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INTRODUCTION 

 

Cannabis sativa L. 

Cannabis sativa is an herb that has been used by humans for millenniums for 

its fibre, known as hemp, for its psychological and physiological effects and 

for the nourishment of its oil-bearing seeds. The fibre of the plant, cultivated 

as hemp, has numerous textile uses. Its seed is a valuable source of protein 

and unsaturated oils. The flowers (and to a lesser extent the leaves and stems) 

contain psychoactive and physiologically active chemical compounds known 

as cannabinoids that are consumed for recreational, medicinal, and spiritual 

purposes. When so used, preparations of flowers (marijuana) and leaves and 

preparations derived from resinous extract (hashish) are consumed by 

smoking, vaporizing and oral ingestion. The major biologically active 

chemical compound in Cannabis is Δ-9-tetrahydrocannabinol, commonly 

referred to as THC. The major difference between the variety grown for 

industrial use and the one primarily used for production of recreational and 

medicinal drugs, is the amount of Δ-9-tetrahydrocannabinol (THC) secreted 

in a resinous mixture by epidermal hairs called glandular trichomes.  

Ingestion of Cannabis sativa preparations results in an intoxication 

characterized by sedation, cognitive dysfunction, failure to consolidate short-

term memory, alteration in time assessment, perceptual changes, motor in-

coordination and poor executive function (reviewed in Abood and Martin, 

1992; Dewey, 1986; Hollister, 1986; Pertwee, 1988). Most of these effects 

are due to the action of THC, the main psychoactive substance found in the 

Cannabis plant. THC was isolated by Raphael Mechoulam and co-workers in 

1964, and its mechanism of action was disclosed in 1990, when the first 

cannabinoid receptor (CB1) was cloned (Matsuda et al., 1990) In fact many of 

the pharmacological actions of THC result from its binding to the 

cannabinoid receptor CB1. The four symptoms that are often used to define 

cannabinoid intoxication in the rodent - hypothermia, rigid immobility, 
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analgesia and decreased motor activity (Adams and Martin, 1996) - are absent 

in mice in which the cb1 gene has been deleted by targeted recombination 

(Ledent et al., 1999; Zimmer et al., 1999). Cannabinoids are the most 

distinctive and specific class of compounds known to exist only in the 

cannabis plant. They are a group of terpenophenolic compounds, with very 

low solubility in water, but good solubility in most organic solvents. Other 

natural cannabinoids are cannabinol (CBN), cannabidiol (CBD), one of the 

most promising cannabinoid the researchers are investigating on, 

cannabigerol (CBG), cannabichromene (CBC), and delta-8-

tetrahydrocannabinol (Δ-8-THC).  

 

The endocannabinoid system 

The endocannabinoid system is made up of two cannabinoid receptors, called 

CB1 and CB2, their endogenous ligands, called the endocannabinoids, the 

proteins for their synthesis and inactivation, and other molecular targets for 

the endocannabinoids. The endocannabinoids known by far are anandamide 

(N-arachidonoyl-ethanolamine, AEA) and 2-arachidonoyl-glycerol (2-AG) 

discovered in the 1990s, whilst 2-arachidonyl-glyceryl ether (noladin, 2-

AGE), O-arachidonoyl-ethanolamine (virhodamine) and N-arachidonoyl-

dopamine (NADA) have been proposed as cannabinoid receptor agonists in 

this decade (De Petrocellis et al., 2004).  

 

Endocannabinoids release from neurons and their deactivation 

Endocannabinoids synthesis is stimulated by intracellular Ca2+ elevation 

(Bisogno et al., 1997; Cadas et al., 1996; Di Marzo et al., 1994). Anandamide 

and 2-AG are hydrophobic compounds, so they tend to remain associated 

with lipid membranes where they are produced. They can approach the CB1 

receptors by lateral membrane diffusion, but it is likely that some 

extracellular lipid-binding proteins help to deliver endocannabinoids to their 

cellular targets  (Piomelli, 2003). Reuptake of endocannabinoids by a yet 
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uncharacterized carrier and intracellular hydrolysis are the two mechanisms, 

which cooperate in attenuating endocannabinoid signalling in the brain 

(Piomelli, 2003). A series of pharmacological transport inhibitors have been 

synthesized; these molecules - the prototype of which is AM404 - (Beltramo 

et al., 1997; Beltramo et al., 2000; Piomelli et al., 1999), helped to unmask 

important roles of the endocannabinoid system in the regulation of 

neurotransmission and synaptic plasticity. Fatty acid amide hydrolase, 

FAAH, is an intracellular membrane-bound serine hydrolase that breaks 

down anandamide into arachidonic acid and ethanolamine (Cravatt et al., 

1996; Schmid et al., 1985). FAAH is widely distributed in the rat brain, 

where it is expressed at high concentrations in cell bodies and dendrites of 

principal neurons (Egertova et al., 2003; Tsou et al., 1998). Monoacylglycerol 

lipase (MGL), which is responsible for the hydrolysis of 2-AG, has a broad 

distribution in the central nervous system, which partially overlaps with that 

of FAAH; however, whereas FAAH is predominantly found in postsynaptic 

structures, MGL might be mostly associated with nerve endings (Dihn et al., 

2002).  

 

CB1 receptors pharmacology in the CNS 

The cannabinoid receptor type 1, CB1, is a G protein-coupled receptor that is 

found in the brain and is activated by THC, anandamide and 2-AG (Pazos 

2005). The receptor is coupled to a Gi/o protein, and upon its stimulation 

several intracellular signal transduction pathways are activated: inhibition of 

the enzyme adenylate cyclase, inhibition of N- and P/Q-type calcium 

channels, activation of inwardly rectifying potassium channels, and activation 

of mitogen-activated protein kinases (Fowler, 2003). CB1 receptors are 

thought to be the most widely expressed G protein-coupled receptors in the 

brain. Varying levels of CB1 expression can be detected in the olfactory bulb, 

cortical regions (neocortex, pyriform cortex, hippocampus, and amygdala), 

several parts of basal ganglia, thalamic and hypothalamic nuclei and other 
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subcortical regions, cerebellar cortex, and brainstem nuclei (e.g. the 

periaqueductal gray) (Howlett et al., 2002). In these structures CB1 receptors 

demonstrate a presynaptic location, and this characteristic suggests that the 

endocannabinoid system could play an important role in synaptic 

neurotransmission (so-called “endocannabinoid retrograde signalling”). The 

hippocampus has an essential role in the formation of new memories, and 

endocannabinoids play an important role in the modulation of memory in this 

area of the brain (Robinson et al., 2004). Depolarization-induced suppression 

of inhibition (DSI), is a very common form of short-term plasticity in which 

the depolarization of a pyramidal neuron in the CA1 field of the 

hippocampus, induces a reduction in GABA inhibitory inputs. DSI is 

mediated by endocannabinoids (Alger, 2002; Kreitzer and Regehr, 2001; 

Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001; Yoshida et al., 2002), 

and has been shown to occur in other areas of the brain (i.e. cerebellum) 

(Kreitzer and Regehr, 2001; Trettel and Levine, 2003). Cannabinoid agonists 

seem to have an influence on affective states (Viveros et al., 2005), and 

inactivation of CB1 receptors causes anxiety-like and aggressive responses in 

rodents (Martin et al., 2002; Navarro et al., 1997). Cannabinoids might 

contribute to the regulation of the basal ganglia function (Fernández-Ruiz and 

Gonzáles, 2005), and may be involved in the modulation of motor activity 

(Giuffrida et al., 1999; Kettunen et al., 2005; Kyriakatos and Manira, 2007). 

Beside their actions in the amygdala, which seems to be the site of 

cannabinoid central analgesia (Katona et al., 2001; Macdonald and Mascagni, 

2001; Martin et al., 1999), cannabinoid agonists can influence the central 

processing of pain in hindbrain (Jennings et al., 2001; Lichtman et al., 1996; 

Meng et al., 1998), and systemic administration of CB1 antagonists produces 

hyperalgesia in rats and mice (Calignano et al., 1998; Richardson et al., 1997; 

Strangman et al., 1998). Though central and peripheral actions could underlie 

the analgesic properties of cannabinoid drugs (Cravatt and Lichtman, 2004; 

Iversen and Chapman, 2002), recent findings seem to indicate the CB1 
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receptors expressed on the peripheral axons of primary sensory neurons, as 

the main target for substantial analgesia for somatic and visceral pain, as well 

as in inflammatory and neuropathic pain (Agarwal et al., 2007). 

Endocannabinoid-mediated retrograde transmission is also involved in the 

depolarization-induced suppression of excitation (DSE), in principal neurons 

in hippocampus and cerebellum. Similarly to DSI, DSE is induced by 

neuronal depolarization, and consists of a transient depression in 

neurotransmitter release. DSE targets glutamatergic axon terminals, and thus 

reduces excitatory input to the affected cell (Alger 2002; Ohno-Shosaku, 

2002; Kreitzer and Regehr, 2001). 

The ability of cannabinoid agonists to inhibit the release of neurotransmitters 

in the CNS is not restricted to glutamate and GABA. Acetylcholine release is 

reduced by cannabinoids both in vitro and in vivo, and is enhanced by 

inactivation of CB1 receptors (Degroot et al., 2006; Gessa et al., 1998; 

Gifford and Ashby, 1996; Schlicker and Kathmann, 2001). Since 

acetylcholine release in the neocortex and hippocampus facilitates learning 

and memory, its endocannabinoids-mediated decrease might contribute to the 

negative effects of cannabinoid drugs on cognition.  

The endocannabinoid system is also involved in long-term regulation of 

synaptic plasticity. Long-term depression (LTD), is the weakening of a 

neuronal synapse that lasts from hours to days, and is induced (in 

hippocampus) by a persistent weak synaptic stimulation. Evidences that 

striatal LTD is absent in CB1-deficient mice and is blocked by the CB1 

antagonist rimonabant suggest that endocannabinoids are involved in this 

phenomenon; moreover CB1 agonists can induce LTD (Chevaleyre and 

Castillo, 2003; Kreitzer and Malenka, 2007; Gerdeman et al., 2002; Ronesi et 

al., 2004).  

The possible postsynaptic location of CB1 receptors is still under debate. 

Several reports suggested that these receptors could exhibit a postsynaptic 
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location (Marsicano et al., 2003; Rodriguez et al., 2001) in rat brain, whereas 

other works are against these data (Freund et al., 2003).  

 

CB2 receptors pharmacology in the CNS 

CB2 receptors are mainly expressed in the immune system, and they modulate 

cytokine release and immune cell migration (Howlett et al., 2002). CB2 

receptors are also expressed on peripheral nerve terminals (Howlett et al., 

2002). In the brain they are expressed by microglia and astrocytes, where 

their role remains unclear (Fernández-Ruiz et al., 2007), on neurons in several 

brain regions (Onaivi et al., 2006), and in the spinal cord. They have been 

attributed anti-nociceptive potential (Jhaveri et al., 2007). Activation of CB2 

receptors inhibits adenylyl cyclase (Slipetz et al., 1995) and activates 

mitogen-activated protein kinase (Bouaboula et al., 1996) through Gi/o 

protein.  

 

 

Glutamatergic transmission and excitotoxicity 

Glutamate and excitatory neurotransmission 

Glutamate is the most abundant excitatory neurotransmitter in the mammalian 

nervous system. It contributes to synaptic neurotransmission, and also to 

complex physiological processes like memory, learning, plasticity, and 

neuronal cell death (Dingledine et al., 1999; Ozawa et al., 1998). Glutamate is 

synthesized in the cytoplasm and stored in synaptic vesicles by the vesicular 

glutamate transporters (VGLUTs). Following its exocytotic release, 

glutamate activates ionotropic glutamate receptors for fast excitatory 

neurotransmission and metabotropic receptors for slower modulatory effects 

on transmission. To terminate the action of glutamate, Na+-dependent high 

affinity glutamate transporters (excitatory amino acid transporters: EAATs) 

located on the plasma membrane of neurons and glial cells rapidly remove 

glutamate from the extracellular space (Balcar, 2002; Danbolt, 2001). Most of 



Introduction 

 7 

the glutamate is released synaptically and transits through the glutamate–

glutamine cycle before being stored into synaptic vesicles (Hamberger et al., 

1979). Glutamate taken up into glial cells is metabolized to glutamine, which 

is then transported back into neurons, converted to glutamate and sequestered 

into synaptic vesicles by the VGLUTs. In brain injury or disease, glutamate 

transporters can work in reverse and glutamate can accumulate outside cells 

(Shigeri et al., 2004). Glutamate receptors are transmembrane receptors 

located on neuron membranes. There are two basic types of glutamate 

receptor: ionotropic (NMDA receptor, kainate receptor, and AMPA receptor), 

and metabotropic (mGluR1, mGluR2, mGluR3, mGluR4, mGluR5, mGluR6, 

mGluR7, mGluR8). 

 

Glutamate ionotropic receptors: NMDA receptors 

The NMDA receptor (NMDAR) is an ionotropic receptor for glutamate (N-

methyl D-aspartate, NMDA, is the agonist its name refers to). Activation of 

NMDA receptors results in the opening of an ion channel that is nonselective 

to cations: it allows flow of Na+ and small amounts of Ca2+ ions into the cell, 

and K+ out of the cell. Calcium flux through NMDARs is thought to play a 

critical role in synaptic plasticity. The NMDA receptor forms a heterodimer 

between NR1 and NR2 subunits. Multiple receptor isoforms with distinct 

brain distributions and functional properties have been identified. Each 

receptor subunit contains two globular structures in the extracellular domain: 

a modulatory domain and a ligand binding domain. NR1 subunits bind the co-

agonist glycine and NR2 subunits bind the neurotransmitter glutamate. The 

membrane domain consists of three trans-membrane segments and a loop, it 

is responsible for the receptor's conductance, high-calcium permeability, and 

voltage-dependent magnesium block. Each subunit has also a cytoplasmic 

domain, which residues can be modified by protein kinases and protein 

phosphatases, and can interact with a large number of proteins. Activation of 

NMDA receptors requires binding of glutamate (or aspartate), and also 
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requires the binding of the co-agonist glycine. D-serine has also been found 

to co-agonize the NMDA receptor. In addition, a third requirement is 

membrane depolarization. A positive change in transmembrane potential will 

open the ion channel by expelling the Mg2+ ion that blocks the channel 

(Dingledine et al., 1999; Wolosker, 2007).  

 

Glutamate ionotropic receptors: kainate receptors 

Kainate receptors, or KARs, are non-NMDA ionotropic receptors, which 

respond to the neurotransmitter glutamate. They were first identified as a 

distinct receptor type through their selective activation by the agonist kainate. 

There are five types of kainate receptor subunits, GluR5, GluR6, GluR7, KA1 

and KA2, arranged in different ways to form a tetramer. The ion channel 

formed by kainate receptors is permeable to Na+ and K+ ions. Kainate 

receptors play a role in both pre- and postsynaptic neurotransmission. They 

have a somewhat more limited distribution in the brain compared to AMPA 

and NMDA receptors, and their function is not well defined. They are 

involved in epilepsy, excitotoxicity, and synaptic transmission of noxious 

stimuli (Pinheiro and Mulle, 2006). 

 

Glutamate ionotropic receptors: AMPA receptors 

The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (also 

known as AMPA receptor, AMPAR, or quisqualate receptor) is a non-

NMDA-type ionotropic transmembrane receptor for glutamate that mediates 

fast synaptic transmission. Its name is derived from its ability to be activated 

by the artificial glutamate analog, AMPA. AMPARs are found in many parts 

of the brain and are the most commonly found receptor in the nervous system. 

AMPARs are composed of four types of subunits, designated as GluR1, 

GluR2, GluR3, and GluR4, which combine to form tetramers. Most AMPARs 

are either homo-tetramers of GluR1 or GluR4, or symmetric 'dimer of dimers' 

of GluR2 and either GluR1, GluR3 or GluR4. Each AMPAR has four sites to 
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which a molecule of the agonist can bind, one in each subunit; the channel 

can open when two or more sites are occupied. AMPARs open and close 

quickly, and are thus responsible for most of the fast excitatory synaptic 

transmission in the central nervous system. The permeability of AMPAR to 

Ca2+ and other cations, such as Na+ and K+, is governed by the GluR2 subunit 

(if an AMPAR lacks a GluR2 subunit, then it will be permeable to Na+, K+ 

and Ca2+). The principal ions gated by AMPARs are Na+ and K+. The subunit 

composition of the AMPAR is also important for the way this receptor is 

modulated. If an AMPAR lacks GluR2 subunits, then it is susceptible to 

being blocked in a voltage-dependent manner by polyamines, which prevent 

the flux of K+ ions through the channel pore at depolarized membrane 

potential (Dingledine et al., 1999).  

 

Glutamate metabotropic receptors 

Metabotropic glutamate receptors (mGluRs) are members of the G protein-

coupled receptor (GPCR) superfamily and they have been shown to play an 

important role in processes requiring synaptic plasticity, such as learning and 

memory, neuronal development, and neurodegeneration. mGluRs have been 

divided into 3 subgroups based on sequence similarities, signal transduction 

pathways and pharmacology (Conn and Pin, 1997; Dale et al., 2003). They 

are Group I (mGluR1 and mGluR5), Group II (mGluR2 and mGluR3) and 

Group III (mGluR4, mGluR6, mGluR7, and mGluR8). In contrast to 

ionotropic glutamate receptors, which mediate fast synaptic transmission at 

glutamatergic synapses, mGluRs often modulate ongoing activity. 

Postsynaptic mGluRs may modulate membrane properties by second 

messenger interactions, while presynaptic mGluRs have been shown to 

control synaptic release; depending on the specific mGluR and its position 

within brain circuits, the resulting modulation may be facilitatory or 

inhibitory (Alexander and Godwin, 2006). All mGluRs have seven 

transmembrane domains, with the intracellular loop between domains 3 and 4 



Introduction 

 10 

binding a G-protein. Group I mGluRs (mGluR1 and 5) couple to Gq to 

stimulate phosphoinositide hydrolysis and phospholipase C. Group II 

(mGluR2 and 3) and Group III mGluRs (mGluR4, 6, 7, and 8) couple to 

Gi/Go to inhibit cAMP. In addition to these second messenger pathways, 

mGluRs can signal by uncoupling of the βγ subunits from the heterotrimeric 

G protein to directly modulate ion channels. In general, Group I mGluRs are 

excitatory, acting to enhance neurotransmitter release, potentiate ionotropic 

glutamate receptors responses and modulate various depolarizing currents. 

Group II and III mGluRs generally act to reduce neurotransmitter release, and 

within the axon terminal G-protein effects may include inhibition of high 

threshold calcium channels, activation of potassium channels and direct 

inhibition of transmitter release machinery. All mGluRs are expressed on 

neurons, and mGluR3 and 5 are additionally found on glial cells (De Blasi et 

al., 2001; Kew and Kemp, 2005).  

 

Excitotoxicity 

Excitotoxicity was first described by Olney in the 1970s (Olney, 1969). It 

consists in a pathological process where an overactivation of receptors for the 

excitatory neurotransmitter glutamate leads to neuronal death. In 

physiological conditions, the presence of glutamate in the synapse is 

regulated by active ATP-dependent transporters in neurons and glia. The 

induction of excitotoxic neuronal death depends on Ca2+ influx through 

NMDA receptors (Choi, 1992; Limbrick et al., 2001; Randall and Thayer, 

1992). In physiological conditions, Ca activates a number of Ca2+-dependent 

enzymes that influence a wide variety of cellular components, like 

cytoskeletal proteins or second messenger synthases. However, 

overactivation at NMDA receptors triggers an excessive entry of Ca2+, 

initiating a series of cytoplasmic and nuclear processes that promote neuronal 

cell death: activation of proteolytic enzymes, activation of Ca2+/calmodulin 

kinase II (with increased activity of phosphorylated enzymes), activation of 
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Ca2+-dependent endonucleases, and expression of transcription factors such as 

c-Fos, c-Jun or c-Myc.  Mitochondrial dysfunction resulting from pathologic 

receptor activation plays a central role in the delayed necrotic death of the 

neuron (Budd and Nicholls, 1996; Wang and Thayer, 1996). In fact recent 

findings have shown that the initial Ca2+ loading into the cytoplasm and Ca 

elevation are not neurotoxic per se, as long as the mitochondria are 

depolarized (Stout et al., 1998). In contrast, the further uptake of intracellular 

Ca2+ into the mitochondria creates a condition that results in an irreversible 

failure of cytoplasmic Ca2+ extrusion (Limbrick et al., 2001); this delayed 

failure of cytoplasmic Ca2+ homeostasis seems to be involved in activation of 

neuronal death pathways (Casthilo et al., 1999; Nicholls et al., 2007). 

 

Neuroprotective properties of cannabinoids 

Brain injury results in neurodegenerative events within the nervous system; in 

fact, traumatic events like stroke, physical trauma, inflammatory reactions, 

can trigger neurotoxic cascades, ultimately leading to neuronal death. 

Excitotoxicity takes center stage in the pathologic sequelae after stroke or 

traumatic brain injury (DeLorenzo et al., 2006; Lipton, 1999; Siesjö, 1992; 

Siesjö and Bengtsson, 1989), and has been implicated in the slow progression 

of neurodegenerative disorders such as multiple sclerosis, Alzheimer's 

disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's 

disease (Kim et al., 2002; LaFerla, 2002; Mattson et al., 2000; Missiaen et al., 

2000).  

The events that lead to excitotoxic cell death can be initiated at many levels: 

by ATP depletion secondary to oxygen and glucose deprivation; by 

mitochondrial disorders (Pang and Geddes, 1997); by exogenous 

administration of glutamate receptor agonists (Dijkhuizen et al., 1996); by 

removing the voltage-sensitive Mg2+ blockade from the NMDA-receptor 

(Zeevalk and Nicklas, 1992); by blocking glutamate-uptake (Velasco et al., 

1996); by pharmacologically inhibiting Na+/K+-ATPase thereby directly 
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inducing depolarisation, etc. Regardless of the point of initiation, the 

neurotoxic events self-amplify, and ultimately lead to cell death. Several 

mechanisms are considered the rational basis of neuroprotective properties of 

cannabinoids (Drysdale and Platt, 2003):  

a) reduction and regulation of transmitter release ; 

b) modulation of calcium homeostasis and excitability; 

c) antioxidant properties; 

d) modulation of immune response. 

Cannabinoids showed neuroprotection against brain injury resulting from 

injected toxins, hypoxia and head trauma: endocannabinoids (AEA and 2-

AG) synthesis is strongly enhanced after brain injury, and there is evidence 

that these compounds reduce the secondary damages (reviewed in 

Mechoulam et al., 2002; van der Stelt et al., 2002). Some plant and synthetic 

cannabinoids (CBD, HU-211), have also been shown to be neuroprotective 

with mechanisms different from the cannabinoid receptors binding, possibly 

through their direct effect on the excitatory glutamate system and/or as 

antioxidants (Mechoulam et al., 2002). Researchers have found protective 

effects from endogenous cannabinoids in models of multiple sclerosis (Baker 

et al., 2001; Croxford et al., 2008; Ligresti et al., 2006). Anandamide levels in 

the brains of rats rise after kainate administration and protect against 

excitotoxicity (Marsicano et al., 2003), and the cannabinoid system may play 

a primary role in limiting brain damage (Mechoulam and Lichtman, 2003). 

The mechanisms by which the cannabinoids reduce damage to the brain are 

related to enhanced GABAergic tone, reducing glutamate activity, as well as 

to inhibition of nitric oxide and TNFα production (Molina-Holgado et al., 

1997). Neuroprotective effects of the CB1 agonists WIN55212-2 and 

CP55940 have also been demonstrated against neuronal death induced by 

glutamate in vitro, via CB1 receptor (Hampson and Grimaldi, 2001; Shen and 

Thayer, 1998). Similar results are reported with the cannabinoid agonist 

WIN55212-2 inhibiting glutamate release in an in vivo model of hypoxia-



Introduction 

 13 

ischemia in newborn rats. This effect is mediated by both CB1 and CB2 

receptors (Martinez-Orgado et al., 2003; Fernández-López D et al., 2007). 

WIN55212-2 is also known to inhibit certain calcium channels, (Hampson 

and Grimaldi, 2001), and the production of cytokines (Sheng et al., 2005). 

Neuroprotective effects of THC and CBD, and of CB1 agonists may also 

involve their antioxidant properties. (El-Remessy et al., 2003; Hampson et al., 

1998; Marsicano et al., 2002).  

Some in vitro and in vivo studies do not support a neuroprotective action of 

cannabinoids (van der Stelt et al., 2002). 

 

Cannabinoids and epilepsy 

Epilepsy is one of the most common diseases of the brain, characterized by 

the periodic and unpredictable occurrence of epileptic seizures, which are 

caused by an abnormal discharge of cerebral neurons. Many different types of 

seizures can be identified on the basis of their clinical phenomena. These 

clinical characteristics, along with their electroencephalographic (EEG) 

features, can be used to categorize seizures in partial and generalized ones. 

Partial focal, local seizures have a localized onset in a portion of one 

hemisphere, while generalized seizures are those in which evidence for a 

localized onset is lacking. In the absence of a specific etiological 

understanding in any of the epilepsies or epileptic syndromes, approaches to 

drug therapy of epilepsy must necessarily be directed at the control of 

symptoms, i.e. the suppression of seizures (Löscher, 1997). In fact, all 

currently available drugs are anticonvulsant - antiseizure rather than 

antiepileptic. In most patients with epilepsy the prognosis for seizure control 

is very good. Since a significant proportion of individuals with epilepsy suffer 

from pharmacoresistant epilepsy, there is a clear need for new drugs or new 

strategies of therapeutic management (Löscher and Schmidt, 2002), and also 

new drugs with benefits in terms of side effects and tolerability are needed 

(Schmidt and Kramer, 1994). Relatively high densities of CB1 receptors are 
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localized in areas such as the hippocampus, amygdala, and cerebral cortex, 

areas known to subserve various kinds of seizures (Adams et al., 1997). 

Thorough investigations on the anticonvulsant activity of phytocannabinoids 

were made during the 1970s, around one decade after CBD and THC had 

been isolated from Cannabis sativa and characterized, but before the 

endocannabinoid system had been discovered. CBD (and cannabinol) showed 

to possess an anticonvulsant activity comparable to that of THC in the 

maximal electroshock test in mice (Karler et al., 1973; Karler et al., 1974a,b), 

and tolerance to this activity developed only for THC. Pure THC was 

compared to clinically used anti-epileptic drugs (diphenylhydantoin, 

phenobarbital and chlordiazepoxide) demonstrating that it increased the 

latency of tonic convulsion in the pentylentetrazol-induced seizures in mice, 

but along with diphenylhydantoin at high dosages enhanced the effect of the 

chemoconvulsant (Sofia et al., 1976). During the 1980s small clinical trials 

were made to assess therapeutic effect of CBD in patients suffering from 

epilepsy. “Beneficial effect” in patients refractory to all known antiepileptic 

drugs was reported, and CBD was considered acting as an antiepileptic drug 

with no sign of toxicity (Carlini and Cuhna, 1981). In the same period, the 

three-dimentional structures of CBD and phenytoin were compared and both 

drugs showed to be “in line with the stereochemical requirements suggested 

for anticonvulsant drug action” (Tamir et al., 1980). Later CBD was 

suggested to act preferentially to reduce the spread of seizures activity 

irrespective to their focal origin in the CNS (Consroe et al., 1982). Many 

studies on CBD, THC, and their analogs in animal seizure models have been 

performed, showing that they are largely inactive in animal models of 

absence seizures produced by electroshock or chemoshock methods (Consroe, 

1998). On the other hand, they are generally effective against partial seizures 

produced by topical application of convulsant metals, limbic seizures 

produced by kindling, and generalized maximal seizures induced in 

genetically epileptic animals or produced in animals by electroshock or 
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GABA-inhibiting drugs (Consroe and Snider, 1986). Anticonvulsant 

mechanisms of phytocannabinoids appear to involve a reduction of the spread 

of the generalized maximal seizures and, in limbic seizure models, an 

increase in the threshold for seizures. The anticonvulsant effects of CBD 

seem not to be stereoselective, and devoids of toxic effects, whereas THC 

seems to show stereoselectivity, and in some model shows proconvulsant or 

convulsant activity (Mechoulam et al., 1992). 

This pro-convulsive activity might be explained by the fact that CB1 receptors 

expressed on inhibitory GABAergic neurons are activated by THC, leading to 

a decreased release of GABA, and to the increase in seizure susceptibility. On 

the other hand, CB1 receptors expressed on excitatory glutamatergic neurons 

mediate the anti-convulsive activity of endocannabinoids (Lutz, 2004); 

moreover, systemic activation of CB1 receptors by exogenous cannabinoids is 

anti- or pro-convulsive, depending on the seizure model used (Mechoulam 

and Lichtman, 2003). A promising strategy to alleviate seizure frequency 

might be the enhancement of endocannabinoid levels by inhibiting the uptake 

and the degradation of these endogenous compounds (Lutz, 2004). 
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AIM OF THE STUDY 
 

In vivo  

During the XIX century, western medicine adopted the use of Cannabis sativa 

for its antiemetic, analgesic and anticonvulsant properties. The psychoactive 

effects of its preparations have been largely ascribed to the presence of Δ-9-

tetrahydrocannabinol (THC), but it is also well known that other 

cannabinoids exhibit a range of pharmacological activities. One of the more 

widely investigated cannabinoids is cannabidiol (CBD), which greatly 

contributes to the attenuation of the side effects of THC, when co-

administered to patients. The aim of the in vivo study was to assess the 

potential anticonvulsant activity of three different extracts of hemp aerial 

parts, harvested by genetically selected genotypes (one rich in THC, one rich 

in CBD, and one devoid of cannabinoids). 

In vitro  

Excitotoxicity, caused by the excess activation of glutamate receptors and 

subsequent accumulation of intracellular Ca2+, initiates a cascade of events 

that ultimately leads to neuronal death and thus takes centre stage in many 

CNS disorders such as stroke, traumatic brain injury and neurodegenerative 

diseases.  Intracellularly, mitochondria provide ATP as the source of cellular 

energy and maintain Ca2+ levels. Hence, alterations of the mitochondrial 

physiology cause irreversible neuronal injury due to the inability to sustain 

homeostasis. The aim of the in vitro study was to investigate the possible 

protection offered by the non-psychoactive cannabinoid cannabidiol (CBD) 

and the non-competitive NMDA receptor antagonist memantine in models of 

excitotoxicity and mitochondrial dysfunction. 
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IN VIVO METHODS 
 

Plant material and extracts 

Cannabis sativa L. aerial parts, harvested by three different genotypes, were 

kindly supplied by the ISCI (Research Institute for Industrial Crops, C.R.A., 

Via Amendola, 82, I-45100 Rovigo, Italy). One chemovar is rich in Δ-9-

tetrahydrocannabinol (THC rich), one chemovar is rich in cannabidiol (CBD 

rich), one chemovar devoids of cannabinoids (cannabinoid-free). 100 g of 

each dried drug was macerated in 2 L of ethanol 95%, at 55 °C, for 12 hours. 

The ethanolic solution was filtered, concentrated to 100 mL with rotavapor 

and then filtred with a buchner. The final solution was dried with rotavapor to 

obtain a resinous extract. The THC- and CBD-rich crude extracts were 

titrated respectively in Δ-9-THC and CBD by Dr. Grassi G. 

 

Pentylentetrazol (PTZ) induced seizures 

To characterize the anticonvulsant activity of the Cannabis extracts, an 

experimental model for grand-mal seizures was used (Shafaroodi et al., 

2004). Male CD1 mice (Harlan, Italy, weighting 25 ± 5 g), were housed under 

controlled conditions, 12 h light: 12 h dark cycle, 22 °C, 60% humidity. Food 

and water were supplied ad libitum. Procedures and animal comfort were 

controlled by the University Veterinary Service. The animals were divided in 

groups (n ≥ 8) and treated i.p. with the drugs or extracts under investigation. 

After 60 minutes they were all injected with the chemoconvulsant PTZ (85 

mg/kg i.p.). Each animal was placed in an individual cage (this procedure is 

necessary to avoid aggregation effects on the animals behaviour) (Löscher et 

al., 1991) and observed for 30 minutes (cut off time). Behavioural responses 

to PTZ injection (see description in Table 1) were carefully recorded to 

evaluate the incidence and the latency of generalized convulsions and 

lethality.  
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Table 1. Behavioural responses to PTZ injection. 

No change 

Abnormal behaviour (tremors, scratching, chewing) 

Single myoclonic jerks 

Atipical convulsions (clonic convulsions involving head or forelimb) 

Generalized tonic-clonic convulsions < 5'' 

Generalized tonic-clonic convulsions ≥ 5''  

Death 

 

Extracts and drugs administration 

Three dosages of the different Cannabis extracts were investigated in this 

model: THC rich extract, 10, 25, 50 mg/kg (the dose refers to the 

concentration of THC in the extract); CBD rich extract, 100, 200, 300 mg/kg 

(the dose refers to the concentration of CBD in the extract); cannabinoid-free 

extract, 300, 400 mg/kg (the dose refers to the amount of extract suspended in 

vehicle). They were all suspended in the same vehicle: 10% propylen glycol, 

1% tween 80, in saline. Chlordiazepoxide (Sigma) 10 mg/kg was used as 

positive control, and dissolved in saline.  

 

Data analysis  

Data are presented as latency time to onset of generalized tonic-clonic 

convulsions and latency to lethal effect. A latency of 1800 seconds was 

counted for animals which did not show generalized convulsions. Statistical 

analysis was performed using Graphpad Prism (Version 4.01; GraphPad 

Software, San Diego, CA, USA). Significance of differences between drug or 

extract treated groups and controls was determined using Kruskal-Wallis test 

followed by Dunn's Multiple Comparison Test, due to the non-parametric 

distribution of the data. Differences were considered significant for P<0.05. 

Incidence of death subsequent to PTZ i.p. injection was expressed as number 
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of animals surviving to the treatment, and percentage of survived. The 

incidence was compared among groups using Fisher’s exact test. P < 0.05 

was considered the significance level between groups.   
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IN VITRO METHODS 
 

Cell culture  

Hippocampal cultures were prepared from 1 to 3 day old Sprague Dawley rat 

pups after cervical dislocation, in accordance with Home Office and institute 

regulations, as described previously (e.g. Drysdale et al., 2006). The brain 

was quickly removed, hippocampi were isolated, cut out, and placed in ice-

cold filtered HEPES buffered solution (HBS composition in mM: NaCl 130; 

KCl 5.4; CaCl2 1.8; MgCl2 1; HEPES 10; glucose 25). Cold tissue was placed 

in 1 mg/ml type X and XIV protease solution, and chopped into fine pieces. 

After 40 minutes, the tissue was rapidly washed in HBS, triturated several 

times, and centrifuged twice. Before the last centrifugation, HBS was 

replaced with 90% Minimum Essential Medium (MEM; Gibco, Paisley, UK) 

with 10% foetal bovine serum (FBS; Helena Biosciences, Sunderland, UK) 

and 2 mM L-glutamine. Cells were then plated, and kept in a humidified 

incubator at 37ºC and in 5% CO2. The cultures were allowed to mature for 48 

h prior to replacement of MEM with Neurobasal Medium (Gibco, Paisley, 

UK), supplemented with 2% B27, 2mM L-glutamine, and 25mM L-

glutamate. All compounds used here, apart from media and serum, were from 

Sigma, Poole, UK. This tissue culture procedure produces mixed cultures that 

contain glia (~60%, of these: oligodendrocytes <10%, microglia <10% and 

astrocytes 80–90%); and neurones (~40%). Culture dishes were used for 

experimentation at days 4–10 in vitro (DIV).  

 

NMDA induced excitotoxicity and Ca imaging protocol 

For Ca imaging experiments, hippocampal cultures were washed with HBS at 

room temperature and loaded with the cell-permeable fluorescent calcium 

indicator Fura-2-AM (10µm, Molecular Probes, OR, USA) for 1 h in the 

dark. Cultures were perfused with low Mg2+ high Ca2+ HBS (composition in 
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mM: NaCl, 130; KCl, 5.4; CaCl2, 5.0; MgCl2, 0.1; HEPES, 10; glucose, 25; 

compounds from Sigma), maintaining a flow rate of 1–2 mL ⁄ min, with a 

gravity perfusion system. Ratiometric imaging was performed with imaging 

systems fitted onto an Olympus microscope. The system used the 

Improvision software package Openlab (version 4.03) using a DG-4 

illumination system (Sutter Instruments Company, CA, USA) and 

Hamamatsu Orca-ER CCD camera. The ratio of the two wavelengths emitted 

(340 nm and 380 nm) is directly proportional to intracellular calcium levels in 

the cells. Thus, following background fluorescence subtraction, this value 

was plotted for all neurons and glia after identification of regions of interest 

(ROI), with frames captured every 5 s. A minimum of four experiments were 

conducted for each group of treatment, each on cells from a different culture. 

A control dish was conducted at each session of experiment to make sure that 

the daily response of the culture to the NMDA insult was consistent with the 

previous experiments. 

Excitotoxicity was induced by application of 1 mM NMDA (in the presence 

of 100 µM glycine, co-agonist of the NMDA receptor) for 5 minutes in low 

Mg2+ high Ca2+ HBS solution. The parameters determined were the response 

to NMDA, the recovery, and the secondary Ca dysregulation (see data 

analysis section for details). Measurement ended after a washout of 40 

minutes after NMDA application. 

 

3-NP intoxication protocol and cell death determination with PI/Calcein kit 

Between 4 and 10 DIV, cultures were selected and subdivided into treatment 

group categories, maintaining uniform culture quality, composition and cell 

density. Cultures were treated for 72 hrs with 1 mM of the mitochondrial 

toxin 3-NP (3-nitropropionic acid) in NB medium in the presence or absence 

of CBD or memantine (see below). All treatment solutions were prepared and 

allowed to temperature- and gas-equilibrate in the aforementioned incubated 

environment for a period of at least 30 min. Incubation solutions were 
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prepared with final concentrations of either memantine or CBD in NB 

medium. The choice of concentrations was based on earlier experiments 

performed with these substances. Solutions were adjusted to physiological pH 

immediately prior to sterile-filtered application to cultures. Dishes were 

stained with live/dead cell staining kit (purchased from Sigma) Calcein-AM 

is converted to green fluorescent calcein in viable cells only. Propidium 

iodide (PI) intercalates with DNA of dead cells only after passing through 

disordered areas in cell membrane of dead cells only. Images were visualised 

using an Axioskop 2 plus microscope (Carl Zeiss, Germany) with a 40x phase 

contrast water immersion objective, and were captured using an AxioCam 

HRc camera, controlled by AxioVision software (Version 3.1). In order to 

identify the dish’s cellular composition, a brightfield image was initially 

captured, followed by image acquisition using Rhodamine (for PI) and FITC 

(for calcein-AM) filters. Free-hand count of Calcein-AM-stained cells led to 

the determination of the total number of live cells, and the merged 

transmission image allowed selection of neurons (three-dimensional and halo 

in phase contrast) versus glia (flat in appearance). Cells with PI staining were 

then highlighted to illustrate non-viable cells. Cell viability according to cell 

type was calculated as percentage survival. Each experiment was repeated at 

least three times, each on dishes from a different culture. Three dishes were 

used per culture, and three images were snapped for each dish. This ensured 

that a suitable number of replicates (n = 9 dishes) were sampled for each 

treatment for statistical analysis. Means and S.E.M. of percentage survival 

were calculated for each dish, as the average of the three snaps. This value 

was then exported to Prism. 

 

Drug application 

Calcium imaging. NMDA (Ascent), CBD (a gift from GW Pharmaceuticals / 

Prof. Pertwee), and memantine (Tocris) used in these studies are pure drugs. 

The eCBD used in the post treatment protocol, is a CBD-rich Cannabis 
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extract (GW Pharmaceuticals) containing 64.6% CBD and 2.5% Δ-9-

tetrahydrocannabinol (THC) (see Ryan et al., 2006 for further details). 

The first set of experiments consisted in a 10 minutes perfusion with CBD 

1µM, 100nM, memantine 10µM, or eCBD 1µM straight after the application 

of NMDA. In one experiment, CBD 1µM was applied for 5 minutes (instead 

of 10) straight after the application of NMDA.  

The second set of experiments, a 5 minutes perfusion of CBD 1µM or 

memantine 10µM together with NMDA was applied to the cells. Straight 

after this, CBD 1µM or memantine 10µM were applied for further 5 minutes 

without NMDA.  

In the last set of experiments, CBD 1µM or memantine 10µM were applied to 

the cells for 10 minutes straight before the application of NMDA without any 

other drug.  

3-NP toxicity. 3-nitropropionic acid (Sigma), CBD 1µM, 10µM, and 

memantine 10µM used in these studies are pure drugs. 3-NP 1mM dosage 

was chosen after a toxicity pilot study on three different dosages (data not 

shown). 

 

Data analysis  

Ca imaging. Data were exported to Excel. Ratiometric values obtained from 

Openlab were plotted against time, and the time course of the fluorescence for 

each ROI was analysed. Comparisons of pre-NMDA baseline fluorescence 

and fluorescence values at the end of the washout were expressed as ratio 

units (340/380nm). The response to NMDA, CBD, or memantine was 

determined as percentage change from pre-drug baseline fluorescence (% 

ΔF/F), the values of the response being taken at the maximum rise of the 

fluorescence within the 5 minutes of the NMDA application. Recovery of 

basal levels of [Ca2+] of each ROI was calculated as a ratio between the 

maximum rise in fluorescence registered within NMDA application minus the 
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pre-NMDA baseline fluorescence, and the maximum rise in fluorescence 

registered within NMDA application minus the baseline at the end of the 

measurement - exact formula used was [(NMDA response - baseline pre-

NMDA)/(NMDA response – recovery baseline)]: values between 0.9 and 1.1 

were considered full recovery; between 1.1 and 2.0 were considered 50% 

recovery; values > 2.0 were set as no recovery. These values where then 

expressed as % of neurons showing the recovery. The working hypothesis 

assumes that more protective treatment leads to a higher percentage of 

neurons that show a full or partial recovery. The late amplitude values were 

calculated as the difference between the fluorescence at the end of the 

measurement and the pre-NMDA fluorescence. The occurrence of secondary 

Ca dysregulation was also measured, as it is a sign of excitotoxicity: the 

neurons showing an increase of [Ca2+]I after the NMDA perfusion, were 

counted and the occurrence was expressed as % of neurons showing the 

dysregulation. The rise in [Ca2+]I within 15′ from NMDA application was 

considered as early secondary Ca dysregulation, whereas late secondary Ca 

dysregulation was the increase in [Ca2+]I later than 15 minutes from NMDA 

application.  

Statistical analysis was performed using Graphpad Prism (Version 4.01; 

GraphPad Software, San Diego, CA, USA). Normality tests on raw data and 

on % ΔF/F responses, confirmed absence of normal distribution of data. 

Therefore, a Kruskal–Wallis test with Dunn’s post hoc test was used for 

group comparisons. For paired comparison Mann-Whitney U test was used. 

Significance was set at P < 0.05. 

3-NP toxicity. Statistics were calculated using GraphPad Prism. Mean 

survival rates (in %) and S.E.M.s were calculated for each group and cell 

type. Survival rates were calculated for each control group and one-way 

analysis of variance (ANOVA) was performed for between-group 

comparisons, followed by post hoc analysis (Dunnett’s multiple comparison). 

P < 0.05 values were considered significant. 



Results 

 25 

IN VIVO RESULTS 
 

PTZ induced seizures study 

 

Though Cannabis sativa has been long investigated for its anticonvulsant 

properties, it is not fully understood whether its possible anticonvulsant 

activity is due only to the presence of ∆-9-THC, or it can also be attributed to 

the presence of CBD, or other cannabinoids and non-cannabinoid 

compounds. In order to investigate this hypothesis an experimental model for 

grand-mal seizures was used.  

When the three different dosages of THC-rich extract were administered to 

mice (n = 8) 1h before PTZ injection, all animals showed behavioural effects 

due to THC presence: motor depression and catalepsy, as well as 

hypothermia. When PTZ 85 mg/kg was injected, 100% of the animals 

showed generalized convulsions. As it is shown in Fig. 1, THC-rich extract at 

the dose of 10 mg/kg and 50 mg/kg significantly (P < 0.01 and P < 0.05 

respectively) prolonged the latency for the onset of first generalized tonic-

clonic convulsions 8 times. THC-rich at 25 mg/kg significantly (P < 0.001) 

prolonged the latency to first generalized tonic-clonic convulsions more than 

10 times; values of latency to onset are summarized in Tab. 2. As it is shown 

in Fig. 2, THC-rich extract at the dose of 10 mg/kg significantly (P < 0.05) 

increased the survival of the animals after PTZ treatment from 12.5% to 

87.5%, and at the dose of 25 mg/kg significantly (P < 0.01) increased the 

survival of the animals after PTZ treatment from 12.5% to 100%. 

When the three different dosages of CBD rich extract were administered to 

mice (n = 8) 1 h before PTZ injection, none of the animals seemed to show 

signs of Cannabis intoxication, as the extract contained only traces of THC. 

When PTZ was injected, 100% of the animals showed generalized 

convulsions. CBD-rich extract 300 mg/kg significantly (P < 0.01) prolonged 
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the latency to first generalized tonic-clonic convulsions (Fig. 1) 8 times. 

CBD-rich extract at 300 mg/kg significantly (P < 0.05) increased the survival 

of the animals after PTZ treatment, from 12.5% to 75% (Fig. 2). 

When the two dosages of cannabinoid-free extract were administered to mice 

(n = 8) 1h before PTZ injection, none of the animals seemed to show signs of 

Cannabis intoxication, as this extract contained traces of THC. When PTZ 

was injected, 100% of the animals showed generalized convulsions, and none 

of doses were able to protect the animals from the effects of PTZ (Fig. 1 and 

2). 

When clordiazepoxide 10 mg/kg was administered none of the animals (n =8) 

showed convulsions or jerks. Latencies of 1800 seconds were counted for this 

group (Fig. 1, Fig. 2 and Table 2).  

Values of latencies to first generalized tonic-clonic convulsion are 

summarized in Tab. 2. 

 

 

Table 2. Latencies to first generalized tonic-clonic convulsion following i.p. 
injection of PTZ 85 mg/kg.   
 

Group of treatment Latency to first generalized tonic-clonic 

convulsion: mean ± S.E.M. (sec) 

Vehicle 113.2 ± 17.07 

THC rich 10 mg/kg 953.5 ± 183.6 

THC rich 25 mg/kg 1542.0 ± 194.7 

THC rich 50 mg/kg 876.6 ± 267.3 

CBD rich 100 mg/kg 356.6 ± 89.65 

CBD rich 200 mg/kg 507.0 ± 192.8 

CBD rich 300 mg/kg 906.4 ± 194.7 

Cannabinoid free 300 mg/kg 178.6 ± 105.4 

Cannabinoid free 400 mg/kg 259.0 ± 144.4 

Chlordiazepoxide 1800.0 ± 0.0 
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Figure 1. Latency for the onset of first generalized tonic-clonic seizure in 
animals injected with PTZ 85 mg/kg i.p. and pre-treated with different 
Cannabis extracts (THC, CBD, Cannab-free) and in control groups. 
Clordiazepoxide (clordiaz) group represents positive control. Data are 
presented as mean ± S.E.M. of latency for the onset. * P < 0.05; ** P < 0.01; 
*** P < 0.001 compared to vehicle group.  
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Figure 2. Comparison between lethal effect incidence following i.p. injection 
of PTZ (85 mg/kg) in animal pre-treated with different Cannabis extracts 
(THC and CBD) and in control groups, vehicle and clordiazepoxide 
(clordiaz). The data are presented as number of animals surviving PTZ 
treatment. (Fisher’s exact test *P < 0.05; **P < 0.01). The percentage of mice 
survived to PTZ treatment for each group, is shown above the columns.  
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IN VITRO RESULTS   

 

Ca imaging study 

 
The typical response of neurons of a naïve dish to the application of NMDA 

(1mM) for 5 minutes is shown in Figure 1. The NMDA application provoked 

an immediate elevation in [Ca2+]I levels, as represented in the chart by a large 

increase of the fluorescence. The levels of [Ca2+]I remained high within the 5 

minutes of application, the average response being 339.0 ± 17.2% ΔF/F (n = 

124). When NMDA was removed, the fluorescence rapidly dropped to a 

lower level, and [Ca2+]I tended to recover to baseline values. During the 40 

minutes of washout, some neurons showed a secondary rise in [Ca2+]I. The 

incidence of this feature was calculated and expressed as secondary Ca 

dysregulation: the percentage of neurons showing early secondary Ca 

dysregulation was 13.6 ± 6.2%, whereas 18.9 ± 5.8% of neurons showed late 

dysregulation (Tab. 1). The percentage of neurons showing full recovery or 

50% recovery at the end of the measurement was 1.9 ± 0.9% and 51.1 ± 7.6% 

respectively; 47.3 ± 7.8% of neurons showed no recovery. At the very end of 

the measurement only few neurons showed [Ca2+]I levels similar to pre-

NMDA baseline, the late amplitude was 0.58 ± 0.03 ratio units. One neuron 

(0.8%) showed fluorescence lower than pre-NMDA baseline.  

The first set of experiments assessed the ability of CBD and memantine to aid 

recovery when applied after NMDA. The time course of the fluorescence 

(Fig. 2), when CBD (1µM) was applied, followed a pattern similar to that of 

controls: neurons tended to recover to baseline [Ca2+]I levels within washout 

time. Some neurons showed a secondary rise in [Ca2+]I level: in particular, 

49.2 ± 16.5% of neurons (n = 97) demonstrated early secondary Ca 

dysregulation (Fig. 3A) and 12.2 ± 6.5% late Ca dysregulation (Fig. 3B). The 

percentage of neurons showing full recovery (Fig. 4A) or 50% recovery (Fig. 

4B) was 18.7 ± 8.1% and 38.1 ± 9.0% respectively; 43.1 ± 13.2% of neurons 
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showed no recovery (Fig. 4C). At the very end of the measurement only few 

neurons showed [Ca2+]I level similar to pre-NMDA baseline: the late 

amplitude was significantly (P < 0.001) lowered by 24% (from 0.58 ± 0.03 

ratio units to 0.44 ± 0.05 ratio units compared to controls; Fig. 5); 4 neurons 

(4.1%) showed fluorescence lower than pre-NMDA baseline. 

When a lower dose of CBD (100nM) was applied (chart not shown) the 

response of neurons was similar to controls. The 7.7 ± 4.4% of neurons (n = 

73) show early secondary Ca dysregulation (Fig. 3A), and 11.3 ± 7.9% of 

neurons late dysregulation (Fig. 3B). Recoveries to this treatment were 

characterized by 4.0 ± 3.1% of neurons showing full recovery (Fig 4A), 64.8 

± 10.6% showing 50% recovery (Fig 4B), and 31.2 ± 11.1% no recovery (Fig. 

4C). The late amplitude at the end of washout was 0.58 ± 0.05 ratio units 

(Fig. 5).  

When the time of application was changed and CBD (1µM) was applied for 

5′ (chart not shown), 3.5 ± 2.2% of neurons showed early secondary Ca 

dysregulation (Fig 3A), and 30.0 ± 15.5% of neurons showed late Ca 

dysregulation (Fig 3B). The treatment did not help neuronal recovery: none of 

neurons (n = 42) showed full recovery (Fig. 4A), the percentage of neurons 

showing 50% recovery (Fig. 4B) was 60.8 ± 15.7%, and no recovery was 

39.2 ± 15.7% (Fig. 4C). At the end of the washout, the late amplitude was 

0.59 ± 0.07 ratio units (Fig. 5).  

When eCBD 1µM was applied after NMDA for 10′ (chart not shown), it did 

not alter the parameters analysed. The percentage of neurons (n = 51) 

showing early dysregulation (Fig. 3A) was 23.6 ± 6.4%, and 5.4 ± 5.4% 

showed late dysregulation (Fig. 3B). Full recovery was shown by 5.7 ± 3.5% 

of neurons (Fig. 4A), and 50% recovery by 68.4 ± 12.7% (Fig. 4B). A 

percentage of 26.0 ± 13.8% showed no recovery (Fig. 4C). [Ca2+]I at the end 

of the washout was characterized by a late amplitude of 0.62 ± 0.10 ratio 

units (Fig. 5). 
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The response of neurons to the application of memantine 10µM after NMDA, 

is shown in Figure 6. The time course of fluorescence did not seem to differ 

much from that of controls, and neurons tended to recover to baseline [Ca2+]I 

levels within washout period with a pattern similar to controls. During the 40 

minutes of washout, some neurons showed a secondary rise in the [Ca2+]I 

level. The percentage of neurons (n = 46) showing early secondary Ca 

dysregulation (Fig. 3A) was 17.6 ± 8.1%, whereas 13.8 ± 4.0% of neurons 

showed late dysregulation (Fig. 3B). The percentage of neurons showing full 

recovery (Fig. 4A) or 50% recovery (Fig. 4B) was 1.9 ± 1.3% and 56.0 ± 

13.0% respectively; 40.9 ± 14.2% of neurons showed no recovery (Fig. 4C). 

At the very end of the measurement only few neurons showed [Ca2+]I similar 

to the pre-NMDA baseline: the late amplitude was  0.44 ± 0.04 ratio units 

(Fig. 5).  

The second set of experiments assessed the ability of CBD and memantine to 

alter NMDA response and aid recovery when applied contemporary to 

NMDA. 

The response of neurons to the application of CBD (1µM) is shown in Figure 

7. The time course of fluorescence showed that the rise in [Ca2+]I due to 

NMDA application did not seem to be altered by the presence of CBD (394 ± 

24% ΔF/F; Fig. 8). As it is shown in Fig. 9 A and B, the percentage of 

neurons (n = 86) showing early secondary Ca dysregulation was 15.7 ± 9.5%, 

whereas 7.9 ± 3.9% of neurons showed late dysregulation. The percentage of 

neurons showing full recovery (Fig. 10A) or 50% recovery (Fig. 10B) was 

2.3 ± 1.5% and 58.8 ± 6.5% respectively; 38.9 ± 6.1% of neurons showed no 

recovery (Fig. 10C). At the very end of the measurement only few neurons 

showed [Ca2+]I level similar to pre-NMDA baseline: the late amplitude was 

0.91 ± 0.11 ratio units (Fig. 11); 2 neurons (2.3%) showed a fluorescence 

lower than pre-NMDA baseline. 

In comparison, application of memantine (10µM) along with NMDA, had an 

effect on the parameters analysed, as this drug is a NMDA receptor 
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antagonist. As it is shown in the chart in Fig. 12, simultaneous application of 

memantine dampened the response of neurons to NMDA application. As it is 

shown in Fig. 8, memantine significantly (P < 0.05) lowered the response of 

neurons (n = 64) by 23% (from 339 ± 17% ΔF/F to 262 ± 10% ΔF/F); 

moreover, memantine effect on NMDA response was significantly (P < 

0.001) different from that of CBD. Memantine did not alter secondary Ca 

dysregulation: early dysregulation (Fig. 9A) was 22.8 ± 14.4%, whereas 3.2 ± 

1.9% of neurons showed late dysregulation (Fig. 9B). As it is predictable by 

the effect on NMDA response, memantine significantly (P < 0.01) increased 

the percentage of neurons showing full recovery (from 1.9 ± 0.9% to 29.6 ± 

12.2%; Fig. 10A), and significantly (P < 0.05) lowered the percentage of 

neurons that did not recover (from 47.3 ± 7.8% to 11.6% ± 9.6%; Fig. 10C). 

50% recovery was not altered by the presence of memantine (58 ± 7.7%; Fig. 

10B). The application of memantine significantly (P < 0.001) lowered the 

[Ca2+]I measured at the end of washout by 79%: the late amplitude dropped 

from 0.58 ± 0.03 ratio units to 0.12 ± 0.02 ratio units (Fig. 11); memantine 

effect on late amplitude was significantly (P < 0.001) different from that of 

CBD. One neuron (1.6%) showed fluorescence lower than pre-NMDA 

baseline.  

The last set of experiments assessed the ability of CBD and memantine to 

alter NMDA response and aid recovery when applied before NMDA insult. 

The response of neurons to application of CBD (1µM) for 10 minutes, is 

shown in Figure 13: CBD induced a significant (P < 0.001) increase in [Ca2+]I 

by 16% (from 0.237 ± 0.002 to 0.2831 ± 0.007; Fig. 14A) in neurons perfused 

(n = 64), with a maximum response of 26.16 ± 2.78% ΔF/F (Fig. 14B). This 

response to CBD was significantly different (P < 0.001; Fig. 14A) from that 

of memantine, which did not produce any increase in fluorescence when 

applied to neurons (see below); the intensity of CBD response was also 

significantly different (P < 0.001; Fig. 14B) from that of NMDA, when these 

drugs were applied to naïve dishes. When NMDA was applied after CBD, the 
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response of neurons (n = 64) was significantly (P < 0.001) lowered by 24% 

from 658 ± 27 % ΔF/F to 503 ± 23% ΔF/F (Fig. 15). The percentage of 

neurons showing Ca dysregulation did not seem to be altered by pre-

application of CBD: early secondary Ca dysregulation (Fig. 16A) occurred in 

1.0 ± 1.0% of neurons, whereas 3.4 ± 2.4% of neurons showed late 

dysregulation (Fig. 16B). The percentage of neurons showing full recovery 

(Fig. 17A) or 50% recovery (Fig. 17B) was 8.7 ± 5.6% and 86.3 ± 7.9% 

respectively; 5.0 ± 2.5% of neurons showed no recovery (Fig. 17C). At the 

very end of the measurement the late amplitude was 0.28 ± 0.03 ratio units 

(Fig. 18).  

The response of neurons to application of memantine (10µM) for 10 minutes 

is shown in Figure 19: the drug did not seem to produce any alteration of  

[Ca2+]I in neurons (Fig. 14A). On the other hand, when NMDA was applied 

after memantine, the response of neurons (n = 61) was significantly (P < 

0.001) lowered by 21% (from 658 ± 27% ΔF/F to 517 ± 25% ΔF/F; Fig. 15). 

The percentage of neurons showing early secondary Ca dysregulation (Fig. 

16A) was 4.4 ± 4.4%, whereas 2.5 ± 2.5% of neurons showed late 

dysregulation (Fig. 16B). The percentage of neurons showing full recovery is 

34.1 ± 14.1%, and percentage of neurons showing 50% recovery was 56.2 ± 

11.9%; 9.7 ± 4.2% of neurons show no recovery (Fig. 17). Memantine 

significantly (P < 0.001) lowered the [Ca2+]i measured at the end of washout 

by 48%: the late amplitude dropped from 0.29 ± 0.03 ratio units to 0.15 ± 

0.05 ratio units (Fig. 18); memantine effect on late amplitude was 

significantly (P < 0.001) different from that of CBD. One neuron (1.6%) 

showed fluorescence lower than pre-NMDA baseline.  

Tables 1, 2, and 3 summarize all the effects of CBD and memantine on the 

different parameters analyzed. 
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Figure 1. Time course of NMDA induced [Ca2+]I response in a population of 
neurons perfused with low Mg2+ high Ca2+ HBS solution. [Ca2+]I is expressed 
as ratio units. Each track represents the time course of one neuron. 
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Figure 2. Time course of the [Ca2+]I response induced by CBD 1µM 
application after NMDA for 10′, in a population of neurons perfused with low 
Mg2+ high Ca2+ HBS solution. [Ca2+]I is expressed as ratio units. Each track 
represents the time course of one neuron. 
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Figure 3. Occurrence of early secondary Ca dysregulation (A) and of late 
secondary Ca dysregulation (B) in neurons treated with memantine (memant) 
10µM, CBD 1µM, 100nM, or eCBD 1µM, applied after NMDA for 10 
minutes. In one experiment, CBD 1µM was applied for 5 minutes (instead of 
10) as it is indicated by brackets. Data are expressed as average percentage of 
neurons showing dysregulation.  
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Figure 4. Occurrence of full recovery (A), 50% recovery (B), and no recovery 
(C) in neurons treated with memantine (memant) 10µM, CBD 1µM, 100nM, 
or eCBD 1µM, applied after NMDA for 10 minutes. In one experiment, CBD 
1µM was applied for 5 minutes (instead of 10) as it is indicated by brackets. 
Data are expressed as average percentage of neurons showing recovery.  
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Figure 5. Late amplitude in neurons treated with memantine (memant) 10µM, 
CBD 1µM, 100nM, or eCBD 1µM, applied for 10 minutes after NMDA. In 
one experiment, CBD 1µM was applied for 5 minutes (instead of 10) as it is 
indicated by brackets. Data are expressed as ratio units. *** P<0.001 
compared with control group using Kruskal–Wallis test with Dunn’s post hoc 
test. 
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Figure 6. Time course of the [Ca2+]I response induced by memantine 10µM 
applied for 10′ after NMDA treatment, in a population of neurons perfused 
with low Mg2+ high Ca2+ HBS solution. [Ca2+]I is expressed as ratio units. 
Each track represents the time course of one neuron. 
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Figure 7. Time course of the [Ca2+]I response induced by CBD 10µM applied 
contemporary to NMDA in a population of neurons perfused with low Mg2+ 
high Ca2+ HBS solution. [Ca2+]I is expressed as ratio units. Each track 
represents the time course of one neuron. 
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Figure 8. Comparison of NMDA response in control neurons and in neurons 
perfused with memantine (memant) 10µM, and CBD 1µM contemporary to 
NMDA application. * P < 0.05 compared with control group using Kruskal–
Wallis test with Dunn’s post hoc test. ### P < 0.001 Mann-Whitney paired 
test. 
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Figure 9. Occurrence of early secondary Ca dysregulation (A) and of late 
secondary Ca dysregulation (B) in neurons treated with memantine (memant) 
10µM, and CBD 1µM, applied contemporary to NMDA. Data are expressed 
as average percentage of neurons showing dysregulation. 
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Figure 10. Occurrence of full recovery (A), 50% recovery (B), and no 
recovery (C) in neurons treated with memantine (memant) 10µM, and CBD 
1µM, applied contemporary to NMDA. Data are expressed as average 
percentage of neurons showing recovery. * P < 0.05 compared with control 
group using Kruskal–Wallis test with Dunn’s post hoc test.  
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Figure 11. Late amplitude in neurons treated with memantine (memant) 
10µM, and CBD 1µM applied contemporary to NMDA. Data are expressed 
as ratio units. ***P < 0.001 compared with control group using Kruskal–
Wallis test with Dunn’s post hoc test.  ### P < 0.001 Mann-Whitney paired 
test. 
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Figure 12. Time course of the [Ca2+]I response induced by memantine 10µM 
applied contemporary to NMDA in a population of neurons perfused with 
low Mg2+ high Ca2+ HBS solution [Ca2+]I is expressed as ratio units. 
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Figure 13. Effect of the [Ca2+]I response induced by CBD 1µM application 
before NMDA for 10' in a population of neurons perfused with low Mg2+ 
high Ca2+ HBS solution. [Ca2+]I is expressed as ratio units.  
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Figure 14A. Comparison of [Ca2+]I values (expressed as ratio units) in  naïve 
neurons and in neurons perfused with memantine (memant) 10µM, and CBD 
1µM. Memantine did not evoke any response in neurons, whereas CBD 
produced a significant response: *** P<0.001 compared with baseline levels 
using Kruskal–Wallis test with Dunn’s post hoc test. ### P < 0.001 Mann-
Whitney paired test. 
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Figure 14B. Comparison between the response produced in neurons by the 
application of NMDA 1mM and CBD 1µM.  *** P<0.001 Mann-Whitney 
paired test.  
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Figure 15. Comparison of NMDA response in controls neurons and in 
neurons perfused with memantine (memant) 10µM, and CBD 1µM before 
NMDA application. *** P<0.001, ** P<0.01 compared with control group 
using Kruskal–Wallis test with Dunn’s post hoc test.  
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Figure 16. Occurrence of early secondary Ca dysregulation (A) and of late 
secondary Ca dysregulation (B) in neurons treated with memantine (memant) 
10µM, and CBD 1µM, applied before NMDA insult. Data are expressed as 
average percentage of neurons showing dysregulation. 
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Figure 17. Occurrence of full recovery (A), 50% recovery (B), and no 
recovery (C) in neurons treated with memantine (memant) 10µM, and CBD 
1µM, applied before NMDA for 10 minutes. Data are expressed as average 
percentage of neurons showing recovery. 
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Figure 18. Late amplitude in neurons treated with memantine (memant) 
10µM, and CBD 1µM, applied before NMDA for 10 minutes. Data are 
expressed as ratio units. *** P<0.001 compared with control group using 
Kruskal–Wallis test with Dunn’s post hoc test. ### P < 0.001 Mann-Whitney 
paired test. 
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Figure 19. Time course of the [Ca2+]I response induced by memantine 10µM 
application before NMDA for 10′ in a population of neurons perfused with 
low Mg2+ high Ca2+ HBS solution. [Ca2+]I is expressed as ratio units. 
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Table 1. Effects of memantine, CBD, and eCBD on the different parameters 
analyzed, when they were applied after NMDA. 
 

 

  control 
Memantine 

10µM 
CBD 
1µM 

CBD 
100nM 

CBD 
1µM (5') 

eCBD 
1µM 

early dysreg  %  %  %  %  %  % 
mean 13.6 17.6 49.2 7.7 3.5 23.6 
S.E.M. 6.2 8.1 16.5 4.4 2.2 6.4 
late dysreg  %  %  %  %  %  % 
mean 18.9 13.8 12.2 11.3 30.0 5.4 
S.E.M. 5.8 4.0 6.5 7.9 15.5 5.4 
full recovery  %  %  %  %  %  % 
mean 1.9 1.9 18.7 4.0 0.0 5.7 
S.E.M. 0.9 1.3 8.1 3.1 0.0 3.5 
50% recovery  %  %  %  %  %  % 
mean 51.1 56.0 38.1 64.8 60.8 68.4 
S.E.M. 7.6 13.0 9.0 10.6 15.7 12.7 
no recovery  %  %  %  %  %  % 
mean 47.3 40.9 43.1 31.2 39.2 26.0 
S.E.M. 7.8 14.2 13.2 11.1 15.7 13.8 
late amplitude  %  %  %  %  %  % 
mean 0.58 0.44 0.44 0.58 0.59 0.62 
S.E.M. 0.03 0.04 0.05 0.05 0.07 0.10 



Results 

 55 

Table 2. Effects of memantine, and CBD on the different parameters 
analyzed, when they were applied simultaneously to NMDA. 
 

  control memantine 10µM CBD 1µM 
response % ΔF/F % ΔF/F % ΔF/F 
mean 339 262 394 
S.E.M. 17 10 24 
early dysregulation  %  %  % 
mean 13.6 22.8 15.7 
S.E.M. 6.2 14.4 9.5 
late dysregulation  %  %  % 
mean 18.9 3.2 7.9 
S.E.M. 5.8 1.9 3.9 
full recovery  %  %  % 
mean 1.9 29.6 2.3 
S.E.M. 0.9 12.2 1.5 
50% recovery  %  %  % 
mean 51.1 58.9 58.8 
S.E.M. 7.6 7.7 6.5 
no recovery  % %  %  
mean 47.3 11.6 38.9 
S.E.M. 7.8 9.6 6.1 
late amplitude  ratio units ratio units  ratio units  
mean 0.58 0.12 0.91 
S.E.M. 0.03 0.02 0.11 
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Table 3. Effects of memantine, and CBD on the different parameters 
analyzed, when they were applied before NMDA. 
 

  control memantine 10µM CBD 1µM 
response % ΔF/F % ΔF/F % ΔF/F 
mean 658 517 503 
S.E.M. 27 25 23 
early dysreg %  %  % 
mean 3.3 4.4 1.0 
S.E.M. 1.7 4.4 1.0 
late dysreg  %  % %  
mean 2.0 2.5 3.4 
S.E.M. 1.4 2.5 2.4 
full recovery  %  %  % 
mean 19.7 34.1 8.7 
S.E.M. 8.3 14.1 5.6 
50% recovery  % %  %  
mean 76.5 56.2 86.3 
S.E.M. 8.3 11.9 7.9 
no recovery  %  %  % 
mean 3.9 9.7 5.0 
S.E.M. 1.9 4.2 2.5 
late amplitude  ratio units ratio units  ratio units 
mean 0.29 0.15 0.28 
S.E.M. 0.03 0.05 0.03 
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3-NP study 

 
When 3-NP is applied to neurons, mitochondrial metabolism is altered and 

this leads to impairment of the energetic homeostasis of the cells. 3-NP 

inhibits succinate dehydrogenase, interferes with the synthesis of ATP, and 

alters energy dependent processes in cells (Alston et al., 1977; Coles et al., 

1979). The transmembrane potential is affected: since there is a decrease of 

ATP levels, Na+/K+ ATPase activity is impaired and this leads to cellular 

depolarization and activation of NMDA receptors. The resulting increase in 

Ca influx seems responsible for cell damage (Fink et al., 1996). 

In Fig. 20, a naïve dish stained with PI and calcein is presented. As it is 

shown in A, live cells were stained with calcein green, and in B a red spot 

was clearly visible, indicating a dead neuron stained with PI. The brightfield 

image of the area is shown in C: this image helps recognizing neurons from 

glia during the manual count. In D the merged image gives an example of the 

morphology of the area snapped. This area showed normal morphology, with 

round soma, surrounded by a phase-contrast halo, and long and 

interconnected processes. Neurons were brightly stained (green), somas and 

processes were well visible within the snapping area, distributed with a good 

density. Underneath the neuronal layer, glial cells are visible, stained in 

green, but characterized by a less brilliant intensity of fluorescence, compared 

to neurons. They are recognizable also because they are not surrounded by 

halo.  

As it is shown in Fig. 21, considerable changes in viability and morphology 

of neurons were found following treatment with 3NP. The cell body of the 

neurons appeared less round, more irregular, and processes were shrunken. 

As it is shown in B and D, many neurons were dead after 72h exposure to the 

toxin. The area snapped was full of undetectable neurons, and cell debris. The 

glia underneath did not seem to be altered in morphology.  
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To determine whether memantine or CBD were able to protect neurons from 

3-NP induced damages, the drug was applied to the cultures simultaneously 

with the toxin. As it is shown in Fig. 22, memantine (10µM) seemed to 

protect the neurons from the toxic effects of 3-NP. The area snapped showed 

neurons with normal morphology, with regular soma, surrounded by halo, 

and long and interconnected processes. As it is shown in Fig. 23 memantine 

application significantly (P < 0.05, n = 9 dishes) increased the neuronal 

survival to 3-NP intoxication by 11% compared to controls (from 64 ± 3% to 

75 ± 4%). In agreement with previous studies, glial cells were not affected by 

the 3-NP application. When CBD (1µM, 10µM) was applied simultaneously 

with 3-NP (image not shown), it did not show any effect in this experimental 

protocol (P > 0.05; Fig. 23). 
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Figure 20. PI/calcein stained image captured for analysis; non-treated dish. A. 
Green transmission, calcein positive staining, live cells. B. Red transmission, 
PI positive staining, dead cells. C. Brightfield image. D. Merged image of the 
area. 
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Figure 21. PI/calcein stained image captured for analysis; 3-NP (1mM, 72h) 
incubated dish. A. Green transmission, calcein positive staining, live cells. B. 
Red transmission, PI positive staining, dead cells. C. Brightfield image. D. 
Merged image of the area. 
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C          D 
 
Figure 22. PI/calcein stained image captured for analysis; the dish was treated 
with memantine 10µM contemporary to 3-NP 1mM, 72h intoxication. A. 
Green transmission, calcein positive staining, live cells. B. Red transmission, 
PI positive staining, dead cells. C. Brightfield image. D. Merged image of the 
area. 
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Figure 23. Relative cell survival in neurons and glia intoxicated with 3-NP.  
* P<0.05 compared with control group using ANOVA followed by post hoc 
analysis (Dunnett’s multiple comparison). Results are mean ± S.E.M. from 9 
dishes. Data are expressed as relative cell survival, 100% of survival 
corresponding to 1.0 relative survival.  
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DISCUSSION 
 

Discussion of the in vivo study 

Cannabis sativa is better known in Western societies for the recreational use 

of its most popular preparations, marijuana and hashish, whereas its 

medicinal use has a millennian history (Mechoulam and Ben-Shabat, 1999). 

The therapeutic potential of Cannabis for the treatment of neurological and 

psychiatric diseases is currently under investigation. Until a few years ago, 

the use of THC against emesis and wasting syndrome in patients with 

terminal diseases seemed the only applications permitted. However, the 

discovery of THC mechanism of action and of the endocannabinoid system in 

the 1990s stimulated an increasing number of clinical studies with 

cannabinoids, as well as on Cannabis extracts. The possible use of 

cannabinoids in chronic pain, various inflammatory conditions, head injury, 

glaucoma, epilepsy, and psychiatric disorders is under investigation (Drysdale 

and Platt, 2003). While the neuroprotective effect of Cannabis extracts is 

under clinical investigation at the present (Barnes, 2006), and Sativex®, a 

Cannabis-based medicine containing both THC and CBD, was licensed in 

Canada as adjunctive treatment for the symptomatic relief of neuropathic pain 

in patients with multiple sclerosis (Wright, 2007), other therapeutic 

applications, such as epilepsy treatment, are still under debate. Although 

Canadian authorities have approved Cannabis-based medicine use in epilepsy 

patients (Gross et al., 1999), more pre-clinical and clinical evidence are 

needed to support this indication. 

In our experimental protocol we investigated the possible anticonvulsive 

activity of different Cannabis extracts, in a model of grand-mal seizures. In 

particular we tested extracts THC- and CBD-rich, and one extract which 

devoids of cannabinoids. None of them was able to reduce the incidence of 

seizures in the animals treated with the GABA antagonist PTZ. On the other 
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hand, both THC- and CBD-rich extracts increased the latency to the onset for 

generalized tonic-clonic seizures, thus suggesting that they might play a role 

in the mechanism of generalized seizures triggering (Brevard et al., 2006). 

The dose-response of THC-rich extract on the latency and on animal survival 

was bell shaped; the most significant effect was shown by the medium dose. 

The fact that a higher dose of THC-rich extract was less effective than the 

medium one may be explained by the fact that there might be compounds in 

the mixture of the extract acting as antagonists, thus diminishing the action of 

THC (Pertwee, 2008; Pertwee et al., 2007; Thomas et al., 2005). Another 

reason is that THC activates CB1 receptors, but it can also act as an antagonist 

on those receptors, and this effect may lead to an impairment of the 

neuroprotective effect mediated by the endocannabinoid system activation 

(Pertwee, 2008; Sarne and Mechoulam, 2005). CBD-rich extract showed a 

linear dose response curve. The dose of CBD necessary to increase the 

latency for generalized tonic-clonic seizures was bigger than that of THC, and 

this may be due to different bioavailability of the two extracts, and to 

different mechanism of action. Many neuroprotective effects of THC are 

mediated by the CB1 receptors (Drysdale and Platt, 2003), whereas CBD 

mechanism of action is still unknown (Mechoulam et al., 2007; Pertwee, 

2008). In an in vitro model of maximal electroshock both THC and CBD 

showed good anticonvulsant activity (Wallace et al., 2001); the 

anticonvulsant effect of THC was blocked by the CB1 antagonist 

SR141716A, whereas CBD’s activity was not lowered by the antagonist, thus 

suggesting that a different mechanism of action underlies their anticonvulsant 

effect. Very few papers have been published about the anticonvulsant action 

of phytocannabinoids and Cannabis extracts, since the endocannabinoid 

system has been discovered. Much attention has been devoted to 

investigations about the neuroprotective effects of endogenous agonists, such 

as anandamide, and 2-AG, or synthetic agonists such as WIN 55,212-2 and 

HU-210. In a recent study CB1 knockout mice and wild-type mice treated 
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with a CB1 antagonist showed more pronounced seizures and more severe 

excitotoxic cell death than untreated mice in a model of kainic acid-induced 

seizures (Marsicano et al., 2003). Based on the evidence that 

endocannabinoids production is increased during brain injury and other 

excitotoxicity models (van der Stelt et al., 2002), endocannabinoids have 

been proposed as “stout guards” of the CNS (Mechoulam and Lichman, 

2003). On the other hand, some of the neuroprotective effects of 

endocannabinoids and exogenous cannabinoids - like CBD - are not mediated 

by CB1 receptors (van der Stelt et al., 2002), thus suggesting the existence of 

some novel CB receptors (Baker at al, 2006; Pertwee, 2007) or alternative 

mechanism of action (McHugh et al., 2008). Our preliminary data suggested 

further investigations about the effect of Cannabis extracts in the PTZ model; 

at the present, histological evaluations are in progress in our laboratory in 

order to investigate whether some areas of the brain may be protected from 

PTZ toxicity in the animals pre-treated with the THC- and CBD-rich extracts. 

Since at the time of submission of the present thesis histological 

investigations were still ongoing, we could not conclude whether the effect on 

latency might lead to neuronal protection in the area involved in the 

chemoconvulsant activity. 

CBD-rich extract was able to increase the survival of the animals to the 

treatment with a lethal dose of the chemoconvulsant PTZ, and this evidence 

suggested the possible protective effects in this in vivo model. In order to 

further assess the mechanism of action of CBD, we chose to investigate the 

effect of CBD in in vitro models of excitotoxicity and mitochondrial 

dysfunction in hippocampal primary cultures, as hippocampus is one of the 

area of the brain which plays a prominent role in triggering PTZ-induced 

seizure (Brevard et al., 2006). 
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Discussion of the in vitro study 

Variations in intracellular levels of Ca affect physiological and biochemical 

processes of the neuron (Berridge et al., 1998; Toescu and Verkhratsky, 

2003). In fact, Ca ions are the most important second messengers used for 

signal transduction (Bootman et al., 2001). The major sources of intracellular 

Ca are entry into the cell through NMDA receptors or voltage-dependent Ca 

channels (VDCC), and release from intracellular Ca stores. In physiological 

conditions, Ca activates a number of Ca-dependent enzymes that influence a 

wide variety of cellular components, like cytoskeletal proteins or second 

messengers (Berrigde et al., 2000). Levels of intracellular Ca are regulated by 

transport proteins that remove it from the cytoplasm; for example, the 

Na+/Ca2+ exchanger, the endoplasmatic reticulum Ca2+ ATPase, and the 

mitochondrial Ca2+ uniporter (Duchen, 2000). Whether directly (ATPase) or 

indirectly (exchangers depending on electrochemical gradient), these 

transporters rely on energy to keep working. Maintenance of physiological Ca 

homeostasis is critical for neuronal activity; too little Ca leads to impairment 

of normal functioning, too much cytosolic level may lead to neuronal death 

(Berridge, 1998; Orrenius et al., 2003). The endoplasmic reticulum (ER) is 

the most investigated intracellular Ca store in the cell; mitochondria are 

another important storage of this ion. These two organelles seem to be 

functionally coupled to accomplish Ca buffering (Rizzuto et al., 2004). Less 

is known about the mechanism of mitochondrial Ca extrusion in neurons, 

whereas more has been elucidated on the ER mechanisms. Two intracellular 

Ca release channels are present on ER membrane, the inositol 1,4,5-

trisphospate receptor (IP3R) and the ryanodine receptor (RyR) (Verkhratsky, 

2002). The first is activated by IP3, the latter by cytosolic Ca; since IP3R is 

modulated by Ca, they both can be considered Ca gated channels. The size of 

the mitochondrial Ca pool is smaller than that of ER under physiological 

conditions (Duchen, 2000). However, mitochondrial Ca uptake plays an 

important role in regulating Ca signals in the cell, and mitochondria. 
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Mitochondria and endoplasmic reticulum can co-localize in the cytoplasm, 

and ER seems responsible for the maintenance of high Ca microdomains 

close to mitochondria, so that mitochondrial Ca uptake is facilitated (Rizzuto 

et al., 1993; Rizzuto et al., 1999). Mitochondrial Ca signalling appears to be 

fundamental in the control of the metabolism of the organelle; for example, 

increase in matrix Ca concentration in the mitochondria accelerates the 

enzymatic activities of several dehydrogenases leading to increased NADH 

levels, and subsequently, to an augmentation of the mitochondrial ATP 

production (Jouaville et al., 1999). Another crucial factor in regulating and 

altering the organelle functioning is the balance between production and 

inactivation of reactive oxygen species (ROS); although mitochondrial ROS 

generation might constitute an important signalling molecule to modulate 

cellular signal transduction, under conditions of enzyme substrates overload 

or Ca overload, the formation of ROS is assumed to play an important role in 

mitochondrial degeneration/dysfunction (Orrenius et al., 2007; Ott et al., 

2007). Hence, as long as Ca buffering is well controlled, both ER and 

mitochondria are able to maintain the normal physiological activities of the 

cell. When this balance is altered neuronal death pathways are activated 

(Verkhratsky and Toescu, 2003). It is known that apoptotic cell death is 

triggered by extrinsic or intrinsic signalling pathways that induce death-

associated proteolytic and/or nucleolytic activities (Taylor et al., 2008); the 

intrinsic pathway is mitochondria-mediated (Fulda and Debatin, 2006; Dejean 

et al., 2006; Orrenius et al., 2003). Once damaged, the organelle membrane 

undergoes permeabilization, and pro-apoptotic messengers, such as 

cytochrome-c and caspases, are released (Riedl and Salvesen, 2007; Orrenius, 

2004). When apoptosis is triggered, a sequence of morphological events leads 

to nuclear and cytoplasmatic condensation with blebbing of the plasma 

membrane (Hengartner, 2000); apoptotic bodies are then removed by 

macrophages or other surrounding cells. Ca-dependent processes are closely 

connected with caspases activation, and recent findings also indicate that 
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interfering with the sequestration of Ca into intracellular pools, like the 

endoplasmic reticulum, can trigger apoptosis as part of cellular stress 

response (Orrenius et al., 2003; Orrenius, 2007).  

Excitotoxicity is the pathological process where the overactivation of 

glutamate receptors leads to neuronal death, and is thought to play an 

important role in many neuropathological conditions such as stroke, traumatic 

brain injury, ischemia, epilepsy (DeLorenzo et al., 2006; Lipton, 1999; Siesjö 

and Bengtsson, 1989), and neurodegenerative diseases of the central nervous 

system such as multiple sclerosis, Alzheimer's disease, amyotrophic lateral 

sclerosis, Parkinson's disease, and Huntington's disease (LaFerla, 2002; 

Mattson et al., 2000; Missiaen et al., 2000). The exposure to excitotoxic 

concentrations of glutamate causes changes in the neuronal physiology; in 

fact, the excessive and prolonged increase of intracellular Ca is one of the key 

events for neuronal damage (Deshpande et al., 2007). In addition, the 

protracted neuronal depolarisation is another sign of the pathophysiology of 

excitotoxicity. Both Ca excess and depolarisation correlated with neuronal 

death are triggered by NMDAR activation, but are not counteracted by Ca 

entry antagonists, when they are used after the insult (Limbrick et al., 2001). 

Therefore, parallel to efforts for elucidating the mechanisms underlying 

excitotoxic cascade, discovery of molecules able to dampen these delayed 

phenomena are currently made for the development of neuroprotective drugs 

(Chen and Lipton, 2006). In our experimental protocol, we investigated the 

possible neuroprotective effects of CBD and memantine on hippocampal 

cultures. In particular, we tried to characterize the effect of these two drugs in 

a model of excitotoxicity, induced by the administration of a high dose of 

NMDA using a low Mg2+ high Ca2+ perfusion solution. Memantine is a non-

competitive antagonist of NMDA receptor, approved for the treatment of 

mild-severe to severe Alzheimer’s disease, and possesses neuroprotective 

effects (Danysz et al., 2000; Parsons et al., 2007). CBD is one of the most 

abundant cannabinoid of Cannabis sativa, together with THC. CBD lacks 
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psychoactivity and has therapeutic potential for the management of 

inflammation, anxiety, emesis and nausea (Drysdale and Platt, 2003; Platt and 

Drysdale, 2004); its neuroprotective effects are under an intense investigation 

over the last decade. Several mechanisms are considered the rational basis of 

neuroprotective properties of cannabinoids (Drysdale and Platt, 2003): 

reduction and regulation of transmitter release, modulation of Ca homeostasis 

and excitability, antioxidant properties, modulation of immune response. 

CBD seems to accomplish all these requirements, so it seems a promising 

candidate for neuroprotection; in fact, CBD showed to possess an 

anticonvulsant activity in animal and in in vitro models  (Karler et al., 1973; 

Karler et al., 1974a,b; Wallace et al., 2001); unlike THC, tolerance to CBD 

activity does not occur, and the mechanism of action does not involve CB1 

receptors. CBD showed neuroprotective effects in in vivo models of cerebral 

ischemic injury (Braida et al., 2003; Hayakawa et al., 2006), and blocked 

glutamate toxicity in cortical neurons regardless of whether the insult was 

mediated by NMDA receptors, AMPA receptors, or kainate receptors 

(Hampson et al., 2000). It is also a good antioxidant agent (Hampson et al., 

1998; Hampson et al., 2000; Malfait et al., 2000) and possesses good anti-

inflammatory activity (Malfait et al., 2000), probably due to inverse agonism 

at CB2 receptor (Thomas et al., 2007). CBD enhances adenosine signalling 

through inhibition of uptake (Carrier et al., 2006), and increases cerebral 

blood flow through the serotonergic 5-HT1A receptor (Hayakawa et al., 2006). 

The mechanism of action of CBD is still unknown, but seems to be related to 

the endocannabinoid system, though not mediated by CB1 receptor. Recent 

findings have shown that CBD reduces striatal atrophy generated by exposure 

to 3-NP, and that this effect is not mediated by cannabinoid, vanilloid TRPV1 

and adenosine A2A receptors (Sagredo et al., 2007), which had been 

considered putative site of action of CBD.  

In our model, the effect of NMDA perfusion was a high rise in the 

intracellular concentration of Ca within the time of its application; when 
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NMDA was removed, the [Ca2+]I dropped to lower levels within five minutes. 

Since prevention of Ca overloading seems a promising strategy against the 

excitotoxic insult (Deshpande et al., 2007), we started the investigation with a 

set of experiments in which CBD and memantine were administered after the 

insult, to assess their effect on [Ca2+]I; the analysis of the data showed that 

neither memantine nor CBD applied after the insult could alter the percentage 

of neurons showing dysregulation and could not aid recovery. Our working 

hypothesis assumed that protective treatment leads to a higher percentage of 

neurons that show a full or partial recovery. This choice was based on the 

finding that, upon NMDA receptors activation by glutamate, there is a one 

hour window of opportunity for neuroprotection, during which it is possible 

to reverse the increased of [Ca2+]I  and prevent neuronal death (Deshpande et 

al., 2007). In the first instance, we assessed that neither CBD nor memantine 

were able to change the percentage of neurons showing full or partial 

recovery when perfused after the insult to neurons; in other words, they could 

not aid neuronal recovery when applied after NMDA. On the other hand, 

when we analysed the late amplitude parameter, CBD demonstrated the 

capacity to lower the [Ca2+]I measured at the end of the washout, suggesting 

that it had an effect on the mobilisation of Ca after the insult. It is difficult to 

conclude whether this effect could lead to neuroprotection and improved 

survival, as further studies are necessary to confirm this. This preliminary 

result needs to be further investigated: a model of NMDA-induced 

excitotoxicity and viability study is in progress at the moment in the 

laboratory. In any case, this data is in agreement with recent findings 

(Drysdale et al., 2006) that CBD has a role in the intracellular modulation of 

Ca stores and events secondary to the initial NMDA receptors activation. 

Memantine neither helped recovery, nor showed any modulation of Ca 

loading; this is what we could expect from an antagonist of NMDA receptors 

applied post NMDA application. In fact, as it was recently found, Ca entry 
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antagonists are not effective in reducing the elevated [Ca2+]I after excitotoxic 

insult has occurred (Deshpande et al., 2007).  

To further investigate the role of CBD and memantine in neuroprotection, we 

chose to apply them simultaneously with NMDA. Memantine dampened the 

NMDA response of the neurons, increased the percentage of neurons showing 

full recovery, and lowered the [Ca2+]I measured at the end of the perfusion; 

on the other hand, CBD applied contemporary to NMDA application did not 

alter NMDA response, or modify any of the recovery parameters analysed. 

As it was predictable, memantine, a non-competitive antagonist of NMDA 

receptors  (NMDAR), was able to lower the response of neurons to NMDA; 

in fact, during the contemporary administration of memantine and NMDA the 

rise in [Ca2+]I was strongly dampened. On the other hand, CBD did not 

influence NMDA response when co-applied; this is in agreement with the 

findings about CBD’s mechanism of action, which does not seem to involve 

direct interaction with glutamate receptors (Mechoulam et al., 2007). When 

recovery parameters and late amplitude were evaluated, memantine exhibited 

a protective effect, as it was able to increase the percentage of neurons 

showing full recovery; moreover it decreased the [Ca2+]I measured at the end 

of the washout. We can conclude that, in this experiment, the delayed 

excitotoxic events might have not been triggered as memantine prevented the 

complete activation of the NMDAR; in fact, even if intracellular Ca 

concentration was very high, the neurons were able to recovery. 

When acute brain trauma occurs, the damage to cells does not only involve 

the area directly affected by lesions. In fact, necrotic cell death is 

characterized by the irreversible swelling of the cytoplasm and its organelles. 

Cell lysis, due to loss of membrane integrity, results in the release of noxious 

cellular constituents, and this leads to inflammation and damage in the 

surrounding tissue (Dirnagl et al., 1999; Leker and Shohami, 2002). 

Neuroprotection from this type of insult involve possible enhancement of 

defensive neuronal and glial mechanism, in order to minimize the spread of 
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tissue damage (Streit, 2005). Thus, the final investigative path was performed 

to evaluate the effects of the two compounds when applied before NMDA 

insult. As previously reported (Drysdale et al., 2006), CBD raised 

intracellular concentration of Ca when applied to primary hippocampal 

cultures. Though in the present study we used a different perfusion solution to 

simulate the excitotoxic insult, the response of CBD seemed to be of similar 

degree. Here, we used a very high excitability perfusion solution: low 

concentration of Mg2+ was applied to overcome the ion blocking action on 

NMDA receptors, and high concentration of Ca2+ to facilitate Ca overloading 

inside the cells. Moreover, differently from Drysdale’s study, we did not use 

any channel blocker (like the Na channel blocker TTX): in fact, in order to 

induce excitotoxicity spontaneous neuronal spiking and Ca oscillations are 

required. A CBD response was elicited in the experimental condition we 

used, so we can conclude that its response is independent of Na channel 

block. In comparison, memantine did not evoke any response when applied to 

neurons. This is what can be expected, as it is a NMDA receptor antagonist. 

Differently from what happened when memantine and CBD were applied 

simultaneously to NMDA (memantine lowered NMDA response, CBD did 

not), when the drugs were administered before the insult, they both lowered 

NMDA response. Neither CBD nor memantine were able to improve 

recovery when applied before the insult, though. Nevertheless, memantine 

lowered the late amplitude measured at the end of the washout. If this effect 

of memantine is to be attributed to the decrease of Ca influx during the 

perfusion of NMDA, it is worth asking why CBD’s action on the late 

amplitude is different from that of memantine. The answer may be that the 

two drugs have different mechanism of action by which they lower NMDA 

responses; in fact when they were applied simultaneously to NMDA 

memantine lowered NMDA response, whereas CBD did not. Most certainly 

when CBD’s mechanism of action will be disclosed, we would be able to 

further discuss this hypothesis. The Ca imaging results indicate that only 
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memantine applied contemporary to NMDA is capable of protecting neurons 

in this model of excitotoxicity, as it is a NMDA receptor antagonist, and 

prevents total activation of this receptor. Numerous studies have 

demonstrated that the treatment with NMDA receptor antagonists, during 

exposure to toxic dosages of glutamate, can prevent further increase of the 

concentration of intracellular Ca, thus leading to protection of neurons from 

necrotic death in cortical and hippocampal areas (Coulter et al., 1992; 

Limbrick et al., 2001); on the other hand, others reported that in conditions of 

mitochondrial depolarisation or when Ca extrusion/sequestration mechanisms 

are impaired, blocking NMDA receptor does not prevent further neuronal 

damage (Limbrick et al., 2001; Norris et al., 2006; Vergun et al., 1999). So, 

when the mechanisms which regulate Ca homeostasis in the cells are already 

damaged, neurons are more susceptible to delayed excitotoxicity, whereas 

there is a time window when neurons can be effectively protected from 

further insult by dampening NMDAR-induced Ca currents (Deshpande et al., 

2007). Here, we used young hippocampal cultures, and showed how 

memantine applied simultaneously to NMDA helped recovery from the 

insult, whereas pre- or post-application were ineffective in restoring normal 

levels of Ca.  

The possible neuroprotective activity of CBD and memantine was also 

investigated in a model of impairment of cell energetic metabolism, using the 

mitochondrial toxin 3-nitropropionic acid (3-NP). 3-NP inhibits succinate 

dehydrogenase in the tricarboxylix acid cycle, and alters energy dependent 

processes in cells, as this enzyme is necessary for the synthesis of ATP by 

mitochondria (Alston et al., 1977; Coles et al., 1979). 3-NP induced neuronal 

loss is shown to be mediated by excessive activation of glutamate receptors, 

leading to the production of hydroxyl radical and peroxynitrite (Beal et al., 

1993). In particular, energy deficiencies may cause cellular depolarisation, 

and NMDA receptor activation, and the Ca cascade may increase the 

damages to cell. That explains why 3NP toxicity has been reported to be 
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attenuated by glucose (Fink et al., 1996). In this study, memantine showed 

neuroprotection, as it was able to increase the number of viable neurons in the 

intoxicated dishes. Neuronal and glial function is critically dependent on the 

maintenance of electrochemical gradients across membranes, and around 60% 

of ATP produced by the cell is necessary to the Na+/K+ ATPase working 

(Hansen, 1985). Consequently, when energy production is impaired (i.e. 

during hypoxia), a rapid loss in ionic homeostasis occurs, and the cell 

depolarizes. NMDA receptors and voltage-dependent Ca channels can be 

activated, and the intracellular Ca stores may fail to accomplish Ca buffering. 

When the Ca homeostasis of the cell is altered, excessive entry of Ca initiates 

a series of cytoplasmatic and nuclear processes that promote neuronal cell 

death: activation of proteolytic enzymes, activation of Ca2+/calmodulin kinase 

II (with increased activity of phosphorylated enzymes), activation of Ca-

dependent endonucleases, and expression of transcription factors (Berridge et 

al., 1998; Orrenius et al., 2003). Here, memantine was able to decrease the Ca 

entry into neurons, as it blocks NMDA receptors as soon as they are activated 

by loss of the membrane potential. This mechanism of action can explain the 

protective effect in our model of energy impairment; this finding is in 

agreement with the neuroprotective effect of another non-competitive 

NMDAR antagonist, MK-801, in models of metabolic impairment (Zeevalk 

et al., 1995). Previous studies have shown that glial cells can be damaged by 

3-NP, but at higher doses than that used in the present study (Ryu et al., 

2003). On the other hand, CBD did not show any protective effect in this 

model. 3-NP toxicity is mediated by oxidative stress and ATP depletion 

(Alston et al., 1977; Coles et al., 1979). It was surprising that CBD did not 

show protection in this model, because its neuroprotective effect and that of 

other cannabinoids is assumed to involve their antioxidant capacity (Drysdale 

and Platt, 2003; Hampson et al., 1998; Marsicano et al., 2002). Since only 

memantine was able to protect neurons from 3-NP toxicity, we can argue that 

targeting NMDA receptor may exert protection in this model in hippocampal 
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cultures. Such evidence is in agreement with the report that acute 3-NP 

toxicity is glutamate-receptor mediated in striatal, hippocampal, and 

hypotalamic neurons (Fink et al., 1996; Pang and Geddes, 1997), and that 

NMDA antagonist, MK-801 can attenuate 3-NP-induced necrotic death 

(Rajdev and Reynolds, 1994). It is worth mentioning that a very recent paper 

(Sagredo et al., 2007) showed that CBD may act as neuroprotective agent, by 

reducing the striatal atrophy generated by in vivo exposure to 3-NP. As others 

before (Hampson et al., 2000; Wallace et al., 2001), they demonstrated that 

CBD neuroprotection was independent from CB1 receptors interaction. The 

lack of activity in our 3-NP intoxication model could be attributed to the 

different types of neurons studied, and to differences between in vivo and in 

vitro experiments.  

Altogether, our data showed that the NMDA antagonist memantine 

successfully protected hippocampal neurons from excessive loading of Ca, 

and prevented damage to cellular structures.  Memantine clearly showed its 

mechanism of action on the NMDA receptor in the Ca imaging experiments, 

leading to a decrease of Ca influx. This decrease in Ca influx might also 

explain the protection shown in the viability study. In contrast, CBD did not 

provide major protection in both models, but was able to reduce NMDA 

response and secondary events, leading to a significant decrease of Ca inside 

the neurons. This effect is indicative of intracellular sides of actions 

subsequent to the activation of the Ca cascade. 
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CONCLUSIONS  
 
In the present thesis we investigated the possible effect of CBD in models of 

convulsion and excitotoxicity. In the in vivo study CBD was administered as 

the major cannabinoid of a Cannabis extract, and showed the capacity to 

increase the latency to chemical-induced convulsions in mice, and to increase 

the survival to the treatment with a lethal dose of the chemoconvulsant PTZ. 

In the in vitro study we investigated the possible neuroprotective effects of 

pure CBD in models of excitotoxicity and mitochondrial impairment in 

hippocampal cultures, and compared its activity to that of the NMDA 

antagonist memantine. Although CBD did not show major protection in either 

models relative to memantine, it showed the capacity to modulate 

intracellular Ca levels. This effect is to be taken into great consideration as 

maintaining proper Ca homeostasis is critical for the viability of neurons 

(Berridge et al., 2000; Toescue and Verkhratsky 2003), and evidence is 

accumulating about the fact that perturbation in Ca homeostasis is the main 

cause of neuronal loss, in chronic and acute neuropathological conditions 

such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, stroke, and 

epilepsy (DeLorenzo et al., 2006; LaFerla, 2002; Lipton, 1999; Mattson et al., 

2000; Missiaen et al., 2000; Siesjö and Bengtsson, 1989). CBD’s mechanism 

of action and neuroprotective effects have been under intense investigation 

over the last decade, and as this compound lacks psychoactivity and is 

tolerated well in humans (Pertwee, 2004), it seems a good candidate for 

possible future clinical applications. Overall, the present investigation 

supports CBD’s role in neuroprotection and calls for further studies beyond 

the preliminary results obtained here. 
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