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Abstract

Taking advantage of the integrable structures emergent in the theory, non-local observables

such as null polygonal Wilson loops are studied in 4d planarN = 4 Super Yang-Mills. Their

duality with the 4d gluon scattering amplitudes makes the analysis even more interesting.

The so-called Pentagon approach, an application of the Operator Product Expansion (OPE)

method to the null polygonal Wilsol loops, makes possible a non-perturbative evaluation of

these objects. They are recast as an OPE series over the 2d GKP flux-tube excitations, a

description reminescent of the QCD flux-tube stretching between quarks. The integrability

of the flux-tube allows us to evaluate the series, in principle, for any value of the coupling

constant. From this analysis, several results have been obtained. In the strong coupling

regime we reproduced the TBA-like equations expected from the minimal area problem

in string theory, finding agreement with the AdS/CFT prediction. In this respect, of

fundamental importance is the emergence of effective bound states between elementary

fermionic excitations. Along the way, we encountered some intriguing analogies between

these null polygonal Wilson loops and the Nekrasov instanton partition function Z for

N = 2 theories. Furthermore, a new non-perturbative enhancement of the classical string

argument has been confirmed, stemming from the dynamics of the string in the five sphere

S5 and described by the non-linear σ-model O(6). Some properties of a fundamental

building block of the OPE series, the SU(4) structure of the form factors of a specific twist

operator P̂ , have been analysed. This SU(4) matrix part is given a representation in terms

of rational functions, organized in a Young tableaux pattern.
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Preface

The work presented in this thesis mainly consists of a collection of the results obtained

during the PhD at the University of Bologna, with my scientific advisor Dr. Davide

Fioravanti and collaborators Dr. Simone Piscaglia and Dr. Marco Rossi. The research

resulted in a series of papers [1, 2, 3, 4, 5], whose content will be elaborated in the second

part of the text. In the first part we give a pedagogical survey of some tools of integrability

and how they can be applied to 4d supersymmetric gauge theories, helping the reader to

contextualize the rest of the work.
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Introduction and Overview

In this brief introduction we describe the motivations behind the theoretical work displayed

in the text. Furthermore, we highlight the results and give a plan of the thesis.

Motivations Our universe is currently described by the Standard Model, which is a

quantum field theory and where all the interactions but gravity are described by the gauge

principle, with the group SU(3)c⊗SU(2)I⊗U(1)Y . Combined with General Relativity, the

relativistic theory of gravity, the Standard Model successfully predicts all the experiments

we can do on Earth. However, there are still some observations, expecially at the cos-

mological level, to account for and an extension of the contemporary models is necessary.

On the other hand, on a purely theoretical ground, the road to unification is yet to be

concluded and merging gravity with the other interactions, in a fully consistent quantum

description, is probably the major theoretical issue of modern physics. Therefore, there

are both experimental and theoretical reasons to search for completion and/or extensions

of the current theories. The main candidate for the unification is String Theory, which has

the nice feature of including gravity in a consistent framework and implies the presence

of, in some extent, supersymmetry in Nature. Putting aside gravity and remaining in the

realm of quantum field theories, a less ambitious road involves the supersymmetric exten-

sion of the Standard Model. These supersymmetric models are the simplest candidates to

partially solve some of the observational and theoretical puzzles above and are currently

tested in the accelerators.

Even within the Standard Model, there are some phenomena that call for a better

description. These belong to the class of the non-perturbative effects, relevant when the

coupling constant is not small. The paradigmatic case is the low-intermediate energy

QCD, where the coupling is of order αs ∼ 1 and the usual perturbative expansion breaks

down. The only tool available so far is the lattice numerical approach, which yielded some

positive results but is limited by the computational power. Therefore, analytic tools are

very welcome and would enlarge our knowledge of the Standard Model and of Quantum

9
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Field Theory in general. An exact evaluation of the non-perturbative effects is possible

in some special models of QFT, mainly in two spacetime dimensions. This is due to the

presence of a special feature called integrability.

Integrability itself has a long history, starting from the Liouville definiton for the clas-

sical systems and culminating with the two dimensional (1 + 1 Minkowski) integrable

QFTs. In a nutshell, it appears when the conserved charges equal the degrees of freedom

in number: the dynamics is constrained and the model is solvable. The application of

integrability techniques allowed to obtain exact results for many observables, even at the

non-perturbative level. Until recently, integrability thought to be confined in the realm of

two dimensional systems and thus to be irrelevant in the field of 4d gauge theories. The

seminal work [6] proved otherwise, showing the emergence of some integrable structures

in the extended supersymmetric theory N = 4 Super Yang-Mills when computing the

anomalous dimension of the gauge invariant operators. This fact opened a whole new field

of research. Later on, more integrability based methods have been applied to compute

other observables in N = 4 SYM. Furthermore, some integrable structures appeared in

other theories as well, like N = 2 SYM and N = 6 3d Chern-Simons.

Another leivmotiv of modern theoretical physics is duality. The discovery that string

theory and gauge theory might describe, in some peculiar cases, the same physical system

has been probably the most important theoretical development of the last two decades

[7, 8, 9]. To be specific, the so-called AdS/CFT correspondence states that a string theory

living in a space AdSd+1×X, containing a d+1-dimensional AdS part, is dual to a quantum

field theory with conformal invariance (CFT side) which dwells on the boundary of AdSd+1,

namely the d-dimensional Minkowski spacetime. The gauge theory living on the bounday

usually contains more than one supercharges N > 1. This is a remarkable statement

because it relates two very different frameworks like String Theory and Quantum Field

Theory, living in two different spacetime dimensions. In fact, it is a practical realisation

of the holographic principle [10] proposed long ago, which proposes that the informations

contained in the gravitational degrees of freedom in the bulk are encoded in the boundary.

From the practical point of view, this connection may be used to gain more insight on both

sides of the correspondence. Being a weak/strong duality, it connects the weak coupling

regime of one side to the dual strongly coupled dynamics. This feature makes its verification

difficult, as we cannot compare the perturbative computations of both sides. However, if

we trust the correspondence, it may give us precious non-perturbative informations from

relatively simple perturbative methods. The most famous and well-studied case is the

duality between N = 4 SYM and IIB String Theory on AdS5×S5. There is a considerable

interplay between integrability and AdS/CFT , as the emergent integrability in N = 4
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played a major role to test the duality. In fact, also the string side AdS5 × S5 shown

some integrable features. Therefore, integrability in AdS/CFT is an independent area of

research by itself.

Although these methods involve only gauge theories with extended SUSY, which are

not directly relevant to describe our universe, they are worth of consideration as they give

us additional insight on these mathematical models and might help us to understand better

some non-perturbative features of QFTs in full generality. In addition, even though they are

different from the Standard Model, in some regimes they coincide or show many similarities

with the QCD. For instance, the deep inelastic scattering in QCD is well-described by its

supersymmetric cousin N = 4 Super Yang-Mills. The asymptotic freedom present in QCD

shows up in many supersymmetric models with N = 2 as well. Summarizing, this purely

theoretical work is very important, as it could give us new tools and insight to understand

some phenomena taking place in the real world.

Results and contents The results obtained throughout my PhD, which culminated in

a series of papers [1, 2, 3, 4, 5], are here briefly highlighted. They will be described, in

great details, in the Chapters 3,4,5. Also, a plan of the thesis is outlined.

The central topic of the PhD has been the application of integrability techniques in 4d

SUSY gauge theories. In particular, we focused on the maximally supersymmetric N = 4

gauge theory, with gauge group SU(N), in the planar limit N → ∞. Integrability is

emergent at the level of the gauge invariant operators, when the spectrum of the anoma-

lous dimension is considered. The Operator Product Expansion tool, usually applied to

products of local operators in a CFT, works for the null polygonal Wilson loops as well

[11] and can be employed through the so-called Pentagon approach [12]. They are the

simplest among the non-local operators and, remarkably, they are dual to the 4d gluons

scattering amplitudes [13, 15, 14]. This is a unique feature of the special theory under

investigation. Therefore, the OPE method provides tools for a non-pertubative evaluation

of the 4d amplitudes.

In this setup, we computed the Wilson loop in the strong coupling limit, where two

different regimes are present. On the one side, the prediction from (classical) string theory

is reproduced considering only the fermionic and gluonic sectors of the gauge theory. The

typical Thermodynamic Bethe Ansatz (TBA)-like equations [16, 17] for the scattering

amplitudes are obtained within the OPE framework. The fermions coalesce, in the strong

coupling limit, into effective bound states [18, 19], playing a major role for the emergence of

the TBA description. In this respect, some intriguing analogies with the Nekrasov function

in N = 2 theories [20] are discussed. On the other hand, a previously proposed [21] non-
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perturbative contribution is shown to appear from the scalar sector which is described by

the O(6) non-linear σ-model [22]. This correction is, surprisingly, of the same order as

the classical one. In addition, we investigated the 2d integrable system underlying the 4d

theory, in particular the pentagon field (twist) operator appearing in the OPE series and

its form factors. A coupling independent part, called the matrix part, characterizes the

structure under the SU(4) R-symmetry and it is given by a multiple integral over auxiliary

rapidites of the SU(4) spin chain [21, 23, 1]. These integrals have been computed and given

a representation in terms of Young tableaux.

The content of the thesis is organized as follows. The first chapter is meant as a

general introduction to integrability and AdS/CFT duality. Its purpose is to give an

overview of the main concepts and tools, which helps to understand the context of the rest

of the work. We discuss integrability, both by itself and applied to the 4d SUSY theories

and AdS/CFT . Moreover, we give a brief introduction of string theory and SUSY gauge

theories. In Chapter 2 we focus on the Wilson loops in N = 4 Super Yang-Mills, discussing

their duality with the scattering amplitudes. A glimpse of the strong coupling regime and

the results known in literature is given. The most important part is the OPE method, which

will be the main tool from which the results have been obtained. Chapter 3 is devoted

to a particular feature of the 2d integrable system underlying N = 4 SYM: the matrix

part of the form factors of the twist operators P̂ . The classical string result is discussed

in Chapter 4, where we analysed the fermions and gluons contributions. The formation of

bound states between the former and the subsequent resummation is thoroughly analysed.

In the fifth chapter, the scalars are studied and their quantum correction discussed in

details, both for the hexagon and the polygons with n > 6. To conclude, many technical

details are organized in several appendices.



Chapter 1

Integrability and 4d gauge theories

In this chapter we introduce some basic concepts and tools that will help to understand

and contextualize the work described in the thesis. We mainly focus on integrability,

which is the main responsible for the results obtained in the thesis. We briefly discuss

supersymmetric gauge theories and string theory, showing how the are deeply intertwined

through the AdS/CFT correspondence. The last part focus on one of the most important

discovery in theoretical physics of the new century: the emergence of integrable structures

in some 4d supersymmetric models. This fact has also been of paramount important to

give strong evidence of the validity of the duality above. Although, we must mention

that the integrability techniques leading to most results of the thesis are more complicated

than those described in this chapter. However, an introduction to the basis of quantum

integrability is useful nonetheless, as it helps to grasp the physical picture behind the

various methods and computations in the maix text.

1.1 Quantum Integrability

Integrabiliby itself is an old concept, for which many different definitions and formulations

exist. However, the physics behind integrable systems is more or less the same. The main

feature is the presence of as many conserved charges as there are degrees of freedom: this

fact constaints the dynamics so much that it becomes exactly solvable. First developed

in the realm of classical systems by Liouville, it has been discovered in the quantum

systems by Bethe and later developed as a coherent and complete set of tools. The same

physical picture works also for continuum models, both classical and quantum. This fact

led to the theory of 2d integrable quantum field theories, characterized by an infinite set

of local conserved charges. In this section we focus on the quantum theory of integrability,

13
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reviewing the Bethe Ansatz technique and discussing the integrable features in 2d quantum

field theory. Some important extensions and applications are also discussed, among them

the celebrated Thermodynamic Bethe Ansatz.

1.1.1 The Bethe Ansatz

In this paragraph we briefly describe the technique going under the name of Bethe Ansatz

[24]. We follow history and discuss the system to which the Bethe Ansatz was applied for

the first time, the Heisenberg spin chain.

Heisenberg spin chain

Let us consider a SU(2) spin chain of lenght L with periodic boundary condition

H = −J
L∑
i=1

~Si · ~Si+1, ~SL+1 = ~S1 (1.1)

where the interaction acts between nearest neighbours. The Hilbert space on which the

system lives is the tensor product

H = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
L

(1.2)

If J > 0, called the ferromagnetic case, the spins tend to align and the ground state is

doubly degenerate with all spins pointing in the same direction. This is called ferromagnetic

vacuum and we choose

|0〉 = | ↑ · · · ↑〉 ≡ | ↑〉 ⊗ · · · ⊗ | ↑〉 (1.3)

As the Hamiltonian commutes with Sz, we can find a set of common eigenvectors for

the two operators H,Sz. The vacuum is the highest eigenstates for the latter

Sz|0〉 =
L

2
|0〉, H ′|0〉 = 0 (1.4)

where we shifted the Hamiltonian (1.1) such that the vacuum energy is set to zero.

In 1931, Bethe pushed forward a proposal for the general solution, translating the

eigenvalue problem into a set of relatively simple algebraic equations. To begin with, let

us start with the states with only one spin reversed. We define

|n〉 = | ↑ · · · ↑↓n↑ · · · ↑〉 (1.5)
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where the spin down is located in the n-th spot. It is an eigenvector of the total spin

Sz|n〉 =

(
L

2
− 1

)
|n〉 (1.6)

but not of the Hamiltonian (1.1). There are L different states of the type (1.5), labelled

by the integer n = 1, ..., L, thus we expect to find L suitable linear combinations which

diagonalize H

|ψ〉 =
L∑
n=1

ψ(n)|n〉 (1.7)

We think of a spin down as a (pseudo)particle propagating along the chain, which gives

us the guess for the wave function ψ(n) = eipn

|p〉 =
L∑
n=1

eipn|n〉 (1.8)

where p represents the momenta of the particle moving around the chain, called magnon.

The periodic boundary conditions (PBC) impose the quantization of the momenta

p =
2πk

L
, k = 0, · · · , L− 1 (1.9)

from which we recover the expected number L of eigenvalues with one spin down.

The energy of the single magnon depends on the momenta

ε(p) = 2J sin
p2

2
(1.10)

so that the eigenvalue problem for one spin down is solved as

H ′|p〉 = 2J sin
p2

2
|p〉, Sz|p〉 =

(
L

2
− 1

)
|p〉 (1.11)

The non trivial physics starts when we consider two spins down, where our state is

labelled by two integer numbers n1, n2: there are L(L−1)
2

different states, thanks to the

symmetry |n1, n2〉 = |n2, n1〉. This time, the eigenstates are

|ψ〉 =
L∑

n1<n2

ψ(n1, n2)|n1, n2〉 (1.12)

with the educated guess for the wave function

ψ(n1, n2) = eip1n1eip2n2 + S(p1, p2)eip1n2eip2n1 (1.13)



16 CHAPTER 1. INTEGRABILITY AND 4D GAUGE THEORIES

where the interpretation of the unknown function S(p1, p2) is clear: it represents the

scattering phase between two magnons, as it appears once we exchange the momenta p1

and p2.

Now, it is helpful to introduce the Bethe rapidity parameter u, related to the momentum

through

eip =
u+ i/2

u− i/2
, u =

1

2
cot

p

2
(1.14)

from which the energy of a single magnon is given by

ε(u) =
J

u2 + 1/4
(1.15)

After some algebraic calculations, using (1.1), the S-matrix in terms of the rapidities

reads

S(u1, u2) =
u1 − u2 − i
u1 − u2 + i

= S(u1 − u2) (1.16)

which depends only on the difference of the rapidities.

The allowed momenta are determined by the PBC

eip1LS(p1, p2) = eip2LS(p2, p1) = 1 (1.17)

which, expressed in terms of the rapidities, assume the simple algebraic form

(
ui + i/2

ui − i/2

)L
=
ui − uj + i

ui − uj − i
, j 6= i = 1, 2 (1.18)

A remarkable fact is that, even though the magnons scatter non trivially, the total

energy is still given by the sum of the individual energies

H ′|ψ(p1, p2)〉 = E(p1, p2)|ψ(p1, p2)〉 E(p1, p2) = ε(p1) + ε(p2) (1.19)

which means that the interaction acting between magnons only affects the allowed

momenta whereas the total energy is still that of free systems, i.e. additive.

Importantly, this picture does not change when we move to the general case, with m > 2

excitations: it turns out that the multiparticle scattering phase is factorised in terms of the

two-particle one S(p1, p2). As we will see in details later, this is one of the main features

of an integrable system. The general eigenstate
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|ψ(p1, ..., pm)〉 =
L∑

n1<....<nm

ψ(n1, ..., nm)|n1, ....., nm〉 (1.20)

is given by the wave function, generalization of (1.13)

ψ(n1, ..., nm) =
∑
P

ei
∑m
i=1 pP (i)ni+i/2

∑
i<j δ(pP (i),pP (j)) (1.21)

where the scattering matrix has been parametrized as S(pi, pj) = eiδ(pi,pj).

Again, by imposing the PBC we obtain the celebrated set of Bethe equations

eipiL
M∏
j 6=i

S(pi, pj) = 1 (1.22)

which, in terms of the rapidity parameter, assumes the inspiring form

(
ui + i/2

ui − i/2

)L
=

M∏
j 6=i

ui − uj + i

ui − uj − i
(1.23)

The eigenvalues are simply the sum of the individual energies

E({pi}) =
M∑
i=1

ε(pi) (1.24)

This description in terms of particles whose scattering is factorizable is at the core of

quantum integrability and it holds for integrable 2d QFTs as well.

Inhomogenuities, SU(2) symmetry and the Nested Bethe Ansatz The SU(2) spin

chain description can be emergent in physical systems endowed with SU(2) symmetry1.

To begin with, we define the Bethe equations adding, at each site, the inhomogenuities

ui

L∏
l

wi − ul + i/2

wi − ul − i/2
=

M∏
j 6=i

wi − wj + i

wi − wj − i
(1.25)

where, for future convenience, we named the Bethe rapidities of the magnons wi.

In a QFT model with SU(2) symmetry, particles come in two different flavours. They

are labelled by the relativistic rapidties θi ≡ πui
2

, where energy and momentum are

1For instance, an integrable 2d QFT with particle transforming as the fundamental of SU(2).
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E(u) = m cosh
πu

2
, p(u) = m sinh

πu

2
(1.26)

The scattering matrix S(ui−uj) acts between the physical particles is and produce the

Bethe equations for the rapidities ui

eipjL
N∏
m6=j

S(uj − um)
M∏
k=1

uj − wk + i/2

uj − wk − i/2
= 1 (1.27)

Now, some explanations are due. Here, N is the total number of particles and we see

the physical scattering matrix acting between them. M is the number of particles, out

of N , with SU(2) degree of freedom reversed: we see that there is a fictitious rapidity wi

associate to them. Equations (1.27) must be supplemented with that of these rapidities

(1.25), also called isotopic or auxiliary roots. Therefore, we see that a SU(2) spin chain

emerge for the system, i.e. there are M magnons propagating on a SU(2) spin chain

of lenght N . These magnons, from the point of view of the quantum field theory under

investigation, do not carry energy and momentum but play an indirect role, by determining

the allowed physical rapidities ui.

This argument generalizes to any symmetry group and it goes under the name of Nested

Bethe Ansatz [25, 26]. The name means that, depending on the symmetry group, there

are several levels of spin chains whose inhomogenuities are the magnons of another chain

or the physical particles of a QFT model. For our purpose, in the text we will encounter

the SU(4) spin chain emergent from a physical system enjoying that symmetry, namely

the GKP vacuum. Sticking to the special unitary group, a physical system requiring the

nesting procedure could be either a spin chain with SU(N > 2) symmetry or a QFT with

particles transforming under SU(N ≥ 2).

Bound states The Bethe equations (1.69) may also describe bound states between the

particles. This happens when we consider complex solutions of the Bethe equations. The

picture simplifies in the large size L limit, where the complex rapidities arrange themselves

in strings in the complex plane with a real center [27], which can be thought as the rapidity

of the composite particle. This goes under the name of string hypothesis.

To give a skecth of how it works, we stick to the SU(2) spin chain and consider a set

of rapidities solution of the Bethe equations (1.69), allowing one of them to be complex u1

with positive imaginary part2. Considering the Bethe equation for i = 1

2With a negative imaginary part, the argument is specular and still applies.
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(
u1 + i/2

u1 − i/2

)L
=

M∏
j>1

u1 − uj + i

u1 − uj − i
(1.28)

from which we see that the LHS, as the modulus of u1+i/2
u1−i/2 is bigger than one, goes to

infinity for L→∞. Accordingly, an infinite must occur on the RHS: this is possible only

if another complex rapidity u2 exists such that u2 = u1 − i. In the simplest case, u2 has a

negative imaginary part and the requirement of total real momenta tells us the roots are

complex conjugate. Therefore they form a 2-string in the complex plane with real ũ center

u1 = ũ+ i/2, u2 = ũ− i/2 (1.29)

If the imaginary part of u2 is still positive3, the argument can be iterated to obtain the

general configuration. In the end, the bound state is given by the l-string

ua = ũ+
i

2
(l + 1− 2a), a = 1, ..., l (1.30)

centered around ũ and composed by l rapidities spaced by i in the complex plane.

The interpretation as a bound states is confirmed by the analysis of the wave function

and the energy. The former is shown to decrease exponentially as the separation between

the magnons grows. For the energy, let us consider a 2-string with real center ũ whose

energy is given

E2(ũ) = ε(ũ+ i/2) + ε(ũ− i/2) (1.31)

with (1.15). The total energy reads

E2(ũ) =
2J

ũ2 + 1
(1.32)

which is less than any two particle state with real momenta. Generalizing, a Q-string

has energy

EQ(ũ) =
JQ

ũ2 + Q2

4

(1.33)

It is possible to write down the Bethe equations directly involving the strings, by

defining the S-matrix between these composite particles. This procedure is called fusion:

the scattering matrix between a magnon and a Q-string is given by

3If it lies on the real axis, an additional rapidity in the lower half plane is necessary.
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S1Q(u− wQ) =
∏

wj∈{wQ}

S11(u− wj) (1.34)

where S11 is the original scattering phase between single magnons (1.16). In the same

way the scattering between two composite objects is defined.

Algebraic Bethe Ansatz It is worth to mention that a more formal and general ap-

proach has been developed, in the second half of the 20th century. It applies to the models

with a finite number of degrees of freedom and goes under the name of Algebraic Bethe

Ansatz, or quantum inverse scattering method 4. This method allows to find the com-

muting conserved charges and construct the eigenstates in a straightforward way. The

diagonalisation of the Hamiltonian is obtained in an algebraic fashion, employing tools

such as the Lax operator and the transfer matrix, from which the Bethe equations result

as a consistency condition. This approach emerged as an extension to the quantum world

of some techinques belonging to classical integrability.

1.1.2 Integrability in 2d Quantum Field Theory

The Bethe Ansatz technique exposed above works also in the realm of 2d QFTs, where

integrability emerge when the theory is endowed with an infinite number of local conserved

charges. In a general quantum field theory, the effect of those charges depends drastically

on the number of dimensions where the model dwells. For d > 2, an infinite number,

it implies a trivial scattering, i.e. a free theory. This is a consequence of the Coleman-

Mandula theorem [30]. On the other hand, for two dimensional systems the consequences

are much more intriguing: an integrable 2dQFT is characterized by the following important

features [31]

• The number of particles is conserved during the scattering: production and annihilation

processes are forbidden.

• Strict conservation of momentum: the set of momenta does not change during the pro-

cess, the scattering is therefore elastic.

• Factorisation of the scattering: multiparticle processes are described in terms of the

two-particle S-matrix S(pi, pj) only.

4For a beautiful review, see [28, 29].
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A non-trivial consistency condition for the last statement is the famous Yang-Baxter

equation, which assumes the sketchy form S12S13S23 = S23S13S12. It follows from the fact

that the scattering can be achieved in many different sequences of two-body processes. It

is obviously satisfied when only one kind of particle is present in the spectrum, namely the

S-matrix is just a function of the momenta, while it is severely constraining the matrix

structure of Sc,da,b if we have internal degrees of freedom.

Now we are going to convince the reader that the features above hold, using an argument

expesed in [32]. The proof makes use of the action of the conserved charges Qs, where s is

the Lorentz spin, on the eigenstates of momentum

Qs|p〉a = q(a)
s (p)|p〉a (1.35)

where a represents the other internal quantum numbers. The locality of the charges

implies the additivity when we have a multiparticle state

Qs|p1, ..., pn〉a1,...,an = (q(a1)
s (p1) + ...+ q(an)

s (pn))|p1, ..., pn〉a1,...,an (1.36)

Let us consider a scattering of n particles into a final state consisting of m particles,

with the set of initial and final momenta {pi}n, {p′j}m. The conservation of the charge Qs

requires the equality

n∑
i=1

q(ai)
s (pi) =

m∑
j=1

q(aj)
s (p′j) (1.37)

which is valid for any of the infinite values of s, the spin index labelling the charges.

The set of constraints (1.37) is so strong that it fixes m = n and the set of momenta

pi = p′j. It follows that the particles cannot be produced or annihilated and they can only

exchange their momenta.

The factorisability can be shown with the action of the charges on the wave function.

Interestingly, the argument also show the triviality of the theory for d > 2. Suppose we

have a gaussian wave packet

ψ(x) =

∫
dpe−a(p−p0)2

eip(x−x0) (1.38)

representing a particle in x0 with momentum distribution centered around p0. The

effect on the wavefunction of eicQs is a momentum dependent shift, the new center of the

wave packet being x1 = x0 − scps−1
0 .

Consider a scattering process with three particles, all described by a wave packet like

(1.38). The initial state is given by p1 > p2 > p3, therefore the particle 1 is the leftmost, 2
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is in the middle and 3 is the rightmost. The scattering may happen in several ways, all of

them are obtained by a suitable application of the operator eicQs , as it shifts differently the

different wave packets. Since [Qs, S] = 0, the related amplitudes are equivalent and the

factorisation follows. On the other hand, if we have d > 2, the application of the charge

Qs may shift the particles in such a way that they never interact, i.e. the amplitudes is

vanishing implying a free theory.

To summarize, the main quantity to be determined in a 2d integrable QFT is the two-

particle S-matrix S(pi, pj). From the knowledge of the S-matrix, it is possible to find the

spectrum of the theory by employing the Bethe ansatz method depicted in the previous

subsection. This works when the theory is confined in a large volume L, which allows us

to impose the usual periodic bounday conditions. This volume has to be much larger than

the inverse mass scale of the theory5, namely L� m−1. The two-particle S-matrix will be

the topic of the next part, devoted to the so-called S-matrix theory.

The S-matrix theory

Here we analyse the two-particle S-matrix S(p1, p2) for a relativistic 2d model. We will see

that many physical contraints [33, 34] can be imposed, limiting the possible form of the

two-particle S-matrix, a fact that sometimes lead to its complete determination.

The two-particle process we want to describe is

p1 + p2 → p3 + p4 (1.39)

and involves four 2d momenta which satisfy the obvious conservation law p1 + p2 →
p3 + p4. In general the particles may be labelled by additional indices, representing some

internal symmetry. The strict conservation of momenta tells us that either p3 = p2, p4 = p1

or p3 = p1, p4 = p2. In both cases, the S-matrix depends on the incoming momenta only

and, once we add the possible internal symmetry, it reads Sc,da,b(p1, p2) and describes the

process

p
(a)
1 + p

(b)
2 → p

(c)
1 + p

(d)
2 (1.40)

In a relativistic theory the S-matrix depends only on the Lorentz invariant combinations

of pi, namely the Mandelstam variables s, t, u. In two dimensions only one of them is

independent, we choose s which represent the center of mass energy and reads

5If there is more than one mass, we need to consider the smallest one.
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s = (p1 + p2)2 = m2
1 +m2

2 + 2m1m2 cosh θ12, θ12 ≡ θ1 − θ2 (1.41)

where we introduced the relativistic rapidity6 according to

p(0) = m cosh θ, p(1) = m sinh θ (1.42)

This relativistic invariance implies that the S-matrix depends only of the differences of

the rapidities, i.e. Sc,da,b(θ12).

The S-matrix theory consists in a series of constraints to the analytic form of S(θ),

coming from various physical arguments. Here we breifly list and discuss those properties.

We ask that our function S(θ) satisfies the Hermitean analiticity condition

Sc,da,b(θ) = [Sc,da,b(−θ
∗)]∗ (1.43)

which implies that it is an analytic function in the region 0 < Imθ < π, called the

physical strip.

An important physical contraint comes from the conservation of probability, also called

unitary in quantum mechanics, which requires our function to satisfy

Sc,da,b(θ)S
e,f
c,d (−θ) = δeaδ

f
b (1.44)

Moreover, the relativistic invariance implies the crossing symmetry, which relates the

s-channel to the t-channel: we can interchange an incoming particle with an outgoing one

and obtain

Sc,da,b(θ) = Scb̄ad̄(iπ − θ) (1.45)

where the bar operation means that we are considering the antiparticle.

Let us not forget the additional condition from the Yang-Baxter equation, which, once

considering all the indices, reads

Sc1,c2a1,a2
(θ12)Sb1,c3c1,a3

(θ13)Sb2,b3c2,c3
(θ23) = Sc2,c3a2,a3

(θ23)Sc1,b3a1,c3
(θ13)Sb1,b2c1,c2

(θ12) (1.46)

Bound States As learned from basic quantum mechanics, poles in the S matrix may

correspond to bound states of the theory. Here the case is no different, and our S matrix

could be endowed with poles in the complex plane, symptom of a possible bound state. To

be precise, let us stick with the case of diagonal scattering Sa,b and consider a simple pole

6Note that a Lorentz transformation is just a shift in the rapidity space θ → θ + a.
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on the imaginary axis θ = iucab for the S-matrix Sab(θ), where the quantity ucab is called

fusing angle. The bound state emerges from the process a+ b→ c and formula (1.41) gives

us the mass of the composite object

m2
c = m2

a +m2
b + 2mamb cosucab (1.47)

Crossing symmetry tells us that we can think of any particle a, b, c as a bound states

of the remaining two: the relation between the fusing angles is quite constraining

ucab + uabc + ubac = 2π (1.48)

The fusion procedure gives us the S-matrix involving a bound state, as depicted also for

the Bethe ansatz equations previously: the scattering between the excitation c, composed

by a, b, and a particle d is given by the product

Scd(θ) = Sad(θ + iūbac̄)Sbd(θ − iūabc̄) (1.49)

which is called the bootstrap equation and is at the core of the so-called bootstrap

approach [33].

1.1.3 Form factors

In this paragraph we discuss the form factors, which are key quantities to compute in an

integrable QFT. As an important application, they can be used to evaluate the correlation

functions and in particular their UV limit. The form factors theory closely follows that of

the S matrix, as many physical requirements hold here as well. We define the form factor

of a specific operator O as the matrix element between the n particle state with definite

rapidities and the vacuum as

FO~a (θ1, · · · , θn) ≡ 〈0|O(0)|θ1, · · · , θn〉in~a (1.50)

where ~a = (a1, ..., an) is the set of internal indices labelling the particles. The rapidities

are ordered decreasingly θ1 > .... > θn: the general form factor can be obtained through a

process of analitical continuation.

The form factors Fn are required to satisfy certain properties, which leads to their

partial, or even complete in some peculiar cases, determination. The first is the so-called

Watson’s equation: it simply states that if we exchange two particles nearby, the S matrix

between them appears
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Fn(θ1, ...., θn) = S(θi − θi+1)Fn(θ1, ., θi+1, θi, ..., θn) (1.51)

where, for simplicity’s sake, we omitted the obvious dependence on the internal quantum

numbers. Another constraint concerns the behaviour in the complex plane: the physical

rapidities are real but we can consider Fn as an analytic function of all its variables. Shifting

by 2πi a rapidity does not change the physical value of the momentum but has the effect of

transporting the particle on the other side of the list: this is called monodromy and reads

Fn(θ1 + 2πi, ...., θn) = Fn(θ2, ...., θn, θ1) (1.52)

So far, our relations involved form factors with the same number of particles. An interesting

formula relates Fn to the form factors with two particles less. General considerations lead us

to find that there are poles in the complex plane whenever θij = iπ for some i, j: that means

that two particles have the opposite momentum and build a single particle configuration.

These singularities do not depend on the specific model but are quite general, they are

called kinematic poles. The residue of this single pole is related to the form factor Fn−2

through

Resθ12=iπFn(θ1, ...., θn) = 2iFn−2(θ3, ...., θn)

[
1−

n∏
i=3

S(θ2 − θi)

]
(1.53)

Until now, we did not mention the theory whose form factor we were computing: in

fact, the properties (1.51, 1.52, 1.53) are general and independent of the specific model

under investigation. A model dependent physical constraint involves the possible bound

states present in the theory, emergent whenever the S-matrix is endowed with single poles

on the imaginary axis in the physical strip. The residue of the form factors for these poles

yield

Res
θ12=iu

(12)
12
F~a(θ1, ...θn) =

√
2iR(12)Γ

(12)
12 Fa(12),a3,..,an(θ(12), θ3, ..., θn) (1.54)

where θ(12) ≡ θ1+θ2
2

and R(12) is the residue of the S-matrix at iu
(12)
12 .

The general solution of the properties above can be written as

FOn (θ1, ...., θn) = KOn (θ1, ...., θn)
∏
i<j

Fmin(θij) (1.55)

where Fmin satisfies the monodromy and the Watson’s for n = 2 and is chosen to be free

of poles and zeroes in the physical sheet. The involved structure is carried by the function
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KOn , which contains also the informations on the operator O. It is symmetric and periodic

with 2πi.

Correlation functions and conformal limit

An important application of the form factors consists in the study of the correlation func-

tions for the operator O. Let us consider the two-point function 〈0|O(x)O(0)|0〉 and insert

the identity as a sum over states

1 =
∞∑
n=0

1

n!

∫ n∏
i=1

dθi
2π

∑
~a

|θ1, · · · , θn〉~a~a〈θ1, · · · , θn| (1.56)

We shift the operator

O(x) = eip̂xO(0)e−ip̂x (1.57)

and apply the momentum p̂ = (p(0), p(1)) to the eigenstates, so that we obtain the form

factor series for the two-point function

〈0|O(x)O(0)|0〉 =
∞∑
n=0

1

n!

∫ n∏
i=1

(
dθi
2π
e−mr cosh θi

)
Gn(θ1, ..., θn) (1.58)

where the Gn represents the squared form factor, summed over the internal symmetry

indices

Gn(θ1, ..., θn) =
∑
~a

|〈0|O|θ1, ...θn〉|2 (1.59)

and the Lorentz invariant distance r =
√
xµxµ appears.

The series (1.58) is well-suited to study the short-distance behaviour r → 0 where the

theory becomes conformal. In fact, the asymptotic behaviour must be dictated by the

scaling dimension of the operator ∆O

〈0|O(x)O(0)|0〉 ∼ 1

r2∆O
(1.60)

There is an interesting formula of ∆O, coming from the expansion (1.58). We follow the

procedure developed in [35], for a review see [36]. To begin with, we consider the logarithm

of the two-point function

FO(x) ≡ log〈0|O(x)O(0)|0〉 (1.61)
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for which it is a well-known fact that its expansion contains the connected version gn

of the functions Gn, i.e. we have

FO(x) =
∞∑
n=1

1

n!

∫ n∏
i=1

(
dθi
2π
e−mr cosh θi

)
gn(θ1, ..., θn) (1.62)

The important point is the asymptotic factorisation of the G functions when k rapidities

are sent far away from the others

Gn → Gn−kGk (1.63)

which entails that the gn go to zero whenever one or more rapidities is well-separated

from the others. As the function gn depends only on the differences αi ≡ θi+1− θ1, we can

integrate over θ1 to get

FO(x) =
∞∑
n=1

1

n!

∫ n−1∏
i=1

dαi
2π

gn(α1, ...., αn−1)K0(mrξ) (1.64)

where we have introduced the modified Bessel function of the third kind

K0(z) ≡ 1

2

∫
dθe−z cosh θ (1.65)

and the function of the remaining rapidities

ξ2 =

(
n∑
i=2

cosh θi + 1

)2

−

(
n∑
i=2

sinh θi

)2

(1.66)

At this point, we can expand the Bessel function

K0(z) = − log z + γE − log 2 +O(z2 log z) (1.67)

inside the integral to get the expression for the conformal weight, which is simply the

series

∆O =
1

2

∞∑
n=1

1

n!

∫ n−1∏
i=1

dαi
2π

gn(α1, ...., αn−1) (1.68)

We see that the necessary condition for this method to work is that the integral of the

connected functions over their n− 1 rapidities is finite. The same method would not have

been possible for the correlator, as the integral of the functions Gn is not well-defined. The

expansion (1.68) is usually fastly convergent and constitutes an useful method to compute
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the scaling dimension in an integrable QFT. It is noteworthy the fact that it is a UV-IR

connection, as the form factors are defined only in the infinite volume limit whereas the

short-distance regime is described by the high energy dynamics.

This technique will be fundamental in Chapter 5.1, where we analyse the scalar contri-

bution to the hexagonal Wilson loop which is a correlator in the O(6) sigma-model.

1.1.4 Thermodynamic Bethe Ansatz

An important application of the Bethe ansatz technique concerns the physics in the ther-

modynamic limit for systems at finite temperature. We will see that the free energy density

can be computed in terms of a non-linear integral equation, called Thermodynamic Bethe

Ansatz, referred as TBA, equation. In addition, with a double Wick rotation, it applies

also to the ground state energy of finite size systems. The latter version, developed for the

first time by Zamolodchikov [37], found important applications in the field of AdS/CFT .

Yang-Yang TBA

In this paragraph we consider an integrable system, for instance a spin chain or a 1 + 1

dimensional QFT in a large volume, at finite temperature. The thermodynamic limit is

taken as we send to infinity the lenght of the chain together with the number of excitations.

Therefore, the density (occupation number) of states becomes the main physical quantities

we want to study. The techniques described here were first developed by Yang and Yang

[38].

Consider a set of Bethe equations for n excitations, in an integrable system defined on

a circle of size L

eipiL
n∏
j 6=i

S(pi, pj) = 1, i = 1, ..., n (1.69)

which, we recall, are nothing but the periodic boundary condition once we take into

account the scattering between the particles. Taking the logarithm we get

ipiL+
∑
j 6=i

logS(pi, pj) = 2πiIi (1.70)

The integer numbers Ii identify the particular solution to the Bethe equations. To

convince the reader of this fact, for a free theory S = 1 and

Ii =
piL

2π
(1.71)
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For an interacting theory the meaning is the same but the relation betweem the set

of Ii and the momenta is no longer an easy one. Let us define the counting function c(p)

through

Lc(p) =
Lp

2π
+

1

2πi

∑
j

logS(p− pj) (1.72)

depending on the set of quantum numbers Ij. Notice that Lc(pi) = Ii, i.e. it assumes

integer values when the momentum coincides with a Bethe root, i.e. a solution of the

Bethe equations. The other values of momenta for which Lc(phi ) = Ji is an integer are

called holes.

Defining the two densities of states ρr(p), ρh(p), respectively for roots and holes, we

find

ρr(p) + ρh(p) =
dc(p)

dp
≡ ρ(p) (1.73)

For a free system we would have simply a constant density of states ρ(p) = 1/2π. The

difference here is that the density of states depends on the actual excitations, therefore the

spectrum is self-determined by the presence of the interaction.

In the thermodynamic limit the number of excitations goes to infinity and we can replace

sum over Bethe roots with an integral
∑

j f(pj) →
∫
dpρr(p)f(p), thus the continuum

version of the Bethe equations become (we take the derivative with respect to p)

Lρ(p) =
L

2π
+

1

2πi

∫
dp′ρr(p′)K(p, p′) (1.74)

where the kernel is defined as

K(p, p′) ≡ d

dp
logS(p, p′) (1.75)

The integral equation (1.74) is the continuum version of the logarithm of the Bethe

equations (1.69). This is the starting point for the thermodynamic considerations. The

energy density reads

e[ρr] =

∫
dpρr(p)E(p) (1.76)

where E(p) is the single particle energy. The equilibrium is determined by the minimum

of the free energy density

f [ρr, ρ] = e[ρr]− Ts[ρr, ρ] (1.77)
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where T is the temperature of the system.

The free energy is a functional of two densities, among which the constraint (1.74) is

present7. The entropy density, for a fermionic statistic, reads

s =

∫
dp
[
ρ(p) log ρ(p)− ρr(p) log ρr(p)− ρh(p) log ρh(p)

]
(1.78)

Extending the case of free systems, it is natural to define the pseudoenergy as

ρh(p)

ρr(p)
≡ e

ε(p)
T (1.79)

from which the minimum condition δf = 0 becomes the famous TBA equation

ε(p) = E(p)− T
∫
dp′K(p, p′) log

(
1 + e−ε(p

′)/T
)

(1.80)

The critical value of the functional (1.77), i.e. the actual free energy, reads

f = −T
∫

dp

2π
log
(
1 + eε(p)/T

)
(1.81)

It is clear from (1.80) that for a free particle, as K = 0, the pseudoenergy reduces to

the single particle energy E(p).

We must mention that if different types of excitations are present, for instance labelled

by some internal indices or even bound states, the TBA becomes a set of (coupled) non-

linear integral equations of the type (1.80), with a matrix kernel Ka,b(p, p
′).

Finite size energy and the central charge

Having studied the thermodynamic in the large volume limit, which culminated in a set

of non-linear integral equations of the type (1.80), it is time to employ the trick, due to

Zamolodchikov, and apply the results to the finite (i.e. not large) size systems.

The realm of relativistic theories is the natural framework to use the method, but it

can be extended also to any integrable system with some modifications. Let us consider an

euclidean 2d QFT, defined on a torus with dimensions L and R, which we consider both

finite for now. Thanks to the relativistic nature of the theory, we can consider two different

quantization schemes, depending on which variable we take as time (imaginary, as we are

in the euclidean version), then we send L to infinity.

The first scheme, with L as time and R as the size of the space (with PBC), yields for

the partition function in the large L limit

7In principle we could use (1.74) and express everything in terms of ρ(p) only.
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Z(L,R) ' e−LE0(R) (1.82)

which is dominated by the ground state energy E0(R) of the theory for finite size R.

In the other scheme, L plays the role of the size and R of the inverse temperature of

our theory. The partition function is

Z(L,R) ' e−RLf(1/R) (1.83)

where f(1/R) is the density of free energy at temperature T = 1/R.

Thus, as the infinite volume L drops out in the equivalence, we get the remarkable

relation

E0(R) = Rf(1/R) (1.84)

which relates the finite size R ground state energy to the free energy density, at infinite

volume, for temperature 1/R.

Thus we can apply the TBA above, adapted for a relativistic system, where

E(p) = m cosh θ, p = m sinh θ (1.85)

The non-linear integral equation reads

ε(θ) = mR cosh θ −
∫
dθ′

2π
ϕ(θ − θ′) log

(
1− e−ε(θ′)

)
(1.86)

where the kernel is

ϕ(θ) ≡ −id logS(θ)

dθ
(1.87)

Equation (1.86) allows us to find the dispersion relation for a finite temperature and

the (critical) free energy is

f(R) = m

∫
dθ

2π
cosh θ log

(
1 + e−ε(θ)

)
(1.88)

which, by means of (1.84), gives the finite size energy E0(R). It can be parametrised

as

E0(R) = −πc(r)
6R

, r = mR (1.89)

where c(r), called scaling function, is the finite size generalisation of the central charge

governing the Casimir energy in the conformal limit
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Ec(R) = − πc
6R

(1.90)

Summarizing, the scaling function reads

c(r) = −6R

π
r

∫
dθ

2π
cosh θ log

(
1 + e−ε(θ)

)
(1.91)

whose r limit can be addressed to obtain the central charge of the associated CFT,

namely c(0) = c, see [37].

The Y-system It is worth to mention that a set of coupled Thermodynamic Bethe

Ansatz equations like (1.80), can be recast in an inspiring set of functional equations, the

so-called Y-system [39]. Defining the Y functions as

Ya(θ) ≡ eε(θ) (1.92)

it is possible to show that, upon analytical continuation, they satisfy a set of functional

equations, schematically of the form

Ya(θ + iπ/h)Ya(θ − iπ/h) =
∏
b

[1 + Yb(θ)]
lab (1.93)

Some comments are due. The incidence matrix lab tells us how the different nodes of

the TBA equations, once recast in the so-called universal form, are connected [40]. The

equations (1.93) reflect the structure of Dynkin diagram associated to the algerba of the

theory. Along the process we lose some informations: for instance, the driving term, i.e.

the dispersion relation, does not appear anymore in the equations. This means that the

Y-system has a higher degree of universality that the TBA equations. On the other hand,

a solution of the Y-system do not necessarily solve the TBA equations: in order to assure

that, some additional constraints such as the asymptotic properties are needed.

What is important is that (1.93), despite being obtained from the TBA describing the

ground state energy, can be applied to any excited state of the theory. This is possible

thanks to the analytic continuation of (1.80) in the complex plane [41]. Therefore, (1.93) is

the starting point for the analysis of the finite size spectrum of an integrable model. This

has important application in the context of AdS/CFT as well.
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1.2 Supersymmetry and AdS/CFT duality

In this section we discuss supersymmetric gauge theories and their duality with string

theory, through the AdS/CFT correspondence. In particular we focus on the case of

interest for this work, the duality between the maximally supersymmetric N = 4 SYM

and IIB string theory living on AdS5 × S5 spacetime. We will review the main features

of those models, giving the reader the minimum background necessary to undestand the

framework of the work.

1.2.1 Supersymmetric gauge theories

Supersymmetry is a spacetime symmetry which extends the Poincaré group. In addition to

the momentum generator Pµ and the angular (Lorentz) momentum Jµν , there are a number

N of Weyl (left and right) spinor charges QA
α , Q̄

A
α̇ , where A = 1, ...,N . Given its spinorial

nature, it has the effect of turning a boson into a fermion and viceversa, schematically

Q|B〉 = |F 〉, Q|F 〉 = |B〉 (1.94)

thus changing the spin of the particle. That is why it is a spacetime symmetry and not

just an internal one. The main consequence is that a supersymmetric theory contains the

same number of bosonic and fermionic degrees of freedom: therefore, each particle has its

own superpartner whose spin differs by 1/2.

Supersymmetry has been introducted, in the 70’s, for several reasons. From a purely

theoretical point of view, it represents the minimal extension of the standard QFTs bases

on Poincaré symmetry: allowing the charges to be fermionic, the maximal symmetry group

becomes, from the Poincaré× Internal allowed by the Coleman-Mandula theorem, to the

SuperPoincaré× Internal (1.95)

that is, the more general symmetry group is the Poincaré group with supersymmetry,

called SuperPoincaré, times a possible internal symmetry which does not mix with space-

time. As some charges are fermionic, the algebra of the generators contains also some

anticommutation relations. Furthermore, as {Q, Q̄} ∼ P , supersymmetry is also related

to general relativity: if we promote supersymmetry to be local, we find a model invariant

under general coordinate transformations, obtaining the theory called Supergravity. Super-

symmetry, relating fermions with bosons, provides a further unifications involving matter

and radiation, usually considered and described in a different way. In addition, it is also

one of the main prediction of string theory. Another reason to hope for supersymmetry is
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that helps the three different gauge couplings of the Standard Model to unify at a certain

energy scale Mgut.

On the experimental point of view, there are some reasons to believe that supersymme-

try might be a property of Nature. There are several puzzles that are not explained by the

Standard Model of particle physics. The biggest one is the clash between the zero-point en-

ergy predicted by the current models and the cosmological constant. One of the advantage

of supersymmetry is that it addresses the problem of the zero-point energy of the vacuum,

as fermions and bosons contribute with the opposite sign to it. However, to be relevant

for the real world, supersymmetry has to be broken somewhere along the way down to our

energy scale. This is due to the fact that it is not manifest in the spectrum of particles

we observe. This fact gives a non-zero value for the zero-point energy, still too large but is

much lower than the previous one, so the issue is reduced by many orders of magnitude.

Another unsolved problem is the presence of dark matter, which could be explained within

supersymmetry by a particular weakly interacting superpartner of the known particles,

for instance the neutralino. In addition, the naturalness and the hierarchy problem are

partially addressed by the supersymmetric models.

The simplest relevant model for the phenomenology contains one supercharge N = 1

and it is called Minimal Supersymmetric Standard Model (MSSM), which is currently

under investigation at the LHC. Other phenomenologically relevant models, always with

N = 1, are proposed. The number of supercharges can be increased, up to N = 4 if we do

not consider supergravity. The extended SUSY theories N > 1 are not directly relevant

for the phenomenology, as they do not possess chiral matter. However, in some regimes

they behave in the same way as the relevant models, for instance theories with N = 2, 4

may be thought as cousins of the QCD. Interestingly, the large amount of symmetries

gives them some very interesting features: in particular, the non-perturbative regime can

be dealt with sometimes exactly and non trivial results are obtained. This is partially due

to an interplay with integrabily, as we will see in more details in the rest of the text. They

could be useful toy models to develop new tools and gain additional insight in the non-

perturbative structure of QFTs. Hopefully, this might help to study the non-perturbative

regimes in the real theories, like for instance confinement in QCD.

Supersymmetric algebra Here we breifly review the SuperPoincaré algebra, showing

how the various multiplest appear. As mentioned earlier, a supersymmetric field theory is

obtained from an ordinary Quantum Field Theory by enhancing the symmetry group, in

particular adding some spinor supercharges Q, Q̄ to the generators of the Poincaré group.

This enlarge the symmetry to the so-called Super-Poincaré group. The simplest case with
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only one supercharge, divided in left and right Weyl spinors, extend the Poincaré group by

adding, to the usual ones involving the generators Pµ, Jµν , the following (anti)commutation

relations

[Qα, Pµ] = 0, [Qα, Jµν ] = (σµν)
β
αQβ, {Qα, Q̄β̇} = 2σµ

αβ̇
Pµ (1.96)

where the relations for the barred spinor are analogous.

Enhancing the number of spinor charges QA
α , Q̄

A
α̇ , with A = 1, ..,N , the commutation

relations are modified to

[QA
α , Pµ] = 0, [QA

α , Jµν ] = (σµν)
β
αQ

A
β ,

{QA
α , Q̄

B
β̇
} = 2σµ

αβ̇
Pµδ

AB, {QA
α , Q

B
β } = εαβZ

AB (1.97)

where ZAB is called the central charge of the SU(N ) algebra rotating the supercharges.

This last subgroup is particularly important, expecially in N = 4 SYM, as the particles of

the theory transform as representations of SU(N )8.

In the same way as the Poincaré algebra determines the possible multiplets of the the-

ory, the extended algebra here considered is amenable for the same treatment. The main

difference is that, within the same multiplet, particles with different spin are present. For

instance, the chiral multiplet contains a complex scalar and its associated superpartner, a

Weyl spinor. On the other hand, the vector supermultiplet describes a gauge field whose

superpartner is a Weyl fermion. Only for the extended algebras, the so-called hypermul-

tiplet represents the matter field, particularly important in N = 2. These multiplets are

separated when we have only one supercharge but merge together when more charges are

added to the algebra. In the special case N = 4 all the particles belong to the same

multiplet. The appropriated formalism to describe those group of particles makes use of a

generalized version of the quantum field, the superfields involving Grassmann variables.

We conclude with an important remark, valid in four dimensions. It is possible to show

that, for N supercharges, the particle with the highest spin has s ≥ N
4

. Therefore, if we

do not want gravity to be involved9, the largest number of allowed supercharges is N = 4,

which is the theory we will mainly focus on in the following.

8We stress that it is not a local symmetry, but only a global one.
9In that case, the highest number of supercharge would be N = 8.
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N = 4 Super Yang-Mills

As we have seen above, N = 4 is the maximum number of allowed supercharges in 4d

theory without gravity. The associated gauge theory, with gauge group SU(N), plays

a rather special role in the realm of SUSY theories. The large number of symmetries

imposes many constraints on the Lagrangian, which drastically reduce the number of free

parameters. The same does not happen for theories with lowest number of supercharges.

For instance, all the particles belong to the same multiplet: that implies, as the spectrum

contains the gauge massless bosons, that all the particles have mass zero and transform

under the adjoint representation of SU(N). The Lagrangian reads

L = Tr

[
− 1

2g2
YM

FµνF
µν −DµΦiDµΦi − iψ̄AσµDµψ

A + interactions

]
(1.98)

Some comments on the formula above are due. The trace is taken over the gauge

group SU(N) indices. The only free parameter, beside the number of colors N , is the

dimensionless coupling constant gYM : it appears also in the definition of the field strenght

Fµν and the covariant derivative Dµ. The field content in (1.98) consists of the vector

supermultiplet (Aµ, ψ
A
α , ψ̄

Ā
α̇ ,Φ

i), where A, Ā = 1, ..., 4 and i = 1, ...., 6.

A quick glance to (1.98) tells us that the Lagrangian is scale invariant. This fact,

however, does not imply that the theory mantains the symmetry at the quantum level.

There are many examples of conformally invariant Lagrangians, whose symmetry is spoiled

by renormalisation effects. For instance, pure QCD (no quarks) is conformal invariant at

the classical level but the process of renormalisation introduce a scale ΛQCD. Therefore,

the theory is not fixed by the coupling constant, which is running, but by a particular

energy scale.

In N = 4 SYM, remarkably, the β-function which describes the renormalisation of the

coupling constant is vanishing at any loop order, namely

β(µ) = µ
∂gYM
∂µ

= 0 (1.99)

where µ is the energy scale. The consequences are striking: the coupling constant does

not run and it is the true parameter describing the theory. In addition, as there is not an

emergent energy scale in the theory, the conformal symmetry is preserved at the quantum

level and we are dealing with a 4d CFT.

Joining together conformal symmetry, the N = 4 supercharges and the Poincaré

group, the full symmetry group of the theory becomes PSU(2, 2|4), which contains two

bosonic subgroups. The first one represent the conformal 4d symmetry, isomorphic to
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SU(2, 2) ∼ SO(2, 4). The other is SU(4) ∼ SO(6), representing the R-symmetry which

rotates the four supercharges into each other. The fields of the theory transform under the

adjoint of SU(N), whose indices have been omitted. All the particles belong to a specific

representation of the SU(4) R-symmetry. The gauge boson is the singlet, as the are no

SU(4) indices. The left and right Weyl fermions are respectively the fundamental 4 and

the barred version 4, while the real scalars transform as the antisymmetric of SU(4) or the

fundamental vector of SO(6). Adding the 32 odd supercharges to the set of the bosonic

generators, we build the whole group PSU(2, 2|4).

The bosonic subgroup has rank six, therefore we have the set of the six charges

(∆, S1, S2, J1, J2, J3) labelling the states/operators of the theory. The first three are associ-

ated to the spacetime symmetry, the conformal group: ∆ represents the scaling dimension,

eigenvalue of the dilatation operator D, whereas S1, S2 defines the representation of the

Lorentz group. The three charges Ji are a sort of SU(4) angular momentum in the space

of the supercharges.

1.2.2 String theory and the AdS/CFT duality

In this part we briefly introduce string theory and discuss the important duality with some

SUSY gauge theories, the AdS/CFT correspondence. We will focus on the special case

AdS5/CFT4, where the maximal supersymmetric N = 4 is involved.

String Theory

String theory is the main candidate for a full quantum theory of all the known interactions,

gravity included. Originally, it was born to describe some properties of the strong force,

when QCD was still under construction. In particular, the relation between mass and spin

for some group of hadrons is well explained imagining a quark and an antiquark connected

by a relativistic rotating string. However, after the predictive success of QCD, this project

was abandoned. However, the discovery of the graviton in its spectrum and the absence of

internal inconsistencies gave string theory a new light in the 80’s.

The basic objects are tiny strings, whose different vibration modes give rise to particles.

In this description, different particles come from the same foundamental object. According

to the two revolutions of the last century, the strings are relativistic and quantized, in the

language of first quantization.

The are two appealing reasons to think that string theory could actually describe our

universe. First, gravity is included in a full consistent quantum framework, a feature that is

still missing in QFT. In addition, string theory is unique, as there are no free adimensional
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parameters, so everything we see should be, in principle, fixed by the dynamics of the

model. The only dimensional parameter is the string scale (or lenght), which is thought to

be the order of the inverse Plank mass ∼ M−1
p ∼ lp. To compare, in the Standard Model

there are around 30 free parameters whose values are determined by experimentsl. In

addition, a consistent model of strings includes naturally the concepts of supersymmetry.

Looking at the downsides, a significant complication is that the theory is, upon quan-

tisation, consistently defined only in 9 + 1 spacetime dimensions. To make up for the six

missing dimensions, we need to bend the extra ones into a small compact dimensions. Un-

fortunately, there are may ways to do that, about 10500, and the way we bend them affects

drastically the low-energy properties of our world. This is the main obstacle faced by the

researcher who try to get some predictions out of the theory.

On the experimental level, being the string scale very large compared with the energies

currently tested in our accelerators, finding a phenomenological prediction is a very chal-

lenging task. However, there are some proposals, expecially at the cosmological level, to

test some low-energy effects of the theory. This is the field called String Phenomenology.

The string action Here we briefly introduce the starting object from which string the-

ory is developed, namely the string action. We consider only the bosonic subsector to

avoid unnecessary technical complications: we stress, however, that also fermionic degrees

of freedom have to be included. The theory is bases on the language of first quantisation,

therefore the string action is the generalisation to a one-dimensional object of the worldline

formalism for a relativistic particle. In the same way as a particle is described by a world-

line, a string sweeps a 2d spacetime surface called worldsheet, described by the functions

Xµ(τ, σ). The action is the area of the worldsheet and is given by the Nambu-Goto action

S = −T
∫
d2σ

√
−Ẋ2X ′2 + (Ẋ ·X ′)2, Ẋµ ≡ ∂Xµ

∂τ
, X ′µ ≡ ∂Xµ

∂σ
(1.100)

where T ≡ 1
2πα′
≡ 1

2πl2s
is the string tension and the integral is over the two worldsheet

coordinates τ, σ.

The equation of motion from (1.100) are very involved, making the quantization dif-

ficult. Fortunately, there is an alternative action available, which is equivalent to the

Nambu-Goto one. It introduces an additional metric on the worldsheet gµν and reads

Sp = −T
2

∫
d2σ
√
−ggαβ∂αXµ∂βX

νηµν (1.101)

where ηµν is the metric of the spacetime in which the string dwells.
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The Polyakov action (1.101) is the starting point for the quantisation, which can be

achieved in several alternative methods. From the analysis of the symmetries and the

requirement that they are preserved at the quantum level10, it follows that the only con-

sistent number of spacetime dimensions is D = 26 for the bosonic string and D = 10 for

the full superstring theory involving fermions as well.

For our purpose, we point out that the action (1.101) describes 2d quantum field theory

living on the worldsheet span by the coordinates (τ, σ). The fields of this QFT Xµ are

nothing but scalar fields whose internal indices are the Lorentz indices µ = 1, .., D of

the original string theory. Therefore, for a non-trivial fixed background geometry, the

worldsheet theory becomes a 2d non-linear σ-model.

The interaction between strings is still described by the action (1.101), but considering

worldsheets with different topologies. The interaction series is organized as a topological

expansion, weighted by the string coupling gs, of the path integral of the Polyakov action

(1.101). The tree-level amplitudes are described by the surfaces with zero handles, equiva-

lent to a cilinder. Strictly speaking, the σ-model description works only when the tree-level

contributions are considerer, i.e. for free strings.

We mention that, in principle, both the coupling between strings and the background

spacetime are determined by the dynamics of the strings. However, it is meaningful to

study approximations with fixed background and coupling, as we will see in the case of the

AdS/CFT .

The AdS/CFT duality

The idea of a connection between strings and gauge theory was first proposed by ’t Hooft,

who studied the large N expansion [42] in a SU(N) gauge theory. The Feynman diagrams

are classified in a topological fashion: the are weighted by a factor N2−2g, where g is

the genus of the associated two-dimensional surface11. The genus corresponds, roughly

speaking, to the number of handles of the surface. For instance, a sphere and a torus

have respectively g = 0 and g = 1. The expansion recall that of string theory, where

the parameter is the string coupling gs and the different worldsheets are classified by the

same topological invariant. The identification between the two expansion parameters is

gs ∼ 1/N . In the large N limit of the gauge theory, the only relevant diagrams are the

planar ones, which can be drawn on a plane without self-intersections. For this reason, the

large N limit is also referred to as the planar limit. In that regime, in order to have a finite

10In particular, the Weyl symmetry.
11The surface on which the diagram can be drawn without any self-intersection of lines.
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theory, wa also send to zero the Yang-Mills coupling: the only parameter becomes the ’t

Hooft coupling λ ≡ g2
YMN . Another hint which suggested the duality was the holographic

principle [10]. The area law for the entropy of a black hole S ∼ A suggests that, in a

gravitational theory, the information stored in a given volume V can be described by some

degrees of freedom living on the surface ∂V enclosing the volume.

The AdS/CFT correspondence [7, 8, 9] realizes practically the ideas described above. It

states a duality between a string theory, describing gravity, living in a spacetime containing

an AdSd+1 subspace, and a conformal gauge theory located at the boundary of AdSd+1,

which is the d-dimensional Minkowski spacetime Md. The holography comes from the fact

that the quantum field theory on the boundary describes the gravitational dynamics in the

bulk. It is thus quite remarkable and very different from many other dualities, as it relates

two theories with different degrees of freedom (only one side has gravity) and different

spacetime dimensions.

In addition, another and probably the most important feature, expecially from the

computational point of view, is the weak/strong nature of the correspondence. It means

that the strong coupling on one side is mapped to the weakly coupled dual theory. This is,

at the same time, a good and a bad thing. On the one hand, a proof of the duality is very

hard, as we cannot compare perturbative calculations on both sides and non-perturbative

tools, for instance integrability, are needed. On the other hand, however, it could give

us hint about the nature of the strongly coupled dynamics by simply looking at the dual

theory in the weak coupling regime.

Several examples of AdS/CFT duality are known nowadays. The most famous and

best known case is the AdS5/CFT4, which is actually the one relevant for this thesis and

the only one that will be referred to in the following.

N = 4 SYM and IIB AdS5 × S5 string theory

Here we discuss the basic features of the AdS/CFT duality we are interested in: it concerns

the 4d conformal SUSY gauge theory N = 4 Super Yang-Mills and the type IIB string

theory living on the spacetime AdS5 × S5.

The gauge theory is defined by two dimensionless parameters, the Yang-Mills coupling

gYM and the number of colors N . On the other side, strings are coupled by gs and have

lenght l =
√
α; in addition, the sphere S5 and the AdS5 part share the common radius R.

Actually, the last two only appear in the dimensionless combination (R/l).

The are different versions of the duality, depending on whether some particular lim-

its are taken or not. The stronger version related the two theories for any value of the
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parameters, once identified as

λ = g2
YMN =

(
R

l

)4

, g2
YM = 4πgs (1.102)

A slightly weaker statement, which is the one we are actually interested in and in

which most results have been obtained, regards the large N limit. Importantly, the string

coupling goes to zero: we are thus dealing with free strings, namely with worldsheets

with the simples topology. In this case, the string theory is described by the 1 + 1 QFT

on the worldsheet. The correspondence states that the two theories, in the planar limit

N →∞, gs → 0, are equivalent, i.e. they describe the same physics from a very different

perspective.

From the first relation in (1.102), we can see the strong/weak nature of the duality.

The strong coupling side of the gauge theory corresponds to R � l, i.e. a weakly curved

spacetime form the point of view of the string, whose worldsheet QFT σ-model is thus

weakly coupled. On the other hand, for small λ the string feels the whole spacetime metric

and the strongly interacting σ-model takes over.

Having discussed the symmetries of N = 4 SYM previously, now we analyse the string

theory and check that the symmetries of the two sides match. The string describes a 1 + 1

QFT on the worldsheet, in particular a non-linear PSU(2, 2|4) σ-model, which corresponds

to the coset PSU(2,2|4)
SO(1,4)×SO(5)

. The bosonic part of the action gives, respectively, the non-linear

σ-models SO(2, 4) and SO(6). The first corresponds to the dynamics on AdS5, whereas

the latter describes the string on the five-sphere S5. The coupling the two subsectors is

carried by the fermions.

The duality also should give us a map between the observables, of which the main

example is the following. On the gauge side we have the gauge invariant (single trace

only, in the planar limit) operators, labelled by the charges (∆, S1, S2, J1, J2, J3). They are

mapped to the string states: more precisely, ∆ is related to the energy of the string, while

the spins S1, S2 represent the dynamics of the string moving in AdS5 and the triplet of Ji

is related to the string angular momentum on the sphere S5.

1.3 Integrable structures in 4d SUSY field theories

The standard integrability features highlighted for quantum field theories in Section 1.1 are

confined to two dimensional models, as a consequence of the Coleman-Mandula theorem

[30]. However, in the last two decades, the study of extended 4d SUSY models unveiled

some integrable features as well. In this section we discuss this surprising emergence of
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integrability in the theories N = 2, 4, with particular focus on N = 4 SYM which will be

the main topic of the thesis. For the latter, the authors [6] found an application of the

Bethe Ansatz in the planar limit, giving rise to a new field of research. At the same time,

integrability found applications on the string dual model as well [43].

1.3.1 Integrability in planar N = 4 SYM

Despite the lack of an infinite set of local commuting charges, which is the necessary con-

dition for standard integrability in a 2d theory, N = 4 SYM still enjoys some integrability

features. This happens when the planar limit N → ∞ is taken. The motivations behind

this emergent property are not completely understood yet, although it might be related

to the so-called Yangian symmetry, an infinite set of non-local commuting charges charac-

terizing the theory. Specifically, an integrable description emerged for the first time when

dealing with the spectral problem of the anomalous dimensions, which we are going to

depict in details below.

The spectral problem

In a conformal field theory, thanks to the radial quantisation and the state/operator map,

we can diagonalise the dilatation operator D in place of the Hamiltonian to solve the

spectral problem of the theory, which is defined as follows. The two-point function of a

single trace12 gauge invariant operator O behaves schematically as

〈O(x)O(0)〉 ∼ 1

x2∆(g)
, ∆(g)O = ∆O0 + γO(g) (1.103)

where ∆O(g) is the scaling dimension, eigenvalue of the dilatation operator D. The

scaling dimension plays the role of the energy, while the gauge invariant operators can be

thought of as the (eigen)states of the theory.

The scaling dimension consists of two parts. The bare one, which is integer of half-

integer and it is nothing but the engineering dimension of the operator O, it is the tree

level contribution to the correlation function. The quantum corrections are switched on

with the coupling and are contained in the so-called anomalous dimension γO(g).

The operator O can be represented as a string of fields

O ∼ Tr [A1A2......An] (1.104)

12In the planar limit, they are the only relevant ones.
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where Ai is a generic gauge covariant field of the theory and the trace is taken over the

SU(N) indices of the gauge group. The gauge covariant fields we can insert to compose

the operator O are: the field streght Fµν , the (anti)fermion ψAα , ψ̄
Ā
α̇ , the scalars Φi and the

covariant derivative Dµ. The quantum corrections γO(g) are due to the renormalisation

effects, necessary to keep the loop contributions finite. The main contribution from [6] was

to find a spin chain description of the problem.

We stress that an operator like (1.104) is labelled by the six charges (∆, S1, S2, J1, J2, J3)

of which only the first is corrected at the quantum level. Now an important remark about

(1.103) is due: the formula is valid, strictly speaking, only for some linear combinations

of single trace operators. More precisely, the renormalisation process introduces mixing

between operator with the same charges (J1, J2, S1, S2, S3), so that the anomalous part is

actually a matrix Γ acting in the space of operators, with eigenvalues γ.

The SU(2) sector Although the authors studied (at one-loop) the SO(6) sector, made

up by the six real scalars Φi, to give a sketch of the method we analyse the simplest SU(2)

sector, with two complex scalars built out of Φi according to

Z = Φ1 + iΦ2, X = Φ3 + iΦ4 (1.105)

In this case, a gauge invariant operator has the sketchy form

O ∼ Tr [ZXZZX.....XZZXXZ] (1.106)

which already shows an interesting analogy with the spin chain, once we identify (Z,X)

with the two spin states (↑, ↓).
The anomalous dimension matrix can be expanded in loop contributions Γ = g2Γ(2) +

O(g3), where we parametrize the ’t Hooft coupling as λ = 16π2g2. The main achievement

was to show that, at one-loop level, the anomalous dimension matrix of the SU(2) sector

is given by the Hamiltonian of the Heisenberg spin chain, namely

Γ(2) = g2HSU(2), (X,Z)⇔ (↓, ↑) (1.107)

where the spin states are identified with the two scalars, as depicted before.

Therefore, the vacuum state is represented by the operator Tr[ZL] and the excitations

corresponds to the insertion of a field X. The operator with definite one-loop anomalous

dimension g2γ(2) are linear combination of terms schematically of the type Tr[ZL−MXM ],

where M is the number of ”magnons” propagating along the chain/operator. An additional

constraint comes from the ciclicity of the trace: we need to consider only those states which
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respect translational invariance. For instance, with one magnon the only state allowed has

momentum p = 0 whereas in general the total momentum must vanish.

The full PSU(2, 2|4) sector: the Asymptotic Bethe Ansatz equations The proce-

dure outlined above can be pushed forward, by enlarging the sector and considering more

than one loop. A complete non-perturbative evaluation is still missing so far. However,

Beisert and Staudacher proposed a long-range spin chain [44, 45, 46] to account for any

loop order for the full N = 4 SYM theory, i.e. a PSU(2, 2|4) chain. It is described by the

Asymptotic Bethe Ansatz equations

1 =

K2∏
j 6=k

u1,k − u2,j − i/2
u1,k − u2,j + i/2

s∏
j=1

1− g2

2x1,kx
−
4,j

1− g2

2x1,kx
+
4,j

1 =

K2∏
j 6=k

u2,k − u2,j + i

u2,k − u2,j − i

K1∏
j=1

u2,k − u1,j − i/2
u2,k − u1,j + i/2

K3∏
j=1

u2,k − u3,j − i/2
u2,k − u3,j + i/2

1 =

K2∏
j=1

u3,k − u2,j − i/2
u3,k − u2,j + i/2

s∏
j=1

x3,k − x−4,j
x3,k − x+

4,j

1 =

(
x−4,k
x+

4,k

)L s∏
j 6=k

x−4,k − x
+
4,j

x+
4,k − x

−
4,j

1− g2

2x+
4,kx

−
4,j

1− g2

2x−4,kx
+
4,j

σ2(u4,k, u4,j)×

×
K3∏
j=1

x+
4,k − x3,j

x−4,k − x3,j

K5∏
j=1

x+
4,k − x5,j

x−4,k − x5,j

K1∏
j=1

1− g2

2x1,jx
+
4,k

1− g2

2x1,jx
−
4,k

K7∏
j=1

1− g2

2x7,jx
+
4,k

1− g2

2x7,jx
−
4,k

1 =

K6∏
j=1

u5,k − u6,j − i/2
u5,k − u6,j + i/2

s∏
j=1

x5,k − x−4,j
x5,k − x+

4,j

1 =

K6∏
j 6=k

u6,k − u6,j + i

u6,k − u6,j − i

K7∏
j=1

u6,k − u7,j − i/2
u6,k − u7,j + i/2

K5∏
j=1

u6,k − u5,j − i/2
u6,k − u5,j + i/2

1 =

K6∏
j 6=k

u7,k − u6,j − i/2
u7,k − u6,j + i/2

s∏
j=1

1− g2

2x7,kx
−
4,j

1− g2

2x7,kx
+
4,j

(1.108)

where the function x(u) is the Jukovsky map

x(u) =
u

2

[
1 +

√
1− 2g2

u2

]
, x±(u) ≡ x

(
x± i

2

)
(1.109)
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Note that in (1.108) only the fourth node carries momentum and energy, thus the

anomalous dimension is expressed in terms of the roots u4 as

γ = ig2

s∑
k=1

[
1

x+
4,k

− 1

x−4,k

]
(1.110)

The equations (1.108) are asymptotic in the sense that they are valid for long operators

L only. The range of the interaction increases as the number of loops grows, so that the

equations solve the problem only up to λ2L: for higher loops, some wrapping effects appear

as the interaction goes along the whole chain.

The wrapping effects are estimated to be exponential O(e−L) and can be captured

for finite L by an ingegnious refinement of the Thermodynamic Bethe Ansatz procedure

[47, 48, 49] outline before. The AdS/CFT played a main role in the complete solution of

the spectral problem, as the mirror rotation13 can be done on the dual 2d QFT theory on

the worldsheet. It is worth to mention a more complete description of the spectrum, which

is encapsulated in the so-called Quantum Spectral Curve [50] formalism, which enjoys some

computational advantages with respect the TBA setup. These tools can be applied also to

the 3d Chern-Simons theory with N = 6, which turns out to be integrable as well, see for

instance [51].

1.3.2 Integrability in N = 2

Some integrable structures appear also in less supersymmetric gauge theories as well, for

instance N = 2 models. These theories are more similar to the QCD than N = 4, as there

are massive matter fields and they usually enjoy asymptotic freedom. Of course, they are

not conformal invariant. Even though less symmetric than N = 4 SYM, exact results are

still possible to obtain and some of the techniques employed to obtain them show deep and

interesting connections with the language of integrable systems.

Seiberg-Witten curve and Classical Integrability The first connection appeared

in the 90’s, in particular with the the theory of classical integrable systems. For N = 2

theories, Seiberg and Witten [52, 53] managed to compute the exact low-energy effective

action, encoding all the necessary informations in the so-called Seiberg-Witten curve, which

is a complex elliptic curve, i.e. a surface in C2. Eventually, it yields the prepotential FSW ,

namely the logatirhm of the low-energy effective action which is a fuction in the moduli

space, i.e. the space of VEVs ~a for the scalar fields. Immediately thereafter, a connection

13The procedure that swaps space and time.
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with classical integrable systems appeared, as the SW curve turned out to be the classical

spectral curve characterizing a classical integrable system [54].

The Nekrasov function Z and Quantum Integrability

A quantum version of the correspondence above has been proposed recently [55]. A fun-

damental quantity is the so-called Nekrasov instanton partition function Z, developed in

[20] to compute the instantons effect to the partition function in N = 2 gauge theories.

A deformed spacetime, called the Ω-background, is necessary to regularize the sum over

the instantons and it is parametrised by ε1, ε2. Combined with the classical and one loop

contribution, the Nekrasov function yields the Seiberg-Witten prepotential through the

limit procedure

FSW (~a, q) = lim
ε1,ε2→0

ε1ε2 log [ZtreeZloopZ(~a, q, ε1, ε2)] (1.111)

where the dependence on the instanton parameter q and the VEVs is highlighted.

The quantisation of the classical integrable system associated to the SW curve has been

proposed to be given by switching on one of the parameter, say ε1, which plays the role of

the Planck constant. The limit ε2 → 0 is called the Nerkasov-Shatashvili (NS) limit and

it provides, throught the Nekrasov function, a quantized version of the aforementioned

duality. Defining the superpotential according to

W(~a, q, ε1) = lim
ε2→0

ε2 log [ZtreeZloopZ(~a, q, ε1, ε2)] (1.112)

the proposal is that the equations

exp

(
∂W(~a)

∂ai

)
= 1, i = 1, ..., r (1.113)

are nothing but the Bethe equations for a quantum integrable system.

A different relation with the integrability language emerges as we focus on the instanton

contribution

Winst(~a, q, ε1) = lim
ε2→0

ε2 logZ(~a, q, ε1, ε2) (1.114)

which turns out ot be described in terms of a TBA-like equation. In particular, its value

is given by a critical Yang-Yang functional Y Yc, coming from a saddle point procedure

whose equation of motion assumes the same form as the TBA equation (1.80).

The Nekrasov function will be extensively studied in the Appendix A, focusing on the

NS limit and deriving the TBA-like equation. Remarkably, this limit will show a striking
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analogy with the strong coupling regime for the null polygonal Wilson in N = 4, for which

an analogous result holds as well. Additional insight on the emergence of these integrable

features in N = 2 models has been obtained in the recent papers [56, 57].
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Chapter 2

N = 4 null polygonal Wilson loops

and the OPE series

In this chapter we set the stage for the second part of the thesis, containing the results

obtained during the PhD. As mentioned in the introduction, integrability appears in a

subtle and peculiar way in N = 4 SYM gauge theory, first applied to solve the spectral

problem and later to other observables as well. Instead of the two-point functions and

their anomalous dimensions, we focused on non-local observables in N = 4 Super Yang-

Mills, the null polygonal Wilson loops. This theory enjoy another remarkable duality, i.e.

that between null polygonal Wilson loops and the 4d gluon scattering amplitudes. For

the Wilson loops, a non-perturbative approach has been proposed in [12], building on an

earlier idea of [11] and ispired by the interesting spin chain description in [58, 59]. The idea

is borrowed form the QCD and it is to describe the loop in terms of the 2d the flux-tube,

which is integrable in N = 4 SYM. Therefore, it provides a non-perturbative tool to study

the scattering amplitudes in a four dimensional interacting theory.

2.1 N = 4 Wilson loops and 4d scattering amplitudes

In this section we consider planarN = 4 Super Yang-Mills and deal with another important

duality, involving two very different kind of observables. On the one hand, there are the

null polygonal Wilson loops, which are non-local gauge invariant operators. On the other

side, the 4d gluon scattering amplitudes are on-shell quantities. A correspondence between

them was proposed by [13, 15, 14] and then successfully tested at both weak and strong

coupling. The aim for this section is to briefly describe both quantities and provide a

dictionary of the duality.

49
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2.1.1 The Wilson loop

The Wilson loops are among the simplest non-local observables in a gauge theory. For a

non-SUSY theory, they are defined as the vacuum expectation value of a gauge invariant

operator, describing the parallel transport of a quark along a closed path C. The quark

acquires a phase factor

Ψ(x+ C) =W(C)Ψ(x) (2.1)

which is represented by the operator W(C). For a SU(N) gauge theory, the Wilson

loop is defined by the path ordered exponential

W (C) ≡ 1

N
TrW(C) =

1

N
Tr
(
Pei

∮
C dsẋµA

µ
)

(2.2)

where the trace is taken over the fundamental representation of the gauge group. The

symbol P means the path ordering operation, necessary as we are dealing with a non-

abelian theory. Historically, they were introduced to address the confinement problem in

QCD. For instance, consider a rectangular path with two timelike sides T and two spacelike

R: the large T limit gives the quark-antiquark potential through

V (R) = − lim
T→∞

log〈W (R, T )〉
T

(2.3)

From now on, we omit the symbol 〈...〉 and suppose the operatios of expectation value to

be taken, so that W (C) is no longer an operator but a number, more precisely a functional

of the path C.
Moving to N = 4 SYM, the definition of Wilson loop needs a refinement, as there are

no massive fundamental quarks in the theory. To this purpose, the AdS/CFT duality

furnishes us a picture to solve the problem: we think of N = 4 SYM as the low-energy

worldvolume theory of open strings ending on a stack of N D3-branes. We introduce an

additional D3 brane, separated from the others in the transverse directions xi+3, i = 1..., 6,

giving an VEV to the scalars φi. The separation is given by xi+3 = Mni, where M � 1

and the vector is unitary δijn
inj = 1. On the gauge side, the procedure consists of breaking

the SU(N + 1) symmetry down to SU(N) × U(1), giving birth to massive fundamental

particles. That said, the simplest Wilson loops (bosonic) in N = 4 SYM reads

W (C) ≡ 〈0|TrPei
∮
C ds(ẋµAµ+|ẋ|φini)|0〉 (2.4)

where, beside the usual gauge connection, the scalar fields also appear. The unit

vector ni identifies a particular direction in the five-sphere S5. The definition (2.4) can be
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generalised by including the fermions along the path, so that we speak of charged, under

the SU(4) R-symmetry, Wilson loops. In our work we stick with the simplest case where

only scalar fields are involved.

Null polygonal contour Of particular interest is the class of Wilson loops defined on

a null polygonal contour. Thus, instead of a functional, we have a function of n vertices

Wn(x1, ..., xn). The presence of the cusps along the contour introduces UV divergences,

so that the Wilson loop needs to be renormalised in order to get a finite quantity. The

process of renormalisation breaks the conformal symmetry of the theory. This breaking

is completely captured by the so-called BDS ansatz, originally proposed for the scattering

amplitudes [60], which fixes the finite part of the loop up to n = 5.

Adding more sides, a non-trivial correction called the remainder function appears. It

is a conformal invariant quantity, function of the 4d cross ratios τi, σi, φi, i = 1, ..., n − 5

which encodes the geometric informations on the loop as they depend on the vertices xi.

2.1.2 Wilson loop/amplitudes duality

As mentioned previously, the null polygonal Wilson loops are thought to be dual to the

four dimensional scattering amplitudes between gluons (gauge particles) in N = 4 SYM.

The purpose of this part is to explain a little more this statement and provide a dictionary

of the duality.

A generic amplitude depends on the initial and final states, containing momenta, helici-

ties (which can be ±1) and colour degrees of freedom. We can strip off the last dependence

by defining the so-called color-ordered amplitudes. The discrete helicity degrees of freedom

identify the type of the amplitude we are dealing with. In this work we focus only on the

MHV amplitude, where the name stands for Maximal Helicity Violation. Considering all

the momenta incoming, it means that n − 2 gluons have a particular helicity and 2 the

opposite: the cases where they have the same helicity or only one differ from the oth-

ers are shown to be vanishing. Therefore, we consider a function only of the momenta

AMHV (p1, ..., pn), where the conservation1 implies
∑

i pi = 0.

Omitting the MHV for the sake of simplicity, the amplitude consists in two factors, the

tree-level contribution and the loops effect

A(p1, ..., pn) = Atree(p1, ..., pn)AL(p1, ..., pn) (2.5)

1All momenta are considered incoming.
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We remark that, as the theory contains massless particles, we have IR divergences that

have to be cured by a renormalisation process. On the other hand, the theory is UV-

divergence free. The finite part of the amplitudes can be captured by the BDS ansatz

for the loop part AL and works fine up to five gluons, thus describe the amplitudes with

n = 4, 5 exactly at any loop order2.

The duality, proposed in [13] in the strong coupling limit and later discussed by [15, 14],

reads

AL(p1, ..., pn) = W (x1, ..., xn), pi = xi+1 − xi (2.6)

once the sides of the loop are identifyied with the momenta of the gluons and the IR-UV

divergencies are removed. The null sides are due to the masslessness of the particles and

the contour is closed due to the momentum conservation
∑

i pi = 0.

Although this fact has been proposed by strong coupling computation through the

AdS/CFT duality, it received many checks at weak coupling by means of pure gauge

theory techniques, i.e. loop computations. Therefore it is now thought no longer as a

conjecture, but as a well-established fact. However, a mathematical proof is still missing.

We mention that the duality extends to any helicity configuration by considering the SU(4)

charged Wilson loops.

2.1.3 Strong coupling limit

In this part we anticipate some strong coupling features of these Wilson loops/amplitudes.

There are two main contributions to that regime. Using the string picture, one comes from

the classical dynamics in AdS5 [13] and it has been the first hint to the aforementioned

duality. This contribution will be analysed below. On the other hand, the pentagonal OPE

method, which will be introduced later, suggested [21] a correction of the same order coming

from the non-perturbative dynamics of the string on the five sphere S5 and described by

a non-linear σ-model O(6) [22], where the Wilson loop becomes a correlator of a specific

twist operator. The particles of this QFT are the two-dimensional version of the scalars of

the gauge theory. In particular, as the mass of the scalars goes to zero exponentially with

the coupling

m ∼ e−
√
λ/4 (2.7)

2The three gluon amplitude is vanishing.
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we find ourselves in the short-distance regime and the typical
√
λ behaviour follows.

This contribution is discussed in Chapter 5.

The full strong coupling behaviour, depicted here for the hexagon for simplicity, reads

W6 ' WAdS5WS5

[
1 +O

(
1√
λ

)]
, (2.8)

where the two terms take the form

WAdS5 ' CAdS5(τ, σ, φ)e−
A6(τ,σ,φ)

2π

√
λ, WS5 ' CS5(τ, σ)λBe

√
λA , (2.9)

The coefficients for the second contribution will be computed in Chapter 5, whereas

the first term is described below and in more details in the Appendix B.

Minimal area and TBA Here we analyse the first contribution to (2.9), by means of

the AdS/CFT duality which allows us to compute the scattering/amplitudes Wilson loops

[13]. In this picture, the gluons are open strings ending on D-branes and their amplitude

is computed by the minimal area of the string whose worldsheet ends on the contour with

lightlike segments. The same string yields, in the strong coupling limit, the expectation

value of the null polygonal Wilson loop. This was the first hint of the aforementioned

duality. Thus, the amplitude/Wl is given by the classical string minimal area in the AdS5

space

W ∼ e−Smin (2.10)

where the symbol ∼ means the equality holds at strong coupling up to a prefactor.

The quantity Smin is the minimum value of the worldsheet action (saddle point) for a

string moving in AdS5 attached to a null polygon at the boundary. The polygon is given

by the momenta of the gluons involved in the scattering process.

Remarkably, as first shown in [16] for n = 6 and later extended in [17], the minimal area

problem reduces to a set of non-linear integral equations, whose form recalls very much

that of Thermodynamic Bethe Ansatz. This gives Smin in terms

Smin =

√
λ

2π
Y Yc =

√
λ

2π
A (2.11)

where Y Yc is the critical value of the Yang-Yang functional of the TBA setup and coin-

cide with the regularised area of the worldsheet A. Some details, which will be compared

to our computations on the gauge side, are listed in the appendix B. We mention that the
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prefactor CAdS5(τ, σ, φ) should follow from the one-loop correction to the classical approx-

imation, which has not been computed yet on the string side. This could constitute an

interesting project to pursue in the future.

An interesting remark on the two contributions in (2.9) concerns the collinear limit

τ →∞: in this regime, the classical contribution goes to zero, as the area is exponentially

suppressed A ∼ e−
√

2τ . Therefore, the only non-vanishing effect is given by the scalars, as

long as we remain in the short-distance regime z ' mτ � 1.

2.2 The OPE for Wls and the Pentagon approach

In this section we introduce a non-perturbative method to study the null polygonal Wilson

loops. It will be the main framework from which the results of the thesis are obtained,

in Chapters 3,4,5. It is based on the concept of Operator Product Expansion, usually

employed in a conformal field theory to the product of local operators, expanding it in

series of powers of the distance. Building on several earlier works, the authors [11] showed

that an analogue technique works for the null polygonal Wilson loops as well in a conformal

field theory as N = 4 SYM. To be more precise, the method compute the finite conformal

invariant ratio Wn, once all the divergencies are removed. This quantity Wn depends

on 3(n − 5) conformal invariant cross ratios τi, σi, φi encoding the geometry of the loop3

and starts to be non-trivial for n > 54. In the work [12], the authors pushed forward a

computational method of this OPE series, called Pentagon approach for reasons that wil

be clear later. The method has been explained in details in [61] and successfully tested

against both weak [19, 62, 63, 64, 65] and strong coupling computations [19, 66, 18].

Following [12, 61], the physical picture behind the method involves the two-dimensional

flux-tube dynamics. The Wilson loop is seen as a series of free evolutions and transitions

of this flux-tube. We decompose the n-polygon in consecutive pentagons, whose overlap is

a square. The latter corresponds to a free evolution of the flux-tube, described by a phase

which couples the cross ratios to the charges (energy, momentum and angular momentum)

of the flux-tube. The transition is represented by a pentagon and is due to the cusp the

flux-tube encounters during its propagation.

Mathematically, the picture described above emerges as follows: we think of the Wilson

loop as a correlation function

3To make a paraller with the usual formulation of the OPE, they play the role of the distance.
4In fact, the method depicted below yields W4 = W5 = 1 by definition.
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〈0|P̂ e−τn−5Ĥ+iσn−5p̂+iφn−5Ĵ P̂ .......P̂ e−τ1Ĥ+iσ1p̂+iφ1Ĵ P̂ |0〉 (2.12)

where the operator P̂ acts in the two dimensional space where the flux-tube lives, as well

as its charges Ĥ, p̂, Ĵ . It sort of represents the effect of a cusp during the propagation. The

series can be obtained by inserting n−5 identities inside the correlator (2.12): we consider

the sum over all the flux-tube states ψ

1 =
∑
ψ

|ψ〉〈ψ| (2.13)

to obtain the OPE series for the null polygonal Wilson loop

Wn =
∑
{ψ}

n−5∏
i=1

e−Eψiτi+ipψiσi+imψiφiP (0|ψ1)P (ψ1|ψ2) · · ·P (ψn−5|0) (2.14)

where we used the short-hand notation

P (ψ1|ψ2) ≡ 〈ψ2|P̂ |ψ1〉 (2.15)

to indicate the matrix element of the operator P̂ . In the original work [12], they have been

referred to as the pentagon transitions. In the paraller with the more common OPE series,

these quantities are the analogue of the structure constants and therefore carry the main

informations on the dynamics of the theory.

The series (2.19) is an expansion around the collinear limit τi → ∞, where two con-

secutive sides become collinear. The effect of creating a new side, namely a cusp, can be

mimicked by the insertion of the operator P̂ . In the collinear limit, only the first terms of

the series contribute as they become more and more suppressed by the exponential e−τE

in the propagation phase.

So far, we have not employed the integrability whatsoever, as the expansion (2.14) is

valid for any four dimensional CFT. For this series to be of any use we need to know the

states on which sum over. Here is where integrability pops out, as the flux-tube turns out

to be integrable. Therefore, this method is non-perturbative in g: all the building blocks of

the series can be, in principle, studied at any coupling. We mention that the series (2.14),

upon little modifications, is valid also for the SU(4) charged Wilson loops, for which the

operator P̂ acquires a non-trivial fermionic component.
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2.2.1 The GKP flux-tube

In order to study the OPE series (2.14), we need to analyse the flux-tube and its excitations

ψ. There are two main description of the flux-tube, depending on the side of the AdS/CFT

we are considering. On the string side, it is represent by the GKP string [67], which is

a long spinning string in AdS5 with large spin S → ∞. On the gauge side, it is dual

to a special kind of single trace operator, composed by a large number S of (light-cone)

covariant derivative D+. The GKP flux-tube vacuum is thus described by the opearato

Tr[ZD+......D+Z], S →∞ (2.16)

The GKP vacuum preserves the SU(4) R-symmetry: this means that its excitations

are representation of this group. In the gauge theory picture, an excitation corresponds

to an insertion of a field in the sea of covariant derivatives (2.16). They can be gluons5,

fermions, antifermions and scalars, which are respectively 1,4, 4̄,6 of SU(4).

The description of the GKP flux-tube excitations starts from the Asymptotic Bethe

Ansatz equations (1.108), although some important modifications are required. They

describe the excitations over the so-called string BMN vacuum [68], on the gauge side

composed by a series of (complex) scalars

Tr[ZZ...ZZ] (2.17)

while we need to study how our excitations behave in the sea of covariant derivatives

in (2.16). The procedure to pass from the (1.108) to the Bethe equations for the flux-tube

particles follows the procedure of the non-linear integral equations [69] and it was employed

in [70, 71, 72]6. It follows that the flux-tube states ψ are single and multi-particle Bethe

states where the particles are gluons and bound states thereof, fermions, antifermions

and scalars. The excitations satisfy a set of Bethe equations, see for instance [18] for a

detailed discussion. The physical quantities characterising these states are the scattering

matrices Sa,b(ua, ub) and the dispersion relations Ea(u), pa(u). The remaining quantities to

determine are the pentagon transitions

Pa1,..,an|b1,..,bm(u1, ..., un|v1, ..., vm) (2.18)

where the indices ai, bj label the particles including possible internal indices.

5With two different helicity states.
6On the string side, the worldsheet S matricex has been evaluated in [73, 74].
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For the quantities (2.18), a set of axioms [12, 62], largely inspired by the constraints

following the form factor interpretation, has been proposed. The solution of those axioms

furnish the pentagon transitions, in principle for any value of the coupling.

Therefore, the underlying integrability in N = 4, appearing in the computation of

the anomalous dimensions, can be transported to study the flux-tube and allows a non-

perturbartive determination of the dynamical quantities of OPE series (2.14). The sum

over states actually involves a sum over the particles along with integrals over the momenta

of the excitations. For the hexagon, it schematically reads

W =
∑
n

1

n!

∑
a

S(a)

∫ n∏
i=1

dui
2π

µ(ui)e
−Ei(ui)τ+ipi(ui)σ+imiφP (0|u1, ...., un)P (−un, ...− u1|0)

(2.19)

where the sum
∑

a S(a) is a short-hand for the sum over the several kind of particles

with its associated symmetry factor S(a). The quantity µi(ui) is the integration measure,

appearing due to the parametrisation of the momenta p(u) through the rapidity u.

2.2.2 The operator P̂ and the SU(4) matrix part

In this part we analyse the operator P̂ appearing in the OPE series (2.14) through its form

factors. The pentagon transitions P (ψ1|ψ2), being form factors, have to satisfy the set

of constraints exposed in the first chapter. However, there is a significant difference with

respect the usual case, as here we are dealing with a twist operator [12, 75, 76, 77, 78].

In particular, its pentagonal nature affects the monodromy property, which differs from

(1.52): for the operator P̂ , we need five mirror transformation to get the original particle,

instead of the customary four. Therefore (1.52) is modified into7

P (u5γ
1 , .., un) = P (u2, ...., un, u1) (2.20)

where the symbol θγ is used to indicate the operation of mirror rotation, for instance in

relativistic theories θγ = θ + i/2. This property can be pictorially understood as follows:

the original excitation lives on the bottom side of the pentagon and the effect of a mirror

rotation is to move the particle around the pentagon. Therefore, we need five rotations to

move the particle along the whole pentagon. A secondary difference concerns the recursive

relation (1.53) from the kinematic poles, for which the S-matrix part on the RHS does not

appear when the twist operator is considered.

7We neglected the internal indices for simplicity.
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A very interesting simplication occurs when considering the SU(4) structure of this

special operator: this is the topic of the following part and of the third chapter of the

thesis.

The SU(4) matrix part

The most general form factor/pentagon transition is

〈0|P̂ |A(1)
a1

(θ1).....A(n)
an (θn)〉 = P

A
(1)
a1
,...,A

(n)
an

(θ1, ...θn) (2.21)

where A
(i)
ai labels a particle among gluons, fermions and scalars and ai refers to its

potential R-symmetry index, present only for scalars and fermions.

In the OPE series, what appears is a product of several pentagon transitions like (2.21)

and a potential sum over the internal indices. In the following we focus on the simplest

case, the hexagonal Wilson loop, for which in the OPE series (2.19) appears the factor

∑
~a

|〈0|P̂ |A(1)
a1

(θ1).....A(n)
an (θn)〉|2 (2.22)

In general, such a quantity does not admit any simplification. However, for the operator

P̂ , the authors [12] proposed the following formula

∑
~a

|〈0|P̂ |A(1)
a1

(θ1).....A(n)
an (θn)〉|2 = Πdyn

A
(1)
a1
,...,A

(n)
an

Πmat

A
(1)
a1
,...,A

(n)
an

(2.23)

where the upperscript dyn and mat stand for dynamical and matrix. The former

encodes the complete dependence on the coupling constant λ and it is two-body factorizable

Πdyn

A
(1)
a1
,...,A

(n)
an

=
1∏

i<j

PA(i),A(j)(θi|θj)PA(j),A(i)(θj|θi)
(2.24)

where the functions appear at the denominator thanks to a special property [12, 62]

satisfied by the pentagon transitions. Note that it does not contain the internal indices,

whose effect is completely inside the matrix part which does not depend on λ, but only

on differences of rapidities θi − θ. We stress that this is a remarkable simplification, as

the knowledge of the two particles pentagon transitions and the matrix part would allow

to find the general form factor squared. We can say that the dynamics, containing the

coupling, and the SU(4) group structure do not couple to each other.
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Integral representation The matrix part has been given an integral formula [23], where

the auxiliary rapidities of the SU(4) spin chain are involved. In fact, the equations deter-

mining the flux-tube excitations must be supplemented by those for the auxiliary SU(4)

degrees of freedom. This is the extension to the SU(4) symmetry of what we have seen for

the SU(2) QFT in the first chapter, where the spin chain with inhomogenuities emerges.

They equations for the SU(4) spin chain are

1 =

Nf∏
j=1

ua,k − uf,j − i/2
ua,k − uf,j + i/2

Ka∏
j 6=k

ua,k − ua,j + i

ua,k − ua,j − i

Kb∏
j=1

ua,k − ub,j − i/2
ua,k − ub,j + i/2

1 =
H∏
h=1

ub,k − uh − i/2
ub,k − uh + i/2

Ka∏
j=1

ub,k − ua,j − i/2
ub,k − ua,j + i/2

Kc∏
j=1

ub,k − uc,j − i/2
ub,k − uc,j + i/2

Kb∏
j 6=k

ub,k − ub,j + i

ub,k − ub,j − i

1 =

Nf̄∏
j=1

uc,k − uf̄ ,j − i/2
uc,k − uf̄ ,j + i/2

Kc∏
j 6=k

uc,k − uc,j + i

uc,k − uc,j − i

Kb∏
j=1

uc,k − ub,j − i/2
uc,k − ub,j + i/2

where the auxiliary roots are of three different types ua,k, ub,k, uc,k and correspond to

the nodes of the associated SU(4) Dynkin diagram. The physical rapidities uf , uf̄ , uh,

respectively for fermions, antifermions and scalars, play the role of the inhomogenuities for

this chain. Inspired by the Bethe equations (2.25), the general formula for the matrix part

has been proposed

Πmat(u,v, s) =
1

Ka!Kb!Kc!

∫ Ka∏
i=1

dai
2π

Kb∏
j=1

dbj
2π

Kc∏
l=1

dcl
2π

g(a)g(b)g(c)

f(u− a)f(v − c)f(s− b)f(a− b)f(b− c)

(2.25)

where we used the vector notation for the rapidities and the functions

f(a− b) =
∏
i,j

f(ai − bj), f(x) = x2 + 1/4

g(a) =
∏
i<j

g(ai − aj), g(x) = x2(x2 + 1) (2.26)

The number of auxiliary rapidities is determined by the equations

Nf − 2Ka +Kb = 0

Nf̄ − 2Kc +Kb = 0

H +Ka +Kc − 2Kb = 0 (2.27)
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and the requirement that the solutions Ki are integer yields the constraint

Nf + 2H + 3Nf̄ = 4n, n ∈ Z (2.28)

which is the singlet condition for the intermediate multiparticle state ψ. We remark

that the formula has been proposed to be valid also for charged Wilson loops, i.e. non-

singlet states, where the charges are encoded in the RHS of (2.27) which can be either

0 or 1. The matrix factor defined in (2.25) it is a rational function of the differences uij

and it gets complicated as the number of particles grows.. However, as we are going to

show in the next chapter, thanks to the integral representation, it is possible to employ

a computational procedure based on sums over Young tableaux. We will do it for two

particular cases, 2n scalars and n couples ff̄ .

It is worth to mention that a formula of the type (2.25) does not come unexpected, as

an integral representation over the auxiliary variables of the form factors is known through

the so-called off-shell Bethe Ansatz, see for instance [79, 36] for the applications to the

SU(4) and O(6) symmetries. However, the case here is difference as the integrals in (2.25)

compute part of the square in (2.23) where we got rid of the internal indices. A concluding

remark concerns the generalization of formula (2.23) to the case with more edges n > 6. An

integral representation along the line of (2.25) is still unknown and it would be interesting

to find one. On the other hand, the form factors of the operator P̂ (2.18), thus including

their internal indices, have been computed in [80] direclty by solving the axioms.



Chapter 3

Form factors: the SU(4) matrix part

This part of the work concerns the form factors of the twist operator P̂ , also called pentagon

transitions. They are the main building blocks of the OPE series (2.19) introduced in the

previous chapter. In the expansion over the flux-tube excitations, the product of such form

factors appears along with a sum over the SU(4) indices when the fermions and scalars

are involved.

The prototype for the application of the OPE is the hexagonal Wilson loop, for which

the form factor part reads

∑
~a

|〈0|P̂ |Φa1(θ1).....Φa2n(θ2n)〉|2 ≡ Π
(2n)
mat (θ1, ...., θ2n)Π

(2n)
dyn (θ1, ...., θ2n) (3.1)

i.e. the square form factor, after the sum over the internal indices ~a, factorizes [12] in

two parts, the dynamical and matrix factor, as discussed in Section 2.2.2. The latter is

present only when SU(4) indices appear and is coupling independent. The matrix factor

enjoys the multiple integral representation introduced in Section 2.2.2, where the auxiliary

rapidities of the SU(4) spin chain are considered and integrated over.

In this chapter, taking advantage of some analogies with the N = 2 instanton partition

function, we manage to solve systematically the integrals and recast the matrix part as

a sum over rational functions. An interesting classification in terms of Young tableaux is

given. The methods portrayed here are published in [3, 5]. In the Appendix D some useful

properties of several polynomial functions appearing during the procedure are highlighted.

61
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3.1 The scalars

The six scalars Φi of N = 4 SYM transform as the antisymmetric representation of SU(4),

namely the fundamental of SO(6), so that we will refer to their SO(6) matrix structure,

which we call Π
(2n)
mat for brevity. As we are interested in MHV amplitudes, the singlet

constraint (2.28) specialized to scalars give H = 2n, i.e. the number of excitations is even.

The general formula (2.25) applied to the scalar case [21] reads

Π
(2n)
mat (u1, . . . , u2n) =

1

(2n)!(n!)2

∫ +∞

−∞

n∏
k=1

dak
2π

2n∏
k=1

dbk
2π

n∏
k=1

dck
2π
· (3.2)

·

n∏
i<j

g(ai − aj)
2n∏
i<j

g(bi − bj)
n∏
i<j

g(ci − cj)

2n∏
j=1

(
n∏
i=1

f(ai − bj)
n∏
k=1

f(ck − bj)
2n∏
l=1

f (ul − bj)

) ,

where we recall the functions f(x) = x2 + 1
4

and g(x) = x2(x2 + 1).

In this section we compute explicitly the multiple integrals by residues, employing the

symmetries by a method based on Young tableaux.

The variables a, c in (3.2) do not couple to each other and we can recast into

Π
(2n)
mat (u1, . . . , u2n) =

1

(2n)!(n!)2

∫ 2n∏
k=1

dbk
2π

[D2n(b1, . . . , b2n)]2

2n∏
i<j

g(bi − bj)

2n∏
k=1

2n∏
l=1

f(ul − bk)
, (3.3)

where the symmetric function D2n encodes the integrals on a, c

D2n(b1, . . . , b2n) ≡
∫ ∞
−∞

n∏
k=1

dak
2π

n∏
i<j

g(ai − aj)

2n∏
j=1

n∏
i=1

f(ai − bj)
. (3.4)

The function (3.4) can be evaluated by multiple residues and given the expression

D2n(b1, . . . , b2n) =
2n∑
α1=1

. . .
2n∑

αn=1

n∏
i<j

g(bαi − bαj)

n∏
k=1

2n∏
γk=1 , γk 6=αk

f(bαk − bγk +
i

2
)

. (3.5)
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where S~α = {α1, . . . , αn} indicates a partition of labels αk (with αk ∈ {1, . . . , 2n}) and we

also introduced the complementary set S̄~α = {1, . . . , 2n} − {α1, . . . , αn}. Equipped with

these notations, we can write (3.5) as

D2n(b1, . . . , b2n) = 2n
δ2n(b1, . . . , b2n)

2n∏
i,j=1
i<j

[(bi − bj)2 + 1]

, (3.6)

where we introduced the symmetric function

δ2n(b1, . . . , b2n) ≡ n!

2n

2n∑
α1<α2<···<αn=1

 ∏
i∈S~α,j∈S~α,i<j
i∈S̄~α,j∈S̄~α,i<j

[(bi − bj)2 + 1]

 n∏
k=1

∏
β∈S̄~α

bαk − bβ − i
bαk − bβ

.

(3.7)

The symmetry under bi ↔ bj tells us that the function defined above is a polynomial,

since single poles for bi = bj are forbidden and double poles do not appear. Some useful

properties of the polynomials δ2n are listed in the Appendix D. What is relevant to us is

that the matrix factor assumes the inspiring form

Π
(2n)
mat (u1, . . . , u2n) =

4n2

(2n)!(n!)2

∫ 2n∏
i=1

dbi
2π

[δ2n(b1, . . . , b2n)]2

2n∏
i,j

f(ui − bj)

∏
i<j

b2
ij

(b2
ij + 1)

, bij ≡ bi − bj ,

(3.8)

which shows striking similarities with the Nekrasov instanton partition function in N = 2

theories. In details, (3.8) is compared to Z(2n)
U(2n), the 2n-instanton contribution to the

partition function of a U(2n) theory, in which the rapidities ui play the role of the VEVs

ai of the scalar fields and the instanton coordinates φi are represented by the auxiliary

rapidities bi. For Z, an evaluation by residues, which results in a sum over Young tableaux

configurations [81], is well-known. This connection allows us to push forward a computation

of Π
(2n)
mat by the same procedure, classifying the contributions in Young tableaux.

3.1.1 Young tableaux method

As said, inspired by the analogy with the Nekrasov function, we are going to evaluate

(3.8) by residues. We must remark, though, some differences with respect to the Nekrasov

partition function. In our case the polar part is simpler, as we do not have the two

deformation parameters ε1, ε2 which are present in Z(2n)
U(2n),, but only one1 fixed to ±i. The

1In Z each VEV ai has its associated Young tableaux, while here we have a column associated to any

ui and the Young tableaux description appears once we symmetrize ui ↔ uj .
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polynomial δ2n, on the other hand, is absent in the Nekrasov function and is source of some

important effects. However, the key features of the multiple integrals are shared by Π
(2n)
mat ,

Z(2n)
U(2n) and are basically three:

• The poles bi = uj + i
2
, relating the residues positions to the physical rapidities;

• The double zeroes b2
ij, which have the effect of canceling the contributions of two or

more residues evaluated at the same point. For instance, if we take the first residue

in b1 = uk + i
2
, the poles in bj 6=1 = uk + i

2
are no longer present when we integrate

over bj;

• The polar part 1
b2ij+1

, whose role is to arrange the residues in strings, displaced by +i,

in the complex plane. Considering the example before, the first residue in b1 = uk+ i
2

generates poles of the type bj 6=1 = uk + 3i
2

.

As a consequence, a particular configuration is represented by the 2n coordinates of the

residues, all different and arranged in strings in the complex plane starting from ui+
i
2

and

displaced by +i. The procedure will be clarified later with a detailed analysis of the cases

n = 1, 2. For 2n scalars, the procedure culminates in the formula

Π
(2n)
mat (u1, . . . , u2n) =

∑
l1+...+l2n=2n,li<3,li+1≤li

(l1, . . . , l2n)s =
∑

|Y |=2n,li<3

(Y )s . (3.9)

which is expressed as a sum over Young tableaux. Some explanations about (3.9) are due.

The symbol (l1, . . . , l2n) represents the contribution of a particular residue pattern: there

are li residues with real rapidities ui arranged in a string in the upper half plane. The

constraint
∑2n

i=1 li = 2n follows from the fact that we have 2n integrations. On the other

hand, the constraint li < 3 comes from the property

δ2n(u1, u1 + i, u1 + 2i, u4, ....., un) = 0 (3.10)

which cancels the configurations with strings of three or more rapidities in the complex

plane. The index s in (l1, . . . , l2n)s stems for the sum over permutation of inequivalent

rapidities, namely

(l1, . . . , l2n)s ≡ (l1, . . . , l2n) + permutations of l1, . . . , l2n . (3.11)

In the following we will sometimes use the symbol Y (with |Y | =
∑

i li) as a shorthand for

(l1, . . . , l2n).
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The fundamental building block of (3.9) is the diagram (l1, . . . , l2n), which represents

the contribution when li residues arrange around the real rapidiy ui. Its value, once taking

into account an additional (2n)! factor from the permutation of the rapidities, reads

(l1, . . . , l2n) =
4

[(n− 1)!]2
1

2n∏
i

(li!)
2

1
2n∏
k=1

∏
j 6=k

lk∏
m=1

(uk − uj + (m− 1)i)(uk − uj +mi)

·

·
2n∏
i<j

li∏
m=1

lj∏
k=1

(ui − uj + (m− k)i)2

(ui − uj + (m− k)i)2 + 1
δ22n(Y ) ≡ 4

[(n− 1)!]2
1

2n∏
i

(li!)
2

δ22n(Y )[l1, . . . , l2n] . (3.12)

which, for convenience, has been divided in two parts, one due to δ2n(Y )2 and the rest,

indicated as [l1, . . . , l2n].

Actually, the formula (3.12) can be specialized for li ≤ 2, as they are the only non-

vanishing diagrams. The most generic contribution contains k columns with li = 2, 2(n−k)

with li = 1 and k with li = 0, giving a total number of n+ 1 different Young tableaux.

To begin with, we start with the simplest case

(1, 1, . . . , 1, 1)2n =
4

[(n− 1)!]2
δ2

2n(u1, · · · , u2n)[1, 1, . . . , 1, 1]2n , (3.13)

which, thanks to

[1, 1, . . . , 1, 1]2n =
2n∏
i<j

1

(u2
ij + 1)2

, (3.14)

and the Pfaffian formula3 of δ2n

δ2n(b1, . . . , b2n) =
n!

2n
2n
∏
i<j

b2
ij + 1

bij
PfD , Dij =

(
bij

b2
ij + 1

)
, (3.15)

elaborated in the Appendix D, turns into

(1, 1, . . . , 1, 1)2n = 22nDet

(
uij

u2
ij + 1

) 2n∏
i<j

1

u2
ij

=
4n2

(n!)2

2n∏
i<j

1

(1 + u2
ij)

2
δ2

2n(u1, . . . , u2n) .

(3.16)

where the subscript 2n in (1, 1, . . . , 1, 1)2n highlights the fact that there are 2n variables,

which will be a necessary distinction in the following. The polynomial computed in a

2This short-hand notation stands for δ2n computed on the residues pattern Y = (l1, . . . , l2n).
3I am very grateful to Ivan Kostov and Didina Serban for pointing out this interesting formula.
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configuration of the type (2, . . . , 2, 0, . . . , 0) combined with the fact

[2, . . . , 2, 0, . . . , 0]2n =
n∏
i<j

1

(u2
ij + 1)2(u2

ij + 4)2

1
n∏
i=1

2n∏
j=n+1

uij(uij + i)2(uij + 2i)

, (3.17)

gives the residues contribution for the other extremal case

(2, . . . , 2, 0, . . . , 0)2n =
1

n∏
i=1

2n∏
j=n+1

uij(uij + i)2(uij + 2i)

. (3.18)

We have now everything to write a general formula: a particular configuration, up to a

permutation of the rapidities, contains k columns of height two, k of height zero and 2n−2k

with height one.

The relation (D.11) in Appendix D gives the polynomial δ2n computed in the con-

figuration (2, . . . , 2, 0, . . . , 02k, 1, . . . , 1)2n in terms of the two special cases described be-

fore. The intermediate subscript 2k means that the first 2k columns are of the type

(2, . . . , 2, 0, . . . , 0)2k, while the remaining 2n− 2k contains 1.

Using this formula for the polynomials δ2n, combined with (3.12) applied to [l1, . . . , l2n]

[2, . . . , 2, 0, . . . , 02k, 1, . . . , 1]2n = [2, . . . , 2, 0, . . . , 0]2k · [12k+1, 1, . . . , 1, 1]2n ·

·
2n∏

j=2k+1

k∏
i=1

1

uij(uij − i)(u2
ij + 1)(uij + 2i)2

2k∏
l=k+1

1

ulj(ulj − i)
. (3.19)

we can write the general contribution as follows

(2, . . . , 2, 0, . . . , 02k, 1, . . . , 1)2n = (2, . . . , 2, 0, . . . , 0)2k · (12k+1, 1, . . . , 1, 1)2n ·

·
2n∏

j=2k+1

k∏
i=1

1

uij(uij + i)

2k∏
l=k+1

1

ulj(ulj − i)
=

1
k∏
i=1

2k∏
j=k+1

uij(uij + i)2(uij + 2i)

·

·22n−2kDet2n
(i,j)=2k+1

(
uij

u2
ij + 1

) 2n∏
i<j=2k+1

1

u2
ij

2n∏
j=2k+1

k∏
i=1

1

uij(uij + i)

2k∏
l=k+1

1

ulj(ulj − i)
,(3.20)

where (12k+1, 1, . . . , 1, 1)2n is the contribution of the type (3.16) involving the variables

u2k+1, . . . , u2n only. The same thing for the determinant in (3.20), whose matrix elements

are uij/(u
2
ij + 1), with 2k + 1 ≤ i, j ≤ 2n.

Recalling (3.9), we must sum over the Young tableaux configurations, which are in

turn given by permuting the (inequivalent) rapidities in (3.20). We symmetrize the Young
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tableaux by summing over the (2n)! permutations P , thus divide by the overcounting factor

(k!)2(2n− 2k)!, leading to the final expression for the matrix part

Π
(2n)
mat (u1, . . . , u2n) =

n∑
k=0

22(n−k)

(2n− 2k)!(k!)2

∑
P

1
k∏
i=1

2k∏
j=k+1

uPiPj(uPiPj + i)2(uPiPj + 2i)

·

(3.21)

·Det2n
(i,j)=2k+1

(
uPiPj

u2
PiPj

+ 1

)
2n∏

i<j=2k+1

1

u2
PiPj

2n∏
j=2k+1

k∏
i=1

1

uPiPj(uPiPj + i)

2k∏
l=k+1

1

uPlPj(uPlPj − i)
.

Formula (3.21), which is the main achievement of this section, it is a more explicit

version of (3.9) and it represents the matrix factor as a finite sum of rational functions.

The drawback, however, is that the polar structure of Π
(2n)
mat is somehow hidden in that

expression, as there are many fictitious poles that cancel once we sum over all the configu-

rations. The polar structure of Π
(2n)
mat will be analysed in the following, taking advantage of

another feature, the asymptotic factorisation. This will be extensively analysed in Section

5.1.

In order to elucidate the Young tableaux method, we outline the computations for the

simplest cases, i.e. two and four scalars.

• Two scalars (n = 1):

For a couple of scalars, the integral formula (3.3) reads

Π
(2)
mat(u1, u2) =

1

2

∫
da dc

(2π)2

db1 db2

(2π)2

g(b1 − b2)

f(u1 − b1)f(u1 − b2)f(u2 − b1)f(u2 − b2)
·

· 1

f(a− b1)f(a− b2)f(c− b1)f(c− b2)
, (3.22)

which, after an evaluation by residues of the integrals over a and c, turns to

Π
(2)
mat(u1, u2) = 2

∫
db1 db2

(2π)2

1

f(u1 − b1)f(u1 − b2)f(u2 − b1)f(u2 − b2)

(b1 − b2)2

(b1 − b2)2 + 1
.

(3.23)

We see that our polynomial is trivial for two particles, i.e. δ2 = 1. The contour integrals

over b1, b2 can be easily performed without any Young tableaux technique (we have just

3× 2 = 6 residues to evaluate) and we obtain

Π
(2)
mat(u1, u2) =

6

[(u1 − u2)2 + 1][(u1 − u2)2 + 4]
. (3.24)
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However, it is useful to solve the n = 1 case within the Young tableaux framework, in

order to give a simple sketch of the procedure. Afterwards, we will deal with n = 2, the

first non trivial case.

We start from the double integral (3.23), closing the contour in the upper half plane.

Therefore the integral over b1 gets contributions from the poles in b2 + i, u1 + i/2 and

u2 + i/2, leading to

Π
(2)
mat(u1, u2) =

∫
db2

2π

A+B + C

(b2 − u1 − i/2)(b2 − u1 + i/2)(b2 − u2 − i/2)(b2 − u2 + i/2)
, (3.25)

where we defined the three different contributions

A =
−1

(b2 − u1 + 3i/2)(b2 − u1 + i/2)(b2 − u2 + 3i/2)(b2 − u2 + i/2)

B =
2

(u1 − u2)(u1 − u2 + i)

(b1 − u1 − i/2)2

(b1 − u1 − 3i/2)(b1 − u1 + i/2)

C =
2

(u2 − u1)(u2 − u1 + i)

(b1 − u2 − i/2)2

(b1 − u2 − 3i/2)(b1 − u2 + i/2)
(3.26)

These come from, respectively, the poles b1 = b2 + i, u1 + i/2 and u2 + i/2. In the

integral over b2, each term contains two poles, thus in total we have 3 × 2 = 6 residues.

The various contributions can be classified by the position of the poles of the auxiliary

roots (b1, b2): they are (u1 + i/2, u1 + 3i/2), (u1 + 3i/2, u1 + i/2), (u1 + i/2, u2 + i/2),

(u2 + i/2, u1 + i/2), (u2 + i/2, u2 + 3i/2) and (u2 + 3i/2, u2 + i/2). The key feature is

that the residues are invariant under the exchange b1 ↔ b2 and only three terms are truly

different: we represent them by an array of two numbers (l1, l2) with l1 + l2 = 1, where li

labels the number of roots in the string with real position ui. We define them as follows:

(2, 0) ≡ (u1 + i/2, u1 + 3i/2) + (u1 + 3i/2, u1 + i/2) = 2× (u1 + i/2, u1 + 3i/2)

(0, 2) ≡ (u2 + i/2, u2 + 3i/2) + (u2 + 3i/2, u2 + i/2) = 2× (u2 + i/2, u2 + 3i/2)

(1, 1) ≡ (u1 + i/2, u2 + i/2) + (u2 + i/2, u1 + i/2) = 2× (u1 + i/2, u2 + i/2) , (3.27)

which are nothing but the n = 1 version of (l1, . . . , l2n). In the end, the total matrix part

amounts to

Π
(2)
mat(u1, u2) = (1, 1) + (2, 0) + (0, 2) (3.28)

with

(1, 1) =
4

[(u1 − u2)2 + 1]2

(2, 0) =
1

(u1 − u2)(u1 − u2 + i)2(u1 − u2 + 2i)

(0, 2) =
1

(u2 − u1)(u2 − u1 + i)2(u2 − u1 + 2i)
, (3.29)
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in agreement with (3.24). The last step is the symmetrisation: we note that (2, 0) and (0, 2)

are related by u1 ↔ u2 and thus we define the symmetric function (2, 0)s = (2, 0) + (0, 2),

which we call Young tableaux, and write the final form

Π
(2)
mat(u1, u2) = (1, 1)s + (2, 0)s , (3.30)

Note that we do not need to symmetrize the other contribution, as (1, 1)s ≡ (1, 1) already.

• Four scalars (n = 2):

For n = 2, formula (3.3) becomes:

Π
(4)
mat(u1, . . . , u4) =

1

6

∫
db1db2db3db4

(2π)4

[δ4(b1, . . . , b4)]2

4∏
i,j=1

f(ul − bj)

∏
i<j

(bi − bj)2

(bi − bj)2 + 1
. (3.31)

The total number of residues to take into account is 7 × 6 × 5 × 4 = 820, as each

integration lowers the number of residues by one. Therefore, a brute force approach would

be very inefficient. The Young tableaux expansion helps us, employing two symmetries:

the permutations of isotopic rapidities bi (bringing a factor 4! = 24) and that of ui (which

symmetrizes the residue contributions), which gives us only 5 different Young tableaux:

(1, 1, 1, 1)s, (2, 1, 1, 0)s, (2, 2, 0, 0)s, (3, 1, 0, 0)s and (4, 0, 0, 0)s. Each of them is a sum over

the permutations in (l1, . . . , l4), which are respectively 1, 12, 6, 12, 4. As a combinatorial

check, (1 + 12 + 6 + 12 + 4)×24 = 840, which is the total number of residues stated before.

The method employs the fact that many of them are either equal (by exchanging the bi)

or related by permutations of ui. From (3.10) follow

δ4(u1, u1 + i, u1 + 2i, u1 + 3i) = δ4(u1, u1 + i, u1 + 2i, u2) = 0 (3.32)

which means that the latter two diagrams actually vanish. Therefore, the n = 2 matrix

part is given by

Π
(4)
mat(u1, u2, u3, u4) = (1, 1, 1, 1)s + (2, 1, 1, 0)s + (2, 2, 0, 0)s , (3.33)
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where, according to (3.20), we have

(1, 1, 1, 1)s = (1, 1, 1, 1) = 16 Det

(
uij

u2
ij + 1

) 4∏
i<j

1

u2
ij

, (3.34)

(2, 2, 0, 0) =
1

2∏
i=1

4∏
j=3

uij(uij + i)2(uij + 2i)

, (3.35)

(2, 0, 1, 1) =
1

u12(u12 + i)2(u12 + 2i)

4

(u2
34 + 1)2

1
4∏
j=3

u1j(u1j + i)u2j(u2j − i)
(3.36)

and the symmetrisation is obtained as follows

(2, 2, 0, 0)s = (2, 2, 0, 0) + (2, 0, 2, 0) + (2, 0, 0, 2) + (0, 2, 2, 0) + (0, 2, 0, 2) + (0, 0, 2, 2)

(2, 1, 1, 0)s = (2, 1, 1, 0) + (2, 1, 0, 1) + (2, 0, 1, 1) + (1, 2, 1, 0) + (1, 1, 2, 0) + (1, 0, 1, 2) +

+ (1, 2, 0, 1) + (1, 0, 2, 1) + (1, 1, 0, 2) + (0, 2, 1, 1) + (0, 1, 1, 2) + (0, 1, 2, 1) .(3.37)

Recursion relation

An interesting application of the method outlined above is a sort of recursion relation for

the matrix factor, which relates the residue of Π
(2n)
mat in ui = uj + 2i to the matrix part with

2 scalars less

−2iResu2=u1+2iΠ
(2n)
mat (u1, · · · , u2n) =

Π
(2n−2)
mat (u3, · · · , u2n)

2n∏
j=3

u1j(u1j + i)2(u1j + 2i)

. (3.38)

We remark that (3.38) has a clear physical origin, as Π
(2n)
mat is part of the squared form

factor of P̂ and, as a consequence, must satisfy certain axioms. One of them concerns the

kinematic poles, in particular their residues, relating them to the form factor with two

particles less. They are those in ui = uj + 2i, therefore (3.38) is just consequence of the

form factor interpretation of the pentagonal transitions.

We can prove (3.38) by means of the sum over Young diagrams (3.9): we note that

the pole in u2 = u1 + 2i is present only in the terms of the type (2, 0, l3, · · · , l2n), where∑2n
i=3 li = 2n − 2. The sum on the RHS is that of Π

(2n−2)
mat (u3, · · · , u2n). To go further we

work out the expression of (2, 0, l3, · · · , l2n), splitting it in three different contributions

(2, 0, l3, · · · , l2n) = (2, 0) · (l3, · · · , l2n)M{li} (3.39)
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where M{li} is the mixed term and depends on the specific configuration {li} and all the

rapidities ui.

The pole for u2 = u1 + 2i, with residue i/2, is contained in (2, 0) only and the quantity

M{li}, when evaluated in u2 = u1 + 2i (which we call M∗), does no longer depends on

{li}. As a result, it becomes a prefactor multiplying the sum and the matrix part for fewer

scalars is recovered

Resu2=u1+2iΠ
(2n)
mat (u1, · · · , u2n) = − 1

2i
M∗(u1, u3, · · · , u2n)Π

(2n−2)
mat (u3, · · · , u2n) (3.40)

As a final step, we use (3.18) and (3.20) and write the mixed contribution for the configu-

ration (23, · · · , 2k+1, 0, · · · , 02k, 1, · · · , 1) as

1
k+1∏
j=3

u1j(u1j + i)2(u1j + 2i)
2k∏

j=k+2

u2j(u2j − i)2(u2j − 2i)
2n∏

j=2k+1

u1j(u1j + i)u2j(u2j − i)

(3.41)

where other are obtained by a suitable permutation. Identifying u2 = u1 + 2i we get

M∗(u1, u3, · · · , u2n) =
1

2n∏
j=3

u1j(u1j + i)2(u1j + 2i)

(3.42)

which finally proves the claim.

3.1.2 Polar structure and polynomials

Here we discuss the polar structure of the matrix factor. For this purpose, we use the

asymptotic factorisation discussed in Section 5.1.

Starting from the known case n = 1, formula (3.24), where the poles are explicit, we

will prove that the matrix part can be written as follows

Π
(2n)
mat (u1, · · · , u2n) =

P2n(u1, . . . , u2n)
2n∏
i<j

(u2
ij + 1)(u2

ij + 4)

, (3.43)

where P2n is a symmetric polynomial depending on the differences uij.

The argument goes as follows: when two arbitrary rapidities up, uq get large, the results

of Section 5.1 state that

Π
(2n)
mat (u1, . . . , up+Λ, . . . , uq+Λ, . . . , u2n) ' Λ−8(n−1)Π

(2)
mat(up, uq)Π

(2n−2)
mat (u1, . . . , up, . . . , uq, . . . , u2n) ,

(3.44)
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where the notation uk means the omission of the rapidity uk.

We remember that Π
(2n)
mat (u1, . . . , u2n) depends only on the differences and may show

singularities when uij pick particular values. Of course, a singular value of Π
(2n)
mat for the

particular difference upq is unchanged by the shifts in the LHS of (5.9). The RHS tells us

where the singularities occur: upq = ±i,±2i. As the argument does not depend on the

particular couple of rapidities we choose, the structure (3.43) follows.

in conclusion, the only unknown in the matrix part (3.43) are the polynomials P2n. The

simplest cases (n = 1, 2) are reported in Appendix D: for n ≥ 3 expressions for P2n get

rapidly involved and a simple formula is not known. However, the residue formula (3.60)

gives us some contraints on P2n: when evaluated in a specific configuration, it is related

to a smaller polynomial, see Appendix D. The degree of the polynomial P2n(u1, . . . , u2n)

may be found here by comparing (3.43) to (3.8). The degree of Π
(2n)
mat (u1, . . . , u2n) is found

to be equal to −4n2 by using integral representation (3.8) and the fact that the degree

of δ2n(u1, . . . , u2n) is 2n(n − 1). It then follows that the degree of P2n(u1, . . . , u2n) is

−4n2 + 42n(2n−1)
2

= 4n(n− 1). Other general properties of these polynomials, for instance

the general form of their highest degree, are discussed in Appendix D.

3.2 The fermions

The method of the previous section can be adapted to study the fermion matrix part. The

results discussed here are subject of the paper [5]. For the purpose of our work, we are

interested in the case with n couples ff̄ : the general formula (2.25) becomes [21, 1]

Π
(n)
mat({ui}, {vj}) =

1

(n!)3

∫ n∏
k=1

(
dakdbkdck

(2π)3

) n∏
i<j

g(ai − aj)g(bi − bj)g(ci − cj)

n∏
i,j

f(ai − bj)f(ci − bj)
n∏
i,j

f(ui − aj)f(vi − cj)
,

(3.45)

where, as usual, the integrations are on the whole real axis.

The variables a and c appear symmetrically in (3.45) and do not couple to each other,

allowing us to simplify the formula, obtaining

Π
(n)
mat({u}, {v}) =

1

(n!)3

∫ n∏
k=1

dbk
2π

n∏
i<j

g(bij)D2n(b1, . . . , bn, u1, . . . , un)D2n(b1, . . . , bn, v1, . . . , vn) .
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where the function D has been defined in the previous section for the scalars. Passing

to the function δ2n, we get the inspiring form

Π
(n)
mat({ui}, {vj}) =

4n2

(n!)3

1
n∏
i<j

(u2
ij + 1)(v2

ij + 1)

∫ n∏
k=1

dbk
2π

n∏
i<j

(
b2
ij

b2
ij + 1

)
·

· δ2n(b1, . . . , bn, u1, . . . , un)δ2n(b1, . . . , bn, v1, . . . , vn)
n∏

i,j=1

[(bi − uj)2 + 1][(bi − vj)2 + 1]

(3.46)

which sets the stage for a systematic evaluation by residues. Indeed, following the

strategy already carried out for scalars, these configurations can be classified in diagrams:

even though, strictly speaking, they are not Young tableaux, with a little abuse of notations

we use the same word for them.

3.2.1 Young tableaux

Along the same line for the scalars, our method relies on the following features of (3.46):

1. the double zeroes for coinciding variables prevent singularities for coinciding bi = bj;

2. poles due to the factors 1
b2ij+1

play no role, due to the properties of δ2n: this is different

form the scalars case;

3. poles in bi = uk(vk) + i, relating the residues to the physical rapidities.

Therefore one must evaluate the residues for poles such as bk − uj = i or bk − vj = i

only and at most once for a given physical rapidity: for instance, if we compute a residue

for b1 = uj + i, poles at bk 6=1 = uj + i or bk 6=1 = uj + 2i do not occur.

The remarks (2) is manifest in formula (3.46): half the entries of the δ2n polynomials

correspond to the n integration variables bj, while the remaining n are fermionic rapidities,

i.e. uk or vk, and in addition to that, the property δ2n(u1, u1 + i, u1 + 2i, u2, u3, . . . ) = 0

proves our claim.

Recalling the diagrammatic language of the previous section, it means that one needs

to consider Young Tableaux with n boxes, each one corresponding to the contribution of

a single pole, which are arranged into an array with 2n entries, i.e. related to the 2n

rapidities ui, vi. This represents a fundamental difference with respect to the scalar case,
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as the number of rapidities is twice the number of integrations. Under these prescriptions,

the matrix factor (3.46) reads

Π
(n)
mat({ui}, {vj}) =

4n2

(n!)22n
1∏

i<j

(u2
ij + 1)(v2

ij + 1)
Yn({ui}, {vj}) (3.47)

where we factorised a constant (independent of the diagram) function and Yn denotes the

sum

Yn({ui}, {vj}) =
∑

l1+···+l2n=n,li=0,1

(l1, · · · , l2n) ; (3.48)

where, in each diagram (l1, · · · , l2n), the first half entries corresponds to the fermion rapidi-

ties ui and the remaining n to antifermions vi. The total number of diagrams appearing in

(3.48) amounts to (2n)!/(n!)2, which are the non-equivalent permutations of the lk’s entries

in (l1, · · · , l2n).

For fermions, all the diagrams can be obtained from a fundamental single one, we choose

(1, · · · , 1, 0, · · · , 0) =
δ2n(u1 + i, · · · , un + i, u1, · · · , un)δ2n(u1 + i, · · · , un + i, v1, · · · , vn)

n∏
i<j

(u2
ij + 1)(u2

ij + 4)

n∏
i,j=1

(ui − vj)(ui − vj + 2i)

.(3.49)

The other can be obtained by considering a suitable permutation of the 2n variables

ui and vi. To be specific, we need to change the positions of some 1-entries in the array,

permuting the rapidities accordingly. Whenever a 1 is moved from the position i ≤ n to

n + j (1 ≤ j ≤ n), we swap the rapidities ui and vj in (3.49), with the caveat that the

second half of arguments in the δ2n-polynomials are held fixed.

We move some 1-entries to the antifermionic positions to get the diagram

(1k,0; 0,1n−k) ≡ (1, · · · , 1k, 0, · · · , 0n, 0, · · · , 0k, 1, · · · , 1) (3.50)

which, thanks to the recursion formula for δ2n shown in the Appendix D, assumes the

explicit form

(1k,0; 0,1n−k) =
δ2k(u1 + i, · · · , uk + i, v1, · · · , vk)δ2n−2k(uk+1, · · · , un, vk+1 + i, · · · , vn + i)

k∏
i,j=1

(ui − vj)(ui − vj + 2i)
n∏

i,j=k+1

(ui − vj)(ui − vj − 2i)

·

·
k∏
i=1

n∏
j=k+1

(uij − i)(vij + i)

uijvij
· 2n [(n− 1)!]2

(k − 1)!(n− k − 1)!
, (3.51)

which is valid for any k = 1, · · · , n− 1.
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Finally, the matrix factor (3.47) comes out as a sum of rational functions: for fixed

k, we need to be add together
(
n
k

)2
contributions: they follow from applying to (3.51) a

permutation P of the variables ui and a permutation Q to the antifermionic ones vi, up to

a normalisation factor to avoid over-counting. The matrix factor Π
(n)
mat eventually assumes

the appealing form

Π
(n)
mat(u1, · · · , un, v1, · · · , vn) =

4
n∏
i<j

(u2
ij + 1)(v2

ij + 1)

n∑
k=0

1

[(n− k)!(k)!]2(k − 1)!(n− k − 1)!
·

·
∑
P

∑
Q

δ2k(uP1 + i, · · · , uPk + i, vQ1 , · · · , vQk)δ2n−2k(uPk+1
, · · · , uPn , vQk+1

+ i, · · · , vQn + i)
k∏

i,j=1

(uPi − vQj)(uPi − vQj + 2i)
n∏

i,j=k+1

(uPi − vQj)(uPi − vQj − 2i)

·

·
k∏
i=1

n∏
j=k+1

(uPi − uPj − i)(vQi − vQj + i)

(uPi − uPj)(vQi − vQj)
. (3.52)

where, in order for the k = 0 and k = n terms to make sense, one must substitute the

factorial (−1)! with 2.

As a simple application, the cases i.e. n = 1 and n = 2, are portrayed below.

• One couple ff̄ (n = 1):

For n = 1 we need to consider only two diagrams, (1, 0) and (0, 1): the former takes into

account the residue for the pole b− u1 = i,

(1, 0) =
1

(u− v)(u− v + 2i)
,

the latter for b− v1 = i,

(0, 1) =
1

(v − u)(v − u+ 2i)
.

The expression (3.47) simply reads Π
(1)
mat(u, v) = 2Y1(u, v) = 2 [(1, 0) + (0, 1)], which returns

the already known two-particle matrix factor

Π
(1)
mat(u, v) =

4

(u− v)2 + 4
. (3.53)

• Two couples ff̄ (n = 2):

The n = 2 case may be more clarifying, being less trivial. In

Π
(2)
mat(u1, u2, v1, v2) =

1

(u2
12 + 1)(v2

12 + 1)
Y2(u1, u2, v1, v2) (3.54)
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we have six distinct contributions, namely

Y2(u1, u2, v1, v2) = (1, 1, 0, 0) + (1, 0, 1, 0) + (1, 0, 0, 1) + (0, 1, 1, 0) + (0, 1, 0, 1) + (0, 0, 1, 1) .

(3.55)

The first one, from (3.49) and upon using (D.10), results

(1, 1, 0, 0) =
δ4(u1 + i, u2 + i, u1, u2)δ4(u1 + i, u2 + i, v1, v2)

(u2
12 + 1)(u2

12 + 4)
2∏
i,j

(ui − vj)(ui − vj + 2i)

= (3.56)

=
2δ4(u1 + i, u2 + i, v1, v2)
2∏

i,j=1

(ui − vj)(ui − vj + 2i)

whereas (0, 0, 1, 1) is obtained from (3.56) through the substitution (u1, u2)↔ (v1, v2).

The diagram (1, 0, 1, 0) can be retrieved, instead, by exchanging u1 ↔ v1 in the first line

of (3.56) (keep in mind the caveat about the variables of δ4):

(1, 0, 1, 0) =
δ4(u1 + i, v1 + i, u1, u2)δ4(u1 + i, v1 + i, v1, v2)

[(u1 − v1)2 + 1][(u1 − v1)2 + 4]
· (3.57)

· 1

u12(u12 + 2i)v12(v12 + 2i)(u1 − v2)(u1 − v2 + 2i)(v1 − u2)(v1 − u2 + 2i)
=

=
4(u1 − u2 − i)(v1 − v2 − i)

(u1 − v2)(v1 − u2)(u1 − u2)(v1 − v2)(u1 − v2 + 2i)(v1 − u2 + 2i)
; (3.58)

Now, the remaining ones straightforwardly follow after a suitable permutation: (1, 0, 0, 1)

is obtained from v1 ↔ v2, (0, 1, 1, 0) from u1 ↔ u2 and (0, 1, 0, 1) after the exchange of

both (u1, v1)↔ (u2, v2). Summing up the six pieces, the matrix factor (3.54) amounts to

Π
(2)
mat(u1, u2, v1, v2) =

1

((u1 − u2)2 + 1)((v1 − v2)2 + 1)

P (2f+2f̄)(u1, u2, v1, v2)
2∏

i,j=1

((ui − vj)2 + 4)

, (3.59)

where the polynomial P (2f+2f̄) is listed in the Appendix D. This result agrees with the

previous finding by [1]. Hence, we illustrated how the Young tableaux approach provides

an efficient way to the compute the fermion matrix factors, in the same way as it does for

the scalars.
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Recursion formula

An analogue recursion relation is satisfied by the matrix factor for the fermions. It relates

the residues to a matrix factor with lower number of particles and it was also proposed in

[66] for the case with nf = nf̄ + 1.

The residue of the matrix factor Π
(n)
mat in the kinematic pole vj = ui + 2i, is given by

iResv1=u1+2iΠ
(n)
mat(u1, · · · , un, v1, · · · , vn) =

Π
(n−1)
mat (u2, · · · , un, v2, · · · , vn)

n∏
j=2

(u1j + i)u1j(u1 − vj + 2i)(u1 − vj + i)

.

(3.60)

The proof follows from the sum over Young diagram (3.47), by considering the single

diagram contribution (3.51). The pole v1 = u1 + 2i appears only in diagrams of the type

(1, {lni=2}, 0, {l2nn+1}), which we split into

(1, {lni=2}, 0, {l2nn+1}) = (1, 0) · ({lni=2}, {l2nn+1}) ·M{li} (3.61)

Only the two-particle diagram (1, 0) contains the pole and ({lni=2}, {l2nn+1}) represents

a diagram in the sum defining Π
(n−1)
mat . The mixing term M{li}, whose expression follows

from (3.51) after some algebraic manipulations, depends on both sets of variables and,

in general, it changes according to the specific diagram {li}. However, when evaluating

the residue around v1 = u1 + 2i, this dependence on the diagram drops out and, after

summing over the set {li}, the matrix factor with a decreased number of particles Π
(n−1)
mat

is reproduced, multiplied by the correct factor to give (3.60).

As said for the scalar case, this kind of relation does not come unexpected from a

physical ground, as it clearly alludes to the axiom relating the form factor4 of an operator

to itself, once two particles are ’annihilated’ via the evaluation of the residues for kinematic

poles, vi = uj+2i. This recursion formula will find the main application in the next chapter,

with very important consequences.

3.2.2 Fermion polynomials

As in the case involving scalars, it is possible to explicit the polar structure which, for a

system of n couples ff̄ , reads

4Even though, strictly speaking, we are dealing with some square modulus of a form factor.
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Π
(n)
mat({ui}, {vj}) =

P (n)(u1, . . . , un, v1, . . . , vn)
n∏
i<j

[(ui − uj)2 + 1]
n∏
i<j

[(vi − vj)2 + 1]
n∏

i,j=1

[(ui − vj)2 + 4]

, (3.62)

where P (n)(u1, . . . , un, v1, . . . , vn) is a 2n(n− 1) degree polynomial: the simplest cases are

reported in the dedicated appendix.

The proof for the general polar structure (4.3) relies on the asymptotic factorisation of

Π
(n)
mat. In fact, when k rapidities ui and vi get shifted by a large quantity Λ, the matrix

part factorises into the product matrix factors involving two disjoint proper subgroups of

particles (up to a power of the shift):

Π
(n)
mat({uki=1+Λ, uni=k+1}, {vki=1+Λ, vni=k+1}) ' Λ−4k(n−k)Π

(k)
mat({uki=1}, {vki=1})Π

(n−k)
mat ({uni=k+1}, {vni=k+1}) .

(3.63)

Formula (3.63) can be proven directly from the integral representation (3.45): the shift by

Λ on k fermion and antifermion rapidities can be re-absorbed into k integration variables

a, b, c, then the limit Λ→∞ leads to (3.63).

The polar structure (4.3) is then a direct consequence of factorisation, a sketchy5

proof is provided: if one shifts by Λ � 1 two fermion and two antifermion rapidities,

say u1, u2, v1, v2 without loss of generality, (3.63) for k = 2 becomes

Π
(n)
mat(u1+Λ, u2+Λ, {uni=3}, v1+Λ, v2+Λ, {vni=3}) ' Λ−8(n−2) Π

(2)
mat(u1, u2, v1, v2)Π

(n−2)
mat ({uni=3}, {vni=3}) .

(3.64)

The two-particle factor Π
(2)
mat(u1, u2, v1, v2) satisfies the structure (4.3) and exhibits poles

for u1 − u2 = ±i, v1 − v2 = ±i and ui − vj = ±2i. Since Π
(n)
mat is invariant under permu-

tations of the u’s and of the v’s, the same reasoning must hold for any arbitrary 4-plet

{ui, uj, vk, vl}, thus structure (4.3) follows.

Many additional features of the polynomials, expecially those due to the recursion

formula (3.60), are listed in the Appendix D. they will turn out to be fundamental for hte

computation of the fermion contribution Wf to the null polygonal Wilson loop, object of

the next chapter.

5The proof does not differ from the scalar case, for which a more detailed explanation is available in

[3].



Chapter 4

Fermions and gluons: the classical

contribution

In this chapter we analyse the OPE series, for instance (2.19) in the hexagon case, focusing

on the contribution from fermion and gluons in the strong coupling regime. On a general

ground, we have seen in subsection 2.1.3 that there are two different regimes in that limit.

The aim of the chapter is to reproduce the first one, given by the classical string theory

in AdS5. More precisely, the null polygonal Wilson loop is given by the (exponential of)

minimal worldsheet area of the string, moving in AdS5 and attached to the polygon on

the boundary. The solution of the problem takes the form of a set of non-linear integral

equations which recall the TBA systems. The excitations responsible for that are gluons

and fermions. In [18], the classical contribution for the hexagon has been reproduced by

means of the following hypothesis: the contribution from fermions-antifermions can be

thought of as coming from effective bound states ff̄ between them [19]. On the physical

ground of Bethe equations, they are not real bound states, for the do not appear in the

spectrum. However, for strcitly infinite coupling we can think of them as physical particles

and sum, instead of fermions, on these so-called mesons. The mesons, being singlet under

SU(4), do not have a matrix factor and the resummation of the OPE series is possible.

Here we prove that this hypothesis is indeed correct, following an argument outlined in [4].

The chapter is structured as follows. The first section deals with the hexagon, for which we

show the emergence of the meson directly from the OPE series for the fermions [1, 4], thus

confirming the validity of the meson hypothesis pushed forward in [18]. In the second part,

we sum over gluons and mesons for the polygonal Wilson loop with N > 6. In doing that,

we take for grant the emergence of the meson already shown in the simplest case N = 6.

Interestingly, along the way we found osme analogies with the instanto contribution to the

79
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partition function in N = 2 theories, encoded in the Nekrasov function Z. In particular, it

resembles the series over mesons appearing in the hexagon case. This analogy will help to

understand the mechanism by which mesons form bound states, leading to the emergence

of the TBA-like equation.

4.1 The hexagon: fermions

The hexagon, under the meson hypothesis, has been resummed in [18] and the TBA-like

equations for the amplitudes have been reproduced. The purpose of this part is to prove

the validity of the procedure, by analysing the fermionic coontribution. In the process

we disregard the gluons, as they are singlet under SU(4) and their inclusion is rather

straightforward [5].

4.1.1 Fermions contribution and bound states

The fermionic part of (2.19) reads

Wf =
∞∑
n=0

W
(n)
f =

∞∑
n=0

1

n!n!

∫
C

n∏
k=1

[
duk
2π

dvk
2π

µf (uk)µf (vk) e
−τEf (uk)+iσpf (uk)· (4.1)

·e−τEf (vk)+iσpf (vk)
]

Π
(n)
dyn({ui}, {vj}) Π

(n)
mat({ui}, {vj}) .

where we adapted the singlet condition (2.28) to the case without scalars, which be-

comes Nf = Nf̄ ± 4m. We considered only the terms with m = 0, i.e. with the same

number of fermions and antifermions, as it has been shown to yield the main contribution

to the Wilson loop.

The integration contour CS is open and restricted to the small fermion sheet, as the

large fermions are damped by an exponential factor in the strong coupling limit. More

details on the contour can be found in [19, 1]. The (anti)-fermionic rapidities {uk}, {vk}
parametrize the energy and momentum Ef (u), pf (u), which couple to the cross ratios τ

and σ in the propagation phase. The other cross ratio φ couples only to the helicity of the

gluons and does not appear here. The product of pentagon transition in (2.19), or form

factor squared, factorizes into the product of a dynamical and a matrix part [21], where

the latter is coupling independent. The dynamical part is two-body factorisable

Π
(n)
dyn({ui}, {vj}) =

n∏
i<j

1

P (ui|uj)P (uj |ui)
1

P (vi|vj)P (vj |vi)

n∏
i,j=1

1

P̄ (ui|vj)P̄ (vj |ui)
(4.2)
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where P stands for the transition between particles of the same type (i.e. fermion-fermion

or anti-fermion-anti-fermion) and P̄ for the transition between a fermion and an anti-

fermion. The function P (u|v) is endowed with a single pole for coinciding rapidities v = u,

whose residue determines the measure µf (u) [12]: Res v=u P (u|v) = i/µf (u).

On the other hand, the factor Π
(n)
mat, encoding the SU(4) matrix structure, has an

integral representation [21] in terms of the auxiliary variables a, b, c, introduced in the

previous chapter where a Young tableaux method [5] has been exposed. Eventually, it led

to the polar form

Π
(n)
mat({ui}, {vj}) =

P (n)(u1, . . . , un, v1, . . . , vn)
n∏
i<j

[(ui − uj)2 + 1]
n∏
i<j

[(vi − vj)2 + 1]
n∏

i,j=1

[(ui − vj)2 + 4]

. (4.3)

where P (n)(u1, . . . , un, v1, . . . , vn) is a degree 2n(n− 1) polynomial in the ui, vj .

The polar structure (4.3) and the properties of the polynomials P (n) play a main role to

the emergence of the meson. In turn, they bound up to form composite states themselves,

thus reproducing the (central node of) TBA-like equations for the amplitudes. First, we see

how couples ff̄ coalesce into bound states. Later, we will address the interaction between

these meson and witness the emergence of their bound states. Once againg, we stress that

on the ground of the Bethe ansatz equations, the aforementioned mesons do not show up

in the spectrum of particles at finite coupling, as they lie outside of the physical sheet [19].

On the contrary, they come into existence at g =∞ and start contributing to the OPE in

place of (unbounded) fermions and antifermions, whose contribution is subdominant.

To begin with, making use of (4.2,4.3), we reformulate (4.1) into the appealing

W (n) =
1

n!

∫
CS

n∏
i=1

dui
2π

In(u1, · · · , un)
n∏
i<j

p(uij) , (4.4)

where, with some hindsight, we factorised the factor responsible for the bound states

between mesons, which we call short-range (meson-meson) potential

p(uij) ≡
u2
ij

u2
ij + 1

(4.5)

and enclosing the integrals on the antifermionic rapidities vj inside the function

In(u1, · · · , un) ≡ 1

n!

∫
C

n∏
i=1

dvi
2π

Rn({ui} , {vi})P (n)({ui} , {vi})
n∏

i,j=1

h(ui − vj)
n∏
i<j

p(vij) , (4.6)
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in which the short-range potential acting between a couple ff̄ is present

h(ui − vj) =
1

(ui − vj)2 + 4
(4.7)

The regular part Rn, with no poles nor zeroes in the rapidities (ui, vi ) it is related to

the dynamical factor (4.2) via the definition

Rn(u1, · · · , un, v1, · · · , vn)
n∏
i<j

u2
ijv

2
ij ≡ Π

(n)
dyn(u1, · · · , un, v1, · · · , vn)

n∏
i=1

µ̂f (ui)µ̂f (vi) , (4.8)

where the measure and the propagation phase are combined into

µ̂f (u) ≡ µf (u)e−τEf (u)+iσpf (u) . (4.9)

The emergence of mesons is an outcome of the integrals over the antifermionic variable

vj in (4.6), in particular due to the short-range potential (4.7). As explained, the integration

can be safely restricted to the small-fermion sheet section CS. In turn, it is useful to split CS
in two parts: a closed contour CHM , entirely lying in the lower half plane and the segment

I = [−2g,+2g], oppositely oriented [1]1. This choice allows us to evaluate part of the

integrals by residue. The choice of the contour CS does not depend on the coupling constant

g, nevertheless in the strong coupling regime we benefit from a crucial simplification. In

fact, we decompose the function In into the sum In = Iclosedn + Irn, where Iclosedn corresponds

to the expression (4.6) with the contour CS replaced by CHM . The remainder Irn turns out

to be subdominant at large coupling [1]. This can be understood as, when λ → ∞, the

rapidities get rescaled according to u = 2gū and the interval I becomes fixed in the ū: in

this new variables the poles are very close to the integration contour and the leading order

is given by the residues of such poles. A more detailed explanation of this effect is given

in [1], where the simplest cases n = 1, 2 have been thoroughly analysed.

In order to illustrate how to approach the integrals (4.6), we analyse the simplest non-

trivial case, n = 2, so to clarify our notation before moving to the general case. We treat

it in a more elegant way than [1], amenable for an easy generalisation to any n [4].

n = 2 case We want to evaluate the integral

Iclosed2 (u1, u2) =
1

2

∫
CHM

dv1dv2
(2π)2

R2(u1, u2, v1, v2)P (2)(u1, u2, v1, v2)

[(u1 − v1)2 + 4] [(u1 − v2)2 + 4] [(u2 − v1)2 + 4] [(u2 − v2)2 + 4]

v212
v212 + 1

(4.10)

1We mention that the interval I contains unphysical values of the momentum. However, they cancel

with an opposite contribution present in the closed part CHM .
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by computing the residues. Fortunately, after the warm up of the previous chapter, we

can apply a similar method to this multiple integrals. One observes that the poles arrange

themselves in strings in the complex plane, with real coordinates uj: indeed, if the first

pole to be considered is vi = uj − 2i , any further residue around the same real rapidity is

placed below the previous one at a distance −i , i.e. the general form vi = uj − (2 + κ)i

(with κ = 0, 1, . . . ) is found. Sticking on (4.10), three independent residue configurations

occur, namely (u1 − 2i, u2 − 2i), (u1 − 2i, u1 − 3i) and (u2 − 2i, u2 − 3i), each one with

a multiplicity 2! owing to the symmetry of Iclosed2 under permutation of the integration

variables vi: these configurations are respectively denoted in the following as (1, 1), (2, 0)

and (0, 2), for compactness. The explicit form of P (2) entails that (2, 0) and (0, 2) actually

give no contribution, since2

P (2)(u1, u2, u1 − 2i, u1 − 3i) = 0 , (4.11)

while the only configuration that matters is (1, 1), for which P (2) takes the simple form

P (2)(u1, u2, u1 − 2i, u2 − 2i) = 16
[
(u2

12 + 16)(u2
12 + 1)

]
: (4.12)

as a result,

Iclosed2 (u1, u2) = R2(u1, u2, u1 − 2i, u2 − 2i) , (4.13)

which on a physical ground hints that fermions and antifermions (with rapidities differing

by the purely imaginary quantity 2i) form a bound state.

• Arbitrary n:

As already noticed for n = 2, also in the general case for arbitrary n the residue

configuration (1, 1, · · · , 1), i.e. when only poles of the kind vi = uj − 2i are involved, turns

out to be the sole to contribute to In. In fact, the strong constraint

P (n)(u1, · · · , un, u1 − 2i, u1 − 3i, v3, · · · , vn) = 0 , (4.14)

resulting from the relation (D.30) in the appendix, rules out all the residue configurations

except for (1, 1, · · · , 1) so that, in a quite formal fashion, one can assert that

P (n)(Y 6= (1, 1 · · · , 1, 1)) = 0 . (4.15)

2See the Appendix D for the properties of the polynomials P (n).
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Taking into account the proper combinatorial factor, the contribution arising from the

aforementioned configuration reads

(1, 1, · · · , 1, 1) =
(−1)n

4n
P (n)(u1, · · · , un, u1 − 2i, · · · , un − 2i)Rn(u1, · · · , un, u1 − 2i, · · · , un − 2i)

n∏
i<j

(u2
ij + 16)(u2

ij + 1)

(4.16)

where P (n) can be given the explicit form (D.29), allowing us to retrieve for (4.6) an

expression

Iclosedn (u1, · · · , un) = (−1)nRn(u1, · · · , un, u1 − 2i, · · · , un − 2i) (4.17)

which highlights how fermion and antifermion rapidities pair up to form complex two-

string, with spacing 2i. A comparison with (4.2), (4.8) suggests these two-strings to find

an interpretation as bound states [19, 1], named mesons, whose energy is the sum of the

energies of the single components, as well as their momentum,

EM(u) ≡ Ef (u+ i) + Ef (u− i), pM(u) ≡ pf (u+ i) + pf (u− i) , (4.18)

while their pentagon transition amplitude can be recognised in the expression

PMM(u|v) = −(u−v)(u−v+i)P (u+i|v+i)P (u−i|v−i)|P̄ (u−i|v+i)P̄ (u−i|v+i) , (4.19)

although, for later purposes, it is worth to introduce the regular function PMM
reg , without

poles nor zeroes, related to PMM via3

PMM(u|v) =
u− v + i

u− v
PMM
reg (u|v) . (4.20)

Accordingly, the (hatted) measure can be coherently traced in the formula

µ̂M(u) ≡ µM(u)e−τEM (u)+iσpM (u) = − µ̂f (u+ i)µ̂f (u− i)
P̄ (u+ i|u− i)P̄ (u− i|u+ i)

, (4.21)

while the measure is

Res v=u P
MM(u|v) =

i

µM(u)
. (4.22)

These identifications lead us to recast (4.17) into the expression

Iclosedn (u1, · · · , un) =

n∏
i=1

µ̂M(ui − i)

n∏
i<j

PMM
reg (ui − i|uj − i)PMM

reg (uj − i|ui − i)
, (4.23)

3In the Appendix C these and other related formulae are discussed in more details.
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that, once plugged into (4.4), legitimises us to reformulate the fermionic contribution to

the hexagon Wilson loop (4.1) in the strong coupling limit in terms of these novel bound

states, into the series W = W (M) + . . .

W (M) =

∞∑
n=0

1

n!

∫
CS

n∏
i=1

dui
2π

µ̂M (ui − i)
n∏
i<j

1

PMM
reg (ui − i|uj − i)PMM

reg (uj − i|ui − i)

n∏
i<j

p(uij)

(4.24)

where the dots are to remind that some terms, coming from the integrations on the interval

I and originally included in In, were discarded4 while considering the leading contribution

Iclosedn .

To conclude with a few comments, formula (4.24) means that in the large coupling

regime unpaired fermions and antifermions give the way to the formation of mesons. Nev-

ertheless, we want to stress that at finite coupling the formula (4.24) still makes sense:

indeed one can still recognise a contribution ascribable to these effective particles, and

associate them (at least formally) a pentagon amplitude and a measure.

In the next part, some attention shall be paid to the short-range interaction p(uij) inside

the integrand of (4.24). In the strong coupling limit, it accounts for the formation of bound

states between mesons, following a mechanism similar to that responsible for the coales-

cence of instantons into bound states [82, 83] in the Nekrasov partition function. This will

represent the main aim of the following subsection.

4.1.2 Mesons bound states and TBA

Now we are going to analyse in details the series W (M) in (4.24) which, we recall, is the

strong coupling limit of the fermionic sector of the OPE. It is a sum over effective bound

states ff̄ which we called mesons. They are singlets under SU(4), so that we do not

have to deal with the involved SU(4) matrix structure. We employ an elegant method

[4], combining the path integral approach [18, 83] and the Fredholm determinant formula,

from which the strong coupling limit follows straightforwardly. This will give a rigorous

proof of the meson hypothesis by reproducing the result of [18], which was the starting

point for the resummation of the OPE series.

An interesting analogy with the Nekrasov instanton partition function Z [20] emerges,

which depends on two deformation parameters ε1, ε2 defining the Ω-background. The

correspondence with the meson seriesW (M) becomes noteworhty expecially when the strong

4In order to fully reconstruct the fermionic contribution to the Wl at finite coupling, the integrations

performed along the contours CL must be added too.
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coupling limit of the latter is considered. On the N = 2 side, it corresponds to the so-called

Nekrasov-Shatashvili regime, where one parameter is sent to 0 whereas the other is kept

finite. A description in terms of TBA-like equation is present for the Nekrasov function in

that limit [82, 83]: with this in mind, the strong coupling limit for the meson series should

follow straightforwardly from this analogy. In particular, for large coupling λ→∞, mesons

bound together following the same pattern of instantons in Z, giving rise to the typical

dilogarithm function. The set of techniques we are going to apply here to W (M) works for

the partition function Z as well. For the latter, they are described in the Appendix A,

where we also give more details on the Nekrasov function and discuss its similarities with

the meson series W (M). We mention that the emergence of bound states between mesons

in (4.24) can be equivalently shown employing the cluster expansion, which was the way

the have been originally found for the Nekrasov function [82, 83]. This method is worked

out in the dedicated appendix. However, the approach in this section is much more elegant

and straightforward.

The procedure goes as follows: along the line of [18, 4], we introduce a quantum field

X(u) whose propagator is

e〈X(ui)X(uj)〉 ≡ 1

PMM
reg (ui − i|uj − i)PMM

reg (uj − i|ui − i)
≡ eGM (ui,uj) (4.25)

so that we can write the Wilson loop as an average

W (M) '

〈
∞∑
n=0

1

n!

∫
CS

n∏
i=1

dui
2π

µ̂M(ui − i)eX(ui)

n∏
i<j

p(uij)

〉
(4.26)

thanks to the path integral idendity5

∏
i<j

e〈X(ui)X(uj)〉 =

〈∏
i

eX(ui)

〉
(4.27)

which is an extension of the usual gaussian integrals. The Cauchy identity allows us to

recast the meson-meson potential as

n∏
i<j

p(uij) =
1

in
det

(
1

ui − uj − i

)
(4.28)

which, through the definition of the matrix M

5Here we neglected the diagonal term from the Gaussian identity, due to the propagator evaluated in

ui = uj , as it is subleading in the strong coupling regime.
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M(ui, uj) ≡
[
µ̂M(ui − i)eX(ui)µ̂M(uj − i)eX(uj)

]1/2
ui − uj − i

(4.29)

allows us to find the beautiful representation

W (M) ' 〈det (1 +M)〉 =

〈
exp

[
∞∑
n=1

(−1)n+1

n
TrMn

]〉
(4.30)

where, inside the average, we have the Fredholm determinant of an integral operator

defined by the kernel M(x, y). The trace of Mn is defined as

TrMn ≡
∫
Cs

n∏
i=1

dui
2πi

µ̂M(ui − i)eX(ui)

n∏
i=1

1

ui − ui+1 − i
, un+1 ≡ u1 (4.31)

This method is extensively discussed in the Appendix (A), where it is applied to the

Nekrasov partition function Z.

Now we want to perform the strong coupling limit. As stated before, it corresponds to

the ε → 0 limit for the Nekrasov function, so that we can use the result in the appendix

A: the leading order is obtained by evaluating the residues inside the closed contour CHM

TrMn ' (−1)n−1

n

∫
Cs

du

2π
µ̂nM(u− i)enX(u) ' (−1)n−1

n

∫
Cs

du

2π
µ̂nM(u)enX(u) (4.32)

where the shifts have been neglected, as the rapidities u get rescaled in the large λ

limit. The sum over n in (4.30) gives rise to the expected dilogarithm: in the end, the

strong Wilson loop reads

W (M) '
〈

exp

[∫
Cs

du

2π
Li2
[
µ̂M(u)eX(u)

]]〉
(4.33)

where the hatted measure is

µ̂M(u) = µM(u)e−τEM (u)+iσpM (u) (4.34)

The strong coupling measure is given by µM(u) ' −1, so that (4.33) turns into

W (M) '
〈

exp

[
−
∫
Cs

du

2π
µM(u)Li2

[
−e−τEM (u)+iσpM (u)eX(u)

]]〉
(4.35)

which agrees with (11.53) of [18], which was obtained by means of the meson hypothesis,

i.e. starting from the OPE series containing mesons and bound states thereof



88 CHAPTER 4. FERMIONS AND GLUONS: THE CLASSICAL CONTRIBUTION

W
(M)
hyp =

∞∑
N=0

1

N !

∞∑
a1=1

· · ·
∞∑

aN=1

∫
CS

N∏
i=1

dui
2π

µ̂M(ui)
ai

a2
i

N∏
i<j

[
1

PMM
reg (ui|uj)PMM

reg (uj|ui)

]aiaj
(4.36)

This means that, in the strong coupling regime, we have the equivalence6 W (M) ' W
(M)
hyp .

Equation (4.35) is a path integral representation of the meson contribution to the

Wilson loop, valid in the strong coupling limit only. What makes the method useful is

that the action is large ∼
√
λ and the saddle point technique, depicted in details in [18],

is appliable. This will yield the TBA-like equation previously found for the scattering

amplitudes. Including also gluons and their bound states, for which the original OPE

series already looks like (4.36) and the dilogarithm appears naturally, the classical string

result is reproduced [18]. The main contribution of this section was to prove the claim that,

altough not present in the spectrum, effective bound states between ff̄ emerge, along with

an infinite tower of bound states between them, at infinite coupling and their contribution

reproduces the central node of the TBA-like equations. Note that these are not bound

states in the usual sense in the TBA framework, as they do not constitute additional nodes

in the equations7: their resummation, on the other hand, reproduces only one node of the

TBA-like equations. The emergence of the interaction between mesons and gluons can

be shown easily within the same framework [5], by considering the OPE series with both

gluons and (anti)fermions.

4.2 Extension to any polygon

In this section we show how the resummation of the OPE series, accounting for femrions

ang gluons, extends to bigger polygons n > 6. In doing that, we take advantage of the

meson hypothesis proven for the hexagon case n = 6. A more complete derivation would

involve considering the general gluons-fermions contribution to Wn and it is currently a

work in progress. However, it is rather involved and for several physical/mathematical

reasons we can say with a high degree of confidence that the meson hypothesis should be

trusted for any number of edges. The main achievement consists in the agreement with the

string theory calculations, namely the TBA-like equations depicted in Appendix B. The

content of this section is mainly taken from the paper [1].

6This requires also the explicit expression in the large λ limit of the pentagon transitions, displayed in

Appendix C.
7The same argument works for the bound states between gluons, which are physical bound states in

the Bethe equations setup but not TBA bound states.
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4.2.1 Mesons and gluons: OPE series resummation

Here, by means of the meson hypothesis, we sum the OPE series for mesons and gluons at

strong coupling λ→∞, in the case of bigger polygons n > 6.

The most general pentagonal amplitude, involving two states with respectively N and

M excitations, is denoted as

P ~A~B(θ1, . . . , θN |θ′1, . . . , θ′M) (4.37)

The notation ~A = (A1, ..., AN), where Ai = aαi , means that the i-th excitation is a

bound state of aαi particles of type αi: αi = 1, 3 stands for gluons with positive and

negative helicity and αi = 2 stands for mesons.

The excitations are singlets, so that we do not have a matrix part and the transition

factorizes as [12]

P ~A~B(θ1, . . . , θN |θ′1, . . . , θ′M) =

∏
i,j

PAiBj(θi|θ′j)∏
i>j

PAiAj(θi|θj)
∏
i<j

PBiBj(θ
′
i|θ′j)

, (4.38)

where PAiBj(θi|θ′j) are the elementary transitions involving two particles. At strong cou-

pling we have the important property

PAiAj(θ|θ′) = [Pαi,αj(θ|θ′)]
aαiaαj , (4.39)

where the ’fundamental’ Pα,β(θ, θ′), acting between unbound mesons and gluons, are listed

in Appendix C. In the same way, for λ → ∞ energy and momentum of bound states are

given by the sum of energy and momentum of their constituents, namely

EAi(θ) = aαiEαi(θ) , pAi(θ) = aαipαi(θ) , (4.40)

where the dispersion becomes relativistic

E1(θ) = E3(θ) =
√

2 cosh θ , E2(θ) = 2 cosh θ ; p1(θ) = p3(θ) =
√

2 sinh θ , p2(θ) = 2 sinh θ .

(4.41)

We note that the gluons have mass
√

2, whereas the meson mass is 2. This agrees with

the string theory perturbative analysis.

We first deal with the heptagon, which helps to fix all the notations, then we study the

most general case.
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Heptagon

The OPE series at strong coupling, employing the properties discussed before, reads

W7 =

∞∑
N=0

∞∑
M=0

1

N !

1

M !

3∑
α1=1

...

3∑
αN=1

3∑
β1=1

...

3∑
βM=1

∑
aα1

...
∑
aαN

∑
bβ1

...
∑
bβM

∫ N∏
i=1

dθ̂i(τ1, σ1, φ1) ·

·
M∏
j=1

dθ̂′j(τ2, σ2, φ2)

N∏
i=1

M∏
j=1

[Pαiβj (−θi|θ′j)]
aαibβj

N∏
i,j=1

i 6=j

[Pαiαj (θi|θj)]
aαiaαj

M∏
i,j=1

i 6=j

[Pβiβj (θ
′
i|θ′j)]

bβibβj

, (4.42)

where we used a compact notation for the integration measure, including the propaga-

tion phases

dθ̂i(τ, σ, φ) = e−τaαiEαi (θi)+iσaαipαi (θi)+iaαiφ(2−αi)µαi(θi)

(aαi)
2 (−1)aαi−1dθi

2π
,

dθ̂′j(τ, σ, φ) = e−τbβjEβj (θ′j)+iσbβj pβj (θ′j)+ibβjφ(2−βj)µβj(θ
′
j)(

bβj
)2 (−1)bβj−1dθ

′
j

2π
, (4.43)

µ1(θ) = µ3(θ) = −
√
λ

2π

2

cosh2 2θ
, µ2(θ) =

√
λ

2π

2

sinh2 2θ
,

Now we employ the same path integral method of the previous section, although in a

more general fashion. From the Gaussian integrals, the following identity holds

〈e
∑
s,α

X
(s)
α,1J

(s)
α,1

e

∑
s,α

X
(s)
α,2J

(s)
α,2

...e

∑
s,α

X
(s)
α,dJ

(s)
α,d〉 = e

1
2

∑
s,s′,α,β

d∑
i,j=1

J
(s)
α,iG

(s,s′)
α,β,i,jJ

(s′)
β,j

, (4.44)

of which we consider the limit d→∞. The average symbol 〈· · ·〉 means functional inte-

gration with respect to the fields X
(s)
α (θ) in the presence of a source term with propagator

〈X(s)
α (θ)X

(s′)
β (θ′)〉 = Gs,s′

α,β(θ, θ′) . (4.45)

which we choose to be given by the following

G
(1,1)
α,β (θ, θ′) = G

(2,2)
α,β (θ, θ′) = − ln[Pα,β(θ|θ′)Pβ,α(θ′|θ)] , G

(1,2)
α,β (θ, θ′) = G

(2,1)
β,α (θ′, θ) = − ln[Pβ,α(θ′|θ)]

(4.46)

and the currents are

J (1)
α (θ) =

N∑
i=1

aαiδα,αiδ(θ − θi) , J
(2)
β (θ′) = −

M∑
j=1

bβjδβ,βjδ(θ
′ + θ′j) . (4.47)
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We remark that the s-th currents J
(s)
α (θ) have support on the straight line γs defined by

the condition

Imθ = ϕ̂s −
π

4

1 + (−1)s

2
, (4.48)

and that the kernels G
(s,s′)
α,β (θ, θ′) have support on γs × γs′ . Thanks to Pα,β(−θ| − θ′) =

Pβ,α(θ′|θ), we obtain

exp

[
1

2

∑
s,s′,α,β

∫
γs

dθ

∫
γs′

dθ′J (s)
α (θ)G

(s,s′)
α,β (θ, θ′)J

(s′)
β (θ′)

]
= exp

[1

2

N∑
i,j=1

aαiaαjG
(1,1)
αi,αj

(θi, θj) +

+
1

2

M∑
i,j=1

bβibβjG
(2,2)
βi,βj

(−θ′i,−θ′j)−
1

2

N∑
i=1

M∑
j=1

(
aαibβjG

(1,2)
αi,βj

(θi,−θ′j) + aαibβjG
(2,1)
βj ,αi

(−θ′j, θi)
)]

=

=

N∏
i=1

M∏
j=1

[Pαiβj(−θi|θ′j)]
aαibβj

N∏
i,j=1

i 6=j

[Pαiαj(θi|θj)]
aαiaαj

M∏
i,j=1

i 6=j

[Pβiβj(θ
′
i|θ′j)]

bβibβj

. (4.49)

which, using (4.44) and (4.47), returns the relation we were looking for

N∏
i=1

M∏
j=1

[Pαiβj(−θi|θ′j)]
aαibβj

N∏
i,j=1

i 6=j

[Pαiαj(θi|θj)]
aαiaαj

M∏
i,j=1

i 6=j

[Pβiβj(θ
′
i|θ′j)]

bβibβj

= 〈exp

[∑
s,α

∫
γs

duX(s)
α (θ)J (s)

α (θ)

]
〉 =

= 〈exp

[
N∑
i=1

aαiX
(1)
αi

(θi)−
M∑
j=1

bβjX
(2)
βj

(−θ′j)

]
〉 (4.50)

Therefore, under functional integration, the integrands in (4.42) factorizes in one-particle

terms, allowing us to perform the sums over aαi and bβj , eventually getting

W7 =
∞∑
N=0

∞∑
M=0

(−1)N+M

N !M !
〈
∫
γ1

N∏
i=1

dθi
2π

[∑
α

µα(θi)Li2

(
−e−τ1Eα(θi)+iσ1pα(θi)+iφ1(2−α)+X

(1)
α (θi)

)]
·

·
∫
γ2

M∏
j=1

dθ′j
2π

[∑
β

µβ(θ′j)Li2

(
−e−τ2Eβ(θ′j)+iσ2pβ(θ′j)+iφ2(2−β)−X(2)

β (−θ′j)
)]
〉 = (4.51)

= 〈exp

[
−
∫
γ1

dθ

2π

[∑
α

µα(θ)Li2

(
−e−τ1Eα(θ)+iσ1pα(θ)+iφ1(2−α)+X

(1)
α (θ)

)]]
·

· exp

[
−
∫
γ2

dθ′

2π

[∑
β

µβ(θ′)Li2

(
−e−τ2Eβ(θ′)−iσ2pβ(θ′)+iφ2(2−β)−X(2)

β (θ′)
)]]
〉 (4.52)
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This can be compactly written as a partition function

W7 =

∫ 3∏
α,β=1

DX(1)
α DX

(2)
β e−S[X(1),X(2)] , (4.53)

with the action

S[X(1), X(2)] =
1

2

∑
s,s′,α,β

∫
γs

dθ

∫
γs′

dθ′X(s)
α (θ)T

(s,s′)
α,β (θ, θ′)X

(s′)
β (θ′) + (4.54)

+
∑
s,α

∫
γs

dθ

2π
µα(θ)Li2

(
−e−τsEα(θ)+i(−1)s+1σspα(θ)+iφs(2−α)+(−1)s+1X

(s)
α (θ)

)
Notice that S is proportional to the large coupling

√
λ. Thus, the customary saddle point

technique givesthe ’equation of motion’ for X
(s)
α as extremisation of (4.55):

X(s)
α (θ) +

2∑
s′=1

3∑
α′=1

(−1)s
′ · (4.55)

·
∫
γs′

dθ′

2π
µα′(θ

′)G
(s,s′)
α,α′ (θ, θ′) ln

[
1 + e−τs′Eα′ (θ

′)+i(−1)s
′−1σs′pα′ (θ

′)+iφs′ (2−α′)+(−1)s
′+1X

(s′)
α′ (θ′)

]
= 0 .

which, by defining the pseudoenergies according to

ε(s)
α

(
θ − iϕ̂s + i

π

4

1 + (−1)s

2

)
= τsEα(θ)− i(−1)s−1σspα(θ) + (−1)sX(s)

α (θ) , (4.56)

turn into the TBA setup

ε(s)
α (θ − iϕ̂s) = τsEα

(
θ − iπ

4

1 + (−1)s

2

)
− i(−1)s−1σspα

(
θ − iπ

4

1 + (−1)s

2

)
−

−
2∑

s′=1

3∑
α′=1

(−1)s+s
′
∫

Imθ′=ϕ̂s′

dθ′
µα′

(
θ′ − iπ4

1+(−1)s
′

2

)
2π

G
(s,s′)
α,α′

(
θ − iπ

4

1 + (−1)s

2
, θ′ − iπ

4

1 + (−1)s
′

2

)
·

· ln
(

1 + e−ε
(s′)
α′ (θ′−iϕ̂s′ )eiφs′ (2−α

′)

)
. (4.57)

Finally, the saddle point yields W7 = exp(−S), with the critical action S given by

S =
1

2

2∑
s,s′=1

3∑
α,α′=1

∫
Imθ=ϕ̂s

dθ

2π

∫
Imθ′=ϕ̂′s

dθ′

2π
(−1)s+s

′
µα

(
θ − iπ

4

1 + (−1)s

2

)
µα′

(
θ′ − iπ

4

1 + (−1)s
′

2

)
·

· G
(s,s′)
α,α′

(
θ − iπ

4

1 + (−1)s

2
, θ′ − iπ

4

1 + (−1)s
′

2

)
·

· ln
(

1 + e−ε
(s)
α (θ−iϕ̂s)eiφs(2−α)

)
ln

(
1 + e−ε

(s′)
α′ (θ′−iϕ̂s′ )eiφs′ (2−α

′)

)
+

+
2∑
s=1

3∑
α=1

∫
Imθ=ϕ̂s

dθ

2π
µα

(
θ − iπ

4

1 + (−1)s

2

)
Li2

(
−e−ε

(s)
α (θ−iϕ̂s)+iφs(2−α)

)
. (4.58)
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General polygon n > 7 For the n-gon, we have to deal with the product of transitions

P ~A(1)(0|θ(1)1 , . . . , θ
(1)

N(1))P ~A(1) ~A(2)(−θ(1)N(1) , . . . ,−θ
(1)
1 |θ

(2)
1 , . . . , θ

(2)

N(2))P ~A(2) ~A(3)(−θ(2)N(2) , . . . ,−θ
(2)
1 |θ

(3)
1 , . . . , θ

(3)

N(3)) . . .

. . . P ~A(n−6) ~A(n−5)(−θ(n−6)N(n−6) , . . . ,−θ
(n−6)
1 |θ(n−5)1 , . . . , θ

(n−5)
N(n−5))P ~A(n−5)(−θ(n−5)N(n−5) , . . . ,−θ

(n−5)
1 |0) . (4.59)

which, once applying the factorisation (4.38), becomes

P ~A(1)(0|θ(1)1 , . . . , θ
(1)

N(1))P ~A(1) ~A(2)(−θ(1)N(1) , . . . ,−θ
(1)
1 |θ

(2)
1 , . . . , θ

(2)

N(2))P ~A(2) ~A(3)(−θ(2)N(2) , . . . ,−θ
(2)
1 |θ

(3)
1 , . . . , θ

(3)

N(3)) . . .

. . . P ~A(n−6) ~A(n−5)(−θ(n−6)N(n−6) , . . . ,−θ
(n−6)
1 |θ(n−5)1 , . . . , θ

(n−5)
N(n−5))P ~A(n−5)(−θ(n−5)N(n−5) , . . . ,−θ

(n−5)
1 |0) (4.60)

=

n−6∏
s=1

N(s)∏
i(s)=1

N(s+1)∏
i(s+1)=1

P
A

(s)

i(s)
A

(s+1)

i(s+1)

(−θ(s)
i(s)
|θ(s+1)

i(s+1))

n−5∏
s=1

N(s)∏
i(s),j(s)=1

i(s) 6=j(s)

P
A

(s)

i(s)
A

(s)

j(s)

(θ
(s)

i(s)
|θ(s)
j(s)

)

=

n−6∏
s=1

N(s)∏
i(s)=1

N(s+1)∏
i(s+1)=1

[
P
α

(s)

i(s)
α

(s+1)

i(s+1)

(−θ(s)
i(s)
|θ(s+1)

i(s+1))

]a(s)
α
(s)
i

a
(s+1)

α
(s+1)
i

n−5∏
s=1

N(s)∏
i(s),j(s)=1

[
P
α

(s)

i(s)
α

(s)

j(s)

(θ
(s)

i(s)
|θ(s)
j(s)

)

]a(s)
α
(s)
i

a
(s)

α
(s)
j

in which the strong coupling approximation (4.39) has been employed.

As we did in the hexagon case, in view of introducing the functional integration, we

define the currents

J (s)
α (θ) = (−1)s+1

N(s)∑
i=1

a
(s)

α
(s)
i

δ
α,α

(s)
i
δ
(
θ + (−1)sθ

(s)
i

)
, s = 1, ..., n− 5 . (4.61)

where the s-th current is supported on the straight line γs such that

Imθ = ϕ̂s −
π

4

1 + (−1)s

2
. (4.62)

The propagators G
(s,s′)
α,β (θ, θ′), living on γs × γs′ , are defined as

G
(s,s)
α,β (θ, θ′) = − ln[Pα,β(θ|θ′)Pβ,α(θ′|θ)] , s = 1, ..., n− 5 ,

G
(s,s+1)
α,β (θ, θ′) = − lnPα,β ((−1)sθ|(−1)sθ′) , s = 1, ..., n− 6 , (4.63)

G
(s,s−1)
α,β (θ, θ′) = − lnPα,β ((−1)sθ|(−1)sθ′) , s = 2, ..., n− 5 ,

where all the other ’matrix’ elements are vanishing. Then, for a polygon with n edges, the

expectation value

exp

1

2

n−5∑
s,s′=1

3∑
α(s),α(s′)

=1

∫
γs

dθ

∫
γs′

dθ′J
(s)

α(s)(θ)G
(s,s′)

α(s),α(s′)(θ, θ
′)J

(s′)

α(s′)(θ
′)

 =

= 〈exp

[
n−5∑
s=1

3∑
α(s)=1

∫
γs

dθJ
(s)

α(s)(θ)X
(s)

α(s)(θ)

]
〉 (4.64)
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equals

n−6∏
s=1

N(s)∏
i(s)=1

N(s+1)∏
i(s+1)=1

[
P
α

(s)

i(s)
α

(s+1)

i(s+1)

(−θ(s)

i(s)
|θ(s+1)

i(s+1))

]a(s)

α
(s)
i

a
(s+1)

α
(s+1)
i

n−5∏
s=1

N(s)∏
i(s),j(s)=1

[
P
α

(s)

i(s)
α

(s)

j(s)

(θ
(s)

i(s)
|θ(s)

j(s)
)

]a(s)

α
(s)
i

a
(s)

α
(s)
j

,

i.e. it coincides with (4.60).

Now, generalising the summation described before for the heptagon, we get

Wn = 〈exp

[
−

n−5∑
s=1

3∑
α(s)=1

∫
γs

dθ

2π
µα(s)(θ)Li2

(
−e−τsE(θ)+iσsp(θ)+iφs(2−α(s))+(−1)s+1X

(s)

α(s)
((−1)s+1θ)

)]
〉 ,

(4.65)

which is a partition function

Wn =

∫ n−5∏
s=1

3∏
α(s)=1

DX(s)

α(s)e
−S[X(1)...X(n−5)] , (4.66)

where the action is proportional to
√
λ and given by

S[X(1)...X(n−5)] =
1

2

n−5∑
s,s′=1

3∑
α(s),α(s′)=1

∫
γs

dθ

∫
γs′

dθ′X
(s)

α(s)(θ)T
(s,s′)

α(s),α(s′)(θ, θ
′)X

(s′)

α(s′)(θ
′) + (4.67)

+

n−5∑
s=1

3∑
α(s)=1

∫
γs

dθ

2π
µα(s)(θ)Li2

(
−e−τsEα(s) (θ)+i(−1)s+1σspα(s) (θ)+iφs(2−α(s))+(−1)s+1X

(s)

α(s)
(θ)
)
.

The saddle point equations for X
(s)

α(s) , descending from the minimisation of the functional

S[X(1)...X(n−5)], are

X
(s)

α(s)(θ) +
n−5∑
s′=1

3∑
α(s′)=1

(−1)s
′
∫
γs′

dθ′

2π
µα(s′)(θ′)G

(s,s′)

α(s)α(s′)(θ, θ
′) · (4.68)

· ln

[
1 + e

−τs′Eα(s′) (θ′)+i(−1)s
′−1σs′pα(s′) (θ′)+iφs′ (2−α(s′))+(−1)s

′−1X
(s′)
α(s′) (θ′)

]
= 0 .

Again, we use the pseudoenergy

ε(s)
α

(
θ − iϕ̂s + i

π

4

1 + (−1)s

2

)
= τsEα(θ)− i(−1)s−1σspα(θ) + (−1)sX(s)

α (θ) . (4.69)

whose equation of motion reads
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ε
(s)

α(s)

(
θ − iϕ̂s + i

π

4

1 + (−1)s

2

)
= τsEα(s)(θ)− i(−1)s−1σspα(s)(θ)− (4.70)

−
n−5∑
s′=1

3∑
α(s′)=1

(−1)s+s
′
∫
γs′

dθ′
µα(s′)(θ′)

2π
G

(s,s′)

α(s),α(s′)(θ, θ
′) ln

1 + e
−ε(s

′)
α(s′)

(
θ′−iϕ̂s′+i

π
4

1+(−1)s
′

2

)
eiφs′ (2−α

(s′))

 .

or, alternatively

ε
(s)

α(s)(θ − iϕ̂s) = τsEα(s)

(
θ − iπ

4

1 + (−1)s

2

)
− i(−1)s−1σspα(s)

(
θ − iπ

4

1 + (−1)s

2

)
−

−
n−5∑
s′=1

3∑
α(s′)=1

(−1)s+s
′
∫
Imθ′=ϕ̂s′

dθ′
µα(s′)

(
θ′ − iπ4

1+(−1)s
′

2

)
2π

G
(s,s′)

α(s),α(s′)

(
θ − iπ

4

1 + (−1)s

2
, θ′ − iπ

4

1 + (−1)s
′

2

)
·

· ln
(

1 + e
−ε(s

′)

α(s′)(θ
′−iϕ̂s′)eiφs′ (2−α

(s′))

)
(4.71)

Finally, for the Wilson loop with n edges we have the obvious extension of (4.58) we

gave in the heptagon case: Wn = exp(−S), where S is the critical action (4.67):

S =
1

2

n−5∑
s,s′=1

3∑
α,α′=1

∫
Imθ=ϕ̂s

dθ

2π

∫
Imθ′=ϕ̂′s

dθ′

2π
(−1)s+s

′
µα

(
θ − iπ

4

1 + (−1)s

2

)
µα′

(
θ′ − iπ

4

1 + (−1)s
′

2

)
·

· G
(s,s′)
α,α′

(
θ − iπ

4

1 + (−1)s

2
, θ′ − iπ

4

1 + (−1)s
′

2

)
·

· ln
(

1 + e−ε
(s)
α (θ−iϕ̂s)eiφs(2−α)

)
ln

(
1 + e−ε

(s′)
α′ (θ′−iϕ̂s′ )eiφs′ (2−α

′)

)
+

+
n−5∑
s=1

3∑
α=1

∫
Imθ=ϕ̂s

dθ

2π
µα

(
θ − iπ

4

1 + (−1)s

2

)
Li2

(
−e−ε

(s)
α (θ−iϕ̂s)+iφs(2−α)

)
. (4.72)

4.2.2 Comparisons

In this part we compare the results of the re-summation with the classical string minimi-

sation exposed in Appendix B. For what concerns crossing ratios, we identify

ln y2,s = −2τs , ln
y2,s

y1,sy3,s

= 2σs , (4.73)

eiφs =

√
y1,s

y3,s

, s = 4k + 1, 4k + 2 ; eiφs =

√
y3,s

y1,s

, s = 4k + 3, 4k + 4 . (4.74)

of which the first one brings Es(θ) to the form

Es(θ) = −2τs cosh θ + 2i(−1)s−1σs sinh θ . (4.75)
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The measure reads

µα

(
θ − iπ

4

1 + (−1)s

2

)
=

√
λ

2π

2

sinh2
[
2θ − iπ

2
1+(−1)α+s

2

] , (4.76)

and comparing the kernels (4.63) G
(s,s′)

α(s),α(s′) with respect to expressions (B.8) of the tilded

kernels K̃ and intertwining, keeping ε2,s = ε
(s)
2 , the pseudorapidities

ε1,4k+1 = ε
(4k+1)
1 ε3,4k+1 = ε

(4k+1)
3

ε1,4k+2 = ε
(4k+2)
1 ε3,4k+2 = ε

(4k+2)
3 (4.77)

ε1,4k+3 = ε
(4k+3)
3 ε3,4k+3 = ε

(4k+3)
1

ε1,4k+4 = ε
(4k+4)
3 ε3,4k+4 = ε

(4k+4)
1

one shows that equations (4.71) coincide with (B.23,B.24,B.25).

In a similar way, the extremal action (4.72) coincides with (B.29) times a factor
√
λ

2π
,

i.e. we have the equality

S =

√
λ

2π
Y Yc . (4.78)

We point out that the redefinitions of pseudorapidities were not needed for the hexagon

and the heptagon and they become effective only for polygons with eight or more edges.

Y-system In the previous paragraph we compared successfully the TBA equations for

the amplitudes in appendix B to the relations (4.71), coming from the minimal resulting

from the resummation of the OPE series. The interest now turns to the formulation,

directly from the TBA equations (4.71), of the corresponding set of functional equation or

Y -system, in order to show the agreement with the scattering amplitude Y -system [17],

which reads

Y −3,sY
+

1,s

Y2,s

=
(1 + Y3,s+1)(1 + Y1,s−1)

1 + Y2,s

Y +
2,sY

−
2,s

Y1,sY3,s

=
(1 + Y2,s−1)(1 + Y2,s+1)

(1 + Y1,s)(1 + Y3,s)
(4.79)

Y −1,sY
+

3,s

Y2,s

=
(1 + Y1,s+1)(1 + Y3,s−1)

1 + Y2,s

,

We remark an unusual feature of the Y-system above, namely its crossed nature, which

means the simultaneous presence in the LHS of two different functions (nodes) Ya,s, in

particular in the first and third equation.
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To begin with, we introduce the functions Ŵa,s in order to recast the equations of

motion (4.71) into a form resembling (B.9)-(B.11)

ε
(s)
1 (θ − iϕ̂s) = − ln Ŵ1,s

(
θ − iπ

4

1 + (−1)s+1

2

)
+ iφs (4.80)

ε
(s)
3 (θ − iϕ̂s) = − ln Ŵ3,s

(
θ − iπ

4

1 + (−1)s+1

2

)
− iφs (4.81)

ε
(s)
2 (θ − iϕ̂s) = − ln Ŵ2,s

(
θ − iπ

4

1 + (−1)s

2

)
, (4.82)

and also the hatted version

Ŵa,s(θ) = Wa,s

(
θ − iπ

4

[
1− (−1)a+s

2

])
, (4.83)

so that, thanks to the relations listed in Appendix C , the equations (4.71) become

ln Ŵ2,s(θ)− Es(θ) = −
∫
Imθ′=ϕs

dθ′
[
K̃

(s)
2

(
θ, θ′ +

iπ

4

1− (−1)s+1

2

)
Λ+
s (θ′) +

+ 2K̃1

(
θ, θ′ +

iπ

4

1− (−1)s

2

)
Λ0
s(θ
′)

]
+

∫
Imθ′=ϕs−1

dθ′
[
K̃1

(
θ, θ′ +

iπ

4

1− (−1)s

2

)
Λ+
s−1(θ′) +

+ K̃
(s)
2

(
θ, θ′ +

iπ

4

1− (−1)s+1

2

)
Λ0
s−1(θ′)

]
+

∫
Imθ′=ϕs+1

dθ′
[
K̃1

(
θ, θ′ +

iπ

4

1− (−1)s

2

)
Λ+
s+1(θ′) +

+ K̃
(s)
2

(
θ, θ′ +

iπ

4

1− (−1)s+1

2

)
Λ0
s+1(θ′)

]
, (4.84)

ln Ŵ1,s(θ) + ln Ŵ3,s(θ)−
√

2Es
(
θ +

iπ

4
(−1)s+1

)
= −

∫
Imθ′=ϕs

dθ′
[
2K̃

(s)
2

(
θ, θ′ +

iπ

4

1− (−1)s

2

)
Λ0
s(θ
′) +

+ 2K̃1

(
θ, θ′ +

iπ

4

1− (−1)s+1

2

)
Λ+
s (θ′)

]
+

∫
Imθ′=ϕs−1

dθ′
[
K̃

(s)
2

(
θ, θ′ +

iπ

4

1− (−1)s

2

)
Λ+
s−1(θ′) +

+ 2K̃1

(
θ, θ′ +

iπ

4

1− (−1)s+1

2

)
Λ0
s−1(θ′)

]
+

∫
Imθ′=ϕs+1

dθ′
[
K̃

(s)
2

(
θ, θ′ +

iπ

4

1− (−1)s

2

)
Λ+
s+1(θ′) +

+ 2K̃1

(
θ, θ′ +

iπ

4

1− (−1)s+1

2

)
Λ0
s+1(θ′)

]
, (4.85)

ln Ŵ1,s(θ)− ln Ŵ3,s(θ)− 2iφs = (−1)s+1

[∫
Imθ′=ϕs−1

dθ′K̃3

(
θ, θ′ +

iπ

4

1− (−1)s

2

)
Λ−s−1(θ′) +

+

∫
Imθ′=ϕs+1

dθ′K̃3

(
θ, θ′ +

iπ

4

1− (−1)s

2

)
Λ−s+1(θ′)

]
, (4.86)

where the functions Λ±s (θ) and Λ0
s(θ) stand for
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Λ+
s (θ) = ln(1 +W1,s(θ))(1 +W3,s(θ)) , Λ0

s(θ) = ln(1 +W2,s(θ)) , Λ−s (θ) = ln
(1 +W1,s(θ))

(1 +W3,s(θ))
(4.87)

The hatted functions Ŵa,s computed in θ = 0 are linked to the cross ratios τs, σs and

φs through a set of equations analogous to (4.73) and (4.74), which are

ln Ŵ2,s(0) = −2τs , ln
Ŵ2,s(0)

Ŵ1,s(0)Ŵ3,s(0)
= 2σs , eiφs =

√
Ŵ1,s(0)

Ŵ3,s(0)
. (4.88)

To ease our task, we decide to rewrite equations (4.84)-(4.86) in terms of the relativistic

kernels Ki and the parameters ms, Cs, ϕs appearing in (B.1)-(B.3):

lnW2,s(θ) = −|ms|
√

2 cosh(θ − iϕs)−
∫

Imθ′=ϕs

dθ′
[
K2(θ − θ′)Λ+

s (θ) +

+ 2K1(θ − θ′)Λ0
s(θ
′)

]
+

∫
Imθ′=ϕs−1

dθ′
[
K2(θ − θ′)Λ0

s−1(θ′) +

+ K1(θ − θ′)Λ+
s−1(θ′)

]
+

∫
Imθ′=ϕs+1

dθ′
[
K2(θ − θ′)Λ0

s+1(θ′) +

+ K1(θ − θ′)Λ+
s−1(θ′)

]
, (4.89)

lnW1,s(θ) = −|ms| cosh(θ − iϕs)− Cs
(

sin
πs

2
− cos

πs

2

)
−
∫

Imθ′=ϕs

dθ′
[
K2(θ − θ′)Λ0

s(θ
′) +

+ K1(θ − θ′)Λ+
s (θ′)

]
+

∫
Imθ′=ϕs−1

dθ′
[
K1(θ − θ′)Λ0

s−1(θ′) +

+
1

2
K2(θ − θ′)Λ+

s−1(θ′) + (−1)s+1 1

2
K3(θ − θ′)Λ−s−1(θ′)

]
+

+

∫
Imθ′=ϕs+1

dθ′
[
K1(θ − θ′)Λ0

s+1(θ′) +
1

2
K2(θ − θ′)Λ+

s+1(θ′) +

+ (−1)s+1 1

2
K3(θ − θ′)Λ−s+1(θ′)

]
, (4.90)

lnW3,s(θ) = −|ms| cosh(θ − iϕs) + Cs

(
sin

πs

2
− cos

πs

2

)
−
∫

Imθ′=ϕs

dθ′
[
K2(θ − θ′)Λ0

s(θ
′) +

+ K1(θ − θ′)Λ+
s (θ′)

]
+

∫
Imθ′=ϕs−1

dθ′
[
K1(θ − θ′)Λ0

s−1(θ′) +

+
1

2
K2(θ − θ′)Λ+

s−1(θ′)− (−1)s+1 1

2
K3(θ − θ′)Λ−s−1(θ′)

]
+

+

∫
Imθ′=ϕs+1

dθ′
[
K1(θ − θ′)Λ0

s+1(θ′) +
1

2
K2(θ − θ′)Λ+

s+1(θ′)−

− (−1)s+1 1

2
K3(θ − θ′)Λ−s+1(θ′)

]
. (4.91)
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We point out that all the differences between (4.89)-(4.91) and (B.1)-(B.3) are the signs

multiplying the kernel K3 and the constant Cs.

From equations (4.89)-(4.91), the task of formulating the relative Y -system is easily

achieved, by means of the bootstrap relations (C.26). It turns out that the result explicitly

depends on the parity of the label s since: for odd values of s we get

[s odd]:

W−
3,sW

+
1,s

W2,s

=
(1 +W3,s+1)(1 +W3,s−1)

1 + Y2,s

W+
2,sW

−
2,s

W1,sW3,s

=
(1 +W2,s−1)(1 +W2,s+1)

(1 +W1,s)(1 +W3,s)
(4.92)

W−
1,sW

+
3,s

W2,s

=
(1 +W1,s+1)(1 +W1,s−1)

1 +W2,s

while the even case yields

[s even]:

W−
3,sW

+
1,s

W2,s

=
(1 +W1,s+1)(1 +W1,s−1)

1 +W2,s

W+
2,sW

−
2,s

W1,sY3,s

=
(1 +W2,s−1)(1 +W2,s+1)

(1 +W1,s)(1 +W3,s)
(4.93)

W−
1,sW

+
3,s

W2,s

=
(1 +W3,s+1)(1 +W3,s−1)

1 +W2,s

.

The Y -system (4.92),(4.93) is apparently different from that in [17], but we can recover

the agreement by an identification analogous to (4.77)

Y2,s = W2,s (4.94)

Y1,4k+1 = W1,4k+1 Y3,4k+1 = W3,4k+1

Y1,4k+2 = W1,4k+2 Y3,4k+2 = W3,4k+2

Y1,4k+3 = W3,4k+3 Y3,4k+3 = W1,4k+3

Y1,4k+4 = W3,4k+4 Y3,4k+4 = W1,4k+4

so that (4.92),(4.93) exactly matches with (4.79).

An alternative way to get the Y -system (4.92),(4.93) makes use of the pentagonal am-

plitudes and bootstrap relations among them, rather than the relativistic kernels. Indeed,

this procedure moves the first step directly from the equations of motion (4.68), which can
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be recast in the a more suitable shape

X(s)
α (θ) +

n−5∑
r=1

3∑
β=1

(−1)r
∫
γr

dθ′

2π
µβ(θ′)G

(s,r)
α,β (θ, θ′)Lβ,r

(
θ′ − iπ

4

1− (−1)r

2

)
= 0

with Lα,s(θ) ≡ ln[1 +Wα,s(θ)]. The W -functions are now defines as

(−1)sX(s)
α (θ) = − lnWα,s

(
θ − iπ

4

1− (−1)s

2

)
− τsEα(θ)− i(−1)sσspα(θ) + (2− α) ln

√
y1,s

y3,s

(4.95)

in such a way the integral equations turn into

ln

(
W+
α,s(θ)W

−
4−α,s(θ)

Wα+1,s(θ)Wα−1,s(θ)

)
=

n−5∑
r=1

3∑
β=1

(−1)r+s
∫

Imθ′=ϕr

dθ′

2π
µβ(θ′ + i

π

4

1− (−1)r

2
)Lβ,r(θ

′)× (4.96)

×
[
G

(s,r)
α,β (θ + i

π

4

1− (−1)s

2
+
iπ

4
, θ′ + i

π

4

1− (−1)r

2
) +G

(s,r)
4−α,β(θ + i

π

4

1− (−1)s

2
− iπ

4
, θ′ + i

π

4

1− (−1)r

2
)−

−G(s,r)
α+1,β(θ + i

π

4

1− (−1)s

2
, θ′ + i

π

4

1− (−1)r

2
)−G(s,r)

α−1,β(θ + i
π

4

1− (−1)s

2
, θ′ + i

π

4

1− (−1)r

2
)

]

which becomes the set of functional equations (4.92),(4.93) once we use the bootstrap

relations (C.28).

Uncrossing the Y -system:

Finally, we can obtain an uncrossed version of the Y-system by means of the bootstrap

formulae (C.26)(C.27). However, once again the result depends on the value of the Y -

system column index s; for instance, s odd gives

W++
1,s W

−−
1,s =

(1 +W+
3,s−1)(1 +W+

3,s+1)(1 +W−
1,s+1)(1 +W−

1,s−1)

(W3,s)2 (1 + 1
W+

2,s

)(1 + 1
W−2,s

)

W++
3,s W

−−
3,s =

(1 +W+
1,s−1)(1 +W+

1,s+1)(1 +W−
3,s+1)(1 +W−

3,s−1)

(W1,s)2 (1 + 1
W+

2,s

)(1 + 1
W−2,s

)

W+
2,sW

−
2,s

W1,sW3,s

=
(1 +W2,s−1)(1 +W2,s+1)

(1 +W1,s)(1 +W3,s)
,

(4.97)
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while for an even value of s reads

W++
1,s W

−−
1,s =

(1 +W+
1,s−1)(1 +W+

1,s+1)(1 +W−
3,s+1)(1 +W−

3,s−1)

(W3,s)2 (1 + 1
W+

2,s

)(1 + 1
W−2,s

)

W++
3,s W

−−
3,s =

(1 +W+
3,s−1)(1 +W+

3,s+1)(1 +W−
1,s+1)(1 +W−

1,s−1)

(W1,s)2 (1 + 1
W+

2,s

)(1 + 1
W−2,s

)

W+
2,sW

−
2,s

W1,sW3,s

=
(1 +W2,s−1)(1 +W2,s+1)

(1 +W1,s)(1 +W3,s)
.

(4.98)

To conclude, the same formulae (C.26)(C.27) may be used to recast the Y -system (4.79)

to the uncrossed form:

Y ++
1,s Y −−1,s =

(1 + Y +
1,s−1)(1 + Y −1,s+1)(1 + Y +

3,s+1)(1 + Y −3,s−1)

(Y3,s)2 (1 + 1
Y +

2,s

)(1 + 1
Y −2,s

)

Y ++
3,s Y −−3,s =

(1 + Y +
3,s−1)(1 + Y −3,s+1)(1 + Y +

1,s+1)(1 + Y −1,s−1)

(Y1,s)2 (1 + 1
Y +

2,s

)(1 + 1
Y −2,s

)

Y +
2,sY

−
2,s

Y1,sY3,s

=
(1 + Y2,s−1)(1 + Y2,s+1)

(1 + Y1,s)(1 + Y3,s)
.

(4.99)
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Chapter 5

The OPE scalars: semiclassical

enhancement

In this chapter we deal with the scalars in the OPE series (2.19), focusing on the strong

coupling limit. In Section 2.1 we anticipated a non-pertubative contributions, coming

from the O(6) dynamics on the string side, first proposed by [21]1. Here we refine the

method of form factors theory [35], depicted in the introductory chapter, to the case of

the asymptotically free theories (here the O(6) sigma-model). In this way, we easily show

the expected exponential behaviour in
√
λ for the null polygonal Wilson loop. We also

find an expression for the coefficient in front of
√
λ, expandend in a series of multiparticle

contributions. For the hexagon, some subleading corrections are discussed and numerically

evaluated. A pivotal step is to show that the functions appearing in the integrals, product

of dynamical and matrix part, enjoy the important property of the asymptotic factorisation.

We first deal with the simplest case, the hexagon, which is the perfect instance to show how

the method works. The content of this part is largely based on the papers [2, 3]. Later,

we give a sketch of how the argument can be extended to any polygon. In particular, an

interesting recursive formula is obtained.

5.1 Hexagonal Wilson loop

Let us consider the hexagonal Wilson loop, whose OPE series is fully described in Section

2.2, and restrict the summation only over scalars. We remember the constraint of neutrality,

which require the number of particles to be even.

1For the NMHV amplitudes, this contribution has been analyzed by [84].
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In the strong coupling non-perturbative regime the scalars decouple from the other

particles and form a relativistic O(6) nlsm [22]: the OPE series reads

W =
∞∑
n=0

W (2n) , W (2n) =
1

(2n)!

∫ 2n∏
i=1

dθi
2π

G(2n)(θ1, · · · , θ2n) e
−z

2n∑
i=1

cosh θi
, (5.1)

where we indicated by W the scalar contribution to the OPE series (2.19). The hy-

perbolic rapidities used to parametrize energy and momentum are related to the Bethe

rapidities by ui = 2
π
θi. The dimensionless distance z = mgap

√
τ 2 + σ2 contains two confor-

mal ratios σ, τ and is proportional to the mass gap, dynamically generated [22], given in

terms of the coupling as

mgap(λ) =
21/4

Γ(5/4)
λ1/8e−

√
λ/4(1 +O(1/

√
λ)) . (5.2)

We stress that formula (5.1) is nothing but the form factor expansion, compare to

(1.58), of the two-point function of the twist field operator

W (z) ≡ 〈P̂ (z)P̂ (0)〉 (5.3)

whose form factors are the pentagon transitions P (ψi|ψj). For this correlator we expect

the short-distance behaviour [21]

W (z) ' c
log(1/z)s

zJ
(5.4)

which, taking into account the definition of distance and the mass-coupling relation,

gives the strong coupling limit anticipated in (2.9)

W (λ) = C(τ, σ)λBe
√
λA

[
1 +O

(
1√
λ

)]
(5.5)

with the identifications

A =
J

4
, B =

s

2
− J

8
, C(τ, σ) =

c

4s

[
Γ(5/4)

21/4
√
τ 2 + σ2

]J
(5.6)

For generic coupling, the functions G(2n) factorise into a λ dependent dynamical part,

Π
(2n)
dyn , and the coupling-independent Π

(2n)
mat , encoding the internal SO(6) structure of scalars

[21]

G(2n)(u1, · · · , u2n) = Π
(2n)
dyn (u1, · · · , u2n) Π

(2n)
mat (u1, · · · , u2n) . (5.7)

which, as mentioned previously, they are the squared form factors summed over the

internal indices, i.e. compare with formula (3.1).
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The dynamical part is a product of two-particle functions only, which becomes rela-

tivistic at strong coupling and reads

Π
(2n)
dyn (u1, · · · , u2n) = µ2n

2n∏
i<j

Π(ui−uj) , Π(u) =
8θ tanh

(
θ
2

)
Γ
(

3
4 + iθ

2π

)
Γ
(

3
4 −

iθ
2π

)
πΓ
(

1
4 + iθ

2π

)
Γ
(

1
4 −

iθ
2π

) , µ =
2Γ
(

3
4

)
√
πΓ
(

1
4

) .
(5.8)

On the other hand, as discussed in Section 2.2.2, the matrix part enjoys an integral

representation [21, 1] given by the formula (3.2). This matrix factor has been thoroughly

analysed in the third chapter, where it has been given a Young tableaux representation.

We are interested in the strong coupling regime, which, by means of (5.2), corresponds

to the short-distance regime of the Wl/O(6) correlator. We thus employ the method

outlined in subsection 1.1.2: the main idea is to evaluate the logarithm of Wn, containing

the connected counterparts of the G(2n). For this purpose, we are going to prove another

property of the matrix factor, the asymptotic factorisation. This is a crucial point for the

method to work. There is a caveat, however: the asymptotic freedom of the O(6) model

gives a weaker (power-like) decay for the connected functions g(2n) than the more usual

exponential [35], thus requiring a more careful analysis in the short-distance limit.

5.1.1 Asymptotic factorisation

With this program in mind, we are going to study the behaviour of G(2n) when m rapidities

are shifted by a large amount Λ→∞, while the remaining 2n−m ones are held fixed. We

will obtain that for even m, G(2n) enjoys the asymptotic factorisation into two functions

with fewer rapidities, schematically

G(2n) → G(m) G(2n−m) , 2 ≤ m ≤ 2n− 2 ; (5.9)

On the other hand, for m odd the function G(2n) goes to zero with the power-like

behaviour 1/Λ2. This typical power-like decay, ascribable to the asymptotic freedom of

the O(6), is the only significant difference with respect the case studied in [35]. First, the

dynamical part (5.8) (trivially extending the definition for odd m) enjoys the factorisation

Π
(2n)
dyn (u1+Λ, · · · , um+Λ, um+1, · · · , u2n) −→ Λ2m(2n−m)Π

(m)
dyn(u1, · · · , um)Π

(2n−m)
dyn (um+1, · · · , u2n) ,

(5.10)

as a consequence of the asymptotic behaviour Π(u) ' u2 for u → ∞. The matrix part,

given by the integrals in (3.2) ,is more involved and we would rather tackle the simplest non
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trivial case first, i.e. Π
(4)
mat → Π

(2)
matΠ

(2)
mat and then generalise. When we shift two rapidities,

say u1 → u1 + Λ, u2 → u2 + Λ, by a large amount Λ, the integrals in (3.2)) receive the

main contribution from the region where one auxiliary variable a, two b, and one c are

large. Therefore, upon shifting, for instance, a1, b1, b2, c1 by Λ, we rewrite (3.2) as

Π
(4)
mat(u1 + Λ, u2 + Λ, u3, u4) =

1

4!4

∫ +∞

−∞

da1db1db2dc1

(2π)4

g(b1 − b2)
2∏
i=1

f(a1 − bi)f(c1 − bi)
2∏

i,j=1

f(ui − bj)
×

×
∫ +∞

−∞

da2db3db4dc2

(2π)4

g(b3 − b4)
4∏
i=3

f(a2 − bi)f(c2 − bi)
4∏

i,j=3

f(ui − bj)
R(4,2)(a1, a2, b1, . . . , b4, c1, c2; Λ) ,

(5.11)

where the function R(4,2) stems for

R(4,2)(a1, a2, b1, . . . , b4, c1, c2; Λ) =

2∏
i=1

4∏
j=3

g(bi − bj + Λ)

2∏
i=1

4∏
j=3

f(ui − bj + Λ)f(uj − bi − Λ)

×

× g(a1 − a2 + Λ)g(c1 − c2 + Λ)
4∏
i=3

f(a1 − bi + Λ)f(c1 − bi + Λ)
2∏
i=1

f(a2 − bi − Λ)f(c2 − bi − Λ)

. (5.12)

and enjoys the large Λ expansion

R(4,2)(a1, a2, b1, . . . , b4, c1, c2; Λ) = Λ−8

[
1 +O

(
1

Λ

)]
, Λ→ +∞ , (5.13)

Taking into account all the possible exchanges of isotopic rapidities (of the same type), we

have an additional multiplicity factor of 24, which yields

Π
(4)
mat(u1 + Λ, u2 + Λ, u3, u4) ' 24Λ−8 1

4!4

∫
da1db1db2dc1

(2π)4

g(b1 − b2)
2∏
i=1

f(a1 − bi)f(c1 − bi)
2∏

i,j=1

f(ui − bj)
×

×
∫
da2db3db4dc2

(2π)4

g(b3 − b4)
4∏
i=3

f(a2 − bi)f(c2 − bi)
4∏

i,j=3

f(ui − bj)
= Λ−8Π

(2)
mat(u1, u2)Π

(2)
mat(u3, u4) .

(5.14)
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Assembling everything together and using (5.7), the four scalar asymptotic factorisation is

finally proven

G(4)(u1 + Λ, u2 + Λ, u3, u4)
Λ→∞−→ G(2)(u1, u2)G(2)(u3, u4) +O(Λ−2) . (5.15)

where the O(1/Λ) term vanishes thanks to a refined cancellation coming from the matrix

part and the dynamical one.

The most general case, ui → ui + Λ for 1 ≤ i ≤ m, goes along the same line. We need

only to separate odd m = 2k− 1 from even m = 2k. In a unified manner, we may describe

the shifts aj → aj +Λ and cj → cj +Λ for 1 ≤ j ≤ k, along with bi → bi+Λ for 1 ≤ i ≤ m,

namely

Π
(2n)
mat (u1 + Λ, · · · , um + Λ, um+1, · · · , u2n) = (5.16)

=
1

(2n)!(n!)2

∫ k∏
i=1

daidci
(2π)2

m∏
i=1

dbi
2π

k∏
i<j, i=1

[g(ai − aj)g(ci − cj)]
m∏

i<j, i=1

g(bi − bj)

m∏
j=1

[
k∏
i=1

f(ai − bj)f(ci − bj)
m∏
l=1

f(ul − bj)

] ×

×
∫ n∏

i=k+1

daidci
(2π)2

2n∏
i=m+1

dbi
2π

n∏
i<j, i=k+1

[g(ai − aj)g(ci − cj)]
2n∏

i<j, i=m+1

g(bi − bj)

2n∏
j=m+1

[
n∏

i=k+1

f(ai − bj)f(ci − bj)
2n∏

l=m+1

f(ul − bj)

] R(2n,m)(a1, . . . , c2n; Λ) ,

where

R(2n,m)(a1, . . . , c2n; Λ) =

m∏
i=1

2n∏
j=m+1

g(bi − bj + Λ)

m∏
i=1

2n∏
j=m+1

f(uj − bi − Λ)f(ui − bj + Λ)

×

×

k∏
i=1

n∏
j=k+1

g(ai − aj + Λ)g(ci − cj + Λ)

m∏
j=1

n∏
i=k+1

f(ai − bj − Λ)f(ci − bj − Λ)
2n∏

j=m+1

k∏
i=1

f(ai − bj + Λ)f(ci − bj + Λ)

. (5.17)

The leading order is given by R(2n,m) ' Λ4(n−k)(2k−m)Λ−4k(2n−m) and the factorisation

of the matrix part (5.16), with even m = 2k, is achieved

Π
(2n)
mat (u1+Λ, · · · , u2k+Λ, u2k+1, · · · , u2n) −→ Λ−2m(2n−m)Π

(2k)
mat(u1, · · · , u2k)Π

(2n−2k)
mat (u2k+1, ··, u2n)

(5.18)
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which, put together with (5.10), yields the result we aim for. This entails G(2n)(u1 +

Λ, · · · , um + Λ, um+1, · · · , u2n) weighted by a factor Λ−2(m−2k)2
, which means, for odd m =

2k − 1, the expected suppression G(2n) ' Λ−2. On the other hand, for even m = 2k, the

task is accomplished and the asymptotic factorisation (5.9) follows

G(2n)(u1+Λ, · · · , u2k+Λ, u2k+1, · · · , u2n)
Λ→∞−→ G(2k)(u1, · · · , u2k)G

(2n−2k)(u2k+1, · · · , u2n)+O(Λ−2) .

(5.19)

We stress that, as in the case 4 → 2 + 2, we considered all the possible shifts of the

auxiliary variables within the integrand (5.16), producing a multiplicity factor
(
n
k

)2(2n
2k

)
,

which, once combined with the present factorials 1
(2n)!(n!)2

(
n
k

)2(2n
2k

)
= 1

(2k)!(k!)2
1

(2n−2k)!((n−k)!)2 ,

reproduces the correct factorials of G(2k) and G(2n−2k).

We point out that (5.19) is not a sufficient condition, although necessary, for our pur-

pose: we need the connected functions to be integrable, see for instance formula (1.68), a

fact which requires stronger conditions on the asymptotic behaviour. In fact, we need an

extension of (5.19) with different large shifts Λi: this is a consequence of the power like

correction (due to asymptotic freedom) in place of the exponential one of [35]. This issue,

addressed in [3], is very technical and thus it is left to the Appendix E.

5.1.2 Short-distance regime

Now, we can profitably employ the technique depicted earlier in the text and switch to the

connected functions g(2n), which characterize the series of the logarithm

F = lnW =
∞∑
n=1

F (2n) =
∞∑
n=1

1

(2n)!

∫ 2n∏
i=1

dθi
2π
g(2n)(θ1, · · · , θ2n)e−z

∑2n
i=1 cosh θi . (5.20)

A well-known fact tells us that the original functions G(2n) are expressed in terms of the

connected g(2k): for instance, for few number of particles we have

G
(2)
12 = g

(2)
12 , G

(4)
1234 = g

(4)
1234 + g

(2)
12 g

(2)
34 + g

(2)
13 g

(2)
24 + g

(2)
14 g

(2)
23 (5.21)

where an obvious short-hand notation has been used. On the other hand, the reverse

relations are:

g
(2)
12 = G

(2)
12 , g

(4)
1234 = G

(4)
1234 −G

(2)
12 G

(2)
34 −G

(2)
13 G

(2)
24 −G

(2)
14 G

(2)
23 (5.22)

The connected functions, included the general relation with the G(2n), are discussed in

details in the Appendix E.
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The fundamental consequence of the factorisation (5.19) is that the connected functions

vanish whenever a subset of rapidities is sent far away from all the others by a large amount

Λ, namely

lim
Λ→∞

g(2n)(θ1 + Λ, · · · , θm + Λ, θm+1, · · · , θ2n) ' 1

Λ2
→ 0 , for m < 2n . (5.23)

This fact follows from the specific combinatorial relation between the Gs and the gs,

once manipulated by means of the factorisation (5.19) to give rise to peculiar cancellations.

Conversely, (5.23) entails the factorisation (5.19), thus establishing the equivalence of the

two properties. The connected functions g(2n) enjoy a plethora of computational advantages

with respect to the G(2m) quite in general. In the present case, for instance, they make

possible the large coupling expansion by allowing the limit z → 0 inside F (2n), which is

not possible on the original terms W (2n) of the series (5.1). Therefore it is crucial that the

functions g(2n) (differently from the G(2m)) are integrable over the 2n − 1 variables they

depend on.

Clearly, the limit (5.23) is crucial to decide the small z behaviour of the logarithm of

the Wilson loop2. To derive the conformal/small z limit, we repeat the procedure outlined

in 1.1.2: we shall consider the multi-integral I(2n) ≡ (2n)!(2π)nF (2n) in the series (5.20),

and, as the connected functions depends only on the differences θij, integrate over one

rapidities θ1

I(2n) =

∫
dθ1

2n−1∏
i=1

dαi exp
[
−z cosh θ1−z

2n∑
i=2

(cosh θ1 coshαi−1 + sinh θ1 sinhαi−1)
]
g(2n)(α1, . . . , α2n−1) ,

(5.24)

where se used the convenient definitions a = 1 +
∑2n

i=2 coshαi−1 = ξ cosh η and b =∑2n
i=2 sinhαi−1 = ξ sinh η for some real η (depending on the αi), thanks of the identity

a2 − b2 = 2n + 2
∑2n

i=2 coshαi−1 + 2
∑2n

i=2

∑2n
j=i+1 cosh(αi−1 − αj−1) = ξ2 > 0. It follows

that

I(2n) =

∫ 2n−1∏
i=1

dαig
(2n)(α1, . . . , α2n−1)

∫
dθ1 exp

[
−zξ cosh(θ1+η)

]
= 2

∫ 2n−1∏
i=1

dαig
(2n)(α1, . . . , α2n−1)K0(zξ) .

(5.25)

This is the same formula we obtained earlier in the text, namely (1.64). Now the main

difference, due to the asymptotic freedom, stands out. We are tempted to expand the

integrand for small argument K0(zξ) = − ln z−ln ξ+ln 2−γ+O(z2 ln z), with γ = 0.5772...

the Euler-Mascheroni constant. However, because of the weak decay (5.23), we need to

2Do not forget, however, that a more stringent condition, necessarily involving different shifts, is re-

quired. This issue is discussed in the Appendix E
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cut-off the integral to the region in which the argument is small and expand later

I(2n) = −2 ln z

∫ 2n−1∏
i=1

dαig
(2n)(α1, . . . , α2n−1)−2

∫
zξ<1

2n−1∏
i=1

dαig
(2n)(α1, . . . , α2n−1) ln ξ+O(1) ,

(5.26)

where we kept the cut-off in the second and removed it in the first one, as the function

g(2n) is integrable, whilst the second one diverges (as ln ln(1/z)). This mechanism will be

clearer when we analyse the two and four particles cases.

Eventually, the strong coupling expansion for Fn (5.20) can be systematically set down,

whose first order is

lnW =

√
λ

4π

+∞∑
n=1

1

(2n)!

∫ 2n−1∏
i=1

dαi
2π

g(2n)(α1, . . . , α2n−1) +O(ln
√
λ) , (5.27)

where we used ln(1/z) ∼ − lnmgap ∼
√
λ

4
. Thus the main claim is proven, as a factor

√
λ

is extracted in front of the series. Remarkably, the expression for the coefficient is a series

of integrals which can be computed numerically with high precision. In the following we

will discuss the first two contributions: the two and four particle cases.

In fact, also the (divergent) sub-leading term in (5.26) can be obtained, even though

without a closed formula. This gives rise to the unusual logarithmic (ln 1/z)s factor in the

two point 2D CFT correlation function, see formula (5.4). Therefore, we expect for the

2n-particle contribution the expansion

F (2n) = J (2n) ln(1/z) + s(2n) ln ln(1/z) + t(2n) +O

(
1

ln z

)
(5.28)

Two-particle case

Considering (5.25) for n = 1, we have only one variable α1 ≡ α, with simply ξ = 2 cosh α
2

F (2) =
1

(2π)2

∫
dαg(2)(α)K0

(
2z cosh

α

2

)
=

2

(2π)2

∫ ∞
0

dαg(2)(α)K0

(
2z cosh

α

2

)
, (5.29)

where the rescaled function g(2)(α) = 4
π2 g

(2)(u1, u2) is, explicitly

g(2)(α) =
Γ2(3/4)

Γ2(1/4)

α tanh(α/2)Γ
(

3
4
− iα

2π

)
Γ
(

3
4

+ iα
2π

)
Γ
(

1
4
− iα

2π

)
Γ
(

1
4

+ iα
2π

) 12π2(
α2 + π2

4

)
(α2 + π2)

(5.30)

and is endowed with the asymptotic behaviour g(α) = Cα−2 +O(α−4) with C = 6π Γ2(3/4)
Γ2(1/4)

.

Now, we are willing to study the expansion (5.28) for n = 1

F (2) = J (2) ln(1/z) + s(2) ln ln(1/z) + t(2) +O

(
1

ln z

)
. (5.31)
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We split the integral in half

F (2) =

∫ 2 ln(1/z)

0

dα

2π2
g(2)(α)K0

(
2z cosh

α

2

)
+

∫ ∞
2 ln(1/z)

dα

2π2
g(2)(α)K0

(
2z cosh

α

2

)
= F (2)

1 +F (2)
2 .

(5.32)

In the limit z → 0, F (2)
2 goes to zero as K0 is bounded within the integration support and

the function g(2) decays as Cα−2 + O(α−4) for large rapidity, giving an O(1/ ln z) contri-

bution. For the first piece, in order to estimate the diverging and the finite contributions

for z → 0, we are allowed to expand K0(2z cosh α
2
) and, using h(α) ≡ 1

2π2 g
(2)(α), we get

F (2) = ln
1

z

∫ 2 ln(1/z)

0

dαh(α)−
∫ 2 ln(1/z)

0

dαh(α) ln
(

cosh
α

2

)
− γ

∫ 2 ln(1/z)

0

dαh(α) +O

(
1

ln z

)
= J (2) ln

1

z
−
∫ 2 ln(1/z)

0

dαh(α) ln
(

cosh
α

2

)
− J (2)γ − ln

1

z

∫ ∞
2 ln(1/z)

dαh(α) +O

(
1

ln z

)
(5.33)

with J (2) ≡
∫ ∞

0

dαh(α) as the leading term of the series (5.31). The second term in (5.33)

is of order ln ln(1/z) since the integrand is suppressed as ∼ 1
α

, while the remaining ones

are finite, since

− ln(1/z)

∫ ∞
2 ln(1/z)

dαh(α) ' − C

2π2
ln(1/z)

∫ ∞
2 ln(1/z)

dα

α2
= − C

(2π)2
. (5.34)

In order to separe the O(ln ln(1/z)) contribution from the constant ones in

−
∫ 2 ln(1/z)

0

dαh(α) ln
(

cosh
α

2

)
, (5.35)

we divide the integration domain into two pieces

−
∫ 1

0

dαh(α) ln
(

cosh
α

2

)
−
∫ 2 ln(1/z)

1

dαh(α) ln
(

cosh
α

2

)
, (5.36)

The divergence ln ln(1/z) dwells in the first one: to extract it, we add and subtract the

asymptotic behaviour

−
∫ 2 ln(1/z)

1

dα

[
h(α) ln

(
cosh

α

2

)
− C

(2π)2α

]
− C

(2π)2

∫ 2 ln(1/z)

1

dα

α
. (5.37)

The first integral stays finite for 2 ln(1/z) → ∞ while the second gives the subleading

ln ln(1/z), up to an additional constant term

− C

(2π)2

∫ 2 ln(1/z)

1

dα

α
= − C

(2π)2
ln ln(1/z)− C

(2π)2
ln 2 . (5.38)
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In the end, we obtain:

J (2) =

∫ +∞

0

dαh(α) =
1

2π2

∫ +∞

0

dαg(2)(α) ' 0.03109 (5.39)

s(2) = − C

(2π)2
= − 3

2π

Γ2(3/4)

Γ2(1/4)
' −0.05454 (5.40)

t(2) = −J (2)γ − C

(2π)2
(1 + ln 2)− 1

2π2

∫ 1

0

dαg(2)(α) ln
(

cosh
α

2

)
+

+
1

2π2

∫ ∞
1

dα

[
C

2α
− g(2)(α) ln

(
cosh

α

2

)]
. (5.41)

Our numerical estimate for t(2) amounts to t(2) ' −0.00819, agreeing with the Montecarlo

evaluation by [21, 84].

Four-particle case n = 2

For the leading order J ln(1/z), it is not difficult to evaluate the correction δJ (4) from the

explicit expression of the four scalar connected function g(4). Specializing (??) for n = 2,

we get

δJ (4) =
1

12(2π)4

∫
dα1dα2dα3g

(4)(α1, α2, α3) . (5.42)

which we numerically integrate to obtain a correction to J of δJ (4) = (−3.44± 0.01) · 10−3,

i.e. in total

J (4) ≡ J (2) + δJ (4) ' 0.02765 . (5.43)

This evaluation differs from the 2D-CFT prediction J = 1
36

= 0.027̄ [21] by the small

amount of 0.5%.

The correction δs(4) is more complicated to evaluate, since it depends on the asymptotic

behaviour of g(4) and there are many different regions to consider. We remind that the

divergence ln ln(1/z) is due to the combined action of the cutoff zξ < 1 and the termg(4) ln ξ

in the expansion of K0(zξ). To be precise, it is inside the following integral

δs(4) ln ln(1/z) = − 1

12(2π)4

∫
zξ<1

dα1dα2dα3g
(4)(α1, α2, α3) ln ξ +O(1) . (5.44)

When one or more variables are large we have ln ξ ' |αi|
2

, with αi the largest of them,

and the cutoff condition becomes |αi| < 2 ln(1/z). Thanks to the linearity in αi, the only

region where the integral becomes divergent corresponds to the split 4 → 3 + 1, in which
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g(4) goes to zero with the minimum power required by convergence, see the Appendix E.

The region has multiplicity four and, as they are equivalent, we choose to send α1 → ∞
and keep the other variables finite. We parametrize the asymptotic behaviour as

lim
α1→±∞

α2
1g

(4)(α1, α2, α3) = g(4)
as (α2, α3) . (5.45)

from which the contribution of the regions 4→ 3 + 1 is contained in

− 2

3(2π)4

∫ 2 ln(1/z)

dα1
1

α2
1

α1

2

∫
dα2dα3g

(4)
as (α2, α3) , (5.46)

where we considered the upper integration limit only, responsible for the divergent part.

The additional factor 4 · 2 is due to the number of regions (a particle can be sent either to

+∞ or −∞). Finally, we find the coefficient in (5.44) expressed as

δs(4) = − 1

3(2π)4

∫
dα2dα3g

(4)
as (α2, α3) , (5.47)

where the explicit expression of the integrand is

g(4)
as (α2, α3) = −6µ2

[
g(2)(α2 − α3) + g(2)(α2) + g(2)(α3)

]
+ µ4

(
2

π

)2

36Π(u3)Π(u4)Π(u34) ·

·
(u2

3 + 4)(u2
4 + 4) + (u2

3 + 4)(u2
34 + 4) + (u2

4 + 4)(u2
34 + 4) + 3

2
(u2

3 + u2
4 + u2

34 + 24)

(u2
3 + 1)(u2

3 + 4)(u2
4 + 1)(u2

4 + 4)(u2
34 + 1)(u2

34 + 4)
, (5.48)

where we used the variables u3,4 = 2
π
α2,3 for brevity. The numerical integration yields

δs(4) ' 0.017650, thus the four particles prediction sums up to

s(4) = s(2) + δs(4) ' −0.036894 . (5.49)

The discrepancy with respect to the expected value s = −1/24 = −0.0416̄ [21] is about

11% (cf. also [84]), not as good as that of J (4) but still valuable.

The finite contribution δt(4) comes from three different terms δt(4) = δt
(4)
1 + δt

(4)
2 + δt

(4)
3 ,

contained in

F (4) =
1

12(2π)4

∫
zξ<1

dα1dα2dα3g
(4)(α1, α2, α3)K0(zξ) +O

(
1

ln z

)
, (5.50)

once we subtract both the divergent terms, δJ (4) ln(1/z) and δs(4) ln ln(1/z), previously

obtained. We immediately see that a finite contribution comes from the constant term in

the expansion of the Bessel function ln 2− γ, which is

δt
(4)
1 =

(ln 2− γ)

12(2π)4

∫
dα1dα2dα3g

(4)(α1, α2, α3) = (ln 2− γ)δJ (4) . (5.51)
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Another one is due to the removal of the cutoff zξ < 1, in the computation of δJ (4)

δt
(4)
2 = lim

z→0

[
− ln(1/z)

12(2π)4

∫
zξ>1

dα1dα2dα3g
(4)(α1, α2, α3)

]
. (5.52)

Using the same argument as for the subleading δs(4), only the region 4 → 3 + 1 matters

and we get

δt
(4)
2 = −2 ln(1/z)

3(2π)4

∫ ∞
2 ln(1/z)

dα1

α2
1

∫
dα2dα3g

(4)
as (α2, α3) = δs(4) . (5.53)

The last piece, δt
(4)
3 , is more involved and comes from the integral (5.44)

− 1

12(2π)4

∫
zξ<1

dα1dα2dα3g
(4)(α1, α2, α3) ln ξ ' δs(4) ln ln(1/z) + δt

(4)
3 , (5.54)

which yielded the ln ln(1/z) contribution in (5.47).

As for the n = 1 case, we subtract the asymptotic behaviours and get the finite integral

(we are now allowed to remove the cutoff zξ < 1)

− 1

12(2π)4

∫
dα1dα2dα3

[
g(4)(α1, α2, α3) ln ξ − g

(4)
as (α2, α3)

2(|α1|+ a)
− g

(4)
as (α1, α3)

2(|α2|+ a)
−

−g
(4)
as (α1, α2)

2(|α3|+ a)
− g

(4)
as (α2 − α1, α3 − α1)

2(|α1|+ a)

]
, (5.55)

where the parameter a > 0, which does not spoil the large αi limit, is introduced to prevent

the singularities for αi = 0. Here, on the contrary of the two particle case, we do not split

the integration in parts, as it would be a rather cumbersome procedure. The insertion of

a parameter a is much more easily employable. The divergence δs(4) ln ln(1/z) is confined

in the simple integral

− 1

12(2π)4

∫
zξ<1

dα1dα2dα3

[ 1

2(|α1|+ a)
g(4)
as (α2, α3) +

1

2(|α2|+ a)
g(4)
as (α1, α3) +

+
1

2(|α3|+ a)
g(4)
as (α1, α2) +

1

2(|α1|+ a)
g(4)
as (α2 − α1, α3 − α1)

]
, (5.56)

which also contains the correction δt
(4)
3 we need. The four terms contribute the same,

therefore we are left with

− 1

6(2π)4

∫
zξ<1

dα1dα2dα3
1

|α1|+ a
g(4)
as (α2, α3) . (5.57)

Neglecting the vanishing terms, the integral becomes

− 1

3(2π)4

∫ 2 ln(1/z)

0

dα1
1

α1 + a

∫
R2

dα2dα3 g
(4)
as (α2, α3) , (5.58)
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since the divergence appears only where |α1| is large and we can remove the cutoff in the

other directions. Integrating over α1 gives

− 1

3(2π)4

[
ln ln(1/z) + ln

2

a

] ∫
R2

dα2dα3 g
(4)
as (α2, α3) , (5.59)

which reproduces δs(4) plus a finite correction proportional to it. Everything sums up to

δt
(4)
3 = − 1

12(2π)4

∫
dα1dα2dα3

[
g(4)(α1, α2, α3) ln ξ − 1

2(|α1|+ a)
g(4)
as (α2, α3)−

− 1

2(|α2|+ a)
g(4)
as (α1, α3)− 1

2(|α3|+ a)
g(4)
as (α1, α2)− 1

2(|α1|+ a)
g(4)
as (α2 − α1, α3 − α1)

]
+

+δs(4) ln
2

a
, (5.60)

where the dependence on a disappears, as
∫∞

0
dα
(

1
α+a
− 1

α+a′

)
= ln a′

a
. For simplicity, we

take a = 2 and get the final answer

δt(4) = − 1

12(2π)4

∫
dα1dα2dα3

[
g(4)(α1, α2, α3) ln ξ − 1

2(|α1|+ 2)
g(4)
as (α2, α3)−

− 1

2(|α2|+ 2)
g(4)
as (α1, α3)− 1

2(|α3|+ 2)
g(4)
as (α1, α2)− 1

2(|α1|+ 2)
g(4)
as (α2 − α1, α3 − α1)

]
+

+(ln 2− γ)δJ (4) + δs(4) . (5.61)

A rough numerical estimate returns δt(4) ' −0.006133, which added to the two-particle

contribution yields

t(4) = t(2) + δt(4) ' −0.01432 . (5.62)

We notice that, on the contrary of δJ (4) and δs(4), δt(4) is of the same order as the

two-particle term t(2) ' −0.00819. This suggests that we might need a larger n to evaluate

this coefficient with a good accuracy. An optimal estimate of t is still missing, as the

Montecarlo evaluations by [21, 84] furnish t ' −0.01 with only one significant digit.

2n scalars

Referring to the notation

lnW = F ' J ln(1/z) + s ln ln(1/z) + t (5.63)

we get the following expressions of the 2n particle contributions to J , s and t: the leading

divergence J is just simply given by

δJ (2n) = − 2

(2n)!(2π)2n

∫ 2n−1∏
i=1

dαig
(2n)(α1, . . . , α2n−1) , (5.64)
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while δs(2n) comes from the integral

− 2

(2n)!(2π)2n

∫
zξ<1

2n−1∏
i=1

dαig
(2n)(α1, . . . , α2n−1) ln ξ ' δs(2n) ln ln(1/z) + δt

(2n)
3 , (5.65)

which also contains the finite piece δt
(2n)
3 . As concerns t, we have three contributions

δt(2n) = δt
(2n)
1 + δt

(2n)
2 + δt

(2n)
3 . The first is the simplest and is given by the constant term

in the expansion of K0

δt
(2n)
1 = (ln 2− γ)δJ (2n) , (5.66)

while the second comes from the removal of the cutoff in the computation of δJ (2n) and

reads

δt
(2n)
2 = lim

z→0

[
− 2 ln(1/z)

(2n)!(2π)2n

∫
zξ>1

2n−1∏
i=1

dαig
(2n)(α1, . . . , α2n−1)

]
. (5.67)

Following the n = 1, 2 cases, it is shown to be equal3 to δs(2n). Collecting everything, we

obtain

δt(2n) = (ln 2− γ)δJ (2n) + δs(2n) + δt
(2n)
3 . (5.68)

To summaryize, we provided many explicit formulæ for the coefficients J , s and t

parametrising the small z limit of W , see expansion for the logarithm (5.28). The series

representation of the coefficients is a very effective procedure, as their contributions δJ (2n),

δs(2n) and δt(2n) can be extracted, in most cases analytically, from the integral in (5.25).

For n = 2, the expected values for J and s are already reproduced with a good accuracy.

On the other hand, the difficult constant t is still calling for a better evaluation. A better

numerical/analytical analysis of (5.25) would yield their values with more precision, with-

out the numerical subtleties of the direct evaluation of W , as in [21, 84]. Eventually, by

means of (5.6), the coefficients J , s and t can be used to parametrise the scalar contribution

W in terms of the coupling constant λ.

5.2 Polygonal Wilson loop N > 6

This section deals with the more general case, a null polygonal Wilson loop composed by

N > 6 edge. We stick to the scalar contribution in the strong coupling limit, i.e. we have

N −4-point function in the O(6). The author [21] pushed forward, as far the leading order

is concerned, a proposal for the strong coupling limit for the general polygon, which is

3The regions are the same, where the decay is just enough for the function g(2n) to be L1(R2n−1).
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WN ' eAN
√
λ, AN =

(N − 4)(N − 5)

48N
≡ JN

4
(5.69)

This follows from the application of the standard Operator Product Expansion to the

twist field P̂ , which suggests the scaling above.

The method exposed and applied in the previous section still works, with minor modi-

fications [5].

Thinking in terms of the O(6) correlation functions, the strong coupling limit of the

loop WN corresponds to the (N − 4)-point function

WN(τ1, σ1; · · · ; τN−5, σN−5;m) = 〈0|P(z1) · · · P(zN−4)|0〉 (5.70)

The cross ratios4 τi, σi, where i = 1, .., N − 5, fix the geometry of the polygon. The

O(6) coordinates are defined by extending the definition to N > 6, according to

zi − zi+1 = (mτi,mσi) (5.71)

where m is the mass (5.2) of the scalars. Again, the strong coupling limit corresponds

to the short-distance regime zi − zi+1 → 0 in the correlator.

Instead of just one as in the hexagon case, now we insert N − 5 identities inside the

correlator, getting the form factor series for the multi-point function/Wilson loop WN ,

which reads

WN =
∞∑

n1,··· ,nN−5=0

N−5∏
l=1

1

(2nl)!

∫ N−5∏
l=1

2nl∏
il=1

(
dθ

(l)
il

2π
e
−mτl

∑2nl
il=1 cosh θ

(l)
il e

+imσl
∑2nl
il=1 sinh θ

(l)
il

)
·(5.72)

·G(2n1,··· ,2nN−5)(~θ(1); ~θ(2); · · · ; ~θ(N−6); ~θ(N−5))

where the short-hand vector notation has been introduced ~θ(l) = (θ
(l)
1 , · · · , θ

(l)
2nl

). The

functions G(2n1,··· ,2nN−5) are the generalization of the G(2n)s introduced for N = 6 and they

depend on the form factors of the twist operator according to

G(2n1,··· ,2nl) =
∑

j
(1)
1 ,··· ,j(1)

2n1

· · ·
∑

j
(l)
1 ,··· ,j(l)2nl

〈0|P|φ
j
(1)
1

(θ
(1)
1 ) · · ·φ

j
(1)
2n1

(θ
(1)
2n1

)〉 · · · 〈φ
j
(l)
1

(θ
(l)
1 ) · · ·φ

j
(l)
2nl

(θ
(l)
2nl

)|P|0〉

(5.73)

This already leads us to an important property: thanks to 〈0|P|0〉 = 1, whenever the

vacuum appears in one or more intermediate states the function G decouples and can be

expressed in terms of that of smaller polygons. For instance, for the heptagon N = 7

4Along with φi which do not appear in the formula.
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G(2n,0)(θ1, · · · , θ2n; ∅) = G(0,2n)(∅; θ1, · · · , θ2n) = G(2n)(θ1, · · · , θ2n) (5.74)

while for N = 8 we have

G(2n,0,0) = G(0,2n,0) = G(0,0,2n) = G(2n), G(2n,2m,0) = G(0,2n,2m) = G(2n,2m), G(2n,0,2m) = G(2n)G(2m)

(5.75)

where we omitted the rapidities for brevity. These decoupling holds in more generality

and it is described in details in the Appendix E.

The leivmotiv of the method is the same, i.e. we switch to the logarithm FN ≡ logWN

which enjoys the sum

FN =
∞∑

(n1,··· ,nN−5)6=(0,··· ,0)

n1,··· ,nN−5=0

N−5∏
l=1

1

(2nl)!

∫ N−5∏
l=1

2nl∏
il=1

(
dθ

(l)
il

2π
e
−mτl

∑2nl
il=1 cosh θ

(l)
il e

+imσl
∑2nl
il=1 sinh θ

(l)
il

)
·

·g(2n1,··· ,2nN−5)(~θ(1); ~θ(2); · · · ; ~θ(N−6); ~θ(N−5)) ≡
∞∑

(n1,··· ,nN−5)6=(0,··· ,0)

n1,··· ,nN−5=0

F (2n1,....,2nN−5)
N (5.76)

where the connected counterparts g(2n1,··· ,2nN−5) appear. Along the same line of the

hexagon, they are related to the G’s in a combinatorial fashion. The exact relation between

them is displayed in the Appendix E.

From the decoupling (5.74,5.75), a crucial property of the connected functions follows.

When the vacuum is external, i.e. the first or the last state, the formula is the same as for

the G’s, for instance

g(2n,0) = g(0,2n) = g(2n), g(2n,0,0) = g(2n), g(2n,2m,0) = g(2n,2m) (5.77)

whereas, on the other hand, the properties of g(2n,0,2m) are more interesting: it is possible

to prove that it is vanishing for m,n 6= 0.

This identitiy follow from (E.41), (E.42) and can be further generalised to the important

g(··· ,2n,0,0,··· ,0,0,2m,··· ) = 0, m, n 6= 0 (5.78)

that is, the connected function vanishes whenever we have a string of zeroes in the internal

intermediate states, bounded by two non-zero 2m, 2n. The reason to this feature is pretty

much the same as that only connected graphs contribute to the logarithm of the partition

function. As we are going to see in the next paragraph, the property (5.78) allows us to
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find an interesting recursion formula, partially reconstructing the N -gon from the smaller

polygons.

5.2.1 The recursion formula

Here we show that, thanks to the special decoupling properties of the Gs and, consequently,

formulae (5.77,5.78) for the gs, a recursion formula among polygons exists. This allows

us to describe the polygon WN in terms of smaller ones up to corrections, which become

subleading as N grows.

To see how it works, we start with the easiest case, the heptagon, whose series contains

two sums over the intermediate states

F7(τ1, σ1; τ2, σ2) =
∞∑

(n,m)6=(0,0)

F (2n,2m)
7 (τ1, σ1; τ2, σ2) (5.79)

The key point is to notice that the decoupling property (5.77) entails

F (2n,0)
7 (τ1, σ1; τ2, σ2) = F (2n)

6 (τ1, σ1), F0,2n)
7 (τ1, σ1; τ2, σ2) = F (2n)

6 (τ2, σ2) (5.80)

so that, as the sum can be split in three contributions

F7 =
∞∑

(n,m)6=(0,0)

F (2n,2m)
7 =

∞∑
n=1

F (2n,0)
7 (τ1, σ1)+

∞∑
n=1

F (0,2n)
7 (τ2, σ2)+

∞∑
n,m=1

F (2n,2m)
7 (τ1, σ1; τ2, σ2)

(5.81)

implies the relation

F7(τ1, σ1; τ2, σ2) = F6(τ1, σ1) + F6(τ2, σ2) +
∞∑

n,m=1

F (2n,2m)
7 (τ1, σ1; τ2, σ2) (5.82)

which describes the heptagon as composed by the two inner hexagons plus corrections.

To see the special property (5.78) at work, we move to the octagon which reads (omitting

the obvious cross ratios dependence)

F8 =
∞∑
n=1

(
F (2n,0,0)

8 + F (0,2n,0)
8 + F (0,0,2n)

8

)
+

∞∑
n,m=1

(
F (2n,2m,0)

8 + F (0,2n,2m)
8

)
+

∞∑
n,m,l=1

F (2n,2m,2l)
8

(5.83)
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where it is important the absence of F (2n,0,2m)
8 , thanks to (5.78).

With a simple rearrangement of the various pieces, we get

F8(τ1, σ1; τ2, σ2; τ3, σ3) = F7(τ1, σ1; τ2, σ2) + F7(τ2, σ2; τ3, σ3)−F6(τ2, σ2) +

+
∞∑

n,m,l=1

F (2n,2m,2l)
8 (τ1, σ1; τ2, σ2; τ3, σ3) (5.84)

i.e. the octagon is mainly composed by the two inner heptagons, from which we sub-

stract their overlap, namely the middle hexagon. This formula is straightforwardly ex-

tended for any N , to the beautiful recursion relation

FN(τ1, σ1; . . . ; τN−5, σN−5) = FN−1(τ1, σ1; . . . ; τN−6, σN−6) + FN−1(τ2, σ2; . . . ; τN−5, σN−5)−

−FN−2(τ2, σ2; . . . ; τN−6, σN−6) +
∞∑

n1,··· ,nN−5=1

F (2n1,··· ,2nN−5)
N (τ1, σ1; . . . ; τN−5, σN−5) (5.85)

where, again, the interpretation is clear: up to corrections (2(N−5) particles or more),

a N -gon is composed by the two inner (N − 1)-gons, to which we subtract the middle

(N − 2)-gon.

5.2.2 The strong coupling limit

As we are interested in the strong coupling limit, we need to address the short-distance

regime. We expect, taking the hint from the hexagon, that the purely N -gonal terms

F (2n1,...,2nN−5)
N behave as

F (2n1,...,2nN−5)
N = J

(2n1,...,2nN−5)
N log(1/m) + s

(2n1,...,2nN−5)
N log log(1/m) +O(1) (5.86)

which would allow us to apply the recursion formula to the coefficients as well. This is

actually what we are going to show in the following.

N-gonal corrections

In this paragraph we analyse the contribution F (2n1,....,2nN−5)
N , showing that it enjoys the

expansion (5.86). We also give a formula for the leading coefficient J
(2n1,....,2nN−5)
N .
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Heptagon We first deal with the heptagon, extending the argument in [2] and depicted

in the Section 5.1 for N = 6. The starting expression is

F (2n,2m)
7 =

1

(2n)!(2m)!

∫ 2n∏
i=1

dθi
2π

2m∏
j=1

dθ′j
2π

e−mτ1
∑
i cosh θie−mτ2

∑
j cosh θ′j+imσ2

∑
j sinh θ′jg(2n,2m)

(5.87)

where, for simplicity, we got rid of the cross ratio σ1 by a rotation.5

The procedure follows the same pattern of the previous section, where we dealt with

the hexagon. The connected function g(2n,2m) depends on the differences θij, θ
′
ij and θi−θ′j,

thus we define αi ≡ θi− θ1, α′j ≡ θ′j − θ1, with i = 2, · · · , 2n and j = 1, · · · , 2m so that our

variables are now θ1, αi and α′j. As g(2n,2m) does not depend on θ1 ≡ θ, we can integrate

over it to get

F (2n,2m)
7 =

1

(2n)!(2m)!

∫ 2n∏
i=2

dαi
2π

2m∏
j=1

dα′j
2π

g(2n,2m)(α2, · · · , α2n;α′1, · · · , α′2m) · (5.88)

·
∫
dθ exp [−mτ1ξ cosh (θ + η)−mτ2ξ

′ cosh (θ + η′) + imσ2ξ
′ sinh (θ + η′)]

where ξ, ξ′, η and η′ are functions of αi, α
′
j through

1 +
2n∑
i=2

coshαi = ξ cosh η,
2n∑
i=2

sinhαi = ξ sinh η (5.89)

2m∑
j=1

coshα′j = ξ′ cosh η′,
2m∑
j=1

sinhα′j = ξ′ sinh η′

The integral over θ in (5.88) is the modified version of what we had for the hexagon,

2K0(zξ) ≡
∫
dθe−zξ cosh θ. It depends on four variables (we can shift by η and the integral

depends only on η′ − η), but in the limit m → 0 the leading (divergent) term can be

extracted by trading the exponentials for a finite integration volume − log(1/m) < θ <

log(1/m)

∫
dθ exp [−mτ1ξ cosh θ −mτ2ξ

′ cosh (θ + η′ − η) + imσ2ξ
′ sinh (θ + η′ − η)] '

'
∫ log(1/m)

− log(1/m)

dθ = 2 log(1/m) (5.90)

which gives, as coefficient for the leading term log(1/m), the integral

5Similarly to the hexagon, where the cross ratio σ disappears.
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J
(2n,2m)
7 =

2

(2n)!(2m)!

∫ 2n∏
i=2

dαi
2π

2m∏
j=1

dα′j
2π

g(2n,2m)(α2, · · · , α2n;α′1, · · · , α′2m) (5.91)

The subleading divergence, parametrised here by s
(2n,2m)
N , appears when considering

the subleading contribution in the integral (5.90). It requires, as in the hexagon case, the

introduction of a cutoff, whose removal should yield a term proportional to log log(1/m).

However, this procedure is more involved for N > 6 and we will stick to the leading order

only.

General case N > 7 For the most general polygon, we need to address

F (2n1,...,2nN−5)
N =

N−5∏
l=1

1

(2nl)!

∫ N−5∏
l=1

2nl∏
il=1

dθ
(l)
il

2π
e

−mτl
2nl∑
il=1

cosh θ
(l)
il

+ imσl

2nl∑
il=1

sinh θ
(l)
il

 ·
·g(2n1,··· ,2nN−5)(~θ(1); · · · ; ~θ(N−5))

We proceed in the same way as for the heptagon case, in the first place by suppressing one

cross ratio

F (2n1,...,2nN−5)
N (τ1, σ1; . . . ; τN−5, σN−5) = F (2n1,...,2nN−5)

N (τ ′1, 0; τ ′2, σ
′
2; . . . ; τ ′N−5, σ

′
N−5) (5.92)

where τ ′1 =
√
τ 2

1 + σ2
1, while τ ′k = τ1τk+σ1σk√

τ2
1 +σ2

1

and σ′k = −σ1τk+τ1σk√
τ2
1 +σ2

1

for k 6= 1 , then omitting

the prime for simplicity. We make use of the variables α
(l)
i ≡ θ

(l)
i − θ

(1)
1 and θ

(1)
1 ≡ θ and

introduce the quantities ξ, η, ξ(l), η(l), depending on the α
(l)
j ’s through to the relations

1 +

2n1∑
i=2

coshα
(1)
i = ξ cosh η ,

2n1∑
i=2

sinhα
(1)
i = ξ sinh η (5.93)

2nl∑
j=1

coshα
(l)
j = ξ(l) cosh η(l) ,

2nl∑
j=1

sinhα
(l)
j = ξ(l) sinh η(l) .

The quantity (5.92) can be thus recast into

F (2n1,...,2nN−5)
N =

N−5∏
l=1

1

(2nl)!

∫
dθ

2π

∫ N−5∏
l=1

2nl∏
il=1

[
dα

(l)
il

2π
e−mτlξ

(l) cosh(θ + η(l)) + imσl sinh(θ + η(l))

]
·

· e−mτ1ξ cosh(θ+η) g(2n1,··· ,2nN−5)(α
(1)
2 , · · · , α(1)

2n1
;α

(2)
1 · · ·α

(N−5)
2nN−5

) . (5.94)
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which eventually leads, making use of the generalized version of (5.90), to the leading

correction J
(2n1,··· ,2nN−5)
N as an integral over all the variables α

(j)
i of the connected function

g(2n1,··· ,2nN−5)

J
(2n1,··· ,2nN−5)
N = 2

N−5∏
l=1

1

(2nl)!

∫ N−5∏
l=1

2nl∏
il=1

dα
(l)
il

2π
g(2n1,··· ,2nN−5)(α

(1)
2 , · · · , α(1)

2n1
;α

(2)
1 · · ·α

(N−5)
2nN−5

)

(5.95)

In the expansion (5.86), the cross ratios contribute only to the finite term O(1) and not

to the divergence contributions: thus J and s are independent on the geometry of the loop.

This fact is very important, as it entails a simpler recursion formula for the coefficients JN ,

sN

JN = 2JN−1 − JN−2 +
∞∑

n1,··· ,nN−5=1

J
(2n1,··· ,2nN−5)
N

sN = 2sN−1 − sN−2 +
∞∑

n1,··· ,nN−5=1

s
(2n1,··· ,2nN−5)
N (5.96)

where, of course, they enjoy the expansion

JN =
∞∑

(n1,··· ,nN−5)6=(0,··· ,0)

n1,··· ,nN−5=0

J
(2n1,...,2nN−5)
N , sN =

∞∑
(n1,··· ,nN−5)6=(0,··· ,0)

n1,··· ,nN−5=0

s
(2n1,...,2nN−5)
N (5.97)

From the parametrization of the N -gon in terms of the mass

FN = JN log(1/m) + sN log log(1/m) +O(1) (5.98)

we can find, using formula (5.2), its strong coupling expansion

FN = JN log(1/m)+sN log log(1/m)+O(1) =
JN
4

√
λ+

(
sN −

JN
4

)
log
√
λ+O(1) (5.99)

Solution of the recursion formula

Here we analyze in details the recursion formula for the coefficients J, s, finding the general

solution and comparing with the prediction of [21]. Everything we say is valid for sN as

well. We write it as
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JN = 2JN−1 − JN−2 + δN (5.100)

where the purely N -gonal contributions are

δN ≡
∞∑

n1,··· ,nN−5=1

J
(2n1,··· ,2nN−5)
N (5.101)

We can solve it iteratively with the initial conditions6 J4 = J5 = 0 and express the

solution as

JN =
N∑
n=6

(N + 1− n)δn (5.102)

We suppose δN → 0 for large N and study the homogeneous recursion formula: we

guess a linear large N behaviour

JN = aN + b+ o(1) (5.103)

which is the general solution to JN = 2JN−1 − JN−2, corresponding to the discrete

version of ∂2
NJN = 0.

From (5.103) and with the expansion (5.102) we get an expression for our coefficients

a, b

a =
∞∑
n=6

δn, b =
∞∑
n=6

(1− n)δn (5.104)

We point out that, a posteriori, (5.103) and (5.104) make sense only if δn goes to zero

fast enough for the series of a, b to be convergent. The solution (5.102) is, on the contrary,

more general and does not rely on any particular feature of δn. If we require a minimal

corrections to (5.103) of the type N−1

JN = aN + b+
c

N
(5.105)

we fix, from the recursion formula (5.100), δN up to a prefactor

δN =
2c

N(N − 1)(N − 2)
(5.106)

which shows a cubic decay, that is the minimum required for the series of b to be convergent.

From the δn found in (5.106) we can evaluate the series (5.104) to obtain

6The square and the pentagon are trivial, W4 = W5 = 1.
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b = − 9

20
c, a =

1

20
c (5.107)

while the summation of (5.102) gives

JN =
c

20

(N − 4)(N − 5)

N
(5.108)

reproducing, up to a prefactor, the expected result (5.69) [21] for the leading order.

In addition, it allows us to push forward the following proposal: the behaviour (5.108)

may hold for the subleading coefficient sN too, with possibly a different prefactor so that

s6 = −1/24.

A simpler way to derive the same result, which does not involve any series, is the

following: we require the linear large N limit (5.103) and ask that the only zeros of JN are

J4 = J5 = 0; the simplest rational solution is then

JN = a
(N − 4)(N − 5)

N
(5.109)

where a is determined by the hexagon as a = 3J6, thus we write, extending also the

argument to sN

JN = 3
(N − 4)(N − 5)

N
J6, sN = 3

(N − 4)(N − 5)

N
s6 (5.110)

Numerics We conclude with some comments on the numerical computations. The non-

trivial corrections to the leading coeffient JN are the purely N -gonal ones δN , formula

(5.101). Using formula (5.106) and fixing the prefactor c = 5/3 (by means of J6 = 1/36),

gives the expected value for the heptagon δ7 = 1/63. We can evaluate the first term

contribution to it, which is J
(2,2)
7 and should be the main contribution. Our numerical

evaluations, although not very accurate, yields something in agreement with the expected

result. For the computation of the heptagonal function g(2,2), following from G(2,2) defined

through (5.73), we made use of the results of [80].
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Conclusions

In this thesis we computed the null polygonal Wilson loops in planar N = 4 Super Yang-

Mills at strong ’t Hooft coupling λ→∞, taking advantage of the pentagon approach based

on the Operator Product Expansion. This method employs the integrability underlying the

gauge theory under examination. These Wilson loops are dual to the 4d gluons scattering

amplitudes, therefore the OPE series provides tools for a non-perturbative evaluation of

them. This is a unique case in the realm of interacting four dimensional gauge theories.

Two different contributions stand out in the strong coupling limit. The first corre-

sponds, in the language of the AdS/CFT duality, to the classical string living in AdS5. Its

leading order is described in terms of a string whose worldsheet is attached to the polygonal

contour on the boundary. The minimal area problem assumes the form of a set of non-

linear integral equations and intriguingly recalls in form that of the Thermodynamic Bethe

Ansatz. On the gauge side, we reproduced this result by a resummation of the fermions

and gluons contributions to the OPE series. Interestingly, the former bound up to generate

effective excitation in the strong coupling limit. From the point of view of the Bethe equa-

tions they are not physical particles, however they turn out to be useful to describe the

strong coupling behaviour of the OPE series. This physical picture is confirmed by com-

paring with the string side, where these excitations are naturally present in the spectrum.

This result constitutes an important check on the validity of the OPE series for the Wilson

loop. The other regime corresponds to the non-perturbative string dynamics on the sphere

S5 and it is not yet understood in that framework. However, the OPE series provides

an easy evaluation of this effect, as the Wilson loop is given by a correlation function in

the O(6) non-linear σ-model. The strong coupling limit corresponds to the short-distance

regime of the correlator, thus the problem reduces to find the scaling dimension of the

twist operator appearing in the OPE series. Using a standard technique in the form factor

theory, namely passing to the series of the logarithm and studying the connected integrals,

we have been able to confirm this proposed correction, which remarkably turns out to be

of the same order as the classical one, i.e. exponential in
√
λ.
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At any coupling, we studied the SU(4) structure of the form factors of the operator P̂ .

Its square, once summed over the internal indices, is described by a multiple integral over

the auxiliary rapidities of the underlying SU(4) chain. We managed to solve sistematically

these integrals by residues, giving them an interesting representation in terms of Young

tableaux. We must stress that the simplified form of the squared form factor, i.e. the

split in a dynamical contribution and a matrix part, is rather peculiar in the form factor

theory and it is probably due to the special features of the twist field under consideration.

Finding a detailed explanation of this effect is one of the main investigation to do in the

near future. There is currently work in progress in this respect.

Intriguingly, along our path we encountered some analogies with the Nekrasov function

for N = 2 theories. The role of the coupling g is played by the spacetime deformation

parameter ε, which goes to zero as the coupling increases towards infinity as ε ∼ i/g. The

formation of bound states between mesons in the N = 4 flux-tube follows the same pattern

as for the instanton, leading to the emergence of the typical dilogarithm function and the

associated TBA-like equation. This surely deserves more attention in the near future, as

integrability also appears, although differently, in N = 2 and there could be additional

hidden connections between the two theories, yet to be unravelled.
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Appendix A

The N = 2 Nekrasov function

In this appendix we discuss in details some features of the Nekrasov instanton partition

function Z for N = 2 SU(N) gauge theories, previously introduced in Section (1.3). It

has been proposed in [20] to encode the non-perturbative effects to the partition function

of the theory. In order to perform the sum over instantons, it needs to be defined in a

regularized spacetime, deformed by two parameters ε1, ε2, called Ω-background.

The function Z, besides the aforementioned deformations, depends also on the instanton

parameter q, on the scalar fields VEVs ai and possibly on the masses of the matter fields.

However, for our purpose, we explicit only the dependence on one deformation, say ε2 ≡ ε,

so that the partition function is a multiple integral over the instanton coordinates ui

Z =
∞∑
n=0

qn

n!εn

∮
Γ

n∏
i=1

dui
2πi

Q(ui)
n∏
i<j

eεG(uij)

n∏
i<j

u2
ij

u2
ij − ε2

(A.1)

which resembles very much the grand canonical partition function of a one dimensional

two-body interacting gas.

The dependence on the many parameters is encoded in the functions Q(x), G(x). The

kernel G(x) is universal, whereas the polynomial Q(x) contains the informations on the

gauge group rank and the matter content of the theory. The VEVs ai of the scalar fields

appear inside this polynomial. The instanton parameter q contains che coupling constant

of the theory. We highlighted the dependence on ε as we are expecially interested in the

correspondence with the meson series W (M): we will see that ε roughly plays the role of the

inverse coupling constant g−1. Therefore, the strong coupling limit corresponds to ε→ 0,

which is called the Nekrasov-Shatashvili limit.

The interacting part has been split in two different contributions. The first, eεG(uij), is

129
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regular1 in the limit ε→ 0 and it is named long-range potential as it assumes the maximum

value for a finite distance. The short-range potential

n∏
i<j

u2
ij

u2
ij − ε2

(A.2)

will play a major role in forming the bound states between instantons.

Relation with W (M) The similarities between the two series Z, W (M) have been first

noticed in [1], although only for the two particle contribution. The series (4.24), obtained

after integrating over the antifermionic variables and employing the strong coupling ap-

proximation, has the same form of the Nekrasov function (A.1). To make this statement

more precise, the function Q mimics the measure and the propagation phase, while the role

of the regular part PMM
reg is played by the long-range potential. The polar parts of the two

series, which are responsible for the bound states and the emergence of the dilogarithm,

coincide once we identify ε ∼ i/g.

In spite of the many similarities, there are two significant mathematical differences

between W (M) and Z, which however do not spoil the duality in the limits λ→∞/ε→ 0.

The contour Γ in (A.1) is closed2, while the path in the small fermion sheet CS in (4.24)

is open. On the other hand, the functions Q(x), G(x) are endowed with poles inside the

contour, whereas the only poles in the small fermion sheet in (4.24) come fro mthe polar

part. These differences imply that the sources of the subleading corrections are different

for the two cases. In addition, we must remember that W (M) is already a strong coupling

approximation of the OPE series (4.1), as mesons are composite objects and free fermions

should start to contribute for generic λ. On the other hand, instantons are fundamentals

and the series Z is valid for any ε. In fact, the subleading corrections to the NS limit

have been computed in [85, 86]: those for the Wilson loop are more involved but a part of

them should follow the same pattern. The content of this appendix is largely devoted to

the study of the NS limit and the exposition, in more details, of the methods applied in

Section (4.1).

1Its particular form is not important for our analysis, as long as it stays regular in the limit ε→ 0.
2We choose the upper half plane.
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A.1 Path integral, Fredholm determinant and the NS

limit

In this part we study the partition function Z in details, eventually reproducing the TBA-

like equation in the NS limit ε→ 0. Even though already obtained in [82, 83], it is useful

to get the result in a different and more straightforward way. We employ the techniques

intorduced the main text and applied to the meson series W (M), giving some more details

on the methods. We study separately the two kinds of interactions, long and short range,

and then merge the results.

A.1.1 Short-range interaction

The short-range partition function reads

Zs =
∞∑
n=0

qn

n!εn

∮
Γ

n∏
i=1

dui
2πi

Q(ui)
n∏
i<j

u2
ij

u2
ij − ε2

(A.3)

where the integrals are closed in the upper half plane so that we can evaluate them by

residues. The parameter ε has a positive imaginary part, therefore there are no poles along

the contour. We now employ two different techniques to get the leading order in the ε→ 0

limit.

Mayer expansion

The Mayer expansion was originally introduced to study a classical gas interacting through

a two-body potential. The Boltzmann factor is split according to e−V (x) = 1 + f(x), where

f(x) can be pictorially represented as a link between the two particles, representing the

nodes of the cluster. It was applied to the Nekrasov function by [82, 83] to obtian the

leading oder in the NS limit. In our case, we write the short range as

u2
ij

u2
ij − ε2

= 1 +
ε2

u2
ij − ε2

(A.4)

and expand the product in a sum over all the different n-clusters Cn

n∏
i<j

u2
ij

u2
ij − ε2

=
∑
Cn

∏
(i,j)∈Cn

ε2

u2
ij − ε2

(A.5)

where the couple (i, j) represents the link between the nodes i, j of the cluster. We have

then the product over all the links belonging to the specific cluster Cn. The statement of
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the Mayer expansion is that the logarithm of the grand canonical partition function enjoys

the same form with the sum restricted over the connected clusters Cc
n. This expansion

reads

Fs ≡ lnZs =
∞∑
n=1

qn

n!εn

∮
Γ

n∏
i=1

dui
2πi

Q(ui)
∑
Ccn

∏
(i,j)∈Ccn

ε2

u2
ij − ε2

(A.6)

A connected cluster Cc
n is one in which every node is connected to any other through, at

least, one path of links. The connected cluster Cc
n contains at least n− 1 links, and those

are called tree clusters Tn. In the usual Mayer expansion, the leading order is given by the

tree contributions, as the addition of one link increases the order by ε. This is actually

what happens for the long-range contributions, studied in the next subsection. The issue

is more subtle for the short-range, as it is naively of order ε2 from (A.4) but it becomes of

order O(1) for small distances. What happens is that all the connected clusters contribute

to the same order, see the discussion in [82, 83]. The main point to notice is that the poles

of Q(u) give a subleading contribution3, thus we can extract Qn(un) and write

Fs =
∞∑
n=1

qn

n!εn

∮
Γ

dun
2πi

Qn(un)

∮
Γ

n−1∏
i=1

dui
2πi

∑
Ccn

∏
(i,j)∈Ccn

ε2

u2
ij − ε2

+O(1) (A.7)

The effect of the short-range is recast in the n−1 closed integrals, to which we can add

all the disconnected clusters, for their contribution is vanishing. We eventually get

Fs =
1

ε

∞∑
n=1

qn
∮

Γ

du

2πi
Qn(u)Jn(u) +O(1) (A.8)

where we defined the multiple integral

Jn(un) ≡ 1

n!εn−1

∮
Γ

n−1∏
i=1

dui
2πi

n∏
i<j

u2
ij

u2
ij − ε2

=
1

n2
(A.9)

As expected, (A.9) does not depend on un (the center of the cluster) and it is the

weight factor, due to the short-range potential among the constituents, of the bound state

of n instantons. The bound state interpretation comes from the fact that, as concerns

the external potential Q(ui) acting on the instantons, all the constituents enjoy the same

coordinate since Q(ui + nε) ' Q(ui) at leading order.

We can sum over n to see the emergence of the dilogarithm at the leading order

Fs =
1

ε

∞∑
n=1

qn

n2

∫
du

2πi
Qn(u) +O(1) =

1

ε

∫
du

2πi
Li2 [qQ(u)] +O(1) (A.10)

3Except for the last integral on un, for which they are necessary otherwise the whole thing vanishes.
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Fredholm determinant

The short-range partition function Zs enjoys a very nice alternative representation, which

allows us to find the leading order (A.10) without any cluster expansion. This representa-

tion, valid for any ε, is interesting by itself and could also be used to go beyond the leading

order or even analyse Zs for finite ε. This technique has been applied to the meson series

in the maix text, here we give some more details.

The key property comes from the Cauchy formula specialized to the short-range inter-

action

1

εn

n∏
i<j

u2
ij

u2
ij − ε2

= (−1)n det

(
1

ui − uj − ε

)
(A.11)

from which we can write the whole integrand as a determinant

Zs =
∞∑
n=0

(−q)n

n!

∫ n∏
i=1

dui
2πi

det
ij
M(ui, uj) (A.12)

where the kernel M(ui, uj) includes the potential Q and reads

M(ui, uj) =
Q1/2(ui)Q

1/2(uj)

ui − uj − ε
(A.13)

The expression (A.12) is the definition of the Fredholm determinant

Zs = det(1− qM) (A.14)

This representation holds for any ε, regardless of the functional form of Q(u), as the

only property we employed is the Cauchy identity for the short-range interaction. Formula

(A.14) comes in handy when we consider the logarithm Fs which, by means using the

identity log det = Tr log, becomes

Fs = logZs = log det(1− qM) = Tr log(1− qM) = −
∞∑
n=1

qn

n
TrMn (A.15)

The trace of an integral operator is defined as

TrMn ≡
∫ n∏

i=1

dui
2πi

n∏
i=1

M(ui, ui+1) =

∫ n∏
i=1

dui
2πi

Q(ui)
n∏
i=1

1

ui − ui+1 − ε
, un+1 ≡ u1

(A.16)
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Now we employ the small ε limit: the main contribution to the trace is given by the

residues of the polar part 1
ui−ui+1−ε . Performing the n− 1 integrations, we obtain

TrMn = − 1

nε

∫
du

2πi
Qn(u) +O(1) (A.17)

where the shifts inside the functions Q(u + kε) have been neglected, as usual. The

summation of (A.15) with (A.17) yields the result (A.10) previously obtained from the

cluster expansion, i.e. the dilogarithm appears straightforwardly.

Bound states In this paragraph we see how the leading order (A.10), which contains

the dilogarithm function, is equivalent to a sum over bound states of instantons.

Let us recall the partition function Zs in the small ε limit

Zs = exp

[
1

ε

∫
du

2πi
Li2 [qQ(u)] +O(1)

]
(A.18)

and, expanding both the dilogarithm and the exponential

Zs '
∞∑
N=0

1

N !εN

[∫
du

2πi
Li2[qQ(u)]

]N
=

∞∑
N=0

1

N !εN

[
∞∑
a=1

∫
du

2πi

qaQa(u)

a2

]N
(A.19)

we can write a multiple sum over ai

Zs '
∞∑
N=0

1

N !εN

∞∑
a1=1

· · ·
∞∑

aN=1

∫ N∏
i=1

dui
2πi

qaiQai(ui)

a2
i

(A.20)

Here, N represents the number of composite particles, while the indices ai tell us how

many instantons are bound inside the i-th particle.

It is worth to point out that the typical dilogarithm function appears thanks to the

particular measure of the bound states, see the integral (A.9). In principle, with a different

type of short range potential, the integral Jn could be different and we would still have

bound states but with a different measure.

A.1.2 Long-range interaction

In this subsection we deal with the other simplified case, where only the long-range inter-

action is present. This time, the partition function reads

ZL =
∞∑
n=0

qn

n!εn

∫ n∏
i=1

dui
2πi

Q(ui)
n∏
i<j

eεG(uij) (A.21)
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The difference with respect to ZS is that the two-body potential is smooth in the limit

ε → 0 and we can push the Mayer expansion all the way through. As before, we define

eεG(u) ≡ 1 + εf(u), from which the free energy FL as a sum over all the connected clusters

follows

FL ≡ lnZL =
∞∑
n=1

qn

n!εn

∫ n∏
i=1

dui
2πi

Q(ui)
∑
Ccn

∏
(i,j)∈Ccn

εf(uij) (A.22)

This time, since we do not have a singular behaviour for ε→ 0, there are no subtleties

and the leading order is simply given by the tree clusters, which contain n− 1 links

FL =
∞∑
n=1

qn

n!ε

∫ n∏
i=1

dui
2πi

Q(ui)
∑
Tn

∏
(i,j)∈Tn

f(uij) +O(1) (A.23)

We remind that this statement was not true for the short-range potential, where all the

connected clusters contribute at the leading order and their combined effect is summarized

in the integral (A.9). In the following we apply a more immediate method, which makes

use of the Hubbard-Stratonovich transformation as depicted in the maix text for the meson

series (4.24).

Path integral representation

An efficient method to study ZL makes use of a path integral representation [83, 85, 86].

The long-range potential admits the natural interpretation of the propagator of a quantum

field X(u), according to

〈X(u)X(v)〉 ≡ εG(u− v) (A.24)

The Gaussian identity, extended to the functional integration, leads to the important

equivalence

n∏
i<j

eεG(uij) =
n∏
i<j

e〈X(ui)X(uj)〉 = e−
1
2
nεG(0)

〈
n∏
i=1

eX(ui)

〉
(A.25)

which enables us to represent the two-body interaction through an average of a product

of single particle terms. This procedure is known in literature as the Hubbard-Stratonovich

transformation. We define the renormalized instanton parameter as q′ = qe−
ε
2
G(0), to

account for the diagonal term in (A.25). The partition function is thus written as the

expectation value



136 APPENDIX A. THE N = 2 NEKRASOV FUNCTION

ZL =

〈
exp

[
q′

ε

∫
du

2πi
Q(u)eX(u)

]〉
(A.26)

where the average of a generic functional F [X] is defined by the path integral

〈F [X]〉 ≡
∫
DXF [X] exp

[
1

ε
S0[X]

]
, S0[X] = −1

2

∫
dudv

(2πi)2
X(u)G−1(u− v)X(v)

(A.27)

The inverse propagator is defined through∫
dv

2πi
G−1(u− v)G(v − w) = δ(u− w) (A.28)

with the δ(x) function is normalized as∫
du

2πi
f(u)δ(u− v) = f(v) (A.29)

The partition function (A.21) is thus recast as a path integral

ZL =

∫
DX exp

[
1

ε
S[X]

]
(A.30)

where the action S[X]/ε is given by

S[X] = S0[X] + q′
∫

du

2πi
Q(u)eX(u) (A.31)

We remark that the path integral representation (A.26) for (A.21) is valid for any ε.

However, having extracted a factor ε−1 in the action, the limit ε→ 0 follows immediately

by the saddle point approximation

FL '
1

ε
S[Xc] ≡

1

ε
Sc (A.32)

The saddle point equation δS[X]
δX(u)

= 0 reads4

qQ(u)eX(u) =

∫
dv

2πi
G−1(u− v)X(v) (A.33)

which can be expressed in term of the direct kernel G(x) as

X(u) = q

∫
dv

2πi
G(u− v)Q(v)eX(v) (A.34)

4At the leading order, the instanton parameter is not corrected.
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The critical action is then

Sc = q

∫
du

2πi
Q(u)

[
1− 1

2
X(u)

]
eX(u) (A.35)

where X(u) satisfies the classical equation of motion (A.34).

To check the validity of the method, we can expand the solution (A.34) in powers of q

and then substitute in (A.35): what we obtain is the standard expansion over the connected

tree clusters (A.23) for FL.

A.1.3 The full partition function

Equipped with two efficient techniques to deal with long and short range parts respectively,

we are now ready to tackle the whole partition function Z (A.1). We remind that the

leading order in the NS limit has already been unravelled in [82, 83], mainly by means

of the Mayer expansion. The approach here is different and much faster, which combines

both the techniques discussed above.

To address the problem we apply in sequence the Hubbard-Stratonovich transformation

and the Fredholm formula. First, we use the fluctuating field X(u) to obtain a path integral

representation

Z =
〈
Zs[q → q′, Q→ QeX ]

〉
(A.36)

which differs from (A.26), since we still have the short-range interaction to deal with.

As a matter of fact, (A.36) is the expectation value of a short-range partition function Zs,
where the potential is modified by the fluctuating field through Q(u)→ Q(u)eX(u). We can

work out the short-range part with the Fredholm technique, so that we have a fluctuating

matrix M ′[X], related to M in (A.13) through

M ′
ij[X] = Mij exp

[
1

2
X(ui) +

1

2
X(uj)

]
(A.37)

The full partition function, for any ε, is then the expectation value of a Fredholm

determinant

Z = 〈det(1− q′M ′[X])〉 (A.38)

In the NS limit we obtain the same result as for Zs and the dilogarithm appears inside

the average
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Z '
〈

exp

[
1

ε

∫
du

2πi
Li2[qQ(u)eX(u)]

]〉
=

∫
DX exp

[
1

ε
S[X]

]
(A.39)

The total action is

S[X] = −1

2

∫
dudv

(2πi)2
X(u)G−1(u− v)X(v) +

∫
du

2πi
Li2[qQ(u)eX(u)] (A.40)

and for small ε the path integral is dominated by its critical value

F = lnZ ' 1

ε
S[Xc] =

1

ε
Sc (A.41)

coming from the saddle point, which is the TBA-like equation

X(u) +

∫
dv

2πi
G(u− v) ln

[
1− qQ(v)eX(v)

]
= 0 (A.42)

The critical action Sc is thus given by

Sc =
1

2

∫
du

2πi
X(u) ln

[
1− qQ(u)eX(u)

]
+

∫
du

2πi
Li2
[
qQ(u)eX(u)

]
(A.43)

that matches the critical Yang-Yang functional obtained in [82, 83].

Bound states As discussed for the short-range function Zs, we can get the sum over

bound states by expanding the dilogarithm and the exponential inside the average in

(A.39). The generalized Gaussian identity (A.25) can be extended and, neglecting the

diagonal term, reads

N∏
i<j

eaiaj〈X(ui)X(uj)〉 '

〈
N∏
i=1

eaiX(ui)

〉
(A.44)

allowing us to find the alternative expression of the partition function in the ε → 0

limit, as a sum over bound states

Z '
∞∑
N=0

1

N !εN

∞∑
a1=1

· · ·
∞∑

aN=1

∫ N∏
i=1

dui
2πi

qaiQai(ui)

a2
i

N∏
i<j

eεaiajG(uij) (A.45)

This sum runs over the instantons and bound states thereof, emerging from the short-

range interaction in the same way of the mesons in (4.24). The interaction between these

composite particles is given by the long range part εaiajG(uij). The numbers ai represent

the number of elementary constituents of the bound state, whose measure is proportional
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to a−2
i : the long range interaction acts between any couple of elementary constituents, so

the total effect contains the multiplicity factor aiaj.

The representation (A.38) is interesting for several reasons: as we have seen, it yields

the leading order in the NS limit without any cluster approach. Furthermore, it could be

used to analyse the partition function beyond the leading order and even for any value of

the parameter ε. As a conclusive analysis, the analogies with the series of mesons (4.24)

are even clearer now. The short-range interaction is responsible, in both cases, for the

emergence of bound states between them with the associated dilogarithm function.
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Appendix B

TBA-like equations for N = 4

amplitudes

Here we will review the TBA-like equations for the scattering amplitudes, following the

discussion in the main text of subsection 2.1.3. They read, for the polygon with n sides

[17, 11]

141
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lnY2,s(θ) = −|ms|
√

2 cosh(θ − iϕs)−
∫

Imθ′=ϕs

dθ′
[
K2(θ − θ′)Ls(θ′) +

+ 2K1(θ − θ′)L̃s(θ′)
]

+

∫
Imθ′=ϕs−1

dθ′
[
K2(θ − θ′)L̃s−1(θ′) +

+ K1(θ − θ′)Ls−1(θ′)

]
+

∫
Imθ′=ϕs+1

dθ′
[
K2(θ − θ′)L̃s+1(θ′) +

+ K1(θ − θ′)Ls−1(θ′)

]
, (B.1)

lnY1,s(θ) = −|ms| cosh(θ − iϕs)− Cs −
∫

Imθ′=ϕs

dθ′
[
K2(θ − θ′)L̃s(θ′) +

+ K1(θ − θ′)Ls(θ′)
]

+

∫
Imθ′=ϕs−1

dθ′
[
K1(θ − θ′)L̃s−1(θ′) +

+
1

2
K2(θ − θ′)Ls−1(θ′)− 1

2
K3(θ − θ′)Ms−1(θ′)

]
+

+

∫
Imθ′=ϕs+1

dθ′
[
K1(θ − θ′)L̃s+1(θ′) +

1

2
K2(θ − θ′)Ls+1(θ′) +

+
1

2
K3(θ − θ′)Ms+1(θ′)

]
, (B.2)

lnY3,s(θ) = −|ms| cosh(θ − iϕs) + Cs −
∫

Imθ′=ϕs

dθ′
[
K2(θ − θ′)L̃s(θ′) +

+ K1(θ − θ′)Ls(θ′)
]

+

∫
Imθ′=ϕs−1

dθ′
[
K1(θ − θ′)L̃s−1(θ′) +

+
1

2
K2(θ − θ′)Ls−1(θ′) +

1

2
K3(θ − θ′)Ms−1(θ′)

]
+

+

∫
Imθ′=ϕs+1

dθ′
[
K1(θ − θ′)L̃s+1(θ′) +

1

2
K2(θ − θ′)Ls+1(θ′)−

− 1

2
K3(θ − θ′)Ms+1(θ′)

]
. (B.3)

where s = 1, ..., n − 5 and the geometric informations of the loop are encoded in the

parameters ms, C2, ϕs which are, in a complicated way1, related to the cross ratios τs, σs, φs.

In the following we write them in a form suitable for comparisons with the strong

coupling resummation of the OPE series in Chapter 4. To begin with, we define the

kernels [17, 11]

K1(θ) =
1

2π cosh θ
, K2(θ) =

√
2 cosh θ

π cosh 2θ
, K3(θ) =

i

π
tanh 2θ , (B.4)

1For instance, see (4.73) and the various definitions in this appendix.
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and introduce the short-hand for the nonlinear functions of lnY ’s:

Ls(θ) = ln(1 + Y1,s(θ))(1 + Y3,s(θ)) , L̃s(θ) = ln(1 + Y2,s(θ)) , Ms(θ) = ln
(1 + Y1,s(θ))

(1 + Y3,s(θ))
.

(B.5)

The hexagon is obtained when s is fixed to 1. In that case equations (B.1, B.2, B.3)

become that of [16] after the identifications 2Z = |m|, µ = e−C and

ε(θ − iϕ) = − lnY1,1(θ)− C , ε̃(θ − iϕ) = − lnY2,1(θ) (B.6)

with lnY1,1(θ) = lnY3,1(θ)− 2C.

In the more general case s goes from 1 to n − 5, with n the number of edges of our

polygon. Let us introduce the hatted Y-functions Ŷα,s(θ):

Ŷα,s(θ) = Yα,s

(
θ − iπ

4
bα+s+1

)
(B.7)

and the physical cross-ratios yα,s = Ŷα,s(0) where the symbol bs equals 1 or 0 for

respectively even and odd values of s.

Following [11], we introduce the tilded kernels as

K̃1(θ, θ′) = − 1

2π

sinh 2θ

sinh 2θ′ cosh(θ − θ′)
, K̃3(θ, θ′) =

i

π

sinh 2θ

sinh 2θ′ sinh(2θ − 2θ′)

K̃
(s)
2 (θ, θ′) = −

√
2

π
sinh

(
θ − θ′ + iπ

4
(−1)s

)
sinh 2θ

sinh 2θ′ sinh(2θ − 2θ′)
. (B.8)

With these definitions, the hatted Y functions satisfy the TBA-like equations

ln Ŷ2,s(θ)− Es(θ) = −
∫
Imθ′=ϕs

dθ′
[
K̃

(s)
2

(
θ, θ′ +

iπ

4
bs

)
Ls(θ′) +

+ 2K̃1

(
θ, θ′ +

iπ

4
bs+1

)
L̃s(θ′)

]
+

∫
Imθ′=ϕs−1

dθ′
[
K̃1

(
θ, θ′ +

iπ

4
bs+1

)
Ls−1(θ′) +

+ K̃
(s)
2

(
θ, θ′ +

iπ

4
bs

)
L̃s−1(θ′)

]
+

∫
Imθ′=ϕs+1

dθ′
[
K̃1

(
θ, θ′ +

iπ

4
bs+1

)
Ls+1(θ′) +

+ K̃
(s)
2

(
θ, θ′ +

iπ

4
bs

)
L̃s+1(θ′)

]
, (B.9)



144 APPENDIX B. TBA-LIKE EQUATIONS FOR N = 4 AMPLITUDES

ln Ŷ1,s(θ) + ln Ŷ3,s(θ)−
√

2Es
(
θ +

iπ

4
(−1)s+1

)
= −

∫
Imθ′=ϕs

dθ′
[
2K̃

(s)
2

(
θ, θ′ +

iπ

4
bs+1

)
L̃s(θ′) +

+ 2K̃1

(
θ, θ′ +

iπ

4
bs

)
Ls(θ′)

]
+

∫
Imθ′=ϕs−1

dθ′
[
K̃

(s)
2

(
θ, θ′ +

iπ

4
bs+1

)
Ls−1(θ′) +

+ 2K̃1

(
θ, θ′ +

iπ

4
bs

)
L̃s−1(θ′)

]
+

∫
Imθ′=ϕs+1

dθ′
[
K̃

(s)
2

(
θ, θ′ +

iπ

4
bs+1

)
Ls+1(θ′) +

+ 2K̃1

(
θ, θ′ +

iπ

4
bs

)
L̃s+1(θ′)

]
, (B.10)

ln Ŷ1,s(θ)− ln Ŷ3,s(θ)− ln y1,s + ln y3,s = −
∫
Imθ′=ϕs−1

dθ′K̃3

(
θ, θ′ +

iπ

4
bs+1

)
Ms−1(θ′) +

+

∫
Imθ′=ϕs+1

dθ′K̃3

(
θ, θ′ +

iπ

4
bs+1

)
Ms+1(θ′) , (B.11)

where the driving term Es(θ) is given by

Es(θ) = −i(−1)s
[√

2 sinh

(
θ +

iπ

4
(−1)s

)
ln y2,s − sinh θ ln y1,sy3,s

]
= (B.12)

= cosh θ ln y2,s + i(−1)s+1 sinh θ ln
y2,s

y1,sy3,s

.

For future purpose, we now propose the following definitions, generalising the hexagon

case:

ε1,s(θ − iϕs) = − lnY1,s(θ)−
1

2
ln
y3,s

y1,s

, (B.13)

ε3,s(θ − iϕs) = − lnY3,s(θ) +
1

2
ln
y3,s

y1,s

, (B.14)

ε2,s(θ − iϕs) = − lnY2,s(θ) . (B.15)

The ”pseudoenergies” ε are related to the hatted-Y through

ε1,s(θ − iϕ̂s) = − ln Ŷ1,s

(
θ − iπ

4
bs+1

)
− 1

2
ln
y3,s

y1,s

, (B.16)

ε3,s(θ − iϕ̂s) = − ln Ŷ3,s

(
θ − iπ

4
bs+1

)
+

1

2
ln
y3,s

y1,s

, (B.17)

ε2,s(θ − iϕ̂s) = − ln Ŷ2,s

(
θ − iπ

4
bs

)
, (B.18)

where

ϕ̂s = ϕs +
π

4
. (B.19)

To write the new TBA equations in a more compact way, we define

Ls(θ) = ln

[(
1 +

√
y1,s

y3,s

e−ε1,s(θ−iϕ̂s)
)(

1 +

√
y3,s

y1,s

e−ε3,s(θ−iϕ̂s)
)]

= Ls
(
θ − iπ

4

)
, (B.20)
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L̃s(θ) = ln
(
1 + e−ε2,s(θ−iϕ̂s)

)
= L̃s

(
θ − iπ

4

)
, (B.21)

Ms(θ) = ln

1 +
√

y1,s

y3,s
e−ε1,s(θ−iϕ̂s)

1 +
√

y3,s

y1,s
e−ε3,s(θ−iϕ̂s)

 =Ms

(
θ − iπ

4

)
. (B.22)

which lead, for εα,s, to the TBA-like

ε2,s(θ − iϕ̂s) = −Es
(
θ − iπ

4
bs

)
+ (B.23)

+

∫
Imθ′=ϕ̂s

dθ′
[
K̃

(s)
2

(
θ − iπ

4
bs, θ

′ − iπ

4
bs+1

)
Ls(θ

′) + 2K̃1

(
θ − iπ

4
bs, θ

′ − iπ

4
bs

)
L̃s(θ

′)

]
−

−
∫
Imθ′=ϕ̂s−1

dθ′
[
K̃

(s)
2

(
θ − iπ

4
bs, θ

′ − iπ

4
bs+1

)
L̃s−1(θ′) + K̃1

(
θ − iπ

4
bs, θ

′ − iπ

4
bs

)
Ls−1(θ′)

]
−

−
∫
Imθ′=ϕ̂s+1

dθ′
[
K̃

(s)
2

(
θ − iπ

4
bs, θ

′ − iπ

4
bs+1

)
L̃s+1(θ′) + K̃1

(
θ − iπ

4
bs, θ

′ − iπ

4
bs

)
Ls+1(θ′)

]
ε3,s(θ − iϕ̂s)− ε1,s(θ − iϕ̂s) = −

∫
Imθ′=ϕ̂s−1

dθ′
[
K̃3

(
θ − iπ

4
bs+1, θ

′ − iπ

4
bs

)
Ms−1(θ′)

]
+ (B.24)

+

∫
Imθ′=ϕ̂s+1

dθ′
[
K̃3

(
θ − iπ

4
bs+1, θ

′ − iπ

4
bs

)
Ms+1(θ′)

]
ε3,s(θ − iϕ̂s) + ε1,s(θ − iϕ̂s) = −

√
2Es

(
θ − iπ

4
bs

)
+ (B.25)

+ 2

∫
Imθ′=ϕ̂s

dθ′
[
K̃1

(
θ − iπ

4
bs+1, θ

′ − iπ

4
bs+1

)
Ls(θ

′) + K̃
(s)
2

(
θ − iπ

4
(−1)s − iπ

4
bs, θ

′ − iπ

4
bs

)
L̃s(θ

′)

]
−

−
∫
Imθ′=ϕ̂s−1

dθ′
[
2K̃1

(
θ − iπ

4
bs+1, θ

′ − iπ

4
bs+1

)
L̃s−1(θ′) + K̃

(s)
2

(
θ − iπ

4
(−1)s − iπ

4
bs, θ

′ − iπ

4
bs

)
Ls−1(θ′)

]
−

−
∫
Imθ′=ϕ̂s+1

dθ′
[
2K̃1

(
θ − iπ

4
bs+1, θ

′ − iπ

4
bs+1

)
L̃s+1(θ′) + K̃

(s)
2

(
θ − iπ

4
(−1)s − iπ

4
bs, θ

′ − iπ

4
bs

)
Ls+1(θ′)

]
.

Following [11], we write equations (B.23, B.24, B.25) as

ε2,s(θ − iϕ̂s) + Es
(
θ − iπ

4
bs

)
= −Â2,s(θ) , (B.26)

ε3,s(θ − iϕ̂s)− ε1,s(θ − iϕ̂s) = Â1,s(θ)− Â3,s(θ) , (B.27)

ε3,s(θ − iϕ̂s) + ε1,s(θ − iϕ̂s) +
√

2Es
(
θ − iπ

4
bs

)
= −Â3,s(θ)− Â1,s(θ) , (B.28)

where the quantities Âα,s(θ) includes the terms in the RHS. Then, the critical Yang-Yang
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functional, which describes the strong coupling limit (2.11), is given by [11]

Y Yc =
3∑

α=1

n−5∑
s=1

∫
Imθ=ϕ̂s

dθ

π sinh2
[
2θ − iπ

2
bα+s

][Li2

(
−e−εα,s(θ−iϕ̂s)

(
y1,s

y3,s

)1−α
2

)
+

+
1

2
ln

(
1 + e−εα,s(θ−iϕ̂s)

(
y1,s

y3,s

)1−α
2

)
Âα,s(θ)

]
. (B.29)



Appendix C

Scattering matrices and Pentagon

transitions

In this appendix we list several formulae for the S matrices and the pentagon transitions

concerning fermions and their effective bound states, called mesons.

C.1 All couplings

The exact relation, i.e. valid at any coupling, between the S matrix of two mesons and the

S matrices of their constituents reads

S(MM)(u, v) =
u− v + i

u− v − i
S(ff)(u+i, v+i)S(ff)(u−i, v+i)S(ff)(u+i, v−i)S(ff)(u−i, v−i) .

(C.1)

Inspired by this formula, the pentagon transition between mesons is proposed as follows

[1]

P (MM)(u, v) = (u−v)(u−v+i)P (ff)(u+i, v+i)P (ff)(u−i, v−i)P (ff̄)(u−i, v+i)P (ff̄)(u+i, v−i) ,
(C.2)

which reads, in terms of fermionic S-matrices,

P (MM)(u, v) =

√
fψψ(u+ i, v + i)fψψ(u− i, v − i)
fψψ(u− i, v + i)fψψ(u+ i, v − i)

× (C.3)

×

√
S(ff)(u+ i, v + i)S(ff)(u− i, v − i)S(ff)(u+ i, v − i)S(ff)(u− i, v + i)

S(∗ff)(u+ i, v + i)S(∗ff)(u− i, v − i)S(∗ff̄)(u+ i, v − i)S(∗ff̄)(u− i, v + i)
,
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with

fψψ(u, v) =
x(u)x(v)

g2

(
1− g2

x(u)x(v)

)
, x(u) =

u

2

(
1 +

√
1− 4g2

u2

)
, x±(u) = x(u± i

2
)

(C.4)

and S(∗ff), S(∗ff̄) are mirror S-matrices. The latter follow from formulæ [19]

lnS(∗ff̄)(u, v) = lnS(∗f̄f)(u, v) = lnS(Ff)(u, v)− lnS(sf)(u− i

2
, v) (C.5)

lnS(∗ff)(u, v) = ln

(
u− v

u− v + i

)
+ lnS(∗f̄f)(u, v) . (C.6)

Importantly, S(∗ff̄) is free from zeroes and poles. Using relation (C.6) , we can express the

meson-meson pentagon amplitude as:

P (MM)(u, v) =

√
fψψ(u+ i, v + i)fψψ(u− i, v − i)
fψψ(u− i, v + i)fψψ(u+ i, v − i)

u− v + i

u− v
× (C.7)

×

√
S(ff)(u+ i, v + i)S(ff)(u− i, v − i)S(ff)(u+ i, v − i)S(ff)(u− i, v + i)

S(∗ff̄)(u+ i, v + i)S(∗ff̄)(u− i, v − i)S(∗ff̄)(u+ i, v − i)S(∗ff̄)(u− i, v + i)
.

Since fψψ and S(ff) have no zeros nor poles in the small fermion sheet, this expression

shows that P (MM)(u, v) has a pole for u = v and a zero for u = v − i. No other poles or

zeroes are present. From this property, the important split (4.20) has been proposed in the

main text, which is of fundamental importance for the formation of bound states between

mesons.

The proposal (C.7) is confirmed by a strong coupling limit analysis. In fact, when

λ → ∞ it reproduces formula (10.15) of [18], which has been obtained by solving the

axioms for the mesonic pentagonal amplitudes directly at strong coupling.

C.2 Pentagonal amplitudes at strong coupling

Here is a collection of the functions Pα,β(θ, θ′), appearing in the resummation of the OPE

series for the polygonal Wilson loop in Section 4.2:

P11(θ|θ′) = P33(θ|θ′) = 1 +
iπ√
λ

cosh 2θ cosh 2θ′

sinh(2θ − 2θ′)
[1 + cosh(θ − θ′)− i sinh(θ − θ′)] =(C.8)

= 1 +
2π√
λ
K(gg)(θ, θ′) = 1 +

2π√
λ
K(ḡḡ)(θ, θ′) ,
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P13(θ|θ′) = P31(θ|θ′) = 1 +
iπ√
λ

cosh 2θ cosh 2θ′

sinh(2θ − 2θ′)
[−1 + cosh(θ − θ′)− i sinh(θ − θ′)] =(C.9)

= 1 +
2π√
λ
K(gḡ)(θ, θ′) = 1 +

2π√
λ
K(ḡg)(θ, θ′) ,

P22(θ|θ′) = 1− 2π√
λ

i sinh 2θ sinh 2θ′

sinh(2θ − 2θ′)

√
2 cosh

(
θ − θ′ − iπ

4

)
= (C.10)

= 1 +
2π√
λ
K(MM)(θ, θ′) ,

P21(θ|θ′) = P23(θ|θ′) = 1 +
2π√
λ

sinh 2θ cosh 2θ′√
2 cosh(2θ − 2θ′)

[sinh(θ − θ′) + i cosh(θ − θ′)] =(C.11)

= 1 +
2π√
λ
K(Mg)(θ, θ′) = 1 +

2π√
λ
K(Mḡ)(θ, θ′) ,

P12(θ|θ′) = P32(θ|θ′) = 1 +
2π√
λ

sinh 2θ′ cosh 2θ√
2 cosh(2θ′ − 2θ)

[sinh(θ′ − θ)− i cosh(θ′ − θ)] =(C.12)

= 1 +
2π√
λ
K(gM)(θ, θ′) = 1 +

2π√
λ
K(ḡM)(θ, θ′) .

where we remind that the indices 1, 3 stand for the gluons, respectively with positive

and negative helicity, whereas 2 indicates the meson.

C.2.1 Relations between kernels

From the definition (4.63) and the formulæ above, several relations follow

G
(s,s)
1,1 (θ, θ′) = G

(s,s)
1,3 (θ, θ′) = G

(s,s)
3,1 (θ, θ′) = G

(s,s)
3,3 (θ, θ′) , (C.13)

G
(s,s)
1,2 (θ, θ′) = G

(s,s)
3,2 (θ, θ′) , G

(s,s)
2,1 (θ, θ′) = G

(s,s)
2,3 (θ, θ′) , (C.14)

G
(s,s+1)
1,2 (θ, θ′) = G

(s,s+1)
3,2 (θ, θ′) , G

(s,s+1)
2,1 (θ, θ′) = G

(s,s+1)
2,3 (θ, θ′) , (C.15)

G
(s,s+1)
1,1 (θ, θ′) = G

(s,s+1)
3,3 (θ, θ′) , G

(s,s+1)
1,3 (θ, θ′) = G

(s,s+1)
3,1 (θ, θ′) , (C.16)

in addition to the obvious G
(s,s+1)
α,β (θ, θ′) = G

(s,s−1)
α,β (θ, θ′).

We display also some of the relations between the kernels G and the tilded ones K̃:

µ2(θ′)

2π
G

(s,s)
2,2 (θ, θ′) = −2K̃1(θ, θ′) , (C.17)

µ2(θ′)

2π
G

(s,s+1)
2,2 (θ, θ′) = −K̃(s)

2 (θ, θ′) , (C.18)
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µ1(θ′)

2π
G

(s,s)
2,1 (θ, θ′) = −K̃(s)

2

(
θ, θ′ + i

π

4
(−1)s

)
, (C.19)

µ1(θ′)

2π
G

(s,s+1)
2,1 (θ, θ′) = −K̃1

(
θ, θ′ − iπ

4
(−1)s

)
, (C.20)

µ2(θ′)

2π
G

(s,s)
1,2 (θ, θ′) = −K̃(s)

2

(
θ − iπ

4
(−1)s, θ′

)
, (C.21)

µ1(θ′)

2π
G

(s,s)
1,1 (θ, θ′) = −K̃1

(
θ + i

π

4
(−1)s, θ′ + i

π

4
(−1)s

)
, (C.22)

µ2(θ′)

2π
G

(s,s+1)
1,2 (θ, θ′) = −K̃1

(
θ + i

π

4
(−1)s, θ′

)
, (C.23)

µ1(θ′)

2π

[
G

(s,s+1)
1,1 (θ, θ′) +G

(s,s+1)
3,1 (θ, θ′)

]
= −K̃(s)

2

(
θ − iπ

4
(−1)s, θ′ − iπ

4
(−1)s

)
, (C.24)

µ1(θ′)

2π

[
G

(s,s+1)
1,1 (θ, θ′)−G(s,s+1)

3,1 (θ, θ′)
]

= (−1)sK̃3

(
θ + i

π

4
(−1)s, θ′ − iπ

4
(−1)s

)
. (C.25)

C.2.2 Bootstrap relations

In this part, some bootstrap relations involving the relativistic kernels Ki are displayed.

We use the shorthand notation for the shifts Ka(θ
±) = K±a (θ) = Ka(θ ± iπ

4
) and also

Ka(θ
±±) = K±±a (θ) = Ka(θ ± iπ

2
).

K+
1 +K−1 = K2 ,

K+
2 +K−2 = 2K1 + δ(θ) , (C.26)

K−3 −K+
3 = δ(θ) ,

K++
1 +K−−1 = δ(θ) ,

K++
2 +K−−2 = δ(θ+) + δ(θ−) , (C.27)

K++
3 +K−−3 = 2K3 − δ(θ+) + δ(θ−) .
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The bootstrap relations concerning the pentagonal amplitudes are:

K(MM)
sym

(
θ++, θ′+

)
+K(MM)

sym

(
θ, θ′+

)
− 2K(gM)

sym

(
θ+, θ′+

)
= 0 , (C.28)

K(Mg)
sym

(
θ++, θ′+

)
+K(Mg)

sym

(
θ, θ′+

)
− 2K(gg)

sym

(
θ+, θ′+

)
= π sinh2(2θ) δ(θ − θ′) ,

K(gM)
(
θ′, θ++

)
+K(gM) (θ′, θ)−K(gg)

(
θ′, θ+

)
−K(gḡ)

(
θ′, θ+

)
= 0 ,

K(MM)
(
θ′, θ++

)
+K(MM) (θ′, θ)− 2K(Mg)

(
θ′, θ+

)
= π sinh2(2θ) δ(θ − θ′) ,

K(gM)
sym

(
θ++, θ′+

)
+K(gM)

sym

(
θ, θ′+

)
−K(MM)

sym

(
θ+, θ′+

)
= −π cosh2(2θ) δ(θ − θ′) ,

K(gg)
sym

(
θ++, θ′+

)
+K(gg)

sym

(
θ, θ′+

)
−K(Mg)

sym

(
θ+, θ′+

)
= 0 ,

K(Mg)
(
θ′, θ++

)
+K(Mg) (θ′, θ)−K(MM)

(
θ′, θ+

)
= 0 ,

K(gg)
(
θ′, θ++

)
+K(gḡ) (θ′, θ)−K(gM)

(
θ′, θ+

)
= 0 ,

K(gḡ)
(
θ′, θ++

)
+K(gg) (θ′, θ)−K(gM)

(
θ′, θ+

)
= −π cosh2(2θ) δ(θ − θ′) ,

K(Mg)
(
θ+, θ′+

)
+K(Mg)

(
θ−, θ′+

)
−K(gḡ)

(
θ, θ′+

)
−K(gg)

(
θ, θ′+

)
= 0 ,

K(MM)
(
θ+, θ′+

)
+K(MM)

(
θ−, θ′+

)
− 2K(gM)

(
θ, θ′+

)
= −π cosh2(2θ) δ(θ − θ′) ,

K(Mg)
sym

(
θ+, θ′

)
+K(Mg)

sym

(
θ−, θ′

)
− 2K(gg)

sym (θ, θ′) = −π cosh2(2θ) δ(θ − θ′) ,
K(MM)
sym

(
θ+, θ′

)
+K(MM)

sym

(
θ−, θ′

)
− 2K(gM)

sym (θ, θ′) = 0 ,

K(gḡ)
(
θ−, θ′+

)
+K(gg)

(
θ+, θ′+

)
−K(Mg)

(
θ, θ′+

)
= π sinh2(2θ) δ(θ − θ′) ,

K(gg)
(
θ−, θ′+

)
+K(gḡ)

(
θ+, θ′+

)
−K(Mg)

(
θ, θ′+

)
= 0 ,

K(gM)
(
θ−, θ′+

)
+K(gM)

(
θ+, θ′+

)
−K(MM)

(
θ, θ′+

)
= 0 ,

K(gg)
sym

(
θ−, θ′

)
+K(gg)

sym

(
θ+, θ′

)
−K(Mg)

sym (θ, θ′) = 0 ,

K(gM)
sym

(
θ−, θ′

)
+K(gM)

sym

(
θ+, θ′

)
−K(MM)

sym (θ, θ′) = π sinh2(2θ) δ(θ − θ′) ,

where the shifts have to be read as θ± = θ ± iπ
4

and θ±± = θ ± iπ
2

. In terms of the tensor

(4.63), the relations above can be summarised as:

G
(s,s)
α,β (θ+, θ′) +G

(s,s)
4−α,β(θ−, θ′)−G(s,s)

α+1,β(θ, θ′)−G(s,s)
α−1,β(θ, θ′) = −2πδα+β,odd

δ(θ − θ′)
µβ(θ′)

,

G
(2k±1,2k)
α,β (θ++, θ′) +G

(2k±1,2k)
4−α,β (θ, θ′)−G(2k±1,2k)

α+1,β (θ+, θ′)−G(2k±1,2k)
α−1,β (θ+, θ′) = −2πδ4−α,β

δ(θ − θ′)
µβ(θ′)

,

G
(2k,2k±1)
α,β (θ+, θ′+) +G

(2k,2k±1)
4−α,β (θ−, θ′+)−G(2k,2k±1)

α+1,β (θ, θ′+)−G(2k,2k±1)
α−1,β (θ, θ′+) = −2πδα,β

δ(θ − θ′)
µβ(θ′+)

,

(C.29)

where k = 1, 2, 3, . . . .
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Appendix D

Polynomials

In this appendix we display several properties of the many polynomials appearing throghout

the text, expecially in Chapter 3.

D.1 δ2n functions

This part is devoted to the polynomials δ2n, appearing in the multiple integrals of the

matrix part after integrating over the auxiliary variables ai, ci.

We recall the defining expression as a sum over partitions

δ2n(b1, . . . , b2n) ≡ n!

2n

2n∑
α1<α2<...<αn=1

 ∏
i∈S~α,j∈S~α,i<j
i∈S̄~α,j∈S̄~α,i<j

[(bi − bj)2 + 1]

 ·
·

n∏
k=1

∏
β∈S̄~α

bαk − bβ − i
bαk − bβ

. (D.1)

which implies the symmetry in all the arguments, i.e.

δ2n(b1, . . . , bi, bi+1, . . . , b2n) = δ2n(b1, . . . , bi+1, bi, . . . , b2n) (D.2)

From the representation (D.1), it is possible to show that δ2n is vanishing whenever

three or more variables are aligned in the complex plane with a displacement of i

δ2n(b1, b1 + i, b1 + 2i, b4, . . . , b2n) = 0 . (D.3)

The sum over partition (D.1) can be written in a more compact form: we recognise, in its
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highest degree δ
(0)
2n , the Moore-Read wave function1

δ
(0)
2n (b1, . . . , b2n) ≡ n!

2n

2n∑
α1<α2<...<αn=1

∏
i∈S~α,j∈S~α,i<j
i∈S̄~α,j∈S̄~α,i<j

(bi − bj)2 , (D.4)

which is equivalent to the Pfaffian

δ
(0)
2n (b1, . . . , b2n) =

n!

2n
2n
∏
i<j

bijPf

(
1

bij

)
. (D.5)

Formula (D.5) can be extended to the full δ2n by means of the substitution bij →
b2ij+1

bij
,

finding the appealing

δ2n(b1, . . . , b2n) =
n!

2n
2n
∏
i<j

b2
ij + 1

bij
PfD , Dij =

(
bij

b2
ij + 1

)
, (D.6)

This Pfaffian representation also gives a recursion relation for the δ-polynomials:

δ2(b1, b2) = 1

δ2n(b1, . . . , b2n) = 2(n− 1)
2n∑
l=1
l 6=k

2n∏
i=1
i 6=k,l

b2
ik + 1

bik

b2
il + 1

bil
δ2n−2(b1, . . . , bk, . . . , bl . . . , b2n) ,(D.7)

where the notation bk means that bk is removed as variable of the function δ2n−2 .

Referring to a specific configuration as in (3.12), the functions δ2n(b1, . . . , b2n) take simple

forms. We use of shorthand notation of Section 3.1, as for instance δ2n(Y ) to indicate that

the variables of δ2n are computed on the residue configuration Y = (l1, . . . , l2n) .

The first formula is

δ2n(2, 0, 1, . . . , 1) ≡ δ2n(u1, u1 + i, u3, . . . , u2n) =

= 2(n− 1)
2n∏
j=3

(u1 − uj − i)(u1 − uj + 2i)δ2n−2(u3, . . . , u2n) ,(D.8)

which, upon iteration, yields the most general one

δ2n(2, 0, .., 2, 02k+2, 1, . . . , 1) ≡ δ2n(u1, u1 + i, u3, u3 + i, .., u2k+1, u2k+1 + i, u2k+3, . . . , u2n) =

= 2k+1 (n− 1)!

(n− 2− k)!

k∏
i<j=0

[(u2i+1 − u2j+1)2 + 1][(u2i+1 − u2j+1)2 + 4] ·

·
2n∏

j=2k+3

k∏
l=0

(u1+2l − uj − i)(u1+2l − uj + 2i)δ2n−2−2k(u2k+3, . . . , u2n) . (D.9)

1I am indebted to Ivan Kostov and Didina Serban for pointing out this interesting representation.
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where 0 ≤ k ≤ n− 2.

It allows us to express any δ2n(Y ) in terms of δ2k(1, . . . , 1), with less particles: for

instance, we consider the particular case k = n− 2 and choose u2n = u2n−1 + i to find

δ2n(2, 0, . . . , 2, 0) ≡ δ2n(u1, u1 + i, . . . , u2n−1, u2n−1 + i) =

= 2n−1(n− 1)!
n−1∏
i<j=0

[(u2i+1 − u2j+1)2 + 1][(u2i+1 − u2j+1)2 + 4] .(D.10)

Merging the last two equations allows us to express δ2n(Y = (Y1, Y2)), where Y1 =

(2, 0, · · · , 2, 0) and Y2 = (1, · · · , 1), in terms of the product δ2k+2(Y1)δ2n−2k−2(Y2)

δ2n(2, 0, . . . , 2, 02k+2, 1, . . . , 1) = 2
2n∏

j=2k+3

k∏
l=0

(u1+2l − uj − i)(u1+2l − uj + 2i) ·

· (n− 1)!

(n− 2− k)!k!
δ2k+2(2, 0, . . . , 2, 0)δ2n−2−2k(1, 1, . . . , 1, 1) , (D.11)

where a mixing part is present. Formula (D.11) holds for 0 ≤ k ≤ n− 2. In (D.10), we

can move all the columns to the left to obtain

δ2n(2, 2, . . . , 0, 0) ≡ δ2n(u1, u1 + i, u2, u2 + i, . . . , un, un + i) =

= 2n−1(n− 1)!
n∏
i<j

[(ui − uj)2 + 1][(ui − uj)2 + 4] , (D.12)

i.e. the configuration considered in the main text.

A factorisation similar to that of the functions G(2n) holds for the δ2n functions as well.

When a set of 2k particle rapidities is sent to infinity, δ2n splits into the product

δ2n(u1+Λ, · · · , u2k+Λ, u2k+1, · · · , u2n) = Λ4k(n−k) (n− 1)!

(k − 1)!(n− k − 1)!
δ2kδ2n−2k

[
1 +O(Λ−1)

]
.

(D.13)

where we omitted the obvious arguments of the polynomials with less particles.

We end the appendix by giving a compact formula for the case n = 2

δ4(b1, . . . , b4) = 14 +
1

2
(b1 − b2)2[(b4 − b3)2 + 4] +

1

2
(b1 − b3)2[(b2 − b4)2 + 4] +

+
1

2
(b1 − b4)2[(b2 − b3)2 + 4] +

1

2
(b2 − b3)2[(b1 − b4)2 + 4] +

+
1

2
(b2 − b4)2[(b1 − b3)2 + 4] +

1

2
(b3 − b4)2[(b1 − b2)2 + 4] = (D.14)

= 2 + [(b1 − b2)2 + 2][(b3 − b4)2 + 2] + [(b1 − b3)2 + 2][(b2 − b4)2 + 2] +

+ [(b1 − b4)2 + 2][(b2 − b3)2 + 2] .
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D.2 Scalars

In Section 3.1 we proved of the polar structure (3.43), recalled here by convenience

Π
(2n)
mat (u1, . . . , u2n) =

P2n(u1, . . . , u2n)
2n∏
i<j

(u2
ij + 1)(u2

ij + 4)

, (D.15)

where P2n is a polynomial of degree 4n(n− 1). Now we list some useful properties of these

functions and give explicit expressions for the first cases P2 and P4. In addition, by means

of the factorisation, we derive a simple formula for the highest degree P
(0)
2n for any n.

To begin with, making use of the residue formula (3.38), we express the full polynomial

P2n computed in specific values in terms of smaller polynomials P2k, with k < n

P2n(u1 − i, u1 + i, u3, . . . , u2n) = 6P2n−2(u3, . . . , u2n)
2n∏
j=3

(u2
1j + 4)(u2

1j + 9) , (D.16)

that gives, once iterated, the most general one valid for k = 0, . . . , n

P2n(u1 − i, u1 + i, . . . , uk − i, uk + i, u2k+1, . . . , u2n) = 6kP2n−2k(u2k+1, . . . , u2n) ·

·
k∏
i<j

(u2
ij + 1)(u2

ij + 4)(u2
ij + 9)(u2

ij + 16)
k∏
i=1

2n∏
j=2k+1

(u2
ij + 4)(u2

ij + 9) . (D.17)

The full iteration k = n gives the expression of the polynomials P2n in the specific config-

uration:

P2n(u1−i, u1+i, u2−i, u2+i, . . . , un−i, un+i) = 6n
n∏
i<j

(u2
ij+1)(u2

ij+4)(u2
ij+9)(u2

ij+16) . (D.18)

Furthermore, the recursion formula (D.16) entails that the polynomial vanishes in some

particular configurations, such as

P2n(u1, u1 + i, u1 + 3i, u4, . . . , u2n) = 0 ,

P2n(u1, u1 + 2i, u1 + 4i, u4, . . . , u2n) = 0 . (D.19)

Factorisation The factorisability of the functions G(2n) also affects the behaviour of the

polynomials P2n. Indeed, they satisfy a factorisation property as well, which reads

P2n(u1 + Λ, . . . , u2k + Λ, u2k+1, . . . , u2n) = Λ8(n−k)kP2k(u1, . . . u2k)P2n−2k(u2k+1, . . . u2n) ·

·

[
1 + 2Λ−1

2k∑
i=1

2n∑
j=2k+1

(ui − uj) + ∆
(2)
2n,2k(u1, . . . , u2n)Λ−2 +O(Λ−3)

]
, (D.20)
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where function ∆
(2)
2n,2k parametrizes the quadratic subleading. On the other hand, by

shifting an odd number of particles, we get instead the power law

P2n(u1 + Λ, . . . , u2k+1 + Λ, u2k+2, . . . , u2n) = O(Λ2(2k+1)(2n−2k−1)−2) , (D.21)
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Explicit expressions We now provide the polynomials appearing in (3.43) in the cases

n = 1, n = 2: beside to the simple P2(u1, u2) = 6, we have

P4(u1, u2, u3, u4) = 36
[
9((u1 − u2)2 + 4)((u3 − u4)2 + 4) + 9((u1 − u3)2 + 4)((u2 − u4)2 + 4)+

+ 9((u1 − u4)2 + 4)((u2 − u3)2 + 4)+

+ ((u1 − u3)2 + 4)((u1 − u4)2 + 4)((u2 − u3)2 + 4)((u2 − u4)2 + 4)+

+ ((u1 − u2)2 + 4)((u1 − u4)2 + 4)((u3 − u2)2 + 4)((u3 − u4)2 + 4)+

+ ((u1 − u2)2 + 4)((u1 − u3)2 + 4)((u4 − u2)2 + 4)((u4 − u3)2 + 4)+

+
3

2
((u1 − u2)2 + 4)((u2 − u3)2 + 4)((u1 − u4)2 + 4)+

+
3

2
((u1 − u3)2 + 4)((u2 − u3)2 + 4)((u1 − u4)2 + 4)+

+
3

2
((u1 − u2)2 + 4)((u1 − u3)2 + 4)((u2 − u4)2 + 4)+

+
3

2
((u1 − u3)2 + 4)((u2 − u3)2 + 4)((u2 − u4)2 + 4)+

+
3

2
((u1 − u3)2 + 4)((u1 − u4)2 + 4)((u2 − u4)2 + 4)+

+
3

2
((u2 − u3)2 + 4)((u1 − u4)2 + 4)((u2 − u4)2 + 4)+

+
3

2
((u1 − u2)2 + 4)((u1 − u3)2 + 4)((u3 − u4)2 + 4)+

+
3

2
((u1 − u2)2 + 4)((u2 − u3)2 + 4)((u3 − u4)2 + 4)+

+
3

2
((u1 − u2)2 + 4)((u1 − u4)2 + 4)((u3 − u4)2 + 4)+

+
3

2
((u2 − u3)2 + 4)((u1 − u4)2 + 4)((u3 − u4)2 + 4)+

+
3

2
((u1 − u2)2 + 4)((u2 − u4)2 + 4)((u3 − u4)2 + 4)+

+
3

2
((u1 − u3)2 + 4)((u2 − u4)2 + 4)((u3 − u4)2 + 4)−

− 3

2
((u1 − u2)2(u2 − u3)2(u1 − u3)2 + (u1 − u2)2(u2 − u4)2(u1 − u4)2+

+ (u1 − u4)2(u4 − u3)2(u1 − u3)2 + (u4 − u2)2(u2 − u3)2(u4 − u3)2)+

+ 48(u1 − u2)2 + 48(u1 − u3)2 + 48(u1 − u4)2 + 48(u3 − u2)2 + 48(u4 − u2)2+

+ 48(u3 − u4)2 +
3

2
((u1 − u2)2(u3 − u4)2 + (u1 − u3)2(u2 − u4)2+

+ (u1 − u4)2(u3 − u2)2) + 1152] (D.22)
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From the expression of P4 and the factorisation property (D.20), we can make a guess for

the highest degree term P
(0)
2n . For n = 2 the exact formula (D.22) yields

P
(0)
4 (u1, u2, u3, u4) = 62

4∏
i<j

u2
ij

(
1

u2
12u

2
34

+
1

u2
13u

2
24

+
1

u2
14u

2
23

)
. (D.23)

This formula has a nice interpretation as a sum over the pairings, recalling the Wick

theorem for bosonic particles: prefactor aside, we can think of P
(0)
4 as the four point

function of a free boson with propagator u−2
ij . The generalization of this formula to the 2n

goes through an expression that, in the factorisation limit, reproduces exactly the property

(D.20) for P
(0)
2n , with any n, k. We thus conjecture

P
(0)
2n (u1, . . . , u2n) = 6n

2n∏
i<j

u2
ij

′∑
p

n∏
i=1

1

(up(2i−1) − up(2i))2
, (D.24)

where the sum is restricted over the pairings, such that the total number of terms is

(2n−1)!!. A careful analysis shows that (D.24) is the only (symmetric) polynomial solution

satisfying the factorisation (D.20). Formula (D.24) is confirmed for n = 3, directly from

the sum over Young tableaux (3.21) depicted in Chapter 3.

There is an interesting link with the polynomials δ2n: we use the identity2 for the special

2n× 2n antisymmetric matrix

Det

(
1

uij

)
=

[
Pf

(
1

uij

)]2

=
′∑
p

n∏
i=1

1

(up(2i−1) − up(2i))2
, (D.25)

to relate the highest degrees of the polynomials P2n and δ2n. Merging formulae (D.5),(D.24)

and (D.25) together, we can express the highest degree as a determinant

P
(0)
2n (u1, . . . , u2n) = 6n

2n∏
i<j

u2
ijDet

(
1

uij

)
=

6n4n2

4n(n!)2

[
δ

(0)
2n (u1, . . . , u2n)

]2

. (D.26)

Unfortunately, this remarkable equality does not survive when we consider the full poly-

nomial P2n, as we can check for n = 2 with the explicit formula (D.22). We do not know

if a determinant representation of the full P2n exists: however, it is an interesting idea to

pursue since it would allow to find a nice representation of W .

2From the physical point of view, this identity is a sort of bosonisation, as the LHS can be thought as

a correlator of a free fermion with propagator u−1ij .
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D.3 Fermions

Here we provide a list of properties for the polynomials P (n) which helped us to prove some

of the assertions contained in the main text.

The formula (3.60) for the residue of the matrix factor entails a sort of recursion relation

among the polynomials, when computed in the specific configuration

P (n)(u1, · · · , un, u1 − 2i, v2, · · · , vn) = 4P (n−1)(u2, · · · , un, v2, · · · , vn) · (D.27)

·
n∏
j=2

(u1j + i)(u1j − 4i)(u1 − vj + 2i)(u1 − vj − 3i)

which can be iterated k times (k ≤ n), to get

P (n)(u1, · · · , un, u1 − 2i, , · · · , uk − 2i, vk+1, · · · , vn) = 4kP (n−k)(uk+1, · · · , un, vk+1, · · · , vn) ·

·
k∏
i=1

n∏
j=k+1

(uij + i)(uij − 4i)(ui − vj + 2i)(ui − vj − 3i)
k∏
i<j

(u2
ij + 1)(u2

ij + 16) ; (D.28)

The complete iteration k = n gives the property

P (n)(u1, · · · , un, u1 − 2i, · · · , un − 2i) = 4n
n∏
i<j

(u2
ij + 1)(u2

ij + 16), (D.29)

pivotal for the achievements in the main text. As an application of to the recursion relation

(D.27), one finds that the polynomials vanish under some special configurations:

P (n)(u1, · · · , un, u1 − 2i, u1 − 3i, v3, · · · , vn) = 0

P (n)(u1, · · · , un, u1 − 2i, u1 + 2i, v3, · · · , vn) = 0

P (n)(u1, u1 + i, u3, · · · , un, u1 − 2i, v2, · · · , vn) = 0

P (n)(u1, u1 − 4i, u3, · · · , un, u1 − 2i, v2, · · · , vn) = 0 . (D.30)

Furthermore, as in the scalar case, we observe the factorisation of the polynomials P (n)

as a straightforward consequence of (4.3) and the factorisation of the matrix part3

P (n)({uki=1+Λ, uni=k+1}, {vki=1+Λ, vni=k+1}) ' Λ4k(n−k)P (k)({uki=1}, {vki=1})P (n−k)({uni=k+1}, {vni=k+1}) .
(D.31)

3Although not described in the thesis, it works in the same way as the scalar matrix part.
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Explicit expressions The polynomials get involved very quickly, so that we have explicit

compact expression only up to n = 2, which are:

P (1)(u1, v1) = 4 (D.32)

P (2)(u1, u2, v1, v2) = 4[24 + 3((u2 − v1)2 + 6)((u1 − v2)2 + 6) +

+ 3((u1 − v1)2 + 6)((u2 − v2)2 + 6) + ((u1 − u2)2 + 4)((v1 − v2)2 + 4)] .
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Appendix E

Factorisation and Connected

functions

In this appendix we discuss in details the connected functions introduced in Chapter 5,

both for the hexagon and for N > 6. In the former case, we also discuss their asymptotic

properties by extending the argument of the main text, with different large shifts Λi. They

are crucial to prove the ∼
√
λ behaviour of the logarithm of the Wilson loop at strong

coupling.

E.1 Asymptotic factorisation

In this part we are going to extend the argument of the maix text, where we proved the

factorisation G(2n) → G(2k)G(2n−2k) when the 2n particles are split in two groups composed

respectively by 2k and 2n−2k particles, by considering the case with different large shifts.

To be specific, for even m, we prove the factorisation arises when considering

G(2n)(u1 + Λ1, u2 + Λ2, . . . , um + Λm, um+1, . . . , u2n) , (E.1)

where the shifts Λi are parametrised as Λi = ciR+O(R0), with ci constants and R a large

quantity. We need to unravel the structure of G(2n) in this particular limit.

163
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To begin with, the dynamical factor (5.8) enjoys the behaviour (valid also for m odd)

Π
(2n)
dyn (u1 + Λ1, . . . , um + Λm, um+1, . . . , u2n) −→

Π
(m)
dyn(u1 + Λ1, . . . , um + Λm)

(
m∏
i=1

Λ2
i

)2n−m

Π
(2n−m)
dyn (um+1, . . . , u2n) ·

·

[
1 + 2

m∑
i=1

2n∑
j=m+1

ui − uj
Λi

+O
(
R−2

)]
, (E.2)

as a consequence of the asymptotic behaviour of the two-particle part

u→∞ ⇒ Π(u) = u2 − 1

2
− 9

8u2
+O

(
u−4
)
. (E.3)

We point out that Π
(m)
dyn(u1 + Λ1, . . . , um + Λm) is actually divergent, if at least one of the

Λi is different from the others

Π
(m)
dyn(u1 + Λ1, . . . , um + Λm) = µm

m∏
i,j=1
i<j

(Λi − Λj)
2 + . . . , (E.4)

For the matrix part (3.2) we follow the same procedure of the main text: we tackle

the simplest case first, i.e. Π
(4)
mat → Π

(2)
matΠ

(2)
mat: eventually, the procedure can be extended

to the general case Π
(2n)
mat → Π

(2k)
matΠ

(2n−2k)
mat . To start with, we perform the shifts u1 →

u1 + Λ1, u2 → u2 + Λ2; for large Λ1, Λ2 the integrals (3.2) receive the main contribution

from the region where two roots b, one a and one c are shifted by Λi as well. We decide

to shift, for instance, a1 by Λa
1, c1 by Λc

1 and b1, b2 by Λb
1, Λb

2, respectively, where the large

shifts of isotopic variables can be equal to Λ1 or Λ2. In addition, we have to sum over

all the possible choices for the shifts Λα
i , α = a, b, c,: for this sum we use the short-hand

notation
∑

shifts

. Moreover, the usual combinatorial factor appears

24 =

(
4

2

)
· 2 · 2 (E.5)

which takes into account the
(

4
2

)
independent choices of the auxiliary rapidities, all giving

the same result. More details of the calculations are reported in [3]. In the end, for the

matrix part we obtain the factorisation

Π
(4)
mat(u1 + Λ1, u2 + Λ2, u3, u4) = Λ−4

1 Λ−4
2

[
1 + 2(u3 + u4)

(
1

Λ1

+
1

Λ2

)
−

−4

(
u1

Λ1

+
u2

Λ2

)
+O(R−2)

]
Π

(2)
mat(u1 + Λ1, u2 + Λ2)Π

(2)
mat(u3, u4) , (E.6)
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Since the dynamical factor behaves as

Π
(4)
dyn(u1 + Λ1, u2 + Λ2, u3, u4)→ Π

(2)
dyn(u1 + Λ1, u2 + Λ2)Π

(2)
dyn(u3, u4)Λ4

1Λ4
2 ·

·
[
1− 2(u3 + u4)

(
1

Λ1

+
1

Λ2

)
+ 4

(
u1

Λ1

+
u2

Λ2

)
+O(R−2)

]
, (E.7)

for the complete function (5.7) we obtain the factorisation we were aiming for:

G(4)(u1 + Λ1, u2 + Λ2, u3, u4)
Λi→∞−→ G(2)(u1 + Λ1, u2 + Λ2)G(2)(u3, u4)[1 +O(R−2)] , (E.8)

where, if c1 6= c2, G(2)(u1 + Λ1, u2 + Λ2) = 6µ2/Λ2
12 + . . ., if c1 = c2, G(2) is finite. Of

course, as G(4)(u1, u2, u3, u4) is symmetric under exchange of rapidities, the property (E.8)

is indeed valid for any couple of rapidities.

We are now ready to address the most general case: we shift m = 2k rapidities by

amounts Λi. Thanks to the symmetry of the function G, we can shift the first m rapidities

without losing generality: ui → ui + Λi for 1 ≤ i ≤ m. We also shift ai → ai + Λa
i and

ci → ci + Λc
i for 1 ≤ i ≤ k, along with bi → bi + Λb

i for 1 ≤ i ≤ m.

The final result is:

Π
(2n)
mat (u1 + Λ1, . . . , u2k + Λ2k, u2k+1, . . . , u2n)→ 1(

m∏
i=1

Λi

)4n−4k

[
1 + 2

2k∑
i=1

1

Λi

2n∑
j=2k+1

uj −

− 2(2n− 2k)

2k∑
i=1

ui
Λi

+O
(
R−2

)]
Π

(2k)
mat(u1 + Λ1, . . . , u2k + Λ2k)Π

(2n−2k)
mat (u2k+1, . . . , u2n) ,(E.9)

which extends that of the main text to the case with different Λi. We remark that Π
(2k)
mat(u1+

Λ1, . . . , u2k + Λ2k), in the general case with different Λi, goes to zero as

Π
(2k)
mat(u1 + Λ1, . . . , u2k + Λ2k) ∼

2k∏
i<j=1

(Λi−Λj)
−2
[
Λ−2

12 Λ−2
34 . . .Λ

−2
2k−1,2k + pairings

]
. (E.10)

We already know the dynamical part behaviour, which added to our result yields the

sought factorisation property:

G(2n)(u1 + Λ1, . . . , u2k + Λ2k, u2k+1, . . . , u2n)→
→ G(2k)(u1 + Λ1, . . . , u2k + Λ2k)G

(2n−2k)(u2k+1, . . . , u2n)
[
1 +O

(
R−2

)]
, (E.11)

We remark that the function G(2k)(u1 + Λ1, . . . , u2k + Λ2k), when Λi are all different,

behaves like

G(2k)(u1 + Λ1, . . . , u2k + Λ2k) ∼
[
Λ−2

12 Λ−2
34 . . .Λ

−2
2k−1,2k + pairings

]
. (E.12)
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Therefore, putting Λi = ciR + O(R0), with different ci and R → +∞, the behaviour of

G(2k)(u1+Λ1, . . . , u2k+Λ2k) and ofG(2n)(u1+Λ1, . . . , u2k+Λ2k, u2k+1, . . . , u2n) is respectively

given by

G(2k)(u1+Λ1, . . . , u2k+Λ2k) ∼ R−2k , G(2n)(u1+Λ1, . . . , u2k+Λ2k, u2k+1, . . . , u2n) ∼ R−2k .

(E.13)

If p of the ci coincide, i.e. Λ1 = Λ2 = . . . = Λp 6= Λp+1 . . . 6= Λ2k, G
(2k) and consequently

G(2n) go to zero as R−2k+2[ p2 ]: some of these configurations will be examined in the next

part, when we discuss the connected functions.

Now, we spend a few words to analyse the asymptotic of G(2n) when we shift an odd

number m of rapidities. In this case there is no factorisation, since there are no functions

G with an odd number of arguments.

When m is odd, we find convenient to define m = 2k − 1. Then, we shift ai → ai + Λa
i

and ci → ci + Λc
i for 1 ≤ i ≤ k, along with bi → bi + Λb

i for 1 ≤ i ≤ m. With these choices,

formula (5.16) still holds. Sending Λi → +∞ inside the integrals, we get

R(2n,m) → 1(
m∏
i=1

Λi

)4n−2m

m∏
i=1

(Λb
i)

2

k∏
i=1

(Λa
iΛ

c
i)
−2
{

1 + 2
m∑
i=1

1

Λb
i

2n∑
j=m+1

uj − 2(2n−m)
m∑
i=1

ui
Λi

+

+
2n∑

j=m+1

2bj

[
m∑
i=1

1

Λi

− 2
m∑
i=1

1

Λb
i

+
k∑
i=1

(
1

Λa
i

+
1

Λc
i

)]
+

n∑
j=k+1

2aj

(
m∑
i=1

1

Λb
i

− 2
k∑
i=1

1

Λa
i

)
+

+
n∑

j=k+1

2cj

(
m∑
i=1

1

Λb
i

− 2
k∑
i=1

1

Λc
i

)
+ 2

m∑
i=1

bi
Λb
i

− 2
k∑
i=1

ai
Λa
i

− 2
k∑
i=1

ci
Λc
i

+O
(
R−2

)}
. (E.14)

Therefore, keeping only the leading term, when m = 2k − 1 the matrix part behaves as

Π
(2n)
mat (u1 + Λ1, . . . , u2k−1 + Λ2k−1, u2k, . . . , u2n) ∼

(
k∏
i=1

Λ−4
i + perm.)(

2k−1∏
i=1

Λi

)4n−4k
·

·
2k−1∏
i,j=1
i<j

(Λi − Λj)
−2
[
Λ−2

12 Λ−2
34 . . .Λ

−2
2k−3,2k−2 + pairings

]
· finite function(u2k, . . . , u2n) ,

Considering tha dynamical factor, we get

G(2n)(u1 + Λ1, . . . , u2k−1 + Λ2k−1, u2k, . . . , u2n) ∼[
Λ−2

12 Λ−2
34 . . .Λ

−2
2k−3,2k−2 + pairings

] 2k−1∏
i=1

Λ2
i

(
k∏
i=1

Λ−4
i + perm.

)
· finite function(u2k, . . . , u2n) .
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In the end, we conclude that, if all the Λi are different and scale with R, the behaviour of

G(2n)(u1 + Λ1, . . . , u2k−1 + Λ2k−1, u2k, . . . , u2n) is

G(2n)(u1 + Λ1, . . . , u2k−1 + Λ2k−1, u2k, . . . , u2n) ∼ R−2k = R−m−1 . (E.15)

On the other hand, if p of the shifts Λi coincide, the function G(2n) vanishes as R−2k+2[ p2 ].

To summarize, we addressed some different splits of the rapidities and obtained the

corresponding asymptotic behaviours of the G(2n). The main formulae, (E.11), (E.13)

and (E.15), will be of fundamental importance to study the asymptotic properties of the

connected functions g(2n). We have to say, however, that our analysis is not complete, as

there are other asymptotic regions to be considered.

Young tableaux It is useful to mention an alternative method to prove the factorisation

properties obtained so far, which makes use of the Young tableaux expansion (3.21). For

simplicity here westick to the simplest case, the split 4 → 2 + 2 which contains only one

shift Λ and has been already analysed in the main text, resulting in (5.14). We observe that

many diagrams of Π
(4)
mat split into a product of two diagrams belonging to the expansion of

Π
(2)
mat, weighted by the prefactor Λ−8, as follows

(1, 1, 1, 1) → Λ−8(1, 1)12 × (1, 1)34 (E.16)

(2, 0, 2, 0) + (2, 0, 0, 2) + (0, 2, 2, 0) + (0, 2, 0, 2) → Λ−8[(2, 0)12 + (0, 2)12]× [(2, 0)34 + (0, 2)34]

(1, 1, 2, 0) + (1, 1, 0, 2) + (2, 0, 1, 1) + (0, 2, 1, 1) → Λ−8(1, 1)12 × [(2, 0)34 + (0, 2)34] + 12↔ 34

The RHS members sum up to Λ−8Π
(2)
mat(u1, u2)Π

(2)
mat(u3, u4), in agreement with (5.14).

It is interesting to note that the other diagrams of Π
(4)
mat, not present in (E.16), decay

faster than o(Λ−8) and they do not contribute to the factorisation. This procedure can be

extended to the general split 2n→ 2(n− k) + 2k with also the possibility to have different

shifts Λi.

E.2 Connected functions

In this appendix we elaborate on the connected functions, both for the hexagonal Wilson

loop and the bigger polygons N > 6. In the former case we also analyse in details their

asymptotic properties, which are of paramount importance for the method in Section 5.1

to work.
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E.2.1 Hexagon

Here we discuss the connected functions g(2n) for the hexagon. We first analyse the relation

with the functions G(2n), sketched for the cases n = 2, 3 in the main text. We also give

evidence that g(2n) ∈ L1(R2n−1), i.e. that the integral over the 2n− 1 variables of g(2n) is

well-defined.

The expansion of G(2n) in terms of the connected parts is well-known and involves a

sum over all the possible arrangements of 2n particles in subgroups of even particles

G(2n) =
∑
{m}

∑
pair.

n∏
k=1

g(2k) . . . g(2k)︸ ︷︷ ︸
mk terms

, (E.17)

where, for the sake of compactness, we omitted the dependence on the rapidities.

The set {m} represents the integers mk with k = 1, . . . , n, identifying a specific cluster

configuration for the 2n particles and fulfilling the constraint
n∑
k=1

2kmk = 2n1. For any

definite set {m}, the number of inequivalent ways of clustering is given by(
n∏
k=1

1

mk!

)
(2n)!∏n

k=1((2k)!)mk
(E.18)

The inverse relation can be obtained, resulting in the general expansion

g(2n) =
∑
{m}

f({m})
∑
pair.

n∏
k=1

G(2k) . . . G(2k)︸ ︷︷ ︸
mk terms

, (E.19)

where, in contrast to (E.17), the products of functions are weighted by the prefactor

f({m}) = (−1)pp! , p ≡
n∑
k=1

mk − 1 , (E.20)

containing also an oscillating sign. In an alternative manner, it is possible to sum over all

the permutations and account for the overcounting with the specific prefactor, rewriting

(E.17) and (E.19) as [35]

G(n)(u1, . . . , un) =
n∑
q=1

1

q!

∑
k1+...+kq=n

1

k1! . . . kq!
·

·
∑
P

g(k1)(uP1 , . . . , uPk1
) . . . g(kq)(uPn−kq+1

. . . , uPn) , (E.21)

1A similar formula holds in general, when also odd numbers of particles are allowed.
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g(n)(u1, . . . , un) =
n∑
q=1

(−1)q−1

q

∑
k1+...+kq=n

1

k1! . . . kq!
·

·
∑
P

G(k1)(uP1 , . . . , uPk1
) . . . G(kq)(uPn−kq+1

. . . , uPn) , (E.22)

which actually holds also for n odd.

In the following we discuss the asymptotic properties of g(2n), giving evidence of their

integrability g(2n) ∈ L1(R2n−1). This is a fundamental condition for the method in the

main text to work, see formula (5.27).

Asymptotic properties

To this aim, it is sufficient to prove that g(2n) belongs to the class L1(R2n−1), a stronger

condition as it involves the integral of |g(2n)|. To show g(2n) ∈ L1(R2n−1), we need to

address all the possible asymptotic behaviours in the integration space. The most general

situation concerns l subsets composed by ki (i = 1, . . . , l) variables going to infinity with

the shifts Λi = ciR, i = 1, . . . , l. A sufficient condition is

g(2n)(u1 + Λ1, . . . , uk1 + Λ1, uk1+1 + Λ2, . . . , uk1+k2 + Λ2, . . . , u∑
i ki

+ Λl, . . . , u2n) ' O(Ra≤−l−1) .

(E.23)

This is the generalisation of the one dimensional case Ra≤−2, once we take into account

the growth of the integration volume Rl−1. A rigorous proof of (E.23) is not easy, as the

number of regions is very large as n increases. However, there are many indications that

all the functions belong to L1(R2n−1). A thorough analysis of the condition (E.23) for the

first cases g(4) and g(6) will be more convincing and it is done later. Here we will also

address some of them for any n, giving more hints for g(2n) ∈ L1(R2n−1). The analysis here

is expoited in details in the appendix of [3].

Let us start with the analysis of g(2n): we observe that the function G(2n) behaves as

G(2n)(u1 + Λ1, u2 + Λ2, . . . , um + Λm, um+1, . . . , u2n) ∼ R−2k+2[ p2 ] , (E.24)

where 2k = m for even m, 2k = m + 1 for m odd and p ≤ m is the number of Λi which

mutually coincide. As a direct consequence of (E.19), the connected functions exhibit

instead a different asymptotic behaviour: in fact, when m is odd, i.e. m = 2k− 1, we find

g(2n)(u1 + Λ1, u2 + Λ2, . . . , u2k−1 + Λ2k−1, u2k, . . . , u2n) ∼ R−2k+2[ p−1
2 ] ; (E.25)

otherwise for even m = 2k, with 1 < m ≤ 2n− 2, a faster decay shows up

g(2n)(u1 + Λ1, u2 + Λ2, . . . , u2k + Λ2k, u2k+1, . . . , u2n) ∼ R−2k−2+2[ p2 ] . (E.26)
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So far, we considered the case with m particles to infinity, shifted by m (or by m−p+1)

different quantities Λi, i = 1, . . . ,m: the function g(2n) decays fast enough to be integrable.

This asymptotic region corresponds to the split 2n → p + m′ + 1 + . . . + 1, where m′ ≡
2n−m. However, these cases are just a small subset of all the different ways of grouping

particles. The most general case, represented by the formula (E.23), describe the split

2n→ k1 + · · ·+kl+1. Even though the general proof is very complicated, being the number

of asymptotic regions rapidly growing with n, a thorough analysis of the simplest cases

g(4), g(6) strongly hints that g(2n) belongs to L1(R2n−1) for any n.

• Four particles case g(4)

For the four point function g(4), the conditions above are sufficient to guarantee g(4) ∈
L1(R3), as all the asymptotic regions belong to the type 2n → p + m′ + 1 + . . . + 1.

However, as the polynomials (D.22) provides a compact formula for g(4), we can push

further the analysis and find the actual decay in the different regimes. We use the variables

αi ≡ θi+1 − θ1, for which the invariance under exchange of rapidities implies

g(4)(α1, α2, α3) = g(4)(−α1, α2−α1, α3−α1) = g(4)(α1−α2,−α2, α3−α2) = g(4)(α1−α3, α2−α3,−α3) .

(E.27)

When one of the αi grows to infinity, which corresponds to the split 4 → 3 + 1, we

obtain

g(4)(α1 + Λ, α2, α3) =
g

(4)
as (α2, α3)

Λ2
+O(Λ−3) , (E.28)

which is the minimum decay assuring integrability at infinity. A physically different limit

occurs when we split into 4 → 2 + 2, realized by sending two αi to infinity together. It

results in a faster decay2 than the expected O(Λ−2), namely

g(4)(α1 + Λ, α2 + Λ, α3) = O(Λ−4) . (E.29)

Now we introduce different shifts Λi, all of order R: this is the split 4→ 2 + 1 + 1, where

the function behaves as

g(4)(α1 + Λ1, α2 + Λ2, α3) = O(R−4) , (E.30)

that, again, turns out to be faster than the required O(R−3). The last region to analyse is

4→ 1 + 1 + 1 + 1, where our function decays as

g(4)(α1 + Λ1, α2 + Λ2, α3 + Λ3) = O(R−6) , (E.31)

2The result above means that the correction to the factorisation (5.15) are in fact of order O(Λ−4).
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faster than the minimum O(R−4).

Summarising, in all regions except 4→ 3 + 1, the connected function g(4) goes to zero

more rapidly than the minimum assuring integrability at infinity. This fact has practical

effects on the computation of the subleading term ln ln(1/z). In particular, the function

g
(4)
as (α2, α3) belongs to L1(R2), thanks to

g(4)
as (α2 + Λ, α3) = O(Λ−2), g(4)

as (α2 + Λ1, α3 + Λ2) = O(R−4) . (E.32)

assuring the validity of formula (5.47) for the subleading correction δs(4).

• Six particles case g(6)

With six scalars (n = 3) tha analysis is more involved due to the several different

asymptotic regions. Fortunately, all of them except one are already included in the subset

2n→ m+ p+ 1 + · · ·+ 1 analysed before. Let us recall the connected function g(6)

g123456 = G123456 − (G12G3456 + 14 d.e.) + 2(G12G34G56 + 14 d.e.) . (E.33)

where we made use of an obvious short-hand notation. The only new process we need

to address is 6 → 2 + 2 + 2, which is not trivial as it involves only groups composed by

an even number of particles, making the RHS of (E.33) of order O(1). As a consequence,

in addition to the finite part O(1), a refined cancellation of the subleading terms O(R−2)

needs to occur, a fact not a priori guaranteed by (E.11). We choose to group the particles

according to (12 34 56), leaving us with

g123456 = G123456 −G12G3456 −G34G1256 −G56G1234 + 2G12G34G56 +O(R−4) , (E.34)

By means of (E.8) and (E.29), the general condition (E.23) becomes

G(6)(u1+Λ1, u2+Λ1, u3+Λ2, u4+Λ2, u5, u6) = G(2)(u1, u2)G(2)(u3, u4)G(2)(u5, u6)+O(R−3) ,

(E.35)

which is not a straightforward extension of the previous results and represents a sort of

multiple factorisation.

To clarify the condition (E.35), we introduce the corrections to the single factorisation

process 2n→ 2k + 2(n− k) as

G(2n) → G(2k)G(2n−2k) +
∑
l

Λ−lS
(l)
2n,2k(u1, . . . , u2n) . (E.36)
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For the sake of the physical picture, we temporarily ignore that the quadratic subleading

S
(2)
(4,2) is actually vanishing. The cancellation of the terms O(R−2) in (E.34) occurs if

G(6)(u1 + Λ1, u2 + Λ1, u3 + Λ2, u4 + Λ2, u5, u6) = G(2)(u1, u2)G(2)(u3, u4)G(2)(u5, u6) +

+Λ−2
1 G(2)(u3, u4)S

(2)
4,2(u1, u2, u5, u6) + Λ−2

2 G(2)(u1, u2)S
(2)
4,2(u3, u4, u5, u6) +

+Λ−2
12 G

(2)(u5, u6)S
(2)
4,2(u1, u2, u3, u4) +O(R−3) (E.37)

If we use S
(2)
(4,2) = 0, we recover the previous formula (E.35): nevertheless, (E.37) is interest-

ing on its own for its clear physical meaning and it is easily extendible to any process of the

type 2n→ 2k1 + · · ·+ 2kl. Formula (E.37) is a relation among the subleading corrections

for different factorisation processes: in simple words, the multi-factorisation process gets

corrected by all the subleading terms associated to the various sub-factorisation involved,

which are three in the case 6→ 2 + 2 + 2. The constraint (E.37) translates into, for on the

polynomial P6

P6(12Λ1 34Λ2 56) = Λ8
1Λ8

2Λ8
12P2P2P2

[
1 + 2(u13 + u14 + u23 + u24)Λ−1

12 +

+ 2(u15 + u16 + u25 + u26)Λ−1
1 + 2(u35 + u36 + u45 + u46)Λ−1

2 +

+ 4(u13 + u14 + u23 + u24)(u15 + u16 + u25 + u26)Λ−1
12 Λ−1

1 +

+ 4(u13 + u14 + u23 + u24)(u35 + u36 + u45 + u46)Λ−1
12 Λ−1

2 +

+ 4(u15 + u16 + u25 + u26)(u35 + u36 + u45 + u46)Λ−1
2 Λ−1

1 +

+ ∆
(2)
4,2(u1, u2, u3, u4)Λ−2

12 + ∆
(2)
4,2(u1, u2, u5, u6)Λ−2

1 + ∆
(2)
4,2(u3, u4, u5, u6)Λ−2

2 +O(R−3)

]
,

(E.38)

In plain words, the quadratic corrections to the process 6 → 2 + 2 + 2 of P6 shall be

fixed by ∆
(2)
4,2, which parametrises the correction to the factorization 4→ 2 + 2, see (D.20).

It is easy to extend(E.38) to the general process 2n → 2k1 + · · · 2kl and check that the

highest degree P
(0)
2n satisfies these constraints. To ensure the integrability condition (E.23)

for any n and any split, the generalizations of (E.35), (E.37) and (E.38) must hold. A

deeper analysis of g(6), employing the sum over Young tableaux (3.9) with Mathematica,

confirms that in the limit 6→ 2+2+2 the function g(6) decays as O(R−4) and thus belongs

to the class L1(R5).

In conclusion, in spite of the lack of a general argument, we collected additional evidence

for g(2n) ∈ L1(R2n−1). We stress that the convergence of the integral in (1.68) is obvious

for theories without asymptotic freedom, as the functions g(n) decay exponentially. In

our case, the power-like decay not only gives the logarithmic correction log(1/z)s to the

correlator but also makes the convergence of the integrals more subtle.
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E.2.2 Polygons N > 6

This part is dedicated to the connected functions appearing for the bigger polygons, i.e.

N > 6.

We begin by writing the general formula

g(2n1,··· ,2nk) =

n1+···+nk∑
l=1

(−1)l−1(l − 1)!
∑
{
n

(j)
m

}
∑
d.e.

l∏
j=1

G(2n
(j)
1 ,··· ,2n(j)

k ) (E.39)

which relates them in terms of the original G(2n) characterising the expansion of the

Wilson loop.

Formula (E.39) is an extension of (E.19), valid for the hexagon. The number l counts the

functions G appearing in the product,
{
n

(j)
m

}
is the set of different products of l functions

and the last sum contains all the permutations (different exchanges) among the equivalent

rapidities. Of course, we have the constraints
∑l

j=1 n
(j)
m = nm. The total number of terms

in the sum
∑

d.e. is

k∏
m=1

(2nm)!

l∏
j=1

k∏
m=1

(2n(j)
m )!

1
l′∏

j′=1

(mj′)!

(E.40)

where l′ is the number of different G in the product and mj′ is the multiplicity of the

j′-th function. For instance, in G(2,0)G(2,0)G(0,4) we have l = 3 but l′ = 2 and
l′∏

j′=1

(mj′)! =

2!1! = 2.

From the decoupling of the Gs introduced in the main text

G(2n1,··· ,2nk,0,0,··· ,0,0,2m1,··· ,2ml) = G(2n1,··· ,2nk)G(2m1,··· ,2ml) (E.41)

G(2n1,··· ,2nk,0,0,··· ,0,0) = G(2n1,··· ,2nk) (E.42)

the same follows for the connected part

g(2n1,··· ,2nk,0,0,··· ,0,0) = g(2n1,··· ,2nk) (E.43)

while, for intermediate vacuum states, they are vanishing

g(.....,2n,0,0,.....,0,0,2m,.....) = 0, m, n 6= 0 (E.44)

The last tow formulae (E.43,E.44) are crucial to give rise to the recursion formula for the

polygons. In the following we put formula (E.39) to work for the simplest cases N = 7, 8

and for small number of particles ni.
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Heptagon Up to eight particles, the non trivial heptagonal functions are g(2,2), g(4,2),

g(2,4), g(4,4) and g(6,2), all the others are hexagonal thanks to (E.43).

The simplest is

g(2,2)(θ1, θ2; θ′1, θ
′
2) = G(2,2)(θ1, θ2; θ′1, θ

′
2)−G(2,0)(θ1, θ2; ∅)G(0,2)(∅; θ′1, θ′2) =

= G(2,2)(θ1, θ2; θ′1, θ
′
2)−G(2)(θ1, θ2)G(2)(θ′1, θ

′
2) (E.45)

The six particles function g(4,2), g(2,4) are related by symmetry and are given by

g(4,2)(θ1, θ2, θ3, θ4; θ′1, θ
′
2) = G(4,2)(θ1, θ2, θ3, θ4; θ′1, θ

′
2)−G(2)(θ′1, θ

′
2)G(4)(θ1, θ2, θ3, θ4)− (E.46)

−
(
G(2)(θ1, θ2)G(2,2)(θ3, θ4; θ′1, θ

′
2) + 5 terms

)
+ 2G(2)(θ′1, θ

′
2)
(
G(2)(θ1, θ2)G(2)(θ3, θ4) + 2 terms

)
where, inside the brackets, we have all the different permutations among the equivalent

rapidities θi in order to obtain a g(4,2) which is symmetric under exchange of any of them.

We write down g(4,4) omitting the dependence on the rapidities

g(4,4) = G(4,4) −G(4,0)G(0,4) −
(
G(2,2)G(2,2) + 17 terms

)
−
(
G(4,2)G(0,2) + 5 terms

)
−

−
(
G(2,0)G(2,4) + 5 terms

)
+ 2

(
G(2,0)G(2,0)G(0,4) + 2 terms

)
+

+ 2
(
G(0,2)G(0,2)G(4,0) + 2 terms

)
− 6

(
G(2,0)G(2,0)G(0,2)G(0,2) + 8 terms

)
+

+ 2
(
G(2,0)G(0,2)G(2,2) + 35 terms

)
(E.47)

Octagon From N = 8 the property (E.44) starts to play an important role, allowing us

to cancel many contributions. Since g2,0,2 = g4,0,2 = g2,0,4 = 0, the first non-zero octagonal

function is then

g(2,2,2) = G(2,2,2) −G(2,2,0)G(0,0,2) −G(2,0,2)G(0,2,0) −G(0,2,2)G(2,0,0) + 2G(2,0,0)G(0,2,0)G(0,0,2)

(E.48)

in which we do not have any permutation as there are at most only two rapidities in each

set.

More explicitly, making use of (E.41) and (E.42), we have

g(2,2,2)(θ1, θ2; θ′1, θ
′
2; θ′′1 , θ

′′
2) = G(2,2,2)(θ1, θ2; θ′1, θ

′
2; θ′′1 , θ

′′
2)−G(2,2)(θ1, θ2; θ′1, θ

′
2)G(2)(θ′′1 , θ

′′
2)−

−G(2)(θ1, θ2)G(2,2)(θ′1, θ
′
2; θ′′1 , θ

′′
2) +G(2)(θ1, θ2)G(2)(θ′1, θ

′
2)G(2)(θ′′1 , θ

′′
2) (E.49)



Bibliography

[1] A. Bonini, D. Fioravanti, S. Piscaglia, M. Rossi, Strong Wilson polygons from the

lodge of free and bound mesons, JHEP04 (2016) 029, arXiv:1511.05851 [hep-th];

[2] A. Bonini, D. Fioravanti, S. Piscaglia, M. Rossi, Contribution of scalars to N =

4 supersymmetric Yang-Mills amplitudes, Phys.Rev. D95, 2017 041902(R) and

arXiv:1607.02084 [hep-th];

[3] A. Bonini, D. Fioravanti, S. Piscaglia, M. Rossi, The contribution of scalars to N=4

SYM amplitudes II: Young tableaux, asymptotic factorisation and strong coupling,

arXiv:1707.05767 [hep-th];

[4] A. Bonini, D. Fioravanti, S. Piscaglia, M. Rossi, N = 4 polygons: fermions, Contri-

bution to proceedings, to appear

[5] A. Bonini, D. Fioravanti, S. Piscaglia, M. Rossi, The fermions contribution to N = 4

amplitudes, to appear

[6] J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP

03 (2003) 013 and [hep-th/0212208];

[7] J.Maldacena, The Large N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] and

[hep-th/9711200];

[8] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)

253 and [hep-th/9802150];

[9] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-

critical string theory, Phys. Lett. B 428 (1998) 105 and [hep-th/9802109];

[10] G. ’t Hooft, Dimensional Reduction in Quantum Gravity, Conf.Proc. C930308 (1993)

284-296 and arXiv:gr-qc/9310026

175



176 BIBLIOGRAPHY

[11] L.F.Alday, D.Gaiotto, J.Maldacena, A.Sever and P.Vieira, An Operator Product Ex-

pansion for Polygonal null Wilson Loops, JHEP 1104:088,2011 and arXiv:1006.2788

[12] B.Basso, A.Sever and P.Vieira, Space-time S-matrix and Flux-tube S-matrix at Finite

Coupling for N=4 Supersymmetric Yang-Mills Theory, Phys.Rev.Lett. 111 (2013)

no.9, 091602 and arXiv:1303.1396

[13] L.F.Alday and J.Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06

(2007) 064, arXiv:0705.0303 [hep-th];

[14] A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N=4 super Yang-

Mills and Wilson loops, Nucl. Phys. B794 (2008) 231 and arXiv:0707.1153 [hep-th];

[15] J. Drummond, G. Korchemsky and E. Sokatchev, Conformal properties of four-

gluon planar amplitudes and Wilson loops, Nucl. Phys. B795 (2008) 385 and

arXiv:0707.0243 [hep-th];

[16] L.F.Alday, D. Gaiotto, J.Maldacena, Thermodynamic Bubble Ansatz, JHEP09 (2011)

032, arXiv:0911.4708 [hep-th];

[17] L. Alday, J. Maldacena, A. Sever, P. Vieira, Y-system for Scattering Amplitudes, J.

Phys. A43 485401 (2010) and arXiv:1002.2459 [hep-th];

[18] D. Fioravanti, S. Piscaglia, M. Rossi, Asymptotic Bethe Ansatz on the GKP vacuum

as a defect spin chain: scattering, particles and minimal area Wilson loops, Nucl.

Phys. B898 (2015) 301, arXiv:1503.08795 [hep-th];

[19] B. Basso, A. Sever, P. Vieira, Space-time S-matrix and Flux tube S-matrix III. The

two-particle contributions, JHEP08 (2014) 085, arXiv:1402.3307 [hep-th];

[20] N.Nekrasov, Seiberg-Witten Prepotential From Instanton Counting,

Adv.Theor.Math.Phys. 7 (2004) 831, arXiv:0206161 [hep-th]

[21] B. Basso, A. Sever, P. Vieira, Collinear Limit of Scattering Amplitudes at Strong

Coupling Phys. Rev. Lett. 113 (2014) 26, 261604, arXiv:1405.6350 [hep-th];

[22] L. Alday, J. Maldacena, Comments on operators with large spin, JHEP11 (2007) 019,

arXiv:0708.0672 [hep-th];

[23] B. Basso, A. Sever, P. Vieira, Hexagonal Wilson Loops in Planar N = 4 SYM Theory

at Finite Coupling, Journal of Physics A: Mathematical and Theoretical, Volume 49,

Number 41 (2016) arXiv:1508.03045 [hep-th];



BIBLIOGRAPHY 177

[24] H. Bethe (1931).Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der lin-

earen Atomkette. (On the theory of metals. I. Eigenvalues and eigenfunctions of the

linear atom chain), Zeitschrift fr Physik, 71:205226 (1931)

[25] B. Sutherland, Model for a multicomponent quantum system, Phys. Rev. B12 (1975)

9;

[26] E. Ogievetsky, P. Wiegmann, Factorizes S-matrix and the Bethe Ansatz for simple

Lie groups, Phys. Lett. B168 (1986) 4;

[27] M. Takahashi and M. Suzuki, One-dimensional anisotropic Heisenberg model at finite

temperatures, Prog. Theor. Phys. 48 (1972) 2187

[28] L.D.Faddeev, How Algebraic Bethe Ansatz works for integrable model, arXiv:hep-

th/9605187

[29] L.D.Faddeev, Algebraic Aspects of Bethe-Ansatz, Int.J.Mod.Phys. A10 (1995) 1845-

1878 and arXiv:hep-th/9404013

[30] S. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev.,

vol. 159, 1967, pp. 12511256

[31] S.Parke, Absence of particle production and factorization of the S-matrix in 1 + 1

dimensional models, Nucl.Phys B174 (1980) 166

[32] P.Dorey, Exact S-matrices, arXiv:hep-th/9810026

[33] A. B. Zamolodchikov, Exact s Matrix of Quantum Sine-Gordon Solitons, JETP Lett.

25 (1977) 468.

[34] A. B. Zamolodchikov and A. B. Zamolodchikov, Factorised s Matrices in Two-

Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Models,

Annals Phys. 1 20 ( 1979) 253.

[35] F.A. Smirnov, Reductions of the Sine-Gordon as a perturbation of minimal models of

conformal field theory, Nucl.Phys B337 (1990) 156;

[36] H. M. Babujian, A. Foerster, M. Karowski, The Form Factor Program: a Review and

New Results - the Nested SU(N) Off-Shell Bethe Ansatz, arXiv:hep-th/0609130



178 BIBLIOGRAPHY

[37] Al. B. Zamolodchikov, THERMODYNAMIC BETHE ANSATZ IN RELATIVIS-

TIC MODELS: SCALING 3-STATE POTTS AND LEE-YANG MODELS, Nuclear

Physics B342 (1990) 695720

[38] C. Yang and C. Yang, Thermodynamics of one-dimensional system of bosons with

repulsive delta function interaction, J.Math.Phys. 10 (1969) 11151122

[39] Al. B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless

ADE scattering theories, Physics Letters B253 (1991) 391-394

[40] F. Ravanini, R. Tateo, A. Valleriani, Dynkin TBAs, Int. J. Mod. Phys. A8 (1993)

1707 and arXiv:hep-th/9207040;

[41] P. Dorey, R. Tateo, Excited states by analytic continuation of TBA equations,

Nucl.Phys.B482:639-659,1996 and arXiv:hep-th/9607167

[42] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B Volume

72, Issue 3, 18 April 1974, Pages 461-473

[43] I. Bena, J. Polchinsky, R. Roiban, Hidden symmetries of the AdS5 × S5 superstring,

Phys.Rev. D69 (2004) 046002 and arxiv:hep-th/0305116;

[44] N. Beisert, M. Staudacher, Long-range PSU(2, 2|4) Bethe Ansatz for gauge theory

and strings, Nucl. Phys. B727 (2005) 1 and hep-th/0504190;

[45] N. Beisert, M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys.

B670 (2003) 439 and hep-th/0307042;

[46] N. Beisert, C. Kristjansen and M. Staudacher, The Dilatation operator of conformal

N=4 superYang-Mills theory, Nucl. Phys. B664 (2003) 131 and hep-th/0303060;

[47] D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar

AdS/CFT: a proposal, J. Phys. A42 (2009) 375401 and arXiv:0902.3930 [hep-th];

[48] G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS5×S5 Mirror

Model, JHEP05 (2009) 068 and arXiv:0903.0141 [hep-th];

[49] N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact Spectrum of Anomalous

Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory: TBA and excited

states, Lett. Math. Phys. 91 (2010) 265 and arXiv:0902.4458 [hep-th];



BIBLIOGRAPHY 179

[50] N. Gromov, V. Kazakov, S. Leurent, D. Volin, Quantum Spectral Curve for Pla-

nar N = 4 Super-Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 1, 011602 and

arXiv:1305.1939 [hep-th];
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