scenario tree needs to be addressed properly. The k-means clustering 

provides appropriate results even with a limited number of centroids. The computational 

effort is reasonable for the considered five-stage SP problem. 

The SP approach is also applicable to models that include a detailed representation of the 

battery under the assumption that the mixed integer linear programming characteristics of 

the model are preserved. 

Appendix C describes the developed algorithms. 
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5. Conclusions 

The thesis has dealt with EMS for MGs. Several models have been developed and implemented 

in the AIMMS software platform.  

As described in chapter 2, a MILP model for the real time operation of a low voltage network, 

specifically developed to be computationally compatible with its use in energy management 

systems, has been presented and validated to be integrated in the EMS of the experimental 

network GridLab district of the HES-SO Valais-Wallis in Sion, Switzerland. The 

implementation of the developed optimization algorithm in the supervisory control and data 

acquisition (SCADA) architecture of the experimental system is included. 

The model includes the characteristics of: power lines of the LV network, non-dispatchable 

loads and generators, dispatchable generators and storage units. Decision variables are:  

- active and reactive power by the dispatchable generators and storage units,  

- on-off state of generators and storage units with limited number of on-off operations. 

The multi-objective function includes: costs associated with active/reactive energies 

absorbed and injected into the grid, costs associated with active/reactive energy production 

by dispatchable DG units and penalties associated with maximum and minimum voltage 

violations (first and second limit). 

The MILP model represents single-phase and three-phase small loads, distributed generation 

units, and storage systems. It takes into account the unbalanced operation of the LV network 

and the presence of the neutral wire.  

The comparison between the model results and the measurements gathered by means of the 

GridLab experimental network shows that the accuracy of the implemented model is 

reasonably adequate. 

The day-ahead scheduling of a local energy community (LEC) with the optimization procedure 

in presence of local generation, loads and battery storage systems that includes the 

calculation of the losses and their allocation to each transaction is presented in chapter 3.  
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The results obtained by using a centralized approach based on a MILP model are compared 

with those of a distributed optimization procedure that avoids the presence of a central 

coordinator. The distributed approach is based on the ADMM algorithm and allows to 

minimize the private information that each prosumer is required to provide to the other 

prosumers. 

For the typical number of prosumers in a LEC, both centralized and ADMM-based distributed 

approaches provides comparable results with an acceptable computation effort. 

The structure of the day-ahead scheduling procedures is consistent with the billing scheme 

and the metering units of the LEC. 

Chapter 4 has considered the uncertainty associated with the load and renewable generation 

forecasts. Multistage stochastic programming (SP) represents an attractive method for the 

day ahead scheduling in local energy systems and provides improved results with respect to 

the application of the Monte Carlo method. 

The construction of the scenario tree needs has been properly addressed. The k-means 

clustering provides appropriate results even with a limited number of centroids. The 

computational effort is reasonable for the considered five-stage SP problem. 

The SP approach is also applicable to models that include a detailed representation of the 

battery (KiBaM model) under the assumption that the MILP characteristics of the model are 

preserved. 

It is worth mentioning that, since LV feeders may include not only non-dispatchable resources 

but also dispatchable ones (e.g., heat and power cogeneration units) the models described in 

chapter 3 and 4 can be extended to include dispatchable DG and also to take into account 

reactive power flows. This can be reasonably considered the subject for future work. 

Furthermore, the SP approach (described in chapter 4) con be included in the distributed 

procedure, based on the ADMM method. 

Another interesting investigation can be focused on the experimental validation of the 

consensus distributed approach by using low cost hardware technologies for the control and 

communication.  
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Appendix A : Energy storage systems in 

distribution networks 

A.1. Introduction	

Several type of Energy Storage System (ESS) are used in electrical power systems. The most 
common ones were examined by the IRENA agency (IRENA, 2015) and can be catalogued in: 

- Pumped hydro storage; 

- Compressed air energy storage; 

- Flywheel energy storage; 

- Lithium-ion batteries; 

- Lead-acid batteries; 

- Flow batteries; 

- High temperature batteries. 

Among the possibilities mentioned, the most evolving sector is certainly the one of the 

batteries. The speed at which stationary storage devices are improving will allow for a 

significant drop in prices to 2030 (more than halved compared to today's).  

This cost-cutting will allow the batteries to compete with the pumping hydroelectric, the 

number one technology today in the world energy storage market and small-scale distributed 

applications could increase considerably, thereby producing a greater penetration into the 

renewable energy market (Figure A-1). 

In this context, the most promising technologies on the market today are lithium-ion 

batteries, high-temperature batteries (based on sodium-sulfur cells and sodium-metal 

chlorides) and flow batteries. For these three categories, reductions in installation costs vary 

from 54% to 66% (Figure A-2). 
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Figure A-1. Global capacity and revenues forecast for electro-chemical storage, utility scale applications. Adapted 
by IRENA, 2015. 
 

 

Figure A-2. Main types of battery, evolution costs. Adapted by IRENA, 2017. 
 

The downward trend is clear already today, as evidenced by the case of lithium batteries. 

These devices, in the transportation sector, have visibly reduced prices in the space of 6 years 

(minus 76% from 2010 to 2016). Stationary storage downward trend has slower times than 

electric mobility, but development in the two compartments is inextricably linked.  The 

growth in the use of lithium-ion batteries in electrical mobility (EV) and in the transportation 

sector in general in the next 10-15 years will help to reduce the cost of stationary applications 

(in particular electrical energy systems); the electric mobility will also open new 

opportunities for cars to provide services from vehicle to grid (V2G), helping to feed a 

virtuous circle renewable-storage. 
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It is estimated that by 2030 the life of lithium-ion devices will have been increased by 50 

percent, raising the number of charge-discharge cycles by more than 90%. Consequently, the 

prices for these plants could fall below 200 dollars per kilowatt. For this reason, the stationary 

battery-based storage sector should move from 2 GW, currently installed worldwide, to over 

175 GW by the end of the next decade, while at the same time pumping hydroelectric should 

reach 235 GW. 

 

A.2. Technologies	

A very important part in the ESS field is the electrochemical storage batteries. The most 

common technologies used in the production of batteries are the following:  

- acid lead accumulators; 

- lithium-ion battery;  

- sodium-nickel chloride battery; 

- sodium-sulphur battery;  

- nickel-cadmium battery;  

- electrolyte circulating Redox battery of vanadium (VRB). 

In the following part, the scientific evolution of the technology in this sector is represented: 

some non-exhaustive insights will then be given, especially considering the rapid 

development of the segment. 

A substantial cost reduction could be achieved by improving technologies based on less noble 

elements of lithium. In Minah	Lee,	Jihyun	Hong,	Jeffrey	Lopez,	Yongming	Sun,	Dawei	Feng,	Kipil	

Lim,	William	C.	Chueh,	Michael	F.	Toney, 2017 a sodium device is proposed. The device can 

store the same amount of energy as the best lithium batteries and it is convenient for all those 

applications where the weight factor has little relevance (for example in stationary storage). 

In addition, this type of battery not requires the necessary lithium precautions, to avoid 

explosions or short circuits. There is an improvement in the production process by sodium 

and Mio-Inositol (the organic compound present in the salt) that allows the electrons flow and 

greatly increases the performance of the battery. The prototype of the built-in sodium battery 

has a reversible capacity of 484 mAh/g, an energy density of 726 Wh/kg, an energy efficiency 

of more than 87% and a good preservation of the cycle. Comparing lithium and sodium on the 

economic front, the latter would save up to 80 percent of the costs. 
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With regard to the technologies suitable both for stationary applications and electric-mobility 

(characterized by rapid recharge times and low specific weight) the Super Charge ion Battery 

(SCiB) technology based on lithium-ions (Kobayashi, 2014) is a promise. The device grants in 

the structure a titanate-lithium anode, almost inert material (as a substitute of graphite) and 

it is able to shows good recharge performance and greater safety. For the positive electrode a 

titanium-niobium oxide is used.  The process allows to organize this material in a crystalline 

structure able to store the lithium ions more efficiently. As indicated in the experimental 

results, SCiB would be able to keep more than 90% of its capacity after 5,000 charge-

discharge cycles, with a fast charging time (six-minute). 

An innovative type of electro-chemical battery for electric-mobility sector is the Li-Oxygen 

technology - Semi-Solid flow Li-O2 battery (SFLOB) – (Soavi	 et	 al., 2017). The solid-flow 

battery can store up to five times the energy of a common battery type and combines the 

following technologies in the same device: 

- high voltage operation (2, 5-3.0 V);  

- exceptional high charge capacity (> 500 mAh/g total weight of catolite); 

- high discharge rate; 

- energy density from 5 to 10 times higher than conventional.  

Potentially, the battery allows an electric car to reach the same autonomy of a conventional 

cars; recharge of the battery can be done simply replacing the electrolyte fluid (which is also 

the cathode). 

 

A.3. Applications	

In the literature there are numerous studies and applications related to the integration of ESS 

in the distribution and transmission networks and in MGs with the presence of renewable 

sources. 

The inclusion of a battery in a LV MG, including management algorithm for optimization of the 

network, is described in Adinolfi	et	al., 2017. It is carried out at the Department of Economics 

of the University of Genoa. The MG includes a 20 kWp PV system on the roof of the building 

and a 12 kWh ESS accumulator located in the MV/LV substation. The MILP optimization 

foresees the maximization of the production of the microgrid and, at the same time, the 

minimization of PV production curtailment, considering the PV forecast and the 
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measurements in the field for the real time operations. The program results are the active 

power of the MG and the SoC of the ESS; the algorithm is implemented in the Distribution 

Manager System installed on the MG.  

In Lilla	et	al., 2017 a distributed ESS combined with DG for each prosumer in a LV MG is 

represented. The MILP optimization model for the real time operation of the MG with various 

feeders provides for the connection of traditional users and consumer (with conventional 

generation, PV and batteries for each prosumer). The algorithm returns the dispatchable 

active and reactive power of each generator. The objective function to minimize is composed 

of various costs: active and reactive energy exchange with the DSO, the energy provided by DG 

and ESSs and the penalties for exceeding the voltage tolerance in two separate thresholds (± 

3% and ± 10% of Vn). The model allows to weigh the costs and the penalties in order to 

promote the minimization of one or more variables. Experimental validation was performed 

at the GridLab (University of Western Switzerland). 

A relevant example of a ESS (lithium-titanium battery group with a capacity of 500 kWh) 

connected to the MV/LV substation, with power flows control in the MV feeders, is provided 

in Sossan	et	al., 2016. The model represents a method for the day-ahead scheduling (Dispatch 

plan). It is based on the control of the SoC with forecast of loads and PV as input and 

dispatching power as a decisional variable. For the real time operation, the dispatch plan is 

corrected using an MPC algorithm to recalculate the active power exchanged between ESS and 

MG.   

The inclusion of an ESS in a transmission system would bring significant advantages. In Fiorini	

et	al., 2017 the optimum size of the storage in a transmission line (with high penetration of 

non-programmable renewable sources) is analyzed. Production costs are optimized in a 24-

hour horizon. The study shows that an adequate size of the batteries can be a key step for a 

more flexible and smarter use of the storage in the transmission network. The analysis shows 

that the choice of the place of the storage does not have a significant influence on the duration 

of the overload of the lines. Furthermore, the introduction of the storage seems to reduce 

considerably the congestion of the critical corridors. The proposed method shows that the ESS 

placed near the generation from renewable source does not automatically imply an 

improvement in the overload of the lines. Better effects are achieved with a placement in the 

critical nodes. 
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In the field of the electric-mobility, Barsali	et	al., 2016 analyzes the inclusion of a stationary 

storage in a vehicle service charging station, assuming that the recharge of the vehicles is 

excluded or included in the optimization system. The result is appreciable, especially when 

the vehicle recharging process is mainly concentrated during the hours of the day. Moreover, 

when the process is optimized by the charging station, the stationary storage contribution is 

abolished using the batteries installed on the vehicles. 

No shortage studies on the ageing and wear of batteries, to understand both the adequacy of 

the main technologies for stationary uses, and to develop models that can preserve the 

investment to introduce the storage in the network. 

In Ceraolo	et	al., 2016 an experimental evaluation of "high power" and "super high power" 

lithium batteries, even in comparison with other types of storage such as supercapacitors, is 

performed. The study considers the charge and discharge speeds and the working 

temperatures of the battery. It is demonstrated that the capacity of these types of batteries 

remains unchanged during the execution of hundreds or thousands of micro-cycles, thus 

confirming the vocation of these devices for stationary power applications. 

Considering the wear of the batteries in the network management model, in Bordin	et	al., 

2017 a MILP optimization model of an island microgrid is presented. The microgrid is 

composed of users, photovoltaic and Pb-Acid battery. The procedure is developed taking into 

account the wear of the battery in various models. As the wear cost increases, the models 

foresee the reduction of the discharge depth or the reduction of the charge-discharge cycles of 

the battery. 

In Foggo	&	 Yu, 2017 a realistic degradation of the battery cycle is used to examine the 

profitability of the storage and to try to increase profits by mitigating this phenomenon. An 

approximate linear degradation model is developed for the co-optimization, considering the 

ancillary services provided to the network. The simulation shows that 29% of the value of the 

storage system is lost due to the degradation phenomenon and with the co-optimization 

model the loss is reduced to 3.3% (corresponding to about one year more battery life). 
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Appendix B : GridLab 

B.1. Configuration	

GridLab experimental MG is composed of four feeders reproducing LV underground or 

overhead lines, 2-km-long each one (Figure 2-1). ABB ACS800 industrial drives emulate the 

three-phase controllable prosumers (12 in total). Electrical parameters of each prosumer and 

of each feeder are monitored by Siemens-Sicam P power meters. Each pair RL–XL is realized 

by actual resistors and inductors whose values shows in Table B-1 and reproduce the 

electrical equivalent of 500 m length of 95-mm2 low-voltage line. More specifically, feeder A, C 

and D reproduce overhead lines (OH) whereas feeder B reproduces a buried line (UG). Each 

feeder is powered by a buried line and section 3x6 mm2.  

TABLE B-1 – MEASURED ELECTRICAL PARAMETERS OF THE FEEDERS. 

Feeder RL, mΩ XL ,mΩ Section, mm² Lenght, m Line Type 

A 150 141.4 95 500 OH 

B 150 40.2 95 500 UG 

C 150 141.4 95 500 OH 

D 150 141.4 95 500 OH 

 
The MG system control is developed and assigned to a Python modular program. The standard 

for the communication between prosumers and central control is an Ethernet IEC 61850-90-7 

MODBUS RTU. 

 

B.2. Preliminary	operation	

The preliminary operation to validate the model has been carried out using a simplified 

configuration of the GridLab District, with a single feeder and without AVR, schematically 

illustrated in Figure B-1. The AIMMS optimization program model has been configured in 

term of buses and branches (with measured lines parameters, as shown in Table B-1).  
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Figure B-1. Simplified topology used for preliminary operation. 

 

Figure B-2. Voltage profile in the feeder “B”. 

 

Figure B-3. Currents in the prosumers 1, 2 and 3, feeder “B”. 

 

             

Figure B-4. Reactive power Q, set and measured values. Prosumer 2, feeder “D”. 
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Some results of preliminary tests are reported in Figure B-2., Figure B-3. and Figure B-4. 

Voltage, current and power differences are very small, but significant differences in the 

currents were found for powers lower than 1 kW, due to the prevalence of reactive power 

exchanged with the grid. Background reactive current absorbed by the inverters leads high 

harmonic distortion (with consequent very high THD). As example, in Figure B-5. and Figure 

B-6.  measurements by the oscilloscope are shown. 

In order to further reduce differences between predefined power set-points sent by the 

control system to prosumers and actual magnitude of the power, we decided to introduce in 

the control system a software module, to pass from open chain control to feedback control 

with PID power regulator, in Python environment. In Figure B-7. the block diagram of the 

application is shown. The new set point to send to the prosumers is obtained by the sum of 

the set point and the output of the PID control. “C” block is the transduction module to allow a 

power measurement directly in W and VAr. 

 

Figure B-5. Voltage (green) and current (red) trends; power set: P=0 W, Q=700 VAr. 

 

 

Figure B-6. Harmonic analysis; power set: P=0 W, Q=0 VAr. 
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Figure B-7.  P and Q feedback control. PID set parameters: kp=0.5, ki=0.3, kd=0.2 and dt=1 S. 

After preliminary checks and tuning of the MG with feedback control, several tests on the 

entire network are performed. With the introduction of PID regulation the average of the 

differences is reduced less than 3% for P and less than 4% for Q. A comparison between set 

values and measured values of reactive power is represented e.g. in Figure B-8.. 

 

Figure B-8. Reactive power Q, set and measured values. Prosumer 1, feeder “D”, with PID control. 
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B.3. GridLab	Laboratory	

Some photos of the GridLab laboratory are shown below (Figure B-9., Figure B-10. and Figure 

B-11.). 

 

 
Figure B-9. GridLab laboratory general overview. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-10. GridLab laboratory: drives and local control panels. 

 

ABB‐ACS 800 
Control Panel Control Panel 

Central Control 
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Figure B-11. GridLab laboratory: local control panel details. 
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Appendix C : Optimization Tools and 

Algorithms 

C.1. AIMMS	and	the	mathematical	programming	

The development of the models has been carried out by using the AIMMS (Advanced 

Interactive Multidimensional Modelling System) optimization environment, which is a well-

known environment used in industry and universities for the solution of optimization and 

planning problems. It consists of an algebraic modelling language, an integrated development 

environment, and establishes a link with various solvers (CPLEX, Gurobi, MOSEK, CBC, and 

other ones). It can be easily expanded to incorporate other advanced commercial solvers. The 

AIMMS modeling language offers a sequence of advanced modeling concepts not found in 

other languages, as well as a complete graphical user interface for both Developers and End 

Users. 

AIMMS supports a wide range of types of mathematical optimization problems: linear 

programming, quadratic programming, nonlinear programming, mixed-integer programming, 

mixed-integer nonlinear programming, global optimization, complementarity problems 

(MPECs), stochastic programming, robust optimization, constraint programming and it can 

take into account the uncertainties. 

The models implemented are a MILP and MIQP. For their solution CPLEX MIP-MIQP solver has 

been used. 

The following mathematical elements can be used to formulate a model: 

- mathematical concepts such as sets, parameters, variables, constraints, etc.; variables 

are unknown quantities to be determined and can be either scalar or indexed, and their 

values can be restricted in several ways; 

- operators such as unary operators (+, -, NOT), comparation operators (equal to, not 

equal to, etc.), algebraic operators (addition, subtraction, multiplication, etc.), logical 

operators (AND, OR, etc.), differential operators and integral operators; 

- data: which links a model to a real-world situation. 
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From a practical point of view, after inserting sets, parameters, variables and constraints, the 

procedures for running the program must be written. All procedures and instructions to be 

executed are invoked in order of execution in the "Main	execution", where the solver should be 

set. At least one procedure ("Main	Initialization") is required to initialize all the parameters of 

the model, typically by reading one or more external files. For the output of the program, 

procedures can be set for the direct graphical display of the results or for writing external files 

that may be readable and able to be processed by Matlab or other programs. 

More information about the environment are reported in the AIMMS manuals: language 

reference (LR), language reference stochastic programming (LRSP), function references (FR), 

optimization modeling (OM) and user’s guide (UG). 

 

C.2. Algorithms	

The following tables show a schematic of the algorithms, the initial parameters and the 

network configuration parameters.  

Table C-1- Execution procedure for P - Q convergence (dispatchable resources) described in Chapter 2 

Algorithm	

1. Main Initialization: read	parameters	

         Iteration = 1 

									 ,      ,   nom nom
re re im imV V V V phase bus= = " "  

2. Solve Minimize	OF (2.8) 

3. until	 max max,  > ,     ,   P Q P Q phase bus       " " 	

									 1 1,      ,   re re im imV V V V phase bus   - -= = " "  

									 1,        ,   P P Q Q phase bus   -= = " " 	

         Compute 

        max
1= max( - )      ,    P P P P phase bus   - " " "  

        max = max( - )      ,    Q Q Q Q phase bus   " " " 	

									 k k iteration k  = + ⋅ 	

         repeat Solve Minimize	OF_iter (2.7), (2.9) 

         return the optimal	solution	

									Iteration = Iteration + 1	

4. Write Results	
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TABLE C-2 - SET AND PARAMETERS UPLOADED IN “MAIN INITIALIZATION” (CHAPTER 2). 

Set,	Parameter	 Symbol	–	Value	 Set,	Parameter	 Symbol	–	value	

Time horizon set T	= {1…24} Loads power rate 9 kVA 

Step time dT	= 1	h	 Non-dispatchable DG power rate 10 kVA	

Network branch set B	= {1…16} Dispatchable DG power rate 12 kVA	

Branch impedance Table B-1 Batteries Capacity 8 kW / 8 kWh 

Prosumer set k	= {1…12} Network configuration  Table C-3 

Voltage rate Vn	= 230	V	 Branch impedance configuration Table B-1 

Voltage first limit +3%Vn	   -6%Vn Parameter	 Price	

Voltage second limit +10%Vn	   -15%Vn Active energy imported 0.1 (€/kWh) 

Min cos at slack bus 0.8 Active energy exported 0.05 (€/kWh) 

Battery efficiency factor ηch	=	ηdis	= 0.90 Active energy by dispatchable DG 
and by batteries 

0.08 (€/kWh) 

Tolerance to end program max max,   P Q   = 10 W Reactive energy by dispatchable 
DG and by batteries 

0.08 (€/kWh) 

Branch current limit Imax = 200 A Voltage violation (second limit) 1 (€/V) 

Initial kν 0.1 Voltage violation (first limit) 0.1 (€/V) 

 

TABLE C-3 -  CONFIGURATION NETWORK (FIGURE. 2.1). TYPE 1: OH LINE - TYPE 2: UG BURIED LINE (CHAPTER 2). 

		Bus	i	 Bus	j	
Length	
(km)	

Branch	
Type	 Imax	(A)	

PCC A5 0.01 type1 200 

A5 A4 0.5 type1 200 

A4 A3 0.5 type1 200 

A3 A2 0.5 type1 200 

A2 A1 0.5 type1 200 

PCC B5 0.01 type2 200 

B5 B4 0.5 type2 200 

B4 B3 0.5 type2 200 

B3 B2 0.5 type2 200 

B2 B1 0.5 type2 200 

PCC C5 0.01 type1 200 

C5 C4 0.5 type1 200 

C4 C3 0.5 type1 200 

C3 C2 0.5 type1 200 

C2 C1 0.5 type1 200 

PCC D5 0.01 type1 200 

D5 D4 0.5 type1 200 

D4 D3 0.5 type1 200 

D3 D2 0.5 type1 200 

D2 D1 0.5 type1 200 
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TABLE C-4- LINE PARAMETERS (FIGURE. 2.1). TYPE 1: OH OVERHEAD LINE - TYPE 2: UG BURIED LINE (CHAPTER 2). 

rb(ph,	ph,'type1')	 	 	 	 	 		xb(ph,	ph,'type1')	 	 	 	
			 A	 B	 C	 N		 	 			 A	 B	 C	 N		

		A	 0.300 0 0 0  		A	 0.2828 0 0 0 

		B	 0 0.300 0 0  		B	 0 0.2828 0 0 

		C	 0 0 0.300 0  		C	 0 0 0.2828 0 

		N	 0 0 0 0.300  		N	 0 0 0 0.2828 
           
rb(ph,	ph,'type2')	 	 	 	 	 		xb(ph,	ph,'type2')	 	 	 	
			 A	 B	 C	 N		 	 			 A	 B	 C	 N		

		A	 0.300 0 0 0  		A	 0.0816 0 0 0 

		B	 0 0.300 0 0  		B	 0 0.0816 0 0 

		C	 0 0 0.300 0  		C	 0 0 0.0816 0 

		N	 0 0 0 0.300  		N	 0 0 0 0.0816 
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TABLE C-5- EXECUTION PROCEDURE, CENTRALIZED AND DISTRIBUTED MODEL'S ALGORITHMS DESCRIBED IN CHAPTER 3. 

Algorithm	1	–	Centralized	Model	 Algorithm	2	–	Distributed	Model	

Stage	1:	ideal	network	

1. Main Initialization: read	parameters 

2. Solve MinCosts_OF (3.1) 

3. Compute:  

     Branches	Power	Flow,	Branch	Losses,	

					Losses	allocation	for	each	power		

					transaction	

     Equations (3.13) -(3.20) 

4. Write Results	
 

Stage	1:	ideal	network	

1. Main Initialization: read	parameters 

     Iteration = 1 

					Price	λ(k,t)	=	Utility	grid	price(t)/2	and	m	=	10‐5 

2. until	|Primal	Residual(k,t)|	>					prosumer	k,	t	

							Compute primal	residual(k,t)	(3.34), dual	residual(k,t) (3.37)	

							Update		(3.36)	

       Price	λ	(k,t)=Price	λ	(k,t)+2m··	Primal	Residual(k,t) (3.35)	

             if (sum | Primal Residual|) < 1 kW (100 W) (3.38) 

                 		m = 10-4 (10-3) 

             endif 

					repeat Solve MinCosts_OF			prosumer	k,	t	(3.29)	

					return the optimal	solution	

					Iteration = Iteration + 1	

 3. Compute:  

      Branches	Power	Flow,	Branch	Losses,	(3.13)- (3.20)	

						Losses	allocation	for	each	power	transaction (3.22)- (3.24)  

      Efficiency	for	each	transaction, (3.39)- (3.41)	

4. Write Results	

Stage	2:	with	network	power	losses	

1. Replace power	balance	constraints	

				(considering	the	losses)	(3.21)		

					Read	new	constraints:	

- 	to	avoid	new	energy	transactions	(3.25)  
- 	losses	calculation (3.22)- (3.24) 

2.  Losses	linearization	procedure(3.26).(3.28) 

3.  Solve MinCosts_OF_losses	(3.1)	

4.  Write Results	

Stage	2:	with	network	power	losses	

1. Replace power	balance	constraints	(with	losses)	(3.42) 

					New	constraints	(3.32)- (3.33)	

					New	constraints	to	avoid	new	energy	transactions	(3.25)	

     iteration = 1	

					Price	λ	(k,t)	=	Utility	grid	price(t)/2	and	m	=	10‐5 

2. until	|Primal	Residual(k,t)|	>					prosumer	k,	t	

       Compute primal	residual(k,t)	(3.34), dual	residual(k,t) (3.37)	

							Update		(3.36)	

       Price	λ(k,t)=Price	λ(k,t)+2m··	Primal	Residual(k,t)	(3.35)	

             if (sum | Primal Residual|) < 1 kW (100 W) (3.38) 

                 		m = 10-4 (10-3) 

             endif 

					repeat Solve MinCosts_OF_losses			prosumer	k,	t	(3.29)	

					return the optimal	solution	

					Iteration = Iteration + 1 

3. Write Results	
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TABLE C-6 - SET AND PARAMETERS UPLOADED IN “MAIN INITIALIZATION”, CENTRALIZED AND DISTRIBUTED MODEL (CHAPTER 3). 

Set,	Parameter	 Symbol	–	Value	 Set,	Parameter	 Symbol	–	value	

Time horizon set T	= {1…96} Power demand PD_k		--> Loads profiles 

Prosumer set Ω	= {1…10} Power generation PG_k  --> PV profiles	

Network branch set B	= {1…10} Installed PV surface Sk --> Table C-7	

Step time dT	= 0.25	h	 Batteries Capacity Emax_k	--> Table C-7	

Voltage rate Vn	= 230	V	 PV technology efficiency kPV		= 0.16 	

Branch resistance Rb	= 21 mΩ	 Battery efficiency factor ηch	=	ηdis	= 0.96	

Configuration matrix  Ab,k,j (prosumer – utility 
exchanges) 

Byung utility energy price buy --> profile 

Configuration matrix AGrid_b,k (prosumers 
exchanges) 

Selling utility energy price sell =	0.5 buy 

Primal residual tollerance  = 50 W  	

 

TABLE C-7- BATTERIES SIZES AND PV INSTALLED SURFACE, CENTRALIZED AND DISTRIBUTED MODEL (CHAPTER 3). 

k	
	 	

Battery	
Capacity	
(kWh)	

Installed	
Surface	
PV	(m2)	

prosumer1 5 32 
prosumer2 3 14 
prosumer3 4 21 
prosumer4 2 32 
prosumer5 3 28 
prosumer6 1 14 
prosumer7 2 42 
prosumer8 2 32 
prosumer9 2 14 
prosumer10 6 42 

 

TABLE C-8 - NETWORK CONFIGURATION MATRIX (FIGURE. 3.1), UTILITY GRID EXCHANGES (CHAPTER 3). 

Agrid_b,k	
Prosumer	

1	
Prosumer	

2	
Prosumer	

3	
Prosumer	

4	
Prosumer	

5	
Prosumer	

6	
Prosumer	

7	
Prosumer	

8	
Prosumer	

9	
Prosumer	

10	

branch1	 1 1 1 1 1 0 0 0 0 0 

branch2	 0 1 1 1 1 0 0 0 0 0 

branch3	 0 0 1 1 1 0 0 0 0 0 

branch4	 0 0 0 1 1 0 0 0 0 0 

branch5	 0 0 0 1 1 0 0 0 0 0 

branch6	 0 0 0 0 0 1 1 1 1 1 

branch7	 0 0 0 0 0 0 1 1 1 1 

branch8	 0 0 0 0 0 0 0 1 1 1 

branch9	 0 0 0 0 0 0 0 0 1 1 

branch10	 0 0 0 0 0 0 0 0 0 1 
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TABLE C-9 – NETWORK CONFIGURATION MATRIX (FIGURE. 3.1 - FEEDER 1, BRANCH 3), PROSUMERS EXCHANGE (CHAPTER 3). 

Ab,k,j	
Prosumer	

1	
Prosumer	

2	
Prosumer	

3	
Prosumer	

4	
Prosumer	

5	
Prosumer	

6	
Prosumer	

7	
Prosumer	

8	
Prosumer	

9	
Prosumer	

10	

Branch	3	 --------- ------------ ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- 

prosumer1	 0 0 -1 -1 -1 0 0 0 0 0 

prosumer2	 0 0 -1 -1 -1 0 0 0 0 0 

prosumer3	 1 1 0 0 0 1 1 1 1 1 

prosumer4	 1 1 0 0 0 1 1 1 1 1 

prosumer5	 1 1 0 0 0 1 1 1 1 1 

prosumer6	 0 0 -1 -1 -1 0 0 0 0 0 

prosumer7	 0 0 -1 -1 -1 0 0 0 0 0 

prosumer8	 0 0 -1 -1 -1 0 0 0 0 0 

prosumer9	 0 0 -1 -1 -1 0 0 0 0 0 

prosumer10	 0 0 -1 -1 -1 0 0 0 0 0 
 

TABLE C-10 – NETWORK CONFIGURATION MATRIX (FIGURE. 3.1 - FEEDER 2, BRANCH 7), PROSUMERS EXCHANGE (CHAPTER 3). 

Ab,k,j	
Prosumer	

1	
Prosumer	

2	
Prosumer	

3	
Prosumer	

4	
Prosumer	

5	
Prosumer	

6	
Prosumer	

7	
Prosumer	

8	
Prosumer	

9	
Prosumer	

10	

Branch	7	 --------- ------------ ----------- ----------- ----------- ----------- ----------- ----------- ----------- ----------- 

prosumer1	 0 0 0 0 0 0 -1 -1 -1 -1 

prosumer2	 0 0 0 0 0 0 -1 -1 -1 -1 

prosumer3	 0 0 0 0 0 0 -1 -1 -1 -1 

prosumer4	 0 0 0 0 0 0 -1 -1 -1 -1 

prosumer5	 0 0 0 0 0 0 -1 -1 -1 -1 

prosumer6	 0 0 0 0 0 0 -1 -1 -1 -1 

prosumer7	 1 1 1 1 1 1 0 0 0 0 

prosumer8	 1 1 1 1 1 1 0 0 0 0 

prosumer9	 1 1 1 1 1 1 0 0 0 0 

prosumer10	 1 1 1 1 1 1 0 0 0 0 
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TABLE C-11 - EXECUTION PROCEDURE, STOCHASTIC OPTIMIZATION (CHAPTER 4). 

Algorithm	

1. Main Initialization: read	forecast	and	parameters	

2. Scenarios	generation (Load and PV) procedure: 

        , ,

, , 1 ,

t t t

t t t

z x y

x x
 

   -

ì = +ïïíï = ⋅ +ïî
    (4.23)        St. deviation= 21 -  

3. Solve procedure for simply	battery	model 

     3.1 Solve	deterministic	model Minimize	OF	(4.1) 

     3.2	Construction	scenario	tree	k‐means	procedure: 

1. stage	1: all scenarios equiprobable 
2. stage	2: merging scenarios in Clusters (3 or 4) based 

on Euclidian distance (4.24), (4.25): 

 , , 2
( , )    1...

s

k k
t t t t

t T

d k K    
Î

= - " =å  

Intraday	 decision: comparison actual value with 
scenario tree and more similar scenario are choose 
for the next 6 hours.  

3. stage	 3‐4‐5: repeat	 procedure for each stage 
independently of the previous. 
Intraday	 decision: comparison actual value with 
scenario tree and more similar scenario are choose 
for the next 6 hours. 

     3.3 Solve	stochastic	model Minimize	Stoch_OF	(4.22) 

     3.4 Solve	Monte	Carlo	method Minimize	Stoch_OF	(4.22)	

     3.5 Solutions	comparison and write	Results	

4. Repeat	procedure	for	kinetic battery model (KiBaM)	

     4.1 Solutions	comparison and write	Results	

TABLE C-12 - SET AND PARAMETERS UPLOADED IN “MAIN INITIALIZATION”, STOCHASTIC OPTIMIZATION (CHAPTER 4). 

Set,	Parameter	 Symbol	–	Value	 Set,	Parameter	 Symbol	–	value	

Time horizon set T	= {1…96} Batteries Storage Capacity Emax =315/630 kWh	

Step time ΔT	= 0.25	h	 Rated values of the battery 
converter 

r
bP =	630 kW 

Voltage rate Vn	= 230	V	 Battery rate constant k = 9.51 1/h 

Power demand forecast Pload(t,k)		--> profiles Battery capacity ratio c = 0.61 

Power PV generation forecast Ppv(t,k)  --> profiles	 Battery max. charge rate a = 2 A/Ah 

Active energy imported price   

(23.00-7.00) - (7.00 – 23.00) 

impp =																																		
0.131-0.172 (€/kWh)	

State of charge min 

State of charge max 
min

max

0.1

1

SoC

SoC




 

Active energy exported price 0.5exp impp p   Battery converter efficiency 
factor (charge, discharge) 

ηc	= 0.95 

ηd	= 0.97 

Max. DSO power exchange  r
gridP = 6 MW Battery efficiency factor 

(KiBaM) 
ηb	= 0.90 

Confidence Interval PV - Load c.i. = 0.2 - 0.2   
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Acronyms 

AC Alternating Current 
ADMM Alternating Direction Method of Multipliers 
AIMMS Advanced Interactive Multidimensional Modelling System 
AVR Automatic Voltage Regulator 
BES Battery Energy System 
DG Distributed Generation 
DSO Distribution System Operator 
EMS Energy Management System 
ESS Energy Storage System 
EV Electric Vehicle 
EVPI Expected Value of Perfect Information 
KiBaM Kinetic Battery Model 
LEC Local Energy Community 
LV Low Voltage 
MG Micro-Grid 
MILP Mixed Integer Linear Programming 
MIQP Mixed Integer Quadratic Programming 
MPC Model Predictive Control 
MV Medium Voltage 
OF Objective Function 
OH Overhead Lines 
PCC Point of Common Coupling 
PV Photovoltaic 
RES Renewable Energy Sources 
RTU Remote Terminal Unit 
SCADA Supervisory Control and Data Acquisition 
SG Smart Grid 
SoC State of Charge 
SoE State of Energy 
SP Stochastic Programming 
UG Buried Line (Underground) 
V2G Vehicle to grid 
VSS Value of Stochastic Solution 
WS Wait and See 

 


