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List of commonly used abbreviations

GBM: Geometric Brownian motion

EMM: Equivalent martingale measure

CVA: Credit valuation sdjustment

DVA: Debt valuation adjustment

CCR: Counterparty credit risk

LSM: Least-squares Monte-Carlo method

MVA: Margin valuation adjustment

CSA: Credit support annex

FVA: Funding value adjustment

KVA: Capital value adjustment

PDE: Partial differential equation

BSDE: Backward Stochastic Differential equation

XVA: Collective name for the valuation adjustments

CLT: Central limit theorem

LLN: Law of large numbers

FFT: Fast Fourier transform

COS: The Fourier-based method for option pricing

BCOS: The Fourier-based method for BSDEs

HP: Hawkes process

SDE: Stochastic differential equation

RCLL: Right-continuous with left limits
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Summary

Ever since the financial crisis the focus on having efficient analytic and numerical methods in the

field of financial risk computations has increased significantly. New regulations have been invoked

that force banks and other financial entities to much more carefully monitor the various risks

involved in their daily practices. One area in which the regulations have increased significantly has

been that of the so-called valuation adjustments in derivative pricing. In particular, under the most

recent regulatory framework Basel III banks are required to hold a particular amount of capital on

their balance sheets. This amount of capital is determined by looking at the various portfolios of

the bank and computing the risks involved in holding and trading those portfolios; in other words

banks are now required to price all components of a trade. These additional factors are collectively

called valuation adjustments. The analysis and valuation of these adjustments is crucial to banks,

but in turn is also a complex task involving both accounting methodologies as well as the need for

efficient mathematical methods.

A Fourier-based method such as the COS method has been both an efficient and accurate

method for pricing derivatives, by making use of the characteristic function, i.e. the Fourier trans-

form of the density. For flexible models that are able to incorporate many of the aspects of current

market dynamics, e.g. a stochastic jump-intensity or volatility smiles and skews, there is no avail-

ability of an explicit expression of the density or characteristic function. One way of obtaining an

approximation to the characteristic function is to make use of a Taylor expansion of the generator

of the process. This allows to split the Cauchy problem for the density into simplified Cauchy prob-

lems and solve these explicitly in the Fourier space. In order to price derivatives with or without

valuation adjustments, the arising (non-linear) partial differential equation can then be solved by

means of a combination of the COS method and the approximated characteristic function, resulting

in an efficient and easy-to-implement valuation method.

Another risk metric related to counterparty credit risk, whose importance has increased since

the crisis is that of systemic risk. Systemic risk was an important contributor to the financial

crisis, where the collapse of individual financial entities triggered a chain of defaults throughout

the system. Carefully monitoring the banks that are most prone to triggering a large loss in the

system after experiencing a loss themselves is of the essence in the prevention of such events. Due

to the system being large with each individual entity having complex interactions with many other

entities, methods for computing the risk in such a system are not trivial and again require the need

for efficient mathematical models. Hawkes processes are able to incorporate an important feature

of risk in interconnected systems, in particular that of a cross- and self-excitement in the monetary

reserves of the banks. While modeling the full multivariate system in case of a large number of

banks is time-consuming, using a weak convergence analysis in which the number of entities in the

system tends to infinity allows us to obtain an expression for the behavior of the monetary reserve

process in a large system, and quantify the systemic risk present in the system.
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Chapter 1

Introduction

1.1 Background

This thesis deals with the applications of stochastic processes in finance, in particular focusing on

risk computation. In the field of financial risk computations often efficient analytic and numerical

methods are required to compute various risk measures. Ever since the global financial crisis the

focus on having these kinds of methods has increased significantly, with new regulations in place

that force banks and other financial entities to much more carefully monitor the various risks

involved in their daily practices. Here we deal with two main subsets of risk measures, the first one

being related to derivative valuation, the second one being risk computation in financial systems.

Both efficiency and accuracy are of the essence when valuing and risk-managing financial deriva-

tives and portfolios comprising of these derivatives. For risk management purposes traders can be

restricted to hold a particular maximum amount of risk in their portfolios, forcing the trader to

efficiently and accurately compute both the value of the portfolio for calibration purposes as well

as its sensitivities in order to quantify and minimize the portfolio risk. The price of an option

without early-exercise features under the risk-neutral measure is given by the expected value of the

discounted payoff of this option.

Under the most recent regulatory framework Basel III banks are required to hold a particular

amount of capital on their balance sheets. This amount of capital is determined by looking at

the various portfolios of the bank and computing the risks involved in holding and trading those

portfolios; in other words banks are now required to price all components of a trade, and not just

the option value. These additional factors are collectively called valuation adjustments. The most

widely known valuation adjustment is the Credit Valuation Adjustment, or CVA, and it captures

the risk that the counterparty in a particular deal is prone to default. One of the latest significant

adjustments is the Funding Valuation Adjustment (FVA) capturing the funding consists of the cash

needed to enter and hold the portfolios. The analysis and valuation of these adjustments is impor-

tant for banks, but in turn it can also be a complex task involving both accounting methodologies
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as well as the need for efficient mathematical methods.

The last risk measure we consider is known as systemic risk. Related to counterparty credit

risk, it is the risk that an event at bank level can cause further instability of the entire financial

system. In financial systems, and in particular in large, interconnected financial systems which

are prone to default propagation, the ability to measure the stability of the system is of great

importance. Systemic risk was an important contributor to the global financial crisis, where the

collapse of Lehman brothers, a bank with many connections to other banks and investors through

e.g. loans, triggered a chain of defaults throughout the system [39]. In an interconnected banking

system carefully monitoring the banks that are most prone to triggering a large loss at its creditors

after experiencing a loss themselves is of the essence in the prevention of such systemic events. Due

to these financial systems often being large with each individual bank having complex interactions

with other banks (through e.g. loans, or common balance sheet holdings), methods for computing

risk in such systems are not trivial, and again require the need for efficient mathematical models.

In the next chapters we will discuss several novel ways of valuing the above-mentioned risks i.e.

derivative pricing and hedging, valuation adjustments and systemic risk. In particular our methods

will be motivated by the real-world dynamics, and include significant improvements over the current

state-of-the-art methodologies. The main tools for computing the above mentioned risks will be by

means of stochastic differential equations, the solution of partial differential equations and weak

convergence analysis. In the upcoming sections of this chapter we will introduce the main concepts

that will be employed in the coming chapters, as well as provide a more detailed definition of the

risks we will consider.

1.2 Stochastic processes

In this section we will briefly discuss the notion of stochastic processes as we will use it in the

financial models in the coming chapters. Let (Ω,F ,P) be a probability space and I a real interval,

also called the index set, of the form R+. A measurable stochastic process on the state space RN

is a collection of (Xt)t∈I of random variables with values in RN such that the map

X : I × Ω→ RN , X(t, ω) = Xt(ω),

is measurable with respect to the product σ-algebra B(I) ⊗ F . The stochastic process associates

for each t ∈ I, the random variable Xt in RN . For any point ω ∈ Ω, the mapping

Xt(ω) : I → RN ,

is called a sample function, or when we interpret the index set I as time, a sample path of the

stochastic process. In our setting the stochastic processes describe the evolution of a random

phenomenon in time.
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A stochastic process is called Markov if the conditional probability distribution of future states

depends only on the present state, and not on the full history that preceded it.

Definition 1.2.1 (Markov process). Let (Ω,F ,P, (Ft)) be the filtered probability space. The

adapted stochastic process X has the Markov property if for every bounded B-measurable function

ϕ : RN → R we have

E[ϕ(XT )|Ft] = E[ϕ(XT )|Xt], T ≥ t.

In a financial setting with the stochastic process representing the asset price the Markov property

translates to the weak form of the Efficient Market Hypothesis. In other words, the current stock

price contains all the information of the past, motivating the random walk model for stock returns.

A stochastic process is said to be a martingale if the expected value of a future state is given

by the present one.

Definition 1.2.2 (Martingale). Let M be an integrable adapted stochastic process on the filtered

probability space (Ω,F ,P, (Ft)). We say that M is a martingale with respect to the filtration Ft
and to the measure P if

Ms = E[Mt|Fs], for every 0 ≤ s ≤ t.

We will next introduce a common stochastic process used for modelling asset dynamics: the

Lévy process, of which the geometric Brownian motion is a well-known example. Furthermore, we

define the local Lévy process, an extension of the Lévy process, which is the particular stochastic

process considered in the option valuation applications in this thesis.

1.2.1 Exponential Lévy processes

With exponential Lévy processes the asset price is modeled as an exponential function of a Lévy

process Xt,

St = S0e
Xt .

The class of Lévy processes includes the Brownian motion and Poisson processes and preserves the

property of independence and stationarity of the increments. The Brownian motion is the only

Lévy process with continuous increments; on the other hand, the presence of jumps is one of the

main motivations that has led to consider Lévy processes for modelling asset dynamics. We start

with recalling the definition: an adapted stochastic process Xt on (Ω,F ,P) with X0 = 0 a.s., is a

Lévy process if

1. X has increments independent of the past, that is Xt−Xs is independent of Fs for 0 ≤ s ≤ t,

2. it has stationary increments, that is Xt−Xs has the same distribution as Xt−s for 0 ≤ s ≤ t,
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3. it is stochastically continuous, that is for any t ≥ 0 and ε > 0, we have

lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0.

A simple and widely used exponential Lévy process is the Geometric Brownian Motion (GBM)

model, whereby the logarithm of the asset price follows a Brownian motion. The asset price St has

GBM dynamics if it satisfies the following stochastic differential equation,

dSt = µStdt+ σStdWt,

where Wt is the Brownian motion, µ is the so-called drift paramter, and σ is the volatility parameter.

Under the GBM model, there exists the well-known Black-Scholes formula giving the price of

European put and call options.

A remarkable property of the Lévy model is the availability of the explicit form of the charac-

teristic function. The characteristic function is defined as

Γ̂(t, x;T, ξ) = F(Γ(t, x;T, y))(ξ) = E[eiξXt ],

where F(·) denotes the Fourier transform with respect to the second set of variables (T, y), and

equivalently the expected value is taken with respect to the density of Xt. Then we have

Theorem 1.2.3. If X is a Lévy process, then there exists a unique function ψ ∈ C(Rd,C), the

space of continuous functions from Rd into the space of complex numbers C such that ψ(0) = 0 and

Γ̂(t, x;T, ξ) = etψ(ξ), t ≥ 0, ξ ∈ Rd.

The function ψ is called the characteristic exponent of X.

Since the distribution of a random variable is determined by its characteristic function, a con-

sequence of the above it that the law of the Lévy process is fully determined by its characteristic

exponent, or equivalently the distribution of Xt for a single time.

Let us consider several examples.

Example 1.2.4 (Brownian motion with drift). Let Xt = µt + σWt, where W is a standard real

Brownian motion. We can then find

E[eiξXt ] = eiµtξE
[
eiξσWt

]
= eiµtξ+

1
2

(iξσ)2t,

so that

ψ(ξ) = iµξ − σ2ξ2

2
,
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Example 1.2.5 (Jump-diffusion process). Consider the jump-diffusion

Xt = µt+ σWt +

Nt∑
n=1

Zn,

where Nt represents a Poisson counting process with intensity λ. Assume the distribution of the

Zn, η(x), follows a normal distribution, i.e. Zn ∼ N (α, β2) for all n. Then we can find

E
[
eiξZ1

]
=

∫
R
eiξxη(x)dx (1.1)

=eiαξ−
1
2
β2ξ2 .

We have

E
[
eiζXt

]
= eiµξt−

1
2
σ2ζ2t

∑
n>0

E
[
eiξ
∑n
k=1 Zk1{Nt=n}

]
= eiµζ−

1
2
σ2ξ2

∑
n>0

E
[
eiξZ1

]2
P(Nt = n)

= eiµζ−
1
2
σ2ξ2e−λt

∑
n>0

(λtη̂(ξ))n

n!
= eiµζ−

1
2
σ2ξ2e−λ(1+η̂(ξ))t,

where η̂(ξ) is the characteristic function of η(x). We have used the independence of Nt, Z1, ..., Zn

and the definition of the Poisson distribution. Using (1.1), we then obtain

ψ(ζ) = iµξ − 1

2
σ2ζ2 + λ

(
eiαξ−

1
2
β2ξ2 − 1

)
.

1.2.2 Local Lévy processes

Several problems arise when modelling the asset price using the geometric Brownian motion. First of

all, the GBM is not able to reproduce the volatility skew or smile present in most financial markets,

arising when trying to fit the Black-Scholes prices to the observed market prices. Furthermore,

under the GBM model the paths of the asset prices are continuous functions of time. Empirical

evidence however has shown that asset prices tend to contain jumps, appearing as discontinuities in

the price path (see e.g. [21]). Lastly, it has been widely recognized that the empirical distribution

of stock returns is not Gaussian, but tends to possess both skewness and heavy tails. These

observations are the main motivation for practitioners to work with more general and flexible

processes, a popular class of which are Lévy processes. The particular model we will consider here

is what we call to be the local Lévy model, in which the term ‘local’ stems from the fact that we

allow the coefficients to be dependent on the underlying process itself. We consider a defaultable

asset S whose risk-neutral dynamics are given by:

St = 1{t<ζ}e
Xt ,

10



dXt = µ(t,Xt)dt+ σ(t,Xt)dWt +

∫
R
zdÑt(t,Xt−, dz),

dÑt(t,Xt−, dz) = dNt(t,Xt−, dz)− ν(t,Xt−, dz)dt,

ζ = inf{t ≥ 0 :

∫ t

0
γ(s,Xs)ds ≥ ε}, (1.2)

where Ñt(t, x, dz) is a compensated random measure with state-dependent Lévy measure ν(t, x, dz).

The default time ζ of S is defined in a canonical way as the first arrival time of a doubly stochastic

Poisson process with local intensity function γ(t, x) ≥ 0, and ε ∼ Exp(1) and is independent of X.

Thus the model features,

• a local volatility function σ(t, x): A local volatility function allows one to model the volatility

smile or skew as observed in financial market;

• a local Lévy measure: Jumps in X arrive with a state-dependent intensity described by the

local Lévy measure ν(t, x, dz). The jump intensity and jump distribution can thus change

depending on the value of x. A state-dependent Lévy measure is an important feature because

it allows to incorporate stochastic jump-intensity into the modeling framework;

• a local default intensity γ(t, x): The asset S can default with a state-dependent default

intensity.

This way of modeling default is also considered in a diffusive setting in [17] and for exponential

Lévy models in [15].

When working with the above model we define the filtration of the market observer to be

G = FX ∨ FD, where FX is the filtration generated by X and FDt := σ({ζ ≤ u}, u ≤ t), for t ≥ 0,

is the filtration of the default. We assume∫
R
e|z|ν(t, x, dz) <∞.

If we impose that the discounted asset price S̃t := e−rtSt is a G-martingale, we get the following

restriction on the drift coefficient:

µ(t, x) = γ(t, x) + r − σ2(t, x)

2
−
∫
R
ν(t, x, dz)(ez − 1− z).

1.3 Option pricing

In financial mathematics, the fast and accurate pricing of financial derivatives is an important

branch of research. Depending on the type of financial derivative, the mathematical task is essen-

tially the computation of integrals, and this sometimes needs to be performed in a recursive way

in a time-wise direction, e.g. in the case of Bermudan options. Briefly, an option is an agreement
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between two parties which offers the buyer the right, but not the obligation, to buy or sell an

underlying security at an agreed-upon price and at or upto an agreed-upon date. The price at

which one can buy or sell is known as the strike price K, the expiration date as the maturity T

and in case of the right to buy, respectively sell, the option is a called a call, respectively put. If

the holder of the option can choose to exercise the option only at the maturity time T , the option

is called a European option. If there is an infinite amount of exercise moments upto maturity it

is an American option, while with a finite number of set dates upto maturity the option is of the

Bermudan type.

Here we introduce the mathematical concept of pricing European options, in particular focusing

on the Fourier-transform method known as the COS method. In a complete market the price of an

option is said to be given by the discounted risk-neutral expectation of future payoffs. In particular,

consider a stochastic process {Xt, t ∈ [0, T ]} defined on the usual probability space (Ω,F ,Q) and

governed by a stochastic differential equation of the Lévy type. The corresponding bank account

evolves according to dBt = rtBtdt, with r being the (for now deterministic) risk-free rate; Bt is thus

the corresponding numeraire. Note that we work under the risk-neutral probability measure Q,

also known as the equivalent martingale measure (EMM). For completeness, the EMM is defined

as follows:

Definition 1.3.1 (Equivalent martingale measure). An equivalent martingale measure Q with

numeraire Bt := e
∫ t
0 rsds is a probability measure on a measurable space (Ω,F) such that

1. Q is equivalent to the real-world measure P,

2. the process of discounted prices S̃t = B−1
t St, is a strict Q-martingale. In particular, the

risk-neutral pricing formula

St = EQ
[
e−
∫ T
t rsdsST |Ft

]
, t ∈ [0, T ],

holds.

Then, according to the risk-neutral valuation formula the price of a European option can be

written as the expectation of the discounted (with the risk-free bank-account) payoff of this option

v(t, St) = e−rtE[ϕ(ST )],

where to shorten notation we suppress the dependence of the expectation on the risk-neutral mea-

sure, v denotes the value of the option, t is the current time point, T is the maturity and ϕ(ST )

will be used to denote the maturity payoff of the option. When computing option prices the evalu-

ation of expectations of the type shown above is of the essence. It can be calculated via numerical

integration or even analytical methods provided that the underlying density is known in closed

form, which unfortunately is not the case for many models. What is commonly available is the
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characteristic function; in particular for Lévy models we have a closed-form expression (see Section

1.2.1). The characteristic function is the continuous Fourier transform of the density function, and

can be used for obtaining the above expected value when transitioning into the Fourier domain.

A method which makes use of this transformation is known as the COS method [30]. The COS

method proposed by [30] is based on the insight that the Fourier-cosine series coefficients of the

density Γ(t, x;T, dy) (and therefore also of option prices) are closely related to the characteristic

function of the underlying process, namely the following relationship holds:∫ b

a
ei

kπ
b−aΓ(t, x;T, dy) ≈ Γ̂

(
t, x;T,

kπ

b− a

)
.

The COS method provides a way to calculating expected values (integrals) of the form

v(t, x) =

∫
R
ϕ(T, y)Γ(t, x;T, dy),

and it consists of three approximation steps:

1. In the first step we truncate the infinite integration range to [a, b] to obtain approximation

v1:

v1(t, x) :=

∫ b

a
ϕ(T, y)Γ(t, x;T, dy).

We assume this can be done due to the rapid decay of the distribution at infinity.

2. In the second step we replace the distribution with its cosine expansion and we get

v1(t, x) :=
b− a

2

∞∑′

k=0

Ak(t, x;T )Vk(T ),

where
∑′

indicates that the first term in the summation is weighted by one-half and

Ak(t, x;T ) =
2

b− a

∫ b

a
cos

(
kπ
y − a
b− a

)
Γ(t, x;T, dy),

Vk(T ) =
2

b− a

∫ b

a
cos

(
kπ
y − a
b− a

)
ϕ(T, y)dy,

are the Fourier-cosine series coefficients of the distribution and of the payoff function at time

T respectively. Due to the rapid decay of the Fourier-cosine series coefficients, we truncate

the series summation and obtain approximation v2:

v2(t, x) :=
b− a

2

N−1∑′

k=0

Ak(t, x;T )Vk(T ).

13



3. In the third step we use the fact that the coefficients Ak can be rewritten using the truncated

characteristic function:

Ak(t, x;T ) =
2

b− a
Re

(
e−ikπ

a
b−a

∫ b

a
ei

kπ
b−ayΓ(t, x;T, dy)

)
,

where Re(·) denotes taking the real part of the input argument. The finite integration range

can be approximated as∫ b

a
ei

kπ
b−ayΓ(t, x;T, dy) ≈

∫
R
ei

kπ
b−ayΓ(t, x;T, dy) = Γ̂

(
t, x;T,

kπ

b− a

)
.

Thus in the last step we replace Ak by its approximation:

2

b− a
Re

(
e−ikπ

a
b−a Γ̂

(
t, x;T,

kπ

b− a

))
,

and obtain approximation v3:

v3(t, x) :=

N−1∑′

k=0

Re

(
e−ikπ

a
b−a Γ̂

(
t, x;T,

kπ

b− a

))
Vk(T ). (1.3)

In other words, if the characteristic function is available, the COS method allows us to compute

the option value by transitioning into the Fourier domain.

1.3.1 Option pricing under the local Lévy model

When considering the local Lévy model as defined in Section 1.2.2, the computation of the above

expected value is no longer trivial as there is no explicit formula for the density nor for the char-

acteristic function. In Chapter 2 we discuss how one can use a so-called adjoint expansion method

in order to compute these option prices, both for a European as well as a Bermudan derivative.

Here, we briefly address the unavailability of explicit density and characteristic function expres-

sions. Consider the asset dynamics for St as defined in (3.16) satisfying the martingale condition.

The European option price with maturity T and payoff ϕ(ST ) is then given by,

v(t, x) = E
[
er(T−t)ϕ(ST )|Gt

]
= er(T−t)E

[
ϕ(XT )1{ζ>T}|Gt

]
+ er(T−t)KE

[
1{ζ≤T}|Gt

]
= er(T−t)E

[
ϕ(XT )1{ζ>T}|Gt

]
+ er(T−t)K − er(T−t)KE

[
1{ζ>T}|Gt

]
= er(T−t)K + er(T−t)1{ζ>t}E

[
e−
∫ T
t γ(s,Xs)ds(ϕ(XT )−K)|Gt

]
, (1.4)

with ϕ(x) := ϕ(ex), and K := ϕ(0) and where we have used the result in [48, Section 2.2]. For

K = 0, we are thus interested in computing functions of the form

u(t, x) = E
[
e−
∫ T
t γ(s,Xs)dsϕ(XT )|Gt

]
.
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By a direct application of the Feynman-Kac representation theorem, u(t, x) is the classical solution

of the following Cauchy problemLu(t, x) = 0, t ∈ [0, T [, x ∈ R,

u(T, x) = ϕ(x), x ∈ R,
(1.5)

where L is the integro-differential operator

Lu(t, x) = ∂tu(t, x) + r∂xu(t, x) + γ(t, x)(∂xu(t, x)− u(t, x)) +
σ2(t, x)

2
(∂xx − ∂x)u(t, x)

−
∫
R
ν(t, x, dz)(ez − 1− z)∂xu(t, x) +

∫
R
ν(t, x, dz)(u(t, x+ z)− u(t, x)− z∂xu(t, x)).

Denote by Γ(t, x;T, dy) the fundamental solution of the operator L, which is defined as the solution

of (1.5) with ϕ = δy, where δy is the Dirac-delta function i.e.LΓ(t, x, T, y) = 0, t ∈ [0, T [, x ∈ R,

Γ(T, x, T, y) = δy(x), x ∈ R,
(1.6)

Now, due to the state-dependency in the coefficients of the operator, there exists no explicit solu-

tion to the above Cauchy problem; similarly, for the characteristic function, which can be obtained

by taking the Fourier transform of the above Cauchy problem, using F(δy(x)) = eiξy, no explicit

solutions exist. Therefore, in order to evaluate option prices under the local Lévy model we will

introduce a so-called adjoint expansion method, based on a Taylor expansion of the coefficients of

the operator in the Cauchy problem; in this way we split the single Cauchy problem into multi-

ple problems, each of which will be simple to solve explicitly. For the full derivation we refer to

Chapter 2. Note that this expansion method can be applied directly to compute option prices or

densities using the Cauchy problem in (1.5) or (1.6); alternatively, one can compute the character-

istic function by solving the Cauchy problem (1.6) in the Fourier domain and combine this with

the above-mentioned COS method. In particular, when working under the local Lévy model the

jumps are more easily handled in the Fourier domain, motivating our choice of employing the latter

method.

1.4 Valuation adjustments

After the financial crisis which started in 2007, regulation required financial institutions to hold

enough capital on their balance sheets to account for all components involved in a trade, and not

just for the option value itself; in other words these valuation adjustments include the default risk

and funding costs in the risk management (and pricing) of over-the-counter (OTC) derivatives.

In particular, it was recognized that Counterparty Credit Risk (CCR) poses a substantial risk for

financial institutions. In 2010 in the Basel III framework an additional capital charge requirement,
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called Credit Valuation Adjustment (CVA), was introduced to cover the risk of losses on a coun-

terparty default event for OTC uncollateralized derivatives. The CVA is the expected loss arising

from a default of the counterparty and can be defined as the difference between the risky value

and the current risk-free value of a derivatives contract. CVA is calculated and hedged in the same

way as derivatives by many banks, therefore having efficient ways of calculating the value and the

Greeks of these adjustments is important.

One common way of pricing CVA is to use the concept of expected exposure, defined as the

mean of the exposure distribution at a future date. Calculating these exposures typically involves

computationally time-consuming Monte Carlo procedures, like nested Monte Carlo schemes or

the more efficient least-squares Monte Carlo method (LSM)([49]). Recently the Stochastic Grid

Bundling method (SGBM) was introduced as an improvement of the standard LSM ([45]). This

method was extended to pricing CVA for Bermudan options in [32]. Another recently introduced

alternative is the so-called finite-differences Monte Carlo method, see [25]. This method uses the

scenario generation from the Monte Carlo method combined with finite-difference option valuation.

In Section 3.4.2 we present an alternative analytical method for computing the CVA.

Besides CVA, many other valuation adjustments, collectively called XVA, have been introduced

in derivative pricing in the recent years, causing a change in the way derivatives contracts are priced.

For instance, a companies own credit risk is taken into account with a debt value adjustment (DVA).

The DVA is the expected gain that will be experienced by the bank in the event that the bank

defaults on its portfolio of derivatives with a counterparty. To reduce the credit risk in a derivatives

contract, the parties can include a credit support annex (CSA), requiring one or both of the parties

to post collateral. Valuation of derivatives under CSA was first done in [60]. A margin valuation

adjustment (MVA) arises when the parties are required to post an initial margin. In this case the

cost of posting the initial margin to the counterparty over the length of the contract is known as

MVA. Funding value adjustments (FVA) can be interpreted as a funding cost or benefit associated

to the hedge of market risk of an uncollateralized transaction through a collateralized market.

While there is still a debate going on about whether to include or exclude this adjustment, see [42],

[41] and [18] for an in-depth overview of the arguments, most dealers now seem to indeed take into

account the FVA. The capital value adjustment (KVA) refers to the cost of funding the additional

capital that is required for derivative trades. This capital acts as a buffer against unexpected losses

and thus, as argued in [36], has to be included in derivative pricing.

When computing derivatives which take into account these above mentioned valuation adjust-

ments, one often needs to redefine the hedging portfolio in order to account for the various cash

flows resulting from the various risks taken into account, see e.g. [11] and [47]. In particular, we

consider a derivative contract v̂ on an asset S between a seller B and a counterparty C, both of

which may default. In the case of default of either party, clearly the future payments that were

supposed to be made by the defaulted party will no longer be possible, resulting in a loss in cap-
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ital for the surviving party. The ability to quantify and hedge this risk is of the essence. Using

replication arguments which include this credit risk and the various funding costs involved in the

trading of the derivative, one can derive a pricing PDE, similar to the Black-Scholes framework. In

particular, we hedge the derivative with a self-financing portfolio which will cover all the underlying

risk factors of the model. This gives rise to non-linear partial differential equations as we will see

in Chapter 3, and in the particular case of pricing under the local Lévy model we will obtain a

non-linear PDE with state-dependent coefficients. By rewriting this non-linear PDE as a backward

stochastic differential equation (BSDE), as will be defined in Section 3.2.2, we can use the tech-

niques mentioned in the previous sections for computing the expected value arising in the valuation

of derivatives without XVA, i.e. the COS method and adjoint expansion method, to compute the

expected values arising from discretization and subsequent approximation of the BSDE in order to

find the value of the derivatives with the various valuation adjustments.

1.4.1 Setting up a hedging portfolio

Here we briefly discuss the main idea behind setting up a hedging portfolio use to subsequently

determine the corresponding derivative prices. We consider here the general Black-Scholes frame-

work in which we assume one can lend and borrow at a single risk-free rate and the holder and

its counterparty do not possess any default risk. In Chapter 3 we will extend this derivation to

account for the various types of funding involved when holding a derivative, in other words there

will no longer be a single rate at which the bank can borrow/lend, and both the bank itself and its

counterparty will be prone to default.

We assume the asset S follows the Geometric Brownian motion dSt = µStdt + σStdWt, and

take an option v which is written on the underlying S. The idea is to construct a hedging portfolio

such that the portfolio is riskless, i.e. in this case focussing on hedging the risk arising from the

Brownian motion in the asset dynamics. The portfolio consists of the shorted derivative itself, ∆

units of the underlying stock and come cash g,

Π(t) = −v(t, S) + ∆St + gt.

By the self-financing assumption, i.e. assuming that no money is extracted or added into the

portfolio we obtain

dΠt = −dv(t, S) + ∆dSt + dg(t)

=

(
−∂v
∂t
− µS ∂v

∂S
− 1

2
σ2S2 ∂

2v

∂S2
+ ∆µS

)
dt+

(
σS

∂v

∂S
+ ∆σS

)
dWt + dg(t),

where we have applied Itô’s lemma to dv(t, S). The remaining cash in the portfolio will earn the

risk-free rate

dg(t) = r(v(t, S)−∆St)dt.
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In order to hedge the Brownian motion risk we set

∆ = − ∂v
∂S

.

Then using the fact that the portfolio has to satisfy the martingale condition in the risk-neutral

world, i.e. E[dΠ] = 0, we find the classic Black-Scholes option pricing formula

Lv(t, S) = rv(t, S),

where

Lv(t, S) =
∂v

∂t
+

1

2
σ2S2 ∂

2v

∂S2
+ r

∂v

∂S
.

In Section 3.2.1 the set-up is different in the sense that we assume the asset itself to be risk-neutral,

so the focus is on hedging the risk arising from the defaults of the bank and its counterparty,

which we will do by including two defaultable bonds in our portfolio, corresponding to the bank

and its counterparty. Furthermore, the portfolio does not simply earn the risk-free rate, but the

various payments happen at different interest rates, corresponding to the particular type of lend-

ing/borrowing (e.g. collateralized, uncollateralized).

1.5 Systemic risk

The last notion of risk we will consider is systemic risk; systemic risk concerns itself with the risk

of collapse in a large interconnected system triggered by an event at the level of the individual

firm or bank. Studying the stability properties of such systems is of fundamental importance in

modern economies, in which the global interconnectedness of financial institutions poses a significant

systemic risk [39].

There are two main forms of linkage arising between financial institutions, for a full overview we

refer to [13]. The first is via counterparty risk, arising from the fact that institutions trade deriva-

tives and lend/borrow from other banks in the system. In this way, a default at one institution,

and thus the failure to repay all or part of its loans, might result in the subsequent insolvency of

its creditors, who were relying on these payments to fulfill their own obligations. A second form of

contagion between banks arises from common balance sheet holdings, so that if the insolvency of

one institution forces it to sell a large bulk of its assets, the subsequent lowering of the price of these

assets can also hit the monetary reserves of other institutions holding similar assets. Being able to

model these linkages is thus of importance when studying the stability of such an interconnected

system, and in particular its susceptibility to a systemic risk event.

Many ways of modelling the financial network exist, but in Chapter 4 we focus on using a

so-called mean-field model: the matrix of interbank borrowing/lending activities is exogenously

specified and the dynamics of the banks’ monetary reserves contain an interaction term, modelled

18



through the empirical distribution of the system states. This empirical distribution thus captures

the interaction of the node with the other nodes in the system. One way of studying these interacting

systems is by investigating the behaviour of the system as the number of nodes approaches infinity

(i.e. propagation of chaos). In [8] the authors consider an interacting model of the monetary reserve

processes where the drift term represents interbank short-time lending and the monetary reserve is

additionally subjected to a banking sector indicator which drives additional in-/out-flows of cash.

By means of a detailed weak-convergence analysis they conclude that the underlying limit state

process has purely diffusive dynamics and the contribution of the banking sector jump process is

reflected only in the drift. In [56] the authors use the mean-field approach with an interaction

through hitting times in estimating systemic failure.

Besides contagion through interbank lending agreements, it is important to also include the fact

that contagion can occur through multiple other channels, in particular linked balance sheets that

may result in fire sales (see e.g. [14] and [19]) and the so-called financial acceleration where a shock

affecting the banks’ portfolio can cause a reaction of its creditors to claim back even more funds of

the bank in question. In [20] the authors argue that one should not ignore the compounded effect

of both correlated market events and default contagion, since it can make the network considerably

more vulnerable to default cascades. Motivated by the above mentioned research, in Chapter 4 we

will model the (negative) effects of the self-exciting fire sales as well as the financial acceleration by

including a self- and cross-exciting Hawkes counting process, as introduced in [38], in the dynamics

for the monetary reserves of the bank. We combine this with the default propagation through

interbank lending agreements to study the robustness of the network. Explicitly computing the

systemic risk in such a large multivariate model is hard by means of the typical PDE methods as

used in e.g. option pricing. We therefore will study the behavior of the system using the above-

mentioned large system limit, derived by means of a weak convergence analysis. In the large system

limit the interactions between individual nodes are simplified, and therefore computing systemic

risk indicators can be done in an efficient manner.

1.5.1 Weak convergence

A weak convergence analysis allows one to analyze a particular system in a limiting setting. Besides

the work of [8], this kind of large limit analysis has been applied to compute the risks in various

settings. By means of a weak converence analysis the authors of [33] study the behavior of the

default intensity in a large portfolio where the intensity is subjected to additional sources of clus-

tering through exposure to a systematic risk factor and a contagion term. The law of large numbers

(LLN) result is proven under the assumption that the systematic risk vanishes in the large-portfolio

limit. In [34] the authors extend the previous result for general diffusion dynamics for the systemic

risk factor without the vanishing assumption, producing a stochastic PDE for this density in the

limit, as opposed to a PDE. In [66] the LLN result is extended by proving a central limit theorem
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(CLT) in a similar setting, thus quantifying the fluctuations of the empirical measure (and thereby

also the loss from default) around its large portfolio limits. In [12] the large portfolio limit for assets

following a correlated diffusion is shown to approach a measure whose density satisfies an SPDE,

while in [37] a similar result is proven for a stochastic volatility model for the asset price. Finally,

[64] and [65] use mean-field and large portfolio approximation methods for the analysis of large

pools of loans. We briefly discuss the main ingredients needed to show weak convergence in our

setting; for a more complete introduction we refer to [7] for the definitions of weak convergence of

probability measures and the work of the authors of [29] for the applications to Markov processes;

in particular Chapter 3 for the weak convergence definitions and Chapter 4 for the needed tools to

show the convergence.

For a metric space (V, d) (d denoting the metric), we let V = B(V ) be the σ-algebra of Borel

subsets of V , and P(V ) be the family of Borel probability measures on V of the metric space V .

We start with the basic definitions of weak convergence of probability measures. Let (Σ,F ,P) be

the underlying probability space on which all random variables are defined. A probability measure

on V is a non-negative, countably additive set function Q satisfying Q(V ) = 1. We define weak

convergence as

Definition 1.5.1 (Weak convergence of probability measures). If the probability measures QN

and Q on V satisfy

QN (f)→ Q(f), where Q(f) =

∫
V
fdQ,

as N → ∞ for every bounded continuous real function f on V , we say that QN converges weakly

to Q and write QN ⇒ Q.

Equivalently, a sequence XN of V -valued random variables is said to converge in distribution

to the V -valued random variable X if

lim
N→∞

E[f(XN )] = E[f(X)],

for f ∈ C∞K (V ), where the distribution of the V -valued random variable X is an element of P(V ).

In our situation we typically work with processes that contain jumps, and therefore we consider

the weak convergence in the space D which includes certain discontinuous functions. In particular,

DS(R+) is the space of real functions x : R+ → S that are right-continuous and have left-hand

limits (RCLL). The space DS(R+) can be topologized by the Skorokhod metric which we denote

by dS . In particular, under this metric DS(R+) is separable if S is separable and (DS(R+), dS) is

complete if the metric space (S, d) is complete; see also Chapter 3.5 in [29].

More specifically we will consider stochastic processes Xi
t , i = 1, ...,M taking values in some

space O. In order to study the behavior of the processes in the limit as M → ∞ we define the
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sequence of empirical measures as

νMt :=
1

M

M∑
i=1

1Xi
t
, t ≥ 0, (1.7)

where 1x represents a unit mass placed at position x ∈ R. Then νMt take values in V = DS(R+), the

space of RCLL processes on [0,∞) taking values in S := P(O), the collection of Borel probability

measures on O. We are interested in the weak convergence of elements of P(DS(R+)). Define

QM
t := P(νMt ∈ A),

for A ∈ V where V = B(DS(R+)). The idea is to show that QM ⇒ Q∗, for some limit point Q∗

which governs the behavior of the processes Xi
t , i = 1, ...,M in the limit M →∞.

We will need the following two definitions.

Definition 1.5.2 (Relative compactness). A family of probability measures Π on (V,V) is defined to

be relatively compact if every sequence of elements of Π contains a weakly convergent subsequence.

Definition 1.5.3 (Tightness). A probability measure P on (V,V) is tight if for each ε > 0 there

exists a compact set K such that P(K) > 1− ε.

In order to show weak convergence we typically work on separable spaces, in particular we have

the following lemma relating separability and weak convergence (see also Lemma 4.3 of Chapter

3.4 in [29])

Lemma 1.5.4. Let the sequence {QM} ⊂ P(V ) be relatively compact, let Q ∈ P(V ), and let

M⊂ C∞K (V ) (a subset of differentiable, bounded functions on V ) be separating. If

lim
N→∞

∫
V
fdQN =

∫
V
fdQ,

holds for f ∈M, then QN ⇒ Q.

By Prohorov’s theorem, if the space V is separable and complete under the corresponding metric

d, a family of probability measures on (V,V) is relatively compact if and only if it is tight.

Recall the following Lemma defining the tightness of distribution-valued processes in DS(R+)

through tightness in real-valued process obtained by applying test functions (Chapter 4, Proposition

1.7 in [46])

Lemma 1.5.5. A family of non-negative measure-valued processes {νM : M ≥ 1} is tight in

DS(R+) if {νM (f) : M ≥ 1} is tight in DR(R+) for f ∈ C∞K (R).

Now fix f ∈ C∞K (R), a smooth function with compact support. To prove tightness for some

measure νMt (f) taking values in DR(R+) equipped with the Skorokhod topology it is enough to

verify the following two conditions
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1. Compact containment: for any t ∈ [0, T ] and δ > 0, there exists a compact set K(t, δ) ⊂ R
such that

inf
M

P(νMt (f) ∈ K(t, δ)) > 1− δ. (1.8)

2. For every δ > 0

lim
ε→0

lim sup
M→∞

P

[
sup
|s−t|≤ε

|νMt (f)− νMs (f)| > δ

]
= 0. (1.9)

If a sequence of measures satisfies the above requirements, it results in c-tightness of the sequence,

a stronger result than just tightness since it means that it is tight with continuous sample paths.

1.5.2 Weak convergence for systemic risk

In order to see the basics of the derivation of weak convergence in a systemic risk application we

will consider a simplified form of the set-up in [8] and briefly discuss how the limiting behavior of

the network is derived. The monetary reserves of the k-th bank, k = 1, ...,M are assumed to satisfy

the following SDE:

dXi
t =

ai

M

M∑
k=1

(Xk
t −Xi

t)dt+ σidWt,

with initial monetary reserve level Xi
0, ai being the positive constant governing the amount of

money that is being either borrowed from bank k if Xk
t > Xi

t , or loaned to bank k if Xi
t > Xk

t ,

and Wt = (W i
t )
M
i=1 a M -dimensional Brownian motion. The monetary reserve process governs the

state of the bank, meaning that once Xi
t ≤ 0 the bank is considered to be in a defaulted state. In

our simplistic model we assume that if a bank has defaulted it still participates in the interbank

network, meaning that if it receives a sufficient number of cash inflow it can come out of the

defaulted state. An easy way to modify this, and to let a bank remain in defaulted state once the

default level has been reached is to consider the Brownian motion to be scaled by Xi
t itself as well.

Note that we can rewrite

dXi
t = ai(X̄t −Xi

t)dt+ σidWt, X̄t =
1

M

M∑
k=1

Xk
t ,

where the interaction is thus governed by the empirical density; therefore the above model is also

called a mean-field model.

The idea is to analyze the behavior of the system as M → ∞, i.e. the number of banks in

the system tends to infinity. Assume for simplicity that all parameters in the model are equal, i.e.

pi = (ai, σi) = p∗, for i = 1, ...,M . In order to analyze the behavior of the system in the limit

22



we typically work with the sequence of empirical measures defined as in (1.7). In other words the

empirical measures keep track of the empirical distribution of the monetary reserves. Let S = P(R)

be the collection of Borel probability measures on R. Then the empirical measure is an element

of the space of RCLL functions DS(R+). Showing weak convergence of νMt then amounts to (i)

derive the form of the limiting martingale problem, i.e. understand the behavior of the processes

νNt as N →∞, (ii) show the existence of at least one limit point using the tightness, i.e. verify that

(νNt )N∈N is relatively compact as a DS(R+)-valued random variable, and (iii) conclude uniqueness

of the solution of the resulting limiting martingale problem. This is the structure we will typically

follow when deriving weak convergence, in particular in Chapter 4.

We thus want to use the martingale problem (see Chapter 4 of [29]) to show that νM converges

to a limiting process. The martingale problem is based on the fact that if a process (Xt)t≥0 is a

Markov process with infinitesimal generator A, Mt defined as,

Mt := f(Xt)− f(X0)−
∫ t

0
Af(Xs)ds,

is a martingale. By a solution to the martingale problem we then mean a measurable stochastic

process X with values in metric space S such that Mt is a martingale. Alternatively, a measurable

process X is a solution of the martingale problem for generator A if and only if

E

(f(Xtm+1)− f(Xtm)−
∫ tm+1

tm

Af(Xs)ds

) M∏
j=1

hj(Xtk)

 = 0,

for 0 ≤ t1 < t2 < ... < tm+1 and h1, ..., hM ∈ C∞K (S), the set of bounded, continuous functions.

Generally speaking, if a sequence of processes XM satisfies a martingale problem with generator

AM , then we can say that the finite-dimensional distributions of XM converge weakly to those of

the process X with generator A if

lim
M→∞

E

(f(XM
tm+1

)− f(XM
tm)−

∫ tm+1

tm

Af(XM
s )ds

) M∏
j=1

hj(Xtk)

 = 0.

In this way, deriving the limiting martingale problem characterizes the limit point X, it being the

solution of the above martingale problem. In more concrete terms the above is stated in Lemma

8.1 and Theorem 8.2 of Chapter 4 of [29].

To derive the limiting martingale problem in our case we will work with the empirical measure

as applied to a test function f ∈ C∞K (R),

νMt (f) =
1

M

M∑
i=1

f(Xk
t ).

As mentioned in Lemma 1.5.4 in order to show weak convergence of the martingale problem we

need to work with functions on separating subspaces. Define S to be the collection of bounded
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elements Φ on S defined by

Φ(ν) = ϕ(ν(f)),

with f = (f1, ..., fN ) and fn ∈ C∞K (R). Then S separates S and it thus suffices to show weak

convergence of the martingale problem for these functions Φ ∈ S.

We start with deriving the form of the limiting martingale problem. Applying Itô’s formula to

ϕ(ν(f)) we find

Φ(νMu ) = Φ(νMt ) +

∫ u

t

(
CMs +DMs

)
ds+Mu −Mt,

with Mt a martingale and

CMt :=

N∑
n=1

∂ϕ(νMt (f))

∂fn

(
νMt (L1fn)νMt (I)− νMt (L2fn) + νMt (L3fn)

)
,

DMt :=
1

M2

N∑
n,l=1

∂2ϕ(νMt (f))

∂fn∂fl

M∑
i=1

(
σ2∂fn(Xi

t)

∂x

∂fl(X
i
t)

∂x

)
,

where we have defined

L1f(x) = a∂xf(x), L2f(x) = ax∂xf(x), L3f(x) =
1

2
σ2∂xxf(x).

We need to understand what happens as M → ∞. In particular, using the boundedness of the

derivatives of f ∈ C∞K (R) and the scaling by M−2 we obtain that

lim
M→∞

E
[∫ u

t
|DMs |ds

]
= 0.

The limiting martingale problem is then given by

lim
M→∞

E
[(

Φ(νMtm+1
)− Φ(νMtm)

−
∫ tm+1

tm

N∑
n=1

∂ϕ(νMu (f)

∂fn

(
νMu (L1fn)νMu (I)− νMu (L2fn) + νMu (L3fn)

)) M∏
j=1

Ψj(ν
M
tj )

]
= 0,

for Ψj ∈ L∞(S).

Next, we need to show that the measure-valued process νM is relatively compact, when viewed

as a sequence of stochastic processes in the Skorokhod space DS(R+). In other words, we need

to verify the conditions for tightness: the compact containment given in (1.8) and regularity from

(1.9). Then we have to verify that the solution of the resulting martingale problem is unique, for

which we will use a duality argument (Chapter 4.4. in [29]). The full derivations for this will be

discussed in Section 4.5.
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Having shown the form of the martingale problem and derived existence and uniqueness of the

limiting measure, we can finish the derivation by deriving the form of the limiting measure. Let

QM be the P-law of νM , that is

QM := P(ν ∈ A),

for all A ∈ B(DS(R+)). Then we have QM → Q, with Q = δν , where

νt(f) = E[f(Xt(p))],

with

dXt(p) = a(x−Xt(p))dt+ σdWt.

In other words, in the limit of M → ∞ the interaction between the banks in the system vanishes

and the limiting behavior of each node is governed by the process Xt(p); more specifically, the

mean-field interaction term is represented by (x−Xt(p)).

1.6 Organization of this thesis

The rest of this thesis is organized as follows. In Chapter 2 we show how one can value Bermudan

options under the flexible local Lévy dynamics; the method is based on an adjoint expansion of the

characteristic function in combination with the COS method and allows for an accurate and efficient

valuation of both option prices and sensitivities required for hedging. In Chapter 3 we compute

the Bermudan option value under the local Lévy model when in additional incorporating valuation

adjustments. In particular these valuation adjustments require us to re-derive the hedging portfolio,

resulting in a non-linear PDE, which we solve by means of a transformation to a backward stochastic

differential equation and the adjoint expansion method; furthermore we extend the pricing under

valuation adjustments to swaptions, one of the most common interest rate derivatives traded in

the market. Chapter 4 is concerned with the computation of systemic risk, in which we model

the banks capital by a stochastic process with a self-exciting jump term. This term accounts for

additional sources of contagion observed in financial markets. We consider an asymptotic setting

in which we let the number of banks in the system tend to infinity, and derive a limiting process

through a weak convergence analysis. As opposed to numerical methods for computing the risk in

a large system, the limiting process allows for a much faster computation of the necessary systemic

risk indicators.
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Chapter 2

Bermudan option valuation under

local Lévy models

As discussed before, efficient methods for the computation of financial derivative prices are often

required; the mathematical task of which boils down to the computation of integrals. For many

stochastic processes that model the financial assets, these integrals can be most efficiently computed

in the Fourier domain. However, for some relevant and recent stochastic models the Fourier domain

computations are not at all straightforward, as these computations rely on the availability of the

characteristic function of the stochastic process (read: the Fourier transform of the transitional

probability distribution), which is not always known. This is especially true for state-dependent

asset price processes, and for asset processes that include the notion of default in their definition.

With the derivations and techniques in this chapter we make available the highly efficient pricing

of so-called Bermudan options to the above mentioned classes of state-dependent asset dynamics,

including jumps in asset prices and the possibility of default. In this sense, the class of asset models

for which Fourier option pricing is highly efficient increases by the derivations presented here.

Essentially, we approximate the characteristic function by an advanced Taylor-based expansion in

such a way that the resulting characteristic function exhibits favorable properties for the pricing

methods.

Fourier methods have often been among the winners in option pricing competitions such as

BENCHOP [67]. In [31], a Fourier method called the COS method, as introduced in [30], was

extended to the pricing of Bermudan options. The computational efficiency of the method was

based on a specific structure of the characteristic function allowing to use the fast Fourier transform

(FFT) for calculating the continuation value of the option. Fourier methods can readily be applied

to solving problems under asset price dynamics for which the characteristic function is available.

This is the case for exponential Lévy models, such as the Merton model developed in [55], the

Variance-Gamma model developed in [54], but also for the Heston model [40]. However, in the case
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of local volatility, default and state-dependent jump measures there is no closed form characteristic

function available and the COS method can not be readily applied.

Recently, in [58] the so-called adjoint expansion method for the approximation of the character-

istic function in local Lévy models is presented. This method is worked out in the Fourier space

by considering the adjoint formulation of the pricing problem, that is using a backward parametrix

expansion as was also later done in [5]. Here, we generalize this method to include a defaultable

asset whose risk-neutral pricing dynamics are described by an exponential Lévy-type martingale

with a state-dependent jump measure, as has also been considered in [53] and in [44].

Having obtained the analytical approximation for the characteristic function we combine this

with the COS method for Bermudan options. We show that this analytical formula for the char-

acteristic function still possesses a structure that allows the use of an FFT-based method in order

to calculate the continuation value. This results in an efficient and accurate computation of the

Bermudan option value and of the Greeks. The characteristic function approximation used in the

COS method is already very accurate for the 2nd-order approximation, meaning that the explicit

formulas are simple. This makes the method easy and quick to implement. Finally, we present a

theoretical justification of the accurate performance of the method by giving the error bounds for

the approximated characteristic function.

The rest of this chapter is organized as follows. In Section 2.1 we present the general framework

which includes a local default intensity, a state-dependent jump measure and a local volatility

function. Then we derive the adjoint expansion of the characteristic function. In Section 2.2

we propose an efficient algorithm for calculating the Bermudan option value, which makes use

of the Fast Fourier transform. In Section 2.3 we prove error bounds for the 0th- and 1st-order

approximation, justifying the accuracy of the method. Finally, in Section 2.4 numerical examples

are presented, showing the flexibility, accuracy and speed of the method.

2.1 General framework

Consider the Local Lévy model as defined in Section 1.2.2. As discussed before (see also [48, Section

2.2]) the price v of a European option with maturity T and payoff Φ(ST ) is given by

v(t,Xt) = 1{ζ>t}e
−r(T−t)E

[
e−
∫ T
t γ(s,Xs)dsϕ(XT )|Xt

]
, t ≤ T, (2.1)

where ϕ(x) = Φ(ex). Thus, in order to compute the price of an option, we must evaluate functions

of the form

u(t, x) := E
[
e−
∫ T
t γ(s,Xs)dsϕ(XT )|Xt = x

]
. (2.2)
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Under standard assumptions, u can be expressed as the classical solution of the following Cauchy

problem Lu(t, x) = 0, t ∈ [0, T [, x ∈ R,

u(T, x) = ϕ(x), x ∈ R,

where L is the integro-differential operator

Lu(t, x) = ∂tu(t, x) + r∂xu(t, x) + γ(t, x)(∂xu(t, x)− u(t, x)) +
σ2(t, x)

2
(∂xx − ∂x)u(t, x) (2.3)

−
∫
R
ν(t, x, dz)(ez − 1− z)∂xu(t, x) +

∫
R
ν(t, x, dz)(u(t, x+ z)− u(t, x)− z∂xu(t, x)).

The function u in (2.2) can be represented as an integral with respect to the transition distribution

of the defaultable log-price process logS:

u(t, x) =

∫
R
ϕ(y)Γ(t, x;T, dy). (2.4)

Here we notice explicitly that Γ(t, x;T, dy) is not necessarily a standard probability measure because

its integral over R can be strictly less than one; nevertheless, with a slight abuse of notation, we

say that its Fourier transform

Γ̂(t, x;T, ξ) := F(Γ(t, x;T, ·))(ξ) :=

∫
R
eiξyΓ(t, x;T, dy), ξ ∈ R,

is the characteristic function of logS.

2.1.1 Adjoint expansion of the characteristic function

In this section we generalize the results in [58] to our framework and develop an expansion of the

coefficients

a(t, x) :=
σ2(t, x)

2
, γ(t, x), ν(t, x, dz),

around some point x̄. The coefficients a(t, x), γ(t, x) and ν(t, x, dz) are assumed to be continuously

differentiable with respect to x, up to order N ∈ N.

From now on, for simplicity, we assume that the coefficients are independent of t (see Remark

2.1.2 for the general case). First we introduce the nth-order approximation of L in (2.3):

Ln = L0 +

n∑
k=1

(
(x− x̄)kak(∂xx − ∂x) + (x− x̄)kγk∂x − (x− x̄)kγk

−
∫
R

(x− x̄)kνk(dz)(e
z − 1− z)∂x +

∫
R

(x− x̄)kνk(dz)(e
z∂x − 1− z∂x)

)
,
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where

L0 = ∂t + r∂x + a0(∂xx − ∂x) + γ0∂x − γ0 −
∫
R
ν0(dz)(ez − 1− z)∂x +

∫
R
ν0(dz)(ez∂x − 1− z∂x),

and

ak =
∂kxa(x̄)

k!
, γk =

∂kxγ(x̄)

k!
, νk(dz) =

∂kxν(x̄, dz)

k!
, k ≥ 0.

The basepoint x̄ is a constant parameter which can be chosen freely. In general the simplest choice

is x̄ = x (the value of the underlying at initial time t): we will see that in this case the formulas

for the Bermudan option valuation are simplified.

Let us assume for a moment that L0 has a fundamental solution G0(t, x;T, y) that is defined as

the solution of the Cauchy problemL0G
0(t, x;T, y) = 0 t ∈ [0, T [, x ∈ R,

G0(T, ·;T, y) = δy.

In this case we define the nth-order approximation of Γ as

Γ(n)(t, x;T, y) =
n∑
k=0

Gk(t, x;T, y),

where, for any k ≥ 1 and (T, y), Gk(·, ·;T, y) is defined recursively through the following Cauchy

problem L0G
k(t, x;T, y) = −

k∑
h=1

(Lh − Lh−1)Gk−h(t, x;T, y) t ∈ [0, T [, x ∈ R,

Gk(T, x;T, y) = 0, x ∈ R.

Notice that

Lh − Lh−1 = (x− x̄)hah(∂xx − ∂x) + (x− x̄)hγh∂x − (x− x̄)hγh

−
∫
R

(x− x̄)hνh(dz)(ez − 1− z)∂x +

∫
R

(x− x̄)hνh(dz)(ez∂x − 1− z∂x).

Correspondingly, the nth-order approximation of the characteristic function Γ̂ is defined to be

Γ̂(n)(t, x;T, ξ) =

n∑
k=0

F
(
Gk(t, x;T, ·)

)
(ξ) :=

n∑
k=0

Ĝk(t, x;T, ξ), ξ ∈ R. (2.5)

Now we remark that the operator L acts on (t, x) while the characteristic function is a Fourier

transform taken with respect to y: in order to take advantage of such a transformation, in the

following theorem we characterize Γ̂(n) in terms of the Fourier transform of the adjoint operator

L̃ = L̃(T,y) of L, acting on (T, y).
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Theorem 2.1.1 (Dual formulation). For any (t, x) ∈]0, T ]×R, the function G0(t, x; ·, ·) is defined

through the following dual Cauchy problemL̃
(T,y)
0 G0(t, x;T, y) = 0 T > t, y ∈ R,

G0(T, x;T, ·) = δx.
(2.6)

where

L̃
(T,y)
0 = −∂T − r∂y + a0(∂yy + ∂y)− γ0∂y − γ0 +

∫
R
ν0(dz)(ez − 1− z)∂y +

∫
R
ν̄0(dz)(ez∂y − 1− z∂y).

Moreover, for any k ≥ 1, the function Gk(t, x; ·, ·) is defined through the dual Cauchy problem as

follows:L̃
(T,y)
0 Gk(t, x;T, y) = −

k∑
h=1

(
L̃

(T,y)
h − L̃(T,y)

h−1

)
Gk−h(t, x;T, y) T > t, y ∈ R,

Gk(T, x;T, y) = 0 y ∈ R,
(2.7)

with

L̃
(T,y)
h − L̃(T,y)

h−1 = ahh(h− 1)(y − x̄)h−2 + ah(y − x̄)h−1 (2h∂y + (y − x̄)(∂yy + ∂y) + h)

− γhh(y − x̄)h−1 − γh(y − x̄)h (∂y + 1)

+

∫
R
νh(dz)(ez − 1− z)

(
h(y − x̄)h−1 + (y − x̄)h∂y

)
+

∫
R
ν̄h(dz)

(
(y + z − x̄)hez∂y − (y − x̄)h − z

(
h(y − x̄)h−1 − (y − x̄)h∂y

))
,

where in defining the adjoint of the operator we use the notation

ez∂yf(y) :=
∞∑
n=0

zn

n!
∂ny f(y) = f(y + z).

Notice that the adjoint Cauchy problems (2.6) and (2.7) admit a solution in the Fourier space and

can be solved explicitly; in fact, we have

F
(
L̃

(T,·)
0 Gk(t, x;T, ·)

)
(ξ) = ψ(ξ)Ĝk(t, x;T, ξ)− ∂T Ĝk(t, x;T, ξ),

where ψ(ξ) is the characteristic exponent of the Lévy process with coefficients γ0, a0 and ν0(dz),

that is

ψ(ξ) = iξ(r + γ0) + a0(−ξ2 − iξ)− γ0 −
∫
R
ν0(dz)(ez − 1− z)iξ +

∫
R
ν0(dz)(eizξ − 1− izξ).
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Thus the solution (in the Fourier space) to problems (2.6) and (2.7) is given by

Ĝ0(t, x;T, ξ) = eiξx+(T−t)ψ(ξ),

Ĝk(t, x;T, ξ) = −
∫ T

t
eψ(ξ)(T−s)F

(
k∑

h=1

(
L̃

(s,·)
h − L̃(s,·)

h−1

)
Gk−h(t, x; s, ·)

)
(ξ)ds, k ≥ 1.

(2.8)

Now we consider the general framework and in particular we drop the assumption on the existence

of the fundamental solution of L0: in this case, we define the nth-order approximation of the

characteristic function Γ̂ as in (2.5), with Ĝk given by (2.8). We also notice that

F
((
L̃

(s,·)
h − L̃(s,·)

h−1

)
u(s, ·)

)
(ξ) =(

ahh(h− 1)(−i∂ξ − x̄)h−2 + ah(−i∂ξ − x̄)h−1
(
−2hiξ + (−i∂ξ − x̄)(−ξ2 − iξ) + h

))
û(s, ξ)

−
(
γhh(−i∂ξ − x̄)h−1 − γh(−i∂ξ − x̄)h (iξ − 1)

)
û(s, ξ)

+

∫
R
νh(dz)(ez − 1− z)

(
h(−i∂ξ − x̄)h−1 − (−i∂ξ − x̄)hiξ

)
û(s, ξ)

+

∫
R
νh(dz)

(
(−i∂y − z − x̄)heiξz − (−i∂y − x̄)h + z

(
h(−i∂ξ − x̄)h−1 − (−i∂ξ − x̄)hiξ

))
û(s, ξ).

Remark 2.1.2. In case the coefficients γ, σ, ν depend on time, the solutions to the Cauchy

problems are similar:

Ĝ0(t, x;T, ξ) = eiξxe
∫ T
t ψ(s,ξ)ds,

Ĝk(t, x;T, ξ) = −
∫ T

t
e
∫ T
s ψ(τ,ξ)dτF

(
k∑

h=1

(
L̃

(s,·)
h (s)− L̃(s,·)

h−1(s)
)
Gk−h(t, x; s, ·)

)
(ξ)ds,

with

ψ(s, ξ) = iξ(r + γ0(s)) + a0(s)(−ξ2 − iξ)−
∫
R
ν0(s, dz)(ez − 1− z)iξ +

∫
R
ν0(s, dz)(eizξ − 1− izξ),

L̃
(s,y)
h (s)− L̃(s,y)

h−1 (s) = ah(s)h(h− 1)(y − x̄)h−2 + ah(s)(y − x̄)h−1 (2h∂y + (y − x̄)(∂yy + ∂y) + h)

− γh(s)h(y − x̄)h−1 − γh(s)(y − x̄)h (∂y + 1)

+

∫
R
νh(s, dz)(ez − 1− z)

(
h(y − x̄)h−1 + (y − x̄)h∂y

)
+

∫
R
ν̄h(s, dz)

(
(y + z − x̄)hez∂y − (y − x̄)h − z

(
h(y − x̄)h−1 − (y − x̄)h∂y

))
.

From these results one can already see that the dependency on x comes in through eiξx and after

taking derivatives the dependency on x will take the form (x− x̄)meiξx: this fact will be crucial in

our analysis.
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Example 2.1.3. To see the above dependency more explicitly for the second-order approximation

of the characteristic function we consider, for ease of notation, a simplified model: a one-dimensional

local Lévy model where the log-price solves the SDE

dXt = µ(Xt)dt+ σ(Xt)dWt +

∫
R
dÑt(dz)z. (2.9)

This model is a simplification of the original model, since we consider only a local volatility function,

and no local default or state-dependent Lévy measure. Thus only a Taylor expansion of the local

volatility coefficient is used. However, the dependency that we will see generalizes in the same way

to the local default and state-dependent measure. By the martingale condition we have

µ(x) = r − a(x)−
∫
R
ν(dz)(ez − 1),

and therefore the Kolmogorov operator of (2.9) reads

Lu(t, x) = ∂tu(t, x) + r∂xu(t, x) + a(t, x)(∂xx − ∂x)u(t, x)

−
∫
R
ν(dz)(ez − 1) +

∫
R
ν(dz) (u(t, x+ z)− u(t, x)) .

In this case, we have the following explicit approximation formulas for the characteristic function

Γ̂(t, x;T, ξ):

Γ̂(t, x;T, ξ) ≈ Γ̂(n)(t, x;T, ξ) := eiξx+(T−t)ψ(ξ)
n∑
k=0

F̂ k(t, x;T, ξ), n ≥ 0, (2.10)

with

ψ(ξ) = irξ − a0(ξ2 + iξ)−
∫
R
ν(dz)(ez − 1)iξ +

∫
R
ν(dz)

(
eizξ − 1

)
,

and

F̂ k(t, x;T, ξ) =

k∑
h=0

g
(k)
h (T − t, ξ)(x− x̄)h; (2.11)

here, for k = 0, 1, 2, we have

g
(0)
0 (s, ξ) = 1,

g
(1)
0 (s, ξ) = a1s

2(ξ2 + iξ)
i

2
ψ′(ξ),

g
(1)
1 (s, ξ) = − a1s(ξ

2 + iξ),

g
(2)
0 (s, ξ) =

1

2
s2a2ξ(i+ ξ)ψ′′(ξ)− 1

6
s3ξ(i+ ξ)(a2

1(i+ 2ξ)ψ′(ξ)− 2a2ψ
′(ξ)2 + a2

1ξ(i+ ξ)ψ′′(ξ))

− 1

8
s4a2

1ξ
2(i+ ξ)2ψ′(ξ)2,

g
(2)
1 (s, ξ) =

1

2
s2ξ(i+ ξ)(a2

1(1− 2iξ) + 2ia2ψ
′′(ξ))− 1

2
s3ia2

1ξ
2(i+ ξ)2ψ′′(ξ),

g
(2)
2 (s, ξ) = − a2sξ(i+ ξ) +

1

2
s2a2

1ξ
2(i+ ξ)2.
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Using the notation from above, we can write in the same way the approximation formulas for

the general case. Here we present the results for k = 0, 1, since higher-order formulas are too long

to include. We have:

g
(0)
0 (s, ξ) =1,

g
(1)
0 (s, ξ) =

i

2
a1s

2(ξ2 + iξ)ψ′(ξ) +
1

2
γ1s

2(i+ ξ)ψ′(ξ)− 1

2

∫
R
ν1(dz)(ez − 1− z)s2ξψ′(ξ) (2.12)

− 1

2

∫
R
ν1(dz)(ieiξz − i+ ξz)s2ψ′(ξ),

g
(1)
1 (s, ξ) =− a1s(ξ

2 + iξ) + γ1si(i+ ξ)−
∫
R
ν1(dz)(ez − 1− z)sξi

+

∫
R
ν1(dz)(eiξz − 1− ξiz)s.

Remark 2.1.4. From (2.10)-(2.11) and (3.18) we clearly see that the approximation of order n is

a function of the form

Γ̂(n)(t, x;T, ξ) := eiξx
n∑
k=0

(x− x̄)kgn,k(t, T, ξ), (2.13)

where the coefficients gn,k, with 0 ≤ k ≤ n, depend only on t, T and ξ, but not on x. The

approximation formula can thus always be split into a sum of products of functions depending only

on ξ and functions that are linear combinations of (x− x̄)meiξx, m ∈ N0.

2.2 Bermudan option valuation

A Bermudan option is a financial contract in which the holder can exercise at a predetermined

finite set of exercise moments prior to maturity, and the holder of the option receives a payoff

when exercising. Consider a Bermudan option with a set of M exercise moments {t1, ..., tM}, with

0 ≤ t1 < t2 < · · · < tM = T . When the option is exercised at time tm the holder receives the payoff

Φ (tm, Stm). Recalling (2.1), the no-arbitrage value of the Bermudan option at time t is

v(t,Xt) = 1{ζ>t} sup
τ∈Tt

E
[
e−
∫ τ
t (r+γ(s,Xs))dsϕ(τ,Xτ )|Xt

]
,

where ϕ(t, x) = Φ(t, ex) and Tt is the set of all G-stopping times taking values in {t1, ..., tM}∩ [t, T ].

For a Bermudan Put option with strike price K, we simply have ϕ(t, x) = (K − ex)+. By the

dynamic programming approach, the option value can be expressed by a backward recursion as

v(tM , x) = 1{ζ>tM}ϕ(tM , x)

and c(t, x) = E
[
e
∫ tm
t (r+γ(s,Xs))dsv(tm, Xtm)|Xt = x

]
, t ∈ [tm−1, tm[

v(tm−1, x) = 1{ζ>tm−1}max{ϕ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.
(2.14)
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In the above notation v(t, x) is the option value and c(t, x) is the so-called continuation value. The

option value is set to be v(t, x) = c(t, x) for t ∈ ]tm−1, tm[, and, if t1 > 0, also for t ∈ [0, t1[.

Remark 2.2.1. Since the payoff of a Call option grows exponentially with the log-stock price, this

may introduce significant cancellation errors for large domain sizes. For this reason we price Put

options only using our approach and we employ the well-known Put-Call parity to price Calls via

Puts. This is a rather standard argument (see, for instance, [68]).

2.2.1 An algorithm for pricing Bermudan Put options

In pricing the Bermudan option we will employ the COS method proposed by [31], and as explained

in Section 1.3, which we briefly restate here for convenience. The COS method is based on the

insight that the Fourier-cosine series coefficients of Γ(t, x;T, dy) (and therefore also of option prices)

are closely related to the characteristic function of the underlying process, namely the following

relationship holds: ∫ b

a
ei

kπ
b−aΓ(t, x;T, dy) ≈ Γ̂

(
t, x;T,

kπ

b− a

)
.

The COS method provides a way to calculating expected values (integrals) of the form

v(t, x) =

∫
R
ϕ(T, y)Γ(t, x;T, dy),

by (1) truncating the integration range to a finite region [a, b], (2) replacing the distribution with

its cosine expansion and truncating the series to N terms, and (3) using the above relation between

the density and the characteristic function to rewrite the option price as

v(t, x) ≈
N−1∑′

k=0

Re

(
e−ikπ

a
b−a Γ̂

(
t, x;T,

kπ

b− a

))
Vk(T ), (2.15)

where

Vk(T ) =
2

b− a

∫ b

a
cos

(
kπ
y − a
b− a

)
ϕ(T, y)dy,

are the Fourier-cosine series coefficients of the payoff function at time T respectively.

Next we return to the Bermudan Put pricing problem. Remembering that the expected value

c(t, x) in (2.14) can be rewritten in integral form as in (2.4), we have

c(t, x) = e−r(tm−t)
∫
R
v(tm, y)Γ(t, x; tm, dy), t ∈ [tm−1, tm[.

Then we use the Fourier-cosine expansion (2.15), so that we get the approximation:

ĉ(t, x) = e−r(tm−t)
N−1∑′

k=0

Re

(
e−ikπ

a
b−a Γ̂

(
t, x; tm,

kπ

b− a

))
Vk(tm), t ∈ [tm−1, tm[ (2.16)
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Vk(tm) =
2

b− a

∫ b

a
cos

(
kπ
y − a
b− a

)
max{ϕ(tm, y), c(tm, y)}dy,

with ϕ(t, x) = (K − ex)+.

Next we recover the coefficients (Vk(tm))k=0,1,...,N−1 from (Vk(tm+1))k=0,1,...,N−1. To this end,

we split the integral in the definition of Vk(tm) into two parts using the early-exercise point x∗m,

which is the point where the continuation value is equal to the payoff, i.e. c(tm, x
∗
m) = ϕ(tm, x

∗
m);

thus we have

Vk(tm) = Fk(tm, x
∗
m) + Ck(tm, x

∗
m), m = M − 1,M − 2, ..., 1,

where

Fk(tm, x
∗
m) :=

2

b− a

∫ x∗m

a
ϕ(tm, y) cos

(
kπ
y − a
b− a

)
dy,

Ck(tm, x
∗
m) :=

2

b− a

∫ b

x∗m

c(tm, y) cos

(
kπ
y − a
b− a

)
dy,

(2.17)

and Vk(tM ) = Fk(tM , logK).

Remark 2.2.2. Since we have a semi-analytic formula for ĉ(tm, x), we can easily find the derivatives

with respect to x and use Newton’s method to find the point x∗m such that c(tm, x
∗
m) = ϕ(tm, x

∗
m).

A good starting point for the Newton method is logK, since x∗m ≤ logK.

The coefficients Fk(tm, x
∗
m) can be computed analytically using x∗m ≤ logK, so that we have

Fk(tm, x
∗
m) =

2

b− a

∫ x∗m

a
(K − ey) cos

(
kπ
y − a
b− a

)
dy

=
2

b− a
KΨk(a, x

∗
m)− 2

b− a
χk(a, x

∗
m),

where

χk(a, x
∗
m) =

∫ x∗m

a
ey cos

(
kπ
y − a
b− a

)
dy

=
1

1 +
(
kπ
b−a

)2

(
ex

∗
m cos

(
kπ
x∗m − a
b− a

)
− ea +

kπex
∗
m

b− a
sin

(
kπ
x∗m − a
b− a

))
,

Ψk(a, x
∗
m) =

∫ x∗m

a
cos

(
kπ
y − a
b− a

)
dy =


b−a
kπ sin

(
kπ x

∗
m−a
b−a

)
, k 6= 0,

x∗m − a, k = 0.

On the other hand, by inserting the approximation (2.16) for the continuation value into the formula

for Ck(tm, x
∗
m) have the following coefficients Ĉk for m = M − 1,M − 2, ..., 1:

Ĉk(tm, x
∗
m) =

2e−r(tm+1−tm)

b− a

N−1∑′

j=0

Vj(tm+1)

∫ b

x∗m

Re

(
e−ijπ

a
b−a Γ̂

(
tm, x; tm+1,

jπ

b− a

))
cos

(
kπ
x− a
b− a

)
dx.

(2.18)

Thus the algorithm for pricing Bermudan options can then be summarized as follows:
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1. For k = 0, 1, ..., N − 1:

• At time tM , the coefficients are exact: Vk(tM ) = Fk(tM , logK), as in (2.17).

2. For m = M − 1 to 1:

• Determine the early-exercise point x∗m using Newton’s method;

• Compute V̂k(tm) using formula V̂k(tm) := Fk(tm, x
∗
m)+Ĉk(tm, x

∗
m), (2.17) and (2.18).

Use an FFT for the continuation value (see Section 3.2).

3. Final step: using V̂k(t1) determine the option price v̂(0, x) = ĉ(0, x) using (2.16).

Figure 2.1: Algorithm for Bermudan option valuation

2.2.2 An efficient algorithm for the continuation value

In this section we derive an efficient algorithm for calculating Ĉk(tm, x
∗
m) in (2.18). When consid-

ering an exponential Lévy process with constant coefficients as done in [31], the continuation value

can be calculated using a Fast Fourier Transform (FFT). This can be done due to the fact that

the characteristic function Γ̂(t, x;T, ξ) can be split into a product of a function depending only on

ξ and a function of the form eiξx. Note that we typically have ξ = jπ
b−a . The integration over x

results in a sum of a Hankel and Toeplitz matrix (with indices (j+k) and (j−k) respectively). The

matrix-vector product, with these special matrices, can be transformed into a circular convolution

which can be computed using FFTs.

From (3.18) we know that the nth-order approximation of the characteristic function is of the

form:

Γ̂(n)(tm, x; tm+1, ξ) = eiξx
n∑
k=0

(x− x̄)kgn,k(tm, tm+1, ξ),

where the coefficients gn,k(t, T, ξ), with 0 ≤ k ≤ n, depend only on t, T and ξ, but not on x. Using

(3.18) we write the continuation value as:

Ĉk(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)

N−1∑′

j=0

Re

(
Vj(tm)gn,h

(
tm, tm+1,

jπ

b− a

)
Mh
k,j(x

∗
m, b)

)
,

where we have interchanged the sums and integral and defined:

Mh
k,j(x

∗
m, b) =

2

b− a

∫ b

x∗m

eijπ
x−a
b−a (x− x̄)h cos

(
kπ
x− a
b− a

)
dx (2.19)

This can be written in vectorized form as:

Ĉ(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)Re
(
V(tm+1)Mh(x∗m, b)Λ

h
)
,
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where V(tm+1) is the vector [V0(tm+1), ..., VN−1(tm+1)]T andMh(x∗m, b)Λ
h is a matrix-matrix prod-

uct withMh being a matrix with elements {Mh
k,j}

N−1
k,j=0 and Λh is a diagonal matrix with elements

gn,h

(
tm, tm+1,

jπ

b− a

)
, j = 0, . . . , N − 1.

We have the following theorem for calculating a generalized form of the integral in (2.19) which is

used in the calculation of the continuation value.

Theorem 2.2.3. The matrix M with elements {Mk,j}N−1
k,j=0 such that:

Mk,j =

∫
ejx cos(kx)xmdx,

consists of sums of Hankel and Toeplitz matrices.

Proof. Using standard trigonometric identities we can rewrite the integral as:

Mk,j =

∫
cos(jx) cos(kx)xmdx+ i

∫
sin(jx) cos(kx)xmdx

= MH
k,j + iMT

k,j ,

where we have defined:

MH
k,j =

1

2

∫
cos((j + k)x)xmdx+

1

2

∫
sin((j + k)x)xmdx,

MT
k,j =

1

2

∫
cos((j − k)x)xmdx+

1

2

∫
sin((j − k)x)xmdx.

The following holds:∫
cos(nx)xmdx =

1

n
xm sin(nx) +

dm/2e∑
i=1

(−1)i+1

∏2i−2
j=0 (m− j)

n2i
cos(nx)xm−(2i−1)

−
bm/2c∑
i=1

(−1)i+1

∏2i−1
j=0 (m− j)
n2i+1

sin(nx)xm−2i,

∫
sin(nx)xmdx = − 1

n
xm cos(nx) +

dm/2e∑
i=1

(−1)i+1

∏2i−2
j=0 (m− j)

n2i
sin(nx)xm−(2i−1)

−
bm/2c∑
i=1

(−1)i+1

∏2i−1
j=0 (m− j)
n2i+1

cos(nx)xm−2i.

It follows that {MH
k,j}N−1

k,j=0 is a Hankel matrix with coefficient (j+ k) and {MT
k,j}N−1

k,j=0 is a Toeplitz

matrix with coefficient (j − k):

MH =



M0 M1 M2 . . . MN−1

M1 M2 . . . MN

...
...

MN−2 MN−1 . . . M2N−3

MN−1 . . . M2N−3 M2N−2


,
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MT =



M0 M1 . . . MN−2 MN−1

M−1 M0 M1 . . . MN−2

...
. . .

...

M2−N . . . M−1 M0 M1

M1−N M2−N M−1 M0


,

where we have defined

Mj =
1

2

∫
cos(jx)xmdx+

1

2

∫
sin(jx)xmdx.

From Theorem 2.2.3 we see that Mh(x∗m, b) with elements Mh
k,j consists of a sum of a Hankel

and Toeplitz matrix.

Example 2.2.4. We derive explicitly the Hankel and Toeplitz matrices for m = 0 and m = 1. We

calculate the indefinite integral

Mk,j =
2

b− a

∫
eijπ

x−a
b−a cos

(
kπ
x− a
b− a

)
(x− x̄)mdx.

Suppose m = 0, in this case we have Mk,j = MH
k,j +MT

k,j , with:

MH
k,j = −

i exp
(
i (j+k)π(x−a)

b−a

)
π(j + k)

,

MT
k,j = −

i exp
(
i (j−k)π(x−a)

b−a

)
π(j − k)

,

where {MH
k,j}N−1

k,j=0 is a Hankel matrix and {MT
k,j}N−1

k,j=0 is a Toeplitz matrix with

Mj =


x
b−a , j = 0,

i exp
(
i
jπ(x−a)
b−a

)
πj , j 6= 0.

Suppose m = 1, in this case we have:

MH
k,j = − a− b

(j − k)2π2
exp

(
i(j − k)π

(x− a)

b− a

)
− x− x̄

(j − k)π
i exp

(
i(j − k)π

(x− a)

b− a

)
,

MT
k,j = − a− b

(j + k)2π2
exp

(
i(j + k)π

(x− a)

b− a

)
− x− x̄

(j + k)π
i exp

(
i(j + k)π

(x− a)

b− a

)
,

where {MH
k,j}N−1

k,j=0 is a Hankel matrix and {MT
k,j}N−1

k,j=0 is a Toeplitz matrix, with

Mj =


x(x−x̄)
b−a , j = 0,

− a−b
j2π2 exp

(
ijπ (x−a)

b−a

)
− x−x̄

jπ i exp
(
ijπ (x−a)

b−a

)
, j 6= 0.
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Remark 2.2.5. If we take x̄ = x, which is most common in practice, the formulas are simplified

significantly and only the case of m = 0 is relevant. In this case the characteristic function is simply

eiξx times a sum of terms depending only on tm, tm+1 and ξ = jπ
b−a :

Γ̂(n)(tm, x; tm+1, ξ) = eiξxgn,0(tm, tm+1, ξ).

Using the split into sums of Hankel and Toeplitz matrices we can write the continuation value

in matrix form as:

Ĉ(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)Re
(

(Mh
H +Mh

T )uh
)
,

where Mh
H = {MH,h

k,j (x∗m, b)}N−1
k,j=0 is a Hankel matrix and Ml

T = {MT,h
k,j (x∗m, b)}N−1

k,j=0 is a Toeplitz

matrix and uh = {uhj }
N−1
j=0 , with uhj = gn,h

(
tm, tm+1,

jπ
b−a

)
Vj(tm+1) and uh0 = 1

2gn,h (tm, tm+1, 0)V0(tm+1).

We recall that the circular convolution, denoted by ~, of two vectors is equal to the inverse

discrete Fourier transform (D−1) of the products of the forward DFTs, D, i.e.:

x ~ y = D−1{D(x) · D(y)}.

For Hankel and Toeplitz matrices we have the following result (see [2] and Result 2.2 in [31]):

Theorem 2.2.6. For a Toeplitz matrix MT , the product MTu is equal to the first N elements of

mT ~ uT , where mT and uT are 2N vectors defined by

mT = [M0,M−1,M−2, ...,M1−N , 0,MN−1,MN−2, ...,M1]T ,

uT = [u0, u1, ..., uN−1, 0, ..., 0]T .

For a Hankel matrixMH , the productMHu is equal to the first N elements of mH~uH in reversed

order, where mH and uH are 2N vectors defined by

mH = [M2N−1,M2N−2, ...,M1,M0]T

uH = [0, ..., 0, u0, u1, ..., uN−1]T .

Summarizing, we can calculate the continuation value Ĉ(tm, x
∗
m) using the algorithm in Figure

2.2.

The continuation value requires five DFTs for each h = 0, ..., n, and a DFT is calculated using the

FFT. In practice it is most common to have x̄ = x and in this case we only need five FFTs. The

computation of Fk(tm, x
∗
m) is linear in N . The overall complexity of the method is dominated by

the computation of Ĉ(tm, x
∗
m), whose complexity is O(N log2N) with the FFT. The complexity of

the calculation for option value at time 0 is O(N). If we have a Bermudan option with M exercise

dates, the overall complexity will be O((M − 1)N log2N).
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1. For h = 0, ..., n:

• Compute Mh
j (x1, x2)

• Construct mh
H and mh

T

• Compute uh(tm) = {uhj }
N−1
j=0

• Construct uhT by padding N zeros to uh(tm)

• MTuh = the first N elements of D−1{D(mh
T ) · D(uhT )}

• MHuh = reverse{the first N elements of D−1{D(mh
H) · sgn · D(uhT )}}

2. Compute the continuation value using Ĉ(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)Re(MTuh+MHuh).

Figure 2.2: Algorithm for the computation of Ĉ(tm, x
∗
m)

Remark 2.2.7 (American options). The prices of American options can be obtained by applying

a Richardson extrapolation (see, for instance, [50]) on the prices of a few Bermudan options with

a small number of exercise dates. Let vM denote the value of a Bermudan option with maturity T

and a number M of early exercise dates that are T
M years apart. Then, for any d ∈ N, the following

4-point Richardson extrapolation scheme

1

21
(64v2d+3 − 56v2d+2 + 14v2d+1 − v2d)

gives an approximation of the corresponding American option price.

Remark 2.2.8 (The Greeks). The approximation method can also be used to calculate the

Greeks at almost no additional cost. In the case of x̄ = x, we have the following approximation

formulas for Delta and Gamma:

∆̂ = e−r(t1−t0)

N−1∑′

k=0

Re

(
eikπ

x−a
b−a

(
ikπ

b− a
gn,0

(
t0, t1,

kπ

b− a

)
+ gn,1

(
t0, t1,

kπ

b− a

)))
V̂k(t1),

Γ̂ = e−r(t1−t0)

N−1∑′

k=0

Re

(
eikπ

x−a
b−a

(
− ikπ

b− a
gn,0

(
t0, t1,

kπ

b− a

)
− gn,1

(
t0, t1,

kπ

b− a

)

+ 2
ikπ

b− a
gn,1

(
t0, t1,

kπ

b− a

)
+

(
ikπ

b− a

)2

gn,0

(
t0, t1,

kπ

b− a

)
+ 2gn,2

(
t0, t1,

kπ

b− a

)))
V̂k(t1).
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2.3 Error estimates

The error in our approximation consists of the error of the COS method and the error in the adjoint

expansion of the characteristic function. The error of the COS method depends on the truncation

of the integration range [a, b] and the truncation of the infinite summation of the Fourier-cosine

expansion by N . The density rapidly decays to zero as y → ±∞. Then the overall error can be

bounded as follows:

ε1(x;N, [a, b]) ≤ Q

∣∣∣∣∣
∫
R\[a,b]

Γ(t, x;T, dy)

∣∣∣∣∣+

∣∣∣∣ P

(N − 1)β−1

∣∣∣∣ ,
where P and Q are constants not depending on N or [a, b] and β ≥ n ≥ 1, with n being the algebraic

index of convergence of the cosine series coefficients. For a sufficiently large integration interval

[a, b], the overall error is dominated by the series truncation error, which converges exponentially.

The error in the backward propagation of the coefficients Vk(tm) is defined as ε2(k, tm) := Vk(tm)−
V̂k(tm). With [a, b] sufficiently large and a probability density function in C∞K ([a, b]), the error

ε1(k, tm) converges exponentially in N . For a detailed derivation on the error of the COS method

see [30] and [31].

We now present the error estimates for the adjoint expansion of the characteristic function at

orders zero and one. We consider for simplicity a model with time-independent coefficients

Xt = x+

∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dWs +

∫ t

0

∫
R
η(Xs−)zdÑ(s, dz), (2.20)

where we have defined as usual dÑ(t, dz) = dN(t, dz)−ν(dz)dt. This model is similar to the model

we considered initially in (3.16); only now we deal with slightly simplified version and assume that

the dependency on Xt in the measure can be factored out, which is often enough the case.

Let X̃t be the 0th-order approximation of the model in (2.20) with x̄ = x, that is

X̃t = x+

∫ t

0
µ(x)ds+

∫ t

0
σ(x)dWs +

∫ t

0

∫
R
η(x)zdÑ(s, dz). (2.21)

The characteristic exponent of X̃t − x is

ψ(ξ) = iξµ(x)− σ(x)2

2
ξ2 − η(x)

∫
R
ν(dz)(ez − 1− z)iξ + η(x)

∫
R
ν(dz)(eizξ − 1− izξ). (2.22)

Theorem 2.3.1. Let n = 0, 1 and assume that the coefficients µ, σ, η are continuously differentiable

with bounded derivatives up to order n. Let Γ̂(n)(0, x; t, ξ) in (2.5) be the nth-order approximation

of the characteristic function. Then, for any T > 0 there exists a positive constant C that depends

only on T , on the norms of the coefficients and on the Lévy measure ν, such that∣∣∣Γ̂(0, x; t, ξ)− Γ̂(n)(0, x; t, ξ)
∣∣∣ ≤ C (1 + |ξ|1+3n

)
tn+1, t ∈ [0, T ], ξ ∈ R. (2.23)
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Proof. Let X and X̃ be as in (2.20) and (2.21) respectively. We first prove that

E[|Xt − X̃t|2] ≤ C
(
κ2t

2 + κ2
1t

3
)
, t ∈ [0, T ], (2.24)

for some positive constant C that depends only on T , on the Lipschitz constants of the coefficients

µ, σ, η and on the Lévy measure ν. Here κ1 = −ψ′(0) and κ2 = −ψ′′(0) where ψ in (2.22) is the

characteristic exponent of the Lévy process (X̃t − x).

Using the Hölder inequality, the Itô isometry (see, for instance, [59]) and the Lipschitz continuity

of η, µ and σ, the mean squared error is bounded by:

E
[
|Xt − X̃t|2

]
≤ 3E

[(∫ t

0
(µ(Xs)− µ(x))ds

)2
]

+ 3E

[(∫ t

0
(σ(Xs)− σ(x))dWs

)2
]

+ 3E

[(∫ t

0

∫
R

(η(Xs−)− η(x))zdÑ(s, dz)

)2
]

≤ C

∫ t

0
E
[
|X̃s − x|2

]
ds+ C

∫ t

0
E
[
|Xs − X̃s|2

]
ds, (2.25)

where

C = 6

(∥∥µ′∥∥2

∞ +
∥∥σ′∥∥2

∞ +
∥∥η′∥∥2

∞

∫
R
z2ν(dz)

)
.

Now we recall the following relationship between the first and second moment and cumulants

E[(X̃s − x)] = c1(s), E[(X̃s − x)2] = c2(s) + c1(s)2,

where

cn(s) =
s

in
∂nψ(ξ)

∂ξn

∣∣∣∣
ξ=0

,

and ψ(ξ) is the characteristic exponent of (X̃s − x). Thus we have

E
[
|X̃s − x|2

]
= κ2s+ κ2

1s
2. (2.26)

Plugging (2.26) into (2.25) we get

E[|Xt − X̃t|2] ≤ C
(
κ2

2
t2 +

κ2
1

3
t3
)

+ C

∫ t

0
E
[
|Xs − X̃s|2

]
ds,

and therefore estimate (2.24) follows by applying the Gronwall inequality in the form

ϕ(t) ≤ α(t) + C

∫ t

0
ϕ(s)ds =⇒ ϕ(t) ≤ α(t) + C

∫ t

0
α(s)eC(t−s)ds,

that is valid for any C ≥ 0 and ϕ, α continuous functions.
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From (2.24) and (2.26) we can also deduce that

E
[
|Xt − x|2

]
≤ 2E

[∣∣Xt − X̃t

∣∣2]+ 2E
[∣∣X̃t − x

∣∣2] ≤ C (κ2t+ κ2
1t

2
)
, t ∈ [0, T ]. (2.27)

Moreover, from (2.24) we also get the following error estimate for the expectation of a Lipschitz

payoff function v: ∣∣∣E [v(Xt)]− E[v(X̃t)]
∣∣∣ ≤ C√κ2t+ κ2

1t
2, t ∈ [0, T ],

where now C also depends on the Lipschitz constant of v. In particular, taking v(x) = eixξ, this

proves (2.23) for n = 0.

Next we prove (2.23) for n = 1.

Proceeding as in the proof of Lemma 6.23 in [52] with u(0, x) = Γ̂(0, x; t, ξ) and x̄ = x, we find

Γ̂(0, x; t, ξ)− Γ̂(1)(0, x; t, ξ) =

∫ t

0
E
[
(L− L0)Ĝ1(s,Xs; t, ξ) + (L− L1)Ĝ0(s,Xs; t, ξ)

]
ds,

where the 1st-order approximation is as usual

Γ̂(1)(s,X; t, ξ) = Ĝ0(s,X; t, ξ) + Ĝ1(s,X; t, ξ),

with

Ĝ0(s,X; t, ξ) = eiXξ+(t−s)ψ(ξ),

Ĝ1(s,X; t, ξ) = eiXξ+(t−s)ψ(ξ)g
(1)
0 (t− s, ξ),

and g
(1)
0 as in (2.12). Using the Lagrangian remainder of the Taylor expansion, we have

L− L0 = γ′(ε′)(X − x)(∂X − 1) + a′(ε′)(X − x)(∂XX − ∂X) + η′(ε′)(X − x)

∫
R
ν(dz)(ez − 1− z)∂X

+ η′(ε′)(X − x)

∫
R
ν(dz)(ez∂X − 1− z∂X),

L− L1 =
1

2
γ′′(ε′′)(X − x)2(∂X − 1) +

1

2
a′′(ε′′)(X − x)2(∂XX − ∂X)

+
1

2
η′′(ε′′)(X − x)2

∫
R
ν(dz)(ez − 1− z)∂X +

1

2
η′′(ε′′)(X − x)2

∫
R
ν(dz)(ez∂X − 1− z∂X),

for some ε′, ε′′ ∈ [x,X]. Now, |Ĝ0| ≤ 1 because Ĝ0 is the characteristic function of the process X̃

in (2.21); thus, we have ∣∣∣(L− L1)Ĝ0(s,Xs; t, ξ)
∣∣∣ ≤ C(1 + |ξ|2) |Xs − x|2 .
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On the other hand, from (2.12) we have∣∣∣g(1)
0 (t− s, ξ)

∣∣∣ ≤ C(t− s)2
(
1 + |ξ|4

)
,

and therefore we get ∣∣∣(L− L0)Ĝ1(s,Xs; t, ξ)
∣∣∣ ≤ C(t− s)2(1 + |ξ|4) |Xs − x| .

So we find∣∣∣Γ̂(0, x; t, ξ)− Γ̂(1)(0, x; t, ξ)
∣∣∣ ≤ C(1 + |ξ|4)

∫ t

0

(
(t− s)2E [|Xs − x|] + E

[
|Xs − x|2

])
ds

The thesis then follows from estimate (2.27) and integrating.

Remark 2.3.2. The proof of Theorem 2.3.1 can be generalized to obtain error bounds for any

n ∈ N: however, one can see that, for n ≥ 2, the order of convergence improves only in the diffusive

part, according to the results proved in [52].

2.4 Numerical tests

For the numerical examples we use the second-order approximation of the characteristic function.

We have found this to be sufficiently accurate by numerical experiments and theoretical error

estimates. The formulas for the second-order approximation are simple, making the method easy

to implement. For the COS method, unless otherwise mentioned, we use N = 200 and L = 10,

where L is the parameter used to define the truncation range [a, b] as follows:

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
, (2.28)

where cn is the nth cumulant of log-price process logS, as proposed in [30]. The cumulants are

calculated using the 0th-order approximation of the characteristic function. A larger N and L has

little effect on the price, since a fast convergence is achieved already for small N and L. We compare

the approximated values to a 95% confidence interval computed with a Longstaff-Schwartz method

with 105 simulations and 250 time steps per year. Furthermore, in the expansion we always use

x̄ = x.

2.4.1 Tests under CEV-Merton dynamics

Consider a process under the CEV-Merton dynamics:

dXt =
(
r − a(x)− λ

(
em+δ2/2 − 1

))
dt+

√
2a(x)dWt +

∫
R
dÑt(t, dz)z,
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with

a(x) =
σ2

0e
2(β−1)x

2
,

ν(dz) = λ
1√

2πδ2
exp

(
−(z −m)2

2δ2

)
dz,

ψ(ξ) = −a0(ξ2 + iξ) + irξ − iλ
(
em+δ2/2 − 1

)
ξ + λ

(
emiξ−δ

2ξ2/2 − 1
)
.

We use the following parameters S0 = 1, r = 5%, σ0 = 20%, β = 0.5, λ = 30%, m = −10%,

δ = 40% and compute the European and Bermudan option values.

Table 2.1: Prices for a European and a Bermudan Put option (expiry T = 0.25 with 3 exercise

dates, expiry T = 1 with 10 exercise dates and expiry T = 2 with 20 exercise dates) in the CEV-

Merton model for the 2nd-order approximation of the characteristic function, and a Monte Carlo

method.

European Bermudan

T K MC 95% c.i. Value MC 95% c.i. Value

0.25 0.6 0.001240-0.001433 0.001326 0.001243-0.001431 0.001307

0.8 0.005218-0.005679 0.005493 0.005314-0.005774 0.005421

1 0.04222-0.04321 0.04275 0.04274-0.04371 0.04304

1.2 0.1923-0.1938 0.1935 0.1979-0.1989 0.1981

1.4 0.3856-0.3872 0.3866 0.3948-0.3958 0.3955

1.6 0.5812-0.5829 0.5825 0.5940-0.5950 0.5941

1 0.6 0.006136-0.006573 0.006579 0.006307-0.006729 0.006096

0.8 0.02526-0.02622 0.02581 0.02617-0.02711 0.02520

1 0.08225-0.08395 0.08250 0.08480-0.08640 0.08593

1.2 0.1965-0.1989 0.1977 0.2097-0.2115 0.2132

1.4 0.3560-0.3589 0.3574 0.3946-0.3957 0.3954

1.6 0.5341-0.5385 0.5364 0.5930-0.5941 0.5932

2 0.6 0.01444-0.01513 0.01529 0.01528-0.01594 0.01365

0.8 0.04522-0.04655 0.04613 0.04596-0.04719 0.04659

1 0.1046-0.1067 0.1077 0.1149-0.1168 0.1171

1.2 0.2054-0.2083 0.2065 0.2319-0.2341 0.2345

1.4 0.3351-0.3386 0.3382 0.3968-0.3987 0.3991

1.6 0.4904-0.4944 0.4919 0.5927-0.5938 0.5935

We present the results in Table 2.1. The option value for both the Bermudan options as well as the
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European options appears to be accurate. Since the COS method has a very quick convergence,

already for N = 64 the error becomes stable. For at-the-money strikes we have log10 |error| ≈ 3.5.

The use of the second-order approximation of the characteristic function is justified by the fact

that the option value (and thus the error) stabilizes starting from the second-order approximation.

Furthermore, it is noteworthy that the 0th-order approximation is already very accurate.

The computer used in the experiments has an Intel Core i7 CPU with a 2.2 GHz processor. The

CPU time of the calculations depends on the number of exercise dates. Assuming we use the

second-order approximation of the characteristic function, if we have M exercise dates the CPU

time will be 5 ·M ms.

Remark 2.4.1. The method can be extended to include time-dependent coefficients. The accuracy

and speed of the method will be of the same order as for time-independent coefficients.

Remark 2.4.2. The Greeks can be calculated at almost no additional cost using the formulas

presented in Remark 2.2.8. Numerically, the order of convergence is algebraic and is the same for

both the exact characteristic function as for the 2nd-order approximation.

2.4.2 Tests under the CEV-Variance-Gamma dynamics

Consider the jump process to be a Variance-Gamma process. The VG process, is obtained by

replacing the time in a Brownian motion with drift θ and standard deviation %, by a Gamma

process with variance κ and unitary mean. The model parameters % and κ allow to control the

skewness and the kurtosis of the distribution of stock price returns. The VG density is characterized

by a fat tail and is thus used as a model in situations where small and large asset values are more

probable than would be the case for the lognormal distribution. The Lévy measure in this case is

given by:

ν(dx) =
e−λ1x

κx
1{x>0}dx+

eλ2x

κ|x|
1{x<0}dx,

where

λ1 =

(√
θ2κ2

4
+
%2κ

2
+
θκ

2

)−1

, λ2 =

(√
θ2κ2

4
+
%2κ

2
− θκ

2

)−1

.

Furthermore we have

a(x) =
σ2

0e
2(β−1)x

2
,

µ(t, x) = r +
1

κ
log

(
1− κθ − κ%2

2

)
− a(x),

ψ(ξ) = −a0(ξ2 + iξ) + irξ + i
1

κ
log

(
1− κθ − κ%2

2

)
ξ − 1

κ
log

(
1− iκθξ +

ξ2κ%2

2

)
.

We use the following parameters S0 = 1, r = 5%, σ0 = 20%, β = 0.5, κ = 1, θ = −50%, % = 20%.

The results for the European and Bermudan option are presented in Table 2.2.
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Table 2.2: Prices for a European and a Bermudan Put option (10 exercise dates, expiry T = 1) in

the CEV-VG model for the 2nd-order approximation of the characteristic function, and a Monte

Carlo method.

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value

0.6 0.03090-0.03732 0.03546 0.03756-0.03876 0.03749

0.8 0.08046-0.08247 0.08029 0.08290-0.08484 0.08395

1 0.1507-0.1531 0.1511 0.1572-0.1600 0.1594

1.2 0.2501-0.2538 0.2522 0.2634-0.2668 0.2685

1.4 0.3831-0.3876 0.3847 0.4073-0.4108 0.4137

1.6 0.5430-0.5479 0.5436 0.5920-0.5938 0.5937

2.4.3 CEV-like Lévy process with a state-dependent measure and default

In this section we consider a model similar to the one used in [44]. The model is defined with local

volatility, local default and a state-dependent Lévy measure as follows:

a(x) =
1

2
(b20 + ε1b

2
1η(x)),

γ(x) = c0 + ε2c1η(x),

ν(x, dz) = ε3νN (dz) + ε4η(x)νN (dz),

η(x) = eβx. (2.29)

We will consider Gaussian jumps, meaning that

νN (dz) = λ
1√

2πδ2
exp

(
−(z −m)2

2δ2

)
dz.

The regular CEV model has several shortcomings: the volatility for instance drops to zero as

the underlying approaches infinity; also the model does not allow the underlying to experience

jumps. This model tries to overcome these shortcomings, while still retaining CEV-like behaviour

through η(x). The local volatility function σ(x) behaves asymptotically like the CEV model,

σ(x) ∼ √ε1b1eβx/2 as x→ −∞, reflecting the fact that the volatility tends to increase as the asset

price drops (the leverage effect). Jumps of size dz arrive with a state-dependent intensity of ν(x, dz).

Lastly, a default arrives with intensity γ(x). The default function γ(x) behaves asymptotically like

ε2c1e
βx as x → −∞, reflecting the fact that a default is more likely to occur when the price goes

down.

In Table 2.3 the results are presented for a model as defined in (2.29) without default, meaning
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that c0 = c1 = 0 and with a state-dependent jump measure, so ν(x, dz) = η(x)νN (dz). In this case

we have

ψ(ξ) = irξ − a0(ξ2 − iξ)− λν0(em+δ2/2 − 1)iξ + λν0(emiξ−δ
2ξ2/2 − 1),

where a0 = 1
2b

2
1e
βx̄ and ν0(dz) = eβx̄νN (dz). The other parameters are chosen as: b1 = 0.15, b0 = 0,

β = −2, λ = 20%, δ = 20%, m = −0.2, S0 = 1, r = 5%, ε1 = 1, ε3 = 0, ε4 = 1, the number of

exercise dates is 10 and T = 1. From the results for both the European option and the Bermudan

option we see that the method performs very accurately, even for deeply in-the-money strikes.

In Table 2.4 the results are presented for the value of a defaultable Put option. In case of default

prior to exercise the Put option payoff is 0, in case of no default the value is (K − St)+, depending

on the exercise time. We look at the model as defined in (2.29) with the possibility of default and

consider state-independent jumps, meaning that we have γ(x) = η(x) and ν(x, dz) = νN (dz). We

have

ψ(ξ) = irξ − a0(ξ2 − iξ) + γ0iξ − γ0 − λ(em+δ2/2 − 1)iξ + λ(emiξ−δ
2ξ2/2 − 1),

where a0 = 1
2b

2
1e
βx̄ and γ0 = c1e

βx̄. The other parameters are b0 = 0, b1 = 0.15, β = −2, c0 = 0,

c1 = 0.1, S0 = 1, r = 5%, ε1 = 1, ε2 = 1, ε3 = 1, ε4 = 0, the number of exercise dates is 10 and

T = 1.

Table 2.3: Prices for a European and a Bermudan Put option (10 exercise dates, expiry T = 1) in

the CEV-like model with state-dependent measure for the 2nd-order approximation characteristic

function, and a Monte Carlo method.

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value

0.8 0.01025-0.01086 0.009385 0.01068-0.01125 0.01024

1 0.04625-0.04745 0.04817 0.05141-0.05253 0.05488

1.2 0.1563-0.1582 0.1564 0.1942-0.1952 0.1952

1.4 0.3313-0.3334 0.3314 0.3927-0.3934 0.3930

1.6 0.5207-0.5229 0.5218 0.5919-0.5926 0.5920

1.8 0.7103-0.7124 0.7122 0.7906-0.7913 0.7910
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Table 2.4: Prices for a European and a Bermudan Put option (10 exercise dates, expiry T = 1)

in the CEV-like model with default for the 2nd-order approximation characteristic function, and a

Monte Carlo method.

European Bermudan

K MC 95% c.i. Value MC 95% c.i. Value

0.8 0.002905-0.003175 0.003061 0.005876-0.006245 0.006361

1 0.01845-0.01918 0.01893 0.03419-0.03506 0.03520

1.2 0.08148-0.08296 0.08297 0.1820-0.1827 0.1824

1.4 0.2184-0.2205 0.2173 0.3793-0.3801 0.3792

1.6 0.3867-0.3892 0.3841 0.5752-0.5763 0.5763

1.8 0.5597-0.5638 0.5556 0.7727-0.7739 0.7733
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Chapter 3

Efficient XVA computation under

local Lévy models

In the last Chapter we discussed how to price options, in particular Bermudan options, under the

local Lévy model. The option prices were computed without any additional valuation adjustments;

more precisely, we assumed that one could borrow and lend under the risk-free rate, and no further

funding requirements or credit risks were involved. This resulted in a linear PDE, or equivalently by

the Feynman-Kac theorem the expected value in (2.2), which we solved through the COS method

and the approximate characteristic function. When computing prices in the presence of various

other risks like funding and counterparty risks (i.e. under XVA), one needs to redefine the pricing

partial differential equation (PDE) by constructing a hedging portfolio with cashflows that are

consistent with the additional funding requirements. This has been done for unilateral CCR in

[60], bilateral CCR and XVA in [11] and extended to stochastic rates in [47]. This results in a

non-linear PDE.

Non-linear PDEs can be solved with e.g. finite-difference methods or the LSM for solving

the corresponsing backward stochastic differential equation (BSDE). In [61] an efficient forward

simulation algorithm that gives the solution of the non-linear PDE as an optimum over solutions of

related but linear PDEs is introduced, with the computational cost being of the same order as one

forward Monte Carlo simulation. The downside of these numerical methods is the computational

time that is required to reach an accurate solution. An efficient alternative might be to use Fourier

methods for solving the (non-)linear PDE or related BSDE, such as the COS method, as was

introduced in [30], extended to Bermudan options in [31] and to BSDEs in [63]. In certain cases the

efficiency of these methods is further increased due the ability to the use the fast Fourier transform

(FFT).

We consider the exponential Lévy-type model with a state-dependent jump measure and pro-

pose an efficient Fourier-based method to solve for Bermudan derivatives, including options and
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swaptions, with XVA. We derive, in the presence of jumps, a non-linear partial integro-differential

equation (PIDE) and its corresponding BSDE for an OTC derivative between the bank B and

its counterparty C in the presence of CCR, bilateral collateralization, MVA, FVA and KVA. We

extend the Fourier-based method known as the BCOS method, developed in [63], to solve the

BSDE under Lévy models with non-constant coefficients. As this method requires the knowledge

of the characteristic function of the forward process, which, in the case of the Lévy process with

variable coefficients, is not known, we will use an approximation of the characteristic function ob-

tained by the adjoint expansion method developed in [58], [53] and extended to the defaultable

Lévy process with a state-dependent jump measure in the previous chapter (see also [9]). Com-

pared to other state-of-the-art methods for calculating XVAs, like Monte Carlo methods and PDE

solvers, our method is both more efficient and multipurpose. Furthermore we propose an alternative

Fourier-based method for explicitly pricing the CVA term in case of unilateral CCR for Bermudan

derivatives under the local Lévy model. The advantage of this method is that is allows us to use

the FFT, resulting in a fast and efficient calculation. The Greeks, used for hedging CVA, can be

computed at almost no additional cost.

The rest of the chapter is structured as follows. After a brief recap of the local Lévy model

in Section 3.1, in Section 3.2 we derive the non-linear PIDE and corresponding BSDE for pricing

contracts under XVA. In Section 3.3 we propose the Fourier-based method for solving this BSDE

and in Section 3.4 this method is extended to pricing Bermudan contracts. In Section 3.4.2 an

alternative FFT-based method for pricing and hedging the CVA term is proposed and Section 3.5

presents numerical examples validating the accuracy and efficiency of the proposed methods.

3.1 The model

We consider the model as defined in Section 1.2.2, but additionally assume the following factoriza-

tion of the Lévy measure

ν(t,Xt−, dq) = a(t,Xt−)ν(dq),

A small remark on notation: we have replaced dz with dq in order to avoid notational confusion

with the BSDE notation in Section 3.2.2. Using the notion of default as defined in (3.16), the

probability of default is

PD(t) := P(ζ ≤ t) = 1− E
[
e−
∫ t
0 γ(s,Xs)ds

]
. (3.1)

We assume furthermore ∫
R
e|q|a(t, x)ν(dq) <∞.
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Imposing that the discounted asset price S̃t := e−rtSt is a G-martingale under the risk-neutral

measure, we get the following restriction on the drift coefficient:

µ(t, x) = γ(t, x) + r − σ2(t, x)

2
− a(t, x)

∫
R
ν(dq)(eq − 1− q), (3.2)

with r being the risk-free (collateralized) rate. In the whole of the chapter we assume deterministic,

constant interest rates, while the derivations can easily be extended to time-dependent rates. As

before, the integro-differential operator of the process is given by,

Lu(t, x) =∂tu(t, x) + µ(t, x)∂xu(t, x)− γ(t, x)u(t, x) +
σ2(t, x)

2
∂xxu(t, x)

+ a(t, x)

∫
R
ν(dz)(u(t, x+ q)− u(t, x)− z∂xu(t, x)). (3.3)

3.2 XVA computation

Consider a bank B and its counterparty C, both of them might default. Assume they enter into

a contract paying Φ(St) at maturity. Let ϕ(x) = Φ(ex), and assume the risk-neutral dynamics of

the underlying as in (3.16) with the drift given by (3.2). Define v̂(t, x) to be the value to the bank

of the (default risky) portfolio with valuation adjustments referred to as XVA and v(t, x) to be

the risk-free value. Note that the difference between these two values is called the total valuation

adjustment and in our setting this consists of

TVA := v̂(t, x)− v(t, x) = CVA + DVA + KVA + MVA + FVA. (3.4)

The risk-free value v(t, x) solves a linear PIDE:

Lv(t, x) = rv(t, x),

v(T, x) = ϕ(x),

where L is given in (3.3). Assuming the dynamics in (3.16), this linear PIDE can be solved with

the methods presented in [9].

3.2.1 Derivative pricing under CCR and bilateral CSA agreements

In [11], the authors derive an extension to the Black-Scholes PDE in the presence of a bilateral

counterparty risk in a jump-to-default model with the underlying being a diffusion, using replica-

tion arguments that include the funding costs. In [47] this derivation is extended to a multivariate

diffusion setting with stochastic rates in the presence of CCR, assuming that both parties B and

C are subject to default. To mitigate the CCR, both parties exchange collateral consisting of the

initial margin and the variation margin. The parties are obliged to hold regulatory capital, the cost

of which is the KVA and face the costs of funding uncollateralized positions through collateralized

52



markets, known as FVA. Both [11] and [47] extend the approach of [60], in which unilateral collat-

eralization was considered. We extend the approach in Section 1.4.1 and the approach of the above

authors to derive the value of v̂(t, x) when the underlying follows the jump-diffusion defined in

(3.16). We assume a one-dimensional underlying diffusion and consider all rates to be deterministic

and, for ease of notation, constant. We specify different rates, defined in Table 3.2.1, for different

types of lending.

Rate Definition Rate Definition

r the risk-free rate rR the rate received on funding secured by

the underlying asset
rD the dividend rate in case the stock

pays dividends

rF the rate received on unsecured funding

rB the yield on a bond of the bank B rC the yield on the bond of the coun-

terparty C
λB λB := rB − r λC λC := rC − r
λF λF := rF − r RB the recovery rate of the bank

RC the recovery rate of the counterparty

Table 3.1: Definitions of the rates used throughout the chapter.

Assume that the parties B and C enter into a derivative contract on the spot asset that pays

the bank B the amount ϕ(XT ) at maturity T . The value of this derivative to the bank at time t

is denoted by v̂(t, x,J B,J C) and depends on the value of the underlying X and the default states

J B and J C of the bank B and counterparty C, respectively. Define ITC to be the initial margin

posted by the bank to the counterparty, IFC the initial margin posted by the counterparty to the

bank and IV (t) to be the variation margin on which a rate rI is paid or received. The initial margin

is constant throughout the duration of the contract. Let K(t) be the regulatory capital on which

a rate of rK is paid/received.

The cashflows are viewed from the perspective of the bank B. At the default time of either

the counterparty or the bank, the value of the derivative to the bank v̂(t, x) is determined with

a mark-to-market rule M , which may be equal to either the derivative value v̂(t, x, 0, 0) prior to

default or the risk-free derivative value v(t, x), depending on the specifications in the ISDA master

agreement. Denote by τB and τC the random default times of the bank and the counterparty

respectively. We will use the notation x+ = max(x, 0) and x− = min(x, 0). In a situation in which

the counterparty defaults, the bank is already in the possession of IV + IFC . If the outstanding

value M − (IV + IFC) is negative, the bank has to pay the full amount (M − IV − IFC)−, while

if the contract has a positive value to the bank, it will recover only RC(M − IV − IFC)+. Using a
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similar argument in case the bank defaults, we find the following boundary conditions:

θBt := v̂(t, x, 1, 0) = IV (t)− ITC + (M − IV (t) + ITC)+ +RB(M − IV (t) + ITC)−,

θCt := v̂(t, x, 0, 1) = IV (t) + IFC +RC(M − IV (t)− IFC)+ + (M − IV (t)− IFC)−,

so that the portfolio value at default is given by

θτ = 1τC<τBθ
C
τ + 1τB<τCθ

B
τ ,

with τ = min(τB, τC). Further we introduce the default risky, zero-recovery, zero-coupon bonds

(ZCBs) PB and PC with respective maturities TB and TC with face value one if the issuer has

not defaulted, and zero otherwise. Assume the dynamics for PBt and PCt to be given by PBt =

1{τB>t}e
rBt and PCt = 1{τC>t}e

rCt, so that

dPBt = rBP
B
t dt− PBt−dJ Bt ,

dPCt = rCP
C
t dt− PCt−dJ Ct ,

with J Bt = 1τB≤t and J Ct = 1τC≤t, where the default times τB and τC are defined in a canonical

way as the first arrival time of a doubly stochastic Poisson process with intensity functions γB and

γC , respectively (see also the definition of the defaultable asset in (3.16)). We define the market

interest rates for B and C to be rB = r+γB and rC = r+γC , so that by the usual arguments (see,

for instance, [48, Section 2.2]) the discounted bonds e−rtPBt and e−rtPCt are martingales under the

risk-neutral measure.

We construct a hedging portfolio consisting of the shorted derivative, αC units of PC , αB units

of PB and g units of cash:

Π(t) = −v̂(t, x) + αB(t)PBt + αC(t)PCt + g(t).

In other words, since we assume both the underlying asset process and the tradeable bonds PB and

PC to be risk-neutral, we focus on hedging the risk arising from the defaults of both B and C by

means of the default-risky bonds.

If the value of the derivative is positive to B, it will incur a cost at the counterparties’ default.

To hedge this, B shorts PC , i.e. αC ≤ 0. If we assume B can borrow the bond close to the

risk-free rate r (i.e. no haircut) through a repurchase agreement, it will incur financing costs of

rαC(t)PCt dt. The cashflows from the collateralization follow from the rate rTC received and rFC

paid on the initial margin and the rate rI paid or received on the collateral, depending on whether

IV > 0, and the bank receives collateral, or IV < 0, and the bank pays collateral respectively.

From holding the regulatory capital we incur a cost of rKK(t). Finally, the rates r and rF are

respectively received or paid on the surplus cash in the account. This cash consists of the gap

between the shorted derivative value and the collateral and the cost of buying αB bonds PB in
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order for B to hedge its own default, i.e. −v̂(t, x)− IV (t) + ITC −αB(t)PBt . Thus, the total change

in the cash account is given by

dg(t) =[−rαC(t)PCt + rTCITC − rFCIFC − rIIV (t)− rKK(t)

+ r(−v̂(t, x)− IV (t) + ITC − αB(t)PBt ) + λF (−v̂(t, x)− IV (t) + ITC − αB(t)PBt )−]dt.

Note that this is in contrast with the change in cash in a portfolio without the XVA arising from

the different types of funding, i.e. where we assume the cash in the portfolio simply earns the

risk-free rate

dg(t) = −rv̂(t, x)dt.

Assuming the portfolio is self-financing we have

dΠ(t) =− dv̂(t, x) + αB(t)dPBt + αC(t)dPCt + dg(t).

Applying Itô’s Lemma to v̂(t, x) gives us:

dv̂(t, x) =Lv̂(t, x)dt+ σ(t, x)∂xv̂(t, x)dWt +

∫
R

(v̂(t, x+ q)− v̂(t, x))dÑ(t, x, dq)

− (θB − v̂(t, x))dJ Bt − (θC − v̂(t, x))dJ Ct ,

with the operator L as in (3.3). Thus, we find,

dΠ =− Lv̂(t, x)dt− σ(t, x)∂xv̂(t, x)dWt −
∫
R

(v̂(t, x+ q)− v̂(t, x))dÑ(t, x, dq)

+ (θB − v̂(t, x))dJ Bt + (θC − v̂(t, x))dJ Ct − αB(t)PBt−dJ Bt − αC(t)PCt−dJ Ct
+ [αB(t)λBP

B
t + αC(t)λCP

C
t + (rTC + r)ITC − rFCIFC − (rI + r)IV (t)

− rKK(t) + rv̂(t, x) + λF (−v̂(t, x)− IV (t) + ITC − αB(t)PBt )−]dt.

By choosing

αB = −θ
B − v̂(t, x)

PB
, αC = −θ

C − v̂(t, x)

PC
,

we hedge the jump-to-default risk in the hedging portfolio, i.e.,

dΠ =− Lv̂(t, x)dt+ σ(t, x)∂xv̂(t, x)dWt −
∫
R

(v̂(t, x+ q)− v̂(t, x))dÑ(t,Xt−, dq)

+ [−(θB − v̂(t, x))λB − (θC − v̂(t, x))λC + (rTC + r)ITC − rFCIFC − (rI + r)IV (t)

− rKK(t) + rv̂(t, x) + λF (θB − IV (t) + ITC)−]dt.

Then, using the fact that the portfolio has to satisfy the martingale condition in the risk-neutral

world, i.e. E[dΠ] = 0, we find the non-linear pricing PIDE to be

Lv̂(t, x) =f(t, x, v̂(t, x)), (3.5)
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where we have defined

f(t, x, v̂(t, x)) =− (θB(t)− v̂(t, x))λB − (θC(t)− v̂(t, x))λC + (rTC + r)ITC − rFCIFC

− (rI + r)IV (t)− rKK(t) + rv̂(t, x) + λF (θB − IV (t) + ITC)−.

3.2.2 BSDE representation

In this section we will cast the PIDE in (3.5) in the form of a Backward Stochastic Differential

Equation. In the methods where we make use of BSDEs we assume γ(t, x) = 0. We begin by

recalling the non-linear Feynman-Kac theorem in the presence of jumps, see Theorem 4.2.1 in [27].

Theorem 3.2.1 (Non-linear Feynman-Kac Theorem). Consider Xt as in (3.16). We assume µ, σ

and a to be Lipschitz continuous in x and additionally |a(t, x)| ≤ K. Consider the BSDE

Yt = ϕ(XT ) +

∫ T

t
f

(
s,Xs, Ys, Zs, a(s,Xs−)

∫
R
Vs(q)δ(q)ν(dq)

)
ds−

∫ T

t
ZsdWs

−
∫ T

t

∫
R
Vs(q)dÑs(s,Xs, q), (3.6)

where the generator f is continuous and satisfies the Lipschitz condition in the space variables,

δ is a measurable, bounded function and the terminal condition ϕ(x) is measurable and Lipschitz

continuous. Consider the non-linear PIDELv(t, x) = f(t, x, v(t, x), ∂xv(t, x)σ(t, x), a(t, x)
∫
R(v(t, x+ q)− v(t, x))δ(q)ν(dq)),

v(T, x) = ψ(x).
(3.7)

If the PIDE in (3.7) has a solution v(t, x) ∈ C1,2, the FBSDE in (3.6) has a unique solution

(Yt, Zt, Vt(q)) that can be represented as

Y t,x
s = u(s,Xt,x

s ),

Zt,xs = ∂xu(s,Xt,x
s )σ(s,Xt,x

s ),

V t,x
s (q) = u(s,Xt,x

s + q)− u(s,Xt,x
s ), q ∈ R,

for all s ∈ [t, T ], where Y is a continuous, real-valued and adapted process and where the control

processes Z and V are continuous, real-valued and predictable.

In our case, the BSDE corresponding to the PIDE in (3.5) reads

Yt = ϕ(XT ) +

∫ T

t
f(s,Xs, Ys)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
R
Vs(q)dÑ(s,Xs, dq), (3.8)

where we have defined the driver function to be

f(t, x, y) =− λB(θB − y)− λC(θC − y) + (rTC + r)ITC − rFCIFC − (rI + r)IV (t)
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− rKK(t) + ry + λF (θB − IV (t) + ITC)−.

We remark here, that when assuming that one can borrow and lend simply at the risk-free rate,

and no additional credit risks are considered, the driver function would be given by

f(t, x, v̂(t, x)) = rv(t, x),

in this way relating the above derivation to the PDE considered in Chapter 2.

3.2.3 A simplified driver function

Following [36], one can derive that the KVA is a function of trade properties (i.e. maturity, strike)

and/or the exposure at default, which in turn is a function of the portfolio value, so that the cost

of holding the capital can be rewritten as rKK(t) = rKc1v̂(t, x), with c1 being a function of the

trade properties. The collateral is paid when the portfolio has a negative value, and received when

the portfolio has a positive value. Assuming the collateral is a multiple of the portfolio value we

have IV (t) = c2v̂(t, x), where c2 is some constant. Then, the driver function is simply a function

of the portfolio value.

Remark 3.2.2. Note that in the case of ‘no collateralization’ or ‘perfect collateralization’, the

driver function reduces to f(t, v̂(t, x)) = ru(t) max(v̂(t, x), 0), for a function ru here left unspecified.

In this case the BSDE is similar to the one considered in [61].

3.3 Solving FBSDEs

In this section we extend the BCOS method from [63] to solving FBSDEs under local Lévy models

with variable coefficients and jumps (without default, i.e. γ(t, x) = 0). The conditional expectations

resulting from the discretization of the FBSDE are approximated using the COS method. This

requires the characteristic function, which we approximate using the Adjoint Expansion Method of

[58] and Section 2.1.1.

3.3.1 Discretization of the BSDE

Consider the forward process Xt as in (3.16) and the BSDE Yt as in (3.8) with a more general

driver function f(t, x, y, z). Define a partition 0 = t0 < t1 < ... < tN = T of [0, T ] with a fixed time

step ∆t = tn+1 − tn, for n = N − 1, ...0. Rewriting the set of FBSDEs we find,

Xn+1 = Xn +

∫ tn+1

tn

µ(s,Xs)ds+

∫ tn+1

tn

σ(s,Xs)dWs +

∫ tn+1

tn

∫
R
qdÑs(s,Xs−, dq),

Yn = Yn+1 +

∫ tn+1

tn

f (s,Xs, Ys, Zs) ds−
∫ tn+1

tn

ZsdWs −
∫ tn+1

tn

∫
R
Vs(q)dÑs(s,Xs−, dq). (3.9)
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One can obtain an approximation of the process Yt by taking conditional expectations with respect

to the underlying filtration Gn, using the independence of Wt and Ñt(t,Xt−, dq) and by approxi-

mating the integrals that appear with a theta-method, as first done in [69] and extended to BSDEs

with jumps in [63]:

Yn ≈ En[Yn+1] + ∆tθ1f (tn, Xn, Yn, Zn) + ∆t(1− θ1)En [f (tn+1, Xn+1, Yn+1, Zn+1)] .

Let ∆Ws := Ws −Wn for tn ≤ s ≤ tn+1. Multiplying both sides of equation (3.9) by ∆Wn+1,

taking conditional expectations and applying the theta-method gives

Zn ≈ −θ−1
2 (1− θ2)En[Zn+1] +

1

∆t
θ−1

2 En[Yn+1∆Wn+1]

+ θ−1
2 (1− θ2)En [f (tn+1, Xn+1, Yn+1, Zn+1) ∆Wn+1] .

Since in our scheme the terminal values are functions of time t and the Markov process X, it is

easily seen that there exist deterministic functions y(tn, x) and z(tn, x) so that

Yn = y(tn, Xn), Zn = z(tn, Xn).

The functions y(tn, x) and z(tn, x) are obtained in a backward manner using the following scheme

y(tN , x) =ϕ(x), z(tN , x) = ∂xϕ(x)σ(tN , x),

for n = N − 1, ..., 0:

y(tn, x) =En[y(tn+1, Xn+1)] + ∆tθ1f (tn, x) + ∆t(1− θ1)En [f(tn+1, Xn+1)] , (3.10)

z(tn, x) =− 1− θ2

θ2
En[z(tn+1, Xn+1)] +

1

∆t
θ−1

2 En[y(tn+1, Xn+1)∆Wn+1] (3.11)

+
1− θ2

θ2
En [f(tn+1, Xn+1)∆Wn+1] ,

where we have simplified notations with

f(t,Xt) := f (t,Xt, y(t,Xt), z(t,Xt)) .

In the case θ1 > 0 we obtain an implicit dependence on y(tn, x) in (3.10) and we use P Picard

iterations starting with initial guess En[y(tn+1, Xn+1)] to determine y(tn, x).

3.3.2 The characteristic function

Using the derivation as in Section 2.1.1, and defining

sk =
∂kxs(·, x̄)

k!
, γk =

∂kxγ(·, x̄)

k!
, µk(dq) =

∂kxµ(·, x̄)

k!
, ak =

∂kxa(·, x̄)

k!
k ≥ 0.

we find for the zeroth and k ≥ 1-th order approximation of the characteristic function

Ĝ0(t, x;T, ξ) = eiξxe
∫ T
t ψ(s,ξ)ds,

58



Ĝk(t, x;T, ξ) = −
∫ T

t
e
∫ T
s ψ(τ,ξ)dτF

(
k∑

h=1

(
L̃

(s,·)
h (s)− L̃(s,·)

h−1(s)
)
Gk−h(t, x; s, ·)

)
(ξ)ds,

with

ψ(t, ξ) = iξµ0(t) + s0(t)ξ2 +

∫
R
a0ν(t, dq)(eizξ − 1− izξ),

L̃
(t,y)
h (t)− L̃(t,y)

h−1(t) = µh(t)h(y − x̄)h−1 + µh(t)(y − x̄)h∂y − γh(t)(y − x̄)h

+ sh(t)h(h− 1)(y − x̄)h−2 + sh(t)(y − x̄)h−1 (2h∂y + (y − x̄)∂yy)

+

∫
R
ah(t)ν̄(dq)

(
(y + q − x̄)heq∂y − (y − x̄)h − q

(
h(y − x̄)h−1 − (y − x̄)h∂y

))
,

where ν̄(dq) = ν(−dq).

3.3.3 The COS formulae

The conditional expectations will be approximated using the usual COS method, as explained in

Section 1.3 and as has been applied to FBSDEs with jumps in [63]. The conditional expectations

arising in the equations (3.10)-(3.11) are all of the form En[h(tn+1, Xn+1)] or En[h(tn+1, Xn+1)∆Wn+1].

The COS formula for the first type of conditional expectation reads

Exn[h(tn+1, Xn+1)] ≈
J−1∑′

j=0

Hj(tn+1)Re

(
Γ̂

(
tn, x; tn+1,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,

where
∑′

denotes an ordinary summation with the first term weighted by one-half, J > 0 is the

number of Fourier-cosine coefficients we use, Hj(tn+1) denotes the jth Fourier-cosine coefficients of

the function h(tn+1, x) and Γ̂ (tn, x; tn+1, ξ) is the conditional characteristic function of the process

Xn+1 given Xn = x. For the second type of conditional expectation, using integration by parts, we

obtain

Exn[h(tn+1, Xn+1)∆Wn]

≈ ∆tσ(tn, x)

J−1∑′

j=0

Hj(tn+1)Re

(
i
jπ

b− a
Γ̂

(
tn, x; tn+1,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
.

See [63] for the full derivations.

Remark 3.3.1. Note that these formulas are obtained by using an Euler approximation of the

forward process and using the 2nd-order approximation of the characteristic function of the actual

process. We have found this to be more exact than using the characteristic function of the Euler

process, which is equivalent to using just the 0th-order approximation of the characteristic function.
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Finally we need to approximate the Fourier-cosine coefficients Hj(tn+1) of h(tn+1, x) at time

points tn, where n = 0, ..., N . The Fourier-cosine coefficient of h at time tn+1 is defined by

Hj(tn+1) =
2

b− a

∫ b

a
h(tn+1, x) cos

(
jπ
x− a
b− a

)
dx.

Due to the structure of the approximated characteristic function of the local Lévy process, see (3.18),

the coefficients of the functions z(tn+1, x) and the explicit part of y(tn+1, x) can be computed using

the FFT algorithm, as done in Section 2.2.1, because of the matrix in (2.19) being of a certain

form with constant diagonals. In order to determine Fj(tn+1), the Fourier-Cosine coefficient of the

function

f (tn+1, x, y(tn+1, x), z(tn+1, x)) ,

due to the intricate dependence on the functions z and y we choose to approximate the integral

in Fj by a discrete Fourier-Cosine transform (DCT). For the DCT we compute the integrand, and

thus the functions z(tn+1, x) and y(tn+1, x), on an equidistant x-grid. Note that in this case we can

easily approximate all Fourier-Cosine coefficients with a DCT (instead of the FFT). If we take J

grid points defined by xi := a+ (i+ 1
2) b−aJ and ∆x = b−a

J we find, using the mid-point integration

rule, the approximation

Hj(tn+1) ≈ 2

J

J−1∑′

i=0

h(tn+1, xi) cos

(
jπ

2i+ 1

2J

)
,

which can be calculated using the DCT algorithm, with a computational complexity of O(J log J).

Note that the truncation range is defined as in (2.28).

3.4 XVA computation for Bermudan derivatives

The method in Section 3.3 allows us to compute the XVA as in (3.4), consisting of CVA, DVA,

MVA, KVA and FVA. In this section, we apply this method for computing Bermudan derivatives,

as defined in Section 2.2 with XVA. The resulting method – the solution of the non-linear XVA

PDE through a BSDE-type method – is an efficient alternative to finite-difference methods as well

as to the Monte-Carlo based method developed in [61]. The efficiency is both due to the availability

of the characteristic function in closed form through the adjoint expansion method and the fast

convergence of the COS method. Furthermore, in finite difference methods complications may

arise in the implementation of the scheme for jump diffusions. Since our proposed method works

in the Fourier space, the jump component is easily handled by means of an additional term in the

characteristic function and does not cause any further difficulties.

For the CVA component in the XVA we develop an alternative method, which due to the ability

of the FFT, results in a particularly efficient computation.
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3.4.1 XVA computation

Consider an OTC derivative contract between the bank B and the counterparty C on the underlying

asset St given by (3.16) with γ(t, x) = 0 with a Bermudan-type exercise possibility: there is a finite

set of so-called exercise moments {t1, ..., tM} prior to the maturity, with 0 ≤ t1 < t2 < · · · < tM = T .

The payoff from the point-of-view of bank B is given by ϕ(tm, Xtm). Denote v̂(t, x) to be the risky

Bermudan option value and c(t, x) the continuation value. By the dynamic programming approach,

the value for a Bermudan derivative with XVA and M exercise dates t1, ..., tM can be expressed by

a backward recursion as

v̂(tM , x) = ϕ(tM , x),

and the continuation value solves the non-linear PIDE defined in (3.5)
Lc(t, x) = f(t, x, c(t, x)), t ∈ [tm−1, tm[

c(tm, x) = v̂(tm, x)

v̂(tm−1, x) = max{Φ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.

The derivative value is set to be v̂(t, x) = c(t, x) for t ∈]tm−1, tm[, and, if t1 > 0, also for t ∈ [0, t1[.

The payoff function might take on various forms:

1. (Portfolio) Following [61], we can consider Xt to be the process of a portfolio which can take

on both positive and negative values. Then, when exercised at time tm, bank B receives the

portfolio so that ϕ(tm, x) = ex.

2. (Bermudan option) In case the Bermudan contract is an option, the option value to the bank

can not have a negative value for the bank. At the same time, in case of default of the

bank itself, the counterparty loses nothing. In this case the framework simplifies to one with

unilateral collateralization and default risk and the payoff at time tm, if exercised, is given by

ϕ(tm, x) = (K − ex)+ for a put and ϕ(tm, x) = (ex −K)+ for a call with K being the strike

price.

3. (Swaptions) A swaption is an option in which the holder, bank B, has the right to exercise

and enter into an underlying swap with fixed end date TM . If the swaption is exercised at

time Tm the underlying swap starts with payment dates Tm = {Tm+1, ..., TM}. We refer to

the Appendix for more details on valuing this kind of instrument with XVA.

To solve for the continuation value we define a partition with N steps tm−1 = t0,m < t1,m <

t2,m < ... < tn,m < ... < tN,m = tm between two exercise dates tm−1 and tm, with fixed time step

∆tn := tn+1,m − tn,m. Applying the method developed in Section 3.3, we find the following time

iteration for the continuation value:
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• At time tN,m set:

c(tN,m, x) = û(tm, x).

• For n = N − 1, ..., 0 compute:

c(tn,m, x) ≈∆tnθ1f(tn,m, x, c(tn,m, x))

+

J−1∑′

j=0

Ψj(x)(Cj(tn+1,m) + ∆tn(1− θ1)Fj(tn+1,m)), (3.12)

where we have defined

Ψj(x) = Re

(
Γ̂

(
tn,m, x; tn+1,m,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,

and the Fourier-cosine coefficients are given by

Cj(tn+1,m) =
2

b− a

∫ b

a
c(tn+1,m, x) cos

(
jπ
x− a
b− a

)
dx,

Fj(tn+1,m) =
2

b− a

∫ b

a
f(tn+1,m, x, c(tn+1,m, x)) cos

(
jπ
x− a
b− a

)
dx.

In order to determine the function c(tn, x), we will perform P Picard iterations. To evaluate the co-

efficients with a DCT we need to compute the integrands c(tn+1,m, x) and f(tn+1,m, x, c(tn+1,m, x))

on the equidistant x-grid with xi, for i = 0, ..., J−1. In order to compute this at each time step tn,m

we thus need to evaluate c(tn,m, x) on the x-grid with J equidistant points using formula (3.12).

The matrix-vector product in the formula results in a computational time of order O(J2).

Remark 3.4.1 (Convergence of the Picard iterations). A Picard iteration is used to find the fixed-

point c of c = ∆tθ1f(tn,m, x, c) +h(tn,m, x), where f(t, x, c) and h(t, x) are respectively the implicit

and explicit parts of the equation. Due to the computational domain of c(t, x) being bounded by

[a, b], we can thus say that f(t, x, c(t, x)) is also bounded. If the driver function f(t, x, c) is Lipschitz

continuous in c, i.e. ∃ LLipz such that |f(t, x, c1) − f(t, x, c2)| ≤ LLipz|c1 − c2|, and ∆tn is small

enough such that ∆tθ1L
Lipz < 1, a unique fixed-point exists and the Picard iterations converge

towards that point for any initial guess. In particular, for the XVA case the non-linearity is of

the form f(t, x, c) = −rmax(c, 0), and this is Lipschitz continuous with LLipz = 1. Thus for ∆t

sufficiently small, the Picard iteration converges to a unique fixed-point.

The total algorithm for computing the value of a Bermudan contract with XVA can be sum-

marised as in Algorithm 1 in Figure 3.1. The total computational time for the algorithm is of

order

O(M ·N(J + J2 + PJ + J log2 J)), (3.13)
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consisting of the computation for M · N times the computation of the characteristic function on

the x-grid (due to the availability of the analytical approximation) of O(J), computation of the

matrix-vector multiplications in the formulas for c(tn,m, x) and z(tn,m, x) of O(J2), initialization

of the Picard method with En[c(tn+1, Xn+1] in O(J2) operations, computation of the P Picard

approximations for c(tn,m, x) in O(PJ) and computing the Fourier coefficients Fj(tn) and Cj(tn)

with the DCT in O(J log2 J) operations.

1. Define the x-grid with J grid points given by xi = a+ (i+ 1
2) b−aJ for i = 0, ..., J − 1.

2. Calculate the final exercise date values c(tN,M , x) = û(tM , x) on the x-grid and compute

the terminal coefficients Cj(tM ) and Fj(tM ) using the DCT.

3. Recursively for the exercise dates m = M − 1, ..., 0 do:

(a) For time steps n = N − 1, ..., 0 do:

i. Compute c(tn,m, x) using formula (3.12) and use this to determine

f(tn,m, x, c(tn,m, x)) on the x-grid.

ii. Subsequently, use these to determine Fj(tn,m) and Cj(tn,m) using the DCT.

(b) Compute the new terminal condition c(tN,m−1, x) = max{ϕ(t0,m, x), c(t0,m, x)} (ei-

ther analytically or numerically) and the corresponding Fourier-cosine coefficient.

4. Finally û(t0, x0) = c(t0,0, x0).

Figure 3.1: Algorithm for Bermudan derivative valuation with XVA

3.4.2 An alternative for CVA computation

In this section we present an efficient alternative way of calculating the CVA term in (3.4) in the

case of unilateral CCR using a Fourier-based method. Due to the ability of using the FFT this

method is considerably faster for computing the CVA than the method presented in Section 4.1.

We use the definition of CVA at time t given by

CVA(t) = v̂(t,Xt)− v(t,Xt),

where v(t,Xt) is as usual the default-free value of the Bermudan option (γ(t, x) = 0), while v̂(t,Xt)

is the value including default (γ(t, x) 6= 0). We consider the model as defined in (3.16). We will

compute v(t,Xt) and v̂(t,Xt) using the COS method and the approximation of the characteristic

function (as derived in Section 2.2), without default and with default, respectively. In case of

63



a default the payoff becomes zero. Note that the risky option value v̂(t, x) computed with the

characteristic function for a defaultable underlying corresponds exactly to the option value in

which the counterparty might default, with the probablity of default, PD(t), defined as in (3.17).

Thus, in this case we have unilateral CCR and ζ = τC , the default time of the counterparty.

Using the definition of the defaultable St, it is well-known (see, for instance, [48, Section 2.2])

that the risky no-arbitrage value of the Bermudan option on the defaultable asset St at time t is

given by

û (t,Xt) = 1{ζ>t} sup
τ∈{t1,...,tM}

E
[
e−
∫ τ
t (r+γ(s,Xs))dsϕ(τ,Xτ )|Xt

]
.

Remark 3.4.2 (Wrong-way risk). By allowing the dependence of the default intensity on the

underlying, a simplified form of wrong-way risk is already incorporated into the CVA valuation.

For a Bermudan put option with strike price K, we simply have ϕ(t, x) = (K − x)+. By the

dynamic programming approach, the option value can be expressed by a backward recursion as

û(tM , x) = 1{ζ>tM}max(ϕ(tM , x), 0),

and

c(t, x) = E
[
e
∫ tm
t (r+γ(s,Xs))dsû(tm, Xtm)|Xt = x

]
, t ∈ [tm−1, tm[

û(tm−1, x) = 1{ζ>tm−1}max{ϕ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.

Thus to find the risky option price v̂(t,Xt) one uses the defaultable asset with γ(t, x) representing

the default intensity of the counterparty and in order to get the default-free value v(t,Xt) one uses

the default-free asset by setting γ(t, x) = 0. The CVA adjustment is calculated as the difference

between the two. Both v̂(t, x) and v(t, x) are calculated using the approximated characteristic

function and the COS method applied to the continuation value. Due to the characteristic function

being of the form (3.18), we are able to use the FFT in the matrix-vector multiplication when

computing the continuation values of the Bermudan option with and without default, reducing this

operation from O(J2) to O(J log2 J). The total complexity of the calculation of the CVA value

for a Bermudan option with M exercise dates is then O(MJ log2 J). Comparing this to (3.13), in

which the most time-consuming operations were indeed the matrix-vector products of order O(J2)

that resulted from the computation of the functions on the x-grid of size J , we conclude that the

method for CVA computation is indeed significantly faster due to the ability of using the FFT.

Remark 3.4.3 (The defaultable and default-free characteristic functions). To find v(t, x) we use

Γ̂r(tm, x; tm+1, ξ) := eiξx
n∑
h=0

(x− x̄)hgrn,h(tm, tm+1, ξ),
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the characteristic function with γ(t, x) = 0. For û(t, x) we use

Γ̂d(tm, x; tm+1, ξ) := eiξx
n∑
h=0

(x− x̄)hgdn,h(tm, tm+1, ξ),

where γ(t, x) is chosen to be some specified function.

Hedging CVA

In practice CVA is hedged and thus practitioners require efficient ways to compute the sensitivity

of the CVA with respect to the underlying. The widely used bump- and revalue- method, while

resulting in precise calculations, might be slow to compute. Using the Fourier-based approach we

find explicit formulas allowing for an easy computation of the first- and second-order derivatives of

the CVA with respect to the underlying. For the first-order and second-order Greeks we have

∆ = e−r(t1−t0)

J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
ijπ

b− a
gdn,0

(
t0, t1,

jπ

b− a

)
+ gdn,1

(
t0, t1,

jπ

b− a

)))
V d
j (t1)

− e−r(t1−t0)

J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
ijπ

b− a
grn,0

(
t0, t1,

jπ

b− a

)
+ grn,1

(
t0, t1,

jπ

b− a

)))
V r
j (t1),

∂∆

∂X
= e−r(t1−t0)

J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
− ijπ

b− a
gdn,0

(
t0, t1,

jπ

b− a

)
− gdn,1

(
t0, t1,

jπ

b− a

)

+ 2
ijπ

b− a
gdn,1

(
t0, t1,

jπ

b− a

)
+

(
ijπ

b− a

)2

gdn,0

(
t0, t1,

jπ

b− a

)
+ 2gdn,2

(
t0, t1,

jπ

b− a

)))
V d
j (t1)

− e−r(t1−t0)

J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
− ijπ

b− a
grn,0

(
t0, t1,

jπ

b− a

)
− grn,1

(
t0, t1,

jπ

b− a

)

− 2
ijπ

b− a
grn,1

(
t0, t1,

jπ

b− a

)
+

(
ijπ

b− a

)2

grn,0

(
t0, t1,

jπ

b− a

)
+ 2grn,2

(
t0, t1,

jπ

b− a

)))
Vj(t1)r,

where V d
k and V r

k are the Fourier-cosine coefficients with the defaultable and default-free charac-

teristic function terms, gdn,h and grn,h, respectively.

3.5 Numerical experiments

In this section we present numerical examples to justify the accuracy of the methods in practice.

We compute the XVA with the method presented in Section 3.4.1 and the CVA in the case of

unilateral CCR with the method from Section 3.4.2, which we show is more efficient for cases in
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which one only needs to compute the CVA. We compare the results of solving the BSDE with the

COS method and the adjoint expansion of the characteristic function to the values obtained by

using a least-squares Monte-Carlo method for computing the conditional expected values in the

BSDE as done in e.g. [6].

The computer used in the experiments has an Intel Core i7 CPU with a 2.2 GHz processor.

We use the second-order approximation of the characteristic function. We have found this to be

sufficiently accurate by numerical experiments and theoretical error estimates. The formulas for

the second-order approximation are simple, making the methods easy to implement.

3.5.1 A numerical example for XVA

Here, we check the accuracy of the method from Section 3.4.1. We will compute the Bermudan

option value with XVA using a simplified driver function given by f(t, v̂(t, x)) = −rmax(v̂(t, x), 0).

Our method is easily extendible to the full driver function from Section 3.2. Consider Xt to be a

portfolio process and the payoff, if exercised at time tm, to be given by Φ(tm, x) = x. In this case

the value we can receive at every exercise date is the value of the portfolio. Consider the model in

Section 3.1 without default, with a local jump measure and a local volatility function with CEV-like

dynamics and Gaussian jumps defined by

σ(x) = beβx, (3.14)

ν(x, dq) = λeβx
1√

2πδ2
exp

(
−(q −m)2

2δ2

)
dq. (3.15)

We assume the following parameters in equations (3.14)-(3.15), unless otherwise mentioned: b =

0.15, β = −2, λ = 0.2, δ = 0.2, m = −0.2, r = 0.1, K = 1 and X0 = 0 (so that S0 = 1). In the LSM

the number of time steps is taken to be 100 and we simulate 105 paths. In the COS method we take

J = 256, θ1 = 0.5 and N = 10, M = 10, making the total number of time steps N ·M = 100. The

truncation range is determined as in (2.28) with L = 10. Due to the state-dependent coefficients

in the underlying dynamics in (3.14)-(3.15) we use the approximated characteristic function with

the second-order approximation, i.e. Γ̂(2)(t, x;T, ξ) and take x̄ = x, where x = {xi}J−1
i=0 . Note that

we thus compute the values, including those of the characteristic function, on the complete x-grid.

In the final iteration when computing û(t0, X0) we use x̄ = X0.

In Table 3.5.1 we analyse the error in the approximation of û(t0, X0) with S0 = 0.4 for different

values of the discretization parameter N and the number of grid points (and Fourier-cosine coef-

ficients) J . We compare the approximated COS value to the 95% confidence interval obtained by

an LSM. Accurate results are quickly obtained for small values of both J and N . In Figure 3.2 we

plot the upper bound of the 95% confidence interval of the absolute error in the approximation for

varying J and N . We observe approximately a linear convergence and note that the error stops

decreasing at some point for increasing values of J and N . This can be due to the error being

66



dominated by the approximated characteristic function. In particular we observe that J = 32 and

N = 10 seem to be sufficient parameters to achieve a satisfactory accuracy in the approximation.

The results for û(t0, X0) of the COS approximation method compared to a 95% confidence

interval of the value obtained through an LSM are presented in Table 4.2. These results show that

our method is able to solve non-linear PIDEs accurately. The CPU time of the approximating

method depends on the number of time steps M ·N and is approximately 5 · (N ·M) ms.

N = 1 N = 10 N = 20 N = 30

J = 8 6.4E-03−6.9E-03 4.3E-03−4.8E-03 4.9E-03−5.3E-03 5.3E-03−5.8E-03

J = 16 2.3E-03−2.7E-03 8.8E-04−1.3E-03 6.2E-04−1.1E-03 5.4E-04−9.2E-04

J = 32 1.7E-03−2.0E-03 4.2E-04−8.3E-04 2.4E-04−6.3E-04 1.6E04−5.8E-04

J = 64 1.4E-03−1.9E-03 2.2E-04−6.5E-04 1.6E-04−2.3E-04 1.2E-04−2.9E-04

J = 128 1.7E-04−6.0E-04 2.1E-04−6.6E-04 2.3E-04−6.5E-04 1.9E-04−6.1E-04

J = 256 2.1E-04−6.6E-04 3.7E-04−7.7E-04 1.5E-04−5.7E-04 1.2E-04−3.1E-04

Table 3.2: The 95% confidence interval of the absolute error in the COS approximation of û(0, X0)

with S0 = 0.4 compared to an LSM for varying parameters J and N .

Figure 3.2: Convergence of the upper bound of the 95% confidence interval of the absolute error in

the COS approximation û(0, X0) with S0 = 0.4 compared to a LSM for varying parameters J and

N .
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maturity T S0 MC value with XVA COS value with XVA

0.5 0 0.03770−0.03838 0.03809

0.2 0.2326−0.2330 0.2320

0.4 0.4251−0.4254 0.4243

0.6 0.6169−0.6171 0.6158

0.8 0.8077−0.8079 0.8069

1 1.000−1.000 1.0000

1 0 0.07374−0.07453 0.07228

0.2 0.2611−0.2617 0.2606

0.4 0.4461−0.4465 0.4454

0.6 0.6288−0.6291 0.6288

0.8 0.8126−0.8129 0.8113

1 1.001−1.001 1.000

Table 3.3: A Bermudan put option with XVA (10 exercise dates, expiry T = 0.5, 1) in the CEV-like

model for the 2nd-order approximation of the characteristic function, and an LSM comparison.

3.5.2 A numerical example for CVA

In this section we validate the accuracy of the method presented in Section 3.4.2 and compute the

CVA in the case of unilateral CCR under the local Lévy dynamics with a local jump measure and

a local volatility function with CEV-like dynamics, Gaussian jumps defined as in (3.15) and a local

default function γ(x) = ceβx. We assume the same parameters as in Section 3.5.1, except r = 0.05

and we take c = 0.1 in the default function. In the LSM the number of time steps is taken to be

100 and we simulate 105 paths. In the COS method we take L = 10 and J = 100. Again, due to

the state-dependent coefficients in the underlying dynamics we use the approximated characteristic

function as derived in Section 3.3.2 with the second-order approximation, i.e. Γ̂(2)(t, x;T, ξ) and

take x̄ = X0.

The results for the CVA valuation with the FFT-based method and with LSM are presented in

Table 3.4. The CPU time of the LSM is at least 5 times the CPU time of the approximating method,

which for M exercise dates is approximately 3 ·M ms, thus more efficient than the computation of

the XVA with the method in Section 4.1. The optimal exercise boundary in Figure 3.3 shows that

the exercise region becomes larger when the probability of default increases; this is to be expected:

in case of the default probability being greater, the option of exercising early is more valuable and

used more often.
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maturity T strike K MC CVA COS CVA

0.5 0.6 4.200 · 10−4 − 4.807 · 10−4 1.113 · 10−4

0.8 0.001525−0.001609 9.869·10−4

1 0.01254−0.01273 0.01138

1.2 0.005908−0.005931 0.005937

1.4 0.006657−0.06758 0.006898

1.6 0.007795−0.008008 0.007883

1 0.6 8.673E-04−9.574E-04 4.463E-04

0.8 0.005817−0.006040 0.003535

1 0.02023−0.02054 0.01882

1.2 0.01221−0.01222 0.1272

1.4 0.01378−0.01391 0.01360

1.6 0.01532−0.01502 0.01554

Table 3.4: CVA for a Bermudan put option (10 exercise dates, expiry T = 0.5, 1) in the CEV-like

model for the 2nd-order approximation of the characteristic function, and an LSM comparison.

Figure 3.3: Optimal exercise boundary for a Bermudan put option (10 exercise dates, expiry T = 1)

in the CEV-like model with varying default c = 0, 0.1, 0.2.
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Appendix: Valuing swaptions with

XVA under the local Lévy model

In the previous chapter we introduced a method for the computation of option prices including

various valuation adjustments. In this Appendix we briefly show how the previous derivations can

be extended to swaptions, in which the underlying interest rate is assumed to follow the local Lévy

model. A swaption is a contract which gives the owner the right to enter into the underlying swap

in which they either pay the fixed leg and receive the floating leg (a payer swaption), or receive

the fixed leg and pay the floating leg (a receiver swaption). The buyer and seller of the swaption

agree on the price of the swap, the length of the option period and the terms of the underlying

swap, i.e. the notional amount on which the fixed and variable payments are computed, the fixed

rate (also known as the strike of the swaption), and the frequency of observation of the floating leg.

A common rate for the floating leg is the well-known Libor rate. Swaptions are used by financial

institutions and banks to manage and hedge their interest rate risk, making them an actively traded

and very liquid fixed income instrument.

To compute prices of these instruments, banks commonly use relatively simple models for the

interest rate, which make both analytic and numerical methods for pricing the swaptions easy to

implement, but these are not very flexible in modeling the real-world dynamics of the interest rate.

In this chapter we therefore propose to model the interest rate using the flexible local Lévy model,

and show that all maturity times T of the bond P (t, T, x) depend on the same value of the short

rate, which is similar to what happens in the Hull-White model and is a crucial part in an efficient

evaluation of the swaption price. We furthermore extend the method of the previous chapter and

show how one can efficiently compute the CVA for these derivatives.

The model We consider the stochastic credit risk-less interest rate rt whose risk-neutral dynamics

are given by the local Lévy model defined in Section 1.2.2 (without default), which we repeat here

for convenience

rt = eXt ,

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt +

∫
R
qdÑt(t,Xt−, dq),
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dÑt(t,Xt−, dq) = dNt(t,Xt−, dq)− a(t,Xt−)ν(t, dq)dt, (3.16)

where dÑt(t,Xt−, dq) is as usual the compensated random measure with state-dependent Lévy

measure

ν(t,Xt−, dq) = a(t,Xt−)ν(dq).

The default time ζ, which will be used for defining the defaultable zero-coupon bonds, is defined

as in Section 1.2.2, so that the probability of default is

PD(t) := P(ζ ≤ t) = 1− e−
∫ t
0 α(s,x)ds, (3.17)

with α(t, x) now being the default intensity. Notice that the drift coefficient is not restricted. This

drift coefficient takes into account the fixed equivalent martingale measure, so in the framework

of martingale modeling, the selection of the equivalent martingale measure among all probability

measures equivalent to P is an important task. Essentially, it can be considered a problem equivalent

to calibration of the model. More precisely, since we know that the diffusion coefficient remains

unchanged through a Girsanov change of measure, selecting Q is equivalent to estimating µ. Note

however that µ represents the drift coefficient under the risk-neutral measure, so one cannot simply

use the historical dynamics of r to estimate µ.

Default-free ZCB From now on we assume the coefficients are independent of t. We require an

analytic formula for the ZCB which is related to the risk-neutral model for the underlying interest

rate. Consider the money-market account given by

B(t) = e
∫ t
0 rsds.

The value of a default-free zero-coupon bond between times t and T is defined as

P (t, T, x) = B(t)EQ
[

1

B(T )
|Ft
]

= EQ
[
e−
∫ T
t γ(s,Xs)ds|Ft

]
,

where we have defined γ(s,Xs) := eXs and P (t, T, x) is the price of the ZCB, conditional on Xt = x

associated with times t and T . Define furthermore the discount factor

D(t, T ) = e−
∫ T
t rsds,

that is unknown at time t since r is a progressively measurable stochastic process. Note the concep-

tual difference between P (t, T, x) and D(t, T ): at maturity they have the same value P (T, T, x) =

D(T, T ), but while P (t, T, x) is a price, and as such is observable at time t (i.e. Ft-measurable),

the discount factor is FT -measurable and unobservable at time t < T . Note that as usual, the

martingale property of the zero-coupon bond is given by

P (t, T, x) = EQ
[
e−
∫ T
t rsdsp(T, T, x)|Ft

]
.
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Assuming the risk-neutral dynamics (under Q) for rt, by definition of P (t, T, x) and the Feynman-

Kac representation, we must have that

LP (t, T, x) = 0, P (T, T, x) = 1.

with the generator L defined as in (3.3) with γ(t, x) = ex. Define the Fourier transform of P (t, T, x)

to be

P̂ (t, T, ξ) := F(P (t, T, x)) :=

∫
R
eiξxP (t, T, x)dx.

Now, we will perform as usual the Taylor-based expansion of the operator L around a fixed point

x̄. Following [53], we can find that

L0P
0(t, T, x) = 0, P 0(T, T, x) = 1

L0P
k(t, T, x) = −

k∑
h=1

(Lh − Lh−1)P k−h(t, T, x) P 0(T, T, x) = 0.

Solving these in the Fourier space (note: no need for the adjoint formulation since the operators

act on (t, x) and we take the Fourier transform also with respect to (t, x)) we find

P̂ 0(t, T, ξ) = δξe
(T−t)ψ(ξ),

P̂ k(t, T, ξ) = −
∫ T

t
e(T−s)ψ(ξ)F

(
k∑

h=1

(Lh(s)− Lh−1(s))P k−h(t, s, ·)

)
(ξ)ds,

where

ψ(ξ) = iξµ0 − a0ξ
2 − γ0 +

∫
R
ν0(dq)(eizξ − 1− izξ)

After some algebraic manipulations it can be shown, see also Chapter 2, that the n-th order

approximation of the Fourier transform of the ZCB is of the form

P̂ (n)(t, T, ξ) := δξ

n∑
k=0

(x− x̄)kgn,k(t, T, ξ). (3.18)

Then, using the definition of the Dirac-delta function, we have∫
R
∂nξ f(ξ)δξdξ = (−1)n∂nξ f(ξ)|ξ=0.

The inverse Fourier transform is thus given by

P (n)(t, T, x) =

∫
R

1√
2π
eiξxP̂ (n)(t, T, ξ)dξ (3.19)

=
1√
2π

n∑
k=0

(x− x̄)kgn,k(t, T ; 0),
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where the functions gn,k(t, T, 0) depend on x̄, which we take to be the value of x at time t. In this

way, all maturity times T of the bond P (t, T, x) depend on the same value of the short rate, namely

x̄ := xt. Note that the reason they do not depend on xT is solely due to the fact that the interest

rate is only represented through the integral. This is similar to what happens in the Hull-White

model and is a crucial part in an efficient evaluation of the swaption price. Since rt is a Markov

process and the price of the zero-coupon bond between times t and T becomes non-stochastic at

time t, we can say that it is a function or rt, i.e. P (tm, tk, r) is the price of a ZCB conditional on

rtm = r at time tm with maturity tk.

Defaultable ZCB The defaultable zero coupon bond is given by

PD(t, T, x) = EQ
[
1{ζ>T}e

−
∫ T
t rsds

]
= 1{ζ>t}EQ

[
e−
∫ T
t (rs+α(s,Xs))ds

]
,

where α(s,Xs) is the default intensity and we have used the standard identity as in (1.4). The

same pricing can be performed on the defaultable ZCB, only now in the operator L we would have

γ(t, x) = α(t, x) + ex.

Valuing swaptions A swaption gives the owner the right at the exercise date Tm to enter into

the underlying swap with payment dates Tm+1, ..., TM (the tenor structure) and a nominal value N

(the notional), which we for simplicity set equal to one. Let ∆k := Tk−Tk−1 and let the Libor rate

at time t for a loan between times Tk−1 and Tk be Fk(t). The floating leg of the swap at time Tk

has value ∆kFk(Tk−1) and the fixed leg is ∆kK. Note that the rate to be applied for the floating

leg at time Tk is fixed at reset time Tk−1. The time t discounted payoff of a payer swap can be

expressed as

M∑
k=m+1

P (t, Tk)∆k(Fk(Tk−1)−K),

suppressing the dependence on the process x in P (t, T, x). The arbitrage pricing law is given by

v(t, x) = N(t)EQ
[
V (T )

N(T )
|Ft
]
,

where N(t) is the numeraire, in our case the money-market accoung B(t). The price of a European

call swaption at time t with maturity Tm and strike K can be written as the risk-neutral expectation

of the discounted future payoffs conditional on Xt = x:

v(t, x) = EQ

 B(t)

B(Tm)

(
M∑

k=m+1

(∆kFk(Tm)P (Tm, Tk)−∆kKP (Tm, Tk))

)+
 .
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Note that

U(Tm, x) :=
M∑

k=m+1

(∆kFk(Tm)P (Tm, Tk)−∆kKP (Tm, Tk)),

is the payoff for entering the underlying swap at time Tm associated with payment times Tm+1, ..., TM .

Note that here we do not make a distinction between multiple curves, but use P (t, T ). We have,

Fm(t) =
P (t, tm−1)− P (t, tm)

∆mP (t, tm)
, (3.20)

therefore the whole formula is a function of different zero-coupon bonds.

Remark 3.5.1. We can rewrite this using the swap rate, which makes the payoff equal to zero at

time t and is given by

S(t) =
P (t, Tm)− P (t, TM )∑M

i=m+1 ∆iP (t, Ti)
,

in which case the swaption becomes a call option on the swap rate

v(t, x) = EQ

[
P (t, Tm)(S(Tm)−K)+

M∑
i=m+1

∆iP (Tm, Ti)

]
.

Now, using (3.19) the equation under the expected value can be rewritten as a function of rTm ,

i.e. the interest rate at maturity time Tm. Therefore, we can use the method developed in Chapter

2, in which we combine the approximated characteristic function of the process rt and the COS

method in order to value functions of this form.

CVA computation Using the default-free and defaultable zero coupon bonds we can calculate

two swap values v(t, x) (risk-free) and v̂(t, x) (risky) respectively. In particular, suppose the coun-

terparty is paying the floating leg, and the risky value corresponds to the value of the swap in which

the counterparty might default. In a swap at time Tk we receive Fk(Tk−1), i.e. the Libor rate fixed

at time Tk−1. The value of the discounted Libor payment is

E
[
Fk(Tk−1)

B(Tk)

]
≈ E

[
Fk(Tk−1)P (Tk−1, Tk)

B(Tk−1)

]
,

where we have used B(Tk) ≈ B(Tk−1)/P (Tk−1, Tk). Then assuming that the counterparty paying

the Libor might default and using (3.20) we have

E
[
Fk(Tk−1)P (Tk−1, Tk)

B(Tk−1)
1{ζ>Tk}

]
=E

[
P (Tk−1, Tk−1)− P (Tk−1, Tk)

B(Tk−1)
1{ζ>Tk}

]
=E

[
1{ζ>Tk}

B(Tk−1)

]
− E

[
1{ζ>Tk}

B(Tk)

]
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≈PD(t, Tk−1)− PD(t, Tk)

≈PD(t, Tk−1)FD(Tk−1, Tk)P (Tk−1, Tk), (3.21)

where we have defined,

FDk (Tk−1) :=
PD(Tk−1, Tk−1)− PD(Tk−1, Tk)

P (Tk−1, Tk)
,

which can be seen as a defaultable Libor rate. A more simple approximation might be,

E
[
Fk(Tk−1)P (Tk−1, Tk)1{ζ>Tk}

]
≈ E

[
Fk(Tk−1)PD(Tk−1, Tk)

]
, (3.22)

however clearly this approximation rests on the assumption of independence between 1{ζ>Tk} and

P (Tk−1, Tk), in this way not incorporating the wrong-way risk.

Both the approximation in (3.21) and in (3.22) can be used to compute the CVA, which is

computed as the difference between the swap value with the risky payoff (in which the floating leg

payer can default) and the risk-free payoff (where we assume this can not happen). In particular,

using e.g. the approximation in (3.22), the payoffs of the risky and risk-free swap, Û and U , can

be written respectively as

Û(t, x) =

M∑
k=m+1

(∆kFk(Tm)PD(Tm, Tk)−∆kKP (Tm, Tk)),

U(t, x) =

M∑
k=m+1

(∆kFk(Tm)P (Tm, Tk)−∆kKP (Tm, Tk)),

where PD is the defaultable ZCB of the counterparty and P is the risk-free bond.
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Chapter 4

Systemic risk in an interbank network

with self-exciting shocks

Counterparty credit risk arises from the possibility that the counterparty in a particular transaction,

e.g. in the form of a derivative, might default on the amount owed to the other party. In the last

two chapters we discussed how banks can adjust the price of the derivative to account for this

risk. The aim of this chapter is to investigate the systemic risk in an interconnected (e.g. through

derivatives, loans) network. As discussed in Section 1.5, it is the risk that a default at an individual

entity might cause liquidity problems not just for its counterparty but may result in the default

propagating through the system as a whole. In particular we will incorporate both self- and cross-

exciting shocks as well as interbank lending in the monetary reserve process of the bank. The

excitement comes from the effect that past movements in the asset value of the bank and that of its

counterparties have on the current variations in the banks’ asset value. These effects are modelled

using a Hawkes process [38]. These kinds of self-exciting processes have previously been used in

portfolio credit risk computation in a top-down approach, see e.g. [1], [28] and [23]. In this work

we model the monetary reserve process of a bank through a mean-field interaction diffusion with

an additional Hawkes distributed jump term. We study the behavior of the system as the number

of nodes approaches infinity by deriving the weak limit of the empirical measure of this interacting

system.

In particular our convergence result is based on the analysis of [26], where the authors show

that the intensity of a Hawkes process in the limit of a fully connected network tends to behave

as that of a non-homogeneous Poisson process. We show that the underlying limit process for the

monetary reserves of the nodes has purely diffusive dynamics and the effect of the Hawkes process

is reflected in a time-dependent drift coefficient. Then we define several risk indicators and use the

weak convergence analysis to derive the law of large numbers approximations to explicitly show the

effects of the Hawkes process on the risk in a large interbank network. In the numerical section we
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then compare the LLN approximations with the actual values simulated through a Monte-Carlo

method and conclude that in a model of interbank networks, the default risk is indeed higher when

we incorporate the self- and cross-exciting shocks.

The rest of the chapter is structured as follows: in Section 4.1 we define the Hawkes process and

give a motivation for incorporating it in the interbank network. In Section 4.2 we introduce the

mean-field model for the log-monetary reserve process and study through simulations the effects

of incorporating the self-exciting jump intensity and in particular compare it to the independent

Poisson intensity. In Section 4.3 we derive the weak convergence of the empirical mean of monetary

reserves, explicitly characterize the weak limit measure-valued process and provide several results

for extensions of the model. Finally, in Section 4.4 we derive several measures of systemic risk in

the network and numerically validate the accuracy of the derived limiting process.

4.1 The framework

4.1.1 Motivation

A known source of systemic risk in financial networks is the propagation of defaults due to interbank

exposures such as loans. Due to these loans the failure of a borrowing node to repay its loans, may

subsequently cause a loss in liquidity of the lenders as well. This then propagates the default through

the network. Besides interbank exposures, another common cause of default propagation are fire

sales. If one institution decides to liquidate a large part of its assets, depressing the price, this

causes a loss at the institutions holding the same assets, creating a cross-exciting spiral across the

institutions. Therefore, institutions that do not have mutual counterparty exposure can still suffer

financial distress if they have holdings of common assets on their balance sheets. As illustrated by

[35], the effects from these so-called fire sales can be even greater than the contagion effects due to

counterparty exposures.

A self-exciting effect present in financial networks is known as financial acceleration and refers

to the fact that current variations in the asset side of the balance sheet depend on past variations

in the assets themselves. In other words, a shock affecting the banks portfolio can cause creditors

to claim their funds back or tighten the credit conditions, in this way causing an additional shock

for the bank.

As has been mentioned in [20], while interbank lending itself may not be a significant cause of

default propagation, it is important to account for both the correlated effects of default contagion

through lending agreements as well as exposure to common market events. Here, we choose to model

the correlated effects of the fire sales, financial acceleration and the interbank lending structure on

both the default propagation as well as on the overall loss in the network through a Hawkes counting

process. The shocks affecting the portfolio of the institution arrive conditional on the infinite history

of previous shocks to both the institutions own assets as well as those of the other nodes in the
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network provided that they share common assets.

4.1.2 Hawkes processes

Specific types of events that are observed in time do not always arrive in evenly spaced intervals,

but can show signs of clustering, e.g. the arrival of trades in an order book, or the contagious

default of financial institutions. Therefore, assuming that these events happen independently is

not a valid assumption. A Hawkes process (HP), also known as a self-exciting process, has an

intensity function whose current value, unlike in the Poisson process, is influenced by past events.

In particular, if an arrival causes the conditional intensity to increase, the process is said to be

self-exciting, causing a temporal clustering of arrivals. Hawkes processes can be used for modelling

credit default events in a portfolio of securities, as has been done in e.g. [28] or for modelling

asset prices using a mutually exciting jump component to model the contagion of financial shocks

over different markets ([1]). An overview of other applications of Hawkes processes in finance, in

particular in modelling the market microstructure, can be found in e.g. [3].

Let (Ω,F ,F,P) be a complete filtered probability space where the filtration F = (Ft)t≥0

satisfies the usual condition. Hawkes processes ([38]) are a class of multi-variate counting pro-

cesses (N1
t , ..., N

M
t )t≥0 characterized by a stochastic intensity vector (λ1

t , ..., λ
M
t )t≥0 which de-

scribes the Ft-conditional mean jump rate per unit of time, where Ft is the filtration generated

by (N i)1≤i≤M up to time t. Consider the set of nodes IM := {1, . . . ,M}. Define the kernel

g(t) = (gi,j(t), (i, j) ∈ IM × IM ) with gi,j(t) : R+ → R and the constant intensity µ = (µi, i ∈ IM )

with µi ∈ R+.

Definition 4.1.1 (Hawkes process). A linear Hawkes process with parameters (g, µ) is a family of

Ft-adapted counting processes (N i
t )i∈IM ,t≥0 such that:

1. almost surely for all i 6= j, (N i
t )t≥0 and (N j

t )t≥0 never jump simultaneously,

2. for every i ∈ IM , the compensator Λit of N i
t has the form Λit =

∫ t
0 λ

i
sds, where the intensity

process (λit)t≥0 is given by

λit = µi +

M∑
j=1

∫
[0,t[

gi,j(t− s)dN j
s . (4.1)

In other words, gi,j denotes the influence of an event of type j on the arrival of i: each previ-

ous event dN j
s raises the jump intensity (λit)i∈IM of its neighbors through the function gi,j . The

compensated jump process Nt−
∫ t

0 λsds is a Ft-local martingale. For g a positive and a decreasing

function of time t, the influence of a jump decreases and tends to 0 as time evolves.

Following Proposition 3 in [26], one can rewrite the Hawkes process in the sense of Definition

4.1.1 as a Poisson-driven SDE with the i.i.d. family of Ft-Poisson measures (πi(ds, dz), i ∈ IM )
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with intensity measure (ds, dz):

N i
t =

∫ t

0

∫ ∞
0

1
{z≤µt+

M∑
j=1

∫
[0,s[ g

i,j(t−s)dNj
s}
πi(ds, dz). (4.2)

Next we state a well-posedness result, based on Theorem 6 in [26]:

Lemma 4.1.2 (Existence and uniqueness). Let gi,j be locally integrable for all (i, j) ∈ IM × IM ;

there exists a pathwise unique Hawkes process (N i
t )i∈IM ,t≥0, such that

M∑
i=1

E[N i
t ] <∞ for all t ≥ 0.

By introducing the pair {tk, nk}Ktk=1, where tk denotes the time of event k, nk ∈ IM is the event

type and Kt =
M∑
i=1

N i
t is total number of event arrivals up to time t, we can rewrite the intensity as

λit = µi +

Kt∑
k=1

gi,nk(t− tk), i ∈ IM .

A common choice for gi,j(t) is an exponential decay function defined as

gi,j(t) = αi,je−β
it,

so that λit jumps by αi,j when a shock in j occurs, and then decays back towards the mean level µi

at speed βi. Note that this function satisfies the local integrability property, i.e. gi,j ∈ L1
loc(R+).

If gi,j is exponential then the couple (Nt, λt) is a Markov process [3], and the intensity can be

rewritten in a Markovian form as

dλit = βi(µi − λit)dt+

M∑
j=1

αi,jdN j
t .

The simulation of a Hawkes process can be done using what is known as Ogata’s modified thinning

algorithm, see for more details [57] and [24].

If the Hawkes process (N i
t )i∈IM ,t≥0 satisfies certain conditions, we have the following stationarity

result (see [10] and [4] for details), which will come in useful in the further sections.

Proposition 4.1.3. Suppose that the matrix Φ with entries
∫∞

0 |g
i,j(t)|dt has a spectral radius

strictly less than one. Then there exists a unique multi-variate Hawkes process (N i
t )t≥0 for i ∈ IM

with stationary increments and the associated intensity as in (4.1) is a stationary process. Moreover

we have E[|λt|2] <∞.

Furthermore, we remark here that a multi-dimensional Hawkes process with stationary incre-

ments is uniquely defined by its first- and second-order statistics ([4]).
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4.2 The mean-field model

In this section we define the mean-field model for the log-monetary reserves of each of the nodes in

the model. The interaction between the nodes is defined through the drift term and additionally

we consider the reserve process to be subjected to a self- and cross-exciting Hawkes distributed

shock.

4.2.1 Definition

Define Ft = σ((W i
s , N

i
s), 0 ≤ s ≤ t, i ∈ N). Assume that, for i ∈ IM the log-monetary reserves of

the i-th bank satisfy the following stochastic differential equation (SDE)

dXi
t =

ai

M

M∑
k=1

(Xk
t −Xi

t)dt+ σidW i
t + cidN i

t ,

with Xi
0 ∈ R+ the initial reserves for each bank and where ai ≥ 0, σi ≥ 0 and ci := ĉi/M < 0

are constants for each i ∈ IM . The process W (t) = {W i
t }Mi=1 is an M -dimensional uncorrelated

Brownian motion, and Nt = {N i
t}Mi=1 is the vector of Hawkes processes with self-exciting intensity

λit as defined in Section 4.1.2. With the drift term defined in this way, if bank k has more (less)

log-monetary reserves than bank i, i.e. Xk
t > Xi

t (Xk
t < Xi

t), bank k is assumed to lend (borrow)

a proportion of the surplus to (deficit from) bank i, with proportionality factor ai/M . A jump

in the Hawkes process i affects the corresponding Xi
t through the proportionality factor ci and

increases the intensity λjt for j ∈ IM if gi,j(t) 6= 0. In this way the jump activity varies over time

resulting in a clustering of the arrival of the jumps and the shocks propagate through the network

in a contagious manner through the contagion function gi,j(t). We thus interpret the jump term

cidN i
t as a self- and cross-exciting negative effect that occurs due to financial acceleration and fire

sales, resulting in a decrease in a banks monetary reserve. In [8] the authors considered a similar

mean-field model for the monetary reserves but assumed the jumps to occur at independent Poisson

distributed random times. However, not accounting for the clustering effect of the jumps might

cause a significant underestimation of the systemic risk present in the network. We define a default

level D ≤ 0 and say that bank i is in a default state at time T if its log-monetary reserve reached

the level D at time T . We remark that in our model even if bank i has defaulted, i.e. its monetary

reserve reaches a negative level, it continues to participate in the interbank activities borrowing

from the counterparties until it e.g. reaches a positive reserve level again. In other words, the level

of monetary reserves takes values in R. We will work in the following setting:

Assumption 4.2.1 (Parameters). We collect the parameters associated with the dynamics of the

i-th monetary reserve process i ∈ IM as

pi := (ai, σi, ci) ∈ (R+ × R+ × R−).
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We denote by 1x the Dirac-delta measure centered at x and we set

qM =
1

M

M∑
i=1

1pi , ϕM0 =
1

M

M∑
i=1

1Xi
0
.

We assume lim
M→∞

qM = 1p∗ , i.e. pi → p∗ := (a, σ, c) as i→∞ and lim
M→∞

ϕM0 = 1x, i.e. Xi
0 → x as

i→∞. We take the exponential decay function for the contagion

gi,j(t− s) =
1

M
g(t− s) :=

1

M
αe−β(t−s),

which is a locally square-integrable function with α, β ∈ R+. Finally, the parameters are assumed

to all be bounded by a constant Cp.

We remark here that the results developed in this chapter hold also for more general distri-

butions, i.e. lim
M→∞

qM = q and lim
M→∞

ϕM0 = ϕ0, but for simplicity of the results we assume the

parameter vector converges to a constant vector.

Defining the reserve average as

X̄t =
1

M

M∑
i=1

Xi
t ,

we can rewrite the SDE as a mean-field interaction SDE

dXi
t = ai(X̄t −Xi

t)dt+ σidW i
t + cidN i

t . (4.3)

From (4.3) we see that the processes (Xi
t) are mean-reverting to their ensemble average (X̄t) at

rate ai.

Lemma 4.2.2. There exists a unique solution (X1
t , ..., X

M
t ) to the system of SDEs given by (4.3)

for i ∈ IM .

Proof. The proof is similar to Theorem 9.1 in [43]. Define Y i
t to be the solution of the SDE

(4.3) without jumps. By Example 2 in [22], we know that the SDE has a unique strong solution

(Y 1
t , ..., Y

M
t ). By definition of a Hawkes process we have that N1, ..., NM never jump simulta-

neously: this implies the existence of an increasing sequence of jump times (τn)n∈N such that

lim
n→∞

τn = +∞. Then we can define

X
(i,1)
t :=

Y i
t , 0 ≤ t < τ1,

Y i
τ1− + 1k=ic

i, t = τ1, if there is a jump in Nk.
(4.4)

From Lemma 4.1.2, we know that there exists a unique Hawkes process (N i
t )t≥0 for i ∈ IM , thus

we can say that X
(i,1)
t is the unique solution to (4.3) for t ∈ [0, τ1]. Then we define X̄

(i,2)
t on t ∈
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[0, τ2− τ1] similar to (4.4) using as initial state X̄i
0 := X

(i,2)
τ1 and driving factors W̄ i

t := W i
t+τ1 −W

i
τ1

and N̄ i
t := N i

t+τ1 −N
i
τ1 . Then we set

Xi
t :=

X
i,1
t , 0 ≤ t < τ1,

X̄
(i,2)
t−τ1 τ1 ≤ t ≤ τ2.

So that Xi
t , t ∈ [0, τ2] is the unique solution to (4.3). Iterating the above process, we have that Xi

t

is determined uniquely on the time interval [0, τn] for each n ∈ N.

4.2.2 Simulation

Consider, for the sake of illustration, the following SDE

dXi
t = a(X̄t −Xi

t)dt+ σdW̃ i
t + cdN i

t ,

with W̃ i
t := ρW 0

t +
√

1− ρ2W i
t , where W i

t , i = 0, ...,M are independent Brownian motions and W 0
t

represents common noise (similar to the setting in [16]). We keep the parameters of the constant

intensity and the excitation function gi,j = αi,je−β
it fixed at µi = 10/M , βi = 2/M and αi,j = 2/M

and the initial reserve value is set at X0 = 0.

Table 4.1: Parameters corresponding to the various scenarios of the realizations of (Xi
t , i = 1, ..., 10).

Scenario a σ c ρ

No lending, independent BMs 0 1 0 0.2
Lending, independent BMs 10 1 0 0
No lending, correlated BMs 0 1 0 0.2
Lending and correlated BMs 10 1 0 0.2

Lending, correlated BMs and Poisson jumps 10 1 0.2 0.2
Lending, correlated BMs and Hawkes jumps 10 1 0.2 0.2

Figure 4.1: One realization of (Xi
t , i = 1, ..., 10), t = 1, ...100 with no lending and independent

Brownian motions (left), lending and correlated Brownian motions (center) and lending, correlated

Brownian motions and the Hawkes distributed jump (with the jump times shown as dots) (right).
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We consider several scenarios of the monetary reserve process denoted in Table 4.1. In Figure

4.1 we see that the trajectories generated by the correlated Brownian motions with lending are

more grouped than the ones generated by independent Brownian motions without lending. The

Hawkes shock, as expected, causes more trajectories to reach the default level, due to it being an

additional source of default propagation.

Consider the default level D = −0.7. In Figure 4.2 we show the distributions of the number of

defaults defined as P
(
M∑
i=1

(
min

0≤t≤T
Xi
t ≤ D

)
= n

)
, for the independent Brownian motion case, the

dependent case and the cases including a Poisson process and a Hawkes process. We observe that

the mean-field interbank lending causes most of the probability mass to be set around zero defaults,

as opposed to the no lending case when the density function is centered at 5 defaults. However,

the lending component also adds a non-negligible probability of all nodes defaulting at once. The

correlation between the Brownian motions affects the loss distribution only slightly. As expected,

adding the self-exciting and clustering Hawkes process increases the tail-risk even more so that the

probability of all nodes reaching a default state rises significantly.

Figure 4.2: The distribution of the number of defaults in several different scenarios, as explained in

Table 4.1. The parameters in the Monte Carlo simulated based on a discretized Euler-Maruyama

scheme are M = 10, T = 1, 10000 simulations and 100 time steps.

4.2.3 Dependency

As we have already seen in Figure 4.2, the Hawkes process increases the probability of multiple

defaults occurring at the same time as compared to an independent Poisson process. It is therefore

of interest to study the dependence structure between the nodes in more detail. As is standard in

multi-variate statistics, see [62], a tool for assessing the (not necessarily linear) dependency between
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variables is the measure p(q) given by

p(q) = P
(
Xi > F−1

Xi (q)|Xj > F−1
Xj (q)

)
, i, j ∈ IM ,

the probability of one of the variables Xi being above the qth quantile of its marginal distribution

FXi conditional on the other variable Xj being above its qth quantile. To remove the influence of

marginal aspects it is typical to transform the data to a common marginal distribution, with e.g.

a transformation to unit Fréchet marginals (for details we refer to the methodology in [62]). In the

presence of a dependence between two nodes in our model, the probability of default of one firm

conditional on the default of the other will be significant. When computing the systemic risk present

in interconnected financial networks, quantifying this dependence is clearly of key importance. Note

that in our model we have two key dependencies present:

• Dependence through the drift term: a high X1
t results in a change in X1

s and X2
s for s > t

due to the interbank loans.

• Dependence through the Hawkes process: if ∆X1
t << 0 represents the occurence of a jump

at time t, then the likelihood of ∆X1
s << 0 and ∆X2

s << 0 for s > t increases. We remark

that the likelihood of seeing the shock decreases with a larger s due to the mean-reverting

excitation function gi,j i, j ∈ {1, 2}.

Figure 4.3 shows the scatter plots for both an independent Poisson jump and a Hawkes jump.

Already here we see that the Hawkes jump seems to reflect a more strong dependency in the

tails. In Figure 4.4 we plot the measure p(q) (for the left tail) compared to the 1 − q function

representing independence, for several different parameter sets. We see that the Hawkes process

shows significantly more dependence between the two nodes for all quantiles compared to the

Poisson process. In particular, we note that having only a jump term in the monetary reserve

process results in a significant tail probability, where the tail probability of the Hawkes process is

considerably higher than that of the Poisson process. This is to be expected since the self-exciting

nature of the jumps causes the extreme events in one node to influence extreme events in the other

node. Furthermore, incorporating the independent Brownian motion seems to reduce the tail risk

almost to zero, while adding the interbank loans in turn causes a slight increase in the tail risk,

due to the additional source of default propagation.
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Figure 4.3: Scatter plots of X1
t and X2

t (M = 2) showcasing the dependence structure between the

nodes in the presence of a Poisson jump (left) and a Hawkes jump (right).

Figure 4.4: The measure p(q) quantifying the dependence of X1
t and X2

t (M = 2) with Poisson

and Hawkes jumps for the case of no Brownian motion, no interbank lending but only jumps (left,

σ = 0, a = 0 and c = −1), Brownian motion, no lending and jumps (center, σ = 0.1, a = 0 and

c = −1) and Brownian motion, lending and jumps (right, σ = 0.1, a = 0.5 and c = −1). The

other parameters in the Monte Carlo simulation based on a Euler-Maruyama scheme are T = 1,

500 simulations, 100 time steps, Xi
0 = 0, ρ = 0, with µi = 0.1, βi = 1.2, αi,j = 1.2.

4.3 Mean-field limit

We derive theoretical mean-field limits for the monetary reserve process with a Hawkes jump

term to show the effects of considering this additional type of contagion on the total losses in the

network in the case of the number of nodes tending to infinity. Our derivations are based on [16]

and [8]. In other words, we wish to understand the behavior of the distribution of the process

Xt = (Xi
t), i ∈ IM as in (4.3) when M → ∞. Let the vector (pi, Xi

t) take on values in the space

O := (R+ × R+ × R−)× R. Define the sequence of empirical measures as

νMt :=
1

M

M∑
i=1

δ(pi,Xi
t)
, t ≥ 0, (4.5)

on the Borel space B(O). In other words we keep track of the empirical distribution of the type and

monetary reserve for all nodes. Let S := P(O) be the collection of Borel probability measures on O.
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Then (νMt )t≥0 is an element of the Skorokhod space DS [0,∞), i.e. it can be viewed as an S-valued

right-continuous, left-hand limited stochastic process. For any smooth function f(p, x) ∈ C∞(O)

defined for (p, x) ∈ O define the integral w.r.t. the measure ν by

ν(f) :=

∫
O
f(p, x)ν(dp× dx), (4.6)

so that

νMt (f) =
1

M

M∑
i=1

f(pi, Xi
t), t ≥ 0. (4.7)

Then we have X̄t = νMt (I) where I(x) = x.

We wish to understand the dynamics for νMt for large M . In deriving the limit of the process

νMt for M → ∞ we use an argument similar to [8] and [33]. In particular, the focus here is on

identifying the limiting dynamics, using the result of [26] on the behavior of Hawkes processes in

a large system. We identify the limit through the generator of the limiting martingale problem in

Section 4.3.1, and subsequently in Section 4.3.2 we identify the limit process.

4.3.1 Weak convergence

We want to use the martingale problem to show that νMt converges to a limiting process. For

notational convenience we will write f(Xi
t) := f(pi, Xi

t). By the definition of a Hawkes process we

have that for all i 6= j, (N i
t )t≥0 and (N j

t )t≥0 never jump simultaneously and a jump in one of the

processes dN i
t results in only Xi

t having a jump of size ci. Therefore, applying Itô’s formula to the

semimartingale Xi
t gives,

df(Xi
t) =ai∂xf(Xi

t)[ν
M
t (I)−Xi

t ]dt+
1

2
(σi)2∂xxf(Xi

t)dt+ σi∂xf(Xi
t)dW

i
t

+ (f(Xi
t− + ci)− f(Xi

t−))dN i
t ,

Then we have, using the definition of νMt in (4.7),

νMt (f) =νM0 (f) +

∫ t

0
νMs (L1f)νMs (I)ds−

∫ t

0
νMs (L2f)ds+

1

M

M∑
i=1

∫ t

0
σi∂xf(Xi

s)dW
i
s (4.8)

+

∫ t

0
νMs (L3f)ds+

1

M

M∑
i=1

∫ t

0

(
f(Xi

t− + ci)− f(Xi
t−)
)
dN i

s,

where we have defined the operators L∗ acting on f(pi, Xi
t) as

L1f(p, x) := a∂xf(p, x), L2f(p, x) := ax∂xf(p, x), L3f(p, x) =
1

2
σ2∂xxf(p, x),
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so that

νMt (L1f) =
1

M

M∑
i=1

ai∂xf(pi, Xi
t), νMt (L2f) =

1

M

M∑
i=1

aiXi
t∂xf(pi, Xi

t),

νMt (L3f) =
1

M

M∑
i=1

1

2
(σi)2∂xxf(pi, Xi

t).

Define for any smooth function ϕ ∈ C∞K (RN ) with N ∈ N and Borel measure ν ∈ S

Φ(ν) = ϕ(ν(f)), (4.9)

with f = (f1, ..., fN ) for fn ∈ C∞K (O), n = 1, ..., N and ν(f) := (ν(f1), ..., ν(fN )) ∈ RN . Let S be

the collection of bounded measurable functions Φ on S. Then S separates S and it thus suffices to

show convergence of the martingale problem for those functions. Then, by applying Itô’s formula

to ϕ(νMt (f)) and using the fact that dÑ i
t := dN i

t − λitdt and dW i
t are martingales and Xt− and λt−

are predictable, we find for 0 ≤ t < u

Φ(νMu ) = Φ(νMt ) +

∫ u

t

(
CMs +DMs + JMs

)
ds+Mu −Mt,

where (Mt)t≥0 is an initial mean-zero martingale and

CMt :=
N∑
n=1

∂ϕ(νMt (f))

∂fn

(
νMt (L1fn)νMt (I)− νMt (L2fn) + νMt (L3fn)

)
,

DMt :=
1

2M2

N∑
n,l=1

∂2ϕ(νMt (f))

∂fn∂fl

M∑
i=1

(
(σi)2∂fn(Xi

t , λ
i
t)

∂x

∂fl(X
i
t , λ

i
t)

∂x

)

JMt :=

M∑
i=1

[
ϕ(νMt (f) + JM,i

t (f))− ϕ(νMt (f))
]
λit,

where JM,i
t (f) = (JM,i

t (f1), ..., JM,i
t (fN )) and

JM,i
t (f) :=

1

M
(f(Xi

s− + ci)− f(Xi
s)).

We will need the following result given in Theorem 8 in [26]:

Theorem 4.3.1 (Propagation of chaos result for the Hawkes process). Consider the Hawkes process

in the sense of (4.2). For each M ≥ 1 consider the complete graph with nodes IM . Let g : [0,∞)→ R
be a locally square-integrable function and set gi,j = M−1g for all i, j ∈ IM . Define the limit

equation

N̄t =

∫ t

0

∫ ∞
0

1{z≤(µt+
∫ s
0 g(t−s)dE[N̄s])}π(ds, dz), (4.10)
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where π(ds, dz) is a Poisson measure on [0,∞)× [0,∞) with intensity measure dsdz. Then we have

dE[N̄t] = λ̄tdt and

λ̄t := µ+

∫ t

0
g(t− s)dE[N̄s]. (4.11)

In other words N̄ = (N̄t)t≥0 is an inhomogeneous Poisson process with intensity λ̄t. Let N̄ i
t be

an i.i.d. family of solutions to (4.10) for i ∈ IM . Define ∆i
M (t) =

∫ t
0 |d(N̄ i

u − N i
u)| and γM (t) =

E[∆i
M (t)]. Note that this γM (t) does not depend on i due to exchangeability of both N̄ i

t and N i
t .

Then,

γM (t) =

∫ t

0
E
[∣∣λ̄t − λit∣∣] ds,

and for t ∈ [0, T ] we have

lim
M→∞

γM (t) = 0.

In other words, when all nodes interact in the same way in the limit of the number of nodes

going to infinity, the Hawkes process reduces to an inhomogeoneous Poisson process and we have

for any i ∈ IM the following limit

lim
M→∞

E
[∫ u

t
|λis − λ̄s|ds

]
= 0. (4.12)

The above convergence is thus presumed to be in the weak sense.

The task is now to find the generator of the limiting martingale problem which we will use

to determine the process governing the dynamics of the monetary reserves in the limit, see e.g.

Theorem 8.2 in Chapter 4 of [29]. For this we will use (4.12) and define a Taylor-based simplification

of JMt as

J̃Mt :=

N∑
n=1

∂ϕ(νMt (f))

∂xn

[
1

M

M∑
i=1

λ̄t
∂fn(Xi

t)

∂x
ci

]
.

Using the triangle inequality we have

E
[∫ u

t
|JMs − J̃Ms |ds

]
≤ E

[∫ u

t

∣∣∣∣∣
M∑
i=1

[
ϕ(νMs (f) + JM,i

s (f))− ϕ(νMt (f))
]
λis −

M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
JM,i
s (f)

]
λis

∣∣∣∣∣ ds
]

+ E

[∫ u

t

∣∣∣∣∣
M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
JM,i
s (f)

]
λis −

M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
J̃M,i
s (f)

]
λis

∣∣∣∣∣ ds
]

+ E

[∫ u

t

∣∣∣∣∣
M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
J̃M,i
s (f)

]
λis −

M∑
i=1

[
N∑
n=1

∂ϕ(νMs (f))

∂xn
J̃M,i
s (f)

]
λ̄s

∣∣∣∣∣ ds
]
.
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Applying a Taylor expansion to f ∈ C∞K (O) and using the boundedness of its derivatives and the

definition ci = ĉi/M , we find

JM,i
t (f) ' J̃M,i

t (f), (4.13)

where aM ' bM means lim
M→∞

|aM − bM | = 0 and

J̃M,i
t (f) :=

1

M

∂f(Xi
t)

∂x
ci.

Similarly, using the Taylor expansion of ϕ ∈ C∞K (RN ) we have

ϕ(νMt (f) + JM,i
t (f))− ϕ(νMt (f)) '

N∑
n=1

∂ϕ(νMt (f))

∂xn
JM,i
t (f). (4.14)

Using the finiteness of λit from Proposition 4.1.3, equations (4.14) and (4.13), the boundedness

of the derivatives of f ∈ C∞K (O) by their supremum, i.e. ||f || = sup
(p,x)∈O

|f(p, x)| and the bounds on

the intensity given in (4.12) we have that

lim
M→∞

E
[∫ u

t
|JMs − J̃Ms |ds

]
= 0.

Similarly we have

lim
M→∞

E
[∫ u

t
|DMs |ds

]
= 0.

Define the operator A acting on the function Φ(ν) defined in (4.9), as

AΦ(ν) :=
N∑
n=1

∂ϕ(νMt (f))

∂fn

(
νMt (L1fn)νMt (I)− νMt (L2fn) + νMt (L3fn) + νMt (L4fn)

)
, (4.15)

where L4 := cλ̄t∂x. Then we have the result:

Lemma 4.3.2 (Limiting martingale problem). For any Φ ∈ S and 0 ≤ t1 ≤ ... ≤ tm+1 ≤ ∞, with

m ∈ N and Ψj ∈ L∞(S) we have that A is the generator of the limiting martingale problem, i.e.

lim
M→∞

E

(Φ(νMtm+1
)− Φ(νMtm)−

∫ tm+1

tm

AΦ(νMu )du

) m∏
j=1

Ψj(ν
M
tj )

 = 0. (4.16)

4.3.2 Limiting process

Given the limiting martingale problem (4.16) and assuming the existence and uniqueness of a limit

point, we wish to find the limiting process νt which satisfies equation (4.16). Let p = (p∗, x). Define

the following measure-valued process by

νt(A) := P(Xt(p) ∈ A), (4.17)
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where A ∈ B(R) and the underlying limiting state process X(p) = (Xt(p))t≥0 is a Markovian

diffusion with time-varying coefficients given by

Xt(p) = x+

∫ t

0

(
a (Q1(s)−Xs(p)) + cλ̄s

)
ds+ σ

∫ t

0
dWs, t ≥ 0, (4.18)

with λ̄t is defined in (4.11) and

Q1(t) = x+ c

∫ t

0
λ̄sds. (4.19)

Notice that Q1(t) satisfies the integral equation

Q1(t) = e−at
(
x+

∫ t

0
eas
(
aQ1(s) + cλ̄s

)
ds

)
.

Using the definition of ν in (4.17) we have that

νt(I) =

∫
O
xνt(dx) = E [Xt(p)] ,

where the underlying state process Xt(p) is given by (4.18). Notice that

E [Xt(p)] = e−at
(
x+

∫ t

0
eas(aQ1(s) + cλ̄s

)
ds,

from which it follows that

Q1(t) = νt(I), (4.20)

where I(x) = x. We now prove that δν indeed satisfies the martingale problem in Lemma 4.3.2:

Theorem 4.3.3 (Limiting process). The empirical measure-valued process νM admits the weak

convergence νM → ν, as M →∞, where ν is defined as in (4.17). Furthermore, νM (I)→ Q1.

Proof. Using the standard analysis of weak convergence as in Chapter 3 of [29], the weak conver-

gence νM → ν as M → ∞ follows from Lemma 4.3.2 and Lemmas 4.5.2, 4.5.3 and uniqueness

of the limit point. In other words, if we define QM := P(νM ∈ B(DS [0,∞))), we have that QM

converges to the solution Q of the martingale problem generated by A in (4.15). Next we show

that Q = δν , i.e. the limit measure-valued process ν can indeed be represented as in (4.17). We

have for f ∈ C∞K (O) using the definition in (4.6) that

νt(f) = E[f(Xt(p))]. (4.21)

On the other hand, from (4.18) and using Itô’s lemma, we have

f(Xt(p)) =f(x) +

∫ t

0

∂f

∂x
(Xs(p))(aQ1(s)− aXs(p) + cλ̄s)ds+

σ2

2

∫ t

0

∂2f

∂x2
(Xs(p))ds
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+ σ

∫ t

0

∂f

∂x
(Xs(p))dWs.

Then recalling the definition of the operators L∗ and the equality Q1(t) = νt(I) from (4.20) we

have

∂

∂t
E[f(Xt(p))] =

1

2
E
[
σ2∂xxf(Xt(p))

]
+Q1(t)E[a∂xf(Xt(p))] + E[cλ̄t∂xf(Xt(p))]

− E[aXs(p)∂xf(Xt(p))]

=E[L3f(Xt(p))] + νt(I)E[L1f(Xt(p))] + E[L4f(Xt(p))]− E[L2f(Xt(p))].

Using (4.21) we find

dΦ(νt)

dt
=

N∑
n=1

∂ϕ

∂xn
(νt(f))

dνt(fn)

dt

=

N∑
n=1

∂ϕ

∂xn

(
νt(L3f) + νt(L1f)νt(I) + νt(L4f)− νt(L2f)

)
= AΦ(νt).

Then for all functions Φ(·) of the form (4.9) we have

Φ(νt) = Φ(νs) +

∫ t

s
AΦ(νu)du, 0 ≤ s < t <∞,

and hence δν satisfies the martingale problem generated by A.

In other words, the propagation of chaos result from Theorem 4.3.3 tells us that the empirical

mean νM converges to a measure ν whose underlying process Xt(p) reflects the Hawkes process

through a time-dependent drift.

4.3.3 Extensions of the model

In this section we shortly present results for several possible extensions of the results presented in

Section 4.3. In particular we derive the limiting empirical distribution when including a compound

Hawkes process in the monetary reserve model considered in (4.3); a systematic risk factor, where

the derivation is based on the result from [34]; and furthermore prove a central limit theorem based

on [66] which quantifies the fluctuation of the empirical distribution around its large system limit.

Compound Hawkes process

If we include a compound Hawkes process in the initial log-monetary reserve SDE, i.e.

dXi
t =

ai

M

M∑
k=1

(Xk
t −Xi

t)dt+ σidW i
t + cidSit ,
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where

Sit =

N i
t∑

j=1

Zij ,

where Z is an i.i.d. random variable with distribution function F , independent of N i
t and W i

t , such

that lim
M→∞

1
M

M∑
i=1

1Zi· = y. Then the limiting process is given by

Xt(p) = x+

∫ t

0

(
a (Q1(s)−Xs(p)) + cyλ̄s

)
ds+ σ

∫ t

0
dWs, t ≥ 0.

Systematic risk factor exposure

Similar to the analysis of [34] we can show that considering a non-vanishing systematic risk factor

common to all the nodes in the system, we obtain a non-deterministic limiting behavior. Let

Vt = σ(Vs, 0 ≤ s ≤ t) and Ft = σ((Vs, N
i
s,W

i
s), 0 ≤ s ≤ t, i ∈ N). Consider the following model for

the log-monetary reserves

dXi
t = ai(X̄t −Xi

t)dt+ σidW i
t + cidN i

t + βidYt,

dYt = b0(Yt)dt+ σ0(Yt)dVt, Y0 = y0,

where Vt is a standard Brownian motion independent of W i
t and N i

t . In other words, W i
t represents

a source of risk which is idiosyncratic to a specific name, while Yt is a systematic risk factor

driven by a Brownian motion that is common to all the nodes in the network with the parameter

βi representing the sensitivity of node i to the Y . The systematic risk factor causes correlated

changes in the monetary reserve process and thus acts as an additional source of clustering. As

usual we assume pi := (ai, σi, ci, βi) → p∗ := (a, σ, c, β). Following the derivation in [34] and

defining Φ(y, ν) = ϕ1(y)ϕ2(ν(f)), and applying Itô’s lemma as in the derivations for the original

model we obtain for 0 ≤ t < u

Φ(Yu, ν
M
u ) =Φ(Yt, ν

M
t ) +

∫ u

t
(ϕ1(Ys)CMs + ϕ1(Ys)DMs + ϕ1(Ys)JMs + BM,1

s )ds

+

∫ u

t
BM,2dVs +Mu −Mt,

where we have defined

BM,1
t :=ϕ1(Yt)

N∑
n=1

∂ϕ2(νMt (f))

∂fn
νMt (L5

Ytfn) + ϕ2(ν(f))

(
b0(Yt)∂yϕ1(Yt) +

1

2
σ2

0(Yt)∂yyϕ1(Yt)

)

+ ∂yϕ1(Yt)
N∑
n=1

∂ϕ2(ν(f))

∂fn
σ0(y)νMt (L6

Ytfn)
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BM,2
t :=ϕ1(Yt)

N∑
n=1

∂ϕ2(νMt (f))

∂fn
νMt (L6

Ytfn) + σ0(Yt)∂yϕ1(Yt)ϕ2(ν(f)),

with L5
yf(p, x) := βib0(y)∂xf(p, x) + 1

2(βi)2σ2
0(y)∂xf(p, x) and L6

yf(p, x) := βiσ0(y)∂xf(p, x). Tak-

ing the limit of M →∞, using the limits derived in Section 4.3.1, the vanishing of the martingale

in the limit (see also Lemma 7.2 in [34]) and defining

νt(f) = E[f(Xt(p)|Vt],

with

Xt(p) = x+

∫ t

0

(
a (νt(I)−Xs(p)) + cλ̄s

)
ds+ σ

∫ t

0
dWs + β

∫ t

0
dYs,

we obtain for the limiting process νt the following SPDE

dνt(f(Xt)) =
(
νt(L1f(Xt))νt(I)− νt(L2f(Xt)) + νt(L3f(Xt)) + νt(L4f(Xt)) + νt(L5

Ytf(Xt))
)
dt

+ νt(L6
Ytf(Xt))dVt,

where we use Lemmas B.1 and B.2 in [34] to show that E
[∫ t

0 XsdVs|Vt
]

=
∫ t

0 E[Xs|Vs]dVs. The

systematic risk factor thus does not vanish in the limit, and results in the stochastic partial dif-

ferential equation for the limiting process of the empirical measure, instead of the deterministic

behavior in the original model.

A Central Limit Theorem result

Consider again the model defined in (4.3). In order to improve the first-order approximation of νMt
given in (4.17), we can analyze the fluctuations of νM around its large system limit ν. Following

[66] we define

ΞMt =
√
M(νMt − νt).

The signed-measure-valued process ΞM weakly converges to the fluctuation limit Ξ̄ in an appropriate

space (in particular the convergence is considered in weighted Sobolev spaces in which the sequence

ΞM , M ∈ N can be shown to be relatively compact; for discussion on this space, as well as the

existence and uniqueness of the limiting point, we refer to Sections 7,8 and 9 in [66]). We start by

deriving an expression for ΞMt . Some terms in this expression will vanish in the limit of M → ∞,

and using the tightness of the processes (see Section 8 in [66]) and continuity of the operators in

the expression for ΞM we can pass to the limit and find the expression that the limiting fluctuation

process satisfies.

Subtracting νt from νMt we find

dΞMt (f) =
(
νMt (L1f)ΞMt (I) + νt(I)ΞMt (L1f)− ΞMt (L2f) + ΞMt (L3f) + ΞMt (L4f)

)
dt
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+ dMM
t (f) +

√
M

1

M

M∑
i=1

(f(Xi
t + ci)− f(Xi

t))dÑt −
√
M

1

M

M∑
i=1

ci
∂f

∂x
Ñ i
t

+
√
M

(
1

M

M∑
i=1

(f(Xi
t + ci)− f(Xi

t))λ
i
t − νMt (L4f)

)
dt,

where the martingale term is defined as

MM
t (f) =

√
M

(
1

M

M∑
i=1

∫ t

0
σi∂xfdW

i
s +

∫ t

0

1

M

M∑
i=1

ci
∂f

∂x
dÑ i

s

)
.

Using the limiting expressions for the Hawkes jump term and a Taylor approximation from Section

4.3.1, we have

√
M

∣∣∣∣ 1

M

M∑
i=1

(f(Xi
t + ci)− f(Xi

t))−
1

M

M∑
i=1

ci
∂f

∂x

∣∣∣∣ ≤ K2

M
√
M

∥∥∥∥∂2f

∂x2

∥∥∥∥ . (4.22)

Thus one can show by taking the limit M → ∞, using (4.22) and Assumption 4.2.1 that the

sequence {ΞMt , t ∈ [0, T ]}M∈N converges in distribution to the limit point {Ξt ∈ [0, T ]} that satisfies

Ξt(f) =Ξ0(f) +

∫ t

0

(
νMs (L1f)Ξs(I) + νs(I)Ξs(L1f)− Ξs(L2f)

+ Ξs(L3f) + Ξs(L4f)
)
ds+Mt(f),

where {Mt, t ∈ [0, T ]} is the distribution valued, continuous square integrable martingale with a

deterministic quadratic variation to which the sequence {MM
t , t ∈ [0, T ]}M∈N converges in distribu-

tion (note: unlike in the LLN cases, the martingale term does not vanish in the CLT scaling case).

By a martingale CLT (see 7.1.4 in [29]) M is Gaussian. This implies the following second-order

approximation νMt
d
≈ νt + 1√

M
Ξt, giving a more accurate approximation for finite banking systems.

4.4 Systemic risk in a large network

In this section we introduce several systemic risk indicators to quantify the risk in our network and

to show the particular dependence of the risk on the underlying parameters. We first remark on

the difference between the monetary reserve with a Hawkes process and one with an independent

Poisson process:

Remark 4.4.1 (Independent Poisson process versus Hawkes process). Consider an independent

Poisson process with intensity µ. It is straightforward to see that

λ̄t := µ+

∫ t

0
αe−β(t−s)λ̄sds ≥ µ,
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since we assume α, β ≥ 0. Therefore, for c < 0 we have that Q1(t) ≤ Q̃1(t), with Q1 and Q̃1 being

the averages from a Poisson jump with intensity λt and a jump with intensity µ respectively. Thus,

in the limit M →∞, using νM (I)→ Q1(t), we have as expected that the Hawkes process increases

the default risk in the network.

4.4.1 Risk indicators

Here we show how one can measure the systemic risk in a large network using the limiting dynamics

Xt(p). We propose to compute systemic risk in the mean-field model based on the fraction of

banks that have transitioned from a normal to a defaulted state. We define the risk indicator as

the expected value of the fraction of banks that throughout time t ∈ [0, T ] have dropped below the

default level D,

SRM :=
1

M

M∑
i=1

1{
min

0≤t≤T
Xi
t≤D

}.
Note that from Theorem 4.3.3 we have lim

M→∞
νMt = νt for a continuous function f of Xi

t . For the

indicator function over t ∈ [0, T ], we consider the approximate relationship to hold

lim
M→∞

SRM ≈ E

[
1{

min
0≤t≤T

Xt(p)≤D
}] ,

in which the average over the indicator function of the M monetary reserve processes is thus

replaced by the indicator of the limiting process.

Furthermore, similar to [8], we can define the average distance to default as

ADDM (t) := E

[
1

M

M∑
i=1

Xi
t

]
.

Note that (νMt ;M ∈ R) is uniformly integrable, i.e. for each t ≥ 0

sup
M∈N

E
[∣∣νMt (I)

∣∣2] <∞,
the proof of which is similar to the proof of Lemma 4.5.1 in Appendix 4.5 and Lemma B.2 in [8].

Then, for the average distance to default indicator we use the following limiting result

lim
M→∞

ADDM (t) = Q1(t)

with Q1(t) as in (4.20). Note that in the case of independent Poisson jumps with intensity λ, the

limit of the ADD indicator is given by lim
M→∞

ADDM (t) = x+ cλt. This is in contrast to the case of

the Hawkes jumps for which we have lim
M→∞

ADDM (t) = x+ c
∫ t

0 λ̄sds.
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4.4.2 Numerical results

We set M = 300, i.e. sufficiently large, and analyze how our approximation formulas for the

various indicators of systemic risk compare to the corresponding Monte-Carlo estimate. The latter

is obtained by simulating M interacting processes Xi
t , i ∈ IM using an Euler approximation of

(4.3).

Remark 4.4.2 (Computation of λ̄t). Define the partition of [0, T ] as 0 = t0 < t1 < ... < tK = T

with ∆t := ti − ti−1. Then we approximate the integral in (4.11) as

λ̄ti+1 ≈ λ̄ti + ∆tg(∆t)λ̄ti ,

and λ̄0 := µ. Using the approximated λ̄t we compute Q1(t) as

Q1(ti+1) ≈ Q1(ti) + ∆tcλ̄ti ,

where Q1(0) = x.

Table 4.2: Monte Carlo estimates versus the LLN approximation for the systemic risk indicators

with µ = 0.01, α = 1, β = 1.2, a = 0.5, σ = 0.5, ĉ = −0.2 and D = 0.

Monte Carlo Approximation

x0 SR ADD(T ) SR ADD(T )

0.002 0.945 0.007 0.949 0.007

0.1 0.821 0.096 0.816 0.096

0.2 0.658 0.197 0.652 0.197

0.5 0.252 0.497 0.261 0.497

0.8 0.057 0.797 0.058 0.797

1 0.016 0.998 0.017 0.997

In Tables 4.2 and 4.3 we present the results for our approximation and the Monte-Carlo estimates

for 5000 simulations, 100 time steps, T = 1 and M = 300. As expected the systemic risk in

the network, as quantified by both SR and ADD, decreases as the initial monetary reserve value

increases. Furthermore, a higher mean jump intensity µ results in a less stable network. In Figure

4.4.2 we show the LLN estimates for the systemic risk and the average distance to default for the

Hawkes and Poisson process for different values of the initial reserve x0. Our claims of the Hawkes

process adding an additional default risk in the model are verified also in these numerical results, as

the systemic risk indicator for the Hawkes process is considerably larger, while the average monetary

reserves are consistently lower than for an independent Poisson process. Therefore, the self- and

96



Table 4.3: Monte Carlo estimates versus the LLN approximation for the systemic risk indicators

with µ = 0.05, α = 1, β = 1.2, a = 0.5, σ = 0.5, ĉ = −0.2 and D = 0.

Monte Carlo Approximation

x0 SR ADD(T ) SR ADD(T )

0.01 0.947 -0.005 0.946 -0.007

0.1 0.826 0.085 0.830 0.083

0.2 0.669 0.186 0.653 0.183

0.5 0.262 0.486 0.269 0.483

0.8 0.061 0.785 0.061 0.783

1 0.017 0.985 0.016 0.0.983

cross-exciting shock modelled through the Hawkes process is an additional form of contagion in the

network, resulting in the network being more prone to a systemic risk event.

Figure 4.5: LLN estimates for the systemic risk (L) and LLN estimates for the average distance to

default (R) at time T = 1 with µ = 0.2, α = 1.2, β = 1.2, a = 0.5, σ = 0.5, c = −1 and D = 0 for

a independent Poisson process and the Hawkes process for x0 ∈ [0, 1]

Calibrating the model

Calibration of the model considered in (4.3) with heterogeneous coefficients, in particular for the

large banking system, is a complex task. In [1] the authors considered a calibration for a Hawkes

diffusion model used to model asset returns and developed method of moments estimates for the

parameters of the model. Even after making simplifying assumptions on the intensity, the model
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was fitted only on pairs of assets. The calibration of the mean-field SDE with Hawkes jumps for

a large number of banks is therefore besides the scope of this chapter and left for further research.

However, the limiting expression derived in Section 4.3 can be used to derive a simple and efficient

way of calibrating the model. In particular, we can calibrate the average distance to default given

by Q1(t) in (4.19) by fitting it to an average of a sufficiently large number of assets, resulting in the

calibrated parameters x, c, µ, α and β. In particular, consider the asset price as a proxy for the

monetary reserve process and consider the average of the components of the S&P500 index over

the period of 2008-07-14 until 2008-10-21. Calibrating the deterministic expression for Q1(t) to the

actual average distance to default we obtain the following set of parameters: µ = 0.3, x = 1300,

α = 0.07, β = 0.11 and c = −1.6. It can be argued that the assumption of regularity of the

parameters in the limit (see Assumption 4.2.1) is too strong and disables calibrating to actual

excitation. Nevertheless, using this simple and efficient way of calibrating the model, we see from

the left-hand side of Figure 4.6 that contagion is sufficiently captured; in particular note that the

Poisson process is unable to model the necessary contagion as seen from the right-hand side of

Figure 4.6, while the SDE with the Hawkes process provides a much better fit.

Figure 4.6: Calibrated model for Q1 on the S&P500 data showing excitation effects (L) and the

average of 5000 simulated SDE paths of Xt(p) (R)

4.5 Existence and uniqueness

In this section we briefly discuss the ingredients needed to show existence and uniqueness of the

limiting process. We first introduce an auxiliary Lemma which is a boundedness result of the

moment estimate of the log-monetary reserve process.
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Lemma 4.5.1. For n = 1, 2 and T ≥ 0 we have

sup
0≤t≤T, M∈N

1

M

M∑
i=1

E
[∣∣Xi

t

∣∣n] < +∞.

Proof. Let n ∈ {1, 2}. Recall the constant Cp bounding the parameters (pi, Xi
0) from assumption

4.2.1. From Itô’s formula we have

E
[
|Xi

t |n
]

=E
[
|Xi

0|n
]

+ aiE
[∫ t

0
n|Xi

s|n−1(X̄s −Xi
s)ds

]
+

1

2
(σi)2E

[∫ t

0
n(n− 1)|Xi

s|n−2

]
+ σiE

[∫ t

0
n|Xi

s|n−1dW i
s

]
+ E

[∫ t

0

[
|Xi

s + ci|n − |Xi
s|n
]
dN i

s

]
.

Using Young’s inequality we have

ainXi
t
n−1

X̄t − ain|Xi
t |n−1Xi

t ≤ ai
n

M

M∑
k=1

|Xi
t |n−1|Xk

t | − ain|Xi
t |n

≤ Cp
1

M

M∑
k=1

|Xk
t |n + (2n− 1)Cp|Xi

t |n.

Applying Young’s inequality twice yields

n(n− 1)

2
(σi)2|Xi

t |n−2 ≤ n(n− 1)

2

(
n− 2

n− 1
|Xi

t |n−1 +
1

n− 1
(σi)2n

)
≤ n(n− 1)

2

(
n− 2

n
|Xi

t |n +
1

n
+

1

n− 1
Cp

)
.

Finally, using Young’s inequality and Proposition 4.1.3 there exists a constant Cn independent of

M such that

E
[∫ t

0

[
|Xi

s + ci|n − |Xi
s|n
]
dN i

s

]
= E

[∫ t

0

[
|Xi

s + ci|n − |Xi
s|n
]
λisds

]
≤ 1

2
E
[∫ t

0
|ciXi

s|2(n−1) + |ci|2nds
]

+
1

2
E
[∫ t

0
(λis)

2ds

]
≤ Cn(1 + E

[∫ t

0
|Xi

s|nds
]
.

The statement then follows from applying Gronwall’s Lemma and the fact that the limiting con-

stants are independent of M .

In order to conclude weak convergence of the empirical measure νMt to νt we need to determine

the limiting martingale problem (as done in Section 4.3.1), show uniqueness of the limit point and

its existence (i.e. tightness of the sequence of measure-valued processes). We first provide here a

sketch of the proof for existence. We have to prove that the sequence of measure-valued processes
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{νM}M∈N defined by (4.5) are relatively compact when viewed as a sequence of random processes

on the Skorokhod space DS([0,∞]), the collection of càdlàg functions from [0,∞) to S. This is

necessary to ensure that the laws of νM have at least one limit point (see also Chapters 2 and 3 of

[29]). The complication arising from using a Hawkes process is the feedback loop in the intensity,

however due to Theorem 4.3.1 we know that the intensity is bounded and thus the system will not

explode. The relative compactness will be implied by the following two Lemmas: Lemma 4.5.2 on

compact containment and Lemma 4.5.3 on the regularity of the νM ’s.

Lemma 4.5.2. For every T > 0 and any smooth function f ∈ C∞K (O), we have

lim
m→∞

sup
M∈N

P

(
sup

0≤t≤T
|νMt (f)| ≥ m

)
= 0.

Proof. From (4.8) we have the following decomposition

νMt (f) = νM0 (f) +AMt +BM
t + CMt +DM

t , (4.23)

where we have defined

AMt :=
1

M

∫ t

0

M∑
i=1

ai∂xf(Xi
s)(ν

M
s (I)−Xi

s)ds, (4.24)

BM
t :=

1

2M

∫ t

0

M∑
i=1

(σi)2∂xxf(Xi
s)ds,

CMt :=
1

M

∫ t

0

M∑
i=1

(
σi∂xf(Xi

s)dW
i
s

)
,

DM
t :=

∫ t

0

[
1

M

M∑
i=1

(f(Xi
s + ci)− f(Xi

s−))

]
dN i

s.

Then we need to bound E

[
sup

0≤t≤T
|(·)Mt |

]
for each of the terms defined above. Denote for f ∈ C∞K (O)

the supremum norm with ||f || = sup
(p,x)∈O

|f(p, x)|. We will use the dominating constant Cp from

Assumption 4.2.1. For AMt , BM
t , CMt the estimates are similar to [8] and we omit the details here

and just give the estimates

E

[
sup

0≤t≤T
|AMt |

]
≤ Cp

∥∥∥∥∂f∂x
∥∥∥∥∫ T

0

1

M

M∑
i=1

E
[
|Xi

s|2
]
ds+ Cp

∥∥∥∥∂f∂x
∥∥∥∥ ,

E

[
sup

0≤t≤T
|BM

t |

]
≤ Cp

2

∥∥∥∥∂2f

∂x2

∥∥∥∥T,
E

[
sup

0≤t≤T
|CMt |

]
≤ CTCp

∥∥∥∥∂f∂x
∥∥∥∥ (T + 1).
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Then we have by the mean-value theorem and using Proposition 4.1.3 which implies the existence

of a constant Cλ such that E[λit] < Cλ that

E

[
sup

0≤t≤T
|DM

t |

]
≤

M∑
i=1

E
[∫ T

0

1

M
|f(Xi

s + ci)− f(Xi
s−)|dN i

s

]

≤
∥∥∥∥∂f∂x

∥∥∥∥ 1

M

M∑
i=1

ci
∫ T

0
E[λis]ds

≤
∥∥∥∥∂f∂x

∥∥∥∥CpCλT.
Using Lemma 4.5.1, we can find a positive constant C such that

sup
M∈N

E

[
sup

0≤t≤T

∣∣νMt (f)
∣∣] < C.

Define Et[·] := E[·|Ft].

Lemma 4.5.3. Let h(x, y) = |x − y| ∧ 1 for any x, y ∈ E. Then there exists a positive random

variable HM (γ) with lim
γ→0

sup
M∈N

E[HM (γ)] = 0 such that for all 0 ≤ t ≤ T , 0 ≤ u ≤ γ and 0 ≤ v ≤

γ ∧ 1, we have

Et
[
h2(νMt+u(f), νMt (f))h2(νMt (f), νMt−v(f)

]
≤ Et[HM (γ)],

where the function f ∈ C∞(O).

Proof. We have from (4.23)

(νMt+u − νMt )(f) = AMt+u −AMt +BM
t+u −BM

t + CMt+u − CMt +MM
t+u −MM

t + PMt+u − Pt,

where AMt , BM
t , CMt are defined in (4.24) and

MM
t :=

∫ t

0

[
1

M

M∑
i=1

(f(Xi
s + ci)− f(Xi

s−))

]
dÑ i

s,

PMt :=

∫ t

0

[
1

M

M∑
i=1

(f(Xi
s + ci)− f(Xi

s−))

]
λisds,

where we have used the fact that the compensated counting process Ñ i
t := N i

t−
∫ t

0 λ
i
sds is a Ft-local

martingale. We have

h2
(
νMt+u(f), νMt (f)

)
≤16

[ ∣∣AMt+u −AMt ∣∣2 +
∣∣BM

t+u −BM
t

∣∣2 +
∣∣CMt+u − CMt ∣∣2

+
∣∣MM

t+u −MM
t

∣∣2 +
∣∣PMt+u − PMt ∣∣2 ].
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Let 0 ≤ u ≤ γ. For the bounds on the first three differences we refer to Lemma 3.5 in [8]. For

the fourth difference, using the martingale property and Itô Isometry for the martingale (MM
t )

with quadratic variation [Ñt, Ñt] = Nt, the mean-value theorem, Assumption 4.2.1 and Proposition

4.1.3, and the bound (6.1) in [33] we find

Et
[∣∣MM

t+u −MM
t

∣∣2] = Et
[∣∣MM

t+u

∣∣2 − ∣∣MM
t

∣∣2]
=

M∑
i=1

Et
[∫ t+u

t

1

M

∣∣f(Xi
s + ci)− f(Xi

s−)
∣∣2 dN i

s

]

=
M∑
i=1

Et
[∫ t+u

t

1

M

∣∣f(Xi
s + ci)− f(Xi

s−)
∣∣2 λisds]

≤ Cp
∥∥∥∥∂f∂x

∥∥∥∥2 1

M

M∑
i=1

Et
[∫ t+u

t
λisdt

]

≤ Cp
1

2

∥∥∥∥∂f∂x
∥∥∥∥2

γ
1
4

1

M

M∑
i=1

E
[
1 +

∫ T

0
(λis)

2dt

]
.

With the mean-value theorem and Assumption 4.2.1 we find

∣∣PMt+u − PMt ∣∣ =

∣∣∣∣∣
M∑
i=1

∫ t+u

t

[
1

M
(f(Xi

s + ci)− f(Xi
s−))

]
λisds

∣∣∣∣∣
≤ Cp

∥∥∥∥∂f∂x
∥∥∥∥ 1

M

M∑
i=1

∫ t+u

t
|λis|ds

≤ Cp
1

2

∥∥∥∥∂f∂x
∥∥∥∥ γ 1

4
1

M

M∑
i=1

(
1 +

∫ T

0
(λis)

2dt

)
.

Then using Lemma 4.5.1 and Proposition 4.1.3 we can finish the proof.

By Theorem 8.6 of Chapter 3 in [29], relative compactness of the sequence {νM : M ≥ 1} in

DS(R+) then follows directly from the above two lemmas. Then if uniqueness of the limit point νt

holds, we can thus conclude that the sequence νMt converges weakly to the limit point νt and we

thus conclude that weak convergence holds. The proof for the uniqueness is similar to the proof of

Lemma C.1 in [8].
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Conclusion and Discussion

In this thesis we studied recent risk management problems using a variety of mathematical tech-

niques. In particular we used stochastic processes and PDE theory to price European and Bermudan

options in which the underlying follows a flexible state-dependent local Lévy model. Our approach

allowed to efficiently compute the Greeks of the options for hedging purposes and to compute the

prices both with and without valuation adjustments. Furthermore, using a weak convergence anal-

ysis we investigated the behavior of the systemic risk in a large interbank network in which the

monetary reserve processes of the banks are connected through lending agreements as well as a self-

and cross-excitement factor coming from common balance sheets and financial acceleration. This

last term was modelled by means of a Hawkes process.

More specifically, in Chapter 2 and 3 we considered the underlying to follow a local Lévy model.

This model extends other commonly used models such as the geometric Brownian motion, or the

local volatility model, by including a jump process with a state-dependent measure and a local

default intensity. Due to the state-dependency in the coefficients neither an explicit density nor

characteristic function is available, so that pricing under this model is not trivial. We introduced

a Taylor-based approximation to derive the approximate characteristic function, and used this in

combination with a Fourier-based pricing method known as the COS method in order to compute

both European and Bermudan options. Furthermore, we considered pricing Bermudan derivatives

under the presence of XVA, consisting of CVA, DVA, MVA, FVA, and KVA. We derived the

replicating portfolio with cashflows corresponding to the different rates for different types of lending,

resulting in a non-linear PIDE. We proposed to solve the PIDE by rewriting it as BSDE and using

the combination of the COS method and the expansion method for the characteristic function, this

resulted in an efficient pricing method for both European and Bermudan derivatives with XVA.

We presented an alternative for computing the CVA term in the case of unilateral collateralization

(as is the case when the derivative is an option) without the use of BSDEs. This results in an

even more efficient method due to the ability to use the FFT. Ideas for further research could

be to include a way of incorporating wrong-way risk; in the current framework a simple form of

wrong-way risk is included by allowing the dependence of the default intensity on the underlying.

Nevertheless an interesting topic of research might be to develop a more rigorous framework to

quantify the wrong-way risk in our model. Furthermore, the inclusion of stochastic interest rates
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could be an interesting further development. Lastly, the local Lévy model considered here was of

a one-dimensional form. It would be useful to study the possibility of extending the results to

multi-dimensional (be it stochastic volatility processes or correlated multi-asset portfolios). We

remark that by e.g. [51] expressions for the density expansion in the case of multi-dimensional

processes do exist, however combining these expressions with e.g. the COS method is not trivial.

Nevertheless for both XVA portfolio computation, as stochastic volatility option pricing the above

could be a very useful extension.

In Chapter 4 we studied the systemic risk in an interbank system. In particular we aimed to

understand the effects of considering an additional self-exciting and clustering shock that impacts

the monetary reserve or asset value of the nodes of the interbank system. The nodes are assumed

to interact through the drift, and additionally are subjected to a Hawkes-distributed shock. In

this way the jump activity varies over time resulting in jump clustering and the shocks propagate

through the network in a contagious manner. This allows us to model both default propagation due

to interbank loans as well as propagation due to linked balance sheets and financial acceleration.

By a weak convergence analysis in which we studied the behavior of the system in the limiting

setting of the number of banks going to infinity, we concluded that the clustering Hawkes jumps

result in an additional and important source of default propagation in the network and should not

be ignored. A potential extension might be to consider the Hawkes process shock size or intensity

to be dependent on the monetary reserves, in this way the impact of a shock depends on the state

of the system. In general, a more fragile state, in which firms are more susceptible to contagion,

would then result in a larger impact. Furthermore, extending the work of [16] in which the authors

consider a mean field game in a system without jumps, a game aspect could be introduced into

our model. Each bank would be trying to optimize a particular borrowing rate and the effects of

including the additional Poisson or Hawkes jump term on this optimal borrowing rate could be

investigated. Concluding, the techniques and applications presented in this thesis are both novel

and relevant for risk management applications after the financial crisis. The methods developed

could be useful for practitioners as well provide a baseline for further research.
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