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Abstract in English 

Causal inference in air pollution epidemiology typically relies on the 
determination of whether estimated associations between exposure to air pollution 
and disease can be considered as causal. This issue is very important in 
environmental health sciences, where most of the research is observational in 
nature and the ability of the investigator to control exposure assignment is limited 
or non-existent. Up to now little evidence exists in literature on the use of causal 
inference methods in environmental epidemiology. This study aims at 
implementing different causal inference approaches for the first time in a 
longitudinal cohort analysis with a continuous exposure, to assess the causal effect 
of industrial air pollution on health. A first review of the literature on the 
addressed causal inference methods is conducted, focusing on the main 
assumptions and suggested applications. Then the main longitudinal study, from 
which the causal inference methods originate, is described. A standard time-to-
event analysis is performed to assess the relationship between exposure to air 
pollution (PM10 and SO2 from industrial origin) and mortality, as well as 
morbidity, in the cohort of residents around a large steel plant in the Taranto area 
(Apulia region, Italy). The Difference-in difference (DID) approach as well as 
three methods using the generalized propensity score (Propensity Function-PF of 
Imai and van Dyk, the Dose-response Function DRF by Hirano and Imbens, and 
the Robins’ Importance sampling-RIS using the GPS) were implemented in a Cox 
Proportional Hazard model for mortality. The main study demonstrated a negative 
effect of exposure to industrial air pollution on mortality and morbidity, after 
controlling for occupation, age, time period, and socioeconomic position index. 
The health effects were confirmed in all the causal approaches applied to the 
cohort, and the concentration-response curves showed increasing risk of natural 
and cause-specific mortality for higher levels of PM10 and SO2. We conclude that 
the health effects estimated are causal and that the adjustment for socioeconomic 
index already takes into account other, not measured, individual factors. 
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Abstract in Italiano 

L'inferenza causale nell'epidemiologia dell'inquinamento atmosferico si basa 
tipicamente sul determinare se le associazioni stimate tra esposizione 
all'inquinamento atmosferico e la malattia possano essere considerate causali. 
Questo problema è molto importante nelle scienze della salute e dell’ambiente, 
dove la maggior parte della ricerca è di natura osservativa e la capacità dello 
sperimentatore di controllare l'assegnazione dell'esposizione è limitata o 
inesistente. Fino ad ora esistono poche prove in letteratura sull'uso dei metodi di 
inferenza causale nell'epidemiologia ambientale. Questo studio mira a 
implementare diversi approcci di inferenza causale per la prima volta in un'analisi 
di coorte longitudinale con un'esposizione continua, al fine di valutare l'effetto 
causale dell'inquinamento atmosferico industriale sulla salute. E’ stata condotta 
una prima revisione della letteratura sui metodi di inferenza causale affrontati, 
concentrandosi sulle ipotesi principali e sulle possibili applicazioni. Quindi é stato 
descritto lo studio longitudinale principale da cui provengono i metodi di 
inferenza causale. E’ stata eseguita un'analisi standard time-to-event per valutare 
la relazione tra esposizione all'inquinamento atmosferico (PM10 e SO2 di origine 
industriale) e mortalità, nonché morbilità, nella coorte di residenti intorno a un 
grande stabilimento siderurgico nell'area di Taranto (Regione Puglia, Italia). 
L'approccio Difference-in-differences (DID) e tre metodi che utilizzano il 
punteggio di propensione generalizzata (Propensity Function-PF di Imai e van 
Dyk, la funzione Dose-response-DRF di Hirano e Imbens e l’'Importance 
sampling di Robins-RIS utilizzando il GPS) sono stati implementati in un modello 
a rischi proporzional di Cox per la mortalità. 
Lo studio di coorte principale ha mostrato un effetto negativo dell'esposizione ad 
inquinamento atmosferico industriale sulla mortalità e morbilità, dopo aver 
controllato per occupazione, età, periodo di calendario e indice di posizione 
socioeconomica. Gli effetti sulla salute sono stati confermati in tutti gli approcci 
causali applicati alla coorte e le curve concentrazione-risposta hanno mostrato 
tassi di mortalità naturali e causa-specifici crescenti per livelli più alti di PM10 e 
SO2. Possiamo concludere che gli effetti stimati sono causali e che 
l’aggiustamento per l'indice socioeconomico tiene già conto di altri fattori 
individuali non misurati. 
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CHAPTER 1. Causal Inference in Observational Studies 

 

1.1.  Introduction 

A central issue in epidemiology is the evaluation of the causal nature of reported 
associations between exposure to defined risk factors or treatments and the 
occurrence of disease. This issue is even more important in environmental health 
sciences, where most of the research is observational in nature and the ability of 
the investigator to control exposure assignment is limited or non-existent. 
Nonetheless, besides contributing to the understanding of disease causation, 
etiologic studies are commonly regarded as providing the scientific basis for the 
adoption of preventive or regulatory actions. Therefore, it becomes necessary to 
clearly define what is meant by “causal relationship”, how to properly design an 
epidemiological study to detect causal effects, and under which conditions and 
assumptions such an approach would be feasible.  

An internal and external valid statistical association is not sufficient to determine 
causal association. After assessing the study’s validity, the extent of the evidence 
being supportive of causality should be considered. Hill (1965) has provided his 
famous 9 viewpoints to determine causality: strength of the association, 
consistency, specificity, temporality, biological gradient, plausibility, coherence, 
experiment, and analogy. However, Hill himself mentioned that none of them are 
essential to infer causality and Bae at al. (2017) pointed out their limits of 
application in environmental epidemiology studies, where an exposure can be 
associated with multiple diseases (hence specificity doesn’t hold) or can have a 
non-linear association with the disease (linear biological gradient needs to be 
reconsidered). 

A large body of evidence on the health effects of air pollution exists, indicating 
that chronic and acute exposure to particulate matter is associated with 
cardiorespiratory mortality and morbidity (Alessandrini et al., 2013; Analitis et 
al., 2006; Beelen et al., 2008; Bentayeb et al., 2015; Giulia Cesaroni et al., 2013; 
Colais et al., 2009; Jerrett et al., 2009; Kloog, Ridgway, Koutrakis, Coull, & 
Schwartz, 2013; Krall, Anderson, Dominici, Bell, & Peng, 2013; Mataloni et al., 
2012; Peng et al., 2013; E Samoli et al., 2006; Evangelia Samoli et al., 2013; 
Scarinzi et al., 2013; Schwartz, 2004; Stafoggia et al., 2013; Stölzel et al., 2007; 
Zanobetti, Dominici, Wang, & Schwartz, 2014; Zanobetti & Schwartz, 2009). 
These were all associational studies, where causality was supported by the 
consistency of results and by Hill’s criteria.  
Causal inference in air pollution epidemiology typically relies on the 
determination of whether estimated associations between exposure to air pollution 
and disease can be considered as causal (Correia et al., 2013; Dockery et al., 1993; 
Laden, Schwartz, Speizer, & Dockery, 2006; Pope III, Ezzati, & Dockery, 2009; 
Zeger, Dominici, McDermott, & Samet, 2008).The potential outcome approach in 
causal inference is not new in biomedicine (Afendulis, He, Zaslavsky, & 
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Chernew, 2011; Gillespie et al., 2015; Hernán et al., 2008; Jacob, Sutradhar, 
Moineddin, Baxter, & Urbach, 2013; B. Lu & Marcus, 2012; M. Lu, 1999; 
Shimizu et al., 2016), but it’s not consolidated in studies of air pollution effects on 
health. 
In support of the use of causal inference approaches in this field, Zigler and 
colleagues (2016) have provided a textbook on how more systematic approaches 
to testing of causality (i.e., through use of causal inference frameworks and 
methods) could be adapted to the assessment of the effects of air pollution 
interventions on air quality and health. 
 
Up to now applications of causal inference methods in environmental 
epidemiology for air pollution are sparse  (Baccini, Mattei, Mealli, Bertazzi, & 
Carugno, 2017; Capuno, Tan, & Javier, 2018; Kirby, Nagel, Rosa, Thomas, & 
Clasen, 2016; Mueller, Pfaff, Peabody, Liu, & Smith, 2011; Neupane et al., 2015; 
Rosa et al., 2017; Sætterstrom et al., 2012; Schwartz, Bind, & Koutrakis, 2017; 
Wang et al., 2016; Wylie et al., 2014; Wylie, Coull, et al., 2015; Wylie, Singh, et 
al., 2015; C. Zigler et al., 2016). 

The purpose of this study is to show new applications of different causal inference 
methods to a longitudinal cohort, aimed at assessing the effects of air pollution on 
health in the industrial area of Taranto, Italy. 
 
This study apply two methods dealing with non-experimental data, characterizing 
the identification assumptions necessary to justify their application.  One of these 
approaches for longitudinal data is the difference-in-differences approach (DID), a 
quasi-experimental design to obtain a more robust estimate of the treatment effect, 
and the other is the use of the propensity score modelling in the continuous 
setting. After a first overview of the potential outcome framework in Chapter 1, 
the wide array of existing literature about the PS methodology will be presented in 
Chapter 2 and Chapter 3 for extension to the continuous treatment setting, while 
the general DID approach will be treated in this chapter.  
 
Chapter 4 will introduce the cohort study on the residents living around a large 
steel plant in the south of Italy, from which the two applications of causal 
inference methods originated. The cohort study was characterized by an extensive 
work of exposure assessment and cohort building. The first year of the PhD was 
dedicated to this aim and to the estimate of the association between exposure 
measures and health events, like mortality, hospitalizations and cancer incidence. 
The whole cohort study itself would require a monography to describe it entirely. 
Here it was presented in one chapter, focusing on the main statistical methods and 
results, from which the work on the DID and PS approach, presented in their 
applications in Chapter 5 and 6, have started. 
 
Little evidence exists in this field referring to the DID approach (Wang et al., 
2016) and the propensity score for continuous exposure variable (Schwartz, 
Austin, Bind, Zanobetti, & Koutrakis, 2015). 
In Italy in the same field no study until now applied DID approach and only one 
study by Baccini et al. (2017) implemented the propensity score matching 
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approach to obtain the causal impact of high (dichotomized over the threshold) 
daily levels of PM10 on mortality in Milan.  
Other than Schwartz et al.’s work in a time series setting (Schwartz et al., 2015), 
no study worldwide has been done on propensity score methods in time-to-event 
analysis with continuous exposures measurements in air pollution studies. 
 
Further studies are needed on the correct use of causal inference methodologies 
for air pollution longitudinal studies. 
The purpose of the current study is to provide new evidences on the use of the 
DID approach, with an extension of the existing method, and the generalized 
propensity score methods in a longitudinal study on the effects of air pollution on 
health in the Italian context. 
 
There is no intention here to prove which one of the methods implemented is the 
best one or performed better, since no assessment of bias is possible, unless 
simulations are performed. 
 
The data and results of the research for this thesis have been developed during the 
working activity at the Department of Epidemiology of the Lazio Regional health 
Service in Rome, Italy, as part of the PhD program. The study was conducted in 
collaboration with the Regional Agency for the Environmental Protection of the 
Apulia Region (ARPA), in the South of Italy, the Local Health Service of Taranto 
(ASL), Italy, and the AReS Puglia, Italy.  

All the materials and results developed during the main cohort study described in 
Chapter 4 and Chapter 5 were collected in a final exhaustive report published in 
August 2016 on the Puglia Salute website of the Apulia Region  
(https://www.sanita.puglia.it/documents/890301/896208/Relazione+Finale+Studi
o+di+Coorte+-+2016/ea231c81-e196-4b43-99a4-0882bd60b83b). 

Two papers for publication on scientific journals have been prepared respectively 
for the main cohort study results and for the DID approach, attached in Annex A 
and Annex B. The research on GPS at the time of the end of the program was not 
ready for publication.  

 

1.2. Overview 

Causal inference aims at quantifying the causal relationship between a specified 
treatment and a subsequent outcome. Among all type of study designs, 
randomized controlled trials are considered as the gold standard for studying 
causal inferences (W.R. Shadish, Cook, & Campbell, 2002) 

In experimental studies, the treatment is randomly assigned to the subjects with a 
known probability. Randomization generally provides an equal chance of being 
assigned to treated and non-treated groups, and tends to assure that the two groups 
are homogenous concerning their pre-treatment characteristics. Therefore the 
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direct comparison between the treatment and control group should lead to a valid 
estimate of causal effect, since the bias due to both observed and unobserved 
covariates is generally eliminated by the randomization of treatment assignment. 

In many instances, however, conducting a randomized experiment is not feasible 
or ethical. 

Observational studies are proposed and used as alternatives to randomized 
designs. In these studies the mechanism of treatment assignment is not under the 
control of the investigator and can be dictated either by the choice of the 
individual or other factors. Consequently, the treated and control groups may have 
differed prior to receiving the treatment in ways that are relevant to the outcome 
of interest. Thus, observed differences post treatment may be attributable either to 
the treatment effect, these pre-treatment differences or both. Controlling observed 
biases and addressing hidden biases are the two major tasks of making valid 
causal inferences in an observational study. (Paul R. Rosenbaum, 1996) 

There are different ways to formulate and address the problem of causal inference 
with observational data. One of them is the framework of potential outcomes 
(Rubin, 1978; Splawa-Neyman, Dabrowska, & Speed, 1990). 

1.3. Potential Outcomes Framework  

Potential outcomes are the responses that would be realized if different treatments 
were given to a unit. Some authors have called them counterfactuals (Greenland, 
Pearl, & Robins, 1999). 

Notation for the potential outcomes was first introduced by Neyman et al. (1990) 
in the context of randomized experiments. Rubin (1974) extended Neyman’s work 
and formalized the potential outcomes framework for the observational studies 
and formulated causal inference as a problem of missing data (Little & Rubin, 
2000; Rubin, 2005). 

I will first start discussing the problem of causal inference when the treatment is 
binary. Let Ti represent the value of the treatment applied to unit i, having, for 
example, Ti =1 for the treatment group and Ti=0 for the control group. Let Yi (0) 
and Yi (1) denote the potential outcomes for unit i under treatments 0 and 1, 
respectively. Rubin (1978) defined the causal effect of a treatment on unit i as 
Yi (1) - Yi (0). 
However, as pointed out by Holland (1986), the “fundamental problem of causal 
inference” is that for each subject we can observe only one of these potential 
outcomes, because, at a particular point in time, each subject would only receive 
either the treatment or the control, not both.  For this reason, estimating causal 
effects can be regarded as a missing data problem, where the unobserved potential 
outcomes are missing. The observed outcome for unit i can be denoted by Yi = Yi 
(Ti), which can also be written as TiYi (1) + (1-Ti) Yi (0). 
The variable Ti can be thought of as a missing data indicator that tells us which 
potential outcome is seen and which one is hidden for the given unit. 
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The final quantity of interest will be the average of the causal effect (ACE) or 
average treatment effect (ATE) for a given population, 
  𝐴𝑇𝐸 =  𝜇(1) − 𝜇(0) = 𝐸[𝑌(1)] −  𝐸[𝑌(0)]  (1.1)  
The notation developed so far can be easily extended to handle more than two 
treatments. In the case of three treatment levels there would be three potential 
outcomes for each unit, Yi (0), Yi (1), and Yi (2), and three causal comparisons: 
𝑌(1) − 𝑌(0),  𝑌(2) − 𝑌(0),  𝑌(2) − 𝑌(1). The observed outcome can be written 
as 𝑌 =  𝑌 (𝑇) =  ∑ 𝟙(𝑇 = 𝑡) ∙ 𝑌(𝑡).ଶ

௧ୀ  
 
The framework of potential outcomes can then be easily extended to the situations 
in which the treatment variable is continuously distributed. Suppose that 𝑇 takes 
values within a real interval Ƭ = ൣ𝑡୫୧୬, , 𝑡௫൧. The potential outcomes are now an 
uncountable infinite set 𝛶 =  {𝑌(𝑡): 𝑡 ∈  Ƭ}. The observed outcome can still be 
written as 𝑌 =  𝑌 (𝑡), and the causal effect for unit i of moving from treatment 
dose t  to t*  is 𝑌(𝑡∗) − 𝑌 (𝑡). 
This unit-level effect is unobservable, but under certain conditions, we may be 
able to reconstruct a reasonable estimate of the population average effect of 
moving from t to t*, 𝐸൫𝑌(𝑡∗)൯ − 𝐸൫𝑌(𝑡)൯. 

 
In some situations, it is not the ATE that is of interest, but rather the average 
treatment effect on treated (ATT). This implies considering the differences in 
outcomes with and without treatment only for individuals who are treated 
(Caliendo & Kopeinig, 2008; Holland, 1986; Rubin, 1973a, 1973c).  
 

1.4. Rubin’s causal model 

Since outcomes for all treatment conditions cannot be observed for all units, 
Rubin’s causal model operates under several key assumptions discussed below 
(Paul R Rosenbaum & Rubin, 1983, 1984; Rubin, 2001). 

Stable unit treatment value assumption (SUTVA) (Cox, 1958; Rubin, 1978) 

The outcome of subject i to the treatment is independent of the treatment status of 
subject j. 
More formally, SUTVA is defined as an “a priori assumption that the value of Y 
for unit i when exposed to treatment t  will be the same, no matter what 
mechanism is used to assign treatment t to unit i and no matter what treatments 
the other units receive” (Rubin, 1986, p.961). 
 

Strongly ignorable treatment assignment (Paul R Rosenbaum & Rubin, 1983) 

The treatment assignment T and the potential outcomes ൫𝑌(1), 𝑌(0)൯ are 
conditionally independent given the observed covariates 𝑋, and each subject has a 
positive probability of receiving the treatment: 
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   {𝑌(1), 𝑌(0)} ⟘ 𝑇| 𝑋     (1.2) 
   0 < 𝑝 (𝑇 = 1|X) < 1     (1.3) 

 
This implies that conditional on the observed covariates X, the treatment is 
randomly assigned as if in randomized experiments, and there is no systematic 
pre-treatment difference between the treatment and the control group. This 
assumption is known as no unmeasured confounders. In addition, each subject has 
a nonzero probability of receiving either treatment. This second condition is also 
an overlap assumption, meaning that given covariates X, the person with the same 
X values has positive and equal opportunity of being assigned to the treated group 
or the control group. 
If ignorability holds, one can obtain unbiased treatment effect estimates. 
 
This condition is considered to be satisfied in randomized studies where units are 
assigned randomly to conditions and thus the cause of assignment mechanism T, 
is statistically independent from the outcomes. However, when randomization is 
not employed, satisfying this assumption becomes more difficult, as the 
differences in the observed outcomes may be attributed to alternative or 
unobserved variables related to the assignment mechanism. 
 

1.5. Causal Inference in Non-experimental Data 

In contrast to the experimental analysis, data in non-experimental or observational 
studies are not derived in a process that is completely under the researcher’s 
control. For example, a government authority might offer a program to a 
particular area or specific individuals in order to improve their condition or 
because it is believed that they held favourable expectations regarding the 
program’s impact. 
The main objective of any observational study is to use the observable 
information in an appropriate way to replace the comparability of treatment and 
control group by an appropriate alternative identification condition. The objective 
is to use the available information such that in the sub-population defined by these 
observables, any remaining differences between treated and non-treated might be 
attributed to the program. 
The process of finding information is really about finding counterfactuals for 
observations in the treatment group. In other words, researchers need to make 
adjustment and use statistical approaches to obtain groups that are homogeneous 
in terms of the distribution of covariates. 
 
 
The natural experiment approach attempts to find a naturally occurring 
comparison group that can mimic the properties of the control group in the 
properly designed experiment. The major limitation in inferring causation from 
natural experiments is the presence of unmeasured confounding (Craig, 
Katikireddi, Leyland, & Popham, 2017). 
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The different methodologies for solving the evaluation problem with non-
experimental data mainly depend on four factors: the type of information 
available to the researchers, the parameters of interest, the underlying model and 
how the counterfactual is structured. 
 
Statistical approaches such as ordinary regression, covariate adjustment analysis, 
structural equation modelling, selection models, and matching methods can be 
applied to adjust for differences between the groups in non-randomized designs 
(W.R. Shadish et al., 2002; Stuart, 2010) and rely on the untestable assumption of 
no unmeasured confounding (Cole & Hernán, 2008; Stampf, Graf, Schmoor, & 
Schumacher, 2010).  
 
Traditional matching methods, in particular, such as simple mean matching, pair 
matching (Rubin, 1973a) and multivariate matching (Rubin, 1976, 1979) are 
statistical methods that aim to equate groups for causal and non-causal effect 
estimation (Stuart, 2010). As the number of variables used to match increases, the 
number of combinations for individual matches between groups also increases 
exponentially (W. G. Cochran & Chambers, 1965). In addition, with traditional 
matching methods there is a potential to lose a lot of data on the final matched 
individuals. 
 
In 1983, Rosenbaum and Rubin introduced the propensity score (PS), a major 
advancement in causal analysis, particularly due to its ability to balance groups 
using a set of covariates reduced to a single score, thus eliminating the challenges 
with traditional matching. The ability to include many variables increases the 
likelihood of satisfying the strong ignorability assumption and yielding then to 
unbiased treatment effects (William R Shadish & Steiner, 2010; Stuart, 2010). 
 
Given the difficulty of measuring accurately all of the characteristics associated 
with exposure to an intervention, methods such as difference in differences, 
instrumental variables and regression discontinuity designs that deal with 
unobserved factors are a potentially valuable advance on those that only deal with 
observed factors. 
 
The Instrumental variable method is based on the existence of an external factor 
strongly influencing the selection process, conditioning the individual behaviours, 
and that has no effect on the outcome. Intuitively the strategy consists in 
disentangling the treatment variable in two parts: one determined by the external 
factor out of the individual control, and another one determined by the individual 
behaviours linked to unobservable factors. So only the part of the treatment not 
depending on the unobserved factors will be used: this takes the name of 
“instrumental variable”. While useful in a variety of applications, the validity and 
interpretation of IV estimates depend on strong assumptions, the plausibility of 
which must be considered with regard to the causal relation in question (Blundell 
& Dias, 2009; Craig et al., 2012; Craig et al., 2017). 
 
The discontinuity design method exploits situations where the probability of 
enrollment into treatment changes discontinuously with some continuous variable 
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according to a step change or ‘cutoff’. The assumption is that units (individuals, 
areas, etc.) just below and just above this threshold will otherwise be similar in 
terms of characteristics that may influence outcomes, so that an estimate of 
treatment effect can be obtained by comparing regression slopes on either side of 
the cutoff (Blundell & Dias, 2009; Craig et al., 2012). 
 
 
Difference in differences (DID) method is usually implemented by comparing the 
difference in average behaviour before and after the treatment/policy for the 
eligible group with the before and after contrast for a comparison group. This 
approach can be a powerful tool in measuring the average effect of the treatment 
on the treated. It does this by removing unobservable individual effects and 
common macro effects by relying on two critically important identifying 
assumptions of (i) common time effects across groups, and (ii) no systematic 
composition changes within each group.  
More details of the DID method and one application to the Taranto cohort study 
will be presented in this thesis. (Blundell & Dias, 2009; Craig et al., 2012; Craig 
et al., 2017)  
 
 

1.6. Difference in Differences (DID) Estimator 

This method, popular in economics research, evaluates the effect of policy change 
and public intervention programs. Much literature on DID has arisen since 
Ashenfelter and Card (1985).  
 
One of the first applications of the DID design was the study by Card and Krueger 
(1994). The authors used the DID design to assess the effect of an increased 
minimum wage on fast food employment rates in New Jersey 5 months before and 
5 months after increasing the minimum wage. Pennsylvania, where the minimum 
wage did not change, was used to identify the variation in employment expected 
in the absence of the raise. The increase in the minimum wage was the random 
shock. 

 
In the typical set up of using DID, the outcomes are observed for two groups at 
two-time periods. During the first period, two groups are not exposed to the 
treatment, but during the second period, one of the group is exposed to the 
treatment (referred to as treatment group) while the other is not (referred to as 
control group). The underlying key assumption of this approach is that in absence 
of the treatment, the average outcomes for both treated and control groups would 
have changed in parallel paths over time, and all the other factors, other than the 
treatment, would affect both groups in the same way.  
 
The basic DID framework can be described as follows (Abadie, 2005; Ashenfelter 
& Card, 1985). Let Y  be an outcome over a population of individuals for which 
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we wish to estimate the impact of a treatment T. Suppose that there exist two 
groups with treatment status T=0,1, indicated the control and treated group, 
respectively. 
 
Assume then that we observe individuals in two moments in time, t=0,1, 
indicating the pre-treatment, i.e. the time period before the treatment group 
receives the treatment, and the post-treatment, i.e. the time period after the 
treatment group receives the treatment, respectively. For each individual the 
outcome Yi is modelled by the following equation: 
 
   𝑌 = 𝛼 + 𝛽𝑇 + 𝛾𝑡 + 𝛿(𝑇 ∙ 𝑡) + 𝜀    (1.4) 
 
where the coefficients α, β , γ , δ are all unknown parameters and ε୧ is the random 
error. Considering the constant term α,  β  can be interpreted as the treatment 
group specific effect, while 𝛾 as the common time trend to treated and not-treated, 
and 𝛿 as the true effect of treatment and the quantity of interest. 

The DID estimator of 𝛿, 𝛿መ, requires the following assumptions to be true: 

1. The model in (1.4) to be correctly specified 
2. The error term to have zero mean, i.e. 𝐸[𝜀] = 0 
3. The error term to be uncorrelated with the other terms in (1.4). 

Under these assumptions we can estimate the expected values of the average 
outcomes using arguments in equation (1.4) as: 

 
𝐸[𝑌

்] =  𝛼 + 𝛽 
  𝐸[𝑌ଵ

்] =  𝛼 + 𝛽 + 𝛾 + 𝛿 
    𝐸[𝑌

] =  𝛼 
𝐸[𝑌ଵ

] =  𝛼 + 𝛾 
 
with subscripts identifying the time period and the superscript the treatment status. 
We consider 𝑌ത

் and 𝑌തଵ
் as the sample averages of the outcome for the treatment 

group before and after treatment, respectively, and 𝑌ത
 and 𝑌തଵ

 the correspondent 
in the control group. 
 
First, we build an estimator based on comparing the average difference in 
outcome before and after treatment in the treatment group alone: 

𝛿መଵ = 𝑌തଵ
் − 𝑌ത

், 
For which the expectation is  
 

𝐸ൣ𝛿መଵ൧= 𝐸[𝑌തଵ
்] − 𝐸[𝑌ത

்] = [𝛼 + 𝛽 + 𝛾 + 𝛿] − [𝛼 + 𝛽] = 𝛾 + 𝛿 
 

Meaning that the estimator is correct if 𝛾 = 0, i.e. if there is no trend in the 
outcome 𝑌. 
If in the same way we consider an estimator based on comparing the average 
difference in outcome 𝑌 in the post-treatment period only, between treated and 
control groups we have: 

𝛿መଶ = 𝑌തଵ
் − 𝑌തଵ

. 
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The expectation is  
 

𝐸ൣ𝛿መଶ൧= 𝐸[𝑌തଵ
்] − 𝐸[𝑌തଵ

] = [𝛼 + 𝛽 + 𝛾 + 𝛿] − [𝛼 + 𝛾] = 𝛽 + 𝛾, 
 

meaning that the estimator will be biased as long as 𝛽 ≠ 0; that is,when 
significant differences in the outcome exist between treated and control groups, 
due to differences existing between the two groups prior to any treatment. 
 
The DID estimator is a combination of the two estimators and defined as the 
difference in average outcome in the treatment group before and after treatment 
minus the difference in average outcome in the control group before and after 
treatment. It is in this sense a “difference of differences” 
 

  𝛿መ = (𝑌തଵ
் − 𝑌ത

்) − (𝑌തଵ
 − 𝑌ത

)    (1.5) 
 
for which the expectation is unbiased: 
 
𝐸ൣ𝛿መ൧= 𝐸[𝑌തଵ

்] − 𝐸[𝑌ത
்] − (𝐸[𝑌തଵ

] − 𝐸[𝑌ത
]) 

= [𝛼 + 𝛽 + 𝛾 + 𝛿] − [𝛼 + 𝛽] − [𝛼 + 𝛾 − 𝛾] 
= [𝛾 + 𝛿] − 𝛾 
=  𝛿. 
The DID estimator relies on the three assumptions at p.19, that means that if any 
of them do not hold the estimator, 𝛿መ will be biased. There are major difficulties 
in verifying them, since they are made about unobservable quantities. 
 
The third one, implying no correlation of the random errors with the terms of 
model (1.4), actually imposes one strong condition called the “parallel-trend 
assumption”, that states that 𝑐𝑜𝑣(𝜀, 𝑇 ∙ 𝑡) = 0, meaning that Y follows a 
different trend for the treatment and control groups. The failure of these 
conditions may be a common problem in many studies and can cause the DID 
estimators to be biased (Meyer, 1995). 
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CHAPTER 2. Propensity Score 

 

2.1. Definition 

The use of matching methods is seriously limited by the high dimensionality of 
the vector X, because in practice it would be difficult to find control units with 
similar values of X if it is composed by a large vector of variables. A solution can 
be to match on a function of X. The most common and useful is the propensity 
score, 𝜋(𝑥), introduced by Rosembaum and Rubin (1983) as a balancing score to 
group treatment and control units in non-randomized studies. A balancing score 
for its definition is a “function of the observed covariates, such that the 
conditional distribution of these covariates is the same for treated and control 
units” (Paul R Rosenbaum & Rubin, 1983, p. 42).  
 
In the binary treatment setting, the propensity score is the conditional 
probability  𝜋(𝑥) of being assigned to a treatment given a set of covariates: 
 
   π(𝑥) = 𝑃(𝑇 = 1|𝑋 = 𝑥).     (2.1) 
 
The propensity score for sample unit i will be written as 𝜋 = 𝜋(𝑋). It 
summarizes in a single value the impact of all the observable pre-interventions 
units’ characteristics that differentiate the treated units from the excluded ones.  
It is possible to demonstrate that the PS is the coarsest balancing score. According 
to this property, the PS balances covariates across the treatment groups,  which 
is: 𝑃 (𝑋 = 𝑥|𝜋 = 𝑐, 𝑇 = 1) = 𝑃 (𝑋 = 𝑥|𝜋 = 𝑐, 𝑇 = 0). Units with the same 
propensities have the same probability of treatment. This means that units 
randomly receive treatment or control and have the same distribution of covariates 
X on average (Paul R Rosenbaum & Rubin, 1983, 1984).  
 
Rosembaum and Rubin (1983) demonstrated that the conditional independence 
assumption remains valid conditioning for π(𝑥) instead of X: 
 

   {𝑌(1), 𝑌(0)} ⟘ 𝑇| π(𝑥)      (2.2) 
 

Conditioning on π(𝑥) means that units with equal propensities appear to be 
allocated to a treatment randomly, then estimating causal effects becomes 
straightforward. 
 

2.2. Estimation 

One of the most important considerations to be made on propensity score is 
regarding its estimation. In a nonrandomized study, the PS is unknown and must 
be estimated. The most common way to model the PS in a binary treatment setting 
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is by logistic regression, although other methods such as probit regression, 
boosted regression (McCaffrey, Ridgeway, & Morral, 2004; Zhu, Coffman, & 
Ghosh, 2015), CART, and random forest have been used (Lee, Lessler, & Stuart, 
2010). 
 
The selection and inclusion of appropriate covariates is an integral component in 
PS. The quality of the estimated PS depends upon its ability to remove hidden 
bias, which is a function of the covariates included in the model. PS relies heavily 
upon the assumption of ignorable treatment assignment; therefore, in order to 
satisfy the ignorable assumption all variables related to treatment and outcome 
need to be included (Rubin & Thomas, 1996; Stuart, 2010). There is no statistical 
test for this assumption; it is only based on the substantive knowledge of the 
possible confounding variables in the applied context. Therefore, even if a large 
number of covariates are included, there is no way to tell whether a confounding 
variable has been excluded or overlooked. If important covariates related to 
treatment assignment are omitted or excluded, then there is potential for the PS to 
be biased, as will be the case for the resulting treatment effect estimates (Paul R 
Rosenbaum & Rubin, 1983; Rubin, 1997; William R Shadish & Steiner, 2010). 
 
Once the PS has been estimated it is important to check its fit, traditionally 
through covariate balance. Ideally, the PS balances the distribution of covariates 
across all treatment levels. In the binary treatment setting, in the subgroup of units 
with the same values of the propensity score, we will find no major differences 
between 𝑇 = 1 and  𝑇 = 0 on any component of 𝑋 or function of 𝑋. One 
possible check would divide the sample into subgroups defined for example by 
the quantiles of the estimated PS, and will calculate standardized mean differences 
and relative t-tests for each covariate entering the prediction model for the PS. 
Graphically, this could be checked through histograms or boxplots of the 
covariate distributions at different treatment levels. 
 
Another condition to be checked for the PS is the overlap to determine if 
estimating causal effects is even feasible. If there is an insufficient number of 
graphically determined units with either 𝑇 = 1 in regions with low propensity 
scores or an insufficient number of units with 𝑇 = 0 in high-propensity regions, 
then it isn’t advisable to have causal inference in those regions because it may 
require excessive extrapolation. 
 
A broad region of common support allows for causal effect estimates to be based 
on the full range of PS in the sample, whereas a small common support region 
restricts the effect estimates. Often individuals who have estimated PS that fall 
outside the common support region are dropped from the analysis. These 
individuals are usually located in the tails of the distribution, with estimated PS 
close to 1 or 0. If PS yields insufficient overlap then it may be that the model to 
estimate the PS needs to be adjusted. 
  
Overfitting is not a serious problem when estimating PS, because the main goal is 
to predict the treatment probabilities rather than to estimate the best model. 



23 
 

In fact, overfitting the PS is not disadvantageous for the estimation of ATE, since 
prediction and covariate balance are the main criteria for estimating the PS 
(Brookhart et al., 2006; Rubin, 2004). 
 
Once PS is estimated, the next step is to utilize, or condition on it to balance the 
treatment and control groups. There are four general conditioning techniques: 
matching, stratification, covariance adjustment, and weighting. The first three 
techniques were introduced with the PS in 1983 by Rosenbaum and Rubin, while 
the last technique was introduced a few years later (Paul R Rosenbaum, 1987). 
 

2.3. Use of Propensity Score 

2.3.1. Matching 

Propensity score matching involves the formation of new samples of data that 
contain only those individuals matched. Individuals from treatment and control 
groups who share similar covariate distributions are matched to balance the 
groups (Paul R Rosenbaum & Rubin, 1983; Rubin & Thomas, 1996, 2000; Stuart, 
2010). 
With a binary treatment, once the PS is estimated, for each unit in the smaller 
group (𝑇 = 0 or 𝑇 = 1), an algorithm is used to select a unit in the larger group 
with a similar propensity score, and perhaps similar values of 𝑋 as well, if the PS 
is correctly specified.  
 
The similarity of the PS between treated and controls rely on the 
distance/difference between the values for the selected observations. Each 
individual is randomly matched to an individual with the closest propensity score.  
After matches have been found for all units in the smaller group, the excess units 
in the larger group are discarded. This method is called 1-to-1 matching. The 
method can provide a causal inference on the effect of a treatment on the outcome 
while removing biases due to confounding attributed to covariates, since the pairs 
have similar covariates but different treatments. The ATE is calculated by 
comparing the mean outcomes in each group. It is also possible to combine 
model-based regression adjustment with matching (Rubin & Thomas, 2000). 
 
Because of the common support assumption, the ATE may be estimated in a 
matched sample where the covariate distribution is different from the overall 
population, thus it may be not generalizable to the ATE for the whole population. 
However, it may provide a realistic and more accurate estimate for a smaller 
population. 
 
The matching techniques can be categorized into parametric and non-parametric 
matching. The near-neighbour, the Mahalanobis distance, the caliper matching 
and the near-neighbour with caliper are parametric types of greedy matching. 
Greedy matching considers the individual scores to match on, based on the best 
control unit matched to each individual treatment unit (Gu & Rosenbaum, 1993). 
Full and optimal matching belongs to the optimal parametric approach. Optimal 
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matching has an advantage on the greedy matching, as it does not consider the 
best matches for individual treatment units; rather, matches are made to minimize 
the overall distance for all units in the matched sample (Guo & Fraser, 2014; 
Thoemmes & Kim, 2011). Full matching is a type of optimized matching analysis 
that allows an observation/individual to be matched to many cases (1 to many). 
Full matching has the advantage of retaining a sufficient number of observations 
for the outcome analysis.  
 
Non-parametric matching includes kernel matching that uses weighted averages 
of all observations in the control group to estimate the counterfactual outcomes. 
The weight is calculated by the PS distance between a treatment observation and 
all control observations. The closest control cases are given the greatest weight 
(Smith & Todd, 2005).  
 
Matching with replacement allows matched controls to be placed back into the 
control group to be matched to other treatment units. Therefore, control units may 
be matched with multiple treatment units. Matching without replacement does not 
allow a control unit previously matched to a treatment unit to be considered for 
matching again (Austin, 2011). 
 
The extension of matching methods to the continuous setting is not easy, because 
of the presence of few cases for each value of 𝑡 ∈ 𝑇, and the selection rule, that 
cannot distinguish between treated and non-treated units. Lu et al. (2001) applied 
matching on doses, but they dichotomized the dose, reconducting to the binary 
setting and estimating the effect of high dose vs. low dose, rather than estimating 
all the dose-response function. 
 
Matching in the continuous setting has not been treated in this monography, as our 
current focus is on the main generalizations of propensity score methods. 
 

2.3.2. Stratification 

Propensity score stratification or subclassification was originally proposed by 
Rosenbaum and Rubin (1983) to adjust for selection bias. The idea is that subjects 
classified in the same stratum would have similar propensity scores. Within the 
subclass, the treatment status is essentially random.  
 
In this method, the PS is first estimated, then the units are divided into groups 
with similar propensities, usually based on quantiles of the estimated PS values. 
The number of classes may depend on the size of the data set, but Rosenbaum and 
Rubin (1984), extending Cochran’s work (1968) of stratification on single 
covariate, found that stratifying the data into quintiles (K=5) of the estimated PS 
eliminates up to 90% of the bias in each coordinate of variables. Units within the 
same PS subclasses should be similar in their covariate distributions.  
 
The effects of each subclass are pooled across the strata to estimate the ATE (Paul 
R Rosenbaum & Rubin, 1984). 
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    𝐴𝑇𝐸 =  ∑
ேೞ

ே௦ 𝜃௦
 ,    (2.3) 

 
where s is the subclass index, Ns is the number of units in subclass s, N is the total 
sample size, and 𝜃௦

  is the ATE estimate within subclass s. 
 
Austin (2011, p. 408) compared this procedure to that of a “meta-analysis of a set 
of quasi-RCTs,” because within each stratum the effect of treatment on outcomes 
is estimated by comparing the outcomes of the treated and untreated subjects. 
 

2.3.3. Covariance adjustment 

Propensity score can also be used as a regressor in regression models for 
covariates. 
This is similar to an Analysis of Covariance (ANCOVA) model; that is, a class of 
models that allow for both continuous and categorical predictors to be modelled 
simultaneously and to test whether certain factors have an effect on the outcome 
of interest after removing the variance for which covariates account. 
 
As shown in Rosenbaum and Rubin (1983), using propensity score in the linear 
models requires a stronger assumption that the conditional expectation of the 
outcome is linear in the propensity score. Compared with matching and 
stratification, covariance adjustment is more sensitive to the nonlinearities in the 
response model. However, covariance adjustment for propensity scores can be 
used as a supplement to matching or stratification, which will help to remove the 
residual bias (Rubin & Thomas, 2000).  
 
The estimation of treatment effect is generally not affected dramatically, but using 
regression adjustment can decrease the standard errors of the estimated effects.  
 

2.3.4. Weighting 

First introduced by Rosenbaum (1987), weighting on the PS is conducted to 
ensure samples are representative of the population of interest. Weighting is often 
used in a survey research, test equating, and norming to draw inferences from 
non-representative samples to a population. In PS analysis, individual units are 
weighted based on their estimated PS (Robins & Finkelstein, 2000).  
 
In the binary framework the weighting procedure starts by estimating the PS. 
Each unit in the 𝑇 = 1 group is assigned a weight proportional to 1/𝜋, and each 
unit in the 𝑇 = 0 group is assigned a weight proportional to 1 (1 − 𝜋)⁄ . This 
technique is very similar to the Horvitz and Thompson (1952) weighting method 
used in sample surveys. The weight of a sample unit is generally the inverse of the 
subject’s probability of being included in the sample. Units with lower 
probabilities of getting selected into their respective treatment group will have 
more weight allocated to them, whereas units with higher probabilities of 
selection will be assigned less weight.  
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Considering 𝜔(1) =
ଵ

గ
= 1/𝑃(𝑇 = 1|𝑿𝒊)  and 𝜔(0) =

ଵ

(ଵିగ)
= 1/

𝑃(𝑇 = 0|𝑿𝒊), where 𝜔(𝑡) represents the weight of unit i at treatment level t, the 
inverse probability weighting estimator for the ATE is  
 

   ATE =
∑ 1 (Ti=1)Yiωi(1)

∑ 1 (Ti=1)ωi(1)
- 

∑ 1 (Ti=0)Yiωi(0)

∑ 1 (Ti=0)ωi(0)
 ,  (2.4) 

 
where summations are taken over the entire sample. 
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CHAPTER 3. Generalizing the Propensity Score to the 

Continuous Treatment Setting 

 

 

3.1. Introduction 

It is not rare to find practice situations in which treatment regimens are not binary, 
and units might be exposed to different levels or doses of treatment. This is true, 
both in economic and in medical applications. In these situations, studying the 
impact of such treatment as though it were binary can mask some important 
features. 
From a notational point of view, the framework of potential outcomes is easily 
adapted to situations where the treatment variable is continuous. 
 
Suppose that 𝑇 takes values within a real interval Ƭ = [𝑡, 𝑡௫]. The potential 
outcomes are now an uncountably infinite set 𝛶 = {𝑌(𝑡): 𝑡 ∈ Ƭ}. The observed 
outcome can still be written as 𝑌ୀ𝑌(𝑡), and the causal effect for unit i of moving 
from treatment dose t  to t* is 𝑌(𝑡∗) − 𝑌(𝑡).  
 
The classic causal inference methods dealing with binary treatment, stratification, 
matching, weighting and covariance adjustment, do not have obvious extensions 
to continuous treatment. The multiple treatment problem has not received much 
attention, and there is considerably less evidence compared to the binary setting. 
 
More than 10 years ago, several researchers proposed generalization of the 
propensity score methodology for the non-binary treatment regimens (Flores, 
Flores-Lagunes, Gonzalez, & Neumann, 2012; Hirano & Imbens, 2004; Imai & 
Van Dyk, 2004; Guido W Imbens, 2000). Novel applications appear also in 
Ertefaie and Stephens (2010) and Moodie and Stephens (2012). 
Flores-Lagunes, Gonzales, and Neumann (2012), proposed two extensions to the 
method of Hirano and Imbens (2004) that aim to provide more a robust estimation 
through a more flexible response model. 
 
In this work, the two main generalizations of the propensity score methods,  the 
propensity function (PF) of Imai and van Dyk (2004), and the generalized 
propensity score (GPS) of Hirano and Imbens (2004), along with the Flores et al. 
(2012) extension, will be examined more closely and applied to a cohort study. 
 

3.2. Generalized Propensity Score 

One of the first studies dealing with continuous treatment is the work of Imbens 
(1999). He proposed an extension of the propensity score methodology allowing 
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for an estimation of average causal effects with multi-valued treatments. This 
works represents the starting point for the next analysis of Hirano and Imbens 
(2004), where the propensity score method is extended in a setting with 
continuous treatment to estimate the dose-response function (DRF), 𝜇(𝑡) =
𝐸[𝑌(𝑡)]. 
 
The key assumption is the generalization of the unconfoundedness hypothesis for 
the binary treatment to the multivalued case: 

 
    𝑌(𝑡)⟘𝑇|𝑋  for all t ∈ Ƭ.   (3.1) 

 
This is referred to as weak unconfoundedness by Hirano and Imbens (2004), since 
it doesn’t require joint independence of all potential outcomes, {𝑌(𝑡)}௧∈Ƭ. 
However, it does require conditional independence for each value of the 
treatment. 
 
Next step is the definition of the Generalized Propensity Score (GPS) as 𝑅 =
𝑟(𝑇, 𝑋), where  
     𝑟(𝑡, 𝑥) = 𝑓 |(𝑡|𝑥) 
is the conditional density of the treatment given the covariates.  The generalized 
propensity score is calculated at each corresponding level of treatment, so that 
there are as many propensity scores as there are levels of treatment. 
 
Together with the balancing property of the GPS, that assumes that within strata 
with the same value of 𝑟(𝑡, 𝑥) the probability that 𝑇 = 𝑡 doesn’t depend on the 
value of X, i.e. 𝑋⟘𝟙{𝑇 = 𝑡}| 𝑟(𝑡, 𝑋), the unconfoundedness assumption implies 
that assignment to treatment is unconfounded given the GPS. Thus, for every t,  
 

  𝑓 ൫𝑡|𝑟(𝑡, 𝑋), 𝑌(𝑡)൯ = 𝑓 ൫𝑡|𝑟(𝑡, 𝑋)൯ .   (3.2) 
 

This is the assumption of weak ignorability of the treatment assignment given the 
propensity score. 
 
The GPS estimated can be used to eliminate any bias associated with differences 
in the covariates. The estimation of the parameter of interest 𝜇(𝑡) = 𝐸[𝑌(𝑡)] is 
obtained with a two-step procedure that first estimates the conditional expectation 
of the outcome given the treatment level T=t and the GPS (i) , then averages the 
estimated conditional expectation in (i) over the distribution of the pre-treatment 
variables, to obtain the dose-response function at that particular level of treatment 
(ii): 
 
(i)𝛽(𝑡, 𝑟) = 𝐸[𝑌(𝑡)|𝑟 (𝑡, 𝑋) = 𝑟] = 𝐸[𝑌|𝑇 = 𝑡, 𝑟 (𝑡, 𝑋) = 𝑟] 
(ii) 𝜇(𝑡) = 𝐸[𝑌(𝑡)] = 𝐸[𝛽൫𝑡, 𝑟(𝑡, 𝑋)൯]. 
 
What has been proposed by the authors is a parametric procedure for which both 
the estimation and the inference problems are handled with a parametric approach, 
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while the basic framework is more general, thus nothing prevents the 
implementation with a more flexible approach, as stated by the authors. 
In the first stage, it is suggested to use a normal distribution for the treatment 
given the covariates:  

𝑟(𝑇, 𝑋) =  𝑇|𝑋 ∿ 𝑁(𝛽 + 𝛽ଵ
ᇱ𝑋, 𝜎ଶ). 

The estimated GPS is: 

𝑅ప
 =  

1

ඥ2𝜋𝜎ଶ
exp(−

1

2𝜎ଶ
 (𝑇 − 𝛽መ − 𝛽መଵ

ᇱ𝑋)
ଶ 

where 𝛽, 𝛽ଵ,, and 𝜎ଶ are estimated by maximum likelihood. 
 
In the second stage the conditional expectation of 𝑌  given 𝑇 and 𝑅 is estimated 
using a quadratic approximation: 
 
 𝐸[𝑌|𝑇, 𝑅] =  𝛼 + 𝛼ଵ𝑇 +  𝛼ଶ𝑇

ଶ + 𝛼ଷ𝑅 + 𝛼ସ𝑅
ଶ + 𝛼ହ𝑇𝑅       (3.3) 

 
The parameters of equation (3.3) are estimated by OLS using the estimated GPS 
𝑅ప
 . 
 
The last step estimates the average potential outcome at treatment level t as: 

𝐸[𝑌(𝑡)] =  
ଵ

ே
∑ (𝛼ො + 𝛼ොଵ𝑡 +  𝛼ොଶ𝑡 ଶ + 𝛼ොଷ�̂�(𝑡, 𝑋) + 𝛼ସ�̂�(𝑡, 𝑋)

ଶ +ே
ୀଵ

𝛼ହ𝑡 �̂�(𝑡, 𝑋))   (3.4) 
 

To obtain an estimation of the entire dose-response function (DRF) this expected 
mean can be estimated for each level of treatment one is interested in. 
Standard errors can be estimated using the bootstrap method on the entire process. 
Most of the time we are interested in estimating the relative dose-response 
function, that is  𝐸{𝑌(𝑡) − 𝑌(0)}, comparing the average outcome under each 
treatment level t with the control level t=0. However, the control group can be 
non-existent or not have a proper meaning, leaving a more interpretable result 
being expressed only by 𝐸{𝑌(𝑡)}. 
 

3.3. The Propensity Function 

Another way to generalize the propensity score approach has been proposed by 
Imai and van Dyk (2004), through the Propensity Function (PF). They proposed a 
method capable of establishing causal estimates in observational studies, 
encompassing what was proposed by Hirano and Himbens in 2004. Relying on 
SUTVA and strong ignorability of treatment assignment, they defined the PF as 
the entire conditional probability density (or mass) function of the multivariate 
treatment 𝑇 given the covariates 𝑋, i.e. 𝜋ఝ(. |𝑋) = 𝑝ఝ(. |𝑋) , parametrized by φ. 
This is analogous to the propensity score for the binary treatment, 
where  𝜋ఝ(. |𝑋) is exactly determined by 𝑝ఝ(𝑇 = 1|𝑋) . Thus, Imai and van Dyk 
made an extra assumption of Uniquely Parametrized Propensity Function, in order 
to summarize the PF. This assumption states that for every value of X, there exists 
a unique finite-dimensional parameter, 𝜃 ∊ 𝛩, such that 𝜋ఝ(. |𝑋) depends on 𝑋 
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only through 𝜃ఝ(𝑋). In other words, the propensity function  𝜃 uniquely 
represents  𝜋ఝ൫. ห𝜃ఝ(𝑋)൯, that could be written as   𝜋(. |𝜃), for example, if we use 
a normal linear model for the treatment, 𝑇 ∼ 𝒩(𝑋

ᇱ𝛽, 𝜎ଶ) . 
With 𝜑 = (𝛽, 𝜎ଶ), then 𝜋ఝ(. |𝑋) is uniquely represented by the scalar 𝜃 = 𝑋

ᇱ𝛽. 
 
Imai and van Dyk proposed different uses of the PF. One possibility is the sub-
classification or stratification, that estimates the causal effects within these 
subclasses and obtain the overall treatment effect by a weighted average of the 
estimates across strata, using weights based on the number of observations in each 
subclass. The hypothesis under this method is that, if the PF is correctly specified, 
then the covariates are distributed evenly across groups defined by its quartiles. 
Within each subclass, the outcome can be modelled in a standard way as a 
function of the treatment. 
 
A second approach proposed by Imai van Dyk is a smooth coefficient model, 
which allows the intercept and the slope to vary smoothly as a function of the PF: 
 

   𝐸(𝑌|𝑇, 𝜃) = 𝑓൫𝜃൯ + 𝑔൫𝜃൯ ∗ 𝑇,   (3.5) 
 

where 𝑓(∙) and 𝑔(∙) are unknown but smooth continuous functions. This could be 
fit using cubic regression splines as the basis functions. 
Computing the average causal effect in this last approach involves averaging 
𝑔൫𝜃൯ across all units. 
 

3.4. Extension to Hirano and Imbens GPS 

Flores, Flores-Lagunes, Gonzales, and Neumann (2012) proposed two extensions 
to the method of Hirano and Imbens, aiming to overcome the bias resulting from 
misspecification of (2.3), by using a more flexible response model. 
The first extensions generalizes (3.3) with 𝐸൫𝑌|𝑇, 𝑅൯ = 𝛽൫𝑇, 𝑅൯, where 𝛽൫𝑇, 𝑅൯ is 
a flexible nonparametric model. The DRF is obtained through (3.4) with 
 

   𝐸{𝑌(𝑡)} =  
ଵ

ே
∑ 𝛽መ[𝑡, �̂�(𝑡, 𝑋𝑖)]ே

ୀଵ   .  (3.6) 

 
The second method involves inverse weighting (IW) and nonparametric 
estimators based on a kernel function. The method starts from the assumption that 
the Horvitz-Thompson (1952) weighting can be applied to a continuous treatment 
by weighting units with the inverse of the GPS at any given level of treatment, 
and then smoothing over the levels with a kernel approach. The estimated DRF is  
 

   �̂�(𝑡) =
∑ (்ି௧)௪(௧)ಿ

సభ

∑ (்ି௧)௪(௧)ಿ
సభ

    (3.7) 

 
where 𝐾(𝑇 − 𝑡) is a kernel function (Gaussian kernel, triangular kernel density, 
or other shape), in which h is a bandwidth around t  tending to 0 as 𝑁 → ∞. The 
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kernel function is used to give more influence to units closer to t than farther 
away.  
In the variation proposed by Flores et al. (2012) each individual kernel weight is 

divided by its GPS at t. In particular let’s consider 𝐾෩(𝑇 − 𝑡) =
(்ି௧)

̂(௧,𝑿)
=

𝐾(𝑇 − 𝑡)𝑤ෝ(𝑇 = 𝑡), then an estimate of 𝜇(𝑡) is  
 

    �̂�(𝑡) =
∑ ෩(்ି௧)

ಿ
సభ

∑ ෩(்ି௧)ಿ
సభ

    (3.7) 

 
This is an adaptation of the Nadaraya-Watson estimator (Nadaraya, 1964), that is 
a local constant regression weighted by the inverse of the GPS. 
 
Another estimator proposed by Flores et al. (2012) is a local linear regression of Y 
on T with a weighted kernel function 𝐾෩(𝑇 − 𝑡): 
 

    �̂�(𝑡)ூௐ =
బ(௧)ௌమ(௧)ିభ(௧)ௌభ(௧)

ௌబ(௧)ௌమ(௧)ିௌభ
మ(௧)

  , (3.8) 

 
where 𝑆(𝑡) =  ∑ 𝐾෩(𝑇 − 𝑡)ே

ୀଵ (𝑇 − 𝑡) and 𝐷(𝑡) =  ∑ 𝐾෩(𝑇 − 𝑡)ே
ୀଵ (𝑇 −

𝑡)𝑌. 
 
Moodie and Stephens (2012) extended the HI method to the longitudinal setting  
to estimate the direct effect of a continuous treatment on a longitudinal response, 
where repeated measures of outcome and treatment may be present. They 
formulated an approach that deals with GPS for analysis, with repeated measures 
response data with interval dependent treatments. In their study they considered 
two time intervals and estimated the potential outcome in the first interval as a 
predictor for the second interval. 
 

3.5. Extension to Imai and van Dyk 

A modification of the Imai and van Dyk’s method has been suggested by (Zhao, 
van Dyk, & Imai, 2013) in order to extend the propensity function estimator from 
the average effect to the dose-response curve estimation. In fact, the reason behind 
this method is the need to make the DRF more robust and flexible. 
 
The new method considers a smooth function of the PF that is less rigid than 
subclassification of its values. To estimate the DRF the predictions are averaged 
over the empirical distribution of Xi  for each value t of interest. 
 
In details, the method first estimates the propensity function  𝜃 = 𝜃ఝ(𝑋) as a 
function of the treatment given the covariates. 
 
Then it fits the model 𝐸൫𝑌(𝑇)ห𝑇 = 𝑡, 𝜃൯ = 𝑓(𝜃 , 𝑇) , and estimates the smooth 
function 𝑓(∙). The dose-response function is obtained by averaging over the 
empirical distribution of 𝜃 at each value t of interest: 
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    𝐸[𝑌(𝑡)] =
ଵ

ே
∑ 𝑓መ(𝜃 , 𝑡)ே

ୀଵ .   (3.9) 

 
The most important difference with the Hirano and Imbens’s DRF is the use of the 
PF instead of the GPS in (3.9). The authors demonstrated that the θ is a much 
better predicted variable than the GPS, since the strong dependence of this last 
one from the treatment value t, together with the non-monotonicity of this 
dependence, make the model more complex and less robust in the estimates. 
 

3.6. Importance Sampling  

In the setting of the marginal structured models, Robins et al. (2000) applied the 
weighting approach to the continuous treatment. In order to obtain unbiased 
estimates of the effect, the authors proposed to use stabilized weight, under the 
assumption of normal distribution of the treatment, defined as 𝑤(𝑡) =
 𝑔(𝑇)/𝑃(𝑇 = 𝑡|𝑋), where 𝑔(𝑇) is the marginal density for 𝑇 under normal 
distribution, and the denominator is the conditional density of the continuous 
variable 𝑇 given 𝑋. To estimate 𝑔(𝑇) one can reasonably use the density of a 

normal variate with mean 𝑇ത =
ଵ

ே
∑ 𝑇

ே
ୀଵ  and variance

∑ (்ି ത்)మಿ
సభ

(ேିଵ)
, and to estimate 

𝑃(𝑇 = 𝑡|𝑋) by the normal density with mean 𝑇 and variance 
∑ (்ି ்)మಿ

సభ

(ேିିଵ)
, where 

𝑇 is the fitted value from the OLS regression of 𝑇 on covariates. If no 
stabilization is performed in the continuous setting, then the unstabilized weights 
may have infinite variance and thus cannot be used. 
 
The numerator of the stabilized weights instead  is meant to adjust the fit to what 
it might have been, had the treatment been assigned independently from the 
covariates. 
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3.7. Covariate Balance and Common Support 

One important feature of the analysis with the propensity score, is the check of the 
correct specifications of the propensity score model.  
The quality of the PS depends on two major aspects: having the important and 
relevant covariates included in the model, and having a correct specification of the 
functional form of the covariates in the model (Guo S & Fraser, 2010). Correctly 
specified PS are able to successfully eliminate bias. 
 
Although a unique test to assess the accuracy of model specification does not 
currently exist, two central properties of the PS can be examined to determine it: 
the covariate balance property and the common support region. 
 
The idea of the balanced property is that the estimated PS and covariates should 
be balanced between treated and control units. Assessing balance involves 
comparing the distribution of the measured baseline covariates in the treated and 
control units, before and after conditioning on PS. This can be done by using 
standardized mean differences, statistical tests or graphical representations 
(Austin, 2011). 
 
In the continuous treatment setting, there exist different methods for checking 
covariate balance. Hirano and Imbens (2004) test the balance property dividing 
the treatment values into K intervals according to the sample distribution (it can 
be quartiles), obtaining a series of binary treatments. Within each treatment 
interval the GPS is computed at a representative point of the treatment variable in 
the group, 𝑇෨,  (it could be the mean, the median or another percentile) for each 
unit. The GPS value obtained at 𝑇෨ will be then defined as �̂�(𝑇෨, 𝑋).  The 
covariate balance is checked for these intervals first by stratifying units on the 
scores �̂�(𝑇෨, 𝑋) in m intervals, defined by the quantiles of its distribution. Then 
within each m interval, two-sample t-tests are performed to compare the mean of 
each covariate between units that belong to the k treatment interval and units that 
are in the same group of GPS, but belong to another treatment interval. Finally, 
the within-strata differences in means and variances are combined to compute a 
single t-statistic for each covariate, by weighting with weights given by the 
number of observations in each GPS interval. 
 
As pointed out by Imai (2008) and Austin (2011), the non-statistical significance 
in the tests doesn’t imply lack of balance, since a small sample size can limit the 
ability to catch an imbalance in the covariate. This test-based diagnostic should be 
then taken with great care, being also the balance property referred to a particular 
sample and not easily and appropriately inferred to the total population (Imai et 
al., 2008). 
Another method by Flores et al (2012) instead compares unrestricted (with all the 
covariates) and restricted (that sets the coefficient of all the covariates to 0) 
models by using likelihood ratio tests. 
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Imai and van Dyk (2004) suggest checking the balance by regressing each 
covariate on the treatment and comparing the distribution of t-statistics for each of 
the regression coefficients before and after conditioning on PF. 
 
To guarantee a common support for units with different treatment levels, these 
ones are first binned, and then the GPS values are checked for each treatment 
level (Bia, Flores, Flores-Lagunes, & Mattei, 2014). 
 
The procedure starts by first binning the treatment in K classes based on the 
treatment level, defined by the percentiles Q of its distribution. Then the GPS is 
computed at the median level of treatment in a specific percentile Qk for each unit 
i, 𝑅ప

 = �̂�(𝑇෨, 𝑋). The common support region with respect to a specific percentile 
is obtained by comparing the support of the distribution of 𝑅ప

  for those units 
belonging to the percentile Qk to that of units not belonging to that percentile. The 
common support region is defined by Bia et al (2014) as: 
 

  𝐶𝑆 = ⋂ ቄ𝑖: 𝑅ప
 ∈ [𝑚𝑎𝑥 ቄmin൛: ொೕసൟ 𝑅


 , min൛: ொೕಯൟ 𝑅


ቅ ,

ୀଵ

𝑚𝑖𝑛 ቄmax൛: ொೕసൟ 𝑅


 , max൛: ொೕಯൟ 𝑅


ቅ]ቅ. 

 
Units that fall in the overlapping region are kept and the others discarded. This 
process is repeated for each treatment class and the units not discarded are used in 
the analysis. 
  
 

3.8. Conclusions 

The continuous treatment problem is relatively poorly studied and is significantly 
more complicated than the binary one. 
Hirano and Imbens (2004) proposed one of the most important work  on 
continuous treatment, providing an estimate of a measure of effect at each level of 
the treatment. The focus of the work is to provide a dose-response curve (DRF) of 
the potential outcome given different levels of propensity score, that is not by 
definition an estimation of the average effect of the treatment. 
 
Traditionally, the research on the potential outcomes aims at estimating an effect 
by comparing the treated and not-treated group. Instead in this work, a proper 
estimation of this kind of effect is not possible to obtain. Rubin (1974) stated that 
we need the information of the non-treated units in order to obtain some value of 
their potential outcomes, while in Hirano and Imben’s work (2004) no comparison 
has been performed, since only information about treated units are used being in 
the continuous treatment framework.  
One thing to consider about Hirano and Imbens’ method is that their weak 
ignorability assumption of the treatment given the GPS doesn’t guarantee that T 
will be uncorrelated with the potential outcomes, since to achieve conditional 
independence we would need to condition on the entire family of GPS, not only to 
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the values observed for the specific treatment level. That implies that not all the 
response models can be used. Stratification for example is not feasible, unless the 
classifying variable is low dimensional (Zhao et al., 2013). In fact, subclasses are 
defined by similar values for a single propensity score at a particular treatment 
level so that we can estimate the average potential outcome for that treatment 
level within the subclasses, and we do so separately for each treatment level, with 
different subclasses for each treatment level. 
 
Imai and van Dyk (2004) proposed a method to estimate the average causal effect, 
that makes the most important difference with Hirano and Imbens’s approach. 
What can be pointed out is that in this method the stratification on the PF  implies 
a proportional structure of the levels of the treatment that might be not true. Other 
specifications, like the smooth approach, might be more suitable in some cases. 
 
One interesting property of their method, however, is that since we can fit a 
response model conditional on T within each subclasses of PS, then we can all the 
same average these fitted models and estimate the DRF (Zhao et al., 2013). 
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CHAPTER 4. Cohort Study on Industrial Air Pollution 

Exposure from a Large Steel Plant and the Risk of Mortality 

and Morbidity in the Nearby Population in the Taranto Area, 

Apulia Region, Italy  

 

4.1. Introduction 

The city of Taranto is located in in the Apulia region in Italy and is one of the 
most industrialized areas in southern Italy and Europe. The area has been included 
among the 14 sites of national interest requiring remediation, and defined in the 
1990s as an “area at high risk of environmental crisis” by the Italian government, 
for the massive presence, since the early 1960s, of industrial sites, including one 
of the largest steel plants in Europe, mineral deposits, oil refining, cement 
production, fuel storage, power production, mining industry, military plants and 
the harbour. 

Several environmental monitoring studies and measurement campaigns of 
industrial emissions in the Taranto area showed a critical framework of 
environmental pollution and the relevant contribution of the steel factory on the 
levels of pollutants responsible of adverse health effects (Brand, Pulles, Gijlswijk, 
Fribourg-Blanc, & Courbet, 2004). 

Epidemiological studies conducted in the area revealed high mortality risks in 
Taranto, for all causes, all cancers and in particular for lung, pleura, bladder, 
lympho-hematopoietic system and, respiratory disease and pneumonia (Graziano, 
Bilancia, Bisceglia, Pollice, & Assennato, 2009; Martinelli et al., 2009; Martuzzi, 
Mitis, Biggeri, Terracini, & Bertollini, 2002; Mitis, Martuzzi, Biggeri, Bertollini, 
& Terracini, 2005; M A Vigotti, Cavone, Bruni, Minerba, & Conversano, 2007). 
The most recent study SENTIERI lead by the National Institute of Health (ISS) 
analysed mortality of the population living near “sites of national interest for 
environmental remediation” (SIN). The study found excesses in mortality in the 
area of Taranto and the small municipality of Statte than expected for lung and 
pleura cancer, non-Hodgkin’s lymphoma, cardiovascular and respiratory diseases, 
and digestive disease for both genders (Comba et al., 2012).  

Most and less recent multicentre studies on short term effects of air pollution in 
Italy (MISA, EPIAIR1 and EPIAIR2), in terms of mortality/morbidity, found 
increases in risks in this area for all causes, cardiovascular and respiratory 
diseases (Alessandrini et al., 2013; Berti, Galassi, Faustini, & Forastiere, 2009; 
Biggeri, Bellini, & Terracini, 2004; Colais et al., 2009; Scarinzi et al., 2013; 
Stafoggia et al., 2009).  
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These findings, together with the massive industrial emissions and several high 
pollution episodes, have generated considerable echo and public concerns 
regarding the possible connection between adverse health outcomes and air 
pollution from the plant. 

In 2011, the Court of Taranto requested a survey to evaluate emissions from the 
steel plants and an epidemiological study to investigate on the health status of the 
resident population in relation to the emissions of the plant (Forastiere, Biggeri, & 
Triassi, 2012; Sanna, Monguzzi, Santilli, & Felici, 2012). The results of these 
reports led the closure of many sectors of the steel plant ordered by the Taranto 
Court. The epidemiological study used the current cohort of residents from 1998 
to 2010, and the analyses were performed by districts and socioeconomic position 
using Cox Proportional Hazard Models. Published results (Mataloni et al., 2012) 
showed greater effects on the health of the population residing in neighbourhoods 
closest to the industrial area, like Paolo VI, built in the late 1960s mainly as a 
residential area of the steel plant’s workers, Tamburi, close to the mineral 
deposits, and Borgo. All these areas are the most polluted, according to the spatial 
distribution of pollutants in the area (Mangia, Gianicolo, Bruni, Vigotti, & 
Cervino, 2013). People living in these areas showed higher levels of mortality, 
especially for all malignant neoplasms, cancer of pancreas and lung, cardiac, 
respiratory, and digestive system diseases. Risks were higher in the Paolo VI 
district compared to the others. Low socio-economic position was associated with 
higher risks of mortality for all causes, cancers, and cardiovascular and respiratory 
diseases. On the same cohort of residents, followed-up until 2010, was based a 
more recent study (Maria Angela Vigotti, Mataloni, Bruni, Minniti, & Gianicolo, 
2014), that explored the mortality risk in all the neighbourhoods of the Taranto 
area, including the industrial ones. The results of this study confirmed findings 
from Mataloni et al.(2012), showing higher risks in the neighbourhoods closest to 
this area and the highest increases in the Paolo VI district. 

The present study used the same cohort of residents enrolled from 1998 to 2010 
(Mataloni et al., 2012), followed up until 2014 and with mortality by cause 
assessed until 2013. The Mataloni et al. study, like many longitudinal European 
studies (Beelen et al., 2008; Beelen et al., 2014; Bentayeb et al., 2015; Giulia 
Cesaroni et al., 2013; Jerrett et al., 2009), included exposure estimated at 
individual level, but only at the study inception (baseline), as a marker for long 
term exposure. 

Few longitudinal studies until now dealt with time-varying exposure assessment 
(Bentayeb et al., 2015; Lepeule, Laden, Dockery, & Schwartz, 2012; Tétreault et 
al., 2016; Wahida et al., 2016) for every year of follow-up, and among them only 
two studies accounted for all the residential history of participants (Bentayeb et 
al., 2015; Wahida et al., 2016). However, in both these studies, exposure 
assessment was at the zip code and census block level, respectively, and not at the 
residential address.  
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Purpose of the Study 

In the present study, we incorporated into the exposure assessment the exposures 
associated with annual residential mobility patterns in the study period, in a time-
dependent manner, considering also the past (before the baseline) residential 
history, which was available at the individual address for each year of permanence 
in the area. 

The aim was to assess whether exposure to industrial emissions was related to 
increased mortality from all natural causes, and cardiovascular and respiratory 
conditions, as well as to increased cardiorespiratory morbidity in the nearby 
population. Mortality and incidence of lung cancer was also of interest. These 
conditions were of a priori interest because of the large literature on the health 
effects of fine particles, but few studies on populations living near industries. A 
large population-based cohort study has been conducted with a long follow-up of 
mortality, hospital admissions, and cancer incidence; exposure to industrial 
emission was estimated retrospectively for all the subjects. 

A cohort study in environmental epidemiology evaluates the association between 
environmental exposures and health effects while controlling for potential 
measured confounders. In a residential cohort design, where all the residents in a 
specific area are selected instead of a population sample, the information at the 
individual level about all possible confounders is not available, since this could 
only come from a detailed survey with a direct questionnaire to every participant. 
One relevant unmeasured confounder is for example smoking habit, an important 
risk factor for most of the health outcomes of interest, and potentially 
heterogeneously distributed among those more or less exposed to air pollution. 
 
In this study, a first causal inference exercise was performed to gauge the 
potential bias due to unmeasured confounders, strictly related to lifestyle. The 
relationship between exposure to industrial pollutants and the prevalence of 
smoking habit, alcohol consumption and obesity was explored following the 
indirect adjustment approach by Schneeweiss et al. (Schneeweiss, Glynn, Tsai, 
Avorn, & Solomon, 2005). 
 
 

4.2. Methods 

Study Design 

The cohort of residents in the study area was enrolled using municipality data of 
Taranto and the two nearby towns of Massafra and Statte, located in the Apulia 
region. The cohort included all residents in the area as of January 1st 1998 and all 
subjects entering later for immigration or birth until December 31st 2010. The data 
source for the enrolment was the General Registry Office of the three cities. The 
municipality datasets underwent several quality controls, such as elimination of 
residents registered to AIRE (Register of Italians Resident Abroad) and double 
records. By using municipality data, vital status (alive, dead, migrant) of each 
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participant as of December 31st, 2013 was assessed. The municipalities databases 
contained for each person all changes of residence until the end of 2010. Each 
address was geocoded using ArcGIS software. A census block-level 
socioeconomic position (SEP) (Caranci et al., 2010) index was assigned to each 
participant based on his/her geocoded address. This index was composed by 
information recorded at the 2001 census: percentage of population with 
educational level equal to or less than primary school, percentage of the active 
population unemployed or looking for their first occupation, percentage of rented 
houses, percentage of single parent families, and population density (number of 
occupants per 100 m2). For the present study, the index has been classified into 5 
quintiles, representing high, middle-high, medium, middle-low and low SEP. 

Information about cause of death (1998-2013) and hospitalization diagnoses 
(1998-2014) was retrieved from the Regional Health Databases, while cancer 
incidence was extracted from the Regional Cancer Registry. Events of 
mortality/morbidity, with corresponding dates and causes of death, principal 
diagnosis of the first hospital discharge (ICD-9 CM and ICD-10 revisions), and 
cancer diagnosis for the period 2006-2011 (ICDO-3T), were assigned to each 
person enrolled, upon record-linkage procedures between the cohort file and the 
health databases. 

Air Pollution Exposure Assessment 

Taranto is one of the most highly industrialized cities in Italy, where shipping, 
industries and urban activities co-exist. The main industrial activity is the 
integrated steelwork (“ILVA”). The areal source emissions are the hot emissions 
from the steelwork, the cold emissions generated by the fossil fuels processing 
products, the wind erosion from the large coal mining park, the handling on the 
conveyors and material transport. 
 
Daily simulations were carried out to estimate three-dimensional concentrations 
of pollutants through a Lagrangian modelling system, developed by the Regional 
Environmental Protection Agency (ARPA) of the Apulia region for the year 2010. 
The dispersion model assessed the impact of the harbour, industrial and urban 
activities on air quality in the Taranto area. The modelling system included the 
SWIFT meteorological model, the SURFPRO turbulence pre-processor and the 
SPRAY Lagrangian particles dispersion model (Giua et al., 2014). SPRAY is a 
3D model particularly suited to provide an accurate local distribution of the 
primary pollutants in the atmosphere in non-homogeneous and non-stationary 
conditions.  The meteorology in the area was built with the SWIFT and 
SURFPRO codes on hourly basis, by using the products for the year 2007 
supplied by the MINNI project (Zanini, 2009) as the input. Model results were 
validated using measured data in 9 fixed monitoring stations of the ARPA 
network. 
 
In this study PM10 (Particulate Matter of less than 10 μm in aerodynamic 
diameter) and SO2 (Sulphur dioxide) concentrations from industrial sources were 
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considered as exposure. The individual exposure to air pollutants was obtained in 
a multi-step procedure. 

1) In the first step, the 2010 PM10 and SO2 concentration maps were 
overlapped to the cohort geocoded addresses in order to assign to each 
residence that year’s corresponding estimated industrial air pollutant 
concentration.    

2) The ILVA steel plant provided productivity data per kiloton year (kton/a) 
of steel, coke, cast iron and others from 1965 to 2014. In addition, air 
pollutants emissions for every process of the industry (coke ovens, 
sintering plant, blast furnace, steel plant, mining parks and transport of 
materials) were supplied by the Istituto Superiore per la Protezione e la 
Ricerca Ambientale (ISPRA) for the years 1990, 1995, 2000 and 2005. For 
the purposes of this study, only emissions from the steel production 
process were considered. Emissions for missing years were estimated by 
backward and forward interpolation of the emission series from 1965 to 
2010, weighted with the productivity ratio of the current year to the 
previous/following one: 

 1965-1990: the emission in year x was obtained retrospectively, 
starting from the first known value in the 1990, weighting with the 
ratio of the productivity in the current year to the following one 
(4.1) 

  𝐸(𝑥) = 𝐸(𝑥 + 1) ∗
(௫)

(௫ାଵ)
   (4.1) 

 
where x indicates the year, E is the estimated emission and P is the 
productivity 

 1991-2010: the emission in the year x was obtained through the 
interpolation of the emissions in the time intervals, always of a 
length of 5 years, between two observed knowns values (superior 
and inferior extreme of the interval, for example 2005 and 2010), 
weighting them with the relative productivity of the previous year 
(4.2) 
 

   𝐸(𝑥) = 𝐸(𝑥 + 1) +
ா(௦௨)ିா()

ହ
∗

(௫)

(௫ିଵ)
  (4.2) 

 
  where E(sup) and E(inf) represent the emissions at the two  
  extremes of the time interval of 5 year length. 

 2010-2014: the emission in the year x was estimated starting form 
the last value provided in 2010, weighting prospectively with the 
relative productivity of the previous year (4.3) 
 

 𝐸(𝑥) = 𝐸(𝑥 − 1) ∗
(௫)

(௫ିଵ)
   (4.3) 

 
3) Once the annual emission series was complete for the entire period 1965-

2014, an annual calibration factor (4.4) was computed as the ratio of 
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emissions on one year to the emissions in the year 2010, the same of the 
ARPA dispersion model 
 

E
EF x

x ˆ
ˆ

2010

     (4.4) 

 

    where x is the year and Ê is the estimated emission. 
This factor was computed to modulate the exposure estimated from the 
dispersion model with the information acquired on the effective 
productivity and emissions from the steel plant. 

4) The yearly calibration factor was then multiplied to the individual 
exposure from the dispersion model for every residence and every year. In 
this way we obtained an annual time-varying exposure from the industry 
based on the spatial pattern of the dispersion model and the temporal 
pattern estimated by the annual series of the productivity and the 
emissions of the steel plant. 
 

Occupational Exposure 

In Italy, retirement contribution history for workers in private sectors is currently 
available at INPS (National Social Insurance Agency) databases, where, for each 
year since 1974, the following information are recorded: amount of contributions 
paid, length of working period, worker task (blue-collar or white-collar workers) 
and the company where the activity was performed. Companies are moreover 
classified according to the branch of economic activity. Using the fiscal code it 
was possible to link the occupational history to each person enrolled in the cohort. 
Then people on duty during the period 1974-1997 were selected by branch of 
activity, so previous occupational history was categorized into five groups: 

 Blue collar workers in steel factories; 
 White collar workers in steel factories; 
 Naval construction workers; 
 Mechanical construction workers; 
 Workers in other occupational branch or people without contribution 

payments (reference category). 
 

Statistical Analyses 

Each resident contributed to person-years at risk from the date of entry in the 
cohort (1998 or later within 2010) until date of exit for death, emigration or end of 
follow-up, whichever came first. The association between long-term exposure to 
air pollutants (defined as time-varying annual average) and mortality/morbidity 
was estimated using a survival analysis with multivariate Cox proportional hazard 
models. Hazard Ratios (HR) and corresponding 95% Confidence Intervals (95% 
CI) per 10 g/m3 increase of each pollutant were computed. The hypothesis of 
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proportional hazards was verified by using the command stphtest in Stata after 
estimating the Cox model. This test essentially asks whether or not the slope in 
the regression of time vs. Schoenfeld’s residuals is flat (it should be if PH 
property holds). 
Age was used as the time scale. Observation times were censored at the time of 
death for causes different from the one under study, emigration, loss to follow-up, 
or end of follow-up, whichever came first. A priori confounders included: gender, 
area-level socioeconomic position, occupation (recorded at baseline), calendar 
period in 3 classes (defined as time-dependent).  
Air pollution exposure was modelled using alternative time-varying variables 
based on different time windows, with the aim of exploring effects attributable to 
different averaging periods: current exposure (lag 0, e.g. average exposure in the 
current year), and 5-year time-window lagged concentrations over the period 
considered (1-5, 6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 35+ years). Subjects can 
belong to more than one time window depending on the length of their residential 
history of exposure. 
 
Hazard Ratios were expressed for 10 µg/m3 increment of pollutants for the 
average exposures. As an additional analysis, we relaxed the assumption of 
linearity of the concentration-response function by modelling exposure at lag 0 
with a penalized spline with 2 degrees of freedom in the Cox proportional hazard 
models used for the main analysis. 
 
Effects of air pollutants on mortality and cancer outcomes were analysed on the 
total cohort. Hospitalisation outcomes were analysed both in the total cohort and 
in the sub-cohort of children younger than 14 years.  

Confounding by Smoking, Alcohol and Body Mass Index 

In the present cohort, it was not possible to retrieve information on individual 
lifestyle factors, as we could not guarantee their random distribution across the 
PM10 exposure levels, thus leading to potential residual confounding and bias of 
the relationship between exposure and outcome.  
 
The objective was to evaluate this potential bias derived from the lack of 
information on smoking habit, alcohol consumption and obesity in the cohort by 
using an ancillary data set of the PASSI (Progressi delle Aziende Sanitarie per la 
Salute in Italia) (Centro nazionale di epidemiologia) national surveillance survey 
about lifestyles and personal habits for the years 2008-2013, considered 
representative of the cohort of Taranto, Massafra and Statte. Out of a total of 
1,755 subjects recruited in the survey between 2008 and 2013, 620 individuals 
were members of the cohort; they were geocoded and we assessed the exposure to 
industrial pollutants (PM10 and SO2). The relationship between exposure to 
industrial pollutants (independent variables in quartiles) and the prevalence of 
smoking habit (smokers, ex-smokers vs. never smokers), alcohol consumption 
(Yes/No) and obesity (BMI>30 vs BMI<=30) was assessed by using a Poisson 
regression model (Prevalence Rate Ratios) adjusted for age, sex and socio-
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economic position, and weighted for the age distribution of the original cohort (in 
classes 18-34, 35-49, 50-69). 
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4.3. Results  

The area under study is represented in Figure 1, where it is possible to distinguish 
the administrative boundaries of the three municipalities of Taranto, Massafra and 
Statte. The area is characterized by the presence of the “ILVA” steel plant (red 
star), mineral deposits, oil refining, cement production, fuel storage, power 
production, mining industry, military plants and the harbour. 

 

Figure 1: Study area, the municipalities of Taranto, Massafra and Statte, and the 
localization of the ILVA steel plant 

 

A total of 321,356 individuals were enrolled in the cohort from 1998 to 2010 and 
followed-up until 2014 (51.1% females), of which 35,398 (11%) died at the end of 
follow-up (follow-up for mortality is until 2013) and for 27,260 (8.5%) the 
follow-up ended at the time subjects emigrated.  
The main characteristics of the study cohort (age, socioeconomic position, length 
of residence at recruitment, occupation and vital status) are described in Table 1.  
Among the subjects recruited, 35% had low socioeconomic position, 34.6% had 
already been living in the area for more than 30 years, and 32.9% for less than 10 
years, at the time of enrolment. There were subjects who had been employed at 
the iron and steel industry (13,556 subjects), in mechanical (17,035 subjects) and 
in naval constructions (1,238 subjects).  
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Table 1: Descriptive characteristics of the cohort (residents in Taranto, Massafra 
and Statte), study period 1998-2013. 

Cohort characteristics Categories  N % 

Cohort   321,356 100 
        
Gender Males 157,031 48.9 
  Females 164,325 51.1 
        
  0 34597 10.8 
  1-9 29047 9.0 
  10-19 36,224 11.3 
  20-29 49,652 15.5 
Age class at enrolment (years) 30-39 45,674 14.2 
  40-49 37,811 11.8 
  50-59 34,213 10.7 
  60-69 26,946 8.4 
  70-79 18,502 5.8 
  >=80 8,690 2.7 
        
  High 68,693 21.4 
  Middle-High 39,095 12.2 
Area based socio-economic position Medium 32,736 10.2 
  Middle-Low 58,034 18.1 

 
Low 112,481 35.0 

  Missing 10,317 3.2 
        
  0-10 105768 32.9 
Length of residence in the area at the 
enrolment (years) 11-19 46831 14.6 

  
21-30 50756 15.8 
31-40 111203 34.6 

        
Occupational status       
  No 307,800 95.8 
        Employment at the Iron and Steel 
Industrya   Yes, laborer 9,633 3.0 
  Yes, office worker 3,923 1.2 
        
        Employment in the Mechanical 
Construction    Industrya 

No 304,321 94.7 
Yes 17,035 5.3 

        
        Employment in the Naval Construction 
Industrya 

No 320,118 99.6 
Yes 1,238 0.4 

        
Vital Status       
  Alive 258,698 80.5 
  Dead 35,398 11.0 
  Lost to follow-up 27,260 8.5 
        
a
1974-1997 
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Figure 2 and Figure 3 show the dispersion model concentration maps for PM10 
and SO2, and the cohort geocoded addresses in the study area (municipalities of 
Taranto, Massafra and Statte). The dispersion model displays the result of the 
Lagrangian particle model (simulated using data of 2010), illustrating higher 
levels of the two pollutants in the zone immediately surrounding the industrial 
area.  

 

Figure 2: Dispersion model concentration map for PM10 (ARPA, year 2010), with 
geocoded addresses at baseline. 
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Figure 3: Dispersion model concentration map for SO2 (ARPA, year 2010), with 
geocoded addresses at baseline. 

The distribution of the socioeconomic position index (SEP) across the census 
tracts is represented in Figure 4, with values going from 1 (yellow colour, 
indicating high SEP) to 5 (dark brown, indicating low SEP). Some of the census 
tracts are not coloured, since the sample size was too small (less than 50 
inhabitants) to calculate the index.   

Productivity of the steel plant, emissions data and average exposures to PM10 and 
SO2 at lag 0, resulting from the backward and forward extrapolation procedure, 
are represented in Figure 5. In the upper part of the figure, productivity and 
extrapolated emissions from the steel plant processes are plotted together for the 
period 1965-2013. Emissions follow the trend of productivity until the year 1995, 
when they decreased, while productivity started to increase until 2008. The 
average exposures to PM10 and SO2 at lag 0 (in the bottom part of the figure) 
strictly follow emissions trends and behave similarly for the two pollutants. Both 
productivity and emissions decreased in the year 2009, possibly due to the 
economic crisis; consequently, a decrease in pollutant exposure has been 
observed.  
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  Figure 4: Socioeconomic position index (SEP) by census tract in the municipalities of Taranto, Massafra e Statte 
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Figure 5: Temporal trend of the steel productivity, emissions and pollutants concentrations at lag 0, study period 1965-2014.
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The time-varying exposure to the two pollutants in the past 35 years was 
attributed to each individual of the cohort. The annual average exposure at lag 0 at 
baseline (1998) was 9.03µg/m3 (±SD=9.53) for PM10 and 9.09µg/m3 (±SD=4.81) 
for SO2 among 270,833 cohort members recruited at the start of the cohort (Table 
2). There was a high correlation (r=0.7) between the two exposures under study. 

 

Pollutant  Mean SD Min Max 
Percentiles 

5° 25° 50° 75° 95° 
PM10 (µg/m3) 9.03 9.53 0 85.24 1.05 3.52 7.79 9.35 30.60 
SO2 (µg/m3) 9.09 4.81 0 22.08 1.88 5.53 9.27 11.82 18.18 

                   
 

Table 2: Descriptive data of exposures to PM10 and SO2 of industrial origin at lag 0 
among 270,833 cohort members at the baseline in 1998. 

 

Exposure to Industrial Pollution and Effects on Mortality 

The association between air pollutants and mortality is shown in Table 3. For each 
10µg/m3 increment of PM10 and SO2 exposure at lag 0, there was an increased risk 
of natural mortality (HR=1.04, CI 95% 1.02-1.06, HR=1.09, CI 95%  1.05-1.12, 
respectively), particularly mortality from heart disease (HR=1.05, CI 95% 1.02-
1.09 and HR=1.11, CI 95% 1.04-1.18,  respectively), and from acute myocardial 
infarction (HR=1.10, CI 95% 1.02-1.19, and HR=1.29, CI 95% 1.10-1.52 for 
PM10 and SO2, respectively). Malignant neoplasms HR=1.08, CI 95% 1.02-1.15), 
and in particular lung cancer mortality (HR=1.17, CI 95% 1.03-1.34) showed 
positive associations with the average concentrations of SO2. Moreover, a high 
risk of mortality for kidney diseases was found in relation to PM10 (HR=1.13, CI 
95% 1.02-1.25 for 10µg/m3 increase). Only weak associations were detected for 
respiratory disease mortality, and a negative association was found between both 
air pollutants and mortality from cerebrovascular diseases.     
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Causes of death (ICD-9CM)   
PM10 SO2 

N HR* 95%CI    HR* 95%CI  

Natural mortality (001-799) 33042 1.04 1.02-1.06    1.09 1.05-1.12  

Malignant neoplasms (140-208) 10210 1.03 1.00-1.06    1.08 1.02-1.15  

    Trachea, bronchus, and lung (162) 2164 1.05 0.99-1.12    1.17 1.03-1.34  

    Bladder (188) 476 1.03 0.90-1.18    0.98 0.74-1.29  

    Kidney (189) 116 0.95 0.70-1.30    0.81 0.46-1.45  

    Lymphatic and hematopoietic tissue (200-208) 879 0.98 0.87-1.09    1.04 0.85-1.28  

Diseases of the central nervous system (330-349) 1014 1.05 0.951.16    1.05 0.86-1.29  

Diseases of the circulatory system (390-459) 12527 1.02 1.00-1.05    1.04 0.99-1.10  

    Heart diseases (390-429) 8857 1.05 1.02-1.09    1.11 1.04-1.18  

    Acute myocardial infarction (410-411) 1275 1.10 1.02-1.19    1.29 1.10-1.52  

    Cerebrovascular disease (430-438) 2903 0.90 0.85-0.96    0.80 0.72-0.89  

Diseases of the respiratory system (460-519) 2741 1.02 0.97-1.08    1.02 0.91-1.14  

    Respiratory infections (460-466, 480-487) 751 0.90 0.80-1.02    0.85 0.69-1.04  

    COPD (490-492, 494, 496) 1618 1.03 0.95-1.10    1.04 0.90-1.21  

Kidney disease (580-599) 707 1.13 1.02-1.25    1.16 0.93-1.45  
                  
*Hazard Ratio (HR) from a Cox model stratified for period of follow-up (3 categories) and sex,  adjusted for age (temporal axis), socioeconomic position and 
occupational status  

Table 3: Associations between annual average exposure to PM10 and SO2 and mortality. Hazard ratio (HR) per 10 µg/m3 increase in PM10 and 
SO2 and 95% Confidence Intervals, CI, 1998-2013.
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Linearity of the association between PM10 at lag 0 and mortality was confirmed 
by the linear splines represented in Figure 6 for all the causes studied. The 
exposure-response relationships between SO2 and cause-specific mortality 
displayed some deviations from linearity, though with ample confidence bands at 
higher concentrations (Figure 7). 
 

The latency of the effects on mortality was analysed estimating different 
independent models, in which one 5-year time window of exposure at the time 
was used, with the condition that subjects could belong to more than one time 
window depending on the length of their residential history of exposure. The 
effect estimates for these different time-windows of exposure were higher in the 
most proximal lags (up to 5 years), then decreased so to become almost null and 
then increased again for exposure occurring in the past, namely 26 years or more. 
(Figure 8).  
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Figure 6: Penalized splines and confidence interval (95%CI) of the relationship 
between average PM10 exposure at lag 0 (µg/m3 ) and mortality for natural 
mortality, mortality for malignant neoplasms, lung cancer, heart diseases, acute 
myocardial infarction and kidney diseases. 
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Figure 7: Penalized splines and confidence interval (95%CI) of the relationship 
between average SO2 exposure at lag 0 (µg/m3 ) and mortality for natural mortality, 
mortality for malignant neoplasms, lung cancer, heart diseases, acute myocardial 
infarction and kidney diseases. 
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Figure 8: Distribution of the effects of PM10 and SO2 in 5-year time windows on 
natural mortality. Results expressed as percent increase for 10µg/m3 increment. 

Exposure to Industrial Pollution and Effects on Hospitalizations 

Table 4 shows the associations between average exposures to PM10 and SO2 and 
hospital admissions. Both pollutants were positively associated at lag 0 with 
several conditions investigated. In particular, increased risks (ranging from 3% to 
11% for 10µg/m3 increment of PM10 and 6-35% for 10µg/m3 increment of SO2) 
were found for all natural causes, diseases of the central nervous system, heart 
diseases, respiratory infections, and kidney diseases. In addition, SO2 was linked 
also to hospital admissions for acute myocardial infarction (HR=1.14, CI 95% 
1.06-1.23), heart failure (HR=1.13, CI 95% 1.06-1.21). 
There were associations with pediatric admissions for diseases of the respiratory 
system (HR=1.11 and HR=1.33, for 10µg/m3 increases in PM10 and SO2 at lag 0, 
respectively) and for respiratory infections (HR=1.15 for PM10 and HR=1.49 for 
SO2). Also for hospital admissions, the shape of the relationship with pollutants 
was explored by estimating penalized splines. The Figure 9 shows the linear trend 
in the effects of PM10 and SO2 on admissions for several conditions.
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Table 4: Associations between average exposures to PM10 and SO2 and hospital admissions. Hazard ratio (HR) per increase of 10 µg/m3 
in average exposure and 95% Confidence Intervals, 1998-2014. 

    
PM10            SO2 

Diagnosis (ICD-9 CM) 
  

N HR 95%CI  HR 95%CI  

All natural causes (001-799)a 193277 1.03 1.02-1.04  1.06 1.04-1.07  
Diseases of the central nervous system (330-349) 8890 1.05 1.01-1.08  1.21 1.13-1.30  
Diseases of the circulatory system (390-459) 49859 1.04 1.02-1.05  1.06 1.03-1.09  
    Heart diseases (390-429) 34316 1.05 1.04-1.07  1.10 1.07-1.14  
    Acute myocardial infarction (410-411) 7253 1.02 0.99-1.06  1.14 1.06-1.23  
    Heart failure (428) 8952 1.02 0.99-1.06  1.13 1.06-1.21  
    Cerebrovascular disease (430-438) 13236 1.01 0.98-1.04  0.92 0.87-0.97  
Diseases of the respiratory system (460-519) 31091 1.07 1.05-1.08  1.15 1.12-1.19  
    Respiratory infections (460-466, 480-487) 13654 1.11 1.08-1.13  1.35 1.28-1.42  
    COPD (490-492, 494, 496) 7474 1.03 1.00-1.06  0.95 0.88-1.01  
    Asthma (493) 885 0.99 0.90-1.09  0.95 0.78-1.16  
Kidney disease (580-599) 13184 1.08 1.05-1.11  1.09 1.04-1.15  
Population 0-14 yearsb             
Diseases of the respiratory system (460-519) 9505 1.11 1.09-1.14  1.33 1.26-1.41  
    Respiratory infections (460-466, 480-487) 6746 1.15 1.11-1.18  1.49 1.39-1.59  
    Asthma (493) 272 0.77 0.60-0.98  0.55 0.37-0.81  
               
aHazard Ratio (HR) from a Cox model stratified for period of follow-up (3 categories) and sex,  adjusted for age (temporal axis), socioeconomic 
position and occupational status  
bHazard Ratio (HR) from a Cox model stratified for period of follow-up (3 categories) and sex,  adjusted for age (temporal axis), socioeconomic 
position 
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Figure 9: Penalized splines and confidence interval (95%CI) of the relationship between average PM10 and SO2 exposure at lag 0, and hospital 
admissions for neurological disorders, heart, respiratory and kidney diseases.
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Exposure to industrial pollution and effects on cancer incidence 

Table 5 shows the association between pollutants from the industry and cancer 
incidence.  An association was found with incidence of lung cancer (HR=1.29, 
95%CI 1.14-1.45, and HR=1.42, 95%CI 1.10-1.84, for 10 µg/m3 increases in 
PM10 and SO2, respectively), kidney cancer (HR=1.32, 95%CI 1.01-1.73 for PM10 
e HR=2.44, 95%CI 1.38-4.34 for SO2). To note that exposure to PM10 was 
associated also with breast cancer among women (HR=1.27). 
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Table 5: Associations between average exposures to PM10 and SO2 from the industry 
and cancer incidence. Hazard ratio (HR) per increase of 10 µg/m3 in average 
exposure and 95% Confidence Intervals, 2006-2011. 

  

Site of cancer (ICD-O3T, ICD-O3M) 
  PM10 SO2  

N HR* 95%CI HR* 95% IC 
All site (ICDO3T C00-C809) 8999 1.14 1.09-1.19  1.05 0.97-1.14  
Upper respiratory and digestive tract 
(ICDO3T C00-C14) 

144 0.80 0.52-1.23  0.67 0.34-1.31  

Oesophagus(ICDO3T C15) 27 0.30 0.06-1.48  0.20 0.04-1.08  

Stomach (ICDO3T C16) 284 0.99 0.77-1.28  0.69 0.43-1.11  
Colon-rectum and anus (ICDO3T C18-
C21) 

887 1.11 0.96-1.28  1.00 0.77-1.31  

Liver(ICDO3T C22) 340 1.10 0.89-1.37  0.75 0.48-1.15  
Gallbladder and biliary tract (ICDO3T 
C23-C24) 

117 1.14 0.80-1.64  0.88 0.41-1.85  

Pancreas (ICDO3T C25) 208 1.19 0.90-158  1.19 0.68-2.08  

Larynx (ICDO3T C32) 91 1.39 0.99-1.96  1.39 0.62-3.13  
Lung incl. trachea and bronchus (ICDO3T 
C33-C34) 

943 1.29 1.14-1.45  1.42 1.10-1.84  

Pleural cancer  (ICDO3T C384) 89 0.96 0.61-1.52  1.15 0.50-2.64  

Bone and cartilage (ICDO3T C40-C41) 22 0.59 0.16-2.22  0.53 0.09-2.96  
Malignant melanoma of the skin (ICDO3T 
C44) 

1944 1.15 1.04-1.26  1.08 0.90-1.30  

Peripheral nerves, connective and soft 
tissue (ICDO3T C49) 

40 1.22 0.66-2.27  0.62 0.17-2.26  

Breast (ICDO3T C50) 1137 1.27 1.13-1.41  1.19 0.94-1.51  

Prostate (ICDO3T C61) 653 1.09 0.92-1.29  1.06 0.77-1.45  

Testis (ICDO3T C62) 42 1.08 0.58-2.01  0.96 0.30-3.11  

Kidney (ICDO3T C64) 173 1.32 1.01-1.73  2.44 1.38-4.34  
Renal pelvis and urinary organs (ICDO3T 
C65-C66, C68) 

34 0.87 0.34-2.23  0.56 0.13-2.46  

Bladder (ICDO3T C67) 415 1.07 0.88-1.32  0.91 0.61-1.35  
Brain and central nervous system (ICDO3T 
C69-C72) 

117 1.23 0.87-1.72  0.87 0.42-1.82  

Thyroid (ICDO3T C73-C75) 365 0.97 0.75-1.25  0.76 0.49-1.17  

Mesothelioma (ICDO3M 9050-9055) 72 0.96 0.57-1.60  0.93 0.36-2.37  

Sarcoma Kaposi (ICDO3M 9140) 38 1.35 0.77-2.37  1.39 0.41-4.64  

Hodgkin limphoma (ICDO3M 9650-9667) 52 0.98 0.54-1.78  1.56 0.54-4.50  
Non-Hodgkin lymphoma (ICDO3M 9590-
9596) 

31 0.93 0.41-2.11  0.74 0.18-3.06  

Multiple Myeloma (ICDO3M 9732) 98 0.91 0.56-1.46  0.76 0.34-1.69  
Leukaemias (ICDO3T 9421, ICDO3M 
9800-9948) 

184 1.11 0.82-1.51  1.21 0.68-2.15  

                
aHazard Ratio (HR) from a Cox model stratified for period of follow-up (2 categories) and sex,  adjusted for 
age (temporal axis), socioeconomic position and occupational status  
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Residual Confounding 

Table 6 shows the prevalence of the confounders analysed (smoking, alcohol, and 
obesity) by quartiles of the distribution of PM10 and SO2 exposure in the ancillary 
data set used. There is no clear increasing trend of the prevalence of smoking, 
drinking alcohol and obesity with higher quartiles of exposure. No statistically 
significant association was found between exposures and individual smoking 
habits and obesity suggesting that they were not relevant confounders. Alcohol 
consumption was related to the 2nd and 4th quartile of PM10 only. 
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    PM10  SO2 

Risk factors Q1 Q2 Q3 Q4   Q1 Q2 Q3 Q4 
Smoking                   

Never smokers (%) 46.75 51.35 50.3 40.88  46.05 50.99 51.92 40.69 

  Smokers (%) 31.82 27.03 30.3 37.23  32.24 27.15 30.13 36.55 

  Ex-smokers (%) 21.43 21.62 19.39 21.9  21.71 21.85 17.95 22.76 

 
Alcohol consumption (%) 52.6 66.9 52.12 62.77   54.61 62.91 55.77 60 

Obesity (BMI>=30kg/m2) (%) 16.88 12.16 10.3 16.06  15.79 13.25 11.54 14.48 

                      

 Adjusted modelsa -RR(95%CI)                

  Smokers b 1.00 0.87 (0.62-1.22) 0.97 (0.72-1.32) 1.24 (0.92-1.68)  1.00 0.88 (0.63-1.24) 0.94 (0.69-1.27) 1.24 (0.92-1.66) 

  Ex-smokers b 1.00 0.97 (0.64-1.46) 0.85 (0.57-1.27) 0.98 (0.65-1.47)  1.00 0.90 (0.60-1.37) 0.74 (0.49-1.12) 0.95 (0.64-1.41) 

 Alcohol consumption c 1.00 1.32 (1.09-1.59) 1.02 (0.82-1.26) 1.25 (1.02-1.52)  1.00 1.20 (0.99-1.46) 1.06 (0.86-1.30) 1.15 (0.95-1.40) 

 Obesity d 1.00 0.66 (0.37-1.17) 0.59 (0.33-1.04) 0.87 (0.51-1.50)  1.00 0.76 (0.43-1.34) 0.69 (0.39-1.23) 0.82 (0.47-1.45) 

           
a Separated Poisson models adjusted for age, gender and socioeconomic position index. 
b Reference category “non-smokers”; c reference category “No alcohol consumption”; d reference category “Not obese (BMI<30kg/m2)” 
Abbreviations: Qx= quartile; BMI=Body Mass Index; RR= Relative Risks; CI=Confidence Interval 
 

Table 6: Association between smoking, alcohol consumption, obesity and quartiles of PM10 and SO2 exposures. 
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4.4. Discussion  

Results of this study showed higher risks of mortality for all causes, lung cancer, 
heart disease, acute myocardial infarction and kidney disease for people exposed 
to PM10 and SO2 from the ILVA industry. 

The study also showed higher risks in the first years of exposure as well as the 
distant past of more than 25 years back.. Pollutants were more strongly associated 
to hospital admissions than to mortality. Exposure to PM10 was associated with an 
increase in risk of natural mortality of 4%, while SO2 with an increase of 9% for 
all natural diseases. The analysis of cancer incidence highlighted a positive 
relationship between the two pollutants and cancer of the lung, of the breast for 
women and of the kidney for both genders.  

In the previous studies of Mataloni et al. (2012) and Vigotti et al. ( 2007) in the 
same area, highest risks were observed in the neighbourhoods closest to the 
industrial area (Paolo VI and Tamburi) where air pollution levels were greater 
than in the other districts. The risks remained high even when they corrected for 
the socioeconomic position (Mataloni et al., 2012). The relationships found in the 
present study are coherent with previous studies having the neighbourhood as unit 
of the study, whereas we conducted the investigation on an individual level. The 
SO2 alone showed risks higher than PM10 and similar to those observed in Paolo 
VI district in the study of Mataloni et al. In particular, a recent study of Mangia et 
al.(2013) revealed that SO2 identified very well the most polluted area close to the 
steel factory, exhibiting higher mean values and positive correlations with wind 
speed, when the monitoring station is downwind from the industrial site. The 
monitoring station located in Paolo VI district recorded the highest SO2 mean 
concentration values, compared to the other neighbourhoods.  

One important limitation of most longitudinal studies (Beelen et al., 2008; 
Bentayeb et al., 2015; Giulia Cesaroni et al., 2013; Jerrett et al., 2009; Mataloni et 
al., 2012) is taking individual levels of exposure contrasts at study inception 
(baseline) as representative for long term exposures. This approach is prone to 
exposure misclassification in case of widespread mobility patterns or changing 
spatial distribution of exposure over time. Few longitudinal studies have dealt 
with time-varying exposure assessment (Bentayeb et al., 2015; Lepeule et al., 
2012; Tétreault et al., 2016; Wahida et al., 2016) for every year of follow-up, and 
among them only two studies attempted backward reconstruction of individual 
residential histories (Bentayeb et al., 2015; Wahida et al., 2016). The study 
conducted in Paris took into account residential mobility by weighting the 
individual cumulative exposure at census block level by the probability of moving 
from a census block to another, on a specific year, tabled in a matrix of all 
possible movements (Wahida et al., 2016). However, in the two studies, 
aggregation of exposure assessment was at the zip code and census block level, 
respectively. In both studies (Bentayeb et al., 2015; Wahida et al., 2016), an 
average cumulative exposure measure was estimated, which in one case 
(Bentayeb et al., 2015) lead to similar or weaker results compared to the mean 
annual exposure. 
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One of the strengths of this study was the availability of complete residential 
history as well high quality mortality and hospital admissions data, which for the 
latter arrived until the end of follow up. Record linkage procedures attributed 
almost 98% of the causes of death to individuals, and rigorous protocols were 
adopted to select appropriate hospital admissions. 

We used a method that is quite novel to long-term effect studies; that is, taking the 
entire residential history from the time people became residents in the area, 
including the time preceding follow-up, considering all address changes and 
emigration/immigration in order to account for past exposure. The level of 
exposure was assessed on a very fine scale, through a well-reasoned procedure, 
where dispersion estimates were weighted with production and emissions data of 
the steel plant. In Table 1, we saw that more than 34% of subjects were residing in 
the area for more than 30 years, showing that the population is stable, with a 
percentage of 81-85% of cohort subjects who never changed address during 
follow-up.  

However, individual exposures came from models and were not measured directly 
through the follow-up. This assumes that subjects would remain at home all day. 
Since a large proportion of subjects works and spends time in the workplace, this 
may have introduced a misclassification bias in our study.  

In the analyses conducted, we confirmed a linear relationship linking PM10 time-
dependent concentration and all causes mortality and morbidity, while SO2 
showed some parabolic associations. The analysis of the latency on mortality 
showed that risks of natural mortality were strongest in the first year of exposure 
and after more than 25 years of permanence in the area, while Bentayeb et al. 
(2015) showed greatest effects were found after one year of exposure. However 
the high correlation (r=0.7) amongst lags cannot allow us to think in terms of 
independent effects.  

A more accurate lag- distributed model should be applied, like Lepeule et al. 
(2012) did in six Harvard cities from 1974 to 2009, to inspect the behaviour and 
trend of time of exposure on the onset of diseases. It is in fact also of interest to 
explore whether the concentration-response curve has changed over time, as 
particle composition and anthropogenic activities have changed over the 48-year 
period considered in our study.  

Gasparrini’s (2014) method for modelling exposure–lag–response associations 
with distributed lag non-linear models in longitudinal studies was implemented at 
the first instance, but with difficulties of application to this cohort. In fact, his 
method, working with matrices of data, is built on complete cases, or in situations 
in which missing data could be replaced by zero without changing the variable’s 
meaning. In this analysis, there was much missing data, as very few observations 
had effectively all the data for the 35-year time period investigated. It was not 
feasible in this scenario to consider a missing exposure value as zero exposure. 
After evaluating the different characteristics in the age structure of this sample of 
residents, present in the area for 35 years, compared to the whole cohort, it was 
decided to estimate independent models for each 5-year time window, as 
described above. 
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A limitation of the study was the unavailability of important individual risk 
factors, such as smoking, physical activity and diet. Estimates on a sub-group of 
people for whom information on smoking, alcohol consumption and obesity was 
available indicated a negligible association to  PM10 and SO2 exposure. Prevalence 
of smoking in the sample of the cohort members was 31.5%, higher than the 
prevalence of 27-28% in the Apulia region and 28% in Italy globally; however, 
the higher prevalence was not related to air pollution levels from the industry. It is 
therefore extremely unlikely that smoking plays a confounding role in this cohort. 
In addition, for the other individual risk factors, it should be noted that we 
considered area-based socioeconomic indicators, thus making confounding less 
likely.  
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CHAPTER 5. Did Design Applied to the Cohort of Residents 

in the Taranto Area, Apulia Region, Italy 

 

5.1. Introduction 

In this part of the study, a “differences in differences” approach was used to 
investigate the relationship between exposure to air pollution from a specific 
industrial source and mortality in the nearby population. The method has been 
applied in the past in the econometric literature, and it can be seen as a 
“before/after study with a control group”. The essence of the design is that 
differences in exposures across time are related to differences in rates of diseases 
in the same populations. The roles of potential individual and behavioral factors 
are thus cancelled out, as the comparisons are occurring within populations. Of 
course, variability of exposure across time is essential to appreciate differences in 
disease occurrence. In environmental epidemiology a recent study in the USA 
(Wang et al., 2016) used a variant of this method to evaluate the causal effects of 
long-term PM2.5 exposure on mortality in New Jersey. The authors assumed the 
potential outcome (the aggregated number of death) in a census tract as a function 
of spatial confounders that vary among census tracts, but not over time, as well as 
temporal confounders that vary over time but not spatially, confounders that vary 
over time and space, and an offset term for the logarithm of the population in the 
census tract. Thus, by estimating the differences between years, they removed the 
confounding by variables varying by census tract but not time, and by estimating 
the differences between census tracts, they removed the confounding by variables 
that vary over time but not census tracts.  They built the DID by estimating a 
Poisson regression model for the logarithm of the aggregated number of death by 
year and census tract in which they controlled for indicator variables for tracts and 
years. 

The present study presents a variant of the DID design proposed by Wang et al. 
(2016) with an application to the cohort of residents in the Taranto area, south of 
Italy. The description of the cohort building and its characteristics is provided in 
Chapter 4. 

The study has been described in a paper for publication, annexed to this 
monography in Annex B. Here I will provide a short summary. 

 

5.2. Summary of the Study 

5.2.1. Methods 

The study cohort included all subjects residing in the study area at 01/01/1998, 
plus those entering the three municipalities until 31/12/2010 (see Chapter 4 for 
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more details on the cohort building). The cohort was followed up until December 
2014. For the aims of this part of the study, only the latest period, 2008-2014, was 
retained, as it matched the availability of environmental data and was short 
enough to reduce potential residual confounding from temporal covariates.  

 

Exposure Assessment 

The exposure assessment constituted one of the most complex parts of the study. 
In fact, the objective was to estimate individual exposure to PM10 from industrial 
origin for each year of the study, combining daily data from four monitoring 
stations of the ARPA network for daily PM10 and NO2 concentrations, with 
industrial concentrations coming from the Lagrangian dispersion model developed 
by ARPA for the year 2010, described in Chapter 4.  
One station was located in an urban area of Taranto (“Via Alto Adige”); another 
one was in a suburban setting away from the industrial area (“Via Ugo Foscolo” 
in the Talsano district), in order to measure background concentrations. The 
remaining two stations were located near the industrial area: “Via Machiavelli” 
and “Via Archimede”, in the Tamburi district at the border of the industrial area. 
These data were used to describe temporal variability in exposure over the study 
area. 
Annual measurements from the monitoring stations and the data of the 2010 
dispersion model map were combined in order to estimate industrial PM10 

exposures for each year of the 2008-2014 period according to a complex 
mathematical methodology described in the Supplemental material of the paper. 
 

Mortality Data 

Causes of death were ascertained using record linkage procedures with the 
mortality registry of the Local Health Authority in Taranto and the following 
causes of death were analyzed: natural causes (ICD-9CM 001-799, ICD-10 A00-
R99), circulatory system diseases (ICD-9CM 390-459, ICD-10 I00-I99), heart 
diseases (ICD-9CM 390-429, ICD-10 I00-I51), and respiratory diseases (ICD-
9CM 460-519, ICD-10 J00-J99).  
 

Statistical Analyses 

For each year (7: 2008-2014), area-unit (11: 9 Taranto districts + Massafra and 
Statte) and age class (4: 0-34, 35-64, 65-74, >75 years) aggregated counts of 
cause-specific deaths were computed. Furthermore, using cohort information and 
individual residential history, the person-years were determined and used as 
denominators (or “offset”) in the multivariate Poisson regression analysis 
described below: 
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lnൣ𝐸൫𝑌,௧,൯൧ = 𝛽 + 𝛽ଵ𝐼 + 𝛽ଶ𝑇 + 𝛽ଷ𝐼 + 𝛽ସ𝐼 ∗ 𝑇 + 𝛽ହ𝐼 ∗ 𝑇 + 𝛽𝑃𝑀ଵ ,௧,

+ ln൫𝑃,௧,൯        

This final model, used and described in detail in the paper, can be interpreted as a 
variant of the difference-in-differences method; it is similar to the method 
proposed by Wang et al.(2016). The idea underlying the model is that a causal 
effect of PM10 is obtained by removing confounding from spatio-temporal 
covariates by design. This is achieved with the introduction of age-specific and 
district-specific linear trends in the regression model. The drawback of the model, 
on the other hand, is that only fluctuations of PM10 around linear trends are 
contrasted to concurrent fluctuations in mortality rates, with consequent lack of 
statistical power.  

Results were presented as percent increase risk of death, and 95% confidence 
intervals, relative to 1µg/m3 variation of industrial PM10.  

Effect modification by age in two classes (<65 years, 65+ years old) was also 
tested, and the p-value of the relative effect modification (p-REM) was evaluated 
(Biggeri et al., 2004).  

The follow-up and the statistical analysis were performed using SAS 9.0, Stata 13, 
and geographical data were analyzed using Arcgis and Qgis. 

5.2.2. Results 

First results on the productivity (kton/year) of the ILVA plant in the period under 
study by type (steel, coke, sinter and pig iron) and the annual average PM10 
(measured overall concentrations) assessed in the four monitoring stations, 
showed a non- negligible agreement between those measures. (Figure 3 and 4 of 
the paper) 

During the study period of 2008-2014 37,736 deaths (11.7%) were observed from 
a cohort counting 262,375 people in the year 2008. We calculated 1,726,353 
person-years of follow-up, differently distributed across the area districts (Table 1 
in Annex B), and 15,303 natural deaths, 71.8% of which constituted subjects 75+ 
years old, and  0.8% from those below 35 years of age. 

For descriptive purposes, the study area was divided into three sub-areas only: 
"Tamburi, Lido azzurro", "Isola, Borgo" and "Other" (which includes all the 
districts and municipalities different from the previous two). For each of the three 
area units the absolute change in the estimated industrial PM10 between the yearly 
value and the mean area was calculated. Thus, in Figure 5 and 6 of Annex B it is 
possible to observe that the annual trends of the industrial PM10 resemble the 
trends in mortality rates (per 1,000 person-years) in the "Tamburi, Lido azzurro" 
and "Isola, Borgo" districts, i.e. the districts most influenced by industrial 
emissions, whereas the patterns of exposure and mortality in the other areas 
deviate.  

The results from the specified DID model (Table 2 in Annex B) showed a 1.86% 
(95% Confidence Interval (CI): -0.06, 3.83%) increase of natural mortality of  
relative to 1 μg/m3 variation of industrial PM10. In particular, we found a 2.37% 
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(95% CI: 0.31, 4.47%) increase in natural mortality (REM p-value= 0.22) among 
subjects 65+ years old (Figure 5 in Annex B). Furthermore, we found a 8.74% 
(95% CI: 1.50, 16.51%) increase in respiratory mortality. For the same outcome, 
there was no evidence of effect modification by age (REM p-value= 0.96). Effect 
estimates for circulatory and cardiac diseases were positive, but affected by larger 
standard errors. 

5.2.3. Conclusions 

The study supports the plausibility of a causal effect of industrial PM10 on 
mortality in the study area, especially in the elderly population. 

This study has, to our judgement, several strengths: careful reconstruction of the 
individual residential histories, good quality geocoding, high completeness in the 
assignment of causes of death. However, it should be noted that the cohort lacks 
data on individual risk factors (such as smoking and other lifestyle characteristics, 
individual estimates of exposure to meteorological parameters, etc.). However, 
such factors might have confounded the estimates under investigation only under 
the assumption that they varied differently across age groups and districts, and 
that such differences were not adequately captured by linear trends. We believe it 
to be unlikely. Further support to this is provided by a recent re-analysis of the 
cohort study in Chapter 4 and Annex A (“Studio di coorte sugli effetti delle 
esposizioni ambientali ed occupazionali sulla morbosità e mortalità della 
popolazione residente a Taranto”, (2016)) which applied indirect adjustment 
methods on data collected from the PASSI Surveillance System. That study 
showed that the associations between industrial pollutants and mortality/morbidity 
were not biased by unmeasured individual confounders such as smoking and 
body-mass index.  
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CHAPTER 6. Generalized Propensity Score in the 

Continuous Treatment Setting: an Application to the Cohort 

of Residents in the Taranto Area, Apulia Region, Italy 

 

6.1. Introduction 

In this chapter I will present the part of the study concerning the application of the 
main generalized propensity score methods (Hirano & Imbens, 2004; Imai & Van 
Dyk, 2004; Robins & Finkelstein, 2000) on the cohort of residents in the Taranto 
area.  
 
The aim was to calculate through different methods the effect of exposure to 
industrial PM10 on mortality amongst residents living around the large steel plant 
located in the Taranto area, starting from what has been estimated in the main 
cohort study using the classical Cox regression model described in Chapter 4. 
 
Recently, Zigler and Dominici (2012) discussed the priority role of more rigorous 
studies providing evidence of causality in the body of evidence for air pollution 
regulation. They provided good practice for causality in air pollution studies not 
strictly related to causal inference methods, but most importantly to the design of 
the study and its ability to render observational data as coming from a randomized 
experiment. A set of questions was then elaborated to check whether a study on 
air pollution provides evidence of causality.  
In a second work (C. Zigler et al., 2016), the authors provided new statistical 
methods (mediation analysis and principal stratification) and perspectives for 
drawing causal inference on the long term effects air quality regulations. They 
encouraged the deployment of potential-outcomes methods for direct-
accountability assessment, sometimes framed as intervention studies that analyse 
a large change in air pollution, and in general for air pollution epidemiology.  
 
Many studies have been published on the use of causal methods based on 
propensity score methodology in observational studies and time-to-event analysis.  
However, there is few evidence on the use of the propensity score approach in the 
continuous treatment setting (Comfort et al., 2017; Jiang & Foster, 2013; Moodie 
& Stephens, 2012), and even less has been published in the time-to-event analysis 
framework (Koch et al., 2010; Podolanczuk et al., 2017). 
 
 
In environmental epidemiology few studies implemented propensity score 
methodologies, prevalently PS matching, to obtain causal estimates of air 
pollution on health (Baccini et al., 2017; Capuno et al., 2018; Kirby et al., 2016; 
Mueller et al., 2011; Neupane et al., 2015; Rosa et al., 2017; Sætterstrom et al., 
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2012; Wylie et al., 2014; Wylie, Coull, et al., 2015; Wylie, Singh, et al., 2015). 
Among them only three studies so far directly referred to air pollution as for 
particulate matter (Baccini et al., 2017; Rosa et al., 2017; Schwartz et al., 2015). 
Only two studies focused on the generalized propensity score approach to obtain 
causal estimates of the effect of air pollution on health (Baccini et al., 2017; 
Schwartz et al., 2015). 
The first one by Baccini et al. (2017) aimed at assessing the short-term impact 
(two days) of high daily levels of PM10 on mortality in Milan, Italy. The authors 
applied the propensity score approach for the prediction of the dichotomized 
variable for PM10, defined as the daily concentration above and under the 
threshold 40μg/m3 (annual limit). Days were then matched using the estimated 
propensity score, and the impact was obtained by comparing mortality between 
matched days. 
The authors did not evaluate a concentration-response curve; instead they focused 
on a binary exposure measure with the aim of investigating a “safe threshold” 
below which the pollutant doesn’t affect health, with public health implications. 
 
Generalized propensity scores for continuous exposure to particles with diameter 
less than 2.5μm have instead been estimated by Schwartz et al. (2015), in order to 
obtain the average causal association with daily mortality in a time-series study in 
Boston. They used a method similar to the one proposed by Imai and van Dyk 
(2004), in which they first modelled the PM2.5 in a linear regression as a flexible 
function of time, temperature, trend and co-pollutants. They then took the 
predicted values of this model to get the propensity score. By first trimming on 
the upper and lower 5%, they then subclassified in deciles and used the resulting 
dummy variables in a quasi-Poisson model together with the two-day mean PM2.5. 

 

A topic widely explored by researchers regarding air pollution is the shape of the 
concentration-response. This issue is critical for public health assessment and it 
may have consequences if such thresholds exist.  
Many studies have examined the shape of the concentration–response curve for 
long-term as well as short-term exposure (Crouse et al., 2012; M. J. Daniels, 
Dominici, Samet, & Zeger, 2000; Schwartz et al., 2001; Schwartz, Coull, Laden, 
& Ryan, 2008; Schwartz & Zanobetti, 2000; Shi et al., 2016). It was demonstrated 
that the association between particulate matter and mortality exists at any 
concentration, even below the maximum air quality thresholds currently in place 
in the USA and the EU. 
Here, the Hirano and Imbens (2004) approach for the calculation of the DRF that 
computes the observed causal outcome for each level of the pollutant will be 
presented.  
 
The current study aimed at advancing the knowledge of the application of 
generalized propensity score methods with continuous treatment (or exposure), in 
the domain of the air pollution observational studies, where it is more frequent to 
find residual confounding of the association, due to individual factors related to 
both the outcome and the exposure and not directly measured at the individual 
level. 
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Furthermore, in longitudinal studies on the association of air pollution on health, 
the main measure of individual confounders and risk factors is usually the 
socioeconomic index. This index comes from several census block characteristics 
that are synthetized through a principal component factor analysis to obtain one 
single score.     
In this study, where the main exposure is the PM10 concentration at the subject’s 
residence address at baseline, it was proposed to use a more complete list of 
individual confounders and risk factors as predictors not of the outcome, but of 
the exposure, i.e. the propensity score.  
We can therefore identify these major objectives: 

1. The first one was to better explain the socioeconomic inequalities in the 
population living around the steel plant in the Taranto area, compared to 
the index used in the main study, through a complete list of determinants 
available at the census block level and collected every 10 years by the 
National Statistics Institute survey; 

2. To include as possible relevant variables, health indicators at district level 
that may serve as surrogate of individual behaviours like smoking habit;  

3. To predict the generalized propensity score of the continuous exposure to 
PM10 and use it to obtain the average treatment effect over all the values 
and to estimate an exposure-response curve. 
 

6.2. Methods 

6.2.1. Mortality Data 

The data used for this study were those of the main cohort described in Chapter 4, 
composed by residents enrolled in the area of Taranto, Massafra and Statte, at 
January 1st 1998 and all subjects later entering for immigration or birth until 
December 31st 2010, followed up until 2014. 
 
For each resident, health data on mortality, with corresponding dates and causes 
of death (ICD-9CM revision), have been assigned through record-linkage 
procedures with the Regional Health Databases. 
 

6.2.2. Air Pollution Data  

PM10 data concentrations came from a Lagrangian modelling system developed 
by the Regional Environmental Protection Agency (ARPA) of the Apulia region 
for the year 2010. Differently from the main cohort study described in Chapter 4, 
the level of exposure has been attributed to each subject at its first residence 
address, through a geocoding procedure(the distribution over the area is shown in 
Figure 2 in Chapter 4). 
 

6.2.3. Socioeconomic Position Data  

A census block-level socioeconomic position (SEP) index was assigned originally 
to each participant on the basis of his/her geocoded address and was composed by 
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information recorded at the National Statistics Institute 2001 census: percentage 
of population with educational level equal to or less than primary school, 
percentage of the active population unemployed or seeking their first occupation, 
percentage of rented houses, percentage of single parent families, population 
density (number of occupants per 100 m2). A composite index was computed 
through factor analysis and classified into 5 quintiles, representing high, middle-
high, medium, middle-low and low SEP. (Caranci et al., 2010) 

In order to obtain a better description of the population and a good prediction of 
the propensity score it was decided to consider a more exhaustive list of variables 
retrieved from the 2001 census, which is provided in Annex C.  
Not all the census variables were selected, but only those identified as importantly 
related to both the outcome and the exposure.  
Summary informative quantities from those variables, such as the proportion over 
the population or the ratio, were calculated, standardized with their province 
mean, and attributed to each subject according to his census block at baseline: 

 Percentage of male and female residents. 
 Percentage of married, separated or divorced residents. 
 Percentage of single-person households, percentage of five-person or more 

households. 
 Percentage of graduates, percentage of diploma or no-diploma residents. 
 Percentage of foreign residents. 
 Percentage of workers in agriculture, industry, commerce or public 

administration, service. 
 Employment Rate: defined as the ratio of employed 15 years old and over 

people and the total of people aged 15 years and over who are in the labor 
force, expressed per 1000. 

 Unemployment Rate defined as the ratio of unemployed 15 years old and 
over people and the total of people aged 15 years and over who are in the 
labor force, expressed per 1000. 

 Percentage of entrepreneur, self-employed residents, percentage of 
employed residents, percentage of not in the labor force residents, 
percentage of housewives. 

 Percentage of commuters: defined as the proportion of residents moving 
daily outside the town to work. 

 Percentage of private houses, percentage of houses with potable water, 
percentage of houses with heating, percentage of habitable buildings. 

 Population density (number of occupants per 100 m2). 
 

6.2.4. Statistical Methods 

Each resident contributed to person-years at risk from the date of entry in the 
cohort (1998 or later within 2010) until date of exit for death, emigration or end of 
follow-up, whichever came first.  
The association between long-term exposure to air pollutants (defined as time-
varying annual average) and mortality was first estimated using a standard 
survival analysis with multivariate Cox proportional hazard models, as described 
in Chapter 4.  In that model, age was used as the time scale. A priori confounders 
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included: gender, area-level SEP, occupation (recorded at baseline and defined as 
blue collar/white collars workers in steel factories; naval construction workers; 
mechanical construction workers; workers in other occupational branches or 
people without contribution payments (reference category)); calendar period, in 3 
classes (defined as time-dependent). 
 
 
The generalization of the propensity score was applied according to two of the 
main methods: the Propensity Function (PF) of Imai van Dyk (2004) and the 
Generalized Propensity Score (GPS) at each exposure level by Hirano and Imbens 
(2004). Extensions to HI method have been also considered (Bia et al., 2014).  
The first method (Imai & Van Dyk, 2004) allows estimation of the average 
treatment effect (ATE), while the second one estimates the concentration-response 
curve. 
A third method by Robins (2000) on the Inverse Probability of Treatment 
Weighting (IPTW) has also been applied following the guidelines of Austin 
(2011) for propensity score in time-to-event observational studies. 
 
In the PF and GPS methods the generalized propensity score has been estimated 
through a linear regression of the exposure to PM10 against census indicators list, 
age, gender and occupation. The last three regressors were already present in the 
standard Cox model used for the main analysis and are now predictors of the 
propensity score. The SEP index has been instead replaced by the extensive list of 
census variables to predict the exposure. 
 
The propensity score analysis was implemented in Cox Proportional Hazard 
models stratifying for calendar period in 3 classes and gender, with age as the 
temporal axis. 
 
Mortality from natural causes (ICD-9CM: 001-799), cardiovascular (ICD-9CM: 
390-459), cardiac (ICD-9CM: 390-429) and respiratory (ICD-9CM: 460-519) 
causes was studied. 
 
A complete cases analysis was performed, since the information on 
socioeconomic factors from the 2001 census was missing for some census tracts. 
This choice is questionable, since it can lead to biased causal inference, unless the 
data are missing at random (D'Agostino Jr & Rubin, 2000). In our case the size of 
data did not allow multiple imputation techniques, since they require huge 
computational time and resources.  
The common support condition was verified through the method defined by Bia et 
al. (2014). Observations out of the common support were discarded. 
 

Imai van Dyk Propensity Function 

Following the proposal by Imai and van Dyk (2004) the PF was calculated as the 
linear prediction of the regression model of PM10 on the selected variables and 
then subclassified. The PF was first subclassified in 5 groups according to the 



74 
 

quintiles of its distribution (Austin, 2011), and then also in 10 groups defined by 
the deciles, following the suggestion of Imai van Dyk to increase the number of 
classes to obtain a reduction in bias. Hazard ratios (HR) for each stratum were 
computed and averaged to obtain the ATE, weighting for the number of 
observations in each class. 
Another analysis on the response model was performed to explore how estimate 
would change following the suggestion of Imai van Dyk (2004), which is to adjust 
in each stratum at least for the PF score. 
Covariate balance of the PF was evaluated by regressing the covariates as 
dependent variables on the PM10 exposure, before and after adjusting for the PF. 
Hazard Ratios (HR) and corresponding 95% Confidence Intervals (95% CI) per 
10 μg/m3 increases of the pollutant were computed. 
 

Hirano and Imbens Generalized Propensity Score and DRF 

Hirano and Imbens (2004) concentration-response curve has been estimated 
through the R package causaldrf (Galagate, Schafer, & Galagate, 2015) that 
allows the specification of different models for the relationship between the 
outcome and the exposure and the GPS. As a first step, the GPS is calculated as 
the conditional density of the exposure to PM10 given the covariates, for each 
level of exposure. 
Then three estimates of the DRF were derived for fixed values of exposure: 

1) The HI model, with a quadratic parametrization of the relationship 
between outcome and exposure and the GPS, as well as an interaction term 
(2.3) 

 𝐸[𝑌|𝑇, 𝑅] =  𝛼 + 𝛼ଵ𝑇 + 𝛼ଶ𝑇
ଶ + 𝛼ଷ𝑅 + 𝛼ସ𝑅

ଶ + 𝛼ହ𝑇𝑅; 
 

2) A more flexible function for the GPS in a generalized additive model 
(GAM), through the package mgcv (Wood & Wood, 2007) inside 
causaldrf, that regress Y on the exposure and cubic regression spline 
terms for the GPS fit; 

3) Flores et al. (2012) extension of HI method, that is an additive spline 
estimator, where additive spline bases values are created for both the 
exposure and the estimated GPS. Then the outcome is regressed on the 
exposure, the GPS, exposure basis, and GPS bases. Three knots were 
chosen for both splines. 

 
These methods for calculating the DRF were presented in R and Stata packages 
only for outcomes Y assumed to be generated from a particular distribution in the 
exponential family, a large range of probability distributions that includes the 
normal, binomial, Poisson and gamma distributions, among others. Survival 
analysis instead involves the modelling of time-to-event data; in this context, 
death or failure is considered an "event" in the survival analysis literature, and the 
Cox proportional hazard model is usually adopted to estimate through partial-
likelihood the multiplicative relationship between the covariates and the hazard 
ratio.  
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However, there is a relationship between proportional hazards models and Poisson 
regression models, which is sometimes used to fit approximate proportional 
hazards models in softwares for Poisson regression. (Berry, 1983; Laird & 
Olivier, 1981). McCullagh and Nelder's (1987) book on generalized linear models 
has a chapter on converting proportional hazards models to generalized linear 
models, where rates are modelled instead of survival time, based on counting 
processes and martingales.  
The Andersen–Gill (1993) counting process method for analysis of hazard 
functions is very similar in this context to Poisson regression methods for the 
analysis of rates.  
 
In practice in this study the cohort was split by year of residence in the area 
throughout the follow-up period. The event of interest (in this case, death) was put 
as the dependent variable of a Poisson GLM on the set of pre-defined regressors. 
The parameters were then estimated by using iteratively reweighted least squares 
with person-years as an “offset”. 
Before estimating the DRF the equivalence between the Cox model and the 
Poisson model was verified. 
 
Covariate balance using the HI methods and extensions was verified in an earlier 
step, by using an automatic procedure developed by Bia and Mattei (2008) in the 
Stata package drf and gpscore (Bia et al., 2014), considering  intervals of 
exposure and GPS based on quartiles and quintiles of the distribution, 
respectively. A correspondent command in R wasn’t found; hence, for this part of 
the analysis it was necessary to export the database in the Stata software to 
perform this check. 
 

Robins’ Importance Sampling 

The last part of the analysis implemented the importance of sampling procedure of 
Robins (2000), estimating Cox PH models weighted for the inverse of the weights 
defined by the author for the continuous case, under the assumption of normal 
distribution of the exposure, as 𝑤(𝑡) =  𝑔(𝑇)/𝑃(𝑇 = 𝑡|𝑿), where 𝑔(𝑇) is the 
marginal density for 𝑇 under normal distribution, and the denominator is the 
conditional density of the continuous variable for exposure 𝑇 given the set of 
covariates 𝑿. 
To verify the stability of weights and the presence of outliers affecting the average 
causal effect, a trimming on the 5% and 95% of their distribution was also 
performed, in addition to the Robins’ approach in a further analysis. 
 

Additional Analysis on Propensity Score Model Specification 

Two additional analyses were performed to verify the robustness of the propensity 
score model specification. 
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The first analysis considered also the SEP index in the prediction model, since 
some of the information used to compute the index was different from the ones 
considered in the specification model.  
 
Two additional factors predicting the exposure were included in the propensity 
model in a later analysis in order to verify its correct specification and improve 
the prediction. These factors were the Age-Standardized Hospitalization Rates 
(direct method per 100,000) for chronic obstructive pulmonary disease (COPD) 
and lung cancer, amongst males and females. The rates were computed for each 
neighbourhood in the period 1998-2010 and attributed to each individual at the 
residence neighbourhood level. These rates are surrogates of the smoking 
prevalence in the specific neighbourhood. 

6.2.5. Results 

The cohort from the complete cases analysis counted 309,069 subjects in total, of 
which 36,384 (11.8%) died, in the period from 1998 to 2014.  
Among the deceased, 34,947 (96%) died of natural causes, 12,932 (35.5%) died 
of cardiovascular diseases, 9,203 (25.3%) of cardiac diseases, and 2,799 (7.7%) of 
respiratory diseases (results not shown). 
Among the list of parameters collected during the 2001 census by the National 
Statistics Institute survey, only some, listed in Table 7 (Part 1) and Table 8 (Part 
2), were considered as possible predictors of the propensity score in the regression 
model. Total number of people for each category, as well as their percentages or 
ratios, was reported and referred to the population of Taranto, Massafra and Statte 
municipalities resident in 2001, together with correspondent mean and standard 
error in the cohort under study.  The cohort of residents under study showed the 
same mean values of the selected parameters. 
These quantities, computed for each census tract and standardized by the  
province mean, were then attributed to each subject, according to the census tract 
of its first residence, in the hypothesis of a stability over time.   
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    N %* 

Mean % 
in the 

Cohort 
SD in the 
Cohort 

Demographics Population   247,541 100 - - 
              
 Males   119,158 48.14 48.09 5.55 
  Females   128,383 51.86     
              
  Married   121,811 49.21 48.39 6.86 
  Separated or divorced   5,403 2.18 2.27 1.80 
              
  Foreigners   823 0.33 0.37 0.82 
              
Households Number of households   85,580 100     
              
  Single-person 

households   14,905 10.35 10.94 8.97 
  5-person or more 

houselholds   8,855 17.42 17.28 9.29 
            
Education 5-year old and over 

population   235,912 100     
  Bachelor    17,177 7.28 7.11 7.92 
  Diploma   59,870 22.49 24.27 11.99 
  No diploma   28,425 12.04 12.71 6.70 
              

* Percentages may not sum up to 100, because some categories are missing or subjects can belong to more 
than one category 
 
Table 7: Distribution of indicators and main indexes of the ISTAT census in the 
municipalities of Taranto, Massafra and Statte, 2001 (Part 1). 
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    N %* 

Mean % 
in the 

Cohort 

SD in 
the 

Cohort 
Occupation Population   247,541 100     

  Population 15 years old and 
over in the labour force   87,124 35.20 35.32 8.52 

              
Domain Workers in agriculture   3,965 4.55 4.54 7.18 

  Workers in industry   18,299 21.00 20.88 8.34 

  Workers in commerce   11,478 13.17 13.00 5.31 

  Workers in public 
administration/service   22,758 26.12 25.26 13.14 

              
Type of 
employment Entrepreneur-self-employed    4,597 5.28 4.82 4.97 

  Employed   55,173 63.33 62.78 11.76 
              

  
Population not in the labour 
force    121,492 49.08 49.08 9.09 

  Housewives/Househusbands   50,709 20.49 20.79 6.31 
              
  Employment Rate (x1000)     784.51 773.72 127.70 
  Unemployment Rate (x1000)     119.01 123.25 74.23 
              
  Commuters   12,173 4.92 4.45 5.25 
              
Living 
conditions Number of dwellings   100,912 100     
  Private houses   58,504 58 66 22 
  Houses with potable water   98,112 97 98 9 
  Houses with heating   74,128 86.71 86.07 15.90 
              
  Number of buildings   26,518 100     
  Habitable buildings   22,563 85.09 88.12 19.01 
              

  
Population density (number 
of occupants per 100 m2)     3.02 3.31 3.40 

              
* Percentages may not sum up to 100, because some categories are missing or 
subjects can belong to more than one category 

 
Table 8: Distribution of indicators and main indexes of the ISTAT census in the 
municipalities of Taranto, Massafra and Statte, 2001 (Part 2). 
 

 
Upon preliminary correlation analyses, some of these variables were found to be 
highly correlated and consequently collinear.  
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The final propensity score multivariate model for the PM10 exposure gave 
coefficients and standard error as reported in Table 9. 
Age, previously only considered in the temporal axis in the previous standard Cox 
model, (described in Chapter 4), was also used in the propensity score model. 
The same goes for the gender which was only considered to stratify the risk at 
baseline. It was decided instead to only include occupational status in the PS 
prediction. 
All the covariates were significantly associated with exposure, except the 
percentage of families with 5 or more members. 
Once calculated the propensity score in both methods, the covariate balance was 
checked through the HI and the IvD methodologies. The HI performed a series of 
t-tests that the conditional mean of the pre-treatment variables given the 
generalized propensity score is not different between units who belong to a 
particular treatment interval and units who belong to all other treatment intervals 
for each covariate, and satisfied the balance property at a level lower than 0.01. 
Also the IvD procedure obtained not significant p-values for the t-tests of each 
covariate regressed on the treatment after conditioning on PF.  
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  Coefficient 
Standard 

Error 
95% CI 

% males 0.387 0.011 0.36 0.41 
% females -0.048 0.011 -0.07 -0.03 
% separated or divorced -0.712 0.014 -0.74 -0.68 
% foreigners -1.252 0.025 -1.30 -1.20 
% single-person households 0.367 0.011 0.35 0.39 
% 5-person or more households 0.003 0.008 -0.01 0.02 
% bachelor 1.312 0.010 1.29 1.33 
% diploma -0.970 0.009 -0.99 -0.95 
% no diploma 0.051 0.009 0.03 0.07 
Unemployment Rate  0.188 0.008 0.17 0.20 
% workers in agriculture -1.261 0.014 -1.29 -1.23 
% workers in industry -0.179 0.010 -0.20 -0.16 
% workers in commerce 0.231 0.008 0.22 0.25 
% workers in services -0.732 0.013 -0.76 -0.71 
% self-employed workers 0.358 0.013 0.33 0.38 
% employed workers 0.701 0.011 0.68 0.72 
% not in labor force -0.646 0.009 -0.66 -0.63 
% housewives/househusbands 2.202 0.010 2.18 2.22 
% commuters -1.052 0.007 -1.07 -1.04 
% private houses 0.948 0.005 0.94 0.96 
% houses with drinkable water 0.574 0.008 0.56 0.59 
% houses with heating -1.180 0.006 -1.19 -1.17 
% habitable buildings -0.056 0.006 -0.07 -0.04 
Population density 0.588 0.005 0.58 0.60 
Age 0.000 0.000 0.00 0.00 
Gender 0.021 0.007 0.01 0.03 
Employment in the Mechanical Construction 

a
0.137 0.015 0.11 0.17 

Employment in the Naval Construction Industrya 0.396 0.053 0.29 0.50 
Employment at the Iron and Steel Industry-
Laborera 

0.059 0.020 0.02 0.10 
Employment at the Iron and Steel Industry- Office 
workera 

-0.399 0.030 -0.46 -0.34 
a1974-1997 
 
 

   

 
 

Table 9: Factors associated with PM10 in the propensity score prediction model, 
coefficients, standard error and Confidence Intervals (CI) 

 

Estimates of the causal effect of exposure on mortality were first calculated for 
natural mortality, to check the validity of the model on the largest sample of data. 
Cox standard model, Cox model stratified with Imai van Dyk (IvD) Propensity 
function in five subclasses, and Cox model with IPTW with trimmed weights 
according to Robins (RISt) were estimated. (Table 10) 
 
The Hazard Ratio of PM10 on natural mortality estimated by the standard Cox 
model was 1.04, with confidence interval (CI) of 1.01-1.06. 

Estimates from standard Cox and IvD were the same in the size of the effect and 
its standard error (HR=1.04, CI 95% 1.01-1.06), while the RISt model obtained a 
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higher estimate of the effect (HR=1.09, CI 95% 1.06-1.11) for 10μg/m3 increase 
of PM10 from industrial origin. 

When the same Cox model with IvD stratification was applied stratifying the PF 
in 10 subclasses instead of 5 or adjusting within the strata for the PF score (Table 
11), the effect estimate had approximately the same size (from HR=1.04 to 
HR=1.03) but with larger confidence intervals. An explanation is that in the case 
of stratification for more subclasses the model could in fact have estimated 
stratum effects among few observations, losing power. In the case of adjustment 
for the PF the model could have instead produced an overfitting within the strata. 

  

Method         Model HR 95%CI 
Standard Cox model with SEPa 1.04 1.01 1.06 
          
Imai and van Dyk (IvD) Cox model stratified for PFb 1.04 1.01 1.06 
          
Robins Importance Sampling 
Trimmed (RISt) 

Cox model with trimmed IPTWc 1.09 1.06 1.11 
aCox model stratified by follow-up period (three classes) and gender, age on the temporal axis, 
socioeconomic position and occupational status.  
bCox model stratified by follow-up period (three classes) and gender, stratified for PF in 5 subclasses 
cCox model stratified by follow-up period (three classes) and gender, with weights based on GPS and 
trimmed at 5% and 95% 
Abbreviations: HR=Hazard Ratio; CI=Confidence Intervals; IvD= Imai van Dyk; RISt= Robins Importance 
Sampling Trimmed; IPTW=Inverse Probability Treatment Weighting; PF= Imai van Dyk's Propensity 
Function; SEP= socioeconomic position 

 
Table 10: Associations between annual average exposure to industrial PM10 and 
natural mortality (Number of deceased=34,947). Hazard ratio (HR) per 10 µg/m3 
increase in PM10 and 95% Confidence Intervals, CI, 1998-2014. 
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Table 11: Propensity Function model by Imai van Dyk for the ATE of exposure to 
industrial PM10

 on natural mortality (Number of deceased=34,947) in different 
outcome response models. Hazard ratio (HR) per 10 µg/m3 increase in PM10 and 
95% Confidence Intervals, CI, 1998-2014. 

 
 
To verify the robustness of the propensity score model it was decided to try 
different models for its estimation.  
The causal models chosen, in which different specifications of the PS were tested, 
were those defined in Table 10: 

 IvD: Cox model stratified by PF in 5 subclasses, follow-up period (three 
classes) and gender 

 Robins: Cox model stratified by follow-up period (three classes) and 
gender, with weights defined by Robins et al. (2000), trimmed at 5% and 
95%. 

Results are shown in Table 12. First the socioeconomic position index (SEP) was 
included in the PS estimation model. The estimates of the causal effect in the IvD 
model was reduced and lost some power when adding the SEP in the propensity 
score, probably for an overestimation of the PS score (HR=1.03, CI 95% 1.00-
1.06 with SEP vs HR=1.04, CI 95% 1.01-1.06 without the SEP). In the RISt 
model, the inclusion of SEP determined as well a slight reduction of the effect of 
PM10 (HR=1.08, CI 95% 1.06-1.11 with SEP vs HR=1.09, CI 95% 1.06-1.11 
without SEP).  
 
Then the age-standardized hospitalization rates for Chronic Obstructive 
Pulmonary Disease (COPD) and Lung cancer, estimated in the period 1998-2010 
by gender and district (Table 13), were included in the propensity model as 
proxies for the smoking habits distribution, since this information was not 
collected in the census and in the cohort. 
The two rates were added one at a time, then together and, as a final model, the 
two rates together with the SEP index. Again, the IvD and RISt models were 
estimated with the different propensity scores obtained. 
 

Method Model HR 95%CI 

IvD Cox IvD stratified for PFa 1.04 1.01 1.06 
  adjusted for PF

a
 1.03 1.00 1.06 

  with subclassification in 10 classes
b
 1.03 1.00 1.06 

          aCox model stratified by follow-up period (three classes) and gender, stratified for PF in 5 subclasses 
bCox model stratified by follow-up period (three classes) and gender, stratified for PF in 10 subclasses 
 
Abbreviations: HR=Hazard Ratio; CI=Confidence Intervals; IvD= Imai van Dyk. 
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The inclusion of the age-standardized rates for COPD alone did not change the  
final effects, whereas the inclusion of both COPD and lung cancer SHRs in the 
prediction model increased the causal effect of PM10 on natural mortality in both 
IvD and RISt models (HR=1.05, CI 95% 1.02-1.08 and HR=1.10, CI 95% 1.07-
1.13 in IvD and RISt, respectively). 
When including the two SHRs together with the SEP index in the PS and then in 
the IvD model, the result did not change compared to the PS specification with 
only the two SHRs (HR=1.05, 95%CI 1.02-1.08), while in the RISt the effect 
decreased (HR=1.09, 95%CI 1.06-1.12). 
 

Method Model HR 95%CI 
Standard Cox model with SEPa 1.04 1.01 1.06 
          
IvD Cox model stratified for PFb 1.04 1.01 1.06 
  +SEP in the estimation of PF 1.03 1.00 1.06 
  +SHR COPD in the estimation of  PF 1.04 1.01 1.08 
  +SHR Lung cancer in the estimation of PF 1.03 1.00 1.06 
  +SHRCOPD+SHRLC in the estimation of PF 1.05 1.02 1.08 
  +SEP+SHRCOPD+SHRLC in the estimation of PF 1.05 1.02 1.08 
          
RISt Cox model with trimmed IPTWc 1.09 1.06 1.11 
  +SEP in the weights prediction 1.08 1.06 1.11 
  +SHR COPD  in the weights prediction 1.09 1.06 1.12 
  +SHR Lung cancer in the weights prediction 1.09 1.06 1.12 
  +SHRCOPD+SHRLC in the weights prediction 1.10 1.07 1.13 
  +SEP+SHRCOPD+SHRLC in the weights prediction 1.09 1.06 1.12 
          aCox model stratified by follow-up period (three classes) and gender, age on the temporal axis, 
socioeconomic position and occupational status. 
bCox model stratified by follow-up period (three classes) and gender, stratified for PF in 5 subclasses 
cCox model stratified by follow-up period (three classes) and gender, with weights based on GPS and 
trimmed at 5% and 95% 
Abbreviations: HR=Hazard Ratio; CI=Confidence Intervals; IvD= Imai van Dyk; RISt= Robins 
Importance Sampling Trimmed; IPTW=Inverse Probability Treatment Weighting; PF= Imai van Dyk's 
Propensity Function; SEP= socioeconomic position; COPD=Chronic Obstructive Polmunary Diseases; 
LC=Lung Cancer 
 
 
Table 12: Associations between annual average exposure to PM10 and natural 
mortality (Number of deceased=34,947) in different propensity specification models. 
Hazard ratio (HR) per 10 µg/m3 increase in PM10 and 95% Confidence Intervals, CI, 
1998-2014. 
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SHR COPD 

SHR Lung 
Cancer 

District Male Female Male Female 
Borgo 214,3 103,4 87,2 9,7 
Tamburi, Isola, Porta Napoli, Lido Azzurro 367,1 133,9 117,4 10,0 
Italia Montegranaro 190,8 93,3 77,0 12,9 
San Vito, Lama, Carelli 189,8 110,3 63,5 18,9 
Paolo VI 374,4 156,5 131,0 10,3 
Salinella 232,0 93,6 89,0 14,3 
Solito Corvisea 215,3 102,3 80,3 6,2 
Talsano 246,5 98,8 99,0 7,6 
Tre Carrare, Battisti 241,1 109,5 89,9 10,1 
Massafra 275,3 92,9 48,2 7,6 
Statte 288,1 104,0 77,6 5,4 
          a Direct standarization (Italian population at 1991) 
Abbreviations: SHR=Standardized Hospitalization Rates 

 

Table 13: Chronic Obstructive Pulmonary Disease (COPD) and Lung Cancer Age-
Standardized Hospitalization Ratesa (SHR) per 100,000,  by gender and district in 
the cohort of residents in Taranto, Massafra and Statte, 1998-2010. 

 

The last analysis explored the effects of PM10 exposure on specific causes of 
death: cardiovascular, cardiac and respiratory causes through standard Cox, IvD 
and RISt models (Table 14). The Cox models for the three methods are defined in 
Table 10, from which the HR values for natural mortality were taken. 
From Table 13 it was observed that for the standard Cox model, most of the effect 
on natural mortality was driven by the effect on cardiac mortality (HR=1.08, 
95%CI 1.03-1.13).  Cardiovascular and respiratory mortality had positive, but not 
statistically significant estimates (HR= 1.03, 95%CI 0.99-1.07 and HR=1.02, 
95%CI 0.94-1.11 for cardiovascular and respiratory mortality, respectively). 
The IvD model confirmed the results obtained for all causes from the standard 
Cox model, with a slight decrease in the effect for cardiac mortality (HR=1.07, 
95%CI 1.02-1.12). 
Causal estimates of PM10 on cause-specific mortality in the RISt model were 
higher than the ones observed with the other two methods, as was observed for 
natural mortality. In the case of cardiovascular mortality the effect also reached 
statistical significance (HR=1.09, 95%CI 1.04-1.13). 
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    Standard Coxa IvDb RIStc 
Cause of death (ICD-9CM) N HR 95%CI HR 95%CI HR 95%CI 
Natural mortality (001-799) 34,947 1.04 1.01 1.06 1.04 1.01 1.06 1.09 1.06 1.11 
                      
Cardiovascular mortality (390-459) 12,932 1.03 0.99 1.07 1.03 0.99 1.08 1.09 1.04 1.13 
                      
Cardiac mortality (390-429) 9,203 1.08 1.03 1.13 1.07 1.02 1.12 1.15 1.10 1.20 
                      
Respiratory mortality (460-519) 2,799 1.02 0.94 1.11 1.04 0.94 1.14 1.09 1.00 1.19 

                      
aCox model stratified by follow-up period (three classes) and gender, age on the temporal axis, socioeconomic position and occupational status.  
bCox model stratified by follow-up period (three classes) and gender, stratified by PF in 5 subclasses 
cCox model stratified by follow-up period (three classes) and gender, with weights based on GPS and trimmed at 5% and 95% 
Abbreviations: HR=Hazard Ratio; CI=Confidence Intervals; IvD= Imai van Dyk; RIS= Robins Importance Sampling; RIST= Robins Importance 
Sampling Trimmed 
 

Table 14: Associations between annual average exposure to industrial PM10 and mortality for natural, cardiovascular, cardiac and respiratory 
mortality in standard Cox, IvD and RISt models. Hazard ratio (HR) per 10 µg/m3 increase in PM10 and 95% Confidence Intervals, CI, 1998-
2014.
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Figure 10 shows the causal exposure-response curves estimated through Hirano 
and Imbens’ GPS method for natural, cardiovascular, cardiac and respiratory 
mortality. Three estimation models were used: 

1) Black line: a quadratic parametrization of the relationship between 
outcome and exposure and the GPS, as well as an interaction term  

2) Red dashed curve: additive spline estimator (Flores et al. (2012) extension 
of HI method)) 

3) Blue dotted curve: flexible function for the GPS in a generalized additive 
model  

The three curves in our data show approximately the same behaviour on the 
response outcome. With HI exposure-response function at increasing exposures to 
PM10, the estimated mortality rate increases rapidly up to 10μm and then slightly 
decreases for higher levels of PM10. The same behaviour is observed with the 
additive splines that give more flexibility to the model. However, the GAM 
estimate increases rapidly for lower levels of PM10 and then continues growing for 
higher levels of the pollutant. The cause-specific curves are almost identical in the 
behaviour, but not in the magnitude of the rate for the cause-specific mortality. 
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Figure 10: Exposure-response curves for the relationship between PM10 and 
mortality rates from all-natural, cardiovascular, cardiac, and respiratory causes, 
from Hirano and Imbens’ method and its extensions, 1998-2014. 
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6.2.6. Discussion 

This study revealed interesting results in the estimated effect of exposure to PM10 
on mortality. In the standard Cox model it was observed a clear positive effect of 
PM10 on mortality from natural causes and cause-specific. The Imai van Dyk 
Propensity Function model, applied to the data to obtain causal marginal 
estimates, showed similar results, while the Inverse Probability of Treatment 
Weighting method by Robins (2000) gave higher estimates of the effect.  
It was beyond the purpose of the study to establish which statistical method could 
lead to the least biased estimates. However, some literature exists discussing the 
pros and cons of the main propensity scores’ methodologies (covariate 
adjustment, stratification, matching, and inverse probability of treatment 
weighting) in time-to-event studies that could help interpreting the results. 
 
It’s the case of some recent studies by Austin (Austin, 2013, 2014; Austin, 
Grootendorst, & Anderson, 2007) that have compared the performance of 
different propensity scores methods in survival analysis and found that both 
stratification on propensity score and covariate adjustment resulted in biased 
estimation of marginal hazard ratios.  
Among the commonly used propensity scores methods, only IPTW based on 
propensity score has been considered allowing for the true estimation of marginal 
hazard ratios with negligible bias when estimating the ATE (Austin & Stuart, 
2015c; Gayat, Resche-Rigon, Mary, & Porcher, 2012). 
IPTW, based on PS, in a series of simulations by Austin Stuart (2015c), produced 
estimates of the marginal hazard ratio with negligible bias with both a weak and a 
strong treatment specification model.  
In another study by Austin (2014), the use of PS methods for stratification and 
covariate adjustment in Cox proportional hazard models was discouraged, because 
these methods result in conditional estimates of the treatment effect, rather than 
marginal effect. Moreover, both stratification on the PS and covariate adjustment 
using the PS can result in biased estimations of the conditional hazard ratio that 
would be obtained by adjusting for all prognostically important covariates 
(Austin, 2013). Therefore Austin (Austin, 2009a, 2014) recommended that 
researchers use either IPTW using PS or PS matching in studies estimating the 
effect of treatment on survival outcomes that demonstrated to eliminate the 
systematic differences between treated and untreated subjects to approximately 
the same degree. 
On the other hand, Rubin (2004) suggested that matching and stratification may 
be preferable to IPTW and covariate adjustment in general, since the latter two 
directly use the estimated propensity score and may thus be more adversely 
affected by misestimation or instability in the estimated propensity scores. Zhao et 
al. (2013) obtained a very unstable fit characterized by very large standard errors 
with IPTW for the estimation of the DRF. 
 
Diagnostics on observational studies using PS are crucial in determining whether 
conditioning on the estimated PS has removed all the observed systematic 
differences between treated and control subjects. 
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Consequently, another point of discussion is that while balance diagnostics have 
been described for covariate adjustment using the propensity score, stratification 
and matching using PS, these diagnostics are less transparent and less described in 
the context of IPTW using PS (Austin, 2008, 2009c; Austin & Stuart, 2015a). 
Even less is present for the continuous setting on balancing for IPTW. However 
the quantity computed for the denominator in the formula for inverse probability 
weights (Robins & Finkelstein, 2000) is based on the Hirano and Imbens GPS 
(Hirano & Imbens, 2004). 
In our study IPTW estimates consistently showed higher estimates, even if they 
have been trimmed to exclude extreme values. No direct covariate balance 
diagnostic has been done, since no reference methodology is present related to the 
continuous setting, however the Bia and Mattei (2014) procedure for the GPS 
balancing has been implemented before creating the weights. It is believable that 
this procedure could detect the presence of unbalance among the observations. 
 
The results obtained with Imai van Dyk method were not robust to the change in 
the final response model. In fact, the HR estimated for PM10 in the model 
stratified for 10 subclasses of the PF was smaller (and not significant) than what 
was observed in the model stratified for 5 subclasses. The same has been observed 
when adjusting for the PF in each stratum of the PF function.  
Since no evidence or comparison is present in literature about this response model 
specification, no indication can be given on which of these methods is better to 
apply. In our case, the subclassification in 5 classes, following indication from 
Austin 2013, resulted in a more conservative approach that prevented the loss of 
power in the estimates. 
 
Imai and van Dyk verified through simulations that bias and MSE reduction 
through subclassification on the PF is relatively robust to model misspecification 
(Imai & Van Dyk, 2004). However, care should be taken when selecting both the 
PF model and the response model. Model diagnostics in our study showed 
covariate balance for all the different specification of the model tested (Table 12). 
The response model produced different hazard ratio estimates according to the 
different model specifications. In fact, for both the IvD and RISt methods applied, 
the introduction of the SEP index in the propensity score specification model 
slightly reduced the intensity of the effects, while instead the introduction of both 
the age-standardized hospitalization rates for COPD and lung cancer increased the 
estimates by 1%. What happened for the SEP is probably due to an overfitting of 
the model, that already contained all the covariates from which the SEP index was 
built. For the second result, since the two SHRs were used in the model as proxies 
for smoking, this result could be interpreted as a better explication of the 
differences among the units that accounts now also for the previously unmeasured 
smoking habit. The changes in the final effect estimates were very slight but 
attention should be given to the model selection. 
 
In fact, there is lack of consensus in literature as to which variables to include in 
the propensity score model. Rosenbaum (Paul R Rosenbaum, 2010, p. 356) 
suggested that one should address the issue of variable selection for PS by asking 
“which covariates do you wish to balance by matching on the propensity score”. 
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What Austin (2014; 2007) recommended was to identify the potentially 
prognostically important covariates basing on “subject matter expertise and a 
review of the existing literature, rather than on formal statistical hypothesis testing 
in the study sample”. Causal diagrams can help identify those covariates in the 
spirit of basing the decision in the design phase of the study and not in the 
analysis phase, through statistical testing. (Rubin, 2007) 
 
Exposure-response curves estimated through Hirano and Imbens, Flores and with 
additive splines produced one of the first evidence in the causal inference setting 
in air pollution studies. 
Several studies investigated the shape of the exposure-response curve for 
particulate matter, all confirming a linear relationship with mortality (M. Daniels, 
Dominici, Zeger, & Samet, 2004; Evangelia Samoli et al., 2005; Schwartz & 
Zanobetti, 2000; Stafoggia et al., 2013). In this study three response models were 
specified according to different GPS relationship with exposure and outcome. The 
curves show a linear sharp increase of mortality rates starting from very low 
levels of PM10, and a subsequent slight decrease in the response. No bootstrap 
standard errors have been calculated for these curves, so it is possible that a flat 
zone could be resulting where we currently see a decrease in the curve. 
It has been demonstrated that the performance of Hirano and Imbens’s method is 
poor and slightly differs from the unadjusted regression, while the additive spline 
curve by Flores can be an improvement of the estimate, especially for higher order 
treatments, though it can introduce a cyclic artefact to the fit (Zhao et al., 2013), 
as we also observed in our data. 
It is very difficult to accurately represent the response model, and results are 
strongly dependent on parametric assumptions. One way to improve it, like we 
did, is to use more flexible response model (Flores et al., 2012; Zhao et al., 2013), 
to overcome the extrapolation risks of fitting the response model at all values of 
the GPS, including at unobserved combinations of exposures and covariates. 
To obtain an estimation of the DRF with the Cox model, it was necessary to 
reconduct the data to a Poisson process. Even though the equivalence between the 
two models was verified, some concerns could still be present about the holding 
of the Rubin Causal Model (RCM) assumption in this setting, where units are split 
for their time of follow-up, but keeping the same exposure at baseline fixed. 
More research is needed to adapt the current knowledge and methods of GPS to 
the Cox proportional hazard models. 
 
 
 
One of the assumptions made in this study was the unconfoundedness assumption 
(Paul R Rosenbaum & Rubin, 1983). This condition is untestable from the data. In 
this study several census tract level socioeconomic indicators and SHRs were 
considered and included in the PS specification, to account for all individual level 
factors that could confound the association between exposure and outcome.  
However, it is always possible that some unmeasured confounders could still bias 
the results, due to the fact that the information is not taken at the individual level. 
It has been argued that census block socioeconomic data as a surrogate for 
individual level socioeconomic position indicators may actually underestimate the 
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severity of the individual level SEP (Krieger et al., 2002; Subramanian, Chen, 
Rehkopf, Waterman, & Krieger, 2006). 
One other assumption that is at the basis of the PS methods is the SUTVA (Stable 
Unit Treatment Value Assumption) that requires independence of the potential 
outcomes in one unit from the specific treatment assigned to other units. In the 
case of this study, and in general in air pollution studies, this is hard to maintain. 
In fact, the exposure in one address for one person in a specific point in time 
could affect or be affected by the exposure level of a nearby address. It means that 
we can’t guarantee that in the Taranto area the exposure levels estimated in the 
Borgo district are not affected by the exposure levels observed in the Tamburi 
district, where the ILVA plant is situated.  
 
In long term-term effect studies, time also plays a role. In this part of the study we 
decided to consider only the exposure to PM10 at baseline, while in the main study 
in Chapter 4 all the exposure history has been reconstructed, and effects on health 
were estimated in time-varying models. It is legitimate to think that the past 
exposure of one person could have an effect in the present, even if the person is 
currently exposed to a less harmful level of pollution. As a consequence, the 
correlation in time of the treatment/exposure needs to be taken into account 
properly. Cumulative exposures could probably be used to overcome the SUTVA 
assumption. The time varying continuous exposure was beyond the objectives of 
this research and it was not treated, but it could certainly be a development of the 
study. No evidence is available up till now on time-varying continuous treatment 
for propensity score analysis. 
 
Results from the models estimated through GPS and PF are coherent for all the 
causes of mortality and also coherent with what found in the main study (Chapter 
4). 
We believe that the potential bias due to possible differences in the exposed and 
not-exposed subjects have been taken into account satisfactorily by using the 
census tract socioeconomic information at baseline, both in the main and in the 
generalized propensity score approaches. 
In fact the indirect adjustment methodology, applied in Chapter 4, already 
detected a negligible or absent correlation between lifestyle factors (smoking, 
drinking alcohol, and obesity), not directly measured in the cohort, and the 
exposure.  
 
The exercise about the Generalized Propensity score methods proposed in this 
thesis highlighted how further research is needed to fill the existing gaps in the 
methodologies, and consequently in the literature, regarding the use of the GPS 
for continuous exposures in survival analysis. 
 

6.3. Conclusions 

This thesis has explored the use of causal inference methods in public health, 
where more often observational studies are conducted rather than randomized 
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experiments, due to the unethical, impractical and length implications for a timely 
decision making (Glass, Goodman, Hernán, & Samet, 2013). 
The most important consequence deriving from the use of observational studies is 
that the interventions under consideration may be vaguely defined. A way to 
overcome this concern is to design the observational studies in order to mimic a 
randomized experiment with a well-defined intervention/exposure. 
The knowledge of the intrinsic assignment mechanism is crucial to make the 
compared groups conditionally exchangeable, by controlling for example for 
variables that influence both assignment and outcomes, when they are measures, 
or by correctly designing natural experimental studies (Craig et al., 2017).  
 
Three methods were presented in this thesis to estimate the association of 
industrial air pollution with health effects on a at-risk population in an 
observational longitudinal study.  
The first method was the standard regression adjustment with multivariable Cox 
models, which controls for observed differences between exposure and control 
groups. This approach takes into account factors that are associated with both the 
exposure and the outcome, and assume that all such factors have been measured 
accurately, so that there are no unmeasured confounders (Craig et al., 2012; Craig 
et al., 2017).  
 
The second approach used was the DID that compares the change in an outcome 
among people who are newly exposed to an intervention with change among those 
who remain unexposed. The strength of this method is that it controls for both 
observed and unobserved fixed characteristics of the groups and it is less prone to 
be affected by bias due to omitted variables or measurement error. One main 
limitation instead is the fact that the method relies on the assumption of no group-
specific trends that may influence outcomes, i.e. the parallel trend assumption. 
This strong assumption can’t be tested and can be easily violated by differential 
changes in the composition of the two compared groups. 
 
The third method was a propensity score based approach, with a generalization to 
the continuous exposures. In the absence of a randomization of the exposure, the 
PS based method tries to recreate the allocation mechanism, by using regression 
models for the conditional probability of being assigned a specific exposure given 
a set of covariates. The strength of this method is that it adjusts for the differences 
in the characteristics of the exposure in the exposed and unexposed groups, and 
doing so, minimizes the effects of confounding and allows for balanced 
comparisons.  The main limitation of this method is that it strictly depends on the 
specification model for the propensity score given the observed and available 
variables, with the main assumption that no other unmeasured confounder plays a 
role in the mechanism of exposure allocation and no measurement error occurs 
(Craig et al., 2012; Craig et al., 2017) 
 
In practice, none of these approaches provide a comprehensive unique solution to 
the central problem of selective exposure to the intervention (Rubin, 2008).  
In fact, methods like matching, regression, and propensity score, controlling for 
observed factors, can be used to reduce bias but they are vulnerable to selection on 
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unobservables. Methods dealing with unobservable factors, like difference-in-
differences, instrumental variables, and regression discontinuity design, rely on 
strong and untestable assumptions. 
 
To provide more strength to the inference the use of conjoint methods as well as 
the replication of the study by using different designs, and falsification tests are 
indicated. Consistent findings from studies using different design, in fact, make 
less likely that the same common biases are present, and consistent findings 
increase the confidence in the generalisability of the causal inferences.  
It is where the current study is positioned, showing that the three approaches all 
lead to the same conclusions, despite the different study designs and study periods 
involved. 
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Abstract 

Introduction  

The association between long-term exposure to air pollution and mortality or 

morbidity has been widely studied, however the health effects of industrial 

emissions are less clear, and the relevant time-windows of exposure need to be 

established. We conducted a cohort study to examine the association between 

residential exposure to air pollution from a large steel plant located in Taranto 

(South Italy) and cause-specific mortality and morbidity in the population living 

in the area. 

Methods 

The cohort included all subjects (321,356) residents in the area in 1998-2010, 

followed until the end of 2013. Exposure to PM10 and SO2 originating from the 

steel plant at each residential address of the study participants (on 2010) was 

assessed using a Lagrangian dispersion model. A backward and forward 

extrapolation of the annual exposures during 1965-2013 was applied based on 

steel production and emission data. The time-dependent annual average exposure 

was used in Cox proportional-hazard models to investigate the effect of industrial 

air pollutants on cause-specific mortality, hospital admissions, and cancer 

incidence. Adjustment was made on individual and contextual variables. The 

latency of the effects was explored on different 5-year time windows.  

Results  
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A total of 33,042 subjects died from natural causes by the end of the follow-up. 

Exposures to both industrial PM10 and SO2 at lag 0 (same year) were associated 

with natural mortality: Hazard Ratios (HR) 1.04 (95% Confidence Interval 

(CI):1.02-1.06) and 1.09 (95%CI:1.05-1.12) for 10µg/m3 increments, respectively. 

Larger associations were observed for mortality from heart diseases (HR 1.05 for 

PM10 and 1.11 for SO2) and acute myocardial infarction (HR 1.10 for PM10 and 

1.29 for SO2). The models based on 5-year exposure windows showed that the 

effects of both pollutants on natural mortality were driven by the recent exposure 

(previous 5 years) and the exposures in the distant past (30-35 years lag). Results 

for hospital admissions and lung cancer incidence were in line with the mortality 

findings.  

Conclusions: Estimated exposures to industrial PM10 and SO2 in this industrial 

area were associated with several health outcomes. Both recent and distant 

exposures were responsible for the negative effects on natural mortality. 
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MAIN TEXT 

The health effects of air pollution have been widely studied and there is a large 

body of evidence indicating that chronic exposure to particulate matter is 

associated with cardiorespiratory mortality and morbidity (WHO, 2013). The 

International Agency for Research on Cancer (IARC) has concluded that there is 

sufficient evidence of the carcinogenicity of atmospheric particulate matter (PM10 

and PM2.5) in particular on lung cancer (Cancer, 2014). The association between 

air pollution and, cardiovascular and respiratory diseases has been observed in 

several studies (Hamra et al., 2014; Pope et al., 2004), and has been well 

documented by the WHO(WHO, 2013). The available literature on the sources of 

air pollution indicates that traffic as well as industry (combustion sources and 

coal-fired power plants) could be the sources mostly responsible for the adverse 

health effects as compared to other sources like crustal soil or sea spray (WHO, 

2013). However, the literature on specific sources is limited and few studies exist 

on the health effect of steel industry.  

The steel industry, given the specific treatment of coal at high temperature, emits 

several pollutants including fine particles with varying composition and 

containing several toxic elements, including polycyclic aromatic hydrocarbons 

(PAH) and transition metals (Di Gilio et al., 2017). Dioxins and others organic 

pollutants can originate from the combustion. Workers employed in the steel 

industry are exposed to several toxic substances including PAH, dioxins, and 

asbestos. The epidemiologic literature on the potential health effects of emissions 

from a steel plant is limited to the studies conducted in the Utah Valley during the 

eighties/nineties (Pope 3rd, 1989; Pope 3rd, Hill, & Villegas, 1999; Pope III, 
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Schwartz, & Ransom, 1992) with increase in mortality, respiratory hospital 

admissions and lung cancer. More recently, a study conducted in Canada showed 

that outdoor air pollution in the vicinity of a steel plant can influence 

cardiovascular physiology, in particular pulse rate and Flow-mediated 

vasodilation (FMD) (Liu et al., 2014). IARC has already classified occupational 

exposure in the steel industry as group 1 carcinogen (IARC, 1987) and studies of 

large cohorts of steel workers indicate excesses of cancers of the lung, pleura, 

bladder, and stomach (Andjelkovich, Mathew, Richardson, & Levine, 1990; 

Bourgkard et al., 2008; Finkelstein & Wilk, 1990; Fletcher & Ades, 1984; 

Hoshuyama et al., 2006; Park, Ahn, Stayner, Kang, & Jang, 2005; Rodríguez et 

al., 2000; Sorahan, Faux, & Cooke, 1994).   

We have conducted a large population based cohort study with a long follow-up 

of mortality, hospital admissions, and cancer incidence near a large steel plant. 

Exposure to industrial emissions was estimated retrospectively for all the subjects.  

The aim of the study was to assess whether long-term exposure to industrial 

emissions is related to increased mortality from all-natural causes, cardiovascular 

and respiratory hospital admissions as well as cancer incidence. These conditions 

were of a priori interest because of the large literature on the health effects of fine 

particles but few studies nearby industries.  

 

Materials and methods 

Setting  
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The city of Taranto is located in the Apulia region in Southern Italy and is one of 

the most industrialized areas in Europe. The area has been included among the 14 

Italian sites of national interest requiring remediation, and defined in the 1990s as 

an “area at high risk of environmental crisis” by the Italian government, because 

of the presence of one of the largest steel plants in Europe. Opened on November 

27th, 1964, the ILVA steel plant has a nominal steel production capacity of 8 

million tons/year; in addition to finished products for the domestic and foreign 

markets, it also supplies a wide range of Italian industries, including the 

automotive sector, home appliances, energy, construction, shipbuilding and 

packaging.  The productivity of the plant changed during the period of its activity 

with an increase up to the eighties, a decline following the economic crisis (2009), 

a subsequent increase in the years 2010-2012, and a decline in 2013-2014. The 

production trend, and therefore the variation in emissions, had an effect on 

pollution levels in the neighboring districts. 

Several environmental monitoring studies and measurement campaigns of 

industrial emissions in the Taranto area showed a relevant contribution of the steel 

factory on the levels of measured pollutants in the area. (Brand et al., 2004) 

  

Study design 

All residents living in Taranto (and Massafra and Statte, two nearby communities) 

on January 1, 1998, as well as those later entering for immigration or birth until 

December 31st 2010, were enrolled in the study cohort. For each subject, personal 

data, address, date of immigration (and possible emigration), and vital status were 

available from the General Registry Office of the three cities. The municipalities’ 
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databases contained for each person all changes of residence since the fifties until 

the end of 2010. Each address was geocoded using ArcGIS software. The follow-

up for vital status at December 31st 2013 was carried out through the municipal 

register and record linkage with the regional mortality database, which includes 

all deaths of the resident population.  

A census block-level socioeconomic position (SEP) index was assigned to each 

participant on the basis of his/her geocoded address.  SEP is a small area index 

(high, middle-high, medium, middle-low and low) based on the census-block 

(around 500 inhabitants) and built up on information recorded at the 2001 census 

(percentage of population with educational level equal to or less than primary 

school, the percentage of the active population unemployed or looking for their 

first job, percentage of rented houses, percentage of single parent families, 

population density) (G Cesaroni, Agabiti, Rosati, Forastiere, & Perucci, 2006). 

For each subject, information about cause-specific mortality (1998-2013) and 

hospitalization (1998-2014), and cancer incidence (2006-2011) were retrieved 

from the Regional Health Databases and the Regional Cancer Registry. For 

hospitalization, only the principal diagnosis was considered. 

 

 

Air pollution exposure assessment 

The emission scenario of the ILVA plant is characterized by a high number of 

sources, both conveyed and fugitive. Fugitive emissions are the hot emissions 

from the steelwork, the cold emissions generated by the fossil fuels processing 

products, wind erosion from the large uncovered coal mining park, the handling 
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on the conveyors and the transportation of material. Daily simulations for the year 

2010 were carried out to estimate three-dimensional concentrations of pollutants 

using a Lagrangian modelling system and considering both conveyed and fugitive 

emissions. The modelling system included the SWIFT meteorological model, the 

SURFPRO turbulence pre-processor and the SPRAY Lagrangian particles 

dispersion model (Giua et al., 2014). The SPRAY model simulates the transport, 

dispersion and deposition of pollutants using orography, meteorological data, 

turbulence and hourly spatial distribution (horizontal and vertical) of emissions, 

based on the characteristics of the single source and on mass fluxes (g/h). The 

model follows the path of fictitious particles in the atmospheric turbulent flow, 

and it can take into account complex situations, such as the presence of obstacles, 

breeze cycles, strong meteorological non-homogeneities and non-stationary, wind 

calm conditions. The meteorology in the area was built with the SWIFT and 

SURFPRO codes on hourly basis, by using the products for the year 2007 

supplied by the MINNI project (Zanini, 2009) as the input. Model results were 

validated using measured data in 9 fixed monitoring stations of the ARPA 

network. Particulate Matter (PM10) and Sulfur dioxide (SO2) were considered as 

surrogate measures of contaminants emitted by the industrial plants. Annual 

average emissions were estimated for each 500m x 500m cell. The annual 

individual exposure to each air pollutant was obtained in a multi-step procedure 

that is described in the Supplemental material. The main measures of individual 

exposures used in the analysis were the time-varying exposures to industrial PM10 

and SO2 from 1965 till end of follow-up (additional details of the methodology in 

the Supplemental material). 
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Occupational status 

Each cohort participant was linked to the National Pension Fund database, which 

includes information on individual jobs with employment companies since 1974. 

All people employed during the period 1974-1997 were selected by branch of 

activity, so previous occupational history was categorized in five groups: 

• Blue collar workers in steel factories; 

• White collar workers in steel factories; 

• Naval construction workers; 

• Mechanical construction workers; 

• Workers in other occupational branches or people without contribution 

payments (reference category). 

  

Statistical analyses  

Each resident contributed to person-years at risk from the date of entry in the 

cohort (1998 or later up to 2010) until date of exit for death, emigration or end of 

follow-up. The association between long-term exposure to air pollutants (defined 

as time-varying annual average) and mortality/morbidity was estimated using a 

survival analysis with multivariate time-dependent Cox proportional hazard 

models.  

 

Age was used as the time scale. Observation times were censored at the time of 

death for causes different from the one under study, emigration, loss to follow-up, 

or end of follow-up, whichever came first. A priori confounders included: gender, 
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area-level socioeconomic position occupation (recorded at baseline); calendar 

period (in 3 classes, time-dependant variable). Air pollution exposure was 

modelled using alternative time-varying variables based on different time 

windows, with the aim of exploring effects attributable to different averaging 

periods: current exposure (lag 0, e.g. average exposure in the current year), and 5-

year time-window lagged concentrations over the period considered (1-5, 6-10, 

11-15, 16-20, 21-25, 26-30, 31-35, 35+ years).  

 

Hazard Ratios (HR) and corresponding 95% Confidence Intervals (95% CI) per 

10 g/m3 increases of each pollutant were computed. 

As an additional analysis, we relaxed the assumption of linearity of the 

concentration-response function by modelling exposure at lag 0 with a penalized 

spline with 2 degrees of freedom in the Cox proportional hazard models used for 

the main analysis. 

 

Effects of air pollutants on mortality and cancer outcomes were analysed on the 

total cohort. Hospitalization outcomes were analysed both in the total cohort and 

in the sub-cohort of children younger than 14 years. 

 

Confounding by smoking, alcohol and body mass index 

We did not have information on individual lifestyle factors. If these variables 

were heterogeneously distributed across classes of exposure, a lack of adjustment 

could lead to residual confounding and bias in the relationship between exposure 

and outcome. We attempted to overcome the lack of information on smoking 
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habit, alcohol consumption and obesity in the cohort by using an ancillary data set 

of the PASSI (Progressi delle Aziende Sanitarie per la Salute in Italia) (Centro 

nazionale di epidemiologia)  national surveillance survey about lifestyles and 

personal habits for the years 2008-2013. This sample survey is considered 

representative of the cohort of Taranto, Massafra and Statte. Among 1,755 

subjects recruited in the survey between 2008 and 2013, 620 individuals were 

members of the cohort and provided questionnaire data. This subset was used to 

assess the relationship between exposure to industrial pollutants (independent 

variables in quartiles) and the prevalence of smoking habit (smokers, ex-smokers 

vs. never smokers), alcohol consumption (Yes/No) and obesity (BMI>30 vs 

BMI<=30) using a Poisson regression model (Prevalence Rate Ratios) adjusted 

for age, sex and socio-economic position, and weighted for the age distribution of 

the original cohort. Lack or presence of association between environmental 

exposures and individual factors were considered as supporting non-presence or 

presence of residual confounding from these factors.  

 

 

Results 

A total of 321,356 individuals (51.1% females), were enrolled in the cohort from 

1998 to 2010 and followed-up until 2013. During the study period we observed 

35,398 deaths for natural causes while 27,260 subjects moved away from the 

study area and were censored at the time of migration. The main characteristics of 

the cohort members (age, sex, socioeconomic position, length of residence at 

recruitment, occupation, and vital status) are described in Table 1.  
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Figure 1 shows the results of the dispersion model for PM10 and SO2 originating 

from the industrial plant in the study area (municipalities of Taranto, Massafra 

and Statte). The areas in the south of the ILVA plant were mostly affected.  

 

Productivity of the steel plant, emissions data and PM10 and SO2 average 

exposures (lag 0), resulting from the backward and forward extrapolation 

procedure, are represented in the supplemental Figure S1. In the upper part of the 

figure, productivity and extrapolated emissions from the steel plant processes are 

plotted for the period 1965-2013. Emissions follow the trend of productivity until 

the year 1995, when they decreased, while productivity started to increase until 

2008. The average exposures to PM10 and SO2 at lag 0 (in the bottom part of the 

figure) strictly follow emissions trends and behave similarly for the two 

pollutants. Both productivity and emissions decreased in the year 2009, possibly 

due to the economic crisis, and consequently a decrease in the exposure to the 

pollutants was observed.  

 

The time-varying pollutant average exposure of the past 35 years was attributed to 

each individual of the cohort. The annual average exposure at lag 0 at baseline 

(1998) was 9.03µg/m3 (±SD=9.53) for PM10 and 9.09µg/m3 (±SD=4.81) for SO2 

among 270,833 cohort members recruited at the start of the cohort (Table 2). 

PM10 and SO2 were highly correlated (r=0.7).  

 

The association between air pollutants and mortality is shown in Table 3. For each 

10µg/m3 increment of PM10 and SO2 at lag 0, we observed an increased risk of 
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non-accidental mortality (HR=1.04, CI 95% 1.02-1.06, HR=1.09, CI 95%  1.05-

1.12, respectively), in particular mortality from heart diseases (HR=1.05, CI 95% 

1.02-1.09 and HR=1.11, CI 95% 1.04-1.18,  respectively), and from acute 

myocardial infarction (HR=1.10, CI 95% 1.02-1.19, and HR=1.29, CI 95% 1.10-

1.52 for PM10 and SO2, respectively). Malignant neoplasms HR=1.08, CI 95% 

1.02-1.15), and lung cancer mortality (HR=1.17, CI 95% 1.03-1.34), showed 

positive associations with the average concentrations of SO2. Moreover, mortality 

for kidney diseases was associated with PM10 (HR=1.13, CI 95% 1.02-1.25 for 

10µg/m3 increase). Only weak associations were detected for respiratory diseases 

mortality and a negative association was found between both air pollutants and 

mortality from cerebrovascular diseases.   

 

Linearity of the association between PM10 at lag 0 and mortality was confirmed 

for all the causes studied using splines (Figure 2). The exposure-response 

relationships between SO2 and cause-specific mortality displayed some deviations 

from linearity, though with ample confidence bands at higher concentrations 

(Figure 3). 

 

The latency of the effects on mortality was analyzed estimating different 

independent models in which one 5-year time window of exposure at the time was 

used. The effects estimates for these different time-windows of exposure were 

higher in the most proximal lags (up to 5 years), then decreased so to become 

almost null and then increased again for exposure occurring in the past, namely 26 

years or more (Figure 4).  
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Table 4 shows the associations between average exposures to PM10 and SO2 and 

hospital admissions. Both pollutants were positively associated at lag 0 with 

several outcomes investigated. Increased risks (ranging from 3% to 11% for 

10µg/m3 increment of PM10 and 6-35% for 10µg/m3 increment of SO2) were 

found for natural causes, central nervous system, heart, respiratory, and kidney 

diseases. In addition, SO2 was associated also with hospital admissions for acute 

myocardial infarction (HR=1.14, CI 95% 1.06-1.23) and heart failure (HR=1.13, 

CI 95% 1.06-1.21).  

 

We found positive associations with pediatrics admissions for diseases of the 

respiratory system (HR=1.11 and HR=1.33, for 10µg/m3 increases in PM10 and 

SO2 at lag 0, respectively) and for respiratory infections (HR=1.15 for PM10 and 

HR=1.49 for SO2). (Table 4, bottom). 

 

We studied the shape of the relationship of hospital admissions with pollutants by 

estimating penalized splines. The Figure S2 shows the linear trend in the effects of 

PM10 and SO2 on admissions for most of the conditions.  

 

Table 5 shows the association between industrial pollutants and cancer incidence. 

We found a positive association with lung cancer incidence (HR=1.29, 95%CI 

1.14-1.45, and HR=1.42, 95%CI 1.10-1.84, for 10 µg/m3 increases in PM10 and 

SO2, respectively) and incidence of kidney cancer (HR=1.32, 95%CI 1.01-1.73 

for PM10 e HR=2.44, 95%CI 1.38-4.34 for SO2). Among women, PM10 exposure 

was associated with breast cancer (HR=1.27, 95% CI 1.13-1.41).
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Residual confounding 

Table S1 in the Supplemental material shows the prevalence of potential 

confounders (smoking, alcohol, and obesity) by quartiles of the distribution of 

industrial PM10 and SO2 exposure in the ancillary data set we used. Asjusted 

prevalence rate ratios are also reported. There is no clear increasing trend of the 

prevalence of smoking, drinking alcohol and obesity with higher quartiles of 

exposure. No statistically significant association was found between exposures 

and individual smoking habits and obesity suggesting that they are not relevant 

confounders in the present study. Alcohol consumption was related to the 2nd and 

4th quartile of PM10 only. 
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Discussion 

This study evaluated the effects of environmental exposures on the health status of 

the residents in the area of Taranto. Results showed associations between 

exposure to PM10 and SO2 of industrial origin and natural mortality and for 

specific causes, in particular non accidental mortality, lung cancer, heart disease, 

acute myocardial infarction and kidney disease. The study showed also higher 

risks in the first years of exposure and in the far past of more than 25 years before 

the current exposure. Associations were even stronger considering hospital 

admissions. The analysis of cancer incidence highlighted a positive relationship 

between the industrial pollutants and lung and kidney cancer in both genders and 

breast cancer among women.  

 

We considered modeled PM10 and SO2 concentrations as exposure measures of 

industrial pollutants on the assumption that the pollution from the plant does not 

spread uniformly around the site but depends on emissions, prevailing winds and 

the orography of the area. We used the shape of the concentrations on the ground 

to rank subjects as more or less exposed, and this shape is of greater importance 

than are the exact absolute values. In our study SO2 exposure effects are higher 

than those of PM10 and they are similar in magnitude to the excess risks observed 

among residents in Paolo VI district by Mataloni et al. (Mataloni et al., 2012). A 

recent study by Mangia et al. (Mangia et al., 2013) revealed that the estimated 

SO2 footprint identifies very well the area close to the steel factory, exhibiting 

higher mean values and positive correlations with wind speed, when the 

monitoring station is downwind from the industrial site. The monitoring station 
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located in Paolo VI district recorded the highest SO2 mean concentration values, 

compared to the other neighbourhoods, suggesting that SO2 could be a stronger 

marker of industrial exposure than PM10.  

 

In this study exposures to PM10 and SO2 from industrial sources were modeled 

using the annual mean exposure at residence, considering all changes of residence 

until the end of 2010. Many cohort studies assumed exposure contrasts, estimated 

at individual level at the study inception (baseline), as representative for long term 

exposures (Ancona et al., 2015; Beelen et al., 2008; Filleul et al., 2005; Jerrett et 

al., 2009; Mataloni et al., 2012). This approach can lead to exposure 

misclassification in case of widespread mobility patterns or changing spatial 

distribution of exposure over time. Few longitudinal studies (Bentayeb et al., 

2015; Lepeule et al., 2012; Tétreault et al., 2016; Wahida et al., 2016) dealt with 

time-varying exposure assessment for every year of follow-up, and among them 

only two studies attempted backward reconstruction of individual residential 

histories (Bentayeb et al., 2015; Wahida et al., 2016). The study conducted in 

Paris took into account residential mobility by weighting the individual 

cumulative exposure at census block level by the probability of moving from a 

census block to another, on a specific year, tabled in a matrix of all possible 

movements(Wahida et al., 2016). However, in the two studies, aggregation of 

exposure assessment was at the zip code and census block level, respectively. In 

both studies (Bentayeb et al., 2015; Wahida et al., 2016), an average cumulative 

exposure measure was estimated, which in one case (Bentayeb et al., 2015) lead to 

similar or weaker results compared to the mean annual exposure. 
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Hazard ratios (HRs) were estimated considering as potential confounders 

birthplace, SEP, occupational exposure and other environmental exposures 

besides that under study. We explored the form of the exposure-response 

relationship between industrial exposures and outcomes by using a semi-

parametric smoothed curve, the natural spline (Madouasse, Browne, Huxley, 

Toni, & Green, 2012).  

The reconstruction of the personal exposure history from the moment people 

became residents in the area, also before the beginning of their follow-up, 

considering all changes in addresses and migration movements to account for past 

cumulative exposure, is new in the long-term effects studies context. The level of 

exposure was assessed on a very fine scale and the exposure estimate came from a 

well-reasoned procedure, where dispersion estimates were weighted with 

production and emissions data of the steel plant. All events occurring in 

decreasing or increasing personal residential exposure, like the economic crisis in 

2009, the closure of some comparts after the trial in 2012, and all the personal 

movement of residence were then evaluated over the previous 35 years of 

observation. In Table 1 we saw that more than 34% of subjects were residing in 

the area for more than 30 years, showing that the population is stable, with a 

percentage of 81-85% of cohort subjects who never changed address during the 

follow-up. We assumed that the stable population of the cohort has different 

lifestyle and habits that we took into account correcting the estimates with 

socioeconomic position index.  
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Increasing yearly mean exposure in IQR of PM10, PM10-2.5 and SO2 was 

significantly associated with increase in non-accidental mortality of 12% for 

PM10, 6% for PM10-2.5 and 10% for SO2. Our study found generally similar effect 

estimates between time-varying and cumulative exposure, and the analysis of the 

latency showed that risks of natural mortality were strongest in the first year of 

exposure and after more than 25 years of permanence in the area, while in the 

Bentayeb et al.’s study highest effects were found after one year of exposure. 

However the high correlation (r=0.7) among lags cannot allow us to think in terms 

of independent effects. Thus the effect seen after 25 years of exposure may 

depend on the exposure of the previous years.  

A more accurate lag- distributed model should be applied, like Lepeule et al. did 

in six Harvard cities from 1974 to 2009, to inspect the behaviour and trend of time 

of exposure on the onset of diseases. It is in fact also of interest to explore 

whether the concentration-response curve has changed over time as particle 

composition and anthropogenic activities have changed over the 48-years period 

considered in our study.  

 

One of the strength points in our study was the availability and completeness of 

mortality and hospital admissions data, which for the latter arrived until the end of 

follow up. Record linkage procedures attributed almost 98% of the causes of 

death to individuals and rigorous protocols were adopted to select appropriate 

hospital admissions. 
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Another strength of this work is the cohort size (321,356 residents) and the 

longitudinal study design adopted. Our results were adjusted for several 

confounders: age, socio-economic position, and variables related to the 

environmental and occupational context that might otherwise have confounded 

our results. However, no data were available on the personal habits of the subjects 

that could have had a role in the diseases investigated, especially cigarette 

smoking, but also alcohol use, physical activity and obesity. Collecting this 

information, through telephone interviews or home visits, would have been 

prohibitive for such a large cohort. The lack of this information may have biased 

the results because of confounding not controlled in the analysis. However, at 

least for smoking, alcohol consumption and obesity, the estimates on a cohort sub-

group with this information available indicated an absent or negligible association 

between exposure to PM10 and SO2 and those individual habits. The distribution 

of smoking addiction among the cohort revealed 31.5% of smokers, compared to a 

percentage of 27-28% in the Apulia region and 28% in Italy globally. It is 

therefore extremely unlikely that smoking plays a confounding role in this cohort. 

Furthermore, it should be noted that many personal habits are associated with 

socio-economic position. It is thus reasonable to assume that the analysis that 

adjusted for socio-economic index also took into account others, not measured, 

individual variables.  

 

The novelty of our study is the individual exposure up to 48 years before the end 

of follow-up in a multi steps and time varying approach. We were able then to 

ascertain the residential history of the cohort and to assess the temporal variation 
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of exposure to PM10 and SO2. However, individual exposures came from models 

and were not measured directly through the follow-up. This assumes that subjects 

would not move and stay at their home all day. Since a large proportion of 

subjects works and spends time at work, this may have introduced a 

misclassification bias in our study. Another possible source of bias could lead in 

using a multi steps procedure that, first of all, started from results of a dispersion 

model estimated from parameters of the year 2010 and meteorology of 2007, and 

that introduced possible errors in the extrapolation phase, mainly in the one from 

1990 backwards, where a constant annual increase of emissions was assumed. 

 

In conclusion, industrial PM10 and SO2 were positively associated with mortality 

and hospitalizations in the Taranto area, when socioeconomic position and 

occupational exposures were taken into account, confirming that the industrial 

pole is an important risk factor for the health status of residents. Both recent and 

past environmental exposures are responsible for the negative effects observed. 
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Table 1: Descriptive characteristics of the cohort members, study period 1998-

2013.

 
  N % 

Cohort   321,356 100 
        
Gender Males 157,031 48.9 
  Females 164,325 51.1 
        
  0 34597 10.8 
  1-9 29047 9.0 
  10-19 36,224 11.3 
  20-29 49,652 15.5 
Age class at enrolment (years) 30-39 45,674 14.2 
  40-49 37,811 11.8 
  50-59 34,213 10.7 
  60-69 26,946 8.4 
  70-79 18,502 5.8 
  >=80 8,690 2.7 
        
  High 68,693 21.4 
  Middle-High 39,095 12.2 
Area based socio-economic position Medium 32,736 10.2 
  Middle-Low 58,034 18.1 

 
Low 112,481 35.0 

  Missing 10,317 3.2 
        
  0-10 105768 32.9 
Lenght of residence in the area at the enrolment 
(years) 11-19 46831 14.6 

  
21-30 50756 15.8 
31-40 111203 34.6 

        
Occupational status       
  No 307,800 95.8 
        Employment at the Iron and Steel Industrya   Yes, laborer 9,633 3.0 
  Yes, office worker 3,923 1.2 
        
        Employment in the Mechanical Construction 
Industrya 

No 304,321 94.7 
Yes 17,035 5.3 

        
        Employment in the Naval Construction 
Industrya 

No 320,118 99.6 
Yes 1,238 0.4 

        
Vital Status       
  Alive 258,698 80.5 
  Dead 35,398 11.0 
  Lost to follow-up 27,260 8.5 

 
      

        
a1974-1997 
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Pollutant  Mean SD Min Max 
 Percentiles 

5° 25° 50° 75° 95° 

PM10 (µg/m3) 9.03 9.53 0 85.24 1.05 3.52 7.79 9.35 30.60 

SO2 (µg/m3) 9.09 4.81 0 22.08 1.88 5.53 9.27 11.82 18.18 

                   
 

Table 2: Descriptive data of exposures to PM10 and SO2 of industrial origin at lag 0 among 270,833 cohort members at the baseline 

in 1998. 
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Causes of death (ICD-9CM)   PM10 SO2 

N HR* 95%CI    HR* 95%CI  
Natural mortality (001-799) 33042 1.04 1.02-1.06    1.09 1.05-1.12  
Malignant neoplasms (140-208) 10210 1.03 1.00-1.06    1.08 1.02-1.15  
    Trachea, bronchus, and lung (162) 2164 1.05 0.99-1.12    1.17 1.03-1.34  
    Bladder (188) 476 1.03 0.90-1.18    0.98 0.74-1.29  
    Kidney (189) 116 0.95 0.70-1.30    0.81 0.46-1.45  
    Lymphatic and hematopoietic tissue (200-208) 879 0.98 0.87-1.09    1.04 0.85-1.28  
Diseases of the central nervous system (330-349) 1014 1.05 0.951.16    1.05 0.86-1.29  
Diseases of the circulatory system (390-459) 12527 1.02 1.00-1.05    1.04 0.99-1.10  
    Heart diseases (390-429) 8857 1.05 1.02-1.09    1.11 1.04-1.18  
    Acute myocardial infarction (410-411) 1275 1.10 1.02-1.19    1.29 1.10-1.52  
    Cerebrovascular disease (430-438) 2903 0.90 0.85-0.96    0.80 0.72-0.89  
Diseases of the respiratory system (460-519) 2741 1.02 0.97-1.08    1.02 0.91-1.14  
    Respiratory infections (460-466, 480-487) 751 0.90 0.80-1.02    0.85 0.69-1.04  
    COPD (490-492, 494, 496) 1618 1.03 0.95-1.10    1.04 0.90-1.21  
Kidney disease (580-599) 707 1.13 1.02-1.25    1.16 0.93-1.45  
                  
*Hazard Ratio (HR) from a Cox model stratified for period of follow-up (3 categories) and sex,  adjusted for age (temporal axis), socioeconomic position and 
occupational status  
 

Table 3: Associations between annual average exposure to PM10 and SO2 and cause-specific mortality. Adjusted hazard ratios (HRs 

and 95% CI) per 10 µg/m3 increase of each pollutant, 1998-2013. 
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Table 4: Associations between annual average exposure to PM10 and SO2 and hospital admissions. Adjusted hazard ratios (HRs and 

95% CI) per 10 µg/m3 increase of each pollutant, 1998-2014. 

    
PM10            SO2 

Diagnosis (ICD-9 CM) 
  

N HR 95%CI  HR 95%CI  

All natural causes (001-799)a 193277 1.03 1.02-1.04  1.06 1.04-1.07  
Diseases of the central nervous system (330-349) 8890 1.05 1.01-1.08  1.21 1.13-1.30  
Diseases of the circulatory system (390-459) 49859 1.04 1.02-1.05  1.06 1.03-1.09  
    Heart diseases (390-429) 34316 1.05 1.04-1.07  1.10 1.07-1.14  
    Acute myocardial infarction (410-411) 7253 1.02 0.99-1.06  1.14 1.06-1.23  
    Heart failure (428) 8952 1.02 0.99-1.06  1.13 1.06-1.21  
    Cerebrovascular disease (430-438) 13236 1.01 0.98-1.04  0.92 0.87-0.97  
Diseases of the respiratory system (460-519) 31091 1.07 1.05-1.08  1.15 1.12-1.19  
    Respiratory infections (460-466, 480-487) 13654 1.11 1.08-1.13  1.35 1.28-1.42  
    COPD (490-492, 494, 496) 7474 1.03 1.00-1.06  0.95 0.88-1.01  
    Asthma (493) 885 0.99 0.90-1.09  0.95 0.78-1.16  
Kidney disease (580-599) 13184 1.08 1.05-1.11  1.09 1.04-1.15  
Population 0-14 yearsb             
Diseases of the respiratory system (460-519) 9505 1.11 1.09-1.14  1.33 1.26-1.41  
    Respiratory infections (460-466, 480-487) 6746 1.15 1.11-1.18  1.49 1.39-1.59  
    Asthma (493) 272 0.77 0.60-0.98  0.55 0.37-0.81  
               
aHazard Ratio (HR) from a Cox model stratified for period of follow-up (3 categories) and sex,  adjusted for age (temporal axis), socioeconomic 
position and occupational status  
bHazard Ratio (HR) from a Cox model stratified for period of follow-up (3 categories) and sex,  adjusted for age (temporal axis), socioeconomic 
position  
 
                



133 
 

 
Table 5: Associations between annual average exposure to PM10 and SO2 and 

cancer incidence. Adjusted hazard ratios (HRs and 95% CI) per 10 µg/m3 

increase of each pollutant, 2006-2011. 

 
 
 
 
 
 
 
 
 

Site of cancer 
  PM10 SO2  

N HR* 95%CI  HR* 95% IC  
All site (ICDO3T C00-C809) 8999 1.14 1.09-1.19  1.05 0.97-1.14  
Upper respiratory and digestive tract (ICDO3T C00-
C14) 

144 0.80 0.52-1.23  0.67 0.34-1.31  

Oesophagus(ICDO3T C15) 27 0.30 0.06-1.48  0.20 0.04-1.08  

Stomach (ICDO3T C16) 284 0.99 0.77-1.28  0.69 0.43-1.11  

Colon-rectum and anus (ICDO3T C18-C21) 887 1.11 0.96-1.28  1.00 0.77-1.31  

Liver(ICDO3T C22) 340 1.10 0.89-1.37  0.75 0.48-1.15  

Gallbladder and biliary tract (ICDO3T C23-C24) 117 1.14 0.80-1.64  0.88 0.41-1.85  

Pancreas (ICDO3T C25) 208 1.19 0.90-158  1.19 0.68-2.08  

Larynx (ICDO3T C32) 91 1.39 0.99-1.96  1.39 0.62-3.13  

Lung incl. trachea and bronchus (ICDO3T C33-C34) 943 1.29 1.14-1.45  1.42 1.10-1.84  

Pleural cancer  (ICDO3T C384) 89 0.96 0.61-1.52  1.15 0.50-2.64  

Bone and cartilage (ICDO3T C40-C41) 22 0.59 0.16-2.22  0.53 0.09-2.96  

Malignant melanoma of the skin (ICDO3T C44) 1944 1.15 1.04-1.26  1.08 0.90-1.30  
Peripheral nerves, connective and soft tissue 
(ICDO3T C49) 

40 1.22 0.66-2.27  0.62 0.17-2.26  

Breast (ICDO3T C50) 1137 1.27 1.13-1.41  1.19 0.94-1.51  

Prostate (ICDO3T C61) 653 1.09 0.92-1.29  1.06 0.77-1.45  

Testis (ICDO3T C62) 42 1.08 0.58-2.01  0.96 0.30-3.11  

Kidney (ICDO3T C64) 173 1.32 1.01-1.73  2.44 1.38-4.34  
Renal pelvis and urinary organs (ICDO3T C65-C66, 
C68) 

34 0.87 0.34-2.23  0.56 0.13-2.46  

Bladder (ICDO3T C67) 415 1.07 0.88-1.32  0.91 0.61-1.35  
Brain and central nervous system (ICDO3T C69-
C72) 

117 1.23 0.87-1.72  0.87 0.42-1.82  

Thyroid (ICDO3T C73-C75) 365 0.97 0.75-1.25  0.76 0.49-1.17  

Mesothelioma (ICDO3M 9050-9055) 72 0.96 0.57-1.60  0.93 0.36-2.37  

Sarcoma Kaposi (ICDO3M 9140) 38 1.35 0.77-2.37  1.39 0.41-4.64  

Hodgkin limphoma (ICDO3M 9650-9667) 52 0.98 0.54-1.78  1.56 0.54-4.50  

Non-Hodgkin lymphoma (ICDO3M 9590-9596) 31 0.93 0.41-2.11  0.74 0.18-3.06  

Multiple Myeloma (ICDO3M 9732) 98 0.91 0.56-1.46  0.76 0.34-1.69  

Leukaemias (ICDO3T 9421, ICDO3M 9800-9948) 184 1.11 0.82-1.51  1.21 0.68-2.15  
                
aHazard Ratio (HR) from a Cox model stratified for period of follow-up (2 categories) and sex,  adjusted for age (temporal 
axis), socioeconomic position and occupational status  
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Figure 1: Study area and pollutants dispersion model (ARPA, year 2010), 

with geocoded addresses at baseline. 

 

Figure 2: Penalized splines and confidence interval (95%CI) of the 

relationship between average PM10 exposure at lag 0 and mortality for natural 

mortality, mortality for malignant neoplasms, lung cancer, heart diseases, 

acute myocardial infarction and kidney diseases. 

 

Figure 3: Penalized splines and confidence interval (95%CI) of the 

relationship between average SO2 exposure at lag 0 and mortality for natural 

mortality, mortality for malignant neoplasms, lung cancer, heart diseases, 

acute myocardial infarction and kidney diseases. 

 

Figure 4: Distribution of the effects of PM10 and SO2 in 5-years’ time 

windows on natural mortality. Results expressed as percent increase for 

10µg/m3 increment. 
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Figure 2 
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Figure 3 
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Figure 4  
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SUPPLEMENTAL MATERIAL 

PART 1: backward and forward extrapolation 

 

5) In the first step, we superimposed the PM10 and SO2 concentration maps with 

cohort geocoded addresses, to assign to each residence the corresponding 

estimated industrial concentration of air pollutants, with reference to the year 

2010.   

6) The ILVA steel plant provided productivity data per kiloton year (kton/a) of 

steel, coke, cast iron and others from 1965 to 2014. In addition, air pollutants 

emissions for every process of the industry (coke ovens, sintering plant, blast 

furnace, steel plant, mining parks and transport of materials) were supplied by 

the Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) for the 

years 1990, 1995, 2000 and 2005. For the purposes of this study, only emissions 

from the steel production process were considered. Emissions for missing years 

were estimated by backward and forward interpolation of the emission series 

from 1965 to 2010, weighted with the productivity ratio of the current year to the 

previous/following one: 

 1965-1990: the emissions in year x was obtained retrospectively, starting 

from the first known value in the 1990, weighting with the ratio of the 

productivity in the current year to the following one (1) 

  𝐸(𝑥) = 𝐸(𝑥 + 1) ∗
(௫)

(௫ାଵ)
   (1) 

where x indicates the year, E is the estimated emission and P is the 

productivity 
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 1991-2010: the emission in the year x was obtained through the 

interpolation of the emissions in the time intervals, always of length 5 

years, between two observed knowns values (superior and inferior 

extreme of the interval, for example 2005 and 2010), weighting them 

with the relative productivity of the previous year (2) 

  𝐸(𝑥) = 𝐸(𝑥 + 1) +
ா(௦௨)ିா()

ହ
∗

(௫)

(௫ିଵ)
   (2) 

  where E(sup) and E(inf) represent the emissions at the two extremes of 

the time    interval of 5 year length. 

 2010-2014: the emission in the year x was estimated starting form the 

last value provided in 2010, weighting prospectively with the relative 

productivity of the previous year (3) 

 𝐸(𝑥) = 𝐸(𝑥 − 1) ∗
(௫)

(௫ିଵ)
   (3) 

7) Once the annual emission series was complete for the entire period 1965-2014, 

we computed an annual calibration factor (4) as the ratio of emissions on one 

year to the emissions in the year 2010, the same of the ARPA dispersion model 

E
EF x

x ˆ
ˆ

2010

     (4) 

    where x is the year and Ê is the estimated emission. 

This factor was computed to modulate the exposure estimated from the 

dispersion model with the information acquired on the effective productivity and 

emissions from the steel plant. 

8) The yearly calibration factor was then multiplied to the individual exposure from 

the dispersion model for every residence and every year. In this way we obtained 
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an annual time-varying exposure from the industry based on the spatial pattern 

of the dispersion model and the temporal pattern estimated by the annual series 

of the productivity and the emissions of the steel plant.  
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    PM10  SO2 

Risk factors Q1 Q2 Q3 Q4   Q1 Q2 Q3 Q4 
Smoking                   

Never smokers (%) 46.75 51.35 50.3 40.88  46.05 50.99 51.92 40.69 

  Smokers (%) 31.82 27.03 30.3 37.23  32.24 27.15 30.13 36.55 

  Ex-smokers (%) 21.43 21.62 19.39 21.9  21.71 21.85 17.95 22.76 

 

Alcohol consumption (%) 52.6 66.9 52.12 62.77   54.61 62.91 55.77 60 

Obesity (BMI>=30kg/m2) (%) 16.88 12.16 10.3 16.06  15.79 13.25 11.54 14.48 

                      

 Adjusted modelsa -RR(95%CI)                

  Smokers b 1.00 0.87 (0.62-1.22) 0.97 (0.72-1.32) 1.24 (0.92-1.68)  1.00 0.88 (0.63-1.24) 0.94 (0.69-1.27) 1.24 (0.92-1.66) 

  Ex-smokers b 1.00 0.97 (0.64-1.46) 0.85 (0.57-1.27) 0.98 (0.65-1.47)  1.00 0.90 (0.60-1.37) 0.74 (0.49-1.12) 0.95 (0.64-1.41) 

 Alcohol consumption c 1.00 1.32 (1.09-1.59) 1.02 (0.82-1.26) 1.25 (1.02-1.52)  1.00 1.20 (0.99-1.46) 1.06 (0.86-1.30) 1.15 (0.95-1.40) 

 Obesity d 1.00 0.66 (0.37-1.17) 0.59 (0.33-1.04) 0.87 (0.51-1.50)  1.00 0.76 (0.43-1.34) 0.69 (0.39-1.23) 0.82 (0.47-1.45) 

           
a Separated Poisson models adjusted for age, gender and socioeconomic status index. 
b Reference category “non-smokers”; c reference category “No alcohol consumption”; d reference category “Not obese (BMI<30kg/m2)” 
Abbreviations: Qx= quartile; BMI=Body Mass Index; RR= Relative Risks; CI=Confidence Interval 
 

Table S1: Association between smoking, alcohol consumption, obesity and quartiles of PM10 and SO2 exposures.
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Figure S1: Temporal trend of the steel productivity, emissions and pollutants 

concentrations at lag 0, study period 1965-2014. 

 

Figure S2: Penalized splines and confidence interval (95%CI) of the 

relationship between average PM10 and SO2 exposure at lag 0, and hospital 

admissions for neurological disorders, heart, respiratory and kidney diseases. 
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Figure S1: Temporal trend of the steel productivity, emissions and pollutants concentrations at lag 0, study period 1965-2014.
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Figure S2: Penalized splines and confidence interval (95%CI) of the relationship between average PM10 and SO2 exposure at lag 0, and 

hospital admissions for neurological disorders, heart, respiratory and kidney diseases. 
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Abstract (250 words max) 
 
Background: A large steel plant close to the urban area of Taranto (Southern 

Italy) has been operating since the sixties. Several epidemiological studies 

conducted in the past 20 years have reported an excess of mortality and morbidity 

from various causes at the town level, possibly due to air pollution from the plant. 

However, the assessment of the causal relationship between air pollutants emitted  

from the plant and adverse health outcomes has been controversial. We applied a 

variant of the “difference-in-difference” (DID) approach to examine the 

relationship between changes in exposure to industrial PM10 from the plant and 

changes in cause-specific mortality rates.   

Methods: We examined a dynamic cohort of all subjects  (321,356 individuals) 

resident in the Taranto area in 1998-2010 and followed them up for mortality till 

2014. In this work, we included in the analysis only deaths occurring on 2008-

2014 and calculated annual death rates by district of residence and age class. PM10 

and NO2 concentrations measured at fixed monitoring stations were used, together 

with the results of a dispersion model, to estimate annual average population 

exposures to PM10 of industrial origin for each year, district and age class. The 

method presumably removes “by design” all confounding from temporal and 

individual covariates.  

Results: During 2008-2014, we observed a total of 15,303 natural deaths in the 

cohort. We estimated an increased risk in natural mortality (1.86%, 95% 

Confidence Interval [CI]: -0.06, 3.83%, relative to 1 μg/m3 annual change of 

industrial PM10) mainly driven by respiratory causes (8.74%, 95% CI: 1.50, 

16.51%). The associations were stronger in elderly (65+ years). 
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Conclusions: The study indicates an effect of industrial PM10 on natural mortality 

in the study area, especially in the elderly population. The potential effect of 

individual confounders has been removed and we postulate that the relationship is 

causal.  
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Main text 

Introduction 

Environmental epidemiology is an observational discipline which investigates the 

relationship between environmental exposures and health outcomes without any 

intervention of the researcher in exposure assignment, opposite to what happens in 

the experimental study designs where randomization guarantees comparability of 

the exposed and unexposed populations with regards to external factors. The 

“causal inference” methods to observational studies, in the spirit of mimicking 

randomized trials, has been applied to several fields in biomedicine 1, 2 3 4 5 6 7 but 

the applications in environmental epidemiology are sparse. 8 9 10 11 12 There are 

many techniques commonly used in traditional epidemiology to control known 

and measured confounding factors (restriction, stratification, matching, 

standardization, regression models), the problem is that none can completely rule 

out the presence of residual confounding, i.e. lack of comparability between 

exposed and unexposed groups for factors that are not controlled at all or are 

controlled for but are measured inaccurately. 12 Of course, the use of sensitivity 

analyses to test the robustness of the results to alternative modeling formulations 

is of some use, but the problem of residual bias from potential un- (or mis-) 

measured confounding remains. A promising alternative is to apply methods that 

try to remove confounding “by design”, e.g. by trying to mimic randomized 

clinical trials. 13   

 

In this study we have adopted a “differences in differences” approach to 

investigate the relationship between exposure to air pollution from a specific 



154 
 

industrial source and mortality in the nearby population. The method has been 

applied in the past in the econometric literature and it can be seen as a 

“before/after study with a control group”. The essence of the design is that 

differences in exposures across time are related to differences in rates of diseases 

in the same populations so that the role of potential individual and behavioral 

factors are cancelled out as the comparisons are occurring within populations. Of 

course, variability of exposure across time is essential to appreciate differences in 

disease occurrence. A recent study in the USA has used a variant of this method to 

evaluate the causal effects of long-term PM2.5 exposure on mortality in New 

Jersey. 10 12 

 

The present study has been conducted in the area of Taranto, South of Italy, where 

a large industrial area has been operating in close proximity of the resident 

population since several decades and the possible health effects due to the 

pollution have been under scrutiny, 14-22 debate, 23-25and legal case26 in the last few 

years. 

 

METHODS 

Study area and enrolment of the cohort 

The study area is 445.17 km2 large, is located in the Apulia region (south-east of 

Italy) and includes the municipalities of Taranto, Massafra and Statte. The 

municipality of Taranto (area: 249.86 km2, population on 1st January 2014: 

203,257, Source: Italian Institute of Statistics-Istat) is the main town of the 

province, overlooking the Ionian Sea and for its geographical location is known as 

the "city of the two seas", in fact it stretches between two seas: "Mar Grande" (Big 
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sea) and "Mar Piccolo" (Little sea). Because of its location and geographical 

structure, it was considered a strategic point and became the location of an 

industrial, commercial and military harbor. It is characterized by the presence of a 

large industrial area which is placed in the northwest of the city and includes: a 

refinery, a cement plant,  and the ILVA steel plant operating since 1965, which 

represents the largest European site for the steel production. 

 

The ILVA is an “integrated cycle” plant, so its main production are: coke, sinter, 

pig iron, solid steel, hot rolled coils, cold rolled coils, hot galvanized coils, hot 

rolled heavy plates, black or coated welded pipes. A power plant is also integrated 

in the area. On 30th November 2015 it had 15,487 directly employed workers and 

there were estimated 8,000/10,000 additional workers in the satellite activities 

(Source: Ilva website). The surface extension of the ILVA steel plant is about 

15.45 km2 of which about 10.45 km2 in the municipality of Taranto and about 5 

km2 in the nearby city of Statte. The latter one is placed in the northwest of the 

city of Taranto (Statte area: 67.32 km2, population on 1st January 2014: 14,190, 

Source: Istat) where there is also the municipality of Massafra (area: 128 km2, 

population on 1st January 2014: 32,780, Source: Istat).   

 

In a previous study,18 an open residential cohort has been enrolled, including all 

subjects resident in the study area at 01/01/1998 and those who entered in the 

three municipalities until 31/12/2010. Data on resident population (vital status, 

residential address and changes in address over time) were provided by the 

General Registry Offices of the three cities and were used after careful quality 
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control procedures. We used that cohort and updated the vital status until 

31/12/2014. Causes of death were provided by the Local Health Authority in 

Taranto. For the aims of the study, we retained only the latest period: 2008-2014, 

as it matched the availability of environmental data and was short enough to 

reduce potential residual confounding from temporal covariates (see later for the 

assumption of the D-D model). All the residential addresses of the members of the 

cohort were geocoded using the ARCGIS software. On that basis, we assigned to 

each subject the corresponding district and census tract of residence. The list and a 

brief description of the 9 districts (and the corresponding census tracts) are 

illustrated in the Supplementary material.  

 

Exposure Assessment 

Our objective was to estimate individual exposure to PM10 from industrial origin 

for each year of the study. To this aim, we combined information from different 

sources. We considered four monitoring stations of the Regional Agency for the 

Environmental Protection (ARPA) network operating in the study area for the 

study period 2008-2014, which measured concentrations of nitrogen dioxide 

(NO2) and particulate matter 10 micrometers or less in diameter (PM10). One 

station was located in an urban area of Taranto (“Via Alto Adige”), another one in 

a suburban setting away from the industrial area (“Via Ugo Foscolo” in the 

Talsano district), to measure background concentrations. The remaining two 

stations were located near the industrial area: “Via Machiavelli” and “Via 

Archimede”, in the Tamburi district at the border of the industrial area. These data 

were used to describe temporal variability in exposure over the study area. 
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The regional Environmental Protection Agency (ARPA Puglia) developed, for the 

year 2010, a dispersion model of PM10 emitted from the ILVA steel plant using a 

Lagrangian particle dispersion model (SPRAY) built on the available information 

about measured emissive characteristics, orography and meteorology.27 This 

model provided an estimate of the spatial distribution of ILVA-related PM10 

concentrations, valid for the year 2010, which we assumed remained unaltered 

over the years of the study. We combined annual measurements from the 

monitoring stations and the data of the 2010 dispersion model map in order to 

estimate industrial PM10 exposures at district level for each year of the period 

2008-2014 according to a methodology illustrated in the Supplementary material.  

 

Mortality data 

Causes of death were ascertained using a record linkage procedure with the 

mortality registry of the Local Health Authority in Taranto. In this registry, causes 

of death were coded using the International Classification of Diseases, 9th 

Revision (ICD IX) for the period 2008-2010 and 10th Revision (ICD X) for the 

period 2011-2014.  

 

We analyzed the following causes of death: natural causes (ICD IX 001-799, ICD 

X A00-R99), diseases of the circulatory system (ICD IX 390-459, ICD X I00-

I99), heart diseases (ICD IX 390-429, ICD X I00-I51), and respiratory diseases 

(ICD IX 460-519, ICD X J00-J99).  
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Statistical analysis 

For each year (seven: 2008-2014), area-unit (eleven: 9 Taranto districts + 

Massafra and Statte) and age class (four: 0-34, 35-64, 65-74, >75 years) we 

computed counts of cause-specific deaths. Furthermore, using cohort information 

and individual residential history, we estimated person-years to be used as 

denominators to calculate mortality rates or as “offset” in the multivariate Poisson 

regression analysis described below. 

We defined the following model: 

lnൣ𝐸൫𝑌,௧,൯൧ = 𝛽 + 𝛽ଵ𝐼 + 𝛽ଶ𝑇 + 𝛽ଷ𝐼 + 𝛽ସ𝐼 ∗ 𝑇 + 𝛽ହ𝐼 ∗ 𝑇 + 𝛽𝑃𝑀ଵ ,௧,

+ ln൫𝑃,௧,൯       (3) 

where: 

 Yq,t,e represents the number of deaths in area-unit q, year t and age class e; 

 PM10 q,t,e is the mean concentration of the industrial PM10 in the same 

stratum; 

 Pq,t,e is an offset term which represents person-years at risk; 

 Iq, Ie define dummy variables for area units and age classes, respectively; 

 T is a continuous variable for year, which we modeled linearly. 

Furthermore: 

 𝛽 is the intercept term; 

 𝛽ଵ ,  𝛽ଶ,  𝛽ଷ are regression coefficients adjusting for confounding induced 

by factors varying across districts (𝛽ଵ) and age classes (𝛽ଷ) when T=0, and 

over time (𝛽ଶ) in the reference stratum of district and age group. Their 

meaning is of little interest; 
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 𝛽ସ removes potential confounding introduced by factors, known or 

unknown, which might display different linear time trends across area 

units; 

 𝛽ହ, similarly to 𝛽ସ, adjusts for potential confounders which display 

different linear time trends across age groups; 

 𝛽 represents the causal effect of industrial PM10. 

We can interpret the model in (3) as a variant of the difference-in-differences 

method, it is similar to the method proposed by Wang et al. 10 The idea underlying 

model (3) is that a causal effect of PM is obtained by removing confounding from 

spatio-temporal covariates by design. This is achieved through the introduction of 

age-specific and district-specific linear trends in the regression model. For 

example, if socio-economic status or lifestyle factors (smoking, diet, etc.) have 

changed differently across districts or age groups over 2008-2014, and if such 

changes have been collinear with concurrent changes in air pollution, the linear 

trends introduced in the model should account for that, provided that such changes 

have been linear. The drawback of the model, on the other side, is that only 

fluctuations of PM around linear trends are contrasted to concurrent fluctuations 

in mortality rates, with consequent decrease of statistical power.  

 

Results were presented as percent increase risk of death, and 95% confidence 

intervals, relative to 1µg/m3 variation of industrial PM10. This unit of measure has 

been chosen because easy to interpret, and  close to the interquartile range at 

population level (1.6 µg/m3). 
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We tested if the association was modified by age. In this regard we considered 

two age classes: <65 years, 65+ years. The effect modification was tested by 

stratification. Analytically, we calculated the difference between the strata 

coefficients. Assuming that the difference between the coefficients was distributed 

as a normal distribution with mean zero and variance equal to the sum of the strata 

variances (e.g. covariance=0), we evaluated the p-value of the relative effect 

modification (REM).14 

The follow-up and the statistical analysis were performed using SAS 9.0 (SAS 

Institute Inc., Cary, NC) and Stata 13 (StataCorp LLC, College Station, Texas) 

and geographical data were analyzed using Arcgis (Esri, Redlands, California) 

and Qgis. 

 

RESULTS 

Figure 1 illustrates the study area, divided into 11 small area units: the two 

municipalities of Massafra and Statte and 9 districts of the city of Taranto. The 

dots represent the ARPA monitoring stations, with a circle around the stations 

considered for the estimation of the industrial PM10. Figure 2 shows the 2010 

pollutant dispersion model of the ILVA steel plant for PM10. Figure 3 displays the 

productivity (kton/year) of the ILVA plant in the period under study divided by 

type: steel, coke, sinter and pig iron. Figure 4 illustrates the annual average PM10 

(measured overall concentrations) assessed in the four monitoring stations. 

 

A total of 321,356 subjects resident in the study area were originally enrolled in 

the cohort; a total of 262,375 individuals were still alive and resident at the start of 
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our study at January 1st, 2008. At 31/12/2014 238,473 people (74.2%) were alive 

and resident in the area, 37,736 subjects (11.7%) were dead, 45,147 individuals 

(14.1%) were emigrated outside the study area and so considered lost to follow 

up. For the purposes of the present study, we only included residents in the period 

2008-2014, because we had concurrent data on air pollution monitoring stations 

only in the latest period.  

 

Table 1 displays the person-years of follow-up and the number of deaths in the 

study period, by age, district and year. We estimated 1,726,353 person-years of 

follow-up, whose distribution is different across the area units. There were 15,303 

natural deaths, 71.8% of which from subjects 75+ years old, and  0.8% from those 

below 35 years of age. Our enrolment period was up till 2010, therefore the cohort 

was open in the first three years of the study period (2008-2010) and closed 

afterwards.  In particular, in the year 2008 there were 262,375 people, with a -

0.23% change in cohort residents between 2009 and 2008. In contrast, for the last 

four years the changes were more significant albeit not extreme, and between 

2014 and 2013 the percentage change in the population was -2.07%.  We 

accounted of changing population over time by computing, and using as offset in 

the analysis, annual person-years of observations. 

  

For descriptive purposes, we divided the study area into three sub-areas only: 

"Tamburi", close to the plant, "Isola, Borgo", intermediate, and "Other" which 

includes all the districts and municipalities different from the previous two and 

away from the plant.  For each of the three area units we calculated the absolute 



162 
 

change in the estimated industrial PM10 between the yearly value and the mean for 

the all period, this is represented in Figure 5. In Figure 6 we represent the percent 

change of natural mortality rate (per 1,000 person-years) between the yearly value 

and the mean for the all period. We can observe that the annual trends in mortality 

rates resemble the trends of the industrial PM10 in the "Tamburi" and to less extent 

in the "Isola, Borgo" districts, i.e. the districts mostly influenced by industrial 

emissions, whereas the patterns of exposure and mortality in the other areas 

deviate.  

 

On the basis of the model reported in equation (3), we observed (Table 2) a 

percent increase of natural mortality of 1.86% (95% Confidence Interval (CI): -

0.06, 3.83%) relative to 1 μg/m3 variation of industrial PM10.  In particular, we 

found a 2.37% (95% CI: 0.31, 4.47%) increase in natural mortality (REM p-

value= 0.22) among subjects 65+ years old (Figure 5). Furthermore, we found a 

8.74% (95% CI: 1.50, 16.51%) increase in respiratory mortality. For the same 

outcome there was no evidence of effect modification by age (REM p-value= 

0.96). Effect estimates for circulatory and cardiac diseases were positive but 

affected by larger standard errors. 

 

DISCUSSION 

We found evidence for a causal link between industrial PM10 and mortality in the 

study area. In particular, annual exposure to industrial PM10 increased mortality 

for natural and respiratory causes, especially in the elderly population.  
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Several studies conducted in the area of Taranto have found clear evidence of an 

impairment of the environmental status and health of the resident population. In 

particular, it is worth mentioning a multicenter study and health impact 

assessment,14-15 ecological studies based on a priori evidence,16-17 a cohort study,18 

descriptive studies,19 20 21 22 biomonitoring studies.28 29 30 However, the issue of the 

possible causal link between environmental exposures from the plant and adverse 

health outcomes has been disputed. So, we decided to use a new and original 

method  to assess the effect of exposure to industrial PM10 on mortality in the 

Taranto area. The novelty of the approach has been to try to remove all known 

and unknown confounders “by design”. This has been achieved by focusing on 

annual fluctuations of PM around area-specific and age-specific time trends, 

instead of exploiting the full range of PM variability over space and time. In 

addition, in order to further remove potential confounding from long-term time 

trends, we restricted the study period to a short time window of only seven years. 

 

In this paper we used the cohort enrolled in a previous study18 and we updated it 

with the same tools. This study has, to our judgement, several strengths: careful 

reconstruction of the individual residential histories, good quality geocoding, high 

completeness in the assignment of causes of death. It should be noted that the 

cohort lacks data on individual risk factors (such as smoking and other lifestyle 

characteristics, individual estimates of exposure to meteorological parameters, 

etc.). However, such factors might have confounded the estimates under 

investigation only under the assumption that they varied differently across age 

groups and districts, and that such differences were not adequately captured by 
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linear trends. We believe it to be unlikely. Further support to this is provided by a 

recent re-analysis of the cohort study,31 which applied indirect adjustment 

methods on data collected from an external survey. That study showed that the 

associations between industrial pollutants and mortality/morbidity were not biased 

by unmeasured individual confounders, including smoking and body-mass index. 

 

Our analyses started from individual data, so for each subject of the cohort we had 

information about his/her residential history and so about his/her exposure. 

Therefore, we took into account the variation in time and space of the person-

years and we could estimate the exposure for each year, district and age class. 

Some assumptions have been made. It was assumed that the changes over time in 

the temperature were the same in the districts (or, if different, were adequately 

described by linear shapes), so it was not necessary to control for this factor. 

Furthermore, we did not control for socioeconomic status, because it was assumed 

that the variations in time between area units were stable, or at least were captured 

by our linear time trends. Finally, it should be noticed that, for estimating the 

industrial PM10 component, the NO2 concentrations have been used as a proxy 

measure for the contribution of traffic and local sources, an assumption which 

could be invalid if NO2 is affected by industry as well. 

In conclusion, under the model assumptions, with new and original methods the 

present study supports the evidence of a causal link between industrial PM10 and 

mortality of the population living in the Taranto area. 
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TABLE 1. Study population: number of deaths for natural causes and number of 

mortality person-years during the study period by age classes, area units and 

years. 

  Number of  
deaths 

Person-years 
of follow-up 

  n. % n. % 

Total 15,303 100.0 1,726,353 100.0 
Age class         

0-34 116 0.8 621,334 36.0 
35-64 1,771 11.6 737,862 42.7 
65-74 2,427 15.9 191,020 11.1 
>74 10,989 71.8 176,138 10.2 

Area units         

Isola, Borgo 2,363 15.4 197,931 11.5 
Italia Montegranaro 2,296 15.0 190,803 11.1 
Lama, San Vito, Carelli 675 4.4 127,533 7.4 
Massafra 1,569 10.3 201,381 11.7 
Paolo VI 710 4.6 122,082 7.1 
Salinella 1,192 7.8 160,348 9.3 

Solito Corvisea 1,391 9.1 157,536 9.1 
Statte 664 4.3 96,152 5.6 
Talsano 1,129 7.4 176,840 10.2 
Tamburi, Lido azzurro 1,152 7.5 117,166 6.8 
Tre Carrare, Battisti 2,162 14.1 178,580 10.3 

Year         
2008 2,201 14.38 255,446 14.80 
2009 2,177 14.23 254,638 14.75 
2010 2,212 14.45 253,491 14.68 
2011 2,236 14.61 248,402 14.39 
2012 2,173 14.20 243,077 14.08 
2013 2,111 13.79 238,050 13.79 
2014 2,193 14.33 233,248 13.51 

 

 

 

 

 

 



166 
 

TABLE 2. Number of deaths, percent increase of risk (I.R.%) and 95% 

confidence intervals (C.I. 95%), relative to 1 μg/m3 variation of industrial PM10 

during the study period: 2008-2014. 

 

Causes of death (ICD IX) Number of deaths I.R. % 95% C.I. 

Natural causes (001-799) 15,303 1.86 -0.06 3.83 

Circulatory system diseases (390-459) 5,721 0.70 -2.35 3.84 

Heart diseases  (390-429) 4,346 1.91 -1.55 5.50 

Respiratory diseases  (460-519) 1,150 8.74 1.50 16.51 
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FIGURE 1 

 

 

FIGURE 2 
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FIGURE 3 

 

 

FIGURE 4 
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FIGURE 5 

 

 

FIGURE 6 
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FIGURE 7 
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FIGURE LEGENDS 

 

FIGURE 1. Study area, monitoring stations and area units of the study. 

FIGURE 2. Results of the 2010 dispersion model for PM10 (µg/m3). 

FIGURE 3. Productivity (kton/year) of the ILVA Steel Plant by year and product. 

FIGURE 4. PM10 (µg/m3) concentrations at the fixed monitors by year. 

FIGURE 5. Absolute change of exposure to industrial PM10 by year and area 

(annual average/average of the period)  

FIGURE 6. Percent change of natural mortality rate (per 1,000 person-years) by 

year and area (Tamburi, Isola Borgo, and other) 

FIGURE 7. Percent increase of risk of mortality (95% confidence intervals, C.I. 

95%) relative to 1 μg/m3 variation of industrial PM10 during the study period 

(2008-2014) by age class. 
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Supplementary material 

 

The districts of Taranto 

The municipality of Taranto was divided into nine small-area units (called 

districts in the paper), according to census tracts: 

 

1. Isola-Borgo (census tracts: 1-93, 279-400); 

2. Italia Montegranaro (census tracts: 401-492); 

3. Paolo VI (census tracts: 222-278, 1522, 1527, 1528, 1529, 1533); 

4. Salinella (census tracts: 705-801, 955, 956, 1550); 

5. San Vito, Lama, Carelli (census tracts: 886-921, 922, 923, 954, 957, 

1553); 

6. Solito Corvisea (census tracts: 617-704, 952, 1512, 1514, 1523, 1524, 

1526); 

7. Talsano (census tracts: 802-885, 925, 936, 953, 1108, 1516, 1518, 1519, 

1532, 1535, 1539, 924, 926-933, 934, 935, 937, 940-950);  

8. Tamburi, Lido azzurro (census tracts: 94-221, 983, 1483, 1511, 1546, 

1547, 1548); 

9. Tre Carrare, Battisti (census tracts: 493-616). 

Some of the districts are of importance because of the industrial contamination. In 

the northwest of the town there is the district called "Tamburi, Lido Azzurro" that 

includes the industrial area. Near the latter one, and in particular near the area of 

mineral parks, lies the residential area of the Tamburi district. The area called 

"Isola, Borgo" consists of two districts: Isola and Borgo. Isola is also known as 
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"Città Vecchia" and is the oldest part of the city; Borgo is the first district of the 

"new city". The district named "Paolo VI" is located in the north of the city of 

Taranto and it was built around the mid-sixties intended as a residential area for 

the steel plant workers and their families. A study from Mangia et al.32 showed 

that in the city of Taranto the areas near the industrial area are the most polluted 

ones. The studies conducted by Gariazzo et al.33 34 showed that the maximum 

fallout of industrial emissions zones are Tamburi and Borgo.  

Moving away from the Borgo district there are the areas "Tre carrare, Battisti" and 

"Italia Montegranaro", which together with Borgo constitute the town's 

commercial and the residential heart of the city. Proceeding to the south there is 

the vast district "Solito corvisea" and the peripheral district "Salinella". The last 

five districts mentioned are crossed from the main urban roads. The city ends with 

the peripheral areas "San Vito, Lama Carelli" and "Talsano, Aree amministrative" 

that can be considered the background areas since they are distant from the 

industrial area and only moderately affected by traffic pollution. 

 

Exposure Assessment 

To estimate industrial PM10 exposures for each year of the period 2008-2014, we 

employed  the following methodology: 

1. Industrial PM10 evaluation in the Tamburi industrial district.  

Assuming that the annual mean concentration of PM10 measured at one station 

can be partitioned into three components: background (B), industrial (I) and 

traffic (V), we developed a set of linear systems (one for each year  𝑡 ∈

{2008, … ,2014} ) of three equations in three variables: 
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൞

𝑉ெ௧ + 𝐵௧ + 𝐼ெ௧ = 𝐶ெ௧

∆ி௧𝑉ெ௧ + 𝐵௧ + 𝛾ଵ𝐼ெ௧ = 𝐶ி௧

∆௧𝑉ெ௧ + 𝐵௧ + 𝛾ଶ𝐼ெ௧ = 𝐶௧

                               (1) 

 The first equation defines 𝐶ெ௧, the annual average PM10 concentration 

measured on year 𝑡 at the two stations placed in the Tamburi industrial 

area:  “Via Machiavelli” and “Via Archimede”. 𝐶ெ௧was partitioned into 

three components: 𝐵௧ background (assumed the same all over the 

sites),  𝑉ெ௧ traffic in that site and 𝐼ெ௧ industrial in that site; 

 The second equation partitions 𝐶ி௧, the  annual mean concentration of 

PM10 measured on year 𝑡 at the “Via Ugo Foscolo” (Talsano district) 

station, as the sum of three addenda: 𝐵௧ background component, 𝑉ி௧ =

∆ி௧𝑉ெ௧ traffic component and  𝐼ி௧ = 𝛾ଵ𝐼ெ௧ industrial component in the 

year 𝑡. The traffic component in Talsano was estimated as the product of 

the traffic component at Tamburi (𝑉ெ௧) and ∆ி௧ , the ratio of annual 

mean NO2 concentrations in Talsano over annual mean NO2 

concentrations in the two stations of Tamburi (NO2 has been used as a 

proxy measure for contribution from traffic and local sources). 14 

Similarly, the industrial component in Talsano was estimated as the 

product of the industrial component at Tamburi (𝐼ெ௧)  to 𝛾ଵ,  ratio of the 

PM10 predicted value from the ARPA dispersion model at Talsano to the 

corresponding predicted value at Tamburi; 

 The third equation partitions 𝐶௧ , annual mean PM10 concentrations in 

Via Alto Adige, as the sum of three components, background, traffic and 

industry. These were estimated based on the same assumptions made in 

the second equation. 
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More explicitly, in the system (1), we have assumed that the background 

component 𝐵௧ is the same in all monitoring stations, since it represents 

background pollution levels originated by common large-scale sources plus 

transboundary transport processes. Furthermore, as already explained, we have 

assumed that: a) it was possible to estimate relative contributions of traffic at 

different points as ratios between NO2 concentrations in those points, and b) it 

was possible to estimate relative contributions of industry at different points as 

ratios between predicted PM10 concentrations from the ARPA dispersion model. 

Solving the system (1) it was possible to estimate 𝐼ெ௧:  the industrial component 

in the year 𝑡, in the Tamburi district. 

2. Individual industrial PM10  evaluation 

For each individual 𝑖 in the cohort, and each year 𝑡 between 2008 and 2014, we 

estimated annual industrial PM10 concentrations at his/her residential address 

based on the following formula: 

𝐼,௧ = 𝑃 ∙ 𝐼ெ௧                         (2) 

 where  𝑃  represents the ratio of the individual predicted PM10 value from the 

dispersion model over the average of the predicted values in the two stations 

“Via Machiavelli” and “Via Archimede”. This formula assumes that the relative 

contribution of the ILVA steel plant in two points, as estimated by their ratio, 

remains constant over the years. 

3. Industrial PM10  evaluation for each year, district and age class 

Finally, we estimated the exposure to industrial PM10 by year, district and age 

class by averaging the individual contributions (𝐼,௧). 
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Annex C - List of indicators from the Italian 2001 census 

NOME 
CAMPO 

DEFINIZIONE 

COD_PRO Codice numerico della Provincia 
COD_COM Codice numerico del Comune 
PRO_COM Codice numerico che identifica univocamente il 'comune' nell’ambito 

del territorio nazionale. Il valore è ottenuto dalla concatenazione del 
codice provinciale e comunale 

SEZ2001 Codice che identifica univocamente la sezione di censimento 2001 
nell’ambito del territorio nazionale. Il valore è ottenuto dalla 
concatenazione del PRO_COM con il campo SEZIONE 

SEZIONE Codice che identifica univocamente la sezione di censimento 2011 
nell’ambito di ciascun comune. 

P1 Popolazione residente - TOTALE 
P2 Popolazione residente - Maschi 
P3 Popolazione residente - Femmine 
P4 Popolazione residente - Celibi/nubili 
P5 Popolazione residente - Coniugati/e 
P6 Popolazione residente - Separati/e legalmente 
P7 Popolazione residente - Vedovi/e 
P8 Popolazione residente - Divorziati/e 
P9 Popolazione residente - Maschi celibi 
P10 Popolazione residente - Maschi coniugati o separati di fatto 
P11 Popolazione residente - Maschi separati legalmente 
P12 Popolazione residente - Maschi vedovi 
P13 Popolazione residente - Maschi divorziati 
P14 Popolazione residente - età < 5 anni 
P15 Popolazione residente - età 5 - 9 anni 
P16 Popolazione residente - età 10 - 14 anni 
P17 Popolazione residente - età 15 - 19 anni 
P18 Popolazione residente - età 20 - 24 anni 
P19 Popolazione residente - età 25 - 29 anni 
P20 Popolazione residente - età 30 - 34 anni 
P21 Popolazione residente - età 35 - 39 anni 
P22 Popolazione residente - età 40 - 44 anni 
P23 Popolazione residente - età 45 - 49 anni 
P24 Popolazione residente - età 50 - 54 anni 
P25 Popolazione residente - età 55 - 59 anni 
P26 Popolazione residente - età 60 - 64 anni 
P27 Popolazione residente - età 65 - 69 anni 
P28 Popolazione residente - età 70 - 74 anni 
P29 Popolazione residente - età > 74 anni 
P30 Popolazione residente - Maschi - età < 5 anni 
P31 Popolazione residente - Maschi - età 5 - 9 anni 
P32 Popolazione residente - Maschi - età 10 - 14 anni 
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P33 Popolazione residente - Maschi - età 15 - 19 anni 
P34 Popolazione residente - Maschi - età 20 - 24 anni 
P35 Popolazione residente - Maschi - età 25 - 29 anni 
P36 Popolazione residente - Maschi - età 30 - 34 anni 
P37 Popolazione residente - Maschi - età 35 - 39 anni 
P38 Popolazione residente - Maschi - età 40 - 44 anni 
P39 Popolazione residente - Maschi - età 45 - 49 anni 
P40 Popolazione residente - Maschi - età 50 - 54 anni 
P41 Popolazione residente - Maschi - età 55 - 59 anni 
P42 Popolazione residente - Maschi - età 60 - 64 anni 
P43 Popolazione residente - Maschi - età 65 - 69 anni 
P44 Popolazione residente - Maschi - età 70 - 74 anni 
P45 Popolazione residente - Maschi - età > 74 anni 
P46 Popolazione residente di 6 anni e più -TOTALE 
P47 Popolazione residente di 6 anni e più - Laurea o diploma universitario o 

terziario di tipo non universitario 
P48 Popolazione residente di 6 anni e più - Diploma di scuola secondaria 

superiore 
P49 Popolazione residente di 6 anni e più - Media inferiore 
P50 Popolazione residente di 6 anni e più - Licenza elementare 
P51 Popolazione residente di 6 anni e più - Alfabeti 
P52 Popolazione residente di 6 anni e più - Analfabeti 
P53 Popolazione residente di 6 anni e più - Maschi - TOTALE 
P54 Popolazione residente di 6 anni e più - Maschi - Laurea o diploma 

universitario o terziario di tipo non universitario 
P55 Popolazione residente di 6 anni e più - Maschi - Diploma di scuola 

secondaria superiore 
P56 Popolazione residente di 6 anni e più - Maschi - Media inferiore 
P57 Popolazione residente di 6 anni e più - Maschi - Licenza elementare 
P58 Popolazione residente di 6 anni e più - Maschi - Alfabeti 
P59 Popolazione residente di 6 anni e più - Maschi - Analfabeti 
P60 Forze lavoro - TOTALE 
P61 Forze lavoro - Occupati 
P62 Forze lavoro - Disoccupati e altre persone in cerca di occupazione 
P64 Forze lavoro - Maschi 
P65 Forze lavoro - Maschi - Occupati 
P66 Forze lavoro - Maschi - Disoccupati e altre persone in cerca di 

occupazione 
P68 Occupati per sez A,B - Agricoltura Totale 
P69 Occupati per sez C,E - Industria (Estrazione, Produzione energia) 
P70 Occupati per sez D - Industria (Manifatturiere) 
P71 Occupati per sez F - Industria (Costruzioni) 
P72 Occupati - Industria Totale 
P73 Occupati per sez G,H - Altre attività (Commercio/riparazioni, 

Alberghi/ristoranti) 
P74 Occupati per sez I - Altre attività (Trasporti/comunicazioni) 
P75 Occupati per sez J - Altre attività (Intermediazione) 
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P76 Occupati per sez K - Altre attività (Immobiliari, professionali, 
imprenditoriali) 

P77 Occupati per sez L - Altre attività (Pubblica Amm., difesa, assicur. 
sociale) 

P78 Occupati per sez M - Altre attività (Istruzione) 
P79 Occupati per sez N - Altre Attività (Sanità, Servizi sociali) 
P80 Occupati per sez O,P,Q - Altre attività (Servizi pubblici/domestici, org. 

extraterritoriali) 
P81 Occupati per sez - Altre attività Totale 
P82 Occupati - Maschi -per sez A,B - Agricoltura totale 
P83 Occupati - Maschi -per sez C,E - Industria (Estrazione, Produzione 

energia) 
P84 Occupati - Maschi -per sez D - Industria (Manifatturiere) 
P85 Occupati - Maschi -per sez F - Industria (Costruzioni) 
P86 Occupati - Maschi -- Industria totale 
P87 Occupati - Maschi -per sez G,H - Altre attività (Commercio/riparazioni, 

Alberghi/ristoranti) 
P88 Occupati - Maschi -per sez I - Altre attività (Trasporti/comunicazioni) 
P89 Occupati - Maschi -per sez J - Altre attività (Intermediazione) 
P90 Occupati - Maschi -per sez K - Altre attività (Immobiliari, professionali, 

imprenditoriali) 
P91 Occupati - Maschi -per sez L - Altre attività (Pubblica Amm., difesa, 

assicur. sociale) 
P92 Occupati - Maschi -per sez M - Altre attività (Istruzione) 
P93 Occupati - Maschi -per sez N - Altre Attività (Sanità, Servizi sociali) 
P94 Occupati - Maschi -per sez O,P,Q - Altre attività (Servizi 

pubblici/domestici, org. extraterritoriali) 
P95 Occupati - Maschi -- Altre attività Totale 
P96 Occupati - Imprenditori e liberi professionisti 
P97 Occupati - Lavoratori in proprio 
P98 Occupati - Coadiuvanti 
P99 Occupati - Lavoratori dipendenti 
P100 Occupati - Imprenditori e liberi professionisti in Agricoltura 
P101 Occupati - Lavoratori in proprio in Agricoltura 
P102 Occupati - Coadiuvanti in Agricoltura 
P103 Occupati - Lavoratori dipendenti in Agricoltura 
P104 Occupati - Imprenditori e liberi professionisti in Industria 
P105 Occupati - Lavoratori in proprio in Industria 
P106 Occupati - Coadiuvanti in Industria 
P107 Occupati - Lavoratori dipendenti in Industria 
P108 Occupati - Imprenditori e liberi professionisti in Altre attività 
P109 Occupati - Lavoratori in proprio in Altre attività 
P110 Occupati - Coadiuvanti in Altre attività 
P111 Occupati - Lavoratori dipendenti in Altre attività 
P112 Occupati - Maschi - Imprenditori e liberi professionisti 
P113 Occupati - Maschi - Lavoratori in proprio 
P114 Occupati - Maschi - Coadiuvanti 
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P115 Occupati - Maschi - Lavoratori dipendenti 
P116 Occupati - Maschi - Imprendenditori e liberi professionisti in 

Agricoltura 
P117 Occupati - Maschi - Lavoratori in proprio in Agricoltura 
P118 Occupati - Maschi - Coadiuvanti in Agricoltura 
P119 Occupati - Maschi - Lavoratori dipendenti in Agricoltura 
P120 Occupati - Maschi - Imprenditori e liberi professionisti in Industria 
P121 Occupati - Maschi - Lavoratori in proprio in Industria 
P122 Occupati - Maschi - Coadiuvanti in Industria 
P123 Occupati - Maschi - Lavoratori dipendenti in Industria 
P124 Occupati - Maschi - Imprenditori e liberi professionisti in Altre attività 
P125 Occupati - Maschi - Lavoratori in proprio in Altre attività 
P126 Occupati - Maschi - Coadiuvanti in Altre attività 
P127 Occupati -Maschi - Lavoratori dipendenti in Altre attività 
P128 Non appartenente alle forze lavoro - TOTALE 
P129 Non appartenente alle forze lavoro - Maschi 
P130 Non forze lavoro - casalinghi/e 
P131 Non forze lavoro - studenti 
P132 Non forze lavoro - Maschi - Studenti 
P133 Non forze lavoro - Ritirati dal lavoro 
P134 Non forze lavoro - Maschi - Ritirati dal lavoro 
P135 Non forze lavoro - Altra condizione 
P136 Non forze lavoro - Maschi - Altra condizione 
P137 Popolazione residente che si sposta giornalmente nel comune di 

dimora abituale 
P138 Popolazione residente che si sposta giornalmente fuori del comune di 

dimora abituale 
A1 Abitazioni totali 
A2 Abitazioni occupate da persone residenti 
A3 Abitazioni occupate solo da persone non residenti 
A4 Abitazioni vuote 
A5 Altri tipi di alloggio-TOTALE 
A6 Stanze in totale 
A7 Stanze in abitazioni occupate da persone residenti 
A9 Abitazioni occupate da persone residenti in proprietà 
A10 Abitazioni occupate da persone residenti in affitto 
A11 Abitazioni occupate da persone residenti ad altro titolo 
A12 Abitazioni occupate da persone residenti con una stanza 
A13 Abitazioni occupate da persone residenti con 2 stanze 
A14 Abitazioni occupate da persone residenti con 3 stanze 
A15 Abitazioni occupate da persone residenti con 4 stanze 
A16 Abitazioni occupate da persone residenti con 5 stanze 
A17 Abitazioni occupate da persone residenti con 6 o più stanze 
A18 Abitazioni totali fornite acqua potabile 
A19 Abitazioni totali fornite di gabinetto 
A20 Abitazioni totali fornite di vasca da bagno e/o doccia 
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A21 Abitazioni occupate da persone residenti fornite di una linea telefonica 
fissa attiva 

A22 Abitazioni totali senza acqua potabile e gabinetto 
A23 Superficie delle abitazioni totali 
A24 Abitazioni occupate da persone residenti fornite di impianto di 

riscaldamento - TOTALE 
A25 Abitazioni totali fornite di impianto di riscaldamento centralizzato 
A44 Superficie delle abitazioni occupate da persone residenti 
E1 Edifici e complessi di edifici - Totale 
E2 Edifici e complessi di edifici utilizzati 
E3 Edifici ad uso abitativo 
E4 Edifici e complessi di edifici (utilizzati) per alberghi, uffici, commercio e 

industria, comunicazioni e trasporti 
E6 Edifici ad uso abitativo in muratura portante 
E7 Edifici ad uso abitativo in calcestruzzo armato 
E9 Edifici ad uso abitativo costruiti prima del 1919 
E10 Edifici ad uso abitativo costruiti tra il 1919 e il 1945 
E11 Edifici ad uso abitativo costruiti tra il 1946 e il 1961 
E12 Edifici ad uso abitativo costruiti tra il 1962 e il 1971 
E13 Edifici ad uso abitativo costruiti tra il 1972 e il 1981 
E14 Edifici ad uso abitativo costruiti tra il 1982 e il 1991 
E15 Edifici ad uso abitativo costruiti dopo il 1991 
E16 Edifici ad uso abitativo con un piano 
E17 Edifici ad uso abitativo con 2 piani 
E18 Edifici ad uso abitativo con 3 piani 
E19 Edifici ad uso abitativo con 4 piani o più 
E20 Edifici ad uso abitativo con un interno 
E21 Edifici ad uso abitativo con 2 interni 
E22 Edifici ad uso abitativo da 3 a 10 interni 
E23 Edifici ad uso abitativo con più di dieci interni 
E24 Totale interni in edifici ad uso abitativo 
PF1 Famiglie totale 
PF2 Totale componenti delle famiglie 
PF3 Famiglie 1 componente 
PF4 Famiglie 2 componenti 
PF5 Famiglie 3 componenti 
PF6 Famiglie 4 componenti 
PF7 Famiglie 5 componenti 
PF8 Famiglie 6 e oltre componenti 
PF9 Componenti delle famiglie residenti di 6 e oltre componenti 
ST01 Stranieri residenti in Italia - Europa 
ST02 Stranieri residenti in Italia - Africa 
ST03 Stranieri residenti in Italia - America 
ST04 Stranieri in Italia - Asia 
ST05 Stranieri in Italia - Oceania 
ST06 Apolidi residenti in Italia 
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ST07 Stranieri residenti in Italia - Totale 
 

 


