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ABSTRACT

In this Thesis, we used state of the art radio and X-ray datasets and techniques to derive
constraints on the formation mechanisms of diffuse radio emission in merging galaxy clusters.
In particular, turbulence is believed to be responsible for the formation of the central and likely
spherical sources called radio halos, while shocks are the origin of the elongated and polarized
emissions found in cluster outskirts known as radio relics. Although this scenario seems sup-
ported by current observations, the processes that originate these synchrotron sources are still
poorly constrained.

An important goal achieved during the Thesis is a progress on the relic–shock connection
and on the origin of radio relics. This was obtained thanks to the detection in the X-rays of
new shocks in merging galaxy clusters. In combination with the analysis of radio observations,
this allowed us to derive efficient constraints on the mechanisms of particle (re)acceleration and
on the magnetic fields in relics. Notably, we demonstrated for the first time, in an homoge-
neous way, that merger shocks can not reproduce the luminosity of radio relics if particles are
accelerated from the thermal pool. This strongly support that other mechanisms, such as shock
re-acceleration, are involved in the formation of this kind of sources.

LOFAR is a new generation interferometer that is providing a revolutionary view of clus-
ters at low frequencies. For this reason, the exploitation of LOFAR observations represented a
central task of the Thesis. We used LOFAR observations in combination with X-ray and radio
data coming from other facilities to study non-thermal phenomena in two dynamically complex
cluster mergers providing also first hints of a radio bridge of emission connecting two clusters in
a pre-merging phase. Our results proved the extraordinary potential of LOFAR in galaxy cluster
science.





© Peanuts





Contents

List of acronyms xvii

Nomenclature xxi

Thesis outline xxv

1 Galaxy clusters: focus on mergers and non-thermal phenomena 1

1.1 Galaxy clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Mass determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The intra-cluster medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Microphysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Thermal emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 The Sunyaev-Zel’dovich effect . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Non-thermal components . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Galaxy cluster mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Impact velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Diffuse radio sources in merging galaxy clusters . . . . . . . . . . . . . . . . . . . 16

ix



x Contents

1.4.1 Radio relics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Radio halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Origin of radio relics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Adiabatic compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.2 Diffusive shock acceleration . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.3 Shock re-acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Origin of radio halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.1 Hadronic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.2 Turbulent re-acceleration models . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Non-thermal X-ray emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 A shock at the radio relic position in Abell 115 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 X-ray data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Radio data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Radio relic–shock connection . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 Acceleration efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 AM& 3 shock for El Gordo and the origin of the NW radio relic 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 X-ray data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Radio data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 X-ray/radio analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Relics and shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



Contents xi

3.3.3 Constraints on the downstream magnetic field . . . . . . . . . . . . . . . . 47

3.3.4 Acceleration efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.5 Overall considerations on El Gordo . . . . . . . . . . . . . . . . . . . . . 49

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 IC emission and magnetic fields in radio relics: the case of El Gordo 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The definitive approach to detect IC . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 El Gordo: the best target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Future steps toward the detection of IC emission . . . . . . . . . . . . . . . . . . . 56

4.4.1 Feasibility study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Impact of the discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Shock acceleration efficiency in a sample of radio relics 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Relic sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Methods and data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Chandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 XMM-Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.3 Surface brightness and density profiles . . . . . . . . . . . . . . . . . . . . 63

5.4 Computation of the acceleration efficiency . . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 X-ray and DSA Mach numbers . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Shocks and cold fronts in merging and massive galaxy clusters: new detections with

Chandra 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Cluster sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xii Contents

6.3 Methods and data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1 X-ray data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.2 Edge detection filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.3 Surface brightness profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.4 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Characterization of the edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.1 Detections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5.2 Summary of the detected edges . . . . . . . . . . . . . . . . . . . . . . . 111

6.5.3 Non-detections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Galaxy cluster science with LOFAR 121

7.1 The LOw Frequency ARray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.2 Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 LOFAR 2.0 and LOFAR-IT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 The impact of LOFAR in the study of merging galaxy clusters . . . . . . . . . . . 128

7.4 The LOFAR Two-meter Sky Survey . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 LOFAR HBA data calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 LOFAR, GMRT, and XMM-Newton observations of the cluster chain Abell 781 135

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2.1 LOFAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2.2 GMRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2.3 XMM-Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.3.1 The peripheral emission in A781 . . . . . . . . . . . . . . . . . . . . . . . 139

8.3.2 X-ray discontinuities in the ICM . . . . . . . . . . . . . . . . . . . . . . . 143



Contents xiii

8.3.3 Constraints on the radio halo emission . . . . . . . . . . . . . . . . . . . . 145

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.4.1 On the nature of the peripheral radio emission . . . . . . . . . . . . . . . . 146

8.4.2 A triple merger in A781 . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9 LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study

of the cluster pair 151

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.2.1 LOFAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.2.2 GMRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2.3 VLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.2.4 Integrated synchrotron spectra and source subtraction . . . . . . . . . . . . 154

9.2.5 Chandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.3.1 A1758N radio halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.3.2 A1758S radio halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.3.3 A1758S candidate radio relic . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.3.4 X-ray properties of A1758N and A1758S . . . . . . . . . . . . . . . . . . 160

9.3.5 The bridge between A1758N and A1758S . . . . . . . . . . . . . . . . . . 161

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.4.1 The radio halos in the A1758 complex . . . . . . . . . . . . . . . . . . . . 163

9.4.2 Merger scenario between A1758N and A1758S . . . . . . . . . . . . . . . 164

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Thesis conclusions 169

I. Relic–shock connection and particle acceleration mechanisms . . . . . . . . . . . 169

II. Non-thermal phenomena in dynamically complex mergers . . . . . . . . . . . . . 170

III. Magnetic field in cluster outskirts . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



xiv Contents

A A SB jump across the Sausage? 175

B Galactic absorption 177

C NXB modeling 179

D Statistical precision of the fits 181

E Null results 185

F Error maps 187

G Temperature map 189

H X-ray channel spectra 191

References 195

Acknowledgments 221







List of acronyms

MISCELLANEOUS

AGN Active Galactic Nucleus

CC Cool-Core

CCD Charge-Coupled Device

CEP CEntral Processing

CR Cosmic Ray

CRe Cosmic Ray electron

CRp Cosmic Ray proton

CMB Cosmic Microwave Background

CXB Cosmic X-ray Background

DSA Diffusive Shock Acceleration

FoV Field of View

GGM Gaussian Gradient Magnitude

GH Galactic Halo

HBA High Band Antenna

HETDEX Hobby-Eberly Telescope Dark Energy Experiment

KSP Key Science Project

IC Inverse Compton

ICM Intra-Cluster Medium

INAF Istituto di AstroFisica

xvii



xviii List of acronyms

IRA Istituto di RadioAstronomia

LBA Low Band Antenna

LHB Local Hot Bubble

NCC Non Cool-Core

NXB Non-X-ray Background

RFI Radio Frequency Interference

PSF Point Spread Function

SB Surface Brightness

S/N Signal-to-Noise ratio

SNR SuperNova Remnant

SZ Sunyaev Zel’dovich

USSRH Ultra Steep Spectrum Radio Halo

X-COP XMM-Newton Cluster Outskirts Project

INSTRUMENTS

ACIS Advanced CCD Imaging Spectrometer

ASCA Advanced Satellite for Cosmology and Astrophysics

ATCA Australia Telescope Compact Array

EPIC European Photon Imaging Camera

GMRT Giant Metrewave Radio Telescope

JVLA Jansky Very Large Array

LOFAR LOw Frequency ARray

MWA Murchison Widefield Array

NuSTAR Nuclear Spectroscopic Telescope ARray

ROSAT RÖentgen SATellite

SKA Square Kilometre Array

VLA Very Large Array

WEAVE William Herschel Telescope Enhanced Area Velocity Explorer



List of acronyms xix

SURVEYS & CATALOGS

BCS Brightest Cluster Sample

eBCS extended Brightest Cluster Sample

FIRST Faint Images of the Radio Sky at Twenty-centimeter

GLEAM GaLactic and Extragalactic All-sky MWA

MSSS Multifrequency Snapshot Sky Survey

LoLSS LOFAR LBA Sky Survey

LoTSS LOFAR Two-meter Sky Survey

PSZ Planck Sunyaev Zel’dovich

MACS MAssive Cluster Survey

NORAS NOrthern ROSAT All-Sky

NVSS NRAO VLA Sky Survey

REFLEX ROSAT-ESO Flux Limited X-ray

SDSS Sloan Digital Sky Survey

TGSS ADR TIFR GMRT Sky Survey Alternative Data Release

VLSSr VLA Low-frequency Sky Survey redux

WENSS WEsterbork Northern Sky Survey

SOFTWARE & PACKAGES

AIPS Astronomical Image Processing System

CALDB CALibration DataBase

CASA Common Astronomy Software Applications

CIAO Chandra Interactive Analysis of Observations

ESAS Extended Source Analysis Software

SAS Scientific Analysis System

SPAM Source Peeling and Atmospheric Modeling

WSCLEAN W-Stacking Clean





Nomenclature

PHYSICAL CONSTANTS

σT Thomson cross-section

c Speed of light

G Gravitational constant

h Planck constant

k Boltzmann constant

M� Solar mass

me Electron mass

mp Proton mass

Z� Solar metallicity

GREEK SYMBOLS

α Spectral index of the synchrotron radiation

δ Index of the power-law electron spectrum

εB Magnetic field energy density

εph Photon field energy density

ηe Electron acceleration efficiency

Γ Photon index

xxi



xxii Nomenclature

γ Lorentz factor

γad Adiabatic index

µ Mean molecular mass

ν Radiation frequency

ρ Volumetric mass density

ROMAN SYMBOLS

B Magnetic field

Bcmb Equivalent magnetic field strength of the CMB

K Entropy

K0 Core entropy

Ke/p Electron-to-proton ratio

M500 Mass within r500

n Number density

NH Hydrogen column density

P Pressure

p Particle momentum

P1.4 Power at 1.4 GHz

pmin Minimum momentum of accelerated particles

r500 Radius of a sphere whose density is 500 times the critical density of the Universe

S Flux density

T Temperature

Vsh Shock velocity

z Redshift

OTHER SYMBOLS

C Compression factor

M Mach number



Nomenclature xxiii

P Pressure ratio

R Temperature ratio

SUBSCRIPTS

d Downstream

e Electron

in j Injection

p Proton

u Upstream





Thesis outline

GALAXY CLUSTERS are the largest virialized structures in the Universe and form via aggre-
gation of less massive systems. The most massive clusters in the Universe exceed 1015 M�

and cover linear sizes of a few Mpc. Dark matter is the main constituent of clusters (∼ 80%) while
baryons represent a small fraction of the cluster mass (∼ 20%). The majority of baryons (∼ 85%)
resides in the form of a hot (T ∼ 107−108 K) and diluted (ne ∼ 10−3−10−4 cm−3) plasma, called
intra-cluster medium (ICM), which emits in the X-rays mostly via thermal bremsstrahlung. Stars in
galaxies comprise the rest of the cluster baryonic mass.

In the process of cluster formation, the kinetic energy associated with two colliding sub-
structures reaches 1063−1064 erg, making cluster mergers the most energetic events in the Universe
since the Big Bang. During a merger, a major fraction of this energy dissipates into the heating of
the ICM via shocks and turbulence and generates non-thermal components. Non-thermal compo-
nents can be revealed by radio observations of diffuse synchrotron sources in clusters, such as radio
relics and halos, that prove the existence of magnetic fields and relativistic particles mixed with
the thermal ICM. A strong association between these diffuse cluster-scale sources and mergers is
indeed demonstrated by observations. In this respect, studying the interplay between thermal and
non-thermal components in merging galaxy clusters is fundamental to understand the origin of dif-
fuse synchrotron sources in the ICM and to probe the complex mechanisms that drain energy into
non-thermal components and their impact on the microphysics of the ICM.

Radio relics are Mpc-scale elongated and arc-shaped polarized structures typically located in
the periphery of clusters. According to the current leading scenario, relics trace cosmological
shock waves that cross the ICM where particles are (re)accelerated and the magnetic field am-
plified. Whilst the connection between radio relics and shocks is supported by several observational
facts, including the coincidence between relics and shocks identified in the X-rays, the details of the
mechanisms leading their formation are still unclear.

Radio halos are giant radio sources located in the central regions of clusters. Their emission is
extended on the cluster-scale with a morphology similar to the X-ray thermal emission. Halos are
thought to be generated by electrons re-accelerated by turbulent-driven mechanisms during mergers,
although many aspects of these processes remain poorly understood.

This Thesis is focused on shocks and non-thermal phenomena in merging galaxy clusters. The
broad aim of the Thesis is to investigate the origin of cluster-scale radio sources using radio data
(obtained from the most innovative facilities) combined with X-ray observations. More specifically,
the PhD program was based on two main goals, as outlined below.
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xxvi Thesis outline

The first goal achieved in the Thesis is a progress on the relic–shock connection and on
the origin of radio relics. This was obtained mainly with X-ray observations performed with the
Chandra and XMM-Newton satellites that allowed us to discover new shocks in merging galaxy
clusters. This is a relevant result on its own because it increased the modest number of shocks
detected in the ICM with the clear detection of new X-ray discontinuities. In combination with the
(re)analysis of radio observations of merger shocks, we derived also important constraints on the
mechanisms of particle (re)acceleration and on the magnetic fields in radio relics. In particular, we
presented the first attempt for a study on the acceleration efficiency in a sample of radio relics.

Due to their steep spectrum, the study of radio relics and, in general, of cluster-scale diffuse
radio emission is one of the key science projects of the new generation of radio interferometers,
such as the LOFAR and MWA and, in the future, of the SKA. In this respect, the exploitation
of LOFAR observations of merging galaxy clusters has been identified as a central task of the
PhD project due to the impact of this instrument in the field of non-thermal emission from the ICM.
The analyses of two LOFAR pointings, containing the clusters Abell 781 and Abell 1758, were
carried out as important steps of the Thesis. The outcome proved the extraordinary potential of
LOFAR. Among the other results obtained during the LOFAR analysis, the following are worth
to be mentioned: the revision of the nature of a peripheral radio emission formerly classified as a
radio relic in Abell 781, the discovery of a new radio halo, and the detection of a faint bridge of
radio emission connecting two galaxy clusters in a pre-merger phase in Abell 1758. The latest result
triggered the search for similar signals from other binary clusters.

This Thesis is organized in the following structure:

- In Chapter 1 we provide an introduction on the processes taking place in merging galaxy
clusters important for this Thesis with particular emphasis on the non-thermal phenomena.
The jargon and main formulas used along the Thesis are outlined in this Chapter.

- In Chapter 2 we report on the discovery of a shock co-spatially located with the radio relic
in Abell 115. This clear detection of a shock allowed us to give constraints on the mecha-
nisms of formation of the radio source. We suggested that the relic is generated by shock
re-acceleration.

- In Chapter 3 we discuss the discovery of the most distant (and among the strongest) shock
ever detected in a galaxy cluster, i.e. in “El Gordo” cluster at z= 0.87. The shock is co-located
with a radio relic and from the study of the shock acceleration efficiency we found that this
shock, in principle, is powerful enough to accelerate electron directly from the thermal pool.
The presence of inverse Compton emission from the relic is also discussed.

- In Chapter 4 we show how the detection of X-ray emission form inverse Compton from a
relic would impact our understanding of cluster shock physics. We compared the 9 most
powerful radio relic known so far and took El Gordo cluster, i.e. the best candidate for this
search, as a test case to determine the feasibility of such an observation.

- In Chapter 5 we extend the study of shock acceleration efficiency in galaxy cluster mergers
to a sample of well studied relics with detected underlying shocks. We demonstrated that
supra-thermal seed electrons are required to explain the formation of these radio sources.

- In Chapter 6 we present the results of the search for new merger induced shocks and cold
fronts in a sample of 15 clusters observed with Chandra. We made use of different tech-
niques of X-ray data analysis confirming the presence of 6 shocks, 8 cold fronts and other 8
discontinuities with uncertain nature.



Thesis outline xxvii

- In Chapter 7 we provide an overview of the LOFAR focusing on its potential in the galaxy
cluster science. We introduce one of the most important LOFAR survey from which the
observations used in the next two Chapters have been retrieved.

- In Chapter 8 we report on the results on the cluster chain Abell 781 from LOFAR, GMRT
and XMM-Newton observations. In particular, we focused on the main cluster of the system,
putting limits on the radio halo emission and discussing the peculiar peripheral radio source.
We speculated that this emission is due to the interaction of a radio galaxy crossed by a shock
wave and provided the tentative dynamics of the merger.

- In Chapter 9 we present a combined radio/X-ray study of the double galaxy cluster Abell
1758. The new LOFAR data confirmed the presence of a radio halo in the northern cluster
component and allowed us to discover a radio halo even in the southern system, making Abell
1758 the second double radio halo known so far. A faint bridge of radio emission connecting
the two halos is also observed. We suggested that the clusters are in pre-merger phase.

- In the Thesis conclusions an overview of this Thesis is presented.

Throughout this Thesis, a ΛCDM cosmology with ΩΛ = 0.7, Ωm = 0.3 and H0 = 70
km s−1 Mpc−1 is assumed. The convention used for radio synchrotron spectrum is Sν ∝ ν−α , where
Sν is the flux density at frequency ν and α is the spectral index.
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CHAPTER 1

Galaxy clusters: focus on mergers and non-thermal phenomena

ABSTRACT

Galaxy clusters hierarchically form by the aggregation of smaller structures. During
cluster mergers, shocks and turbulence are produced in the intra-cluster medium
and dissipate part of their energy into non-thermal components, such as magnetic
fields and relativistic particles. These may eventually generate large scale diffuse
synchrotron emission in the form of radio relics and radio halos. The processes
originating these sources are still poorly understood and suggest a complex hierarchy
of mechanisms that transport energy from cluster Mpc-scales into particle micro-
scales.

1.1 Galaxy clusters

Galaxy clusters are the most massive gravitationally bound systems in the Universe, reaching
masses up to 1015 M� within linear sizes of a few Mpc. The largest amount (∼ 80%) of the cluster
mass is in dark matter, that shapes deep potential wells where baryons (∼ 20%) virialize. Roughly
15% of the baryons in clusters are locked up into stars in galaxies (Lin et al. 2003), while the rest is
in the form of hot and rarefied gas, referred to as intra-cluster medium (ICM), which fills the entire
cluster volume.

According to the current picture of structure formation in the Universe, galaxy clusters form
by gravitational collapse starting from small density fluctuations. The existence of such density
perturbations can be inferred from the temperature perturbations of the cosmic microwave back-
ground (CMB), firstly observed with the COsmic Background Explorer (COBE) mission (Bennett
et al. 1996). The Planck satellite (Planck Collaboration I 2011) provided the clearest view of such
tiny fluctuations which represent the seeds of the cosmic structures observed in the present Uni-
verse. Once that the collapse started, matter is accumulated and grows via a hierarchical sequence
of accretion of smaller systems (e.g. Press & Schechter 1974; Blumenthal et al. 1984; Kaiser 1984,
1986). These structures grow over cosmic time with the endpoint of their evolution being today
massive clusters of galaxies (e.g. Voit 2005; Kravtsov & Borgani 2012, for reviews). This scenario
is supported by both observations and numerical simulations (e.g. Springel et al. 2006, for a review).

There are two different regimes of growth of the perturbations: linear and non-linear. The two
regimes can be distinguished defining the density fluctuation (or overdensity)

1
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δc =
ρ−〈ρ〉
〈ρ〉 (1.1)

where 〈ρ〉 is the mean mass density of the Universe. The linear regime acts as long as δc � 1
and can be easily treated (see Peebles 1980, 1993; Coles & Lucchin 1995, 2002). Nevertheless,
galaxy clusters are highly non-linear (δc� 1) objects, and this requires more complex approaches
for studying the evolution of perturbations in this particular regime.

Nowadays, numerical methods constitute the frontier in the study of cosmic structure forma-
tion, being the only instruments available to follow the non-linear evolution of perturbations. The
increasing computational power made possible to develop large N-body simulations that allow to
trace the dark matter evolution in a cosmological context. Among the largest runs, we mention the
Millenium simulation (Springel et al. 2005) and its updates (Millennium-II, Boylan-Kolchin et al.
2009; Millennium-XXL Angulo et al. 2012), and the Illustris simulation (Vogelsberger et al. 2014),
which complements the N-body simulation with hydrodynamic simulations, required to model ra-
diative processes such as cooling and feedback (Fig. 1.1).

1.1.1 Mass determination
In the present Universe, clusters may contain hundreds to thousands of galaxies that move with

typical velocity dispersion of σV ∼ 1000 km s−1. The crossing time of a cluster of size r can be
estimated as

tcr =
σV

r

'
(

r
1 Mpc

)(
103 km s−1

σV

)
[Gyr]

(1.2)

thus, in a Hubble time (∼ 13.7 Gyr), the system has enough time to dynamically relax in its center
while its outskirts are still affected by the accretion physics (e.g. Walker et al. 2019, for a review).
Therefore, under the assumption of virial equilibrium, it is possible to estimate the cluster virial
mass via

Mvir '
σ2

V rvir

G

' 1015
(

rvir

1 Mpc

)(
σV

103 km s−1

)2
[M�]

(1.3)

where G is the gravitational constant, σ2
V can be inferred from the measurement of the radial veloc-

ity dispersion of a number of cluster galaxies (σ2
V = 3σ2

r ), and rvir takes the name of virial radius.
Another simple method to estimate the mass of a galaxy cluster is based, again, on the assump-

tion that the cluster is relaxed and relies on measurements of ICM quantities (see Section below).
Under the hypotheses of spherical symmetry and hydrostatic equilibrium of the ICM in the cluster
gravitational potential, is it possible to derive the mass inside a given radius via

M(< r) =− kTr
µmpG

(
dlnρ

dlnr
+

dlnT
dlnr

)
(1.4)

where k is the Boltzmann constant, µ is the mean molecular mass of the considered gas (hereafter
µ = 0.6, which is a typical value for the ICM), mp is the proton mass, and the density ρ and tem-
perature T profiles can be inferred from X-ray observations (e.g. Ettori et al. 2013, for a review).
Clearly, Eq. 1.4 may fail in the case of dynamically disturbed clusters such as merging systems,
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Figure 1.1: Time evolution of the the most massive cluster at z = 0 in the Illustris simulation. The panels
display the evolution of a box slice that covers the entire simulation volume (106.5 Mpc width) from z = 4 to
z = 0, showing four projections: dark matter density, gas density, gas temperature, and gas metallicity. From
Vogelsberger et al. (2014).

where the merger introduces substantial deviations from hydrostic equilibrium and spherical sym-
metry, leading to large errors in the determination of the mass (e.g. Evrard et al. 1996; Roettiger
et al. 1996; Schindler 1996; Rasia et al. 2006, 2012; Meneghetti et al. 2010).

A third, independent, method to estimate the cluster mass is based on gravitational lensing, i.e.
on the images of distant objects that result distorted by the gravitational potential of the cluster (e.g.
Bartelmann & Schneider 2001; Refregier 2003; Schneider 2005; Bartelmann 2010; Treu 2010, for
reviews). Lensing effects are generally divided into strong and weak lensing events. The former
occur in the cores of some massive galaxy clusters, leading to the formation of “gravitational arcs”
and/or to the formation of systems of multiple images of the same source. The latter, which can only
be measured statistically, are impressed on the shape of distant galaxies that lie on the sky at large
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angular distances from the cluster centers. Gravitational lensing analysis can be used to map the
mass distribution in galaxy clusters and, in contrast with the other two methods mentioned above, it
is independent of the equilibrium state. However, lensing measures the mass along the of sight, thus
it is sensitive to projection effects. To infer the true mass, lensing maps must be deprojected assum-
ing a cluster shape, and this possibly introduces biases in the mass and concentration measurement
(e.g. Gavazzi 2005; Oguri et al. 2005; Sereno & Zitrin 2012).

Obviously, multi-probe approaches can determine in a more accurately way the distribution and
the physical properties of matter in galaxy clusters from the inner regions out to the peripheries
(e.g. Zaroubi et al. 1998; Reblinsky 2000; Doré et al. 2001; Fox & Pen 2002; Puchwein & Bartel-
mann 2006; Mahdavi & Chang 2011; Morandi et al. 2012; Tchernin et al. 2018). In this spirit, the
CLUster Multi-Probes in Three Dimensions (CLUMP-3D) project aims to get the unbiased intrin-
sic properties of galaxy clusters by exploiting rich datasets ranging from X-ray, to optical, to radio
wavelengths (Sereno et al. 2017; Chiu et al. 2018; Umetsu et al. 2018).

1.2 The intra-cluster medium

1.2.1 Microphysics
During the cluster formation process, the primordial cosmic gas collapses into dark matter halos

and undergoes shocks and adiabatic compression, settling down at densities of ne ∼ 10−3− 10−4

cm−3 and temperatures of T ∼ 107− 108 K (i.e. kT ∼ 1− 10 keV). The mean free path in a fully
ionized plasma without a magnetic field is determined by Coulomb collisions (Spitzer 1956) via

lm f p ' 15
( ne

10−3 cm−3

)−1
(

kT
8 keV

)2( 40
lnΛ

)
[kpc] (1.5)

where lnΛ is the Coulomb logarithm. Compared to the Larmor gyroradius-scale (Braginskii 1965)

rL ' 3×10−12
(

kT
10 keV

)(
B

µG

)−1

[kpc] (1.6)

this implies lm f p� rL. In this regime, the plasma is called weakly collisional and plasma instabil-
ities and kinetic effects play important roles in regulating microphysical properties (e.g. Levinson
& Eichler 1992; Pistinner et al. 1996; Schekochihin et al. 2010; Brunetti & Lazarian 2011a; Yan
& Lazarian 2011; Santos-Lima et al. 2014, 2017). In fact, the collisional parameter in the ICM
(namely the ratio of the Coulomb collision frequency and plasma frequency) is RC ∼ 10−16 and
for RC � 1 wave-particle interactions become more important than Coulomb collisions. On the
one hand, the possibility that wave-particles interactions can mediate momentum exchange at a rate
faster than Coulomb particle-particle interactions provides a motivation for a fluid treatment of the
ICM (e.g. Santos-Lima et al. 2017, and references therein). On the other hand, the importance of
micro-instabilities and collisionless kinetic processes in the ICM open to the possibility to a fraction
of the energy of the large-scale motions that are generated by the process of cluster formation into
electromagnetic fluctuations and collisionless particle acceleration mechanisms on much smaller
scales (e.g. Brunetti & Jones 2014, for a review). This is fundamental to understand the processes
leading to the formation of diffuse radio sources in merging galaxy clusters (Section 1.2.4).

1.2.2 Thermal emission

At temperatures T & 3× 107 (i.e. kT & 2 keV) and typical ICM metallicities (0.1− 1 Z�),
thermal bremsstrahlung in the X-rays is the dominant cooling process in the ICM (e.g. Sarazin 1986;
Böhringer & Werner 2010, for reviews). In this case, the specific emissivity per unit frequency ν is
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εν ∝ n2
eT−1/2

e exp(−hν/kTe) (1.7)

and the ICM temperature and density can be determined from the X-ray spectral analysis (h is
Planck constant). At lower temperatures (kT . 2 keV), line emission becomes a more important
or, eventually, the dominant cooling process and it can be used to measure abundances of heavy
elements and the cluster redshift as well as an additional temperature discriminator.

The cluster X-ray surface brightness (SB) is easier to characterize than the temperature as it
requires less net counts. The SB analysis is usually performed in a soft X-ray band (e.g. 0.5−
2.0 keV), i.e. where the performances of the present X-ray mirrors and detectors are maximized
and the bolometric emissivity ε =

∫
ν

εν dν ∝ n2
eT 1/2

e does not dependent very much from the gas
temperature, and can be used to determine the distribution (hence, the mass) of the cluster gas (e.g.
Ettori 2000; Ettori & Molendi 2011; Ettori et al. 2013).

The general morphology of the ICM can be approximated by the hydrostatic isothermal model
(Cavaliere & Fusco-Femiano 1976, 1978), leading to a density profile described by

n(r) = n(0)

[
1+
(

r
rc

)2
]− 3

2 β

(1.8)

where n(0) is the central density, rc is the core radius, and β is the slope parameter, originating from
the ratio between kinetic energy in the galaxies and thermal energy of the gas. This distribution for
the gas density results in the well known β -model SB profile

SB(r) = SB(0)

[
1+
(

r
rc

)2
] 1

2−3β

(1.9)

that is routinely applied to fit the ICM emission (e.g. Jones & Forman 1984; Vikhlinin et al. 1999)
proving a good description of the data. Nevertheless, new empirical parametric models of increasing
complexity have been introduced to overcome the overestimation of the true profiles by the β -model
at r� rc (e.g. Vikhlinin et al. 2006). The β -model also underestimates the centrally peaked density
profile of cooling clusters (see below) as a consequence of the cusped nature of the dark matter
profile (Pratt & Arnaud 2002; Arnaud 2009).

A dichotomy exists between cool-core (CC) and non cool-core (NCC) clusters (e.g. Molendi &
Pizzolato 2001), depending whether their core region shows a drop in the temperature profile or not.
The reason of this drop is a natural consequence of the strongly peaked X-ray emissivity of relaxed
systems (Fig. 1.2) that leads to efficient cooling of the gas in this denser environment. To date, the
active galactic nucleus (AGN) feedback represents the most promising scenario to counter-balance
this process and to reconcile the low cooling flow rates observed (e.g. Peterson & Fabian 2006, for
a review). Conversely, disturbed systems exhibit shallower X-ray emissivity (Fig. 1.2), hence lower
cooling rates. For this reason there is a connection between the properties of the cluster core to its
dynamical state: relaxed (i.e. in equilibrium) systems naturally form a CC while NCCs are typically
found in unrelaxed objects (e.g. Leccardi et al. 2010), where the effects of energetic events such as
mergers have tremendous impact on their core, leading either to its direct disruption (e.g. Russell
et al. 2012; Rossetti et al. 2013; Wang et al. 2016) or to its mixing with the surrounding hot gas
(ZuHone et al. 2010).
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Figure 1.2: The three-dimensional representation of the projected SB for the CC cluster Abell 2029 (left) and
the NCC cluster Abell 2319 (right) scaled to appear as they would appear if observed at the same redshift.
From Million & Allen (2009).

1.2.3 The Sunyaev-Zel’dovich effect
The presence of hot electrons in the ICM can lead to a small distortion of the CMB spectrum via

inverse Compton (IC) scattering. This physical process, known as Sunyaev-Zel’dovich (SZ) effect1

(Sunyaev & Zel’dovich 1972), provides a complementary tool to study the thermodynamical prop-
erties of the ICM. In particular, thanks to the new state of the art high angular resolution instruments
working in the millimeter waves, such as the New IRAM KIDs Array 2 (NIKA2; Adam et al. 2018a)
and the MUltiplexed Squid Tes Array at Ninety Gigahertz 2 (MUSTANG2; Dicker et al. 2014), the
study of sub-structures in the ICM through SZ effect is entering in a new era (e.g. Korngut et al.
2011; Young et al. 2015; Adam et al. 2016, 2017a,b, 2018b).

Assuming a thermal distribution for the electrons in the ICM, the change in the background
CMB intensity is ∆Icmb/Icmb = f (ν)ye, where f (ν) is the spectral shape function that gives the de-
pendence of the SZ effect from the frequency (e.g. Birkinshaw 1999; Carlstrom et al. 2002), and ye
is the Comptonization parameter. The latter provides the integrated electron pressure of the ICM
along the line of sight and is defined as

ye =
σT

mec2

∫
neTe dl (1.10)

where σT is the Thomson cross-section, me is the electron mass, and c is the speed of light.
For typical ICM temperatures and densities, the relative change in CMB intensity is small, i.e.
∆Icmb/Icmb ∼ 10−4− 10−5. This effect results in a distortion in the black body shape of the CMB
(Fig. 1.3, left panel) and now it represents one of the most effective tools to search galaxy clusters.
In fact, this effect is independent of the redshift of the (spatially resolved) source responsible for
the up-scattering of the CMB photons, and it can be detected in maps like those made out of Planck
data (Planck Collaboration I 2011), where a cluster appears as a decrement or a increment of emis-
sion in the microwave sky below or above 218 GHz, respectively (Fig. 1.3, right panel). Currently,
three large-scale experiments in operation are providing many more SZ selected clusters up to z = 1
and beyond: the South Pole Telescope (SPT; Vanderlinde et al. 2010), the Atacama Cosmology
Telescope (ACT; Marriage et al. 2011) and the Planck satellite (Planck Collaboration VIII 2011).

1Formally, this should be referred to as thermal SZ effect (tSZ) to distinguish it from the kinematic SZ effect (kSZ,
Sunyaev & Zeldovich 1980), which is the scattering signal caused by the bulk motion of the cluster gas. The latter has
an amplitude more than an order of magnitude lower than the thermal effect.
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Figure 1.3: Left: CMB spectrum, undistorted (dashed line) and distorted by the SZ effect (solid line). To
emphasize the effect, the SZ distortion shown is for a fictional cluster 1000 times more massive than a typical
massive galaxy cluster. From Carlstrom et al. (2002). Right: Planck view on the cluster Abell 2319 at various
frequencies (see panels) demonstrating that the cluster appears as a decrement on the photon number for
ν < 218 GHz and as an increment above 218 GHz as result of the SZ effect. Credit: ESA.

1.2.4 Non-thermal components

Radio observations of giant diffuse synchrotron emission in some galaxy clusters (e.g. Ferrari
et al. 2008; Feretti et al. 2012; van Weeren et al. 2019, for reviews) probe the presence of non-
thermal components, i.e. (∼ GeV) relativistic particles (or cosmic rays, CR) and (∼ µG) magnetic
fields, spread on Mpc-scales in the ICM. These radio sources represent one of the main topics of
this Thesis, and will be thoroughly described in Section 1.4. Nowadays, there is a broad consensus
that the hierarchical process of structure formation in the Universe plays an important role in the
generation of non-thermal components in ICM (e.g. Dolag et al. 2008; Brunetti & Jones 2014, for
reviews).

Shocks occurring during the cluster progressive assembly (Section 1.3.2) are believed to be the
main injectors of cosmic ray electrons (CRe) and protons (CRp) in the ICM (e.g. Norman et al. 1995;
Kang et al. 1996; Miniati et al. 2001; Ryu et al. 2003). The processes leading to the (re)acceleration
of particles at shocks and turbulence will be discussed in Sections 1.5 and 1.6. Other possible
generators of CRs in clusters are: individual galaxies, that can inject high-energy particles through
relativistic AGN outflows (e.g. Miley 1980) and with phenomena related to star formation activity,
such as stellar winds and supernova explosions (e.g. Völk et al. 1996; Bykov 2001), and magnetic
reconnection regions (e.g. Lazarian & Brunetti 2011; Brunetti & Lazarian 2016).

Relativistic particles undergo energy losses that limit their life-time in the ICM and the maxi-
mum energy at which they can be accelerated by various mechanisms (e.g. Sarazin 1999; Brunetti
& Jones 2014), as shown in Fig. 1.4.

For CRe, Coulomb losses are the dominant cooling process at low energies while radiative losses
are dominant at high energies. The time evolution of a particle with Lorentz factor γ (typically
γ ∼ 104 for CRe) radiating via synchrotron and IC emission is

dγ

dt
∝−

(
B2 +B2

cmb
)

γ
2 (1.11)

where B is the intensity of the magnetic field in the relativistic plasma and
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Figure 1.4: Life-time of CRp (red) and CRe (blue) in the ICM at z = 0, compared with the CR diffusion
time on Mpc-scales (magenta). The most relevant channels of CR energy losses at different energies are
highlighted in the panel. Adopted physical parameters are: ne = 10−3 cm−3, B= 1 (solid) and 3 µG (dashed).
Adapted from Blasi et al. (2007).

Bcmb = 3.25(1+ z)2 [µG] (1.12)

is the equivalent magnetic field due to IC with the CMB at redshift z. When B > Bcmb, synchrotron
is the dominant radiative process, otherwise IC prevails. At a given emitting frequency, the particle
life-time is maximized for B = Bcmb/

√
3. The maximum life-time of CRe (∼ 1 Gyr) occurs at

energies ∼ 100 MeV, where radiative losses are roughly equivalent to Coulomb losses. The CRe
that emit synchrotron radiation in the radio band (GHz) have higher energies (∼ several GeV), and
their life-time is shorter (∼ 0.1 Gyr).

For CRp, energy losses are dominated by ionization and Coulomb scattering at low energies and
by inelastic proton-proton collisions at higher energies. The CRp are long-living particles in the
ICM (Völk et al. 1996; Berezinsky et al. 1997), and are confined for several Gyr within the cluster
volume (Fig. 1.4).

Knowledge of the origin and evolution of magnetic fields in galaxy clusters is still very limited
(e.g. Carilli & Taylor 2002; Govoni & Feretti 2004; Ryu et al. 2012, for reviews). The information
on magnetic fields is directly provided from radio observations of cluster-wide diffuse sources and
from studies of Faraday rotation of polarized radio sources embedded in clusters or behind them
(e.g. Kim et al. 1990, 1991; Clarke et al. 2001; Bonafede et al. 2010, 2013). Further techniques
adopted to infer the presence and give limits on the ICM magnetic field strengths are X-ray analysis
of IC emission (e.g. Rephaeli et al. 2008, for a review) and physical considerations on the sharpness
of cold fronts (e.g. Vikhlinin et al. 2001a). These methods established the presence of magnetic
fields with strengths of the order of few µG at the center of NCC clusters, while CC systems show
strengths that are typically higher, possibility due the dynamics of the central regions (e.g. Perley
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& Taylor 1991; Taylor & Perley 1993; Allen et al. 2001). Observations suggest that the magnetic
fields decline with cluster radius, with a profile similar to that of the thermal gas (e.g. Dolag et al.
2001; Govoni et al. 2001a; Murgia et al. 2004). The presence of diffuse radio emission in some
cluster outskirts (Section 1.4.1) indicates that & µG fields can exist even at large distances (& Mpc)
from the cluster centers. However, these sources trace particular regions where the magnetic fields
may be been locally enhanced by the passage of shock waves.

To explain the field strengths of the order of few µG measured in clusters, some amplification
processes are required (e.g. Dolag et al. 2008; Donnert et al. 2018, for reviews). Indeed, although
the magnetic field strength is naturally increased by compression during the gravitational collapse,
this is not enough to reach the observed values of magnetic field (Fig. 1.5). From early numerical
magneto-hydro dynamical simulations of merging galaxy clusters (e.g. Roettiger et al. 1996, 1997,
1999b), it was clear that shocks, bulk flows and turbulence play an important role in the amplification
of the magnetic fields. In particular, the turbulent dynamo is expected to be the main process for
the (non-linear) amplification of the field seeds (e.g. Ryu et al. 2008; Iapichino & Brüggen 2012;
Iapichino et al. 2017; Miniati 2014, 2015; Vazza et al. 2018b), while turbulent diffusion is expected
to spread magnetic fields out to cluster outskirts (e.g. Xu et al. 2009). As a result, the final structure
and strength of the fields are totally driven by the formation process and the information on the
initial seeds is then lost. In this respect, it has been shown that observing magnetic fields in low-
density environments such as filaments is more useful than observing cluster magnetic fields to infer
their possible origin (e.g. Brüggen et al. 2005; Donnert et al. 2009; Vazza et al. 2014, 2015b, 2017a);
however, this kind of measurement has not been possible so far.

Figure 1.5: The strength of the magnetic field as a function of baryonic overdensity within a cosmological
simulation. The solid black line shows the expectation for a purely adiabatic evolution, the solid red line gives
the mean field strength at a given overdensity within a cosmological simulation (Dolag et al. 2005). While
the latter is close to the adiabatic value in underdense regions, in clusters there is a significant inductive
amplification due to shear flows and turbulence; this amplification however saturates in the cluster cores. At
any given density, a large fraction of particles remains close to the adiabatic expectation, as shown by the
dotted line, which gives the median of the distribution at each density. From Dolag et al. (2008).
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At present, it is debated whether the seed fields to amplify have primordial or galactic origin.
In the first case, magnetic fields are generated in the early Universe prior to recombination (e.g.
Grasso & Rubinstein 2001; Widrow et al. 2012; Subramanian 2016, for reviews). A prediction of
this class of models is that magnetic fields fill the entire volume of the Universe. In the second
scenario, galactic winds (e.g. Völk & Atoyan 2000), AGN ejecta (e.g. Enßlin et al. 1997; Furlanetto
& Loeb 2001) and supernova explosions in normal and starburst galaxies (e.g. Kronberg et al. 1999)
contribute to deposit magnetic fields in the ICM. In this case, magnetic fields should be prevalently
located around galaxies and within clusters.

1.3 Galaxy cluster mergers

Major mergers between galaxy clusters are the most energetic phenomena in the Universe after
the Big Bang, with 1063− 1064 erg of kinetic energy dissipated in a crossing time-scale (∼ Gyr)
during the collision. At this stage shock waves, cold fronts, hydrodynamic instabilities, turbulence,
and non-thermal components are generated in the ICM, making merging clusters unique probes
to study several aspects of plasma astrophysics (e.g. Sarazin 2002; Markevitch & Vikhlinin 2007;
Dolag et al. 2008; Feretti et al. 2012; Brunetti & Jones 2014; Molnar 2015; ZuHone & Roediger
2016; van Weeren et al. 2019, for reviews).

In the X-rays, ROSAT and ASCA observations revealed, for the first time, that many clusters
show evidence of the accretion of smaller masses and others undergo major mergers of two nearly
equal components (e.g. Briel et al. 1991; Henry & Briel 1991; Böhringer et al. 1994; Markevitch
et al. 1999; Henriksen et al. 2000). Before the launch of the last generation of X-ray satellites,
namely Chandra and XMM-Newton, the main information about mergers was based on morphol-
ogy. With the spatially resolved spectroscopy and high-resolution imaging offered by the new in-
struments, the situation has radically changed, and sophisticated algorithms have been developed to
achieve good and reliable temperature maps (e.g. Peterson et al. 2004; Bourdin et al. 2004; Diehl &
Statler 2006; Sanders 2006), since the temperature is the more accurate tracer of the energy transfer
from the collision to the X-ray gas itself. Strong signatures of the merging events such as shocks
and cold fronts (see Section 1.3.2) have been detected in these maps and are now well established
as common merger features (e.g. Markevitch & Vikhlinin 2007, for a review).

Optical data are also a powerful way to investigate the presence and the dynamics of clus-
ter mergers (e.g. Girardi & Biviano 2002, for a review). The spatial distribution and kinematics
of galaxy members allow to detect sub-structures and to analyze possible pre- and post-merging
groups, and to distinguish between evolving mergers and remnants. Moreover, optical data are
complementary to X-ray information because the ICM and galaxies react on different time-scales
during a collision (e.g. Roettiger et al. 1997).

It has been shown that combining optical and X-ray data is the most effective approach to unveil
the complex history of merging clusters (e.g. Arnaud et al. 2000; Maurogordato et al. 2000, 2011;
Barrena et al. 2009, 2013, 2014; Boschin et al. 2009, 2012a,b, 2013; White et al. 2015; Girardi
et al. 2016; Nascimento et al. 2016; Golovich et al. 2016, 2017, 2018; Benson et al. 2017; Caglar &
Hudaverdi 2017; Boschin & Girardi 2018). These studies have revealed various peculiar properties
of the galaxy distribution in the individual merging clusters, such as strong signatures in the density
and velocity distribution, and alignments that can be used to infer the dynamics of the merger.

The full understanding of the complex processes at work in merging requires dedicated numer-
ical simulations. Much progress has been made in this field, starting from the pioneering works
of Schindler & Mueller (1993) and Roettiger et al. (1997). Ricker & Sarazin (2001) described the
violent relaxation of gas in a dark matter potential well for a variety of idealized merging systems,
paying special attention to the impact parameter and the mass ratio between units. Poole et al. (2006)
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analyzed mergers of idealized relaxed clusters with sophisticated simulations including cooling and
star formation, and detected the major transient signatures existing in observed temperature maps.
Nowadays, tailored numerical simulations are customarily run attempting to reproduce the X-ray,
optical, SZ and radio properties of the most complex merging galaxy clusters (e.g. Mastropietro &
Burkert 2008; van Weeren et al. 2011a; Brüggen et al. 2012b; Machado & Lima Neto 2013, 2015;
Molnar et al. 2013; Molnar & Broadhurst 2017, 2018; Donnert 2014; Machado et al. 2015; Ng et al.
2015; Zhang et al. 2015, 2018; Donnert et al. 2017).

1.3.1 Impact velocity

There are some simple analytical arguments which can be used to estimate the kinematics of
an individual binary merger collision (see Ricker & Sarazin 2001; Sarazin 2002). The kinematic
quantities describing the merger are defined in Fig. 1.6.

Following Sarazin (2002), we assume that two sub-clusters with mass M1 and M2 merge at time
tm and that have fallen together from a large distance d0 with nonzero angular momentum. It can be
assumed that the two sub-clusters are point masses initially expanding away from one another in the
Hubble flow and that their radial velocity was zero at their largest separation d0. The collapse can
be treated as the orbit of two point masses, and their largest separation will be given by the Kepler
third law as

d0 ' [2G(M1 +M2)]
1/3
(tm

π

)2/3

' 4.5
(

M1 +M2

1015 M�

)1/3( tm
1010 yr

)2/3

[Gyr]
(1.13)

where the exact value of d0 does not significantly affect the collision velocity as long as d0 is large
and the infall velocity approaches free-fall from infinity. Conserving angular momentum and energy
it is possible to derive the merger velocity at distance d, i.e.

Figure 1.6: A schematic diagram of the kinematics for a merger between two sub-clusters of masses M1 and
M2 and radii R1 and R2. The separation of the cluster centers is d, and the impact parameter is b, and the
initial relative velocity is v. From Ricker & Sarazin (2001).
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v' 2930
(

M1 +M2

1015 M�

)1/2( d
1 Mpc

)−1/2

 1− d
d0

1−
(

b
d0

)2


−1/2

[km s−1] (1.14)

where b is the impact parameter (Fig. 1.6). Because of the high impact velocity, the motions in-
volved in mergers between galaxy clusters are moderately supersonic. As a consequence, shock
waves are driven in the ICM (see Section below).

1.3.2 Shocks
The shock strength can be characterized by its Mach number, that for a shock moving at speed

Vsh is

M=
Vsh

cs
(1.15)

where

cs =

√
γadkT
µmp

' 1150

√
kT

5 keV
[km s−1]

(1.16)

is the sound speed in the preshock medium, and γad is the adiabatic index (assumed to be 5/3 in
Eq. 1.16). Shocks generated in cluster mergers are weak (M . 3− 5) and dissipate a substantial
fraction of the energy involved during a merger in gas heating (e.g. Schindler & Mueller 1993; Burns
1998; Roettiger et al. 1999a; Ricker & Sarazin 2001). Stronger shocks (M∼ 10−100) associated
with the accretion of cold gas onto gravitationally attracting nodes are expected in the tenuous in-
tergalactic medium (e.g. Miniati et al. 2001). However, as shown in Fig. 1.7, these shocks are less
important than merger shocks in terms of dissipated energy in the ICM because they propagate with
lower velocities into low density environments (e.g. Ryu et al. 2003; Vazza et al. 2009a).

The Rankine-Hugoniot jump conditions are used to relate the quantities upstream and down-
stream (subscripts u and d) of the shock (e.g. Landau & Lifshitz 1959), as shown in Fig. 1.8. For a
monatomic gas (i.e. γad = 5/3) undergoing a shock with Mach numberM, the ratios in temperature
T , density n, and pressure P are given by

R≡ Td

Tu
=

5M4 +14M2−3
16M2 (1.17)

C ≡ nd

nu
=

4M2

M2 +3
(1.18)

P ≡ Pd

Pu
=

5M2−1
4

(1.19)

and the Mach number can be derived from the analysis of the emission profiles under some basic as-
sumptions. The density ratio, also known as compression ratio, is related to the jump in temperature
via

1
C =

[
4(R−1)2 +R

]1/2−2(R−1) . (1.20)
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Figure 1.7: Distribution of the energy flux at shocks surfaces as a function of the shock Mach number from
numerical (cosmological) simulations. Shocks are divided into internal and external categories. External
shocks are defined as shocks forming when never-shocked, low-density, gas accreted onto non-linear struc-
tures, such as filaments, while internal shocks form within the regions bounded by external shocks. From
Ryu et al. (2003).

Figure 1.8: Temperature, density, and pressure ratios versus the shock Mach number (assuming γad = 5/3).
Note that when the Mach number isM→ ∞, the compression factor is C → 4.
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Figure 1.9: Left: Chandra X-ray image of 1E 0657-56, i.e. the Bullet Cluster (Markevitch et al. 2002;
Markevitch 2006). Right: radial profiles for the gas density (n), pressure (P) and specific entropy (S) in a
sector crossing the cold front (green) and shock front (red). From Markevitch & Vikhlinin (2007).

Observations in the X-rays have been customarily used to search for and characterize shocks
in galaxy clusters (e.g. Markevitch & Vikhlinin 2007, for a review). Indeed, the temperature jump
(Eq. 1.17) can be determined by spectral analysis in regions upstream and downstream the front,
while the density jump (Eq. 1.18) can be inferred from the SB analysis across the discontinuity
due to the the dependencies of the bremsstrahlung emission on the density (Eq. 1.7). Generally,
spherical symmetry and an underlying broken power-law density profile in the form

nd(r) = Cn0

(
r
r j

)a1
, if r ≤ r j

nu(r) = n0

(
r
r j

)a2
, if r > r j

(1.21)

is assumed to describe the discontinuity, where n0 is the normalization factor, a1 and a2 are the
power-law indexes, and r j is the radius where the jump occurs.

Strong spatial variations in temperature and density in the ICM due to merger shocks were
suggested by early observations with ROSAT and ASCA in several dynamically active clusters
(e.g. Henry & Briel 1995; Henriksen & Markevitch 1996; Donnelly et al. 1998, 1999; Markevitch
et al. 1996a,b, 1998, 1999). However, only thanks to the superb sub-arcsec resolution of Chandra
it has been possible to characterize shocks, as well as discover cold fronts (i.e. unexpected sharp
features of a different nature), in the ICM. Shocks and cold fronts have been observed in several
galaxy clusters that are clearly undergoing significant merging activity (e.g. Markevitch & Vikhlinin
2007; Owers et al. 2009; Ghizzardi et al. 2010; Markevitch 2010; Botteon et al. 2018a, for some
collections). In Fig. 1.9, we show the most remarkable example: the Bullet Cluster (Markevitch
et al. 2002), where an infalling sub-cluster (i.e. the “bullet”) creates a contact discontinuity between
its dense and low-entropy core and the surrounding hot gas. Here, the pressure is almost constant
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across the edge and the temperature of the gas downstream is lower than upstream. Ahead of
this cold front (marked in green) another drop in SB but with reversed temperature jump, i.e. a
shock front (marked in red), is also detected. These jumps are maximized when the fronts are seen
edge-on, hence their observation requires that the collision occurs almost in the plane of the sky as
projection effects can hide the SB and temperature discontinuities. Geometrical constraints and low
count statistics in cluster outskirts make the search for shocks a difficult task. This is reflected in the
modest number of merger shocks that have been confirmed using both X-ray imaging and spectral
analysis (Chapter 6).

Recently, the high angular resolution achieved in millimetric band observations has enabled the
search for shocks also in SZ (e.g. Kitayama et al. 2004; Korngut et al. 2011; Planck Collaboration
X 2013; Erler et al. 2015; Basu et al. 2016; Adam et al. 2018b). Indeed, the SZ effect provides a
direct probe of the integrated electron pressure along the line of sight in clusters (Eq. 1.10), allowing
to characterize shocks directly via pressure jump (Eq. 1.19). Moreover, the SB of the SZ effect is
independent of the redshift (for resolved sources), in contrast with that of X-rays, that scales as
∝ (1+ z)−4, making SZ observations a potential tool to detect shocks in distant clusters.

1.3.3 Turbulence

Mergers between clusters and accretion of sub-structures are also expected to inject a non-
negligible amount of turbulence in the ICM. A fluid becomes turbulent when its Reynolds number
is Re� 1. In the case of pure Coulomb interactions (Eq. 1.5), the Reynolds number of the ICM is
(e.g. Brunetti & Lazarian 2007)

Re' 52
(

VL

103 km s−1

)(
L

300 kpc

)( ne

10−3 cm−3

)( kT
8 keV

)−5/2( lnΛ

40

)
(1.22)

where L is a typical eddy size (ideally the injection scale of turbulence) and VL is the root-mean-
square velocity within this scale. Thus, based on typical values of the ICM, the Reynolds number
would hardly reach Re∼ 102 in most conditions. However, in the presence of (even a small) station-
ary magnetic field the Reynolds number for motions in the direction perpendicular to the magnetic
field gets extremely high essentially because the perpendicular mean free path of particles is lim-
ited to the Larmor gyroradius-scale (Eq. 1.6). Furthermore, in the weakly collisional regime (Sec-
tion 1.2.1), plasma instabilities in the ICM imply that collisionless effects govern microphysics,
reducing the effective mean free path. This increases the effective Reynolds number of the ICM
to Re� 103, suggesting a highly turbulent medium (Schekochihin & Cowley 2006; Lazarian &
Beresnyak 2006).

Numerical simulations of cluster mergers (Fig. 1.10) are customarily used to describe in details
the turbulent motions generated by such energetic events (e.g. Norman & Bryan 1999; Dolag et al.
2005; Iapichino & Niemeyer 2008; Ryu et al. 2008; Vazza et al. 2009b, 2011, 2017b; Iapichino
et al. 2011; Paul et al. 2011; Miniati 2014, 2015; Schmidt et al. 2014, 2016). These simulations also
predict that turbulence in the ICM can account for up to ∼ 20% of the thermal energy (e.g. Sunyaev
et al. 2003; Vazza et al. 2006, 2012b, 2018a).

Hints of turbulent motions in the ICM have been firstly reported by Schuecker et al. (2004) from
the study of spatially-resolved gas pressure maps obtained with XMM-Newton for the Coma cluster.
Indeed, recent theoretical progress has shown that the analysis of X-ray SB fluctuations (that cor-
responds to density fluctuations) in the ICM can be connected to velocity fluctuations, allowing to
constrain the turbulent Mach number of the medium (e.g. Churazov et al. 2012; Gaspari & Chura-
zov 2013; Gaspari et al. 2014; Zhuravleva et al. 2014). X-ray spectral analysis has also the potential
to measure the level of turbulence in the medium either via broadening of the emission lines due to
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Figure 1.10: Two dimensional slice showing the gas temperature (black is for T < 107 K, white is for T > 108

K) and turbulent motions generated in a galaxy cluster during a major merger event. The side of the slice is
8.8 Mpc and the depth along the line of sight is 25 kpc. From Vazza et al. (2011).

gas motions or by the study of resonant scattering (e.g. Inogamov & Sunyaev 2003).
The Perseus cluster has been targeted for a long time with XMM-Newton and Chandra in the

quest of turbulent motions (e.g. Churazov et al. 2003, 2004; Gastaldello & Molendi 2004; Sanders
et al. 2004); however, the low energy resolution of Charge-Coupled Device (CCD) spectrometers
makes these measurements a difficult task (Zhuravleva et al. 2013). In this respect, the first mea-
surement of turbulence in a galaxy cluster was possible only thanks to the high spectral resolution
of the calorimeter mounted on Hitomi, that constrained the line of sight velocity dispersion in the
Perseus core to be 164±10 km s−1 in the region 30−60 kpc from the central nucleus (Hitomi Col-
laboration 2016). Recent numerical simulations showed that the velocity dispersion measured by
Hitomi can be reproduced by frequent and “gentle” AGN feedback in the core, and by accretion of
infalling groups on larger (& 50 kpc) scales (e.g. Bourne & Sijacki 2017; Hillel & Soker 2017; Lau
et al. 2017). Unfortunately, Hitomi was lost after few weeks of operation and it was not possible to
extend this kind of measurement to other galaxy clusters. In particular, clusters undergoing major
mergers are expected to display larger velocity dispersion due to substantial bulk motions in the
ICM. The future X-ray mission Athena will be able to perform measurements of turbulence with
unprecedented details in a large number of galaxy clusters (Roncarelli et al. 2018).

1.4 Diffuse radio sources in merging galaxy clusters

In the past decades, observations at low frequencies revealed the presence of diffuse radio
sources in some merging galaxy clusters (e.g. van Weeren et al. 2019, for a review). These sources
show steep (α > 1) synchrotron spectra, indicative of the presence of relativistic particles and mag-
netic fields. The diffuse, extended (up to Mpc-scales), low SB (∼ µJy arcsec−2 at 1.4 GHz) radio
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emission in clusters is typically classified in two species2. According to their location in the cluster,
their radio properties, and their morphology, it is possible to distinguish radio relics and radio halos.

The evidence for CRs and magnetic fields in the ICM generating giant diffuse radio sources via
synchrotron radiation opens fundamental questions on their origin as well as their impact on both
the physics of the ICM and the evolution of galaxy clusters more broadly (e.g. Brunetti & Jones
2014, for a review). The connection between diffuse radio emission in the ICM and dynamically
disturbed systems (e.g. Buote 2001; Cassano et al. 2010b, 2013; Cuciti et al. 2015) suggests that
cluster mergers play a crucial role in the formation of non-thermal components in galaxy clusters.

In the following, we will describe the main properties of radio relics and radio halos according
to the current nomenclature. We anticipate that the taxonomy of extended radio emission in galaxy
clusters is evolving thanks to the advent of new instruments, for example LOFAR (Chapter 7), that
are unveiling the wealth of complex diffuse steep spectrum sources in the ICM (e.g. Shimwell et al.
2016; de Gasperin et al. 2017; Duchesne et al. 2017; Botteon et al. 2018b; Bonafede et al. 2018;
Brüggen et al. 2018; Kale et al. 2018; Mandal et al. 2018; Savini et al. 2018a,b; Wilber et al. 2018).

1.4.1 Radio relics

Radio relics are generally observed in the outskirts of galaxy clusters, have significant linear
polarization (typically up to 30%), and usually show an elongated, arc-like, morphology character-
ized by sharp emission edges. The prototype of this class of sources is 1253+275, detected in the
Coma cluster (Giovannini et al. 1991). Nowadays, the most spectacular example of relic is probably
provided by the northern relic in CIZA J2242.8+5301 (van Weeren et al. 2010), that has been nick-
named the “Sausage” because of its remarkable regular arc-shaped structure that extends for ∼ 2
Mpc with a width of only∼ 55 kpc at 610 MHz (Fig. 1.11). In the most impressive cases, symmetric
double relics are observed on opposite sides of clusters (see de Gasperin et al. 2014; Bonafede et al.
2017, and references therein), as shown in Fig. 1.12 for the case of A3667 (Röttgering et al. 1997;
Johnston-Hollitt 2003). Relics represent important probes of the magnetic field properties in the
clusters outskirts, as they can be found at distances up to a large fraction of the cluster virial radius.

Figure 1.11: Radio polarization and spectral index maps of the Sausage relic. Left: lines represent the
polarization electric field vectors. The length of the vectors are proportional in length to the polarization
fraction. A reference vector for 100% polarization is shown in the upper left corner. Right: spectral index
map obtained with a power-law fit to measurements at five frequencies between 2.3 GHz and 610 MHz. From
van Weeren et al. (2010).

2Here we do not discuss radio mini halos, another kind of diffuse emission with smaller scales (. 500 kpc) found at
the center of some CC clusters.
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Figure 1.12: The double radio relic in A3667. Radio and X-ray emission are reported in contours and colors,
respectively. From Hunstead & SUMSS Team (1999).

Relics show quite steep integrated spectra, while spectral index maps highlight spectral steep-
ening, indicative of particle aging, toward the cluster center (e.g. Bonafede et al. 2009, 2012; van
Weeren et al. 2010; de Gasperin et al. 2015a; Hoang et al. 2018a), as shown in Fig. 1.11 (right
panel). A single power-law is usually adopted to fit the spectra of relics, and it is still under dis-
cussion whether a spectral curvature is present at frequencies & 2 GHz (see Stroe et al. 2013, 2014,
2016; Loi et al. 2017, for the Sausage case).

The presence of correlations between relics and host cluster properties is fundamental to unveil
the origin of these objects. In particular, given the luminosity distance DL, the relic radio power at
1.4 GHz

P1.4 = 4πS1.4D2
L(1+ z)α−1 (1.23)

has been observed to be correlated with the X-ray luminosity of the host cluster (Feretti et al. 2012).
The existence of this correlation could reflect a dependence of P1.4 on the cluster mass, as the X-ray
luminosity can be used as a proxy of the cluster mass (e.g. Pratt et al. 2009). However, possible bi-
ases may be introduced by the presence of CC clusters (Eckert et al. 2011) and by the boost of X-ray
luminosity expected during mergers (e.g. Donnert et al. 2013), precluding the possibility to draw
statistical constraints. In this respect, the SZ signal provides a more robust indicator of the cluster
mass with respect to the X-ray luminosity (Motl et al. 2005; Nagai 2006), allowing to build cluster
samples that are as close as possible to be mass-selected, such as those carried out with the Planck
satellite (Planck Collaboration VIII 2011; Planck Collaboration XXIX 2014; Planck Collaboration
XXVII 2016). For example, de Gasperin et al. (2014) found that the radio power of relics is a steep
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function of M500, namely the mass within the radius r500 that encloses a mean overdensity of 500
with respect to the critical density at the cluster redshift, as determined from Planck observations.
The steep correlation found, i.e. P1.4 ∝ M2.83±0.39

500 , indicates that it is more likely to find radio relics
(as well as radio halos, as we will see in the Section below) in massive clusters and suggests that
the magnetic field at the location of radio relics is rather uniform.

There is a broad consensus on the hypothesis that radio relics are connected with shocks (e.g.
Brüggen et al. 2012a; Brunetti & Jones 2014, for reviews). The evidence includes (i) the arc-like
morphology and peripheral location of some relics, which is consistent with numerical simulations
of cluster shocks, (ii) the radial spectral gradients and/or spectral curvature, suggesting that relativis-
tic electrons gain energy at the shock front and lose energy after the shock passage, (iii) the high
degree of linear polarization, indicating a magnetic field aligned within the shock plane (Fig. 1.11,
left panel) and (iv) the existence of double radio relics (Fig. 1.12), interpreted as traces of shocks
moving outward after an head-on cluster merger in the plane of the sky. The consolidation of the
relic–shock connection is supported by the detection in the X-rays of shock fronts underlying some
radio relics (e.g. Akamatsu & Kawahara 2013; Bourdin et al. 2013; Shimwell et al. 2015; Botteon
et al. 2016a,c; Eckert et al. 2016a; Urdampilleta et al. 2018). Although it is clear that shocks play
a fundamental role in the formation of radio relics, the details of the mechanisms generating the
relativistic electrons are still under debate (Section 1.5).

1.4.2 Radio halos
Radio halos are observed at the center of galaxy clusters. Their emission is fairly regular in

morphology, unpolarized down to a few percent level (unlike relics), and permeates the volume of
the ICM somewhat recalling the distribution of the thermal gas.

The prototype of this class of objects, i.e. the radio halo in the Coma cluster (Fig. 1.13), was de-
tected a long time ago (Large et al. 1959) and has been the target of many observational campaigns
(e.g. Willson 1970; Giovannini et al. 1993; Deiss et al. 1997; Brown & Rudnick 2011). It repre-
sents an unique case where the synchrotron spectrum is sampled over a broad range of frequencies
(Thierbach et al. 2003; Brunetti et al. 2013). This allowed measurement of a spectral steepening
at high frequencies, important to understand the mechanisms responsible of its origin (Schlickeiser
et al. 1987). However, radio halo spectra are usually constrained by only a few data-points, covering
a small range of frequencies, and are commonly fitted with simple single power-laws (e.g. Venturi
et al. 2013). A reference spectral index values for halos is α = 1.3 (e.g. Feretti et al. 2012, and ref-
erences therein). An extreme class of radio halos with α > 1.5, the so called ultra-steep spectrum
radio halos (USSRH), is also observed (e.g. Brunetti et al. 2008; Dallacasa et al. 2009; Macario
et al. 2010, 2013; Wilber et al. 2018). Due to their elusive nature at & GHz, these sources can be
best observed at low frequencies (e.g. Cassano et al. 2010a, 2012). USSRHs pose an energy run-
away problem requiring that an excessive amount of energy is associated to the relativistic plasma
if the steep power-law energy distribution is extrapolated to lower energies. A solution to this prob-
lem is that the observed synchrotron radiation comes from electrons whose energy distribution has
a high-energy break at energies of a few GeV.

A remarkable link between the radio and X-ray properties of galaxy clusters exists. In fact, a
close similarity in the morphology of radio halos and the X-ray emission (Fig. 1.13) of their host
clusters has been noticed since the first studies (e.g. Deiss et al. 1997), and this led to study the
connection between the point-to-point SB of the cluster radio and X-ray emission (Govoni et al.
2001a). Furthermore, several scaling relations between the radio and thermal gas properties of the
ICM have been widely studied in the literature (e.g. Liang et al. 2000; Enßlin & Röttgering 2002;
Bacchi et al. 2003; Cassano et al. 2006; Rudnick & Lemmerman 2009). In particular, thanks to the
Planck satellite, it was possible to determine a steep correlation between the radio power at 1.4 GHz
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Figure 1.13: The radio halo in the Coma cluster. Radio and X-ray emission are reported in contours and
colors, respectively. From Brown & Rudnick (2011).

of radio halos (Eq. 1.23) and the cluster mass, i.e. P1.4 ∝ M3.77±0.57
500 (Cassano et al. 2013), which is

even steeper than the one found for radio relics. This indicates that the cluster mass is an important
parameter that must be taken into account by the models of halo formation.

The most striking argument supporting the connection between cluster mergers and radio halos
is the so called “radio bi-modality” (Brunetti et al. 2007, 2009; Kale et al. 2015). Essentially,
it is observed that clusters can be divided into two populations: merging systems hosting radio
halos and relaxed systems that do not host large-scale diffuse radio sources at the levels of merging
systems. This, together with the fact that a limited number of clusters host radio halos, represents
the starting point to understand the processes that generate synchrotron emission on cluster-wide
scales (Section 1.6).

1.5 Origin of radio relics

Nowadays, the relic–shock connection is fairly well established. In this respect, we contributed
to support this picture with the results obtained during this Thesis (Chapter 2 and 3). During the
past years, three main models for the radio relic formation have been proposed. They are outlined
below.

1.5.1 Adiabatic compression
For a class of models, radio relics might trace region where fossil radio plasma is confined and

then it is re-energized by adiabatic compression due to a recent shock passage (Enßlin & Gopal-
Krishna 2001; Enßlin & Brüggen 2002).

In a radio bubble, the momentum of relativistic particles changes due to radiative losses
(Eq. 1.11) and adiabatic losses/gains associated to variations of volume V of the bubble as

− dp
dt

=
4
3

σT

mec
(εB + εph)p2 +

1
3

1
V

dV
dt

p (1.24)
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where εB = B2/8π and εph = B2
cmb/8π are the energy density in the magnetic field and photon field,

respectively. Coulomb and bremsstrahlung losses are neglected due to the very low particle density
within the region filled by relativistic plasma. Given the volume compression ratio

CV (t) =
V0

V (t)
, (1.25)

it is possible to integrate Eq. 1.24 with the temporary variable change p̃ = CV (t)−1/3 p(t), yielding
to the momentum of a particle with initial momentum p0 at a time t

p(p0, t) =
p0

CV (t)−1/3 + p0/p∗(t)
, (1.26)

where the characteristic momentum is given by

1
p∗(t)

=
4
3

σT

mec

∫ t

t0
dt ′[εB(t ′)+ εph(t ′)]

[CV (t ′)
CV (t)

]1/3

. (1.27)

For an initial power-law population of electrons in the form

N(p) = N0 p−δ , (1.28)

between pmin and pmax, the spectrum at time t is given by

N(p, t) = N0CV (t)−
δ+2

3 p−δ

[
1− p

p∗(t)

]δ−2

(1.29)

between p(pmin, t) and p(pmax, t). The compression also changes the energy density in the magnetic
field as

εB(t) = εB,0

(
V
V0

)−4/3

(1.30)

and, as εB ∝ B2, the average magnetic field strength increases as

B(t) ∝ CV (t)
2
3 . (1.31)

The adiabatic compression model requires the presence of a cloud of fossil electrons, for exam-
ple injected by a former AGN outflow, that already suffered major synchrotron and IC losses whose
emission would be detectable at very low frequencies (tens of MHz and below), hence the name
radio ghosts (Enßlin 1999). When this ghost is crossed by a shock, it is adiabatically compressed
and not shocked because the high sound speed within the relativistic cloud. The compression results
in the re-energization of the electrons (Eq. 1.26) and amplification of the magnetic field (Eq. 1.31).
Note that for a relativistic gas (i.e. γad = 4/3), the Rankine-Hugoniot jump conditions Eq. 1.17, 1.18
and 1.19 become

R=
8M4 +47M2−6

49M2 (1.32)

C = 7M2

M2 +6
(1.33)

P =
8M2−1

7
(1.34)
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Figure 1.14: Temperature, density, and pressure ratios versus the shock Mach number (assuming γad = 4/3).
Note that, in this case, the compression factor is C → 7 forM→ ∞ (cf. Fig. 1.8).

Figure 1.15: Simulation of the spectral evolution of a radio plasma cocoon filled with turbulent magnetic
fields crossed by a shock. The numbers (00,10, . . . ,90) label different time-steps of the simulation (each step
is approximately 7 Myr long). The cutoff frequency clearly decreases with time except in the interval 10−20
(70− 140 Myr) where the shock compression reverses this. During this phase also the overall emissivity at
lower radio frequencies increases, mainly owing to field strength amplification. At all other time-steps the
low- frequency flux decreases artificially, owing to magnetic field annihilation by numerical field diffusion.
From Enßlin & Brüggen (2002).
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and the compression can increase up to 7 times the downstream density (Fig. 1.14). Thus, the
cloud gets compressed along the direction of the shock motion, and expands perpendicularly to this
direction, assuming the typical elongated shape of radio relics. As shown in Fig. 1.15, the spectrum
of the compressed cloud is expected to be steep and curved due to the presence of the already
existent population of fossil electrons; importantly, adiabatic compression just boosts the emission
of the aged electrons without changing the original spectral slope. Diffuse radio emission in front
of the shock is expected due to the presence of the pre-existing population of relativistic electrons.

This framework is mainly challenged by two facts. First of all, in order to experience adiabatic
compression, the relativistic plasma should be well confined in the ICM to keep its internal sound
speed close to the speed of light: however, the sound speed drops as soon as mixing with the thermal
ICM occurs, leading shock (re)acceleration (Sections below) to be the main mechanism to produce
relativistic electrons. Secondly, the observation of an increasing number of double relics disfavors
this scenario because of the low probability to find two symmetric clouds of fossil electrons.

Adiabatic compression seems to play a more important role in the formation of the so-called
radio phoenixes (Slee et al. 2001; van Weeren et al. 2009; Kale & Dwarakanath 2012; de Gasperin
et al. 2015b, 2017; Kale et al. 2018), namely sources with very steep spectrum (α & 1.8) with
amorphous morphology, sometimes recalling radio relics, connected to individual galaxies. The
properties of this class of sources can be reproduced by numerical simulations of radio galaxies
crossed by shocks (e.g. Enßlin & Brüggen 2002). Adiabatic compression may also play a role
for radio halos. Indeed, it has been suspected that the sharp edges of some radio halos coincident
with shocks could be caused by this mechanism (e.g. Markevitch et al. 2005; Markevitch 2010).
However, recent observations seem to rule out this scenario for the most studied case of halo–shock
connection (Wang et al. 2018; Hoang et al. 2018b).

1.5.2 Diffusive shock acceleration

Particle acceleration at shocks is customarily described by the diffusive shock acceleration
(DSA) theory (e.g. Krymskii 1977; Bell 1978a,b; Drury 1983; Blandford & Eichler 1987; Jones
& Ellison 1991; Malkov & Drury 2001). This process is based on the original idea of Fermi (1949),
according to which particles are scattered upstream and downstream the shock by plasma irregular-
ities, gaining energy at each reflection. In this respect, radio emitting electrons in relics could be
generated by DSA from the ICM thermal pool (Enßlin et al. 1998; Roettiger et al. 1999a).

The momentum spectrum of electrons accelerated through DSA mechanism follows a power-
law distribution (Eq. 1.28) where the slope δin j (i.e. the injection spectrum) is

δin j = 2
M2 +1
M2−1

(1.35)

and it depends only on the shock Mach number (e.g. Blandford & Eichler 1987).
The DSA theory was originally developed in the framework of supernova remnants (SNR) in

our Galaxy, where strong shocks withM∼ 103 are able to transfer ∼ 10% or more of the energy
flux though them into CRp, and a smaller fraction into CRe (e.g. Helder et al. 2012; Bell 2013,
2014, for reviews). By contrast, as shown in Fig. 1.7, most of the kinetic energy flux penetrating
cluster merger shocks is associated with weak shocks (e.g. Ryu et al. 2003; Vazza et al. 2009a),
where the acceleration efficiency of CRp is likely < 1% (e.g. Kang & Ryu 2013), although still
poorly understood (e.g. Kang & Jones 2005; Hoeft & Brüggen 2007).

Once CRe in radio relics have been advected downstream, radiative cooling due to IC and syn-
chrotron (Eq. 1.11) reduces the maximum electron energy causing the “volume integrated” electron
spectrum to steepen by one in the power-law index
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Figure 1.16: Injection and integrated slopes of the synchrotron radiation and electron spectrum versus the
shock Mach number.

δ = δin j +1 (1.36)

provided that other mechanisms do not play a role behind the shock (Enßlin et al. 1998). Since the
radio spectral index is connected with the electron spectrum via

α =
δ −1

2
, (1.37)

the observed relic spectral index is connected with the shock Mach number via

α =
M2 +1
M2−1

≡ αin j +
1
2
. (1.38)

As a consequence of the above relations, DSA predicts that for strong shocks (M→∞) it is δin j→ 2
(and αin j → 0.5), while for weak shocks (M . 3−5) it is δin j � 2 (and αin j � 0.5), as shown in
Fig. 1.16.

The electron acceleration efficiency ηe is evaluated assuming that a fraction of the kinetic energy
flux through the shock surface A is converted into CRe acceleration to produce the bolometric (≥ ν0)
synchrotron luminosity of the relic∫

ν0

L(ν)dν ' 1
2

AρuV 3
shηeΨ

(
1− 1
C2

)
B2

B2
cmb +B2 (1.39)

where

Ψ =

∫
p0

Nin j(p)E dp∫
pmin

Nin jE dp
(1.40)
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accounts for the ratio of the energy flux injected in “all” electrons and those visible in the radio band
(ν ≥ ν0), pmin is the minimum momentum for which particles are efficiently accelerated while p0 is
the momentum of the relativistic electrons emitting the synchrotron frequency ν0. In DSA regime,
the particle injection spectrum is Nin j(p) ∝ p−δin j , with slope related to the shock Mach number via
Eq. 1.35. In this respect, DSA is severely challenged by the large acceleration efficiencies required
to reproduce the total radio luminosity of several relics, if particles are accelerated from the ICM
thermal pool (Chapter 5).

A connected problem to the large acceleration efficiencies concerns the lack of γ-ray emission
from galaxy clusters (Vazza & Brüggen 2014; Vazza et al. 2015a, 2016; Wittor et al. 2017). Indeed,
even considering a conservative electron-to-proton ratio of Ke/p = 0.01 (as commonly assumed in
our Galaxy, e.g. Schlickeiser 2002 for discussion), the resulting π0 generated via inelastic collisions
between the accelerated CRp and thermal protons should produce γ-ray emission in excess of the
current limits derived from the Fermi satellite (Ackermann et al. 2010, 2014, 2016). The adoption
of lower (and perhaps more realistic) values of Ke/p ∼ 10−3− 10−5 similar to those generated in
SNRs (e.g. Völk et al. 2005; Berezhko et al. 2009; Morlino et al. 2009; Ellison et al. 2010; Morlino
& Caprioli 2012; Fukui et al. 2012; Park et al. 2015) would only exacerbate the problem.

Finally, the Mach number derived from X-ray (or SZ) observations (Section 1.3.2) can be com-
pared with that expected by DSA (Eq. 1.38) to test this formation scenario for radio relics. The
increasing number of shocks detected in coincidence with relics indicate that a discrepancy exists
between the Mach numbers derived with these two different approaches, with the radio-derived
Mach numbers generally biased high (Akamatsu & Kawahara 2013; Akamatsu et al. 2015, 2017a;
Urdampilleta et al. 2018). Numerical simulations have been performed in order to clarify such an
inconsistency. The emerging scenario is that Mach number variations over shocks (Skillman et al.
2013), projection effects along the line of sight (Hong et al. 2015), and additional mechanisms such
as the Alfvénic drift (Kang & Ryu 2018) and superdiffusive shock acceleration (SSA; Zimbardo &
Perri 2018) might mitigate the observed differences.

1.5.3 Shock re-acceleration
All the challenges faced by the DSA from the thermal ICM can be naturally circumvented by

adopting a scenario where radio relics are generated by the re-acceleration of pre-existing CRe at
merger shocks (e.g. Markevitch et al. 2005; Kang & Ryu 2011, 2016; Kang et al. 2012, 2014; Pinzke
et al. 2013; Caprioli & Zhang 2018). Complementary models invoke the development of turbulence
in the region downstream the shock that is able to re-accelerate stochastically the electrons (e.g.
Fujita et al. 2015, 2016)

In DSA theory, a minimum momentum that leads to diffusive particle transport across the shock
exists (Eq. 1.40). For this reason, non-relativistic electrons are difficult to inject from the ther-
mal pool and this is the reason why a small electron-to-proton ratio Ke/p < 0.01 is predicted (e.g.
Brunetti & Jones 2014). Although a mechanism such as the shock drift acceleration (SDA; Guo
et al. 2014a,b) may lead to this result, it has not been possible yet to constrain this scenario due to
computational limitations.

Assuming that a population of relativistic electrons already exists in the ICM, e.g. injected by
cluster radio galaxies, the initial (upstream) and accelerated spectra of electrons are connected via

Nin j(p) = (δin j +2)p−δin j

∫ p

pmin

xδin j−1Nu(x)dx (1.41)

here Nu is the spectrum of seed particles upstream. When a weak shock crosses a pre-existing
population of CRe, DSA becomes a relatively more efficient process, although efficiencies above a
few per cent are still problematic (e.g. Kang & Ryu 2011). The resulting spectrum of re-accelerated
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Figure 1.17: Spectrum of re-accelerated electrons according to Eq. 1.41. The solid line is the initial spectrum
of fossil electrons (assuming an age of the population of a few Gyr and typical cluster physical parameters).
Different models show the spectrum for Mach numbers 1.3 (dotted line), 1.57 (dashed line), 2.5 (long dashed
line), and 3.5 (dot-dashed line). From Macario et al. (2011).

particles is not that predicted by DSA (Eq. 1.35): it is similar to the spectrum of the seed electrons
if the latter is flat whereas it is that of DSA if the spectrum of seed electrons is steeper than the DSA
one (e.g. Kang & Jones 2005; Kang & Ryu 2011), as shown in Fig. 1.17. The physical acceleration
is still DSA, however; the change reflects only the assumed source of particles being accelerated.

Recently, the re-acceleration scenario has been corroborated by a number of observations of
AGN located nearby or within some radio relics (e.g. Bonafede et al. 2014a; Shimwell et al. 2015;
Botteon et al. 2016a; van Weeren et al. 2017a). Indeed, AGN can naturally provide seed electrons
that are more easily accelerated by weak shocks, alleviating the high acceleration estimated in the
case of DSA from the thermal pool for some relics (e.g. Botteon et al. 2016a; Eckert et al. 2016a;
van Weeren et al. 2016a; Hoang et al. 2018a).

Although this formation mechanism solves most of the energetic problems of the DSA theory
applied at cluster shocks, some challenges remain. Indeed, the collisions between accelerated CRp
and thermal protons would still produce γ-ray emission in excess of current limits; this problem can
be solved only if Ke/p is very high. In addition, the connection between radio galaxies and relics is
not obvious in most cases, indicating that a population of pre-existing CRe is not ubiquitous. The
extremely regular structure extending on Mpc-scales of some relics, such as the Sausage (Fig. 1.11),
further stresses this scenario as it would require that seed CRe are uniformly distributed in the ICM.
Finally, as for the case of adiabatic compression, it is unlikely to have enough sources of CRe in
diametrically opposite sides of the cluster to reproduce the number of double radio relics observed.

1.6 Origin of radio halos

The main difficulty in explaining the origin of radio halos is their Mpc-sizes. Indeed, CRe
undergo radiative losses due to synchrotron and IC emission (Eq. 1.11) that prevent their diffusion
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over such distances. To overcome this slow diffusion problem, CRe are required to be continuously
generated “in situ” in the volume of the radio halo (Jaffe 1977). In the following, we summarize the
two main classes of models proposed for the origin of radio halos.

1.6.1 Hadronic models

The CRp are long living in clusters and accumulate in the ICM because their energy losses are
negligible (e.g. Völk et al. 1996; Berezinsky et al. 1997). Inelastic hadronic collisions between CRp
and the nuclei of the thermal ICM continuously produce electrons and positrons (Dennison 1980;
Blasi & Colafrancesco 1999), which emission can be considered as a stationary signal (e.g. Blasi
et al. 2007). The reactions involved are

p+ p → π0 +π±+X
π0 → 2γ

π± → µ±+νµ(νµ)
µ± → e±+νµ(νµ)+νe(νe)

(1.42)

where X represents some combination of protons, neutrons, and/or other particles. The electrons
(and positrons) produced by this mechanism are the so called secondary electrons. For this reason,
hadronic models are sometimes referred to as secondary models. The formation of radio halos via
secondary electrons has been studied by several numerical simulations (e.g. Dolag & Enßlin 2000;
Miniati et al. 2001; Pfrommer et al. 2008; Donnert et al. 2010a,b; Pinzke et al. 2017), where this
formalism can be easily implemented in the code.

In this framework, all galaxy clusters should show diffuse radio emission on Mpc-scale that
follows the X-rays thermal emission (which provides the targets for the proton collisions), as CRp
are naturally injected in the ICM by AGN and starburst galaxies. This is in disagreement with the
connection observed between halos and cluster mergers (e.g. Buote 2001; Govoni et al. 2004; Cas-
sano et al. 2010b, 2013) as radio emission should be generated by secondary particles irrespectively
of the dynamical state of the hosting system (see however Enßlin et al. 2011 for a possible solution
to this problem). In addition, the discovery of halos with spectral steepening at high frequencies
(e.g. Schlickeiser et al. 1987) and the existence of USSRHs (e.g. Brunetti et al. 2008) disfavors this
scenario because the unrealistic energy budget in terms of CRp that would be implied to explain the
radio emission in these cases (e.g. Brunetti 2004).

In this respect, a significant advance has been reached in the last decade thanks to γ-ray obser-
vations that provide the most important constraints on the role of proton-proton collisions. Indeed,
the chain of reactions in Eq. 1.42 shows that γ-ray emission from π0 decay is a natural by-product
of this process (Dermer 1986). However, current upper limits from the Fermi satellite to the γ-ray
emission from galaxy clusters severely challenge the hadronic origin for radio halos (Ackermann
et al. 2010, 2014, 2016; Jeltema & Profumo 2011; Brunetti et al. 2012, 2017).

1.6.2 Turbulent re-acceleration models

The idea that the radio emitting electrons in radio halos could be generated by merger-driven
turbulence in the ICM was firstly proposed by Brunetti et al. (2001) and Petrosian (2001). Whilst
the complex details that channel turbulent energy into relativistic particles have been the focus of
numerous papers, the microphysics of the processes involved is still poorly constrained (e.g. Fu-
jita et al. 2003, 2015; Brunetti et al. 2004; Cassano & Brunetti 2005; Brunetti & Lazarian 2007,
2011a,b, 2016; Beresnyak et al. 2013; Miniati 2015; Brunetti 2016; Pinzke et al. 2017).

Major merger events are the main source of turbulent motions in the ICM (Section 1.3.3). Such
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motions have scales of the order of∼ 100−400 kpc and velocities∼ 300−700 km s−1 (e.g. Subra-
manian et al. 2006; Eckert et al. 2017b), meaning that they are subsonic (typicallyM∼ 0.2−0.5).
This large scale turbulence cascades to smaller scales leading to the stochastic re-acceleration of
particles via several mechanisms (e.g. Brunetti & Jones 2014), and solving in this way the slow
diffusion problem.

As the direct acceleration of CRe from the thermal ICM pool is a very inefficient mechanism
(e.g. Petrosian & Bykov 2008; Brunetti & Jones 2014, for reviews), a population of seeds primary
or secondary electrons distributed on cluster-scales is required. These particles may be injected in
the ICM by radio galaxies, supernovae, galactic winds, etc., and, for this reason, this class of models
are referred to as re-acceleration models.

The predictions of the turbulent models seem in agreement with the properties observed in radio
halos (e.g. Cassano & Brunetti 2005; Cassano et al. 2006). In this picture, the connection between
radio halos and dynamically disturbed systems is straightforward: halos are transient phenomena
(with a typical life-time ∼ 1− 2 Gyr) connected with merger-driven turbulence and their proper-
ties depend on the evolutionary stage of the merger (e.g. Kuo et al. 2004; Donnert et al. 2013).
This argument agrees with the observed radio bi-modality of galaxy clusters (Brunetti et al. 2009).
The occurrence of radio halos at any redshift thus reflects the interplay between the rate of cluster
mergers and the fraction of energy that is channeled into turbulence and particle re-acceleration.
Remarkably, the existence of USSRHs, that is a challenge for the hadronic models, is a natural con-
sequence of the turbulent scenario: in this case very steep spectra are interpreted as the consequence
of the fact that radiative losses (Eq. 1.11) dominate over the re-acceleration rate at higher energies
producing a steepening of the observed spectrum (e.g. Thierbach et al. 2003; Dallacasa et al. 2009).
This class of sources should be the most common in the Universe as USSRHs can be triggered also
by minor mergers, where the turbulent energy involved is smaller (e.g. Cassano et al. 2006). Obser-
vations at low frequencies have the potential to further test this scenario (Chapter 7).

In literature there is only one reported case of a giant radio halo discovered in a CC/non-merging
system, i.e. CL1821+643 (Bonafede et al. 2014b; Boschin & Girardi 2018). If further studies will
increase the statistical occurrence of these objects, it would imply that other mechanisms (or minor
mergers) may generate Mpc-scale diffuse radio emission also in dynamically relaxed systems.

1.7 Non-thermal X-ray emission

The CRe with γ ∼ 104 in ∼ µG magnetic fields that produce radio synchrotron emission in
the form of relics and halos are also expected to emit in the hard X-rays by IC scattering with
CMB photons (Harris & Grindlay 1979; Rephaeli 1979). Indeed, the typical energy of relativistic
electrons emitting photons with energy Eph observed in the hard X-ray band (> 20 keV) via IC is

Ee ' 3
(

Eph

30 keV

)1/2

[GeV] (1.43)

while the energy of relativistic electrons emitting synchrotron radiation, emitted at redshift z and
observed at frequency ν0, is

Ee ' 7
(

µG
B

ν0

GHz

)1/2

(1+ z)1/2 [GeV] . (1.44)

As a consequence, the two processes sample pretty much the same population of CRe.
The detection of non-thermal IC emission in galaxy clusters in data of satellites like Chan-

dra and XMM-Newton (sensitive up to ∼ 10 keV) is challenged by the mixing with to the thermal
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Figure 1.18: Schematic representation of the ICM spectrum. The thermal bremsstrahlung emission is char-
acterized by a cutoff at high energy, while the IC component is reported with two power-laws (corresponding
to two different values of magnetic field). Credit: D. Wik.

bremsstrahlung ICM emission. Nonetheless, for typical ICM temperatures, the exponential cutoff
of bremsstrahlung (Eq. 1.7) prevents thermal emission above & 10 keV (Fig. 1.18), enabling the
search for IC in the hard X-rays. However, the IC component can be also hindered by the presence
of multi-temperature structures that naturally originate in merging galaxy clusters, and that require
to be modeled accurately to avoid false IC detections.

The search for IC emission from galaxy clusters has been undertaken for many years with many
instruments. The first observational campaigns were carried out with non-imaging and high back-
ground instruments like the High Energy Astronomy Observatory-1 (HEAO-1) that yielded only
upper limits on the IC flux. The next generation of hard X-ray satellites, such as Beppo-SAX and
the Rossi X-Ray Timing Explorer (RXTE), allowed to produce the first claims of detection of non-
thermal emission in the hard X-rays in several clusters, although mostly of marginal significance
and controversial (e.g. Fusco-Femiano et al. 1999, 2000, 2001, 2003, 2005, 2007; Rephaeli et al.
1999; Rephaeli & Gruber 2002; Rossetti & Molendi 2004). More recently, new instruments such as
the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), Suzaku and Swift, largely
failed to confirm IC at similar levels (see Ota et al. 2014, and references therein). The hope to
detect the long-searched IC signal with the NuSTAR, i.e. the first satellite with imaging capabilities
in the hard X-ray band (3−79 keV), appears disheartened by recent observations (Wik et al. 2014;
Gastaldello et al. 2015).

In principle, the detection of IC from synchrotron sources in galaxy clusters would allow to
measure the magnetic field in the ICM. Indeed, a proportionality between synchrotron and IC lumi-
nosities exists
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Lsyn

LIC
∝

εB

εph
, (1.45)

where the only unknown quantity in the above equation is the energy density of the magnetic field.
Assuming that both X-ray and radio emissions arise from the same power-law electrons popula-
tion (Eq. 1.28), synchrotron and IC spectra result in power-laws sharing the same spectral index
(Eq. 1.37). The IC flux received by the observer at frequency νX can be calculated from the syn-
chrotron flux received at the frequency νR with

FIC(νX) = 1.38×10−34
(

Fsyn(νR)

Jy

)
(1+ z)α+3

〈B1+α

µG 〉

( νX
keV
νR

GHz

)−α

ζ (α) [ergs−1] (1.46)

where 〈. . .〉 denotes the emission-weighted quantity in the emitting volume and ζ (α) is a dimension-
less function whose values for different spectral indexes can be found in Brunetti & Jones (2014).
Eq. 1.46 reveals that the detection of IC emission from galaxy clusters in the X-ray band constrains
the average value of the magnetic field in the emitting region. In the case of non-detection, the
upper limit on the IC flux is still a useful quantity as it can be converted to a lower limit on B. For
example, so far, the non-detection of IC emission in galaxy clusters made possible to derive only
lower limits of the order of B & 0.1 µG on the magnetic field strength in the ICM (e.g. Rephaeli
et al. 2008).

Radio relics are appealing targets in the search for the IC signal (Chapter 4). Indeed, relics
have angular sizes smaller than halos and are located in peripheral locations, where thermal emis-
sion is fainter. This makes possible to check the presence of IC emission also in the soft X-rays
with instruments such as Chandra and XMM-Newton. Nonetheless, the average magnetic field in
relics is likely enhanced than that (averaged) in the region of radio halos by the shock compression,
decreasing the expected IC flux (Fig. 1.18).



CHAPTER 2

A shock at the radio relic position in Abell 115†

ABSTRACT

As explained in Section 1.5, radio relics are thought to be generated by shock ac-
celeration or re-acceleration. Here we analyze a deep Chandra observation of the
galaxy cluster Abell 115 and detect a shock co-spatial with the radio relic. The X-ray
SB and temperature profiles across the western portion of the relic suggest the pres-
ence of a weak shock with Mach numberM∼ 1.8. So far, only few other shocks
discovered in galaxy clusters have been consistently detected from both density and
temperature jumps (Section 1.3.2). The spatial coincidence between this disconti-
nuity and the radio relic edge strongly supports the view that shocks play a crucial
role in powering these synchrotron sources. We suggest that the relic is originated
by shock re-acceleration of fossil relativistic electrons rather than acceleration from
the thermal pool. The position and curvature of the shock and the associated relic
are consistent with an off-axis merger with unequal mass ratio where the shock is
expected to bend around the core of the less massive cluster.

2.1 Introduction

Abell 115 (hereafter A115) is an X-ray luminous (LX = 1.5×1045 erg s−1 in the 0.1−2.4 keV
band) and dinamically disturbed cluster at z = 0.197. Early X-rays observations (Forman et al.
1981; Shibata et al. 1999) revealed that A115 has a X-ray brightness distribution characterized by
two peaks, the brightest one being in the North region and roughly coincident with the position of
the powerful radio galaxy 3C28. More recently, Chandra observations (Gutierrez & Krawczynski
2005) suggested that A115 is undergoing an off-axis merger, while optical studies confirmed the
presence of two sub-clusters in a merging state (Barrena et al. 2007). In the radio band, A115
exhibits a giant radio relic at the edge of the northern part of the cluster that extends for ∼ 1.5 Mpc
(Govoni et al. 2001b). In this Chapter, we report on the discovery of a shock associated with such a
relic from the analysis of Chandra and VLA observations of A115.

†Based on Botteon et al. (2016a,b).
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2.2 Observations and data reduction

2.2.1 X-ray data reduction

We analyzed the Chandra ACIS-I observations of A115 in VFAINT mode (ObsID: 3233, 13458,
13459, 15578, 15581) with CIAO v4.7 and Chandra CALDB v4.6.9. All data were reprocessed from
level=1 event file following the standard Chandra reduction threads. For the observations in which
the S2 chip was active (ObsID: 3233, 13459, 15581), we extracted light curves from this chip in
the 0.5− 2.0 keV band and we cleaned from soft proton flares using the deflare task with the
clean=yes option. For the other ObsIDs, light curves were instead extracted from a cluster free
emission region in one ACIS-I chip. We combined the observations with the merge_obs script and
produced the 0.5− 2.0 keV image binned by a factor of 2 shown in Fig. 2.1. The total effective
exposure time of this image is 334 ks.

For each observation we created a point spread function (PSF) map at 1.5 keV. These were
combined with the corresponding exposure maps in order to obtain a single exposure-corrected PSF
map with minimum size. We then ran the wavdetect task on the merged image in order to detect
point sources. Sources were visually confirmed and then excluded in the further analysis. We used
the task reproject_event to match background templates to the corresponding event files for ev-
ery ObsID. Then they were normalized by counts in the 9.5−12.0 keV energy band and combined
in a single background image subtracted in the SB analysis.
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Figure 2.1: Chandra exposure-corrected image in the 0.5−2.0 keV band of A115. The image is smoothed
on a 3′′ scale.
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Spectral extraction was performed for every ObsID using the same regions. We modeled the
instrumental non-X-ray background (NXB) following Bartalucci et al. (2014) and the sky compo-
nent with two thermal plasmas at temperatures of 0.14 and 0.25 keV to account for the Local Hot
Bubble (LHB) and the Galactic Halo (GH) emission, respectively, and an absorbed power-law with
photon index Γ = 1.4 to account for the cosmic X-ray background (CXB). The background param-
eters were determined by fitting spectra extracted from cluster-free emission regions at the edge of
the field-of-view (FoV) in the 0.5− 11.0 keV energy band. The cluster emission was fitted with a
thermal model with metal abundance fixed at 0.3 Z�. All fits were performed using Cash statistics
(Cash 1979). The robustness of the fits was verified by checking for systematic errors due to the
background determination. For this reason, we re-performed the cluster spectral analysis with the
background normalization levels fixed at ±1σ within their best fit values. In addition, the impact
of ACIS-I Quantum Efficiency contamination at low energy was verified by fitting in the 0.5−11.0
and 1.0−11.0 keV bands. In both cases, the thermal parameters of the fits are consistent within 1σ .

2.2.2 Radio data reduction

We re-analyzed VLA archival data at 1.4 GHz in the C and D configurations. Details of obser-
vations can be found in Govoni et al. (2001b). The two datasets were edited, calibrated and imaged
separately. Particular care was devoted to the identification and removal of bad data corrupted by
intermittent radio frequency interference (RFI). After a number of phase-only self-calibration itera-
tions and an accurate comparison of the flux densities of the sources, the data of the first Intermediate
Frequency channel, at 1364 MHz for both datasets, were combined (the second Intermediate Fre-
quency channel could not be used given the significantly different frequency). The final dataset (4.5
hr and ∆ν = 50 MHz) was once again self-calibrated a number of times and final images were ob-
tained using different weighting schemes. The image shown in Fig. 2.2a was made with a two-scale
clean where the extended emission was deconvolved using a larger beam (∼ 30′′). The restoring
beam is 15′′×14′′ in position angle −35◦ and the off-source noise level is 70 µJy beam−1. Errors
on flux densities were estimated via

∆S =

√√√√(
σrms×

√
As

Ab

)2

+(ξ ×S)2 (2.1)

where ξ is the calibration uncertainty, σrms is the root-mean-square noise while As and Ab are the
source and beam areas, respectively. We adopted an uncertainty of 5% on the absolute flux scale
calibration.

2.3 Results

A visual inspection of the X-ray image of A115 led us to identify a SB jump in the northern part
of the system, co-spatially located with the relic position (Fig. 2.2). The SB profile was extracted in
the red sector shown in Fig. 2.2b and fitted with PROFFIT v1.3 (Eckert et al. 2011). As outlined in
Section 1.3.2, SB discontinuities are generally characterized assuming an underlying broken power-
law density profile (Eq. 1.21). We performed this kind of analysis in the northern sector of A115
leaving all the parameters of the fit free to vary. The curvature radius of the putative shock relative
to the line-of-sight was assumed to be the same as that in the plane of the sky. The best fit broken
power-law is shown in Fig. 2.3. The compression factor taken from the red sector in Fig. 2.2b
is C = 2.0± 0.1. By using the Rankine-Hugoniot jump conditions this leads to a Mach number
MSB = 1.7±0.1 (Eq. 1.18). Obviously, this value does not include systematics deriving from 3D



34 Chapter 2. A shock at the radio relic position in Abell 115

Figure 2.2: Zoom on the northern region of A115. a) Radio contours at 1.4 GHz of the relic source in A115.
The resolution is 15′′× 14′′. Contour levels are 3σ ×±(

√
2)n, with n = 1,2,3,4. The 1σ noise level is 70

µJy beam−1. White cross denotes the 0056+ 26 B radio galaxy. The zoom-in panel shows the combined
VLA B and C configuration radio map between 4 and 8 GHz of 0056+ 26 B by Harwood et al. (2015). b)
Red sector delineates the region where the X-ray SB profile was extracted; white sectors represent the four
bins where spectral analysis was performed. In both panels colors represent the Chandra image (same of
Fig. 2.1).
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Figure 2.3: X-ray SB profile in the 0.5−2.0 keV band extracted in the red region shown in Fig. 2.2b. Data
were rebinned to reach a minimum signal-to-noise ratio (S/N) of 7. The fit had χ2/d.o.f. = 1.2. The best
fit model and the radio relic brightness profile (in arbitrary units) are shown in solid blue and green dashed,
respectively. The bottom panel shows the fit residuals.
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model geometry and the shape of the extraction region. We explored uncertainties due to the sector
choice by varying its curvature radius, aperture and position angle. Tests were made keeping the
discontinuity distance frozen. Changing the shock curvature radius from its best value 360 kpc
by a factor 0.5 and 1.5 gives the highest variation in terms of the compression factor, 1.6− 2.1,
corresponding to MSB = 1.4− 1.8. Varying the other parameters of the region results in values
of MSB within this range. We did not introduce any ellipticity in the problem as the SB edge
looks quite straight. The red sector in Fig. 2.2b represents the best compromise to highlight the
discontinuity in terms of χ2/d.o.f..

In a shock wave, the downstream region is characterized by an increase of the temperature; in
a cold front instead the denser region has a lower temperature (see e.g. Markevitch & Vikhlinin
2007). For this reason, we extracted spectra in the four white regions shown in Fig. 2.2b and
performed spectral fitting. We found a temperature jump from kTu = 4.3+1.0

−0.6 keV to kTd = 7.9+1.4
−1.1

keV in the two bins closer to the SB discontinuity, confirming the shock nature of this feature. By
using Eq. 1.17, this temperature jump corresponds toMkT = 1.8+0.5

−0.4, in agreement with the Mach
number derived from the density jump. Projection effects, if they play a role, are expected to make
the intrinsic jump slightly smaller. The temperature profile taken across the shock region is shown in
Fig. 2.4. The first bin exhibits a low temperature, this could either be the result of the gas expansion
behind the shock or the presence of a sub-structure along the line-of-sight (e.g. Markevitch et al.
2002). For a sanity check we re-performed the SB fit avoiding this temperature bin by excluding
data points at r < 1.5′; in this case we achieve C = 2.0±0.3, leading toMSB = 1.7+0.3

−0.2.

Figure 2.4: Temperature profile across the shock. The vertical dashed line sets the location of the X-ray SB
discontinuity.
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2.4 Discussion

2.4.1 Radio relic–shock connection

At the resolution of 15′′× 14′′, the radio relic in A115 presents a discontinuity in the center of
its northern edge structure, roughly splitting it in two parts (Fig. 2.2a). One is quite short, straight in
the E-W direction and coincides with the shock location, while the remainder extends in the eastern
direction beyond the cluster X-ray emission and appears slightly bent. Given the spatial coincidence
with the shock we suggest that the former is a “classical” radio relic where particles are accelerated
or re-accelerated by the passage of the shock. In this restricted region, the radio flux density at
1.4 GHz is S = 34±2 mJy. The eastern radio emission is more difficult to interpret and it could be
produced by the uplifting of the plasma coming from the cluster radio bright source 0056+26 B (a
narrow angle tailed radio galaxy whose emission fades away in the East direction, see inset panel in
Fig. 2.2a), located in the middle of the relic, after the shock passage.

In the case of a head-on merging in the plane of the sky between two clusters with similar
mass, radio relics are expected to come into pairs in opposite directions along the axis merger (e.g.
Röttgering et al. 1997). This is clearly not the case of A115 where the relic has an unusual location
as it is oriented almost parallel to the northern sub-cluster motion. This led to doubts about the
nature of relic extended emission and to the interpretation as tails of radio plasma trailing the radio
galaxies (Gutierrez & Krawczynski 2005). However, numerical simulations of an off-axis merger
between clusters with different mass predicts that the shock bends around the core of the minor
cluster (see Fig. 7 in Ricker & Sarazin 2001), in agreement with A115N sub-cluster being less
massive (Barrena et al. 2007).

2.4.2 Acceleration efficiency

There is consensus on the hypothesis that shocks play an important role for the origin of radio
relics (Section 1.5). However, the case of shock acceleration of CRe from the thermal ICM is chal-
lenged by the large efficiencies that are required to reproduce the total radio luminosity of several
relics (e.g. Brunetti & Jones 2014, for a review). To alleviate the large requirements for acceleration
efficiencies of CRe, recent models for cluster relics assume shock re-acceleration of a pre-existing
population of CRe (Markevitch et al. 2005; Kang et al. 2012; Pinzke et al. 2013; Kang et al. 2014).

A115 is a test case to constrain the origin of the shock–relic connection, because the underlying
shock is well constrained. Assuming a shock surface A = π×180×180 kpc2 and upstream density
nu = 9.5×10−4 cm3, we can calculate the efficiency of the shock acceleration process via Eq. 1.39.

A model of shock acceleration from the thermal pool for the relic is readily ruled out by our
measurements. According to DSA theory the particles injection spectrum is a power-law with
slope given by Eq. 1.35 (e.g. Blandford & Eichler 1987), that for M = 1.7− 1.8 would imply
δin j = 4− 3.8 (and integrated spectral index α = 2− 1.9). Not only this is inconsistent with the
measured spectrum of the relic (α ∼ 1.1, Govoni et al. 2001b), but from Eq. 1.39 it also requires an
unrealistically large acceleration efficiency.

Alternatively, we can assume re-acceleration. In this case the initial (upstream) and accelerated
spectra of electrons are connected via Eq. 1.41; re-acceleration efficiencies can be larger compared
to the case of acceleration from thermal ICM, because seed ultra-relativistic electrons diffuse effi-
ciently across the shock discontinuity (e.g. Brunetti & Jones 2014). In Fig. 2.5 we show the case
of a spectrum of re-accelerated electrons with power-law δin j = 3.8 and pmin/mec = 20 and 200.
Re-acceleration of electrons with pmin≥ 100mec appears energetically viable. In this case, however,
the spectrum of the relic would be very steep (α ∼ 2). Alternatively, the shock may re-accelerate a
cloud of electrons that are not very old and have a flatter spectrum. In this case the shock essentially
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Figure 2.5: Electron acceleration efficiency versus magnetic field in the downstream region in the shock in
A115. Lines represent efficiencies evaluated for re-accelerated electrons with two initial energies, namely
pmin/mec = 20 (top) and 200 (bottom) and δin j = 3.8.

boosts their emission at higher frequencies preserving the seed spectrum (Eq. 1.41, see e.g. Kang
& Ryu 2016, for details). As already discussed in Section 2.4.1, re-acceleration is also suggested
by the morphology of the radio relic and by the fact that the relic embeds a few radio galaxies that
would be natural sources of seed particles. Finally, we note that the eastern part of the radio relic
deploys into a region of low X-ray SB where the thermal energy density is small and where a sce-
nario of shock acceleration of thermal electrons would require an efficiency that is even larger than
that shown in Fig. 2.5.

2.5 Conclusions

In this Chapter, we presented results concerning the merging galaxy cluster A115 at z = 0.197
focusing on its northern sub-cluster, where a giant radio relic stands out. Our analysis was based
on a Chandra dataset for a total exposure time of 334 ks and archival VLA radio observations at
1.4 GHz.

The deep Chandra observations led us to detect a shock spatially coincident with the radio
relic in A115. Assuming a broken power-law density profile, the SB discontinuity is consistent
with a density compression factor C = 2.0± 0.1, which in turn results in MSB = 1.7± 0.1; the
Mach number is in the range 1.4− 2 including systematic uncertainties. The shock nature of the
discontinuity was confirmed by spectral analysis of the downstream and the upstream regions, where
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a temperature jump from kTd = 7.9+1.4
−1.1 keV to kTu = 4.3+1.0

−0.6 keV was found, implying MkT =

1.8+0.5
−0.4. This is one of the few cases where the SB and temperature drops in a merger shock are

clearly detected and are in excellent agreement.
In the radio band, the relic can be roughly divided into a W and an E part. The former is a

“classical” relic spatially coincident with the shock found in the X-rays. The relic location is in
agreement with an off-axis merger between two clusters with unequal mass, where the shock bends
around the core of the less massive system. The eastern relic radio emission is harder to interpret as,
in this region, a proper X-ray analysis cannot be performed given its low SB. An attractive scenario
is the uplifting of the cluster radio galaxy 0056+26 B plasma after the shock sweeping in the cluster
outskirts.

Since the shock in A115 is well constrained, we were able to test the models for the origin of
radio relics that have been described in Section 1.5. Given the low Mach number, spectrum and
morphology of the relic, models in which relativistic seed electrons are re-accelerated by the shock
passage are favored. In this respect, the few cluster radio galaxies embedded in the relic in A115
could naturally provide the required seed particles.



CHAPTER 3

AM& 3 shock for El Gordo and the origin of the NW radio relic†

ABSTRACT

We present an X-ray and radio study of the famous El Gordo, a massive and distant
(z = 0.87) galaxy cluster. In the deep Chandra observation, the cluster appears with
an elongated and cometary morphology, a distinctive sign of its current merging
state. The GMRT radio observations at 610 MHz confirm the presence of a radio
halo which remarkably overlaps the X-ray cluster emission and connects a couple of
radio relics. We detect a strong shock (M & 3) in the NW periphery of the cluster,
co-spatially located with the radio relic. This is the most distant (z = 0.87) and one
of the strongest shock detected in a galaxy cluster. This discovery allows us to in-
vestigate the origin of the radio relic and to test the models discussed in Section 1.5.
Our results support the relic–shock connection and allow us to investigate the origin
of these radio sources in a uncommon regime ofM& 3. For this particular case, we
found that shock acceleration from the thermal pool is still a viable possibility.

3.1 Introduction

ACT-CL J0102–4915 is the most massive cluster detected in the far Universe, at a redshift of
z = 0.87 (Menanteau et al. 2012). For its extraordinary mass of M500 ∼ 8.8× 1014 M� (Planck
Collaboration XXIX 2014), it is also known with the nickname of “El Gordo” (which means “The
Fat/Big One” in Spanish). The cluster was firstly discovered by its strong SZ signal (Marriage et al.
2011) and later confirmed through optical and X-ray observations. The system is in a complex
merger state, as revealed by the double peaked galaxy distribution and the elongated morphology
of its hot (kT ∼ 15 keV) ICM (Menanteau et al. 2010, 2012). In the radio band, a tenuous halo and
a double relic system at the cluster NW and SE X-ray boundaries were discovered (Lindner et al.
2014). In this Chapter, we report on the discovery of a strong shock associated with a radio relic in
El Gordo cluster. In particular, our joint Chandra and GMRT analysis provides interesting insights
about the origin of the relic.

†Based on Botteon et al. (2016c).
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3.2 Observations and data reduction

3.2.1 X-ray data reduction
El Gordo was observed three times (ObsID: 12258, 14022, 14023) with Chandra in ACIS-I

configuration and VFAINT mode for a total exposure time of 360 ks. We carried out the standard
data reduction by using CIAO v4.7 and Chandra CALDB v4.6.9. In particular, soft proton flares were
inspected analyzing the light curves extracted from the S2 chip in the 0.5−2.0 keV band for each
ObsID and removed using the lc_clean routine. We then used the merge_obs task to make the
final 0.5−2.0 keV cleaned image (340 ks) shown in Fig. 3.1a.

We created a single exposure-corrected PSF map with minimum size for the merged image by
combining the PSF and exposure maps of each ObsID. Once the PSF of the instrument is known,
the wavdetect task allows to identify discrete sources in the SB image of the cluster. These were
detected using wavelet radii of 1, 2, 4, and 8 pixels, confirmed by eye and excluded in the subse-
quent analysis. In order to create a single background image, the reproject_event task was used
to match the background templates to the corresponding event files for every ObsID. This single
background image was normalized by counts in the band 9.5−12.0 keV and subtracted during the
SB analysis.

Dealing with spectral analysis of low SB sources as in the case of cluster outskirts requires a de-
tailed treatment of the astrophysical and instrumental background emission. In this respect, we mod-
eled the sky component due to the Galactic emission with two thermal plasmas with kT1 = 0.14 keV
and kT2 = 0.25 keV, the CXB with an absorbed power-law with photon index Γ= 1.4 and the ACIS-
I particle background by using the analytical approach prosed by Bartalucci et al. (2014). Spectra
were extracted in the same region for every ObsID and simultaneously fitted in the 0.5−11.0 keV
energy band with the package XSPEC v12.9.0o. Since the low X-ray count rate, we kept the metal
abundance of the APEC model, which accounts for the ICM thermal emission, fixed at the value of
0.3 Z� (solar abundance table by Anders & Grevesse 1989) and used Cash statistics (Cash 1979)
for the fits.

3.2.2 Radio data reduction
Archival GMRT 610 MHz observations of El Gordo (project code 22_001, PI: R. R. Lindner)

taken on 26 August 2012 were analyzed using AIPS. The GMRT Software Backend was used
to record the parallel polarization products RR and LL with a bandwidth of 33.3 MHz divided
into 256 channels. The source 3C48 was used for flux and bandpass calibration and the calibrator
0024− 420 was used for phase calibration toward the target. The total on-target observing time
was 170 min. Standard steps of flagging (excision of bad data) and calibration were carried out.
The resulting calibrated visibilities of the target were then split from the multi-source file and used
for imaging. A few rounds of phase-only self-calibration and a round of amplitude and phase self-
calibration were carried out to improve the quality of the image. The final image with visibilities
weighted according to ROBUST 0 in the task IMAGR and resolution 11′′×4.8′′ (position angle 4.8◦) is
presented in Fig. 3.1b. The image was corrected for the GMRT primary beam using the task PBCOR.
The off-source noise level is 50 µJy beam−1 and a 10% error on the absolute flux calibration scale
was assumed. Quoted errors on flux densities were estimated via Eq. 2.1. As a preliminary result of
new GMRT data, we also used observations taken at 327 MHz (project code 25_023, PI: R. Kale)
to perform spectral analysis.
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Figure 3.1: El Gordo galaxy cluster. a) Chandra 0.5− 2.0 keV band exposure-corrected image smoothed
on a 3′′ scale. b) GMRT 610 MHz radio emission at a resolution of 11′′ × 4.8′′. The 1σ noise level is
50 µJy beam−1, contours are drawn at levels of 3σ × (−1,1,2,4,8,16). Circles denote the compact radio
sources identified in Lindner et al. (2014) as cluster members (red) or not (blue). c) In the Chandra/GMRT
comparison the location of the radio relics at the cluster X-ray boundaries and the spatial connection between
the halo and the northern X-ray tail are evident.
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3.3 Results

3.3.1 X-ray/radio analysis
El Gordo X-ray emission is remarkably reminiscent of the famous Bullet Cluster (Markevitch

et al. 2002): a dense CC (kT ∼ 6 keV) is moving in the SE-NW direction producing a prominent
cold front (Menanteau et al. 2012) which is expected to follow a shock wave (e.g. Vikhlinin et al.
2001b; Markevitch et al. 2002). The cluster is elongated along the merger direction and presents
two X-ray tails giving a comet-like morphology to the system (Fig. 3.1a).

Our 610 MHz radio image of El Gordo recovers extended emission better than previously done
by Lindner et al. (2014, Fig. 2 and 15) as we considered baselines down to 0.2 kλ (instead of 0.48
kλ ). This allows us to study the morphology of the diffuse sources in more detail. In our image
shown in Fig. 3.1b, the prominent and elongated radio halo connects a pair of radio relics, located in
opposite directions at the NW and SE edges of the cluster X-ray emission (Fig. 3.1c). The strongest
part of the halo coincides with the disrupted cluster core, whereas a radio tail appears to remarkably
follow the northern tail visible in the X-rays (Fig. 3.1c).

Our work is focused on the NW radio relic, whose flux densities at 610 and 327 MHz are
S610 = 27.5± 2.8 mJy and S327 = 64.6± 6.6 mJy, respectively, providing a radio spectral index
α = 1.37± 0.20. The flux density of the relic at 2.1 GHz measured by Lindner et al. (2014) with
the ATCA implies α ∼ 1.5 from 2100 to 327 MHz, which is consistent with what we estimated in
the narrower frequency range. Nevertheless, we will use the spectral index from 610 to 327 MHz
since it is taken from two high sensitivity images obtained from GMRT observations with matched
inner-uv coverage (uvmin = 0.2 kλ ).

Figure 3.2: Unsharp-masked Chandra images for El Gordo cluster created by subtracting images convolved
with Gaussians with σ1 and σ2 and dividing by the sum of the two. From top left panel in clockwise order
(σ1,σ2) = (3′′,5′′),(3′′,20′′),(7′′,30′′),(5′′,20′′).
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3.3.2 Relics and shocks
In Section 1.4.1 we mentioned that double relics have been observed in different systems (e.g.

de Gasperin et al. 2014, and references therein) and that are believed to form in mergers between
two clusters with similar mass where diametrically opposite shocks move outwards along the merger
axis (re)accelerating particles (van Weeren et al. 2011a). Menanteau et al. (2012) pointed out the
possible presence of two shocks by analyzing a 60 ks Chandra unsharp-masked image of El Gordo.
For these reasons, we created the unsharp-masked images shown in Fig. 3.2 and searched for sharp
edges in the X-ray SB image, identifying at least one discontinuity in the cluster. We used PROFFIT

v1.3.1 (Eckert et al. 2011) to extract the SB profiles in the red sectors shown in Fig. 3.3, where the
NW relic stands out. Following Section 1.3.2, we adopted an underlying broken power-law density
to describe the SB in presence of a discontinuity (Eq. 1.21). We used this density shape to fit the
X-ray SB keeping all parameters of the model free to vary. The center of the sector in Fig. 3.3 in
J2000 coordinates is RA: +15◦.7275, DEC: −49◦.2724.

We firstly report results concerning sector 1+2 (opening angle: 30◦−98◦) because it covers the
whole extension of the feature shown in Fig. 3.2 and it gives the maximum SB drop with the best
statistics (a discussion on the sector choice is presented in Section 3.3.2). In Fig. 3.4 we report
the best broken power-law model fit, which is in excellent agreement with data. We detect a large
SB drop, corresponding to a density compression factor C = 3.4+0.4

−0.3, co-spatially located with the
relic. For a shock, the Rankine-Hugoniot jump conditions for a monatomic gas (Eq. 1.18) would
lead to a Mach numberMSB = 4.1+3.4

−0.9. AM > 3 shock is quite a rarity in galaxy clusters and so
far only two of them have been detected (M = 3.0± 0.4 in the Bullet Cluster, Markevitch 2006;
M= 3.0±0.6 in A665, Dasadia et al. 2016).
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Figure 3.3: Radio/X-ray overlay of El Gordo. Red sectors outline the SB extracting regions. Spectral analysis
was performed in the yellow sectors. Colors and contours are the same reported in Fig. 3.1.
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Figure 3.4: X-ray SB profile in the 0.5−2.0 keV band extracted in sector 1+2 (Fig. 3.3). Data were rebinned
to reach a minimum S/N of 7. The best fit model is reported with the solid blue line. The green dashed line
shows the NW radio relic brightness profile (in arbitrary units). Bottom panel shows the residuals of the fit.

As explained in Section 1.3.2, shocks heat the downstream gas allowing to distinguish them
from cold fronts, other kinds of SB discontinuities found in galaxy clusters with inverted temper-
ature jumps (e.g. Markevitch & Vikhlinin 2007). For this reason, we performed spectral analysis
in the yellow sectors shown in Fig. 3.3. Spectra for sector 1+2 are reported in Fig. 3.5. We found
evidence for a very high downstream temperature, kTd = 17.9+3.3

−2.8 keV, while only a lower limit
on the upstream one was obtained, kTu > 6.1 keV. In principle, this is not enough to confirm the
shock nature of the discontinuity but, similarly to the E shock in the Bullet Cluster (Shimwell et al.
2015), the presence of a cold front is very unlikely because it would imply a too high temperature
(kTu > 20 keV) at such a large cluster distance.

Although current data do not allow to measure a temperature jump at the position of the shock,
we can use the lower limit on such a jump to provide an independent constraint on the shock Mach
number. According to the Rankine-Hugoniot conditions, the upstream and downstream tempera-
tures are related by Eq. 1.17, which impliesMkT < 2.9 if we use the upper 1σ limit of kTd and the
lower limit on kTu. We anticipate that this value is consistent with the Mach number inferred from
SB jump once systematic errors are taken into account (see the following Section)

A visual inspection of Fig. 3.1a suggests the presence of a drop in SB also at the position of the
SE relic. A shock in this region is expected due to the presence of the radio relic and in analogy with
the Bullet Cluster (Markevitch et al. 2002). However, current data do not allow us to characterize
statistically the SB drop because of the low X-ray counts in this region. Nevertheless, we found
evidence for a high temperature in the putative downstream gas, kTd = 30.1+10.5

−6.2 keV in the yellow
sector in the SE (Fig. 3.3), somewhat supporting this possibility. As typical temperatures in cluster
outskirts are of a few keV, such an high kTd would likely imply another strong shock in the ICM.
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Figure 3.5: Downstream (top) and upstream (bottom) spectra of sector 1+2. Data points are shown in black
together with the best fitting model. Different colors highlight the model components: the cluster emission (in
solid red), the particle background (in dashed blue) and the sky background (in dotted green). The c-stat/d.o.f.
of the fits are 203/168 and 128/115 for the downstream and upstream spectrum, respectively. Although spectra
were simultaneously fitted, only one ObsID was reported in order to avoid confusion in the plot.

Systematic errors on X-ray analysis

Results discussed above are based on measurements obtained for a particular sector (1+2). This
entirely covers the feature found in the unsharp-mask images (Fig. 3.2) and provides the best char-
acterization of the SB jump due to the statistics of the fit.

We checked the impact due to the choice of the SB extracting region in the determination of the
NW X-ray discontinuity and the resulting Mach number. Firstly, we re-performed SB and spectral
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Table 3.1: Results of the SB and spectral fits of the regions shown in Fig. 3.3. Fits in the 2.0′− 4.9′ radial
range were made keeping rsh frozen at the best fit value achieved in the wider range.

Sector Radial range rsh (
′) C MSB χ2/d.o.f. kTd (keV) kTu (keV) MkT

1
1.2′−4.9′

2.0′−4.9′ 2.359+0.006
−0.004

3.5+0.7
−0.5

3.1+0.7
−0.5

> 3.0
3.2+4.3
−0.8

20.4/32
0.9/6 18.3+4.1

−3.2 6.8+10.8
−2.8 1.9−3.4

2
1.2′−4.9′

2.0′−4.9′ 2.321+0.065
−0.041

3.7+1.2
−0.7

4.2+1.6
−0.9

> 3.0
> 3.8

35.4/24
7.3/2 15.8+7.9

−3.9 > 6.1 < 3.1

1+2
1.2′−4.9′

2.0′−4.9′ 2.338+0.007
−0.005

3.4+0.4
−0.3

3.4+0.5
−0.4

4.1+3.4
−0.9

4.1+6.7
−1.1

18.9/34
5.0/8 17.9+3.3

−2.8 > 6.1 < 2.9

Table 3.2: Impact on the SB profile fits in sector 1+2 due to different shock curvature radii. Note that rcurv∼ 1
Mpc in Fig. 3.4.

rcurv (Mpc) C MSB χ2/d.o.f.
0.6 2.5±0.2 2.2+0.3

−0.2 96.1/48
0.8 3.1±0.3 3.2+0.9

−0.6 91.5/52
1.2 3.4+0.4

−0.3 4.1+3.4
−0.9 41.0/45

1.4 3.2+0.4
−0.3 3.5+1.7

−0.6 24.7/28
1.6 3.1±0.3 3.2+0.9

−0.6 37.5/27
1.8 2.9+0.3

−0.2 2.8+0.6
−0.3 43.1/25

analysis by splitting the red and yellow sectors of Fig. 3.3 in two sub-regions; the dashed line dis-
tinguishes between sector 1 (opening angle: 60◦.5− 98◦), which is oriented in the N direction, to
sector 2 (opening angle: 30◦−60◦.5), which is in the NW direction and better overlaps the relic. In
both regions, the SB profile is well described by a compression factor C & 3, implyingMSB & 3.
We then repeated the SB analysis by excluding data at r < 2′ and keeping the discontinuity distance
frozen at the values found in the 1.2′−4.9′ radial range. Although with a large error, spectral anal-
ysis allowed to constrain the upstream temperature in sector 1, implying a 68% confidence interval
estimate for the Mach numberMkT = 1.9−3.4 (taking into account the asymmetric errors on the
two temperatures), whereas only lower limits on kTu can be obtained in sectors 1+2 and 2. The
results of the fits obtained for the three regions are summarized in Tab. 3.1. Finally, we checked the
variation onMSB in sector 1+2 due to different shock curvature radii from the best fit value found
in Fig. 3.4 (i.e. rcurv ∼ 1 Mpc). Results are reported in Tab. 3.2 and the impact of rcurv on the shock
compression factor is presented in Fig. 3.6.

Spectral analysis requires a careful determination of the background sources and its system-
atic uncertainties. In this respect, we varied the background normalization levels within ±1σ and
re-performed the spectral fits. We achieved results consistent with the reported cluster parameters
within 1σ . Nonetheless, we highlight that the measurement of high temperatures is critical with
Chandra given its low effective area at energies higher than 5 keV; in particular, the estimated con-
fidence range may not reflect entirely the true statistical and systematic error range.

As a final test, a more complex model of a two-temperature thermal plasma was adopted to fit
the downstream spectra. In this case, the high-kT component is not constrained while the low-kT
component gives unreasonably low temperatures (e.g. kThigh > 21.2 keV and kTlow = 2.2+4.0

−1.2 keV,
for sector 1+2). As pointed out in the case of the Coma cluster (Gastaldello et al. 2015), the low-
kT component mitigates the fit residuals at low energy rather than describing a physical condition.
The high-kT spectral component instead supports the presence of a high temperature plasma in the
downstream region.
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Figure 3.6: In the top panel we show the difference between the best fit curvature radius of∼ 1 Mpc (dashed
line) and the two extreme cases with rcurv = 600 and 1800 kpc (lower and upper solid lines, respectively). In
the bottom panel we compare compression factors achieved for different values of rcurv (see Tab. 3.2).

3.3.3 Constraints on the downstream magnetic field

Relativistic electrons scattering with the CMB photons are expected to produce IC emission
(Section 1.7). From the ratio between radio and X-ray emission it is possible to constrain the
magnetic field in the source region (e.g. Blumenthal & Gould 1970). For this reason, we performed
spectral analysis in a sector enclosing the NW relic and introduced, in addition to the canonical
thermal model for the ICM, a power-law in the spectral fit.

We assume that the IC spectrum is a power-law with photon index related to the synchrotron
spectral index via Γ = α +1. Initially we set Γ = 2.37 (see Section 3.3.1) and kept it frozen in the
fit while thermal parameters were free to vary. In this case, we obtain upper limit on the non-thermal
component in the 0.5−2.0 keV band of F[0.5−2 keV] < 6.76×10−15 erg s−1 cm−2.

The IC measurement is a very complicated issue and can be influenced by several factors. We
investigated the impact on IC flux estimation by: using the IC power-law slope in the range 2.17−
2.57 (consistently with the values reported in Section 3.3.1), keeping the temperature frozen at
13.5 and 17 keV (which covers a range of kT obtained for different sector choices in the relic
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region), varying the background normalization levels within ±1σ and re-performing the fits in the
0.7− 11.0 and 0.9− 11.0 keV energy bands. In summary, we found upper limits in the range
(2.95−8.51)×10−15 erg s−1 cm−2 for the IC flux, representing . 50% of the thermal model flux
in the same energy band (0.5−2.0 keV). Interestingly, in the case of temperature frozen at 17 keV,
the fits formally result in a IC detection both for Γ = 2.17 and 2.57; however, we do not consider
these detections solid enough due to the systematics related to the presence of multi-temperature
components and background characterization. The possibility of IC detection in El Gordo will be
discussed also in Chapter 4.

By using our upper limits on the IC flux, from Eq. 1.46 we obtained the following lower limits
on the downstream magnetic field strength: B ≥ 3.1 µG for Γ = 2.17, B ≥ 4.9 µG for Γ = 2.37
and B ≥ 7.6 µG for Γ = 2.57. These values are in line with other estimates for radio relics (e.g.
Bonafede et al. 2009; Finoguenov et al. 2010; van Weeren et al. 2010, 2011b; Botteon et al. 2015).

3.3.4 Acceleration efficiency
As explained in Section 1.4.1, the relic–shock connection is nowadays supported by many obser-

vational studies. Nevertheless, theoretical models of relic formation are challenged by the low Mach
numbers associated with cluster shocks. In fact, the commonly adopted DSA model is severely chal-
lenged for weak shocks if CRe are accelerated by the thermal pool (e.g. Brunetti & Jones 2014, for
a review).

For the NW shock in El Gordo, we measured an upstream number density and temperature
2.4× 10−4 cm−3 and 6.1 keV, respectively, and a surface of the relic A = π × 3502 kpc2. Thus,
having in hands the parameters of the shock and the radio measurements, we are in the position
to constrain the electron acceleration efficiency following the procedure outlined in Section 1.5.2.
In the case of CRe acceleration from the thermal pool, the spectrum of seed particles upstream is a
power-law with slope given by Eq. 1.35, which is related to the synchrotron spectral index (Eq. 1.37)
in the case of steady state conditions (e.g. Blandford & Eichler 1987).

In Fig. 3.7 we report the acceleration efficiency that is necessary to explain the radio luminosity
observed in the NW relic assuming DSA of thermal electrons upstream. We assumed shock Mach
numbers M = 3.5 and 2.5, in line with the values derived from the X-ray analysis. These Mach
numbers would imply a synchrotron spectrum of the relic α = 1.18 and 1.38, respectively, that are
consistent with the radio measurements (Section 3.3.1).

In Fig. 3.7 we also show the lower limits on the magnetic field in the relic that are derived from
the upper limits on the IC flux assuming the two values of the spectral index (Section 3.3.3). Despite
we are dealing with a high-velocity shock, Vsh ∼ 4000 km s−1, we note that the efficiency of CRe
acceleration that is requested to explain the radio relic is large. This is due to the fact that the NW
relic in the El Gordo is one of the most luminous radio relics known so far and because, for few µG
magnetic fields, most of the CRe energy is radiated via IC emission (due to the high redshift of the
cluster). Still, contrary to the case of weaker shocks (see e.g. 1RXS J0603.3+4214, van Weeren et al.
2016a and A115, Botteon et al. 2016a), we conclude that in this case DSA of thermal electrons is
still a viable option. Indeed, forM≥ 3.5 the electron acceleration efficiency appears energetically
viable ηe ≤ 0.01, whereas forM∼ 3− 3.5 additional mechanisms of pre-acceleration of thermal
electrons downstream (see Guo et al. 2014a,b) may be required.

The other possibility is that the NW relic is due to shock re-acceleration of seeds (relativistic
or supra-thermal) electrons. In this case the efficiency necessary to explain the radio emission is
much smaller simply because the bulk of the energy is channelled directly into highly relativistic
particles (Eq. 1.41, e.g. Markevitch et al. 2005; Kang et al. 2012). Seeds can be widely distributed
in the cluster outskirts where the life time of 100 MeV electrons is very long (e.g. Pinzke et al.
2013; Donnert et al. 2016) or they can be in radio ghost/clouds generated by past AGN activity (e.g.
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M=2.5M=3.5

Figure 3.7: Electron acceleration efficiency versus magnetic field in the downstream region in the NW shock
in El Gordo. Black lines represent efficiencies evaluated for a Mach number with M = 2.5 (top) and 3.5
(bottom). Calculations were obtained with pmin = 0.1mec in Eq. 1.41. Vertical lines denote the lower limits
on the downstream magnetic field strength achieved from the lack of IC emission from the relic.

Kang & Ryu 2016). The two possibilities have different predictions on the upstream synchrotron
emission that, in principle, can be tested with very deep radio observations.

3.3.5 Overall considerations on El Gordo

El Gordo is a high redshift (z = 0.87, Menanteau et al. 2012) and high mass (M500 ∼ 8.8×1014

M�, Planck Collaboration XXIX 2014) galaxy cluster. It is the most distant massive cluster with
the brightest X-ray and SZ emission and the farthest hosting diffuse radio sources (halo and relics).
Our study makes it is also the most distant cluster where a shock (with one of the highest Mach
number) has been detected.

Optical and X-ray observations revealed that El Gordo is in a merging state (Menanteau et al.
2010, 2012). Recent numerical simulations were able to reproduce the overall system properties
assuming a nearly head on major merger (Donnert 2014; Molnar & Broadhurst 2015; Zhang et al.
2015; Ng et al. 2015).

Double relic systems are expected to trace shocks moving outwards in cluster outskirts. So far,
studies on El Gordo were mainly focused on the SE relic located in front of the dense CC, which
is expected to follow a shock in analogy with the well known Bullet Cluster case (Markevitch et al.
2002). However, current X-ray data do not allow to characterize the jump in this region because of
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the low count statistics. We instead discovered aM & 3 shock spatially coincident with the NW
relic. Our detection is based on the Chandra SB jump. Although with large uncertainties, spectral
analysis is also consistent with the presence of a strong shock in the ICM. Further indications of the
shock are given by the unsharp-masked images of Fig. 3.2. We also mention the striking similarity
between El Gordo shock/reverse-shock and X-ray morphology with A2146 (Russell et al. 2010,
2012) even though the latter is a less massive system (M500 ∼ 3.8×1014 M�, Planck Collaboration
XXIX 2014).

3.4 Conclusions

In this Chapter, we presented an X-ray/radio study of the famous El Gordo cluster located at
z = 0.87 focusing on the non-thermal activity in the cluster.

Our GMRT radio observations at 610 and 327 MHz confirmed the presence of a halo and a dou-
ble relic system. These represent the most distant diffuse radio sources detected in a galaxy cluster
so far. The halo is quite elongated in the NW-SE, i.e. in the merger direction, and remarkably follows
the ICM emission of the northern X-ray tail. The two relics are found at the boundaries of the X-ray
emission. We focused on the NW relic, which has a synchrotron spectral index α = 1.37± 0.20
between 610 and 327 MHz.

The deep Chandra observations (340 ks) allowed us to discover a shock at the position of the
NW relic. The SB profile taken is this region abruptly drops at the relic location. The density com-
pression factor C & 3 and the high downstream temperature provide the indication of a strong shock
(M & 3) in the ICM. This is among the three strongest shocks detected in galaxy clusters and the
most distant (z = 0.87) observed so far.

The detection of a shock co-spatially located with a relic strongly supports the relic–shock con-
nection. The NW shock in El Gordo allowed us to study particle acceleration in a rare regime of
strong shock. We found that DSA of thermal electrons is consistent with the measured synchrotron
spectrum. Nonetheless, only shocks with M > 3.5 appear energetically viable while for weaker
shocks re-acceleration models would be preferred.

The presence of relativistic particles emitting a bright synchrotron relic at z = 0.87 makes El
Gordo a suitable cluster candidate to search for IC emission from the relic. From the X-ray spectral
analysis we obtained possible hints of IC emission from the relic; however, we could not firmly con-
clude the presence of IC excess and conservatively we derived only lower limits on the downstream
magnetic field that have been used to improve constraints on particle acceleration. Nonetheless, we
also found hints of an excess in the 0.5− 2.0 keV SB profile across the relic region that will be
discussed in the next Chapter.



CHAPTER 4

Inverse Compton emission and magnetic fields in radio relics: the case
of El Gordo

ABSTRACT

The knowledge of structure and intensity of magnetic fields in galaxy clusters is
still limited (Section 1.2.4). A method to constrain the magnetic field strength in
the ICM is the comparison between the synchrotron and IC emission from diffuse
radio sources. However, the contamination of thermal emission and/or the presence
of multi-temperature components make these studies very difficult. In this respect,
radio relics are promising tools in the IC search as they are bright sources laying in
the cluster outskirts, where the contribution of the thermal bremsstrahlung emission
decreases. Here, we show how it is possible to search for IC emission from the X-ray
SB analysis of radio relics. Constraining the magnetic field strength in these regions
gives important information on the particle acceleration efficiency and magnetic field
amplification at cluster merger shocks. We use El Gordo cluster as a test case to show
what would be the impact of such a discovery and its observational cost.

4.1 Introduction

IC emission from the scattering of the CMB photons with relativistic electrons in the ICM has
never been observed to date. No confirmed detection has been obtained mainly due to the difficulty
to disentangle a “hard tail” of emission in the X-ray spectra from thermal emission with a combi-
nation of temperatures (e.g. Wik et al. 2011, 2014; Ota et al. 2014; Gastaldello et al. 2015). This
precluded the fundamental task of measuring the magnetic field strength and its energy density ratio
with the relativistic electrons in synchrotron radio sources.

In the outskirts of merging galaxy clusters, shocks may power Mpc-scale synchrotron emission
in the form of radio relics through a complex combination of mechanisms that (re)accelerate rela-
tivistic particles and amplify magnetic fields in the ICM (e.g. Feretti et al. 2012; Brunetti & Jones
2014; van Weeren et al. 2019). Relativistic electrons in relics generate also IC emission that is ex-
pected to be detected in the SB profiles extracted in the soft X-ray band across the relics themselves
as a downstream SB enhancement. Detecting IC from a radio relic has the potential to constrain
important aspects of the physics of cluster shocks. In this Chapter, we compare the expected SB
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due to IC emission of the 9 most powerful radio relics known to date and determine the feasibility
of the detection for the best candidate.

4.2 The definitive approach to detect IC

The detection of IC from the SB profile analysis relies on the capability of the instrument to
resolve the non-thermal excess due to the radio relic and to measure the contrast in SB between its
peak and the underlying thermal emission downstream (Fig. 4.1). The excess (or “bump”) is larger
for larger IC contribution, i.e. when the flux ratio between the two components FIC/Fd increases.
Thus, as the ratio of IC to synchrotron fluxes scales like FX/Fradio ∝ (1+ z)3+α/B1+α , this analysis
can provide a direct measure of B in the post-shock region.

The SB approach described above has a decisive advantage over the spectral analysis. Indeed,
the low effective area above 10 keV of Chandra and XMM-Newton makes the measurement of high
temperatures in post-shock regions already critical. Even approved future major X-ray missions
like Athena will suffer this problem. Additionally, higher energy satellites like Suzaku and NuSTAR
showed that the spectral confirmation of IC in the Bullet Cluster and in A2163 is severely challenged
by the presence of clumps of very hot gas (20− 30 keV) that can be easily confused with a non-
thermal IC component (Wik et al. 2014; Ota et al. 2014). Similarly, the evidence of gas with
temperatures up to 25 keV in El Gordo cluster (Hughes et al. 2014) will strongly hinder the detection
of IC in the spectra of this exceptional target (see Section below). The SB profile analysis of radio
relics appears to be the only promising method in the long quest for IC emission.

Figure 4.1: Simulated SB profile extracted in the 0.5− 2.0 keV band across the NW relic in El Gordo for
a 1 Ms exposure and assuming a flux ratio between the IC excess and the underlying downstream thermal
emission of 22%. The IC excess is visible as a “bump” in the downstream region. The radio relic SB profile
is in arbitrary units.
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4.3 El Gordo: the best target

For the purpose of maximizing the chance of IC detection, one may exploit the fact that the SB
scales as ∝ (1+ z)−4 while the IC emission scales as ∝ (1+ z)4, thus statistically the most lumi-
nous sources will also be brighter in IC. For this reason, we selected from the recent collections of
cluster diffuse radio sources of Yuan et al. (2015) and Nuza et al. (2017) the most powerful relics
with P1.4 > 1025 W Hz−1. The 9 radio relics satisfying this power threshold are listed in Tab. 4.1
and shown in Fig. 4.2. All these relics belong to double radio relic systems and, in two cases,
two relics with P1.4 > 1025 W Hz−1 are found in the same cluster (i.e. PSZ1 G108.18-11.53 and
MACS J1752.0+4440). The cluster redshifts range from z = 0.056 to z = 0.870, important due to
the dependency of IC losses on the redshift. Despite that the E radio relic in the Bullet Cluster has
P1.4 = 2.3× 1025 W Hz−1 (Shimwell et al. 2015), it was not included in our sample because 94%
of its observed flux density comes from a bright “bulb” of emission likely related to the remnant of
a radio galaxy.

We adopted the parameters in Tab. 4.1 to compute the expected values of IC flux, luminos-
ity, and SB, as a function of the magnetic field strength for each relic in the sample. Calculations
were performed using Eq. 1.46 integrated in the energy range 0.5− 2.0 keV band, which repre-
sents a compromise between the maximum effective area of current X-ray satellites and a favorable
thermal/non-thermal flux ratio in the ICM (cf. Fig. 1.18). Results are shown in Fig. 4.3.

El Gordo (Fig. 4.4) turns out to be the best target for the first discovery of IC emission from
the ICM. It is the highest redshift (z = 0.87) cluster with a detected radio relic and an underlying
shock (Lindner et al. 2014; Botteon et al. 2016c). Due to its high-z, the NW radio relic in El Gordo
has a small angular extension, meaning that the IC signal is concentrated in a compact region. This
results in a SB due to IC that is at least an order of magnitude higher than other bright and extended
relics (Fig. 4.3), such as the Sausage (van Weeren et al. 2010) and the Toothbrush (van Weeren et al.
2012b).

Table 4.1: Properties of the 9 most powerful radio relics discovered so far. The second reference, if
present, provides the work where the reported spectral index has been retrieved. Redshifts are taken from
the NASA/IPAC Extragalactic Database (NED).

Name Position z Sν ν Areaa α Pb
1.4 Reference

(mJy) (GHz) (arcmin2) (W Hz−1)
A3667 NW 0.056 2470 1.372 60.61 0.80 1.8×1025 1,2

CIZA J2242.8+5301† N 0.192 337 0.608 9.63 1.11 1.4×1025 3,4

1RXS J0603.3+4214††,c N 0.225 751 0.610 12.21 1.15 4.5×1025 5,6

PSZ1 G108.18-11.53 NE 0.335 422 0.323 4.84 1.25 2.7×1025 7

PSZ1 G108.18-11.53 SW 0.335 323 0.323 5.95 1.28 2.0×1025 7

MACS J1752.0+4440 NE 0.366 55.1 1.714 4.04 1.21 3.4×1025 8,9

MACS J1752.0+4440 SW 0.366 25.7 1.714 2.91 1.13 1.5×1025 8,9

PSZ1 G287.0+32.9 NW 0.385 216 0.323 3.33 1.16 2.1×1025 10

ACT-CL J0102-4915††† NW 0.870 27.5 0.610 0.73 1.37 4.1×1025 11

Notes. †Sausage Cluster; ††Toothbrush Cluster; †††El Gordo; aEvaluated within the 3σ contour level at
the reported frequency; bRadio power at 1.4 GHz, k-corrected and spectral index rescaled (Eq. 1.23);
cThe other relic in this cluster is not in the diametrically opposite side as in the other double radio relic
systems but it is located toward the E direction. References: 1Röttgering et al. (1997), we verified
that by using the updated values of Johnston-Hollitt (2003, 2004) our results in Fig. 4.3 do not change
significantly; 2Riseley et al. (2015); 3van Weeren et al. (2010); 4Hoang et al. (2017); 5van Weeren et al.
(2012b); 6Rajpurohit et al. (2018); 7de Gasperin et al. (2015a); 8van Weeren et al. (2012a); 9Bonafede
et al. (2012); 10Bonafede et al. (2014a); 11Botteon et al. (2016c).
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Figure 4.2: The 9 most powerful radio relics known to date. Radio contours are spaced by a factor of 2
starting from 3σ . The negative −3σ contours are shown in dashed. Bars in the bottom left corners denote a
linear size of 500 kpc at the cluster redshift. The properties reported in Tab. 4.1 have been derived from these
images. We thank A. Bonafede (PSZ1 G287.0+32.9), F. de Gasperin (PSZ1 G108.18-11.53), H. Röttgering
(A3667) and R. van Weeren (CIZA J2242.8+5301, 1RXS J0603.3+4214, MACS J1752.0+4440) for kindly
providing us the displayed images.
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Figure 4.3: IC flux (top left), luminosity (top right), and SB (bottom) in the 0.5−2.0 keV band expected as
a function of the magnetic field for the 9 radio relics considered in the analysis.

Hints of the presence of IC signal in El Gordo have been already reported in Botteon et al.
(2016c). In Section 3.3.3, we showed that the spectral analysis provides a formal detection in the
case where the temperature is frozen at 17 keV, but we did not consider this result solid enough for
a proper claim. Nonetheless, if real, a significant fraction (up to 40−50%) of the X-ray brightness
across the relic would be contributed by IC emission from the relic itself. This should be visible
in the X-ray images and profiles across the relic (cf. Fig. 4.1). For this reason, we extracted a SB
profile in the 0.5− 2.0 keV across a narrow sector (opening angle: 37◦.2− 67◦.5) containing the
NW radio relic (Fig. 4.4). The fit of a broken power-law model (Eq. 1.21) in this restricted region
provides a good description of the SB jump, leading to χ2/d.o.f.= 48.5/41. However, a SB excess
is present in the region of the diffuse radio source. In this respect, we also attempted to fit the
SB by adding a Gaussian component to the downstream power-law. The addition of this Gaussian
improves the fit, leading to χ2/d.o.f. = 40.3/38. Small changes in the choice of the sector center
and aperture do not influence this excess. The Gaussian component coincident with the relic could
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NW relic

Figure 4.4: Chandra image of El Gordo in the 0.5− 2.0 keV band. The zoom-in panel shows the GMRT
610 MHz radio contours of the NW relic at a resolution of 11′′× 4.8′′. The red sector denotes the region
where the SB profile of Fig. 4.1 was extracted. Adapted from Botteon et al. (2016c).

represent an excess due to IC emission from electrons in the relic. The excess flux associated with
the Gaussian component is in line with that expected from the spectral analysis. The combination
of this excess with the formal detection of IC emission obtained from the spectral analysis (with
kT frozen) is tantalizing, however deeper observations are required to firmly conclude about this
possible detection.

4.4 Future steps toward the detection of IC emission

4.4.1 Feasibility study
The detection of IC signal is a demanding goal even for El Gordo cluster. Indeed, the IC con-

tribution is still sub-dominant compared to thermal bremsstrahlung in the 0.5− 2.0 keV band. In
addition, characterizing the excess in the SB profile taken across the relic requires an instrument
with good angular resolution. The Chandra satellite appears to be the only instrument able to per-
form this task but, as we show below, only with major time investments.

The existing 360 ks Chandra data on El Gordo leading to the tantalizing detection reported in
Botteon et al. (2016c) allow us to quantify the exposure needed to firmly claim the presence of
IC emission from the NW relic. We simulated SB profiles across the relic assuming four different
values of FIC/Fd in the 0.5− 2.0 keV and exposure times of 500 ks, 1 Ms and 1.5 Ms. The IC
component was assumed to have a Gaussian profile centered at the peak and approximately with
the same full width at half maximum of the relic emission. Each profile was simulated 200 times
with the fakeit task in PROFFIT (Eckert et al. 2011) and was fitted with two models consisting in a
broken power-law and in a broken power-law + Gaussian (added to take into account the IC excess).
The χ2/d.o.f. of the fits were compared and the significance of the “bump” was evaluated with the
F-test. The results of our simulations are shown in Fig. 4.5. An example of a simulated SB profile
with FIC/Fd = 22% and exposure 1 Ms is shown in Fig. 4.1. According to Fig. 4.5, a flux ratio
> 20% between the IC and the thermal downstream emission will be constrained at > 3.5σ with
exposures > 1 Ms, providing a direct measure of B in the post-shock region (see Fig. 4.6). Con-
versely, a non-detection of the excess would require B > 6 µG, resulting in a limit of the magnetic
field that is 30 times larger than that derived in the Bullet Cluster (Wik et al. 2014).



4.4 Future steps toward the detection of IC emission 57

0 1 2 3 4 5 6 7 8 9
Sigma

0

5

10

15

20

25

30

35

N
u
m

b
er

500ks
1Ms
1:5Ms

FIC=Fd = 13%

0 1 2 3 4 5 6 7 8 9
Sigma

0

5

10

15

20

25

30

35

N
u
m

b
er

500ks
1Ms
1:5Ms

FIC=Fd = 22%

0 1 2 3 4 5 6 7 8 9
Sigma

0

5

10

15

20

25

30

35

N
u
m

b
er

500ks
1Ms
1:5Ms

FIC=Fd = 31%

0 1 2 3 4 5 6 7 8 9
Sigma

0

5

10

15

20

25

30

35

N
u
m

b
er

500ks
1Ms
1:5Ms

FIC=Fd = 44%

Figure 4.5: Distribution of the significance of the excess detection for a given FIC/Fd and exposure time.

Figure 4.6: Flux ratio between the IC excess and the underlying downstream thermal emission in the 0.5−2.0
keV versus B. The relic spectral index reported in the literature is α = 1.37±0.20 (Botteon et al. 2016c).
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4.4.2 Impact of the discovery

The discovery of IC emission from the NW relic in El Gordo would provide the first direct
measurement of the magnetic field strength in the outskirts of a galaxy cluster. This is fundamental
to (i) discriminate between the models of particle (re)acceleration and (ii) understand the role of
shocks in the magnetic field amplification, as described below.

1. Contrary to the above-mentioned Sausage and Toothbrush relics, the shock underlying the
NW relic in El Gordo has been clearly detected using X-rays and SZ effect (Botteon et al.
2016c; Basu et al. 2016). In combination with the shock parameters derived from X-ray and
SZ observations, the measurement of the magnetic field strength via IC allows to constrain
the particle acceleration efficiency at the shock. In radio relics, the commonly adopted DSA
model is severely challenged by the typical weak cluster shocks if the relativistic electrons are
accelerated from the thermal pool (Brunetti & Jones 2014). However, the shock in El Gordo
is one of the strongest shocks ever observed in the ICM and DSA appears to be energetically
possible, provided that B > 10 µG (Botteon et al. 2016c). This is an extraordinary case as
a number of recent observations (Bonafede et al. 2014a; Shimwell et al. 2015; Botteon et al.
2016a; van Weeren et al. 2017a) seemed to have found in the re-acceleration of seed particles
the holy grail to explain the origin of radio relics. According to Fig. 4.6, a clear detection of IC
signal from the relic in El Gordo would imply the presence of a low magnetic field strength.
This would support the re-acceleration of relativistic seed electrons at the shock confirming
the trend of recent observations even in the case of one of the strongest shocks ever detected
in the ICM and definitively ruling out the DSA origin for radio relics.

2. The detection of IC emission from El Gordo would also place important limits on magnetic
field amplification in collisionless shocks, not accessible in any other way, constraining the
effects of magnetic field compression and non-linear amplification in the downstream region
(e.g. Iapichino & Brüggen 2012; Ji et al. 2016; Donnert et al. 2016). This is a unique way to
determine the role of shocks in the amplification of B in the ICM. In particular, the measure-
ment of strong fields in El Gordo would put in tension the primordial origin of seed fields due
to the restricted time available even for a well-developed dynamo amplification at high-z.

In conclusion, such a discovery will enable a targeted search for the IC signal in other radio relics
and establish an entirely new way to observe magnetic fields in galaxy clusters and to constrain
the physics of cluster shocks. These results will serve as landmark measurements for particle-in-
cell simulations, which target magnetic field amplification and particle acceleration in collisionless
shocks from first principles, but are currently largely unconstrained in cluster shocks (e.g. Caprioli
& Zhang 2018).

4.5 Conclusions

The relativistic electrons producing synchrotron emission in radio relics lose energy also via IC
emission. The ratio between the fluxes due to the two processes constrains the strength of B in the
emitting region. Measuring the magnetic field strength in a post-shock region is fundamental to
understand the efficiency of particle acceleration and magnetic field amplification in the ICM.

A fraction of the X-ray SB profile across a relic is expected to be contributed by IC emission.
Spatially resolving the SB excess due to the non-thermal signal in the soft X-rays overcome the
uncertainties of spectral analysis and the connected problem of the low effective area of satellites
above 10 keV.
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In this Chapter, we computed the expected SB due to IC emission for the 9 most powerful radio
relics observed so far. The NW relic in El Gordo cluster resulted to be the best target for this search
because its high redshift leads to increase the IC losses and to reduce its angular size. Indeed, hints
of IC signal were already reported for this relic (Botteon et al. 2016c). Thus, we investigated in more
detail the possibility to clearly detect IC relaying upon the existing Chandra dataset and by simu-
lating SB profiles with different levels of IC emission and exposure times. The emerging scenario
is that the detection is feasible, but only with major time investments. Nonetheless, this detection
would lead to an unprecedented discovery with the potential to rule out DSA in all the relics. A
non-detection would also be useful, implying a large magnetic field strength downstream and thus
providing important constraints on the mechanisms of magnetic field amplification in shocks.

Currently, Chandra is able to perform this measure in the face of a large observational cost.
Future satellites with high resolution and large effective area, such as the mission concepts Lynx1

(Gaskin et al. 2017) and the Advanced X-ray Imaging Satellite2 (AXIS; Mushotzky 2018), will
make possible the demanding goal of detecting IC emission for a number of clusters even with
modest campaign programs. This represents the first step for a statistical study of magnetic field
amplification and particle acceleration at cluster shocks.

1https://wwwastro.msfc.nasa.gov/lynx/
2http://axis.astro.umd.edu/

https://wwwastro.msfc.nasa.gov/lynx/
http://axis.astro.umd.edu/


60 Chapter 4. IC emission and magnetic fields in radio relics: the case of El Gordo



CHAPTER 5

Shock acceleration efficiency in a sample of radio relics†

ABSTRACT

Merger shocks are thought to play a fundamental role in the generation of radio relics
(Section 1.5). Despite this, the details leading to the acceleration of CRs at low Mach
number shocks are still poorly understood. In Chapters 2 and 3 we explored the cases
of the relics in Abell 115 and El Gordo providing constraints on the acceleration
efficiency and acceleration models. In this Chapter, we extend the study to a sample
of well studied radio relics with detected underlying shocks. We developed a self-
consistent method based on a small number of observable quantities that allowed
us to determine the efficiency of particle acceleration. We found that DSA can not
explain the origin of all the relics (but El Gordo), if particles are accelerated from
the thermal pool. We conclude that other mechanisms, such as shock re-acceleration
of supra-thermal seed electrons, are required to explain the formation of radio relics.

5.1 Introduction

Astrophysical shock waves are able to accelerate particles over a broad range of scales, from
astronomical units in the Sun heliosphere to Mpc-sizes in clusters of galaxies (e.g. Blandford &
Eichler 1987). Among the numerous physical processes proposed, DSA provides a general expla-
nation of particle acceleration in most of the astrophysical environments.

To date, the acceleration efficiency of CRs at astrophysical shocks is mainly constrained by stud-
ies of SNRs in our Galaxy (e.g. Helder et al. 2012, for a review), where strong shocks (M∼ 103)
propagate in a low-beta plasma (βpl = Pth/PB, i.e. the ratio between the thermal and magnetic pres-
sures) medium. In contrast, radio relics in the outskirts of merging galaxy clusters probe particle
acceleration in action at much weaker shocks (M. 3−5) and in a high-βpl environment such as the
ICM, where the thermal pressure dominates over the magnetic pressure. It is not still clear whether
merger shocks in clusters can accelerate CRs in the diluted ICM at meaningful levels, and this poses
fundamental questions on the mechanisms leading to the formation of relativistic particles in radio
relics (e.g. Brunetti & Jones 2014). In this Chapter, for the first time we evaluate the efficiency of
particle acceleration at cluster shocks using a homogeneous approach for a sample of radio relics.

†Based on Botteon et al. (in preparation).
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5.2 Relic sample

We selected a sample of 11 galaxy clusters with radio relics and underlying shocks observed.
The clusters are listed in Tab. 5.1 and include also a few double radio relics systems. The sample is
composed of well studied radio relics with good radio and X-ray data available that are essential to
determine the spectral index of the relics and the properties of the underlying shocks. In particular,
the detection of a shock across the relic (or, at least, a part of it) is necessary to evaluate the particle
acceleration efficiency.

Table 5.1: The sample of galaxy clusters with radio relics and detected underlying shocks. Reported values
of M500 and NH are taken from Planck Collaboration XXIX (2014) and Willingale et al. (2013), respectively.
For the Sausage Cluster, M500 is from de Gasperin et al. (2014). Redshifts are taken from the NASA/IPAC
Extragalactic Database (NED).

Cluster name RAJ2000 DECJ2000 M500 z NH Instrument Ref.
(h,m,s) (◦,′,′′) (1014 M�) (1020 cm−2) R X

A2744 00 14 19 −30 23 22 9.56 0.308 1.46 XMM-Newton 1 2

A115 00 55 60 +26 22 41 7.20 0.197 6.38 Chandra 3 3

El Gordo 01 02 53 −49 15 19 8.80 0.870 1.78 Chandra 4 4

A521 04 54 09 −10 14 19 6.90 0.253 6.06 Chandra 5 6

A3376 06 01 45 −39 59 34 2.27 0.046 5.81 XMM-Newton 7 8

Toothbrush Cluster 06 03 13 +42 12 31 11.1 0.225 33.4 Chandra 9 10

Bullet Cluster 06 58 31 −55 56 49 12.4 0.296 6.43 Chandra 11 12

RXC J1314.4-2515 13 14 28 −25 15 41 6.15 0.247 8.91 XMM-Newton 13 14

A2146 15 56 09 +66 21 21 3.85 0.234 3.35 Chandra 15 16

A3667 20 12 30 −56 49 55 5.77 0.056 5.25 XMM-Newton 17 18,19

Sausage Cluster 22 42 53 +53 01 05 7.97 0.192 46.4 Chandra 20 21

Notes. References (R=radio, X=X-ray): 1Giacintucci et al. (in preparation); 2Eckert et al. (2016a); 3Botteon
et al. (2016a); 4Botteon et al. (2016c); 5Giacintucci et al. (2008); 6Bourdin et al. (2013); 7Kale et al. (2012);
8Urdampilleta et al. (2018); 9van Weeren et al. (2012b); 10van Weeren et al. (2016a); 11Shimwell et al. (2014);
12Shimwell et al. (2015); 13Venturi et al. (2013); 14Mazzotta et al. (2011); 15Russell et al. (2012); 16Hoang
et al. (2018c); 17Mauch et al. (2003); 18Sarazin et al. (2016); 19Storm et al. (2018); 20van Weeren et al. (2010);
21Akamatsu et al. (2015).

5.3 Methods and data reduction

We retrieved all the ObsIDs available on the clusters of the sample (Tab. 5.1) from the Chan-
dra1 and XMM-Newton2 archives. In the cases where the clusters have been observed with both
instruments, we used the Chandra data because its higher angular resolution allows us to better
characterize the sharp edges of the shocks and to excise more accurately the point sources. How-
ever, for A2744, we used the XMM-Newton dataset because the shock is located on the edge of a
CCD chip in the available Chandra ObsIDs.

5.3.1 Chandra

In our analysis, we used Chandra data for 7 out of 11 clusters of our sample (cf. Tab. 5.1). We
carried out a standard data reduction by using CIAO v4.10 and Chandra CALDB v4.7.8. Datasets

1http://cda.harvard.edu/chaser/
2http://nxsa.esac.esa.int/

http://cda.harvard.edu/chaser/
http://nxsa.esac.esa.int/
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consist both of ACIS-I and ACIS-S observations taken either in FAINT or VFAINT mode. Contam-
ination by soft proton flares was removed by inspecting the light curves extracted3 in the 0.5−7.0
keV band using the lc_filter routine. Multiple ObsIDs were merged together with the task
merge_obs to create images in the 0.5−2.0 keV band.

5.3.2 XMM-Newton

For 4 out of 11 clusters of our sample we used XMM-Newton observations (cf. Tab. 5.1). We
used the ESAS tools developed within the XMM-Newton SAS v16.1.0 to analyze EPIC observations.
The analysis steps have been collected in the pipeline exhaustively described in Ghirardini et al.
(2019), developed in the context of the XMM-Newton Cluster Outskirts Project (X-COP; Eckert
et al. 2017a) and adopted in this work. Soft proton flare contamination is higher in XMM-Newton
than in Chandra, and observation periods affected by high background levels were filtered out with
the tasks mos-filter and pn-filter. EPIC cluster images in the 0.5−2.0 keV band were created
by adding together single detector images and multiple ObsIDs.

5.3.3 Surface brightness and density profiles

After the excision of contaminating point sources, SB profiles across the shocks were extracted
from the 0.5− 2.0 keV exposure-corrected images of the clusters and fitted with PROFFIT v1.5
(Eckert et al. 2011). An underlying broken power-law with a density jump (Eq. 1.21) was assumed
to fit the data, that were rebinned to reach a minium S/N of 7. PROFFIT performs a modeling of the
3D density profile that is numerically projected along the line of sight under spherical assumption
(following the Appendix in Owers et al. 2009). Deprojected density profiles were recovered from
the emission measure of the plasma evaluated in the case of an absorbed APEC model (Smith
et al. 2001) with metallicity assumed to be 0.3 Z� and total (i.e. atomic + molecular) hydrogen
column density NH measured in the direction of the clusters fixed to the values of Willingale et al.
(2013) listed in Tab. 5.1. The choice of the soft band 0.5−2.0 keV ensures that the bremsstrahlung
emissivity is almost independent of the gas temperature for kT & 3 keV (e.g. Ettori et al. 2013).

For Chandra, we made use of the blank sky fields normalized by counts in the 9.5− 12.0 keV
band to subtract the background from the SB profiles (see Botteon et al. 2018a, for more details). For
XMM-Newton, the particle background was subtracted from the data while the Galactic foreground
was taken into account by leaving a constant free to vary during the fitting procedure.

5.4 Computation of the acceleration efficiency

Following Section 1.5.2, we calculated the acceleration efficiency of electrons ηe and the rele-
vant parameters that are necessary to reproduce the bolometric synchrotron luminosity of the relics
in the clusters4 of Tab. 5.1 as a function of the magnetic field B. Rearranging Eq. 1.39 for the
electron acceleration efficiency, we obtain

ηe '
2
∫

ν0
L(ν)dν

AρuV 3
sh

(
1− 1
C2

)−1 1
Ψ

B2
cmb +B2

B2 (5.1)

3For ACIS-I, in the S2 chip kept on during the observation or in a source region in the ACIS-I FoV, if S2 was turned
off. For ACIS-S, light curves were extracted in the S1 chip. See Botteon et al. (2018a) for more details.

4We anticipate that we did not consider the double radio relic system in A3667 in our analysis, see end of Sec-
tion 5.4.1 for more details.
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Table 5.2: Parameters used to compute the acceleration efficiency. Values of the downstream temperature
kTd and radio flux density S are derived from the works listed at the bottom of Tab. 5.1.

Cluster name Position C nd kTd A Sν ν

(cm−3) (keV) (π kpc2) (mJy) (MHz)
A2744† NE 1.90+0.60

−0.40 1.8×10−4 12.3 7402 20 1400
A115 N 2.15+0.16

−0.14 1.5×10−3 7.9 1802 34 1400
El Gordo NW 2.88+0.30

−0.25 8.5×10−4 17.9 3502 28 610
A521 SE 2.41+0.71

−1.41 3.0×10−4 7.0 4902 42 610
A3376 E 1.98+0.27

−0.30 9.0×10−4 4.7 2602 40 1400
Toothbrush Cluster N 1.37+0.18

−0.17 5.5×10−4 8.2 3002 480 610
Bullet Cluster E 2.15+0.16

−0.14 5.0×10−4 13.5 2502 5 2100
RXC J1314.4-2515 W 1.96+0.42

−0.36 1.0×10−3 13.5 3302 85 325
A2146 NW 1.69+0.06

−0.06 3.5×10−3 14.5 1602 0.8 1500
Sausage Cluster N n.a. 3.0×10−4 8.5 9002 337 610
Notes. †Compression factor and downstream density taken from Eckert et al. (2016a).

where Ψ is given in Eq. 1.40 and it depends on pmin. Given the kinetic energy flux available at the
shock ∆FKE and the energy flux of the accelerated relativistic electrons at relic Erelic, invoking flux
conservation we can write

∆FKE︷ ︸︸ ︷
1
2

V 3
shρu

(
1− 1
C2

)
ηe =

Erelic︷ ︸︸ ︷
Vdεe,d (5.2)

where

εe,d =
∫

pmin

Ke p−δin jE dp (5.3)

is the downstream electron energy density (Ke is the normalization of the spectrum) and

Vd = cs
M2 +3

4M (5.4)

is the downstream velocity. We deployed a self-consistent method to calculate ηe that relies on the
small number of observable quantities listed in Tab. 5.2. In particular, we started from downstream
quantities (i.e. temperature and density), usually better constrained by X-ray observations, and from
the Mach number of the shock derived from the density jump (Eq. 1.18) to derive upstream quanti-
ties using the Rankine-Hugoniot jump conditions (Landau & Lifshitz 1959). Downstream tempera-
tures were taken from the literature while downstream densities were obtained from the re-analysis
of the SB profiles extracted across the shocks. The spectrum of the accelerated particles δin j is
related to the shock Mach number in the case of DSA via Eq. 1.35.

In the commonly adopted thermal leakage injection scenario (Gieseler et al. 2000), only particles
with p & pmin are allowed to cross the shock front and take part into the acceleration process.
However, the physical details which determine pmin are still poorly known, making the choice of
pmin a guess (e.g. Ryu et al. 2003; Blasi 2004; Caprioli & Spitkovsky 2014). In our framework,
electrons are accelerated from the thermal pool starting from a minimum momentum as shown in
Fig 5.1. This implies a relationship between the minimum momentum and the normalization of the
spectrum that can be derived matching the number density of non-thermal electrons with that of
thermal electrons with momentum pmin
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Figure 5.1: Schematic representation of the electron momentum distribution in a post-shock region. The two
power-laws show the DSA spectra (Eq. 1.35) in the case of two Mach numbersM1 (blue) >M2 (red).

Ke p−δin j
min =

4√
π

nd
p2
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p3
th

exp

[
−
(

pmin

pth

)2
]

(5.5)

which leads to

Ke =
4√
π

nd
p2+δin j

min

p3
th

exp

[
−
(

pmin

pth

)2
]

(5.6)

where pth =
√

2mekTd is the electron thermal peak momentum in the post-shock gas (Fig. 5.1). At
this point the question is what kind of acceleration efficiency (or parameters pth, Ke) is necessary to
generate the observed radio properties of radio relics. To address this point we combine Eq. 5.1, 5.2
and 5.6, we obtain

p2+δin j
min exp

[
−
(

pmin

pth

)2
]
=

√
π

4

∫
ν0

L(ν)dν

ndVdA
p3

th∫
p0

p−δin jE dp

B2
cmb +B2

B2 (5.7)

which can be used to determine the minimum momentum of the electrons which are efficiently
accelerated as a function of the magnetic field. The surface of the shock is assumed to be A = πR2,
where R is the semi-axis of the relic emission crossed by the shock. At this point, the only unknown
in our problem is the magnetic field downstream (i.e. in the radio relic).

Our knowledge of B in clusters is poor (Section 1.2.4) and only a few constraints on the field
strength in relics, based on questionable assumptions (e.g. equipartition), are available in the liter-
ature (e.g. Johnston-Hollitt 2004; Bonafede et al. 2009; Finoguenov et al. 2010; van Weeren et al.
2010, 2011b). In particular, the magnetic fields can be boosted by shock compression/amplification
in these dynamically active regions (Bonafede et al. 2013), perhaps reaching values up to 5 µG
(e.g. van Weeren et al. 2010; Botteon et al. 2016c; Rajpurohit et al. 2018). This is important to
keep in mind because the required acceleration efficiency is smaller for higher magnetic fields (see
below). Note that Eq. 5.7 requires that pmin > pth or all the thermal distribution will be accelerated
(Fig. 5.1). Thus, Eq. 5.7 might provide physical solutions only above a certain value of B (for a fixed
set of observable quantities). After that pmin is determined, the electron acceleration efficiency can
be computed via Eq. 5.1.
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Figure 5.2: Values of pmin/pth and ηe for a mock radio relic (see text) at fixed magnetic field (left) and Mach
number (right). In the left panels, curves denote different values of B: 0.5 µG (dotted), 1 µG (solid) and 10
µG (dashed). In the right panels, curves denote different values ofM: 2 (dotted), 2.5 (dot-dashed), 3 (short
dashed), 5 (solid) and 10 (long dashed).

In Fig. 5.2, we plot the pmin/pth and ηe for a mock radio relic at z = 0.1 with an optimistic
combination of kTd = 10 keV, nd = 1.0× 10−3 cm−3, S1.4 GHz = 5 mJy, and A = 7502π kpc2, for
different values of Mach number and magnetic field strength. Despite the optimistic parameters,
these plots already demonstrate that DSA from the thermal pool requires too large efficiencies (or,
equivalently, too large magnetic fields) to reproduce the bolometric luminosity of the mock relic in
the case of a M = 2 shock (which is a typical value observed in clusters). As discussed in Sec-
tion 1.5.2, the acceleration efficiency of CRp for weak shocks is likely < 1% (e.g. Kang & Ryu
2013) and that of CRe is reasonably a fraction of this value. In the following, we will consider
a conservative value of ηe = 0.1, which is generally associated to protons in strong SNR shocks
(M∼ 103), and a more realistic value of ηe = 0.01, considering that in SNRs the acceleration
efficiency of CRp is higher than that of CRe.

5.4.1 X-ray and DSA Mach numbers

In Tab. 5.3 and Fig. 5.3 we compare the measured values for X-ray Mach number and integrated
spectral index with the expectations from DSA theory for the relics in our sample. In a number
of cases, a discrepancy between the observed spectral index of the relic and that implied by DSA
exists. In particular, the Mach numbers derived from radio observations are generally biased high
than those coming from X-ray data (e.g. Akamatsu et al. 2017a; Urdampilleta et al. 2018). However,
numerical simulations showed that the inconsistency between radio and X-ray derived Mach num-
bers might emerge from projection effects of multiple shock surfaces (Skillman et al. 2013; Hong
et al. 2015). As a consequence, the discrepancy between the Mach numbers inferred from X-ray
and radio observations can not be used to readily rule out the scenario of DSA of thermal particles.
Furthermore, as mentioned in Section 1.5.2, natural modifications to the basic DSA theory (e.g.
considering Alfvénic drift or including superdiffusion regimes at the shocks, Kang & Ryu 2018;
Zimbardo & Perri 2018) change the spectral index expected from DSA.

In our framework, calculations are based adopting the Mach number estimated from the X-ray
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Table 5.3: Observed X-ray Mach number derived from the SB analysis (MX ) and integrated spectral index
from literature (αradio). These were used to compute the expected integrated spectral index (αDSA) and Mach
number (MDSA) from DSA (Eq. 1.38).

Cluster name Position MX MDSA αradio αDSA Reference
A2744 NE 1.65+0.59

−0.31 2.69+0.42
−0.27 1.32+0.09

−0.09 2.61+1.35
−0.66

1

A115 N 1.87+0.16
−0.13 4.58+∞

−2.50 1.10+0.50
−0.50 1.80+0.19

−0.16
2

El Gordo NW 2.78+0.63
−0.38 2.53+1.04

−0.41 1.37+0.20
−0.20 1.30+0.12

−0.11
3

A521 SE 2.13+1.13
−1.13 2.33+0.05

−0.04 1.45+0.02
−0.02 1.57+∞

−0.36
4

A3376 E 1.71+0.25
−0.24 2.53+0.28

−0.20 1.37+0.08
−0.08 2.04+0.68

−0.34
5

Toothbrush Cluster N 1.25+0.13
−0.12 3.79+0.26

−0.22 1.15+0.02
−0.02 4.56+3.67

−1.34
6

Bullet Cluster E 1.87+0.16
−0.13 2.01+0.19

−0.14 1.66+0.14
−0.14 1.80+0.19

−0.16
7

RXC J1314.4-2515 W 1.70+0.40
−0.28 3.18+0.87

−0.45 1.22+0.09
−0.09 2.06+0.91

−0.47
8

A2146 NW 1.48+0.05
−0.05 3.91+1.95

−0.73 1.14+0.08
−0.08 2.68+0.23

−0.19
9

Sausage Cluster N n.a. 4.38+1.06
−0.59 1.11+0.04

−0.04 n.a. 10

Notes. References for integrated spectral indexes: 1Pearce et al. (2017); 2Govoni et al.
(2001b); 3Botteon et al. (2016c); 4Macario et al. (2013); 5George et al. (2015); 6Rajpurohit
et al. (2018); 7Shimwell et al. (2015); 8George et al. (2017); 9Hoang et al. (2018c);
10Hoang et al. (2017).
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Figure 5.3: Observed Mach numbers and spectral indexes versus the expected values from DSA theory. The
values used to produce the plots are those listed in Tab. 5.3. The dashed lines indicate the linear correlation
as a reference.
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SB analysis (usually better constrained than that obtained with the spectral analysis). Since the
Mach number has important implications for the shock energetics and particle acceleration process
(e.g. Donnert et al. 2017), we also performed the calculations of the acceleration efficiency adopting
the Mach number implied from the observed integrated spectrum of the relic by DSA (Eq. 1.38).

From the clusters listed in Tab. 5.1, A3667 represents a peculiar case. Indeed, the measured
spectral indexes of the two radio relics hosted in this system have integrated values ≤ 1 (Hindson
et al. 2014; Riseley et al. 2015). Spectral indexes < 1 are not allowed by DSA, where αDSA → 1
forM→ ∞ (Eq. 1.38). However, also the case α = 1 is in tension with DSA due to the low Mach
number of the shocks observed in the X-rays underlying the two relics (Sarazin et al. 2016; Storm
et al. 2018). For this reason, we did not consider A3667 in the subsequent analysis.

5.5 Results

We extracted and fitted the X-ray SB profiles across 10 radio relics in the sample. The broken
power-law (Eq. 1.21) fit confirmed the presence of a discontinuity coincident with the outer edge of
radio emission for 9 out of 10 relics. The only case where we used a single power-law model to fit
the SB profile is for the Sausage relic, which is known to not exhibit a SB jump across its surface
(see discussion below). Therefore, we computed the electron density profiles across the shocks
(whose nature was already determined by the spectral analysis performed in literature works) and
derived the compression factors and downstream densities (Tab. 5.2). In Fig. 5.4–5.13 we show the
Chandra and XMM-Newton images in the 0.5−2.0 keV band of the clusters in the sample, and the
SB and density profiles for the 10 radio relics considered in the analysis. Radio contours of the
relics have been superimposed onto the X-ray images. In the following we discuss the individual
cases. In Section 5.6 we summarize and discuss our results.

A2744. This system is known to be a massive cluster experiencing multiple merger events
(Kempner & David 2004; Boschin et al. 2006; Owers et al. 2011) at the crossroads of several fila-
ments (Eckert et al. 2015). In the radio band, it hosts a powerful radio halo and a prominent radio
relic toward the NE direction (Govoni et al. 2001b; Orrù et al. 2007; Pearce et al. 2017), as shown in
Fig. 5.4. Two shocks have been detected in A2744: one ahead the bullet like feature toward the SE
direction (Owers et al. 2011) and the other underlying the relic in the NE cluster outskirts (Eckert
et al. 2016a).

We were not able to reproduce the SB profile reported in Eckert et al. (2016a). Three are the
main reasons that might have caused this: the not optimized choice of the extracting sector, the
different energy band used (0.5− 2.0 keV versus 0.5− 1.2 keV), and the presence of the X-ray
filament in the E direction observed by Eckert et al. (2015) which can alter the upstream slope of
the SB profile. For this case, we used the values reported in Eckert et al. (2016a) for the electron
downstream density at the relic location (extrapolated from the β -model solution for A2744 at the
relic position), compression factor and Mach number to compute the electron acceleration efficiency
in Fig. 5.14. Due to the low Mach number of the shock (which implies a small energy flux at the
shock and a steep spectrum of the accelerated electron), it is challenging to explain the radio relic
luminosity via DSA of thermal electrons. Indeed, a solution is found (i.e. pmin > pth) only for the
upper bound of the shock Mach number derived from X-ray observations; in this case, acceleration
efficiencies ηe . 0.1 are achieved for B & 6.8 µG and ηe . 0.01 for B� 20 µG (Fig. 5.14). The
relic in A2744 is located approximately at the virial radius, and explaining such strong magnetic
field strengths at such a large distance from the cluster center is problematic. On the other hand,
the requirement of strong B can be released if we assume the higher Mach number implied by DSA
from the integrated radio spectrum of the relic (Tab. 5.3).
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Figure 5.4: A2744. Top: XMM-Newton image with overlaid the VLA 1.4 GHz radio contours from Giacin-
tucci et al. (in preparation). Bottom: X-ray SB profile across the radio relic from Eckert et al. (2016a). We
thank S. Giacintucci for kindly providing us the displayed radio contours.
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Figure 5.5: A115. Top: Chandra image with overlaid the VLA 1.4 GHz radio contours from Botteon et al.
(2016a) and the yellow sector used for the analysis of the shock front. Bottom: X-ray SB profile (left) and
density profile (right) across the radio relic.
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A115. It is a galaxy cluster characterized by two components in the initial stage of an off-axis
merger (Forman et al. 1981; Gutierrez & Krawczynski 2005; Barrena et al. 2007). A giant radio
relic with a largest linear size of ∼ 1.5 Mpc is observed in the outskirts of the northern sub-cluster
(Govoni et al. 2001b), as shown in Fig. 5.5. A shock covering the E portion of the relic has been
detected by Botteon et al. (2016a), who suggested that it may actually trace the entire extension of
the relic as a result of the off-axis collision. Recently, this scenario has been further corroborated
by Hallman et al. (2018) from the comparison between high fidelity temperature map of the whole
system and hydrodynamical simulations.

In Chapter 2 we presented the discovery of the shock in A115 and discussed its acceleration
efficiency. Here, we re-performed the analysis following the same procedures used for the other
relics in the sample and obtained consistent results. In particular, if we adopt the Mach number
from X-rays, the efficiency is too large (i.e. pmin < pth) and DSA of thermal particles is readily
ruled out. The second approach is to rely on the Mach number inferred from radio. Unfortunately,
the spectral index reported in Govoni et al. (2001b) has large uncertainties since it was computed
over a narrow frequency range. With the quoted errors, the integrated spectral index can be < 1,
which is not possible in the case of DSA (see the discussion on A3667 in Section 5.4.1). For
this reason, in Fig. 5.14 we computed only the curves corresponding to the best and lower values of
MDSA calculated from the radio spectral index measured by Govoni et al. (2001b). The lower bound
ofMDSA is similar to the upper bound ofMX but provides extremely high acceleration efficiency
(Fig. 5.14). We mention that the relic in A115 is one of the cases where DSA was already ruled out
in favor of a re-acceleration scenario (Botteon et al. 2016a).

El Gordo. It is famous to be a massive cluster at high redshift (Menanteau et al. 2010, 2012)
and to host the most distant radio halo and radio relics know so far (Lindner et al. 2014). Botteon
et al. (2016c) reported the discovery of a strong shock co-located with the NW relic (Fig. 5.6), which
has been confirmed by the combined X-ray/SZ analysis (Basu et al. 2016).

As for the case of A115, we discovered and studied the acceleration efficiency for NW relic in
El Gordo during the PhD Thesis (Chapter 3); here we re-performed the analysis in a homogeneous
manner with the other relics in the sample. The NW relic in El Gordo is one out of the three relics
where the measurements of MX and αradio from X-ray and radio observations are in agreement
with the predictions of DSA (Fig. 5.3). This makes possible to define a region in the (ηe,B) plane
which is consistent with bothMX andMDSA (Fig. 5.14). In such a region, efficiencies ηe . 0.1
are achieved for B & 1.8 µG, which is a reasonable value for a cluster post-shock region. A more
realistic acceleration efficiency ηe∼ 0.01 would require B∼ 5.2 µG, a likely high value of magnetic
field for a cluster periphery which, however, in this case can not be firmly excluded due to the
presence of a quite strong (M∼ 3) shock and the lack of IC emission from the relic (Chapter 4).
As concluded by Botteon et al. (2016c), DSA is still consistent with the observed properties of the
relic/shock and it appears to be also energetically viable in El Gordo.

A521. The cluster complex internal dynamics was unveiled by X-ray and optical observations
(Arnaud et al. 2000; Maurogordato et al. 2000; Ferrari et al. 2003, 2006). In the radio band, this
system is known to be the first galaxy cluster where an USSRH has been detected (Brunetti et al.
2008). As shown in Fig. 5.7, a radio relic is observed in the SE cluster periphery (Giacintucci et al.
2008), where a shock has been claimed by Bourdin et al. (2013).

We performed the X-ray analysis on A521 using public, but unpublished, Chandra observations.
The Mach number and downstream density obtained are consistent with those reported by Bourdin
et al. (2013) with XMM-Newton. Thanks to the combination of steep integrated spectral index and
small error on its measurement (Giacintucci et al. 2008),MDSA is well determined and even better



72 Chapter 5. On the acceleration efficiency at cluster merger shocks

4−10

3−10

2−10]
-2

 a
rc

m
in

-1
S

B
 [

co
u

n
ts

 s

2 3 4
Distance [arcmin]

3−
2−
1−
0
1
2
3

χ

Figure 5.6: El Gordo. Top: Chandra image with overlaid the GMRT 610 MHz radio contours from Botteon
et al. (2016c) and the yellow sector used for the analysis of the shock front. Bottom: X-ray SB profile (left)
and density profile (right) across the radio relic.
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Figure 5.7: A521. Top: Chandra image with overlaid the GMRT 610 MHz radio contours from Giacintucci
et al. (2008) and the yellow sector used for the analysis of the shock front. Bottom: X-ray SB profile (left) and
density profile (right) across the radio relic. We thank S. Giacintucci for kindly providing us the displayed
radio contours.
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constrained than the one derived from X-rays (in contrast with all the other relics). This is the
second relic where DSA predictions are consistent with the observed Mach number and integrated
spectral index (Fig. 5.3). Similarly to El Gordo case, this allows us to study the region of the
efficiency plot in Fig. 5.14 that satisfies both the measured and the DSA-predicted Mach numbers.
For A521, this region is essentially constrained by the DSA expectations, implying ηe . 0.1 for B &
3.9 µG. This value might not be critical for a post-shock region. However, we recall that ηe = 0.1
represents a conservative value; if we consider a lower and more realistic value of ηe . 0.01, the
magnetic field would become B� 20 µG, which is difficult to justify (Fig. 5.14). A combination of
low acceleration efficiencies and low magnetic field strengths is possible only if we use the upper
bound value onMX , which is, however, not consistent with the observed integrated spectral index
assuming DSA (Fig. 5.7).

A3376. It is a nearby and low mass cluster (cf. Tab. 5.1) with a comet-like appearance in the
X-rays which hosts two spectacular radio relics (Bagchi et al. 2006). The relics are separated by a
distance of ∼ 2 Mpc and are found in diametrically opposite directions, toward the E and W cluster
outskirts (Fig. 5.8). Kale et al. (2012) provided a detailed spectral and polarization study of the
relics, whose properties are in agreement with two shocks moving out in the cluster peripheries after
a nearly head-on merger (Machado & Lima Neto 2013). Indeed, both the putative shocks underlying
the radio relics have been confirmed by X-ray observations (Akamatsu et al. 2012; Akamatsu &
Kawahara 2013; Urdampilleta et al. 2018).

We confirmed the SB jump only for the E relic in A3376, obtaining a Mach number which is
consistent with that reported by Urdampilleta et al. (2018). The W relic lays in a very low SB region
at the edge of CCD FoV, making the study of the potential SB discontinuity critical. Nonetheless,
Urdampilleta et al. (2018) characterized an edge in this position of the cluster with XMM-Newton
data. We note that they found that this discontinuity is located in the middle of the relic, and not
on the leading edge of the source as expected and usually observed. We were not able to reproduce
their SB profile; different procedures adopted to subtract the background (I. Urdampilleta, private
communication) may possibly explain this discrepancy. For the purposes of the PhD Thesis, we
limited the analysis only to the E relic. The acceleration efficiency was computed only for the upper
bound ofMX , which is not energetically viable for any value of B (Fig. 5.14). On the other hand,
the problem is alleviated if we assume the higher Mach number derived from the integrated spectral
of the relic under the assumption of DSA.

Toothbrush Cluster. The nickname of this cluster derives from the peculiar shape of the giant
radio relic discovered by van Weeren et al. (2012b). This relic is the most powerful and among the
largest known so far, covering a linear size of ∼ 2 Mpc (Fig. 5.9). Numerical simulations were able
to reproduce the relic morphology from the collision between three systems (Brüggen et al. 2012b).
Surprisingly, only a weak discontinuity covering a portion (i.e. the “brush”) of the relic was found
in the X-rays (van Weeren et al. 2016a), in contrast with the strong shock expected from the analysis
of the radio data. Although no temperature jump has been observed with Chandra at this SB edge
(van Weeren et al. 2016a), Suzaku measurements provided evidence for a temperature discontinuity
(Itahana et al. 2015) which implies a shock with Mach number somewhat in agreement with that
derived from Chandra data.

We used the same sector reported in van Weeren et al. (2016a) to compute the SB and density
profile across the NW part of the Toothbrush relic. We confirmed the presence of a small density
jump which implies the presence of weak shock. For the Mach number measured in the X-rays, it
was not possible to compute the acceleration efficiency (Fig. 5.14). In turns, under DSA assump-
tions, the integrated spectral index implies a strong shock. This would require acceptable values of
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Figure 5.8: A3376. Top: XMM-Newton image with overlaid the VLA 1.4 GHz radio contours from Kale
et al. (2012) and the yellow sector used for the analysis of the shock front. Bottom: X-ray SB profile (left)
and density profile (right) across the E radio relic. We thank R. Kale for kindly providing us the displayed
radio contours.
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Figure 5.9: Toothbrush Cluster. Top: Chandra image with overlaid the GMRT 610 MHz radio contours from
van Weeren et al. (2012b) and the yellow sector used for the analysis of the shock front. Bottom: X-ray SB
profile (left) and density profile (right) across the radio relic. We thank R. van Weeren for kindly providing
us the displayed radio contours.
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B & 1.5 µG to achieve ηe . 0.1 and somewhat high values of B & 5.6 µG to achieve ηe . 0.01.
Nevertheless, the discrepancy betweenMDSA ∼ 3.9 andMX ∼ 1.3 is surprisingly large.

Bullet Cluster. It is the first object were a shock front was discovered by Chandra (Markevitch
et al. 2002). This prominent bow shock to the W is generated by an infalling sub-system that acts as
a “bullet” in the ICM, giving the nickname to the cluster. A powerful radio halo is bounded by the
W shock (Liang et al. 2000; Shimwell et al. 2014). More recently, also a counter-shock co-spatially
located with a radio relic in the E (Fig. 5.10) has been detected (Shimwell et al. 2015).

We obtained consistent values with Shimwell et al. (2015) for the Mach number of the E shock
in the Bullet Cluster. This is the third case where the measured shock strength and integrated spec-
tral index are consistent with the DSA expectations (Fig. 5.3). Although DSA is not tension with the
observed properties of the relic/shock, our calculations in Fig. 5.14 show that the acceleration effi-
ciency requested to match the bolometric radio luminosity of the relic is too large. Indeed, Shimwell
et al. (2015) suggested that shock re-acceleration is in act in the Bullet Cluster due to the connection
of the relic with a bright “bulb” region that may be a remnant of a radio galaxy supplying seed
electrons.

RXC J1314.4-2515. It is an X-ray luminous cluster which hosts a small radio halo at its center
and two Mpc-size relics in the outskirts, one to the E and one to the W (Feretti et al. 2005; Venturi
et al. 2007, 2013). Mazzotta et al. (2011) detected a shock front with an M–like shape at the edge
of the W relic (Fig. 5.11).

We analyzed the “nose” of the M–shock and obtained SB and density profiles consistent with
those reported by Mazzotta et al. (2011). Also in this case, only the upper bound of the Mach num-
ber measured from X-rays allows a viable solution in terms of acceleration efficiency (Fig. 5.14).
Similarly to A2744, ηe . 0.1 for magnetic field strengths B & 5.9 µG, which are likely too high for
cluster outskirts, and ηe . 0.01 is achieved for B� 20 µG. These energy problems are significantly
alleviated if we assume the higher Mach number implied by DSA from the integrated spectral index.

A2146. This is a low-mass system (cf. Tab. 5.1) where two shocks in diametrically opposite
directions have been detected (Russell et al. 2010, 2012). In the past, this cluster was dubbed a
“merger mistery” as no diffuse radio emission was found in the ICM (Russell et al. 2011). However,
recent sensitive observation performed with the JVLA (Hlavacek-Larrondo et al. 2018) and LOFAR
(Hoang et al. 2018c) made possible the detection of a radio relic at the position of the NW shock
(Fig. 5.12) and of a diffuse emission bounded by the SE bow shock that has been classified as a
radio halo.

Our SB profile across the NW relic well recovers the discontinuity of the underlying weak shock.
The density jump and profile are consistent with those reported by Russell et al. (2010, 2012). For
such a low Mach number, a model for the radio relic based on DSA of thermal electrons is ruled
out as it would require pmin < pth (Fig. 5.14). Conversely, if we assume the Mach number implied
by DSA theory from the integrated spectrum, it is possible to match the observed radio luminosity
of the relic with reliable efficiencies (Fig. 5.14). As for the Toothbrush case, we underline the
substantial discrepancy betweenMX ∼ 1.5 andMDSA ∼ 3.9.

Sausage Cluster. The N radio relic with an extremely regular morphology discovered in this
cluster (and from which derives its nickname) is nowadays iconic for this class of sources (van
Weeren et al. 2010). It has a linear extension of ∼ 2 Mpc over its largest projected size, and a
transversal width at 610 MHz of ∼ 55 kpc only (Fig. 5.13). Another smaller and more irregular
relic is located in the diametrically opposite direction of the Sausage, likely generated during a
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Figure 5.10: Bullet Cluster. Top: Chandra image with overlaid the ATCA 2.1 GHz radio contours from
Shimwell et al. (2015) and the yellow sector used for the analysis of the shock front. Bottom: X-ray SB
profile (left) and density profile (right) across the radio relic. We thank T. Shimwell for kindly providing us
the displayed radio contours.
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Figure 5.11: RXCJ 1314.4-2515. Top: XMM-Newton image with overlaid the GMRT 325 MHz radio con-
tours from Venturi et al. (2013) and the yellow sector used for the analysis of the shock front. Bottom: X-ray
SB profile (left) and density profile (right) across the radio relic. We thank T. Venturi for kindly providing us
the displayed radio contours.
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Figure 5.12: A2146. Top: Chandra image with overlaid the JVLA 1.5 GHz radio contours from Hoang et al.
(2018c) and the yellow sector used for the analysis of the shock front. Bottom: X-ray SB profile (left) and
density profile (right) across the radio relic. We thank D. Hoang for kindly providing us the displayed radio
contours.
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Figure 5.13: Sausage Cluster. Top: Chandra image with overlaid the GMRT 610 MHz radio contours from
van Weeren et al. (2010) and the yellow sector used for the analysis of the shock front (not found). Bottom:
X-ray SB profile (left) and density profile (right) across the radio relic. We thank R. van Weeren for kindly
providing us the displayed radio contours.
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head-on merger (van Weeren et al. 2011a; Donnert et al. 2017). Both radio analysis and numerical
simulations suggest that a strong shock should be located at the position of the Sausage. Although
Suzaku observations provided evidence for a large temperature jump across this relic (Akamatsu &
Kawahara 2013; Akamatsu et al. 2015), observations at higher resolution with Chandra and XMM-
Newton failed to detect the SB jump implied by Suzaku spectral analysis (Ogrean et al. 2013a,
2014). In addition, a shock across the S relic in the Sausage cluster has been claimed by Akamatsu
et al. (2015) with Suzaku data. However, we did not include this relic in our analysis because the
shock lays at the border of the FoV of both the Chandra and XMM-Newton observations available,
preventing us to perform a proper SB analysis.

In the literature, no SB discontinuity has been detected across the Sausage relic in the X-rays
(Ogrean et al. 2013a, 2014). Indeed, this is the only case where we used a single power-law model
to fit the SB profile extracted with Chandra. The possibility of an edge is discussed in Appendix A.
For the acceleration efficiency analysis (Fig. 5.14), we used the density measured at the location
of the relic from the single power-law model and assumed different Mach numbers. We found that
acceleration efficiencies ηe . 0.1 with reasonable magnetic field strengths are required for M &
2.5. In particular, if we consider the case ofM = 3, which is in agreement with the temperature
jump measured with Suzaku (Akamatsu et al. 2015), a realistic value of ηe ∼ 0.01 would match
the observed radio luminosity of the relic under the assumption of a magnetic field B ∼ 2.7 µG
(Fig. 5.14). The case is thus interesting but enigmatic: on the one hand there is the claim based on
Suzaku data of a shock with Mach number sufficiently high to explain the Sausage via DSA (even
though the integrated spectral index of the relic would require a higher Mach number assuming
DSA), on the other hand a density drop of a factor of 3 has not observed yet in the Chandra and
XMM-Newton SB profiles. Future deep Chandra observations (PI: M. Markevitch) are planned and
may resolve this puzzle.

5.6 Discussion

In order to summarize the results reported in Fig 5.14, in Fig. 5.15 we computed the acceleration
efficiency that is requested to match the observed radio luminosity of the 10 radio relics in the
sample as a function of the shock Mach number (measured in the X-rays or derived under DSA
assumption) at fixed downstream magnetic field of B = 5 µG; smaller magnetic fields will increase
the requested value of ηe. For the Sausage relic, where no SB is observed in the X-rays, we assumed
MX = 2.5 andMX = 3. Points are calculated using the upper bounds onM and, for this reason,
results are presented as lower limits in Fig. 5.15.

Assuming the Mach number measured in the X-rays, the only relics whose bolometric radio
luminosity can be reproduced with efficiencies ηe < 0.1 are those in El Gordo and A521 (which are
among the few cases where MX and MDSA are consistent). For these two relics the (lower limit
to the) acceleration efficiency is actually ηe < 0.01. We mention that for A521 the upper bound
on MX is not consistent with the lower, and well constrained, Mach number predicted by DSA.
Nonetheless, if we take into account the highest Mach number allowed by both X-ray observation
and DSA theory, the luminosity of the relic in A521 for B = 5 µG can still be reproduced with
ηe < 0.1 (Fig. 5.15). Therefore, we conclude that DSA of thermal electrons can not be readily ruled
out in these two relics if ηe < 0.1. With a more realistic value of ηe < 0.01, DSA from the thermal
pool appears to be energetically viable only for El Gordo. In all the other cases the luminosity of the
relics can not be explained using DSA of thermal electrons adopting the Mach number measured
from the X-rays.

On the other hand, if we assume the higher Mach number implied by DSA from the relic inte-
grated spectral index, models of DSA from the thermal pool would require efficiencies that in many
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Figure 5.14: Electron acceleration efficiency for the radio relics of the sample versus magnetic field in the
downstream region. Calculations were performed using the Mach numbers listed in Tab. 5.3 measured in the
X-rays (black) and derived from the integrated spectral index in the case of DSA (red). Lines denote the best
fit Mach number (solid) and its upper and lower bounds (dotted). For the Sausage relic, lines in blue dashed
represent assumed Mach numbers ofM= 2,2.5,3 (from top to bottom).

cases are ηe� 0.1. By adopting these models we would match both the observed luminosity and
spectrum of the relics. However, we should admit that the Mach number measured in the X-rays
is not representative of the real Mach number of the shock. Numerical simulations suggest that a
combination of multiple shock surfaces and projection effects could smear the observed X-ray Mach
numbers (Skillman et al. 2013; Hong et al. 2015), leading to the observed discrepancy between the
Mach numbers measured in the X-rays and those derived under DSA assumptions (Fig. 5.3). In this
case, however, we note that the radio-inferred Mach number would trace only a small fraction of
the shock surface whereas the X-ray Mach number would be representative of the majority of the
surface. As a consequence, in this case we should use a surface of the shock A in Eq. 5.1 which is
much smaller than that estimated from the observed surface of the radio relics. This would result
in acceleration efficiencies much larger than those calculated in Fig. 5.14 and 5.15. Therefore, also
this model does not appear to explain the properties of the radio relics in our sample.

Another ad hoc possibility is given by a scenario of DSA from the thermal pool where the
spectrum differs from the classical expectations based on the DSA theory (Eq. 1.37). In fact, the ef-
ficiencies calculated assuming the Mach number from the X-rays and the measured radio spectrum
are similar to those calculated assuming the radio Mach number and spectrum (Fig. 5.16). We find
that such a modified DSA model can explain the properties of the radio relics in our sample and their
connection with the underlying shocks observed in the X-rays. The point here is to understand why
clusters shocks, contrary to shocks in SNRs, produce a spectrum that is different from that implied
by DSA. A possibility is to admit that the transport of electrons across the shock is not diffusive but,
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Figure 5.15: Electron acceleration efficiency versus the upper bound ofMX (black) andMDSA (red) obtained
for B = 5 µG. For the Sausage relic, we assumed MX = 2.5 and 3 (blue) as no shock is observed in SB
(Fig. 5.13).

e.g., superdiffusive, as recently proposed by Zimbardo & Perri (2018). At this stage, however, this
hypothesis is rather speculative.

In general, our results suggest that DSA of thermal electrons is not the mechanism responsible
of radio relics. Re-acceleration of seeds supra-thermal or relativistic electrons is favored simply
because, in this scenario, the requested efficiency is orders of magnitude smaller than the classical
DSA of thermal electrons (e.g. Kang & Ryu 2011; Pinzke et al. 2013, and Brunetti & Jones 2014,
for a review).

5.7 Conclusions

We selected a sample of radio relics with detected underlying shock and computed the electron
acceleration efficiency versus magnetic field strength for 10 of them. We adopted a self-consistent
framework which is based on the smallest number possible of observable quantities, namely the
shock Mach number and surface, the downstream temperature and density, and the relic flux den-
sity.

In this Chapter, we demonstrated that the bolometric luminosity of radio relics can not be re-
produced by DSA (even under optimistic assumptions of efficiency and magnetic field) due to the
low Mach number of the underlying shocks observed in the X-rays. Instead, the high Mach number
shocks derived from the relic integrated spectral indexes using DSA appear energetically viable.
Nonetheless, one has to face the fact that the observed properties of the relic/shock are usually in
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Figure 5.16: Same as Fig. 5.14 except the green lines that denote the case where the electron acceleration
efficiency was computed adopting the Mach number measured in the X-rays (with its error bounds) and the
central value of integrated spectral index measured in radio (cf. Tab. 5.3). For visualization purposes, we just
reported the case of 3 radio relics.

contrast with those predicted by DSA theory. The commonly invoked way to reconcile X-rays and
radio Mach numbers is to admit that the relic emission is mainly contributed by the fraction of the
shock surface where the Mach number is higher and the acceleration more efficient. However, in the
case of substantial differences between the two Mach numbers, this would mean that the shock ki-
netic energy is efficiently dissipated into particle acceleration only in a small fraction of the surface
that is traced by the diameter of the radio relic, implying that the effective acceleration efficiency
is much larger than that measured assuming a homogeneous relic/shock surface. We thus conclude
that also this possibility is challenged by our study.

As anticipated in Chapter 3, the shock observed in the X-rays associated with the NW relic in
El Gordo is consistent with the DSA predictions and the acceleration process appears also energet-
ically viable. This is the only case where we found that DSA of thermal particles can not be firmly
ruled out. The quite high lower limits on B inferred from the lack of IC emission from the relic
further support the possibility of DSA. However, this is a very peculiar case as El Gordo hosts the
radio relic with the strongest underlying shock detected so far. Our results indicate that for all the
other radio relics in the sample, generally associated withM . 2 shocks, other mechanisms, such
as shock re-acceleration, are in act lowering the requirement of high acceleration efficiencies.
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CHAPTER 6

Shocks and cold fronts in merging and massive galaxy clusters: new
detections with Chandra†

ABSTRACT

A number of merging galaxy clusters shows the presence of shocks and cold fronts,
i.e. sharp discontinuities in SB and temperature (Section 1.3.2). The observation of
these features requires an X-ray telescope with high spatial resolution like Chandra,
and allows to study important aspects concerning the physics of the ICM, such as its
thermal conduction and viscosity, as well as to provide information on the physical
conditions leading to the acceleration of CRs and magnetic field amplification in
the cluster environment. We searched for new discontinuities in 15 merging and
massive clusters observed with Chandra by using different imaging and spectral
techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six
shocks, eight cold fronts and eight with uncertain origin. All the six shocks detected
haveM< 2 derived from density and temperature jumps. This work contributed to
increase the number of discontinuities detected in clusters and shows the potential of
combining diverse approaches aimed to identify edges in the ICM. A radio follow-up
of the shocks discovered in this work will be useful to study the connection between
weak shocks and radio relics.

6.1 Introduction

Currently, the number of detected edges in galaxy clusters is modest for observational limita-
tions. This is reflected in the handful of merger shocks that have been confirmed using both X-ray
imaging and spectral analysis. In this Chapter, we aim to search in an objective way for new merger
induced shocks and cold fronts in massive and NCC galaxy clusters. The reason is to look for
elusive features that can be followed-up in the radio band. To do that in practice we analyzed 15
clusters that were essentially selected because of the existence of adequate X-ray data available
in the Chandra archive. The Chandra satellite is the the best instrument capable to resolve these
sharp edges thanks to its excellent spatial resolution. We applied different techniques for spatial

†Based on Botteon et al. (2018a).
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and spectral analysis including the application of an edge detection algorithm on the cluster images,
the extraction and fitting of SB profiles, the spectral modeling of the X-ray (astrophysical and in-
strumental) background and the production of maps of the ICM thermodynamical quantities. This
analysis is designed to properly characterize sharp edges distinguishing shocks from cold fronts.

6.2 Cluster sample

We selected a number of galaxy clusters where it is likely to detect merger-induced disconti-
nuities searching for (i) massive systems in a dynamical disturbed state and (ii) with an adequate
X-ray count statistics, based on current observations available in the Chandra archive. In particular
the following.

1. Using the first Planck catalog of SZ sources (PSZ1; Planck Collaboration XXIX 2014) we
selected clusters with mass M500 > 5× 1014 M�, as inferred from the SZ signal. Searching
for diffuse radio emission connected with shocks (radio relics and edges of radio halos) is a
natural follow-up of our study, hence this high mass threshold has been set mainly because
non-thermal emission is more easily detectable in massive merging systems (e.g. Cassano
et al. 2013; de Gasperin et al. 2014; Cuciti et al. 2015). As a second step, we selected only
dynamically active systems excluding all the CC clusters. In this respect, we used the Archive
of Chandra Cluster Entropy Profile Tables (ACCEPT; Cavagnolo et al. 2009) and the recent
compilation by Giacintucci et al. (2017) to look for the so-called core entropy value K0 (see
Eq. 4 in Cavagnolo et al. 2009), which is a good proxy to identify NCC systems (e.g. Mc-
Carthy et al. 2007): clusters with K0 < 30− 50 keV cm2 exhibit all the properties of a CC
hence they were excluded in our analysis.

2. Detecting shocks and cold fronts requires adequate X-ray count statistics as in particular the
latter discontinuities are found in cluster outskirts, where the X-ray brightness is faint. For
this reason, among the systems found in the Chandra data archive1 satisfying (i), we excluded
clusters with . 4−5×104 counts in the Chandra broad-band 0.5−7.0 keV with the exposure
available at the time of writing. We did that by converting the ROSAT flux in the 0.1−
2.4 keV band reported in the main X-ray galaxy cluster catalogs (BCS, Ebeling et al. 1998;
eBCS, Ebeling et al. 2000; NORAS, Böhringer et al. 2000; REFLEX, Böhringer et al. 2004;
MACS, Ebeling et al. 2007, 2010) into a Chandra count rate using the PIMMS software2

and assuming a thermal emission model. Clusters without a reported ROSAT flux in the
catalogs were individually checked by measuring the counts in a circle enclosing the cluster
SB profile when it is below the level of the background and thus rejected adopting the same
count threshold.

We ended up with 37 massive and NCC cluster candidates for our study (Tab. 6.1). In 22
of these systems (bottom of Tab. 6.1) shocks/cold fronts (or both) have been already discovered
and consequently we focused on the analysis of the remaining 15 clusters (top of Tab. 6.1). We
anticipate that the results on the detection of shocks and cold fronts in these clusters are summarized
in Section 6.5.2.

1http://cda.harvard.edu/chaser/
2http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html

http://cda.harvard.edu/chaser/
http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html
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Table 6.1: The galaxy clusters analyzed in this work (top) and the ones that have been excluded as the
presence of a shock/cold front (or both) has been already claimed (bottom). Reported values of M500 and K0
are taken from Planck Collaboration XXIX (2014) and Cavagnolo et al. (2009), respectively. Redshifts are
taken from the NASA/IPAC Extragalactic Database (NED).

Cluster name RAJ2000 DECJ2000 M500 z K0 Shock Cold front
(h,m,s) (◦,′,′′) (1014 M�) (keV cm2) (ref.) (ref.)

A2813 00 43 24 −20 37 17 9.16 0.292 268±44 . . . . . .

A370 02 39 50 −01 35 08 7.63 0.375 322±91 1̃

A399 02 57 56 +13 00 59 5.29 0.072 153±19 . . . 1

A401 02 58 57 +13 34 46 6.84 0.074 167±8 . . . 1

MACS J0417.5-1154 04 17 35 −11 54 34 11.7 0.440 27±7 . . . 1

RXC J0528.9-3927 05 28 53 −39 28 18 7.31 0.284 73±14 . . . 1

MACS J0553.4-3342 05 53 27 −33 42 53 9.39 0.407 . . . 1 1

AS592 06 38 46 −53 58 45 6.71 0.222 59±14 1 . . .
A1413 11 55 19 +23 24 31 5.98 0.143 164±8 . . . . . .
A1689 13 11 29 −01 20 17 8.86 0.183 78±8 . . . . . .
A1914 14 26 02 +37 49 38 6.97 0.171 107±18 1 1

A2104 15 40 07 −03 18 29 5.91 0.153 161±42 1 . . .
A2218 16 35 52 +66 12 52 6.41 0.176 289±20 1 . . .

Triangulum Australis 16 38 20 −64 30 59 7.91 0.051 . . . 1̃

A3827 22 01 56 −59 56 58 5.93 0.098 165±12 . . . . . .

A2744 00 14 19 −30 23 22 9.56 0.308 438±59 2 3

A115 00 55 60 +26 22 41 7.20 0.197 . . . 4 . . .
El Gordo 01 02 53 −49 15 19 8.80 0.870 . . . 5 . . .
3C438 01 55 52 +38 00 30 7.35 0.290 . . . 6 6

A520 04 54 19 +02 56 49 7.06 0.199 325±29 7 . . .
A521 04 54 09 −10 14 19 6.90 0.253 260±36 8 8

Toothbrush Cluster 06 03 13 +42 12 31 11.1 0.225 . . . 9,10 10

Bullet Cluster 06 58 31 −55 56 49 12.4 0.296 307±19 11,12 11

MACS J0717.5+3745 07 17 31 +37 45 30 11.2 0.546 220±96 . . . 13

A665 08 30 45 +65 52 55 8.23 0.182 135±23 14 14

A3411 08 41 55 −17 29 05 6.48 0.169 270±5 15 . . .
A754 09 09 08 −09 39 58 6.68 0.054 270±24 16 17

MACS J1149.5+2223 11 49 35 +22 24 11 8.55 0.544 281±39 . . . 18

Coma Cluster 12 59 49 +27 58 50 5.29 0.023 . . . 19,20 . . .
A1758 13 32 32 +50 30 37 7.99 0.279 231±37 . . . 21

A2142 15 58 21 +27 13 37 8.81 0.091 68±3 . . . 22

A2219 16 40 21 +46 42 21 11.0 0.226 412±43 23 . . .
A2256 17 03 43 +78 43 03 6.34 0.058 350±12 24 25

A2255 17 12 31 +64 05 33 5.18 0.081 529±28 26 . . .
A2319 19 21 09 +43 57 30 8.59 0.056 270±5 . . . 27

A3667 20 12 30 −56 49 55 5.77 0.056 160±15 28,29 30

AC114 22 58 52 −34 46 55 7.78 0.312 200±28 . . . 31

Notes. References: 1this work (if a tilde is superimposed the edge nature is uncertain); 2Eckert et al.
(2016a); 3Owers et al. (2011); 4Botteon et al. (2016a); 5Botteon et al. (2016c); 6Emery et al. (2017);
7Markevitch et al. (2005); 8Bourdin et al. (2013); 9Ogrean et al. (2013b); 10van Weeren et al. (2016a);
11Markevitch et al. (2002); 12Shimwell et al. (2015); 13van Weeren et al. (2017b); 14Dasadia et al. (2016);
15van Weeren et al. (2017a); 16Macario et al. (2011); 17Ghizzardi et al. (2010); 18Ogrean et al. (2016);
19Akamatsu et al. (2013); 20Ogrean & Brüggen (2013); 21David & Kempner (2004); 22Markevitch et al.
(2000); 23Canning et al. (2017); 24Trasatti et al. (2015); 25Sun et al. (2002); 26Akamatsu et al. (2017a);
27O’Hara et al. (2004); 28Finoguenov et al. (2010); 29Storm et al. (2018); 30Vikhlinin et al. (2001b); 31De
Filippis et al. (2004).
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6.3 Methods and data analysis

To firmly claim the presence either of a shock or a cold front in the ICM, both imaging and
spectral analysis are required. Our aim is to search for SB and temperature discontinuities in the
most objective way as possible, without being too much biased by prior constraints due to guesses
of the merger geometry or presence of features at other wavelengths (e.g. a radio relic). To do so,
we did the following.

1. Applied an edge detection filter to pinpoint possible edges in the clusters that were also visu-
ally searched in the X-ray images for a comparison.

2. Selected the most clear features above three times the root mean square noise level of the
filtered images following a coherent arc-shaped structure extending for > 100 kpc in length.

3. Investigated deeper the pre-selected edges with the extraction and fitting of SB profiles.

4. Performed the spectral analysis in dedicated regions to confirm the nature of the jumps.

In addition, we produced maps of the ICM thermodynamical quantities to help in the interpretation
of the features found with the above-mentioned procedure.

In the following sections we describe into details the X-ray data analysis performed in this work.

6.3.1 X-ray data preparation
In Tab. 6.2 we report all the Chandra ACIS-I and ACIS-S observations of our cluster sample.

Data were reprocessed with CIAO v4.9 and Chandra CALDB v4.7.3 starting from level=1 event
file. Observation periods affected by soft proton flares were excluded using the deflare task after
the inspection of the light curves extracted in the 0.5− 7.0 keV band. For ACIS-I, these where
extracted from the front-illuminated S2 chip that was kept on during the observation or in one front-
illuminated ACIS-I chip, avoiding the cluster diffuse emission, if S2 was turned off. In ACIS-S
observations the target is imaged in the back-illuminated S3 chip hence light curves were extracted
in S1, also back-illuminated3.

Cluster images were created in the 0.5− 2.0 keV band and combined with the corresponding
monochromatic exposure maps (given the restricted energy range) in order to produce exposure-
corrected images binned to have a pixel size of 0.984 arcsec. The datasets of clusters observed
multiple times (11 out of 15) were merged with merge_obs before this step. The mkpsfmap script
was used to create and match PSF map at 1.5 keV with the corresponding exposure map for every
ObsID. For clusters with multiple ObsIDs we created a single exposure-corrected PSF map with
minimum size. Thus, point sources were detected with the wavdetect task, confirmed by eye and
excised in the further analysis.

6.3.2 Edge detection filter
In practice, the visual inspection of X-ray images allows to identify the candidate discontinu-

ities (Markevitch & Vikhlinin 2007). We complement this approach with the visual inspection of
filtered images. Sanders et al. (2016a) presented a Gaussian gradient magnitude (GGM) filter that
aims to highlight the SB gradients in an image, similarly to the Sobel filter (but assuming Gaussian
derivatives); in fact, it has been shown that these GGM images are particularly useful to identify
candidate sharp edges, such as shocks and cold fronts (e.g. Walker et al. 2016). The choice of the

3In the ACIS-S ObsID 515 the light curve was extracted in S2 as S1 was turned off.
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Table 6.2: Summary of the Chandra observations analyzed in this work. The net exposure time is after the
flare filtering. The averaged values of NHI (Kalberla et al. 2005) and NH,tot (Willingale et al. 2013) measured
in the direction of the clusters are also reported; these are compared in Fig. 6.1.

Cluster name Observation Detector Exposure Total exposure NHI NH,tot
ID (ACIS) (ks) (net ks) 1020 cm−2 1020 cm−2

A2813
{

9409, 16278, 16366 I, I, S 20, 8, 37
114 1.83 1.93

16491, 16513 S, S 37, 30
A370 515†, 7715 S∗, I 90, 7 64 3.01 3.32
A399 3230 I 50 42 10.6 17.1

A401
{

518†, 2309, 10416, 10417 I∗, I∗, I, I 18, 12, 5, 5
176 9.88 15.2

10418, 10419, 14024 I, I, I 5, 5, 140
MACS J0417.5-1154 3270, 11759, 12010 I, I, I 12, 54, 26 87 3.31 3.87
RXC J0528.9-3927 4994, 15177, 15658 I, I, I 25, 17, 73 96 2.12 2.26
MACS J0553.4-3342 5813, 12244 I, I 10, 75 77 3.32 3.79

AS592
{

9420, 15176 I, I 20, 20
98 6.07 8.30

16572, 16598 I, I 46, 24

A1413
{

537, 1661, 5002 I, I, I 10, 10, 40
128 1.84 1.97

5003, 7696 I, I 75, 5

A1689
{

540, 1663, 5004 I∗, I∗, I 10, 10, 20
185 1.83 1.98

6930, 7289, 7701 I, I, I 80, 80, 5
A1914 542†, 3593 I, I 10, 20 23 1.06 1.10
A2104 895 S∗ 50 48 8.37 14.5

A2218
{

553†, 1454† I∗, I∗ 7, 13
47 2.60 2.83

1666, 7698 I, I 50, 5
Triangulum Australis 17481 I 50 49 11.5 17.0
A3827 3290 S 50 45 2.65 2.96
Notes. ObsIDs marked with † were excluded in the spectral analysis as the focal plane temperature was warmer than the
standard −119.7◦ C observations and there is not Charge Transfer Inefficiency correction available to apply to this data with
subsequent uncertainties in the spectral analysis of these datasets. All the observations were taken in VFAINT mode except
the ones marked by ∗ that were instead taken in FAINT mode.

Gaussian width σ in which the gradient is computed depends on the physical scale of interest, mag-
nitude of the jump and data quality: edges become more easily visible with increasing jump size and
count rate; this requires images filtered on multiple scales to best identify candidate discontinuities
(e.g. Sanders et al. 2016a,b). In this respect, we applied the GGM filter adopting σ = 1,2,4, and 8
pixels (a pixel corresponds to 0.984 arcsec) to the exposure-corrected images of the clusters in our
sample. We noticed that the use of small length filters (1 and 2 pixels) is generally ineffective in
detecting discontinuities in cluster outskirts due to the low counts in these peripheral regions (see
also Sanders et al. 2016a). Instead Gaussian widths of σ = 4 and 8 pixels better highlight the SB
gradients without saturating too much the ICM emission (as it would result with the application of
filters with scales σ = 16 and 32 pixels). For this reason, here we will report GGM filtered images
with these two scales.

6.3.3 Surface brightness profiles

After looking at X-ray and GGM images, we extracted and fitted SB profiles of the candidate
discontinuities on the 0.5−2.0 keV exposure-corrected images of the clusters using PROFFIT v1.4
(Eckert et al. 2011). A background image was produced by matching (with reproject_event)
the background templates to the corresponding event files for every ObsID. This was normalized
by counts in the 9.5−12.0 keV band and subtracted in the SB analysis. Corrections were typically
within 10% except for the S3 chip in FAINT mode (ObsIDs 515 and 895) where the correction was
∼ 45%. For clusters observed multiple times, all the ObsIDs were used in the fits. In the profiles,
data were grouped to reach a minimum S/N threshold per bin of 7.
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6.3.4 Spectra
The scientific aim of our work requires a careful treatment of the background of X-ray spectra,

as in particular shock fronts are typically observed in the cluster outskirts, where the source counts
are low. We modeled the background by extracting spectra in source free regions at the edge of
the FoV. This was not possible for ACIS-I observations of nearby objects and for clusters observed
with ACIS-S as the ICM emission covers all the chip area. In this respect, we used observations
within 3◦ to the target pointing (i.e. ObsID 15068 for A399 and A401, ObsID 3142 for A2104,
ObsID 2365 for Triangulum Australis and ObsID 17881 for A3827) to model the components due
to the CXB and to the Galactic local foreground. The former is due to the superposition of the
unresolved emission from distant point sources and can be modeled as a power-law with photon
index Γcxb = 1.42 (e.g. Lumb et al. 2002). The latter can be decomposed into two-temperature
thermal emission components (Kuntz & Snowden 2000) due to the GH and the LHB emission, with
temperature kTgh = 0.25 keV and kTlhb = 0.14 keV and solar metallicity. Galactic absorption for
GH and CXB was taken into account using the averaged values measured in the direction of the
clusters from the Leiden/Argentine/Bonn survey of Galactic HI (Kalberla et al. 2005). However,
it has to be noticed that the total hydrogen column density is formally NH,tot = NHI + 2NH2 , where
NH2 accounts for molecular hydrogen whose contribution seems to be negligible for low-density
columns. In Tab. 6.2 we reported the values of NHI (Kalberla et al. 2005) and NH,tot (Willingale
et al. 2013) in the direction of the clusters in our sample, while in Fig. 6.1 we compared them. In
Appendix B we discuss the five clusters (A399, A401, AS592, A2104 and Triangulum Australis)
that do not lay on the linear correlation of Fig. 6.1.

Additionally to the astrophysical CXB, GH and LHB emission, an instrumental NXB component
due to the interaction of high-energy particles with the satellite and its electronics was considered.
Overall, the background model we used can be summarized as

apeclhb + phabs∗ (apecgh + powerlawcxb)+bkgnxb (6.1)

where the bkgnxb was modeled with

expdec+ power+∑gaussian, for ACIS-I

expdec+bknpower+∑gaussian, for ACIS-S
(6.2)

where a number of Gaussian fluorescence emission lines were superimposed onto the continua. For
more details on the NXB modeling the reader is referred to Appendix C.

The ICM emission was described with a thermal model taking into account the Galactic absorp-
tion in the direction of the clusters (cf. Tab. 6.2 and Appendix B)

phabs∗apecicm , (6.3)

the metallicity of the ICM was set to 0.3 Z� (e.g. Werner et al. 2013).
Spectra were simultaneously fitted (using all the ObsIDs available for each cluster, unless stated

otherwise) in the 0.5−11.0 keV energy band for ACIS-I and in the 0.7−10.0 keV band for ACIS-
S, using the package XSPEC v12.9.0o with Anders & Grevesse (1989) abundances table. Since the
counts in cluster outskirts are poor, Cash statistics (Cash 1979) was adopted.

Contour binning maps

We used CONTBIN v1.4 (Sanders 2006) to produce projected maps of temperature, pressure
and entropy for all the clusters of our sample. The clusters were divided into regions varying the
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Figure 6.1: Comparison between the HI density column from Kalberla et al. (2005) and the total (HI+H2)
density column from Willingale et al. (2013). The dashed line indicates the linear correlation as a reference.

geometric constraint value (see Sanders 2006, for details) according to the morphology of each
individual object to better follow the SB contour of the ICM. We required ∼ 2500 background-
subtracted counts per bin in the 0.5−2.0 keV band. Spectra were extracted and fitted as described
in the previous section.

While the temperature is a direct result of the spectral fitting, pressure and entropy require the
passage through the normalization value of the thermal model, i.e.

N =
10−14

4π[DA(1+ z)]2

∫
nenH dV [cm−5] (6.4)

where DA is the angular diameter distance to the source (cm) whereas ne and nH are the electron
and hydrogen density (cm−3), respectively. The projected emission measure is

EM =N/A [cm−5 arcsec−2] (6.5)

with A the area of each bin, and it is proportional to the square of the electron density integrated
along the line of sight. Using Eq. 6.5 we can compute the pseudo-pressure

P = kT (EM)1/2 [keVcm−5/2 arcsec−1] (6.6)
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and pseudo-entropy

K = kT (EM)−1/3 [keVcm5/3 arcsec−2/3] (6.7)

values for each spectral bin. The prefix pseudo- underlines that these quantities are projected along
the line of sight (e.g. Mazzotta et al. 2004).

6.4 Characterization of the edges

The inspection of the cluster X-ray and GGM filtered images provides the first indication of pu-
tative discontinuities in the ICM. These need to be characterized with standard imaging and spectral
analysis techniques to be firmly claimed as edges.

The SB profiles of the candidate shocks and cold fronts were modeled assuming that the under-
lying density profile follows a broken power-law (e.g. Markevitch & Vikhlinin 2007, and references
therein). In the case of spherical symmetry, this density profile is described by Eq. 1.21. In the fitting
procedure, all the parameters were free to vary. We stress that the values of C reported throughout
the Chapter have been deprojected along the line of sight under the spherical assumption by PROF-
FIT (Eckert et al. 2011).

A careful choice of the sector where the SB profile is extracted is needed to properly describe a
sharp edge due to a shock or a cold front. In this respect, the GGM filtered images help in determin-
ing that region. During the analysis, we adopted different apertures, radial ranges and positions for
the extracting sectors, then we used the ones that maximize the jump with the best-fitting statistics.
Errors reported for C however do not account for the systematics due to the sector choice.

Spectral fitting is necessary to discriminate the nature of a discontinuity as the temperature ratio
R≡ Td/Tu is > 1 in the case of a shock and < 1 in the case of a cold front (e.g. Markevitch et al.
2002). The temperature map can already provide indication about the sign of the jump. However,
once that the edge position is well identified by the SB profile analysis, we can use a sector with
the same aperture and center of that maximizing the SB jump to extract spectra in dedicated sec-
tors covering the downstream and upstream regions. In this way we can carry out a self-consistent
analysis and avoid possible contamination due to large spectral bins that might contain plasma at
different temperatures and unrelated to the shock/cold front.

In the case of a shock, the Mach numberM can be determined by using the Rankine-Hugoniot
jump conditions (e.g. Landau & Lifshitz 1959) for the density (Eq. 1.18) and temperature (Eq. 1.17).

6.5 Results

We find 29 arc-shaped features three times above the root mean square noise level in the GGM
filtered images, 22 of them were found to trace edges in the SB profiles. In Fig. 6.2–6.12 and 6.15–
6.18 we show a Chandra image in the 0.5−2.0 keV energy band, the products of the GGM filters,
the maps of the ICM thermodynamical quantities and the SB profiles for each cluster of the sam-
ple. The c-stat/d.o.f. and the temperature fractional error for each spectral region are reported in
Appendix D. The edges are highlighted in the Chandra images in white for shocks and in green for
cold fronts. Discontinuities reported in yellow are those where the spectral analysis was not con-
clusive. The temperature values obtained by fitting spectra in dedicated upstream and downstream
regions are reported in shaded boxes (whose lengths cover the radial extent of the spectral region)
in the panels showing the SB profiles. If the jump was detected also in temperature, the box is col-
ored in red for the hot gas and in blue for the cold gas; conversely, if the upstream and downstream
temperatures are consistent (within 1σ ), the box is displayed in yellow. As a general approach, in
the case of weak discontinuities we also compare results with the best fit obtained with a single
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power-law model.
In the following we discuss the individual cases. In particular, in Sections 6.5.1 and 6.5.3 we

report the clusters with and without detected edges, respectively. The results of our detections are
summarized in Section 6.5.2 and in Tab. 6.3. In Appendix E we show the seven arc-like features
selected by the GGM filtered images that do not present a discontinuity in the SB profile fitting.

6.5.1 Detections

A370. This represents the most distant object in Abell catalog (Abell et al. 1989), at a redshift
of z = 0.375. It is famous to be one of the first galaxy clusters where a gravitational lens was
observed (Soucail et al. 1987; Kneib et al. 1993). The X-ray emission is elongated in the N-S
direction (Fig 6.2a); the bright source to the north is a nearby (z = 0.044) elliptical galaxy not
associated with the cluster.

A370 was observed twice with Chandra. The longer observation (ObsID 515) was performed
in an early epoch after Chandra launch in which an accurate modeling of the ACIS background is
not possible, making the spectral analysis of this dataset unfeasible (see notes in Tab. 6.2 for more
details). The other observation of A370 (ObsID 7715) is instead very short. For this reason, we did
only a spatial analysis for this target.

The GGM images in Fig. 6.2b,c suggest the presence of a sharp SB variation both in the W
and E direction. The SB profiles taken across these directions were precisely modeled in our fits in
Fig. 6.2d,e, revealing jumps with similar entity (C ∼ 1.5). Their origin is unknown given that it was
not possible to perform a spectral analysis in this cluster. An additional SB gradient suggested by
the GGM images toward the S direction did not reveal the presence of an edge with the SB profile
fitting (Fig. E.1).

A399 and A401. These two objects constitute a close system (z = 0.072 and z = 0.074, re-
spectively) of two interacting galaxy clusters (e.g. Fujita et al. 1996). Their X-ray morphology is
disturbed (Fig. 6.3a and 6.4a) and the ICM temperature distribution irregular (Bourdin & Mazzotta
2008), revealing the unrelaxed state of the clusters. Recently, Akamatsu et al. (2017b) claimed the
presence of an accretion shock between the two using Suzaku data. This cluster pair hosts two radio
halos (Murgia et al. 2010). The boundary of the halo in A399 is coincident with an X-ray edge, as
already suggested by XMM-Newton observations (Sakelliou & Ponman 2004).

Only one Chandra observation is available for A399, whereas several observations were per-
formed on A401. Despite this, we only used ObsID 14024 (which constitutes the 74% of the total
observing time) to produce the maps shown in Fig. 6.4d,e,f as the remainder ObsIDs are snapshots
that cover the cluster emission only partially. This is also the only case where we required ∼ 5000
counts in each spectral bin given the combination of high brightness and long exposure on A401.
The temperature maps in Fig. 6.3d and 6.4d indicate an overall hot ICM and the presence of some
hot sub-structures, in agreement with earlier studies (Sakelliou & Ponman 2004; Bourdin & Maz-
zotta 2008).

The GGM images of A399 reveal a SB gradient toward the SE direction. The SB profile across
this region and its temperature jump reported in Fig. 6.3g show that this “inner” edge is a cold
front with R = 0.74+0.14

−0.12 and C = 1.72+0.13
−0.12. Ahead of that, the X-ray SB rapidly fades away, as

well as the radio emission of the halo (Murgia et al. 2010). The “outer” SB profile in this direction
indeed shows another discontinuity with C = 1.45+0.10

−0.10 (Fig. 6.3h). The broken power-law model
provides a better description of the data (χ2/d.o.f. = 68.6/72) compared to a single power-law fit
(χ2/d.o.f. = 122.6/74), corresponding to a null-hypothesis probability of 8× 10−10 (6.1σ level)
with the F-test. In this case, however, the temperatures across the edge are consistent, not allowing
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a) b)

c)

d) e)

Figure 6.2: A370. Chandra 0.5−2.0 keV image (a), GGM filtered images on scales of 4 (b) and 8 (c) pixels
and best-fitting broken power-law (solid blue) and single power-law (dashed red) models (residuals on the
bottom are referred to the former) of the extracted SB profiles (d,e). The sectors where the SB profiles were
fitted and the positions of the relative edges are marked in the Chandra image in yellow.
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a) b)

c)

d) e) f)

g) h)

Figure 6.3: A399. Chandra 0.5− 2.0 keV image (a), GGM filtered images on scales of 4 (b) and 8 (c)
pixels, projected maps of temperature (d), pressure (e), entropy (f ) and best-fitting broken power-law (solid
blue) and single power-law (dashed red) models (residuals on the bottom are referred to the former) of the
extracted SB profiles (g,h). The statistical precision of the fits is reported in Fig. D.1. The sectors where the
SB profiles were fitted and the positions of the relative edges are marked in the Chandra image in green (cold
front) and yellow. The dashed arcs show the radial limits used for measuring the temperature downstream
and upstream the front, which values (in keV) are reported in the shaded boxes in the SB profiles. Note that
in the GGM filtered images the straight and perpendicular features are artifacts due to chip gaps.
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a) b)

c)

d) e) f)

g)

Figure 6.4: A401. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.2. The
position of the edge is marked in the Chandra image in green (cold front).
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us to firmly claim the nature of the SB jump. We mention that the presence of a shock would be in
agreement with the fact that cold fronts sometimes follow shocks (e.g. Markevitch et al. 2002) and
that shocks might (re)accelerate cosmic rays producing the synchrotron emission at the boundary of
some radio halos (e.g. Shimwell et al. 2014).

A401 has a more elliptical X-ray morphology and an average temperature higher than A399.
The hottest part of the ICM is found on the E direction. Indeed, the GGM image with σ = 8
pixels in Fig. 6.4c highlights a kind of spiral structure in SB on this side of the cluster, with maxi-
mum contrast toward the SE. The SB profile in this sector is well described by a broken power-law
with compression factor C = 1.39+0.04

−0.04 (Fig. 6.4g). The higher temperature in the upstream region
(kTu = 10.4+0.8

−0.6 keV against kTd = 8.1+0.4
−0.4 keV) confirms that this is a cold front. This could be part

of a bigger spiral-shaped structure generated by a sloshing motion.

MACS J0417.5-1154. It is the most massive (M500 = 1.2× 1015 M�) and most distant
(z = 0.440) cluster of our sample. Its extremely elongated X-ray morphology (Fig. 6.5a) suggests
that this cluster is undergoing a high speed merger (Ebeling et al. 2010; Mann & Ebeling 2012). De-
spite this, the value of K0 = 27±7 keV cm2 indicates that its compact core has not been disrupted
yet, acting as a “bullet” in the ICM (e.g. Markevitch et al. 2002, for a similar case). Radio obser-
vations show the presence of a giant radio halo that remarkably follows the ICM thermal emission
(Dwarakanath et al. 2011; Parekh et al. 2017).

The most striking feature of MACS J0417.5-1154 is certainly its prominent cold front in the SE
generated by an infalling cold and low-entropy structure, as highlighted by our maps in Fig. 6.5d,e,f.
The SB across this region abruptly drops (C = 2.44+0.31

−0.25) in the upstream region (Fig. 6.5g), for
which spectral analysis provided a clear jump in temperature of R = 0.44+0.17

−0.10, leading us to con-
firm the cold front nature of the discontinuity. The high-temperature value of kTu = 16.9+6.1

−3.3 keV
found upstream is an indication of a shock-heated region; a shock is indeed expected in front of the
CC similarly to other clusters observed in an analogous state (e.g. Markevitch et al. 2002; Russell
et al. 2012; Botteon et al. 2016c) and is also suggested by our temperature and pseudo-pressure
maps. Nonetheless, we were not able to characterize the SB jump of this potential feature. On the
opposite side, the GGM images pinpoint another edge toward the NW direction, representing again
a huge jump (C = 2.50+0.29

−0.25) in the SB profile (Fig. 6.5h). The spectral analysis in a dedicated re-
gion upstream of this feature allowed us only to set a lower limit of kTu > 12.7 keV, suggesting the
presence of a hot plasma, in agreement with our temperature map and the one reported in Parekh
et al. (2017), where the pressure is almost continuous (Fig. 6.5e), as expected for a cold front.

RXC J0528.9-3927. No dedicated studies exist on this cluster located at z = 0.284. The ICM
emission is peaked on the cluster core, the coldest region in the cluster (Finoguenov et al. 2005),
and fades away in the outskirts where the emission is faint and diffuse (Fig. 6.6a).

Our maps of the ICM thermodynamical quantities in Fig. 6.6d,e,f are affected by large spectral
bins due to the low counts of the cluster. The X-ray emission is peaked on the central low entropy
region, which is surrounded by hot gas. An edge on the W is suggested both from the GGM
images and from the above-mentioned maps. The SB profile in Fig. 6.6g is well fitted with a broken
power-law with C = 1.51+0.10

−0.09 and the dedicated spectral analysis confirms the value reported in the
temperature map (kTu = 10.5+3.6

−1.8 keV and kTd = 7.2+0.9
−0.7 keV), indicating the presence of a cold

front. Two more SB gradients pinpointed in the GGM images to the E and W directions did not
provide evidence for any edge with the SB profile fitting (Fig. E.2).
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a) b)

c)

d) e) f)

g) h)

Figure 6.5: MACSJ0417. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.3.
The positions of the edges are marked in the Chandra image in green (cold fronts).
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a) b)

c)

d) e) f)

g)

Figure 6.6: RXCJ0528. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.4.
The position of the edge is marked in the Chandra image in green (cold front).
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MACS J0553.4-3342. It is a distant cluster (z = 0.407) in a disturbed dynamical state, as
shown from both optical and X-ray observations (Ebeling et al. 2010; Mann & Ebeling 2012). The
X-ray morphology (Fig. 6.7a) suggests that a binary head-on merger is occurring approximately in
the plane of the sky (Mann & Ebeling 2012). No value of the central entropy K0 is reported either in
Cavagnolo et al. (2009) or in Giacintucci et al. (2017). A radio halo that follows the ICM emission
has been detected in this system (Bonafede et al. 2012). At the time of preparation of this work, two
more papers on MACS J0553.4-3342, both containing a joint analysis of Hubble Space Telescope
and Chandra observations, were published (Ebeling et al. 2017; Pandge et al. 2017).

The maps of the ICM thermodynamical quantities shown in Fig. 6.7d,e,f further support the
scenario of an head-on merger in the E-W direction for MACS J0553.4-3342 in which a low-entropy
structure is moving toward E, where GGM images highlight a steep SB gradient. This is confirmed
by the SB profile fit (Fig. 6.7g) that leads to a compression factor of C = 2.49+0.32

−0.26, while the
temperature jump found by spectral analysis of R = 0.62+0.33

−0.18 indicates that this discontinuity is a
cold front (see also Ebeling et al. 2017; Pandge et al. 2017). The high value of kTu = 13.7+6.9

−3.7 keV
suggests a shock-heated region to the E of the cold front; indeed the “outer” SB profile of Fig. 6.7h
indicates the presence of an edge in the cluster outskirts. We used for the characterization of the SB
profile a sector of aperture 133◦−193◦ (where the angles are measured in an anticlockwise direction
from W) whereas we used a wider sector (133◦−245◦) as depicted in Fig. 6.7a to extract the spectra
in order to ensure a better determination of the downstream and upstream temperatures, whose
ratio R = 2.00+1.14

−0.63 confirms the presence of a shock with Mach number MSB = 1.58+0.30
−0.22 and

MkT = 1.94+0.77
−0.56, respectively derived from the SB and temperature jumps. This edge is spatially

connected with the boundary of the radio halo found by Bonafede et al. (2012). On the opposite side
of the cluster, another roundish SB gradient is suggested from the inspection of the GGM images
(Fig. 6.7b,c). The W edge is well described by our fit (Fig. 6.7i) that leads to C = 1.70+0.12

−0.11, while
spectral analysis provides R = 0.33+0.22

−0.12, consistent with the presence of another cold front. Even
though the upstream temperature is poorly constrained, the spectral fit suggests high temperature
values, also noticed in Ebeling et al. (2017), possibly indicating another shock-heated region ahead
of this cold front; however, the presence of a possible discontinuity associated with this shock can
not be claimed with the current data. The symmetry of the edges strongly supports the scenario of a
head-on merger in the plane of the sky. However, the serious challenges to this simple interpretation
described in Ebeling et al. (2017) in terms of the relative positions of the brightest central galaxies,
X-ray peaks, and dark matter distributions need to be reconsidered in view of the presence and
morphology of the extended X-ray tail discussed in Pandge et al. (2017) and clearly highlighted by
the GGM image (see Fig. 6.7c).

AS592. Known also with the alternative name RXC J0638.7-5358, this cluster located at z =
0.222 is one of those listed in the supplementary table of southern objects of Abell et al. (1989).
The ICM has an overall high temperature (Menanteau et al. 2010; Mantz et al. 2010) and is clearly
unrelaxed (Fig. 6.8a), despite the fact that AS592 has one of the lowest K0 value of our sample (cf.
Tab. 6.1).

The maps in Fig. 6.8d,e,f highlight the presence of two low entropy and low temperature CCs
surrounded by an overall hot ICM. In the SW, a feature in SB is suggested from the GGM image
with σ = 8 pixels. The analysis of the X-ray profile and spectra across it result in a SB discontinuity
with compression factor C = 1.99+0.17

−0.15 and temperature ratio R= 1.61+0.66
−0.43 (Fig. 6.8g), leading us

to claim the presence of a shock front with Mach number derived from the SB jump of MSB =
1.72+0.15

−0.12, in agreement with that derived by the temperature jump MkT = 1.61+0.54
−0.42. The SB

variation indicated by the GGM images toward the NE direction did not show the presence of a
discontinuity with the SB profile fitting (Fig. E.3).
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a) b)

c)

d) e) f)

g) h) i)

Figure 6.7: MACS J0553. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.5.
The positions of the edges are marked in the Chandra image in green (cold fronts) and white (shock).
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a) b)

c)

d) e) f)

g)

Figure 6.8: AS592. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.6. The
position of the edge is marked in the Chandra image in white (shock).
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A1914. It is a system at z = 0.171 in a complex merger state (e.g. Barrena et al. 2013), whose
geometry has not been still understood well (Mann & Ebeling 2012). In particular, the irregular
mass distribution inferred from weak lensing data (Okabe & Umetsu 2008) is puzzling if compared
to near-spherical X-ray emission of the ICM on larger scales (Fig. 6.9a). Previous Chandra studies
highlighted the presence of a heated ICM with temperature peak in the cluster center (Govoni et al.
2004; Baldi et al. 2007). At low frequencies, a bright steep spectrum source 4C 38.39 (Roland et al.
1985) and a radio halo (Kempner & Sarazin 2001) are detected.

Among the two Chandra observations on A1914 retrieved from the archive we had to discard
ObsID 542 since it took place in an early epoch of the Chandra mission, as described above for
the case of A370 (see also notes in Tab. 6.2). We mention that in the Chandra archive other four
datasets (ObsIDs 12197, 12892, 12893, 12894) can be found for A1914. However, these are 5 ks
snapshots pointed in four peripheral regions of the cluster that are not useful for our edge research;
for this reason, they were not considered in our analysis.

Our maps of the ICM thermodynamical quantities in Fig. 6.9d,e,f indicate the presence of a
bright low-entropy region close to the cluster center with a lower temperature with respect to an
overall hot ICM. The adjacent spectral bin to the E suggests the presence of high-temperature gas
while GGM images indicate a rapid SB variation. This feature is quite sharpened, recalling the
shape of a tip, and can not be described under a spherical assumption. For this reason, two different,
almost perpendicular, sectors were chosen to extract the SB profiles to the E, one in an “upper”
(toward the NE) and one a “lower” (toward the SE) direction of the tip. Their fits in Fig. 6.9g,h
both indicate a similar drop in SB (C ∼ 1.5). Spectra were instead fitted in joint regions downstream
and upstream of the two SB sectors, leading to a single value for kTu and kTd . The temperature
jump is consistent with a cold front (R = 0.40+0.21

−0.12). Although the large uncertainties, spectral
analysis provides indication of a high upstream temperature, likely suggesting the presence of a
shock-heated region. This scenario is similar to the Bullet Cluster (Markevitch et al. 2002) and to
the above-mentioned MACS J0417.5-1154. A shock moving into the outskirts can not be claimed
with the current data but it is already suggested in Fig. 6.9g,h by the hint of a slope change in the
upstream power-law at the outer edge of the region that we used to extract the upstream spectrum.
Another SB feature to the W direction is highlighted by the GGM images and confirmed by the
profile shown in Fig. 6.9i. Its compression factor of C = 1.33+0.08

−0.07 and temperature ratio achieved
from spectral analysis of R= 1.27+0.26

−0.21 allow us to claim the presence of a weak shock with Mach
number consistently derived from the SB and temperature jumps, i.e.MSB = 1.22+0.06

−0.05 andMkT =

1.28+0.26
−0.21 respectively. This underlines the striking similarly of A1914 with other head-on mergers

where a counter-shock (i.e. a shock in the opposite direction of the infalling sub-cluster) has been
detected, such as the Bullet Cluster (Shimwell et al. 2015) and El Gordo (Botteon et al. 2016c), for
which it also shares a similar double tail X-ray morphology.

A2104. This is a rich cluster at z = 0.153. Few studies exist in the literature on A2104. Pierre
et al. (1994) first revealed with ROSAT that this system is very luminous in the X-rays and has
a hot ICM. This result was confirmed more recently with Chandra (Gu et al. 2009), which also
probed a slight elongation of the ICM in the NE-SW direction (Fig. 6.10a), and a temperature
profile declining toward the cluster center (Baldi et al. 2007).

The maps of the ICM thermodynamical quantities (Fig. 6.10d,e,f) and GGM filtered images
(Fig. 6.10b,c) of A2104 confirm an overall high temperature of the system as well as some SB
contrasts in the ICM. We extract SB profiles across two sectors toward the SE and one toward
the SW directions. The most evident density jump (C = 1.54+0.16

−0.14) is detected for the SE “outer”
sector shown in Fig. 6.10h, while the others show only the hint of a discontinuity (Fig. 6.10g,i).
However, the fit statistics of the broken power-law and single power-law models indicate that the



106 Chapter 6. Shocks and cold fronts in galaxy clusters

a) b)
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d) e) f)

g) h) i)

Figure 6.9: A1914. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.7. The
positions of the edges are marked in the Chandra image in green (cold front) and white (shock).
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a) b)
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d) e) f)

g) h) i)

Figure 6.10: A2104. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.8. The
positions of the edges are marked in the Chandra image in white (shock) and in yellow.



108 Chapter 6. Shocks and cold fronts in galaxy clusters

jump model is in better agreement with the data in both the cases, being respectively χ2/d.o.f. =
17.2/16 and χ2/d.o.f. = 37.4/18 for the SE “inner” sector (3.1σ significance, F-test analysis)
whereas it is χ2/d.o.f. = 64.5/63 and χ2/d.o.f. = 122.5/65 for the SW sector (6.0σ significance,
F-test analysis). Spectral analysis allowed us only to find a clear temperature jump for the SE
“inner” edge, leaving the nature of the other two SB jumps more ambiguous. The temperature
ratio across the SE “inner” sector is R= 1.33+0.27

−0.19, leading us to claim a shock with Mach number
MkT = 1.34+0.26

−0.20, comparable to the one computed from the upper limit on the compression factor
(C < 1.47) of the SB jump, i.e.MSB < 1.32.

A2218. Located at z = 0.176, this cluster is one of the most spectacular gravitational lens
known (Kneib et al. 1996). The system is in a dynamically unrelaxed state, as revealed by its
irregular X-ray emission (Fig. 6.11a; Machacek et al. 2002) and by the sub-structures observed in
optical (Girardi et al. 1997). Detailed spectral analysis already provided indication of a hot ICM in
the cluster center (Govoni et al. 2004; Pratt et al. 2005; Baldi et al. 2007). A small and faint radio
halo has also been detected in this system (Giovannini & Feretti 2000).

Four Chandra observations exist on A2218. Unfortunately, two of these (ObsIDs 553 and 1454)
can not be used for the spectral analysis because, as mentioned above for A370 and A1914, they
are early Chandra observations for which the ACIS background modeling is not possible (see notes
in Tab. 6.2 for more details), hence we only used the remainder two ObsIDs to produce the maps
shown in Fig. 6.11.

The low counts on A2218 result in maps of the ICM thermodynamical quantities with large
bins, as shown in Fig. 6.11d,e,f. The ICM temperature is peaked toward the cluster center, in
agreement with previous studies (Pratt et al. 2005; Baldi et al. 2007). The analysis of GGM images
highlights the presence of rapid SB variations in more than one direction. The SB profile toward the
N shows the greatest of these jumps, corresponding to C = 1.47+0.21

−0.18 (Fig. 6.11g). From the spectral
analysis we achieve a temperature ratio R = 1.38+0.40

−0.28 across the edge, indicating the presence
of a shock with consistent Mach number derived from the SB jump, i.e. MSB = 1.32+0.15

−0.13, and
from the temperature jump, i.e.MkT = 1.39+0.37

−0.29. The presence of a shock in this cluster region is
consistent with the temperature map variations reported in Govoni et al. (2004). In the SE direction,
there is indication of two discontinuities from the SB profile analysis (Fig. 6.11h,i): spectra suggest
that the “inner” discontinuity is possibly a cold front (however, the temperature jump is not clearly
detected, i.e. R = 0.84+0.35

−0.17) while the “outer” one is consistent with a shock (R = 1.44+0.48
−0.33)

and might be connected with the SE edge of the radio halo. The shock Mach numbers derived
from SB and temperature jump are MSB = 1.17+0.10

−0.09 and MkT = 1.45+0.43
−0.33, respectively. The

SB profile taken in the SW region shows the hint of a kink (Fig. 6.11j); in this case, the broken
power-law model (χ2/d.o.f. = 7.0/15) yields to an improvement compared to a single power-law
fit (χ2/d.o.f.= 15.0/17), which according to the F-test corresponds to a null-hypothesis probability
of 3×10−3 (3.0σ level). Spectral analysis leaves the nature of this feature uncertain.

Triangulum Australis. It is the closest (z = 0.051) cluster of our sample. Despite its proxim-
ity, it has been overlooked in the literature due to its low Galactic latitude. Markevitch et al. (1996b)
performed the most detailed X-ray analysis to date on this object using ASCA and ROSAT and
revealed an overall hot temperature (∼ 10 keV) in its elongated ICM (Fig. 6.12a). Neither XMM-
Newton nor Chandra dedicated studies have been published on this system. Its K0 value is reported
neither in Cavagnolo et al. (2009) nor in Giacintucci et al. (2017), nonetheless its core was excluded
to have low entropy by Rossetti & Molendi (2010). Recently, a diffuse radio emission classified as
a halo has been detected (Scaife et al. 2015; Bernardi et al. 2016).



6.5 Results 109
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j)

Figure 6.11: A2218. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.9. The
positions of the edges are marked in the Chandra image in green (cold front), white (shocks) and yellow.
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a) b)

c)

d) e) f)

g)

Figure 6.12: Triangulum Australis. The same as for Fig 6.3. The statistical precision of the fits is reported in
Fig. D.10. The position of the edge is marked in the Chandra image in yellow. Note that in the GGM filtered
images the straight and perpendicular features are artifacts due to chip gaps.
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Table 6.3: Properties of the jumps detected. Upper and lower bound errors on R and P were computed
adding separately the negative error bounds and the positive error bounds in quadrature. Mach numbers from
SB and temperature jumps are reported for shocks (S), for discontinuities whose nature is still uncertain (U)
only the Mach derived from the SB is displayed while for spectroscopically confirmed cold fronts (CF) the
Mach number determination is not applicable (n.a.).

Cluster name Position C R P MSB MkT Nature

A370
{

E 1.48+0.11
−0.10 . . . . . . 1.33+0.08

−0.07 . . . U
W 1.56+0.13

−0.12 . . . . . . 1.38+0.10
−0.09 . . . U

A399
{

SE inner 1.72+0.13
−0.12 0.74+0.14

−0.12 1.27+0.26
−0.22 n.a. n.a. CF

SE outer 1.45+0.10
−0.10 1.20+0.39

−0.26 1.74+0.58
−0.40 1.31+0.07

−0.07 . . . U
A401 SE 1.39+0.04

−0.04 0.78+0.07
−0.06 1.08+0.10

−0.09 n.a. n.a. CF

MACS J0417.5-1154
{

NW 2.50+0.29
−0.25 < 0.59 < 1.64 n.a. n.a. CF

SE 2.44+0.31
−0.25 0.44+0.17

−0.10 1.07+0.44
−0.27 n.a. n.a. CF

RXC J0528.9-3927 E 1.51+0.10
−0.09 0.73+0.25

−0.14 1.10+0.38
−0.22 n.a. n.a. CF

MACS J0553.4-3342


E inner 2.49+0.32

−0.26 0.62+0.33
−0.18 1.54+0.85

−0.48 n.a. n.a. CF
E outer 1.82+0.35

−0.29 2.00+1.14
−0.63 3.64+2.19

−1.28 1.58+0.30
−0.22 1.94+0.77

−0.56 S
W 1.70+0.12

−0.11 0.33+0.22
−0.12 0.56+0.38

−0.21 n.a. n.a. CF
AS592 SW 1.99+0.17

−0.15 1.61+0.66
−0.43 3.20+1.34

−0.89 1.72+0.15
−0.12 1.61+0.54

−0.42 S

A1914


E upper 1.48+0.11

−0.12 0.40+0.21
−0.12

0.59+0.31
−0.18 n.a. n.a. CF

E lower 1.64+0.13
−0.12 0.66+0.35

−0.20
W 1.33+0.08

−0.07 1.27+0.26
−0.21 1.69+0.36

−0.29 1.22+0.06
−0.05 1.28+0.26

−0.21 S

A2104


SE inner < 1.47 1.33+0.27

−0.19 < 2.36 < 1.32 1.34+0.26
−0.20 S

SE outer 1.54+0.16
−0.14 0.77+0.30

−0.21 1.19+0.48
−0.34 1.37+0.12

−0.10 . . . U
SW 1.27+0.07

−0.06 0.85+0.20
−0.15 1.08+0.26

−0.20 1.18+0.05
−0.04 . . . U

A2218


N 1.47+0.21

−0.18 1.38+0.40
−0.28 2.03+0.66

−0.48 1.32+0.15
−0.13 1.39+0.37

−0.29 S
SE inner 1.38+0.14

−0.11 0.84+0.35
−0.17 1.16+0.50

−0.25 1.26+0.10
−0.08 . . . U

SE outer 1.26+0.14
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Three observations of Triangulum Australis can be found in the Chandra data archive. However,
the oldest two (ObsIDs 1227 and 1281) are calibration observations from the commissioning phase
and took place less than two weeks after Chandra first light, when the calibration products had very
large uncertainties. For this reason, we only used ObsID 17481 in our analysis.

From the maps of the ICM thermodynamical quantities in Fig. 6.12d,e,f, one can infer the com-
plex dynamical state of Triangulum Australis. The GGM filtered on the larger scale gives a hint of a
straight structure in SB in the E direction, and it is described by our broken power-law fit (C ∼ 1.3)
in Fig. 6.12g. However, no temperature jump is detected across the edge, giving no clue about the
origin of this SB feature. We mention that this region was also highlighted by Markevitch et al.
(1996b) with ASCA and ROSAT as a direct proof of recent or ongoing heating of the ICM in this
cluster.

6.5.2 Summary of the detected edges

Overall, we found six shocks, eight cold fronts and other eight discontinuities whose origin re-
mains uncertain due to the poorly constrained temperature jump. The properties of the detected
edges are summarized in Tab. 6.3, while the distributions of C andR are displayed in Fig. 6.13. Al-
though we are not carrying out a statistical analysis of shocks and cold fronts in galaxy clusters, we
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Figure 6.13: Distribution of the central values of C (top) andR (bottom) reported in Tab. 6.3.

notice that the majority of the reported jumps are associated with weak discontinuities with C < 1.7
and 0.5 <R < 1.5. This may indicate that the GGM filters allow to pick up also small SB jumps
that are usually lost in a visual inspection of unsmoothed cluster images.

We mention that in the case of a shock the SB and temperature jumps allow to give two inde-
pendent constraints on the Mach number (Eq. 1.18 and 1.17). However, only few shocks reported in
the literature have Mach number consistently derived from both the jumps so far (e.g. A520, Marke-
vitch et al. 2005; A665, Dasadia et al. 2016; A115, Botteon et al. 2016a). Instead, in our analysis
there is a general agreement between these two quantities, further supporting the robustness of the
results.

One could argue that the nature of the weakest discontinuities claimed is constrained at slightly
more than 1σ level from the temperature ratio. This is a consequence of the small temperature
jump implied by these fronts and the large errors associated with the spectral analysis (despite the
careful background treatment we have performed). However, we can check the presence of pressure
discontinuities at these edges by combining the density and temperature jumps achieved from SB
and spectral analysis. The values of P ≡ Pd/Pu = C ×R computed for all the discontinuities are
reported in Tab. 6.3 and show at higher confidence levels the presence of a pressure discontinuity in
the shocks and the absence of a pressure jump in the cold fronts, strengthening our claims. Although
this procedure combines a deprojected density jump with a temperature evaluated along the line of
sight, we verified that given the uncertainties on the temperature determination and the errors intro-
duced by a deprojection analysis, the projected and deprojected values of temperature and pressure
ratios are statistically consistent even in the cases of the innermost edges (i.e. those more affected
by projection effects).

With the present work, we have increased the number of known shocks and cold fronts in galaxy
clusters. The contribution of our detections compared to edges reported in Tab. 6.1 is highlighted
in red in Fig. 6.14. These histograms do not have a statistical purpose but serve to probe the fairly
relevant improvement of our analysis on the number of discontinuities observed in the ICM. The
detected shocks have allM < 2 likely due to the combination of the fact that shocks crossing the
central Mpc regions of galaxy clusters are weak (e.g. Vazza et al. 2012a, and references therein) and
that fast moving shocks would be present for a short time in the ICM.



6.5 Results 113

The distinction between shock and cold fronts for the eight discontinuities with uncertain origin
can tentatively be inferred from the current values of R and P reported in Tab. 6.3. In this respect,
deeper observations of these edges will definitely shed light about their nature.

Figure 6.14: Contribution of our work (red) on the total number (black) of shocks and cold fronts reported in
Tab. 6.1. The central values of Mach numbers and compression factors found in literature were used to create
the histograms.
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6.5.3 Non-detections
Our analysis did not allow us to detect any edge in the following objects: A2813 (z = 0.292),

A1413 (z = 0.143), A1689 (z = 0.183) and A3827 (z = 0.098). All these systems have a more
regular X-ray morphology (Fig. 6.15–6.18) with respect to the other clusters of the sample.

A2813. This cluster has a roundish ICM morphology (Fig. 6.15a), nonetheless its value of
K0 = 268± 44 keV cm2 is among the highest in our sample (cf. Tab. 6.1). The core is slightly
elongated in the NE-SW direction and has a temperature ∼ 7.7 keV, consistently with the XMM-
Newton value reported by Finoguenov et al. (2005). The maps shown in Fig. 6.15 were produced
using all the ObsIDs listed in Tab. 6.2. We mention that the original target of the ACIS-S datasets
(ObsIDs 16366, 16491, 16513) is XMMUJ0044.0-2033; however, A2813 is found to entirely lay
on an ACIS-I chip that was kept on during the observations. These data provide the largest amount
(∼ 80%) of the total exposure time on A2813 and were used in our analysis although the unavoidable
degradation of the instrument spatial resolution due to the ACIS-I chip being off-axis with this
observing configuration.

A1413. It has a borderline value of K0 (cf. Tab. 6.1) from the threshold set in this work. The
distribution of cluster gas is somewhat elliptical, elongated in the N-S direction (Fig. 6.16a). Our
analysis and previous Chandra temperature profiles (Vikhlinin et al. 2005; Baldi et al. 2007) are in
contrast with XMM-Newton that does not provide evidence of a CC (Pratt & Arnaud 2002). This
discrepancy is probably due to the poorer PSF of the latter instrument. A radio mini-halo covering
the CC region is also found by Govoni et al. (2009). The region in the NW direction with a possible
discontinuity suggested by the GGM filtered images did not show the evidence for an edge with the
SB profile fitting (Fig. E.4).

A1689. It represents a massive galaxy cluster deeply studied in the optical band because its
weak and strong gravitational lensing (e.g. Broadhurst et al. 2005; Limousin et al. 2007). The X-ray
emission is quasi-spherical and centrally peaked (Fig. 6.17a), features that apparently indicate a CC.
Nevertheless, optical (Girardi et al. 1997) and XMM-Newton observations (Andersson & Madejski
2004) both suggest that the system is undergoing to a head-on merger seen along the line of sight due
either to the presence of optical sub-structures or to the asymmetric temperature of the ICM, hotter
in the N. Our results confirm the presence of asymmetries in temperature distribution (Fig. 6.17d).
The detection of a radio halo (Vacca et al. 2011) supports the dynamically unrelaxed nature of the
system.

A3827. It constitutes another cluster studied in detail mainly for its optical properties. Its
central galaxy is one of the most massive known found in a cluster center and exhibits strong lensing
features (Carrasco et al. 2010). Gravitational lensing also indicates a separation between the stars
and the center of mass of the dark matter in the central galaxies (Massey et al. 2015), making A3827
a good candidate to investigate the dark matter self-interactions (Kahlhoefer et al. 2015). On the
X-ray side, the cluster emission is roughly spherical (Fig. 6.18a), with an irregular temperature
distribution (Fig. 6.18d) and a mean value of ∼ 7 keV (Leccardi & Molendi 2008). Two regions to
the E and W directions suggested by the GGM images did not show any discontinuity with the SB
profile fitting (Fig. E.5).
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a) b)

c)

d) e) f)

Figure 6.15: A2813. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.11.
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a) b)

c)

d) e) f)

Figure 6.16: A1413. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.12.
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a) b)

c)

d) e) f)

Figure 6.17: A1689. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.13.
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a) b)

c)

d) e) f)

Figure 6.18: A3827. The same as for Fig 6.3. The statistical precision of the fits is reported in Fig. D.14.
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6.6 Conclusions

As explained in Section 1.3.2, shocks and cold fronts produced in a collision between galaxy
clusters provide information on the dynamics of the merger and can be used to probe the micro-
physics of the ICM. Nonetheless their detection is challenged by the low number of X-ray counts in
cluster outskirts and by possible projection effects that can hide these sharp edges. For this reason,
only a few of them have been successfully detected both in SB and in temperature jumps.

In this Chapter, we explored a combination of different analysis approaches of X-ray observa-
tions to firmly detect and characterize edges in NCC massive galaxy clusters. Starting from GGM
filtered images on different scales and the maps of the ICM thermodynamical quantities of the clus-
ter, one can pinpoint ICM regions displaying significant SB and/or temperature variations. These
can be thus investigated with the fitting of SB profiles, whose extracting sectors have to be accu-
rately chosen in order to properly describe the putative shock or cold front. Once that the edge
is well located, spectral analysis on dedicated upstream and downstream regions can also be per-
formed in an optimized way. The discontinuity is firmly detected if the jump is observed both in
images and in spectra.

We selected 37 massive NCC clusters with adequate X-ray data in the Chandra archive to search
for new discontinuities driven in the ICM by merger activity. In particular we looked at 15 of these
systems for which no claim of edges was published. We were able to characterize at least one SB
jump in 11 out of these 15 clusters of the sample. The performed SB analysis relies on the spherical
assumption. Among the detected edges, we also constrained the temperature jump for 14 discon-
tinuities, six shocks and eight cold fronts, while for eight edges the classification is still uncertain.
As a further check, we also computed the pressure ratios across the edges and verified the presence
of the pressure discontinuity in shocks and the absence of a pressure jump in cold fronts.

Our work provides a significant contribution to the search for shocks and cold fronts in merg-
ing galaxy clusters (Fig. 6.14) demonstrating the strength of combining diverse techniques aimed
to identify edges in the ICM. Indeed, many shocks and cold fronts reported in the literature have
been discovered because either they were evident in the unsmoothed cluster images or there were
priors suggesting their existence (e.g. merger geometry and/or presence of a radio relic). The usage
of edge detection algorithms (as the GGM filter) in particular helps in highlighting also small SB
gradients to investigate with SB profile and spectral fitting. Among the small jumps detected we
found low Mach numbers (M< 2) shocks; this is a possible consequence of the fact that the central
regions of the ICM are crossed by weak shocks while the strongest ones quickly fades in the cluster
outskirts, making their observation more difficult (see also discussion in Vazza et al. 2012a on the
occurrence of radio relics in clusters as a function of radius).

As discussed in Section 1.5 and shown in Chapter 2, 3 and 5, testing the shock acceleration
models in weak shocks (where the energy flux at the shock is smaller) is particularly effective. In
this case, the connection between shocks and bright radio relics severely challenges a DSA model
where thermal particles are accelerated to relativistic radio bright energies. As a consequence, the
radio follow-up of the shocks detected in this work will be useful to study the connection between
weak shocks and non-thermal phenomena in the ICM.



120 Chapter 6. Shocks and cold fronts in galaxy clusters



CHAPTER 7

Galaxy cluster science with LOFAR

ABSTRACT

LOFAR is an international radio telescope operating in the the frequency range 10−
240 MHz. It provides a number of unique observing capabilities allowing to achieve
unprecedented levels of resolution and sensitivity at low frequencies. The several
technical challenges (hardware, data transport, data calibration) faced by LOFAR
make this instrument an important pathfinder (actually, the largest one) for the SKA.
Non-thermal diffuse emission in galaxy clusters represents an ideal case of study
for LOFAR. Surveys with LOFAR are expected to detect many new radio halos and
relics, which can be used to increase the statistics and the knowledge of non-thermal
phenomena in the ICM.

7.1 The LOw Frequency ARray

LOFAR, the LOw Frequency ARray (van Haarlem et al. 2013), is a new generation interferome-
ter operated by ASTRON and spread all over Europe. It is the largest pathfinder of the SKA1 at low
frequencies, accounting about 8,000 dipole antennas spread over most of the European continent
and observing in the frequency range 10−240 MHz (corresponding to wavelengths of 30−1.2 m).
LOFAR exploits this relatively unexplored portion of the electromagnetic spectrum with unprece-
dented resolution and sensitivity. The longest European baseline permit to reach sub-arcsecond
resolution over most of the operating bandpass while the densely populated core allows to recover
very extended emission in the sky. The effectively all-sky coverage of the dipoles gives LOFAR a
large FoV, essential for surveying purposes. This makes LOFAR a power and versatile instrument
with potential breakthroughs in many fields of astrophysics. The science drivers for LOFAR deter-
mined the design, development and construction of the facility during its initial and commissioning
phase, and have been divided into six Key Science Projects (KSP), as outlined below.

• Epoch of Reionization: aims at searching for the redshifted 21 cm line signal that marks
the transition between the dark ages and the period after recombination when the Universe
became neutral (e.g. Pritchard & Loeb 2012). This process possibly started at z∼ 20−15 and
finished at z∼ 6. The redshift ranges z∼ 30−20 and z∼ 12−6 can be probed by LOFAR.

1https://www.skatelescope.org
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• Cosmic Rays: will allow to understand the origin of high-energy CRs at energies between
1015−1020.5 eV through the detection of air showers of secondary particles caused by inter-
action of CRs with the Earth atmosphere. Both the sites and processes for accelerating these
energetic particles are still poorly known.

• Solar Physics and Space Weather: includes the definition of solar observing modes and the
development of the necessary software infrastructure for solar and space weather studies.

• Transients: comprises the study of all time-variable astronomical radio sources, including
pulsars, gamma-ray bursts, gravitational waves, X-ray binaries, radio supernovae, flare stars,
and even exoplanets. Thanks to the all-sky monitoring, LOFAR is expected to detect many
new transient events, and to provide provide alerts to the international community for follow-
up observations at other wavelengths.

• Cosmic Magnetism of the Nearby Universe: allows to study the polarized radio synchrotron
emission to unveil the structure and strength of the magnetic fields of several objects, from the
Milky Way, dwarf galaxies, galaxy halos, nearby galaxy clusters, and up to the intergalactic
filaments related to the formation of large-scale structures.

• Surveys: is one of the LOFAR science drivers since its inception. Due to its nature, the
Surveys KSP touches a broad range of astrophysics topics, with possible cross-talks with the
other KSPs. Four main science drivers have been identified for the proposed surveys:

– Formation of massive galaxies, clusters and black holes using z & 6 radio galaxies as
probes.

– Intra-cluster magnetic fields using diffuse radio emission in galaxy clusters as probes.

– Star formation processes in the early Universe using starburst galaxies as probes.

– Exploration of new parameter space for serendipitous discovery.

Since the Surveys KSP is very relevant for this Thesis, in Section 7.4 more details will be
given on one of the main ongoing LOFAR survey.

7.1.1 System overview
Currently (October 2018), LOFAR comprises 51 individual stations distributed mainly on the

northern part of Europe. The majority of these stations, 38 in total, are located in the Netherlands,
and form the LOFAR Dutch array. The remaining 13 stations are built in Germany (6), the UK (1),
France (1), Sweden (1), Poland (3) and Ireland (1). The construction of two additional stations in
Latvia and Italy has already been planned, further expanding the size of this international facility
(Fig. 7.1). The Latvian station will be completed by 2019, whereas a new generation LOFAR 2.0
station in Italy will be installed in 2021 (Section 7.2). An overview of the LOFAR stations and
antennas is summarized in Tab. 7.1.

The LOFAR core consists in a strong concentration of 24 stations located within a radius of 2
km near the town of Exloo, in the Netherlands. This area was chosen because of its low population
density and relatively low level of RFI. The core station distribution has been optimized to achieve
the good instantaneous uv-coverage required by many of the KSPs. At the heart of the core, a 320
m diameter island referred to as “the Superterp” contains six core stations that provide the shortest
baselines in the array (Fig. 7.2).

The remaining 14 stations in the Netherlands are called remote stations. They are approximately
arranged in a logarithmic spiral distribution over an area roughly 180 km in diameter around Exloo.
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Figure 7.1: Current (October 2018) distribution of the European LOFAR stations that have been built in
Germany (6), France (1), Ireland (1), Poland (3), Sweden (1) and the UK (1). The stations of Irbene (Latvia)
and Medicina (Italy) are planned to be completed by 2019 and 2021, respectively. Credit: ASTRON.

Figure 7.2: The Superterp at the heart of the LOFAR core (August 2011). The large circular island encom-
passes the six core stations that make up the Superterp. Three additional LOFAR core stations are visible in
the upper right and lower left of the image. From van Haarlem et al. (2013).
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Table 7.1: Overview of station and antenna. From van Haarlem et al. (2013).

Station configurations Number of stations LBA dipoles HBA tiles Min. baseline (m) Max. baseline (km)
Superterp 6 2×48 2×24 68 0.24
NL Core Stations 24 2×48 2×24 68 3.5
NL Remote Stations 15 48 48 68 121
International Stations 13 96 96 68 ∼ 2000†

Notes. The 6 stations comprising the central Superterp are a subset of the total 24 core stations. The tabulated
baseline lengths represent unprojected values. Both the LBA dipoles and the HBA tiles are dual polarization. †The
longest baseline length will increase thanks to the addition of the stations in Latvia and Italy.

The 13 international stations have been located according to indications provided by the host
countries and institutions that own them. In this respect, the longest baseline distribution has not
been designed to achieve optimal uv-coverage but it has been primarily determined by the existing
facilities and infrastructures. The operational stations are in Germany: Effelsberg (DE601), Un-
terweilenbach (near Garching/Munich, DE602), Tautenburg (DE603), Potsdam-Bornim (DE604),
Jülich (DE605), Norderstedt (DE609), in the UK: Chilbolton (UK608), in France: Nançay (FR606),
in Sweden: Onsala (SE607), in Poland: Borowiec (PL610), Lazy (PL611), Baldy (PL612) and in
Ireland: Birr (IE613). The addition of the stations in Irbene (Latvia) and Medicina (Italy), will
increase the baseline in the north-south and east-west directions (see Fig. 7.1).

The datastreams from all these stations meet several non-trivial technical challegenges. A ded-
icated high-speed (10 Gbit/s) fiber network infrastructure allows to transport the data collected by
LOFAR stations to a central processing (CEP) facility where data from all stations are aligned in
time, combined, and processed using a supercomputer offering a peak of processing power of 34
TFlop/s. Raw data products are then written to a storage cluster for additional post-processing. A
number of reduction pipelines are available to further process the data (e.g. flagging, averaging,
calibration), and are run on a dedicated computer cluster with a total processing power of approxi-
mately 10 Tflop/s. Thus, the final scientific data products are transferred to the LOFAR Long Term
Archive2 (LTA) at rates of 1.5 GB/s for cataloging and distribution to the community. This im-
plies a growth of the stored data of ∼ 6 PB/yr. This makes LOFAR one of the first of a number of
new astronomical facilities that must deal with the transport, processing, and storage of these large
amounts of data. In this sense, LOFAR represents an important technological pathfinder for new
astronomical facilities in the coming decade, such as the SKA, approaching “Big data” astronomy.

7.1.2 Antennas

The fundamental receiving elements of LOFAR are two types of small, relatively low-cost an-
tennas that together cover the 10−240 MHz operating bandpass. Because the optimized bandwidth
of the operating frequency range spans 8 octaves, at least two types of antenna are necessary. The
number of antennas included in a LOFAR station depends on its configuration (Tab. 7.1). The re-
sulting properties are summarized in Tab. 7.2. Single antenna elements are connected via coaxial
cables to the electronics housed in a cabinet located on the edge of each station, where the hard-
ware used to perform the first data processing stage is located. The datastreams enter the digital
electronics section which is mainly responsible for beam-forming. Further processing is done by
the remote station processing boards utilizing low-cost, field programmable gate arrays. Following
the beam-forming step, the data packets are streamed over the wide-area network to the correlator
at the CEP facility.

2https://lta.lofar.eu/

https://lta.lofar.eu/
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Table 7.2: LOFAR effective area (Aeff), full-width half-maximum (FWHM) and field of view (FOV ) at
different frequencies and for different station configurations (D is the station diameter). From van Haarlem
et al. (2013).

Low Band Antenna

The Low Band Antennas (LBA) are designed to operate from the ionospheric cutoff of the radio
window near 10 MHz up to the onset of the commercial FM radio band at about 90 MHz. Due to
the presence of strong RFI at the lowest frequencies and the proximity of the FM band at the upper
end, this range is operationally limited to 30−80 MHz by default (Fig. 7.3, right panel). A digital
filter is employed to suppress the response outside of this band, with the option of deselecting this
filter for observations below 30 MHz.

The LBA units consist of simple dual linear polarization droop dipoles connected to a molded
cap on the top of a vertical shaft of PVC pipe. The wires are connected on a ground plane consisting

Figure 7.3: LOFAR LBA. Left: a single LBA dipole including the ground plane. The inset images show the
molded cap containing the electronics and the wires attachment points. Right: LBA median response curve
for all LBA dipoles of a LOFAR station. The peak of the curve is near 58 MHz. The strong RFI below 30
MHz and above 80 MHz are clearly visible. From van Haarlem et al. (2013).
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of a metal mesh located above a foil sheet used to minimize the vegetation growth underneath the
antenna. The resulting LBA element is shown in Fig. 7.3 (left panel). Despite this low-cost de-
sign, LBA dipoles allow an innovative all-sky covering at the lowest frequency on short timescales,
fundamental to study the large scale emission from the Galaxy and for the monitoring of radio tran-
sients.

Two configurations are possible with LBA. Each consists of 48 dipoles that are grouped into an
inner circle (i.e. the “LBA Inner”) and an outer annulus (i.e. the “LBA Outer”), leading to different
instrument responses, as reported in Tab. 7.2.

High Band Antenna

The High Band Antennas (HBA) cover the higher end of the LOFAR spectral response from 110
MHz to 250 MHz. This frequency range is limited to the range 110−240 MHz due to the high RFI
contamination above 240 MHz. A different (but still low-cost) design was necessary for HBA to
minimize the contribution of the electronics to the system noise at this higher frequency. In Fig. 7.4,
an image and the spectrum of LOFAR HBA is reported.

The HBA elements are grouped in 16 dual dipole antennas and arranged in a 4×4 grid to form
a single HBA “tile”. A single “tile beam” is created by combining the signals from these 16 antenna
elements in phase for a given direction on the sky. A polypropylene foil layer shields the contents
of the tile by bad weather conditions.

In the core stations, HBA dipoles are distributed over two sub-stations of 24 tiles each that can
be used in concert as a single station or independently. The advantage of the latter configuration is
to provide more short baselines within the core, hence a significantly more uniform uv-coverage.
This is fundamental for the KSPs that make a critical use of the LOFAR core such as the Epoch of
Reionization experiment or the search for radio transients. In addition, the dual HBA sub-stations
result in the redundancy of many short baselines yielding additional diagnostics for identifying bad
phase and gain solutions during the calibration process.

Figure 7.4: LOFAR HBA. Left: close-up image of a single HBA tile. The protective covering has been
partially removed to expose the actual dipole assembly. Right: HBA median response curve for all HBA tiles
of a LOFAR station. Various prominent RFI sources are clearly visible distributed across the band including
the strong peak near 170 MHz corresponding to an emergency pager signal. From van Haarlem et al. (2013).
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7.2 LOFAR 2.0 and LOFAR-IT

The infrastructure of LOFAR is continuously evolving. Recently, the international LOFAR
board scheduled a staged expansion of the scientific and technical capabilities of LOFAR. This rep-
resents the first significant update of the instrument and it goes under the name of LOFAR 2.0. This
operation will lead to the enhancement of the instrument especially in the lowest operative band,
enabling an order of magnitude step in effective sensitivity and imaging capabilities in the 10−90
MHz. This will secure LOFAR 2.0 preeminence as the world best ultra-low frequency telescope,
scientifically complementary and in no way redundant with the first phase of the SKA antennas
operating at low radio frequencies, i.e. the SKA1-LOW3.

On June 2017, the Istituto Nazionale di AstroFisica (INAF) started the negotiation with AS-
TRON with the aim to make Italy join the LOFAR consortium. The agreement ended with the
proposal of a roadmap guaranteeing Italy the role of full member of LOFAR with immediate access
of INAF personnel to the KSPs. On 16 April 2018, INAF officially joined LOFAR and established
the consortium LOFAR-IT4. Thanks to the recent involvement, Italy is now already directly in-
volved in the technological development leading the upgrade to LOFAR 2.0. Indeed, a LOFAR
2.0 station will be installed in Medicina, near Bologna, where other radio telescopes, namely the
“Croce del Nord” and a 32 m antenna, are maintained (in a radio protected area) by the Istituto di
RadioAstronomia (IRA) of INAF (Fig. 7.5). This implies the participation of Italian scientists in
Technical Working Groups for commissioning, data calibration, and processing.

Figure 7.5: Aerial view of the Medicina Radio Observatory. The current facilities and the proposed location
for the new LOFAR 2.0 station are marked.

3https://astronomers.skatelescope.org/wp-content/uploads/2017/10/
SKA-TEL-SKO-0000818-01_SKA1_Science_Perform.pdf

4http://www.lofar.inaf.it (website in Italian).

https://astronomers.skatelescope.org/wp-content/uploads/2017/10/SKA-TEL-SKO-0000818-01_SKA1_Science_Perform.pdf
https://astronomers.skatelescope.org/wp-content/uploads/2017/10/SKA-TEL-SKO-0000818-01_SKA1_Science_Perform.pdf
http://www.lofar.inaf.it
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The realization of an effective e-infrastructure to support the analysis and archiving of LOFAR
data is planned within INAF. Indeed, due to the unprecedented large FoV and frequency cover-
age/resolution, the large size of a typical LOFAR dataset after data correlation and compression
requires specific computers for the data calibration (Section 7.5). Four nodes are planned in Italy:
Bologna, Catania, Trieste and Torino (C3S HPC system, University of Torino). IRA has been the
first institute in Italy that hosted a LOFAR node and where the analysis of these data was pos-
sible. The installation of the specific and complex software infrastructure necessary to calibrate
LOFAR observations was one of the activities carried out during the PhD project. The testing of the
computing performances of the LOFAR pipelines at IRA was essential before the procurement and
installation of the other LOFAR Italian nodes.

7.3 The impact of LOFAR in the study of merging galaxy clusters

It has long been recognized that LOFAR has the potential to make breakthroughs in the field of
galaxy cluster science (Röttgering et al. 2006, 2011; Cassano et al. 2010a, 2012; Nuza et al. 2012).
Here we focus on the contribution that LOFAR has provided for this Thesis, i.e. the study of diffuse
radio emission in merging galaxy clusters (Section 1.4). Complementary cluster science includes
the study of starbust galaxies in clusters, the fate and evolution of radio lobes/bubbles, the distribu-
tion of the ICM magnetic fields, and the interplay between cluster radio galaxies with the ambient
medium.

Radio halos and relics have steep synchrotron spectra, meaning that they are better observed
at low frequencies, hence they are ideal targets for LOFAR. The dense core of LOFAR provides
excellent SB sensitivity, that coupled with the low observing frequencies allows for sensitive ob-
servations. Furthermore, the arcsec resolution allows an excellent determination of the properties
and flux densities of the foreground/background and embedded sources projected onto the diffuse
emission.

Enßlin & Röttgering (2002) showed that high-sensitivity surveys at low radio frequencies have
the potential to provide an unbiased statistical census of the radio halo population in the Universe,
which, together with the models of structure formation, represents a powerful tool to constrain the
link between cluster merging rate and radio halos at different cosmic epochs and for different clus-
ter masses (Cassano et al. 2016). In addition, according to the turbulent re-acceleration scenario
(Section 1.6), USSRHs should be more common in the Universe and these should be preferentially
observed at lower radio frequencies (e.g. Cassano et al. 2006). The following five goals have been
identified by the clusters working group within the LOFAR Surveys KSP:

1. Discovery of new halos and relics: increasing the number of detected halos and relics is
necessary to properly analyze the statistical properties of these sources and determine their
origin and evolution with cosmic time. Cassano et al. (2010a) and Nuza et al. (2012) estimated
that LOFAR has the potential to discover hundreds of new halos (mostly with ultra steep
spectrum) and relics up to redshift z∼ 1.

2. Probing the merger–halo/relic connection: the cross-match between the new halos and
relics discovered with LOFAR with information derived by complementary X-ray, optical,
and SZ observations will provide a multi-frequency view of the processes involving the for-
mation of diffuse radio emission in galaxy clusters. The connection between non-thermal
phenomena in the ICM and merging clusters started with the GMRT radio halo survey (Ven-
turi et al. 2007, 2008, 2013; Kale et al. 2013, 2015) will be extended by LOFAR with the
study of halos and relics in higher redshift systems (z > 0.4) and in less massive clusters (e.g.
Cassano 2010; Nuza et al. 2012).
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3. Studying the spectrum of halos: extending the frequency range where the spectrum of ra-
dio halos is observed is fundamental to understand the mechanisms responsible of particle
(re)acceleration in the ICM (e.g. Brunetti 2003; Petrosian & Bykov 2008). The 10−240 MHz
frequency range of LOFAR allows to study the spectrum of halos in this poorly constrained
(to date) spectral window.

4. Spectral and polarization studies of relics: whilst the relic–shock connection is nowadays
well established, it is still not clear whether the origin of relics is due to shock acceleration
of thermal particles or to re-energization of relativistic plasma due to the shock passage (Sec-
tion 1.5). The models predict different spectral behavious and polarization properties that can
be tested thanks to LOFAR high-sensitive observations at low frequencies that also probe the
oldest population of (re)accelerated particles that has been advected downstream the shock.

5. Spatial distribution of radio emission in the ICM: the brightness fluctuations (filaments
and patches) in the emission of radio halos and relics reflect the underlying distribution of
magnetic fields and CRs in the ICM. Resolving scales smaller than the typical coherent scales
of magnetic fields and of turbulent eddies in galaxy clusters (≤ 30− 50 kpc) is crucial to
probe the magnetic field power spectrum (e.g. Murgia et al. 2004; Vacca et al. 2010, 2012;
Govoni et al. 2017), and the CRe acceleration and transport/diffusion processes. LOFAR
high-resolution observations make possible this kind of studies.

The results obtained with LOFAR during this Thesis on two galaxy clusters are presented in
Chapters 8 and 9. In the following Section, we will discuss the LOFAR survey that represents the
most important source of data for cluster science.

7.4 The LOFAR Two-meter Sky Survey

One of the main goals of LOFAR since its inception is to conduct wide and deep surveys. Three
surveys were designed during and after the commissioning phase:

• MSSS (Multifrequency Snapshot Sky Survey; Heald et al. 2015), is the first shallow survey
aimed at covering the northern sky with LOFAR LBA and HBA.

• LoTSS (LOFAR Two-meter Sky Survey; Shimwell et al. 2017), is a sensitive, high-resolution
survey of the northern sky at the frequency of 144 MHz. The survey is currently ongoing and
the first full-quality partial data release incorporating direction-dependent error correction has
been recently published in Shimwell et al. (2018).

• LoLSS (LOFAR LBA Sky Survey; de Gasperin et al., in preparation), is the ultra-low fre-
quency counterpart of LoTSS and will produce an unprecedented view of the sky at 54 MHz.
The survey is currently ongoing.

A three-tier approach to the LOFAR surveys has been adopted: Tier 1 is the widest tier and
includes observations across the whole 2π steradians of the northern sky; deeper Tier 2 and Tier
3 observations are focusing on smaller areas with high-quality multi-wavelength datasets. Here
we focus on the LoTSS Tier 1 survey (Shimwell et al. 2017). The primary observation objectives
of LoTSS are to reach a sensitivity of less than 100 µJy beam−1 at an angular resolution of ∼ 5′′

across the whole northern hemisphere by using LOFAR HBA. This can be achieved at optimal
declinations with 8 hr dwell times and a frequency coverage of 120− 168 MHz. A sensitivity of
∼ 100 µJy beam−1 at 144 MHz is equivalent to a depth of∼ 5 µJy beam−1 at 1.4 GHz for a typical
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Figure 7.6: The image rms, frequency and angular resolution (linearly proportional to the radius of the
markers) of LoTSS in comparison to a selection of existing wide-area completed (grey) and upcoming (blue)
radio surveys. The horizontal lines show the frequency coverage for surveys with large fractional bandwidths.
The green, blue and red lines show an equivalent sensitivity to LoTSS for compact radio sources with spectral
indixes of 0.7, 1.0 and 1.5 respectively. From Shimwell et al. (2018).

radio halo in a galaxy cluster of spectral index α ∼ 1.3 (Section 1.4.2). This has not been achieved
previously in any wide-area radio survey so far (see Fig. 7.6), making LoTSS at least a factor of
50− 1000 more sensitive and 5− 30 times higher in resolution than other recent low-frequency
surveys, such as the TIFR GMRT Sky Survey Alternative Data Release (TGSS ADR; Intema et al.
2017), MSSS (Heald et al. 2015), GaLactic and Extragalactic All-sky MWA (GLEAM; Wayth et al.
2015), and the VLA Low-frequency Sky Survey Redux (VLSSr; Lane et al. 2014), as shown in
Tab. 7.3.

The preliminary LoTSS images and catalogs covering right ascension from 10h45m00s to
15h30m00s and declination 45◦00′00′′ to 57◦00′00′′, i.e. the region of the Hobby-Eberly Telescope
Dark Energy Experiment (HETDEX) Spring Field (Hill et al. 2008), were presented in Shimwell
et al. (2017). In that release the desired imaging specifications were not achieved, as no attempt was
made to correct either for errors in the beam model of for direction-dependent ionospheric distor-
tions, which are severe in these low-frequency datasets. This led to images with a median noise of

Table 7.3: Summary of recent large area low-frequency surveys. From Shimwell et al. (2017).

Survey Resolution Noise Frequency Area
(′′) (mJy beam−1) (MHz)

VLSSr (Lane et al. 2014) 75 100 73−74.6 δ >−30◦

MSSS-LBA (Heald et al. 2015) 150 50 30−78 δ > 0◦

MSSS-HBA (Heald et al. 2015) 120 10 119−158 δ > 0◦

GLEAM (Wayth et al. 2015) 150 5 72−231 δ <+25◦

TGSS ADR (Intema et al. 2017) 25 3.5 140−156 δ >−53◦

LoTSS (ongoing) 5 0.1 120−168 δ > 0◦

Notes. This is an attempt to provide a fair comparison of sensitivities and resolutions, but
both the sensitivity and resolution achieved varies within a given survey.
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Figure 7.7: A LoTSS noise mosaic where the median noise level is 71 µJy beam−1. Many of the regions
with high noise levels are caused by dynamic-range limitations. Black circles mark the location of potentially
problematic objects from the revised 3C catalog of radio sources (Bennett 1962). From Shimwell et al.
(2018).

500 µJy beam−1 at 25′′ resolution. Thanks to the recent progress in improving the quality, speed
and robustness of the calibration of direction-dependent effects (e.g. Tasse 2014a; Tasse et al. 2018;
Yatawatta 2015; van Weeren et al. 2016b), it has been shown that the desired imaging specifica-
tions of LoTSS are feasible (e.g. Hardcastle et al. 2016; Williams et al. 2016). Indeed, we recently
published the first full-quality public data release5 of the HETDEX Spring Field in Shimwell et al.
(2018). In this release, the fully-automated direction-dependent calibration and imaging pipeline
developed for LoTSS allowed us to reach a median sensitivity of 71 µJy beam−1 (Fig. 7.7). A total
of 325,694 sources have been detected with a signal of at least five times the noise in the region of
the HETDEX Spring Field, meaning a source density a factor of∼ 10 higher than the most sensitive
existing very wide-area radio-continuum surveys. The optical identification of the radio sources
with the photometric redshift estimates and host galaxy properties have been presented in Williams
et al. (2018) and Duncan et al. (2018). The redshift measurements will be improved in the near
future thanks to the multi-object and integral field spectrograph of the WEAVE (Dalton et al. 2012,
2014) as part of the WEAVE-LOFAR survey (Smith et al. 2016).

7.5 LOFAR HBA data calibration

Observations at low radio frequency require advanced calibration and specific processing tech-
niques to obtain deep high-fidelity images.

One of the main calibration challenge is the correction for the delay differences between antenna
stations introduced by ionospheric distortions that cause phase erros in the measured visibilities (e.g.
Lonsdale 2005; Intema et al. 2009). In the case of a large array such as LOFAR, these corrections
must be applied direction-dependently, being related to the free electron column density along each
line of sight through the ionosphere. Another challenge is given by the time-varying station beam
shape. Indeed, LOFAR stationary antenna units imply that sources are tracked across their motion
in the sky by adjusting the delays between the dipole elements. Further errors are due to small
differences in the station beam models and shapes. These and the other systematics effects inherent

5http://lofar.strw.leidenuniv.nl

http://lofar.strw.leidenuniv.nl
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LOFAR data has been recently reviewed in de Gasperin et al. (2018).
Recent advances in the calibration and imaging techniques allow to fully exploit LOFAR capa-

bilities. In particular, the LoTSS pointings are processed using the novel approaches to estimate
direction-dependent effects and to apply these during the images developed in KillMS (kMS; Tasse
2014b,a; Smirnov & Tasse 2015) and DDFACET (Tasse et al. 2018), respectively6.

The LOFAR data presented in Chapters 8 and 9 have been processed using the facet calibration
scheme, i.e. another approach that has been successfully applied to image several galaxy clusters
observed with LOFAR HBA. The two main steps of this calibration scheme are outilined below; a
full description of the procedure is reported in van Weeren et al. (2016b), Williams et al. (2016) and
de Gasperin et al. (2018).

1. In the first step, direction-independent calibration (PREFACTOR7 pipeline) is performed. In
this step, the flux calibrator data are averaged in time and frequency and bad quality data
are flagged. Clock offsets and complex gains for different antenna stations are calibrated
off a calibrator model adopting the absolute flux density scale of Scaife & Heald (2012).
The amplitude and clock solutions are then transferred to the target data before an initial
phase calibration against a sky model generated from the TGSS ADR (Intema et al. 2017) or,
alternatively, a Global Sky Model (GSM) for LOFAR8 generated from the VLSSr (Lane et al.
2014), the WEsterbork Northern Sky Survey (WENSS; Rengelink et al. 1997) and the NRAO
VLA Sky Survey (NVSS; Condon et al. 1998). In the second step, wide-field images covering
the full LOFAR FoV are made from the products of the first step using WSCLEAN (Offringa
et al. 2014). The PYthon Blob Detector and Source Finder (PYBDSF; Mohan & Rafferty 2015)
software is then used to detect sources which are then subtracted from the uv-data using their
clean component models. Images are produced at medium (∼ 40′′×30′′) and low resolution
(∼ 120′′× 100′′) to ensure that both compact and extended sources are subtracted out. The
image sizes are about 12◦×12◦ and 30◦×30◦ for medium and low resolution, respectively.

2. In the direction-dependent calibration step (FACTOR9 pipeline), nearly thermal noise limited
images can be produced. It operates by using bright sources in the field to calibrate the phases
and amplitudes in a restricted portion of the sky seen by the interferometer, i.e. a “facet”.
This is needed as the LOFAR primary beam is large, requiring many different corrections
for ionospheric distortions and beam model errors across the FoV. For this reason, the FoV
(usually a region within 2.5◦ from the pointing center) is divided into tens of facets using a
Voronoi tesselation scheme (Fig. 7.8). This ensures that each point on the sky lies within the
facet of the nearest calibrator source, where the calibration solutions are reasonably similar.
Facets are typically processed in order of decreasing flux density of the calibrator source.
After a number of self-calibration cycles on the facet calibrator, the fainter sources that were
subtracted in the second step are added back into the data and are calibrated using the solutions
derived from the facet calibrator. An updated sky model of the region covered by the facet is
obtained by subtracting the components of the processed facet from the uv-data. The uv-data
used for the calibration of the subsequent facet have smaller systematics due to the source
subtraction and the effective noise reduction. This process is iteratively repeated until all the
desired directions have been calibrated.

6The kMS and DDFACET pipelines are available at https://github.com/saopicc
7https://github.com/lofar-astron/prefactor
8https://support.astron.nl/LOFARImagingCookbook
9https://github.com/lofar-astron/factor

https://github.com/saopicc
https://github.com/lofar-astron/prefactor
https://support.astron.nl/LOFARImagingCookbook
https://github.com/lofar-astron/factor
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Figure 7.8: A LOFAR pointing tesselated into facets by the FACTOR pipeline. Crosses mark the positions of
the facet calibrators. The displayed image is 6◦×6◦.

It is worth to remark that LOFAR calibration pipelines must deal with large volume datasets10

and require a considerable amount of computing power and storage. For these reasons, a specific
machine with a single 20 core (two 10-core Xeon E5-2640v4 2.4 GHz CPUs), 512 GB of RAM, and
40 TB of local disk storage has been bought at IRA (Section 7.2). Despite this powerful machine,
the data reduction requires still several days/weeks of processing time for a single 8 hr observing
run.

10A typical 8 hr LoTSS pointing consists in∼ 16 TB archived data, together with∼ 350 GB for each 10 min calibrator
observation.



134 Chapter 7. Galaxy cluster science with LOFAR



CHAPTER 8

The spectacular cluster chain Abell 781 as observed with LOFAR,
GMRT, and XMM-Newton†

ABSTRACT

The Abell 781 complex is a spectacular system composed of an apparent chain of
clusters on the sky. Its main component is undergoing a merger, and hosts peripheral
emission, classified as a candidate radio relic, as well as a disputed radio halo. We
use new LOFAR observations at 143 MHz and archival GMRT observations at 325
and 610 MHz to study radio emission from non-thermal components in the ICM of
Abell 781. Complementary information comes from XMM-Newton data that allow
us to investigate the connection with the thermal emission and its complex morphol-
ogy. We speculate that the peripheral source is related to the interaction between
a head tail radio galaxy and shock. However, the current data allow us only to set
an upper limit of M < 1.4 on the Mach number of this putative shock. Instead,
we successfully characterize the SB and temperature jumps of a shock and two cold
fronts in the main cluster component of Abell 781. Their positions suggest that the
merger is involving three sub-structures. We do not find any evidence for a radio
halo neither at the center of this system nor in the other clusters of the chain. We
placed an upper limit on the diffuse radio emission in the main cluster of Abell 781
that is a factor of 2 below the current P1.4−M500 relation for giant radio halos.

8.1 Introduction

Abell 781 is a complex system with multiple galaxy cluster components (Wittman et al. 2006,
2014; Abate et al. 2009; Geller et al. 2010; Cook & Dell’Antonio 2012). In the X-rays, it appears
as a chain with four prevailing clusters that extends over ∼ 25′ in the E-W direction (Wittman et al.
2006; Sehgal et al. 2008). Fig. 8.1 shows an XMM-Newton image of the system where we have
labelled the clusters following Sehgal et al. (2008) and reported the redshifts from Geller et al.
(2010). These four clusters lie in two different redshift planes: the “Main” (that hereafter we will
refer to simply as A781) and “Middle” are located at z ∼ 0.30, whereas the “East” and “West” are

†Based on Botteon et al. (2018c).

135



136 Chapter 8. LOFAR, GMRT, and XMM-Newton observations of the cluster chain Abell 781

Figure 8.1: Adaptively smoothed, background-subtracted and exposure-corrected XMM-Newton mosaic im-
age in the 0.5−2.0 keV band of the Abell 781 complex. Contours are spaced by a factor of 2 starting from
3.5×10−6 counts s−1 pixel−1.

located at z∼ 0.43 (therefore they are not related to the other two clusters of the system). The mass
of the main cluster is M500 = (6.1±0.5)×1014 M�, as reported in the second Planck catalog of SZ
sources (PSZ2; Planck Collaboration XXVII 2016).

Observations taken with the GMRT at 610 MHz revealed the presence of a peripheral source at
the boundary of the X-ray thermal emission of A781 that was suggested to be a candidate radio relic
by Venturi et al. (2008). Although this interpretation would be in agreement with the location of the
emission in the cluster outskirts, the source morphology is puzzling: neither arc-like nor elongated,
its morphology changes from 610 to 325 MHz (Venturi et al. 2011). The source is also detected
with the VLA at 1.4 GHz (Govoni et al. 2011). The presence of a central radio halo in A781 is
also disputed, it was observed at high frequency with the VLA (Govoni et al. 2011) but not at lower
frequencies with the GMRT (Venturi et al. 2008, 2011, 2013).

In this Chapter, we present a new LOFAR observation at 120−168 MHz and the reanalysis of
archival GMRT and XMM-Newton observations of the cluster chain Abell 781. In particular, we
focus on the main merging cluster of the complex to study the peripheral source and shed light on
the presence of the radio halo that has been reported in the literature.

8.2 Observations and data reduction

8.2.1 LOFAR
We analyzed the LoTSS (Shimwell et al. 2017, 2018) pointing closest to A781 (offset by∼ 1.5◦).

The observation is 8 hr long and used the Dutch HBA array operating at 120−168 MHz (see Tab. 8.1
for more details). The data reduction performed in this work followed the facet calibration scheme
developed to analyze LOFAR HBA data outlined in Section 7.5.

The LOFAR images reported in the Chapter were produced with WSCLEAN v2.4 (Offringa
et al. 2014) and have a central observing frequency of 143 MHz. The imaging was done using the
multi-scale multi-frequency deconvolution algorithm described in Offringa & Smirnov (2017). Data
were calibrated (and subsequently imaged) applying an inner uv-cut of 200λ to get rid of some noise
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Table 8.1: Summary of the radio observations used in this work.

LOFAR GMRT GMRT
Project code LC6_015 11TVA01 08RCA01
Observation date 2016 Dec 02 2007 Jan 29 2005 Oct 02
Total on-source time (hr) 8.0 9.2 3.4
Flux calibrator 3C196 3C286 3C48
Total on-calibrator time (min) 10 30 34
Central frequency (MHz) 143 325 610
Bandwidth (MHz) 48 33 33

Figure 8.2: Top: LOFAR 143 MHz image at a resolution of 34.9′′×26.6′′ (the beam is shown in the bottom
left corner). Contours are spaced by a factor of 2 starting from 3σ , where σ = 650 µJy beam−1. The
negative −3σ contours are shown in dashed. Dashed boxes mark the FoV of the other images reported along
the Chapter. Bottom: XMM-Newton smoothed image with the LOFAR contours overlaid.
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coming from RFI on the shortest baselines. The largest angular scale that is possible to recover with
this uv-cut is 17.2′, larger than the separation between each cluster of the chain. The uv-tapering of
visibilities and the Briggs weighting scheme (Briggs 1995) with different robust values were used
to obtain two images with different resolutions. The low-resolution image of the cluster chain is
shown in Fig. 8.2.

It is known that the LOFAR flux density scale can show systematic offsets and needs to be
corrected relying on other surveys (e.g. van Weeren et al. 2016b; Hardcastle et al. 2016). In this
respect, we cross-matched a catalog of LOFAR point-sources extracted in the facet containing A781
with the WENSS at 325 MHz (Rengelink et al. 1997). We rescaled the WENSS flux densities at
143 MHz assuming a spectral index α = 0.75. The adopted correction factor of 0.85 on LOFAR
flux densities was derived from the mean flux density ratio LOFAR/WENSS143. We conservatively
set a systematic uncertainty of 20% on LOFAR flux density measurements.

8.2.2 GMRT
GMRT observations on A781 at 325 MHz and at 610 MHz have been presented in Venturi et al.

(2008, 2011). In this work, we reanalyzed these datasets with the SPAM package (Intema et al. 2009)
and produced new images of the cluster. The details of the observations are shown in Tab. 8.1. The
data reduction with SPAM consists of a standard-automated pipeline that includes data averaging,
instrumental calibration, multiple cycles of self-calibration and flagging of bad data. Furthermore,
the bright sources within the primary beam are selected and used to perform a direction-dependent
calibration, whose solutions are interpolated to build a global ionospheric model to suppress iono-
spheric phase errors. The calibrated data are then reimaged with WSCLEAN v2.4 (Offringa et al.
2014), as described at the end of Section 8.2.1. For more details on the SPAM pipeline we refer the
reader to Intema et al. (2009, 2017). The flux density scale in the images was set by calibration on
3C48 (at 610 MHz) and 3C286 (at 325 MHz) using the models from Scaife & Heald (2012). No
flux scale offset (e.g. due to the system temperature, see Sirothia 2009) was found cross-matching
a catalog of GMRT sources with the WENSS (Rengelink et al. 1997). Residual amplitude errors
are estimated to be 15% at 325 MHz and 10% at 610 MHz, in agreement with other studies (e.g.
Chandra et al. 2004).

8.2.3 XMM-Newton
The Abell 781 complex was observed twice with XMM-Newton (ObsID: 0150620201 and

0401170101), for a total exposure time of 98.7 ks. Data reduction was performed using the pipeline
developed to analyze the observations of the X-COP (Eckert et al. 2017a), fully described in Ghirar-
dini et al. (2019). The pipeline uses the ESAS tools developed within the XMM-Newton SAS v14.0.0
to analyze EPIC observations. Briefly, the tasks mos-filter and pn-filter were used to filter
out observation periods affected by soft proton flares. Residual soft proton flare contamination was
checked by measuring in a hard band the count rates of the MOS and pn cameras in the exposed and
unexposed parts of the detectors FoV (inFoV/outFoV, see Leccardi & Molendi 2008). The results of
this procedure are summarized in Tab. 8.2. For MOS cameras, values of inFoV/outFoV below 1.15
indicate absence of residual soft proton flares while values between 1.15 and 1.30 indicate slight
contamination of soft proton flares. Single detector count images were then combined to produce
the mosaic EPIC background-subtracted and exposure-corrected images in the 0.5−2.0 keV band
shown in Figs. 8.1 and 8.2. The tasks ewavelet and cheese were used to detect and exclude point
sources before the spectral region extraction and SB profile fitting. The output files of the routines
were checked for missed sources and/or false detections; therefore, contaminating point sources
were excised.
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Table 8.2: Clean exposure time and inFoV/outFoV ratio of each EPIC detector for the two XMM-Newton
observations used in this work (medium filter, full frame science mode).

Exposure inFoV/outFoV
(ks)

ObsID 0150620201
MOS1 14.5 1.157±0.051
MOS2 14.2 1.070±0.044
pn 10.5 1.199±0.055

ObsID 0401170101
MOS1 58.6 1.106±0.025
MOS2 60.8 1.049±0.022
pn 47.5 1.232±0.026

Spectra of the two ObsIDs were extracted in the same regions and jointly fitted in the 0.5−12.0
keV band (MOS detectors) and in the 0.5−14.0 keV band (pn detector) with XSPEC v12.9.0o (Ar-
naud 1996) adopting Cash statistics (Cash 1979). The energy range 1.2−1.9 keV was excluded in
the fit due to strong instrumental emission lines; for the pn detector, we excluded for the same reason
also the range 7.0−9.2 keV. The NXB was modeled with a phenomenological model that includes
a number of fluorescence lines (see Ghirardini et al. 2019). The local sky background was estimated
in a cluster free region adopting a model composed of a CXB component, modeled with an absorbed
power-law with photon index Γ = 1.46 (De Luca & Molendi 2004), and of a Galactic foreground
component, modeled with two thermal plasmas (one unabsorbed and the other absorbed) with solar
metallicity and temperatures 0.11 keV and 0.28 keV (McCammon et al. 2002). The ICM emission
was modeled with an absorbed thermal model with normalization, metallicity and temperature free
to vary in the fit. Galactic absorption in the direction of the cluster was set to NH = 1.65× 1020

cm−2 (Kalberla et al. 2005).
SB profiles were extracted and fitted with PROFFIT v1.5 (Eckert et al. 2011) from the EPIC mo-

saic image in the 0.5−2.0 keV band. All the profiles reported in this work were convolved for the
XMM-Newton PSF, that was modeled with the psf task (for more details, see Appendix C in Eckert
et al. 2016b).

8.3 Results

8.3.1 The peripheral emission in A781

The peripheral diffuse radio emission in the SE outskirts of the main cluster (Fig. 8.3) was clas-
sified as a candidate radio relic by Venturi et al. (2008). The source has been observed with the
GMRT (Venturi et al. 2008, 2011, 2013) and VLA (Govoni et al. 2011); it is also detected in the
NVSS (Condon et al. 1998) but not in the Faint Images of the Radio Sky at Twenty-centimeter sur-
vey (FIRST; Becker et al. 1995).

In Fig. 8.4, we show our images of the peripheral emission at three frequencies with compara-
ble resolution obtained from the new LOFAR data and from the reanalysis of the archival GMRT
observations. The flux densities measured within the LOFAR 3σ contour in these images are
S143MHz = 267± 53 mJy, S325MHz = 94± 14 mJy and S610MHz = 38± 4 mJy, where the quoted
errors have been estimated via Eq. 2.1. The source morphology is consistent between 143 MHz and
610 MHz and appears slightly more extended at low frequency, with a largest linear size of ∼ 550
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Figure 8.3: Composite multi-wavelength image of A781 (red region of Fig. 8.2). Optical SDSSg,r,i mosaic
is shown in green. Radio emission at 143 MHz from LOFAR is shown in blue. X-ray XMM-Newton emission
is shown in red.

Figure 8.4: The peripheral emission in A781 (blue region of Fig. 8.2) as observed in the radio band with
LOFAR at 143 MHz (left) and with the GMRT at 325 MHz (center) and 610 MHz (right). Contours are spaced
by a factor of 2 starting from 3σ , where σ143 = 270 µJy beam−1, σ325 = 150 µJy beam−1 and σ610 = 120
µJy beam−1. The negative −3σ contours are shown in dashed. The beam sizes are 11.1′′×6.5′′ (143 MHz),
10.6′′×7.2′′ (325 MHz) and 13.5′′×9.8′′ (610 MHz) and are shown in the bottom left corners.
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Figure 8.5: Integrated spectrum of the peripheral source in A781.

Figure 8.6: Spectral index map of the peripheral emission between 143 MHz and 610 MHz at a resolution
of 15′′× 15′′ overlaid on the LOFAR contours of Fig. 8.4. Pixels with values below 3σ were blanked. The
corresponding error map is reported in Fig. F.1. The inset panel shows an SDSS image with two candidate
optical counterparts.



142 Chapter 8. LOFAR, GMRT, and XMM-Newton observations of the cluster chain Abell 781

kpc. It displays a peculiar wedge shape characterized by a bright knot of emission in the SE which
is attached to a high SB spine that is extended NW in the direction of the central double radio source
(DRS; cf. Fig. 8.3). The radio emission shows a sharper edge toward the E direction where also the
X-ray thermal emission fades away.

We measured the spectral index properties of the source from images produced with a uniform
weighting scheme and with matched uv-range. The integrated spectral index computed between
the three frequencies is α = 1.40± 0.16 (Fig. 8.5), consistent within the errors with that reported
by Venturi et al. (2011). The k-corrected and spectral index rescaled radio power of the source at
1.4 GHz is P1.4 ∼ 3.5× 1024 W Hz−1 (Eq. 1.23), assuming that it is located at the cluster redshift
z = 0.3004. The spectral index map calculated from the 143 MHz and 610 MHz images convolved
to the same resolution of 15′′×15′′, corrected for any position misalignment, and regridded to iden-
tical pixel size, is shown in Fig. 8.6 (the error map is reported in Appendix F). This map shows
that the SE bright knot of emission has also a flatter spectral index, possibly arising from the radio
emission of an AGN. In the Sloan Digital Sky Survey (SDSS; York et al. 2000), two possible op-
tical counterparts are observed in this position (see inset panel in Fig. 8.6); these will be discussed
in Section 8.4.1. The absence of significant compact emission at a level of 0.5 mJy beam−1 in the
FIRST data suggests that the AGN is not active anymore. The diffuse source exhibits a hint of
spectral index flattening in coincidence with the E edge of the radio emission. The spectral index
gradually steepens in the direction of the DRS, where α ∼ 1.8. A similar spectral trend can be
inferred also from Fig. 5 of Govoni et al. (2011), despite the lower resolution (53′′× 53′′) of their
spectral index map. As a further check, we evaluated the spectral index of the peripheral source in
sectors, as shown in Fig. 8.7. This confirms a spectral gradient in both the E-W and S-N directions.
As discussed in Section 1.4.1, spectral index steepening toward the cluster center has been observed
in a number of radio relics (e.g. Giacintucci et al. 2008; van Weeren et al. 2010; de Gasperin et al.
2015a; Hoang et al. 2018a).

Figure 8.7: Spectral index trend of the peripheral emission toward the E-W (blue) and S-N (red) directions.
The spectral index has been computed between 143 and 610 MHz in the sectors shown in the bottom panels.
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8.3.2 X-ray discontinuities in the ICM

The visual inspection of the XMM-Newton image in the 0.5−2.0 keV band suggests the presence
of three SB jumps in A781, toward the SE, NW and W directions, that have not been studied in the
literature so far. We investigated the possible features with the fitting of the SB profiles extracted in
the sectors highlighted in Fig. 8.8. A broken power-law model (Eq. 1.21) was assumed to fit the data
as it generally provides a good description of discontinuities in the ICM, namely shocks and cold
fronts (e.g. Markevitch & Vikhlinin 2007; Owers et al. 2009; Botteon et al. 2018a). A single power-
law model was also fitted for comparison. The three profiles are shown in Fig. 8.9. The broken-
power law models always yield the best description of the data, confirming the existence of drops in
SB. The compression ratios between the downstream and upstream density are C = 1.9±0.1 (SE),
C = 2.0±0.2 (NW) and C = 2.2+0.4

−0.3 (W).
In order to determine the nature of the edges (shocks or cold fronts), a careful spectral analysis

is necessary. Shocks are characterized by higher temperature and pressure in the downstream region
than in the upstream region. Instead, the temperature jump is inverted and the pressure is almost
continuous across cold fronts (Section 1.3.2). We extracted and fitted spectra in the downstream and
upstream regions delimited by the dashed and solid lines in Fig. 8.8. The pressure jump P at the
discontinuity can be computed as the product between the density and temperature ratios1 achieved

1Although this procedure combines a deprojected density jump with a temperature evaluated along the line of sight,
previous studies have shown that projection effects do not have a strong impact (e.g. Botteon et al. 2018a).

Figure 8.8: XMM-Newton smoothed image of A781 (red region of Fig. 8.2) with the sectors used for the
spectral and spatial analysis. The positions of the edges are marked by thick lines while dashed lines limit the
regions used for the spectral analysis.
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Figure 8.9: XMM-Newton SB profiles in the 0.5− 2.0 keV energy band extracted in the white sectors of
Fig. 8.8. The best-fitting broken power-laws with residuals and single power-laws are reported in solid blue
and dashed red, respectively. The residuals at the bottom of the plots refer to the broken power-law fits.

with the spatial and spectral analysis, respectively. Results are summarized in Tab. 8.3. All the
SB discontinuities are associated with temperature jumps. For the SE and NW edges, the down-
stream temperature is lower and the pressure is consistent to be constant across the discontinuities,
as expected in the case of cold fronts. For the W edge, the downstream gas is hotter and a pressure
jump is observed, revealing the shock nature of the discontinuity. We applied the Rankine-Hugoniot
equations (e.g. Landau & Lifshitz 1959) to derive independent constraints of the shock Mach num-
ber from the temperature (Eq. 1.17) and density (Eq. 1.18) jumps, leading to consistent values of
MkT = 1.6±0.3 andMSB = 1.9+0.4

−0.3, respectively. We note that no diffuse radio emission in form
of radio relic is observed at the location of this shock.

Finally, we searched for a possible X-ray discontinuity at the position of the peripheral diffuse
radio emission. In particular, a shock could be responsible for the peculiar morphology and the
observed spectral index trend of the source (Fig. 8.6). Moreover, a number of merger shocks have
been found ahead of cold fronts (e.g. Vikhlinin et al. 2001b; Markevitch et al. 2002; Russell et al.
2010, 2012; Emery et al. 2017), and it is possible that also the SE cold front detected in A781 is
following a shock. In this respect, we extracted and fitted a SB profile in a box across the radio edge
in the E that shows a hint of spectral index flattening, as shown in Fig. 8.10. However, the current
XMM-Newton data is not deep enough to characterize this potential feature due to the low count
statistics of this region. We used the MULTINEST Bayesian nested sampling algorithm (Feroz et al.
2009) interfaced in PROFFIT to determine an upper limit of C < 1.6 (90% confidence level) on the
compression factor by fitting a broken power-law and assuming that the discontinuity is locate at
the edge of the radio emission. This implies that if a shock exists, it is weak (M< 1.4). Projection
effects (if any) should play a small role as the detection of the two diametrically opposite cold fronts
in the NW and SE directions suggests that the merger is occurring approximately on the plane of
the sky.

Table 8.3: Properties measured across the X-ray SB discontinuities.

SE NW W
kTd (keV) 5.4+0.4

−0.2 4.1+0.2
−0.2 4.2+0.6

−0.4
kTu (keV) 9.5+1.6

−1.3 7.4+1.0
−1.0 2.6+0.5

−0.5
C 1.9+0.1

−0.1 2.0+0.2
−0.2 2.2+0.4

−0.3
P 1.0+0.1

−0.1 1.1+0.1
−0.1 3.5+0.9

−0.8
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Figure 8.10: The sector used to extract the XMM-Newton SB profile across the peripheral source. In the fit,
the position of the jump was fixed at the location of the radio edge of emission (dashed line).

8.3.3 Constraints on the radio halo emission

The presence of diffuse radio emission at the center of A781 was debated. Originally, A781 was
classified as one of the few dynamically disturbed without evidence of a radio halo in the GMRT
610 MHz sample of Venturi et al. (2008). However, Govoni et al. (2011) claimed the presence of
a radio halo using VLA observations and reported a flux density S1.4GHz = 20±5 mJy at 1.4 GHz.
Nonetheless, this detection remained debated as Venturi et al. (2011) found only a low level of
residuals in the cluster center with the GMRT at 325 MHz (consistent with our reanalysis of the same
dataset performed with the SPAM pipeline) that would imply an unusual flat spectrum α1.4GHz

325MHz < 0.5
for a diffuse cluster source when combined with the claim of Govoni et al. (2011). LOFAR has the
sensitivity required to shed light on this point: our images have a brightness sensitivity 1.5− 2.5
times better than the GMRT at 325 MHz and the VLA at 1.4 GHz assuming a typical value of
α = 1.3 for the radio halo spectrum2. With this spectral index and considering the flux density
reported with the VLA by Govoni et al. (2011), the flux density expected at 143 MHz is∼ 400 mJy.
This should be clearly observable in the LOFAR image. However, a radio halo is not visible and only
a low level of residuals is measured in the central region of A781 at 143 MHz. The origin of these
residuals is unclear. They may well be patches of emission due to unresolved sources in the cluster
or possible contamination of spurious emission due to the central bright DRS (S143MHz = 0.5±0.1
Jy).

To further quantify the limits of our non-detection, we used the technique of injecting mock radio
halos in the dataset to infer an upper limit on the diffuse emission flux density (e.g. Brunetti et al.
2007; Venturi et al. 2008; Kale et al. 2013, 2015; Bonafede et al. 2017; Johnston-Hollitt & Pratley
2017; Cuciti et al. 2018). Specifically, we applied this method to A781 following the procedure

2This estimate is also conservative as it does not account for the fact that the uv-coverage at short baselines of
LOFAR is much better than those of the GMRT and VLA.
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Table 8.4: Expected properties of a radio halo at 1.4 GHz in A781 according to the relation of Cassano et al.
(2013). The halo reference radius was calculated as rh = 2.6re (Bonafede et al. 2017).

M500 P1.4 S1.4 rh re
(M�) (W Hz−1) (mJy) (kpc) (kpc)

6.1×1014 1.56×1024 5.0 437 168

described in Bonafede et al. (2017). The mock halos were injected in a region close to the cluster
center, avoiding bright radio sources and selecting a region with similar noise properties to that
within the cluster region. The SB of the mock radio halos is assumed to follow an exponential law
in the form I(r) = I0 exp(−r/re), where I0 is the central SB and re denotes the e-folding radius (e.g.
Orrù et al. 2007; Murgia et al. 2009). We first injected a halo with the properties reported in Tab. 8.4,
i.e. consistent with that expected from the P1.4−M500 relation of Cassano et al. (2013) starting from
the value of M500 reported in the PSZ2 catalog (Planck Collaboration XXVII 2016). We verified
that this mock radio halo was clearly detected by our LOFAR observation at 143 MHz (assuming
a spectral index α = 1.3, the implied flux density is S143MHz = 97 mJy). We then reduced the flux
density of the injected halos until we recovered a flux density that matches the level of residuals
measured in the cluster center. This occurred when S143MHz < 50 mJy, and we consider this as the
upper limit on the radio halo emission. This converts into a limit of P143MHz < 1.6×1025 W Hz−1

for the radio halo power at 143 MHz. Whilst the LOFAR brightness sensitivity is much better than
that of the GMRT, this limit is similar to that derived by Venturi et al. (2008). Indeed, the residuals
due to the contamination from the DRS constrain the depth of our measurement. The upper limit is
a factor of 2 below the values expected by the P1.4−M500 relation. We note that the Planck estimate
of M500 for A781 could be slightly biased high due to the presence of the “Middle” cluster in the
Planck beam (see Botteon et al. 2018b, for a similar case).

There is evidence that a fraction of merging clusters do not show radio halos and this fraction
is seen to increase at smaller cluster masses (Cuciti et al. 2015). According to current models, a
fraction of these low-mass merging clusters should glow up at low radio frequencies and host halos
with very steep spectra (e.g. Cassano et al. 2006; Brunetti et al. 2008) that are typically also less
luminous in the P1.4−M500 plane than radio halos with flatter spectrum (e.g. Cassano 2010; Wilber
et al. 2018). Unfortunately, the artifacts around the DRS prevent us to explore the presence of a halo
less luminous than one in line with the Cassano et al. (2013) relation.

We also searched our low-resolution LOFAR image for emission from the other clusters in the
Abell 781 chain (Fig. 8.2). There are no clear detections toward any of the other clusters but this is
to be expected given the low mass of these components (cf. Tab. 1 in Wittman et al. 2014). Due to
the expected non-detections we did not determine precise upper limits on the diffuse radio emission.

8.4 Discussion

8.4.1 On the nature of the peripheral radio emission
The most striking feature in the composite image of A781 (Fig. 8.3) is the peculiar peripheral

radio source in the SE. Whilst its nature is still uncertain, two possible explanations for its origin
can be proposed based on the results coming from the joint radio and X-ray analysis presented in
this work.

The first possibility is that the source traces a radio relic, as already hypothesized by Venturi
et al. (2008). This scenario is in agreement with the location of the emission in the cluster outskirts
and with the overall steepening of the spectral index toward the cluster center (Fig. 8.6 and 8.7).
Although the source has an edge that coincides with a region with flatter spectral index as observed
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Table 8.5: Photometric redshifts of the source marked with the red arrow in the inset panel in Fig. 8.6 for two
different SDSS Data Releases. From Ahn et al. (2014, DR10) and Abolfathi et al. (2018, DR14).

RF method KD-tree method
DR10 0.292±0.126 0.241±0.132
DR14 − 0.467±0.124

in almost the totality of radio relics, the global morphology is not recalling the typical arc-shaped
structure observed for this class of sources (e.g. van Weeren et al. 2010). In particular, the presence
of the high SB spine and of the bright knot of emission with flat spectral index are difficult to explain
in the radio relic scenario even assuming strong projection effects (e.g. Slee et al. 2001; Hoeft et al.
2008).

Alternatively, the source could be associated with a radio galaxy just turned off (as suggested by
the lack of a bright core in the FIRST). Whilst its morphology does not befit directly to any of the
typical classes of radio galaxies (e.g. Miley 1980), the structure observed in Fig. 8.4 vaguely resem-
bles a head tail source. In this case, it is natural to associate the core emission with the bright knot in
the SE that displays a flatter spectral index (Fig. 8.6). Thus, the high SB spine would result from the
relativistic plasma trailed behind the host galaxy during its motion toward the cluster outskirts. As
a consequence of particle aging, the spectral index gets steeper along the tail; however, in A781, the
spectral index shows also a transversal trend (Fig. 8.7). We tentatively interpret this gradient as the
signature of a shock passing through the radio galaxies from the W to the E direction compressing
and potentially re-accelerating the radio plasma. The interaction between shocks and radio galaxies
is very complicated and leads both to the compression of the plasma and to the modification of the
source morphology (e.g. Enßlin & Brüggen 2002; Pfrommer & Jones 2011; Jones et al. 2017). In
this scenario, the presence of a clear spectral gradient would suggest that the shock has gone through
the tail. An external shock can only propagate as a shock inside the tail if the sound speed inside the
relativistic plasma is lower than the shock speed in the external medium. This could be explained by
entrainment of thermal plasma in the non-thermal plasma and a small volume filling fraction of the
non-thermal plasma. Tailored numerical simulation on the source in A781 will test this scenario.

Both interpretations described above assume that a shock is involved in the formation of the pe-
ripheral source. Nonetheless, the present XMM-Newton observations allowed us to determine only
an upper limit on the density jump across the E region of the source that would imply a low Mach
number shock. We currently prefer the second scenario as it can be more easily reconciled with the
source morphology and spectral index properties. Furthermore, two possible optical counterparts
are visible in the SDSS image within the radio knot. Both the sources are detected by the Spitzer
satellite, possibly indicating infrared emission from AGN. However, only the galaxy marked with
the red arrow3 in the inset panel in Fig. 8.6 is in the SDSS catalog. Different estimates4 of the
photometric redshift for this object are reported in Tab. 8.5. The galaxy is consistent to be a cluster
member within 1σ for Ahn et al. (2014) and within 1.4σ for Abolfathi et al. (2018). We mention
that the apparent discrepancy between the redshifts reported in the two SDSS Data Releases might
be due to changes in the machine learning technique (e.g. in the training sample) between the two
releases. Spectroscopic follow-up observations are required to precisely determine the galaxy red-
shift and nuclear activity.

In conclusion, we point out that the radio relic and radio galaxy–shock interaction scenarios do
not necessarily exclude each other. The shock withM < 1.4 inferred from the X-ray analysis, if
present, would challenge DSA due to the inefficient particle acceleration at weak cluster shocks (e.g.

3SDSS J092031.54+302733.1
4See Csabai et al. (2007) and Carliles et al. (2010) for details on the photometric redshift estimation methods.
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Kang et al. 2012; Pinzke et al. 2013). The re-acceleration of a pre-existing population of relativis-
tic electrons injected by nearby radio galaxies is usually invoked to alleviate the high acceleration
efficiency required for many relics (e.g. Botteon et al. 2016a; Eckert et al. 2016a; van Weeren et al.
2016a; Hoang et al. 2018a). To date, the clearest example of AGN–relic connection is provided by
Abell 3411-3412 (van Weeren et al. 2017a), where a shock was suggested to be responsible of the
AGN distorted radio tail and the spectral index flattening at the edge of the relic. The peripheral
emission in A781 could resemble this case, provided that future observations will confirm the op-
tical counterpart and shock front. The fact that a radio relic is not observed at the position of the
stronger shock toward the W direction further supports the scenario of AGN–shock interaction or
the case of particle re-acceleration.

8.4.2 A triple merger in A781

The detection of discontinuities in the thermal ICM requires that the collision is occurring almost
exactly in the plane of the sky, as projection effects could hide the sharp SB and temperature jumps.
Therefore, the shock and cold fronts observed in A781 can be used to outline the approximate
geometry of the merger. We complemented this information with the temperature and entropy maps
shown in Fig. 8.11 (the error maps are reported in Appendix F), that are useful diagnostic tools
to search for sub-structures in the ICM. Maps were produced by fitting a thermal model to the
count rates measured in five energy bands from XMM-Newton EPIC Voronoi tessellated images
(Cappellari & Copin 2003), and requiring a threshold of 400 counts per bin in the 0.5− 2.0 keV
band (for more details, see Jauzac et al. 2016). Reported quantities are projected along the line of
sight.

From the analysis of the XMM-Newton observations, we suggest that A781 is undergoing a
triple merger, as sketched in Fig. 8.12. Merger cold fronts usually trace the direction of motion of a
cluster core (e.g. Markevitch et al. 2002); hence, the two diametrically opposite cold fronts detected
in A781 suggest a collision axis along the NW-SE direction. The presence of two sub-structures
(clump A and clump B) is supported by the low values of entropy and the X-ray contours in Fig. 8.11
(right panel). The two X-ray clumps seem detached (e.g. Fig. 8.3), with clump B likely tracing a
smaller sub-structure moving apart from the dominant clump A. The spatial coincidence between

Figure 8.11: Thermodynamical properties of the ICM in A781 projected along the line of sight. Left: temper-
ature map with overlaid the LOFAR contours of Fig. 8.2. Right: entropy map with overlaid the XMM-Newton
contours of Fig. 8.1. The corresponding error maps are reported in Fig. F.2.
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Figure 8.12: Cartoon of the dynamics of the merger in A781 as suggested from the X-ray data; the diffuse
radio sources are sketched in blue while the thermal ICM emission is reported in red (cf. Fig. 8.3).

the peripheral radio emission high SB spine and bins with kT ∼ 9 keV in Fig. 8.11 (left panel) could
indicate a region heated by the passage of the shock invoked in the previous Section to explain the
properties of the source observed in the radio band. In addition, the presence of a third sub-cluster
(clump C) is highlighted by the X-ray clump of emission to the W and, again, by the low entropy
gas in this region (Fig. 8.11, right panel). This sub-cluster is clearly disturbed as it does not show
evidence of an X-ray peak (Fig. 8.8). In this respect, we suggest that it is moving toward the W
direction and it has already crossed the ICM of clump A+B, rather than infalling into the system.
The detection of the shock in the W supports this scenario. This provides an additional merger axis
in the E-W direction. Overall, the irregular distribution of temperature with the existence of blobs
of hot gas (Fig. 8.11, left panel) is in agreement with a complex merger dynamics as that described
above.

The tentative dynamics of the merger outlined above is based on the features observed in the
X-rays. Recently, Golovich et al. (2018) presented an optical analysis of A781 that supports the
triple merger scenario. As pointed out by these authors, it is worth noting that on larger scales the
merger could be even more complex because of the existence of the “Middle” cluster, located at a
similar redshift of A781 (Fig. 8.1).

8.5 Conclusions

In this Chapter, we presented a joint radio/X-ray analysis of the cluster chain Abell 781 using
new LOFAR data and reanalyzing archival GMRT and XMM-Newton observations. We focused on
the main merging component of the complex, for which the presence of non-thermal emission in
the ICM was already investigated in the literature. Our results can be summarized as follows.

1. The nature of the peripheral radio emission in the SE of A781 remains uncertain. We sug-
gested that this source results from the interaction between a weak shock withM< 1.4 and a
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radio galaxy. This scenario could explain its unusual morphology and spectral index steepen-
ing toward the cluster center. The non-detection of a radio relic at the position of the stronger
shock observed in the W direction further supports the fact that the SE emission, if associated
to a shock, represents a case of AGN–shock connection or particle re-acceleration. Future
optical follow-up and numerical simulations are required to clarify the origin of the source.

2. We proposed a tentative interpretation of the dynamics of the merger occurring in A781 where
three sub-structures are involved. We detected two cold fronts and a shock front; these were
used to delineate the motion of the three mass clumps. The two diametrically opposite cold
fronts indicate a merger axis in the SE-NW direction, while the presence of a third sub-
structure moving toward the W and preceding a shock suggests another merger axis in the
E-W direction. Three low entropy clumps are also observed in the entropy map of A781.

3. Our results from the new LOFAR data and the reanalysis of the archival GMRT observations
do not find evidence of the radio halo in A781 (in agreement with Venturi et al. 2008, 2011)
and in the other clusters of the chain. We placed an upper limit on the diffuse radio emission
a factor of 2 below the P1.4−M500 relation of Cassano et al. (2013). This limit is not con-
veniently deep enough due to the presence of artifacts around the bright radio galaxy at the
center of A781. The absence of a radio halo in a merging system provides useful information
on the mechanisms that generate these sources and on their evolution.



CHAPTER 9

LOFAR discovery of a double radio halo system in Abell 1758 and
radio/X-ray study of the cluster pair†

ABSTRACT

We present a new LOFAR observation of the double galaxy cluster Abell 1758.
This system is composed of A1758N, a massive cluster hosting a known giant radio
halo, and A1758S, which is a less massive cluster whose diffuse radio emission is
confirmed here for the first time. Our observations have revealed a radio halo and
a candidate radio relic in A1758S, and a suggestion of emission along the bridge
connecting the two systems which deserves confirmation. We combined the LOFAR
data with archival VLA and GMRT observations to constrain the spectral properties
of the diffuse emission. We also analyzed a deep archival Chandra observation and
used this to provide evidence that A1758N and A1758S are in a pre-merger phase.
The ICM temperature across the bridge that connects the two systems shows a jump
which might indicate the presence of a transversal shock generated in the initial stage
of the merger.

9.1 Introduction

Abell 1758 (hereafter A1758) is a galaxy cluster located at z = 0.279 that has been intensively
studied in the literature. Early ROSAT data (Rizza et al. 1998) revealed that it consists of two com-
ponents, A1758N (in the north) and A1758S (in the south), separated by a projected distance of∼ 8
arcmin (about 2 Mpc). David & Kempner (2004) estimated virial radii of 2.6 Mpc (for A1758N)
and 2.2 Mpc (for A1758S), indicating that each cluster is affected by the potential well of the other
and that they are gravitationally bound. Despite this, no signs of significant interaction between
A1758N and A1758S were found by Chandra and XMM-Newton observations (David & Kempner
2004). However, from X-ray and optical studies, it is clear that the two sub-clusters are undergoing
their own distinct mergers, with A1758N in a late and A1758S in an early merger state (e.g. David
& Kempner 2004; Boschin et al. 2012b). This might also be reflected in the infrared luminosity of
the galaxies of A1758N, which is almost two times larger than that of A1758S, suggesting different

†Based on Botteon et al. (2018b).
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dynamical histories for the two clusters (Haines et al. 2009). Weak lensing studies indicate that
A1758N has a bimodal mass distribution, while A1758S represents a single mass clump (Dahle
et al. 2002; Okabe & Umetsu 2008; Ragozzine et al. 2012; Monteiro-Oliveira et al. 2017). Individ-
ual mergers are possibly occurring near the plane of the sky for A1758N and close to the line of
sight for A1758S.

So far, most studies have focused on A1758N, which is more massive and hotter than A1758S
(e.g. David & Kempner 2004). The mass of A1758N has been estimated using several methods (e.g.
X-ray scaling relations, David & Kempner 2004; weak lensing, Okabe & Umetsu 2008; member
galaxy dynamics, Boschin et al. 2012b; hydrostatic equilibrium, Martino et al. 2014), providing a
virial mass of ∼ 1015 M�, which is split approximately equally between the two sub-components.
This is further supported by hydrodynamical simulations, which can reproduce the X-ray mor-
phology of A1758N assuming an off-axis collision of two equal mass (∼ 5× 1014 M�) clusters
(Machado et al. 2015). A compilation of the different mass estimates reported for A1758N is given
in Tab. 1 of Monteiro-Oliveira et al. (2017). Note that the mass of A1758S is more uncertain whilst
it appears to be at least a factor of 1.5 smaller than that of A1758N (David & Kempner 2004;
Ragozzine et al. 2012; Haines et al. 2018).

In the radio band, A1758N hosts a giant radio halo that was first detected by Kempner & Sarazin
(2001) and later investigated at 1.4 GHz with the VLA (Giovannini et al. 2009) and at 325 MHz
with the GMRT (Venturi et al. 2013). There are no reports of diffuse radio emission associated with
A1758S in the literature.

In this Chapter, we present a new LOFAR observation together with archival GMRT, VLA and
Chandra data. Using these data we have discovered and characterized the second double radio halo
system known to date and we argue that the two clusters that constitute A1758 are in a pre-merger
state.

9.2 Observations and data reduction

9.2.1 LOFAR
The LoTSS (Shimwell et al. 2017) observations are typically separated by 2.6◦ and we have

analyzed the LoTSS pointing that is centered closest to A1758 (offset by ∼ 1.1◦). The character-
istics of this observation are summarized in Tab. 9.1. To calibrate the data we followed the facet
calibration scheme described in Section 7.5. This procedure has been successfully applied to image
several other galaxy clusters with the LOFAR HBA (e.g. van Weeren et al. 2016a; de Gasperin et al.
2017; Hoang et al. 2017; Wilber et al. 2018).

Table 9.1: Summary of the radio observations used in this work.

LOFAR GMRT VLA
Array C Array D

Project code LC2_038 11TVA01 AG639

Pointing center (RA, DEC)
13h37m30s 13h32m32s 13h32m32s
+49◦44′53′′ +50◦30′37′′ +50◦30′36′′

Observation date 2014 Jun 1 2007 Mar 30/31 2004 May 6 2003 Mar 11
Total on-source time (hr) 8.0 8.0 2.5 2.5
Flux calibrator 3C196 3C147 3C286
Total on-calibrator time (min) 10 26 10 9
Central frequency (MHz) 144 325 1425
Bandwidth (MHz) 48 33 50
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Table 9.2: Imaging parameters for the radio images shown in the Chapter. The beam position angle (PA) is
measured from north to east.

Fig. Instrument Frequency Robust Taper Resolution PA rms
(MHz) (′′) (′′× ′′) (◦) (µJy beam−1)

1 LOFAR 144 +0.5 0 34×23 45 230
1 GMRT 325 0.0 35 43×29 29 400
1 VLA 1425 0.0 35 43×38 50 70
3 LOFAR 144 0.0 40 60×51 69 390
4 LOFAR 144 −0.5 10 16×11 88 140

All LOFAR images in the Chapter are reported at the central observing frequency of 144 MHz
and were produced with CASA v4.7 (McMullin et al. 2007). The imaging was done using the multi-
scale multi-frequency deconvolution algorithm (MS-MFS; Rau & Cornwell 2011), with second
order Taylor terms (nterms = 2), and W-projection (Cornwell et al. 2005). For the facet containing
A1758, an image size of 5120′′×5120′′ was adopted to ensure that all of the sources in the vicinity
of the cluster were adequately deconvolved. An inner uv-cut of 80λ (corresponding to an angular
scale of 43′) was also applied on the data to reduce sensitivity to very large scale emission from
the Galaxy. Different resolution images were created using various different Briggs weightings
(Briggs 1995) and by applying an uv-taper, as reported in Tab. 9.2. Primary beam correction was
performed with AWIMAGER (Tasse et al. 2013). Uncertainties in the flux scale that are caused by
inaccuracies in the LOFAR HBA beam model (see van Weeren et al. 2016b; Hardcastle et al. 2016)
were corrected by cross-matching a number of compact sources extracted from the LOFAR image
with the TGSS ADR (Intema et al. 2017). Throughout the Chapter, we have applied correction
factor that was computed from the mean LOFAR/TGSS integrated flux density ratio of 1.08 and a
calibration error of 15% on LOFAR flux densities, which is in agreement with other LOFAR HBA
studies (e.g. Shimwell et al. 2016; Savini et al. 2018c).

9.2.2 GMRT

We analyzed an 8 hr archival GMRT 325 MHz observation of A1758 (details in Tab. 9.1). Data
were reduced with the SPAM package (Intema et al. 2009), which is an automated pipeline to process
GMRT observations based on AIPS. Here we outline the main steps of the SPAM data reduction, for
more details the reader is referred to Intema et al. (2009, 2017). First, the dataset is averaged in
time and frequency to reduce the data processing time whilst keeping enough resolution in both
time and frequency to avoid smearing. Bad data due to corrupted baselines, non-working antennas,
and RFI were also excised. The bandpass and absolute flux density scale were calibrated using
the primary flux calibrator 3C147 and adopting the Scaife & Heald (2012) flux scale. An initial
phase-only calibration using a sky model generated from the VLSSr (Lane et al. 2014), the WENSS
(Rengelink et al. 1997) and the NVSS (Condon et al. 1998) was followed by a number of loops of
self-calibration, wide-field imaging and additional flagging of bad data. Then the bright sources in
the primary beam are used to perform a direction-dependent calibration and ionospheric modeling
aiming to mitigate the phase errors introduced by the ionosphere. The final calibrated data were
then imaged with CASA v4.7, as described at the end of Section 9.2.1. In our analysis we did not
consider the effect of variation in system temperature (see Sirothia 2009). Instead, we adopted a
similar approach to that described in Section 9.2.1, cross-matching a number of sources extracted
from the GMRT image with the WENSS (Rengelink et al. 1997) and applying a correction factor of
0.73 on the GMRT flux densities with a systematic uncertainty of 15% (see Chandra et al. 2004).
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9.2.3 VLA
We analyzed archival VLA observations of A1758 at 1.4 GHz in configurations C and D. The

details of the observations are reported in Tab. 9.1. Data reduction was performed with AIPS where
the two datasets were edited, calibrated and imaged separately. Thus, the uv-data were combined to
produce a single image of the cluster. The flux calibrator of VLA observations was 3C286 (model
from Perley & Butler 2013). The final imaging was performed with CASA v4.7 as described in
Section 9.2.1. The absolute flux scale calibration errors were conservatively set to 5% on VLA flux
densities.

9.2.4 Integrated synchrotron spectra and source subtraction
Given the different uv-coverage of the LOFAR, GMRT and VLA observations, it was necessary

to match the uv-sample of the different interferometers as closely as possible to provide an accurate
comparison between the flux densities measured at different frequencies, and to compute the diffuse
emission spectra.

As a first step, we removed the discrete sources from each datasets. This procedure was per-
formed by applying an inner uv-cut of 2.0 kλ (corresponding to an angular scale of 103′′, i.e. about
440 kpc at z = 0.279) to the data to image only the compact sources in the field whose clean com-
ponents were subsequently subtracted from the visibilities. To image the diffuse emission after the
source subtraction, for each dataset we used the an inner uv-cut of 170λ and uniform weighting.
A Gaussian uv-taper of 35′′ was also used to enhance diffuse emission and to produce images with
comparable beams. Errors on flux densities were estimated via Eq. 2.1.

In Fig. 9.1 we present the LOFAR image (left panel) along with the point-source-subtracted im-
ages from the GMRT (central panel) and VLA (right panel). This choice has been made since the
diffuse emission is best visible.

Figure 9.1: The cluster A1758 as observed in the radio band with LOFAR (left), GMRT (center) and VLA
(right). The point-sources were subtracted in the GMRT and VLA images. Contours are spaced by a fac-
tor of 2 starting from 3σ , where σLOFAR = 230 µJy beam−1, σGMRT = 400 µJy beam−1 and σVLA = 70
µJy beam−1. The negative −3σ contours are shown in dashed. The beam sizes are 34′′× 23′′ (LOFAR),
43′′× 29′′ (GMRT) and 43′′× 38′′ (VLA) and are shown in the bottom left corners. More details on the
images are reported in Tab. 9.2.
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9.2.5 Chandra

We retrieved three ACIS-I observations (ObsID: 13997, 15538, 15540) on A1758 from the
Chandra data archive1 for a total exposure time of 150 ks. We mention that two other Chandra
pointings on A1758 also exist; however, they are composed of an ACIS-S observation where only
A1758N is in the FoV (ObsID 2213) and by a short (7 ks) observation (ObsID 7710) whose expo-
sure time is negligible with respect to the total integration time. For these reasons, they were not
considered in our analysis.

Data reduction was performed with CIAO v4.9 and Chandra CALDB v4.7.3. Time periods af-
fected by soft proton flares were removed by inspecting the light curves in the 0.5−7.0 keV band
extracted for each ObsID from the S2 chip with the lc_clean routine. After this step, the resulting
clean exposure time is 137 ks. We used merge_obs to add together the three datasets and produce
the final cluster image in the 0.5− 2.0 keV band shown in Fig. 9.2. An exposure-corrected PSF
map with minimum size was created from the combination of the PSF and exposure maps of the
three ObsIDs. This was used to detect discrete sources with the wavdetect task, which were later
confirmed by eye and excluded in the further analysis.

Spectra were extracted in the same regions from all the ObsIDs and simultaneously fitted in the
0.5− 10.0 keV band with XSPEC v12.9.0o (Arnaud 1996). The background was carefully treated
with a model that included both astrophysical and instrumental emission components, as shown in
Fig. 9.3. The former is described by two main components due to: the Galactic emission, modeled
with two thermal plasmas with kT1 = 0.14 keV and kT2 = 0.25 keV, and the CXB, described with
an absorbed power-law with photon index Γ = 1.4. For the latter we followed Bartalucci et al.

1http://cda.harvard.edu/chaser/

Figure 9.2: Chandra exposure-corrected image in the 0.5−2.0 keV band of A1758 smoothed to a resolution
of ∼ 3′′. Yellow circles indicate the approximate location of r500 for each cluster.

http://cda.harvard.edu/chaser/
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Figure 9.3: Spectrum of the Chandra background. Data points are shown in black together with the best-
fitting model. The astrophysical and instrumental backgrounds are shown in dotted green and dashed blue,
respectively. Whilst the three ObsID spectra were simultaneously fitted, the models for only one observation
were reported in order to avoid confusion in the plot. The c-stat/d.o.f. of the fit is 406/386.

(2014) which provided an analytical model for the ACIS-I particle background. Spectra were fitted
adopting Cash statistics (Cash 1979) and an absorbed thermal model for the ICM with metallicity
fixed at 0.3 Z� (solar abundance table by Anders & Grevesse 1989) and hydrogen column density
NH = 1.03×1020 cm−2 computed from the Leiden/Argentine/Bonn Survey of Galactic HI (Kalberla
et al. 2005).

We used CONTBIN v1.4 (Sanders 2006) to compute the thermodynamical properties of the ICM
in A1758. A S/N of 50 for the net counts in the 0.5−2.0 keV band was set to delineate the regions
where spectra were extracted and fitted as written above. For more details on the computation of the
maps of the ICM thermodynamical quantities and generally on the Chandra data analysis we refer
the reader to Botteon et al. (2018a) in which the same procedures adopted in this Chapter have been
more thoroughly described.

9.3 Results

9.3.1 A1758N radio halo

Diffuse emission in A1758N is visible both from the NVSS and the WENSS surveys (Kempner
& Sarazin 2001). The observations taken with the VLA at 1.4 GHz (Giovannini et al. 2009) and
with the GMRT at 325 MHz (Venturi et al. 2013) confirmed the presence of a giant radio halo which
is elongated in the NW-SE direction and only partially covers the X-ray emission of the cluster. The
spectral index reported between these two frequencies is α = 1.31±0.16 (Venturi et al. 2013).
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Figure 9.4: LOFAR radio contours with point-sources subtracted of A1758 overlaid on the Chandra color
image of Fig. 9.2. The LOFAR white contours are spaced by a factor of 2 starting from 3σ , where σLOFAR =
390 µJy beam−1. The negative −3σ contours are shown in dashed. Gray contours correspond to the ±2σ

level. The beam size is 60′′×51′′ and is shown in the bottom left corner. More details on the LOFAR image
are reported in Tab. 9.2.

Figure 9.5: Mosaic SDSSg,r,i images of A1758N (left) and A1758S (right) overlaid with the LOFAR con-
tours spaced by a factor of 2 starting from 3σ , where σLOFAR = 140 µJy beam−1. The negative−3σ contours
are shown in dashed. The beam size is 16′′×11′′ and is shown in the bottom left corners. At this resolution
the radio halo in A1758S is marginally visible. More details on the LOFAR image are reported in Tab. 9.2.



158 Chapter 9. Discovery of a double radio halo in Abell 1758

LOFAR detects the extended radio halo flux in A1758N at higher significance and the recov-
ered morphology appears consistent with the GMRT and VLA maps, as demonstrated in Fig. 9.1.
We measure a largest linear size of the emission of ∼ 2.2 Mpc. The low-resolution point-source-
subtracted LOFAR contours displayed in Fig. 9.4 suggest that the non-thermal radio emission in
A1758N covers the X-ray bright region of the cluster. At higher resolution (Fig. 9.5, left panel), only
the brightest part of the radio halo is visible; in particular, LOFAR shows two bright and straight
structures (labeled as S1 and S2 in Fig. 9.5, left panel) apparently not associated with any optical
galaxy. They might indicate regions where the plasma has been somehow locally compressed or
re-accelerated (e.g. Shimwell et al. 2016; de Gasperin et al. 2017). The feature S1 is also detected
with the GMRT and VLA (Fig. 9.1). In the southeast, A1758N also hosts two prominent narrow
angle tailed radio galaxies labeled as A and B in Fig. 9.5 (left panel). The former (also identified as
1330+507) was studied at high resolution with the VLA by O’Dea & Owen (1985).

The presence of resolved radio galaxies embedded in the halo (e.g. source A and B in Fig. 9.5,
left panel) makes it difficult to disentangle their contribution from that of the halo. We repeated
the subtraction by adopting inner uv-cuts in the range 1.0− 3.5 kλ , corresponding to linear sizes
of 873−249 kpc at the cluster redshift, to assess the uncertainties in our source subtraction on the
LOFAR dataset, in addition to the procedure described in Section 9.2.4. In Fig. 9.6 we show how
the flux density measurement of the northern radio halo varies with the uv-cut, ranging from 415 to
483 mJy (the mean value is 440 mJy). This indicates that the choice of the uv-cut has an impact
on the halo in A1758N. In contrast, the integrated flux density of the diffuse sources in A1758S
(see Sections below) is essentially independent on the uv-cut used (Fig. 9.6), indicating that the sub-
traction is less problematic which is expected as there are just a few weak discrete sources without
significant extended emission (cf. Fig. 9.5, right panel).

Figure 9.6: The flux densities of the diffuse emission in A1758 measured with LOFAR versus the inner
uv-cuts adopted to subtract the point-sources. Dashed horizontal lines show the mean values of the measure-
ments.
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Figure 9.7: Integrated spectra of the diffuse radio emissions in A1758. The spectral index values are reported
in Tab. 9.3.

In Tab. 9.3 and Fig. 9.7 we report the flux density measurements at three frequencies and the
spectra, respectively, of the diffuse emission in A1758. The spectral index between 144 MHz and
1.4 GHz is α = 1.2±0.1 for the halo in A1758N, consistent with that of α = 1.31±0.16 computed
by Venturi et al. (2013). The flux densities measured in our GMRT and VLA images agree to that
reported in Venturi et al. (2013) within 1σ . The emission from the potential relic and the halo in
A1758S have not been previously reported.

Table 9.3: Flux densities of the diffuse emission in A1758. The spectral indexes were computed adopting
the procedure described in Section 9.2.4.

ν [MHz] Sν [mJy]
Halo N Halo S Relic S

144 420±63 45.8±7.1 28.0±4.3
325 134±20 16.8±3.5 8.9±2.0
1425 24.7±1.7† 3.1±0.7† 1.5±0.3
α 1.2±0.1 1.1±0.1 1.3±0.1
Notes. †The error takes into account also the un-
certainties of the source subtraction.

9.3.2 A1758S radio halo
We discovered a diffuse radio sources in A1758S with LOFAR. The characteristics of the emis-

sion recovered by LOFAR (Fig. 9.4) are typical for a radio halo, i.e. low SB, similar morphology
with respect to the ICM thermal emission and a largest linear size of∼ 1.6 Mpc. The halo in A1758S
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is barely visible with the GMRT and it is detected at low significance with the VLA (Fig. 9.1). In-
dication of the presence of a radio halo in A1758S has also been found in the Westerbork Synthesis
Radio Telescope (WSRT) data at 367 MHz (Drabent 2017). However, the available observation is
not suitable to study in detail the diffuse emission due to its inadequate angular resolution which
makes the point-source subtraction unreliable. It is worth noting that the merger axis of A1758S is
likely close to the line of sight (e.g. Monteiro-Oliveira et al. 2017), hence we can not fully discard
the possibility that the radio emission traces a radio relic observed face-on, although this is unlikely
because the remarkable similarity between the radio and the X-ray emission (Fig. 9.4). Future stud-
ies on the source polarization level will definitely clarify this point.

The integrated flux density measured with LOFAR within the 3σ contour from the low-
resolution image of Fig. 9.4 (excluding the peripheral emission to the east, see Section below)
is 45.8±7.1 mJy, i.e. one order of magnitude lower than that of the halo in A1758N. The spectral
index computed between 144 MHz and 1.4 GHz within a region traced by the LOFAR emission is
α = 1.1± 0.1 (see Tab. 9.3) and the fit is shown in Fig. 9.7. We also determined the halo spectral
index considering a region defined by the VLA 3σ contour. In this case, the flux densities evaluated
in the LOFAR and VLA images are ∼ 12.5 mJy and ∼ 1.2 mJy, respectively, and the spectral index
is consistent with that reported above.

9.3.3 A1758S candidate radio relic
To the east of A1758S, an extended radio source at the boundaries of the X-ray emission is

observed with LOFAR, GMRT and VLA (Fig. 9.1). In the LOFAR low-resolution contours of
Fig. 9.4, the 3σ contour of this emission is connected with that of the radio halo. In Tab. 9.3
we report the flux density measurements at various frequencies. We estimated a spectral index
between 144 MHz and 1.4 GHz of α = 1.3±0.1 for this source (Fig. 9.7). We tentatively classify
this emission as a radio relic based on the following characteristics: (i) its elongated morphology
roughly arc-shaped and perpendicular to the thermal cluster emission, (ii) its largest linear size
> 500 kpc, (iii) its peripheral location in the same direction of the ICM elongation, (iv) its steep
spectrum, and (v) the absence of a clear optical counterpart2 and/or bright compact radio emission
(Fig. 9.5, right panel). All these properties are commonly observed in radio relics but can also be
seen in other objects, such as dead radio galaxies (e.g. Brienza et al. 2016, and references therein).
A definitive claim would require either the study of the spectral index gradient toward the cluster
center, measurements of the source polarization or the detection in the X-rays of an underlying
shock front. Unfortunately, none of these measurements can be carried out with the present data.

9.3.4 X-ray properties of A1758N and A1758S
The deep Chandra observation of A1758 allowed us to derive the projected maps of the ICM

thermodynamical quantities shown in Fig. 9.8. The temperature map displays overall higher values
in A1758N than in A1758S. These values are within the ranges 8.0− 9.9 keV, for A1758N, and
6.0− 6.7 keV, for A1758S, that were reported by David & Kempner (2004) who made measure-
ments within 1 Mpc radius aperture centered on the centroid of each cluster. Shock heated regions
toward the NW and SE of the northern cluster are suggested by high values of temperature and
pressure (Fig. 9.8, see also Fig. G.2). This is in agreement with the late merger scenario (David &
Kempner 2004) where the shocks have already crossed the central region of the ICM and are moving

2Note that the source roughly at the center of the diffuse radio emission in the optical image of Fig. 9.5 (right panel)
is a star. No redshift has been reported for the X-ray point source (identified as SDSS J133300.32+502332.2) embedded
in the candidate relic that is visible in the Chandra image of Fig. 9.4. With the current data we can not conclude whether
it is associated with the radio emission.
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Figure 9.8: Thermodynamical properties of the ICM in A1758 with overlaid the LOFAR contours of Fig. 9.1.
Images depict projected values of temperature (left), pressure (center) and entropy (right). The temperature
error map and a lower S/N temperature map are reported in Appendix G.

outwards with high Mach numbers (Machado et al. 2015). Our entropy map of Fig. 9.8 (right panel)
highlights the presence of the two cores in A1758N and the single core in A1758S, characterized
by the lowest values of entropy in the map. This is in line with the bimodal (A1758N) and single
clump (A1758S) mass distribution already inferred from optical studies (Dahle et al. 2002; Okabe
& Umetsu 2008; Ragozzine et al. 2012; Monteiro-Oliveira et al. 2017).

9.3.5 The bridge between A1758N and A1758S
The maps of the ICM thermodynamical quantities shown in Fig. 9.8 show a complex thermo-

dynamics in the region between A1758N and A1758S, suggesting that the two clusters are in early
interaction. At this stage of the interaction the gas between them is compressed and heated, some-
what explaining the observed high values of temperature (∼ 7.5 keV) and pressure in the region
between the cluster pair. Moreover, the entropy map (Fig. 9.8, right panel) displays the largest val-
ues in such a region, further indicating an unrelaxed state of the clusters outskirts.

In these situations it is possible that a fraction of the energy dissipated in gas heating is chan-
neled into non-thermal components via shocks, turbulence or other mechanisms activated by ICM
microphysics. The LOFAR low-resolution contours of Fig. 9.4 give a tantalizing hint of a low SB
bridge connecting A1758N and A1758S. This emission is detected at the 2σ level toward the east-
ern edge of the region between the two clusters. On the western edge of this region, a protuberance
of the A1758N halo extends toward A1758S. Although particular care was devoted in the subtrac-
tion of the point-sources between the clusters, the blending of low level residual emission due to
faint and unresolved sources, combined with the large synthesized beam of the image and with the
non-uniform distribution of the noise, could mimic the filamentary structure. All this, together with
the low significance level of the emission, does not allow us to make a firm statement about its pres-
ence. Nonetheless, filaments connecting galaxy clusters are expected to be observed in the radio
band even on larger scales (e.g. Keshet et al. 2004; Araya-Melo et al. 2012; Vazza et al. 2015b). We
note that a hint of a SZ signal connecting A1758N and A1758S was reported also in AMI Consor-
tium: Rodrìguez-Gonzálvez et al. (2012).

Given the possible evidence of a radio bridge, we searched for possible shocks or regions of
gas compression in the X-rays. We analyzed the thermal properties of the X-ray emission between
A1758N and A1758S, visible by smoothing to a resolution of ∼ 15′′ the Chandra 0.5− 2.0 keV
image (Fig. 9.9, left panel). We extracted spectra from five regions enclosing∼ 1000 counts each in
the 0.5−2.0 keV band that were fitted as described in Section 9.2.5. The best-fitting spectra are re-
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Figure 9.9: Left panel: same Chandra image of Fig. 9.2 but with point-sources subtracted and smoothed to
a resolution of ∼ 15′′ to highlight the X-ray channel between the clusters. The spectral extracting regions are
overlaid in green. The inset panel shows the spatial coincidence between the tentative radio bridge and the
putative post-shock region. The cylindrical model assumed to asses the effects of projection is also sketched.

The line of sight across the i-region is Li ∼ 2
√

R2− r2
i . Right panels: projected values of temperature (kT ),

emission measure (EM), pressure (P) and entropy (K) of the X-ray channel.

ported in Appendix H. These were used to compute the temperature profile shown in Fig. 9.9 (right
panel). We measure high kT values inside the X-ray channel that drop by a factor of ∼ 3 between
regions 2 and 1 (see Appendix G for the apparent discrepancy between the values of the temperature
map and profile shown in Fig. 9.9); if projection effects play a role, the temperature drop would be
even larger. Unfortunately, the count statistics does not allow us to increase spatial resolution to
firmly understand if this is a sharp drop or a gradual decrement. If we assume that this is a jump due
to a shock and we apply the Rankine-Hugoniot jump conditions (e.g. Landau & Lifshitz 1959), the
derived Mach number3 would beMkT = 3.0+1.4

−1.0 (Eq. 1.17). We notice that this putative shock is
co-located with the 2σ level emission observed by LOFAR (Fig. 9.9, inset in the left panel). This is
tantalizing and deserves future follow-ups as it might suggest a connection between the shock and
the possible radio bridge. Its uncommonly high Mach number and unusual transversal location are
in agreement with the recent work of Ha et al. (2018), where these kind of shocks are referred to as
“equatorial”. Alternatively, the high kT values of the X-ray channel could be due to the adiabatic
compression of the gas in the filament connecting A1758N and A1758S during the initial stage of
the merger.

As a complementary information, the five spectra were used to compute the profiles of emission
measure, pressure and entropy shown in Fig. 9.9 (right panel). These quantities are also observed to
jump from the external to internal regions. We urge caution when interpreting these measurements
as they were derived from the normalization of the cluster thermal model, that is ∝ n2L, and are
projected along the line of sight L (n is the density of the medium). For this reason, they are usually
referred to as “pseudo” quantities (e.g. Mazzotta et al. 2004). We can asses the effects of projection

3Although also the SB drops outside the X-ray channel, we did not attempt the “canonical” broken power-law
density profile fit (e.g. Markevitch & Vikhlinin 2007) to search for the edge due to the complex geometrical problem at
this location (overlap of the outskirts of two galaxy clusters).
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assuming a cylindrical shape for the X-ray channel (Fig. 9.9, left panel) and using the dependen-
cies on the line of sight of the emission measure (∝ L−1), pressure (∝ L−1/2) and entropy (∝ L1/3).
For example, the ratio between the quantities measured at center and r5 (≡ r1), i.e. the distance of
the outermost region, changes by < 16% (or < 34%) for emission measure, < 8% (or < 16%) for
pressure and < 4% (or < 10%) for entropy for cylinder radii R > 2r5 (or > 1.5r5).

9.4 Discussion

A1758 is an ideal object to study the merger processes between galaxy clusters and the impact
of these events on their environment. Indeed, this system is composed of two main components,
A1758N and A1758S, in different evolutionary stages (see Section 9.1).

The diffuse radio emission in A1758 follows the X-ray emission of the ICM (Fig. 9.4), suggest-
ing a relation between the thermal and non-thermal components. The double cluster A1758N and
A1758S represents the second system known to date to host two radio halos. The first discovered is
the pair A399-A401 (Murgia et al. 2010), located at z = 0.07. Both A1758 and A399-A401 show
the presence of an X-ray channel between the cluster pair and some evidence for a lateral shock
(Akamatsu et al. 2017b). The bridge connecting A399 and A401 is more clear and indeed it has
been also observed via the SZ effect by the Planck satellite (Planck Collaboration VIII 2013); a hint
of SZ signal is also found between A1758N and A1758S (AMI Consortium: Rodrìguez-Gonzálvez
et al. 2012).

9.4.1 The radio halos in the A1758 complex
It is known that giant radio halos follow a relation between their radio power at 1.4 GHz and the

mass of the hosting cluster (e.g. Cassano et al. 2013). We used the values reported in Tab. 9.3 to
calculate the k-corrected 1.4 GHz radio power (Eq. 1.23) for the two halos in A1758N and A1758S,
corresponding to PN

1.4 = (6.3±0.4)×1024 W Hz−1 and PS
1.4 = (7.7±1.8)×1023 W Hz−1, respec-

tively.
The P1.4−M500 relation reported in Cassano et al. (2013) was obtained using the masses derived

from the Planck satellite via SZ effect, which is known to be a robust indicator of the cluster mass
(e.g. Motl et al. 2005; Nagai 2006). However, the accuracy of the mass estimate for A1758N and
A1758S with Planck is hindered by the difficulty of properly separating the two SZ components.
Although the mass for A1758N has been estimated with different techniques, it is still uncertain
and there is a large scatter in the values reported in the literature (see Tab. 1 in Monteiro-Oliveira
et al. 2017). The mass of A1758S is even more uncertain due to the lack of literature studies fo-
cused on this sub-cluster. In this respect, we adopted the M−T relation reported in Arnaud et al.
(2005) to estimate M500. We used the temperatures reported in David & Kempner (2004), and
derived MN

500 = 8.0+1.8
−0.8× 1014 M� and MS

500 = (5.1± 0.4)× 1014 M� for A1758N and A1758S,
respectively. We assumed these values being aware of the possible biases introduced in the scaling
relation due to the ongoing mergers in A1758N and A1758S. However, we note that the masses
estimated in such a way are within the values reported in the literature.

In Fig. 9.10 we compare our results with the P1.4−M500 relation reported in Cassano et al.
(2013). The two radio halos in the A1758 complex lie very close to the best-fitting curve. Our re-
sults are in agreement with the fact that the most powerful radio halos are found in the most massive
clusters.
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Figure 9.10: The P1.4−M500 relation for giant radio halos. Different colors indicate: giant radio halos (blue),
ultra steep spectrum radio halos (green), upper limits from Venturi et al. (2008) (magenta) and the radio halos
in A1758N and A1758S (red). Errors on PN

1.4 are smaller than the point size. The best-fitting relation for giant
radio halos and its 95% confidence level are shown. Adapted from Cassano et al. (2013).

9.4.2 Merger scenario between A1758N and A1758S

David & Kempner (2004) did not find any excess emission in the XMM-Newton data in the re-
gion between A1758N and A1758S above that expected from a projection of the two systems. This
suggested that the two components are not interacting because numerical simulations of merging
clusters predict a SB enhancement in the X-rays in the region of interaction (e.g. Roettiger et al.
1997; Ricker & Sarazin 2001; Ritchie & Thomas 2002). However, our observations provide new
insights on the merger scenario between A1758N and A1758S.

Thanks to the new and deep Chandra observations, we were able to produce maps of the ICM
thermodynamical quantities of all the A1758 complex (Fig. 9.8). They highlight the presence of
high temperature and high entropy plasma in the region between the clusters, suggesting the exis-
tence of shock heated gas. This has been observed in a number of binary X-ray clusters in an early
merging phase (e.g. A98, Paterno-Mahler et al. 2014; A115, Gutierrez & Krawczynski 2005; A141,
Caglar 2018; A399-A401, Akamatsu et al. 2017b; A1750, Belsole et al. 2004; A3395, Lakhchaura
et al. 2011; A3653, Caglar & Hudaverdi 2017; 1E2216.0-0401 and 1E2215.7-0404, Akamatsu et al.
2016; CIZA J1358.9-4750, Kato et al. 2015) and it is in agreement with predictions by numerical
simulations (e.g. Takizawa 1999; Akahori & Yoshikawa 2010). In contrast, the temperature en-
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hancement is typically not observed when the separation of the pair exceeds their combined virial
radii (e.g. A2467 Wegner et al. 2017; A3528, Gastaldello et al. 2003; A3556-A3558, Mitsuishi
et al. 2012; A3716, Andrade-Santos et al. 2015). Further indication of compressed gas in A1758
is given by the transversal profiles of Fig. 9.9 that also pinpoint a drop of the computed quanti-
ties outside the X-ray channel, toward the east direction. We speculated that this region traces a
transversal shock. Reasons for this include the high Mach number inferred from the temperature
jump (MkT = 3.0+1.4

−1.0) and its position resembling that of the “equatorial” shocks recently studied
by Ha et al. (2018). These shocks are the first to form during the merger phase and have high ve-
locities and high Mach numbers since they propagate in very low density regions, contrary to those
found in between the cluster pairs that are weaker due to the high temperature of the central medium
(e.g. Belsole et al. 2004; Paterno-Mahler et al. 2014; Kato et al. 2015; Akamatsu et al. 2016, 2017b;
Caglar 2018).

The 2σ level radio emission connecting A1758N and A1758S observed with LOFAR (Fig. 9.4)
needs further confirmation. If real, it could have been generated as a consequence of the encounter
between the two clusters. This may indicate that part of the gravitational energy is dissipated
into non-thermal components during the early phase of the merger. We find intriguing its co-
location with the possible transversal shock suggested by the temperature profile in Fig. 9.9 (see
also Fig. G.2). A shock could indeed power the radio emission similarly to the case of radio relics,
whilst equatorial shocks are less energetic due to the lower density of the upstream gas4 (Ha et al.
2018).

In conclusion, the results coming from our radio/X-ray analysis are consistent with a scenario
where A1758N and A1758S are in a pre-merger phase, where the clusters are approaching, the gas
between them is compressed and heated and the first shocks are launched. The application of a
two-body dynamical model (e.g. Beers et al. 1982) to test the gravitational binding of the clusters
would be of great interest to probe the merging scenario. Due to the overall complex dynamics of
the merger (collision between clusters that are undergoing their own mergers), tailored numerical
simulations would be useful to determine the impact velocities of the components in combination
with multi-wavelength data (see e.g. Molnar et al. 2013 for the A1750 case).

9.5 Conclusions

In this Chapter, we presented new LOFAR HBA observations of the double galaxy cluster
A1758. In combination with archival VLA and GMRT data, we constrained the spectral properties
of the diffuse radio emission in the ICM. We also analyzed a deep archival Chandra observation on
the system. Here, we summarize our main results.

1. The radio halo in A1758N is well known in the literature. LOFAR allowed us to recover
diffuse radio emission from the ICM on a largest linear scale of ∼ 2.2 Mpc. The integrated
spectral index computed from 144 MHz to 1.4 GHz is α = 1.2±0.1. The radio power of this
halo is PN

1.4 = (6.3±0.4)×1024 W Hz−1.

2. Using LOFAR we discovered a new, faint, radio halo in A1758S, which was not previ-
ously identified in studies at higher frequencies with the GMRT and VLA observations.
Our reanalysis of these datasets revealed its elusive nature and constrained its spectral
index between 144 MHz and 1.4 GHz to α = 1.1± 0.1. The radio power of this halo is
PS

1.4 = (7.7±1.8)×1023 W Hz−1.

4The energy dissipated by shocks is ∝ nuV 3
sh, where nu is the upstream density and Vsh is the shock speed.



166 Chapter 9. Discovery of a double radio halo in Abell 1758

3. Peripheral emission in the eastern outskirts of A1758S is also observed with LOFAR, GMRT
and VLA. We tentatively classified this source as a radio relic (α = 1.3±0.1). Although the
relic origin is suggested by a number of observational properties (e.g. morphology, location,
linear extension), further observations are required to firmly determine its nature.

4. The two radio halos in A1758N and A1758S lie within the 95% confidence region of the
best-fitting P1.4−M500 relation reported by Cassano et al. (2013).

5. The maps of the ICM thermodynamical quantities computed from the deep Chandra
observation indicate that the region between A1758N and A1758S is unrelaxed. In this
respect, we suggested that the two sub-clusters are in a pre-merger phase.

6. A possible bridge of radio emission connecting A1758N and A1758S is suggested by the
low-resolution LOFAR image. The ICM temperature across this bridge shows a drop possibly
indicating the presence of a compressed region or a transversal shock generated in the initial
stage of the merger that could play a role in the formation of this diffuse emission.







Thesis conclusions

CLUSTER MERGERS and the energy dissipated during these events play a central role in deter-
mining the observed properties of galaxy clusters and the physics of the ICM on different

scales. A large fraction of the energy involved in these cosmic collisions is dissipated through
shocks and turbulence in the ICM, where it can be channeled also into non-thermal phenomena.
Whilst the knowledge of diffuse synchrotron sources in clusters, namely radio relics and halos, has
significantly improved in the past decades, many questions concerning their origin, evolution and
connection with the ICM physics remain still open.

In this Thesis, we aimed at deriving constraints on the generation mechanisms of non-thermal
emission in merging clusters using X-ray and radio data. The PhD work included the exploitation
of observations performed with LOFAR, a new generation instrument that is providing a revolution-
ary view of clusters at low frequencies. The data analysis carried out during the Thesis is state of
the art and routinely made use of the joint radio/X-ray analysis. We obtained efficient constraints
on the mechanisms at the origin of radio relics and their connection with cluster merger shocks.
Furthermore, we entered in the exploration of non-thermal phenomena from dynamically complex
cluster mergers with multiple components and obtained also first hints of a radio bridge of emission
connecting two clusters in a pre-merging phase. Some of the most important outcomes of the Thesis
are summarized below.

I. Relic–shock connection and particle acceleration mechanisms

Particle acceleration in Abell 115 and El Gordo

Deep Chandra observations of the clusters Abell 115 (Chapter 2) and El Gordo (Chapter 3)
allowed us to clearly detect two shocks co-spatially located with two radio relics. This is a striking
point favoring the relic–shock connection that only recently found observational support with the
increasing number of detections in the X-rays of shocks underlying relics. Two models are proposed
for the origin of relics: direct acceleration of electrons from the thermal pool via DSA and re-
acceleration of a pre-existing population of relativistic seed electrons within clouds of relativistic
plasma. The detection of shocks in Abell 115 and El Gordo, in combination with the re-analysis of
VLA and GMRT data, allowed us to test the two formation scenarios. In particular, for the weak
shock in Abell 115 we ruled out the DSA of thermal particles in favor of re-acceleration of seed
electrons; this finding is in line with the picture emerging from the latest observations (Bonafede
et al. 2014a; Shimwell et al. 2015; Eckert et al. 2016a; van Weeren et al. 2017a; Hoang et al. 2018a).
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Conversely, for the strong shock in El Gordo we found that shock acceleration from the thermal pool
is still a viable possibility.

Analysis of particle acceleration efficiency in a sample of radio relics

We extended the analysis done in Abell 115 and El Gordo to a sample of radio relics with under-
lying shocks detected with Chandra and/or XMM-Newton (Chapter 5). This is the first attempt to
measure the shock acceleration efficiency in a physically motivated way for a sample of relics. We
found that DSA can not explain the observed bolometric luminosity of relics if particles are accel-
erated from the thermal pool. This is basically due to the fact that shocks in cluster mergers are too
weak to inject enough particles from the thermal pool in order to match the observed radio luminos-
ity of radio relics. This strongly support that other mechanisms, such as shock re-acceleration, are
involved in the formation of this kind of sources. The only exception is El Gordo; as discussed in
Chapter 3, this represent a peculiar case as its NW relic is associated with strongest shock detected
underlying a radio relic.

Discovery of new shocks (and cold fronts)

Based on the results presented in Chapters 2, 3 and 5, weak shocks are particularly important
to understand the physics of particle acceleration in galaxy clusters because acceleration and re-
acceleration models provide different expectations for these shocks. Although weak shocks should
be, in principle, common in the ICM, they are very difficult to observe in the X-rays and their
detection requires advanced techniques of data analysis. For this reason, we searched for new X-
ray discontinuities in a sample of 15 merging galaxy clusters observed with Chandra (Chapter 6).
Thus, we combined different approaches of data reduction to firmly claim the presence of the edges
both via temperature and density jumps. The analysis was fruitful, and we were able to discover
22 new X-ray discontinuities in the ICM: 6 shocks, 8 cold fronts and 8 edges with uncertain origin.
This work increased the statistics of detected edges in clusters and provided the discovery of new,
weak, shocks to study the mechanisms of particle acceleration in cluster outskirts. The detection of
cold fronts is an interesting by-product that, in combination with the ICM temperature, entropy, and
pressure maps obtained during the analysis, will serve as a legacy for future studies of the clusters
of the sample. For example, the maps of the ICM thermodynamical quantities and the presence of
discontinuities in the ICM can be used to determine the dynamics of the merger, as we did for Abell
781 (Chapter 8) and Abell 1758 (Chapter 9). Remarkably, in the latter system we possibly found
evidence for a transversal shock between the two cluster components. This would be the second
case after the cluster pair Abell 399-401 (Akamatsu et al. 2017b) where a shock has been detected
in a such peculiar location.

II. Non-thermal phenomena in dynamically complex mergers

The study of complex cluster chains and pairs in pre-merging phase is important to address the
evolution of diffuse radio sources in the ICM and to use large scale emission to probe the dissipation
of kinetic energy into non-thermal components on very large scales. For this reason, we analyzed
radio and X-ray observations on the spectacular cluster chain Abell 781 (Chapter 8) and on the
cluster pair Abell 1758 (Chapter 9). The research was anchored to the analysis of LOFAR data
provided by the LOFAR Surveys KSP.
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Radio halos in Abell 781 and Abell 1758

We solved a debate in the literature about the presence of a radio halo in Abell 781 (Chapter 8).
Our LOFAR images have a brightness sensitivity to steep spectrum emission which is better than
any other observation currently available on this target. We did not find any evidence for a radio halo
in the main cluster of the chain and put a limit on the diffuse emission at its center. The absence of
a radio halo in a merging system provides useful information on the mechanisms responsible of the
origin of these sources. We speculated that the combination of mass and merger ratio of the system
is too small to generate a radio halo, in agreement with model expectations that indeed predict a
statistical decrement of the fraction of halos in merging systems with masses below 6− 7× 1014

M�. It is possible that a faint halo or USSRH could be present but not visible in our observations
due the presence of artifacts around the bright radio galaxy at the center of the cluster.

One of the contributions that LOFAR is expected to provide in galaxy cluster science is the
detection of new radio halos and relics. This was the case of the double galaxy cluster Abell 1758,
where we discovered a radio halo and a candidate radio relic in the southern system (Chapter 9).
The new radio halo is barely visible from our re-analysis of GMRT and VLA data, but the evidence
on these single observations alone is not compelling. Indeed, “classic” interferometers are typically
able to detect very luminous radio halos, i.e. those harbored in massive clusters (as implied by the
P1.4−M500 relation). Instead, the high sensitivity to low SB emission of LOFAR combined with its
operative low frequencies range made possible a clear detection of diffuse emission even in A1758S,
i.e. one of the less massive systems known so far to host a giant radio halo. Our results probes that
LOFAR is enabling the detection of a population of low-power radio halos that were missed by
previous instruments. This class of objects is important for the models of radio halo formation. The
fact that we detected a halo in A1758S but not in Abell 781 suggests that the energetics of the two
mergers is different and/or that they are in a different dynamical state.

AGN–shock connection in Abell 781

An interesting outcome of the radio/X-ray analysis of the cluster Abell 781 is the revision of the
nature of its peripheral emission (Chapter 8). This source was previously classified as a candidate
radio relic. The scenario emerging from the new LOFAR observations and the re-analysis of archival
GMRT data is that this emission is more likely due to a giant radio galaxy distorted by the interaction
with a shock crossing the ICM. The presence of a candidate optical counterpart and the bright knot of
radio emission at the tip of the source strongly supports this hypothesis. However, the spectral index
trend of the source is not typical of a head tail radio galaxy: the gradient observed shows a spectral
steepening from the straight, outer, edge of emission toward the cluster center, which is common
for radio relics. Therefore, we speculated that we are witnessing an intermediate stage between the
destruction of a radio galaxy and the formation of a radio relic. This is an important result as the
AGN–shock connection could explain the origin of some radio relics, including the eastern region
of the relic in Abell 115 that may well be related to the radio galaxy 0056+26 B (Chapter 2), and
the relic in Abell 3411-3412, which provides the most clear case of AGN–relic–shock connection
observed so far (van Weeren et al. 2017a). In this scenario, the seed electrons to re-accelerate would
be naturally provided by the nearby AGN. The currently available XMM-Newton observation on
Abell 781 did not allow us to detect the putative shock and we were able to set an upper limit on the
shock Mach number. Following the results presented in Chapter 5, the weak shock inferred from
the present data, if present, would emphasize the problem of high acceleration efficiency implied by
DSA from the thermal pool.
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Bridge of radio emission between A1758N and A1758S
Another noteworthy result obtained thanks to high-sensitivity LOFAR observations on Abell

1758 is the tentative detection of a bridge of radio emission connecting the two clusters (Chapter 9).
The bridge has a projected linear size of ∼ 2 Mpc. In this region, the thermal gas displays high
value of temperature, pressure, and entropy, suggesting that the two clusters are in a pre-merging
state. Currently, it is not clear whether the gas kinetic energy can be dissipated into non-thermal
components already at this stage. Our results provides, for the first time, a direct observational
support to the possibility that diffuse radio emission could be triggered even in the early phase of
interaction. A candidate shock suggested by Chandra data and co-located with the radio emission
could be responsible of the observed feature. The existence of bridges of radio emission between
interacting clusters is a new observational field. For this reason, we proposed to observe other binary
clusters with LOFAR. Data analysis is in progress but not included in this Thesis.

III. Magnetic field in cluster outskirts

If confirmed, the detection of the radio bridge in Abell 1758 would suggest that magnetic fields
between interacting systems can be amplified and compressed up to reach µG levels. In general,
the knowledge of the magnetic field amplification in cluster outskirts is still limited. This is relevant
for the origin of radio relics and to calculate the shock particle acceleration efficiency at cluster
shocks (Chapter 5). The detection of IC emission from a radio relic has the potential to constrain
the downstream magnetic field strength, hence the acceleration efficiency of the underlying shock
(Chapter 4). We showed that El Gordo cluster is the best target to perform this search and that a
clear detection of IC from its NW relic would rule out DSA also in the case of the strongest merger
shocks. However, the achievement of this goal would require a major time investment with the
current instruments, even for an exceptional target such as El Gordo.

Final remarks

The results obtained in this PhD Thesis are at the cutting edge of galaxy cluster science. In-
creasing the number of shocks and radio relics will be critical to determine in a definitive way the
acceleration efficiency at cluster merger shocks and the related problem of the formation of dif-
fuse synchrotron sources in cluster outskirts. A longer term perspective in the study of particle
acceleration and magnetic field amplification at cluster shocks is the detection of IC emission from
radio relics. This is a challenging result that is feasible only by coupling the Chandra-like high
angular resolution to a large effective area. In the future, the study of the interplay between ther-
mal and non-thermal components in the ICM will benefit of the new generation of X-ray and radio
instruments, in particular Athena and the SKA (and its pathfinders). During the PhD project we ex-
ploited the unique capabilities of LOFAR, the largest pathfinder of SKA-LOW. LOFAR is entering
into unexplored territories for non-thermal phenomena in clusters and large scale structure of the
Universe, including the investigation of diffuse radio emission from less massive systems and that
from pre-merging systems. Studies at low frequencies with LOFAR and MWA will shortly provide
fundamental information on the physics of non-thermal components in these environments.







APPENDIX A

A SB jump across the Sausage?

Whilst the single power-law fit shown in Fig. 5.13 provides a fair description of the SB across the
Sausage, some data points are in excess with respect to the model at r∼ 7′, i.e. at the position of the
radio relic. If this excess is a real astrophysical signal, it may indicate the presence of IC emission
from the relic or the suggestion of a SB jump (or a combination of the two). We exclude that we
missed to excise any point source during the analysis. Here we focus on the second possibility
because, as shown in Chapter 4, the level of SB due to IC is expected to be low for the Sausage.

If we use the same sector shown in Fig. 5.13 and rebin the data to reach a minimum S/N of
5 (instead of 7), a broken power-law model (Eq. 1.21) appears to be in excellent agreement with
SB profile (Fig. A.1). The position of the density jump is well constrained and coincides with the
leading edge of the radio relic. Assuming that this discontinuity traces a shock, the corresponding
Mach number isMSB = 2.0+2.7

−0.5, where the large errors are due to the low count statistics. This is
tantalizing as it could confirm the claim of a shock based on the temperature jump observed with
Suzaku by Akamatsu et al. (2015). The profile shown in Fig. A.1 must be considered only as a hint
of discontinuity, as the fit becomes unstable if systematic uncertainties are considered (e.g. different
choice of the extracting sector). Deeper Chandra observations will clarify this point.
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Figure A.1: SB profile across the Sausage relic. Data were extracted in the same sector shown in Fig. 5.13
and were rebinned to reach a minimum S/N of 5. A broken power-law model suggests the presence of a
discontinuity at the location of the outer edge of the relic.
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APPENDIX B

Galactic absorption

From Fig. 6.1 it seems that for five clusters of our sample (A399, A401, AS592, A2104 and Tri-
angulum Australis) the molecular component of the hydrogen density column can not be neglected.
Here we want to compare the density column values as derived from the Leiden/Argentine/Bonn
survey of HI (Kalberla et al. 2005), the Willingale et al. (2013) work (where the molecular hydro-
gen density column was derived using a function depending on the product between NHI and the
dust extinction), the fits in Cavagnolo et al. (2009) and ours, obtained by fitting Chandra spectra
extracted in central regions of the above-mentioned clusters and keeping the density column param-
eter free to vary. Values are compared in Tab. B.1 and the results of our fits can be summarized as
follows.

- A399 and A401 are in line with the values reported from Kalberla et al. (2005) and Cavagnolo
et al. (2009), indicating lower values with respect to Willingale et al. (2013).

- AS592 is in line with Willingale et al. (2013) while Kalberla et al. (2005) and Cavagnolo et al.
(2009) suggest lower column densities. However, the discrepancy is . 25%.

- A2104 appears to be in a direction with a higher density column with respect to that expected
from HI (Kalberla et al. 2005), in agreement with Willingale et al. (2013) and Cavagnolo et al.
(2009).

- Triangulum Australis is known lay in a region with high absorption, our density column is
more in line with Willingale et al. (2013) than with Kalberla et al. (2005).

We carried out the analysis that led to the results presented in Section 6.5 adopting the density
column values achieved in our fits (Tab. B.1) for these five clusters.

177



178 Appendix B. Galactic absorption

Table B.1: Density columns reported from Kalberla et al. (2005) (K05), Willingale et al. (2013) (W13) and
Cavagnolo et al. (2009) (C09) compared with the results of our fits. Values are reported in units of 1020 cm−2.

Cluster name K05 W13 C09 Fit
A399 10.6 17.1 11.5 9.8±1.1
A401 9.88 15.2 12.5 10.8±0.4
AS592 6.07 8.30 6.41 8.0±0.5
A2104 8.37 14.5 14.9 15.8±0.7
Triangulum Australis 11.5 17.0 . . . 18.4±0.8



APPENDIX C

NXB modeling

The NXB spectrum is different for the ACIS-I and ACIS-S detectors1 (Eq. 6.2) and its continuum
part can be rewritten as

C(E) =K1e−A1E +K2E−A2 (C.1)

for ACIS-I and as

C(E) =K1e−A1E +

{ K2E−Γ1 if E ≤ Eb

K2EΓ2−Γ1
b

( E
1 keV

)−Γ2 if E > Eb
(C.2)

for ACIS-S, where the parameters K1 and K2 represent the normalizations, A1 and A2 are dimen-
sionless factors and Eb is the break point for the energy of the broken power-law described by the
two photon indexes Γ1 and Γ2.

The ACIS-I NXB was investigated by Bartalucci et al. (2014), they performed a detailed analysis
of the stowed VFAINT ACIS-I event files to create an analytical model of background. We adopted
the values reported in Tab. 1 of Bartalucci et al. (2014) for the parameters of Eq. C.1. To model
the ACIS-S NXB we used a similar approach and extracted spectra from the S3 chip (used for the
imaging of the target) of the stowed ACIS-S event files taken in the closer epoch to the observation.
Our best-fitting values are reported in Tab. C.1 for both FAINT and VFAINT observing mode. The
NXB models for ACIS-I and ACIS-S are shown in Fig. C.1.

Once that the shape of the NXB has been modeled on the stowed files, the total (astrophysi-
cal+instrumental) background of Eq. 6.1 was fitted in a peripheral region of the target observation,
where the cluster emission is almost negligible, letting the normalizations free to vary and then it
was rescaled in the region of interest. In the fitting of ACIS-S spectral regions we found that for
E > Eb the spectrum can not be described by a single value of Γ2 that, for this reason, was also let
free to vary in the fits. This possibly indicates a spatial variation with respect to the chip coordinates
of the second photon index of the broken power-law. A deeper investigation of the ACIS-S NXB
(as the one performed by Bartalucci et al. 2014 for ACIS-I) would be of great interest and certainly
desirable.

1http://cxc.cfa.harvard.edu/contrib/maxim/stowed/
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Table C.1: Best-fit parameters of Eq. C.2. The normalization values K1 and K2 are given in XSPEC units, the
break energy Eb is in keV.

Parameter ACIS-S
FAINT VFAINT

K1 0.0257 0.0167
A1 0.52 0.40
K2 0.0025 0.0028
Γ1 -0.73 -0.52
Γ2 -5.19 -5.57
Eb 6.48 6.42
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Figure C.1: ACIS-I (top) and ACIS-S (bottom) NXB models. Gaussian lines are reported in dotted black,
the exponential decay in dashed blue (not visible for ACIS-I) and the (broken) power-law in dot-dashed red.



APPENDIX D

Statistical precision of the fits

In Fig. D.1–D.14 we report the c-stat/d.o.f. and the fractional error on the determination of the
temperature for each spectral region shown in Fig. 6.3–6.12 and 6.15–6.18. Pressure and entropy
uncertainties are dominated by the errors on the temperature (see Eq. 6.6 and 6.7) as the errors on
the emission measure are only at a level of a few percent. The χ2/d.o.f. of the broken power-law
fits is close to unity in the majority of SB profiles.

Figure D.1: Values of c-stat/d.o.f. (left) and error map on kT (right) for A399 (cf. Fig. 6.3).

Figure D.2: The same as Fig. D.1 but for A401 (cf. Fig. 6.4).

181



182 Appendix D. Statistical precision of the fits

Figure D.3: The same as Fig. D.1 but for MACSJ0417 (cf. Fig. 6.5).

Figure D.4: The same as Fig. D.1 but for RXCJ0528 (cf. Fig. 6.6).

Figure D.5: The same as Fig. D.1 but for MACSJ0553 (cf. Fig. 6.7).

Figure D.6: The same as Fig. D.1 but for AS592 (cf. Fig. 6.8).
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Figure D.7: The same as Fig. D.1 but for A1914 (cf. Fig. 6.9).

Figure D.8: The same as Fig. D.1 but for A2104 (cf. Fig. 6.10).

Figure D.9: The same as Fig. D.1 but for A2218 (cf. Fig. 6.11).

Figure D.10: The same as Fig. D.1 but for Triangulum Australis (cf. Fig. 6.12).
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Figure D.11: The same as Fig. D.1 but for A2813 (cf. Fig. 6.15).

Figure D.12: The same as Fig. D.1 but for A1413 (cf. Fig. 6.16).

Figure D.13: The same as Fig. D.1 but for A1689 (cf. Fig. 6.17).

Figure D.14: The same as Fig. D.1 but for A3827 (cf. Fig. 6.18).



APPENDIX E

Null results

Here we report seven cases where the presence of a SB gradient was suggested by the GGM
filters but the fitting of the SB profile did not evidence any sharp edge. In Fig. E.1–E.5 we show
the GGM images with σ = 8 pixels with overlaid the sectors used to extract the SB profiles of the
candidate edges together with the corresponding broken power-law model (Eq. 1.21) fits.
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Figure E.1: GGM filtered image of A370 (the same as Fig. 6.2c) marked with the region used to extract the
SB profile (left) and corresponding fit (right). The putative edge is at r ∼ 0.6′.
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Figure E.2: GGM filtered image of RXCJ0528 (the same as Fig. 6.6c) marked with the regions used to
extract the SB profiles (left) and corresponding fits. The putative edge in the E sector is at r ∼ 1.6′ (center)
whereas in the W sector is at r ∼ 1.8′ (right).
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Figure E.3: GGM filtered image of AS592 (the same as Fig. 6.8c) marked with the region used to extract the
SB profile (left) and corresponding fit (right). The putative edge is at r ∼ 0.6′
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Figure E.4: GGM filtered image of A1413 (the same as Fig. 6.16c) marked with the region used to extract
the SB profile (left) and corresponding fit (right). The putative edge is at r ∼ 1.6′
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Figure E.5: GGM filtered image of A3827 (the same as Fig. 6.18c) marked with the regions used to extract
the SB profiles (left) and corresponding fits. The putative edge in the E sector is at r ∼ 1.8′ (center) whereas
in the W sector is at r ∼ 1.3′ (right).



APPENDIX F

Error maps

Error maps for the spectral index (Fig. F.1), temperature and entropy (Fig. F.2).

Figure F.1: Spectral index error map corresponding to Fig. 8.6.
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Figure F.2: Temperature (left) and entropy (right) error maps corresponding to Fig. 8.11.



APPENDIX G

Temperature map

The fractional errors on the temperature map of Fig 9.8 are reported in Fig. G.1. Projected
pressure and entropy have similar fractional errors due to their linear dependence on the temperature
and to the general small error on the emission measure.

Figure G.1: Temperature error map of A1758 (cf. with Fig 9.8).
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190 Appendix G. Temperature map

Figure G.2: Low S/N temperature map (left) and relative error map (right) of A1758.

The high value of temperature in the putative post-shock region of Fig. 9.9 can not be identified
in the temperature map of Fig. 9.8 (left panel) likely due to the fact that the spectral extracting
sectors are large, hence they might contain a mix of plasma with different temperatures. In Fig. G.2
we show that if the required S/N per region is reduced to 30, the CONTBIN algorithm is able to draw
a smaller sector similar in size and position to region 2 in Fig. 9.9 where the spectral fit provides
again kT ∼ 15 keV, canceling the apparent tension between the two results.



APPENDIX H

X-ray channel spectra

The best-fitting spectra of the five regions shown in Fig. 9.9 are reported in Fig. H.1. The
spectral model components are depicted with different colors in the plots. To asses the impact of the
systematic uncertainties of the background modeling to the estimates of the ICM temperature, we
re-performed the spectral fits varying within ±1σ the normalization levels first of the instrumental
background alone, and later of both the instrumental and astrophysical backgrounds. The results
are summarized in Tab. H.1 and are consistent within 1σ with that reported in Fig. 9.9 (right panel).
Finally, we mention that the drop of the Chandra effective area above 5 keV makes the estimation of
high temperatures critical with this instrument. In this respect, the errors on the high temperatures
reported in Tab. H.1 may not reflect entirely the real range of statistical and systematic uncertainties.

Table H.1: Impact of the systematic uncertainties of the background modeling on the temperature estimates
reported in Fig. 9.9 (right panel). Tests were performed varying within ±1σ the normalization level of the
instrumental background (“NXB”) and of the astrophysical background (“sky”). Temperatures are reported
in keV units.

Region Best fit NXB NXB + Sky
+1σ −1σ +1σ −1σ

1 4.4+2.8
−1.4 3.7+2.1

−1.0 5.4+4.1
−1.9 3.5+4.1

−1.5 5.1+3.4
−1.1

2 15.4+9.3
−4.8 14.1+7.7

−3.8 17.1+12.5
−5.1 15.4+9.8

−5.1 16.7+10.0
−5.1

3 12.2+3.9
−3.6 10.2+4.5

−2.3 13.6+3.5
−3.9 11.8+4.1

−3.4 13.2+3.5
−3.7

4 5.0+1.4
−0.9 4.5+1.2

−0.7 5.4+1.5
−1.1 4.8+1.4

−0.9 5.3+1.5
−1.0

5 2.5+0.7
−0.5 2.2+0.6

−0.3 2.7+0.9
−0.5 2.3+0.7

−0.4 2.8+0.8
−0.6
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192 Appendix H. X-ray channel spectra
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Figure H.1: Spectral fitting results for the five regions shown in Fig. 9.9 (left panel). Data points are shown in
black together with the best-fitting model. Different colors denote the components of the spectral model; i.e.,
the cluster emission (solid red), the astrophysical background (dotted green) and the instrumental background
(dashed blue). Whilst the three ObsID spectra were simultaneously fitted, the models for only one observation
were reported in order to avoid confusion in the plot. The c-stat/d.o.f. of the fits from region 1 to 5 are:
232/184, 135/127, 114/132, 115/113 and 224/182.
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