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UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Dottorato di Ricerca in Ingegneria Elettronica,

Telecomunicazioni e Tecnologie dell’Informazione

Ciclo XXX

Settore concorsuale: 09/F2 - TELECOMUNICAZIONI

Settore scientifico disciplinare: ING-INF/03 - TELECOMUNICAZIONI

SPARSE SIGNAL PROCESSING
AND STATISTICAL INFERENCE

FOR INTERNET OF THINGS

Presentata da:

AHMED MOHAMED ALY ELZANATY

Coordinatore Dottorato:

Prof. Ing.

ALESSANDRO

VANELLI-CORALLI

Supervisore:

Chiar.mo Prof. Ing.

MARCO CHIANI

Co-supervisore:

Prof. Ing.

ANDREA GIORGETTI

ESAME FINALE 2018





ALMA MATER STUDIORUM

UNIVERSITY OF BOLOGNA

Ph.D. Programme in Electronics, Telecommunications, and

Information Technologies Engineering

Cycle XXX

Sector: 09/F2 - TELECOMMUNICATIONS

Scientific disciplinary sector: ING-INF/03 - TELECOMMUNICATIONS

SPARSE SIGNAL PROCESSING
AND STATISTICAL INFERENCE

FOR INTERNET OF THINGS

Thesis by:

AHMED MOHAMED ALY ELZANATY

Ph.D. Programme Coordinator:

Prof. Ing.

ALESSANDRO

VANELLI-CORALLI

Supervisor:

Chiar.mo Prof. Ing.

MARCO CHIANI

Co-supervisor:

Prof. Ing.

ANDREA GIORGETTI

FINAL EXAM 2018





In reference to IEEE copyrighted material which is used with permission in
this thesis, the IEEE does not endorse any of University of Bologna’s products
or services. Internal or personal use of this material is permitted. If interest-
ed in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redis-
tribution, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

Typeset using LATEX.

v



vi



Abstract

Data originating from many devices and sensors within the Internet of Things
(IoT) framework can be modeled as sparse signals. Efficient compression
techniques of such data are essential to reduce the memory storage, band-
width, and transmission power.

The idea of utilizing sparsity has been studied within several disciplines,
e.g., signal processing, wireless communication, and statistical analysis. In
this thesis, I develop some theory and propose practical schemes for IoT
applications to exploit the signal sparsity for efficient data acquisition and
compression under the frameworks of compressed sensing (CS) and transform
coding.

Firstly, the design of finite measurement matrices in the context of CS is
considered. The proposed probabilistic analysis determines, based on random
matrix theory, how aggressively the signal can be sub-sampled and recovered
from a small number of linear measurements. The reconstruction is guaran-
teed for all sparse signals with a predefined probability, via various recovery
algorithms. More precisely, the proposed method relies on the exact distribu-
tions of the extreme eigenvalues of Wishart matrices to bound the restricted
isometry constant of finite dimensional Gaussian measurement matrices. We
investigated also the stable and robust reconstruction of not exactly sparse
(compressible) signals from noisy measurements.

Secondly, the measurement matrix design for simultaneously acquiring
multiple signals is considered. This problem is particularly important for IoT
networks, where a huge number of nodes are involved. In this scenario, our
analytical methods provide limits on the compression of joint sparse sources
by analyzing the weak restricted isometry constant of Gaussian measurement
matrices.

Thirdly, designing efficient encoders for noisy sparse sources, which is
essential for transform coding, is addressed. Two practical approaches for
signal denoising and compression, based on statistical inference and chan-
nel coding theories, are proposed. Also, considering that sparse signals can
be modeled as Bernoulli-Gaussian and Bernoulli-uniform distributions, the
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performance of the encoders are derived in terms of the operational rate-
distortion and energy-distortion, in the presence of noise. Furthermore, a
case study for the compression of real signals from a wireless sensor network
using the proposed encoders is considered. These techniques can reduce the
power consumption and increase the lifetime of IoT networks.

Finally, while working on wireless communication with IoT devices, the
need for synchronization techniques has been essential to ensure reliable ra-
dio links. In particular, optimal and suboptimal metrics for noncoherent
frame synchronization are derived, based on statistical inference theory. The
proposed tests outperform the commonly used correlation detector in terms
of synchronization error probability, leading to accurate data extraction and
reduced power consumption.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) is a dynamic global network of devices, e.g., sen-
sors, actuators, surveillance cameras, vehicles, wearable devices, and home
appliances. These interconnected objects are uniquely identifiable and they
can autonomously transmit and receive useful data over the network. The
collected data can be exploited into sophisticated applications which per-
mits for significant improvements of human life. The IoT technology when
combined with sensors and actuators evolves into the more general class of
cyber-physical systems including several applications such as smart homes
and cities, intelligent transportation, and precision agriculture.

The tremendous increase of data generated within the frameworks of IoT
and cyber-physical systems necessitates designing efficient acquisition, com-
pression, and noise reduction schemes. For example, the number of devices
connected to the Internet is predicted to exceed 20 billion in 2020, as shown
in Fig. 1.1, leading to a huge amount of data estimated as 50 zettabytes.
The data generated annually is expected to reach 160 zettabytes by 2050, and
almost half of this amount is originated from endpoints, e.g., mobile phones,
IoT devices, cameras, and connected vehicles, as shown in Fig. 1.2 [1]. Thus,
overwhelming resources, such as storage, power, and bandwidth, are required
to handle this data.

However, the intrinsic information contained in such data is much smaller
than their actual size. Hence, the required resources can be significantly de-
creased by exploiting some of the data structures. One of these properties is
the sparsity/compressibility, i.e., the ability to describe/approximate signals
with a fewer number of coefficients compared to their dimension in appro-
priate domains, e.g., time, frequency, discrete cosine transform (DCT), and
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Figure 1.1: The number of installed IoT devices by consumers and business
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Figure 1.3: Source coding schemes for compressible signals.

wavelet. In fact, many signals of interest such as image, audio, video, and
IoT data are compressible [2, 3]. Therefore, the growing challenge is to effi-
ciently acquire, represent, and reconstruct these signals with the minimum
possible rate and energy consumption.

1.2 Sparse Signal Processing Paradigms

The idea of exploiting sparsity has been studied within several disciplines
including signal processing and information theory communities, e.g., source
compression, transform coding, CS, and approximation theory [2–6].

Regarding transform coding, the signal is represented in a suitable basis
and only few coefficients are encoded, as shown in Fig. 1.3a. At first, band-
limited signals must be captured using analog-to-digital converter (ADC)
with sampling rate higher than the Nyquist rate. In order to reduce the data
size, it is required to represent the signal into an appropriate domain that
compacts its energy into few coefficients. Then, nonlinear sparse approxi-
mation (NLA) is performed by selecting the largest coefficients in amplitude

9



Table 1.1: Comparison between transform coding and CS for the compression
of sparse signals.

Transform Coding CS

Sampling Rate Nyquist Sub-Nyquist

Encoder Complexity Moderate Low

Decoder Complexity Moderate High

Basis knowledge Encoder and Decoder Decoder

Rate-Distortion behavior Good Poor

and discarding the non-significant ones. Finally, the resulting sparse signal
is encoded. With the proper design of the basis, the sparse approximation
method, and the encoder, the transform coder can achieve a high compres-
sion ratio with limited distortion. However, the basis at which the signal is
sparse should be known at both the encoder and decoder. Also, for sampling
wideband signals, the Nyquist rate could be very high, leading to costly and
power-hungry technologies.

On the other hand, CS is a signal processing paradigm for recovering
sparse and compressible signals from a small set of measurements acquired
through a linear operator (measurement matrix). CS based techniques have
been exploited to provide efficient solutions for several problems in signal
processing and communication, e.g., source and channel coding, cryptogra-
phy, random access, radar, spectrum sensing, channel estimation and net-
work tomography [5,7–27]. For example, CS as source coder is illustrated in
Fig. 1.3b. In this scheme the compressible signal is acquired by an Analog-
to-Information Converter (AIC) allowing to sample at the information-rate
of the data, which is much slower than the Nyquist rate [8, 22, 28–30]. A
possible implementation for AICs is by correlating the input signal with a
bank of random bipolar pulse trains, then sampling at the end of the in-
tegration interval, where the acquisition can be viewed as a multiplication
of the discretized signal by a measurement matrix with independent, identi-
cally distributed (i.i.d.) entries drawn from Rademacher distribution. Then,
the measurements are quantized using uniform scalar quantizer and finally
entropy encoded. After decoding at the receiver side, the signal is approxi-
mately reconstructed through sparse recovery algorithms, e.g., optimization

10



and greedy based methods, from the quantized measurements. The key ad-
vantages of CS over transform coding are as following.

1. The sparsifying basis is needed only for signal reconstruction at the
decoder, leading to simpler encoders which require lower computational
capabilities.

2. Sparse wideband signals can be acquired efficiently through random
sampling with relaxed conditions on the sampling rate [31, 32], com-
pared to the Nyquist sampling that does not exploit the additional
signal structure [33–38].

Nevertheless, the resulting distortion for the CS source coder is higher than
that based on transform coding [39].

The differences between transform coding and CS as source coder are
summarized in Table 1.1. Clearly, opting for either transform coding or CS
depends heavily on the targeted application, i.e., the signal properties, the
availability of computational power at either encoder or decoder, and the
prior knowledge of the sparsity basis.

1.3 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

1. Designing the measurement matrix in the context of CS with single
measurement vector (SMV):

• accurate symmetric and asymmetric restricted isometry constan-
t (RIC) analysis for finite dimensional problems, accounting for
the exact distribution of the singular values of finite Gaussian
matrices;

• tight bounds on the maximum achievable sparsity order which
guarantees an arbitrary target recovery probability, for a given
number of measurements and signal dimension (instead of the
common overwhelming probability approach);

• study for stable and robust recovery of compressible signals with
bounds on the reconstruction error;

• simple approximations for the RICs based on the Tracy-Widom’s
laws.

2. Investigating joint sparse recovery within the framework of CS with
multiple measurement vectors (MMV):

11



• probabilistic analysis of the weak restricted isometry constants
(WRICs) for finite Gaussian matrices;

• lower bounds on the probability of satisfying an arbitrary recovery
condition, tighter than those based on the concentration inequal-
ities;

• unified average case framework to quantify the recovery limits of
joint sparse reconstruction algorithms, for both noiseless and noisy
measurements;

• estimating the maximum joint support cardinality of row sparse
matrices such that a target probability of recovery is assured;

• deriving sufficient reconstruction conditions, in terms of the asym-
metric WRICs, which permit the recovery of signals with higher
sparsity orders, compared to those obtained through the symmet-
ric WRIC.

3. Proposing two novel source encoders for noisy sparse sources:

• deriving a blind estimator for the sparsity order based on a model
order selection rule;

• designing an excision filter to differentiate signal entries from noise;

• proposing efficient source encoders for sparse signals by exploiting
the syndromes associated with channel block codes;

• obtaining the distribution of the error due to quantization and
input noise, for mixed distributed sources encompassing Bernoulli
and an arbitrary continuous distribution;

• accurate performance measure of the proposed encoders in terms
of the operational distortion-rate, for noisy Bernoulli-uniform and
Bernoulli-Gaussian sources;

• analyzing the operational distortion-energy, particularly impor-
tant to design power efficient networks in IoT scenarios;

• utilizing the proposed encoders for the compression of real signals
gathered from a wireless sensor network deployed in Torgiovan-
netto (Assisi, Italy).

4. Designing efficient frame synchronization (FS) mechanism for IoT de-
vices:

• deriving an optimal metric for noncoherent FS of M-PSK modu-
lations with M ≥ 4;

12
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FS for IoT (Ch. 5)Sparse Signal Processing for IoT

Transform Coding (Ch. 4)Compressed Sensing

MMV (Ch. 3)SMV (Ch. 2)

Figure 1.4: The thesis structure.

• obtaining low-complexity metrics for QPSK and 8-PSK;

• analyzing for M-PSK a simple metric consisting in the noncoher-
ent correlator modified by removing a correction term;

• investigating the performance improvement of the new test when
applied to M-QAM systems.

1.4 Thesis Structure

The rest of the thesis is outlined in four chapters (Fig. 1.4) as follows.

Chapter 2 provides a new approach for the analysis of the RIC of fi-
nite dimensional Gaussian measurement matrices, in the context of CS. The
proposed method relies on the exact distributions of the extreme eigenval-
ues of Wishart matrices. The presented framework provides, for finite size
problems, a tight lower bound on the maximum sparsity order allowing sig-
nal recovery from a given number of measurements with a predefined target
probability.

Chapter 3 presents tight upper bounds on the weak restricted isometry
constant of finite Gaussian measurement matrices under the framework of
CS for MMV. The limits are used to develop a unified framework for the
guaranteed recovery assessment of jointly sparse matrices.

Chapter 4 proposes two practical approaches for source compression
of noisy sparse sources. The proposed schemes are based on channel coding
theory to construct efficient source encoders by exploiting the signal sparsity.
Also, accurate analysis of the system performance is provided in terms of the
operational distortion-rate and operational distortion-energy functions.

13



Finally, Chapter 5 investigates FS for M-PSK signals in the presence
of additive white Gaussian noise and phase offset due to imperfect carrier
phase estimation. In particular, optimal and simple suboptimal metrics for
noncoherent FS of M-PSK modulation are derived. The proposed technique
is analyzed forM-QAM systems, as well as in the presence of small frequency
offsets.
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Chapter 2

Compressed Sensing Design for

Finite Gaussian Matrices

2.1 Introduction

Compressed sensing (CS) is a signal processing paradigm for efficiently re-
covering a signal from a small set of linear measurements, provided that the
sensed data is sparse, i.e., the number of its non-zero elements, s, is much less
than its dimension n. If properly chosen, the number of measurements, m,
can be much smaller than the signal dimension [4, 5, 28, 40–42]. In fact, CS
provides efficient solutions for several problems in signal processing and com-
munication, e.g., source and channel coding, cryptography, random access,
radar, sub-Nyquist data acquisition, spectrum sensing, channel estimation,
and network tomography [5, 7, 9–27]. The usability of these applications de-
pends on the maximum sparsity order s such that recovery is guaranteed
with high probability for given m and n. For example, such s determines the
maximum allowable number of:

• corrupted samples which can be detected and corrected using error
control schemes for impulsive noise [5, 43];

• non-zero elements that can be recovered using compressive source cod-
ing [9];

• RFID tags which can be simultaneously active for tag acquisition via
CS [19];

• users that can feed back their channel state information in MIMO
broadcast channel [25].
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The three main possible approaches to find the maximum sparsity order s
guaranteeing recovery of all sparse vectors are based on the restricted isom-
etry property (RIP) analysis, geometric methods, and coherence analysis.
The RIP tells how well a linear transformation preserves distances between
sparse vectors, and is quantified by the so-called restricted isometry constan-
t (RIC) [5]. In general, the smaller the RIC, the closer the transformation to
an isometry (a precise definition of the RIC is given later). Geometric based
methods are useful for the recovery analysis of exactly sparse signals via ℓ1-
minimization in the noiseless case [44–47]. Sparse reconstruction can also be
studied looking at the coherence of the measurement matrix. However, the
resulting bounds are too pessimistic compared to RIP-based bounds [6, e-
q. (6.9) and eq. (6.14)]. This significant gap justifies preferring the RIP
based analysis, whenever bounding the RIC is feasible. Furthermore, non-
uniform recovery guarantees, like those based on Gaussian widths, provide
tight bounds for the reconstruction of a fixed sparse vector, in contrast to
the RIP method, which considers the recovery of all sparse vectors (uniform
recovery) [6], [48].

Moreover, the RIP theory is more general compared to the geometric ap-
proach, as it also considers the stability for not exactly sparse (compressible)
signals and the robustness to noise, under different measurement matrices,
for a wider range of sparse recovery algorithms. In fact, sufficient conditions
for exact recovery have been obtained in terms of the RIC for several al-
gorithms (see, e.g., [5, 49–54] for ℓ1-minimization, [55, 56] for iterative hard
thresholding (IHT), and [57–60] for greedy algorithms).

It has been shown, by using information-theoretic methods, that Gaussian
random matrices with independent, identically distributed (i.i.d.) entries are
optimal in terms of minimizing the number of measurements required for re-
covery [61]. Hence, precisely analyzing the RIP of such matrices is important.
In fact, Gaussian matrices have been proved to satisfy the RIP with over-
whelming probability [5, 40]. The two main tools adopted for the proof are
the concentration of measure inequality for the distribution of the extreme
eigenvalues of a Wishart matrix, and the union bound which accounts for
all possible signal supports. However, if the aim is to quantify the maximal
allowable sparsity order s for a given number of measurements, the use of the
concentration inequalities leads to overly pessimistic results. In this regard,
in [62–64] an improved analysis was presented, by bounding the asymptotic
behavior of the distributions given in [65] for the extreme eigenvalues of a
Wishart matrix instead of the concentration inequalities. Explicit bounds for
the RIC have been obtained in some specific asymptotic regions [64], but no
bounds are known in the general non-asymptotic setting. In fact, for finite
measurement matrices the asymptotic analysis of the eigenvalues in [62–64]
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gives approximations of the true distributions; therefore, they cannot provide
guaranteed bounds for a particular problem dimension (s,m, n).

This chapter provides an accurate statistical analysis of the RIC for fi-
nite dimensional Gaussian measurement matrices, supporting the design of
real CS applications (involving always finite size problems), with guaranteed
recovery probability. In particular, we calculate the tightest, to our knowl-
edge, lower bound on the probability of satisfying the RIP for an arbitrary
condition on the RIC. For a specified number of measurements, the maximal
sparsity order can then be found such that perfect recovery is feasible for all
s-sparse vectors, i.e., the matrix satisfies the RIP, considering, on a random
draw of the measurement matrix, a target probability 1 − ǫ of successful
recovery. Differently, the usually adopted asymptotic setting considers that
this probability tends to 1 (overwhelming probability).

To get better estimates on the maximal sparsity order, tight lower bounds
on the cumulative distribution functions (CDFs) of the asymmetric restrict-
ed isometry constants (ARICs) are derived, based on the exact probabili-
ty that the extreme singular values of a Gaussian submatrix are within a
range. Hence, starting from the derived CDFs, we can find thresholds, below
which the ARICs lie with a predefined probability. These percentiles allow
to calculate a lower bound on the maximal recoverable signal sparsity or-
der, using several reconstruction methods, such as ℓ1-minimization, greedy,
and IHT algorithms. The new analysis is used in conjunction with the re-
covery conditions relaxed to asymmetric boundaries, as suggested in [62], to
prove exact recovery for signals with larger sparsity orders. In this regard,
we relax the symmetric RIC based condition in [54] to a weaker asymmetric
one. Additionally, we provide approximations for the RIC CDFs based on
the Tracy-Widom (TW) distribution, along with a convergence investigation.
In comparison with previous literature, the proposed analysis gives, for fi-
nite dimensional problems, a better estimation of the signal sparsity allowing
guaranteed recovery.

The contributions of this chapter can be summarized as follows:

• accurate symmetric and asymmetric RIC analysis for finite dimensional
problems, accounting for the exact distribution of eigenvalues of finite
Wishart matrices (differently from previous methods based on asymp-
totic behavior of the distributions or loose concentration of measure
bounds);

• limits on compressive data acquisition in terms of the maximum achiev-
able sparsity order guaranteeing arbitrary target reconstruction proba-
bility (instead of the common overwhelming probability approach) via
various recovery algorithms;
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• accurate study for stable and robust recovery of compressible signals
with tight bounds on the reconstruction error;

• simple approximations for the RICs based on the TW’s laws.

Throughout this chapter, we indicate with det(·) the determinant of a

matrix, with card(·) the cardinality of a set, with ‖ · ‖q = (
∑n

i=1 |xi|q)
1
q the

ℓq norm of an n-dimensional vector, with ‖ · ‖ the ℓ2 norm, with Γ(·) the
gamma function, with γ (a; x, y) =

∫ y

x
ta−1e−tdt the generalized incomplete

gamma function, with P (a, x) = 1
Γ(a)

γ(a; 0, x) the regularized lower incom-

plete gamma function, with P (a; x, y) = 1
Γ(a)

∫ y

x
ta−1e−tdt = P (a, y)−P (a, x)

the generalized regularized incomplete gamma function, with N (µ, σ2) the
Gaussian distribution with mean µ and variance σ2.

2.2 Problem Formulation

Consider that we have a single measurement vector (SMV)

y = Ax (2.1)

where y ∈ R
m and A ∈ R

m×n are known, the number of equations is m < n,
and x ∈ R

n is the unknown. Since m < n, we can think of y as a compressed
version of x. Without other constraints, the system is underdetermined, and
there are infinitely many distinct solutions of (2.1). If we assume that at
most s < m elements of x are non-zero (i.e., the vector is s-sparse), then
there is a unique solution (the right one) to (2.1), provided that all possible
submatrices consisting of 2s columns of A are maximum rank. The solution
can be found by solving the following ℓ0-minimization [5]

x̂ = argmin ‖x‖0 subject to y = Ax (2.2)

where ‖x‖0 is the number of the non-zero elements of x. However, even
when the maximum rank condition is satisfied, the solution of (2.2) is com-
putationally prohibitive for dimensions of practical interest. A much easier
problem is to find the ℓ1-minimization solution. It is proved in [5], under
some conditions on A, that the solution provided by the ℓ1-minimization

x̂ = argmin ‖x‖1 subject to y = Ax (2.3)

is the same as that of (2.2). The conditions on A are given in term of the
RIC.
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Definition 1 (The RIC [5]). The RIC of order s of A, δs(A), is the smallest
constant, larger than zero, such that the inequalities

1− δs(A) ≤ ‖AS c‖2

‖c‖2
≤ 1 + δs(A) (2.4)

are simultaneously satisfied for every c ∈ R
s and every m × s submatrix

AS of A with columns indexed by S ⊂ Ω , {1, 2, ..., n} with card(S) = s.
Under this condition, the matrix A is said to satisfy the RIP of order s with
constant δs(A).

Specifically, the importance of the RIP in CS comes from the possibility to
use the computationally feasible ℓ1-minimization instead of the impractical ℓ0
one, under some constraints on the RIC. For example, it was shown that the
ℓ1 and the ℓ0 solutions are coincident for every s-sparse vectors x if δs(A) < δ
with δ = 1/3 [54].

The next question is how to design a matrix A with a prescribed RIC.
One possible way to design A consists simply in randomly generating its
entries according to some statistical distribution. In this case, for a given n,
s and δ, the target is to find a way to generate A such that the probability
P {δs(A) < δ} is close to one. An optimal choice is to build the measurement
matrixA with i.i.d. entries ai,j ∼ N (0, 1/m) [5,61]. Then, in order to find the
number of measurements m needed, we start by using the Rayleigh quotient
inequality for a fixed S

λmin(W) ≤ ‖AS c‖2

‖c‖2
≤ λmax(W) (2.5)

where W = AT
SAS, and λmin(W) and λmax(W) are its minimum and max-

imum eigenvalues, respectively. Considering that the inequalities in (2.4)
should be satisfied for all the s-column submatrices of A, the RIC constant
can be written as

δs(A)=max



1−min

S⊂Ω
card(S)=s

λmin(W), max
S⊂Ω

card(S)=s

λmax(W)−1



 . (2.6)

Hence, the probability that the measurement matrix satisfies the RIP with
a RIC at most δ, denoted as β(δ) , P {δs(A) ≤ δ}, is represented by

β(δ)=P



 min

S⊂Ω
card(S)=s

λmin(W)≥1−δ,max
S⊂Ω

card(S)=s

λmax(W)≤1+δ



. (2.7)
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The union bound gives a lower bound for the probability of satisfying the
RIP as

β(δ) ≥ 1−
(
n

s

)
(1− Psw(δ)) (2.8)

where
(
n
s

)
is the binomial coefficient and Psw(δ) is the probability that AS is

well conditioned defined as:

Psw(δ) , P {1− δ ≤ λmin(W), λmax(W) ≤ 1 + δ} . (2.9)

The probability Psw(δ) is of fundamental importance, since it determines the
performance of CS. In the next section, an approach for exactly calculating
(2.9) for Gaussian matrices is proposed.

2.3 Eigenvalues Statistics

In this section, we start by recalling the known concentration inequality
based bound on 1 − Psw(δ), which is the approach used in [4, 5]. Then, an
alternative method to find Psw(δ) for Gaussian measurement matrices are
provided. The proposed technique relies on the exact probability that the
eigenvalues of W are within a predefined interval.

2.3.1 Eigenvalues Statistics Based on the Concentra-

tion Inequality

Deviation bounds for the largest and the smallest eigenvalues of the Wishart
matrix W are obtained using the concentration of measure inequality [4, 5],
as

P

{√
λmax(W) ≥ 1 +

√
s/m+ o(1) + t

}
≤ e−mt2/2 (2.10)

and
P

{√
λmin(W) ≤ 1−

√
s/m+ o(1)− t

}
≤ e−mt2/2 (2.11)

where t > 0 and o(1) is a small term tending to zero asm increases, which will
be neglected in the following. Using the inequality P {AcBc} ≥ 1− P {A} −
P {B} where A,B are arbitrary events, and Ac, Bc are their complements,
i.e., the union bound, we get

Psw(δ) ≥ 1− e
− 1

2
m

[
(−1−

√
s/m+

√
1+δ)

+
]2

− e
− 1

2
m

[
(1−

√
s/m−

√
1−δ)

+
]2

(2.12)

where (x)+ = max{0, x}. We will see later that this bound, which we use as
a benchmark, is far from the exact probability.
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2.3.2 Exact Eigenvalues Statistics

We propose a method to compute exactly the probability that a Wishart
matrix is well conditioned, i.e, its eigenvalues are within a predefined limit.
The method is based on the following recent result [66].

Theorem 1. The probability that all non-zero eigenvalues of the real Wishart
matrix M = GT

SGS, where GS is m × s matrix with entries gi,j ∼ N (0, 1),
are within the interval [a, b] ⊂ [0,∞) is

ψms(a, b) = P {a ≤ λmin(M), λmax(M) ≤ b}
= K ′√det (Q(a, b)) (2.13)

with the constant

K ′ =
πs2/2

2sm/2Γs(m/2)Γs(s/2)
2αs+s(s+1)/2

s∏

ℓ=1

Γ (α + ℓ)

where Γs(a) , πs(s−1)/4
∏s

i=1 Γ(a − (i − 1)/2), and α = m−s−1
2

. In (2.13),
when s is even the elements of the s× s skew-symmetric matrix Q(a, b) are

qi,j =

[
P

(
αj,

b

2

)
+ P

(
αj,

a

2

)]
P

(
αi;

a

2
,
b

2

)

− 2

Γ(αi)

∫ b/2

a/2

xα+i−1e−xP (αj, x) dx (2.14)

for i, j = 1, . . . , s, where αℓ = α + ℓ. When s is odd, the elements of the
(s + 1) × (s + 1) skew-symmetric matrix Q(a, b) are as in (2.14), with the
additional elements

qi,s+1 = P

(
αi;

a

2
,
b

2

)
i = 1, . . . , s

qs+1,j = −qj,s+1 j = 1, . . . , s (2.15)

qs+1,s+1 = 0 .

Moreover, the elements qi,j can be computed iteratively, without numerical
integration or series expansion, by Algorithm 1.

Since the entries ofAS are distributed asN (0, 1/m), the exact probability
that AS is well conditioned is calculated from Theorem 1 as

Psw(δ) = P {λmin(W) ≥ 1− δ, λmax(W) ≤ 1 + δ}
= ψms(m(1− δ), m(1 + δ)) (2.16)

where ψms(a, b) can now be computed exactly from Algorithm 1. The exact
expression (2.16) is computationally easy for moderate matrix dimensions
(we used it up to m = 1 · 105 and s = 150).
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Algorithm 1 ψms(a, b) for real Wishart matrices

Input: s,m, a, b
Output: ψms(a, b) = P {a ≤ λmin(M), λmax(M) ≤ b}
Q = 0

αℓ = (m− s− 1)/2 + ℓ
g(αℓ, x) = xαℓe−x

for i = 1 → s− 1 do

for j = i→ s− 1 do

qi,j+1 = qi,j +
Γ(αi+αj) 2

1−αi−αj

Γ(αj+1)Γ(αi)
P (αi + αj ; a, b) −

g(αj ,a/2)+g(αj ,b/2)

Γ(αj+1)
P
(
αi;

a
2
, b
2

)

end for

end for

if s is odd then

append to Q one column according to (2.15) and a zero row
end if

Q = Q−QT

return K ′√det(Q)

2.3.3 Asymmetric Nature of the Extreme Eigenvalues

Clearly, the RIC in (2.6) depends on the deviation of the extreme eigenvalues
from unity. It has been shown that the smallest and the largest eigenvalues of
Wishart matrices asymptotically deviate from 1 [62]. Hence, the symmetric
RIC can not efficiently describe the RIP of Gaussian matrices. Now, it is
essential to illustrate whether such asymmetric behavior is still valid for finite
measurement matrices. In this regard, we proposed to find the two percentiles
λ∗min(m, s, η) and λ

∗
max(m, s, η) for the extreme eigenvalues of W, such that

P {λmin(W) ≤ λ∗min(m, s, η)} = P {λmax(W) ≥ λ∗max(m, s, η)} = η .

In fact, such percentiles can be calculated form the exact eigenvalues distri-
bution in Theorem 1 as

λ∗min(m, s, η) = ψ−1
min(η), λ

∗
max(m, s, η) = ψ−1

max(η) (2.17)

where ψ−1
min(η) and ψ

−1
max(η) are the inverse of ψms(0, mx) and ψms(mx,∞),

respectively.
In Fig. 2.1 we report the thresholds λ∗min(m, s, η) and λ∗max(m, s, η) as a

function of s/m, for some finite values of m and a fixed exceeding probability
η = 10−10. We can see that they asymmetrically deviate from unity, as
already observed for asymptotic large matrices in [62]. Additionally, since
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Figure 2.1: The asymmetric extreme eigenvalues thresholds of the Wishart
matrix W as a function of s/m, for η = 10−10. The lower threshold
λ∗min(m, s, η) and the upper threshold λ∗max(m, s, η) are represented by dashed
and solid lines, respectively.

for small values of m the deviation of the extreme eigenvalues from unity is
more significant, i.e., the RIC should be larger, the asymptotic tail behavior
of the eigenvalues distributions in [62–64] cannot be used for upper bounding
the RICs in the finite case.

Definition 2 (ARIC [50,62]). The lower restricted isometry constant (LRIC)
of order s of A, δs(A), is defined as the smallest constant larger than zero
that satisfies

1− δs(A)≤ ‖AS c‖2

‖c‖2
∀ c ∈ R

s,∀S ⊂ Ω:card(S)=s (2.18)

and the upper restricted isometry constant (URIC) of order s of A, δs(A),
is defined as the smallest constant larger than zero that satisfies

‖AS c‖2

‖c‖2
≤1 + δs(A) ∀ c ∈ R

s,∀S ⊂ Ω:card(S)=s. (2.19)
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Clearly, the relation with the symmetric RIC is δs(A) = max{δs(A), δs(A)}.
Moreover, from Definition 2 and (2.5), we can represent the ARICs as

δs(A) = 1− min
S⊂Ω

card(S)=s

λmin(W) (2.20)

δs(A) = max
S⊂Ω

card(S)=s

λmax(W)− 1. (2.21)

2.4 Symmetric and Asymmetric RICs

The symmetric and asymmetric RICs of a Gaussian matrix can be seen as
functions of the extreme eigenvalues of Wishart matrices as in (2.20) and
(2.21), and hence are themselves random variables (r.v.s). In this section,
we derive at first lower bounds on the probability of satisfying RIP for finite
dimensional Gaussian random matrices using the exact eigenvalues distribu-
tion, and then a lower bound on the RIC. Additionally, the CDFs of the
ARICs are lower bounded using the CDFs of the extreme eigenvalues. Fi-
nally, thresholds for ARICs that are not exceeded with a target probability
are deduced.

In the following, the analysis derived starting from the exact eigenvalues
statistic (2.16) will be referred as the exact eigenvalues distribution (EED)
based approach.

2.4.1 RIP Analysis for Gaussian Matrices

A Gaussian matrix is said to satisfy the RIP of order s if its RIC, δs(A),
is less than a constant δ with high probability on a random draw of A. In
other words, if a sufficient condition for perfect reconstruction using a sparse
recovery algorithm is satisfied with high probability. This probability can be
lower bounded from (2.8) and (2.16) as

β(δ,m, n, s)≥ 1−
(
n

s

)[
1− ψms (m(1−δ), m(1+δ))

]
. (2.22)

The expression (2.22) gives, to the best of our knowledge, the tightest lower
bound on the probability of satisfying the RIP, β(δ), for finite dimensional
Gaussian matrices. This is attributed to employing the exact joint distri-
bution of the extreme eigenvalues of Wishart matrices, providing a quan-
titatively sharper estimates compared to the concentration bound and the
asymptotic approaches.
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When applying CS, it is important to estimate the RIC to assess the
recovery property of the measurement matrix. Let us define δ∗s,min(m,n, ǫ) as
the RIC which is exceeded with probability ǫ, such that

P{δs(A) ≤ δ∗s,min(m,n, ǫ)} = 1− ǫ . (2.23)

Using (2.22) we can upper bound this value as

δ∗s,min(m,n, ǫ) ≤ δ∗s(m,n, ǫ) , ψ−1
ms

(
1− ǫ/

(
n

s

))
(2.24)

where ψ−1
ms(y) is the inverse of ψms(m(1−x),m(1+x)). In the following we

will refer to δ∗s(m,n, ǫ) in (2.24) as the restricted isometry constant threshold
(RICt), where from (2.23) and (2.24) we have

P{δs(A) ≤ δ∗s(m,n, ǫ)} ≥ 1− ǫ . (2.25)

2.4.2 Asymmetric RIP Analysis for Gaussian Matrices

Let δs(A) be the LRIC as defined in (2.20). The cumulative distribution
function (CDF) of the LRIC, FℓRIC(x), is lower bounded as

P {δs(A) ≤ x} ≥ 1−
(
n

s

)[
1− ψms (m(1− x),∞)

]
. (2.26)

In fact, from (2.20) the CDF of the LRIC δs(A) is

FℓRIC(x) = P



1− min

S⊂Ω
card(S)=s

λmin(W) ≤ x





≥ 1−
(
n

s

)
P {λmin(W) ≤ 1− x} (2.27)

= 1−
(
n

s

)[
1− ψms(m (1− x),∞)

]
.

Let us define δ∗s,min(m,n, ǫ) as the LRIC which is exceeded with probabil-
ity ǫ, such that

P{δs(A) ≤ δ∗s,min(m,n, ǫ)} = 1− ǫ .

This quantity is upper bounded as follows

δ∗s,min(m,n, ǫ)≤δ∗s(m,n, ǫ)=ψ−1
ms,lower

(
1− ǫ/

(
n

s

))
(2.28)
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where ψ−1
ms,lower(y) is the inverse of ψms(m(1 − x),∞). In the following we

will refer to δ∗s(m,n, ǫ) as the lower restricted isometry constant threshold
(LRICt).

Similarly, for the CDF of the URIC, FuRIC(x), we have

P
{
δs(A) ≤ x

}
≥ 1−

(
n

s

)
P {λmax(W) ≥ 1 + x} (2.29)

= 1−
(
n

s

)[
1− ψms(0, m (1 + x))

]
.

Then, we can compute a threshold such that P{δs(A)≤δ∗s,min(m,n, ǫ)} = 1−ǫ,
which leads to

δ
∗
s,min(m,n, ǫ) ≤ δ

∗
s(m,n, ǫ)=ψ

−1
ms,upper

(
1− ǫ(

n
s

)
)
−1 (2.30)

where ψ−1
ms,upper(y) is the inverse of ψms(0, m(1 + x)). In the following we

will refer to δ
∗
s(m,n, ǫ) as the upper restricted isometry constant threshold

(URICt).
Note that, while previously known approaches refer to infinite dimensional

matrices, our analysis accounts for the (always finite) true dimensions of the
problem.

2.5 Conditions For Perfect Recovery

In this section, the estimated thresholds for the RICs (both symmetric and
asymmetric) of finite matrices are used to quantify the maximum allowed
signal sparsity order for various recovery algorithms.

Definition 3 (The maximum sparsity order). Let A be a random m × n
measurement matrix, s be the signal sparsity order, and 0 < ǫ < 1 be an
arbitrary constant. The maximum sparsity order, s∗, is the value such that
every s-sparse vector with s < s∗ can be recovered perfectly with probability
PPR at least 1− ǫ on a random draw of A. Then the maximum oversampling
ratio, a finite regime version of the asymptotic phase transition function, is
defined as s∗/m.

The maximum sparsity order is used to compare the performance of d-
ifferent recovery algorithms and their associated sufficient conditions. As
mentioned before, the perfect reconstruction conditions for many sparse re-
covery algorithms are stated in terms of the RICs [5, 49, 51–60]. We now
exploit these conditions to provide a probabilistic framework for the recov-
ery problem.
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2.5.1 Symmetric RIC Based Sparse Recovery

About the symmetric RIC, the sufficient condition for perfect signal recovery
via ℓ1-minimization can be represented in a generic form as δks(A) < δ, where
k is a positive integer and δ is a constant. As a consequence, the probability
of perfect recovery can be bounded as

PPR ≥ P {δks(A) < δ} = β(δ,m, n, ks) (2.31)

with the proposed (2.22). Sufficient recovery condition of this class are, e.g.,
δs(A) < 1/3 [54], δ2s(A) < 0.6246 [6], etc. Also, the design of the mea-
surements matrix is possible through (2.31), where the minimum number of
measurements m can be calculated to ensure perfect recovery with a guar-
anteed probability. The inverse problem is the calculation of the maximum
sparsity order, for a given m and a given n, such that the PPR is at least
1− ǫ. For this target we have

s∗ = max {s : β(δ,m, n, ks) ≥ 1− ǫ} . (2.32)

2.5.2 Asymmetric RIC Based Sparse Recovery

Although the asymmetric RICs are less investigated, it is known that the
conditions stated in terms of them lead to tighter bounds for the maximum
sparsity order [62]. This is attributed to the asymmetric behavior of the
extreme eigenvalues for Wishart matrices as analyzed in section 2.3.3.

A general class of sufficient recovery conditions based on the ARICs has
the form

µ(s,A) , f
(
δk1s(A) , δk2s(A)

)
< 1 (2.33)

where k1 and k2 are arbitrary positive integers and f
(
δk1s(A) , δk2s(A)

)
is

a non-decreasing function in both δk1s(A) and δk2s(A). In this regard, we
propose a generalization of the symmetric RIC based condition, δs(A) < 1

3
,

to an asymmetric one. In particular, if the following condition is satisfied

µECG(s,A) , 2 δs(A) + δs(A) < 1 (2.34)

then all s-sparse vectors can be recovered perfectly using ℓ1-minimization.
The condition is obtained by extending the analysis in [54] to account for the
asymmetric RICs, as detailed in Appendix A. Other sufficient conditions in
the form of (2.33) are found in [50,67]. For example, it is shown in [50] that
if

µFL(s,A) ,
1

4

(
1 +

√
2
)(1 + δ2s(A)

1− δ2s(A)
− 1

)
< 1 (2.35)
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and in [67] that if

µBT(s,A) , δ2s(A) +
1

4

(
δ6s(A) + δ6s(A)

)
< 1

then perfect reconstruction is also guaranteed.
Therefore, for random measurement matrices, the probability of perfect

recovery by incorporating the ARICs can be bounded as

PPR ≥ P {µ(s,A) < 1} . (2.36)

For the design problem of calculating the maximum sparsity order, by ex-
ploiting the monotonicity of the function f(·, ·), we have

P {µ(s,A) ≤ 1} ≥ P

{
δk1s(A) ≤ δ∗k1s, δk2s(A) ≤ δ

∗
k2s

}

≥ 1− P

{
δk1s(A) ≥ δ∗k1s

}
− P

{
δk2s(A) ≥ δ

∗
k2s

}
(2.37)

for any δ∗k1s and δ
∗
k2s

such that f
(
δ∗k1s , δ

∗
k2s

)
< 1. Equation (2.37) is due to

the union bound, (2.20), and (2.21). Setting the bound (2.37) to 1 − η and
distributing equally the probability on the lower and upper RICs, we get

P

{
δk2s(A) ≤ δ

∗
k2s

}
=P

{
δk1s(A) ≤ δ∗k1s

}
=1− η

2
. (2.38)

Finally, the maximum sparsity order s∗ is the maximum s compatible

with f
(
δ∗k1s, δ

∗
k2s

)
< 1, where δ∗k1s , δ

∗
k2s

are calculated from (2.28) and (2.30)

with ǫ = η/2 to satisfy (2.38). Then, every sparse vector with s<s∗ can be
perfectly recovered with probability at least 1−η on a random draw of A.

Although we focused on ℓ1-minimization based recovery, the same ap-
proach can be used to estimate the maximum sparsity order using greedy or
thresholding algorithms. For example, sufficient conditions on the RIC for
perfect recovery using compressive sampling matching pursuit (CoSaMP),
orthogonal matching pursuit (OMP), and IHT are δ4s(A) < 0.4782 [6],
δ13s(A) < 0.1666 [6,60], and δ3s(A) < 0.5773 [68], respectively. Additional-
ly, asymmetric RIC based conditions have been obtained in [69] for CoSaMP,
IHT, and subspace pursuit (SP). For example,

µBCTT(s,A) , 2
√
2

(
δ3s(A) + δ3s(A)

2 + δ3s(A)− δ3s(A)

)
< 1

is a sufficient condition for perfect recovery using IHT [69].
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2.6 Robust Recovery of Compressible Signals

Up to now, we have studied the case of perfect recovery of sparse data in
noiseless setting. However, in practice signals can also be not exactly sparse,
but rather compressible, i.e., the data is well approximated by a sparse signal.
Moreover, noise can be present during the acquisition process.

A measure of the discrepancy between a compressible signal and its sparse
representation is the ℓ1-error of best s-term approximation σs(x)1, defined as

σs(x)1 , inf{‖x− xs‖1, xs ∈ R
n is s-sparse} . (2.39)

Hence, a signal is well approximated by an s-sparse vector if σs(x)1 is s-
mall [6]. Besides considering compressible signals, we can also include the
measurement noise in the model, so that the measured vector can be written
as

y = Ax+ z (2.40)

where z is a bounded noise with ‖z‖ ≤ κ. Assuming κ is known, we can
account for the noise term by modifying the constraint in the ℓ1-minimization
problem (2.3) as

x̂ = argmin ‖x‖1 subject to ‖y −Ax‖ ≤ κ . (2.41)

This algorithm is called quadratically constrained ℓ1-minimization [70]. There
are also other algorithms for sparse recovery in noisy cases, e.g., Dantzig s-
elector [71], basis pursuit denoising [72], denoising-orthogonal approximate
message passing [73], etc.

For the model illustrated in (2.40), we cannot guarantee perfect signal re-
covery, but rather an approximate reconstruction can be assured with bound-
ed error. For example, it was shown in [54] that if δs(A) < 1/3, the error
after recovery can be bounded by a weighted combination of κ and σs(x)1,
i.e.,

‖x̂− x‖ ≤ C1κ+ C2
σs(x)1√

s
(2.42)

where

C1 (δs(A)) =

√
8 (1 + δs(A))

1− 3δs(A)
(2.43)

C2 (δs(A)) =

√
8
(
2δs(A) +

√
(1− 3δs(A)) δs(A)

)

1− 3δs(A)
+ 2 . (2.44)
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The constants C1 and C2 give an insight about both the robustness (ability
to handle noise) and the stability (ability to handle compressible signals) of
the recovery algorithm, respectively.

When A is a random matrix, both C1 and C2 are random variables.
To characterize their statistical distribution, we propose to find a bound on
the threshold C∗

i,min, with i = 1, 2, which is not exceeded with a predefined
probability ǫi, i.e.,

P
{
Ci (δs(A)) ≤ C∗

i,min

}
= 1− ǫi . (2.45)

Noting that Ci (δs(A)) is monotonically increasing in δs(A), we have

P {Ci (δs(A)) ≤ Ci (δ
∗
s(m,n, ǫi))} = P {δs(A) ≤ δ∗s(m,n, ǫi)} ≥ 1− ǫi (2.46)

where the RICt δ∗s (m,n, ǫi) can be calculated from (2.24). Consequently,
from (2.45) and (2.46) we upper bound C∗

i,min as

C∗
i,min ≤ C∗

i , Ci (δ
∗
s(m,n, ǫi)) . (2.47)

The inverse problem is finding the maximum sparsity order, for a given
m and a given n, such that the r.v. Ci, with i = 1, 2, is less than a targeted
constant ci with probability at least 1− ǫi. For this aim we have

s∗ = max {s : Ci (δ
∗
s (m,n, ǫi)) ≤ ci} .

Analogous results relating the recovery error with σs(x)1 and κ have been
obtained for different algorithms under suitable symmetric and asymmetric
RIC based sufficient conditions [50, 69, 74–76]. By following the same ap-
proach, the proposed methodology can be applied to describe the statistics
of the stability and robustness constants also for these cases.

2.7 Tracy-Widom Based RIC Analysis

Although the proposed framework based on the exact distribution of the
eigenvalues (2.16) provides tight bounds on the RICs, it could be compu-
tationally expensive for large matrices, for which easier approaches are pre-
ferred.

In this section, we derive approximations for the RICs of finite matrices
based on the TW distribution, much tighter than those obtained from con-
centration of measure inequalities. Also, we study the convergence rate of the
distribution of extreme eigenvalues to those based on the TW by exploiting
the small deviation analysis of the extreme eigenvalues around their mean.
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In particular, we prove that TW based distributions approximate the eigen-
values statistics of finite Gaussian matrices with exponentially small error in
m, leading to accurate estimation of the RICs.

In fact, it is well known that the distribution of the smallest and largest
eigenvalues of Wishart matrices tend, under some conditions, to a properly
scaled and shifted TW distributions [77–83]. Specifically, it has been shown
that for the real Wishart matrix M when m, s−→∞ and m/s−→γ ∈ (0,∞)

λmax(M)− µms

σms

D−→ T W1 (2.48)

where T W1 is a Tracy-Widom r.v. of order 1 with complementary cumula-
tive distribution function (CCDF) ΨTW1(t), µms = (

√
m+

√
s)

2
, and σms =√

µms(1/
√
s+1/

√
m)1/3 [79]. More precisely, from the convergence in distri-

bution definition and letting ρ , s/m we have

lim
m−→∞

P {λmax(M) ≥ µms + t σms} =

lim
m−→∞

P

{
λmax(W) ≥ (1 +

√
ρ)2 + tm− 2

3 ρ−
1
6 (1+

√
ρ)

4
3

}
= ΨTW1(t). (2.49)

Similarly, for the smallest eigenvalue, when m, s−→∞ and m/s−→γ ∈
(1,∞) [82]

− lnλmin(M)− vms

τms

D−→ T W1 (2.50)

with scaling and centering parameters

τms =

(
(s− 1/2)−1/2 − (m− 1/2)−1/2

)1/3
√
m− 1/2−

√
s− 1/2

vms = 2 ln
(√

m− 1/2−
√
s− 1/2

)
+

1

8
τ 2ms.

Regarding the RIC analysis for finite Gaussian matrices, let δ
∗
s(m,n, ǫ),

δ∗s(m,n, ǫ), and δ
∗
s (m,n, ǫ) be the restricted isometry constant thresholds as

defined in (2.30), (2.28), and (2.24), respectively. We will show that they can
be approximated as

δ
∗
s(m,n, ǫ) ≃ δ

∗
TW

, ρ+ 2
√
ρ+ m− 2

3ρ−
1
6 (1 +

√
ρ)

4
3 Ψ−1

TW1

(
ǫ/

(
n

s

))
(2.51)

δ∗s(m,n, ǫ) ≃ δ∗TW , 1− 1

m
exp

(
vms − τmsΨ

−1
TW1

(
ǫ/

(
n

s

)))
(2.52)

δ∗s (m,n, ǫ) ≃ δ∗TW , P̃−1
sw

(
1− ǫ/

(
n

s

))
(2.53)
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for δ
∗
TW

, δ∗
TW

, and δ∗
TW

less than one, where Ψ−1
TW1(y) is the inverse of the TW’s

CCDF and P̃−1
sw (y) is the inverse of

P̃sw(x) , 1−ΨTW1

(
vms − lnm(1−x)

τms

)
−ΨTW1

(
m(1+x)−µms

σms

)
. (2.54)

In order to prove these formulas, at first the convergence rate of the
extreme eigenvalue distributions to those based on the TW is provided. For
the URIC, it has been shown in [84, Theorem 2] that there exists a constant
c > 0, depending only on ρ, such that

P {λmax(M) ≥ µms(1 + z)} ≤ c exp

(
−1

c
s z

3
2

)
(2.55)

for all m > s ≥ 1 and 0 < z ≤ 1. This small deviation analysis provides
tighter bounds compared to the concentration inequality (2.10) and Edelman
bound [65, Lemma 4.2] used for large m in [62–64]. From (2.55), the L.H.S.

of (2.49) can be tightly bounded for finite m and for t ≤ m2/3ρ1/6
(
1+

√
ρ
)2/3

as

P

{
λmax(W) ≥ (1 +

√
ρ)2 + tm− 2

3 ρ−
1
6 (1+

√
ρ)

4
3

}
≤ c exp

(
− c1 t

3
2

)
(2.56)

where c1 , c−1 ρ3/4
(
1+

√
ρ
)−1

. Regarding the R.H.S, for sufficiently large t
we have

ΨTW1(t) ≤ c2 exp
(
−c3 t

3
2

)
(2.57)

where c2 > 0 and c3 > 0 are constants [85, eq. (2)], [86]. Now the error in
using the TW can be bounded as

∣∣∣∣P
{
λmax(W) ≥ (1 +

√
ρ)2 + tm− 2

3 ρ−
1
6 (1 +

√
ρ)

4
3

}
−ΨTW1(t)

∣∣∣∣

≤ c4 exp
(
−c5 t

3
2

)
(2.58)

where c4 = max{c, c2} and c5 = min{c1, c3}. Therefore, the error due to
approximating P {λmax(W) ≥ 1 + x} in (2.29) by that of the TW can be
bounded from (2.58) as

∣∣∣∣P {λmax(W) ≥ 1 + x} −ΨTW1

(
(x−2

√
ρ−ρ)m 2

3 ρ
1
6 (1+

√
ρ)−

4
3

)∣∣∣∣

≤ c4 exp
(
−m (x− 2

√
ρ− ρ)

3
2 c5 ρ

1
4 (1 +

√
ρ)−2

)
(2.59)
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Figure 2.2: The probability that a measurement submatrix AS is ill condi-
tioned, 1−P

{
1−δ≤λmin(A

T
SAS), λmax(A

T
SAS)≤1+δ

}
, with δ = 1/3, as a

function of the sparsity ratio, s/n, for compression ratiosm/n = 0.2 (dashed)
and m/n = 0.6 (solid). The signal dimension is n = 104.

for x ≤ 2
(
1+

√
ρ
)2−1.1 Hence, the absolute error in approximating the exact

probability with that based on the TW distribution is exponentially small in
m and the URICt can be approximated by (2.51). A similar reasoning can
be used to derive the thresholds for the lower and symmetric RICs (the proof
is not reported here for the sake of conciseness).

Finally, we would like to remark that Tracy-Widom based approaches
could be used not only for Gaussian ensembles, but also for a wider class
of matrices like those drawn from some sub-Gaussian distributions, e.g.,
Rademacher and Bernoulli measurement matrices. This is motivated by the
universality of the TW laws for the extreme eigenvalues of large random
matrices [87, 88], although further research is required to investigate such
extensions.

1Note that x ≤ 1 is a stronger condition than x ≤ 2
(
1+

√
ρ
)2−1.
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Figure 2.3: Symmetric RIP: upper bounds on the probability of not satisfying
the RIP, P {δs(A) ≥ 1/3}, for m/n = 0.4 (solid) and m/n = 0.8 (dashed).
The signal dimension is n = 104. Curves obtained through the concentration
bound, (2.8) and (2.12), the EED, (2.22), and the TW approximation, (2.8)
and (2.54).

2.8 Numerical Results

In this section, numerical results are presented to compare the proposed exact
and TW approaches with the concentration inequalities, for analyzing at
first the probability that the measurement submatrices are well conditioned,
and then that the RIP is satisfied. Moreover, the statistics of the RICs,
the probability of perfect reconstruction, the maximum sparsity order for
various recovery algorithms, and the robustness and stability constants are
also investigated. In all numerical results, the signal dimension has been
fixed to n = 104, unless otherwise stated.

First, the dependence between the probability that a submatrix is ill con-
ditioned, 1− Psw(δ), and the sparsity ratio, s/n, is examined. In particular,
in Fig. 2.2 the exact probability obtained from Theorem 1 (2.16), TW ap-
proximation (2.54), and concentration of measure bound (2.12) are compared
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Figure 2.4: Asymmetric RICs: upper bounds on the CCDFs of the LRIC
(solid) and URIC (dashed), for m = 300, n = 600, and s = 5.

as a function of the sparsity ratio. We observe that the TW approximation
is almost coincident with the exact probability, while the well-known con-
centration bound is quite loose (about 8 orders of magnitude at s/n = 0.002
and m/n = 0.2).

Fig. 2.3 shows upper bounds on the probability of not satisfying the RIP,
P{δs(A)≥1/3}, using the EED based approach (2.22), the TW approxima-
tion (2.8), (2.54), and the concentration bound (2.8), (2.12). Note that when
the sparsity level is beyond some threshold value, the probability of not satis-
fying the RIP rapidly increases from zero to one. This figure also illustrates
the limit on the maximum sparsity ratio that still permits satisfying the
RIP with a targeted probability. We can see that the EED based approach
indicates higher sparsity ratios (less sparse vectors) compared to those esti-
mated by the concentration bound (more than 250% increase in s/n when
the probability is 10−6 and m/n = 0.4).

Considering the statistics of the ARICs, upper bounds on their comple-
mentary CDFs (CCDFs) are shown in Fig. 2.4, for m = 300, n = 600, and
s = 5, using the EED, TW approximation, and concentration bound. Note
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Figure 2.5: Level sets of the symmetric restricted isometry constant thresh-
old, using the EED, δ∗s (m,n, ǫ) (solid), for m = 2000 and ǫ = 10−2, and the
asymptotic bound in [63] δBT (s/m,m/n) (dashed).

that the proposed methods provide tighter bounds compared to the concen-
tration inequality (more than 20 orders of magnitude).

In Fig. 2.5, we compare the asymptotic RIC, δBT (s/m,m/n), presented
in [63, Definition 2.2] with that obtained by the proposed method (2.24), for
ǫ = 10−2, m = 2000, and n from 105 to 2000. We can see that the asymptotic
approach overestimates the RIC, with respect to the proposed EED analysis,
and consequently leads to pessimistic results for the maximum allowable
sparsity order. For example, this sparsity underestimation is in the order of
20% for the sufficient condition δs(A) < 1/3 (black curves).

Regarding the ARICs, the URIC thresholds, δ
∗
s(m,n, ǫ), computed by

means of (2.30) and (2.51), are plotted in Fig. 2.6 for an excess probability
ǫ = 10−3, as a function of the compression ratio, m/n, and the oversampling
ratio, s/m. In this figure, we set m = 4000 and vary n from 2 · 105 to 4000.
As can be noticed the TW approximation is quite accurate.

In Fig. 2.7 we report the proposed lower restricted isometry constant
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approaches, for m = 200 and ǫ = 10−3.
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Table 2.1: The RIC thresholds using the EED bound and TW approximation
for ǫ = 10−2, empirical averaged lower bounds [89], BCT [62], and BT [63]
approaches, for m = 2000 and s = 4. For each m/n, the two rows give the
upper and lower RIC.

Finite Asymptotic

m/n ↓ EED

upper bounds

(2.30), (2.28)

TW

approx.

(2.51), (2.52)

Empirical

lower bounds

[89]

BCT

[62]

BT

[63]

0.3071 0.3395 0.2703 0.3408 0.3402
0.4

0.2561 0.2846 0.2322 0.2777 0.2772

0.3000 0.3304 0.2626 0.3344 0.3337
0.6

0.2512 0.2778 0.2268 0.2734 0.2729

0.2949 0.3239 0.2580 0.3297 0.3291
0.8

0.2477 0.2729 0.2214 0.2703 0.2698

thresholds using EED and TW based methods given by (2.28) and (2.52).
We can see that the TW approximation provides accurate results also for
this case.

To further investigate the RIC bounds, we report in Table 2.1 both the
LRIC and URIC thresholds for different m/n using various approaches: the
proposed EED (2.28), (2.30), the TW approximation (2.52), (2.51), the em-
pirical lower bounds in [89], and the asymptotic bounds in [62], [63]. We can
see that the upper bounds on the RICs obtained from the EED approach is
sharp, with small differences from the empirical lower bounds (averaged over
100 different realizations) indicated by [89].

With the aim of comparing different sufficient recovery conditions via
ℓ1-minimization, IHT, and CoSaMP algorithms, in Fig. 2.8 we report the
maximum oversampling ratio, s∗/m, such that PPR ≥ 0.999. All curves
have been obtained by using the EED based approach. Specifically, for ℓ1-
minimization we consider the symmetric RIC condition δs(A) ≤ 1/3 [54],
its relaxed asymmetric extension µECG(s,A) < 1 proposed in Section 2.5.2,
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Figure 2.8: The maximum oversampling ratio, s∗/m, for various recovery
algorithms and their associated sufficient conditions using the proposed EED
based approach, for m = 4000 and PPR ≥ 0.999 (η = 10−3).

δ2s(A) < 0.624 [6], µFL(s,A) < 1 [50], and µBT(s,A) < 1 [67]. For IHT
we used the conditions δ3s(A) < 0.5773 [68] and µBCTT(s,A) < 1 [69], while
for the CoSaMP we considered δ4s(A) < 0.4782 [6]. We can see that the
asymmetric conditions provide higher estimates of the sparsity which can be
handled by compressed sensing, compared to the symmetric conditions (more
than 40% increase in s). As known, the ℓl-minimization and IHT algorithms
allow higher oversampling ratios than the CoSaMP algorithm.

Moreover, we provide in Fig. 2.9 the maximum oversampling ratio, for
uniform recovery, indicated by our proposed approach along with those ob-
tained from the polytope [47], Null space [6, Theorem 9.29], geometric func-
tional [45, Theorem 4.1], and RIP [6, Theorem 9.27] analyses for finite ma-
trices with m = 4000 and PPR ≥ 0.5. However, we would like to note that
the polytope based approach suggests tighter bounds on the maximum spar-
sity order, as it fully exploits the geometry of the ℓ1-minimization for signal
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Figure 2.9: The maximum oversampling ratio, s∗/m, for perfect recovery
via ℓ1-minimization, estimated by the proposed RIP based approach (EED)
along with the RIP [6], polytope [47], Null space [6], and geometric functional
[45] analyses, for m = 4000 and PPR ≥ 0.5.

recovery from Gaussian measurements. On the other hand, the RIP is suit-
able for analyzing the robust and stable reconstruction with several sparse
recovery algorithms, such as optimization, greedy, and thresholding.

Finally, regarding the analysis for compressible signals in noise, the con-
tours for robustness and stability thresholds C∗

1 and C∗
2 are shown in Fig.

2.10. As can be seen for small s/m the thresholds are small, indicating that
the more sparse is the signal, the more robust and stable is the reconstruction
process. Therefore, a compromise between sparsity and robustness/stability
should be considered when designing the acquisition system. This figure also
gives the maximum oversampling ratio for a given m and n, such that the
minimization program (2.41) can approximately recover the measured signal
with a predefined discrepancy.
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Figure 2.10: Level sets of robustness and stability thresholds in Section 2.6,
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2 (dashed), with C∗

1 , C
∗
2 ∈ {4, 5, 6, 7, 8, 9}, for m = 2 · 104

and ǫ1 = ǫ2 = 10−3, using the EED based approach.

2.9 Conclusion

For sparse data acquisition we have found that the concentration of measure
inequality provides a loose upper bound on the probability that a measure-
ment submatrix is ill conditioned. For example, in some cases it overestimate
the maximum sparsity ratio by over 250% with respect to the proposed ex-
act eigenvalues based approach. For finite matrices, by tightly bounding the
symmetric and asymmetric RICs, the best current lower bound on the max-
imum sparsity order guaranteeing successful recovery has been provided, for
various sparse reconstruction algorithms. For stable and robust recovery of
compressible data, we have noticed that when the sparsity order decreases
the discrepancy between the recovered and original signals reduces. Finally,
we have shown that simple approximations for the RICs can be obtained
based on TW distributions.
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Chapter 3

Weak RIC Analysis of Finite

Gaussian Matrices for Joint

Sparse Recovery

3.1 Introduction

The problem of simultaneously acquiring multiple signals is important for IoT
networks, where a huge number of nodes are involved. It has been shown that
a significant performance gain can be achieved by exploiting additional signal
structure, besides the traditional sparsity of signals in some domain discussed
in Chapter 2 [90,91]. For example, the data generated from multiple sensors
within dense IoT networks tend to be jointly sparse, i.e., different sparse
signals share a common support.

On the contrary of the reconstruction of a sparse signal from a SMV
analyzed in Chapter 2, CS for multiple measurement vectors (MMV) con-
siders the acquisition and the recovery of an s-row sparse matrix X ∈ R

n×ℓ

with support S (i.e., only s ≪ n rows of X indexed by S are nonzero) from
Y ∈ R

m×ℓ linear measurements

Y = AX (3.1)

where A ∈ R
m×n is the measurement matrix and m < n [90–103]. There

exists a unique s-row sparse matrix satisfying (3.1) under the sufficient and
necessary condition m ≥ 2s+ 1− rank(X) [102]. This matrix can be found
by minimizing the ℓ0 quasi-norm of X, but this problem has been shown to
be NP-hard [104]. Nevertheless, for the special full rank case with ℓ ≥ s, X
can be recovered from the same minimum sufficient measurements, s+1, via
the polynomial time algorithm MUSIC [95, 105, 106].
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Regarding the rank defective case ℓ < s, X can be uniquely recovered,
from a larger number of measurements, using greedy algorithms [95–101] or
via the following mixed ℓ2,1-minimization program

minimize ‖X‖2,1 subject to AX = Y (3.2)

where ‖X‖2,1 =
∑n

j=1 ‖xj‖ with ‖xj‖ indicating the ℓ2 norm of the jth
row of X [92–94]. Sufficient conditions for joint sparse recovery in terms
of the RIC are provided in [100, 101]. The RIC indicates how well a linear
transformation preserves distances between sparse vectors, as illustrated in
Chapter 2. Unfortunately, the RIC based approach provides a worst case
analysis, which does not depend on ℓ.1 Therefore, it cannot explain the
advantage due to the availability of multiple measurements. Instead, an
average case guarantee was proposed in [94], where the probability of recovery
failure is exponentially small in ℓ when a condition on the so-called weak
restricted isometry constant (WRIC) is satisfied. For instance, considering
AS as the submatrix of A with columns indexed by the matrix support
S, the WRIC tells how close is the column space of AS to that spanned
by another disjoint set of columns with cardinality r [31]. The WRIC can
provide statements considering the recovery of a random sparse vector, e.g.,
the probability that a random vector can be recovered. Hence, it falls within
the framework of average-case (non-uniform) analysis.

In fact, sufficient recovery conditions for various joint reconstruction al-
gorithms are based on the WRIC, e.g., ℓ2,1-minimization [94], SA-Music [95],
and OSMP [96]. The WRIC for Gaussian matrices has been bounded using
concentration of measure inequalities and the union bound [94–96]. However,
this approach results in a large overestimation of the WRIC leading to an
underestimation of the maximum achievable s.

This chapter provides a probabilistic analysis of the WRIC for finite Gaus-
sian matrices. The proposed approach relies on the exact distribution of the
extreme eigenvalues for Wishart matrices or on its gamma approximation
based on TW’s laws. In particular, we derive a tight lower bound on the
CDF of the WRICs and on the probability of satisfying an arbitrary recov-
ery condition, much tighter than those based on the concentration inequal-
ities. Moreover, we propose a unified framework to quantify the recovery
limits of joint sparse reconstruction algorithms with WRIC based sufficient
conditions, for both noiseless and noisy measurements. More precisely, the
analysis estimates the maximum support cardinality of row sparse matrices
(jointly sparse signals), such that a target probability of recovery is assured.

1The RIC based methods are considered as worst-case (uniform) analysis, providing
the recovery guarantee for all sparse vectors.
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Then, the unified approach is applied to theoretically assess the reconstruc-
tion through three algorithms, i.e., ℓ2,1, SA-Music, and OSMP. Finally, we
provide sufficient conditions in terms of the asymmetric WRICs permitting
recovery with higher s, compared to those obtained through the symmetric
WRIC.

Throughout the chapter, | · | denotes the cardinality of a set, ‖·‖ indicates
the ℓ2-norm of a vector or the spectral norm of a matrix, ak is the kth
column of a matrix A, P (a, x) = 1/Γ(a)

∫ x

0
ta−1e−tdt is the regularized lower

incomplete gamma function, (·)† is the pseudoinverse, and PX denotes the
projection matrix on the subspace X .

3.2 WRIC and Eigenvalues Statistics

In this section, we describe the problem and provide the mathematical tools
needed to analyze the WRICs. In particular, a generalization of the WRIC
considering lower and upper asymmetric constants is reported below.

Definition 4 (The asymmetric weak restricted isometry constants [31,95]).
Let A be an m × n matrix, S ⊂ Ω , {1, 2, ..., n} be a set of indexes with
|S| = s, the lower weak restricted isometry constant (LWRIC) and the upper
weak restricted isometry constant (UWRIC), δ1(A, s) and δ1(A, s), are the
smallest constants such that the inequalities

1− δ1(A, s) ≤
‖Av‖2

‖v‖2
≤ 1 + δ1(A, s) (3.3)

are satisfied for all v ∈ R
n with support S∪T where T ⊂ Ω/S is any set with

|T | ≤ r. The symmetric WRIC defined as δ1(A, s) , max{δ1(A, s), δ1(A, s)}
simultaneously satisfies both inequalities.

We aim to upper bound the WRICs of Gaussian measurement matrices, so
that joint sparse recovery is guaranteed with predefined probability. Hence,
the statistics of WRICs should be calculated. Let us start from the Rayleigh
quotient inequality for the ratio in (3.3), for a fixed set T

λmin(A
T
ZAZ) ≤

‖AZ vZ‖2

‖v‖2
≤ λmax(A

T
ZAZ) (3.4)

where Z , S ∪ T , AZ is the m × z submatrix with z , |Z| = s + r, and
λmin(A

T
ZAZ) and λmax(A

T
ZAZ) are the minimum and maximum eigenvalues
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of the Wishart matrix, respectively. Therefore, from (3.4) and accounting
for all possible sets of T , the asymmetric WRICs can be

δ1(A, s) = 1− min
T,|T |=r

λmin(A
T
ZAZ) (3.5)

δ1(A, s) = max
T,|T |=r

λmax(A
T
ZAZ)− 1. (3.6)

The WRICs of Gaussian matrices are functions of the extreme eigenvalues
of the corresponding Wishart matrices, and thus are themselves r.v.s.

In order to study the exact distribution of extreme eigenvalues we use
the framework developed in [66]. Hereafter, we consider A with i.i.d. entries
drawn from a zero-mean Gaussian distribution with variance 1/m. The exact
CDFs of the extreme eigenvalues of AT

ZAZ are calculated as

P
{
λmin(A

T
ZAZ) ≤ x

}
= 1− ψ (mx,∞) (3.7)

P
{
λmax(A

T
ZAZ) ≤ x

}
= ψ (0, mx) (3.8)

where ψ(a, b) is the probability that all eigenvalues of a Wishart matrix are
within the interval (a, b), computed by Algorithm 1 in Chapter 2. The exact
expressions (3.7) and (3.8) are computationally easy for moderate matrix
dimensions. For larger dimensions, the exact CDFs can be approximated,
based on TW’s laws [79], by shifted and scaled gamma distributions [66]

P
{
λmin(A

T
ZAZ) ≤ x

}
≃ ψ̃lower(x)

, 1− P

(
k,

(α− (ln(mx)− v)/τ)+

θ

)
(3.9)

P
{
λmax(A

T
ZAZ) ≤ x

}
≃ ψ̃upper(x) , P

(
k,

(α + (mx− µ)/σ)+

θ

)
(3.10)

where k = 46.446, θ = 0.186, α = 9.848, µ = (
√
m+

√
z)

2
, σ =

√
µ(1/

√
z +

1/
√
m)1/3, x+ = max{x, 0}, and

τ =

(
(z − 1/2)−1/2 − (m− 1/2)−1/2

)1/3
√
m− 1/2−

√
z − 1/2

v = 2 ln
(√

m− 1/2−
√
z − 1/2

)
+ τ 2/8 .

Alternatively, since the TW distribution can also be approximated by its
asymptotic tail expansion [107], P (k, z) in (3.9) and (3.10) can be replaced
by

P̃ (z) , 1− 1

4
√
π
(zθ − α)

3
4 e−

2
3
(zθ−α)

3
2 for z >

α

θ
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whenever simpler expressions for WRICs are preferable.
It can be verified from the exact distributions that the extreme eigenvalues

asymmetrically deviate from unity. Hence, the asymmetric analysis leads to
more accurate description of the WRICs, as previously noticed for the RIC
in Chapter 2.

3.3 WRIC Analysis for Gaussian Matrices

We derive at first lower bounds on the CDFs of the WRICs using the exact
distributions of the extreme eigenvalues and their gamma approximation.
Then, we deduce the weak restricted isometry constant thresholdss which
are not exceeded with a target probability.

Specifically, the CDF of the LWRIC is lower bounded from (3.5) and (3.7)
by2

FLWRIC(x) , 1−
(
n− s

r

)[
1− ψ (m (1− x) ,∞)

]
(3.11a)

≃ 1−
(
n− s

r

)
ψ̃lower(1− x) (3.11b)

where the binomial coefficient is from the union bound to account for all
possible sets T with |T | = r, and (3.11b) is based on (3.9). Let us define the
LWRIC threshold (LWRICt), δ∗r(s, ǫ), such that

P{δr(A, s) ≤ δ∗r(s, ǫ)} ≥ 1− ǫ (3.12)

is satisfied. Then, from (3.11) and (3.12), it can be estimated as

δ∗r(s, ǫ) = ψ−1
mz,lower

(
1− ǫ(

n−s
r

)
)

(3.13a)

≃ 1− 1

m
exp

(
τ

[
α− θP−1

(
k, 1− ǫ(

n−s
r

)
)]

+ v

)
(3.13b)

where ψ−1
lower(y) is the inverse of ψ(m(1− x),∞).

Similarly, the CDF of the UWRIC is lower bounded by

FUWRIC(x) , 1−
(
n− s

r

)
[1− ψ (0, m(1 + x))] (3.14a)

≃ 1−
(
n− s

r

)
[1− ψ̃upper(1 + x)]. (3.14b)

2The set S is replaced by s in the notation, as the WRICs of i.i.d. random matrices
statistically depend on the cardinality rather than the set itself.
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Accordingly, the UWRIC threshold (UWRICt) is

δ
∗
r(s, ǫ) = ψ−1

mz,upper

(
1− ǫ(

n−s
r

)
)

(3.15a)

≃ σ

m

[
θ P−1

(
k, 1− ǫ(

n−s
r

)
)

− α

]
+
µ

m
− 1 (3.15b)

where ψ−1
mz,upper(y) is the inverse of ψ(0, m(1 + x)).

Analogously, the CDF of the symmetric WRIC can be lower bounded by

FWRIC(x) , 1−
(
n− s

r

)[
1− ψ (m(1− x), m(1 + x))

]
(3.16a)

≃ 1−
(
n− s

r

)[
1 + ψ̃lower(1− x)− ψ̃upper(1 + x)

]
(3.16b)

where for (3.16b) we applied the union bound to 1 − ψ(a, b). Following the
same reasoning, the symmetric weak restricted isometry constant thresholds
can be derived as δ∗r(s, ǫ) = F−1

WRIC(1− ǫ).

3.4 Unified Framework for Recovery Assess-

ment

In this section, the WRIC thresholds are used to quantify the maximum s,
denoted ŝ, permitting recovery with a target probability. Let us consider
the recovery of a random row sparse matrix X with support cardinality s,
acquired through a random measurement matrix A. In general, for a given
A, if a sufficient condition stated usually in the form [31, 94–96]

fc
(
δ1(A, s) , δ1(A, s)

)
< 1 (3.17)

is fulfilled, then recovery is guaranteed with probability Pr|c depending on
the distribution of X.3 Since A is random, the sufficient condition (3.17) is
satisfied with some probability PA

c , and recovery is ensured with probability
at least

Pr = Pr|c P
A

c . (3.18)

In order to find ŝ satisfying Pr ≥ η for a given Pr|c, we need to ensure that
PA

c ≥ η/Pr|c. Hence, we propose to substitute the WRICs in (3.17) with

3Note that fc
(
δ1 , δ1

)
is a non-decreasing function in both δ1 and δ1.
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the WRICts (3.13) and (3.15). Then, ŝ can be calculated as the maximum s
compatible with fc(δ

∗
1(A, s, ǫ), δ

∗
1(A, s, ǫ)) < 1, where ǫ is derived to meet the

required PA

c . By exploiting the monotonicity of fc(·, ·) and the union bound,
1− PA

c can be upper bounded by

P

{
fc
(
δ1(A, ŝ), δ1(A, ŝ)

)
≥ fc

(
δ∗1(ŝ, ǫ), δ

∗
1(ŝ, ǫ)

)}

≤ P

{
δ1(A, ŝ) ≥ δ∗1(ŝ, ǫ)

}
+ P

{
δ1(A, ŝ) ≥ δ

∗
1(ŝ, ǫ)

}
≤ 2 ǫ.

So the goal Pr ≥ η is fulfilled for

ǫ = ǫ
(
η, Pr|c

)
=

1

2
− η

2Pr|c
. (3.19)

In the following, we investigate the performance of three reconstruction
methods (i.e., ℓ2,1-minimization, SA-Music, and OSMP), when X is a sparse
Gaussian matrix and A is Gaussian with normalized columns [94–96].4

3.4.1 Perfect Recovery from Noiseless Measurements

The first example considers the reconstruction via ℓ2,1-minimization program,
for which it has been proved that if

∥∥∥A†
S ak

∥∥∥ < α < 1, ∀k /∈ S (3.20)

then the matrix X can be recovered via (3.2) with probability at least
Pr|c(α) , 1 − n exp(−ℓ(α−2 + 2 logα)/2 − 1) [94]. Condition (3.20) is ex-
pressed in terms of the WRIC as [94]

δ1(A, s)

1− δ1(A, s)
< α. (3.21)

We propose relaxing condition (3.21) to a milder one (i.e., easily satisfied for
larger s). Applying properties of the spectral norm to (3.20) and considering
(3.5), we get

∥∥∥A†
S ak

∥∥∥ ≤ δ1(A, s)
∥∥(A∗

SAS)
−1
∥∥ ≤ δ1(A, s)

λmin(A∗
SAS)

≤ δ1(A, s)

1− δ0(A, s)
< α. (3.22)

4For large m, the ℓ2-norm of each column of A is approximately one.
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Since δ0(A, s) ≤ δ1(A, s) ≤ δ1(A, s), the left hand side of (3.22) is less than
that of (3.21), leading to higher estimates of ŝ.

Now, following the outlined procedure, the maximum s satisfying the
sufficient condition

δ∗1
(
A, s, ǫ

(
η, Pr|c(α)

))

1− δ∗0
(
A, s, ǫ

(
η, Pr|c(α)

)) < α

denoted by s̆(α), can be found for a given α. Finally, a tighter upper bound
on the maximum support cardinality is obtained by maximizing over α as

ŝ = max
0<α<1

s̆(α).

3.4.2 Robust Support Estimation from Noisy Measure-

ments

In the presence of noisy measurements, (3.1) becomes

Y = AX+ Z (3.23)

where Z represents the noise. Approximate recovery of X may consist of
a joint support estimation followed by signal reconstruction through the re-
sulting overdetermined system.

For example, the support can be estimated via SA-Music algorithm given
that a sufficient condition on WRICs, on the form of (3.17), is satisfied

[95]. More precisely, denoting the signal subspace by X , let R̂ and X̂ be
ℓ̂-dimensional subspaces of Rm and X , respectively, with ‖PR̂ −PX̂‖ ≤ κ.5

Then, SA-Music applied to R̂ recovers the support if

√
1− δ1(A, s)

1 + δ1(A, s)

√
ℓ̂/s
√

1− δ1(A, s)−
√
δ1(A, s)

2 +

√
ℓ̂/s
√
1− δ1(A, s)−

√
δ1(A, s)

> κ . (3.24)

Alternatively, if support estimation is performed via OSMP, the sufficient
condition is [96]

δ1(A, s) < 1−

max

{
4 κ(1− κ),

[
1

1 + ℓ̂/s

(
2κ

√
ℓ̂/s+

√
1 + ℓ̂/s− 4 κ2

)]2}
. (3.25)

5‖P
R̂
−P

X̂
‖ is bounded with high probability for Gaussian noise [95].
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Figure 3.1: Upper bounds on the probability of recovery failure using the
proposed approaches and concentration bound for various algorithms, with
n = 2m = 6000, ℓ = 20, and κ = 0.

Note that the probability of exact support recovery via SA-Music and OSMP
is greater than the probability of satisfying (3.24) and (3.25), respectively
(i.e., Pr|c = 1). We would like to note also that (3.24) and (3.25) relax the
recovery conditions in [95] and [96] by utilizing the asymmetric WRICs. The
original formulas in [95] and [96] can be obtained by substituting δ1(A, s)
and δ1(A, s) with δ1(A, s).

3.5 Numerical Results

In this section, numerical results are presented to investigate the WRICs and
the estimated maximum sparsity order for various recovery algorithms. Note
that the analysis based on the exact extreme eigenvalue statistics (3.7) and
(3.8) will be referred as the EED.

Fig. 3.1 shows upper bounds on the probability of reconstruction failure
derived from the concentration of measure in [95, Proposition 6.1], along with
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Figure 3.2: Level sets of the UWRIC threshold δ1(A, s, 10
−3) ∈ {0.3, . . . , 0.9}

using the EED (solid) and gamma approximation (dashed), for m = 3000.

the EED bound and gamma and TW tail expansion based approximations.
The analysis is based on the sufficient recovery conditions via SA-Music and
OSMP and via ℓ2,1-minimization (3.21). It results that the proposed methods
provide tighter bounds compared to the concentration inequalities (many or-
ders of magnitude). Also, the gamma and TW approximations well describe
the exact eigenvalues based analysis (overlapped for 1 − Pr ≥ 10−10). More-
over, the theoretical performance of SA-Music and OSMP are coincident,
as they have the same condition for the noiseless case.6 Additionally, they
have better performance for small s, while the ℓ2,1-minimization is superior
at higher s.

Fig. 3.2 plots the contours of the UWRIC thresholds calculated by means
of the EED and gamma approximation (3.15). As can be seen the gamma
approximation is quite accurate, and provides tight upper bounds on the
UWRIC thresholds for small values, relevant to sparse recovery.

6Note that both the conditions in (3.24) and (3.25) reduce to δ1(A, s) ≤ ℓ/(s+ ℓ) in

the noiseless case (κ = 0, ℓ̂ = ℓ).
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Figure 3.3: The normalized ŝ via the three recovery methods through asym-
metric (solid) and symmetric (dashed) conditions, with Pr ≥ 0.999 and
m = 3000.

Finally, the normalized maximum sparsity order, ŝ/m, for various recov-
ery algorithms is shown in Fig 3.3. In particular, ŝ has been estimated using
the associated asymmetric and symmetric conditions, where the WRICs are
calculated by the EED, for various noise parameters κ and probability of
correct support estimation at least 0.999.7 As can be noticed, OSMP allows
recovery of less sparse signals, compared to SA-Music, for noisy measure-
ments. In the noiseless case, for the set of chosen parameters, the mixed
norm minimization indicates lower ŝ. Additionally, it is evident that the
proposed asymmetric conditions provide higher estimates of ŝ compared to
the symmetric ones (up to 100% increase in s).

7Support estimation is sufficient for perfect recovery in the noiseless case.
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3.6 Conclusion

We have studied the weak restricted isometry constant of Gaussian matrices,
which is particularly important for MMV problem arising in many applica-
tions, e.g., data gathering from IoT devices, localization, imaging, and mul-
tivariate regression. The proposed analysis provides tighter bounds on the
probability of recovery, several orders of magnitude compared to the concen-
tration bounds. Additionally, the suggested framework allows comparing var-
ious joint sparse recovery algorithms in terms of the maximum allowable sup-
port cardinality. Finally, the analysis indicates that the derived asymmetric
WRIC based conditions are preferable over those based on WRIC, as they re-
sult in better performance bounds.
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Chapter 4

Lossy Compression of Noisy

Sparse Sources Based on

Syndrome Encoding

4.1 Introduction

The problem of designing efficient compression schemes is gaining increasing
interest [108–111]. More precisely, the growing challenge in transform coding
theory is to represent a compressible signal with a minimum number of bits
while limiting the distortion due to quantization and sparse approximation
[3, 112, 113].

The key objectives considered while designing lossy source encoders for
sparse sources are:

1. developing a practical source encoder which exploits sparsity to mini-
mize the average rate and energy consumption also in the presence of
noise;

2. analyzing the theoretical performance of encoders in terms of opera-
tional distortion-rate (ODR) and operational distortion-energy (ODE),
which are particularly important, e.g., to design efficient networks in
IoT scenarios and for optimal bit allocation among sub-bands in wavelet
based schemes [114–116].

Let us start by considering a signal, x ∈ R
N , emitted by a discrete-

time continuous-valued source. The target is to encode x at the minimum
rate which still guarantees a predefined average distortion, when it is know a-
priori that at most k0 elements of x are non-zero, i.e., x is a sparse vector with
sparsity order k0. The first intuitive approach, which we name address coding
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(AC), is to separately quantize the k0 non-zero components using a uniform
scalar quantizer with b bit/sample, then encode each of their locations with a
fixed number of bits ⌈log2N⌉. The total number of required bits per sample
(i.e., the rate) is calculated as

rAC =
1

N

(
k0 ⌈log2N⌉ + k0 b

)
[bit/sample] . (4.1)

This approach is simple, but it requires the transmission of both the values
and locations separately, and also there exist more efficient encoders, in terms
of the compression gain. For example, it is possible to represent the signal
support by encoding all the

∑k0
i=0

(
N
i

)
possible supports which have at most k0

ones. However, this approach is not practical, as the number of configurations
is exponentially large in N .

Another method is based on CS, as discussed in previous Chapters, where
one can collect M < N linear observations from x, i.e., y = Ax, through
an M × N measurement matrix A. In fact, considering Gaussian mea-
surement matrices, perfect recovery is guaranteed with high probability for
M ≥ c k0 log(N/k0) [4, 5, 117].

1 One important advantage of CS is that the
knowledge about the basis at which the signal is sparse is required only at
the decoder side and not the encoder. Moreover, it has been proven to be
stable with respect to compressible (non-strictly sparse) signals, as shown in
Section 2.6. On the other hand, the number of measurements is still consider-
ably higher than the signal sparsity and there is no efficient practical scheme
to accurately multiply the random measurement matrix with the signal in
the analog domain, except for Rademacher and Bernoulli matrices [8].

Regarding the performance analysis, the ODR of scalar quantizers have
been analyzed for sources with uniform, Generalized Gaussian, and exponen-
tial distributions [118–121]. An increasing attention has been given to mixed
distributed sources (MDSs), adopted for sparse representation of piecewise
smooth data including images and wireless sensor network (WSN) signals in
the wavelet domain [112, 122, 123]. In particular, asymptotic formulations
of the information distortion-rate (IDR) for a class of MDSs have been giv-
en in [124, 125]. Moreover, an approximation for the entropy of quantized
noiseless Bernoulli-Generalized Gaussian sources is derived in [126]. Assum-
ing coding at the entropy rate of the quantized sources, an approximation
for the optimal ODR of uniform quantizers with infinite number of levels is
provided in [126], while asymptotic formulas are given in [123].

In this chapter, we provide two practical approaches for lossy source com-
pression of noisy sparse sources. At first, we derive a blind estimator for the

1Explicit bounds on the required number of measurements can be found from Chapter 2.
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sparsity order based on a model order selection rule to detect the non-zero
elements of sparse signals embedded in noise. Alternatively, an excision filter
to differentiate signal entries from noise by thresholding is designed and ana-
lyzed. Then, two novel schemes based on exploiting the syndromes associat-
ed with channel block codes, i.e., Reed-Solomon (RS) and Bose, Chaudhuri,
and Hocquenghem (BCH) codes, are proposed as lossless source encoders of
quantized sparse signals.2

With respect to previous works, this chapter provides an accurate perfor-
mance measure of the proposed lossy source encoder (i.e., signal denoising
and uniform quantizer followed by syndrome encoding) for MDSs encom-
passing Bernoulli and an arbitrary continuous distribution. In particular,
our setting includes some important features:

• noisy sources with additive pre-quantization noise, which fits also the
case of not exactly sparse (compressible) sources [112];

• quantizers with finite number of levels and saturation effect;

• accounting for the pre-quantization noise and the sparsity estimator
behavior in analyzing the encoder performance.

Furthermore, an accurate performance measure of the proposed lossy source
encoder (i.e., signal denoising and uniform quantizer followed by syndrome
encoding) is provided for MDSs encompassing Bernoulli and an arbitrary con-
tinuous distribution. In particular, we derive the distortion due to both quan-
tization and input noise for Bernoulli-uniform (BU) and Bernoulli-Gaussian
(BG) sources. Then, a closed-form expression for the ODR is derived for
finite rates, accounting also for the pre-quantization noise and the proposed
denoising approach. Moreover, considering a power profile for an implemen-
tation of the presented encoder, its ODE is analyzed.

Finally, we address a case study for the compression of signals from a
WSN network, deployed in Torgiovannetto (Assisi, Italy). The performance
of the proposed encoders for these signals are also investigated in terms of
the ODR and ODE, showing that the proposed approach achieves better
performance when compared to CS. Thus, employing such approach for IoT
scenarios can increase the network lifetime and the accuracy of the recovered
data.

Throughout this chapter, we denote with ‖ · ‖0 the ℓ0 quasi-norm of a vec-
tor indicating the number of its non-zero entries, with δ(·) the Dirac-delta

2Source encoders based on channel coding theory have been used for the different pur-
pose of approaching the Slepian-Wolf/Wyner-Ziv bounds for the problems of lossless/lossy
distributed source coding with side information only at the receiver [127–136], and also
for the lossy compression of binary symmetric sources [137].
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distribution, with bold small letters vectors, with bold capital letters matri-
ces, with IN the N -dimensional identity matrix, with Fq the Galois field of or-
der q, with N (µ,C) the multivariate Gaussian distribution with mean µ and
covariance matrix C, with f(x; σ2) the probability density function (PDF) of
the zero mean Gaussian r.v. with variance σ2, with N (µ, σ2, a, b) the univari-
ate Gaussian distribution with mean µ and variance σ2 truncated between
a and b, with calligraphic letters, e.g., S, r.v.s, with fS(s) the PDF of S,
with erf(·) the error function, with erfc(·) the complementary error function,
and with 1A an indicator function which equals one when the condition A is
satisfied and zero otherwise.

4.2 Signal Model

Let us consider memoryless sparse sources modeled as MDSs, a model which
fits images, sounds, medical data, and sensor signals in appropriate transform
domains [123, 126, 138]. More precisely, the source emits i.i.d. r.v.s arranged
into a vector s ∈ R

N . Each source symbol S is generated as a multiplication
of a Bernoulli r.v. Z ∈ {0, 1} with P{Z = 1} = p, where p represents the
average sparsity ratio, and Y drawn from some continuous distribution fY(y),
i.e.,

S = Z Y (4.2)

whose PDF is then given by

fS(s) = p fY(s) + (1− p)δ(s). (4.3)

This MDS is referred as Bernoulli-Gaussian (BG) and Bernoulli-uniform
(BU), considering the continuous distribution as Gaussian and uniform, re-
spectively. MDSs are usually adopted within the framework of sparse rep-
resentation for wavelet coefficients of piecewise smooth signals including im-
ages. Also, such model fits the distribution of wavelet coefficients for low
rate (high distortion) region [112, 138].

The acquisition device may add noise to the input signal, thus the noisy
vector at the sampler output can be represented as

x = s+w (4.4)

where w ∼ N (0, σ2
n IN) represents the noise. This model fits also the case of

compressible sources, where the signal is not exactly sparse, and the Gaussian
vector w accounts for the insignificant components [112].
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(a) RS based source encoder.
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z

(b) BCH based source encoder.

Figure 4.1: The block diagram of the proposed compression schemes for noisy
sparse sources.

4.3 Compression Schemes based on Syndrome

Encoding

In this section, we describe two novel schemes for efficient lossy compression
shown in Fig. 4.1. Let us consider a random realization of the noiseless
source, s, with k0 non-zero elements in locations identified by π. At first,
the locations of the non-zero elements is estimated from x. Then, the data
is compressed by calculating the syndromes using the parity-check matrix of
RS or BCH code. In the following, we will separately illustrate each part of
the proposed scheme.

4.3.1 Support Detection and Signal Denoising

We propose two methods that can be used for support estimation. In partic-
ular, the first approach exploits model order selection based on generalized
information criterion (GIC), while the second method relies on an excision
thresholding filter. The GIC does not require the knowledge of the statisti-
cal distribution of the source nor the noise power (i.e., it is universal), but
its performance analysis is quite involving [139]. On the contrary, the ex-
cision filter needs the statistical distributions of the source and noise to be
known, however, the design and analysis of this filter can be tractable. In
the following these techniques are discussed in detail.
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Support detection by model order selection

A novel estimator is derived for the number and locations of the non-zero
elements in the noisy sparse signal, based on model order selection theory
[139–142]. At first, the vector x is sorted in descending order, according
to the absolute values of its entries, |xi|, such that |xπ1 | ≥ |xπ2 | ≥ · · · ≥
|xπN

| where π = (π1, π2, · · · , πN) is the permutation vector. We denote
by x̃ , (xπ1, xπ2 , · · · , xπN

) the ordered vector, which can be represented as
a concatenation of two vectors (x̃1:k0, w̃k0+1:N), where the first one, x̃1:k0 ,
contains signal-plus-noise elements, while w̃k0+1:N includes noise-only terms.
Hence, the estimated signal support can be denoted by the set of indexes
π̂(k0) = {π1, π2, · · · , πk0}. Therefore, detecting the location of the non-zero
elements of s is equivalent to estimating k0, i.e., the signal sparsity. To pursue
this goal, we propose to reformulate detection as a model order selection
problem where the order of the model to be estimated can be related with
the unknown signal sparsity. A powerful solution to model order estimation is
based on information-theoretic criteria, where the model order is determined
by minimizing a penalized likelihood [140,143]. In particular, we consider the
GIC because of its versatility in controlling the estimation accuracy [139,142].

Considering that the sparse signal, s, is unknown and deterministic, the
PDF of x̃ can be expressed from (4.4) as

f(x̃) =
1

(2π σ2
n)

N
2

exp

(
−
∑N

i=1(x̃i − s̃i)
2

2 σ2
n

)
(4.5)

where s̃ , (sπ1, sπ2, · · · , sπN
). Let us define a family of models to fit the

measured data with the kth model representing the case where the last signal-
plus-noise sample is the kth one, i.e., s̃k+1:N = 0. The likelihood function can
be derived from (4.5), where the noise variance, σ2

n, and the sparse signal,
s̃1:k, are unknown parameters denoted by Θ(k) , (σ2

n, s̃1, s̃2, · · · , s̃k), while
Θ̂(k) , (σ̂2

(k),
ˆ̃s1, ˆ̃s2, · · · , ˆ̃sk) denotes their estimate. As a consequence, the

number of degrees of freedom (the model order) in the kth model is k + 1.
In the kth hypothesis, the maximum likelihood (ML) estimate of the signal
amplitudes are ˆ̃s1:k = x̃1:k, while the remaining components are set to zero,
i.e., ˆ̃sk+1:N = 0k+1:N . For the noise variance, the ML estimate is

σ̂2
(k) = argmax

σ2
n>0

log f(x̃; σ2
n) =

1

N

N∑

i=k+1

x̃2i . (4.6)

Then, the log-likelihood function (LLF) of the kth model can be written from
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(4.5) and (4.6) as

log f
(
x̃; Θ̂(k)

)
= −N

2
log

(
2π

N

N∑

i=k+1

x̃2i

)
− N

2

from which the estimated sparsity order, k̂0 can be found by the GIC as

k̂0 = argmin
k∈[0,N−1]

{
N log

(
N∑

i=k+1

x̃2i

)
+ ν k

}
(4.7)

where ν is a penalty factor which will be investigated in Section 4.7.
The estimated support can now be identified as π̂(k̂0) = {π1, π2, · · · , πk̂0},

and the corresponding filtered sparse signal becomes

x∗i =





xi, i ∈ π̂(k̂0)

0, otherwise.

(4.8)

We will show in Section 4.7 that this blind estimator performs well for high
signal-to-noise ratio (SNR). Nevertheless, its theoretical performance analy-
sis is quite complex so the parameter ν needs to be calculated numerically.
In the following, we present an alternative method for support recovery, use-
ful when that the distributions of s and w along with their parameters are
known a-priori.

Support detection using excision filter

The support detection problem of the embedded signal in noise is reformu-
lated here as hypothesis testing. At first, the detector goal is to discriminate,
for each noisy source sample xi, between two hypothesis3

H0 : x = w

H1 : x = y + w .

The corresponding likelihood ratio test is given by

Λ(x) =
fX|H1(x|H1)

fX|H0(x|H0)

D1

≷
D0

λ (4.9)

where fX|H1
(x|H1) and fX|H0

(x|H0) are the PDFs of the noisy source, X ,
given the hypothesis H1 and H0, respectively.

3Since the source is i.i.d., the subscript i is dropped here.
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For BG sources with Y ∼ N (0, σ2
s ), the log-likelihood ratio test (LLRT)

can be written as

log Λ(x) =
σn exp(−x2/2σ2

x)

σx exp(−x2/2σ2
n)

D1

≷
D0

λ (4.10)

with σx ,
√
σ2
n + σ2

s , leading to

x2
D1

≷
D0

η (4.11)

where the threshold η is chosen to minimize the ODR, as will be illustrat-
ed later. Therefore, the support estimation turns into an energy detection
problem to declare the presence/absence of the non-zero elements. Then,
as illustrated before, the encoder nulls out the samples declared as D0 to
obtain the denoised signal x∗. The two important metrics that determine
the performance of such detector are the probability of miss-detection, PMD,
and the probability of false alarm, PFA, derived as

PMD = P
{
X 2 < η| H1

}
= erf

(√
η

2σ2
x

)
(4.12)

PFA = P
{
X 2 ≥ η| H0

}
= erfc

(√
η

2σ2
n

)
. (4.13)

Regarding the BU sources, where the non-zero elements are drawn from
a uniform distribution with

fY(y) =





1
2A
, |y| ≤ A

0, otherwise

(4.14)

we have

fX|H1
(x|H1) =

1

4A

[
erf

(
A− x√
2σn

)
+ erf

(
A + x√
2σn

)]
(4.15)

leading to the LLRT

logΛ(x) = log

√
2π

4A
σn + log

[
erf

(
A− x√
2σn

)
+ erf

(
A+ x√
2σn

)]

+
x2

2σ2
n

D1

≷
D0

η . (4.16)

The test metric (4.16) can be approximated, for high SNR, using the Taylor
series expansion around x = 0 as
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log Λ(x) ≃ log

[
σn√
2A

erf

(
A√
2σn

)]
+x2


 1

2σ2
n

− Ae
− A2

2σ2
n

√
2πσ3

nerf
(

A√
2σn

)


 (4.17)

which is equivalent to the energy detection in (4.11) with the same false
alarm (4.13). The probability of miss-detection is given as

PMD = 2

∫ √
η

0

fX|H1(x|H1)dx = − σn√
2πA

e
− (A+

√
η)2

2σ2
n

(
e

2A
√

η

σ2
n − 1

)

+
1

2A

[(√
η − A

)
erf

(
A−√

η√
2σn

)
+
(
A+

√
η
)
erf

(
A+

√
η√

2σn

)]
. (4.18)

4.3.2 Scalar Uniform Quantizer

Due to the large number of zero elements in x∗, we consider a scalar mid-
tread uniform quantizer, whose zero-valued level prevents the introduction of
additional quantization noise out of the signal support [144]. This quantizer
maps each element x∗i of x∗ to a discrete quantization index

Q : R → {0, 1, · · · , 2b − 2}

where b is the quantization depth indicating the number of bits per sample.
More precisely, the signal x∗ is uniformly partitioned into 2b − 1 levels with
a step size

∆ =
2A

2b − 1
(4.19)

where the number of levels is odd in mid-tread uniform quantizers and
[−A,A] is the supported range beyond which the output is saturated.4 Con-
sidering q , 2b, the index vector of the quantized signal is

gq , Q(x∗) = (Q(x∗1), Q(x
∗
2), · · · , Q(x∗N )) ∈ F

N
q .

4.3.3 Syndrome Based Source Encoder

We propose a source encoder for quantized sparse vectors in F
N
q based on

the syndrome vector of a RS code. Firstly, let us consider the dual channel
coding problem, assuming that the transmitter sends a codeword, c ∈ F

N
q ,

from the RS code with minimum distance 2k0 +1. If the channel changes at

4For BU sources A is selected to match the support of Y, while, e.g., it can be chosen
as A = 4 σs for BG [144].
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most k0 symbols, then the received vector can be represented as r = c+ gq,
where gq ∈ F

N
q is the error vector with a maximum sparsity order k0, and

the summation is in Fq. Hence, the receiver can estimate the error vector,
which is the sparsest vector satisfying the computed syndrome.

Regarding the source coding problem, gq is compressed by calculating its
syndrome vector through the parity check matrix of the k0-error-correcting
RS code at the encoder. Consequently, the receiver can perfectly reconstruct
gq from the syndromes, provided that the sparsity order is at most k0. More

precisely, the syndrome z ∈ F
2k̂0
q is computed by the source encoder as

z = gq H
T (4.20)

where all the operations are performed in Fq, k̂0 is the estimated sparsity
order, and

H =




1 α α2 · · · αN−1

1 α2 (α2)2 · · · (α2)N−1

...
...

...
...

...

1 α2k̂0 (α2k̂0)2 · · · (α2k̂0)N−1




(4.21)

is the 2 k̂0 ×N parity-check matrix for the k̂0-error-correcting RS code with
N = 2b − 1 and b ≥ 3, while α is a primitive element in Fq [111, 145]. The
syndrome symbols can also be computed using efficient hardware [109, 111].

The resulting rate required for encoding the sparse vector using RS syn-
drome coding is

rRS = 2 b
k̂0
N

= 2 log2(N + 1)
k̂0
N

[bit/sample]. (4.22)

A further compression gain can be achieved by separately sending the
k̂0 quantized non-zero elements, then compressing the binary vector which
determines their locations using the syndrome of a BCH code (Fig.4.1b).5

Since for BCH code the number of parity check bits m(N, k̂0)≤ k̂0 log2(N+1),
the required rate is

rBCH =
1

N

(
m(N, k̂0) + k̂0 b

)
(4.23)

≤ k̂0
N

log2(N + 1) + b
k̂0
N

[bit/sample] (4.24)

5Note that the ones in the N -bit location vector indicate the locations of the non-zero
elements.
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where m(N, k̂0) is calculated from the design table of the BCH code, for a
given sparsity order (i.e., error correcting capability) and dimension [109,
Appendix C]. Clearly, from (4.22) and (4.23) the rate of this scheme is
upper-bounded by the RS based approach, but the non-zero values and the
syndrome vector should be transmitted separately. In the following the pro-
posed schemes in Fig. 4.1a and Fig.4.1b will be referred as RS based source
coding (RSSC) and BCH based source coding (BCHSC), respectively.

4.3.4 Source Decoder

Regarding the RSSC approach, the locations and the values of the non-
zero elements can be estimated at the receiver from the syndrome vector z

using Berlekamp’s iterative algorithm [146]. Due to the minimum distance
properties of the RS code and the maximum sparsity order of gq, the vector
of the quantization indexes gq is exactly recovered at the receiver.

Finally, the mapper Q−1 : {0, 1, · · · , q−2} → {i∆}2b−1−1
i=−2b−1+1

reconstructs
the quantized signal from its indexes, and the reconstructed signal x̂ is then

x̂ = Q−1(gq) ,
(
Q−1(Γ1), Q

−1(Γ2), · · · , Q−1(ΓN)
)
. (4.25)

The proposed RSSC scheme requires only 2 k̂0 words (2 k̂0 b bits). Hence,
it can achieve a compression gain of N/(2 k̂0) over the non-compressed ver-
sion.6 Moreover, the complexity for both the transmitter and receiver are
low, as there are efficient devices for encoding and decoding the signal, and
the location vector is implicitly embedded in the data.

Considering the BCHSC approach, the binary location vector can be re-
covered using also the Berlekamp’s algorithm, and the quantized non-zero
entries are reconstructed from the quantization indexes as usual.

4.4 Theoretical Performance Analysis with

Genie-Aided Support

In this section, we derive the ODR of the proposed schemes in Fig. 4.1,
assuming perfect support estimation.7 The ODR, D(R), is a function that
maps the expected rate R at which the system is working (i.e., the average
number of bits required to describe a single source sample) to the average

6For k̂0 ≥ N/2, the signal is not considered sparse, hence syndrome encoding is no
longer efficient.

7Perfect support estimation assumption will be relaxed in Section 4.5.

65



distortion. More precisely,

D(R) = ES,W

{
d
(
Ŝ(S,W, R)− S

)}
=

∫ ∞

−∞
d (τ) fT (τ) dτ (4.26)

where d(·) is the distortion function, S, W, Ŝ, and T , Ŝ − S are r.v.s
representing the source output, pre-quantization noise, decoder output, and
error due to both the quantization and pre-quantization noise, respectively.
Hence, finding the PDF of the error, fT (τ), is essential for deriving the ODR.
Considering perfect denoising outside the signal support, the decoder output
Ŝ can be obtained from (4.2), (4.4), and (4.8), as

Ŝ = Q−1(Q (X ∗)) = Q−1(Q (ZY + ZW)) , S + T (4.27)

where X ∗ is the r.v. representing the filtered signal, Z is the Bernoulli r.v.
defined in Section 4.2, W ∼ N (0, σ2

n), and Q
−1 (Q (x)) accounts for the scalar

mid-tread uniform quantizer with bounded range described in Section 4.3.2,
i.e.,

Q−1(Q (x))=





−A+∆/2, x ≤ −A +∆

i∆, (i− 1
2
)∆≤x≤(i+ 1

2
)∆

A−∆/2, x ≥ A−∆

(4.28)

for i ∈ {imin+1, imin+2, ..., imax−1}, where imax = −imin = 2b−1 − 1 =
A/∆− 1/2.

The PDF of the error T can be written as

fT (τ) = p fT |Z(τ |1) + (1− p) fT |Z(τ |0) = p fT |Z(τ |1) + (1− p) δ(τ) (4.29)

where the error vanishes for Z = 0, as the support is perfectly estimated
at the encoder and mid-tread quantizers do not introduce distortion to the
zero valued source symbol. Hence, only the non-zero elements are subject to
distortion.

Given that the source symbol is non-zero and conditioned to the noise
W = w, the function g(·) which maps the source Y into the error T can be
written from (4.27) and (4.28) as

g(y) =





∆
2
− A− y, y < −w −A

i∆− y, (i− 1
2
)∆− w ≤ y ≤ (i+ 1

2
)∆− w

A− ∆
2
− y, y > A− w.

(4.30)
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The PDF of the error fT |Z,W(τ |1, w) is then

fT |Z,W(τ |1, w) =
∑

j

g(ỹj)

|g′(ỹj)|
(4.31)

where {ỹ1, ỹ2, · · · } indicate the solutions of g(y) = τ and g′(ỹj) is the deriva-
tive of g(y) at ỹj. Considering that the solutions ỹj depend on the value of
τ and that |g′(ỹj)| = 1, then

fT |Z,W(τ |1, w) =
imax∑

i=imin

fY (i∆− τ) rect

(
τ − w

∆

)
+ fY

(
∆

2
− A− τ

)

× u

(
τ − w − ∆

2

)
+ fY

(
A− ∆

2
− τ

)
u

(
w − τ − ∆

2

)
(4.32)

where rect(x) and u(x) are the unit rectangle between [−1/2, 1/2] and unit
step functions, respectively. Therefore, the PDF of the error can be derived
by averaging over W, i.e.,

fT |Z(τ |1) =EW
{
fT |Z,W(τ |1, w)

}
= Φ(τ)

imax∑

i=imin

fY (i∆− τ)

+ φ(τ) fY

(
A− ∆

2
− τ

)
+ φ(−τ) fY

(
∆

2
−A− τ

)
(4.33)

where

Φ(x) ,
1

2

[
erf

(
x+∆/2√

2 σn

)
− erf

(
x−∆/2√

2σn

)]

φ(x) ,
1

2

[
1− erf

(
x+∆/2√

2σn

)]
.

Altogether, (4.29)-(4.33) give the error density function for an arbitrary dis-
tribution of the non-zero elements, fY(y), as

fT (τ) = (1−p) δ(τ)+p
(
φ(τ) fY

(
A− ∆

2
− τ

)

︸ ︷︷ ︸
fL(τ)

+φ(−τ) fY
(
∆

2
−A− τ

)

︸ ︷︷ ︸
fU(τ)

+ Φ(τ)

imax∑

i=imin

fY (i∆− τ)

︸ ︷︷ ︸
fM(τ)

)
. (4.34)
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We now specialize (4.34) for two important distributions of the source. First,
let us consider BU sources where the non-zero elements are drawn from a
uniform distribution with PDF defined in (4.14). The most important con-
sideration while substituting (4.14) into (4.34) is to find the proper intervals
according to the support of Y . In particular, fL(τ) and fU(τ) can be found
such that |∆/2− A− τ | ≤ A and |A−∆/2− τ | ≤ A, respectively, as

fL(τ) =





1
2A
φ(τ), − 2A+ ∆

2
≤ τ ≤ ∆

2

0 , otherwise

(4.35)

fU(τ) =





1
2A
φ(−τ), − ∆

2
≤ τ ≤ 2A− ∆

2

0 , otherwise.

(4.36)

Regarding fM(τ), two conditions should be satisfied while finding the range
of τ such that fM(τ) is non-zero, i.e., |i∆− τ | ≤ A, leading to

⌈(τ − A)/∆⌉ ≤ i ≤ ⌊(A+ τ)/∆⌋

and the summation limits in (4.34): imin ≤ i ≤ imax. By considering these
inequalities, we get

fY(i∆− τ) =





1
2A
, −2A + ∆

2
≤ τ ≤ 2A− ∆

2

0, otherwise

with i ∈ {iL(τ), · · · , iH(τ)}, where

iL(τ) , max {⌈(τ − A)/∆⌉ ,−A/∆+ 1/2}
iH(τ) , min {⌊(A + τ)/∆⌋ , A/∆− 1/2} .

Since the distribution is uniform, the summation in (4.34) reduces to
(iH(τ)− iL(τ) + 1) /2A, and fM(τ) can be represented as

fM(τ) =
Φ(τ)

2A
×





⌊
τ
∆
+ 1

2

⌋
+ 2A

∆
, −2A+ ∆

2
≤ τ < −∆

2
2A
∆
, −∆

2
≤ τ < ∆

2⌊
1
2
− τ

∆

⌋
+ 2A

∆
, ∆

2
≤ τ ≤ 2A− ∆

2

0, otherwise.

(4.37)
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From (4.34) to (4.37), the PDF of pre-quantization plus quantization error
can be written as

fBU
T (τ) = (1− p)δ(τ) +

p

2A

×





1 + Φ(τ)
(
2A
∆

− 1
)
, |τ | < ∆

2

Φ(τ)
(⌊

1
2
− |τ |

∆

⌋
+ 2A

∆

)
+ φ(|τ |), ∆

2
≤ |τ | ≤ 2A−∆

2

0, otherwise.

(4.38)

Similarly, the PDF of pre-quantization plus quantization noise with BG
sources, fBG

T (τ), can be obtained by substituting the PDF of the Gaussian
distribution into (4.34).

In order to derive the ODR for BU and BG sources, we first analyze
the distortion at the decoder output. For example, considering the squared
error distortion d(τ) = τ 2, the mean distortion can be calculated from (4.26),
(4.34), and (4.38) as

DBU/BG(∆) =

∫ ∞

−∞
τ 2 f

BU/BG
T (τ) dτ. (4.39)

For BU sources, it is also possible to give an approximation in closed-form
as

DBU(∆) ≃ p

(
∆2

12
+ σ2

n

)
+

p

24A

(
−
√

2

π
σne

− ∆2

2σ2
n

(
∆2 + 5σ2

n

)
− 12∆σ2

n

+
9σ4

n

∆

(
erf

(
∆√
2σn

)
− erf

(√
2∆

σn

)))
(4.40)

as illustrated in Appendix B. Regarding BG sources, the integration (4.39)
cannot be found in closed-form. However, in the low distortion region, i.e.,
A ≫ σn and ∆ ≪ σs, the error due to quantization can be modeled as
additive and uniformly distributed, independent from both the source and the
pre-quantization noise [147]. Therefore, the distortion can be approximated
as

DBG(∆) ≃ D̂BG(∆) , p

(
∆2

12
+σ2

n

)
. (4.41)

For noiseless BG sources, an upper bound on the distortion is derived in
Appendix D.

69



s

+

w

=

x

x2 ≥ η

x∗

(s−Q−1 (Q (x∗)))
2

Quatization+pre-quantization noise

Over-estimation noise Under-estimation noise

Figure 4.2: An example for imperfect support estimation and the correspond-
ing distortion.

Now, the ODR for RSSC in Fig. 4.1a can be derived by reformulating
the distortion in terms of the average rate. At first, the expected rate is
calculated from (4.22) as

R = E [RRS] /N = 2 bE [K0] /N = 2 b p [bit/sample] (4.42)

where K0 is a binomial r.v. with mean pN which represents the number of
non-zero elements. Finally, the ODR can be written from (4.19), (4.39),
(4.42), and (B.2) as

D
BU/BG
RS (R) = DBU/BG

(
2A

2R/(2p) − 1

)

≃ D̂
BU/BG
RS (R) , D̂BU/BG

(
2A

2R/(2p) − 1

)
. (4.43)

Similarly, the ODR of the BCH based scheme D
BU/BG
BCH (R) can be found,

where

R = p b+m(N, pN)/N ≤ p (b+ log2(N + 1)) [bit/sample] . (4.44)
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4.5 Operational Distortion-Rate with Imper-

fect Support Estimation

In this section, the ODR of the proposed schemes for BG/BU sources is
analyzed when the signal support is estimated by the excision filter. The
optimal threshold that minimizes the ODR is then derived.

In fact, since the signal support is not estimated perfectly, i.e., PMD > 0
and PFA > 0, the distortion at the decoder output is due to three types of
error, as shown in figure 4.2:

1. under-estimation distortion because of erroneously filtering some sam-
ples due to miss-detection;

2. over-estimation distortion because of not properly zeroing some noise
components due to false alarm;

3. distortion due to quantization and pre-quantization noise for the cor-
rectly detected samples.

Taking into account these contributions, the overall distortion can be written

Dt(∆, η) =

1∑

i=0

1∑

j=0

PD|H {Dj|Hi}PH {Hi}E
{(

S − Ŝ
)2 ∣∣∣Hi,Dj

}

= (1− p) PFA(η)E
{(
Q−1 (Q (W))

)2 ∣∣∣W2 ≥ η
}

+ pPMD(η)E
{
Y2
∣∣∣(Y +W)2 < η

}
+ p (1− PMD(η))

× E

{(
Q−1 (Q (Y +W))− Y

)2 ∣∣∣(Y +W)2 ≥ η
}
. (4.45)

For the over-estimation distortion the encoder treats noise samples as if
they belong to the sparse signal. Firstly, the probability mass function (PMF)
of the quantized noise given that over-estimation event occurred is derived
as
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P
{
Q−1 (Q (W)) = i∆|W2 ≥ η

}
=

1

2 erfc
(√

η
2σ2

n

)

×





2 erfc

( √
η√
2σn

)
− 2 erfc

(
∆
(
|i|+ 1

2

)
√
2σn

)
, |i| =

⌈√
η

∆
− 1

2

⌉
and η ≤ ∆2

4

erfc

( √
η√
2σn

)
− erfc

(
∆
(
|i|+ 1

2

)
√
2σn

)
, |i| =

⌈√
η

∆
− 1

2

⌉
and η >

∆2

4

erfc

(
∆
(
|i| − 1

2

)
√
2σn

)
− erfc

(
∆
(
|i|+ 1

2

)
√
2σn

)
,

⌈√
η

∆
−1

2

⌉
+1 ≤ |i| ≤ A

∆
−3

2

erfc

(
A−∆√

2σn

)
, |i| = A

∆
− 1

2

0, otherwise.

Then, the over-estimation distortion can be given for BG and BU sources as

E

{(
Q−1 (Q (W))

)2 |W2 ≥ η
}
=

A
∆
− 1

2∑

i=
⌈√

η

∆
− 1

2

⌉
(i∆)2 P

{
Q−1 (Q (W)) = i∆|W2 ≥ η

}
. (4.46)

In the low distortion region, i.e., b ≥ 6 bit/sample and A ≫ σn, equa-
tion (4.46) can be approximated in closed-form considering a continuous

un-quantized noise model. In fact, the distribution of |W̃|, where W̃ ,
{W|W2≥η}, follows that of a truncated Gaussian, i.e., |W̃|∼N (0, σ2

n,
√
η,∞).

Hence, the distortion can be simply approximated as

E

{(
Q−1 (Q (W))

)2 ∣∣W2 ≥ η
}
≃ E

{
W̃2
}

= σ2
n + σne

− η

2σ2
n

√
2η

π

1

erfc
(√

η
2σ2

n

) . (4.47)

Then, the usual distortion due to quantization and pre-quantization noise
can be approximated from (4.39) as

E

{(
Q−1 (Q (Y +W))− Y

)2 ∣∣∣(Y +W)2 ≥ η
}
≃ E

{(
Ŷ(Y ,W, R)− Y

)2}

=
1

p
DBG/BU(∆) (4.48)
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since the threshold η is usually designed to minimize the probability of miss-
detection leading to P

{
(Y +W)2 ≥ η

}
≃ 1.

For the under-estimation distortion, we have

E
{
Y2|(Y +W)2 < η

}
= EW

{
EY|W

{
Y2|√η − w ≤ Y ≤ √

η − w
}}

. (4.49)

Clearly, (4.49) depends on the distribution of the continuous source, i.e.,
Gaussian or uniform. For BG, substituting the inner expectation by the
second moment of the truncated Gaussian distribution yields

EW
{
EY|W

[
Y2|√η − w ≤ Y ≤ √

η − w
]}

=

EW





√
8

π
σse

− η+W2

2σ2
s

W sinh
(√

ηW
σ2
s

)
−√

η cosh
(√

ηW
σ2
s

)

erf
(√

η−W√
2σs

)
+ erf

(√
η+W√
2σs

) + σ2
s



 ≃ σ2

s (4.50)

−

√
2
π

√
ησse

− η

2σ2
s

erf
( √

η√
2σs

) − σ2
n

e
− η

σ2
s

(
2ησs +

√
2π

√
ηe

η

2σ2
s (η − 3σ2

s ) erf
( √

η√
2σs

))

2πσ3
s erf

( √
η√
2σs

)2

(4.51)

where the approximation (4.51) is due to the Taylor series expansion of the
argument inside the expectation in (4.50) around W = 0, which is accurate
for high SNR. Similarly, for BU we have

EY|W
{
Y2|√η − w ≤ Y ≤ √

η − w
}

=
1

12





3 (A−√
η − w)2 + (A−√

η + w)2 , −A−√
η < w≤√

η−A
4 η + 12w2,

√
η − A < w ≤ A−√

η

3 (−A+
√
η − w)2 + (A+

√
η − w)2 , A−√

η < w ≤ A +
√
η

0, otherwise.

So, the corresponding distortion becomes

E
{
Y2|(Y +W)2 < η

}
=

σn

3
√
2π
e
− (A+

√
η)2

2σ2
n

(
(
√
η − 2A) e

2A
√

η

σ2
n − 4A+

√
η

)

+
1

6

((
−2A2 + 3A

√
η + 4σ2

n

)
erf

(
A−√

η√
2σn

)

+
(
2A2 − 3A

√
η + 2

(
η + σ2

n

))
erf

(
A +

√
η√

2σn

))
. (4.52)

Finally, the overall distortion can be approximated by substituting (4.46),
(4.48), and (4.51) or (4.52) into (4.45).
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In order to derive the ODR, accounting for imperfect support recovery
using the excision filer, firstly, the expected rate for RSSC is calculated as

R =
2 b

N
E

{
K̂0

}
(4.53)

where K̂0 is a r.v. representing the number of non-zero elements at the output

of the excision filter, so E

{
K̂0

}
= N p (1−PMD) +N (1− p) PFA. Similarly,

the average rate for BCH can be derived as

R =
1

N
E

{
b K̂0 +m(N, K̂0)

}
= b

(
p (1− PMD) + (1− p) PFA

)

+
1

N
m
(
N, N p (1− PMD) +N (1− p) PFA

)
. (4.54)

Then, the corresponding ODR can be approximated from (4.45), (4.46),
(4.48), (4.51), (4.52), and (4.53) as

Dt
RS/BCH(R, η) = Dt

(
2A

2b(R) − 1
, η

)
(4.55)

where

b(R) =
R

2 p (1− PMD) + 2 (1− p) PFA

b(R) =
NR −m

(
N, E

{
K̂0

})

E

{
K̂0

}

for RSSC and BCHSC, respectively.
The threshold η is crucial for the encoder performance, because as η

increases the rate decreases, but at the same time the distortion could in-
crease due to missing significant samples. Therefore, the optimal value of
the threshold η such that the distortion is minimized for a given rate can be
calculated from (4.55) as

η̂RS/BCH(R) = argmin
η>0

Dt
RS/BCH(R, η). (4.56)

4.6 Operational Distortion-Energy of

Syndrome Encoding Schemes

In some applications, the ODR is not sufficient to fully describe the behavior
of source encoders. In fact, for IoT scenarios the energy spent during acqui-
sition, compression, and transmission is a critical aspect. In this regard, we
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Figure 4.3: The block diagram of the CS based source encoder [8, 39].

derive a new metric for the evaluation of the system performance relating the
expected distortion with the average consumed energy in the sensor, which
is called operational distortion-energy (ODE).

Let us start with the energy consumption of the proposed approach along
with the CS based encoder in Fig. 4.3. For example, we consider a possible
energy model similar to that in [148, 149]. The total energy consumption
in the sensor node can be calculated as a sum of the computational and
communication energy

Et(r) = Ecomp + Ecomm(r) (4.57)

where the computational energy, Ecomp = Eacq + Ebck + Esp, is a combina-
tion of the acquisition, background, and signal processing energy, while the
communication energy Ecomm(r) = Etx(r)+Etx is the consumption occurred
during transmitting and receiving data, and r is the distance between the
transmitter and receiver. More precisely, the energy spent in acquisition and
background operations are given by Eacq = NǫackTins and Ebck = Tinsnoǫbck,
where ǫack is the acquisition power, Tins is the instruction executing time, ǫbck
is the background power consumption, and no is the number of performed
operations. With this model, the total spent energy during data acquisi-
tion, compression, and transmission can be calculated for our approach and
compared with CS as follows.

For the proposed RSSC, the signal is first sparsified using, e.g., the dis-
crete cosine transform (DCT).8 Then, it is compressed using the proposed
syndrome encoding method. Let ǫrd, ǫadd, ǫmul, ǫcmp, and ǫwr be the energy
consumed during reading, addition, multiplication, comparing, and writing,
respectively. The computational energy consumption due to vector reading,
DCT, support detection through thresholding, and syndrome calculation can
be found as

8Real signals from WSNs may not be sparse in time, but rather in other domains such
as DCT.
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Esp =

Reading︷︸︸︷
Nǫrd +

DCT︷ ︸︸ ︷
N

2
log2(N)ǫmul +

(
3N

2
log2(N)−N + 1

)
ǫadd +

Thresholding︷ ︸︸ ︷
N(ǫcmp + ǫwr)+

Syndrome Calculation︷ ︸︸ ︷
2E
{
K̂0

} (
ǫadd

(
E

{
K̂0

}
− 1
)
+ E

{
K̂0

}
ǫmul + ǫwr

)
(4.58)

while the background power consumption is calculated as

Ebck = ǫbck Tins

(
2N + 2N log2(N) + 1 + 4

(
E

{
K̂0

})2 )
. (4.59)

The energy consumed during transmission is a function of the distance and
can be found as

Ecomm(bSE) = 2E
{
K̂0

}
bSE
(
(1 + hoh)Etx(r) + hackEtx

)
(4.60)

where poh and pack represent the percentage of overhead and acknowledgment
with respect to the maximum payload. The total consumed power using the
syndrome encoding scheme is written from (4.58), (4.59), and (4.60) as

ESE(bSE) = Eacq + Esp + Ebck + Ecomm(bSE). (4.61)

Regarding the CS encoder, the total consumed energy is

ECS(bCS) = Eacq +Nǫrd +M((N − 1)ǫadd +Nǫmul) +Mǫwr

+ ǫbckTins (N + 2NM) +MbCS

(
(1 + hoh)Etx(r) + hackEtx

)
. (4.62)

Finally, the ODE function can be derived from (4.45) as

DSE/CS(E) = Dt

(
2A

2bSE/CS(E) − 1
, η

)
(4.63)

where bSE/CS can be found from (4.61) and (4.62) for syndrome encoding and
CS based approaches, respectively.

4.7 Numerical Results

In this section, numerical results and Monte Carlo simulations are presented
to illustrate the performance of the proposed RSSC and BCHSC schemes.
We also compare the ODR of such encoders with the entropy bound. The
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Figure 4.4: Average rate for encoding sparse BU sources quantized with b = 8
bit/sample, for A = 4 and N = 255.

SNR is defined as the signal power to the pre-quantization noise power at the
encoder, i.e., SNR , E

{
s sT

}
/E
{
wwT

}
. In all numerical results p = 0.15,

A = 1, and N = 2b−1, unless otherwise stated. As a benchmark, the entropy
of quantized BU and BG sources and the optimal ODR of the quantizer are
derived in Appendices C and D.

In Fig. 4.4, we report the average rate needed to encode the noiseless
quantized BU source using AC (4.1), RSSC (4.22), BCHSC (4.23), Huffman
encoder, and run length encoding, plus the Shannon’s lower bound (C.2), as
a function of the average sparsity ratio p, for b = 8 bit/sample, A = 4, and
N = 255. It is noted that the rates indicated by both RSSC and AC are
coincident, while the BCHSC can achieve a higher compression gain (up to
15% compared to RSSC). Also, the proposed approaches are superior to run
length coding and Huffman coding for p < 0.13, while the gap between the
entropy bound and syndrome encoders is small for low sparsity ratios.
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Figure 4.5: The PDF of the error for BU sources. Analytical (solid) and
empirical (dashed), for various SNRs and bit depths b.

The PDF of the error due to both quantization and pre-quantization noise
is shown in Fig. 4.5, for SNR ∈ {50, 13, 6} dB and b ∈ {3, 6, 10} bit/sample.
Note that the PDF is a mixed distribution with a Dirac delta function at
zero with weight 1−p representing a perfect recovery of the zero elements at
the decoder. The empirical distributions are calculated from the normalized
histogram corresponding to p fT |Z(τ |1), while the relative frequency of zero
elements tends to the theoretical probability 1 − p. As we can see, the
theoretical PDF in (4.38) agrees with the normalized histogram obtained
from simulation. On the other hand, the PDF of the non-zero entries is
a combination of error due to quantization only (uniform distribution from
−∆/2 to ∆/2) and distortion from the pre-quantization noise (zero mean
Gaussian distribution with variance σ2

n). The resulting shape depends on
σn/∆, and fBU

T (τ) tends more to a uniform distribution for small ratios.
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SNRs. The analytical performance (solid ∗) coincides with the simulation
(dashed ⋄).

Fig. 4.6 shows the mean squared error distortion (B.2) (Appendix B) by
varying the step size ∆ of the uniform quantizer with b ∈ {4, 5, ..., 12}, for
noisy BU sources and different SNRs. The distortion increases with both the
step size and noise power. Moreover, the minimum distortion that one can
achieve depends on the amount of pre-quantization noise, e.g, decreasing ∆
from 10−2 to 10−3 has negligible effect on the distortion for SNR ≤ 15 dB.

Fig. 4.7 illustrates the ODR of RSSC, (4.43), and BCHSC, (4.39) and
(4.44), for BU sources with b ∈ {4, 5, ..., 12} and different SNRs. It is clear
that DBCH(R) ≤ DRS(R), which is due to that RBCH ≤ RRS from (4.22) and
(4.23). Also, the distortion tends approximately to p σ2

n as b→ ∞, exhibiting
a floor at high rates. Hence, increasing the rate from 2 to 3 bit/sample does
not significantly decrease the distortion for low SNRs.

In Fig. 4.8, we compare the ODR of BCHSC and RSSC with that of the
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Figure 4.7: The ODR for the proposed BCHSC (solid) and RSSC (dashed)
schemes, with b ∈ {4, 5, ..., 12} and SNR ∈ {5, 15, 20, 30} dB. The analytical
performance for (RSSC •) and (BCHSC ∗) coincides with simulation (⋄, �).

optimal uniform quantizer derived in Appendix D for BU and BG sources.
We can see that the gap between the BCHSC and optimal R(D) in (D.6)
is small, especially in the low-rate region (high-distortion). Also, note that
the upper bound (D.5) on the ODR of the optimal uniform quantizer for BG
sources is tight.

The ODR of RSSC for BU, (4.55), with imperfect support recovery is
depicted in Fig. 4.9. The location of the non-zero elements is estimated either
by the excision filter described in Section 4.3.1 using the optimal threshold η̂,
(4.56), and a threshold designed through the Neyman-Pearson criteria (4.13)
for PFA = 0.01, or by the GIC estimator (4.7) with ν = 10 for SNR = 15,
and ν = 12 for SNR = 30. The proposed optimal threshold achieves a better
performance compared to that based on constant false alarm, especially for
high SNR. For example, the optimal threshold achieves about 30% reduction
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Figure 4.8: The ODR of BCHSC and RSSC along with upper bounds on the
IDR, with A = 1, σs = 1/5, b ∈ {2, 3, ..., 13}, and SNR = ∞.

in the distortion, for R = 1.8 bit/sample and SNR = 30 dB. Moreover, the
GIC performs well at high rate region.

4.8 Case Study: Internet of Things for Envi-

ronmental Monitoring

In this section, we use the proposed syndrome encoders depicted in Fig. 4.1 to
encode compressible signals acquired from a WSN. In particular, real data
(temperature, humidity and rain level) collected by a WSN for landslides
monitoring [150] are encoded. The measurements have been gathered for
over a year with a rate of 1 sample per 15 min, thus the number of available
samples from each sensor is around 40 ·103. The gathered readings from each
sensor are grouped into vectors with length N , then separately compressed
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Figure 4.9: The ODR for noisy BU sources with excision filter using the
optimal threshold (4.56) and Neyman-Pearson criteria (4.13), and with the
GIC (4.8), for SNR = 15 dB (solid) and SNR = 30 dB (dashed).

using the proposed BCHSC and the CS encoder shown in Fig. 4.3 with rate
identified by (4.23) and rCS =M b/N , respectively.

In this context, the output of the sparse source plus noise, xc ∈ R
N ,

represents a compressible signal in an appropriate transform domain, i.e.,
DCT. Then, the support of the significant samples is estimated using an
excision filter with a threshold designed such that a predefined fraction,
λ ∈ [0, 1], of the total signal energy is preserved. We validate that these
signals are compressible in the DCT domain. For example, letting k̂0 be the
estimated number of significant coefficients, only k̂0 = 17 out of 127 are suf-
ficient on average to guarantee that more than 99.9%, i.e., λ = 0.999, of the
signal energy, ‖xc‖2, is preserved for the temperature signal, while k̂0 = 25
and k̂0 = 4 for humidity and rain data, respectively.

Clearly, the distortion is due to the sparse approximation and the quan-
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tization of the non-zero elements.9 More precisely, the mean squared error
distortion for the lossy encoding of the compressible source can be written
as

Dcomp(∆;λ) =
1

N
E

{∥∥xc − F−1Q−1 (Q (MFxc))
∥∥2
}

(4.64)

where F ∈ R
N×N is the DCT matrix and M = diag(π) ∈ R

N×N is a se-
lection matrix with π ∈ {0, 1}N indicating the locations of the k̂0 estimated
significant elements.

In order to find the distortion, we notice that the significant and non-
significant data entries follow uniform and Gaussian distributions, respec-
tively (similar to noisy BU sources). The parameters of the distributions are
estimated using moment matching method from the data set. Since the DCT
is an orthonormal basis, and the quantization noise for large b is uniformly
distributed with support [−∆/2,∆/2], the distortion can be approximated
as

Dcomp(∆;λ) ≃ p̂(λ)
∆2

12
+ (1− p̂(λ)) σ̂2

n (4.65)

where p̂(λ) , k̂0/N is the estimated average sparsity ratio and σ̂2
n is the

estimated variance of the non-significant elements.

The ODR and ODE of the proposed encoder along with the CS scheme
(Fig. 4.3) are examined in Fig. 4.10, for b ∈ {3, 5, . . . , 13}. The energy
consumption is calculated through the model presented in Section 4.6. In
particular, we consider the power model of MICA 2 platform with Atmel
Atmega 128L processor and CC1000 radio [148,149]. Each data packet con-
sists of 1872 bits as a maximum payload and 168 additional bits as a header
(poh = 9% payload), while the acknowledgment packet length is 160 bits
(pack = 8.5% payload). This platform has ǫack = 15.01 mW, Tins =

1
7.5×106

sec, ǫbck = 9.6 mW, ǫadd = 3.3 pW, ǫmul = 9.9 pW, ǫcmp = 3.3 pW, ǫsh = 3.3
pW, ǫrd = 0.26 pW, and ǫwr = 4.3 pW. We depict in Fig. 4.10 the con-
vex hull (minimum) of the ODR and ODE, normalized by ‖xc‖2, varying
λ ∈ [0.5, 0.9999] for BCHSC and M ∈ [3, N − 1] for CS. It is evident that
the rain sensor signals are more compressible than those representing the
temperature and humidity. As can be seen, the proposed encoder indicates
higher performance with respect to CS, in terms of the required rate and
the consumed energy, e.g., about 60% reduction in the required rate and
consumed energy, when the distortion is 10−2.

9Unlike the sparse signal model in Section 4.2, the vector w is considered as a part of
the signal.
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(b) Operational distortion-energy with N = 255.

Figure 4.10: The ODR and ODE of the proposed BCHSC (4.23) and CS for
real data acquired from a WSN deployed in Torgiovannetto (Assisi, Italy).
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4.9 Conclusion

This chapter provided two novel schemes for efficient encoding of noisy s-
parse sources, i.e., BU and BG. The proposed technique is based on the
channel coding theory to build efficient source encoders. Also, two methods
are suggested for the denoising of sparse signals; the first is a blind estimator
based on model order selection, while the second is an excision filter requir-
ing a prior knowledge of the signal model. The provided source encoders
are particularly important for IoT scenarios involving the exchange of sparse
signals, e.g, images and data from sensors, to reduce both the consumed
power and bandwidth. The theoretical analysis of the proposed encoders has
been provided in terms of the ODR and ODE. As illustrated by numerical
results, the proposed schemes are superior to CS, run length and Huffman
encoders, for low sparsity ratio. We found also that the ODR of BCHSC
is upper bounded by that of RSSC. As illustrated by numerical results, the
gap between the entropy based bounds and the proposed approaches is small.
For a real scenario case study, we applied our techniques to compress real
data gathered by a WSN deployed for monitoring landslides in the Apennines
mountains. The presented approach is also superior to CS for the encoding
of the collected real data.
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Chapter 5

Frame Synchronization for

M-ary Modulation with Phase

Offsets

5.1 Introduction

Frame synchronization (FS) is a fundamental stage in most communica-
tion systems for achieving reliable radio links with low probability of er-
ror [151–168]. The FS mechanism considers finding the position of a known
synchronization sequence, called here sync word (SW), which is inserted into
a data stream composed of modulated symbols.

The optimal FS metric for binary transmission has been studied for bi-
nary symmetric channels (BSC) and additive white Gaussian noise (AWGN)
channels in [151] and [152], respectively, where binary signalling with co-
herent demodulation and perfect carrier synchronization was assumed. The
probability of correct frame synchronization for the metrics in [152] is ana-
lyzed in [162], where the concept of pairwise synchronization error probabil-
ity (PSEP) is introduced. The derivation of the optimum metrics according
to hypothesis testing theory and the acquisition time analysis is provided
for variable (unknown) frame lengths in [159–161], where sequential FS is
considered.

Nevertheless, in some systems FS is required to be performed prior to
phase synchronization, referred throughout the chapter as “noncoherent”
FS. For this “noncoherent” FS setting, it has been shown that, assuming
a phase offset and negligible frequency offset, the common noncoherent cor-
relation detector is not the optimum one [163]. In the presence of large
frequency offsets the situation is even more difficult. For example, in code
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division multiple access (CDMA) systems, suitable postdetection integration
techniques, with combinations of successive partial noncoherent correlations,
are employed to mitigate the effects of frequency offsets [169, 170]. Metrics
for FS that are robust to frequency offsets have been provided for TDMA
systems in [171, 172].

While the previous schemed are usually given for binary phase shift key-
ing (BPSK), many modern systems use multilevel modulations. For example,
in link adaptive schemes the number of levels in the modulation is chosen
adaptively, depending on the channel characteristics and required through-
put [173,174]. Therefore, efficient FS is essential for such M-ary modulation
based systems. Extensions of coherent FS of BPSK to multilevel modu-
lation, frequency selective channels, and code-aided frame synchronization
techniques are provided in several works [153–158].

On the other hand, less is known in the case of noncoherent FS forM-ary
phase shift keying (M-PSK) modulated symbols, where the most common
approach is to use a noncoherent correlator. The correlation is performed over
a testing time equal to the duration of the SW if the phase offset is constant
within that duration, while the performance significantly degrades when the
phase varies considerably within the correlation time, due for example to
the presence of frequency offset. Yet, optimal metrics for noncoherent FS of
M-ary modulated symbols have not been fully addressed.

In this chapter, an optimal metric for noncoherent FS of M-PSK mod-
ulations with M ≥ 4 is first derived, assuming a negligible frequency offset.
We show that the optimal test requires numerical integration, which is not
suitable for real-time implementations. Hence, suboptimal low-complexity
metrics, i.e., accurate approximations of the optimal detector, are proposed
for quadrature phase shift keying (QPSK) and 8-phase shift keying (8-PSK).
Starting from the approach in [163], we also analyze for M-PSK a low-
complexity metric consisting in the simple noncoherent correlator corrected
by removing the ℓ1-norm of the observed vector. The proposed metric shows
a considerable performance improvement with respect to (w.r.t.) the (non-
optimal) correlation based detector, also in the presence of small frequen-
cy offsets. Finally, we investigate the performance improvement of the new
scheme when applied toM-ary quadrature amplitude modulation (M-QAM)
systems.

5.2 Problem Statement

The frame structure is shown in Fig. 5.1 where a sync word composed of NSW

arbitrary symbols (c0, ..., cNSW−1) is periodically inserted, with period Nf , in
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DATA SW
di ci

✲✛

NSW
Nf

✛ ✲

Figure 5.1: The frame structure.

a randomM-PSK data stream. The SW symbols ci are completely arbitrary.
The data stream is assumed to be composed ofM-PSK symbols di which are
i.i.d. and uniformly distributed over the set

{
ej0, ej2π/M , . . . , ej(M−1)2π/M

}
.

We assume matched filter (MF) and perfect clock synchronization with
sampling period T seconds. The observation window is composed of the Nf

samples r0, r1, . . . , rNf−1. The SW is transmitted starting at position m ∈
{0, · · · , Nf − 1}. The received baseband complex samples, ri = rIi + j rQi , are

ri mod Nf
= ci−m e

jϕ+ni mod Nf
, i = m, . . . , NSW+m−1

ri = di e
jϕ + ni, elsewhere

where ϕ is a r.v. uniformly distributed over [−π, π) representing the carrier
phase offset, assumed constant over the considered observation window, and
ni are the i.i.d. circularly symmetric complex Gaussian r.v.s, with zero mean
and variance σ2 per dimension, accounting for thermal noise. We normalize
the constellation for the data so that the energy per symbol is unity, i.e.,
Es , E {|di|2} = 1. Consequently, the SNR is Es/N0 = 1/(2σ2), where N0 is
the one-sided thermal noise power spectral density.

5.3 Testing Hypothesis for FS

In this section, we generalize the work in [163], which considered BPSK, to
a broader class of multilevel modulation. More precisely, we derive optimal
metrics for frame synchronization ofM-PSK signals,M ≥ 4. As described in
[160,162,163], the metric for estimating if the SW position starts at position
0 (hypothesis H1) or not (hypothesis H0) is related to testing the following
hypotheses:

H0 : ri = di e
jϕ + ni, i = 0, . . . , NSW − 1

H1 : ri = ci e
jϕ + ni, i = 0, . . . , NSW − 1 .
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The common test used for synchronization is based on the so-called nonco-
herent correlation metric

Λ(corr)(r) =

∣∣∣∣∣

NSW−1∑

i=0

r∗i ci

∣∣∣∣∣
D1

≷
D0

λ (5.1)

where r = r0, r1 . . . , rNSW−1 and D0,D1, are respectively decisions for H0,H1.
Since this test is widely adopted, we will use it as a benchmark for the
comparison with the new proposed tests. However, we remark that, although
commonly used, the test based on noncoherent correlation metric (5.1) is by
no way the optimal one, as shown in [163] for binary modulation formats.

In order to derive the optimal test for M-PSK, we start from the general
form of the likelihood ratio test (LRT)

Λ(r) =
fR|H1(r|H1)

fR|H0
(r|H0)

D1

≷
D0

λ (5.2)

where fR|Hl
(r|Hl) is the PDF of the random vector R = (R0, . . . , RNSW−1)

in the hypothesis Hl and Ri is the r.v. of the received sample ri [175]. We
have now to specialize the general expression (5.2) to our noncoherent frame
synchronization problem.

5.3.1 Case H0

Assuming theH0 hypothesis, when the data vector d = (d0, . . . , dNSW−1) with
phase offset ϕ is observed, we have the conditional PDF

fR|H0,ϕ,d(r|H0, ϕ,d) =

NSW−1∏

i=0

1

2πσ2
e−

|ri−di e
jϕ|2

2σ2 . (5.3)

Taking the expectation with respect to the distribution of the M-PSK data
symbols d and assuming M even, we have

fR|H0,ϕ(r|H0, ϕ) =
(

2

M

)NSW

K(r)

NSW−1∏

i=0

M/2−1∑

p=0

coshℜ
{
r̃ie

−jp2π/Me−jϕ
}

(5.4)

where

K(r) = (2πσ2)−NSW

NSW−1∏

i=0

e−
|ri|2+1

2σ2 .

To simplify the notation, we use the tilde to indicate normalization with
respect to the noise variance, i.e., r̃i = ri/σ

2. Then, we evaluate fR|H0
(r|H0)

by averaging (5.4) with respect to ϕ, with different numerical approximation.
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5.3.2 Case H1

For hypothesis H1, where we observe the known SW symbols ci in additive
Gaussian noise, we have the conditional PDF

fR|H1,ϕ(r|H1, ϕ) =

NSW−1∏

i=0

1

2πσ2
e−

|ri−ci e
jϕ|2

2σ2 . (5.5)

Averaging over ϕ, we obtain

fR|H1
(r|H1) = K(r) I0

(∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣

)
(5.6)

where I0(x) = (2π)−1
∫ π

−π
exp(x cos θ) dθ is the zeroth-order modified Bessel

function of first kind [176, (8.406)]. In order to use (5.2), we need (5.6) and
the expected value of (5.4) with respect to ϕ. In the following sections we
discuss different methods to integrate (5.4) over ϕ for QPSK and 8-PSK.

5.4 Optimal and Suboptimal Tests for QPSK

Modulation

In this section we provide the optimal likelihood ratio test for the QPSK
modulated signal. Putting M = 4 in (5.4) we get

fR|H0,ϕ(r|H0, ϕ)=

(
1

2

)NSW

K(r)

NSW−1∏

i=0

(
coshℜ

{
r̃ie

−jϕ
}
+coshℜ

{
r̃ie

−jπ/2e−jϕ
})

=

(
1

2

)NSW

K(r)

NSW−1∏

i=0

(
cosh

(
r̃Ii cosϕ+r̃

Q
i sinϕ

)
+cosh

(
r̃Ii sinϕ−r̃Qi cosϕ

))

(5.7)

where r̃i = r̃Ii + j r̃Qi . Averaging with respect to ϕ we get, after some manip-
ulation, the metric for the (optimum) LRT as

Λ(r) ,

I0

(∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣

)

Ξ
(5.8)
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where

Ξ ,
∫ π

0

NSW−1∏

i=0

cosh

(
(r̃i

I−r̃iQ) cosϕ+ (r̃i
I + r̃i

Q) sinϕ

2

)

× cosh

(
(r̃i

I+r̃i
Q) cosϕ+(r̃i

Q−r̃iI) sinϕ
2

)
dϕ.

Unfortunately, the LRT in the form (5.8) is not suitable for real time im-
plementation as it requires numerical integration, thus we have to introduce
some simplifications. At first, we approximate the denominator by applying
both the quadrature rule with Nq points

∫ π

0

f(ϕ)dϕ ≃ π

Nq

Nq−1∑

l=0

f

(
l
π

Nq

)
(5.9)

and by considering that the hyperbolic cosine has exponential growth tak-
ing into account only the maximum contribution. Then, the corresponding
approximate LLRT can be written as

ln Λ(1)(r) , ln I0

(∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣

)
−

max
l

[
NSW−1∑

i=0

ln

(
cosh

(
(r̃Ii − r̃Qi ) cosϕl + (r̃Ii + r̃Qi ) sinϕl

2

)

× cosh

(
(r̃Ii + r̃Qi ) cosϕl + (r̃Qi − r̃Ii ) sinϕl

2

))]
(5.10)

where ϕl = lπ/Nq.
Regarding the numerator of (5.8), ln Λ(1)(r) can be approximated for high

SNR as

lnΛ(2)(r) ,

∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣−

max
l

[
NSW−1∑

i=0

∣∣∣∣∣
(r̃Ii − r̃Qi ) cosϕl + (r̃Ii + r̃Qi ) sinϕl

2

∣∣∣∣∣+

NSW−1∑

i=0

∣∣∣∣∣
(r̃Ii + r̃Qi ) cosϕl + (r̃Qi − r̃Ii ) sinϕl

2

∣∣∣∣∣

]
(5.11)
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where we used the approximations

ln I0(x) ≃ |x| − ln
√
2π |x| ≃ |x|

ln cosh(x) ≃ |x| − ln 2

which are valid for |x| ≫ 1.

In fact, (5.11) can be interpreted as a modification of the noncoherent corre-
lator with an additive correction term. The approximation accuracy of the
numerical integration in (5.10) increases with Nq. For Nq = 2 the metrics
given in (5.10) and (5.11) specialize to:

ln Λ(1)(r) , ln I0

(∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣

)
− (5.12)

max

[
NSW−1∑

i=0

ln

(
cosh

r̃Ii +r̃
Q
i

2

)
,

NSW−1∑

i=0

ln

(
cosh

r̃Ii −r̃Qi
2

)]

ln Λ(2)(r) ,

∣∣∣∣∣

NSW−1∑

i=0

r∗i ci

∣∣∣∣∣−

max

[
NSW−1∑

i=0

∣∣∣∣∣
r̃Ii + r̃Qi

2

∣∣∣∣∣ ,
NSW−1∑

i=0

∣∣∣∣∣
r̃Ii − r̃Qi

2

∣∣∣∣∣

]
. (5.13)

For Nq = 4 the metric for QPSK in (5.11) becomes

lnΛ(2)(r) , −max

[
NSW−1∑

i=0

∣∣∣∣∣
r̃Ii + r̃Qi

2

∣∣∣∣∣ ,
NSW−1∑

i=0

∣∣∣∣∣
r̃Ii − r̃Qi

2

∣∣∣∣∣ ,

NSW−1∑

i=0

∣∣∣∣∣

√
2|r̃Ii |
2

∣∣∣∣∣ ,
NSW−1∑

i=0

∣∣∣∣∣

√
2|r̃Qi |
2

∣∣∣∣∣

]
+

∣∣∣∣∣

NSW−1∑

i=0

r∗i ci

∣∣∣∣∣ . (5.14)

In Section 5.7 we numerically investigate the synchronization error proba-
bility as a function of the signal to noise ratio for the tests based on these
metrics.
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5.5 Optimal and Suboptimal Tests for 8-PSK

Modulation

For 8-PSK signals the transmitted symbols are di = exp{jπm/4},
m ∈ {0, 1, ..., 7}, and (5.4) becomes:

fR|H0,ϕ(r|H0, ϕ) =

(
1

2

)NSW

K(r)

NSW−1∏

i=0

(
coshℜ

{
r̃ie

−jϕ
}

+ coshℜ
{
r̃ie

−jπ/4e−jϕ
}
+ coshℜ

{
r̃ie

−jπ/2e−jϕ
}

+ coshℜ
{
r̃ie

−j3π/4e−jϕ
})

. (5.15)

Taking into account that ϕ is uniformly distributed over the interval [−π, π),
we obtain from (5.15)

fR|H0,ϕ(r|H0) =
K(r)

π

∫ π

0

NSW−1∏

i=0

(
cosh

(
r̃Ii cosϕ+ r̃Qi sinϕ

)

+ cosh

(
(r̃Ii + r̃Qi ) cosϕ+ (r̃Qi − r̃Ii ) sinϕ√

2

)

+ cosh

(
(r̃Ii + r̃Qi ) cosϕ+ (r̃Ii − r̃Qi ) sinϕ√

2

)

+ cosh
(
r̃Qi cosϕ− r̃Ii sinϕ

))
dϕ . (5.16)

The resulting exact metric (i.e., the LRT for 8-PSK modulation) is reported
as

Λ(r) ,

I0

(∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣

)

Ψ
(5.17)

where

Ψ ,
∫ π

0

NSW−1∏

i=0

(
cosh

(
r̃Si,ϕ
)
+ cosh

(
r̃Di,ϕ
)

+ cosh

(
r̃Si,ϕ + r̃Di,ϕ√

2

)
+ cosh

(
r̃I+Q
i,ϕ + r̃I−Q

i,ϕ√
2

))
dϕ (5.18)
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and we put

r̃Si,ϕ = r̃Ii cosϕ+ r̃Qi sinϕ r̃Di,ϕ = r̃Qi cosϕ− r̃Ii sinϕ

r̃I+Q
i,ϕ =

(
r̃Ii + r̃Qi

)
cosϕ r̃I−Q

i,ϕ =
(
r̃Ii − r̃Qi

)
cosϕ .

To simplify (5.17), we again use the rectangular quadrature rule and the
approximations. More precisely, the LLRT can be approximated for large
SNR as

ln Λ(1)(r) ,−max
l

[
NSW−1∑

i=0

ln

(
cosh

(
r̃Ii cosϕl + r̃Qi sinϕl

)

+cosh

(
(r̃Ii + r̃Qi ) cosϕl + (r̃Qi − r̃Ii ) sinϕl√

2

)

+cosh

(
(r̃Ii + r̃Qi ) cosϕl + (r̃Ii − r̃Qi ) sinϕl√

2

)

+cosh
(
r̃Qi cosϕl − r̃Ii sinϕl

))]
+

∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣ . (5.19)

For example, the formula based on the rectangular quadrature approxima-
tion with Nq = 2 is

ln Λ(2)(r) ,

∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣−

max

[
NSW−1∑

i=0

ln

(
cosh r̃Ii + cosh r̃Qi + 2cosh

r̃Ii + r̃Qi√
2

)
,

NSW−1∑

i=0

ln

(
cosh r̃Ii + cosh r̃Qi + 2cosh

r̃Ii − r̃Qi√
2

)]
(5.20)

and for Nq = 4 is

ln Λ(2)(r) ,

∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣

−max

[
NSW−1∑

i=0

ln

(
cosh r̃Ii + cosh r̃Qi + 2cosh

r̃Ii + r̃Qi√
2

)
,

NSW−1∑

i=0

ln

(
cosh

r̃Ii − r̃Qi√
2

+cosh
r̃Ii + r̃Qi√

2
+cosh r̃Ii +cosh r̃Qi

)
,

NSW−1∑

i=0

ln

(
cosh r̃Ii + cosh r̃Qi + 2cosh

r̃Ii − r̃Qi√
2

)]
. (5.21)
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5.6 Uniform Phase Approximation Based

Metric

The previous tests are based on the LRT and specialized to particular da-
ta formats. Alternatively, in this section we propose a slightly different
approach, where we approximate the phase distribution of the data sym-
bols with a uniform random variable. More precisely, since we are dealing
with M ≥ 4, we approximate the data symbols as di = ejθi where we treat
θ0, θ1, ..., θNSW−1 as i.i.d. continuous r.v.s uniformly distributed over [−π, π).
In this way, (5.4) becomes

fR|H0,ϕ(r|H0, ϕ) ≃ K(r)

NSW−1∏

i=0

1

2π

∫ π

−π

e−|r̃i| cos(arg ci−ϕ−θi) dθi

= K(r)

NSW−1∏

i=0

I0(|r̃i|). (5.22)

Note also that there is no more dependency on ϕ, so (5.22) is an approxima-
tion of fR|H0(r|H0). Now, substituting (5.22) and (5.6) into (5.2) we obtain
the metric

ln Λ(3)(r) , ln I0

(∣∣∣∣∣

NSW−1∑

i=0

r̃∗i ci

∣∣∣∣∣

)
−

NSW−1∑

i=0

ln I0 (|r̃∗i |) . (5.23)

Thus, for large SNR the metric becomes simply

lnΛ(4)(r) ,

∣∣∣∣∣

NSW−1∑

i=0

r∗i ci

∣∣∣∣∣−
NSW−1∑

i=0

|ri| (5.24)

which coincides with [163, (25)]. This metric is thus the noncoherent cor-
relation corrected by removing the ℓ1-norm of the observed sampled vector,
which accounts for the non-gaussianity of the data symbols.

For M-PSK with M ≥ 4, we found that (5.24) gives performance very
close to the optimal metric obtained in the previous sections. In the next
section we also show that the same test is better than noncoherent correlation
for M-QAM modulations.

5.7 Numerical Results

In this section we investigate the performance of the proposed methods used
for frame synchronization by adopting Monte Carlo simulations. All results
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Figure 5.2: Frame synchronization error probability for peak detectors,
QPSK over AWGN channels with phase offset. Comparison between the non-
coherent correlation metric, the proposed metrics, and the tests from [171].
Frame composed of Nf = 240 QPSK symbols, sync word of NSW = 24 QPSK
symbols.

shown in the following have been obtained by counting at least 100 synchro-
nization errors.

Regarding FS by peak detection for QPSK signals, we assume that the
received samples are due to randomly generated QPSK symbols (M = 4)
with a constant phase offset over the frame, in the presence of additive com-
plex Gaussian noise. We consider the algorithms described in Section 5.4:
for each observation window of Nf samples, the detector analyzes all NSW -
length sequences, estimating the SW position as that maximizing the metric.
In particular, our metrics reported in (5.13) and (5.14) (high complexity),
and (5.24) (low complexity) are compared with the common noncoherent
correlation (5.1), and with the complex metrics L1 and L2 derived in [171].
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Figure 5.3: Frame synchronization error probability for peak detectors,
QPSK over AWGN channels with phase and frequency offsets. Frame com-
posed of Nf = 1000 QPSK symbols, sync word of NSW = 32 QPSK symbols.
For each simulation, the frequency offset is uniformly generated over the
interval [−∆fmaxT : ∆fmaxT ] = [−0.01; 0.01].

Fig. 5.2 shows the values of the synchronization error probability for the
derived metrics, as a function of the SNR, obtained with Nf = 240 and
NSW = 24. The metrics L1 and L2 have poor performance in this case, as
they are designed to be robust w.r.t. large frequency offsets. On the contrary,
the proposed metrics, which are designed for phase offsets but negligible fre-
quency offsets, show large improvements with respect to the noncoherent
correlation metric. For example, for a target synchronization error probabil-
ity of 10−3, our tests require 2 dB less than the noncoherent correlation test.
As shown, the performance for the metrics (5.13) and (5.14) are very close,
and slightly outperforming that obtained by using (5.24). The metric (5.24)
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Figure 5.4: Frame synchronization error probability for peak detectors,
QPSK over AWGN channels with phase and frequency offsets. Frame com-
posed of Nf = 1000 QPSK symbols, sync word of NSW = 32 QPSK symbols,
frequency offset is ∆fT = 0.01.

seems therefore the most appealing due to its simplicity.
The new metrics are also investigated in Fig. 5.3 and Fig. 5.4 in the

presence of frequency offset. More precisely, we assume that the phase ϕ in
Section 5.2 is replaced by ϕ0+2π∆fT i, where the phase offset ϕ0 is uniformly
distributed over [−π; π).

Fig. 5.3 refers to the case of uniformly distributed normalized frequency
offset ∆fT over the interval (−∆fmaxT ; ∆fmaxT ]. The maximum frequency
offset here is ∆fmaxT = 0.01, Nf = 1000, NSW = 32. As it is shown, the
proposed metrics give large improvements when compared to the noncoherent
correlation and to the metrics from [171]. In fact, since the latter metrics are
designed to work with a large frequency offset, they perform poorly when a
small frequency offset is present. Since the difference between the proposed
metrics is not significant, the metric (5.24) could be preferred due to its
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Figure 5.5: Frame synchronization error probability for peak detectors,
8-PSK over AWGN channels with phase offset. Frame composed of Nf = 240
8-PSK symbols, sync word of NSW = 24 8-PSK symbols.

simplicity.
Fig. 5.4 shows the results for a fixed value of the frequency offset, taken

at the interval edge of the previous figure, i.e., with ∆fT = 0.01. In this case
we can see the same behavior as in Fig. 5.3. The advantage of the proposed
metrics (5.13), (5.14) and (5.24) is still large in comparison with (5.1), L1

and L2 from [171]. However, we observe that the gain with such large value
of the frequency offset is reduced with respect to Fig. 5.3.

We now investigate the performance of the proposed synchronization met-
rics for 8-PSK modulation. We carried out several experiments with the
common noncoherent correlation (5.1), the metrics L1 and L2 [171], and our
proposed metrics from the Section 5.5. We use (5.20) and (5.21) as high
complexity tests and (5.24) as the simplest one.1

1Note that the implementation of the tests (5.20), (5.21), L1, and L2 could be quite
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Figure 5.6: Frame synchronization error probability for peak detectors,
8-PSK over AWGN channels with phase and frequency offsets. Frame com-
posed of Nf = 1000 8-PSK symbols, sync word of NSW = 32 8-PSK sym-
bols, frequency offset uniformly distributed over the interval [−∆fmaxT :
∆fmaxT ] = [−0.01; 0.01].

Fig. 5.5 represents the values of the synchronization error probability for
the derived metrics, as a function of the SNR, obtained for Nf = 240 and
NSW = 24. Again, the proposed metrics perform better than the others.
For example, for a target synchronization error probability of 10−3, our tests
require at least 2 dB less than the noncoherent correlation test, and at least
4 dB less than the tests from [171].

Fig. 5.6 compares the synchronization error probability for different values
of SNR, with the frequency offset ∆fT uniformly distributed over the interval
(−0.01; 0.01], Nf = 1000 and NSW = 32. The proposed formulas are still
preferable, however, the metrics from [171] are expected to be more robust

demanding.
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Figure 5.7: Frame synchronization error probability for peak detectors, 16-
QAM over AWGN channels with phase offset. Frame composed of Nf = 240
16-QAM symbols, sync word of NSW = 24 16-QAM symbols.

w.r.t. large frequency offsets.

Considering FS for M-QAM, the exact approach here used for M-PSK
could be in theory extended to M-QAM data symbols. However, dealing
with an alphabet of symbols with different phases and amplitudes would lead
to complicated expressions of limited practical interest. Thus, it would be
interesting to see if, e.g., the simple metric (5.24), which was derived assum-
ing data symbols with constant amplitude and uniformly distributed phase,
could give for M-QAM some improvements with respect to the noncoherent
correlator.

In this regard, Fig. 5.7 shows simulation results assuming a 16−QAM
constellation for the proposed test (5.24), the common noncoherent correla-
tion rule (5.1), and L2 from [171, eq. (11)], without frequency offsets. Again,
we see that (5.24) outperforms the other approaches: for example, for a syn-
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chronization error probability of 10−4 we save more than 1.5 dB in terms of
SNR.

5.8 Conclusion

In the context of FS for IoT, the optimal synchronization rule and some sub-
optimal rules based on statistical inference theory are derived for M-PSK
modulation in AWGN channels with phase offset. We verified numerically
that our tests outperform the commonly used noncoherent correlation detec-
tor. Finally, we can conclude that the simple metric (5.24) (i.e., subtracting
an ℓ1-norm correction term from the noncoherent correlation) can be used in
practice to replace the noncoherent correlation for a wide class of modula-
tion formats, i.e., M-PSK, and M-QAM, in the presence of phase and small
frequency offsets due to imperfect carrier recovery.
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Conclusion

In this thesis, I proposed and analyzed several signal processing approaches
for efficient acquisition and compression of sparse and compressible sources.
The theory and the algorithms developed here fall under the frameworks of
both transform coding and CS, motivated by the fact that signals originating
from many sources, e.g., sensors, cameras, and IoT devices, exhibit various
types of structures, i.e., sparsity and compressibility.

Chapter 2 provided a tool for the design of CS measurement matrices
for real applications, involving always finite size problems with guaranteed
recovery probability. In particular, upper bounds on the maximum recover-
able sparsity order for sparse signals were derived, based on the RIC of finite
Gaussian matrices. These limits guarantee perfect recovery with a predefined
probability from a SMV via various sparse reconstruction algorithms, e.g.,
ℓ1-minimization, IHT, and CoSaMP algorithms. We found that the proposed
analysis, derived from the exact distribution of the extreme eigenvalues, pro-
vided tighter bounds compared to those based on the concentration of mea-
sure inequality. Also, the corresponding sparsity order limits for robust and
stable recovery of compressible signals in noise were derived. The analysis
illustrated that the more sparse is the signal, the more robust and stable is
the reconstruction process.

Furthermore, it has been shown that a significant performance gain can
be achieved by utilizing additional signal structure (i.e., joint sparsity). This
model has gained increasing interest, as the data generated from dense IoT
networks tend to be joint sparse. For this scenario, the worst-case anal-
ysis based on the RIC in Chapter 2 cannot justify the benefits of having
MMV. On the contrary, sufficient conditions on the WRICs permit average-
case analysis of the recovery. In this regard, Chapter 3 probabilistically
investigated the WRICs of finite Gaussian matrices. Additionally, a unified
framework was suggested for assessing signal reconstruction through differ-
ent joint sparse recovery algorithms, e.g., ℓ2,1 minimization, SA-Music, and
OSMP. This analysis provided tight bounds on the maximum joint sparsity
order permitting recovery from MMV with a predefined probability. Also,
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accurate closed-form approximations were provided, in terms of incomplete
gamma functions. The numerical results illustrated that the proposed WRIC
method, relying on the exact distribution of the extreme singular values, pre-
dicts higher probability of recovery compared to the bounds in [95, Propo-
sition 6.1]. It is also demonstrated that the presented approximations are
quite accurate.

Chapter 4 proposed two approaches for the compression and denoising
of noisy sparse sources. The provided schemes are based on channel coding
theory to provide adequate source compression. The operational distortion-
rate and distortion-energy of the presented coders were derived for two classes
of sparse sources, i.e., BU and BG, in the presence of pre-quantization noise.
The numerical results showed that the gap in performance with respect to the
information theoretic bounds is small, and the provided schemes are superior
to CS, run length and Huffman encoders, for low sparsity ratio. Furthermore,
the effectiveness of employing the syndrome encoding for the compression of
signals from real WSNs has been illustrated.

Finally, Chapter 5 provided optimal and suboptimal metrics for FS of
PSK modulated signals with phase offset. It has been verified numerical-
ly that the derived tests yielded lower probability of synchronization errors
comparing to the well-known correlation detector and the metrics in [171],
leading to better data extraction and lower power consumption in IoT net-
works.
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Appendix A

Asymmetric Sparse Recovery

Condition

In the following, we derive a new sufficient condition for perfect recovery
using ℓ1-minimization generalizing the result δs(A) < 1

3
[54], to account for

the asymmetric nature of the extreme eigenvalues distribution. In particular,
we will prove that

µECG(s,A) , 2 δs(A) + δs(A) < 1 (A.1)

is a sufficient condition for recovery via ℓ1-minimization.

Let us start considering that signal recovery using ℓ1-minimization is guar-
anteed if and only if for all non-zero vectors w in the null space of A, we
have

‖wS‖1 < ‖wS‖1 (A.2)

wherewS is a vector obtained fromw by keeping its s largest absolute compo-
nents then setting the remaining n − s elements to zero, and
wS = w − wS [177]. Let us prove by contradiction that statement (A.2)
is true: suppose that there exist a non-zero vector, w, in the null space of A
such that ‖wS‖1 > ‖wS‖1 . We can represent w as

w =
n∑

i=1

ai ui (A.3)

where all the vectors ui have different supports with only one non-zero com-
ponent (1 or −1), and a1 > a2 > · · · > an ≥ 0. For even s, w can be
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reformulated as a sum of the following vectors

w11 =

s/2∑

i=1

aiui w12 =

s∑

i=s/2+1

aiui w21 =

3s/2∑

i=s+1

aiui

w22 =

2s∑

i=3s/2+1

aiui w31 =

n∑

i=2s+1

ui




s/2∑

j=1

zij




w32 =

n∑

i=2s+1

ui




s∑

j=s/2+1

zij




where {zij}1≤i≤s ,2 s+1≤j≤m are non-negative real numbers satisfying∑s
j=1 zij = ai . Then, recalling that w is in the null space of A, we get

A (w11 +w12 +w21 +w22 +w31 +w32) = Aw = 0

and from the parallelogram rule

‖A(−w11 +w22 +w32)‖2 + ‖A(−w12 +w21 +w31)‖2

= 2‖A(w11 +w12)‖2 + ‖A(w11 +w21 +w31)‖2

+ ‖A(w12 +w22 +w32)‖2 . (A.4)

Then, from Definition 2 of the ARICs, [54, Lemma 5.2], and (A.4) we get

0 ≥ 2
(
1− δs(A)

) s∑

i=1

a2i

+
(
1− δs(A)

)
[

s∑

i=1

a2i +
2s∑

i=s+1

(
ai +

n∑

j=2s+1

kij

)2
]

−
(
1 + δs(A)

)
[

s∑

i=1

a2i +

2s∑

i=s+1

(
ai +

n∑

j=2s+1

kij

)2
]

=
(
−3 δs(A)− δs(A) + 2

) s∑

i=1

a2i

−
(
δs(A) + δs(A)

)
[

2s∑

i=s+1

(
ai +

n∑

j=2s+1

kij

)2
]

(A.5)

and from [54, Lemma 3.1], we have

(
as+i +

n∑

j=2s+1

kij

)
≤ 1

s

s∑

i=1

ai . (A.6)
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Finally, combining (A.5) with (A.6), we get

(
2 δs(A) + δs(A)− 1

) s∑

i=1

a2i ≥ 0 . (A.7)

Since w 6= 0 and 2 δs(A)+δs(A) < 1, then (A.7) does not hold, contradicting
our assumption. Hence, we conclude that (A.2) is valid and perfect recovery
is guaranteed.
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Appendix B

Quantizer Distortion for Noisy

BU Sources

The PDF in (4.38) can be approximated, considering that ⌊x⌋≃x−1/2, as

fBU
T (τ) ≃ f̃BU

T (τ) , (1− p)δ(τ) +
p

2A

×





1 + Φ(τ)
(
2A
∆

− 1
)
, |τ | < ∆

2

Φ(τ)
(

2A
∆

− |τ |
∆

)
+ φ(|τ |), ∆

2
≤ |τ | ≤ 2A−∆

2

0, otherwise.

(B.1)

Consequently, the distortion DBU(∆) can be approximated as

DBU(∆) ≃ D̂BU(∆) ,
∫ ∞

−∞
τ 2 f̃BU

T (τ) dτ =
p

48
√
2π A∆

×
(
2σne

− 2A2

σ2
n

(
16A3 − 32A2∆+ 18A∆2 − 4σ2

n(A− 2∆)− 3∆3
)
− 12∆

× e
− ∆2

2σ2
n σ3

n + 4σne
− (∆−2A)2

2σ2
n

(
− 8A3 − 4A2∆+ A

(
∆2 + 2σ2

n

)
+ 3∆σ2

n

)

+
√
2π erf

(√
2A

σn

)(
32A4 + 3∆σ2

n(8A−∆) + 18σ4
n

)
+ 4

√
2πA∆3

+ 2
√
2πA∆erfc

(√
2A

σn

)(
32A2 − 18A∆+ 3∆2

)
−

√
2π erf

(
2A−∆√

2σn

)

×
(
32A4 + 3∆σ2

n(3∆− 8A) + 18σ4
n

)
+ 2

√
2πA∆2

(
∆− 6A

)
erfc

(
2A−∆√

2σn

)

+ 2∆σn
(
3∆2 − 8σ2

n

)
− 9

√
2πσ2

n

(
∆2 + 2σ2

n

)
erf

(
∆√
2σn

))
. (B.2)
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In order to obtain a more compact formula, D̂BU(∆) can be further ap-
proximated for A ≫ σn, as in (4.40). Also, the exact distortion, DBU(∆),
can be upper and lower bounded by noting that the floor function in (4.38)
is

−1

2
− |τ |

∆
<

⌊
1

2
− |τ |

∆

⌋
≤ 1

2
− |τ |

∆
.

112



Appendix C

Entropy of Quantized BG and

BU Sources

The entropy of the quantized sources is essential to understand the fun-
damental limits on the minimum number of bits required to encode these
signals [108]. In this regards, the entropy of S̃ , Q−1 (Q (S)) at the output
of the uniform quantizer is given from (4.28) as

H
(
S̃
)
=

imax∑

i=imin

−P

{
S̃ = i∆

}
log2 P {S = i∆} (C.1)

where the quantizer has finite number of levels.
In particular, the entropy of the quantized BU sources can be derived

from (4.3), (4.14), (4.28), and (C.1) as

HBU(p, b) = −
(
1− p+

p

2b − 1

)
log2

(
1− p+

p

2b − 1

)

− p
2b − 2

2b − 1
log2

p

2b − 1
(C.2)

where the PMF of S̃ is given by

P

{
S̃ = i∆

}
=





1− p+
p

2b − 1
, i = 0

p

2b − 1
, 0 < |i| ≤ imax

0, otherwise.

The corresponding result for BG distributions, taking into account the
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saturation effect of the quantizer, is derived from (4.14), (4.28), and (C.1) as

HBG(p, b, Ã) = −
(
p erf

(
Ã

2b − 1

)
− p+ 1

)
log2

(
p erf

(
Ã

2b − 1

)
− p+ 1

)

− p

(
1− erf

(
Ã− 2Ã

2b − 1

))
log2

(
p

(
1− erf

(
Ã− 2Ã

2b − 1

)))

− 1b≥3 ·




2b−1−2∑

i=1

p

(
erf

(
Ã(2i+ 1)

2b − 1

)
− erf

(
Ã(2i− 1)

2b − 1

))

× log2

(
p

(
erf

(
Ã(2i+ 1)

2b − 1

)
− erf

(
Ã(2i− 1)

2b − 1

))))
(C.3)

where Ã = A/(
√
2σs).
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Appendix D

Optimal ODR of Uniform

Quantizers for BU and BG

Sources

The mean squared error distortion for quantized BG noiseless sources, con-
sidering the saturation effect, can be calculated as

DBG(∆) = 2 p

(∫ ∆/2

0

x2f(x; σ2
s ) dx+

∫ ∞

A−∆

(x− A+∆/2)2f(x; σ2
s ) dx

+ 1{A/∆≥7/2}

A
∆
− 3

2∑

i=1

∫ (i+1/2)∆

(i−1/2)∆

|x− i∆|2f(x; σ2
s ) dx

︸ ︷︷ ︸
Ξ

)

= 2p


−∆σse

− ∆2

8σ2
s

2
√
2π

+
1

8

(
(∆− 2A)2 + 4σ2

s

)
erfc

(
A−∆√

2σs

)

+
1

2
σ2
s erf

(
∆

2
√
2σs

)
− Aσse

− (A−∆)2

2σ2
s√

2π
+ 1{A/∆≥7/2} Ξ


 . (D.1)

The term Ξ can be bounded, considering that f(x; σ2
s ) is a decreasing function

for x > 0 [123] and that

∫ (i−1/2)∆

(i−3/2)∆

f
(
x; σ2

s

)
dx > ∆ f

(
(i− 1/2)∆; σ2

s

)
∀i ≥ 2
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as

Ξ <

A
∆
− 3

2∑

i=1

f
(
(i− 1/2)∆; σ2

s

) ∫ (i+1/2)∆

(i−1/2)∆

|x− i∆|2 dx

=
∆3

12

A
∆
− 3

2∑

i=1

f
(
(i− 1/2)∆; σ2

s

)

<
∆3

12

[
f
(
∆/2; σ2

s

)
+

1

2∆

(
erf

(
A− 2∆√

2σs

)
+ erf

(
∆

2
√
2σs

))]
. (D.2)

Substituting (D.2) into (D.1) yields

DBG(∆) < D̃BG(∆) ,
p

12

(
σs

√
2

π

(
−12Ae

− (A−∆)2

2σ2
s − 6∆e

− ∆2

8σ2
s

)

+ 12 σ2
s erf

(
∆

2
√
2σs

)
+ 3

(
(∆− 2A)2 + 4σ2

s

)
erfc

(
A−∆√

2σs

)
+

1{A/∆≥7/2} ·
(√

2

π

∆3

σs
e
− ∆2

8σ2
s +∆2

(
erf

(
A− 2∆√

2σs

)
− erf

(
∆

2
√
2σs

))))
.

(D.3)

Consequently, the optimal rate-distortion of the considered uniform quan-
tizer can be found from (C.3), (D.1), and (D.3) as

RBG(p,D,A)= inf
{b≥2|DBG(2A/(2b−1))≤D }

HBG(p, b, Ã)

= HBG

(
p, log2

(
1+

2A

∆(D)

)
, Ã

)
(D.4)

< HBG

(
p, log2

(
1 +

2A

∆̃(D)

)
, Ã

)
(D.5)

where ∆(D) and ∆̃(D) are the inverse ofDBG(∆), (D.1), and D̃BG(∆), (D.3),
respectively.1

Similarly, for BU sources the rate-distortion is given by

RBU(p,D) = HBU

(
p, log2

(
1 + A

√
p

3D

))
(D.6)

where for noiseless BU sources the distortion is simply DBU(∆) = p∆2/12.

1Note that for A ≫ σs and ∆ ≪ σs, the asymptotic distortion in high resolution regime,
p∆2/12, is approached.
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