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General Abstract 
 
 

This PhD dissertation deals with the mathematical modeling of the 

electrophysiology of cardiac cells, in particular the human sinoatrial node (SAN). 

The SAN is the primary pacemaker in physiological conditions. To carry out 

this function, SAN tissue is characterized by auto-ryhthmicity, i.e. it does not need 

external stimuli to initiate the electrical signal that must be spread out through the 

whole heart. At the single cell level, the auto-rhythmic behavior is due to the 

spontaneous slow depolarization during the diastolic phase. Understanding the 

biophysical mechanisms at the base of diastolic depolarization (DD) is crucial to 

modulate the heart rate (HR). In turn, HR modulation is fundamental to treat 

cardiac arrhythmias, so that atria and ventricles can fill properly and pump the 

blood into the cardiovascular system.  

The overall aim of this PhD thesis is the investigation of the underlying 

mechanisms that are responsible for the pacemaking in human. To this end, a 

human computational model of the action potential (AP) of the SAN was 

developed.  

 

The faced fields of interest concerned: 

• Pacemaking modulation at single cell level  

• Effects of ion channel mutations on the beating rate 

• Propagation of the electrical trigger from SAN to atrial 

tissue 

 

The human single cell SAN model was developed starting from the state-of-art 

rabbit SAN by Severi et al.; the parent model was updated with experimental data 

and automatic optimization in order to match the AP features reported in 

literature. A sensitivity analysis was then performed in order to identify the most 

influencing parameters.  



	 3	

The investigation of pacemaking modulation was carried out through the 

simulation of current blockade and mimicking the stimulation of the autonomic 

nervous system.  

The model was validated comparing the simulated electrophysiological effects 

due to ion channel mutations on beating rate with clinical data of symptomatic 

subjects carriers of the mutation. 

More insights on pacemaking mechanisms were obtained thanks to the 

inclusion of calcium-activated potassium currents, which link changes in the 

intracellular calcium to the membrane. 

Finally, the propagation of the action potential from the SAN to the atrial tissue 

and the source-sink interplay was investigated employing a mono-dimensional 

strand composed by SAN and atrial computational model. 

 

The human SAN model developed in this dissertation showed the main AP 

features in agreement with the experimental data reported in literature and allowed 

to provide insights about the modulation of the beating rate, and thus, the 

macroscopic heart rate. The human SAN model developed in this dissertation 

showed the main AP features in agreement with the experimental data reported in 

literature and allowed to provide insights about the modulation of the beating rate, 

and thus, the macroscopic heart rate. 

The effects of ion channels mutations affecting the “funny current”, the sodium 

current, and the slowly delayed rectifier potassium current simulated by the SAN 

model were consistent with the variations of heart rate observed in clinical 

studies. The validation, therefore, stated that the model provides a reliable 

description of SAN activity and represents an useful tool for scientific 

community. 

The investigation of underlying mechanisms of pacemaking highlighted the 

capability of If to finely control the diastolic depolarization; furthermore it 

contributed to autonomic modulation with IK,ACh and ICaL for the vagal and 

adrenergic stimulation respectively. 

The inclusion of ISK showed the capability of that current to affect diastolic 

depolarization in a relevant manner, especially when present in large amount. On 
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the contrary, the contribution of IBK in beating rate modulation was almost 

negligible. 

The carried out study about electrical conduction highlighted the capability of 

human SAN model of successfully driving the atrial tissue for a wide range of 

coupling. The extent of that range was dependent by the number of SAN cells that 

compose the electrical source. The presence of an electrical load, due to the atrial 

tissue, revealed that the model can show, with the same set of parameters, “central 

cell” and “peripherical cell” morphology thanks to the activity of INa  

Several results here proposed have to be meant as predictions since human 

specific experimental data are still scarce. In this way the human computational 

AP model can be used as useful tool to gain knowledge about pacemaking 

phenomena, through the interaction between experiments and modeling. 
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Introduction 
 

The sinoatrial node (SAN) is the primary pacemaker, responsible for the heart 

rate in physiological conditions. In other words, it is what keeps the heart ticking. 

Galen (129-200 A.D.) first, and twelve centuries later Leonardo da Vinci 

(Noble, 1966; Opthof, 1988) described the auto-rhythmicity of the heart. However 

only in 1907 the SAN was anatomically identified as “a small condensed area of 

tissue, just where the cava sank into the auricle” by Sir Arthur Keith and Martin 

Flack (Keith & Flack, 1907); four years later, in 1911, SAN was indicated as the 

point of the initial cardiac stimulation(Monfredi	et	al.,	2010) . 

SAN cells are electrical specialized myocytes, i.e. they carry out the task of 

generating and spreading out the electrical impulse to the whole heart. This 

particular function makes the action potential (AP) waveform of SAN, its 

“electrical signature”, profoundly different from the one of working myocytes, as 

atrial and ventricular cells. When they are not stimulated, working myocytes show 

stable negative resting potential, whereas SAN cells are characterized by a 

unstable diastolic phase, that makes the membrane potential to slowly move to 

less negative (depolarized) values. This characteristic phase of pacemaker cells is 

called spontaneous diastolic depolarization (DD). 

The main characteristic of SAN cells is their auto-oscillating nature, i.e. they 

do not need any external stimulus to trigger the AP. The spontaneous DD is 

driven by a small inward current, result of a sophisticated balance of several 

inward and outward currents. The “Funny current” (If), the transient, long lasting 

calcium currents (ICaT and ICaL) and the sodium-calcium (Na+-Ca2+) exchanger 

(INaCa) contribute to the depolarization, carrying sodium (Na+) and calcium (Ca2+) 

into the cell, whereas outward potassium (K+) currents, as the rapid (IKr) and the 

slow delayed rectifier (IKs) participate to the repolarization. A stronger 

contribution of inward currents shortens the duration of DD thus allowing a faster 

rate of the spontaneous APs. On the other hand, a stronger outward current causes 

a DD prolongation, which leads to a slower rate.  
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The pharmacological modulation of the heart rate is used in clinical practice to 

treat cardiac arrhythmias. Current blockers are chemical species able to reduce the 

activity of ion channels: by targeting the currents involved during DD it is 

possible to control its steepness, and thus its duration. Electrophysiological studies 

and clinical trials showed the capability of ivabradine, a If blocker, to slowdown 

the heart beat without any side-effect thanks to its high selectivity (see the 

BEAUTIfUL study). 

The experimental quantification of current contributions during DD is often a 

challenging task: ion channel blockers can often affect more than one target and 

several unpredictable interactions can occur. Mathematical and computational 

modeling, thanks to simplification and abstraction, can help to disclose and to 

describe quantitatively the mechanisms in biophysical systems.  

The first mathematical description of the rhythmicity of the heart was 

formulated by van der Pol and van der Mark (1928). Such model was able to 

reproduce the key properties of nerves and heart cells as excitable elements, i.e. 

the stimulus threshold, the membrane excitability and refractoriness. The main 

conceptual limit is the absence of a link between the electrical activity and the 

underlying biophysical phenomena.  

The investigation on the squid giant axon carried out by Hodgkin & Huxley 

(1952) represents a milestone in electrophysiology and AP modeling. They 

represented the behavior of the cellular membrane and ion channels as the 

behavior of an electrical circuit composed by a capacitance in parallel to a 

variable conductance; the variation of the membrane voltage is proportional to the 

sum of the inward and outward currents. The time- and voltage-dependent 

conductance of ion channels was achieved through the activation and inactivation 

of gating variables, described by differential equations. In this way, Hodgkin & 

Huxley (1952) were the firsts who linked the flux of Na+ and K+  through the 

membrane to the electrical activity of the cell. 

The Hodgkin-Huxley paradigm was then extended to cardiac excitable cells. 

The Purkinje fibers model by Noble (1960, 1962) was the first cardiac 

computational model. Several years after, Yanagihara & Irisawa (1980) published 

the first computational model based on rabbit SAN electrophysiological data.  
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The refinement of electrophysiological measurements and cell preparation 

techniques (e.g. the capability of measuring single currents, to obtain isolated 

cells) allowed investigating more in details the mechanisms of pacemaking and 

formulating more comprehensive models, by introducing new current 

formulations and ionic concentration dynamics. 

In spite of the abundance of in vitro data, the principal mechanism responsible 

for the initiation and modulation of the heartbeat is still debated.  

The “Membrane clock” theory is the most consolidated one with strong 

experimental evidences that support it. Recenly, the “Ca2+ clock” theory was 

proposed. On one hand, the “Membrane clock” theory confers the primary role in 

membrane automaticity and pacemaking modulation to ion channels, especially to 

If. Indeed, the biophysical properties of If (e.g. activation at potentials compatible 

with DD, inward contribution, enhancement in β-adrenergic stimulation), make it 

a strong candidate to the spontaneous DD initiation and modulation. On the other 

hand, the “Calcium clock” theory is based on the spontaneous release of Ca2+ 

from the sarcoplasmic reticulum. Ca2+ cycling is able to change the membrane 

voltage through the ignition of the Na+-Ca2+ exchanger. The experimental and 

computational work by Himeno	 et	 al.,	 (2011) highlighted that the chelation of 

cytosolic Ca2+, and thus an impairment of Ca2+ clock did not affect the heart rate 

in guinea pig SAN, suggesting a predominant role of “membrane clock”. 

The state-of-the-art models (Maltsev	&	Lakatta,	2009;	Himeno	et	al.,	2011;	

Severi	 et	 al.,	 2012) are based on plethora of animal experimental data (in 

particular rabbit and guinea pig) and they allow to describe relevant phenomena; 

unfortunately, way less data are available on human SAN cells. Such shortage of 

human data is because, usually failing explanted hearts do not contain the SAN, 

since it remains inside the chest of the receiver of the new functional heart during 

transplantation. The unique electrophysiological work on adult human SAN was 

carried out by Verkerk	 et	 al.	 (2007), whereas Chandler et al. (2009) 

characterized the human SAN through gene expression, quantifying the mRNA in 

SAN cells. In this way, the limited availability of human specific data hampered 

the development of a computational model of human SAN. 
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Mathematical modeling provides a simplification and abstraction to the 

description of biophysical phenomena, and can be exploited as a white box to 

observe the mechanisms that are responsible for the emergent behavior. Cardiac 

cells are strongly non-linear dynamical systems and often it is challenging to 

predict or explain the effects consequent to drug administration or blockade of 

currents.  

The lack of human electrophysiological data for SAN is a critical obstacle to 

the formulation of a comprehensive human specific model. Luckily, optimization 

techniques represent useful tools to fill this gap of knowledge, using the available 

experimental data as a tight constrains. 

The development of a human SAN model, based on the human-specific 

available current formulations could allow to “dissect” the net current in all its 

components, providing an estimation of the contribution to pacemaking of each 

current.  

The knowledge about the mix of currents during DD can therefore help to 

identify pharmacological targets to modulate the heart rate, the macroscopic 

marker used in clinical practice. 

 

The overall aim of this PhD dissertation is the investigation of the underlying 

pacemaking mechanisms involved in the human SAN. 

To this end, a computational human SAN single cell model able to reproduce 

(i) the experimental data in physiological conditions, (ii) the effects of 

administration of drugs, and (iii) the changes in beating rate, due to ion channel 

mutations, was developed.  

 

 

PhD Thesis Outline 
 

 

The first step to investigate the mechanisms at the base of human pacemaking 

was the development of the mathematical AP model of human SAN at the single 

cell level (Chapter 1) .The rabbit SAN model by Severi	 et	 al.	 (2012), was 
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adopted as parent model. It was updated using (i) electrophysiological human 

specific data, (ii) gene expression mRNA quantities to scale ion channel 

conductance; (iii) an automatic optimization procedure was performed to tune 

parameters on which no experimental data were available. The simulated 

waveform and the extracted features were compared to experimental data. A 

sensitivity analysis was then carried out in order to identify the parameters that 

mostly influence the behavior of the AP model. 

 In Chapter 2 the impact on heart rate due to the modulation of the two 

main actors of “membrane clock” and “calcium clock” theories, namely If and 

INaCa was investigated. Moreover, the effects of autonomic stimulation were 

assessed simulating the effects due to the administration of acetylcholine (vagal 

stimulation) and isoprenaline (to mimic the adrenergic stimulation). 

 The validation of the model was performed reproducing the effects on 

beating rate of ion channel mutations (Chapter 3). To this end, the 

electrophysiological characterization of a selection of mutation affecting If, the 

fast Na+ current (INa) and IKs were implemented in the SAN model. Furthermore 

the effects of three mutations affecting If (G480R, A485V and 695X) were 

assessed at low, basal and high rates. 

 In Chapter 4 the impact of the inclusion of new currents was investigated. 

The small (ISK) and large conductance (IBK) K+ Ca2+-dependent currents were 

added to the original model and a preliminary sensitivity analysis was performed 

Finally, the focus was moved on how the SAN impulse spread out, 

investigating how a small tissue as SAN can drive a larger one as atrial tissue 

(Chapter 5). A mono-dimensional strand composed by SAN and atrial cells was 

built and a study of the propagation of the electrical stimulus was carried out 

varying the strength of electrical coupling and the number of SAN and atrial cell 

mix. 
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Abstract 
 

The sinoatrial node (SAN) is the normal pacemaker of the mammalian heart. 

Over several decades, a large amount of data on the ionic mechanisms underlying 

the spontaneous electrical activity of SAN pacemaker cells has been obtained, 

mostly in experiments on single cells isolated from rabbit SAN. This wealth of 

data has allowed the development of detailed mathematical models of the 

electrical activity of rabbit SAN pacemaker cells.  

The present study aimed to construct a comprehensive model of the electrical 

activity of a human SAN pacemaker cell using recently obtained 

electrophysiological data from human SAN pacemaker cells.  

We based our model on the recent Severi–DiFrancesco model of a rabbit SAN 

pacemaker cell; updates of formulation concerning currents, pump and exchangers 

were implemented including electrophysiological and gene expression data 

collected from human SAN cells present in literature. The tuning of parameters of 

which no experimental data were available was carried out through an automatic 

optimization procedure. A sensitivity analysis was performed in order to identify 

the most influencing parameters on AP features. 

The model showed AP features in accordance with experimental data (CL = 

814 vs 828 ± 21 ms, APD90 = 161.5 vs 143.5 ± 49.3 ms, DDR100 = 48.1 vs 48.9 ± 

25.4 mV/s) and qualitative reproduction of the experimentally observed calcium 

transient time course. 

Sensitivity analysis highlighted a remarkable influence of ICaL and IKr on AP 

waveform and AP duration, respectively. 
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1.1 Introduction 
 

There is no need to explain the important role of the sinoatrial node (SAN) in 

cardiac function. Many studies have focused on this small but crucial piece of 

cardiac tissue and provided detailed knowledge of the physiological processes 

governing its function. Yet we still have an incomplete understanding of the 

cellular basis of the pacemaker activity of the SAN and, specifically, the degree of 

contribution of the different mechanisms involved is still debated (Lakatta & 

DiFrancesco, 2009;DiFrancesco, 2010; Lakatta, 2010; Maltsev & Lakatta, 2010; 

Noble et al., 2010; Verkerk & Wilders, 2010; Himeno et al., 2011; DiFrancesco 

& Noble, 2012; Lakatta & Maltsev, 2012; Rosen et al., 2012; Monfredi et al., 

2013; Yaniv et al., 2013, 2015). 

To date, almost all experiments on SAN electrophysiology have been carried 

out on animals, particularly rabbits. These experiments have shed light on several 

aspects, such as characteristics of membrane currents, effects of ion channel 

blockers, calcium handling and beating rate modulation. This considerable 

amount of data has allowed the development of increasingly comprehensive and 

detailed action potential (AP) models (Wilders, 2007) subsequent to the first 

mathematical models reproducing pacemaker activity being created (McAllister et 

al., 1975; Yanagihara et al., 1980; Noble & Noble, 1984; DiFrancesco & Noble, 

1985). 

 Recently, novel SAN AP models have been proposed, incorporating detailed 

calcium-handling dynamics and providing in-depth descriptions of the underlying 

events at the cellular level in guinea-pig, mouse and rabbit (Himeno et al., 2008; 

Maltsev & Lakatta, 2009; Kharche et al., 2011; Severi et al., 2012).  

However, the translation of animal data/models to humans is not 

straightforward (probably even less so for SAN pacemaker cells than working 

myocardial cells), given the big difference in their main ‘output’ (i.e. pacing rate) 

between human and laboratory animals. 

Very few measurements are available for human SAN cells because failing 

explanted hearts, as obtained during heart transplantation, usually do not contain 
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the SAN region, which remains inside the receiver’s chest. Drouin (1997) was the 

first to record human adult APs from SAN tissue, obtained from four subjects 

affected by left ventricle infarction. Ten years later Verkerk et al. (2007b) 

investigated the electrophysiological properties of three isolated SAN cells from a 

woman who underwent SAN excision because of a paroxysmal non-treatable 

tachycardia. They recorded APs and characterized the funny current using whole-

cell patch clamp in current clamp and voltage clamp mode. In a subsequent study 

(Verkerk et al., 2013), the same group reported further data from the same patient, 

regarding the calcium transient (CaT) measured by indo-1 fluorescent dye.  

Some proof-of-concept attempts have been made to model spontaneous activity 

in human cardiac pacemaker cells. Seemann et al. (2006) presented the first 

human SAN AP model as part of a wider 3D model of human atria. Their model 

started from the model of Courtemanche et al. (1998) of the human atrial AP and 

achieved automaticity by including rabbit SAN currents (e.g. If, ICaT, etc.), 

formulated in accordance with Zhang et al. (2000). Unfortunately, no reliable 

experimental comparisons could be made with the model of Seemann et al. 

(2006). Chandler et al. (2009) described the ‘molecular architecture’ of adult 

human SAN tissue obtained from healthy hearts, comparing it to the non-

specialized tissue of the right atrium. They developed a SAN model, again 

starting from the model of Courtemanche et al. (1998); by scaling the maximal 

conductances based on mRNA data, they provided a proof of concept that 

automaticity can be the result of the specific gene expression pattern of human 

SAN tissue. However, some mechanisms were not included, and no quantitative 

AP features were computed or compared with the human data available at that 

time. Accordingly, as Chandler et al. (2009) themselves affirmed, ‘the resulting 

model cannot be considered definitive and is a guide only’. 

Recently, Verkerk & Wilders (2015) computationally investigated mutations 

affecting hyperpolarization-activated cyclic nucleotide-gated cation channel 4 

(HCN4) channels, but they ‘… preferred to study If in simulated action potential 

clamp experiments, thus ensuring that the action potential followed the course of 

that of a human SAN pacemaker cell’ because a human SAN AP model was not 

formulated yet. Thus, they highlighted the need for such a model. 
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Much more recent is the human SAN AP model formulated by Pohl et al. 

(2016). In their model, to investigate the cardiac neuromodulation (as exerted by 

vagal stimulation) that aims to reduce heart rate, they focused their attention on 

the effects that acetylcholine has on the rate. Starting from the rabbit SAN model 

reported by Dokos et al. (1996) they updated current formulations, integrating 

data from human SAN cells (Verkerk et al. 2007b) and human ion channels 

expressed in heterologous systems (HEK or tsA-201 cells, Xenopus oocytes, etc.). 

The simulated cycle length (CL) was in accordance with the experimental 

recordings of human SAN cell APs by Verkerk et al. (2007b) but, unfortunately, 

the AP morphology, both during the diastolic depolarization (DD) phase and AP, 

was very unlike that obtained experimentally. 

The main aim of the present study is the formulation of a human SAN AP 

model strictly based on and constrained by the available electrophysiological data. 

We started from the recent rabbit SAN model by Severi et al. (2012), which 

integrates the two principal mechanisms that determine the beating rate: the 

‘membrane clock’ and ‘calcium clock’ (Maltsev & Lakatta, 2009; Lakatta et al., 

2010). Several current formulations were updated based on available 

measurements. A set of parameters, for which no specific data were available, 

were tuned to reproduce the measured AP and calcium transient data. We then 

used the model to assess the effects of several mutations affecting heart rate and 

investigated the rate modulation in some relevant conditions (see Chapter 2 and 

3). 
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1.2 Methods 
 
1.2.1 Model development 
 
The starting point of our work was the rabbit SAN cell model by Severi et al. 

(2012). Several currents, pumps and exchangers were reviewed, based on 

electrophysiological data from human SAN cells (Verkerk et al., 2007b), self-

beating embryonic human cardiomyocytes (Danielsson et al., 2013), as selected 

for their automaticity, and data on gene expression patterns in SAN vs. atrial 

human cells (Chandler et al. 2009). Specifically, the model was constrained by: 

AP parameters obtained from three isolated human SAN pacemaker cells by 

Verkerk et al. (2007b); the voltage clamp data on If in the same three cells 

(Verkerk et al., 2007b); the effect of 2 mM Cs+, as an If blocker, on the AP of a 

single isolated human SAN pacemaker cell (Verkerk et al. 2007b); and the Ca2+ 

transient data of a single isolated human SAN pacemaker cell (Verkerk et al., 

2013). For a small set of parameters for which no specific experimental data were 

available, values were obtained via an automatic optimization procedure (see 

below).  

Figure 1.1 shows a schematic diagram of the human SAN AP model. The 

compartmentalization, essential for the calcium handling description, is inherited 

from the parent model, as were the sarcolemmal ionic currents, pumps and 

exchangers. The ultra-rapid delayed rectifier K+ current (IKur) was developed 

independently. Table 1.1 reports the changes with respect to the rabbit SAN 

model and the rationale for each. All model equations and parameter values are 

provided in Appendix 1. 
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1.2.2 Automatic optimization procedure 
 
An automatic optimization was performed to tune the parameters for which 

human experimental data were not available to fit the recorded AP and cytosolic 

calcium transient traces (Verkerk et al. 2007b, 2013).  

The cost function of the optimization procedure was based on quantitative data 

on AP features [action potential amplitude (APA), maximum diastolic potential 

(MDP), cycle length (CL), maximum rate of rise of membrane potential 

[(dV/dt)max], action potential duration (APD20, APD50, APD90), diastolic 

depolarization rate (DDR100)], intracellular calcium transients [diastolic [Ca2+]i, 

systolic [Ca2+]i, intracellular CaT duration (TD20, TD50, TD90)] and the effect of 

the administration of 2 mM Cs+, a funny current blocker, on CL (Verkerk et al. 

2007b, 2013). The most critical features (CL, MDP and CL prolongation in 

Figure	1.1:	Schematic	diagram	of	the	human	SAN	cell	model.	The	cell	is	divided	in	three	

compartments:	 sub-sarcolemma,	 cytosol,	 and	 sarcoplasmic	 reticulum	 (SR),	 which	 is	 sub-

divided	in	junctional	and	network	SR.	Ca2+	handling	is	described	by:	two	diffusion	fluxes	(Jdiff	

from	the	subsarcolemmal	space	to	the	cytosol	and	Jtr	from	the	network	SR	to	the	junctional	

SR),	the	Ca2+	uptake	from	the	cytosol	into	the	network	SR	by	the	SERCA	pump	(Jup),	and	the	

Ca2+	 release	 (Jrel)	 from	 the	 junctional	 SR	 into	 the	 subsarcolemmal	 space	 by	 the	 ryanodine	

receptors	 (RyRs).	 Sodium,	 calcium,	 and	 potassium	 ions	 pass	 the	 sarcolemmal	 membrane	

through	11	different	ionic	channels,	pumps	and	exchangers,	as	indicated.	
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response to Cs+) were weighted more heavily. After each simulation, the set of 

quantitative descriptors was extracted and compared with the experimental data. 

If a particular observed feature fell out of the experimental mean ± SEM range, 

the contribution of this feature to the overall cost was increased in a linear way; 

otherwise, no handicap was added. The search for the optimal solution was 

conducted using the Nelder–Mead simplex method (Lagarias et al., 1998). 

 The obtained parameters are shown in Table 1.1. Further details on the 

optimization procedure are reported in Appendix 2.

 

 
 
 1.2.3 Cell capacitance and dimensions 
 
 

We assumed a membrane capacitance (Cm) of 57 pF, and a cylindrical cell 

shape with a length of 67 µm and a diameter of 7.8 µm, in accordance with the 

experimental data of Verkerk et al. (2007b), who reported values of 56.6 ± 8.7 pF, 

66.7 ± 6.3 µm and 7.8 ± 0.4 µm (mean ± SEM, n = 4), respectively. The 

dimensions of the intracellular compartments, expressed as a percentage of cell 

volume, were adopted from the parent model. 

 

1.2.4 Membrane currents 
 
 

Here, we specify each of the sarcolemmal currents flowing through the ionic 

channels, pumps and exchangers shown in Fig. 1.1. The outward acetylcholine-

activated potassium current IK,ACh, will be described in Chapter 2, in the section 

related to the autonomic modulation. All membrane currents were scaled up by 

the new value of the cell capacitance, aiming to maintain the conductance 

densities adopted from the parent model. Changes to the conductance densities, as 

a result of parameter tuning, are reported in the corresponding current subsections.
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Table 1.1 - Changes with respect to the parent model. 
 
 

Updates Rationale 
Cell Capacitance and 
dimensions 

Cm=57 pF, Lcell=67 µm,  
Rcell =3.9 µm 

Human SAN data 
(Verkerk et al., 2007b) 

If New formulation Human SAN data 
(Verkerk et al., 2007b) 

IKr New steady-state activation, 
gKr= +10% 
 

Embryonic human data 
(Danielsson et al., 2013) 

IKs 
	

New steady-state activation, 
gKs= -78% 
 

Embryonic human data 
(Danielsson et al., 2013) 

IKur 
	

Added, gKur = 6% of atrial 
Formulation from Maleckar 
et al. (2009) atrial cell 
model 

Gene expression data 
(Chandler et al., 2009) 

and automatic optimization 
(APD) 

Ito 
	

gto = -1.5% 
 

Automatic optimization (OS) 

IK,ACh 
	

gK,ACh = -77.5% 
 

Fitting of ACh effects in 
rabbit 

INaK 
	

gNaK = -28% 
 

Automatic optimization 
(CL) 

ICaL 
	

V½,dL= -16.45 mV, kdL= 
4.32 mV  
(dL gate) PCaL= +28.5% 
 

Automatic optimization 
(CL) 

ICaT 
	

PCaT = +15% 
 

Automatic optimization  
(Early DD) 

INaCa KNaCa= -53% Automatic optimization 
(diastolic [Ca2+]i) 

SR uptake (Jup) 
	

Sigmoidal formulation Fitting of diastolic [Ca2+]i 
 

SR release (Jrel) 
	

ks =1.48 · 108
 s-1  

kom= 660 s-1 
Automatic optimization 

(Cai range) 

Calmodulin kfCM = 1.64 · 106 (mM s)-1 
 

Automatic optimization 
(Cai range) 

Calsequestrin kfCQ = 175 (mM s)-1 
 

Automatic optimization 
(Cai range) 

Calcium diffusion τdifCa = 5.47 · 10-5 s Automatic optimization 
(Cai range) 

Intracellular Na  Fixed at 5 mM As used in human SAN 
experiments 

(Verkerk et al., 2007b) 
 
Cm, membrane capacitance; Lcell, Rcell, length and radius of the cell; gi, maximal conductance for the i 
type channel; PCaT, PCaL, permeability for the T and L-type calcium currents; V½,dL, kdL, half-activation 
potential and slope factor for voltage dependent dL gate; KNaCa, maximal current of NCX; ks, maximal 
rate of calcium release from RyR channels; kom, transition rate from open (O) to resting (R) state of 
RyR channels; kfCM, kfCQ, association constant for calmodulin and calsequestrin. The reported features 
in brackets (APD, CL, Cai range, DD, OS) are those on which each parameter had a larger impact 
during the automatic optimization procedure.  
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1.2.4.1 Funny current (If) 
 
 

From their experiments on human SAN cells, Verkerk et al. (2007b) reported a 

maximal If conductance of 75.2 ± 3.8 pS/pF (mean ± SEM, n = 3). Consequently, 

we assumed a maximal If conductance (gf) of 4.3 nS, given our Cm of 57 pF. The 

funny current was implemented by splitting it into Na+ and K+ components, with a 
!!"#
!"#

 conductance ratio of 0.5927, thus arriving at an If reversal potential (Ef) of –

22 mV, in accordance with the experimentally determined value of –22.1 ± 2.4 

mV (mean ± SEM, n = 3) (Verkerk et al. 2007b). A first-order Hodgkin and 

Huxley-type kinetic scheme was assumed for If activation, as described by the 

formulations presented by Verkerk et al. (2007a) and Verkerk & Wilders (2010). 

The activation time constant τy was formulated in accordance with Verkerk et al. 

(2007a), who used a Dokos et al. (1996)-type equation to fit the experimental data 

obtained from three human adult SAN cells by Verkerk et al. (2007b). 

 
 
1.2.4.2 Rapid delayed rectifier K+ current (IKr)  
 
 

The steady-state activation curve of IKr (pa gate) was fitted to data from 

embryonic human cardiomyocytes by Danielsson et al. (2013). The measured tail 

current density following activation pulses from −70 to +50 mV was normalized 

with respect to the maximal measured value and then fitted with a Boltzmann 

equation. The conductance gKr was set to 4.2 nS (+10% compared to parent 

model) to hyperpolarize the maximum diastolic potential (MDP) and obtain the 

value experimentally observed in human SAN (Drouin, 1997; Verkerk et al., 

2007b). 
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1.2.4.3 Slow delayed rectifier K+ current (IKs) 
 
 

The steady-state activation curve for IKs (n gate) was updated in accordance 

with the experimental data of Danielsson et al. (2013). The reported current 

density vs. voltage data were normalized to the maximal measured value and 

subjected to square-root, in line with the second-order Hodgkin and Huxley-type 

kinetic scheme. Data were then fitted with a Boltzmann equation. The 

conductance gKs was set to 0.65 nS (11.4 pS/pF), −78% with respect to the parent 

model, as a result of the automatic optimization procedure. On one hand, 

Chandler et al. (2009) reported an mRNA expression level in the human SAN 

equal to 69% of that in non-specialized atrium cells. On the other hand, very 

discordant values have been reported for gKs in human atrial cells up to now, 

ranging from 3.5 pS/pF (Grandi et al., 2011) to 20 pS/pF (Nygren et al., 1998), 

whereas gKs was adjusted to 129 pS/pF in the model of Courtemanche et al. 

(1998) simply to match AP duration. 

 

 
1.2.4.4 Ultrarapid delayed rectifier K+ current (IKur) 
 
 

Chandler et al. (2009) reported the expression of KV1.5 channels, responsible 

for IKur, in human SAN tissue. Because IKur was not present in the parent model, 

we added this current, formulating it as in the human atrial cell model of Maleckar 

et al. (2009). The IKur conductance was set to 0.1539 nS, 6% of the corresponding 

atrial value, based on the automatic optimization procedure. 

 

 

1.2.4.5 Transient outward K+ current (Ito) 
 
 

We maintained the parent model formulation, which, in turn, was adopted from 

the model of Maltsev & Lakatta (2009). The Ito conductance was set to 3.5 nS, 

slightly reduced (−1.5%) compared to the rabbit SAN model. 
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1.2.4.6 Sodium/potassium pump current (INaK) 
 

 
For INaK, the formulation by Severi et al. (2012), which was in turn derived 

from that of Kurata et al. (2002), was adopted. The maximal activity of the 

Na+/K+ pump was reduced by 28% (INaK,max = 0.08105 nA) through automatic 

optimization. 

 

 

1.2.4.7 Sodium current (INa)  
 
 

The presence of fast Na+ current (INa) in human SAN cells has been reported 

by Verkerk et al. (2009b). The steady-state activation and inactivation curves 

(gates m and h) of the parent model have been simply rewritten in a sigmoidal 

formulation (see Appendix 1) to facilitate the implementation of mutations related 

to Nav1.5 channels. 

 

 

1.2.4.8 T-type Ca2+ current (ICaT) 
 
 

The mathematical formulation of ICaT was inherited from the parent model and 

thus based on the constant field equation by Sarai et al. (2003). The Ca2+ 

permeability PCaT was set to 0.04132 nA mM−1 (+15%), as obtained by automatic 

optimization. 

 

 

1.2.4.9 L-type Ca2+ current (ICaL) 
 
 

Changes in ICaL kinetics were limited to the voltage-dependent steady-state 

activation curve dL. The half-maximal activation voltage (V½,dL) was slightly 

shifted towards less negative potentials (from −20.3 to −16.45 mV) and the slope 

factor kdL was slightly increased (from 4.2 to 4.337 mV). The Ca2+ permeability 
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was increased by 28% (PCaL = 0.4578 nA mM−1). All of these parameters were 

updated using automatic optimization. 

 

 

1.2.4.10 Sodium/calcium exchange current (INaCa) 
 
 

The set of equations describing the Na+/Ca2+ exchanger activity was adopted 

from the parent model and thus originally derived by Kurata et al. (2002). The 

maximal current provided by the exchanger was set to 3.343 nA, reduced by 53% 

as a result of the automatic optimization procedure. 

 

1.2.5 Calcium handling 
 
 

As in the parent model, the mathematical formulation of Ca2+ handling was 

based on Maltsev & Lakatta (2009), who provided an advanced description of SR 

behaviour. The parameter updates, which play an important role in Ca2+ handling, 

were achieved by automatic optimization. 

 

 

1.2.5.1 SR Ca2+ uptake (Jup) 
 
 
The Ca2+ uptake flux was formulated by a sigmoidal curve, instead of the 

Michaelis–Menten equation of the parent model. The sigmoidal formulation 

permitted a higher control of Ca2+ uptake, in particular during the diastolic phase. 
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1.2.5.2 SR Ca2+ release (Jrel) 
 
 
The Ca2+ diffusion rate ks, and the ryanodine receptors (RyRs) Ca-dependent 

activation rate, kom, were set to 148 x 106 s−1 and 660 s−1, respectively, through 

automatic optimization. 

 

 

1.2.5.3 Ca2+ diffusion and Ca2+ buffers 
 
 
The time constant for Ca2+ diffusion from the subsarcolemma to the cytosol 

(τdifCa) was set to 5.469 x 10−5 s. The Ca2+ association constants for calmodulin 

(kfCM) and calsequestrin (kfCQ) were set to 1.642 x 106 and 175.4 (mM s)−1, 

respectively. 

Calmodulin is involved in Ca2+ buffering in the cytosolic compartment, 

whereas calsequestrin binds Ca2+ in the junctional SR (jSR). 

 

1.2.6 Ion concentrations 
 
 
Ca2+ dynamics for the four compartments were described by the mass balance 

equations. Intracellular Na+ was fixed at 5 mM, the Na+ concentration in the 

pipette solution used in the whole cell configuration by Verkerk et al. (2007b). 

In such a configuration, intracellular Na+ is expected to equilibrate with the 

pipette solution. 
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1.2.7 Sensitivity analysis 
 
 
The sensitivity analysis was performed according to the approach proposed by 

Sobie (2009). The randomization procedure involved the parameters that 

underwent automatic optimization and the remaining maximal conductances, for a 

total of 18 parameters. The conductances were randomized through scaling factors 

chosen from a log-normal distribution with a median value of one and an SD σ = 

0.1873; thus, an increase of 20% represents 1 SD away from the control value.  

Shifts of the steady-state gating variables and the sarco-endoplasmic reticulum 

Ca2+-ATPase (SERCA) pump calcium dependence were extracted from a normal 

distribution centered on zero, with SDs of σ = 2 mV and σ = 50 nM, respectively. 

The randomization was run for a population of 500 models. All of them were 

simulated and the corresponding AP and CaT features were computed.  

Parameters and their corresponding features were collected in the X (n x p) and 

Y (p x m) matrices, respectively, where n corresponds to the number of 

simulations showing an auto-oscillating behaviour (< 500), p is the number of 

parameters and m is the number of computed features. Next, the matrix B (p x m) 

containing the sensitivity coefficients was computed using the formula:  

 

 
B =  (X! × X)-! × X! × Y 

 
 
1.2.8 Calibration of the population of models 
 

The randomization of the parameters performed during the sensitivity analysis 

procedure led to a population of 500 models. First, the models that didn’t show 

automaticity were discarded; then, the population was calibrated selecting the cell 

models that showed MDP, CL, APD90 and DDR100 within the experimental range 

mean ± SEM. 
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1.2.9 Hardware and software 
 
 
The human SAN model was built in Simulink (The Mathworks, Inc., Natick, MA, 

USA). Simulations ran on an OS X Mavericks (version 10.9.5) Apple computer 

(Apple, Cupertino, CA, USA) equipped with an Intel i7 dual core processor (Intel, 

Santa Clara, CA, USA). Numerical integration was performed by ode15s, a 

variable order solver based on numerical differentiation formulas, provided by 

MatLab (The Mathworks, Inc.). Simulations were run until steady-state was 

reached, which occurred after 50 s, based on the observation of calcium 

concentrations in each compartment. The automatic optimization and feature 

extraction were performed by custom code in MatLab 2013a. Model code is 

available at: http://www.mcbeng.it/en/downloads/software/hap-san.html and also 

in the CellML Model Repository (http://models.cellml.org/).
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1.3 Results 
 
Human SAN model behaviour in basal conditions 
 
1.3.1 Simulated AP and calcium transient  

 

The simulated AP waveform reproduces the available experimental traces well 

(Fig. 1.2A). Indeed, most of the quantitative parameters that describe AP 

morphology (i.e. CL, MDP, APD90 and DDR100) are within the mean ± SD range 

of the experimental ones (Verkerk et al., 2007b) (Table 1.2). In particular, the AP 

generated by the model is characterized by a CL of 814 ms, corresponding to a 

beating rate of 74 beats min–1. However, the model presents a higher (dV/dt)max 

and overshoot (OS) and a longer APD20 (predicted features beyond the 

experimental mean ± SD range). 

The simulated Ca2+ transient qualitatively reproduces the single experimental 

trace acquired by Verkerk et al. (2013), showing a smaller transient amplitude and 

longer duration compared to rabbit data. Even if the model predicts slightly lower 

values for both diastolic and systolic [Ca2+]i, the CaT amplitude (intracellular CaT 

amplitude; TA) is close to the experimental data (Fig. 1.2B and Table1.3). 

Figure	1.2	Action	potential	and	intracellular	Ca2+	transient	of	a	single	human	SAN	cell.		

(A)	Simulated	action	potential	of	a	single	human	SAN	cell	(black	thick	line)	and	experimentally	

recorded	 action	 potentials	 of	 three	 different	 isolated	 human	 SAN	 cells	 (grey	 traces).	

Experimental	 data	 from	 Verkerk	 et	 al.	 (2009a;	 2010).	 (B)	 Simulated	 (black	 thick	 line)	 and	

experimentally	 recorded	 (grey	 line)	 Ca2+	 transient.	 Experimental	 data	 from	 Verkerk	 et	 al.	

(2013). 
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Table 1.2: Action potential features. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
Comparison between experimental (mean ± SD, n = 3) (Verkerk et al., 2007b) and simulation  

data 

 

 

 
Table 1.3: Calcium transient features. 
 

 

 

 

 

 

 

 

 

 

 

Comparison between experimental (Verkerk et al., 2013) and simulation data. 

 

AP feature Unit Experimental 
Value 

Present 
Model 

MDP mV -61.7 ± 6.1 -58.9 

CL ms 828 ± 21 814 

(dV/dt)max V/s 4.6 ± 1.7 7.4 

APD20 ms 64.9 ± 23.9 98.5 

APD50 ms 101.5 ± 38.2 136.0 

APD90 ms 143.5 ± 49.3 161.5 

OS mV 16.4 ± 0.9 26.4 

DDR100 mV/s 48.9 ± 25.5 48.1 

Calcium 
Transient Unit Experimental 

Value 
Present 
Model 

Cai range nM 105 - 220 85 - 190 

TA nM 115 105 

TD20 ms 138.9 136.7 

TD50 ms 217.4 206.3 

TD90 ms 394.0 552.3 
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The time courses of the underlying currents, Ca2+ fluxes and Ca2+ 

concentrations in the four intracellular compartments are shown in Fig. 1.3. The 

main inward (depolarizing) and outward (repolarizing) membrane currents are 

ICaL and IKr, respectively (Fig. 3C). However, the peak amplitude of Itot (Fig. 

1.3B), and therefore the maximum AP upstroke velocity, is determined not only 

by ICaL, but also by INaCa (Fig. 1.3E). Other currents are much smaller in amplitude 

than ICaL and IKr. Yet, several are important determinants of the net ionic current 

during DD, and thus of CL (see below). Of note, as set out in Chapter 3, sinus 

node dysfunction can result from mutations in If, INa and IKs, which are among the 

smallest currents (Fig. 3D). 

The calcium-induced calcium release from the jSR upon calcium entry through 

the ICaL channels is reflected by the rapid increase in Jrel (Fig. 3G) and the 

accompanying rapid drop in CajSR (Fig. 3K). The resulting increase in Casub (Fig. 

3I) and Cai (Fig. 3J) generates an increase in Ca2+ uptake (Jup) (Fig. 3H). 
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Figure	1.3:	Time	courses	of	simulated	AP	(A)	and	associated	currents	(B-F),	 fluxes	(G	and	

H)	and	 calcium	concentrations	(I-K)	 in	control	steady-state	conditions.	Not	shown	is	 IK,ACh,	

which	is	zero	under	control	conditions.	Note	differences	in	ordinate	scale.	
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1.3.2 Ionic currents during the DD phase 
 
 

Figure 1.4 shows the time course of individual currents that play a relevant role 

during DD. The main inward currents during DD are ICaT, If, INaCa and ICaL.  

ICaT activates before the membrane potential reaches MDP and reaches its 

maximal current density in the first 100 ms of DD (early DD), thus contributing to 

DDR100, and then slowly decreases. If is considerably smaller than INaCa but its 

amplitude during DD is comparable with that of the net inward current (Fig. 1.4B, 

dash-dotted line). Similar to ICaT, If starts activating when the membrane is still 

repolarizing and it provides its maximal contribution in the first half of diastole. 

INaCa is a high-density inward current; it slowly diminishes during diastole, 

whereas it rapidly increases at the end of DD, providing an important contribution 

to the AP upstroke. A small amount of INa window current is active during DD. It 

is smaller than If, yet it is not negligible; it is able to modulate beating rate, as 

demonstrated by our simulations of mutations in the sodium voltage-gated 

channel α subunit 5 (SCN5A) gene (see Chapter 3). ICaL follows a progressive 

increase during DD and becomes the major contributor to the net inward current 

at the end of DD; it has a relevant role during both DD and AP.  

INaK, IKr and IKs are the main outward currents. INaK slowly increases during DD 

and reaches its maximal current density during AP, contributing to repolarization. 

IKr is the major driver in the repolarization process. It contributes to DD through 

its progressive decrease during this phase. The contribution of IKs to DD is almost 

negligible under control conditions, although gain-of function mutations can lead 

to a remarkable slowdown of pacemaking (see Chapter 3). 
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1.3.3 Sensitivity analysis 
 

Among the randomly generated population of 500 models, more than 300 

showed an auto-oscillating behaviour. The results of the sensitivity analysis are 

reported in Fig. 1.5A, which shows the coefficients of the sensitivity matrix B, 

coded in a colour map. Each value in the matrix shows how a change in the 

parameter P displayed at the top is capable of affecting the feature F displayed on 

the left, and the coefficients <−0.2 and >0.2 are reported in the corresponding 

pixel. The obtained map highlights that nine out of the starting 18 parameters 

Figure	 1.4:	 Membrane	 currents	 underlying	 diastolic	 depolarization.	

(A)	Membrane	potential	and	(B)	associated	net	membrane	current	(Itot,	dash-dotted	trace)	

during	 diastolic	 depolarization	 and	 contributing	 inward	 and	 outward	 currents.	 tMDP	 and	

tTOP	indicate	the	time	at	which	Vm	reaches	MDP	and	take-off	potential,	respectively. 
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show coefficients lower or higher than the selected thresholds of −0.2 and 0.2, 

respectively. 

As illustrated in Fig. 1.5A, changes in the permeabilityof ICaL (PCaL) and its 

activation kinetics (slope factor kdL and shift in half-activation voltage shiftdL) 

have a large impact on upstroke velocity (dV/dt), AP duration (APD20,50,90) and 

calcium transient. Furthermore, the kinetics of the ICaL activation gate dL strongly 

affects CL and DDR100. Similarly, a change of the maximal conductance of IKr 

(gKr) has a high impact on APA, MDP and APD, whereas the maximal activity of 

NCX (KNaCa) strongly influences APA, dV/dt and calcium transient. Finally, a 

shift in the working point of the SERCA pump (shiftup) clearly affects the 

diastolic calcium concentration (Cai,min). Figure 1.5B shows that CL is largely 

determined by the ICaL activation kinetics (through its parameters kdL and shiftdL). 

Figure 1.5C shows that DDR100 is also largely determined by the activation 

kinetics of ICaL but in the opposite way. In addition, it reveals that the permeability 

of ICaT (PCaT) is also an important determinant of DDR100. 

The parameter randomization, the first step of the linear regression approach, 

allowed us to explore a neighbourhood, in the parameter space, of the parameter 

set obtained as a result of the automatic optimization procedure. Only a few 

parameter sets (out of 500 tested) led to comparable values of the cost function. In 

particular, only four led to values of MDP, CL, APD90 and DDR100 within the 

target range (i.e. mean ± SEM of experimental values) and only one parameter set 

led to a slightly lower value of the cost function than the one obtained from the 

‘optimized’ set of parameters. To compare these two models, the effects on the 

pacemaking rate of mutations affecting If and INa  (more details are provided in 

Chapter 3) were compared for the two parameter sets. The ‘alternative’ set of 

parameters produced effects in close agreement with the ‘optimized’ set: the 

difference in mutation-induced changes in the pacemaking rate was always lower 

than 2.7% 

The presence of multiple parameter sets compatible with experimental ranges 

allowed us to compute estimation intervals for the parameters that underwent the 

optimization procedure (Sarkar & Sobie, 2010). Nominal values and ranges for 

the optimized parameters are reported in Table A1 in Appendix 2. To confirm that 
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parameter values outside the estimated confidence interval lead to non-

physiological (or at least non-basal) conditions, we tested the effect of changing 

PCaT by 50% more or 50% less with respect to the parent rabbit model (instead of 

+15% as in the ‘optimized’ model). In accordance with the above observation that 

PCaT is an important determinant of DDR100, a large increase in PCaT led to a 

notably higher beating rate (+17%; from 74 to 86 beats min–1), whereas a large 

decrease in permeability resulted in a slower beating rate (−18.9%; from 74 to 60 

beats min–1). These results indicate that ICaT could play a substantial role in 

pacemaking and underscore that the proposed value for PCaT is quite well 

constrained (see also Table A1 in Appendix 2). 
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Figure	1.5	:	Sensitivity	Analysis 

(A)	 Color	 coded	 map	 of	 sensitivity	 matrix	 B.	 Columns	 show	 how	 a	 specific	 parameter	 p	

affects	 AP	 and	 CaT	 features;	 rows	 show	 how	 each	 feature	 is	 affected	 by	 different	

parameters.	 Red,	 blue	 and	 white	 pixels	 represent	 positive,	 negative	 and	 no	 substantial	

correlation	 between	 parameters	 and	 features,	 respectively.	 Coefficients	 <-0.2	 or	 >0.2	 are	

considered	substantial. 

(B)	 and	 (C)	 Bar	 graphs	 describe	 how	 changes	 in	 each	 of	 the	 parameters	 affect	 CL	 and	

DDR100.	The	two	panels	display	in	a	different	way	the	information	reported	in	rows	3	and	8	

of	panel	A.	
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1.3.4 Calibration of the population of models 
 
 

Figure 1.6 reports the auto-oscillating (black traces) the calibrated (red traces), 

the reference models (ciano trace), and compare them with experimental data 

(blue traces).  The randomly generated population showed 318 out of 500 self-

oscillating models. The calibration perfomed using MDP, CL, APD90 and 

DDR100, as features to be satisfied, reduced the number of models to only 4. The 

calibrated models showed a MDP = -62.2, -61.8, -60.8 and -59.3 mV, 

respectively; slightly hyperpolarized with respect to the reference model. The CL 

was slighltly higher (CL = 819, 827, 828 and 834 ms vs 814 ms) in all the four 

cases. APD90 was 146, 162, 145 and 149 ms, respectively; two models showed 

Figure	1.6:	Calibration	of	the	population	of	models	

Comparison	between	autoscillating	(black	traces),	calibrated	(red	traces),	reference	model	

(ciano	trace)	and	experimental	data	(blue	traces).	Among	the	500	randomly	generated	cell	

models,	 318	 mantained	 the	 automaticity.	 Four	 cell	 models	 showed	 MDP,	 CL,	 APD90	 and	

DDR100	falling	within	the	mean±SEM	rexperimental	range	and	then	were	compared	with	the	

reference	model. 
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DDR100 lower (DDR100 = 39.5, 37.0 mV/s) and two higher (DDR100 = 52.3, 56.1 

mV/s) than the reference model (DDR100 = 48.1 mV/s).  

The diastolic (Cai,min) and systolic (Cai,max) Ca2+ values were close to the 

reference model in two cases out of four (Cai,min = 95 and 88 nM vs 84 nM and 

Cai,max= 192 and 194 nM vs 189 nM). The other models showed lower levels both 

for diastolic (Cai,min = 65 and 57 nM) and systolic Ca2+ (Cai,max = 153 and 137 

nM). 

 
 
1.4 Discussion 
 
 

In the present study, we formulated a comprehensive human SAN AP model, 

starting from a state-of-the-art model of rabbit cardiac pacemaker cells, and 

converting it into a species-specific description using human experimental data as 

far as possible. A novel aspect is the adoption of an automatic optimization 

procedure, tightly bounded by the AP features, to identify the parameters for 

which experimental data are presently unavailable. 

Previously, Chandler et al. (2009) showed that scaling ion current densities, 

according to the gene expression pattern they found in human SAN vs. atrial 

tissue, gives rise to automaticity in the human atrial cell model of Courtemanche 

et al. (1998). However, the values of the descriptive parameters of AP, in 

particular MDP, APA and APD, were far from the experimentally observed ones. 

As will be further detailed in Chapter 2 and 3, our model is able to reproduce the 

main experimentally observed electrophysiological features (AP waveform, 

calcium transient) and the simulated changes in pacemaking rate as a result of 

mutations affecting ionic channels are in line with clinical data. Furthermore, it 

allows the investigation of relevant conditions such as If block, NCX block and 

autonomic stimulation. 
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1.4.1 Construction of the model 
 
 

AP models of cardiac cells are commonly based on voltage clamp data for 

ionic current identification and current clamp data for model validation. We tried 

to maximally exploit the scarce data available on human SAN cells, aiming at a 

detailed reproduction of experimental AP morphology. Updating the description 

of the funny current, based on the experimental data obtained by Verkerk et al. 

(2007b), was also crucial. In our human cell model, If current density during DD 

is considerably lower than in rabbit SAN cells, although it remains comparable to 

the net inward current as reported by Verkerk & Wilders (2010) in their virtual 

AP clamp experiments. 

In control conditions, the model reproduces the experimental AP features well. 

The simulated AP is characterized by CL = 814 ms, which is close to the 

experimentally observed values (Verkerk et al., 2007b) and critical parameters 

such as MDP, APD90 and DDR100 are all within the range of the experimental data 

(Table 1.2). As a consequence, the model shows a representative behaviour during 

both DD (subthreshold) and AP (Fig. 1.3).  

A preliminary study on Ca2+ handling behavior was performed through a guess 

and check approach that highlighted the candidate parameters for the automated 

optimization. Among the twelve automatically optimized parameters, ten of them 

were involved in the calcium handling, regulating the Ca2+ fluxes through the 

membrane (PCaT,PCaL,VdL,kdL,KNaCa) and in the cytosol, through the activity of SR 

(ks and kup), Ca2+ buffers (kfCM, kfCQ) and diffusion (τdifCa).  

To achieve a calcium transient close to the experimental trace, several actors of 

Ca2+ handling underwent changes; in particular, maximal NCX activity was 

reduced by 53%, and a sigmoidal equation was introduced to describe SR uptake. 

These updates allowed a higher diastolic [Ca2+]i and finer control during DD. 

The availability of a unique Ca2+ trace acquired from a single human SAN cell 

(Verkerk et al. 2013) represents the main limitation for a proper description of 

Ca2+ dynamics. This had ripercussions on the optimization procedure, where an 

arbitrary value for the experimental range (experimental value ± 10%) was set. 
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Moreover, to achieve a more accurate description of Ca2+ dynamics, it would 

be helpful to characterize also the spatial distribution of Ca2+ in the compartments. 

This approach, however, would lead to a higher level of complexity, that is not 

required for the overall aim of this work. 

The Cs+-induced CL prolongation that was experimentally observed was also 

taken into account to tune parameters. Simulating the administration of 2 mM Cs+ 

led to an increase in CL of 28.1%, close to the experimentally observed 26%, as 

detailed in Chaper 2. This Cs+ concentration was reported to selectively and 

almost fully block the funny current (Verkerk et al., 2007b) and so the reported 

prolongation established the maximal extent of the contribution of If to the 

pacemaking rate decrease in our model. Thus, the experimentally observed levels 

of If block by Cs+ were highly relevant. Accordingly, we should not forget that a 

voltage-dependent partial block of funny channels by 5 mM Cs+ has been reported 

elsewhere (DiFrancesco et al., 1986). If the parameters in our model were tuned to 

reproduce a similar partial Cs+-induced block, a larger effect of complete If block 

would be observed in simulations. 

 

 

1.4.2 Sensitivity analysis and calibration of the population of models 
 
 

The sensitivity analysis highlighted the strong impact of ICaL, in particular its 

activation kinetics (gate dL), on CL and on the calcium transient. A slight 

increase/decrease of the slope factor kdL and a shift of the working point of the 

steady-state curve of the activation gate are able to substantially change these two 

features; indeed, the availability of open ICaL channels during the highly sensitive 

DD phase is strongly affected by slight changes of the dL kinetics.  

The calibration procedure showed that 4 models out 500 satisfied the 

experimental range for MDP, CL, APD90 and DDR100. The criterion with the 

population of model was calibrated was analogous with the one adopted by 

Britton et al. (2013) for a population of models of rabbit Purkinje fibers. In this 

work the investigated population was wider (10000 models) and the final 
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calibration provided 213 model consistent with experimental data (≈2%); the 

calibrated human SAN population showed a similar number of models consistent 

with the experimental range (0.8)%. 

The simulations performed for the sensitivity analysis highlighted that the same 

AP can be produced by multiple sets of parameters. However, the observation that 

only a few parameter sets, out of a total of 500, produced simulation data within 

the experimental range, as showed by the calibration of the population of models, 

suggests that the parameters should fall within a narrow range. Among the 

calibrated models, indeed, the parameters that showed highest variations with 

respect to the reference model were gKur (≈-36%) and KNaCa (≈+48%); for more 

details see Table A1 in Appendix 2. 

Ranges in Table A1 in Appendix 2 are a first attempt to determine such 

physiological intervals for human SAN cells exploiting the limited experimental 

data. Future measurements will help to refine the information extracted by our 

investigation. 

The illustrative investigation of the effects of changes in PCaT suggests that this 

parameter is well constrained, and also that ICaT plays a role in pacemaking, which 

is consistent with the report by Mangoni et al. (2006) who studied mice with a 

disrupted gene coding for CaV3.1 channels, as responsible for T-type calcium 

current. 

 

 
1.5 Limitations and future developments 
 
 

One evident limitation of the present study is that there are insufficient 

experimental data available on human SAN electrophysiology to fully constrain 

the parameters of the model. It is therefore possible that some non-human-specific 

aspects of the parent (rabbit) model are still present. The here discussed model 

thus only represents one step forward in the quantitative description of human 

SAN electrophysiology. Further experiments carried out on human adult SAN 

cells, or perhaps even on human induced pluripotent stem cell-derived 

cardiomyocytes, will challenge the current model, providing confirmation and/or 
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clarifying any changes that need to be made. 

Specific limitations of the model include: the lack of intracellular sodium 

dynamics, and the lack of a detailed description of local calcium releases. 
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Abstract 
 
 

The heart rate (HR) is one of the most important indexes in clinical practice 

and its modulation has remarkable implications for treatments of heart disease. 

Beating rate, i.e. the inverse of cycle length (CL), is the cellular equivalent of HR. 

The modulation of CL occurs during the spontaneous diastolic depolarization 

(DD), sensitive to changes of currents. The autonomic system modulates the DD 

duration by affecting the kinetics of ion channels and the activity of the 

sarcoplasmic reticulum (SR). 

Aims of this chapter are to investigate (i) how “funny current” (If) and the Na+-

Ca2+ exchanger current (INaCa) affect the AP features and calcium transient and (ii) 

how the autonomic system modulates CL through the administration of 

acetylcholine (ACh) and isoprenaline (Iso). 

A progressive block of If, a reduction of the maximal conductance gf and a shift 

of the steady state activation curve were simulated; a progressive block of INaCa 

was also introduced. To simulate the effect of 10 nM of ACh changes regarding If, 

ICaL, and SR Ca2+ pump were implemented and the ACh activated K+ current 

(IK,ACh) was included. The administration of 1 µM Iso was mimicked through 

changes affecting If, INaK, ICaL and IKs and the SR Ca2+ pump. 

The full block of If increased CL to 1043 ms (+28.1%) and decreased DDR100 

= 29 mV s-1 (-39.7%). A -15 mV shift in the If steady state activation curve 

increased CL to 957 ms (+17.6%) with a less steep DDR100 (37.7 mV s-1; -21.6%), 

whereas a +15 mV shift shortened CL to 577 ms, showing a steeper DDR100 (75.4 

mV s-1; +56.8%). In each simulation MDP and APD90 were virtually unchanged. 

INaCa block, at moderate levels (50 and 70%), was responsible for a faster rate (83 

and 93 beats min-1 vs. 74 beats min-1 under control). DDR100, APD90 and MDP 

were notably affected.  Automaticity ceased upon higher levels of INaCa block. 

The simulation of administration of 10 nM ACh showed a rate decrease of 

21.6%, with major contributions of If and IK,Ach, whereas 1 µM Iso speeded up the 

rate by +27.0% through If and ICaL. 
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Simulations showed that If modulates the rate acting on DDR100. INaCa block 

acts on CL affecting DDR100, APD90 and MDP. The mimicking of autonomic 

stimulation highlighted that If plays an important role in HR modulation together 

with IK,ACh (for ACh) and ICaL (for Iso).



2.1 Introduction 
 
 

The identification of the mechanism responsible for the initiation of the 

spontaneous activity and the modulation of the heart rate is one of the main topics 

in the cardiac research field. 

The foundational work by Hodgkin and Huxley (Hodgkin & Huxley, 1952) 

mathematically described the squid neuronal action potential (AP) as result of a 

coordinate activation and inactivation of voltage- and time-dependent gating 

variables, that are either open (fraction O between 0 and 1) or closed (fraction 

C=1–O) and thus determine the probability to find the membrane ion channels in 

an open or closed state. This work underlies today’s mathematical models of the 

more complex mammalian cardiac cells, including the model of a human SA 

nodal pacemaker cell presented in Chapter 1.  

One of the main characteristics of SAN cells is their spontaneous activity 

determined by the spontaneous depolarization of the membrane potential during 

the diastolic depolarization phase. 

The first mechanism proposed to explain the spontaneous depolarization during 

diastole was the “IK decay theory”, which pointed out the decrease of the K+ 

outward current as the major responsible of DD phase. 

Nowadays, there are two principal and still debated theories (Lakatta & 

DiFrancesco, 2009) that are based on two deeply different mechanisms, known as 

the ‘membrane clock’ and the ‘calcium clock’: the ‘membrane clock’ assumes 

that the spontaneous depolarization is controlled by surface membrane ion 

channels, whereas the ‘calcium clock’ is based on the hypothesis that intracellular 

calcium cycling is responsible for the initiation of DD. 

In 1979, DiFrancesco et al.  first described the “funny current” (If) and, due to 

its electrophysiological properties, they defined If as “pacemaker current”. Indeed 

If is activated at hyperpolarized potentials –its activation starts at about -40/50 mV 

in rabbit SAN cells and it is fully activated at -100 mV– it is an inward current in 

the membrane potential range corresponding to the DD phase, and has a reversal 
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potential close to -20 mV due to its permeability to both Na+ and K+ 

(DiFrancesco, 1985; Barbuti & DiFrancesco, 2008).  

Other experimental evidence supports the role of If as major actor in 

pacemaking: gene expression studies in mammals indicated that there is a 

correlation between pacemaking tissue and the localization of the HCN4 gene that 

encodes the If channel HCN4 subunit (Tellez et al., 2006; Liu et al., 2007); the 

loss of spontaneous activity during fetal development is concurrent to the loss of If 

channels (Robinson et al., 1997; Yasui et al., 2001) and in pathological conditions 

the up-regulation of HCN2 in ventricular cells leads to spontaneous ectopic beats 

(Cerbai et al., 1994, 2001). 

It was also reported that the funny current is an important target for autonomic 

stimulation, able to modulate the heart rate: on one hand, the presence of 

adrenaline caused a substantial increase of If (DiFrancesco et al., 1986) and a 

consequent acceleration of the DD phase; on the other hand, acetylcholine (ACh) 

is responsible for an inhibition of If (DiFrancesco & Tromba, 1987, 1988a, 

1988b), shifting its steady state activation curve towards more negative potentials. 

A decreased If, together with the activation of IK,ACh, leads to a slower 

depolarization and hence to a lower beating rate. 

Other studies highlighted that the administration of ryanodine leads to the 

depletion of the sarcoplasmic reticulum (SR), with a consequent impairment of 

the Ca2+ release. The effect is a reduced Ca2+ transient and the impairment of the 

inward current provided by the Na+/Ca2+ exchanger, responsible for a slow 

spontaneous beating rate. From these observations it was proposed that 

intracellular calcium cycling plays an important role in pacemaker cells 

automaticity (Rigg & Terrar, 1996).  

 The ‘calcium clock’ theory is based on the presence of spontaneous local 

calcium releases (LCRs) from the SR (Hüser et al., 2000). The presence of 

wavelets of Ca2+ activates the electrogenic membrane surface protein Na+/Ca2+ 

exchanger (NCX) responsible for INaCa (Bogdanov et al., 2006). The activity of 

INaCa depolarizes the membrane potential during diastole and then activates ICaL, 

responsible for the AP upstroke. 
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In order to control the heart rate, the intracellular calcium oscillator should be 

able to work at different stable rates. The ‘calcium clock’ theory hypothesizes that 

the modulation of the DD occurs through the presence of ‘intracellular machinery’ 

(e.g. adenylyl cyclase (AC) (Mattick et al., 2007; Younes et al., 2008), protein 

kinase A (PKA) (Vinogradova et al., 2006), calmodulin kinase II (CaMKII) 

(Vinogradova et al., 2000)) that controls the availability of intracellular calcium, 

the SR Ca2+ pump and the activity of ryanodine receptors (RyRs). The effects of a 

more intense activity of LCRs (higher amplitude and shorter LCR period) are 

coupled to the membrane potential through NCX. During the autonomic 

stimulation the heart rate is modulated through the interplay between SR, NCX 

and the intracellular machinery leading to a faster (β-adrenergic stimulation) 

(Vinogradova et al., 2002, 2008) or slower (cholinergic stimulation) DD 

(Lyashkov et al., 2009).  

The two theories provide different perspectives on how the spontaneous 

activity is generated and how the DD is modulated. The debate on which is the 

‘leading clock’ is still open and, probably, an integration of the two mechanisms 

could show a more robust system able to generate and regulate HR. 

The work reported in this chapter aims to describe how (1) If, (2) INaCa and (3) 

the autonomic stimulation affect the AP and calcium transient and to investigate 

the mechanisms underlying the different ways that modulate the beating rate. To 

do that, the AP changes due to the loss or gain of function of If, a progressive 

block of INaCa, and the administration of 10 nM of ACh and 1 µM of isoprenaline 

(Iso) are quantified and discussed. Also, the behavior of the isolated Ca2+ 

oscillator is assessed. 
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2.2 Methods 
 
 
2.2.1 Blockade of funny current (If) and Na+/Ca2+ exchanger current 
(INaCa) 
 
 

To quantitatively assess the sensitivity of CL, and thus of pacing rate, to the 

funny current, we carried out two simulation experiments: (i) a progressive block 

of funny current (30, 70, 90 and 100%, i.e. full block), by reducing the maximal 

conductance gf, and (ii) a shift in voltage dependence of the steady-state activation 

curve y∞, with a range from −15 to +15 mV, with voltage intervals of 5 mV. 

The effects of INaCa block on AP and calcium transient features were assessed 

through the progressive reduction of the maximal activity of the Na+/Ca2+ 

exchanger (KNaCa) by 50, 70 and 90%. A full block was excluded from the 

analysis since the intracellular calcium concentration [Ca2+]i did not achieve a 

steady state. 

 

 

2.2.2 Autonomic modulation 
 
 

The effects of 10 nM ACh on If activation (≈–5 mV shift in voltage 

dependence of activation), ICaL (3.1% reduction of maximal conductance) and SR 

Ca2+ uptake (7% decrease of maximum activity) were all adopted from the parent 

model (Severi et al., 2012). The administration of ACh also activates IK,ACh, which 

is zero in the default model. The IK,ACh formulation was derived from the parent 

model. The maximal conductance gK,ACh was set to 3.45 nS (reduced by 77.5%) to 

achieve an overall reduction of the spontaneous rate by 20.8% upon 

administration of 10 nM ACh, as observed by Bucchi et al. (2007) in rabbit SAN 

cells. 

The targets of isoprenaline (Iso) are If, ICaL, INaK, maximal Ca2+ uptake and IKs. 

Changes in currents were adopted from the parent model, except for the 

modulation of ICaL, where the effect of Iso induced a slightly smaller decrease of 

the slope factor kdL (−27% with respect to control conditions, instead of the −31% 
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assumed by the parent model). The ICaL current was modulated to fit the 

experimental data reported by Bucchi et al. (2007) on rabbit SAN cells (26.3 ± 

5.4%; mean ± SEM, n = 7) for the same Iso concentration. 

 
2.3 Results 
 
 
2.3.1 Contribution of If to pacemaking 
 
 

Four levels of If block were assessed: 30%, 70%, 90% and 100% (i.e. full 

block) (Fig. 2.1A). The total block of funny current led to an increase in CL of 

28.1% to 1043 ms, and thus a decrease in pacemaking rate of 21.6% to 58 beats 

min–1, in good accordance with the 26% increase in CL that was experimentally 

observed by Verkerk et al. (2007b), who administered 2 mM Cs+ as a blocker of If 

to a single isolated SAN cell (Fig. 2.1B). At this concentration, Cs+ almost 

completely blocks If in the pacemaker range of potentials, whereas the delayed 

rectifier K+ current, which is also sensitive to Cs+, is only affected slightly 

(Denyer & Brown, 1990; Zaza et al., 1997; Liu et al., 1998).  

The increase in CL was mainly the result of a lower DDR and longer DD phase 

(with DDR100 decreasing by 39.7% to 29 mV s−1 upon full block), whereas APD90 

and MDP remained almost unchanged (Fig. 2.1A). Of note, the increase in CL 

was also largely the result of a lower DDR and longer DD phase in the experiment 

of Verkerk et al. (2007b) (Fig. 2.1B). 
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Negative shifts of the steady-state activation curve led to an increase in CL, up 

to 957 ms (+17.6% with respect to control) with a −15 mV shift, whereas positive 

shifts shortened CL, up to 577 ms (−29.1%) with a +15 mV shift (Fig. 2.2A). As 

with the If block, DDR100 was the main descriptive parameter that changed (to 

37.7 mV s−1 (−21.6%) with a −15 mV shift and to 75.4 mV s−1 (+56.8%) with a 

+15 mV shift; Fig. 2.2B), whereas APD90 and MDP remained almost unaffected, 

as for the If block (Fig. 2.2, C and D). 

 

 

 

 

 

 

 

 

 

 

Figure	2.1:	Functional	effect	of	If	block 

A)	Simulated	AP	under	control	conditions	(CTRL)	and	upon	30%,	70%,	90%	and	full	block	of	

If.	B)	Effect	of	administration	of	Cs+	(2	mM)	on	the	AP	of	an	 isolated	human	SAN	myocyte.	

Experimental	trace	adapted	from	Verkerk	et	al.	(2007b).	 
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2.3.2 Contribution of INaCa to pacemaking and spontaneous calcium 
oscillations 
 
 

The Na+/Ca2+ exchanger is an important actor in the generation of the AP and 

also contributes to the diastolic depolarization phase. To assess the impact that 

INaCa has on CL, we performed a progressive reduction of the maximal activity of 

Na+/Ca2+ (KNaCa) (Fig. 2.3). Reductions in KNaCa of 50% and 75% unexpectedly 

led to faster pacemaking, with a rate of 83 beats min-1 (+12.2%) and 93 beats min–

1 (+25.7%), respectively. DDR100, APD90 and MDP contributed synergistically 

towards a shorter CL: DDR100 increased remarkably, APD90 shortened and MDP 

depolarized (Fig. 2.3A). DDR100 was steeper as a result of a more intense INaCa 

density during DD (Fig. 2.3, B and D) because of a higher concentration of [Ca2+]i 

in the cell (Fig. 2.3C). The reduced maximal activity of the Na+/Ca2+ exchanger 

Figure	 2.2:	 Functional	 effect	 of	 changes	 in	 voltage	 dependence	 of	 If	 activation	

Simulations	of	the	effect	of	–15	to	+15	mV	shifts	(with	steps	of	5	mV)	in	voltage	dependence	

of	the	y∞	steady-state	activation	curve	of	the	funny	current	on	(A)	cycle	length,	(B)	DDR100,	

(C)	MDP	and	(D)	APD90.	 
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also resulted in a lower contribution of INaCa to the AP: the overshoot potential 

was lower and repolarization was faster, resulting in a shorter APD.  

 

 

Higher levels of block of the exchanger (reduction of maximal activity by 

90%) stopped the automaticity of the cell. The inward current provided by the 

Na+/Ca2+ exchanger was no longer sufficient to make the cell reach its threshold 

potential for an AP. Membrane potential stabilized at a level approaching –40 mV 

(Fig. 2.3, A and B), whereas [Ca2+]i stabilized at a constant value close to 200 nM 

(Fig. 2.3C).  

The presence in the model of the ‘isolated Ca2+ oscillator’ was also tested, by 

repeating the simulations with all membrane currents set to zero. Figure 2.4 

depicts the results of the behavior of the ‘isolated Ca2+ oscillator. Spontaneous 

oscillations of intracellular (Fig 2.4A) and subsarcolemmal Ca2+ (Fig 2.4B) were 

observed upon a large increase in the SERCA pump activity. Notably, the 

frequency of these oscillations was definitely higher than the physiological human 

Figure	2.3:	Functional	effect	of	INaCa	block	

	(A)	 Simulated	 AP	 and	 (C)	 associated	 [Ca2+]i	 time	 course	 under	 control	 conditions	 (CTRL)	

and	upon	50%,	75%	and	90%	block	of	INaCa.	(B)	Simulated	AP	and	(D)	associated	INaCa	time	

course	relative	to	the	dashed	box	of	panel	A.	
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heart rate (>5 Hz). In particular, calcium oscillations were not sustained for Pup 

values up to more than 90 nM s−1; sustained oscillations, with a frequency of 5 

Hz, arose upon further increasing Pup to a value approaching 100 nM s−1. This 

frequency stayed almost constant as Pup was even further increased to 120 mM 

s−1, suggesting that it might be not easy to tune the oscillation rate in a robust way, 

at least in this lumped-parameter model of calcium handling. 

 

 

 

 

2.3.3 Autonomic modulation of pacemaking 
 
 

The simulated administration of 10 nM ACh resulted in a reduction of 

spontaneous rate by 21.6% (from 74 to 58 beats min-1). DDR100 was decreased by 

9.8% (from 48.1 to 43.4 mV/s) and APD90 was shortened from 161.5 to 154 ms 

(−4.6%); MDP was not altered. Even though ACh had opposing effects on 

Figure	2.4:	Isolated	Ca2+	oscillator	

Timecourse	of	Ca2+	in	the	intracellular	compartement	(A)	and	in	the	subspace	(B)	for	SR	

isolated	from	the	membrane.	Different	level	of	the	maximal	activity	of	SERCA	pump	Pup	=	1,	

5,	20,	40	and	100	mM/s	were	tested. 
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DDR100 and APD90, the increase in CL (from 814 in CTRL to 1028 ms with 10 

nM ACh) showed that the DDR100 reduction prevailed (Fig. 2.5A).  

We also assessed the contribution of each individual ion current by applying 

the ACh effect to each current separately. Changes in IK,ACh and If were dominant, 

inducing a reduction in the pacemaking rate of 12.2% and 6.8%, respectively. 

Exposure of only ICaL to ACh resulted in a minor effect (1.3% reduction of 

pacemaking rate), whereas the modification of Jup led to negligible changes. 

These results are consistent with predictions on the the effects on CL due to the 

changes occurring to PCaL, Pup, and If that could have been made based on the 

sensitivity analysis performed in Chapter 1 (through the coefficients that correlate 

the parameters to the feature [r(parameter,feature)]). Indeed, the decrease of PCaL 

(-3.1%) was responsible for a CL increase of 1.1%, compatible with r(PCaL,CL) = 

-0.15, that highlights a slight negative correlation. The almost negligible effect on 

CL (-0.2%) due to the decrease of Pup (-7%) was confirmed by the very low value 

of r(Pup,CL) = 0.03. The shift of y towards more negative potentials (-5 mV) is 

consistent with the effect on CL due to a reduction of gf. 

Simulating the ACh effects on all targets but one led to similar results: IK,ACh 

and If played a primary role, as demonstrated by the model-predicted reduction of 

the pacemaking rate by 8.1% and 13.5% (when IK,ACh and If were the only 

unchanged currents), respectively. 

The overall effect induced by 1 µM Iso resulted in an increase in the 

pacemaking rate of 27.0% to 94 beats min–1 (Fig. 2.5A). DDR100 increased from 

48.1 mV s−1 in control conditions to 53.4 mV s−1 with Iso, whereas APD90 and 

MDP were almost unchanged. 

The assessment of the effect of Iso through each of the Iso-sensitive currents 

alone showed that the modified If and ICaL both led to a substantial increase in 

pacemaking rate (13.5% and 25.7%, respectively). The increased activity of INaK, 

on the other hand, slowed the pacemaking rate (−13.5%), whereas Iso-induced 

changes in IKs and Jup only had a small effect (+1.4% and −1.3%, respectively).  

The decrease of CL due to a positive shift (+7.5 mV) of the activation gate y is 

consistent with the effect due to an increase of gf. The resulting decrease of CL 

(from 814 to 700 ms, -14.0%) due to the changes occurring to ICaL is caused by 
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the counteracting effects of the increase of PCaL (+23%, (r(PCaL,CL) = -0.15) and 

the shift towards more negative potentials of dL∞ (-8 mV, r(shiftdL,CL) = 0.4) –

which tend to shorten the CL– and the decrease of the slope factor of dL∞ (-27%, 

r(kdL,CL) = -0.94), which tends to prolong the CL. The increased activity of the 

Na+/K+ pump (+20% INaK,max) led to an increase of CL (CL = 937 ms, +15,1%) 

with r(INaK,CL) = 0.12. The contribution of IKs to CL decrease (CL = 802 ms, -

1.5%) was mainly attributable to the shift of the steady state curve n∞ (-14 mV) 

since the increase of gKs (+20%) had an almost negligible effect on CL [r(gKS,CL) 

= 0.02]. Finally, the increase of Pup (+25%) was responsible for the slight increase 

of CL (CL = 818 ms, +0.4%) accordingly with r(Pup,CL) = 0.03.  
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Considering the effects of all currents but one confirmed the above results; 

when all the currents but one, either ICaL, If, INaK, IKs or Jup, were affected by 1 µM 

Iso, an increase in beating rate equal to 1.4%, 9.5%, 43.2%, 21.3% and 28.4%, 

respectively, was observed. Of note, these values also show that IKs becomes more 

prominent at higher rates, when there is less time for its deactivation. The effect of 

IKs alone is small, with a 1.4% increase in beating rate, although the ‘all but one’ 

data (20.3% increase) reveal a more prominent role of IKs at higher rates; indeed, 

the net contribution of IKs (overall effect – all but IKs effect) shows an increase of 

beating rate equal to 6.7% (27.0–20.3%). 

The model was capable of reproducing the full clinical range of human heart 

rate, assumed to be from 40 to 180 beats min–1. In particular, the model predicted 

that a concentration of ACh equal to 25 nM was able to slow down the 

Figure	2.5:	Functional	effect	of	acetylcholine	and	isoprenaline	

Time	course	of	(A)	membrane	potential,	(B)	net	current,	target	currents	(C-G)	and	SERCA-

pump	uptake	(H)	 in	control	conditions	(CTRL,	black	 lines),	upon	administration	of	ACh	10	

nM	(dark	grey	lines)	and	1	µM	Iso	(light	grey	lines).	Targets	for	ACh	are	If	,	ICaL,	IK,ACh	and	Jup;	

targets	for	Iso	are	If	,	ICaL,	INaK,	IKs	and	Jup.	Note	differences	in	ordinate	scales. 
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pacemaking rate to 40 beats min–1 (−45.9%). This concentration was responsible 

for a negative shift in the voltage dependence of the If steady-state activation 

curve y∞ and time constant τy of −6.3 mV, a reduction of the maximal ICaL 

permeability PCaL equal to −6.7%, and a 15% decrease in the maximal activity of 

the SERCA pump Pup, all with respect to control conditions. The IK,ACh was also 

affected, showing a peak value of 0.33 pA/pF.  

The model also showed stable oscillations at a pacing frequency equal to 182 

beats min−1. Changes in the Iso target parameters responsible for this pacemaking 

rate were quantified (with respect to control conditions) as: y∞ and τy were shifted 

by +12 mV; INaK,max and gKs were both increased by 92%; and n∞ and τn were 

shifted by −22 mV. ICaL was affected by a 96.8% increase of PCaL, a shift of dL∞ 

and τdL by –12.8 mV, and a slope factor kdL reduced by −29.7%. Thus, we directly 

tuned the parameters affected by Iso, increasing the aforementioned effects of 1 

µM Iso to arrive at a pacemaking rate approaching 180 beats min–1. 

 

 

2.4 Discussion 
 
 

Simulating If and NCX blocks and autonomic stimulation provided insights 

into the model behavior and shed light on underlying phenomena.  

Lower levels of If block and shifts of the steady-state activation curve were able to 

modulate pacemaking rate, mainly by varying DDR100. By contrast, MDP and 

APD90 showed no changes (Figs. 2.1 and 2.2). These results suggest that If exerts 

its capability to modulate beating rate during the DD phase. As previously shown 

for the rabbit SAN AP (Severi et al., 2012), controlling the steepness of early DD 

is an efficient way of determining beating rate: small changes in currents are able 

to substantially modify the slope of DD, and thus the overall duration of the AP. 

This is even more true in human SAN because the pacing rate is even more 

sensitive to changes in DD slope. As a result of the non-linear relationship 

between dV/dt and time (Zaza, 2016), the same change in current is bound to 

produce larger changes in CL when basal CL is longer. Unlike the parent model, 
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pacemaker activity does not cease when If is fully blocked. Yet, the modulatory 

role of If is as important as in the parent model.  

NCX provided an important contribution to automaticity, both during DD and 

during the AP upstroke. The considerable reduction of its maximal activity 

relative to the parent model, consistent with the gene expression pattern reported 

by Chandler et al. (2009), allowed [Ca2+]i to reach a value closer to experimental 

values. The NCX block showed two different effects: for low-to-moderate levels 

of block, the beating rate became faster than under control conditions, whereas for 

high-to-almost-full block, the automaticity stopped (Fig. 2.3). The latter result is 

consistent with experiments showing an inhibitory effect of Na+ replacement by 

Li+, thus abolishing NCX, on spontaneous beating in rabbit SAN cells (Bogdanov 

et al., 2001). The unexpected effect of rate acceleration upon low-to-moderate 

block can be the result of a counterintuitive, although physiological, process: a 

lower maximal NCX activity results in a higher [Ca2+]i during DD and, 

consequently, a more intense INaCa. Nevertheless, the rate increase induced by 

INaCa reduction is actually a prediction of our model, and experimental data (not 

available yet) are needed to confirm this prediction in human SAN cells. 

Unlike If modulation, NCX block affected several main features of the action 

potential: DDR100, MDP, APD90 and even APA underwent considerable changes 

(Fig. 2.3). Of note, both the absolute and relative amplitude of If and INaCa during 

DD were highly similar to those predicted by Verkerk et al. (2013) through 

numerical reconstruction. 

It is worth noting that the ‘calcium clock’ was integrated in the parent model 

and it is also present in this human model but, as expected, the NCX current 

cannot effectively modulate the pacemaking rate. Based on the rabbit model 

simulations, the SERCA pump activity could be expected to modulate 

pacemaking rate. This was not the case in our model, in which changes in SERCA 

maximal activity had a negligible effect on rate. This leaves open the question 

about the actual relevance of the ‘calcium clock’ in human SAN. 

The adopted calcium handling considered the presence of a subsarcolemmal 

space, which is also present in the rabbit SAN cell models of Kurata et al., (2002), 

Maltsev & Lakatta, (2009) and Severi et al. (2012). Because T-tubules are poorly 
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defined in SAN cells, this subsarcolemmal space is proposed as a ‘fuzzy space’ 

(Lederer et al., 1990). NCX1 and RyRs are co-located there, as reported by 

Lyashkov et al. (2007), who used immunolabelling techniques and confocal 

imaging. Through further simulations, we tested the effect of a different cell 

arrangement of RyRs in the cell space. We progressively switched the SR release 

from the subspace to the cytosol until a 100% Ca2+ release, targeted to the cytosol 

and thus sensitive to Cai instead of Casub, was reached. The model did not show 

dramatic changes; in an SR release configuration fully targeted to cytosol, we 

only observed a minor change of pacemaking rate (+5.4%; from 74 to 78 beats 

min–1), as well as a minor increase in Cai (Cai,min from 84 to 99 nM, Cai,max from 

189 to 199 nM).  

The only study to report experimental data on the administration of ACh and 

Iso in human SAN tissue was carried out by Drouin (1997). However, the 

observed intrinsic pacemaking frequency was not coherent with clinical 

observations (30 beats min–1 in vitro vs. 70–112 beats min–1 in situ); it is therefore 

most probable that the effects of ACh and Iso were exacerbated. Furthermore, 

ACh and Iso targets are not electrophysiologically characterized in humans, and 

so we used experimental data from rabbit SAN. Thus, our simulations of ACh and 

Iso effects provide theoretical insights about the mechanisms underlying 

autonomic modulation that may require updates with respect to future data that 

become available from human tissue. The administration of 10 nM ACh led to a 

reduction of the pacemaking rate as a result of the activation of IK,ACh together 

with changes to If, SR uptake and ICaL. The ACh-induced reduction of If and 

activation of IK,ACh appeared to be the major determinants of rate slowdown. 

The overall pacing rate acceleration, as a result of the administration of 1 µM 

Iso, was the result of a balance between opposing contributors. An assessment of 

the role of each of the five targets (If, INaK, ICaL, IKs and SR uptake) showed that 

both If and ICaL changes led to a faster beating rate. However, the underlying 

mechanisms were different: If worked on the early phase of DD, modifying 

DDR100 (also shown in If modulation caused by shifts in voltage dependence), 

whereas ICaL exerted its effect during late DD. INaK showed an enhanced activity 

with Iso that decreased DDR and therefore counteracted the overall pacing rate 
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acceleration. 

An important test of the validity of the model was its ability to reproduce the 

clinical range of human heart rate. Our model was able to provide stable 

automaticity at 40 beats min–1 upon administration of 25 nM of ACh, whereas the 

maximum rate (180 beats min–1) was obtained by enhancing the effects of Iso on 

its target parameters. 

The overall message from model-based simulations of autonomic modulation 

of pacemaking is that If plays an important role in rate regulation, as in rabbit. 

However, at least one other current (IK,ACh for ACh and ICaL for Iso 

administration) needs to be modulated to achieve pacemaking rate regulation in 

the full physiological range. 
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Abstract 
 
 
Sick Sinus Syndrome (SSS) consists in the impairment of SAN automaticity and 

conduction of the AP towards the surrounding atrium. SSS leads to sinus 

bradycardia, sinus arrest and sinus exit blocks and it accounts for 50% of the 

electrical pacemaker implantations. 

Clinical studies on families affected by sinus arrhythmias shed light on the 

genetic linkage between SSS and mutations in the HCN4, SCN5A and KCNQ1 

genes, encoding pore-forming subunits of the If, INa and IKs channels, respectively. 

Aim of this chapter is to validate the human SAN model comparing the effects 

of ion channel mutations on simulated beating rate with heart rate data collected 

in clinical studies.  

The functional characterization of mutations in HCN4, SCN5A and KCNQ1 

was incorporated into the human SAN AP model. Several clinically observed 

mutations have been electrophysiologically characterized through in vitro 

experiments, revealing voltage shifts and changes of slope for steady state 

activation and inactivation curves as well as changes in maximal conductance. 

The basal beating rate in wild-type simulations was modulated in order to match 

with the heart rate of the non-carrier subjects. 

The simulated changes of beating rate due to ion channel mutations are 

qualitatively in agreement, even if quantitatively less prominent, with clinical 

data.  

The presence of the hyperpolarizing action of the surrounding atria in situ and 

the limitations of functional characterizations carried out on different expression 

systems could be the reason of the apparent gap between simulated and clinical 

data. 
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3.1 Introduction 
 
 

Sick Sinus Syndrome (SSS) consists in the inability of the sinoatrial node to 

perform its pacemaking function due to a disorder of automaticity or the 

inadequate transmission of the AP from the SAN tissue towards the surrounding 

atrium ( Bigger & Reiffel, 1979). 

In clinical practice, SSS can be detectable within the ECG trace as sinus 

bradycardia, sinus arrest, SAN exit block, and chronotropic incompetence, and is 

responsible for half of the total amount of electrical pacemaker implantations 

(Lamas et al., 2002). 

Since the 1960s-1970s, literature has reported SSS observed in familial 

context, but the linkage between SSS and genetic mutations became clear only in 

the late 1990s and the beginning of 2000s. Benson et al. (2003) and Schulze-Bahr 

et al. (2003) provided a molecular interpretation of SSS linking mutations in the 

SCN5A (sodium channel voltage gated, type 5, α subunit) and HCN4 

(hyperpolarization-activated cyclic-nucleotide gated type 4) genes, encoding the 

pore-forming subunits of the INa and If channels, respectively, to this SAN 

dysfunction. 

In cardiac tissue, four isoforms compose the HCN family (HCN1-4) and HCN4 

is the more abundant of these family members in pacemaker cells. If channel is a 

tetramer composed of four HCN subunits and it could be present in the 

homomeric or heteromeric form.  

Each HCN4 subunit consists of six trans-membrane subunits (S1-S6) where S4 

fulfills the voltage sensor function; the P domain, which links S5 and S6, is the 

pore-forming region. The C-terminus of the HCN4 protein contains the C-linker 

and the cyclic-Nucleotide Binding Domain (cNBD), where cAMP can bind, 

mediating the autonomic stimulation. In vitro experiments showed that HCN4 

mutations can impair the physiological behavior of If in several ways: they can 

modify the ion channel kinetics through a voltage shift or a change in the slope of 

the activation curve (Nof et al., 2007; Laish-Farkash et al., 2010; Duhme et al., 

2013), they can affect the sensitivity to cAMP, causing chronotropic 

incompetence (Schweizer et al., 2014), or they can lead to the reduction of the 
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maximal conductance gf, due to a compromised protein trafficking from the 

nucleus to the cell membrane (Ueda et al., 2004; Nof et al., 2007; Laish-Farkash 

et al., 2010). For a comprehensive review on mutations affecting HCN4 and their 

effect on human If see the reviews by Verkerk & Wilders (2014, 2015).  

Cardiac tetrodotoxin (TTX) resistant sodium channels (NaV1.5) are composed 

of a single pore-forming α subunit, encoded by the SCN5A gene, and a 

modulatory one, the β subunit, from a family consisting of β1-4 isoforms, encoded 

by the SCN1B-SCN4B genes, respectively. 

Four homologous domains (DI-DIV) build up the α subunit: each domain 

comprises six transmembrane segments (S1-S6) connected through extracellular 

and cytoplasmc loops. Segment S4 works as voltage sensor and the P loops that 

link the S5-S6 subunits are supposed to be the selective filter of the channel.  

Mutations affecting SCN5A are frequently associated to multiple cardiac 

diseases, e.g. long QT type 3 (LQT3) syndrome and Brugada Syndrome (BrS). 

Loss of function mutations in SCN5A, i.e mutations that reduce INa, can affect 

pacemaking and the propagation of AP, causing sinus bradycardia, slow SAN 

conduction and sino-atrial exit block, symptoms often observed in SSS. 

Gain of function mutations in SCN5A are associated with LQT3 syndrome. In 

several mutations [e.g. ΔKPQ (Moss et al., 1995; Nagatomo et al., 1998), 

E1784K (Deschênes et al., 2000; Makita et al., 2008), 1795insD (Bezzina et al., 

1999; Veldkamp et al., 2003)] LQT3 syndrome occurs in combination with sinus 

arrhythmias; of note, sinus bradycardia could exacerbate the QT prolongation 

representing an indirect factor to the predisposition to lethal arrhythmias. The 

cellular basis of sinus dysfunction in LQT3 was investigated by Veldkamp et al. 

(2003) providing the characterization of the 1795insD mutation in heterologous 

system and assessing its contribution to the SAN AP through computer 

simulations. The incomplete sodium channel inactivation led to the presence of a 

late current (INa,L) that caused AP prolongation and thus an increase of CL, 

compatible with the sinus bradycardia present in 1795insD mutation carriers. 

Contrary to If and INa, IKs is an outward current and exerts its role mainly 

during the AP. The KV7.1 channel, encoded by the KCNQ1 gene, is assembled by 

four α subunits, each of which is composed of six transmembrane segments (S1-
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S6). S4 carries out the role of voltage sensor, whereas the conductive pore is 

formed by S5-S6 and the linking P-loop. Mutations can lead to the increase of IKs 

(gain of function) or a lower contribution of that current (loss of function). Since 

IKs is a repolarizing current, gain of function mutations are responsible for short 

QT syndrome, whereas loss of function mutations are for long QT. Among 

KCNQ1 mutations associated to sinus bradycardia, R231C (Henrion et al., 2012) 

and V241F (Ki et al., 2013) affect the S4 domain (belonging to the voltage 

sensor) and cause gain of function; ΔF339 is located in the pore-forming region 

(segment S6) and is responsible for loss of function of IKs (Thomas et al., 2005).  

Aim of this chapter is to validate the computational human SAN model 

presented Chapter 1 assessing the effects of ion channel mutations on action 

potential features. 

To this end, the electrophysiological characterization of mutations affecting If, 

INa and IKs were incorporated into the model and the resulting beating rate was 

compared with the available clinical data. Moreover, the effects of mutations 

affecting the HCN4 channel were assessed at low, basal and high beating rates in 

case clinical data were available for comparison. 

 
 
 
3.2 Methods  
 
 
3.2.1 Functional effects of mutations 
 

 

Mutations in genes encoding (subunits of) ion channels may lead to changes in 

electrophysiological properties. We incorporated such functional effects into our 

human SAN cell model by modifying the parameters of the affected ion channel 

according to values reported in the literature (Tables 3.1–3.3). Only studies 

reporting changes in heart rate as (one of) the clinical effects of the mutations 

were included. 

The altered functionality was implemented as a shift of the steady-state 
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(de)activation or inactivation curve, a change in its slope factor or a reduction in 

maximal conductance. Mutations may also cause a change in the voltage-

dependent time constant (τ) curve. When changes in the time constant had been 

experimentally reported, they were implemented by a constant multiplication 

factor. Otherwise, τ underwent the same voltage shift as applied to the steady-

state (in)activation curve. Finally, mutations can also affect the maximal 

conductance (gi,max) of ion channels. 

When INa channels are incompletely inactivated, an additional non-inactivating 

term is added to the control formulation of INa, to reproduce a persistent, ‘late’ 

inward sodium current (INa,L), which is not normally present in the model.  

INa,L was mathematically formulated as follows: 

 

I!",! =  g!",!m!(V-E!")   (3.1) 

 

The non-inactivating property was obtained by neglecting the gate h, 

responsible for the INa inactivation. The maximal conductance gNa,L was estimated 

simulating voltage clamp experiments in the same conditions reported in literature 

(Nagatomo et al., 1998; Deschênes et al., 2000; Veldkamp et al., 2000; Makita et 

al., 2008). The fast Na+ current (INa) was elicited at -20 mV and the peak value 

was measured (INa,peak). gNa,L was tuned such as the amplitude of INa,L was equal to 

the percentage of  INa,peak reported in literature. This method led to gNa,L = 5.5 10-5 

, 1.36 10-4, 1.02 10-4, and 1.31 10-4 µS  for ΔKPQ, E1784a,b and 1795insD 

respectively. 

 

 

3.2.2 HCN4 mutations and autonomic modulation 
 

The bradycardic effect of three HCN4 mutations – G480R, A485V and 695X – 

on AP SAN was evaluated in presence of vagal tone, β-adrenergic tone and 

without autonomic stimulation. 

The G480R mutation was simulated through a 50% reduction in fully-activated 

conductance (i.e., a scaling factor of 0.5) and a −15 mV shift in voltage 
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dependence, whereas a scaling factor of 0.33 and a −30 mV shift were used to 

simulate the A485V mutation. The loss of cAMP sensitivity in case of the 695X 

mutation was simulated by a fixed −10.1 mV shift in voltage dependence, in line 

with the maximum effect of acetylcholine. 

The vagal tone stimulation was mimicked simulating the administration of 20 

nM ACh. The major effects of the administration of ACh are the activation of the 

ACh-activated potassium current IK,ACh, which is zero in the default model, and 

the inhibition of If through a negative shift in its voltage dependence. The 

administration of 20 nM ACh lowered the beating rate to 49 beats min-1 from the 

basal rate in control conditions of 74 beats min-1. 

A beating rate of 140 beats min-1 (β-adrenergic tone) was obtained through the 

simulated administration of Iso, tuning the parameters affected by Iso to arrive at 

this beating rate. The simulated effects of Iso included a +10 mV shift in the 

voltage dependence of If. 
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Table 3.1. Changes introduced in the If model parameters to reproduce the electrophysiological characteristics of mutant HCN4 channels, and associated clinically reported heart rate. 
 

Mutation Type of 
expression 

Expression 
system 

Activation Current 
Density 

(%) 

Heart rate  
(bpm) Reference V1/2 shift 

(mV) 
Slope 
(%) 

Tau shift 
(mV) 

G480R Heteromeric Oocyte, HEK -15 - -15 -50% NC : 73 ± 11 
C : 48 ± 12 Nof et al. (2007) 

Y481H Heteromeric CHO -43.9 n.s. -43.9 n.s. IP1 : < 30 
IP2 : 40 Milano et al. (2014) 

G482R a Heteromeric CHO -38.7 n.s. -38.7 n.s. NC : 63 
C : 48±10.7 Milano et al. (2014)  

G482R b Heteromeric HEK n.s. n.s. n.s. -65% NC : 63 
C : 41± 5 Schweizer et al. (2014)  

A485V Heteromeric Oocytes, HEK -30 - -30 -66.4% NC : 77 ± 12  
C : 58 ± 6 Laish-Farkash et al. (2010)  

R524Q Heteromeric HEK +4.2 - +4.2 n.s. IP : 98.5 ± 14.2 Baruscotti et al. (2015) 

K530N Heteromeric HEK -14.2 n.s. -14.2 - NC : 74 
C : 60.6 ± 6.9 Duhme et al.	(2013)  

D553N Heteromeric COS n.s. n.s. - -63% IP: 39 Ueda et al. (2004)  

S672R Heteromeric HEK -4.9 n.s. -4.9 - NC : 73.2 ± 1.6 
C : 52.2 ± 1.4 Milanesi et al. (2006) 

 
Experimental data are changes relative to wild-type currents. These changes are used to simulate the effect of HCN4 mutations. Oocytes: Xenopus oocytes, HEK: HEK-
293 cells, CHO: CHO cells, COS: COS-7 cells. V1/2 shift: shift in If steady-state activation curve; slope: slope factor of steady-state activation curve; tau shift: shift in 
voltage dependence of time constant of activation. -: not reported; n.s.: no significant change. Heart rate is resting heart rate in index patient (IP), mutation carriers (C) or 
non-affected family members (non-carriers, NC). 
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Table 3.2. Changes introduced in the INa model parameters to reproduce the electrophysiological characteristics of mutant SCN5A channels, and associated clinically reported heart rate. 

	
	
Experimental	data	are	changes	relative	to	wild-type	currents.	These	changes	are	used	to	simulate	the	effect	of	SCN5A	mutations.	α,	β:	subunits	α	and	β	constituting	the	SCN5A	
channel.	HEK:	HEK-293	cells,	COS:	COS-7	cells,	tsA201:	tsA201	cells.	V1/2:	shift	in	INa	steady-state	(in)activation	curve;	slope:	slope	factor	of	steady-state	(in)activation	curve;	
tau	shift:	 shift	 in	voltage	dependence	of	 time	constant	of	activation;	 INa	Late:	persistent	 sodium	current	as	percent	of	peak	current	under	voltage	clamp	conditions.	 -:	not	
reported;	n.s.:	no	significant	change.	Heart	rate	is	resting	heart	rate	in	index	patient	(IP),	mutation	carriers	(C)	or	non-affected	family	members	(non-carriers,	NC).	*Absolute	
minimum	heart	rate.	#Sinus	node	dysfunction	(SND)	observed	in	16/41	mutation	carriers.	
**	 Parameters	 employed	 for	 simulations	 were	 selected	 from	 two	 different	 experimental	 studies	 (Bezzina	 et	 al.,	 1999;	 Veldkamp	 et	 al.,	 2000).	 In	 particular,	 the	 set	 of	
parameters	reported	by	Veldkamp	et	al.	(2000)	was	extended	with	a	depolarizing	shift	of	the	activation	and	a	remarkable	current	density	reduction	as	observed	by	Bezzina	et	
al.	(1999).	

Mutation β 
subunit 

Expression 
system 

Activation Inactivation INa 
Late 
(%) 

Current 
Density 

(%) 

Heart rate 
(bpm) 

 
Reference 

V1/2 
shift 
(mV) 

Slope 
(%) 

Tau 
shift 
(mV) 

V1/2 
(mV) 

Slope 
(%) Tau 

E161K yes tsA201 +11.9 +17.9 +11.9 n.s. n.s. n.s. - -60 NC: 51±0.6 * 
C: 39±1 * Smits et al. (2005) 

G1406R yes COS - - - - - - - -100 NC: 74±2 
C: 68.4 Kyndt et al. (2001) 

ΔKPQ no HEK +9.0 +26.8 +9.0 n.s. n.s. n.s. 0.60 - NC: 76.4 
C: 62.1 

Nagatomo et al. (1998) 
Moss et al. (1995)  

E1784K a yes tsA201 +8.8 +78.1 +8.8 -14.4 n.s. n.s. 1.5 - IP: 42 Deschênes et al. (2000)  

E1784K b yes tsA201 +12.5 +32.6 +12.5 −15.0 n.s. n.s. 1.85 −40 SND# Makita et al. (2008) 

D1790G yes HEK +6 +33.3 +6 -15 -6.8 x0.5 n.s. - NC: 64.9 
C: 58.6 

Wehrens et al. (2000) 
Benhorin et al. (2000) 

1795insD** yes HEK/Oocytes +9.1 n.s +9.1 -9.7 n.s. n.s. 1.4 -77.8 NC: 74.5 ± 13.5 
C: 67.5 ± 16.4 

Bezzina et al. (1999) 
Veldkamp et al. (2000) 
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Table 3.3. Changes introduced in the IKs model parameters to reproduce the electrophysiological characteristics of mutant KCNQ1 channels, and associated clinically reported heart rate.	
 
 

Mutation Type of 
expression 

Expression 
system 

Activation Current 
Density 

(%) 
Heart rate (bpm) Reference V1/2 shift 

(mV) 
Slope 
(%) 

Tau  
(%) 

R231C Homomeric  Oocytes - - - Voltage dependent*  C:58.5±7.7 Henrion et al. (2012)  

V241F Homomeric HEK -43.2 +52.9 - - IP1:30  
IP2: 36 Ki	et	al.	(2013) 

ΔF339 Heteromeric Oocytes +25.0 - - -69.5  NC: 63 
C: 62.0 ± 6.6 Thomas et al. (2005)  

 
 
Experimental	data	are	changes	relative	to	wild-type	currents.	These	changes	are	used	to	simulate	the	effect	of	KCNQ1	mutations.	All	experimental	data	are	in	the	
presence	of	 the	KCNE1	β-subunit.	Oocytes:	Xenopus	oocytes	HEK:	HEK-293	cells.	 -:	not	 reported.	 	Heart	 rate	 is	 resting	heart	 rate	 in	 index	patient	 (IP),	mutation	
carriers	(C)	or	non-affected	family	members	(non-carriers,	NC).	
*The	 ratio	 between	 the	 current	 density	 of	 IKs	 in	 wild-type	 condition	 and	with	 R231C	mutation	 (IKsR231C/IKsWT)	 used	 to	 simulate	 the	 voltage	 dependent	 gain	 of	
function	was	estimated	from	Figure	4	(upper	left	corner)	from	Henrion	et	al.	(2012).	
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3.3 Results 
 
 
3.3.1 Model validation through the simulation of ion channel mutations 
 

 

The implementation of the functional changes in ion channels as a result of 

genetic mutations allowed validation of the present model of the human SAN AP. 

A prerequisite of the validation process was that each of the mutations included in 

the analysis had been characterized clinically and that the effects of the mutation 

on the associated current had been investigated in vitro. Specifically, the criteria 

that a mutation had to satisfy were: (i) the availability of clinical data on adult 

patients affected by sinus node dysfunction related to the ion channel mutation of 

interest and (ii) the availability of an electrophysiological characterization of the 

mutation, usually carried out in heterologous cell systems (COS-7, CHO, tsA201 

and HEK-293 cells or Xenopus oocytes), into which the mutation was transfected. 

Furthermore, to represent the clinical conditions as faithfully as possible, the 

electrophysiological data were ideally obtained from systems in which the 

expression of the mutation was heterozygous. However, in the absence of data on 

heterozygously expressed gain-of-function mutations in potassium voltage-gated 

channel subfamily Q member 1 (KCNQ1), data from homozygously expressed 

mutations were used. 

We used the data from cellular electrophysiological studies to simulate the 

effects of mutations in the HCN4, SCN5A and KCNQ1 genes, encoding the 

HCN4, NaV1.5 and KV7.1 pore-forming α-subunits of the If, INa and IKs channels, 

respectively, in our human SAN cell model. Next, we compared the results of our 

simulations with the clinical data. When clinical data relative to non-carrier family 

members were available, the model was tuned through autonomic modulation to 

reproduce the average heart rate reported for non-carriers as the control beating 

rate. Furthermore, if the clinical control rate was lower than the intrinsic beating 

rate of the model (74 beats min–1), a not-null basal level of ACh was simulated, 

whereas a fixed percentage of the effects of isoprenaline on all its targets was 

simulated to obtain higher control rates. When clinical data relative to non-carriers 
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were not available, the effects of mutations were evaluated starting from the 

intrinsic beating rate of the model. 
 

 

 

 

Figure  3.1: Clinically observed vs. simulated effects of If, INa and IKs mutations 

(A) Comparison between clinical data (solid and hatched light grey bars) and simulation data 

(solid and hatched dark grey bars) on the effects of mutations affecting HCN4 channels (If). 

For the Y481H, R524Q and D553N mutations, no clinical data from non-carrier family 

members were available. SDs of the clinical data, where available, are indicated. (B) 

Comparison between clinical data (solid and hatched light grey bars) and simulation data 

(solid and hatched dark grey bars) on the effects of mutations affecting SCN5A channels (INa, 

group on the left) and KCNQ1 (IKs, group on the right). SDs of the clinical data, where 

available, are indicated. From the ‘a’ study on the E1784K mutation, no clinical data from 

non-carrier family members were available. Clinical data from the 'b' study were only reported 

in a qualitative way (‘sinus node dysfunction’) (Table 3.2). For the R231C and V241F 

mutations, no clinical data from non-carrier family members were available. SDs of the 

clinical data, where available, are indicated. 
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3.3.2 Effects of If mutations 
 

All the initially observed mutations in HCN4 resulted in a loss of function of If 

(Verkerk & Wilders, 2015), although, recently, a gain-of-function mutation in 

HCN4 (R524Q) has also been reported by Baruscotti et al. (2017). A complete list 

of the mutations taken into consideration in the present study, together with a 

short description of their electrophysiological characterization and the parameter 

values used in our simulations, is reported in Table 3.1. 

A loss-of-function-induced decrease in the intensity of If could be the result of 

(i) a hyperpolarizing shift of the steady-state activation curve y∞ and time constant 

τy [e.g. for the Y481H and G482R (Milano et al., 2014) and the K530N (Duhme 

et al., 2013) mutations]; (ii) a reduction of the maximal conductance [e.g. for the 

G482R mutation (Schweizer et al., 2014) and the D553N mutation (Ueda et al., 

2004)]; and (iii) both of the aforementioned changes together [e.g. for the G480R, 

A485V and S672R mutations (Verkerk & Wilders, 2015)]. Furthermore, there can 

be mutation-induced changes in the activation and/or deactivation rate of the If 

channel that contribute to the decrease of If intensity [e.g. the slowed activation in 

case of the G480R mutation (Nof et al., 2007)]. 

In the simulations, all three types of loss-of-function mutations led to an 

increase in CL and thus a reduction of pacemaking rate (Fig. 3.1A). A more 

detailed look at the AP features reveals that DDR100 showed a substantial decrease 

for all loss-of-function mutations, varying from 8.5% for the relatively mild 

S672R mutation (pacemaking rate of 69 beats min–1) to 40.7% for the A485V 

mutation (pacemaking rate of 61 beats min–1), whereas APD90 was almost 

unchanged in our simulations. Similarly, changes in MDP and APA were almost 

negligible: the maximum hyperpolarization of the MDP amounted to 0.5 mV and 

the maximum increase in APA was 0.9 mV (both for the A485V mutation).  

The only gain-of-function mutation, R524Q, led to an increase in If by shifting 

the steady-state activation curve and the time constant curve towards less negative 

potentials (Baruscotti et al., 2017). Simulation of the mutation showed a faster 

pacemaking rate (79 beats min–1). DDR100 had an increase of 8.2%, whereas 

MDP, APD90 and APA were unchanged.  
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The comparison between the pacemaking rates in our simulation data and the 

clinically observed heart rates (Fig. 3.1A) highlighted the ability of the model to 

reproduce the effects of the mutations on HCN4 channels, at least qualitatively. 

Quantitatively, the effects in the simulation data are consistently smaller than 

those observed clinically, which might be expected (see Section 3.4 Discussion). 

 

 

3.3.3 HCN4 mutations and autonomic modulation 
 
 

Fig. 3.2A shows the effects of autonomic modulation through ACh and Iso on 

the electrical activity of the human SAN pacemaker cell model. Under control 

conditions, the model cell shows pacemaker activity with a cycle length of 814 ms 

(Fig. 3.2A, top panel, grey trace). The associated time course of If is shown in the 

bottom panel of Fig. 3.2A. The amplitude of If is ≈1 pA, whereas the amplitude of 

the net inward current is ≈2 pA (not shown). Thus, If is an important inward 

current during the diastolic depolarization phase. 

The inhibition of If by ACh contributes to the increase in cycle length to 1231 

ms (Fig. 3.2A, blue traces). The application of Iso stimulates If and decreases 

cycle length to 429 ms (Fig. 3.2A, red traces). A loss-of-function mutation in 

HCN4 will lead to a smaller If, and thus a decrease in inward current during 

diastolic depolarization, at all levels of autonomic tone. 

Fig. 3.2, B–D, shows the effects of mutations in HCN4 on the pacemaker 

activity of the model cell at different levels of autonomic tone. The G480R 

mutation (Fig. 3.2B) reduces If by ≈50%. As a result, the cycle length increases 

from 814 to 961 ms (+18%) under control conditions. With ACh and Iso, the 

cycle length increases from 1231 to 1503 ms (+22%) and from 429 to 519 ms 

(+21%), respectively.  

With a −30 mV shift in voltage dependence and a scaling factor of 0.33, the 

A485V mutation is more ‘severe’ than the G480R mutation, which shows a −15 

mV shift and a scaling factor of 0.5. This is reflected in a smaller amplitude of If 

and slower pacemaking (Fig. 3.2C). The cycle length now amounts to 1018 ms 
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under control conditions (+25%) and to 1618 ms (+31%) and 599 ms (+40%) with 

ACh and Iso, respectively.  

The functional effects are somewhat different for the 695X mutation, which 

leads to a loss of cAMP sensitivity of If rather than to a shift in its voltage 

dependence and/or a reduction in its fully-activated conductance. With an increase 

in cycle length to 1326 ms (+8%), the effects of the 695X mutation are relatively 

mild at vagal tone (Fig. 3.2D). Under control conditions and with Iso, cycle length 

increases to 924 ms (+14%) and to 550 ms (+28%), respectively.  

The functional effects of the three different mutations are summarized in Fig. 

3.3, which shows the beating rate of the model cell at different levels of 

autonomic tone for each of the mutations. The grey bars show the beating rate in 

the absence of a mutation. 

 

Figure 3.2. HCN4 mutations and electrical activity at different levels of autonomic tone 

Effects of mutations in HCN4 on the pacemaker activity of our human SAN cell model at 

different levels of autonomic tone. Membrane potential (Vm) and associated hyperpolarization-

activated ‘funny current’ (If). (A) Default model (no mutation). (B) G480R, (C) A485V, and (D) 

695X mutations 
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3.3.4 Effects of INa mutations 
 

 

A large number of mutations identified in SCN5A are related to sinus 

dysfunction, such as sinus bradycardia and sinus pauses (often associated with the 

LQT3 phenotype) and sick sinus syndrome (Veldkamp et al., 2003; Lei et al., 

2007). 

A loss of function of the INa channel can have several causes: (i) a rapid 

inactivation of the ion channel; (ii) a depolarizing shift of activation; (iii) a 

hyperpolarizing shift of inactivation; and (iv) a reduction of the current density, 

which, in some cases, can lead to the non-function phenotype (i.e. a full loss of 

function). In several cases, multiple causes can be present at the same time, 

enhancing the reduction of INa (Table 3.2). 

The simulations of the effects of loss-of-function INa mutations showed a 

decrease in pacemaking rate, up to 11.8% for the E161K mutation. DDR100 

showed a decrease for all mutations (with a maximum of 9.0% for E161K). 

APD90, MDP and APA were almost unchanged for all mutations. 

Figure 3.3. HCN4 mutations and autonomic modulation 

Effects of the G480R, A485V, and 695X mutations in HCN4 on the beating rate of our human 

SAN cell model at different levels of autonomic tone. Vagal tone (ACh, left), control (middle), 

and β-adrenergic tone (Iso, right). 
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In simulations of ΔKPQ (Nagatomo et al., 1998) and E1784K [parameters 

from Deschênes et al. (2000) and Makita et al. (2008)] and 1795insD mutations 

[parameters from Bezzina et al. (1999) and Veldkamp et al. (2000)] an incomplete 

inactivation, which induced a sustained (late) Na+ current (gain of function), was 

combined with a loss of function. The DDR100 resulting from this combined gain 

and loss of function showed a decrease (−5.8% for ΔKPQ, −7.9% and −7.7% for 

E1784K, and −8.0% for 1795insD). By contrast, APD90 showed an increase for all 

three mutations (+1.3% for ΔKPQ, +2.2% and +1.5% for E1784K ‘a’ and ‘b’, and 

+0.6% for 1795insD). The overall effect was a reduction of the pacemaking rate 

for all simulated mutations (by −4.8% for ΔKPQ, −2.9% and −3.7% for E1784K 

‘a’ and ‘b’, and −6.2% for 1795insD). 

To assess the contribution of an incomplete inactivation of INa channels in 

these ‘mixed mutations’, we investigated the effect of INaL alone by introducing 

this current into a cell in control condition. The presence of INaL caused two 

opposing effects: enhanced inward current during late DD resulted in a steeper 

DDR, whereas inward INa current during AP prolonged APD. In our model for 

gNaL set to 1% of gNa in the control condition, the higher inward current during 

late DD prevailed. The overall effect of INaL was a minor increase of the 

pacemaking rate (+3.2%). However, in the four mixed loss- and gain-of-function 

mutations analyzed, the loss-of-function effect prevailed and led to an overall 

slowdown of the pacemaking rate.  

A comparison of pacemaking rates predicted by the model and clinical data is 

shown in Fig. 3.1B. The simulation data for the G1406R, D1790G and 1795insD 

mutations were in close agreement, both qualitatively and quantitatively, with the 

clinical data. For the other three mutations, the simulations showed a decrease of 

the beating rate compatible with the loss-of-function behavior of the mutations, 

although it was quantitatively less close to the clinically observed effect. 
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3.3.5 Effects of IKs mutations  
 

 

Both loss-of-function and gain-of-function mutations in KCNQ1, encoding the 

KV7.1 pore-forming α-subunit of the IKs channel, have been reported in relation to 

sinus bradycardia.  

A gain of function of KV7.1 channels could be the result of (i) a higher current 

density, as observed for the R231C mutation (Henrion et al., 2012) or (ii) a 

hyperpolarizing shift of the steady-state activation curve, as observed for the 

V241F mutation (Ki et al., 2013). With either simulated mutation, DDR100 was 

markedly increased. However, the overall DDR was reduced, leading to a longer 

DD phase duration. Both mutations showed a slight depolarization of MDP (from 

−58.9 to −57.6 and−57.1 mV for R231C and V241F, respectively), whereas 

APD90 was considerably reduced (by 10.8% and 19.8% for R231C and V241F, 

respectively). Thus, opposing effects were present. However, the prolongation of 

the DD phase far outweighed the effects of a higher DDR100 and a shorter APD90, 

leading to slower pacemaking rates (57 and 40 beats min–1 for R231C and V241F, 

respectively), which were in good agreement with clinical data (Fig. 3.1B). On the 

other hand, a loss of function of KV7.1 channels can be attributed to (i) a lower 

channel expression or (ii) a depolarizing shift of the steady-state activation curve. 

The ΔF339 mutation shows both effects (Table 3.3) (Thomas et al., 2005). The 

model predicted a negligible change in pacemaking rate (from 63 to 63.5 beats 

min–1), which is consistent with clinical data (Fig. 3.1B); DDR100 was slightly 

reduced (by 2.4%) and APD90 was increased (by 1.3%), whereas MDP was almost 

unchanged. 
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3.4 Discussion 
 
 
3.4.1 HCN4 mutations 
 

 

Because of the clinical importance of this research, a large number of studies 

have previously been carried out and a considerable amount of both clinical and 

electrophysiological data is available, as reviewed by Verkerk & Wilders (2014, 

2015). HCN4 is the most abundant isoform of the HCN family. Most HCN4 

mutations result in a loss of function of If, although, recently, Baruscotti et al. 

(2017) found a mutation that results in a gain of function. In our simulations, If 

exerted its contribution during DD, influencing the amount of net inward current, 

and thus the slope of this phase. In this way, a loss of function of If leads to a 

slower rate, whereas a gain of function leads to a faster one. A remarkable aspect 

of this finding is that If is able to modulate DDR at the same time as leaving other 

important parameters (such as APD and MDP) unchanged. 

The simulations of loss-of-function mutations in HCN4 show a considerable 

slowing but not a complete cessation of pacemaker activity. The slowing is 

consistently smaller than that observed in the associated mutation carriers (Fig. 

3.1). The difference between clinical and simulated effects of mutations, however, 

is to be expected because the hyperpolarizing effect of the surrounding atrium will 

result in a more prominent role of If in the SA node of the intact heart. Of note, 

our current model appears to be more promising for assessing the effects of HCN4 

mutations in humans than the comprehensive rabbit SAN cell models described 

by Maltsev and Lakatta (2009) and Severi et al. (2012). As recently reported by 

Wilders & Verkerk (2016), the mutation effects appear to be highly 

underestimated in the Maltsev–Lakatta model, in which a slowing of only 5.2% 

was observed for the most severe of the 11 mutations tested (A485V; 21.4% in the 

present model) and highly overestimated in the Severi–DiFrancesco model, where 

pacemaker activity ceased for five of the 11 mutations, including A485V. 

 



	

	 87	

3.4.2 SCN5A mutations 
 

 

In the validation stage, a large number of mutations in the SCN5A-encoded 

NaV1.5 channels were assessed. We observed two kinds of mutations: the first 

kind was characterized by changes in electrophysiological properties that led to a 

loss of function of channels (E161K, G1406R and D1790G); the second kind 

showed the concurrent presence of loss of function and gain of function (ΔKPQ, 

E1784K and 1795insD). The latter effect was the result of an incomplete 

inactivation of INa channels, which was incorporated into the model by means of 

the INa,L current. 

Loss-of-function mutations reduced the inward current carried by INa and 

therefore decreased DDR. Thus, INa regulated heart rate in an analogous way to 

that of the funny current; however, the lower weight of INa in the overall inward 

current resulted in quantitatively fewer extensive effects with respect to If. 

Similar to the mutations in HCN4, the slowing in pacemaking rate associated 

with mutations in SCN5A is consistently smaller in simulations than in the intact 

heart (Fig. 3.1). Again, this could be explained by the hyperpolarizing effect of 

the surrounding atrium that could also result in a more prominent role of INa in the 

SA node of the intact heart. In our current model, we observed a decrease in the 

pacemaking rate of up to 14.9% for the most severe SCN5A mutation. We could 

not test the SCN5A mutation effects in the Maltsev–Lakatta rabbit SAN cell 

model because this model lacks INa. In the Severi–DiFrancesco rabbit SAN cell 

model, the decrease in pacemaking rate was almost negligible for each of the 

SCN5A mutations tested, with a maximum near 1%. 
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3.4.3 KCNQ1 mutations 
 

 

The simulated effect of the ΔF339 loss-of-function mutation in KCNQ1 that 

affects KV7.1 channels is almost negligible. The gain of function of IKs was more 

critical. The increase in outward current resulted in a DDR reduction that far 

outweighed the accompanying APD reduction. Thus, the gain-of-function 

mutations R231C and V241F resulted in a rate slowdown compatible with the 

clinically observed sinus bradycardia. However, it should be noted that the 

electrophysiological characterizations of both R231C and V241F were obtained in 

homozygous expression (Table 3.3). Although no experimental data are available 

concerning the R231C and V241F mutations in heterozygous expression, we 

decided to include these simulations anyway to provide a lower limit of the 

beating rate that the model can achieve for these mutations. 

 
 
3.4.4 General remarks 
 

 

The comparison between clinical findings and simulated effects of mutations 

on beating rate showed good overall behavior of the model. Except for the IKs 

ΔF339 mutation, simulated effects on beating rate were in accordance with the 

reported clinical data (Fig. 3.1). It should be noted that there is always a gap 

between clinical and simulated mutation effects, given the difference in the 

systems analyzed: the heart rate is a macroscopic phenomenon, resulting from the 

overall SAN tissue behavior and its interaction with the autonomic nervous 

system, whereas the beating rate predicted by the model considers only the 

microscopic single cell level. At this level, there is (for example) no 

hyperpolarizing effect of the surrounding atrium, which may increase If and INa 

and thus the functional effects of mutations in the associated genes. It should also 

be noted that carriers of the same mutation may show widely different 

phenotypes, even within the same family. This holds in particular for the SCN5A 

mutations; it is possible that only a minority of the affected family members show 
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sinus node dysfunction. Finally, other factors, such as physical training level, can 

affect the difference in basal heart rate found between healthy subjects and 

mutation carriers. 

As emphasized by Verkerk & Wilders (2015) for HCN4 mutations, although it 

can be readily extended to other ion channels, there are inconsistencies between 

clinical and experimental data. Many factors can underlie these inconsistencies: (i) 

data on current density can be misleading because heterologous systems (in vitro) 

can express different levels of the gene affected by the mutation with respect to 

the subject (in vivo) under investigation; (ii) experimental data can be incomplete 

and may strongly depend on the expression system and the experimental protocol 

employed; (iii) clinical data are often limited to a small number of patients, or 

even a single patient; (iv) the affected isoform is not the only one expressed in 

vivo; and (v) remodeling processes can occur in mutant carriers and affect their 

clinical phenotypes. 
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Abstract 
 
 

Small (SK) and large (BK) conductance channels are potassium channels 

sensitive to changes in intracellular calcium. Calcium-activated potassium 

channels (KCa) are largely diffused in brain, smooth muscle and cardiac tissue and 

are involved in neuro-secretion, smooth muscle tone and action potential shape. 

Several studies reported that SK and BK channels are able to modulate heart rate; 

however the underlying mechanisms are not fully understood. 

Aim of this work is to evaluate the effects on action potential features of the 

inclusion of ISK and IBK into the human and rabbit sinoatrial node (SAN) 

computational models. 

ISK was formulated accordingly to Kennedy et al. (2017) and different values 

for the maximal conductance gSK were tested: 4, 10 and 41.7 µS/µF. IBK was 

formulated in accordance with Orio et al. (2006) and gBK was set to 5, 9.3, 25 and 

50 µS/µF. 

The inclusion of ISK increased the beating rate from 74 up to 137 beat min-1 

(+85.1%) and from 169 to up 212 beat min-1 (+25.4%), for gSK = 41.7 µS/µF for 

human and rabbit SAN, respectively. The maximal activity of IBK (gBK = 50 

µS/µF) was responsible for a beating rate increase from 74 up to 76 beat min-1 

(+2.7%) in human SAN and from 169 up to 174 beat min-1 (+3.0%) in rabbit 

SAN. 

The effects of ISK and IBK are in agreement with the behavior reported in 

literature, even if less extended, especially for IBK. The increase in the pacing rate 

was mainly due to shortening of the diastolic depolarization phase. Interestingly, 

such changes on the diastolic depolarization phase are an indirect effect of KCa 

currents: KCa are mainly activated by the calcium transient and cause a decrease in 

the AP amplitude, which in turn is responsible for a lower activation of the 

outward IKr during the spontaneous depolarization. 
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4.1 Introduction 
 
 

Calcium-activated potassium channels (KCa) are largely expressed in both 

excitable and non-excitable cells and carry out many functions such as 

neurosecretion, smooth muscle tone and action potential shape. 

The main characteristic of KCa channels consists in their ability to couple 

intracellular Ca2+ fluctuations to membrane voltage changes; on the basis of their 

single channel conductance they are classified in 3 subfamilies: small (SK), 

intermediate (IK) and large (BK) conductance channels. Electrophysiological 

studies reported conductances of ≈10 pS for SK (Lancaster et al., 1991; Köhler et 

al., 1996), 20-80 pS for IK (R Latorre et al., 1989) and 100-300 pS for BK (Toro 

et al., 1998). 

At least 3 distinct genes, KCNN1 (SK1), KCNN2 (SK2) and KCNN3 (SK3) 

encode for SK channels; the pore-forming α subunit is composed by 6 

transmembrane domains and it is gated solely by sub-micromolar concentrations 

of intracellular Ca2+ (Köhler et al., 1996); the ensemble of four tetramers forms 

the functional ion channel. 

The presence of SK channels in cardiac tissue was detected through RT-PCR, 

western blot analysis and immunofluorescence labeling in murine (Tuteja et al., 

2005; Torrente et al., 2017), guinea pig (Koumi et al., 1994), rabbit (Giles & 

Imaizumi, 1988; Chen et al., 2013) and humans (Xu et al., 2003; Chandler et al., 

2009). 

Apamin is a neurotoxin in bee venom that showed remarkably specificity for 

SK channels; SK2 are the most sensitive isoforms to apamin (EC50≈40 pM), SK3 

showed intermediate sensitivity (EC50≈1 nM) and SK1 are the least sensitive 

(EC50≈ 10 nM). 

Several studies have shown that SK channels are involved in heart rate 

modulation, affecting the automaticity of the cardiac tissue. Observing isolated 

atrioventricular node tissue in a mouse model, (Zhang et al., 2008) reported a 

decreased automatic activity in knock out (KO) SK2 channels specimens, whereas 

the overexpression of SK2 led to a faster beating rate. Notably, significant 
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changes with respect to wild type (WT) were found in the diastolic depolarization 

rate and in AP duration. Chen et al. (2013) characterized ISK current in rabbit 

SAN cells with the administration of 1 and 10 nM of apamin, showing a decrease 

of beating rate due to APD prolongation. Torrente et al. (2017) measured ISK in 

murine SAN tissue and reported a slowed repolarization, depolarized MDP and 

prolonged diastolic depolarization upon 10 nM apamin administration.  

The pore-forming α and the regulatory β subunits of BK channels are encoded 

by KCNMA and KCNMB gene respectively. BK channels are both voltage and 

Ca2+-dependent, with a voltage sensitive region and a dedicated “calcium bowl” 

that bind Ca2+ located in the α subunit. The β subunit is not necessary for ion 

conduction but is able to affect calcium sensitivity and kinetics time constant 

(Schreiber & Salkoff, 1997).  

BK channels are present in many tissues as brain, smooth muscle and cardiac 

tissue. They are involved in the control of the neuronal circuits in hippocampus, 

control of blood pressure and regulation of heart rate. Imlach et al. (2010) 

investigated the role of BK channels in heart rate control through the effects of 

paxilline (PAX) and lolitrem B, two BK blockers, on a BK KO mouse model in 

vivo and in isolated hearts, highlighting that an inhibition of BK current was 

responsible for the slowdown of the beating rate. Lai et al. (2014) characterized 

native IBK in SAN cells and cloned IBK in HEK, reporting a pronounced 

prolongation of diastolic depolarization upon PAX administration. 

Since their capability to modulate heart rate and the specificity of their 

inhibitors, SK and BK channels can be important pharmacological targets to treat 

arrhythmias. 

The electrophysiological characterization of ISK and IBK showed that they are 

two outward potassium currents active especially during the AP; however, 

experimental studies highlighted that the diastolic depolarization (DD) is affected 

by ISK and IBK and the mechanisms of how those two potassium currents 

modulates DD are still unclear. 

Aim of this work is to evaluate the effects brought by the inclusion of ISK and 

IBK on the features of the human SAN computational model and to provide 

insights on how they can modulate the spontaneous DD. 
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To this end, we added mathematical formulations based on the available 

experimental data and we performed a preliminary sensitivity analysis using 

maximal conductance values within the range reported in literature. 

 
4.2 Methods 
 
 
4.2.1 Mathematical description of ISK 
 
 
The mathematical formulation of ISK was adopted from Kennedy et al. (2017), 

who recently developed mathematical model of ISK in order to analyse its impact 

on a ventricular myocyte model: 

 

I!" = g!"x!"(V!-E!)  (4.1) 

 

where gSK is the maximal conductance, xSK is the time and calcium-dependent 

gating variable, Vm is the membrane potential and EK is the potassium reversal 

potential. 

The first order xSK kinetics –both the steady state activation curve xSK,∞ and the 

time constant τSK– are dependent on the calcium concentration sensed in the sub-

sarcolemma space ([Ca2+]sub) rather than on the membrane potential.  

The calcium dependence of xSK,∞ is described by a Hill equation,  

 

x!",!"# = 0.81 ∙ [!"!!]!"#
!

[!"!!]!"#
! !!"!"!

  ,  (4.2) 

 

while τSK has a hyperbolic dependence on calcium,  

 

τ!" =
!

!.!"#∙[!"!!]!"#!!/!"
,  (4.3) 

 

both the formulations were adopted from Hirschberg et al. (1998). 

In this work, the half maximal effective calcium concentration EC50 = 0.7 µM 

adopted by (Kennedy et al., 2017) and aHill coefficient n=2.2 according to 
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(Hirschberg et al., 1998) were assumed. τSK and [Ca2+]sub are expressed in ms and 

µM, respectively. 

In literature, the maximal conductance gSK has been estimated in several ways 

and quite a large range of values was found; studies carried out on ventricular 

myocytes pointed out gSK close to 10 µS/µF. The computational study on 

ventricular myocytes by (Kennedy et al., 2017) estimated gSK=0.8 µS/µF based on 

the apamin effects on APD and employed a range from 0.4 to 4 µS/µF. (Torrente 

et al., 2017) characterized ISK current in mouse SAN cells and the impact of ISK 

block on pacemaking. A voltage clamp protocol stepping from a holding potential 

of -55 mV to test potentials ranging from -100 to +50 mV was used and ISK was 

obtained as the difference in net membrane current before and after the 

administration of apamin at a concentration of 10 nM. The intracellular calcium 

was buffered to 0.5 µM with EGTA into the pipette solution. We estimated the 

maximal conductance gSK from their I-V relationship (see Figure 4.1) with a linear 

fitting procedure, obtaining the extremely high value of 41.7 µS/µF.  

The sensitivity of the human  and rabbit SAN AP models to the inclusion of ISK 

was explored testing different values of gSK: 4, 10 and 41.7 µS/µF. 
 
 

 

 

 

 

 

Figure	4.1.	Linear	fitting	of	the	I-V	relationship	reported	by	Torrente	et	al.	(2017)	with	

intracellular	calcium	buffered	to	0.5	μM.	The	estimated	gSK,max	was	41.7	μS/μF.	
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4.2.2 Mathematical description of IBK 
 
 

The mathematical formulation of IBK was adopted from Orio & Latorre, 

(2005), who characterized the BK channels with the patch clamp technique 

expressing the KCNMA1 gene (for the α subunit) and KCNMB1, KCNMB2 (for 

the β1 and β2 subunit) in Xenopus laevis : 
 

I!" = g!",!"#x!" V!-E!     (4.4) 

 

where gBK,max is the maximal conductance, xBK is the gating variable, Vm is the 

membrane potential and EK is the reversal potential of potassium. 

The steady state activation curve is both voltage and calcium-dependent:  

 

x!",! =  !

!!!-
!"(!-!!.!)

!"

 (4.5) 

 

where z is the valence, F is the Faraday constant, V0.5 is the half maximal 

activation voltage, R is the universal gas constant and T is absolute temperature 

(K). 

The dependence on the intracellular calcium is expressed by z and V0.5. We 

fitted data published by (Orio & Latorre, 2005), relative to the α subunit [see 

Figure 10, panel C and D (Orio & Latorre, 2005)] as follows: 

 

V!.! Ca!"# = !"#.!"

!!!
!"#!"!"!"#!!.!!"#

!.!"#$

-35.8  (4.6) 

 

 

z(Ca!"#) = 0.8556-0.6373 !

!!!
-(!"#!"!"!"#-!.!"#!$)

!.!""!

1- !

!!!
-(!"#!"!"!"#-!.!"#$%)

!.!""!

 (4.7) 

 

where Casub is scaled by log10. 
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Figure 4.2, that reconstructs Figure 10 (Panels A, C and D) in Orio & Latorre, 

(2005), reports xBK,∞ (panel A) for several intracellular calcium concentrations (5, 

30, 100, 200, 680 nM, 1.8, 2.8, 12 and 150 µM), and fitted V0.5 and z calcium 

dependent curves (panel B and C). 

 

The kinetics of the gating variable xBK∞ is described by the first order differential 
equation: 

 

!!!"
!"

= !!",!- !!"
!!"

   (4.8)  

 

Figure	4.2	Characterization	of	the	voltage	and	calcium	dependence	of	BK	channel	

(A)	 Steady	 state	 activation	 curve	 xBK∞	 at	 different	 intracellular	 Ca2+	 concentrations.	

Increasing	 Ca2+	 concentrations	 lead	 to	 shifts	 towards	 more	 negative	 potentials.	 xBK∞	 is	

described	by	a	Boltzmann	fit	curve	(Eq.	2).	(B	and	C)	Calcium	dependence	of	half	maximal	

potential	 V0.5	 and	 valence	 z.	 V0.5	 is	 described	 by	 a	 sigmoidal	 curve	 (Eq.	 6),	 whereas	 z	 is	

described	 by	 an	 asymmetrical	 double	 sigmoidal	 equation	 (Eq.	 7).	 Experimental	 data	 are	

extracted	from	Orio	&	Latorre,	(2005).	
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where τBK = 5 ms, according to Tabak et al., (2011). 

The effects of IBK current on human SAN pacemaking were analysed using 

different values of the maximal conductance gBK. In their study on BK channels, 

carried out on mouse SAN cells, Lai et al., (2014) reported a peak value of 1.4 ± 

4.6 pA/pF at +60 mV, resulting in a maximal conductance of 9.3 µS/µF. (Tabak et 

al., 2011) assumed gBK = 0.5 nS for a cell with a capacitance of 10 pF leading to a 

specific capacitance of 50 µS/µF. Lower values of conductance (gBK = 5 and 10 

µS/µF) were also tested.  

In order to quantify the effects of the inclusion of the SK and BK channels, 

cycle length (CL), maximum diastolic potential (MDP), AP duration at 20, 50, 

and 90% of repolarization (APD20, APD50 and APD90), diastolic depolarization 

rate in the first 100 ms after MDP (DDR100), diastolic and systolic intracellular 

calcium (Cai,min and Cai,max) and the intracellular calcium transient duration at 

20%, 50% and 90% of calcium decay (TD20,TD50 and TD90) were compared in 

absence of the two currents (reference value) and in presence of ISK and IBK. 
 
 
4.2.3 Optimization of the model when including ISK 
 

In order to observe how the model parameters might change in response to the 

inclusion of ISK two set of automated optimization procedures were performed: the 

first one is based on the hypothesis that the actual value for gSK in human SAN 

cells is known, thus only the parameters without experimental references undergo 

to optimization; the second set is based on the hypothesis that we don’t know the 

actual value for gSK, and includes it within the parameters to be optimized. 

When the first hypothesis was assumed, the optimization procedure was 

performed with gSK = 4, 10 and 41.7 µS/µF; when gSK was included into the 

optimization, the minimum of the cost function was searched for starting from 

different initial guesses (gSK = 4, 25 and 41.7 µS/µF). 

For each optimization the initial guess for the other parameters was the 

nominal value of the SAN original model (see Appendix 1). The cost function 

was defined accordingly to the one adopted for the optimization of the human 

model starting from the rabbit model by Severi et al. (2012) (see Appendix 2). 
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4.3 Results 
 
 
4.3.1 Effects of ISK on AP and calcium transient in the human SAN 
 
 

The inclusion of ISK current into the human SAN AP model increased the 

beating rate. The amount of rate increase was strictly dependent on the ISK 

maximal conductance, from 74 to 78 beats min-1 +5.4% for gBK = 4 µS/µF and 

dramatically large (from 74 up to 137 beats min-1, +85.1%) for the highest 

simulated conductance value, gSK = 41.7 µS/µF. The reduction of CL was due 

both to a remarkable decrease of APD (APD90 = 98.5 ms vs 161.5 ms without ISK) 

and an increase of the DDR100 up to 80.2% (from 48.1 mV/s without ISK to 86.7). 

MDP was virtually unchanged for gSK = 4 and 10 µS/µF, whereas gSK = 41.7 

µS/µF led to a hyperpolarization of about 5% (MDP = -62.0 vs MDP = 58.9 mV). 

ISK contribution during the AP also downsized the overshoot, lowering the action 

potential amplitude [from APA=85.3 to 72.9 mV (-14.5%)]. 

The intracellular calcium showed a significant increase both in diastole (Cai,min 

= 129 nM +53.6%) and in systole (Cai,min = 292 nM +53.7%), for gSK=41.7 µS/µF. 

The extracted features for gSK =  4,10 and 41.7 µS/µF, and the percentage 

difference with respect to the model without ISK are reported in Table 4.1. 

Figure 4.3 depicts the AP traces (panel A) and the comparison between ISK for 

different values of gSK and the total current simulated without the presence of ISK 

as reference (panel B). ISK reached its current density peak during the upstroke, 

when the  [Ca2+]sub is maximal (panel C); ISK maximal amplitude,for 41.7 µS/µF, 

resulted higher than the outward Inet of the original human SAN model. 
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Table 4.1 – Effects on AP features of ISK for gSK= 4,10, 41.7 µS/µF in human SAN AP model 

	

Units	 CTRL	 gSK	=	4	μS/μF	 gSK	=	10	μS/μF	 gSK	=	41.7	μS/μF	

CL	
(ΔCL%)	

ms	
	(%)	

814	 767	
(-5.8)	

686	
(-15.7)	

438	
(-46.2)	

Beating	Rate	
(ΔBR%)	

Beats	min-1	

(%)	
74	 78	

(+5.4)	
87	

(17.6)	
137	

(+85.1)	

APD90	
(ΔAPD90)	

ms	
(%)	

161.5	
155.5	
(-3.7)	

146.5	
(-9.3)	

98.5	
(-39.0)	

DDR100	
(ΔDDR100)	

mV/s	
(%)	

48.1	 52.6	
(+9.4)	

59.4	
(23.5)	

86.7	
(+80.2%)	

APA	
(ΔAPA)	

mV	
(%)	

85.3	
82.8	
(-2.9)	

79.6	
(-6.7)	

72.9	
(-14.5)	

Cai,min	
(ΔCai,min)	

nM	
(%)	

84	
88	

(+4.8)	
96	

(+14.3)	
130	

	(+53.6)	

Cai,max	
(ΔCai,max)	

nM	
(%)	

189	 198	
(+4.2)	

214	
(+12.6)	

292	
(+53.7)	

	

 
  

 
 

Figure	4.3	Effects	of	 the	 introduction	

of	 ISK	on	 the	 human	SAN	AP	 (A)	 Time	

course	 of	 Vm	 for	 gSK	 	 4,	 10	 and	 41.7	

μS/μF,	and	in	absence	of	ISK	(No	ISK).	The	

overall	 shortening	 of	 CL	 is	 due	 to	 a	

faster	 repolarization	 (reduction	 of	

APD20,50,90)	and	a	steeper	DD	phase.	

(B)	 Comparison	 between	 the	 density	 of	

ISK	for	gSK	4,	10	and	41.7	μS/μF,	and	the	

total	 net	 current	 density	 in	 absence	 of	

ISK.	ISK	achieves	the	peak	current	density	

of,	0.19	,	0.50		and	2.17	pA/pF	for		gSK	4,	

10	 and	 41.7	 μS/μF,	 during	 the	 action	

potential.	

(C)	 Time	 course	 of	 Ca2+	 in	 the	 sub-
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4.3.2 Effects of ISK on AP and calcium transient in the rabbit SAN 
 
 

The effects of ISK on the rabbit SAN AP model are consistent with the ones 

observed in the human SAN, even if less pronounced. 

The beating rate increased from 169 up to 212 beats min-1 (+25.4%). CL 

showed a shortening up to -20% for gSK = 41.7 µS/µF (from 355 ms with no ISK to 

284 ms). Both the reduction of APD (APD90 = 104 vs 148.0 ms (-29.7%) without 

ISK) and the increase of DDR100 (DDR100 = 86.1 vs 130.3 mV/s (+51.3%)) 

contributed to shrink the CL. MDP was virtually unchanged for all the tested 

values of gSK even if it is worthwhile to point out that for gSK = 41.7 µS/µF MDP 

was slightly hyperpolarized (MDP = -58.0 mV in the original model vs MDP = -

59.0 mV) in accordance with human SAN model. The inclusion of an outward 

(hence repolarizing) current during the AP affected also the OS, leading to a 

reduction of APA up to -9.8% (APA = 72.5 vs 80.4 mV) with gSK = 41.7 µS/µF. 

Intracellular calcium concentrations were almost unaffected except for a slight 

increase for gSK = 41.7 µS/µF (from Cai,min = 83 to 87 nM and from Cai,min = 

319  to 321 nM). 

Table 4.2 collects the main features of the simulated rabbit membrane 

potentials for gSK = 4, 10 and 41.7 µS/µF and the percentage different for the 

features without ISK. 

Figure 4.4 shows the time course of the membrane potentials (panel A), ISK 

currents (panel B) and the subsarcolemmal Ca2+ [Ca2+]sub (panel C) for the 

different simulated conductance values. For gSK 41.7 µS/µF ISK is comparable to 

Inet of the original rabbit SAN model. 
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Table 4.2 – Effects on AP features of ISK  for gSK= 4,10, 41.7 µS/µF in rabbit SAN AP model 

	
Units	 CTRL	 gSK	=	4	μS/μF	

gSK	=	10	
μS/μF	

gSK	=	41.7	μS/μF	

CL	
(ΔCL%)	

ms	
(%)	

355	 348	
(-2.0)	

338	
(-4.8)	

284	
(-20.1)	

Beating	Rate	
(ΔBR%)	

Beats	
min-1	

(%)	

169	 172	
(+1.8)	

178	
(+5.3)	

212	
(+25.4)	

APD90	
(ΔAPD90)	

ms	
(%)	

148.0	 142	
(-4.0)	

134.5	
(-9.1)	

104.0	
(-29.7)	

DDR100	
(ΔDDR100)	

mV/s	
(%)	 86.1	 89.2	

(+3.6)	
95.1	

(+10.4)	
130.3	
(51.3)	

APA	
(ΔAPA)	

mV	
(%)	

80.4	 79.1	
(-1.6)	

77.5	
(-3.6)	

72.5	
(-9.8)	

Cai,min	
(ΔCai,min)	

nM	
(%)	

84	 83	
(-1.2)	

83	
(-1.2)	

87	
(+3.6)	

Cai,max	
(ΔCai,max)	

nM	
(%)	

319	 319	
(-)	

319	
(-)	

321	
(+0.6)	

 

Figure	 4.4	 Effects	 of	 the	 introduction	 of	

ISK	on	 the	 rabbit	 SAN	AP	 (A)	Time	 course	

of	 Vm	 for	 gSK	 4,	 10	 and	 41.7	 μS/μF,	 and	 in	

absence	 of	 ISK	 (No	 ISK).	 The	 effect	 of	 the	

inclusion	of	ISK	is	consistent	with	the	human	

SAN	 even	 less	 extended.	 The	 shortening	 of	

CL	 is	due	to	a	reduction	of	APD20,50,90	and	a	

steeper	DD	phase.	

(B)	 Comparison	 between	 the	 density	 of	 ISK	

for	 gSK	 4,	 10	 and	 41.7	 μS/μF	 and	 the	 total	

net	 current	 density	 in	 absence	 of	 ISK.	 ISK	

achieves	 the	 peak	 current	 density	 of	 0.11,	

0.27	and	1.02	pA/pF	 for	gSK	4,	 10	and	41.7	

μS/μF	during	the	action	potential.		

(C)	 Time	 course	 of	 Ca2+	 in	 the	 sub-

sarcolemmal	 compartment.	 [Ca2+]sub	

increase	 is	 responsible	 for	 the	 peak	 of	 ISK	

during	the	upstroke.	
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 4.3.3 Effects of IBK on AP and calcium transient in the human SAN 
 
 

IBK is an outward current that reaches its maximal activity during the rising 

phase of the AP (see Figure 5, panel a and B). 

With the inclusion of IBK, the simulated beating rate slightly increased (from 74 

to 76 beats min-1 (+2.7%)). 

 CL showed a slight reduction (CL = 814 ms without IBK vs 789 ms, -3.1%) for 

gBK = 50 µS/µF, the maximal value tested for IBK. The AP duration was virtually 

unchanged, (all the APD variations are <1%), whereas DDR100 increased up to 

+5.4%. MDP showed negligible variations and APA slightly decreased (APA = 

85.3 vs 83.1 mV, -2.6% with gBK = 50 µ= 50). 

The intracellular calcium concentrations shifted towards higher values (Cai,min 

= 84 vs 86 nM, +3.1%, Cai,max = 189 vs 196 nM ,+3.7% for gBK = 50 µS/µF). 

 
Table 4.3 – Effects on AP features of IBK for gBK= 5,9.3, 25 and 50 µS/µF in human SAN AP 

model 

	
Units	 CTRL	 gBK	=	5	

μS/μF	
gBK	=	9.3	
μS/μF	

gBK	=	25	
μS/μF	

gBK	=	50	
μS/μF	

CL	
(ΔCL%)	

ms	
(%)	

814	 812	
(-0.2)	

809	
(-0.6)	

802	
(-1.5)	

789	
(-3.1)	

Beating	Rate	
(ΔBR%)	

Beats	
min-1	

(%)	

74	 74	
(-)	

74	
(-)	

75	
(+1.3)	

76	
(+2.7)	

APD90	
(ΔAPD90)	

ms	
(%)	

161.5	 161.0	
(-0.3)	

161.0	
(-0.3)	

161.0	
(-0.3)	

160.5	
(-0.6)	

DDR100	
(ΔDDR100)	

mV/s	
(%)	

48.1	 48.5	
(+0.8)	

48.6	
(+1.0)	

49.4	
(+2.7)	

50.7	
(+5.4)	

APA	
(ΔAPA)	

mV	
(%)	

85.3	 85.1	
(-0.2)	

84.9	
(-0.5)	

84.3	
(-1.2)	

83.1	
(-2.6)	

Cai,min	
(ΔCai,min)	

nM	
(%)	

84	 84	
(-)	

84	
(-)	

85	
(+1.2)	

86	
(+2.4)	

Cai,max	
(ΔCai,max)	

nM	
(%)	

189	 190	
(+0.5)	

190	
(+0.5)	

192	
(+1.6)	

196	
(+3.7)	
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Table 4.3 reports the features of the human SAN AP model for gBK = 5, 9.3 , 

25 and 50 µS/µF. 

Figure 4.5 shows the membrane potentials (panel A) and IBK currents (panel 

B). The maximum peak of IBK occured in the very early phase of AP and its 

amplitude resulted much smaller than the Inet of the original model. 

 
Figure	 4.5	 Effects	 of	

the	inclusion	of	IBK	on	

the	human	SAN	AP.	

(A)	 Time	 course	 of	 Vm	

for	gBK	=	5,	9.3	 ,	25,	50	

μS/μF,	 and	 in	 absence	

of	IBK.	The	overall	effect	

is	a	slight	shortening	of	

CL	 due	 to	 an	 increase	

of	 DDR100,	 whereas	

APD	 was	 virtually	

unchanged.	 (B)	

Comparison	between	the	time	course	of	IBK	currents	and	Inet.	IBK	is	as	small	outward	current	in	

the	very	early	stage	of	the	upstroke.	Peak	values	reached	by	IBK	are	0.032,	0.065	0.15	and	0.33	

pA/pF	for	gBK	=	5,	9.3,	25,	50	μS/μF	respectively	

 

. 

4.3.4 Effects of IBK  on AP and calcium transient in the rabbit SAN 
 
 

IBK on the Severi et al. (2012) rabbit SAN model led to a small increase of 

beating rate (from 169 up to 174 beats min-1, +3.0% )  

CL was shortened, showing a maximal reduction of 3.1% (from 355 of the 

original model in control conditions to 344 ms) for gBK = 50 µS/µF. APD20,50,90 

and DDR100 worked in synergy towards CL shortening: the AP duration showed a 

contraction for the three repolarization phases (APD20 = 83.0 vs 75.0 ms  (-9.6%), 

APD50 = 121 vs 114 ms (-5.8%) , APD90 = 148.0 vs 139 ms (-6.1%)) whereas 

DDR100 = 86.1  vs 87.7  mV/s (+1.9%) without IBK and for gBK = 50 µS/µF 

respectively. MDP slightly shifted progressively to less negative potentials (MDP 
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= -58.0 vs -57.4 mV without IBK and for gBK=50 µS/µF) and APA decreased up to 

-7.3% (from APA = 80.4 mV in the original formulation to 74.5 mV with the 

maximal value of gBK=50 µS/µF). 

The intracellular calcium was virtually unaffected, showing a negligible 

decrease lower than 0.3% 

 
Table 4.4 – Effects on AP features of IBK for gBK= 5, 9.3, 25 and 50 µS/µF in rabbit SAN AP 

model 

	
Units	 CTRL	 gBK	=	5	

μS/μF	
gBK	=	9.3	
μS/μF	

gBK	=	25	
μS/μF	

gBK	=	50	
μS/μF	

CL	
(ΔCL%)	

ms	
(%)	

355	 354	
(-0.3)	

353	
(-0.6)	

350	
(-1.4)	

344	
(-3.1)	

Beating	Rate	
(ΔBR%)	

Beats	
min-1	

(%)	

169	 169	
(-)	

170	
(+0.6)	

171	
(+1.2)	

174	
(+3.0)	

APD90	
(ΔAPD90%)	

ms	
(%)	

148.0	 146.0	
(-1.4)	

145.0	
(-2.0)	

143.0	
(-3.4)	

139.0	
(-6.1)	

DDR100	
(ΔDDR100%)	

mV/s	
(%)	

86.1	 86.1	
(-)	

86.3	
(+0.2)	

86.9	
(+0.9)	

87.7	
(+1.9)	

APA	
(ΔAPA%)	

mV	
(%)	

80.4	 79.7	
(-0.9)	

79.0	
(-1.7)	

77.3	
(-3.8)	

74.5	
(-7.3)	

Cai,min	
(ΔCai,min%)	

nM	
(%)	

84	 84	
(-)	

84	
(-)	

83	
(-1.2)	

83	
(-1.2)	

Cai,max	
(ΔCai,max%)	

nM	
(%)	

319	 319	
(-)	

319	
(-)	

318	
(-0.3)	

318	
(-0.3)	

 

Table 4.4 reports the features of the human SAN AP model for gBK = 5, 9.3, 25 

and 50 µS/µF. 

Figure 4.6 shows the membrane potentials (panel A) and IBK currents (panel 

B). As in the human model, IBK showed small maximal amplitude compared with 

the Inet of the original model. 
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Figure 4.6 Effects of 

the inclusion of IBK on 

the rabbit SAN AP. 

(A) Time course of Vm 

for gBK = 5, 9.3, 25, 50 

µS/µF ,  and in absence 

of IBK. The overall 

effect is a shortening of 

CL due to a faster APD 

and steeper DDR100. 

(B) Comparison 

between the time 

course of IBK currents and Inet. IBK is as small outward current in the very early stage of the 

upstroke. Peak values reached by IBK are slightly higher than in human SAN model (0.050, 0.099, 

0.23 and 0.46 pA/pF for gBK = 5, 9.3, 25, 50 µS/µF, respectively). 
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4.3.5 Combining ISK and IBK in the human and in the rabbit SAN 
 
 

In order to investigate the interaction between ISK and IBK, the simultaneous 

presence of the two calcium sensitive currents was tested, combining the values of 

gSK (no ISK, 4, 10 and 41.7 µS/µF) and gBK (no IBK, 5, 9.3, 25 and 50 µS/µF ). 

Among the 20 total simulations, we compared the effects for (1) gSK = 41.7 µS/µF 

and gBK=0 (maximal value for ISK and no IBK, (2) gSK = 0 and gBK = 50 µS/µF (no 

ISK and maximal value for IBK) –the results relative to these two configurations are 

already reported in the previous sections–, with (3) gSK = 41.7 and gBK = 50 µS/µF 

(both ISK and IBK at the highest intensity) on the AP features. 

In the human SAN model the simulation with gSK = 41.7 µS/µF and gBK = 50 

µS/µF led to a faster beating rate (140 beats min-1, +89.2%), a reduction of CL 

(from 814 of the original model to 429 ms (-47.3%)), APD90 (from 162 to 96 ms 

(-40.6%)) and APA (from 85.3 to 71.6 mV (-16.1%)). DDR100 remarkably 

increased (from 48.1 to 88.6 mV/s (+84.2%)) as the diastolic and systolic calcium 

concentrations did (Cai,min = 84 nM in the original model vs Cai,min = 130 nM 

(+54.8%), Cai,max = 298 nM vs  189 nM (+57.7%)). 

The comparison of the percentage variations of HR, CL, APD90, DDR100, APA, 

Cai,min and Cai,max in the three cases under study with respect to the original model 

(i.e with no ISK and IBK) highlighted an almost negligible interaction (see Table 

4.5), since the total effect due to the presence of both ISK and IBK is close to the 

sum of the effects due to the separate presence of ISK and IBK. 
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Table 4.5 – Effects on AP features of the maximal intensity of ISK, IBK and the ISK + IBK in the 

human SAN AP model 

	

Units	 Original	
model	

ISK	max	
gSK	=	41.7	
gBK=	0	

IBK	max	
gSK	=	0	
gBK	=	50	

ISK,	IBK	max	
gSK	=	41.7	
gBK=50	

CL	
(ΔCL%)	

ms	
(%)	 814	 438	

(-46.2)	
789	
(-3.1)	

429	
(-47.3)	

Beating	Rate	
(ΔBR%)	

Beats	
min-1	

(%)	
74	 137	

(+85.1)	
76	

(+2.7)	
140	

(+89.2)	

APD90	
(ΔAPD90)	

ms	
(%)	 161.5	 98.5	

(-39.0)	
160.5	
(-0.6)	

96	.0	
(-40.6)	

DDR100	
(ΔDDR100)	

mV/s	
(%)	 48.1	 86.7	

(+80.2%)	
50.7	
(+5.4)	

88.6	
(+84.2)	

APA	
(ΔAPA)	

mV	
(%)	 85.3	 72.9	

(-14.5)	
83.1	
(-2.6)	

71.6	
(-16.1)	

Cai,min	
(ΔCai,min)	

nM	
(%)	 84	 129	

(+53.6)	
86	

(+3.1)	
130	

(+54.8)	

Cai,max	
(ΔCai,max)	

nM	
(%)	 189	 292	

(+54.5)	
196	
(+3.7)	

298	
(+57.7)	

 

In rabbit SAN, the employment of the maximal values of gSK and gBK was 

responsible for the increasing of beating rate (216 beats min-1, +27.8%) and CL 

shortening, with respect to the original model, accordingly to what observed in 

human SAN even if less pronounced (from CL = 355 to 278 ms (-21.7%)). The 

effect due to outward currents during the action potential led the voltage 

membrane to a faster repolarization (APD90 changed from 148.0 to 102.0 ms (-

31.1%)) and a lower APA (from 80.4 to 69.2 mV (-13.9%)). Another contribution 

to the shortening of CL came from DDR100, which became steeper (DDR100 = 

86.1 vs 127.5 mV/s (+48.1%)). 

Unlike what observed in the human model, the intracellular calcium 

concentrations were almost unaffected, with a slight increase of Cai,min (from 84 to 

88 nM (+4.8%)) and a virtually unchanged Cai,max (from 319 to 321 nM (+0.6%)) 
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Table 4.6 reports the comparison of the percentage variations of HR, CL, APD90, 

DDR100, APA, Cai,min and Cai,max in the three cases under study with respect to the 

original model. 

 
Table 4.6 – Effects on AP features of the maximal intensity of ISK, IBK and the ISK + IBK in the 

rabbit SAN AP model 

	

Units	 Original	
model	

ISK	max	
gSK	=	41.7	
gBK=	0	

IBK	max	
gSK	=	0	
gBK	=	50	

ISK,	IBK	max	
gSK	=	41.7	
gBK=50	

CL	
(ΔCL%)	

ms	

(%)	
355	 284	

(-20)	
344	
(-3.1)	

278	
(-21.7)	

Beating	Rate	
(ΔBR%)	

Beats	
min-1	

(%)	
169	 212	

(+25.4)	
174	
(+3.0)	

216	
(+27.8)	

APD90	
(ΔAPD90)	

ms	

(%)	
148.0	 104.0	

(-29.7)	
139.0	
(-6.1)	

102.0	
(-31.1)	

DDR100	
(ΔDDR100)	

mV/s	

(%)	
86.1	 130.3	

(51.3)	
87.7	
(+1.9)	

127.5	
(+48.1)	

APA	
(ΔAPA)	

mV	

(%)	
80.4	 72.5	

(-9.8)	
74.5	
(-7.3)	

69.2	
(-13.9)	

Cai,min	
(ΔCai,min)	

nM	

(%)	
84	 87	

(+3.6)	
83	

(-1.2)	
88	

(+4.8)	

Cai,max	
(ΔCai,max)	

nM	

(%)	
319	 321	

(+0.6)	
317	
(-0.6)	

321	
(+0.6)	
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4.3.6 Features and parameters of the models after the optimization 
procedure 

 

As first, the optimization performed keeping gSK constant (gSK = 4, 10 and 41.7 

µS/µF) were analyzed. The three models showed CL = 816 (+0.2%),  818 (+0.5%) 

and 533 ms (-34.5%) respectively. MDP slightly depolarized (MDP = -58.3 and -

58.1 mV) for gSK = 4 and 10 µS/µF, whereas it went towards more negative 

potential (MDP = -61.7 mV) for gSK = 41.7 µS/µF. The presence of a higher ISK 

led to shorter APD90 than the original model (APD90 = 152, 139 and 98 ms for gSK 

= 4, 10 and 41.7 µS/µF respectively) and a remarkably higher DDR100 (DDR100 = 

61.1 (+26.9%), 73.9 (+53.7%) and 78.9 mV/s (+64.1%)). 

The optimization procedeure led to Cai,min = 85 (+1.2%),  80 (-4.8%). and 107 

nM (27.4%) and Cai,max = 186 (-1.6%), 177 (-6.3%) and 241 nM (+27.5%).  

The values of the extracted features from the 3 optimized model assuming gSK 

costant and their variations from the ones extracted from the original model are 

collected in Table 4.7.  

 

Figure 4.7 Timecourse of Vm (A,C)  and [Ca2+]i (B,D) of the original (CTRL. black trace) and 

the optimized models including ISK. For (A) and (B) gSK was supposed  constant, whereas for  

(C) and (D) gSK was optimized starting from different initial guesses (4, 25 and 41.7 µS/µF) 
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Table 4.7 Comparison between experimental and simulated features for CTRL and optimized 
model including ISK assuming gSK constant. 

 
Features Units Exp CTRL gSK	

4	μS/μF 
gSK	

10	μS/μF 
gSK	

41.7μS/μF 
APA	

(ΔAPA%) mV 78.0	±	4.5 85.3 81.7	
(-4.2) 

77.5	
(-9.1) 

74.3	
(-12.9) 

MDP	
(Δ%) mV -61.7	±	4.3 -58.9 -58.3	

(-1.0) 
-58.1	
(-1.4) 

-61.7	
(4.7) 

CL	
(ΔCL%) ms 828	±	15 814 816	

(0.2) 
818	
(0.4) 

533	
(-34.5) 

dV/dt	max	

(ΔdV/dt	max	%) V/s 4.6	±	1.2 7.4 6.6	
(-11.4) 

5.6	
(-24.9) 

6.1	
(-18.1) 

APD20	

(ΔAPD20%) ms 64.9	±	16.9 98.5 91.0	
(-7.6) 

83.0	
(-15.7) 

52.5	
(-46.7) 

APD50	

(ΔAPD50%) ms 101.5	±	
27.0 136.0 127.0	

(-6.6) 
115.5	
(-15.1) 

77.5	
(-43.0) 

APD90	

(ΔAPD90%) ms 143.5	±	
34.9 161.5 152.0	

(-5.9) 
139.0	
(-13.9) 

97.5	
(-39.6) 

DDR100	

(ΔDDR100%) V/s 48.9	±	18 48.1 61.1	
(26.9) 

73.9	
(53.7) 

78.9	
(64.1) 

Cai	min	

(ΔCai	min%) nM 110 84 85	
(1.2) 

80	
(-4.8) 

107	
(27.4) 

Cai	max	

(ΔCai		max	%) nM 220 189 186	
(-1.8) 

177	
(-6.4) 

241	
(27.5) 

TD20	

(ΔTD20%) ms 138.9 136.7 132.0	
(-3.4) 

116.7	
(-14.7) 

72.0	
(-47.3) 

TD50	

(ΔTD50%) ms 217.4 206.3 204.0	
(-1.1) 

181.3	
(-12.1) 

107.7	
(-47.8) 

TD90	

(ΔTD90%) ms 394 552.3 554.0	
(0.3) 

535.0	
(-3.1) 

333.7	
(-39.6) 

Cs+	CL	increase	
(Δincrease%) % 26 28.0 28.1	

(0.4) 
28.6	
(2.1) 

33.4	
(19.3) 

 

The inclusion of gSK within the set of parameters to be optimized led to a 

maximal conductance of 3.9, 11.6 and 23.6 µS/µF starting from the initial guesses 

of 4, 25 and 41.7 µS/µF, respectively. The resulting models showed CL = 819 

(+0.6), 814 (-) and 820 ms (+0.2%)], negligible changes in MDP [-58.6 (+0.5%), -

59.0 (-0.2%), -58.5 mV (0.7%)) shorter APD90  [153 (-5.3%), 143 (-11.5%) and 

134.5 ms, (-16.7%)] and a remarkably higher DDR100 (59.6 (+23.8%), 63.1 

(+31.3%) and 84 V/s (+74.7%)). 

Calcium transient reached lower levels both for Cai.min [82 (-2.4%) , 70 (-

16.7%) and 69 nM (-17.9%)] and Cai.max  [181 (-4.2%), 142 (-24.9%) and 149 nM 

(-21.2%)]. 
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Table 4.8 reports the complete list of the features extracted from the three 

optimized models, and their variation from the nominal model, including gSK 

within the parameter set to be optimized. 

 
Table 4.8 Comparison between experimental and simulated features for CTRL and optimized 

model including ISK, with gSK optimized. 
 

Features Units Exp CTRL gSK	IG	
4	μS/μF	

gSK	opt	
25	μS/μF	

gSK	opt	
41.7	μS/μF 

APA	
(ΔAPA%) mV 78.0	±	4.5 85.3 82.1 

(-3.7) 
80.1 
(-6.0)	

78.1	
(-8.4) 

MDP	
(Δ%) mV -61.7	±	4.3 -58.9 -58.6 

(-0.5) 
-59.0 
(0.2)	

-58.5	
(-0.7) 

CL	
(ΔCL%) ms 828	±	15 814 819 

(0.6) 
814.0 
(0.0)	

820	
(0.7) 

dV/dt	max	

(ΔdV/dt	max	%) 
V/s 4.6	±	1.2 7.4 6.6 

(-10.2) 
6.2 

(-15.6)	
5.9	

(-20.1) 
APD20	

(ΔAPD20%) 
ms 64.9	±	16.9 98.5 92.0 

(-6.6) 
84.0 
(-14.7)	

77.5	
(-21.3) 

APD50	

(ΔAPD50%) 
ms 101.5	±	27.0 136.0 128.0 

(-5.9) 
119.0 
(-12.5)	

111.5	
(-18.0) 

APD90	

(ΔAPD90%) 
ms 143.5	±	34.9 161.5 153.0 

(-5.3) 
143.0 
(-11.5)	

134.5	
(-16.7) 

DDR100	

(ΔDDR100%) 
V/s 48.9	±	18 48.1 59.6 

(23.8) 
63.1 
(31.3)	

84.0	
(74.7) 

Cai	min	

(ΔCai	min%) 
nM 110 84 82 

(-2.4) 
70 

(-16.7)	
69	

(-17.9) 
Cai	max	

(ΔCai		max	%) 
nM 220 189 181 

(-4.2) 
142 

(-24.9)	
149	

(-21.2) 
TD20	

(ΔTD20%) 
ms 138.9 136.7 131.0 

(-4.2) 
125.0 
(-8.6)	

116.3	
(-14.9) 

TD50	

(ΔTD50%) 
ms 217.4 206.3 202.0 

(-2.1) 
199.0 
(-3.5)	

185.0	
(-10.3) 

TD90	

(ΔTD90%) 
ms 394 552.3 554.0 

(0.3) 
563.0 
(1.9)	

548.0	
(-0.8) 

Cs+	CL	increase	
(Δincrease%) % 26 28.0 28.0 

(-0.1) 
28.6 
(2.2)	

28.2	
(0.7) 

 

Each optimization returned a new set of parameters. For gSK = 4 µS/µF, PCaT 

and PCaL showed the highest variations with respect to the values of the original 

model (+13.7% and -5.9% respectively). The model with gSK = 10 µS/µF was 

characterized by a strong increase of PCaT and ks (+23% and +44.3%. respectively) 

and a decrease of VdL (-10.4%). The set of parameters with gSK = 41.7 µS/µF 

reported an increase of KNaCa (+5.1%) and a decrease of VdL (-9.5%).  
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Table 4.9 collects the parameters obtained by the optimization procedure and 

the percentage changes with respect to the original set when gSK is kept constant. 

 
Table 4.9 Comparison between the parameter of the original model (CTRL) and the ones obtained 
after the automatic optimization. gSK is assumed to be constant 
 

Parameters Units CTRL gSK	
4	μS/μF 

gSK	
10	μS/μF 

gSK	
41.7	μS/μF 

KNaCa	

(ΔKNaCa%) 
(-) 3.343 3.377 

(1.0) 
3.356 
(0.4) 

3.512 
(5.1) 

Kup	

(ΔKup%) 
mM 0.000286 0.000301 

(5.3) 
0.000275 
(-4.0) 

0.000287 
(0.3) 

PCaT	
(ΔPCaT%) 

nA/mM 0.0413 0.0470 
(13.7) 

0.0508 
(23.0) 

0.0410 
(-0.8) 

PCaL	
(ΔPCaL%) 

nA/mM 0.458 0.431 
(-5.9) 

0.412 
(-9.9) 

0.432 
(-5.5) 

kdL	
(ΔkdL%) 

mV 4.3372 4.3237 
(-0.3) 

4.4521 
(2.6) 

4.4985 
(3.7) 

VdL	
(ΔVdL%) 

mV -16.4509 -16.2203 
(-1.4) 

-14.7427 
(-10.4) 

-14.8818 
(-9.5) 

τdifCa	
(ΔτdifCa%) 

s 5.47E-05 5.54E-05 
(1.2) 

5.48E-05 
(0.3) 

5.73E-05 
(4.7) 

ks	
(Δks%) 

1/s 1.48E+08 1.49E+08 
(0.5) 

2.14E+08 
(44.3) 

1.53E+08 
(3.5) 

Kf.CM	

(ΔKf.CM%) 
mM/s 1642000 1582759 

(-3.6) 
1654255 
(0.7) 

1686092 
(2.7) 

Kf.CQ	

(ΔKf.CQ%) 
mM/s 175.4 175.4 

(0.0) 
163.8 
(-6.6) 

182.2 
(3.9) 

iNaK.max	

(	iNaK.max%) 
nA 0.0810 0.0783 

(-3.4) 
0.0660 
(-18.5) 

0.0834 
(2.9) 

gKur	
(ΔgKur%) 

μS 1.54E-04 1.49E-04 
(-3.3) 

1.41E-04 
(-8.6) 

1.47E-04 
(-4.4) 

 
 

The initial guess for gSK (4, 25 and 41.7 µS/µF) affected the final set of the 

optimized parameters. When the initial guess was gSK = 4 µS/µF, PCaT showed an 

increase of 12.2%, wherease PCaL and gKur underwent to a decrease of -6.4% and -

7.3% respectively. Starting from gSK  = 25 µS/µF led to an increase of KNaCa, PCaT, 

τdif,Ca and kfCQ (+37.1%, +18.9%, +25.3% and +21.2% respectively) and a 

decrease of PCaL and gKur, (-18.4% and -16.0% respectively).  Finally, for gSK  = 

41.7 µS/µF as initial guess, KNaCa and PCaT notably increased (+39.8% and 

+36.7%, respectively). whereas VdL. ks, INaK,max and gKur decreased (-14.2%. -

28.8%. -28.8% and -26.2%, respectively). 
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Table 4.10 collects the values of each parameter set and the percentage 

variation with respect to the original model. Figure 4.X depicts the timecourse for 

the Vm (panel A) and for [Ca2+]i (panel B) of the original model and the optimized 

models including gSK. 

 
Table 4.10 Comparison between the parameter of the original model (CTRL) and the ones 
obtained after the automatic optimization. gSK is included in the optimization procedure 
 

Parameters Units CTRL gSK	IG	
4	μS/μF	

gSK	opt	
25	μS/μF	

gSK	opt	
41.7	μS/μF 

KNaCa	

(ΔKNaCa%) 
(-) 3.343 3,450 

(3,2) 
4,583 
(37,08)	

4.674 
(39.8) 

Kup	

(ΔKup%) 
mM 0.000286 0,000287 

(0,3) 
0,000284 
(-0,74)	

0.000280 
(-2.2) 

PCaT	
(ΔPCaT%) 

nA/mM 0.0413 0,0464 
(12,2) 

0,0491 
(18,90)	

0.0565 
(36.7) 

PCaL	
(ΔPCaL%) 

nA/mM 0.458 0,4286 
(-6,4) 

0,3737 
(-18,36)	

0.4321 
(-5.6) 

kdL	
(ΔkdL%) 

mV 4.3372 4,3329 
(-0,1) 

4,3708 
(0,78)	

4.4083 
(1.6) 

VdL	
(ΔVdL%) 

mV -16.4509 -16,2668 
(-1,1) 

-16,2096 
(-1,47)	

-14.1127 
(-14.2) 

τdifCa	
(ΔτdifCa%) 

s 5.47E-05 5,60E-05 
(2,4) 

6,85E-05 
(25,31)	

5.46E-05 
(-0.1) 

ks	
(Δks%) 

1/s 1.48E+08 1,51E+08 
(2,1) 

1,47E+08 
(-0,75)	

1.05E+08 
(-28.8) 

Kf.CM	

(ΔKf.CM%) 
mM/s 1642000 1660992 

(1,2) 
1603605 
(-2,34)	

2074266 
(26.3) 

Kf.CQ	

(ΔKf.CQ%) 
mM/s 175.4 180,5 

(2,9) 
212,5 
(21,18)	

151.8 
(-13.5) 

iNaK.max	

(	iNaK.max%) 
nA 0.0810 0,0792 

(-2,3) 
0,0763 
(-5,83)	

0.0577 
(-28.8) 

gKur	
(ΔgKur%)	

μS	 1.54E-04	
1,43E-04 
(-7,3) 

1,29E-04 
(-16,03)	

1.14E-04 
(-26.2)	
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4.4 Discussion 
 
 
 

In this work we assessed the effects on AP waveform and calcium transient due 

to the inclusion of the small (ISK) and large (IBK) conductance Ca2+-dependent 

potassium currents into the human SAN computational model we recently 

developed and into the rabbit SAN parent model. The preliminary sensitivity 

analysis allowed us to observe how AP waveform and calcium transient were 

affected by different levels of ISK, IBK and by the simultaneous presence of the two 

currents under investigation. 

 

4.4.1 Effects of the inclusion of ISK in human and rabbit SAN models  
 
 

The inclusion of ISK into the human SAN model led to the increase of the 

beating rate due to the APD shortening (in all its phases) and DDR increase. The 

effects are less pronounced in rabbit SAN model, where the maximal increase of 

beating rate (+25.4% vs +85.1% in human SAN) was obtained with gSK = 41.7 

µS/µF. As the human model, the Severi et al. (2012) rabbit SAN showed a 

shortening of APD, a steeper DD phase and negligible MDP changes. The 

inclusion of ISK, in this two computational SAN, is able to modulate the beating 

rate both acting on the diastolic depolarization and in the action potential. 

This result is in accordance with the effects of the administration of 10 nM 

apamin reported by Chen et al., (2013) on rabbit SAN single cells and by Torrente 

et al. (2017) on murine SAN single cells, where a 50% block of ISK was 

responsible for a decrease of beating rate respectively of 25 and 18%. Torrente et 

al. (2017) reported an APD90 prolongation of +25% and a decrease of DDR of -

44% The inclusion of ISK in rabbit model caused a comparable APD90 decrease (-

29.7%) whereas the in human model the APD90 shortening was stronger (-39%). 

About DDR, the rabbit model showed a closer behavior (ΔDDR%=+51.2%), 

whereas human model showed an extremely high DDR increase (+119%).  In our 

simulations MDP was virtually unchanged for gSK up to 10 µS/µF and 

hyperpolarized for the maximal employed conductance (gSK = 41.7 µS/µF). There 
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is no agreement about MDP in literature, since Torrente et al. (2017) noticed 

statistically differences of MDP with 10 nM of apamin (-60 vs -64 mV in control) 

whereas Chen et al. (2013) reported no significant changes. 

The time course of the currents during DD phase allowed us to investigate the 

underlying mechanisms about the modulation of beating rate (Figure 4.8). 

Notably, how the inclusion of the outward ISK led to the increase in SAN beating 

rate is not straightforward. This mechanism is well explained, maybe exacerbated, 

in human SAN for gSK = 41.7 µS/µF (Figure 4.8 A, B). The activation of ISK 

during AP affected the maximal voltage (overshoot, OS) reached by the 

membrane. A lower OS was responsible for a remarkably lower IKr activation. 

Since IKr is characterized by very fast inactivation kinetics, at the beginning of the 

DD phase recovery from inactivation is completed, whereas the slower 

deactivation process is still on the way. As a result, the amount of IKr at this stage 

is dependent on the amount of voltage-dependent activation reached during the 

AP. For this reason, the ISK-induced OS reduction causes a remarkable decrease of 

IKr during the DD phase, which is not compensated by the strong ISK outward 

current; this speeds up the depolarization process and leads to early triggering of 

ICaL, and of the consequent action potential. The outward contribution of ISK 

during the AP is clearly evident when gSK = 41.7 µS/µF. In this configuration, ISK 

overcompensate the low repolarizing contribution of IKr leading not only to a 

shorter APD but also to a more negative MDP. 

The results showed by the two models are similar, even if less extended in the 

rabbit SAN. In the rabbit SAN model the reduction of IKr was still present, but less 

pronounced. As in the human model, a faster increase of Vm triggered ICaL sooner 

(Figure 4.8 C,D) 

Our results point out that the effect of ISK on pacemaking rate can be 

substantial. Whilst the actual size (i.e. maximal conductance value) of the ISK 

current in human SAN is still an open issue, it has been possible, through 

simulations, to make a sort of sensitivity analysis of the pacemaking to different 

levels of the current. Results confirm that it is crucial to determine the real amount 

of ISK in human SAN in order to quantitatively evaluate its eventual contribution 

to pacemaking. Simulation results suggest that even a quite small amount of ISK 
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(gsk= 4 µS/µFl leads to small but not negligible changes in the main biomarkers. 

As a relevant example, CL was reduced by 6%, down to 767 ms, which is out of 

the experimental range (828±21 ms, m±sd) reported by Verkerk et al. (2007) in 

human SAN cells.	 

 

 
 
4.2 Effects of the inclusion of IBK in human and rabbit SAN models  
 
 

Simulations using different values of maximal conductance (gBK) pointed out 

that contribution to the pacemaking modulation was negligible leading to a 

maximum increase of beating rate of 2.7% in the human SAN model. The small 

increase was mainly due to the shortening of DD (-3.6%) whereas APD and MDP 

were virtually unchanged. The analysis of DD phase showed that the presence of 

Figure	4.8	:	Underlying	mechanisms	for	ISK	DD	modulation	in	human	(A-B)	and	rabbit	

(C-D)	SAN.	Membrane	potential	 (A-C)	and	main	currents	 (B-D)	 involved	 in	modulation	of	

DD	 phase	 are	 shown.	 In	 the	 human	 SAN	 model	 (A-B)	 the	 steeper	 DD	 is	 due	 to	 a	 lower	

outward	 IKr	 that	 leads	 to	 a	 faster	 activation	 of	 ICaL.	 In	 the	 rabbit	 SAN	 model	 (C-D)	 the	

mechanism	is	similar	to	the	human	SAN	but	 it	 is	less	pronounced,	leading	to	a	 less	steeper	

DD	phase.	
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IBK led to a slightly higher inward net current, especially during the very early DD 

and during the late phase. The slightly enhanced contribution of INaCa and the 

decreased amplitude of IKr were synergically responsible for the increased inward 

Inet in the early DD; the faster activation of ICaL increased Inet in the late DD. 

The rabbit SAN model showed a similar increase in beating rate (+3.0%); 

differently from the human model, the change in rate was attributable to the 

shortening of APD without any variation of DD duration. As it concerns the 

underlying mechanisms, the IBK directly affected the action potential phase thanks 

to its outward contribution and indirectly the DD. Indeed, DD duration was 

unchanged since a compensating effect of inward and outward current. As ISK 

does, IBK  was responsible for a lower overshoot that affected IKr also during DD; 

in the early DD the lower contribution of that outward current caused a higher 

inward Inet, with respect to the original model. The compensation occurs in second 

part of DD, where INa and INaCa reached lower inward amplitudes. 

The simulated effects of the inclusion of IBK are characterized by lower extents 

and different mechanism compared to the experimental data obtained with 

administration of BK channels blockers. Imlach et al.(2010) reported heart rate 

reduction of -31% in vivo and -34% in isolated hearts in a mouse model for the 

administration of PAX 8 mg/Kg and 1 µM respectively. Lai et al., (2014) 

observed a strong decrease of beating rate (-56.%) in isolated SAN cells with a 

remarkable prolongation of DD and no significant changes in APD50 and MDP. 

According to the speculative suggested mechanisms by Lai et al., (2014), IBK 

contribution could enhance If and INa, by hyperpolarizing the membrane, or could 

involve Ca2+ inactivation. Our model suggested that IBK mainly acts during AP 

and can indirectly affect DD via IKr and slight changes in inward currents as INaCa. 

The discrepancy among experimental data and simuklated results deserve further 

investigation; among the possible hypothesis, PAX could be not highly specific 

for BK channels ore there could be discrepancies due to the different species 

analyzed (mouse vs rabbit and human); moreover, the models could not 

adequately reproduce Ca2+ transient during the time interval where IBK could play 

an important role in DD modulation. 
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4.3 Combining ISK and IBK in the SAN models 
 

 

SK and BK channels are both Ca2+ sensitive, but they have different 

biophysical properties. The simulation of the simultaneous contribution of ISK and 

IBK was carried out in order to observe some behavior emerging from the 

interaction between the two currents. The extracted features showed that 

interaction were almost negligible since the total effect was close to the sum of 

two separated currents (see Table 4.6 and 4.7) 

 
 
4.4 Optimized models 

 
 
The inclusion of gSK within the model brought the simulated features out of the 

physiological values and it made necessary to perform new optimization 

procedures.  

When gSK was assumed to be known (hypothesis 1), for gSK = 41.7 µS/µF the 

optimized model showed features far from the experimental range, suggesting that 

such a high value of conductance for ISK is highly unlike. 

The inclusion of gSK within the optimization procedure –gSK assumed 

unknown, hypothesis 2– showed that models with gSK = 11.6 and 23.6 µS/µF still 

have a good behavior, even if with a steeper DDR100 and a shrinked CaT. The 

increase of value of gSK led to a higher number of parameter involved in 

remarkable changes. Among the main target of the optimization there are 

PCaT,PCaL, VdL, and KNaCa, involved in the regulation of the steepness of DDR100 

during the early phase and the CaT, and gKur, that affects the APD.  

 
 
4.5 Final Remarks  
 
 

The presence of IK,Ca channels in human SAN tissue was reported by (Chandler 

et al., 2009) through the gene expression characterization, but unfortunately no 

electrophysiological data acquired directly on human SAN cells are available. Our 
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model is based on data obtained with heterologous systems, e.g. HEK cells, 

Xenopus oocytes (Orio & Latorre, 2005; Orio et al., 2006),  and small animal 

models as rabbit (Chen et al., 2013) and mouse (Zhang et al., 2008; Imlach et al., 

2010; Lai et al., 2014; Torrente et al., 2017). In this perspective, we are exploiting 

our computational SAN model to obtain insights on how IK,Ca could work into the 

human cellular environment. 
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Abstract 
 
 

The sinoatrial node (SAN) is the natural pacemaker of our heart. How this 

small tissue is able to drive a remarkably larger number of intrinsically quiescent 

atrial cells is still debated; a computational investigation of the underlying 

mechanisms can help to better understand the SAN’s ability to pace-and-drive the 

surrounding atrium. 

Aim of this work is to elucidate how the human SAN action potential can 

successfully be captured by and propagate into the surrounding atrial tissue. 

The Fabbri et al. and the Courtemanche et al. models were used to describe the 

human SAN and atrial cells respectively. The behaviour of two coupled regions 

was investigated varying the interregional conductivity (σ) and relative size. 

Simulations showed that it requires at least an isopotential SAN region 2.85 times 

wider than the atrial one. A 1D strand of homogeneously coupled SAN and atrial 

elements was used to identify an interval for σ showing pace-and-drive behaviour 

(100 SAN vs 100 atrial elements) and to investigate the source-sink interplay (10 

and 50100 SAN vs 100 atrial elements). The 1D strand successfully drove the 

atrium for σ = 0.08-36  S/m; a stronger source, with a higher number of SAN 

elements led to a wider σ range that allowed pace-and-drive behaviour, whereas a 

stronger sink did not affect the behaviour of the tissue. 

This preliminary work shows the ability of a small human SAN region to pace-

and-drive the surrounding atrial tissue. Further investigations are needed to 

explore different conductivity configurations, including spatial gradients. 
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5.1 Introduction 
 
 

The sinoatrial node (SAN) is a small, specialized tissue located in the right 

atrium and responsible for the physiological heart rate in healthy subjects. Its self-

oscillating action potential (AP) starts the chain of events that leads to the 

electrical activation and the subsequent mechanical contraction of the whole heart. 

When two or more cardiac cells are coupled, the behaviour of each cell is not only 

determined by its intrinsic properties governing membrane ion currents but also 

by the electrotonic currents that flow through the gap junctions shared with 

neighbouring cells. Experimental work by Jalife (1984) showed that two 

pacemaker centres beating at different frequencies mutually entrained and reached 

a common cycle length (CL) intermediate between the mean period of the fast and 

the slow one, once electrically coupled. A computational study by Joyner et al. 

(1983) showed that regional changes in membrane properties (e.g. plateau 

currents) affected the spatial distribution of the AP properties along the tissue due 

to the effects of electrotonic currents. 

The propagation of the electrical signal from the SAN tissue to the atrial tissue 

was investigated in animal models, especially in rabbits, starting from the 1980s. 

The fair amount of experimental data provided a strong base for building 

computational models, which investigated the required level of coupling to 

successfully pace-and-drive the atrial tissue. Among them, Joyner & van Capelle, 

(1986) systematically explored the behaviour of two coupled regions and of 2D 

radially symmetric cardiac tissue slices composed of sinoatrial and atrial rabbit-

specific cell models. 

Recent studies by Chandler et al. (2011) and Csepe et al. (2016) shed light on 

the anatomical structure and conduction pathways of the human SAN. However, a 

computational model able to describe the propagation of the electrical stimulus 

from the SAN to the atrial human tissue is still lacking.  

The aims of the present work are 1) characterizing the behaviour of two 

discrete electrically coupled SAN and atrial regions when varying the membrane 

surface and the gap junction conductivity, 2) identifying the range of conductivity 
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that yields a pace-and-drive behaviour in a homogeneous 1D strand, and 3) 

investigating the source-sink interplay by varying the number of SAN and atrial 

elements in the strand.  

 

 

5.2. Methods 
 
 
 
In order to investigate the mechanisms involved in the electrical propagation of 

the AP in human sinoatrial and atrial tissue, the human-specific cell models by 

Fabbri et al. (2017) and Courtemanche et al. (1998), for the sinoatrial node and 

for the atrial cells, respectively, were chosen. 

 
 
5.2.1 Coupling of discrete sinoatrial node and atrial regions 
 
 
The study about the electrical interaction between two discrete regions (SAN and 

atrial) was performed varying two parameters that describe the strength of the 

coupling, i.e. the conductivity (σ [S]) and the dimensions of the investigated 

region (kratio [-]). 

In particular, kratio is defined as: 

 

k!"#$% =  
C!"#,!"##
C!"#,!"##

 
S!"#
S!"#

 

 

where C!"#,!"## = 57  pF (Fabbri et al., 2017) and C!"#,!"## = 100  pF 

(Courtemanche et al., 1998); The terms relative to the membrane surface, SSAN 

and SATR, affect the calculation of the coupling current among the two tissue 

regions. In this sense, they represent the amount of membrane of one region that 

is involved in the coupling with the other. 
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The behaviour of the coupled-regions system was tested for σ between 

10-! and 5 ∙ 10-! S and k!"#$% between 0.057 (SSAN ten times bigger than SATR) 

and 0.57 (SSAN= SATR). 

 

5.2.2 1D tissue strand 
 
 

The monodomain model was adopted to describe the propagation of the 

electrical stimulus from the sinoatrial to the atrial tissue. The identification of a 

range of conductivity values that yields pace-and-drive behaviour was obtained 

through a mono-dimensional strand composed of 100 sinoatrial (1 cm) and 100 

atrial cellular elements (1 cm); each element had a side length of 100 µm. We 

employed a constant value of conductivity σh [S/m] along the whole tissue, 

simulating an electrically homogenous strand.  

The source-sink interplay was investigated adopting a number of SAN cells 

equal to 10, 50 and 100 against 100 or 200 atrial cells. The strength of the source 

and the sink was investigated by comparing the cycle length (CL) of the leftmost 

sinoatrial element (index #0) with the CL relative to an uncoupled setup (σh = 0). 

The conduction velocity (CV) was estimated measuring the time delay between 

the activation of the 25th and 75th atrial cells assuming a constant propagation 

velocity. 

The Safety Factor (SF) is an index that provides quantification about the 

robustness of electrical propagation in the cardiac tissue. In more detail, SF 

quantifies the surplus of current delivered to a cell relative to the amount required 

to depolarize the membrane to threshold (Boyle & Vigmond, 2010). 

The expression of SF used by Romero et al. (2009) is given by: 

 

SF =  !!∆!!! !!"#
!!"

 (5.2) 

 

where Qin and Qout is the charge provided by the upstream and to downstream cell 

respectively. The charge is computed over the time of rise of the membrane 

voltage, from resting potential to the upstroke peak. 
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The Kirchoff’s current law for cell N, without external current stimuli, 

provides the balance of the currents involved in the propagation of AP: 

 

I!"-I!"# = C!
!!!
!!

+ I!"# (5.3) 

 

Integrating (5.3) over the rise time, and rearranging the terms:  

 
!!∆!!! !!"#! !!"# 

!!"
= 1 (5.4) 

 

which combined with (5.2) yelds 

 

SF =  1-  !!"#
!!"

  (5.5) 

 

If Qion is inward, then SF>1 and the AP successfully propagates; on the 

contrary if SF<1 the propagation fails.  
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5.3 Results 
 
 
5.3.1 Coupling of discrete sinoatrial node and atrial regions 
 
 

The coupled-region system showed three distinct behaviours as can be seen in 

Figure 1: a) not-pace, where the automaticity of the sinoatrial node is completely 

lost, b) pace-but-not-drive, where the sinoatrial node keeps the automaticity but it 

is not able to activate the atrial region, and c) pace-and-drive, where the automatic 

sinoatrial region APs are successfully captured by the atrial tissue and propagate. 

σ = 9 ∙ 10-! S was the maximal value that led to the pace-but-not-drive behaviour 

irrespective of the value of k!"#$%. For k!"#$% equal to 0.057 and 0.1 the system 

switched from pace-but-not-drive to pace-and-drive upon increasing σ, whereas 

for k!"#$% of 0.285 or higher, the not-pace behaviour followed the pace-but-not-

drive one. 

For k!"#$%= 0.1425 (sinoatrial surface four times higher than the atrial one) the 

pace-and-drive behaviour was disrupted by a not-pace interval for  σ = [3-7] ∙

10-! S. The outward current provided by the SAN region in the not pace 

configuration did not allow the SAN to reach the threshold, stopping in this way 

the automaticity. For higher values the pace-and-drive behaviour was recovered 

with a SAN-like AP waveform of the atrial region. 
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5.3.2 1D tissue strand 
 

The mono-dimensional homogeneous strand composed of 100 SAN and 100 

atrial elements showed a pace-and-drive behaviour for σh = [0.08 - 36] S/m. 

Lower values of σ! led to a pace-but-not-drive behaviour, whereas values above 

stopped the automaticity of the sinoatrial node  (not-pace). Figures 2 and 3 

compare the AP waveform and the time course of the fast sodium current (INa) at 

the transition between SAN and atrial regions for σh = 1 S/m. The SAN AP 

showed a progressive hyperpolarization (MDP = -66.6 for the last SAN element 

versus -58.9 mV in the uncoupled cell) due to the presence of the atrial tissue (see 

Fig. 2, panel A). The upstroke of the SAN elements close to the atrium was 

steeper due to a larger INa, almost negligible in cells far from the transitional zone 

(see Fig. 3, panel B). The atrial elements close to the SAN ones showed a 

depolarized resting potential in comparison with the single cell model (Vrest ≈ -66 

mV and a slight depolarization during the diastolic phase for the first atrial cell, 

Figure 5.1 Results of the simulations for two coupled regions: SAN and atrial, varying the 

membrane surface (kratio) and the strength of the coupling (σ). Not-pace (crosses), pace-but-

not-drive (circles) and pace-and-drive (triangles) behaviour was observed.  
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Vrest,uncoupled ≈ -81 mV); the typical spike-notch-dome morphology was lost in the 

first atrial elements, which showed an intermediate waveform between sinus-

nodal and atrial.  

The atrial waveform and the resting potential were recovered after 10 elements 

(1 mm) from the transitional region (Fig. 3, panel A). A more hyperpolarized 

resting potential led to higher INa availability, remarkably higher than in the first 

atrial elements (Fig. 3, panel B). 

An increase of the number of the sinoatrial elements led to a wider σ! range 

yielding pace-and-drive behaviour. In particular, the upper bound of the interval 

Figure 5.3 Comparison of A) AP waveform and B) INa time course of atrial elements close to the 

transitional zone for σh = 1 S/m. Vm and INa time courses are delayed by 100 ms for sake of clarity. Note 

the different ordinate scale of panel B compared to Figure 2. Following atrial APs look like ATR #109. 

Figure 5.2 Comparison of A) AP waveform and B) INa time course of SAN elements close to the 

transitional zone for σh = 1 S/m. Vm and INa time courses are delayed by 100 ms for sake of clarity. 
Preceding SAN APs look like SAN#90. 



	

	 135	

was shifted towards higher values, with σh = 0.3, 9 and 36 for a SAN tissue 

composed of 10, 50 and 100 elements, respectively. Furthermore, a higher number 

of SAN cells caused a lower CL, i.e. faster beating, at the same value of σ! (e.g. 

for σh = 0.15 S/m, CL = 1001, 838 and 837 ms for 10, 50 and 100 SAN elements). 

In combination, longer CLs could be obtained using higher numbers of SAN 

elements (CLmax = 1738, 2100 and 2726 ms) as depicted in the σ! vs. CL plot in 

Figure 4. Changing the number of atrial elements from 100 to 200 did alter 

behaviour neither qualitatively nor quantitatively. 

Estimated CV varied between 0.685 cm/s for σh = 0.08 S/m and CV = 83.3 

cm/s for σh = 35 S/m. 

 

In this work the definition of SF reported in section 5.2.2 was applied to the 1D 

strands composed by 10,50, and 100 SAN and 100 atrial cells at several values of 

coupling (σh).  

Figure 5.4 : Source-sink interplay. CL of SAN elements at different conductivity values for a 

homogeneous 1D strand composed of 10, 50 and 100 SAN against 100 atrial elements. The 

dashed line indicates the intrinsic CL of the SAN cell elements. 
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Figure 5.5 resumes the values of the computed SF for each simulation. SF = 1 

represents the threshold that distinguishes successfull propagation from failure. In 

all the three configurations the pace-but-not-drive (red ellipse) and the not pace 

(red rectangle) behavior showed SF<1. 

The strand composed by 10 SAN cells showed a sharp increase of SF during 

the transitions from pace-but-not-drive to pace-and-drive (SF = 0.48 at  σh = 0.06 

S/m, SF = 2.28 at σh = 0.08 S/m) and a drop from pace-and-drive to not pace (SF 

= 2.06 at  σh = 0.34 S/m, SF = 0.6 at σh = 0.35 S/m). 

The strands made by 50 and 100 SAN cells showed a sharp increase of SF 

during the transition from pace-but-not-drive to pace-and-drive (SF = 0.51 at  σh = 

0.06 S/m, SF = 2.51 at σh = 0.08 S/m in both the strands); SF progressively got 

close to the threshold for high levels of coupling and then became lower than 1 

when the propagation failed  (SF = 1.12 at  σh = 9.00 S/m, SF = 0.93 at σh = 9.50 

S/m for 50 SAN cells, SF = 1.18 at  σh = 37.00 S/m, SF = 0.98 at σh = 40.00 S/m 

for 100 SAN cells). 

 

 

Figure 5.5 Safety factor and AP propagation: Comparison of the safety factor for three strand 

configurations: 10 SAN (blue squares), 50 SAN (red) and 100 SAN (green) cells coupled with 

100 atrial cells. SF = 1 is the threshold that distinguishes between successful or failing AP 

propagation. 
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5.4 Discussion  
 
 

The present work represents a preliminary investigation on the propagation of 

the AP from the sinoatrial node to the atrial tissue using human-specific 

computational membrane models.  

The in silico experiments showed that the human SAN model is able to pace-

and-drive the atrial tissue under specific conditions of electrotonic coupling and 

cell/tissue dimensions. The system of two discrete coupled regions showed pace-

and-drive behaviour for kratio ≤ 0.2. This value is obtained for a SSAN:SATR equal to 

2.85:1. The assumption of isopotential region is satisfied by two coupled cells. In 

that case the SSAN:SATR ratio means that 4 SAN cells are needed to successfully 

excite the atrial one. If we extend the discussion to 2 isopotential tissues, the 

SSAN:SATR = 4:1 means that the surface of the SAN region that participates to the 

coupling should be four times more extended than the atrial one. This result is in 

agreement with the study by Joyner & van Capelle (1986), who showed that the 

isopotential SAN region surface must be wider than the atrial one in order to 

successfully activate the latter (Figure 3 in [3], panels A and B). 

The disruption of the pace-and-drive for σ = [3-7] ∙ 10-! S and the following 

recovery of the driving of the atrial region for higher values of coupling is 

intriguing. The behaviour showed by our simulations differs from the results 

obtained by Joyner & van Capelle (1986), where varying the strength of coupling, 

keeping the same dimensions of SAN or atrial region, did not show a recovery 

from not pace. Interestingly, in our simulations, the disruption distinguished two 

different kinds of pace-and-drive, the one with an atrial-like and another with a 

SAN-like waveform for the atrial region.  

The analysis of the behaviour of a 1D strand composed of 100 SAN and 100 

atrial elements with homogenous coupling revealed that the pace-and-drive region 

in the σ! space is quite extended and also that the SAN elements are strong 

enough to drive the atrial tissue without being electrically shielded from the load 

generated by the atrium. However the conductivity σ! corresponding to a 

physiological conduction velocity in the atrial tissue (CV ≈ 85 cm/s) yields a too 
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long CL (= 2726 ms) compared to physiological heart rates. This discrepancy 

suggests a non-homogeneous conductivity in vivo. 

The SAN elements located in the transitional zone showed a “peripheral-like” 

AP (Chandler et al., 2009) even if the employed SAN AP model does not 

distinguish between central and peripheral cells. The enhanced contribution of INa 

due to the electrical load of the atrial tissue was responsible for the faster upstroke 

of the SAN elements close to the atrial ones.  

The source-sink interplay plays an important role in excitation propagation, 

especially for the SAN that has to drive the remarkable electrical load generated 

by the surrounding atrial tissue. Our simulations point out that the range extension 

of the conductivity that allows the pace-and-drive behaviour highly depends on 

the number of the SAN elements (strength of the source). The carried out 

simulations with 100 and 200 atrial elements showed the same behaviour, at the 

same conditions of source strength. This result suggests that the further 

downstream 100 atrial elements do not substantially increase the electrical load of 

the sink. 

The calculation of SF for the strands composed by 10, 50, 100 SAN and 100 

atrial cells satisfied the criterion SF>1 for a successfull propagation. The strand 

made by 10 SAN cells showed a different behavior with respect the 50 and 100 

SAN cells with a sharp drop of SF during the transition pace-and-drive and not 

pace. For increasing values of σh the 50 and 100 SAN cells strands showed a 

progressive decrease of SF and “distorsion” of the AP waveform, characterized by 

less pronounced peaks during the upstroke. 

The focus on simple geometrical setups (two discrete coupled regions and a 1D 

strand), even if far from a physiological configuration allowed observing the 

fundamental electrical behaviour without confounding factors due to a complex 

geometry. 

Another important aspect is the dependency of the results – e.g. range of the 

conductance for successful propagation, conduction velocity, source and sink 

interplay – from the computational atrial model adopted. Several human atrial AP 

models are available on the market (Nygren et al., 1998; Koivumäki et al., 2011; 

Grandi et al., 2011) and a their major electrophysiological properties have been 
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compared by Wilhelms et al. (2013) showing different behaviors (e.g. rate-

dependent differences in APD and AP upstroke). Further investigations using 

different atrial models can be helpful to test how the electrical propagation of AP 

is affected by the employed model in the simulations.  

Next steps should take into account the cellular and gap junction heterogeneity, 

introducing differences in ion channel conductances and spatial gradients of 

coupling (Joyner & van Capelle, 1986; Inada et al., 2014). An appropriate 

coupling configuration will be also helpful to obtain both a physiological 

conduction velocity and CL, not achievable in our 1D homogenous strand. 
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General Conclusion 
 

 

“One of the first questions to ask of a model […] 

 is what questions does it answer best”.  
 

Denis Noble & Yoram Rudy 

 

 

In their review on models of ventricular action potentials, Noble and Rudy 

(2001) explained “[…] the philosophy of modeling as applied to the heart.”  

For each model they asked the following questions: 

 

 

1) What was the purpose of the model? What kind of question was it seeking to 

answer? 

 

2) What were the gaps? Were there clues in the earlier models to what were to 

become central questions for later models? 

 

3) How were the models used? What were their successes and failures? 

 

 

The above-mentioned questions can be made for each kind of cardiac cell 

model, and the human SAN model developed in this PhD Dissertation is not an 

exception.  

The overall question that gave birth to this investigation is: what do simulations 

tell us about pacemaking in human SAN cells?  
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Nowadays mathematical models of SAN are quite comprehensive and able to 

describe mechanisms at the base of pacemaking in animals, e.g. guinea pigs and 

rabbits. That is not true for human SAN. 

The first gap that has to be faced is the shortage of human-specific 

electrophysiological data. There are few works that report measurement on adult 

human SAN relative to AP waveform and Ca2+ transient (Verkerk et al., 2007, 

2013); furthermore, only few currents as If (Verkerk et al., 2007), IKr and IKs 

(Danielsson et al., 2013) were electrophysiologically characterized in human. 

Thus, the disclosure “of molecular architecture” of human SAN through the 

quantification of mRNA by Chandler et al. (2009) is crucial to add information 

about the quantity of ion channels present within the membrane.  

 

 

 

The development of the human SAN model, therefore, started from the state-

of-art rabbit SAN by Severi et al. (2012) and the available human specific data 

were included. Optimization techniques, strongly constraint by experimental data, 

filled what was missing from wet experiments. The result was the model proposed 

in Chapter 1, able to reproduce the main characteristics of the AP waveform and 

the Ca2+ transient reported in literature. 

If plays a primary role in pacemaking initiation and modulation in rabbit; the 

measurement acquired in voltage clamp protocol by (Verkerk et al., 2007) showed 

that it was way smaller compared to the rabbit one. One on hand, the inclusion of 

human If in the rabbit model suddenly slowed down the rate of the “humanized” 

model, on the other hand the simulated human If and the net current of human 

model were comparable. As remarkable result, the sensitivity analysis showed that 

small changes of ICaL, in particular the parameters that control its activation (VdL 

and kdL) strongly affected the DD, and thus the beating rate, whereas the APD was 

strongly dependent on IKr. 

 

Chapter 2 focused on the capability of the major actors of “membrane clock” 

(If) and “Ca2+ clock” (INaCa and SR) to finely modulate the beating rate; moreover 
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the autonomic modulation contribution was assesed. If achieved an effective 

control of rate acting exclusively on the slope of DD, without affect any other 

biomarker. INaCa, on the contrary, regulated the rate modifying important 

biomarkers as MDP, AP, APD, DDR. Modulation of SR activity, responsible for 

the cyclic release of Ca2+, was not able to cause remarkable changes. 

Since no experimental data about human on the effects of autonomic 

stimulation were available, the developed model was used to gain theoretical 

insights about the biophysical mechanism. Simulation relative to the 

administration of 10 nM ACh indicated that If and IK,ACh
 are the main players in 

the beating rate vagal-induced slowdown. The adrenergic stimulation, mimicked 

through the administration of 1 µM, highlighted the principal role for If and ICaL. 

The model was also capable to reproduce the physiological range of rate (40 – 180 

beats min-1) with an adequate autonomic stimulation.  

  

Ion channel mutations are able to strongly affect the heart rate and they 

represent a link between electrophysiology and clinical practice. For that reason, 

they represented a good test-bed to validate the model (Chapter 3). Simulations 

showed a qualitative behavior in agreement with the macroscopic changes of heart 

rate for HCN4 (9 mutations), SCN5A (6 mutations) and KCNQ1 (3 mutations) 

reported in clinics. The simulations in presence of autonomic modulation showed 

that working rate (low,basal,high) is able to change the entity of the effect of the 

ion channel mutation. 

  

 The inclusion of ISK and IBK currents into the human and rabbit SAN 

models tested how a new current could affect the beating rate (Chapter 4). These 

two currents were selected since they are Ca2+ activated, providing clues about 

how changes in intracellular Ca2+ could affect the membrane potential. 

Intriguingly, even they are mainly outward currents, activated during AP, they can 

indirectly affect the DD through the involvement of IKr. The comparison of the 

effects in the two different models allowed also investigating the model 

dependence of the effects. 
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 Finally, Chapter 5 focused on tissue scale level, investigating on electrical 

propagation of the stimulus originating from SAN in a mono-dimensional strand. 

The coupling between SAN and atrial cells showed the capability of the SAN 

model to successfully pace and drive the atrial tissue for an extended range of 

conductivities. The presence of the hyperpolarized sink (atrial cells) highlighted 

also the capability of the model to show different AP morphologies, using the 

same parameters, thanks to the different activation of INa current. The source-sink 

interplay was also explored showing a link between pacing robustness and the 

number of SAN cells that composed the source. 

 

 

The developed human AP model was able to reproduce experimental data and 

provided theoretical insights on pacemaking. The experimental conditions on 

which data were collected constrained important parameters/variables of the 

models; Verkerk et al. (2007) measured SAN AP and characterized If with a fixed 

concentration of intracellular Na+ (5 nM). This influenced the development of 

human SAN, which left the dynamical Na+ balance of the parent model. 

  Changing extracellular electrolytes concentration also affected the model 

behavior. Recalling “the failures” indicated by Noble and Rudy, the proposed 

model stopped its automaticity when the extracellular Ca2+ was set to in vivo 

values (i.e. [Ca2+]o=1.2 mM).  

 

 

The SAN model developed, tested and discussed in this PhD Dissertation 

represents a tool to investigate pacemaking in human SAN. Even if a part of 

parameters was updated, the legacy of the rabbit parent model is still present.  

Since a limited set of experimental data is available, the carried out simulations 

can be used as predictions and/or can provide insights that must be tested and 

verified with experiments in laboratory. Here, the circle between experiments and 

models can be closed: indeed, models can highlight open question to be addressed 

with experiments and experiments, in turn, can confirm the predictions or point 

out inconsistencies/limitations of mathematical models. 
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It is through the iterative interaction between experiment and 

simulation that we will gain that understanding” 
 

Denis Noble & Yoram Rudy 
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Appendix 1: Model Parameters and Equations 
 

MODEL PARAMETERS 
 
Cell compartments 
 
C = 57 pF : Cell capacitance 

L!"## = 67 µm : Cell length 

L!"# = 0.02 µm : Distance between jSR and surface membrane (submembrane   

space) 

R!"## = 3.9 µm : Cell radius 

V!!"#$ = 0.46  : Part of cell volume occupied with myoplasm  

V!"#!"#$ = 0.0012   : Part of cell volume occupied by junctional SR 

V!"#!"#$ = 0.0116  : Part of cell volume occupied by network SR 

V!"##      = π · R!"##! · L!"## : Cell volume 

V!"# = 2 · π · L!"# · R!"##-
!!"#
!

· L!"## : Submembrane space volume 

V! = V!!"#$ · V!"##-V!"# : Myoplasmic volume 

V!"# = V!"#!"#$ · V!"## : Volume of juncitonal SR (Ca2+ release store) 

V!"# = V!"#!"#$ · V!"## : Volume of network SR (Ca2+ release store) 

 
Fixed ion concentrations, mM 
 
Cao = 1.8 : Extracellular Ca2+ concentration 

Ki = 140  : Intracellular K+ concentration 

Ko = 5.4   : Extracellular K+ concentration 

Nao = 140 : Extracellular Na+ concentration 

Nai = 5 : Intracellular Na+ concentration 

Mgi = 2.5 : Intracellular Mg2+ concentration 
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Variable ion concentrations, mM 
 
Cai : Intracellular Ca2+ concentration 

Ca!"# : Ca2+ concentration in the junctional SR 

Ca!"#: Ca2+ concentration in the network SR 

 
Ionic values 
 
F = 96485  !

!"#
 : Faraday constant 

 
R = 8314.472 !

(!"#$ !)
  : Universal gas constant 

 
T = 310 K: Absolute temperature for 37°C 
 
RTonF = !·!

!
 = 26.72655 mV 

 
E!" = RTonF · ln !"#

!"#
 : Reversal potential for Na+ 

 
E!! = RTonF · ln !"#!!.!"·!"

!"#!!.!"·!"
: Reversal potential for fast Na+ channel 

 
E! = RTonF · ln !"

!"
 : Reversal potential for K+ 

 
E!" = RTonF · ln !"!!.!"·!"#

!"!!.!"·!"#
 Reversal potential for slow rectifier K+ channel 

 
E!" = 0.5 · RTonF · ln !"#

!"!"#
 : Reversal potential for Ca2+ 

 
 
Sarcolemmal ion currents and their conductances 
 

I!: Hyperpolarization-activated current (g!"# = 0.00268 µS, g!" = 0.00159 µS) 

I!"#: L-type Ca2+ current (P!"# = 0.4578 !"
!"

) 

I!"# :T-type Ca2+ current (P!"# = 0.04132 !"
!"
) 

I!" : Delayed rectifier K+ current, rapid component (g!" = 0.00424 µS) 

I!" : Delayed rectifier K+ current, slow component (g!" = 0.00065  µS) 

I!"#! : ACh-activated K+ current (g!"#! = 0.00345 µS) 

I!" : Transient outward K+ current (g!" = 3.5 · 10-! µS) 
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I!" : Fast Na+ current (g!" = 0.0223µS) 

I!"# : Na+/K+ pump current (i!"#!"# = 0.08105 nA) 

I!"#" : Na+/Ca2+ exchanger current (K!"#" = 3.343 nA) 

 
Modulation of sarcolemmal ion currents by ions 
 
Km!"# = 0.000338 mM : Dissociation constant of Ca2+ -dependent ICaL  

inactivation 

Km!" = 1.4 mM : Half-maximal Ko for INaK 

Km!"# = 14 mM : Half-maximal Nai for INaK 

α!"# = 0.0075 s-! : Ca2+
 dissociation rate constant for ICaL 

 
Na+/Ca2+ exchanger (NaCa) function 
 
K1ni = 395.3 mM: Intracellular Na+ binding to first site on NaCa 

K1no = 1628 mM: Extracellular Na+ binding to first site on NaCa 

K2ni = 2.289 mM: Intracellular Na+ binding to second site on NaCa 

K2no = 561.4 mM: Extracellular Na+ binding to second site on NaCa 

K3ni = 26.44 mM : Intracellular Na+ binding to third site on NaCa 

K3no = 4.663 mM: Extracellular Na+ binding to third site on NaCa 

Kci = 0.0207 mM : Intracellular Ca2+ binding to NaCa transporter 

Kcni = 26.44 mM : Intracellular Na+ and Ca2+ simultaneous binding to NaCa 

Kco = 3.663 mM: Extracellular Ca2+ binding to NaCa transporter 

Qci = 0.1369 : Intracellular Ca2+ occlusion reaction of NaCa 

Qco = 0 : Extracellular Ca2+ occlusion reaction of NaCa 

Qn = 0.4315 : Na+ occlusion reaction of NaCa 

 
Ca2+ diffusion 
 
τ!"#!" = 5.469 · 10-! s : Time constant of Ca2+ diffusion from the subsarcolemmal 

space to the myoplasm 

τ!" = 0.04 s : Time constant of Ca2+ transfer from the network to junctional SR 
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SERCA pump 
 
K!" = 286 nM : Half-maximal Cai for Ca2+ uptake into the network SR 

P!" = 5 !"
!

 : Rate constant for Ca2+ uptake by SERCA pump into the network SR 

slope!" = 50 nM : slope factor for Ca2+ uptake by SERCA pump into the 

network SR 

 
RyR function 
 
kiCa = 500 !

!" !
 :  RyR Ca-dependent inactivation rate 

kim = 5 s-! :  RyR repriming rate 

koCa = 10000 !
!"! !

   : RyR Ca-activation rate 

kom = 660 s-!  : RyR deactivation rate 

ks = 1.48 · 10!  s-! : Ca2+ diffusion rate 

EC50!" = 0.45  mM  : EC50 for Cajsr-dependent activation of SR Ca release 
 
HSR = 2.5  : Hill coefficient for Cajsr-dependent activation of SR calcium release 

MaxSR = 15  : parameter for maximum SR Ca2+ release 

MinSR = 1  : parameter for minimum SR Ca2+ release 

 
Ca2+ and Mg2+ buffering 
 
CM!"! = 0.045 mM: Total calmodulin concentration 

CQ!"! = 10 mM : Total calsequestrin concentration 

TC!"! = 0.031 mM : Total concentration of the troponin-Ca2+ site 

TMC!"! = 0.062 mM : Total concentration of the troponin-Mg2+ site 

kb!" = 542 s-!: Ca2+ dissociation constant for calmodulin 

kb!" = 445 s-! : Ca2+ dissociation constant for calsequestrin 

kb!" = 446 s-! : Ca2+ dissociation constant for the troponin-Ca2+ site 

kb!"# = 7.51 s-! : Ca2+ dissociation constant for the troponin-Mg2+ site 

kb!"" = 751 s-! : Mg2+ dissociation constant for the troponin-Mg2+ site 

kf!" = 1.64 · 10!  !
!" !

 : Ca2+ association constant for calmodulin 
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kf!" = 175  !
!" !

  : Ca2+ association constant for calsequestrin 

kf!" = 88800  !
!" !

 : Ca2+ association constant for the troponin-Ca2+ site 

kf!"# = 227700  !
!" !

  : Ca2+ association constant for the troponin-Mg2+ site 

kf!"" = 2277  !
!" !

  : Mg2+ association constant for the troponin-Mg2+ site 

 
MODEL EQUATIONS 

 
Membrane potential 
 
 

!!
!"#$%

= -!!"!
!

    

 

I!"! = I! + I!"# + I!"# + I!" + I!" + I!"#$ + I!" + I!" + I!"# + I!"#" + I!"#  

 
 
Ion currents 
 
 
x! : steady-state for gating variable x  

τ! : time constant for gating variable x  (s) 

α! and β!: opening and closing rates for channel gate x (s-1) 

 
Hyperpolarization-activated, “funny current” (If) 
 

I! = i!"# + i!"  

 

I!"# = y · g!!" · V-E!"  

 

I!" = y · g!! · V-E!  

 

y! =
0.01329+

0.99921

1+ e
!!!".!"#
!.!"#$

, if V < -80

0.0002501 · e
-!

!".!"#, otherwise
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τ! =
1

0.36 · V+ 148.8
e!.!""· !!!"#.! -1 + 0.1 · V+ 87.31-e-!.!· !!!".!

-0.054 

 
dy

dtime =
y!-y
τ!

 

L-type Ca2+ current (ICaL) 
 

I!"# = I!"#$ + I!"# + I!"#$ 

 

I!"#$ =
2 · P!"# · V

RTONF · 1-e
-!"

!"#$%
· Ca!"#-Cao · e

-!"
!"#$% · dL · fL · fCa 

 

I!"# =
0.000365 · P!"# · V

RTONF · 1-e
-!

!"#$%
· Ki-Ko · e

-!
!"#$% · dL · fL · fCa 

 

I!"#$ =
0.0000185 · P!"# · V

RTONF · 1-e
-!

!"#$%
· Nai-Nao · e

-!
!"#$% · dL · fL · fCa 

 

dL! =
1

1+ e
- !!!".!"

!.!"

 

 

α!" =
-0.02839 · V+ 41.8

e
- !!!".!

!.! -1
-
0.0849 · V+ 6.8

e
- !!!.!
!.! -1

 

 

 

β!" =
0.01143 · V+ 1.8

e
!!!.!
!.! -1

 

 

 



	

	 152	

τ!" =
0.001

α!" + β!"
 

 
ddL
dtime =

dL!-dL
τ!"

 

fCa! =
Km!"#

Km!"# + Ca!"#
 

 

τ!"# =
0.001 · fCa!

α!"#
 

 
dfCa
dtime =

fCa!-fCa
τ!"#

 

 

fL! =
1

1+ e
!!!".!!!"#$%!"

!.!!!!"

 

 

τ!" = 0.001 · 44.3+ 230 · e-
!!!"
!"

!

 

 
dfL
dtime =

fL!-fL
τ!"

 

T-type Ca2+ current (ICaT) 
 
 

I!"# =
2 · P!"# · V

RTONF · 1-e
-!·!

!"#$%
· Ca!"#-Cao · e

-!·!
!"#$% · dT · fT 

dT! =
1

1+ e
- !!!".!

!.!

 

 

τ!" =
0.001

1.068 · e
!!!".!
!" + 1.068 · e

- !!!".!
!"
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ddT
dtime =

dT!-dT
τ!"

 

 

fT! =
1

1+ e
!!!".!
!.!

 

 

τ!" =
1

16.67 · e
- !!!"
!".! + 16.67 · e

!!!"
!".!"

 

 
dfT
dtime =

fT!-fT
τ!"

 

 

Rapidly activating delayed rectifier K+ current (IKr) 
	
 

I!" = g!" · V-E! · 0.9 · paF+ 0.1 · paS · piy 

 

paF! = paS! = pa! =
1

1+ e
- !!!".!"##

!.!!"#

 

 

τ!"# =
0.84655354

4.2 · e
!
!" + 0.15 · e

-!
!".!

 

 

τ!"# =
1

30 · e
!
!" + e

-!
!"

 

 

dpaS
dtime =

pa!-paS
τ!"#

 

 
dpaF
dtime =

pa!-paF
τ!"#

 

τ!"# =
1

100 · e
-!

!".!"# + 656 · e
!

!"#.!"#
 



	

	 154	

 

piy! =
1

1+ e
!!!".!
!".!

 

 
dpiy
dtime =

piy!-piy
τ!"#

 

 
 
 
Slowly activating delayed rectifier K+ current (IKs) 
 
 

I!" = g!" · V-E!" · n! 

 

n! =
1

1+ e
- !!!.!"#"
!".!"!#

 

 

τ! =
1

α! + β!
 

α! =
28

1+ e
- !-!"

!

 

 

β! = 1 · e
- !-!
!"  

 
dn

dtime =
n!-n
τ!

 

 
 
ACh-activated K+ current (IK,ACh) 
 
 

I!"#$ =
g!"#$ · V-E! · 1+ e

!!!"
!" · a, if ACh > 0

0, otherwise
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α! =
3.5988-0.025641

1+ 0.0000012155ACh !.!"#$

+ 0.025641 

 
β! = 10 · e!.!"##· !!!"  

 
a! =

α!
α! + β!

 

 

τ! =
1

α! + β!
 

 
da

dtime =
a!-a
τ!

 

 
 
 
Transient outward K+ current (Ito) 
 

I!" = g!" · V-E! · q · r 
 

q! =
1

1+ e
!!!"
!"

 

 

τ! = 0.001 · 0.6 ·
65.17

0.57 · e-!.!"· !!!! + 0.065 · e!.!· !!!".!"
+ 10.1  

 
dq

dtime =
q!-q
τ!

 

 

r! =
1

1+ e
- !-!".!

!"

 

 

τ! = 0.001 · 0.66 · 1.4 ·
15.59

1.037 · e!.!"· !!!".!" + 0.369 · e-!.!"· !!!".!"
+ 2.98  

 
dr

dtime =
r!-r
τ!
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Na+ current (INa) 
 

I!" = g!" ·m! · h · V-E!"  

 

m! =
1

1+ e
- !!!".!"!#

!.!"#$

 

 

E0! = V+ 41 

 

α! =  
200 · E0!
1-e-!.!·!"! 

 

β! = 8000 · e-!.!"#· !!!!  

 

τ! =
1

α! + β!
 

 

dm
dtime =

m!-m
τ!

 

 

h! =
1

1+ e
!!!".!"#
!.!"#"

 

 

α! =   20 · e-!.!"#· !!!"  

 

β! =  
2000

320e-!.!(!!!") + 1
 

 

τ! =
1

α! + β!
 

 

dh
dtime =

h!-h
τ!
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Na+/K+ pump current (INaK) 
 
 

I!"# = I!"#!"# · 1+
Km!"

Ko

!.! -!

· 1+
Km!"#

Nai

!.! -!

· 1+ e
- !-!!"!!!"

!"
-!

 
 
 
Na+/Ca2+ exchanger current (INaCa) 
 
 

I!"#" =
K!"#" · x2 · k21-x1 · k12

x1+ x2+ x3+ x4  

 

x1 = k41 · k34 · k23+ k21 + k21 · k32 · k43+ k41  

 

x2 = k32 · k43 · k14+ k12 + k41 · k12 · k34+ k32  

 

x3 = k14 · k43 · k23+ k21 + k12 · k23 · k43+ k41  

 

x4 = k23 · k34 · k14+ k12 + k14 · k21 · k34+ k32  

 

k43 =
Nai

K3ni+ Nai 

 

k12 =
Ca!"#
Kci · e

-!"#·!
!"#$%

di  

 

k14 =

Nai
K1ni · Nai
K2ni · 1+ Nai

K3ni · e
!"·!

!·!"#$%

di  

 

k41 = e
-!"·!

!·!"#$% 
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di = 1+
Ca!"#
Kci · 1+ e

-!"#·!
!"#$% +

Nai
Kcni +

Nai
K1ni · 1+

Nai
K2ni · 1+

Nai
K3ni  

 

k34 =
Nao

K3no+ Nao 

k21 =
Cao
Kco · e

!"#·!
!"#$%

do  

 

k23 =

Nao
K1no · Nao
K2no · 1+ Nao

K3no · e
-!"·!

!·!"#$%

do  

 

k32 = e
!"·!

!·!"#$% 

 

do = 1+
Cao
Kco · 1+ e

!"#·!
!"#$% +

Nao
K1no · 1+

Nao
K2no · 1+

Nao
K3no  

 
Ultra-rapid activating delayed rectifier K+ current (IKur) 
 
 

I!"# = g!"# · r!"# · s!"# · V-E!  
 
 

dr!"#
dtime =

r!"#!-r!"#
τ!!"#

 

 

r!"#! =
1

1+ e
!!!
-!.!

 

 

τ!!"# =
0.009

1+ e
!!!
!"

+ 0.0005 

 
 

ds!"#
dtime =

s!"#!-s!"#
τ!!"#
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s!"#! =
1

1+ e
!!!.!
!"

 

 

τ!!"# =
0.59

1+ e
!!!"
!"

+ 3.05 

 
 
Ca2+ release flux (Jrel) from SR via RyRs 
 
 

J!"#$%&' = ks · O · Ca!"#-Ca!"#  

 

diff = Ca!"#-Ca!"# 

 

kCaSR = MaxSR-
MaxSR-MinSR

1+ EC50!"
Ca!"#

!"# 

 

koSRCa =
koCa
kCaSR 

 

kiSRCa = kiCa · kCaSR 

 
dR
dtime = kim · RI-kiSRCa · Ca!"# · R- koSRCa · Ca!"#! · R-kom · O  

 

dO
dtime = koSRCa · Ca!"#! · R-kom · O- kiSRCa · Ca!"# · O-kim · I  

 
dI

dtime = kiSRCa · Ca!"# · O-kim · I- kom · I-koSRCa · Ca!"#! · RI  

 

dRI
dtime = kom · I-koSRCa · Ca!"#! · RI- kim · RI-kiSRCa · Ca!"# · R  

 

P!"! = R+ O+ I+ RI 
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Intracellular Ca2+ fluxes 
 
J!"!"#: Ca2+ diffusion flux from submembrane space to myoplasm 
 
J!": Ca2+ uptake by the SR 
 
J!": Ca2+ diffusion flux from the network to junctional SR 
 
 

J!"!"# =
Ca!"#-Cai
τ!"#!"

 

 

J!" =
P!"

1+ e
-!"#!!!"
!"#$%!"

 

 

 

J!" =
Ca!"#-Ca!"#

τ!"
 

 
 
 
Ca2+ buffering 
 
f!"#: Fractional occupancy of calmodulin by Ca2+ in myoplasm  
 
f!"#:Fractional	occupancy	of	calmodulin	by	Ca2+	in	subspace		
	
f!":Fractional	occupancy	of	calsequestrin	by	Ca2+		
	
f!":Fractional	occupancy	of	the	troponin-Ca2+	site	by	Ca2+		
	
f!"#:Fractional	occupancy	of	the	troponin-Mg2+	site	by	Ca2+		
	
f!"":Fractional occupancy of the troponin-Mg2+ site by Mg2+ 
 
 
 

dfTC
dtime = δ!"# 

 

δ!"# = kf!" · Cai · 1-fTC -kb!" · fTC 
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dfTMC
dtime = δ!"#$ 

 

δ!"#$ = kf!"# · Cai · 1- fTMC+ fTMM -kb!"# · fTMC 

 

dfTMM
dtime = δ!"## 

 

δ!"## = kf!"" ·Mgi · 1- fTMC+ fTMM -kb!"" · fTMM 

 

dfCMi
dtime = δ!"#$ 

 

δ!"#$ = kf!" · Cai · 1-fCMi -kb!" · fCMi 

 
dfCMs
dtime = δ!"#$ 

 

δ!"#$ = kf!" · Ca!"# · 1-fCMs -kb!" · fCMs 

 
dfCQ
dtime = δ!"# 

 

δ!"# = kf!" · Ca!"# · 1-fCQ -kb!" · fCQ 

 

 
 
Dynamics of Ca2+ concentrations in cell compartments 
 
 

dCai
dtime =

1 · J!"!"# · V!"#-J!" · V!"#
V!

- CM!"! · δ!"#$ + TC!"! · δ!"# + TMC!"!

· δ!"#$  
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dCa!"#
dtime =

J!"#$%&' · V!"#
V!"#

-
i!"#$ + i!"#-2 · i!"#"

2 · F · V!"#
+ j!"!"# + CM!"! · δ!"#$  

 

dCa!"#
dtime = J!"-

J!" · V!"#
V!"#

 

 
dCa!"#
dtime = J!"- J!"#$%&' + CQ!"! · δ!"#  

 
Rate Modulation Experiments 

 
 
 
Acetylcholine 10 nM 
 
If	:	shift	of	y∞	and	τy	by	-5	mV.	
	
ICaL	:	reduction	of	the	maximal	conductance	by	3%.	
	
SERCA	pump:	decrease	of	Pup	by	7%.		
	
IKACh	activation.	
 
 
Isoprenaline 1 µM 
 
If	:	shift	of	y∞	and	τy	by	7.5	mV.	
	
INaK	:	increase	of	INaK,max	by	20%.	
	
ICaL	:	increase	of	the	maximal	conductance	by	23%;	shift	of	dL∞	and	τdL	by	-8	
mV	reduction	of	the	slope	factor	kdL	by	27%.	
	
IKs:	increase	of	gKs	by	20%;	shift	of	n∞	and	τn	by	-14	mV.	
	
SERCA pump: increase of Pup by 25 
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Appendix 2: automatic optimization procedure 
 

Parameters selected for automatic optimization 
	
gKur	=	maximal	conductance	of	IKur	

KNaCa	=	maximal	current	of	NCX	

Kup	=	Ca2+	concentration	for	half-maximal	activity	of	SERCA	pump	

PCaT	=	permeability	of	T-type	Ca2+	current	

PCaL	=	permeability	of	L-type	Ca2+	current	

kdL	=	slope	factor	of	L-type	voltage-dependent	activation	gate	dL		

VdL=	half	maximal	activation	voltage	of	voltage-dependent	activation	gate	dL	

τdifCa	=	time	constant	of	Ca2+	diffusion	from	the	submembrane	to	myoplasm	

ks	=	maximal	rate	of	calcium	release	from	RyR	channels	

kf,CM	=	Ca2+	association	constant	for	calmodulin	

kf,CQ	=	Ca2+	association	constant	for	calsequestrin	

INaK,max	=	maximal	Na+/K+	pump	current	

 
Action potential features used to constrain model parameters 
	
Experimental	data	on	APA,	MDP,	CL,	Vmax,	APD20,	APD50,	APD90,	DDR100,	and	

CL	 prolongation	 induced	 by	 Cs+	 of	 single	 isolated	 human	 SAN	 cells	 as	

reported	by	Verkerk	et	al.	(2007)	were	used	to	constrain	model	parameters.	

Data	on	CL	prolongation	induced	by	Cs+	are	from	only	one	cell.	We	arbitrarily	

adopted	an	SEM	of	10%	of	the	experimentally	observed	CL	prolongation.	

	
	
Calcium transient features used to constrain model parameters 
	
Experimental	data	on	diastolic	[Ca2+],	systolic	[Ca2+],	TD20,	TD50,	and	TD90	of	a	

single	 isolated	 human	 SAN	 cell	 as	 reported	 by	 Verkerk	 et	 al.	 (2013)	 were	

used	to	constrain	model	parameters.		

Because	 the	 experimental	 data	 on	 the	 calcium	 transient	 are	 from	 only	 one	

cell,	we	 arbitrarily	 set	 the	 SEM	of	 each	 of	 the	 calcium	 transient	 features	 to	

40%	in	our	optimization	procedure.	
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Cost function 
	
In	our	optimization	procedure,	we	minimized	the	overall	cost	function	FCost,	

which	was	defined	as		

FCost =  Cost!
!

	

in	which	Costi	denotes	the	individual	contribution	of	feature	i	to	the	overall	

cost.	

Costi	is	described	as	follows	(Figure	A1):	

	

Cost! =
Feature!,!"#-Feature!,!"# -SEM!

SEM!
weight!    if Feature!,!"#-Feature!,!"# > SEM           

0                                                                                              otherwise                                              

	

	
	

We	set	weighti	=	2	for	MDP,	CL,	and	CL	prolongation	induced	by	Cs+,	whereas	

weighti	was	set	to	1	for	all	other	features.	

	

	
	
Figure	A1.	Contribution	Costi	of	feature	i	to	the	overall	cost	function	(FCost).	
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Search method and stop criterion 
 

The	initial	values	of	the	selected	parameters	were	obtained	starting	from	the	

parent	(rabbit)	model	through	a	manual	tuning	in	order	to	achieve	a	beating	

rate	and	action	potential	morphology	close	to	the	experimental	human	data.	

Such	 initial	 values	 were	 then	 employed	 to	 perform	 the	 above-mentioned	

finer	automatic	optimization.	

The	minimization	of	the	overall	cost	function	FCost	was	based	on	the	Nelder-

Mead	 simplex	 method	 (Lagarias	 et	 al.,	 1998).	 The	 automatic	 optimization	

procedure	stopped	upon	convergence	of	FCost	to	a	local	minimum.		

 
Parameter constraining  
	
In	order	to	determine	if	the	parameters	are	well	constrained	we	followed	the	

approach	by	 Sarkar	&	 Sobie	 (2010).	 In	 this	work	 the	 authors	 exploited	 the	

extended	Bayes	theorem	in	order	to	define	a	range	for	parameters,	for	which	

a	 population	 of	 models	 is	 able	 to	 reproduce	 behaviour	 in	 agreement	 with	

experimental	data.	The	parameter	 constraining	 is	performed	 increasing	 the	

number	 of	 the	 features	 to	 satisfy:	 the	 higher	 is	 the	 number	 of	 the	 selected	

features,	 the	 lower	 is	 the	 number	 of	 compatible	 set	 of	 parameters.	 In	 a	

similar	way,	we	selected	MDP,	CL,	APD90	and	DDR100,	among	the	available	13	

extracted	features,	to	be	within the target range (i.e. mean±SEM of experimental 

values)	and	obtained	the	ranges	in	Table	A1.	
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Table	A1:	Nominal	values	and	ranges	for	the	optimized	parameters	

Parameters Units Nominal Range (min-max) 

gKur µS 1.539	10-4	 0.9895	–	1.633	10-4	

PCaT nA/mM 0.04132	 0.04132	–	0.05191	

PCaL nA/mM 0.4578	 0.3475	–	0.5262	

VdL mV -16.45	 -20.97	–	-13.73	

kdL mV 4.337	 3.892	–	4.401	

INaK,max nA 0.08105	 0.0623	–	0.1063	

KNaCa nA 3.343	 2.733	–	4.964	

Kup nM 286.1	 204.6	–	356.2	

ks s-1 1.480	108	 1.460	–	1.847	108	

τdifCa s 5.469	10-5	 5.469	–	7.951		10-5	

kfCM mM/s 1.642	106	 1.164	–	1.839		106	

kfCQ mM/s 175.4	 155.2	–	194.6	

	

The	collected	values	show	an	adequately	constrained	range	for	the	optimized	

parameters.	 To	 achieve	 this	 result,	we	 exploited	a	 priori	 knowledge	 during	

the	optimization	procedure,	e.g.	we	avoided	unphysiological	values	(negative	

conductances	 or	 values	 too	 far	 from	 data	 reported	 in	 literature)	 assigning	

high	scores	to	their	cost	function.	

The	achievement	of	more	than	one	parameter	set	that	falls	into	experimental	

ranges	could	suggest	the	robustness	of	the	model,	which	is	able	to	adequately	

compensate	 parameter	 changes,	without	 adopting	 parameters	 far	 from	 the	

physiological	range.		

 
 
 
 



	

	 167	

Ringraziamenti 
 
 

Se da bambino mi aveste chiesto “ cosa vuoi fare da grande?”, vi avrei risposto 
che avrei voluto comprare una Ferrari e fare l’astronauta oppure lo scienziato… 
Beh, oggi, nel 2018, ho una Citroen C4 del 2005, che non uso perché è in Italia, e 
una bicicletta di seconda mano che ho comprato qualche mese fa in un negozio ad 
Utrecht. Ah, non sono nemmeno diventato un astronauta, ma alla fine di questo 
cammino lungo tre anni e un po’, sono diventato qualcosa di simile ad uno 
scienziato, e dico simile perché ho ancora tanto da imparare. 

 
 
Quelli del dottorato, sono stati anni memorabili, che hanno lasciato il segno: la 

valigia diventa un’estensione del tuo corpo, perché non vedi l’ora di andare a 
qualche congresso in giro per il mondo; incontri tanti ragazzi che vengono da parti 
diverse del mondo con la tua stessa passione; poi, almeno per me è stato così, inizi 
a capire che stai diventando davvero adulto e che i conti a fine mese devono 
tornare. 

 
 
Questi anni sono stati memorabili anche per le persone che ho incontrato e a 

cui sono grato. 
Un grazie di cuore va a Stefano Severi, “il Prof” che in questi anni è stato la 

mia guida e che è sempre stato disponibile per discutere di quello che stavo 
facendo, dando indicazioni preziose. 

Nel giugno del 2015, ad un congresso, ho avuto il piacere di conoscere di 
persona Ronald Wilders. Ronald è sempre stato un riferimento importante durante 
tutto il mio percorso di dottorato e mi auguro che continuerà ad esserlo anche in 
futuro. 

Grazie ad Arie Verkerk che, assieme a Ronald, mi ha ospitato nel suo 
laboratorio di elettrofisiologia cardiaca all’AMC di Amsterdam e che mi ha fatto 
vedere dal vivo quello che sino ad allora avevo solo letto su libri o articoli. 

 
 
Grazie alle persone del mio nuovo dipartimento, Medical Physiology 

dell’UMC di Utrecht. A Teun DeBoer, Mark Vos e Marcel van der Heyden che 
hanno avuto fiducia in me e che mi hanno permesso di conciliare l’avventura che 
ho appena iniziato con quella che sto concludendo. Grazie ad Alex e ad Elise, i 
miei compagni di ufficio, ai dottorandi e agli studenti, che rendono più piacevole 
il tempo trascorso a lavoro. 
 
 
Quando diventi un dottorando, anche se sei “tecnicamente” ancora uno studente, 
senti in qualche modo che sei passato dall’“altra parte della barricata”. Lo senti 



	

	 168	

perché quelli che fino a poco prima ti facevano lezione o seminari diventano 
persone con cui collabori e con cui ti confronti. Queste persone per me sono 
Michelangelo, Claudia, Chiara, Enrico ed Elisa. Grazie per le cose che ho 
imparato e che spero di continuare ad imparare da voi.  
 
 
Axel, collaborare con te è stato un piacere, spero di avere occasione di farlo anche 
in futuro. Yannick, sono contento ci sia stata l’occasione di conoscerti! Grazie per 
la tua super-ospitalità a Karlsruhe nonostante fossi in un periodo super impegnato! 
 
 
Madda, Jo, Paola, noi siamo i 4 dell’Ave Maria! Insieme abbiamo iniziato questa 
avventura e ormai siamo prossimi al traguardo. Senza di voi le giornate in via 
Cavalcavia sarebbero state più dure. Con questo però non voglio fare torto a 
Claudio, che per le sue “super battute” ha intitolato pure un premio che ogni 
giorno ci contendiamo in pausa pranzo.  
Valeria, Giulia anche voi siete diventate un pezzo di via Cavalcavia e conoscervi 
giorno dopo giorno mi ha fatto piacere. 
Simone, sei arrivato in ufficio come tesista e ne sei uscito come amico! Assieme 
abbiamo condiviso il fardello simultaneo di scrivere la tesi e ci siamo divertiti 
durante partite di calcetto! 
 
 
Danilo, Simone Moretti, Alex, Paglio, Bob, Ahmed, Chiara ed Andrea, “quelli di 
Apice”, Marilisa, Cresc, Cinzia, Giulia, Michele, “gli elettronici”. Senza di voi la 
pausa pranzo non è la stessa cosa. Ogni giorno si parla di discorsi semiseri, 
ovviamente nerd, e si prova a strappare a Claudio il “premio Claudio” per la 
peggior battuta, di cui ogni giorno parte detentore per diritto. 
 
 
Cri, Sara voi siete un punto di riferimento per me ed è bello ascoltare sia i vostri 
discorsi sull’università sia su quello che sta fuori. 
 
 
Maurizio, il guardiano del LIB, grazie per il supporto che mi hai dato e per i 
discorsi sulla formula 1! 
 
 
Grazie a Sonia, Roberto, Alex e Marina per tutti i pacchi che avete ritirato per me 
e per la gentilezza che avete sempre avuto! 
 
 
Alice, sei una persona in cui ripongo la mia stima e la mia fiducia, sei un’amica. 
Mi hai visto in giorni no, in giorni in cui mi ero perso; mi hai sempre dato la tua 
opinione e non semplicemente quello che mi volevo sentire dire. Per questo te ne 
sarò sempre grato! 
 



	

	 169	

 
Mamma, Babbo, grazie! Mi avete visto crescere, molto spesso seduto davanti ad 
una scrivania. Studiare richiede impegno e dedizione e lo avete sempre capito. 
Grazie per avermi sempre sostenuto. 
Luca, “Bro”, grazie per tutte le volte che mi sfotti quando mi prendo troppo sul 
serio e per le corsette che ci siamo fatti l’estate scorsa, quando torno vedrai che ti 
faccio mangiare la polvere! 
Nonna, grazie per tutto il tempo che abbiamo passato insieme. So che per te è 
dura sapermi lontano, ma sappi che il mondo di oggi è davvero piccolo e ti posso 
venire a trovare quando meno te lo aspetti. 
 
 
Grazie ai ragazzi di Biltstraat 196, la mia nuova famiglia qui ad Utrecht. Grazie 
per i momenti spensierati che abbiamo passato, e che passeremo insieme, tra una 
partita a biliardo, un film in salotto, le gite in giro per l’Olanda e le super cene!  
 
 
Paola, a te va il “grazie” più grande. Forse te lo avrei dovuto dire più spesso, 
tempo fa… mi hai sopportato per dieci anni e più, abbiamo combattuto tante 
battaglie assieme e gran parte le abbiamo vinte; poi le nostre strade si sono divise 
e non festeggeremo assieme anche questo traguardo. Non so se le nostre strade si 
rincontreranno un giorno, ma lo spero… ti auguro il meglio, convinto che quel 
meglio tu lo raggiunga per la forza che dimostri ogni giorno. Se oggi sono qui a 
difendere questa tesi è anche (tanto) merito tuo, che sei importante nella mia vita 
sia come persona sia come collega. Grazie per questi anni! 
 
 
 
 
 
 
 
 
 
 
 
 



	

	 170	

 

Acknowledgments 
 

 
 
When I was a kid my ambitions were to buy a Ferrari and to become an astronaut 
or a scientist… 
Well, today, in 2018, I have a Citroen C4, 2005 model, which I can’t use since it’s 
in Italy and a second hand bike I bought few month ago in a shop in Utrecht.  
And, no, I’m not  an austronaut, but at the end of this three years journey, I’ve 
become something similar to a scientist, and I’m saying similar because there is 
still a lot of things I have to learn. 
 
 
These three years have been memorable, and they left a mark on me: the luggage 
becomes a sort of a part of your body because you are looking forward to go to a 
congress, somewhere in the world; you meet people from different countries but 
with your same passion. Finally, at least for me, you get aware that you’re 
becoming an adult and there are duties that must be fulfilled. 
 
 
Those years have been memorable also for the people I met, 
A great “thank you” goes to Stefano Severe, “ il Prof”, who has been my mentor, 
always available to discuss about my project, with valuable suggestions. 
In June 2015, at a congress in Milan, I had the pleasure to meet Ronald Wilders. 
Ronald have been of precious help during my PhD. 
Thanks to Arie Verkerk who hosted me in his cardiac electrophysiology lab, 
together with Ronald, and who showed me things that I’ve just read in books. 
 
 
Thanks to my new colleagues from the Medical Physiology department at the 
UMC in Utrecht. Thanks to Teun DeBoer, Mark Vos and Marcel van der Heyden 
that trusted me and let make me possible to start a new adventure and to finish my 
PhD journey. Thanks to Alex and Elise, my office mates, to all the PhD students 
and guys that are doing their internship, that make the working days more 
pleasant.  
 
 
When you become a PhD student, the label “student” is still there, but you feel 
somehow to have moved on the other side. You feel it because you collaborate 
and discuss with people that were your teacher not so long time ago. 
Michelangelo, Claudia, Chiara, Enrico and Elisa you are that kind of people for 
me. Thanks for everything I learnt from you and I hope to keep learning.  
 
 
 



	

	 171	

 
 
Axel, working with you has been a pleasure, and I hope to have the chance to do it 
also in the future.  
Yannick. I’m really glad to have met you! We really had good time during the 
summer in Italy! Thank you for being a super-nice host in Karlsruhe even though 
you had super busy days for your master thesis! 
 
 
Madda, Jo, Paola, we are “i 4 dell’Ave Maria”! We started and we are going to 
finish together this adventure. Days in via Cavalcavia would have been tougher 
without you. I can not forget to mention Claudio, (Fabbri Junior!) who has a prize 
entitled with his name thanks to his (bad) jokes! 
Valeria, Giulia, you also became a part of via Cavalcavia and it was nice to know 
you better day by day. 
Simone, you entered the office as a student and you left it as a friend! We shared 
the burden of writing down the thesis and we had much fun playing five-a-side 
football! 
 
 
Danilo, Simone Moretti, Alex, Paglio, Bob, Ahmed, Chiara and Andrea,–“the 
Apice people–, Marilisa, Cresc, Cinzia,Giulia, Michele, “the electronics guys”. 
Without you lunch time is not the same. Everyday we talk about funny things, 
mainly nerd things, and we try to steal from Claudio the “Claudio prize” for the 
worst joke. 
 
 
Cri, Sara, you are a landmark and it’s nice to talk with you about inside and 
outside university topics.  
 
 
Maurizio, the LIB keeper, thanks for your help and for the chats about Formula 1! 
 
 
Thanks to Sonia, Roberto, Alex and Marina for all the packages you picked up 
and for your kindness. 
 
 
Alice, I put my trust in you, you are a friend. You saw me in bad days, in days I 
have lost myself; you always gave me your honest opinion and not just what I 
wanted to hear. I’m grateful for that! 
 
 
Mum, Dad, thanks! You saw me growing up. Often sat down in front of a desk. 
Studying demands commitment and dedication and you always have been aware 
of it. Thanks for your support. 



	

	 172	

Luca, “Bro”, thanks for everytime you make joke of me when I take myself too 
seriously. Thanks also for the runs we did last summer; when I’ll be back you’ll 
bite the dust! 
Grandma, thanks for the time we spent together. I know it’s hard for you that I’m 
living faraway now, but it’s a small world and I can come to visit you when you 
don’t expect it!  
 
 
Thanks to the “Biltsraat people”, my new family here in Utrecht. Thanks for the 
funny moments we had, and we will have, between a pool table game, a movie in 
the leaving room, the journeys around Netherlands and for the super dinners! 
 
 
Paola, the biggest “thanks” is for you! I should have told you it more often… 
You “have been standing” me for more than ten years; we fought many clashes 
side by side and we won most of them. Then our path divided usand we won’t 
celebrate together this achievement. I don’t know if our paths will join again one 
day, but I hope so… 
I wish you all the best, because I’m sure you can achieve everything you want 
thanks to the strength you show everyday. If I’m here defending my PhD, it also 
because of you.  
You are important in my life both as a person and as a colleague. Thanks for all 
these years!    
 



	

	 173	

 


