
ALMA MATER STUDIORUM - UNIVERSITA’ DI BOLOGNA
dipartimento di informatica - scienza e ingegneria

Dottorato di Ricerca in COMPUTER SCIENCE and ENGINEERING
XXX Ciclo

Settore Concorsuale: 09/H1 - Sistemi di elaborazione delle informazioni
Settore Scientifico Disciplinare: ING-INF/05

Middleware Solutions for Effective
Cloud-CPS Integration in Pervasive

Environment

Candidato:
Alessandro Zanni

Supervisore:
Prof. Paolo Bellavista

Coordinatore Dottorato:
Prof. Paolo Ciaccia

Esame finale anno 2018

ii

Alessandro Zanni
Middleware Solutions for Effective Cloud-CPS Integration in
Pervasive Environment, c⃝2018.

website:
http://middleware.unibo.it/people/azanni

e-mail:
alessandro.zanni3@unibo.it

iii

It’s the journey, not the destination, that matters.

iv

v

Contents

Abstract xiii

1 CPS Relevance and Motivations 1
1.1 Research Challenges and Methodology 1
1.2 CPS Overview . 2
1.3 CPS Applications towards Smart Cities 4

1.3.1 ParticipAct Project 4
1.3.2 Smart Grid . 6
1.3.3 Smart Building . 7
1.3.4 Smart Transportation 9

Smart Connected Vehicles 10
Smart Traffic Light 11

1.3.5 Wind Farm . 11
1.3.6 Smart Industry and Wireless Sensor Network . . . 13

1.4 CPS Features and Requirements 13
1.5 Cloud-assisted CPS: Potential and Limitations 15

2 Edge-enabled Middleware for Scalable CPS 21
2.1 Requirements Taxonomy for Edge-enabled Middleware . 23
2.2 Fog Computing . 27

2.2.1 Architecture Proposal 29
Local Sensing and Data Handling 30
Big and Small Data Processing 31
Actuation . 31
Storage - Cloud distribution 31

2.3 Mobile Edge Computing 32
2.3.1 Follow Me Cloud 33
2.3.2 ETSI Mobile Edge Computing 33

2.4 Other Edge-related Solutions 35
2.4.1 Cloudlet . 35
2.4.2 Mobile Computation Offloading 35

2.5 Edge-based Architectural Proposals 37
2.5.1 Middleware Moved Towards Cloud 37
2.5.2 Middleware Moved Towards Edge 39
2.5.3 Multiple Middleware Levels 40

vi Contents

2.6 Solutions for Mobile Services 41

3 Scalability and Containerization for Fog Computing 45
3.1 Related Work . 46

3.1.1 IoT Federation . 46
3.1.2 Containers . 47

3.2 Scalable IoT-Cloud Interactions 48
3.2.1 M2M Communications 49

MQTT . 49
CoAP . 50
MQTT-CoAP Combination 51

3.2.2 Kura Gateway-based Architecture 53
Kura Overview . 53
Kura Extension Towards Fog Computing Platform 54
Gateway-side MQTT Brokers 55
Enabling Cluster/Mesh Topologies for Kura Gate-

ways . 57
Tree-based Hierarchy Architecture 59
Implementation Insights 61
MQTT and CoAP Optimization 64

3.2.3 Performance Evaluation 65
3.3 Fog Deployment via Containerization 68

3.3.1 Containers Overview and Motivation 69
Containers Available 70
Docker Storage Drivers 71

3.3.2 Management and Orchestration 72
3.3.3 Configuration and Management of IoT Gateways . 74
3.3.4 Containers-base Fog Computing Solution 76

Overall Architecture 76
Mobile Presence Feature 78
Scalability Feature 79

3.3.5 Implementation Insights 79
Geometric Monitoring 81
Containers Orchestration 83
Mobile Presence Orchestration 84
Scalaiblity Orchestration 86

3.3.6 Performances . 87
Containerization Overhead Performance Results . 88
Elastic Provisioning of Mobile Services 90

4 Live Migration and Automated Offloading for Edge Computing 93
4.1 Related Work . 94

4.1.1 VM/Containers Migration 94
4.1.2 Mobile Computation Offloading 95

4.2 Migration-enhanced Support for Mobile Services 97
4.2.1 Design . 98
4.2.2 Elijah/Openstack++ 100

Contents vii

4.2.3 ServerManager . 102
4.2.4 Migration . 104
4.2.5 VM Synthesis and Handoff 106
4.2.6 Mobile Services Usecase 107
4.2.7 Experimental Results 109

4.3 Automated Offloading for Computation/Energy-usage
Optimizations . 112
4.3.1 Autonomous Methods Selection 113
4.3.2 Method Translation and Optimization 120
4.3.3 Experimental Evaluations 122

5 Scalability, Elasticity, and Federation for the Cloud Com-
puting Middleware 129
5.1 Related Work . 130

5.1.1 Virtual Machine Management and Migration . . . 130
5.1.2 Semantic Web for Data Federation 133

5.2 Elastic Provisioning of Mobile Services in the Cloud . . 135
5.2.1 MCN Background and Architecture 137
5.2.2 Service Instance Migration Design 139
5.2.3 Implementation Insights 145

Preliminary Work on Service Separation 145
Monitoring System 146
Service Instance Migration Implementation 147
Experimental Evaluation 149
Simulation Results 152

5.3 Federation Model to Support Semantic Queries 154
5.3.1 The SPARQL Federation Model 155

Architecture . 156
KPI evaluation and choice 157

5.3.2 Implementation Details 158
5.3.3 Usecase . 159

6 Conclusions 161
6.1 Major Contributions . 161
6.2 Future Research Directions 164

Acronyms 167

Bibliography 169

Acknowledgements 181

ix

List of Figures

1.1 CPS General Architecture 3
1.2 ParticipAct Overview 6
1.3 High-level System Architecture for Smart Building

Control System . 9

2.1 General three-layers architecture 22
2.2 Cloud-Fog-IoT features distribution 23
2.3 The high-level picture of the integration of cloud, fog,

and IoT technologies 28
2.4 The proposed cloud-fog-IoT reference architecture . . 30
2.5 Multi-levels Intermediate Middleware Architecture . . 41

3.1 The Proposed Cloud-Fog-IoT Reference Architecture . 54
3.2 Adding Gateway-side MQTT brokers 55
3.3 The Supported Cluster Organization of IoT Gateways 57
3.4 The Supported Mesh Organization of IoT Gateways . 58
3.5 Architecture Integrating MQTT and CoAP for Better

Scalability . 60
3.6 The Hierarchical Tree Structure of our Extended Kura

Gateways. 60
3.7 Node Connection Iterations 62
3.8 Node Removal Iterations 62
3.9 Resource Lookup Iterations 63
3.10 Testbed Scenario . 66
3.11 Performance RD with(out) DTLS 68
3.12 Initial CPU . 68
3.13 Initial Memory . 68
3.14 Final CPU . 69
3.15 Final Memory . 69
3.16 Fog Node Skeleton 75
3.17 High-Level Architecture View 76
3.18 Fog Node Internal Structure 80
3.19 Data Distribution and Related Hyperplanes 82
3.20 Mobile Presence Procedure 85
3.21 Scalability Procedure 86

x List of Figures

3.22 Execution Time over Multiple Containers 90
3.23 Geo-distributed Testbed Used 91

4.1 General Three-Layers Architecture 98
4.2 Our Proactive Migration Procedure 104
4.3 Synthesis procedure 106
4.4 Handoff Procedure . 107
4.5 MEClient Application 107
4.6 OpenCV Application 107
4.7 Tasks Selection Algorithm Architecture 113
4.8 Methods Selection Algorithm 114
4.9 Methods Modification Procedure 121
4.10 CDF on Classes Analysis 123
4.11 Classes Analysis . 123
4.12 CDF on Methods Analysis 124
4.13 Methods Analysis . 124
4.14 CDF on Applications Complexity 125
4.15 Task Selection Performance 127

5.1 Plugin Alternative . 134
5.2 Endpoint extension alternative 134
5.3 MCN Architecture . 137
5.4 High-Level Vision of the Overall Service State Migra-

tion Process . 140
5.5 State Migration Process 144
5.6 Essential Steps of the Proposed Data Migration Process148
5.7 MCN E2E Deployment Scenario 149
5.8 Performance Evaluation of RCBaaS State Migration . 151
5.9 Migration Time and Data Loss 153
5.10 Performance Evaluation of RCBaaS State Migration . 154
5.11 Federation Web Service Alternative 157

xi

List of Tables

2.1 CPS Application Requirements 27
2.3 Middleware Solutions 37
2.5 Mobile Devices vs Cloud related Characteristics . . . 38
2.7 Multi-Levels Intermediate Middleware Architecture . 41

3.1 MQTT Performance Results 66
3.3 RD Performance Results 67
3.5 Native-Code and Container Execution Time 89
3.7 Containers Orchestration and Deploy Time 91
3.9 Pull Docker Images from Docker Hub Registry 92

4.1 Synthesis Measurements 110
4.3 Synthesis Measurements 110
4.5 Synthesis Measurements 110
4.7 Resource Usage . 111
4.9 Handoff Processes Measurements 111
4.11 Checks Automatically Performed by the Proposed Al-

gorithm . 114
4.13 Complexity Analysis in Uber App 126
4.15 Complexity Analysis in Twitter App 126

5.1 VM Operations . 150
5.3 Alternatives Comparison 157

xiii

Abstract

The proliferation of a wide range of highly different mobile devices, from tiny sensors
to powerful smartphone, with increasing connection abilities, has led to the modifica-
tion of the way we interact with the surrounded environment and the introduction of
several different applications in many sectors, such as energy, transportation, logistics,
health-care, and so on. Several recent projects and research activities are addressing the
challenging topic related to the creation of innovative mobile devices applications, lever-
aging the technical and economic advantages promoted by the adoption of cloud-hosted
virtualized resources, i.e. cloud computing, to consolidate their service infrastructures
and for elastic storage and processing infrastructure. At the same time, it is growing the
manifest need of intermediate middleware solutions that can effectively integrate device
localities with the global cloud resources, overcoming the issues related to their direct
connection. Such relevant attention is also demonstrated by the emergence of interest-
ing IoT-cloud platforms from industry and open-source communities, as well as by the
flourishing research area of fog/edge computing, where decentralized virtual resources
at edge nodes can support enhanced scalability and reduced latency via locality-based
optimizations.

In this thesis work, the primary objective is to present some promising and feasible
real-world solutions, trying to face and cover many different challenges and open-points
of the mobile devices applications. The solutions proposed are applied at different lev-
els of the stack, thus dividing them in relation to their internal architectures, in order
to underline the intrinsic characteristics associated with the architectural solution, the
requirements mainly stressed, and highlighting the most suitable scenarios they can
work with. This thesis work aims to push forward the research in the field, mainly
based on theoretical architecture and methodological approaches so far, introducing
some industrially-relevant implementations that specifically target the issues of prac-
tical feasibility, cost-effectiveness, and efficiency of middleware solutions over easily-
deployable environments. Towards this objective, the solutions are also grouped in
relation to the specific applications to face, in order to promote a faster and a more
correct adoption in real-world scenarios.

The described solutions are specifically designed for the support of mobile services,
also in hostile environments, with the main requirements to provide and greatly in-
crease mobile devices requirements, such as scalability, interoperability, performances,
consumption-resources, reactivity via local control decisions and actuation. They show

xiv Abstract

how to efficiently tackle challenges introduced by the high amount of mobile devices,
by originally extending fog computing, edge computing or cloud computing platform, in
relation to the system to realize and the mobile devices used. The designs, implemen-
tations, and experimental works demonstrate the suitability of the proposed solutions to
address several different open points and challenges of mobile devices applications in
an efficient and effective way and, also, with applications in large-scale scenarios.

Finally, as notable side effect of the present work, in order to be able to propose
really promising and useful solutions that cover lacks of current systems, the present
work present a complete overview of the very recent literature about the intermediate
middleware that are emerging. In fact, this thesis propose original architectures and im-
plementations of solutions, by starting from lessons learned from the few existing experi-
ences and by shedding new light on specific sub-fields of research where advancements
are needed to effectively integrate huge numbers of geographically dispersed mobile
devices and globally available cloud resources.

1

1 | CPS Relevance and
Motivations

The recent years have undoubtedly experienced the development of
an unprecedentedly huge number of devices with a very wide range of
capabilities, from tiny and small-capable devices to much more pow-
erful newer generation of smartphone. The Internet of Things (IoT)
concept has introduced a great number of devices, increasingly more
sophisticated and capable of differentiated forms of connectivity, that
increasing the ubiquity of the applications and leads to a highly dis-
tributed network of devices communicating with human beings, other
devices or systems. Along with IoT, we have also assisted to the great
diffusion and social penetration of a wide range of more powerful de-
vices, i.e. PDA and smartphone, that still offer multiple connectivity
abilities and an increasingly set of functionalities and computation
capabilities.

1.1 Research Challenges and Methodology

Research trends analysis estimates an exponential growth of the num-
ber of devices and connections in the next years. Cisco projects the
mobile devices growth by 2020, expecting for that date up to 50 bil-
lion connected devices, with a number of machine-to-machine (M2M)
device connections of 12.2 billion [1]. By the 2021, the IP traffic will
be mainly generated by mobile devices, with an exponential increase
of the annual global IP traffic to about 3.3 ZettaByte. Moreover, [2]
extends the previous estimations, expecting 1 trillion of devices con-
nected and 100 million of M2M device connections estimates by 2025,
with a related economic impact up to more than $10 trillion.

The availability and the widespread use of such a high number of
mobile devices, today equipped with multiple wireless communication
interfaces, is paving the way to the all-the-time everywhere connec-

2 1 CPS Relevance and Motivations

tivity view of pervasive computing. Pervasive and ubiquitous com-
puting is becoming the next logical step to mobile computing where
services are accessed in an anytime-anywhere fashion and deployed
on various kinds of mobile and stationary devices and offer a certain
functionality to nearby users, changing the way we interact with the
physical world, as well as the vision of established business mod-
els, with a potentially massive economic impact. Pervasive computing
scenarios generally refer to an environment densely composed of ICT-
enabled sensorial capabilities, to be exploited for the provisioning of
context-aware, adaptable, and customizable services for better inter-
acting with the surrounding environment. In order to build effective
pervasive services, increasingly mobile devices are immersed into the
environment. Many cities already have sensor networks for environ-
mental monitoring, as well as camera or microphones for security
purposes; RFID-based readers and badges can keep track of user
movements and activities; smartphones are embedded with many dif-
ferent sensors and actuators, e.g., gyroscope, compass, accelerometer,
proximity sensors, and gps localization tool.

In order to deal with sensors/actuators ubiquity, it is important
to deeply understand and identify the most important challenges and
open points the system needs to deal with and also to isolate the
system core functionalities and production phases with the communi-
cations, data mangement, data logic, and data analytics of the system.
Thus, by starting to identify the most key and primary requirements
allows to define the constraints and the most appropriate improve-
ment areas on the specific application and on similar application do-
mains. Successivelly, by accuratelly analyzing the state of the art of
the current most promising technologies on the field, it is possibile
to relevantly improve widespread applications with all the massive
advantages related to the sensors/actuators usage. In the following
paragraphs, some relevant IoT-based systems are presented, high-
lighting the main challenges and issues for each specific application.
Several solutions are proposed in the following sections.

1.2 CPS Overview

The diffusion of wireless technologies is identifying new scenarios of
service provisioning where mobile users are willing to have ubiquitous
and continuous access to both traditional and novel context-aware
Internet services while they move in smart spaces. WiFi and wireless
technology and sensor network technologies has been continuously
evolving, i.e. 5G, trying to accommodate higher demands, speed and
security, also even under very challenging conditions. The growing
and increasingly powerful presence of wifi and wireless access will

1.2 CPS Overview 3

foster the spread of mobile devices, towards more effective and more
efficient applications, in which information and intelligent services are
invisibly embedded in the environment around us.

These latest advancements also lead to the diffusion of the Cy-
ber Physical System (CPS) concept. A CPS is a system, with inte-
grated computational and physical capabilities, that can interact with
both the cyber and the physical world in which computing elements
are used to coordinate and communicate with sensors, able to mon-
itor cyber/physical indicators, and actuators, which can modify the
cyber/physical environment where they execute [3, 4], as shown in
Figure 1.1.

Figure 1.1: CPS General Architecture

This intimate coupling between the cyber and physical will be
manifested from the nano-world to large-scale wide-area systems of
systems. Similarly to how the internet transformed how humans in-
teract and communicate with one another, e.g. revolutionized how
and where information is accessed, and even changed how people
buy and sell products, CPS will transform how humans interact with
and control the cyber and physical world around us [5]. Computing
and communication capabilities will soon be embedded in all types of
objects and structures in the physical environment and the related ap-
plications, with enormous societal impact and economic benefit, will
be created by harnessing these capabilities across both space and
time [6].

In general, a CPS consists of two main functional components: the
advanced connectivity that ensures real-time data acquisition from the
physical world and information feedback from the cyber space; and
intelligent data management, analytics and computational capability
that constructs the cyber space [7]. Acquiring accurate and reliable
data from machines and their components is the first step in devel-

4 1 CPS Relevance and Motivations

oping a CPS application. The data might be directly measured by
sensors or obtained from the controller, thus, is very important to
manage data acquisition procedure and transferring data to a central
server, and to select the proper sensors in terms of type and specifi-
cations [7]. The controller acts as central information hub where in-
formation is being pushed to it from every connected machine to form
the machines network. Having massive information gathered, specific
analytics have to be used to extract additional information that pro-
vide better insight over the status of individual machines among the
fleet.

An emerging and technologically challenging idea is to consider
Smart Cities as the most notable example of wide-scale CPS systems,
where ICT solutions can work on both sensing cyber and physical
indicators about the complex urban environment and favoring actu-
ating actions that can dynamically change Smart City elements and
their characteristics at provisioning time. Smart Cities have gained
a central position and big hype from governmental institutions, orga-
nizations, and ICT industries, as they have the potential to increase
resource consumption efficiency, improve many aspects of urban life
(utilization of energy, environment, services, infrastructures, security,
etc.), therefore having considerable impact on citizens quality of life.

1.3 CPS Applications towards Smart Cities

The fields of application for CPS are as numerous as they are diverse
and they are increasingly extending to virtually all areas of everyday
life. There are countless possible application domains where the CPS
concept adoption can generate significant benefits. The most promi-
nent areas of application include, but it is not limited to, the systems
explained in the following. Several other applications belonging to
various sectors, such as tele-healthcare and wellbeing, logistic oper-
ations, and many others, which are not discussed in this document,
are becoming much more efficient and dynamic thanks to the increas-
ing adoption of CPS and the use of mobile devices as key part to
communicate with the surrounding environment.

1.3.1 ParticipAct Project

In the area of smart cities and smart connected communities, Par-
ticipAct [8] is a socio/technical-aware crowdsensing platform based
on a large-scale and real-world scenario, where the participation of
users consists in completing collective tasks assigned them by admin-
istrators. ParticipAct is the first worldwide experiment on large scale

1.3 CPS Applications towards Smart Cities 5

of participation. Participants, either directly or indirectly, make data
collection possible and then all data retrieved is processed and shared
with other participants and researchers. The tasks cover many areas
of interest and it is also possible to create group tasks that require
the participation of a team of users. ParticipAct has some purposes
which can be listed in four main categories:

• Quantified Self. A group of process, which elaborate data of a
single person for self-monitoring activities (e.g., how much time
has been spent walking).

• Information for people. A group of analytical techniques, which
exploit technical and social information to control technical pa-
rameters (e.g., connections optimization thanks to the knowl-
edge of citizens movement patterns).

• Eco-feedback. A set of analytical techniques which aims to
reduce environmental impact using territory information.

• City planning. Making decisions using data retrieved thanks to
users participating to the project (e.g., to know places with major
social activities, students favorite jogging and cycling roots, and
so on).

All data are made available by users who collaborate to the project
completing tasks, which they are assigned to. A task is a job assigned
to users and contains a title and a description. Tasks are classified
active, if participant are involved to accomplish them, and passive, if
are performed automatically by users mobile phone, e.g. triggered
by geo-localization of the user position. Taking pictures, using tag,
commit actions, answering a survey, and so on, are considered ac-
tive tasks, whereas checking battery level, GPS localization, network
identification, and so on, are considered passive tasks. Once the tasks
are completed, either active or passive, all information belonging to
them is sent to the ParticipAct platform to be aggregated and pro-
cessed in order to obtain results on the area of interest and then used
to update the profile of the user they belong to. Figure 1.2 shows the
ParticipAct crowdsensing model.

This spontaneous, widespread diffusion of Internet-connected
sensor-equipped devices has enabled to accurately trace world-
related information and physical activities of citizens by taking ad-
vantage of people willing to collaborate toward a continuous data
harvesting process, i.e. crowdsensing. That is especially true in smart
cities areas where people bring almost constantly their smartphones.
The crowdsensing perspective asks for a powerful sensing platform
where smartphones act as data sources sparse over the city and con-
tinuously feeding fresh raw sensing data.

6 1 CPS Relevance and Motivations

Figure 1.2: ParticipAct Overview

1.3.2 Smart Grid

Transport, communications, finance, and many other critical infras-
tructures depend on secure, reliable electricity supplies for energy
and control. Those infrastructure are nowadays highly interconnected
and a change in conditions at any one location can have immediate
impacts over a wide area, with large-scale cascade failures, and the
effect of a local disturbance can be magnified as it propagates through
a network. Thus, traditional grids are facing many challenges that it
was not designed to manage, such as congestion and atypical power
flows threaten to overwhelm the system while demand increases for
higher reliability and better security and protection [9].

Smart grid is envisioned to transform current grid to more intelli-
gent one, through the usage of the available ICT-technology, to facili-
tate many aspects of the power supply, for both clients and providers.
Smart grid aim to increase the context awareness towards a maxi-
mization of the utilization for an efficiency enhancement and a higher
quality of service (free of voltage sags and spikes as well as other
disturbances and interruptions) in a more controlled and secure oper-
ational environment, i.e., improving reliability and resiliency against
malicious attacks, component failures, and natural disasters with au-
tonomous control actions [10].

Smart grid also allow more strict requirements to be able to inter-
act with the market, improving the real-time communication between
consumer and utility so end-users can actively participate and tai-
lor their energy consumption based on individual preferences (price,
environmental concerns, etc.). In this way, the market efficiency im-
proves through innovative solutions for product types (energy, ser-
vices) available to market participants of all types and sizes, with
benefits for both users and network operators. Users can earn or
save money and generate electricity when prices are high and con-
sume electricity when prices are low. Network operators can maintain
grid stability, decrease the required capacity while improving the ef-
ficiency of power plants, and improve the service reliability mitigating
peak demand and load variability.

1.3 CPS Applications towards Smart Cities 7

Smart grid can be applied to different contexts with different size,
with different methodologies optimized for the specific scope, such
as [11]: i) Local scope (within a house): import/export into the grid
optimized without cooperation with other houses, shifting electricity
demand to more beneficial periods (e.g. nights) and peak shaving, to-
wards independent house. ii) Microgrid (neighborhood). Optimization
of combined import/export into the grid, shifting loads/shaving peaks,
in order to better matched internally, towards perfect matching within
the microgrid. It allows higher joint optimization potential and less
dynamic load profile (e.g. peaks disappear in combined load) and mul-
tiple microgenerators match more demand than individual since better
distribution in time of the production but with complex optimization
methodology. iii) Virtual Power Plant manage large microgenerators
group, replacing power plant with higher efficiency and much more
flexibility (usability to react on fluctuations). It requires a complex
optimization methodology, communication with individual house, with
privacy and acceptance issues required.

Smart grid integrates advanced sensing technologies, control
methods, and integrated communications into the current electricity
grid. In smart grid, there are three main components that interact
among them, each one composed of several sub-systems and of a
large set of different devices. i) A smart infrastructure that include
energy, information and a communication infrastructure that supports:
advanced electricity generation, delivery, consumption; advanced in-
formation metering, monitoring, and management; advanced commu-
nication technologies. Within the smart infrastructure there are other
subsystems, such as: smart energy, responsible for advanced electric-
ity generation, delivery, and consumption; smart information, respon-
sible for advanced information metering, monitoring, management;
smart communication, responsible for communication connectivity and
information transmission among systems, devices, applications. ii)
Smart management that provides advanced management and control
services. It enables a high number of functionality based on smart
infrastructure to pursue various advanced management objectives, re-
lated to energy efficiency improvement, supply and demand balance,
emission control, operation cost reduction, and utility maximization.
iii) Smart protection provides advanced grid reliability analysis, fail-
ure protection, security and privacy protection services, to effectively
and efficiently support failure protection mechanisms, cyber security
issues, privacy.

1.3.3 Smart Building

Buildings are one of the largest consumers of electricity; the US
Department of Energy estimates that buildings consume 70% of the

8 1 CPS Relevance and Motivations

electricity in the US [12] and emit approximately 40% of greenhouse
gases [13]. Heating, cooling and ventilation accounts for 35% energy
usage in the US and, currently, most modern buildings still condition
rooms assuming maximum occupancy rather than actual usage, thus,
often over-conditioned needlessly [14]. The energy usage in a build-
ing can typically be divided amongst several subsystems, including
lighting, computing, server rooms and mechanical equipment used for
climate control, with a significant amount of energy consumption [13].
Some typical smart building use-cases are the following. i) Energy
consumption visibility: without any automation and closed-loop con-
trol, savings can be achieved by making visible the consumption pat-
terns (current, historical), visualizing information (e.g. status, energy
consumption, emission, historical trends, etc.): owners and operators
can decide to optimize building operations at coarse level, while us-
age patterns analysis of office occupants encourage efficient practices
at a fine grain level. ii) Integrated building operation: building sys-
tems are integrated, information are exchanged and there are closed
loop controls. For instance: security system uses badge-in/out infor-
mation to calculate the current occupancy; in an integrated building
system, occupancy info is used by the control system for optimal
amount of cooling/heating or to adjust the number of active eleva-
tors to balance the wait time and energy consumption by the elevator
control system. iii) Demand response: energy consumption on the
grid peaks/troughs in daily/weekly/seasonal cycles, wasting energy
during non-peak hours. Intelligent grid must smooth out the peak of
energy consumption and thus improve the overall capacity utilization.
A common mechanism is to elicit demand elasticity using economic
means (e.g. dynamical pricing) reducing energy peak demand by
shifting non-essential consuming activities into low-demand time pe-
riods. iv) Occupant-aware building control: while reducing energy
consumption and improving overall efficiency, highly advanced smart
building control system considers users and uses occupants environ-
mental preferences to perform fine-grained control and actuation of
building systems (saving with minimal adverse impact on workers pro-
ductivity/satisfaction).

[15] provides a reference architecture for a smart building appli-
cation, shown in Figure 1.3.

Physical System contains the interface services to various sen-
sors/actuators systems, e.g., Heating Ventilation Air Conditioning
(HVAC) system, lighting control system, building fire and security
system, and real time location system, linked to a local high-speed
connection. System Integration domain provides physical-level inte-
gration among different physical systems and related services (e.g.
data archiving, event correlation, integration and abstraction of mul-
tiple systems), managing events information, e.g. signals, measures,
and commands to the subsystems. Process Integration provides pro-

1.3 CPS Applications towards Smart Cities 9

Figure 1.3: High-level System Architecture for Smart Building Control System

cess orchestration and automation, based on integrated system com-
ponents, e.g., correlated events, abstract building services, historical
data. Business Integration is the end-user layer and, through bulletin
board, dashboard, simulation, gives information about building per-
formance, optimization, policies/directives for improvements, by pro-
gramming tools and business intelligence tools, e.g. offline analysis,
online analytics, business rules. External Input connects to external
data sources, giving a situational awareness of a boarder scope, e.g.
real time energy price, weather information for consumption policies,
to the process/business integration, thus, allowing a smart building
to be integrated into bigger systems, e.g., smart grids, smart cities,
and so on.

1.3.4 Smart Transportation

The worlds urban population has continuously increased over the last
decades, from 30% in 1950, and now over half of the worlds population
(54%) lives in urban areas. The continuing urbanization and overall
growth of the worlds population is projected to add 2.5 billion people
to the urban population by 2050, reaching the 66% of the total popula-
tion. At the same time, the proportion of the worlds population living
in urban areas is expected to increase, reaching 66 per cent by 2050.
In addition, the number of mega-cities has nearly tripled since 1990;
and by 2030, 41 urban agglomerations are projected to house at least
10 million inhabitants each [16]. This rapid growth has increased de-
mand for transportation facilities and will do increasingly more in the
next future. Providing more transport services to meet the increas-
ing requests is often associated with undesirable outcomes such as

10 1 CPS Relevance and Motivations

traffic congestion, environmental issues like pollution and, in general,
higher costs. According to [17], a study on 75 US cities, a total of 3.6
billon vehicle-hours and 5.7 billion US gallons of fuel were wasted
due to congestion-related delays, resulting in a congestion cost of
$67.5 billion.

Smart transport solutions, based on ICT-technologies, are required
in order to face the above issues. In a managed transportation system,
individual cars can travel together in fleets, with shorter following
distances. Vehicles are staged and routed via main arteries as well
as surface streets to match outbound flows to road capacities and
fully utilize the road infrastructure. Road, air, rail transportation are
coordinated to most efficiently transport people.

Smart Connected Vehicles

Smart connected vehicles (SCV) applications provide to share infor-
mation among participants, detect traffic patterns and interact among
them to enrich their information and, thus, improve their quality of
service. SCV use a high amount of various devices, at different level
of granularity, both along the road, and on-board into the car. In
the road-side equipment, Road Side Unit (RSU) and Base station
(BS) retrieve the information from the vehicles, communicate with the
global application controller and deliver services to the participants.
On the vehicle-side, on board unit (OBU) devices, composed of read-
/write memory, store and retrieve information from the local vehicle
or from external components, i.e. RSUs or other OBUs. OBUs allow
exchanging information among different components, through wire-
less radio access, with reliable message transfer, network congestion
control, data security and IP mobility, and to execute ad-hoc and ge-
ographical routing with the information retrieve from the road equip-
ment. In addition, the on-board application unit (AU), that uses the
OBUs for all mobility and networking functions, extends the applica-
tion to users through endpoint devices, e.g. PDA. SCV applications
can be different, ranging from entertainment applications, from global
internet services or locally (e.g. media downloading, point of interest)
to road safety and traffic efficiency. Road safety applications provide
information and assistance to avoid collisions by sharing data (po-
sitions, speed, distance) between vehicles and RSUs (traffic signal
violation, curve speed, emergency electronic brake, pre-crash sens-
ing, cooperative forward collision, left turn assistant, lane-change,
stop sign movement assistant). Usually, the type of messages are
cooperative awareness messages (CAM), such as beacons, short mes-
sages periodically broadcast from each vehicle to neighbors to pro-
vide information of presence, position, kinematics, and basic status;
or decentralized environmental notification messages (DENM), event-

1.3 CPS Applications towards Smart Cities 11

triggered short messages broadcast to alert road users of a hazardous
event [18]. Finally, traffic efficiency and management applications
(e.g. speed management, cooperative navigation) improve the vehicle
traffic flow, traffic coordination and traffic assistance and provide up-
dated local information, maps and messages bounded in space and/or
time. They have no strict delay and reliability requirements, but their
quality degrades with increases in packet loss and delay.

Smart Traffic Light

Another smart transportation solution is Smart Traffic Light (STL)
system that manages in a dynamic and efficient way the traffic light
along the road. Likewise SCV, STL among its several goals, has the
two main purposes to prevent accident and to facilitate traffic flow.
Accident prevention is performed with low-latency actions, by de-
tecting pedestrians or cyclist crossing the street and measuring the
distance and speed of approaching vehicles; thus, it issues alarms
to approaching vehicles, changes from green to red, taking photos,
and so on. To facilitate traffic flow throughout a city or a region is
about how to respond to a dynamically changing traffic environment
adaptively to improve controlling efficiency, under the constraint of
guaranteeing fairness for each lane. The efficiency includes maximum
intersection throughput (number of vehicles), and minimum vehicles
average waiting time [19]. Thus, STL need to detect vehicles and cal-
culate traffic information in real-time, determine green light sequence
determination, by using the traffic information to determine the next
green light to the case in the most need, and determine the light
duration according with the obtained information.

In general, STL includes three layers. The bottom layer sends
road traffic flow information to traffic lights and collects data from gps
devices of the vehicles and from traffic light phase data from traffic
controller. The intermediate layer, that consists of antennas, storage,
traffic lights, receives and saves traffic flow data and sends control
results to the OBUs and to the lights. The upper layer performs data
processing, by using data filtering to discard data already received
several times or obsolete, and traffic light control by calculating the
optimal light-changing policy for this period with the lowest waiting
time.

1.3.5 Wind Farm

Wind energy is the fastest-growing energy field and is becoming an
important source in the modern energy supply system. The cumulative

12 1 CPS Relevance and Motivations

wind power capacity increased from 13.6GW in 1999 to 283 GW in
2012, with about 45 GW installed only in 2012, and this number is
expected to achieve 760 GW in 2020 on moderate scenario [20].

Wind farm applications aim to tune the turbine, i.e. yaw and pitch,
to the prevailing wind conditions in order to increase efficiency, thus
trying to maximize the profits related to the wind power, and to stop it
to minimize wear and prevent damage. They are composed of several
utility-scale wind turbines with very flexible structures equipped with
several closed control loops to improve wind power capture, measured
as the ratio of actual to full capacity output for a given period, and
power quality, affected by harmonic distortion. Typical sensors used
for power measurement are strain gauges on the tower and blades,
accelerometers, position encoders on the drive shaft and blade pitch
actuation system, torque transducers. In addition, control loops aim
to reduce structural loading and preventing mechanical breaks, keep-
ing the turbine state always in a safe mechanical condition, hence
extending lifetime and decreasing maintenance costs [21].

The wind farm system functioning is generally related to the
weather conditions and the amount of wind. The wind measure-
ments are performed by rotor speed measurement as basic control,
anemometer for control purposes to determine if the wind is sufficient
to start turbine operation, and wind vane to measure wind speed
and wind direction [21]. In case of low or strong wind the turbines
operations are more controlled in order to save money and turbine in-
tegrity. In particular: i) in low wind conditions, turbines are switched
off to avoid losses because it is not economically convenient to run
the turbine; ii) in high wind conditions, turbines and power are lim-
ited to the rated power to avoid electrical or mechanical load limits
exceeding; iii) in very high wind conditions, turbines are switched off
to prevent breakdowns. In case of normal wind conditions, the wind
farm optimize dynamically the wind production.

Several controllers are used by the wind farm to manage the tur-
bines and they operate in a semi-autonomous way at each turbine.
In addition to the local optimization on the single turbine, a global
coordination at the farm level is required for maximum efficiency. in
fact, key to the process of assessing a potential wind farm deployment
is the study of atmospheric stability and wind patterns on a yearly
and monthly basis, along with turbine local operations [22]. An oper-
ational wind farm requires accurate wind forecasting at different time
scales to interact with the wind market in the best way. In relation to
the specific time scale the type of forecasts needed are: daily forecast
used to submit bids to the independent system operator; hourly fore-
cast to adjust the commitment, responding to events that may occur in
the operating conditions (forced outages of generators, transmission
lines, deviation from the forecast loads and so on); minutes forecast
to dynamically optimize the wind farm operations.

1.4 CPS Features and Requirements 13

1.3.6 Smart Industry and Wireless Sensor Network

Smart industry, where the development of intelligent production sys-
tems and connected production sites is often discussed under the
heading of Industry 4.0. In smart industry, products, components
and production machines will collect and share data in real time,
shifting the concept from centralized factory control systems to de-
centralized intelligence. This enables machines and plants to adapt
their behavior to changing orders and operating conditions through
self-optimization and reconfiguration with the main focus on the abil-
ity of the systems to perceive information, to derive findings from
it and to change their behavior accordingly, and to store knowledge
gained from experience [23]. Smart industry applications should man-
age both industrial information about the production status, such as
energy consumption behavior, material movements, customer orders
and feedback, suppliers data, and data about the market in order
to be able to adapt to the continuously changing market demands,
technology options and regulations, almost in real-time.

Traditional wireless sensors networks (WSN) are composed of a
large number of constraints sensor devices with low computational re-
sources, low power, low storage capacity, low bandwidth, low energy,
and so on. They can only sense the surrounding environments, do
some simple preprocessing data and send information to more pow-
erful static nodes, without be able to perform some actions. Many
applications, that operate in different contexts, require both sensors
and actuators networks (WSAN) in order to modify the environment
in relations to the current situation, towards predefines goals. Collec-
tively, these sensors produce a huge amount of data, both in structured
and unstructured form and, nowadays, WSAN need more resources
available to perform more complex data processing locally, with a
low latency response time, in order to activate actuators for proactive
actions in timely manner.

1.4 CPS Features and Requirements

CPS bring together the discrete and precise logic of computing to
monitor and control the continuous dynamics of physical environ-
ments, which are characterized of uncertainty, noise and concurrent
processes. Integration of physical processes and computing is not
new, and embedded systems has been used for some time to describe
engineered systems that combine physical processes with comput-
ing. However, most such embedded systems are usually small-size,
limited within a confined local area, and closed boxes that do not

14 1 CPS Relevance and Motivations

expose the computing capability to the outside with no outside con-
nectivity that can alter the behavior [7]. The deep transformation
that comes from networking ability of mobile devices introduces and
poses new considerable technical challenges to face. In addition, the
new CPS applications demand that embedded systems be feature-rich
and networked, which makes impossible to test the software under all
possible conditions and to achieve predictable timing in the face of
such openness is a major technical challenge. Thus, they necessitate
the introductions of innovative scientific and engineering solutions
to deal with the several requirements they are characterized of. In
fact, since CPS interact with the physical world, they must guaran-
tee at least the following needs [7]: dependability, safety, security,
efficiency and real-time actions; trial-and-error approaches to build
computing-centric engineered systems must be replaced by rigorous
methods, certified systems, and powerful tools: analyses and mathe-
matics must replace inefficient and testing-intensive techniques; un-
expected accidents and failures must fade, and robust system design
must become an established domain, i.e. the lack of perfect synchrony
across time and space must be dealt with; the failures of components
in both the controller and physical domains must be tolerated or
contained, also by addressing system dynamics; scalability and the
increasing complexity must be managed; a huge amount of data are
continuously collected and must be handled.

Also managing and processing large data sets is not particularly
new and during the past years a range of technologies have emerged
to facilitate the efficient storage and processing of big data sets, in-
troducing tools such as Map Reduce [24], Hadoop [25], Spark [26].
Those tools has been conceived for powerful machine but Big Data
analysis is quickly extending to other sectors, with additional chal-
lenges, due to the evolution and diffusion of mobile devices and IoT
in particular. Typically, Big Data is characterize by three properties:
Volume, Velocity, and Variety [27]. Volume refers to storing, process-
ing, and quickly accessing large amounts of data by easily scaling in
relation to the amount of data to be stored and processed. Velocity
refers to the data streaming high rate into the infrastructure and to
the ability to process it with minimal latency. Variety refers to the va-
riety of data to manage from unstructured textual sources to the wide
range of sensors formats, coming from heterogeneous data sources.
In addition, mobile devices add the geo-distribution property, which
gives the context of the data collected and takes under consideration
the naturally distributed pipeline monitoring.

In other words, the mobile devices management transforms the
current scenario into a more challenging one, with zillions of sen-
sors that gather huge amount of data in a specific context that must
be considered as a coherent whole. Mobile devices are also demon-
strating to be a technically challenging playground for distributed
supports capable of sustaining the execution and run-time require-

1.5 Cloud-assisted CPS: Potential and Limitations 15

ments of advanced dynamic applications, with specific focus on mobile
connectivity, openness, scalability requirements and while-on-the-
move generated data [90, 29]. Future internet applications, that are
raising from the development of IoT environment, are largescale, la-
tencysensitive and are no longer created to work alone but to share
infrastructure, communication resources and common platforms that
manage the system. Those applications require new specifications to
be satisfied, like mobility support, large-scale geographic distribu-
tion, location awareness, low latency and low traffic in order to meet
new requirements [30].

1.5 Cloud-assisted CPS: Potential and Limita-
tions

Cloud computing has emerged and gained enormous popularity as an
infrastructure that eliminates the need for maintaining expensive com-
puting hardware. The National Institute of Standards and Technology
(NIST) defines cloud computing as a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction [31].
The cloud infrastructure can be viewed as containing both a physical
layer and an abstraction layer. The physical layer consists of the
hardware resources that are necessary to support the cloud services
provided, and typically includes server, storage and network compo-
nents. The abstraction layer consists of the software deployed across
the physical layer, which manifests the essential cloud characteristics.
Conceptually the abstraction layer sits above the physical layer [31].
Through the use of virtualization, clouds aims to address users needs
with a shared set of physical resources, located in big datacenters
and accessed only when needed.

Cloud computing is a very flexible platform that allows to use the
cloud resources in the way that best fit the consumers request and to
this purpose. The cloud model offers multiple service models and de-
ployment models. The service models indicate the level of abstraction
of the resources provisioned: Software as a Service (SaaS) provides
the capability to use the application running on cloud infrastructure,
from different client interface, e.g. web browser; Platform as a Ser-
vice (PaaS) provides to the consumers the capability to deploy users
applications, onto the cloud infrastructure without any control of the
underlying infrastructure; Infrastructure as a Service (IaaS) allow the
consumer the capability to provision processing, storage, networks,
and other resources where the users can run their operating systems

16 1 CPS Relevance and Motivations

and applications. In addition, in terms of deployment models, the
cloud offers the possibility to use: private cloud, provisioned for ex-
clusive use of single organization; community cloud, provisioned for
exclusive use by a specific community of consumers from organiza-
tions that have shared concerns; public cloud, provisioned for open
use by the general public; hybrid cloud, composed of two or more
distinct cloud infrastructures, i.e. private, community, public cloud,
that remains unique entities but bounded together.

It starts to be recognized and that CPS for Smart Cities can be
industrially deployed in real scenarios if and only if their infrastruc-
ture and applications can benefit from cloud computing, in order to
allow dynamic provisioning of resources by service isolation and to
enable self-scaling and managing capabilities in a cost-effective way.
Typical advantages that cloud computing can bring in CPS include:

• Scalability. Cloud capabilities can be elastically provisioned
and released, in some cases automatically, to scale rapidly out-
ward and inward commensurate with demand and to the final
users, the capabilities available for provisioning often appear
to be unlimited. Traditional approaches to provisioning, such
as worst-case capacity planning, lead to over-engineer infras-
tructures to ensure quality requirements during peak load con-
ditions. This would lead to unsustainable costs for companies
and municipalities willing to offer Smart City services, and is
strongly mitigated by proper integration with the cloud.

• Resource pooling. The providers computing resources, e.g. pro-
cessing, memory, storage, network bandwidth, are pooled to
serve multiple consumers using a multi-tenant model, with dif-
ferent physical and virtual resources dynamically assigned and
reassigned according to consumer demand.

• On-demand provisioning. Consumers can unilaterally provision
computing capabilities, as needed automatically without requir-
ing human interaction with each service provider, allowing to
increase/decrease hardware resources only when there is an
increase/decrease in their needs.

• Broad network access. Capabilities are available over the net-
work and accessed through standard mechanisms that promote
use by heterogeneous thin or thick client platforms, e.g., mobile
phones, tablets, laptops, and workstations.

• Measured service. Cloud systems automatically control and
optimize resource usage by leveraging a metering capability
at some level of abstraction appropriate to the type of service.
Resource usage can be monitored, controlled, and reported, pro-

1.5 Cloud-assisted CPS: Potential and Limitations 17

viding transparency for both the provider and consumer of the
utilized service.

• Costs: systems based on cloud are relatively cheap to main-
tain, use, and upgrade, and most importantly their resource
provisioning is elastically based on demand.

Cloud computing techniques are nowadays well developed and
represent an industrially mature technology, with all the potential to
assist and complement mobile devices, and in particular IoT, scenarios
in order to make applications industrially feasible and cost-effective.
For instance, referring to IoT, sensors usually adopt a high sam-
pling rate, in particular for critical applications, to better monitor and
act instantly, thus generating huge amounts of data to be managed
and stored; IoT devices are generally resource-constrained, with lim-
ited storage, processing power, communication resources, and energy;
sensed data are often transmitted via multi-hop wireless communica-
tions towards few sink nodes that have to play an active role with
non-negligible duties and resource consumption [32].

Virtualization techniques, like cloud computing, are enabler and
key technologies for mobile devices applications and in particular in
IoT environment because they assist mobile devices to overcome their
constraints. In fact, they allow IoT devices to perform tasks they are
not able to execute due to their very limited resource available. In
addition, they are also suitable to assist more powerful mobile devices
to extend their functionalities with more complex operations. Virtu-
alization techniques allow to apply computational-intensive function-
alities, i.e. based on statistical analysis or machine learning tools,
to every kind of mobile devices applications, greatly extending the
quality of the application provided. An effective and efficient inte-
gration between mobile devices and the cloud can significantly con-
tribute to overall efficiency, sustainability, data quality, and industrial
cost effectiveness, with the cloud being able to provide transparent
and dynamic scalability to manage peak load situations and to avoid
worst-case capacity planning and the associated over-engineering of
support platforms.

It is widely recognize in the literature that, in order to realize
their full potential, CPS need a support infrastructure and a set of
technologies that make their realization feasible and meet their re-
quirements. In particular, CPS necessitate of a much more powerful
and sophisticated computational components in order to deal with the
challenges and requirements related to the massive usage of mobile
devices, as described previously.

A first suitable improvement and, at the first sight feasible solu-
tion, could be the introduction of a mature virtualization technique, i.e.
cloud computing, to exploit the CPS controller capacity and, thus, to

18 1 CPS Relevance and Motivations

strongly improve its efficiency and ability to provide complex analy-
sis and functionalities. In fact, as already described, cloud computing
has the potentialities to perfectly complement CPS and solve many of
their lacks associated to the mobile devices. At the same time, the in-
tegration of cloud in mobile devices applications is double-faced and
not easy to manage, bringing substantial advantages to both providers
and end users on one side, but raising new unsuitableness in the in-
tegration with ubiquitous services on the other side. Although cloud
can import huge improvements in a system processes with its great
amount of resources availability, direct exploitation of cloud resources
by ubiquitous IoT devices may introduce several technical challenges
and inefficiencies, such as network latency, traffic and communica-
tion overhead to the devices, and further costs. In particular, dumbly
connecting a myriad of sensors directly to a global large infrastruc-
ture, with large-scope and coarse-grain functionalities is extremely
demanding for virtualized resources, which are not designed, imple-
mented, and deployed for high-frequency remote interactions, e.g. in
the extreme case of one cloud invocation per each sensor duty cycle.
When anything would be able to observe the surrounded environment,
gathering information from it and generating data, it could be possible
that some data may be not required in a certain moment and, thus, it
is not required to send information to the cloud. Ubiquitous devices
gather enormous quantity of data during normal execution, but can
be even worst in crowded places during peak load conditions or in fu-
ture applications because of the purpose of mobile devices systems to
sense as much as possible and, thus, increasingly collect more data,
far exceeding the bandwidth capacity of the networks. In addition, IoT
sensors usually use an high sampling rate, in particular for critical
applications, to better monitor and act instantly and so generates a
great amount of data which should be managed and stored. The result
is a continuous iteration of the support infrastructure which remains
busy per each sensor duty cycle, thus the property of scale per sensor
will not stand. In this context, a system where cloud and IoT devices
communicate directly is not realizable because the bandwidth cannot
support this data load and also future improvements of communica-
tion capabilities are not enough to face the, faster, data growing rate.
Those amount of data, if letting sensors directly communicate with
the cloud, might possibly slow down or even lead the cloud to crash
and might also cause an extremely high energy consumption which
could significantly affect the systems performance, increasing redun-
dancy of requests and information traffic and, thus, the network could
become a bottleneck for the whole system.

As a general consideration, it starts to be widely recognized that
an architectural model only based on direct interconnection between
IoT devices and the cloud is too simplistic [22, 30]. In other words,
the trivial integration with traditional cloud resources is inappropriate
because they are too globally available and far from mobile device

1.5 Cloud-assisted CPS: Potential and Limitations 19

localities to satisfy rapidly, locally, and in a decentralized way the
new associated requirements and critical issues have to be faced in
order to turn new mobile devices applications suitable to be deployed
in real world scenario and be widespread in many contexts.

In literature many research highlight issues about direct commu-
nications between IoT devices and cloud. [33, 34] proposes new
architectures that will allow the integration of any lightweight sen-
sors with the cloud, by overcoming typical cloud issues like latency,
management of continuous sensing, the ability to support periodic
events and the lack of elasticity when numerous wireless sensors
transmit data simultaneously. [35] addresses the problems deriving
from continuous sensing that raise many challenges with cloud iter-
ations, such as energy consumption, cost, and communications over-
head. As a workaround of these issues, it is been proposed that
devices collect data and only sporadically upload them to the cloud
but, in this way, this delay-tolerant model of sensor sampling and
processing severely limits applications effectiveness and the ability
of the system to be aware of its context, adapt and react to situations.
[36] focuses on network latency impact in IoT-cloud applications and
some experiments were performed to observe the impact on system
performance on different deployments. These evaluations show that
the most sensitive latency is edge to cloud and this is especially true
for cases when the edge requires accessing the core for retrieving
large amounts of data which needs to be transmitted fast enough to
meet response time requirements. The more the edge computations
access core data the worse the system response time and performance
degradation gets.

In order to effectively and efficiently develop CPS, a two-layer
infrastructure model only based on i) cloud computing resources and
ii) sensors/actuators may be too simplistic. For instance, letting sen-
sors directly communicate with the cloud may cause extremely high
energy consumption. As a general consideration, it is inappropri-
ate, from both performance and economic points of view, to have each
sensor communicate independently with its cloud-based applications,
with no optimization at all associated with reduction of connections,
possible data batching, in-CPS aggregation, and event processing.

These issues highlight that the efficient and effective cloud-CPS
integration calls for innovative management solutions, integrated into
a support infrastructure capable of cross-layering application-specific
requirements and properly offering the most suitable tradeoff between
quality and resource consumption. An effective and efficient inte-
gration between IoT and the cloud is challenging but can signifi-
cantly contribute to overall efficiency, sustainability, and industrial
cost effectiveness, with the cloud being able to provide transparent
and dynamic scalability to manage peak load situations and to avoid
worst-case capacity planning and the associated over-engineering of

20 1 CPS Relevance and Motivations

support platforms to ensure quality of service requirements.

21

2 | Edge-enabled Middle-
ware for Scalable CPS

For the motivations described in the previous chapter, it is neces-
sary to adopt solutions based on the introduction of a intermediate
middleware to enable a new generation of mobile devices supports
based on the efficient integration of IoT devices/actuators and cloud
resources. The aim of the present work is to discuss, analyze and
technically introduce novel middleware solutions to greatly improve
the CPS abilities via the integration between CPS and cloud com-
puting resources. In particular, those solutions are based on the inte-
gration between mobile devices and cloud resources, with the purpose
of avoiding or greatly reducing the negative effects of the issues re-
lated to their direct connection. In fact, a distributed and intelligent
intermediate layer, composed by multiple edges, is required to add
extra functionalities to the system and in order to permit the system
to work properly, efficiently, providing quality of service and capital-
izing the great potential the cloud has. The intermediate layer can
store mappings between physical sensors and receiving endpoints on
the cloud, performing a little processing of data when devices gather
them and before send them to the network and eventually to the cloud.
Thus, it operates data transmissions according to application-specific
requirements and overall system optimization purposes, as well as
locally managing the reaction of actuators on the CPS environment,
by having everything seamlessly connected as a virtual continuum of
interconnected and addressable objects in a worldwide dynamic net-
work. The result will be an underlying structure on which users may
develop novel applications useful for the entire society. The inter-
mediate middleware is considered a driver for enterprise/industrial-
based IoT that brings connections to the real world in a way never
reached before and tries to face new business models, introduced by
the diffusion of mobile devices, rethinking about how to create and
capture value.

The intermediate middleware layer aims to move part of the com-

22 2 Edge-enabled Middleware for Scalable CPS

putation to the edge of the network, thus, modifying the traditional
two-layers architecture, composed of cloud computing and mobile de-
vices, into a three-layers architecture, as shown in Figure 2.1, where
a middleware layer supports mobile devices applications to satisfy
their requirements.

Figure 2.1: General three-layers architecture

In the following, this thesis work will detail this general archi-
tecture, specifiyng the middleware layer structure that best fit the
category of application domains where is used, in order to address
the satisfaction of the requirements needed by the specific CPS. In
particular, in relation to different parameters, such as the location of
the mobile devices, the distance between cloud and mobile devices,
the resources available on the mobile devices, the type of informa-
tion analysis required, and so on, it is possbile to indicate the most
appropriate middleware to use. In this way, it is possible to create
a specialization of the general three-layers architecture that support
the CPS system and makes it working more efficiently, satisfying the
requirements needed, and with also improvements of the system ca-
pabilities. The most promising and widespread solutions, which will
be discussed in the following, are fog computing and edge comput-
ing, which will be described highlighting the main characteristics and
differences between them.

The middleware introduction is starting to be widely recognized
in the related state-of-the-art and other work in the literature, such
as [37], [38], [39], [40], [41], has already point out the impor-
tance of a intermediate layer to satisfy the applications requirements
in distributed environments. At the same time, although CPS and

2.1 Requirements Taxonomy for Edge-enabled Middleware 23

Smart Cities applications concepts per se are not groundbreakingly
new, the aspects to study and of potential originality are still rel-
evant and manifold and the related research fields are very large
scope and many critical technical aspects, i.e. scalability, interop-
erability, mobility, efficient communications, and so forth, are still to
be properly investigated, thus leaving space for industrially-relevant
and impactful directions of solution, as explained in the following.

2.1 Requirements Taxonomy for Edge-enabled
Middleware

This section proposes a possible taxonomy for different families of
solutions, that indicates how the requirements of mobile applications
are spread over the architecture and which requirements are more
relevant on each layer. Based on the careful analysis of all the
state-of-the-art fog computing, edge computing-related literature, an
original taxonomy for fog/edge solutions is proposed, based on the
most proper positioning of the different features in different architec-
tural layers and resume how the applications requirements are spread
and divided into the architecture (see Figure 2.2).

Figure 2.2: Cloud-Fog-IoT features distribution

The feature positioning are motivated with references to some clar-
ifying application examples already explained in the previous chapter,
e.g., Smart Grid, Smart Building, Smart Transportation, Wind Farm,
and so on.

• Scalability. This feature summarizes all the mechanisms, al-
gorithms, and tools that make IoT applications built on top of
the fog/edge support deeply scalable. In particular, there are
two sub-types of scalability: related to Big Data and geo-
distribution. Big Data scalability support is located only on

24 2 Edge-enabled Middleware for Scalable CPS

the cloud, even if a part of computation (Small Data) is on
the intermediate layer. Big Data analysis based on long-term
analysis usually relates to prediction that try to capture system
behaviors and to infer system evolution. Independently from the
sub-type, elastic scalability is a key property of fog computing
infrastructures that enables to scale up/down both the single
node functions, by adding/removing internal components, and
the whole hierarchy of fog nodes, by adding/removing external
nodes also at different hierarchy levels. SCV/STL include the
creation of efficient traffic policies to avoid traffic congestion
and Wind Farm provides functions to predict and dynamically
optimize bids/commitments.
Geo-distributed scalability refers to the ability to manage a
large number of distributed nodes and is located on the fog
layer, where several devices are spread in wide-scale scale
networks, like in SCV where vehicles are dense and can move
across regions.

• Data Quality. This property also relates to the overall ability
(and associated knowledge) of the IoT deployment environment
to detect anomalies and react in real time, from geo-distributed
data gathered from sensors, by applying fault detection tech-
niques. Therefore, data quality support is positioned near the
edges on the intermediate middleware layer. For instance, in
SCV applications, speed data quality can be improved by cal-
culating the standard deviation of observed vehicles in relation
to the average speed received in the same conditions (location,
time of the day, weather, type of vehicle, etc.) and define data
thresholds to discard outlier data.

• Location-awareness. This is a key requirement to increase
the efficiency (resource consumption, network congestion) and
overall quality of the system. Location-awareness-related func-
tionality is located in the intermediate middleware layer to
be closer to the targeted environment but anyway with group-
ing/locality visibility. In SCV/STL it is possible to divide the
area of interest (intersections, roads), also based on RSU po-
sitioning; RSU can infer whether a vehicle is in danger (ap-
proaching too fast, dangerous bend), by reacting on nearby
traffic light cycle or with alarms.

• Interoperability. Heterogeneity is an intrinsic characteristic of
real world systems in this field and a property that can strongly
affect system performance. In particular, in this context the in-
teroperability feature enables the possibility for different fog
nodes to communicate with and to compose hierarchical infras-
tructures of fog nodes, as well as to exchange internal fog node
components. Mobile devices and middleware layers must pro-

2.1 Requirements Taxonomy for Edge-enabled Middleware 25

vide interoperability, due to the necessity to handle different
devices, in term of computational power, resource capability
lifespan, and communication technologies. SCV/STL are com-
posed of heterogeneous components (on-board sensors, RSU,
traffic lights) that must work properly together, even if multiple
manufacturers provide different implementations of them; they
may extend beyond the borders of a single controlling authority.

• Real-time. Real-time requirement is characterized by compu-
tational activities with stringent timing constraints that must
be met in order to achieve the desidered behavior and can be
divided into hard and soft real-time. Hard real-time have the
highest possible priority, are used for critical activities, and
need to hit every deadline in order to keep the system to
run under control and avoid even relevant consequences [42].
Soft real-time can miss some deadlines, although causing
performance degradation, producing anyway some useful re-
sults [42]. Both hard and soft real-time reactions, with low-
latency priority-driven responses to important interactions with
incoming data, are required to react properly over the target
CPS. Initial data processing and actuation must be performed
within the fog layer to have sufficient resource availability and
to avoid the latency due to interaction with global cloud. In
SCV and STL applications, hard real-time reactions are crucial
to ensure safety: for instance, [22] estimates that, in STL, the
reaction time must be within few ms to be compliant with safety
requirements. In Wind Farm, low-latency actuation is important
to prevent turbine damage in case of strong wind or to optimize
wind power forecasting.

• Mobility. The intermediate layer must manage device dis-
appearance or device recoverability if a device exits its sub-
network or something wrong/unexpected happens. Similarly,
devices must be able to shift from one edge node to another
without anomalies, thus ensuring seamless hand-off and dis-
coverability notwithstanding device/fog node mobility. For in-
stance, in SCV there is the need for fast mobility support to
manage moving vehicles as macro-endpoints, that can move
freely in the environment with the ability to discover other fog
networks, and let them switch from one middleware sub-network
to another.

• Security/Privacy. They are, probably, the most troubling re-
quirements for real-world applications and are pervasive in all
parts of a system, requiring end-to-end security/privacy, thus,
the security/privacy functionality support is spread to all lay-
ers. According to [43], the threat profile for handheld devices
is a superset of the profile for desktop computers due to ad-

26 2 Edge-enabled Middleware for Scalable CPS

ditional threats related to size, portability, wireless interfaces,
and associated services; they include theft, unauthorized ac-
cess, malware, spam and electronic tracking, electronic eaves-
dropping and tracking, and cloning. Since fog nodes are the
first to access data, they must provide contextual integrity and
isolation, and control aggregation of privacy-sensitive data be-
fore that data leave the edge. In addition, all the nodes at
the edge (and also the single components within a single edge
node) that manage trustworthy data must be hardware and soft-
ware attestable; in mature support environments, it is critical
to adopt policy-based security management solutions capable
of efficiently enforcing high-level rules, e.g., for authentication,
strong passwords, and automated disabling of non-required ser-
vices. In the intermediate layer, privacy mainly focus on the
ability to monitor/protect data from information exposition. In-
termediate solutions keep data in the network for better privacy
and must be able to anonymize and define the ownership of
user data, thus localizing intelligence but preventing to reveal
protected data. In STL/SCV, security is key to avoid collisions,
react in relation to the conditions of the vehicles/roads and they
must also focus on privacy concerns due to the pervasive surveil-
lance on each action, images acquisition or vehicles movements
patterns.

Note that the proposed taxonomy is coherent with other first clas-
sification efforts recently emerged in the literature and, at the same
time, originally addresses application requirements needs in a more
focused way. For example, by comparatively considering the rec-
ognized fog computing taxonomy presented in [44], the main differ-
ences of the present taxonomy are: i) it is more application-oriented,
by stressing the importance of requirements that the infrastructure
should provide for the applications that run on top of it (less accent
on infrastructure requirements); ii) it is more abstract and higher-level
taxonomy, that does not focus on specific concerns of lifecycle man-
agement, such as automated and easy deployment, implementation,
testing, maintenance, and so on; iii) it is less focused on business-
related requirements, such as cost savings, adaptive infrastructure to
support changing business needs and economical operations, business
support in the hierarchy, and so on. Table 2.1 summarizes how the
above features impact the CPS applications described in the previous
section.

2.2 Fog Computing 27

Table 2.1: CPS Application Requirements

Big-Data
Scalability

Geo-
distribution

Data Qual-
ity

Location-
awareness

Interoper-
ability Real-time Mobility

Security-
privacy

ParticipAct Strong Strong Strong Strong Strong Medium Strong Strong

Smart Grid Strong Strong Strong Strong Strong Medium Strong Strong

Smart
Building Strong Strong Strong Strong Strong Medium Strong Strong

SCV Strong Strong Strong Strong Strong Strong

Strong
external -
Limited in
vehicle

Strong

STL Strong Strong Strong Strong Strong Strong Strong Strong

Wind Farm Strong Limited (in
farm) Medium Medium Limited Medium Limited

Medium
(expecially
physical)

Smart
industry Strong Medium Strong Medium Medium Medium Medium Strong

WSN Strong Strong Strong Strong Strong Strong Strong Strong

2.2 Fog Computing

Fog computing is a relatively new concept and already popular term,
coined by Cisco [30], that indicates a part of computation moved near
to end-users with the purpose to let off their computing load and speed
up response/performance. In other words, fog computing identifies a
horizontal architecture that distributes computing, storage, control,
and networking functions closer to the users along a cloud-to-thing
continuum [44]. Fog computing is a highly distributed solution that,
in terms of infrastructure, is located between the network backbone,
where there are the global virtualized resources and services, and the
mobile devices at the edge, allowing to interface and connect the two
sides towards advanced pervasive applications.

Fog computing can be profitably introduced to let IoT applica-
tions interwork efficiently with cloud resources: in fact, fog can act
as the intermediation layer between the cloud and IoT, at the same
time by extending the applicability domains of cloud solutions and by
increasing resource availability in MIoT. In this perspective, fog can
be considered as a significant extension of the cloud computing con-
cept, capable of providing virtualized computation/storage resources
and services with the essential difference of the distance from utiliz-
ing endpoints. While the cloud exploits virtualization to provide a
global view of resources everywhere available and consists of mostly
homogeneous physical resources, far from users and devices, the fog
tends to exploit heterogeneous resources that are geographically dis-
tributed (often with the addition of mobility support) and situated in
proximity of data sources and targeted devices. In other words, fog
computing has been designed to put intelligence close to IoT devices
in order to perform decentralized tasks as soon as data are generated
from sensors and can affect all different levels of the IT develop-

28 2 Edge-enabled Middleware for Scalable CPS

ment, from device management to network traffic control, from data
aggregation to resource management, from application developmen-
t/coordination to security and fault recognition.

The related literature [45] uses in this context the term softwariza-
tion of network and service management to highlight the evolution
pushed by the fog. A primary idea emerging from existing fog solu-
tions in the literature is to deploy a common platform that supports a
wide range of different applications, and the same support platform,
with multi-tenancy features, can be used also by a multiplicity of
client organizations that anyway should perceive their resources as
dedicated, without mutual interference [46]. Figure 2.3 shows a high-
level architecture that summarizes the above vision by positioning the
IoT, cloud, and fog computing layers.

Figure 2.3: The high-level picture of the integration of cloud, fog, and IoT tech-
nologies

Due to cloud technology maturity, cloud-side interfaces are more
defined and it is currently easier to make cloud service platforms
interact; on the contrary, IoT-side interfaces and, even more, fog ones
are more various and heterogeneous nowadays and much work should
be done to homogenize the different approaches and implementations
that are very recently emerging.

The fog-cloud integration literature, in particular in the MIoT do-
main, is relatively limited and still in its infancy. In [30] a hierar-
chical partitioning of fog computing is proposed. The bottom layer
is designed for M2M communications with ubiquitous devices; it col-
lects/processes data flows and issues control commands to actuators;
it also filters the data to be consumed locally, by delegating the
management of the remaining dataflows to the higher-level tiers in

2.2 Fog Computing 29

the hierarchy. The second and third tiers deal with visualization and
reporting towards human-to-machine interactions (explicit operators
involvement), as well as systems/processes (M2M-oriented).

The concepts of fog and cloud computing can be integrated in a
single infrastructure to achieve the best from both technology. Fog
nodes can access more energy, can be physically larger, can storage
terabytes of data and have more capabilities than IoT devices, thus,
can also support physical endpoints to overcome their constraints in
terms of energy, space, environmental issues and reliability.

Cloud computing improve IoT applications, creating better services
more efficiently and, with the fog computing, communication can be
made real-time for latency-sensitive applications like video stream-
ing, gaming, augmented reality, and so on. This is possible because
fog computing has been designed to put intelligence in the network
in order to perform tasks as soon as data arrive from sensors, on
the contrary of solutions which use a single physical component, like
a gateway, where network is not physical and it cannot perform as
fog. Fog provides an easier and more efficient execution of tasks like
storage, data aggregation, pre-processing, data security and privacy
tasks near where information is gathered, so that the performance can
improve significantly. Since fog is localized, the proximity to devices
guarantees location-awareness and thus the possibility to aggregate
data easier or also to increase security of the system detecting fault
data due to its knowledge of the surrounded environment and the
data domains.

2.2.1 Architecture Proposal

In the literature, primarily due to the novelty of the fog concept,
only few works propose detailed architecture about how to implement
the fog layer and which components it should consist of. Figure 2.4
illustrates an original reference architecture that details the high-
level architecture of Figure 2.3 and go into more in-depth technical
details of the fog computing analysis.

This novel architecture can guide fog computing solution imple-
mentations and can contribute to create a common understanding to
advance fog research and to leverage the deployment of real-world
fog implementations. Note that the intermediate fog layer in the pro-
posed architecture may consist of a single node in simple deployment
scenarios, as well as of a hierarchy of coordinated fog nodes, each
one with a possibly different and more specific task (heterogeneous
roles), also depending on the complexity and scalability requirements
of the targeted IoT application.

30 2 Edge-enabled Middleware for Scalable CPS

Figure 2.4: The proposed cloud-fog-IoT reference architecture

Local Sensing and Data Handling

In fog computing, sensing is a critical aspect, because directly affect-
ing the quality (e.g., in terms of precision, accuracy, confidence level,
and so on) of the generated data, which typically is the primary input
for successive application steps. In the usual case of sensors without
sufficient intelligence, location awareness or computational power to
perform local filtering operations on data, they send all generated
data to the fog layer; the fog is responsible for providing automatic
data acquisition mechanisms to extract useful data and, consequently,
for saving resources during later stages.

This abstraction layer allows sensors/actuators to easily inter-
face with the fog node and to efficiently send data for higher-level
system analytics and software functions. It also allows to share
meta-data about fog architectural elements, for example to the pur-
pose of data and multi-vendor interoperability, service composabil-
ity, or cross-layer optimizations. Notable examples are to optimally
route data between fog nodes by exploiting information-centric net-
work (ICN) solutions and to create dynamic fog topologies through
software-defined network (SDN) mechanisms and tools [44].

In the proposed architecture, a first component is used to retrieve
data from all sensors, based on an abstraction layer, that acts as
data sink for sensors. Initial data retrieved from sensors need to be
handled and automatically transformed into useful data for further
elaborations, through processes like i) data aggregation, ii) data fil-
tering, and iii) data normalization, that transforms the aggregated

2.2 Fog Computing 31

and filtered data into a standard and commonly agreed format.

Big and Small Data Processing

After a first step of raw data managing, middleware components pro-
cess data, through both more traditional data analytics on the cloud
(named Big Data processing in the following) and more lightweight
data processing techniques on the fog layer (named Small Data pro-
cessing in the following). Big Data analysis and processing are typ-
ically used to perform more strategic and system-wide decisions, or
for policy management; they usually need a non-negligible amount
of runtime resources to support the execution of data intensive opera-
tions. As widely accepted in the related literature, for instance in [47],
Big Data are data characterized by variety, volume, velocity, veracity,
volatility and they should properly be hosted by cloud resources, thus
relieving scalability, cost, and performance issues.

On the contrary, fog computing must perform short-term analysis
and lightweight processing with relatively limited amount of data.
Small Data can be considered as an extension of the general Big Data
concept, specifically targeting resources near the devices, suitable to
be handled in terms of fog computing support and able to perform
low-latency actions, e.g., by taking operational decisions as soon as
data can be turned into meaningful context. In the related literature
the Small Data term starts to be used to refer to a limited quantity
of fine-grained data; [48] points out the main differences between Big
and Small Data in specific application domains.

Actuation

One of the most interesting components in our architecture proposal
relates to the actuation phase. In IoT applications, after improve-
ments in collecting the environmental data by sensors, fog can also
play the role of strongly improving the actuation phase with timely
reactions to sensed aggregated/filtered information. Many IoT appli-
cations require to timely react on the execution environment to boost
their responsiveness quality, in particular when operating in critical
contexts and if the monitored behavior relevantly deviates from the
desired state; in this perspective, fog computing might considerably
turn on new opportunities of effective and efficient implementation.

Storage - Cloud distribution

Another original element of the proposed architecture is the stor-
age functionality, made up by a group of resources that act as a
small set of distributed cloud-like storage resources inside the fog.
This facility can bring limited cloud services closer to the edge of

32 2 Edge-enabled Middleware for Scalable CPS

the deployment targets or temporarily store some data, in particu-
lar Small Data, and periodically upload them to the cloud, reducing
unnecessary global-scope interactions. Non-negligible benefits are
expected, also in terms of scalability, reliability, data integrity, and
boost of performance, with improvement in application responsiveness
and user quality of experience.

2.3 Mobile Edge Computing

The mobile edge computing (MEC) is a category of different solutions
that differ from fog computing, mainly from the application and the
architectural point of view, because it is targeted for more powerful
mobile device and is based on support servers that work in a more
standalone way rather than highly connected and distributed ones,
with specialized nodes than usually depend from other nodes.

[49] indicates MEC as small-scale data centers deployed by the
telco operators in close proximity with end-users, and may be colo-
cated with the existing infrastructures, i.e. wireless access points,
such as macro base stations. [50] and [51] highlight the neces-
sity of new infrastructures, with low-latency connection to large-scale
resource-rich cloud computing infrastructures within the network edge
and backhaul/core networks, that extend traditional cloud-based in-
frastructure, deployed by telco operators, for fast interactive response,
high reliability, and in general to satisfy the stringent needs of tele-
com services.

Starting from the previous definitions, we claim edge computing
concept emerged from telco operators that can benefit from the virtu-
alization techniques introduction at a closer location to the edge of
the network, by exporting cloud capabilities to the users proximity.
Mobile edge computing solutions fall into a same definition based
on the extension of typical telco services, which are global services
providers that supply services into the main network, usually far from
the mobile devices, toward the edge of the network. With the pro-
liferation and wide-spread adoption of mobile telephony and data,
service providers have been eager to exploit context information or
customized services, i.e. location-based service, and the mobile edge
computing is the most suitable concept to extend the typical telco
network. Mobile edge computing introduces servers that are used
by providers to extend the global telco services approaching mobile
devices with closer servers that have the services deployed on them.
In this perspective, edge computing nodes can be considered as the
access points to the main network backbones used by the telco compa-
nies to distribute services or as smaller base stations with the ability
to propagate the services near end points.

2.3 Mobile Edge Computing 33

The main solutions that fall into the mobile edge computing cat-
egory are Follow-Me-Cloud and ETSI Edge Computing.

2.3.1 Follow Me Cloud

Follow-me Cloud (FMC) proposes a mobility management scheme,
defined as a technology developed to support novel mobile cloud com-
puting applications, by providing both the ability to migrate network
end-points and to reactively relocate network services depending on
users locations, and migrated to follow their movements. In relation
to the users location, FMC provides the services execution from opti-
mal data center for the current locations of the users and the current
conditions of the network. Following this concept of mobility, it is
possible to introduce an analytical model for FMC that provides the
performance related to the user experience and to the cloud/mobile
operator, underlining the importance of careful consideration when
triggering the service migration [52]. The general goal is to guar-
antee adequate performance for the client-server communication and
localize network traffic generated by applications to have a precise
control on the use of network resources.

2.3.2 ETSI Mobile Edge Computing

ETSI Mobile Edge Computing (in the following called MEC) is the
general MEC concept defined and standardized by the Industry Spec-
ification Group (ISG) within the European Telecommunications Stan-
dards Institute (ETSI [53]). It is defined as an emerging technology
that provides cloud and IT services within the close proximity of mo-
bile subscribers, moving applications, data, and services from cloud
towards the edge of the network. It enables mobile subscribers to ac-
cess IT and cloud computing services at the close proximity within the
range of Radio Access Network (RAN) and can be defined as a model
for enabling business oriented, cloud computing platform within the
radio access network at the close proximity of mobile subscribers to
serve delay sensitive, context aware applications [54]. In fact, MEC
offers real time RAN information, such as network load and users lo-
cation, to provide context aware services to the mobile subscribers,
thereby enriching users satisfaction and improving Quality of Expe-
rience (QoE).

MEC is based on a virtualized platform, with an approach com-
plementary to Network Function Virtualization (NFV): in fact, while
NFV is focused on network functions, the MEC framework enables
applications running at the edge of the network. The infrastructure
that hosts MEC and NFV or network functions is quite similar; thus,

34 2 Edge-enabled Middleware for Scalable CPS

in order to allow operators to benefit as much as possible from their
investment, it will be beneficial to reuse the infrastructure and infras-
tructure management of NFV to the largest extent possible, by hosting
both Virtual Network Functions (VNF) and MEC applications on the
same platform [53].

MEC platform increases the edge responsibility, bringing the com-
putation and storage capacity to the edge of the network and allows
computation and services to be hosted at the edge, which reduces the
network latency and bandwidth consumption of the endpoint. Net-
work operators can allow the radio network edge to be handled by
third-party partners, this will allow to rapidly deploy new applica-
tions and edge services to the mobile subscribers, enterprises. MEC
applications are characterized by proximity of data sources that de-
termines a significant reduction in data movement across the network.
Thus, the main benefits result in more location awareness, reduced
congestion, cost and latency, elimination of bottlenecks resulting from
centralized computing systems, improved security of encrypted data as
it stays closer to the end user reducing exposure to hostile elements
and improved scalability arising from virtualized systems. All of this
can be translated into value and can create opportunities for mobile
operators, application and content providers enabling them to play
complementary and profitable roles within their respective business
models and allowing them to better monetize the mobile broadband
experience [55].

Note that nowadays in most literature the edge computing and
fog computing terms are commonly used as synonymous to specify
an intermediate layer to support mobile devices, due to their similar
objectives and some common features. However, the terms indicate
different concepts and should be used more precisely to indicate each
own a different approach, given that edge-based and fog-based solu-
tions exhibit some key differences that make it different technologies.
For instance, fog computing has been conceived as an extension of
cloud computing and, thus, works in association and in a comple-
mentary way to the global cloud resources, while edge computing is
not necessarily linked to cloud computing and can work standalone.
Fog computing is based on a hierarchical architecture where node
has different tasks in relation to their level, while edge computing
minimizes the number of layers used and usually is within a flat or-
ganization. In relation to that, fog focuses on scalability and allow to
scale the number of nodes into the architecture while edge comput-
ing is not particularly focused on scalability. Fog computing extends
edge computing concept because it includes, along to the computation,
also networking support facilities, storage, control and acceleration
components.

2.4 Other Edge-related Solutions 35

2.4 Other Edge-related Solutions

There are other solutions, with the same purpose to support mobile
devices, extending their capabilities and meeting their requirements,
which are based on different concepts of fog end edge computing.
The most relevant approaches in the field are cloudlet and mobile
computation offloading.

2.4.1 Cloudlet

The cloudlet approach, from one side, is very similar to the MEC
concept, exploiting a cluster of multi-core computers, with gigabit
internal connectivity, by using virtualized resources, near endpoints,
thus, aiming to bring the computing power of cloud data centers closer
to end devices. On the other side, it differs from the edge computing
that is specifically defined as an extension for the telco infrastructure,
because it is not considered a development in the evolution of mobile
base stations or linked to the convergence of IT and telecommunica-
tions networking.

Cloudlet is a general-purpose approach that can host every kind
of third-party services, with the primary goal to satisfy real-time and
location-awareness requirements. If no cloudlet is available nearby,
mobile devices can degrade to a fallback mode that involves a ge-
ographically distant and globally available cloud; full functional-
ity and performance can return later if a device discovers a nearby
cloudlet [46]. A cloudlet has only soft state, thus, the management
burden is kept considerably low [56] and is completely transparent un-
der normal conditions, giving mobile users the impression of directly
interacting with the cloud [57]. Cloudlets offer numerous advantages
over the global cloud, such as lower latency, higher bandwidth with
less generated traffic, offline availability, cost-effectiveness.

Although the typical advantages related to the movement of the
computation near the edge of the network, cloudlet is less effective
compared to cloud computing characteristic: it covers a small region
and is less resourceful than the cloud, thus, it is not scalable in ser-
vice and resource provisioning. To overcome this cloudlet challenging
issues, the MEC paradigm has been proposed [54].

2.4.2 Mobile Computation Offloading

Mobile applications are constantly growing in functionality and com-
plexity in order to offer a wider set of high-level features that chal-

36 2 Edge-enabled Middleware for Scalable CPS

lenge execution time and energy usage in even top-end mobile smart-
phones. This is especially true for mobile applications aimed to seam-
lessly augmenting users cognitive abilities such as speech recogni-
tion, natural language processing, computer vision, and augmented
reality applications [46]. The computation ability required to execute
the functions needed in such applications can be beyond the computa-
tion ability of the used mobile devices, or can drain their battery life at
an unacceptable pace (e.g., a few percentage points per minute). This
raises major concerns for users because, as the complexity of com-
putations in mobile applications increases, the performance of their
smartphones degrades, as well as their energy consumption increases.
In other words, the gap between the demand of resource-intensive ap-
plications and the more slowly growing availability of resources at
mobile devices becomes critical for offering a fully satisfactory users
experience.

Mobile computation offloading [58] has attracted much interest
and is widely accepted as a powerful concept that can overcome the
resource constraints of mobile devices and low-power IoT devices,
relieving them from heavy computation duties that conflict with their
constrained and limited available resources, primarily in terms of bat-
tery power. Mobile computation offloading allows dynamically mi-
grating computation-intensive applications from resource-limited de-
vices to external powerful servers; it can provide reduced execution
time and, most relevant, reduced energy consumption at the cost of
the process of transferring computation-related information. In par-
ticular, it starts to be recognized that the offloading decision should
be context-dependent, i.e., deciding when and which computation task
to offload depending on current context data such as execution time,
energy consumption, task complexity, expected network latency, etc.

Traditional mobile computation offloading is designed to be per-
formed towards virtualized computing resources over the globally
available cloud. However, due to the unsuitability of cloud resources
to deal with the strict latency requirements of mobile devices, also
mobile computation offloading is starting to consider the possibility to
dynamically offload computations from mobile devices towards fog or
mobile edge nodes. Mobile applications can benefit from computation
capability of fog and edge nodes to remain available and responsive
while processing large volumes of data [59].

Table 2.3 resumes the main characteristics of the previous de-
scribed proposals.

2.5 Edge-based Architectural Proposals 37

Table 2.3: Middleware Solutions

Solution Main Character-
istics Strengths Weaknesses

Fog Computing Hierarchy, node
specialization

Middleware fea-
tures

Cloud support
required

Follow-Me
Cloud

Dynamic ser-
vices mobility

Less cloud-
devices distance

No middleware
support

ETSI MEC
Flat organi-
zation, telco
extension

Middleware fea-
tures IoT support

Cloudlet Small stan-
dalone cloud General-purpose

Scalability,
resource provi-
sioning

Computation
Offloading

No predefined
architecture

Client computa-
tion relief

Offloading tasks
definition

2.5 Edge-based Architectural Proposals

In this section, some intermediate middleware-based solutions are
grouped into macro-areas to highlight possible categories of solu-
tions, divided for type of use cases, that support a wide range of
applications. This section aims to extend the discussion on the ap-
plication features, outlining solutions that may increase/decrease the
ability of the system to meet certain needs of IoT applications and
indicating the benefits to use one solution rather than another. In par-
ticular, there are three categories of solution: i) middleware moved
towards cloud, ii) middleware moved towards edge, iii) multiple mid-
dleware levels.

Note that, although the fog computing solutions have been expres-
sively conceived to work in combination with the cloud computing, in
this section the generic term intermediate middleware is used because
also edge computing can be properly used in solutions that require
the usage of cloud computing, falling in the following categories of
solutions.

2.5.1 Middleware Moved Towards Cloud

In system where the intermediate middleware is moved closer to cloud
and farer from the mobile devices, the cloud features are reinforced
within the middleware layer. Since the distance from the edge is
higher, the intermediate layer performs tasks more similar to the
global cloud, exploiting the cloud-related features, and is respon-
sible to control a wider area and can coordinate more mobile devices.
To this purpose, the middleware layer must be reinforced with more

38 2 Edge-enabled Middleware for Scalable CPS

powerful hardware and more computational-resources available to en-
able the ability to perform intensive and complex analysis. Therefore,
scalability related to both Big Data and geo-distribution, and anal-
ysis to improve data quality are stronger. In addition, also mobility
support must be reinforced in order to face wider and more frequent
movements due the higher number of mobile devices to manage. On
the other side, due to the increased distance, real-time response and
location-awareness are more neglected features and cannot be cen-
tral requirements within the considered applications. Responses take
more time to arrive to middleware nodes and then to devices and
low-latency requirements can be compromised. Since the middle-
ware has to manage mobile devices widespread in the larger portion
of the environment located in different areas, that operate in different
contexts, the middleware layer cannot accurately handle contextual
analysis due to less environmental details available and, thus, also
location-awareness feature cannot be detailed. Finally data are no
longer collect to stay close to users, thus, more precautions must be
evolved to protect data privacy.

From the architectural point of view, the infrastructure is com-
posed of less but more powerful middleware nodes that already con-
tains enough computational resources to perform the most of the tasks
and analysis required. For this reason, the architecture is more cen-
tralized and less distributed, with the middleware nodes that work
more as standalone servers, rather than in a hierarchy/cluster of
connected nodes, with less frequent communications among differ-
ent middleware nodes and with the global cloud. Table 2.5 resumes
the feature more related to a mobile devices-centric application and
cloud-centric application. Of course this architectural solution ex-
ploits the cloud-related characteristics and gives less importance on
the devices-related ones.

Table 2.5: Mobile Devices vs Cloud related Characteristics

Devices Characteristics Cloud Characteristics

Real-time Big Data Analysis
Location-awareness Geo-distribution

Communication Inter-Middleware Data Quality
Interplay Cloud-Middleware Mobility

Distributed Architecture Centralized Architecture
Privacy

This solution may be suitable for applications that can handle
higher latency and where location-awareness is not crucial for anal-
ysis. For instance, some applications that may benefit from this con-
figuration are wind farm or smart grid use cases because a limited
response-latency can be tolerated without compromise the system
functionalities. In fact, a more relaxed application of the real-time

2.5 Edge-based Architectural Proposals 39

and location-awareness requirements may lead to: less timely reac-
tion related to wind power forecasting/analysis and a higher delay
to apply optimization of wind energy prices in wind far; higher home
energy consumption and less adjustments of supply-demand energy
balance in smart grid. Although these small disadvantages, this solu-
tion can significantly improve the strategic analysis of the system, by
more complex and accurate data analysis closer to the edge, where
the cloud is not necessarily needed, and, at the same time, minimizing
the communications required.

This architectural solution is more suitable to be applied in con-
text with more resourceful mobile devices, e.g. smartphone, rather
than constraint or tiny IoT devices that need to send most of the data
collected due to the amount of traffic generated in the network. In
addition, it is a more suitable model to realize edge computing so-
lutions, rather than fog computing solutions, because edge solutions
are typically based on standalone servers with limited interactions
with the global cloud computing.

2.5.2 Middleware Moved Towards Edge

This type of solution is opposed to the previous one, as well as the
implication bring by this architectural model. In this case, middle-
ware layer is closer to devices and farer from cloud, with more con-
straint hardware capabilities and they can perform lighter computa-
tion. Thus, features related to mobile devices-related features are
reinforced while cloud-like features are weaker and, with reference
to Table 2, the devices-related characteristics are more central than
the cloud-related ones.

From the architectural perspective, the intermediate layer is com-
posed of multiple nodes, highly distributed, and strongly connected
to both the other middleware nodes and the global cloud, due to
the more limited computational resources available. Thus, more data
are sent to the cloud and to other nodes, with an increase amount
of network traffic. Since each node controls a smaller portion of
the environment with less devices monitored by a single node, geo-
distribution scalability and mobility support are less relevant. On
the other side, moving the computation closer to the edge improves
many IoT-related features. In particular real-time response, location-
awareness and privacy are directly related to the distance between
middleware and mobile devices. An intermediate layer closer to the
edge can be used in latency sensitive and critical scenarios applica-
tions, where real-time processes are required in order to guarantee
the correct execution. For instance, SCV and STL applications can
really benefit from this solution and overcome many issues related to
the critical contexts where they act, by using nodes very close the

40 2 Edge-enabled Middleware for Scalable CPS

edge, in order to perform immediate data elaborations and actuations
and make real-time executions.

This architectural solution is more suitable to be applied in context
characterized by tiny and constraint devices, i.e. IoT, that need fre-
quent communication with the intermediate middleware, due to negli-
gible computational power. In this case, although the amount of data
sent is high, the generated traffic is confined into a small portion of
the network and does not affect the other sub-networks. In addition,
this solution is more suitable to realize fog computing solution, rather
than edge computing solutions, because fog computing solution typ-
ically use multiple nodes densely connected node in a hierarchical
way, thus, also very close to the mobile devices, with frequent con-
nection with among the other fog computing nodes. However, this
solution is feasible only in very limited and small scenarios due to
the difficulties to perform advanced data analysis and the distance
with the cloud, that, in busy or real-world applications contexts, can
introduce an enormous amount of data into the network and slow
down the overall system.

2.5.3 Multiple Middleware Levels

This type of solution is the combination and the extension of the two
previous solutions and consider an intermediate middleware com-
posed of multiple levels of nodes densely connected, with possible
internal organization of sub-groups of nodes. The idea is to create a
multi-levels organization, where each middleware node is no longer a
general-purpose node with a wide range of functionalities but, rather,
it has a particular role, location responsibilities and is specialized to
efficiently execute few tasks, reporting the results to another node.
The node may be organized, as shown in Figure 2.5, into hierarchi-
cal organization or mesh/cluster of nodes, in relation to the nature
of the scenario where the system works, and systems can work prop-
erly, efficiently, eventually balancing computational load and with a
stronger scaling ability.

In multi-level architecture, whatever the organization, each node
is specialized to perform a specific work, in relation to the level and
its assignment and it is optimized to handle a specific task, with dif-
ferent functionalities and capabilities to do that. In fact, nodes are
equipped with different hardware, that gives the specific type and
amount of resources to perform the tasks assigned in the best way,
i.e. powerful gpu hardware for image processing tasks, powerful ram
for streaming processing applications, and so on. Nodes closer to the
edge, in lower levels of the hierarchy, exploit real-time interactions
and location-awareness, and have the ability to highlight IoT-related

2.6 Solutions for Mobile Services 41

Figure 2.5: Multi-levels Intermediate Middleware Architecture

features. Nodes closer to cloud, in higher levels of hierarchy, are more
powerful and perform resource-intensive operations and highlight the
cloud-related features. By using specialized nodes at different lev-
els, it is possible to get the best from both the previous approaches
described. Table 2.7 resumes stronger and weaker points of this so-
lution.

Table 2.7: Multi-Levels Intermediate Middleware Architecture

Strong Characteristics Weak Characteristics

Architecture Definition General-Purpose Architecture
Specialized Nodes General-Purpose Node

Different Node Capabilities
Hierarchical Task Partition

This architectural solution is suitable for a wide range of con-
texts applications, because it mixes and exploits both mobile devices-
related and cloud-related features, taking both advantages and mini-
mizing their limitation. In particular, this model adoption is necessary
in wide and large scale systems that deal with tiny and constraint
IoT devices that need a support close to the edge, in order to create
a support infrastructure close to IoT devices but, at the same time,
with powerful capabilities and advanced functionalities. This solution
is usually adopted in large-scale and real-world fog computing solu-
tion characterized of a sophisticated hierarchical organization of fog
computing nodes.

2.6 Solutions for Mobile Services

In the following chapters, this thesis work propose different solutions
that aim to face the challenges of mobile applications, in particular
in case of a high amount of devices. The solutions differ considerably
from each other because they try to cover as much as possible the
wide spectrum of open points and challenges on the mobile devices
applications, each one targeting specific requirements. In particular,
the solutions for mobile services are divided in relation to the type of
mobile devices and the architecture used in the system, following the
explanation in Section 2.5, into:

• fog computing-based solutions, if the middleware is moved to-
wards the edge of the network to assist constraint mobile de-
vices from a closer position;

• mobile edge computing-based solutions, if the middleware is
moved towards the cloud computing platform and the mobile

42 2 Edge-enabled Middleware for Scalable CPS

devices are enough powerful but, at the same time, the edge
nodes are required in order to guarantee higher performance or
reliability, i.e. the application works in a hostile environment;

• cloud computing-based solutions, if the middleware is moved
towards the cloud computing platform, the mobile devices are
enough powerful and we do not need to stress particular re-
quirements inside a large-scale system.

Starting from this general list and by delving into a more detailed
explanation, the different solutions focus on the most relevant chal-
langes of mobile devices applications and propose how to face the
issues related to each category of solution and at different level of
the stack, by focusing more on the protocols, on the infrastructure, or
on the final user application.

Chapter 3 proposes fog computing-based solutions that address
multiple requirements of mobile devices following the fog comput-
ing concept. In particular, it faces the satisfaction of the following
requirements, by proposing solutions both from protocol and from in-
frastructure perspectives. Scalability and performance requirements
are provided by analyzing and modifying popular protocols and frame-
works and combining them for the specific usage in pervasive en-
vironments. Resource usage is optimized, by minimizing the traffic
generated both on middleware-mobile devices interface, by combin-
ing different communication protocols to use them in the best way,
and on cloud-middleware interface, by highly increasing the auton-
omy of the middleware nodes that are able to perform standalone
jobs and communicates with the cloud only in case of anomaly or
out-of-scope activity. Finally, they specifically address the system
customization, providing the configurability of the infrastructure and
the applications to deploy, in order to be able to modify and up-
date the infrastructure/applications in an easy way, also at runtime,
without compromise the system/applications functionalities. Mobil-
ity is provided by migrating the application and the infrastructure
from one node to another to guarantee the service continuity and by
considering the possibility that mobile devices moving can leave or
join the system without compromize the operations. Interoperability
is addressed by using an abstraction of the specific mobile devices
phisical specification provided by the communication protocols and by
the infrastructure, i.e. through bundles or container-based virtualiza-
tion. Finally, reliability is faced in order to recover from unexpected
behavior, typical in mobile devices environments, without compromize
the system functionalities.

Chapter 4 proposes mobile edge computing-based solutions that
address the following mobile devices requirements, both from the ap-
plicative and the infrastructure perspectives. Mobility is provided by
the ability to migrate the application from the mobile devices to the
edge nodes and from one edge node to another one more powerful

2.6 Solutions for Mobile Services 43

or better located to serve the mobile devices, also in case of execu-
tion in hostile environments. Similarly, scalability and performance
requirements are carefully considered by the synergic migration of
the application in case of high workload or to execute intensive tasks.
Resource consumption is minimized by a fine-grained analysis of the
resource usage on both the mobile devices and the edge node that
indicates where is more feasible to run the application in terms of
energy. The solution proposed are fully automated to decide dynam-
ically, at runtime and without human intervention, which application
(or part of it) migrate and where is more efficient to execute.

Chapter 5 proposes cloud computing-based solutions that address
the following mobile devices requirements, from both applicative and
the infrastructure perspectives, by using the cloud platform without
the support of a middleware layer. Mobility is provided by extension
of cloud computing techniques enabling dynamic network function and
self-adaptation in order to ease the deployment and operations of
mobile telco services through self-management, self-maintenance, on
premise design and operations control functions. System performance
and scalability are carefully considered to create dynamic cloud solu-
tion, by introducing the service state migration which allows to move
all the infrastructure and data that compose a service, in order to
reactivate the service on the destination location with the same state
conditions of the origin service. Finally, interoperability is deeply
analyzed by introducing a semantic-based approach, based on a fed-
eration web service, to overcome specific organization complexity and
to hide heterogeneity and distribution of data sources.

Let note that multiple solutions, independently from the architec-
ture used, propose migrations, i.e. of the application or of components
of the infrastructure, between different nodes, both in a proactive and
reactive way. This is mainly related to the need to provide system
operations continuity, as well as performances, that cause to migrate
system functionalities and applications from one edge node (or cloud
host) to another, to serve the mobile services from the most suitable
and adapt nodes/host. This is particularly true in case of middleware
usage where edge nodes usually have limited resources avaialble,
thus may need further computation ability in high workload contexts
and, in addition, can highly improve the tasks execution by exploiting
the location-awareness requirement.

44 2 Edge-enabled Middleware for Scalable CPS

45

3 | Scalability and Con-
tainerization for Fog
Computing

This chapter presents two solutions, that face some common and
relevant challenges described previously, with the purpose to signifi-
cantly push forward the realization of efficient, effective and dynamic
fog computing infrastructure. In fact, it is manifest the growing re-
search and industrial interest in scalable solutions for the efficient in-
tegration of large amounts of deployed IoT sensors and actuators and
cloud-hosted virtualized resources for elastic storage and processing.
Such relevant attention is also demonstrated by the emergence of in-
teresting IoT-cloud platforms and protocols from industry and open-
source communities as well as by the flourishing research area of fog
computing, where decentralized virtual resources at edge nodes can
support enhanced scalability and reduced latency via locality-based
optimizations. Many works have been proposed lately, to improve
the scalability at different level of the stack, e.g. [60, 61, 62, 63, 64]
but, at the same time, the scalability is still in its infancy with many
existing IoT frameworks (targeting both the academic and industrial
communities) that still do not address the scalability requirements
properly and adequately. To this purpose, the first solution will fo-
cus on the communication optimizations that enable the creation of
a scalable infrastructure able to guarantee high performance also in
high workload conditions, by using IoT framework optimizations and
the interwork of popular communications protocols.

In addition, the second solution of this chapter investigates more
the possibility to deeply innovate the future fog computing infrastruc-
ture proposals, alleviating most of the efforts related to the implemen-
tation and deployment of fog computing solutions. In fact, the solu-
tion introduces a highly manageable and interoperable way to create
fog nodes on-the-fly via the adoption of containerization techniques,
whose advantages are deemed prevalent to disadvantages also in the

46 3 Scalability and Containerization for Fog Computing

case of IoT gateways with limited resource availability.
Both solutions aims to address the most influential and popular

properties related to fog computing, that can enable fog computing to
be applied in a widespread way, also in industrial contexts.

3.1 Related Work

3.1.1 IoT Federation

Some research activities in the literature have recently proposed ar-
chitectures and solutions to address IoT sensors/actuators federation,
in particular within large-scale deployment scenarios, with particular
focus on how to effectively and efficiently achieve scalability. Even if
they explored relevant solution guidelines and were someway inspir-
ing for the community of researchers in the field, they only partially
solved some aspects related to this hard technical challenge, thus
leaving still open space for additional, especially industry-mature,
solutions.

[65] proposes an architecture based on the base protocol that pro-
vides a generic self-organized Peer-to-Peer (P2P) overlay network
service, by using CoAP as the transfer protocol to access RESTful ser-
vices. Here CoAP is used as the common application layer protocol for
heterogeneous and constrained devices, while RELOAD is employed
primarily on proxy nodes with higher amount of resources. This work
is also relevant to point out the relevance of open standard-based so-
lutions for interoperability and the unsuitability of CoAP alone, e.g.,
because it is inappropriate to scalably aggregate IoT resources into
a hierarchical organization.

[66] proposes a 3-layers architecture for cloud-integrated IoT ser-
vices based on CoAP. The work proposes a Web integration plat-
form that collects data from IoT devices and can outperform high-
performance general-purpose Web servers that are not optimized for
the IoT. [66] uses the Californium framework for CoAP integration, by
showing its good throughput performance also in high-concurrency
situations. Along with CoAP, the solution in [66] employs multi-
threaded sockets, but shows that this implementation option is very
resource-demanding while growing the number of clients, in particular
in terms of memory.

Instead, [67, 68] mainly highlight successful examples of MQTT
usage in some application domains. In particular, [67] proposes an ar-
chitecture for adaptive periodic many-to-one communication in large-
scale cyber-physical systems. The work shows how MQTT can guar-
antee good flexibility in highly dynamic execution environments where

3.1 Related Work 47

publishers and subscribers can join/leave frequently. [68] reports the
experience of a smart home management system where MQTT is used
over a hierarchical architecture similar to ours, but with no integrated
exploitation of CoAP.

3.1.2 Containers

Some work in the literature highlight the necessity to introduce virtu-
alization techniques on the middleware layer in order to face several
challenges. [69] highlights the importance to provide flexibility and
isolated environments. [70] underlines the challenge of fast mobil-
ity that imposes on mobile devices platform to provide and keep the
compute and storage resources close to the devices to be able to
rapidly reconfigure the switching context, and seamlessly orchestrate
the allocation of resources and the migration of the state to the new
location.

Since container-based services and applications share their un-
derlying OS, the associated deployments are significantly smaller in
size than VM-oriented hypervisor deployments, thus making it pos-
sible to store hundreds of containers on a physical host, as well
as restarting a container without rebooting the OS, which is very
relevant in several application domains [71]. [72] highlights how
containers, differently from VMs, are more flexible for packaging, de-
livering, and orchestrating both software infrastructure services and
application-level components, i.e. typically for tasks performed by a
PaaS.

Although resource virtualization techniques based on containers
offer a promising approach for middleware solutions since they have
the potential to enable lightweight migrations, i.e. just the container
state, unfortunately, the work on this topic focus on theoretical anal-
ysis so far rather than propose practical effective and novel solutions.
For example, [72] is limited to the study of the container deployment
performance analyzing the standard Docker pull operation. Similarly,
[73] proposes the design of programmable CPS by deploying con-
tainerized applications that run close to the devices on fog nodes, by
deploying programmable nodes capable of inter-node P2P communi-
cation and services orchestration from a centralized control instance.

Among the very few work that address, in a practical way, the
virtualization of applications on the middleware layer, [74] proposes
a solution that relies on LXC containers, which provide exibility and
lightweightness if compared with traditional virtual machines, that are
orchestrated with OpenStack. Although this approach is valuable, it
requires more powerful nodes able to run OpenStack components,
i.e. nova and cinder, partially loosing the benefits related to the
containerizations and requiring a master node very powerful.

48 3 Scalability and Containerization for Fog Computing

On the contrary, the container-based solution, proposed in this
chapter, aims to promote a further step of advancement of the research
in the field by giving the opportunity of exploiting container-based
virtualization on top of IoT gateways. In fact, it explains the design,
implementation, and experimental results of an innovative middleware
solution, complete of a full infrastructure support (i.e. download, up-
date, and management of virtualized images), based on Docker con-
tainerization over resource-limited RaspberryPi devices at the edge
of the network. To the best of our knowledge, this is one of the first
cases of implementation and experimentation of virtualization tech-
niques over fog nodes, in particular while working with IoT gateways
with very limited resources, such as RaspberryPi nodes.

3.2 Scalable IoT-Cloud Interactions

This solution describes a fog computing architecture, based on a wide
hierarchy that manages a large-scale environment composed of tiny
and constrained devices.

The purpose is to greatly improve the management of a large fog
computing infrastructure, facing current and typical challenges and
open points, mainly related to: communication efficiency, handling a
high number of data exchanged from and to IoT devices and among
other nodes into the hierarchy, with minimal amount of messages;
scalability, to enable the infrastructure to manage workload peaks
keeping the high performance; interoperability, that allows different
typology of mobile devices to use the hierarchy.

An innovative distributed architecture, combining M2M industry-
mature protocols, i.e., MQTT and CoAP, is proposed in an original
way to enhance the scalability of gateways for the efficient IoT-cloud
integration. The combined and synergic integration of such emerging
standard protocols of wide industrial interest, which are recognized
to be generally lightweight, flexible, asynchronous, and secure are
exploited when efficiently integrated with Secure Sockets Layer (SSL)
and Datagram Transport Layer Security (DTLS) mechanisms.

This research topic is relevant because there is no solution yet
in the related literature that has adopted a gateway-oriented archi-
tecture where gateways jointly exploit MQTT and CoAP to achieve
highly scalable IoT device management through dynamic hierarchical
tree organizations.

3.2 Scalable IoT-Cloud Interactions 49

3.2.1 M2M Communications

MQTT

Message Queue Telemetry Transport (MQTT) [75] is a lightweight
message-oriented protocol following the publish/subscribe model. It
allows achieving good scalability and can dynamically support a
wide range of applications, especially in the IoT and M2M domains.
Every MQTT resource is modeled as a client and can connect to
an MQTT broker over TCP. MQTT has intrinsic characteristics that
make it a valuable option in IoT environments with low-latency, low-
bandwidth, and power efficiency requirements, e.g. small header over-
head, topic-oriented management, and automatic message forwarding
when clients reconnect.

MQTT uses hierarchical topics and nodes may subscribe to a topic
and then observe the whole hierarchy by using wildcards. In ad-
dition, MQTT provides communication reliability, if needed, by en-
abling secure transmission for hierarchy control messages: reliable
communications exploit TCP and differentiated QoS levels. The TCP
handshake to the public broker address and the persistent connection
establishment allow reaching hosts behind Network Address Trans-
lation (NAT) without problems, a common configuration when dealing
with real IoT devices in many practical deployment environments.
Moreover, it provides reliability with the possibility to dynamically
select one of three QoS level options for message delivery:

• QoS0 - At most once semantics, with the best-effort mode of the
network. The delivery is not acknowledged and the message is
not stored. The message could be lost or duplicate. It is the
fastest mode of transferring messages.

• QoS1 - At least once. Each message might be delivered mul-
tiple times, with possible duplications, if failures occur before
an acknowledgment is received by the sender. With this op-
tion, messages must be stored locally at the sender, until they
have been delivered to their receiver, so to enable possible re-
transmissions.

• QoS2 - Exactly once, with the guarantee that no duplication of
messages occurs. It extends QoS1, by storing messages also at
receivers in order to avoid any duplications.

Finally, MQTT allows every node to register a broker-side message
(Last Will and Testament) that the broker sends to all subscribed
clients on the topic, when the node disconnects unexpectedly. This
provides a basic automated mechanism for the monitoring and man-
agement of disconnections in highly dynamic IoT environments.

50 3 Scalability and Containerization for Fog Computing

CoAP

Constrained Application Protocol (CoAP) [76] is a document-transfer
protocol optimized for M2M communications between constrained de-
vices. CoAP provides a request/response interaction model, exchang-
ing small messages on the UDP transport layer. It is suitable for
constrained nodes and constrained low-power and lossy networks: it
uses a short fixed-length binary header of 4 bytes, possibly followed
by compact binary options and a payload [77]. In particular, CoAP
allows i) adding UDP support for unicast and multicast requests
with optional reliability, ii) exchanging asynchronous connection-less
datagrams, iii) low header overhead on packets, iv) low complexity of
parsing operations, and v) supporting simple mechanisms for proxy
and caching actions. About reliability, CoAP supports four options
in terms of different types of messages, namely Confirmable, Non-
confirmable, Acknowledgement, Reset.

CoAP works asynchronously over UDP, which is connection-less,
with higher performance, smaller packets, and reduced overhead.
In fact, it starts to be recognized that CoAP characteristics make
it specifically suitable for low-energy consumption application do-
mains [77].

From the implementation perspective, Californium framework is
used to introduce the CoAP protocol functionalities into the fog infras-
tructure and to combine it with the MQTT protocol. Californium [66]
is an open source framework, written in Java, that implements CoAP
functionalities and provides web service RESTful API for web-like IoT
mashups. Californium focus on service scalability with a flexible con-
currency model for the implementation of large-scale IoT applications
and provides implementations for:

• Observe draft [78], a CoAP extension that enables CoAP clients
to retrieve a representation of a resource and keep this repre-
sentation updated.

• Blockwise transfers draft [79], a CoAP extension for transferring
blocks of information to handle block transfer separately and,
thus, truly stateless behavior.

• Resource directory draft [80], a CoAP extension called Resource
Directory (RD). All the results are returned with CoRE Link
Format [81] payload.

• Datagram Transport Layer Security (DTLS) protoco [82], to pro-
vide privacy for datagram protocols and security, based on the
Transport Layer Security (TLS).

• CoAP-HTTP cross-proxy support, through HttpCore-NIO [83]
and Guava [84].

3.2 Scalable IoT-Cloud Interactions 51

Californium has been used as CoAP-support for multiple reasons. It
is currently the most complete implementation of CoAP protocol, with
many drafts extensions support. It is easily integrable with Kura
and extensible with third-parties Java libraries to further improve the
implementation of some functionalities. It is easily extensible with
different types of usage to create also complex functionalities, in re-
lation to the purpose.

MQTT-CoAP Combination

MQTT and CoAP are protocols both open, lightweight, and typically
used in constrained environments but with different characteristics.
Both protocols, due to their intrinsic composition and implementa-
tion, include advantages and disadvantages in relation to the different
contexts of application.

In particular, MQTT thanks to the usage of the publish/subscribe
model and the wildcards, perfectly fits the application into a hier-
archical organization and can be used to dynamically organize an
infrastructure to efficiently manage large scale via hierarcFhy- and
locality-oriented optimizations.

Notwithstanding its many advantages, MQTT also presents some
drawbacks in its pervasive IoT employment, mainly related to the us-
age of TCP transport protocol in an IoT environment, due to their
different purposes of communication that combine a reliable commu-
nication medium in a very unstable and unreliable environment. In
fact, TCP is a reliable connection-oriented protocol that establish the
connection, using a multi-step handshake procedure, and maintain a
connection until the exchanging messages are finished and assures
that the messages have been delivered with the acknowledgement
messages. On the other side, IoT environment is typically based
on tiny devices that sense everything from the surrounded environ-
ment, including a high quantity of noise or useless data, with limited
capabilities that, thus, cannot process information locally and send
all the data towards the edge layer, with a high sampling rate. In
this context, MQTT it is more suitable for resource-full nodes than
for constrained IoT devices, due to: the multi-step handshake needed
every time new nodes are establishing a TCP connection in a devices-
crowded environment; the TCP connections kept always open, with
the management of a persistent node-broker session, thus often gen-
erating useless resource consumption, in particular at IoT endpoints.
To partially solve this issues, a possible solution may involve to set the
MQTT clean session flag on the broker to choose to either keep the
connection open or remove it after the transmission. Unfortunately,
this approach is not usually viable in practical IoT environments be-
cause not using TCP persistent sockets means having to re-establish

52 3 Scalability and Containerization for Fog Computing

connections through the multi-step handshake every time an endpoint
sends data. That would lead to unacceptable performance decrease
in several application scenarios due to more data traffic, decrease of
battery-operated life, also given the usual high sample rate of IoT
endpoints.

Therefore, an MQTT standalone exploitation is not enough and
CoAP is the right protocol to complement MQTT in order to overcome
its limitations when applied to large-scale IoT deployment scenarios.
In particular, for IoT endpoints locally connected to a node, MQTT
introduces overhead for functions that are not crucial: using a less
reliable but also less resource-demanding connection is often more
suitable, especially if the sporadic loss of partial data is not critically
impacting the overall system behavior, as it regularly occurs for cyber-
physical monitoring scenarios.

The MQTT-oriented communication has been extended with more
lightweight CoAP-based coordination functionality, thus achieving
scalable interactions, especially in the challenging case of node/re-
source discovery. Thus, MQTT is exploited for inter-node commu-
nications between node equipped with CoAP servers in order to re-
trieve resource information and for node synchronization in our tree
management procedures. The MQTT publish/subscribe model allows
reaching multiple nodes by limiting the overall number of exchanged
messages, thus achieving good performance also when our hierar-
chy consists of a large number of nodes. Publishers and subscribers
are completely decoupled from each other thanks to the usage of the
MQTT broker, thus simplifying the addition of new nodes and making
any node able to seamlessly interact with the others. In our solu-
tion, each participant node can publish messages independently to
the receiver nodes state and the broker may send messages to nodes
when they turn active; also in the case a subscriber is performing
a non-interruptible operation, the broker can queue messages to be
processed later (temporal decoupling). Moreover, nodes can exchange
messages without any prior knowledge of each other (spatial decou-
pling).

Along with MQTT, it is used CoAP for interactions where it is
needed direct and very responsive lightweight communications, with
low reliability constraints, i.e., between the CoAP server and the IoT
endpoints due to the high data exchange rate between them. CoAP
allows achieving these goals in single localities, where NAT draw-
backs are ineffective and communication reliability is anyway ade-
quate. Vice versa, although CoAP may be a standard-base for scal-
able architecture, as already stated, it has some limitations stemming
from UDP usage, lack of advanced quality support, and NAT tunnel-
ing and port forwarding. In addition, [85] underlines the unsuitable-
ness of using CoAP alone because it does not allow to aggregate
IoT resources into a hierarchical organization. For these reasons, a

3.2 Scalable IoT-Cloud Interactions 53

CoAP-based solution has been integrated with MQTT, as detailed
in the following parts of the paper, thus complementing the functions
and strengths of both protocols.

In particular, by following the seminal work in [77], CoAP has
been exploited to easily enable IoT devices to be discovered and to
expose them externally as resources accessible with REST-call meth-
ods, using the /.well-known/core URIs [86] with resource descriptions
in the CoRE link format. By delving into finer technical details, each
CoAP endpoint has associated the CoRE link attributes, which extend
those in Web Linking [87], e.g. resource type (rt), interface description
(if), content-type (ct), maximum estimated size (sz) [81]. This allows
clients to discover which resources are provided and their associated
information before accessing them.

3.2.2 Kura Gateway-based Architecture

Kura Overview

Kura [88] is an open-source framework for IoT applications that pro-
vides a platform for building IoT gateways. In particular, it ab-
stracts the design and implementation of gateways from the com-
plexity of real-world industrial scenarios consisting of heterogeneous
hardware/network devices. To this purpose, Kura aggregates and
controls device information, as well as it supports the simplification
of the overall development and deployment process. Kura is based
on Java OSGi to support, in a widely accepted way, dynamic man-
agement of software components with no need of operation suspen-
sion, to simplify the process of writing reusable software building
blocks and to create self-contained pluggable packages (i.e., bun-
dles) specifically suitable for IoT applications. In particular, Kura
has been employed as implementation basis because it can serve
as a suitable container for machine-to-machine applications running
in service gateways. Kura uses MQTT as its central protocol: it
provides different features for message publication towards MQTT
brokers and the subscription to specific broker-supported topics. In
addition, Kura components can support routing functionality, by man-
aging wired/wireless communications and by allowing Virtual Private
Networking (VPN) connections, firewall usage, and NAT operations.
Kura APIs offer easy access to the underlying hardware including
serial ports, GPS, watchdogs, USBs, gpio-s, etc. Finally, Kura is
open-source, with a fervent and growing community supporting the
initiative and continuously proposing extensions and innovative Kura-
based solutions, thus guaranteeing maintenance/evolution support for
the years to come (very relevant for supports and applications of in-

54 3 Scalability and Containerization for Fog Computing

dustrial interest). Figure 3.1 shows the base IoT-cloud architecture
pushed by the existing Kura framework, with the regular way of using
Kura in such an architecture.

Figure 3.1: The Proposed Cloud-Fog-IoT Reference Architecture

Kura Extension Towards Fog Computing Platform

The proposed solution extends, and has been designed and imple-
mented on top of, the Kura framework, a platform for IoT-cloud inte-
gration of strong industrial relevance, and on the role of infrastructure
gateways for efficient message brokering [89, 90, 91]. In particular,
the proposal aims to introduce a fog computing infrastructure that can
constitute a basis for further solutions to improve scalability and re-
duce latency for communication/coordination among wide-scale sets
of geographically distributed IoT devices interworking via gateways.

By delving into finer technical details, by referring to the default
Kura architecture, this research work hoghloghts some non-negligible
weaknesses that motivate the need for some relevant extensions, at
least in the perspective of efficient fog computing exploitation:

• Single MQTT broker on the cloud. Kura allows to communi-
cate only with a single broker located on the cloud and, thus,
tends to send all the collected data from IoT devices to that bro-
ker. This raises non-negligible concerns, such as i) the single
broker deployment option may cause a performance slowdown
in case of high load, enabling only to deploy small applications
with a limited number of devices or with very limited sensor
sampling rates; ii) Kura gateways can only dispatch sensed in-
formation towards the cloud, with no fog-oriented processing
operation performed locally; and iii) Kura exploits persistent

3.2 Scalable IoT-Cloud Interactions 55

sockets to connect its gateways to the integrated cloud, with a
non-negligible waste of resources in case of intermittent/inter-
rupted communications or of sporadic interaction.

• Flat topology. Gateways are usually hosted on hardware
equipment with a limited amount of resources, hence a sin-
gle gateway or a set of gateways organized in a flat topology
can perform only relatively limited operations, i.e., processing,
storage, inference, etc., which might be insufficient for several
application domains of interest and in many envisioned IoT ap-
plications.

Gateway-side MQTT Brokers

This sub-sections tries to concisely illustrate how Kura can be ex-
tended to overcome the above weaknesses, thus making it more suit-
able as a basic building block for fog computing infrastructures to
support three-layer cloud-integrated architectures for IoT and conse-
quently wide-scale IoT applications.

The first relevant extension is towards the inclusion of an MQTT
broker, e.g., Mosquitto [20], on each gateway, as depicted in Fig-
ure 3.2, in order to collect sensed information at the gateway side
and, at a later stage, possibly after local processing and inferencing,
to send filtered/processed/aggregated data to the cloud.

Figure 3.2: Adding Gateway-side MQTT brokers

The main advantages deriving from this extension, in the fog com-
puting perspective, are:

• Enabling hierarchical topologies. The internal topology turns,
from a flat structure where all the clients can send data to
the cloud-side broker, to a hierarchical structure where the

56 3 Scalability and Containerization for Fog Computing

gateway-side broker can serve as a local root. Further exten-
sions of the hierarchy can consider using multiple brokers or
more client/broker levels to further strengthen the before-the-
cloud processing capabilities. This potential augmentation of
the infrastructure should be dynamically fitted, however, against
the currently available resources at the IoT gateway side, thus
further pushing for the opportunity of advanced dynamic de-
ployment support.

• Gateway-level MQTT message aggregation. It is possible to
perform and implement typical fog computing functionality on
the gateway, e.g., basic data aggregation and filtering actions,
Small Data processing [48], and alike. The proposed exten-
sion still exploits the standard MQTT protocol, as the original
Kura framework, but in two following separated segments, i.e.,
sensors-to-gateway and gateway-to-cloud-hosted brokers.

• Real-time message delivery and reactions. The introduced
ability of the extended IoT gateways to collect data and perform
actions can significantly speed up system reactions. Reactions
with hard/soft real-time constraints may then be delegated to
IoT gateway components closer to the edges of the network, with
improvements in time and quality of reactions (fresher sensed
data).

• Actuation capacity and message priorities. A peculiar abil-
ity of fog computing is to dynamically determine the situations
when it is necessary an immediate actuation or when it is pos-
sible to send data to the cloud for intense postponed analytics.
Each IoT application, in relation to the context and the type of
information sensed from the environment where it is immersed,
must define sets of messages with the relative priority and con-
sequently differentiating the type and the promptness of reac-
tions, as well as its desired level of fog-cloud interplay. For
instance, in smart city-oriented vehicular applications, cloud
analytics are particularly useful and tight coupled outside vehi-
cle endpoints for the evaluation of traffic patterns and to detect
best ways to reach destinations. However, this is limitedly re-
lated to operations inside vehicles (intra-vehicle applications)
where fog nodes have to deal more frequently with real-time
actions.

• Locality awareness and locality-oriented optimizations. The
information sensed by IoT devices are processed by each gate-
way in its locality and thus with a usually more complete knowl-
edge of the local environment from which the sensed data are
generated.

3.2 Scalable IoT-Cloud Interactions 57

• Gateway-cloud connection optimization. The cloud-side bro-
ker is no more required to stay alive at any time and to con-
tinuously receive sensed data collected from each part of the
overall deployment environment. Given that it receives data
after that gateways have performed processing/aggregation/fil-
tering/etc. operations over them, the usage of persistent sockets
is often not required and inefficient (persistent sockets are the
most widespread communication mechanism in available MQTT
brokers). Therefore, in the proposed extension, non-persistent
sockets have been exploited, which are dynamically established
only when necessary, to exchange data between the cloud-
hosted broker and the lower-level brokers at IoT gateways.

Enabling Cluster/Mesh Topologies for Kura Gateways

Another significant IoT gateway extension, originally proposed, re-
lates to virtually strengthening, in a dynamic way, the available gate-
way resources via the combination of multiple physical gateways and
the aggregation of their resources. For example, Figure 3.3 depicts a
possible cluster-oriented physical topology for Kura gateways realiz-
ing a virtual and strengthened higher-layer gateway, while Figure 3.4
shows a similar concept through virtualization of an underlying mesh
topology. In fact, the support to a more powerful intermediate layer,
based on either cluster or mesh topologies, is demonstrating to be
central to enable scalability in large IoT applications.

Figure 3.3: The Supported Cluster Organization of IoT Gateways

The most significant advantages associated with full and seamless

58 3 Scalability and Containerization for Fog Computing

Figure 3.4: The Supported Mesh Organization of IoT Gateways

support to cluster/mesh organizations of IoT gateways are:

• Kura gateway specialization. The cluster/mesh topology con-
sists of different gateways with different properties and each
gateway is more suitable to perform some tasks or to cover some
functionalities rather than others. For example, some gateways
may be deployed to be more specialized to aggregate data, oth-
ers for context-aware processing/filtering operations, others for
locality-efficient data storage and indexing, and so on.

• Locality exploitation and data quality. Locality-based opti-
mizations can be improved by performing more accurate and
complex analytics and by taking advantage of larger resource
availability.

• Geo-distribution is another feature whose performance/effec-
tiveness advantages depend on the number of interworking
gateways (and their total amount of available resources). With
the increased number of cluster/mesh-organized gateways it is
possible to manage dense sensor localities and to make the
overall distributed deployment scale better.

• Scalability. Cluster/mesh of gateways can scale more easily,
according with the total amount of resources available, also
by facilitating the realization of load balancing operations and
dynamic failover management.

3.2 Scalable IoT-Cloud Interactions 59

• Security and privacy. Security and privacy improvements are
connected to locality-based operations and full locality visibil-
ity, which allow having more complete and accurate knowledge
of the environment where gateways are operating, towards the
creation of more efficient support features. At the same time,
the proximity between environment and data elaboration places,
partially moved to the layers of gateways, can improve privacy
and simplify decentralized ownership management.

Tree-based Hierarchy Architecture

Based on the fog computing infrastructure obtained from the Kura
extension, this solution adopts a dynamic tree structure organization,
composed of many gateways and IoT devices that exploit MQTT and
CoAP in a combined way to improve the efficiency of i) node commu-
nications for efficient resource look-up; ii) IoT device discoverability;
iii) resilience to device disappearance or unexpected disconnection;
and iv) dynamic and lightweight hierarchy reconfiguration, triggered
by ii) and iii).

In particular, the proposed CoAP-based gateway-oriented dis-
tributed architecture is sustained by five support services, each one
implemented in terms of an OSGi bundle. Every node is suited by the
Kura framework that executes the bundles. The service base bundle
is used to provide libraries to external bundles or to retrieve infor-
mation about network addresses currently used by the node. The
bundle contains a CoAP server, using UDP to have full access to
the whole functionality of the open-source and widely adopted CoAP
Californium framework. It retrieves data from either local resources or
remotely through the Remote Query Resource (RQ) service, and uses
a Resource Directory (RD) data structure to store all the information
about resources.

Externally, each node is connected with the others in a tree-
structure hierarchy. The tree structure consists of multiple OSGi
bundles replicated in each node (with the associated RDs) and is
based on two main components: CoAPTreeHandler (CTH) that man-
ages all the CoAP servers hierarchy; MQTT broker, to exchange both
resource and control messages to synchronize CoAP servers. Fig-
ure 3.5 depicts our high-level architecture proposal.

CoAP servers need to exchange messages for resource requests
and sometimes, if needed, they update the hierarchy knowledge by
disseminating information to all involved nodes. It is a multi-layers
hierarchy and each node specifies a domain name and a group, or
sub-group if necessary, name that identify the node into the hierarchy.
Thus, it is possible to limit the interest towards external resources

60 3 Scalability and Containerization for Fog Computing

Figure 3.5: Architecture Integrating MQTT and CoAP for Better Scalability

to store into the RD, e.g., only to a specific sub-group or domain,
thus making the message exchange between brokers more efficient.
As depicted in Figure 3.6, the hierarchy is divided into three levels:

• Level 0 includes only the root node and enables inter-localities
communications. Every message sent to a different locality
passes through the root node.

• Level 1includes all the nodes belonging to a specific locality. It
permits quicker update than level2 and receive updates directly
from CTH. If the root node is added/removed, level1 updates
level2 nodes when they subscribe to the related topics, without
any private additional communication by CTH.

• Level 2 includes all the nodes of a given locality and of a given
group. It might also be divided into specific subgroups. It has
less temporal constraints than the other levels and, in case of
parent disconnection, it receives periodically updates by level1
with a private communication.

Figure 3.6: The Hierarchical Tree Structure of our Extended Kura Gateways.

3.2 Scalable IoT-Cloud Interactions 61

Implementation Insights

This tree-based resource management solution is composed of tree-
based hierarchy management components that connect the different
nodes in our dynamic hierarchy and, from the internal point of view,
the nodes have a common internal structure replicated into all nodes.
The CoAP-based extension of the Kura IoT gateway is modularly and
flexibly implemented via OSGi bundles, executed by the Kura frame-
work on each IoT node. In addition, Kura allows to exploit a native
MQTT support to select differentiated QoS levels: exactly-once se-
mantics can be accessed via the so-called QoS2 mode and it is used
for most relevant hierarchy management messages; MQTT QoS1, in-
stead, offers at-least-once semantics that it is adopted for more com-
mon inter-node communication, with overall performance benefits.

The management of our hierarchical tree is performed by MQTT
broker bundle and CoAPTreeHandler (CTH) bundle. The MQTT Bro-
ker bundle is a simple extension of a regular MQTT broker to ex-
change messages between nodes within the hierarchy, with the im-
plementation based on Mosquitto [92].

The CTH bundle dynamically manages the hierarchy and dispatch
node requests: it provides hierarchy metadata to all nodes, returns
the references to create a tree-structure organized with domains/-
groups; manages multiple node replications; and handles children
nodes in case of parent disconnections. Internally, CTH consists of
CTHListener and CTHCollections. CTHListener exposes an interface
to interact with CTH, triggered by request from nodes that require ac-
tions on the hierarchy. The CTHCollections class stores information
about the overall hierarchy and consists of two collections optimized
for lookup and node substitutions: a Map-extension data structure
to store node paths and properties; a data structure to map parent-
children associations by using the Guava library in order to simplify
collection updates, i.e., dynamic creation of one-to-many associations.
To practically exemplify how the hierarchy management works, here
there are some common use cases:

• New root request. CTH returns the root reference and stores
into CTHCollection the node address (root duplicates manage-
ment). When root disconnects, CTHCollection contains refer-
ences to suitable new root nodes to replace it and notify level1
nodes.

• Node addition (Figure 3.7). By providing its path, a node re-
quests root information: if root is present, the node is noti-
fied with the root node reference (root_response); if root un-
available, the node is added as root (root_added) or updated
(root_not_available). CTH checks the path provided: if new
path, the node is added to the hierarchy; otherwise, the node

62 3 Scalability and Containerization for Fog Computing

becomes the child of the original node and will be able to per-
form resource lookup or return a local resource.

• Node removal. i) If the node to be removed is the root, CTHCol-
lection provides the reference to the new root, otherwise CTH
searches a new root on level1. ii) If leaf, CTH only updates the
hierarchy information. iii) Otherwise (Figure 3.8), children are
associated to the root while CTH looks for a new parent, then
children are restored.

• CTH failure. During CTH inaccessibility the root is not aware
of hierarchy updates. Once CTH reconnects, an emergency
MQTT topic (cth_online) triggers a stateless recovery with hi-
erarchy node soft-reboot: i) parents remove all properties at-
tached; ii) children remove parents and resend the request to
join the hierarchy; iii) resource collections are sent to the par-
ents and to CTH to be aligned again.

Figure 3.7: Node Connection Iterations

Figure 3.8: Node Removal Iterations

For the sake of modularity and loose coupling, any node is struc-
tured into multiple components:

• CoAP Server bundle is the central component within a node,
manages all the properties of registered resources and uses
Californium to offer REST API operations. In particular, can be
coordinated with other servers to perform callback methods in
relation to the received messages. It works locally on a node
to create a high-performance CoAP support inside Kura, thus
enabling the possibility to send CoAP REST requests to dis-
coverable devices. The CoAP server implementation is provided
of a DTLS support, using the existing Scandium [93] subproject

3.2 Scalable IoT-Cloud Interactions 63

inside Californium, to protect and limit the access on the re-
sources, in particular on actuators that can modify the environ-
ment, allowing the execution of REST operations (e.g. POST,
PUT, DELETE) only to authenticated users.

• Resource Directory (RD) bundle is a data structure used to
store endpoints and resources belonging to different domains,
groups, or subgroups. It supports usual discovery operations,
e.g., to register, maintain, lookup, remove endpoints and re-
source descriptions. It includes an automated support to node
disconnection management: if an endpoint does not update the
RD periodically, it is automatically removed.

• Remote Query resource (RQ) bundle supports resource lookup
by CoAP servers in the hierarchy, thus allowing nodes to re-
trieve information from CoAP servers by interfacing CoAP re-
quests with MQTT brokers, with CoAPPublisher and CoAPSub-
scriber classes. The resource lookup is performed by a set of
iterative requests towards other hierarchy nodes, starting from
the parent node, that reply with the direct link to the resource
or with a list of CoAP servers that may contain the resource
for further search (see Figure 3.9). RQ and CoAP servers are

Figure 3.9: Resource Lookup Iterations

completely decoupled to enable servers to call RQ only in case
of queries on remote resources; for local resources, they can
exploit optimized and direct CoAP requests with no RQ inter-
action.

• CoAP Resource (RQ) bundle is a service dedicated to the ex-
ternal exposition of discoverable resources. It can add, delete,
or modify the exposed attributes.

64 3 Scalability and Containerization for Fog Computing

MQTT and CoAP Optimization

Although Kura and Californium are widespread and industry-mature
frameworks, their default configurations have demonstrated to be not
specifically optimized for the hierarchical IoT gateway organization.
Thus, introducing some non-negligible implementation/configuration
improvements is necessary, focusing on the following primary crit-
ical scalability aspects: reducing the number of MQTT messages
exchanged among levels and nodes; reducing the number of POST
requests to RD.

Object Serialization (OS). MQTT is content-less and only support
byte array as payload content. Thus, serialization is performed very
often during regular operation: each CoAP message is serialized, then
used into the Kura DataService class for MQTT communication, and
de-serialized during responses. Performance have been improved by
integrating serialization based on the efficient Kryo [94] framework.
Kryo is an open-source object graph serialization framework for Java
language that provides performance, efficiency and API easy to use
for multiple serializations, outperforming normal Java serialization.

DataService (DS) and DataTransportService. The DataService
class is the Kura component used to manage MQTT communication
and offers several configuration options, delegating to the DataTrans-
portService the implementation of the transport protocol to interact
with the associated MQTT broker. When DataService receives a pub-
lish request, it stores the message into a DataStore and submits the
message on the internal executor of DataTransportService. DataStore
is a heavy storage structure that, in case of many messages published
concurrently, may even cause unavailability of the device because of
its high CPU consumption. Therefore, to reduce associated overhead,
it is been exploited only the lower-level DataTransportService class,
by removing the support to the features, irrelevant for the proposed
solution, of message priority management and message storage on
behalf of temporarily disconnected devices. In addition, the Data-
TransportService performs event propagation by accessing methods
and client listeners of the MQTT Paho implementation [95].

The experimental work has pointed out that the default configu-
ration of the Californium framework exhibits some performance draw-
backs for highly scalable scenarios, in particular in terms of efficient
message parsing. The related aspects have been optimized by pro-
viding original extensions for i) efficient data structures for CoAP
payload parsing, ii) efficient support to most frequent regular expres-
sions to identify message sections, and iii) exploitation of message
setting patterns available into the CoRE Link Format.

3.2 Scalable IoT-Cloud Interactions 65

RD Parsing (RP) and String Refactoring (SR). To optimize reg-
ular expression management and to speed up parsing, any CoRE link
has been represented with resource path in the first position of the
RD attribute list (fixed static position). In addition, the adoption of
Guava [84] libraries for efficient string management can optimize the
solution: for instance, by replacing the Java Scanner class with the
specialized Guava Splitter or using the optimized StringBuilder for
string declaration.

Requests Aggregation (RA). Since every node can send POST
messages, it is likely that some nodes may send information about
multiple resources. Thus, message management must be optimized
whenever possible (in absence of strict latency requirements) by ag-
gregating multiple resources together into a single CoRE link format
composition.

3.2.3 Performance Evaluation

To assess and validate the feasibility of the tree-based IoT gateway
organization proposed, several tests have been performed in realis-
tic application/deployment scenarios, in order to qualitatively and
quantitatively evaluate MQTT and CoAP, in particular in terms of
performance and scalability. The performance evaluations have been
performed on the two critical scalability elements of the solution: the
number of MQTT messages exchanged and the POST requests per-
formed on RD. In fact, every time a node needs to communicate, e.g.,
to manage the tree hierarchy or to retrieve an endpoint attribute, the
solution exploits MQTT messages, whose transport is natively inte-
grated in Kura. The number of MQTT messages has demonstrated to
depend linearly on both the number of levels and the number of nodes
in our hierarchy. The number of CoAP requests to RD is generally
high as well, due to the central role of RD in our architecture for
intra-node communications and endpoint attribute retrieval.

The tests use growing numbers of sequential MQTT requests and
CoAP POST ones, distributed over a realistic testbed environment
consisting of 10 nodes organized in a 4-layer tree, 20 service bundles
per node, 2 devices per service bundle, and 10 sensors per device.
Each regular (non-root) node is equipped with RaspberryPi 1 model
B+, with Raspbian Whezzy, Kura version 1.1.1; Parallels VM, with
512 MB Ram, single core CPU, Xubuntu OS. The root node is 2.2
GHz Intel i7 CPU, 16 GB RAM, 1600 MHz DDR3. The integrated
MQTT Broker is Mosquitto. The setup of the testbed deployment is
shown in Figure 3.10.

Extensive tests, on MQTT and RD evaluation, have been per-
formed by sending growing numbers of sequential MQTT requests

66 3 Scalability and Containerization for Fog Computing

Figure 3.10: Testbed Scenario

and CoAP POST ones, with the purpose of evaluating the hierarchi-
cal solution under different load conditions. Starting by sending a
peak of 1000 concurrent requests between two RaspberryPi, without
any of the optimizations described above, the prototype is not able
to handle them; exceptions related to too many messages stored and
too many messages waiting the ACK are observed. Thanks to the ob-
ject serialization optimization, it is possible to observe a significant
decrease of the total time needed to serve all the requests (around
49%), but anyway this is still insufficient to manage such a large peak
with no exception occurrences. By adding also our DataService op-
timization, tests show another significant performance improvement,
as well as the ability not to enter in exception situations due to
overload. After that preliminary experimentation, the behavior of the
prototype has been evaluated while further increasing the number of
MQTT exchanged messages. Table 3.1 reports the total time to com-
plete MQTT transmissions in relation to the optimizations introduced.
Note that, due to their limited capabilities and the high number of
operations to perform, sometimes RaspberryPi nodes are affected by
connection lost errors with the MQTT broker; this has shown to be
prevalently due to the inability of sending MQTT heartbeat messages
in time to keep the associated connection alive.

Table 3.1: MQTT Performance Results

Senser/Receiver Opt. MQTT Req. Time Errors

Rasp/Rasp – 1000 211 s KuraStoreCapacity
Reached

Rasp/Rasp OS – DS 1000 14 s –
VM/Rasp OS – DS 1000 5 s –
VM/VM OS – DS 1000 1 s –
Rasp/Rasp OS – DS 10000 120 s Lost Connection
VM/Rasp OS – DS 10000 60 s –
VM/VM OS – DS 10000 7 s –
Rasp/Rasp OS – DS 60000 723 s Lost Connection
VM/Rasp OS – DS 60000 377 s –
VM/VM OS – DS 60000 34 s –

3.2 Scalable IoT-Cloud Interactions 67

By passing to some relevant results about RD (CoAP-centered)
evaluation, the test on RD started by sending 500 POST requests:
already with this number of requests, the default Californium config-
uration has shown non-negligible performance issues; for instance,
when working on top of a limited gateway such as the RaspberryPi
one, this load peak may frequently generate errors. Therefore, the RD
optimizations have been applied, also in different partial subsets; Ta-
ble 3.3 reports the related performance results in terms of total time
to complete the POST requests on RD, with the different possible
subsets of optimizations introduced.

Table 3.3: RD Performance Results

Senser/Receiver Opt. POST Req. Time Errors

Rasp/Rasp – 500 99 s POST Timeout
VM/Rasp – 500 12 s –
VM/VM – 500 6 s –

Rasp/Rasp RP 500 68 s Possible POST
Timeout

VM/Rasp RP 500 7 s –
VM/VM RP 500 4 s –

Rasp/Rasp RP – RA 500 55 s –
VM/Rasp RP – RA 500 5 s –
VM/VM RP – RA 500 3 s –

Rasp/Rasp RP – RA – SR 500 19 s –
VM/Rasp RP – RA – SR 500 4 s –
VM/VM RP – RA – SR 500 0.8 s –

Rasp/Rasp RP – RA – SR 1000 51 s –
VM/Rasp RP – RA – SR 1000 11 s –
VM/VM RP – RA – SR 1000 1.8 s –

Rasp/Rasp RP – RA – SR 5000 255 s POST timeout,
not responsive

VM/Rasp RP – RA – SR 5000 54 s –
VM/VM RP – RA – SR 5000 3.3 s –

Rasp/Rasp RP – RA – SR 10000 491 s POST timeout,
not responsive

VM/Rasp RP – RA – SR 10000 104 s –
VM/VM RP – RA – SR 10000 6.9 s –

Introducing the security DTLS security support, some tests have
been provided on RD performance. DTLS may slow down the system
in case of many new nodes, because every time a new node sends
a message must perform the DTLS handshake to create the DTLS
session. Figure 3.11 illustrates the results considering both normal
iteration between Kura devices inside the hierarchy and, the worst
case, about communications only from external independent clients.

In addition to the above results for communication performance,
the solution has been thoroughly investigated in term of resource
consumption on IoT gateways, which is crucial also to maintain full
responsiveness of the participating nodes. CPU and RAM usage on
RaspberryPi nodes, when 500 resources are registered (four descrip-

68 3 Scalability and Containerization for Fog Computing

Figure 3.11: Performance RD with(out) DTLS

Figure 3.12: Initial CPU Figure 3.13: Initial Memory

tion attributes each, on average) via POST REST invocations, is re-
spectively 92% and 80%, as shown in Figure 3.12 and 3.13, with
around 550 active threads. In fact, every time RD stores a resource,
the Californium-based CoAP implementation associates a new thread
to it in order to monitor its validity time and delete the registration
once it expires. With a high amount of concurrent requests, this
multi-threaded support is clearly not adequate. Therefore, the asso-
ciated multi-threaded support has been modified via an optimized set
of worker threads, each of them handling a partition of resources (the
cardinality of the partition is dynamically determined and can change
over time self-adapting monitoring). In particular, registration up-
date periodicity may vary depending on desired responsiveness and
available resources at gateways; consider also that in the considered
application scenario, a false positive in resource registrations only
generates the waste of a useless lightweight CoAP request that will
not receive any response. Figures 3.14 and 3.15 show the perfor-
mance results about resource consumption in the thread-optimized
case, with only 35 active threads on average.

3.3 Fog Deployment via Containerization

This section presents the enhancing of the fog computing middle-
ware via dynamic IoT gateway configuration through i) the creation

3.3 Fog Deployment via Containerization 69

Figure 3.14: Final CPU Figure 3.15: Final Memory

of standard gateway base configuration; ii) the creation of container-
based (typically small and atomic) applications/services, each with
very specific functions; and iii) the dynamic orchestration of fog mid-
dleware services by the global cloud, with the possibility to install,
replace, or extend the currently installed configurations and available
middleware services.

3.3.1 Containers Overview and Motivation

Containers are nowadays a very effective alternative solution to more
traditional Virtual Machines (VMs), also allowing the deployment
of virtualized resources on less powerful server hosts than in regu-
lar cloud computing [96], with relatively limited performance impact.
Container-based virtualization is an industrially mature technology
that provides real virtualization at the OS level, rather than a full
OS on virtual hardware, with all the primary virtualized properties
achievable via VMs, e.g., own network interfaces, own filesystem, iso-
lation in terms of security and resource usage, but with much more
lightweight operations. Since container-based services and applica-
tions share their underlying OS, the associated deployments are sig-
nificantly smaller in size than VM-oriented hypervisor deployments,
thus making it possible to store hundreds of containers on a physical
host, as well as restarting a container without rebooting the OS, which
is very relevant in several application domains [70]. [71] highlights
how containers, differently from VMs, are more flexible for packaging,
delivering, and orchestrating both software infrastructure services and
application-level components, i.e. typically for tasks performed by a
PaaS.

The solution is based on this general idea and perspective, and
originally extends it to the applicability domain of fog computing
middleware. In addition, containers provide an abstraction that makes
each container a self-contained unit of computation [97], thus allowing
easier portability and interoperability, with lightweight components
and good suitability for distributed applications. Several tools provide
the abstraction and implement the container-oriented models, e.g.,

70 3 Scalability and Containerization for Fog Computing

LinuX Containers (LXC), Docker, CRIU, systemd-nspawn, rkt, runC,
OpenVZ, and many others.

Containers Available

LXC (LinuX Container) [97] is a virtualization technology to create
multiple Linux virtual environments, which provides low-level kernel
features to guarantee sandboxing processes and to control resource
allocation. LXC provides the isolation of processes on the shared OS
via kernel namespaces, which are the basic isolation mechanism to
separate containers in LXC, and via control groups, which allocate
and manage container resources.

CRIU [98] is an emerging software tool, used to checkpoint/restore
a tree of running processes: CRIU can easily freeze a running ap-
plication, or part of it, and checkpoint it to persistent storage as a
collection of files. CRIU can automatically enrich the code of run-
ning containers in order to get the dump of the state container when
proper triggers are fired; associated with that, a typical and inter-
esting CRIU employment nowadays is as the base for implementing
container live migration.

Docker [99] is an industry-popular and mature initiative to build
independent containerized applications by extending LXC with a
high-level tool with powerful facilities, along with a very easy to
use interface and deployment process. For instance, among the oth-
ers, Docker tries to overcome dependency issues easily by packaging
each component and its dependencies in order to solve conflicting or
missing dependencies and to overcome platform differences automat-
ically by the Docker engine. The available Docker implementation
provides:

• Portability. It defines a format for bundling an application with
all its dependencies into a single object, benefits from LXC pro-
cess sandboxing, and extends it with an abstraction for machine-
specific settings, e.g., networking, storage, logging, distribution,
etc.

• Component reuse. Any container can be used as a base image to
create more specialized components, in a very easy and assisted
way.

• Versioning. It supports the tracking of container versions, by
inspecting the differences between versions automatically, as
well as committing new versions and rolling back. This eas-
ily enables the possibility to perform only incremental upload-
s/downloads based on differences between two versions, with
limited bandwidth usage.

3.3 Fog Deployment via Containerization 71

• Large set of supporting tools. Docker defines API for automat-
ing and customizing the creation and deployment of containers
and many tools may be integrated to extend its capabilities.

• Container sharing. There is the rich support to a public registry
where anyway can upload/download containers.

• Application orientation. Docker is optimized for the deployment
of applications, rather than LXC that is more OS-oriented with
focus on containers as lightweight machines.

• Automatic build mechanisms. Docker includes a tool to au-
tomatically assemble a container from source code, with full
control over application dependencies, build tools, packaging,
and so on.

In short and roughly speaking, Docker is gaining momentum, in
both the academic and the industrial communities, because it pro-
vides a high-level API and good overall performance, by adding a
limited overhead if compared with LXC containers. Docker is the
containerization technology used for the proposed solution described
below because it provides a high-level extension of LXC capabilities,
by guaranteeing at the same time a reasonably lightweight usage of
resources, with performance results that are comparable with LXC. In
addition, Docker is based on a fervent large community of develop-
ers, thus being a significant advantage if compared to competitors.
Moreover, CRIU has not been considered because at the moment it
only supports process migration (not a full-support containerization
solution).

Docker Storage Drivers

Docker has a pluggable storage driver architecture to give the flexi-
bility to integrate and configure the most suitable storage driver for
the specific application requirements and deployment characteristics,
ranging in a relatively wide set of different technologies, the most
widespread of which are AUFS, Device-mapper, and OverlayFS.

AUFS [100] is a layered filesystem that can transparently overlay
one or more existing filesystems, by merging multiple layers into a
single representation of a filesystem [101]. This allows to reuse lay-
ers, i.e., multiple containers that require the same base image, and
to support efficient versioning of the used images, i.e., by including
and exporting only differences between different versions of the same
image. AUFS uses the Copy-on-Write (CoW) technology that creates
a snapshot of a file every time a process needs to modify it. AUFS,

72 3 Scalability and Containerization for Fog Computing

based on CoW support, has demonstrated to have a non-negligible
overhead in case of large size files or with high numbers of folders;
however, its performance can be tuned and optimized dynamically
via different configuration mechanisms, which typically are used to
achieve maximum performance for container creation and I/O opera-
tions [101].

Device-mapper introduces (and works at) a further layer, i.e., block
level: it is based on the so-called thin provisioning [102] where blocks
realized via a sparse file allow to use Docker in a very easy-to-use
way with no need for static configuration definition. The primary
drawback is related to associated performance: every time a container
writes to a block in the allocated pool of blocks, this block should be
copied to the sparse file, thus introducing non-negligible latency.

OverlayFS [103] is a filesystem based on two main layers: the up-
per filesystem layer is visible to applications and readable/writable;
the lower filesystem modules are instead not visible and read-only;
they realize the base layer to be merged with the upper layer (con-
taining latest data modifications) to have the final updated vision.
OverlayFS provides good performance thanks to page caching and the
two-layers design, e.g., AUFS comparatively introduces more latency
due to the need of searching among more layers; however, OverlayFS
can exhibit significant overhead in the case of high dynamicity and
high numbers of modification operations.

Finally, for the sake of completeness, here there is a brief descrip-
tion of the less popular BTRFS and VFS: BTRFS, similarly to the
AUFS driver, is based on CoW and offers better scalability and reli-
ability in cases of non-extreme modifications rate; in VFS each layer
is implemented as a different folder because VFS does not support
CoW, thus leading to a simple and very portable solution, but with
non-negligible drawbacks in terms of achievable performance.

3.3.2 Management and Orchestration

In a general fog computing middleware, container management and
orchestration are performed by the cloud computing layer, by tak-
ing advantage from its potentially global visibility and from its key
ability to perform predictive long term data analysis, thus trying to
capture system behaviors and to infer system evolution [104]. In fact,
in this perspective, cloud computing has the global view of resource
distribution and application usage that allows to better manage the
efficient management and orchestration of the distributed containers
over the fog nodes.

A cloud orchestrator is necessary to deal with multi-containers
management to handle: i) the creation of the cluster of containers
that compose an application; and ii) the distributed deployment of an

3.3 Fog Deployment via Containerization 73

application over several IoT gateways. Container scheduling loads
containers into multiple gateways, indicating how to run them, e.g.,
in which order to run containers, their dependencies, the minimal re-
sources needed, or grouping all containers for a specific application
for optimized transmission to gateways. More advanced tools may
check if the destination hosts are correctly configured to run contain-
ers, by possibly trying to solve the associated issues. The combina-
tion of containers, which abstract from platform heterogeneity, and or-
chestration mechanisms, which enable logically centralized container
management, allows to create a loosely coupled architecture between
the configuration capability and the underlying middleware. This pro-
motes the reuse, automation, and decoupling of allocation algorithms
from deployment, by allowing to focus more on which tasks to send to
the IoT gateways instead of how to deploy it on the target platform.
In order to integrate container management and orchestration func-
tions in this fog computing middleware, several existing solutions in
the literature, e.g. Docker Swarm, Kubernetes, Apache Mesos, have
been thoroughly evaluated; the rich set of existing container-oriented
orchestrators is a manifest sign of the academic/industrial interest in
the approach that has been applied to fog computing nodes.

Docker Swarm [105] is a native tool to manage Docker cluster-
ing. It is easy to use and very flexible; in addition, it exposes Docker
API to be used by other Docker tools, e.g., Docker Compose. Docker
Swarm is a relatively novel tool, that is developing quickly and gain-
ing momentum, but also still needs further improvements to support
complex scheduling, to be used in a production environment or for a
large-scale system due to some limits. For instance, at the moment,
Docker Swarm does not support any sophisticated load-balancing
mechanism and lacks interoperability with other industrial tools in
the field.

Kubernetes [106] is an orchestration framework, typically used as
a clustering engine to define containers organization within an ap-
plication. Kubernetes has demonstrated to achieve good performance
and in a scalable way, without adding significant overhead to exist-
ing containers. In addition, thanks to its plugin architecture, it easily
integrates with different vendors tools and technologies. In addition,
Kubernetes self-healing, auto restarting, replication, and reschedul-
ing mechanisms make it more robust and suitable for container-based
applications [97]. Primary Kubernetes drawbacks relate to complexity
because the setup is quite complicated and installations differ from
platform to platform.

Apache Mesos [107] is a low-level, portable, and very reliable
orchestrator. It has been designed to achieve high performance and
to scale to very large clusters, even if it has high resource overhead.
While being very interesting for other deployment scenarios, due to
its overhead load it is not recommendable for usage in some IoT

74 3 Scalability and Containerization for Fog Computing

application domains and in fog computing middleware.
Note that, even if not detailed here and out of the specific scope

of this paper, in the present fog computing middleware it has been
integrated Docker Swarm as the provider of the basic container or-
chestrator mechanisms. In fact, at the moment, Docker Swarm rep-
resents the best tradeoff between good industry-level solidity, high
performance, and limited overhead: in the preliminary experimenta-
tion work it has demonstrated to provide good overall performance; it
is improving rapidly, with a relatively large community of users be-
hind it; from the perspective of resource consumption, it has shown to
be more lightweight than Mesos and Kubernetes. Probably, Mesos
and Kubernetes can provide more complete and robust orchestrators,
not only limited to Docker containers; however, at the moment, it is
more suitable a lightweight solution, also easier to be integrated with
additional mechanisms and policies, specifically designed for the tar-
geted goal of orchestrating distributed fog resources based on global
visibility of application deployment environment.

3.3.3 Configuration and Management of IoT Gateways

A defined standard gateway configuration is needed as a base to cre-
ate a fog-oriented IoT gateway. Each fog participant must be com-
pliant with that configuration in order to promote the deployment of
general-purpose fog nodes, which can then be dynamically extended
with additional and optional middleware services. To this purpose,
it is possible to define macro-operations that compose the skele-
ton of any application powered by this fog computing middleware.
Namely, in the proposed solution it is possible to define the follow-
ing base macro-operations: I/O input operations, storage facilities,
service computation, networking capabilities, and output operations.
The base configuration must only manage the macro-operations flow
(called skeleton in the following) and system lifecycle from a high-
level and abstract point of view in order to push for and facilitate
openness and portability. For example, every fog node must specify
the macro-services list and the skeleton to follow to achieve the final
desired behavior, as shown in the simple example in Figure 3.16.

In this way, every fog node has the same base configuration and
the same skeleton, with no relationships on how the macro-service will
be composed further in single services and their specific implemen-
tations. In addition, the base skeleton does not give any indication
about the applications that will use the supporting fog node as their
IoT gateway (dynamic association).

The IoT gateway design and implementation include the defini-
tion of macro-service composition and the single service implementa-

3.3 Fog Deployment via Containerization 75

Figure 3.16: Fog Node Skeleton

tion through containers. Contrarily to macro-services, single services
are specific to the application domain where they are used in. The
proposed process in which a system administrator can build a com-
plete functionality, e.g., data aggregation, data filtering, data normal-
ization, data processing, database access, output management, etc.,
within a container, can package it for deployment, and then send it
to the needed IoT gateways. In this way, by exploiting application
composability, it is possible to configure a given IoT gateway in re-
lation to the specific application(s) where it is used, by loading on it
all and only the containers related to such specific application(s). In
addition, every time a new component is implemented or a new ver-
sion of a functionality is released, the new container-based version of
the needed functionality can be uploaded to the gateway. Moreover,
each container may contain a time-to-live value, particularly suit-
able for long-term container management, that specifies the validity
of a container version: if not refreshed, the expired version of the
container is automatically discarded in the fog middleware solution.
Each containerized component is isolated and independent from the
others, thus, it is possible to update and/or upload only specific func-
tions/containers in a fully independent way. In addition, it is possible
to use every node interchangeably to create an application because
all the nodes have the same skeleton (skeleton-based homogeneity).
This property allows to dynamically create fog nodes for a particular
application, e.g., in relation to hardware-specific properties of an IoT
gateway and to application relevance/priority in a given time inter-
val. For instance, for compute-intensive applications it is possible to
employ more compute-powerful nodes, rather than storage-intensive
applications where it is necessary to enhance database operations,
or I/O intensive applications where the focus is on communication
capabilities. In addition, some applications are particularly used in
relation to the time of the day, with rush hours with high peak load
conditions and the need of more gateways (or resources on the avail-
able gateways), and off-peak times when many resources may be re-
leased. For example, smart traffic light systems have quite predictable
stress patterns, by permitting to optimize IoT gateway resource con-
sumption and deployment by sharing them with other applications far
from rush traffic hours.

76 3 Scalability and Containerization for Fog Computing

3.3.4 Containers-base Fog Computing Solution

In order to validate and evaluate the feasibility of the containers-
support to realize an efficient and dynamic fog computing architec-
ture, this solution is based on the containerization of the applications
and the orchestration of them by the global cloud. In particular, it has
been designed and implemented a solution that, by using container-
ization, it offers the characteristics of mobile presence and scalability,
in order to guarantee, respectively, i) continuity of service in case of
users movements and ii) highly scalable support with performance
independently from the workload.

Overall Architecture

Specifically, as shown in Figure 3.17, the solution is based on a multi-
layers architecture, composed of mobile devices layer, fog computing
layer, and cloud computing layer.

Figure 3.17: High-Level Architecture View

Mobile Devices Layer

The mobile device layer consists of both IoT endpoints immerse into
the environment and mist computing nodes.

IoT devices are considered as the smallest possible entity, with no
internal computational power and only network ability, to send the
data towards the nearest mist node.

Mist computing [108] pushes processing even further to the net-
work edge, involving the sensor and actuator devices, to decreases
latency and to support IoT devices with no self-capabilities. Mist
computing nodes are tiny devices directly connected to IoT devices at
the extreme edge of the network that feed the fog nodes at the upper

3.3 Fog Deployment via Containerization 77

layer. They are constraint devices with very little computation and
storage capacity and act as small sink of information and as vehicle
for IoT devices to connect towards the corresponding fog node. In this
solution, the mist computing part gathers data from the IoT devices,
send it through the fog node wifi network and receives management
instructions to change the destination fog node in case of high traffic
to on the intermediate layer.

Fog Computing Layer

The fog computing intermediate layer consists of multiple distributed
nodes that creates a cluster to provide functionalities for endpoints
devices under the orchestration of the cloud computing layer.

From the application perspective, fog nodes provide, to mobile
devices layer, a containers-based self-intelligent application able
to perform calculations and statistical analysis on the information
sent. In fact, it retrieves data from the bottom layer, stores it into a
database, performs analysis and communicates the results back to the
mobile devices layer. The fog layer manages the mobile devices layer
providing them the functionalities needed for IoT endpoints to analyze
environmental information and to act on the environment accordingly
to the goal of the application scenario usecase considered.

From a monitoring point of view, the fog nodes have a resource-
monitoring component that checks the available resources locally and
perform lightweight analysis on the evolution of the resources usage
on the node, determining if a node could become congested. The fog
nodes contains the resources and the ability to perform limited but, at
the same time, sufficient calculations that turn them into autonomous
nodes able to take decisions in an independent way and with no
external communications, under normal workload circumstances.

Cloud Computing layer

The cloud computing layer is the coordinator component that handles
high-level and large-scope management functionalities for the over-
all system. It performs the containers-based application orchestra-
tion, by taking advantage from its system global visibility of resource
distribution and application usage that allow to better manage the
efficient management and orchestration of the distributed containers
over the fog nodes. It orchestrates the fog nodes as a dynamic cluster
of nodes that changes accordingly to the evolution of the environ-
ment to monitor and the system functionalities to provide. It handles
the deployment of the application, deciding when to move the applica-
tion, in relation to the position of the endpoints to monitor and the fog
nodes to use to provide the mobile devices services. In addition, the
cloud provides support during high-busy application scenarios, when
the fog nodes have to serve more requests than their capabilities, by

78 3 Scalability and Containerization for Fog Computing

scaling up the fog nodes cluster or rebalancing the workload among
the fog nodes. Similarly, it manages the fog nodes cluster in case of
low node workload, by scaling down the fog cluster to minimize the
resources consumption.

A cloud orchestrator is necessary to deal with multi-containers
management to handle: i) the creation of the cluster of containers
that compose an application; and ii) the distributed deployment of an
application over several fog nodes.

Mobile Presence Feature

Mobile presence is a key concept of location-based services and per-
vasive applications that enables to continue to supply the mobile
services independently to the final user movements and positions.
Usually, mobile presence is the base from which a range of advanced
applications that are innately associated with the mobility of users
can be deployed in a personal and pervasive way [109].

In this solution, the concept of mobile presence applied to IoT
endpoint devices is considered and extended by providing continu-
ous service to them with a minimal unavailability time, similarly to
what happens when dealing with final users. In particular, an efficient
mobile presence solution, that autonomously detects the mist nodes
nearby, is provided to connect with the fog nodes, and the applica-
tion moves accordingly, following the mist nodes position, in a reac-
tive manner. A reactive application migration has been designed and
implemented, where the overall containers-based application moves
from one fog node to another, if a new mist node is detected to connect
to a different fog node from the previous connection. The application
follows the movements of the IoT devices to monitor guaranteeing
mobile services continuity with persistent IoT support and minimal
unavailability time.

A reactive application migration has been implemented between
different fog nodes, without any proactive capability in order to deal
with the IoT layer, which is composed of a possible high number of
mist nodes that can gather a potential huge amount of data from IoT
devices. Thus, from a resource point of view, it is much more suit-
able a lightweight reactive behavior with a small unavailability time
rather than high-computation analysis that predict next movements
in advance but without add significant information to the system op-
erations.

3.3 Fog Deployment via Containerization 79

Scalability Feature

Scalability is a key concept in mobile services provisioning and even
more central when integrating presence-aware applications, that must
guarantee necessary efficient and scalable platforms upon which to
deploy the mobile presence services, and in order to manage and
exchange presence information in restricted networks [109]. In par-
ticular, in large-scale mobile-presence service, the increasing of the
number of devices to monitor or the possible frequent mobile pres-
ence updates may lead to a scalability issue. In addition, in the
near future is expected a relevant growing trend of mobile devices
and mobile presence applications into mobile networks, thus, a scal-
able mobile presence service is deemed essential for future Internet
applications [110].

To address these concerns, the mobile presence solution is ex-
tended with the scalability requirement, which enables mobile pres-
ence services to be applied also in busy contexts, large-scale or real-
world application scenarios. The solution is based on a monitoring
component per each fog node, coordinated by the cloud layer accord-
ingly to the geometric monitoring algorithm, that continuously moni-
tors the node locally and it communicates with the cloud to scale the
application up or down, in case the available resources are running
out or decreasing drastically. Scaling the application up and down
is provided in a lightweight way, using the geometric monitoring ap-
proach, by trying to internally balancing the fog nodes cluster first,
recalculating and adjusting workload estimation parameters at each
resource usage violation, before to modify the topology of the cluster
with the introduction of new fog nodes to extend the cluster or the
disposal of some of them. In addition, the solution scalability reaction
is provided within a very limited timeframe, as described in the ex-
perimental results section, with minimal unavailability time and, thus,
with negligible loss of context information.

3.3.5 Implementation Insights

The containerization tool used to create the containers to build the
application is Docker. The application is composed of three Docker
containers, as shown in the Figure 3.18.

(i) Mosquitto container serves as MQTT broker and enables to ex-
change messages between the fog node and the mist nodes connected
to its local network. The mist nodes send, through the MQTT bro-
ker, all the sensed data and receive the request to change fog access
point connection, if available, in case of high workload. (ii) Mon-
goDB [111] container stores all the data sent from the mist nodes

80 3 Scalability and Containerization for Fog Computing

Figure 3.18: Fog Node Internal Structure

into its NoSQL database. (iii) The container with the business logic
of the application listens on the MQTT broker for messages from the
mobile devices layer and retrieves the data stored into the database
to analyze it and generate the proper reactive actuation for the IoT
devices. Each fog node is equipped with wifi access point capabilities
to allow the mist nodes to connect to it and send data to the local
MQTT broker.

The Docker images, the binary files that include all of the require-
ments for running Docker containers, are built on the cloud platform.
Usually, the Docker image build process is both resource-consuming
and time-consuming process to build a Docker image on a limited-
resources device, e.g. fog node device. Thus, the cloud is employed to
build the Docker images to take advantage from a much more power-
ful platform. In this way, it is possible to obtain a twofold advantage:
minimize the time necessary to build them, increasing the images
building speed, and avoid any additional workload on the fog device,
keeping the resource consumption as much lightweight as possible,
only related to the real application execution. Since Docker images
are generally architecture-dependent and it is possible to run an im-
age only on the same architecture from which the images has been
created, Docker cross-platform images are built. QEMU [112] is used
to build Docker images on the cloud but targeted to be executed on
a different architecture, e.g. RaspberryPi, respectively x86_64 and
ARMv7 processors. QEMU is an open source standalone machine
emulator and virtualizer, able to emulate ARM boards, used to run
an unmodified target operating system and all its applications in a
virtual machine, that uses a dynamic translator to convert the code
into native host instructions to improve performances. QEMU is used
to build both the base image shared among the other Docker images
and the upper-layer images that specify the Docker images adding to
the base image the application-specific code. Finally, after the im-
ages are built with QEMU, they are pushed towards the Docker Hub
registry to distribute the newly created image among the fog nodes.
Docker Hub is a stateless cloud-based registry service that provides
a centralized resource for Docker images discovery, distribution and
change management, user and team collaboration accessing to shared
image repositories.

3.3 Fog Deployment via Containerization 81

Geometric Monitoring

Along with the containers-based application, a monitoring component,
based on geometric monitoring approach, has been implemented to
monitor the resource consumption locally on each fog node, at runtime,
and proactively modify the system configuration dynamically, before
a node run out of resources.

Geometric monitoring is an approach that reduces monitoring the
value of a function, compared to a threshold, to a set of constraints
applied locally on each of the streams. The constraints are used to
locally filter out data increments that do not affect the monitoring out-
come, thus avoiding unnecessary communication with the coordinator,
in order to enable monitoring of arbitrary threshold functions over
distributed data streams in an efficient manner [113]. An extended
version of the geometric monitoring approach has been implemented
in order to increase the fog nodes autonomy because it provides con-
straints that allow fog nodes, easily and in a lightweight way, to check
if the current resource usage satisfies the requirements, i.e. within
the defined threshold. Thus, the communication between fog nodes
and the cloud coordinator are extremely minimized and happen only
if a resource violation occurs. For sake of briefness, more details of
the geometric monitoring procedure can be found in [113, 114], where
it has been extensively explained.

In this solution, to monitoring the resources available on the fog
nodes, the cpu, memory and disk values are considered about the
percentage of resources used on the total available. In order to im-
prove the estimation accuracy of the monitoring components during
its lifecycle, each fog node monitoring system is initialized creating a
safe zone to use during the following resource consumption analysis
to check local violations. To this purpose, at the startup, each fog
node sends to the cloud some resources measurements that will be
elaborated by the cloud and returned as constraints that define the
safe zone for each specific fog node. The number of samples to send
to the cloud varies in relation to the required estimation accuracy
and the time available on the fog nodes: more data gathered more
the estimation is accurate because based on a more solid training
set and more time the fog nodes are idle and cannot respond to the
coordinator. In order to have a good tradeoff about accuracy and time,
the node is sampled every 1s to create a training set of 100 values
per resources. Note that this procedure does not affect the system
performance because it is executed only once, at the startup, within
the whole node lifecycle.

Figure 3.19 shows the points measured into a 3-dimensional space.

The blue plane is the 2-dimensional optimal hyperplane that best
approximate the points in the training set and is used as target to

82 3 Scalability and Containerization for Fog Computing

Figure 3.19: Data Distribution and Related Hyperplanes

evaluate the distance of the future resources measurements. In par-
ticular, the optimal hyperplane is found solving the following opti-
mization problem, based on a least square problem:

• Given a generic plane equation 3.1, it is possible to write it as
3.2, where the z is the target vector to approximate:

a ∗ x+ b ∗ y + c ∗ z + d = 0 (3.1)

a

c
∗ x+

b

c
∗ y + d

c
= z , with c ̸= 0 (3.2)

• Given a point i and set A=a
c , B = b

c , C = d
c , ∀i, it is possible

to calculate the least squares function ω as 3.3:

ω = A ∗ xi +B ∗ yi + C (3.3)

• The goal is to retrieve the minimal distance between the least
square function ω (3.3) and the related target value zi, in or-
der to find the plane that best approximate the points retrieved,
which indicates the optimal solution of the minimization prob-
lem. Thus, equation 3.4 represents the formulation problem of
the least square method where mindistance is the minimization
sum of the Euclidean norms of the squared residuals ω and zi:

mindistance =

N∑
i=1

1

2
||ω − zi||22 (3.4)

where, N is the number of values in the dataset, i.e. 100.

Resolving this optimization problem it is possible to obtain the
coefficients of the solution vector A, B, C, that are the coefficient of
the least square fit plane, and they will be applied on the future
monitoring data points measured to check their position in the 3-
dimensional space.

3.3 Fog Deployment via Containerization 83

From a geometric point of view, the minimized distance equation
in (4), on the measured resources at runtime, gives an evaluation
about the evolution of the resource usage because: a positive result
means the measured point is located above the optimal hyperplane,
thus, the resource usage is increasing; a negative result means the
measured point is located below the optimal hyperplane, thus, the
resource usage is decreasing. The distance between the monitoring
results obtained and the optimal hyperplane indicates the distance
from the optimal resource usage and from the threshold.

The green planes are the threshold hyperplane defined as the
threshold values applied as offset to the optimal hyperplane. Thus,
the space between the two green hyperplane is considered safe zone
and, on the contrary, all the space outside the green hyperplane
raises local violation on the fog node during the monitoring. While the
monitored resources define a point within the threshold hyperplane
borders, no communication with the cloud is required.

In the case, during the usage of the application, a new resource
measurement point goes outside the safe zone, the fog node notifies a
local violation to the cloud. The cloud, thought the so-called scalabil-
ity orchestration, explained in detail in the following, will re-balance
the cluster or deploy a new fog node. This process continues until
the fog node measures resources consumption data is outside the safe
zone.

Containers Orchestration

Docker swarm mode implements Raft Consensus Algorithm [115] to
manage the global cluster state in order to make sure that all the
manager nodes that are in charge of managing and scheduling tasks
in the cluster, agree on the shared state and are storing the same
consistent state. In case of failure, any manager node can pick up the
tasks of scheduling and re-balance tasks to match the desired state,
recovering autonomously and restoring the services to a stable state.

In addition, Docker Swarm is complemented with Docker Com-
pose [116], a tool for defining and running multi-container Docker
applications, based on a Compose yml file to configure applications
services that helps building, starting, monitoring, and stopping mi-
croservices. It groups all the containers for a specific application and
defines how to build a container, i.e., how many instance of each
container to create, the deployment parameters, restart policies, the
minimal resources needed, and so on. In the present solution, Docker
Compose, that defines applications composed of multiple containers
and manage their deployment, is jointly used with Docker Swarm,
that combines and orchestrates multiple nodes as a cluster and the
Docker services component created. Here, there is a portion of code

84 3 Scalability and Containerization for Fog Computing

of our Docker Compose yml file:
v e r s i o n : ’ 3 ’
s e r v i c e s :

bus iness−l o g i c−app :
image : a l e z / t e s t−app−r a s p i : 3
deploy :

mode : r e p l i c a t e d
r e p l i c a s : 1
r e s t a r t _ p o l i c y :

c o n d i t i o n : on− f a i l u r e
delay : 5s
max_at tempts : 3

placement :
c o n s t r a i n t s :
− node . l a b e l s . rasp1==t r u e

It is been used Docker Compose version 3, that extends the older
Compose versions with options related to the Swarm service deploy-
ment on multiple nodes. For each container to deploy, it is defined
the name, the Docker image tag, and the deploy settings, e.g. mode,
number of replicas, the restart policy condition (on-failure because
the business logic container depends on MongoDB and Mosquitto
containers, thus, it fails if they are not fully started and attempt
to deploy it other 3 times), and placement constraints. Finally, the
Docker Swarm is applied and, with the command docker stack deploy
–compose-file, the Docker engine parses the Compose file to deploy
the containers specified and creating Docker services that get directly
deployed in the Swarm mode cluster.

In the following, the orchestration related to the mobile presence
and scalability features and managed by the cloud computing layer is
described more in detail. Before to start the system, all the fog nodes
available are inserted manually into the swarm as worker nodes and
the node is set on the cloud computing layer as the master of the
swarm. At the startup, all the fog nodes are reachable from the cloud
layer but in drain availability state to prevent from receiving new
tasks from the swarm manager until a node is in the active availabil-
ity state. Each fog node continuously executes two threads, checking:
new devices available in the neighborhood that connect with its ac-
cess point (mobile presence orchestration); the amount of resource
available on the host (scalability orchestration).

Mobile Presence Orchestration

Mobile presence orchestration aims to move at runtime all the con-
tainers that compose the application from one fog node to another,
following the movement of the related mist node. The mobile presence

3.3 Fog Deployment via Containerization 85

orchestration is triggered on the fog node by the thread that checks
the wifi interface to check if new devices connects to the node access
point. Figure 3.20 details the sequence diagram related to the mobile
presence orchestration with the steps needed for the procedure.

Figure 3.20: Mobile Presence Procedure

Initially, a new mobile device connects to the fog node access
point, the fog node reads its MEC address checks if it is a new
connected device or a pre-connected device. If it is a new connected
device, the fog node sends the MEC address to the master node on the
cloud to notify it, through a webserver located on the cloud side, and
the mobile presence procedure takes place. The cloud sets the fog
node into active availability state, modifies the Docker Compose file
to deploy the application accordingly, and deploy the containers that
compose the application following the Docker Compose specifications.
In the meantime, the mobile device tries to connect to the application,
in particular with the MQTT broker, until the Mosquitto container has
started up.

When the mobile device changes location, it connects to the ac-
cess point of a different fog node that detects it as node device and
redo the procedure above. During the mobile presence orchestration,
the cloud set the Docker Compose file to deploy only one replica
for the application because the application is deployed only on one
node. Thus, during the deployment of the new containers, the old
application, which was running on the previous fog node, is stopped
and no more available. In addition, the previous fog node is set
to drain availability and its exited containers are deleted to mini-
mize the resource usage and optimize the space available, since after
some mobile presence procedures the node could have many exited
and useless containers.

86 3 Scalability and Containerization for Fog Computing

Scalaiblity Orchestration

Scalability orchestration aims to manage borderline workload situa-
tions in order to adjust the amount of resources available required to
serve the clients. The solution handles both to scale up the system,
in case of relevant increase of the resource needed, and to scale down
the system to manage efficiently the resources available and do not
waste them.

The scalability orchestration is triggered on the fog node by the
thread that checks the resource available and perform the geometric
monitoring on the resources consumption, if the amount of resource
available on the node is diverging from the expected values. Scala-
bility orchestration, following the geometric monitoring rules, is com-
posed of two main actions, executed at runtime in sequence: calculate
and re-estimate the vectors needed by the geometric monitoring to try
to re-balance the fog node resource consumption within the cluster;
extend the application onto more fog nodes, by increasing the number
of containers replicas and deploying all the containers of the appli-
cation on new available fog node. Figure 3.21 details the sequence
diagram related to the scale up orchestration and the steps needed
for the procedure.

Figure 3.21: Scalability Procedure

Each fog node is constantly monitored to check if its resource con-
sumption is within the threshold defined by the cloud. If the monitor
component detects a violation on the amount of resource consump-
tion, it send a message to the Mist node through the MQTT broker
to search another access point because the current one is overloaded,
and notifies it to the cloud, specifying the drift vector (u) and the

3.3 Fog Deployment via Containerization 87

statistics vector (v) of the geometric monitoring.
If the requesting node is alone into cluster, the cloud deploys

another fog node to extend the cluster.
On the contrary, if the requesting fog node belongs to a cluster

on nodes, the cloud, as a first action, tries to re-balance the cluster.
Re-balancing the cluster is a procedure that involves the cloud to
retrieve all the drift and statistics vectors from all the nodes into
the cluster. The cloud, then, tries to create a group of nodes, called
balancing nodes, such that the average of the drift vectors held by
the nodes in the balancing group, called balancing vector, creates a
monochromatic area with the same estimated vector [113]. The cloud
tries iteratively to balance the cluster adding, to the balancing group,
a cluster node until the balancing vector is monochromatic or all the
cluster nodes are in the balancing group. If the cluster balancing
succeed and the balancing vector results monochromatic, the cloud
calculates the delta vector, that is an adjustment of the offset vector
(slack vector) and sends it to every nodes in the balancing group.

Vice versa, if the balancing process fails and there are no more
node, inside the cluster, to add to the balancing vector, the cloud
searches for a new suitable node to add to the cluster. The set
of suitable nodes to extend the cluster may be all the fog nodes
currently ready but idle in the drain availability state. Successively,
the cloud sets the new fog node into active availability state, modifies
the Docker Compose file to deploy the application on all the cluster
nodes, and deploy the containers. Finally, the cloud calculates the
new estimation vector (e) for each node inside the cluster and send
it to them.

In case the fog nodes detects a violation related to a too little
amount of resource consumption the system scales down, with a sim-
ilar procedure, by removing from the cluster the requesting node that
notified the local violation, and re-estimating the new estimation vec-
tor (e) for the rest of the fog nodes remained in the cluster.

3.3.6 Performances

As performance evaluation of the container-based solution described,
the tests on both container performances and on the overall solu-
tion proposed are provided. The container performance tests rep-
resent preliminary evaluations to validate the containers usage and
the show the containers feasibility to be used into the realization of
a fog computing infrastructure, with a particular focus on the over-
head introduced. The tests on the overall solution proposed show
the realization of an efficient and dynamic fog computing solution
by orchestrating containers-based applications in the most efficient
way, guaranteeing the solution to be scalable, dynamic, autonomous

88 3 Scalability and Containerization for Fog Computing

with a minimal amount of communications with the global cloud and
continuity of service.

Containerization Overhead Performance Results

An application running on a fog node has been implemented and
experimented. It behaves according to the skeleton of i) gathering
data from sensors, ii) storing gathered information, iii) periodically
(for energy consumption motivations) reading local storage, and iv)
processing the read data to identify alerts/warnings. The application
is implemented in Golang, which is the most supported language in
Docker, and is an example of application that, in different time inter-
vals, has relevant requirements in terms of both computing and I/O op-
erations. As already anticipated, to collect quantitative performance
indicators in a particularly challenging deployment environment, the
fog nodes has been realized with RaspberryPi 1 Model B+ devices,
with 512MB RAM and a single core CPU.

As the realistic testbed to test container-based applications, a
simple use case application in the domain of SCV has been devel-
oped and deployed. In this SCV application, a fog node located on
a smart bus, following pre-determined routes, assists the other dis-
tributed SCV participants; for the sake of simplicity, in the example
illustrated here to show the performance results of our fog computing
containerization, the fog node has the main goal of elaborating and
aggregating the data gathered from multiple sources. In other words,
the fog node acts as a mobile sink collecting data from a dynamically
determined set of heterogeneous sensors, that can be installed on-
board of the transit vehicles or on other infrastructural components,
e.g., base stations with car detection modules at road crossings; the
fog node keeps track of gathered data by storing and sorting infor-
mation, e.g., according to priorities, originating locations, previous
warnings or error signals, and so on. In addition, the mobile sink can
decide to spread valuable concise information to other SCV partici-
pants opportunistically encountered during its travel, thus contribut-
ing to overall system awareness and to the emergence of cooperative
behaviors.

Here some interesting results about the experimentation work are
reported by focusing on Docker-based containerization and on the
impact of filesystem configuration on performance. In particular, the
performance of single containers are compared in relation to native
code execution, by estimating the overall overhead and delays in-
troduced by the exploitation of Docker-based containers with either
AUFS, Device mapper, or OverlayFS. In addition, the usage of mul-
tiple concurrent containers have been thoroughly evaluated over a
single fog node (which is highly typical in envisioned future applica-

3.3 Fog Deployment via Containerization 89

tions), also to verify the capability of even very constrained devices
to manage several containers simultaneously. All the results reported
in this section do not include the latency and effects of orchestration
mechanisms, which are shown in the next section, in order to exclu-
sively focus on the performance characterization of the extended IoT
gateway on the fog node.

Table 3.5 reports the most significant results in terms of average
time, over a wide set of hundreds of runs, to complete the execution
of the sample SCV application in the case of native code execution
vs. container-based execution with the exploitation of different stor-
age drivers, i.e. AUFS, Device mapper, and OverlayFS. In addition,
the table highlights the time contributions associated with the most
relevant operations performed during the SCV application execution:
container creation time; I/O operations (file opening and reading size
of 1.6 MB); CPU operations (double sorting, first alphabetically and
then by words length). The maximum standard deviation experienced
for the reported results is within 0.2 s.

Table 3.5: Native-Code and Container Execution Time

Operation Native Docker +
AUFS

Docker +
DevMapper

Docker +
OveralyFS

Start Container – 3.5 s 9.1 s 3.3 s
I/O Operations 1.6 s 4.3 s 4.7 s 4.3 s
CPU Operations 3.1 s 3.4 s 4.2 s 3.5 s
Total Operations 4.7 s 12.5 s 21 s 11.8 s

The build time of the container-based version of the SCV appli-
cation has not been considered in the reported results because not
relevant for runtime performance analysis. Anyway, an image build
time is in the order of a few minutes even on RaspberryPis, which
will be rarely exploited as the nodes where the image building is per-
formed; the reasonable process in a realistic production environment
will be to delegate build operations to cloud resources and succes-
sively to migrate the ready images towards the interested fog nodes.

By coming back to the results of Table 3.5, as expected, the exe-
cution of native code outperforms the container-based one. This has
demonstrated to be mainly due to the more efficient usage of file allo-
cation table (fat) disk filesystem, of course in addition to the time for
container creation. Among the case of Docker-based execution, the
measured performance has shown to have a strong dependence on the
filesystem used: Device mapper demonstrated to have the worst per-
formance in this SCV application, mainly because of the high number
of write operations it performs on the sparse file, with the introduction
of a significant delay also in this case of single container execution;
AUFS and OverlayFS have achieved comparable results on every
operation, with a slightly better behavior of OverlayFS.

90 3 Scalability and Containerization for Fog Computing

Finally, Figure 3.22 reports the results about the concurrent exe-
cution of multiple containers over a single fog node. Also in this case,
AUFS and OverlayFS outperform Device mapper, with a growing per-
formance gap that has shown to be proportional to the number of con-
tainers in execution, thus demonstrating the practical unsuitability of
using Device mapper over resource-constrained fog nodes in the rel-
evant case of multiple concurrent containers scenario. Most relevant,
Figure 3.22 clearly shows that, in terms of scalability while growing
the number of running containers, also a resource-constrained IoT
gateway such as a RaspberryPi node can achieve very good perfor-
mance (linear dependency of execution time on the number of concur-
rently running containers), thus demonstrating the practical feasibility
of the proposed approach.

Figure 3.22: Execution Time over Multiple Containers

Elastic Provisioning of Mobile Services

Since the previous tests on the container-based application are en-
couraging and show good preliminary results, in particular in terms of
scalability of multiple containers execution, also over very resource-
constrained nodes such as RaspberryPis1, extending the tests by
applying allocation algorithms for the Docker Swarm-based orches-
trator. In this way, it is possible to exploit global visibility of resource
status and of available fog nodes, and experiment the application of
the fog computing middleware over a real application domain and
a geographical distributed deployment environment coordinated by
either fixed or mobile IoT gateway fog nodes. The geographical-
distributed testbed is shared between Sweden and Italy and among
different providers, as shown in Figure 3.23.

The master node, on the cloud layer, that coordinates the overall
system, is located at University of Bologna, Italy. The fog layer

3.3 Fog Deployment via Containerization 91

Figure 3.23: Geo-distributed Testbed Used

is composed of three RaspberryPi3 located in Sweden, within the
networks of Mid-Sweden University and the RISE-Acreo Research
Center. Each RaspberryPi3 is equipped with 64-bit quad-core ARM
Cortex-A53 processor, 1 GB of RAM and 16 GB of storage space. The
mist nodes are Arduino nanoESP devices that are able to move freely
into the environment. Each Arduino nanoEsp device is equipped with
ATmega168 processor, 16 kB of flash memory and 1 KB of SRAM
memory. The IoT layer is composed of different types of sensors, i.e.
temperature, movements, and so on.

It is worth noting that the network connection between the master
node at University of Bologna and the fog nodes located in Mid-
Sweden University has a round trip time of 61 ms, with a bandwidth
of about 90 Mbits/s.

From the final user point of view, the evaluated time for the Ar-
duino to disconnect from the access point of a fog node and reconnect
to the access point of another node is 3.91 s, with a standard de-
viation of 1.49 s. In addition, the results about the moment when
the Arduino device disconnect from the MQTT broker and reconnect
successfully to the MQTT broker on another node is 11.06 s, with
a standard deviation of 2.04 s. Note that the standard deviation of
the experimental results obtained is quite high, in particular related
to the time needed to disconnect and reconnect to the access point.
This instability is caused by to the imprecision and unreliability of
the Arduino nanoESP integrated wifi that takes different time to es-
tablish a connection, with the MQTT broker and, in particular, with
the access point.

Investigating both the mobile presence and scalability orchestra-
tion of the solution proposed, Table 3.7 shows the average times re-
lated to orchestrate, deploy and startup the application composed of
containers, with a standard deviation within 0.18 s for the total time

Table 3.7: Containers Orchestration and Deploy Time

Mode Orchestration Deploy Startup Total

Mobile Presence 0.10 s 1.50 s 0.92 s 2.52 s
Scale Up 0.45 s 1.50 s 0.92 s 2.87 s

Scale Down 0.55 s 1.50 s 0.92 s 2.97 s

92 3 Scalability and Containerization for Fog Computing

where, mode is the type of deployment the master node orches-
trate; orchestration is the time needed to the master node to perform
the calculations needed, e.g. re-balancing the cluster, selecting which
fog node use as target node to deploy and modify the Docker Com-
pose file accordingly; deploy is the time needed to deploy all the
containers on the selected node; startup is the time required by the
containers, after the deployment, to startup and serve the clients; total
time is the time to complete the overall phases of the corresponding
mode.

Table 3.9 shows the set of times during orchestration in the case
all the fog node already has locally the Docker images needed to run
the containers that compose the application. Table 3.9 shows, after
hundreds of runs, the average times related to pull the Docker images
form the Docker Hub registry, with an average standard deviation of
about 6 s

Table 3.9: Pull Docker Images from Docker Hub Registry

Container Name Base Image Upper Layer Image Total Time

Mosquitto 243.38 s 70.27 s 313.65 s
MongoDB 248.38 s 72.00 s 315.38 s

Business Logic App 248.38 s 83.16 s 326.54 s

where, base image is the time to pull the QEMU image that is
used to create for all the other containers; the upper layer image is
the Docker image that contains the code of the specific container and
is applied to the base image to specialize it; the total time is the time
to pull the complete Docker image for the containers. Pull the images
from the Docker Hub registry is a heavy and time-consuming action,
that can require more than 5 minutes, thus, fog nodes must assure to
get the Docker images in advance before to receive the master node
request to deploy the service.

On the cloud side, the time to build Docker images varies, in aver-
age, from about 205s for MongoDB image to 340s for the Mosquitto
image. Note that it does not slow down the system performance be-
cause the Docker images building process: is executed in an offload
mode, independent from the system lifecycle and completely transpar-
ent from fog nodes, which only continue to perform request towards
the Docker Hub registry on the same images name; is performed by
the cloud computing layer, which is per definition powerful and can
manage it without any performance drops, also considering the low
amount of requests from the fog computing layer has to handle.

Finally, on the cloud layer, the time to calculate and re-estimate
the vectors necessary for the geometric monitoring process are almost
negligible and they are within 21ms and 29ms to calculate, respec-
tively, a new estimation vector e and a new delta vector, to re-balance
the cluster.

93

4 | Live Migration and Au-
tomated Offloading for
Edge Computing

This chapter presents two implemented solutions based on MEC
concept that exploit a quite powerful intermediate layer to support
mobile devices. The considered mobile devices, i.e. smartphones,
have more resources that IoT devices, thus, only a single layer of
nodes within the intermediate middleware infrastructure is required
without the necessary need to employ a hierarchy structure, with
nodes very close to the edge, e.g. in the case of tiny IoT devices.
A powerful standalone server, with few interactions with the global
cloud resources, within the middleware infrastructure is needed, in
order to satisfy the requirements of mobile devices and MEC is the
ideal solution.

Both solutions address the technical problem related to the impos-
sibility of mobile devices to execute some tasks/applications properly
in terms of time, as well as the possibility to save energy resources.
They adopt edge computing solutions to support the execution of those
resource-intensive applications without compromise the performance.
In particular, the first solution exploits an autonomous and trans-
parent mechanism that guarantee service continuity and minimize the
unavailability of the service by moving the service proactively ad reac-
tively. The second solution extends the MEC concept with the mobile
computation offloading that allows to dynamically migrate applica-
tions, or part of them, to a remote server.

94 4 Live Migration and Automated Offloading for Edge Computing

4.1 Related Work

Many works that address both the general topic of VM/container mi-
gration or support mobile devices and mobile computation offloading
already exist in the related literature. Although the hot topic and
the proliferation of several work on those topics, only a very few re-
search activities have focused on VM/container migration and mobile
computation offloading towards MEC middleware for mobile services.
In addition, the existent solutions are quite limited and they usually
do not provide extended capabilities to work in hostile environments,
which is a relevant challenging aspect of modern CPS, or in a com-
plete autonomous way.

4.1.1 VM/Containers Migration

From the VM/containers migration side, [117] highlights the limita-
tions of traditional live VM migration on edge devices, by proposing
live migration in response to client handoff in cloudlets, with less
involvement of the hypervisor and by promoting migration to optimal
offload sites, adapting to changing network conditions and processing
capacity. [118] presents the foglets programming infrastructure that
provides APIs for a spatio-temporal data abstraction for storing and
retrieving application generated data on the local nodes, and prim-
itives for communication among the resources in the geo-distributed
computational continuum fog-cloud and it handles mechanisms for
quality/workload-sensitive migration of service components among fog
nodes. [119] proposes the integration between cloudlet and base sta-
tion subsystem to provide proxy functionality closer to mobile devices
in order to support mobile multimedia services and adjusts resource
allocation of resources triggered by runtime handoffs. [120] evalu-
ates handoff conditions in relation to various parameters (e.g., waiting
time, energy requirement of the communication, signal strength, bit
rate, number of interactions between cloudlets and associated devices)
and decides to offload the computation based on fuzzy techniques. In
addition, some aspects of the above activities, such as for [120, 121],
are also suitable and specifically targeted for hostile environments.
In particular, [121] highlights the usage of some different cloudlet
provisioning mechanisms, such as optimized VM synthesis for inter-
operability purpose, to demonstrate the middleware layer suitability
in hostile environments, by highlighting the importance of automated
handoff of data and computation. [122] describes a reference architec-
ture for code offload that aims to decrease large application overlays
and to achieve rapid VM/application startup time, by carrying the
overlay on mobile devices and transferring it at runtime to a dis-

4.1 Related Work 95

covered cloudlet. From the mobile computation offloading side, [123]
proposes a multi-agent-based code offloading mechanism, by using
reinforcement learning and code blocks migration, to reduce both ex-
ecution time and energy consumption of mobile devices. It adopts
multi-agent based distributed method for offloading computation and
Markov decision process to model dynamic environment appropriately.

Note that in this paragraph has been presented only the work
conerning the migration at middleware layer. More work related to
VM migration will be described in section 5.1.

4.1.2 Mobile Computation Offloading

The related literature about the general topic of mobile computation
offloading is already quite rich, thus demonstrating the strong interest
of the community in the field. MAUI [124] proposes an architecture
for code offloading using a profiler which measures energy consump-
tion and data transfer requirements and a solver which decides to
offload a method based on the measurements performed by the pro-
filer. ThinkAir [125] benefits from cloud computing elasticity, perform-
ing on-demand resource allocation, and exploiting methods execution
parallelism by dynamically creating, resuming, and destroying multi-
ple VMs in the cloud when needed. COMET [126] uses a distributed
shared memory on and VM synchronization primitives to augment mo-
bile devices with machines available in the network, by using thread
offloading among distributed devices. Cuckoo [127] focuses on the im-
plementation of a communicating library between mobile device and
Ibis communication middleware, by offloading bundles that contains
the compiled code. COSMOS [128] proposes a component-based
framework for managing context data in ubiquitous environments and
focuses on solving offloading decision problem and resource allocation
on VM, providing computation offloading as a generic service under-
lying computing and communication resources transparent to mobile
devices, by allocating offloading demands from the mobile devices to
a shared set of compute resources that it dynamically acquires from a
commercial cloud service provider. The ULOOF framework [129, 151]
introduces an improved offloading decision mechanism by refining the
assessment of the available bandwidth as well as energy consumption,
providing a realist running time and energy consumption estimation
towards a more accurate offloading decision.

While all the above works have tried to address computation
offloading in different ways at different granularity, i.e. methods,
threads, components, they focus on offloading execution, rather than
selecting the tasks to offload. The code selection decision is one of the
primary relevant and still open technical challenge is to partition, in a
general-purpose way, the application code into offloadable and non-

96 4 Live Migration and Automated Offloading for Edge Computing

offloadable parts [130] but still not-well explored topic in the related
offloading literature. [131] underlines the tasks selection algorithm as
a main issue in offloading execution solutions and it highlights the
granularity selection and the dynamic application partition as the
main challenges to face in order to offload on fog/edge and cloud plat-
forms. The lack of an autonomous code selection mechanism is a very
limiting issue that do not allow applying the computation offloading to
a wide set of applications, in particular large-scale applications, due
to the obvious impossibility to scan the whole applications structure
manually and introduces big inefficiencies. A selection algorithm is
required in order to analyze every kind of application dynamically and
detecting the list of methods suitable to be offloaded in an efficient
way.

In fact, the above work generally require the developers to add
annotations to indicate which portion of application to offload, mod-
ifying the application code manually. Doing this partitioning man-
ually requires significant human effort: methods may be unsuitable
for offloading due to several non-trivial motivations, such as frequent
interaction with final users, difficulties in replicating device-specific
resource instances at cloud/edge nodes, impossibility to serialize used
resources, only to mention a few; moreover, this required human effort
slows down the acceptance of mobile offloading techniques in indus-
trial scenarios for obvious cost motivations. In addition, note that the
complexity of identifying all the offloadable methods push in the direc-
tion of determining only a subset of the really offloadable methods, to
avoid false positives at runtime, thus limiting the impact of offloading
on observed latency and power consumption improvements. Therefore,
to maximize the benefits of offloading, a sophisticated and automated
task selection algorithm is required. Developing a general-purpose
task selection algorithm is not trivial because it requires to detect
offloadable parts of tasks from the entire Android application code
without a-priori knowledge of the analyzed application and has not
been explored so far.

In this perspective, CloneCloud [132] uses static code analyzer to
automatically mark possible migration points and, thus, to partition
the binary of an application with a set of execution points. CloneCloud
uses a thread-granularity for the offloading execution selection and
each execution point decides between where the application migrates
the thread towards the cloud or the local execution on the device.
CloneCloud, in this moment, is the only proposal that implements
an autonomous code selection mechanism without hard-coding into
the specific application but it specifically targets a powerful remote
platform, i.e. the cloud computing, to execute the offloaded code,
because it needs to re-create a VM with the same hardware and OS
used locally.

On the contrary, in the following, the proposed solution focus on

4.2 Migration-enhanced Support for Mobile Services 97

a more decoupled and lightweight solution that has no platform con-
straints and can be used in many remote servers independently from
the available resource. In fact, the solution aims to offload code at
the method level that can run on every server equipped with a JVM
without the same hardware/OS of the mobile device and, thus suitable
also for less-powerful platforms, i.e. fog/edge nodes.

4.2 Migration-enhanced Support for Mobile
Services

This solution proposes a practical contribution to overcome the chal-
lenges of limited-resource mobile devices in hostile environments by
using a MEC intermediate middleware layer, by using, along with
typical reactive functionalities, effective strategies for proactive mi-
gration. The primary focus is to efficiently design and implement
a MEC layer to assist devices to preserve their full functionalities
and to supply service provisioning to final users also in case of high
mobility in hostile environments. In particular, in the designed and
implemented support platform, highly demanding computation tasks
on mobile devices can be delegated to the MEC layer that executes
the tasks and returns the related results by preserving service conti-
nuity, also in case of end users mobility, thanks to proper virtualized
function migration between MEC nodes. In addition, typical reactive
migration has been complemented with predictive handoff mechanisms
that move a specific virtualized function into the most suitable MEC
node, based on the consideration of multiple aspects, such as net-
work statistics, availability, and recoverability. In particular, the pro-
posal is a dynamic proactive handoff scheme with motion prediction,
by integrating proactive virtualized function migration in it based on
predicted users movement, towards the next forecasted MEC node,
without waiting for users requests in the new MEC locality, in order
to prepare in advance composed service provisioning and to dras-
tically minimize the unavailability time due to virtualized function
migration.

The explained solution is a valuable solution also for the several
mobile devices that are forced to operate in the so-called hostile en-
vironments, characterized by very high uncertainty of the available
resources, limited bandwidth, unreliable networks, and rapid deploy-
ment needs [134], that need to execute computation-intensive func-
tions and would benefit from compliance with strict quality require-
ments. Thus, although some recent research has enabled the possibil-
ity for mobile devices to offload computations towards more powerful
resources, typically hosted in the global cloud, mobile services in hos-
tile environments cannot always rely on cloud computing. The main

98 4 Live Migration and Automated Offloading for Edge Computing

reasons are the unsuitability of cloud to support the needed qual-
ity, for instance quick actuation in case of anomalies, disconnection
management and recovery or high mobility, and scarce availability of
network infrastructures that can cause unexpected disconnections. In
such a challenging deployment environment, it starts to be recognized
that a three-layer device-middleware-cloud architecture is necessary
to move part of the resources towards the edge and overcome the
limitations of direct cloud-device iterations.

4.2.1 Design

The three-layer architecture, based on the extension of emerging
MEC technologies, is illustrated in Figure 4.1.

Figure 4.1: General Three-Layers Architecture

Mobile Devices Layer

The mobile device layer consists of all the endpoints that need to per-
form high-resource demanding executions of mobile services and do
not have enough capabilities to do that. For instance, this includes
heavy image and video analysis/processing that can be performed
uniquely with computationally intensive techniques that require re-
sources beyond the capability of mobile devices, at least taking into
consideration possible application-specific requirements on response
time. The solution fits a very wide spectrum of heterogeneous mobile
devices, with the only constraint to run Android OS.

In the application case running example used in the following sec-
tions, the target application is a face recognition application, for se-
curity purposes, able to monitor an environment with cameras that
capture photos and videos of the surrounded area. To enable such a
service to be practically useful in real-world scenarios, the processing
time for any sensed media must be limited in the order of a very few
seconds, to be able to raise alarms promptly in the case of suspicions.

4.2 Migration-enhanced Support for Mobile Services 99

In a context like this, mobile devices often do not have enough capa-
bilities to satisfy strict requirements on response time, in particular if
considering their possible immersion in hostile environments; there-
fore, it is a must that they have to delegate most analysis functions
to the MEC middleware layer.

MEC Middleware Layer

The MEC middleware layer consists of two primary components: i)
the standard Elijah platform, one of the current most promising and
complete open-source project to realize the middleware layer, that
allows moving computational resources near the edge of the network,
by providing and orchestrating VMs near mobile devices; and ii) a
platform extension module, called ServerManager, that completely
decouples mobile devices and Elijah, linking them by receiving and
forwarding the users requests towards the Elijah platform and vice
versa, thus intercepting and coordinating all interactions between
mobile devices and MEC nodes.

MEC nodes can be provisioned in either a proactive or a reactive
way.

Proactive provisioning allows to minimize and automate in an ef-
ficient way virtualized function migration, by pre-loading the needed
functions in advance on the target MEC node that, presumably, will be
the next visited by the served user; this is managed before receiving
explicit migration requests, thus limiting the costs in terms of un-
availability and performance during the procedures of mobile device
handoffs and associated VM/container synthesis. The global cloud
(third layer) triggers virtualized function migration (because it is the
cloud where predictions are typically performed when connectivity is
available), by interacting with the ServerManager.

On the contrary, reactive migration is triggered when a mobile
device requests explicitly to move a virtualized function; this is the
only possible solution when connectivity to the cloud is unavailable.
Once triggered, the ServerManager checks the possibility to exe-
cute the virtualized function required on the MEC node and forwards
to Elijah the request for the creation of a VM/container to execute
the task. Finally, the ServerManager returns to the mobile device
the reference to invoke the specified VM/container for future direct
VM/container-to-device communications.

Cloud Layer

The cloud layer is used to assist the MEC intermediate middleware
to provide proactive analysis about users movements. In addition, it
provides base VM images and overlays used by the service, acting as
a backup repository where newly created base images and new/up-

100 4 Live Migration and Automated Offloading for Edge Computing

dated overlays files are stored. In fact, in this solution, the cloud
layer has seldom updated snapshots of the complete status of the
overall deployment environment, by receiving periodical updates by
MEC nodes about users movements; it stores all users location history
and performs high-computation predictions on cloud-stored location
data. The location prediction performed is probabilistic (over neigh-
bor MEC nodes). If the detected probability of a user to change its
current MEC node is higher than a configurable threshold, the cloud
layer sends a request to the ServerManager on the new target MEC
node to start the migration timely.

In addition, the cloud layer is used during the initial service setup
operations and in case of anomalies, to send missing files (see below)
to the involved MEC nodes, thus acting as a global repository for
MEC nodes. In fact, the cloud layer stores, with periodical snapshots,
all the base VM/container images to use for node setup and all the
overlays specifically created by MEC nodes for any supported mobile
services. In the proposed architecture, it is the cloud layer to have
the responsibility to react and recover MEC nodes when anomalies
or errors occur.

In particular, the proposed solution is based on three main guide-
lines, that characterize its effectiveness and originality: i) mobility
prediction, that keeps track of the history of users movements to
predict the next movement and triggers the proactive migration in
a timely manner; ii) proactive VM/container migration, that allows
moving stateful virtualized functions at runtime among different MEC
nodes to meet users high mobility requirements and to support service
continuity; and iii) Elijah platform usage into a MEC architecture to
allow the execution of resource-intensive tasks close to mobile devices
also in hostile environments.

4.2.2 Elijah/Openstack++

Openstack [133] is a project started in 2010 as a joint project of
Rackspace Hosting and NASA and currently managed by Openstack
Foundation. It is a well-known and widely diffused open-source
IaaS that provides many services that interact with each other to
deliver the full feature set and to be able to manage computation,
storage, and networking resources to supply dynamic allocation of
VMs. Elijah [134] is a notable MEC-oriented extension of the Open-
stack infrastructure, with a relevant and growing community of MEC
developers working on top of it. Elijah configuration is based on
the Openstack installation, thus with very similar functionalities, and
specifically targeted to run the intermediate middleware layer, by the
load of the Elijah extension libraries to specify the MEC platform. In
the proposed extended platform, the standard Elijah nova.conf con-

4.2 Migration-enhanced Support for Mobile Services 101

figuration file has been modified with the specification of the CPU
models, so to enable the resource-aware handoffs between heteroge-
neous hardware and to allow interoperability among different MEC
nodes. In fact, since a deployed VM gets the characteristics of the
host CPU through the hypervisor and the flags for hardware virtual-
ization, through the virsh APIs it is possible to interact with the libvirt
driver to manage the KVM/QEMU iterations and determine whether
CPUs are compatible, then specifying them into the enforced nova.conf
file. It is also possible to dynamically add or remove features to
the platform, in the same way used in Openstack to add extensions
on the default version, by adding custom files into standard paths,
e.g. cloudlet.py, cloudlet_api.py, etc. In addition, since Openstack is
a complex tool that contains all the typical functionalities required
by cloud environments, Elijah also provides a more lightweight ver-
sion, called standalone version [135]. Elijah standalone version is
completely uncoupled from OpenStack, allowing to test features in a
much easier way and could be very suitable particularly for testing
purpose and providing tools to perform VMs synthesis, without the
handoff mechanism, starting from an overlay, independently from the
other platforms.

The most relevant Elijah features at the base of the proposed work
are: base image import, base image resume, overlay creation, and VM
synthesis.

BASE IMAGE IMPORT. A VM base image can be imported offline
into Glance to load in advance the base image that will be used to
build each VM. Each base image is a compress file that contains [136]:
base disk image with the related hash value list; a memory snapshot
with the related hash value list; is_cloudlet flag that indicates that is
not a standard cloud image; libvirt configuration with the metadata
that indicates the characteristics of the VM generated with the base
image. The Elijah command to import a base image is cloudlet import-
base <base_image_path> that decompresses the base image and
stores it into Elijah database with the assignment of a unique hash
to be identified unequivocally.

BASE IMAGE RESUME. A base image resume is still an offline
operation and usually follows the import base image. During resume
base image, a developer prepares a back-end server at the middle-
ware layer and typically this phase includes: preparing dependent
libraries, downloading and setting executable binaries, and changing
OS and system configurations [136], as analogy happens in Open-
stack when a snapshot is resumed. To resume a base image, the Elijah
platform uses a cloudlet hypervisor driver class, called CloudletDriver,
that inherited the original LibvirtDriver and check if the metadata as-
sociate to the virtual disk image base has the is_cloudlet flag. In this
case the driver resumes the base VM from the snapshot, rather than

102 4 Live Migration and Automated Offloading for Edge Computing

boots a new VM instance. Usually the first time a base image is
resumed it takes a long time, in the order of a few minutes in relation
to the hardware capability of the host, but since it can be executed
offline, it is performed in advance preparing the MEC node before to
receive the users requests. In this way, Elijah imports the base image
into the cache of the compute node, thus, it does not slow down the
system and is not significantly perceived by the users for further base
image resumes. At the end of this operation, there is a VM ready to
execute the service.

OVERLAY CREATION. This feature aims to create a minimal VM
overlay starting from a resumed or running instance and then com-
press and save the VM overlay in Glance storage for later download.
VM overlay is able to create snapshots used later to resume the VM
from a specific moment, by containing the delta between the client VM
and the base image VM. It contains all the changes needed to add on
the base VM to reproduce the client VM environment at the moment
of the migration. This functionality has been added with the exten-
sions mechanism, defining a new virtualization driver CloudletDriver
class that inherits nova rpc.ComputeAPI [136]. The Elijah command
to create a customized VM based on top of the base VM is cloudlet
overlay <overlay_path>.

VM SYNTHESYS AND HANDOFF. VM handoff allows VMs to
migrate between different Openstack nodes. Since it involves two in-
dependent nodes, it is necessary that the user has the permission to
access them, in order to call the APIs and they are contained into the
message payload together with the destination URL [4]. The command
to execute the handoff is through a Python file, called cloudlet_client,
that requires the UUID of the VM to migrate and the credential to
access both the Openstack. It is possible to perform VM handoff
only if the VMs have been synthesized. VM synthesis launches a
new VM instance to the Openstack cluster. It uses an HTTP POST
message with the overlay_ulr parameter and this message is handled
at CloudletDriver hypervisor driver that manages the VM spawning
methods to perform VM synthesis using the VM overlay and the VM
base image [136]. The synthesis mechanism is invoked with the com-
mands synthesis_server for the server that starts to listen locally and
synthesis_client with the specification of the server IP and the overlay
URL.

4.2.3 ServerManager

The ServerManager component interfaces mobile devices and cloud
requests with the Elijah platform, by managing all resource and com-

4.2 Migration-enhanced Support for Mobile Services 103

munication requests, and by acting as a dispatcher for requests to-
wards the MEC node. The ServerManager advertises its features
by sending multicast periodical messages containing the type and
the description of the available MEC functions through a discovery
server and can be autonomously discovered by devices. The dis-
covery service uses Avahi [137], an open-source Zero Configuration
Networking (Zeroconf) [138]. Zeroconf is composed of a set technolo-
gies that allows to automatically configure IP networks, in absence
of configured information from either a user or infrastructure services,
e.g. DHCP and DNS servers. Zeroconf implements some main func-
tionalities [139]: i) automatic network address assignment, by intro-
ducing a link-local method of addressing coupled with the IPv4/IPv6
auto-configuration mechanism; ii) automatic distribution and resolu-
tion of host names, with Multicast DNS (mDNS); iii) automatic loca-
tion of network services to find services over the network though the
DNS-SD process; iv) multicast address allocation, using the Zeroconf
Multicast Address Allocation Protocol (ZMAAP). Avahi is one of the
major Zeroconf implementation, based on Linux, that allows to locate
the services inside the local network and a new host to view other
hosts and communicate with them in the network. The Avahi daemon
uses the core libraries to implement a DNS multicast stack accessi-
ble through the advertise of XML files in the /etc/avahi/services folder
that exposes a service and its characteristics. It also uses nss-mdns
and avahi-dnsconfd libraries to access the discovery system and to
interact with the DNS via command line. In addition, Libavahi-client
library adds to the original libavahi-core APIs the DNS multicast
service, e.g. avahi-publish, avahi-brose, avahi-resolve.

When the devices or the cloud contact the ServerManager by spec-
ifying, respectively, the virtualized functions needed for mobile service
execution and the proactive migration invocation, the ServerManager
checks on the MEC node: i) service availability, by verifying the pos-
sible presence of useful VMs (VM caching) to be used for the running
service request. In case there are not suitable VMs available, it for-
wards the request to Elijah by specifying the overlay to start the
VM provisioning; ii) the base image availability of the target service,
usually located in Glance and pre-loaded by Elijah.

When a mobile device send requests, the cloudlet server checks
on the MEC node how to serve them:

• Base image availability request. The cloudlet server checks the
presence of the base image inside Glance with JCloud [140] and
returns to the client the availability or not of the target service.
Usually the base images are in Glance and are pre-loaded by
Elijah. Anyway, this control is present in case of anomalies
that may force Elijah to contact the cloud to import the base
image from it.

104 4 Live Migration and Automated Offloading for Edge Computing

• Service availability request. The cloudlet server checks the
presence of VMs already created previously to be use for the
service request. In case there are not any VMs available, the
cloudlet server forwards the request to Elijah specifying the
overlay and Elijah synthetizes a new VM starting the provi-
sioning operations. At the end of the synthesis, the cloudlet
server returns to the cloudlet client the IP address and port of
the VM.

Finally, the Network Time Protocol (NTP) [141], a widely-used
synchronization mechanism among a set of distributed computer clock,
is used on every ServerManager synchronize different MEC hosts and
to allow a good reciprocal communication.

4.2.4 Migration

The solution is based on the ability to automatically perform vir-
tualized function migration in a proactive way by pre-loading and
pre-configuring the needed VMs in advance on the right MEC node.
In this way, when mobile devices actually perform their handoff, the
ServerManager checks the VMs available and returns the IP and port
to access those VMs by avoiding any communication/load to Elijah.
The predictive handoff is complemented by a reactive behavior, nec-
essary to cope with the few cases when mobile devices request for the
migration and the needed VMs have not been migrated in advance,
e.g., in the case of unexpected users movements: service handoff is
performed in this case via requesting the discovery of a nearby MEC
node.

Figure 4.2: Our Proactive Migration Procedure

4.2 Migration-enhanced Support for Mobile Services 105

As depicted in Figure 4.2, the proactive migration stores location
data (latitude and longitude) on the global cloud to compose temporal
data series, by passing through the ServerManager. Periodically the
cloud performs data analysis on those historical series, in order to
predict next users locations. To this purpose, it is applied a polyno-
mial non-linear regression, a type of regression where the relationship
between X and Y is modeled as an N degree polynomial expression
and fits the nonlinear relationship by using the LibSVM [142] ma-
chine learning toolkit, which makes available a set of libraries for
Support Vector Machine:

K(xi, xj) = (x0ixj + coef0) ∗ d (4.1)

where d is the degree of the hyperplane.

A regression-oriented technique is used, instead of other discrete
statistical models, e.g., a Markov model widely used in the literature
for migration predictions, because it has a more accurate forecast, de-
pending on historical data and implicitly considering other elements,
such as direction/speed of movement, temporal/spatial data locality,
and delta between consecutive sensed locations.

The regression analysis uses a data training set composed of the
historical data associated to the movements of a specific user and
is based on an initial training phase and the prediction phase. The
training phase analyzes the first part of the dataset (approx. first 80%
of the training set), to find the best input combinations in relation to
the correlation coefficient and mean squared error. The prediction
phase (approx. last 20% of the training set) compares the prediction
with the target results known in advance and apply the one-step
ahead forecast where after each value predicted the previous model
is updated to forecast the next one.

Note that regression analysis requires more resources than dis-
crete models, for both storing large amounts of data and processing
them; however, the MEC infrastructure does not suffer of performance
degradation because this processing is performed on the global cloud
and in offline mode.

In particular, the regression analytics results are used to predict
the likelihood percentage of a given user to move under a given MEC
node, by considering the subset of MEC nodes in the users proximity.
Finally, when the cloud sends a migration request to the ServerMan-
ager, the VM migration takes place and Elijah is seamlessly inte-
grated to execute both VM synthesis and handoff procedures through
it.

106 4 Live Migration and Automated Offloading for Edge Computing

4.2.5 VM Synthesis and Handoff

ServerManager receives from either users or the cloud the migration
request and forwards it to Elijah, with the indication of the base
image to instantiate and the possible overlay(s) to add. In this way,
Elijah receives the specification of the service to create, though the
base image, and the users modifications, though the overlay(s), thus,
allowing to perform the live migration of stateful virtualized functions
at runtime.

On the one hand, the time needed to synthesize a virtualized
function may significantly vary in relation to which configuration and
files are already available on the MEC node: i) Elijah has the base
VM and retrieves the overlay locally at runtime, thus, can start to
execute tasks to serve the mobile devices just after having added the
overlay at the present base VM; ii) Elijah has the base VM but not
a local overlay of the service and it needs to retrieve it from either
clients or the global cloud; iii) or Elijah needs both the base VM and
the overlay. VM synthesis allows a VM, that is running on one node,
to freeze its state and resume at any node, at runtime, to execute near
the mobile device. The synthesis is performed with the delivery of an
overlay, specified with an URL by the mobile device, that applies the
deltas over the base VM on the MEC node. Figure 4.3 shows the
synthesis procedure of the proposed solution.

Figure 4.3: Synthesis procedure
On the other hand, VM handoff is the higher-level MEC platform

4.2 Migration-enhanced Support for Mobile Services 107

feature that allows running VMs to migrate between different MEC
nodes at runtime, typically to better support service continuity and
to preserve service state notwithstanding MEC-related mobility. The
handoff procedure is completely transparent to the client and only
needs to invoke the handoff functionality by specifying the IP of the
current MEC node to the new MEC one (to enable the retrieval of
service state). Figure 4.4 shows the handoff procedure of the proposed
solution.

Figure 4.4: Handoff Procedure

4.2.6 Mobile Services Usecase

Figure 4.5 and 4.6 illustrate the two Android applications that have
been developed: MEClient, to manage the communications between
MEC layer and mobile devices; openCV application, that is used by
the users and wants to perform face recognition analysis.

The MEClient has many functionalities to manage the commu-
nication between mobile device and the ServerManager. The start
discovery button enables the reception of multicast messages from
the cloudlet servers to be aware of the presence of a MEC node. The

Figure 4.5: MEClient Application Figure 4.6: OpenCV Application

108 4 Live Migration and Automated Offloading for Edge Computing

MEClient scans the suitable services exposed at MEC layer and re-
trieves the IP address and the port to connect to them. MEClient ap-
plication uses the Network Service Discovery (NSD) [143] that allows
users to identify MEC servers in the local network. The NSD Ser-
viceInfo class, provided by Android, sets all the service parameters,
e.g. name, type of transport protocol, and port, then the Registra-
tionListener detects any events related to the discovery and, in case
the service found is correct, the connection information are retrieved
with the resolveService method.

Successively, with the check base VM and the syn/check service
VM buttons, the MEClient requests to the MEC server the availabil-
ity, respectively of the image base VM and the target service, on the
MEC node and obtains the parameters to access the remote VM and
interact with the OpenCV servers. Once the service is ready on the
MEC node, the MEClient enables the "connect to OpenCV service"
button, usually disabled unless a VM has been already used and is
still ready to serve requests. By clicking on this button, it is shown a
list of possible Android application that can be executed on the VM
created select the application to use.

In the hostile scenario considered, the service OpenCV can be
interrupt unexpectedly at anytime by the device mobility that can lose
the connection with the MEC node. In this case, the MEClient stores
the history of all the MEC servers used previously by the mobile
device and with the handoff to me functionality allows to select the
old MEC node containing the VM to migrate and invoke the handoff
towards the new MEC node.

Finally, the implemented OpenCV application selects a picture
and sends it to the target VM specifying the IP address and port
previously obtained. After the application establishes the connection
once, it does not require the MEClient anymore because it is already
aware of the parameters to access the MEC node and it connects
directly to the VM. The VM receives and processes the picture de-
tecting the faces inside the picture, with OpenCV framework, returns
the number of them and wait for the next request.

The usecase developed consider the usage of mobile service for
hostile environments as the combination of two Android apps: Client-
Manager and DetectApp. On the one hand, ClientManager handles
the communications towards the MEC node, through the reception of
multicast messages from the distributed ServerManagers to be aware
of the presence of a MEC node in the neighborhood.

It requests the ServerManager to check availability and retrieves
the parameters to access the suitable remote VM. In addition, to
enhance availability in hostile environments, ClientManager stores
the last MEC servers used in the past in order to restore remote
connection to the nearest MEC node and promptly+locally invoke
the migration towards a MEC node in the case of anomalies such as

4.2 Migration-enhanced Support for Mobile Services 109

cloud connectivity loss.
On the other hand, DetectApp has the role of commanding high-

computation face recognition analysis and sending the related picture
to the target VM, by specifying IP address and port obtained from
ClientManager. After DetectApp establishes the connection, it works
independently from ClientManager and receives updates directly from
the used VM.

Virtualized functions has been used to specialize a VM with the
functionalities required by the user, by applying the needed over-
lay (mainly consisting of the libraries characterizing the specific mo-
bile service) on the VM created with the base image resume. In
particular, in the running case study OpenCV [144], i.e., an open-
source library including a set of optimized algorithms to process me-
dia files, has been extensively used to detect and highlight human
faces inside an image. OpenCV already contains the implementation
of the Haar Classifier library for face recognition, based on several
weak classifiers, which perform simple checks, e.g., pixel difference
operations, combined to produce the decision. The related haarcas-
cade_frontalface_alt.xml file is used to build an instance of the Cas-
cadeClassifier class, specializing it into face detection. The classifier
is first trained and then applied on the region of interest and in the
target image, moving it on all the image to check if any location is
likely to show the searched object, i.e. a face. The CascadeClassifier
applies a resultant classifier that consists of several simpler classi-
fiers at different stages that are applied subsequently to the region of
interest until at some stage the candidate is rejected or all the stages
are passed. In particular, the detectMultiScale method, that detects
objects of different sizes in the input image and returned as a list
of rectangles, uses the MapOfRect matrix to store the data related
to the face detection. The server stores locally a copy of the image
with a red box around faces, while the number of faces detected are
returned to the mobile devices.

The resultant composed classifier, composed of the weak classifiers
applied subsequently, is applied to all the region of interest of the
target image to check if any location is likely to show the searched
object, i.e. a face. Finally, the server stores locally a copy of the
image with a red box around faces, while the number of detected
faces are returned to the interested mobile clients.

4.2.7 Experimental Results

The operational environment used to validate and assess the perfor-
mance of both MEC platform and the running case study consists of:
one Android smartphone, one server on the cloud, and two MEC nodes

110 4 Live Migration and Automated Offloading for Edge Computing

with heterogeneous CPU, i.e., AMD Phenom II X4 965 and Intel Core
i7 2640M, each with 8GB RAM, 100GB HDD. Each VM managed by
the MEC platform in this operational environment is equipped with
1VCPU, 1GB Ram, and 8GB HDD.

Interesting results relate to the many tests performed about syn-
thesis and handoff. The overlay considered and retrieved locally in
Glance, as it happens during normal system execution, has a size of
106MB for newly created services with approx. 26MB of users data.
During handoff, the MEC platform automatically splits this overlay
into several chunks, of limited size to facilitate and parallelize their
transmission. The vicinity of adjacent MEC nodes, highly distributed
in the execution environment, and the generally powerful and sta-
ble connectivity among MEC nodes, as assumed in [134] and also
in several other research activities like [145, 146], make the over-
lay transmission an operation with relatively small overhead in the
performed experiments if compared with data compression/ decom-
pression; thus, below the focus is mainly on computing capacity and
overall node workload.

The average measured times of the main steps that compose the
synthesis procedure are resumed in Table 4.1 and the handoff pro-
cedure in Tables 4.3 and 4.5. The results have been obtained while
migrating equivalent VMs, i.e., processing the same number of re-
quests from clients, and using each node both as sender and receiver
to simulate the randomness related to the clients usage. The reported
results are average values over hundreds of runs, with a standard de-
viation always within 2%.

Table 4.1: Synthesis Measurements

Process Time (s)

VM Migration Check 0.29
Image Creation 2.32
VM Restored 1.54
VM Resumed 0.09
VM Resumed 2.28

Synthesis Procedure Total Duration 98.62

Table 4.3: Synthesis Measurements

Process Time (s)

Data Compression 121.64
Data Transmission 120.02
Handoff Procedure 165.74

Table 4.5: Synthesis Measurements

Process Time (s)

Data Reception 125.52
Spawning 168.37
Data Compression 120.23

The overall time to complete handoff has resulted to be 172.52s,
with a total VM downtime (generating mobile service unavailability
and service interruption) perceived by the client of only 1.60s thanks
to the proactive approach.

4.2 Migration-enhanced Support for Mobile Services 111

About the resource usage, Table 4.7 and 4.9 resume the num-
ber of threads, RAM and CPU percentage used by, respectively,
the two main processes executed during synthesis procedure, i.e.
cloudlet_vmnetfs used to enable on-demand fetches of VM disk/mem-
ory and cloudlet_qemu-system-x86_64 to start VM before having en-
tire memory snapshot, and the sender/destination hosts during hand-
off.

Table 4.7: Resource Usage

Process Thread Number RAM (MB) CPU (%)

Cloudlet_vmnetfs 6 65 25
Cloudet_qemu-system-x86_64 4 240 3

Table 4.9: Handoff Processes Measurements

Process Thread Number RAM (MB) CPU (%)

Handoff Sender 14 2.06 25
Handoff Destination 6 1.04 25

Tests have also compared the overall performance between the
case of MEC-assisted execution and the case of global cloud-assisted
execution. As in realistic cases, the MEC layer and mobile devices are
on the same local network at one-hop distance, the available network
bandwidth of client-to-MEC and client-to-cloud, respectively, was
53.3Mb/s and 2.44Mb/s. In the case of small-size image of 1 MB
for the described virtualized functions, the migration time is already
non-negligible for the 2-layer cloud solution (i.e., 3.04s), while still
acceptable for the proposed 3-layer MEC-based approach (i.e., 0.3s);
in the case of VM images or overlays of tens of MB, mobile services
for many application domains are unusable without the MEC-oriented
approach.

The experimental evaluations show the effectiveness of the de-
scribed proposal in relation to the targeted MEC technical challenges
and highlight the deep gap of performance achievable with/out ex-
ploiting the intermediate MEC layer. Although the live migration
procedure proposal introduces non-negligible latency, mobility pre-
diction has demonstrated to have the potential to anticipate migra-
tion requests sufficiently to have no service interruption. In this way,
it is possible to enable a wide range of mobile services to offload
application-level functions on the MEC layer and developers are en-
couraged to adapt application structure to the opportunity of runtime
migration of tasks for remote execution, also in case of hostile en-
vironment. In particular, the relevance of such an approach for dif-
ferent families of mobile services: high mobility services that do not
suffer from possible latency associated with frequent migrations; low-
latency services that benefit from both nearby MEC interactions and
predictive migration; file-exchange services that can avoid upload-

112 4 Live Migration and Automated Offloading for Edge Computing

ing/downloading files to the cloud, thus benefitting from usability
also in case of no global connectivity and reducing slowdowns.

4.3 Automated Offloading for
Computation/Energy-usage Optimizations

This solution presents an innovative task selection algorithm able to
identify the most suitable Android application methods to be dynam-
ically offloaded, on either remote cloud resources or edge nodes with
virtualization capabilities, thus providing a crucial support element
to leverage the adoption of mobile offloading techniques for apps of
industrial interest. In particular, the proposed solution implement
and evaluate an offloading tool that can autonomously scan a generic
Android mobile application, without a-priori and application-specific
knowledge, to autonomously create a new version of the application,
which is functionally equivalent, but with the capability to offload
computations to a remote server; the algorithm analyzes and dynam-
ically partitions the application into offloadable and non-offloadable
methods; then, it is able to prioritize and select the most suitable
tasks to be offloaded. It is a fine-grained offloading decision with
a granularity at the method level. It is achieved this by a careful
automated analysis to detect which methods can be executed on the
server consistently and by marginally modifying those methods code
to run them remotely in a completely transparent way. The result is
then integrated into a new Android application that runs consistently
some methods locally on the mobile device and others remotely on
the server. To achieve this goal, an existing prototype from [129] has
been improved and extended in two main directions:

• Autonomous method selection. The tool includes an algorithm
to autonomously select the methods suitable to be executed
both locally and on the remote server, through a complete scan
of the: i) APK file; ii) the classes developed by the program-
mers; iii) the methods for each class. The selected methods are
then sorted in terms of the number of offloadable method calls.

• Translate methods and execution on a remote server. The ex-
tension has added the ability to offload every suitable method
whatever: i) its input parameters, by extending the methods
translation code generation to support complex objects includ-
ing lists and arraylists; ii) its state, being either static or non-
static method; iii) the static or no-static variables used inter-
nally in its body with the related object management.

4.3 Automated Offloading for Computation/Energy-usage Optimizations 113

4.3.1 Autonomous Methods Selection

The autonomous selection algorithm takes any Android application
as input (only APK package, no need of source-code) and detects the
included methods that are suitable to be dynamically offloaded. The
proposed solution is designed to be general-purpose and independent
from application type, domain, size, and internal structure. In partic-
ular, the algorithm starts by scanning the whole application structure,
by applying both incremental checks on each single class/method and
dependency checks among different classes/methods. More specifi-
cally, the selection algorithm starts by retrieving the Android manifest
file of the considered application, as shown in Figure 4.7.

Figure 4.7: Tasks Selection Algorithm Architecture

The Android manifest is a file, located in the root directory of
every valid Android application; among the others, it defines the re-
quirements to run the corresponding code in the Android platform
and is used to identify the MainActivity of the application. Indeed,
as shown in Figure 4.7, during the method analysis, the analyzer
iteratively checks multiple requirements to analyze first classes and
then methods to discard from the list of offloadable candidates by
using a predefined set of checks. The class analysis is the initial
component to detect which methods to offload. The purpose is to de-
termine the non-offladable classes present into an application, and
obviously to discard their methods during the following analysis. The
method analysis scans each method by using multiple checks and then
integrates the method requirements with the information previously
obtained about MainActivity and the other application classes from
the manifest file. About the considered criteria to take the offload-
ability decision, the purpose is to minimize the needed computation
while achieving an overall accurate result anyway. Table 4.11 con-
cisely lists the criteria that the algorithm considers for both classes
and methods.

The internal usage check determines whether a class or method
is a compiler-generated one created by the Java compiler or used
to manage the application lifecycle. For example, anonymous in-
ner classes or <clinit> methods that are static initialization blocks

114 4 Live Migration and Automated Offloading for Edge Computing

Table 4.11: Checks Automatically Performed by the Proposed Algorithm

Type of Checks Classes Methods

Internal Usage 3 3

Class Offloadability 3 3

Internal Objects Calls 7 3

Internal Methods Calls 7 3

for the class, as well as static field initializations, are not offloaded.
The class offloadability checks determine if a class is offloadable by
understanding whether the class extends a non-offloadable super-
class or one of its method belongs to classes already classified as
non-offloadable. The internal objects and method call checks are
performed only at the method level in order to detect if a method
contains a call towards non-offloadable classes/objects/methods, e.g.,
Android native objects or methods.

It is worth noting that the algorithm classifies a device-dependent
class that includes objects impossible to be available/migrated to re-
mote cloud/edge nodes as non-offloadable, e.g., native Android li-
braries or non-serializable Java objects (i.e., Threads). All methods
that are included into a non-offloadable class are classified as non-
offloadable. Vice versa, an offloadable class is a class that succes-
sively passes all the class checks and whose methods will be con-
sidered as possible offloading candidates (after method-level checks).
In fact, only after a method passes all the incremental checks in the
table, it is marked as offloadable.

The implemented task selection algorithm is composed of many
components for the methods checking analysis, which will be ex-
plained in the following, as shown in Figure 4.8.

Figure 4.8: Methods Selection Algorithm

APK Parser

The APK parser retrieves and scan the Android manifest file from an
APK file provided. The Android manifest analysis provides essential
information about the application. The manifest file contains infor-
mation about the internal application structure, in particular it lists
packages in the application and the permissions the application must
have in order to access protected parts of the API. It also contains

4.3 Automated Offloading for Computation/Energy-usage Optimizations 115

information about the application components that compose include
activities, services, broadcast receivers and content providers; for each
component, it indicates the class that implements that component, it
publishes its capabilities, e.g., which activity is the main activity, and
how it can be launched.

For each application, it retrieves the Android manifest file and
parses configuration XML entries for Android activity until the
MainActivity, which is identified with the Intent filter sets to an-
droid.intent.action.MAIN. The algorithm uses the MainActivity infor-
mation to detect part of the internal methods for the further methods
analysis, as explained in the following section.

Load Files

The solution leverages on the Soot framework [147] to retrieve, parse
and manipulate class files methods. Soot provides a set of Java APIs
to modify the bytecode from APK file. Jimple [148] is an intermedi-
ate representation of Java bytecode used to optimize modifications of
existing java byte code.

A list of keywords has been defined in relation to the Android
functionalities contained into the native Android libraries that rep-
resent the components that cannot be offloaded. All these keywords
are stored into configuration files, loaded at the startup, that are
used, during the following analysis, to detect the Android-dependent
components and, thus, to discard the non-offloadable methods. The
keywords are divided into some text files in relation to the type of
usage every keyword is associated to:

• Application lifecycle management. Mmethod calls to Android
activity classes that defines device specific behavior and state
changes, e.g. creating, stopping, resuming, or destroying a
device specific activity.

• Application GUI management. Keywords that contain all the
methods to manage a View, which is an object that draws some-
thing on the screen that the user can interact with, or a View-
Group, a set of View objects hold together with a layout inter-
face, with functions of display notifications, communication of
device status, and device navigation.

• Application events management. Keywords that contain the
methods to allow the interactions of the users on the mobile
device via touch gestures, e.g. onEventListener, onClick, etc.

• Application input/output management. Keywords that contain
all the methods used to manage input/output built-in compo-
nents that allow the device to interact and communicate with the

116 4 Live Migration and Automated Offloading for Edge Computing

external environment, e.g. all the categories of sensors (motion,
environmental, position), camera, and so on.

Classes Analysis

The classes analysis phase aims to minimize the number of offloadable
classes that belong to the package path among those loaded by Soot
framework. The classes analysis aim to detect which classes cannot
be offloaded and which can to be scanned in the next phases to detect
the specific methods to offload. The classes analyzer uses a set of
tests to detect which classes are not suitable to be offloaded that can
be resumed as follows:

• Internal Class Test. It checks whether a class is internal
and, thus non-offloadable. In particular, the internal classes
are the anonymous inner classes, because they do not con-
tain the associated class name and, thus, the name the Java
compiler gives them cannot be associated to a specific class
name in the code. The anonymous inner classes name ends
with the suffix $+number and the overall name is in the form
class_name+$+number. Note that the proposed algorithm, in
general, allows to offload inner classes, which are identified
with the name class_name+$+inner_class_name.

• Android Class Test. The Android package contains classes that
may contain device specific information. The component in-
spects which classes belong to the Android path. This step is
not mandatory from a functional point of view, because all the
Android classes can be detected from the next methods analy-
sis, but it allows to discard a high number of classes and, thus,
to alleviate the computation required and speed up the system
performance.

• Superclass Test. For each non-internal class, the algorithm
checks if it extends an already defined non-offloadable classes.
These classes are not allowed to be offloaded because a child
class is very likely to call or depends on the constructors/meth-
ods of the parent class. In fact, due to the inheritance and
polymorphism concepts, the methods are platform-dependent
because they will use non-offloadable methods from the super-
class. For example, if there is the MyThread class that extends
the platform-dependent Thread class, it will use the Thread
management functionalities.

• Dependency Test. It checks the dependencies of each offload-
able class checking if a class extends a non-offloadable super-
class. In this case, the child subclass inherits all the public/pro-
tected variables and methods of the parent class and is very

4.3 Automated Offloading for Computation/Energy-usage Optimizations 117

likely to use them, thus, will be likely called a non-offloadable
object or method during subclass lifecycle. Since the number
of classes to check may be high for large-size applications, the
algorithm optimizes the computation by limiting at each iter-
ation the number of classes to check to the only ones strictly
necessary: the offloadable and non-offloadable methods found
during the previous iteration. The check finishes when there is
no new non-offloadable classes are found during an iteration.
In this way, the number of classes to check is always relatively
small and can be processed in a short amount of time, i.e. neg-
ligible into the overall algorithm time. The pseudo code of the
classes dependency check is the following
do {

o f f l oadC la s se s_new = {}
no tO f f l oadClasses_new = {}
f o r (c l a z z : o f f l o a d C l a s s e s) {

i f (n o t O f f l o a d C l a s s e s . c o n t a i n s (c l a z z . s u p e r c l a s s)) {
no tO f f l oadClasses_new . add (c l a z z) ;

} e l s e {
o f f l oadC la s se s_new . add (c l a z z) ;

}
}
n o t O f f l o a d C l a s s e s = notOf f l oadClasses_new ;
o f f l o a d C l a s s e s = o f f l oadC la s se s_new ;

} wh i le (! no tO f f l oadClasses_new . isEmpty) ;

The classes analysis, apart for the functional perspective, is im-
portant also because it allows to restrict the amount of classes to scan
before to check their methods, highly decreasing the overall compu-
tational time required, particularly when it deals with a large-size
Android application with thousands of methods.

Methods Analysis

The methods analysis follows the class analysis, parsing each method
body of the offloadable classes in a fine-grained way. The algorithm
used to check offloadability is mainly composed of two parts; a main
control steps that checks the suitability of each method to be offloaded
and the dependency checks that analyze the dependencies among
methods. The main control steps are the following:

• Internal Method test. It first determines whether the methods
are internal and device-dependent by using three criteria:

– Static initializer. The method represents a static initializer
that is used to initialize the class object itself. The method
is not offloaded because it is a static method added by
the Java compiler and called by JVM after class loading.
The static initializer is indicated with the <clinit> method
name.

– MainActivity usage. The method contains the MainAc-
tivity among its input parameters. The method is used

118 4 Live Migration and Automated Offloading for Edge Computing

internally by the Android compiler to manage the Main-
Activity class or to use the context of the MainActivity for
the application startup.

• Class test. If the method belongs to a class marked as not-
offloadable, the methods in the class cannot be offloaded be-
cause it is likely to access not-offloadable objects, methods or
variables of the class that belongs to non-offloadable.

• Objects Calls test. It checks if the methods contains platform-
dependent calls towards objects that cannot be offloadaded.
These classes marked as non-offloadable during classes anal-
ysis.

• Keywords test. It check if the methods contains platform-
dependent methods calls towards methods that cannot be of-
floadaded. These methods are in the blacklist keywords that
are loaded previously from the configuration files.

During the dependency check phase, the algorithm checks which
methods are called during the execution of each inspected method. It
is possible to determine, for each method, its dependencies methods
and discard it if at least one is non-offloadable because, in this case,
it will be invoked during the method execution. To this purpose, it
checks the body of each method to see if there are any calls to the,
already found, non-offloadable methods.

To scan dependencies of methods and minimize the procedure, the
algorithm adopt the creation to build a directed graph where each
node is a method and each edge is a method call directed from the
caller method (called as parent node in the following) towards the
callee method (called as child node in the following). Each node
contains: the signature of the method, to identify unequivocally one
method among the others; offloadable variable, that indicates if the
method is offloadable, non-offloadable or temporally unknown; visited
variable, that indicates if the dependency check has already been
executed for that node; parents list that contains the list of the caller
methods. The algorithm used to create, modify and parse the graph
is shown below:

• Step 1. It parses each method found in the offloadable classes
to build a directed graph. In each method invocation from the
method body, an edge from child to parent node is created and
the visited flag is set for both nodes to false initially. At this
step the graph is created.

• Step 2. The graph is parsed to detect which methods depend
on non-offloadable method. Starting from the non-offloadable
classes list found during the methods checks, and iterating
through parents of non-offloadable method until the root, it is

4.3 Automated Offloading for Computation/Energy-usage Optimizations 119

possible to recursively set as non-offloadable all the branch of
the graph from the method to the root of the graph, excluding
graph nodes without scanning all the nodes. Every time a node
is scanned, the visited attribute is also set to true.

• Step 3. All the methods that are marked as offloadable from
the graph are retrieved.

The first step is executed during the methods checks. It aims to
create a directed graph, by expanding it with a new method at each
iteration. The second step is recursive and takes place after the graph
is fully created to scan the graph to detect the methods dependencies.
The last step results a list of offloadable methods after the method
call dependency test.

The same dependency check can be performed through an iter-
ative approach where, for each non-offloadable method, the internal
offloadable methods calls are checked. Since the target application
may be large-sized, the iterative approach needs to be optimized in a
similar way to what done for the classes dependency check, as shown
in the pseudo-code, through incremental iterations that consider a
limited number of methods each iteration. Unfortunately, due to the
great amount of methods to scan, even with this optimization, the iter-
ative approach is not feasible to check methods dependency within a
reasonable amount of time. The graph approach explained is the best
way to perform the methods dependencies check, and also allows to
retrieve the list of offloadable methods within some seconds in relation
to the application size, that is a quite impressive result considering
the typical huge amount of methods to scan per application.

The computation time and resources needed to perform the meth-
ods analysis may be extremely high for both control steps and depen-
dencies check. The time complexity for the control steps is Θ(n ∗m),
where n is the number of methods and m the number of classes, be-
cause the agorithm scans both classes and their methods. The time
complexity for the dependencies check with the graph approach is
Θ(n), where n is limited to the number of non-offloadable methods.
The proposed graph approach, using a directed graph and applying
the graph properties to analyze the methods dependencies, decreases
complexity. In case of a large number of methods, it is very inefficient
and resource consuming to check dependency in the iterative manner.
In fact, the alternative iterative approach complexity is Θ(n2 ∗ log n),
where n is the total number of methods. The iterative approach is
composed of the complexity to parse all the methods presents in all
the classes and the complexity to check inside each methods the pres-
ence of calls towards non-offloadable methods.

Methods Sorting

One of the main purpose of this solution is to create a tasks decision

120 4 Live Migration and Automated Offloading for Edge Computing

algorithm that can work with mobile computation offloading mecha-
nisms or code optimizations, thus it must be general enough to cope
as many of their requirements as possible. For example, some of-
floading mechanisms or code optimizations change the code of the
application analyzed, i.e. ULOOF [129, 151].

When the code optimization is applied without considering method
dependency, the translation of a method may result a number of is-
sues. When it translates a method, it inspects the instances used in
the method and the other method being called from the method. When
the other methods being called is already translated, it may contain
additional instances only related to enable offloading. When this
happens, those additional instances are also inspected and causes
offloading to malfunction. To avoid this, the algorithm needs to sort
the list of offloading methods in terms of the method call invocation.
A priority queue is introduces, where the methods are added with a
priority coefficient (Wm) related to the maximum weight among the
internal offloadable methods ones (Wi), as explained in 4.2

Wm =

{
1, if no internal method

max(Wi) + 1, otherwise
(4.2)

then using the following algorithm:

• Step 1 (priority 1): Search the methods that do not contain any
calls to methods declared offloadable in their body, and put the
method in the priority queue.

• Step 2 (priority 2): Search methods that contains calls to of-
floadable method with at maximum Wm=1 in their body and
put the method in the priority queue.

• Step N (priority N): Search the methods that contains calls to
offloadable method with at maximum Wm=(N-1) in their body
and insert in the priority queue.

This results a queue with methods sorted in a decreasing order in
terms of their weight, where the weight represents the total number
of offloading methods being called by that method and by the methods
being called from that method.

4.3.2 Method Translation and Optimization

The method translation and optimization refers to the modification
of the methods selected as offloadable, after the application of the
autonomous selection algorithm. Those methods are modified adding

4.3 Automated Offloading for Computation/Energy-usage Optimizations 121

hooks into the code to let them to be executed on the mobile devices
as well as on the remote server.

The post-compiler can optimize every method detected from the
previous method selection algorithm into a Jimple pseudo-code. The
optimized methods can be executed on a remote server at runtime
regardless of the type of parameters passed as input arguments and
whether the method is static or non-static. The framework from [129]
was able to only offload methods with primitive parameters. The
extension allows methods with the ability to offload also complex
type of parameters by modifying the assignment portion of the Jimple
code. The extension allows methods with complex parameters to be
optimized for offloading by serializing the complex objects and send
them along with the offloading request to the server.

The method translation algorithm in the post-compiler and the re-
mote execution platform is further extended to synchronize the object
instances between the devices involved in the offloading. While the
previous method translation algorithm could offload only static meth-
ods that can only access static variables, the introduced optimization
fully exploits object management, allowing to offload non-static meth-
ods that can access any variable both primitives and complex. When
the method is executed remotely, the application: i) sends the vari-
ables to the remote server; ii) updates the values of those variables in
the server-side; iii) invokes and executes offloaded method; iv) sends
the values of the variables back to the client; v) update the client vari-
ables. Figure 4.9 resumes the main operations applied on a method
suitable to offloaded.

Figure 4.9: Methods Modification Procedure

The post-compiler: i) retrieves the method body and for each line
it looks for assignments or invoke-statements and static fields; ii)
modifies the modifiers of the method; iii) inserts each static field into
the hashmap and into the body; iv) defines a new Soot method called
offloadcopy_<method_name> with the same name, parameterTypes,
returnType, modifiers, class, etc.; v) removes all method lines not re-
lated to the parameters passed, i.e. the body will be composed of
variable declaration and parameters; vi) adds the statements to call
the framework that allows to run the method remotely.

122 4 Live Migration and Automated Offloading for Edge Computing

4.3.3 Experimental Evaluations

The selection algorithm has been tested using a wide range of differ-
ent Android applications. The tests and the experimental evaluations
have been performed on the top 250 most popular Android appli-
cations from the Google Play marketplace. After that, two popular
applications have been analyzed more in detail to show the amount
of computation it is possible to save. In particular, in terms of cyclo-
matic complexity metric, a measure of the maximum number of linearly
independent paths in a program control graph, used to measure the
amount of decision logic in a single software module. Note that the
cyclomatic complexity does not captures all aspects of software com-
plexity, but rather can serve as a useful engineering approximation to
retrieve the complexity of an application [149].

Cyvis [150] is the tool to evaluate the real computation complexity.
Cyvis is a free software metrics collection, analysis and visualization
tool for Java based software. It parses a Java class file and calculate
cyclomatic complexity of each method in the class file. The Cyvis tool
has been extended by adding the retrieval and evaluation of inner
classes, which are not supported in the latest existent version.

For sake of completeness, note that the tasks selection algorithm
has been fully tested, also combined with an external computation
offloading mechanism (i.e. ULOOF). The addition of a tasks selection
algorithm that complements ULOOF creates a complete offloading
platform that autonomously creates new Android applications with the
ability to scan dynamically those applications code, modify them and
offload some methods on a remote server, if necessary, without any
human intervention or specific configurations. Additional information
related to the interactions with ULOOF framework are available at
https://uloof.lip6.fr.

Top 250 Most Downloaded Apk

The tests refer to the 250 free most downloaded applications of the
US Android marketplace, at the 1st February 2017. Those appli-
cations compose an appropriate and statistical-relevant basis, with a
proper range of heterogeneous and large-size applications, to analyze
the results obtains because they include vary various applications in
terms of types, domains, internal structure and so on.

The measurements are divided in classes and methods analysis,
and follow the analyzer process. The proposed tasks selection algo-
rithm has been applied to analyze those applications and measures
how many classes are present into the whole applications and, then,
how many classes are offloadable, classifying the classes in relation
to the reason why they are considered non-offloadable. Figure 4.10
resumes the obtained experimental results using a Cumulative Dis-

4.3 Automated Offloading for Computation/Energy-usage Optimizations 123

tribution Function (CDF), very useful to show the comparison among
different amount of classes classification.

Figure 4.10: CDF on Classes Analysis

For each class, the algorithm indicates how many methods are
considered offloadable and how many methods are discarded at each
step, following the classification described previously. Figure 4.11
shows the finer-grained results obtained with the analysis on the top
25 application due to space limitation. Extending the analysis to the

Figure 4.11: Classes Analysis

methods, the algorithm classifies them according to the classification
described previously. Figure 4.12 resumes the obtained experimen-
tal results using the CDF distribution. Figure 4.13, similarly to the
classes analysis, shows the finer-grained results obtained with the
methods analysis on the top 25 application. The average percentage
of methods suitable to offload on the top 250 application considered is
25.51%. Note that, without considering the methods including into the
Android packages but only the feasible methods present into the ap-
plication, the average percentage of offloading methods is 59.25%. In
fact, a significant amount of the application overall methods is related

124 4 Live Migration and Automated Offloading for Edge Computing

Figure 4.12: CDF on Methods Analysis

Figure 4.13: Methods Analysis

to Android classes that contain obviously mobile device-dependent
methods and it is not possible to offload them to the edge platform
that should use only a general-purpose JVM.

The results achieved are extremely relevant in terms of amount of
methods to offload towards the remote server and, in particular, in
terms of resource consumption savings. Some work in the literature
highlight significant computation time and energy savings, with just
few methods offloaded. For instance, [1] achieves savings in the order
of 30%, just offloading a single method into a limited-size application.
In the case described, it is not possible to run the same tests on the
considered applications because due to unability to access the source
codes, but time and energy savings results are easily predictable and
the offloading of a great amount of methods may lead to a very high
application optimization with an extremely significant reduction in
both computation time and energy consumption.

The next paragraphs extend the results obtained, by providing a
cyclomatic complexity analysis for a more complete estimation of the

4.3 Automated Offloading for Computation/Energy-usage Optimizations 125

average saving achieved on the top 250 most downloaded applications
and, more specifically, on Twitter and Uber usecases.

Cyclomatic Complexity

To evaluate the tangible savings introduced by the proposed algo-
rithm on real-world applications, the cyclomatic complexity is evalu-
ated, though Cyvis tool, on the top 250 most downloaded applications
and, successively, on Twitter and Uber applications. These two appli-
cations are examined because they are very popular and medium-size
applications among the ones considered.

Initially, the APK files is translated into jar archives, readable
by Cyvis, with Dex2jar tool [152] that decompiles classes.dex into a
jar file. The cyclomatic complexity analysis has been performed with
Cyvis that provides: a tree structure, that shows all the packages
in the project with the associated classes and interfaces it contains;
metrics panel, that contains the metrics at different grained level, e.g.
project view, package view, classes view with the list of methods and
the cyclomatic complexity and the instruction count for each method.
Extracting the Cyvis complexity analysis evaluation and combining it
with the offloading and non-offloading methods found, it is possible to
evaluate the cyclomatic complexity associated to each group of meth-
ods. Figure 4.14 resumes the CDF related to the number of offloading
and non-offloading methods in the top 250 most downloaded applica-
tions. The average complexity suitable to be offloaded is about 20%

Figure 4.14: CDF on Applications Complexity

of the total application complexity. Note, as detailed better on Twit-
ter and Uber usecases analysis, that a relevant part of the overall
application complexity is intrinsically non-offloadable, i.e. Android
libraries, and it is possible to act only on a portion of the total ap-
plication complexity. As shown in Figure 4.13, the Android-related
methods are, in average, the 35% of the total application methods.
Thus, the cyclomatic complexity has been analyzed on the considered

126 4 Live Migration and Automated Offloading for Edge Computing

applications and Table 4.13 and 4.15 resume the results, respectively,
on Uber and Twitter applications.

Table 4.13: Complexity Analysis in
Uber App

Type Complexity

Overall 55840
Non-Offloadable 37646
Android-related 3603
Offloadable 34.83%

Table 4.15: Complexity Analysis in
Twitter App

Type Complexity

Overall 104287
Non-Offloadable 79192
Android-related 36131
Offloadable 36.82%

where: overall, the total cyclomatic complexity of the application;
overall non-offloadable, the sum of the complexity of all the non-
offloading methods; Android-related, the sum of the complexity asso-
ciated to the Android methods; offloadable complexity, the percentage
of the complexity associated to the offloadable methods.

The offloadable complexity reported into Table 4.13 and 4.15 is the
complexity percentage related to the available complexity suitable to
be offloaded, without considering the Android-related complexity. It
is easy to note that the Android-related complexity can be also more
than one third, e.g. in the case of Twitter usecase, and the possi-
ble amount of computation is to search in the remaining application
complexity.

The cyclomatic complexity percentage is almost proportional to
the number of methods previously detected as offloadable, meaning
that the method complexity is quite balanced between offloadable
and non-offloadable methods. Thus, an offloading decision evalua-
tion, roughly based on the number of offloadable methods, can give
valuable hints about the amount of complexity moved towards the
remote server.

As shown in the experimental evaluation, the analysis described
provides the list of methods suitable to be offloaded, that are managed
at runtime by the offloading mechanism which will decide to offload
them or not, along with the ability to associate the complexity to each
method to identify the heaviest methods to offload among all. In this
way, it is possible to integrate the methods complexity functionality
to strengthen the overall offloading framework, composed of tasks
selection algorithm and offloading execution mechanism, by using the
complexity parameter that can extend the calculation to decide to
execute locally or offload a method.

Task Selection Performance

To measure the performance of the proposed task selection algorithm,
for each app, it is necessary to compare the total number of methods
found and the time needed by the algorithm to scan the app and to

4.3 Automated Offloading for Computation/Energy-usage Optimizations 127

apply the proposed heuristics. The results are shown in Figure 4.15.

Figure 4.15: Task Selection Performance

The total time needed to scan an app is the sum of the times
needed for classes and methods. Due to the limited number of classes
usually present into an app if compared with the number of methods,
the latency associated with classes has demonstrated to be almost
negligible (always less than 5% of total time) and the overall per-
formance is mainly determined by the time needed to scan methods.
Note that the algorithm exhibits very good performance and applica-
bility to real-world scenarios, with its ability to scan the vast majority
of existing top-25 apps in less than 1 minute. In addition, Figure 10
shows the speed-rate of the applications considered, defined as the
number of methods evaluated per ms. The speed-rate ranges from 0.6
to 1.9, with an average rate of 1.3 methods scanned per ms, which
underlines the feasibility of the solution proposed application as well
as its effectiveness also in large-scale applications.

128 4 Live Migration and Automated Offloading for Edge Computing

129

5 | Scalability, Elasticity,
and Federation for the
Cloud Computing Mid-
dleware

This chapter describes two relevant solutions based on the usage
of cloud computing to provide mobile services to mobile devices. It is
worth noting that, the proposed solutions cannot be used instead of
fog or edge computing solutions but are complementary to them and
help to cover a broader range of applications scenarios. In fact, the
following solutions can be used in a valuable way in case of powerful
mobile devices, that do not have limited resources available and can
work in a quite autonomous way, that connect with the mobile services
in a more loosely-coupled way. On the contrary, their application is
unfeasible, for instance, for IoT devices that send almost all the data
sensed from the environment to a remote server and exchange with it a
high amount of data. They cannot really deal with strict requirements
of IoT, in particular in sensible environments about latency, location-
awareness or privacy.

In particular, the two proposed solutions significantly improve the
scalability and interoperability requirements that are two of the main
challenges when dealing with a great amount of different mobile de-
vices. Scalability is necessary because pervasive environments are
usually characterized by a higly variable number of requests to serve
that must not affect the overal system performance and, thus, the
system should adapt to elaborate different amount of requests and
data. Interoperability is also challenging when very different amount
of mobile devices, that gathered various data, are present in the en-
vironment and the second solution proposal can be very relevant to
address it because it proposes to abstract data by decoupling the
collected data and the referring model that manages information.

130 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

5.1 Related Work

5.1.1 Virtual Machine Management and Migration

The management and orchestration of cloud-based resources and ser-
vices at different levels and with different purposes has been fairly
investigated by researchers in recent years, as well as the VM man-
agement within the Openstack platform, and many works in the liter-
ature have tried to address it.

OpenStack Heat [153] is a deployment technology based on tem-
plates, that manages VMs creations and the entire lifecycle of infras-
tructure and applications within OpenStack clouds, through building
stacks which are sets of virtual resources. Nirmata [154] is designed
for microservices, providing seamless service discovery, registration,
load-balancing and customizable routing for microservices, where an
application is composed of multiple services and provides an innova-
tive cloud service that makes it easy to automate the entire DevOps
lifecycle. Hurtle [155] is an orchestration framework that allows to
automate the life-cycle management of the service, from deployment of
cloud resources all the way to configuration and runtime management.
It ensures the creation and management of not only the foundational
resources required to operate the target service logic but also the
so-called external requirements, i.e., the external service resources,
possibly not networking-related, needed to compose the final ser-
vice. Some proposals are based on the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [156], a middle-level
language for the specification of the topology and orchestration of
services in the form of a service template, that enables interoper-
ability of application descriptions and cloud services infrastructures,
the relationships between parts of the service, and the operational
behavior of these services, e.g., deploy, patch, shutdown, indepen-
dently from the service provider. [157] presents how the portable
and standardized management of cloud services is enabled through
the TOSCA. Cloudify [158] is an open source TOSCA-based cloud
orchestration framework that allows to model applications and ser-
vices and automate their entire life cycle, including deployment on
any cloud or data center environment, monitoring all aspects of the
deployed application, detecting issues and failure, manually or auto-
matically remediating them and handle ongoing maintenance tasks.

Several migration and replication mechanisms have been proposed
to provide high availability inside virtualized environments and over-
come migration issues. In fact, VMs migration may have several im-
pacts on network and service performance, as described in [159],
related to: resource consumption either at the source or at the desti-
nation hosts; network congestion, when massive migrations are trig-

5.1 Related Work 131

gered; long provisioning time may prevent cloud providers from allo-
cating new hosts resources; service disruption time to ensure a seam-
less and efficient live migration but, as underlined in [160], inevitable
completely due the impossibility to stop a running service, even for a
very short time, without impacting the service. To alleviate these im-
pacts various VMs management plans based on live VMs migrations
have been widely studied and explored in the literature. Pre-copy
is the most common approach used for live migration and has been
successfully applied and optimized into the most successfully com-
mercially available hypervisors, e.g. Xen, KVM, VirtualBox, VMware,
and so forth [161]. [159, 160] adopts a typical pre-copy strategy as
a base, which combines a push phase, during which the VM memory
is transferred in subsequent rounds while the VM is still running, and
a stop-and-copy phase, during which the VM is stopped and just a
residual part of the data is transferred.

Many works study the performance variations in relation to the
migration efficiency of the cloud data center, with different purposes.
S-CORE [162] is a scalable live VM migration scheme, based on
a distributed migration solution with multiple distinct policies, to
dynamically reallocate VMs in order to minimize communications
cost in a cloud data center. They also underline the importance of
measurement-based, network-aware VM migration providers to sig-
nificantly increase the infrastructures capacity also in highly varying
traffic contexts. [163] attempts to enhance data center performance
and scalability, minimizing the overall network cost, with the intro-
duction of an algorithm to improve VM placement management. [164]
migrates a group of VMs in relation to some network indicators (i.e.
cost of migration, available bandwidth), detecting the most overloaded
links in the network to alleviate network congestion. [165] propose a
hierarchical placement approach to address VMs placement problem
for large problem sizes on IaaS cloud. Sandpiper [166] automates
resource allocation and migration of virtual servers in a data center
to avoid machine overload by relocating VMs with the Xens migration
mechanisms. They adopt black-box and gray-box strategies for VMs
provisioning in large data centers to automate the monitoring tasks
of system resource usage, hotspot detection, allocating resources and
initiating any necessary migrations to alleviate congestions. Finally,
multiple VMs live migration is an increasingly relevant topic due to
applications complexity growth and big size, thus, requires more ef-
forts to improve and optimized it since it has not been extensively
studied in the literature [160].

Regarding the state migration, several migration techniques have
been proposed in the literature to move the entire databases be-
tween two nodes, with the purpose to minimize service interruption
and unavailability. Albatross [167] is a technique for live migration in
multitenant databases in a shared storage architecture that initially
creates a snapshot of the database on the destination host and then

132 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

uses several iterations copying the state incrementally to minimize
the unavailability window.

Zephyr [168] is a technique to efficiently migrate a live database
in a shared nothing transactional database architecture. In Zephyr,
contrarily to Albatross, the disks are locally attached to every node,
hence, to minimize the unavailability, the persistent image is also mi-
grated introducing a synchronized dual mode that allows both the
source and destination to simultaneously execute transactions for
the tenant: the destination starts serving new transactions while the
source completes the active transactions. During migration, requests
at the destination force a pull on the data page from the source and
any transaction at the source accessing a page that has been mi-
grated to the destination must restart at the destination. Although
Zephyr does not require the nodes to be taken off-line at any point,
it does require that indexes are frozen during migration.

Slacker [169] is an end-to-end database migration system that
optimizes the impact of migration changing the throttling rate that
pages are migrated from the source to destination. Slacker uses re-
covery mechanisms to stream updates from the source to the des-
tination. It minimizes the migration process performance impact on
both the migrating and destination tenants by leveraging migration
slack, resources that can be used for migration without excessively im-
pacting performance latency. To avoid straining the other tenants at
migrating nodes, a PID (Proportional-Integral-Derivative) controller
monitors average transaction latency to adjust throttling the network
connection used to stream the updates, by the ability to automat-
ically detect and exploit the available migration slack of computing
resources in real time according to the dynamics of the executed work-
loads on both of the source and destination servers. ProRea [170]
represents a live database migration approach that combines proac-
tive and reactive measures, in order to reduce page faults and improve
buffer pool handling compared to purely reactive approaches. To pre-
pare migration, the source sets up local data structures and migration
infrastructure and sends an initial message to the destination to cre-
ate an empty database and sets up its local migration infrastructure.
ProRea proactively migrates hot pages, i.e. pages that have been
recently accessed which are in the buffer pool of the RDBMS in-
stance, thus, new transactions start at the destination and pull pages
on-demand. Successively, to finish migration, the source additionally
pushes pages which have not been transferred during previous phase
or as response of a pull request from the destination. Finally, after the
destination owns all pages, migration cleans up used resources and
completes by a handshake between the source and the destination.

Dolly [171] uses a live migration technique for virtualized
database servers exploring virtual machine (VM) cloning techniques to
spawn database replicas and address the provisioning shared-nothing

5.1 Related Work 133

replicated databases in the cloud. Dolly creates VM snapshots and
clone VMs to replicate database state and start new replicas. It
clones the entire virtual machine of an existing replica, comprehen-
sive of the operating environment, the database engine with all its
configuration and data. The cloned virtual machine is started on a
new host, resulting in a new replica, which then synchronizes state
with other replicas prior to processing application requests. Since,
usually, creating a new database replica is a time consuming pro-
cess which increases proportionally with the size of the replicated
database, Dolly incorporates a model to estimate the latency to cre-
ate a new database replica based on the snapshot size of the virtual
machine and the database re-synchronization latency and uses this
model to trigger the replication process well in advance of its neces-
sity to occur according to the anticipated workload increase [166].

5.1.2 Semantic Web for Data Federation

Federation of semantic data and navigation via SPARQL queries is
still at an early stage and requires users to explicitly express the
distributed nodes upon which to perform semantic queries and sub-
sequent result aggregations, therefore negating the intrinsic benefits
of adopting a semantic approach to distributed data aggregation and
reasoning [172, 173]. Other architectural approaches, alternatives to
the one described in the following, have been proposed in the past:
plugin, endpoint extension.

Plugin. Some Semantic platforms and SPARQL implementations typ-
ically allow developers to extend platform features via a plugin mod-
ule. Data federation may be realized as a dedicated plugin that
transparently handles data federation across nodes, and overcomes
current SPARQL limitations. This approach poses non-trivial tech-
nology issues: plugin implementation strictly depends on the actual
semantic platform, therefore allowing to federate only nodes that rely
on the same semantic platform; only a subset of currently available,
production-grade semantic platforms support a plugin model.

These limitations adversely impact all KPIs, thus making this op-
tion viable only for controlled environments where the semantic plat-
form is shared across the federation and supports a plugin model.

Endpoint extension. This solution extends the internal logic of a
SPARQL endpoint, from the classic logic to the execution of the query
for extracting data to a model for the interception of the query, the
query rewriting through the wired application logic, by inserting the
statement required to query all the nodes in the federation, and fi-
nally performing on the various endpoints, returning the result in ac-

134 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

Figure 5.1: Plugin Alternative

cordance with the provisions of the specific SERVICE clause SPARQL
1.1.

This solution extends the internal logic of a SPARQL endpoint,
from the classic logic to the execution of the query for extracting
data to a model for the interception of the query, the query rewrit-
ing through the wired application logic, by inserting the statement
required to query all the nodes in the federation, and finally perform-
ing on the various endpoints, returning the result in accordance with
the provisions of the specific SERVICE clause SPARQL 1.1.

Figure 5.2: Endpoint extension alternative

This solution allows to provide input to any type of SPARQL query,
with the only constraint of not being able to use the SERVICE clause,
both because this is used as the main construct for the manipulation,
either because it would make the handling and the highly complex of
final query. This aspect is important as it does not allow the use of all
the constructs that conform to the standard SPARQL 1.1, giving the
value added to the product that more to the solution. Another aspect
to consider is the difficulty in handling the query itself, which could

5.2 Elastic Provisioning of Mobile Services in the Cloud 135

lead to non-trivial query implementation and poor performance. This
approach is extremely platform-dependent from both a technical point
of view (need to modify existing SPARQL endpoint source code), and
a management one (modifying source code from other vendors and
distributing it may pose legal and organizational challenges in terms
of distribution process and code ownership), therefore achieving a low
score on each KPI.

5.2 Elastic Provisioning of Mobile Services in
the Cloud

Mobile Cloud Networking (MCN) is a large-size EU project that in-
volves several leading companies, research centers, and universities,
that aimed at exploring a very large-scale coverage of a wide range
of on-demand telco services in an efficient way [175]. In the following,
to facilitate the full understanding of the cloud solution proposal an
overview of the general main project architecture developed is pre-
sented, with some architecture hints, by focusing specifically on the
services and functionalities central to the present proposal. For a
broader description and additional technical details about the gen-
eral MCN architecture, refer to [174].

The overall MCN project goal is to provide innovative and effective
solutions for enabling dynamic network function and self-adaptation
to mobility with the exploitation and extension of cloud computing
techniques in order to ease the deployment and operations of future
mobile telco services through self-management, self-maintenance, on
premise design and operations control functions. In particular, the
project requirements have been typical key requirements of highly
dynamic and distributed system (i.e., mobility, scalability, etc.) have
been carefully explored through the exploitation of cloud computing
cutting-edge technologies, and a smart on-demand deployment and
distribution of mobile network functions, providing mobile services
independent from physical location.

The main focus of this solution is to significantly improve sys-
tem performance and scalability, key requirements for highly dynamic
cloud solution, by introducing the service state migration of mobile
services provided by the MCN system. The service state migration
allows to move all the VMs that compose a service, along with all the
data collected and associated to the service, in order to reactivate the
service on the destination location with the same state conditions of
the origin service. In fact, in nowadays cloud services a typical single
VM migration is not enough because there are several different com-
ponents and functionalities that cooperate together to create a unique
behavior, i.e. multiple tightly related VMs that compose multi-tiers

136 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

applications with specific tasks for each VM. The goal to preserve
high workload conditions purposes can be achieved by an efficient
VMs management and orchestration plan, based on VMs migrations,
and a migration of the whole service state. VMs migration must as-
sure, in a completely automatic way, a limited total migration time
and, more important, a minimal downtime that is the real cause of ser-
vice unavailability, with a complete transparency towards end-users
that should not observe any changes, like the VM did not change lo-
cation. On the other side, the state migration consists of transferring
all the service history that is composed on the data collected during
its execution and is achieved by moving the whole database towards
the newly created service.

The main strengths of the proposed solution are: migration schema
definition to minimize unavailability; solution conceived and applied
in large-size, complex and real-world application; proactive behavior
that allows to monitor the system and act before congestions occur;
fully open-source platform and tools usage. i) First, a general mi-
gration schema has been designed to provide a minimal disruption to
end-user service availability, keeping the state of the origin running
service on the destination service after the migration, and able to man-
age applications based on multiple correlated VMs that must maintain
reciprocal connectivity after the migration. ii) The solution integrates
with a real production system that provides ubiquitous cloud services
and is characterized by large-size usage application. MCN is deeply
analyzed in order to outline and enhance an adaptive mobile-cloud
orchestration mechanism to deliver services and a dynamic manage-
ment implementation of the services state migration. iii) The present
solution works in a proactive way, preemptively migrating service
state from the congested host by self-initiated VMs migration, before
services congestion can affect all the system, triggering VM migra-
tions when a maximum amount of resource is used. Pre-congestion
indicators are used at runtime to guarantee high-performance, low
failures and scalability through VMs migration towards a less loaded
destination host and automatic reconfiguration of VMs on the target
host. In addition, the solution is based on gray-box techniques [161],
that allows to operate properly even with a minimal priori knowl-
edge of the system. iv) Finally, this solution is completely based
on open-source platforms, e.g. Openstack, Zabbix, and independent
from the underlying hardware/host. Openstack allows to deploy VM
instances on-the-fly to handle different system tasks when required
and the usage of VMs to implement services is a key enabler for dy-
namic services management because decouples service instances from
the hardware and isolates specific functionalities into different VMs,
allowing to flexibly deploy any application independently from the
target host and able to handle different workload variations.

5.2 Elastic Provisioning of Mobile Services in the Cloud 137

5.2.1 MCN Background and Architecture

The main MCN objectives are to develop a novel mobile architecture
and technologies to create a fully cloud-based system and to extend
cloud computing, beyond datacenters to the edge of the network, to-
wards mobile end-users. In fact, cloud networking is explored as a
mechanism to support on-demand and elastic provisioning of mobile
services, implementing a platform to process and storage data near the
end-points in order to enhance performance and deliver services in an
elastic and dynamic way. The MCN architecture is very modular and
the key concept is to combine different services to create other more
complex end-to-end (E2E) services. The MCN Service Management
Framework enables and affords the means to compose and orches-
trate the MCN operations across multiple domains and service types,
creating the E2E composition. MCN supports and enables develop-
ers to build upon MCN services so they can compose and orchestrate
their own services delivering much needed additional value and new
revenue streams. These dependencies are executed upon specifically
by the Service Orchestrator (SO) Resolver component. Figure 5.3
illustrates the MCN architecture portion related to the services used.
The MCN architecture is based on some key components used by all

Figure 5.3: MCN Architecture

the services of the architecture. The Service Manager (SM) is the
service provider that exposes an external interface to the Enterprise
End-user (EEU) and is responsible for managing SOs to request the
creation of services instances. It adheres and implements the MCN
lifecycle. The SM programmatic interface (northbound interface, NBI)
is designed so it can provide either a CLI and/or a UI. Through the
NBI, the SM gives the EEU or SO, both classed as tenant, capabil-
ities to create, list, detail, update and delete (EEU) tenant service
instance(s). Its Service Catalogue contains a list of the available
services offered by the provider. Its Service Repository is the compo-
nent that provides the functionality to access the Service Catalogue.
The Cloud Controller (CC) supports the SO requirements and service

138 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

life-cycle management, providing the management interfaces used by
SM and SO, abstracting from specific technologies that are used in
the technical reference implementation. The SO creates, configures,
orchestrates and manages every service instance in order to access
functionality provided by the specific service. The SO Management
(SOM) component has the task of receiving requests from the NBI and
overseeing, initially, the deployment and provisioning of the service
instance. Once the instantiation of a service is complete, the SOM
component can oversee tasks related to runtime of the service instance
and also disposal of the service instance. The SO is a self-contained
tenant process that runs within a container, managed by the CC. Its
primary responsibility is to manage, according to the MCN lifecycle,
resources and external services required to deliver the tenants service
instance.

The proposed solution is based on two MCN services: Monitoring
as a service (MaaS) and Rating, Charging and Billing as a service
(RCBaaS). MaaS addresses the design, implementation and test of
monitoring mechanisms, from the low-level resources to the high-level
services, across the four different domains: radio access network, mo-
bile core network, cloud data center and applications. MaaS is con-
sidered as a full-stack monitoring system equipped with the capabil-
ities to provide monitor and metering functionalities in a large scope
of telecommunication systems. Service stability of MaaS has been
achieved by making use of solid and established Zabbix open-source
project [176]. Zabbix is a software toolkit that provides an effective,
scalable and reliable monitoring, with a wide range of monitoring per-
formance indicators and metrics, of a distributed infrastructure using
Zabbix agents which may be used to collect data locally on behalf
of a centralized Zabbix server and report the data to the server. It
provides agents for a wide range of operating systems and supports
both active and passive checks to monitor data and CRUD operations
via JSON-RPC based API interface. MaaS retrieves information in
polling mode using the Zabbix APIs and exchanging data with Ad-
vanced Message Queuing Protocol (AMQP) protocol based on the
publish/subscribe model. MaaS provides an interface to retrieve at
runtime the monitoring information from the agents related to the sin-
gle services to monitor that allows services to dynamically subscribe
and retrieve asynchronous data from the IaaS. Each monitored service
who wish to use MaaS functionalities implements the interaction in-
terface with the MaaS service and have to integrate the configuration
of their Zabbix agents per node to be monitored in their provisioning
or deployment. The wrapper objects support methods for retrieval of
metrics without being locked-in to a specific realization of the MaaS.
Differently to MaaS, the RCBaaS is a monitoring service that col-
lects information for accounting and billing purposes. RCBaaS is
employed in MCN as a support service that takes as input the ser-
vice consumption metrics, processes them, calculates the price to be

5.2 Elastic Provisioning of Mobile Services in the Cloud 139

charged to the user, and generates the invoice for payment. It allows
to charge both the end user (EU) and the EEU or service operator
itself that operates a service in a cloud, as-a service way. It also
takes into account information about anomalous events (e.g. service
failures, consumptions exceeding a given threshold, etc.) in order to
correctly enforce different types of charging models. RCBaaS inter-
acts with the other MCN services with the Rabbit Message Queue
(RabbitMQ) used to collect asynchronous messages generated from
different entities. RCBaaS, when instantiated, subscribes to MaaS to
receive monitoring data through the RabbitMQ server that receives
the information sent by the RabbitMQ client, dynamically instanti-
ated on MaaS to mediate the interaction towards RCBaaS, which is
triggered by Zabbix every time MaaS detects the condition inserted
in the subscription. The RabbitMQ client receives as input the rele-
vant monitoring values from Zabbix, translates them in the RCB format
and delivers the messages to the RCB RabbitMQ.

5.2.2 Service Instance Migration Design

The proposed solution adopts the service instance migration in order
to be able to migrate on-the-fly the whole state of the service. The
state migration operations are key for high-performance and reliable
systems. Various services performance objectives, e.g. scalability, re-
sponsiveness, may be significantly improved by optimizing the VMs
placements, and thus resource allocations, among hosts avoiding bot-
tlenecks due to congestion links. In terms of reliability, fault toler-
ance is a major concern to guarantee availability and reliability, in
particular with critical services. State migration reliefs also fault-
tolerance requirement minimizing failures impact on services execu-
tions by moving the services when failures occur or when are likely. A
typical service state migration process is composed on multiple steps
depicts in Figure 5.4. The physical host is continuously monitored,
for its whole life-cycle, by a monitoring system that is able to acti-
vate a trigger when the host manifests signs of congestions because it
struggles to serve all the incoming requests. When the trigger is ac-
tivated the service state migration starts and the service orchestrator,
though a placement decisioning activity, must find the most suitable
place where is possible to move the running service, selecting a des-
tination host. An empty copy of the same service will be deployed
and provisioned on the new and less loaded location, binding the new
service with the same references earlier attached to the origin service.
Successively, the core migration phase is executed, pushing all the
state service data towards the destination service in order to repli-
cate exactly the same situation of the origin host. Finally, after all
the service state data are moved to the target destination to recreate

140 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

Figure 5.4: High-Level Vision of the Overall Service State Migration Process

the original state, the old service will be unbound and disposed in
order to release resources no longer used and to relief the overloaded
computation. Before to restart to monitor the newly created service,
the monitoring system collected data is reset in order to refresh it
deleting old measurements related to the previous service location
and no more valid.

The overall goal of the proposed system is to realize a coordinated
set of mechanisms that allow moving all internal state of a service in-
stance to another instance created from scratch at runtime, and with
minimal service instance interruption. For the current proposal, the
design and implementation, apart for placement decision, include all
the orchestration and migration activities outlined previously, com-
monly used during service state migration, using a state migration
phase based on a pre-copy [177] approach, that pushes most of the
data to destination host before stopping VM at the origin host and
move it to the destination, rather than post-copy [161], that pulls most
of the data from source host after resuming VM at the destination host.

Initially, the service is continually monitored using MaaS func-
tionality via integration with Zabbix in the testbed environment, as
the main potential trigger for migrations. Zabbix is an open-source
software toolkit that provides an effective, scalable and reliable mon-
itoring, with a wide range of monitoring performance indicators and
metrics, of a distributed infrastructure using Zabbix agents which may
be used to collect data locally on behalf of a centralized Zabbix server
and report the data to the server. Based on the collected data, Zabbix
allows to activate triggers that sends alerts or automate unsupervised
actions to automatically resolve issues. In this solution, in order to
manage the values gathered by monitoring system performing further
analysis when overloaded data are retrieved, a component between

5.2 Elastic Provisioning of Mobile Services in the Cloud 141

Zabbix and the trigger is added, which implements black-box and
gray-box techniques in order to be completely agnostic from the ap-
plication and thus be able to make decisions by observing each VM
from outside and without any knowledge of the service provided. The
Grey-based model has been selected as the basis of the implementa-
tion in order to make it acting as a predictive model able to analyse
the usage evolution and smooth peaks and fluctuations, by amplify-
ing at the same time the monitored resource metric growth [178]. In
fact, Grey Model is recognized in the related literature as a simple
baseline solution for a multi-parametric systems control that acts as
a low-pass filter to detect usage resources in order to trigger events
related to resource scarcity or specific service placement problems: it
tends to offer high hit rate and good overall performance, also when
the model information is partial or incomplete [179]. In addition, Grey
model is particularly suitable because it allows the adoption in con-
texts with relatively limited data collected with only few discrete data
needed to analyze an unknown system, allowing to forecast next val-
ues also when the decision-makers only own a limited set of historical
data. In this solution, this behavior allows to begin the hosts obser-
vation just after the VMs are created, as soon as a couple of data
are retrieved. The one-step ahead prediction derivation, via the Grey
Model approach, for the utilization percentage of each monitored re-
source (Ures) is:

Ures(t+1) = fGM (Urest, Ures(t−1), , Ures(t−k)) (5.1)

where fGM() is the Grey Model function and k is the number of his-
torical value considered for the prediction, thus, influencing also the
model accuracy.

Hence, all the one-step ahead predictions 5.1 are combined into
a polynomial linear formulation with all the P parameters considered
both the host resources, comprehensive of CPU, memory, network and
disk operations, and application requirements present in the system
SLA criteria, comprehensive of round trip time (RTT) and through-
put in order to define the overall resource usage (Uhost) into the
equations:

Uhost(t+1) = x1 ∗ Ucpu(t+1) + x2 ∗ Umem(t+1)+

x3 ∗ Unet(t+1) + x4 ∗ Udisk(t+1)+

x5 ∗ Urtt(t+1) + x6 ∗ Uthr(t+1)

(5.2)

where: Uhost(t+1) is the overall resource usage on the host one-
step ahead; Ucpu(t+1) is the CPU usage one-step ahead; Umem(t+1) is
the memory usage one-step ahead; Unet(t+1) is the network bandwidth
usage one-step ahead; Udiskt+1) is the read/write disk operations
usage one-step ahead; Urtt(t+1) is the deviation from the minimal RTT
value one-step ahead; Uthr(t+1) is the deviation from the maximum

142 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

throughput value one-step ahead; xi is the weight for each resource
and it is used to stress or weaken the relevance of specific resources to
be able to adjust the monitoring system in relation to the importance
of the single resource to monitor:

P∑
i=1

xi = 1 (5.3)

Finally, the threshold T is defined to be compared with the Uhost(t+1)
to detect if the host is overloaded and, hence, in order to activate the
trigger and start the migration procedure. In particular, in relation to
the Uhost(t+1) it is possible to detect either to move just a single VM
instance to the target hosts or if it is needed to migrate more VM
instances due to high forthcoming congestion:

(Uhost(t+1) − T) ∝ NVM (5.4)

where NVM is the number of VM instances to migrate.
Note that the decision of the target place where to migrate the

targeted service instance is out of the scope of the described imple-
mentation of the service instance migration because it might depend
on the internal management goal of the MCN CC. Given a target
destination place, the state migration procedure starts. Assuming
service state migration time to be split into epochs and considering
every epoch to a particular service state, it is possible to define the
following epochs:

• E1: the interval to re-create the same environment onto the
new selected host.

• E2: the interval to perform the first data migration phase.

• E3: the interval the perform the residual second data migration
phase.

• E4: the interval to release the unused resources.

According with the epochs definition, the algorithm used for the ser-
vice state migration realization is:

• Step 1 (E1): create the new state skeleton, composed of MVM
(independent from NVM) VMs instance, by the SO to prepare
the target place to receive the state to be moved.

– 1.1 VM instances creation and startup.
– 1.2 VMs configuration to recreate the same environment.

5.2 Elastic Provisioning of Mobile Services in the Cloud 143

• Step 2 (E2): freeze the database, with the associated service
state, and migrate all the service state towards the newly cre-
ated VMs, while the old VMs continues to collect data and be
able to serve requests. Since the migration is a modification
of the pre-copy based approach, this is the initial push phase
where all the data associated to the database state, for the
captured time instant coincident with the start of the E2 epoch,
on the origin service are moved on the pre-created destination
service.

– 2.1 push all the data collected in VMs (at the time E1
starts).

– 2.2 service reference changing to retrieve the service from
the new VMs.

– 2.3 delete the data moved to be aware of the data collected
during Step 2 and still not moved.

• Step 3 (E3): is the stop-and-copy phase and pushes the resid-
ual data collected during Step 2 to the new VMs in order to
update the service state with the latest information.

• Step 4 (E4): dispose the old overloaded VMs to release the as-
sociated resources and lighten the workload on the overloaded
host.

This general-purpose procedure has been designed in order to
allow: to minimize, towards a very negligible, data losses and ser-
vice unavailability time, independently from the amount of data and
time of the migration; to integrate different algorithms and techniques
to manage the specific temporal epoch in a more adaptive and dis-
tributed way among different service instances, i.e., introducing pri-
ority settings with high-priority sessions, or some fault-resilience re-
quirements. In the specific use case, in order to do not further over-
complicate the already complex MCN project and, for seek of simplic-
ity, the requests are managed only on one instance (MVM=NVM=1)
without a distributed management, but providing the design oppor-
tunity to easily extend the current implementation in future appli-
cations. When the push phase is terminated, the service is active
on the new VMs and the newly created instance is the target ser-
vice instance that serves all the incoming requests from clients: the
service is restored on the new host and the origin service instance
does not receive more incoming data. As soon as the origin service
instance is no longer used, the stop-and-copy phase is performed,
pushing all the residual data inserted on the old instance previously
and belonging to the temporal epoch, towards the destination ser-
vice instance. In this way, it is possible to timely run out all the
old epochs data in order to converge and realign the service state to
complete the state migration transaction. After the whole state has

144 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

been moved, the implemented solution deletes its stack with the old
service instance to release migration-related internal resources and
relief computation. Finally, before to restore the monitoring compo-
nent, the buffered monitoring values read from Zabbix are reset to
enable new future triggering actions without old spurious data. Note
that the service to migrate in MCN project is RCBaaS and during
the whole service instance migration process, the service continues to
be running and available without performance degradation and with
a complete transparency for both system operations and end-users.

By delving into a more detailed description, Figure 5.5 illustrates
the service state migration process steps. Apart from the starting

Figure 5.5: State Migration Process

SM/SO typical activities to deploy and provision a new RCBaaS
service (1) (2), the first step regarding the state migration is the trig-
gering of the whole migration. The real resource usage values pro-
vided by Zabbix (3.1) (3.2) are stored into a sliding window array with
a fixed buffer length that can be easily configured programmatically.
Of course, the buffering of a time series of monitoring data samples
enables algorithms for resource usage analysis and prediction. In
this case, as an external triggering decision algorithm, a lightweight
first-order Grey Model filtering module (4) has been provided. When
the migration trigger has been activated, the steps already explained
in Figure 2 start: prepare the target place to receive data (5); data
migration towards the target VMs (6); stack disposals (7); reset the
buffered monitoring (8). Finally, the system returns to store monitor-
ing data from the hosts and restart the loop.

5.2 Elastic Provisioning of Mobile Services in the Cloud 145

5.2.3 Implementation Insights

The implementation of the described solution is composed of three
macro-steps. Starting from the RCBaaS division into smaller and
more specific VMs instances in order to monitor more efficiently and
accurately the effective resource consumption, the definition of the
monitoring to keep track of the effective resource consumption and
finally the service state migration to move data on the fly during
service usage are detailed.

Preliminary Work on Service Separation

RCBaaS is composed by two main components that interact very fre-
quently: Cyclops [180] and InfluxDB [181]. Cyclops is the core com-
ponent of RCBaaS, that contains all the logic inside the service for
accounting and billing purposes. Cyclops is divided into three micro-
services: user data records (udr) collects the usage data from a source,
e.g. OpenStack, CloudStack, SaaS, PaaS, etc. and stores it in the
database; rating and charging (rc) uses the usage data records gen-
erated by the udr to calculate, in relation to the cloud resource rate,
the charge data records; billing interfaces with the rc to generate an
invoice. InfluxDB is an open-source time-series database, particu-
larly suitable to keep trace of large amount of data from sensor data,
applications metric and real-time analytics, thus it is the backend of
RCBaaS as the service monitoring metrics repository to keep the all
history of the service measurements.

To apply the service state migration procedure and mechanism
described above in a practical valuable case, the first focus is about
the RCBaaS monitoring service, which is treated as a monolithic VM
for the sake of maximum separation. As a first step to enable the state
transfer migration process, it is necessary to split it into a couple of
disjoint and only dynamically bound VMs: RCBaaS-VM that perform
the core operation of the monolithic service and contains only Cyclops
component; InfluxDB-VM that contains the backend component where
data are stored. The two VMs have been uncoupled in order to be
able to act on the state skeleton (that is the original component that
actually stores the service state), in this case the InfluxDB instance,
without requiring any change on the RCBaaS, thus actually behaving
as a stateless component in this uncoupled version.

The service have been separated through the Openstack Heat, the
main orchestration program inside Openstack, that implements an
orchestration engine that allows to launch multiple composite cloud
applications based on a text file, i.e. the Heat template file. The
Heat template is opportunely configured to create two different VMs

146 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

for Cyclops and InfluxDB when lunched and to invocate two script
files located on the Cyclops-VM after the creation to automatically
configure the IP address of the InfluxDB-VM to send data to store.
The following code outlines the script to configure the IP address into
Cyclops-VM, editing three configuration files, one for each Cyclops
micro-service.
i p=$1
echo "−> Cyclops−udr c o n f i g u r a t i o n f i l e "
python s t r i n g _ s u b s t i t u t i o n . py ~/ c o n f i g u r a t i o n . t x t InfluxDBURL= h t t p : / / $ip :8086
echo "−> Cyclops−r c c o n f i g u r a t i o n f i l e "
python s t r i n g _ s u b s t i t u t i o n . py ~/ c o n f i g u r a t i o n . t x t InfluxDBURL= h t t p : / / $ip :8086
echo "−> Cyclops−b i l l i n g c o n f i g u r a t i o n f i l e "
python s t r i n g _ s u b s t i t u t i o n _ j s . py ~/ c o n f i g . j s u r l : ’
" h t t p : / / ’ $myip ’ : 8 0 8 6 / db / u d r _ s e r v i c e " , ’ ’ " h t t p : / / ’ $ip ’ : 8 0 8 6 / db / g ra fana " , ’ 0

Monitoring System

The monitoring system is mainly based on two main components:
MaaS that uses Zabbix to retrieve resource information from the phys-
ical hosts; the Grey Model that predicts the next values 1-step ahead.
MaaS runs a Zabbix server that communicates with distributed moni-
toring agents instantiated during the services provisioning and aggre-
gates the resource information retrieved from them. This monitoring
agent is designed to collect networking statistics, processing and nor-
malizing the raw monitoring data retrieved and exposes them commu-
nicating with the Zabbix server provided by MaaS. Every deployed
service, that needs to integrate MaaS in their service for resource
monitoring purpose, requires the installation and configuration of a
Zabbix agent, as shown in the following code, through the heat tem-
plate file when the VM is created, that actively monitor resources by
the interaction with the Zabbix server on MaaS.
apt−get i n s t a l l −y zabbix−agent
sed −i −e ’ s / S e r v e r A c t i v e = 1 2 7 . 0 . 0 . 1 / S e r v e r A c t i v e =160 .85 .4 . 28 :10051 / g ’
−e ’ s / Serve r = 1 2 7 . 0 . 0 . 1 / Serve r= 1 6 0 . 8 5 . 4 . 2 8 / g ’
−e ’ s / Hostname=Zabbix s e r v e r /#Hostname=/g ’ / e t c / zabb i x/− zabb i x_agentd . c on f
s e r v i c e zabbix−agent r e s t a r t

Successively, the SO implementation contains the list of which
monitoring information to retrieve, apply the Grey Model and define
the parameters to activate the trigger that starts the full state mi-
gration. The next script shows a snippet of the SO implementation
for the monitoring part. The cpu load is checked, as the value to
monitor to evaluate if the host is overloaded. The cpu load considers
the queue length of processes the are waiting to be processed and
it is a common and widespread parameter to detect accurately the
host workload. The cpu load threshold is 10 for the InfluxDB-VM
and, given that the VM has 2VCPU, it means the trigger is activated
when at least 5 processes per single core are waiting to be processed.
The cpu load value considered is returned by the Grey Model con-
sidering the last five values read from MaaS stored into a sliding

5.2 Elastic Provisioning of Mobile Services in the Cloud 147

window array. At startup, there are three minimum reading before to
invoke the Grey Model, in order to avoid false positives and thus to
avoid a trigger activation caused by few anomalous readings. Finally,
the monitoring values from MaaS are retrieving every 1 minute, that
is the sensitivity of Zabbix and the minimal time interval to retrieve
data, in order to have a relatively fine-grained periodicity to balance
overhead and responsiveness.
c l a s s MyList (l i s t) :

de f append (s e l f , i t em) :
l i s t . append (s e l f , i t em)
i f l en (s e l f) > myparameters . WINDOW_SIZE : s e l f [: 1] = []

c l a s s SOD(s e r v i c e _ o r c h e s t r a t o r . Decis ion , t h r ead i ng . Thread) :
de f getGreyModelValues (gateway , composedL is t) :

v a l ue s = []
f o r l i s t _ p y in composedL is t :

l i s t _ j a v a = L i s t C o n v e r t e r () . c o n v e r t (l i s t _ p y , gateway . _ga teway_c l i en t)
nex tVa lue = gateway . e n t r y _ p o i n t . nex tVa lue (l i s t _ j a v a)
va l ue s . append (f l o a t (" { 0 : . 4 f } " . f o rma t (nex tVa lue)))
r e t u r n va l ue s

de f mon i t o r i ng (s e l f) :
s e l f . mon i t o r = RCBaaSMonitor (myparameters . MAAS_DEFAULT_IP)
s e l f . hos t s_cpu_ load = []
s e l f . hos t s_cpu_ load . append (MyList ())
m e t r i c s = s e l f . mon i t o r . get (myparameters . ZABBIX_INFLUXDB)
s e l f . hos t s_cpu_ load [0] . append (m e t r i c s [0])
i f l en (s e l f . hos t s_cpu_ load [0]) >= myparameters . ZABBIX_MIN_READING :

cpu_load_GM = getGreyModelValues (s e l f . gateway , s e l f . hos t s_cpu_ load)
i f cpu_load_GM > myparameters . TRIGGER_VALUE :

p r i n t " T r i gge r a c t i v a t e d . I ’m going to move the VM s t a t e . "
. . .

t ime . s l eep (myparameters . ZABBIX_UPDATE_TIME)

Service Instance Migration Implementation

The service instance migration step, it consists of two phases in this
RCBaaS case: i) a complete InfluxDB dump from the old to the new
instance; ii) storage and migration of new data inserted on the old
database instance while the migration is occurring and after the dump
operation. About the database dump, it is the core operation of the
state migration and all the data of the old InfluxDB instance are
moved to the new instance. To reduce the duration of this phase, all
the data of the old InfluxDB are compressed into an archive that is
moved to the new InfluxDB VM, where they are extracted and located
into the target InfluxDB data folders.

As shown later, the dump operation could have a non-negligible
duration, also tens of seconds, in relation to the amount of database
instances and records to transfer, due to both external operations (e.g.,
data compression, movement, extraction, and database restart) and
internal database operation to synchronize to the new status. In order
to minimize the database unavailability time and, thus, to preserve
overall service continuity, the second phase is performed as follows.
As soon as the old data have been copied into the archive, all dumped
data in the old databases are dropped to be sure that every data
successively inserted has not been transferred during migration and,
as a consequence, to relieve further the old database performance.
When the database dump has completed and the target InfluxDB

148 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

has been configured and made available, all the new data at the
old instance are selected and moved to the target InfluxDB, merging
with the data already migrated during the dump. By delving into
some finer implementation details, this mechanism has required to
save these during-migration entries a JSON file, and then to convert
them through a Python script into a LineProtocol format file used by
InfluxDB to insert data on-the-fly; this copy of the new data to the
target InfluxDB instance completes the data migration step

Figure 5.6 graphically summarizes all the operations performed
during the data migration process, by distinguishing the actions exe-
cuted on the old and those run on the new InfluxDB VM instance. In
particular, the first three blocks from the left refers to the database
dump operation (phase i) and the last two blocks to the storage of
new data inserted during the migration process (phase ii).

Figure 5.6: Essential Steps of the Proposed Data Migration Process

The following code shows the code used inside the SO component
to invocate the migration script and to move data between the two
instances. A third-party Python library is used that, with a SSH
connection, allows to send a command to a remote host. In this way,
it is possible to access the new instance as a typical SSH commu-
nication and execute, from the SO implementation, the script already
prepared on the newly created InfluxDB-VM instance passing as a
parameter the IP address of the old instance to migrate. The code
is within a loop block because the creation of a new VM may take
a few seconds and it tries to connect with the VM created until it is
not fully started.

whi le True :
t r y :

ssh = paramiko . SSHClient ()
ssh . s e t _ m i s s i n g _ h o s t _ k e y _ p o l i c y (paramiko . AutoAddPol icy ())
key = BUNDLE_DIR + myparameters . MIGRATION_KEY
ssh . connec t (s e l f . so_e . i n f l u x d b _ i p , username=myparameters . MIGRATION_USERNAME, key_ f i l ename=key)
command1=’cd ’+ myparameters . MIGRATION_SCRIPT_FOLDER+ ’;
command2=’ bash ’+ myparameters . MIGRATION_SCRIPT_NAME+’ ’+ s e l f . so_e . i n f l u x d b _ i p _ o l d
command=command1+command2
s td in , s tdou t , s t d e r r = ssh . exec_command (command)
ssh . c l o s e ()
break

excep t paramiko . s s h_e x cep t i on . NoVal idConnec t ionsEr ro r :
p r i n t "VM not ready "
t ime . s l eep (2)

5.2 Elastic Provisioning of Mobile Services in the Cloud 149

Experimental Evaluation

To better understand and give a hint of the complete MCN test en-
vironment and the overall complexity of MCN deployment, the E2E
MCN deployment scenario is introduced without the description of
all the services involved for seek of briefness and pertinence with this
proposal. The integrated E2E MCN deployment scenario, shown in
Figure 5.7, creates a very heterogeneous and broad-based cloud plat-
form composed of a high number of services and components, that have
been evaluated following several different tests activities that takes
into consideration the wide scope and objectives of MCN project.
Only to mention the most relevant prove of concepts adopted on the
overall project, are pointed out: Digital Signage System (DSS) to
evaluate the over-the-top applications for playing content through
digital signature services; IP Multimedia System (IMS) to evaluate
the support of video and voice for mobile users; Follow-Me-Cloud
(FMC) to better evaluate and demonstrate the capabilities of mobil-
ity prediction and dynamic content placement, particularly important
to show how information-centric networking technologies can be fos-
tered by prediction and how the FMC concept is supported. In this

Figure 5.7: MCN E2E Deployment Scenario

very wide and complex scenario, the relevance of each component
greatly varies in relation to the specific use case considered and in
the following only the RCBaaS service will be detailed. RCBaaS is
the component where the state migration management solution has
been added, thus, only the experimental results, that strictly highlight
the isolated behavior of the state migration functionality among all
the functionalities present in MCN, is shown.

Several tests have been performed on all the steps and phases dis-
cussed in the previous sections, deploying stacks on Bart OpenStack
platform and using RegionOne as the default region. Openstack Bart
is a testbed provided by MCN consortium that runs the basic Open-
Stack services, based on Kilo version. In particular, for the sake of

150 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

performance evaluation, the RCBaaS utilization has been stressed
with a wide range of different workloads in order to observe the per-
formance of the newly introduced function and the perceived limited
unavailability time that are able to provide notwithstanding dynamic
state migration and synchronization. All the performance tests re-
ported in the following refer to the average values measured across
multiple runs, anyway observing an overall low variance (<5%).

Table 5.1 shows the performance related to: service initialization,
Zabbix monitoring, the Grey Model usage, the new target stack cre-
ation, and the RCBaaS-VM creation. Note that only the monitoring
performance, that in this case are negligible, may potentially cause
performance issues because they are repeated continuously during
the service life-cycle. The other operations reported are only per-
formed at startup, thus they do not introduce any latency during
system operations at runtime.

Table 5.1: VM Operations

Operation Time (s)

MaaS monitoring setup (Zabbix) 9.5
Setup GreyModel Java 3.5
Read Zabbix values 0.5
Calculate Grey Model value <0.1
Create a new stack 45
Cyclops-UDR deploy 25-26
Cyclops-RC deploy 15
Cyclops-Billing deploy 30-32
Total time to setup the VM 90-100

Figure 5.8 shows the performance of the data migration for dif-
ferent amounts of data to migrate. The overall performance varies
slightly from test to test mainly in relation to the network conditions
and the load on the physical host where the VM is running, thus, the
average values measured on multiple runs are reported. The overall
latency is divided into several times that allow to distinguish the du-
ration of the different phases; in particular, the main times measured
and defined are as follows:

• Tvmconn: time the SO takes to connect to the InfluxDB-VM,
or in other words, the latency time between when the trigger
becomes active and the data migration starts.

• Tcompress_move: time to compress data into a tar.gz archive
and move to the new VM instance.

• Tdelete: time to delete all the data from the old InfluxDB-VM
instance, directly proportional to the number of database to
delete.

5.2 Elastic Provisioning of Mobile Services in the Cloud 151

Figure 5.8: Performance Evaluation of RCBaaS State Migration

• Textract: time to extract the archive into the InfluxDB folders
of the new VM instance.

• Trestart: time to restart the InfluxDB service in order to get the
update about the new data.

• Tsync: time used by Influx process for internal synchronization
after the dump.

Other time latencies are related to the storage and insert of the
new data during the migration that is the time necessary to: get
all measurements, retrieve data inserted into a Json file, convert the
Json file into the LineProtocol format and insert the data into the
databases. These latencies are not reported in the chart in Figure 5.8
because the amount of data insert during the migration is assumed
limited and, thus, the associated time is negligible (in the order of
0.1-0.2s to move a dozen of records).

It is important to stress that during the overall state migration pro-
cedure the database unavailability, considering the latest assumption
that ignores the new data time retrieval, is limited to the process re-
lated to the measurements deletions (Tdelete), proportional to the
number of databases presents but always very low and, for typical
execution and average migration, below 1s, guarantying relatively
negligible unavailability, and thus proving the effectiveness of the
proposed state migration function and its wide applicability to state-
ful services service state migration.

Summing up, depending on the dimension of the state to be mi-
grated, the overall service migration process time can go from 112
seconds for up to two millions of records (namely, 100 seconds to
setup the target VM and 12 seconds for data migration) to 590 sec-
onds (for 100 millions of records). In any case, this solution is able

152 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

to achieve a fully scalable behavior with good overall performance,
mainly limited by the InfluxDB internal operations (Tsync), that are
the real bottleneck of the solution even if they do not affect the un-
availability time but only the duration time of the migration.

Simulation Results

Simulations have been performed, by using the CloudSim [182] frame-
work, in order to evaluate the proposed solution and to show the
technical feasibility of the solution under different and realistic load
conditions for next-generation and cloudified 5G services. CloudSim
is an extensible and widely adopted simulation toolkit that enables
modelling and simulation of cloud computing environments, support-
ing modelling and creation of infrastructures and application envi-
ronments for single and distributed multiple clouds. In particular, the
RCBaaS service infrastructure has been mapped into the simulator
by creating:

• two data centers, used to migrate the VMs

• one host per data center, with 2048MB of ram, and 250GB of
storage each

• two VMs for each host, with 512MB of ram, 100GB of storage
and 1 cpu each

• one process per VM, which represent Cyclops and InfluxDB
components

The proposed hybrid solution has been compared with two
baseline more traditional migration approaches: reactive-only and
proactive-only. The reactive approach moves all data at once when
the host is already overloaded, thus, it is characterized by minimal
migration time because it does not include data reconciliation, but
also may cause significant data loss in case of high amount of data
received during the migration. The proactive approach, instead, moves
the data in advance before the service migration takes place and then
reconciliates the new inserted data after the service migration, thus
providing minimal data loss but higher migration time if data variabil-
ity is high. Figure 5.9 shows the results related to the time required
to complete the migration with the proactive approach (light colors)
and the data loss during the migration with the reactive approach
(dark colors). The migration time of reactive approach and the data
loss in proactive approach are not showed in Figure 5.9 because they
are essentially constant to the data variability increase and equal to
the best cases of the other baseline approach.

5.2 Elastic Provisioning of Mobile Services in the Cloud 153

Figure 5.9: Migration Time and Data Loss

Let us note that the results showed in Figure 5.8 have been ob-
tained by considering an average data variability, i.e. 1B/s. The
hybrid solution proposed works in a more proactive behavior to ap-
proximate the migration time of the reactive approach, keeping at the
same time a negligible data loss. In fact, as shown in Figure 5.9:
until 1kB/s, apart from time-constraint scenarios, the proactive ap-
proach is able to grant low migration time and data loss. Above
1kB/s data variation rate the migration time variation between the
two approaches becomes relevant and a hybrid solution should con-
sider which approach to adopt in relation to the application scenario.

Results in Figure 5.9 highlight the importance of a system to adapt
in a dynamic way to data variability, as the strategy adopted in this
solution that consider the delta number of records inserted into the
database between two consecutive time intervals. By focusing on
the adjustment of the reactive or proactive behavior at runtime, it is
possible to optimize the tradeoff between migration time and data loss
in relation to the purpose of the application.

Figure 5.10 shows the simulation results about the data center
workload, which analyze how it changes in relation to the number of
users and the amount of data stored into the database, and evaluate
under which circumstances the data center is overloaded and the
migration is likely to happen. By considering the solution design
and the multiple test performed, the data center workload is defined
as highly related to the percentage of database storage used on the

154 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

overall host storage and slightly related to the number of users that
use the service.

Figure 5.10: Performance Evaluation of RCBaaS State Migration

5.3 Federation Model to Support Semantic
Queries

Information systems have long become valuable assets for compa-
nies and, along with Data Governance, are key disciplines that drive
methodologies and techniques for managing crucial IT assets. IT
Governance has become one of the most relevant decision-making
processes, and supports the dynamic adaptation to ever-changing
business/market needs and goal achievement. In addition, Data fed-
eration, the ability to seamlessly and transparently integrate data
stored at different places, plays a crucial role in Data Governance
and is usually seen as a specialization of Data integration systems,
where data storage abandons the idea of single centralized physi-
cal endpoints, and leverage fully integrated, fully distributed models.
Data Federation is crucial in letting organizations easily and effec-
tively shaping and supporting information flow across organization
branches.

The governance of large distributed organizations poses non trivial
challenges in discovering, aggregating, and managing data in hetero-
geneous forms and from different and distributed sources, both within
and outside the organization boundaries. That produces governance
models where data integration and organization knowledge is typi-
cally limited and with no flexibility. A typical example would be the
case of the integration of enterprise resource planning (ERP) sys-
tems data with both traditional customer relationship management
(CRM)/marketing analysis and with novel social media analysis sys-
tems to proactively influence enterprise production and operations,

5.3 Federation Model to Support Semantic Queries 155

e.g., supply chain and stock management tuning as well as work-
force optimization. Semantic web [183] principles, methodologies,
and techniques have long proven to be crucial in modeling and man-
aging complex relationships between entities/data and to support in-
teroperability, reasoning and inference/automation in coarse-grained,
semi-structured, and heterogeneous data environments.

A key element of the Semantic Web is W3C SPARQL [184, 185]
protocol, which is a query language for Resource Description Frame-
work (RDF), and has long set itself as the de facto standard to per-
form semantic queries on content exposed on the Web in order to
extract and manipulate information from distributed data sources on
the web. RDF describes the concepts and relationships about them
through the introduction of triples (subject-predicate-object); triples
that have some elements in common become parts of a knowledge
graph. SPARQL helps navigating such knowledge graphs and search-
ing for sub-graphs corresponding to the user’s request. Semantic Web
and SPARQL query language form a promising platform to support
Data Governance and federation needs, and allow to build a con-
nected network of information [186].

This solution proposes a novel, semantic-based approach to over-
come organization governance complexity and to mitigate/hide het-
erogeneity and distribution of data sources: this work describes a
reference architecture model that relies on a federation of SPARQL
endpoints, as well as implementation guidelines and real use-case
scenarios to prove the viability of the current proposal.

This approach goes further than traditional governance models
(where data harvesting and integration are expensive, difficult, and
often limited to specific domains/areas), and fosters a much broader-
scoped, horizontal, and continuous integration of data: the federated
approach promotes a higher level of data normalization and integra-
tion which proposes a more proactive governance model where data
analysis may be used not only to lead retrospective analysis, but also
to proactively support upcoming strategic decisions.

5.3.1 The SPARQL Federation Model

The present work aims at defining a viable and effective model and im-
plementation to adopt Semantic Web methodologies and the SPARQL
implementation to overcome typical issues such as heterogeneity and
distribution of data sources. Key principles in defining this solution
are:

• Openness. Data federation and integration in large organiza-
tions typically means integrating data sources from heteroge-
neous (both custom and third party) systems; avoiding vendor

156 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

lock-in and preserving openness and portability is key in defin-
ing a sustainable, long-term data federation strategy for any
organization.

• Lightweightness. The proposed solution should pose limited to
no overhead on running systems, so as to minimize the impact
of Data Federation on large organizations with complex, highly
distributed data sources.

• Autonomy and ease of use. The proposed solution should be
able to cope with uncertainty, and to autonomously discover
relationships among federated data even in case or partial a
priori data model and network knowledge.

Semantic Web standards and the SPARQL query language have long
proven to be key in enabling open, autonomous, machine-driven con-
tent matching and reasoning knowledge management infrastructures.
However, SPARQL support for data federation via the SERVICE con-
struct - (e.g. distributed data source integration and query) is still at
an early stage and proves poorly suitable for large, real-world sce-
narios. Current SPARQL data federation limitations mainly relate to
the fact that designing federated queries requires complete, a priori
knowledge of data models and actual data across all data sources
involved; this clearly becomes a relevant limitation in large complex
scenarios where data sources are heterogeneous and can change fre-
quently and at different paces from each other.

Architecture

The plugin and endpoints extension architectures described previ-
ously, have been analyzed and evaluated to realize a fully scalable
and extensible SPARQL endpoint federation. A web service federa-
tion architecture has been introduced and checked against some Key
Performance Indicators (KPIs) to compare their properties and ease
the choice with the existent ones.

The Federation Web Service solution is based on creating a Web
Service which realizes all the functions related to federation. The
Web Service approach makes this solution portable to any semantic
platform implementation, thus fostering openness and interoperabil-
ity. Furthermore, to facilitate the management of large semantic data
networks and the definition and navigation of network topology, a
specific Network Federation Ontology is developed. The Federation
Web Service relies on such an ontology to transparently determine
which nodes and endpoints should be involved, thus facilitating the
definition of federated semantic queries. The logical flow of the Fed-
eration Web Service is as follows:

5.3 Federation Model to Support Semantic Queries 157

Figure 5.11: Federation Web Service Alternative

• Federation resolution. Thanks to the Federation Ontology, the
Federation Web Service determines the actual endpoints in-
volved in the federation.

• Query execution. The Federation Web Service performs queries
on all individual nodes involved in the federated query.

• Result aggregation. The Federation Web Service aggregates
the results obtained from single nodes and returns them to the
caller. The aggregation techniques can be managed through
the typical constructs of the SPARQL language, such as the
UNION clause.

KPI evaluation and choice

Several qualitative Key Performance Indicators (KPIs) have been used
to help to organize and compare benefits and shortcomings of these
alternatives, and to ultimately facilitate the choice of the proposed
solution, as shown in Table 5.3.

Table 5.3: Alternatives Comparison

KPI Plugin Devel-
opment

Endpoint Exten-
sion

Federation WS

Ease of Develop-
ment

LOW - Platform-
dependent

LOW - Platorm-
dependent HIGH

Integration LOW - Platform-
dependent

LOW - Requires
new endpoint
version

HIGH - No ven-
dor lock-in

Maintenance LOW - Platform-
dependent

LOW - Platform-
dependent HIGH

Evolution LOW - Platform-
dependent

LOW - Platform-
dependent

HIGH - No ven-
dor lock-in

158 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

Where: ease of development refers to the limited development ef-
forts required from the SPARQL federation, no matter the specific
Semantic framework implementation; integration refers to the abil-
ity of the SPARQL federation solution to easily integrate with other
framework features, with little to no added effort; maintenance be-
cause the SPARQL federation solution should be conceived so as to
limit development effort in cases of bug fixes or feature adaptation;
evolution refers to the ability of the solution to easily be extended in
order to cope with new requirements.

In particular, openness and portability of the Federation Web Ser-
vice model grant this solution high KPI values, from both a develop-
ment (ease) and management (integration, maintenance, evolution)
point of view.

5.3.2 Implementation Details

The implementation of federation consists of two main elements: the
Federation Ontology, and the Federation Web Service.

Federation Ontology

Enterprise contexts stress the need to manage large amounts of data
that have characteristics such as heterogeneity and distribution of the
data model. However, aggregation of heterogeneous data is crucial
for business processes, such as Decision Making, Data Quality, and
Data Management. This aggregation supports the concept of feder-
ation, which provides a federative part on which to build the feder-
ation itself. The implementation has gone in this direction, defining
a uniform data model and to be shared between all members of the
federation, in order to eliminate the problems described above. The
proposed ontology is composed of three main elements: the concept
of federation; the concept of the federation member; the member_of
relationship that represents the relationship between the member of
the federation and the federation itself. The ontology described above
enables the management of the federation independently of semantic
platform and can be deployed and queried to any SPARQL endpoint.
From an implementation standpoint, the ontology is realized accord-
ing to the RDF schema modeling.

Federation Web Service

The Federation Web Service manages semantic data query and ag-
gregation via multiple steps. i) Clients can query the Web Service
with a standard SPARQL query, and express a specific federation (in
our examples, we modeled disparate data sets from Italian universi-

5.3 Federation Model to Support Semantic Queries 159

ties). ii) The Web Service inspects the federation to determine which
endpoints should be queried. iii) The Web Service performs the se-
mantic query on each such node. iv) The Web Service aggregates
results from the above queries and returns them back to the caller.
Result aggregation is a particularly crucial task, and the Federated
Web Services support three main strategies:

• APPEND strategy. Results coming from different endpoints are
simply stacked on top of each other, and sent back to the client
once all replies are received. This strategy is implemented
via the APPEND operator and does not handle result triple
duplications.

• INTERSECTION strategy. This approach returns all the triples
that are common to each involved endpoint.

• UNION strategy. Results from endpoints are combined into a
set of unique triples, hence performing duplicate detection and
removal.

The Federation Web Service clearly decouples the query definition,
execution, and aggregation from the definition and management of
the data set distribution. Even though the proposed solution may
conceptually handle highly distributed data sets, some management
concerns may arise: endpoint time-out, how to handle alive nodes
that fail to reply to queries in a given amount of time (e.g., due to
temporary network issues); ignore/retry strategies should be care-
fully planned to reach a viable balance between result completeness
(e.g. retrying queries in order to orvercome the temporary network
outage), and total response time; endpoint unavailability, endpoints
may become unavailable for larger amounts of time, e.g. due to severe
server/system failures.

5.3.3 Usecase

A proof of concept Federated Education Portal has been realized.
It provides a synergic academic offering that federates education
and administrative data sources from Italian academic institutions
together with citizenship distribution data sources from Italian mu-
nicipalities in order to realize a more integrated education offering.

A traditional Semantic approach allows to decouple actual data
sources and their implementations, hence allowing to reuse the same
SPARQL query over any academic and municipality data source, no
matter the real data source implementation (would it be an ERP sys-
tem backed by a traditional RDBMS, or a legacy mainframe system).

160 5 Scalability, Elasticity, and Federation for the Cloud Computing Middleware

However, a SPARQL-only approach for the Federated Education
Portal would require to: i) have a priori knowledge of all munici-
palities and universities involved in the overall integrated offering;
ii) explicitly/manually perform the same SPARQL query on academic
data sources to retrieve students distribution; iii) explicitly/manually
perform the same SPARQL query on municipality data sources to
retrieve citizen distribution; iv) explicitly map and combine both se-
mantic result sets into a cohesive data set that highlights gaps in
actual course offering with respect to real citizen distribution.

This process is obviously largely inefficient and poorly extensible:
the proposed Federated Education Portal should be extended any
time new data sources get added, in order to query new endpoints
and combine results with old ones.

The proposed approach leverages on a Federation Ontology im-
plementation, with an instance of the proposed Federation Web Ser-
vice, that maps Italian municipalities and relevant information about
citizen geographic distribution, as well as academic institutions and
relevant information about courses and student distribution. Students
and Citizens are linked via the semantic notion of person (via the
foaf:Person ontology) and both municipalities and universities have a
set of SPARQL endpoints, on top of Virtuoso Semantic middleware.

In this scenario, the proposed Federated Education Portal per-
forms a single query to retrieve geographic distribution of both per-
sons involved in academic courses (students), and persons (citizens)
from municipalities. The Federation Web Service identifies all in-
volved academic and municipality data sources and transparently
query each one of them and takes care of combining results (e.g.,
via an INTERSECTION strategy).

The proposed approach dramatically facilitated the realization of
the Federated Education Portal, with no a priori data source knowl-
edge should be hard-coded into the Federated Education Portal,
hence resulting in a more open and flexible solution. Since a sin-
gle query can be executed both on academia and on municipality
endpoints, it is possible to decrease the development efforts of the
overall solution.

161

6 | Conclusions

This chapter summarizes the contributions of the present thesis
work, by reporting the most relevant findings and results related
to the support of mobile devices and meet their requirements in a
pervasive environment to build large-scale and industrially-feasible
applications. The chapter also points out the main future research
directions for further extensions of the described work.

6.1 Major Contributions

This thesis work outlines and clarifies the motivations that lead to the
introduction of an intermediate middleware between mobile devices
and cloud computing, the mobile devices requirements and their po-
tentialities and relevance for future applications. Several relevant
real-world systems are presented, describing their open technical
challenges and highlighting the importance for the mobile devices
to have powerful virtualized resources available, leveraging their uti-
lization in real world contexts.

The main middleware solutions have been described in order to
support and meet mobile devices requirements. In particular, it clari-
fies the topics of fog computing, edge computing and other middleware
solutions, analyzing them in detail, describing their characteristics at
the state of the art and motivations of their usage, and their relevance
for future mobile devices systems. An original taxonomy is proposed
to structure the identified features into different layers, with the three
layers architecture, and distribute the features among components at
different architectural levels in order to highlight correlations among
the components of the middleware solution and its features. The most
common categories of middleware solutions are defined, specifying the
related application suitability and drawbacks for each category. In
addition, due to the general confusion in the related literature where
terms are usually used in a interchangeable and not proper way, a

162 6 Conclusions

very relevant contribution of this work is to clarify each single solu-
tions terms with the novelties brought by the related approach, by
analyzing the main original elements and outlining the differences of
one approach compared to the others.

The initial theoretical analysis has been expanded by proposing
implemented solutions that, in different ways and following different
approaches, aim to enable 3-layers infrastructure and enable the ap-
plications potentialities described in Chapter 1. In particular, impact-
ful extensions of industrially accepted, widely used and state-of-the-
art M2M protocols, technologies and framework, for fog computing
solutions, and new wide-scale and novel industrial deployments have
been explained, in order to meet many support requirements, such
as lightweightness, scalability, security, flexibility, and so on. In fact,
some gateway-oriented solutions for enhanced IoT scalability and IoT
federation have already been published in the recent literature in the
field, in particular, within large-scale deployment scenarios, with fo-
cus on how to effectively and efficiently achieve scalability. Even if
they explored relevant solution guidelines and were someway inspir-
ing for the community of researchers in the field, they only partially
solved some aspects related to hard technical challenges thus leaving
still open space for additional, especially industry-mature, solutions.
In fact, with no solution yet based on a gateway-oriented architecture
where gateways jointly exploit MQTT and CoAP to achieve highly
scalable IoT device management, through dynamic hierarchical tree
organizations, and relevantly extending promising frameworks for fog
gateway. Similarly, chapter 3 describes the enrichment of the fog
intermediate layer by giving the opportunity of exploiting container-
based virtualization on top of IoT gateways, with full infrastructure
support that includes download, update, and management of virtual-
ized images based on industry-mature Docker. This is one of the first
cases of implementation and experimentation of virtualization tech-
niques over fog nodes, in particular while working with IoT gateways
with very limited resources, such as RaspberryPi nodes. Container-
based solutions for the fog offer the well-known advantages of ab-
stracting implementation details, more easily achieving interoperabil-
ity and portability between possibly heterogeneous fog nodes, etc.,
similarly to the adoption of virtual machines, but with lightweight mi-
grations and better performance. Fog solution containerization can
significantly leverage the introduction and diffusion of fog comput-
ing techniques in mature deployment scenarios, by allowing more
automated and easier integration and installation, in particular over
large-scale and industrial execution environments.

Successively, original solutions, adopting edge computing ap-
proach, have been proposed to overcome the challenges of limited-
resource mobile devices in hostile environments. Elijah-based so-
lution aims to efficiently design and implement a support platform
where highly demanding computation tasks on mobile devices can be

6.1 Major Contributions 163

delegated to the MEC layer that executes the tasks and returns the
related results. Service continuity is preserved, also in case of end
users mobility and in hostile environment, without impacting device
workload, thanks to proper virtualized function migration between
MEC nodes. This is the first implemented MEC platform that extends
the widely accepted Elijah platform with transparent hot migration
of edge functions via proactive handoff mechanisms by complement-
ing typical reactive migration with predictive handoff mechanisms that
move a specific virtualized function into the most suitable MEC node,
based on the consideration of multiple aspects, such as network statis-
tics, availability, and recoverability.

In addition, Uloof is a lightweight and efficient framework for mo-
bile computation offloading equipped with a smart decision engine
that minimize remote execution overhead, while not requiring any
modification in the underlying device operation system that leverages
on MEC nodes to reduce execution time and energy consumption of
the mobile devices computation. Many works, in the past, have tried
to address computation offloading in different ways focusing on of-
floading execution, rather than selecting the tasks to offload, thus,
they generally require the developers to add annotations to indicate
which portion of application to offload, modifying the application code
manually. In addition, they usually use cloud computing in order to
be able to fully scan the applications. The proposed solution provides
a fully autonomous code selection mechanism, at method level granu-
larity, able to analyze every kind of Android application dynamically
and detecting the list of methods suitable to be offloaded. It is based
on a decoupled and lightweight solution that has no platform con-
straints and can be used in many remote servers, aiming to offload
code at the method level that can run on every server equipped with
a JVM without the same hardware/OS of the mobile device and, thus
suitable also for less-powerful platforms, i.e. MEC nodes.

Finally, more cloud-based solutions have been explored, high-
lighting solutions suitable for more powerful devices. MCN extends
the several migration and replication mechanisms proposed in the
past, also at the database side, by including resource monitoring
techniques based not only on reactive monitoring, but also applying
predictive models, thus, triggering for support when resource usage
exceeds a pre-defined threshold. It offers a more precise migration
timing of the database, acting before congestion happens and avoid-
ing slowing down the overall migration process.

As a further extension, the federation of Sparql endpoints pro-
poses a novel, semantic-based approach to overcome organization
governance complexity and to mitigate or hide heterogeneity and dis-
tribution of data sources, to overcome traditional governance models,
where data harvesting and integration are expensive, difficult, and
often limited to specific domains or areas. The solution promotes a

164 6 Conclusions

higher level of data normalization and integration which proposes a
more proactive governance model where data analysis may be used
not only to lead retrospective analysis, but also to proactively support
upcoming strategic decisions.

6.2 Future Research Directions

This thesis has address many open points and challenges related to
the introduction of a powerful computational paradigm able to face the
massive adoption of mobile devices and their applications. Although,
many solutions have explored several important research aspects on
the topic, there are still some open points, both application-specific
and general purpose across applications, that are not solved yet and
require further work.

The primary research directions calling for significant and novel
research work that can lead to valuable benefits in the field towards
an efficient and industrially applicable solutions and should be ex-
plored in the near future:

• Actuation decision. A peculiar ability of fog and edge com-
puting is to understand the border between situations when it
is necessary an immediate actuation or when it is possible to
send data the cloud for intense postponed analytics. Each ap-
plication, in relation to the context where it is immersed, must
define sets of actions with different priority and consequently
different reactions, as well its desired level of fog-cloud in-
terplay. A relevant extension may include the ability of the
system to detect, in an (semi-)autonomous way, which actions
must be performed on the middleware layer and which need to
be sent to the cloud, similarly to what has been proposed in
Uloof that autonomously choose which tasks to execute on the
mobile devices and which on the remote server. Towards this
realization, the tasks dispatcher should consider the functional
requirements of the application, i.e. moving the fine-grained
controls or high-priority tasks on the middleware layer, and
the resources available required to perform the operations.

• Dynamic allocation and service provisioning. In this thesis
some solutions focus on the movement of the applications or
components of the infrastructure among edge nodes in order
to maximize different requirements, i.e. performance, location-
awareness, traffic minimization, and so on. Although these solu-
tions are very effective in a general-purpose scenario, by using
the nearest node available that usually find the optimal allo-
cation decision, sometimes in busy contexts, where the closest

6.2 Future Research Directions 165

node may already have a high usage percentage, may be more
efficient to allocate the applications onto another node at an ac-
ceptable distance. In the literature many work already address
this problem on the cloud but, very few work focus on middle-
ware layer leaving the space for extensions of similar concepts
in a fairly more sensitive and dynamic environment.

• Compliance with emerging standards. The solutions of this
thesis work exploit and benefit by following the guidelines of
emerging standards, such as the IEEE P1934, proposed by
the OpenFog Consortium, and the ETSI MEC, proposed by the
ETSI Multi-access Edge Computing (MEC) Industry Specifica-
tion Group, in order to accelerate the creation and adoption of
industry standards for fog and edge computing. In addition, all
the proposed solutions lay on already widespread and promis-
ing protocols, frameworks, and tools. For future solutions, it is
key to continue to follow the present and the future emerging
and recognized standards in the field, in order to build solid
and interoperable solutions.

• Merging with SDN solutions. Nowadays SDN is a popular
technology that is gathering many efforts in order to improve
network performance and monitoring, by facilitating network
management and enabling programmatically efficient network
configuration. A valuable extension of middleware solutions
could be the introduction of SDN solutions, through the adop-
tion of already widespread SDN controllers, e.g. ONOS, Open-
Daylight, that orchestrate middleware nodes in the most effi-
cient and effective way.

• Industrial applications. Many proposed solutions are specifi-
cally targeted for large-scale and industrial environments, by
adopting framework, protocols, and tools able to handle real-
world application scenarios. In addition, they have been fully
tested also in large-scale, busy, and high workload contexts.
These encouraging results already achieved call for further ex-
perimental work in the field, by experimenting those solutions
in real industrial production sites with strict latency constraints
and thousands of geographically distributed vending machines.

This thesis work has proposed original approaches to face the
challenges related to the diffusion and widespread usage of a wide
range of mobile devices on the topic, trying to introduce solutions that
best fit the different application scenarios. The hope is that this work
can be successfully extended and used as a base for further research
activities to build novel solutions for future large scale applications
that can face the increasing complexity and proliferation of mobile
devices adoption.

166 6 Conclusions

167

Acronyms

AMQP Advanced Message Queuing Protocol
BS Base Station
CAM Cooperative Awareness Messages
CC Cloud Controller
CD Continuous Delivery
CDF Cumulative Distribution Function
CI Continuous Integration
CLI Command Line Interface
CoAP Constrained Application Protocol
CPS Cyber Physical System
CoRE Constrained RESTful Environments
COW Copy on Write
CRIU Checkpoint/Restore in Userspace
CRM Customer Relationship Management
CTH CoAPTreeHandler
DENM Decentralized Environmental Notification Messages
DS DataService
DTLS Datagram Transport Layer Security
E2E End to End
EU End User
EEU Enterprise End-user
ERP Enterprise Resource Planning
ETSI Telecommunications Standards Institute
FMC Follow-Me Cloud
IaaS Infrastructure as a Service
ICN Information Centric Network
IoT Internet of Things
ISG Industry Specification Group
ITG Infrastructure Template Graph
LXC LinuX Containers
M2M Machine to Machine
MaaS Monitoring as a Service
MCN Mobile Cloud Networking
MQTT Message Queue Telemetry Transport
MEC Mobile Edge Computing

168 Acronyms

NAT Network Address Translation
NFV Network Function Virtualization
NIST National Institute of Standards and Technology
NBI Northbound Interface
NSD Network Service Discovery
OBU On Board Unit
OS Object Serialization
OSGi Open Service Gateway Initiative
P2P Peer-to-Peer
PaaS Platform as a Service
PID Proportional-Integral-Derivative
QoE Quality of Experience
RA Requests Aggregation
RabbitMQ Rabbit Message Queue
RAN Radio Access Network
RD Resource Directory
RDF Resource Description Framework
RQ Remote Query Resource
RP Resource Directory Parsing
RSU Road Side Unit
RTT Round Trip Time
SaaS Software as a Service
SCV Smart Connected Vehicles
SDN Software Defined Network
SLA Service Level Agreement
SM Service Manager
SO Service Orchestrator
SR String Refactoring
STG Service Template Graph
UI User Interface
UUID Universally Unique Identifier
WSAN Wireless Sensors and Actuators Networks
WSN Wireless Sensors Networks
VM Virtual Machine
VNF Virtual Network Functions
VPN Virtual Private Networking

169

Bibliography

[1] Cisco VNI Forecast : Cisco Visual Networking Index: Global Mobile data
Traffic Forecast Update 20162021. Cisco Public Information. Available on-
line at: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/complete-white-paper-c11-481360.pdf, 2016.

[2] J. Manyika, et al., Disruptive technologies: Advances that will transform life, busi-
ness, and the global economy, McKinsey Global Institute, 2013.

[3] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, E. Jansen, The Gator
Tech Smart House: A Programmable Pervasive Space, IEEE Computer, Vol. 38,
No. 3, 2005.

[4] X. Yu, A. Pan, L.-A. Tang, Z. Li, and J. Han, "Geo-Friends Recommendation in
GPS-Based Cyber-Physical Social Network," Proceedings of the 2011 Interna-
tional Conference on Advances in Social Networks Analysis and Mining, 2011.

[5] A.E. Lee, "Cyber physical systems: Design challenges", 11th IEEE Int. Symposium
on. Object oriented real-time distributed computing (ISORC), 2008.

[6] R.R. Rajkumar, et al. "Cyber-physical systems: the next computing revolution."
Proceedings of the 47th Design Automation Conference. ACM, 2010.

[7] J. Lee, B. Bagheri, H.A. Kao, "A cyber-physical systems architecture for industry
4.0-based manufacturing systems." Manufacturing Letters 3, pp. 18-23, 2015.

[8] G. Cardone, et al., "Participact: A large-scale crowdsensing platform", IEEE Trans-
actions on Emerging Topics in Computing, pp. 21-32, 2016.

[9] A.S. Massoud, B.F. Wollenberg, "Toward a smart grid: power delivery for the 21st
century", IEEE power and energy magazine 3.5, pp. 34-41, 2005.

[10] K. Moslehi, R. Kumar, Smart Grid - A Reliability Perspective, Innovative Smart
Grid Technologies (ISGT), 2010.

[11] A. Molderink, et al., "Management and control of domestic smart grid technology",
IEEE transactions on Smart Grid 1.2, pp. 109-119, 2010.

[12] DOE - Buildings Energy Data Book, Department of Energy, 2009:
http://buildingsdatabook.eren.doe.gov.

170 Bibliography

[13] J. Kleissl, Y. Agarwal, Cyber-Physical Energy Systems: Focus on Smart Buildings,
Design Automation Conference (DAC), 2010 47th ACM/IEEE, 2010.

[14] V.L. Erickson, et al., ”OBSERVE: Occupancy-Based System for Efficient Reduction
of HVAC Energy”, 2011.

[15] H. Chen, et al., ”The Design and Implementation of a Smart Building Control
System”, 2009.

[16] UnitedNations, World Urbanization Prospects: The 2014 Revision, Department of
Economic and Social Affairs, United Nations, 2014.

[17] S.A. Shaheen, R. Finson, Intelligent Transportation Systems, Encyclopedia of En-
ergy, 487-496, 2004.

[18] G. Karagiannis, et al. "Vehicular networking: A survey and tutorial on requirements,
architectures, challenges, standards and solutions", IEEE communications surveys
& tutorials, 2011.

[19] B. Zhou, et al. "Adaptive traffic light control in wireless sensor network-based
intelligent transportation system", IEEE 72nd.Vehicular technology conference fall
(VTC 2010-Fall), 2010.

[20] REN21 Renewables 2012 Global Status Report. Available online at:
http://www.ren21.net, 2012.

[21] L.Y. Pao, K.E. Johnson, "A tutorial on the dynamics and control of wind turbines
and wind farms." American Control Conference IEEE ACC, 2009.

[22] F. Bonomi, et al., "Fog computing: A platform for internet of things and analytics",
Big Data and Internet of Things: A Roadmap for Smart Environments. Springer
International Publishing, pp. 169-186, 2014.

[23] S. Fadi, J. Ordieres, G. Miragliotta. "Smart factories in Industry 4.0: A review of the
concept and of energy management approached in production based on the Internet
of Things paradigm.", IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), 2014.

[24] D. Jeffrey, S. Ghemawat, "MapReduce: simplified data processing on large clusters",
Communications of the ACM 51.1, pp. 107-113, 2008.

[25] K. Shvachko, et al. "The hadoop distributed file system.", IEEE 26th symposium on.
Mass storage systems and technologies (MSST), 2010.

[26] Apache Spark. Available online at https://spark.apache.org.

[27] D. Laney, "3D data management: Controlling data volume, velocity and variety."
META Group Research Note 6, 2001.

[28] A. Toninelli, et al., Supporting context awareness in smart environments: a scalable
approach to information interoperability, ACM Int. Workshop on Middleware for
Pervasive Mobile and Embedded Computing, 2009.

Bibliography 171

[29] P. Bellavista, et al., Integrated support for handoff management and context aware-
ness in heterogeneous wireless networks, 3rd ACM Int. Workshop on Middleware
for Pervasive and Ad-hoc Computing, 2005.

[30] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing and Its Role in the
Internet of Things, Proceedings of the first edition of the MCC workshop on Mobile
Cloud Computing, 2012.

[31] P. Mell, T. Grance, "The NIST definition of cloud computing", 2011.

[32] P. Bellavista, A. Corradi, E. Magistretti, REDMAN: An optimistic replication mid-
dleware for read-only resources in dense MANETs, Elsevier Pervasive and Mobile
Computing Journal, vol. 1, no. 3, pp. 279-310, 2005.

[33] L. Wang, Z. Wang, R. Yang, ”Intelligent Multiagent Control System for Energy and
Comfort Management in Smart and Sustainable Buildings”, 2012.

[34] P. Zarko, A. Antonic, K. Pripuzic, Publish/Subscribe Middleware for Energy-
Efficient Mobile Crowdsensing, ACM Conf. Pervasive and Ubiquitous Computing
(UbiComp), 2013.

[35] N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A.T. Campbell, A Survey
of Mobile Phone Sensing, IEEE Communications Magazine, Vol. 48, No. 9, pp.
140-150, Sept. 2010.

[36] A. Faisal, D. Petriu, M. Woodside, Network Latency Impact on Performance of
Software Deployed Across Multiple Clouds, Int. Conf. Center for Advanced Studies
on Collaborative Research (CASCON), 2013.

[37] A. Botta, et al. "Integration of cloud computing and internet of things: a survey",
Future Generation Computer Systems pp. 684-700, 2016.

[38] M.A. Razzaque, et al. "Middleware for internet of things: a survey." IEEE Internet
of Things Journal, pp. 70-95, 2016.

[39] Ö. Yürür, et al. "Context-awareness for mobile sensing: A survey and future direc-
tions", IEEE Communications Surveys Tutorials, pp. 68-93, 2016.

[40] R. Petrolo, et al., "Integrating wireless sensor networks within a city cloud", 11th
Annual IEEE International Conference on.Sensing, Communication, and Network-
ing Workshops (SECON Workshops), 2014.

[41] L. Alonso, et al. "Middleware and communication technologies for structural health
monitoring of critical infrastructures: A survey." Computer Standards Interfaces,
pp. 83-100, 2018.

[42] G. Buttazzo, "Hard real-time computing systems: predictable scheduling algorithms
and applications.” Springer Science & Business Media, vol. 24, 2011.

[43] W. Jansen, K. Scarfone, Guidelines on Cell phone and PDA security, NIST 800-
124, 2008.

172 Bibliography

[44] OpenFog Consortium Architecture Working Group (2017) OpenFog Architecture
Overview White Paper.

[45] L.M. Vaquero, L. Rodero-Merino, Finding your Way in the Fog: Towards a Compre-
hensive Definition of Fog Computing, ACM SIGCOMM Computer Communication
Review table of contents archive, vol. 44, issue 5, 2014.

[46] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, The Case for VM-Based
Cloudlets in Mobile Computing, IEEE Pervasive Computing, vol. 8, no. 4, pp. 1423,
Oct. 2009. [Online]. Available: http://ieeexplore.ieee.org/document/5280678/

[47] National Institute for Standard and Technology (NIST), Big Data Interoperability
Framework: Volume 1, Definitions, NIST Special Publication 1500-1, 2015.

[48] O. Ferrer-Roca, R. Milito, Big and Small data: The Fog, International Conference
on Identification, Information and Knowledge in the Internet of Things, 2014.

[49] Y. Mao, et al. "A survey on mobile edge computing: The communication perspective",
IEEE Communications Surveys and Tutorials, 2017.

[50] X. Chen, et al. "Efficient multi-user computation offloading for mobile-edge cloud
computing", IEEE/ACM Transactions on Networking, pp. 2795-2808, 2016.

[51] E. Cau, et al. "Efficient exploitation of mobile edge computing for virtualized 5G
in EPC architectures", 4th IEEE International Conference on. IEEE Mobile Cloud
Computing, Services, and Engineering (MobileCloud), 2016.

[52] R. Bifulco, M. Brunner, R. Canonico, P, Hasselmeyer, F. Mir, Scalability of a mobile
Cloud management system, MCC ’12 Proceedings of the first edition of the MCC
workshop on Mobile Cloud computing, pp. 17, 2012.

[53] Y.C. Hu, et al., Mobile Edge Computing A key technology towards 5G-First edition,
ETSI White Paper, 2015.

[54] A. Ahmed, A. Ejaz, "A survey on mobile edge computing", IEEE 10th International
Conference on Intelligent Systems and Control (ISCO), 2016.

[55] M. Firdhous, O. Ghazali, S. Hassan, Fog Computing: Will it be the Future of Cloud
Computing?, Proceedings of the Third International Conference on Informatics Ap-
plications, Kuala Terengganu, Malaysia, 2014.

[56] R.A. Ali, et al. (2014) An Architecture-Based Approach for Compute-Intensive Per-
vasive Systems in Dynamic Environments, 5th ACM/SPEC International Confer-
ence on Performance Engineering ICPE.

[57] M. Satyanarayanan, et al. (2013) The role of Cloudlets in hostile environments,
IEEE Pervasive Computing, vol. 12, no. 4, pp. 40-49.

[58] K. Kumar and Yung-Hsiang Lu, Cloud Computing for Mobile Users: Can Offloading
Computation Save Energy? Computer, vol. 43, no. 4, pp. 5156, Apr. 2010. [Online].
Available: http://ieeexplore.ieee.org/document/5445167/

Bibliography 173

[59] A.V. Kempen, et al., MEC-ConPaaS: An experimental single-board based mobile
edge cloud, IEEE Mobile Cloud Conference, 2017

[60] F. Bao, I.R. Chen, J. Guo, Scalable, adaptive and survivable trust management for
community of interest based Internet of Things sys-tems, 11th IEEE Int. Symp.
Autonomous Decentralized Systems (ISADS), pp. 1-7, 2013.

[61] I. Ishaq, J. Hoebeke, I. Moerman, P. Demeester, Internet of Things Virtual Net-
works: Bringing Network Virtualization to Resource-Constrained Devices, IEEE
International Conference on Green Computing and Communications, pp. 293-300,
2012.

[62] A.Al-Fuqaha, et al., Towards Better Horizontal Integration among IoT Services,
IEEE Communications Magazine, vol. 53, no. 9, pp. 72-79, 2015.

[63] S.M. Kim, H.S. Choi, W.S. Rhee, IoT Home Gateway for Auto-Configuration and
Management of MQTT Devices, IEEE Conference on Wireless Sensors, 2015.

[64] L. Wu, Y. Xu, C. Xu, and F. Wang, Plug-configure-play service-oriented gateway-for
fast and easy sensor network application development, SENSORNETS, pp. 53-58,
2013.

[65] J. Maenpaa, J. Jiménez Bolonio, S. Loreto, Using RELOAD and CoAP for Wide
Area Sensor and Actuator Networking, Eurasip J. Wireless Communications and
Networking, Vol. 121, pp. 1-22, 2012.

[66] M. Kovatsch, M. Lanter, Z. Shelby, Californium: Scalable Cloud Services for the
Internet of Things with CoAP, IEEE 4th International Conference on the Internet
of Things, 2014.

[67] H. Jo, H. Jin, Adaptive Periodic Communication over MQTT for Large-Scale Cyber-
Physical Systems, IEEE 3rd Int. Conference on Cyber-Physical Systems, Networks,
Applications, 2015.

[68] Y.T. Lee, et al., An Integrated Cloud-Based Smart Home Management System with
Community Hierarchy, IEEE Transactions on Consumer Electronics, vol. 62, issue
1, 2016.

[69] S. Yi, et al., "Fog computing: Platform and applications." Hot Topics in Web Systems
and Technologies (HotWeb), 2015 Third IEEE Workshop on. IEEE, 2015.

[70] D. Bernstein, Containers and Cloud: From LXC to Docker to Kubernetes, IEEE
Cloud Computing, Vol. 1, No. 3, pp. 81-84, 2014.

[71] C. Pahl, B. Lee, Containers and Clusters for Edge Cloud Architectures a Tech-
nology Review, 3rd Int. Conf. on Future Internet of Things and Cloud (FiCloud),
2015.

[72] A. Arif, G. Pierre, "Efficient Container Deployment in Edge Computing Platforms."
RESCOM 2017, 2017.

174 Bibliography

[73] M.S. De Brito, et al., "Towards programmable fog nodes in smart factories.", IEEE
International Workshops on Foundations and Applications of Self Systems, 2016.

[74] A. Van Kempen, et al., "MEC-ConPaaS: An experimental single-board based mobile
edge cloud." IEEE Mobile Cloud Conference. 2017.

[75] MQTT - Message Queue Telemetry Transport. Available online at: http://mqtt.org.

[76] CoAP Constrained Application Protocol. Available online at:
http://coap.technology.

[77] Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP),
2014.

[78] K. Hartke, Observing Resources in CoAP, IETF Internet Draft, 2014. Available
online at: https://tools.ietf.org/html/draft-ietf-core-observe-16.

[79] C. Bormann, Block-wise transfers in CoAP draft-ietf-core-block-17, IETF Internet
Draft, 2015. Available online at: https://tools.ietf.org/html/draft-ietf-core-block-17.

[80] Z. Shelby, C. Bormann, CoRE Resource Directory draft-ietf-core-
resource-directory-02, IETF Internet Draft, 2014. Available online at:
https://tools.ietf.org/html/draft-ietf-core-resource-directory-02.

[81] Z. Shelby, Constrained RESTful Environments (CoRE) Link Format, IETF Internet
Draft, 2012. Available online at: https://tools.ietf.org/html/rfc6690.

[82] E. Rescorla, N. Modadugu, Datagram Transport Layer Security Version 1.2, IETF
Internet Draft, 2012 . Available online at: https://tools.ietf.org/html/rfc6347.

[83] Available online at: https://hc.apache.org/httpcomponents-core-ga/index.html.

[84] K. Boumillion, J. Levy, Guava: Google core libraries for Java 1.5+. Available online
at: https://github.com/google/guava.

[85] L. Rodrigues, J. Guerreiro, N. Correia, RELOAD/CoAP Architecture with Resource
Aggregation/Disaggregation Service, 2016.

[86] M. Nottingham, E. Hammer-Lahav, Defining Well-Known Uniform Re-
source Identifiers (URIs), IETF Internet Draft, 2010. Available online at:
https://tools.ietf.org/html/rfc5785.

[87] M. Nottingham, Web Linking, IETF Internet Draft, 2010. Available online at:
https://tools.ietf.org/html/rfc5988.

[88] Kura. Available online at: https://eclipse.org/kura.

[89] P. Bellavista, A. Corradi, C. Giannelli, "Mobile Proxies for Proactive Buffering in
Wireless Internet Multimedia Streaming", 25th IEEE Int. Conf. Distributed Com-
puting Systems Workshops, 2005.

[90] A. Toninelli, et al. "Supporting Context Awareness in Smart Environments: a Scal-
able Approach to Information Interoperability", ACM Int. Workshop Middleware for
Pervasive Mobile and Embedded Computing, 2009.

Bibliography 175

[91] P. Bellavista, A. Corradi, C. Giannelli, "The Real Ad-hoc Multi-hop Peer-to-peer
(RAMP) Middleware: an Easy-to-use Support for Spontaneous Networking", IEEE
Symp. Computers and Communications (ISCC), 2010.

[92] Mosquitto. Available online at: http://mosquitto.org.

[93] Scandium. Available online at: https://github.com/eclipse/californium.scandium.

[94] Kryo. Available online at: https://github.com/EsotericSoftware/kryo.

[95] Paho. Available online at: https://eclipse.org/paho.

[96] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An Updated Performance Comparison
of Virtual Machines and Linux Containers, Technical Report RC25482 (AUS1407-
001), IBM Research Division, 2014.

[97] LXC - Linux Containers. Available online at: https://linuxcontainers.org.

[98] CRIU - Checkpoint/Restore in Userspace. Available at: http://www.criu.org.

[99] Docker. Available online at: https://www.docker.io.

[100] AUFS - Advanced multi layered unification filesystem. Available online at:
http://aufs.sourceforge.net.

[101] D.Merkel, Docker: Lightweight Linux Containers for Consistent Development and
Deployment, Linux Journal, Vol. 239, 2014.

[102] Device-mapper. Available online at: http://www.sourceware.org/dm.

[103] OverlayFS. Available online at: https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/overlayfs.txt.

[104] P. Bellavista, A. Corradi, Alessandro Zanni, Integrating Mobile Internet of Things
and Cloud Computing towards Scalability: Lessons Learned from Existing Fog
Computing Architectures and Solutions, 3rd Int. IBM Cloud Academy Conf. (ICA
CON), 2015.

[105] Docker Swarm. Available online at: https://www.docker.com/products/docker-
swarm.

[106] Kubernetes. Available online at: http://kubernetes.io.

[107] Apache Mesos. Available online at: https://mesos.apache.org.

[108] J.S. Preden, et al. "The benefits of self-awareness and attention in fog and mist
computing." Computer 48.7 (2015): 37-45.

[109] V. Beltran, J. Paradells. "Middleware-based solution to offer mobile presence ser-
vices", Proceedings of the 1st int. conf. on MOBILe Wireless MiddleWARE, Oper-
ating Systems, and Applications, 2008.

[110] C. Wu, Ho. J, and M. Chen, "A Scalable Server Architecture for Mobile Presence
Services in Social Network Applications", IEEE Transactions on Mobile Computing,
vol. 12(2), pp. 386-398, 2011.

176 Bibliography

[111] MongoDB Available online at: https://www.mongodb.com.

[112] QEMU. Avaialble online at: http://www.qemu.org.

[113] S. Izchak, A. Schuster, D. Keren, "A geometric approach to monitoring threshold
functions over distributed data streams." ACM Transactions on Database Systems
(TODS) 32.4 (2007): 23.

[114] D. Keren, et al. "Geometric monitoring of heterogeneous streams." IEEE Transac-
tions on Knowledge and Data Engineering 26.8 (2014): 1890-1903.

[115] D. Ongaro, J. Ousterhout, "Raft consensus algorithm", 2015.

[116] Docker compose, Available online at: https://docs.docker.com/compose.

[117] K. Ha, et al., "Adaptive VM Handoff Across Cloudlets", Technical Report CMU-
CS-15-113, CMU School of Computer Science, 2015.

[118] E. Saurez, et al., Incremental Deployment and Migration of Geo-Distributed Situ-
ation Awareness Applications in the Fog, ACM Distributed and Event-based Sys-
tems Int. Conf., pp. 258-269, 2016.

[119] M. Felemban, S. Basalamah, A. Ghafoor, A Distributed Cloud Architecture for
Mobile Multimedia Services, 2013.

[120] A. Ravi, S.K. Peddoju, Handoff Strategy for Improving Energy Efficiency and Cloud
Service Availability for Mobile Devices, Wireless Personal Communications, vol.
81, issue 1, pp 101132, 2015.

[121] G. Lewis, S. Echeverría, S. Simanta, B. Bradshaw, J. Root, Tactical Cloudlets:
Moving Cloud Computing to the Edge, IEEE Military Communications Conference,
2014.

[122] S. Simanta, et al., A Reference Architecture for Mobile Code Offload in Hostile
Environments, Proc. of MobiCase: 4th International Conference on Mobile Com-
puting, Applications and Services, 2012.

[123] M.G.R. Alam, et al., Multi-agent and Reinforcement Learning Based Code Offload-
ing in Mobile Fog, International Conference on Information Networking (ICOIN),
2016.

[124] E. Cuervo et al., MAUI: Making Smartphones Last Longer with Code Offload, in
MobiSys Conf., 2010.

[125] S. Kosta, et al., "Thinkair: Dynamic resource allocation and parallel execution in
the cloud for mobile code offloading", in IEEE Infocom, 2012.

[126] M.S. Gordon, et al., COMET: Code Offload by Migrating Execution Transparently,
in OSDI, vol. 12, pp. 93-106, 2012.

[127] R. Kemp, et al., Cuckoo: A Computation Offloading Framework for Smartphones,
in International Conference on Mobile Computing, Applications, and Services, pp.
59-79, 2010.

Bibliography 177

[128] C. Shi, et al., Cosmos: computation offloading as a service for mobile devices, in
Proceedings of the 15th ACM international symposium on Mobile ad hoc network-
ing and computing, pp. 287-296, 2014.

[129] J.L.D. Neto, D.F. Macedo, J.M.S. Nogueira, Location aware decision engine to
offload mobile computation to the cloud, IEEE NOMS, 2016.

[130] M. Satyanarayanan, et al., The Case for VM-Based Cloudlets in Mobile Comput-
ing, IEEE Pervasive Computing, vol. 8, no. 4, pp. 14-23, 2014.

[131] S. Yi, L. Cheng, L. Qun. "A survey of fog computing: concepts, applications and
issues", in Proceedings of Workshop on Mobile Big Data, 2015.

[132] B.G. Chun, et al., "Clonecloud: elastic execution between mobile device and cloud",
in Proceedings of the sixth conference on Computer systems, 2011.

[133] Openstack. Available online at: https://www.openstack.org.

[134] Elijah. Available online at: http://elijah.cs.cmu.edu.

[135] Elijah-provisioning. Available online at: https://github.com/cmusatyalab/elijah-
provisioning.

[136] K. Ha, M. Satyanarayanan, Openstack++ for cloudlet deployment, School of
Computer Science Carnegie Mellon University Pittsburgh, 2015.

[137] Avahi. Available online at: http://avahi.org.

[138] Zero Configuration Networking (Zeroconf). Available online at:
http://www.zeroconf.org.

[139] F. Siddiqui, S. Zeadally, T. Kacem, S. Fowler, Zero Configuration Networking:
Implementation, performance, and security, ComputersElectrical Engineering, Vol.
38, Issue 5, pp. 11291145, 2012.

[140] Apache JCLOUD. Available online at: https://jclouds.apache.org/start/compute.

[141] Network Time Protocol (NTP). Available online at: http://www.ntp.org.

[142] LibSVM. Available online at: http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[143] Network Service Discovery (NSD). Available online at:
https://www.w3.org/TR/discovery-api.

[144] OpenCV (Open Source Computer Vision Library). Available online at:
http://opencv.org/about.html.

[145] W. Hu, et al., Quantifying the Impact of Edge Computing on Mobile Applications,
Proc. of SIGOPS Asia-Pacific Workshop on Systems, 2016.

[146] K. Ha, et al., Just-in-Time Provisioning for Cyber Foraging, Proc. of ACM Mobile
systems, applications, and services, 2013.

[147] Soot Framework. Available online at: https://sable.github.io/soot.

178 Bibliography

[148] R. Vallée-Rai, L.J. Hendren, Jimple: Simplifying Java Bytecode for Analyses and
Transformations, 1998.

[149] M. Shepperd, "A critique of cyclomatic complexity as a software metric", in Software
Engineering Journal, pp. 30-36, 1988.

[150] CyVis - Software Complexity Visualiser. [Online]. Available:
http://cyvis.sourceforge.net/

[151] ULOOF project (website): https://uloof.lip6.fr.

[152] Dex2jar. [Online]. Available: https://github.com/pxb1988/dex2jar.

[153] OpenStack Heat. Available online at: https://wiki.openstack.org/wiki/Heat.

[154] Nirmata. Available online at: http://nirmata.com.

[155] Hurtle. Available online at: http://hurtle.it.

[156] OASIS (Topology and Orchestration Specification for Cloud Applications). Avail-
able online at: http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/TOSCA-v1.0-
csd03.html.

[157] T. Binz, G. Breiter, F. Leymann, T. Spatzier, Portable Cloud Services Using
TOSCA, in Internet Computing, vol. 16, no. 3, pp. 80-85, 2012.

[158] Cloudify. Available online at: http://getcloudify.org.

[159] M. F. Bari, et al., "CQNCR: optimal VM migration planning in cloud data centers",
in Proceedings of the IFIP Networking Conference, 2014.

[160] F. Callegati, W. Cerroni, Live Migration of Virtual Network Functions in
Cloud-Based Edge Networks, in IEEE SDN for Future Networks and Services
(SDN4FNS), pp. 1-6, 2013.

[161] M. R. Hines, U. Deshpande, K. Gopalan, Post-copy live migration of virtual ma-
chines, in ACM SIGOPS Operat Syst Rev 43(3): 1426, 2009.

[162] F. P. Tso, G. Hamilton, K. Oikonomou, D.P. Pezaros, Implementing Scalable,
Network-Aware Virtual Machine Migration for Cloud Data Centers, in Proceedings
of IEEE Sixth International Conference on Cloud Computing, 2013.

[163] X. Meng, V. Pappas, and L. Zhang, Improving the scalability of data center net-
works with traffic-aware virtual machine placement, in Proceedings IEEE INFO-
COM, pp. 19, 2010.

[164] V. Mann, et al., Remedy: Network-aware steady state VM management for data
centers, in IFIP’12 Proceedings of the 11th international IFIP TC 6 conference on
Networking, vol. 7289, pp. 190204, 2012.

[165] D. Jayasinghe, et al., Improving performance and availability of services hosted on
IaaS clouds with structural constraint-aware virtual machine placement, in IEEE
International Conference. on Services Computing, pp. 7279, 2011.

Bibliography 179

[166] S. Sakr, Cloud-hosted databases: technologies, challenges and opportunities, in
Cluster Computing, vol. 17, issue 2, pp. 487502, 2014.

[167] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, Albatross: Lightweight
elasticity in shared storage databases for the cloud using live data migration., in
Proceedings of the VLDB Endowment, vol. 4, issue 8, pp. 494-505, 2011.

[168] A. J. Elmore, S. Das, D. Agrawal, A. El Abbadi, Zephyr: Live Migration in Shared
Nothing Databases for Elastic Cloud Platforms, in Proceedings of the ACM SIG-
MOD International Conference on Management of data, pp. 301-312, 2011.

[169] S. K. Barker, Y. Chi, H. J. Moon, H. Hacigümüs, P. J. Shenoy. "Cut me some slack:
latency-aware live migration for databases, in Proceedings of the 15th International
Conference on Extending Database Technology, pp. 432-443, 2012.

[170] O. Schiller, N. Cipriani, and B. Mitschang, ProRea: Live Database Migration
for Multi-Tenant RDBMS with Snapshot Isolation, in Proceedings of the 16th
International Conference on Extending Database Technology, pp. 53-64, 2013.

[171] E. Cecchet, R. Singh, U. Sharma, P.J. Shenoy, Dolly: virtualization-driven
database provisioning for the cloud, in Proceedings of the 7th ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environments (VEE),
2011.

[172] N. A. Rakhmawati, M. Hausenblas, On the Impact of Data Distribution in Feder-
ated SPARQL Queries, Semantic Computing (ICSC), 2012 IEEE Sixth International
Conference on, 2012.

[173] F. Alahmari, Evaluating SPARQL using query federation and link traversal, Digital
Information Management (ICDIM), 2011 Sixth International Conference on, 2011.

[174] T. M. Bohnert, A. Edmonds, MCN D2.2: Overall Architecture Definition, Release
1, mobile-cloudnetworking.eu/site/index.php?process=download&id=124&code=
93b79f8f5b99f67a6cdc28369c05b65f624cfee7, Oct 2013.

[175] Mobile Cloud Networking project. Available online at: http://www.mobile-cloud-
networking.eu.

[176] "Zabbix: An Enterprise-Class Open Source Distributed Monitoring Solution," [On-
line]. Available: http://www.zabbix.com/. [Accessed January 2015].

[177] C. Clark, et al., Live Migration of Virtual Machines, Proceedings of 2nd USENIX
Symposium on Networked Systems Design Implementation (NSDI), 2005.

[178] H. L. Wang, Grey Cloud Model and Its Application in Intelligent Decision Sup-
port System Supporting Complex Decision, International Colloquium on Computing,
Communication, Control, and Management, vol. 1, pp. 542546, 2008.

[179] P. Bellavista, A. Corradi, C. Giannelli, Evaluating Filtering Strategies for De-
centralized Handover Prediction in the Wireless Internet, Proceedings. 11th IEEE
Symposium on Computers and Communications, 2006.

180 Bibliography

[180] Cyclops. Available online at: http://icclab.github.io/cyclops.

[181] InfluxDB. Available online at: https://influxdata.com.

[182] R.N Calheiros, et al., "CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms, in
Software: Practice and expe-rience, pp. 23-50, 2011.

[183] W3C Recommendation: Semantic Web, W3C, 2015 http://www.w3.org/2001/sw/.

[184] W3C Recommendation: OWL Web Ontology Languange, W3C, 2004. Avaialable
online at: http://www.w3.org/TR/owl-ref/.

[185] W3C Recommendation: SPARQL 1.1 Federated Query, W3C, 2013. Avaialable
online at: http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/

[186] A. Zimmermann, et al., Towards Service-Oriented Enterprise Architectures for Big
Data Applications in the Cloud, 17th IEEE International Enterprise Distributed
Object Computing Conference Workshops, 2013.

181

Acknowledgements

I would like to thank Prof. Paolo Bellavista and Prof. Antonio Corradi for the incredible
competence, kindness and availability, that constituted an invaluable guidance during
the whole Ph.D. studies. Thank you also for granting me great opportunities.

Sincere thanks to Prof. Stefano Secci, from UPMC-Sorbonne Universitès, and Prof.
Mikael Gidlund, from Mid-Sweden University, for the opportunity to work with their
research groups, respectively, the Laboratoire d’Informatique de Paris6 (LIP6)-Phare
group and the Sensible Things that Communicate (STC) research group. It was a plea-
sure working with their teams. Among all the nice and talented people I met during the
experiences abroad, in particular, thanks to Se-young, from LIP6-Phare, for the kind-
ness and the knowledge shown during the valuable work and long meetings together,
and to Ulf and Stefan, from STC, for the support during my staying in Sweden.

Thanks to all the DISI research group at University of Bologna: Luca, Rebecca, Carlo,
Alessandro, Jacopo, Riccardo, Michele, Domenico, Giuseppe, Carlo, Marco everyone
very nice, helpful in every occasion and extremely competent. Thanks to my officemates
of the CVLab for the great coffee breaks and the pleasant leisure time together.

A special acknowledge goes to my old and closest friends from Modena, that always
bring me happiness and fun every time I meet them.

Many thanks to my parents and my brother Davide that have supported me in many
ways, not only for the Ph.D., but during all my studies and working experiences.

Finally, the biggest thank to Alice, the person who share with me every single
moment: happiness, joy, but also taught or stressful periods. Thank you for the compre-
hension during the many sleepless nights, working weekends, long distance periods and
for being an incredible and reliable support that help me to overcome all the difficulties.

fin.

	Abstract
	CPS Relevance and Motivations
	Research Challenges and Methodology
	CPS Overview
	CPS Applications towards Smart Cities
	ParticipAct Project
	Smart Grid
	Smart Building
	Smart Transportation
	Smart Connected Vehicles
	Smart Traffic Light

	Wind Farm
	Smart Industry and Wireless Sensor Network

	CPS Features and Requirements
	Cloud-assisted CPS: Potential and Limitations

	Edge-enabled Middleware for Scalable CPS
	Requirements Taxonomy for Edge-enabled Middleware
	Fog Computing
	Architecture Proposal
	Local Sensing and Data Handling
	Big and Small Data Processing
	Actuation
	Storage - Cloud distribution

	Mobile Edge Computing
	Follow Me Cloud
	ETSI Mobile Edge Computing

	Other Edge-related Solutions
	Cloudlet
	Mobile Computation Offloading

	Edge-based Architectural Proposals
	Middleware Moved Towards Cloud
	Middleware Moved Towards Edge
	Multiple Middleware Levels

	Solutions for Mobile Services

	Scalability and Containerization for Fog Computing
	Related Work
	IoT Federation
	Containers

	Scalable IoT-Cloud Interactions
	M2M Communications
	MQTT
	CoAP
	MQTT-CoAP Combination

	Kura Gateway-based Architecture
	Kura Overview
	Kura Extension Towards Fog Computing Platform
	Gateway-side MQTT Brokers
	Enabling Cluster/Mesh Topologies for Kura Gateways
	Tree-based Hierarchy Architecture
	Implementation Insights
	MQTT and CoAP Optimization

	Performance Evaluation

	Fog Deployment via Containerization
	Containers Overview and Motivation
	Containers Available
	Docker Storage Drivers

	Management and Orchestration
	Configuration and Management of IoT Gateways
	Containers-base Fog Computing Solution
	Overall Architecture
	Mobile Presence Feature
	Scalability Feature

	Implementation Insights
	Geometric Monitoring
	Containers Orchestration
	Mobile Presence Orchestration
	Scalaiblity Orchestration

	Performances
	Containerization Overhead Performance Results
	Elastic Provisioning of Mobile Services

	Live Migration and Automated Offloading for Edge Computing
	Related Work
	VM/Containers Migration
	Mobile Computation Offloading

	Migration-enhanced Support for Mobile Services
	Design
	Elijah/Openstack++
	ServerManager
	Migration
	VM Synthesis and Handoff
	Mobile Services Usecase
	Experimental Results

	Automated Offloading for Computation/Energy-usage Optimizations
	Autonomous Methods Selection
	Method Translation and Optimization
	Experimental Evaluations

	Scalability, Elasticity, and Federation for the Cloud Computing Middleware
	Related Work
	Virtual Machine Management and Migration
	Semantic Web for Data Federation

	Elastic Provisioning of Mobile Services in the Cloud
	MCN Background and Architecture
	Service Instance Migration Design
	Implementation Insights
	Preliminary Work on Service Separation
	Monitoring System
	Service Instance Migration Implementation
	Experimental Evaluation
	Simulation Results

	Federation Model to Support Semantic Queries
	The SPARQL Federation Model
	Architecture
	KPI evaluation and choice

	Implementation Details
	Usecase

	Conclusions
	Major Contributions
	Future Research Directions

	Acronyms
	Bibliography
	Acknowledgements

