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Abstract

We study some perturbative and nonperturbative effects in the framework of the

Standard Model of particle physics. In particular we consider the time depen-

dence of the Higgs vacuum expectation value given by the dynamics of the Stan-

dardModel and study the non-adiabatic production of both bosons and fermions,

which is intrinsically non-perturbative. In theHartree approximation, we analyze

the general expressions that describe the dissipative dynamics due to the back-

reaction of the produced particles. Then, we solve numerically some relevant

cases for the Standard Model phenomenology in the regime of relatively small

oscillations of the Higgs vacuum expectation value (vev). As perturbative effects,

we consider the leading logarithmic resummation in small Bjorken x QCD, con-

centrating ourselves on the Nc dependence of the Green functions associated to

reggeized gluons. Here the eigenvalues of the BKP kernel for states of more than

three reggeized gluons are unknown in general, contrary to the large Nc limit

(planar limit) case where the problem becomes integrable. In this contest we con-

sider a 4-gluon kernel for a finite number of colors and define some simple toy

models for the configuration space dynamics, which are directly solvable with

group theoretical methods. In particular we study the depencence of the spec-

trum of these models with respect to the number of colors andmake comparisons

with the planar limit case. In the final part we move on the study of theories

beyond the Standard Model, considering models built on AdS5 ⊗ S5/Γ orbifold

compactifications of the type IIB superstring, where Γ is the abelian group Zn.

We present an appealing three family N = 0 SUSY model with n = 7 for the or-

der of the orbifolding group. This result in a modified Pati–Salam Model which

reduced to the Standard Model after symmetry breaking and has interesting phe-

nomenological consequences for LHC.
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Preface

The anticipated data in a new energy regime expected from the Large Hadron

Collider (LHC), commissioned at the CERN laboratory, makes this an exciting

and fertile time for particle phenomenology. Yet, the only tested model is the

Standard Model (SM) of elementary particles and their interactions [1, 2]. It com-

bines the SU(3) color gauge theory of the strong interactions (Quantum Chromo-

dynamics - QCD) with the SU(2) ⊗ U(1) model of weak and electromagnetic in-

teractions. This model is believed to be free of mathematical inconsistencies. An

important point is that the basic interactions are all described by gauge theories,

which implies that the form of the couplings of the vector bosons that mediate

this interactions are determined by the underlying gauge symmetry.

Despite these attractive features, many insights suggest that the SM is not

the ultimate theory of elementary particles. From a purely theoretical point of

view [3], one problem relies on the excessive complication and arbitraryness of

this model. The strong, weak and electromagnetic interactions are largely in-

dependent of each other, as it is illustrated by the fact that the gauge group

GSM = SU(3) ⊗ SU(2) ⊗ U(1) is a direct product of three factors with different

gauge coupling constants. Another problem is that the pattern of fermion repre-

sentations is arbitrary and complicated: there is no fundamental explanation for

the repetition of fermion families or for the violation of parity in the weak inter-

actions but not in the strong ones. Another difficulty is that the electric charges

are not quantized, that is there are no a priori reasons for the quark and lepton

charges to be related by simple factors 3, apart from requiring the quantum con-

sistency, i.e. the cancellation of chiral gauge anomalies. Moreover, even given

the groups, the representations and the electric charge assignments, the SM has

many free parameters (19 or 26, depending on whether the neutrinos are assumed

to be massless), so some observable quantities are completely arbitrary. Yet, the

SM does not incorporate gravity, nor it offers an explanation for the empirical ab-
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x Preface

sence of a large cosmological term.

Finally, there is the so called hierarchy problem, which is a special case of natu-

ralness [4], i.e. a theory should not contain any unexplained very large (or, on the

contrary, very small) dimensionless numbers.1 The adjustment needed to achieve

such naturalness violating numbers is called fine tuning. This problem can be es-

pecially acute in gauge field theories because even after fine tuning at tree level,

i.e., the classical lagrangian, the fine tuning may need to be repeated order by

order in the loop expansion during the renormalization process and while such

a theory can be internally consistent it violates naturalness. When the Standard

Model was rendered renormalizable by appending the Higgs mechanism it was

soon realized that it fell into trouble with naturalness, specifically through the hi-

erarchy problem. In particular, the scalar propagator has quadratically divergent

radiative corrections which imply that a bare Higgs mass M2
H will be corrected

by an amount Λ2/M2
H where, Λ is the cut-off scale corresponding to new physics.

Unlike logarithmic divergences, which can be absorbed in the usual renormal-

ization process, the quadratic divergences create an unacceptable fine tuning: for

example, if the cut off is at the conventional Grand Unification scale Λ ∼ 1016

GeV andMH ∼ 100 GeV, the degree of fine tuning is one part in 1028.

An obvious consequence is that theory has ventured into speculative areas

such as string theory [7], extra dimensions and supersimmetry [8]. Although

there is no direct evidence from the experiments, these ideas are of great inter-

est and theoretically consistent. Moreover they have solved some of the previ-

ously mentioned problems. String Theories was found to describe also gravity

and other gauge interactions in an unified way, but with no phenomenological

improvement respect to the SM that could be experimentally verified. The Mini-

mally Supersymmetric Standard Model (MSSM), with N = 1 supersymmetry, el-

egantly solved the hierarchy problem, since quadratic divergences are cancelled

between bosons and fermions [9], with only logarithmic divergences surviving,

even if it has yet a lot of free parameters. The Yang-Mills theory with extended

N = 4 supersymmetry [10], though phenomenologically quite unrealistic as it

allows no chiral fermions and all matter fields are in adjoint representions, was

found finite to all orders of perturbation theory and conformally invariant. Then

Maldacena [11] showed a duality between N = 4 gauge theory and the super-

string in ten spacetime dimensions, named ADS/CFT connection. This conjec-

ture is actually one of the main explored area in theoretical physics. Moreover

1A similar idea was already stressed by Dirac [5, 6].
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N = 4 SYM (Super Yang-Mills) theory, an SU(N) gauge theory, is believed to be

integrable in the limit N → ∞ (planar limit). More phenomenologically inter-
esting is that the N = 4 supersymmetry can be broken by orbifolding down to

N = 0 theories with no supersymmetry at all [12, 13]. It was conjectured [14]

that such nonsupersymmetric orbifolded models can be finite and conformally

invariant. This last important result opened the route to the construction of the

conformality based models [15].

However, all of these new directions must take into account that the Standard

Model has been experimentally confirmed and reconfirmed. Starting from this

observation, the thesis analyze some of the opening questions related to the Stan-

dard Model and to the theories beyond it. The thesis is divided into three self

consistent parts, for each we provide an introduction and some final comments.

The first part of the thesis is inspired by the problem of naturalness. In fact,

this last, among other things, led to a possible time variation of the fundamental

constants of physics. This is also a result from string and extra dimension theo-

ries for the phenomenological (low - Standard Model - energy range) constants.

So it is natural to ask how this hypothesis is compatible with the mathematical

structure of the Standard Model. In a more modern language, we can talk about

a particular source for the time variation of the fundamental constants, referring

to a time variation in the vacuum expectation value (vev) of the Higgs field, as

it is coupled to each massive field of the Model. We study the particular time

dependence that comes from the Standard Model Euler-Lagrangian equation for

the Higgs sector. The periodicity in time of the founded solution is the starting

point for non adiabatic quantum production of particle by parametric resonance,

a purely non perturbative effect. The Bogoliubov formalism has been used to ana-

lyze the production of particles in this time dependent background. Some results

obtained are analytic, especially those for the production of bosons. The back re-

action effects have been taked into account numerically solving the system of all

the equations of motion coupled (fermion, bosons and Higgs vev) in the Hartree

approximation. The resultant phenomenology is studied in detail [16].

The second part of this thesis is a temptative to find a way to grasp some

aspects of the problem of finite number of color corrections. Another common fea-

ture of some unification theories [3] is that they are based on simple or semi-

simple SU(N) groups, like, for example, the Georgi-Glashow [17] or the Pati-

Salam [18, 19] model. This is true also for string theories, as, for example, the

ADS/CFT correspondence connects the type IIB string theory to theN = 4 SYM
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theory. Is usual to refer toN as the number of color because in QCD the gauge color

group hasN = 3. A lot of semplification in treating this theories and some impor-

tant results have been obtained taking N → ∞. In the Regge limit (small Bjorken
x) of the QCD [20] this planar limit showed, for the first time, that gauge theories

can contain some integrable structures and these can be trated as “non compact”

spin chains [21]. Similar structures have been founded also in the Bjorken limit

and, recently, in N = 4 SYM (see [22] and references therein), even if the con-

nection between this supersymmetric version of QCD (N = 4 SYM) and string

theories is believed to be valid also in the non planar limit (in the planar limit

there are no string loops and the problem becomes more tractable). In particular,

the Regge limit of QCD is characterized by the factorization of the scattering am-

plitudes in impact factors and Green functions, that depend on the rapidity. Here

the resultant degrees of freedom are called reggeized gluons. The physical par-

ticle interact throught the exchange of color singlet composite objects, Pomeron

and Odderons, and the resultant effective vertex seems to define a field theory of

this degrees of freedom. The evolution kernels of three or more reggeized gluons

as functions of the rapidity, called BKP kernels [23], are know only in the lead-

ing log approximation and their eigenvalues can be completely calculated in the

planar limit, because this problem is indeed integrable. For finite N the calcu-

lation of the spectra of these kernels is yet a very difficult task. In the thesis a

great semplification to treat this problem has been condidered. Starting from a

for 4-gluon kernel, some simple toy models have been defined [24, 25] and based

on the group SU(2) ⊗ SU(N), where the compact SU(2) is used to overcome the

problems that come from the noncompacteness of the conformal group SL(2,C).

In some cases these toy models can been treated even in a completely analytic

way, using group theoretical and tensorial methods to analyze the spectrum and

to calculate the eigenvalues as a function of N .

The planar limit is not only a way to simplify the theories and to perform per-

turbative calculations, but gives us also the advantage of connecting (supersym-

metric) gauge theories to string theories, being this last yet the only candidate for

a theory that unifies the four fundamental interactions (strong, weak, electromag-

netic and gravity), even if, from a computational point of view, the planar limit

only partially simplify the use of the AdS/CFT correspondence. In particular

orbifolded AdS5 × S5 is fertile ground for building models which can potentially

test string theory. When models are based upon conformal field theory obtained

from the large N expansion of the AdS/CFT correspondence, stringy effects can
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show up also at scale of few TeV. The guideline of these theories relies on the

conformality approach [15]. To build these models, there is a myriad of apparent

routes from string theory to regions of parameter space that resemble the Stan-

dard Model of particle physics, and it is easy to get lost in the landscape of these

possibilities. Perhaps the most sensible alternative to exploring all possible routes

is to seek out and explore routes of “minimal length”. While it may be difficult

to describe precisely what is meant by minimal length, what is pratically usual

to do is reaching the SM particle content as quickly as possible. The last part

of this thesis present a String Theory inspired model that unified the fundamen-

tal interactions [26]. This is a minimal (respect to the order n of the orbifolding

group Zn) nonsupersimmetric model that has SM particles as a subset of its par-

ticle content and contain the Pati-Salam group as a subgroup before reaching the

SM. The running of the coupling constants predicted by the model is studied and

the unification scale is founded. The phenomenology of the model is presented

discuting the possibility of a proton decay and candidates for dark matter.

Pasquale Luca Iafelice

Nashville, February 6, 2008
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Standard Model time dependent

Higgs VEV
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Chapter 1

Introduction

In the StandardModel, several fundamental constants such as the Fermi coupling

and the mass of gauge bosons and fermions depend on the vacuum expectation

value (vev) of the Higgs field, because of the well-known mechanism of sponta-

neous symmetry breaking. The equation of motion of the Higgs field on the other

hand allows for (periodic) time-dependent solutions for the Higgs vev, which can

then be viewed as a particular case of varying fundamental constants (for a re-

view, see Ref. [27]). This behaviour differs from the more common cases of adia-

batic variations of the fundamental constants and, due to its periodic nature, can

lead to efficient (non-adiabatic) particle production.

The issue of the constancy of the constants of physics was (probably) first

addressed by P. A. M. Dirac [5, 6] with his “Large Numbers hypothesis”: very

large (or small) dimensionless universal constants cannot be pure mathematical

numbers and must not occur in the basic laws of physics. He then proposed that

they be considered as (typically slowly) variable parameters characterising the

state of the Universe and pointed out the possibility of measuring astrophysi-

cal quantities to settle this question [28, 29, 30]. More recently, theories such as

string theory and models with extra spatial dimensions have also predicted the

time-dependence of the phenomenological constants of the low energy regime

describing our Universe [7, 31].

The cases we shall consider instead correspond to oscillations of the Higgs

vev with periods (set by the Higgs mass scale) of the order of 10−26 s. Such a be-

haviour can be obtained from the usual dynamics of the spatially homogeneous

Higgs field [32]. We therefore begin by considering the classical equation of mo-

tion for the time-dependent Higgs vev (i.e. a classical condensate) in a homoge-

3



4 Introduction

neous patch of space-time and identifying the relevant regimes. Quantum fluc-

tuations of fermion and boson fields of the Standard Model are then analysed on

this Higgs background and explicit expressions for the particle production [33],

an intrinsically non-perturbative effect, are presented. In particular, we investi-

gate which bosons and fermions are produced more abundantly depending on

the Higgs mass which we consider in a physically sound range of values [34].

Further, the back-reaction of particle production [35] is analysed in the Hartree

approximation which is well suited to describe such a dissipative effect. Similar

methods have been previously employed to study particle production in strong

fields [36] and pre- as well as re-heating in Cosmology [37, 38, 39, 40].

According to our findings, particle production induced by the oscillatingHiggs

can be very efficient. From the phenomenological point of view, if the Higgs were

oscillating now, the amplitudes of such oscillations should therefore be extremely

small. On the other hand, this mechanism could explain how Higgs kinetic and

potential energy have dissipated in the past [38]. Note that we typically con-

sider regimes such that only small oscillations around an absolute minimum are

present and the symmetry breaking phase transition is not significantly affected.

However, since we solve the complete system of coupled non-linear equations

that describe particle production and their back-reaction, one does not expect

that the produced particles are thermal [41]. They also turn out to have mostly

small momenta and are therefore non-relativistic.

In Chapter 2, we review the solutions of the classical equation of motion for

the Higgs vev to properly identify the periodicity properties. Fermion modes on

such a Higgs background are then studied in Chapter 3, Section 3.1, with a par-

ticular emphasis on the introduction of physical quantities and the regions which

lead to quantum particle production. The same kind of analysis is then given for

the bosons in Section 3.2. Fermion and boson production within the Standard

Model are then studied in details in Chapter 4 taking into account the depen-

dence on the Higgs mass. At this stage we neglect the back-reaction. This latter

effect, which has to be included to describe consistently the dynamics is then con-

sidered in Chapter 5. In this section we analyze phenomena like the dissipation

of the Higgs energy and particle production, consistent with total energy conser-

vation. Final comments are given in Chapter 6.



Chapter 2

Higgs vev time dependence

The Higgs sector of the Standard Model Lagrangian we are interested in is given

by [42]:

LH = ∂µH†∂µH − µ2H†H − 1

2
λ (H†H)2, (2.1)

where H is the complex iso-doublet

H =
1√
2

exp

(
i
ξaτa

v

)
[v + h(x)]

(
0

1

)
, (2.2)

τa (with a = 1, 2, 3) are the SU(2)L generators, ξ
a and h (with 〈0|ξa|0〉 = 0 =

〈0|h|0〉) are scalar fields which parameterise the fluctuations ofH around the vac-
uum state. We have neglected the couplings with gauge and fermion fields.

We find it useful to introduce two new quantities,MH and β, defined as

MH = 2
M

g

√
λ, µ2 = β − 1

2
M2

H , (2.3)

where g is the SU(2)L coupling constant andMH is the “bare” Higgs boson mass

(corresponding to constant Higgs vev). In the same way, M is the “bare” weak

vector boson mass. The parameter β is such that 〈0|h|0〉 = 0 to all orders in

perturbation theory. Since we are going to neglet the loop corrections, we set

β = 0 hereafter. Note also that the potential in the Lagrangian (2.1) yields a partial

spontaneous symmetry breaking (SSB). In fact, ground-state configurations are

only invariant under U(1)em ⊂ SU(2)L ⊗ U(1)Y .

The starting point of our work is the assumption that the Higgs field is a time-

dependent “classical” homogeneous condensate, v = v(t). Working in the unitary

5



6 Higgs vev time dependence

gauge (ξa = 0), the Lagrangian (2.1) becomes

LH =
1

2
v̇2 +

M2
H

4
v2 − λ

8
v4 + Lv,h, (2.4)

where a dot denotes the derivative with respect to t and Lv,h is a polynomial in
h and its derivatives. We then introduce a dimensionless real scalar field Φ such

that

v = 2
M

g
Φ , (2.5)

and

H =
1√
2

[
2M

g
Φ(t) + h(x)

](
0

1

)
. (2.6)

in order to study the fluctuations around the constant value Φ2 = 1, which is at

the basis of the SSB mechanism. On neglecting all terms involving h (which will

be analysed in Section 5), the Euler-Lagrange equation for Φ becomes

Φ̈ − M2
H

2
Φ +

M2
H

2
Φ3 = 0 , (2.7)

which can be put in dimensionless form by rescaling the time as τ ≡ MHt/2

(primes will denote derivatives with respect to τ ),

Φ′′ − 2Φ(1 − Φ2) = 0. (2.8)

After a simple integration we obtain

Φ′2 − 2Φ2 + Φ4 ≡ Φ′2 + V (Φ) = c, (2.9)

where the integration constant c ∈ R is a function of the initial conditions. From

a physical point of view, c is proportional to the total vacuum energy1 and V (Φ)

is the potential in which this vacuum is “moving” (see fig. 2.1).

The equation (2.9) can be formally solved by separating variables, which yields

τ − τ0 = ±
∫ Φ

Φ0

dΦ√
−Φ4 + 2Φ2 + c

≡
∫ Φ

Φ0

f(Φ) dΦ . (2.10)

1It is easy to see that the integral over space of the Hamiltonian density obtained from (2.4)
gives the total Higgs vacuum energyEΦ = MHc/λ. We shall thus refer to c as the “Higgs vacuum
total energy” for brevity.
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Figure 2.1: The Higgs vev potential V (Φ) = Φ4 − 2Φ2. Straight horizontal lines
correspond to c = −0.9,−0.5, 0.5, 0, 1, with c proportional to the Higgs vacuum
total energy.

Since we are interested in real solutions of Eq. (2.9), we must restrict to the case

(
−Φ4 + 2Φ2 + c

)
> 0, (2.11)

which corresponds to positive kinetic energy for Φ (see eq. (2.9)). For any c, the

stationary points of f(Φ) are given by Φ = 0, ±1, for which the potential V (Φ)

has a maximum and two minima rispectively. Moreover, note that for c = 0 and

c = −1 the integral in Eq. (2.10) is not defined at these points. We shall therefore

consider the following cases:

1. c ≤ −1. Since c = −1 corresponds to the absolute minimum in the vacuum

total energy, this case is not physically relevant;

2. −1 < c < 0. The system exhibits closed trajectories in phase space and a

periodic evolution;

3. c = 0. The motion is along the separatrix and the system leaves the equilib-

rium point Φ = 0 with an exponentially growing velocity;

4. c > 0. The system again exhibits closed trajectories in phase space but with

periods longer than those in case 2.

It can further be shown that the solutions for all four cases can be connected by
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analytic continuation2. Therefore, in what follows, we shall use the simplest form

of such solutions [44] (which corresponds to c > 0) for the sake of simplicity,

namely

Φ(τ) = Lm cn (Rmτ,m), (2.12)

where Lm ≡
√

2m
2m−1

and Rm ≡
√

2
2m−1
. The parameterm is given by

m =
1 +

√
1 + c

2
√

1 + c
, (2.13)

and is a function of the initial conditions because so is the vacuum energy c. The

function cn(z,m) is called Jacobi Elliptic function and has the following properties

[45]:

periods: 4K, 2K+ 2iK’ (2.14)

zeros: (2l + 1)K+ 2niK’ (2.15)

poles: βl,n = 2lK+ (2n+ 1)iK’ , (2.16)

where l, n are integers and K(m) is a special case of the complete elliptic integral

of the first kind F (θ,m),

K(m) = F
(π

2
, m
)

K′(m) = F
(π

2
, m′
)
, (2.17)

withm′ = 1−m. From (2.14) we deduce that the period along the real (imaginary)
axis of the function in Eq. (2.12) is given by

T =





2
√

2
√

2m− 1F
(
π
2
, m
)
, for m < 1 (m > 1)

√
2
√

2m− 1
[
F
(
π
2
, m
)

+ iF
(
π
2
, 1 −m

)]
, for m > 1 (m < 1) .

(2.18)

It is also important to note that the solution (2.12) describes the evolution in time

of the Higgs vacuum Φ for every initial conditions (Φ0,Φ
′
0) only after a suitable

time shift (so that Φ′(τ = 0) = 0).

2These solutions are well known in the literature for the φ4 theory in (1 + 1) and (3 + 1)-
dimensions [43].



Chapter 3

Massive fields in a time dependent

background

In this chapter we describe the theoretical developments needed to study the cou-

pling of fermionic and bosonic fields to a time dependent background (the Higgs

vev). Introducing some auxiliary field, for both fermion and boson is possible to

recast the equation of motion into an oscillator-type equation, with time depen-

dent coefficients that take into account the time dependence of the Higgs vev. The

Bogoliubov formalism used to diagonalize the hamiltonian make transparent the

physics of this quantum field theory in a time dependent background and allow

to express each phenomenological quantities (occupation numbers, energy den-

sity, etc.) as a function of the quantum equations of motion solutions. In this way,

is possible to calculate each physical quantity after integrate the equations of mo-

tion. In the case of fermion, this integration is very difficult, due to an imaginary

term in the frequency, so we must content ourselves with a numerical approach.

On the other hand, for the boson, there are a lot of analytical results from the

Floquet theory, especially for the limit of small background oscillations that we

consider here, and the problem is more tractable.

9



10 Massive fields in a time dependent background

3.1 Fermions in a time dependent Higgs vev

In the Standard Model the coupling of a generic fermion field ψ to the Higgs

scalar field H and gauge fields is described by the Lagrangian density terms [42]

Lf = iψ̄Lγ
µ

(
∂µ − ig

~σ

2
· ~Aµ(x) − ig′

YW
2
Bµ

)
ψL

+iψ̄Rγ
µ

(
∂µ − ig′

YW
2
Bµ

)
ψR −G

(
ψ̄LHψR + ψ̄RH

†ψL
)
, (3.1)

where ψL is a left handed isospin doublet, ψR a right handed isospin singlet and G

the coupling constant between the Higgs boson and the fermions. Neglecting the

gauge fields, in the unitary gauge (2.6), the previous Lagrangian becomes

Lf = iψ̄γµ∂µψ − G√
2

2M

g
Φ(t)ψ̄ψ − G√

2
h(x)ψ̄ψ, (3.2)

with ψ = ψL + ψR. Introducing the “mass parameter”
1

mf (t) ≡
G√
2

2M

g
Φ(t) =

G√
2

MH√
λ

Φ(t) ≡ mfΦ(t), (3.3)

with Φ(t) given by Eq. (2.12), the equation of motion for ψ is given by

[
iγµ∂µ −mf (t) −

G√
2
h(x)

]
ψ(x) = 0. (3.4)

For our purposes, the last term above can be neglected with respect to the second

term proportional to the Higgs condensate and one finally obtains

[iγµ∂µ −mf(t)]ψ(~x, t) = 0 (3.5)

which is a Dirac equation with a time dependent mass. In a similar manner, one

finds that the equation of motion for ψ̄ = ψ†γ0 is the Hermitian conjugate of (3.5).

The spinor field is normalized in such a way that
∫
d3xψ†(~x, t)ψ(~x, t) = 1 and,

in the Heisenberg picture, it becomes a field operator with the usual anticommu-

1Since there are no stationary states in a time-dependent external field Φ(t), the mass is strictly
speaking ill-defined. We shall however refer to the functionmf(t) as a time dependent mass.
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tation rules {ψ(~x, t), ψ†(~x ′, t)} = δ(~x− ~x ′). We can then expand ψ as

ψ(x) =

∫
d3k

(2π)3/2

∑

s=±
ei
~k·~x
[
Us(~k, t)as(~k) + Vs(−~k, t)b†s(−~k)

]
, (3.6)

where s = ± is the helicity,

{as(~k), a†s′(~k′)} = {bs(~k), b†s′(~k′)} = δss′δ(~k − ~k′) (3.7)

and
U †
s (
~k, t)Us′(~k, t) = V †

s (~k, t)Vs′(~k, t) = δss′

U †
s (
~k, t)Vs′(~k, t) = V †

s (~k, t)Us′(~k, t) = 0 ,

(3.8)

The vacuum state |0〉 is as usual defined by the relations

as(~k)|0〉 = bs(~k)|0〉 = 0. (3.9)

With no time dependence in the theory (i.e., for mf (t) = mf constant), Us(~k)

and Vs(~k) would be eigenstates of the operator ~γ · ~k with eigenvalues mf and

−mf respectively. The spinors in momentum space Us(~k, t) and Vs(~k, t) satisfy

the charge coniugation relation

C ŪT
s (~k, t) = Vs(−~k, t), (3.10)

with C = iγ0γ2
2.

It is now convenient to introduce two new scalars defined by

Us(~k, t) =
[
iγ0∂0 + ~γ · ~k +mf (t)

]
X (+)k (t)us

Vs(~k, t) =
[
iγ0∂0 − ~γ · ~k +mf (t)

]
X (–)k (t)vs,

(3.11)

2We are using the gamma matrices

γ0 =

(
I 0
0 −I

)
, γj =

(
0 −σj

σj 0

)
,

where σj , j = 1, 2, 3 are Pauli matrices and I is the 2 × 2 identity matrix.
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where

us =

(
χs
0

)
vs =

(
0

ηs

)
, (3.12)

with χ†
sχs = 1 and ηs = −iσ2χ−s, are eigenvectors of γ

0 with eigenvalues +1 and

-1, respectively. Note that C ūTs = v−s and Eq. (3.10) is thus identically satisfied.

With these notations, Eq. (3.5) yields

Ẍ
(±)
k (t) +

[
Ω2
k(t) ∓ iṁf (t)

]
X

(±)
k (t) = 0, (3.13)

which is of the harmonic oscillator type with the complex and (doubly-)periodic

frequency

Ω2
k(t) ∓ iṁf (t) ≡ k2 +m2

f(t) ∓ iṁf (t). (3.14)

Let us now assume that the Higgs vev remains constant and equal to Φ(0) for

t ≤ 0. Consequently, the mass mf(t) will also be constant at negative times and

one just has plane waves for t ≤ 0. The evolution for t > 0 is then obtained by

imposing the following initial conditions at t = 03






X
(±)
k (0) = {2Ωk(0) [Ωk(0) +mf(0)]}−1/2

Ẋk
(±)

(0) = ∓iΩk(0)X
(±)
k (0).

(3.15)

These together with Eq. (3.13) give

X (–)k (t) =
(
X (+)k (t)

)∗
, (3.16)

so that positive and negative energy modes are not independent and we shall

then consider mostly the equation for X (+)k for simplicity.

It can be showed that if f1(t) and f2(t) are two arbitrary solutions of Eq. (3.13)

with the sign (+) (or, equivalently, with (–)), the quantity

I[f1, f2] ≡ Ω2
k(t)f

∗
1 f2 + ḟ ∗

1 ḟ2 + imf (t)
(
f ∗

1 ḟ2 − ḟ ∗
1 f2

)
(3.17)

is a constant of motion and one can then prove the stability of any arbitrary solu-

tions [46]. Finally, note that if f1(t) = f2(t) = X (+)k (t) the relation (3.17) takes the

3We have set the momentum ~k = (0, 0, k).
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form ∣∣∣Ẋ (+)k
∣∣∣
2

+ Ω2
k

∣∣∣X (+)k
∣∣∣
2

+ imf (t)
(
X (+)∗k Ẋ (+)k − Ẋ (+)∗k X (+)k

)
= 1, (3.18)

which is also a consequence of the fact that Us(~k, t) and Vs(~k, t) are evolved by the

Hermitian operators iγ0∂0 ∓ ~γ · ~k −mf (t).

3.1.1 Fermion solutions and physical quantities

The Hamiltonian operator for a fermion field can in general be written as

H(t) = i

∫
d3xψ†(~x, t)ψ̇(~x, t). (3.19)

Inserting the expansion (3.6) and using Eq. (3.8), this becomes

H(t)=

∫
d3k

∑

s

{[
iU †

s (
~k, t)U̇s(~k, t)

]
a†s(
~k)as(~k) +

[
iV †
s (−~k, t)V̇s(−~k, t)

]
bs(−~k)b†s(−~k)

+
[
iV †
s (−~k, t)U̇s(~k, t)

]
bs(−~k)as(~k) +

[
iU †

s (
~k, t)V̇s(−~k, t)

]
a†s(
~k)b†s(−~k)

}
, (3.20)

where we have integrated on ~x and one of the momenta. Taking into account

Eq. (3.11), we end up with

H(t) =

∫
d3k

∑

s=±
Ωk(t)

{
E(k, t)

[
a†s(
~k)as(~k) − bs(−~k)b†s(−~k)

]

+F (k, t)bs(−~k)as(~k) + F ∗(k, t)a†s(
~k)b†s(−~k)

}
, (3.21)

where
E(k, t) = 2k2

Ωk(t)
Im
[
X (+)k (t)Ẋ (+)∗k (t)

]
+

mf (t)

Ωk(t)
,

F (k, t) ≡ k
Ωk(t)

[
(Ẋ (+)k (t))2 + Ω2

k(t)(X
(+)
k (t))2

] (3.22)

and4

E2(k, t) + |F (k, t)|2 = 1. (3.23)

From Eq. (3.22), using (3.15), it is possible to see that E(k, 0) = 1 and F (k, 0) = 0,

thereforeH(t = 0) is diagonal. In fact, we have assumed that for t ≤ 0 the vacuum

is constant and there is no explicit time dependence in the theory.

4This is a consequence of (3.18).
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The Hamiltonian (3.21) can be diagonalized at every time using a canonical

Bogoliubov trasformation [47]. As a matter of fact, the necessary conditions for

this kind of diagonalization are ensured by the relations [36]

iV †
s (−~k, t)V̇s(−~k, t) = iU †

s (
~k, t)U̇s(~k, t) = Ωk(t)E(k, t)

[
iU †

s (
~k, t)V̇s(−~k, t)

]∗
= iV †

s (−~k, t)U̇s(~k, t) = Ωk(t)F (k, t).

(3.24)

We now introduce time-dependent creation and annihilation operators,

(
ãs(~k, t)

b̃†s(
~k, t)

)
=

[
α(k, t) β(k, t)

−β∗(k, t) α∗(k, t)

](
as(~k)

b†s(−~k)

)
≡ A(k, t)

(
as(~k)

b†s(−~k)

)
,

(3.25)

and the condition that this be a non singular canonical trasformation requires that

A is a special unitary matrix,

|α(k, t)|2 + |β(k, t)|2 = 1. (3.26)

We have thus shown that SU(2) is the dynamical symmetry group for fermion

creation in a homogeneus non stationary scalar field and the time-dependent vac-

uum |0〉t (see below) is a generalized coherent state built on this group [48].

The hamiltonian also takes the diagonal form

H(t) =

∫
d3k

∑

s=±
Ωk(t)

[
ã†s(
~k, t)ãs(~k, t) − b̃s(−~k, t)b̃†s(−~k, t)

]
, (3.27)

if the coefficients of the canonical trasformation are such that

|β(k, t)|2 =
1 − E(k, t)

2

α(k, t)

β(k, t)
=

F (k, t)

1 − E(k, t)
=

1 + E(k, t)

F ∗(k, t)
,

(3.28)

which are indeed compatible with the condition (3.26) thanks to (3.23).

It is now possible to use the operators ã e b̃ to define time dependent Fock

spaces, each of them built from the zero (quasi)particle state at the time t de-

fined imposing ãs(~k, t)|0t〉 = 0 and b̃s(~k, t)|0t〉 = 0, which, at t = 0, are equal to
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as(~k)|0〉 = 0 = bs(~k)|0〉. These relations mean that a quantized fermion field in-
teracting with a classical external field Φ(t) can be represented at every time as a

free field, with a corresponding redefinition af the particle concept and vacuum

state. Moreover, one can show that diagonalizing the Hamiltonian (3.21) is equiv-

alent to finding exact solutions of the Heisenberg equations of motion and all the

matrix elements (expectation values of physical observables) of interest can be

written in terms of the coefficients of the Bogoliubov trasformation (3.25) [36].

For example, the vacuum expectation value of the (quasi-)particle number

operator is given by

Nk(t) ≡ 〈0|ã†s(~k, t)ãs(~k, t)|0〉 = |β(k, t)|2 〈0|bs(~k)b†s(~k)|0〉 = |β(k, t)|2 δ(~0), (3.29)

where we have used Eqs. (3.25) and (3.9). From the previous relation we see

that the number of created (quasi)particle pairs is spin-independent because the

homogeneus field Φ is isotropic [49]. If we put the system in a finite volume V ,

we must replace δ(~0) in (3.29) with δ~k~k = 1. The (quasi)particle density at the time

t is thus given by 5

n(t)= 〈0| 1
V

∑

s=±

∫
d3k

(2π)3
Nk(t)|0〉 =

2

(2π)3

∫
d3k〈0|Nk(t)|0〉 =

1

π2

∫
dk k2|β(k, t)|2 (3.30)

which is different from zero whenever the Hamiltonian is not diagonal in terms

of the operators a and b. The occupation number of fermions created with a given

momentum ~k will be nk(t) = |β(k, t)|2, and the condition (3.26) ensures that the
Pauli principle is respected at every time [36, 51].

In order to implement numerical methods, it is useful to cast some of the pre-

vious expressions in dimensionless form. We thus introduce the following quan-

tities:

τ ≡ MH

2
t , κ ≡ 2 k

MH
, q ≡ 2

G2

λ
= 4

m2
f

M2
H

, (3.31)

where mf ≡ mf(τ → −∞) = mf(0). On further multiplying by 4/M2
H , Eq. (3.13)

takes the dimensionless form

X
(±)′′

k (τ) +
[
κ2 + qΦ2(τ,m) ∓ i

√
qΦ′(τ,m)

]
X

(±)
k (τ) = 0. (3.32)

5Of course, the same result holds for antifermions.



16 Massive fields in a time dependent background

Moreover, if we define the dimensionless frequency

ωκ ≡
2 Ωk

MH
=
√
κ2 + qΦ2 , (3.33)

the initial conditions (3.15) become






X
(±)
κ (0) =

{
2ωκ(0)[ωκ(0) +

√
qΦ(0, m)]

}−1/2

X
(±)′

κ (0) = ∓i ωκ(0)X
(±)
κ (0).

(3.34)

Note that, despite this is not explicitly indicated, the frequency and the initial

conditions are also functions of the amplitudem of the elliptic function, that is of

the vacuum energy c (see Eq. (2.13)). On using (3.28), (3.22) and (3.31) we finally

obtain

nκ(τ) =
1

2
− κ2

ωκ(τ)
Im [Xκ(X

′
κ)

∗] −
√
qΦ(τ,m)

2ωκ(τ)
, (3.35)

which gives the occupation number for every mode κ as a function of the solu-

tions Xκ ≡ X (+)κ
6 of Eq. (3.32). Analogously, the (dimensionless) energy density

will be

ρ̃ψ(τ) =
1

2 π2

∫
dκ κ2ωκ(τ)nκ(τ). (3.36)

Note that nκ(0) = ρ̃ψ(0) = 0 thanks to the initial conditions (3.34).

A very useful result follows from the periodicity of the vacuum 7, Φ(τ) =

Φ(τ + T ), which remarkably simplifies the evaluation of the occupation number

and shows, although in an approximate way, its explicit time dependence [46]. If

we define

ωκ ≡ ωκ(τ → −∞) = ωκ(0), (3.37)

an approximate expression for nκ(τ) is given by
8

n̂κ(τ) =
κ2

ω2
κ

{Im[X
(1)
κ (T )]}2

sin2(dκ)
sin2

(
dκ
τ

T

)
≡ Fκ sin2 (νκτ) , (3.38)

where X
(1)
κ (τ) satisfies Eq. (3.32) with initial conditions X

(1)
κ (0) = 1, X

(1)′

κ (0) = 0

6This definition is not restrictive since we only need eitherX
(+)
κ or X

(–)
κ to calculate nκ(τ).

7We clearly refer to the period of Φ along the real axis (see Eq. (2.18)).
8We shall see in Section 4.1 that Eq. (3.38) is actually exact at τ = n T for any positive integer

n.
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and dκ is such that cos(dκ) = Re[X
(1)
κ (T )]. According to Eq. (3.38) the number

density of fermions produced depends periodically on τ for all κ. So, on average,

this density does not depend on the time during which the external field is turned

on. The physical meaning of this result was pointed out by V. S. Popov through a

quantum mechanics analogy [46]. Finally observe that in our case the time scale

is fixed by the factor 2/MH and ifMH ∼ 102 GeV then 9 2/MH ∼ 1.3 · 10−26 s.

3.1.2 Band structure

A non adiabatic quantum effect arises from the explicit time dependence of the

frequency in Eq. (3.32), and this leads to the production of particles. When the

time dependence is periodic, one usually speaks of parametric resonance. It is then

clear that the quantity q has the role of a resonance parameter due to the fact that

the time-dependent terms in Eq. (3.32) are proportional to q.

We are interested in values of q and κwhich give solutions of the mode equa-

tion associated to particle production, identified by a mean occupation number

(see Eq. (3.38))

n̄κ ≡ 〈nκ〉τ =
Fκ
2

(3.39)

different from zero. The result is shown in Fig. 3.1 in which every peak corre-

sponds to n̄κ = 1/2: note the band structure in the plane (q, κ2). The left plot in

the upper part of Fig. 3.1 shows the first and second bands while the right plot

displays bands from the second to the fourth. Moving along a band, n̄κ oscillates

between 0 and 1/2. Moreover, the bands get narrower with increasing κ2 for a

given value of q and after several bands they shrink to a negligible width, as we

show in Fig. 3.2 with a plot of the mean occupation number as a function of κ2

for the bottom quark.

To obtain the curves in the lower graphs of Fig. 3.1 we have studied the mean

occupation number along straigh lines κ2 = ϑ q, with ϑ constant. First of all, for

ϑ ≈ 0 10 the peaks are located on the q axis at qn(ϑ ≈ 0) = n2, with n a positive

integer. We then made the ansatz qn(ϑ) = n2 Γ(ϑ), with Γ(0) = 1, for the position

of the peaks qn along the generic line κ
2 = ϑ q. A numerical interpolation starting

9We recall that 1GeV−1 ∼ 6.582 · 10−25 s for ~ = c = 1.
10Note that if ϑ = 0, κ2 = 0 and n̄κ = 0with no production.



18 Massive fields in a time dependent background

0.5 1 1.5 2 2.5 3 3.5 4
q

0.5

1

1.5

2

2.5

3

Κ
2

4 6 8 10 12 14 16 18
q

0.5

1

1.5

2

2.5

3

Figure 3.1: Production chart for fermions coupled to the Higgs. Upper graphs
show the occupation number as a function of the parameters q and κ2. Lower
plots show in details the lines in the plane (q, κ2) along which the mean occupa-
tion number takes its maximum values. Note that for κ ≃ 0we have qn ≃ n2.

from the analysis of the first five peaks for different values of ϑ has then yielded

Γ(ϑ) =
1

1 + ϑ
, (3.40)

for which the parametric equation of the lines in Fig. 3.1 are given by






qn(ϑ) = Γ(ϑ)n2

κ2
n(ϑ) = ϑΓ(ϑ)n2.

(3.41)

On replacing ϑ from the first into the second equation, we finally find that the

production rate must take its maximum values at points in the plane (q, κ2) that
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Figure 3.2: Mean occupation number Fκ/2 as a function of κ
2 for the bottom and

MH = 115GeV (solid line), 200GeV (dotted line), 500GeV (dashed line). Note
that the peaks get narrower with increasing κ2. Similar plots are obtained by
varying the resonance parameter q at κ2 fixed as for decreasing q the bandwidth
shrinks.

satisfy the relation

κ2
n + q ≃ n2 , (3.42)

with n a positive integer. Note that the above relation represents a very good ap-

proximation in the regime of small oscillations around the static Standard Model

Higgs.

The band structure we just described will lead to a preferred production of

non-relativistic particles, that is particles with small momentum compared to

their mass. For example, for fermions with a mass smaller than MH/2, the pro-

duction is mostly driven by the first band (n = 1) and Eq. (3.42) yields a typical

momentum k2 ∼ M2
H/4 −m2

f which is smaller than m
2
f for the particles we con-

sider in the following. On the other hand, the production of more massive par-

ticles will be caused by higher order bands (so that n2 − q > 0) and is normally

suppressed.

3.2 Bosons in a time dependent Higgs vev

The Lagrangian which describes the coupling between the Higgs field and the

vector bosons is the same as in Eq.(2.1), but with gauge covariant derivatives and
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kinetic terms for the gauge fields,

LH−B = DµH†DµH − µ2H†H − λ

2

(
H†H

)2 − 1

4
F i
µν F

µν
i − 1

4
Gµν G

µν , (3.1)

where Dµ = ∂µ − ig ~σ
2
· ~Aµ − ig

′

2
Bµ, F

i
µν = ∂µA

i
ν − ∂νA

i
µ + gǫijkAjµA

k
ν and Gµν =

∂µBν − ∂νBµ. For the electroweak vector bosons we thus have

LW±,Z0
=−∂νW+

µ ∂
νW−µ − 1

2
(∂νZµ)

2 +
g2

4M2
h2

(
M2W+µW−

µ +
M2

Z

2
ZµZµ

)
+

+Φ2

(
M2W+µW−

µ +
M2

Z

2
ZµZµ

)
+

g

M
Φh

(
M2W+µW−

µ +
M2

Z

2
ZµZµ

)
. (3.2)

Taking the vevwith the condition 〈0|h|0〉 = 0 and neglecting the back-reaction of h,

the classical equation of motion for Zµ is given by

∂ν∂
νZµ +M2

ZΦ2(t)Zµ = 0. (3.3)

The fields W±
µ satisfy the same equation with MZ replaced by M . We therefore

conclude that any component Z of the vector field Zµ and any component W of

W∓µ satisfy Klein-Gordon equations with mass M2
Z(t) ≡ M2

ZΦ2(t) and M2(t) ≡
M2Φ2(t) which, after performing a spatial Fourier transform, take the form

Z̈k +
[
k2 +M2

Z(t)
]
Zk = 0 , (3.4)

Ẅk +
[
k2 +M2(t)

]
Wk = 0 , (3.5)

whereZ (t) = (2π)−3/2
∫
d3k ei

~k·~xZk(t) andW (t) = (2π)−3/2
∫
d3k ei

~k·~xWk(t). Anal-

ogously, from the Lagrangian (2.1) in the unitary gauge (2.6) and keeping only

terms up to second order, one obtains the following equation for the Fourier

modes of the quantum Higgs field

ḧk +
[
k2 +M2

h(t)
]
hk = 0 , (3.6)

where

M2
h(t) = M2

H

[
3

2
Φ2(t) − 1

2

]
. (3.7)

We are interested in the case when the Higgs vev Φ(t) oscillates near one of its

two absolute minima (see Fig. 2.1). We therefore take the limitm→ +∞ (c→ −1)
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in Eq. (2.12) and obtain

Φ(τ) ≃ 1 − 1

2m
sin2 τ +O

(
1

m2

)
. (3.8)

Moreover, from now on, we shall for simplicity denote with Yκ any bosonic mode,

that is Yκ can be either Zκ, Wκ or hκ. Eqs. (3.4), (3.5) and (3.6) then become

Y ′′
κ (τ) +̟2

κ(τ)Yκ(τ) = 0 , (3.9)

with

̟2
κ(τ) = κ2 + q

(
1 − σY

m
sin2 τ

)
, (3.10)

where we have neglected terms beyond the first order in 1/m and introduced the

dimensionless constants

κ ≡ 2k

MH
and q ≡ 4

M2
Y

M2
H

, (3.11)

withMY = MZ ,M orMH and σY = 1 for the gauge fields and 3/2 for the Higgs.

Note that Eq. (3.32) for the fermion modes takes the same form as Eq. (3.9) when

the imaginary part of the fermion frequency can be neglected and that the period

of ̟κ(τ) is π.

If we define

a ≡ 1

4

[
κ2 + q

(
1 − σY

2m

)]
, ǫ ≡ q σY

16m
, (3.12)

and change the time to η ≡ 2τ = MHt, we obtain

Y ′′
κ (η) + (a+ 2ǫ cos η)Yκ(η) = 0 . (3.13)

When the total vacuum energy c is near the minimum value c = −1 (for which Φ

is constant),W±µ, Zµ and h therefore satisfy aMathieu equation.

The Mathieu equation is a linear differential equation with time periodic co-

efficients and is described in the general framework of Floquet theory [52]. An

important result from this theory is the existence of stable solutions only for par-

ticular values of a and ǫ (see Fig. 3.3). For our purposes, the relevant solutions

which lead to an efficient particle production in the quantum theory are however
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Figure 3.3: Stability regions for the Mathieu equation. Stable solutions have a
and ǫ in the unshaded regions. When ǫ = 0, instability bands cross the a-axis at
an = n2/4, with n = 0, 1, 2, . . ..

those which show an exponential instability of the form (µ
(n)
κ is known as Floquet

index or growth factor)

Yκ ∼ exp
(
µ(n)
κ η/2

)
(3.14)

and appear within the set of resonance bands of width∆κ(n) labelled by the inte-

ger index n. Using Eq. (3.12) one can then map the stability chart of Fig. 3.3 into

the plane (q, κ2) and finds that the instabilities also correspond to an exponential

growth of the occupation number of quantum fluctuations, nκ ∝ exp(µ
(n)
κ η) (see

Eq. (3.18) below), which can be interpreted as strong particle production. Stable

solutions also lead to particle production, although with no exponential growth

in time, and thus resemble the fermion case [46].

If c ≈ −1 thenm≫ 1 and ǫ ≈ 0 in Fig 3.3. One then finds 4 a ≈ n2, or

κ2
n + q

(
1 − σY

2m

)
= n2 , n = 1, 2, 3, . . . , (3.15)

which, for a given q, gives the value of κ2 around which the n-th resonance peack

is centred. Further, the physical constraint κ2 ≥ 0 implies q ≤ 2n2m/(2m− 1), so

if q . 1 (MH & 2MY ) all the resonance bands contribute to production, otherwise
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at least the first band (n = 1) is not available. In particular, the first band is never

available for the Higgs particle and its production can therefore be negligible with

respect to that of gauge bosons if the Higgs mass is sufficiently large.

3.2.1 Boson occupation number and energy density

The same analytical steps of Section 3.1 allows one to relate relevant physical

quantities to the solutions of the equation of motion also in the case of bosons.

We again take initial conditions corresponding to positive frequency plane waves

for τ ≤ 0, 



Yκ(0) = [2̟κ(0)]−1/2

Y ′
κ(0) = −i̟κ(0)Yκ(0).

(3.16)

The occupation numbers for bosons will then be given by [36]

nκ(τ) =
1

2̟κ
|Y ′
κ|2 +

̟κ

2
|Yκ|2 −

1

2
, (3.17)

where ̟κ = ̟κ(0) and note that nκ(0) = 0 thanks to eqs. (3.16).

Like for fermions, it is possible to find an analytic approximation for the boson

occupation number [36],

n̂κ = sinh2(µκτ) , (3.18)

with the Floquet index, or growth factor, µκ given by

cosh(µκT ) = Re
[
Y (1)
κ (T )

]
, (3.19)

inwhich Y
(1)
κ is the solution of Eq. (3.9) with initial conditions Y

(1)
κ (0) = 1, Y

(1)′

κ (0) =

0 and T = π is the period of ̟κ(τ) (the period of the Higgs vacuum). Using this

approximate expression, the boson energy density can be written as

ρ̃B(τ) =
1

2π2

∫
dκ κ2̟κ(τ) sinh2(µκτ) , (3.20)

where the tilde on ρ is to remind that this is a dimensionless quantity (like the

fermion analogue in Eq. (3.36)).



Chapter 4

Particle production

The time dependence of the vacuum expectation value of the Higgs field, also in

the regime of small oscillations considered here, is an efficient source of particles

production. This non adiabatic quantum effect will be considered here thinking

the Higgs vev as an “infinite sea” of energy, i.e. neglecting every kind of back-

reaction due to the produced particles. This approximation will be showed to be

valid only in a first stage of the production process and a more complete analysis

will be performed in the next chapter.

4.1 Fermion production

We shall now use the numerical solutions to Eq. (3.32) to evaluate the fermion

occupation number nκ in Eq. (3.35) and compare it with its analytical approxima-

tion n̂κ in Eq. (3.38). In order to illustrate the magnitude of the effect, we shall

consider three possible values for the Higgs boson mass which result from dif-

ferent experimental lower or upper bounds, namelyMH = 115GeV, 200GeV and

500GeV [34]. In this Section, we shall not take into account the back-reaction of

the produced fermions which is treated later.

Let us begin with Fig. 4.1, which shows the time evolution of the occupation

number nκ and its enveloping n̂κ for the top quark in the case MH = 500GeV

and two different values of the momentum κ, and Fig. 4.2, which shows the same

quantities for the bottom quark in the caseMH = 200GeV:

a) For κ on the (first) resonance band both functions nκ and n̂κ for the top reach

the maximum allowed by the Pauli blocking and are remarkably indistin-

24
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Figure 4.1: Time evolution of the occupation number nκ and its envelope n̂κ for
the top quark and MH = 500GeV. Left graph: κ2 = 1 − q ≃ 0.51 on the first
resonance band, c0 = −1 + 10−3 (solid line) and c = −1 + 4 · 10−3 (dashed line).
Note that nκ and n̂κ exactly coincide and their period scales as (c + 1)1/2. Right
graph: κ2 = q/10 ≃ 4.8 ·10−2 is outside resonance bands and n̂κ (solid line) differs
from nκ (dashed line).

guishable (left graph in Fig. 4.1). In fact, their difference remains of the

order of 10−8 for both values of the initial background energy c = c(τ = 0)

and we do not show it. For the bottom (i.e., a smaller value of q at the res-

onance with respect to the top’s) instead, the two functions differ slightly

and always remain smaller than one (see Fig. 4.2). In both cases however,

from the numerical simulations one can infer a scaling law for the period Tκ
of the occupation number with respect to the initial vacuum energy c. If c0
is a reference energy, one has

Tκ(c) = Tκ(c0)

(
c0 + 1

c+ 1

)n/2
, (4.1)

which holds for all values of κ on the n-th resonance band provided c is

small enough that only small oscillation of the background Φ are relevant

(see case 2 in Section 2). Note also that Tκ ≫ T for the top (we recall that the

Higgs vev period is 2T/MH ∼ 10−26 s).

b) For values of κ not on a resonance band (right graph in Fig. 4.1), the produc-

tion is of course much damped and the exact occupation number shows

relatively high frequency oscillations, with period comparable to the Higgs

vev’s, which are modulated by the function n̂κ with a period usually larger

than T . It is therefore clear that the time average over these relatively high
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Figure 4.2: Time evolution of the occupation number for the bottom quark,MH =
200GeV, κ2 = 1− q ≃ 0.9982 on the first resonance band and c0 = −1 + 10−3. Left
graph: nκ (dashed line) and its envelope n̂κ (solid line). Right graph: difference
between nκ and n̂κ.

frequency oscillations can still be related to the enveloping n̂κ as

n̄κ(τ) = 〈nκ(τ)〉τ ≡
1

T

∫ τ+T

τ

dζ nκ(ζ) ≃ n̂κ(τ) , (4.2)

where n̂κ is given in Eq. (3.38).

Note that qualitatively similar results were obtained by Greene and Kofman in

Ref. [50], although in a very different context (cosmological models). Some dif-

ferences are due to the fact that fermion masses of relevance for the latter case are

tipically much larger than the inflaton’s, whereas we consider the fermionmasses

of the SM (that is, much smaller or of the same order of the Higgs mass). The res-

onance parameter q is therefore at most of order one in our case but is always

much larger in theirs and, consequently, the imaginary part of the frequency is

negligible in the cosmological context but could not be neglected in the present

treatment.

We emphasize that the fermion occupation number is always periodic in time

and the function in Eq. (3.38) exactly equals nκ(pT ), with p a positive integer, re-

gardless of the fact that κ and q are on a resonance band or not (see Fig. 4.1). This

is a general behaviour which still holds for very small values of q, for example

q ∼ 10−10 or q ∼ 10−22, corresponding to the scales of the electron and neutrino

mass (. 1 eV) respectively. These cases are however very difficult to treat numer-

ically because one should integrate for very long times (the period of the function

in Eq. (3.38) grows with the inverse of the fermion mass). For this reason we have
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chosen to show the occupation number only for quarks like the top and bottom.

We are now interested in the production probability for a given fermion, i.e.,

in the occupation number nκ summed over all κ’s for a given value of q (see

Eq. (3.31)). The generally oscillating behaviour of nκ leads us to estimate this

probability in time as the mean number (4.2) summed over all the momenta κ,

n̄ψ ≡ 〈nψ(τ)〉τ =
1

4 π3

∫
d3κFκ〈sin2(νκτ)〉τ =

1

4 π3

∫
d3κ

Fκ
2
. (4.3)

As we see from Fig. 3.2, the mean occupation number n̄κ as a function of κ at fixed

q is significantly different from zero only near the values κ2 = κ2
n around which

the production peaks are centred. We can therefore estimate n̄ψ as

n̄ψ ≃ 1

4 π3

np∑

n=1

∫

Supp(Pn)

d3κ n̄κ ≃
1

2 π2

np∑

n=1

√
κ2
n ∆κ2

n n̄κn
(4.4)

where Supp(Pn) is the interval around κ
2
n in which n̄κ is significantly large. The

effective width of the peak ∆κ2
n on the n-th band is determined by estimating

each integral in the above expression numerically. Further, we found that

∆κ2
n(c) ≃ ∆κ2

n(c0)

(
c+ 1

c0 + 1

)n
2

, (4.5)

a scaling behaviour also shared by the bosons (see Section 4.2).

The occupation number in Eq. (4.4) for the top, bottom, down and for the tau are

shown in Table 4.1 for three different values of the Higgs mass and Higgs total

vacuum energy c0 = −1 + 10−3. Note that the production is mostly generated

from the first band and, if q < 1, the production probability is larger than for

q > 1 since for the latter case only the bands of order greater than one can con-

tribute. So, recalling that q = 4m2
f/M

2
H , we conclude that in the Standard Model

all the fermions except the top have a greater production probability for a “light”

Higgs. Moreover, within a given band, the production is still strongly affected

by the resonance parameter q. On varying q along a given band one observes a

change in the value of the momentum κ of the produced particles (see Eq. (3.42)),

in the width of the band and, consequently, in the number density of produced

particles (see Figs. 3.1 and 3.2). These facts lead to the values of n̄ψ (as defined in

Eq. (4.4) above) presented in Table 4.1. Note finally that the bottom is the “dom-
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MH = 115GeV

ψ n̄ψ q

t ≪ 10−10 9.26
b 8.7 · 10−5 5.46 · 10−3

d 1.6 · 10−7 1.38 · 10−8

τ 3.9 · 10−5 9.54 · 10−4

MH = 200GeV

ψ n̄ψ q

t 1.6 · 10−5 3.06
b 5.1 · 10−5 1.80 · 10−3

d 8.2 · 10−8 4.54 · 10−9

τ 2.4 · 10−5 3.16 · 10−4

MH = 500GeV

ψ n̄ψ q

t 4.3 · 10−4 0.48
b 2.4 · 10−5 2.90 · 10−4

d 3.3 · 10−8 7.28 · 10−10

τ 8.8 · 10−6 5.06 · 10−5

Table 4.1: Production probability of various quarks and of the lepton tau for three
different values of the Higgs mass and Higgs total vacuum energy c0 = −1+10−3.

inant” (with the highest production probability) fermion for MH = 115GeV and

MH = 200GeV, while forMH = 500GeV the top production is more probable.

We remark that the average occupation number n̄ψ also scales with the energy

according to the relation

n̄ψ(c) ≃ nψ(c0)

(
1 + c

1 + c0

)n
2

∼ (1 + c)
n
2 , |c+ 1| . 10−3 , (4.6)

where n is the order of the “dominant” peak (the one which contributes most

to the production). So if one is interested in the production probabilities at an

arbitrary but always very small energy, the values in Table 4.1, calculated for c0 =

−1 + 10−3, must be multiplied by the factor [(1 + c)/(1 + c0)]
1
2 if the production is

associated with the first band. For example, this is true for the top ifMH > 2mtop

and all other fermions for any Higgs mass. Instead, in the region MH < 2mtop

(of phenomenological interest), the top may be produced only starting from the

second band and the relevant scale factor is (1 + c)/(1 + c0).

Finally, we evaluate the fermion energy density using Eq. (3.36). The integral

over κ can be calculated in the same way as in Eq. (4.4) and including just the

dominant peak for the production. This approximation is better the lower the

Higgs vacuum energy, since the peak amplitude decreases proportionally to this
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energy. we thus find

ρ̃ψ(τ) =
1

2π3

∫
d3κωκ(τ)

Fκ
2

sin2(νκτ) ≃
1

2π3

∫

Supp(Pdom)

d3κωκ(τ) n̄κ sin2(νκτ) . (4.7)

Around the dominant peaks κ̄2
n given by Eq. (3.42) we have

νκ̄2
n
≈ 1 , (4.8)

and we can therefore write the energy density (4.7) as

ρ̃ψ(τ) ≃ sin2(τ)

2 π3

∫

Supp(Pdom)

d3κ ωκ(τ) n̄κ ≃
sin2(τ)

π2

np∑

n=1

√
κ2
n ∆κ2

n ωκn
(τ) n̄κn

, (4.9)

which significantly simplifies the evaluation of the integral over κ. One can also

find a scaling law for the energy density so obtained, namely

ρ̃ψ ∼ (1 + c)
n
2 , (4.10)

with the same prescriptions as for nψ.

From Eq (2.4), the vacuum energy in a volume 8/M3
H can be calculated and

put in the usual dimensionless form as

ẼΦ ≡ 16

M4
H

EΦ =
2

λ
c . (4.11)

The Higgs vacuum energy density available for the production is thus given by

∆ẼΦ ≡ ẼΦ − ẼΦ=1 =
2

λ
(c+ 1) . (4.12)

In the StandardModel λ appears as an arbitrary parameter and there are presently

no experimental constraints on it. There are however good reasons to believe that

λ < 1 but we shall consider in all our calculations simply the value λ = 1. Taking

into account the dependence of 〈ρ̃ψ〉 and ∆ẼΦ on c, the fraction of total energy

absorbed by a given fermion scales as

R(c) =
〈ρ̃ψ〉
∆ẼΦ

= R(c0, λ)

(
1 + c0
1 + c

)n/2
, R(c0, λ) ≡ λ

2
(1 + c0)

−n/2〈ρ̃ψ(c0)〉 (4.13)
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Figure 4.3: Fraction of Higgs vacuum energy R absorbed by the produced top for
MH = 500GeV and c0 = −1 + 10−3.

ψ R q MH

t 1.1 · 10−1 0.48 500GeV
b 2.2 · 10−2 5.46 · 10−3 115GeV
d 4.0 · 10−5 1.38 · 10−8 115GeV
τ 1.0 · 10−2 9.54 · 10−4 115GeV

Table 4.2: Fraction of Higgs vacuum energy absorbed by various quarks and the
tau lepton for the particular Higgs mass (out of the three considered in Table 4.1
with c0 = −1 + 10−3) which gives the highest production rate.

An example of this quantity is plotted in Fig. 4.3. Notably, the maximum value is

reached before the end of the first vacuum oscillation.

Using the results shown in the Table 4.1, for each included fermion we have

selected the values of the Higgs mass which give the greatest production prob-

ability and the corresponding energy densities are shown in Table 4.2 in units

of the Higgs vacuum energy density avaible for the production ∆ẼΦ. Of course,

the physical condition R < 1 limits the range of validity of this first approxima-

tion where production is not taken to affect the vev oscillation (no back-reaction),

breaking energy conservation. For example, the value of R given in Table 4.2

for the top for c0 = −1 + 10−3 can be rescaled down to a minimum energy c ≃
−1 + 4 · 10−5, for our choice of λ.

When their energy density becomes comparable with the background energy,

the produced fermions are expected to back-react on the Higgs vev, thus affecting

its evolution and eventually suppressing the parametric production of particles.

We shall see this in detail in Section 5. For now we just note that the different
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scaling law for the top quark energy density as a function of c (when the Higgs

mass is large) implies that back-reaction effects will become important sooner

and one should therefore be aware that in this case, for very small Higgs energy

oscillations, the top energy density produced will be strongly affected by these

effects.

4.2 Boson production

In Section 3.2 we reviewed the fact that the equation of motion for a bosonic

field admits unstable solutions only for some values of the parameters q and κ.

The results of the numeric integration of Eq. (3.9) will be used to evaluate the

occupation number for every mode κn given in Eq. (3.15). For both Z0 and W
±

we have seen that, for a given value of MH , the first band (n = 1) contributes to

the production in an extremely dominant way with respect to the others since the

Floquet numbers scale with the Higgs vacuum energy according to

µ(n)
κ (c) ≃

(
1 + c

1 + c0

)n
2

µ(n)
κ (c0) , (4.1)

where we usually take c0 = −1 + 10−3. Therefore, in the following we shall just

refer to the first band and then do not describe the Higgs production (see Sec-

tion 3.2), which could be trivially included. Moreover, motivated by the discus-

sion at the end of Section 3.2, we shall first study the caseMH ≃ 2MZ0 = 182GeV

as the plot in Fig. 4.4 shows that this yields a more efficient production.

Let us note that for the case of production dominated by the second band (i.e.,

for bosons with mass less than twice the Higgs mass, including the Higgs itself),

the relevant Floquet index is much smaller. In particular, a plot similar to that in

Fig. 4.4 would display a curve for µ
(2)
κ , which scales as (1+ c) instead of (1+ c)1/2,

with maximum value on the vertical axis of the order of 10−2.

Fig. 4.5 shows the time dependence of the occupation number (3.17) and its

enveloping approximation (3.18) for the boson Z0 with a momentum on the first

resonance band, κ2 = κ2
1 ≃ 0.17,MH = 200GeV and c0 = −1 + 10−3. The exact nκ,

whose mean value grows exponentially with time, oscillates and coincides with

n̂κ at the end of each background oscillation.

To evaluate the production probability (i.e., the total occupation number) for

a given boson we must integrate the mode occupation number nκ over a finite
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Figure 4.4: Floquet index for the first resonance band µ
(1)
κ as a function of the

Higgs mass for Z0 (dashed line) and W± (solid line). In both cases µ
(1)
κ is max-

imum if MH ≈ 2MY and decreases for larger values. A factor
√

1 + c on the
vertical axis is used in consideration of Eq. (4.1) with c0 = −1 + 10−3.

volume in momentum space (at fixed q). This very difficult integration is greatly

simplified by the fact that the production only arises around the peaks in the

(q, κ2) plane, that is for κ2 = κ2
n given in Eq. (3.15). Moreover, the production

from the first instability band is the most relevant, so that the integration can

be consistently restricted to an interval around κ1 (denoted as Supp(P1), like for

fermions),

nB(τ) =
1

(2 π)3

∫
d3κ n̂κ(τ) ≈

1

4 π2

∫

Supp(P1)

dκ2
√
κ2 sinh2 (µκτ) . (4.2)

We shall then consider two different time scales. For short times (µκτ ≪ 1), the

above expression can be approximated as

nB(τ) ≈ 1

2 π2

∫

Supp(P1)

dκ2
√
κ2 (µκτ )

2 , (4.3)

whereas for long times (µκτ ≫ 1) we shall use

nB(τ) ≈ 1

8 π2

∫

Supp(P1)

dκ2
√
κ2 e2µκτ . (4.4)
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Figure 4.5: Time evolution of the number of produced Z0 with κ2 = κ2
1 ≃ 0.17

for two time ranges,MH = 200GeV and c0 = −1 + 10−3. Note that n̂κ (solid line)
matches nκ (dashed line) at the end of each background oscillation.

The Floquet index as a function of κ2 has a parabolic shape around κ1,

µ(1)
κ ≈ µ(1)

κ1

[
1 −

(
κ2 − κ2

1

∆κ2
1/2

)2
]
, (4.5)

where∆κ2
1 denotes the width of the first peak (the same notation we used for the

fermions) which scales with the Higgs vacuum total energy exactly according to

the same law (4.5) for fermions provided c . −1 + 10−3.

For µκτ ≪ 1, the integral in Eq. (4.3) can now be easily estimated and yields

nB(τ) ≈

(
µ

(1)
κ1

)2

2 π2
NB τ

2 , (4.6)

where NB = NB(κ1,∆κ
2
1) is a rather cumbersome expression which we do not

show explicitly since it will not be used in the present paper. For long times, one

can likewise estimate the integral in Eq. (4.4) using a saddle point approximation

and obtain [39]

nB(τ) ≈ κ1 ∆κ2
1

16 π2

√
π

µ
(1)
κ1

e2µ
(1)
κ1
τ

√
2 τ

. (4.7)

The left plot in Fig. 4.6 shows the time dependence of the total number of

produced Z0 following from (4.7) for MH = 500GeV and c0 = −1 + 10−3. This

quantity grows exponentially in time and when the fraction 1 of Higgs vacuum

1This fraction is defined in analogy with that for the fermions given in Eq. (4.13).
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Figure 4.6: Time evolution of the total number of produced Z0 (left graph) and
fraction of the Higgs vacuum energy absorbed by Z0 (right graph) for MH =
500GeV and c0 = −1 + 10−3 (in the right plot, fractions larger than unity signal
that the back-reaction cannot be neglected).

energy converted into Z0 approaches unity (see right plot), the back-reaction is

expected to become relevant. Indeed, values of that fraction larger than unity

do not make sense and actually signal the complete failure of the approximation

which neglects the back-reaction. Note that this occurs after about a thousand

background oscillations. Recalling the results for the top from Section 4.1, it is

clear that, during the first few hundreds of vacuum oscillations the energy trans-

ferred to the top is larger than that absorbed by the Z0, and it seems that the

back-reaction of the latter particles can be neglected at an early stage. The pro-

duction of Z0 and their interaction with the time dependent Higgs background

take the lead later and, with a good approximation, remain the only processes

with significant effects (we shall have more to say on this in the next Chapter).



Chapter 5

Back-reaction

The results presented so far have been obtained by neglecting the back-reaction

of the produced fermions and bosons on the evolution of the Higgs vacuum. This

is a common approximation, since a more complete treatment of these effects is a

very difficult task. We shall therefore begin by considering the simple case of one

kind of fermion simply denoted by ψ (which we shall identify with the top quark

later) and one kind of boson (the Z0).

The Lagrangian density for our system is given by (see Eqs. (2.4), (3.2) and (3.2)

with v = MHΦ/
√
λ)

LBR = LH − λ

4

√
q ψ̄ψΦ − λ

8
q ZµZµ Φ2 , (5.1)

where we have redefined the product 〈ψ̄ψ〉 to make it dimensionless. The back-
reaction effects can be studied to a good degree of accuracy in the Hartree approx-

imation (see Refs. [39, 38] for a discussion on this subject). Let us then consider

the vacuum expectation value of the Euler-Lagrange equation for Φwhich reads

Φ′′ − 2Φ(1 − Φ2) +
λ

4

√
q〈ψ̄ψ〉 − λ

4
q 〈ZµZµ〉Φ = 0 . (5.2)

The product 〈ψ̄ψ〉 can be rewritten in terms of an integral in momentum space
of the Bogoliubov coefficients (previously introduced to diagonalize the Hamil-

tonian operator for a generic fermion field) using the expansion (3.6). In this way

one encounters ultraviolet divergencies and, in order to obtain a finite result,

the operator ψ̄ψ must be normal ordered to subtract vacuum quantum fluctua-

tions [38, 39, 54]. Moreover, we shall neglect any other renormalization related,

35
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for example, to perturbative quantum corrections. Note that after a Bogoliubov

transformation the vacuum state |0τ 〉 is time-dependent and we have a differ-
ent renormalization at every time. We thus define the (time-dependent) normal

ordering of a generic operator as

Nτ (O) ≡ O − 〈0τ |O|0τ 〉, (5.3)

so that the vev of ψ̄ψ will be given by

〈ψ̄ψ〉 ≡ 〈0|Nτ (ψ̄ψ)|0〉 = 〈0|ψ̄ψ|0〉 − 〈0|
(
〈0τ |ψ̄ψ|0τ 〉

)
|0〉

= 〈0|ψ̄ψ|0〉 − 〈0τ |ψ̄ψ|0τ 〉 . (5.4)

Using results from Section 3.1, we find

〈ψ̄ψ〉 =

∫
d3κ

2 π3
κ2

[
|Xκ(τ)|2 +

√
qΦ(τ)

2ωκ(τ)
− 1

2

]

= −2nψ(τ) +

∫
d3κ

2 π3
κ2

[
|Xκ(τ)|2 −

Im
[
Xκ(τ)X

′∗
κ (τ)

]

2ωκ(τ)

]
. (5.5)

As for the Z0, analogous prescriptions to those used for the fermion lead to

〈ZµZµ〉 = −
∫

d3κ

(2 π)3

(
|Yκ|2 −

1√
κ2 + qΦ2

)
. (5.6)

Note that the two back-reaction terms (5.5) and (5.6) vanish at τ = 0 by virtue of

the initial conditions (3.34) and (3.16), as expected. The system of back-reaction

equations is thus






Φ′′ − 2Φ(1 − Φ2) +
λ

4

√
q〈ψ̄ψ〉 − λ

4
q 〈ZµZµ〉Φ = 0

X ′′
κ +

(
κ2 + qΦ2 − i

√
qΦ′)Xκ = 0

Y ′′
κ + (κ2 + qΦ2) Yκ = 0 .

(5.7)

The last two terms in the first equation (Higgs-fermion and Higgs-vector cou-

pling terms) depend on λ, that is the strengh of the quartic term in the Higgs

vev potential. In the Standard Model the coupling λ is not fixed but it is possible
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to take 0 < λ < 1 if one considers the Higgs self-interaction as described by a

perturbative theory.

For the above system, it is easy to show that the (renormalized) total energy

E = MH

{
c

λ
+

1

2

∫
d3κ

(2 π)3
ωκ n

(f)
κ +

1

2

∫
d3κ

(2 π)3
̟κ n

(B)
κ

}
, (5.8)

is exactly conserved by virtue of the equations of motion themselves. In the above

c(τ) = [Φ′(τ)]
2 − 2 Φ2(τ) + Φ4(τ) , (5.9)

the fermion (boson) occupation number n
(f)
κ (n

(B)
κ ) and frequency ωκ (̟κ) are

given in Eq. (3.35) [Eq. (3.17)] and Eq. (3.33) [Eq. (3.10)], respectively.

The approximate evaluation of the integrals (5.5) and (5.6) by restricting their

integrand on the dominant band (see also [39]) is based on the results of Sec-

tions 4.1 and 4.2 for fermions and bosons respectively, and proceeds in a similar

way. We therefore assume the validity of scaling laws of the form given, for ex-

ample, in Eqs. (4.5) or (4.6) and Eqs. (4.6) and (4.7). These approximations are

not valid for asymptotically long time evolution, when the dissipative dynam-

ics takes over and very little particle production may still take place. In such a

case, one may need different computational schemes, and probably a full lattice

approach, useful also to describe rescattering phenomena and estimate a possible

termalization phase. Nevertheless, our approximation scheme has the virtue of

been simple enough to lead to a system of differential equations of finite order

which helps to grasp some aspects of the back-reaction dynamics and gains more

and more validity in the limit λ≪ 1.

In order to make the qualitative features of the system (5.7) clearer, we shall

first study separately its behaviour for short and long times. In particular, as we

have seen in the two previous Sections, the production of fermions is expected to

dominate during the first few hundreds of Higgs background oscillations and in

that regime we shall neglect boson production by simply switching its coupling

off and set MH = 500GeV in order to have the maximum top production. At

larger times the production of bosons overcomes that of fermions (limited by

Pauli blocking) and we shall then neglect the fermions and setMH = 200GeV so

as to maximise the Z0 production. In the last Subsection, we shall finally consider

the entire systemwith both the top and Z0 forMH = 500GeV in order to show the

effect of the fermion back-reaction on the later boson production. This value of
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the Higgs mass, although not very likely, is chosen as it is particularly convenient

to study the interplay between fermion and boson production.
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Figure 5.1: Fermion back-reaction withMH = 500GeV. Left plot: Time evolution of
the top occupation number (dashed line) and Higgs vacuum energy (solid line)
for λ = 1 and initial c(0) = −1 + 10−5. Right plot: Comparison of the Higgs total
vacuum energy for initial values c(0) + 1 = 10−3 (dotted line), 10−4 (dashed line)
and 10−5 (solid line). A normalization factor of [c(0) + 1]−1 is used for the Higgs
energies.
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Figure 5.2: Fermion back-reaction: comparison of top occupation number with
(dashed line) and without (solid line) back-reation for c(0) = −1 + 10−5.

5.1 Fermion back-reaction

As we mentioned above, for relatively short times, we at first consider the evo-

lution of the Higgs background and one fermion, namely the top quark with

MH = 500GeV.
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The left graph in Fig. 5.1 shows the time dependence of the corresponding

occupation number for the top and Higgs energy densities up to a time τ ≃ 3.14 ·
103 (≃ 103 T , where T is the Higgs period without back-reaction) when the boson

back-reaction is expected to take over. The Higgs energy oscillates periodically in

time and of course takes its minimum values when the top’s occupation number

is maximum. The right graph displays how the Higgs energy changes in time

for different initial values of c, that is for different total energy (all curves assume

λ = 1). Note that the maximum fraction of Higgs energy converted into the

top increases for decreasing initial total energy, as one would expect from the

Pauli blocking. Fig. 5.2 then compares the top’s occupation number with and

without back-reaction for c(0) = −1 + 10−5. It is clear that the back-reaction

in general suppresses the number of produced fermions and this effect is more

pronounced for smaller total energy. We also remark that the above numerical

solution conserves the total energy with an accuracy better than 1 part in 103.

To conclude this section, we would like to spend a few words about the be-

haviour of the system with respect to the value of λ. Further numerical analysis

shows that the fraction of energy absorbed by the produced fermions is propor-

tional to λ. Moreover, the system of non-linear differential equations (5.7) seems

to produce a chaotic behaviour only for λ > 106. In fact for λ ≈ 106 the highly

non-linear term proportional to 〈ψ̄ψ〉 becomes of the same order of magnitude as
the other terms in the first equation of (5.7). But at this level the approximations

used in our equations to evaluate the back-reaction terms should break down.

5.2 Boson back-reaction

From the results of the previous Chapter, we know that the energy density of

created bosons is comparable to the initial Higgs energy density after about 103

vacuum oscillations (that is, for τ & 3.14 · 103). The production of bosons then

overcomes fermion production (limited by the Pauli principle) and their back-

reaction becomes the most relevant phenomenon. We shall therefore neglect the

fermion contribution here and just consider the Z0 andMH = 200GeV or MH =

500GeV.

Even with the above simplification, it is still very difficult to solve the sys-

tem (5.7) and we need to employ yet another approximation. Since the integrand

in Eq. (5.6) is sharply peaked around the centres of resonance bands, we estimate

that integral in the same way we used to obtain the total number of produced
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bosons in Eq. (4.7), as we have already anticipated in the general discussion of

this Chapter.
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Figure 5.3: Boson back-reaction with MH = 200GeV. Left graph: Z0 occupation
number (dashed line) and Higgs vacuum energy (dotted line) for an initial value
of c(0) + 1 = 10−5. Right graph: Time variation of the Higgs vacuum energy for
initial total energy c(0)+1 = 10−5 (dotted line), 10−6 (dashed line) and 10−7 (solid
line). A normalization factor of [c(0) + 1]−1 for the Higgs energies is always used.
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Figure 5.4: Boson back-reaction: comparison of Z0 occupation numbers with
(dashed line) and without (solid line) back-reation for c(0) = −1 + 10−5. MH =
200GeV in left plot andMH = 500GeV in right plot.

We can now solve numerically the system (5.7) and Fig. 5.3 shows some rel-

evant results. Starting from the left, it is possible to see that the Higgs energy is

minumum when the rate of production is maximum. Further, from Fig. 5.4, one

sees that the back-reaction strongly suppresses the boson production. The right

plot in Fig. 5.3 shows the amount of vacuum energy dissipated by back-reaction

effects as a function of the time for three different values of the total (dimension-

less) energy (which of course coincides with the initial Higgs energy). An impor-

tant feature of this plot is that we have a “regeneration” of the vacuum energy,
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which now oscillates in time, and the number of peaks in a given time interval is

seen to increase (that is, the periods of oscillations become shorter) for increasing

total energy. In all cases, the values at the peaks slowly decrease in time and the

periods of oscillations stretch. One can therefore conclude that the system will

evolve towards a complete dissipation of the Higgs oscillations. This is due to

the presence of a dumping term [analogous to 1/
√
τ in Eq. (4.7)] that appears in

the back-reaction term (5.6) after integrating in κ.

5.3 Fermion and boson back-reaction
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Figure 5.5: Time evolution of the occupation numbers for the top (dashed line)
and Z0 (solid line) for λ = 1, MH = 500GeV and c(0) = −1 + 10−5. Left plot:
Partial back-reaction from the approximations of Sections 5.1 and 5.2. Right plot:
Full back-reaction from Section 5.3.

We finally consider thewhole systemwith the top andZ0 described by Eq. (5.7)

for MH = 500GeV. Again, we choose this value of the Higgs mass in order to

have both fermion and boson production from the first resonant band. This cor-

responds to a particularly complicated scenario with large production of both the

top and Z0, whereas a more realistic smaller value of MH would mostly lead to

the production of lighter quarks with smaller effects on the Z0 at late times.

The coupled dynamics is then described in Fig. 5.5 in which we show on the

right the occupation numbers for the top and Z0. This results has to be compared

to the results of back-reaction computed in the “factorized” approximation used

in Secs. 5.1 and 5.2 which we report together for convenience on the left, both

computed at MH = 500GeV. We note that the top production is not particularly

affected, whereas the Z0 occupation number is suppressed in the sense that it
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increases significantly only at later times. The time needed for the production

of Z0 to overtake the top is about one order of magnitude larger than without

fermion back-reaction.

As we have already observed, we are able to study the evolution of the system

in a window of time far from the asymptotics (presumably with an upper bound

in time inversely proportional to λ). Beyond that, the adopted approximations

break down and the asymptotic time behaviour of the system should be studied

taking into account a more accurate description of the mode production (eventu-

ally in a full lattice approach) together with the rescattering contribution of the

produced particles.



Chapter 6

Conclusions

We have considered oscillating solutions for the Higgs vev in the context of the

StandardModel of particle physics and studied some resulting dissipative effects.

In the Standard Model, in fact, the masses of fundamental particles depend on

that vev and its oscillations can be viewed as a time-dependent renormalization

of the particles’ masses which leads to the production of fermion and boson pairs

by parametric resonance.

In the first part of this work, the back-reaction of the produced pairs has been

totally neglected. In this approximation, particle production by the oscillating

Higgs appeared to be very efficient. For fermions, the Pauli blocking constrains

their occupation numbers to oscillate in time (see Figs. 4.1) about mean values

smaller than one. From the entries given in Table 4.1, one can see that such

mean values strongly depend on the resonance parameter q, that is the Higgs

and fermion masses [see the definitions (3.31)]. Moreover, the particular form of

the governing Dirac equation (3.13) yields a significant probability of producing

only those fermions whosemomenta lie onwell-defined bands in the (q, κ2)-plane

[see Fig. 3.1 and Eq. (3.42)]. Considering the masses of Standard Model particles,

this also implies a larger probability of producing fermions with non-relativistc

momenta.

As for the bosons, their production is not constrained by any fundamental

principles and the governing Mathieu equation (3.13) (in the small oscillation

regime) leads to occupation numbers which grow exponentially in time. Analo-

gously to the fermions, the boson production only occurs on narrow bands in the

(q, κ2)-plane [see the definitions (3.11) and Eq. (3.15)].

In our analysis, we have regarded the Higgs massMH as an adjustable param-

43
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eter, for the experimental data only place a lower bound on it. Consequently, we

have given our results for different possible values of MH and the initial Higgs

energy c(0) [see the definition (2.9) and Eq. (5.9)]. For natural values of these

parameters, we have found that a significant fraction of the initial vacuum en-

ergy can be transferred to the fermions before a complete background oscillation

(whose period we denoted as T , see Fig. 4.3). The Pauli blocking then prevents

the fermion production from increasing further. The bosons, on the other hand,

grow exponentially in time but absorb a significant fraction of the Higgs vacuum

energy only after about a thousand oscillations (see Fig. 4.6). This feature seems

to suggest that it is possible to analyse the back-reaction of fermions and bosons

separately.

In particular, we have studied the system of one fermion (the top quark) and

one boson (the Z0) coupled to the Higgs field Φ in the Hartree approximation

[see Eq. (5.7)]. For such a system, the total energy (5.8) is conserved and, for

0 ≤ τ . 103 T , the back-reaction of the produced Z0 has been neglected. To

make the problem more tractable, and avoid a complicated study of the system

on a lattice of Fourier modes, we have adopted another approximation which

might breakdown at asymptotic times. We have thus found that the fermion

production is in general mildly suppressed by the back-reaction (see Figs. 5.1

and 5.2). At later times (τ & 103 T ), the back-reaction of the produced top has

been neglected and, in the same framework of approximations, we have found

that the production of Z0 is more strongly suppressed by the back-reaction (see

Figs. 5.3 and 5.4).

The study of the system where both fermion and boson backreaction effects

are included has shown a slower boson production, which takes over almost an

order of magnitude later in time, against the naive expectation of some kind of

factorization in the production events. We however remark that we have chosen a

value of the Higgs massMH = 500GeV which corresponds to a large production

of the top in order to study its effect on the production of the Z0. For a more real-

istic (presumably smaller) value of MH , one should instead consider the quarks

and leptons with the higher production rates (as shown in Table 4.1).

Future investigations, apart from being focused on more appropriate values

of the Higgs mass as, for example, an awaited discovery at LHC would provide,

should address aspects which we have found beyond our possibility because of

the approximation schemes adopted. In particular, one should investigate the

production and dissipative dynamics in the late (asymptotic) times of the evo-
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lution and evaluate the rescattering phenomena associated with the produced

particles. Keeping in mind that we are mainly considering a possible “starting”

regime of very small Higgs oscillations, the rescattering could lead to a thermal

background characterized by a very low temperature.

We conclude by noting that, although suppressed when the back-reaction is

properly included in the analysis, particle production by parametric resonance

with an oscillating Higgs field remains a remarkable effect with phenomenolog-

ical relevance and could be an (indirect) way of testing the time-dependence of

the constants of the Standard Model.





Part II

Small x QCD and multigluon states:

A Color toy model
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Chapter 7

Introduction

In quantum field theory and statistical mechanics the 1/N (or large N) expan-

sion [55] is a well known and extensively used perturbative framework whenever

the theories under investigation present an internal symmetry tipically related to

groups like SO(N) or SU(N).

Quantum Chromodynamics is one of the theories mostly studied under this

approximation even if, as a physical gauge theory, it is characterized by a gauge

group SU(Nc) where the number of colors Nc is just 3. Recently, thanks to the

renewed interest induced by the ADS/CFT correspondence, the N = 4 SYM the-

ory in the infinity color (planar) limit has been intensively studied and several

important results achievied.

The fact that the planar N = 4 SYM is expected by the theoretical community

to be solvable and that it is dual to a superstring sigma model has led several

theorists to look for hints, in the absence of any supersymmetry, for the existence

of a possible dynamical system dual to planar QCD sharing with it some integra-

bility properties. The starting point are the integrable structures unveiled many

years ago at one loop in standard perturbation theory and some hints of possible

integrability at two loops in the planar limit.

The first evidence of an integrable structure at one loop in QCD was found

by L.N. Lipatov [21] in the framework of the Regge limit of scattering ampli-

tudes, whose behavior may be conveniently described by systems of interacting

reggeized gluons, as we shall briefly review in the next chapter. The integrable

dynamics, associated to the evolution in rapidity of such a system, appears when

one is taking the large Nc approximation, which makes the BKP kernel [23] to

resemble the structure of an Heisenberg XXX spin chain, but for a non compact
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SL(2,C) “spin”.

Going beyond the largeNc approximation, even in the lowest orders in pertur-

bation theory in the coupling constant, is a formidable task and it is very difficult

also to try to estimate the error one faces when computing quantities for infinite

Nc (planar limit) instead of at Nc = 3.

It is the pourpose of this part of the thesis to introduce some finite toy models,

which shares the same color structure of the BKP systems, and which can be

studied to determine the dependence of the spectrum on the number of colorsNc.

They are characterized by a configuration space which is no more the transverse

plane but a finite vector space associated to irreducible representations of the

SU(2) group so that one may use group theoretical methods to analyse some of

these models.

This is of course not providing any concrete answer for the question related

to the real QCD problem, but nevertheless can be of some help. Moreover some

toy models may be interesting by themselves as dynamical systems.

We start in the next chapter with a short review of the properties of the system

of interacting reggeized gluons in the Leading Logarithmic Approximation. In

chapter 9 we consider the color structure for the four reggeized gluon system

and describe how to use a convenient basis for it. In chapter 10 we construct

some finite toy models which are studied in some details in separate sections.



Chapter 8

BKP Kernel

Let us start by giving a brief overview of the kernels which encode the evolution

in rapidity of systems of interacting reggeized gluons in the leading logarithmic

approximation (LLA). The reggeized gluons provide a convenient perturbative

description of part of the QCD degrees of freedom in the Regge limit (also known

as the small x limit) and appeared in the investigations of the leading dependence

of the total cross sections on the center of mass energy in the LLA, which is associ-

ated to the so called BFKL (perturbative) pomeron [20]. In the simplest form, the

BFKL pomeron turns out to be a composite state of two interacting reggeized glu-

ons “living” in the transverse configuration plane in the colorless configuration.

The construction of the kernel reflects the property that in the Regge limit the

scattering amplitude factorizes in the impact factors, which determine the cou-

pling of the external particles to the t-channel reggeized gluons, and in a Green’s

function, which exponentiates the kernel and contains the rapidity dependence

of their composite state. Such a depencence can be analyzed in terms of the spec-

tral properties of the kernel and in particular one is interested in the eigenvalues

and eigenstates associated to the leading behavior. Because of this the spectral

problem is often formulated in quantum mechanical terms with the kernel being

the “Hamiltonian” and its eigenvalues the “energies”.

In the case of a colorless exchange the Hamiltonian is infrared finite and in

LLA is constructed summing the perturbative contributions of different Feynman

diagrams: in particular the virtual ones (reggeized gluon trajectories) ω and the

real ones (associated to an effective real gluon emission vertex) V . One writes

formally H = ω1 + ω2 + ~T1
~T2V12 where ~Ti are the generators of the color group in

adjoint representation . In the colorless case one has ~T1
~T2 = −Nc and finally one
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obtains:

H12 = ln |p1|2 + ln |p2|2 +
1

p1p∗2
ln |ρ12|2 p1p

∗
2 +

1

p∗1p2
ln |ρ12|2 p∗1p2 − 4Ψ(1) , (8.1)

where Ψ(x) = d ln Γ(x)/dx, a factor ᾱs = αsNc/π has been omitted and the gluon

holomorphic momenta and coordinates have been introduced.

The gauge invariance gives the freedom to choose a description within the

Möbius space [56, 57], wherein the functions describing the positions of the two

reggeized gluons in the transverse plane are zero in the coincidence limit. In this

space the BFKL hamiltonian has the property of the holomorphic separability

(H12 = h12 + h̄12). Moreover a remarkable property is its invariance under the

Möbius group, whose generators for the holomorphic sector in the Möbius space

for the principal series of unitary representations are given by:

M3
r = ρr∂r , M

+
r = ∂r , M

−
r = −ρ2

r∂r . (8.2)

The associated Casimir operator for two gluons is

M2 = | ~M |2 = −ρ2
12 ∂1 ∂2 , (8.3)

where ~M =
∑2

r=1
~Mr and ~Mr ≡ (M+

r ,M
−
r ,M

3
r ). Due to this symmetry the holo-

morphic and antiholomorphic parts of the Hamiltonian can be written explicitely

in terms of the Casimir operator: indeed one has, after defining formally J(J −
1) = M2,

h12 = ψ(J) + ψ(1 − J) − 2ψ(1) . (8.4)

Labelled by the conformal weights h = 1+n
2

+ iν , h̄ = 1−n
2

+ iν, where n is the con-

formal spin and d = 1 − 2iν is the anomalous dimension of the operator Oh,h̄(ρ0)

describing the compound state [58], the eigenstates and eigenvalues of the full

hamiltonian in eq. (8.1), H12Eh,h̄ = 2χhEh,h̄, are respectively given by:

Eh,h̄(ρ10, ρ20) ≡ 〈ρ|h〉 =

(
ρ12

ρ10ρ20

)h(
ρ∗12
ρ∗10ρ

∗
20

)h̄
, (8.5)

and

χh ≡ χ(ν, n) = ψ

(
1 + |n|

2
+ iν

)
+ ψ

(
1 + |n|

2
− iν

)
− 2ψ(1) . (8.6)

The leading eigenvalue, at the point n = ν = 0, has a value χmax = 4 ln 2 ≈
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2.77259, responsible for the rise of the total cross section as sᾱsχmax , which corre-

sponds to a strong violation of unitarity.

Let us now consider the evolution in rapidity of composite states of more than

2 reggeized gluons [23]. The BKP Hamiltonian in LLA acting on a colorless state

can be written in terms of the BFKL pomeron Hamiltonian and has the form (see

[21])

Hn = − 1

Nc

∑

1≤k<l≤n

~Tk ~TlHkl . (8.7)

This Hamiltonian is conformal invariant but cannot be solved in general. Nev-

ertheless the case of three reggeized gluons, where the color structure trivially

factorizes, is solvable [21] and different families of solutions were found [59, 60].

Physically these states are associated to the so called odderon exchange [61] and

in particular the family of solutions given in [60] corresponds to eigenvalues up

to zero (intercept up to one) and are the leading one in the high energy limit.

Moreover they have a non null coupling to photon-meson impact factors [62].

The case of more than three reggeized gluon is in general not solvable, but if

one considers the color cylindrical topology taking the largeNc limit, the resulting

Hamiltonian

H∞
n =

1

2
[H12 +H23 + · · ·+Hn1] = hn + h̄n (8.8)

is integrable, i.e. there exists a set of other n − 1 operators qr, which commute

with it and are in involution. They are given, in coordinate representation, by

qr =
∑

i1<i2<···<ir

ρi1i2ρi2i3 · · · ρiri1 pi1pi2 · · · pir , (8.9)

together with similar relations for the antiholomorphic sector. In particular, q2 =

M2 is the Casimir of the Möbius group. This is the first case where integrability

was found within the context of gauge theories analyzing the Green’s function in

some kinematical limit. This integrable model is a non compact generalization of

the Heisenberg XXX spin chains [21, 63, 64, 65] and has been intensively studied

with different techniques in the last decade [66, 67, 68, 69, 70, 71].

Here we remind the result for the highest eigenvalue of a system of four

reggeized gluons in the planar, one cylinder topology (1CT), case:

H∞
4 ψ4 = 2E 1CT

4 ψ4.
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The maximum value found, for zero conformal spin, is

E 1CT
4 = 0.67416 . (8.10)

In general for an arbitrary number n of reggeized gluon in the cylindrical topol-

ogy the leading eigenvalues have been found to be positive for even n and nega-

tive for odd n and asymptotically behaving as 1/n [68, 69].

An important question, unfortunately very hard to answer is: what are the

eigenvalues at finite Nc = 3 and what is in general their dependence in Nc? One

may be tempted to apply variational or perturbative techniques to the spectral

problem, which nevertheless appears to be quite involved. In any case a first step

consists to analyze the color structure, which simplifies a bit in the case of four

reggeized gluon in a total colorless state.



Chapter 9

Color structure

We consider the BKP kernel H4 for four gluons, given in eq. (8.7). This is an

operator acting on 4-gluon states, which may be represented as functions of the

transverse plane coordinates {ρi} and of the gluon colors {a1a2a3a4}, written as
v({ρi})a1a2a3a4 . Let us concentrate here on the color space.
It is convenient, due to the fact that the four gluons are in a total color singlet

state, to write the color vector va1a2a3a4 in terms of the color state of a two gluon

subchannel. Let us therefore start from the resolution of unity for a state of two

SU(Nc) particles in terms of the projectors P [Ri]
a′1a

′
2

a1a2 onto irreducible representa-

tions:

1 = P1 + P8A + P8S + P10+1̄0 + P27 + P0 =
∑

i

P [Ri] , (9.1)

where TrP [Ri] = di is the dimension of the corresponding representation. Let

us note that we have chosen to consider a unique subspace for the direct sum of

the two spaces corresponding to 10 and 1̄0 representations. This is convenient for

our purposes and we shall therefore consider just 6 different projectors to span

the color space of two gluons.

If we consider gluons (1, 2) to be the reference channel we introduce as the

base for the color vector space the set {P [Ri]
a3a4
a1a2} of projectors and write

va1a2a3a4 =
∑

i

vi
(
P [Ri]

a3a4
a1a2

)
or v =

∑

i

viP12[Ri] . (9.2)

Note that one could have also chosen other reference channels corresponding to a

description in terms of projection onto irreducible representations of other gluon

subsystems. Having chosen a color basis, the next step is to write the BKP kernel
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with respect to it. We can slightly simplify the expression for the kernel since for a

colorless state we have
∑

i
~Tiv = 0which implies that ~T1

~T2v = ~T3
~T4v (an similarly

for the other permutations of the indeces). Therefore one may write:

H4 = − 1

Nc

[
~T1
~T2 (H12 +H34) + ~T1

~T3 (H13 +H24) + ~T1
~T4 (H14 +H23)

]
. (9.3)

Let us now write explicitely the action of the color operators ~Ti ~Tj =
∑

a T
a
i T

a
j

which are associated to the interaction between the gluons labelled i and j. We

start from the simple “diagonal channel” for which we have the relation ~Ti ~Tj =

−∑k akPij [Rk] with coefficients ak = (Nc,
Nc

2
, Nc

2
, 0,−1, 1). Consequently we can

write in the (1, 2) reference base

(
~T1
~T2v
)j

= −ajvj = − (Av)j , (9.4)

where A = diag(ak). The action on v of the ~T1
~T3 and ~T1

~T4 operators is less trivial

and is constructed in terms of the 6j symbols of the adjoint representation of

SU(Nc) group. We shall give few details in the appendix A and write directly

the results, in terms of the symmetric (after a similarity transformation) matrix

operators:
(
~T1
~T3 v
)j

= −
∑

i

(
∑

k

Cj
kakC

k
i

)
vi = − (CAC v)j (9.5)

and
(
~T1
~T4 v
)j

= −
∑

i

(
∑

k

sjC
j
kakC

k
i si

)
vi = − (SCACS v)j . (9.6)

The matrix C is the crossing matrix build on the 6j symbols and S = diag(sj) is

constructed on the parities sj = ±1 of the different representations Rj .

We can therefore write the general BKP kernel for a four gluon state, given in

eq. (9.3), as

H4 =
1

Nc

[A (H12 +H34) + CAC (H13 +H24) + SCACS (H14 +H23)] (9.7)

One can check that if we make trivial the transverse space dynamics, replacing

the Hij operators by a unit operators, the general BKP kernel in eq. (8.7) becomes

Hn = n
2
1̂ and indeed one can verify that A + CAC + SCACS = Nc1̂.

Let us make few considerations on the large Nc limit approximation. As we
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have already discussed, in the Regge limit one faces the factorization of an am-

plidute in impact factors and a Green’s function which exponentiates the ker-

nel. The topologies resulting from the large Nc limit depend on the impact factor

structure. In particular one expects the realization of two cases: the one and two

cylinder topologies. The former corresponds to the case, well studied, of the in-

tegrable kernel, Heisenberg XXX spin chain-like. This is encoded in the relation:
~Ti ~Tj → −Nc

2
δi+1,j which leads to H4 = 1

2
(H12 +H23 +H34 +H41) and is character-

ized by eigenvalues corresponding to an intercept less then a pomeron. The latter

case instead is expected to have a leading intercept, corresponding to an energy

dependence given by two pomeron exchange. Consequently one expects at finite

Nc a contribution with an energy dependence even stronger. In the two cylin-

der topology the color structure is associated to two singlets (δa1a2δa3a4 , together

with the other two possible permutations). Such a structure is indeed present

in the analysis, within the framework of extended generalized LLA, of unitarity

corrections to the BFKL pomeron exchange [72] and diffractive dissociation in

DIS (Deep Inelastic Scattering) [73], where the perturbative triple pomeron ver-

tex (see also [74]) was discovered and showed to couple exactly to the four gluon

BKP kernel.

It is therefore of great importance to understand how much the picture de-

rived in the planar Nc = ∞ case is far from the real situation with Nc = 3. One

clearly expects for example that the first corrections to the eigenvalues of the BKP

kernel are proportional to 1/N2
c , but what is unknown is the multiplicative coef-

ficient as well as the higher order terms.



Chapter 10

Toy models

In this chapter we shall consider a family of models, different from the BKP sys-

tem, which neverthelss share several features with it and can be used to judge

how the large Nc approximation might be more or less satisfactory. Moreover

these systems may be considered interesting by themselves as quantum dynami-

cal systems.

A state of n reggeized gluons undergoing the BKP evolution, described by the

kernel in eq. (8.7), belongs to a vector space of functions on a domain given by the

tensor product of the color space 8n and the configuration space R2n, associated

to the position or momenta in the transverse plane, of the n gluons. Indeed the

BKP kernel is built as a sum of product of color (~Tk ~Tl) and of configuration (Hkl)

operators; the latter, on the Möbius space, can be written in terms of the Casimir

of the Möbius group, i.e. in terms of the scalar product of the generators of the

non compact spin group SL(2,C): Hkl = Hkl( ~Mk · ~Ml).

We are therefore led to consider a class of toy models where the BKP configu-

ration spaceR2n is subsituted by the space V n
s where Vs is the finite space spanned

by spin states belonging to the irreducible representation of SU(2)with spin s. In

particular we shall consider quantum systems with an Hamiltonian fitting the

following structure:

Hn = − 1

Nc

∑

1≤k<l≤n

~Tk ~Tl f(~Sk ~Sl) , (10.1)

where ~Si are the elements of the SU(2) algebra associated to the particle i in any

chosen representation and f is a generic function. A particular toy model is there-

fore specified by giving the spin s of each particle (“gluons”) and the function f .

In the following we shall consider two specific cases for the 4 particle system (case
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a) and b)). Moreover in order to have another check of our approach we shall also

consider the model defined in case c).

a) A spin s = 1 model in a global singlet state v (
∑

i
~Si v = 0). If f is the identity

map than the “spin” configuration dynamics is very similar to the one of the

color sector. In order to have a system which behavies similarly to the BKP

case we first put a constraint on the two particle operators, which describe

the basic interaction. In particular we consider the family of functions

fα(x) = 2Re

[
ψ

(
1

2
+
√

−α(4 + 2x)

)]
− 2ψ(1) . (10.2)

Remembering that for conformal spin n = 0 the BFKL Hamiltonian is given

byHkl = 2Re

[
ψ

(
1
2

+
√

1
4

+ ( ~Mk + ~Ml)2

)]
−2ψ(1), one immediately recog-

nizes that the fα is associated to the substitution
1
4

+ L2
ij → −αS2

ij which

assures to have the same leading eigenvalue for any α, since both expres-

sions have the value zero as upper bound. The parameter α will be chosen

in order to constrain the full 4-particle Hamiltonian (10.1) to have the same

leading eigenvalue as the QCD BKP system in the large Nc limit (at zero

conformal spin). In this system, the BKP toy model, we shall investigate

finite Nc effects.

b) A system TOYAdj,Fund with f the identity function and spin s = 1/2. Such

a system in the large Nc limit in the case of one cylinder topology becomes

the well known Heisenberg XXX spin chain system, which is integrable.

We shall perform some check on the Nc dependence again for the 4-particle

case.

c) A model where the 4 particle belong to the fundamental representation of

SU(2) for both the “color” and the “spin”, so that we can perform a compar-

ison with standard results from the spectroscopy of isospin-spin systems.

10.1 BKP toy model

In order to explicitely study this finite system, described by the Hamiltonian in

eq. (10.1) acting on vector states with dimension (8 × 3)4 and singlet under both
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SU(3)C and SU(2)spin conf , it is convenient to choose the color decomposition in 2-

particle subchannel irreducible representations described in chapter 9 and adopt

a similar approach also on the “spin” degrees of freedom. After that, one is left

with the problem of diagonalizing an Hamiltonian which is a matrix 18× 18, that

is addressable with any computer. Without the singlet restriction on the spin part

the problem in general is much more complicated to be easily solved and may be

addressed in future investigations.

Let us therefore proceed by introducing for 2 spin 1 particle states the resolu-

tion of unity 1 = Q1+Q3+Q5 =
∑

iQ[Ri]which let uswrite ~Si~Sj = −∑k bkQij[Rk],

with bk = (2, 1,−1) (c.f. with ak: first, second and second last terms). It is there-

fore straighforward to write from a power series representation (Qij [Rk] are pro-

jectors):

f(~Si~Sj) =
∑

k

f(−bk)Qij [Rk] (10.3)

and using the corresponding crossing matrices D and the parity matrix S ′ one

obtains relations very similar to the one reported in eqs. (9.4)-(9.6), which read:

(
f
(
~S1
~S2

)
v
)j

= f(−bj)vj = (B v)j , (10.4)

(
f
(
~T1
~T3

)
v
)j

=
∑

i

(
∑

k

Dj
kf(−bk)Dk

i

)
vi = (DBD v)j (10.5)

and

(
f
(
~T1
~T4

)
v
)j

=
∑

i

(
∑

k

s′jD
j
kf(−bk)Dk

i s
′
i

)
vi = (S ′DBDS ′ v)

j
. (10.6)

From the above results for the two particle representation basis, we can write the

explicit form of the Hamiltonian for this toy model, going beyond the one given

in eq. (9.7). Indeed we obtain

H4a =
2

Nc
(A⊗B + CAC ⊗DBD + SCACS ⊗ S ′DBDS ′) (10.7)

which contains a dependence onNc and on the parameter α through the function

fα given in eq. (10.2).

Let us note that in the large Nc limit one faces for the Hamiltonian two pos-

sible cases: the one cylinder topology (1CT) which corresponds to the simpler



10.1 BKP toy model 61

Hamiltonian

H1CT
4a = − 1

Nc

[
−Nc

2

∑

i

f
(
~Si~Si+1

)]
= B + S ′DBDS ′ (10.8)

and the two cylinder topology (2CT) corresponding to the even simpler Hamilto-

nian

H2CT
4a = − 1

Nc

[
−Ncf

(
~S1
~S2

)
−Ncf

(
~S3
~S4

)]
= 2B . (10.9)

Let us remark that while in the case of Nc > 3 we consider a basis for the vector

states made of P [Ri]Q[Rj ] with 18 elements since in the color sector there is also

the P0 projector, the case Nc = 3 is characterized by a basis of 15 elements.

As already anticipated, in order to study a toy model resembling the spectrum

of the BKP system of 4 gluons, we require that, in the large Nc limit in the one

cylinder topology, the leading eigenvalue must be the same as the one found for

the corresponding integrable BKP system, whose value was given in eq. (8.10).

This fact fixes the value of the parameter α = 2.80665. We are therefore left with

an Hamiltonian which is just a function of the number of colors Nc.

Let us now consider its spectrum for the cases Nc = 3 and Nc = ∞. Here we
report the values followed by their multiplicities.




Nc = 3

7.04193 (×1)

5.51899 (×2)

1.12269 (×2)

−3.89328 (×2)

−4.04744 (×1)

−4.27838 (×1)

−7.81242 (×1)

−9.18576 (×2)

−12.6743 (×2)

−14.1005 (×1)




→




Nc = ∞
5.54518 (×3) 2CT

0.67416 (×3) 1CT

−4.27838 (×3) 1CT

−7.81242 (×3) 2CT

−8.67983 (×3) 1CT

−10.0168 (×3) 2CT




Note that forNc = 3 there are 15 eigenvalues while they are 18 for any other value

of Nc. For the case NC = ∞ we specify also the topology they belong to.
We track the flow from NC = 3 to Nc = ∞: the first three highest eigenvalues

(in bold) are moving to the same leading value (in bold) which corresponds to
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two BFKL pomeron exchange (in two cylinder topology). The fourth and fifth

highest eigenvalues (underlined) are instead moving to the leading eigenvalues

of the one cylinder topology case (which are three instead of two because of the

larger basis for Nc > 3). With very good approximation one finds that the Nc

dependence of the leading eigenvalue E0 is given by

E0(Nc) = E0(∞)

(
1 +

2.465

N2
c

)
. (10.10)

One can see that for this toy model the large Nc approximation corresponds to

an error of about 27%, an error which is not negligible because the coefficient of

the leading correction to the asymptotic value, proportional to 1/N2
c , is a large

number.

It is also easy to investigate the color-configuration space mixing which is

encoded in the eigenvectors. Fixing Nc = 3, from numerical investigations we

find that the leading eigenvector v0 and the two closest subleading v1 and v2 have

the following components:

v0 ≃




0.590 P1Q1

0.085 P1Q5

0.344 P8AQ3

0.199 P8SQ1

0.199 P8SQ5

0.293 P10+1̄0Q3

0.179 P27Q1

0.574 P27Q5




, v1 ≃




0.166 P1Q3

0.342 P8AQ1

0.317 P8AQ5

0.385 P8SQ3

0.267 P10+1̄0Q1

0.598 P10+1̄0Q5

0.421 P27Q3




v2 ≃




−0.775 P1Q1

0.002 P1Q5

0.008 P8AQ3

0.123 P8SQ1

0.114 P8SQ5

0.268 P10+1̄0Q3

0.151 P27Q1

0.525 P27Q5




.

As one can see, the eigenvector v0, corrisponding to the highest eigenvalue, is

even, while the two fold degerate next larger eigenvalue has eigenstates of both

parities (v1 odd and v2 even).

In the largeNc limit case, the eigenvectors of the three fold degenerate leading

eigenvalue of the 2 cylinder topology are:
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w
(2CT )
0 ≃

(
1 P1Q1

)
w

(2CT )
1 ≃




1
3

P10+1̄0Q1√
5

3
P10+1̄0Q5

1√
6

P27Q3

1√
6

P0Q3


 w

(2CT )
2 ≃




1√
3

P10+1̄0Q3

1
3
√

2
P27Q1√

5
3
√

2
P27Q5

1
3
√

2
P0Q1√

5
3
√

2
P0Q5



.

Again also in this system we can track the same parity properties, which are in-

variant under the flow in Nc.

Similarly one may investigate the states associated to the one cylinder topol-

ogy at Nc = ∞ and their corresponding partners at finite Nc. For brevity we just

report here the two most relevant states in the Nc infinity limit:

w
(1CT )
0 ≃



z1 P8AQ1

z3 P8SQ3

z5 P8AQ5


 w

(1CT )
1 ≃



z1 P8SQ1

z3 P8AQ3

z5 P8SQ5


 w

(1CT )
2 ≃

(
0.245 (P0Q1 − P27Q1)

0.663 (P0Q5 − P27Q5)

)

where z1 ≃ 0.815, z3 ≃ 0.405 and z5 ≃ 0.415. We stress that w(1CT )
2 has no cor-

rispective at Nc = 3.

10.2 TOYAdj,Fund

We now move to study the toy model of case b) at the beginning of this chap-

ter, again to see how the large Nc approximation works. It is described by the

Hamiltonian

HAdj,Fund = − 1

Nc

∑

1≤k<l≤n

~Tk ~Tl
~σk
2

~σl
2
, (10.11)

acting on spin singlet states. Again we consider the large Nc limit. The one cylin-

der topology is associated to the well known Heisenberg XXX spin chain with

Hamiltonian

H1CT
Adj,Fund =

1

2

n∑

i=1

~σi
2

~σi+1

2
, (10.12)

which we shall now consider for the case of n = 4 particle. In this case at large Nc

we have, as before, also the two cylinder topology associated to the Hamiltonian

H2CT
Adj,Fund = 2

~σ1

2

~σ2

2
. (10.13)
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Figure 10.1: Nc dependence of the eigenvalues of the model TOYAdj,Fund.

The spectrum for the one cylinder topology case is well known from Bethe Ansatz

methods [75] and for total zero spin of a 4-particle spin chain the possible eigen-

values are 0 and −1 (see table II in [76] for J = −1/2 in their notation). The two

cylinder topology is characterized by the eigenvalues +1/2 and −3/2.

At finiteNc we rewrite the Hamiltonian in a similar way to the BKP toy model

case (see eq. (10.7) where the B andDmatrices are defined for f the identity map

and for the group SU(2) in fundamental representation). AtNc = 3 it corresponds

to a 10 × 10 matrix while for Nc > 3 it is given by a 12 × 12 matrix. The leading

eigenvalue as function of Nc can be easily computed

E0(Nc) =

√
10N2

c + 36 + 6
√
N4
c + 36N2

c + 36 − 2Nc

4Nc
(10.14)

and indeed goes to the value 1/2 in the large Nc limit. Let us note that if one

considers the planar approximation (in the 2CT configuration), the leading eigen-

value would be underestimated with a relative error of (E0(3) −E0(∞)) /E0(3) ≃
40% w.r.t. the case Nc = 3. In Fig. 10.1 we report the Nc dependence of all the

eigenvalues in the range 3 ≤ Nc ≤ 25.

Similar models, but in a higher spin representation, can be constructed in or-

der to maintain the integrability in the large Nc limit. One simply needs to con-
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sider for any irreducible representation s of the particles the function f to be a

corresponding specific polynomial as described in [75].

10.3 TOYAllFund

This section is devoted to check in one specific case that our approach gives result

in agreement with other methods widely used in spectroscopy.

We start by considering a system of n particles in the bifundamental rapre-

sentation of SU(Nc) × SU(2), characterized by an Hamiltonian (10.1) (with f the

identity function)

Hn = − 1

Nc

∑

1≤k<l≤n

~Tk ~Tl ~Sk ~Sl , (10.15)

which can be written in terms of the quadratic Casimir operators of SU(Nc),

SU(2) and SU(2Nc) ⊃ SU(Nc) × SU(2) (see [82]).

Indeed the tensor products of ~Tk ~Sl are amongs the generators of SU(2Nc), so

it is useful to introduce the entire algebras for this group

αk =





1√
Nc
Sl k = 1, 2, 3 = l

1√
2s+1

Ta k = 4, . . . , N2
c + 2; a = 1, . . . , N2

c − 1
√

2 TkSl k = N2 + 3, . . . , 4N2
c − 1; l = 1, 2, 3

(10.16)

with the normalization Tr(αkαk′) = 1/2 δkk′. The Hamiltonian for this system can

be rewritten as

HAllFund = − 1

4Nc

[
C2Nc

− 1

Nc

CNc
− 1

2s+ 1
C2 − 2n

N2
c − 1

2Nc

s(s+ 1)

]
, (10.17)

where the quadratic Casimir operators Cn are defined as in [82] and s = 1/2. Note

that all the operators introduced above depend on the irreducibile representation

of the symmetry group to which they refer to.

We are interested in the real rapresentations so we setNc = 2 and consider the

case of only four particles. The symmetry group of the model becomes SU(2) ⊗
SU(2) ⊂ SU(4) and eq. (10.17), written for the four particle in a global singlet

state, takes the form

HAllFund = −1

8

[
C4(R) − 9

2

]
. (10.18)
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SU(2) ⊗ SU(2) SU(4) (µ1, µ2, µ3) ≡ RSU(4)

1 ⊗ 1 1, 20, 35 (0, 0, 0)(0, 2, 0)(4, 0, 0)
1 ⊗ 3 15, 45 (1, 0, 1)(2, 1, 0)
1 ⊗ 5 20 (0, 2, 0)
3 ⊗ 3 15, 20, 35, 45 (1, 0, 1)(0, 2, 0)(4, 0, 0)(2, 1, 0)
3 ⊗ 5 45 (2, 1, 0)

Table 10.1: Correspondence between irreps of SU(4) and SU(2) ⊗ SU(2)

In order to find its spectrum the next step consists in anlyzing the irreducible

representation content of each simmetry group of the model. So, for four particle

with spin 1/2, one has (we specify also the multiplicity)

2 ⊗ 2 ⊗ 2 ⊗ 2 = 2(1) + 3(3) + 5, (10.19)

and in the SU(4) case

4 ⊗ 4 ⊗ 4 ⊗ 4 = 1 + 3(15) + 2(20) + 35 + 3(45). (10.20)

Then we need to study the SU(2) ⊗ SU(2) content of these SU(4) irrep. This can

be done using the results of [83] and in particular the entries of table 1, where the

values in the third column are Dynkin indeces.

So for particles in a total singlet state (1⊗1) the Hamiltonian in eq. (10.18) ad-

mits four eigenvalues, each for a different irrep of SU(4), with a 2-fold degenerate

eigenvalue corresponded to 20SU(4) (see eq. (10.20)):





−15
16
, for irrep 35

− 3
16

(2x), for irrep 20

+ 9
16
, for irrep 1

(10.21)

and these are in perfect agreement with the spectrum evaluated with the method

used previously throughout the paper (we take advatage from the formulas of

[84] for the eigenvalues of a quadratic Casimir operator as functions of the Dynkin

indeces).

As a final remark wewant to emphasize that themethod of writing the Hamil-

tonian in terms of the Casimirs can be applied to systems with any number of

particles (at the price, increasing their number, of a growing complexity in the in-
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duced irreducible representions) and moreover the analysis may not be restricted

to singlet subspaces. Unfortunately it is not clear how to define a method for

interacting particle not in the bifundamental representation.



Chapter 11

Conclusions

Wehave introduced a family of dynamical models describing interacting particles

with color and spin degrees of freedom. Themainmotivation was to studywithin

this framework how much the large Nc approximation is significant when one is

trying to extract the spectrum of these quantum systems.

Indeed in some relevant physical cases the only results available are restricted

to the case with a planar structure resulting from the large Nc approximation,

when integrability arises and gives the possibility to exactly solve the problem.

These facts are seen when considering QCD scattering amplitudes in the Regge

limit and LLA aproximation, characterized by the BKP dynamics.

We have focused our study on the case of four particles and considered in

details three toy models. One toy model (case c) at the beginning of chapter 10)

was used to test our computational method based on group theory, since one is

able to make a direct comparison with results already known from other methods

used in spectroscopy.

The first model presented (case a), chapter 10) is aimed to mimic to some

extend the behavior of the 4 gluon BKP kernel, since we have forced it to have in

the large Nc limit the same leading eigenvalues of the BKP system for both one

and two cylinder topologies. We were able to compute the different eigenvalues

of this toy model as function of Nc and we have found that the leading one at

Nc = 3 present corrections of almost 30% w.r.t. the planar approximation, which

one may understand in terms of a large coefficient in the 1/N2
c correction term.

The mixing in color-spin configuration structure has been also studied.

Another model (case b) chapter 10) was considered since in the large Nc limit

it gives rise to the one cylinder topology Heisenberg XXX spin chain which is

68
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integrable. For the spin 1/2 case we have found at finite Nc = 3 corrections to the

leading eigenvalue of about 40%.

We remark that our analysis is restricted to study the toy model Hamiltonians

on the space of states which are singlet with respect to the SU(2) “spin” configu-

rations. Although this choice was dictated by technical reasons, we believe it will

be significant to extend this investigation to all the other possible states.

These kind of models and possibly more general ones appear to be interesting

also by themselves and we feel that they deserve more studies in order to see, for

example, if some remnant from integrability can be traced back at finite Nc.



Appendix

In this appendix we remind only a few facts about the crossing matrices intro-

duced in chapters 9 and 10 for the SU(Nc) group. More details may be found

in [77, 78, 79, 80, 81], where explicit expressions for the crossing matrices are de-

rived.

Let us rewrite in graphic notation the operator ~Ti ~Tj in the basis (i, j) and the

color vector state in the basis (1, 2).

= −∑
k ak

i j

v =
∑

i v
i

i

21

3 4

k

ji

Now we can compute the first non trivial crossing case, ~T1
~T3 v, remembering to

put the final result again in the basis (1, 2). In a graphical notation we have:

1 3

v = −∑
k ak

∑
i v

i
k

31

= −∑
i
∑

k akv
iCk

i

1

k3 4

2

= −∑
i
∑

k akv
iCk

i

= −∑
i
∑

k(−1)skakv
ii

2

3 4

1

1

k3 4

2

= −∑
j

[
∑

i v
i

(
∑

k Ck
i akC

j
k

)](
∑

j j

21

)
j

2

43

1

r
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where the crossing matrix (essentially 6j symbols) can be written as

Ck
i =

i k

k

In a similar way one can also trace the action of the ~T1
~T4 operator. One can see

that in the last relation there is an asymmetry due to the fact that one divides by

the dimension of the k-representation. It is convenient to perform a similarity
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transformation to work with a symmetric crossing matrix. For this purpouse it

is sufficient to introduce the matrix ∆ =diag(di) and define the new symmetric

matrix C → ∆− 1
2C∆

1
2 which acts on the vectors with components vi →

(
∆− 1

2 v
)i
.
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Chapter 12

Introduction

Quiver gauge theories possess a gauge group which is generically a product of

U(Ni) factors with matter fields in bifundamental representations. They have

been studied in the physics literature since the 1980s for composite model build-

ing, but recently they have attracted much attention because of their natural ap-

pearance in the duality between superstrings and gauge theories [85]. There are

two important reason why quiver gauge theories are suitable for particle physics

model building. First, while an SU(N) gauge theory is typically anomalous for

arbitrary choice of fermions, it is not the case if the fermions lie on a quiver. Fur-

thermore the fermions in a quiver arrange themselves in bifundamental repre-

sentations of the product gauge group and this agree with the fact that all known

fundamental fermions are in bifundamental, fundamental, or singlet representa-

tions of the underlying gauge group.

The study of quiver gauge theories goes back to the earliest days of gauge

theories and the Standard Model. Other notable early examples are the Pati-

Salam model [19, 86] and the trinification model [87]. Starting from AdS5 × S5

we have an highly supersymmetric (N = 4 supersimmetries) gauge theory with

a single SU(N) gauge group and with matter in adjoint representations. This

theory is well known to be conformally invariant [88], but to make the theory

more interesting from a phenomenological point of view, we must break SUSY

and generate a quiver gauge theory. In order to do this there are several options

open to us. Orbifolds [89, 90, 91, 92], conifolds [93, 94, 95, 96, 97], and orientifolds

[98, 99, 100, 101, 102, 103] have all played a part in building quiver gauge theories.

Since our focus is quiver gauge theories via orbifolding of AdS5 × S5, we will not

discuss the other options in detail. In buildingmodels from orbifolded AdS5×S5,
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it is often convenient to break the quiver gauge group to the trinification group

SU3(3) or to the Pati-Salam group SU(4)⊗SU(2)⊗SU(2), but there are again other

possibilities, including more complicated intermediate groups like the quartifica-

tion symmetry SU4(3) [104] that treats quarks and leptons on an equal footing.

It is important to note that although the duality with superstrings is a significant

guide to such model building, and it is desirable to have a string dual to give

more confidence in consistency, we shall focus on the gauge theory description

in the approach to particle phenomenology, as there are perfectly good quiver

gauge theories that have yet to be derived from string duality.

Back to the N = 4 SYM, by replacing the manifold S5 by an orbifold (see

Appendix A for a geometrical and group theoretical illustration of some simple

orbifolding) S5/Γ one arrives at a theory with less supersymmetries correspond-

ing to N = 2, 1 or 0, depending [12] on whether: (i) Γ ⊂ SU(2), (ii) Γ ⊂ SU(3)

but not in SU(2), or (iii) Γ ⊂ SU(4) but not in SU(3) respectively. Here Γ is in

all case a finite group embedded in the isometry SU(4) ∼ O(6) of S5 in the three-

dimensional complex space C3 ∼ R6.
1

The most general abelian Γ (it is also possible to consider non abelian cases

[15]) is made up of the basic units Zn, the order n cyclic groups formed from the

nth roots of unity. Let us define α = exp(2πi/n) and specify the embedding of

Γ = Zn giving three integers a1, a2, a3 as

C3 : (X1, X2, X3)
Zn−→ (αa1X1, α

a2X2, α
a3X3) (12.1)

so that the discrete group Zn identifies n points in C3. The N converging D3-

branes meet on all n copies, giving a gauge group U(N)n [85]. The matter (spin

1/2 and spin 0 fields) which survives is invariant under a product of a gauge

transformation (from the quiver group) and a Zn transformation.

There is a convenient way to find the matter and interactions using an associated

“quiver” or “moose” diagram. It consist of one node for each irreducible repre-

sentation of Γ (i.e. n nodes if Γ = Zn) and fermionic and bosonic arrows connect-

ing the nodes according to how the four- and six-dimensional representations of

Γ (inherited from SU(4)) act on each irreducible representation, i.e. depending on

the values of the integers a1, a2, a3. To each bosonic/fermionic arrows from node

i to node i+ak we associate a bifundamental (Ni, N̄i+ak
) scalar/Weyl fermion (for

1Although O(6) and SU(4) have the same local structure, i.e. Lie algebra, globally O(6) is
doubly-covered by SU(4) and this distinction is important to study the consistency conditions
for AdS/CFT embeddings [105].
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i = i + ak, i.e. ak = 0, this correspond to an adjoint representation). A line direct

away from a node corresponds to a set of scalar or Weyl fermions trasforming as

the fundamental representation of the gauge group, while a line direct towards

a node corresponds to a set of scalar or Weyl fermions trasforming as the com-

plex conjugate of the fundamental representation (antifundamental). There is a

Yukawa coupling for each triangle on the quiver, consisting of two fermionic ar-

rows and a bosonic arrow, and quartic scalar interactions for each square on the

quiver, consisting of four bosonic arrows. The resulting gauge theory is chiral,

i.e. the fermions are all left handed, if and only if Γ is a complex subgroup of

SU(4), i.e. if 4 and 4̄ of SU(4) are inequivalent representations of Γ.

76540123G // 76540123H // 76540123G
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@@
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~~}}
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}}
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Figure 12.1: AGm×Hm quiver diagram. In our caseG = H = SU(N) and 2m = n.
Each side of this polygon describes fermions (or scalars) transforming under the
three gauge groups associated with this side, Gi ×Hi ×Gi+1, as (N, N̄, 1).

We remark that here and in the follow we designate fermions the representa-

tion 4 of the underlying R-symmetry group and scalars the representation 6. It

could appear strange at a first look since is usual to associate this names to rep-

resentations of the Lorentz group, but here we are constructing models starting

from the orbifolding of N = 4 SYM, so we can backtrace there to find an expla-

nation [88].
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For a general quiver the scalar representation contains the bifundamental scalars∑3
k=1

∑n
i=1(Ni, N̄i+ak

).

In the case of fermions, the first thing to do is to construct the fundamental

rapresentation of the R-parity SU(4). Starting from the set {a1, a2, a3}, we can
write the embedding as 4 = (αA1, αA2, αA3, αA4), with

A1 =
1

2
(a1 + a2 + a3)

A2 =
1

2
(a1 − a2 − a3) (12.2)

A3 =
1

2
(−a1 + a2 − a3)

A4 =
1

2
(−a1 − a2 + a3)

Notice that specifying the four component of Aµ is equivalent to fixing the three

ak, because the constraint:
∑

µAµ = 0 (mod n) [105]. In general the fermion

representations contains the bifundamentals
∑4

µ=1

∑n
i=1(Ni, N̄i+ak

).

We introduce the shorthand notation of write the fundamental representation as

4 = (A1, A2, A3, A4). Consider now the 6 of SU(4), which is the antisymmetric

part of (4 × 4). In the shorthand notation, this can be written as 6 = (A1 +

A4, A2 + A4, A3 + A4, A1 + A2, A2 + A3, A3 + A1). For example, a N = 0 quiver

gauge field theory based on an orbifolding with Zn have the 4 of SU(4) defined

by four nonvanishing integersAµ satisfying A1+A2+A3+A4 = 0 (mod n). This is

a necessary and sufficient condition for a consistent abelian orbifolding toN = 0.

Our goal will be to examine how the framework of quiver gauge theories

can accommodate, as a sub theory, the Standard Model. This requires that the

SM gauge group and the three families of quarks and leptons with their correct

quantum numbers must be accommodated. In such model building a stringent

requirement is that the scalar sector, prescribed by the quiver construction, can,

by acquiring vacuum expection values, break the symmetry spontaneously to the

desired sub theory. This is unlike most other model building where one chooses

the representations for the scalars to accomplish this goal. We remark that here

the representations for the scalars are dictated by the orbifold construction.

One useful guideline in the symmetry breaking is that to break a semi-simple

SU(N)n gauge group to its SU(N) diagonal subgroup requires at least (n − 1)

bifundamental scalars connected to one another, such that each of the n SU(N)

factors is linked to all of the others. It would be insufficient if the bifundamental
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scalars fragment into disconnected subsets.

We shall describe later on a novel abelian orbifold that leads to the accommo-

dation of the Standard Model in the unified group SU(4)7 [26].

Recently, it has been given a complete classification [107, 108] of allN = 0 and

N = 1 SUSY models that come from orbifolding AdS5⊗S5 with an abelian group

Γ of order less than 12, where Γ embeds irreducibly in the SU(4) isometry or in an

SU(3) subgroup of the SU(4) isometry, respectively. This means that, to achieve

N = 0, rep(Γ) → 4 of SU(4)must be embedded as 4 = (r), where r is a nontrivial

four dimensional representation of Γ; for N = 1, rep(Γ) → 4 of SU(4) must be

embedded as 4 = (1, r), where 1 is the trivial singlet of Γ and r is nontrivial.

We want to focus on non-supersymmetric theories. One motivation for study-

ing the nonSUSY case is that the need for supersymmetry is less clear in confor-

mal field theories (in 1998 Frampton [14] conjectured that such nonsupersymmet-

ric orbifolded models can be conformally invariant) as: (1) the hierarchy problem

is absent or ameliorated, (2) the difficulties involved in breaking the remaining

N = 1 SUSY can be avoided if the orbifolding already results inN = 0 SUSY, and

(3) many of the positive effects of SUSY are still present in the theory, although

just hidden.

For N = 0 the fermions are given by
∑

i 4 ⊗ Ri and the scalars by
∑

i 6 ⊗ Ri

where the set Ri runs over all the irreps of Γ. For Γ abelian, for example Γ = Zn,

the irreps are all one dimensional and as a consequence of the choice of N in

the 1/N expansion, the gauge group is SUn(N) [13]. Moreover we remark that

chiral models require the 4 to be complex, while the 6 must be real for a proper

embedding of nonsupersimmetric models.

With this background at hand, we are able to build nonSUSY chiral models.

We choose2 N = 4 throughout, in such a way that our model will proceed to the

SM via Pati-Salam group.

In following chapter, starting from the classification of Kephart and Pas (2004)

(see Appendix B for a summary of their results), we illustrate our search for a

minimal (respect to the order of Γ = Zn) nonSUSY model (for a SUSY version

see [109]) that have SM particles as a subset of its particle content. To do this we

have used symmetry breaking paths that contain the Pati-Salam (PS) group as a

subgroup before reaching the SM. The minimal model of this type has symmetry

group SU7(4), hence orbifolding group is Z7, as we will discuss.

The running of the coupling constants predicted by themodel depends strongly

2In general what choice of N leads to the “optimal” model is still an open question [15].
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on the scalar content. In fact, since there are scalars in addition to the usual SM

Higgs sector, they can contribute to the running of the beta functions. After a pre-

sentation of the model and of the SSB chain that leads to the SM particle content,

we show that, with the use of a judicious choice of the scalar sector, unification

can be achieved at the very low scale MGUT ∼ 5 TeV. We then conclude with a

few comments on the phenomenology of the model including proton decay con-

straints and dark matter.



Chapter 13

A modified Pati-Salam Model

In this chapter we consider a model built on AdS5 ⊗ S5/Γ orbifold compactifica-

tions of the type IIB superstring, where Γ is the abelian group Z7. This result

in an attractive three family N = 0 SUSY model, that is a modified Pati–Salam

Model which reduced to the Standard Model after symmetry breaking of the

initial quiver gauge group SU(4)7. Moreover it is anomaly free because the SM

fermions come from representation of the initial SU(4)7 group that lie on a quiver

and it is interesting from a phenomenological point of view due to an unification

scale in the LHC energy regime.

13.1 Description of the model

We have systematically gone through all chiral models with Γ = Zn (see Ap-

pendix B for a review). All fail to have a PS type intermediate stage until n = 7.

Hence after considerable exploration, we are lead to choose Γ = Z7 and N = 4

with orbifold group embedding 4 = (α, α, α2, α3), so 6 = (α2, α3, α3, α4, α4, α5).

This yield an N = 0 SUSY model based on the gauge group SU(4)7. The particle

spectrum of the unbroken theory at the string scale is given by the fermion states

2 [(44̄11111)F + · · · ] + [(414̄1111)F + · · · ] + [(4114̄111)F + · · · ] (13.1)

and scalars (a proper embedding, i.e. 6 = 6̄, led to an extra factor 2)

2[(414̄1111)S+· · · ] + 4 [(4114̄111)S+· · · ] +

+4 [(41114̄11)S+· · · ] + 2[(411114̄1)S+· · · ] (13.2)
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of SU(4)7, as result from the associated quiver diagrams of Fig 13.1 and where

the dots mean cyclic permutations (due to the Z7 case that we are considering,

there are seven states between square brackets).

2 

(a)

2 44 2

(b)

Figure 13.1: Fermion (a) and scalar (b) quiver diagram for the model M7
1123 (see

appendix B for this notation). There are seven nodes as the quiver gauge group is
SU(4) ⊗ · · · ⊗ SU(4) seven times. A line direct away from a node corresponds to
a set of scalar or Weyl fermions trasforming as the fundamental representation of
the gauge group, while a line direct towards a node corresponds to a set of scalar
or Weyl fermions trasforming as the complex conjugate of the fundamental rep-
resentation (antifundamental). Notice that, in the scalar case, the third diagram
is the hermitian conjugate (h.c.) of the second and the last is the h.c. of the first,
since the only thing different among them is the direction of the arrows.

The quiver gauge group SU(4)7 is broken down to SU(4)3 via diagonal sub-

groups by sequentially assigning vacuum expectation values (VEVs) to

(1414̄111)S,

(1144̄11)S,

(1144̄1)S,

(1144̄)S.
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The rule to break the simmetry (diagonally) is given by [112]

SU(N) × SU(N) → SU(N)D, (N, N̄) → 1 + (N2 − 1) = 1 + adj, (13.3)

where, in our case, N = 4. Notice that in this “diagonal symmetry breaking” the

number of generators is not conserved: we start from an SU(N) × SU(N) group

with (N2 − 1) + (N2 − 1) generators to go into a diagonal subgroup SU(N)D with

only N2 − 1 generators. This is encoded in the fact that at each step of the sym-

metry breaking chain we generate anN2−1 representation plus a singlet for each

couple of broken rapresentation (· · ·N · · · N̄ · · · ), but, in the breaking of the scalar
states, only one of this adjoint representation survives. We remark that when we

break the symmetry, some of the particles get a mass. These particles can be inte-

grated out in an effective theory, as they are heavy compared to the masses of the

StandardModel particles. No degrees of freedom are lost, but some are too heavy

to excite. Moreover notice that the bosons are not present in the initial model but

they arise after a diagonal breaking on the scalar states. For this reason, in what

follow, the bosons are part of the scalar content.

This procedure leaves chiral fermions in the following bifundamental represen-

tations of SU(4)3:

3 [(44̄1) + (144̄) + (4̄14)]F (13.4)

and scalars

4 [(44̄1) + h.c]S + 8[(414̄) + h.c.]S + 16 [(144̄) + h.c.]S

21 [(1, 1, 15)]S + 3(1, 15, 1)S (13.5)

28 [(111)]S .

We can check the degrees of freedom in our results. For example, the sum of

scalar degrees of freedom (sdof ) in (13.2) (i.e. at the level of SU(4)7) is 12 × [16 ×
7] = 1344, while now we have sdofSU(4)3 = 1284, with a difference of 60 that is

4 × 15 due to the above considerations about the diagonal symmetry breaking,

being 15 the dof associated to an adjoint representation.

We continue the chain of spontaneous symmetry breaking toward the Pati–

Salam model. From now on we will use symmetry breaking that preserve the

number of dof that we have at this level, i.e. when the symmetry group is SU(4)3.
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We consider a VEV for the scalar state (44̄1) of the form




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


,

up to an extra factor and addition of unity matrix. Notice that the dimension of

the matrix reflect the dimension of the representation that we are breaking (i.e. 4

and 4̄) and that this form leaves a 3 × 3 block invariant. The diagonal entries are

chosen fixing the normalization of the U(1) charges (the values putted below as

underscripts of each state) by the branching rules [112]:

SU(4) → SU(3) × U(1), 4 → 11 + 3−1/3, (13.6)

together with 4̄ → 1−1 + 3̄1/3 for the antifundamental representation of SU(4).

This breaks the first two SU(4) and the symmetry group became SU(3)⊗SU(3)⊗
SU(4) ⊗ U(1)A (see [110, 111] for a detailed study of the phenomenology of this

model without U(1)A charge), with the U(1)A charge calculated simply summing

the charges that comes from each SU(4) → SU(3) × U(1) breaking. Among the

other states we have also three U(1)A neutral (33̄1)0 scalars.

Finally the break of SU(3) into SU(2) × U(1), with 3 → 11 + 2−1/2 (3̄ → 1−1 +

21/2), is obtained giving a VEV of the form




1 0 0

0 1 0

0 0 −2


,

with the same prescriptions as above, to one of these (33̄1)0 scalars. In this way

we arrive at the gauge symmetry group

SU(2)L ⊗ SU(2)R ⊗ SU(4)C ⊗ U(1)A ⊗ U(1)B

that resemble the Pati–Salam model group SU(2)L ⊗ SU(2)R ⊗ SU(4)C . We have

add to each group an underscript: R-Right, L-Left, C-Color, for a reason that we

will clarify in the follow. At this stage the scalars content is given by Table 13.1.

In order to reach the StandardModel wemust go onwith the symmetry break-
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Scalars of SU(2)L ⊗ SU(2)R ⊗ SU(4)C ⊗ U(1)A ⊗ U(1)B

24
[
(114̄)1,0 + (114̄)−1/3,1 + h.c.

]
8
[
(214̄)−1/3,−1/2 + h.c.

]

16
[
(124̄)−1/3,−1/2 + h.c.

]
21 [(1, 1, 15)0,0]

8(221)0,0 + 3
[
(211)−4/3,−1/2 + h.c.

]
3
[
(211)0,−3/2 + h.c.

]

6
[
(121)4/3,1/2 + h.c.

]
6
[
(121)0,−3/2 + h.c.

]

9
[
(111)4/3,−1 + h.c.

]
48 [(111)0,0] + 3(131)0,0

Table 13.1: Scalars of the generalized Pati-Salam model.

ing considering

SU(4)C → SU(3)C × U(1)X ,

SU(2)R → U(1)Z .

This can be accomplished by giving a VEV to a scalar in the (124̄)−1/3,−1/2 rep-

resentation, which leads to the group SU(2)L × SU(3)C and three U(1) factors.

More precisely this would result in four U(1) factors, but one linear combination

is broken due to the non-zero U(1) charges of (124̄)−1/3,−1/2, so we can’t combine

the charge as above simply summing them. For this reason we write these four

charge as superscripts in order to fix the normalization later.

Under the group structure SU(2)L × SU(3)C × U(1)X × U(1)Z × U(1)A × U(1)B ,

the scalar state (124̄)−1/3,−1/2 decomposes as

(13̄)1/3,1,−1/3,−1/2 + (11)−1,1,−1/3,−1/2 + (13̄)1/3,−1,−1/3,−1/2 + (11)−1,−1,−1/3,−1/2,

and similarly for another scalar representation of the same semi-simple group

(114̄)−1/3,1 −→ (13̄)1/3,0,−1/3,1 + (11)−1,0,−1/3,1.

Therefore giving a VEV also to (11)−1,1,−1/3,−1/2, (11)−1,0,−1/3,1 and the additional

scalar (11)0,0,4/3,−1, can break SU(2)L×SU(2)R×SU(4)C ×U(1)A×U(1)B directly

down to SU(2)L × SU(3)C along with a single U(1) formed by a linear combina-
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tion of four U(1) factors.

Since we are breaking three combinations of four U(1) charges we must en-

sure that there exists a normalization pattern that will result in the remaining

U(1) being the usual hypercharge of the Standard Model. Starting from the well

know Gell Mann-Nishima relation Q = T3 + Y , with Q being the electric charge,

T3 the third isospin component and Y the hypercharge, we can choose a suitable

normalization of the charges A, B, X and Z. To this aim we can impose, for ex-

ample, that the hypercharge Y of the scalar states (11)−1,1,−1/3,−1/2, (11)−1,0,−1/3,1,

(11)0,0,4/3,−1 and (11)−1,1,−1/3,−1/2must be zero. The result is a system of four equa-

tions that led to a linear combination of the charges in the form

xX + zZ + aA + bB = Y, x =
1

4
, z =

1

2
, a =

1

4
, b =

1

3
. (13.7)

So far we have completed the path of symmetry breaking reaching the Standard

Model gauge group U(1)Y⊗SU(2)L⊗SU(3)C . The fermion content from Eq. (13.4)

becomes the three chiral families of the Standard Model (see Table 13.3) plus the

following vectorlike states: eight adjoints of SU(3)C and one adjoint of SU(2)L.

Moreover there are numerous right handed neutrinos. The scalar content is given

in Table 13.2.

Scalars of U(1)Y ⊗ SU(2)L ⊗ SU(3)C

8
[
(23)1/6 + h.c

]
84
[
(13̄)1/3 + h.c.

]

16
[
(13)2/3 + h.c.

]
22
[
(21)1/2 + h.c.

]

31 [(11)−1 + h.c.] 21 [(18)0]

237(11)0

Table 13.2: Scalars at the Standard Model level.

13.2 Phenomenology

In the previous section, the symmetry breaking of the initial SU(4)7 towards to

SU(4)L ⊗ SU(4)R ⊗ SU(4)C gauge group was performed by allowing the states
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Figure 13.2: Symmetry Breaking “tree”. The break of the initial quiver gauge
group SU(4)7 is obtained by diagonal symmetry breaking (upper part of the di-
agram). The resulting SU(4)3 group is then broken until we reach the Standard
Model gauge group, as pictured in the lower part of the diagram where the con-
tinuous arrows mean a complete embedding, while the dotted arrows refer to a
partial embedding.
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SM Fermions

3
[
(23)1/6

]
3
[
(13̄)1/3

]

3
[
(13)−2/3

]
3
[
(21)−1/2

]

Table 13.3: Chiral (left handed) families of the Standard Model

(1414̄111)S, (1144̄11)S, (1144̄1)S , (1144̄)S to obtain VEVs. This makes clear that

SU(4)L, SU(4)R and SU(4)C are embedded in diagonal subgroups SU(4)p, SU(4)q

and SU(4)r of SU(4)7, respectively. We then embed all of SU(2)L in SU(4)L, but

for U(1)Y the embedding is slightly more complicated. In fact we need to go back

to Eq. (13.7) to read the fraction of U(1)Y embedded in each of the U(1)X,Z,A,B
factors. Moreover we embed all of U(1)X in SU(4)C , all of U(1)Z in SU(4)R, 1/2

of U(1)A,B in SU(4)L and the other 1/2 in SU(4)R. This path is showed in Fig 13.2.

Finally, recalling that in GUTs is usual to normalize the coupling constants in such

a way that [115] α1 = 5/3αY , the ratio α2/α1 turns out to be

α2

α1
=

3

5

α2

αY
=

3

5

[
1
4
r + 1

2
q + 1

4

(
p+q
2

)
+ 1

3

(
p+q
2

)

p

]

and sin2 θW satisfies (see [115] and references therein)

sin2 θW (MGUT ) =
3

3 + 5(α2

α1
)

=
24p

6r + 31p+ 19q
. (13.8)

In our model n = 7, r = 4, p = 1 and q = 2 gives

sin2 θW (MGUT ) = 8/31 ≃ 0.26,

very close to the measured value sin2 θW (MZ) ≃ 0.23. This means that our model

will unify at an energy scale not so far from the electroweak one. The unification

scaleMGUT is such that
α3(MGUT )

α2(MGUT )
=
r

p
= 4 (13.9)



13.2 Phenomenology 89

together with
α2(MGUT )

α1(MGUT )
=

3

5

6r + 7p+ 19q

24p
=

69

40
. (13.10)

To find the unification energy scale we consider the renormalization-group evo-

lution of the gauge couplings in leading order as given by

αi(Q) =
1

αi(Q′)−1 + bi
2π

ln
(
Q
Q′

) , (13.11)

where bi are the one-loop contributions to the beta function coefficients that are

given in general by [113]

bi =
11

3
C2(G) − 4κ

3
S2(F ) − 1

6
S2(S) (13.12)

Here nF is the number of chiral families, C2(G) is the quadratic Casimir invariant

for the gauge groupG and S2(F ) and S2(S) are the Dynkin indices for the fermion

and scalar representations F and S respectively, and κ is 1
2
for Weyl fermions and

1 for Dirac fermions, see also [114, 112, 115]. For the case at hand

b3 = 11 − 4

3
nF , (13.13)

b2 =
22

3
− 4

3
nF − 1

6
NSD, (13.14)

b1 = −4

3
nF − 1

10

NSR∑

i=1

diq
2
i . (13.15)

In b2, NSD is the number of real scalar doublets, and in b1 the sum runs over the

scalar representation with U(1) charges qi of dimensions di.

The experimental input values of the gauge couplings are [53]

α1(MZ) = 0.0169, α2(MZ) = 0.0338, α3(MZ) = 0.118 . (13.16)

We can choose the number of light scalar representations, evaluate NSD and the

sum in the equations (13.11) to match ratio between the coupling constant at the

GUT scale. Of course this choice is not dictated by mass scale cutoff, since we

don’t know the masses of the scalar predicted by our model. To do this we would

define a scalar potential to break the symmetry and give mass to each particle,
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as in the SM Higgs mechanism. Unfortunately this task is very difficult also in

models much simpler than the one presented here [116]. As an example, this

procedure leads to an unification scale MGUT = 5.0 · 103 GeV, for the choice of

a single Higgs doublet plus 24 complex color triplet scalars of hypercharge 1/3.

The evolution of the couplings from the weak to the unification scale is shown in

Fig. 13.3.

Changing the choice of light scalars adjusts the unification scale, but given the

experimental input at low energy and the requirement of unification at a higher

scale, we necessarily need many scalars to be light below the unification scale.

Increasing the triplet scalar masses (they would probably already have been de-

tected, at least indirectly, if they were at the weak scale) to a few hundred GeV

would likewise increase the unification scale to the 6 TeV range. Using extra

vectorlike fermions instead of scalars can achieve similar results and with fewer

particles, since fermions contribute more strongly to the β functions.

0 1000 2000 3000 4000 5000

Q @GeVD

1.175

1.2

1.225

1.25

1.275

1.3

1.325

1.35

10 Α3

40 Α2

69 Α1

Figure 13.3: Gauge coupling unification in the Modified Pati-Salam model. The
curves has been rescaled as 69α1(Q), 40α2(Q) and 10α3(Q) in such a way that their
ratio match to one at the unification scale. The plot is for values of Q fromMZ to
MGUT .
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Conclusions

We have shown that it is possible to find a non-supersymmetric, “minimal”, Pati-

Salam type model based on the AdS/CFT orbifold compactifications of type IIB

string theory on AdS5 ⊗ S5/Z7. The model is a quiver gauge theory based on

the semi-simple group SU(4)7. Since the particles lie on a quiver there are no

problem with the naturalness and the model is anomaly free. The path of sym-

metry breaking that leads to the Standard Model gauge group proceeds through

a modified (there are also two U(1) groups) Pati-Salam group. It start with a se-

ries of diagonal symmetry breaking that reduce the initial symmetry group to

SU(4)3, where we achieve unification. From this level on, giving a VEVs to some

cleverly chosed scalars generate, among the other, four U(1) groups. The corre-

sponding charges are renormalized by imposing VEVs to charged singlet scalar

representations, in such a way that all the states at the SM level have the cor-

rect hypercharge under the remaining U(1)Y group. The type of fields arising

in such a model are constrained by the orbifold group, yet we have shown that

there exists the proper scalar content to allow spontaneous symmetry breaking

to the Standard Model, as well as provide the usual Higgs sector of the Stan-

dard Model. At the unification scale, this model contains bifundamental fermion

and scalar representations of the gauge group SU(4)7, where the one loop, and

perhaps higher loop β functions vanish, and conformality is partially, or fully re-

stored. To achieve low scale unification, we require scalar content beyond what is

found in the Standard Model Higgs sector. Conversely, the existence of such par-

ticles may be an indicator of low scale unification. (Similar results hold for extra

vectorlike fermions.) The model contains three families of chiral fermions with

Standard Model charge assignments, but with no other chiral fermions at low en-
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ergy. There are a sufficient number of right handed neutral singlet fermions at

intermediate or higher mass to provide neutrino see saw masses. The value of

sin2 θW at the unification scale depend on how SU(2)L and U(1)Y of the SM are

embedded in the diagonal subgroups of the initial symmetry group SU(4)7. In

our case we found sin2 θW (MGUT ) ≃ 0.26, while the value at the electroweak scale

is sin2 θW (MZ) ≃ 0.23. The little difference between these velues is a strong signal

of a “low” unification scale for the model at hand. In fact proton decay is avoided

as the model unifies into a modified Pati-Salam model at the intermediate scale

MGUT = 5 TeV. Generically, the unification is lowered by keeping more scalars

light (similar results would hold if we replaced them with vectorlike fermions).

Since our model is not supersymmetric, there is no natural LSP dark matter can-

didate, but one can still expect other options to be available, e.g., axionic dark

matter, although we will not explore these possibility here.



Appendix A

Orbifolding

This appendix is devoted to discuss some group theoretical and geometrical as-

pects of the orbifolds. We will begin with the simplest example, i.e. the one di-

mensional orbifold. Than we will move to the two dimensional case and finally

we will described a six dimensional construction related to the group Z3. This

last case is especially important as it explain some of the notations introduced in

chapter 12 talking about the cyclic group Zn and its embedding in SU(4) ∼ O(6),

the isometry of S5. A more detailed discussion can be found in [117].

A.1 One dimensional Orbifold

Let R be the real number line. Define a one-dimensional lattice Λ with lattice

spacing a ∈ R:

Λ = {na | n ∈ Z} (A.1)

where Z is the set of integers. The elements l ∈ Λ will be referred to as lattice

vectors. We construct a torus by identifying points on the line with each other if

they are related under addition by a lattice vector:

x ≃ x+ l, x ∈ R, l ∈ Λ (A.2)

This generates a torus whose fundamental domain can be chosen as [0, a). That is,

any other point in Rmaps into this domain by the identification made in (A.2); R

is the covering space for the torus. Moreover Eq. (A.2) states that points which are

related to each other by a lattice vector translation are equivalent to each other.

The discrete group of translations defined by the lattice is referred to as the lattice
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group and is often also denoted Λ. This group is an invariance or isometry group

of R.

The onedimensional torus is homeomorphic (topologically equivalent) to a cir-

cle, so while the torus T is compact the real number line R is non-compact. We

notate this construction

T = R/Λ (A.3)

This notations leads to a brief description of the torus construction: we “divide

out” or “mod out” the lattice group Λ from the space R. The lattice group affords

an equivalence relation rΛ (eq. (A.2)), which partitions the real number line into

a set of equivalence classes, i.e. into sets of elements which are all equivalent to

each other. The set of equivalence classes is called the quotient set or quotient

space determined by rΛ and is denoted by R/rΛ or, in shorthand notation, R/Λ,

as in (A.3). Since R and Λ are groups R/Λ is a coset space. Each element in the

fundamental domain [0, a) is in one-to-one correspondence with an equivalence

class contained in R/Λ. Given x ∈ [0, a)we can reach (generate) every element in

the equivalence class corresponding to x by the action of the lattice group Λ on x.

Now we are ready to study a first example of orbifolding. A toroidal orbifold

by be constructed from a torus by supplementing (A.2) with other equivalence

relations. A twist operator is used to define each equivalence relation. For the

toroidal orbifolds considered here, the twist must be an automorphism of the

lattice used in constructing the torus. An automorphism α of a lattice Λ is a trans-

formation which maps lattice vectors into lattice vectors:

α : l → αl ∈ Λ, ∀l ∈ Λ (A.4)

Twist operators are most often generators of a discrete rotation group on the com-

pact manifold which is to be “twisted” into an orbifold, typically a torus. But in

the simplified one-dimensional case presented here, rotation is not well defined.

So we take the twist operator to be the parity operator P :

Px = −x, ∀x ∈ R (A.5)

Using (A.1) it is easy to prove that the parity operation is an automorphism of the

lattice, i.e. it satisfies (A.4).
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The equivalence relation generated by P is

x ≃ Px, ∀x ∈ R (A.6)

Notice that from the definition (A.5) we have P 2 = 1. Thus, P realizes the cyclic

group of order two

Z2 = {1, P}. (A.7)

The group generated by the twist operators is known as the point group of the

orbifold. So the orbifold described here is the quotient space T/Z2 and the point

group of the orbifold is Z2.

We have so far constructed the one-dimensional orbifold in a two step process,

imposing the equivalence (A.2) and then equivalence (A.6). In Figure A.1 we

−a a0

a/2

R

0

T/Z2

Figure A.1: The orbifold T/Z2 and its embedding into the covering space R.
Points marked with the same symbol are equivalent.

illustrate the orbifold. All points marked with the same letter are equivalent.

Notice that in the fundamental domain [0, a) of the torus we now have pairs of

points which are equivalent, except for the fixed points x = 0 and x = a/2. On the

other hand, the fundamental domain of the orbifold is [0, a/2], since every other

point in Rmay be mapped into this interval.

A.2 Two dimensional Orbifold

As a generalization of the one dimensional orbifold, we consider the two-dimensional

real manifold R2 and “mod out” by a lattice:

Λ2 = {m1e1 +m2e2 | m1, m2 ∈ Z} (A.8)
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where e1 and e2 are linearly independent elements of R2. These basis vectors

characterize the shape and size of the lattice via

√
e1 · e1 = a1,

√
e2 · e2 = a2, e1 · e2 = a1a2 cosα. (A.9)

The torus described by T2 = R2/Λ is obtained by imposing the equivalence

relation

x ≃ x+ l, ∀x ∈ R
2, l ∈ Λ2. (A.10)

We again define the twist operator to be the parity operation Px = −x and impose
the identification

x ≃ Px, ∀x ∈ T
2 (A.11)

to construct the orbifold T
2/Z2.

We notice that P is equivalent to a rotation by angle π. Thus, the point group

is a discrete subgroup of the full rotation group O(2) of the real manifold R2;

this is the usual circumstance in toroidal orbifolds, and we will see this in the

six-dimensional Z3 case considered in the next Section.

It is easy to check that (A.11) is an automorphism of the lattice (A.8). As dis-

cussed in the one-dimensional case of Section A.1, this is a necessary condition

for the consistency of the orbifold construction.

A.3 Z3 Orbifold

The six-dimensional Z3 orbifold may be constructed from a six-dimensional Eu-

clidean space R6. We define basis vectors e1, . . . , e6 satisfying

e2i = e2i+1 = 2R2
i , ei · ei+1 = −1R2

i , i = 1, 3, 5 (A.12)

such that each x ∈ R6 can be written as

x =
6∑

i=1

xiei, xi ∈ R, ∀i = 1, . . . , 6. (A.13)

Notice that xi 6= x ·ei since the root basis is a skew basis consisting of elements
which do not have unit norm. Each of the three pairs {ei, ei+1} (i = 1, 3, 5) define a

two-dimensional subspace which is referred to below as the “ith complex plane”.

The ith such pair also defines a two-dimensional SU(3) root lattice, obtained from
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the set of all linear combinations of the form niei + ni+1ei+1, with ni, ni+1 ∈ Z.

Taking together all six basis vectors e1, . . . , e6, we obtain the SU(3)3 root lattice

ΛSU(3)3 :

ΛSU(3)3 =

{
6∑

i=1

liei | li ∈ Z

}
. (A.14)

Notice that the radiiRi and the angles in the scalar products ei·ei+1 of eq. (A.12)

are not fixed. These free parameters determine the size and shape of the unit cell

of the lattice ΛSU(3)3 .The lattice group is formed of translations in R6 by elements

of ΛSU(3)3 ,

x→ x+ l, l ∈ ΛSU(3)3 , ∀x ∈ R
6. (A.15)

Thus we obtain the six-dimensional torus T6 = R6/ΛSU(3)3 . The twist operator α

is in this case a simultaneous 2π/3 rotation of each of the three complex planes.

Its action on the basis vectors is defined as

α · ei = ei+1 α · ei+1 = −ei − ei+1, i = 1, 3, 5, (A.16)

so that α3 = 1. Using (A.16) is simple to see that each x ∈ R6 trasforms according

to

α · x =
∑

i=1,3,5

[
−xi+1ei + (xi − xi+1)ei+1

]
, (A.17)

or, in terms of the components by x→ α · x = x′ with

xi → (x′)i = −xi+1, xi+1 → (x′)i+1 = xi − xi+1, i = 1, 3, 5. (A.18)

Eq. (A.18) leads to a matrix representation of the twist operator:

M(α) = diag[m(α), m(α), m(α)], m(α) =

(
0 −1

1 −1

)
. (A.19)

Notice that the difference between the coefficients in (A.16) versus (A.18) is a

consequence of the fact that the root basis is a skew basis.

The twist operator α generates the orbifold point group,

Z3 = {1, α, α2} (A.20)

and it can be seen from eq. A.16 that the twist operator maps any element of
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ΛSU(3)3 into ΛSU(3)3 (i.e. is an automorphism). The orbifold so far construct is de-

noted T6/Z3.

A suitable fundamental domain for the orbifold, projected into any one of the

three complex planes, is depicted in Figure A.2. Sewing of open boundaries to

A

B

E

FD

C

Figure A.2: The parallelogram BACD depicts the two-dimensional Z3 orbifold.
We shown how it sits within the SU(3) root torus (the larger parallelogram). We
have set E = 0, A = 1, D = eiπ/3, F = A + D, B = F/3 and C = 2F/3. Open
points along the open boundary (dashed) are identified (in the figure, by arrows)
with closed points along the closed boundary (solid), forming a three-cornered
“pillow”. The fixed points are at A, B and C. We can also view the parallelo-
gram BACD as the projection of the six-dimensional Z3 orbifold into one of the
three complex planes. Similarly, the larger parallelogram can be viewed as the
projection of the SU(3)3 root torus in one of the three complex planes.

closed boundaries is suggested by the arrows. Whereas the two-dimensional Z2

orbifold of Section A.2 could be pictured as a four-cornered “pillow”, we now

obtain for the Z3 orbifold a three-cornered “pillow”. Since the orbifold is six-

dimensional, we actually have three such pillow spaces associated with the pro-

jection of the orbifold into each of the three complex planes.

The interpretation of the figure is more transparent if we introduce a complex

basis. This is defined in terms of the components xi appearing in (A.13) according

to

zi ≡ xi + e2πi/3 xi+1, z̄i ≡ xi + e−2πi/3 xi+1, i = 1, 3, 5 (A.21)

This definition is motivated by supposing that in the ith complex plane ei lies

along the real axis while from (A.12) we see that ei+1 lies at 120 degrees (2π/3 rad)

counterclockwise from the real axis. This picture is of course the origin of the

usage of “complex plane” for each of the three pairs {ei, ei+1} (i = 1, 3, 5).

Whithout enter in the details, it is possible to show that the twist operator acts



A.3 Z3 Orbifold 99

on zi as a pure phase rotation:

zi
α−→ e2πi/3 zi, z̄i

α−→ e−2πi/3 z̄i, i = 1, 3, 5. (A.22)

In the complex basis a matrix realization of the twist operator is given by

Mc(α) = diag(e2πi/3, e2πi/3, e2πi/3) (A.23)

when acting on (z1, z2, z3) and by the complex conjugate [Mc(α)]∗ when acting on

vectors in the conjugate representation space (z̄1, z̄2, z̄3). It is this decomposition

into irreducible representations, i.e. no mixing between zi and z̄i, in contrast to

the mixing between xi and xi+1 in (A.19), which eases the use of complex basis.

Moreover the (A.23) makes clear the Z3 nature of the point group: it is the gener-

ator of the center of SU(3) in the fundamental representation. This is the reason

why we called the lattice in (A.14) ΛSU(3)3 .

In an abuse of notation we shall often write α = e2πi/3, so that (A.23) becomes

Mc(α) = diag(α, α, α). (A.24)
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Chiral Zn models

In this appendix we partially review the classification of Kephart and Pas [107,

108], presenting the supersymmetric and nonsupersymmetric chiral models that

comes from an abelian orbifolds of AdS/CFT.

We begin to notice that if the orbifolding group is Γ = Zn the initial N = 0

orbifold model (before any symmetry breaking) is completely fixed (recall we

always are taking N , the “color number”, fixed) by the choice of n and the em-

bedding 4 = (αi, αj, αk, αl), so we define these models by Mn
ijkl. The conjugate

modelsMn
n−i,n−j,n−k,n−l contain the same information, so we need not study them

separately.

In the case of N = 1 model, to preserve the supersymmetry we must keep

exactly one invariant spinor under the joint action of the finite symmetry Γ and

the quiver gauge group, i.e. SU(N)n, with n = o(Γ), if Γ is abelian. This implies

that one component of the 4 of SU(4) is the trivial singlet representation of Γ, so

we can write the embedding 4 = (1, αi, αj, αk) and define the models asMn
ijk.

B.1 N = 1models

To tabulate the possible models for each value of n, we first show that a proper

embedding [105] (i.e., 6 = 6̄) for 4 = (1, αi, αj, αk) results when i+ j + k = n. To

do this we use the fact that the conjugate model has i→ i′ = n− i, j → j′ = n− j

and k → k′ = n−k. Summing we find i′ + j′ +k′ = 3n− (i+ j+k) = 2n. But from

6 = (4 ⊗ 4)antisym we find 6 = (αi, αj, αk, αj+k, αi+k, αi+j), but i + j = n− k = k′.

Likewise i + k = j′ and j + k = i′ so 6 = (αi, αj, αk, αi
′

, αj
′

, αk
′

) and this is 6̄

up to an automorphism which is sufficient to provide a proper embedding (or to
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provide real scalars in the non-SUSY models).

Models with i+j+k = n are called partition models and are always chiral, with

total chirality (number of chiral states) χ = 3N2n except in the case where n is even

and one of i, j, or k is egual to n/2, where χ = 2N2n.1 This immediately gives

us a lower bound on the number of chiral models at fixed n: it is the number of

partitions of n into three non-negative integers.

There is another class of models with i′ = k, j′ = 2j and total chirality χ = N2n

(for exampleM9
336) . Moreover there are a few other sporadically occurring cases

likeM6
124, which typically have reduced total chirality, χ < 3N2n. Such nonparti-

tion - i.e. neither partition nor double partition - models can fail other more subtle

constraints on consistent embedding [105], but they are also important because

they have vanishing anomaly coefficients and vanishing one loop β functions,

so are still of phenomenological interest from the gauge theory model building

perspective.

B.2 N = 0models

To list all the possible nonsupersymmetric chiral model we can procede as in

the previous section, with the only difference that now a proper embedding for

4 = (αi, αj, αk, αl) is possible only if i + j + k + l = n. The resulting models are

showed in Table B.1.

Notice that the first allowed Γ = Z2 and Z3 orbifolds have only real repre-

sentations and therefore will not yield chiral models. So the simplest example

af a nonSUSY chiral model is for Γ = Z4 with the choice 4 = (α, α, α, α), where

α = exp(πi/2). In this model we have 6 = (α2, α2, α2, α2, α2, α2). With N = 4 this

yields an SU(4)4 model with the fermion content

4[(44̄11) + (144̄1) + (1144̄) + (4̄114)]

and scalar content

6[(414̄1) + (1414̄) + (4̄141) + (14̄14)]

as can be read off from the associate quiver diagrams showed in Fig. B.1.

In fact each node correspond to one SU(4) group, so we have four nodes. A

1No more than one of i, j, and k can be n/2 since they sum to n and are all positive.
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n 4 χ/N2 comments

4 (α, α, α, α) 16 i+ j + k + l = 4; 1 model (i = j = k = l)
4 (α, α, α, α3)∗ 8 nonpartition model
5 (αi, αj, αk, αl) 20 i+ j + k + l = 5; 1 part. model
6 (αi, αj, αk, αl) ≤ 24 2 part. models
6 (α, α, α3, α5)∗ 6 nonpartition model
6 (α, α2, α3, α5)∗ 6 nonpartition model
6 (α, α3, α4, α4) 24 i+ j + k + l = 12 (double partition model)
7 (αi, αj, αk, αl) 28 3 part. models
8 (αi, αj, αk, αl) ≤ 32 5 part. models
8 (α, α2, α3, α6)∗ 16 nonpartition model
8 (α2, α2, α2, α6)∗ 16 analog of Z4 (α, α, α, α3)model
8 (α, α4, α5, α6) 32 double part. model
9 (αi, αj, αk, αl) 36 3 part. models
9 (α, α3, α4, α7)∗ 36 nonpartition model
9 (α, α4, α6, α7)∗ 36 double part. model

Table B.1: Chiral nonsupersymmetric Zn orbifold models with n ≤ 9. The non-
partition models are marked with an asterick (*).

1
SU(4)

SU(4)SU(4)

SU(4)
2

34

4 x

(a)

6 x

(b)

Figure B.1: Fermion (a) and scalar (b) quiver diagram for the modelM4
1111.

line direct away from one node correspond to a fundamental representation for

the corresponding group and to an antifundamental representation for the group

related to the node where the line ended (i.e. directed toward this node). For

example the arrow from the SU(4)1 node to the SU(4)2 node in the fermion quiver

diagram of Fig. B.1(a) led to the (414̄21314) representation of the quiver gauge

group SU(4)1 ⊗ SU(4)2 ⊗ SU(4)3 ⊗ SU(4)4. As all the SU(4) are the same, we

can drop the underscript and, applying the same rules to the other arrows in
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Fig B.1, we arrive at the fermion and scalar content presented above. Notice that

to draw the quiver diagrams we have used the rules given in chapter 12 with

(a1, a2, a3) = (2, 2,−2), as result solving the system (12.2) with Aµ = (1, 1, 1, 1).
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