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Preface 
 

This work aims to present an efficient and accurate higher-order formulation to solve the 

strong and weak forms of the fundamental equations that govern the mechanical behavior of 

doubly-curved shell structures made of innovative and advanced materials. In particular, the 

thesis is focused on the development of a numerical tool which can guarantee high levels of 

accuracy with a low computational effort in the dynamic analysis of the structural elements 

under consideration. In order to highlight the validity of the proposed approach, the 

inadequacy of some commercial tools based on the Finite Element Method (FEM) is also 

proven. A set of comparison tests is presented for this purpose. 

The present thesis is organized in four chapters. In the first one, the Differential Quadrature 

(DQ) and Integral Quadrature (IQ) methods are discussed according to a general approach. In 

particular, the fundamental aspects of the two different numerical methods, required 

respectively for the approximation of derivatives and integrals, are presented. These 

techniques carry out numerically derivatives and integrals, by means of weighted sums of the 

values that the function (to differentiate or integrate) assumes in some discrete points placed 

within the reference domain. Several approaches and basis functions for the polynomial 

interpolation are presented for the computation of the so-called weighting coefficients. 

The second chapter focuses on the main aspects of differential geometry. The analytical 

description of doubly-curved surfaces that are described in orthogonal and principal 

coordinates, which are taken as the middle surfaces of shell structures, is presented. This 

mathematical approach represents an extremely efficient tool to compute easily those 

geometric quantities that are needed in the governing equations of doubly-curved structures, 

such as the main radii of curvature and the Lamè parameters. In addition, a final section is 

added to present an isogeometric mapping based on Non-Uniform Rational Basis Spline 

(NURBS), which can be used to describe arbitrarily shaped and distorted surfaces. 

The shell structural model, instead, is discussed in the third chapter, after some brief notes 

on three-dimensional elasticity. An Equivalent Single Layer (ESL) approach is employed to 

this aim. In particular, the theoretical framework is based on a unified formulation that allows 

to develop and compare several structural theories characterized by different orders of 

kinematic expansion. Thus, various Higher-order Shear Deformation Theories (HSDTs) can 
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be obtained. The governing equations are obtained by means of the well-known Hamilton’s 

variational principle. The strong formulation of the fundamental system of governing 

equations is presented first. Then, the corresponding weak formulation is developed as well. 

For this purpose, a higher-order Lagrangian approximation of the degrees of freedom, 

which consists in the nodal displacements, is adopted. For both formulations, the application 

of various kinds of external loads and boundary conditions are discussed. In particular, a 

complete description of the strong and weak formulations is shown. For the latter, two 

different continuity requirements are discussed, which are the 1C  and 0C . On the other hand, 

the strong formulation is always solved by enforcing boundary conditions that satisfy the 1C  

hypotheses. It should be noted that the DQ and IQ methods are used respectively to obtain the 

corresponding discrete form of the governing equations for the strong and weak formulations. 

In the same chapter, many sections are focused on constitutive laws for advanced 

composite materials, which are fibrous composites, granular composites, and laminated 

composites. In addition, a micromechanical model is presented to take into account the effect 

of agglomeration in the so-called nanocomposites, which are a particular class of granular 

composites with a reinforcing phase made of Carbon Nanotubes (CNTs). 

A set of numerical analyses is presented and discussed in the last chapter. All the analyses 

are carried out from the dynamic point of view. In other words, the solutions are presented in 

terms of natural frequencies. As a preliminary test, the convergence, accuracy, and stability 

features of the numerical approaches and the theoretical model are discussed. Then, the 

present methodologies are compared with the well-known Finite Element Method (FEM). For 

this purpose, a commercial software is used. In conclusion, many applications are shown to 

prove that the proposed approaches can deal easily with distorted shells made of advanced 

constituents. 

Finally, the main results of the thesis are summarized and discussed briefly in the 

concluding section, where the advantages of the current methodologies are emphasized. 
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Chapter 1 
 

 

 

Differential and Integral 

Quadrature Methods: 

A General Approach 

 

 

 
Each physical phenomenon can be modeled by means of a set of differential equations 

from the mathematical point of view. Several parameters and variables are consequently 

involved in these governing equations. Depending on to physical event that must be analyzed, 

these parameters assume a different meaning and relatively complex equations can be carried 

out [1-5]. 

As far as the structural mechanics is concerned, these governing equations are developed to 

link together and evaluate consequently various mechanical quantities, such as the 

displacement field, the natural frequencies, or the stress and strain distributions, of a three-

dimensional medium. For this purpose, the main aim of scientists and engineers who work in 

this field is to solve the corresponding governing equations, by applying also the proper initial 

and boundary conditions. Thus, the mathematical model of a physical phenomenon is 

accomplished once appropriate hypotheses and premises are introduced. This statement is 

completely general and valid for each mechanical field. 
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Nevertheless, it should be recalled that a closed-form solution cannot be obtained in 

general for these mathematical models, unless strong simplifications are taken into account. In 

other words, the systems of differential equations at issue cannot be solved analytically. For 

this purpose, a numerical method must be used to get an approximate solution. In the last 

decades, several numerical approaches have been developed to this aim [6-15]. 

As highlighted in the papers [11-15], two formulations of the same system of governing 

equations can be developed, which are the strong and weak (or variational) formulations, 

respectively. These two approaches require a different numerical method to approximate the 

unknown fields and obtain the solution. In the following, the basic aspects of these two 

methodologies are briefly introduced. 

Once the governing equations that rule a generic structural problem are obtained, together 

with the corresponding boundary conditions, a differential system is written. If the strong 

formulation is solved, a numerical tool able to approximate derivatives is needed, since these 

equations are directly changed into a discrete system [15]. 

On the other hand, the differentiability requirement is reduced through a weighted integral 

statement if the corresponding weak form of the governing equations are developed [14, 15]. 

In other words, the governing differential system of equations is replaced by an integral one. 

Thus, an equivalent integral formulation of lower order has to be solved when the weak 

formulation is considered [15]. As a consequence, a numerical approximation of integrals has 

to be performed. It should be recalled that the Finite Element Method (FEM), developed in 

the early 1940s [16-23], is based on the variational (or weak) form of the governing 

equations. 

As it can be easily deduced from these concise definitions, two different numerical 

approaches can be used to obtain the solution of both the strong and weak formulations, 

which allow to approximate derivatives and integrals, respectively. In this chapter, the 

Differential Quadrature (DQ) and Integral Quadrature (IQ) methods are discussed for these 

purposes. In particular, the former is used to approximate derivatives, whereas the latter 

provides a numerical solution for the integration procedure. 

The DQ method was firstly developed by Bellman and his coworkers in the early 1970s, 

who proposed a numerical tool able to approximate partial and total derivatives [24-26]. They 

named their technique as “quadrature” to underline the similarity with the well-known 

Gaussian quadrature, developed in the previous years [27]. The DQ method, in fact, allowed 
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to evaluate the numerical derivative of a generic smooth function at a point as a linear 

weighted summation of the values that the function itself assumes in each point of the 

domain. The key points of their approach were the evaluation of the weighting coefficients 

required by the sum in hand and the placement of several discrete points within the domain. 

Therefore, the method at issue had its roots in the functional approximation [28]. 

Nevertheless, it should be recalled that this methodology led to numerical errors in terms of 

accuracy when a large number of discrete nodes was chosen. In particular, these problems 

could arise if more than thirteen points were used to discretize the domain, since a 

Vandermonde-like matrix had to be inverted to compute the weighting coefficients. 

The previous researches by Bellman and coworkers [24-26] and the works by Civan and 

Sliepcevich [29-33] were the starting points of an enhanced approach. This methodology was 

presented by Quan and Chang in the late 1980s, who developed a closed-form solution for the 

evaluation of the weighting coefficients, when peculiar basis functions were used for the 

functional approximations [34, 35]. According to their method, a stable and accurate solution 

could be found even if the number of discrete points in the domain was greater than thirteen.  

As highlighted in the review paper by Finlayson and Scriven [28], the DQ technique could 

be classified as a particular case of the well-known method of weighted residual, likewise the 

Spectral Methods (SMs), whose features were summarized in the work by Gottlieb and 

Orszag [36]. Further details concerning these methodologies can be found in the books by 

Boyd [37], Canuto et al. [38], Quarteroni et al. [39], Shen et al. [40], and Trefethen [41]. The 

similarity between DQ method and SMs was underlined by Chen in his thesis [42], as well as 

in the book by Boyd [37]. 

For the sake of completeness, it should be mentioned that both DQ method and SMs 

employed global basis functions defined in the whole domain for the functional 

approximation, which could be chosen as polynomials of high degree. This aspect represented 

one of the biggest differences with respect to the classical FEM, in which local functions of 

low degree were assumed as basis functions. These functions, in fact, were linear or quadratic 

polynomials defined only in specific subintervals in which the whole domain was discretized 

[13]. In other words, the SMs represented a global approach, whereas the FEM denoted a 

local one. Due to these properties, SMs were really accurate and characterized by a fast 

convergence. Nevertheless, the accuracy, stability and reliability features of SMs depended on 

the number of discrete points and their position as well. 
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Shu gave the greatest contribution for the development of the DQ method in the early 

1990s [43, 44]. He proposed, in fact, a more stable and general approach for computing the 

weighting coefficients for any derivative order through a set of recursive expressions. The 

Lagrange polynomials, as well as the trigonometric Lagrange polynomials, were assumed as 

basis functions and the choice of the discrete grid distribution could be performed arbitrarily. 

In other words, the definition of the weighting coefficients were independent from the 

position of the discrete points in the reference domain if the aforementioned basis functions 

were used for the functional approximation. This approach was termed as Generalized 

Differential Quadrature (GDQ) to underline its general features, as specified in the papers by 

Shu and Richards [45, 46]. Further details concerning the DQ method and its development 

can be found in the review papers by Bert and Malik [47] and by Tornabene et al. [13]. 

Finally, it should be mentioned that the definition of the weighting coefficients introduced 

by Bellman and Casti for the approximation of derivatives was used by Civan to develop an 

integration technique, known as Integral Quadrature (IQ) method [48]. Several numerical 

tests concerning the IQ method were later presented by Civan and Sliepcevich in their works 

[29-33]. A more general approach were developed once Shu provided the recursive 

expressions for the evaluation of the weighting coefficients. Consequently, the Generalized 

Integral Quadrature (GIQ) method was presented as counterpart of the GDQ method [43, 44]. 

 

 

1.1  DERIVATIVE APPROXIMATION 

 

The current section is focused on the approximation of derivatives. The main aspects of the 

DQ method are presented for this purpose. In particular, a general view on the numerical 

approach at issue is illustrated. 

Let us consider a smooth function  f x , which is defined within the one-dimensional 

closed domain  ,a b . It is worth noting that ,a b  represent the boundary values. Since the 

derivatives of  f x  are evaluated in specific nodes of this domain, 
NI  discrete points must 

be placed within the interval  ,a b . In other words, one gets  

 
1 2 1, , ..., , ..., ,

N Nk I Ia x x x x x b    (1.1) 
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where the coordinate of the generic element kx  is given by 

  k k

b a
x z c a

d c


  


  (1.2) 

for 1, 2,..., Nk I . As it can be noted in definition (1.2), the position of kx  depends on the 

quantity kz , which denotes the placement of the k -th node of a generic grid distribution 

defined in the reference interval  ,c d . To this aim, various discrete distributions can be used 

and the values of kz  are assumed as 

 1

1N

k
k

I

r r
z

r r





  (1.3) 

where the meanings of 
kr , for 1, 2,..., Nk I , is defined by the grid distribution itself. In fact, 

kr  denotes the position of the k -th discrete point within the domain in which the distribution 

is defined. Several examples of grid point distributions will be illustrated in the following 

paragraphs. Finally, the one-dimensional scheme at issue is shown in Figure 1.1 for the sake 

of completeness. The values that the function  f x  assumes in these discrete nodes are 

denoted generally by  kf x , for 1, 2,..., Nk I . 

 

 

Figure 1.1 – Discrete points for a one-dimensional scheme. 
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At this point, a set of polynomial basis functions  j x , for 1, 2,..., Nj I , must be 

introduced to approximate the generic function  f x  within the reference domain. The 

following definition is required for this purpose 

    
1

NI

j j

j

f x x


   (1.4) 

in which  j x  stands for the j -th polynomial of the basis functions, whereas 
j  are the 

unknown coefficients to be computed. As it will be shown in the next sections, different basis 

functions can be employed. For conciseness purpose, a compact vector notation can be used. 

It is convenient to collect the functional values  kf x  in the corresponding vector f  defined 

below 

      1 N

T

k If x f x f x 
 

f   (1.5) 

Analogously, the same nomenclature can be employed to collect the unknown coefficients 

j  in the conforming vector λ  

 1 N

T

k I     λ   (1.6) 

Consequently, the approximation (1.4) takes the following aspect 

 f Aλ   (1.7) 

where A  is the coefficient matrix. Its generic element 
ijA  is given by the value that the j -th 

basis function assumes in the i -th discrete point of the domain. In other words, one gets 

  ij j iA x   (1.8) 

for , 1,2,..., Ni j I . The operator A  is a square matrix whose size is 
N NI I . By definition, 

the n -th order derivative of the considered function  f x  is given by 

 
   

1

N
nn I

j

jn n
j

d xd f x

dx dx






   (1.9) 

for 1, 2,..., 1Nn I  . Expression (1.9) is valid since the coefficients 
j  do not depend on x . 

Thus, the derivative is moved directly to the basis functions due to the linearity. If 
 n

f  

denotes the vector that collects the n -th order derivatives of the function  f x  in each 

discrete point of the domain as specified below 
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        

1 k IN

T

n n n

n

n n n

x x x

d f x d f x d f x

dx dx dx

 
 
 
 

f   (1.10) 

relation (1.9) becomes 

    n n
f A λ   (1.11) 

Recalling equation (1.9), it is easy to deduct that the generic element 
 n

ijA  of the 

corresponding matrix  n
A  is given by 

    

i

n

n j

ij n

x

d x
A

dx


   (1.12) 

The definition of λ  can be obtained from equation (1.7) if the matrix A  is inverted. This 

property depends on the choice of both the basis functions and the discrete grid distributions. 

One gets 

 1λ A f   (1.13) 

By inserting expression (1.13) into the definition (1.11), the vector  n
f  assumes the 

following aspect 

     1n n f A A f   (1.14) 

At this point, the differential operator  n
D , whose size is 

N NI I , can be introduced 

 
    1n n D A A   (1.15) 

Thus, relation (1.14) becomes 

    n n
f D f   (1.16) 

For the sake of completeness, it should be noted that the differential operator  n
D  is 

computable as the product of the coefficient matrix and its inverse one. This procedure could 

turn out to be inaccurate if the matrix A  is ill-conditioned. In general, this happens when the 

domain is discretized by using a high number of sampling points and the coefficient matrix A  

becomes similar to the well-known Vandermonde matrix. This issue is negligible for 

particular choice of the basis functions, as it will be explained in the following paragraphs. 

Finally, relation (1.9) can be written also as follows 

 
     

1

N

i

n I
n

ij jn
j

x

d f x
D f x

dx 

   (1.17) 
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where 
 n

ijD  is the generic element of  n
D , which assumes the aspect shown below 

 
    1n n

ij
ij

D  A A   (1.18) 

It should be pointed out that 
 n

ijD  stands for the weighting coefficients required for the n -

th order derivative. In general, this procedure is valid for each combination of basis functions 

and discrete grid distributions, without any restriction. Nevertheless, closed-form expressions 

are available in the literature for the evaluation of these coefficients. Such relations do not 

require the inversion of the coefficient matrix even if the definition of the numerical 

derivatives is equivalent. In these circumstances, the weighting coefficients will be denoted 

by the symbol 
 n

ij . 

At this point, it should be recalled that the reference domain, which could be named also 

physical domain, could be defined in an interval different from the one of the chosen basis 

functions. Thus, the following coordinate change is required to move from the definition 

interval to the physical domain 

 
    1

1

N

N

n
nn

I

n n

I

d f x rr rd f x

dx x x dr

 
  
  

  (1.19) 

for 1, 2,..., 1Nn I  . The physical domain x  , whose length is given by 
1NIx x , can be 

related to the domain r  of the basis polynomials by means of the following relation 

    
1

1 1

1

N

N

I

I

x x
x r r r x

r r


  


  (1.20) 

It is clear that 
1NIr r  specifies the length of the domain in which the basis functions are 

defined. The following linear transformation allows to compute the weighting coefficients 

 n

ij  (or 
 n

ijD ) in the physical domain, as a function of the weighting coefficients 
 n

ij  (or 

 n

ijD ) related to the basis function domain 

 
   1

1

n

n nN
ij ij

N

r r

x x
 

 
  

 
  (1.21) 

with , 1,2,..., Ni j I  and 1, 2,..., 1Nn I  .  

At this point, it should be mentioned that a matrix multiplication approach can be also used 

to compute the weighting coefficient matrix for the n -th order derivatives 
 n

D , once the 
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operator which includes the weighting coefficients for the first-order derivatives  1
D  is 

obtained. The recursive approach in hand assume the following aspect 

      1 1n n
D D D   (1.22) 

in which  1n
D  is the coefficient matrix related to the  1n -th order derivatives. 

 

 

1.1.1  BASIS FUNCTIONS 

 

In this section, several sets of basis functions that can be used to approximate a generic 

smooth function  f x  are illustrated. In general, the weighting coefficients for the derivative 

can be evaluated by inverting the matrix A . The closed form solutions are also presented 

when available in the literature. 

 

1.1.1.1  Lagrange polynomials 

 

The Lagrange polynomials  jl r , for 1, 2,..., Nj I , are defined in the reference domain 

 ,r    and assume the following definitions 

  
 

     1j

j

r
l r

r r r




L

L
  (1.23) 

where 

 

   

     

1

1

1,

N

N

I

k

k

I

j j k

k j k

r r r

r r r



 

 

 





L

L

  (1.24) 

It should be noted that the polynomial basis has 
NI  functions of degree 1NI  . In other 

words, each polynomial identifies 1NI   roots. If the Lagrange polynomials are taken as basis 

functions, the coefficient matrix A  turns out to be equal to the identity matrix I , since the 

following property is valid 
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  
0 for

1 for
j i

i j
l r

i j


 


  (1.25) 

Relations (1.25) specify that the j -th polynomial assumes a unitary value only in the 

corresponding root (
i jr r ). Consequently, the matrix A  is not ill-conditioned and it is 

always invertible, even for a higher number of discrete points. Thus, the weighting 

coefficients (1.18) can be written as follows 

          1n n n n

ij ij
ij ij

D A  A A A I   (1.26) 

In other words, one gets 
     n n

ij j iA l r , where 
   n

j il r  stands for the n -th order derivative 

of the polynomial (1.23) evaluated at ir . Typically, when the coefficient matrix is inverted 

and the Lagrange polynomials are used, the numerical approach is known as Lagrange 

Spectral Collocation Method. Nevertheless, the same interpolating functions are used by Shu 

[44] to derive a recursive formulation for the evaluation of the weighting coefficients 
 n

ij . 

Without presenting the whole treatise proposed by Shu, in the following the recursive 

formulae for the weighting coefficients are shown for the n -th order derivatives, with 

, 1,2,..., Ni j I  and 1, 2,..., 1Nn I   

      
 1

1 1

n

n n ij

ij ij ii

i j

n
r r


  




 

  
 
 

  (1.27) 

for i j , and  

 
   

1, j

NI
n n

ij ij

j i

 
 

     (1.28) 

for i j . The symbol 
 1

ij  denotes the weighting coefficients for the first-order derivatives, 

which can be evaluated as shown below 

 
 

   

     

1

1

1

i

ij

i j j

r

r r r
 



L

L
  (1.29) 

This approach, which considers the recursive formulation proposed by Shu, is known as 

GDQ method, as specified in the introduction. 
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1.1.1.2  Trigonometric Lagrange polynomials 

 

The trigonometric Lagrange polynomials are denoted by  jg r , for 1, 2,..., Nj I , and can 

be defined in the reference domains  0,r  ,  0,2r   or  4, 4r    . They assume 

the following aspect 

  
 

   1
sin

2

j

j

j

r
g r

r r
r


 

 
 

  (1.30) 

where  

 

 

   

1

1

1,

sin
2

sin
2

N
k

k

N
j k

j

k j k

r r
r

r r
r



 

 
  

 

 
  

 





  (1.31) 

These polynomials have the same features of the previous ones  jl r . In particular, 

property (1.25) is valid even in this circumstance 

  
0 for

1 for
j i

i j
g r

i j


 


  (1.32) 

Thus, the weighting coefficients for the derivatives can be computed by means of the 

general approach presented above, since the coefficient matrix is not ill-conditioned. As in the 

previous case, one gets 
     n n

ij j iA g r , in which 
   n

j ig r  represents the n -th order derivative 

of the polynomial (1.30) evaluated at ir . 

A recursive formulation for the evaluation of the weighting coefficients up to the fourth-

order derivatives have been presented by Shu [44], with , 1,2,..., Ni j I  

 
 

   

   

1

1

1
2sin

2

i

ij

i j

j

r

r r
r

 
 

 
 

  (1.33) 

 
     2 1 1

2 cot
2

i j

ij ij ii

r r
  

   
   

  
  (1.34) 
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        3 1 2 21 3
3 cot

2 2 2

i j

ij ij ii ij

r r
   

  
     

   
  (1.35) 

           
 

 
1

4 1 3 1 2 33
4 2 cot

2 2 2

ij i j

ij ij ii ii ij ij

r r
     

   
           

  (1.36) 

for i j . Expression (1.28) is still valid in this case for i j , with 1,2,3,4n  . The current 

approach is known as Harmonic Differential Quadrature (HDQ) method. 

 

1.1.1.3  Orthogonal polynomials 

 

Another class of basis functions that can be used for the functional approximation is the 

one of orthogonal polynomials. They are characterized by the fact that two different 

polynomials of the basis are orthogonal to each other with respect to their inner product. 

Among them, the classical orthogonal polynomials are the most used, such as the Jacobi 

polynomials and its subcategories, the Hermite polynomials, and Laguerre polynomials. 

 

1.1.1.3.1  Jacobi polynomials 

 

The Jacobi polynomials, also known as hypergeometric polynomials, represent the solution 

to the so-called Jacobi differential equation and include the Gegenbauer polynomials, the 

Legendre polynomials, the Lobatto polynomials, and the Chebyshev polynomials as special 

cases. The Jacobi polynomials 
   ,

jJ r
 

 are defined in the domain  1,1r   and can be 

obtained by means of the following differential expression 

    
 

     
    

1 1
1 1,

11

1
1 1

2 1 ! 1 1

j j
j j

j jj

d
J r r r

drj r r

  

 

 
   




  

  
  (1.37) 

for 1, 2,..., Nj I . Alternatively, a recursive formula can be used 

 

   
         

   

       

   

,2 2

1,

,

2

2 3 2 2 2 4

2 1 1 2 4

2 2 2 2

1 1 2 4

j

j

j

j j j r J r
J r

j j j

j j j J r

j j j

 

 

 

       

   

   

   





          
 

      

      


      

 (1.38) 
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for 3,4,..., Nj I , with 
   ,

1 1J r
 

  and 
         ,

2 2 1 2 1 2J r r
 

        . A closed 

form solution for the evaluation of the weighting coefficients for the derivatives up to the 

second-order was proposed by Quan and Chang [34, 35], by using the corresponding 

distribution only as discrete grid. Without losing generality, in the present work the weighting 

coefficients are evaluated by inverting the coefficient matrix A . It should be noted that the 

Jacobi polynomials are written as a function of the two parameters   and  , assuming 

, 1    . For a particular choice of these parameters, other polynomial sets can be derived as 

Gegenbauer polynomials 
   jC r


: 1 2 1 2      , with 1 2   ; 

- Legendre polynomials  jL r : 0   ; 

- Lobatto polynomials  jA r : 1   ; 

- Chebyshev polynomials (first kind)  jT r : 1 2    ; 

- Chebyshev polynomials (second kind)  jU r : 1 2   ; 

- Chebyshev polynomials (third kind)  jV r : 1 2     ; 

- Chebyshev polynomials (fourth kind)  jW r : 1 2    ; 

It should be recalled that recursive formulations for the definitions of such polynomials are 

available in the literature, as illustrated in the book by Tornabene et al. [5]. For the sake of 

completeness, those expressions are listed also in Table 1.1. 

 

Table 1.1 – Recursive formulations for the orthogonal polynomials descending from the Jacobi ones. 

Gegenbauer polynomials 

                       1 2 1 2

2 1
2 2 3 for 2,..., , with 1, 2

1 1
j j j N

r
C r j C r j C r j I C r C r r

j j

    
           

 
 

Legendre polynomials Lobatto polynomials 

 
       

   

1 2

1 2

2 3 2

1

for 3,..., , with 1,

j j

j

N

j r L r j L r
L r

j

j I L r L r r

   




  

     1 for 1,...,j j N

d
A r L r j I

dr
   

Chebyshev polynomials (I kind) Chebyshev polynomials (II kind) 

     

   

1 2

1 2

2

for 3,..., , with 1,

j j j

N

T r rT r T r

j I T r T r r

  

  
 

     

   

1 2

1 2

2

for 3,..., , with 1, 2

j j j

N

U r rU r U r

j I U r U r r

  

  
 

Chebyshev polynomials (III kind) Chebyshev polynomials (IV kind) 

     

   

1 2

1 2

2

for 3,..., , with 1, 2 1

j j j

N

V r rV r V r

j I V r V r r

  

   
 

     

   

1 2

1 2

2

for 3,..., , with 1, 2 1

j j j

N

W r rW r W r

j I W r W r r

  

   
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1.1.1.3.2  Hermite polynomials 

 

The Hermite polynomials  jH r  are defined within the whole real domain  ,r   . 

They can be evaluated by means of the so-called Rodrigues’ formula 

      
2 2

1
1

1
1

j
j r r

j j

d
H r e e

dr


 


    (1.39) 

for 1, 2,..., Nj I . It is clear that the index j  define the polynomial degree, which depends on 

the total number of discrete points 
NI  in the reference domain. Alternatively, the following 

recursive expression can be used 

        1 22 2 2j j jH r rH r j H r      (1.40) 

for 3,4,..., Nj I , with  1 1H r   and  2 2H r r . The inverse matrix of A  is required to 

evaluate the weighting coefficients, since a closed form solution does not exist for this 

purpose. 

 

1.1.1.3.3  Laguerre polynomials 

 

Differently from the previous polynomials, the Laguerre ones  jG r  are defined only in 

the positive part of the real domain  0,r  . The Rodrigues’ formula is used to compute 

these polynomials 

  
 

 
1

1

1

1

1 !

j
j r

j r j

d
G r r e

j e dr


 

 



  (1.41) 

for 1, 2,..., Nj I . Similarly, a recursive approach can be employed 

  
       1 22 3 2

1

j j

j

j r G r j G r
G r

j

    



  (1.42) 

for 3,4,..., Nj I , with  1 1G r   and  2 1G r r  . The weighting coefficients can be 

evaluated only through the inversion of the coefficient matrix A . 
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1.1.1.4  Power functions 

 

The power functions ( )jZ r  (or monomial functions) represent the simplest choice for the 

basis functions. Nevertheless, the coefficient matrix becomes similar to the Vandermonde 

one, when the number of discrete point is high (in general, for 13NI  ). These polynomials 

are defined in the whole real domain  ,r   , for 1, 2,..., Nj I  

 1( ) j

jZ r r    (1.43) 

The weighting coefficients can be only computed by means of the inversion of the 

coefficient matrix A , since a closed form expression is not available in the literature. 

 

1.1.1.5  Exponential functions 

 

As the previous ones, the exponential basis functions ( )jE r  are defined in the whole real 

domain  ,r   . The following expression is used to define these functions 

 
 1

( )
j r

jE r e


   (1.44) 

for 1, 2,..., Nj I . The exponential functions show the same behavior of the previous function 

set. Even in this case, the coefficient matrix A  must be inverted to obtain the weighting 

coefficients for the derivatives. 

 

1.1.1.6  Boubaker polynomials 

 

Boubaker polynomials  jQ r  are evaluated in the whole real domain  ,r    

through the following expression 

    
 1

1 2

0

1 1 4
1

1

j
k j k

j

k

j k j k
Q r r

k j k

 

 



    
   

  
   (1.45) 

for 2,3,..., Nj I  and  1 1Q r  . Function  1j   in (1.45) is defined as follows 

  
    1

2 1 1 1
1

4

j
j

j


   

    (1.46) 
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Alternatively, a recursive relation can be employed 

      1 2j j jQ r rQ r Q r     (1.47) 

for 4,5,..., Nj I , with  1 1Q r  ,  2Q r r  and   2

3 2Q r r  . A closed form solution for 

the weighting coefficients does not exist, thus the coefficient matrix A  must be inverted. 

 

1.1.1.7  Bessel functions 

 

Bessel polynomials  jP r  are defined in the whole real domain  ,r   . The 

following explicit expression allows to obtain the polynomials at issue 

  
 

 

1

0

1 !

1 ! ! 2

kj

j

k

j k r
P r

j k k





   
  

   
   (1.48) 

for 2,3,..., Nj I  and  1 1P r  . Alternatively, they can be computed through a recursive 

approach 

        1 22 3j j jP r j rP r P r      (1.49) 

for 3,4,..., Nj I , with  1 1P r   and  2 1P r r  . Even in this circumstance, a closed form 

solution for the weighting coefficients is not available. 

 

1.1.1.8  Fourier functions 

 

The Fourier basis functions  jF r  can be used for the functional approximation. For this 

purpose, sine and cosine functions are employed. The following expressions are required to 

compute the basis function at issue in the reference domain  0,2r   

 

 

 

cos for even
2

1
sin for odd

2

j

j

j
F r r j

j
F r r j

  
  

  


      

  (1.50) 

for 2,3,..., Nj I  and  1 1F r  . The weighting coefficients are evaluated through the 

inversion of the matrix A . 
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1.1.2  GRID POINT DISTRIBUTIONS 

 

The numerical approach at issue requires the introduction of 
NI  discrete points within the 

reference domain. Mathematically speaking, this aspect is given by relation (1.2). In this 

paragraph, the values of kz  are specified for several grid distributions available in the 

literature. For this purpose, the definition of kz  shown in (1.3) should be recalled, too. For the 

sake of conciseness, various grid point distributions are listed in Table 1.2. 

 

 

1.1.3  EXTENSION TO TWO-DIMENSIONAL DOMAINS 

 

The treatise just presented can be easily extended to two-dimensional domain. For this 

purpose, a two-dimensional smooth function  ,f x y  must be introduced. The domain in 

hand is defined by the boundary values  ,x a b  and  ,y c d . As in the previous simpler 

case, the domain must be discretized by placing 
NI  and MI  sampling point along x  and y  

directions, respectively. The same distributions presented in Table 1.2 can be used for this 

purpose. For the sake of clarity, a two-dimensional domain and the corresponding discrete 

points are shown in Figure 1.2. 

 

Figure 1.2 – Discretization of a two-dimensional domain.
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Table 1.2 - Examples of discrete grid distributions. 

Uniform (Unif) Chebyshev-Gauss-Lobatto (Cheb-Gau-Lob) 

1
, 1, 2,...,

1
k N

N

k
z k I

I


 


  cos , 1,2,..., , 1,1

1

N

k N

N

I k
r k I r

I


 
    

 
 

Quadratic (Quad) Chebyshev I kind (Cheb I) 
2

2

11
2 , 1,2,...,

1 2

11 1
2 4 1, 1,..., 1,

1 1 2

N

k

N

N

k N N

N N

Ik
z k

I

Ik k
z k I I

I I

   
   

  


     
         

     

 
 

 
2 1

cos , 1,2,..., , 1,1
2

N

k N

N

I k
r k I r

I


  
     

 

 

Chebyshev II kind (Cheb II) Approximate Legendre (App Leg) 

 
1

cos , 1,2,..., , 1,1
1

N

k N

N

I k
r k I r

I


  
    

 
 

 

 

2 3

4 31 1
1 cos ,

4 28 8

1,2,..., , 1,1

N

k

NN N

N

I k
r

II I

k I r


   

          

  

 

Legendre-Gauss (Leg-Gau) Radau I kind (Rad I) 

     2

1roots of , 1,2,..., 1,1 1 ,
Nk I Nr rr L k I r     

      
 

1roots of  ,

1, 2,..., , 1,

1

1

N Nk I I

N

r L r

k

rr L

I r





 

 

 
 

Chebyshev-Gauss (Cheb-Gau) Legendre-Gauss-Lobatto (Leg-Gau-Lob) 

 

 

 

1

2 1
1, 1, cos ,

2 2

2,3,..., 1, 1,1

N

N

I k

N

N

I k
r r r

I

k I r


  

     
  

   

      2

1roots of , 1,2,..., 1 1 1 , ,
Nk I Nr A rr k I r     

Hermite (Her) Laguerre (Lag) 

   1roots of , 1,2,..., , ,
Nk I Nr H r k I r         1roots of , 1,2,..., , 0,

Nk I Nr G r k I r     

Chebyshev-Gauss-Radau (Cheb-Gau-Rad) Non-uniform Ding (Ding) 

 
 

2
cos , 1,2,..., , 1,1

2 1

N

k N

N

I k
r k I r

I


 
      

 
1 1

1 2 cos , 1,2,...,
2 4 2 1

k N

N

k
z k I

I

   
        

 

Legendre (Leg) Chebyshev III kind (Cheb III) 

   1roots of , 1,2,..., , 1,1
Nk I Nr L r k I r     

 
 

2 1
cos , 1,2,..., , 1,1

2 1

N

k N

N

I k
r k I r

I


  
      

 

Chebyshev IV kind (Cheb IV) Lobatto (Lob) 

 
 

2 1
cos , 1,2,..., , 1,1

2 1

N

k N

N

I k
r k I r

I


  
      

    1 roots of , 1,2,..., , 1,1
Nk I Nr A k Ir r     

Legendre-Gauss-Radau (Leg-Gau-Rad) Radau II kind (Rad II) 

     1roots of , 1,2,..., , 1,1
N Nk I I NL r L rr k I r      

      
 

1roots of  ,

1,2,..., , 1 1

1

,

N Nk I I

N

r L r

r

L rr

k I



  

 
 

Jacobi (Jac) Jacobi-Gauss (Jac-Gau) 

     ,

1roots of , 1,2,..., , 1,1
Nk I Nr J k I rr
 

            ,2

1roots of  , 1,2,..., , 1,11
Nk I Nr J k rr r I
 

     
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In order to facilitate the computer implementation, it is convenient to collect the discrete 

points following the order given by the arrow depicted in Figure 1.2. In other words, the 

points are collected “by column” (the dotted boxes in Figure 1.2). Therefore, the points can be 

listed as follows 

              1 1 2 1 1 1 2 2 1, , , , , , , , , , , , , , , ,
N N M N MI I I I Ix y x y x y x y x y x y x y   (1.51) 

For the sake of simplicity, these points can be also collected in the corresponding vector 

π , whose k -th element 
k  is given by 

  ,k i j k
x y    (1.52) 

for 1, 2, , Ni I , 1, 2, , Mj I , and  1 Nk i j I   . In extended notation, one gets 

 

     

   

   

1 1 2 1 11 2

first column

1 2 21 2

second column

1
1

last column

, , ,

, ,

, ,

N
N

NN N

M N M
N M N N M

I
I

II I

T

I I I
I I I I I

x y x y x y

x y x y

x y x y



 







π

  (1.53) 

The same order is chosen also to list the values that the function  ,f x y  assumes in each 

point of the domain 

 
       

     

1 1 2 1 1 1 2

2 1

, , , , , , , , ,

, , , , , , ,

N

N M N M

I

I I I I

f x y f x y f x y f x y

f x y f x y f x y
  (1.54) 

The corresponding vector f  can be introduced as well. Its generic element kf  is given by 

  ,k i j k
f f x y   (1.55) 

for 1, 2, , Ni I , 1, 2, , Mj I , and  1 Nk i j I   . In extended notation, one gets 

     

   

   

1 1 2 1 11 2

first column

1 2 21 2

second column

1
1

last column

, , ,

, ,

, ,

N
N

NN N

M N M
N M N N M

I
I

II I

T

I I I
I I I I I

f x y f x y f x y

f x y f x y

f x y f x y



 







f

   (1.56) 
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It is clear that the size of both π  and f  is 1N MI I  . At this point, the weighting 

coefficients for the two-dimensional derivatives must be illustrated. For this purpose, it is 

convenient to introduce the Kronecker product “ k ”. Let us consider two generic matrices A  

and B , whose sizes are f g  and p q  respectively. The Kronecker product of A  and B  is 

explained below 

 

11 1

1

g

k

f fg

a a

a a

 
 

   
 
 

B B

A B

B B

  (1.57) 

in which 
ija  denotes the generic element of A , for 1, ,i f  and 1, ,j g . In extended 

notation, the product (1.57) becomes 

11 11 11 12 11 1 1 11 1 12 1 1

11 21 11 22 11 2 1 21 1 22 1 2

11 1 11 2 11 1 1 1 2 1

1 11 1 12 1 1 11 12 1

1 21 1 22

q g g g q

q g g g q

p p pq g p g p g pq

f f f q fg fg fg q

f f

a b a b a b a b a b a b

a b a b a b a b a b a b

a b a b a b a b a b a b

a b a b a b a b a b a b

a b a b a

 A B

1 2 21 22 2

1 1 1 2 1 1 2

f q fg fg fg q

f p f p f pq fg p fg p fg pq

b a b a b a b

a b a b a b a b a b a b

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  (1.58) 

where klb  is the generic element of B , for 1, ,k p  and 1, ,l q  . The size of the resultant 

matrix is fp gq . 

For the sake of conciseness, the differentiation procedure is presented only in matrix form. 

Let us introduce the operators 
 n

xD  and 
 m

yD , which collect the weighting coefficients for the 

derivatives along x  and y , respectively. These matrices can be easily computed as shown in 

(1.15). The symbols n  and m  represent the derivative orders. The weighting coefficients for 

the two-dimensional case under consideration are computed as follows 

 
 

   

 

M MN M N M N N

n n

x k x
I II I I I I I 

 C I D   (1.59) 

 
 

   

 

N NN M N M M M

m m

y y k
I II I I I I I  

 C D I   (1.60) 
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  

   

   

N NN M N M M M

n m m n

xy y k x
I II I I I I I



 

 C D D   (1.61) 

The size of each matrix is specified under every operator. The symbol I  stands for the 

identity matrix. On the other hand, 
 n

xC  represents the weighting coefficient matrix for the n -

th order derivatives with respect to x ; 
 m

yC  is the weighting coefficient matrix for the m -th 

order derivatives with respect to y ; 
 n m

xy


C  collects the weighting coefficients for the mixed 

derivatives of order n m . It should be specified that the rows of the matrices 
 n

xC , 
 m

yC  and 

 n m

xy


C  represent the derivative approximation at the generic point of the domain, whose 

coordinates are  ,i jx y . The corresponding derivatives of f  are shown below 

 
   n n

x xf C f   (1.62) 

 
   m m

y yf C f   (1.63) 

 
   n m n m

xy xy

 
f C f   (1.64) 

The size of the vectors computed in (1.62)-(1.64) is 1N MI I  . The numerical approach 

presented in this section can be used to solve the strong formulation of the differential 

equations which govern a generic physical phenomenon. 

 

 

1.2  INTEGRAL APPROXIMATION 

 

Starting from the fundamental aspects of the DQ method, in this section the main ideas of 

the counterpart for the numerical evaluation of integrals are presented. This technique is 

named as IQ method. Therefore, the weighting coefficients for the integrations are computed 

by using the ones for the differentiation. The same basis functions and discrete grid point 

distributions presented above can be used for this purpose. As in the previous section, the 

procedure is presented first for a one-dimensional domain, then for a two-dimensional one. 

Let us consider the same one-dimensional domain defined in (1.1), depicted in Figure 1.1. 

The numerical integral of the smooth function  f x  within the sub-interval ,i jx x   , with 

 , ,i jx x a b  and ,i jx a x b  , can be evaluated as follows 
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    
1

j
N

i

x I
ij

k k

kx

I f x dx w f x


    (1.65) 

in which ij

kw  represents the weighting coefficients for the integration at issue. It is important 

to underline that the summation in the definition (1.65) takes into account all the grid points, 

even if the integration is limited in the interval ,i jx x   . In other words, the functional values 

related to the points outside from the reference sub-interval are involved. Differently from the 

well-known Gaussian approaches, this integration scheme allows to compute the weighting 

coefficients without any limitation on the choice of the grid point distributions. 

In order to evaluate the weighing coefficients for the integration, the coefficients for the 

first-order derivatives collected in the corresponding matrix  1
D  are required. If 

 1

ijD  

represents the generic element of  1
D , for 1, 2,..., Ni I  and 1,2,..., Mj I , the following 

quantities must be computed 

 
   1 1i
ij ij

j

x c
D D

x c





  (1.66) 

for i j , and 

    1 1 1
ij ij

i

D D
x c

 


  (1.67) 

for i j . The arbitrary constant c  should be set equal to 1010c b    to guarantee the 

accuracy of the solution and the stability of the procedure [15]. As illustrated in the book by 

Shu [44], this assumption comes from the definition of the numerical integration. In fact, 

integrals are always defined up to an additive constant. 

The coefficients 
 1

ijD  can be conveniently collected in the corresponding operator  1
D , 

whose size is evidently 
N NI I . Without addressing the complete procedure, the weighting 

coefficients for the integration, which can be collected in the corresponding matrix W , are 

related to the matrix  1
D  as shown below 

   
1

1


W D   (1.68) 

The elements of W  are specified by ijw , for , 1,2,..., Ni j I . At this point, the weighting 

coefficients ij

kw  introduced in (1.65) can be related to the coefficients ijw  collected in W  
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according to the following expression 

 ij

k jk ikw w w    (1.69) 

for 1, 2,..., Nk I . It is clear that 
NI  coefficients are evaluated. For the sake of conciseness, 

these quantities can be included in the corresponding vector 
xW  of size 1 NI . Consequently, 

definition (1.65) can be written also in compact matrix form 

 xI  W f   (1.70) 

where f  is the vector of the functional values defined in (1.5). 

A conventional integral is achieved when the integration limits coincide with the boundary 

values of the domain  ,a b . In other words, this condition is obtained when 
1ix x a   and 

Nj Ix x b  . The integral assume the following aspect 

    1

1

N

N

b I
I

k k

ka

I f x dx w f x


    (1.71) 

where 1 NI

kw  represents the weighting coefficients that can be evaluated as shown below 

 
1

1
N

N

I

k I k kw w w    (1.72) 

for 1, 2,..., Nk I . Finally, a coordinate transformation must be performed if the physical 

domain  ,a b  is different from the one in which the basis functions are defined, denoted by 

 ,  . One gets 

 
1 1N NI I

k k

b a
w w

 





  (1.73) 

in which 1 NI

kw  stands for the weighting coefficients in the physical domain, whereas 1 NI

kw  

represents the coefficients in the reference domain bounded as  ,  . 

Following the same ideas shown in the previous section, this procedure can be easily 

extended to a two-dimensional case. Let us consider a proper domain, defined by the 

boundary values  ,x a b  and  ,y c d . If  ,f x y  represents a generic two-dimensional 

function, its integral in the sub-intervals ,i jx x    and  ,m ny y , with  , ,i jx x a b  and 

 , ,m ny y c d , for ,i jx a x b   and ,m ny c y d  , is given by 
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    
1 1

, ,

n j
N M

m i

y x I I
ij mn

k l k l

k ly x

I f x y dxdy w w f x y
 

     (1.74) 

where ij

kw  and mn

lw  are the weighting coefficients for integration with respect to the x  and y  

directions, respectively. They can be evaluated by using the same procedure for the one-

dimensional case. For conciseness purposes, these coefficients should be collected in the 

corresponding vectors ,x yW W , whose sizes are 1 NI  and 1 MI , respectively. If the 

integration sub-domain coincide with the whole domain, the integral (1.74) become 

    1 1

1 1

, ,
N M

N M

d b I I
I I

k l k l

k lc a

I f x y dxdy w w f x y
 

     (1.75) 

where 
1 1

,N MI I

i jw w  are the corresponding weighting coefficients, which can be computed as 

shown in (1.72). 

In compact matrix form, definition (1.74), or alternatively (1.75), assumes the following 

aspect 

 
xyI  W f   (1.76) 

where the vector 
xyW  collects the weighting coefficients for the integration at issue. This 

vector can be evaluated by means of the Kronecker product (1.57) as follows 

 
11 1 NN M M

xy y k x
II I I  

 W W W   (1.77) 

On the other hand, the vector f  must be arranged as shown in (1.56), following the same 

scheme depicted in Figure 1.2. The size of 
xyW  is specified in equation (1.77). 

This approach can be employed to solve the weak form of the governing differential 

equations which model the physical behavior of a generic phenomenon. 
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Chapter 2 
 

 

 

Shell Structures: 

Principles of Differential Geometry 

 

 

 
Shell structures are widely used in several engineering fields, such as civil, mechanical, 

aerospace, naval, automotive, and even biomedical. Cooling towers of nuclear reactors, boat 

hulls, tanks for liquid containment, bodies of cars, fuselages and wing panels of airplanes, 

space vehicles, artificial body parts, mechanical components, architectural designs, are some 

examples of shells and curved structures that everybody knows. Thus, this concise list should 

let us understand that shell structures are normally used for common applications, which can 

be easily encountered in everyday life [49-57]. 

Their extensive use is fomented by several advantages, which are mainly induced by their 

curved geometries. In particular, shell structures are characterized by an extraordinary 

stiffness, a high level of resistance, and a noticeably strength-to-weight ratio. Furthermore, 

these structures are extremely efficient when they have to bear external loads, due to their 

curvature. Their peculiar shape, in fact, has a great influence on the structural response. 

Therefore, vibrational characteristics, stress and strain distributions, critical rotation speed, as 

well as buckling load, are all affected by the shell curvature. 
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Each shell can be described as an elastic body defined by two curved surfaces. The 

distance between the two surfaces, which denotes the thickness of the structure, is small if 

compared to the other two dimensions. A generic shell element of thickness h  is shown for 

the sake of clarity in Figure 2.1. 

 

 

Figure 2.1 – Generic shell element of thickness h  [57]. 

 

The shape of any shell structure is completely defined once its middle surface is accurately 

specified. The description of these shapes represents one of the biggest issues that should be 

faced when a shell structure is studied. These difficulties are even greater if the shell is 

defined by two different radii of curvature. Similar structures are known as doubly-curved 

shells. On the other hand, if the geometry depends only on a sole radius of curvature, the 

structure is named singly-curved shell. Finally, if both the radii of curvature assume infinite 

values and the two external surfaces degenerate into two planes, the shell is called plate. 

These definitions can be used to classify in a preliminary manner a generic shell structure. 

As mentioned above, the modeling of curved surfaces could be difficult. To the best of the 

author’s knowledge, the differential geometry provides the analytical tools to describe 

accurately and in a complete manner a doubly-curved surface, as illustrated in the book by 

Kraus [50]. Thus, this chapter is focused on the description of the shell geometries through 

the principles of differential geometry. 
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2.1  DIFFERENTIAL GEOMETRY 

 

The most important geometric feature of a generic shell structure is its middle surface, 

which represents the reference domain of the differential equations that govern its mechanical 

behavior. Thus, it is evident that an efficient analytical tool is required to describe completely 

the surface at issue. The main aim of this chapter is to provide a general theoretical 

framework for the description of a shell structures. For this purpose, the differential geometry 

is employed. For the sake of completeness, it should be recalled that the differential geometry 

is that part of geometry which aims to study planar and spatial curves, by means of 

differential calculus. Its fundamental aspects are presented first for a space curve, and then the 

treatise is extended also to three-dimensional surfaces. In fact, the theory of surfaces is needed 

for the geometric characterization of the structures under consideration. In the present section, 

only the main aspects are presented. A more complete treatise can be found in the books by 

Kraus [50] and by Tornabene et al. [56, 57]. 

 

 

2.1.1  CURVES IN THREE-DIMENSIONAL SPACE 

 

As mentioned above, the theory of space curves is a prerequisite to understand the theory 

of surfaces in space, needed for the description of the shell middle surface. 

Let us consider first a global reference system 1 2 3Ox x x . Each principal direction is 

identified by the corresponding unit vector, denoted respectively by 
1 2 3, ,e e e . A curve C  in 

this three-dimensional space can be defined through the position vector x , specified below 

      1 1 2 2 3 3x x x    x e e e   (2.1) 

for any value of the parameter  , defined in the closed interval  1 2,  . These elements are 

presented also in graphical form in Figure 2.2. 

 



Chapter 2 

Michele Bacciocchi 28 

 

Figure 2.2 – Generic curve in the three-dimensional space [57]. 

 

At this point, it is convenient to introduce the curvilinear abscissa s  along the curve path. 

The derivative with respect to the coordinate s  of the position vector x  can be evaluated as 

follows 

 31 2
1 2 3

dxdx dxd

ds ds ds ds
  

x
e e e   (2.2) 

The scalar product of the quantity in (2.2) by itself leads to the following relation 

 
     

 

2 2 222 2

1 2 331 2

2

dx dx dxdxdx dxd d

ds ds ds ds ds ds

     
         

     

x x
  (2.3) 

From the differential calculus, it is known that  

        
2 2 2 2

1 2 3ds dx dx dx     (2.4) 

Thus, by comparing relations (2.4) and (2.3), one gets 

 1
d d

ds ds
 

x x
  (2.5) 

Consequently, the vector d dsx  represents a unit vector, whose geometric meaning is 

depicted graphically in Figure 2.3. 
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Figure 2.3 – Geometric interpretation of the unit vector d dsx  [57]. 

 

With reference to Figure 2.3, the arc length included between the points P  and P  on the 

curve C  is denoted by s . These two points are linked by the vector x . It is possible to 

note that the vector s x  has the same direction of x . The tangent unit vector t  can be 

defined as follows 

 
0

lim
s

d

ds s 


 



x x
t   (2.6) 

In other words, the tangent unit vector t  is obtained assuming 0s  . Since the curvilinear 

abscissa is a time dependent variable  s t , the derivative with respect to t  of the position 

vector x  can be computed, too 

 
d d ds ds

s
dt ds dt dt

    
x x

x t t   (2.7) 

This last quantity is also a tangent vector, but its length could be different from unity. The 

vector x  in (2.7) represent a velocity. 

At this point, the definition of the osculating plane naturally arises. Let us consider a plane 

passing through three consecutive and distinct points laying on a generic curve C . As a limit 
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case, two of these points tend to the third one. This plane is known as osculating plane. If X  

is a vector that denotes a generic point upon this plane, the vector  X x  is located on the 

same plane of the tangent vector x  and of the vector x . This last quantity defines the velocity 

of variation of the vector x . Analytically speaking, one gets 

     0   X x x x   (2.8) 

since the mixed product of three coplanar vectors is equal to zero. The principal normal to the 

curve at the point P , which is identified by the vector x , is defined as that vector within the 

osculating plane which is orthogonal to the tangent t  of the curve at the same point. 

Having in mind relation (2.5), it is possible to deduce that the scalar product of the unit 

vector t  by itself is equal to one. If the derivative with respect to the arc length s  of this 

scalar product is performed, one gets 

   2 0
d

ds
   t t t t   (2.9) 

It is clear that the vector t  is perpendicular to t . Recalling also the definition of the unit 

vector t , the following expression can be obtained 

 
d d dt

t
ds dt ds

   
x x

t x   (2.10) 

Thus, the tangential and normal vectors to the curve in the considered point allow to define 

the osculating plane. 

On the other hand, the following expression is achieved by deriving relation (2.10) with 

respect to the arc length s   

 
 

 
 

 

 

2

2

2 2

2

d d dt d d t d d dt d d d d dt
t t t t

ds dt ds dt ds ds dt ds dt ds dt dt ds

d t d td d dt
t t t t t t t t

dt dt dt dt ds

d dt
t t t

ds dt

       
                  

       

   
                

 

 
     



x x x x x
t x x

x x
x x x x x x

x x x  
 

 
2 21d

t t t t t
ds

        


x x x x x

  (2.11) 

It can be noted that the vector t  is defined in the same plane on which x  and x  are lying. 

In other words, it is located within the osculating plane too. Since it has been proven that t  is 

perpendicular to t , it is possible to state that it shares the same direction of the main normal. 

Therefore, it is proportional to the unit normal vector n  
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 k  t k n   (2.12) 

where k  stands for the curvature vector, which defines the variability rate of the direction of 

the tangent vector of a moving point along the curve. The proportionality factor k  represents 

the curvature, whereas the radius of curvature R  is given by its reciprocal ( 1R k ). It should 

be pointed out that the direction of the main normal n  is arbitrary. Thus, the sign of the 

curvature k  depends on the direction chosen for n . By definition, the normal vector n  is 

assumed to be oriented from the center of curvature towards the exterior. Consequently, the 

curvature is positive ( 0k  ) if the direction of n  and k  is the same; on the other hand, its 

sign is negative ( 0k  ) if the direction of n  is opposite to the one of k . 

 

 

2.1.2  SURFACES 

 

The theory of surfaces can be developed once the preliminary results presented in the 

previous section are introduced. The theoretical framework shown in the following 

paragraphs represents a key point for the description of the shell middle surface, taken as 

reference domain for various kinds of structural problems. As specified above, these aspects 

are presented in a more complete manner by Kraus [50] and by Tornabene et al. [56, 57]. 

 

 

2.1.2.1  Parametric curves and first fundamental form 

 

Let us consider the same three-dimensional space introduced in the previous section. The 

global reference system is denoted by 1 2 3Ox x x . A generic surface S  can be described as a 

function of two parameters 1  and 
2 . The parameters at issue are the curvilinear coordinates 

of the surface. It should be noted that the so-called parametric curves or coordinate lines of 

the surface can be obtained by fixing a coordinate and increasing the other at the same time. 

These parametric curves are depicted graphically in Figure 2.4. 
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Figure 2.4 – Surface in a three-dimensional space. 

 

A generic point P  of the surface S  in the three-dimensional space can be defined 

through the position vector  1 2, r  shown below 

        1 2 1 1 2 1 2 1 2 2 3 1 2 3, , , ,f f f         r e e e   (2.13) 

where 
1 2 3, ,f f f  are continuous functions that provide a single value for each couple of 

coordinates 
1 2,  . As specified in Figure 2.4, the infinitesimal variation dr  represents the 

distance between the points P  and P , which is infinitely close to the first one. It assumes the 

following aspect 

 ,1 1 ,2 2d d d  r r r   (2.14) 

in which 
,i i  r r , for 1,2i  . It should be noted that the differential quantity (2.14) is a 

vector. The scalar product of dr  by itself can be evaluated too 
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      
2 2 2

1 1 2 2E 2F Gd d ds d d d d       r r   (2.15) 

where the first fundamental coefficients of the surface E, F, G  are introduced. These 

quantities are defined as follows 

 
,1 ,1 ,1 ,2 ,2 ,2E , F , G     r r r r r r   (2.16) 

These coefficients are employed to evaluate the infinitesimal arch length along the 

parametric curve. For this purpose, one gets 

 1 1 2 2E , Gds d ds d     (2.17) 

in which 
1ds  is the infinitesimal length along a curve with 

2  constant, whereas 
2ds  is the 

same quantity along a curve with 1  constant. It should be noted that the coefficient F  is 

equal to zero if the an orthogonal mesh grid is described by the parametric curves, since 
,1r  

and 
,2r  represent the tangent vectors to the lines defined by constant values of 

2  and 1 , 

respectively. If this condition is verified, the first fundamental form (2.15) becomes 

      
2 2 22 2

1 1 2 2ds A d A d     (2.18) 

where the Lamè parameters of the surface 
1 2,A A  are introduced. Their definitions can be 

easily deduced 

 1 2E, GA A    (2.19) 

By means of the first fundamental form just presented, it is possible to evaluate the length 

of a generic arch on the surface S  as follows 

 
1

0

2 2

1 1 2 2E 2F G
d d d d

s d
d d d d





   


   

   
     

   
   (2.20) 

Having in mind definitions (2.19) and assuming that the coordinates 
1 2,   describe an 

orthogonal mesh grid, expression (2.20) becomes 

 
1

0

2 2

2 21 2
1 2

d d
s A A d

d d





 


 

   
    

   
   (2.21) 
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2.1.2.2  Outward unit normal vector 

 

A unit normal vector  1 2, n  can be defined in each point P  within the surface. This 

vector is orthogonal to the plane identified by the vectors 
,1r , 

,2r . In other words, the unit 

vector n  has the direction of the cross product of 
,1r  and 

,2r . Mathematically speaking, it 

assumes the following definition 

   ,1 ,2

1 2

,1 ,2

, 





r r
n

r r
  (2.22) 

where “ ” stand for the cross product. Since the direction of the normal vector n  is arbitrary, 

by definition it is assumed that its conventional direction is taken from the concave side 

towards the convex one.  

 

2.1.2.3  Second fundamental form 

 

The curvature vector k  of a generic surface in the three-dimensional space can be written 

as follows 

 
n t

d

ds
   

t
k t k k   (2.23) 

where 
nk  and tk  represent the normal and tangential components, respectively. They can be 

named as normal curvature vector and tangential curvature vector. The normal curvature 
nk  

can be defined as a function of the outward normal vector n  as shown below 

 
n nk k n   (2.24) 

in which 
nk  is known as normal curvature. Since it is assumed by definition that the direction 

of k  is opposite to the positive direction of n , the minus sign is introduced in (2.24). At this 

point, it should be recalled that the normal unit vector n  is orthogonal to the tangential one t . 

Thus, the following relation is satisfied 

 0 n t   (2.25) 

The derivative of the dot product (2.25) with respect to the arc length s  can be computed 

as well 
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 0
d d d d

ds ds ds ds
        

n t n t
t n t n   (2.26) 

Recalling definition (2.23) and having in mind that d dst r , equation (2.26) takes the 

following aspect 

 
n

d d
k

d d






n r

r r
  (2.27) 

where the infinitesimal variation dn  is given by 

 
,1 1 ,2 2d d d  n n n   (2.28) 

in which 
,i i  n n , for 1,2i  . The dot product at the numerator in (2.27) represents the 

second fundamental form, which can be computed as follows 

    
2 2

1 1 2 2L 2M Nd d d d d d     n r =   (2.29) 

where L,M, N  are the second fundamental coefficients. They can be computed as shown 

below 

  ,1 ,1 ,1 ,2 ,2 ,1 ,2 ,2L , 2M , N       r n r n r n r n   (2.30) 

At this point, relation (2.27) can be written in general as follows 

 
   

   

2 2

1 1 2 2

2 2

1 1 2 2

L 2M N

E 2F G
n

d d d d
k

d d d d

   

   

 


 
  (2.31) 

The following alternative expressions for the second fundamental magnitudes can be 

obtained if the relations 
,1 0 r n  and 

,2 0 r n  are differentiated 

 
,11 ,12 ,22L , M , N        r n r n r n   (2.32) 

with 2

,ij i j    r r , for 1,2i  . Finally, it should be noted that all the fundamental 

quantities can be written as a function of the curvilinear coordinates 1  and 
2 . In addition, 

the normal curvature depends only on the quantity 
2 1d d  , which denotes a direction. It is 

possible to prove that each curve that is tangent to the same direction and passes through that 

point is characterized by the same value of 
nk . 



Chapter 2 

Michele Bacciocchi 36 

2.1.2.4  Main curvatures 

 

Relation (2.31) provide those directions for which the normal curvature presents maximum 

or minimum values. By introducing the position 
2 1d d    and performing the proper 

manipulations, one gets 

  
2

2

L 2M N

E 2F G
nk

 


 

 


 
  (2.33) 

In order to find those extreme values, the following derivative with respect to   must be 

set equal to zero 

 
 

0
ndk

d




   (2.34) 

In the previous paragraphs, it has been highlighted that the parametric lines are orthogonal 

and coincide with the main curvature directions. Consequently, one gets F 0 . In addition, it 

is possible to prove that even the coefficient M  is equal to zero if those parametric lines 

coincide with the main curvature directions. Mathematically speaking, one gets 

 F M 0    (2.35) 

Without addressing the complete treatise, it can be proven that the principal curvatures 1nk  

and 
2nk  of the surface assume the following aspect 

 1 2

1 2

1 L 1 N
,

E G
n nk k

R R
      (2.36) 

if relation (2.35) is satisfied, where 
1 2,R R  are principal radii of curvature.  

 

2.1.2.5  Fundamental theorem of the theory of surfaces 

 

The derivatives of the unit vectors along the parametric lines are required to develop the 

fundamental theorem of the theory of surfaces. These unit vectors are specified by 
1 2, ,t t n . In 

particular, 1 2,t t  are directed along the tangents to the principal directions 1  and 
2 . On the 

other hand, n  is the outward normal unit vector. It should be specified that these unit vectors 

are always orthogonal two by two. By definition, the unit vectors at issue can be defined as 

follows 
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,1 ,1 ,2 ,2 ,1 ,2

1 2 1 2

1 2 1 2,1 ,2

, ,
A A A A


      

r r r r r r
t t n t t

r r
  (2.37) 

At this point, the derivatives of the unit vectors in (2.37) are required. In particular, the six 

quantities 
,1 ,2 1,1 1,2 2,1 2,2, , , , ,n n t t t t  must be evaluated. It should be specified that the subscript 

after the comma identifies the principal direction 1  or 
2  along which the derivatives are 

performed. For this purpose, it can be noted that 
,1 ,2,n n  are both orthogonal to n  and lie on 

the plane defined by the unit vectors 
1 2,t t . For the sake of clarity, the quantity 

,1n  can be 

written as follows to satisfy the properties just mentioned 

 
,1 1 2a b n t t   (2.38) 

where ,a b  denotes the projections of 
,1n  along 

1 2,t t , respectively. Analogously, the vectors 

1,1 1,2,t t  are orthogonal to 
1t  itself. For instance, the vector 

1,1t  can be expressed as follows 

 
1,1 2c d t n t   (2.39) 

in which ,c d  represent its projections along 2,n t , respectively. The same considerations are 

valid for the other required quantities. Without addressing the complete mathematical proof, 

one gets 

 
1,2 1 2,1

1,1 2 1,2 2

2 1 1

,
A A A

A R A
   t t n t t   (2.40) 

 
1,2 2,1 2

2,1 1 2,2 1

2 1 2

,
A A A

A A R
   t t t t n   (2.41) 

 
1 2

,1 1 ,2 2

1 2

,
A A

R R
 n t n t   (2.42) 

where 
1, 1i iA A     and 

2, 2i iA A    , for 1,2i  . Finally, it should be noted that the 

derivatives in (2.40)-(2.42) can be written as a function of the unit vectors 
1 2, ,t t n . The 

complete treatise is omitted for conciseness purpose, but it is presented exhaustively in the 

book by Kraus [50]. 

At this point, the so-called Gauss-Codazzi conditions can be shown to define, three 

differential equations that represent the mathematical relationships between the Lamè 

parameters 1 2,A A  and the principal radii of curvature 1 2,R R . Such relations are needed to 
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verify if an arbitrary choice of 
1 2 1 2, , ,A A R R  defines an admissible surface. The following 

relations are valid only if the second-order derivatives of the unit vectors (2.37) are 

continuous. In this circumstance and recalling that 
,12 ,21n n , one gets 

 
1 2

1 2

1 2
,2 ,1

0
A A

R R

   
    

   
   

t t   (2.43) 

in which the notation 
,i i   , for 1,2i  , is employed. By performing the derivatives in 

(2.43) and having in mind the definitions of 
1 2,t t  introduced above, the following result is 

carried out 

 
1,2 1 2,1 2

1 2

2 1 1 2,2 ,1

0
A A A A

R R R R

      
          

            

t t   (2.44) 

Equation (2.44) is verified only if the following relations, known as Codazzi conditions, 

are satisfied 

 
1,2 1 2,1 2

2 1 1 2
,2 ,1

,
A A A A

R R R R

   
    
   
   

  (2.45) 

In the same manner, recalling that 
1,12 1,21t t  and 

2,12 2,21t t , a third differential equation, 

known as Gauss condition, is achieved 

 
2,1 1,2 1 2

1 2 1 2
,1 ,2

A A A A

A A R R

   
     

   
   

  (2.46) 

The Gauss-Codazzi conditions are required to state the so-called fundamental theorem of 

the theory of surfaces, which can be expressed as follows: “If the fundamental quantities 

E,G,L, N  (with E 0  and G 0 ) are written in terms of the principal curvilinear 

coordinates 1  and 
2 , are sufficiently differentiable and verify the Gauss-Codazzi 

conditions, then a real surface is uniquely identified, whose first I  and second fundamental 

forms II  are given by 

 
   

   

2 2

1 2

2 2

1 2

I = E G

II = L N

d d

d d

 

 




  (2.47) 

The surface in hand is completely defined, except for its location”. It should be specified that 

this theorem is limited to those surfaces described by principal and orthogonal curvilinear 
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coordinates, since F M 0  . More general conditions could be developed to include the case 

of surfaces with generic parametric lines. 

 

2.1.2.6  Gaussian curvature 

 

With reference to the Gauss condition (2.46), it is possible to note that it includes the so-

called Gaussian curvature G , as shown below 

 
1 2

1
G

R R
    (2.48) 

In other words, the Gaussian curvature is defined as the reciprocal of the product of the 

two main radii of curvature of the surface. This quantity can be used to classify a generic 

surface, according to its sign. In fact, the Gaussian curvature can be positive, negative, or 

even null. In particular, the Gaussian curvature is positive if both the centers of curvature ( 1C  

and 
2C ), related to normal sections corresponding to the main directions of the surface, are 

located on the same side with respect to the surface itself. On the other hand, the Gaussian 

curvature is negative if the centers of curvatures lie on two opposite sides with respect to the 

surface. Finally, the Gaussian curvature is null if one of the two radii of curvature is equal to 

infinity. For the sake of completeness, a plate is obtained if the two radii of curvature are both 

equal to infinity (the Gaussian curvature is also null). A graphical representation of the 

Gaussian curvature is depicted in Figure 2.5. 

 

   
a) 0G   b) 0G   c) 0G   

Figure 2.5 –Gaussian curvature. 
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It should be specified that Gaussian curvature is a scalar punctual function. Thus, a generic 

curved surface can be characterized by several areas with positive, negative or zero values of 

Gaussian curvature. However, in practical applications these surfaces are characterized by the 

Gaussian curvature with a prevalent sign, or even unique.  

 

2.1.2.7  Classifications of surfaces 

 

Several ways to categorize a surface are possible. In particular, a classification can be 

performed according to the shape, to the Gaussian curvature, or to the developability of the 

surfaces. If the shape is the classifying parameter, the following surfaces can be defined: 

- Surfaces of revolution: These surfaces are generated by the rotation of a plane curve, 

known as meridian, about an axis that not necessarily intersects the meridian. 

- Surfaces of translation: These surfaces are originated by the translation of a plane 

curve parallel to the plane in which the curve itself is defined, along another plane 

curve or a straight line. Doubly-curved and singly-curved translational surfaces are 

originated, respectively. 

- Ruled surfaces: These surfaces are achieved by translating a straight line along two 

curves, placed at the edge of the line itself. The generating lines are not necessarily 

orthogonal to the planes containing these curves. 

On the other hand, the following surfaces can be obtained if the classifying parameter is 

the Gaussian curvature: 

- Singly-curved surfaces: These surfaces are characterized by a null value of Gaussian 

curvature. The surfaces at issue can be revolution surfaces, translational surfaces, or 

ruled surface. 

- Doubly-curved surfaces with positive Gaussian curvature: These doubly-curved 

surfaces are characterized by a positive value of Gaussian curvature. Some surfaces 

of revolution, certain surfaces of translation and also ruled surfaces are included in 

this group. 

- Doubly-curved surfaces with negative Gaussian curvature: These doubly-curved 

surfaces are characterized by a negative value of Gaussian curvature. This group 

includes some revolution, translational and ruled surfaces. 
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- Degenerate surfaces: These surfaces are characterized by both the radii of curvature 

equal to infinite and the Gaussian curvature is equal to zero, consequently.  

Finally, the following classification can be performed if the surfaces are developable or 

not: 

- Developable surfaces: These surfaces can be developed into a plane without making 

cuts and deformations. In general, singly-curved surfaces are developable. 

- Non-developable surfaces: These surfaces must be cut or deformed to develop them 

on a plane. In general, doubly-curved surfaces are typically non-developable. 

 

 

2.2  SHELL STRUCTURES 

 

As clearly specified in the introduction, the theory of surfaces just presented in the 

previous section is required to describe the middle surface of a generic shell structure, which 

is taken as the reference domain for the governing equations. Thus, it is necessary to compute 

the corresponding geometric quantities, such as the Lamè parameters and the radii of 

curvature, for a complete characterization of the surface at issue. Some surfaces that can be 

described through this approach are illustrated in the books by Tornabene et al. [56, 57]. 

In the general case of doubly-curved shells, these coefficients are defined in a curvilinear 

orthogonal coordinate reference system and all the geometric quantities depend on 
1 2,  . In 

particular, the position vector of the middle surface is given by  1 2, r r . The Enneper 

surface, the ellipsoid and the so-called degenerate plates (parabolic, elliptic and bipolar) are 

example of doubly-curved shells that require this description. The same kind of description is 

needed for the reference surface of doubly-curved translational shells, which are obtained 

translating a planar curve upon another curve, keeping the plane containing the translating 

curve (generatrix) orthogonal to the fixed curve (directrix). Elliptic and hyperbolic paraboloid 

and curved cylinders with circular and elliptic cross-sections are examples of the doubly-

curved shells of translation in hand. The doubly-curved shells of revolution come from the 

previous ones. The curvilinear coordinate can be taken as 
1 2,      and the position 

vector assumes the following aspect  , r r . The parameters ,   represent the spherical 
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coordinates of the surface. It is well-known that the reference surface of revolution shells is 

given by the rotation of a plane curve (called meridian) about the revolution axis, which 

belongs to the plane of the meridian itself. Thus, it should be clear that the shape of these 

structures is well-defined only if the Cartesian equation of the meridian curve is given. For 

this purpose, hyperbolic, catenary shaped, elliptic, cycloidal, parabolic, tractrix shaped, and 

free-form meridian can be introduced. Revolution surfaces can be defined as particular cases 

of surface of translation, too. In this circumstance, the meridian curve (generatrix) slides on a 

circular curve, which represents the directrix. If the meridian curve is a straight line, singly-

curved shells are obtained. This is the case of conical and circular cylindrical shells. The 

circular plates are the degenerate case of this group. In this circumstance, the curvilinear 

coordinates become 1 2,x    , and the position vector assumes the following form 

 ,x r r . On the other hand, singly-curved shells of translation, also known as straight 

cylinders, are obtained by straightening the parallel of a doubly-curved shell of revolution. As 

in the previous family, these structures are defined by the shape of the curved profile. In this 

circumstance, the position vector is given in the form  , yr r , since the principal 

coordinates are assumed equal to 
1 2, y    .  

Finally, rectangular plates can be obtained by straightening the parallel and the meridian of 

a doubly-curved shell of revolution at the same time. In other words, one gets 1 2,x y   . 

The position vector takes the following aspect  ,x yr r . Rectangular plates are clearly 

degenerate shells, since they have zero curvatures and both the main radii of curvature are 

equal to zero. The interested reader can find the explicit expressions of the position vector of 

these reference surfaces in the books by Tornabene et al. [56, 57]. 

Once the position vector  1 2, r r  is introduced to identify a generic point P  upon 

the middle surface of the shell, it is possible to define also the position of a point P  within the 

three-dimensional shell structure of overall thickness h  through the general position vector 

 1 2, ,  R R  defined below 

      1 2 1 2 1 2, , , ,        R r n   (2.49) 

where   stands for the coordinate along the outward unit normal vector n , as depicted in 

Figure 2.6.  
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Figure 2.6 – Generic three-dimensional shell element. 

 

As specified above, the coordinates 
1 2,   assume a different meaning according to the 

kind of surface employed as middle surface. It should be also specified that the surface at 

issue is univocally defined if a closed domain is specified. In other words, the following 

limitations must be imposed 

 0 1 0 1

1 1 1 2 2 2, , ,               (2.50) 

where 0 0

1 2,   and 1 1

1 2,   denote the minimum and maximum boundary values of the 

reference domain. Analogously, the coordinate   assumes all the values included within the 

shell thickness, as specified below 

 ,
2 2

h h


 
  
 

  (2.51) 

Finally, it should be noted that 
1 2O   represents the local reference system of a generic 

shell element. 
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2.3  NUMERICAL CONSIDERATIONS 

 

From the numerical point of view, the DQ method presented previously is used to evaluate 

all the derivatives with respect to the principal coordinates 
1 2,   of the geometric quantities 

introduced in the current chapter. For this purpose, the shell middle surface must be 

discretized by placing ,N MI I  discrete points along 
1 2,  , respectively. In other words, one 

gets 

 

0 1

1 11 12 1 1 1

0 1

2 21 22 2 2 2

, , , , , ,

, , , , , ,

N

M

f I

g I

     

     

 

 
  (2.52) 

where 0 0

1 2,   and 1 1

1 2,   have the same meaning illustrated above. According to the general 

approach presented in the previous chapter, there is no limitation on the choice of the grid 

point distributions. Thus, the following expressions can be used to define the generic 

coordinates 
1 2,f g   of a discrete point within the two-dimensional domain at issue 

  
1 0

01 1
1 1 1

1N

f f

I

r r
r r

 
 


  


  (2.53) 

  
1 0

02 2
2 1 2

1M

g g

I

r r
r r

 
 


  


  (2.54) 

for 1,2, , Nf I  and 1,2, , Mg I , in which the meaning of ,f gr r  can be found in Table 

1.2. For the sake of clarity, the procedure of discretizing a generic shell middle surface is 

depicted in Figure 2.7. From the computational point of view, the discrete domain denoted by 

(2.53)-(2.54) represents a rectangular regular domain. 

 

 

2.3.1  DISTORTED DOMAINS AND ISOGEOMETRIC MAPPING 

 

A proper coordinate transformation, known as mapping procedure, can be introduced at 

this point and applied to the regular domains described in the previous section to define 

arbitrarily shaped curved surfaces, as the one depicted in Figure 2.8. 
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Figure 2.7 – Discretization of a two-dimensional domain. 

 

The main aspect of this procedure is to convert a regular domain, described by the 

principal coordinate 
1 2,  , into a distorted element. In other words, the original problem is 

moved into the computational domain, also known as parent space, which is described by the 

natural coordinates 1 2,  . 

 

 

Figure 2.8 – Distorted domain. 
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These coordinates are defined in the following intervals 

    1 21, 1 , 1, 1         (2.55) 

For the sake of completeness, the parent space at issue is shown in Figure 2.9. 

 

 

Figure 2.9 – Parent space (or computational element). 

 

Mathematically speaking, the mapping procedure is obtained once the following 

expressions are introduced 

    1 1 1 2 2 2 1 2, , ,           (2.56) 

It should be recalled that this methodology is the same used in the well-known Finite 

Element Method (FEM) to describe any kind of distorted element. In general, the mapping 

procedure for a single element is carried out through the classic shape function. Nevertheless, 

a more general and versatile approach is presented here. In fact, the coordinate transformation 

(2.56) is achieved by means of the so-called blending functions, which are extremely effective 

functions to describe distorted domains. For the sake of completeness, it should be 

highlighted that these functions are extremely useful to represent arbitrarily shaped domains, 

by taking advantage of the versatility of Computer-Aided Design (CAD) software. The 

nonlinear coordinate transformation at issue is achieved by the following relations 
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             

           

         

           

1 1 2 2 1 1 21 1 1 2

2 1 1 21 3 1 4

1 2 1 21 1 1 2

1 2 1 21 3 1 4

1
, 1 1

2

1 1

1
1 1 1 1

4

1 1 1 1

        

     

     

     

    

    

      

     

  (2.57) 

 

             

           

         

          

2 1 2 2 1 1 22 1 2 2

2 1 1 22 3 2 4

1 2 1 22 1 2 2

1 2 1 22 3 2 4

1
, 1 1

2

1 1

1
1 1 1 1

4

1 1 1 1

        

     

     

     

    

    

      

     

  (2.58) 

where 
       1 1 1 2 1 3 1 4

, , ,     and 
       2 1 2 2 2 3 2 4

, , ,     stand for those parametric curves, linked 

to each principal coordinate, which allow to describe the arbitrary shape of each edge of the 

distorted domain. These curves are effectively obtained by the Non-Uniform Rational Basis 

Splines (NURBS). On the other hand, the symbols 
   1 1 2 1

,  , 
   1 2 2 2

,  , 
   1 3 2 3

,   and 

   1 4 2 4
,   in (2.57)-(2.58) represent the coordinates of each corner of the quadrilateral domain 

at issue. For the sake of clarity, the mapping just shown is depicted in Figure 2.10. 

In general, the mapping procedure requires that all the spatial derivatives of a generic 

problem are written in the new coordinate system 1 2,  . In other words, each variable and its 

derivatives with respect to the coordinates 
1 2,   have to be mapped into the computational 

space. First of all, the first-order derivatives of any generic function with respect to the natural 

coordinates must be evaluated. The well-known chain rule of differentiation provides the 

following result 

 

1 2

1 1 1 1 1

1 2

2 2 22 2

 

    

 

   

         
          
       

          
               

J   (2.59) 

in which J  is the Jacobian matrix linked to the coordinate transformation in hand. 
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Figure 2.10 – Isogeometric mapping. 

 

The determinant of the Jacobian matrix ( det J ) is given by 

 1 2 2 1

1 2 1 2

det
   

   

   
 
   

J   (2.60) 

Since expressions (2.56) represent a one-to-one mapping, the inverse relations of (2.59) 

can be evaluated. One gets 

 

1 2

1 1 1 1 11

1 2

2 2 22 2

 

    

 

   



         
          
       

          
               

J   (2.61) 

where the inverse of Jacobian matrix 1
J , which can be written as follows 
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2 2

2 11

1 1

2 1

1

det

 

 

 

 



  
  

 
  

   

J
J

  (2.62) 

It should be noted that the coordinate change is admissible only if det 0J . This condition 

is verified since the mapping in (2.56) denotes a one-to-one transformation. The following 

notations can be defined by comparing expressions (2.61) and (2.62) 

 
1 2

1 2

1 2 1 1
1, 1,

1 2 2 2

2 2 2 1
2, 2,

1 1 2 1

1 1
,

det det

1 1
,

det det

 

 

   
 

   

   
 

   

   
    
   

   
    
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J J

J J

  (2.63) 

At this point, the second-order operators can be obtained as well 

1 1 1 1 1 1 1 1

2 2 2 2
2 2

1, 2, 1, 2, 1, 2,2 2 2

1 1 2 1 2 1 2

2            
      

     
    

      
  (2.64) 

2 2 2 2 2 2 2 2

2 2 2 2
2 2

1, 2, 1, 2, 1, 2,2 2 2

2 1 2 1 2 1 2

2            
      

     
    
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  (2.65) 
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   
   
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   

  
  

   

  
   

   

  (2.66) 

where the following notation is employed for conciseness purposes 

1 2

1 1

2
2 2

2 2 2 2 2 2 2
1, 2 2

2 1 2 2 1 2 1 2

det det1

det det det

 

 
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

       

        
     
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J J
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  (2.67) 
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 
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  (2.68) 
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J J

J J J
  (2.69) 
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  (2.70) 
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       

        
      
          

J J

J J J
  (2.71) 
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       


        

        
     

         

J J

J J J
  (2.72) 

The first-order derivatives with respect to the natural coordinates 1 2,   of the determinant 

of the Jacobian matrix (2.63) are required, too. These definitions are shown below 
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    

         
J   (2.74) 

The mapping procedure just presented must be used to study those structural problems of 

plates and shells in which the reference domains are not regular but characterized by arbitrary 

shapes [58-62]. 

 

2.3.1.1  Non-Uniform Rational Basis Splines 

 

The coordinate transformation presented in the previous paragraph is based on the use of 

NURBS. For the sake of completeness, the main features of these curves are briefly presented 

in the following. A more complete treatise can be found in the book by Piegl and Tiller [63]. 

By definition, the p -th degree NURBS curve takes the following aspect 

  
 

 

,

0

i,

0

n

i p i i

i

n

p i

i

N u w

u

N u w










P

C   (2.75) 

for a u b  , where iP  is the vector of the control points which define the control polygon, 

0iw   stands for the weighting coefficients of the curves, whereas  ,i pN u  represents the i -

th basis spline function of p -th degree (or order 1p  ) defined on the following non-uniform 

knot vector 

 
1 1

1 1

, , , , , , , ,p m p

p p

a a u u b b  

 

 
 
 
 

U   (2.76) 
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In other words, the knot vector just mentioned represents a sequence of parameters that 

define where and how the control points affect the curve. ,a b  denote the limits of the domain 

in which the curve is described. 

It should be recalled that the control points are included into a list of points which describe 

the NURBS shape. Each point of the curve, in fact, can be represented as a weighted sum of 

some control points, in which the weights change according to the polynomial function. 

The basis spline functions (or B-spline) of p -th degree can be defined through a recursive 

approach. In particular, the i -th B-spline is given by 

   1

,0

1 if

0 otherwise

i i

i

u u u
N u

 
 


  (2.77) 

      1
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 

  

   


 

 
  (2.78) 

Having in mind these relations, it should be noted that the first order functions represent 

step functions that have a value different from zero only in the following interval  1,i iu u  , 

which is known as the i -th knot span. The i -th knot span could be characterized by zero 

length, due to the fact that not all the knots have to be distinct. Assuming 1p  , the B-spline 

basis functions  ,i pN u  can be obtained as a linear combination of other two bases, whose 

order is 1p  . It should be also noted that the B-spline basis functions are piecewise 

polynomials that can be defined within the real line. The properties of these curves are 

exhaustively analyzed in the book by Piegl and Tiller [63]. 
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The classic three-dimensional elasticity theory represents the most complete approach to 

investigate the mechanical behavior of doubly-curved shell structures [64-74]. Nevertheless, 

this methodology is extremely onerous in terms of calculus requirements. Thus, two-

dimensional theories are developed to reduce the computations needed to get the solution. For 

this purpose, some assumptions and hypotheses have to be introduced, without losing the 

accuracy of three-dimensional approaches. In other words, the main simplification of these 

theories is the decrease of the number of computations by considering the shell middle surface 

as the reference domain of the problem. 

Several models characterized by different assumptions have been developed in the last 

century, starting from the Kirchhoff-Love theory for thin plates and shells [75]. Due to the 

small value of thickness, the shear strains can be neglected according to this model. The 

names Classical Plate Theory (CPT) and Classical Shell Theory (CST) are currently used to 

denote such theories, if thin plates and shells have to be studied, respectively. For the sake of 
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completeness, the researches presented by Sanders [76], Thimoshenko and Woinowsky-

Krieger [77], Flügge [78], Gol’Denveizer [79], Novozhilov [80], Vlasov [81], 

Ambartusumyan [49], Kraus [50], Lekhnitskii et al. [82], Leissa [83, 84], Slizard [85], Dowell 

[86], Donnel [87], Calladine [88], Niordson [89], Markuš [90], Vorovich [91], Ventsel and 

Krauthammer [92], can be mentioned due to their contribution given to the development of 

these models. Nevertheless, these theories are inadequate to model the mechanical behavior of 

moderately thick and thick structures, since shear strains, as well as rotary inertias, cannot be 

neglected due to higher value of thickness. These effects have been included for the first time 

in the well-known First-order Shear Deformation Theory (FSDT), developed by Reissner and 

Mindlin [93, 94]. Thereafter, several authors employed this model for their researches related 

to plates and shells. For instance, the works by Libai and Simmonds [95], Liew et al. [96], 

Gould [97], Reddy [98], Wang et al. [99], Soedel [100], Wang et al. [101], Mindlin [102], 

Awrejcewicz et al. [103], Voyiadjis and Woelke [104], and Chakraverty [105], can be cited 

for this purpose. Further examples of plates and shells analyzed in the theoretical framework 

of this model can be found in the papers [106-119]. 

However, the increasing use of advanced materials has proven the inadequacy of classical 

and first-order theories to model the effective mechanical behavior of plates and shells made 

of innovative constituents. Among them, composite materials should be recalled due to their 

enhanced mechanical properties with respect to conventional materials [120-143]. In 

particular, the most exploited classes of composite materials are the ones of laminated and 

sandwich composites [144-146], as well as Functionally Graded Materials (FGMs) [147-172]. 

The recent advancements in the technologies for the manufacturing process have also 

increased the development of the so-called smart composites [173-175] and materials 

reinforced by curvilinear fibers based on the Variable Angle Tow (VAT) concept [176-191]. 

Analogously, the improvement of nanotechnologies has allowed to apply a reinforcement 

phase at the nano-scale. For instance, the outstanding mechanical behavior of the so-called 

nanocomposites reinforced by Carbon Nanotubes (CNTs) has been investigated in several 

papers [192-209]. 

When innovative and advanced constituents are employed in plate and shell structures, the 

inadequacy of lower-order models, such as classical and first-order ones, could be particularly 

evident, since some effects caused by peculiar mechanical configurations are not well-

captured by the structural theory. As clearly explained in the papers by Librescu and Reddy 
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[210], Whitney and Pagano [211], Whitney and Sun [212], Reddy [213-215], and Reddy and 

Liu [216], more refined approaches are needed to obtain a structural behavior that is closer to 

the three-dimensional one. This is the main reason that has led to the development of Higher-

order Structural Theories (HSDTs), as highlighted also in the works [217-222]. In general, 

these approaches are characterized by enriched kinematic models able to describe more 

complex displacement fields. Consequently, a better approximation of the effective structural 

response can be reached. 

The turning point in the development of HSDTs has been provided by Carrera [223-227], 

who defined the bases of a Unified Formulation, known as Carrera Unified Formulation 

(CUF). By means of this approach, several enriched kinematic models and higher-order 

theory can be easily obtained and compared, by choosing the order of kinematic expansion. 

Analogously, the kinematic expansion can assume several forms, since a free choice of the so-

called thickness functions can be performed. In addition, this formulation includes also the 

class of kinematic based zig-zag theories, since the Murakami’s function can be added to the 

kinematic model [226-227]. This choice is extremely useful when the mechanical behavior of 

soft-core sandwich structures has to be investigated. For completeness purpose, it should be 

mentioned that more general versions of the CUF have been developed. For this purpose, the 

Generalized Unified Formulation (GUF) presented by Demasi [228] and the Sublaminate 

Generalized Unified Formulation (S-GUF) proposed by D’Ottavio [229] can be cited. 

At this point, it should be mentioned that HSDTs are commonly categorized in two 

different groups, which are the Equivalent Single Layer (ESL) and Layer-wise (LW) 

approaches. In general, an ESL approach can analyze a composite structure considering its 

middle surface as the reference domain, in which all the geometric and mechanical 

parameters, as well as the degrees of freedom of the problem, are defined [230-245]. On the 

other hand, a LW approach is employed to investigate the mechanical behavior of laminated 

composite structures made of several plies (or layers), by defining the kinematic expansion, 

and consequently the degrees of freedom, along the thickness of each layer. In general, this 

approach can describe continuous displacement fields, characterized by discontinuities of 

their derivatives at the interfaces of the various layers [246-249]. A similar behavior can be 

obtained through an ESL model embedded with the Murakami’s function. Finally, an hybrid 

approach with intermediate features between the ESL and LW methodologies, known as 

Equivalent Layer-wise (ELW) can be obtained too, as shown in [250]. 
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3.1  SHELL STRUCTURAL MODEL 

 

Once the shell middle surface is described through the differential geometry presented in 

the previous chapter, it is possible to obtain those governing equations which rule its 

mechanical behavior. The following structural model is two-dimensional and defined in the 

reference domain, which coincides with the shell middle surface itself. The degrees of 

freedom, as well as the mechanical properties, are all computed on that surface. Thus, the 

current approach is clearly an Equivalent Single Layer (ESL) model. The main assumptions 

presented below are valid only if the coordinates of the local reference system 
1 2O   are 

orthogonal and principal. Therefore, the fundamental equations of a generic shell element of 

thickness h  are written in the local reference system 
1 2O  , as depicted in Figure 3.1. 

 

 

Figure 3.1 – Local reference system 
1 2O    of a generic shell element. 

 

The displacement field of an arbitrary point within the three-dimensional shell is described 

by three displacement components 1 2 3, ,U U U  defined along each principal coordinate. In 

other words, these quantities represent the three-dimensional displacements along the 

coordinate lines 1 2, ,   , respectively. It should be recalled that 1 2 3, ,U U U  depend on both 

the position within the medium and on the time variable t . For the sake of conciseness, the 
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corresponding vector  1 2, , , t  U U  can be introduced 

      1 1 2 2 1 2 3 1 2, , , , , , , , ,
T

U t U t U t           U   (3.1) 

A Unified Formulation (UF) will be presented in the next sections to describe several 

displacement fields characterized by an arbitrary order of kinematic expansion [223-227]. 

Finally, it should be mentioned that the present approach is valid to analyze the mechanical 

behavior of thick and moderately thick shells. This category is defined by the following 

relation 

 
min min

1 1
max ,

100 5

h h

R L

 
  

 
  (3.2) 

where min min,R L  denote respectively the minor radius of curvature and the smaller length of 

the shell structure under consideration. 

 

 

3.1.1  BRIEF NOTES ON THREE-DIMENSIONAL ELASTICITY 

 

Before introducing the shell structural model, some brief notes on the three-dimensional 

elasticity theory are presented. It is well-known that the stress state in each point P  of a 

three-dimensional medium is defined by the following 3 3  stress tensor 

 

1 12 13

21 2 23

31 32 3

  

  

  

 
 
 
  

  (3.3) 

By considering the local reference system 
1 2O   and recalling that 

1 2,   are 

orthogonal and principal coordinates, it should be noted that 
1 2 3, ,    represents the normal 

stresses that act along the three mutually orthogonal directions 1 2, ,   , respectively. On the 

other hand, the shear stresses 
12 13 23 21 31 32, , , , ,       act on three mutually orthogonal planes. If 

the symmetry of the stress tensor is introduced, the number of independent stress components 

is reduced to six, since the following relation is valid 

 
12 21 13 31 23 32, , ,          (3.4) 
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For the sake of conciseness, these six independent components can be collected in the 

corresponding vector  1 2, , , t  σ σ  

  1 2 12 13 23 3

T
     σ   (3.5) 

In order to understand the meaning of these quantities, the stress components included in 

σ  are graphically depicted in Figure 3.2 for a generic three-dimensional medium extracted 

from a shell structure. 

 

 

Figure 3.2 – Stress components acting on an infinitesimal three-dimensional element. 

 

The deformed configuration is described by means of the strain components. The complete 

set of these components is collected into the corresponding 3 3  strain tensor 

 

1 12 13

12 2 23

13 23 3

  

  

  

 
 
 
  

  (3.6) 

Due to the symmetry properties of this tensor, it is clear that only six independent strains 

are required to describe the deformation process. For conciseness purposes, these six 

independent components are collected in the corresponding vector  1 2, , , t  ε ε  

  1 2 12 13 23 3

T
     ε   (3.7) 

The equations that relate the strain and stress components just introduced are known as 

constitutive laws. If the constitutive relations are linear and the material is elastic, which 
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means that the constitutive behavior is function only of the deformations, the medium is 

called hyperelastic. By definition, an elastic body is a solid made of a continuous constituent 

able of undergoing deformations that disappear when the applied loads are removed. 

Mathematically speaking, a linear elastic medium is characterized by the linear relation 

between stress and strain components shown below 

 σ Cε   (3.8) 

where C  is the 6 6  constitutive matrix which collects the so-called elastic constants of the 

material denoted by 
ijC , for , 1,2, 6i j  . Equations (3.8) are known as generalized Hooke 

laws. In extended matrix notation, relation (3.8) assumes the following aspect for an elastic 

medium 

 

1 11 12 16 14 15 13 1

2 21 22 26 24 25 23 2

12 61 62 66 64 65 63 12

13 41 42 46 44 45 43 13

23 51 52 56 54 55 53 23

3 31 32 36 34 35 33 3

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 

 

 

 

 

 

     
     
     
     

     
     
     
     
          

  (3.9) 

In general, 36 elastic constants 
ijC  are required for a complete mechanical characterization 

of the elastic medium. Nevertheless, this number is reduced if particular material 

configurations are investigated. In the following, the Hooke laws are specialized only for 

anisotropic, orthotropic, and isotropic medium. Further details concerning the three-

dimensional elasticity theory in principal curvilinear coordinates can be found in the books by 

Tornabene et al. [56, 57]. 

 

3.1.1.1  Anisotropic materials 

 

If the medium is anisotropic, the independent elastic constants are reduced to 21 since the 

matrix C  turns out to be symmetric. In other words, one gets ij jiC C  and the stress-strain 

relation (3.9) becomes 
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1 11 12 16 14 15 13 1

2 12 22 26 24 25 23 2

12 16 26 66 64 65 63 12

13 14 24 64 44 45 43 13

23 15 25 65 45 55 53 23

3 13 23 63 43 53 33 3

C C C C C C

C C C C C C

C C C C C C
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     
     
          

  (3.10) 

The constitutive operator C  can be also named stiffness matrix. 

 

3.1.1.2  Orthotropic materials 

 

The number of elastic coefficients is reduced to 9 if the elastic medium has three 

orthogonal planes of material symmetry. In this circumstance, the material is orthotropic and 

the relation (3.9) assumes the following aspect 
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  (3.11) 

The mechanical characterization of an orthotropic medium can be performed also in terms 

of engineering constants, which are the Young’s moduli 
1 2 3, ,E E E , the shear moduli 

12 13 23, ,G G G , and the Poisson’s ratios 
12 13 23, ,   . For this purpose, the following relations 

must be recalled too 

 ,
ij ji

ij ji

i j

G G
E E

 
    (3.12) 

for , 1,2,3i j  . The nine independent elastic coefficients can be related to these engineering 

constants as follows 
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  (3.13) 
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where 

 12 21 23 32 31 13 21 32 13

1 2 3

1 2

E E E

           
    (3.14) 

 

3.1.1.2  Isotropic materials 

 

When an elastic medium is characterized by the same properties in all the directions 

outgoing from each point, the independent elastic coefficients are reduced to 2. This material 

is called isotropic and the constitutive relation (3.8) becomes  
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  (3.15) 

As shown above, the mechanical characterization can be performed in terms of engineering 

constants, recalling that for an isotropic medium one gets 

 
1 2 3 13 23 12 12 13 23, ,E E E E G G G G               (3.16) 

Only two independent constants are required, since the following relation can be 

introduced 

 
 2 1

E
G





  (3.17) 

Thus, the elastic parameters 
11 12,C C  can be related to the engineering constants as follows 

 
 

     11 12

1
,

1 1 2 1 1 2

E E
C C

 

   


 

   
  (3.18) 
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3.1.2  MAIN ASSUMPTIONS 

 

As just mentioned, the key aspect of this UF is that the order of kinematic expansion which 

defines the displacement field is a free parameter that can be chosen arbitrarily. Thus, several 

Higher-order Shear Deformation Theories (HSDTs) can be developed. The following 

hypotheses must be introduced: 

- Differently from first-order models, the three-dimensional normal strain 3  is not 

equal to zero. In other words, the stretching effect is admissible. Mathematically 

speaking, one gets 

  3 3 1 2, , , 0t        (3.19) 

- Analogously, the transverse shear strains are included in the model. Thus, each line 

that is orthogonal to the reference surface of the shell before its deformation could be 

not straight, nor necessarily normal to the middle surface, once the deformation 

process is over. 

- The small displacements hypothesis is required to refer each calculation to the 

undeformed configuration. In other words, the shell deflections are small and the 

strains are infinitesimal. In particular, the displacement component 
3U  is negligible 

if compared to the shell thickness. One gets 

  3 3 1 2, , ,U U t h      (3.20) 

- Contrarily from first-order model, the normal stress 
3  can assume values different 

from zero. Mathematically speaking, one gets 

  3 3 1 2, , , 0t        (3.21) 

- A linear elastic constitutive relation is introduced to describe the mechanical 

behavior of the constituents. 

- The rotary inertia terms and the initial curvatures are included in the model. 

It should be recalled that the shell middle surface is described by the principal curvilinear 

coordinates 1 2, ,   . The third coordinate   can be denoted also by 3 , so that the notation 

i , for 1,2,3i  , can be conveniently used. 
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3.1.3  DISPLACEMENT FIELD 

 

The three-dimensional displacement components 1 2 3, ,U U U  can be defined through the 

following relations 

 

 

 

 

1

2

3

1

1 1

0

1

2 2

0

1

3 3

0

N

N

N

U F u

U F u

U F u








































  (3.22) 

where  1 1F F
 

   ,  2 2F F
 

   ,  3 3F F
 

    denote the shear functions (or thickness 

functions), whereas 
     1 1 1 2, ,u u t
 

  , 
     2 2 1 2, ,u u t
 

  , 
     3 3 1 2, ,u u t
 

   are the 

generalized displacement components evaluated on the shell middle surface. The parameter   

stands for the order of kinematic expansion and can be chosen arbitrarily as 

0,1,2,..., 1N   . On the other hand, N  represents the maximum order of kinematic 

expansion. For the sake of clarity, definition (3.22) can be written by using the following 

extended notation 

 

           

           

           

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

0 1 2 3 1

1 0 1 1 1 2 1 3 1 1 1 1

0 1 2 3 1

2 0 2 1 2 2 2 3 2 2 1 2

0 1 2 3 1

3 0 3 1 3 2 3 3 3 3 1 3

...

...

...

N N

N N

N N

N N

N N

N N

U F u F u F u F u F u F u

U F u F u F u F u F u F u

U F u F u F u F u F u F u

     

     

     













      

      

      

  (3.23) 

As highlighted in the book by Tornabene et al. [57], the thickness functions can assume 

different meanings to describe several higher-order displacement fields. One of the simplest 

choices is to employ iF
 

  , for 0,1,2,..., N   and 1,2,3i  , as shear functions, in which 

  is a power-law function. 

The  1N  -th order of kinematic expansion, instead, is always related to the so-called 

Murakami’s function [226, 227], denoted by  Z Z  . Therefore, one gets 
1 Zi

NF


  , for 

1,2,3i  . The function at issue allows to model the zig-zag effect along the shell thickness. In 

other word, it is possible to describe a continuous displacement field, but characterized by a 

different slope between two adjacent layers, if a laminated structure is analyzed. This effect is 

usually caused by the different transverse stiffness of the constituents. For instance, this is the 
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case of sandwich structures, in which a highly deformable core is inserted in the lamination 

scheme. Let us consider a laminated composite structure made of l  plies (or layer), as shown 

in the scheme of Figure 3.3. Further details and comments concerning laminated composite 

structures will be presented for completeness purposes in the next sections. 

 

 

Figure 3.3 – Layer identification for a laminated composite structure. 

 

If the k -th layer is identified by the coordinates k  and 1k   measured along the thickness, 

which denote also its thickness itself 
1k k kh    , the Murakami’s function can be written 

as follows 

   1

1 1

2
Z 1

k k k

k k k k

 


   


 

 
   

  
  (3.24) 

At this point, it is convenient to collect the three generalized displacement components for 

each order of kinematic expansion in the corresponding vector 
     1 2, , t
 

 u u  defined 

below 

              1 1 2 2 1 2 3 1 2, , , , , ,
T

u t u t u t
   

      
 

u   (3.25) 

It should be specified that the quantities in (3.25) represent the degrees of freedom of the 

current model. For the sake of conciseness, the following compact notation can be introduced 

to describe the displacement field (3.22) in matrix form 

 
 

1

0

N









U F u   (3.26) 

in which F  is a 3 3  diagonal matrix that collects the thickness function 
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1

2

3

0 0

0 0

0 0

F

F

F







 





 
 

  
 
 

F   (3.27) 

for 0,1,2,..., 1N   . 

 

3.1.3.1  Higher-order Shear Deformation Theories 

 

The kinematic model (3.26) allows to define several HDTS by choosing the order of 

expansion and the thickness functions. According to this general approach, the kinematic 

expansion can be different along each principal direction, since iF


 , for 1,2,3i   are 

arbitrary functions. Nevertheless, it is possible also to assume the following relation to 

simplify the treatise 

 31 2F F F
  

        (3.28) 

for 0,1,2,..., N  . Consequently, a set of HSDTs based on a power-law expansion is 

established. At this point, the various theories depends only on the maximum order of 

kinematic expansion N . In these hypotheses, the displacement field (3.23) becomes 

 

           

           

           

0 1 2 3 12 3

1 1 1 1 1 1 1

0 1 2 3 12 3

2 2 2 2 2 2 2

0 1 2 3 12 3

3 3 3 3 3 3 3

... Z

... Z

... Z

N NN

N NN

N NN

U u u u u u u

U u u u u u u

U u u u u u u

   

   

   







      

      

      

  (3.29) 

if the Murakami’s function is embedded in the model. Alternatively, the last terms are 

omitted. The acronyms ED N  and EDZ N  are introduced to classify and specify univocally 

these HSDTs with and without the Murakami’s function, respectively. In particular, the letter 

“ E ” means that the theory is based on an ESL approach, whereas “ D ” states that the 

generalized displacements represent the unknown of the problem at issue. Letter “ Z ”, instead, 

stands for the zig-zag effect, when embedded. For instance, the following theories are 

developed assuming a maximum order expansion N  up to the fourth order 

 

ED1 ED2
1 2

EDZ1 EDZ2

ED3 ED4
3 4

EDZ3 EDZ4

N N

N N

 
    

 

 
    

 

  (3.30) 
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For the sake of clarity, the qualitative through-the-thickness displacement tendency for 

some HSDTs illustrated in (3.30) is depicted in Figure 3.4. The kinematic field of the well-

known Reissner-Mindlin theory (FSDT) is also shown for completeness purposes. 

 

 

Figure 3.4 – Qualitative through-the-thickness displacement tendency for several HSDTs, with and without the 

Murakami’s function. 

 

 

3.1.3.2  Displacement interpolation using Lagrange polynomials 

 

In order to develop the weak formulation of the governing equations, the generalized 

displacements collected in 
 

u , which denote the degrees of freedom of the model, must be 

approximated and written as a function of some nodal quantities. The key aspect of the weak 

form, in fact, is the assumption of a kinematic model in terms of nodal displacements, which 

are the unknown parameters of the problem. In particular, the present approach is based on a 

polynomial interpolation of higher-order obtained through the use of the Lagrange 

polynomials. 
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The two dimensional domain under consideration must be discretized in a preliminary 

phase as specified in the previous chapter. If the shell middle surface is described by means of 

the principal coordinates 
1 2,  , the following expressions are employed to define the generic 

coordinates 
1 2,f g   of a discrete point within the reference domain 

  
1 0

01 1
1 1 1

1N

f f

I

r r
r r

 
 


  


  (3.31) 

  
1 0

02 2
2 1 2

1M

g g

I

r r
r r

 
 


  


  (3.32) 

for 1,2, , Nf I  and 1,2, , Mg I , according to what has been shown previously. Thus, 

the grid distribution is made of N MI I  nodes. The generalized displacements can be 

computed in each discrete point as 
 
     1 1 21

, ,f gfg
u u t

 
  , 

 
     2 1 22

, ,f gfg
u u t

 
  , and 

 
     3 1 23

, ,f gfg
u u t

 
  . The generalized displacements (3.25) for each order   of kinematic 

expansion can be written as a function of these nodal displacements as follows 
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 
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   (3.33) 

where    1 2,f gl l   are the f -th and g -th Lagrange interpolating polynomials of degree 

1NI   and 1MI  , respectively. They are defined along the principal lines of curvature and 

assume the following aspect 
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
  (3.35) 

For the sake of conciseness, the nodal displacements can be collected in the corresponding 
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vector      1 2, ,f g t
 

 u = u . For this purpose, these quantities can be included in this vector 

by following the same order of the scheme depicted in Figure 1.2 to facilitate the 

implementation. Consequently, the vector 
 

u  is given by 
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  (3.36) 

for 0,1,2,..., , 1N N   . It is clear that 
     
1 2 3, ,
  

u u u  are the vectors that collect the nodal 

displacements along 1 2, ,   , respectively. Quantities in (3.36) are the unknown of the 

problems. The size of 
 

u  is given by  3 1N MI I   for each order of the kinematic expansion 

of the UF. Definition (3.33) can be conveniently written as follows in matrix form 

 
   T 
u N u   (3.37) 

in which T
N  is the matrix of the Lagrange interpolating polynomials defined below 

 

T

T T

T

 
 

  
 
 

N 0 0

N 0 N 0

0 0 N

  (3.38) 

Its size is clearly given by  3 3 N MI I . On the other hand, the sub-matrices T
N , whose 

size is  1 N MI I , include the Lagrange polynomials for the approximation. The Lagrange 

polynomials (3.34)-(3.35) should be collected in the corresponding vectors 
1 2
, l l  

      
1 1 1 1 1Nf Il l l      l   (3.39) 

      
2 1 2 2 2Mg Il l l      l   (3.40) 

in which the size of 
1 2
, l l  is 1 NI  and 1 MI , respectively. Once the vectors (3.39)-(3.40) 

are introduced, the matrices T
N  can be obtained by means of the Kronecker product “ k ” as 

follows 
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   (3.41) 

Once the kinematic model is introduced, it is possible to establish the kinematic equations 

that relate the three-dimensional strain components (3.7) to the displacements (3.22). 

 

 

3.1.4  KINEMATIC EQUATIONS 

 

Without addressing the whole procedure to obtain the kinematic equations for a generic 

doubly-curved shell structure, which can be found in the book by Tornabene et al. [57], the 

relations between the three-dimensional strain components and the three-dimensional 

displacements are shown below 
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  (3.43) 
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  (3.44) 
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 

  
   
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  (3.45) 

 3 2 2
23

2 2 2 2

1 1 U U U

H A R


 

  
   
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  (3.46) 

 3
3

U








  (3.47) 

For the sake of conciseness, equations (3.42)-(3.47) can be conveniently written in matrix 

form as follows 



Chapter 3 

Michele Bacciocchi 70 

1

1 1 1 1 1 2 2 1 1

2

2 1 2 1 2 2 2 2 21

2 1 2

12 2 2 2 1 1 2 2 1 1 1 2 1 2 1

13

23 1 1 1 1 1

3

2 2 2 2 2

1 1 1

1 1 1

1 1 1 1
0

1 1
0

1 1
0

0 0

A

H A H A A H R

A

H A A H A H R

A A

H A H A A H A H A A

H R H A

H R H A

 

 



    



  



 



 


 
  


  
 

     
     

  
  

   
 

     


 
 




1

2

3

U

U

U








  
  
  
   








  (3.48) 

where 
1 2,A A  are the Lamè parameters of the shell middle surface, whereas 

1 2,R R  are the 

corresponding main radii of curvature. On the other hand, quantities 1 2,H H  are defined 

below 

 1 2

1 2

1 , 1H H
R R

 
      (3.49) 

A compact vector notation can be also used to represent equation (3.48) 

  DU   (3.50) 

in which the meaning of the kinematic operator D  can be easily deducted from the 

corresponding extended relation (3.48). At this point, it is convenient to assume that the 

matrix D  is given by the product of two additional operators 

  D D D   (3.51) 

where D  collects all the terms depending on the coordinate   and the derivatives with 

respect to   itself. It assumes the following aspect 
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 
 
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 

 
 
 

 
 
 

 

D   (3.52) 

The derivatives with respect to the principal coordinates 
1 2,  , as well as the terms related 

to the main curvatures, are included in the second matrix 
D , which can be obtained as the 

summation of three additional operators 

 31 2  

     D D D D   (3.53) 

where the kinematic operators 31 2, ,
 

  D D D  are defined below 

 1

2 1

1 1 1 2 1 1 2 2 2 2 1

1 1 1 1 1
0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

T
A A

A A A A A A R



   



  
  

    
 
 
 
 
 

D   (3.54) 
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D   (3.55) 
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D   (3.56) 
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The generalized strain components defined on the shell middle surface can be obtained 

from the kinematic equations (3.42)-(3.47) by inserting the definition of the displacement 

fields (3.22). Recalling that the thickness functions do not depend on 
1 2,  , the kinematic 

equations (3.42)-(3.47) become 

 
     31 21

12 31
1

01 1 1 1 2 2 1

1 N AF F u F uu

H A A A R

   

  




 





 
   

   
   (3.57) 

 
     32 11

21 32
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02 2 2 1 2 1 2

1 N AF F u F uu
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   

  




 





 
   

   
   (3.58) 
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      

         
    (3.59) 

 
   

 
3 1 11 1

3 1
13 1
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1 N NF u F u F
u

H A R

   
  

 


 

 

 

  
   

   
    (3.60) 
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   
    (3.61) 
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
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









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For the sake of conciseness, relations (3.57)-(3.62) can be written also in the following form 

       1 2 331 2
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where the generalized strain components have been introduced for each order of kinematic 

expansion  . The quantities at issue can be collected in the corresponding vector 

     1 2, ,i i t
   

    defined below 

                     
1 2 1 2 1 2 13 23 13 23 3, ,i i i i i i i i i i

T

t
                   

           
 

   (3.69) 

for 0,1,2,..., , 1N N    and 1,2,3i  . The definitions of the generalized strain components 

(3.69) can be easily obtained by comparing relations (3.57)-(3.62) and (3.63)-(3.68) 
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It should be noted that the recursive features of this approach facilitate the implementation 

of this higher-order model. This aspect is even more evident if the kinematic equations (3.63)-

(3.68) are written as follows 
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In compact matrix form, relations (3.79)-(3.84) assume the following aspect 
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where the matrix 
  i 

Z , for 0,1,2,..., , 1N N    and 1,2,3i  , is given by 

 
 

1

2

1 2

1

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

i

i

i i

i

i i

i i

i

F

H

F

H

F F

H H

F F

H

F F

H

F









 

 

 

 

 

 

 











 
 
 
 
 
 
 
 
 

  
 

 
 

 
 
 
 
 

 

Z   (3.86) 

Relation (3.85) can be obtained by performing the same procedure in compact matrix form 

as follows 



Strong and Weak Formulations for Doubly-Curved Shells: Higher-order Theories 

Higher-order Strong and Weak Formulations for Arbitrarily Shaped Doubly-Curved Shells 75 

 

   

   

   

   

   

31 2

3 31 1 2 2

3 31 1 2 2

1

0

1

0

1

0

1 3

0 1

1 3

0 1

  

  

  

  

i i

i i

N

N

N

N

i

N

i

F F F

F F F

 

 


    

   


    

     


  



   





  





  





  







 



 

  

  

  















D D D D F u

D D D D u

D D D D D D u

Z D u

Z





  (3.87) 

where the compact definition of the generalized strains is also established. One gets 

 
   i i
  

 D u   (3.88) 

for 0,1,2,..., , 1N N    and 1,2,3i  . This equation relates the generalized strains in hand 

with the generalized displacements. These quantities are both defined on the shell middle 

surface. 

The definition of the generalized strain components (3.88) can be written also for the weak 

formulation. In fact, by recalling the interpolation (3.37), the following relation is achieved 

 
   i i T  

 D N u   (3.89) 

for 0,1,2,..., , 1N N    and 1,2,3i  . Thus, the generalized strains are directly related to the 

nodal displacements (3.36). In order to facilitate the treatise, it is convenient to write the 

kinematic operators (3.54)-(3.56) as follows 

 1 1 

 
   D D 0 0   (3.90) 

 2 2 

 
   D 0 D 0   (3.91) 

 3 3 

 
   D 0 0 D   (3.92) 

in which each component is a column vector of size 9 1 . In particular, the following 

definitions are obtained by comparing (3.54)-(3.56) with (3.90)-(3.92) 
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Let us consider at this point equation (3.89). Having in mind definitions (3.93)-(3.95), one 

gets 

 
     1 1 1T    

 D N u B u   (3.96) 

 
     2 2 2T    

 D N u B u   (3.97) 

 
     3 3 3T    

 D N u B u   (3.98) 

for 0,1,2,..., , 1N N   . In compact notation, it is possible to write also the following 

expression 
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for 0,1,2,..., , 1N N    and 1,2,3i  . The differential operators iB , whose size is 

 9 N MI I , assume the aspect shown below 
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in which 
   

1 2

1 1
, l l  denote the vectors that collect the first-order derivatives of the interpolating 

functions (3.39)-(3.40) along 
1 2,   with respect to the same coordinates. These vectors are 

given by 

 
             

1

1 1 1 1

1 1 1 1Nf Il l l    
 

l   (3.101) 
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              
2

1 1 1 1

1 2 2 2Mg Il l l    
 

l   (3.102) 

where the following derivatives are required 
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For the sake of completeness, the operators iB , for 0,1,2,..., , 1N N    and 1,2,3i  , 

can be written also in extended notation 
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 (3.105) 

 

 

3.1.5  CONSTITUTIVE EQUATIONS 

 

The importance of the constitutive equations has been already highlighted in the previous 

sections, in which some notes concerning the three-dimensional theory of elasticity have been 

illustrated. 

This section aims to investigate the mechanical behavior of shells made of composite 

materials. It is well-known that many researchers focused their efforts on the analysis of 

composite materials to improve the structural response. By employing these materials, in fact, 

it is possible to obtain higher levels of stiffness and strength, without increasing the structural 

weight. Analogously, considerable advances have been achieved in terms of thermal 

properties and fatigue life.  

Therefore, it is easy to see a great use of composite materials in many engineering fields 

that require lighter and more efficient structural elements. For instance, these progresses 

involve the analysis and manufacturing of aircrafts, aerospace components, as well as sails 

and boat hulls. 

 

3.1.5.1  Composite materials 

 

As highlighted above, it is possible to achieve enhanced mechanical properties with respect 

to the ones that characterize conventional materials by using composite materials. In general, 

composite materials are obtained by combining two or more constituents at different levels, 
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such as nano-, micro-, and macro-scale. Usually, the aim of composite materials is to improve 

the mechanical property of basis constituent, called matrix, by inserting different kind of 

reinforcing phases. Composite materials can be categorized as follows: 

- fibrous composites, which consist consisting long fibers of a stronger material 

immersed in a matrix made of another material. 

- granular composites, which consist of particles of a stronger material immersed in a 

matrix made of another material. 

- laminated composites, which consist of several layers made of different materials, 

including composites of the first two groups. 

From the microscopic point of view, composite materials are intrinsically heterogeneous. 

Nevertheless, from the macroscopic point of view they can be considered as homogeneous, 

since peculiar homogenization techniques are introduced to evaluate the overall mechanical 

properties of the composite. 

 

3.1.5.1.1  Fibrous composites 

 

Let us consider a fiber-reinforced composite. The matrix holds together the various fibers 

and protects them from the environmental conditions, whereas the fibers give strength and 

stiffness to the composite. The load transfer is originated from the shear stresses that arise 

between the matrix and the fibers. These fibers can be placed within the matrix according to 

specific oriented paths. Thus, the composite is characterized by mechanical properties that 

depend on the orientation of the fibers. If 
1 2O    denotes the local reference system of any 

shell element, the fibers can be oriented of a generic angle   with respect to these coordinate 

system, as depicted in Figure 3.5. Consequently, the material reference system 
1 2

ˆ ˆO    must 

be introduced. 

A fiber-reinforced composite, in which the fibers are unidirectional as shown in Figure 3.5, 

can be modeled as an orthotropic medium with two planes of material symmetry, which are 

parallel and transverse to the directions of the fibers themselves, respectively. The material 

reference system is placed on the middle surface of the composite. 
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Figure 3.5 – Material reference system of a fibrous composite with a generic orientation   of the fibers. 

 

In particular, axis 1̂  is chosen parallel to the fiber direction, axis 
2̂  is orthogonal to the 

first one and transverse to the fiber direction, whereas axis ˆ   is normal to the parametric 

lines of the middle surface. These composites have the maximum strength along the fiber 

direction, but they show a weak mechanical behavior along the transversal fiber direction. 

The overall mechanical properties of a fiber-reinforced composite can be obtained either 

by a theoretical approach or by appropriate laboratory tests. As far as the theoretical models 

are concerned, several homogenization techniques can be used. These theories are based on 

the following hypotheses: 

- The composite is linearly elastic from the macroscopic point of view. 

- Residual stresses in a stress-free state are not allowed. 

- Both the matrix and the reinforcing fibers are linearly elastic, homogeneous and 

without voids or micro cracks. 

- The matrix and the fibers, which are aligned and regularly placed in the matrix, are 

perfectly bonded together. 

In general, reinforcing fibers are assumed to be transversely isotropic, thus five 

independent elastic constants are required. Their mechanical properties can be expressed as a 

function of the engineering constants. In particular, the Young’s moduli 
1

fE , 
2 3

f fE E , the 
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shear moduli 
12 13

f fG G , 
23

fG , and the Poisson’s ratios 
12 13

f f  , 
23

f  are required. The other 

constants can be evaluated by means of relations (3.12). It should be noted that the superscript 

“ f ” stands for fibers. On the other hand, the matrix can be considered isotropic and its 

properties are given by the Young’s modulus mE , the shear modulus mG , and the Poisson’s 

ratio m , in which the superscript “ m ” stands for matrix. For the sake of completeness, it 

should be recalled that the shear modulus for an isotropic medium can be computed through 

expression (3.17). 

The rule of mixture represents the easiest and most classical manner approach to evaluate 

the overall mechanical properties of these composites. The volume fractions of the fibers 
fV  

and of the matrix 
mV  are required for this purpose 

 
v v

,
v v

f m
f m

c c

V V    (3.106) 

where v f
, vm , v c  denote the overall volume of the fibers, of the matrix and of the composite, 

respectively. The following relation is introduced to relate quantities in (3.106) 

 1f mV V    (3.107) 

At this point, it is possible to evaluate the mechanical properties of the fibrous composite 

in terms of engineering constants 

 1 1

f m

f mE E V E V    (3.108) 
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m
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  (3.111) 

 12 13 12

f m

f mV V        (3.112) 

 2
23

23

1
2

E

G
     (3.113) 

It can be noted that five independent constants are needed to characterize the mechanical 

behavior of the composite, if this theoretical approach is employed. More accurate and 
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complex approaches could be used for the same purpose as highlighted in [209]. Finally, the 

density of the composite is given by  

 f m

f mV V      (3.114) 

in which ,f m   denote respectively the density of the fiber and of the matrix. 

At this point, it could be also specified that the orientation   of the fibers can be defined 

by some functions to describe curvilinear paths. Consequently, one gets  1 2,    . This 

idea is known in the literature as Variable Angle Tow (VAT) [176-191], as specified in the 

introduction. 

In general, when an arbitrary orientation is chosen, the constitutive laws (3.8) must be 

written in the geometric reference system. Thus, a transformation of the elastic coefficients is 

required. Let us consider an orthotropic material whose fiber orientation is given by  . The 

generalized Hooke law in the material reference system assumes the following aspect 
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  (3.115) 

In compact notation, one gets 

 ˆ ˆσ Cε   (3.116) 

where ˆ ˆ,σ ε  collect the stress and strain components defined in the material reference system 

1 2
ˆ ˆO   . On the other hand, ,σ ε  represent the same vector evaluated in the geometric 

reference system 
1 2O   , as depicted in Figure 3.4. The constitutive relations in this 

reference system are given by  

 σ Cε   (3.117) 

in which C  is the constitutive. The following transformations allows to compute its elements 

ijC , which take into account the generic orientation  . In extended notation, relation (3.117) 

becomes 
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  (3.118) 

where 

 4 2 2 4
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2 2 2 2

66 11 22 12 662 cos sin cos sinC C C C C         
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44 44 55cos sinC C C    

 45 44 55 cos sinC C C     

2 2

55 55 44cos sinC C C      (3.119) 

The complete treatise concerning these transformations for more general cases can be 

found in the book by Tornabene et al. [57]. 

 

3.1.5.1.2  Granular composites 

 

A granular composite is a medium which consist of particles of a stronger material 

immersed in a matrix made of another material. When the reinforcing phase is defined by a 

continuous gradual variation of the volume fraction along a particular direction, this medium 
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is known as Functionally Graded Material (FGM). The FGMs analyzed in this work have a 

through-the-thickness variation of the mechanical properties in order to reduce thermal 

stresses, residual stresses and the stress concentrations. These materials are mainly made of 

isotropic constituents, such as metals and ceramics, and are especially used as thermal barriers 

in case of high temperature gradients since the ceramics improve the resistance to thermal 

shocks, whereas the ductility is enhanced by the presence of metals. Due to this gradual 

variation, the mechanical properties of the composite depend on the thickness coordinate   

of the structure. Since the composite turns out to be isotropic, its mechanical characterization 

is achieved once the Young’s modulus  E  , the Poisson’s ratio     and the density 

    are evaluated through a micromechanical approach. Even in this circumstance, the 

theory of mixture illustrated above can be used. According to this approach, the volume 

fraction of the metallic phase 
MV  and of the ceramic one 

CV  are related together as follows 

 1C MV V    (3.120) 

For an isotropic medium, the theory of mixture assume the following aspect 
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  (3.121) 

where the subscripts “ C ” and “ M ” denote the properties of the ceramic and the metal, 

respectively. Several through-the-thickness distributions can be used to define the volume 

fraction variation  CV  . For example, a five-parameter power law (5P), the Weibull 

function (W), and the exponential function (E) can be employed to this aim. Their analytical 

expressions vary according to the position of the stiffer material, which can be placed at the 

top or at the bottom parts of the structure. The Young’s moduli of the isotropic composite in 

these portions are denoted by 
topE  and bottomE , respectively. The expressions of these 

distributions are presented in Table 3.1 for 
top bottomE E  and 

bottom topE E . 
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Table 3.1 – Through-the-thickness distributions for the volume fractions of FGM. 

top bottomE E  
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The various parameters that appear in Table 3.1 define the distributions themselves and 

have to be specified clearly to define univocally those variations. The following notation can 

be employed for this purpose 

 ( ) ( / / )

top

bottom dist a bFGM    (3.122) 

in which “top” and “bottom” denote the materials at the top and bottom of the medium, 

respectively; “  dist ” is the law chosen to describe the volume fraction distribution; whereas 

the quantities in the last brackets on the right stand for the parameters that characterize these 

distributions. Some examples of volume fraction distributions are depicted in Figure 3.6, for 

several choices of the parameters included in Table 3.1. 

Another example of granular composite is given by polymeric matrix reinforced with 

Carbon Nanotubes (CNTs). Since their discovery from graphene, those tubular carbon 

structures have given the possibility to increase the mechanical behavior of composite 

materials because of their notable physical and chemical properties [192-209]. These 

materials are also known as nanocomposites due to the nanoscale of the reinforcing phase. 

In the following paragraphs, a micromechanics approach is presented to evaluate the 

overall mechanical properties of a polymer matrix reinforced by CNTs. The matrix is 

assumed to be isotropic and characterized by the Young’s modulus mE , the Poisson’s ratio 

m , and the density 
m . In particular, the Eshelby-Mori-Tanaka scheme is used to compute 

the mechanical properties of this hybrid matrix improved by CNTs in order to capture and 

model also the agglomeration of the reinforcing phase [120, 131]. 
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a) Five-parameter power law 
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Figure 3.6 – Graphical representations of the through-the-thickness volume fraction distributions for a FGM. 

 

According to the current approach, CNTs have the tendency to agglomerate if included in a 

polymer matrix. Consequently, spherical shaped inclusions with higher concentrations of 

CNTs appear in the composite. Thus, the reinforcing phase can be found both in these 

inclusions and scattered in the matrix, as depicted in Figure 3.7. For the sake of completeness, 

it should be specified that this behavior is well-described in the work by Shi et al. [200]. 
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Figure 3.7 - Agglomeration model: a) partial agglomeration; b) zero agglomeration of CNTs; c) complete 

agglomeration of CNTs [209]. 

 

The total volume of CNTs is given by rW . This quantity can be seen as the sum of two 

contributions, which are the volume of CNTs inside the spherical inclusions in

rW  and 

scattered in the matrix m

rW   

 in m

r r rW W W    (3.123) 

Consequently, the total volume of representative element assume the following aspect 

 r mW W W    (3.124) 

where mW  is volume of the matrix. At this point, the mass fraction of CNTs 
rw  and the mass 

fraction of the matrix mw  can be computed as follows 

 , mr
r m

r m r m

MM
w w

M M M M
 

 
  (3.125) 

in which 
rM  and mM  denote respectively the masses of CNTs and of the matrix. 

Analogously, the volume fraction of CNTs rV  and the volume fraction of the matrix 
mV  can 

be evaluated as 
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 , mr
r m

WW
V V

W W
    (3.126) 

recalling that these quantities are related by means of the following expression 

 1r mV V    (3.127) 

Even the volume fraction of CNTs is given by the summation of the volume fraction of 

CNT inside the spherical inclusions in

rV  with the volume fraction of CNTs scattered in the 

matrix m

rV   

 in m

r r rV V V    (3.128) 

If ,r m   denote respectively the density of CNTs and the density of the polymer matrix, 

the CNT volume fraction can be expressed as a function of the mass fraction 
rw  
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According to this micromechanics model, the following two parameters describe the 

agglomeration of CNTs 

 1 2,
in

in r

r

W W

W W
     (3.130) 

for 2 1   and  1 2, 0,1   . It is easy to note that 1  represents the ratio between the 

spherical inclusion and the total volume of the composite. On the contrary, 
2  stands for the 

ratio between the volume of CNTs within the inclusions and the CNT total volume. 

Depending on the value of 
1 2,  , several mechanical configurations in terms of 

agglomeration can be achieved. For the sake of completeness, some examples are depicted in 

Figure 3.6. In general, CNTs can be both contained in the inclusions and scattered in the 

polymer matrix (Figure 3.7a). This circumstance is obtained by setting 1 2   and 
1 1  . 

On the other hand, CNTs are completely concentrated in the inclusions for 
1 2 1   , since 

one gets in

r rW W . In this case, which is shown in Figure 3.7b, the sole inclusions coincide 

with the reference domain, since inW W . Thus, the level of agglomeration is equal to zero. 

Finally, the complete agglomeration can be obtained for 1 2   and 2 1  . As depicted in 

Figure 3.7c, the reinforcing phase is concentrated exclusively in the inclusions. 
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If relations (3.126), (3.128) and (3.130) are combined together, the following expressions 

can be obtained as well 

 2

1
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r r
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   (3.131) 
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In order to evaluate the overall mechanical properties of the composites, an equivalent 

continuum model for CNTs should be introduced. For this purpose, it can be assumed that a 

single CNT fiber has a linear-elastic behavior and can be modeled as a homogeneous 

cylindrical solid, as shown in Figure 3.8. This aspect has been specified also in the work by 

Odegard et al. [198]. 

 

 

Figure 3.8 - Continuum equivalent model for a single fiber of CNT [209]. 

 

This element can be considered transversely isotropic. In particular, the plane of isotropy is 

orthogonal to its longitudinal axis (Figure 3.8). Consequently, its mechanical behavior is 

completely described by five independent constants. As shown in the work by Hashin and 

Rosen [122], the constitutive laws for such a transversely isotropic medium can be expressed 

as a function of five elastic moduli r

ijC . In the local reference system of the element 1 2 3
ˆ ˆ ˆOx x x , 

the relations between stresses and strains assume the following aspect 
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  (3.133) 

in which 
1 2 12 13 23 3, , , , ,r r r r r r       and 

1 2 12 13 23 3, , , , ,r r r r r r       are the stress and strain components, 

respectively. Analogously, the same constitutive equations can be given by using the notation 

suggested by Hill [123, 124] 
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  (3.134) 

where , , , ,r r r r rk l m n p  are the Hill’s elastic moduli. By comparing relations (3.133) and 

(3.134), the Hill’s moduli can be evaluated as a function of the elastic moduli r

ijC  
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The same mechanical behavior can be described also in terms of the engineering constants 

as follows 
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where the superscript “ r ” denotes the mechanical properties of the reinforcing phase at issue. 

At this point, the Eshelby-Mori-Tanaka approach can be used to evaluate the global properties 

of this composite, which turns out to be isotropic. The bulk modulus of the spherical 

inclusions *

inK  is given by 
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whereas their shear modulus *

inG  is given by 
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whereas mK  and mG  are the bulk and the shear moduli of the isotropic matrix, which can be 

evaluated as follows 
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  (3.144) 

On the contrary, the bulk modulus of the matrix in which CNTs are scattered is given by 
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Analogously, the following definition allows to compute the corresponding shear modulus 
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The quantities defined below are require to evaluate the elastic properties just introduced 
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The effective bulk modulus K and the shear modulus G  of this composite are given by 
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where 
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Finally, the Young’s modulus E  and the Poisson’s ratio   of the isotropic composite can 

be computed as follows 
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  (3.154) 

It should be specified that the density   of this polymer matrix enriched by CNTs is still 

computed through the rule of mixture 

  r m

r mV V       (3.155) 

where r  is the CNT density. Finally, it should be also specified that a continuous gradual 

variation can be used to describe the volume fraction rV  of CNTs. Consequently, the class of 

Functionally Graded Carbon Nanotube (FG-CNT) reinforced composites is achieved. For this 

purpose, the same distributions listed in Table 3.1 can be employed. 
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3.1.5.1.3  Laminated composites 

 

As specified in the previous sections, a laminated composite is a structure made of l  plies 

(called also laminae or layers), as depicted in Figure 3.3. The lamina is the fundamental 

element of a laminate. The following assumptions must be introduced for a laminated 

composite structure: 

- each layer is a continuous body, therefore discontinuities and blanks are not allowed; 

- the mechanical behavior of each ply is linear-elastic; 

- the laminae are perfectly bonded, thus relative slips between them are not permitted. 

Each layer can be isotropic, orthotropic, FGMs, reinforced by CNTs, or a combination of 

them. The sequence of the various constituents denotes the lamination scheme or the stacking 

sequence. A complete mechanical characterization of the laminate is performed once the 

properties, the thickness, and the orientation of each layer are specified. For this purpose, the 

superscript k  is introduced to specify the k -th lamina and all its features. For instance, if an 

isotropic layer is considered, its Young modulus, its Poisson’s ratio and its density are 

indicated respectively by  k
E , 

 k
  e  k

 . As far as an orthotropic layer is concerned, the 

orientation of the k -th layer is given by 
 k

 . For a laminated composite made of l  plies 

defined by arbitrary orientations of the fibers, the following notation is required to specify 

univocally the laminate itself 

 
        1 2

/ / / / /
k l

      (3.156) 

It should be specified that these orientations are listed from the lower layer to the upper 

one. Finally, it must be mentioned that even the through-the-thickness distributions listed in 

Table 3.1 assume different notations if applied to the k -th layer. The volume fraction 

distributions in hand 
   k

CV   are presented in Table 3.2, where it can be noted that each 

quantity is linked to the k -th lamina. 
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Table 3.2 – Through-the-thickness distributions for the volume fractions of a functionally graded layer. 
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Five-parameter power law 

 

( )
( )

( ) ( ) ( ) ( )1 1

k
k p

c

k k k kk k

C

k k

V d a b
h h

   
  

           
     

  

( )
( )

( ) ( ) ( ) ( )

k
k p

c

k k k kk k

C

k k

V d a b
h h

   


           
     

 

Weibull function 

 

( )

( )

( )

1
1 exp

kb

k k

C k

k

V
ha

 


      
   

  

( )

( )

( )

1
exp

kb

k k

C k

k

V
ha

 


     
   

 

Exponential function 

 

( )

( )

( )

( )
( )

2 1
exp 1

2

2
exp 1 exp 1

2

kb

k k k

kk

C
k

k k k

k

h
a

h
V

ha
a

h

 


 

    
     

   
  

                       

 
 

( )

( )

( )

( )
( )

2 1
exp 1

2
1

2
exp 1 exp 1

2

kb

k k k

kk

C
k

k k k

k

h
a

h
V

ha
a

h

 


 

    
     

   
  

                       

 

 

 

3.1.6  EQUATIONS OF MOTION 

 

The equations of motion for a laminated composite doubly-curved shell can be obtained 

efficiently by means of the Hamilton’s variational principle. This approach allows to obtain at 

the same time both the equations of motions and the natural or static boundary conditions of 

the problem.  

Let us consider an elastic shell which changes its state between two consecutive arbitrary 

instants, identified by the time variables 1t  and 
2t . The shell is in equilibrium under the action 

of external applied loads. The equilibrium configuration is denoted by the three-dimensional 

displacement vector U , whereas an arbitrary configuration is identified by the displacement 

vector U U , in which U  is the vector that collects the virtual displacements. The path 

followed by the body during the dynamic process is ruled by the Hamilton’s principle 

    
2 2

1 1

0 0

t t

t t

dt dt        T T   (3.157) 

in which T  is kinetic energy of the system and   is the total potential energy. On the other 

hand, , T  denote the variations of the kinetic energy and total potential energy, 

respectively. The Hamilton’s variational principle (3.157) specifies that the energy term 

 T  has an extreme value, which can be proven to be a minimum. The value of 
1 2,t t  can 
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be chosen arbitrarily, provided that the variations of all the energetic quantities in (3.157) are 

equal to zero for 1t t  and 
2t t . The total potential energy   is given by the summation of 

the elastic energy of deformation   and of the potential of external loads H  

 Π Φ Φ eH L      (3.158) 

It should be noted that the potential of external loads H  is given by the summation of the 

work done by the volume and surface external loads eL  changed in sign. Consequently, 

equation (3.157) becomes 

  
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e

t

L dt     T   (3.159) 

In the following, all the energetic terms that appear in (3.159) will be presented in their 

explicit form. The elastic energy of deformation   for a three-dimensional medium is given 

by 
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Its variation   can be deducted easily 
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If the elastic body is a laminated composite structure made of l  layers, the variation of the 

elastic energy of deformation   becomes 
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where the index k  is used to denote the generic ply. At this point, the kinematic equations 

(3.79)-(3.84) can be inserted into (3.162) 
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The integrals that involve the through-the-thickness coordinate  , as well as all the terms 

that depend on this coordinate, can be separated to obtain the definitions of the stress 

resultants or generalized internal forces. These quantities are presented below 
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The same procedure can be followed in compact matrix form 
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where 
     1 2, ,i i t
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 S S  is the  -th order generalized stress resultant vector that collects 

the quantities defined in (3.164)-(3.172) and assumes the aspect shown below 
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 
S   (3.174) 

For the sake of conciseness, the variation of the elastic energy of deformation can be 

written as follows 
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   S   (3.175) 

From relation (3.173), the following definition can be extracted, for 0,1,2,..., , 1N N    and 

1,2,3i   
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  S Z C Z    (3.176) 

in which the constitutive equations (3.117) have been employed. The stiffness matrix (or 

constitutive operator) 
  i j  

A  can be conveniently deducted 
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Equation (3.176) assumes the following aspect 
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for 0,1,2,..., , 1N N    and 1,2,3i  . Having in mind the definition of the generalized strains 

(3.88), the stress resultants can be expressed as a function of the generalized displacements as 

follows 
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for 0,1,2,..., , 1N N    and 1,2,3i  . This relation will be useful to apply the natural boundary 

conditions along the external edges of the structure. It should be noted that this definition 

involves the derivatives with respect to the principal coordinates of the degrees of freedom of 

the model. The constitutive operator 
  i j  

A  is a 9 9  matrix, which takes the following 

extended form 
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  (3.180) 

in which the definitions below are required 
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for , 0,1,2,..., , 1N N    , , 1,2,...,6n m  , , 0,1,2p q  , and , 1,2,3i j  . The coefficients 

 k

nmB  are defined as shown below to introduce the shear correction factor   

 

( ) ( )

( ) ( )

for , 1,2,3,6

for , 4,5

k k

nm nm

k k
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B C n m

B C n m

 

 
  (3.185) 

It should be noted that only lower-order shear deformation theories, such as ED1 , EDZ1 , 

ED2 , and EDZ2  could require this correction. 

Recalling the assumption (3.99), the stress resultants (3.178) assume the following 

definition according to the current weak formulation, in which the kinematic hypotheses 

(3.37) are introduced 
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The integral of the variation of the elastic strain energy   defined in (3.175) with respect 

to the time variable in the interval  1 2,t t  assumes the following aspect 
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Having in mind the definitions of the generalized strain components (3.88), one gets 

      
2 2

1 1 1 2

1 3

1 2 1 2

0 1

ii

t tN T

it t

dt A A d d dt
  

  

   




 

     D u S   (3.188) 

On the other hand, the kinetic energy T  assumes the following aspect 
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whereas its variation is given by  
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It should be noted that 1 2 3, ,U U U  stand for the time derivatives of the three-dimensional 

displacements collected in (3.1). These velocities can be included in the corresponding vector 

 1 2, , , t  U U  defined below 
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In matrix form, expression (3.190) becomes 

  
1 2

1 2 1 2 1 2

T

A A H H d d d
  

         U UT   (3.192) 

For a laminated composite structure made of l  layers, the variation of the kinetic energy is 

given by 
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Recalling definition (3.159), the integration with respect to the time variable must be 

computed in the interval 
1 2,t t . By applying the integration by part rule, one gets 
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Due to the hypothesis of synchronous motions, the virtual displacements assume a null 

value at the times 
1 2,t t . This is the assumption that allows to delete the quantities in square 

brackets in the procedure just shown. Mathematically speaking, the synchronous motion 

hypothesis can be expressed as    1 2... ... 0t t   . The following relation is achieved by 

inserting the definition of the displacement field (3.26) into (3.194) 
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where the inertia masses 
  i iI
  

 are introduced by means of the following integrals with 

respect to the thickness coordinate 
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for 1,2,3i  . These quantities can be included in the corresponding mass matrix 
 

M  

defined below 
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for , 0,1,2,..., , 1N N    , whose size is 3 3 . 

As far as the work done by the external loads eL  is concerned, several kinds of external 

actions should be considered, which can be classified as volume forces and surface forces. 

These quantities are applied in each point of the three-dimensional medium or within the 

external surfaces of the structure, respectively. Since an ESL approach is considered, their 

effect must be computed on the shell middle surface by means of static equivalence 

principles. The procedure in hand will be presented in the following taking into account 

different kinds of loads.  

In general, the external forces are characterized by three load components related to each 

principal direction, for every order of kinematic expansion  . Those quantities can be 

collected in the corresponding vector  
q  defined below 
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for 0,1,2,..., , 1N N   . Each component 
 
iq


, for 1,2,3i  , includes the effects of the 

surface forces 
 
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, volume actions 
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

, as well as the consequences of an elastic foundation 

 
ifq


. Thus, the vector  
q  can be written as follows 
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in which each vector collects three load components for each order of kinematic expansion. 

Mathematically speaking, these vectors assume the aspect shown below 
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q   (3.201) 

 
       

1 2 3

T

f f f fq q q
    

 
q   (3.202) 

for 0,1,2,..., , 1N N   . The work done by the external loads eL  must include the 

contributions of the terms just mentioned, as well as the work done by the stress resultants 
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applied directly along the external edges of the reference domain, which are 

     1 2 3

1 12 1, ,N N T
     

 if the edge is characterized by constant values of 1 , or 

     1 2 3

21 2 2, ,N N T
     

 if the edge is characterized by constant values of 
2 . These quantities 

can be collected in the following vectors 

        1 2 3

1 1 12 1

T

N N T
      


 
 

S   (3.203) 

        1 2 3

2 21 2 2

T

N N T
      


 
 

S   (3.204) 

All things considered, the work done by the external loads eL  is given by 

1 2e es ev ef eb ebL L L L L L        

            
1 2

1

1 1 2 2 3 3 1 2 1 2

0

N

sa sa saq u q u q u A A d d
     

  

 




       

            
1 2

1

1 1 2 2 3 3 1 2 1 2

0

N

va va vaq u q u q u A A d d
     

  

 




       

            
1 2

1

1 1 2 2 3 3 1 2 1 2

0

N

f f fq u q u q u A A d d
     

  

 




       

            1 2 3

2

1

1 1 12 2 1 3 2 2

0

N

N u N u T u A d
        

 






       

            1 2 3

1

1

21 1 2 2 2 3 1 1

0

N

N u N u T u A d dt
        

 






      (3.205) 

where esL  and evL  are the works done by the surface and volume loads, 
efL  is the work done 

by the forces given by the elastic foundation, whereas 1ebL  and 2ebL  stand for the work done 

by the stress resultants applied directly along the external edges. The corresponding variation 

assumes the following aspect 

1 2e es ev ef eb ebL L L L L L             

            
1 2

1

1 1 2 2 3 3 1 2 1 2

0

N

sa sa saq u q u q u A A d d
     

  

    




      

            
1 2

1

1 1 2 2 3 3 1 2 1 2

0

N

va va vaq u q u q u A A d d
     

  

    




       

            
1 2

1

1 1 2 2 3 3 1 2 1 2

0

N

f f fq u q u q u A A d d
     

  

    




       
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            1 2 3

2

1

1 1 12 2 1 3 2 2

0

N

N u N u T u A d
        

 

   




       

            1 2 3

1

1

21 1 2 2 2 3 1 1

0

N

N u N u T u A d
        

 

   




      (3.206) 

The integral of the variation of the work done by the external loads eL  with respect to the 

time variable in the interval  1 2,t t  takes the following form 

            
2 2

1 1 1 2

1

1 1 2 2 3 3 1 2 1 2

0

t tN

e sa sa sa

t t

L dt q u q u q u A A d d dt
     

  

     




         

            
2

1 1 2

1

1 1 2 2 3 3 1 2 1 2

0

tN

va va va

t

q u q u q u A A d d dt
     

  

    




        

            
2

1 1 2

1

1 1 2 2 3 3 1 2 1 2

0

tN

f f f

t

q u q u q u A A d d dt
     

  

    




        

            
2

1 2 3

1 2

1

1 1 12 2 1 3 2 2

0

tN

t

N u N u T u A d dt
        

 

   




       

            
2

1 2 3

1 1

1

21 1 2 2 2 3 1 1

0

tN

t

N u N u T u A d dt
        

 

   




      (3.207) 

In compact matrix form, one gets 

    
2 2

1 1 1 2

1

1 2 1 2

0

t tN T

e sa

t t

L dt A A d d dt
 

  

   




     u q  

    
2

1 1 2

1

1 2 1 2

0

tN T

va

t

A A d d dt
 

  

  




    u q  

    
2

1 1 2

1

1 2 1 2

0

tN T

f

t

A A d d dt
 

  

  




    u q  

    
2

1

1 2

1

2 2

0

tN T

t

A d dt
 


 

 




   u S  

    
2

2

1 1

1

1 1

0

tN T

t

A d dt
 


 

 




  u S   (3.208) 

At this point, the Hamilton’s principle (3.159) can be written as follows 

      
2

1 1 2

1 1

1 2 1 2

0 0

t N NT

t

A A d d
  

  

  
 

 

  
   

 
    u M u   

     

1 2

1 3

1 2 1 2

0 1

ii

N T

i

A A d d
  

  

  




 

   D u S   
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         

1 2 1 2

1 1

1 2 1 2 1 2 1 2

0 0

N NT T

sa vaA A d d A A d d
   

    

     
 

 

      u q u q   

         

1

1 2 2
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0 0

N NT T

f A A d d A d
   


   

    
 

 

    u q u S   

    
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1

1

1 1

0

0
N T
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 


 

 





 




 u S   (3.209) 

Since equation (3.209) must be satisfied for each time interval, the following relation is 

achieved 

      

1 2

1 1

1 2 1 2

0 0

N NT

A A d d
  

  

  
 

 

 
  

 
   u M u   

     

1 2

1 3

1 2 1 2

0 1

ii

N T

i

A A d d
  

  

  




 

   D u S   
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 
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 
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



   u S    (3.210) 

Relation (3.210) could be conveniently written for each order of kinematic expansion  , 

so that one gets 

      
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1 1 0
T

A d
 


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   u S    (3.211) 

for 0,1,2,..., , 1N N   . Expression (3.211) represents the general form of the Hamilton’s 

principle at issue. Two different path can be pursued now in order to obtain the strong and 

weak formulations, of the governing equations, respectively. 
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3.1.6.1  Generalized external actions 

 

As mentioned above, different kinds of external loads can be considered in the model. In 

general, they can be classified as volume and surface forces. In this section, the well-known 

static equivalence principle is applied in order to obtain the generalized external actions 

defined in the shell reference domain, which coincides with the middle surface of the 

structure. 

 

3.1.6.1.1  Surface loads 

 

Surface loads are applied on the external surfaces of the shells, defined respectively by the 

thickness coordinate 2h    (bottom surface) and 2h   (top surface). Three load 

components can be applied on each surface, which are 
     
1 2 3, ,a a aq q q
  

 on the lower surface and 

     
1 2 3, ,a a aq q q
  

 on the upper one. The positive directions of these forces are schematically 

depicted in Figure 3.9. 

 

 

 

Figure 3.9 – Surface loads applied on the top surface: positive directions. 
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According to the principle of static equivalence, the work done by the equivalent 

generalized external loads applied on the shell middle surface must be equal to the work done 

by external forces acting on the bottom and top surfaces. Without addressing the complete 

treatise, which can be found in the book by Tornabene et al. [57], the generalized external 

forces applied on the shell middle surface      
1 2 3, ,sa sa saq q q
  

 are given by 

 

                 

                 

                 
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3 3

1 1 1 2 1 1 2

2 2 1 2 2 1 2

3 3 1 2 3 1 2

sa a a

sa a a

sa a a

q q F H H q F H H

q q F H H q F H H

q q F H H q F H H

  

 

  

 

  

 

       

       

       

 

 

 

  (3.212) 

where    
,i iF F

 

 

 
, for 1,2,3i  , are the thickness functions evaluated at the bottom and top 

surfaces, respectively, whereas the geometric parameters 
   
1 2,H H
 

 are defined as follows 

 

 

 

1

1

2

2

1
2

1
2

h
H

R

h
H

R





 

 

  (3.213) 

according to the definitions shown in (3.49). For the sake of completeness, it should be 

recalled that point, line, as well as cross loads, can be included in the class of surface actions, 

as illustrated in the paper by Tornabene et al. [241]. 

 

3.1.6.1.2  Volume loads 

 

In general, volume forces are proportional to the overall mass of the structure, which can 

be computed taking into account the density of each layer  k
 , if a laminated composite shell 

is considered. In order to evaluate these volume loads, the gravitational acceleration g  must 

be introduced in the local reference system as follows 

 
1 1 2 2 3g g g  g t t n   (3.214) 

where 
1 2, ,t t n  are the unit normal vectors that identify the principal coordinates 1 2, ,   , 

respectively. The quantities 1 2 3, ,g g g  stand for the components of the gravitational 

acceleration in the local reference system, which can be evaluate as follows 
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1 1

2 2

3

T

T

T

g

g

g







G t

G t

G n

  (3.215) 

where G  is the vector of the gravity defined in the global reference system given by 

 
1 1 2 2 3 3G G G  G e e e   (3.216) 

in which 
ie , for 1,2,3i  , denote the unit vectors of the global reference system.  

Without presenting the complete treatise, which can be found in the book by Tornabene et 

al. [57], the generalized external forces applied on the shell middle surface related to volume 

loads can be computed as 

 

   

   

   
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1 0 1
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q I g
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





  (3.217) 

where the following inertia masses 
 
0

iI
 

, for 1,2,3i  , are required 

    
1

0 1 2

1

k

i i

k

l
k

k

I F H H d



  





 




    (3.218) 

For the sake of completeness, it should be recalled that seismic actions can be also 

included in the class of volume forces, as illustrated in the book by Tornabene et al. [57], once 

the seismic acceleration is well-defined. 

 

3.1.6.1.3  Winkler-Pasternak elastic foundation 

 

According to the Winkler-Pasternak model for the elastic foundation, a generic shell 

structure resting on this kind of foundation can be analyzed by applying uniformly distributed 

springs at the top and bottom surfaces, depending on the side where the foundation is applied. 

These springs are characterized by a value of stiffness along each principal direction denoted 

by 
           
1 1 2 2 3 3, , , , ,f f f f f fk k k k k k
     

, where the subscripts specify the direction, whereas the 

superscripts stand for the surface of application. If the Pasternak hypotheses are introduced, a 

shear layer characterized by shear moduli 
   

,f fG G
 

 can be considered, too. 
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The inertia features are defined once the density of the foundation at the external surfaces 

of the elastic foundation 
   

,f f 
 

 is specified. The linear model at issue is depicted in Figure 

3.10. 

 

Figure 3.10 – Winkler-Pasternak foundation applied at the bottom surface of the shell. 

 

Without describing the complete treatise, which are presented in the book by Tornabene et 

al. [57], the generalized external forces applied on the shell middle surface related to this 

elastic foundation can be computed as follows 

 

          

          

          
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3 3
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2 2 2 2 2
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3 3 3 3 3

0
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f f f

N

f f f

N

f f f

q L u I u

q L u I u

q L u I u

      



      



      















 

 

 







  (3.219) 

for 0,1,2,..., , 1N N   . The stiffness of the elastic foundation is described through the terms 

     1 2 3

1 2 3, ,f f fL L L
     

, which are defined by 
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                     

                     

                           

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3
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3 3 ( ) 1 2 3 ( ) 1 2

f f f

f f f

f f f f f

L k F F H H k F F H H

L k F F H H k F F H H

L k G F F H H k G F F H H

     

   

     

   

     

   

         

         

           

 

  

  

      

 (3.220) 

where the quantities  
2


  represent the Laplacian operator in curvilinear orthogonal 

coordinates evaluated at the top and bottom surfaces, respectively, required to describe the 

shear stiffness of the Pasternak model. Analytically speaking, the Laplacian operator assumes 

the following aspect 

2 2
2 22

2 2 2 2 2 2 2 2 2 2 2

1 1 1 2 2 2 1 2 1 1 1 2 1 2 1

1 1 1 1

3 2 2 2 3 2 2 2 2 2

1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 1 2

2 2

3 2 2 2 3

2 2 2 2 2 2 2 2

1 1 1

1 1

1

A R

A H A H A A H A R H H

A R A R

A H A R H A A H A R H H

A R

A H A R H



   

 

    



  

    
     

    

    
     

      

  
  

    

  (3.221) 

which must be computed at the external surfaces for 2h   , in order to evaluate the 

corresponding quantities  
2


 . 

On the other hand, the inertia properties in (3.219) are taken into account once the 

quantities 
     1 2 3

1 2 3, ,f f fI I I
     

 are defined. They are specified below 

 

                         

                         
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f f f f f

f f f f f

f f f f f

I h F F H H h F F H H

I h F F H H h F F H H

I h F F H H h F F H H
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   

     

   

     

   

 

 

 

           

           

           

  

  

  

  (3.222) 

The expression (3.219) can be conveniently written in matrix form as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1

2 2

3 3

1 1 1 1 1
1 1

2 2 2 2 2

0 0

3 3 3 3 3

0 0 0 0

0 0 0 0

0 0 0 0

f f f
N N

f f f

f f f

q L u I u

q L u I u

q L u I u

      

      

       

 

 

         
         

          
         
                  

    (3.223) 

Analogously, a compact matrix form can be used too 

          
1 1

0 0

N N

f f f

    

 

 

 

  q L u M u   (3.224) 
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for 0,1,2,..., , 1N N   . The stiffness matrix 
 
f


L  and the mass matrix 

 
f


M  of the 

foundation can be easily deducted by comparing equations (3.223) and (3.224). One gets 

  

 

 

 

 

 

 

 
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2 2

3 3
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0 0 0 0

0 0 , 0 0

0 0 0 0

f f

f f f f

f f

L I

L I

L I

   

     

   

   
   

    
   
      

L M   (3.225) 

 

 

3.1.7  STRONG FORMULATION 

 

The strong form of the governing equations can be deducted directly from the general 

expression of the Hamilton’s variational principle obtained in (3.211). A brief summary of the 

formulation in hand is only presented in this section. A more complete treatise can be found 

in the book by Tornabene et al. [57]. 

Having in mind the Hamilton’s principle (3.211), it should be noted that the variation of 

the derivatives must be performed as far as the elastic energy of deformation   is 

concerned. For this purpose, the integration by part rule can be applied. For the sake of 

conciseness, the procedure is shown in matrix form, but the complete treatise in extended 

notation is presented in the book by Tornabene et al. [57]. One gets 

     

1 2
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1 2 1 2
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A A d d
  

 

   
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    D u S  
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A A d d
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 
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



    u D S   

         
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2 2 1 1

T T

A d A d
   

 

 

     u S u S   (3.226) 

for 0,1,2,..., , 1N N   , where i

D  stands for the equilibrium operators defined below 

1

22 1 1

1 1 1 2 1 1 2 1 1 2 2 2 2 1 2 2 1

*

1 1 1 1 1 1 1
0 1 0 0

0 0 0 0 0 0 0 0 0
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    
    

      
 
 
 
 
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D   (3.227) 
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2
1* 1 2 2
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 
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D   (3.228) 

3*
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D   (3.229) 

On the other hand, the vectors 
 

1



S  and 
 

2



S  collects the resultants of the internal stresses 

evaluated along the edges of the shell middle surface defined as follows 

        1 2 3

1 1 12 1

T

N N T
      
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 
 

S   (3.230) 

        1 2 3

2 21 2 2

T

N N T
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
 
 

S   (3.231) 

for 0,1,2,..., , 1N N   . By inserting expression (3.226) into (3.211), one gets 
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This relation is satisfied once all the multiplicative coefficients of each variation are null, 

where the variations collected into 
 u  denote the arbitrary generalized displacements. As a 

result, the motion equation are obtained, as well as the boundary conditions. In particular, 

three equations of motion are derived for each order of kinematic expansion   
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At this point, the motion equations can be written as a function of the generalized 

displacements collected in 
 

u  if the definitions of the generalized stress resultants (3.179) 

are recalled. One gets 

 
             
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where the fundamental operator 
 

L  has been introduced 
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Consequently, by defining 
     

sa va

  
 q q q  and introducing the expressions of the external 

loads due to an elastic foundation 
 
f


q , equation (3.234) becomes 
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for 0,1,2,..., , 1N N   . Relations (3.236) are known as fundamental equations. A generic 

element 
  i j

fgL
  

 of the fundamental operator defined in (3.235) takes the following aspect for 

a generic shell structure in a principal curvilinear coordinate system, for , 1,2,3f g  , 

, 0,1,2,..., , 1N N    , and , 1,2,3i j   
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A simpler expression of the fundamental equations (3.236) can be obtained if the effect of 

the elastic foundation is neglected as follows 
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  L u q M u   (3.238) 

It should be noted that the maximum order of expansion N  defines the number of 

equations. In particular, the total number of equations is equal to 3 ( 2)N   for a theory that 

embeds the Murakami’s function.  

For the sake of clarity, the complete system of fundamental equations (3.238) can be 

written in matrix form as follows 

 

         

         

             

             

 

 

 

 

 

 

 

 

0 0 100 01 00

1 1 1 110 11 1

0 1 1

111 0 1 1 1 1 1

N N

N N

NNN N N N N N

NNN N N N N N







    

    
    
    
    
      
    
    
    
    
      

L L L L qu

qL L L L u

quL L L L

quL L L L

  

 

         

         

             

             

 

 

 

 

0 0 100 01 0

1 1 110 11 1

0 1 1

11 0 1 1 1 1 1

N N

N N

NN N N N N N

NN N N N N N







    

   
   
   
   
   
   
   
   
   
    

M M M M u

M M M M u

uM M M M

uM M M M

  (3.239) 

Finally, it should be recalled that the differential system at issue can be solved only if the 

proper boundary conditions are enforced. The Hamilton’s principle provide the following 

equations 

                
1 1 2 2

2 1

2 2 1 1

T T

A d A d
     

   

 

      u S S u S S   (3.240) 

These integrals must be equal to zero, too. Thus, one gets 
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       
       

1 1

2 2

T

T

  

 

  

 









u S S

u S S

  (3.241) 

Relations (3.241) provide the boundary conditions along the external edges of the middle 

surface. For constant values of 1  the conditions at issue are given by 

 
     

1 1
or

  

  u 0 S S   (3.242) 

On the other hand, for constant values of 
2  these conditions become 

 
     

2 2
or

  

  u 0 S S   (3.243) 

Several kinds of boundary conditions can be obtained by combining properly relations 

(3.242) and (3.243) along the four edges of the reference domain. 

For the sake of completeness, it should be specified that the generalized stresses in (3.242)-

(3.243) involve the natural (or force) boundary conditions, whereas the generalized 

displacements are needed for the essential (or geometric) boundary conditions. Since both 

displacements and stress resultants appear in the boundary conditions, the continuity 

requirement of this strong formulation is 1C . The natural boundary conditions can be written 

by means of definition (3.179). 

Finally, it should be noted at this point that a numerical technique must be employed to 

evaluate all the matrices and vectors that appear in (3.236). These quantities can be obtained 

by approximating directly the derivatives with respect to the coordinates 
1 2,  . For this 

purpose, the DQ method presented in the first chapter is employed to get the discrete form of 

the governing equations. 

 

 

3.1.7.1  Governing equations for distorted domains 

 

The coordinate change illustrated in the previous chapter must be considered to deal with 

distorted domain. Thus, the differential operators (3.237) have to be modified accordingly. In 

particular, as shown in the previous chapter, the first-order derivatives with respect to the 

principal curvilinear coordinates become 
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1 11, 2,

1 1 2

  
  

  
 

  
  (3.244) 

 
2 21, 2,

2 1 2

  
  

  
 

  
  (3.245) 

As far as the second-order and mixed derivatives are concerned, the following substitution 

must be performed 

1 1 1 1 1 1 1 1

2 2 2 2
2 2

1, 2, 1, 2, 1, 2,2 2 2

1 1 2 1 2 1 2

2            
      

     
    

      
  (3.246) 

2 2 2 2 2 2 2 2

2 2 2 2
2 2

1, 2, 1, 2, 1, 2,2 2 2

2 1 2 1 2 1 2

2            
      

     
    

      
  (3.247) 

 

1 2 1 2

1 2 2 1 1 2 1 2

2 2 2

1, 1, 2, 2,2 2

1 2 1 2

2

1, 2, 1, 2, 1, 2,

1 2 1 2

   

       

   
   

     
   

  
  

   

  
   

   

  (3.248) 

where 1 2,   stand for the natural coordinates defined in the intervals  1 1,1    and 

 2 1,1   , respectively. The meaning of the various quantities that appear in (3.244)-(3.248) 

is explained in the previous chapter. In other words, the derivatives at issue are written in the 

computational element (or master element). 

It should be noted that both the stress resultants and displacement components involved in 

the boundary conditions (3.242)-(3.243) must be modified to take into account distorted 

domains. For this purpose, the outward unit vectors nn , sn , n  along each edge of the 

irregular domain are required, as shown in Figure 3.11. 

These vectors are computed as the direction cosines of the three corresponding directions. 

In particular, each vector is fully described once its three components are introduced 

 

 

 

1 2 3

1 2 3

1 2 3

T

n n n n

T

s s s s

T

n n n

n n n

n n n   





   

n

n

n

  (3.249) 
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Figure 3.11 – Outward unit normal vectors for a generic edge [62]. 

 

The quantities in (3.249) allow to evaluate the generalized displacements along a generic 

edge 
 
nu


, 
 
su


 and 
 

u


  as follows, for 0,1,2,..., , 1N N    

 

     

     

   

1 1 2 2

1 1 2 2

3

n n n

s s s

u n u n u

u n u n u

u u

  

  

 



 

 



  (3.250) 

Analogously, the generalized stress resultants 
  1

nN
 

, 
  2

nsN
 

 and   3T
 


 can be computed as 

shown below, for 0,1,2,..., , 1N N    

 

         

         

     

1 1 1 1 1

2 2 2 2 2

3 3 3

2 2

1 1 2 2 12 1 2 21 1 2

1 1 1 2 2 2 12 1 2 21 2 1

1 1 2 2

n n n n n n n

ns n s n s n s n s

n n

N N n N n N n n N n n

N N n n N n n N n n N n n

T T n T n

         

         

     



   

   

 

  (3.251) 

Several kinds of restraints can be enforced by applying the proper boundary conditions and 

using the quantities just introduced. 

 

 

3.1.7.2  Discrete form of the governing equations  

 

By means of the DQ method, the partial derivatives that describe the mechanical behavior 

of laminated composite doubly-curved shells are written in each sampling point of the 

domain. Consequently, the fundamental equations (3.236) must be written in discrete form by 

applying directly the definition of the DQ method illustrated in the first chapter. 
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3.1.8  WEAK FORMULATION 

 

In order to obtain the weak form of the governing equations, the kinematic assumption 

concerning the displacement field (3.37) must be recalled and inserted into the general 

expression of the Hamilton’s principle (3.211). Let us consider first the term related to the 

variation of the kinetic energy T . Having in mind the definition (3.37), one gets 

      

1 2

1

1 2 1 2

0

NT

A A d d
  

 

   




 
  

 
  u M uT   

      

1 2

1

1 2 1 2

0

NT
T T A A d d

  

 

  




 
  

 
  N u M N u   

      

1 2

1

1 2 1 2

0

NT
T A A d d

  

 

  




 
  

 
  u N M N u   

      

1 2

1

1 2 1 2

0

NT
T A A d d

  

 

  




 
  

 
  u NM N u   

      

1 2

1

1 2 1 2

0

NT
T A A d d

  

  

  




 
  

 
 

  u NM N u   

      
1

0

NT
  








 u M u   (3.252) 

where 
 

M  is the mass matrix of size    3 3N M N MI I I I  defined below 

  

 

 

 

1 1

2 2

1 2 3 3

0

0 1 2 1 2

0

T

T

T

I

I A A d d

I

  

   

    

 

 
 

  
 
  

 

N N 0 0

M 0 N N 0

0 0 N N

  (3.253) 

Let us take into account now the quantities that come from the variation of the elastic 

energy  . Recalling assumption (3.37) and having in mind definitions (3.89) and (3.99), the 

variation at issue becomes 

     

1 2

3

1 2 1 2

1

ii

T

i

A A d d
  

 

   



    D u S   

     

1 2

3

1 2 1 2

1

ii

T
T

i

A A d d
  

 

  



   D N u S   

      

1 2

3

1 2 1 2

1

ii

T T
T

i

A A d d
  

 

  



   u D N S   
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      

1 2

3

1 2 1 2

1

ii

T T

i

A A d d
  

 

  


  u B S   (3.254) 

in which the operators iB , for 1,2,3i  , assume the same meaning shown in (3.100). The 

same procedure can be performed for the terms linked to the work done by the external loads. 

The contribution due to the surface loads collected in 
 
sa


q  assumes the following aspect 

    

1 2

1 2 1 2

T

es saL A A d d
 

 

      u q   

    

1 2

1 2 1 2

T
T

sa A A d d
 

 

     N u q   

    

1 2

1 2 1 2

T

sa A A d d
 

 

     u Nq   

    

1 2

1 2 1 2

T

sa A A d d
 

 

    u Nq   

    
T

sa

 
 u Q    (3.255) 

where 
 
sa


Q  is the vector of the surface loads of size  3 1N MI I   defined below 

  

 

 

 1 2

1

2 1 2 1 2

3

sa

sa sa

sa

q

q A A d d

q



 

  

 

 
 

  
 
  

 

N

Q N

N

  (3.256) 

Analogously, as far as the volume forces are concerned, one gets 

    

1 2

1 2 1 2

T

ev vaL A A d d
 

 

      u q   

    

1 2

1 2 1 2

T
T

va A A d d
 

 

     N u q   

    

1 2

1 2 1 2

T

va A A d d
 

 

     u Nq   

    

1 2

1 2 1 2

T

va A A d d
 

 

    u Nq   

    
T

va

 
 u Q    (3.257) 

where 
 
va


Q  denotes the vector of the volume forces of size  3 1N MI I   defined below 
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  

 

 

 1 2

1

2 1 2 1 2

3

va

va va

va

q

q A A d d

q



 

  

 

 
 

  
 
  

 

N

Q N

N

  (3.258) 

The effect of the Winkler-Pasternak elastic foundation can be analyzed now, having in 

mind definitions (3.224). Starting from equation (3.211), the contribution of the foundation 

assumes the following aspect 

    

1 2

1 2 1 2

T

ef fL A A d d
 

 

      u q   

      

1 2

1

1 2 1 2

0

NT

f A A d d
  

 

  




 
  

 
  u L u   

      

1 2

1

1 2 1 2

0

NT

f A A d d
  

 

  




 
  

 
  u M u   

      

1 2

1

1 2 1 2

0

NT
T T

f A A d d
  

 

  




 
  
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  N u L N u   

      

1 2

1

1 2 1 2

0

NT
T T

f A A d d
  

 

  




 
  

 
  N u M N u   

      

1 2

1

1 2 1 2

0

NT
T

f A A d d
  

 

  




 
  

 
  u N L N u   

      

1 2

1

1 2 1 2

0

NT
T

f A A d d
  

 

  




 
  

 
  u N M N u   

      

1 2

1

1 2 1 2

0

NT
T

f A A d d
  

 

  




 
  

 
  u NL N u   

      

1 2

1

1 2 1 2

0

NT
T

f A A d d
  

 

  




 
  

 
  u NM N u   

      

1 2

1 1

1 2 1 2

0 0

N NT
T

f A A d d
  

  

  
 

 

 
  

 
  u NL N u   

      

1 2

1 1

1 2 1 2

0 0

N NT
T

f A A d d
  

  

  
 

 

 
  

 
  u NM N u   

             
1 1

0 0

N NT T

f f

     

 

 
 

 

  u K u u M u   (3.259) 

where 
 
f


K  and 

 
f


M  represent respectively the stiffness and mass matrices of the 

foundation, whose size is given by    3 3N M N MI I I I  for both of them. In particular, the 
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stiffness operator is defined as follows 
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  (3.260) 

whereas the mass matrix 
 
f


M  becomes 
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for , 0,1,2,..., , 1N N    . Finally, the effect of the external loads applied directly on the 

external edges must be considered. As far as the edges identified by 1  constants are 

concerned, one gets 
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where 
 

1



Q  is the vector of size  3 1N MI I   which collects their contribution defined below 
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  (3.263) 

Analogously, the contribution of the external forces applied directly on the external edges 

characterized by 
2  constants is given by 
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where 
 

2



Q  represents the vector of size  3 1N MI I   that includes these contributions defined 

below 
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All things considered, the Hamilton’s principle (3.211) assumes the following aspect if the 

weak formulation of the governing equation is pursued 
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for 0,1,2,..., , 1N N   . Since the vector 
 u  collects arbitrary generalized nodal 

displacements, equation (3.266) is satisfied only if these quantities are equal to zero. By 

assuming 
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    Q Q Q Q Q , the weak formulation of the governing motion 

equations are obtained as follows 
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The integral form of the weak formulation can be easily noted in (3.267). Nevertheless, a 

more compact system of equations can be obtained by recalling the definition of the 

generalized stress resultants (3.186). Let us consider the first term in (3.267). One gets 
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K u    (3.268) 

where  
K  is the stiffness matrix of size    3 3N M N MI I I I  defined below 
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The matrix product in the stiffness matrix (3.269) can be computed as follows, for 

, 0,1,2,..., , 1N N    , by means of the Kronecker product “ k ”. The operators at issue are 

listed by column for conciseness purposes. 
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Third column of the stiffness matrix 
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Due to definition (3.268), the fundamental equations (3.267) can be written in terms only 

of the generalized displacements collected in 
 

u . Thus, the fundamental equations assume 

the following aspect 

 
               

1 1

0 0

N N

f f

      

 

 

 

    K K u M M u Q   (3.270) 

for 0,1,2,..., , 1N N   . Equation (3.270) represents the fundamental nucleus of the weak 

formulation linked to the  -th order of kinematic expansion. A simpler expression is obtained 

if the effect of the elastic foundation is neglected 
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          
1 1

0 0

N N
    

 

 

 

  K u M u Q   (3.271) 

In order to understand more clearly the meaning of this nucleus, the extended matrix form 

of (3.271) is shown below for a kinematic model of order N , embedding the Murakami’s 

function 

         

         

             

             

 

 

 

 

0 0 100 01 0

1 1 110 11 1

0 1 1

11 0 1 1 1 1 1

N N

N N

NN N N N N N

NN N N N N N







    

   
   
   
   
    
   
   
   
   
    

K K K K u

K K K K u

uK K K K

uK K K K

  

         

         

             

             

 

 

 

 

 

 

 

 
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N N

N N

NNN N N N N N

NNN N N N N N







    

    
    
    
    
     
    
    
    
    
      

M M M M Qu

QM M M M u

QuM M M M

QuM M M M

  (3.272) 

The essential (or geometric) boundary conditions only can be obtained from equation 

(3.266). In particular, one gets 

 
 

0

u   (3.273) 

for each order of kinematic expansion  . The continuity requirement is clearly 0C , since the 

natural (or force) boundary conditions are not involved. Nevertheless, a 1C  weak formulation 

can be obtained if the natural boundary conditions obtained for the strong formulation and 

presented in (3.242)-(3.243) are introduced in the model. Definition (3.186) will be used for 

this purpose. 

Finally, it should be noted at this point that a numerical technique must be used to compute 

all the matrices and vectors that appear in (3.272). These quantities can be achieved by 

performing the integration with respect to the coordinates 
1 2,  , in the intervals 

0 1

1 1 1,      and 
0 1

2 2 2,      . For this purpose, the IQ method presented in the first 

chapter is introduce to obtain the discrete form of the governing equations.  
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3.1.8.1  Governing equations for distorted domains 

 

The definitions of the stiffness matrix, the mass matrix, and the load vectors, must be 

modified in order to analyze the mechanical behavior of shell structures characterized by 

distorted domains, according to what has been shown in the previous chapter. For this 

purpose, the meaning of the Jacobian matrix J  must be recalled, since the integrals at issue 

are evaluated in the computational element (or master element), described through the natural 

coordinates 1 2,   defined in the intervals  1 1,1    and  2 1,1   , respectively. 

As far as the stiffness matrix  
K  is concerned, the coordinate change at issue leads to the 

following definition 

 

           

           

           

 

1 1 1 2 1 3 31 1 1 2 1

2 1 2 2 2 3 32 1 2 2 2

3 1 3 2 3 33 3 3 31 2

1 1

1 2 1 2

1 1

det

T T T

T T T

T T T

A A d d

             

              

            

 
 

 
 
 

  
 
 
 

 

B A B B A B B A B

K B A B B A B B A B J

B A B B A B B A B

  (3.274) 

where  det J  stands for the determinant of the Jacobian matrix. Analogously, the mass 

matrix 
 

M  for a distorted geometry becomes 

  

 

 

 

 

1 1

2 2

3 3

0
1 1

0 1 2 1 2

1 1

0

det

T

T

T

I

I A A d d

I

  

   

  

 
 

 
 

  
 
  

 

N N 0 0

M 0 N N 0 J

0 0 N N

  (3.275) 

The same approach can be pursued also for the stiffness and inertia matrices related to the 

effect of the elastic foundation, which assume the following aspect 
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 
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 
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2 1 2 1 2
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det

T

f

T

f f

T

f

L

L A A d d

L

 

  

 

 
 

 
 

  
 
  

 

N N 0 0

K 0 N N 0 J

0 0 N N

  (3.276) 

  
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 

 

 
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1 1

0 1 2 1 2

1 1

0

det

T

T

f

T

I

I A A d d

I

 

  

 

 
 

 
 

  
 
  

 

N N 0 0

M 0 N N 0 J

0 0 N N

  (3.277) 

Analogously, the determinant of the Jacobian matrix related to the coordinate change at 

issue is required also to compute the vectors that collect the surface and volume forces. 
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In particular, one gets respectively 

  

 

 

 

 

1
1 1

2 1 2 1 2

1 1
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det

sa

sa sa
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q

q A A d d
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

 



 
 
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  

 

N

Q N J

N

  (3.278) 
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 

 

 

 

1
1 1

2 1 2 1 2
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det
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va va
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q

q A A d d

q



 



 
 

 
 

  
 
  

 

N

Q N J

N

  (3.279) 

A different procedure must be followed to evaluate the vectors that include the external 

forces applied directly along the external edges, since a one-dimensional integral is involved, 

as shown by the definitions (3.263) and (3.265). In addition, it should be recalled that these 

forces are applied along a generic edge, thus the components that must be considered can be 

computed as shown in (3.251). In other words, the external loads applied along a generic 

edge, which is identified by the outward unit vector nn , are given by 
     1 2 3, ,n nsN N T
     

 , 

which can be collected in the corresponding vector 

        1 2 3
T

n n nsN N T
      


 
 

S   (3.280) 

for 0,1,2,..., , 1N N   . Having in mind definitions (3.263) and (3.265), their contribution 

along a generic curved edge identified by the outward unit vector nn  can be evaluated by 

means of the following one-dimensional integral 

  

 

 

 

1

2

3n

n

n ns n

s

N

N ds

T

 

  

 



 
 

  
 
  



N

Q N

N

  (3.281) 

where ns  is the curvilinear abscissa defined along the external edge. If the contribution of the 

four curved edges is considered, the integral in (3.281) can be written as follows 

 
 

 

 

 

 

 

 
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3
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T

 

  

 



 
 

  
 
  



N

Q N

N

  (3.282) 

for 1,2,3,4i  . The length of the edges at issue is given by  i
L . Through a change of 
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variables, the integration (3.282) can be performed in the interval  1,1  as shown below 

 
 
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 
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 
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
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Q N

N

  (3.283) 

in which 
 i

  the curvilinear abscissa used as variable of integration, for 1,2,3,4i  . At this 

point, the length 
 i

L  of each edge is required in order to compute the previous integrals. As 

shown in the previous chapter, the length of a generic curve lying on a curved surface is 

described by the following expression 

 
 

2 2
1

2 21 2
1 2

1

ji

j j

d d
L A A d

d d

 


 


   
       

   
   (3.284) 

for 1,2,3,4i   and 1,2j  . This relation can be used to evaluate distances in a distorted 

domain, having in mind that each edge is defined by peculiar functions described by the 

natural coordinates of the parent space 1 2,  . In particular, each edge can be obtained by 

assuming the boundary values of these coordinates, which are 
1 1    and 2 1   . Thus, the 

lengths of the four edges can be computed as follows 

    

2 21

2 21 2
2 1 2 11

1 11
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d d

L A A d
d d

 
 
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L A A d
d d

 
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   (3.288) 

If an isogeometric mapping is employed to describe arbitrarily shaped domains, the 

coordinates 
1 2,   assume the following aspect along the boundary edges 

  
     

     

1 1 1 11 1

2

2 2 1 12 1

, 1
edge 1 1
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    

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  
   

  
  (3.289) 
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in which 
       1 1 1 2 1 3 1 4

, , ,     and 
       2 1 2 2 2 3 2 4

, , ,     are the parametric curves that allow to 

describe the arbitrary shape of each edge. At this point, the integrals in (3.285)-(3.288) can be 

easily evaluated to obtain the lengths of the four edges. As a consequence, the stress resultants 

along the boundaries (3.283) can be computed, too. In particular, one gets 
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3.1.8.2  Discrete form of the governing equations  

 

The definitions presented in the previous section must be written in discrete form and 

evaluated in each point of the reference domain, identified by the coordinates 1 2,f g   

introduced in (3.31)-(3.32). 
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For this purpose, the IQ method is used. In the following, the discrete forms of the 

definitions in hand will be obtained for regular and distorted domains. 

 

3.1.8.2.1  Discrete equations for regular domains 

 

By means of the IQ method, the two-dimensional integral that defines the stiffness matrix 

 
K  can be written in discrete form and evaluated in each point of the reference domain. The 

operator (3.269) assumes the following aspect 
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for , 0,1,2,..., , 1N N    . It should be recalled that 
1 1

,N MI I

f gw w  represent the weighting 

coefficients for the integration in the physical domain, whereas 
   1 2

,
fg fg

A A  denote the values 

that the Lamè parameters assume in each discrete point of the domain. 

Analogously, the same procedure is performed for the mass matrix 
 

M  defined in 

(3.261), which becomes 
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for , 0,1,2,..., , 1N N    . In a similar manner, the stiffness matrix and the inertia matrix of 

the elastic foundation, defined respectively in (3.260) and (3.261), can be written in discrete 

form as follows 
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for , 0,1,2,..., , 1N N    . On the other hand, the discrete vectors of the surface loads and 

the volume forces assume the following aspect 
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Finally, the discrete vectors of the forces applied directly on the edges for constant values 

of 1 , which are defined in (3.263), are given by 
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whereas the ones for 
2  constants, defined in (3.265), can be computed as follows 
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It should be noted that the discrete forms shown in (3.303)-(3.304) require only one 

weighting coefficient since a one-dimensional integral have to be solved. 

 

3.1.8.2.2  Discrete equations for distorted domains 

 

As shown above, the Jacobian determinant is required to write the governing equations for 

distorted domains. Thus, in the corresponding discrete forms, even the Jacobian determinant 

must be computed in each discrete point of the domain.  

The stiffness matrix 
 

K  introduced in (3.274) can be written in discrete form and 

evaluated in each point of the reference domain as follows 
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for , 0,1,2,..., , 1N N    , in which 
1 1N MI I

f gw w  are the weighting coefficients for the 

integration in the parent space, whereas  
 

det
fg

J  is the value that the determinant of the 

Jacobian matrix assume in each discrete node of the domain. 

As far as the mass matrix 
 

M  defined in (3.275) is concerned, the corresponding discrete 

form is given by 
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for , 0,1,2,..., , 1N N    . At this point, the stiffness matrix and the inertia matrix of the 

foundation, whose definitions are shown respectively in (3.276) and (3.277), assume the 

following discrete aspect 
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for , 0,1,2,..., , 1N N    . Analogously, the discrete vectors of the surface loads and the 

volume forces, defined respectively in (3.278) and (3.279), are given by 
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Finally, the external loads applied along the curved boundaries defined in (3.293)-(3.296) 

assume the discrete forms shown below 
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At this point, both the strong and weak formulations have been presented. For the sake of 

clarity, the procedures shown in this chapter that allow to obtain the governing equations at 

issue are summarized in the graph depicted in Figure 3.12. 

It can be noted from Figure 3.12 that the weak formulation with 1C  compatibility 

conditions is an hybrid approach, since both the IQ and DQ methods are involved to obtain 

the governing equations. In particular, the DQ method is required to enforce the natural 

boundary conditions that are obtained for the strong formulation. 

Finally, the equations that govern the mechanical problem at issue can be summarized in 

the scheme of physical theories, for both the strong and weak formulations, as shown in 

Figures 3.13 and 3.14, if the contributions of the elastic foundations are neglected. 

 



Chapter 3 

Michele Bacciocchi 138 

 

Figure 3.12 – Comparison between the strong and weak formulations. 

 

For this purpose, the momentum vector per unit surface 
 

Λ  must be introduced as follows 
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1
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N
  







Λ M u   (3.315) 

for 0,1,2,..., , 1N N   , as constitutive equation. The vector 
 

u  collects the velocity 

components, which can be computed as the time derivative of the corresponding generalized 

displacements 

 
 

 

t


 




u
u   (3.316) 

At this point, the vector of inertial forces per unit surface 
If  can be evaluated as the time 

derivative of 
 

Λ , changed in sign 
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Definitions (3.315)-(3.317) are valid for the strong formulation. The same quantities are 

required also for the corresponding weak formulation. In particular, one gets 
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u   (3.319) 
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for 0,1,2,..., , 1N N   . 

 

 

3.2  EXTERNAL RESTRAINTS 

 

The governing equations deducted in the previous sections can be solved once the proper 

boundary conditions (natural or essential) are enforced. These conditions assume different 

aspects according to the kind of restraint, which can be fully clamped (C), free (F), or simply-

supported (S). In particular, one gets the following conditions for 0,1,2,..., , 1N N    

Clamped edge boundary conditions 

      0 1 0 1

1 2 3 1 1 1 1 2 2 20 for or ,u u u
  

               (3.321) 

      0 1 0 1

1 2 3 2 2 2 2 1 1 10 for or ,u u u
  

               (3.322) 

Free edge boundary conditions 

     1 2 3 0 1 0 1

1 12 1 1 1 1 1 2 2 20, 0, 0 for or ,N N T
     

               (3.323) 

     1 2 3 0 1 0 1

21 2 2 2 2 2 2 1 1 10, 0, 0 for or ,N N T
     

               (3.324) 

Simply-supported boundary conditions 

     1 0 1 0 1

1 2 3 1 1 1 1 2 2 20, 0 for or ,N u u
   

               (3.325) 

     2 0 1 0 1

2 1 3 2 2 2 2 1 1 10, 0 for or ,N u u
   

               (3.326) 
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Figure 3.13 – Scheme of physical theories for the higher-order strong formulation. 
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Figure 3.14 – Scheme of physical theories for the higher-order weak formulation. 
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It is convenient at this point to introduce a notation to identify univocally each external 

side of the domain, where the boundary conditions are applied. In particular, each side is 

denoted by a cardinal direction, according to the scheme defined below 

 

0 0 1

2 2 1 1 1

1 0 1

2 2 1 1 1

0 1 0

2 2 2 1 1

0 1 1

2 2 2 1 1

West edge (W)

East edge (E)

North edge (N)

South edge (S)

    

    

    

    

  

  

  

  

  (3.327) 

The boundary conditions are specified by following the order WSEN. It should be recalled 

once again that the natural boundary conditions are enforced only for 1C  formulations. 

Finally, conditions (3.321)-(3.326) must be applied also along the external edges of irregular 

domains, by using the displacements and stress resultants introduced in (3.250) and (3.251), 

respectively. 

 

 

3.2.1  CONTINUITY CONDITIONS 

 

The boundary conditions assume a different meaning if the structure has a closing edge, as 

in the case of complete shells of revolution or toroidal shells. In general, it is more appropriate 

talking about continuity conditions instead of boundary conditions, since these conditions are 

required to satisfy the structural congruence. The conditions at issue are written in terms of 

both stress resultants and generalized displacements, for 0,1,2,..., , 1N N   . If the closing 

edge is the one defined by 0 1

2 2  , one gets 
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     

     

       

       

       

 

 

 

  (3.328) 

Analogously, if the closing edge is the one denoted by 0 1

1 1  , the continuity conditions 

are given by 
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 

 

 

 (3.329) 

 

Relations (3.328)-(3.329) must be applied independently from the formulation of the 

governing equations. 

 

 

3.3  REMARKS ON FIRST-ORDER THEORIES 

 

The well-known Reissner-Mindlin Theory or First-order Shear Deformation Theory 

(FSDT) for doubly-curved shells can be obtained directly from higher-models, following the 

same procedure illustrated in the book by Tornabene et al. [57]. The weak formulation for the 

FSDT can be easily deducted by setting properly the matrices and vectors that appear in the 

governing equations. 

As far as the well-known Kirchhoff-Love theory for thin plates and shells is concerned, it 

cannot be obtained directly from the present higher-order formulation. Nevertheless, by 

setting the shear correction factor equal to 610   in the Reissner-Mindlin theory, the FSDT 

tends to the Kirchhoff-Love model, since the transverse shear stresses are neglected.  
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Chapter 4 
 

 

 

Numerical Applications: 

Free Vibration Analysis 

 

 

 
The fundamental system of equations that governs the mechanical behavior of laminated 

composite shell structures has been obtained in the previous chapter, in the framework of 

weak and strong formulations. The numerical techniques illustrated in the first chapter allow 

to obtain the discrete form of the governing equations. 

The main aim of this chapter is to evaluate the natural frequency of several structures to 

investigate the accuracy, stability and reliability of the present formulations. Firstly, the 

procedure to get the natural frequencies, as well as the corresponding mode shapes, is 

presented. Then, several tests and numerical applications are shown. 

 

 

4.1  MOTION EQUATIONS 

 

The motion equations that describe the dynamic behavior of composite shell structures can 

be obtained directly from the fundamental system presented in the previous chapter, by setting 

the external load vectors equal to zero. For the sake of conciseness, the effect of the Winkler –
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Pasternak elastic foundation is neglected, too. The natural frequencies can be achieved by 

using the well-known method of variable separation. The solution procedure is briefly shown 

for both the strong and weak formulations.  

 

 

4.1.1  STRONG FORMULATION 

 

According to the assumptions just introduced, the strong form of the governing equation is 

given by the following relation, for each order of kinematic expansion    

 
       

1 1

0 0

N N
   

 

 

 

 L u M u   (4.1) 

The solution of the dynamic problem at issue can be pursued by setting 

 
        i

1 2 1 2, , , e tt
     u U   (4.2) 

for 0,1,2,..., , 1N N   , in which   denotes the circular frequencies of the structures which 

allows to compute the natural frequencies as 2f   . On the other hand, 
 

U  collects the 

mode amplitudes and it is defined as follows 

 
       

1 2 3

T

U U U
    

 
U   (4.3) 

for 0,1,2,..., , 1N N   . The size of 
 

U  is 3 1 , for each order of kinematic expansion. By 

inserting the definition (4.2) and performing its second-order derivative with respect to the 

time variable t , the previous relation becomes 

 
       

1 1
2

0 0

N N
   

 


 

 

  L U M U 0   (4.4) 

for 0,1,2,..., , 1N N   . At this point, the discrete form of equation (4.4) can be carried out 

by applying the DQ method to approximate directly the derivatives with respect to the 

geometric coordinates of the reference domain. One gets 

 2K M    (4.5) 

where K  and M  are the discrete global stiffness and mass matrices, respectively, whose size 

is clearly given by    3 2 3 2N M N MI I N I I N   . On the other hand,   is the discrete vector 

of mode amplitudes, whose size is  3 2 1N MI I N   . 
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4.1.2  WEAK FORMULATION 

 

Analogously, following the assumptions introduced before, the weak form of the 

governing equation can be written as follows, for each order of kinematic expansion    

        
1 1

0 0

N N
   

 

 

 

  K u M u 0   (4.6) 

The solution of the dynamic problem consider in this chapter can be achieved by setting 

        1 2 1 2, , , i t

f g f gt e
     u U   (4.7) 

for 0,1,2,..., , 1N N   , where 
 

U  is the vector that collects the modal displacement in 

every discrete node of the domain, for each circular frequency   of the structure, defined 

below 
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  (4.8) 

It should be noted that these nodal quantities are listed following the order provided in 

Figure 1.2. In general, 
 
 
k fg

U


 represents the generic k -th element of 
 

U  linked to the point 

of coordinates 
1 2,f g  . The size of 

 
U  is  3 1N MI I  , for each order of kinematic 

expansion. 

By inserting the definition (4.7) and performing its second-order derivative with respect to 

the time variable t , the previous relation assumes the following aspect 

 
       

1 1
2

0 0

N N
   

 


 

 

 K U M U   (4.9) 

for 0,1,2,..., , 1N N   . Once the stiffness matrix and the mass matrix are computed by 

means of the IQ method for each order of kinematic expansion, the discrete global system of 

governing equations is obtained. One gets 

 2K M    (4.10) 
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where K  and M  are the discrete global stiffness and mass matrices, respectively, whose size 

is given by    3 2 3 2N M N MI I N I I N   . On the other hand,   is the discrete vector of 

mode amplitudes, whose size is  3 2 1N MI I N   . 

It can be easily noted that expressions (4.5) and (4.10) are equivalent, even if the various 

quantities are computed in a completely different manner. In any circumstance, these relations 

represent the discrete equation of the free vibration frequencies, which is algebraically a 

generalized linear eigenvalue problem. 

 

 

4.1.3  SOLUTION OF THE EIGENVALUE PROBLEM 

 

As specified above, equations (4.5) and (4.10) represent a generalized linear eigenvalue 

problem. By definition, the eigenvalues 
k  are evidently the circular frequencies, whereas the 

corresponding eigenvectors k  denote the mode shape vector. It should be recalled that the 

maximum number of eigenvalues and eigenvectors that can be computed depends on the 

number of sampling points of the discrete grid distribution. 

The well-known kinematic condensation can be used to reduce the size of the dynamic 

problem at issue. For this purpose, the vector   is divided into two parts, so that the vector of 

the modal displacements linked to each discrete point placed within the reference domain, 

denoted by 
d , is separated from the one that collects the modal displacements of the points 

placed along the external edges, denoted by b . Consequently, one gets  
T

b d    . 

Once the classification at issue is introduced, the same scheme is employed to partition the 

discrete stiffness and mass matrices as follows 

 2bb bd b b

db dd d dd d


       

       
       

K K 0 0

K K 0 M

 

 
  (4.11) 

The stiffness and inertia matrices related to the internal points of the domain are denoted 

by ,dd ddK M . On the other hand, the subscript “ b ” specifies the stiffness and inertia 

contributions that involve the boundary points. In other words, the operators , ,bb bd dbK K K  

are linked to the application of boundary conditions, since the corresponding displacements 
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are the ones defined along the boundary points. Due to the numerical techniques employed in 

these circumstances, the boundary conditions involve both the boundary points and the inner 

ones (included respectively in b  and 
d ). 

At this point, it should be recalled that the natural boundary conditions are replaced by the 

corresponding field equations if a 0C  formulation is considered. On the other hand, the 

essential boundary conditions are applied in the same manner for both 0C  and 1C  schemes. 

Equation (4.11) can be conveniently written in extend form as follows 

 
2

bb b bd d

db b dd d dd d

 

 

K K 0

K K M

 

  
  (4.12) 

The definition of b  can be easily deducted from the first vector equation 

 1

b bb bd d

 K K    (4.13) 

and inserted into the second one in order to obtain the following relation 

   1 1 2

dd dd db bb bd d   M K K K K I 0   (4.14) 

in which I  is the identity matrix. The size of the eigenvalue problem (4.14) is 

       3 2 2 2 3 2 2 2N M N MI I N I I N       , which is noticeably lower than the one 

that characterize the previous eigenvalue problems (4.5) and (4.10). By solving the dynamic 

problem (4.14), the circular frequencies 
k  and the corresponding mode shapes k  are 

obtained. Finally, the natural frequencies kf  are achieved recalling that 2k kf   . 

 

 

4.2  NUMERICAL APPLICATIONS 

 

In this section, the numerical solutions of various tests and applications are presented. The 

approaches presented in the previous chapters are implemented in a MATLAB code to solve 

both the strong and weak formulations of the governing equations. For this purpose, the DQ 

and IQ are employed. 
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4.2.1  CONVERGENCE ANALYSIS 

 

The main aim of this paragraph is to present a set of convergence analyses in order to 

investigate the effect on the numerical solutions of the choice of both discrete grid 

distributions and basis functions. For this purpose, a simply-supported (SSSS) square plate of 

side 1mx yL L   and thickness 0.1mh   is considered. The results of this investigation are 

graphically shown for the first natural frequency only, but similar behaviors can be obtained 

for higher frequencies, too. 

The accuracy of the numerical approaches under consideration are presented in terms of 

relative error 1 , which is defined as follows 

 1
1

1,

1
exact

f

f
     (4.15) 

in which 1f  is the first natural frequency of the structure obtained by means of the DQ and the 

IQ methods, whereas 
1,exactf  is the exact solution for the first frequency provided by Reddy 

[145]. The convergence analyses at issue are achieved by taking into account each basis 

function presented in the first chapter for the polynomial approximation. Once the basis 

function is set, all the discrete grid are employed to get the numerical solution. 

The convergence analyses are carried out for both isotropic and laminated configurations. 

As far as the isotropic medium is concerned, the layer is made of Aluminum ( 70GPaE  , 

0.3  , 
32707 kg m  ). On the other hand, the stacking sequence of the second case is 

 0 / 90 / 90 / 0 , in which the four layers have the same thickness and are all made of 

Graphite-Epoxy (
1 137.9 GPaE  , 2 3 8.96 GPaE E  , 

12 13 7.1GPaG G  , 
23 6.21GPaG  , 

12 13 0.3   , 23 0.49  , 
31450 kg m  ). The results for the isotropic plate are shown in 

Figures 4.1-4.6, whereas the ones for the laminated composite structure are presented in 

Figures 4.7-4.12. The solutions are obtained by means of the strong formulation, weak 

formulation with 1C  boundary conditions, and weak formulation with 0C  boundary 

conditions. The chosen basis function is specified on the top of each plot. Each convergence 

analysis is performed by using all the grid distributions introduced in the first chapter. These 

grid distributions are specified in the legend of the various plots. 
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Figure 4.1 – Convergence behavior of the first natural frequency for a SSSS isotropic square plate in the 

framework of the Reissner-Mindlin theory (FSDT): strong formulation (part 1) [15]. 
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Figure 4.2 – Convergence behavior of the first natural frequency for a SSSS isotropic square plate in the 

framework of the Reissner-Mindlin theory (FSDT): strong formulation (part 2) [15]. 
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Figure 4.3 – Convergence behavior of the first natural frequency for a SSSS isotropic square plate in the 

framework of the Reissner-Mindlin theory (FSDT): weak formulation with 
1C  boundary conditions (part 1) [15]. 
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Figure 4.4 – Convergence behavior of the first natural frequency for a SSSS isotropic square plate in the 

framework of the Reissner-Mindlin theory (FSDT): weak formulation with 
1C  boundary conditions (part 2) [15]. 
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Figure 4.5 – Convergence behavior of the first natural frequency for a SSSS isotropic square plate in the 

framework of the Reissner-Mindlin theory (FSDT): weak formulation with 
0C  boundary conditions (part 1) [15]. 
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Figure 4.6 – Convergence behavior of the first natural frequency for a SSSS isotropic square plate in the 

framework of the Reissner-Mindlin theory (FSDT): weak formulation with 
0C  boundary conditions (part 2) [15]. 



Numerical Applications: Free Vibration Analysis 

Higher-order Strong and Weak Formulations for Arbitrarily Shaped Doubly-Curved Shells 157 

  

  

  

  

Figure 4.7 – Convergence behavior of the first natural frequency for a SSSS laminated square plate in the 

framework of the Reissner-Mindlin theory (FSDT): strong formulation (part 1) [15]. 
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Figure 4.8 – Convergence behavior of the first natural frequency for a SSSS laminated square plate in the 

framework of the Reissner-Mindlin theory (FSDT): strong formulation (part 2) [15]. 
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Figure 4.9 – Convergence behavior of the first natural frequency for a SSSS laminated square plate in the 

framework of the Reissner-Mindlin theory (FSDT): weak formulation with 
1C  boundary conditions (part 1) [15]. 
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Figure 4.10 – Convergence behavior of the first natural frequency for a SSSS laminated square plate in the 

framework of the Reissner-Mindlin theory (FSDT): weak formulation with 
1C  boundary conditions (part 2) [15]. 
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Figure 4.11 – Convergence behavior of the first natural frequency for a SSSS laminated square plate in the 

framework of the Reissner-Mindlin theory (FSDT): weak formulation with 
0C  boundary conditions (part 1) [15]. 
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Figure 4.12 – Convergence behavior of the first natural frequency for a SSSS laminated square plate in the 

framework of the Reissner-Mindlin theory (FSDT): weak formulation with 
0C  boundary conditions (part 2) [15]. 
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The following aspects can be noted by observing the graphs depicted in Figures 4.1-4.12: 

- The choice of the basis function define the accuracy and stability of the numerical 

approach. By choosing particular basis functions, in fact, the numerical results can 

diverge from the exact solutions since the coefficient matrix could be ill-conditioned. 

Therefore, the numerical error increases when the inversion of this matrix is carried 

out. In general, this aspect is unavoidable when the inversion of the matrix is 

required and an exact expression for the weighting coefficients is not available. 

Having in mind Figures 4.1-4.12, it is easy to note a fast detachment of the curves 

from higher values of accuracy if the number of discrete points is increased. On the 

other hand, more accurate results are obtained when the recursive formulae given by 

Shu are used [44]. 

- Analogously, better results can be achieved by setting properly the discrete grid 

distribution. In general, the Uniform, Hermite, Laguerre and Ding distributions are 

not accurate for any choice of basis functions. 

- The SF is characterized by a geometric convergence independently from the grid 

distribution, except from the aforementioned ones, for those basis functions that 

allow the evaluation of the weighting coefficients through recursive formulations. 

Generally speaking, a noticeably level of accuracy ( 13 1410 10    in logarithmic 

scale) can be reached for a reduced number of grid points ( 15N MI I  ). 

- The weak formulation with 0C  boundary conditions is characterized by a linear or 

algebraic convergence. Nevertheless, the accuracy that can be achieved is extremely 

lower than the other approaches ( 4 510 10    in logarithmic scale), independently 

from both the grid distributions and basis functions. Due to the linear convergence 

behavior, the same accuracy of the other approaches could be reached by increasing 

excessively the number of grid points. 

- The weak formulation with 1C  boundary conditions shows an intermediate behavior, 

if compared to the previous approaches. In particular, the same accuracy of the 

strong formulation ( 13 1410 10    in logarithmic scale) is reached with a geometric 

convergence behavior only for the Legendre-Gauss-Lobatto distribution, for almost 

all the basis functions. On the other hand, a linear convergence behavior as the one 

that characterize the weak formulation with 0C  boundary conditions can be observed 



Chapter 4 

Michele Bacciocchi 164 

for the other grid distributions and the accuracy is consequently lower ( 4 510 10    

in logarithmic scale). 

- Once the machine epsilon is reached, the curves oscillate randomly about this value. 

Thus, the so-called “Roundoff Plateau” can be easily identified, as illustrated in the 

book by Boyd [37]. The weak formulation with 0C  boundary conditions could show 

the same behavior if the number of grid points is increased noticeably. 

- The same accuracy is obtained for both the isotropic and composite structures. 

For the sake of completeness, the first ten natural frequencies for both the isotropic and 

laminated plates are shown also in Table 4.1 and Table 4.2, respectively. 

 

Table 4.1 - Convergence analysis for the first ten natural frequencies [Hz] of a SSSS isotropic square plate. The 

Lagrange polynomials are employed as basis functions [15]. 

f  11NI   15NI   21NI   25NI   31NI   Exact [145] 

Strong formulation (Cheb-Gau-Lob grid distribution) 

1 466.9278 466.9278 466.9278 466.9278 466.9278 466.9278 

2 1113.9183 1113.9347 1113.9347 1113.9347 1113.9347 1113.9347 

3 1113.9183 1113.9347 1113.9347 1113.9347 1113.9347 1113.9347 

4 1576.8422 1576.8422 1576.8422 1576.8422 1576.8422 1576.8422 

5 1576.8422 1576.8422 1576.8422 1576.8422 1576.8422 1576.8422 

6 1709.3428 1709.3621 1709.3621 1709.3621 1709.3621 1709.3621 

7 2082.1916 2082.6997 2082.7004 2082.7004 2082.7004 2082.7004 

8 2082.1916 2082.6997 2082.7004 2082.7004 2082.7004 2082.7004 

9 2229.9917 2229.9916 2229.9916 2229.9916 2229.9916 2229.9916 

10 2612.4496 2612.8314 2612.8319 2612.8319 2612.8319 2612.8319 

Weak formulation 
1C  (Leg-Gau-Lob grid distribution) 

1 466.9279 466.9278 466.9278 466.9278 466.9278 466.9278 

2 1113.8926 1113.9347 1113.9347 1113.9347 1113.9347 1113.9347 

3 1113.8926 1113.9347 1113.9347 1113.9347 1113.9347 1113.9347 

4 1576.8422 1576.8422 1576.8422 1576.8422 1576.8422 1576.8422 

5 1576.8422 1576.8422 1576.8422 1576.8422 1576.8422 1576.8422 

6 1709.3138 1709.3621 1709.3621 1709.3621 1709.3621 1709.3621 

7 2081.2550 2082.6980 2082.7004 2082.7004 2082.7004 2082.7004 

8 2081.2550 2082.6980 2082.7004 2082.7004 2082.7004 2082.7004 

9 2229.9918 2229.9916 2229.9916 2229.9916 2229.9916 2229.9916 

10 2611.7773 2612.8302 2612.8319 2612.8319 2612.8319 2612.8319 

Weak formulation 
0C  (Cheb III grid distribution) 

1 466.9962 466.9626 466.9449 466.9396 466.9354 466.9278 

2 1114.2696 1114.1095 1114.0207 1113.9945 1113.9730 1113.9347 

3 1114.2696 1114.1095 1114.0207 1113.9945 1113.9730 1113.9347 

4 1584.8338 1580.8933 1578.8201 1578.2143 1577.7196 1576.8422 

5 1584.8338 1580.8933 1578.8201 1578.2143 1577.7196 1576.8422 

6 1710.0687 1709.7338 1709.5447 1709.4890 1709.4433 1709.3621 

7 2083.8990 2083.2224 2082.9554 2082.8775 2082.8137 2082.7004 

8 2083.8992 2083.2224 2082.9554 2082.8775 2082.8137 2082.7004 

9 2252.7772 2241.4944 2235.5965 2233.8775 2232.4752 2229.9916 

10 2614.6673 2613.5847 2613.1996 2613.0873 2612.9953 2612.8319 
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Table 4.2 - Convergence analysis for the first ten natural frequencies [Hz] of a SSSS laminated square plate. The 

Lagrange polynomials are employed as basis functions [15]. 

f  11NI   15NI   21NI   25NI   31NI   Exact [145] 

Strong formulation (Cheb-Gau-Lob grid distribution) 

1 465.8828 465.8828 465.8828 465.8828 465.8828 465.8828 

2 869.9711 869.9811 869.9811 869.9811 869.9811 869.9811 

3 1106.4077 1106.4077 1106.4077 1106.4077 1106.4077 1106.4077 

4 1106.4077 1106.4077 1106.4077 1106.4077 1106.4077 1106.4077 

5 1312.0560 1312.0604 1312.0604 1312.0604 1312.0604 1312.0604 

6 1550.5355 1550.5443 1550.5443 1550.5443 1550.5443 1550.5443 

7 1565.8220 1566.1922 1566.1927 1566.1927 1566.1927 1566.1927 

8 2065.4520 2065.7236 2065.7240 2065.7240 2065.7240 2065.7240 

9 2212.8145 2212.8153 2212.8153 2212.8153 2212.8153 2212.8153 

10 2212.8145 2212.8153 2212.8153 2212.8153 2212.8153 2212.8153 

Weak formulation 
1C  (Leg-Gau-Lob grid distribution) 

1 465.8828 465.8828 465.8828 465.8828 465.8828 465.8828 

2 869.9555 869.9811 869.9811 869.9811 869.9811 869.9811 

3 1106.4077 1106.4077 1106.4077 1106.4077 1106.4077 1106.4077 

4 1106.4077 1106.4077 1106.4077 1106.4077 1106.4077 1106.4077 

5 1312.0508 1312.0604 1312.0604 1312.0604 1312.0604 1312.0604 

6 1550.5234 1550.5443 1550.5443 1550.5443 1550.5443 1550.5443 

7 1565.1392 1566.1909 1566.1927 1566.1927 1566.1927 1566.1927 

8 2064.9614 2065.7227 2065.7240 2065.7240 2065.7240 2065.7240 

9 2212.8153 2212.8153 2212.8153 2212.8153 2212.8153 2212.8153 

10 2212.8153 2212.8153 2212.8153 2212.8153 2212.8153 2212.8153 

Weak formulation 
0C  (Cheb III grid distribution) 

1 465.8898 465.8937 465.8908 465.8891 465.8873 465.8828 

2 869.5735 869.7744 869.8880 869.9194 869.9438 869.9811 

3 1121.8495 1114.8500 1110.7820 1109.5155 1108.4439 1106.4077 

4 1121.8507 1114.8504 1110.7821 1109.5155 1108.4439 1106.4077 

5 1310.4150 1311.2929 1311.7201 1311.8332 1311.9206 1312.0604 

6 1549.1640 1549.8872 1550.2557 1550.3526 1550.4273 1550.5443 

7 1563.1132 1565.8444 1566.0617 1566.1103 1566.1463 1566.1927 

8 2061.4567 2065.0975 2065.4758 2065.5627 2065.6286 2065.7240 

9 2239.4078 2227.8053 2220.7425 2218.4826 2216.5490 2212.8153 

10 2239.4539 2227.8190 2220.7461 2218.4845 2216.5498 2212.8153 

 

 

4.2.2  COMPARISON WITH THE FEM 

 

The same simply-supported plate of the previous section is considered also in this 

paragraph. In particular, two mechanical configurations are investigated: isotropic (one layer 

made of Aluminum) and laminated (four layers of equal thickness made of Graphite-Epoxy, 

in which  0 / 90 / 0 / 90  denotes the stacking sequence). The convergence analyses are 

performed considering five ratios h R . As far as the present approach is concerned, both the 

strong and weak formulations are taken into account. For this purpose, the Lagrange 
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polynomials are used as basis functions. The grid distributions chosen for these tests are the 

ones that have provided the best results in the previous applications, which are the 

Chebyshev-Gauss-Lobatto for the strong formulation, the Legendre-Gauss-Lobatto for the 

weak formulation with 1C  boundary conditions, and the Chebyshev of third kind for the weak 

formulation with 0C  boundary conditions. The present solution is obtained in the framework 

of the Reissner-Mindlin theory. 

In this circumstance, the convergence analyses are performed also by means a commercial 

code that implements the Finite Element Method (FEM). In particular, the software Strand7 is 

used to this aim [251]. Three kinds of quadrilateral finite elements are employed, respectively 

with 4 nodes (Quad4), 8 nodes (Quad8), and 9 nodes (Quad9). 

In these applications, the convergence behavior of the relative error (4.15) is plotted with 

respect to the degrees of freedom of each two-dimensional model (dofs), for the first four 

natural frequencies. The results are presented in graphical form in Figures 4.13-4.17. The 

following aspects can be observed: 

- The strong formulation and the weak formulation with 1C  boundary conditions reach 

the maximum level of accuracy for a reduced number of dofs. These approaches are 

both characterized by a geometric convergence, as in the previous applications, for 

each ratio h R . On the other hand, the weak formulation with 0C  boundary 

conditions shows a linear convergence for each ratio h R . 

- The accuracy of the present approaches increases for higher-values of thickness. 

Nevertheless, the proposed method is characterized by an excellent accuracy for both 

thin and thick structures. 

- The present formulations converge more quickly than the FEM, which is 

characterized by a lower level of accuracy reached in a rather linear manner. In 

general, a huge number of dofs is required to reach a higher accuracy, if compared to 

the strong formulation and the weak formulation with 1C  boundary conditions. 

- The accuracy of the FEM decreases noticeably for the laminated composite 

structures. In general, the FEM show a better behavior for thinner plates. This feature 

is particularly evident for the laminated case. 

- In some circumstances, it can be observed that the results provided by the 

commercial software reach the convergence for a different value from the exact one. 



Numerical Applications: Free Vibration Analysis 

Higher-order Strong and Weak Formulations for Arbitrarily Shaped Doubly-Curved Shells 167 

0.005h L   

Isotropic Laminated 

  

  

  

  

Figure 4.13 – Convergence behavior of the first four natural frequencies for both isotropic and laminated plates 

with 0.005h L   and comparison with the results provided by the FEM (Strand7). 
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0.01h L   

Isotropic Laminated 

  

  

  

  

Figure 4.14 – Convergence behavior of the first four natural frequencies for both isotropic and laminated plates 

with 0.01h L   and comparison with the results provided by the FEM (Strand7). 
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0.05h L   

Isotropic Laminated 

  

  

  

  

Figure 4.15 – Convergence behavior of the first four natural frequencies for both isotropic and laminated plates 

with 0.05h L   and comparison with the results provided by the FEM (Strand7). 
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0.1h L   

Isotropic Laminated 

  

  

  

  

Figure 4.16 – Convergence behavior of the first four natural frequencies for both isotropic and laminated plates 

with 0.1h L   and comparison with the results provided by the FEM (Strand7). 
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0.2h L   

Isotropic Laminated 

  

  

  

  

Figure 4.17 – Convergence behavior of the first four natural frequencies for both isotropic and laminated plates 

with 0.2h L   and comparison with the results provided by the FEM (Strand7). 
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4.2.3  HIGHER-ORDER SHEAR DEFORMATION THEORIES 

 

In the present section, the weak formulation of the governing equations is solved by means 

of the IQ method to obtain the natural frequencies of several laminated composite shells 

(Figure 4.18). For this purpose, the Lagrange polynomials are used as basis functions and the 

Legendre-Gauss-Lobatto grid is employed, since 1C  type of continuity condition is enforced. 

In the previous sections, in fact, this combination has proven to be the most accurate and 

stable, as far as the weak formulation is concerned. 

 

a) Elliptic cone b) Spherical shell 

 
 

c) Doubly-curved shell of translation d) Ellipsoid 

  

Figure 4.18 – Laminated composite shells structures: discrete representation and edge identification. 
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Several HSDTs are considered in this circumstance. In order to prove the reliability of the 

current numerical approach, the comparison with the solution obtained through a commercial 

FEM code is performed in each test. The four structures analyzed in this paragraph are an 

elliptic cone, a spherical shell, a doubly-curved shell of translation (obtained by sliding an 

elliptic curve along another ellipse), and an ellipsoid. The reference domains of these shells 

are fully described once the position vectors and the required geometric parameters are 

specified as in Table 4.3. On the other hand, their first ten natural frequencies are shown in 

Tables 4.4-4.7, together with the mechanical properties, the stacking sequences, and the 

number of discrete points ,N MI I . It should be specified that considerably higher values of 

,N MI I  are chosen to obtain an extremely accurate description of these curved surfaces. 

Finally, the first three mode shapes of these structures are depicted in Figure 4.19. The 3D-

FEM models are obtained by the commercial code Abaqus [252]. In particular, 20-node brick 

elements “C3D20” are employed for this purpose. 

 

Table 4.3 – Position vectors and geometric features of the laminated composite shells considered in the analyses. 

a) Elliptic cone 
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b) Spherical shell 

   
1 2 1 2 1 1 2 2 1 3

1 2 1 2

( , ) sin cos sin sin cos

2m, 6, 2 , 0,2 , 0.1m, 0.05m

R R R

R h h h

      

    

  

     

r e e e
 

c) Doubly-curved shell of translation 
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d) Ellipsoid 
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Table 4.4 – First ten natural frequencies [Hz] for a FC orthotropic elliptic cone for various higher-order shear 

deformation theories. 

Lamination scheme:  30  

Mechanical properties: 
1 137.9 GPaE  , 

2 3 8.96 GPaE E  , 
12 13 7.1GPaG G  , 

23 6.21GPaG  , 

12 13 0.3   , 
23 0.49  , 31450 kg m   

Discrete points: 61, 31N MI I   

f  5 6FSDTRS

 
 TSDTRS

 5 6ED1   
5 6ED2 

 ED3  ED4  3D-FEM  

1 45.497 45.507 45.454 45.341 45.352 45.347 45.345 

2 49.718 49.729 49.657 49.485 49.500 49.492 49.493 

3 66.060 66.083 67.300 66.931 66.937 66.924 66.917 

4 72.416 72.496 73.298 72.354 72.401 72.358 72.330 

5 74.457 74.518 75.513 74.703 74.763 74.735 74.721 

6 98.657 98.718 98.533 97.995 98.099 98.077 98.080 

7 104.622 104.692 104.673 104.035 104.164 104.143 104.140 

8 104.831 104.921 105.358 104.688 104.822 104.780 104.780 

9 110.578 110.753 111.366 110.255 110.524 110.461 110.460 

10 112.652 112.816 113.534 112.418 112.648 112.587 112.580 

 

 

Table 4.5 – First ten natural frequencies [Hz] for a FC laminated composite spherical shell cone for various 

higher-order shear deformation theories. 

Lamination scheme:  30 / 45  

Mechanical properties of the two layers: 
1 137.9 GPaE  , 

2 3 8.96 GPaE E  , 
12 13 7.1GPaG G  , 

23 6.21GPaG  , 
12 13 0.3   , 

23 0.49  , 31450 kg m   

Discrete points: 31, 41N MI I   

f  5 6FSDTRS

 
 TSDTRS

 5 6ED1   
5 6ED2 

 ED3  ED4  

1 43.217 43.520 43.256 42.835 43.059 42.847 

2 43.217 43.520 43.256 42.835 43.059 42.847 

3 60.488 60.650 61.757 60.553 60.649 60.522 

4 60.488 60.650 61.757 60.553 60.649 60.522 

5 82.659 82.832 82.849 82.507 82.697 82.560 

6 82.659 82.832 82.849 82.507 82.697 82.560 

7 98.842 98.926 102.016 99.179 99.235 99.140 

8 98.842 98.926 102.016 99.179 99.235 99.140 

9 143.816 143.846 149.499 144.281 144.339 144.249 

10 143.816 143.846 149.499 144.281 144.339 144.249 

f  5 6FSDTZRS

 
 TSDTZRS

 5 6EDZ1   
5 6EDZ2 

 EDZ3  3D-FEM  

1 43.208 43.208 42.951 42.810 42.968 42.922 

2 43.208 43.208 42.951 42.810 42.968 42.922 

3 60.460 60.460 60.864 60.538 60.592 60.564 

4 60.460 60.460 60.864 60.538 60.592 60.564 

5 82.651 82.651 82.600 82.488 82.639 82.584 

6 82.651 82.651 82.600 82.488 82.639 82.584 

7 98.786 98.786 99.907 99.165 99.190 99.168 

8 98.786 98.786 99.907 99.165 99.190 99.168 

9 143.724 143.724 145.621 144.262 144.295 144.280 

10 143.724 143.724 145.621 144.262 144.295 144.280 
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Table 4.6 – First ten natural frequencies [Hz] for a FC laminated composite doubly-curved shell of translation 

for various higher-order shear deformation theories. 

Lamination scheme:  30 / 45  

Mechanical properties of the two layers: 
1 137.9 GPaE  , 

2 3 8.96 GPaE E  , 
12 13 7.1GPaG G  , 

23 6.21GPaG  , 
12 13 0.3   , 

23 0.49  , 31450 kg m   

Discrete points: 31, 61N MI I   

f  5 6FSDTRS

 
 TSDTRS

 5 6ED1   
5 6ED2 

 ED3  ED4  

1 21.808 21.821 22.134 21.798 21.826 21.833 

2 22.323 22.347 22.388 22.186 22.207 22.214 

3 22.576 22.589 22.883 22.557 22.584 22.590 

4 33.055 33.089 33.013 32.824 32.857 32.852 

5 43.251 43.287 43.622 43.053 43.109 43.065 

6 44.870 44.874 45.932 44.957 45.027 45.006 

7 45.641 45.641 46.774 45.754 45.832 45.817 

8 52.459 52.489 52.837 52.251 52.308 52.272 

9 54.176 54.186 54.694 54.570 54.571 54.561 

10 64.235 64.258 64.290 64.001 64.039 64.012 

f  5 6FSDTZRS

 
 TSDTZRS

 5 6EDZ1   
5 6EDZ2 

 EDZ3  3D-FEM  

1 21.795 21.806 21.886 21.797 21.827 21.811 

2 22.320 22.364 22.237 22.185 22.209 22.205 

3 22.563 22.580 22.642 22.556 22.585 22.566 

4 33.052 33.098 32.872 32.820 32.854 32.854 

5 43.244 43.318 43.189 43.045 43.090 43.085 

6 44.832 44.893 45.214 44.952 45.015 44.986 

7 45.595 45.636 46.024 45.749 45.822 45.783 

8 52.445 52.520 52.394 52.246 52.292 52.263 

9 54.173 54.187 54.602 54.567 54.567 54.561 

10 64.230 64.271 64.069 63.995 64.027 64.006 

 

 

Table 4.7 – First ten natural frequencies [Hz] for a FCFC sandwich ellipsoid with an inner soft-core for various 

higher-order shear deformation theories. 

Lamination scheme:  0 / soft-core / 90  

Mechanical properties of the two external layers: 
1 53.78 GPaE  , 

2 3 17.93 GPaE E  , 
12 13 8.96 GPaG G  , 

23 3.45 GPaG  , 
12 13 0.25   , 

23 0.34  , 
31900 kg m   

Mechanical properties of the soft-core: 0.232GPaE  , 0.2  , 
3320kg m   

Discrete points: 41N MI I   

f  1FSDTZRS

 
 

1EDZ2 
 EDZ3  EDZ4  3D-FEM  

1 118.537 117.850 117.836 117.513 117.388 

2 143.202 141.851 141.836 141.412 141.253 

3 146.550 145.249 145.219 144.852 144.464 

4 190.693 189.694 189.663 189.190 188.798 

5 218.885 217.181 217.161 216.478 216.305 

6 246.935 246.334 246.311 245.978 245.851 

7 250.339 250.124 250.115 249.937 249.844 

8 256.981 256.322 256.288 255.655 255.512 

9 263.792 262.411 262.387 261.566 261.393 

10 285.312 284.283 284.247 283.221 282.904 
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a) Elliptic cone 

 
  

mode 1 mode 2 mode 3 

b) Spherical shell 

 
  

modes 1-2 modes 3-4 modes 5-6 

c) Doubly-curved shell of translation 

 
  

mode 1 mode 2 mode 3 

d) Ellipsoid 

   

mode 1 mode 2 mode 3 

Figure 4.19 – First three mode shapes of the laminated composite shell structures considered in the present 

section. 
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The following aspects should be mentioned for the sake of completeness: 

- The Murakami’s function is embedded only for laminated structures. In other words, 

this function is not included in the structural model when the shell is made by one 

single layer, since there is not any inter-laminar interface to analyze. This is the case 

of the elliptic cone. On the other hand, only zig-zag theories are employed to 

investigate the dynamic behavior of sandwich structures with an inner soft-core, as in 

the case of the ellipsoid. 

- In general, an excellent agreement can noted between the present solutions and the 

reference ones obtained through a three-dimensional FEM model for all the 

considered HSDTs. In particular, higher-order models provide closer results to the 

reference solutions especially if the structure is thicker. 

- If sandwich structures with thin and stiffer external sheets are analyzed, the shear 

correction factor   for those theories that need it could be neglected, since the 

difference between the effective shear stress profile and the real one is irrelevant. 

This aspect has been proven by the results shown in Table 4.7, where the structural 

theories up to the second order of kinematic expansion are used. This statement 

could be not true anymore if higher values of thickness characterize the external 

layers. 

- Higher-order theories, such as the ED3 , ED4 , and their corresponding zig-zag 

models, should be employed since they are able to provide results in terms of natural 

frequencies that are extremely closer to the three-dimensional FEM solution. 

Nevertheless, it should be recalled that the computational time is greater, since the 

number of degrees of freedom is higher within the shell element. 

- The external restraints are well-enforced, as it can be seen from the mode shapes in 

Figure 4.19. For this purpose, it should be specified that dark blue colors correspond 

to zero displacements, whereas higher displacements are denoted by reddish colors. 

- Finally, the well-known First-order Shear Deformation Theory (FSDT) and Third-

order Shear Deformation Theory (TSDT), as well as the corresponding zig-zag 

models (FSDTZ and TSDTZ), are included in Tables 4.4-4.7 for the sake of 

completeness. 

- All the results presented in this sections are in good agreement with the ones 

presented in the papers [15, 237], in which the strong formulation is solved. 
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4.2.4  ARBITRARILY SHAPED DOMAINS 

 

In this section, the weak formulation is solved in order to compute the natural frequencies 

of various structures characterized by distorted domains. For the sake of conciseness, the 

plates and shells under consideration are all depicted in Figure 4.20, together with the 

corresponding mapping domains. All the data required for the isogeometric mapping (knots, 

weights, and control points) are listed in Figures 4.21-4.24. For brevity purposes, the position 

vectors and the geometric parameters for the complete description of the corresponding 

regular domains are listed in Table 4.8. 

The numerical values are all collected in Tables 4.9-4.13 for the various structures, 

together with the data related to the stacking sequences, layer orientations and thicknesses, 

and mechanical properties. Analogously, the number of grid points is specified, too. As 

proven in the previous sections, some grid distributions are better than others when the 

Lagrange polynomials are used as basis functions. In this paragraph, the strong formulation is 

solved by using the Chebyshev-Gauss-Lobatto grid. As far as the weak formulations are 

concerned, the Legendre-Gauss-Lobatto and Chebyshev (III kind) are employed respectively 

for 1C  and 0C  continuity requirements. 

 

Table 4.8 – Position vectors and geometric features of the regular domains considered in the current section. 

a) Rectangular plate 

  1 2,x y x y r e e  

b) Doubly-curved panel of translation 

                 
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2 2 2
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1 2
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        

     
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    
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c) Catenoidal shell 

 

   

1 1

1 1 2 1 3

1

, cosh cos cosh sin sinh

3, 3 , 3, 3 , 1m, 0.1m
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a h
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    

     

   
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     
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d) Helicoidal shell 
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e) Hyperbolic hyperboloid of revolution 

 

   
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Unmapped geometries Mapping Distorted geometries 

 

 
a) Rectangular plate  

 

 
b) Doubly-curved panel 

of translation  

 

 
c) Catenoidal shell 

 

 

 
d) Helicoidal shell 

 

 

 
e) Hyperbolic hyperboloid 

of revolution  

Figure 4.20 - Unmapped and distorted geometries: identification of mapping domains [62]. 
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Edge 2-1 – W(1) 

     

knots 0.0,0.0,0.0,1.0,1.0,1.0

weights 1.000000,0.707107,1.000000

control points 0.600000,-0.000000 , 0.590000,0.590000 , 0.000000,0.600000







 

Edge 1-4 – N(2) 

     

knots 0.0,0.0,0.0,1.0,1.0,1.0

weights 1.000000,0.707107,1.000000

control points 0.000000,0.600000 , -0.590000,0.590000 , -0.600000,0.000000







 

Edge 4-3 – E(3) 

     

knots 0.0,0.0,0.0,1.0,1.0,1.0

weights 1.000000,0.707107,1.000000

control points -0.600000,0.000000 , -0.590000,-0.590000 , 0.000000,-0.600000







 

Edge 3-2 – S(4) 

     

knots 0.0,0.0,0.0,1.0,1.0,1.0

weights 1.000000,0.707107,1.000000

control points 0.000000,-0.600000 , 0.590000,-0.590000 , 0.600000,-0.000000







 

Figure 4.21 - Isogeometric data (knots, weights, and control points) for the depicted mapping domain [62]. 

 

The first structure is a fully clamped isotropic circular plate of radius R  and thickness h , 

which can be obtained by distorting a rectangular plate. A circular mapping domain is used to 

obtain the rounded plate at issue. It should be recalled that this circular shape is described by 

means of four circular arches in order to avoid that the determinant of the Jacobian matrix 

assumes zero values. The numerical results are compared with the ones shown in the book by 

Liew et al. [96]. For this purpose, the dimensionless frequencies are used 

 22 fR h D     (4.16) 

where D  is the flexural stiffness given by 

 
 

3

212 1

Eh
D





  (4.17) 

1   

2   
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The dimensionless frequencies are presented in Table 4.9 for various ratio of h R  and 

several HSDT, by using the Leg-Gau-Lob grid distribution with 25N MI I   and the 

Lagrange polynomials as basis functions, since the weak formulation is solved. In general, it 

can be noted that HSDTs provide results that tend to move away from the reference ones for 

higher value of thickness, as predictable, since the reference solution is obtained by means of 

a first-order theory. In this peculiar test, there is no need to label 0C  and 1C  boundary 

conditions since the fully clamped conditions affect only the generalized displacements. 

 

 

Edge 2-1 – W(1) 

       

knots 0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0

weights 1.000000,1.000000,1.000000,1.000000

control points 0.196350,0.343612 , 0.196350,0.196350 , -0.196350,0.196350 , -0.196350,0.343612







 

Edge 1-4 – N(2) 

     

knots 0.0,0.0,0.0,1.0,1.0,1.0

weights 1.000000,1.000000,1.000000

control points -0.196350,0.343612 , -0.785398,0.000000 , -0.196350,-0.343612







 

Edge 4-3 – E(3) 

       

knots 0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0

weights 1.000000,1.000000,1.000000,1.000000

control points -0.196350,-0.343612 , -0.196350,-0.196350 , 0.196350,-0.196350 , 0.196350,-0.343612







 

Edge 3-2 – S(4) 

     

knots 0.0,0.0,0.0,1.0,1.0,1.0

weights 1.000000,1.000000,1.000000

control points 0.196350,-0.343612 , 0.785398,0.000000 , 0.196350,0.343612







 

Figure 4.22 - Isogeometric data (knots, weights, and control points) for the depicted mapping domain [62]. 
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A laminated composite CFCF doubly-curved panel of translation is the next structure. The 

first ten natural frequencies are presented in Table 4.10 for several HSDTs. The analyses are 

carried out by considering and neglecting the Murakami’s function. The same considerations 

concerning the shear correction factor and the plane stress hypotheses in developing structural 

theories introduced above are still valid in this circumstance. 

For these doubly-curved structure, the dynamic analysis at issue is performed also through 

a commercial code and the corresponding three-dimensional FEM solutions are presented in 

the following tables for comparison purposes. 

 

 

Edge 2-1 – W(1) 

       

knots 0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0

weights 1.000000,1.000000,1.000000,1.000000

control points 1.047198,-1.047198 , 1.047198,-0.349066 , 0.872665,0.349066 , 0.523599,1.047198







 

Edge 1-4 – N(2) 

     

knots 0.0,0.0,0.0,1.0,1.0,1.0

weights 1.000000,1.000000,1.000000

control points 0.523599,1.047198 , 0.000287,0.010292 , -0.523599,1.047198







 

Edge 4-3 – E(3) 

       

knots 0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0

weights 1.000000,1.000000,1.000000,1.000000

control points -0.523599,1.047198 , -1.047198,1.047198 , -1.047198,0.000000 , -0.523599,-1.047198







 

Edge 3-2 – S(4) 

     

knots 0.0,0.0,0.0,1.0,1.0,1.0

weights 1.000000,1.000000,1.000000

control points -0.523599,-1.047198 , 0.000000,0.000000 , 1.047198,-1.047198







 

Figure 4.23 - Isogeometric data (knots, weights, and control points) for the depicted mapping domain [62]. 
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Edge 2-1 – W(1) 

   

knots 0.0,0.0,1.0,1.0

weights 1.000000,1.000000

control points 1.000000,-1.000000 , -1.000000,-3.000000







 

Edge 1-4 – N(2) 

   

knots 0.0,0.0,1.0,1.0

weights 1.000000,1.000000

control points -1.000000,-3.000000 , -0.500000,-3.500000







 

Edge 4-3 – E(3) 

   

knots 0.0,0.0,1.0,1.0

weights 1.000000,1.000000

control points -0.500000,-3.500000 , 1.500000,-1.500000







 

Edge 3-2 – S(4) 

  

knots 0.0,0.0,1.0,1.0

weights 1.000000,1.000000

control points 1.500000,-1.500000 ,1.000000,-1.000000







 

Figure 4.24 - Isogeometric data (knots, weights, and control points) for the depicted mapping domain [62]. 

 

Then, a laminated composite FCCF catenoidal shell is considered. The first ten natural 

frequencies are presented in Table 4.11 for various HSDTs, with and without the Murakami’s 

function. Finally, the last laminated composite structures to be analyzed are a CCFC 

helicoidal shell and a CFCF hyperbolic hyperboloid of revolution. Their first ten natural 

frequencies are shown in Table 4.12 and Table 4.13, respectively. In these tables, the three-

dimensional FEM solution is also presented, in order to perform the comparison between the 

current approach (both strong and weak formulations) and the numerical method implemented 

in the commercial software. Even in these circumstances, the natural frequencies are 

computed in the framework of several HSDTs. 

Finally, the first three mode shapes of these structures characterized by distorted domains 

are depicted in Figure 4.25. 

1   

2   
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Table 4.9 - Comparison of the frequency parameter 
22 fR h D    of a fully clamped isotropic circular 

plate of radius R , for different values of the ratio h R  and several HSDTs [62]. 

Mode 
2 12FSDTRS

 
 

2 12ED2 
 ED3  ED4  

Semi-analytical 

[96] 

0.05h R   

1 10.270 10.282 10.285 10.284 10.145 

2 21.227 21.252 21.265 21.263 21.002 

3 34.408 34.449 34.484 34.479 34.258 

4 39.322 39.368 39.411 39.406 38.885 

5 50.107 50.164 50.235 50.228 49.782 

6 59.502 59.570 59.664 59.656 58.827 

7 67.707 67.783 67.909 67.898 67.420 

8 81.440 81.534 81.709 81.694 80.933 

9 86.001 86.098 86.288 86.275 84.995 

10 87.350 87.446 87.649 87.635 87.022 

0.10h R   

1 10.061 10.085 10.099 10.095 9.941 

2 20.413 20.460 20.512 20.504 20.232 

3 32.448 32.518 32.643 32.628 32.406 

4 36.892 36.971 37.125 37.107 36.479 

5 46.280 46.371 46.612 46.588 46.178 

6 54.442 54.550 54.865 54.835 53.890 

7 61.254 61.365 61.765 61.731 61.272 

8 72.725 72.859 73.394 73.348 72.368 

9 76.473 76.613 77.197 77.148 75.664 

10 77.399 77.528 78.137 78.088 77.454 

0.20h R   

1 9.344 9.384 9.430 9.422 9.240 

2 17.944 18.007 18.163 18.143 17.834 

3 27.175 27.251 27.576 27.541 27.214 

4 30.505 30.591 30.982 30.939 30.211 

5 37.104 37.186 37.739 37.684 37.109 

6 42.767 42.860 43.559 43.488 42.409 

7 47.309 47.391 48.218 48.137 47.340 

8 54.785 54.877 55.389 55.389 54.557 

9 57.183 57.278 58.416 58.297 56.682 

10 57.830 57.911 59.057 58.944 57.793 

0.25h R   

1 8.902 8.945 9.010 8.999 8.807 

2 16.610 16.671 16.873 16.849 16.521 

3 24.634 24.701 25.099 25.056 24.670 

4 27.501 27.576 28.050 27.997 27.253 

5 33.102 33.167 33.814 33.746 33.083 

6 37.848 37.920 38.728 38.639 37.550 

7 41.694 41.754 42.574 42.565 41.657 

8 47.853 47.917 49.095 48.962 47.650 

9 49.829 49.895 51.155 51.008 49.420 

10 50.458 50.514 51.777 51.636 50.331 
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Table 4.10 - First ten natural frequencies of a CFCF laminated doubly-curved panel of translation: comparison 

between strong and weak formulations [62]. 

Lamination scheme:  0/30/60/90 , with 
1 2 3 4 0.0125mh h h h     

Mechanical properties of the four layers: 
1 137.9 GPaE  , 

2 3 8.96 GPaE E  , 
12 13 7.1GPaG G  , 

23 6.21GPaG  , 
12 13 0.3   , 

23 0.49  , 31450 kg m   

Discrete points: 25N MI I   

3D-FEM solution: 9248 brick elements (Hexa20) 

f  5 6FSDTRS

  5 6FSDTZRS

  5 6ED2  5 6EDZ2  ED3  EDZ3  ED4  EDZ4  
3D-FEM  

Strong formulation 

1 115.344 115.336 115.134 115.075 115.097 115.049 115.023 115.025 113.816 

2 122.363 122.356 122.202 122.148 122.026 121.961 121.715 121.685 120.808 

3 194.663 194.644 194.222 194.141 194.214 194.062 193.746 193.774 193.623 

4 195.735 195.714 195.270 195.190 195.351 195.253 195.159 195.132 194.692 

5 353.994 353.963 352.843 352.686 353.075 352.930 352.783 352.777 350.881 

6 355.402 355.374 354.285 354.134 354.281 354.103 353.619 353.581 352.397 

7 507.682 507.628 506.096 505.916 506.413 506.234 505.955 505.990 505.891 

8 510.368 510.316 508.780 508.594 509.233 509.103 508.731 508.655 508.220 

9 536.196 536.175 534.527 534.257 534.935 534.605 533.792 533.738 534.428 

10 543.263 543.240 541.466 541.207 541.911 541.765 541.305 541.172 540.991 

Weak formulation 
1C  3D-FEM  

1 115.916 115.899 115.302 115.237 115.213 115.173 116.115 116.212 113.816 

2 122.155 122.140 121.684 121.616 121.744 121.747 122.184 122.225 120.808 

3 194.165 194.136 193.449 193.364 193.425 193.373 193.516 193.448 193.623 

4 196.277 196.235 195.415 195.406 195.854 195.395 195.864 195.684 194.692 

5 353.920 353.857 352.402 352.277 353.407 353.282 353.648 353.575 350.881 

6 355.113 355.074 353.751 353.590 354.083 353.937 354.695 354.763 352.397 

7 507.457 507.382 505.614 505.426 506.269 505.939 505.544 505.498 505.891 

8 509.924 509.852 508.126 508.008 509.064 508.433 507.802 507.583 508.220 

9 536.163 536.133 534.208 533.960 534.567 534.140 533.520 533.532 534.428 

10 542.467 542.430 540.408 540.172 540.811 540.707 541.451 541.512 540.991 

Weak formulation 
0C  3D-FEM  

1 115.806 115.795 115.583 115.522 115.553 115.493 115.389 115.379 113.816 

2 122.809 122.803 122.652 122.593 122.628 122.570 122.466 122.455 120.808 

3 195.416 195.395 194.966 194.886 195.092 195.010 194.857 194.845 193.623 

4 196.492 196.470 196.036 195.953 196.168 196.085 195.926 195.916 194.692 

5 355.348 355.317 354.196 354.036 354.400 354.246 353.931 353.905 350.881 

6 356.718 356.688 355.605 355.451 355.806 355.657 355.350 355.325 352.397 

7 509.441 509.389 507.816 507.636 508.175 507.987 507.620 507.600 505.891 

8 512.044 511.993 510.459 510.266 510.881 510.685 510.300 510.280 508.220 

9 537.872 537.850 536.189 535.915 536.715 536.466 535.914 535.875 534.428 

10 545.104 545.083 543.281 543.021 543.617 543.377 542.831 542.788 540.991 

 

 

 

 

 

 

 



Chapter 4 

Michele Bacciocchi 186 

Table 4.11 - First ten natural frequencies of a FCCF laminated catenoidal shell: comparison between strong and 

weak formulations [62]. 

Lamination scheme:  30/90/45/0/60 , with 
1 2 3 4 5 0.02mh h h h h       

Mechanical properties of the five layers: 
1 53.78 GPaE  , 

2 3 17.93 GPaE E  , 
12 13 8.96 GPaG G  , 

23 3.45 GPaG  , 
12 13 0.25   , 

23 0.34  , 31900 kg m   

Discrete points: 25N MI I   

3D-FEM solution: 11560 brick elements (Hexa20) 

f  5 6FSDTRS

  5 6FSDTZRS

  5 6ED2  5 6EDZ2  ED3  EDZ3  ED4  EDZ4  
3D-FEM  

Strong formulation 

1 23.748 23.724 23.702 23.746 23.762 23.721 23.723 23.595 23.647 

2 67.233 67.184 67.220 67.392 67.213 67.174 67.068 67.096 66.770 

3 157.332 157.246 157.203 157.667 157.151 156.981 156.906 156.716 156.826 

4 209.456 209.278 209.652 210.189 209.540 209.359 209.238 209.055 209.226 

5 252.105 251.928 252.264 252.979 252.172 251.851 252.078 251.666 252.229 

6 311.889 311.653 311.904 313.266 312.286 311.683 311.361 310.696 310.430 

7 333.264 332.793 333.527 334.491 333.372 332.904 332.858 332.390 330.493 

8 421.973 421.535 421.984 424.873 422.404 421.204 421.268 420.298 419.796 

9 466.474 465.711 466.414 469.230 466.737 465.505 465.045 464.196 459.875 

10 478.981 478.423 479.221 480.280 479.018 478.455 478.740 477.962 477.461 

Weak formulation 
1C  3D-FEM  

1 23.536 23.455 23.187 23.277 23.558 23.419 23.255 23.297 23.647 

2 67.035 66.936 67.435 67.441 66.864 67.039 66.537 66.895 66.770 

3 156.778 156.676 156.101 156.133 155.873 155.905 155.620 155.936 156.826 

4 208.831 208.635 208.490 208.692 208.581 208.799 207.543 208.506 209.226 

5 251.346 251.126 253.226 253.000 251.935 251.838 251.104 251.110 252.229 

6 310.989 310.735 310.157 309.666 309.129 308.436 309.180 308.703 310.430 

7 331.965 331.394 331.847 331.342 331.649 331.369 330.360 330.386 330.493 

8 420.785 420.212 420.718 420.413 421.630 420.472 419.861 419.055 419.796 

9 464.318 463.481 464.332 463.560 463.992 462.901 462.090 461.633 459.875 

10 478.130 477.530 478.946 478.377 477.609 477.276 477.538 477.219 477.461 

Weak formulation 
0C  3D-FEM  

1 23.955 23.937 23.938 23.917 23.942 23.918 23.925 23.902 23.647 

2 67.909 67.868 67.874 67.825 67.882 67.798 67.818 67.743 66.770 

3 158.936 158.852 158.908 158.805 158.924 158.704 158.737 158.548 156.826 

4 211.224 211.062 211.490 211.288 211.458 211.200 211.216 210.973 209.226 

5 254.324 254.139 254.445 254.219 254.465 254.135 254.136 253.839 252.229 

6 314.776 314.539 314.902 314.613 315.011 314.373 314.486 313.958 310.430 

7 335.669 335.206 335.989 335.427 335.927 335.412 335.406 334.883 330.493 

8 425.751 425.330 425.799 425.293 426.294 425.073 425.201 424.209 419.796 

9 470.734 469.959 470.781 469.860 470.948 469.652 469.711 468.563 459.875 

10 482.064 481.502 482.295 481.613 482.253 481.630 481.672 481.033 477.461 
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Table 4.12 - First ten natural frequencies of a CCFC laminated helicoidal shell: comparison between strong and 

weak formulations [62]. 

Lamination scheme:  0/60/30/90 , with 
1 2 3 4 0.125mh h h h      

Mechanical properties of the four layers: 
1 137.9 GPaE  , 

2 3 8.96 GPaE E  , 
12 13 7.1GPaG G  , 

23 6.21GPaG  , 
12 13 0.3   , 

23 0.49  , 31450 kg m   

Discrete points: 25N MI I   

3D-FEM solution: 9600 brick elements (Hexa20) 

f  5 6FSDTRS

  5 6FSDTZRS

  5 6ED2  5 6EDZ2  ED3  EDZ3  ED4  EDZ4  
3D-FEM  

Strong formulation 

1 13.839 13.838 13.836 13.833 13.792 13.785 13.772 13.769 13.651 

2 17.514 17.513 17.504 17.499 17.491 17.485 17.471 17.469 17.358 

3 21.274 21.272 21.236 21.228 21.233 21.226 21.203 21.200 21.078 

4 26.970 26.967 26.877 26.865 26.865 26.855 26.818 26.814 26.683 

5 35.108 35.102 34.947 34.928 34.909 34.893 34.838 34.833 34.690 

6 45.444 45.434 45.201 45.174 45.120 45.097 45.020 45.013 44.853 

7 52.645 52.643 52.638 52.615 52.719 52.696 52.664 52.665 52.694 

8 57.670 57.655 57.335 57.298 57.195 57.162 57.058 57.048 56.876 

9 61.473 61.471 61.388 61.351 61.472 61.436 61.377 61.377 61.337 

10 71.357 71.337 70.906 70.857 70.681 70.637 70.499 70.485 70.287 

Weak formulation 
1C  3D-FEM  

1 13.624 13.624 13.611 13.605 13.575 13.559 13.532 13.518 13.651 

2 17.356 17.354 17.351 17.343 17.428 17.421 17.370 17.366 17.358 

3 21.113 21.109 21.091 21.080 21.290 21.291 21.206 21.211 21.078 

4 26.799 26.791 26.731 26.716 27.006 27.015 26.907 26.920 26.683 

5 34.923 34.910 34.788 34.769 35.099 35.114 34.988 35.006 34.690 

6 45.238 45.218 45.017 44.992 45.329 45.348 45.203 45.225 44.853 

7 52.418 52.417 52.420 52.404 52.230 52.220 52.290 52.288 52.694 

8 57.441 57.416 57.120 57.086 57.401 57.420 57.253 57.277 56.876 

9 61.226 61.225 61.139 61.107 61.002 60.976 60.996 60.996 61.337 

10 71.100 71.066 70.649 70.604 70.882 70.898 70.700 70.723 70.287 

Weak formulation 
0C  3D-FEM  

1 13.735 13.735 13.739 13.764 13.734 13.731 13.727 13.726 13.651 

2 17.488 17.487 17.484 17.530 17.482 17.477 17.469 17.468 17.358 

3 21.259 21.258 21.229 21.302 21.226 21.219 21.202 21.201 21.078 

4 26.978 26.975 26.893 27.009 26.878 26.866 26.835 26.832 26.683 

5 35.160 35.154 35.007 35.190 34.962 34.943 34.893 34.888 34.690 

6 45.559 45.549 45.324 45.610 45.232 45.205 45.132 45.123 44.853 

7 52.769 52.767 52.763 53.125 52.851 52.828 52.786 52.783 52.694 

8 57.871 57.857 57.542 57.976 57.389 57.352 57.251 57.239 56.876 

9 61.633 61.631 61.549 62.055 61.644 61.608 61.541 61.538 61.337 

10 71.660 71.640 71.213 71.847 70.972 70.921 70.786 70.768 70.287 
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Table 4.13 - First ten natural frequencies of a CFCF laminated hyperbolic hyperboloid of revolution: 

comparison between strong and weak formulations [62]. 

Lamination scheme:  30/60/45 , with 
1 2 3 0.02mh h h     

Mechanical properties of the four layers: 
1 53.78 GPaE  , 

2 3 17.93 GPaE E  , 
12 13 8.96 GPaG G  , 

23 3.45 GPaG  , 
12 13 0.25   , 

23 0.34  , 31900 kg m   

Discrete points: 25N MI I   

3D-FEM solution: 9600 brick elements (Hexa20) 

f  5 6FSDTRS

  5 6FSDTZRS

  5 6ED2  5 6EDZ2  ED3   EDZ3  ED4  EDZ4  
3D-FEM  

Strong formulation 

1 117.344 116.920 117.357 116.966 117.451 117.382 117.488 117.391 117.611 

2 119.739 119.303 119.805 119.375 119.916 119.842 119.755 119.760 119.885 

3 190.841 189.786 190.891 189.914 190.954 190.797 190.972 190.787 190.430 

4 282.808 281.944 282.942 282.107 283.126 282.970 282.991 282.931 282.523 

5 307.619 306.670 307.817 306.919 307.873 307.717 307.858 307.716 306.351 

6 316.896 316.386 317.204 316.698 317.212 317.118 317.090 317.052 320.576 

7 336.360 335.576 336.318 335.656 336.616 336.474 336.902 336.599 338.516 

8 385.248 383.804 385.382 384.039 385.304 385.119 385.310 385.116 384.804 

9 432.707 430.685 432.749 430.877 433.048 432.715 433.051 432.689 432.212 

10 436.528 435.213 436.792 435.546 436.715 436.515 436.604 436.428 436.969 

Weak formulation 
1C  3D-FEM  

1 115.432 115.041 115.384 115.722 115.554 115.508 115.660 115.553 117.611 

2 118.655 118.159 118.870 119.077 118.851 118.841 118.064 118.539 119.885 

3 190.213 189.137 190.141 190.667 190.318 190.159 190.589 190.184 190.430 

4 281.811 281.018 281.962 282.489 282.128 282.031 282.000 282.428 282.523 

5 306.475 305.543 306.698 306.985 306.719 306.574 306.508 306.757 306.351 

6 316.112 315.624 316.718 316.748 316.509 316.429 315.805 316.172 320.576 

7 335.728 334.854 334.839 335.940 335.689 335.553 338.096 336.550 338.516 

8 384.910 383.445 384.944 385.295 384.935 384.754 385.086 384.928 384.804 

9 431.797 429.817 431.711 432.971 432.214 431.894 432.526 431.922 432.212 

10 436.289 434.951 436.659 436.938 436.457 436.210 436.179 435.915 436.969 

Weak formulation 
0C  3D-FEM  

1 116.142 115.745 116.167 115.793 116.275 116.204 116.258 116.190 117.611 

2 118.474 118.076 118.506 118.131 118.623 118.552 118.607 118.537 119.885 

3 190.120 189.077 190.187 189.206 190.238 190.080 190.210 190.055 190.430 

4 282.448 281.627 282.545 281.776 282.746 282.598 282.709 282.563 282.523 

5 307.148 306.222 307.337 306.470 307.396 307.243 307.367 307.216 306.351 

6 316.562 316.046 316.825 316.336 316.833 316.750 316.812 316.730 320.576 

7 336.561 335.824 336.632 335.950 336.896 336.746 336.845 336.694 338.516 

8 385.094 383.652 385.240 383.894 385.164 384.971 385.129 384.940 384.804 

9 432.051 430.053 432.112 430.242 432.389 432.049 432.340 432.007 432.212 

10 436.863 435.543 437.098 435.860 437.038 436.846 437.000 436.808 436.969 
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a) Doubly-curved panel of translation 

 
  

mode 1 mode 2 mode 3 

b) Catenoidal shell 

   

mode 1 mode 2 mode 3 

c) Helycoidal shell 

   
mode 1 mode 2 mode 3 

d) Hyperbolic hyperboloid of revolution 

   
mode 1 mode 2 mode 3 

Figure 4.25 – First three mode shapes of the laminated composite shell structures characterized by distorted 

domains considered in the present section. 
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For completeness purposes, the following comments should be mentioned and added to the 

ones introduced in the previous sections: 

- The solutions obtained by means of higher-order models are closer to the 3D-FEM 

results, especially for thick and moderately thick structures, independently from the 

chosen formulation. 

- If compared to the three-dimensional models, the present two-dimensional 

approaches are able to get the same results with an extremely lower number of 

degrees of freedom. A 20-node element model is introduced, in fact, for the 3D-FEM 

solutions. Thus, there is a huge advantage in terms of computational time. In fact, it 

should be recalled that the considered structures can be modeled by using one sole 

element, even if the domain is highly distorted. For the sake of completeness, it 

should be recalled that the 3D-FEM solutions are accomplished by means of the 

commercial software Strand7 [251]. 

- These applications prove that the mapping procedure shown in the previous chapters 

represents an efficient tool to deal with arbitrarily shaped geometries, for both the 

strong and weak formulations. 

- The boundary conditions are well-enforced even for distorted domains, as it can be 

easily noted from the mode shapes depicted in Figure 4.25. 

Finally, it can be noted that the differences between 1C  and 0C  formulations are negligible 

for the dynamic analyses performed in this section. This aspect could be different if the static 

response of shell structures has to be studied. In particular, the stress analysis could provide 

different results for the 1C  and 0C  formulations if the static behavior of plates or shells with 

sharpen or curvilinear edges is investigated, especially for thicker configurations. 

 

 

4.2.5  EFFECT OF CNT AGGLOMERATION 

 

Finally, the effect of CNT agglomeration on the natural frequencies of a composite shell is 

investigated. For this purpose, the same structure considered above is analyzed. For the sake 

of completeness, its geometry is shown in Figure 4.26a. It can be noted that this shell is given 

by a doubly-curved panel of translation, mapped through the relations described in Figure 



Numerical Applications: Free Vibration Analysis 

Higher-order Strong and Weak Formulations for Arbitrarily Shaped Doubly-Curved Shells 191 

4.22. Thus, the geometric features are the same presented in the previous section. In 

particular, the Legendre-Gauss-Lobatto grid distribution is used with 25N MI I  . 

In this circumstance, the structure is made of three isotropic layers, whose thickness is 

1 3 0.01mh h   and 
2 0.01mh  . The three plies are made of a polymer matrix 

( 2.5GPamE  , 0.19m  , 31190kg mm  ), but only the two external skins are reinforced 

by CNTs. The reinforcing particles, whose density is 31400kg mr  , are characterized by 

the following Hill’s elastic moduli: 271GPark  , 88GParl  , 17GParm  , 1089GParn  , 

and 442GParp  . A five-parameter power law is used to describe the through-the-thickness 

distribution of CNTs in the two external layers, assuming (1) (3) 1a a   and (1) (3) 0.5p p  . 

For the sake of completeness, the distribution in hand is depicted in graphical form in Figure 

Figure 4.26b. Several values of the mass fraction of CNTs 
rw  are considered in the analysis, 

by assuming different combinations of the agglomeration parameters 
1 2,  .  

 

 

 
a)  b)  

Figure 4.26 – Shell structure reinforced by agglomerated CNTs: a) distorted domain; b) through-the-thickness 

distribution of the reinforcing phase. 

 

As far as the boundary conditions are concerned, the southern and northern edges are 

clamped, whereas the others are free (FCFC). The structural theories used in the computation 

is an EDZ3, in which the Murakami’s function is embedded. The weak formulation with 1C  

continuity conditions is solved in this circumstance. 
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The results are depicted in graphical form in Figures 4.27 and 4.28, whereas the numerical 

values are shown in Tables 4.14 and 4.15. In particular, two different parametric analyses are 

carried out. In the first one, 
2  is kept constant and set equal to 2 1.0  , whereas in the 

second one 1  is kept constant and set equal to 
1 0.5  . 

 

  

  

  
Figure 4.27 – Variation of the first six natural frequencies for the shell structure reinforced by CNTs, as a 

function of the agglomeration parameter 
1 , for several values of their mass fraction 

rw . The other 

agglomeration parameter is set equal to 
2 1.0  . 
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Figure 4.28 – Variation of the first six natural frequencies for the shell structure reinforced by CNTs, as a 

function of the agglomeration parameter 
2 , for several values of their mass fraction 

rw . The other 

agglomeration parameter is set equal to 
1 0.5  . 
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Table 4.14 – Variation of the first ten natural frequencies for the shell structure reinforced by CNTs, as a 

function of the agglomeration parameter 
1 , for several values of their mass fraction 

rw . The other 

agglomeration parameter is set equal to 
2 1.0  . 

f  
1 0.5   

1 0.6   
1 0.7   

1 0.8   
1 0.9   

1 1.0   

0.1rw   

1 158.361 168.023 178.783 190.969 204.058 219.788 

2 161.291 170.021 179.798 191.001 205.211 222.137 

3 175.760 185.971 197.349 210.264 225.274 243.129 

4 218.491 231.917 246.842 263.749 283.354 306.626 

5 234.748 250.207 267.277 286.475 308.566 334.555 

6 263.344 280.121 298.672 319.569 343.663 372.080 

7 282.599 301.109 321.525 344.460 370.820 401.793 

8 307.570 328.070 350.596 375.803 404.654 438.398 

9 355.909 379.344 405.008 433.617 466.218 504.148 

10 367.597 392.119 419.022 449.071 483.385 523.407 

0.2rw   

1 164.776 178.568 195.514 215.916 244.485 289.357 

2 167.239 179.866 195.528 217.319 247.415 293.641 

3 182.684 197.365 215.430 238.698 270.831 320.224 

4 227.368 246.479 269.883 299.876 341.063 403.930 

5 244.762 266.500 292.841 326.171 371.189 438.197 

6 274.314 298.003 326.787 363.343 412.985 487.553 

7 294.558 320.542 351.973 391.663 445.139 524.489 

8 320.748 349.395 383.862 427.119 484.951 569.804 

9 370.975 403.632 442.728 491.495 556.174 650.045 

10 383.256 417.403 458.353 509.523 577.512 676.355 

0.4rw   

1 168.675 185.792 207.906 238.726 290.542 410.401 

2 170.869 186.701 208.419 240.740 293.712 410.603 

3 186.905 205.217 229.488 264.250 321.441 449.031 

4 232.740 256.398 287.532 331.753 403.717 561.295 

5 250.774 277.446 312.042 360.248 436.360 592.495 

6 280.909 310.063 348.034 401.267 486.235 665.071 

7 301.722 333.566 374.773 432.019 522.049 705.730 

8 328.610 363.600 408.569 470.495 566.565 756.583 

9 379.925 419.726 470.550 539.945 646.340 853.666 

10 392.564 434.159 487.354 560.081 671.636 888.161 
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Table 4.15 – Variation of the first ten natural frequencies for the shell structure reinforced by CNTs, as a 

function of the agglomeration parameter 
2 , for several values of their mass fraction 

rw . The other 

agglomeration parameter is set equal to 
1 0.5  . 

f  
2 0.5   

2 0.6   
2 0.7   

2 0.8   
2 0.9   

2 1.0   

0.1rw   

1 219.788 218.499 214.004 204.949 188.988 158.361 

2 222.137 220.776 216.009 206.335 189.056 161.291 

3 243.129 241.682 236.616 226.344 208.044 175.760 

4 306.626 304.760 298.221 284.923 261.086 218.491 

5 334.555 332.500 325.277 310.496 283.695 234.748 

6 372.080 369.821 361.888 345.688 316.425 263.344 

7 401.793 399.347 390.751 373.148 341.179 282.599 

8 438.398 435.747 426.416 407.255 372.283 307.570 

9 504.148 501.177 490.705 469.147 429.621 355.909 

10 523.407 520.276 509.247 486.557 444.992 367.597 

0.2rw   

1 289.357 287.062 278.747 261.293 228.960 164.776 

2 293.641 291.348 282.989 265.235 231.651 167.239 

3 320.224 317.751 308.736 289.628 253.633 182.684 

4 403.930 400.829 389.509 365.413 319.613 227.368 

5 438.197 434.980 423.180 397.770 348.417 244.762 

6 487.553 483.935 470.689 442.288 387.570 274.314 

7 524.489 520.690 506.748 476.696 418.183 294.558 

8 569.804 565.788 551.011 518.993 456.076 320.748 

9 650.045 645.633 629.372 594.006 523.982 370.975 

10 676.355 671.715 654.628 617.471 543.896 383.256 

0.4rw   

1 410.401 406.818 392.036 359.450 297.439 168.675 

2 410.603 406.928 393.204 362.372 301.706 170.869 

3 449.031 445.150 429.854 395.719 329.383 186.905 

4 561.295 556.613 538.119 496.593 414.767 232.740 

5 592.495 588.144 570.779 530.912 448.957 250.774 

6 665.071 659.957 639.632 593.386 499.908 280.909 

7 705.730 700.629 680.268 633.487 537.059 301.722 

8 756.583 751.485 731.005 683.356 582.961 328.610 

9 853.666 848.143 825.927 774.163 664.506 379.925 

10 888.161 882.424 859.367 805.550 691.043 392.564 
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The following aspects can be observed: 

- If the mass fraction of CNTs assumes higher values, the effect of agglomeration is 

more evident and the frequencies very in a wider interval. 

- When the value of 
2  is closer to the unity and a noteworthy difference between the 

agglomeration parameters is assumed, the slope of the various graphs is higher. 

- The maximum values of frequencies are obtained when 1 2  . This aspect is valid 

for each value of mass fraction. 

- The graphs presented here show the same tendency of the results proposed in terms 

of Young’s moduli by Shi et al. in their work [200], in which the mathematical 

model to describe the CNT agglomeration has been proposed for the first time. 

Finally, it can be stated that the natural frequencies of a generic structure can be highly 

affected by the agglomeration of CNTs used as reinforcing phase. 
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Conclusions 
 

A weak formulation (WF) has been developed for the mechanical analysis of doubly-

curved shell structures made of composite materials. For this purpose, the Lagrange 

polynomials of high degree have been used for the interpolation of the nodal displacements. 

The governing equations have been obtained in the framework of Higher-order Shear 

Deformation Theories (HSDTs). Simultaneously, a strong formulation (SF) has been 

presented too, for the sake of completeness. All things considered, the following approaches 

have been taken into account: 

- Strong formulation with 1C  continuity requirement; 

- Weak formulation with 1C  continuity requirement; 

- Weak formulation with 0C  continuity requirement. 

A set of comparison tests has been performed in terms of natural frequencies. The 

solutions have been obtained numerically by means of two different approaches, which are 

the Integral Quadrature (IQ) for the weak forms, and the Differential Quadrature (DQ) for the 

strong form. A commercial code that implements the well-known Finite Element Method 

(FEM) has been employed for comparison purposes. 

A geometric convergence behavior characterizes the SF independently from the grid 

distribution, for those basis functions that allow the evaluation of the weighting coefficients 

through recursive formulations (Lagrange polynomials, trigonometric Lagrange polynomials). 

In general, an outstanding degree of accuracy is reached for a small number of discrete grid 

points. On the other hand, a linear convergence tendency is related to the WF with 0C  

continuity, whereas the WF with 1C  continuity has shown a convergence trend similar to the 

one that characterizes the SF, if the Legendre-Gauss-Lobatto distribution is used. Thus, the 

accuracy that can be reached by means of the WF with 0C  continuity requirement is 

extremely lower than the other two methodologies, if the same number of discrete points is 

considered. These aspects are not affected by the choice of the grid distributions, basis 

functions, and mechanical properties. 

The SF and WF with 1C  continuity conditions converge more rapidly than the FEM. 

Generally speaking, a huge number of degrees of freedom is required to reach a higher level 
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of accuracy if compared to the current approaches. In addition, a massive set of convergence 

analyses has proven the inadequacy of the quadrilateral plate elements provided by the 

commercial software to deal with laminated composite structures, especially if characterized 

by higher values of thickness. In some circumstances, it can be also noted that the FEM 

converges to completely different values. 

The present approaches have been developed to investigate easily the structural behavior of 

shell structures made of advanced and innovative constituents. For this purpose, the effect of 

innovative constituents on the dynamic response of the structures has been also analyzed. The 

reference domains in which the governing equations can be described by arbitrary shapes 

described by NURBS. The accuracy and reliability of the proposed methodologies have been 

proven by the comparison with three-dimensional FEM models. 
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