
Alma Mater Studiorum - Universitá di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo XXX

Settore Concorsuale: 09/G1 - AUTOMATICA

Settore Scientifico Disciplinare: ING-INF/04 - AUTOMATICA

A GROUND ROBOT FOR SEARCH AND
RESCUE IN HOSTILE ENVIRONMENT

Presentata da: Seyedmohsen Mirhassani

Coordinatore Dottorato Supervisore

Prof. Daniele Vigo Prof. Lorenzo Marconi

Esame finale anno 2018

Abstract

The recent sheer developments in the field of robotics has encouraged the researcher around
the world to consider the robots assisting human in different aspects of life. In this context,
search and rescue is a very interesting ambient where the capabilities offered by the robots
can be used to not only augment the quality of service but also impose lower risk to the
human members of the rescue team. To this purpose, project SHERPA1 has been defined to
investigate the values that an intelligent heterogeneous robotic team can add to a search and
rescue mission.

The robotic team understudy includes flying robots such as fixed wing and quad copters
for the purpose of patrolling and surveillance and a ground rover that is mainly considered to
provide a mobile power replenishment service for the quadrotors. Indeed, the limited auton-
omy of the quadrotors is the main bottleneck of deploying them in a wide area applications
like the mission understudy. In the project SHERPA, this issue has been addressed by intro-
duction of ground rover.

Navigation of the ground rover on the unstructured outdoor environment defined by the
SHERPA is of the main focuses of this thesis. Due to roughness of the terrain, there are a lot
of issues on the way of a successful localization. Moreover, the planning has to be compatible
with the robot and environment constraints to avoid imposing a risk of mechanical damage
to the system. These issues will be introduced to the reader and proper solution will be
presented.

To accomplish the battery exchange operation, the rover is equipped with two auxiliary
devices namely “Sherpa box” and “Sherpa robotic arm”. In this thesis, firstly, designs of the
two devices are introduced to the reader in details. Secondly, their integration with the ground
rover will be covered.

Finally two important benchmarks of the SHERPA project, namely “human leashing” and
“battery exchange operation”, will be addressed by means of the developed system. The hu-
man leashing will be investigated in two approaches; 1) Only using the rover and 2) Through
a cooperation between the rover and the robotic arm. The battery exchange operation will be
also investigated and the corresponding experimental results will be presented.

1http://cordis.europa.eu/project/rcn/106964_en.html

1

Dedication

Firstly, I dedicate this thesis to my family who supported me emotionally and financially to
conclude this chapter of my life in Italy.

Moreover, I would like to dedicate this thesis to all members and founders of Italian lan-
guage school of “Aprimondo” who help people like me with learning Italian completely free
of charge. The result of their dedication is definitely one the best gifts I have received in my
life.

Last but not least, I would like to dedicate this thesis to the great souls of “Khwaja Shams-
ud-Din Muhammad Hafez-e Shirazi” a.k.a Hafez, “Abu Hamid bin Abu Bakr Ibrahim” a.k.a
Attar and “Jalal ad-Din Muhammad Rumi” a.k.a Rumi who accompanied me in this journey
with their precious spiritual poetry.

2

Declaration

I declare this document is the result of my three years of research activities as a PhD students
in Department of Electrical electronic and Information engineering (DEI) of “Alma mater
studiorum - Università di Bologna”. All rights are reserved for DEI and Università di Bologna.

3

Acknowledgements

I acknowledge support of my supervisor Professor Dr Lorenzo Marconi in my research in
University of Bologna. I also acknowledge support of my supervisor during the abroad period
Dr.Raffaella Carloni in my research in University of Twente.

Last but not least, I would like to thank my colleagues Dr Nicola Mimmo, Eng Eamon
Baret, Eng Mark Reiling and Dr Michele Furci who helped me with problem definition and
solving, technical aspects, and publications.

4

Contents

List of Figures 9

1 Introduction 13

1.1 Motivation . 14

1.1.1 Ground Rover . 14

1.1.2 Sherpa Box . 14

1.1.3 Mobile Manipulator . 15

1.1.4 Software . 15

1.2 Sherpa System Overview . 16

1.2.1 Delegation Framework . 16

1.2.2 Sherpa World Model . 17

1.2.3 Ground Rover . 18

1.2.4 Sherpa Arm . 19

1.2.5 Sherpa Box . 21

1.3 Selected SHERPA Benchmarks and Thesis Outline 22

1.3.1 Way Point Navigation in Unstructured Outdoor Environment 22

1.3.2 Human Leashing . 22

1.3.3 Battery Exchange Operation . 23

1.4 Contribution of this Thesis . 24

5

CONTENTS

2 An Overview of Problems and Tools For Autonomous Navigation 25

2.1 Attitude estimation . 26

2.2 Odometry . 28

2.2.1 Dead reckoning . 28

2.2.2 Laser Odometry . 29

2.2.3 Visual Odometry . 30

2.3 SLAM . 34

2.3.1 Kalman Filter approach to SLAM problem 35

2.3.2 Graph based SLAM . 36

2.3.3 Particle Filter based SLAM . 37

2.3.4 SLAM implementations . 39

2.4 Global Positioning System and Filtering 41

2.4.1 Complementary Filter . 41

2.4.2 Kalman Filter . 42

2.5 Mapping . 43

2.5.1 2D mapping . 43

2.5.2 2.5D mapping . 44

2.5.3 3D mapping . 45

2.6 Path Planning . 45

2.6.1 Introduction to DES theory . 46

2.6.2 DES path planner . 47

2.6.3 DES planner for rough terrain . 53

3 Introduction to the Hardware of the System 56

3.1 Sherpa Ground Rover . 56

6

CONTENTS

3.1.1 Passive Configurable Chassis . 56

3.1.2 Sensors . 58

3.1.3 Traction and Power . 60

3.1.4 Internal Network and Process Unit 61

3.2 The Sherpa Robotic Arm . 61

3.2.1 Kinematic structure . 62

3.2.2 Shoulder joint . 63

3.2.3 Elbow joint . 64

3.2.4 Wrist joint . 66

3.2.5 Gripper . 67

3.3 Sherpa Box . 68

4 Integration of the Ground Rover with the Robotic Arm 71

4.1 Kinematic modelling . 71

4.1.1 Arm Kinematics . 72

4.1.2 Rover Kinematics . 73

4.1.3 Mobile Manipulator Jacobian . 73

4.2 Kinematic Control of Mobile Manipulator 76

4.2.1 Least Norm Solution and Pseudo-Inverse of the Jacobian 77

4.2.2 Singularity Robust Inversion . 77

4.2.3 Weighted Least-Norm Solution 79

4.3 Analysis of the Arm Compliance . 80

5 Implementation and Results 83

5.1 Human following using the Rover . 83

5.1.1 Problem formulation . 84

7

CONTENTS

5.1.2 The input constraints . 87

5.1.3 Design of the controller . 89

5.1.4 Stability Analysis of the Proposed Controller 90

5.1.5 Simulation Result . 92

5.1.6 Experimental Result . 94

5.2 Cooperative Following using the Arm and the Rover 98

5.2.1 Components Multi-Robot Interaction 98

5.2.2 Model Predictive Planing . 102

5.2.3 Path Planning . 103

5.2.4 Experimental Results . 107

5.2.5 Discussion . 110

5.3 Battery exchange operation . 112

6 Conclusion 118

Bibliography 120

8

List of Figures

1.1 Overview of the distributed delegation process 17

1.2 An example of functionality of SWM in a mission 18

1.3 System architecture of the mobile base station (ground rover). 19

1.4 System architecture of the arm. 20

1.5 System architecture of Sherpa box . 21

2.1 Donkey rover hardware scheme . 29

2.2 Laser odometry . 30

2.3 visual Odometry and features . 31

2.4 Different camera coordinates . 32

2.5 visual scale ambiguity . 33

2.6 The effect of outliers in the performance of visual odometry 34

2.7 Graph formulation of the SLAM problem 36

2.8 Graph Based solution to SLAM problem. 37

2.9 Summary of Particle Filter solution to SLAM problem. 38

2.10 An example of Laser SLAM. 39

2.11 An example of map of features created by a visual SLAM algorithm. 40

2.12 An example of a Depth frame created by ORB-SLAM2. 41

2.13 Complementary filter for fusing odometry and GPS information 42

9

LIST OF FIGURES

2.14 A sample occupancy grid . 44

2.15 An example of elevation map. 45

2.16 Discretization of environment and robot actions 46

2.17 An example of Automaton representation. 47

2.18 Map automaton representing a grid of 4× 4. 48

2.19 Path planning and Specification Automaton 49

2.20 Agent Primitives Logic Automaton . 50

2.21 Agent Map Interaction Automaton . 51

2.22 Swathe in path planning . 52

2.23 Supervisor Automaton . 52

2.24 Illustration of different levels of terrain roughness and traversability. 53

2.25 Effect of the plane roughness on the primitives. 54

2.26 Geometric chassis simulation. 55

3.1 An overview of the system Hardware . 57

3.2 Ground rover hardware overview . 57

3.3 The Sherpa ground rover’s Chassis . 58

3.4 Sensors of the Ground rover . 59

3.5 Configuration of the power and traction system of the Sherpa ground rover . 60

3.6 Kinematic structure of the Sherpa arm. 63

3.7 3 DoF shoulder joint . 64

3.8 The variable stiffness module of the shoulder joint 65

3.9 Elbow joint . 65

3.10 Wrist joint . 66

3.11 Arm’s gripper . 67

10

LIST OF FIGURES

3.12 Sherpa box set-up overview . 69

3.13 Sherpa box mechanical design . 70

4.1 look ahead change of coordinates . 74

4.2 Vector representation of the arm base with respect to the rover. 76

4.3 End effector’s compliance in special poses 82

5.1 Sensor operation field of view . 84

5.2 Introduction to problem coordinates and vectors. 85

5.3 Transformation of the input set to the control set 88

5.4 Calculation of the control action norm . 90

5.5 Circle shaped invariant set . 93

5.6 Simulation result of the human leashing - evader trajectory 95

5.7 Simulation result of the human leashing - Actuator 96

5.8 Experimental setup of this study. 96

5.9 Experimental results of the human leashing 97

5.10 The arm with angular velocity and inertia 99

5.11 Illustration of different concepts of the game theory 101

5.12 Look up table patterns . 104

5.13 Selection of viable paths from the look up table 105

5.14 The experimental set-up of target following using ground rover and arm . . 108

5.15 Performance of the GRA path finder . 109

5.16 Experimental result of the GRA pathfinder 110

5.17 Experimental result, arm’s shoulder joint movement to track the wasp. . . . 111

5.18 Execution scheme for the battery exchange operation by DF 113

5.19 Wasp detection by means of arm’s camera 114

11

LIST OF FIGURES

5.20 Placement of the wasp in the plan scene 114

5.21 The map generated by the rover during the battery exchange experiments . . 115

5.22 SHERPABattery exchange experiment . 116

5.23 Experimental results - SHERPAbattery exchange operation 117

12

Chapter 1

Introduction

This thesis is written based on my involvment to a European project called “SHERPA”1 [3,4].
SHERPA project investigates the adoption of a heterogeneous team of robots assisting the
rescue teams in the Alps in the context of a search and rescue mission. In this context, the
project considers different scenarios where the presence of robots can make a considerable
contribution to the mission. Based on the scenarios, the project defines some benchmarks to
be satisfied by the members of the robotic team while benchmarks includes a set of task that
may involve either one agent or multiple robots.

The heterogeneous robotic team, also known as “SHERPA Animals”, includes “Fixed
Wing”2, “Rmax”3, “wasp”4 and “Donkey Rover”.5 There are also two more robots namely
“Sherpa Box” [5] and “Sherpa Arm” serving as auxiliary devices for the Donkey Rover.
The robots are integrated by means of two main software of the project namely “Delegation
Framework” and “Sherpa World Model”. The heterogeneous robotic framework is deployed
to help the “Busy Genius” referring to the human member of the rescue team who is suppos-
edly most of the time busy doing crucial tasks concerning search and rescue. However, he is
required to be available to trigger and partially supervise the mission [6].

This thesis is dedicated to the Donkey rover, a ground rover that is considered to support
wasps and human members of the rescue team. Therefore, here we seek to cover the research
scope of navigation of the ground rover from localization to planning. Moreover, Sherpa
arm and Sherpa box are presented. Lastly, some of the benchmarks of the SHERPA project
concerning the rover are presented and investigated.

1Smart collaboration between Humans and ground-aErial Robots for imProving rescuing activities in Alpine
environments

2A fixed-wing aircraft able to patrol large areas with low energy consumption, equipped with eagle-eye
surveillance capability and suitable for normal weather condition.

3A rotary wing aircraft able to patrol large areas, equipped with eagle-eye surveillance capability and suitable
for critical weather condition.

4A small scale quad-rotor with surveillance capability.
5A ground rover able to perform rough terrain navigation.

13

CHAPTER 1. INTRODUCTION

1.1 Motivation

Presence of the wasp is particularly useful in a search and rescue mission since the hard-
ware provides a high manoeuvrability plus a fast and easy deployment. In the context of the
SHERPA project, a wasp can easily reach a terrain that is inaccessible for the human. Being
able to carry a camera, the rescuer may directly check the real-time video streaming provided
by the wasp. Moreover, this data can be analysed by an image processing based software to
locate the victims of an avalanche incident and tag them on a map that is being shared with
the Busy genius. On the other hand, high energy consumption limits deploying this kind of
drone in a search and rescue scenario. Indeed, a desired level of autonomy requires a heavy
battery and consequently the autonomy of wasps are limited to 20 minutes. This problem can
be addressed by defining an autonomous power replenishment station for the wasps.

1.1.1 Ground Rover

To service the wasps in a dynamic mission with shifting areas of interest and, thus, to extend
their operational radius, we chose a mobile ground base, as the strategical placement of sta-
tionary service stations across the operational environment [7,8] is not a practical solution for
search and rescue or emergency response operations. In [9,10] recharging stations have been
mounted on commercial mobile ground vehicles, but these platforms were intended for lab-
oratory environments. Instead a tracked vehicle with robust outdoor navigation capabilities
was developed for the SHERPA project. Indeed, support for the wasp is the main motivation
of introducing the Donkey Rover in the SHERPA project.

The ground rover is the main focus of this thesis. Navigation on an unstructured outdoor
environment presents different challenges to be addressed. For example, in some cases the
ground rover is required to navigate rough terrains implying a risk of getting stuck and even
flip over. Moreover, the localization of the robot in such an environment is quite a challenge.
In the future chapters, hardware and software aspects of the Sherpa rover, the issues facing
the system and our solutions will be presented.

1.1.2 Sherpa Box

The wasp’s energy supply can be replenished either by recharging or by exchanging the de-
pleted batteries. Several design concepts for both recharging and exchanging the batteries are
in [11].

Automated battery recharging stations are the most common solution due to their lower
complexity, but also show a lower vehicle utilization due to the long recharging time [7,
9, 10]. On the other hand, a battery exchange station needs a mechanism that can extract
and replace the batteries from the wasp, as well as a storage mechanism to hold the spare

14

CHAPTER 1. INTRODUCTION

batteries. Yet it implies a promising solution as it requires no additional time to charge the
batteries before the wasp is operational again, which typically takes several times the flight
time. The wasp needs to be designed such that the battery is easily exchangeable but still
mounted well enough to withstand the vibrations experienced in flight and landing. Battery
exchange stations, that combine rotating battery magazines with at least one linear actuator
to move the battery containers from the wasp into the magazine and vice versa are presented
in [12–14], while [15] uses linearly arranged battery bays.

As analyzed in [11], recharging stations are more economical for low coverage scenarios
in terms of the provided coverage, i.e. , how many wasps are operational at a given time,
versus the total system cost. Nonetheless we opt for introducing the Sherpa box, a battery
exchange system, to minimize the amount of wasps and service stations to be transported to
the mission areas.

1.1.3 Mobile Manipulator

The service stations presented in the literature require the wasp to precisely and safely land
on a landing pad on the station. Most of the time, however, the landing precision of the
wasp is not sufficient to engage the replenishment mechanism. This is especially the case
for battery exchange mechanisms, where a close mechanical fit is required. To overcome the
alignment issue some of the proposed stations have passive guidance systems that function
like funnels [11, 13], while others are equipped with active alignment systems, like small
arms or wire mechanisms [8, 14] that position and secure the wasps during replenishment.
However, many systems also still rely on external position sensing in order to land the wasp
on the platform.

While these systems alleviate the problem of retrieving the wasps, the landing operation
is still delicate. The SHERPA mission requires that the robotic platform can reliably retrieve
the wasps without human involvement. Hence, we chose to introduce the Sherpa Arm, a
robotic arm capable of robustly retrieving, docking, and deploying the wasps, to be mounted
on the ground rover. In order to increase robustness during the manipulation and docking of
the wasps, the arm is designed with a variable mechanical compliance.

1.1.4 Software

Complex missions involving a heterogeneous robotic team also necessitate a suited control
and communications structure [16,17]. As part of the SHERPA project, a framework for the
automatic specification, generation, and execution of high-level collaborative mission plans
has been presented in [18] which is a more robust and flexible solution than systems based
on a central planning and scheduling algorithm [7, 19].

Moreover, the heterogeneous robotic team requires interacting with different aspects of the

15

CHAPTER 1. INTRODUCTION

environment. For example, terrain specifications is interesting for the rover while the weather
condition information serves the flying robots. It is also necessary to have a platform where
the agents can share the data and basically come up with a model representing the environment
i.e. a “world model”. In the context of SHERPA project, Sherpa World Model (SWM) is
introduced to address this concern. Architecture of the SWM is presented in [20–22].

1.2 Sherpa System Overview

Complex collaborative tasks that would be difficult or impossible to perform for individual
agents require the cooperation and coordination of the participating agents. This section
presents the distributed communication and control architecture, that enables a larger hetero-
geneous human-robot team to effectively work together in a robust and versatile manner, even
under adverse operating conditions.

1.2.1 Delegation Framework

The delegation framework and semantic structures developed for the SHERPA mission, as
described in [18], are designed to enable a team of robotic agents to cooperate in planning and
executing complex and hierarchical tasks in a dynamic mission environment. An overview
of the delegation process and the agents and components involved in the battery exchange are
shown in Figure 1.1.

A generic task or mission goal, such as the exchange of the wasp’s battery, is expressed in
the form of a goal request Task Specific Tree (TST), i.e. a hierarchically structured description
of the task. The internal nodes of a TST represent control statements for the task’s execution,
while leaf nodes represent domain specific functionalities. The transformation of a high-level
request into a goal request TST takes place during the mission by dynamically instantiating
generic TST templates.

The involved agents interact through their delegation modules, which contain a TST fac-
tory that can create TST nodes and link them to ancestors and descendants across agents, as
well as a TST Executor Factory that provides platform specific functionalities for the execu-
tion of a task.

In the first phase of the delegation, a goal request TST is negotiated. When an agent
requests a goal, the goal request TST is sent to its delegation module, where the distributed
delegation process allocates each node of the tree to a suitable agent by means of an auction.
The most suited bidder for a task is determined by solving the constraint problem belonging
to a cost function, taking into account the mission requirements and platform capabilities.
The result of a successful delegation is an expanded collaborative plan TST, where all nodes
have been allocated to the participating agents. This TST can then be executed in the second

16

CHAPTER 1. INTRODUCTION

Delegation
Module

Delegation
Module

Delegation
Module

Delegation
Module

Delegation
Module

Distributed
Delegation
Process

Mission
require-
ments

Platform
capabilities

arm

SBox

wasp

rover

Mission

Goal

Figure 1.1: Overview of the distributed delegation process and of the agents for the au-
tonomous battery exchange during the SHERPA mission. Each agent has a delegation module
that mediates between mission requirements and platform capabilities. The human operator
can request or approve mission goals, but the system is also able to request, plan and execute
missions completely autonomously without human supervision in a distributed delegation
process, in which tasks are assigned to the most suited agents.

phase of the delegation.

In order to have a clear idea of the implementation of the system, this section is dedicated
to the SHERPA system overview. Therefore, we cover three important modules that are in
the scope of this thesis; “Donkey rover”, “Sherpa Robotic arm” and “Sherpa box”.

1.2.2 Sherpa World Model

SWM endows the heterogeneous robotic team with a semantic world model. Moreover, each
robot has its own SWM module through which contributes to the world modelling. The robots
also sync their own status and pose information with the SWM.

The functionality of SWM can be enlightened by example of Figure1.2. The human op-
erator triggers a search mission by specifying the search region on his map using human
interface software. The rover uses the elevation data of the terrain that is acquired and pro-
cessed by the fixed-wing to check if the region is traversable. As soon as the mission has been
validated to be possible, the rover makes an inquiry to the SWM to check whether there is

17

CHAPTER 1. INTRODUCTION

Figure 1.2: An example of functionality of SWM in a mission. A new search mission is
designed by the user through the corresponding SWM module. The mission requires the
rover to be sent to a new position. In the meanwhile map information of the mission site
is updated by the fixed-wing. The rover makes an inquiry to the SWM for the map of the
environment to be used in the navigation algorithm.

already an asserted path connecting the initial and target areas. Based on result of the inquiry,
the rover may then follow an existing path in the system or plan a new path.

As can be seen in this example, the structure of SWM allows for storing information
from different types and categories i.e. elevation map, paths, point cloud, robot pose, etc.
Attending to more technical aspect of the SWM structure is out of the scope of this thesis.
We, therefore, encourage the curious reader to refer to [21, 22].

1.2.3 Ground Rover

A specially developed ground rover6 serves as mobile base for the Sherpa box and the Sherpa
arm. It is characterized by its high degree of autonomy, endurance, and payload capacity. The
rover is driven by four actuated tracks, that are mounted on a passively configurable chassis.
These tracks allows the rover to traverse rough, mountainous terrain at a maximum speed of
0.8 m/s. Its range of sensors include a tilting laser scanner (LiDAR), IMU and GPS systems,
as well as encoders for the tracks. The system is designed to run autonomously for three to

6Hardware is designed by Bluebotics, Switzerland (http://www.bluebotics.com/).

18

CHAPTER 1. INTRODUCTION

Motion
Planner

Delegation
Module

Path
Planner

SHERPA
World Model

Actuators

SLAM

Mid-level
control

High-level
planning

Low-level	control
&	hardware

ELMOs

Encoder
IMU
Lidar

GPS

Figure 1.3: System architecture of the mobile base station (ground rover).

six hours, depending on the usage of actuators. Moreover, the rover’s battery can be changed
without shutting down the hardware. The rover is furthermore equipped with an embedded
computer, Wi-Fi interface and internal power electronics.

Figure 1.3 shows the system architecture of the rover, which is divided into high-level
planning, mid-level control, and low-level control and hardware. The high-level control in-
teracts with the delegation framework, and formulates requested tasks as navigation problems
that are solved by the path planner. A mid-level motion planner resolves the planned path and
coordinates the individual motor drivers. On the same level, a SLAM7 module combines data
from the LiDAR, encoders, and IMU and provides a map of the environment with the rover’s
position to the high level path planner. The actual execution of the trajectory, and control of
the actuators, is performed by ELMO Whistle digital servo drives8.

1.2.4 Sherpa Arm

The ground rover is equipped with a robotic arm [23], in order to robustly deploy and recover
the wasps, and thus to facilitate the autonomous servicing and battery exchange operation.
Figure 1.4 shows the system architecture of the arm.

The arm has 7 DOF and a reach of one meter, and is designed for a payload of 2 kg. While
being able to operate independently, it is considered to be mounted on the rover resulting in a
mobile manipulator that is referred to as Ground Rover and Arm (GRA). To enable compliant
and safe interaction with the wasps and Sherpa box during grasping and docking, the arm
is equipped with two variable stiffness mechanisms in the shoulder and wrist joints. The
arm’s end-effector is a custom made gripper, that interlocks with an interface mounted on the
wasp. As the arm is able to retrieve wasps without human assistance or requiring the wasps

7Simultaneous Localization and Mapping, the theory will be studied in section 2.3.
8Elmo Motion Control Ltd., Israel

19

CHAPTER 1. INTRODUCTION

Motion
Planner

Collision
Detection

Delegation
Module

State
Machine

Plan
Scene

Joint
Control

Stiffness
Tuning Actuators

Encoder

Camera

Gripper
Control

Gripper

Kinematic
Model

Vision

Joint
Observer

Gravity
Comp.

Observer

ELMOs

Mid-level
control

High-level
planning

Low-level	control
&	hardware

Figure 1.4: System architecture of the arm.

to perform precise and sensitive landing operations. Thus, It greatly extends the system’s
robustness and autonomy.

From the system hardware point of view, the high-level computational tasks are executed
on an Intel NUC computer, while the low-level motor control is performed by ELMO Whistle
digital servo drives. Moreover, mechanical design of the arm will be presented in section 3.2.

The arm’s high-level planner includes a delegation module that interacts with the other
agents, and a hierarchical finite-state machine (HFSM) based on the ROS decision making
package, where the states of the HFSM are triggered by executors. When a task requires the
arm to move to a certain Cartesian goal, a suitable joint space trajectory is generated using the
rapidly-exploring random tree (RRT∗) algorithm implemented in MoveIt! [24]. The mid-level
joint controller then translates these trajectories to motor set-points and acts as supervisory
controller.

The arm’s observer combines data from the different sensors, including a camera9 mounted
on the gripper, to obtain the state estimates. The vision-based localization of the wasp is also
carried out by the arm observer. Markers placed on the wasp interface are detected using an
open source software10. After its detection, a virtual wasp is placed in the plan scene of the
arm, and its pose is published to other agents, such as the rover. The virtual placement in
the plan scene is necessary for motion planing of the arm taking into account the wasp that
is attached to it.

9Logitec c920 webcam
10ROS AR TRACK ALVAR wrapper

20

CHAPTER 1. INTRODUCTION

Embedded
Controller

Delegation
Module

Sequence
Planner

Mid-level
control

High-level
planning

Low-level	control
&	hardware

Actuators

Switches

Motor
Drivers

Figure 1.5: System architecture of the UAV service station and communications hub - the
Sherpa box.

1.2.5 Sherpa Box

The Sherpa box is designed to function as the service station for docking and replenishing the
wasps, as well as the computational and communications hub for the mission. However, its
main mechanical functionality is in wasp battery exchange benchmark where a mechanism is
required to latch the wasp and exchange the exhausted battery with a fresh one. Mechanical
design of battery exchange mechanism of the Sherpa box is elaborated in section 3.3. The
configuration of the Sherpa box leads to the advantage of leaving the arm potentially free dur-
ing the battery replacement phases when the drone is locked on the docking surface. Thanks
to this solution, the arm can look for, grasp and dock a second wasp thus speeding up the
procedures when in presence of several flying vehicles.

As shown in Figure 1.5, the Sherpa box has a hierarchal control structure. A high-level
sequence planner and delegation module, which run on an Intel NUC, coordinate with the
delegation framework. They translate requests for the Arduino-based embedded controller
that interfaces with the sensors and actuators of the Sherpa box.

1.3 Selected SHERPA Benchmarks and Thesis Outline

As mentioned earlier, the benchmarks are required tasks to be accomplished by the SHERPA
agents. In this section we overview some of the benchmarks concerning the ground rover.

1.3.1 Way Point Navigation in Unstructured Outdoor Environment

This is the most basic operation that should be accomplished by the rover. The command
is sent by the delegation framework through Driveto executor containing a target GPS coor-

21

CHAPTER 1. INTRODUCTION

dinates. This includes one of the main scopes of this research being navigation of a ground
rover on a rough terrain. As mentioned earlier, roughness of the terrain implies a risk of dam-
age and getting stuck. Therefore, a precise planning is desired that can be achieved only by
coupling the planner with kinematics and dynamics of the system. Localization is an other
topic of interest in the context of navigation of the Sherpa rover. The GPS localization pro-
vides a global coordinate system that is particularly useful in multi-robot projects. As a result
the GPS system is adapted as the standard localization protocol in the SHERPA project. Yet
the data has an accuracy of a few meters that does not suffice the desired navigation applica-
tion. Consequently, the GPS localization has to be complimented by more precise localization
strategy e.g. LiDAR and Vision based methods. In Chapter 2, we will provide an overview
of the available localization and planning methods offered by the robotic literature to be used
in the navigation of the ground rover.

1.3.2 Human Leashing

As called “Donkey”, the rover is required to provide a human following capability so in prac-
tice the “Busy Genius” will be able to leash the Donkey. It is also desirable to endow the
rover with the capability of being leashed not only to the rescuer but also to the wasp. The
leashing command is sent through the Leash executor with a target that can be specified as
a parameter. In this thesis we have considered two different cases of leashing. In the first
case, the rover is assumed to be equipped with a fixed vision based sensor to recognize the
human. While this strategy provides a superior precision comparing to GPS location of the
human, the limited rage of operation of the sensor is a challenge to deal with. The objective is,
therefore, designing a controller that guarantees the stability in the presence of the state and
actuator constraints, i.e. the target stays in the operation field of the sensor and the actuator
limits are respected. Since the sensor is fixed on the rover, performing the obstacle avoidance
is difficult. This is because it implies two conflicting interests of following the target and
deviating from the target to avoid an obstacle. Therefore, in the first case presented in section
5.1 we assume a safe navigation environment in which there is no risk implied by obstacles
and roughness of the terrain.

In the second case, we take the advantage of having the robotic arm on the rover to provide
a more realistic solution to the leashing problem. We therefore use the arm equipped with a
similar vision based sensor to follow the target independently from the rover’s heading. In
the meanwhile, the rover approaches the target while considering obstacles and roughness of
the terrain. To achieve a superior performance, we couple strategies taken by the arm and the
rover through a cooperative framework based on the game theory. This solution is presented
in section 5.2.

22

CHAPTER 1. INTRODUCTION

1.3.3 Battery Exchange Operation

As was motivated earlier, the battery exchange operation is to be provided by the GRA to
increase the flying range of the wasps. During the mission the rover is needed to approach
the wasp and turn such that the drone ends up in the arm’s workspace. Subsequently the arm
picks up the drone and proceeds with docking it to the Sherpa box. Finally the Sherpa box
performs the battery exchange mechanism and the wasp is ready to be deployed.

This is a complicated task of automation that needs to be done respecting the sequence of
actions and verifying completion of each subtask. To this purpose, the SHERPA system has
been introduced that provides a strong automation platform. The architecture of the SHERPA
system has been elaborated earlier in this chapter (see section 1.2). To verify the system’s
performance, the system is deployed in an experiment that will be presented in section 5.3.

23

CHAPTER 1. INTRODUCTION

1.4 Contribution of this Thesis

The contribution of this research includes navigation of the Sherpa ground rover, integra-
tion of the Sherpa arm and Sherpa box with the ground rover and ultimately performing the
benchmarks of the SHERPA project concerning the ground rover as listed in section 1.3.

The navigation of the ground rover is divided into subtopics of localization, mapping
and planning. Although some of the blocks are adapted from the open source algorithms,
our contribution is studying the pros and cons of these strategies and adapt what suits the
best the application understudy. Chapter 2 presents an overview of the modern techniques of
localization, mapping and planning that are available in the robotic literature.

Integration of the Sherpa robotic arm and Sherpa box with the ground rover is another
scope of this research. In fact the ground rover, Sherpa box and Sherpa arm were developed
by three different partners of the project, however they are desired to work as a single system.
To this purpose, we firstly introduce the reader to the hardware and specification of these three
systems in chapter 3.

Subsequently in chapter 4, we will study the integration of the Sherpa arm with the ground
rover from the mathematical point of view. We, therefore, study the modelling of the rover and
the robotic arm. We will then present and address the challenges associated with controlling
these systems. Finally we will present modelling and controlling of the integrated system as
a mobile manipulator.

Lastly chapter 5 focuses on the benchmarks of the SHERPA project concerning the ground
rover. As explained in section 1.3, we will approach the problem of human leashing using two
different strategies. The strategies will be motivated and elaborated and the corresponding
result will be presented. Moreover, we present the battery exchange operation that verifies
the performance of the SHERPA system. The corresponding results will be presented and
discussed as well.

24

Chapter 2

An Overview of Problems and Tools For
Autonomous Navigation

In order to make an autonomous mobile robot navigation possible, there are a lot of blocks
that have to work in harmony with one other. Think about a human navigation, a human
can go from A to B provided; i) he knows where he is, ii) he can figure out how to get to
the destination and finally iii) he does not get lost on the way. Similarly a robot needs to; i)
know the environment, ii) come up with a feasible path to the goal, iii) figure out its position
continuously. In the robotic literature, these concepts are referred to as; i) “Mapping”, ii)
“Planning”, iii) “Localization”.

Before to start any movement, it is necessary for the robot to recognize the “Untraversable”
and “Unpreferable” parts of the environment facilitated through the sensory information such
as sonar, laser scans and vision. Classification of the environment raises an inevitable ques-
tion of Mapping. For a robot, a map is a database which stores environment information
acquired from the recognition stage. In the robotic literature, there are two categories of Map-
ping: “metric” and “Semantic”. A metric map provides a discretization of the environment
in which the information is presented in standard metric coordinates e.g. Cartesian [25–27].
The quantum of the environment discretization is referred to as “cell”. A semantic map, on
the other hand, presents a semantic graph in which objects (e.g. A house, a victim, a tree, etc
) and their relative distances can be found [28–30].

Planning is referred to the process of coming up with a path which safely takes the robot
from the departure point,A, to the destination B [31–33]. The choice of the planning algo-
rithm highly depends on the navigation environment [34]. For example, for a robot navigat-
ing in an office environment the Untraversable cells describe fixed object in the environment
while the Unpreferable cell may represent vicinity to an obstacle. In this context, a cell that
is neither Untraversable nor Unpreferable is “free”. It is important to note that the concept
of free cell comes from the assumption that the plain of navigation is flat and free cells do
not imply different risk or energy consumption over one another. On the contrary, in a rough

25

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

terrain, the free cell becomes a vague concept since each cell might have a different rough-
ness and traversabilty is a function of robot capabilities. In such an environment, the cost of
travelling does not only depend on the length of path and a longer but less difficult path might
be more desirable.

Localization is accomplished by means of sensory information that can be categorized
as; i) “Motion sensory information”, ii) “Global localization Information”, and iii) “Local
localization Information”. Describing motion of the robot, Motion sensory information can
be integrated to guess the the current state of the robot based on a previous known state.
In robotic literature, this process is referred to as “Odometry” [35]. Accelerometer measure-
ments and wheel encoder information are two examples of this kind. The Global information,
instead, refers to information describing robot’s state with respect to a known global frame.
Some examples of this category are GPS information, barometer and magnetometer mea-
surements. The last category, on the other hand, comes from specific environment features
e.g. visual features. This kind of information usually needs to be elaborated in considerably
computationally heavy algorithms. Finally, Localization is estimating the state of the robot
in some known coordinates using the aforementioned ingredients.

This chapter provides a general overview of the tools that realize the concept of navigation.
For the Sherpa ground rover, the majority of the navigation blocks that we will study in this
section are adapted from open source algorithms. The contribution of this chapter is then
studying the available algorithms and their pros and cons and applying them to the hardware.
Later, in implementation of the SHERPA benchmarks concerning the rover (see section 1.3),
the navigation blocks will be running on the background to complete the developed algorithms
by closing the control loops. The remainder of this chapter is organized as follows; Starting
with attitude estimation, we describe the process of calculating 6 DOF1 robot pose. We then
proceed with Odometry. The concept of closed loop Odometry or bundle adjustment will then
be explained. This brings us to Simultaneous Localization And Mapping (SLAM). After that,
we will cover the GPS and concept of filtering. Subsequently, different techniques of mapping
will be presented and, finally, the path planning of the ground rover will be covered.

2.1 Attitude estimation

The main objective of the attitude estimation is finding a 3D representation describing 6 DOF
pose of the robot in a fixed frame. This can be performed using at least a fixed inertial frame
and a body frame attached to the robot. There are different conventions for the inertial and
body frame in the corresponding literature. Here for the inertial frame we follow the North
East Down (NED) convention that considers a Cartesian frame with its origin somewhere on
the surface of the earth, its x pointing toward magnetic North, y toward east and z pointing
to earth’s center. The body frame, on the other hand, is assumed to be a Cartesian frame
originated on robot’s center of gravity having x axes coming out from robot front side, y

1Degree of Freedom

26

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

toward right side of the robot and z pointing upward. The attitude estimation is then the
task of finding the pose of the body frame, originated on the robot’s center of gravity, in the
inertial frame. Based on [36], we briefly describe the static case in which robot’s acceleration
compared to gravity’s is small that is the case for the Donkey Rover.

Static attitude estimation can be accomplished using accelerometer and magnetometer
data. Accelerometer gives a set of acceleration measurement [ax ay az]

ᵀ while the measure-
ments represent the gravity force ag as acceleration of the robots system is assumed to be ne-
glectable. The first angle to be calculated is the roll angle, φ. This can be estimated by rolling
the system about the x axis until the second element of the intermediate vector [x1 y1 z1]ᵀ is
zero:

φ = atan2(
−ay
az

),

x1

y1

z1

 =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

axay
az

 (2.1)

Similar approach can be used to obtain pitch, θ, where the intermediate vector of [x1 y1 z1]ᵀ

is used to pitch about y until ax is zero:

θ = atan2(
x1

z1

),

0
0
1

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

x1

y1

z1

 (2.2)

After these two rotations, the body frame is parallel to the inertial frame and there is only
one more rotation about the z axis needed to have body and inertial frames aligned. This can
be done using the transformed magnetometer vector [mx my mz]

ᵀ. It is obvious if the robot
points to the magnetic north, the levelled magnetometer will read zero on the y axis. We,
therefore, get:x2

y2

z2

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

mx

my

mz

 , ψ = atan2(
y2

y1

) (2.3)

Therefore the three roll, pitch and yaw angles are obtained. Moreover the 3D rotation ma-
trix to convert body frame coordinates to inertial frame coordinates, NED, can be described
as follows:NE

D

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

xbyb
zb

 (2.4)

2.2 Odometry

In simple words, Odometry is counting your steps. In robotics, Odometry can be done using
the motion sensors or environment features. In either of the cases, the measurement is in

27

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

the body frame and the rotation matrix of (2.4) can be used to calculate the trajectory in the
inertial frame:

vIF = RBody
IF vBody (2.5)

where RBody
IF is the 3D rotation matrix obtained from attitude estimation and vBody is the

measured speed in the body frame. It is obvious that for a nonholonomic robot. e.g. Donkey
Rover, y and z elements of the vBody vector are always zero. Furthermore, the rotation matrix
RBody
IF can be updated based on rotational velocity vector ω calculated from the Odometry:

RBody k+1
IF =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

RBody k
IF = S(ω)RBody k

IF (2.6)

The following section briefly studies different approaches to Odometry in robotics.

2.2.1 Dead reckoning

“Dead rocking” is, basically, integrating speed to find the position while the speed measure-
ment is based on on-board motion sensors e.g. wheel encoders and IMU2. Consider the
differential robot of Figure 2.1a, the linear and angular speed of the robot can be calculated
from the left and right wheel speeds, VLeft and VRight as follows:{

V =
VLeft+VRight

2

ω = ± (VLeft−VRight)

R

(2.7)

Where V and ω are linear and angular speed of the robot, R is distance between right and
left wheel, and for the angular + or − sign has to be chosen based on coordination system.
The main drawback of dead reckoning is considerable amount of accumulative errors causing
the estimated position trajectory diverging from the real position trajectory. The errors is
originated from different sources:

1. It is hard to estimate the wheel contact surface with the terrain (Figure 2.1b).

2. Usually the robots are skid driven rather than differential, this causes a considerable
drift in on spot rotation which is also known as “wheel slip”.

3. Measurement errors due to limited accuracy.

To meliorate the rotational speed estimation, gyroscope measurements from the IMU can
be used instead of (2.7). Moreover, encoder and IMU measurements can be filtered to achieve
a better estimation [37, 38].

2Inertial Measurement Unit

28

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

(a) differential robot scheme. (b) Donkey Rover.

Figure 2.1: a) An ideal differential robot with only two point of contact to the terrain. b)
Sherpa rover, which is an example of a skid driven robot. As can be seen, it is hard to calculate
the track contact surface.

2.2.2 Laser Odometry

Laser scanner, also known as LiDAR3, provides a set of ranges with associated angles that
can be used to estimate the movement of the sensor based on two consecutive sets of mea-
surement. This problem is well investigated by the literature and one of the most popular
approaches to it is Iterative Closes Point (ICP) algorithm. ICP seeks to estimate the sensor
movement by minimizing point to point distances of the point clouds derived from the LiDAR
measuerments [39–41].

Consider the situation depicted in Figure (2.2) where there are two consecutive set of data.
Let us define the most recent data as a set of points {pi} while the older data is considered
to be the reference surface Sref . The goal of ICP is to find a transformation T̂ to minimize
the accumulated distance between transformed point Tpi and its projection on the reference
surface:

T̂ = arg min
T

∑
i

∥∥∥Tpi −∏(Sref , Tpi)
∥∥∥ (2.8)

Where operation
∏

(S, .) is the Euclidean projection on the surface S. Note that, for a 2D
laser scanner, the transformation that is being acquired from such an algorithm is obviously a
2D transformation i.e. two linear velocities and one rotational velocity. Therefore, the robot
must be navigating on a flat surface e.g. office environment. However, information from the
attitude estimation might be used to extend this approach a rough terrain navigation.

3Light Detection And Ranging

29

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.2: Laser odometry, ICP algorithm finds the transformation T that minimizes point
to point distance between measurement sets 1 and 2.

2.2.3 Visual Odometry

Visual Odometry (VO) is a method of calculating the velocity of the robot using by means of
visual features acquired by a camera. Visual features are distinguished parts of the picture that
can be detected and tracked in consecutive frames. The camera motion trajectory can then
be reconstructed from movement of the feature in consecutive pictures. The VO suggests
an interesting alternative to Laser Odometry since the sensor is relatively cheap and light
comparing to LiDAR and yet it provides a 6 DOF velocity estimation. On the other hand,
the performance highly depends on the light condition and existence of visual features in the
environment. However, the problems can be overcome by taking the right measures. For
example, the camera angle with the horizon has to be tuned to receive the maximum amount
of features of the environment. It is important to note that the further is the feature, the less
information it can reveal about the sensor motion. Therefore, as it is illustrated in Figure
2.3a), distant features are less interesting for the VO application. For a ground rover, the
desirable features can mostly be found on the terrain. Therefore, the type of terrain on which
the robot is navigating determines how much VO is reliable. This is demonstrated in Figure
2.3b in which one can see how the quantity of features can be different from one terrain to
another.

In VO, the motion estimated in the images has to be mapped into a real world motion.
To this cause, there are four important coordinates to deal with namely; “world”, “camera”,
“image” and “pixel” coordinates. The world frame refers to an inertial frame. The camera
frame is originated on the focal distance of the camera while the image frame is originated on
the picture. Finally there is the Pixel frame that unlink the others is not a metric coordinate but
a matrix containing the information associated with pixels. These coordinates are presented
in Figure 2.4.

The raw camera data are available in the Pixel coordinates. Therefore, the change of
coordinates is performed through intrinsic and lens distortion parameters which are sensor
specific (i.e. different from one camera to another). Camera intrinsic parameters are aqcuired

30

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

(a) Far versus close features.

(b) Terrain visual features.

Figure 2.3: a) As seen distant features need a huge sensor movement to move in the Pixel
coordinates and therefore they are less informative b) An example of a terrain with a lot of
features on the left versus a terrain with few features on the right.

31

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.4: Different camera coordinates

through “Camera Calibration” that can be performed via available tools in MATLAB and
OpenCV [42,43].

After finding the intrinsic parameters, we can perform the change of coordinates up to the
camera coordinates. Information about the world coordinates, however, can only be com-
pletely achieved using some extrinsic data. In other words, to retrieve the translation from
camera frame to world frame, there must be some information more information rather than
only the picture. The extrinsic information might be provided by for example markers with
known dimensions, another camera with a known distance between the two camera and iner-
tial sensor information.

In case there is no extrinsic available, the calculated translation is scaled by a fixed un-
known factor known as “scale ambiguity”. Figure 2.5 shows an example of scale ambiguous
picture. In this example, the extrinsic data that helps us to understand the bottle is closer to
the camera is our perception of bottle’s dimension and size of human.

To address the scale ambiguity, [44] has incorporated the IMU data in VO. By means of
the accelerometer and gyroscope data an estimation of robot movement is perfomed. This
information is then fused into the VO deploying two different methods of spline fitting and
extended Kalman filter. Another way to approach this problem is using a second camera
which forms the stereo camera configuration. This method is well described in [2], some
successful implementation of stereo VO can be found in [45, 46].

32

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.5: An example of scale ambiguity explaining the necessity of extrinsic information to
retrieve translation information. The picture can suggest a giant bottle or a miniature human.
However based on everyday life experience, we realize that the bottle is not giant but simply
closer to the camera. So in this case, our everyday life experience is an extrinsic information
that helps our perception.

2.2.3.1 Feature detection

Feature detection is an important prerequisite to a sucessfull VO implementation. In the
computer vision literature, feature detectors are classified into two categories of “corner de-
tectors” and “blob detectors”. Forstner [47], Harris [48], and FAST [49] are some examples
of corner detectors while SIFT [50], SURF [51] and CENSURE [52] are some well known
blob detectors. Although, details of feature detection is out of the scope of this thesis, it is
important to choose the right method based on the application understudy. Blob detectors are
more robust to significant changes in the photo such as scale and skew while corner detection
are faster to compute. Moreover, blob detectors ignore corners while for example urban and
office environment are full of corners. For the application of VO, use of corner detectors are
more popular.

2.2.3.2 Matching the features

Yet, it is desired to find corresponding features in consecutive frames. To do this one can
either try to match corresponding features, i.e. “feature matching”, or go through an index of
features found in a frame and try to find the corresponding feature in the successor frames, i.e.
“feature tracking” [1]. The latter is faster provided the features are not significantly displaced
from one frame to another. For the VO application the camera rate with respect to the camera’s
motion is usually high enough to have this assumption held.

Nontheless, to achieve a desirable performance there are two important issues to deal
with; outliers and drift. Outliers are wrong feature association caused by imperfection of the
feature tracking algorithm. The effect of outliers in the estimation of the trajectory is demon-
strated in Figure 2.6. As seen, to achieve a desired performance, it is necessary to remove
the outliers before computing the motion. A successful solution outlier removal algorithm is
RANSAC [53] which is being commonly used for the feature matching/tracking application

33

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.6: The effect of outliers in the VO performance [1].

in the ambient of computer vision. The idea, behind is very simple; RANSAC comes up with
a “hypotheses” based on a sampled data points and checks the hypotheses on the rest of the
data points. The hypotheses that holds for the majority of the data points is then selected and
the solutions which do not comply with the hypotheses are marked as outliers.

Motion estimation in two consecutive frames even after removing the outliers is associated
with a small error. These errors are accumulated in the in the course of the navigation causing
the calculated trajectory drifts from the reality. To deal with drift, an optimization algorithm
can be run in the background to minimize the projection error over a window of n consecutive
frames (instead of two) by modifying the calculated camera poses and 3D landmarks for this
set of images. This procedure is called “window bundle adjustment” [54] and significantly
improves the VO performance.

2.3 SLAM

Simultaneous Localization And Mapping is the problem of placing environment’s features in
a map and at the same time localizing the robot in the map of features. Suppose there is a
sample set of states XT , a sampled set of actions UT , and finally a set of measurements ZT :

XT = {x0, x1, ..., xT}
UT = {u0, u1, ..., uT}
ZT = {z0, z1, ..., zT}

(2.9)

Where the set of states represents a discrete trajectory of robot position, the actions are
data from the Odometry and finally the set of measurements can be acquired from different

34

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.7: Graph formulation of the SLAM problem. A set of position, e.g. Xt, is estimated
based on the corresponding set of odometry, i.e. ut, and the previous set of position i.e. Xt−1.
The measurements, i.e. Zt, are then acquired and registered in a map of features based on
the corresponding estimated position Xt. The SLAM is problem of correcting the estimated
position such that the error introduced by position of the same features in different sets of
measurement is minimized.

range sensors e.g. LiDAR and camera. The SLAM is then about collecting the measurements
in a map,m, while recovering the sequence of states simultaneously [2]. It is therefore desired
to find:

p(XT ,m|ZT , UT) (2.10)

Note that equation above seeks the entire trajectory of the robot, XT . In the robotic liter-
ature this is referred to as “Full SLAM” problem [2, 55, 56]. Depending on the application,
the SLAM problem might be simplified to “Online SLAM” problem [57–59]. In the Online
SLAM only the current location of the robot is desired:

p(xt,m|ZT , UT) (2.11)

To proceed with this purpose there are two important models required; First, a “system
model”, i.e. g(xt−1, ut), that derives the next state of robot from the current state and Odom-
etry data. Second, a “measurement model”, i.e. h(xt,m), that provides a relationship the
measurement corresponding state. {

xt = g(xt−1, ut)

zt = h(xt,m)
(2.12)

The architecture of SLAM problem is shown in Figure 2.7. To approach the problem,
there are three main paradigms that available in the literature; Extended Kalman Filter, Graph-
based methods and particle-methods.

35

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

2.3.1 Kalman Filter approach to SLAM problem

The SLAM problem can be formulated in terms of a Kalman Filter where the state vector
contains a set of robot locations and environment features [60, 61]. In the most simplified
form, i.e. 2D Online SLAM, the state vector of the filter µt contains three values for the
robot pose, i.e. (x, y, θ), and 2N position value for N features. This implies a state vector
of the dimension (3 + 2N) and ,subsequently, a square covariance matrix of the dimension
(3 + 2N) × (3 + 2N) to be inverted at each filter update. As a result, the Kalman filter
approach to SLAM problem does not expand properly.

2.3.2 Graph based SLAM

Graph-based approaches [62–65] draw their intuition from graphical representation of the
SLAM problem, i.e. Figure 2.7. Formulating the Full SLAM problem in the form of a graph,
a “node” can be either a position or a feature while an “edge” is the metric distance between
two nodes. This is illustrated in Figure 2.8 where an example of two “poses” and one “feature”
is demonstrated. As can be seen, pose to pose information expresses immediate predecessor
and successor poses while feature to pose information expresses relative distance of a feature
to any number of poses. In other words, the graph formulates the Full SLAM problem into log-
posteriors where an event of robot movement gets the form of log p(xt|xt−1, ut) and a sensor
measurement expressed as log p(zt|xt,m). Subsequently the SLAM problem is defined as:

log p(XT ,m|ZT , UT) = const+
∑
t

log p(xt|xt−1, ut) +
∑
t

log p(zt|xt,m) (2.13)

The SLAM problem can then be solved by finding:

X∗T ,m
∗ = arg max

XT ,m
log p(XT ,m|ZT , UT) (2.14)

In a probabilistic framework, a Gaussian Noise distribution can be considered for the
system and measurement models, i.e. :

p(zt|xt,m) ∼ N (h(xt,m), Qt)
p(xt|xt−1, ut) ∼ N (g(xt−1, ut), Rt)

WhereQT andRt are square matrices of the proper dimension representing noise covariance
and indexed by time. Thus, the posterior of (2.13) can be expressed in the quadratic form of:

log p(XT ,m|ZT , UT) = const
+
∑
t

[xt − g(xt−1, ut)]
ᵀR−1

t [xt − g(xt−1, ut)]

+
∑
t

[zt − h(xt,m)]ᵀQ−1
t [zt − h(xt,m)]

(2.15)

36

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.8: Graph Based solution to SLAM problem.

2.3.3 Particle Filter based SLAM

Finally, the last paradigm of SLAM solution is particle filter approach in which a posterior
is being represented by a set of “particles”. A particle is a guess about the robot pose and
the map of features. As a result each particle encodes considerable amount of data, i.e. par-
ticle pose and features, that is the main bottleneck on implementation of this approach to
SLAM problem. To address the issue, two important concepts of “Importance factor” and
“Resampling” are introduced by the literature [66–69]. The idea behind introduction of these
concepts is to depopulate the particle swarm by evaluating likelihood of the particles, based
on the measurement and system models, and eliminate those who are less likely to be a true.

Here is how the algorithm works; Based on the probability distribution model assumed
for the robot a random set of particle is generated. On the event of a robot movement (i.e. a
new Odometry data), each particle is moved based on the stochastic kinematic robot model.
Thus, assuming particles are indexed by k we have:

xkt ∼ p(xt|xkt−1, ut) (2.16)

The next step takes place on the event of a measurement when the algorithm assigns
an importance factor to each particle based on the new measurement. Assume that each
landmark is indexed with n with mean value of µ and covariance of Σ. The importance
factor of particle k is defined as follows:

wkt := N (zt|xkt , µkt,n,Σk
t,n) (2.17)

The importance factor is then used in Resampling step where a subset of the particle
swarm is sampled to survive while the probability of a particle being drawn is its normalized

37

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.9: Summary of Particle Filter solution to SLAM problem.

importance factor. Subsequently the particles who are less likely to present the true state of
the robot are eliminated and, ultimately, the particle swarm is depopulated.

Finally, the new set of measurement is used to update µkt,n and Σk
t,n based on standard

Kalman filter update procedure. This is depicted in Figure 2.9.

2.3.4 SLAM implementations

2.3.4.1 Laser SLAM

General SLAM architecture, can be implemented for either a fixed or a tilting LiDAR. Laser
SLAM privileges the inherent advantages of LiDARs, i.e. high accuracy, long ranges and a
performance not affected by the lighting conditions and visual features. On the other hand,
LiDARs are usually expensive, heavy and they do not provide a promising 3D measurement
tool even in a tilting configuration.

An implementation of particle Filter based laser SLAM can be found in [25, 26] which
is available open source and known as “gmapping” [70]. Using the odometry data and Rao-
Blackwellized particle filter, they seek to reduce the particle swarm and ultimately converge to
a concrete hypothesis about the position of the robot. Taking the advantage of high accuracy
measurement of the LiDAR, a faster approach can be achieved using the “scan matching”
methods [66, 71] which can be classified under the graph based SLAM category. A reliable
implementation of this kind can be found in [71] which is available open source as “Hector

38

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.10: An example of Laser SLAM.

SLAM” [72]. Using an occupancy grid based strategy, the algorithm creates a map of the
first scan and compares each scan with the map to come up with an idea about the movement
of the robot. Therefore, as the robot proceeds to explore the environment, the position is
calculated and new features are added to the map. Furthermore, this method is also similar to
ICP which was mentioned in Laser odometry, although using a using occupancy grid lower
the computational burden of the algorithm. Moreover, by incorporating the IMU data into
the Laser measurements, Hector SLAM is also able to provide a limited 6 DOF localization.
Figure 2.10 demonstrates an example of Laser SLAM created by the Hector SLAM algorithm.

2.3.4.2 Visual SLAM

Applying window bundle adjustment is a step toward SLAM as the localization is closed loop
for the window of frames. In the visual SLAM, the concept of window bundle adjustment
is expanded to “key frames”. Key frames form a subset of the set of all frames acquired in
the course of running the algorithm and the bundle adjustment is performed among the key
frames. An example of map of features created by a visual SLAM algorithm is demonstrated
in Figure 2.11 where the features and key frames are being stored. Visual SLAM can be
classified under the category of Graph based SLAM. In this context the concept of pose is
equivalent to the concept of key frame.

A successful implementation of monocular visual SLAM can be found in [73] where the
authors use ORB features [74] which is a combination of FAST and BRIEF [75] and provides
a good degree of robustness against change of viewpoint and illumination. Using the same
features for all the subtasks of “tracking”, “mapping”, “relocalizing’ and “loop closing”, they
have developed a fast and efficient system that is also available open source as “ORB-SLAM”.
However, the classical problem of scale ambiguity for monocular visual system also applies
here. In another work [76], the authors have come up with a platform that uses RGB-D
cameras (e.g. kinect) or Stereo vision to cope with the scale ambiguity. As an extension

39

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.11: An example of map of features created by a visual SLAM algorithm.

to their previous work, this works is available open source as “ORB-SLAM2”. Figure 2.12
demonstrates a depth map constructed by ORB-SLAM2 algorithm.

2.4 Global Positioning System and Filtering

The Global Positioning System (GPS) is a localization system supported by satellites orbit-
ing around the earth covering almost every where on the planet surface. The localization
works based on the data broadcasted from the satellites that contains a precise time stamp
and the satellite position. The GPS receiver has to receive data packs from at least three dif-
ferent satellites to estimate its position while accuracy of the GPS depends on the number
of satellite that have been discovered by the receiver. In average, it is reasonable to consider
an uncertainty of 20 meter. Moreover, the GPS estimated position is not being provided in
a continuous manner and the update rate can be too slow for the position loop closer. As a
result, to achieve a continuous and precise localization it is necessary to fuse GPS data with
other sensory information of the robot.

2.4.1 Complementary Filter

The main idea behind the complementary filters is fusing the information coming from the
system model and different sensors to achieve a superior knowledge about a state of the sys-
tem. Assume the state x has to be estimated from two different values of 1x and 2xwhile either
of the values describes x with a different uncertainty. A complementary filter estimates the

40

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.12: An example of a Depth frame created by ORB-SLAM2.

Figure 2.13: Complementary filter for fusing odometry and GPS information

state as follows:
x̂ = 1xG+ 2x(1−G) (2.18)

Where x̂ is the estimated state of the system and G is a real positive value less or equal
to one. This concept can be extended by defining the filter gain as a system G(s) to fuse the
information based on the frequency [77]. This is particularly important when we have to deal
with the noisy sensory information. We can, therefore, extend (2.18) as follows;

x̂ = 1xG(s) + 2x(1−G(s)) (2.19)

Figure 2.13 shows a classical application of complementary filter in position estimation of
mobile robots. The GPS information is associated with a high frequency noise while odome-
try is subjected to accumulative errors i.e. a low frequency noise. Moreover, the architecture
is capable of filtering the noise in both input signals before data fusion.

2.4.2 Kalman Filter

Kalman filter presents a stochastic extension to complementary filter that considers model
uncertainties and measurement noise. This is particularly important in robotics where there

41

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

is a need to fuse data from different sensors while each means of measurement has its own
uncertainties. Considering a Gaussian distribution for both system and measurement mod-
els, the Kalman filter “predicts” the system state using the previous state, system model and
control input. The predicted state is then incorporated in the measurements in the “update”
step to come up with a new belief about the state.

Equation (2.20) presents the system and measurement models of the Kalman filter frame-
work. The first line is the linear transitional system model in which A is a square matrix of
the size n×nwhere n is dimension of the state vector x. Furthermore, u is the control vector
of the dimension m and B is a matrix of n×m. The second line presents the measurement
model where for k measurements C has a dimension of k×n. Finally εt and δt are Gaussian
distributed noise vectors to model the uncertainties.

{
xt = Atxt−1 +Btut + εt

zt = Ctxt + δt
(2.20)

Remember, a Gaussian distributed posterior is formulated by multi variable normal dis-
tribution:

p(x) = det(2πΣ)−
1
2 exp

(
−1

2
(x− µ)ᵀΣ−1(x− µ)

)
(2.21)

Where the probability of the vector x is characterized by a mean value of µ and a quadratic
symmetric positive definite covariance matrix i.e. Σ.

Algorithm of the Kalman filter is presented in Algorithm 1 whereRt andQt are covariance
matrices associated with εt and δt in (2.20) respectively. The predict step is accomplished in
lines 1:2 while lines 4:5 refer to update step. Furthermore, Kalman gainKt is being calculated
in line 3 which is considered the most computationally expensive step of the algorithm while
the complexity increases as the measurement vector grows. Referring to (2.18), it should be
noted that the Kalman gain is equivalent toG. Thus Kalman filter adaptively adjusts the filter
gain based on its notion of system and measurement uncertainties.

Algorithm 1 Kalman Filter Algorithm [78]
Require: µ,Σt−1, ut, zt

1: µ̄t = Atµt−1 +Btut
2: Σ̄t = AtΣt−1A

ᵀ
t +Rt

3: Kt = Σ̄tC
ᵀ
t (CtΣ̄tC

ᵀ
t +Qt)

−1
4: µt = µ̄t +Kt(zt − Ctµ̄t)
5: Σt = (I −KtCt)Σ̄t

6: return µt, Σt

42

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

2.5 Mapping

An other important topic that we need to deal with is mapping. Whether it is complicated map
of features, or a simple obstacle map it is important to investigate how to store data in a way
that is easily accessible and computationally light. In the context of rough terrain navigation,
the map serves for evaluating traversablity and chassis terrain interaction. In the this section
a brief overview on 2D and 3D mapping techniques in the literature is provided.

2.5.1 2D mapping

2D metric mapping strategies suggested by the robotic literature can be categorized into three
groups namely “Line Maps”, “Topological Maps” and “Occupancy grid”. Among those,
occupancy grid is the most popular and has been used frequently for different robots. Here
we only explain the Occupancy grid, for further readings, we encourage the reader to refer
to [2].

Occupancy grid provides easy access to the information while it is also capable of present-
ing unobserved areas. On the other hand, discretization error and high memory requirement
are two disadvantages of this method. The idea behind it is very simple, it discretizes the
environment into a grid while each cell of the grid represents a posterior probability of the
traversablilty of corresponding area. The information is maintained in form of a Matrix while
rows and columns correspond to x and y axes of the inertial frame. Such a data structure has
advantage of high accessibility i.e. origin of the matrix and resolution are all that is needed to
acquire the data corresponding to the external world. On the other hand, it implies keeping a
rather large database to store the grid information while the grid dimensions increases as the
robot moves. This issue is the bottleneck of discretization algorithm making them impractical
in 3D mapping scenario.

Occupancy grid assumes an independent probability for each cell which is rather a conser-
vative assumption since in practice an object has a bigger dimension that a single cell and has
to be presented by several cells. The default probability of a cell being occupied is considered
0.5. This probability might then rise or fall depending on the observation. Such a structure
facilitates deployment of highly noisy sensors like ultrasonic. An example of Occupancy grid
is demonstrated in Figure 2.14.

2.5.2 2.5D mapping

Elevation map also known as 2.5D map can be considered as a 3D extension to 2D grid
approach. The idea of the plane discretization is the same as occupancy grid, although in an
elevation map, the traversability probability is replaced with elevation data. This simplifies
a lot the 3D mapping and basically project the 3D environment into a 2D grid. On the down

43

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.14: A sample occupancy grid with default probability of 0.5 [2].

Figure 2.15: An example of elevation map.

side, this method is not capable of representing multilayer environments, e.g. a tunnel, since
there is only one elevation value allowed for a cell. As a result this approach is convenient for
the ground robots navigating on unstructured outdoor environment. Figure 2.15 demonstrates
an elevation map created by tilting LiDAR mechanism of the Donkey Rover.

2.5.3 3D mapping

Some applications cannot afford the limited precision and direction dependency of the eleva-
tion grids. In this case, 3D maps can be used in which the 3D points received by the sensor
is not being projected to a 2D plain and the consequent problems can be avoided. On the
other hand, 3D data are huge which makes the store and access challenging. In the robotic
literature, data structures based on dynamic 3D grids and meshes are proposed to overcome
these problems. However, for the application understudy elevation maping suffices. For more
information about the 3D mapping, we refer the reader to [2].

44

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

(a) Discretization of the environ-
ment.

(b) Discretization of the robot
action.

Figure 2.16: Discretization of environment and robot action that helps to decrease the space
of solution. In 2.16b U,D,L and R respectively stand for Up, Down, Left and Right.

2.6 Path Planning

Given a map of the environment and current position of the robot in the map is provided, the
path planning answer to the question of how to define a path that can safely take the robot to
the desired destination. As mentioned earlier, it is common to perform a state discretization
on the environment to decease the space of possible solutions. As a result, the environment
is transferred to a grid where each cell represents properties of the corresponding area. In
the most trivial case, the cell can have either values of “occupied” and “free”. This idea is
illustrated in 2.16a. The path planning problem is defined as finding a sequence of cells that
takes the robot from the start cell to the goal cell. In the computer since literature, different
search algorithms have been proposed to address this problem, e.g. Dijkstra, Astar, Dstar,
Dstar lite.

In practice, however, the problem of path planning is coupled with the kinematics and
dynamics of the robot. In other words, the robot may not be able to execute the sequence
solution due to its kinematics and dynamics constraints. To address the issue, one can extend
the trivial path planning problem from finding a sequence of cells to finding a sequence of
actions that can take the robot to its destination. Again to decrease the solution space, robot
space of actions can be discretized into a set of “primitives”. The primitives are a set of actions
that comply with kinematic and dynamic constraints of the robot. An example of action
primitives for a ground rover is demonstrated in 2.16b. Due to nonholonimic constraints, the
ground rover is not able to perform left/right action. As can be seen in the figure this property
is encoded in the primitives as Right and Left primitives are not defined for the robot.

Among many different strategies proposed by the literature, Discrete Event System (DES)
theory provides a powerful tool to approach the problem of path planning. Therefore, through-
out the rest of this section, we focus on DES planner. This is part is mainly derived from [79]
where an extensive tutorial about DES based planner is provided.

45

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.17: An example of Automaton representation.

2.6.1 Introduction to DES theory

DES defines a system in which the state space is discrete and transitions among “states” take
place trough the “events”. A DES can be represented by a six-tuple as follows:

G = (X,E, f,Γ, x0, Xm) (2.22)

Where X , E and f are respectively sets of states, events and transition functions. Further-
more, Γ : X → 2E refers to set of all events for which f(x, e) is defined. Finally, x0 and Xm

are set of initial and marked states respectively.

“Automaton” is another useful representation of a DES. In an Automaton, circles represent
states while arrows represent events. Moreover, the transition function are nicely encoded in
the Automaton representation. For example in the automaton representation of Figure 2.17 it
can be seen f(A, c) = A, f(B, a) = C, f(B, b) = A, etc.

One of the most used operation on Automata4 in DES planner is “parallel composition”.
Yet we need to define “Accessible Part” operation that is a prerequisite to parallel composi-
tion. Accessible part is of Automaton G is defined as follows:

Ac(G) = (Xac, E, fac, x0, Xac,m)
Xac = {x ∈ X : (∃s ∈ E∗)[f(x0, s) = x]}
Xac,m = X ∩Xacfac = f |Xac×E→Xac

Where E∗ is the set of all finite possible sequence of events in E.

For two Automata G1 and G2, the parallel composition operator is defined as follows:

G3 = G1||G2 = Ac(X1 ×X2, E1 × E2, f,Γ1||2, (x01, x02), Xm1 ×Xm2)

4plural of Automaton

46

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

where

f((x1, x2), e) =

(f1(x1, e), f2(x2, e)) ife ∈ Γ1(x1) ∩ Γ2(x2)

(f1(x1, e), x2), ife ∈ Γ1(x1) \ E2

(x1, f2(x2, e)), ife ∈ Γ2(x2) \ E1

undefined, Otherwise

2.6.2 DES path planner

To provide a solution for the path planning problem, a DES planner defines some automata for
the environment and robot actions respectively referred to as “Map Automaton” and “Agent
Automaton”. The Map Automaton is further elaborated to specifically represent the problem
path planning with environmental constraints, initial state and final state. The resulted au-
tomaton is called “Specification Automaton”. Furthermore, Agent Automaton summarizes
robot capabilities in compliance with kinematic/dynamic constraints and can be integrated
into the Specification Automaton through a parallel composition. The resulted Automaton is
called “Supervisor”. The Supervisor represents the path planning problem in terms of a graph
that can be searched by aforementioned graph search algorithms (e.g. Astar) to come up with
a sequence of actions, i.e. pieces of the path, to be executed by the robot. The reminder of
this section explains design of the DES planner automata in detail.

2.6.2.1 Map Automaton

As its name suggests the Map Automaton, i.e. Gmap, contains the grid presentation of the
environment by encoding the grid resolution and interconnection. Figure 2.18 illustrates an
example of a Map Automaton for a grid of 9 × 9. The interconnection of the automaton
implies, except marginal states, each state can be reached though four events of “Up”, “Down”,
“Left” and “Right”. Notice, the map interconnection does not constrain the robot movement.
For example, robot can still perform a diagonal movement that can be carried out through two
events. An other possible point of confusion to explain is that the Map Automaton does not
represent any information about the traversability of the grid. Indeed, as we will see in the
reminder of this section, this information will be encoded in the Specification Automaton.

2.6.2.2 Specification Automaton

As mentioned earlier, the Map Automaton is too generic to be used to solve the path planning.
Thus, Specification Automaton, i.e. Gspec, elaborates the Map Automaton by applying to it
the problem specific constraints i.e. obstacles, start and goal states. Figure 2.19, illustrates
how the Specification Automaton is derived from the Map Automaton of Figure 2.18. As seen

47

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.18: Map automaton representing a grid of 4× 4.

(a) path planning problem. (b) Specification Automaton.

Figure 2.19: An example of a path planning problem and corresponding specification au-
tomaton derived from map automaton of Figure 2.18 and problem constraints implied by
2.19a.

in the Figure, untraversable states are simply removed. As a result, the more untraversable
cells present in the grid, the fewer states exist in the Specification Automaton and ultimately
the simpler is the search.

2.6.2.3 Agent automaton

Agent Automaton describes robots manoeuvrability through the primitives. As mentioned
earlier, a primitive describes a piece of trajectory that is kinematically feasible and provides
a good access to neighbouring cells of the map. For the Specification Automaton, executing
a primitive is equal to a series of events. Although, a primitive may also change the robot
heading which should be presented by the Agent Automaton. Consequently, forN primitives

48

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

(a) Primitives. (b) APL automaton.

Figure 2.20: An example of APL for a ground robot with nonholonomic constraints and five
primitives of Forward(F), Forward Left (FL), Forward Right (FR), Left Forward (LF) and
Right Forward (RF).

we need N + 1 automata, one of them illustrating Agent Primitives Logic (APL), i.e. GAPL,
and the rest (i.e. N) embedding the Agent-Map Interconnection (AMI), i.e. GAMI .

Figure 2.20 depicts an example of APL where five primitives are considered as shown in
Figure 2.20a. Notice, in case the robot is not able to see the behind due to limited sensor field
of view, it is not desirable to move backward. Figure 2.20b demonstrates APL Automaton
where states represent the robot heading and events show the primitives. For example, if
the robots heading is UP (U), performing a “Forward Left” (FL) or “Forward Right” (FR)
primitives respectively changes the heading to Left (L) or Right (R) while either of “Forward”
(F), “Left Forward” (LF) and “Right Forward” (RF) does not affect heading of the robot in
the next state.

Figure 2.21 illustrates the set of AMI automaton for the example of Figure 2.20a. As
mentioned earlier, there are five set of automata for the five primitives while each set considers
four possible heading of “Up”, “Down”, “Left” and “Right”. Finally, parallel composition of
APL and AMI automata gives the Agent automaton Gag:

Gag = GAPL || GAMI1 || GAMI2 || . . . || GAMIn (2.23)

Where N is the number of primitives which is five in the example understudy. Considering the
Figures 2.20 and 2.21 one can easily imagine how the agent automaton looks like. However
because of sheer number of states and events the scheme of automaton is not presented.

Another nice feature of this approach is the ability of considering the robot dimensions
that usually exceed the map cell size. General approach in the literature is to sufficiently
inflate the obstacles so the robot can be considered a point. This method, however, is not
expandable to the case of rough terrain navigation where an elevation map is used to present

49

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

(a) Froward Right primitive AMI. (b) Right Froward primitive AMI.

(c) Froward Left primitive AMI. (d) Left Froward primitive AMI.

(e) Froward primitive AMI.

Figure 2.21: Set of AMI automata for the example of Figure 2.20a.

the terrain’s roughness. Instead, the planning approach understudy allows us to consider a
swathe of map cells that will be navigated by each primitive. An example of this case is
illustrated in Figure 2.22. As seen, the demonstrated primitive is translated into the map via
a movement of “L,U,L,U,L,U,R,D,R,D,R” starting from the started cell.

2.6.2.4 Supervisor

Finally the supervisor is defined as parallel composition of Agent and Specification automata:

Gsup = Gag||Gspec (2.24)

The Supervisor represents the reachability graph of the problem. It summarizes both the
environment and robot constraints,i.e. obstacles and robot kinematics/dynamics respectively.
Figure 2.23 shows a part of the Supervisor for the example of Figure 2.19. As seen, cell “23”
is occupied. Moreover, the initial heading is “UP”. The Robot may then execute only three
possible primitives of “F”, “FL” and “LF”.

The presented approach is able to demonstrate whether a mission is feasible in a very

50

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.22: An example of a swathe presented to consider the vehicle dimensions. The
primitive is translated into the map via a movement of “L,U,L,U,L,U,R,D,R,D,R” starting
from stared cell.

abstract manner. Indeed, the mission is feasible if and only if the target cell is presented in
the Supervisor, i.e. the set of marked states of the Supervisor is not empty.

2.6.3 DES planner for rough terrain

The presented path planner can be easily extended to rough terrain navigation. For this pur-
pose, a rough terrain can be presented by means of an elevation map. Moreover, a traversabil-
ity analysis should be done on the map to eliminate the untraversable states from the Speci-
fication Automaton. Figure 2.24a demonstrates a piece of terrain that is not traversable with
respect to the robot size. Notice, traversability depends on both terrain and robot specifica-
tions. For example a piece of terrain that is not traversable for one robot might be traversable
for another.

2.6.3.1 Cost Function

To be able to search the Supervisor for an optimal solution with a search algorithm, a proper
“cost” value needs to be assigned to the primitives. The cost has a direct impact on the
performance of the algorithm. For example a shorter path is always preferred, therefore,
straight line should have a lower cost than a curve. Moreover, in the presence of an elevation
map, one can also encode difference in elevation of the path’s cells in the cost function. This
is because, navigating on the planar part of the terrain implies lower energy consumption and
risk and consequently is preferred (see Figure 2.24b and 2.24c).

51

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.23: Part of the supervisor for the example of Figure 2.19 give the start heading is
“UP”.

52

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

(a) Non traversable terrain.

(b) High roughness.

(c) Low roughness.

Figure 2.24: Illustration of different levels of terrain roughness and traversability.

2.6.3.2 Chassis simulator

It is also possible to integrate a chassis simulator to the planner. This could be done through
two possible strategies. One is to take into account robot terrain interaction in the process
of graph search. This strategy allows us to come up with a more optimized path. However,
considering that searching the Supervisor is already computationally expensive, imposing
this extra computation on the system might impede the program to come up with a solution
in real time. An improvement is to simulate the chassis terrain interaction only for a sampled
set of primitives. The second strategy is only to verify the solution. This however does not
allow us to optimize the path in terms of chassis terrain interaction. Yet the system can avoid
the solutions implying a hazardous manoeuvre.

In this approach, we only define planar primitives. This is because, for a passive chassis
ground robot, there is no control on the height and it is imposed by the shape of the terrain.
Figure 2.25 demonstrates the effect of terrain roughness on the original primitive. As seen,
after taking into account the roughness of the terrain, the primitive looks rather different. The
chassis simulator is, therefore, necessary to estimate result of the terrain chassis interaction
from the 2D primitive and elevation data.

A kinematic chassis simulator can iteratively estimate the robot footprint by locating the
cells holding the tires/tracks of the robot and performing some geometrical analysis based
on the elevation data associated with these cells. This idea is illustrated in Figure 2.26. As
mentioned earlier this needs to be done on a sampled set of points from the path.

53

CHAPTER 2. AN OVERVIEW OF PROBLEMS AND TOOLS FOR AUTONOMOUS
NAVIGATION

Figure 2.25: Effect of the plane roughness on the primitives.

Figure 2.26: Geometric chassis simulation.

54

Chapter 3

Introduction to the Hardware of the
System

The Sherpa ground rover, Sherpa arm and Sherpa box are three elements of this research. The
rover provides a mobile station for the wasp’s power replenishment while the arm and Sherpa
box complete the battery exchange operation. As introduced in section 1.3.3, the arm is used
to pick up the wasp and dock it to the Sherpa box while the Sherpa box must latch the wasp
and exchange its exhausted battery with a fresh one. An overview of the hardware set-up of
this research is demonstrated in Figure 3.1. In this chapter we study the Sherpa ground rover,
Sherpa robotic arm and Sherpa box from the hardware point of view.

3.1 Sherpa Ground Rover

The ground rover is designed to perform a rough terrain navigation in the hostile environ-
ment considered by the SHERPA project. The hardware is required to provide the desirable
level of autonomy, i.e. 6 hours, with the minimum attendance requirement by the rescuer.
The hardware of the Sherpa ground rover is designed and implemented by the Bluebotics.
An overview of hardware of the Sherpa rover is demonstrated in Figure 3.2. This section
introduces the reader to different aspects of the rover’s hardware.

3.1.1 Passive Configurable Chassis

To be able to cope with rough terrain navigation as required by the SHERPA project, the
hardware must be able to provide a certain degree of mechanical flexibility. This can be
achieved by a configurable chassis. Due to the desired high level of autonomy, an active
configurable chassis is difficult to deploy. As a result, the Sherpa ground rover is equipped

55

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

Figure 3.1: An overview of the system Hardware. 1- Wasp, 2- Sherpa Ground rover, 3- Sherpa
Arm, 4-Sherpa box.

(a) Rover top view (b) Rover Internal view

Figure 3.2: Ground rover hardware overview; (a) 1- LiDAR, 2- Emergency stop button, 3-
Tracks, 4- Sherpa arm mounting space, 5- Sherpa box mounting space, 6- Wifi antenna and
GPS receiver. (b)1-Bluebotics process unit, 2- Main process unit, 3- DC power supply of the
LiDAR, 4- IMU, 5- Bullet router, 6- CAN BUS adapter, 7- Battery, 8- Ethernet switch.

56

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

Figure 3.3: The Sherpa ground rover is equipped with a passive configurable chassis. The
flexibility of the chassis facilitates rough terrain navigation while increasing the stability of
rover.

with a passive configurable chassis, powered by the gravity force, that adapts to the shape of
the terrain. This allows the system to navigate rather rough terrains with low risk of getting
stuck and flip over. Figure 3.3 demonstrates the chassis of the ground rover. The configurable
chassis is provided by five bearing while each bearing is associated with a magnetic encoder
that communicates with the process unit via CAN Bus.

The chassis of the rover has to carry the Sherpa arm and Sherpa box. For this reason the
corresponding mounting spaces are considered. The arm mounting space is considered at the
rear of the rover to ensure mechanical stability of the system. The Sherpa box, on the other
hand, is considered to be installed on the top of the rover between the LiDAR and arm. As
a result, it is easily accessible for the arm to facilitate the battery exchange operation. The
mounting space of the Sherpa box and Sherpa arm are demonstrated in Figure 3.2a.

3.1.2 Sensors

To realize the robot perception a set of sensory information is required. The sensory data
are to be transmitted to the process unit through the internal network of the system. The
data later will be processed by the process unit. As the orientation sensor, the Sherpa ground
rover is equipped with an Inertial Measurement Unit (IMU) and a GPS receiver. Moreover,
the system uses a medium range LiDAR system associated with a Gimbal that provides a
tilting movement to perform 3D range measurements.

57

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

(a) LiDAR (b) IMU

Figure 3.4: Sensors of the Ground rover (a) Range sensor, as demonstrated in the figure the
gimbal can provide a tilting movement to perform a 3D measurement. (b) The IMU is located
on the rover’s center of rotation introduced by the skid drive mechanism.

3.1.2.1 Orientation Sensor

As the IMU a Xsense MTi-G-700 GPS/lNS is installed on the Rover. In order to provide a
fully integrated solution for the 3D orientation, the IMU set includes an onboard GPS re-
ceiver. The MTi-G-700-GPS/INS is thus capable of not only outputting GPS-enhanced 3D
orientation, it can also output augmented 3D position and velocity, so that velocity and po-
sition accuracy significantly improve with respect to the accuracy of the GPS receiver alone.
Furthermore, it provides 3D sensors data, such as acceleration, rate of turn, magnetic field,
the navigation solution of the GPS receiver and static pressure. Data generated from the strap-
down integration algorithm are available, as all other processed data, at a frequency of 400
Hz.

To avoid imposing unnecessary computation burden on the process unit, the IMU sensor
is installed on the rover’s center of rotation introduced by skid drive mechanism. The IMU,
and its installation place are demonstrated in Figure 3.4b.

3.1.2.2 Range Sensor

For the range measurement, a SICK LMS151-10100 is used. The sensor provides a planar
scan with a scanning angle of 270 degree, a maximum resolution 0.25 degree, an effective
range of 18 meter and a maximum update rate of 50 Hz. The communication between the
sensor and the process unit is performed via Ethernet through an inquiry and answer telegram
protocol that is available in three methods of Binary, ASCII and HEX. To be able to perform
3D measurement, the LiDAR is integrated with a servo powered gimbal associated with an
encoder. The gimbal, communicates with the process unit via Ethernet through the same

58

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

(a) Battery system (b) Rover track

Figure 3.5: Configuration of the power and traction system of the Sherpa ground rover (a)The
battery of the Sherpa ground rover can be exchanged without powering off the system, 1-
battery connection port, 2- battery, 3- the battery space, 4-battery lid. (b) A Track is composed
of a pair of wheels, one powered and the other one equipped with an encoder. The wheels are
geared by a rubber belt. 1- Encoder wheel, 2- Bogie encoder, 3- Powered wheel, 4- Synthetic
rubber belt.

telegram communication protocol as the Laser scanner. The LiDAR and gimbal configuration
are illustrated in Figure 3.4a.

3.1.3 Traction and Power

The traction of the vehicle is provided by means of four tracks realizing a skid driven robot.
As illustrated in Figure 3.5b, each track includes two wheels, one powered by a 1600 W brush-
less DC through an “Elmo solo Whistle digital servo drive” while the other is equipped with
a MA3 absolute magnetic kit encoder. The two wheels are then geared by a synthetic rubber
belt to form a caterpillar track.

To power the tracks, the Sherpa arm and other electronic parts of the rover, a 50 V 100 Ah
battery is considered. Apart from the tracks drive, the battery powers the LiDAR, the process
unit and network adapter through a set of DC power supplies installed on the rover. To avoid
interrupting the high level SHERPA software running on the system, the battery of the rover
can be exchanged without switching off the system. This is provided through a second battery
connection port and a set of protective Diodes. The power system configuration of the rover
is demonstrated in Figure 3.5a.

59

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

3.1.4 Internal Network and Process Unit

The Sherpa ground rover is equipped with an internal Ethernet network including a network
switch, a Wifi adapter and a Ubiquiti Bullet M2 router that can be configured either as an
access point or a network bridge. The internal network provides a communication solution
to Ethernet base embedded and external accessories. Moreover, the router provides a way to
connect the process unit to the developer’s computer or the wireless network of the SHERPA
system. The network configuration of the rover can be seen in Figure 3.2b.

The Sherpa ground rover carries two sets of process units. The first unit is a “IV70 BOX
PC” equipped with a core i7 intel CPU and two sets of Ethernet adapters. This is considered
to be the main process unit for hosting and executing the navigation and SHERPA software.
The second unit, on the other hand, is a custom designed computer already programmed by
the producer company, Bluebotics, and provides simple navigation and localization function-
alities that can be used to test the hardware. Note that due to different wiring configurations
simultaneous communication of the both units with the drivers and sensors is not possible.
To implement the software developed by this research, we have used only the main process
unit. The process units of the rover are demonstrated in Figure 3.2b.

3.2 The Sherpa Robotic Arm

While industrial arms have usually rigid mechanical structures, many research platforms sug-
gest active impedance which allows a safer and smoother interaction with the environment.
This is particularly beneficial when the environment is unknown and unpredictable and the
system has to offer a certain degree of flexibility. This motivated the design of Sherpa arm
that is 7 DoF variable stiffness arm with two variable stiffness joints. In the project SHER-
PAhere is the role of the arm:

• Reach: The end effector should be able to reach into the proper position on top of the
Wasp. This is a preliminary step to grasping.

• Grasp: The end effector should be able to lock into the mechanical interface that is
considered on the wasp for grasping. This is one of the main motivations for variable
stiffness design that endows the system with a certain degree of flexibility to deal with
uncertainties e.g. non flat terrain profile, variable lighting condition, etc.

• Place: Take the grasped wasp to the considered docking position on the Sherpa box.

• Dock: Place the wasp on the Sherpa box. This is preliminary to the battery exchange
operation.

• Deploy: Take the wasp of the Sherpa box and place it on the ground.

60

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

Subsequently the main design requirements for the arm can be placed into the following cat-
egories:

1. Kinematics: The arm needs to reach all required positions, most importantly the dock-
ing position and a wide range of reach positions. Due to the required dexterity neces-
sary to manipulate the UAVs in its workspace, a design with a 3-DoF shoulder, 1-DoF
elbow, and 3-DoF wrist has been chosen.

2. Payload: The arm needs to lift the wasp, which has a maximum weight of 2kg.

3. Interaction and Robustness: Variable stiffness joints have been chosen to allow the
arm to interact with the environment in a physically compliant, versatile, and robust
way. The variable stiffness ensures an intrinsically safe interaction and mechanically
controllable compliance.

4. Weight Dimensions: Because the arm and ground rover need to be transported for the
search and rescue operations, the arm needs to fold away inside a small volume and is
only allowed to have a light weight below 15kg, while still achieving a reach of 1m.

The Sherpa robotic arm is designed and realized by University of Twente. Therefore, the
remainder of this section investigates details of the mechanical design of joints and variable
stiffness mechanism.

3.2.1 Kinematic structure

The seven active DoF of the Sherpa arm are provided by “shoulder”, “elbow” and “wrist”.
Indeed there are three DoF in the shoulder, one in the elbow, and three in the wrist. The struc-
ture of the Sherpa arm is demonstrated in Figure 3.6 while its Denavit-Hartenberg parameters
of the arm are summarized in Table 3.1 .

Link # 1 2 3 4 5 6 7 8
ri[m] 0.16 0 0.45 0.12 0 0.35 0 0.13
αi[rad] −π/2 π/2 −π/2 0 π/2 −π/2 −π/2 π/2
di[m] 0.16 0 0.45 0 0 0.35 0 0
θi q(1) q(2) q(3) q(4)/2 q(4)/2 q(5) q(6) q(7)

Table 3.1: DH parameters of the Sherpa arm.

Table 3.2 summarizes some of the specifications of the arm including joint arms and
velocities along with static safety factor, joint velocities and joint limits. The static safety
factor S is defined as the nominal joint torque divided by the maximum static load while arm
is carrying the nominal payload of 2Kg.

61

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

Figure 3.6: Kinematic structure of the Sherpa arm.

Joint q(1) q(2) q(3) q(4) q(5) q(6) q(7)

Torque [Nm] 71 214 214 75 10 8.6 8.6
Static safety 1.8 3.3 3.3 1.4 1.9 1.6 1.6

Velocity [◦/s2] 318 174 174 140 252 223 223
Limits [◦] ±180 ±90 ±180 ±180 ±180 ±90 ±90

Table 3.2: Mechanical specification of the arm.

3.2.2 Shoulder joint

The shoulder is a 3-DoF joint with a yaw-pitch-yaw configuration illustrated in Figure 3.7.
The first DoF is driven by a Kollmorgen RBE 02210-A that is housed in the base of the arm.
The second and third DoF are actuated by two differentially coupled ILM 85×13 RoboDrive
motors with CSD-32-100 Harmonic Drive transmissions. Furthermore, a tendon and pulley
is considered to provide the coupling. As a result of this coupling, given a rigid transmission
and a set of actuators ai the shoulder’s joints, qi can be acquired as follows:q1

q2

q3

 =

1 0 0
0 0.5 −0.5
0 0.5 0.5

a1

a2

a3

 (3.1)

The first variable stiffness joint is located in the joint shoulder which operates based on
a lever arm mechanism. As it is illustrated in Figure 3.8 the lever connects a polymer leaf-
spring to the output. A hypocycloid gear train is considered to actuate positioning the pivot
point q along the lever of length l. This leads to changing lever arm ratio of the spring and
ultimately stiffness of the joint. As it is elaborated in [80] deflection of the spring as a result

62

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

1

2

6

3

5

4q3

q1

q2

7

Figure 3.7: The 3-DoF shoulder joint with variable stiffness mechanism showing the DoFs
and (1) joint actuators, (2) stiffness adjustment actuators, (3) stiffness adjustment mechanism,
(4) lever mechanism with (5) spring, (6) pulleys, and (7) tendons.

of a deflection φ in the output can be approximated using the following relation:

τ =

(
(
1

q
− 1)R

)2

ksφ (3.2)

Where R is the output radius and ks is the spring stiffness. Accordingly the approximate
output stiffness K of the joint can be described as follows:

K =
∂τ

∂φ
=

(
(
1

q
− 1)R

)2

ks (3.3)

3.2.3 Elbow joint

In order to enable the arm to fully fold into its transport position and to enlarge the workspace,
the elbow joint consist of two axes connected by an intermediate link that are driven by a
single actuator. The actuator is an ILM 50×14 Robot Drive motor equipped with a CSD-25-
100 Harmonic Drive gearbox and a 1:3 bevel gear transmission. In our representation, elbow
is associated with q4 joint which is the summation of the angle between the lower arm and
distal link q4a and the angle between the distal link and the upper arm q4b. Moreover, a tendon
mechanism is considered to restrict q4a = q4b = 0.5q4 allowing a large range of motion for
this joint. The structure is the elbow is illustrated in Figure 3.9.

63

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

q

q

s

s

ϕ

ϕ

Figure 3.8: The variable stiffness module of the shoulder joint: The lever arm (blue) con-
nects the internal polymer spring (green) to the output, through a variable transmission that
is defined by the position of the movable pivot point (red) of the lever. An output deflection
φ causes a larger spring deflection s in a stiff configuration with a small q.

q 4/2 q 4/2

1

3

2

4

Figure 3.9: The 1-DOF elbow joint showing the coupled DoF q4 with two rotation axes and a
section view with (1) actuator, (2) bevel gear transmission, (3) pulleys, and (4) tendons. The
elbow link is directly actuated through the bevel gear, while the motion of the lower arm is
constrained by the tendon mechanism.

64

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

6

2

1

3

5

4

q6

q7

q5

Figure 3.10: The wrist joint and end-effector showing the axes of the 3-DoFs. The section
view shows the (1) joint actuators, (2) stiffness adjustment actuator, (3) stiffness adjustment
mechanisms, (4) lever mechanism, (5) planetary differential, and (6) bevel differential.

3.2.4 Wrist joint

The wrist joint has a yaw-pitch-yaw configuration with 3 DoF. The joint q5 is actuated with a
Maxon EC45 flat motor and GS45-A gearbox, with an additional 18:90 pulley transmission,
while Maxon RE25 motors with GP-32-C gearboxes drive q6 and q7 through a differential
coupling and a drive that includes a second variable stiffness mechanism. Similar to the
shoulder differential coupling (3.1), the wrist differential coupling is described as follows:q5

q6

q7

 =

1 0 0
0 0.5 −0.5
0 0.5 0.5

a5

a6

a7

 (3.4)

The main components of the wrist mechanism are highlighted in a section view in Fig-
ure 3.10. A planetary gear system is used as 3-port differential in order to incorporate the
variable stiffness mechanisms into the drive train as follows; The levers, i.e. the output of the
variable stiffness modules, are connected to the ring gears and the driving actuators to the
sun gear, such that the planet carrier functions as output. The two drive trains are then in turn
differentially coupled to each other through a bevel gear mechanism, to actuate the DoFs q6

and q7.

65

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

(a) Gripper design. (b) Finger mechanism.

Figure 3.11: The SHERPAgripper (Figure 3.11a) and a detailed view of one of the fingers
(Figure 3.11b). The fingers are built up of a linkage mechanism mounted on a moving car-
riage. As the carriage moves the open finger (blue) into contact with the interface (green),
the linear forwards motion of the finger’s extension is transformed into a rotation of the the
distal phalange, which wraps around the interface into the locked position (red).

3.2.5 Gripper

The Sherpa arm is equipped with a custom gripper shown in Figure 3.11a with integrated
actuation and electronics, latching onto a light weight interface on the wasp. It achieves a
secure form of closure through a combination of a passive latching mechanism and a driving
dwell mechanism. The gripper engages the interface with three fingers that are extended
outwards from the gripper’s center through a spiral-shaped cam-mechanism and linear guides.
This structure requires only a single actuator. Once the fingers make contact the latching
mechanism encloses the interface by means of a series of linkages, as shown in Figure 3.11b.
The grasping procedure is facilitated by the gripper’s shape, which guides it into the interface,
and together with the arm’s compliance, ensures a simple pick-up operation that is robust to
small misalignments between gripper and interface. The end effector is equipped with a
proximity sensor and a Logitech C920 camera for detecting the wasp and to enable visual
servoing during grasping.

66

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

3.3 Sherpa Box

The Sherpa box is designed and realized by ASLATech and is able to operate independent
from the Sherpa rover. It is equipped with core i7 NUC intel process unit considered to run the
SHERPA software platforms. However, for the wasp battery exchange operation, the Sherpa
box has to be mounted on the rover. As mentioned earlier, a mounting space for this purpose
has been considered on the rover’s chassis. Figure 3.12a demonstrates Sherpa box mounted
on the Sherpa ground rover.

The mechanical design of the box includes four servo motors to actuate the wasp latching
mechanism, the battery latching mechanism, the battery lifter and battery magazine revolver.
The servos are controlled through an Arduino controller that communicates with the main
processor through a USB connection. Furthermore, to facilitate the communication in the
ROS environment, the mavros protocol is adapted. An overview of the Sherpa box hardware
is presented in Figure 3.12b.

The main mechanically functionality of the Sherpa box is in the wasp battery exchange
operation. The battery exchange mechanism itself consists of a linear actuator that slides the
battery carriages from the wasp into a revolving battery magazine at the base of the Sherpa
box and vice versa. A sectional view of the Sherpa box and the wasp is shown in Figure 3.13,
displaying the components of the mechanism. Since the wasps do not have to land on the
Sherpa box, the battery exchange mechanism can be arranged vertically. This allows the box
to service two wasps simultaneously. The wasp battery exchange procedure is presented as
follows:

1. For docking the wasp on the Sherpa box, the wasp is initially placed on two small guide
rails, before it is moved into its final docking position, guided by the rails and a short
funnel.

2. Once the wasp has been placed correctly, a switch registers that the wasp is docked,
and two small clamps lock it securely in place.

3. A tongue then extends from the toolhead at the end of the linear actuator, and engages
a notch in the battery carriage, in order to move it downwards into a free slot of the
battery magazine.

4. The battery slots of the magazine are aligned with the battery compartment of the wasp
by means of a Geneva mechanism, which rotates the magazine in discrete steps ensuring
proper alignment, after the tongue has disengaged the empty battery.

5. When the charged battery has been aligned, it is engaged by the tongue, and placed
into the battery bay of the wasp, where it securely engages the electrical connectors
and locks into place.

6. The replenished wasp is then ready to be released by the Sherpa box and to continue
its mission.

67

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

(a) Sherpa Box mounted on the rover

(b) Sherpa Box Hardware

Figure 3.12: Sherpa box set-up overview. (a) shows the Sherpa box mounted on the con-
sidered mounting space on the ground rover (b) A close-up of the hardware, 1- Wasp spot,
2- Wasp latching mechanism, 3- Battery lifter servo, 4- Battery magazine revolver servo, 5-
Battery magazine, 6- Arduino controller, 7- Sherpa box body.

68

CHAPTER 3. INTRODUCTION TO THE HARDWARE OF THE SYSTEM

(a) Wasp battery close up.

(b) Battery exchange mechanism.

Figure 3.13: A partial section view of the Sherpa box and docked wasps showing the battery
exchange mechanism. The wasp (1) is locked to the Sherpa box with the clamps (2) when the
switch (3) is engaged. To remove the battery (9) from the wasp a “tongue” (5) engages the
battery, which is pulled downwards into the battery magazine (8) when the linear actuator (4)
moves the toolhead (6). To exchange the battery, the magazine is rotated by the actuator (7)
which drives a Geneva mechanism. The battery exchange mechanism then places a charged
battery into the wasp.

69

Chapter 4

Integration of the Ground Rover with the
Robotic Arm

In the previous chapter we have presented the mechanical design and specification of the
Sherpa Arm. In this chapter, we investigate integrating the Arm with the Donkey rover from
the mathematical and system point of view. We therefore present kinematics of the rover,
the arm and combination of the two, i.e. mobile manipulator. Subsequently we investigate
kinematic control of the arm and mobile manipulator. Finally the compliance of the arm
introduced by variable stiffness joints will be analysed.

4.1 Kinematic modelling

Identification of the system is preliminary step to the control problem. This section studies
kinematics of the arm, the rover and the Ground Rover and Arm (GRA) which is the integrated
system.

Before proceeding with the mathematical modelling, we define a notation that will be
used throughout the entire chapter. It is well known that the pose of a floating object in space
can be described by 6 variables, 3 for the position and 3 for the orientation. We therefore
describe a pose by a 6 × 1 vector, i.e. X , composed of a 3 × 1 position vector, i.e. ρ, and
a 3 × 1 orientation vector, i.e. ν. Moreover, the frame with respect to which the pose is
described is presented on the upper left side of the pose.

X = [ρ ν]ᵀ = [x y z | θ φ ψ]ᵀ
AXef : pose of end effector with respect to frame A

Moreover, some frames of interest that we will talk about throughout this chapter are to be
introduced. “End effector” frame that is a frame attached to the base of end effector and
is identifying by ef . “Arm base” frame, a frame attached to the base of the arm, i.e. base

70

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

of the shoulder, and represented by A. “Rover base” frame that is originated on the rover’s
differential rotation axes and on the robot’s surface that is denoted by R. Finally “Inertial
frame”, also knows as “World”, is a fixed frame in the environment denoted by IF .

4.1.1 Arm Kinematics

In the approach phase, the arm is used in the stiff mode as a compliant arm does not add any
strategic advantage to the approach problem. Moreover, this way we decrease the complexity
of system by fixing two extra DoF introduced by the compliance.

The Jacobian of the arm can be calculated by means of differentiating the forward kine-
matics of the system. The position of the end effector with respect to the arm base can be
described as follows:

AXef = f(θ1, θ2, ..., θn) (4.1)

Where θi refers to the ith joint angle and n is the DoF of the arm, in our case is 7.

Differentiating the forward kinematics of (4.1) yields:

δAXef =
∂f

∂θ
δθ :

δxi =
n∑
j=1

∂f1

∂θj
δθj, i = 1, · · · , 6.

(4.2)

Representing joint variables by a vector qA = [θi · · · θn]ᵀ we can rewrite (4.2) as follows:

AẊef = JAef ∗ q̇A (4.3)

Where JAef is the Jacobian matrix that relates velocity of the end effector with respect to the
arm base frame.

If the rover pose in the inertial frame is known, the pose of Arm base in the inertial frame
is known since the Arm base-rover is fixed known pose. In this case, velocity of the end
effector frame with respect to the inertial frame can be described by the following Jacobian
matrix:

IF Ẋef = JIFef ∗ q̇A (4.4)

where

JIFef =

IFA R 03×3

03×3
IF
A R

6×6

∗ JAef (4.5)

and IF
A R is a 3D rotation matrix presenting the rotation of the Arm base frame with respect

to inertial frame.

71

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

4.1.2 Rover Kinematics

Although in the context of SHERPAthe navigation strategy has to cope with a rough terrain, it
is reasonable to assume a flat navigation in the very last phase of approach where the wasp can
be reached by small displacement of the platform. Making this assumption, the kinematics
of a differential driven robot subjected to nonholonomic constraints driving on a flat surface
can be described as follows:ẋRẏR

ψ̇R

 =

cosψ 0
sinψ 0

0 1

[Ḋ
ψ̇

]
⇒ IF ẊR = JIFR ∗ q̇R (4.6)

Where ψR refers rover’s orientation, i.e. yaw, and Ḋ and ψ̇ are linear and angular velocities
of the rover i.e. inputs of the system.

Equation (4.6) presents the difficulty of controlling a nonholonomic robot. As can be
seen, the matrix JIFR loses its rank for a certain heading angles i.e. kπ, k ∈ Z. In fact,
this is no surprise since differential and car like robots cannot slide to their sides. Thus, to
accomplish trajectory following “look ahead” strategy can be deployed. In this method, a
new frame is introduced with a bias distance b in front of the robot and the controller reject
the disturbance introduced by error between origin of b and the desired position trajectory.
This combination is demonstrated in Figure 4.1a. Subsequently, the kinematics of the point
b can be described as follows:ẋbẏb

ψ̇b

 =

cosψ −b. sinψ
sinψ b. cosψ

0 1

[Ḋ
ψ̇

]
⇒ IF Ẋb = JIFb ∗ q̇R (4.7)

Therefore, unlike the rover frame, there is an element along y axis in the b frame.

RẊR =

Ḋ0
ψ̇

⇒ bẊb =

 Ḋbψ̇
ψ̇

 (4.8)

4.1.3 Mobile Manipulator Jacobian

A interesting implementation of mobile manipulator control system is able to track 1) the end
effector trajectory and 2) rover trajectory. This allows the system to plan for the rover and
arm separately e.g. arm can reach the wasp while adjusting pose of the rover. Accordingly
we seek a Jacobian matrix that can relate composed actuator velocity vector of the GRA to its
composed task velocity vector:

IF ẊGRA = JGRA ∗ q̇GRA (4.9)

72

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

(a) b frame introduction.
(b) Speed element on the b point.

Figure 4.1: look ahead change of coordinates

where
IF ẊGRA =

[
IF Ẋef
IF Ẋb

]
, q̇GRA =

[
q̇A
q̇R

]

In order to find the JGRA one can combine kinematics of the arm (4.4) and kinematics of
the rover (4.7) as follows:IF Ẋef

IF Ẋb

9×1

=

JIFef 6×n Jc 6×2

[0]3×n JIFb 3×2

q̇A n×1

q̇R 2×1

 (4.10)

It is obvious that speed of the rover is independent from the joint angles. On the contrary,
end effector task velocity vector is coupled with the rover inputs by a Jacobian matrix Jc, of
the size 6×1, yet to be found. To find the Jacobian, we can consider the contributions of arm
and rover inputs to the end effector task velocity vector separately:

IF Ẋef =IF ẊefA +IF ẊefR (4.11)

The elements of IF Ẋef affected by the rover controls are linear speeds along x and y axis

73

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

and angular speed around z axis:

IFXefR =

xefR
yefR

0
0
0

ψefR

And from Figure 4.2, assuming that the arm base has the same orientation as rover, one can
write:

xa = xR + Rxef cosψR − Ryef sinψR
ya = yR + Rxef sinψR + Ryef cosψR
ψa = ψR

d
dt
⇒

ẋa = ẋR − ψ̇R Rxef sinψR − ψ̇R Ryef cosψR
ẏa = ẏR + ψ̇R

Rxef cosψR − ψ̇R Ryef sinψR
ψ̇a = ψ̇R

(4.12)

Writing the result of derivatives in the matrix form yields:

IF ˙̃X efR =

1 0 −(Rxef sinψ + Ryef cosψ)
0 1 Rxef cosψ + Ryef sinψ
0 0 1

ẋRẏR
ψ̇R

 (4.13)

Where IF ˙̃X efR is shorten form of IF ẊefR, i.e. eliminating zero rows. Substituting the rover
kinematics from (4.6) in the above equation we get:

IF ˙̃X efR =

1 0 −(Rxef sinψ + Ryef cosψ)
0 1 Rxef cosψ + Ryef sinψ
0 0 1

cosψ 0
sinψ 0

0 1

[Ḋ
ψ̇

]

=

cosψ −(Rxef sinψ + Ryef cosψ)
sinψ Rxef cosψ + Ryef sinψ

0 1

[Ḋ
ψ̇

] (4.14)

From Figure 4.2, one can see the arm base is located on the x axes of the rover base with a
distance of a from the origin of the rover base. Furthermore, the pose of the end effector with
respect to the arm base is available thanks to the joint encoders. Thus, it is more convenient
to use the end effector position in the arm coordinates rather than rover coordinates i.e. :[

Rxef
Ryef

]
=

[
Axef + a
Ayef

]
Finally we can describe IF ẊefR by adding the proper dimension to IF ˙̃X efR which get us to

74

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

Figure 4.2: Vector representation of the arm base with respect to the rover.

the Jacobian matrix Jc:

IF ẊefR =

cosψ −((a+ Axef) sinψ + Ayef cosψ)
sinψ (a+ Axef) cosψ + Ayef sinψ

0 0
0 0
0 0
0 1

[
Ḋ

ψ̇

]
= Jc ∗ q̇R (4.15)

4.2 Kinematic Control of Mobile Manipulator

In the previous section the kinematics of the system was presented. Either it is a mobile or
fixed manipulator, it can be expressed in the general form of:

J ∗ q̇ = Ẋ (4.16)

75

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

In this section, we attend to the control problem defined as finding actuator velocities that
results in the desired task space velocities.

The system understudy is a redundant robotic system i.e. the task velocity vector has a
lower dimension than actuator velocity vector. As a result, to achieve a desired task velocity
vector, i.e. IF Ẋef , there are more than one valid solution in the space of actuator velocity
vector, i.e. q̇. In other words, the Jacobian matrix has more columns than rows and therefore
a non zero null space. This gives us the ability to design a controller that regulates the output
in the operational space while performing some optimization on the null space of the system.

In order to find actuator velocity vector from (4.16), Inverse kinematics can be used i.e.
the Jacobian matrix should be inversed. As mentioned earlier, the null space of (4.16) is not
zero allowing for null space optimization while inversion. The null space optimization can
be used to address “singularities” and “join limits exceedance” issues that are studied in this
section.

4.2.1 Least Norm Solution and Pseudo-Inverse of the Jacobian

From the basics of the linear algebra, one can suggest a Least Norm solution to the undeter-
mined equation of (4.16) using the pseudo-Inverse of the Jacobian matrix. So we get:

q̇ = J† ∗ Ẋ (4.17)

where
J† = Jᵀ ∗ (J ∗ Jᵀ)−1 (4.18)

Equation (4.18) is a solution to the following optimization problem:

q̇LN = arg min
q̇
||q̇||, Subject to: J ∗ q̇ = Ẋ (4.19)

It is therefore obvious that (4.18) suggests a solution with minimal actuator velocities. How-
ever this solution is only optimal as long as the arm is not close to singular configurations.

4.2.2 Singularity Robust Inversion

Intuitively, in the vicinity of the singular configurations, effect of singular joints on the task ve-
locity vector becomes less and less until in the singular configuration the task velocity vector
becomes totally independent from the singular joints. Therefore, in the vicinity of a singular
configurations, very high joint velocities are needed to produce the desired effect on the task
velocity vector leading to undesirable performance and instability. From the mathematical
point of view, singularity is interpreted by the Jacobian Matrix loosing rank.

The best way to cope with singularity is avoiding the singular configuration. For a re-
dundant robotic arm, “singular Robust inversion” can be deployed to alleviate the singularity

76

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

problem. First, we need to have an indicator reflecting the distance from singularities. This
can be done by means of “manipulability measure”. Consider the set of all possible velocity
task vector that can be achieved by a set of joint velocity vectors satisfying:√

q2
A1 + . . .+ q2

An ≤ 1 (4.20)

This set is an ellipsoid in them-dimensional Euclidean space representing the manipulability.
It is obvious that the smaller is the ellipsoid, the closer is the configuration to the singular-
ity. Mathematically, the manipulability ellipsoid can be found by taking a Singular Value
Decomposition (SVD) of the Jacobian matrix:

J = UΣV ᵀ (4.21)

whereU is of dimension ofm×m and V is of dimension of n×n, and the two are orthogonal
matrices. Furthermore, Σ is a size m × n matrix containing a m ×m diagonal matrix and
n−m zero columns:

Σ =

σ1 . . . 0 | 0 . . . 0
... | 0 . . . 0
0 . . . σm | 0 . . . 0

 (4.22)

The scalar values of σi are called singular values of the Jacobian matrix. The manipula-
bility ellipsoid has its principal axes along σiui vectors where ui is the ith column of matrix
U . Finally the manipulability measure can be provided by the volume of the ellipsoid that is:

W =
n∏
i=1

σi (4.23)

The manipulability measure can also be calculated without having to calculate the SVD of
the Jacobian using [81]:

W =
√
det(J ∗ Jᵀ) (4.24)

Now we have a tool to measure the distance from the singular configuration, we can attend
to the singular robust inversion method. It can be proven that the following pseudo inversion
is a solution to the undetermined equation (4.16) [82]:

J† = Jᵀ ∗ (J ∗ Jᵀ + βIm)−1 (4.25)

where Im is an identity matrix of dimension m×m and β is a scalar factor. At the singular
configuration, β is equal to βs, a tunable value adjusting a safe distance from the singularity.
Whereas, in the vicinity of the singular configuration, β has to decrease until a certain margin,
i.e. Wm, where the configuration is far enough from the singularity and the least norm solution
of (4.17) can be used safely. We can then define the β factor as follows:

β =

βs
(

1− W

Wm

)2

for W < Wm

0 for W ≥ Wm

(4.26)

77

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

4.2.3 Weighted Least-Norm Solution

It is important to have control over the joints and task velocity element-wise e.g. a join is in its
upper/downer limit. In another example the application may put a constraint on movement of
the end effect in a specific direction being imposed to avoid an obstacle in the scene or safely
interact with another object that has to be grasped. In this case, the least norm solution (4.17)
can be elaborated into weighted least norm solution by means of two weighting matrices. In
this section we investigate general weighted least norm solution. We will then proceed to
special case of joint limits.

Let us define two symmetric, diagonal, positive definite matrices ofWq andWx. Further-
more, we define the following transformation:

Jwt = W
1
2
x J W

1
2
q

Ẋwt = W
1
2
x Ẋwt

qwt = W
1
2
q q̇

(4.27)

As a result the least norm solution to (4.18) can be rewritten as:

q̇wt = Jᵀ
wt (Jwt J

ᵀ
wt)
−1 Ẋwt (4.28)

Substituting (4.27) in (4.28) and some mathematical elaboration raises:

q̇ = W−1
q Jᵀ W

1
2
x

(
W

1
2
x J W−1

q Jᵀ W
1
2
x

)−1

W
1
2
x Ẋ (4.29)

(4.29) gives weighted least norm solution to (4.16). Elements of diagonal matrices Wx and
Wq can be used to tune the manoeuvrability of the associated parameter. For example 1
causes no limits on the associated joint/task velocity while smaller values leads to limiting
the movement.

In practice, in the design of control architecture for a manipulator, avoiding join limits
always has be taken into account. As mentioned earlier, weighted least norm solution can be
deployed to that purpose. For the sake of simplicity one can rewrite (4.29) assuming the task
velocity weighting matrix to be identity:

q̇ = W−1
q Jᵀ

(
J W−1

q Jᵀ
)−1 Ẋ (4.30)

Before proceeding with the joint weighting matrix, it is important to define a criterion to
have an understanding of how close the joint is to its limit. To this purpose, [83] suggests the
following criterion:

C(q) =
n∑
i=1

(qUi − qLi)2

4(qUi − qi)(qi − qLi)
(4.31)

78

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

Where qi, qUi and qLi are respectively current angle, upper and lower joint limits of the joint
i.

(4.31) suggests that when all the joints are in the mid point of their range, i.e. qi =
(qUi − qLi)/2, contribution of each joint to the criterion is unity. However, the criterion
returns a larger number as the joints get closer to their limits. We can then use the criterion
C(q) to tune the joint weighting matrix Wq as follows:

wqi = 1 +

∣∣∣∣∂C(q)

∂qi

∣∣∣∣ = 1 +
(qUi − qLi)2(2qi − qLi − qUi)

4(qUi − qi)2(qi − qLi)2
(4.32)

Where wqi are diagonal elements ofWq. It can be seen that |∂C(q)
∂qi
| is small when qi is close to

its range middle point. On the contrary, this values grows significantly as the join i get closer
to its limits. As a result, a configuration that requires joint i be in close to its limits causes
the corresponding weight wqi to be infinity in Wq and, subsequently, zero in W−1

q . Referring
back to (4.30), the joint velocity of the joint i approaches zero and then the joint is locked.
Yet, it is not desirable to have the joint completely locked in the joint limit as the joint should
be able to move back to the range middle point. We, therefore, modify (4.32) as follows:

wqi =

 1 +

∣∣∣∣∂C(q)

∂qi

∣∣∣∣ , ∆
∣∣∣∂C(q)
∂qi

∣∣∣ ≥ 0

1, ∆
∣∣∣∂C(q)
∂qi

∣∣∣ < 0
(4.33)

4.3 Analysis of the Arm Compliance

When there is a need for physical interaction of robot, it is important to have an end effector
that is flexible. Obviously, this is because applying too much pressure can cause mechanical
damage. For the application understudy, this is even more crucial since there are two robots
involved in the physical interaction. Indeed, the arm’s gripper has to lock into drone’s inter-
face and excessive force may damage the both devices. As explained in section 3.2, to provide
a certain level of mechanical compliance, there are two variable stiffness joints considered
for the Sherpa arm. The mechanical design of the variable stiffness actuators of shoulder and
elbow joints has been explained in sections 3.2.2 and 3.2.5 respectively. In this section, we
study the effect of compliance from mathematical point of view.

The compliance of the arm’s end effector can be described by the compliance matrix. In
fact, infinitesimal twist of the end effector is linearly mapped from its wrench, i.e. W , by
means of the compliance matrix, i.e. C, as follows:[

δθ
δp

]
=

[
Co Cc
Cc Ct

] [
m
f

]
= C ∗W (4.34)

Where θ, p, m and f are respectively orientation, position, moment and force vectors. More-
over, Co, Ct and Cc are respectively rotational and translational and coupling compliance
matrices.

79

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

Given the joint compliance matrix to be defined as Cq = − ∂q
∂τ

and τ joint torques, the
compliance matrix can also be expressed by means of the Jacobian as follows:

C = J(q)CqJ
ᵀ(q) (4.35)

Expectedly, (4.35) implies the compliance matrix is also function of arm pose, i.e. q. Conse-
quently, we analyse the compliance of the arm In two poses of special interest for the Sherpa
battery exchange experience,(see section 1.3.3).

Grasp: Grasping the wasp is a critical pose to be studied. In this pose, the arm is already
reached on top of drone’s interface. It is therefore crucial for the gripper to be soft so the risk
of damaging either gripper or the drone interface is minimized. On the other hand, a certain
degree of stiffness is necessary to make the grasping possible.

Dock: The wasp must be docked to the Sherpa box after grasping step. This pose implies
more of a challenge as the arm is loaded with the wasp with a payload of 2Kg. Consequently,
as soon as the stiffness is decreased, gravity pulls down the wasp. Note that in this pose,
the drone is rather close to the sherpa box and consequently there is a risk damage for both
of devices especially wasp’s propellers. Yet, a certain degree of compliance is desirable to
properly place the drone to the docking station on the Sherpa box.

The translational end effector compliance can be visualized as an ellipsoid obtainable
through singular value decomposition of Ct i.e. :

Ct = UΣV ∗ (4.36)

Where the singular values (in Σ) are lengths of semi-axes of the ellipsoid and the columns of
U matrix represents orientation of the axes of ellipsoid.

The compliance of the end effector in the poses of interest are demonstrated in Figure 4.3.
An interesting feature of the arm’s design is the ability to be compliant in one direction while
rigid in the other directions. This is especially useful when the arm is loaded i.e. dock pose.
In this case the end effector’s compliance can be tuned to be rigid against the gravity force
while a certain degree of compliance can be considered in the horizontal axis to facilitate the
docking mechanism.

80

CHAPTER 4. INTEGRATION OF THE GROUND ROVER WITH THE ROBOTIC ARM

(a) Grasp demo. (b) Dock demo.

(c) Grasp pose. (d) Dock pose.

Figure 4.3: End effector’s compliance in special poses. Two compliance ellipsoids cor-
responding the two variable stiffness joints are presented in each pose. In the presented
cases the shoulder’s and wrist’s compliance have been varied, respectively, in the range of
[0.001rad/Nm 0.005rad/Nm] and [0.04rad/Nm 0.25rad/Nm].

81

Chapter 5

Implementation and Results

This chapter studies detailed design of the system and algorithms that have been developed
to perform the human leashing and battery exchange benchmarks.

We first consider addressing the human leashing using only the rover. To this purpose,
we propose a control system able to guarantee tracking of the target in the sensor range. The
result of proposed algorithms is evaluated using the simulation and experiment.

Target leashing while rough terrain navigation is more complicated, yet possible taking
the advantage of Sherpa arm mounted on the rover. We, therefore, propose a cooperative
framework in which arm takes the responsibility of following the target while the rover nav-
igates to its goal optimizing chassis terrain interaction. Moreover, the two robot are coupled
using a cooperative framework to provide a superior performance that is evaluated by exper-
iment.

Finally, the battery exchange experiment will be elaborated. In this case, the high level
commands come from the delegation framework presented in section 1.2.1. The result of
battery exchange operation is evaluated using the experiment.

5.1 Human following using the Rover

This section presents a non linear control of a vision-based human following robot. The set
up is given by the rover equipped with a sensor which provides the human-robot pose in a
limited sensory range. The Sensor Operation Field of View (SOFV) is, therefore, treated
as a state constraint in the control architecture. An example of SOFV is depicted in Figure
5.1. Furthermore, it is assumed that having the evader1 out of SOFV is not tolerable and the
controller must ensure an appropriate human-robot relative pose to avoid losing the track of

1The person to follow, followee

82

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.1: Sensor operation field of view of an example vision sensor (Kinect), the measure-
ments are in meters.

evader. Moreover, the actuators limitations have to be considered as control input constraints
and they have to be taken into account in the definition of the control law.

Consequently, we aim to design a saturated nonlinear controller to accomplish human
following while satisfying the state and input constraints. The upper bound on the control
action is dynamically adapted, based on human-robot relative pose, to fully exploit the avail-
able actuation power. Given the evader’s speed is bounded, the proposed control structure
guarantees that the maximum tracking error can be arbitrarily bounded. Notice, as seen in
Figure 5.1, we assume that the human recognition is performed via a Kinect2 sensor, although
the analysis of this part are easily expendable to other types of sensor.

5.1.1 Problem formulation

In the analysis that is about to be presented, we consider the inertial and body frames as fol-
lows; The inertial frame is a local North-East-Down frame (NED) fixed on an arbitrary point
on the terrain whereas the body frame is on the rover’s center of rotation (i.e. intersection of

2A 3D vision sensor invented by Microsoft Cooperation that operates based on projecting an infrared grid
patterns on the scene and reading the projection of the grid simultaneously.

83

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.2: Introduction to problem coordinates and vectors.

axes of robot’s differential rotation with the robot’s upper surface). The x-axes of the body
frame is oriented toward the front of the robot, the y-axes points toward the right side of the
robot and the z-axes points down. The problem coordinates are illustrated in Figure 5.2. To
circumvent the nonholonomic constraints of the rover look ahead model is used (see section
4.1.2). Thus, an offset distance, i.e. b, is introduced as reference point from which the tracking
error is calculated.

The position of b can be described in the inertial frame as sum of two vectors

PbI = PcI +RI
BPbcB (5.1)

where PbI represents the position of b in the inertial frame, PcI refers to the position rover’s
center of rotation(c), RI

B is the rotation matrix from the body frame to the inertial frame and
PbcB describes the position of b relative to c in the body coordinates.

The kinematics of the point b can be obtained through the derivative of Equation (5.1).
First let us remember the rotation kinematics being described by the well known relation of:

ṘI
B = RI

BS (ω) (5.2)

where S(·) is a skew-symmetric matrix and ω represents vector of body angular rates. Fur-
thermore, The rotational matrix RI

B has the following properties:

det
(
RI
B

)
= 1 RB

I R
I
B = I (5.3)

84

CHAPTER 5. IMPLEMENTATION AND RESULTS

Now we can obtain the kinematics of the b by deriving (5.1):

ṖbI = ṖcI + ṘI
BPbcB +RI

BṖbcB =

= ṖcI +RI
B

[
S (ω)PbcB + ṖbcB

] (5.4)

Here we deal with a 2D control problem where the rigid body is allowed to rotate only
around the z axes i.e. ω = [0, 0, ωz]

T . Since the position of the point b in the body frame
is constant, we get ṖbcB = 0. Finally, the kinematics of the point b described in the inertial
coordinates is:

ṖbI = ṖcI +RI
BS (ω)PbcB (5.5)

The nonholonomic constraints of the rover allow to describe the linear speed ṖcI of the
rover’s mass center as follows:

ṖcI = RI
B [Ux, 0, 0]T (5.6)

where Ux is the speed of the rover along the x-body axes in the body coordinates. Further-
more, the rotational kinematics can be written as:

S (ω)PbcB = S (ω) [b, 0, 0]T (5.7)

According to design of the hardware understudy, we suppose presence of low level con-
trollers regulating the actual speed of the tracks to the desired ones. Given UL and UR as the
left and right track speed respectively, the speed of the point b is described as follows:

Ub =

 Ubx
Uby
0

 =

[
M

01×2

] [
UR
UL

]
(5.8)

where 01×2 represents a null matrix with dimensions 1× 2 and, given the distance between
right and left tracks is `, M is a square matrix as follows:

M =

[
1/2 1/2
−b/` b/`

]
(5.9)

Up to now, the kinematics of the rover has been presented. However, to address the prob-
lem of target tracking, robots kinematics have to be related to the one of the evader. The
position of evader in the inertial frame is expressed as follows:

PtI = PcI +RI
B (PbcB + PtbB) (5.10)

where PtI represents position of the evader in the inertial frame and PtbB is the evader’s
position relative to the point b and described in the body frame. By substituting (5.1) in
(5.10) we get:

PtI = PbI +RI
BPtbB (5.11)

85

CHAPTER 5. IMPLEMENTATION AND RESULTS

The kinematics of the evader are then derived from the previous equation:

ṖtI = ṖbI + ṘI
BPtbB +RI

BṖtbB (5.12)

Assumption 1 There exists a positive D such that the speed of the evader fulfils:

‖ṖtI (t)‖ ≤ D ∀ t ≥ 0

In other words, the edaver’s speed is assumed to be bounded. We can then proceed with
formulating the control problem by presenting the error that has to be regulated. From Figure
5.2, it is easy to see the error to be compensated in the inertial frame can be expressed as
follows:

eI = PtI − PbI (5.13)

The error can also be described in the b frame coordinates:

eb = RB
I (PtI − PbI) = PbtB (5.14)

Thus, we aim to define a control law on Ub that fulfils

‖eb(t)‖ ≤ ε

where ε is a bounded parameter such that staying the evader inside the SOFV is guaranteed.
Furthermore we assume a zero velocity for the evader i.e. ṖtI = 0. As a result the controller
must ensure:

lim
t→∞

eb = 0

5.1.2 The input constraints

In the context of the problem understudy, there are two types of constraints. The first category
includes the limits coming from the nature of the system, i.e. actuation constraints, while the
second type of constraints has to be fulfilled to guarantee a desired performance i.e. state
constraints. Exceeding the actuation constraints in the hardware level is usually avoided by a
saturation, yet to guarantee the stability of the system, the input constraints have to be taken
into account in the design level of control law.

The control vector Ub relates to the commanded track speeds, UR and UL, through ex-
pression (5.8). Let us suppose the tracks speed is upper bounded by the finite value of Vmax
i.e:

|UR| ≤ Vmax
|UL| ≤ Vmax

Vmax ∈ R+ (5.15)

86

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.3: Transformation of the input set to the control set

Consequently, the track speeds physically belong to a square defined by the following set:

S0 = {(UR, UL) ∈ R2 : |UR|, |UL| ≤ Vmax} (5.16)

Equation (5.9) represents a linear transformation that maps the square shape set S0 to the
following diamond shape set:

S1 = S1R ∩ S1L (5.17)

where
S1R =

{
(Ubx , Uby) ∈ R2 : Ubx = UR + (`/2b)Uby , UR ∈ S0

}
and

S1L =
{

(Ubx , Uby) ∈ R2 : Ubx = UL − (`/2b)Uby , UL ∈ S0

}
This transformation is shown in Figure 5.3. As long as Ub ∈ S1 the actuation limits are
fulfilled.

5.1.3 Design of the controller

The control law (5.8) is defined as follows:

Ub =

UbxUby
0

 =

kx cosψ
ky sinψ

0

 f (‖eb‖) , f (‖eb‖) =
K‖eb‖√

1 +K2‖eb‖2
(5.18)

where kx, ky are control parameters yet to be chosen, ‖eb‖ is the norm of error,K is a tunable
static gain and the angle ψ is defined according to Figure 5.4. It is obvious

0 < f (‖eb‖) ≤ 1

87

CHAPTER 5. IMPLEMENTATION AND RESULTS

and thus implying
|Ubx| ≤ kx
|Uby | ≤ ky

(5.19)

To exploit the maximum actuation power in the x-y plane, the coefficients kx(ψ) and
ky(ψ) can be adapted to the error accordingly. Considering Figure 5.4, the coefficients can
be determined by intersecting eb and the boundary of S1 i.e. solving:{

kx = |cot(ψ)| ky
kx = Vmax − (`/2b)ky

(5.20)

That has the following answer:

kx(ψ) =
Vmax[

1 +
`

2b
|tan (ψ)|

]
ky(ψ) =

Vmax[
|cot(ψ)|+ `

2b

] (5.21)

Finally, the control law (5.18) is mapped into left and right wheel control action UR and
UL by means of (5.8): [

UR
UL

]
= M−1

[
Ubx
Uby

]
(5.22)

5.1.4 Stability Analysis of the Proposed Controller

The dynamics of the tracking error, expressed in body frame, is obtained by deriving (5.14):

ėb = ṘB
I (PtI − PbI) +RB

I (ṖtI − ṖbI)
= S(ω)RB

I (PtI − PbI) +RB
I ṖtI −RB

I ṖbI
= S(ω)eb +RB

I ṖtI −RB
I ṖbI

(5.23)

Obviously
RB
I ṖbI = Ub

Thus, one can rewrite the equation (5.23) as follows:

ėb = S(ω)eb +RB
I ṖtI − Ub (5.24)

88

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.4: Calculation of the control action norm by superimposing error coordinates on
control action coordinates

We define with ρm the largest value of the radius of the circle E centered in b and contained
in the SOFV (see Figure 5.5). In the forthcoming Proposition 1, we prove that E is an invariant
set for the error. This implies that the evader always remains inside the field of view.

Proposition 1 System (5.24) controlled by (5.18)-(5.21) is Input to State Stable (ISS) with
respect to ṖtI , i.e. there exists a class-K function, γ(·), and a class-KL function, β(·), such
that

‖eb(t)‖ ≤ max{β(‖eb(0)‖, t), γ(‖ṖtI‖)}
Furthermore, there exist a D? and a K? such that for every D < D? and K ≥ K? the set E
is forward invariant for system (5.24), i.e. if eb(0) ∈ E then eb(t) ∈ E ∀ t > 0.

Proof : Consider the following candidate Lyapunov function:

V =
1

2
eTb eb. (5.25)

Its derivative is given by:

V̇ = eTb ėb = eTb (S(ω)eb +RB
I ṖtI − Ub). (5.26)

Since S(ω) is a skew symmetric matrix and letting RB
I ṖtI = ṖtB we get:

V̇ = eTb (ṖtB − Ub) (5.27)

89

CHAPTER 5. IMPLEMENTATION AND RESULTS

Defining
eTb = [ebx , eby , 0] = ‖eb‖[cosψ, sinψ, 0]

and substituting (5.18) in (5.27) gives:

V̇ = ‖eb‖d−
K‖eb‖2√

1 +K2‖eb‖2

(
kx cos2 ψ + ky sin2 ψ

)
(5.28)

where
d = cosψṖtBx

+ sinψṖtBy
≤ ‖ṖtB‖ (5.29)

As mentioned earlier, the maximum control action is identified by kx and ky. Let us
define a pair of conservative values i.e. k̂x(ψ) and k̂y(ψ). As illustrated in Figure 5.4, the
conservative values are lower bounds for kx and ky. To serve this purpose, we define them as
follows:

kx ≥ k̂x := k̄ | cosψ|
ky ≥ k̂y := k̄ | sinψ|

(5.30)

where
k̄ :=

Vmax√
1 +

(
`

2b

)2
(5.31)

(5.30) implies:
kx cos2 ψ + ky sin2 ψ ≥

k̄
(
cos2 ψ| cosψ|+ sin2 ψ| sinψ|

)
≥ k̄√

2

(5.32)

Finally, incorporating inequalities of (5.29) and (5.32) into (5.28), we obtain:

V̇ ≤ ‖eb‖‖ ˙PtB‖ −
K‖eb‖2√

1 +K2‖eb‖2

k̄√
2

(5.33)

The function γ(·) can be found by basic ISS arguments explained in [84].

Let us define D? := k̄/
√

2 and the function χ(·) as follows:

χ (s) =

√
2s

K
√
k̄2 − 2s2

Then from the ISS argument we get:

‖eb‖ ≥ χ
(
‖ṖtB‖

)
=⇒ ∂V

∂eb
ėb ≤ −α (‖eb‖) ∀eb ∈ R3

90

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.5: The concept of circle shaped invariant set for the error trajectories inside the
SOFV.

That holds for all possible ṖtB fulfilling Assumption 1 and some positive definite α(·).
Then, taking into consideration V = ‖eb‖2, the arguments in [84] immediately leads to the
ISS inequality in Proposition 1 with γ(·) = χ(·).

The second part of the Proposition follows by ISS by takingK ≥ K? withK? defined as:

K? =

√
2D?

ρm
√
k̄2 − 2D?2

(5.34)

In summery, we have proven that given an evader complying with the assumption 1 and
laying on the circle demonstrated in Figure 5.5, the position of the evader in the body coordi-
nates will be attracted to center of the circle by the control law of (5.19). In the inertial frame
coordinates, this interpreted as the rover following the evader. As seen in the analysis, the
circle can be tuned to be the largest possible circle that can be fitted in the SOFV. However,
the presented analysis only guarantee the stability in a circle.

91

CHAPTER 5. IMPLEMENTATION AND RESULTS

5.1.5 Simulation Result

To evaluate the proposed structure, the system understudy is simulated in Matlab Simulink®.
Figure 5.6a shows the tracking performance of the proposed system in the inertial frame. As
seen, the robot is able to track the evader’s trajectory. Figure 5.6b demonstrates some sample
trajectories of the error in the body frame starting from the boundary of E . As expected, the
trajectories are invariant with respect to the circle E and the state constraints are satisfied. In
the case of conducted simulation which assumes a standstill target, the error is attracted to
the origin. In the inertial frame, this means the robot follows the evader as soon as an error is
introduced. Finally, Figure 5.7 verifies that the actuation constraints are also fulfilled for all
t ≥ 0. As shown in the figure, the linear speeds of actuators are not exceeding the limit (i.e.
Vmax = 3m/s for this example) while both the x and y components of the error are stable.

5.1.6 Experimental Result

In order to evaluate performance of the proposed structure in practice, the developed control
law is implemented on the donkey rover which is a skid driven robot with four tracks. The
system is equipped with a XtionPRO ASUS Kinect [85] as the vision sensor. For the specific
model that has been used in this work the operation range is between 0.8m and 3.5m and field
of view is 70◦.

The implementation of the proposed control law has led to the definition of the origin of
the error in the body coordinates, b, is equal to 2.23m and radius of the maximal invariant
circle Cm inside the SOFV is ρm = 1.27m.

Figure 5.8 illustrates the experimental set up of this study. As mentioned earlier, the de-
veloped system in this section is not capable of rough terrain navigation and obstacle avoid-
ance. To perform a safe navigation we have selected our laboratory in University of Bologna,
“CASY”, as the experiment site.

The algorithm behind the experiment is implemented in ROS indigo environment and
“openni tracker” [86] is used to find the position of the evader. Openni tracker recognizes and
tracks 15 benchmarks of the human body and one of them has to be selected as representative
of the evader (i.e. head in this experiment). The tracking software is initialized by a specific
body gesture demonstrated in Figure 5.8. It then supplies the error to the control algorithm
described earlier in this section. Figure 5.9 demonstrates the result of experiment that was
conducted for about 43 seconds. As can be seen, both components of the error are stable
while actuation limits are respected. A recorded footage of the experiment is also available
on our on-line repository3.

3https://www.youtube.com/watch?v=tO3RHHmhxxQ

92

CHAPTER 5. IMPLEMENTATION AND RESULTS

(a) Tracking trajectory in the inertial frame.

(b) Tracking trajectory in the body frame.

Figure 5.6: Simulation result of the proposed system a) Trajectories of the evader versus the
rover in the inertial frame b) Some example trajectories of the error in the body frame inside
the SOFV with different initial conditions on the boundary of Cm.

93

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.7: Actuators speeds and error components during the simulation. A limit of Vmax =
3m/s is considered in this example.

Figure 5.8: Experimental setup of this study.

94

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.9: Result of experimentation that has been conducted for 43 seconds, the figure
demonstrates speed of right and left actuators and error components in the body frame

95

CHAPTER 5. IMPLEMENTATION AND RESULTS

5.2 Cooperative Following using the Arm and the Rover

The previous section investigated implementation of an evader following by means of a sensor
that is fixed on the robot. The main drawback of such an implementation is the SOFV rotating
with the robot limiting the robot’s capability to optimize chassis terrain interaction. In this
section, we seek a solution to the target following problem that involves both rover and arm.
The main motivation to involve the arm is endowing the sensor with a flexible platform and
ultimately increase the rover’s manoeuvrability.

To pursue this purpose, we approach the problem by means of a cooperative framework
based on the “cooperative game theory” [87, 88] to couple the arm’s and rover’s behaviour.
Similar to the previous section, the system has the same goal of following the target. Although
in this case, safe navigation is a priority to be respected. To achieve a superior performance,
the two robots have to consider strategies taken by their partners and bargain upon a solution
in the pursuit of achieving the mutual interest while respecting the limits of the partners.

Here we choose a strategy based on Model Predictive Control (MPC) enabling the robot
to predict the results of control actions. Thus, the outcomes of different control inputs can
be predicted while the system’s kinematics and dynamics are taken into account. As a result,
the output trajectory obtained by a Model Predictive Planner (MPP) is kinematically and
dynamically feasible [89–91].

5.2.1 Components Multi-Robot Interaction

Let us introduce the main components of the desired system, namely the ground rover and
robotic arm, and lays out the framework used for the interaction between these systems. We
formulate the task, i.e. continuously tracking a target with the arm while the rover approaches
it, as a cooperative game in which each player maximizes their profit through cooperation.

5.2.1.1 Ground Rover

Here we use a simple representation of the rover’s kinematics without considering the look
ahead change of coordinates. The kinematics of this differentially driven robot can be de-
scribed as follows; ṄĖ

θ̇r

 =

cos(θr) 0
sin(θr) 0

0 1

[Vl
ωr

]
(5.35)

whereN , E and θr describe the 2D pose of the vehicle in the world reference frame referring
to north, east and yaw respectively. Furthermore, Vl is linear speed and ωr is the rotational
speed of the rover around its center of differential rotation.

96

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.10: The arm with angular velocity ω and inertia J is controlled to track the target.

The task of the rover is to find and execute a path to the goal that is not only safe and
feasible, but also facilitates the tracking of the target by the robotic arm.

5.2.1.2 Robotic Arm

As described in section 3.2, the arm mounted on the rover is a 7-DoF robotic manipulator
that is equipped with a camera on its end-effector. Apart from manipulating objects, it can
also be used to improve the overall perception of the system by offering a better and adaptable
point of view, than is attainable from the chassis of the rover.

The task of the arm is to continuously track the target, for which it only uses one DoF in
the shoulder which is PD-controlled with the angular error between the arm and the target, as
shown in Figure 5.10. This simple scheme not only reduces the system complexity, but more
importantly avoids collisions of the arm with itself or the rover. The arm’s dynamics can thus
be described as a controlled second order system:

ω̇ = δ/J ω + τ/J (5.36)

with the arm’s angular velocity ω, damping δ, rotational inertia J , and control torque τ .

97

CHAPTER 5. IMPLEMENTATION AND RESULTS

5.2.1.3 Cooperative Game Theory

A dominant strategy γ̂ that guaranties the lowest cost for all players cannot be achieved in the
context of cooperative navigation and obstacle avoidance, as the rover prioritizes a safe path
over target tracking. Two concepts are important to instead find a strategy that leads to the
lowest overall cost, Pareto efficiency and Bargaining [92].

Pareto efficiency In a cooperative game, a set of player strategies, γ̂, is called Pareto effi-
cient if it is impossible to find a different set of strategies, i.e. γ, that improves the cooperative
performance of all the players (i.e. Ji). In other words, a set of inequalities Ji(γ) ≤ Ji(γ̂)
with at least one strict inequality in the solution space of the game (i.e. Γ) cannot be found.

Bargaining problem A situation in which a number of players have to agree upon a set
of strategies to achieve a superior performance through cooperation at the cost of inferior
individual performances due to conflicting interests.

Pareto efficient strategies are not unique and the set of all Pareto strategies is referred
to as “Pareto frontier” [92]. The selection of the proper Pareto solution out of the Pareto
frontier is the bargaining problem. In other words, bargaining is a way of sharing profit of
the cooperation among the players. Whereas the economics literature presents solutions such
as Nash bargaining, Kalai-Smorodinsky, and the egalitarian bargaining solution, we solve the
bargaining problem by the introduction of constraints. Finally, the lower bound of the profit
share that each player can accept is the player’s “disagreement point”. The different concepts
in the context of game theory are illustrated in Figure 5.11.

5.2.1.4 Educative Interaction

The players of our system affect each other in different ways. The strategy that the arm chooses
does not affect the rover, while the rover’s path, on the other hand, has a direct influence on
the arm’s strategy. According to [93] an interaction between players can either have a master-
slave characteristic, when the dominant player ignores the cost incurred by the slave. Or have
an educative nature, when the teacher chooses a strategy that maximizes the overall profit.
We have thus chosen a educative framework for the set of non linear time variant systems
with a single teacher and N students described below:{

ẋt(t) = ft(t, xt) + gt(t, xt)ut

ẋsi(t) = fsi(t, xsi) + gsi(t, xsi)usi, i = 1, ..., N
(5.37)

where the subscripts t and s, respectively, show teacher and student systems. The quadratic
cost functions of the subsystems are defined as follows:

98

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.11: Illustration of different concepts of the cooperative game theory in a simple
two player game. The horizontal and vertical axis indicate players’ profit. In this example,
the players need a minimum profit to be motivated to take part in the game. This concept is
depicted by the disagreement lines for each agent.

Jsi =

∫ T

0
(xsiQsix

ᵀ
si + uᵀsiRsiusi)dt, i = 1, ..., N

Jt =

∫ T

0

(
αt(xtQtx

ᵀ
t + uᵀtRtut) +

N∑
i=1

αixsiQsix
ᵀ
si

)
dt

(5.38)

where Qsi, Rsi, Qt and Rt are square symmetric matrices of the proper dimensions and the
weights α are some positive scalar coefficients satisfying

αt +
N∑
i=1

αi = 1

The cooperative optimization problem, then, is only attended to by the teacher while each
student tries to minimize its own cost in a non cooperative way:

ût = arg minut∈Γt
Jt(xt, ut) s.t. xt ∈ St

ûs = arg minus∈Γs
Js(xs, us) s.t. xs ∈ Ss

(5.39)

where Γ and S represent constrained input and state spaces respectively. Note that in an
educative game framework, the students are not compromising for the teacher’s performance,
as the students’ effort usi is absent in the teacher’s cost definition in (5.38). Furthermore, the
bargaining problem is formulated in (5.38) by the α coefficients. We define the disagreement
point of a player as the exceedance of its constraints. The bargaining can then be treated as a
degree of freedom for tuning the tracking performance as long as the constraints are handled
properly.

99

CHAPTER 5. IMPLEMENTATION AND RESULTS

5.2.2 Model Predictive Planing

This section describes the MPP approach used to predict the outcomes of control actions of
the players in order to find an optimal solution to the bargaining problem.

5.2.2.1 MPP formulation

Our approach is motivated by [90], in which the general optimal control problem is trans-
formed to a parametric optimization problem by parametrization of the input state. We can
reformulate both systems of the rover and arm from Equations (5.35) and (5.36) in the form

ẋ(t) = f(x(t), u(q, t)) (5.40)

where q refers to the vector of parameters that will be discussed in details in the following
section. The parametrized optimization problem can therefore be formulated as finding a
candidate q∗ that minimizes a cost function of the form J(x(t), u(q, t)) under the condition
that the boundary conditions are met.

5.2.2.2 MPP solution with Particle Swarm Optimization

The non-linearity of (5.40) implies a non-linear MPP problem which can be approached by a
heuristic method. In this work we solve the problem by means of Particle Swarm Optimization
(PSO) where a swarm of solutions S is evolved through an iterative method. In each iteration,
a set of candidate solutions, also known as particles xk, is tried and evaluated using a cost
function C. The evolution of the swarm is accomplished using a velocity term vk which
attracts the next particle set xk+1 to the best solution of the iteration P best and the best solution
in the entire swarm G. In other words:

xk+1 = xk + vk

vk = ωxk + c1r1(P best − xk) + c2r2(G− xk) (5.41)

Where ω, c1 and c2 are tunable PSO parameters, and r1 and r2 are randomly generated
values in the range of [0, 1]. The MPP problem of (5.40) can be formalized and solved as a
PSO problem. To be able to approach the constrained problem by PSO, we define a penalty
factor in the cost function as explained in [94], causing the solutions which do not satisfy the
boundary conditions to present a high cost and eventually be avoided. The cost function of
the PSO algorithm is therefore defined as follows:

C = J(x, u) + h(x, u) (5.42)

100

CHAPTER 5. IMPLEMENTATION AND RESULTS

5.2.3 Path Planning

The path planning problem of the rover is formulated and solved as MPP problem, in which
the input space of the system given in Equation (5.35) is searched to find a optimal solution
satisfying the constraints. The chosen trajectory leads the rover to the goal position while
avoiding obstacles and minimizing the combined cost of the arm and rover.

5.2.3.1 Input Parametrization

Polynomial spirals can be used to parametrize the input state of the path and to ultimately
represent any feasible vehicle motion through a small number of parameters [89]. Consider-
ing (5.35) and describing the curvature κ(t) in a third degree polynomial form, we obtain the
following representation: {

κ(s) = a+ bs+ cs2 + ds3

ω(t) = κ(t)v(t)
(5.43)

where a, b, c and d are coefficients of the polynomial and s is an independent variable. Thus,
a vector of parameters can be defined as follows:

q =
[
a b c d l

]T (5.44)

where l is the length of the path. Note that (5.43) suggests one more degree of freedom which
is the norm of variable s, although in this paper we considered a fixed constant value for this
parameter.

Figure 5.12 illustrates the influence that the elements of q have on the shape of the path.
Changing lower order coefficients, i.e. a and b, causes substantial changes in the path struc-
tures, while neat adjustments to the goal of the trajectory can be made with the higher order
coefficients c and d.

5.2.3.2 Initialization of PSO algorithm

Solving the PSO optimization problem characterized by the cost function (5.42) is challenging
not only because of the infinite possible solutions for q. More importantly, many local minima
need to be avoided when approaching the constrained optimization problem by a heuristic
penalized optimization method. In the worst case the swarm may contain no solution that
complies with the boundary conditions. It is therefore crucial to initialize the algorithm to
achieve a desirable performance. This can be accomplished by a set of predefined solutions
stored in a Look-Up Table (LUT). Given a navigation goal, the system makes an inquiry to
the LUT for a number of possible solutions. The solutions acquired from the LUT are used as
the first set of particles of the optimization algorithm and help the convergence to the optimal
solution.

101

CHAPTER 5. IMPLEMENTATION AND RESULTS

(a) Effect of variation of a, b, and c;

(b) Variation of d. (c) Variation of l.

Figure 5.12: Different patterns that are used in the look up table, variation of elements of q
can create a variety of shapes

102

CHAPTER 5. IMPLEMENTATION AND RESULTS

(a) Path ordering (mapping) (b) Path acquisition (search)

Figure 5.13: Selection of viable paths from the look up table. Trajectories that end in the goal
cell (solid) are selected as initial particles for the optimization algorithm, while other paths
(dotted) are discarded, as shown in Figure 5.13a. If not enough initial candidates are found,
the range of goal cells is expanded in an outward spiraling pattern, as shown in Figure 5.13b.

The LUT contains a set of possible solution consisting of: 1) The parameter vector q,
2) A path associated to q, 3) A travel cost representing how straight the path is, and 4) The
destination of the path. The LUT keeps an order of the predefined paths based on discretized
values of their destinations. In other words:

[dx, dy]
T = floor(s[cx, cy]

T) (5.45)

where d and c are respectively discrete and continuous values and s is a scaling factor of the
unit cell/meter.

Those paths that end up to the goal cell are selected from the LUT as initial candidates,
as shown in Figure 5.13a. If the number of available paths in one cluster is not sufficient for
the initialization purpose, a simple path acquisition method is used. In this case, paths from
surrounding cells will be invoked by the mechanism illustrated in Figure 5.13b.

5.2.3.3 Cost Function

The cost function of (5.42) is composed of two parts, the MPP cost function J(x, u) and the
penalty factor h(x, u). These terms are composed of the following components:

• Chassis cost: Having a candidate path P, the chassis simulator can estimate the result of
the rover terrain interaction as a set of orientations O ∆

= {Fch(x)|x ∈ P}. The variance

103

CHAPTER 5. IMPLEMENTATION AND RESULTS

of O is, therefore, used in the cost function to represent the energy required to traverse
P.

Jch(x) = Var(O) (5.46)

• Inflation cost: In order to avoid potential hazards associated with passing in the vicinity
of obstacles, an inflation layer, INF, is considered around the occupied cells in the
costmap. A constant cost of Cinf is then considered for each member of P that is
located in an inflated cell.

Jinf (x) = size(P ∩ INF)× Cinf (5.47)

• Arm cost: Referring to cooperative game theory equations (5.38) and (5.39), a simple
arm simulator is needed to calculate the error that arms controller has to compensate
if a candidate path is taken. Thus, the arm simulator calculates a set of end effector
orientation that should be applied to track the target A ∆

= {Farm(x,Garm)|x ∈ P}. The
arm contribution to the cost function can be then described as:

Jarm(x,Garm) = Var(A) (5.48)

• Goal distance penalty: Design of the proposed system penalizes big and small errors
with different gains as the former implies an inferior and yet an acceptable solution
while the latter causes violating the boundary conditions. Thus, we consider a thresh-
old, Err, to distinguish constraint violating solutions. It is obvious that the continuity
of this factor has a great impact on convergence of the algorithm. Therefore, having
the error ∆x between the desired goal and the candidate path destination, a cost value
JErr associated to Err and a penalty gain K for unacceptable solutions, we define the
goal distance penalty as follows:

hgoal(x) =

JErr
Err

∆x ∆x ≤ Err

(
2∆x

Err
− 1)K

JErr
Err

∆x ∆x > Err

(5.49)

• Obstacle penalty: Similar to inflation cost, a constant cost of Cobs is considered to
penalize passing through the set of occupied cells OBS. It is obvious that Cobs >
Cinf as passing through the inflated layer is acceptable while occupied cells are not
traversable.

hobs(x) = size(P ∩OBS)× Cobs (5.50)

• Chassis penalty: It is necessary to penalize unacceptable and hazardous attitudes that
can result in a flip over. We therefore define a set of hazardous attitudeHAZ to penalize
paths that implies such attitudes.

hatt(x) = size(O ∩HAZ)× Chaz (5.51)

To summarize, the cost function of (5.42) can be rewritten as (5.52). Note that even though
the constraints are treated as an added cost value, the algorithm can still reject the solutions

104

CHAPTER 5. IMPLEMENTATION AND RESULTS

which their penalty factor exceeds a threshold and ultimately do not satisfy the boundary
conditions. The cooperative cost function of the rover is formulated in (5.52). As mentioned
earlier, the bargaining coefficients αt and αs can be used to tune the level of cooperation
among the two agents.

C(x) = αt (Jch(x) + Jinf (x)) + αsJarm

+ (hgoal(x) + hobs(x) + hch(x)) (5.52)

5.2.4 Experimental Results

This section presents the experimental results validating the cooperative navigation of the
rover with simultaneous tracking of the target by the arm. Figure 5.14 shows the set-up of this
experiment including the rover, the mounted arm, the target and the environment including
foam cushions mimicking uneven terrain and obstacles.

The proposed algorithm is implemented in the Robot Operation System (ROS) [95]. An
open source marker detection package [96] is used to localize and track the target, while the
rover-world localization is provided by Hector SLAM [27,97] which incorporates LiDAR and
IMU data to provide 2D mapping with a limited 3D localization. Finally, the 3D Point cloud
analysis is facilitated by the open source PCL library [98,99]. The experiment is executed as
follows:

1. The target is localized by the camera of the arm.

2. The rover performs a tilted scan to acquire data to be used by the navigation.

3. The algorithm solves the cooperative path planning problem.

4. The rover starts navigating the solution path, while the localization of the rover is per-
formed using a fixed configuration of laser scanner and IMU.

5. The arm localizes and tracks the target while the rover is approaching the target.

The performance of the proposed algorithm is demonstrated in Figure 5.15. The path
finder algorithm is ready to start as soon as the target is localized. After a navigation goal is
received, elevation data is calculated from a single tilt scan (Figure 5.15a). To initialize the
optimization algorithm, some precalculated paths are acquired from the LUT (Figure 5.15b).
Based on (5.41), the optimization algorithm evolves a swarm of paths which is growing in
each iteration (Figure 5.15c). Furthermore, a swarm of best particles (G) is evolved in the
course of the algorithm run-time that is demonstrated in Figure 5.15d.

Finally, result of the experiment is demonstrated in Figures 5.16 and 5.17. Figure 5.16
illustrates the target pose, initial rover pose, rover goal pose and a 2D map of the environment
acquired by the SLAM algorithm that serves for real-time localization of the system. The

105

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.14: The experimental set-up including the rover, arm, target, and obstacles.

106

CHAPTER 5. IMPLEMENTATION AND RESULTS

(a) Elevation data acquired in a single scan. (b) Pre-calculated solutions proposed by the LUT.

(c) Swarm of the particles and the result solution. (d) Best solutions of the particles(G) with and the
result solution.

Figure 5.15: Performance of the proposed path finder algorithm.

107

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.16: The path planned by the rover with initial and goal positions in the map of the
environment.

resulting path is also demonstrated in this figure while a video of the experiment can be
found in our online repository4. Figure 5.17 shows the position of the arm’s shoulder joint
while tracking the target during the approach.

5.2.5 Discussion

The main contribution of the presented approach is to define the concept of cooperative plan-
ning for navigation tasks. Even though the experimental results presented in this paper could
easily have been achieved with a simple centralized planner, it was our aim to demonstrate
cooperative navigation in practice. Comparing to a centralized approach, our strategy is more
versatile and expandable. More players can be added to the system to perform more complex
tasks that cannot be completed by a single player with centralized planning. For example,
map can take part in the game by inviting the rover to navigate through well discovered areas

4https://youtu.be/3B41FBIsO2g

108

CHAPTER 5. IMPLEMENTATION AND RESULTS

Figure 5.17: Experimental result, arm’s shoulder joint movement to track the wasp.

to ultimately achieve a more robust localization. Another important advantage of the pre-
sented approach is the possibility to integrate heterogeneous players with different abilities
and sub-tasks.

In comparison to most of the modern path planning algorithms available in the literature,
the proposed pathfinder algorithm is not complete. As seen in Figure 5.15b, a considerable
part of the space is not being searched and in case of complicated maze-like environments
the algorithm fails to find a solution. However this algorithm is sufficient to solve an unstruc-
tured outdoor navigation problem where a complex obstacle pattern is not usually the case.
Instead, the main issue in such an environment is the unevenness of the ground which we
addressed by incorporating the chassis simulator in the cost function. In summary we claim
that the proposed pathfinder platform for implementation of cooperative navigation suggests
a trade off among completeness, ease of implementation and computational complexity. Fur-
thermore, as the cooperation in the proposed algorithm is only defined in the cost function,
our system can be easily extended to be implemented on a state lattice path planner platform
that uses any standard path finding search algorithm such as Dijkstra, A-star, etc.

109

CHAPTER 5. IMPLEMENTATION AND RESULTS

5.3 Battery exchange operation

Overall architecture of the SHERPAsystem was presented in section 1.2. Yet the experimental
results of the SHERPAbattery exchange operation is to be presented. As mentioned in section
1.2.1, the execution of a collaborative plan TST, i.e. the executor, is the second phase of
the delegation process. When the battery replacement executor, shown in Figure 5.18, is
requested, it is delegated to the GRA5 agent and expands into several nodes that are delegated
to the arm, wasp, rover, and Sherpa box agents.

The change batt executor is typically triggered by either the human operator, or fully
autonomously by the wasp, which will request the battery exchange after landing when its
power is running low. After accepting the delegation, the GRA expands the executor and
commands the arm to localize the wasp through the find wasp executor. This executor triggers
the arm to search for the wasp with its end-effector camera through coordinated motions of
the arm and the rover, after which the location and pose of the wasp is published to the other
agents. Next, the wasp is commanded to disarm its motors, and the GRA to dock the wasp. The
dock wasp executor then in turn expands into the move to, pick, and dock executors, which
command the rover to approach the wasp, and the arm to grasp and move the wasp into the
docking positing on the Sherpa box. The following lock wasp, switch batt, and release wasp
executors are delegated to the Sherpa box, and lock the wasp in the docking position, replace
the depleted battery for a charged one, and release the wasp respectively. Finally the wasp is
deployed again by placing it on the ground, and moving the GRA away from it, such that the
wasp and GRA can continue their respective missions.

When the GRA is delegated to exchange the landed wasp’s batteries, the arm determines
its precise position relative to the rover. This is happens by putting the arm in specific pose,
i.e. “scan pose”, in which the camera installed on the end effector has a proper field of view.
Figure 5.19a demonstrate the scan pose considered for the detection phase.

Furthermore, detection of the special markers that are placed on the mechanical interface
of the wasp is shown in Figure 5.19b where the still image of the camera feed is overlaid with
the detected location of the marker, and the virtual collision object of the plan scene. The
virtual drone is included the plan scene of the arm, as shown in Figure 5.20, and published.

The rover then plans a collision-free trajectoryand approaches the wasp, such that the
wasp is located within the arm’s workspace and can easily be grasped. Figure 5.21 shows the
rover and wasp locations in the map generated by the rover, and the rover’s trajectory.

Figure 5.22 shows the arm docking and deploying the wasp as a sequence of still images.
After approaching the wasp, the arm picks up, grasps, and docks it on the Sherpa box, where
the wasp’s battery is exchanged according to Section 3.3. The arm then places the wasp back
on the ground and the rover moves away from the wasp so that it can continue its mission
with a replenished battery. The tunable passive compliance of the arm has proven to be

5Ground Rover and Arm

110

CHAPTER 5. IMPLEMENTATION AND RESULTS

pick
/arm

find_wasp
/arm

disarm_wasp
/wasp0

lock_wasp
/SBox

switch_batt
/SBox

release_wasp
/SBox

move_to
/rover

dock
/arm

move_to
/rover

place_wasp
/arm

change_batt
/GRA

dock_wasp
/GRA

deploy_wasp
/GRA

Figure 5.18: The battery change executor (expanded collaborative plan TST) is delegated to
the GRA agent. It expands into other executors, which are delegated to the arm, wasp, rover,
and Sherpa box agents. Internal nodes of the executor represent control statements, leaf nodes
represent domain specific tasks. The different colors denote which agent the task is delegated
to.

instrumental in the successful execution of the intricate interaction tasks. During grasping
and docking of the wasp, the arm’s compliance in the shoulder and wrist joints is controlled
to make the operation more robust and reliable.

Lastly, Figure 5.23 gives an overview of the execution of the battery exchange by present-
ing key variables of the rover, arm, and Sherpa box over the course of the operation.

111

CHAPTER 5. IMPLEMENTATION AND RESULTS

(a) Scan pose of the arm.

(b) Camera’s view.

Figure 5.19: The wasp is detected from the video feed of the arm’s camera by means of the
markers placed on the interface. The position of the markers is denoted by the two circles,
while the orientation is shown through the superimposed coordinate frames. The virtual
model of the wasp (shown in green) is also overlaid onto the live video stream.

Figure 5.20: The virtual collision object of the wasp is placed in the plan scene of the arm
once it is detected. The wasp’s position and orientation are also published to the other agents.

112

CHAPTER 5. IMPLEMENTATION AND RESULTS

Rover

Trees

Trajectory

Initial Pose

UAV

Goal Pose

Figure 5.21: The map generated by the rover during the experiments. Free cells are shown
in light gray, occupied cells in black, and unknown cells in dark gray. The small trees in the
rover’s environment are clearly visible as obstacles. The map shows the initial pose of the
rover and its goal pose, at an offset from the UAV position, as well as the generated trajectory
connecting the two.

113

CHAPTER 5. IMPLEMENTATION AND RESULTS

(a) Scan and approach (b) Grasp

(c) Docking (d) Battery exchange

(e) Deploy (f) Retreat

Figure 5.22: After the ground rover approaches the landed wasp (Figure 5.22a) the arm picks
it up (Figure 5.22b) and docks it on the Sherpa box (Figure 5.22c) where its battery is ex-
changed (Figure 5.22d). The arm then places it back on the ground (Figure 5.22e) and retreats
away from the wasp (Figure 5.22f).

114

CHAPTER 5. IMPLEMENTATION AND RESULTS

0 50 100 150 200 250

Time [s]

0

2

4

6

R
ov

er
-U

A
V

di
st

an
ce

 [m
]

(a) Distance between rover and wasp.

0 50 100 150 200 250

Time [s]

-1

-0.5

0

0.5

1

E
nd

-e
ffe

ct
or

 p
os

iti
on

 [m
]

x - position
y - position
z - position

(b) End-effector position of the arm.

160 165 170 175 180 185 190 195

false

true
UAV docked

160 165 170 175 180 185 190 195

false

true
UAV locked

160 165 170 175 180 185 190 195

down

up
Linear actuator position

160 165 170 175 180 185 190 195

Time [s]

1/8

2/8
Battery container position

(c) Status of the SBox.

Figure 5.23: Overview of the battery exchange operation through the status of the involved
agents. Figure 5.23a shows the distance between the rover and wasp, as the rover approaches
it during the execution of the dock wasp-executor, and moves away from the wasp along
the trajectory generated by the rover’s path planner during the deploy wasp-executor. Figure
5.23b shows the end-effector position of the robotic arm. The arm moves first into a scanning
pose during find wasp and the start of dock wasp, before it grasps and docks the wasp, and
places it back on the ground during the deploy wasp executor. Figure 5.23c shows the status
of the Sherpa box. The Sherpa box registers the wasp as docked when the arm successfully
places the wasp on the Sherpa box. The wasp is then locked by the docking clamps while
the linear actuator moves the empty battery into the battery container, which then moves a
charged battery into position that is inserted into the wasp by the linear actuator.

115

Chapter 6

Conclusion

This thesis focused on development of the Sherpa ground rover introduced by the SHERPA
project. The SHERPA project seeks to present the values that a heterogeneous robotic team
can add to a search and rescue mission in the Alps. To this purpose, the project introduces a
set of particular quadrotors, called “wasp”, that helps the rescuer to increase their awareness
of the situation quickly and efficiently. However, the limited power capacity and high energy
consumption of the wasps limit the autonomy of these robots. To address this problem the
Sherpa ground rover has been introduced by the SHERPA project. Together with the Sherpa
robotic arm and Sherpa box, the ground rover provides a mobile power replenishment station
for the wasp.

In this document, the architecture of the system understudy was motivate. To provide
a world model and organize different automation tasks among the multi-robot system of
the SHERPA, the SHERPA system is introduced. Here, therefore, different elements of the
SHERPA system were presented. Moreover, the two important SHERPA software, i.e. “Del-
egation framework” and “Sherpa World Model”, were explained.

Navigation on an unstructured outdoor environment implies challenging localization, map-
ping and planning tasks. Thus, a comprehensive overview of the modern localization, map-
ping and planning methods were presented. The basics and characteristics of different local-
ization strategies were studied. Furthermore, to perform an accurate navigation, a discrete
event planner platform able to consider kinematics and dynamics of the robot was investi-
gated.

The Sherpa rover, Sherpa arm and Sherpa box are three principal elements of the wasps’
mobile power replenishment station which are to be integrated in one system. Therefore, the
hardware of the ground rover, Sherpa arm and Sherpa box were presented and the specifica-
tion and capabilities of the hardware of the systems were studied.

Moreover, integration of the Sherpa ground rover and Sherpa arm from the theoretical
point of view were studied. To this purpose, firstly modelling of the rover and the arm were

116

CHAPTER 6. CONCLUSION

covered. Furthermore, the control issues of the robotic arm were presented and addressed.
Lastly, the modelling and control of the integrated system, as a mobile manipulator, were
presented.

Finally benchmarks of the SHERPA project concerning the Sherpa rover were addressed.
To this purpose, two target following strategies were presented. In the first case, a fix vision
based sensor on the rover were considered to provide the target localization. Then a controller
was designed to reject the disturbance while respecting the state and actuation constraints. In
the second case, the vision sensor was considered on the arm and the human following were
provided through a cooperation between the arm and the rover. Finally, the battery exchange
operation experiment were presented.

117

Bibliography

[1] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part ii: Matching, robustness,
optimization, and applications,” IEEE Robotics & Automation Magazine, vol. 19, no. 2,
pp. 78–90, 2012.

[2] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.

[3] Sherpa project offcial website. [Online]. Available: http://www.sherpa-project.eu/

[4] Sherpa page on eu community research and development information service(cordis).
[Online]. Available: http://cordis.europa.eu/project/rcn/106964 en.html

[5] The sherpa box. [Online]. Available: http://www.sherpa-project.eu/sherpa/content/
sherpa-box

[6] The sherpa animals. [Online]. Available: http://www.sherpa-project.eu/sherpa/content/
sherpa-animals

[7] B. D. Song, J. Kim, J. Kim, H. Park, J. R. Morrison, and D. H. Shim, “Persistent UAV
service: an improved scheduling formulation and prototypes of system components,” in
International Conference on Unmanned Aircraft Systems, 2013, pp. 915–925.

[8] R. Godzdanker, M. J. Rutherford, and K. P. Valavanis, “Islands: a self-leveling landing
platform for autonomous miniature UAVs,” in IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, 2011, pp. 170–175.

[9] D. R. Dale, “Automated ground maintenance and health management for autonomous
unmanned aerial vehicles,” Master’s thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, 2007.

[10] Y. Mulgaonkar, “Automated recharging for persistence missions with multiple micro
aerial vehicles,” Master’s thesis, Department of Mechanical Engineering and Applied
Mechanics, University of Pennsylvania, 2012.

[11] F. P. Kemper, K. A. O. Suzuki, and J. R. Morrison, “UAV consumable replenishment:
design concepts for automated service stations,” Journal of Intelligent & Robotic Sys-
tems, vol. 61, no. 1, pp. 369–397, 2011.

118

BIBLIOGRAPHY

[12] N. K. Ure, G. Chowdhary, T. Toksoz, J. P. How, M. A. Vavrina, and J. Vian, “An auto-
mated battery management system to enable persistent missions with multiple aerial ve-
hicles,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 1, pp. 275–286, 2015.

[13] K. A. Swieringa, C. B. Hanson, J. R. Richardson, J. D. White, Z. Hasan, E. Qian, and
A. Girard, “Autonomous battery swapping system for small-scale helicopters,” in IEEE
International Conference on Robotics and Automation, 2010, pp. 3335–3340.

[14] K. A. O. Suzuki, P. Kemper Filho, and J. R. Morrison, “Automatic battery replacement
system for uavs: Analysis and design,” Journal of Intelligent & Robotic Systems, vol. 65,
no. 1, pp. 563–586, 2012.

[15] K. Fujii, K. Higuchi, and J. Rekimoto, “Endless flyer: a continuous flying drone with
automatic battery replacement,” in IEEE International Conference on Ubiquitous Intel-
ligence & Computing and IEEE International Conference on Autonomic and & Com-
puting, 2013, pp. 216–223.

[16] F. Bourgault, T. Furukawa, and H. F. Durrant-Whyte, “Decentralized bayesian negotia-
tion for cooperative search,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2004, pp. 2681–2686.

[17] J. Gancet, G. Hattenberger, R. Alami, and S. Lacroix, “Task planning and control for
a multi-UAV system: architecture and algorithms,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2005, pp. 1017–1022.

[18] P. Doherty, J. Kvarnström, P. Rudol, M. Wzorek, G. Conte, C. Berger, T. Hinzmann,
and T. Stastny, A Collaborative Framework for 3D Mapping Using Unmanned Aerial
Vehicles. Springer, 2016, pp. 110–130.

[19] J. Kim, B. D. Song, and J. R. Morrison, “On the scheduling of systems of UAVs and
fuel service stations for long-term mission fulfillment,” Journal of Intelligent & Robotic
Systems, vol. 70, no. 1, pp. 347–359, 2013.

[20] S. Blumenthal and H. Bruyninckx, “Towards a domain specific language for a scene
graph based robotic world model,” arXiv preprint arXiv:1408.0200, 2014.

[21] S. Blumenthal, N. Hochgeschwender, E. Prassler, H. Voos, and H. Bruyninckx, “An ap-
proach for a distributed world model with qos-based perception algorithm adaptation,”
in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on.
IEEE, 2015, pp. 1806–1811.

[22] S. Blumenthal, B. Brieber, N. Huebel, F. Yazdani, M. Beetz, and H. Bruyninckx, “A
case study for integrating heterogeneous knowledge bases for outdoor environments,” in
Integrating Multiple Knowledge Representation and Reasoning Techniques in Robotics
(MIRROR-16), 2016.

[23] E. Barrett, M. Reiling, G. Barbieri, M. Fumagalli, and R. Carloni, “Mechatronic de-
sign of a variable stiffness robotic arm,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2017.

119

BIBLIOGRAPHY

[24] “MoveIt! motion planning framework,” http://moveit.ros.org/, accessed: 2010-08-01.

[25] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam with rao-
blackwellized particle filters by adaptive proposals and selective resampling,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE Interna-
tional Conference on. IEEE, 2005, pp. 2432–2437.

[26] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with
rao-blackwellized particle filters,” IEEE transactions on Robotics, vol. 23, no. 1, pp.
34–46, 2007.

[27] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible and scalable slam
system with full 3d motion estimation,” in Proc. IEEE International Symposium on
Safety, Security and Rescue Robotics (SSRR). IEEE, November 2011.

[28] D. F. Wolf and G. S. Sukhatme, “Semantic mapping using mobile robots,” IEEE Trans-
actions on Robotics, vol. 24, no. 2, pp. 245–258, 2008.

[29] A. Pronobis, “Semantic mapping with mobile robots,” Ph.D. dissertation, KTH Royal
Institute of Technology, 2011.

[30] B. Kuipers and Y.-T. Byun, “A robot exploration and mapping strategy based on a se-
mantic hierarchy of spatial representations,” Robotics and autonomous systems, vol. 8,
no. 1, pp. 47–63, 1991.

[31] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via search in state lat-
tices,” in International Symposium on Artificial Intelligence, Robotics, and Automation
in Space, 2005, pp. 1–7.

[32] R. A. Knepper and A. Kelly, “High performance state lattice planning using heuristic
look-up tables.” in IROS, 2006, pp. 3375–3380.

[33] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning for au-
tonomous driving with a conformal spatiotemporal lattice,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp. 4889–4895.

[34] M. Rufli, D. Ferguson, and R. Siegwart, “Smooth path planning in constrained environ-
ments,” in Robotics and Automation, 2009. ICRA’09. IEEE International Conference
on. IEEE, 2009, pp. 3780–3785.

[35] J. Borenstein and L. Feng, “Measurement and correction of systematic odometry errors
in mobile robots,” IEEE Transactions on robotics and automation, vol. 12, no. 6, pp.
869–880, 1996.

[36] K. W. Eure, C. C. Quach, S. L. Vazquez, E. F. Hogge, and B. L. Hill, “An application
of uav attitude estimation using a low-cost inertial navigation system,” 2013.

120

BIBLIOGRAPHY

[37] C. C. Ward and K. Iagnemma, “Model-based wheel slip detection for outdoor mobile
robots,” in Robotics and Automation, 2007 IEEE International Conference on. IEEE,
2007, pp. 2724–2729.

[38] J. Yi, J. Zhang, D. Song, and S. Jayasuriya, “Imu-based localization and slip estimation
for skid-steered mobile robots,” in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on. IEEE, 2007, pp. 2845–2850.

[39] A. Censi, “An icp variant using a point-to-line metric,” in Robotics and Automation,
2008. ICRA 2008. IEEE International Conference on. IEEE, 2008, pp. 19–25.

[40] J. Minguez, F. Lamiraux, and L. Montesano, “Metric-based scan matching algo-
rithms for mobile robot displacement estimation,” in IEEE International Conference
on Robotics and Automation, vol. 4. Citeseer, 2005, p. 3557.

[41] L. Montesano, J. Minguez, and L. Montano, “Probabilistic scan matching for motion es-
timation in unstructured environments,” in Intelligent Robots and Systems, 2005.(IROS
2005). 2005 IEEE/RSJ International Conference on. IEEE, 2005, pp. 3499–3504.

[42] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[43] Opencv camera calibration tool in ros. [Online]. Available: http://wiki.ros.org/
camera calibration

[44] G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart, “Fusion of imu and vision for
absolute scale estimation in monocular slam,” Journal of intelligent & robotic systems,
vol. 61, no. 1, pp. 287–299, 2011.

[45] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruction in real-time,”
in Intelligent Vehicles Symposium (IV), 2011.

[46] B. Kitt, A. Geiger, and H. Lategahn, “Visual odometry based on stereo image sequences
with ransac-based outlier rejection scheme,” in Intelligent Vehicles Symposium (IV),
2010.

[47] W. Förstner, “A feature based correspondence algorithm for image matching,” Interna-
tional Archives of Photogrammetry and Remote Sensing, vol. 26, no. 3, pp. 150–166,
1986.

[48] C. G. Harris and J. Pike, “3d positional integration from image sequences,” Image and
Vision Computing, vol. 6, no. 2, pp. 87–90, 1988.

[49] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” Com-
puter vision–ECCV 2006, pp. 430–443, 2006.

[50] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

121

BIBLIOGRAPHY

[51] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” Computer
vision–ECCV 2006, pp. 404–417, 2006.

[52] M. Agrawal, K. Konolige, and M. Blas, “Censure: Center surround extremas for re-
altime feature detection and matching,” Computer Vision–ECCV 2008, pp. 102–115,
2008.

[53] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fit-
ting with applications to image analysis and automated cartography,” Communications
of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[54] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustmen-
tâĂŤa modern synthesis,” in International workshop on vision algorithms. Springer,
1999, pp. 298–372.

[55] J. Aulinas, Y. R. Petillot, J. Salvi, and X. Lladó, “The slam problem: a survey.” CCIA,
vol. 184, no. 1, pp. 363–371, 2008.

[56] E. W. Nettleton, P. W. Gibbens, and H. F. Durrant-Whyte, “Closed form solutions to
the multiple platform simultaneous localization and map building(slam) problem,” in
PROC SPIE INT SOC OPT ENG, vol. 4051, 2000, pp. 428–437.

[57] G. Huang, A. Rad, and Y. Wong, “Online slam in dynamic environments,” in Advanced
Robotics, 2005. ICAR’05. Proceedings., 12th International Conference on. IEEE,
2005, pp. 262–267.

[58] Y.-D. Jian and F. Dellaert, “ispcg: Incremental subgraph-preconditioned conjugate gra-
dient method for online slam with many loop-closures,” in Intelligent Robots and Sys-
tems (IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014, pp.
2647–2653.

[59] V. C. Guizilini and J. Okamoto, “Solving the online slam problem with an omnidirec-
tional vision system,” in International Conference on Neural Information Processing.
Springer, 2008, pp. 1110–1117.

[60] P. Moutarlier and R. Chatila, “An experimental system for incremental environment
modelling by an autonomous mobile robot,” in Experimental Robotics I. Springer,
1990, pp. 327–346.

[61] ——, “Stochastic multisensory data fusion for mobile robot location and environment
modeling,” in 5th Int. Symposium on Robotics Research, vol. 1. Tokyo, 1989.

[62] F. Lu and E. Milios, “Globally consistent range scan alignment for environment map-
ping,” Autonomous robots, vol. 4, no. 4, pp. 333–349, 1997.

[63] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization and mapping via
square root information smoothing,” The International Journal of Robotics Research,
vol. 25, no. 12, pp. 1181–1203, 2006.

122

BIBLIOGRAPHY

[64] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent maps by relax-
ation,” in Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International
Conference on, vol. 4. IEEE, 2000, pp. 3841–3846.

[65] ——, “Fast, on-line learning of globally consistent maps,” Autonomous Robots, vol. 12,
no. 3, pp. 287–300, 2002.

[66] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., “Fastslam: A factored solution
to the simultaneous localization and mapping problem,” in Aaai/iaai, 2002, pp. 593–
598.

[67] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, 2014.

[68] J. Guivant, E. Nebot, and S. Baiker, “Autonomous navigation and map building using
laser range sensors in outdoor applications,” Journal of robotic systems, vol. 17, no. 10,
pp. 565–583, 2000.

[69] D. H. D. Fox, W. Burgard, and S. Thrun, “A highly efficient fastslam algorithm for gen-
erating cyclic maps of large-scale environments from raw laser range measurements,”
in Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems,
2003.

[70] Slma gmapping, implementation of particle filter based slam in ros. [Online]. Available:
http://wiki.ros.org/slam gmapping

[71] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible and scalable slam
system with full 3d motion estimation,” in Proc. IEEE International Symposium on
Safety, Security and Rescue Robotics (SSRR). IEEE, November 2011.

[72] Hector slam, implementation of slam in ros. [Online]. Available: http://wiki.ros.org/
hector slam

[73] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative to sift
or surf,” in Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE,
2011, pp. 2564–2571.

[74] ——, “Orb: An efficient alternative to sift or surf,” in Computer Vision (ICCV), 2011
IEEE International Conference on. IEEE, 2011, pp. 2564–2571.

[75] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent
elementary features,” Computer Vision–ECCV 2010, pp. 778–792, 2010.

[76] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM system for
monocular, stereo and RGB-D cameras,” arXiv preprint arXiv:1610.06475, 2016.

[77] W. T. Higgins, “A comparison of complementary and kalman filtering,” IEEE Transac-
tions on Aerospace and Electronic Systems, no. 3, pp. 321–325, 1975.

123

BIBLIOGRAPHY

[78] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[79] M. Furci, “Mobile robots control and path planning strategies,” Ph.D. dissertation, Fac-
ulty of Engineering, Alma Mater Studiorum - University of Bologna, 2016.

[80] E. Barrett, M. Fumagalli, and R. Carloni, “Elastic energy storage in leaf springs for a
lever-arm based variable stiffness actuator,” in Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on. IEEE, 2016, pp. 537–542.

[81] T. Yoshikawa, Foundations of robotics: analysis and control. MIT press, 1990.

[82] Y. Nakamura, Advanced robotics : redundancy and optimization. Addison-Wesley,
1991.

[83] T. F. Chan and R. V. Dubey, “A weighted least-norm solution based scheme for avoid-
ing joint limits for redundant joint manipulators,” IEEE Transactions on Robotics and
Automation, vol. 11, no. 2, pp. 286–292, 1995.

[84] A. Isidori, “Nonlinear control systems ii,” 2000.

[85] ASUS XtionPRO kinect sensor. https://www.asus.com/3D-Sensor/Xtion PRO/.

[86] OpenNI Tracker kinect open source interface software. http://wiki.ros.org/openni
tracker.

[87] B. An, Z. Shen, C. Miao, and D. Cheng, “Algorithms for transitive dependence-based
coalition formation,” IEEE Transactions on Industrial Informatics, vol. 3, no. 3, pp.
234–245, 2007.

[88] A. Ghazikhani, H. R. Mashadi, and R. Monsefi, “A novel algorithm for coalition forma-
tion in multi-agent systems using cooperative game theory,” in Electrical Engineering
(ICEE), 2010 18th Iranian Conference on. IEEE, 2010, pp. 512–516.

[89] A. Kelly and B. Nagy, “Reactive nonholonomic trajectory generation via parametric
optimal control,” The International Journal of Robotics Research, vol. 22, no. 7-8, pp.
583–601, 2003.

[90] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory generation for wheeled
mobile robots,” The International Journal of Robotics Research, vol. 26, no. 2, pp. 141–
166, 2007.

[91] T. M. Howard, M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Model-predictive motion
planning: Several key developments for autonomous mobile robots,” IEEE Robotics &
Automation Magazine, vol. 21, no. 1, pp. 64–73, 2014.

[92] J. Engwerda, LQ dynamic optimization and differential games. John Wiley & Sons,
2005.

[93] N. Jarrassé, T. Charalambous, and E. Burdet, “A framework to describe, analyze and
generate interactive motor behaviors,” PloS one, vol. 7, no. 11, p. e49945, 2012.

124

BIBLIOGRAPHY

[94] K. E. Parsopoulos, M. N. Vrahatis et al., “Particle swarm optimization method for
constrained optimization problems,” Intelligent Technologies–Theory and Application:
New Trends in Intelligent Technologies, vol. 76, no. 1, pp. 214–220, 2002.

[95] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, no. 3.2, 2009, p. 5.

[96] I. I. Saito. Ar track alvar, open source marker tracker. [Online]. Available:
http://wiki.ros.org/ar track alvar

[97] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. Hector slam, open source ros
software. [Online]. Available: http://wiki.ros.org/hector slam

[98] Point cloud library, open source c++ library. [Online]. Available: http://wiki.ros.org/
hector slam

[99] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13
2011.

125

