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Abstract

An OLAP analysis session is carried out as a sequence of OLAP operations applied to

multidimensional cubes. At each step of a session, an operation is applied to the result of

the previous step in an incremental fashion. Due to its simplicity and flexibility, OLAP is

the most adopted paradigm used to explore the data stored in data warehouses. With

the goal of expanding the fruition of OLAP analyses, in this thesis we touch several

critical topics. We first present our contributions to deal with data extractions from

service-oriented sources, which are nowadays used to provide access to many databases

and analytic platforms. By addressing data extraction from these sources we make a step

towards the integration of external databases into the data warehouse, thus providing

richer data that can be analyzed through OLAP sessions. The second topic that we study

is that of visualization of multidimensional data, which we exploit to enable OLAP on

devices with limited screen and bandwidth capabilities (i.e., mobile devices). Finally, we

propose solutions to obtain multidimensional schemata from unconventional sources (e.g.,

sensor networks), which are crucial to perform multidimensional analyses.





Chapter 1

Introduction

The term Business Intelligence (BI) refers to a set of processes and technologies that

aim at gathering, transforming, and analyzing data with the end goal of obtaining useful

insights for decision processes. Traditionally, at the core of a BI system lies a Data

Warehouse (DW), which is a repository of integrated and consistent data modeled in a

multidimensional fashion [1]. In the multidimensional model data are represented as cubes

whose cells and edges respectively stand for events and analysis dimensions. Moreover,

each cell is described by a set of measures (e.g., total income) and on top of each dimension

is built a hierarchy that defines different levels of aggregation of the data.

Among the many techniques available to analyze the data stored in a DW, the most

widespread is On-Line Analytical Processing (OLAP). An OLAP analysis session is carried

out as a sequence of OLAP operations (i.e., roll-up, drill-down, slice & dice, and pivoting)

applied to multidimensional cubes. More precisely, at each step of the session, an operation

is applied to the result of the previous step. This incremental approach coupled with the

intuitive multidimensional model enables users with very limited IT expertise to carry out

both explorative analyses and reporting duties. Due to its simplicity and flexibility, OLAP

has been a staple technology of BI since its inception and still exists alongside the more

sophisticated approaches offered by data mining techniques.

Although OLAP itself has not undergone significant changes, over the years the scope

of the analyses in which it is used has been drastically expanding. Indeed, decision

makers have started to incorporate more and more data that are not typically stored in

corporate databases. For instance this is the case for social business intelligence [2], in

which relevant data are fetched from the web in the form of user-generated content made

available in forums, blogs, social networks, and the like; or it is the case for scientific

applications where huge datasets (e.g., containing genomic data [3]) are shared worldwide

and publicly available for research purposes. Besides, the fruition of BI is no more limited

to desktop computers and it is now possible to carry out sophisticated analyses from

mobile devices. While on the one hand these devices widen the fruition of BI technologies,
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on the other they have some specific limitations, such as screen size and data bandwidth,

that need to be taken into account by analysis tools. These limitations can bring new

research opportunities and spur the creation novel approaches specifically tailored for

mobile devices.

This work takes on the challenges and opportunities described above by focusing on

bringing OLAP analyses to data sources and devices that traditionally do not support it.

Specifically, the main issues tackled in this work that are critical to enable ubiquitous OLAP

analyses are: (i) data extraction from service-oriented sources; (ii) compact visualization of

multidimensional data; (iii) multidimensional modeling over unconventional data sources.

The first issue is particularly relevant to extending the scope of traditional BI tools; indeed,

many modern data sources are hidden behind service-based interfaces, which often have

more restricted querying capabilities than traditional databases. The second issue is

instead related to the fruition of OLAP analyses on mobile devices by allowing the users

to tailor the visualization of multidimensional data based on their needs. Finally, the

last issue has a similar goal to the first one (i.e., extending OLAP to new data sources),

but instead of focusing on data extraction it tackles multidimensional modeling, which is

crucial to enabling OLAP analyses.

In the following, the aforementioned research thematics will be briefly introduced empha-

sizing our envisioned solutions and novel contributions. Specifically, Section 1.1 introduces

the approaches designed to deal with service-based data sources, Section 1.2 presents our

novel techniques for data visualization and, finally, Section 1.3 shows the results achieved

related to multidimensional modeling. The rest of the thesis is structured as follows:

Chapter 2 introduces the required background concepts; Chapters 3, 4, and 5 present in

detail our novel contributions (introduced below); lastly, Chapter 6 draws the conclusions

and sets the direction of potential future work.

1.1 Service-Oriented Data Sources

The contribution related to service-oriented data sources is twofold: the first part is an on-

demand ETL framework especially tailored for non-owned data sources, while the second

one is a technique to automatically build adaptive cost models for web services. Noticeably,

the second contribution can sit on-top of the first one to enhance the optimization of data

extractions. Indeed, each time an extraction is required, the proposed on-demand ETL

approach has to find the best set of queries to issue to the data source that minimizes the

cost of the operation (e.g., time). One of the key issues in this optimization problem is

building a cost model that allows to predict the cost of a given query.
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1.1.1 On-Demand ETL

In traditional OLAP systems, the ETL process loads all available data in the data

warehouse before users start querying them. In some cases, this may be either inconvenient

(because data are supplied from a provider for a fee) or unfeasible (because of their size);

on the other hand, directly launching each analysis query on source data would not enable

data reuse, leading to poor performance and high costs. The alternative investigated

here is that of fetching and storing data on-demand, i.e., as they are needed during the

analysis process. In this direction we propose the Query-Extract-Transform-Load (QETL)

paradigm to feed a multidimensional cube; the idea is to fetch facts from the source data

provider, load them into the cube only when they are needed to answer some OLAP query,

and drop them when some free space is needed to load other facts. Remarkably, QETL

includes an optimization step to cheaply extract the required data based on the specific

features of the data provider.

In greater detail, our novel contributions related to on-demand ETL are:

� We introduce an abstraction called dice for compactly representing the facts available

in a cube at each time, and we show how dice can be used to efficiently determine

the facts missing to answer an OLAP query.

� We present a heuristic algorithm that, given the missing facts and considering the

features of the source data provider, finds the cheapest set of extractions that the

ETL can carry out to fetch the data required.

� We discuss the result of a set of experimental tests, performed using a ROLAP

architecture, aimed at evaluating QETL from both points of view of efficiency and

effectiveness and at comparing it with a previous approach in the literature.

1.1.2 Cost Models for Web Services

Delivering accurate estimates of query costs in web services is important in different

contexts, e.g., to measure their Quality of Service. However, building a reliable cost model

is difficult as (i) a web service is a black box often hiding a complex computation, (ii) a call

to the same service can yield completely different costs by simply changing a parameter

value, and (iii) execution costs can drift with time. We propose Tiresias, an approach that,

given a web service exposing an interface with a fixed number of parameters, initializes and

actively adapts a model to accurately predict query costs. The cost model is represented

by a regression tree trained through two interleaved querying cycles: a passive one, where

the costs measured for user-generated queries are used to update the tree, and an active

one, where the service is probed through system-generated queries to cope with drifts in

the cost function.
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Overall, the main contributions are:

� An architectural framework for deriving cost models of web services using their

public interfaces only.

� An extension of the SAIRT algorithm [4] that incorporates multiple linear regression

models with the result of improving the overall accuracy while keeping training costs

compatible with the requirements demanded by streaming applications.

� An active learning algorithm that initializes the cost model and dynamically adjusts

it in case of function drift.

� A set of experimental tests performed on both real and synthetic datasets to evaluate

Tiresias in terms of efficiency and effectiveness.

1.2 Visualization of Multidimensional Data

To cope with the problem of information flooding and with the limitations of mobile

devices (i.e., screen’s size and data bandwidth), Golfarelli et al. [5] presented the shrink

operator, which is aimed at balancing precision and size when visualizing multidimensional

cubes via pivot tables. This operator can be applied during an OLAP session to the

cube resulting from a query to decrease its size while controlling the approximation

introduced. The idea is to fuse similar facts together and replace them with a single

representative fact (computed as their average), respecting the bounds posed by dimension

hierarchies. However, the implementation of shrink presented in [5] can operate on a single

dimension at time. Furthermore, the algorithms presented, while correct, still have margin

of improvement. Going in the direction of enhancing the shrink operator, in this work

we present new algorithms for the mono-dimensional (both heuristic and exact) and a

multidimensional generalization.

1.2.1 Optimization Techniques for the Shrink Operator

We propose a model to optimize the implementation of the shrink operation, which

considers two possible problem types. The first type minimizes the loss of precision

ensuring that the resulting data do not exceed the maximum size allowed. The second

one minimizes the size of the resulting data ensuring that the loss of precision does not

exceed a given maximum value. We model both problems as a set partitioning with a side

constraint, which we solve with:

� An original formulation of the problem as a set partitioning problem with side

constraints.
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� An heuristic method based on dual ascent procedure that exploit pricing and

Lagrangian relaxation.

� An exact method which solves the problem starting from the dual solution found by

the dual ascent procedure.

1.2.2 Multidimensional Shrink

Since the original shrink operation [5] can only be applied to one dimension (i.e., reduces

a cube along one dimension), to improve its efficacy, we propose a multi-dimensional

generalization where facts are fused along multiple dimensions. Multi-dimensional shrink

comes in two flavors: lazy and eager, where the bounds posed by hierarchies are respectively

weaker and stricter. Greedy algorithms based on agglomerative clustering are presented

for both lazy and eager shrink, and experimentally evaluated in terms of efficiency and

effectiveness.

The proposed contributions are the following ones:

� The formalization of the shrink framework, including the computation of the shrink

approximation, is generalized from the mono- to the multi-dimensional case.

� Two different forms of the hierarchy compliance constraints are defined (lazy and

eager).

� The size of the search space for computing both lazy and eager shrink is characterized,

and greedy algorithms are proposed.

� The approach is evaluated in terms of efficiency and effectiveness, also in comparison

to those achieved by traditional roll-up and mono-dimensional shrink.

1.3 Multidimensional Modeling

Multidimensional modeling is required to enable OLAP analyses, however it is often a

non-trivial task to obtain a proper schema for a given domain. For this reason we present:

an automatic approach to obtain multidimensional schemata specifically tailored for data

vaults [6]; and a set of manually designed schemata for sensor data.

1.3.1 Automatic Multidimensional Modeling for Data Vaults

The data vault model natively supports data and schema evolution, so it is often adopted

to create operational data stores. However, it can hardly be directly used for OLAP
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querying. We propose an approach called Starry Vault for finding a multidimensional

structure in data vaults. Starry Vault builds on the specific features of the data vault model

to automate multidimensional modeling, and uses approximate functional dependencies to

discover out of data the information necessary to infer the structure of multidimensional

hierarchies. The manual intervention by the user is limited to some editing of the resulting

multidimensional schemata, which makes the overall process simple and quick enough to

be compatible with the situational analysis needs of a data scientist.

1.3.2 Multidimensional Modeling Over Sensor Data

Due to the rapid growth of the Internet of Things [7], sensors are more and more ubiquitous

and are quickly becoming one of the major sources of data. While these data are usually

well exploited for real-time monitoring tasks, the knowledge to properly handle them in an

integrated and long-term fashion is still missing. To fill this gap we propose the following

contributions:

� We present a functional architecture to support both real-time and off-line analyses.

� We introduce a set of multidimensional schemata covering the main requirements

typical of systems that deal with sensor data.

� We show how the schemata can be used in two different real scenarios.
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Chapter 2

Background Concepts

In this chapter we define some of the basic concepts used throughout the rest of this work.

We start by giving an informal presentation of OLAP analysis and ETL, respectively in

Section 2.1 and 2.2. We then close with Section 2.3, which defines the shared formal

framework that will be used to support our novel contributions. Please, notice that both

Section 2.1 and Section 2.2 are not meant to be in-depth presentations, indeed, they are

meant to serve as an introduction for the novice reader.
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2.1 OLAP Analysis

In the context of BI the main paradigm used for modeling data is the multidimensional

one. As shown in Figure 2.1, in a multidimensional cube events to be analyzed (e.g., census

outcomes) are associated with multidimensional cube cells, while cube edges stand for

analysis dimensions (e.g., RESIDENCE, TIME, OCCUPATION). For each cube cell is given a

value for each measure describing the event (e.g., citizen incomes, number of children). On

top of each dimension is built a hierarchy that defines groupings of its values. An example

of cube is shown in Figure 2.1, while an example of hierarchies associated to dimensions

are shown in Figure 2.2.

TIME

RESIDENCE

OCCUPATION

2016

clerk

Miami

15

Figure 2.1: An example of a three dimensional cube

All

South-Atlantic

FL VA

Miami
Orlando

Tampa

Washington
Richmond

Arlington

All

2014
2015

2016

City

State

Region

AllCity

Year

AllYear

RESIDENCE TIME

Figure 2.2: Roll-up orders and functions for two hierarchies in the CENSUS schema

Multidimensional cubes are queried through OLAP (On-Line Analytical Processing) queries,

which allow users to interactively navigate the data without requiring advanced IT skills.

An OLAP session is a navigation path composed by a sequence of queries. At each step of

a session, the user can apply an OLAP operator to the result obtained from the previous
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(a) Roll-up (b) Drill-down (c) Slice-and-dice

(d) Pivoting (e) Drill-across

Figure 2.3: Visual representation of the OLAP operators

one. The most common OLAP operators are roll-up, drill-down, slice-and-dice, pivoting,

drill-across, and drill-through.

� The roll-up operator aggregates data, thus reducing the level of detail (see Figure

2.3a). For instance, when applying a roll-op from City to State, the result will be a

set of facts aggregated by State (e.g., the average income for each state).

� As shown in Figure 2.3b, the drill-down operator yields the opposite result of roll-op,

hence it increases the level of detail of the data (e.g., from State to City).

� Slice-and-dice (see Figure 2.3c) reduces the number of visualized values by means of

filtering (e.g., City = Bologna).

� Pivoting (see Figure 2.3d) causes a change in layouts, aiming at analyzing a group

of data from a different viewpoint.

� Through the drill-across operator (see Figure 2.3b) it is possible to link the cells of

different cubes to get a broader view of the data in the DW.

� The drill-through operator switches from multidimensional aggregated data to the

data stored in operational data sources. This operator is rarely implemented by BI

tools; indeed, the drill-through function of commercial tools is often a simple view of

the data in the DW at the finest granularity.
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Figure 2.4: A simple pivot table showing data per City and Year

The results obtained during an OLAP analysis are usually visualized either through charts

(e.g., bar charts) or through pivot tables (as shown in Figure 2.4). While charts are

more effective at summarizing big amounts of data, they might become too complex to

understand when dealing with more than two dimensions. On the other hand, while pivot

tables are simple and more flexible than charts, their readability quickly declines as the

quantity of data to visualize rises.

To close this brief introduction on OLAP analysis, we remark that commercial analysis

tools (e.g. Tableau 1) are nowadays trying to seamlessly include the OLAP exploration

style of analysis with more advanced techniques (e.g., clustering, regression analysis, etc.)

Furthermore, modern tools often mask the implementation of these operators behind clever

interfaces that allow to execute complex operations with minimal effort.

2.2 ETL

The Extract, Transform, and Load (ETL) process is in charge of extracting data from

operational data sources, enforcing quality and consistency standards (so that data coming

from different sources can be integrated) and, finally, feeding the DW. Traditionally, this

process is executed periodically (e.g., daily) in a batch fashion. The frequency of the ETL

must be carefully chosen: a more frequent ETL allows for up-to-date data but at the cost

of a heavier burden placed on operational sources; on the other hand, a less frequent ETL

might result in stale data but has a smaller impact on data sources.

In the following we describe the main phases of the ETL process.

� Extraction: it includes the extraction of data from the operational sources. The

extraction can be either static or incremental. A static extraction is used to populate

1https://www.tableau.com
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the DW from scratch; an incremental extraction is instead used to update the DW

depending on the changes occurred in the operational data.

� Transformation: this phase is in charge of cleaning and preparing the data to be fed

to the DW. The cleansing part of this phase includes all those operations that aim

at improving the data quality and consistency. For instance, the operational data

might contain duplicate values, missing data, impossible values, etc. After all these

issues have been addressed, the data need to be integrated and transformed into a

format that is more suitable for analytic queries; for example, denormalizations of

the schemata are often introduced to improve performances at query time.

� Loading : it is the last step of the ETL process. Similarly to the extraction phase, it

can be carried out in two ways: refresh and update. In the former case, the DW is

completely rewritten; in the latter one, only those changes applied to source data

are added to the DW.

While traditionally the ETL process is periodically executed in a batch fashion, nowadays

business users demand approaches that are more agile and flexible. As discussed in

literature [8], ETL processes and DW architectures need to evolve to manage the growing

data heterogeneity (e.g., sensor data) and strict freshness requirements (e.g., near real-time

scenarios). Section 3.2 will treat this topic in greater detail and present our novel approach

to on-demand ETL.

2.3 Formal Framework

In this section we present the main definitions shared by the approaches presented in the

following chapters.

Definition 1 (Multidimensional Schema) An n-dimensional schema (or, briefly, a

schema) M is a couple of

� a finite set of hierarchies, H � th1, . . . , hnu, each characterized by a set Li of levels

and a roll-up total order  i of Li. Each level l is defined over a categorical domain

of members, Domplq. The domain of the top level of each hierarchy has a single All

member. Apices will be used to denote the hierarchy each level belongs to; besides,

the indexes of levels will be ordered according to their roll-up order: li1  i l
i
2  i . . ..

� a family of roll-up functions including, for each pair of adjacent levels lij and lij�1, a

function RU
lij�1

lij
: Domplijq Ñ Domplij�1q that associates each member in Domplijq to

one member in the next level.
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Let two levels lij, l
i
k P Li with j ¤ k be given. Given member m P Domplijq, we denote with

Rollkpmq the member of lik recursively defined as follows:

Rollkpmq �

$&
%m , if k � j

RU
lik
lik�1

pRollk�1pmqq , if k ¡ j

We say that m rolls-up to Rollkpmq. Conversely, given a set of members M � Domplikq,

we denote with DrilljpMq the set of members of lij that roll-up to a member in M .

Example 1 IPUMS is a public database storing census data [9]. As a working example we

will use a simplified form of its CENSUS multidimensional schema based on two hierarchies,

namely RESIDENCE and TIME. Within RESIDENCE it is City  RESIDENCE State, and

Miami P DompCityq rolls-up to FL P DompStateq and to South� Atlantic P DompRegionq

(roll-up orders and functions are shown in Figure 2.2).

The possible ways to aggregate data are captured by the following definition.

Definition 2 (Group-by) A group-by of schema M is an element G P L1 � . . . � Ln.

A coordinate of G � xl1, . . . , lny is an element d P Dompl1q � . . .�Domplnq (which, with

a slight abuse of formalism, we will denote with d P G).

Example 2 Some examples of group-by on the CENSUS schema are G1 � xCity, Yeary

and G2 � xRegion, Yeary. A coordinate of G1 is xMiami, 2012y.

All facts in a cube are characterized by the same group-by G, that defines their aggregation

level, as well as by a coordinate of G and by a numerical value v; this can be formalized

as follows:

Definition 3 (Cube) A cube at group-by G is a function C that maps each coordinate

of G either to a numerical value called measure or to NULL. Each couple xd, Cpdqy with

Cpdq � NULL is called a fact of C.

The reason for using NULLs is that cubes are normally sparse, i.e., some facts are missing.

An example of missing fact is the one for the Arlington city and year 2010 in Figure 2.4.

Example 3 Two examples of facts of CENSUS are

xxMiami, 2012y , 50y xxOrlando, 2011y , 43y

The measure in this case quantifies the average income of citizens. A possible cube at G1

is depicted in Figure 2.4.
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Chapter 3

Extracting Data from

Service-Oriented Sources

In this chapter we describe our novel contributions related to service-oriented data sources.

After a brief introduction (see Section 3.1), we proceed to present QETL (see Section

3.2), which is an on-demand ETL framework designed to cope with those scenarios where

loading all available data might be either inconvenient, or even unfeasible because of their

size and cost of access (i.e., data for a fee). The idea behind QETL is that of fetching facts

from the source data provider, loading them into the cube only when they are needed to

answer some OLAP query, and dropping them when some free space is needed to load

other facts.

The other approach presented in this chapter is Tiresias (see Section 3.3), whose aim is

that of automatically building cost models for web services. Delivering accurate estimates

of query costs in web services is important in different context, e.g., to measure their

Quality of Service. However, building a reliable cost model is difficult as (i) a web service

is a black box often hiding a complex computation, (ii) a call to the same service can yield

completely different costs by simply changing a parameter value, and (iii) execution costs

can drift with time. Given a web service exposing an interface with a fixed number of

parameters, Tiresias initializes and actively adapts a model to accurately predict query

costs.
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3.1 Service-Oriented Data Sources and BI

Data warehouses (DWs) have been used for almost two decades in company settings to

store information useful for decision making. Most of this information is typically gathered

from corporate operational databases using an ETL (Extract-Transform-Load) process

that extracts relevant data, transforms them into multidimensional form, and loads them

into the DW in the form of cubes, to be later analyzed by means of reporting and OLAP

tools. Traditionally, ETL is performed on a periodic basis by fast bulk-loading techniques

during a time window in which the DW is in a quiescent state, i.e., is not queried by

end-users. This means that, at query time, the information available has already been

loaded in its entirety into the cubes.

Over the last few years, the scope of the analyses carried out by decision makers has been

increasing in size to encompass a relevant quantity of data that are not necessarily stored

in corporate databases. For instance this is the case for social business intelligence, in

which relevant data are fetched from the web in the form of user-generated content made

available in forums, blogs, social networks, and the like; or it is the case for scientific

applications where huge datasets (e.g., containing genomic data) are shared worldwide

and publicly available for research purposes. These data are often accessible through web

services, whose functionalities range from simply granting the access to data stored on a

DBMS, to running complex analyses on raw data aimed at returning valuable information.

In this context, our twofold contribution is presented in detail in Section 3.2 and 3.3.

� In Section 3.2 we define an on-demand ETL framework that allows the user promptly

extract data from web services and load them in the DW for future reuse. Indeed,

in many cases loading all available data into the DW cubes at ETL time may be

either inconvenient (because data are supplied from a provider for a fee) or unfeasible

(because of their size); on the other hand, directly launching each analysis query on

source data would not enable data reuse, thus leading to poor performance and high

costs. The QETL approach works as follows: given a user query, QETL extracts

the required data and, if needed, drops already loaded facts to make room for the

new query. Furthermore, to reduce the ETL costs, QETL includes an optimization

step to cheaply extract the required data based on the specific features of the data

provider.

� In Section 3.3 we present instead an approach to automatically build cost models for

web services. In several cases, single services must be composed so that information

from different sources can be integrated and complex workflows can be obtained.

When multiple service compositions are feasible, the choice is often based on the

Quality of Service (QoS). An important indicator of QoS for web services is the cost

(typically, the execution time) for answering a query. Unfortunately, obtaining good

estimates is often difficult, especially in the case of services that offer complex analyt-
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ics, where a call to the same interface can trigger completely different computations

by simply changing a set of parameter values. To automatically build a cost model

from such services, Tiresias employs regression trees trained through two interleaved

querying cycles: a passive one, where the costs measured for user-generated queries

are used to update the tree, and an active one, where the service is probed through

system-generated queries to cope with drifts in the cost function.

Noticeably, the latter contribution can be stacked on top of the former to enhance it. The

statistics obtained through the cost models of the queried services can in fact be used to

optimize the extractions issued by the on-demand ETL.
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3.2 On-Demand ETL from Non-Owned Data Sources

As introduced above, traditional batch ETL approaches can be inconvenient or even

unfeasible in many cases. The alternative investigated here is that of incrementally

fetching and storing data on-demand, i.e., as they are needed during the analysis process.

In greater detail, this on-demand approach can be especially useful in the following main

application scenarios:

� When source data are supplied for a fee by one or more data providers, on-demand

ETL enables exactly extracting the data that are actually necessary and allowing

reuse of that data by several users at different times, thus reducing the overall costs

of analyses.

� In scientific settings, the amount of possibly useful data shared by all the specialized

repositories available worldwide can be intractable [3], so on-demand ETL can

effectively cut the bootstrapping time by allowing incremental extraction and reuse

of data.

� In a situational business intelligence scenario, the decision process is empowered

with open/linked data that have a narrow focus on a specific business problem and,

typically, a short lifespan for a small group of users [10]; in this context, on-demand

ETL is a key for fetching, at each time, the relevant data needed for each specific

analysis.

� More and more companies are using so-called data lakes to “park” huge volumes

of low-quality and heterogeneous data in their native format until they are needed;

in this setting, the complexity of cleaning and transforming these data to integrate

them in the decision process discourages users from adopting a traditional batch

ETL approach, making an on-demand approach preferable. In the latter scenario

the data lake would be treated as any other data source that feeds the DW, and

ETL operations would be applied only to the data that are required by analyses.

Before presenting the outline and main contributions of this work, we provide a description

of the use case (that will serve as motivating example) followed by the basics of the formal

framework.

3.2.1 Motivating Example

The GenData 2020 project aims at managing genomic data through an integrated data

model, expressing the various features that are embedded in the produced bio-molecular

data and in their correlated phenotypic data. This goal is achieved by enabling viewing,

searching, querying, and analyzing over a worldwide-available collection of shared genomic
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Figure 3.1: Analysis of genomic mappings in the GenData 2020 framework

data. One of the analysis services envisioned within this framework is the multi-resolution

analysis of the mappings between regions (i.e., segments of the genome) and samples (i.e.,

sets of regions and correlated metadata resulting from an experiment) [3, 11]. As sketched

in Figure 3.1, these mappings are computed by issuing a query in an ad-hoc language

called GMQL (GenoMetric Query Language) against some repositories of genomic data

such as ENCODE.1 The query output, called genome space, comes in the form of a set of

GTF (Gene Transfer Format, http://genome.ucsc.edu) files and related metadata, and

due to its huge size is stored using the Hadoop platform.

OLAP-like queries are a valuable tool for biologists [3] because they enable multi-resolution

analyses based on standard hierarchies of concepts; besides, they are preferred to traditional

browser-based approaches because they enable a far more flexible and user-driven navigation

of data. Unfortunately, the genome space generated by most biologically-relevant queries

is too large to enable a traditional ETL process to load it into a multidimensional cube in

a DW for OLAP analyses. This is where on-demand ETL comes into play. When a user

formulates an OLAP query q, the front-end sends it to the on-demand ETL component

for processing. If all the multidimensional data (called facts from now on, and including

both the actual mappings and the correlated dimensional data about the involved regions

and samples) necessary to answer q are already present in the mapping cube (i.e., they

have been previously loaded), they are sent to the front-end and shown to the user.

Otherwise, the genome space is accessed via FTP to fetch all the missing data, that are

then transformed and loaded onto the mapping cube, so that q can be answered. Of course,

from time to time, some facts used for past queries must be dropped from the cube to

make room for the facts needed for new queries.

1ENCODE, the Encyclopedia of DNA Elements, is a public repository (accessible via FTP) created and
maintained by the US National Human Genome Research Institute to identify and describe the regions of
the 3 billions base-pair human genome that are important for different kinds of functions [12].
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Figure 3.2: The MAPPING schema (the two All top levels are not shown)
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Figure 3.3: Fictitious roll-up functions for the INPUT and the REFERENCE hierarchies

3.2.2 Formal Background

In this section we recall the basic formal setting introduced in Section 2.3, adapting the

presented definitions and enriching them with examples related to our case-study. For

simplicity, we will consider hierarchies without branches, i.e., consisting of chains of levels,

and facts with a single measure; see Section 3.2.5.7 for a discussion of how to deal with

branched hierarchies and multiple measures.

We start by simplifying the notation of roll-up functions; indeed, as we only need to roll-up

from members at the finest levels, i.e., m P li1, we will simplify the roll-up definition as

RollUpl
i
k : Dompli1q Ñ Domplikq for each level lik.

Example 4 As a working example we will use a simplified form, shown in Figure 3.2,

of the MAPPING schema adopted in GenData 2020 for OLAP analysis of mappings (the

complete schema is shown in [11]). The schema includes two dimensions, namely INPUT

and REFERENCE. Within the INPUT hierarchy, Sample  INPUT Experiment  INPUT Tissue,

RollUpExperimentpS21q � Exp1, and RollUpTissuepS21q � Spleen (see Figure 3.3).

We also reuse Definition 2 and 3, which respectively describe the concept of group-by and

cube.

Example 5 Three examples of group-by’s on the MAPPING schema are GK � xSample,Regiony,
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G1 � xSample,Chromosomey, and G2 � xTissue,Regiony. A coordinate of G1 is xS21,Ch2y.

Example 6 Two examples of facts of MAPPING are xxS21,R22y, 2y and xxS21, Ch2y, 900y.

The measure in this case counts the number of regions of each input sample that overlap

with each reference region.

3.2.3 Contribution and Outline

In this work we present QETL (Query-Extract-Transform-Load), an approach to on-

demand ETL for feeding a multidimensional cube in scenarios where batch-loading the

whole cube before query-time is either unfeasible (e.g., for space reasons) or inconvenient

(e.g., for time or cost reasons). In QETL, facts are incrementally fetched from the source

data provider and loaded into the cube only when they are needed to answer some OLAP

query, to be possibly later dropped when they can be considered obsolete or when some

free space is needed to load other facts. We remark that, in this context, with the term

fact we mean not only the core multidimensional data (i.e., the measure values for a given

multidimensional coordinate), but also the correlated dimensional data (i.e., the coordinate

values and the corresponding hierarchy values). This means that, with reference to a

classical star schema implementation, QETL works by loading/dropping tuples of fact

tables and dimension tables at the same time.

The reason for storing the loaded facts into the cube (rather than simply using them

to answer the OLAP query on-the-fly) is twofold. In scenarios where several users are

concurrently analyzing the same cube, this caching-like mechanism encourages data reuse

and cuts the cost for re-fetching the same facts twice or more. On the other hand, even

when facts are mostly accessed by a single user (as in the genomic example, because each

user normally builds her own mappings using custom GMQL queries), caching the facts

extracted is convenient because the queries expressed during an OLAP session normally

tend to be contiguous in terms of the facts they require [13].

In [3, 11] we set a case for on-demand ETL in the context of genomics and described a

general framework for analyzing genome data. In this work we propose a specific solution

to on-demand ETL; in particular:

(i) We introduce an abstraction called dice for compactly representing the facts available

in a cube at each time, and we show how dice can be used to efficiently determine

the facts missing to answer an OLAP query.

(ii) We present a heuristic algorithm that, given the missing facts and considering the

features of the source data provider, finds the cheapest set of extractions that the

ETL can carry out to fetch the data required.

(iii) We discuss the result of a set of experimental tests, performed using a ROLAP
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architecture, aimed at evaluating QETL from both points of view of efficiency and

effectiveness and at comparing it with a previous approach in the literature.

The outline of the contribution is as follows. After surveying the related literature in

Section 3.2.4, Section 3.2.5 describes QETL in detail, while Section 3.2.6 shows the results

of the experimental tests we performed. Finally, in Section 3.2.7 we draw the conclusions.

3.2.4 Related Literature

Enabling OLAP-like analyses on data different from those stored in traditional corporate

databases is one of the most pressing requirements from decision makers, data scientists,

and researchers [14]. One of the barriers that must be broken to achieve this goal is

the limitation of traditional ETL processes that are typically batch, heavy, and strongly

oriented to corporate and structured data. This requirement has been discussed in several

vision papers. Abelló et al. [10] envision an architecture for situational business intelligence

and discuss the related research challenges emphasizing the need for data extractors capable

of connecting to external data sources and rewriting queries on them. Morton et al. [15]

push this concept further by defining a new type of analyst, the data enthusiast, who has

very limited ICT skills but must be enabled to connect and query several different, and

possibly unstructured, data sources.

The problem of loading external data into a DW is strictly related to the one of defining a

multidimensional schema of these data. Several papers focus on the problem of automati-

cally deriving a conceptual schema from non-conventional data sources such as linked data

[16, 17], ontologies, and user-generated content [18]. Although some of them also propose

a technique for semi-automatically deriving the ETL procedures that extract data from

these sources [19] and for mapping the non-conventional sources onto a multidimensional

schema [16, 17], none discusses on-demand loading and its optimization.

When users ask for strictly up-to-date data, a right-time DW is needed. This term is

used to mean that changes in the real world are propagated to the DW in a timely

fashion (not necessarily in real-time). In a right-time DW architecture [20] there are two

components whose performance is crucial to assuring real-time or near-real-time processing

of data: optimized ETL software and refreshing software. Logical optimization, focusing

on restructuring ETL processes in order to minimize the cardinality of data flows, has

been proposed by Simitsis et al. [21, 22]. In particular, [22] proposes a heuristic for

searching the space of possible ETL graphs to find the most efficient execution. In [23]

a new type of join, called MeshJoin is proposed for joining a fast update stream with a

large disk-resident relation under the assumption of limited memory. Refreshing software

is typically based on views and materialized views. The main issue here is to avoid

inconsistencies on materialized views that are read and refreshed and, at the same time,

are modified by operational transactions. There are a number of solutions that avoid this
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inconsistency, based on (i) applying algorithms that compensate for out-of-date data [24],

(ii) maintaining two versions of materialized views, where one version is being refreshed

while the other is being read [25], or (iii) using additional data structures and transactions

[26]. While the problem of delta-extraction (at each run of ETL, only the operational data

updated/added since the last run are extracted) is obviously addressed in these works, no

mention is made to on-demand ETL (i.e., to extracting facts as they are required by user

queries).

Two approaches similar to ours are proposed by Kargin et al. [27] and Idreos at al. [14].

The first paper introduces lazy ETL, that delays ETL at query time. Since extraction

and transformation are implemented as relational algebra operators, the applicability and

expressiveness of the approach are quite limited; furthermore, cache management is left to

the DBMS with no specific optimization. Similarly, Idreos at al. sketch a system capable

of loading at query time portions of data involved in the current query and stored in

external flat files. Like in [27], they envision a set of relational operators to be added to the

current query to enable source data retrieval. The minimum portion of data to be loaded

is a column value and no optimization of the data extraction process is proposed. None

of the previous papers adopt a formal framework for describing the proposed solutions.

Another interesting approach that delays ETL at query time is Lenses [28, 29], a framework

for pay-as-you-go data curation (e.g., entity resolution and schema matching) based on

probabilistic query processing. While that work can be placed in the context of on-demand

ETL, the problem definition is quite different from ours. Indeed, in QETL the ETL effort

is reduced by focusing the extractions on the facts required by user queries and by leaning

on data reuse; conversely, the Lenses approach provides approximate, probabilistic answers

so that not all the queried data have to be processed. While QETL provides exact answers,

the basic claim in Lenses is that the user might prefer an approximate but less expensive

answer; for instance, this might be the case during exploratory analysis.

A neighboring research topic is that of data caching. Indeed, the whole DW can be

considered as a cache because it avoids directly accessing operational data to answer

OLAP queries. The interest in caching issues in the DW literature radically changes

depending on the infrastructural level considered. Caching of the query results has

been pioneered by the WATCHMAN cache manager [30], which uses two algorithms

for (in-memory) cache replacement and cache admission. An ad-hoc profit metric has

been devised considering, for each retrieved set of data, its average rate of reference, its

size, and the execution cost of the corresponding query. Noticeably, our approach bears

several similarities with semantic caching [31]. The idea behind semantic caching is that

of compactly representing stored queries by means of semantic descriptions, which is

especially useful in client-server settings to reduce network overhead. However, approaches

like semantic caching cannot be directly applied whenever data sources have limited query

capabilities (e.g., they do not offer a logical negation operator). Other studies try to

address these limitations by proposing systems specifically tailored for keyword-based
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queries [32] or, more in general, for web databases [33]. Finally, several papers address

the topic of materialized views, whose underlying idea is that of caching aggregated data

within the DW to reduce the aggregation cost at query-time (see [1] for a review). Less

interest has been raised in the use of caching at the ETL level, for instance, in [34] Liu

proposes to use caching to optimize ETL data flows. To the best of our knowledge, no one

of these papers proposes the use of the cubes themselves as a cache for data sources that

cannot fit the available space —which is one of the use cases for QETL.

Our approach is also related to chunking, an approach for partitioning a cube into sub-

cubes called chunks [35, 36]. Like a dice in QETL, a chunk is formally defined as a set of

elements of a multidimensional array; differently from dice, chunks have fixed size and

shape. While in QETL the goal of the dice construct is to enable a fast computation of

the facts required by a user query and still missing from the cube, chunking is normally

aimed either at minimizing the reading times from disk in MOLAP implementations of

DWs, or at separating dense areas of a cube from sparse areas in HOLAP (hybrid OLAP)

implementations. To the best of our knowledge, the only approach that uses chunking to

reduce the complexity of caching is the one by Deshpande et al. [35]; though they need to

find which chunks overlap with each multidimensional query, the computation of a “chunk

difference” is rather simple: since all chunks have the same shape and size, the system

simply needs to check which chunks overlap with the query and which chunks are already

stored in the cache. Using chunking for our QETL approach has several drawbacks, all

tied to the fact that chunking requires to specify both the number and shape of chunks

beforehand: (i) a chunk envelope might not fit perfectly a given query, thus containing

data that are not actually necessary; (ii) in our scenario, where some dimensional data

are incrementally loaded, it might not be possible to define homogeneous chunks; and

(iii) even if some algorithms to find the optimal number and shape of chunks exist [36],

the solutions obtained can significantly depend on the type of workload. Despite these

potential drawbacks, in Section 3.2.6.3 we experimentally compare the chunking approach

with ours.

Overall, among the above-mentioned approaches, those that bear most similarity with

ours are those by Kargin et al. [27] and by Ren et al. [31]. However, to address the query

trimming problem (i.e., given two overlapping queries, determine the tuples contained

in one but not in the other), both these approaches resort to the full expressiveness of

relational algebra —which is often missing in data sources with limited query capabilities.

Conversely, the querying expressiveness required by QETL is just that of selection on

attributes —which is normally available in data sources. Besides, in lazy ETL [27] data

extraction is not optimized when data sources with multiple interfaces are present, while

with QETL we introduce a heuristics to minimize the cost of the issued queries. Finally,

while the dice construct resembles chunking [35], the former overcomes many limitations of

the latter by defining a more flexible and accurate envelope to represent multidimensional

data.
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Figure 3.4: Functional architecture for on-demand ETL; black arrows represent function
calls, while gray arrows indicate data flows

3.2.5 The QETL Approach

A functional view of the QETL process is shown in Figure 3.4, and its components are

explained below. Though QETL can operate on multiple cubes, for simplicity we show

a single cube. The abstraction we use to compactly represent the facts currently stored

in the cube, those required to answer an OLAP query, those missing, and those to be

requested to the source data provider through the ETL is called dice and is formally

defined in Section 3.2.5.1; intuitively, a dice is a multidimensional interval of coordinates

that determines a set of facts.

� The dice management process takes an OLAP query q and checks, using a map of

the dice currently available in the cube (dice map), if q can be immediately answered

or some facts are missing. In the first case, q is sent to the multidimensional engine

for processing. In the second case, the difference between the dice required by q

and the available dice is computed in terms of a set of missing dice and handed to

the optimization process. This process is also in charge of choosing the dice to be

dropped from the cube when some room is needed. Of course, when QETL operates

on multiple cubes, each of them requires a separate dice map.

� ETL: this is a traditional ETL process that offers an interface consisting of a set of

(extraction) services. To comply with the limitations often posed by the source data

provider and by its query language, we assume that each service supports selection

predicates on one or more levels (e.g., it might support selections on Tissue and

Chromosome) and is capable of returning the set of facts corresponding to a single

dice. When a service is called with a specific selection predicate, the ETL turns it
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into a query on the source data provider, fetches the required data, and transforms

them into multidimensional form. The ETL has a model for estimating the cost of

each call to a service, based in general on both the cost for data fetching and those

for their transformation.

� The optimization process knows the interface offered by the ETL and the cost for

each service call as exposed by the ETL. Based on this information, it determines a

set of extractions that cover all the missing dice and has total minimum cost. Each

extraction entails a call to a service.

� Since the interface exposed by the source data provider does not necessarily allow

full querying expressiveness, the facts fetched at each time may be a superset of

those actually needed. The filtering process filters them before loading them into

the cube; then it sends the set of loaded dice to the dice management process that

updates the dice map accordingly.

With reference to the numbered arrows in Figure 3.4, the workflow of QETL can be

schematically described as follows.

0. The user visually formulates an OLAP query on the OLAP front-end.

1. The OLAP front-end sends the query (e.g., in MDX format) to dice management. If some facts are missing:

2. Dice management determines the set of missing dice and transmits them to optimization and filtering.

3. Optimization determines a set of optimal extractions and calls the ETL service accordingly.

4. ETL sends a fetching query to the source data provider.

5. The source data provider returns the required data.

6. ETL puts the data in multidimensional form and sends the resulting facts to filtering. If there is not enough room

in the cube:

7. Dice management chooses the dice to be dropped from the cube.

8. Filtering loads the filtered facts into the cube.

9. Dice management sends the query to the MD engine.

10. The MD engine executes the query on the cube.

11. The query answer is returned to the MD engine.

12. The MD engine returns the query answer to the OLAP front-end.

In the following, we proceed to describe in greater detail the dice management, optimization,

and filtering processes. As to ETL we emphasize that, in our Query-Extract-Transform-

Load paradigm, each user query triggers not only an extraction and a loading, but also

a transformation. However, the focus of this work is on incremental extraction and

loading, so we will not specifically discuss the complexities of transformation (though in

our experimental tests we will consider and single out the cost for transformation as well).
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3.2.5.1 Query and Extraction Model

An OLAP query is normally defined by a group-by G and some selection predicates

expressed on levels. To start simple, here we assume that facts are extracted and loaded into

the cube only at their finest granularity, to be then aggregated by G by the multidimensional

engine (in Section 3.2.5.7 we will discuss the implications of extracting and storing facts

at different group-by’s). For this reason, G is not relevant from the point of view of

on-demand ETL, and we can simply represent a query q as a set of multidimensional

intervals —those induced through the roll-up functions on the domains of the finest levels

l11, . . . l
n
1 , etc. by the selection predicates of q— that determine the coordinates of the facts

to be returned to the user. The abstraction we use to this end is called dice and defined

below.

Definition 4 (Range and Dice) A range ri of level li1 is an interval of members pm1,m2q

such that m1,m2 P Dompli1q and m1 ¤ m2. A dice d is an n-dimensional interval of coor-

dinates, d �
�n

i�1 r
i where ri is a range of li1 for i � 1, . . . , n.

Working with ranges requires that a total order is defined on the members of each level li1.

To define such order we observe that, in several OLAP front-ends, the default behavior

when a user clicks on a row/column of a pivot table (corresponding to a member of a level)

is to disaggregate the measure values for that row/column into its components, which in

OLAP terms means slicing and drilling down [13]. For instance, starting from a report

showing mappings per tissue and chromosome, clicking on member Spleen would trigger a

query showing mappings for experiments Exp1 and Exp2, while clicking on Ch1 would

trigger a query showing mappings for regions R11 and R21. Normally, within each group,

members are alphabetically sorted. For this reason, to define ranges and dice we will adopt

a hierarchy-based lexicographic order, i.e., one in which the members that roll-up to the

same member are lexicographically ordered.

From the topological point of view, two dice d and d1 are either disjoint (d ‖ d1), overlapping

(d � d1), or one of them is included in the other (d � d1). Of course, the exact relationship

between two dice depends on whether each range in each dice is left-open/closed and

right-open/closed; notice that, to avoid unnecessary notational complexity, we purposefully

omitted these details from Definition 4. If you consider the example in Figure 3.5, with

d � pS11, S31q�pR11,R14q, d1 � pS22, S23q�pR44,R45q, and d2 � pS31, S43q�pR22,R45q,

it is always d ‖ d1, but the other relationships depend on the range closeness. Specifically,

if d is right-closed and d2 is left-closed on the first dimension, then d � d2, otherwise

d ‖ d2. Similarly it can be either d1 � d2 (when d1 is right-closed and d2 is right-open on

the second dimension) or d1 � d2 (in all other cases).

Definition 5 (OLAP Query) An OLAP query is defined as a set Q of dice that repre-

sent the coordinates of the facts to be returned.
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Figure 3.5: Topological relationships between three dice

Example 7 A dice of our MAPPING schema is d � pS11, S12q � pR22,R22q. Adopting

the hierarchy-based lexicographic order for the domains of both regions and chromosomes

(like in Figure 3.3), this dice includes 4� 1 coordinates. The query asking for the number

of mappings between samples of tissue Spleen and regions of chromosome Ch2 is defined

by Q � tpS11, S32q � pR12,R22qu (which includes 6� 2 coordinates).

Like for OLAP queries, our model for the extractions supported by the ETL process is

based on dice. However, while an OLAP query can correspond to any set of dice, a data

provider normally has some limitations about the queries it can answer (for instance,

selection may be possibile only on a subset of levels), and these limitations restrict the

set of dice that the ETL can return in practice. This is captured by the definition of

service and interface. An interface is the set of services supported by ETL. A service

allows the specification of selection (range) predicates on the members of one or more

levels of different hierarchies, and corresponds to a sequence of queries to the source data

provider to fetch the necessary data, plus some transformations to put these data in

multidimensional form.

Definition 6 (Interface and Service) An interface is a set I of services. A service is

defined by a group-by S P
�

i Li that includes, for each hierarchy, the level on which it

supports a selection.

An extraction is issued by calling a service with a specific selection predicate. For simplicity

we will assume that each extraction returns the (non-aggregated) facts corresponding to

exactly one dice.

Definition 7 (Extraction) An extraction using service S � xl1, . . . , lny is any dice

e �
�n

i�1 r
i such that, for each i � 1, . . . , n, there exists an interval pm1,m2q of Dompliq

such that Drillppm1,m2qq � ri, where Drillppm1,m2qq � tm P Dompli1q | RollUp
lipmq P

pm1,m2qu.

Intuitively, the extractions that use service S are those whose ranges can be induced

through the roll-up functions by range predicates formulated on the levels of S. Note that,

as a consequence of these definitions, if liall P S for some i, then all extractions using S are
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characterized by range p�8,�8q on hi, which means that no selection on hi is supported

by S.

Example 8 A possible interface for our genomic example is I � tS1, S2u where S1 �

xSample,Ally and S2 � xExperiment,Chromosomey. Examples of extractions using services

S1 and S2, respectively, are e1 � pS31, S32q � p�8,�8q (which can be obtained using

predicate Sample ¥ S31) and e2 � pS11, S31q � pR12,R22q (which can be obtained using

predicate pExperiment � Exp1q ^ pChromosome � Ch2q).

3.2.5.2 Dice Management

The main function of this process is that of determining the set F of missing dice to

answer a given OLAP query. To this end, this process must be capable of executing dice

operations; in particular, given a set Q of query dice and the set D of dice in the dice map

(those currently available in the cube), it can compute their difference F using Algorithm

1. The basic idea of the dice difference operation is to split each dice in Q into fragments

based on ranges “aligned” to the ranges in the dice of D, so that each resulting fragment

is either included in a dice of D (in which case it needs not be loaded) or disjoint from all

dice of D (in which case it is missing and must be loaded in its entirety).

Definition 8 (Range and Dice Fragmentation) Given range ri � pm1,m2q of level

li1 and an (ordered) set of members M i P Dompli1q, let M
i
� tm1, . . . ,mpu be the (ordered)

subset of M i included in ri. The fragmentation of ri according to M i is the set of

ranges FragM ipriq � tpm1,m1q, pm1,m2q, . . . , pmp,m
2qu. Given dice d �

�
i r
i and an

n-ple of sets of members M � xM1, . . . ,Mny, where M i P Dompli1q for i � 1, . . . , n, the

fragmentation of d according to M is the set of dice FragMpdq �
�

i FragM ipriq. The

right/left openness/closure for the ranges of the dice in FragMpdq is chosen in such as

way that the fragmentation is disjoint and complete.

Remarkably, since FragMpdq is based on the Cartesian product of ranges, it is the finest

fragmentation that can be obtained starting from M . This ensures maximum flexibility in

determining cheap extractions to obtain the missing dice since the optimization process

(see Section 3.2.5.4) works by aggregation and does not allow further splitting of the input

dice. As a further note, the reason why we must allow for open ranges in defining dice is

that, since QETL is based on incremental loading, we generally do not know the complete

domains of the levels in GK. Indeed, if all members were known from the beginning, ranges

could be easily defined with closed predicates only, thus avoiding unnecessary complexity.

Example 9 Consider again the example in Figure 3.5. Let M � xtS21, S22, S23u,

tR14,R44uy; the fragmentation of dice d2 according to M includes the 9 grey dice shown

by dashed lines (note that member S21 is external to d2, so it does not contribute to the

fragmentation).
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Algorithm 1 DiceDifferencepQ,Dq

Require: A set of query dice Q and a set D of available (disjoint) dice
Ensure: A set F of missing dice
1: F Ð Q
2: for all q P Q do
3: if Dd P D | q � d then � Dice q is already covered by D...
4: F Ð F ztqu � ...so it is not missing
5: else
6: O Ð td P D | d � qu � Dice that overlap with q
7: if pO � Hq then
8: M Ð xH, . . . ,Hy � Members for fragmentation
9: for all d P O, i � 1, . . . , n do � For each range of each overlapping dice d...
10: M i ÐM i Y Endsipdq
11: � ... Endsipdq returns both end members of the i-th range in d

12: F Ð F ztqu Y FragM pqq � Fragment q according to M

13: F Ð F ztf P F | Dd P D, f � du � Delete from F the dice covered by D
14: return F

Initially, Algorithm 1 considers all dice in Q to be missing (line 1). Then, for each dice q

in Q it checks if there is an overlap with any dice in the dice map D (line 6). If not, q is

entirely missing and stays in F . If some overlapping dice are found, the end members of

their ranges are used to fragment q (line 12). Finally, we just have to delete from F the

fragments of q that are already present in the dice map D (line 13). In case a dice q is

completely included into a dice of D, it is simply removed from F (line 4). The details

about the management of open/closed ranges are not shown in Algorithm 1 for the sake

of simplicity, but they will be briefly commented in the following example.

Example 10 Consider the example in Figure 3.6, with D � td, d1u, Q � tqu, d �

pS11, S12q � pR11,R14q, d1 � pS33, S24q � pR25,R36q, and q � pS31, S43q � pR22,R45q.

Since dice d and d1 are in the dice map (i.e., they have already been loaded in the cube),

the missing facts that must be loaded to answer q are those in the grey-dashed area, that

correspond to the following missing dice resulting from the dice difference operator (from

left-top in Figure 3.6.a):

d1 � pS12, S33q � pR22,R14q

d2 � pS33, S43q � pR22,R14q

d3 � pS31, S12q � pR14,R25q

d4 � pS12, S33q � pR14,R25q

d5 � pS33, S43q � pR14,R25q

d6 � pS31, S12q � pR25,R45q

d7 � pS12, S33q � pR25,R45q

However, the specific queries to be issued to load the missing dice depend on whether the

ranges that define d, d1, and q are actually closed or open. If we assume that all ranges in

d, d1, and q are closed (e.g., S31 ¤ Sample ¤ S43), the actual situation is the one depicted

in Figure 3.6.b. So it becomes clear that, for instance, the missing dice d1 in this case

must be left-open on S12 and left-closed on R22, while d5 must be right-closed on S43 and
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Figure 3.6: Dice difference on the dice map with generic ranges (a) and closed ranges (b)

right-open on R25.

As already stated and shown in Figure 3.4, the set of dice available at any time is stored

in a dice map (D in Algorithm 1). In practice, the dice map is implemented by coupling

a B�-tree index (to record, for each dimension, the members currently loaded in the

dimension tables) and a list of dice (to keep track of the facts currently present in the fact

table). All dice in the dice map are disjoint.

3.2.5.3 Dice Dropping Policies

The dice management process is also in charge of dropping some facts used for past queries

from the cube to make room for the facts needed to answer new queries. To this end we

implemented and compared three dropping policies. The first two, taken from the caching

literature, are: LRU+ [32], a modification of the well-known least recently used policy, and

Cheapest by Size (CS), which prioritizes the dropping of dice with lowest ratio of cost over

size. When using LRU+, the dropping priority of a dice is updated every time a user query

overlaps that dice (i.e., the query requires some facts included in the dice); specifically,

the update accounts for how large the intersection between the query and the dice is. In

CS, the cost of a dice is measured as the execution time of the extraction used to retrieve

it, while its size is the number of facts it contains.

Both LRU+ and CS can yield good results with appropriate workloads but might otherwise

perform poorly (see Section 3.2.6.1 for an experimental evaluation). Indeed, LRU+

considers the probability of a dice to be required again for a new query but ignores the
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cost for reloading it in case of dropping, so it is better suited for workloads where most

extractions have similar costs. Likewise, CS considers how much loading a dice costs but

disregards its likelihood of being required again, hence it is better suited in situations

in which the cost of extractions varies significantly. To overcome these limitations we

devised a hybrid policy, HYB, which combines the statistics used in LRU+ and CS in

a way that is much similar to the one used for the size adjusted LRU policy [32]. We

extended that approach incorporating, besides dice size and age, the dice cost (as in CS)

into the computation of the dropping priority to favor the persistence of more expensive

dice. Formally, the dropping priority of a dice is defined as p � τ �c
s

, where τ is the aging

factor of the dice as defined in LRU+, while c and s are its cost and size, respectively.

The lower p is, the higher the dropping priority is.

These three dropping policies are experimentally evaluated and compared in Section

3.2.6.1.

3.2.5.4 Optimization

When several missing dice must be loaded and different services are available, determining

the cheapest set of extractions becomes an optimization issue related to both the specific

services to be called and to the set of missing dice to be retrieved through a single

extraction. Having a separate extraction for each missing dice could be quite expensive

and time-consuming, for instance if most of the cost/time is paid to connect to the service

rather than for data transfer and processing.

Different source data providers and different ETL processes can entail very different

costs for extractions; the cost function to be used clearly depends on the features of the

application domain and on how costs are measured (e.g., in terms of time, money, etc.).

For the sake of flexibility we will not impose any specific constraints on the cost function,

except that of being non-negative. For example, a simple family of cost functions that

matches the application scenarios depicted in Section 3.2 is the one where a fixed cost for

calling the service is summed to a cost proportional to the number |e| of facts returned by

extraction e. So in this case costpeq � αS � βS|e|, where αS ¥ 0 and βS ¥ 0 depend on

the service S used by e. When the application scenario is the pay-per-download one, αS is

the fee to be payed for each connection, while βS is the cost per byte to be downloaded.

In all of the other scenarios, αS is the time needed to set up the connection while βS is

the time-per-byte needed to extract, transfer, and transform the data. To be independent

of the sparsity of the cube and of the specific distribution of its facts, we will approximate

the number of facts returned by extraction e �
�

i r
i with the size of the corresponding

dice, defined as |e| �
±

i |r
i|. The problem of how to estimate the size of a dice when

the level domains are not precisely known (because members are incrementally loaded

together with facts) will be discussed in Section 3.2.5.6.

Given the cost function, the optimization process takes in input the set F of missing dice
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Figure 3.7: Minimal extractions with different services

produced by Algorithm 1 and produces in output a set E of extractions to be requested

to the ETL. The specific problem to be solved to this end can be formulated as follows:

Problem 1 Given a set F of (missing) dice and an interface I, find a set E of extractions

such that (i) each extraction e P E uses a service in S P I, (ii)
�
fPF f �

�
ePE e, and (iii)°

ePE costpeq is minimal.

Before we explain how Problem 1 can be solved, we need to show how a given set F of

missing dice can be obtained by calling a service S of interface I.

Definition 9 (Minimal and Cheapest Extraction) Let F be a set of dice, I be an

interface, and S be a service. Then, the minimal extraction of F from S, denoted

MinExtrSpF q, is the smallest extraction e using S such that f � e for each f P F . The

cheapest extraction of F from I, denoted CheapExtrIpF q, is the extraction MinExtrSpF q

such that S P I and costpMinExtrSpF qq is minimum.

Intuitively, CheapExtrIpF q determines the cheapest way to fetch all the facts belonging

to F using I.

Example 11 With reference to Figure 3.7, let F � tf 1, f2u with f 1 � pS11, S21q �

pR22,R22q and f2 � pS12, S22q � pR12,R22q. Let the interface include two services: S 1 �

xSample,Chromosomey and S2 � xExperiment,Ally. Then MinExtrS1pF q � pS11, S22q �

pR12,R22q (this extraction, in solid grey in the figure, is obtained calling S 1 with pred-

icate pSample ¥ S11q ^ pSample ¤ S22q ^ pChromosome � Ch2q), and MinExtrS2pF q �

pS11, S32q � pR11,R22q (this extraction, in dashed grey in the figure, is obtained calling

S2 with predicate pExperiment ¥ Exp1q ^ pExperiment ¤ Exp2q).

Solving Problem 1 by enumeration is obviously incompatible with an interactive analysis

scenario like ours. To reduce the problem complexity, we approach it as a clustering

problem where each cluster corresponds to an extraction, i.e., to a set of dice whose facts

are fetched by a single service call; note that, by doing so, we do not consider all solutions

in which a single dice in F is further fragmented to be fetched using multiple extractions
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Algorithm 2 OptimizepF, Iq
Require: A set F of missing dice and an interface I
Ensure: A set E of extractions
1: C Ð ttfu, f P F u � Create a clustering of singletons
2: E Ð tCheapExtrIpcq, c P Cu � Initialize the set of extractions
3: while |C| ¡ 1 do
4: find c1, c2 P C s.t. c1, c2 P C ^ c1 � c2 ^ δpc1, c2q is minimum
5: � Find the most promising couple of clusters
6: C Ð C z tc1, c2u Y tc1 Y c2u � Merge the two clusters
7: E1 Ð tCheapExtrIpcq, c P Cu � Best extraction set of the new clustering
8: if

°
e1PE1 costpe

1q  
°
ePE costpeq then � Compare the costs of the two extraction sets

9: E Ð E1 � New extraction set
10: return E

(which could allow the number of unnecessarily fetched facts to be cut down). Even with

this simplifying assumption, the search space is large enough to be hardly explorable in

its entirety. Indeed, given a set F of dice and an interface I, the size of the search space is°|F |
k�1

 
|F |
k

(
� |I|k, where the first and the second terms represent, respectively, the Stirling

number of second kind and the number of dispositions with repetitions.2

The greedy solution we propose to tackle Problem 1 is outlined in Algorithm 2 and is

based on hierarchical clustering [37]. Starting from a clustering —i.e., a partition— of

the dice in F where each cluster is a singleton, we proceed by iteratively merging the two

most promising clusters, i.e., those with minimum distance. The inter-cluster distance

function we use to this end is

δpc1, c2q �
costpCheapExtrIpc

1 Y c2qq

|MBDpc1q| � |MBDpc2q|

where c1 and c2 are two sets of dice and MBDpF q is the minimum bounding dice of a set

of dice F , i.e., the smallest dice g such that f � g for each f P F . To avoid favoring the

merging of small clusters, the denominator of the distance function weighs the cost for

fetching all the facts in the two clusters with the total size of the minimum bounding dice

for the two clusters.

The merging process is iterated for |F | � 1 times to build a complete dendrogram. The

clustering C generated at each iteration corresponds to a set of extractions defined as

E � tCheapExtrIpcq , c P Cu

Eventually, the clustering corresponding to an extraction set with minimum cost is chosen

as the solution.

The overall computational complexity of Algorithm 2 is Op|F |3 � |I|q, where F is the set

of missing dice and I is the interface exposed by the data provider. Op|F |3q is the total

number of comparisons between clusters (at each iteration Op|F |2q comparisons are done,

2More precisely,
 

|F |
k

(
counts the number of ways in which the set of dice can be partitioned into k

extractions, while |I|k counts the number of ways in which such extractions can be mapped onto interface
I
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and the total number of iterations is |F | � 1). For each comparison, |I| services must be

evaluated to determine the cheapest extraction, from which the total complexity follows.

3.2.5.5 Filtering

The extractions determined by optimization are requested to the ETL component, which

executes them by querying the provider and returns a set of facts to the filtering process.

As previously mentioned, the interface exposed by the source data provider may allow

for selecting the data to be extracted using predicates on some hierarchy levels only, so

the facts returned may be a superset of those actually needed. The aim of this process

is mainly to discard all the facts not required to answer the user’s current query, which

requires the following check for each fact, whether it is included in one of the missing dice

returned by Algorithm 1; since extractions could overlap, attention should be paid to the

management of duplicates.

This process also determines the exact number of facts included in each extracted dice.

As mentioned in Section 3.2.5.2, the exact number of facts per dice is used during the

dropping process to decide how many dice must be dropped to make room for new facts

(the granularity of a single drop operation is exactly one dice, i.e., a dice is either completely

dropped or not dropped at all). Counting the facts per dice at this stage is necessary

because the dice size used by optimization to estimate the cost of each extraction is

imprecise due to the cube sparsity and to the partial knowledge of the level domains (see

Section 3.2.5.6).

So far, we have assumed that, after each OLAP query, only the facts required to answer

that query are loaded into the cube (strict loading). However, another viable approach is

that of loading in the cube all the facts extracted (loose loading). The choice of the best

approach depends on the particular situation at hand. For example, if the goal is just to

minimize the processing time, strict loading might be more suitable because it does not

overload the cube with unnecessary facts. Conversely, if data must be purchased from the

provider, loose loading might be a better option. We remark that, from an implementation

point of view, the only relevant difference between strict and loose loading concern the

management of overlapping extractions: indeed, in case of loose loading, a dice difference

operation must be performed to avoid representing overlapping dice in the dice map.

3.2.5.6 Dice Size Estimates

From a geometric point of view, the size of a dice as defined in Section 3.2.5.4 is simply the

product of the cardinalities of its ranges. However we recall that, since QETL adopts an

incremental loading strategy of facts, we might not know the (complete) set of members

belonging to a given level —and thus to a given range. In this case we have no means to

compute the exact size of a range, which must be estimated using the knowledge available.
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This is the subject of this section, in which we will drop the hierarchy superscript i from

all symbols to simplify the notation.

We start by observing that, inevitably, at least one level domain for each hierarchy must be

completely pre-loaded into the cube to enable users to start the querying session, e.g., by

selecting one member of interest. Remarkably, this is always feasible, even when Dompl1q

is too large to be managed in its entirety within a traditional cube. In fact, the roll-up

functions establish a set of functional dependencies between the levels of each hierarchy,

such that lj Ñ lk for each j   k. As a consequence, the domain cardinality decreases

for increasing levels along each hierarchy: |Dompljq| ¥ |Domplkq| for j   k. This ensures

that, for each hierarchy, there is always one level lλ, with λ ¥ 1 (lλ � lall in the worst

case), whose domain can be pre-loaded. We will assume that all levels lj with j ¡ λ

are pre-loaded too. For each pre-loaded level lj, the size of the interval between any two

members m1 and m2, |pm1,m2q|, can be exactly determined by counting the in-between

members.

For all other levels, for which the complete set of members is not known, we assume to

know the domain cardinality, for example through meta-data exposed by the data source.

This enables a rough estimate of the average outdegree degpljq of the members of each

level lj (i.e., the average number of members of lj�1 that roll-up to the same member of lj ;

conventionally, degpl1q � 1).

Intuitively, the size of a range is estimated through a hierarchy-based measure that

uses, when possible, the pre-loaded levels (for a characterization of different hierarchy-

based measures, see [38]). More precisely, the (worst-case) estimate for the size of range

r � pm1,m2q is made as follows:

|r| �

$''&
''%
|pRollUplλpm1q, RollUplλpm2q| �

±λ
j�1 degpljq , if LCApm1,m2q P lk,

k ¥ λ±k
j�1 degpljq , otherwise

where LCA represents the lowest common ancestor of two members. Two cases are

distinguished, based on whether LCApm1,m2q belongs to a pre-loaded level or not. Re-

markably, in the first case it is possible to estimate the range size more precisely than in the

second one, since we can exactly count the number of members between RollUplλpm1q and

RollUplλpm2q. In case l1 is pre-loaded (i.e., λ � 1), since conventionally RollUpl1pmq � m,

we have |r| � |pm1,m2q| so an exact estimate is made. As to the levels that are not

pre-loaded (lij with j ¤ λ), we observe that, as a result of the fact that all members of the

same level are assumed to have the same outdegree, the more these levels are characterized

by an irregular distribution of their members, the less range size estimates are precise.

Example 12 With reference to Figure 3.8, LCApS11, S29q � All. If |DompTissueq| � 5,

|DompExperimentq| � 500, and |DompSampleq| � 5000, then degpTissueq � 100 and
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Figure 3.8: Pre-loaded vs. incrementally-loaded levels

degpExperimentq � 10. So, |pS11, S29q| � |pSpleen,Lungq| �degpSampleq �degpExperimentq �

degpTissueq � 3 � 1 � 10 � 100 � 3000. On the other hand, |pS11, S21q| � degpSampleq �

degpExperimentq � 1 � 10 � 10 since LCApS11, S21q � Exp1.

3.2.5.7 Additional Issues

For the sake of simplicity, in the previous sections we have shelved a couple of issues

requiring a more specific discussion, namely, the implications of extracting and storing

facts at different group-by’s, how to deal with branched hierarchies, and how to support

multiple measures.

OLAP is an exploratory process where data are analyzed at different granularities. In

Section 3.2.5.1 we assumed that data are always extracted and loaded into a the cube

at their finest granularity, but this may determine an unnecessary computational effort

because a huge amount of fine-grained facts must be extracted first and then aggregated

to return a small number of coarse-grained facts. The problem of cutting aggregation costs

is well-known in DW systems and is typically solved by pre-computing data at different

aggregation levels, storing them in materialized views, and then exploiting an ad-hoc

DBMS module, the aggregate navigator, to properly choose the smallest materialized view

that can be used to answer a query. The term data cube is often used to denote fine-grained

and coarse-grained data as a whole. Taking this into account, we claim that the QETL

approach can be enhanced to operate at different aggregation levels (i) by extending the

definition of a service to specify also the aggregation level at which it retrieves data; (ii)

by extending the definition of a dice to specify also its aggregation level (in other terms,

by building a dice map of the whole data cube); and (iii) by extending the optimization

process so that it can choose extractions using services at different aggregation levels to

cover the missing dice. Note that, to choose which is the cheapest service for loading a set

of missing dice, the optimization process will have to trade-off between coarser services

(that may not allow to express the right selection predicates) and finer ones (that may

enable a precise slicing at the price of returning a large amount of fine-grained data).
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As to the second issue we observe that, while the levels of a linear hierarchy are totally

ordered, those of a branched hierarchy are only partially ordered. For instance, in our

working example a Sample belongs to an Experiment that is related to a Tissue; besides,

an Experiment is carried out in a Laboratory, but no roll-up relationship exists between

Laboratory and Tissue. Without a total ordering between levels, no total ordering between

members can be defined, which undermines the definition of dice and range. To easily

cope with this as done by some multidimensional engines (e.g., Mondrian), a hierarchy

with a branch can be duplicated so as to be replaced by two linear hierarchies, each based

on a total order. As a side effect, the dice dimensionality will increase; however, all the

proposed definitions and algorithms retain their validity.

The last issue concerns the support of multiple measures within a single cube. The simplest

way to cope with this situation is to observe that, from a formal point of view, a cube

schema with n dimensions and m measures is equivalent to a cube schema with n � 1

dimensions (where the pn� 1q-th dimension is used as a sort of discriminator and takes

m values, one for each measure) and one “generic” measure; this allows to transparently

reuse the QETL approach.

3.2.6 Experimental Results

This section collects the main results of the tests we performed to evaluate the behavior of

the QETL approach. We carried out all tests on a server machine quad core (3.6 GHz, 32

GB RAM, Windows 8-64 bit); all components were implemented in C++, and MySQL

v5.6 was used as the DBMS. The average transfer speed of the connection used to extract

the source data amounts at approximatively 88 Mb/sec.

We based our tests on the MAPPING schema (whose simplified version is shown in Figure

3.2). Source data come in the form of 22 500 GTF files made available through FTP; each

file contains an average of about 130 000 mappings, so the mapping cube includes about

3 � 109 facts overall. We set the maximum cube capacity to 1{300 of the complete cube,

i.e., to 107 facts.

Figure 3.9 shows the star schema used in our ROLAP implementation, which extends

the simplified one shown in Figure 3.2. From a design point of view, the dimension

table for regions has been partially snowflaked since regions are loaded incrementally

while the domains of the levels following Region in the REFERENCE hierarchy are pre-

loaded. Noticeably, while in traditional ETL indexes are dropped just before loading for

performance reasons, this would not be convenient in QETL because loading is incremental.

Therefore, indexes are kept enabled while loading and dropping facts. Unfortunately, the

time required to rebuild an index depends not only on the newly loaded data but also on

the previous ones, which adds a significant overhead to the performance of QETL even

for small-size queries. Another peculiarity of the presented star schema is the DICE ID

36



dt_reference

REG_ID INT(11)

SAM_ID INT(11)

CHR_ID INT(11)

REG_LEFT_END INT(15)

REG_RIGHT_END INT(15)

REG_STRAND VARCHAR(1)

REG_NAME VARCHAR(500)

REG_LABEL VARCHAR(100)

Indexes

dt_input

SAM_ID INT(11)

SAM_NAME VARCHAR(45)

EXP_FILE_NAME VARCHAR(100)

EXP_TREATMENT VARCHAR(50)

EXP_SUBTYPE_NAME VARCHAR(20)

EXP_TYPE_NAME VARCHAR(100)

PROJECT_NAME VARCHAR(20)

CELL_NAME VARCHAR(50)

CELL_TISSUE VARCHAR(100)
9 more...

Indexes

ft_mapping

DICE_ID INT(11)

REG_ID INT(11)

SAM_ID INT(11)

MAP_CNT INT(11)

MAP_AVG FLOAT(18,6)

MAP_MAX FLOAT(18,6)

MAP_MIN FLOAT(18,6)

MAP_SUM FLOAT(18,6)

Indexes

Figure 3.9: Star schema for MAPPING

(a) (b) (c)

Figure 3.10: Hit distribution for small (a), medium (b), and large (c) queries (darker areas
correspond to more frequently queried facts, crosses mark OLAP session centroids)

attribute in the ft mapping table; this attribute is used to keep track of which facts each

dice contains, thus remarkably simplifying the dropping process.

An OLAP session is a sequence of queries that tend to hit contiguous facts. To simulate

this, we created five separate query sequences (numbered from (i) to (v)); the 40 queries

in each sequence are normally distributed around a centroid which represents the focus of

the analysis. To address a wider set of situations, we considered two different querying

scenarios: single-user, where one user carries out five OLAP sessions one after the other,

so the 5 sequences are concatenated from piq to pvq; and multi-user, where five different

users concurrently carry out one OLAP session each, so the queries of the 5 sequences are

interleaved. Finally, we considered three different query sizes, namely small, medium, and

large, which differ for the average number of facts they require. Figure 3.10 shows the hit

distribution for small, medium, and large queries (sequence centroids are marked with a

cross). The three query sizes combined with the two querying scenarios result in the six

workloads summarized in Table 3.1.

The workloads defined above are not very suitable for testing the three dice dropping

policies described in Section 3.2.5.3 since all queries have similar costs; in absence of query
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Workload Scenario 7 Users Query size Avg 7 facts per query 7 Files per query

W single
small single-user 1 small 23 K 5

W single
med single-user 1 medium 400 K 25

W single
large single-user 1 large 2 M 100

Wmulti
small multi-user 5 small 23 K 5

Wmulti
med multi-user 5 medium 400 K 25

Wmulti
large multi-user 5 large 2 M 100

Table 3.1: Workload features

diversity, the CS policy cannot show its benefits and the two other policies, HYB and

LRU+, obviously perform better. To enable a fair comparison we defined a synthetic

version of workloads W single
med and Wmulti

med , which we call Ssinglemed and Smultimed , respectively,

where an overhead has been added to some queries to simulate a workload with high- and

low-cost queries; specifically, with reference to Figure 3.10, all queries of sessions (i) and

(ii), and half queries of session (iii) have a higher transformation cost than those in the

other sessions. Note that these synthetic workloads are used only for testing the dropping

policies in Section 3.2.6.1, while the original workloads are used for all the tests in the

other subsections.

To model the cost of an extraction we used the function described in Section 3.2.5.4.

The values of parameters α and β have been estimated as 2.3 seconds and 1.17 � 10�5

seconds, respectively. The former is the average time required to connect to the FTP

service exposed by the GenData repository (including authentication). The latter is the

average time required to download and transform a fact (i.e., 85,470 tuples are extracted

and transformed in 1 second). Noticeably, β does not take into account the time required

to load data into the cube since, for a given set of missing dice, the number of loaded facts

is the same regardless of the optimization outcome.

For a better understanding of what stress the system is subject to in these tests, in Figure

3.11 we show the number of facts currently stored in the cube and the cumulative number

of facts loaded after each query in the three single-user workloads. For workload W single
small ,

a total of 3.3 � 106 facts are loaded, which does not saturate the cube so no facts need

to be dropped. When dealing with larger queries, dropping is necessary to make room

for the facts required by current OLAP queries when the cube size reaches its capacity.

For workload W single
medium, a total of 2.3 � 107 facts are loaded, which is about twice the cube

capacity; dropping is necessary starting from the 60-th query. Higher volumes of data are

processed by workload W single
large , which loads a total of 5.3 � 107 facts and starts dropping

already from the 23-rd query.

The tests are organized as follows: in Section 3.2.6.1 we evaluate the dice dropping policies,

in Section 3.2.6.2 we discuss the effectiveness of the QETL approach by focusing on how

intensively it reuses data, while in Section 3.2.6.3 we compare QETL with the chunking

approach. Finally, in Section 3.2.6.4 we provide a detailed analysis of the execution times
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Figure 3.11: Cube size and cumulative number of loaded facts after each query for
single-user workloads; dashed lines mark the transitions between separate OLAP sessions
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Figure 3.12: Hit rate per query for each dropping policy using synthetic workloads Ssinglemed

and Smultimed

and in Section 3.2.6.5 we give some insights on how sensitive the optimization process is to

the cost function. Note that in all tests, except the ones in Section 3.2.6.1, the dropping

policy employed is HYB due to its adaptivity to different types of scenarios.

3.2.6.1 Dropping Policy Analysis

The first test is aimed at analyzing the impact of policies on data reuse in terms of query

hit rate, i.e., of the percentage of facts already loaded in the cube over the total number

of facts required by each query. Figure 3.12 shows the trend of hit rate for each policy,

both in the single- and multi-user scenario. In both scenarios the hit rate is the same for

all policies until dropping starts, which happens around query 60 and query 38 for Ssinglemed

and Smultimed , respectively. The main difference emerging after this point is that CS and

HYB behave similarly and always worse than LRU+ (this is less evident with Smultimed ). The

reason for the wider gap between LRU+ and the other two policies in Ssinglemed is twofold:

(i) the five simulated OLAP sessions are sequential rather than interleaved, thus the dice

loaded farther in the past are less and less likely to be required again; (ii) the queries

belonging to the first three sessions (see Figure 3.10) are more expensive, which leads CS
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Figure 3.13: Breakdown of execution times per query for each dropping policy using
synthetic workloads Ssinglemed and Smultimed

to retain the dice generated by them though later on they will be required less and less.

As to workload Smultimed , since OLAP sessions are interleaved, the gap narrows considerably

but still CS and HYB score lower because they still tend to favor the dropping of dice

belonging to sessions (iv) and (v) even when they are less frequently used.

Considering only the hit rate as a measure of effectiveness can be misleading, because the

goal of a dropping policy is that of reducing costs and not that of increasing the hit rate

per se. Figure 3.13 shows a breakdown of the average execution time of queries for each

dropping policy. As expected, in the single-user case LRU+ out-performs both CS and

HYB by a noticeable margin, for the same reasons explained above. Conversely, in the

multi-user scenario HYB takes the lead, closely followed by CS and finally LRU+. Even

if the hit rate of CS is significantly lower than that of LRU+, the former still manages

to better contain query costs. Specifically, CS is almost as efficient as HYB at reducing

the transformation costs (which is where the synthetic overhead has been added); on the

other hand, extraction, loading, and dropping times are higher in CS since they strictly

depend on the hit rate.

In the light of these results, in all tests of the following subsections we adopt the HYB

policy, which appears to be the most effective in the average case.

3.2.6.2 Reuse Analysis

Figure 3.14 shows how the hit rate changes during the sessions, focusing on the comparison

between single- and multi-user workloads. For small-size queries, there is no difference

between the overall average hit rates of the single- and multi-user workloads (because

queries are the same and there is no dropping). This is because all the facts processed can

be stored in the cube and no dropping is necessary. Besides, as shown in Figure 3.10(a),
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Figure 3.14: Hit rate per query for each workload
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the overlap between small-size queries is much lower than that of medium- and large-size

queries, which results in a lower hit rate. For medium- and large-size queries, the difference

between single- and multi-user workloads becomes more significant showing that, due to

the contiguity of queries within OLAP sessions, single-user workloads achieve higher reuse.

In particular, when 5 users work concurrently the hit rate tends to smoothly increase; it is

normally higher when a single user is working, with sharp drops when the user changes her

analysis goal (immediately after each dashed line in Figure 3.14). However, even in the

latter case, hit-rate drops tend to become less deep from left to right: this is mainly due

to inter-session overlaps, which enable reusing facts loaded during previous sessions. This

is confirmed by Figure 3.10, where there is no sharp distinction between OLAP sessions,

in particular for medium- and large-size queries.

Another observation we can make by comparing the three charts in Figure 3.14 is that the

single-user workloads show a constant gain in hit rate when moving from small- to large-size

queries, while the same is not true for multi-user workloads. This seems counterintuitive

as large-size queries overlap with each other much more than other queries; however, they

require so many facts that the frequency of dropping is significantly higher.

Another angle for observing the impact of data reuse is shown in Figure 3.15, which gives

a breakdown of the execution times for the workloads featuring medium-size queries (the

times spent for dice difference and optimization are not singled out as they are negligible).

As expected, the trend shown by Figure 3.15 is symmetrical to the one of Figure 3.14. On

average, around 50% of the time is spent on extraction, around 25% on transformation,

20% on loading, and lastly, 5% on dropping. Figure 3.15 clearly shows the effectiveness of

data reuse in single-user workloads; for instance, for queries from 1 to 40 in W single
med , the

total time decreases to one quarter and then it suddenly raises when the user changes her

goal. Execution times for the multi-user workload initially show a decreasing trend up to

a point where they become more stable due to the flattening of the hit rate.

3.2.6.3 Comparison with Chunking

In this section we compare the dice-based representation of facts described in Section

3.2.5.1 with the chunk-based one introduced in [35]. The comparison is made in terms of

cost saving achieved with QETL by using either dice or chunks to represent stored facts

and extractions. Before discussing the results we emphasize that, as discussed in Section

3.2.4, the original chunking approach can be applied in the QETL scenario only with some

limitations:

� To define the chunk boundaries, chunking assumes that the level domains are known

beforehand. Thus, we could not extend our comparison to the levels, such as Region,

that are subject to incremental loading of the members.

� Facts must be physically organized in such a way that those belonging to the same
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Figure 3.15: Breakdown of execution times per query for medium-size queries
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chunk are stored contiguously [35]. In general, while it is easy to create a chunked

file for the facts already loaded in the DW, this is often impossible for data stored in

an external source. In our setting, we naturally have a chunk-friendly storage for

source data since mappings are organized in files, each representing a specific input

sample.

� Chunk shape and number must be fixed beforehand. To determine the best setting

for chunking we run two tests, one for W single
med and one for Wmulti

med . The results are

shown in Figure 3.16, where the average execution time of queries is shown for

different numbers of chunks. It turns out that, for both workloads, the optimal

number of chunks is 5625, so this is the value we used for tests.

Figure 3.17 shows the average execution times for each workload and approach. On

average, the dice-based approach is 23% faster than the chunk-based one. While the gap is

noticeable for multi-user workloads, the same is not true for single-user ones. This can be

easily explained by recalling that one of the main differences between chunks and dice is

that chunks have fixed size and shape, while dice adapt to the current query. This means

that it is not always possible to perfectly represent a user query through a set of chunks;

indeed, in most cases a query translates into a bigger envelope that covers more facts

than those actually required. This behavior can be easily observed in W single
small and Wmulti

small ,

where the dice-based approach does not need to perform dropping, while the chunk-based

one does. Since in single-user workloads queries are contiguous, loading more facts than

(immediately) required does not result in unnecessary overhead, because those extra facts

will probably be soon required anyway.
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Table 3.2: Average number of extractions and fetched facts with different cost parameters
for workload W single

medium

α β # extractions # fetched facts
0 1.17 � 10�5 1.48 1.42M

2.3 0 0.78 1.66M
2.3 1.17 � 10�5 1.17 1.42M

3.2.6.4 Efficiency Analysis

Figure 3.18 shows the distribution of the execution times for all six workloads. More

specifically, Figure 3.19 aims at showing to what extent the different components of QETL

contribute to the overall efficiency. To this end we consider three versions of QETL: in the

no reuse version, all the facts required to answer each single query are extracted, loaded,

and dropped as soon as the query is answered; the reuse version corresponds to the QETL

approach without optimization, so each missing dice obtained by dice difference determines

an extraction to be issued to the ETL; finally, reuse + opt. is the full QETL approach.

The first observation we make is that both reuse and optimization positively impact on

efficiency. Indeed, the maximum efficiency corresponds to reuse + opt., followed by reuse

and by no reuse; more specifically, extraction times decrease as reuse and optimization

come into play. Since each extracted fact has to be transformed, transformation times

decrease with extraction times. As expected, loading times are reduced by reuse but not

by optimization (optimization reduces the number of extracted facts, but the loaded facts

are the same). We also note that dropping times are negligible in the no reuse version

because at each time the cube stores only the data required for the current query, and

these data are dropped all together. In the other cases, dropping times follow the same

trend as loading because the quantity of dropped facts is strictly correlated to the quantity

of loaded facts.

We close this section by observing that, clearly, the worst-case condition for QETL is

workloads where the hit rate is null or negligible and the quantity of data to be extracted

and loaded is very high (either because the cube capacity is a small fraction of the complete

cube, or because the queries are scattered across the cube). A null hit rate implies no

reuse, so by comparing the first and last columns of Figure 3.19 we can conclude that the

execution time for the worst case is about twice that of the average case.

3.2.6.5 Cost Function Analysis

Focusing again on workload W single
medium, in this section we briefly comment on the impact on

optimization of different values of α and β in the extraction cost function. To this end, in

Table 3.2 we show the average, for each query, of the number of extractions issued to the

ETL component and of the number of facts fetched through such extractions. As expected,
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with α � 0 the optimization algorithm seeks to minimize the amount of fetched facts, even

if this requires several extractions. Conversely, when β � 0, optimization always returns

one extraction (except when no missing dice are returned by dice difference). To better

understand the results regarding the number of extractions, we remark that the average

number of missing dice in input to optimization is 2.8. This value is an upper bound

to the number of extractions since, as explained in Section 3.2.5.4, Algorithm 2 never

splits the dice it gets in input. Noticeably, even with α � 0, the number of extractions is

significantly smaller than the aforementioned upper bound. This can be ascribed to the

coarse extraction granularity of the service exposed by the GenData interface. Indeed, the

coarser the granularity, the more likely for the cheapest extraction induced by a dice to

also include other dice.

3.2.7 Wrapping up QETL

We have presented QETL, an approach to incremental on-demand ETL based on the

query-extract-transform-load paradigm. Our approach is beneficial within scenarios in

which traditional batch ETL is unfeasible or inconvenient for either time, space, or cost

reasons. Essentially, in QETL a cube is operated as a sort of cache to enable data reuse

for single and multiple users. To achieve this result we adopt a framework based on the

dice construct, which allows to compactly abstract multidimensional data. On top of

this building block we define the dice difference operation and a heuristic to find the

cheapest extraction. More precisely, dice difference enables an easy computation of the

facts required to answer a query but still missing from the cube; once the missing facts

have been identified, the proposed heuristic finds the cheapest set of extraction queries

to be issued to the data sources. The experimental results show that the execution

times of QETL are compatible with those of OLAP querying in traditional DW settings

(which normally do not exceed some minutes), and that both data reuse and extraction

optimization successfully contribute to the approach efficiency.

We emphasize that QETL is meant to be applied in OLAP scenarios, i.e., where front-ends

supporting multidimensional query languages such as MDX are used. Some recently-

emerged tools (e.g., Tableau) can generate both multidimensional queries (on which QETL

can easily operate) and more generally non-multidimensional queries. The problem with a

non-multidimensional query is that it could violate our assumption on hierarchy-based

lexicographic order (see Section 3.2.5.1), hence it may map to a possibly large set of dice

(even one dice for each single piece of data required); in this case the QETL approach

could still work in principle, but it would become impractical.

Our future work will be mainly aimed at improving the overall effectiveness of the QETL

approach. One of the current limitations of QETL is the lack of a proper support and testing

for the management of facts at different levels of granularity. Indeed, while the problem

has been outlined in Section 3.2.5.7, a formal definition and testing of the mentioned
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solution are due. Also, the optimization process could be enhanced to incrementally learn

additional statistics of the data source (e.g., their data distributions) to improve the

resulting extractions. Furthermore, a significant speed-up of some QETL sub-processes

could be achieved using a different architecture from the one currently adopted; for instance,

employing a hybrid in-memory/on-disk storage would lead to a significant reduction in

loading and dropping times, though at the price of losing some data durability.
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3.3 Building Adaptive Cost Models for Web Services

As already discussed, many data sources are nowadays hidden behind web services whose

functionalities can range from simple access points for DBMS to complex analytics

platforms. To optimize the extraction of data from these services it is important to be able

to estimate the cost of each query. In several situations, especially in the database domain

[39], the behavior of a system can be described through a model that estimates the query

costs. The definition of cost models is often done manually by analyzing the system internal

algorithms and by gathering various statistics such as data distributions. In the web

service domain, due to the strong encapsulation of the applications, the only information

that can be reliably obtained is the service interface definition; as a consequence, a web

service must be considered as a black box for which analytically defining a cost model

is unfeasible. Furthermore, since the web service behavior depends on multiple hidden

factors, execution costs can drift with time; to avoid wrong estimates, the cost model must

be able to reactively self-tune so as to accommodate these function drifts.

Example 13 Grid is a Web Processing Service-compliant service of the Open Geospatial

Consortium deployed at the Jet Propulsion Lab ( https://co2.jpl.nasa.gov/developer/)

to perform research on atmospheric CO2. Grid enables the querying of data collected by

several NASA Earth Science missions and can be invoked by clients through GET or POST

requests. The querying interface exposed by Grid includes 27 parameters; essentially, each

query returns a dataset of CO2 measurements taken over a geographical area during a

period of time. The average cost measured on a set of 30000 uniformly-distributed queries

over a time span of 10 months is about 120 seconds, with a standard deviation of 82

seconds. The factors that impact the most on the query cost are the length of the time

period and the extension of the geographical area; for instance, while a query returning the

measurements for Europe during a time span of 60 days takes around 60 seconds to execute,

while a query for the same zone over 90 days takes around 120 seconds. Function drifts

periodically occur for the service; for instance, in May 2016 we experimented a reduction

of the average query cost of about 30%, presumably due to an enhancement in the hardware

infrastructure.

Although some approaches to black-box cost modeling are available both in the DBMS

and web-service literature, to the best of our knowledge none of them can (i) forecast the

behavior of a generic web-service interface and (ii) self-tune when an unexpected drift

in the cost function takes place. To address these limitations we propose an approach

called Tiresias that, given a web service exposing an interface with a fixed number of

parameters, initializes and actively adapts a model to accurately predict query costs. The

cost model is represented by a regression tree trained through two interleaved querying

cycles: a passive one, where the costs measured for user-generated queries are used to

update the tree, and an active one, where the service is probed through system-generated

queries to initialize the tree and adjust it whenever a function drift makes the estimate
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accuracy unsatisfactory.

Overall, the main contributions of this work are:

(i) An architectural framework for deriving cost models of web services using their public

interfaces only (Section 3.3.2).

(ii) An extension of the SAIRT algorithm [4] that incorporates multiple linear regression

models with the result of improving the overall accuracy while keeping training

costs compatible with the requirements demanded by streaming applications (Section

3.3.4).

(iii) An active learning algorithm that initializes the cost model and dynamically adjusts

it in case of function drift (Section 3.3.5).

(iv) A set of experimental tests performed on both real and synthetic datasets to evaluate

Tiresias in terms of efficiency and effectiveness (Section 3.3.6).

The outline for the contribution related to cost models for web services is completed by

Section 3.3.1, which discusses the related work, Section 3.3.3, which provides the formal

background, and Section 3.3.7, which draws the conclusions.

3.3.1 Related Literature

3.3.1.1 QoS Prediction

A research theme that bears many similarities with the problem tackled in this work is

that of QoS prediction for web services. In contexts such as cost-based service composition

[40], it is often important to be able to predict service run-time performances to optimize

computations and reduce risks of Service Level Agreement (SLA) violations. Systems like

WSPred [41] try to make time-aware and personalized QoS predictions by analyzing latent

features of users, services, and time by means of tensor factorization, while [42] focuses on

predicting response time by modeling service behavior using HMM. Finally, in [43] the

authors propose a solution for QoS estimation specifically tailored for multimedia services

(e.g., video streaming, VoIP, etc.). Several solutions exist for making predictions taking

the context of the user (e.g., her geographical location) into account but, to the best of our

knowledge, none of them has been devised to work with computation-intensive services

exposing complex interfaces.

3.3.1.2 Cost Modeling with Machine Learning

Machine learning techniques have been previously used in the context of database optimizers

to improve performances. The work in [44] explores the problem of building cost models of
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local databases in a Multidatabase System (MDBS) using regression analysis. In the area

of autonomous workload management, the solution described in [45] defines a novel tree

structure called PQR Tree for query execution time ranges prediction; more recently, [46]

defined cost models at different granularities, one at plan-level and one at operator-level.

All these approaches, due to the features used, need information that common web services

do not make accessible through public APIs (e.g., query execution plans and system

resources measurements); furthermore, they are not self-tuning (although [46] can be

trained online) and need to be rebuilt whenever the modeled system changes significantly.

Several solutions have been proposed even outside the relational databases area; specifically,

[47] tries to model execution costs of map-reduce jobs, while [48] and [49] are focused on

XML and object-relational databases, respectively. Particularly relevant to our work is the

approach described in [49], which proposes a self-tuning cost modeling solution based on

quad-trees to predict User-Defined Functions (UDF) execution times. The main limitations

of [49] are that it supports only ordinal features and that its self-tuning capabilities are

limited since the model is incrementally updated with new data but obsolete observations

are not discarded (except for compression purposes).

3.3.1.3 Database Histograms

In the area of database research, a lot of effort went into the development of smart

techniques to gather selectivity statistics (in the form of histograms) with the aim of

improving query execution plans. These approaches adopt either a pro-active or feedback-

based gathering process. Pro-active solutions such as MHIST [50] employ data scans on

the whole database, thus suffering from poor scalability with big tables. On the other

hand, approaches like STHoles [51] and ISOMER [52] gather statistics focusing on data

required by the current workload (i.e., user queries) and use this feedback as a guide to

avoid scanning data of low interest. Finally, a variation of the statistics gathering problem

in relational databases arises in presence of limited query expressivity, as in the context

of hidden databases [53, 54]; in this scenario, both the query formulation and the result

output could have several constraints such as the possibility to filter using only one value

at a time, restricted cardinality of the results, etc. While quite mature, these techniques

are not suited for predicting response times since common relational database techniques

cannot be used in any context where the service has limited query expressivity, and both

common relational and hidden database approaches fall short whenever a service involves

non-trivial computations. Indeed, even if data statistics can bring useful insights, they

cannot always be used to infer response times since they do not give information on service

processes.
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3.3.1.4 Active Learning

A considerable research effort is currently being put into the area of active learning [55]

(also referred as optimal experimental design), which is a subfield of machine learning that

aims at minimizing labeling costs (e.g., the time spent on manually annotating pictures

with the corresponding categories) by letting the learning algorithm choose which queries

should be issued. These techniques are of utter importance when gathering a large training

set is difficult due to time or monetary costs, for instance in image and text classification,

biological experiments, etc. One of the latest challenges in this field is the design of

algorithms that can reactively adapt to function drifts [56, 57]. In [56] the authors show

an evaluation of different learning approaches and their capabilities in effectively detecting

and adapting to function drifts, while [57] employs active learning for sentiment analysis

of tweets to infer financial predictions. The problem of learning a non-stationary function

has been generally tackled in the context of streaming data, but indeed this specific

topic has yet to reach maturity in an active learning context. As a final remark, none of

the approaches regarding the construction of cost models that we previously introduced

incorporates active learning mechanisms that enable the construction of a more dynamic

and self-adaptive model.

3.3.2 Approach Overview

As sketched in Figure 3.20, Tiresias works as an intermediary between a client and a

service, and uses a cost model of the server to deliver query cost estimates (yellow arrows

in Figure 3.20) to the client. To train the cost model, it features two interleaved querying

cycles: a passive and an active one. In the passive querying cycle (green arrows), each

query Q sent by the client to the service for execution is intercepted by Tiresias, which

waits for the response from the service to update the cost model with the measured cost y

for Q (called event from now on). In the active querying cycle (red arrows), the service is

probed through system-generated queries, aimed at (i) addressing the cold start problem

by building a cost model from scratch with minimal user intervention; and (ii) dynamically

adjusting the cost model whenever the estimate accuracy becomes unsatisfactory, for

instance in case of function drifting. Before describing in greater detail the components

of Tiresias, we remark that our approach is not meant to address issues related to web

service availability [58]; indeed, it is focused on offering predictions on the query cost and

not on the probability of queries to be answered or not. This means that all failed queries

are ignored and discarded from the training process.

The components of Tiresias and their interactions are sketched in Figure 3.20 and summa-

rized below:

� The query manager receives both passive and active queries and redirects them to

the service. Once the service responds, the cost of the query is measured to send an
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Figure 3.20: Architecture of Tiresias

event to the cost model manager.

� The cost model manager estimates the cost of queries, updates the cost model after

receiving each event, and provides statistics on the accuracy over all the query space

to the active learning manager.

� The active learning manager generates active queries to build and refine the cost

model.

Temporally, the active querying cycle can be broken into two sequential phases:

1. Initialization. This start-up phase aims at gathering a sufficient number of events

to obtain a first, rough approximation of the cost function. The user specifies the

input parameters, namely, an initial budget that denotes how many active queries

are to be run during initialization and a desired accuracy for the model.

2. Refinement. Once the initial budget has been spent, the active learning manager

enters this operational phase, whose aim is to satisfy the accuracy requirement by

issuing ad hoc active queries in the areas of the querying space where, according to

the statistics, the cost model performs poorly. Once the accuracy requirement has

been met, the active cycle pauses, to resume once again whenever the accuracy drops

below a given threshold. To regulate the activity of the active learning manager it is

possible to define a refinement budget that, differently from the initial one, has a

refreshment time (e.g., it resets every day).

The passive querying cycle is interleaved with the active one, i.e., the user can issue her

own queries at any time during initialization and optimization.

3.3.3 Formal Framework

In this section we define the formal framework on which Tiresias is based, starting from

the concepts of service and query.
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Definition 10 (Service, Query, and Query Space) A service is represented as a tu-

ple S � xs1, . . . , sny of parameters si, each defined on a domain Dompsiq of values.3

The domain of a parameter can be either categorical or numerical; in the former case

it is defined as a discrete and finite set of values, while in the latter it is defined as a

continuous and bounded range of values. A query on S is a tuple Q � xq1, . . . , qny where

qi P Dompsiq for i � 1, . . . , n. The query space of S is the set of all possible queries on S:

Q �
�

siPS
Dompsiq.

Notice that these definitions of service and query are more flexible than the ones given

in Section 3.2.5.1 (see Definition 6 and 5). The difference lies in the dependence of the

former ones on the concept of multidimensional schema. Indeed, this is a design choice to

keep the applicability of the Tiresias approach as wide as possible, as general web services

may or may not model their data in a multidimensional fashion.

Definition 11 (Stream and Event) A stream D over service S is a temporally ordered

sequence of events, each event being defined as a tuple d � xt, Q, yy where t is a progressive

integer that uniquely identifies d within D, Q P Q is a query, and y is the measured cost

for executing Q over S.

Each event d corresponds to either a passive (i.e., user-formulated) or an active (i.e.,

system-generated) query formulated on S. The components of d will be singled out using

the dot notation (e.g., d.Q).

Example 14 Among the 27 parameters made available for querying in Grid, we mention

latMin, latMax (lower and upper latitude bound in degrees, with domain r�90, 90s), and

processingLevel (which controls whether the requested data should be gridded to the specified

space and time resolution, domain tL2,L3u):

S � xdataset, latMin, latMax, processingLevel, . . .y

A query on S is

Q � xACOSv3.4r01, 25, 80,L2, . . .y

An event for this query is x1, Q, 27y, meaning that Q took 27 seconds to execute.

The cost model for S is a function f̂ : Q Ñ IR that associates each query Q with its

estimated cost f̂pQq based on the events in D. In our approach the cost model is expressed

by a regression tree that partitions the query space and stores a multiple linear regression

(MLR) model in each leaf. We recall that an MLR model is formally defined as

ŷ � xλ (3.1)

3Our approach relies on the assumption that the domain of each service parameter is known; in practice,
this kind of information can be usually obtained by either querying the service itself or examining the
related documentation.
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where x is a row m-vector representing the independent values, ŷ is the corresponding

dependent value, and λ is a column m-vector representing the regression coefficients4. In

our context, x stores the m (m ¤ n) numerical values of query Q, corresponding to the

numerical parameters5 of service S; ŷ corresponds to the estimated cost for Q; and stream

D � pd1, . . . , dpq, with di � xti, Qi, yiy, is represented by a pp�mq matrix

X �

�
�� x1

� � �

xp

�
�

(where each xi is the row m-vector of the numerical values of Qi) and by the column

p-vector y of the measured costs for the queries in D.

When training the cost model, to estimate its accuracy in a particular region of the query

space defined by a leaf l we use the RMSE measure defined as:

RMSEplq �

d°
dPMl

pd.y � f̂pd.Qqq2

|Ml|
(3.2)

Note that, while in principle we could give an error estimation of any region, even one that

does not correspond to a leaf of the tree, in practice this would require a finer partition of

the query space, thus increasing the computational effort for maintaining the cost model.

Definition 12 (Cost Model) A cost model for S, f̂ , is expressed by a binary tree

T � pV,Eq where (i) each internal node v P V is associated with a parameter si of S and a

value qi P Dompsiq, (ii) each edge e P E is labeled with a Boolean predicate on si involving

qi, and (iii) each leaf l P V is associated with an (ordered) set of events Ml � D and with

a regression model λl. Given internal node v associated to si and qi, if si is categorical the

two edges exiting v are labeled with predicates si � qi and si � qi, while if si is numerical

they are labeled with si ¤ qi and si ¡ qi.

For each leaf l of T , we denote with Ql the subset of queries in the query space Q that

satisfy all the predicates associated with the internal nodes in the path of T from the root

to l. As a consequence of the disjointness and completeness of the couples of predicates

corresponding to each internal node, the leaves of T induce a disjoint and complete

partition of Q. So, given query Q, its estimated cost f̂pQq is computed by finding the

(unique) leaf l such that Q P Ql and by applying the regression model λl to Q.

Example 15 An example of regression tree expressing a cost model for Grid is shown in

Figure 3.21. The tree has four splits, two on categorical parameters and two on numerical

4Equation 3.1 does not explicitly model the intercept value, which in practice can be obtained by
adding a dummy parameter with domain r1, 1s

5To avoid introducing arbitrary mappings from categorical to numerical domains, the regression model
does not involve categorical parameters, which are used to partition the query space. Thus, all the
parameters are exploited while keeping the regression tree easily interpretable.
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Figure 3.21: A regression tree for Grid

parameters. Each leaf is associated with a set of events (black dots) that relate points in the

query space with their measured cost and with a local linear regression model (represented

as a red line). The cost for query Q in Example 14 is estimated by applying the regression

model in the third leaf from the left.

3.3.4 Cost Model Management

This section explains how a cost model is trained in our approach. First, in Section

3.3.4.1 we introduce the SAIRT algorithm [4] for building regression trees, then in Section

3.3.4.2 we describe in detail how SAIRT can be extended by incorporating MLR models

to improve accuracy while still retaining stream processing capabilities.

3.3.4.1 The SAIRT Algorithm

SAIRT [4] is an algorithm for the incremental building of binary regression trees tailored

for data streams and capable of quickly adapting whenever function drifts are detected.

A regression tree T is built starting with a single node that covers the whole space of

events available; then this space is partitioned into smaller regions aimed at minimizing

the RMSE of the events falling in each region. Each region corresponds to a leaf in T ; the

regression model associated with each leaf is the median of its events. Partitioning the

space of events is done iteratively by splitting the leaves of T . A leaf l is split into two

new leaves when the instantaneous error rate (IER) of l, ierplq, is higher than a threshold.

The split is done by selecting the parameter-value pair that maximizes the reduction of

the RMSE of the events between the original set and the resulting subsets; for numerical

parameters, monodimensional k-means clustering is adopted to select the best split value,

while each distinct value of the categorical parameters is used to create a binary condition

(e.g., processingLevel � L2). To prevent a leaf from being split when it contains few events,

so as to avoid overfitting, a heuristics is adopted [4].
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Now let f̂ be a cost model for service S expressed by regression tree T , and v be a node

of T . If v is an internal node, let Childrenpvq denote the set of its direct children and

Mv �
�
v1PChildrenpvqMv1 denote the union of the sets of events associated to all the leaves

descending from v. The IER of v depends on the number of events in Mv and, in SAIRT,

is recursively defined as follows:

ierpvq �

$&
%

°
dPMv

pd.y�f̂pd.Qqq2

|Mv |�pymax�yminq2
if v is a leaf°

v1PChildrenpvq
|Mv1 |

|Mv |
� ierpv1q otherwise

(3.3)

where ymax and ymin are the maximum and minimum costs, respectively, of all the events

d PMv.

The IER is used when initializing the cost model starting from a first given set of events to

iteratively build T . Then of course, as new events are made available, T must be adapted.

This is done again by considering if splitting the leaf l where each new event belongs based

on its new ier. Additionally, due to the new event, some internal nodes on the path from

the root to l may become no more significant and must be eliminated; specifically, the

children v1 and v2 of a node v are pruned if v is not coherent, i.e., if the distribution of the

costs in Mv is very similar to those of Mv1 and Mv2 .

As already mentioned, a relevant feature of SAIRT is its capability to detect function

drifts and adapting to them. Unfortunately, the high variability of ier prevents from using

it directly to guide the adaptation strategy in case of function drifting. Thus, a smoothing

formula is applied to derive the performance of node v at time t:

pertpvq �

$&
%

7
8
� pert�1pvq �

1
8
p1� ierpvqq if t ¡ 0

1� ierpvq if t � 0
(3.4)

Each time t the performance of a node decreases, SAIRT marks t as an anomaly time.

After an anomaly has been detected, SAIRT starts to forget the oldest events to adapt

the model; the number of forgotten events is dictated by how much the performance has

decreased and by how long the anomaly persists.

3.3.4.2 Extending SAIRT with Multiple Linear Regression

In this section we describe how we extend the SAIRT algorithm by using MLRs instead of

medians as regression models in the leaves of the regression tree. As we will show in Section

3.3.6, this improves the accuracy of the estimations while preserving good execution times.

Furthermore, a more powerful leaf model produces a more compact representation of the

regression tree which can help the user better understand her data.

Substituting a median-based model with a MLR-based one is not trivial; on the one hand,

it invalids some of the (often implicit) assumptions made by the original SAIRT algorithm,
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on the other it paves the way for other possible improvements. The specific extensions we

made to SAIRT are listed below:

� use of incremental MLR models instead of median;

� a more MLR-friendly split criterion based on residual analysis for numerical parame-

ters;

� a new coherence test based on the RMSE rather than on a distribution distance;

� an adapted definition of IER that (differently from the original one) can be used

with MLR models.

Incremental MLR Model. The regression model λ for stream D represented as matrix

X can be obtained by applying an ordinary least squares optimization:

λ � Z�1XTy (3.5)

where Z � XTX. The computation of the optimal coefficients λ as in Equation 3.5 is

quite expensive since it involves a matrix inversion operation, thus repeating the whole

process for each new event would lead to execution times that are not compatible with our

stream processing requirements. To address this issue we adopt an incremental update

technique that works by initializing the regression model with a small amount of events

and then updating it with every new event. Specifically, given stream D we can use its first

events X to compute Z�1 and initialize a regression model λ using Equation 3.5. Now,

given a new event d with numerical values x and measured cost y, for the new matrix Z̄

the following identity holds:

Z̄ � X̄TX̄ �

�
X

x

�T �
X

x

�
�XTX � xTx

so that we can apply the Sherman-Morrison formula [59] to update the regression model:

λ̄ � λ�
Z�1xT py � xλq

1� xZ�1xT
(3.6)

Z̄�1 � Z�1 �
Z�1xTxZ�1

1� xZ�1xT
(3.7)

This incremental update process can be repeated each time a new event arrives and only

requires the additional cost of storing the pm�mq matrix Z�1. Note that the regression

model does not only need to be updated when a new event arrives, but also when an old

event is discarded (e.g., during a function drift). Specifically, if an event d is discarded,
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the update can be computed as

λ̄ � λ�
Z�1xT py � xλq

1� xZ�1xT
(3.8)

Z̄�1 � Z�1 �
Z�1xTxZ�1

1� xZ�1xT
(3.9)

Split Criterion. The original SAIRT algorithm uses monodimensional k-means clustering

to select the split value for numerical parameters as follows. Given leaf l and numerical

parameter si for which a split value must be computed, the k-means algorithm is applied

to all values td.xris : d PMlu with k � 2. The result of this procedure is composed by two

different clusters whose centroids are averaged to obtain the final split value.

In Tiresias we opt for a more sophisticated technique specifically tailored for MLR models;

this technique has already been used and tested in the SUPPORT algorithm [60] and

works as follows. Given cost model f̂ and leaf l of the corresponding regression tree, the

candidate split value ci for numerical parameter si is chosen as

ci �
r�i � r�i

2
(3.10)

where

r�i � mean td.xris : d PMl ^ f̂pd.Qq   d.yu

r�i � mean td.xris : d PMl ^ f̂pd.Qq ¡ d.yu

Intuitively, this approach exploits the positive and negative residuals of the regression

model to identify potential non-linear areas in the underlying function. Consider for

instance Figure 3.22, which shows a set of events each characterized by a value of a

numerical parameter (on the x-axis) and by the measured cost of the corresponding query

(on the y-axis). In Figure 3.22.a all these events belong to a single leaf l of the regression

tree, so they are (badly) fitted with a single linear regression model. If k-means clustering

were used, the split value for l would be fixed at 50, producing a fairly accurate fit as shown

in Figure 3.22.c. Conversely, by adopting our approach, positive and negative residuals are

considered. In Figure 3.22 the events are represented with a plus mark when f̂pd.Qq   d.y

and with a minus mark when f̂pd.Qq ¡ d.y; the former are used to compute r�i , while the

latter are used to compute r�i . The split value is fixed at about 65, producing the most

accurate fit as in Figure 3.22.b.

Coherence Test. The coherence test made in SAIRT after the insertion of each new

event consists in checking whether or not the distributions of internal node v and its

children v1 and v2 are different enough; precisely, if the Kolmogorov-Smirnov distance

between the distributions is higher than a given threshold the split of v is coherent and is

preserved, otherwise it is eliminated. This approach is sound when the median is used as
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Figure 3.22: The same set of events is approximated using one (a) or two (b) linear
regression models (represented as continuous black lines)

a regression model since, given two sets of values, if their medians are different then their

distributions are necessarily different; then, if the coherence test is not passed, the two

medians must be similar.

The same is not true when using MLR models. Referring again to Figure 3.22, the data

points should clearly be fitted with two different linear regression models as in Figure

3.22.b. However, the resulting set of events would have the same cost distributions, thus

the split would be considered not coherent. To address this issue we consider the RMSE

of the regression models instead of the distributions of the dependent values. Specifically,

given a split of v into two children v1 and v2, we check the difference between the RMSE

induced by the regression model built using the events in Mv and the RMSE induced by

the models built with Mv1 and Mv2 . If the difference between the RMSEs is below a given

tolerance, then the split is not coherent. Of course this requires to keep track not only of

the regression models corresponding to the leaves, but also of those corresponding to the

internal nodes.

Instantaneous Error Rate. Before explaining why Equation 3.3 cannot be directly

applied with MLR, we first briefly analyze how it works. In the case of a leaf node we have

at the numerator the residual sum of squares (RSS), while at the denominator we have

the number of events and the squared difference between the maximum and minimum

dependent values; all these terms are computed using the events currently stored in the

leaf. The two factors at the denominator act as a weighting mechanism to keep the RSS

comparable among different leaves.

The problem in applying Equation 3.3 with a linear model is that it favors hyperplanes

with extreme slopes; indeed, the more the slope coefficients are far from 0, the higher

difference between the maximum and minimum values tends to be. To cope with this

issue, we still apply Equation 3.3 but with

ymax � maxtd.y � f̂pd.Qq : d PMvu

ymin � mintd.y � f̂pd.Qq : d PMvu
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Remarkably, this formulation can be considered a generalization of the previous one, since

the two equations are the same when considering f̂ as a simple constant model (e.g.,

median).

Complexity. To assess the impact of the extensions that we made to SAIRT, we close

this section with a few remarks on computational complexity. Whenever a regression tree

is trained with a new incoming event we can distinguish two main scenarios: either (i) all

the nodes affected by the new event are coherent and the IER is such that a new split is

not required, or (ii) one or more nodes are not coherent or the IER is too high. The key

difference between the two scenarios is that the first one does not bring any structural

change to the tree, while the second might. Indeed, a pruning operation and a new split

are required if, respectively, at least one node is not coherent and the IER is higher than

the chosen threshold. With scenario (i) we need to account only for the cost of updating

the MLR models and the statistics of the nodes affected by the new event. A single

incremental update of an MLR model with m numerical parameters has complexity Θpm2q,

while the cost for updating the statistics of a node v is Θp|Mv|mq or Θp1q depending on

whether v is a leaf or an inner node. The complexity Θp|Mv|mq is due to the computation

of the residuals necessary to update the IER. With scenario (ii) the algorithm must find

a new best split, which means computing two new regression models for each numerical

parameter and for each distinct value of each categorical one. With reference to Equation

3.5, the cost of building an MLR model from scratch is dominated by the computation of

matrix Z�1 which, using the Gauss-Jordan elimination algorithm, amounts at Opm3q.

3.3.5 Active Learning

As mentioned in Section 3.3.2, the active querying cycle includes an initialization and

a refinement phase. The goal of initialization is to get a general approximation of the

costs over all the query space, so the active queries generated are uniformly distributed

in the query space. Initialization ends after the initial budget of queries has been spent;

of course, the higher the initial budget value, the higher the accuracy of the cost model

obtained at this stage.

After the initialization phase, the active cycle kicks in to refine the cost estimates and

preserve their accuracy. Specifically, active queries are issued when the RMSE of at least

one leaf goes over a user-defined threshold γ. We assume that the noise is uniform over

all the query space and does not change with time, so that γ can be considered to be

global and constant. Obviously, the intrinsic noise in the events sets a lower bound to the

accuracy achievable, thus γ must be higher than such lower bound.

The RMSE can be over the threshold for two different reasons. The first one is that the

initial budget was too small to enable a sufficient reduction of the RMSE, so some more

events are needed to take the RMSE below γ. The second reason is that there has been a
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Algorithm 3 Initialization
Require: A service S, an initialization budget β1

Ensure: A cost model f̂ for S
1: Q �

�
siPS

Dompsiq

2: Initialize cost model f̂ � An empty regression tree is created
3: tÐ 1
4: while β1 ¡ 0 do
5: Generate random query Q P Q � A uniform distribution over Q is followed
6: y Ð CostpQq � Query Q is executed
7: dÐ xt, Q, yy � A new event d...

8: f̂ Ð Updatepf̂ , dq � ...is added to the regression tree
9: β1 Ð β1 � 1
10: tÐ t� 1

function drift in the service costs and some more events are necessary to adapt the cost

model accordingly.

To cope with scenarios in which a few regions of the query space with very accurate

estimates mask other regions with poor accuracy, our active learning strategy operates

locally, i.e., at the leaf level. First of all, only the leaves whose RMSE is above γ are

selected for active query generation. Then, following an uncertainty sampling strategy [55],

the probability of having one of these leaves queried depends on its RMSE. Specifically, the

probability of leaf l to be selected for active querying is proportional to its informativeness,

defined as

φplq � RMSEplq � coverageplq (3.11)

where

coverageplq �
areaplq

|Mplq|

and areaplq measures the extension of the query space covered by Ql. The extension of

leaf l is defined as areaplq �
±n

i�1 lengthlpsiq, where

Lengthlpsiq �

$&
%

|Domlpsiq|
|Dompsiq|

if si is categorical
maxpDomlpsiqq�minpDomlpsiqq
maxpDompsiqq�minpDompsiqq

if si is numerical

and Domlpsiq is the projection of Ql on the i-th parameter si. The coverage factor aims

at improving the robustness of the optimization strategy when the noise is not uniform

across the query space; intuitively, it favors regions in the query space for which few events

are currently stored.

The pseudocode of Algorithms 3 and 4 summarizes the complete active cycle, distinguishing

its two phases. During initialization (Algorithm 3) the query space of S is defined and

active queries are uniformly generated on it as long as the initialization budget β1 allows.

Algorithm 4 is invoked immediately after initialization, and then after each new passive

query has been executed and the cost model has been updated accordingly. Here, as

already stated, querying generation is focused on the regions of the query space where

the RMSE is above γ; at each iteration, while the target leaf l̄ is selected based on its
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Algorithm 4 Refinement

Require: A service S, a time t, a cost model f̂ for S, a refinement budget β2, an RMSE threshold γ
Ensure: A (refined) cost model f̂ for S

1: LÐ tl : l is a leaf of f̂ ^RMSEplq ¡ γu
2: while L � H^ β2 ¡ 0 do � Accuracy is poor and there is budget left
3: Randomly choose l̄ P L � A φ-based distribution over the set of leaves is followed
4: Generate random query Q P Ql̄ � A uniform distribution over Ql̄ is followed
5: y Ð CostpQq � Query Q is executed
6: dÐ xt, Q, yy � A new event d...

7: f̂ Ð Updatepf̂ , dq � ...is added to the regression tree
8: β2 Ð β2 � 1
9: tÐ t� 1
10: LÐ tl : l is a leaf of f̂ ^RMSEplq ¡ γu

informativeness φpl̄q, the specific query generated for l̄ is randomly chosen following a

uniform distribution over Ql̄. Like for initialization, there is a specific budget β2 that

limits the amount of queries issued.

Example 16 To show a comprehensive example of the role that the active learning strategy

plays in Tiresias, we focus on a simplified version of the Grid service, S � xlatMax, lonMaxy,

where both parameters latMax and lonMax are numerical. Figure 3.3.5 shows, at four

consecutive times, the current regression tree (on the left) and the partition it induces on

the query space (on the right). Each leaf corresponds to a region of the query space and is

described by its RMSE (the darker the shade of gray, the higher the RMSE) and by the

number of the events currently stored. The initialization and refinement budget are set

to β1 � 90 and β2 � 70, respectively (note that the refinement budget is assumed to be

periodically replenished).

(a) In the initialization phase (see Algorithm 3) the active learning manager generates

random queries uniformly over all the query space, to obtain β1 � 90 events that are

used to build the cost model. Eventually, let the resulting tree be the one shown in

Figure 3.23a, where the RMSE is above threshold for three leaves (corresponding to

the three tick-bordered regions in Figure 3.23a). Note that, since the query distribution

is uniform at this stage, the leaves that cover larger regions have a higher number of

events.

(b) Since L � H and β2 ¡ 0 (line 2 of Algorithm 4), the refinement phase is entered and

some active queries targeting the leaves in L are generated to improve the cost model.

We assume that 42 such queries are needed to take the RMSE below the threshold for

all leaves. Let the tree at the end of the refinement phase be the one in Figure 3.23b;

the generation of queries has followed a φ-based distribution (see Equation 3.11), thus

leaves with higher values of φ have been prioritized.

(c) A stream of passive queries is then expressed by the user. Let a function drift occur at

this time: the performance of one or more leaves decrease, so an anomaly is detected

and the oldest events in the affected leaves are forgotten to try to adapt the cost model.

We assume that, due to the adaptation mechanism of the regression tree, the two top
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(a) Cost model after the initialization phase
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(b) Cost model after the refinement phase
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(c) Cost model after a function drift
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(d) Cost model after adapting to the drift

Figure 3.23: An example of cost model evolution in Tiresias

65



Table 3.3: Services used in the experiments

Service Drift
Parameters Events

Mean Cost
Categorical Numerical Training Test

Synth No 1 1 25k 5k 1.4 secs
DB No 5 2 10k 5k 12.3 secs
Synth+ Yes 1 1 25k 10k 1.4 / 1.3 secs
Grid Yes 2 8 30k * 118.9 secs

leaves of Figure 3.23b are merged since the split is no more coherent. The resulting

tree is shown in Figure 3.23c: it has four leaves only, and for one of them (the dark

one resulting from the merge) the RMSE is above the threshold.

(d) Since again L � H and β2 ¡ 0, the active learning manager starts generating

additional active queries as described in Algorithm 4 to refine the cost model after the

drift. All new events fall into the top leaf of Figure 3.23c and may induce a new split

on parameter lonMax, to produce the result in Figure 3.23d where the RMSE of all

leaves is below threshold.

3.3.6 Experimental Results

This section collects the main results of the experiments we carried out to evaluate our

approach. All the algorithms are implemented in Scala (version 2.11.7) and run on a

desktop PC quad-core (3.6GHz, 32 GB RAM, Windows 8-64 bit). Table 3.3 shows a

summary of the main features of the four services used for the experiments, namely, Synth,

DB, Synth+, and Grid. The first three services run in controlled environments, so that

we know exactly if (and when) a drift happens. Synth and DB do not suffer from drift,

i.e., the underlying cost function is constant, while in Synth+ the cost function changes in

time. Finally, Grid is a real-life web service running in an environment of which we have

very limited information, that is, we only know the definition of its public interface. In

the following we describe in greater detail each of these services and the events gathered

by querying them.

� The events gathered from the Synth service were procedurally generated according

to a cost function with a perturbation given by Gaussian noise. The service contains

two parameters: cat, with a binary categorical domain, and num, with a numerical

domain. For cat � Simple the cost function is linear (see light gray points in Figure

3.24); for cat � Complex we adopted a piece-wise function made of two linear and

one exponential parts (see dark gray points in Figure 3.24). Splitting the query space

into two regions with different degrees of complexity enables a better assessment of

the behavior of the active learning strategy.

� The DB service operates on top of a DBMS and each event was generated by running

66



0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100

C
os

t

Numerical Parameter

Figure 3.24: The events of the Synth service; light and dark gray points represent the
events for the two values of the categorical parameter

a SQL query and using its execution time as the cost value. To diversify the query

space we populated two distinct databases; both contain the same data from the

TPC-D benchmark [61], but only one of them was indexed. The SQL query that

we wrote to simulate the service makes use of two numerical and two categorical

parameters. All four parameters support filtering (i.e., conditions in the WHERE

clause), while only categorical parameters support aggregation (i.e., they can appear

in the GROUP BY clause). In practice, since in our approach services are supposed

to expose an interface with a fixed number of parameters, a call to DB is made

by mapping each condition in the SQL query to a parameter in the service query;

two additional parameters are used to enable aggregation for the two categorical

parameters, and one more parameter determines if the SQL query will be launched

on the database with or without indexes.

� The Synth+ service shares the same interface as Synth and was designed to simulate

a drifting environment by changing its cost function after a certain amount of

generated events. Specifically, every five thousand generated events the service

switches between the cost function used in Synth and a simple linear function holding

for both values of the parameter cat. This type of drift is meant to be as disruptive

as possible, since we observed that the the first (root) split of the regression trees

built for the Synth service always involve the categorical parameter.

� As mentioned in Example 13, the Grid web service gives access to several CO2-related

measurements gathered from satellites and ground stations. In addition to filtering,

Grid can aggregate the available measurements along the time and spatial dimensions.

A call to the service consists in an HTTP request where several parameters must

be specified; the result is a textual or graphical representation of the requested

measurements. For our experiments we considered a reduced query space including

a subset of ten parameters. We remark that, differently from the other services, we
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Table 3.4: Comparison between SAIRT and SAIRT-MLR

Service
SAIRT SAIRT-MLR

RMSE Rel. Error # Leaves # Events RMSE Rel. Error # Leaves # Events
Synth 166 0.11 102 13 152 0.11 23 55
DB 7116 0.72 89 16 5530 0.36 87 19
Synth+ 242 0.13 16 658 196 0.11 16 595
Grid 37870 0.49 79 74 23585 0.29 45 78

have no knowledge of the internals of Grid.

To evaluate the efficiency of Tiresias, we measure the average number of events per second

that it can ingest for training purposes. To evaluate its effectiveness, we measure the

accuracy of the cost models it builds using again the RMSE:

RMSEpf̂q �

d°
dPDpd.y � f̂pd.Qqq2

|D|

where D is a test set of events gathered by uniformly querying the services.6 The number

of test events for each service is shown in Table 3.3. Differently from Synth and DB, for

Synth+ we generated two different test sets of 5000 events each, one for each underlying

function; at each time instant we compute the RMSE using only the appropriate test set,

i.e., the one belonging to the function currently used by the service. For Grid it is not

possible to gather a reliable test set since its underlying dynamics are unknown and out of

our control, so we had to use an alternative approach to measure the cost model accuracy.

Specifically, at each new event d corresponding to a passive query we measure the RMSE

(which is a simple deviation in this case) between the actual cost and the one predicted by

the model before d is used to update it.

The remainder of this section is organized into two parts: in Section 3.3.6.1, the results

of our algorithm for building regression trees (called SAIRT-MLR from here onward)

are evaluated using the original SAIRT as a baseline; in Section 3.3.6.2, the focus is on

assessing the behavior of the active learning strategy.

3.3.6.1 Comparison with SAIRT

With reference to the framework presented in Section 3.3.2, in the first part of the evaluation

the active querying cycle is switched off. The passive cycle is simulated through queries

uniformly generated over all the query space; each passive query corresponds to an event

used to train the cost model.

SAIRT and SAIRT-MLR are compared on the querying timeline in terms of their accuracy,

the size of the trees that they produce, and their efficiency. In particular, Table 3.4 shows

6The test sets are used only to compute the RMSE values and not to train the cost model.
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Figure 3.25: RMSE (the lower the RMSE, the higher the accuracy) for each algorithm
and service

for each service and algorithm the average prediction error (column RMSE), average size

of the generated regression trees (# Leaves), and average number of processed events per

second (# Events) during training. Our evaluations of effectiveness are mainly based on
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the RMSE since our approach aims to minimize it; however, to present a more intuitive

measure of accuracy, in Table 3.4 we also include the average relative prediction error of

the cost models (column Rel. Error).

More specifically, Figure 3.25 shows how the RMSE changes during training.Clearly, the

SAIRT-MLR algorithm achieves more accurate predictions than SAIRT, both in stable

(Synth and DB) and dynamic (Synth+ and Grid) contexts. For Synth (Figure 3.25.a),

the error rates of SAIRT-MLR are significantly smaller than those of SAIRT during the

first 5000 events, while for later events the error rates are comparable: at the 10000-th

event there is only a 4% difference between them (the remaining 15000 events are omitted

since there are no significant changes). The DB service (Figure 3.25.b) proved to be

more difficult to model. Here the differences in prediction errors are significant over all

the 10000 events; at the 10000-th event the RMSEs of SAIRT-MLR and SAIRT have a

57.3% difference. The Synth+ service (Figure 3.25.c) simulates a variable cost function

by changing its behavior every 5000 events; for both algorithms there are error spikes

whenever a function drift occurs, then the models quickly adapt to the new behavior

leading first to a decrease and then to the stabilization of the prediction errors. Finally,

the results for Grid (Figure 3.25.d) confirm that, though both algorithms react similarly to

the dynamics of the service, SAIRT-MLR consistently obtains more accurate predictions

than SAIRT; overall, Grid presents a much more unstable behavior than the other services,

as reflected by the noticeable fluctuations of the RMSE.

Going back to Table 3.4, it is worth discussing the size of the regression trees generated to

model the different services. For Synth, the trees obtained after 25000 events by SAIRT-

MLR and SAIRT include 26 and 152 leaves, respectively. This sharp difference is not

surprising as the former algorithm uses MLRs, while the latter uses simple median values,

which require a finer partitioning of the query space to compensate a lower expressiveness.

For instance, with reference to Figure 3.24, the events in light gray are modeled with a

single leaf by SAIRT-MLR, while SAIRT fragments that region of the query space into 24

leaves. Conversely, for DB, the trees generated by SAIRT-MLR and SAIRT after 10000

events include roughly the same number of leaves. The reason for this different behavior

lies in the different complexities of the cost functions for the two services: while for Synth

the cost function is linear in several regions of the query space, this is not the case with

DB. Synth+ and Grid have variable cost functions, so we measured the average number

of leaves of the trees generated after each event. For Synth+, the average tree size is the

same for SAIRT-MLR and SAIRT. Finally, for Grid, the trees generated by SAIRT-MLR

and SAIRT are composed by an average of 45 and 79 leaves, respectively.

We close this section with an efficiency evaluation. Table 3.4 shows the average number of

events processed (i.e., used to update the model) per second by each algorithm on each

service. Surprisingly, SAIRT-MLR is more efficient on all the services but Synth+. While

it is counterintuitive that a more complex model achieves not only better accuracy but also

better performances, this can be explained as follows. As discussed in Section 3.3.4, the
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MLR models in SAIRT-MLR are incrementally updated, while the median values in SAIRT

must be computed from scratch after each new event; thus, updating an MLR model is

actually cheaper than updating a median value. However, whenever a structural change

is performed (i.e., a split or a pruning operation), both MLR models and median values

must be completely recomputed, thus removing the advantage of incremental processing.

Indeed, the service in which SAIRT-MLR most clearly takes the lead is Synth, where a

stable (and accurate) model that needs few structural changes is produced quite soon. On

the other hand, in more complex and variable services, the gap between the two algorithms

becomes very small. Interestingly, the performances of both algorithms on the variable

services (Synth+ and Grid) are better than those on Synth and DB : drifting induces more

structural changes but the number of events stored by the models is smaller, thus yielding

better performances. This is particularly true for SAIRT which, as already mentioned,

cannot incrementally update the median values stored in the leaves.

3.3.6.2 Active Learning Analysis
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Figure 3.26: Distribution of active queries over the query space of Synth (the darker the
color, the higher the number of queries

In this section we assess the effectiveness of our active learning strategy by comparing the

accuracy of Tiresias with and without the active cycle. This cannot be done for Grid since,

as already mentioned, we are unable to gather a test set that can be used on different test

runs; even comparing the prediction values with the real costs for each event (as done

in Section 3.3.6.1) would be misleading, due to the different distributions of the queries

issued. For each remaining service we used an initialization budget of 200 queries, while

the RMSE threshold γ and the refinement budget have been set to 0 and 8, respectively,

so that the active learning manager continuously generates queries. To emphasize the

contribution of the active cycle we limit as much as possible the number of passive queries;

more precisely, with Synth and DB no passive queries are issued, while with Synth+ 200

passive queries are interleaved with the active ones each time there is a function drift.

Referring again to Figure 3.25, switching the active learning strategy on (SAIRT-MLR

Act) clearly improves the accuracy over SAIRT-MLR for all three services. For Synth, the

RMSE decreases faster in SAIRT-MLR Act than in SAIRT-MLR during the first 1000

events, then both algorithms reach stability. The higher complexity of DB makes the

differences more apparent: at the 10000-th event there is still a 13.3% difference in RMSE.
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The results for Synth+ confirm that the active strategy is more effective than a simple

uniform querying strategy; however, as in the case of Synth, the low complexity of the

cost function leads to a small difference in RMSE (4.8%).

As to efficiency, we remark that the cost for generating active queries is negligible, so the

same considerations made in Section 3.3.6.1 hold.

We close this section by analyzing the distribution of the active queries. To this end we

focus on service Synth, whose query space is simple enough to be visually represented

but at the same time features regions with different degrees of complexity. The heat map

in Figure 3.26 reproduces the two-dimensional query space of Synth as a matrix of 40

cells (the numerical parameter num has been discretized). Region cat � Simple is covered

lightly and uniformly. The active learning strategy mostly focuses on the cat � Complex

region, issuing here 80% of all the queries; a few “hot” areas are clearly visible where

the cost function abruptly changes (num � 40 and num � 65) and where it assumes a

pronounced exponential shape (num Á 90). These results are quite intuitive and confirm

that the informativeness φ defined in Equation 3.11 is indeed useful to pinpoint the regions

of the query space whose accurate modeling is most difficult.

3.3.7 Wrapping up Tiresias

We have proposed Tiresias, an approach to build a cost model that accurately predicts

query costs in web services by building and actively adapting a regression tree. Tiresias

extends the SAIRT algorithm for building regression trees by incorporating MLR models;

besides, it triggers an active learning approach whenever the prediction accuracy decreases

below a threshold. The tests we made show that our extension to SAIRT outperforms

the original algorithm in terms of prediction accuracy and efficiency, and also builds more

compact regression trees; besides, the introduction of the active querying cycle further

improves the prediction accuracy in case of function drifts, with a negligible impact on

the overall efficiency of the approach.

Three interesting issues need further investigation and are left as part of our future

work. The first one is related to considering additional features (e.g., the extension of

the geographical area queried in Grid) when training the regression tree to improve the

prediction accuracy, which however would significantly impact on our active learning

strategy. The second one is to better deal with services where the values of a set of

parameters determines the applicability of other parameters (e.g., in Grid, four parameters

are valid only when processingLevel=L3). Finally, transfer learning strategies could be

adopted to reuse the cost model developed for a service for another service with similar

features [62].
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Chapter 4

Compact Visualization of

Multidimensional Data

In this chapter we focus on the contributions related to the shrink operator, which has

been previously proposed by Golfarelli et al. [5].

The only implementation of the shrink operator proposed in literature is based on a greedy

heuristic that, in many cases, is far from reaching a desired level of effectiveness. In

Section 4.4 we propose a model for optimizing the implementation of the shrink operation

which considers two possible problem types. The first type minimizes the loss of precision

ensuring that the resulting data do not exceed the maximum size allowed. The second

one minimizes the size of the resulting data ensuring that the loss of precision does not

exceed a given maximum value. We model both problems as a set partitioning problem

with a side constraint. To solve the model we propose a dual ascent procedure based on a

Lagrangian pricing approach, a Lagrangian heuristic, and an exact method. All the novel

methods are experimentally evaluated and compared with the greedy implementation.

Furthermore, the previous implementation of shrink requires the user to choose the

dimension that will be reduced through hierarchical clustering. To improve the efficacy of

the operator, in Section 4.5 we propose a multidimensional generalization that can work

on all dimensions simultaneously. Multidimensional shrink comes in two flavors: lazy and

eager, where the bounds posed by hierarchies are respectively weaker and stricter. Greedy

algorithms based on agglomerative clustering are presented for both lazy and eager shrink,

and experimentally evaluated in terms of efficiency and effectiveness.
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4.1 Motivation and Outline

One of the key factors that rule the effectiveness of analyses is the achievement of a

satisfactory (from the users’ viewpoint) compromise between the precision and the size

of the information being displayed while analyzing multidimensional cubes. The OLAP

paradigm gives a significant support in this direction by enabling users to interactively

slice, dice, and aggregate cube facts, but this is not always sufficient: more detail gives

more information, but at the risk of missing the overall picture, while focusing on general

trends may prevent users from observing specific small-scale phenomena [63]. This is also

strictly related to the “information flooding” problem, which may happen because the user

drilled down a cube up to a very detailed level, where a huge number of facts are to be

returned. In this case, it may be very hard for the user to browse and analyze the results,

especially if the device used has limited visualization and data-transmission capabilities.

Different approaches can be taken to cope with this issue. For instance, in query personal-

ization there is an attempt to tune the size and pertinence of facts returned by considering

the users’ preferred aggregation levels, measures, and slices [64]. In approximate query

answering, the focus is on quickly returning an answer at the price of some imprecision in

the returned values [65]. In intensional query answering, the set of facts returned by a

query is summarized with a concise description of the properties shared by those facts

[63]. Other papers couple the OLAP paradigm with data mining techniques to create an

OLAM approach where cubes can be mined “on-the-fly” to extract concise patterns for

user’s evaluation [66].
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Figure 4.1: A simple pivot table showing data by City and Year (this picture is a duplicate
of Figure 2.4 repeated here to ease the reading)

The shrink approach [5] is a form of OLAM based on hierarchical clustering, specifically

aimed at balancing precision with size in visualization of multidimensional cubes via pivot

tables like the one shown in Figure 4.1. The shrink operator can be applied during an
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(shrunk) cube

Figure 4.2: Functional overview of the shrink approach

OLAP session to the cube resulting from a query to decrease its size while controlling the

approximation introduced, like sketched in Figure 4.2. The idea is to fuse similar facts

together and replace them with a single representative fact (computed as their average),

respecting the bounds posed by dimension hierarchies.

The rest of the chapter is organized as follows. In Section 4.2 we present the related work,

while Section 4.3 briefly introduces the main concepts behind the shrink operator. In

Section 4.4 and 4.5 we respectively describe our improved algorithms (both heuristic and

exact) and a new multidimensional generalization for shrink. Notice that, while sharing

many basic concepts, Section 4.4 and 4.5 approach and model the shrink problem from

two very different angles. Indeed, Section 4.4 focuses on improving the computational

aspects of the problem by employing techniques borrowed from the operational research

area, while Section 4.5 takes a more BI centered approach to expand the capabilities of

the operator.
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4.2 Related Work

In the following we survey the related research work, mostly in the query personalization

area. Overall, it appears that shrink differs from the previous approaches in mainly

three ways: (i) because it requires no manual specification of preference criteria for

driving visualization; (ii) because the obtained visualization does not depend on the user

history; and (iii) because visualizations are built without violating the constraints posed

by hierarchies.

Our work can be situated in the area of pervasive BI, and more specifically in that of

OLAP personalization, that enables users to fine-tune query results in terms of relevance,

size, and presentation. The authors in [67] give a survey of the main research direction in

OLAP personalization, namely OLAP preferences [64], OLAP visualization [68], OLAP

recommendation [69], and schema personalization [70]. The first two types of approach

are most closely related to shrink.

An algebra for defining OLAP preferences has been defined by Golfarelli et al. in [64].

Their approach is powerful from an expressiveness point of view, but differently from the

shrink operator, it requires users to manually specify their preference criteria. Also most

other work on OLAP content personalization, such as the one by [71], shares with the one

mentioned above the need for some manual intervention to define preferences. In a few

cases, such as [72], preferences are automatically derived by analyzing the log of the user

queries, which makes the results of current queries dependent on the past queries.

OLAP visualization techniques are another way to deliver personalized results to users.

The authors in [73] propose a new presentation model to separate the logical data retrieval

part from the presentation part and show how the table lens technique can be easily

mapped on their model. Based on the intuition that compressing data can efficiently

aid data presentation, [74] devise a new OLAP visualization technique where a cube is

compressed through a quad-tree based approach, but without actually reducing the size of

the resulting table. In [68] a new visual hierarchical structure is introduced whose nodes

contain different non-hierarchical presentations, and that can be used to explore data.

At the borderline between OLAP visualization and preferences, [75] propose a technique

for obtaining a personalized visualization of query results in presence of constraints on the

maximum number of returned cells for each dimension of analysis; user preferences are

manually defined in terms of a total order of dimension members.

Overall, the work in OLAP personalization that shares most similarities with shrink is

the one by [76], where K-means clustering is used to dynamically create semantically-rich

aggregates of facts. This work, like shrink, can be classified as OLAM because it couples

mining and OLAP techniques; however, while with shrink the resulting clustering follows

the constraints imposed by the hierarchy, here this is not the case.
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Outside of the query personalization area, another way to concisely answer a query is that

of giving it an intensional answer, i.e., one that summarizes the set of tuples to be returned

with a description of the properties these tuples share [77]. Intensional query answering

has been applied in several areas but, to the best of our knowledge, the only work related

to OLAP is [63], that proposes a framework for computing an intensional answer to an

OLAP query by leveraging the previous queries in the current session. Like for [72], even

here query results strongly depend on the user history. Another approach that aids the

user during OLAP analyses by enriching and summarizing query results is CineCubes [78].

This system enriches the results of the query issued by the user with other complementing

data, which are then analyzed to identify and extract the most interesting patterns. The

resulting highlights are finally visualized and described through text generation.

A related research topic is approximate query answering, whose main goal is to increase

query efficiency by returning a reduced result while minimizing the approximation intro-

duced. Some approximate query answering approaches were specifically devised for OLAP.

For instance, [79] propose a technique that, given a fixed amount of space, returns the cells

that maximize the accuracy for all possible group-by queries on a set of columns. While

the shrink operator uses approximation to reduce the size of query results, in their work

sampling is used to quickly compute measure values but does not change the size of results.

[80] use quad-trees to hierarchically partition data to obtain a concise representation of

the original data. In [81] cubes are divided in chunks; chunks are then clustered and each

cluster is represented by its centroid. Both works do not consider hierarchy constraints

while shrink does. The work in [82] has a different focus: tuples are sent to a data

warehouse as separate streams that must be integrated, and the approximation of queries

when a small quantity of memory is available is studied.

Finally, an approach similar to shrink in the area of temporal databases is parsimonious

temporal aggregation (PTA), a novel temporal aggregation operator that merges tuples

related to the same subject and with consecutive time intervals to compute aggregation

summaries that reflect the most significant changes in the data over time [83]. Though

shrink shares the same basic principle, it bears more complexity because (a) the con-

straints deriving from temporal consecutiveness strongly reduce the PTA search space; (b)

preserving hierarchy semantics introduces additional complexity.
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4.3 Background on the Shrink Operator

Given a multidimensional cube and chosen one of its dimensions, the shrink operator

works by merging the dimensional values, together with the corresponding slices of cells.

The aim is to obtain a compact representation of the input data that either minimizes the

approximation error and satisfies a given size constraint (size-bound shrink), or minimizes

the size of the result while satisfying a given error constraint (loss-bound shrink). The

resulting representation must also be compliant with respect to the constraints imposed

by the structure of the involved hierarchy. Before describing the greedy implementation of

the shrink operator proposed in [5], we need to briefly introduce the concept of hierarchy

compliance and how we compute the approximation error (for an exhaustive and formal

definition, see [5]).

All
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FL VA

Miami
Orlando

Tampa

Washington
Richmond

Arlington

All

2014
2015

2016

City

State

Region

AllCity

Year

AllYear

RESIDENCE TIME

Figure 4.3: Two examples of hierarchies showing both their values and their aggregation
structures (this picture is a duplicate of Figure 2.2 repeated here to ease the reading)

Intuitively, given a cluster composed by the values of a dimension on top of which is built

hierarchy h, we say that such cluster is hierarchy compliant (or h-compliant) if and only if

all its elements are values of h belonging to a same level and with the same parent. The

complete enumeration of the h-compliant clusters associated to the RESIDENCE hierarchy

of Figure 4.3 is listed in Table 4.1. An example of a non h-compliant cluster is instead

tMiami,Washingtonu, because to be able to have Miami and Washington in the same

cluster it would be necessary to also merge together Orlando, Tampa, Richmond, and

Arlington. When a cluster includes all and only children of one or more elements of the

parent level, it can be represented as the set of the corresponding parent values (i.e.,

tMiami,Washington,Orlando,Tampa,Richmond,Arlingtonu � tFL,VAu).

Year 
2014 2015 2016 

C
ity

 Miami, Orlando 45.5 44 51 

Tampa 39 50 41 

VA 45 46 50.6 

Year 
2014 2015 2016 

South-Atlantic 44 46 49.2 

(a) (b)

Figure 4.4: Two reductions of the same cube
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Table 4.1: Clusters for the example reported in Figures 4.1 and 4.3

Level 0
tSouth-Atlanticu � tFL,VAu
Level 1
tMiami,Orlando,Tampau � tFLu
tWashington,Richmond,Arlingtonu � tVAu
Level 2
tMiamiu
tOrlandou
tTampau
tMiami,Orlandou
tOrlando,Tampau
tMiami,Tampau
tWashingtonu
tRichmondu
tArlingtonu
tWashington,Richmondu
tRichmond,Arlingtonu
tWashington,Arlingtonu

Each member at the finest level of detail (i.e., a dimensional value) is associated to a slice

of cells, e.g., with reference to Figure 4.1, the slice associated with the value Miami of the

City level is composed by values 47, 45, and 50. To compactly represent cells of several

members that have been merged together, the shrink operator uses their average. The

approximation error introduced by representing a set of slices with an average slice is

computed as the Sum Squared Error (SSE) between the average and the original values.

Two different examples of reductions induced through the shrink operator are shown in

Figure 4.4. Specifically, the SSE associated to the average slice tMiami,Orlandou in Figure

4.4.a is p1.52 � 1.52q � p12 � 12q � p12 � 12q � 8.5. Remarkably, the error introduced by

merging two or more values is never negative.

The greedy implementation of the shrink operator for both size- and error-constrained

problems is based on agglomerative hierarchical clustering. Specifically, the algorithm

works bottom-up by merging at each iteration the two clusters of members (and their

slices) that lead to the minimum increase in SSE. Of course, the two clusters can be

merged only if the result is still h-compliant. This iterative process ends when the size

constraint is satisfied or, conversely, when the result is such that no more values can be

merged without violating the error threshold.

Consider again the cube in Figure 4.1. In the following we show in detail how the greedy

shrink algorithm computes a reduction that solves the error-constrained problem with a

maximum total SSE of 20 (Figure 4.5).

1. First, six singleton clusters are created, one for each member.

2. The most promising merge is the one between the Arlington and the Washington
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Washington, Arlington 47 46 51.5 2.5 
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   Year   

  2010 2011 2012 SSE 

C
it
y
 Miami, Orlando 45.5 44 51 8.5 

Tampa 39 50 41 0 

VA 45 46 50.6 14.7 

      

 

Figure 4.5: Applying the greedy algorithm for shrinking. The left column shows the pivot
tables, the right column reports the SSE increase for each feasible merge. Grey cells
correspond to non h-compliant merges.
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clusters, that yields SSE equal to 2.5 (Figure 4.5.a, right). The SSE of the resulting

reduction (Figure 4.5.b, left) is 2.5, which meets the SSE constraint, so there is still

room for shrinking.

3. The most promising merge is now the one between the Miami and the Orlando

clusters (Figure 4.5.b, right). The total SSE is 11, so the iterative approach can be

repeated.

4. At the next iteration, the algorithm merges Richmond cluster with the Washington�

Arlington cluster (Figure 4.5.c, right). Since the resulting reduction has SSE higher

than 20 (Figure 4.5.d), the algorithm stops. The reduction returned is the one shown

in Figure 4.5.c, left.
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4.4 Optimization Techniques for the Shrink Operator

The shrink implementation proposed in [5] (introduced in Section 4.3) is based on a simple

greedy algorithm which is able to find a solution in a small amount of computing time.

Unfortunately, as shown in Section 4.4.5, the greedy heuristic may generate solutions too

weak for some target applications as the percentage gap from the optimal solution could

be of some units. In this work we propose:

(i) A original formulation of the problem as a set partitioning problem with side

constraints.

(ii) A heuristic method based on dual ascent procedure that exploit pricing and La-

grangian relaxation. The dual ascent procedure provides a near optimal solution

for the dual problem and a Lagrangian heuristic generates feasible solutions. The

feasible solution generated by the Lagrangian heuristic is usually of good quality and

the percentage gap from the optimal solution value is much better than that of the

greedy heuristic.

(iii) An exact method which solves the problem starting from the dual solution found by

the dual ascent procedure and using a limited set of variables.

Our contributions create a bridge between BI and optimization techniques. These solu-

tions have become very common in recent years since BI approaches have become more

sophisticated and often they require the support of optimization techniques for an effective

implementation. One of the classical application of optimization in BI is the development

of learning algorithms, where classification, clustering, and regression problems must

be solved (e.g., [84], [85]). An interesting introduction to operations research and data

mining can be found in the special issue [86] and in the survey [87]. Some mathematical

formulations and challenges are also discussed in [88] and [89]. Operational research

inspired techniques have been also adopted during the design of BI solutions, for example

the problem of selecting the most effective subset of materialized views in Data Warehouse

is discussed in [90] and [91]. Operations research is also very useful for optimizing the

query execution (e.g., [92], [93]) or the data visualization and discretization (e.g., [94], [95],

[96]). The latter is the topic on which this work focuses.

The outline for the contributions introduced above is as follows. In Section 4.4.1 we define

the set partitioning formulation of the problem, whereas the dual ascent procedure and

the Lagrangian heuristic are described in Sections 4.4.2 and 4.4.3, respectively. The exact

method is presented in Section 4.4.4. In Section 4.4.5 we discuss the computational results

and in Section 4.4.6 we draw the conclusions.
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4.4.1 Mathematical Formulation

In order to achieve a better understanding of the model for optimizing the shrink operator

in Figure 4.6 we provide a graphical representation of the optimization process. The

algorithms proposed in the next sections are implemented by the main computational

module denoted with Shrink. The input for such module are:

� The index set V � t1, . . . , nu of the n dimensional values of the hierarchy involved

in the shrink operation.

� The index set C of all the feasible (i.e., h-compliant) clusters together with the

associated loss of precision, which are computed as described in Section 4.3. For

each cluster j P C the loss of precision is denoted by ej.

� The parameter α denoting the maximum size or the maximum loss allowed depending

on whether you are solving the size-bound (goal � S) or loss-bound (goal � L)

version of the problem, respectively.

Shrink

h-compliant

cluster generator

C, ej

V

goal, α

Figure 4.6: The shrink optimization process.

The h-compliant cluster generator module is in charge of generating in advance the whole

set of h-compliant clusters induced by the involved hierarchy. As we will show in Section

4.4.5, this task can be accomplished in a negligible time when compared with the one

required by the Shrink module.

We denote with Ci � C the subset of clusters involving the values i P V . Cj represents the

index set of the values contained in the cluster j P C. Let xj be a 0� 1 binary variable

equal to one if and only if the cluster j P C is in the optimal solution. The problem can
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be formulated as a set partitioning problem with a side constraint as follows:

pP q zP � min
¸
jPC

cjxj (4.1)

s.t.
¸
jPCi

xj � 1, i P V (4.2)

¸
jPC

ajxj ¤ α (4.3)

xj P t0, 1u, j P C (4.4)

If goal � S, setting cj � ej the objective function 4.1 minimizes the loss of precision;

conversely, if goal � L, setting cj � 1 the objective function 4.1 minimizes the size of the

resulting data. Constraints 4.2 ensure that each original dimensional value is included in a

cluster. Constraint 4.3 guarantees that the resulting data do not exceed the maximum size

allowed by setting aj � 1 and α � MaxSize, if goal � S, or the maximum loss of precision

by setting aj � ej and α � MaxLoss , if goal � L.

Let ui and v be the dual variables associated to constraints 4.2 and 4.3, respectively. The

dual of the LP-relaxation of problem P is the following:

pDq zD � min
¸
iPV

ui � αv (4.5)

s.t.
¸
iPCj

ui � ajv ¤ cj, j P C (4.6)

ui unconstrained, i P V (4.7)

v ¤ 0 (4.8)

The dual D is used for defining the dual ascent procedure, described in Section 4.4.2,

which is based on a Lagrangian relaxation of the problem P . The dual ascent procedure

iteratively improves the dual solution which is used for defining a core subset of clusters

by means of a pricing procedure. The dual ascent ends providing a near optimal dual

solution for the problem D.

The dual solution is also used to define a core subproblem for the exact method proposed

in Section 4.4.4. The exact method solves the problem P starting from the dual solution

found by the dual ascent and using a limited set of variables.

4.4.2 A Dual Ascent

The dual ascent is based on a parametric relaxation of problem P and its Lagrangian

relaxation. The resulting problem is solved by a subgradient algorithm which makes use

of column generation and embeds a Lagrangian heuristic.
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4.4.2.1 Parametric Relaxation

Parametric relaxation is a well-known approach in the literature. Some interesting

applications are described by [97] for vehicle routing and by [98] and [99] for crew scheduling.

Recently, dual ascent procedures based on a parametric relaxation are proposed by [100] for

the set partitioning problem and by [101] for the set covering problem with side constraints.

In this section we describe a parametric relaxation of problem P .

We associate with each dimensional values i P V a positive real weight qi. Let qpCjq �°
iPCj

qi be the total weight of column (cluster) j P C. Since weights tqiu are positive,

qpCjq ¡ 0 for every column j P C. We replace each variable xj by a new set of |Cj|

variables yij, i P Cj, as follows:

xj �
¸
iPCj

qi
qpCjq

yij, j P C (4.9)

and the resulting mathematical formulation of the parametric relaxation of problem P is

the following:

pPRpqqq zPRpqq � min
¸
jPC

¸
iPCj

cj
qi

qpCjq
yij (4.10)

s.t.
¸
jPCi

¸
hPCj

qh
qpCjq

yhj � 1, i P V (4.11)

¸
jPC

aj
¸
hPCj

qh
qpCjq

yhj ¤ α, (4.12)

yij P t0, 1u, j P Ci, i P V (4.13)

Constraints 4.11 and 4.12 correspond to constraints 4.2 and 4.3 of problem P , respectively.

Notice that if yij � 1 no constraint imposes that yhj � 1 for every cluster h P Cj covered by

column j, therefore PRpqq is a relaxation of problem P .

4.4.2.2 Lagrangian Relaxation

Problem PRpqq can be relaxed by dualizing constraints 4.11 and 4.12 in a Lagrangian

fashion, by means of the penalty vector λ P Rn�1 having the first n components λi, i P V ,

unconstrained and λn�1 ¤ 0.

The resulting Lagrangian problem is:

pLRpλ, qqq zLRpλ, qq � min
¸
jPC

¸
iPCj

pcj � λ1pCjqq
qi

qpCjq
yij �

¸
iPV

λi � αλn�1 (4.14)

s.t. yij ¥ 0, i P V, j P C (4.15)
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where λ1pCjq � λpCjq � ajλn�1 and λpCjq �
°
hPCj

λh. The optimal value of problem

LRpλ, qq is a valid lower bound for the original problem P and it can be strengthened

adding the constraint
°
jPCi y

i
j � 1 for every i P V .

Problem LRpλ, qq is decomposable into |V | subproblems, one for each row i P V :

pLRipλ, qqq ziLRpλ, qq � min
¸
jPCi

cijpλ, qqy
i
j � λi (4.16)

s.t.
¸
jPCi

yij � 1 (4.17)

yij P t0, 1u, j P Ci (4.18)

where the cost of each variable yij is cijpλ, qq � c1j
qi

qpCjq
and c1j � cj�λpCjq�ajλn�1. Hence,

the overall value of the Lagrangian problem is zLRpλ, qq �
°
iPV z

i
LRpλ, qq � αλn�1.

Theorem 1 shows that any optimal solution of problem LRpλ, qq provides a feasible solution

pu, vq of cost zLRpλ, qq for the dual problem D.

Theorem 1 Let λ be a vector of n� 1 real numbers, where λi, i P V , are unconstrained

and λn�1 ¤ 0. Let q be a vector of n positive real numbers, i.e., qi ¡ 0, for every i P V . A

feasible dual solution pu, vq of cost zLRpλ, qq for dual problem D can be obtained by means

of the following expressions:

ui � qi minjPCi

!
c1j

QpCjq

)
� λi, i P V

v � λn�1,
(4.19)

where c1j � cj � λpCjq � ajλn�1, λpCjq �
°
iPCj

λi, and QpCjq �
°
iPCj

qi.

Proof: Let us consider the dual constraint 4.6 corresponding to column j P C of the

LP-relaxation of P . For every column j, the following inequalities hold:

min
hPCi

"
c1h

QpChq

*
¤

c1j
QpCjq

, for every i P Cj (4.20)

From expression 4.19 we obtain

ui ¤ qi
c1j

QpCjq
� λi, i P Cj, j P C (4.21)

and by adding inequalities 4.21 we derive

¸
iPCj

ui ¤
¸
iPCj

�
qi

c1j
QpCjq

� λi



, j P C (4.22)
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Therefore, considering the dual constrain 4.6 for every j P C, we have

¸
iPCj

ui � ajv ¤
c1j

QpCjq

¸
iPCj

qi �
¸
iPCj

λi � ajv

¤
c1j

QpCjq
QpCjq � λpCjq � ajv

¤ c1j � λpCjq � ajv (4.23)

¤ cj � λpCjq � ajv � λpCjq � ajv

¤ cj

It is straightforward to show that the dual solution pu, vq is of cost zDpu, vq �
°
iPV ui �

αv � zLRpλ, qq.

The dual solution obtained according to Theorem 1 can be further improved by applying

the greedy procedure described in [102] or [103].

Corollary 1 shows that the best lower bound that can be achieved using expression 4.19 is

equal to the optimal solution cost zD of the dual problem D and that this value can be

obtained searching the maximum of the function zLRpλ, qq with respect to λ.

Corollary 1 For every q ¡ 0, q P Rn, the following equality holds:

maxtzLRpλ, qq : λ P Rn�1, λn�1 ¤ 0u � zD (4.24)

Proof: Let pu�, v�q be an optimal solution of problem D of cost zD. For every j P C, we

have

cj �
¸
hPCj

u�h � ajv
� ¥ 0 (4.25)

and for every i P V , there exists at least a column j1 P Ci such that

cj1 �
¸
hPCj1

u�h � aj1v
� � 0. (4.26)

If for a given i P V a column j1 satisfying equality 4.26 does not exist, we can improve the

“optimal dual solution” increasing the corresponding dual variable ui, in contradiction with

the hypothesis.

By setting λ � pu�, v�q, when we evaluate the dual solution by expression 4.19 we

have ui � qi minjPCi

!
c1j

QpCjq

)
� ui � 0 � ui, for every i P V , and v � v�. Therefore,

zLRpλ, qq �
°
iPV z

i
LRpλ, qq � αλn�1 �

°
iPV ui � αv � zD.

In order to find the optimal (or near optimal) dual solution of cost zD we need to solve

the Lagrangian Dual maxtzLRpλ, qq : λ P Rn�1, λn�1 ¤ 0u.
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We propose a dual ascent procedure based on a subgradient algorithm and on column

generation following the approach proposed by [100] for the set partitioning problem.

Dual Ascent Procedure

Step 1. Initial setup

Set zLB � �8, β � β0, and the initial penalty vector λ � 0.

Generate an initial core subset of columns C1 � C.

Step 2. Solve Lagrangian Problem

Solve LRpλ, qq using only the columns in the core C1.
Compute pu, vq according to Theorem 1 and improve it using the greedy algorithm

described in [103].

Step 3. Pricing

Generate a subset Q � C of columns having negative reduced costs with respect to

pu, vq, i.e., Q � tj P C : cj �
°
iPCj

ui � ajv   0u.

Add subset Q to the core C1, i.e., C1 � C1 YQ.

If Q � H, then pu, vq is a feasible dual solution for problem P , therefore zLB �

maxtzLB ,LRpλ, qqu and all columns of reduced cost larger than ε0zLB are removed from

C1.

Step 4. Update Lagrangian penalties

Compute subgradient components:

� θi � 1�
°
jPCi

°
hPCj

qh
qpCjq

yhj , for every i P V

� θn�1 � α�
°
jPC

°
hPCj

aj
qh

qpCjq
yhj

Compute the step size σ � β
0.01�zLRpλ,qq°n�1

i�1 θ2
i

and update the Lagrangian vector λ:

� λi � λi � αθi, for every i P V

� λn�1 � mint0, λn�1 � σθn�1u

Step 5. Stop Conditions

If the maximum number of iterations MaxIter is not reached and the lower bound has

improved enough (i.e., the improvement is larger than ε1zLB ) during last MaxIter0

iterations go to Step 2.

In this work we generate the full set C in advance, before starting the Dual Ascent

Procedure, because it is not time consuming. But the dual ascent procedure works

with a small subset of columns, called core, adding new columns only when required.

Working with a core allows a large computing time saving. The initial core is generated by

considering in turn the columns in C sorted for non-decreasing order of the value cj{|Cj|.

If the column covers a row already covered by another column in the core or violates the

side constraints is ignored, otherwise it is added to the core.
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Notice that zLRpλ, qq is a valid lower bound for problem P if and only if no columns of

negative reduced costs exist (i.e., Q � H), with respect to the corresponding dual solution

pu, vq, which is feasible in this case. When the dual solution pu, vq is feasible, we remove

from C1 all columns of reduced cost larger than ε0zLB to maintain the core as small as

possible. Instead, the parameter ε1 is used in the stop conditions to check if the lower

bound has been improved enough during the last MaxIter 0 iterations.

In order to improve the convergence to a near optimal dual solution, we update the

step-size parameter β during the execution. If after a given number of iterations MaxIter 1,

the lower bound is not improved, we decrease β, i.e, β � γ1β, where γ1   1. As soon as

the lower bound is improved we increase β, i.e, β � γ2β, where γ2 ¡ 1.

The complete definition of the parameter values can be found at Section 4.4.5, where the

computational results are described.

4.4.3 A Lagrangian Heuristic

The dual ascent procedure can provide an effective lower bound for problem P . However,

following a “matheuristic” approach (see [104, 105]), a further possible by-product could

be a Lagrangian heuristic algorithm.

The proposed Lagrangian heuristic is applied at each iteration of the dual ascent procedure,

where the lower bound is improved, a simple greedy approach based on the solution of the

Lagrangian problem LRpλ, qq and on the corresponding penalized cost.

At the beginning, the procedure builds an initial partial solution using the columns (i.e.,

configurations) C2 �
!
j1 � argminjPCi

!
c1j

QpCjq

)
: i P V

)
. Then, the procedure tries to

complete the emerging solution considering the remaining columns of the core C1 sorted in

non decreasing order of their penalized cost c1j � cj �
°
iPCj

ui � ajv.

Lagrangian Heuristic

Step 1. Initial setup

Let zbestUB be the best upper bound found so far.

Set zUB � 0, x1j � 0, for every j P C, and iter � 1.

Step 2. Phase 1: Build a partial solution from the LR solution

For each i P V try to add to the emerging solution column j1 � argminjPCi

!
c1j

QpCjq

)
. If°

i1PCj1

°
jPCi1

x1j � 0,
°
jPC ajx

1
j ¤ α� aj1 , and zUB � cj1   zbestUB , column j1 is added to

the emerging solution, i.e., x1j1 � 1 and zUB � zUB � cj1 .

Step 3. Check if the emerging solution is complete

If
°
jPCi x

1
j � 1 for every i P V , the solution is feasible, therefore update the current best

solution zbestUB � zUB , xbest � x1, and STOP.
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Step 4. Phase 2: Complete the emerging solution

If there exists at least a row i P V such that
°
jPCi x

1
j � 0, we try to complete the emerging

solution by considering the remaining columns in the core C1 in non-decreasing order of

their penalized cost c1j � cj�
°
hPCj

uh�ajv. If
°
i1PCj1

°
jPCi1

x1j � 0,
°
jPC ajx

1
j ¤ α�aj1 ,

and zUB � cj1   zbestUB , column j1 is added to the emerging solution, i.e., x1j1 � 1 and

zUB � zUB � cj1 .

Step 5. Check if the emerging solution is complete

If
°
jPCi x

1
j � 1 for every i P V , the solution is feasible, therefore update the current best

solution zbestUB � zUB , xbest � x1; otherwise the Lagrangian heuristic was not able to find

a feasible solution of cost smaller than zbestUB .

Notice that when the Lagrangian Heuristic adds a column j1 to the emerging solution

all the rows are covered by at most one column, the side constraint is satisfied, and its

cost zUB is less than zbestUB . Therefore, as soon as the emerging solution covers all rows, it

is certainly feasible and better than the current best solution of cost zbestUB .

In the computational results, the Lagrangian Heuristic is performed twice, changing

the order of the dimensional values i P V in phase 1. At the first iteration we consider the

data in the same order given in input, whereas in the second iteration the dimensional values

i P V are considered in non-increasing order of value yij1 , where j1 � argminjPCi

!
c1j

QpCjq

)
.

The Lagrangian heuristic is performed only after the percentage gap between the lower

and the upper bounds is under the 50%.

4.4.4 An Exact Method

Using heuristic algorithms we can obtain effective feasible solutions in a small computing

time, and by the dual ascent procedure we can evaluate the maximum distance from

the optimal solution value. But when we need to evaluate the optimal value, the only

possibility is the use of an exact method.

In this work we propose an exact method based on an approach similar to the ones

described in [99], and [100].

The proposed approach computes a near optimal dual solution by the Dual Ascent

Procedure and using the corresponding reduced cost c1j � cj�
°
iPCj

ui�ajv it generates

a reduced problem P 1 replacing in P the set C with the subset C1 and replacing the original

cost cj with the reduced cost c1j. The subset C1 is the largest subset of the lowest reduced

cost variables such that c1j   mintgmax, zUB�zLBu and |C1|   ∆max. The resulting reduced

problem P 1 is solved by a MIP solver. Given the solution of P 1, we are able to check if it

is optimal for the original problem P . If it is not optimal the subset C1 is enlarged and we

solve again the new reduced problem.

The resulting exact method could be summarized as follows.
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Exact Algorithm

Step 1. Initial setup

Set zLB � �8, zUB � 8, iter � 1, and ∆max � ∆0.

Step 2. Computing a lower bound z1D
Compute a solution pu1, v1q of the dual problem D of cost zLB � z1D using the Dual

Ascent embedding the Lagrangian Heuristic which provides an upper bound zUB.

Set gmax � µ1zLB .

If zLB � zUB , then STOP.

Step 3. Define a reduced problem P 1

Let c1j � cj �
°
iPCj

ui� ajv be the reduced cost of cluster j P C with respect to the dual

solution pu1, v1q.

Let C1 be the largest subset of the lowest reduced cost variables such that c1j  

mintgmax, zUB � zLBu and |C1|   ∆max.

Define the reduced problem P 1 replacing in P the set C with C1 and replacing the original

cost cj with the reduced cost c1j .

Step 4. Solve problem P 1

Solve problem P 1 using a general purpose MIP solver (e.g., IBM Ilog Cplex).

Let z�P 1 be the cost of the optimal solution x� obtained (we assume z�P 1 � 8 if the set

C1 does not contain any feasible solution).

Update zUB � mintzUB, z
�
P 1 � z1Du.

Step 5. Test if x� is optimal for the original problem P

Let cmax � maxtc1j : j P C1u, if C1 � C, otherwise cmax � 8, if C1 � C. We have two

cases:

(a) z�P 1 ¤ cmax, then Stop because x� is guaranteed to be an optimal solution for the

original problem P .

(b) z�P 1 ¡ cmax, then x� is not guaranteed to be an optimal solution for the original

problem P , however z1D � cmax is a valid lower bound on the optimal solution value

of problem P .

Step 6. Update the parameters If iter   MaxIter , then increase ∆max � µ2∆max and

gmax � µ2g
max, µ2 ¡ 1, set iter � iter � 1 and go to Step 3.

The procedure terminates when the optimal solution of P is obtained or the maximum

number of iterations is reached. Notice that if we set MaxIter � 8, the procedure

converges to the optimal solution because in the worst case at a given iteration C1 � C.

4.4.5 Computational Results

The algorithms presented in this work have been coded in C++ using Microsoft Visual

Studio 2010, and run on a workstation equipped with an Intel Core i7-3770, 3.40 GHz,
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32Gb of RAM, and operating system Windows 10 64bit. IBM Ilog CPLEX 12.5 is used as

LP and MIP solver.

For our experiments we considered four different hierarchies: RESIDENCE, OCCUPATION,

PROD DEPARTMENT, and PROD BRAND. The former two come from the IPUMS database

[9], while the others two are extracted from the Foodmart database that can be found

with the Pentaho suite [106]. After aggregating the data along these hierarchies (e.g., by

state or by city), we generated by means of sampling several test instances with varying

characteristics, such as size and average fan-out (i.e., children per parent ratio). During

the rest of this work we refer to these instances using the name of the hierarchy level used

to aggregate the data followed by a progressive number; for example, CITY-1 means that

the data has been first aggregated by city, and then a sampling process has been performed

to create the dataset. To observe how the algorithms behave not only with different

problem sizes (i.e., number of clusters) but also with different data distributions, we

generated instances CITY UNI and OCCUPATION UNI by reusing the hierarchical structure

of RESIDENCE and OCCUPATION, but with uniformly random data slices. Finally, we

generated some hard instances to show that the new proposed algorithm solves instances

where a general purpose solver fails. These instances are the ones reported in Tables 4.4,

4.5, 4.8, and 4.9.

For each instance, the number of values in the hierarchy and the number of generated

clusters are shown alongside the results of the experiments in Tables 4.2–4.5. We also

remark that a thorough description of the dataset can be found in [5].

For every test instance we solve both versions of the problem. In Tables 4.2, 4.4, 4.6, and

4.8, we solve the problem of Type A, where the objective function minimizes the size of the

resulting data and the side constraint guarantees that the loss of precision does not exceed

a given maximum value. Whereas, in Tables 4.3, 4.5, 4.7, and 4.9 we solve the problem of

Type B, where the objective function minimizes the loss of precision and the side constraint

guarantees that the size of the resulting data does not exceed a given maximum value.

For every problem type we solve the problem for different values of the maximum loss of

precision or of the maximum size of the data.

When we report in Tables 4.2–4.9 the value of the the maximum loss of precision, we

use the notation 1.00M and 1.00G for representing the values 1.00� 106 and 1.00� 109,

respectively. When a computing time or a percentage gap is equal to 0.00, it means that

its real value is smaller that 0.01.

4.4.5.1 Dual Ascent procedure

In Tables 4.2, 4.3, 4.4, and 4.5 we compare the results obtained by the CPLEX LP solvers

and by the dual ascent procedure, described in Section 4.4.2.
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In our computational experiments the parameters of the dual ascent are set as follows.

The parameters for defining the step size are β0 � 20, γ1 � 0.90 γ2 � 1.02, for problems of

Type A, and β0 � 1, γ1 � 0.90, γ2 � 1.005, for problems of Type B. The parameter ε0

used for reducing the size of the subset C1 is 0.05, i.e., 5% of the value of the current lower

bound. Instead, the parameter ε1 used to check if the lower bound has improved enough

during the last MaxIter 0 iterations is ε1 � 0.001. The maximum number of iterations are

MaxIter � 100000 (i.e., virtually infinite), MaxIter 0 � 200, and MaxIter 1 � 5.

The choice of the parameter values is done empirically because the purpose of the com-

putational tests is to show that just with a good choice we can achieve effective results.

Therefore, a better analysis on the choice of the parameter values is out of scope for this

work, but it will be an interesting research direction for the future.

For each test instance we report the number of clusters m, the number of dimensional

values n, the computing time for generating the clusters TGen , and the right-hand side of

the side constraint α, which is the maximum loss of precision for problem of Type A and

the maximum size of the data for problem of Type B.

For the CPLEX solvers we report the optimal value zLP of the LP-relaxation of the problem

P and the computing times Timex for each solver available: primal (P), dual (D), network

(N), barrier (B), and sifting (S).

For the dual ascent we report the best lower bound zLB corresponding to the best feasible

dual solution generated, its percentage gap from zLP GapLP � 100� zLP�zLB
zLP

, the number

of iterations Iter , the computing time Time, and the size of subset C1 at the end of the

execution.

The more effective CPLEX LP solver is the network simplex, in particular for problems of

Type B, at the contrary the barrier is very time consuming for both problem types.

The dual ascent provides near optimal solution in a smaller computing time with respect

to CPLEX LP solvers for problem of type A. It generates lower bounds having an average

percentage gap GapLP from the optimal solution value zLP equal to 0.02% and it is on

average about 2.4 time faster than the better CPLEX LP solver. For problems of Type B,

the dual ascent is a little worse only with respect the network simplex and the average

percentage gap GapLP is under 0.01%. Even the results on the hard instances, reported in

Tables 4.4 and 4.5, confirm these figures.
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Setting a smaller MaxIter 0 and a most aggressive value for β0 we can obtain a faster

convergence of the dual ascent with a smaller worsening of the lower bound provided.

However, the convergence is more erratic and the quality of the solutions generated by

the embedded Lagrangian heuristic is a little worse. Since we are mainly interested in

the heuristic or optimal solution of the problem, we prefer a slower dual ascent which

enhances the quality of the solutions generated by the Lagrangian heuristic.

In Tables 4.2, 4.3, 4.4, and 4.5 column |C1| shows that the size of the subset of columns

C1 evaluated in the dual ascent procedure is always very small with respect to the total

number of columns n of the original instances.

Notice that the computing time required for generating the full set of column C is usually

very small and it never dominates the time for solving the instances.

4.4.5.2 Greedy and Lagrangian Heuristics

In Tables 4.6, 4.7, 4.8, and 4.9 we compare the greedy and the Lagrangian heuristics,

described in Sections 4.3 and 4.4.3. The results of the Lagrangian heuristic include the

dual ascent procedure which embeds it.

For each test instance we report the right-hand side of the side constraint α, which is the

maximum loss of precision for problem of Type A and the maximum size of the data for

problem of Type B, and for both heuristics we report the best upper bound provided zUB ,

the percentage gap from the value of the optimal integer solution Gap � 100�
zUB�zOpt

zOpt
,

and the computing time Time.

For the dual ascent with the Lagrangian heuristic we also report the best lower bound

zLB corresponding to the best feasible dual solution generated, the number of iterations

Iter , and the size of C1.

The computing time of the greedy heuristic is negligible but the percentage gap from the

value of the optimal solution is on average 1.28% and 3.74% for the problems of type A

and B reported in Tables 4.6 and 4.7, respectively, and is on average 0.57% and 5.09% for

the hard instances of type A and B reported in Tables 4.8 and 4.9. The maximum gap is

the 25% and often is greater than the 5%.

The Lagrangian heuristic is more time consuming but the percentage gap from the value

of the optimal solution is much smaller. For problems of type A in Tables 4.6 and 4.8, only

for three instances the optimal solution value is not found, the average gap is about 0.04%

and the maximum gap is 1.47%. The quality of the upper bound is worse for problem

of type B, where the average gap is 1.05% and 2.82% for instances in Tables 4.7 and 4.9,

respectively, and the maximum gap is 8.66%, but it is still much better than the greedy

heuristic and several instances are solved to optimality.
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4.4.5.3 Exact Method

In order to evaluate the effectiveness of the Lagrangian heuristic, described in Section

4.4.3, and of the exact method, described in Section 4.4.4, in Tables 4.6, 4.7, 4.8, and 4.9

we compare them with the CPLEX MIP solver.

For the proposed exact method in our computational results we set MaxIter � 10,

∆0 � 1000, µ1 � 0.001, and µ2 � 10.

For CPLEX MIP solver we report the integer optimal solution value zOpt and the computing

time Time. We report the symbol “–” in column zOpt when CPLEX MIP solver fails

because of an “out of memory”. For these instances column Time reports the computing

time spent to generate the error, but they are not considered when we evaluate the average

computing time.

For the dual ascent embedding the Lagrangian heuristic we report the best lower and

upper bounds found zLB and zUB , the computing time Time, and the size of the subset of

columns C1 at the end of the execution.

For the exact method we report the integer optimal solution value zOpt , the size of the

subset of columns C1 considered in the integer reduced problem P 1, the number of iterations

Iter , the computing time Time for solving the reduced problem P 1 (even more than one

time if Iter ¡ 1), and the overall computing time TTot which also includes the computing

time of the dual ascent procedure and of the embedded Lagrangian heuristic. When the

problem is solved by the dual ascent we report |C1| � 0.

The exact method performs very well for problem of Type A, where it needs to solve the

integer reduced problem P 1 only for four instances using a very small subset of columns

C1. Only for one instance the exact method requires two iterations. The proposed exact

method is on average about seven times faster than the CPLEX MIP solver and for two

hard instances CPLEX MIP solver runs out of memory.
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Problem of Type B is more difficult to solve, but the exact method is on average about

six times faster than the CPLEX MIP solver. As shown by Table 4.7, for many instances

the exact method needs to solve the integer reduced problem P 1. However, the size of

the subset C1 is still small and the computing time for solving the reduced problem P 1

is very small. We need two iterations only for seven instances, three iterations for one

instance, and four iterations for one hard instance. All the remaining instances are solved

in one iterations. For only one hard instance of type B, the exact method requires about

16 minutes, but for the same instance CPLEX MIP solver fails. Overall, CPLEX MIP

solver fails for five hard instances of type B.

4.4.6 Wrapping up the new Shrink Implementations

In this work we have proposed an integer linear programming model for solving the problem

of implementing in the best way the OLAP shrink operator.

We have modelled the problem as a set partitioning problem with side constraint and we

have considered two different approaches for finding the best implementation. In the first

one (problem of Type A) we have supposed to minimize the size of the resulting data and

the side constraint guarantees that the loss of precision does not exceed a given maximum

value. Whereas, the second approach (problem of Type B) minimizes the loss of precision

and the side constraint guarantees that the size of the resulting data do not exceed a given

maximum value.

The proposed mathematical formulation is able to model both problem types. For switching

from one type to the other it is sufficient to modify the coefficients of the objective function

and of the side constraint, along with its right-hand side.

The first solution method considered is a greedy heuristic, which is very fast but often

generates solution of unsatisfactory quality. Therefore, we have proposed a dual ascent

which embeds a Lagrangian heuristic.

The dual ascent generates at each iteration a dual solution of the LP-relaxation of the

problem, hopefully feasible. The dual ascent only considers a reduced subset of columns

to solve the problem and uses the generated feasible dual solutions for adding columns

to the reduced problem, using the pricing. The computing time allows an operational use

of the procedure and the quality of the solution generated is of very good quality. For

problem of Type A the dual ascent significantly outperforms general purpose LP solvers

as CPLEX. It is able to generate a near optimal dual solution in a short computing time.

We have also proposed an exact method to use when the optimal solution is required.

Adding a very small computing time to the dual ascent, the proposed exact procedure

generates an optimal solution using a very small subset of the original columns. Therefore,

the exact procedure has the potential for an operational use, while a general purpose

solver, like CPLEX, is time consuming and, above all, if fails for some instances.
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For the instances used in this work, the computing time for generating the clusters is

almost negligible with respect to the time for solving the problem. Whereas, the use of a

limited size subset of columns, in a column generation fashion, allows a huge reduction of

the overall computing time without compromising the optimal solution of the problem.

However, future developments can investigate an actual column generation process to

embed in the proposed algorithms in order to solve much larger instances, where the

complete generation of clusters may take time.
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4.5 Multidimensional Shrink

A mono-dimensional version of the shrink operator has been proposed by [5]. In that

work one shrink dimension is explicitly chosen by the user, and cube slices are fused

together along that dimension until a user-specified precision/size trade-off is achieved.

Though the mono-dimensional version has been shown to be quite effective and efficient in

delivering compact visualizations of cubes, it suffers from two main drawbacks: (i) since

the shrink dimension is fixed a priori, some possibly more effective directions for shrinking

may be lost; and (ii) the approach is subject to the user’s discretion in choosing the shrink

dimension.

   Year  

  

 
2010 2011 2012 

C
it
y
 

Miami 47 45 46 

Orlando 44 43 40 

Tampa 55 52 53 

Washington 47 45 51 

Richmond 43 46 49 

Arlington — 47 52 

 
Figure 4.7: A simple pivot table showing data by City and Year

In this work we propose a multidimensional generalization of the shrink operator, where

facts are fused along multiple dimensions. Multidimensional shrink comes in two flavors:

lazy and eager.

� In lazy shrink, facts can or cannot be fused together depending on dimension

hierarchies. For instance, with reference to Figure 4.7, the facts for Miami and

Washington cannot be fused together because the two cities belong to different

states, while Miami can be fused with Orlando because they both are in Florida.

Miami, Orlando, and Tampa can be all fused together, to obtain a single fact

representing Florida. Finally, all six cities can be fused together to represent the

whole South-Atlantic region (see also Figure 4.3).

� In eager shrink the constraint is stricter, and either all or none of the facts belonging

to the same hierarchy group can be fused together. In the above example, if the

facts for all the cities in a state are similar enough they are all fused into a single

fact representing that state, otherwise they all must be left separate.

The two approaches proposed achieve effectiveness in different ways. Lazy shrink suffers

from less constraints than eager shrink in creating groups, so it tends to deliver solutions

with better approximation. On the other hand, the visualization of the results obtained by

eager shrink is more compact, because each row of the pivot table is labeled with a single
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member (e.g., FL) while with lazy shrink each row can be labeled with several members,

unless some concise form of labeling is adopted. Since computing an optimal result for the

shrink operator is unfeasible due to the exponential nature of the problem, for both lazy

and eager shrink we propose a greedy algorithm that computes a sub-optimal solution.

The original contributions we propose in this thesis as compared to our previous work [5]

are as follows:

(i) The formalization of the shrink framework, including the computation of the shrink

approximation, is generalized from the mono- to the multidimensional case.

(ii) Two different forms of the h-compliance constraints are defined (lazy and eager).

(iii) The size of the search space for computing both lazy and eager shrink is characterized,

and greedy algorithms are proposed.

(iv) The approach is evaluated in terms of efficiency and effectiveness, also in comparison

to those achieved by traditional roll-up and mono-dimensional shrink.

Remarkably, though our approach has been devised to enable compact visualization of

pivot tables resulting from users’ queries, it can also be used to preprocess a cube for

making its size compatible with computation-intensive applications such as data mining.

The outline for the contributions related to multidimensional shrink is as follows. In

Section 4.5.1 we describe the shrink intuition and provide a formal framework to support

it. The greedy algorithms for lazy and eager shrink are described in Section 4.5.2 and

4.5.3, respectively, and experimentally evaluated in Section 4.5.4. Finally, in Section 4.5.5

we draw the conclusions.

4.5.1 The Multidimensional Shrink Framework

Before moving to the formal framework for multidimensional shrink, note that we will use

again the definitions presented in Section 2.3, which are the definitions of multidimensional

schema (Definition 1), group-by (Definition 2), and cube (Definition 3).

As stated in Section 4.5 and shown in Figure 4.2, our approach can be applied to any cube

at any group-by resulting from an OLAP query. However, to avoid useless formalization

complexity and without loss of generality, we will assume that the shrink operator is

always applied to a cube C at its finest group-by, G � xl11, . . . , l
n
1 y.

First of all we recall that cube C can be represented as a set of facts:

C � txd, C pdqy , d P G^ C pdq � NULLu
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C

RedP (C)

p1

p2

Figure 4.8: The intuition of multidimensional shrink: cube (left), dices (middle), and
f-dices (right)

When the shrink operator is applied to C, the domain of each group-by level is (completely

and disjointly) partitioned into a number of subsets; consistently with the classical OLAP

terminology, each n-ple D of subsets taken from the n partitions is called a dice to

emphasize that it determines a subset of facts of C. All the facts in each dice are then

fused together into a single, approximate fact (which we call f-dice) by averaging their

measure values. This means that an f-dice in the shrunk cube (which, from now on, we will

call reduction) may refer not to a single coordinate, but rather to subsets of coordinates of

the group-by. This process is exemplified in Figure 4.8 using a 3-dimensional cube C: the

domains of the three dimensions are partitioned into two subsets each, determining eight

dices overall; then, the facts in each dice are fused into the eight f-dices that constitute

the reduction.

Definition 13 (Dice and F-Dice) Given cube C at group-by G � xl11, . . . , l
n
1 y, a dice

is an n-ple of sets of members of the group-by attributes: D � xM1, . . . ,Mny (where

M i � Dompli1q for i � 1, . . . , n). A dice determines a set of coordinates M1 � . . .�Mn;

so, with a slight abuse of formalism, given coordinate d P G we will write d P D to denote

that d PM1 � . . .�Mn. The f-dice of C corresponding to D is the couple xD,CDy where

CD � avgtCpdqu, d P D

(note that, in case Cpdq � NULL for all d P D, it is also CD � NULL)

Notice that this definition of dice is more flexible than the one previously given in Section

3.2.5.1. The difference is that this definition requires an n-ple of sets of members, while

the other one requires an n-ple of ranges, thus a total order of the members is not required

anymore.

Definition 13 shows that a dice has a two-fold nature: that of n sets of members, one for
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each dimension, and that of a set of coordinates; the correspondence between these two

natures is established through the Cartesian product. To ensure that this correspondence

is preserved by the union operation (on which our agglomerative approach for computing

shrink is based) we define union-compatibility as follows.

Definition 14 (Dice Union) Dices D1, . . . , Dk are union-compatible iff

M
1

� . . .�M
n

�
k¤
j�1

Dj

where M
i

�
�
jM

i
j for i � 1, . . . , n. The union of k union-compatible dices D1, . . . , Dk is

defined by the n-ple xM
1

, . . . ,M
n

y.

Intuitively, two dices are union-compatible if their union made along each dimension

corresponds to the union of their sets of coordinates, which means that the union operation

is closed on dices. This will be clarified by the following example.

Example 17 With reference to Figure 4.7, let

D1 � xtMiami,Orlandou, t2010, 2011uy

D2 � xtTampau, t2012uy

These dices are not union-compatible since the Cartesian product of M̄1 � tMiami,Orlando,Tampau

and M̄2 � t2010, 2011, 2012u includes coordinates, such as xMiami, 2012y and xTampa, 2010y,

that are not in the union of the sets of coordinates of D1 and D2. On the other hand, dices

D1 � xtMiamiu, t2010uy

D2 � xtMiamiu, t2011uy

D3 � xtOrlandou, t2010uy

D4 � xtOrlandou, t2011uy

are union-compatible because the Cartesian product of M̄1 � tMiami,Orlandou and M̄2 �

t2010, 2011u includes exactly the 4 coordinates in the union of the sets of coordinates of

D1, . . . , D4.

Theorem 2 (Sufficient Condition for Union-Compatibility) Dices D1, . . . , Dk are

union-compatible if they are defined by identical sets of members along at least n � 1

dimensions.

Proof: If all dices are identical the result is obvious. Otherwise, if the i-th is the one

along which the dices differ, it is Dj � xM1 , . . . ,M i
j , . . . , M

ny for all j. But then it is

M̄1�. . .�M̄n �M1�. . .�
�
jM

i
j�. . .�M

n �
�
j

�
M1 � . . .�M i

j � . . .�Mn
�
�
�
j Dj

because the Cartesian product is distributive with union. l
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A counter-example of dices that do not meet this sufficient condition yet are union-

compatible is the one already given in Example 4.

The following definition will be used to concisely characterize sets of members based on

the structure of the member tree:

Definition 15 (Representative Ancestor) Given level lij and a set of members M �

Domplijq, we denote with LCApMq the lowest common ancestor of M , i.e., the lowest

single member in the member tree to which all members in M roll-up (conventionally,

LCAptmuq � m). Let lik (k ¥ j) be the level to which LCApMq belongs. The representative

ancestor of M is a set defined as follows:

RApMq �

$&
%tLCApMqu , if DrilljpLCApMqq �M

tRollk�1pmq, m PMu , otherwise

Intuitively, the representative ancestor of M is the set of of children of LCApMq to

which the members in M roll-up; in case M includes all the descendants of LCApMq, the

representative ancestor is LCApMq instead. It can be easily verified that |RApMq| ¤ |M |,

and that for singletons it is RAptmuq � tmu.

Example 18 Consider again Figure 4.3, if M � tMiami,Orlandou it is LCApMq � FL

and RApMq � tMiami,Orlandou, while if M � tMiami,Washingtonu it is LCApMq �

South� Atlantic and RApMq � tFL,VAu. Finally, if M � tMiami,Orlando,Tampau it

is LCApMq � RApMq � FL.

To preserve the semantics of hierarchies in a reduction, dices must meet some further

constraint called hierarchy-compliance (briefly, h-compliance). H-compliance comes in

two flavors, to be used for lazy and eager shrink respectively. The idea is that, though

formally speaking each dice refers to a set of coordinates of G, in case of lazy h-compliance

it logically refers, for each hierarchy i, to the members of RA pM iq, all of which belong to

some level in Li. The eager form of h-compliance is stricter, and it states that each dice

must logically refer, for each hierarchy i, to exactly one member of some level in Li.

Definition 16 (H-Compliance – Lazy Form) Dice D � xM1, . . . ,Mny is said to be

h-compliant if, for each i � 1, . . . , n, it is

Drill1
�
RA

�
M i

��
�M i (4.27)

The group-by of D is the group-by G
1
�
@
l1k1
, . . . , lnkn

D
such that RA pM iq � Dom

�
liki
�

for

each i.

Definition 17 (H-Compliance – Eager Form) Dice D � xM1, . . . ,Mny is said to be
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h-compliant if, for each i � 1, . . . , n, it is

Drill1
�
LCA

�
M i

��
�M i (4.28)

The group-by of D is the group-by G
1
�
@
l1k1
, . . . , lnkn

D
such that LCA pM iq P Dom

�
liki
�

for

each i.

Essentially, Equation 4.27 states that, in a dice D with group-by G1, all members of

M i roll-up to the same member of liki�1 (and therefore to the same member of all the

subsequent levels in hi) for all i’s. Besides, for each member m of liki , either all or none of

the members of Drill1 pmq are included in M i. On the other hand, Equation 4.28 states

that there exists one member m in liki such that M i includes all and only the members

of Drill1 pmq. It is easy to check that eager h-compliance is a particular case of lazy

h-compliance.

Example 19 Consider the following examples of M i for the RESIDENCE hierarchy:

tMiami,Orlando,Washingtonu

tMiami,Orlando,Tampa,WashingtonutMiami,Orlandou

tMiamiu

tMiami,Orlando,Tampau

The first two sets are not h-compliant because some —but not all— cities of different states

are put together. The third set is h-compliant in the lazy form (with group-by City) but not

in the eager one (because one city in Florida is missing). The fourth and the fifth sets are

h-compliant in both forms (with group-by’s City and State, respectively).

A reduction is now defined as the set of f-dices obtained from a partition of the group-by

coordinates.

Definition 18 (MD-Partition) Given group-by G � xl11, . . . , l
n
1 y, a multidimensional

partition (or, briefly, md-partition) of G is a set of dices P � π1 � . . .� πn, where each

πi (i � 1, . . . , n) is a (total and disjoint) partition of Dompli1q.

It is easy to verify that an md-partition defined in this way (i.e., starting from mono-

dimensional partitions of the single domains) induces a (total and disjoint) partition of the

coordinates of G. Besides, it preserves the possibility of viewing the result of the shrink

operator in the form of a “normal” pivot table. Indeed, if an md-partition were defined

as any partition of the coordinates of G instead, the rows/columns of the resulting table

could have different granularities, which would make the tabular representation hardly

readable by a business user (for instance, this would be the case if, in Figure 4.7, the facts

for the cities in Florida were fused together only for 2011 but not for 2010 and 2012).

Definition 19 (Reduction) Let C be a cube and let P be an md-partition of G. The
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reduction of C induced by P , RedP pCq, is the set of f-dices corresponding to the dices of

P :

RedP pCq � txD,CDy, D P P ^ CD � NULLu

The size of a reduction is the number of f-dices it includes. An md-partition and the

reduction it induces are h-compliant if all their dices are h-compliant.

In the remainder of this work we will always deal with h-compliant reductions, that have

two advantages over the others: (i) they fuse facts into f-dices in a way that does not violate

the member groups implicitly defined by hierarchies, thus following the same behavior of

the other OLAP operators, in particular of roll-up; and (ii) they enable a concise tabular

representation of the reduction in terms of row and column labels. As concerns (ii), in

particular, we must distinguish between the two flavors of h-compliance:

� In a lazy reduction, each f-dice D � xM1, . . . ,Mny can be labeled, for each hierarchy

hi, not with all the elements in M i, but with those in RA pM iq. The size of RA pM iq

depends on the hierarchy level to which its members belong, which in turn depends

on whether all the children of a member are fused together or not (e.g., an f-dice can

be concisely labeled with FL only if all cities in Florida are fused together). Should

even RA pM iq be too large to be exhaustively displayed on the screen, we envision

an approximate form of labeling based on a representative member of M i chosen, for

instance, as the centroid of M i. The resulting label could be for instance something

like “Miami and other 15 cities in FL” [5].

� In an eager reduction, the tighter constraint placed on partitions enables an even

more concise representation, because it is always RApM iq � tLCA pM iqu.

Example 20 Figure 4.9 shows two possible h-compliant reductions, with size 6 and

4 respectively, of the cube shown in Figure 4.7. In (a) the md-partition is defined

by πRESIDENCE � ttMiami,Orlandou , tTampau , tWashington,Richmond,Arlingtonuu and

πTIME � tt2010, 2011u, t2012uu. The reduction obtained is h-compliant in lazy but not in

eager form, because only some cities in Florida and some years are fused together. The two

f-dices in the bottom raw have group-by xState, Yeary, so they can be labeled with the name of

a state, while the other four f-dices have group-by xCity, Yeary. In (b) the md-partition is de-

fined by πRESIDENCE � ttMiamiu, tOrlandou , tTampau , tWashington,Richmond,Arlingtonuu

and πTIME � tt2012, 2011, 2012uu so the resulting reduction is h-compliant also in eager

form.

4.5.1.1 The Shrink Approximation

Fusing the facts in a dice into a single f-dice of the reduction gives raise to an approximation.

Like done by [83], to measure this approximation we use the sum squared error.
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2010, 2011 2012 

Miami, Orlando 

 
44.8 (8.8) 43 (18.0) 

Tampa 

 
53.5 (4.5) 53 (0.0) 

VA 

 
45.6 (11.2) 50.7 (4.7) 

 

 AllTime 

Miami 46 (2.0) 

Orlando 42.3 (8.7) 

Tampa 53.3 (4.7) 

VA 47.5 (64.0) 

	
(a) (b)

Figure 4.9: Two h-compliant reductions of the same cube, one lazy (a) and one eager (b).
SSE’s of f-dices are in gray.

Definition 20 (Sum Squared Error) Given cube C at group-by G � xl11, . . . , l
n
1 y, let

D be a dice. The sum squared error (SSE) associated to f-dice xD,CDy is

SSE
�@
D,CD

D�
�

¸
dPD

�
C pdq � CD

�2

(conventionally, C pdq�CD � 0 if C pdq is NULL). Let P be an (h-compliant) md-partition

of G; the SSE associated to reduction RedP pCq is

SSE pRedP pCqq �
¸
DPP

SSE
�@
D,CD

D�

Example 21 The SSE’s associated to the each f-dice in the reduction of Figure 4.9 are

shown in the same figure in gray. The overall SSE for Figure 4.9.a is 47.1, the one for

Figure 4.9.b is 79.3.

The results in [5] showed that, in the mono-dimensional case, the SSE of a reduction built

using an agglomerative approach can be incrementally computed. To generalize this result

to the multidimensional case, we must verify that the SSE of the f-dice arising from the

union of k dices can be computed starting from the SSE’s of the single f-dices. Theorem 2

shows that, if the dices are union-compatible, this can be done.

Theorem 3 Let RedP pCq be a reduction of C, D1, . . . , Dk be a set of disjoint union-

compatible dices, and D �
�k
j�1Dj. Then it is

∆SSE ptD1, . . . , Dkuq � SSE
�@
D,CD

D�
�
°k
j�1 SSE

�@
Dj, C

Dj
D�
�

�
°k
j�1 ηj�pC

Djq
2
� η �

�
CD

�2 (4.29)

where η and ηj are the number of coordinates of dices D and Dj respectively corresponding

to non-null facts.
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Proof: Let η �
°
j ηj. By Definitions 11 and 5 we have that

SSE
�@
D,CD

D�
�

°
dPD

�
C pdq � CD

�2
�

�
°
dPD C pdq

2 � η � pCDq
2
� 2CD

°
dPD C pdq �

�
°
dPD C pdq

2 � η�pCDq
2

Similarly, for each dice Dj:

SSE
�
xDj, C

Djy
	
�

¸
dPDj

C pdq2 � ηj � pC
Djq

2

Based on the two formulas above, we can rewrite the SSE as

SSE
�@
D,CD

D�
�

°
j

°
dPDj

C pdq2 � η�pCDq
2
�

�
°
j

�°
dPDj

C pdq2 � ηj�pC
Djq

2
	
�
°
j ηj�pC

Djq
2
� η�pCDq

2
�

�
°
j SSE

�
xDj, C

Djy
	
�
°
j ηj�pC

Djq
2
� η�pCDq

2

which proves the assumption. l

Through some algebraic manipulations it is possible to rewrite ∆SSE as follows:

∆SSEptD1, . . . , Dkuq �
1

η

¸
i j

ηiηjpC
Di � CDjq

2

Though this equation is not the most efficient one to incrementally compute the SSE

because it is quadratic in k, it clearly shows that ∆SSE is never negative. So, Theorem 2

confirms the intuition according to which all unions of dices lead to a non-decrease in the

total SSE of a reduction.

4.5.1.2 The Reduction Problems

Given a cube C at group-by G, a combinatorial number of possible reductions can be

operated on it, one for each way of partitioning the domains of levels in G while preserving

h-compliance. Of course, the more the reduction process is pushed further, the lower the

number of resulting f-dices; hence, the lower the size of the data returned to the user but

the more the approximation introduced. So, the reduction process can be driven by a

parameter α expressing the trade-off between size and precision. We envision two possible

roles for this parameter: (i) the maximum tolerable number of f-dices in the reduction

(determined for instance by the size of the display and/or by the network bandwidth of

the device), and (ii) the maximum tolerable SSE of the reduction. Depending on the role

of α, two alternative formulations can be given to the problem of finding a reduction of C:
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Reduction Problem 1 Find a reduction that has the minimum size among those whose

SSE is not larger than αSSE.

Reduction Problem 2 Find a reduction that has the minimum SSE among those whose

size is not larger than αsize.

4.5.1.3 Problem Search Space

In this section we define the size of the search space for both reduction problems. For each

form of h-compliance —lazy and eager— we consider first its worst-case, and then a more

general scenario.

Let C be an n-dimensional cube at a group-by G � xl11, . . . , l
n
1 y, with |Dom plq| � δ @l P G.

In the lazy form of h-compliance, the worst-case takes place when each hierarchy has

exactly two levels, so that each member m P li1 rolls-up to the same member All P li2 for each

i � 1, . . . , n, meaning that no hierarchy constraints are actually posed. In this case, the

total number of md-partitions is pBδq
n, where Bδ is the δ-th Bell number and it counts the

number of mono-dimensional partitions for each dimension. In a more general scenario, we

consider the case where the members in each hierarchy are structured into a balanced tree

with fixed fan-out f ¡ 0 and height z ¡ 0 (a tree with height z � 0 has only one node). In

this case all hierarchies have exactly z�1 levels, with |Domplijq| � f z�j�1 @j � 1, . . . , z�1,

and the total number of md-partitions is given by

Slazy pn, z, fq � Qlazy pz, fq
n

where Qlazy pz, fq is the number of mono-dimensional partitions for each dimension, and it

is recursively computed as

Qlazy pz, fq �

#
Qlazy pz � 1, fqf �

°f�2
i�0

�
f
i

�
Qlazypz � 1, fqi � P̂ pf � iq , if z ¡ 1

Bf , if z � 1
(4.30)

P̂ pkq is the number of partitions of k elements without singletons and is defined as

P̂ pk � 1q �
k�1̧

i�0

p�1qiBk�i

The recursive part of Equation 4.30 can be conceptually split into two terms: Qlazy pz � 1, fqf

and the summation from i � 0 to f � 2. The former counts the number of combinations of

the partitions that can be made on the children of each single member of Dom plizq, while

the latter counts the number of partitions where at least two of such members are fused

together. Once the cardinality of the mono-dimensional partitions for each dimension is

known, the number of md-partitions is easily calculated as the number of choices of n
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Figure 4.10: Search Space Size for lazy and eager shrink for different cube dimensionalities
and hierarchy fan-outs with constant domain cardinality |Dompli1q| � 64 for all i’s

partitions, each belonging to a different dimension.

Considering again hierarchies structured as described above, in the eager form of h-

compliance the worst-case takes place when each hierarchy has a fixed fan-out f � 2.

Interestingly, this is quite different from the case of lazy h-compliance, where the smaller

the fan-out, the fewer the partitions. Here, the function to count the exact number of

md-partitions is

Seager pn, z, fq � Qeager pz, fq
n

Qeager pz, fq �

#
Qeager pz � 1, fqf � 1 , if z ¡ 1

2 , if z � 1
(4.31)

The reasoning is similar to the previous one, though Equation 4.31 is much simpler than

Equation 4.30; indeed, the second term in the recursive part is 1 since we can either

aggregate all the members, or none of them.

Figure 4.10 shows how Slazy{eager pn, z, fq changes with n, z, and f when the domain

cardinality of each group-by level is fixed to 64. Note that, consistently with Equations

(4) and (5), when f increases the search space grows larger for lazy shrink, while it gets

smaller for eager shrink.

4.5.1.4 A Heuristic Approach

Since a reduction is determined starting from an md-partition of G, it appears that both

reduction problems can be modeled as clustering problems with constraints, where the

objects to be clustered are coordinates and each cluster corresponds to a dice. More
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Figure 4.11: Agglomeration

precisely, since an md-partition is induced by mono-dimensional partitions (Definition 9),

finding a reduction means finding n clusterings of members, one for each group-by level.

Unfortunately, to the best of our knowledge, no clustering algorithm in the literature deals

with constraints like those posed by h-compliance —except cannot-link [107], that cannot

be used here since the h-compliance constraint depends on the composition of clusters.

The approaches we will propose in the following sections are sub-optimal and belong to

the class of agglomerative algorithms for hierarchical clustering [108], where each element

initially stands in its own cluster, then pairs of clusters are iteratively merged; at each

step, the decision of which pair of clusters will be merged is usually taken in a greedy (i.e.,

locally optimal) manner.

In our context, merging two clusters means unifying two or more dices in the current

md-partition. This requires that (i) the dices to be unified are union-compatible, and

(ii) that the result is still an md-partition. To meet both requirements we unify dices in

slice-shaped batches, as formalized by the following definition.

Definition 21 (Agglomeration) Let P � π1�. . .�πn be an md-partition of group-by G,

N � πi be a set of sets of members of Dompli1q, and M̄ i �
�
M i
jPN

M i
j . The agglomeration

of P on M̄ i, denoted Aggli
M̄
pP q, is the md-partition P̄ � π1 � . . .� π̄i � . . .� πn, where

π̄i � pπi rNq Y M̄ i.

To clarify agglomeration, consider the md-partition P � π1 � π2 � π3 in Figure 4.11,

where π1 � tM1
1 , . . . ,M

1
4 u, and let N � tM1

1 ,M
1
2 ,M

1
3 u. Agglomerating P on N means

unifying |π2| � |π3| triplets of dices to obtain |π2| � |π3| new dices, all corresponding to

the set of members M̄1. The result of agglomeration is still an md-partition (Definition 9),

and only entails unions between union-compatible dices that differ along one dimension

(Theorem 1). The SSE variation of an agglomeration, denoted ∆SSEM̄ i pP q, is the sum

of the ∆SSE’s for all the dice unions entailed.

Using agglomeration defined as above in our greedy algorithms means unifying, at each

iteration, member sets of a single dimension. In principle, we could provide a more general

definition of agglomeration where member sets are unified along multiple dimensions at the
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Algorithm 5 Heuristic Lazy MD-Shrink

Require: A cube C at a group-by G �
@
l11, . . . , l

n
1

D
, αSSE

Ensure: An h-compliant md-partition P of G
1: for all j � 1, . . . , n do � For each dimension build a partition of singletons

2: πj Ð
!
tmu , m P Domplj1q

)

3: P Ð π1 � . . .� πn � Create the initial md-partition of singletons
4: while |P | ¡ 1 do � Agglomerating is still possible

5: Find i, 1 ¤ i ¤ n and M
1

,M
2

P πi s.t. � Search, on all dimensions, the pair of member sets. . .

6: Drill1

�
RA

�
M

1

YM
2
		

� M
1

YM
2

� . . . whose union satisfies the lazy h-compliance constraint. . .

7: and
∆SSE

M
1
YM

2 pP q

Πj�i |πj |
is minimal � . . . and that has minimal weighted ∆SSE

8: P̄ Ð Aggl
M
1
YM

2 pP q � Agglomerate P

9: if SSE pRedP̄ pCqq ¤ αSSE then � If the new md-partition does not violate the SSE constraint. . .
10: P Ð P̄ � . . . update the current solution
11: else
12: break
13: return P

same time, while still meeting requirements (i) and (ii). However, this would dramatically

increase the computational complexity of our algorithms since the number of possible

n-dimensional unions of members grows exponentially with n.

4.5.2 Lazy Shrink Computation

In the light of the above, in this section we present an agglomerative greedy algorithm

for lazy shrink. As a merging criterion we adopt Ward’s minimum variance method [108],

i.e., at each agglomeration step we select the pair of member sets yielding minimal ∆SSE

weighted on the number of dices that will be unified. The reason for this weighting is that

not all agglomerations result in the same decrease in size (i.e., number of f-dices). Without

considering this weighting factor, agglomerations involving few dices would generally be

favored, leading to less optimal choices. Of course, two member sets can be selected for

agglomeration only if the resulting md-partition is h-compliant.

The pseudo-code for Reduction Problem 1 is given in Algorithm 5. After initializing P as

a md-partition of singletons (lines 1-3), the process iterates until the SSE constraint is

violated (line 10) or there are no more possible agglomerations (line 4). At each iteration,

the pair of member sets which has minimal weighted ∆SSE and whose union fulfills

the lazy h-compliance constraint is searched (line 5). If the resulting agglomeration still

satisfies the SSE constraint (line 7), then the current md-partition is updated to the new

one (line 8). The algorithm for Problem 2 can be obtained by simply replacing the if

condition at line 7 with |P | ¡ αsize, in which case the process is stopped as soon as the

size constraint is fulfilled.

Example 22 We now show a walkthrough of Algorithm 5 using the cube in Figure 4.7

and αSSE � 80 as input (Figure 4.12):

1. The initial md-partition (Figure 4.12.a) is the Cartesian product of the singleton
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 2010 2011 2012 

Miami 47 45 46 

Orlando 44 43 40 

Tampa 55 52 53 

Washington 47 45 51 

Richmond 43 46 49 

Arlington — 47 52 

 

 AllTime 

Miami, Orlando 44.2 

Tampa 53.3 

VA 47.5 

	

 2010 2011 2012 

Miami 47 45 46 

Orlando 44 43 40 

Tampa 55 52 53 

Washington, Arlington 47 46 51.5 

Richmond 43 46 49 

 

 
2010, 
2011 

2012 

Miami 46 46 

Orlando 43.5 40 

Tampa 53.5 53 

Washington, Arlington 46.3 51.5 

Richmond 44.5 49 

 

 
2010, 
2011 

2012 

Miami 46 46 

Orlando 43.5 40 

Tampa 53.5 53 

VA 45.6 50.7 

 

 
2010, 
2011 

2012 

Miami, Orlando 44.8 43 

Tampa 53.5 53 

VA 45.6 50.7 

 

(a) (b) (c)

(d) (e) (f)

Figure 4.12: Applying the greedy algorithm for lazy shrink

partitions π1 and π2 of hierarchies RESIDENCE and TIME, respectively, defined as

π1 � ttMiamiutOrlandoutTampau, tWashingtonu, tRichmondu, tArlingtonuu

π2 � tt2010u, t2011u, t2012uu

Since this md-partition has size 6� 3 � 18, the while cycle is entered.

2. The first best candidate agglomeration involves Arlington and Washington, and has

a weighted ∆SSE of 0.8. The resulting reduction (Figure 4.12.b) has a total SSE of

2.5 and size 5� 3 � 15, so the while cycle is entered again.

3. At each following iteration, the best h-compliant agglomeration is searched, yielding

the reductions shown in Figure 4.12.c, 8.d, and 8.e. The total SSE now amounts to

47.1, the size to 3� 2 � 6.

4. At the last iteration, the best agglomeration involves t2010, 2011u and t2012u and

has a weighted ∆SSE of 17.5 (Figure 4.12.f). However, the total SSE would be

99.5, which exceeds αSSE. So, the algorithm stops and returns the reduction shown

in Figure 4.12.e.

For the sake of simplicity, the process of computing the SSE variations of agglomerations

has been hidden in Algorithm 5. However, since most of the computational complexity of

the algorithm lies there, we will describe it in more detail. The Find statement at line 5

requires the ∆SSE’s of all feasible agglomerations. To avoid computing these ∆SSE’s

at each iteration, besides the current md-partition P and its corresponding reduction
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Figure 4.13: Updating the two distance matrices for ∆SSE computation in the 2-
dimensional case (the bottom-right matrix is the current reduction RedP pCq, the parts in
gray are those affected by the update)

RedP pCq we store, for each dimension j, a distance matrix 1 containing the ∆SSE’s

induced by agglomerating any two member sets in πj . Of course at each iteration, when an

agglomeration is made on a pair of sets M
1
, M2 P πi , all the ∆SSE’s stored for these two

sets must be updated since M
1

and M
2

are replaced in πi with their union (see Definition

12). In particular, updating the n distance matrices requires:

� Updating the matrix for dimension i, which only involves the two rows and columns

corresponding to M 1 and M2.

� Updating the matrices of the remaining dimensions, which involves all their cells.2

However, the new values need not be computed from scratch because, consistently

with the definition of SSE variation of an agglomeration, they can be obtained from

the previous ones by adding the ∆SSE’s of the newly created dices and subtracting

the ∆SSE’s of the original ones.

Figure 4.13 exemplifies the distance matrix update process for the 2-dimensional case.

We close this section by estimating the asymptotic computational cost of Algorithm 5

considering its worst-case, which takes place when the following two conditions are met: (i)

no h-compliance constraints are present, and (ii) the α parameter is such that the resulting

multidimensional partition is composed by exactly one dice. In this case, given a cube C

at group by G � xl11, . . . , l
n
1 y with |Dom plq| � δ @l P G, the total complexity is pn2δ3q in

terms of comparisons and pn2δn�1q in terms of ∆SSE computations. More in detail, to

search for the minimum weighted ∆SSE we scan n distance matrices —each requiring

pδ2q accesses; this is repeated at each of the n pδ � 1q iterations necessary to reduce the

cube to one dice. As to ∆SSE computation, the operation that determines the highest

cost is the update of the distance matrices for the n� 1 dimensions that have not been

agglomerated at the current iteration. This requires updating all the O pδ2q cells of each

distance matrix by reading O pδn�2q f-dices for each cell, and must be repeated for each of

the n pδ � 1q iterations.

1We use the term “distance matrices”because, in clustering approaches, matrices like these ones are
normally used to store inter-cluster distances.

2More precisely, only the cells corresponding to agglomerations that meet h-compliance constraints are
updated.
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Algorithm 6 Heuristic Eager MD-Shrink

Require: A cube C at a group-by G �
@
l11, . . . , l

n
1

D
, αSSE

Ensure: An h-compliant md-partition P of G
1: for all j � 1, . . . , n do � For each dimension build a partition of singletons

2: πj Ð
!
tmu , m P Domplj1q

)

3: P Ð π1 � . . .� πn � Create the initial md-partition of singletons
4: CandÐ

�
j Dompl

j
2q � Initialize the set of candidate members for fusion

5: while |P | ¡ 1 do � Agglomerating is still possible

6: Find mik P Cand s.t.
∆SSEpDrill1pm

i
kqq

|Drillk�1pmi
kq|�
±

j�i |π
j |

is minimal � Find the best candidate. . .

7: CandÐ Candztmiku � . . . remove it from the set of candidates. . .

8: if CandXDrillk
�
Rollk�1

�
mik

��
� ∅ then � If the new md-partition does not violate the SSE constraint. . .

9: P Ð P̄ � . . . update the current solution
10: else
11: break
12: return P

4.5.3 Eager Shrink Computation

Like lazy shrink, eager shrink is based on agglomeration as defined in Definition 12. We

recall that the eager form of the h-compliance constraint is stricter than the lazy form.

For instance, with reference to our working example, while lazy shrink allows reductions

where only a subset of cities in the same state are fused together, in eager shrink either all

or none cities in a state are fused together. For this reason, in a greedy algorithm for eager

shrink, the generation of candidate unions can more efficiently be driven “from above”,

i.e., from LCA’s, like shown in Algorithm 6.

Algorithm 6 solves Problem 1 by hinging on variable Cand, that stores the LCA’s of

candidate members for fusion. At each iteration (line 5), the most promising candidate

mi
k is picked from Cand by considering its weighted ∆SSE (line 6); in this case, weighing

depends on the number of children members of mi
k being unified as well as on the size of

the current partitions along the hierarchies different from i. If at some point all the siblings

of a given member mi
k have been agglomerated, then the father of mi

k must be added

to Cand (lines 8-9). For instance, when the cities of the last state of the South-Atlantic

region are fused into an f-dice (which means that no state of that region is in Cand),

member South-Atlantic is added to Cand. The algorithm for Problem 2 can be obtained

by simply replacing the if condition at line 11 with |P | ¡ αsize, in which case the process is

stopped as soon as the size constraint is fulfilled. Note that, differently from Algorithm 5,

the Find statement here does not computes all the possible combinations between couples

of member sets. Thus, instead of storing n distance matrices, it is sufficient to store a

∆SSE for each element in Cand. Actually, for optimization purposes we implemented n

separate candidate lists, one for each dimension.

Example 23 Consider again the cube in Figure 4.7. In the following we show in detail

how Algorithm 6 computes a reduction that solves Problem 1 with αSSE � 80 (Figure 4.14).

1. The initial partition is the same seen in Example 8. Since its size is 18 the while
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 2010 2011 2012 

Miami 47 45 46 

Orlando 44 43 40 

Tampa 55 52 53 

VA 45 46 50.7 

	

 2010 2011 2012 

Miami 47 45 46 

Orlando 44 43 40 

Tampa 55 52 53 

Washington 47 45 51 

Richmond 43 46 49 

Arlington — 47 52 

 

 AllTime 

Miami 46 

Orlando 42.3 

Tampa 53.3 

VA 47.5 

	

 AllTime 

FL 47.2 

VA 47.5 

	

(a) (b) (c) (d)

Figure 4.14: Applying the greedy algorithm for eager shrink

cycle is entered, with

Cand � tFL, VA, AllTimeu

2. The best candidate is VA, whose weighted ∆SSE is 2.4. The SSE of the resulting

reduction (Figure 4.14.b) is 14.7, which meets the αSSE constraint. Now it is

π1 � ttMiamiu, tOrlandou, tTampau, tWashington,Richmond,Arlingtonuu

π2 � tt2010u, t2011u, t2012uu

3. Since this md-partition has size 4� 3 � 12 the while cycle is entered, with

Cand � tFL,AllTimeu

4. The best candidate is now AllTime, whose weighted SSE is 8.1. The total SSE is

79.3 (Figure 4.14.c), so the while cycle is entered again, with

π1 � ttMiamiu, tOrlandou, tTampau, tWashington,Richmond,Arlingtonuu

π2 � t2010, 2011, 2012u

Cand � tFLu

5. At the next iteration, the only possibility would be to fuse together the cities of

Florida. However, since the resulting reduction has SSE higher than αSSE (Figure

4.14.d), the algorithm stops. The reduction finally returned is the one shown in

Figure 4.14.c.

Like for Algorithm 5, to estimate the computational cost of Algorithm 6 we characterize its

worst-case, whose conditions are: (i) hierarchies are structured as binary trees, i.e., each

member drills-down to exactly two child members; and (ii) α is such that the resulting

md-partition is composed of exactly one f-dice. While condition (ii) is the same as the

one of lazy shrink, here condition (i) is the opposite (as already mentioned in the section
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CENSUS

PerWt

Race (150)

RaceGroup (64)

MRN (4)

AllRace (1)

City (1077)

State (52)

Region (10)

AllCity (1)

AllYear (1)

Year (6)

AllSex (1)

Sex (2)

Branch (26)
Subcategory (9)

Category (8)
AllOcc (1)

Occupation (510)

Figure 4.15: The complete CENSUS schema

about the search space size). Again, we consider a cube C at group-by G � xl11, . . . , l
n
1 y

with |Dom plq| � δ @l P G. The total complexity is pn2δ2q in terms of comparisons and

pn2δnq in terms of SSE computations. To search for the minimum weighted ∆SSE we

scan the Cand set, whose size is pnq; this is repeated for each of the n pδ � 1q iterations

needed to reduce the cube at exactly one f-dice. As to ∆SSE computation, similarly to

Algorithm 5, the operation that determines the highest cost is the update of the candidate

lists for the n� 1 dimensions that have not been agglomerated at the current iteration.

Updating each of the δ elements in a candidate list requires reading O pδn�2q f-dices, and

this must be repeated for each of the n pδ � 1q iterations.

4.5.4 Experimental Results

This section collects the results of the tests that evaluate the shrink operator in its two

forms. The algorithms are implemented in C++ and ran on a desktop PC dual-core (3GHz,

4 GB RAM, Windows 7-64 bit). The tests used the complete 5-dimensional CENSUS

schema, sketched in Figure 4.15 using the Dimensional Fact Model notation (numbers

next to levels show their domain cardinality).

We recall that the shrink operator is meant to be applied to any cube at any group-by

resulting from an OLAP query. So, to enable a thorough discussion of the behavior of

shrink under different conditions, we extracted from the IPUMS database [9] seven different

cubes differing in their size —number of facts— and dimensionality as shown in Table

4.10. Noticeably our benchmark also includes cubes, such as Census7, that are quite large

in size to be the results of a typical OLAP query, and whose dimensionalities are too high

for a profitable visualization with a pivot table. The reason for this is that, as mentioned

in Section 4.5, though the ultimate goal of shrink is to provide compact approximations of

pivot tables for users’ direct inspection, it can also be applied to generate accurate and

slightly-condensed representations of huge datasets to be transferred to other analysis

applications.
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Table 4.10: The cubes used for tests

Name Group-by # Facts Dimensionality
Census1 xState,RaceGroupy 3328 2
Census2 xCity,RaceGroupy 68928 2
Census3 xCity,Racey 161550 2
Census4 xState,Branch,Yeary 8112 3
Census5 xState,RaceGroup,Branchy 86528 3
Census6 xCity,Race,Branchy 4200300 3
Census7 xCity,Race,Branch,Yeary 25201800 4

Before delving into the evaluation of the obtained results, we briefly formalize the notations

we will use in our charts to enable a fair comparison between cubes with very different

features. The approximation introduced by a reduction RedP pCq is measured through its

relative SSE

SSE % �
SSE pRedP pCqq

SSE pRedPmin
pCqq

where RedPmin
pCq, with |Pmin| � 1, is the smallest reduction obtainable from C. Similarly,

the relative size of RedP pCq is expressed as

Size % �
Size pRedP pCqq

Size pCq

Finally, given RedP pCq with P � π1 � . . .� πn, for each hierarchy hi we define

Dimension Size % �
|πi|

|Dompliq|

where G � xl1, . . . , li, . . . lny is the group-by of C. Intuitively, this indicator measures to

what extent a reduction impacts on the number of rows/columns of the pivot table that

shows data.

4.5.4.1 Effectiveness Analysis

In this section we evaluate shrink in terms of effectiveness. We start with a comparison

between lazy/eager shrink, mono-dimensional shrink [5], and classical OLAP roll-up, which

could be seen as a simpler alternative to reduce the size of a cube. Since the number of

possible roll-up’s grows exponentially with the cube dimensionality, for a fair comparison

we implemented a greedy multidimensional roll-up operator which basically works as

a variant of shrink where the smallest reduction step is that of a roll-up. As done in

Algorithm 5 and 6, at each iteration we roll-up to the group-by with minimal ∆SSE

weighted on the number of dices that will be unified. Figure 4.16 shows the results of

the comparison tests performed on cubes Census7 and Census4. The mono-dimensional

version of shrink (called Mono-Shrink in the diagrams) has multiple data series —one for
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Figure 4.16: Reduction size vs. approximation for Census7 (a) and Census4 (b)

each hierarchy— since shrinking along different hierarchies can yield very different results.

Due to the low cardinality of the Year level, the mono-dimensional series for the TIME

hierarchy has been omitted to improve readability.

The first look at Figure 4.16 reveals that, for all the approaches, the SSE grows exponentially

as the reduction process is pushed further. This is because (i) null facts give no contribution

to the SSE and sparseness is higher for reductions with larger size; (ii) agglomerations

leading to low SSE’s are chosen first by our algorithms. Besides, all the algorithms yield

negligible approximations at large sizes —this is why we restrict the chart to sizes lower

than 50%. A closer comparison of the different curves shows that lazy shrink performs

remarkably well, with low SSE’s even at 1% size. In some cases, eager shrink is less

effective than mono-dimensional shrink; however, eager shrink offers a simpler presentation

of data due to its strict h-compliance constraints, so depending on the user’s goals, the
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Figure 4.17: Reduction size vs. dimension size for Census7 (a) and Census4 (b)

trade-off with accuracy might be justified. As expected, both versions of shrink perform

better than roll-up, which has the additional shortcoming of allowing only a few possible

reductions (shown by cross-shaped markers in the chart). Interestingly, the effectiveness

gap between shrink and mono-dimensional shrink tends to be greater for Census4 than

for Census7, even in the case of eager shrink; an explanation for this will be given below.

Figure 4.17 shows how the dimension size scales, for each hierarchy, with the reduction size.

For Census7 (Figure 4.17.a) the reductions are mostly driven by RACE until only a few

possible agglomerations (all with high SSE’s) remain on that dimension. To understand

how shrink behaves in the absence of a dominant dimension like RACE, we need to consider

Census4 (Figure 4.17.b), which has the same dimensions of Census7 except RACE. In

this case the different dimensions are used in a more balanced way for shrinking from the

very beginning of the reduction process which leads, as mentioned above, to the greater
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Figure 4.18: Absolute reduction size vs. approximation of three cubes for lazy (a) and
eager (b) shrink

effectiveness gap between the multi- and mono-dimensional versions of shrink.

Another factor that we deemed interesting to analyze in the context of a comparison

between the different approaches, is the dimensionality of the input cube. So we repeated

the size vs. approximation test with cubes Census3 and Census6, that have two and

three dimensions respectively (while Census7 has four). It turned out that a higher

dimensionality favors shrink against its mono-dimensional version but, unexpectedly, to a

small extent.

To introduce the last group of tests we recall that the main scenario for shrink is the one

where the size of the resulting reduction is small enough to enable the user to fruitfully

analyze its contents. For this reason in the following tests we will focus on a smaller —yet
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more significant— absolute size range that can be considered the normal operation range

of shrink, namely, from 1000 to 10 f-dices. Figure 4.18 shows how the approximation

changes for cubes of different sizes within this operation range. The results clearly show

that larger cube sizes lead to worse approximations for the same absolute reduction size.

This is coherent with what we observed in the case of mono-dimensional shrink and can be

ascribed to a dimensionality problem. Indeed, as depicted in Figure 4.11, an agglomeration

involves two or more sets of members (M1
1 , M1

2 , and M1
3 in the figure) of one level; each

member set determines a set of f-dices that can be seen as a multidimensional object (with

dimensionality 36 in the figure). When dimensionality increases, so does the difficulty in

finding agglomerations that determine a small SSE increase [109]. Notably, while for the

cubes in Figure 4.18 this trend neatly emerges thanks to a relevant difference in size, in

other situations things may be blurrier due to other factors such as measure values —for

example, cubes Census2 and Census3 yield mostly overlapping curves. As a final remark,

a comparison between Figures 14.a and 14.b reveals that —especially for Census5 — the

curves of eager shrink include a lower number of points than those for lazy shrink because

the granularity of agglomerations is coarser when using eager h-compliance.

4.5.4.2 Efficiency Analysis

In this section we discuss the execution time of the shrink operator.

Figure 4.19 compares the multi- and mono-dimensional versions for three cubes using a

logarithmic scale. Eager and mono-dimensional shrink yield similar results, while lazy

shrink takes significantly longer to be computed. The marked difference between lazy and

eager shrink can obviously be ascribed to the different strength of the constraints used: in

lazy h-compliance, many more feasible md-partitions have to be computed than in eager

h-compliance. Except for Census7, all the approaches appear to be compatible with the

near-real-time requirements of OLAP analyses. In the case of Census7, lazy shrink takes a

long computation time —about 330 sec. to reduce the cube to one f-dice— which is not

surprising considering the large size and dimensionality of the input cube.

Finally, Figure 4.20 shows a comparison of lazy and eager shrink with cubes of different

size and dimensionality. As expected, in both cases there is a steep increment in execution

times from Census5 to Census7. The main factors that affect the performance of shrink

are the size and dimensionality of the input cube, as well as the hierarchy structure. The

first factor is easily explained, as more facts require more ∆SSE’s to be computed and,

on the other hand, a higher dimensionality requires more md-partitions to be generated.

As to the second factor, the hierarchy structure determines the tightness of h-compliance

constraints, which in turn affects the number of h-compliant md-partitions (see Section

4.5.1.3).
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Figure 4.19: Execution time vs. reduction size for Census1 (a), Census5 (b) and Census7
(c)
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Figure 4.20: Execution time vs. reduction size for lazy (a) and eager (b) md-shrink

4.5.5 Wrapping up Multidimensional Shrink

In this work we have presented a multidimensional generalization of the shrink operator

to balance the size of a pivot table and its approximation. Two variants of the operator

have been devised, based on hierarchy constraints with different strictness, and for each

variant a greedy algorithm has been proposed. The experimental results show that

multidimensional shrink overcomes both the previous mono-dimensional version and the
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classical roll-up OLAP operator in terms of effectiveness, i.e., it tends to achieve a better

conciseness/approximation trade-off. Besides, for cubes whose size is not prohibitive

from the point of view of a tabular visualization, the performance of shrink is perfectly

compatible with the real-time requirement posed by an interactive use during OLAP

sessions. Finally, we saw that the eager variant is less effective than the lazy one, but

it enables more compact visualizations (in terms of row/column labeling) with smaller

execution times.
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Chapter 5

Modeling of Unconventional Data

Sources

In this chapter we present two different approaches to obtain multidimensional schemata;

specifically, we focus on two different types of data sources, namely data vaults and sensor

networks.

The data vault model natively supports data and schema evolution, so it is often adopted to

create operational data stores. However, it can hardly be directly used for OLAP querying.

In Section 5.1 we propose an approach called Starry Vault for finding a multidimensional

structure in data vaults. Starry Vault builds on the specific features of the data vault model

to automate multidimensional modeling, and uses approximate functional dependencies to

discover out of data the information necessary to infer the structure of multidimensional

hierarchies. The manual intervention by the user is limited to some editing of the resulting

multidimensional schemata, which makes the overall process simple and quick enough to

be compatible with the situational analysis needs of a data scientist.

The approach that we employ to obtain multidimensional schemata for sensor data is

quite different from Starry Vault. Indeed, in this case we propose manually designed

multidimensional schemata that cover the main requirements usually related to the domain

of sensor networks. Furthermore, we describe in detail how these schemata can be used in

practice by showing their application in two different use-cases: the first one is related to

the monitoring of air quality in a chemical facility, while the second one focuses on risk

management for landslides.
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5.1 Automating Multidimensional Modeling from Data

Vaults

Since their adoption as an enabling technology for information systems, one of the goals

of databases has been to provide a unified, integrated, and consistent repository for all

enterprise data; this repository should act has a hub for different activities such as process

coordination, auditing, historical data storage, etc. Among the solutions devised in this

direction we mention Master Data Management and ERPs in the area of operational

systems; in the area of business intelligence, Operational Data Stores and, more recently,

data lakes. Another solution that has been progressively gaining attention and diffusion

since its official release in 2000 is the data vault, a practitioner-driven proposal for designing

a database that provides long-term historical storage of data coming in from multiple

sources. The main goals of the data vault can be summarized as (i) maximize resilience to

change in the business environment when storing historical data; (ii) accommodate data

regardless of their quality and of their conformity to standard and business rules; and (iii)

enable parallel loading so that very large implementations can scale out without the need

of major redesign. While the 1.0 version of the data vault was strictly relational, version

2.0 (released in 2015) relies on Hadoop-Hive for delivering scalability and performance

at a big data level. However, in spite of its undeniable informative value, a data vault is

not suitable for direct multidimensional querying both for performance reasons (it is not

optimized for OLAP workloads) and because it is hardly supported by OLAP front-ends.

In this work we propose an approach called Starry Vault aimed at finding a multidimensional

structure in data vaults so that their data can be fed into a data warehouse (DW) for

OLAP querying. On the one hand, our approach builds on the specific features of the data

vault model to automate multidimensional modeling, on the other it uses approximate

functional dependencies [110] to discover out of data the information necessary to infer

the structure of multidimensional hierarchies. The Starry Vault approach is mainly aimed

at being used at design time, to support a supply-driven design of a DW from a source

data vault [111]. However, the manual intervention by the user is limited to some editing

of the resulting multidimensional schemata, which makes the overall process simple and

quick enough to be also compatible with the situational analysis needs typical of a data

scientist.

5.1.1 Related Work

The data vault model has hardly been explored in the academic literature. Besides the

official model specification [6], to the best of our knowledge only a couple of works were

made: [112], which provides a conceptualization of the data vault physical model, and [113],

which describes an approach for designing DWs where the data vault model is used instead

of the standard star/snowflake schemata to physically implement the multidimensional
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model. On the other hand, there are evidences that the data vault can be used in agile

design contexts [114], and some CASE tools generate DW schemata based on the data

vault model (e.g., Quipu [115]).

The problem of how to support or even automate the design of DWs has been widely

explored. In particular, in supply-driven approaches multidimensional modeling starts from

an analysis of data sources —which is in line with the goal of this work. The first approaches

to supply-driven design date back to the late 90’s [116, 117, 118, 119] and propose algorithms

that create multidimensional schemata starting from Entity-Relationship diagrams or

relational schemata. The basic idea is that of following the functional dependencies

(FDs) expressed in the source schema to build the multidimensional hierarchies. In the

following years, there have been some attempts to obtain multidimensional schemata out

of XML source data (e.g., [120]). In this case, the main problem is that some FDs are not

intensionally expressed, so they must be checked extensionally, i.e., by properly querying

the XML database at design time.

More recently, a few works appeared focused on RDF analytics [121, 122], i.e., on how to

query RDF data in an OLAP-like fashion. Though still at an early stage of development,

these works may pave the way towards the design of multidimensional schemata starting

from ontologies. In the same direction, in [123] the AMDO approach is proposed to derive

a multidimensional schema from a conceptual formalization of the domain; the data sources

are analyzed to look for multidimensional patterns, then the results are combined with

the knowledge expressed by a domain ontology to support the elicitation of requirements.

Along these lines, semantic web technologies have also been applied to enable exploratory

OLAP on external data [124]. To achieve this, source data are modeled as an ontology,

which then is used to derive a multidimensional schema.

The main inspiration for our current work comes from the supply-driven approaches that

use relational schemata as a source. However, these approaches cannot be smoothly

reused in our case because (i) while in traditional (normalized) relational databases all

FDs are made explicit, several FDs are normally hidden in data vaults; (ii) the peculiar

structure of data vaults, lets us make some specific assumptions which are not possible

with traditional relational databases; (iii) while relational-based approaches do not use

many-to-many relationships for design, these must always be considered when designing

from data vaults. On the other hand, the idea of querying data vaults to establish the

missing FDs is borrowed from the approaches using XML sources.

Among the works on supply-driven design of DWs, some also consider the problem of

supporting the designer in detecting potential facts. For instance, in [117] all the entities

with numeric fields are selected as candidate facts. Not only the presence of measures, but

also table cardinality is considered to identify facts in [118], while in [119] all entities with a

high number of many-to-one relationships are candidates to become facts. A model-driven

approach to detect fact is proposed in [125], based on a heuristics that considers the

cardinality and in-degree of each table, together with its ratio of numerical fields. Finally,
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Figure 5.1: A sale data vault. Grey boxes, hexagons, and dashed boxes represent hubs,
links, and satellites, respectively; additional FDs are shown with thick dashed arrows

in [123] potential facts are selected by searching specific topological patterns in source

data. The criteria we use in this work for ranking candidate md-schemata are partially

inspired and adapted from the ones mentioned above.

5.1.2 Data Vault Basics

The data vault model was conceived by Dan Linstedt in 1990 and then released in 2000

as a public domain modeling method [6]. Its basic goal is that of dealing with data

and schema changes by separating the business keys (that are basically stable, because

they uniquely identify a business entity) and the associations between them, from their

descriptive attributes (that may change frequently). The data vault is based on three

components [126]:

� Hubs. A hub is a table that models a core concept of business; each of its tuples

corresponds to a single business object with a unique enterprise-wide key, and is

timestamped with the moment that object was first loaded into the database. The

primary key of a hub is always a surrogate key.

� Links. A link is a table that models a business relationship between hubs. To

establish this relationship, a link includes foreign keys referencing the hubs/links

involved. Like a hub, it has a surrogate as the primary key and it includes a load

timestamp. To ensure that the schema can be easily evolved, all relationships are

modeled as potentially many-to-many regardless of their actual multiplicity.
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� Satellites. A satellite is a table that includes a set of attributes describing one hub or

one link. Its primary key combines a foreign key that references the corresponding

hub/link with a timestamp, so that multiple temporal version of attribute values

can be stored.

Example 24 The simple data vault we will use as a working example models sale orders

and is shown in Figure 5.1 (adapted from [126]).

5.1.3 Formal Background

In this section we give a graph-based formalization of data vaults and multidimensional

schemata, which will be respectively the input and output of our design algorithm.

Definition 22 (Data Vault Schema) A data vault schema (briefly, dv-schema) is a

directed graph V � pT, F q where T � TH Y TL Y TS and:

1. TH , TL, and TS are, respectively, sets of hub, link, and satellite tables;

2. each arc xt, t1y in F represents an FD from a foreign key of table t to the primary

key of table t1, which we will denote with t Ñ t1 to emphasize that one tuple of t

determines one tuple of t1;

3. F � pTS � pTH Y TLqq Y pTL � THq;

4. exactly one arc exits from each satellite s P TS (entering a hub or a link);

5. at least two arcs exit from each link.

Given point (3) of Definition 22, all FDs explicitly modeled in a dv-schema take either form

s Ñ h, s Ñ l, or l Ñ h. Each hub in h P TH has one business key, denoted BusKeyphq.

Each satellite s has a set of business attributes, BusAttrpsq; for each hub or link t, we

denote with BusAttrptq the union of the sets of business attributes included in all satellites

s such that sÑ t.

Example 25 With reference to the sale data vault in Figure 5.1, it is

TH � tH Customer,H Order,H Employee,H Class,H Productu

TL � tL CustClass, L CustOrder, L LineItemu

TS � tS Customer, S CustAddress, S CustRating, . . .u

An example of arc is xL CustClass,H Classy, which corresponds to the inter-table FD

L CustClass Ñ H Class. Finally, it is

BusKeypH Customerq � CustomerCode

BusAttrpH Customerq � tFirstName, LastName,Phone,Email,Address,

City,County, State, Score, Loyaltyu
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Figure 5.2: Process architecture of the Starry Vault approach

Definition 23 (Multidimensional Schema (Graph Form)) In the context of this

work, we define a multidimensional schema (or md-schema) as a directed acyclic graph

M � pA,Eq where each node in A is an attribute, each arc in E is an FD involving two

attributes, and there exists one node f P A, called fact, such that each other node in A can

be reached from f through a directed path (which implies that f has no entering arcs). The

set of direct children of f is partitioned into a set of dimensions, D, and a set of measures,

M . All measures in M are leaves of M. For each dimension d P D, the subgraph of M
that can be reached from d is called a hierarchy.

5.1.4 The Starry Vault Approach

A functional overview of the approach we use to obtain an md-schema out of a source

dv-schema is sketched in Figure 5.2; three processes are included:

1. Hub-To-Hub FD Detection. This process aims at detecting additional FDs not

explicitly modeled in the dv-schema, in particular those between two or more hubs

connected by a link, by querying the source data vault.

2. Md-Schema Discovery and Ranking. A set of candidate facts is heuristically deter-

mined; for each of them, a draft md-schema is built based on both the FDs explicitly

modeled in the dv-schema and those detected by process (1). The md-schemata

obtained are then heuristically ranked based on how comprehensive they are from

the intensional and extensional points of view.

3. Md-Schema Enrichment. The user selects one or more draft md-schemata, then edits

and enriches them based on her knowledge of the application domain. To further

improve the quality of the md-schemata, additional FDs hidden in satellites can be

discovered by querying the source data vault.

5.1.4.1 Hub-To-Hub FD Detection

In a dv-schema each relationship between two or more hubs is modeled through a link

that contains the foreign keys referencing the connected hubs. As already mentioned,
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this implies that all relationships are modeled as if they were many-to-many, so it is not

possible to determine if there are any FDs between two hubs (i.e., if a relationship is really

many-to-many or is actually many-to-one) based on the dv-schema alone. For instance,

looking at Figure 5.1 it is impossible to say if the binary relationship between customer

and classes is many-to-many or, more realistically in this case, many-to-one.

Things get even more complex with n-ary relationships, like the one expressed by

L CustOrder that features three branches. Indeed, in this case there are different possibili-

ties:

1. The relationship between the hubs involved really has many-to-many multiplicity in

all directions. In particular, in case of the L CustOrder link, this would mean that

one order can be made by several customers with the support of several employees.

2. The relationship has many-to-one multiplicity from one branch towards the others.

In our example, this happens if one order is always made by one customer with the

support of one employee.

3. There are mixed multiplicities from the same branch. For instance, this is the case if

one order is always made by one customer with the support of several employees.

Note that, while in a standard relational schema only case (1) corresponds to a good design

practice for normalization reasons (in the other cases the n-ary relationship should be

substituted by n� 1 binary relationships, each with its multiplicity), within a dv-schema

all three cases are considered equally good for the sake of maintainability.

To disambiguate relationship multiplicities in all cases above and detect FDs with reasonable

confidence, we must resort to the data stored in the source data vault. Clearly, there is

a chance that an FD holds for the specific data stored at design time but does not hold

in general in the application domain, which means that it will probably be contradicted

in the future when new data will be added. Fortunately, since data vaults usually host

great amounts of data, these can realistically be considered to be representative of the

application domain. More probably, the data will be affected by noise in the form of

errors (e.g., spelling errors) that “hide” an existing FD. The tool we use to cope with this

issue are approximate functional dependencies (AFDs) [110], i.e., FDs that “almost hold”,

which normally arise when there is a natural FD between attributes but data are dirty or

present exceptions. Given AFD a ; b, where a and b are attributes, one way to define

its approximation epa; bq is to count the minimum number of distinct values of ab that

must be removed to enforce aÑ b. We will then consider a; b to hold if epa; bq   ε,

where ε is a threshold.

The approach we adopt to detect AFDs is an adaptation of the well-known Tane algorithm

[110]. Given a table r with schema R, Tane computes all the valid AFDs X ; a with

X � R and a P RzX by relying on a level-wise (small-to-big) enumeration strategy to
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navigate the search space of all possible subsets of R (i.e., the containment lattice). Though

Tane applies a set of pruning rules to avoid computing/returning trivial and non-minimal

dependencies, its complexity remains exponential due to the number of candidate attribute

sets X. Specifically, the worst-case complexity of Tane is Op|r| � |R|2.5q2|R|q, where |r| is

the cardinality of table r and |R| is its number of attributes. Noticeably, since our goal

here is to build hierarchies, we can restrict our search to simple AFDs (|X| � 1). In the

remainder of this section we describe an original enumeration strategy that works for

simple AFDs and cuts the complexity of Tane down to Op|r| � |R2|q in the worst case and

to Op|r| � |R|q in the best one.

Let us start by considering “traditional” FDs. Given schema R, the set of candidate

FDs a Ñ b, with a, b P R, can be represented using an |R| � |R| matrix Z whose rows

and columns represent left- and right-hand sides of FDs, respectively, so that Zra, bs

corresponds to aÑ b. If FD aÑ b is found to hold on the stored data, cell Zra, bs is set

to true, otherwise it is set to false. A naive approach to fill Z would check each single cell,

i.e., each possible simple FD by accessing data; actually, most checks can be avoided by

orderly exploring the cells of Z. Our exploration strategy requires the rows and columns of

Z to be ordered by descending cardinality of the corresponding attribute domain. Given

the ordered matrix, we initially note that only the cells over the diagonal must be checked

since (i) the cells on the diagonal correspond to trivial FDs like aÑ a, and (ii) the cells

below the diagonal correspond to unfeasible FDs like b Ñ a with |b|   |a|. Among the

cells above the diagonal of Z, we can avoid checking those corresponding to transitive FDs

by applying the following exploration strategy:

� Rule 1 : First check the (unchecked) cells Zra, bs such that |b| is maximum and,

among them, give priority to the one with minimum |a|.

� Rule 2 : If the FD corresponding to Zrb, cs is found to be true, set to true all the

FDs corresponding to cells Zr�, cs such that Zr�, bs holds.

To understand why Rules 1 and 2 avoid checking transitive FDs, consider FDs aÑ b and

bÑ c, which transitively imply aÑ c. Then it must be |c| ¤ |b| ¤ |a|, so due to Rule 1

the check of a Ñ c is scheduled after those of a Ñ b and b Ñ c. But since b Ñ c holds,

Rule 2 sets aÑ c to true before it is checked.

According to the previous enumeration rule, the number of candidate FDs that must be

verified depends, given the number of attributes, on the number of transitive FDs in R.

The worst case arises when no transitive FDs hold between the attributes in R, because

all the cells in the upper-right half of Z (i.e., |R| � p|R| � 1q{2 cells) must be checked.

The best case takes place when the attributes of R are involved into a linear hierarchy,

because the number of checks drops to |R| � 1. Considering that the complexity of Tane

is determined by its enumeration strategy and that Tane checks the FDs in linear time,

the complexity of our approach turns out to be Op|r| � |R|2q and Op|r| � |R|q in the worst

and best cases respectively.
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The enumeration strategy described above for traditional FDs relies on the ordering of

attributes. Unfortunately, when working with AFDs, we must allow some tolerance on

attribute cardinalities (hence, on the ordering of attributes) to accommodate possible

errors in data. Consider two attributes a and b such that |a| Á |b|. If we were searching

for FDs, we would check for aÑ b and not for bÑ a (Zrb, as lies in the lower-left part of

Z and would be skipped). Conversely, when looking for AFDs, we must also consider the

possibility that the higher cardinality of a is due to some errors in data; in other words,

we must also check for b ; a. In practice, this situation may occur if |a| � ε   |b|   |a|.

So, to preserve the correctness of our enumeration strategy when dealing with AFDs, we

must check both cells Zra, bs and Zrb, as whenever absp|a| � |b|q   ε. Obviously, as a side

effect, our pruning capability will be slightly reduced since some more cells need to be

checked; however, the best and worst complexity remain unchanged.

As mentioned at the beginning of this section, in this phase our goal is to detect the

FDs holding between hubs related by a link l, which we actually achieve by detecting

the AFDs involving the foreign keys in l. Specifically, given dv-schema V � pT, F q, let

l P TL be a link that connects hubs h1, . . . , hn P TH , which means that l includes n foreign

keys, k1, . . . kn, where ki references hub hi. Considering Definition 22, this already implies

l Ñ hi for i � 1, . . . , n. Additionally, we will say that hi Ñ hj (1 ¤ i, j ¤ n, i � j) if

ki ; kj. All the FDs determined are stored into a metadata repository, to be used at

the next step for md-schema discovery and ranking. Note that, with reference to the

complexity of detecting these AFDs, it is |R| � n and |r| � |l|.

Example 26 In our sale example, we can realistically assume that an order is made

by one customer and that a customer belongs to one class. A customer normally issues

several orders, each normally including several lines. Finally, the company will reasonably

have more customers than employees. So, for instance, within link L CustOrder it must

be |OrderSID| ¡ |CustomerSID| ¡ |EmployeeSID|. The first AFD checked is OrderSID ;

CustomerSID, which is found to be true. Then CustomerSID ; EmployeeSID is checked,

and we assume it does not hold. Finally, OrderSID ; EmployeeSID is checked, and again

we assume that this does not hold in our application domain (i.e., several employees may

be involved in the same order). We assume that overall, based on the data stored, two

additional FDs are discovered for the sale dv-schema, namely H Order Ñ H Customer and

H Customer Ñ H Class (a customer belongs to one class). These two FDs are shown in

thick dotted lines in Figure 5.1.

5.1.4.2 Md-Schema Discovery and Ranking

This process determines which elements of the source dv-schema are candidate to play the

role of fact and, for each of them, creates an md-schema. Since the number of candidate

facts may be large, the corresponding md-schemata are heuristically ranked before they

are presented to the user.
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Algorithm 7 MDSConstructionpVq
Require: A dv-schema V � pT, F q
Ensure: A set of md-schemata tMlu
1: for all l P TL do � For each potential fact l...
2: AÐ tlu YBusAttrplq
3: E Ð txl, ay | a P BusAttrplqu
4: Ml Ð pA,Eq � ...initialize the md-schema with fact l...
5: for all h P TH | xl, hy P F do
6: Ml Ð ExplorepV,Ml, l, hq � ...and build a DAG

7: return tMlu

5.1.4.3 Candidate Selection

The selection of candidates is based on two specific features of the data vault model:

� A satellite s contains a foreign key referencing the associated hub or link t, which

means that each tuple of s is related to exactly one tuple of t (s Ñ t) but several

tuples of s are associated to the same tuple of t. However, since satellite are normally

used to historicize attribute values, we can safely assume that, at each point in time,

at most one tuple of s is valid for each tuple of t, i.e., that tÑ s.

� A hub h is connected to at least one link l (unless it is disconnected from all other

business concepts, in which case it is most probably not a fact candidate), and l Ñ h.

It follows that, for each satellite and hub in a dv-schema, there exists a link from which

that satellite or hub can be reached through at most two FDs (in case of a satellite s of a

hub h, it is l Ñ h Ñ s). So, since the algorithm we will use to build an md-schema for

each fact navigates FDs, we can restrict the set of fact candidates to the set TL of links

without loss of generality.

5.1.4.4 Md-Schema Construction

The goal of this step is to automatically build, for each candidate fact (i.e., for each link)

a draft md-schema starting from the dv-schema and from the additional FDs previously

discovered. To this end, all the FDs (both those explicitly modeled by the dv-schema and

the additional ones discovered by accessing data) must be “navigated” starting from the

candidate fact, to build a DAG of attributes that will then be ranked and enriched in the

next phase to become an md-schema.

The pseudo-code for building draft md-schemata is sketched in Algorithms 7 and 8.

Algorithm 7 iterates on all links in the source dv-schema. For each link l, it initializes a

draft md-schema Ml with fact l, adds the attributes of the satellites of l (if any), and

triggers procedure Explore to recursively build a hierarchy for each hub connected to l.

The goal of Algorithm 8 is to extend Ml by “exploring” hub h. First it creates a node

labelled with the business key of h, k, and attaches it to the previous node g (lines 1-3). All
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Algorithm 8 ExplorepV ,Ml, g, hq
Require: A dv-schema V, an md-schema Ml, a node g P Ml, and a hub h P TH
Ensure: An (extended) md-schema Ml

1: k Ð BusKeyphq
2: AÐ AY tku � Add business key k...
3: E Ð E Y txg, kyu � ...and its incoming arc to Ml

4: if h not explored yet then
5: Mark h as explored
6: AÐ AYBusAttrphq � Add satellite attributes...
7: E Ð E Y txk, ay | a P BusAttrphqu � ...and their arcs to Ml

8: for all l P TL | xl, hy P F do � For each link l connected to h...
9: Z Ð tz P TH | z � h^ xl, zy P F u � ...find other hubs connected to l
10: if Dz P Z | hÑ z then
11: AÐ AYBusAttrplq
12: E Ð E Y txk, ay | a P BusAttrplqu � Add satellite attributes of l to Ml

13: for all z P Z | hÑ z do � Use additional FDs to trigger recursion
14: Ml Ð ExplorepV,Ml, k, zq

15: return Ml
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Figure 5.3: Draft md-schemata of facts L LineItem and L CustOrder

the attributes of its satellites are then attached to k (lines 6-7). To continue exploration,

the algorithm now checks if there are additional FDs from h to some other hub (lines

8-18). In particular, if there is an FD to at least one hub z through link l, before triggering

recursion on z (line 18) all the satellite attributes of l must be added as children of k (lines

12-15). Repeated explorations of parts of the source dv-schema when the same hub is

reached twice from different directions are avoided by marking a hub as explored when it

is reached for the first time (lines 4-5).

Example 27 In our sale example, three draft md-schemata are built for facts L LineItem,

L CustOrder, and L CustClass (two of them are shown in Figure 5.3). To better describe

the construction algorithms, we follow them step by step with reference to the first md-

schema (the one of fact L LineItem). Firstly, procedure MDSConstruction creates the fact

node (in grey) and its satellite children VAT, Amount, and Quantity. Then, procedure

Explore is called twice for hubs H Order and H Product. In the first case, Explore starts

by creating node OrderNumber (line 2), connecting it to node LineItem (line 3), and adding

the two satellite children (lines 6-7). Then, since link L CustOrder is connected to H Order

and FD H Order Ñ L CustOrder holds (lines 8-12), Explore is called for hub H Customer

( L CustOrder has no satellites, so lines 13-15 have no effect). When Explore is called
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for H Customer, 10 satellite children are added, then the procedure is called again for hub

H Class. Similarly for hub H Product.

5.1.4.5 Ranking

At the previous step, for each candidate fact l a draft md-schema Ml � pAl, Elq has been

constructed. Now, the md-schemata obtained are ranked to support the user in choosing

the most comprehensive ones.

The ranking of md-schemata is based on a linear combination of three heuristics that

consider, for each candidate fact, (i) its cardinality, (ii) the number of potential measures,

and (iii) the number of potential attributes. While heuristics (i) is extensional in nature

because it is data-based, the remaining two (which are partially inspired by [119]) are

intensional because they consider the dv-schema.

(i) Business events are dynamic in nature and generated with high frequency, so the

tables that store them have a large number of instances. A link l P TL is more likely

to be a fact if it has high cardinality [125].

(ii) Business events are quantitatively described by several measures, i.e., numerical

attributes. We quantify the probability that a link l is a fact as the number of

numerical attributes that are functionally determined from l, i.e., as the number of

numerical attributes in Alzl.

(iii) At query time, business events are selected and aggregated by users using the

dimensions and their levels. We quantify the probability that a link l is a fact as the

number of non-numerical attributes that are functionally determined from l, i.e., as

the number of non-numerical attributes in Alzl.

Note that the last heuristics closely recalls the connection topology value, defined in [119] as

the number of entities that can be (either directly or indirectly) reached within an Entity-

Relationship diagram by starting from the fact and recursively navigating many-to-one

relationships.

Example 28 Heuristics (ii) and (iii) for the three sales draft md-schemata return the fol-

lowing values for the number of numerical and non-numerical attributes: 7, 17 ( L LineItem);

1, 13 ( L CustClass); and 3, 14 ( L CustOrder). Considering that the cardinality of link

L LineItem will surely be quite higher than the one of the other two links (the cardinality of

L CustClass is at most the same of H Customer and a customer normally issues several

orders; the cardinality of L CustOrder is at most the same of H Order, and an order

normally has several lines), we can conclude that the top ranked md-schema is the one of

fact L LineItem whatever the weights of the linear combination of the three heuristics.
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5.1.4.6 Md-Schema Enrichment

The last phase starts with the user selecting one or more draft md-schemata of interest,

supported by the ranking previously obtained. Some editing is normally necessary at this

stage, typically to remove uninteresting attributes from the md-schema. Specific situations

such as one-to-one relationships between hubs and multiple arcs entering the same node

in the md-schema must be also dealt with, as discussed in [1]. Then, measures are chosen

among the numerical attributes in the md-schema. Finally, all the direct children of the

fact that have not been chosen as measures are labelled as dimensions, which completely

defines the output md-schema.

One further way to enrich the md-schema by making its hierarchies more faithful to the

application domain is to search for FDs hidden in satellites. In a data vault, the grouping

of attributes in satellites is generally oriented more to cheap maintainability and querying

than to normalization. For instance, in our sale example, satellites S CustAddress and

S Employee contain attributes City, County, and State that are obviously related to one

another, so the following FDs hold: City Ñ County and County Ñ State. While in this

simple case it will probably be easy for the user to detect these FDs and manually add

them to the md-schema as a part of editing, in other cases the user may be unsure of

whether an FD holds or not, so automating FD detection is highly desirable. How to cope

with this issue is the subject of the remainder of this section.

When dealing with satellites, we must keep in mind that data vaults are natively oriented to

storing time-variant data, so we can expect that a single tuple of a hub (or link) is related

to several tuples in a connected satellite, one for each version of data. As a consequence, if

we used traditional FD (or even AFD) discovery techniques on the S CustAddress satellite

for instance, we might not find the FD City Ñ County in case a city has been moved to

a different county at some time. The most natural way to formalize this problem is by

using temporal FDs [127]. Intuitively, in its simplest form, a temporal FD a
T
ÝÑ b is an

FD that is valid within a time-variant relation at any time slice. In our example, though

City Ñ County may be not true overall, it must be true at any time slice, so City
T
ÝÑ County.

If we also consider the possibility that a temporal FD holds on most tuples of a satellite,

we have approximate temporal FDs (ATFDs) [128], i.e., FDs that are valid for specific

time periods and possibly subject to errors.

In [128], the detection of ATFDs is achieved through some preprocessing that turns them

into AFDs, that can then be discovered using Tane [110]; this preprocessing is made

by temporally grouping either on sliding windows or on temporal granules. The type of

temporal evolution that is relevant to the Starry Vault approach is captured by grouping

on temporal granules, i.e., by partitioning the values in the domain of the time attribute

into indivisible groups called granules. Examples of possible granularities are hours, days,

months, etc. To understand how this preprocessing works, consider a table r with schema

R � v YW , where v and W are respectively a time attribute and a set of other attributes.
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Table 5.1: Sample data for the S CustAddress satellite

CustomerSID Timestamp Address City County State Granule

1 1-1-2015 Gandalf Street Minas Tirith Gondor Middle-Earth January 2015
1 1-6-2015 Gandalf Street Minas Tirith Rohan Middle-Earth June 2015
2 1-3-2015 Frodo Road Minas Tirith Gondor Middle-Earth March 2015
2 1-6-2015 Frodo Road Minas Tirith Rohan Middle-Earth June 2015

A new relation is created from r by adding a granule attribute g whose domain is the set

of granules included in the time-span described by the instances of r. Intuitively, for each

tuple in r, the value of v is converted into its corresponding granule identifier. The new

relation obtained is then processed with Tane to discover AFDs of type gYX ; Y , with

X, Y � W .

To apply this technique to a satellite s, we consider its timestamp and its business attributes

BusAttrpsq, thus neglecting its foreign key. After the the granule attribute g has been

addded, the ATFDs can be computed using the following variation of the enumeration

strategy proposed in Section 5.1.4.1:

� Instead of searching for AFDs of the form a; b, we consider all AFDs of the form

ga; gb (i.e., due to the decomposition rule, ga; b), where a, b P BusAttrpsq. This

means that the ordering for rows and columns in matrix Z will be defined by the

cardinality of ga rather than by that of a.

� The pruning rule seen in Section 5.1.4.1 would avoid checking all AFDs b; a with

|a| ¡ |b| � ε. Conversely, in this case a check can be avoided if |ga| ¡ |gb| � ε.

It is easy to see that the size of matrix Z is still |R|2 � |BusAttrpsq|2 since we are just

adding the granule attribute g to both the left- and right-hand sides of the AFDs. As

to the correctness of the pruning rule, we remark that the error epga; bq is defined as

the minimum number of distinct values of gab that must be removed to enforce gaÑ b;

therefore, an error ε can at most impact on the cardinality of b for an amount equal to ε

itself.

Example 29 Consider the sample data for the S CustAddress satellite in Table 5.1,

showing that on June 1 the city of Minas Tirith has moved from the Gondor county to that

of Rohan. If we considered traditional FDs or even AFDs, we would probably conclude that

one city can belong to different counties (i.e., that City Û County). Let us consider ATFDs

instead, choosing for instance a month granularity. The table created after preprocessing

has the new column Granule, and it is easy to verify that Granule City Ñ County, so City
T
ÝÑ

County. The final md-schema obtained from the draft md-schema of fact L LineItem (Figure

5.3, top) is depicted in Figure 5.4 using the DFM notation [1]. Attribute OrderNumber

has been deleted and all numerical attributes have been chosen as measures; besides, the

missing FDs between City, County, and State have been added.
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usable for aggregation, are underlined)

5.1.5 Wrapping up Starry Vault

In this work we have described the Starry Vault approach for detecting a multidimensional

schema out of a source data vault. Both schema-based and data-based FDs are used to

this end, with a small intervention by the user. In particular we have shown how to use

extensional techniques for discovering hidden FDs, with some tolerance to errors in data

and taking into account the temporal aspects related to historicization, to automatically

deliver the md-schemata that better fit the business domain. To this end we have proposed

an original exploration strategy that allows to significantly reduce the complexity of the

Tane algorithm when applied to simple ATFDs. To the best of our knowledge, ours is the

first approach that adopts advanced types of FDs to infer md-schemata.

Automatic derivation of md-schemata is a widely explored topic in the DW literature;

nonetheless we believe that it is worth reconsidering it in the era of big data and data

science, in which the need for on-the-fly analyses creates a strong requirement for a

smarter design process. Based on these considerations, our future work on this topic will

be mainly focused on investigating ad hoc techniques to support the data scientist in

discovering a multidimensional structure even in situations in which the source data are

poorly-structured or schemaless, as is the case for document databases.
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5.2 Multidimensional Modeling Over Sensor Data

The availability of sensor data is projected to mushroom in the coming years, fueled by

growth in both “explicit” sensor systems and the increased capabilities of Internet of

Things (IoT) devices. Sensing provides stakeholders with data upon which to base decisions

that have increasing importance in managing an enormous range of both user-centred and

societal problems.

Much of the value of sensor data comes from examining the trends and variations that

occur over long timescales – where “long” ranges from hours to years depending on the

context of data collection. This is the point at which sensor data becomes “big data” that

can be analysed using machine learning and other tools from data analytics. The goal of

such approaches is to extract further global information from the time series, over and

above the local information (in space and time) that may be used operationally. That is

to say, the value of a sensor dataset may come both from short-term, tactical use of the

information it contains, but also from long-term, strategic uses that permit identification of

trends and features that are relevant to future contingency planning and post facto analysis

of operations. In many contexts these multiple uses massively increase the importance

and value of any data collected, making the financial case for instrumenting environments

far stronger.

There is, however, a challenge implicit in this scenario. Making use of data a long time

after it has been collected implies a number of things about the data handling system used

to manage it. The data must be searchable and findable in order to be retrieved when

required; it must be parseable in terms of extracting the data types and ranges used for

representation; and – most importantly — it must be contextualised into the environment

in which it was collected. By “contextualised” we mean that it must be possible to retrieve

the details of the sensors, their installation and operation, as well as simply their data.

What makes contextualisation important is the exposed lifecycle of a typical sensor. By

way of example, consider an air-quality sensor deployed to measure pollutant gases in an

industrial setting. The data acquired from this sensor will typically consist of a stream

of numbers, and clearly we need to retain the units and range of these data points for

later analysis. But the sensor’s readings also have metadata such as precision, accuracy,

sampling frequency and the like, which must also be recorded if we are to have confidence

in analysis. Furthermore the sensor will deteriorate the longer it is in the field, both

through mechanical ageing and (in many cases) chemical and physical changes in the sensor

itself, both of which lead to decalibration. It may become occluded by plant life, biofilmed

by bacterial action, and dirtied by the actions of the very pollutants it is deployed to

measure – all of which will affect its behaviour, and so the values in the time series dataset.

Cleaning the sensor, whether ad hoc or according to a schedule, may re-set some of these

influences and return the sensor to (some part) its pristine state. Unless we record all (or

at least a large part) of this context, the dataset will become increasingly misleading when
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analysed.

Similar challenges are well-known in database technology, where the techniques of data

warehousing have been developed to ensure that data held for the long term remain

robustly analysable. These techniques have not, to our knowledge, been applied in the

context of sensing, and in this paper we aim to address this omission by developing data

warehousing schemata for sensor data. We develop an extensible model that allows for the

capture of contextual metadata alongside sensor datasets, and show how this can be used

to support the long-term analysis of historical datasets. Remarkably, while our proposal is

aimed at long-term data management with storage and explorative analyses in mind, it is

fully compatible with the adoption of other problem-specific analytical solutions. Actually,

the proposed architecture and multidimensional schemas are meant to provide a solid

foundation on which other analytical modules can rely to easily access integrated and

consistent data. We argue that such an approach is essential if we are to increase the value

we can extract from collected data, as well as maximise our confidence in the strategies we

use such datasets to support.

Section 5.2.1 reviews some recent related work in sensor data representation. Section 5.2.2

presents our baseline reference framework for sensor context, from which Section 5.2.3 then

derives multidimensional schemata representing different modeling and analysis scenarios.

We exercise the model in Section 5.2.4 with a case study, which we then use in Section 5.2.5

to draw some conclusions and future directions.

5.2.1 Related Literature

The topic of sensor networks modeling has been tackled from different perspectives, the

result is a plethora of approaches whose main goals are either enabling interoperability

between processes, or easing the analysis of data and the design of applications. However,

to the best of our knowledge, there has been very limited research on multidimensional

modeling of data produced by sensor networks. Indeed, while in many scenarios data

warehouse technologies are part of the proposed architecture, the details on how the

different data cubes have been modeled is omitted. An example of this can be found in

[129], where the authors present a framework for fault-diagnosis that employs an enterprise

data warehouse as an integrated repository for monitoring data. Scriney et al. [130]

propose instead an approach whose goal is much closer to ours. The authors present

a methodology to obtain multidimensional data cubes starting from XML and JSON

data sources. The methodology is composed by two main steps: the first one consists in

the conversion of a XML or JSON schema definition into a novel graph structure called

StarGraph; while the second step aims at populating the data cubes with the events

coming from the network. The main limitation of this approach is that it works only with

XML and JSON data sources that provide a schema definition. The idea of supporting,

or even automating, the design of data warehouses is not new, as a matter of fact, early
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approaches date to the ’90s [131], and even recently [132] the research effort is still ongoing.

However, the issue with these techniques is that they are often tied with specific types of

data sources (e.g., XML/JSON for [130] and data vaults for [132]). Furthermore, we argue

that, while automatic approaches are more flexible, the produced results are still of lower

quality with respect to schemata that have been manually designed by domain experts.

Among the approaches that focus on the interoperability aspect, the SensorML [133]

framework provides a set of XML schemata to describe sensor networks, from the physical

systems to the measurements and processes involved. Another work aiming at improving

the interoperability aspect of IoT is presented in [134]; the result is a semantic model

approach where the resources of the network are exposed through web services, thus

enabling semantic search and reasoning over both devices and the data they provide.

BOnSAI [135] takes instead a more focused approach by specializing other ontologies (e.g.,

OWL-S [136]) for the ambient intelligence scenario; once again, the goal is that of creating

a machine interpretable representation of sensor networks to improve interoperability.

An interesting tool to support the design of applications over sensor networks is SEM [137],

which proposes a framework that represents the sensor network through two different

metamodels, namely the functional metamodel and the data metamodel. The former

describes the network as a set of exposed services, while the latter describes the available

data sources. Through these two metamodels the application designer can obtain a

high-level view of the network to better manage its complexity.

5.2.2 Reference Architecture and Domain Model

In this section we lay down the reference framework, which is composed by the func-

tional architecture and the domain model, respectively presented in Section 5.2.2.1 and

Section 5.2.2.2. This framework will be later used as a reference for all the proposed

multidimensional schemata and use cases.

5.2.2.1 Functional Architecture of the Analytical System

Figure 5.5 shows the proposed functional architecture that we will use to contextualize

the multidimensional schemata presented in Section 5.2.3 and the use cases presented in

Section 5.2.4. We start by describing the processes and how they interact, then we proceed

to explain how we envision its implementation from a technological point of view.

The architecture in Figure 5.5 is separated into two different macro areas by a vertical

dashed line; on the left there is the sensor network (SN), while on the right there are

all those processes that elaborate and store the events coming from the network. In the

following we describe the main processes of the architecture.
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Figure 5.5: Functional architecture of the analytical system for sensor networks

� Sensor Network is a collection of (typically computationally-constrained) nodes

collecting data from the physical environment. The nodes often make use of mesh

or other network protocols and use spanning trees for collecting and aggregating

data to a small set of “sink” nodes – none of the details of which affect the current

work. We simply assume that the data collected is somehow returned to the cloud

for processing. (It is worth noting in passing that many sensor networks are actually

sensor/actuator networks that need to make local control decisions. Our architecture

supports these too, and would probably want to record both the sensed data and

the decisions made as a result, for later analysis.)

� Stream Processing is one of the two intermediaries between the SN on one end, and

users and storages on the other. The typical output of the SN is considered as a

stream of events (e.g., temperature measurements) that must be processed in a timely

fashion. In the presented architecture this process is decomposed into two different

subprocesses, namely, Events Processing and Real-time Analysis. The former includes

simple operations such as filtering and smoothing of the input events, while the latter

uses the output of the former and the historical data in the DW to perform more

complex (but still in a streaming fashion) analyses, such as forecasting, network

monitoring, etc. As represented through black arrows, both the processed events

and the results of the real-time analysis are stored in the Data Lake; furthermore,

the Real-time Analysis process can directly interact with the SN, for instance for

activity regulation purposes.

� In certain scenarios it might be either necessary (e.g., due to the lack of connection)

or sufficient (e.g., because the timeliness constraint is relaxed) to treat the events

coming from the SN as a sequence of batches. In these cases the events produced

by the SN are handled by Batch Processing rather than by Stream Processing. By

relaxing the timeliness constraint it is possible to perform more complex computations

that would not be possible in a real-time scenario. Of course, these two styles of

processing are not mutually exclusive and, indeed, a mix of the two can be employed

to have both real-time results through Stream Processing and higher quality results
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from Batch Processing.

� All the results of Stream Processing and Batch Processing are loaded into a Data

Lake, i.e., a repository capable of storing as many (typically unstructured) data

as necessary. Data lakes ensure a high-speed ingestion rate and can store data in

different formats ranging from raw data to transformed data which is used for various

tasks including reporting, visualization, analytics, and machine learning.

� Although a data lake is suitable to support analysis by skilled users (i.e. data

scientists), it falls shortly in a classical business analytics scenario, where users with

limited technical capabilities (i.e. business users) require a more structured solution.

This is where the Data Warehouse (DW) comes into play. A Data Warehouse is a

multidimensional collection of data that supports decision-making process. Data

warehouses store historical, consistent and integrated information that ensures high

quality analyses [138].

� The users of the proposed architecture can be grouped into three main figures, namely

the data scientist, the BI user, and the technician. With data scientist we refer to a

user that has both high IT and analytical skills. Due to their skills, this kind of users

can exploit both the well-structured and organized data stored in the DW and the

less consistent and structured contents of the data lake to carry out their analyses. A

step below in terms of IT skills there is the BI user, who has broad knowledge about

the domain of the data but needs accessible analytical tools (e.g., Tableau 1, Micro

Strategy 2, etc.) to accomplish her goals. Due to her limitations, the BI user only has

access to structured and well-organized data, which are stored in the DW. Finally,

the technician is a user who has very specific domain knowledge but lacks IT skills.

This figure comprises for instance any maintenance worker who might be interested

in monitoring in real-time the status of the network. The capabilities of the user

interface will change depending on the involved type of user and the type of final

application. Typically, data scientists and skilled domain users prefer having more

control on data and more powerful tools (e.g., Notebook tools, OLAP & SOLAP

interfaces, and analytics), while domain users prefer simple and focused information

such as KPIs that can be obtained through dashboarding tools. We will not discuss

in details the wide range of possible applications the proposed architecture can be

used for, instead, in the following we will discuss in depth the domain model that is

needed to support them.

The typical data flow in the architecture sketched in Figure 5.5 can be described as follows.

Every event sent by a device in the SN to the analytical system is processed either in a

streaming or in a batch fashion. In the former case the results of the computation can be

both directly presented to the end user and also stored in the data lake for future use;

1https://www.tableau.com
2https://www.microstrategy.com
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while in the latter case the results are simply stored in the data lake. When processing

events in real-time the system might also react and respond to control the network, thus

creating a feedback loop. Once the results of the processing have been stored in the data

lake, they can be directly accessed by users (specifically the data scientist) and applications

for further analyses and elaborations. Furthermore, periodically (e.g., weekly) the data

in the data lake is used to feed the DW through the ETL process. Once in the DW, the

events become also available to BI users by means of OLAP analysis tools.

From a technological point of view the presented architecture can be implemented as

follows. As to the implementation of the SN, we remark that the focus of this work

is the analytical system operating with the data coming from the SN, thus, the only

requirement that we place on the SN is that it must be able to send data regarding the

sensed events. The most promising technology for the analytic system is the popular

distributed platform Hadoop3, which which provides distributed storage and processing

capabilities. The choice of a distributed system is quite crucial as a traditional centralized

approach cannot generally accommodate the high amount of data that a SN might produce.

Furthermore, the Hadoop platform is very flexible and can support many other frameworks

that are vital for some of the above described tasks. Specifically, a couple of examples of

frameworks for streaming processing duties are Apache Storm4, Apache Spark[139], and

Apache Flink5. Spark and Flink, can also take on batch processing tasks. As for storage,

the system must be able to aptly handle both unstructured and structured data. The

simplest and most general solution is accommodating all kinds of unstructured data as

simple distributed files in the HDFS filesystem[140] and structured data through Apache

Hive[141]. An alternative to using HDFS for all unstructured data is that of adopting more

specialized storage types, which generally fall into the NoSQL[142] category; however, we

avoid discussing these solutions as they are out of the scope of this work.

5.2.2.2 Domain Model

In the following we briefly describe the main concepts represented in Figure 5.6, which

shows the domain model of an analytical system for sensor networks using the notation

of a UML class diagram. When feasible, we also use the SensorML framework [133] as a

reference and link the described concepts to the corresponding ones in SensorML.

� Agent : in this context, with agent [143] we refer to anything that can be viewed as

perceiving its environment and that can act upon it. Specifically, we distinguish the

following types of agent.

– Physical Device, Logical Device, and Assigned Device: a physical device is

any device inherently associated to a physical object. This concept covers

3http://hadoop.apache.org
4http://storm.apache.org
5https://flink.apache.org
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Figure 5.6: UML class diagram that describes the domain model of an analytical system
for sensor networks

both devices with advanced computational capabilities (e.g., a face recognition

camera) and devices that have very basic computational capabilities (e.g., a

temperature sensor). In the SensorML framework, the Physical Device concept

corresponds to the Component and System concepts. While a physical device

represents a physical object, a logical device is instead a role that a physical

device might have at a particular time. For instance, we might have a logical

device called Kitchen Temperature Sensor that can be seen as an abstraction

of all the actual physical sensors that, over time, are used to measure the

temperature in the kitchen; in this example, substituting a faulty temperature

sensor would result in two different instances of Physical Device, but only one

instance of Logical Device, i.e., Kitchen Temperature Sensor). Each logical

device can also be a part of another device (described through a self-aggregation

in the diagram), which is especially useful when describing complex systems,

like a smart house, where multiple sensors can coordinate to achieve a common

goal. Furthermore, a logical device can be either stationary or mobile; in the

former case the device has also a reference location, which is the location where

the device has been placed. Finally, the assignment of a physical device to a

logical device is represented through the Assigned Device class.

– Process : it represents all those agents that do not inherently have a counterpart

in the physical world. An example of process is a monitoring application that

runs in the cloud. In the SensorML framework, the Process concept corresponds

to the ProcessModel and ProcessChain concepts.

– Person: any human agent that interacts with the environment and other agents.

A typical example is a technician that performs maintenance over the sensor

network.
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� Measurement : it refers to an observation of a property made at a specific time.

Usually, but not necessarily, a measurement refers to a specific location. Furthermore,

a measurement is usually the result of some kind of transformation (e.g., smoothing);

this aspect is modeled by the Transformation class. A typical example of measurement

is the temperature sensed by a thermometer. Additionally, a measurement is

characterized by an estimated accuracy, which defines how reliable that particular

measurement is. Indeed, adverse environmental conditions, wear, and other aspects

might adversely influence the accuracy of sensors. For these reasons, when available,

an estimate of the accuracy of the measurement can greatly improve the quality of

the analyses. In SensorML, the definition of a measurement is quite loose and is not

explicitly modelled, however, the underlying meaning remains the same.

� Maintenance Operation: it refers to any operation (e.g., calibration, component

substitution, etc.) performed either on a physical device or on a process by another

agent. In SensorML, Maintenance Operation would be included in the general

definition of Event, which is used to track the history of a device.

� Status Check : it represents a check performed by an agent over another agent,

specifically over either a process or a physical device. A check can refer to many

different types of assessments, for instance, the assessment of the battery level, the

confirmation of a malfunctioning device, or even a notification of a device that goes

into battery saving mode.

� Message: it refers to any message sent by an agent to one (i.e., unicast) or many

(i.e., multicast) other agents.

5.2.3 Multidimensional Schemata

Figure 5.7 shows the four multidimensional schemata derived from the domain model

presented in Section 5.2.2.2 using classical techniques for multidimensional design [138].

The notation we adopt is that of the DFM (Dimensional Fact Model), where the box

represents a fact to be analysed, circles represent its dimensions, and measures are included

in the lower part of the box; arcs represent many-to-one relationships to be used for

aggregation (see [138] for further details). Among the concepts represented in the class

diagram in Figure 5.6, those whose dynamic nature makes them suitable to be modeled

as facts are Measurement, Maintenance Operation, Status Check, and Message. Before

describing these facts one by one, we make a few general observations related to all the

schemata:

� The concept of agent is represented as a dimension, and its specialization into persons,

processes, and devices (as of Figure 5.6) is translated in the DFM as an additional

level Agent Type, whose domain has values ’Person’, ’Process’, and ’Device’. The
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(a) (b)

(c) (d)

Figure 5.7: Multidimensional schemata for the measurement (a), maintenance (b), status
(c), and message (d) events

levels that branch from Agent are optional and grouped into three different sets, one

for each type of agent. Based on the value of Agent Type, only one group of levels

will be meaningful, e.g., if Agent Type = ’Person’, then only Age and Position will

take a value.

� As to devices, the domain model shows that one assigned device is related to one

physical and one logical device. So, the agents corresponding to assigned devices can

be grouped by either Logical Device or Physical Devices. The recursive aggregation of

logical devices is represented in the DFM using a recursive hierarchy (the looping

arrow on Logical Device).

� As done for the specialization of Agent, the two different types of logical devices (i.e.,

stationary and mobile) are differentiated through an additional level called Logical

Device Type, while the Location level is optional as it is relevant only for stationary

devices.

� The Location level also deserves a clarification, as it can be used in two different

ways. The easiest way is that of giving it a simple categorical domain (e.g., {Rooftop,

Control Room, ...}) to approximate the geographical positioning of the devices and

events. The more complex (but also more expressive) way is that of employing
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geographical coordinates and geometries that can be fully exploited through Spatial

OLAP (SOLAP) technologies [144], which allow the user to perform specific OLAP

operations tailored for spatio-temporal data and enable so-called location intelligence.

The first schema we discuss is Measurement, shown in Figure 5.7a. Each measurement

event is described by two measures and is defined by six dimensions. The two measures

are Value and Accuracy, which respectively describe the result of the measurement and

its accuracy. Dimension Measure Type, together with the Unit level, defines the context

of the measurement. For instance, if Measure Type = ’Temperature’ and Unit = ’Celsius

Degrees’, then the meaning of Value is precisely defined as the temperature in Celsius

degrees. The Sensing Time and Reception Time dimensions define the temporal aspects

of the measurement. The remaining dimensions define where the measurement has been

taken (Location), who took it (Agent), and what kind of processing has been applied to it

(Transformation).

The Maintenance and Status Check schemata, shown in Figures 5.7b and 5.7c respectively,

are quite similar to Measurement. Here the Maintenance Type and Status Check Type levels

play the same role that Measurement Type plays in Measurement.

The last schema we discuss is Message, shown in Figure 5.7d. Differently from the

other facts, messages regard only a specific type of agent, i.e., assigned devices, thus the

Agent dimension used in all the other schemata has been replaced by Assigned Device.

Furthermore, the Message fact has no measures, which means that a message event either

exists or not. Other modeling choices worth discussing stem from the fact the not all sent

messages are actually received and, additionally, a communication can be a broadcast,

which means that we know who sent the message but not who is supposed to receive

it. These two issues are addressed through the addition of the Communication Type and

Received levels. A few examples that summarize the supported scenarios are described in

the following.

(i) A successfully delivered message sent from a device A to a device B is represented

as an event with Communication Type = ’Unicast’, Received = ’True’, From Physical

Device = ’A’, To Physical Device = ’B’, with the corresponding sending and receiving

times.

(ii) A failed attempt to deliver a message sent from A to B is represented as an event

with Communication Type = ’Unicast’, Received = ’False’, From Physical Device =

’A’, To Physical Device = ’B’, with only the corresponding sending time.

(iii) A broadcast message sent from A and received from B is represented as in the first

example but with Communication Type = ’Broadcast’. Each message received is

represented as a separate event.

(iv) Finally, a broadcast message sent from A but not received by any other device is

represented as a single event with Communication Type = ’Broadcast’, From Physical
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Table 5.2: Requirements for the air quality scenario

Name Description Stakeholders Main Data Sources
(1) Air Quality Measurements Quantitatively measure the presence of

pollutants in the air in proximity of the
facility

Facility,
Civilians,
Agencies

DW (Measurement)*

(2) Alerts for High Pollution Timely detect the presence of pollutants
in quantities exceeding safe thresholds

Facility,
Civilians,
Agencies

Data Lake

(3) Environmental Conditions Monitor natural phenomena and proper-
ties such as wind, humidity, and temper-
ature in proximity of the facility

Facility,
Agencies

DW (Measurement)*

(4) Network Health Status Detect potentially malfunctioning parts
of the network

Facility Data Lake, DW (Status
Check)

(5) Maintenance Operations Keep track of the maintenance operations
executed on the network

Facility,
Agencies

DW (Maintenance Op.)

Device = ’A’, and the corresponding sending time. In this case the receiving device

and time are not specified.

In the following section we present some examples of how these models can be used in a

practical context to carry out several interesting analyses.

5.2.4 Case Studies

As examples of this framework in action, we consider the case of air quality monitoring at

an industrial facility (see Section 5.2.4.1) and the case of landslides risk management in

the Italian territory [145] (see Section 5.2.4.5). These two examples have been chosen due

to their requirements, which are rich and varied. In both cases we start by discussing the

operational requirements for a sensing system in terms of scientific and business challenges,

then we describe a possible suite of sensors to address the problem, and finally we show

how the data from this sensor network can be modelled in a DW.

5.2.4.1 Air Quality Monitoring

Several large industrial installations operate under tight safeguard and permission regimes

designed to protect civilians near the plants as well as the broader environment. Typically a

plant is licensed to emit particular maximum quantities of specific pollutants, and will incur

fines or other sanctions for exceeding these limits. Plants will often be required to install

systems to monitor their emissions, either directly as point of generation, or indirectly

through wider sensing —or both. There may also be further monitoring performed by

third-party or regulatory agencies to ensure compliance.

158



5.2.4.2 Requirements for Air Quality Monitoring

The main requirements identified for this scenario are listed in Table 5.2. For each

requirement we give a brief description and list the related stakeholders and data sources.

There are three main types of stakeholders, namely, the facility, the civilians who are not

directly involved with the facility but who can be affected by its emissions, and finally the

regulatory agencies that have the duty of checking whether or not the facility operates

respecting environmental norms. Each requirement can be satisfied by accessing the data

stored in the DW and in the data lake. For those requirements that need to access the

DW we also specify which cubes are needed. Notice that, for some requirements (denoted

with a star in Table 5.2), we list only the main required cube, however, other cubes might

be useful to get contextual data; for instance, for Requirement (1) it could also be useful

to know the status of the network to better assess the accuracy of the measurements.

As well as the obvious detection of leaks and excess emissions, plant managers, regulators,

and other agencies have an interest in the long-term relationship of a plant to its environ-

ment. One example would be to detect the build-up of pollutants in the local environment

even if the plant were operating as licensed. Another would be to implement a market for

pollution with a view to encouraging plants to invest to reduce emissions. These scenarios

are covered by Requirement (1) and (2) in Table 5.2. Specifically, the first requirement

covers the monitoring of air quality in the long term, while the second covers real-time

needs where timely alerts are mandatory (e.g., in case of leaks). Requirement (1) does not

need up-to-date data, so it draws from the DW where data are of higher quality. On the

other hand, Requirement (2) cannot afford using stale data, thus it draws directly from

the data lake, where measurements are stored in real-time and at the finest level of detail.

One challenge often faced in wider sensing is the problem of attribution: given that a

particular situation is observed, who was responsible for it? Suppose residents near a

plan wake up one morning to discover a fine white powder coating their cars: what is the

powder, where did it come from, and who is to blame? Answering these questions requires

a combination of direct analysis (what is the powder?) and potentially the fusion of several

data streams to determine possible causes: wind direction may exonerate some plants

from consideration, for example, but this requires that such data is available, accessible,

and reliable. All these challenges are covered by Requirement (3).

Beside the challenges strictly related to the management of measurements, the facility

also needs to monitor the sensor network itself. Indeed, failures of the network must

be detected and addressed as quickly as possible for safety reasons. Moreover, failures

imply maintenance costs, which should be kept to a minimum. Requirements (4) and

(5) respectively cover the issues related to the (both real-time and off-line) monitoring

of the health status of the network and the issues related to the maintenance operations

executed to keep the network running.
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DT AGENT

Agent ID Agent Agent Type Position Physical Device Logical Device R. Location Logical Device Type Nominal Accuracy

1 TH01 Device - TH000454746 Rooftop Air Thermometer Rooftop Air Thermometer 0.2%

2 TH02 Device - TH000932348 Indoor Air Thermometer Room 01 Air Thermometer 0.2%

3 AN01 Device - AN000328434 Rooftop Anemometer Rooftop Anemometer Speed 5%, Direction 4°

4 HY01 Device - HY000685347 Rooftop Hygrometer Rooftop Air Hygrometer 2%

5 SO01 Device - SO000131220 Indoor SO2 Gas Sensor Room 01 SO2 Gas Sensor 15%

6 SO02 Device - SO000642337 Rooftop  SO2 Gas Sensor Rooftop SO2 Gas Sensor 15%

7 TE01 Person Field Engineer - - - - -

FT MEASUREMENT

S. Time R. Time Meas. Type ID Agent ID Transformation Accuracy Value

2017/10/13 09:00 2017/10/13 09:00 5 5 AVG10 1.2 8

2017/10/13 09:00 2017/10/13 09:00 5 6 AVG10 14.55 97

2017/10/13 09:00 2017/10/13 09:01 1 1 - 0.028 14

2017/10/13 09:00 2017/10/13 09:02 1 2 - 0.04 20

2017/10/13 09:00 2017/10/13 09:02 2 3 - 0.3 6

2017/10/13 09:00 2017/10/13 09:03 3 3 - 4 90

2017/10/13 09:00 2017/10/13 09:03 4 4 - 0.8 40

FT MAINTENANCE

Time Maint. Type ID By Agent ID On Agent ID Value

2017/10/20 09:00 1 7 5 80

2017/10/20 09:30 1 7 6 80

2017/10/20 13:00 2 7 5 40

2017/10/26 11:00 3 7 1 20

DT MEASUREMENT TYPE

Type ID Type Unit

1 Temperature Degrees Celsius

2 Wind Speed km/h

3 Wind Direction Degrees Azimuth

4 Humidity Relative (%)

5 SO2 μg/m3

DT MAINTENANCE TYPE

Type ID Type Unit

1 Calibration Cost (Euro)

2 Filter Replacement Cost (Euro)

3 Battery Replacement Cost (Euro)

FT STATUS

Time Status Type ID By Agent ID On Agent ID Value

2017/10/13 09:00 2 5 5 -

2017/10/13 09:01 1 5 5 -

2017/10/13 09:00 2 6 6 -

2017/10/13 09:01 1 6 6 -

2017/10/18 10:00 3 1 1 -

DT STATUS TYPE

Type ID Type Unit

1 Asleep None

2 Active None

3 Battery Exhausted None

Figure 5.8: Star schema and sample data for the air quality scenario

5.2.4.3 Sensing Air Quality

From the above scientific and business case we can synthesise a set of sensors that we need

to deploy in order to address a set of scenarios:

� operational sensing, to ensure that the plant is behaving correctly;

� acute event sensing, to detect unexpected emissions as quickly as possible; and

� contextual sensing, to contextualise the other datasets.

With this in mind, we might decide to install a network of sensors aimed at detecting

the possible pollutant chemicals. Such sensors typically require chemical reactions in

their operation, meaning that their regents need to be replaced on a regular basis to

avoid decalibration through changing chemistry. This addresses the operation and acute

scenarios.

To provide context we might also decide to record environmental (or “met”) data such

as air temperature and pressure, local wind direction, local humidity, and precipitation.

These time series are not needed operationally, but might be crucial in post facto analysis

after an incident, where (for example) the chemistry at play might be changed by an

excess of water. They also suggest that we should position sensors differently than we

might otherwise, both close to and further from the emission sites (to measure dispersion),

and in areas of particular stakeholder interest (wetlands, residential areas, other industrial

facilities) to detect potentially dangerous interactions.

5.2.4.4 Warehousing Air Quality Data

As noted in Table 5.2, the data needed to satisfy the requirements for this scenario can be

drawn from the data lake (for real-time tasks) and from the DW, specifically from cubes
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Daily SO2 Levels for Week 2017/10/16 and Rooftop SO2 Gas Sensor

Date SO2 Days Since Last Calibration

2017/10/16 135 15

2017/10/17 170 16

2017/10/18 192 17

2017/10/19 205 18

2017/10/20 106 0

2017/10/21 102 1

2017/10/22 98 2

Weekly SO2 Levels

Week Location SO2 Wind (km/h) Temperature

2017/10/02 – 2017/10/08
Rooftop 98 7 13

Room 01 11 - 20

2017/10/09 – 2017/10/15
Rooftop 105 9 15

Room 01 13 - 20

2017/10/16 – 2017/10/22
Rooftop 144 4 15

Room 01 16 - 20

drill-down

Figure 5.9: A simple analysis performed on air quality data

Measurement, Status Check, and Maintenance Operation. We focus on the DW and show a

practical example of how the conceptual models of Figure 5.7 can be implemented. Figure

5.8 shows a basic star schema implementation of the multidimensional schemata proposed

in Section 5.2.3 accompanied by a sample of (fictitious) data. Fact tables and dimension

tables are denoted by prefixes FT and DT, respectively.

We start by commenting the implementation of the Agent dimension, which is shared by

all cubes. Each level (except those not used in this scenario) becomes a column in table

DT AGENT. The recursive arc on Logical Device has been ignored here as the topology of

the sensor network is quite simple and comprises only one layer of sensors (in case of more

complicated topologies, a parent-child table would be required [138]). Level R. Location is

used to identify a generic location but, in more complex networks, it could also be used

to refer to specific geografical coordinates. Levels Process Type and Specifications have

been omitted as not necessary here. The sample data for DT AGENT represent how both

devices and persons can be stored together; of course, for each type of agent, only a subset

of levels are relevant and thus filled with meaningful values. The remaining dimensions

are quite straightforward, especially the time-related ones and Transformation, which do

not need a separate table and can thus be directly included in the fact tables.

For each multidimensional schema we have a fact table, composed by one column for

each dimension and one column for each measure. As noted in Table 5.2 and shown

in the sample data in Figure 5.8, Requirements (1) and (2) are both supported by the

Measurement schema. For instance, the first two events in table FT MEASUREMENT

represent pollution-related events (Meas. Type ID = 5) computed as the mean of 10

measurements (Transformation = AVG10) made by (logical) devices Indoor SO2 Gas Sensor

and Rooftop SO2 Gas Sensor (Agent ID = {5, 6}). The other events are all contextual

measurements, such as temperature, wind speed, etc. The remaining fact tables are used

to store events respectively related to the status of the network and to the maintenance

operations.

To close this section, in Figure 5.9 we show a simple example that combines data from
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Table 5.3: Requirements for the landslides scenario

Name Description Stakeholders Main Data Sources
(1) Ground Movements Monitor the behavior of the landslide Geologists DW(Measurement)*
(2) Environmental Conditions Measure natural phenomena and proper-

ties such as wind, temperature, and hu-
midity

Geologists DW(Measurement)*

(3) Network Synchronization Gather statistics on the synchronization
among the nodes of the network

Engineers DW(Status Check)

(4) Communications Monitor communications between the
nodes of the network

Engineers DW(Message)

(5) Maintenance Operations Keep track of the maintenance operations
executed on the network

Engineers,
Geologists

DW(Maintenance Op.)

different cubes to perform an analysis on pollution levels. The pivot table on top shows

the weekly average levels of pollution alongside some weather measurements (average

wind speed and temperature). Since during the week from 2017/10/16 to 2017/10/22

the sensors outside the facility have measured particularly high levels of pollution, the

user might decide to drill-down (i.e., zoom in) on this particular week and on a particular

sensor placed outside. The bottom pivot table shows the result of the drill down that

disaggregates the measurements of the chosen sensor on a daily basis; furthermore, to

check for the possibility of calibration problems, the user also visualizes the number of

days since the last calibration has been made.

5.2.4.5 Landslides Risk Management

Another interesting scenario to show the application of the proposed framework is the

one presented by Giorgetti et al. [145], which describes a wireless sensor network for

the monitoring of landslides. The network, deployed on a rockslide in central Italy,

gathered both operational data (e.g., communication statistics) and measurements of

natural phenomena (e.g., ground movement) in the time period from February to October

2013.

5.2.4.6 Requirements for Landslides Risk Management

Table 5.3 describes the requirements for this case study. The involved stakeholders are

geologists and network engineers. The geologists are mainly interested in the collected

measurements and, to better assess their validity, to the history of maintenance operations.

The engineers are mainly interested in the operational data instead, to check if the network

is working as intended.

The main goal of this sensor network is to collect data to observe and analyze landslides;

to this end, both ground movement data (Requirement (1)) and other environmental

measurements (Requirement (2)) must be taken into account. These data can be used to

identify relevant factors causing landslides, thus aiding in preventing and reducing their
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negative impact.

Similarly to the air quality scenario presented in Section 5.2.4.1, during the monitoring

campaign the network itself was observed to collect operational data. Specifically, the

network periodically collected and sent data regarding its synchronization mechanism

(Requirement (3)) and the messages exchanged between the nodes (Requirement (4)).

These data are crucial to determine if the network is behaving as intended; indeed, the

network employs adapting routing strategies designed to cope with harsh environmental

conditions (e.g., foliage, debris, ground movements, etc.). Finally, maintenance operations

(Requirement (5)) must also be recorded to enable efficient management of the network

and reduce costs.

5.2.4.7 Sensing Landslide Risk Data

The deployed sensor network for the scenario described above is composed by 15 wireless

nodes. The nodes are equipped with 3 clinometers, 4 wire extensometers, 2 bar exten-

someters, and 4 soil hygrometers. One of these nodes acts as a coordinator that sends

data to a remote unit for further elaboration. The coordinator node is also equipped with

a weather station with several sensors such as an air thermometer, air hygrometer, etc.

Sensor nodes are equipped with lead batteries and a solar cell.

The logical topology of the network is a tree where the root is the coordinator node.

Each node can send data only to its father, thus the sensed data of a node can reach

the coordinator only through child-parent communications. Notice that the network is

self-organizing and has a dynamically defined topology to ensure fault tolerance and

adaptability with minimal manual intervention.

To communicate, the network adopts a synchronization mechanism where a given node can

be in one of four different phases, namely: association phase, receive phase, transmit phase,

and sleep phase. A node goes in association phase when a it requests to become part of

the network. The receive and transmit phases are respectively related to the reception

and transmission of data. Finally, to save energy, a node might begin a sleep phase where

neither reception nor transmission of data are possible.

5.2.4.8 Warehousing Landslides Risk Data

As for the air quality case, Figure 5.10 shows a possible relational implementation with

some representative data. We omitted the implementations of Agent and Measurement

since they do not significantly differ from the ones presented in the previous scenario.

In this case we focus on facts Message and Status Check, which are used to support

Requirement (3) and (4).

The synchronization mechanism described in the previous section is at the core of Require-
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FT MESSAGE

S. Time R. Time Communication Message Type Received From P. Device ID To P. Device ID

2013/04/08 09:00 2013/04/08 09:00 Unicast Tilt Meas. Yes 4 2

2013/04/08 09:01 2013/04/08 09:01 Unicast Tilt Meas. Yes 2 1

2013/04/16 16:00 2013/04/16 16:00 Unicast Ext. Meas. Yes 5 3

2013/04/16 16:01 - Unicast Ext. Meas. No 3 1

2013/04/16 16:15 2013/04/16 16:15 Unicast Ext. Meas. Yes 3 1

FT STATUS

Time Status Type By Agent ID On Agent ID Value

2013/04/08 07:00 Sleep 2 2 -

2013/04/08 08:58 Association 2 2 -

2013/04/08 09:00 Receive 2 2 -

2013/04/08 09:01 Transmit 2 2 -

2013/04/08 09:02 Sleep 2 2 -

Figure 5.10: Star schema and sample data for the landslide risk management scenario

ment (3). As shown in Figure 5.10, table FT STATUS, each phase change is recorded as a

status check event performed by an agent on itself. The type of phase (sleep, association,

receive, and transmit) is represented through the Status Check Type level, while the Time

level marks the beginning of the current phase and the end of the previous one. Optionally,

the Value measure could be used to explicitly denote the duration of each phase.

As for Requirement (4), each packet exchanged between the nodes of the network can be

represented by a message event as shown in Figure 5.10, table FT MESSAGE. Specifically,

the analyses performed in the study presented by Giorgetti et al. [145] involved the

computation of two scores, namely the fraction of packets sent (FPS) and the packet

retransmission rate (PRR). The former is computed as the number of packets sent from

node T to node R, divided by the total number of packets sent by R; FPS is thus used

to identify which network paths are most (or least) used. The latter score quantifies

the quality of a given link between two nodes and is computed as the percentage of

retransmitted packets. Both scores can be easily computed based on the data contained

in FT MESSAGE shown in Figure 5.10. Indeed, each event represents either an attempt of

transmitting a packet (i.e., Received = ’No’) or a successful transmission (i.e., Received

= ’Yes’). To compute FPS is sufficient to count the number of successful transmission

between all pairs of nodes, while for PRR the relevant events that have to be counted are

the failed transmissions.

5.2.5 Wrapping up Sensor Data Modeling

This work aims to cross fertilize the Sensor Network field with contributions coming from

the Data Analysis and Big Data ones. Although the three fields are perceived as quite

closed, the requests from both academics and practitioners for a well-defined, robust, and

comprehensive architecture and model is apparent and frequent. Our experiences in IoT

projects show that the adoption of naive or off-the-shelf solutions reduce the analysis

capabilities and, once adopted, they can hardly be recovered. Technology is evolving fast in

the Data Analysis and Big Data fields, nonetheless the functional architecture proposed as

well as the usage of multidimensional cubes are well-established in the field. For this reason

we believe that our proposal can be a solid starting point for a data analysis solution.
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Chapter 6

Conclusions

In this thesis we described our novel contributions that aim at enabling ubiquitous OLAP

analyses. To achieve this goal, we touched several important topics that range over data

extraction from service-oriented sources, representation of multidimensional data and,

finally, multidimensional modeling. Each of these topics is crucial to enabling ubiquitous

OLAP analyses. Greater extraction capabilities means being able to perform analyses

on richer data. Compact multidimensional representations enable the fruition of OLAP

on devices that usually do not support it. Finally, clever multidimensional modeling

approaches make it easier for the user to obtain multidimensional structures, which are

essential to carry out OLAP analyses. In the following, we briefly wrap up the different

contributions presented in the previous chapters, while trying to lay down the direction of

future work.

The first topic that we treated is that of data extraction from service-oriented sources,

which are nowadays employed in many scenarios related to the fruition of both analytic

functions and simple access of raw dataset. In this context, we presented two different

frameworks, namely QETL and Tiresias. The former represents an approach to incremental

on-demand ETL based on the query-extract-transform-load paradigm suited for those

situations in which traditional batch ETL is either unfeasible or inconvenient. In QETL, a

data cube is operated as a cache to enable data reuse and thus reduce as much as possible

costs related to querying data sources, while still managing as efficiently as possible a

limited storage space. The key elements of this framework are: the dice construct, which

allows to compactly abstract multidimensional data; the dice-difference operation, which

enables an easy computation of the facts required to answer a query but still missing

from the cube; a novel optimization technique to minimize the extraction costs of the

missing facts. The latter framework, Tiresias, focuses instead on building a cost model

that accurately predicts query costs in web services, and can thus be used to obtain

useful statistics for interacting with them. In Tiresias, a cost model is implemented as a

regression tree that can be initialized and actively adapted with minimal user intervention.

The key for automating and optimizing the training of the cost model is a novel active
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learning technique, which is composed by two different cycles: a passive one, to initialized

the model; and an active one, which is used when the prediction accuracy goes below a

given threshold (e.g., due to a function drift). To close this brief recap of the contributions

related to service-oriented data sources, we outline some possible directions for future

work. Overall, both frameworks presented promising results, however there is still room

for improvement. The most straightforward developments are related to performances, for

instance, the support of extractions at different levels of aggregation in the case of QETL.

Other less straightforward, but more interesting, advances regard the extension of the

applicability of the frameworks. Indeed, both QETL and Tiresias have some important

limitations that either reduce their effectiveness, or even prevent them to be used in certain

situations. For QETL, the greatest limitation is perhaps the fact that it is strictly tied to

the OLAP paradigm, and can sometimes be impractical with modern tools that mesh this

type of analyses with more advanced ones (e.g., Tableau). While this issue goes beyond

the topic of this thesis, it is nonetheless an interesting starting point for future research.

As for Tiresias, its major limitation is the fact that each service interface is modeled as

a separate regression tree. In practice, different services might share many features and

behaviors, thus it would make sense to reuse the work done for a service to obtain a cost

model for another one (e.g., through transfer learning [146]).

The second topic tackled during this thesis is that of compact visualization of multidi-

mensional data. The novel work that we presented is tied to the shrink operator, which

has been previously introduced by Golfarelli et al. [5]. The first main contribution is

an integer linear programming model for solving the shrink problem as efficiently as

possible, i.e., both in terms of performances and accuracy. In this contribution, shrink

is modeled as a partitioning problem with side constraints. To improve on the original

greedy implementation of the operator, we have proposed a dual ascent which embeds a

Lagrangian heuristic, and an exact method to be used when an optimal solution is needed.

As the results have shown, the new heuristic implementation is able to generate a near

optimal dual solutions in a short computing time, while the exact procedure outperforms

general purpose solvers like CPLEX, which in some cases failed to produce a solution. The

second contribution related to visualization that we have presented is a multidimensional

generalization of shrink. This new generalization enables the reduction of a pivot table

along multiple dimensions, which improves the quality of the final approximation and

simplifies the usage of the operator from the user’s viewpoint. The experiments shown

that multidimensional shrink outperforms the original operator in terms of accuracy, while

still keeping short computational times. Both contributions presented quite solid results

and, even if they still have room for improvement, we believe that future developments

should be focused on topics beyond the shrink operator. Indeed, while pivot tables are

quite powerful tools, there are many other ways to effectively visualize data. In this regard,

a relevant issue still to be addressed in a satisfying fashion is that of actively guiding the

user in the choice of how to best visualize data during an analysis session to better identify

interesting patterns. This kind of feature coupled with personalization approaches such as
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shrink could greatly improve the results achieved through explorative analyses.

The last research theme we addressed is multidimensional modeling. The novel con-

tributions related to this topic are Starry Vault, an approach to automatically derive

multidimensional schemata from data vaults, and a set of multidimensional blueprints

tailored for sensor data. The Starry Vault approach allows to detect a multidimensional

schema out of a source data vault by exploiting both schema-based and data-based

functional dependencies. In particular, this approach uses extensional techniques for

discovering hidden dependencies, with some tolerance to errors in data and taking into

account the temporal aspects related to historicization. Our second contribution follows a

quite different direction; indeed, focusing on a a specific domain (i.e., sensor networks)

allowed us to manually tailor multidimensional blueprints that, with little editing, are

able to cover a broad variety of requirements. To better contextualize these blueprints, we

have also presented two scenarios to show how they can be used in practice. Regarding

interesting future work related to multidimensional modeling, we remark that automatic

derivation of schemata is a widely explored topic in the DW literature. However, in the era

of big data and data science the need for on-the-fly analyses creates a strong requirement

for a smarter design process. An example of such requirements is supporting the data

scientist in discovering a multidimensional structure in situations in which the source data

are poorly-structured or schemaless. Finally, regarding BI in the area of sensor networks,

while there are research issues that are still challenging (e.g., dealing with probabilistic

data), one of the biggest problems is the gap between the sensor network community

and the BI one. Indeed, with our multidimensional blueprints, the goal is precisely that

of bridging this gap, which sometimes prevents the application of even well tested and

consolidated techniques.
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generation of ETL and multidimensional conceptual designs. In Proc. DaWaK, pages

80–95, Toulouse, France, 2011.

[20] Florian Waas, Robert Wrembel, Tobias Freudenreich, Maik Thiele, Christian Koncilia,

and Pedro Furtado. On-demand ELT architecture for right-time BI: Extending the

vision. IJDWM, 9(2):21–38, 2013.

[21] Alkis Simitsis, Panos Vassiliadis, and Timos Sellis. State-space optimization of ETL

workflows. TKDE, 17(10):1404–1419, 2005.

[22] Alkis Simitsis, Panos Vassiliadis, and Timos Sellis. Optimizing ETL processes in

data warehouses. In Proc. ICDE, pages 564–575, 2005.

170



[23] Neoklis Polyzotis, Spiros Skiadopoulos, Panos Vassiliadis, Alkis Simitsis, and Nils

Frantzell. Meshing streaming updates with persistent data in an active data ware-

house. TKDE, 20(7):976–991, 2008.

[24] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom. View

maintenance in a warehousing environment. ACM SIGMOD Record, 24(2):316–327,

1995.

[25] Dallan Quass and Jennifer Widom. On-line warehouse view maintenance. ACM

SIGMOD Record, 26(2):393–404, 1997.

[26] Inderpal Singh Mumick, Dallan Quass, and Barinderpal Singh Mumick. Maintenance

of data cubes and summary tables in a warehouse. ACM Sigmod Record, 26(2):

100–111, 1997.

[27] Yagiz Kargin, Holger Pirk, Milena Ivanova, Stefan Manegold, and Martin L. Kersten.

Instant-on scientific data warehouses: Lazy ETL for data-intensive research. In Proc.

BIRTE, pages 60–75, Istanbul, Turkey, 2012.

[28] Ying Yang, Niccolo Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver Kennedy.

Lenses: An on-demand approach to etl. Proc. VLDB Endowment, 8(12):1578–1589,

2015.

[29] Arindam Nandi, Ying Yang, Oliver Kennedy, Boris Glavic, Ronny Fehling, Zhen Hua

Liu, and Dieter Gawlick. Mimir: Bringing CTables into practice. CoRR,

abs/1601.00073, 2016.

[30] Peter Scheuermann, Junho Shim, and Radek Vingralek. WATCHMAN : A data

warehouse intelligent cache manager. In Proc. VLDB, pages 51–62, Mumbai, India,

1996.

[31] Qun Ren, Margaret Dunham, and Vijay Kumar. Semantic caching and query

processing. TKDE, 15(1):192–210, 2003.

[32] Boris Chidlovskii and Uwe Borghoff. Semantic caching of web queries. VLDB

Journal, 9(1):2–17, 2000.

[33] Dongwon Lee and Wesley Chu. Towards intelligent semantic caching for web sources.

Journal of Intelligent Information Systems, 17(1):23–45, 2001.

[34] Xiufeng Liu. Optimizing ETL dataflow using shared caching and parallelization

methods. CoRR, abs/1409.1639, 2014.

[35] Prasad M. Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F.

Naughton. Caching multidimensional queries using chunks. SIGMOD Rec., 27

(2):259–270, 1998.

171



[36] E. J. Otoo, Doron Rotem, and Sridhar Seshadri. Optimal chunking of large multi-

dimensional arrays for data warehousing. In Proc. DOLAP, pages 25–32, Lisbon,

Portugal, 2007.

[37] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction

to Cluster Analysis. Wiley Series in Probability and Statistics. Wiley, 2009.

[38] Matteo Golfarelli and Elisa Turricchia. A characterization of hierarchical computable

distance functions for data warehouse systems. Decision Support Systems, 62:144–157,

2014.

[39] Stefan Manegold, Peter Boncz, and Martin L Kersten. Generic database cost models

for hierarchical memory systems. In Proc. VLDB, pages 191–202, 2002.

[40] Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. Cost-based opti-

mization of service compositions. IEEE Transactions on Services Computing, 6(2):

239–251, 2013.

[41] Yilei Zhang, Zibin Zheng, and Michael R Lyu. WSPred: A time-aware personalized

QoS prediction framework for web services. In Proc. ISSRE, pages 210–219, 2011.

[42] Waseem Ahmed, Yongwei Wu, and Weimin Zheng. Response time based optimal

web service selection. IEEE Transactions on Parallel and Distributed Systems, 26

(2):551–561, 2015.

[43] Li Kuang, Zhifang Liao, Wentao Feng, Haoneng He, and Bei Zhang. Multimedia

services quality prediction based on the association mining between context and

QoS properties. Signal Processing, 120:767–776, 2016.
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