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ABSTRACT 

Green roofs provide many benefits to the urban environment, but an adequate plant cover is crucial 

in order to achieve optimal performances from these infrastructures. Plant cover improves the roof 

insulation in winter and reduces summer temperatures by shading and transpiration. 

Succulent species, such as Sedum species, are widely used on green roofs, thanks to their drought 

resistance due to CAM metabolism, as well as to the reduced maintenance they need. CAM 

metabolism, however, without diurnal transpiration, is responsible for the poor cooling 

performances in summer. In addition, many succulent species have slow colonization rates and/or 

are subject to freezing injury during the winter. A reduced plant cover has direct negative 

consequences both on the cooling by shading and on the winter insulation.  

We investigated how to create green roofs with a good plant cover, optimal summer and winter 

thermal performances and reduced management needs. Primarily, we compared, thought indoor 

experiments, the water losses, the net CO2 assimilation rates and the cooling performances of two 

CAM-facultative, three C3 and one C4 species, under well-watered and drought conditions. Our 

results confirmed that C3 and C4 tested species continue to transpire also when Sedum species 

adopt the CAM metabolism, suppressing the diurnal transpiration. C4 metabolism allows interesting 

transpiration performances, even under very droughty conditions. This has a positive effect on the 

substrate temperatures, but, at the same time, a good canopy cover is necessary. It is fundamental 

for shadow effect in summer, but also to increase the minimal temperatures of substrate in winter.  

We also monitored the way of growth of six native perennial species, cultivated on an experimental 

green roof under a low-input management. The six species, thanks to their different growth 

behaviors, could provide the good coverage necessary to guarantee the main green roof benefits. 
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1. GENERAL INTRODUCTION   

According to Huong and Pathirana (2011), in 2008 for the first time, more than half of the world’s 

population was living in cities. The biggest increase in population in urban areas was due to real population 

growth, to migration from rural areas to the cities and transformation of rural settlements into cities (Huong 

and Pathirana, 2011). The result is an uncontrolled urban sprawl with increasing human settlements, 

industrial growth and infrastructure development (UN, 2006). The increase in artificial surfaces due to 

urbanization causes an increase in flooding frequency due to poor infiltration and reduction of flow 

resistance and to hydrological and hydroclimatological changes (WMO/GWP, 2008). The absence of green 

spaces decreases the evapotranspiration and hence the increase of the “urban heat island” (UHI) effect in the 

urban areas. In fact, the radiative properties of the urban environment are distinctly different, because urban 

areas absorb more radiation due to the nature of the urban canopy. These changes in surface heat budget 

provide the particular atmospheric conditions over urbanized areas that caused the UHI. (Shepherd et al., 

2002; Pathirana et al., 2013). 

These negative effects can be reduced by introducing plant cover on the unutilized surfaces, like the rooftop 

of buildings, as a valuable strategy to make buildings more sustainable (Vijayaraghavan, 2016).  

Green roofs are green infrastructures consisting of vegetation, growth medium layer and other specific 

layers, built over the rooftops of buildings. The role of each component (vegetation, growth medium, filter 

fabric, drainage material, root barrier and insulation) is well defined in engineered green roof system and 

types of each green roof component depends on the geographic location and the climatic conditions 

(Vijayaraghavan, 2016).  

Green roofs are classified into intensive, semi-intensive and extensive green roofs (Snodgrass and McIntyre, 

2010; Vijayaraghavan, 2016). Intensive green roofs (IGR) are characterized by thick substrate layer (more 

than 20 cm), wide variety of plants, high maintenance, high capital cost and greater weight. Thanks to high 

substrate depth, the plant selection can include shrubs and small trees (Berardi et al., 2014). Therefore, 

typically it require high maintenance in the form of fertilizing, weeding and watering. On the other hand, 

extensive green roofs (EGR) are characterized by thin substrate layer (about 15 cm), low capital cost, low 

weight and very low maintenance. (Because of the thin substrate layer, it is possible to plant on EGR limited 

types of plants including grasses, moss and in particular succulent species (Berardi et al., 2014). EGRs are 

commonly used in situations where no additional structural support is desired. Semi-intensive green roofs 

accommodate small herbaceous plants, small grasses and small shrubs due to moderately thick substrate 

layer. These roofs require frequent maintenance as well as sustained high capital costs. Of the three types, 

EGRs are most common around the world due to building weight restrictions, costs and maintenance 

(Vijayaraghavan, 2016). However, there is no roof without maintenance, green or traditional (Snodgrass and 

McIntyre, 2010). The maintenance required will depend on the outcome desired by the client, for this reason, 

it is preferable to plan the maintenance schedule with the client during the design process. The maintenance 

of green roofs is considered as one of the greatest barriers to their installation. For example, usually, for 

extensive green roofs with Sedum mix it is recommending weeding three times a year and application of 

fertilizer once a year. Semi-intensive roofs and intensive green roofs, designed with aesthetic appeal or the 

functionality of a roof garden, will necessarily require a more intensive maintenance regime, as in most 

gardens.  
A proper maintenance schedule often makes the difference between a thriving green roof and failed one. 

(Snodgrass and McIntyre, 2010). 

Modern green roofs started to be designed, developed and marketed on a larger scale at the turn of the 20
th
 

century in Germany (Oberndorfer et al., 2007). At first, vegetation was installed on roofs as fire-retardant 

(Köhler 2003) or to mitigate the damaging physical effects of solar radiation on the roof structure 

(Oberndorfer et al., 2007). In the 1970s, growing environmental concern, especially in urban areas, created 

opportunities to introduce progressive environmental thought in Germany and then in neighboring European 

countries and in other parts of the world. It is estimated that the green roof coverage in Germany alone 

increases by approximately 13.5 million m
2
 per year (Oberndorfer et al., 2007); whereby 10 % of its 

buildings utilize green roof technology (Vijayaraghavan, 2016). 

Countries like USA, Canada, Australia, Singapore and Japan are encouraging the construction of new roofs 

or to retrofit old buildings so green roofs can be added in the future. For example, in Toronto (Canada), the 
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law requires that on all new buildings with an area equal to or greater than 2000 m
2
, there is a green roof on 

20 - 60% of the roof surface (Chen, 2013; Vijayaraghavan, 2016). Similarly, Tokyo (Japan) impose that 

private buildings larger than 1000 m
2
 and public buildings larger than 250 m

2
 must green 20 % of the rooftop 

or pay an annual penalty of USD 2000 (Chen, 2013). Regarding to the USA, in Portland it is required that 

green roofs cover at least 70 % of the roof (Townshend, 2007). About 2 acres (0.81 ha) of green roofs were 

build in Portland (USA) in 2005 an approximately another 2 acres were committed (Townshend, 2007). Also 

the government of Hong Kong, encourages the construction of green roofs (Zhang et al., 2012). 

Green roofs present numerous economic and social benefits in addition to more obvious environmental 

advantages such as storm–water management, decreased energy consumption of buildings, improved water 

and air quality, decreased noise pollution, extended roof life, reduced UHI and increased green space in 

urban environments (Speak et al., 2013; Eksi et al., 2017). In the order to increase knowledge about these 

benefits, the pace and number of publications in the field of green roof increased significantly all over the 

world compared to early 2000 (Vijayaraghavan, 2016). However, each country with different climatic 

conditions and building characteristics needs local research to identify the best components (vegetation, 

substrate or stratification) for successful establishment of green roofs (Del Barrio, 1998; Vijayaraghavan, 

2016). These aspects acted as driving force behind the increase in green roof research. For example, 

Graceson et al. (2014) and Vijayaraghavan and Raja (2014) tested different types of waste material (like 

crushed bricks and composted green waste) as green roof substrate (Graceson et al., 2014; Vijayaraghavan 

and Raja, 2014). On the other hand, Razzaghmanesh et al. (2014) examined several indigenous Australian 

ground covers and grass species and identified that Carpobrotus rossii tolerated hot and dry conditions of 

South Australia with 100 % survival rate and maximum growth (Razzaghmanesh et al., 2014; 

Vijayaraghavan, 2016). Closer to the Mediterranean area, in Spain, Vestrella et al. (2015) tested two 

simulated green roofs planted with a variety of species (divided into three groups according to growth form) 

and subjected to both minimal irrigation and no irrigation treatment. This study demonstrated that it is 

possible to obtain good results from a Mediterranean green roof but an appropriate combination of vegetal 

species with different structures and development, was necessary.  

 

1.1 Benefits and advantages of green roofs  

Despite the various potential benefits provided by the green roofs have been known since several years, the 

focus of most green roof developers and designers has been mainly addressed to satisfy the aesthetical 

benefits achievable from these structures (Berndtsson et al., 2010). Important environmental benefits, could 

be also achieved, but the majority of commercial green roofs are not designed to meet them (Vijayaraghavan 

and Joshi, 2014). According to Vijayaraghavan (2016), this is caused generally by premature introduction of 

products into the market and lack of researches carried out on the design of green roofs, in particular on the 

choose of plant species to use and how these choices could influence the performances of green roofs 

themselves.  

Below, the state of the art, taken from recent literature on the subject, is presented. Literature concerning the 

thermal performances of green roofs (mitigation of the urban heat island effect, winter insulation), subject to 

which three experiments of the thesis are dedicated, is particularly in-depth. A less extensive survey, 

concerning other environmental benefits that green roofs can provide, is also presented. (Vestrella et al., 

2015).  

 

1.1.1 Thermal performances and energy saving   

As confirmed by the recent work of Eksi et al. (2017), in the last ten years, numerous studies have shown 

that green roofs can lower roof surface, substrate, and waterproof membrane temperatures, as well as 

moderate heat flux into and out of a building and save energy costs for heating and cooling (Saadatian et al., 

2013). Getter et al. (2011) found that a shallow extensive green roof reduced heat flow through the building 

by an average of 13 % in winter and 167 % during summer. Meanwhile, summer temperature values below 

the substrate were 20 °C cooler than the traditional roof without the green roof protection (Getter et al., 

2011). The reductions of temperature fluctuations of roof membranes prolong their lifespan due to less 
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expansion and contraction (Oberndorfer et al., 2007). It is possible to act on the thermal properties of a roof 

in three ways: thought the substrate layer, the plant canopy shades the roof surface and evapotranspiration of 

plant and substrate layers (Ouldboukhitine et al., 2012; Saadatian et al., 2013). The influence of each way 

depends on day to day weather conditions such as solar radiation, air temperature, precipitation and thus 

substrate moisture, and snow cover (Eksi et al., 2017). Other important factors to consider are depth and 

composition of the growing layer, plant species and the green roof management (irrigation and fertilization). 

Some studies have shown that substrate depth and typology influence heat flux into or out of the building 

(Wong et al., 2003; Sailor, 2008). Solar radiation can heat the entire substrate volume much faster when the 

depth is shallow (Jim and Peng, 2012). On the other hands, Lundholm et al. (2014) reported that the 

substrate depth from 7.5 cm to 15 cm had no impact in lowering net heat loss (Lundholm et al., 2014). This 

contradiction could be due to substrate composition and compaction. Sailor and Hagos (2011) concluded that 

substrates consisting of heat-expanded slate showed a thermal conductivity that was two to three times more 

than substrates that incorporated a silica-based aggregate (Sailor and Hagos, 2011). Thus, besides the 

substrate typology, also the density, particle size and air pockets in the substrate influence thermal 

conductivity of green roofs (Saadatian et al., 2013). As density increases, thermal conductivity and heat flux 

will also increase (Castleton et al., 2010). The aging of the substrate increases the compactness, consequently 

thermal conductivity is likely to increase and thus the substrate’s ability to act as an insulator will decrease. 

Thermal conductivities may also decrease by 30 – 40 % than original values due to compaction (Sailor and 

Hagos, 2011).  

Transpiration activity of plants influences the temperatures. Thus, in theory, plant species with 

greater biomass and higher transpiration rates should provide a greater cooling effect (Eksi et al., 

2017). This has been shown to be true (Tabares-Velasco and Srebric, 2009; Fioretti et al., 2010), but, in other 

situations this has been shown not to be true (Franzaring et al., 2016; MacIvor et al., 2016). Leaf area index 

(LAI), stomatal resistance, height, coverage and albedo are five characteristics that influence the plants 

thermal performances (Saadatian et al., 2013). Plants increase the cooling during summer, but plant type can 

also influence the depth of snow cover during winter that has an effect on heat flux in the winter (Lundholm 

et al., 2014; Buckland-Nicks et. al., 2016). Although, plant transpiration rates has an effect on cooling, plant 

coverage of the surface may be more important (Eksi et al., 2017). Shade provided by higher LAI will 

influence the overall albedo of the roof (Sailor, 2008) and decrease solar radiation that reaches the substrate 

surface (Yaghoobian and Srebric, 2015; Eksi et al., 2017). The surface cooling potential due to broadleaf 

was confirmed by Blanusa et al. (2013) that showed a significant reduction of surface temperature up to 12 

°C. Furthermore, Bowler et al. (2010) measured the daily gain in heat on roofs containing shrubs, trees, turf, 

and bare soil (Bowler et al., 2010). All daily gain in heat of these roofs was significantly higher than the 

conventional roof. Analyzing more in detail the influence of growth form of species used and the structure of 

the plant cover, Franzaring et al. (2016) reported that monocultures of Phedimus floriferus (a succulent 

species with wide and water-filled leaves) and Lotus corniculatus (a common flowering plant with small but 

wide compound leaves (made up 3 leaflets) provided better cooling than the erect species Dianthus 

carthusianorum and the grass Koeleria glauca (two erect species characterized by narrow leaves). These 

results are probably due to the ability of the first two species to shadow the substrate more efficiently than 

the upright, blade-leaved species. In addition to the morphological features of different plant species, 

Lundholm et al. (2015), testing 21 herbaceous species with different growth form, found that substrate 

cooling was strongly related to canopy density. 

 

1.1.2 Other environmental benefits 

The thermal performance of green roofs is ones of the most studied green roof’s benefits due to its high 

influence on UHI effect thus, also for this reason, it is the principal aspect of green roof considered in this 

thesis. However, green roofs offer additional economic and ecological services, such as storm-water 

management, reduction of noise and air pollution, improving roof membrane longevity, providing space for 

urban food production, providing habitat for wildlife, and improving human health (Eksi et al., 2017). 

STORM-WATER MANAGEMENT. From a hydraulic perspective, urban areas are dominated by hard, 

waterproof surfaces that contribute to heavy runoff, which can overburden existing storm-water management 

facilities and cause combined sewage overflow into lakes and rivers (Oberndorfer et al., 2007). In addition to 

increase the flooding, erosion, and sedimentation, urban rainwater is also charged with pollutants such as 

pesticides and petroleum residues, which pollute wildlife habitats and drinking supplies (Moran et al., 2005). 

Several studies have shown that green roofs have significant effects on retaining rainfall volumes (Garofalo 

http://www.sciencedirect.com/science/article/pii/S0925857416303469#bib0150


4 
 

et al., 2016), delaying the peak flow rate (Sailor, 2008; Garofalo et al., 2016) and reducing the runoff volume 

discharged into the combined sewer systems (CSSs) (Jim and Peng, 2012; Garofalo et al., 2016). Green roofs 

are ideal for urban storm-water management because they make use of existing roof space to store water 

during rainfall events, delaying runoff until after peak rainfall and returning precipitation to the land. 

DeNardo et al. (2005) and VanWoert et al. (2005) showed that green roofs could lead to 60 % runoff 

mitigation for extensive green roofs and up to 90 % for intensive green roofs. Moran et al. (2005), in Oregon, 

observed that rainfall retention from specific green roofs was 66 % to 69 % for roofs with more than 10 cm 

of substrate. 

Factors which influence green roof water retention capacity and runoff dynamics depend on weather 

conditions (air temperature, wind conditions, humidity and characteristics of rain event) and on the green 

roof characteristics (Berardi et al., 2014).  For example the number of layers and type of materials, soil 

thickness, soil type, roof geometry, roof position (e.g. shadowed or not, faced direction), roof age but in 

particular the vegetation cover and type of vegetation.  

In general, green roofs can reduce annual total building runoff by as much as 60 % to 79 % (Köhler et al., 

2002), and estimates based on 10 % green-roof coverage suggest that they can reduce overall regional runoff 

by about 2.7 % (Mentens et al. 2005).  

 

WATER QUALITY. The role of green roofs in storm-water retention is well understood, but some research 

demonstrates that green-roof runoff includes increased levels of nitrogen and phosphorus due to leaching 

from the substrate (Dunnett and Kingsbury, 2004; Moran et al., 2005). Organic matter, nutrients, and 

contaminants in the growing medium or roof membranes can cause discharged water to be a new source of 

surface-water pollution. Reducing the fertilization of green roof vegetation should also improve runoff water 

quality but may reduce plant growth and coverage. Selecting plants that optimize the uptake of nutrients and 

contaminants may help to reduce pollutants in runoff while promoting plant survival (Oberndorfer et al., 

2007). 

 

AIR QUALITY. Vegetation growing on rooftops partially substitutes the vegetation demolished during 

construction.  Green roofs, despite the low plant biomass they host, could be an urban carbon sink. It is well 

known, futhermore, that urban vegetation is able to trap airborne particulates and to take up other 

contaminants such as nitrogen oxides. The potential benefits of roof greening for reducing the air pollution of 

NOx, SO2 and PM10 are documented by Speak et al. (2014). Similarly, in Singapore, Tan and Sia (2005) 

reported that the contribution of green roofs on air pollutions reducing (in particular, SO2) was around up to 

37 % pollution removal.  

Another important aspect to consider is the indirect reduction in pollution levels due to the energy saving of 

building and UHI reduction.  

As UHI increases radiant temperature in the urban contest, thus, the effectiveness of green roofs in reducing 

the heat island will indirectly result in reducing energy consumption necessary for cooling loads of buildings 

(Berardi et al., 2104). Many studies evaluated how the decrease of through green roofs would reduce the 

level of pollution indirectly (Berardi et al., 2014). 

 

SOUND INSULATION AND NOISE REDUCTION. Green roofs have often been proposed for their ability 

to sound absorption and noise insulation (Connelly and Hodgson, 2008; Van Renterghem and Botteldooren, 

2011; Berardi et al., 2014). Considering the transmission loss (TL), the number of sound decibels that are 

stopped by traditional roof (the reference roof) and two green roofs with two different depths of substrate 

(7.5 cm and 15 cm), Connelly and Hodgson (2008) revealed that the increase of TL through the green roof 

7.5 cm depth at different frequencies was less consistent than through the green roof 15 cm depth. Also, it 

was demonstrate that deep green roof increased the TL between 5 dB and 13 dB at low and mid frequency 

bands (50–2000 Hz) and of less than 6 dB at higher frequencies. In addition, it is demonstrated that, on an 

urban scale, the green roofs decrease the noises at street level in urban areas thanks to the high absorption 

coefficient of the vegetation layer (Yang et al., 2012; Berardi et al., 2014). Obviously, this benefit is more 

evident in low green roofs because they are exposed to the direct urban noise.  

 

IMPROVING ROOF MEMBRANE LONGEVITY. Waterproofing membranes on conventional roofs 

deteriorate rapidly because of the solar irradiation, in particular due to ultraviolet (UV) light. Also, 

membranes are consequently more easily damaged by widely fluctuating roof temperatures. By physically 

protecting against UV light and reducing temperature fluctuations, green roofs extend the life of the roof’s 

waterproofing membrane and improve building energy conservation. Temperature stabilization of the 
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waterproofing membranes by green-roof coverage may extend their useful life by more than 20 years 

(Oberndorfer et al., 2007).  

 

CONTRIBUTION TO URBAN BIODIVERSITY - GREEN ROOFS AS HABITATS. The role of 

biodiversity in living-roof performances has been little investigated, but the few studies made until now 

show promising results for the contribution of green roofs to biodiversity and habitat conservation. Specific 

studies have documented plant, lichens, invertebrate and avian communities on a variety of living-roof types 

in several countries (Coffman and Davis, 2005; Brenneisen, 2006; Kadas, 2006; Köhler, 2006; Orsini et al., 

2014). These findings have mobilized local and national conservation organizations to promote green-roof 

habitats, particularly in Switzerland and the United Kingdom. Furthermore, these results have encouraged 

discussion of green roof design strategies to maximize biodiversity (Brenneisen, 2006).  

Green roofs could be inhabited by various insects, including beetles, ants, flies, bees, spiders, and 

leafhoppers (Coffman and Davis 2005), in particular, also rare and uncommon species of beetles and spiders 

(Brenneisen, 2006; Grant, 2006; Kadas, 2006). Species richness in spider and beetle populations on green 

roofs is positively correlated with plant species diversity and topographic variability (Gedge and Kadas, 

2004). In addition, Kadas (2006) concluded that the potential of these particular artificial habitats is vast 

because he observed that at least 10 % of invertebrate housed were nationally rare or scarce (in UK). 

Green roofs have also been used by nesting birds and native avian communities (Baumann 2006). Rare 

plants and lichens often establish spontaneously on older roofs as well (Brenneisen, 2006, Köhler, 2006). 

Despite the limited size, the green roofs has implications as habitats for the biodiversity and landscape 

properties of areas in which green roofs are installed (Köhler, 2006). 

 

Living roofs, as substitutes for natural and semi-natural environments absent in cities, also provide aesthetic 

and psychological benefits for people in urban areas. Even when green roofs are only accessible as visual 

relief, the benefits may include relaxation and restoration (Hartig et al. 1991), which can improve human 

health. Recently, the concept of green roof has been associated to the enhancement of urban agriculture: food 

production can provide economic and educational benefits to urban dwellers (Oberndorfer et al., 2007; 

Orsini et al., 2014).  

 

1.2 The role of the vegetation layer 

According to the previous literature review, the vegetation layer has an important role on many benefits 

provided by the green roofs, depending on the morphological-structural characteristics, ecological and 

physiological adaptations of the used species. It is thus important to determine which plant species are more 

suitable for these surfaces, in order to obtain some environmental benefits from the vegetation growing under 

so particular and limiting environmental conditions (Butler and Orians, 2011). The main stress factors, 

especially in Mediterranean and sub-Mediterranean areas, are summer water deficit (Carter and Butler, 2008) 

and high temperatures (Martin and Hinckley, 2007).  

The main metabolic ways (CAM and CAM-facultative, C3 and C4) of the plant species represent different 

evolutionary-adaptative responses to the water use. Different advantages/disadvantages come from these 

physio-ecological adaptations (Herrera, 2009). They deserve particular consideration in function of a well 

targeted and aware utilization of species, belonging to these physio-ecological groups, for the vegetation 

layer of green roofs. 

 

1.2.1 CAM and CAM-facultative species 

CAM metabolism is a form of CO2 assimilation that helps to extend the life of plant under drought 

conditions by reducing daytime transpiration. CAM plants CO2 uptake occurs during the night, when stomata 

open; CO2 is combined with phosphoenolpyruvate (PEP) through the action of PEP-carboxylase (PEPC) to 

yield oxaloacetate, which is reduced to malate. Malate is transported into the vacuole following the actively 

transported protons and malic acid accumulates during the night. Nocturnal acid accumulation and nocturnal 

stomatal aperture are the main diagnostic features of CAM. During the day, malate is decarboxylated in the 

cytoplasm, providing ribulose-1,5-bisphoshate carboxylase/oxygenase (Rubisco) with one of its substrates 
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during C3 photosynthesis. The net outcome of the functioning of CAM is that CO2 is fixed with significant 

water saving, relative to C3 photosynthesis, and the water-use efficiency. This means that water-use 

efficiency of CAM species increases, if compared to a C3 plant. 

Three different types of CAM metabolism are known: 1) CAM-obligate, characterized by high nocturnal 

acid accumulation ( H
+
) and CO2 fixation; 2) CAM-facultative, also known as C3-CAM, with a C3 form of 

CO2 fixation in the non-induced state, and small nocturnal CO2 fixation and  H
+
 in the induced state; 3) 

CAM-cycling, with daytime CO2 fixation and  H
+
, but no nocturnal stomatal aperture or with small  H

+
 and 

stomatal closure during the entire day and night in severely stressed plants (Herrera, 2009).  

 

CAM-facultative and CAM-cycling species typically grow in semi-arid regions, on rocks, in general, in 

habitats where water deficit is frequent. It is widely accepted that CAM is an adaptive mechanism which 

optimizes water use under conditions of deficient supply. In CAM-facultative species, CAM metabolism 

may be induced by factors such as drought (Borland and Griffiths, 1990; Herrera et al., 1991), salinity 

(Winter and von Willert, 1972), photoperiod (Brulfert et al., 1988), high  photosynthetic photon flux (PPF) 

(Maxwell, 2002), nitrogen deficiency (Ota, 1988) and phosphorus deficiency (Paul and Cockburn, 1990). 

Briefly, CAM-facultative species have the capacity to use C3 metabolism under well-watered conditions. 

When the availability of water begins to run out, they close stomata during the day to conserve water, and 

open stomata at night, to extract carbon  dioxide when temperatures are cooler. This behavior helps extend 

the life of the plant under drought conditions and allows higher transpiration and biomass production than 

obligate CAM species. This is an important aspect to consider for their use on green roofs. 

 

Succulent CAM species are the most popular types of plants used for extensive green roofs, because of their 

small size, reduced growth rate, short root structure, reduced maintenance, and their ability to limit 

transpiration and store water (Rowe et al., 2012; Berardi et al., 2014). They show the typical strategies of the 

stress-tolerant species (Grime, 1979). It is well know that Sedum album, Sedum acre, Sedum kamtschaticum 
ssp. ellacombianum, Sedum pulchellum, Sedum reflexum, and Sedum spurium survived around 80 days (or 

more) of drought (Rowell et al., 2011) and several species of Sedum survived and maintained active 

photosynthetic metabolism even after four months without water (Rowell et al., 2011). However, low 

transpiration activity, in particular under drought conditions, has a negative influence on the surface 

temperatures of roofs as well as on the mitigation of UHI effect (Eksi et al., 2017). In addition to the low 

transpiration activity, the succulents species are not always suitable for application on the green roof, as they 

have slow colonization rates and are subject to freezing injury during the winter season (Benvenuti and 

Bacci, 2010) and this reduce their leaves’ shading effect. The limited shading effect makes these species 

unable to avoid convective heat transfer under their usually small and narrow leaves; consequently, they 

show a low thermal resistance value (Berardi et al., 2014).  

 

1.2.2 C3 and C4 species.  

C3 photosynthesis is the major of the three metabolic pathways for carbon fixation by plants. About 85 % of 

the plant species are C3, while only 4 % are C4. (Ghannoum, 2009)  The C3 photosynthesis uses the enzyme 

RuBisCO, in relatively inefficient conditions, to fix CO2 from the air and obtain the 3-carbon organic 

intermediate molecule 3-phosphoglycerate. C3 species possess a specific leaf structure, and are not adapted 

to non-optimal environmental conditions. The C3 photosynthesis, in fact, works well in relatively cool and 

wet environments. C3 plants lose 97 % of the water taken up through their roots to transpiration (Raven and 

Edwards, 2001) and water use efficiency (assimilation rate/transpiration rate) is 3-10 times lower in C3 than 

in CAM plants (Kluge  and Ting, 1978). 

As far as the utilization of C3 species for the green-roofs plant cover is concerned, plants with high 

transpiration rate play an important role on the rainfall retention and storage capacity of green roofs during 

storm events (Voyde et al. 2010). Berghage et al. (2007) calculated that plants provide up to 40 % of the 

total storm-water retention response.  

Italian and Mediterranean floras are rich in native C3 herbaceous perennial species, adapted to summer 

drought stress. Benvenuti and Bacci (2010) used wild Mediterranean species, well adapted to summer 

drought stress as an alternative to the Sedum species, to sustain biodiversity, entomofauna and the 

entomophilous pollination.  
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Results obtained by Blanusa et al., (2013) and Vaz Monteiro et al., (2017) showed high influence of 

transpiration activity on the cooling effect during the drought season. They used a range of contrasting plant 

types, succulent and non-succulent species (commercial Sedum mix, Stachys byzantina, Bergenia cordifolia 

and Hedera hibernica). In addition, these two studies demonstrated that, despite the more frequent irrigation 

required by non-succulent species, it is possible to take advantage from other water-saving strategies of 

xerophilous species with hairy and narrow leaves. 

 

The characteristic of C4 photosynthesis is the operation of a CO2-concentrating mechanism in the leaves, 

which serves to saturate photosynthesis and suppress photorespiration in normal air (Ghannoum, 2009). The 

photosynthesis process of C4 plants is divided between mesophyll and bundle sheath cells. The first step 

occurs in the mesophyll and involve the hydration of CO2 into bicarbonate, which reacts with 

phosphoenolpyruvate (PEP) with the aid of PEP carboxylase (PEPC) to produce oxaloacetate. Oxaloacetate 

is converted into other C4 acids (malate, aspartate or alanine) which diffuse into the bundle sheath cells 

where they are decarboxylated, releasing CO2 for fixation by Rubisco and the rest of the C3 cycle.  

Plants with C4 photosynthesis increase water use efficiency and suppress photorespiration during drought 

stress; thus C4 plants are often more competitive than C3 plants in drought environments (Edwards and Ku, 

1987) and in hot sunny environments. As CAM pathway, C4 has evolved independently over two dozen 

times, which suggests it may give plant species in hot climates a significant evolutionary advantage 

(Guralnick et al., 2008).   

 

Although C4 species make a significant contribution to the global carbon budget and their importance to 

future global food security increases because of the global warming (Brown, 1999; Pingali, 2001; 

Ghannoum, 2009), the response of C4 photosynthesis to water stress has been less well analyzed than C3 

ones (Ghannoum, 2009). Several studies (Hura et al, 2007; Ghannoum et al., 2008) compared the behaviors 

of C3 and C4 metabolism under drought conditions, in particular, Hura et al. (2007) observed that Zea mays, 

a C4 species, probably acclimatized more effectively to soil drought through the development of effective 

mechanisms for utilizing excitation energy in the photosynthetic conversion of light, accompanied by the 

mechanism protecting the photosynthetic apparatus against the excess of this energy. 

Staats and Klett (1995) found that S. acre required less irrigation to maintain a pleasing leaf compared with 

C4 plants, but no specific research has been conducted on the use of C4 species on the green roofs, despite 

the efficient use of water of these species. 
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OBJECTIVES OF THESIS 

Starting from the review on green roofs made by Oberndorfer (2007), an increasing number of researches 

and reviews (Benvenuti, 2014; Berardi et al., 2014; Blanusa et al., 2014) began to pay a growing attention to 

environmental performance and the multifunctional benefits that green roofs can provide. 

In the early 2000s (VanWoert et al., 2005; Mentens et al., 2006) the attention to the green roofs was aimed at 

their function of storm water management (limiting the runoff and increasing the water retention), regardless 

of the role played by the vegetation cover to optimize this function. Around the years 2010 (Starry, 2013) the 

efficiency of plant cover is questioned. The school of Reading, linked to the activity of some important plant 

ecologists (Grime et al., 1988) marks an important stage by applying basic knowledge previously acquired 

on a large number of species of British flora, to the realization of experimental green roofs. Plant ecologists 

and agronomists from the Mediterranean area (Benvenuti and Bacci, 2010; Caneva et al., 2013; Benvenuti, 

2014) propose lists of species belonging to the respective flora, or made experiments with species taken from 

these lists, for the realization of green roofs better integrated with the surrounding environmental context. 

In the UK, Blanusa (2013) carried out one of the first studies that investigated on the role of plants on the 

performances of green roof. The different ways and strategies used by the species to grow and spread in the 

space, despite the environmental limits, are ecophysiological knowledge fundamental to optimize the 

relationships between plant species selection and green roof efficiency. 

The European Commission has developed a Green Infrastructure Strategy (COM 2013). This strategy 

promotes the use of green infrastructures (including the green roofs) in order to provide cost-effective 

alternatives to traditional 'grey' infrastructure and offer many benefits for both citizens and biodiversity or to 

restore the degraded ecosystems (EU biodiversity strategy to 2020; Action 6: Restore ecosystems, maintain 

their services and promote the use of green infrastructures). 

This PhD thesis aims to offer a contribution of knowledge on the use of alternative species (C3 and C4) on 

the green roofs through the results of a series of experiments performed in greenhouses and in open 

environments.  

In particular, this study aims to answer some specific questions: 

• What advantages and disadvantages can the different transpiration activities and different strategies of 

water use of C3 species (Bromus erectus Huds., Gramineae; Lotus corniculatus L., Leguminosae; Salvia 

officinalis L., Lamiaceae), C4 (Cynodon dactylon (L.) Pers., Gramineae) and CAM-facultative (Sedum 

lydium Boiss and Sedum  kamtschaticum Fisch., Crassulaceae) provide to the cooling effect of green roofs 

during the summer?  

• What are the winter insulation capacities of the same species? 

• Which species of Italian spontaneous flora can be proposed for the realization of green roofs? Considering 

the following species: Festuca ovina L., Gramineae; Thymus serpyllum L., Lamiaceae; Hieracium pilosella 

L., Asteraceae; Acinos alpinus (L.) Moench, Lamiaceae; Sanguisorba minor Scop. Rosaceae and Achillea 

millefolium L., Asteraceae), which morphological parameters and which traits (growth behavior, habitus, 

spreading and seeding capacity) are of particular interest in order to obtain a good plant cover? 

 

 

 

 

 

 

  

http://www.sciencedirect.com/science/article/pii/S0169204605000496#!
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2. THERMAL PERFORMANCES OF PLANT SPECIES 
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2.1 FIRST, SECOND and THIRD EXPERIMENTS: The green roof’s cooling performances: 

results from different plant covers. 

 

 

2.1.1 Introduction and Objectives of the three experiments 

 
The first, second and third experiments were planned in order to accomplish the first objective of the thesis: 

to evaluate the transpiration intensity, at different level of substrate moisture content (SMC), of C3 species 

such as B. erectus, L. corniculatus and Salvia officinalis , of C4 species, such as C. dactylon, and of CAM-

facultative species such as S. lydium and S. kamtschaticum. When the substrate water content decreases, 

these species show different water use strategies, a more or less intense transpiration and, consequently, 

different cooling performances for the green roof surface, where they grow.  

It is well known that CAM-facultative species, even under well-watered conditions (Blanusa et al., 2013), 

have lower transpiration than C3 and C4 species. It is instead not well known how much and how long C3 

and C4 species continue to transpire when the moisture content (SMC) of a commercial substrate for green 

roof progressively decreases and CAM-facultative species switch on the CAM metabolism (no diurnal 

transpiration), and which behaviour C3 and C4 species show. 

In particular, in the first experiment the value of SMC that induces the CAM-facultative species (S. lydium 

and S. kamtschaticum) to shift from the C3 metabolism to the CAM metabolism, strongly diminishing the 

diurnal transpiration in response to water stress, was investigated, as well as the different water losses of 

CAM-facultative and C3 species when SMC progressively decreases.  

The second experiment investigated how much the different gas exchanges of CAM-facultative and C3 

plants influenced the substrate temperatures through measurements of their net CO2 assimilation rates and 

their leaves and substrate temperatures. 

The third experiment is very similar to the first one, but investigated at the same time the three ways of water 

use (CAM-facultative C3, C4), comparing among them the behaviours of S. kamtschaticum, B. erectus and 

C. dactylon when SMC progressively decreases. 

 

 

2.2 FIRST EXPERIMENT: Daily water loss rates in two CAM-facultative species  

(S. lydium and S. kamtschaticum) and two C3 species (L. corniculatus and B. erectus) 

 

2.2.1 Introduction and Objectives 

High temperature and substrate moisture deficit are common on green roofs during the summer season. 

Crassulacean acid metabolism (CAM) allows succulent species growing on green roofs to survive under 

drought, due to the day-time stomatal closure and malate production (Dark CO2 fixation). This reduces the 

transpiration but, consequently, the cooling effect due to the transpiration itself. In this study we compared 

the transpiration rates of two CAM-facultative species (S. lydium and S. kamtschaticum) and two C3 species 

of semi-xeric grasslands (L. corniculatus and B. erectus). CAM-facultative species switch between C3 and 

CAM photosynthesis to respond to environmental conditions, for instance lowering of substrate moisture 

content (SMC). Our aims were to understand the capacity of selected species to continue the 

evapotranspiration process, as the substrate moisture content declines and to establish when the CAM 

behavior occurs in CAM-facultative Sedum species. 

 

2.2.2 Materials and Methods  

Experiment lasted 36 days and it was carried out in the glasshouse of the DipSA Department (University of 

Bologna), with 14°/26°C night/day temperature regime that guarantees a good control of the environmental 

parameters of the glasshouse.  

The tested plant species were two CAM-facultative species (S. lydium and S. kamtschaticum) and two native 

C3 species (L. corniculatus and B. erectus). S. lydium and S. kamtschaticum are of commercial provenance; 
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L. corniculatus and B. erectus were collected from semi-xeric semi-natural grasslands of the Emilian 

Apennines. 

Plants were grown in boxes (40 cm x 30 cm x 22 cm height), where the Harpo/SEIC green roofs 

stratification (water retention layer, drainage layer and filtering layer) was reproduced (Annexes 2,3). Three 

replicate boxes for each species were prepared. Each box was filled with the same plant biomass (about 160 

g) and the same substrate layer (9 cm thick), equivalent to 10.2 kg of commercial green roof substrate 

(Harpo/SEIC extensive substrate). In addition, three control boxes, containing just 10.2 kg of bare substrate, 

were prepared and kept under the same conditions as the vegetated boxes. At the beginning of the 

experiment, all the 15 boxes were watered till the saturation of the substrate (corresponding, on average, to 

SMC 26 % weight of water/weight of the substrate and weighted by an electronic balance (MyScale, 40 kg / 

2g). The SMC at the start of the experiment was obtained by gravimetric method (Lowery et al.,1996): [(wet 

substrate – dry substrate)/dry substrate]*100. No supplementary water was provided until the SMC reached 

3.5 % w/w. SMC decreased over the course of the experiment, that ended for each plant species when the 

SMC of the substrate reached extremely low values (about 3.5 % w/w).  

During the experiment the following parameters were measured: 

- the water content of each box, every 12 hours (at 7 am and 7 pm), by gravimetric method, using the 

electronic balance. The values were expressed as a percentage (w/w) calculated on the total water 

content at the beginning of the experiment. On Saturday and Sunday no weight measures were 

performed. These values were used to calculate the SMC during the experiment. 

- the diurnal water loss of each box, every 24 hours (at 7 pm), by gravimetric method. The daily water 

loss was expressed as a percentage (w/w) calculated on the total water content at the beginning of the 

experiment. It represents the percentage of water loss every day between 7 am and 7 pm. On 

Saturday and Sunday no weight measures were performed. 

- the diurnal evaporation rate, measured every 24 hours as above, of the boxes with the bare substrate 

only. 

- the leaf relative water content (RWC) for all the studied species to monitor plant water status in 

terms of physiological consequence of cellular water deficit. 5 leaves for each box (15 samples for 

each species) where collected three times a week following the procedure described by Peñuelas et 

al., (1999). 

- the nocturnal malate accumulation in S. lydium and S. kamtschaticum leaves, three times a week, 

through the titration method with NaOH following Ting and Hanscom, (1977). 3 leaves/box (9 

samples for each species) where collected. Leaf samples were grinded in distilled water, centrifuged 

at 14000 rpm for 2’ and titrated to pH 7 with 0.01N NaOH. Nocturnal malate accumulation of each 

species at a given date, was expressed as the average value (ml of titrant) of the results of 9 titrations 

(9 leaves). 

 
 

2.2.3 Results 

The average diurnal water losses (“diurnal” means that they are the percentage of water loss between 7 am 

and 7 pm every day) during the whole experiment, for the vegetated boxes and the bare substrate are shown 

in Figure 2.2.1. The average percentages of diurnal water losses, (measured as above) on the whole 

experiment, for the same boxes, are shown in Table 2.2.1 

 

Table 2.2.1 - Average values and standard deviation, on the whole experiment, of the diurnal water losses (measured at 

7 pm every 24 hours as % w/w) for the planted boxes and the bare substrate.   

B. erectus L. corniculatus S. kamtschaticum S. lydium Bare substrate 

4.0 % ± 0.9 

99.4 g/day 

4.0 ± 0.5 

99.2 g/day 

1.6 ± 1.1 

45.5 g/day 

1.5 ± 0.8 

46.5 g/day 

1.3 ± 0.7 

31.9 g/day 

F = 32.67, P = 4.59 E
-16      
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By Table 2.2.1, the boxes planted with B. erectus and L. corniculatus shown average diurnal water losses 

significantly higher than those planted with Sedum species and those with the bare substrate only. The 

vegetated boxes lost, on average, the 4 % of the initial water content. This value is about twice the average 

diurnal water loss of boxes with Sedum species, and about three times the average diurnal water loss of boxes 

with the bare substrate. 

In Figure 2.2.1, it is possible to observe, day by day, the details of the previous results. Boxes with B. erectus 

and L. corniculatus lost, on average, the same diurnal amount of water. However, some interesting 

differences were found. Boxes planted with B. erectus lost more water, than boxes planted with L. 

corniculatus till the 5
th

 day, After, starting from the day 8
th

 and, more evidently, from the day 9
th

, the water 

losses are higher for boxes planted with L. corniculatus, till the end of the experiment at the 12
th
 day. Water 

losses of the boxes planted with S. lydium were higher than those of the boxes with the bare substrate, almost 

during the whole experiment. Only during the period between 17
th

 day to 26
th 

day, S. lydium lost as much 

water as bare substrate (or slightly less). S. kamtschaticum instead, till the 12
th

 day lost more water than S. 

lydium and bare substrate, but from the 16
th

 day and 17
th

 began to lost less water, respectively, than S. lydium 

and bare substrate. This reduction in Sedum’s diurnal water losses probably corresponded with the shift from 

the C3 metabolism to the CAM metabolism.  

 

 

 

Figure 2.2.1 – Average diurnal water losses (percentage of the SMC calculated on the total water content at the 

beginning of the experiment) of the vegetated boxes and the bare substrate measured by gravimetric method every 24 

hours at 7 pm (“n”). The missing days correspond to weekends or other days when the measurements were not done. br 

= B. erectus, lot = L. corniculatus, lyd = S. lydium, kam = S. kamtschaticum. 
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Figure 2.2.2 – Average substrate moisture content (SMC) measured by gravimetric method every 12 hours (n = night, at 

7 pm; d = day, at 7 am) for vegetated and non-vegetated (bare substrate) boxes. The missing data correspond to 

weekends or other days when the measurements were not done. br = B. erectus, lot = L. corniculatus, lyd = S. lydium, 

kam = S. kamtschaticum. 

 

As far as the SMC is concerned, Figure 2.2.2 shows a quick decrease of this parameter for boxes planted 

with B. erectus and L. corniculatus (on average, from 23 % w/w to 4 % w/w in 15 days). Boxes planted with 

Sedum species, instead, reached the same SMC value (about 3 % w/w) at the 32
th
 - 33

th
 day of the 

experiment, Non-vegetated boxes never reached this SMC value; at the end of the experiment the SMC is a 

little less than 5 % w/w. 

During the first 12 days of the experiment, boxes vegetated with the two Sedum species maintained higher 

SMC values that the boxes with bare substrate. During the days between the 13
th

 and the 16
th

, S. 

kamtschaticum firstly and S. lydium secondly, started to increase their diurnal water losses, so the SMC of 

the boxes vegetated with the two Sedum species decreased more quickly than that of the boxes with the bare 

substrate. This could be due to the physiological control by the two species on the internal water content 

when the SMC falls below a given threshold value. 
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Figure 2.2.3 – Relative Water Content (RWC) ± sd measured three times a week at 12 am. br = B. erectus, lot = L. 

corniculatus, lyd = S. lydium, kam = S. kamtschaticum. 

 

Analyzing the RWC values (Figure 2.2.3), it is possible to highlight the different behavior of B. erectus and 

L. corniculatus on one side, and of S. lydium and S. kamtschaticum on the other. The two C3 species showed 

a rapid decline of RWC until to extremely low values at the 15
th 

day (58.2 % in L. corniculatus and 65.5 % 

B. erectus). The two Sedum species maintained values ranging from 80 % to 90 %; only at the end of the 

experiment the RWC values of S. lydium and S. kamtschaticum fall down below 80 %. It is interesting to 

note that at the day 12
th

 S. lydium and S. kamtschaticum reached RWC values very close to 80 % and, around 

the same time, the SMC values in the boxes vegetated with the Sedum species started to become lower than 

the SMC value of the boxes with the bare substrate (Figure 2.2.2). 

The different behavior of B. erectus and L. corniculatus on one side, and of S. lydium and S. kamtschaticum 

on the other is supported by the values of the RWC shown in Table 2.2.3. The average values of RWC in S. 

lydium and S. kamtschaticum are, respectively 82.2 % and 84.4 %; they are not so different from the average 

value of the RWC of B. erectus; however the standard deviation for B. erectus is higher than the standard 

deviation for S. lydium and S. kamtschaticum. Similar conclusions are reached also comparing the RWC 

values (and the corresponding values of standard deviation) of the Sedum species with those of the second 

C3 species tested; L. corniculatus, which also showed lower RWC values that B. erectus, but always high 

standard deviation values. This demonstrates that the two CAM-facultative Sedum species maintained their 

internal water content more constant than the C3 species. 

 

Table 2.2.2 – Maximum, minimum and average values of RWC (%) calculated during the experiment for each species. 

Values of sd and results of ANOVA are also reported.  

 

 

 

 RWC (%) max RWC (%) min Average 

B. erectus 95.9 65.5 86.1 ± 10.9 

L. corniculatus 86.3 58.2 77.6 ± 10.0 

S. kamtschaticum 89.1 77.1 84.4 ± 3.6 

S. lydium 90.0 75.8 82.2 ± 3.1 

F = 2.54, P =  0.0701495 
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The relationships between SMC and RWC (%) (Figure 2.2.4) as well as the correlation coefficient 

calculated for each studied species (Table 2.2.4), support what has been said above.  

 

 

 
 

Figure 2.2.4 – Relationships between SMC and RWC (%) for the four studied species.  

 

 

Table 2.2.3 – Correlation coefficient (R, R
2
 and p values) between SMC and RWC (%) for the four studied species. 

 

 

 

 

B. erectus shown the best value of the correlation coefficient between the two parameters. Its RWC values 

depend (P = 0.080) from the SMC. The RWC values of S. lydium and S. kamtschaticum are instead weakly 

dependent (P = 0.603 for S. lydium; P = 0.423 for S. kamtschaticum) from the SMC of the boxes where they 

growth.  L. corniculatus shown an intermediate behaviour. 

 R R
2
 P 

B. erectus 0.6450 0.4160 P = 0.080, n = 6 

L. corniculatus 0.4623 0.2137 P = 0.294, n = 6 

S. kamtschaticum 0.2634 0.0694 P = 0.423, n = 13 

S. lydium 0.2020 0.0408 P = 0.603, n = 13 
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Figure 2.2.5 – Averages values ± sd of malate concentration in leaves of S. lydium and S. kamtschaticum during the 

experiment (bars). Malate concentration is evaluated as ml of NaOH necessary for the titration. The average values 

(lines) of SMC in the boxes planted with the same species are also shown. lyd = S. lydium, kam = S. kamtschaticum.  

 

 

Figure 2.2.6 – Relationships between the SMC percentages and the malate concentration in leaves (amount of NaOH 

necessary for the titration) of S. kamtschaticum and S. lydium. 

This experiment aimed also to determine which are the values of SMC that switch-on the CAM metabolism 

in the two CAM-facultative species of Sedum. An increase of nocturnal malate concentration in the vacuole 

is a good indicator of the activation of the CAM metabolism. During the night, in fact, a plant employing 

CAM metabolism has its stomata open, allowing CO2 to enter and be fixed as organic acids stored in the 

vacuoles. In this experiment, malate concentration was evaluated through the titration method with NaOH 

following Ting and Hanscom, (1977). 

Results of the titration analyses performed on leaves of S. lydium and S. kamtschaticum are shown in Figure 

2.2.5. In the same figure, the average values of SMC in the boxes planted with the two Sedum species are 

shown. Figure 2.2.6 shows the relationships between these two parameters. They were significantly 

negatively correlated (R = 0.8411, R
2
 = 0.7075, P < 0.001, n = 17 for S. kamtschaticum; R =0.8808, R

2 
= 

0.7758, P < 0.001, n = 17 for S. lydium). However, the behavior of the two species was different. The 
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nocturnal malate accumulation in S. kamtschaticum sharply increased at day 15
th

 from the start of the 

experiment, when the SMC was about 10 % w/w. At the same date the SMC of boxes with S. lydium was 

higher, about 13 % w/w, and malate accumulation showed an inconspicuous increase. It is interesting to note 

that in S. lydium the malate accumulation was basically less abundant than in S. kamtschaticum, even at 

equal values of SMC. At day 22 from the start of the experiment, for example, when the SMC was on 

average equal to 7.7 % w/w in the boxes with S. lydium, the titration values with NaOH for the malate 

accumulation was on average equal to 0.43 ml. At day 19
th
, instead, when the SMC was on average equal to 

7.6 % w/w for S. kamtschaticum, as above at day 22 for S. lydium, the titration values with NaOH for the 

malate accumulation was on average equal to 0.61 ml.  

From the 24
th

 day, in S. lydium, the titration values with NaOH for the nocturnal malate accumulation 

showed a second increment (from 0.43 ml to 0.68 ml). 

The behavior of the two species was not so different only from day 24 onwards, when the SMC of the boxes 

with S. lydiun and S. kamtschaticum became very low (from about 6 % to 2.5 % w/w).  

Assuming that the first recorded increase of malate concentration for S. kamtschaticum (day 15) 

corresponded to the shift of the species metabolism from C3  to CAM, this shift took place when the RWC 

values were still high (about 89 %). Not so different were the values of S. kamtschaticum RWC (about 88 

%), when the second high value of malate concentration was recorded (day 24). 

Regarding to S. lydium, the two increments of malate observed at 15
th

 and 24
th
 day, made the identification of 

the shift of the species metabolism more complicated than for S. kamtschaticum. 

However, even for S. lydium, the values of RWC recorded at 15
th

 and 24
th

 day, are particularly high (about 

83 %). 

In Table 2.2.3 the daily water losses of the planted boxes and of the bare substrate boxes are compared, at 

different values of SMC. At about the 11 % w/w of SMC, when S. kamtschaticum shifts to the CAM 

metabolism and the boxes where it grows significantly decreases their diurnal water losses (day 16 in Figure 

2.2.2), C3 species such as B. erectus and L. corniculatus continued to lose more water than Sedum ones 

(approximately two times more). 

Under 6 % w/w of SMC, the gap between C3 species and CAM-facultative Sedum increased. B. erectus and 

L. corniculatus, respectively, lost three and four time more water (% w/w) than S. kamtschaticum and S. 

lydium. 
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Table 2.2.3 – Mean diurnal water loss (± sd) of the studied species and of the bare substrate at different SMC values. 

For each value of SMC, results of the ANOVA on the mean daily water loss (%) are also reported.   

 

2.2.4 Discussion and Conclusions - first experiment  

The first experiment has analysed in depth the transpiration of B. erectus, L. corniculatus, S. lydium and S. 

kamtschaticum when the available water decreases, under 14°/26°C night/day temperature regime and other 

experimental conditions as described in Materials and Methods. 

Results obtained confirmed the different behavior of C3 species such as B. erectus and L. corniculatus, and of CAM-

facultative species such as S. lydium and S. kamtschaticum.  

B. erectus and L. corniculatus continued to transpire even at very low value of SMC (around 6 % w/w), S. lydium and S. 

kamtschaticum, which since the first days of the experiment showed the lower diurnal water losses, reduced further their 

diurnal transpiration very early, even at considerable values of SMC. 

This further reduction of diurnal water losses of Sedum species coincides with a significant increase of the 

malate accumulated during the night (from 11 % to 6 % w/w of SMC) therefore, the reduction in 

transpiration is due to the activation of CAM metabolism in optional CAM species. 

Comparing diurnal water loss rates of B. erectus and L. corniculatus with those of the bare substrate (Table 

2.2.3), the two C3 species, in theory, can efficaciously contribute in cooling performances of a green roof. 

SMC about 20 % w/w (Well-watered condition) 
 Mean diurnal water loss (%) Mean diurnal water loss (g) 

bare substrate 1.9 ± 0.1  46.6 g 

B. erectus 4.4 ± 0.1 109.3 g 

L. corniculatus 3.6 ± 0.3 89.2 g 

S. kamtschaticum  2.4 ± 0.2 68.3 g 

S. lydium 1.8 ± 0.1 55.8 g 

   

F = 104.20, P = 4.15 E
-08

 

LSD = 0.4, P = 0.05 

SMC about 11 % w/w (First malate increase for S. kamtschaticum) 
 Mean diurnal water loss (%) Mean diurnal water loss (g) 

bare substrate 1.2 ± 0.1 29.5 g 

B. erectus 3.6 ± 0.3 89.5 g 

L. corniculatus 3.6 ± 0.3 89.2 g 

S. kamtschaticum  1.5 ± 0.1 42.7 g 

S. lydium 1.5 ± 0.1 46.5 g 

   

F = 75.25, P = 2.01 E-07 

LSD = 0.7, P = 0.05 

SMC about 6 % w/w (Second malate increase for S. lydium) 
 Mean diurnal water loss (%) Mean diurnal water loss (g) 

bare substrate 0.4 ± 0.1 9.8 g 

B. erectus 3.1 ± 0.1 77.0 g 

L. corniculatus 3.1 ± 0.3 77.8 g 

S. kamtschaticum  0.3 ± 0.1 8.5 g 

S. lydium 0.9 ± 0.1 27.9 g 

   

F = 213.28, P = 1.24 E
-09

 

LSD = 0.3, P = 0.05 
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Comparing diurnal water loss rates of Sedum species with those of the bare substrate (Table 2.2.3), the scarce 

potential of CAM-facultative plants in cooling performances of a green roof evidently emerges (Vaz 

Monteiro et al., 2017).  

On the other hand, a consequence of this different transpiration behavior is a faster decline of SMC and 

RWC in B. erectus and L. corniculatus than in Sedum species. If the better cooling performances of B. 

erectus and L. corniculatus are required, irrigation is necessary/mandatory. On the basis of the relationships 

highlighted between SMC and transpiration intensity, it could be possible to choose what is the value of 

SMC that allows to maintain a good cooling effect with a moderate supply of irrigation water. 

 

2.3 SECOND EXPERIMENT: The influence of the gas exchange and transpiration of C3 

and CAM-facultative species on the green roof’s cooling performance 

 

2.3.1 Paper presentation  

The microclimatic cooling effect of urban green spaces is well documented (Wolch et al., 2014), in a green 

roof context, microclimatic cooling refers to the process whereby the air over the roof is cooled by 

evapotranspiration and shading effect (Shashua‐Bar et al., 2009) due to both the roof components and the 

plants (Gaffin et al., 2006; Wolf and Lundholm, 2008; Blanusa et al., 2013). Moreover, substrate and 

membrane layers show significant insulation properties well documented by many studies (Del Barrio, 1998; 

Eumorfopoulou and Aravantinos, 1998; Niachou et al., 2001; Onmura et al., 2001; Theodosiou, 2003; Liu, 

2004; Liu and Minor, 2005). Shading and reflection by vegetation can also contribute to cooling (e.g. Vaz 

Monteiro., 2017). At the same time, other experimental studies suggest that the a significant component of 

green roofs cooling is derived from evapotranspiration (Gaffin et al., 2005; Gaffin et al., 2006; Wolf and 

Lundholm, 2008), with up to 30 % of total cooling due to transpiration from plants, through the absorption of 

the heat from the air in the process of latent heat flux (Takakura et al., 2000). Transpiration rate of plants is 

thus determinant of the thermal functioning of green roof ecosystems. Consequently, it is obvious that the 

choice of plant species, according to the transpiration capacity, to use on green roof have a significant impact 

on the green roof cooling capacity during the summer season. CAM metabolism allows succulent species 

growing on green roofs to survive under drought, due to the day-time stomatal closure and malate 

production. This reduces the transpiration but, consequently also the cooling effect due to the transpiration 

itself. On the other hand, the C3 plant species show higher transpiration rate, but this makes them more 

vulnerable and more susceptible to death during long periods of drought. For these reasons, it is worth 

investigating the use of C3 native species from xeric and semi-xeric habitats. Native plants have evolved to 

grow and survive in their regional microclimatic conditions, pests and diseases (White and Snodgrass, 2003; 

Dewey et al., 2004) and in the Mediterranean area this includes extreme summer weather (without resorting 

to CAM metabolism). 

 

The second experiment was described in the paper accepted for the publication in special issue of Acta 

Horticulturae IRHS, “Greener Cities 2017”. It was performed at the School of Agriculture, Policy and 

Development, University of Reading (UK), during a four months stage under the tutorship of Dr. Tijana 

Blanusa (Principal Horticultural Scientist – Royal Horticural Society) and prof. Paul Hadley (Professor). 

During this abroad period, we analyzed the net CO2 assimilation rates (A) activities of two CAM-facultative 

species (Sedum lydium Boiss and Sedum kamtschaticum Fisch.) and three C3 species (Bromus erectus Huds., 

Lotus corniculatus L., Salvia officinalis L.), during a gradual reduction of moisture content in the growing 

medium layer. This experiment aimed to confirm (and improve) the results of the first experiment. Through 

measures of net CO2 assimilation rate, the transpiration activity of C3 species under drought conditions was 

measured. In addition, measuring the surface temperatures of the experimental boxes through thermocouples, 

it was possible to observe directly if C3 species could have better cooling capacity than CAM-facultative 

species, under well-watered and drought stress conditions. 

http://www.sciencedirect.com/science/article/pii/S0169204614000310#!
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Initially, leaf stomatal conductance (gs) measurement was planned using the porometer (AP4, Delta-T 

device, Cambridge, Cambridgeshire, UK), but preliminary results showed the incompatibility between S. 

lydium and S. officinalis leaves and the porometer because of the problems due to the soft and small leaves of 

S. lydium and the hairy leaves of S. officinalis, in particular under draught condition. Because of many 

problems between porometer and S. officinalis and S. lydium, it was necessary to use only the net CO2 

assimilation rates parameter to obtain an estimate of the plant's transpiration activity of all species. 

 

2.3.2 Preliminary concepts 

2.3.2.1 Leaf gas exchange measurements (A) 

Leaf gas exchange measurements provide direct measure of the net rate of photosynthetic CO2 

assimilation. Conventional gas exchange techniques measure fluxes of water and CO2 into and out 

of a leaves. The gradient in partial pressure of CO2 from ambient air (pa) to the substomatal cavities 

(pi) is derived using Ficks law of diffusion, which states that the gradient in partial pressure is equal 

to the flux divided by the conductance, i.e. pa - pi = A/gs, where A is the rate of CO2 assimilation (or 

Net Assimilation rate) and gs is the stomatal conductance to CO2 (Evans and Caemmerer, 1996). 

Main advantages of gas exchange measurements: instantaneous, non-destructive and direct. CO2 

exchange systems use enclosure methods, where the leaves are closed in a transparent chamber. 

  

2.3.2.2 Leaf Area Index (LAI) 

The leaf area index (LAI) is the main variable used to model canopy photosynthesis and 

evapotranspiration (Weiss et al., 2004). It defines the size of the plant–atmosphere interface and 

thus plays a key role in the exchange of energy and mass between the canopy and the atmosphere 

(Weiss et al., 2004). Values of LAI depend on plant type, and are typically in the range of 0.5–5.0 

(Berardi et al., 2014). It was measured at the end of the second experiment by dividing the leaf area 

of S. officinalis, B. erectus, L. corniculatus, S. lydium and S. kamtschaticum  (measured with Area 

Meter, Delta-T Devices Ltd., Cambridge, UK) by the surface area from which the leaves were 

sampled (six samples per box) as suggested by Blanusa et al. (2013). 
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Abstract         

Crassulacean acid metabolism (CAM) allows succulent species to survive under drought by reducing the 

daytime water loss and gas exchange. We compared gas exchange of two CAM-facultative species (Sedum 

lydium Boiss. and Sedum kamtschaticum Fisch.) and three C3 species of semi-xeric habitats (Lotus 

corniculatus L., Bromus erectus Huds. and Salvia officinalis L.) during a gradual reduction of substrate 

moisture content (SMC). The aim was to describe how the C3 and the CAM-facultative species modify their 

gas exchange rates when the substrate dries out gradually, as well as to identify the critical value of SMC 

that stops the transpiration. Additionally, we tested the cooling capacity of specie in a week-long glasshouse 

experiment, in vegetated containers with commercial green roof substrate. The net CO2 assimilation (A) rates 

of C3 species were significantly higher than those of CAM-facultative species. When SMC fell below 12 % 

v/v, Sedum species showed a rapid decline of A due to the likely switch from C3 to CAM metabolism. 

However, the high rates of gas exchange of C3 species caused a rapid decline of RWC over the course of the 

experiment and death of some leaves. The lower substrate temperatures under C3 plants confirmed the 

positive effect of high gass exchange rates and transpiration on the cooling capacity. We conclude that the 

use of C3 plants, with sustainable irrigation (to maintain at least, on average, 10 % v/v of SMC), has a 

potential to provide greater cooling to a green roof than the use of Sedum species. 

Keywords: Green Infrastructures (GI), cooling effect, wild plants, Net Assimilation rate (A). 

 

Introduction 

Sedum species (family Crassulaceae) are a popular plant choice on green roofs thanks to their ability to 

survive drought by activating the facultative Crassulacean Acid Metabolism (CAM) (Herrera, 2009). 

Facultative CAM plants reduce daytime gas exchange and transpiration under drought conditions, which aids 

survival but decreases the transpirational cooling performance of green roofs. Many C3 wild plant species in 

the Mediterranean area, however, are adapted to grow under harsh conditions without the use of CAM 

metabolism and could thus represent an important resource for increasing the pool of species for green roofs 

(Caneva et al., 2013: Vestrella et al., 2015). In this paper we compared the Net CO2 Assimilation (A) rates of 

two Sedum facultative CAM species (Sedum lydium Boiss and Sedum kamtschaticum Fisch.) and three C3 

species (Bromus erectus Huds., Lotus corniculatus L., Salvia officinalis L.) during a gradual reduction of 

moisture content in the growing medium. The aim was to observe if the evapo-transpiration (estimated via 

net assimilation rate) of C3 species is higher than Sedum. Also to establish a substrate moisture level at which 

Sedum species change their metabolism from C3 to CAM and, consequently, deduce if C3 species could have 

better cooling capacity than facultative CAM species under both well-watered and drought conditions.  
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Materials and Methods 

This study was conducted in the ventilated glasshouses within the School of Agriculture, Policy and 

Development, University of Reading (UK). Twelve boxes ((l) 43.5 cm x (w) 35.0 cm x (d) 9.0 cm) were 

prepared, two for each plant species tested and two with bare substrate (control). All boxes were filled with 

the same weight of green roof substrate (Shire Extensive Substrate, Shire Minerals, UK) and they were 

planted to achieve full ground coverage (Annex 4). All boxes were well watered until the field capacity (on 

average 29 % v/v) 24 h before the start and then, left to dry until reaching critical values of substrate 

moisture content (under 5 % v/v).  During the experimental period (from 14 June to 21 June), the mean 

daytime air temperature ranged 23 °C – 30 °C. 

Net CO2 assimilation rate (A) was measured daily, between 12 pm and 4 pm, using portable infrared gas 

analyzer (LCi Portable Photosynthesis System, ADC BioScientific Ltd, Hoddesdon, UK) , on five leaves or 

sprigs per box. Except for S. officinalis, it was impossible to fit individual leaves into the analyser’s cuvette, 

so sprigs containing several leaves (and covering the entire cuvette) were chosen and repeatedly measured. 

At the end of the experiment, the leaf areas of each spring were determined using a leaf area meter 

(WinDias 3, Leaf Image Analysis System, Delta -T devices Ltd, Cambridge, UK) and assimilation 

outputs adjusted where necessary, to relate to the area of the cuvette (6.25 cm
2
). The substrate moisture 

content (SMC) of each box was monitored daily using SM200 probe (Delta-T devices Ltd., Cambridge, UK). 

The substrate temperatures were monitored continuously using two thermistors (type T fine PTFE insulated 

twin twisted wires. Accuracy: ± 0.1 °C, resolution: ± 0.1 °C) positioned at 1-2 cm depth in the middle of 

each box and connected to the DL2e data logger (Delta-T Devices Ltd, Cambridge, UK; Annex 4); data were 

collected every 1 min and averaged over 30 min. The leaf temperatures were measured daily (concurrently 

with A measurements) for each box using Infrared Thermal Camera NEC TH7700 (NEC San-ei Instruments 

Ltd., Japan). Leaf area index (LAI) of each species was determined at the end of the experiment by dividing 

the plants’ leaf area with the 20 x 20 cm area of the substrate, from which plants were collected. The relative 

water content (RWC) was determined according to Živčák (2008) at the end of experiment. Data were 

statistically analysed using GenStat (15
th

 Edition, Lawes Agricultural Trust, Rothamsted Experimental 

Station, UK) to compare the species for their A and final RWC.  

 

Results 

Net assimilation rate 

The C3 species showed a higher assimilation rates than the two Sedum species; all species showed a rapid 

decline of net A (Table 1) from Day 5, as SMC ranged between 13 % v/v (S. officinalis) and 9 % v/v (B. 

erectus). The net A rate decreased faster for B. erectus and L. corniculatus than Sedum species and S. 

officinalis, particularly between Days 5 and 6. 

 

Leaf temperatures 

All studied species had leaf temperatures that were 1.6-8.8 
o
C lower than surface temperatures of bare 

substrate (Figure 1 A). Between the species, except on Day 3 and on Day 5, B. erectus, L. corniculatus and S. 

officinalis showed lower leaf temperatures than Sedum species for the whole duration of the experiment. On 

average, the leaf temperatures of C3 species were 2.06 
o
C lower than the leaf temperatures of two Sedum 

species. Also during the decline of net A (from Day 5) due to a decrease of SMC, all C3 species continued to 

show the coolest leaf temperatures, in particular S. officinalis.  
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Table 1. - Mean net assimilation rate (µmol m
-2

 s
-1

) and the corresponding substrate moisture content (SMC) value for 

all studies species over the course of the experiment. Net assimilation data are mean of 10 measurements per species. 

The percentages of SMC (v/v) are mean of six measurement per treatment. 

 

Substrate temperatures 

As we expected, substrate temperatures (Figure 1 B) were always cooler than leaf or surface temperatures, 

but we observed also that the substrate temperatures in all planted boxes with plants were lower than in the 

boxes without plants. In general, L. corniculatus had hottest substrate temperatures among the C3 species and 

S. lydium showed the hottest temperatures among all plant species considered. In particular, until the Day 4 

(under well-watered conditions), S. officinalis, B. erectus and S. kamtschaticum showed the lowest substrate 

temperatures (by 3.6 °C lower than bare substrate on Day 3 for example). From the Day 5, when SMC 

decreased under 13 % v/v, all boxes increased their substrate temperatures, but the C3 species continued to 

show the coolest substrate temperatures or, in the worst cases, the same substrate temperatures of Sedum 

species (except for L. corniculatus on Day 7). On Day 6, for example, the C3 species and Sedum species 

showed, on average, temperatures 2.8 °C and 1.6 °C respectively lower than bare substrate. 

On the other hands, Sedum species and S. officinalis, provided a few cooling effect for one more day than L. 

corniculatus and B. erectus for which the experiment ended one day earlier because of their precarious 

conditions due to water stress. 

 

Final Relative Water Content (RWC) 

The C3 species, especially L. corniculatus and B. erectus, showed a poor ability to maintain acceptable 

values of RWC until the end of the experiment, these two species reached critical values of RWC (40 % and 

46 % respectively, data not shown) by Day 7. In fact, the leaves of some individuals of L. corniculatus and 

B. erectus began to rolling already from Day 6. S. officinalis showed, at the end of the experiment (Day 8), 

the highest RWC values (72 %) among the C3 species tested. However, also for this species, at the end of the 

experiment, a few leaves per plant were slightly wilted. 

 

 

Net assimilation rate 

and SMC (v/v) 

Day 1 

14/6 

Day 2 

15/6 

Day 3 

16/6 

Day 4 

17/6 

Day 5 

18/6 

Day 6 

19/6 

Day 7 

20/6 

Day 8 

21/6 

B. erectus 

SMC 

13.79 

29 % 

12.87 

20 % 

12.83 

17 % 

13.97 

14 % 

12.17 

9 % 

3.85 

4 % 

1.00 

2 % 

- 

L. corniculatus 

SMC 

22.76 

26 % 

19.68 

20 % 

22.53 

16 % 

24.14 

15 % 

23.62 

11 % 

11.40 

5 % 

9.32 

4 % 

- 

S. officinalis 

SMC 

17.90 

25 % 

15.99 

21 % 

17.97 

18 % 

18.07 

15 % 

17.63 

13 % 

16.36 

10 % 

10.31 

3 % 

4.75 

2 % 

S. lydium 

SMC 

7.71 

26 % 

8.52 

19 % 

9.11 

17 % 

10.41 

16 % 

7.60 

12 % 

5.50 

10 % 

2.60 

5 % 

0.38 

3 % 

S. kamtschaticum 

SMC 

7.13 

28 % 

5.80 

21 % 

6.69 

19 % 

7.14 

15 % 

5.29 

12 % 

2,73 

6 % 

0.78 

4 % 

0.21 

2 % 

Net assimilation least 

significant difference (LSD) 

2.88 3.37 3.60 3.37 2.31 2.73 2.63 1.78 
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Figure 2 - A) Leaf temperatures and bare substrate temperatures measured between 12 pm and 4 pm. Data are mean of 6 

measurements per species and substrate B) Mean substrate temperatures at 1 cm depth for all species and bare substrate. 

Data are mean of two measurements per treatment. 

 

Discussion 

Net assimilation rate, substrate moisture content and final RWC 

C3 species had higher net A (and thus likely, transpiration rates) than Sedum. In some cases, net assimilation 

values of L. corniculatus exceeded 3-fold those of Sedum (e.g. on Day 5 when SMC was already below 12 % 

v/v). There was a decline of the net assimilation when the substrate moisture reached 12 % v/v in Sedum and 

from 11, 10 and 9 % v/v in L. corniculatus, S. officinalis and B. erectus, respectively. CAM species are 

known to reduce the net assimilation and transpiration in the periods of water stress (Olivares et al., 1984: 

Borland and Griffiths, 1990). In addition, the results of our previous study (D’Arco et al., 2016) showed the 

malate accumulation during the dark period in the S. lydium and S. kamtschaticum leaves, at around 13 - 10 

% v/v of SMC. It is thus likely that the shift we are seeing in Sedum was due to the change from C3 to CAM 

metabolism. The final RWC values showed that the A decline in C3 species is followed by a rapid and 

significant drop in RWC. Sedum species demonstrated to have the capacity to maintain high quantity of 

water in the leaves also under severe drought (> 87 % of RWC when the SMC values dropped below 6 % 

v/v). B. erectus and L. corniculatus plants, which transpired more than Sedum species, reached at the end of 

experiment, values of RWC considered critical (Babu et al., 1999) and started to show the visible signs of 

water stress (rolling leaves and drying). S. officinalis is an exception; it transpired more than Sedum, but at 

the end of the experiment, the average RWC values were still higher than the critical limit and no part of 

plant material was lost. 

We suggest that the use of C3 species (in particular S. officinalis) could increase significantly the cooling 

effect of the green roof through the transpiration at least until about 9 % v/v of SMC. 

Leaf and substrate temperatures 

Active gas exchange (CO2 and water vapour) has an important role in the cooling effect; B. erectus and S. 

officinalis showed the lowest substrate and leaf temperatures and the highest A values until Day 6 when the 

SMC dropped to 4 % v/v and 10 % v/v for these species, respectively. Other factors, including light leaf 

colour and presence of leaf hairs may also explain Salvia’s advantage (Vaz Monteiro et al., 2016).  Despite 

high A, L. corniculatus showed, almost for the whole duration of the experiment, higher substrate 

temperatures than with S. kamtschaticum. This may be explained by the lower LAI of L. corniculatus 

compared to S. kamtchaticum (almost four fold). S. kamtschaticum could thus provide a positive contribution 

B 



25 
 

to the cooling effect by the shading effect of their leaves. Similarly, despite of lower gas exchange of B. 

erectus than L. corniculatus, the substrate of B. erectus was cooler and the LAI value was higher than L. 

corniculatus. The contribution of B. erectus to the cooling effect was likely the sum of a good transpiration 

activity, but also of shading. Otherwise, S. officinalis showed a lower LAI value (4.45) than B. erectus and S. 

kamtschaticum, but the substrate temperatures of boxes with S. officinalis were the coolest thanks to its high 

gas exchange activity. 

 

Conclusions 

This study demonstrates that all C3 species tested showed greater gas exchange activity than S. lydium and S. 

kamtschaticum under well-watered conditions but, also, under drought (from about 10 % v/v of SMC), when 

Sedum facultative CAM species begin to change their metabolism from C3 to CAM. The higher gas 

exchange capacity of C3 species reduces leaf temperatures and consequently increases the cooling effect of 

green roofs particularly during the hot and dry weather. However, this study also revealed that high LAI and 

ground coverage are required in addition to high transpiration activity, to maximize the green roof cooling 

effect. 
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2.4 THIRD EXPERIMENT: Daily water loss rates and decline of SMC in S. kamtschaticum 

(CAM-facultative species), B. erectus (C3 species) and C. dactylon (C4 species) 

  

 

2.4.1 Introduction and Objectives 

The main aim of this experiment was to compare the diurnal water losses of CAM-facultative, C3 and C4 

species and to define how the RWC varies during the decline of substrate moisture content. The species used 

in this experiment were Sedum kamtschaticum Fisch. (CAM-facultative species), Bromus erectus Huds. (C3 

species) and Cynodon dactylon L. (C4 species). As far as these aspects are concerned, the behavior of S. 

kamtschaticum and B. erectus were already tested in the first experiment under 14°/26°C night/day 

temperature regime. The behavior of C. dactylon is instead tested for the first time in this experiment. 

C. dactylon (Bermuda or Couch grass) is a perennial grass, well known for its adaptation to a variety of 

habitat types, its distribution is very wide, but it occurs predominantly in tropical and warm temperate 

regions throughout the world (Hameed and Ashraf, 2008).  

 

2.4.2 Materials and Methods 

The experiment was organized in a similar way as the first experiment and carried out in the greenhouse of 

the Department of Agricultural Science under controlled environmental conditions. The thermal regime, 

however, was different than that of the first experiment, with night/day average temperature regime of 

24°/30°C. B. erectus and C. dactylon plants were collected from semi-natural habitats around Bologna; S. 

kamtschaticum had a commercial origin. For each species three boxes (40 cm x 30 cm x 22 cm height) were 

prepared as in the first experiment (Annexes 2,3)t. Each box was filled with the same plant biomass (about 

270 g) and same substrate layer (9 cm thick), 10.2 kg of commercial dry green roof substrate (Harpo/SEIC 

extensive substrate). In addition, three control boxes, containing just dry bare substrate were prepared and 

kept under the same environmental conditions as the vegetated boxes. They were monitored as control of the 

diurnal water loss due to evaporation only. At the beginning of the experiment, all boxes were watered to the 

saturation, on average, 28 % w/w of SMC and no supplementary water was provided during the experiment. 

The experiment lasted 16 days.  

During the experiment the following parameters were measured: 

- the water content of each box, every 12 hours (at 7 am and 7 pm), by gravimetric method, using the 

electronic balance. The values were expressed as a percentage (w/w) calculated on the total water 

content at the beginning of the experiment. On Saturday and Sunday no weight measures were 

performed. These values were used to calculate the SMC during the experiment. 

- the diurnal water loss of each box, every 24 hours (at 7 pm), by gravimetric method. The daily water 

loss was expressed as a percentage (w/w) calculated on the total water content at the beginning of the 

experiment. It represents the percentage of water loss every day between 7 am and 7 pm. On 

Saturday and Sunday no weight measures were performed. 

- the diurnal evaporation rate, measured every 24 hours as above, of the boxes with the bare substrate 

only. 

- the leaf relative water content (RWC) for all the studied species to monitor plant water status in 

terms of physiological consequence of cellular water deficit. Six times during the experiment (5 

leaves x 3 boxes = 15 leaves) following the procedure described by Peñuelas et al., (1999). 

- the nocturnal malate accumulation in S. lydium and S. kamtschaticum leaves, seven times during the 

experiment, through the titration method with NaOH following Ting and Hanscom, (1977). 4 

leaves/box (12 samples for each species) where collected. Leaf samples were grinded in distilled 

water, centrifuged at 14000 rpm for 2’ and titrated to pH 7 with 0.01N NaOH. Nocturnal malate 

accumulation of each species at a given date, was expressed as the average value (ml of titrant) of 

the results of 12 titrations (12 leaves). 
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2.4.3 Results  

 
The day by day average diurnal water losses (% of the SMC at the start of the experiment) during the 

experiment, for the vegetated boxes and the bare substrate, are shown in Figure 2.1.4. The average 

percentage of diurnal water losses, measured as above, on the whole experiment, for the same boxes, are 

shown in Table 2.4.1. 

 
Table 2.4.1 - Average values and standard deviation of the diurnal water losses (% w/w of the SMC at the start of the 

experiment) along the whole experiment, for the planted boxes and the bare substrate. 

 

B. erectus C. dactylon S. kamtschaticum Bare substrate 

4.9  ± 1.5 3.8  ± 0.5 3.3  ± 0.8 2.4  ± 1.1 

F= 9.60, P = 8.0184 E
-05

   

 
By Table 2.4.1, all the planted boxes have an average diurnal water loss higher than the boxes without plants. 

The average water losses are higher for boxes with B. erectus, followed by boxes with C. dactylon and S. 

kamtschaticum. Water losses of the boxes with the bare substrate are about half the values recorded for boxes 

with B. erectus. Minor differences are recorded for the boxes vegetated with C. dactylon and S. 

kamtschaticum if compared to those with the bare substrate. The boxes planted with C. dactylon have an 

intermediate evapotranspiration activity between those planted with B. erectus and those with S. 

kamtschaticum. 

Figure 2.4.1 shows the details of the results reported in Table 2.4.1.  

B. erectus shown a particular behavior, different from that of C. dactylon and S. kamtschaticum. Diurnal 

water losses of B. erectus are higher than those of C. dactylon and S. kamtschaticum till the day 9
th

. In the 

first 6 days, B. erectus increased its diurnal water losses; from the sixth day onwards the diurnal water losses 

progressively decreased till the 13
th

 day. C. dactylon and S. kamtschaticum shown similar diurnal water 

losses till the 10
th

 day; after this date S. kamtschaticum decreased its diurnal water losses, whereas C. 

dactylon maintained nearly unchanged this parameter till the day 16, end of the experiment. 

 

 
 

Figure 2.4.1 – Average diurnal water loss (% of the SMC at the start of the experiment) of the vegetated boxes and the 

bare substrate measured by gravimetric method at the end of the day (n = night, at 7 pm) every 24 hours. The missing 

days correspond to weekends or other days when the measurements were not done. sub = bare substrate, br = B. erectus, 

cy = C. dactylon,, kam = S. kamtschaticum.. 
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Figure 2.4.2 – Average substrate moisture content (SMC) measured by gravimetric method every 12 hours (d = day, at 

7 am and n = night, at 7 pm) in bare substrate and planted boxes. The missing data correspond to weekends or other 

days when the measurements were not done. br = B. erectus, cy = C. dactylon,, kam = S. kamtschaticum.  

 

The diurnal water loss rates (Figure 2.4.1) and the SMC values (Figure 2.4.2) of the boxes with B. erectus 

showed the highest transpiration activity (diurnal water losses > 4 %) until the 9
th

 day. In particular, boxes 

with B. erectus reached the highest absolute value of diurnal water losses on the 6
th 

day (6.5 %). A decrease 

was observed from the 10
th
 day, when the substrate reached, on average, 5 % w/w of SMC. C. dactylon, 

instead, maintained diurnal water loss values almost unchanged until the 15th day. These values ranged 

between 3.5 % and 4.3 % and decreased to 2.4 % on the 16
th
 day when the SMC values were around 2.6 % 

w/w. The boxes with S. kamtschaticum showed the lowest diurnal water losses and a gradual decline of SMC 

during the whole experiment. Overall (Figure 2.4.2), the SMC of the boxes with B. erectus fell quickly (6
th
 

day) below the SMC of boxes with bare substrate. The SMC of the boxes with C. dactylon fell below the 

SMC of boxes with bare substrate about at the end of the experiment (13
th

 day). The SMC of the boxes with 

S. kamtschaticum never fell below the SMC of boxes with bare substrate. 

 

 
 

 
Figure 2.4.3 – Relative Water Content (RWC) ± sd measured at 12 am during the experiment. br = B. erectus, cy = C. 

dactylon, kam = S. kamtschaticum. 
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Table 2.4.2 – Average values and standard deviation of the RWC of B. erectus, C. dactylon, S. kamtschaticum, during 

the experiment. 

 

% Day 2 Day 7 Day 9 Day 10 Day 13 Day 16 

B. erectus 85.6 ± 

5.4 

88.1 ± 

4.2 

87.1 ± 

4.0 

85.3 ± 

3.3 

77.8 ± 

9.2 

- 

C. dactylon 85.0 ± 

15.9 

93.2 ± 

3.6 

91.6 ± 

4.5 

88.9 ± 

1.6 

93.4 ± 

2.2 

93.7 ± 

3.6 

S. kamtschaticum 88.8 ± 

5.9 

88.8 ± 

4.2 

85.0 ± 

4.1 

86.1 ± 

4.8 

85.2 ± 

10.4 

88.2 ± 

3.0 

 

As far as the RWC of the studied species is concerned, B. erectus and C. dactylon showed an initial increase 

of their RWC values (from day 2 to day 7), more evident in C. dactylon. In the following days, the RWC 

values of B. erectus fell down evidently, whereas the RWC values of C. dactylon oscillated around the 90 % 

until the day 10 and increased to about 93 % at the day 13 and 16 (end of the experiment). S. kamtschaticum 

maintained its RWC values approximately constant overall the experiment. The RWC rates of B. erectus and 

S. kamtschaticum observed in this experiment reflect the trends observed in the first experiment, Sedum 

species showed the highest water saving ability. Regarding to C4 species, the RWC values of C. dactylon are 

always high, and even higher than those of S. kamtschaticum, a species low water consuming. 

 

 
 
Figure 2.4.4 – Averages values of malate concentration in leaves of S. kamtschaticum during the experiment (bars) ± sd. 

Malate concentration is evaluated as ml of NaOH necessary for the titration. The average values (line) of SMC in the 

boxes planted with S. kamtschaticum is also shown. In the table below is reported also the LSD value.   

 

 

 

 

Table  2.4.3– Averages values of malate concentration in leaves of S. kamtschaticum during the experiment (bars) ± sd. 

Malate concentration is evaluated as ml of NaOH necessary for the titration.  
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Day 2 Day 5 Day 9 Day 13 Day 14 Day 15 Day 16 

NaOH (ml) 

0.32 ± 

0.09 

0.32 ± 

0.06 

0.36 ± 

0.07 

0.38 ± 

0.05 

0.37 ± 

0.04 

0.56 ± 

0.07 

0.67 ± 

0.23 

F = 17.15, P = 1.76 E
-12

 

LSD = 0.09, P = 0.05 
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Finally, using the same procedure adopted in the first experiment, the nocturnal malate accumulation in 

leaves of S. kamtschaticum was measured at the days 2, 6, 10, 13, 14, 15, 16 of this experiment. A notable 

increase of the malate accumulation occurred between the day 14 and the day 15 (Figure 2.4.4 and Table 

2.4.3). The corresponding values of SMC at these dates of the experiment were 11 % w/w and 10 % w/w 

respectively. Comparing these values with those found in the first experiment, the increase of malate in S. 

kamtschaticum was found around 11 % w/w of SMC. 

 

In Table 2.4.4 the diurnal water losses of B. erectus, C. dactylon, S. kamtschaticum and the bare substrate, at 

different values of SMC, are reported. Different behavior among boxes is evident even at about 20 % w/w of 

SMC (well-watered conditions). These differences became more evident at about 10 % w/w of SMC when 

the boxes with B. erectus and C. dactylon maintained their mean diurnal water losses, already observed at 

SMC of 20 % w/w, whereas the boxes with S. kamtschaticum, because of metabolism change, decreased 

their water losses (from 3.4 % to 2.5 %). B. erectus resulted the species with the highest water losses at both 

the SMC values of Table 2.4.4. 

 

 
Table 2.4.4 – Mean diurnal water losses (± sd) of the boxes planted with the studied species and the boxes with bare 

substrate at different SMC of the substrate. For each value of SMC, results of the ANOVA on the mean diurnal water 

loss (%) are also reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMC  around 20 % w/w (Well-watered condition) 

 Mean diurnal water loss (%) Mean diurnal water loss (g) 

bare substrate 3.3 ± 1.1 75.6 

B. erectus 5.6  ± 0.4 156.3 

C. dactylon 4.2  ± 0.2 124.5 

S. kamtschaticum  3.4  ± 0.2 112.9 

   

F = 18.04, P = 0.000641 

LSD = 0.8,  P = 0.05 

SMC  around 10 % w/w ( Metabolism change in S. kamtschaticum ) 
 Mean diurnal water loss (%) Mean diurnal water loss (g) 

bare substrate 1.5  ± 0.6 34.4 

B. erectus 6.2  ± 0.6 173.0 

C. dactylon 4.2  ± 0.3 124.5 

S. kamtschaticum  2.5  ± 0.5 112.9 

   

F = 30.66, P = 1.033 E
-05

 

LSD = 0.7,  P = 0.05 

SMC  around  5 % w/w ( Comparison between C3 and C4 species ) 
 Mean diurnal water loss (%) Mean diurnal water loss (g) 

B. erectus 3.7 ± 0.2 103.3 

C. dactylon 3.9 ± 0.2 115.6 

   

F = 14.30, P = 0.2978 
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Relationships between SMC and diurnal water losses (%) were further investigated by the 

calculation of the correlation coefficients between the two parameters (Table 2.4.5). All the 

correlations coefficients are positive and, except for C. dactylon, are significantly different from 0, 

at different level of error probability. For C. dactylon, instead, correlation coefficient does not 

describe a significant dependence relationship between the same parameters. 

 

 
Table 2.4.5 – Correlation coefficient R and P values between SMC and diurnal water losses (%) for the three studied 

species and the bare substrate.  

 

 

 

 

 

 
As might be expected, the best value of the correlation coefficient is that for the bare substrate, 

corresponding to a linear relation, describing the physical phenomenon of water evaporation. Lower values 

of the correlation coefficient indicate a control by the plant on the simple physical phenomenon.  

Figure 2.4.5 shows the details of the results previously discussed and the functions that best approximate 

relationship between the two variables.  

As far as B. erectus is concerned, the relationship among the SMC and diurnal water losses could be better 

described by a non linear function (R
2 
= 0.7820 for a power function (Figure 2.4.5) instead of R

2
 = 0.4702 for 

a linear function). The function in figure 2.1.8 shows a quickly increasing control on the water losses by 

B.erectus, when the SMC reached very low values (approximately below 7%).  

For S. kamtschaticum too, the best relationship fitting the experimental points is not linear (R
2 

= 0.5444), but 

the R
2
 value, corresponding to a linear function, is only slightly lower (R

2 
= 0.4282). S. kamtschaticum, in the 

range 10 - 15 % w/w of SMC, shows a progressive notable decrease of diurnal water losses. This behavior is 

congruent with the results obtained from the observations on the malate concentration (at about 10 % w/w of 

SMC, Sedum species switch-on the CAM metabolism). 

C. dactylon exerts a particular control on the diurnal water losses. In this species the water losses are 

practically constant (independent from SMC value) until about 4 % of SMC. 

 

 
 

 

 
 
Figure 2.4.5 – Relationships between SMC and diurnal water losses (%) for the three studied species and bare substrate.  

 R P 

Bare substrate 0.8896 *** P < 0.001, n = 11 

B. erectus 0.6857 *  P < 0.10, n = 8 

C. dactylon 0.3455 n.s.  P > 0.10, n=11 

S. kamtschaticum 0.6544 ** P < 0.05, n = 11 
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2.2.4 Discussion and Conclusions - third experiment 

 
The third experiment has analysed the transpiration of B. erectus, C. dactylon, S. kamtschaticum when the 

available water decreases, under 28 °C average temperature and other experimental conditions as described 

in Materials and Methods. 

Results obtained confirmed the different behavior of B. erectus, a C3 species, if compared with S. 

kamtschaticum, a CAM-facultative species. B. erectus continued to transpire even at very low values of 

SMC, but its RWC reached low values at least three days before the end of the experiment. 

S. kamtschaticum slowed-down its diurnal transpiration very early, at the 10
th

 – 11
th

 day of the experiment, 

even at considerable values of SMC (on average, 10 % w/w), in this way, S. kamtschaticum maintains high 

values of RWC during the whole experiment.  

The behavior of C. dactylon, a C4 species is of particular interest. This species continued to transpire, till the 

15
th
 day of the experiment, even at low value of SMC, but maintains good values of RWC, above 85 %, like 

S. kamtschaticum. The water losses are more or less constant along all the experiment till 2.7 % w/w of 

SMC, unlike for B. erectus which initially showed high values of diurnal water loss, but then it also showed 

a sharp decline strongly dependent on the SMC decrease (Figure 2.4.1). 

B. erectus transpiration (and the corresponding cooling effects) are higher than that of C. dactylon (and of S. 

kamtschaticum) at up to 5 % w/w of SMC. But, at the final stages of the SMC decreasing, C. dactylon, 

thanks to its capacity to limit the stomatal conductance with low effect on the photosynthesis, could provide, 

depending on the duration of water stress (Ghannoum, 2008), a positive cooling effect. Thus, C. dactylon 

could be a valid choice to reduce the irrigation frequencies, but providing, at the same time, a better cooling 

effect if compared to that produced by Sedum species.   

 

 
2.5 FOURTH EXPERIMENT: The green roof’s thermal performance during the cold 

season: first results from different plant covers. 

 

2.5.1 Introduction and Objective 

 
Green roof plant cover plays an important role concerning insulation from low external during the winter 

season. (Lundholm et al, 2014; Eksi et al., 2017).  

The fourth experiment was planned in order to accomplish the second objective of the thesis: to evaluate the 

winter insulation ability of the same group of species (B. erectus, C. dactylon, L. corniculatus, S. lydium, S. 

kamtschaticum), whose summer cooling performances were previously evaluated.  

 

2.5.2 Material and Methods 

Six boxes were utilized (40 cm x 30 cm x 22 cm height), each filled with 1500 g of green roof's substrate 

(Harpo/SEIC substrate) with the Harpo commercial stratification for extensive green roofs. On September 

2016, five boxes were planted, each with one species (B. erectus, L. corniculatus, C. dactylon, S. lydium, S. 

kamtschaticum) at high density, to obtain a complete substrate cover (100 % of coverage) and they were left 

to grow outside. The sixth box was filled only with bare substrate, as control.  

At the start of the experiment, on 18 January 2017, the tested species were at winter vegetative pause and 

their cover was as in Figure 2.5.1. In particular: 

- B. erectus, created many compact yellow tufts about 30 cm high that provided a 100 % coverage of the box 

surface. 

- L. corniculatus and C. dactylon, instead, lost their leaves, so their branches did not completely cover the 

substrate. 

- S. lydium and S. kamtschaticum, susceptible to freezing injury, as reported by Benvenuti and Bacci (2010), 

show some spaces in the compact and thin (less than 5 cm) plant layer. 

 

Each box, was equipped with two thermistors (Thermistor Probe Temperature Data Logger, OM-EL-USB-

TP-LCD, probe type K, Omega, IT. Accuracy: ± 0.1 °C, resolution: ± 0.5 °C): one buried into the substrate 
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at 7 cm depth, to collect the internal temperatures and another one, placed on the substrate under the plant 

cover (on the bare substrate, for the control box) to collect the surface temperatures. The experiment lasted 

50 days, from 18
th

 January 2017 to 8
th
 March 2017. 

The datalogger of each thermistor recorded the temperature values every 30 minutes. The mean temperature 

between 4:45 am and 7:45 am (mean of seven recorded values), the coldest period of the day, was used to 

assess the insulation ability of each species, day by day. 

We also collected the values of the daily minimum temperature, recorded by a meteorological station placed 

in the outside area of DipSA (44
◦
33’ 03” N, 11

◦
24’ 36” E, 33 m a.s.l. European Datum 1950, UTM 32), not 

far from the experimental boxes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2.5.1 – The six boxes monitored during the experiment. 1 = Bare substrate, 2 = B. erectus, 3 = L. corniculatus,  

4 = C. dactylon, 5 = S. lydium, 6 = S. kamtschaticum.    
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2.5.3 Results 

The values of the daily minimum temperature, recorded on the surface of the bare substrate, and the values 

of the daily minimum temperature, allow to recognize three different periods during the experiment (Figure 

2.5.2 and Table 2.5.1; Annexes 5, 6). The first one, from 18
th

 January to 30
th

 January (day 1 to day 13), is 

characterized by a minimum average surface temperature of -0.8 °C, and of -1.4 °C in the atmosphere. The 

second period, from 31
th

 January to 26
th
 February (day 14 to day 40), is characterized by a minimum average 

surface temperature of 2.9 °C and a minimum average atmospheric temperature of 3.6 °C. In the third period, 

from 27
th
 February to 8

th 
March (day 40 to day 50), the temperatures increased further; the minimum average 

surface temperature was 5.2 °C and a minimum average atmospheric temperature 6.1 °C. In the first period, 

the daily minimum temperature frequently fell below 0 °C, in the second and third period the minimum daily 

temperature rarely fell below 0 °C.  

The insulation ability of each species was estimated by comparing the depth temperatures (at -7 cm), 

recorded in each of the five vegetated boxes, and the depth temperature of the box with bare substrate only 

(Table 2.5.2).  

 

Table 2.5.2 –Average minimum depth temperatures, average minimum surface temperatures, thermal contribution from 

the bare substrate (average depth temperatures minus average surface temperatures) and thermal contribution from the 

plant cover (average depth temperatures of each species minus average depth temperatures of bare substrate) on the 

average minimum depth temperatures ± standard deviation, in three period of the experiment. For each period, results of 

ANOVA, performed on the average minimum depth temperatures, on the average minimum surface temperatures and 

on thermal contribution from the plant cover on the average minimum depth temperatures are indicated. 

 

 

During the first period of the experiment (Table 2.5.2), the average minimum depth temperatures ranged 

from -0.2 °C in the box with the bare substrate, to 0.4 °C in the box with B. erectus. Standard deviations on 

the average minimum depth temperatures ranged from 0.1 °C (S. lydium) to 0.5 °C (S. kamtschaticum). The 

average minimum surface temperatures ranged from -0.8 °C in the box with the bare substrate, to -0.1 °C in 

the box with L. corniculatus. Standard deviations on the average minimum surface temperatures, ranged 

from 1.4 °C (S. kamtschaticum) to 0.4 °C (L. corniculatus). The ranges of variation of the average minimum 

depth temperatures (0.6 °C) was not so different from the range of variation of the average minimum surface 

temperatures (0.7 °C); more wide were, instead, the ranges of variation of the values of the standard 

deviations (0.4 °C and 1.0 °C, respectively). Results of ANOVA, performed on the average minimum depth 

temperatures, indicate that the average minimum depth temperatures of all the vegetated boxes are higher 

1
st
 Period:  day 1 to day 13  

 Average minimum 

depth 

temperatures  (°C) 

Average minimum 

surface 

temperatures    (°C) 

Thermal 

contribution from 

the bare substrate 

on the average 

minimum depth 

temperatures  

(°C) 

Thermal 

contribution from 

the plant cover on 

the average 

minimum depth 

temperatures  

(°C) 

Bare substrate -0.2 ± 0.3 -0.8 ± 1.0 0.6 ± 0.9 // 

B. erectus 0.4 ± 0.4 -0.2 ± 0.9  0.6 ± 0.2 

L. corniculatus 0.1 ± 0.3 -0.1 ± 0.4  0.4 ± 0.2 

C. dactylon 0.0 ± 0.2 -0.5 ± 1.0  0.2 ± 0.2 

S. kamtschaticum 0.2 ± 0.5 -0.5 ± 1.4  0.5 ± 0.4  

S. lydium 0.1 ± 0.1 -0.4 ± 0.7  0.3 ± 0.3 

LSD (P = 0.05) 0.2 //  0.2 

ANOVA 

F = 5.8536 

P = 0.0001 

F = 0.8941 

P = 0.4898 

 F =  3.2884 

P =  0.0167 
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than that of the box with the bare substrate. As far as the mitigation of  the depth temperatures by the plant 

cover is concerned, the best performance is that of B. erectus (thermal contribution from the plant cover 

equal to 0.6 °C), followed by that of S. kamtschaticum (thermal contribution from the plant cover equal to 

0.5 °C). The worst performance was, instead, that of C. dactylon (thermal contribution from the plant cover 

equal to 0.2 °C). Results of ANOVA, performed on the values of the thermal contribution from the plant 

cover, indicate that there are significant differences between species. 

Results of ANOVA, performed on the average minimum surface temperatures, indicate that the average 

minimum surface temperatures of all the vegetated boxes are not significantly different from that of the box 

with the bare substrate. 

In conclusion, during the first period of the experiment, the coldest one, the thermal contribution from the 

bare substrate on the average minimum depth temperatures was, on average, 0.6 ± 0.9 °C. Significant 

mitigation effects due to the plant cover, were observed only on the deep temperatures. B. erectus performs 

significantly better than the other studied species. 
 

 

During the second period of the experiment (Table 2.5.2), the average minimum depth temperatures ranged 

from 4.0 °C in the box with the bare substrate, to 5.4 °C in the box with B. erectus. Standard deviations on 

the average minimum depth temperatures ranged from 1.5 °C (B. erectus and S. kamtschaticum) to 1.8 °C 

(bare substrate). The average minimum surface temperatures ranged from 2.9 °C in the box with the bare 

substrate, to 4.4 °C in the box with B. erectus. Standard deviations on the average minimum surface 

temperatures, ranged from 1.7 °C (B. erectus) to 2.3 °C (bare substrate). The ranges of variation of the 

average minimum depth temperatures (1.4 °C) was not so different from the range of variation of the average 

minimum surface temperatures (1.5 °C); more wide were, instead, the ranges of variation of the values of the 

standard deviations (0.4 °C and 0.6 °C, respectively). 

Results of ANOVA, performed on the average minimum depth temperatures, indicate that the average 

minimum depth temperatures of all the vegetated boxes are higher than that of the box with the bare 

substrate, with the exception of that vegetated with Cynodon dactylon and S. lydium. Not significant 

differences between species were observed. As far as the mitigation of the depth temperatures by the plant 

cover is concerned (shown in the last column of the Table 2.5.2) , the best performance was that of B. erectus 

(thermal contribution from the plant cover equal to 1.5 °C), followed by that of S. kamtschaticum (thermal 

contribution from the plant cover equal to 1.1 °C). The worst performance was, instead, that of C. dactylon  

and S. lydium (thermal contribution from the plant cover equal to 0.8-0.9 °C). These average values, 

however, are not so different among them.  

Results of ANOVA, performed on the average minimum surface temperatures, indicate that there are not 

significant differences between the boxes. 

 

In conclusion, during the second period of the experiment, when the atmospheric temperatures started to 

increase, the thermal contribution from the bare substrate on the average minimum depth temperatures 

2
nd

 Period: (day 14 to day 40) 

 

Average minimum 

depth 

temperatures (°C) 

Average minimum 

surface 

temperatures 

(°C) 

Thermal 

contribution from 

the bare substrate  

on the  average 

minimum depth 

temperature 

(°C) 

Thermal 

contribution from 

the plant cover on 

the  average 

minimum depth 

temperature 

(°C) 

Bare substrate 4.0 ± 1.8 2.9 ± 2.3 1.0 ± 0.9 // 

B. erectus 5.4 ± 1.5 4.4 ± 1.7  1.5 ± 0.8 

L. corniculatus 5.0 ± 1.6 4.2 ± 1.8  1.0 ± 0.6 

C. dactylon 4.8 ± 1.7 3.8 ± 2.0  0.8 ± 0.3 

S. kamtschaticum 5.1 ± 1.5 3.8 ± 1.9  1.1 ± 0.7 

S. lydium 4.8 ± 1.6 4.0 ± 1.8  0.9 ± 0.4 

LSD (P = 0.05) 0.9 //  0.5 

ANOVA F = 2.4722 

P = 0.0347 

F = 1.8027 

P = 0.1154 

 F = 45.4745 

P = 8.5397 E
-29
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increased, on average, to 1.0 ± 0.9 °C. Significant mitigation effects due to the plant cover, were observed 

only on the deep temperatures, but not for all the studied species (not for C. dactylon and S. lydium). 

 
During the third period of the experiment (Table 2.5.2), the average minimum depth temperatures ranged 

from 6.4 °C in the box with the bare substrate, to 8.4 °C in the box with B. erectus. Standard deviations on 

the average minimum depth temperatures ranged from 1.5 °C (B. erectus) to 2.0 °C (bare substrate).  The 

average minimum surface temperatures ranged from 5.2 °C in the box with the bare substrate, to 6.8 °C in 

the box with B. erectus. Standard deviations on the average minimum surface temperatures, ranged from 1.5 

°C (B. erectus) to 2.0 °C (bare substrate). The ranges of variation of the average minimum depth 

temperatures (2.0 °C) was not so different from the range of variation of the average minimum surface 

temperatures (1.8 °C); more wide were, instead, the ranges of variation of the values of the standard 

deviations (0.5 °C and 0.8 °C, respectively). 

Results of ANOVA, performed on the average minimum depth temperatures, indicate that the differences are 

not significant, only the average minimum depth temperature of the box vegetated with B. erectus was higher 

than that of the box with the bare substrate (F = 6.0519, P = 0.02, this ANOVA values not shown in the 

Table 2.5.2). As far as the mitigation of the depth temperatures by the plant cover is concerned, the best 

performance of B. erectus, is confirmed its thermal contribution (equal to 2.0 °C) is the higher followed by 

that of L. corniculatus and S. kamtschaticum (thermal contribution from the plant cover equal to 1.5 °C). The 

worst performance was, instead, that of S. lydium (thermal contribution from the plant cover equal to 0.9 °C). 

These values, however, are not so different than the contribution of bare substrate (except for B. erectus). 

Results of ANOVA, performed on the average minimum surface temperatures, indicate that the average 

minimum surface temperatures of all the vegetated boxes are not significantly different from that of the box 

with the bare substrate. 

 

Thus, during the third period of the experiment, when the atmospheric temperatures further increased, the 

thermal contribution from the bare substrate on the average minimum depth temperatures showed, 

indicatively, only a weak increase to 1.2 °C. Significant mitigation effects due to the plant cover were 

observed only on the box with B. erectus (depth temperatures, on average, 2.0 °C more than the average 

depth temperature of bare substrate). 

In conclusion, during the whole experiment, the thermal contribution of the plant cover varied, on average, 

from 0.2 to 0.6 °C in the first period, on average, from 0.8 to 1.5 °C during the second one while in the last 

period, the thermal contribution varied, on average, from 0.9 to 2.0 °C. These contributions were higher than 

the thermal contribution of the substrate that, in the same periods, varied, on average, from 0.6, to 1.0, to 1.2 

°C. 

 

3
rd

 Period: ( day 40 to day 50) 

 

Average minimum 

depth 

temperatures (°C) 

Average minimum 

surface 

temperatures   (°C) 

Thermal 

contribution from 

the bare substrate 

on the  average 

minimum depth 

temperature 

(°C) 

Thermal 

contribution from 

the plant cover  on 

the  average 

minimum depth 

temperature 

(°C) 

Bare substrate 6.4 ± 2.0 5.2 ± 2.9 1.2 ± 1.4 // 

B. erectus 8.4 ± 1.5 6.8 ± 2.2  2.0 ± 0.7 

L. corniculatus 7.9 ± 1.7 6.5 ± 2.1  1.5 ± 0.6 

C. dactylon 7.4 ± 1.8 6.1 ± 2.6  1.0 ± 0.3 

S. kamtschaticum 7.9 ± 1.7 6.3 ± 2.6  1.5 ± 0.5 

S. lydium 7.3 ± 1.8 6.3 ± 2.3  0.9 ± 0.3 

LSD (P = 0.05) // //  0.7 

ANOVA  F = 1.5013 

P = 0.2048 

F = 0.5239  

 P = 0.7571 

 F =  2.8240 

 P =  0.0245 
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2.5.4 Discussion and Conclusions – fourth experiment  

The experiment compared the insulation ability of herbaceous species that, during the winter, have a 

different development and quantity of leaves and ramifications. The experiment examined, further, the 

insulating effect of a commercial substrate for green roofs. 

The plant cover has always exerted an effect of mitigation of the external temperatures on the deep 

temperatures of the substrate. In the vegetated boxes, the deep temperatures are always higher than the deep 

temperatures of the box with the bare substrate. 

During the first period of the experiment, the coldest one, the average deep temperatures of the vegetated 

boxes never fell below zero. Plant covers showed a positive effect on the mitigation of the external 

temperatures and their average depth temperatures were often significantly higher than those of box with 

bare substrate, in particular during the second period. Regarding the species tested, B. erectus coverage 

showed the best insulation contribute and it is also the only species that showed significant differences, as 

compared to the bare substrate, during all periods of experiment. The better performance of B. erectus was 

reasonably due to the higher amount of biomass produced during the vegetative season and permanent during 

the winter, which better acts as insulating layer during the cold season. L. corniculatus and C. dactylon lost 

their leaves in winter and Sedum species showed some freezing injury that reduced its coverage.  

However, Lundholm et al. (2014) explained that an abundant plant cover due, for example, to high LAI 

values had a negative effect because of the reduction in solar heat gain under the vegetation. Vegetation 

types that reduce the temperature drop overnight could have negative effect on the heating of the substrate 

during the sunny days. In this case, green roofs planted with Sedum species or without plants, could increase 

more rapidly the temperature of substrate layer than green roof with B. erectus. 

This behavior explains the gain in the thermal insulation provided by the plant layer (especially by B. 

erectus) to the increase in the external temperature during the experiment. 

When the external temperatures dropped below zero during the night, substrate began to lose heat and the 

plants played an important role to reduce this loss. On the other hands, during the day, when the sun heats up 

the surface, plant canopy reduced the solar heat gain and, consequently, the heat accumulated in the substrate 

before the next night. Thus, the substrate above plant canopy (in particular above B. erectus) needed more 

time to warm up. When the external temperatures increased, the negative effect of the plant cover began less 

important than the positive effect provided during the night.  

  



39 
 

2.6 CONCLUSIONS  

 
According to the results obtained from the indoor and outdoor experiments reported in the second chapter, 

the use of xerophilus or semi-xerophilus C3 and C4 species on green roofs, as an alternative to the usual 

Crassulaceae species (like Sedum species), is possible and, also, could provide significant advantages as far 

as the thermal property of rooftops, both in summer and winter season, are concerned. 

The first three experiments confirmed that C3 (B. erectus, L. corniculatus, and S. officinalis) and C4 species 

tested (C. dactylon) offer better performances than the CAM-facultative species (S. kamtscahticum and S. 

lydium), when summer cooling effects are required. Better performances of the C3 and C4 species were 

observed both under well-watered conditions and under low substrate moisture, when Sedum species began 

to use CAM metabolism. 

The critical value of soil or substrate moisture content (SMC), inducing the switch-on of the CAM 

metabolism in CAM-facultative species, was identified, empirically, through the observations of nocturnal 

malate accumulation in the Sedum leaves, associated to diurnal water loss rate (in the first and third 

experiments) and through the gas exchange activity (in the second experiment). It has been identified at 

between 11 % and 6 % w/w in the first and third experiments and at around 12 % v/v through the 

observations of gas exchange activities, in the second experiment. 

In C4 species (C. dactylon) diurnal water losses remained almost unchanged from the start of the experiment, 

when SMC was high, until very critical SMC values (5 % w/w). The amount of diurnal water losses in C. 

dactylon was intermediate between that of Sedum and the C3 species. In addition, this diurnal amount of 

water was transpired over a longer period than for any other studied species. Thus, C4 plants could provide a 

more durable cooling effect than the C3 species, at equal SMC values. 

The second experiment pointed out that the cooling capacity was also positively influenced by other factors, 

such as the leaf morphology, LAI and in particular by the thickness of canopy (covering ability) (Kumar and 

Kaushik, 2005; Eksi et al., 2017).  

The winter experiment demonstrated that the plant cover could give an important positive contribution to the 

thermal performance of the green roofs, even during the cold season. The different contributions observed by 

various species depended on the amount of biomass produced during the previous growing season and 

maintaining this biomass during the winter season.  

Among the studied species, B. erectus maintained the higher biomass during the whole winter experiment, 

allowing a better thermal insulation than the bare substrate or than the other species, by being 2 °C warmer at 

7 cm substrate depth. C. dactylon and L. corniculatus, two species with good cooling capacity during the hot 

season, maintained instead a low biomass in winter, insufficient to guarantee an efficient insulation. During 

the winter experiment, in fact, the boxes planted with C. dactylon and L. corniculatus showed sometimes 

lower depth temperatures than those recorded in boxes planted with Sedum species. 
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3.1 Growth and spread of native perennial herbaceous species on a green roof 

 

3.1.1 Introduction and Objectives 

Many studies investigated on the use and the survival of native species on different green roof’s typologies 

(Monterusso et al., 2005; Blanusa et al. 2013; Vestrella et al., 2015). Even if native taxa have a wide 

potential of utilization on green roofs, thanks to their adaptation to the local climates, experimental results 

are sometime contradictory. For example, Monterusso et al. (2005) tested native grassland perennials on 

non-irrigated extensive green roofs, using 10 cm of growing medium and only 4 out of 18 survived after 

three growing seasons. The environment of an extensive green roof does not often match with the 

environmental requirements of the used native species  and/or their seeds do not easily germinate on rooftops 

(White and Snodgrass, 2003). A specific experimentation become necessary to increase the chances of 

success. On the other hand, native species can provide greater biodiversity than a typical monoculture of 

non-native Sedum species (Maclvor et al., 2011; Williams et al., 2014; Vestrella et al., 2015) and a more 

efficient cooling effect, due to their C3 metabolism or to the shape and size of leaves (Blanusa et al. 2013). 

Although the strong positive relationship between plant biodiversity and ecosystem functioning has been 

well-established in the ecological literature (Hooper et al., 2005; Cook-Patton and Bauerle, 2012), the 

empirical research linking plant biodiversity with green roof performance is limited. Consequently, the green 

roof designers infrequently use native species rather than the Sedum monoculture (Cook-Patton and Bauerle, 

2012).  

The following article (accepted in special issue of Acta Horticulturae IRHS, “Greener Cities 2017”) aimed to 

test the survival and the growth capacity of 6 wild herbaceous perennial species (Festuca ovina L., Thymus 

serpyllum L., Hieracium pilosella L., Acinos alpinus (L.) Moench, Sanguisorba minor Scop. and Achillea 

millefolium L. ). They are common of the arid and semi-arid grassland communities (Xerobromion and 

Mesobromion communities) of the Apennines, and they were tested on a green roof of the School of 

Agriculture of Bologna, under a subcontinental temperate climate, with hot summers and moderately cold 

winters, and a low irrigation and fertilization management. 

All plant material was collected in natural and semi-natural grassland communities of the Emilian 

Apennines, cultivated and reproduced in a nursery at the Azienda Agraria of the Bologna University (AUB). 
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Abstract 

The European Communication on Green Infrastructures encourages the use of wildflower verges, green 

walls, green roofs, etc. to mitigate the artificiality of the urban and rural environment. Green roofs are 

engineered ecosystems occupying underutilized urban spaces that rely on the plant cover to provide services, 

such as the reduction of temperature, retention of storm-water and enhancement of urban biodiversity. In this 

framework we explored the ability of some wild perennial species of arid and semi-arid grasslands to survive 

and colonize the substrate of the extensive green roofs of the Agricultural Sciences School of the University 

of Bologna. In mid-June 2015 young plants of Festuca ovina L., Thymus serpyllum L., Hieracium pilosella 

L., Acinos alpinus (L.) Moench, Sanguisorba minor Scop. and Achillea millefolium L, coming from wild 

local populations, were transplanted into containers (54x54x9 cm depth) forming the upper cover of a green 

roof. The plants were fertilized and then irrigated throughout the summer of 2015. The growth of the species 

(coverage and space occupation) was monitored approximately once a month, from August 2015 to May 

2016. F. ovina reached the highest values of coverage, without any significant seasonal variations. T. 

serpyllum and H. pilosella reached moderate coverage values depending however on the seasons. A. 

millefolium showed very effective dispersal abilities, but poor coverage potential. It can be used as a filler 

species in multi-species green roofs. Our results showed that the wild local flora can be an important, though 

still poorly explored, reserve of biodiversity for a new generation of extensive green roofs, designed, 

following a careful selection of species, for the best possible performances of the services they provide. 

Keywords: Green Infrastructures (GI), Extensive Green Roofs (EGR), wild species, urban biodiversity, 

ecosystem services 

 

Introduction 

The European Communication on Green Infrastructures and the European Strategy on Green Infrastructures 

(COM, 2013), as well as the associated planned network of natural and semi-natural areas, aim to improve 

environmental conditions, citizens' health and quality of life in the European territory. They also support 

green economy, create job opportunities and enhance biodiversity. 

Since green spaces in cities are becoming progressively reduced, roofs, which can reach up to 32 % of the 

horizontal surface of the built-up areas (Frazer, 2005), have been identified as important underused places 

where plant cover can be developed (Franzaring et al., 2016). In Germany, in the early 21st century, the 

diffusion of green roofs increased by approximately 13.5 million square meters per year (Oberndorfer et al., 

2007).  

The potential environmental benefits of green roofs are numerous (Del Barrio, 1998; Köhler, 2003; Porsche 

and Köhler, 2003; Dunnett and Kingsbury, 2004; Oberndorfer et al., 2007; Williams et al., 2014; Franzaring 

et al., 2016). However, till now green roofs have been constructed with attention paid mainly to the 

architectural and engineering problems and much less to the quality, performances and environmental 

congruence of the plant cover, as well as to the possibilities offered by the utilization of the wild species of 

the local flora. These environmental joint values have only recently begun to be considered (Cook-Patton et 
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al., 2012) in the realization of green roofs, experimenting with plant covers alternative to those most 

frequently adopted, commonly involving a mixture of Sedum species (Monterusso et al., 2005; Maclvor et 

al., 2011; Blanusa et al. 2013; Williams et al., 2014; Vestrella et al., 2015). 

Results are sometimes contradictory (White and Snodgrass, 2003; Monterusso et al., 2005) and further 

experiments are necessary to tune the utilization of native species for green roof cover, maintaining the 

environmental services they usually supply (Brenneisen, 2006; Lundholm, 2006; Maclvor et al., 2011).  

The current study aims to test the survival, growth and ways of space occupation of six wild herbaceous 

perennial species, from arid and semi-arid temperate grassland communities (Xerobromion and 

Mesobromion communities) planted on an extensive green roof in the city of Bologna, with a commercial 

stratification. Given the habitat where these species naturally occur, they appear potentially interesting for 

the plant cover of green roofs subjected to a climate of sub-Mediterranean type, with hot and moderately arid 

summers, humid and moderately cold winters, and managed with minimum irrigation and fertilization. 

 

Materials and Methods 

The green roof design 

The green roof (Annex 7) where the experiment was performed has a surface of 12 x 5 m and covers a low 

building of the Agricultural Sciences School of the Bologna University (Bologna, Italy). The stratification 

adopted has a total depth of about 18 cm, where the upper part is organized in quadrate modules of 54 x 54 x 

9 cm depth, made of regenerated plastic, interlocking each other and filled with pumice grains (Ø 3-6 mm) 

and with VULCAFLOR® up to the brim. The surface of each module is covered with 2 cm depth of white 

pebble gravel as mulching. The bottom part of the stratification, lying under the modular system at a depth of 

about 9 cm, consists of a system of bags which the roots of plants can penetrate, filled with perlite grains and 

functioning as a water reserve. The green roof area used in this study comprises 60 modules arranged in 10 

rows, each with 6 modules.  

 

The plant species  

We selected six herbaceous perennial species coming from wild local populations of arid and semi-arid 

grassland communities (Xerobromion and Mesobromion communities). The wild plant material was 

propagated and maintained under cultivation in a nursery for almost one year before planting on the green 

roof. In particular the tested species were: Sanguisorba minor Scop. (Rosaceae), Thymus serpyllum L. and 

Acinos alpinus (L.) Moench (Lamiaceae), Achillea millefolium L. and Hieracium pilosella L. (Asteraceae), 

Festuca ovina L. (Gramineae).  All are frequent on well-drained soils and are drought tolerant, but have 

different ways of growth, expansion and available space occupation.  

As far as the latter aspect is concerned, the studied species can be distinguished into two main groups (Table 

1). The species of the first group colonize the available space by forming a continuous and compact cover. 

This group includes S. minor, a perennial medium size forb with a basal rosette of compound leaves, which 

expands uniformly during spring-summer (Sydes and Grime, 1984), A. alpinus which creates very small 

bushes, and F. ovina, a perennial caespitose small tussock-forming grass, that grows in tufts. The second 

group comprehends stoloniferous creeping species that quickly spread horizontally through stolons (T. 

serpyllum and H. pilosella), or more slowly through rhizomes, such as A. millefolium, where an efficient 

sexual reproduction coexists with the vegetative propagation (Warwick and Black, 1982). The species of the 

second group colonize the available space by forming a discontinuous cover, with many empty patches. 

 

 

http://www.sciencedirect.com/science/article/pii/S0925857410002910#bib0020
http://www.sciencedirect.com/science/article/pii/S0925857410002910#bib0100
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Table 1. - Habitus of the studied species, parameters and number of samples monitored.   

Species Habitus Parameters observed N. of  samples 

S. minor Basal rosette Rosette area (cm
2
) 3 rosettes/module x 6 

modules 

A. alpinus Bushy Branch length (cm) 6 branches/module x 12 

modules 

F. ovina Caespitose Number of shoots 3 tufts/module x 18 modules 

    

T. serpyllum Creeping Stolon length (cm) 6 stolons/module x 12 

modules 

H. pilosella Stoloniferous Stolon length (cm) 6 stolons/module x 6 modules 

A. 

millefolium 

Rhizomatous N. of new shoots per rhizome 5 rhizomes/module x 6 

modules 

 

Planting and growth monitoring   

In mid June 2015, each of the 60 modules of the green roof was planted with a given number of individuals, 

depending on the species considered. In detail, we planted 5 plants of S. minor/module, in 6 modules, 5 

plants of A. alpinus/module in 12 modules, 32 shoots of F. ovina/module in 18 modules, 5 plants (1 cm 

rhizome) of A. millefolium/module in 6 modules; 4 plants of T. serpyllum/module in 12 modules and 4 plants 

of H. pilosella/module in 6 modules. At the start of the experiment each species covered a very low 

percentage of the available space of each module (from 0.5 % to ≤ 5 %). 

The monitoring period started in August 2015 and finished in May 2016. From August 2015 to October 2015 

and from February 2016 to May 2016, we monitored the plants’ growth once a month. In order to better 

describe the behavior of each species in colonizing the available space of the modules, different 

morphological parameters were monitored (Table1), depending on the species and its particular way of 

growth.  

The plant species coverage was estimated through the procedure proposed by Maclvor and Lundholm 

(2011), putting a digital pin-frame subdivided into 25 rectangular areas of 10.8 cm x  10.8 cm, each with a 

point (6 mm diameter) on the photo of each module. Percent cover (%) was recorded as the number of points 

touched by any part of the plants growing in each module (leaves and dead branches were excluded) divided 

by 25. The percent cover of a given species at a given date is the average of the different values recorded at 

this date on all the monitored modules.   

 

Irrigation and fertilization management 

The green roof is equipped with underground irrigation and sprinkling irrigation with 2 rotors (Rain Bird, 

3500 series rotors, 0.12 m
3
/h, Azusa, California, USA). After planting in mid June 2015 and till the 30

th
 

September 2015, the green roof was irrigated with sprinkler irrigation for 12 minutes, three times per week 

(6.5 mm per week). 

All plants were fertilized with a slow release fertilizer, Nitrophoska®, on 20 June 2015, just after planting. 

Different amounts of fertilizer were used depending on the number of plants per module (8.96 g/m
2
 for F. 

ovina; 1.40 g/m
2
 for each module of A. millefolium, A. alpinus and S. minor; 1.12 g/m

2 
for the module of T. 

serpyllum and H. pilosella).  

 

https://en.wikipedia.org/wiki/Azusa,_California
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Climatic and meteorological characterization  

Bologna has a warm humid temperate climate with hot and moderately dry summers; the total annual 

precipitation, even though quite variable, is on average 750 mm (Ventura et al., 2002, Matzneller et al., 

2010).  

During the months of the experiment (Table 2) the mean temperature was 17 °C; the minimum average 

monthly temperature was 4.1 °C in January 2016 (minimum absolute temperature -6 °C on January 19, 

2016), the maximum average monthly temperature was 28.8 °C in July 2015 (maximum absolute 

temperature was 40°C on July 22 and 23, 2015). The total precipitation was 619.4 mm; the driest month was 

July 2015 (0.8 mm), whereas October 2015 and February 2016 were the months with the highest 

precipitation (113.4 mm and 147.6 mm, respectively). 

 

Table 2. - Average monthly temperature (T) and total monthly precipitation (P) during the period of the experiment 

(June 2015 – May 2016). Data were collected at the agrometeorological station at the University of Bologna 

experimental farm of Cadriano (44
◦
33’ 03” N, 11

◦
24’ 36” E, 33 m a.s.l. European Datum 1950, UTM 32).  

 June July Aug Sep Oct Nov Dec Jan Feb Mar Apr May 

T 

( °C) 

23.4 28.8 25.7 20.3 13.6 9.0 4.8 4.1 7.3 9.8 15.2 18.1 

P 

(mm) 
46.8 0.8 34.8 15.8 113.4 52.2 4.6 26.8 147.6 59.2 45.0 72.4 

 

Statistical analyses  

Statistical analyses were performed by R free software. We used ANOVA test and Tukey test to identify 

significant differences among species, for cover or other growth parameters, considering the overall 

monitored period, as well as significant differences between months for cover or other growth parameters of 

a given species.  

 

Results  

General considerations 

Table 3 shows some general data on the percent cover of the six studied species over the whole period of 

observation. All the species increased their cover percentage. The greatest average values of cover at the end 

of the observation period were those of S. minor (73 %) and F. ovina (69 %). H. pilosella (47 %), T. 

serpyllum (38 %) and A. millefolium (38 %) reached moderate average cover values, whereas A. alpinus 

reached only a modest average value (19 %).  F. ovina increased its percent cover by six times, passing from 

a starting cover of 10% to a final cover of 60 %. S. minor duplicated its starting cover. The other species 

increased their initial cover by less than two times. 

At the end of the observation period, in May 2016, three of the studied species (A. alpinus, S. minor, T. 

serpyllum) started to reduce their cover values, probably as a response to the increase in temperature and the 

decrease in water availability. We can note that the standard deviation and the variation coefficient values of 

the considered parameters are always quite high, showing a weak decreasing trend over the observation time 
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Table 3. - Main parameters describing the variation of percent cover values (Maclvor and Lundholm, 2011) for the six 

studied species over the whole monitoring period (August 2015-May 2016). All values are average values ± standard 

deviation of the percent cover values recorded in each monitored module. The variation coefficient is given in brackets. 

 

 

 

Species 
Percent cover 

on August 2015 

Percent cover 

on May 

2016 

Maximum 

percent cover 

and month 

Percent cover 

increase 

(May 2016- 

August 2015) 

S. minor 36 ± 17           

(0.49) 
73 ± 23            

(0.32) 
75 ± 21 (April) 

(0.28) 
39 ± 16                

(0.41) 

F. ovina 10 ± 6             

(0.55) 
69 ± 22           

(0.32) 
69 ± 22 (May) 

(0.32) 
59 ± 21                 

(0.35) 

H. pilosella 25 ± 5              

(0.22) 
47 ± 19           

(0.40) 
47 ± 19 (May) 

(0.40) 
22 ± 17                    

(0.77) 

T. serpyllum 36 ± 9             

(0.35) 
38 ± 4              

(0.09) 
47 ± 13 (April) 

(0.28) 
1 ± 1                              

(11) 

A. millefolium 25 ± 17           

(0.68) 
38 ± 22           

(0.58) 
38 ± 22 (May) 

(0.58) 
13 ± 21                  

(1.62) 

A. alpinus 12 ± 4             

(0.30) 
19 ± 6              

(0.33) 
22 ± 12 (April) 

(0.54) 
7 ± 8                  

(1.14) 

A G 



47 
 

 

 

 

B 

C 

D 

H 

I 

J 



48 
 

 

Figure 1. - In the graphs are reported the averages, 1
st
 and 2

nd
 quartile, sd and outliers. In the graphs from A to F are 

represented the percent cover values. From the graph G to the graph L are reported the values of different growth 

parameters.  

 

The species behavior 

For each of the studied species, Figure 1 shows the variation of the average percent cover, during the period 

August 2015 – May 2016, as well as the trends of growth of the morphological parameters monitored during 

the same time. 

S. minor, the species with the highest final percent cover (73 % in May 2016 and 75 % in April 2016) 

showed a quick increase in the percent cover and in the area of the basal rosette during the first period of 

monitoring (August – October 2015), followed by a period of reduction in both parameters (October 2015 – 

February/March 2016), which again increased in the mid spring (April) 2016. The space occupied by this 

species varied depending on the seasons and months of the year, but is in any case of interest since even the 

minimum cover is above 50 %. 

F. ovina reached a final percent cover very close to that of S. minor, but through a different way of growth, 

only moderately influenced by seasonality. Its occupation of the space increased progressively, though at 

different speeds, throughout the whole monitored period, except during the winter season. Its spring 

resprouting was precocious; the cover percentage and the number of shoots increased, respectively, from 

March and from February 2016. 

A. alpinus showed only a limited ability to colonize the available space. The increase in percent cover during 

the overall monitored period is quite modest. The length of its branches strongly decreased in autumn-winter, 

F 

E 

L 

K 
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recovering only a fraction of the initial length in the February-April period. The increase in percent cover in 

April 2016 is partly due to the production of new branches by the already existing individuals, partly to the 

increase in length of the monitored branches, and partly to new individuals originating from seeds of the 

previous year. 

H. pilosella reached a moderate final percent cover characterized by slight seasonal oscillations. In contrast 

to the spring increase in cover, the length of the stolons showed a pronounced decrement during April and 

May. In fact, in this period of the year, a noticeable reorganization of the entire stolon system occurs: the old 

stolons die and new rosettes, producing in turn a new stolon system, are formed in May (mid spring) at the 

rooting points of the old stolons.  

T. serpyllum has a growth pattern similar to that of H. pilosella. The elongation of the monitored stolons, 

after an initial noticeable growth, stopped and new stolons were formed (March and April) at the rooting 

points of the old stolons. With respect to H. pilosella, the disappearance of the old stolons is less evident and 

new biomass is produced earlier, at the start of spring, when temperatures are not so high. 

A. millefolium shows a very dynamic pattern of space occupation, with an evident stationary period in winter. 

Vegetative propagation and sexual reproduction interacted reciprocally, concurring in the noticeable 

increment of percent cover from February to May 2016. The production of new shoots through vegetative 

propagation occurred very early, in February and March 2016, quickly recovering the number of units 

bearing reproductive structures (capitula). From March to May the percent cover increased mainly through 

the production of new individuals by sexual reproduction. Over one year, the production of new individuals 

balanced the death of the old ones. 

Average cover values, however (Figure 2a), do not give enough information on the species with the best 

cover capacity overall the year. Average growth rate (Figure 2b), instead, can give more complete 

information on this important and interesting characteristic. F. ovina showed positive increment of coverage 

during the entire monitoring period. In the winter, the growth slows down, but the cover does not decrease 

significantly as for other studied species. This is an important aspect to consider, because during a period 

with a reduced plant coverage, many green roof properties could be reduced. 

 

 

 

 

 

 

 

 

Figure 2a/2b - Average percent cover value of each species (left) and average growth rate (right) overall the monitoring 

period (August 2015 – May 2016). 
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Discussion 

Even if the six studied species are very common and well known species of the Italian and European flora, 

the monitoring of their development over ten consecutive months allowed us to better understand their 

behavior in the colonization of space, the period of maximum/minimum cover, their persistence throughout 

the seasons and, on the whole, their pattern of growth, in particular on an extensive green roof, under the 

stratification, kind of substrate and management here described and adopted.  

Among the species that produce a continuous cover, F. ovina is of particular interest because of its compact 

and dense tufts, persisting throughout the year. In spring and in autumn, as for all the microtherm grasses, 

when the mean monthly temperature ranges between 15 and 25 °C, F. ovina shows an active vegetative 

propagation (Verzotto, 2013), leading to a quick increment of shoots and of the size of the tufts, but even in 

winter the number of shoots do not decrease and the size of the tufts do not change significantly. Even if the 

species is highly tolerant to drought and to low fertility levels (Grime, 1988; Casler et al., 2003), a moderate 

fertilization and irrigation, as in the first period of our experiment, seems to improve its performances 

(Catalano et al., 2016).  

The behaviour of S. minor, on the other hand, is quite different and of lesser interest due to the very 

pronounced seasonality of its cover. Both in our experience, and in that of other authors (Sydes and Grime, 

1984; Grime, 1988), the rosettes of S. minor increased their size in spring and in autumn, reaching high 

percent cover values, but notably decreased in winter and, probably, also in summer (not reported here) 

because of the drought conditions typical of this period. 

Finally, among the species with a compact structure, A. alpinus showed a much more marked seasonality, as 

well as a particular behaviour: the cover of the old individuals increased temporarily during a very limited 

spring period (Pignatti, 1982) and contributed little to the increment of the space occupied on the green roof 

modules. The effort for space occupation by this species mainly focuses on sexual reproduction (Bonnier, 

1927; Brown, 1995) with an abundant seed production that will germinate during the next good season. 

Another type of growth pattern, more dynamic, involving a periodical or continuous reorganization of the 

spatial distribution of the vegetative or of the reproductive structures characterizes the species that colonize 

the available space, forming a discontinuous cover with many empty patches. In terms of increase in cover 

percentage, the results are quite different for each species, but are in any case lower than those of F. ovina 

and S. minor. Species such as H. pilosella and T. serpyllum are subjected to a periodic re-arrangement of the 

positions where the new individuals, originated through vegetative propagation, developed and take 

nutrients. The contribution of sexual reproduction for the colonization of available space is not so significant, 

as the moderate increase in cover percentage of H. pilosella is due to the intense production of new stolons. 

Species such as A. millefolium instead, showed an important rearrangement in the spatial distribution of the 

new individuals originating from seeds and a modest modification of the percent cover of the vegetative 

propagation structures. 

However, particular abilities in drought tolerance and/or in the use of water can significantly modify this 

general behaviour. T. serpyllum, for example, because of its creeping chamaephyte suffruticose habitus, can 

reduce transpiration (Schulze et al., 2005; Caneva et al., 2013) and more easily tolerate drought. Its use has 

thus been experimented on green roofs in many Mediterranean areas (Provenzano et al., 2010a; Vestrella et 

al., 2015). At the same time, as indicated by our data during the first period of monitoring, T. serpyllum can 

develop more quickly than F. ovina, if irrigated, and can sometimes become dominant (Vestrella et al., 

2015). 

These two different patterns of growth determine a different presence and coverage of the studied species 

over the year and, consequently, a different aptitude for their utilization in green roofs. It would be 

interesting to study how the compact species type could interact and persist when in competition with the 

spreading species type, on a green roof where they are contemporarily present. We hypothesize a decreasing 

ability of persistence, from F. ovina, S. minor, A. millefolium, H. pilosella, T. serpyllum to A. alpinus.  Our 

findings are consistent with the observations of Pakeman et al. (2002) on natural grasslands, over a much 

longer period of years, where H. pilosella and T. praecox proved to be poorly persistent species in 

comparison with S. minor and A. millefolium.  
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Conclusions 

The perennial species of the arid and semi-arid herbaceous plant communities represent a potentially 

interesting pool of species to use in the realization of plant covers for urban green roofs, as a valid alternative 

to the Sedum species. All the species under study survived and reproduced vegetatively and sexually during 

the experiment, so our study will hopefully increase the interest in the use of wild plant species on green 

roofs.  However, the results obtained underlined the importance of a more precise knowledge of the 

behaviour of a group of different species, in order to select those more apt to carry out specific functions and 

ecosystem services.  

Under the adopted management of irrigation and fertilization, only two of the tested species produced a good 

ground cover, and of these, only F. ovina can assure a well established cover throughout the year. In order to 

design green roofs with an appreciable specific biodiversity (Rosenzweig, 2016), species other than the 

dominant one should be taken into consideration, even if their cover capacity is less performing. A wide 

mixture of wild species on a green roof will increase the urban biodiversity and, consequently, improve the 

eco-system service potential (Cook-Patton et al., 2012; Blanusa et al., 2013). Among the tested species A. 

millefolium demonstrated a good colonization capacity through the abundant production of seeds and their 

efficient dispersal. By an appropriate calibration of irrigation and fertilization, better results could be 

obtained even from less performing species. We hypothesize that H. pilosella and T. serpyllum, for example, 

but in general all the species here considered, could positively respond to a little more availability of water 

and nutrients.  

The proposal to use perennial species of arid and semi-arid herbaceous plant communities for green roofs 

and other urban Green Infrastructures can thus be positively evaluated, but will need further experiments in 

order to obtain the best possible results. Such experiments should define the most parsimonious water and 

nutrient management able to induce a satisfactory biomass production through minimal external inputs, thus 

exploiting the adaptations of these species to poor and limiting habitats (Heil and Diemont, 1983; Catalano et 

al., 2016). 
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4. Final Discussion and Conclusions 

 
The growing increasing public, industry and government interest in the diffusion of green roofs in the cities, 

thanks to their demonstrated and well-known benefits, encourages the researches to discover new advantages 

or to use new technologies in order to improve the already known benefits of these Green Infrastructures 

(GI), or to eliminate the disadvantages that hinder their spread. 

This thesis is one of the many numerous studies that explore the benefits of these GI under different points of 

view (ecological, economic or human health); it pays particular attention to the role of the plant cover, as 

well as to the different advantages that green roofs can produce, depending on the different metabolism and 

physio-ecological adaptations of the species growing on them. As in the most recent papers (Wolf and 

Lundholm, 2008; Lundholm et al.2014; Lundholm et al. 2015), the results of this thesis demonstrate that the 

choice of the species is essential in order to obtain particular advantages from a green roof. Plant species 

with C3 or C4 metabolism, instead of the more commonly used CAM or CAM-facultative species, such as 

Sedum species, offer a wider range of environmental advantages and possibilities of mitigation in extreme 

conditions. 

Results obtained from three years of indoor experimental tests and field observations, give some interesting 

insights on the real advantages (and limits) of the use of a group of native semi-xerophilus species on 

extensive green roofs built in Mediterranean or sub-Mediterranean areas, under limiting growth conditions 

(water availability, summer and winter temperatures). The advantages concerning the summer cooling and 

winter insulation properties of green roofs derived from the use of plant species with C3 or C4 metabolism, 

instead of the more commonly used CAM or CAM-facultative species. Parameters directly or indirectly 

linked to (summer cooling and winter insulation properties) were measured in four different experiments.  

As far as the summer cooling effects of green roofs are concerned, three different groups of species 

were explored: 

 the CAM-facultative species S. lydium and S. kamtschaticum; 

 the C3 species B. erectus, L. corniculatus, and S. officinalis; 

 the C4 species C. dactylon. 

 

The first group of species provides the lowest interesting cooling performances.  

The diurnal water losses of S. lydium and S. kamtschaticum are about 0.3 g of water/g of plant material 

(value that increased to 0,4 g/g in the third experiment characterized by higher average temperatures) up to 

11 % w/w of SMC. 

Below these SMC values the diurnal water losses of the two Sedum species are very low, for example around 

6 % w/w of SMC the diurnal water losses of S. lydium and S. kamtschaticum are about 0.1 g/g. This water 

saving behavior is due to the change of metabolism from C3 to CAM. This change occurs, as observed 

through the nocturnal increase of malic acid concentration, at between 11 % and 6 % w/w of SMC. At 12 % 

v/v of SMC, even a reduction of diurnal net assimilation rate has been observed. 

A consequence of this behavior is a reduction of cooling performances too. As observed in the second 

experiment, up to 12 % v/v of SMC ,  the average deep temperatures recorded on the boxes planted with S. 

lydium and S. kamtschaticum were, on average, respectively 2 °C and 3 °C lower than the average the 

temperatures recorded below under the substrate without plants. Under 12 % v/v of SMC values, the 

differences between the average depth temperatures of Sedum boxes and the boxes with bare substrate 

decreased only by 1°C.    

It must be noted that the great diffusion of green roofs vegetated with Sedum species, come from the ability 

of these species to accumulate water inside their leaves and stem, long time surviving under very strong 

drought conditions, with a very low water expenditure. This ability, deriving from a sparing use of water, 

makes these species much less interesting, if their cooling performances are considered.  Paradoxically, in 

order to ensure good cooling performances by a green roof vegetated with CAM-facultative Sedum species, a 

high availability (upper to 11 % w/w or 12 % v/v of SMC) of water in the substrate should be maintained, 

through adequate irrigations. 

The second group of species provides interesting cooling performances.  

The C3 species tested (B. erectus, L. corniculatus, and S. officinalis) provide a greater cooling capacity than 

CAM-facultative species (S. kamtschaticum and S. lydium). This result strongly depends on their higher 

transpiration activities that, consequently, increase the evapotranspiration. The average diurnal water losses 

of B. erectus and L. corniculatus are on average of 0.6 g of water/g of plant material up to values of SMC of 
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10 % w/w, twice as much as the diurnal water loss of Sedum species, under the same substrate moisture. 

Moreover, transpiration of C3 species is active until about 6 % w/w of SMC, in fact, their average diurnal 

water losses are 0.5 g/g (instead of 0.1 g/g of Sedum species). This has a positive influence on the cooling 

effect because above 6 % v/v of SMC (when Sedum species already use CAM metabolism), the average 

depth temperatures recorded under B. erectus and S. officinalis covers, are 1 °C (0.5 °C for L. corniculatus) 

lower than the Sedum ones. These differences could be greater if the SMC of the boxes vegetated with C3 

species was kept above 9 % v/v, avoiding water stress situations as well as the typical plant reactions, such as 

the rolling of the leaves by grasses. Rolled leaves, in fact, reduces transpiration, but reduces also the canopy 

coverage and, consequently, the shadow effect and his positive influence on the plant cooling capacity.  

Generally speaking, to ensure good cooling performances by a green roof vegetated with the above-

mentioned C3 species, the SMC should be maintained slightly higher than 9 % v/v (or 10% w/w). 

The third group provides very interesting cooling performances.  

The C4 species tested, C. dactylon, instead, shows an intermediate behavior between the high water saving 

capacity of Sedum species and the good transpiration activity of C3 plants.  

In particular, the average diurnal water loss of C. dactylon is 0.5 g of water/g of plant material and does not 

change up to 5 % w/w of SMC, when the average diurnal water loss of B. erectus decreases to 0.4 g/g. 

In addition, instead of C3 species, also the RWC values of C. dactylon leaves are kept high (more than 90 %) 

until to 5 % w/w of SMC, like the CAM-facultative species tested. Thus, C4 plants could provide the same 

or a better cooling effect, under water stress conditions, than C3 species. 

In general, if a summer cooling effect is required, C3 and C4 species can provide more advantage than 

Sedum species, It is important to identify an appropriate water management, maintaining the SMC values, to 

which the desired cooling effect corresponds, identifying the minimum number of irrigation events and their 

volumes, necessary to guarantee a given cooling effect. 

If only a plant cover is required, without any particular cooling effect, Sedum species are preferable.  

As far as the winter insulating effects of green roofs are concerned, the performances of three species 

were explored.  

B. erectus produces compact and thick turfs with a high quantity of biomass, during the growing season. 

These, even without vegetative activity, persist even in winter, maintaining the same structural 

characteristics that allow an effective mitigation of the low external temperatures. 

For this reason, B. erectus shows the greatest ability to maintain, during the winter, the minimum 

temperatures below the growing layer warmer than the other species tested and the substrate without plants. 

L. corniculatus and C. dactylon do not produce compact and thick turfs and, in addition, lose many leaves 

during the winter. S. kamtschaticum and S. lydium, because of the high water content of their leaves, suffer 

frequently freezing injuries, that can create necrosis and interruptions in the continuity of the cover. 

Thermal contribution from the B. erectus coverage on the average minimum depth temperatures (-7 cm 

depth), ranges from a minimum of 0.6 °C to a maximum of 2 °C more than the average thermal contribution 

of the bare substrate. However, independently from the characteristics of their cover, all the studied species 

showed a greater insulation effect than the substrate without plants. On the other hand, during the daytime 

hours, when the sun heats the surface of green roofs after night, a consistent and thick plant cover reduces the 

solar heat gain and, consequently, the heat accumulated in the substrate before the next night (Lundholm et 

al. 2014). For this reason, in particular when the minimum night temperatures drop below zero, the substrate 

under a dense plant cover (like for B. erectus) needs more time to warm up, than the bare substrate. 
 
In conclusion, in order to improve the thermal performances of the green roofs, C3 and C4 species can 
provide more interesting performances, than CAM-facultative Sedum species.  
In summer, C3 species such as B. erectus, or L. corniculatus, or S. officinalis (or a mix of these species) can 
provide a significant cooling effect, if a regular, even if moderate irrigation, is available.  
C4 species, such as C. dactylon, can represent, on the other hand, a very interesting solution to guarantee a 
discreet cooling effect, even in presence of low irrigation possibilities.  
Mitigation of low winter temperatures requires a well-structured plant cover, thick and compact, such as that 
of B. erectus or other caespitose grasses. This point could be critical for the choice of species able to assure 
thermal advantages both in summer as in winter. 
Many recent researches also dealt with the overall behavior of species not yet used for covering green roofs, 
but very widespread in local spontaneous floras (Benvenuti and Bacci, 2010; Benvenuti, 2014). The last 
experiment presented in this thesis deals with a preliminary analysis of growth, occupation of space and 
covering capacity of a group of perennial herbaceous species (A. alpinus, A. millefolium, F. ovina, H. 
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pilosella, S. minor and T. serpyllum) commonly found in semi-arid calcareous grasslands of the 
Mesobromion, widely spread in the basal belt of the Apennines.  
Results of the experiment indicated that these species could represent a potentially interesting pool of taxa, to 
use in the green roofs, as a valid alternative to the Sedum species. All species studied, survived and 
reproduced on the roof, but the results underlined important differences in growth behavior between the 
species. Under the low management of irrigation and fertilization adopted during the experiment, only two 
species provided good coverage, and of these, only F. ovina assured a well-established cover throughout the 
year. F. ovina showed the capacity to preserve, even in winter, a dense coverage. However, F. ovina has a 
slow spreading capacity, unlike A. alpinus and A. millefolium. A. millefolium, in particular, demonstrated a 
good colonization ability through the abundant production of seeds and their efficient dispersal, in addition 
to a remarkable production of hypogeal stolons. A. alpinus and A. millefolium can guarantee a quick 
colonization of empty spaces due, to the death of some individuals, with higher coverage (such as F. ovina). 
A. alpinus and A. millefolium can thus perform a "filling" function. In addition, H. pilosella and T. serpyllum, 
stoloniferous and creeping species, under low irrigation and fertilization management did not show 
significant growth capacities. Probably, through an appropriate calibration of irrigation and fertilization at 
least during the first two years after planting, better results could be obtained even from less performing 
species.  

To conclude, the use of C3 perennial native species of arid and semi-arid herbaceous communities, instead of 
the CAM-facultative Sedum species, can be positively evaluated, but it needs careful species selection, to 
define the best plant composition, depending on the climatic context and the frequency of irrigation and 
fertilization events. 

A mixture of wild species could increase the urban biodiversity but also could improve the eco-system 
services of green roofs. In fact, a mix of species with different growth behaviors may be more efficient than 
a monospecific roof, because high biodiversity increases the resilience of the green roof necessary to 
overcome the numerous stress events during the year (Cook-Patton and Bauerle, 2012). 
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Annex 1 

 

 

 
NOMENCLATURE  

 

 
Main variables Abbreviation Unit 

Net CO2 assimilation rates A µmol CO2 m
-2

 s
-1

 

Extensive Green Roof EGR   

Green Infrastructure GI   

Intensive Green Roof IGR   

Leaf Area Index LAI Unitless (or m
2
 leaf 

area m
-2

 ground area) 

Leaf stomatal conductance 

to H2O       

gs mol H2O m
-2

 s
-1

 

Least Significant Difference LSD   

Relative Water Content RWC % 

Substrate Moisture Content SMC % 

Transmission Loss  TL dB 

Transpiration rate                            E mmol H2O m
-2

 s
-1

 

Urban Heat Island effect UHI   
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Annex 2 

 

 

 

 

 

 

 

 

 
 

Photograph (A) of the stratification used in the 1
st
, 3

rd
 and 4

th
 experiment. The stratification used included 

drainage plastic profiled panels with holes to favor water transfer between different layers (B) and filtering 

layer (C) and anti-root layer (Savi et al., 2013). 
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Annex 3 

 

 

 

 

 
 

The boxes planted with the four species during the 1
st
 and 3

rd
 experiment. Both experiments were carried out in the 

glasshouse of the DipSA Department (University of Bologna, Italy). 
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Annex 4 

 

Six of the twelve boxes prepared for the 2
nd

 experiment conducted in the glasshouses of School of Agriculture, Policy 

and Development, University of Reading (UK). 

 

 

The photograph shows the calibration phase of SM200 soil moisture probes (Delta-T devices Ltd., Cambridge, UK) and  

thermistors (type T fine PTFE insulated twin twisted wires)  connected to the DL2e data logger (Delta-T Devices Ltd, 

Cambridge, UK). 
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Annex 6 

 

 
Table 2.5.1 – Daily average minimum temperature at 7 cm depth (DMT), on the surface (SMT) and their differences 

(DMT-SMT) of each box, during the experiment. 

 

Day Bare substrate B. erectus L. corniculatus C. dactylon S. kamtschaticum S. lydium 

 D
M

T
 (°C

) 

 

S
M

T
 (°C

) 

 

d
iff (°C

) 

D
M

T
 (°C

) 

S
M

T
 (°C

) 

d
iff (°C

) 

D
M

T
 (°C

) 

S
M

T
 (°C

) 

d
iff (°C

) 

D
M

T
 (°C

) 

S
M

T
 (°C

) 

 

d
iff (°C

) 

D
M

T
 (°C

) 

S
M

T
 (°C

) 

 

d
iff (°C

) 

D
M

T
 (°C

) 

S
M

T
 (°C

) 

 

d
iff (°C

) 

1 -0.3 -0.6 0.3 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 -0.3 0.3 0.0 -0.4 0.4 0.0 0.0 0.0 

2 -0.3 -0.1 -0.2 0.1 0.4 -0.3 0.0 0.0 0.0 0.0 0.4 -0.4 0.0 0.4 -0.4 0.0 0.0 0.0 

3 -0.3 -2.0 1.7 0.0 -0.8 0.8 0.0 -0.5 0.5 0.0 -1.4 1.4 0.0 -1.0 1.0 0.0 -0.5 0.5 

4 -1.0 -2.3 1.3 0.0 -1.0 1.0 0.0 -0.9 0.9 -0.4 -1.6 1.3 0.0 -1.6 1.6 0.0 -1.0 1.0 

5 -0.5 -1.3 0.8 0.0 -0.5 0.5 0.0 -0.4 0.4 -0.3 -0.5 0.3 0.0 -0.8 0.8 0.0 -0.8 0.8 

6 -0.2 0.8 -0.9 0.5 1.0 -0.5 0.0 0.5 -0.5 0.0 1.1 -1.1 0.1 1.6 -1.5 0.3 0.6 -0.4 

7 0.0 0.9 -0.9 0.7 2.1 -1.5 0.1 0.8 -0.6 0.1 1.5 -1.4 1.5 2.9 -1.4 0.4 1.3 -0.9 

8 0.3 -0.1 0.5 1.4 -0.5 1.9 0.9 0.0 0.9 0.0 -0.6 0.6 0.9 -0.6 1.5 0.0 -0.3 0.3 

9 0.0 -1.3 1.3 0.5 -1.0 1.5 0.5 -0.4 0.9 0.3 -1.6 1.9 0.4 -1.8 2.1 0.0 -1.0 1.0 

10 0.0 -1.5 1.5 0.5 -1.0 1.5 0.4 -0.5 0.9 0.0 -1.5 1.5 0.0 -1.9 1.9 0.0 -1.0 1.0 

11 0.0 -0.3 0.3 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.6 0.7 0.1 -0.4 0.5 

12 -0.5 -1.7 1.2 0.4 -0.8 1.2 0.0 -0.3 0.3 0.0 -1.4 1.4 0.0 -1.6 1.6 0.0 -1.0 1.0 

13 -0.2 -1.2 1.0 0.4 -0.5 0.9 0.0 0.0 0.0 0.0 -0.9 0.9 0.1 -1.0 1.1 0.1 -0.6 0.7 

14 1.0 1.3 -0.3 2.0 2.0 0.0 2.0 2.0 0.0 2.0 2.1 -0.1 2.2 2.2 0.1 2.0 2.0 0.0 

15 3.5 3.6 -0.1 4.0 4.0 0.0 4.0 4.0 0.0 4.0 4.0 0.0 4.0 4.0 0.0 4.0 4.0 0.0 

16 3.0 3.5 -0.6 3.7 3.6 0.2 3.5 3.6 -0.1 3.5 3.8 -0.3 3.7 3.8 -0.1 3.9 3.8 0.1 

17 4.7 4.8 -0.2 5.4 5.0 0.4 5.0 5.0 0.0 5.2 5.2 0.0 5.1 5.0 0.1 5.4 5.0 0.4 

18 6.3 4.8 1.4 7.1 6.3 0.8 6.8 6.1 0.7 6.9 5.7 1.2 6.9 5.8 1.1 6.7 6.0 0.7 

19 3.8 2.6 1.2 5.7 4.4 1.2 5.0 4.0 0.9 4.8 3.5 1.4 5.1 3.6 1.5 4.7 3.9 0.8 

20 5.5 5.0 0.5 5.8 5.1 0.7 5.5 5.5 0.0 5.7 5.5 0.2 5.5 5.0 0.5 5.6 5.5 0.1 

21 6.0 5.8 0.2 6.9 6.4 0.5 6.5 6.3 0.2 6.7 6.3 0.4 6.8 6.3 0.5 6.7 6.3 0.4 

22 3.3 2.3 1.0 5.2 4.0 1.2 4.7 3.7 1.1 4.3 3.3 1.0 4.8 3.3 1.5 4.5 3.6 0.8 

23 1.5 0.4 1.1 3.3 2.0 1.3 2.6 1.6 1.0 2.2 1.1 1.0 2.7 1.1 1.6 2.4 1.1 1.3 

24 3.9 3.5 0.4 4.6 4.0 0.6 4.5 4.0 0.5 4.5 4.0 0.5 4.5 3.7 0.8 4.4 4.0 0.4 

25 4.6 4.5 0.1 5.5 5.0 0.5 5.2 5.0 0.2 5.2 5.0 0.3 5.1 4.6 0.5 5.2 5.0 0.2 

26 5.6 5.5 0.2 6.5 6.0 0.5 6.3 6.0 0.3 6.3 6.0 0.3 6.3 5.9 0.5 6.3 6.0 0.3 

27 6.9 6.7 0.3 7.5 7.4 0.1 7.5 7.3 0.2 7.5 7.2 0.3 7.5 7.0 0.5 7.6 7.2 0.4 

28 5.8 4.1 1.7 7.0 5.7 1.3 6.7 5.6 1.1 6.5 5.0 1.5 6.5 4.8 1.7 6.5 5.3 1.2 

29 1.4 -1.1 2.5 4.3 2.4 1.9 3.4 1.7 1.7 2.8 1.0 1.8 3.7 1.2 2.5 3.0 1.7 1.3 

30 1.7 -0.8 2.5 4.4 2.6 1.8 3.5 1.8 1.7 3.0 1.0 2.0 4.0 1.4 2.5 3.1 1.5 1.5 

31 3.7 2.0 1.7 6.1 4.7 1.4 5.3 4.1 1.2 4.9 3.5 1.3 5.7 4.0 1.7 5.0 4.1 0.9 

32 6.5 4.6 1.9 8.0 6.6 1.4 7.7 6.5 1.2 7.4 5.8 1.7 7.6 5.7 1.9 7.4 6.0 1.5 

33 1.7 0.3 1.3 4.4 2.2 2.2 3.5 1.8 1.7 2.8 1.1 1.7 3.7 1.2 2.6 3.1 1.7 1.4 

34 4.1 2.7 1.4 5.6 4.2 1.5 5.2 3.9 1.2 4.8 3.5 1.3 5.2 3.5 1.7 4.9 3.8 1.1 

35 2.1 0.6 1.5 4.3 2.9 1.4 3.5 2.3 1.2 3.1 1.9 1.2 3.7 2.2 1.5 3.1 2.2 0.9 

36 5.7 5.1 0.6 6.7 5.7 1.0 6.6 6.1 0.5 6.5 5.7 0.7 6.4 5.5 0.9 6.6 5.9 0.7 

37 2.3 -0.3 2.6 5.0 2.5 2.5 4.3 2.3 1.9 3.6 1.4 2.2 4.0 1.0 3.0 3.6 1.6 2.0 

38 5.8 4.7 1.0 7.1 6.0 1.1 6.9 6.2 0.7 6.7 5.6 1.1 6.7 5.2 1.4 6.7 5.7 0.9 

39 5.6 4.0 1.6 6.7 5.4 1.3 6.3 5.4 0.9 6.2 4.8 1.3 6.2 4.7 1.5 6.1 5.0 1.1 

40 1.0 -0.7 1.8 4.0 1.5 2.4 3.0 1.2 1.8 2.3 0.4 1.9 3.3 0.3 3.0 2.5 1.0 1.5 

41 1.6 -0.3 1.9 4.3 1.7 2.6 3.4 1.5 2.0 2.8 0.6 2.2 3.5 0.6 2.9 2.8 1.3 1.5 

42 7.4 9.3 -1.9 8.3 9.7 -1.3 8.1 8.3 -0.2 8.2 9.5 -1.3 8.6 9.6 -1.0 8.2 8.7 -0.5 

43 7.8 6.3 1.5 9.9 8.1 1.8 9.3 7.3 1.9 8.7 7.0 1.7 9.4 7.8 1.6 8.6 7.5 1.1 

44 5.8 3.2 2.6 8.5 6.1 2.5 7.6 5.7 2.0 7.0 4.8 2.2 7.8 4.9 3.0 6.9 5.3 1.6 

45 5.7 4.4 1.3 8.1 6.5 1.6 7.6 6.3 1.3 7.1 5.7 1.4 7.7 6.0 1.7 7.1 6.0 1.1 

46 8.5 8.0 0.5 9.3 8.4 1.0 9.3 8.9 0.3 9.1 8.5 0.5 9.2 8.4 0.8 9.2 8.7 0.5 

47 7.4 7.6 -0.2 9.0 8.3 0.7 8.5 7.8 0.6 8.0 8.1 -0.1 8.5 8.3 0.2 8.0 7.8 0.2 

48 6.1 3.5 2.5 8.6 6.3 2.3 8.0 6.0 2.0 7.3 5.3 2.0 7.9 5.6 2.3 7.1 5.6 1.5 

49 8.1 6.5 1.6 9.4 7.5 2.0 9.1 8.0 1.2 8.8 7.1 1.7 9.0 7.3 1.8 8.7 7.7 1.0 

50 5.3 3.2 2.1 8.0 5.5 2.6 7.7 5.7 2.0 6.8 4.4 2.4 7.4 4.9 2.5 6.4 4.9 1.5 
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Annex 7 

 

 

The experimental green roof planted with native species built in the Agricultural Sciences School of the Bologna 

University (Italy). The stratification adopted has a total depth of about 18 cm, where the upper part is organized in 

quadrate modules of 54 x 54 x 9 cm depth, made of regenerated plastic, interlocking each other and filled with pumice 

grains (Ø 3-6 mm) and with VULCAFLOR® up to the brim. 

 

A. alpinus and A. millefolium individuals, originated by seed dissemination, invaded the modules of H. pilosella. 


