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Abstract

The first paper sheds light on the informational content of high frequency data and daily

data. I assess the economic value of the two family models comparing their performance in

forecasting asset volatility through the Value at Risk metric. In running the comparison this

paper introduces two key assumptions: jumps in prices and leverage effect in volatility dynam-

ics. Findings suggest that high frequency data models do not exhibit a superior performance

over daily data models.

In the second paper, building on Majewski et al. (2015), I propose an affine-discrete time

model, labeled VARG-J, which is characterized by a multifactor volatility specification. In the

VARG-J model volatility experiences periods of extreme movements through a jump factor

modeled as an Autoregressive Gamma Zero process. The estimation under historical measure

is done by quasi-maximum likelihood and the Extended Kalman Filter. This strategy allows

to filter out both volatility factors introducing a measurement equation that relates the Real-

ized Volatility to latent volatility. The risk premia parameters are calibrated using call options

written on S&P500 Index. The results clearly illustrate the important contribution of the jump

factor in the pricing performance of options and the economic significance of the volatility

jump risk premia.

In the third paper, I analyze whether there is empirical evidence of contagion at the bank

level, measuring the direction and the size of contagion transmission between European mar-

kets. In order to understand and quantify the contagion transmission on banking market, I

estimate the econometric model by Aı̈t-Sahalia et al. (2015) in which contagion is defined as

the within and between countries transmission of shocks and asset returns are directly mod-

eled as a Hawkes jump diffusion process. The empirical analysis indicates that there is a clear

evidence of contagion from Greece to European countries as well as self-contagion in all coun-

tries.
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Chapter 1

High Frequency vs. Daily Resolution:

the Economic Value of Forecasting

Volatility Models

Forecasting volatility models typically rely on either daily or high frequency (HF) data and

the choice between these two categories is not obvious. In particular, the latter allows to treat

volatility as observable but they suffer from many limitations. HF data feature microstructure

problem, such as the discreteness of the data, the properties of the trading mechanism and

the existence of bid-ask spread. Moreover, these data are not always available and, even if

they are, the asset’s liquidity may be not sufficient to allow for frequent transactions. This pa-

per considers different variants of these two family forecasting-volatility models, comparing

their performance (in terms of Value at Risk, VaR) under the assumptions of jumps in prices

and leverage effects for volatility. Findings suggest that daily-data models are preferred to

HF-data models at 5% and 1% VaR level. Specifically, independently from the data frequency,

allowing for jumps in price (or providing fat-tails) and leverage effects translates in more ac-

curate VaR measure.

JEL-Classification: C58 C53 C22 C01 C13

Keywords: GARCH, DCS, jumps, leverage effect, high frequency data, realized variation,

range estimator, VaR
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1.1 Introduction

Modeling and forecasting volatility of asset returns are crucial for many applications, such

as asset pricing model, risk management theory and portfolio allocation decisions. An earlier

literature, including Engle (1982) and Bollerslev (1986) among others, has developed models

of asset volatility dynamics in discrete time, known as heteroscedastic volatility models, i.e.

ARCH-GARCH. Thanks to the availability of high frequency (HF) data, a new strand of lit-

erature has originated a new class of models based on the Realized Volatility (RV) estimator,

therefore introducing a non-parametric measure of return volatility (see Andersen et al., 001a,

Barndorff-Nielsen, 2002 and Andersen et al., 2012). As the main innovation, RV models pro-

vides an ex-post observation of volatility, at odds with the standard ARCH-GARCH approach,

that treats volatility as a latent variable. Although forecasting-volatility models based on HF

data are getting more and more popular in the literature, the choice between HF-data and

daily-data models is yet not obvious, in particular from an applied standpoint. In particular,

the former still suffer from various limitations, that can be addressed only at the cost of a heavy

manipulation of the original data.

One of the main issues is the presence of the market microstructure noise, which prevents from

getting a perfect estimate (at the limit) of the returns’ variance (see Hansen and Lunde, 2006

and Aı̈t-Sahalia et al., 2005, 2011). The market microstructure noise may originate from differ-

ent sources, including the discreteness of the data, the properties of the trading mechanisms

and the existence of a bid-ask spread. Regardless of the source, when return from assets are

measured based on their transaction prices over very tiny time intervals, these measures are

likely to be heavily affected by the noise and therefore brings little information on the volatility

of the price process. Since the level of volatility is proportional to the time interval between

two successive observations, as the time interval increases, the incidence of the noise remains

constant, whereas the information about the ”true” value of the volatility increases. Therefore,

there is a trade-off between high frequency and accuracy, which has led authors to identify an

optimal sampling frequency of 5 minutes1.

1Since the best remedy for market microstructure noise depends on the properties of the noise, if data sampled
at higher frequency, e.g. tick-by-tick, are used the noise term needs to be modeled and, as far as I know, there is no
unified framework about how to deal with it. Aı̈t-Sahalia et al. (2005) define a new estimator, Two Scales Realized
Volatility (TSRV), which takes advantages of the rich information of tick-by-tick data and corrects the effects of
microstructure noise on volatility estimation. The authors, instead of sampling over a longer time horizon and
discarding observations, make use of all data and model the noise as an ”observation error”. But the microstructure
noise modeling goes beyond the scope of this work.
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HF data also features another inconvenient: they are not always available and, even if they

are, the asset may be not liquid enough to be frequently traded. On the contrary, daily data are

relatively simple to record and collect and are commonly easy-to-get.

This paper sheds light on the choice between HF-data and daily data models, by assessing the

economic value of the two family models, based on a comparison of their performance in fore-

casting asset volatility. Following the risk management perspective, I use value at risk (VaR) as

the econometric metric of volatility forecastability, as suggested by Christoffersen and Diebold

(2000).

VaR is defined as the quantile of the conditional portfolio distribution, and is therefore quite

intuitive as a measure: indeed, it is the most popular quantitative measure of the market risk

associated with a portfolio of assets, and is generally adopted by banks and required by regu-

lators all over the world2.

In running the comparison between HF-data and daily data models, this paper introduces two

key assumptions. Firstly, the data generating process for asset prices features discontinuities

in its trajectories, jumps3. Secondly, volatility (i.e. the standard deviation of asset return) reacts

differently to changes in asset return which have the same magnitude, but different sign, lever-

age effect. These two assumptions represent the main novelty of this paper since none of the

previous studies on the economic value of different forecasting-volatility models has investi-

gated the matter under both jumps in price and leverage effect combined together. Giot and

Laurent (2004) compare the performance of a daily ARCH-type model with the performance

of a model based on the daily RV in a VaR framework. The authors find that VaR specification

based on RV does not really improve the performance of a VaR model estimated using daily

returns. This paper underlines an important issue: in economics applications, it is important to

2Banks often construct VaR from historical simulation (HS-VaR): VaR is the percentile of the portfolio distribution
obtained using historical asset prices and today weights. This procedure is characterized by a slow reaction to
market conditions and for the inability to derive the term structure of VaR. The VaR term structure explains how
risk measures vary across different investment horizons. In HS-VaR, for example, if T-day 1% VaR is calculated,
the 1-day 1% VaR is simply scaled by

√
T. This relation is valid only if daily returns are i.i.d. realizations of a

Normal distribution. We know that is not the case since returns present leptokurtosis and asymmetry. The main
limit of HS-VaR is the substitution of the conditional return distribution with the unconditional counterpart. Risk
Metrics and GARCH models represent improvements over HS-VaR measure. Both of them provide an explicit
assumption about the DGP and the conditional variance but they have also important differences. In addition
to the estimation method: GARCH conditional volatility is estimated by maximizing the log-likelihood function
while the parameters used in Risk Metrics are chosen in an ad hoc fashion, they differ for the possibility to account
for the term structure of VaR. This is because GARCH process allows for mean reversion in volatility while Risk
Metrics does not, reproducing a flat term structure for VaR.

3A continuous price process is a restrictive assumption since it is not possible to distinguish between the dy-
namic originated from the two sources of variability, i.e. continuous and discontinuous movements with conse-
quences on the return generating process
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recognize and take into account the key features of the empirical data in order to choose a valid

data generating process. Clements et al. (2008) evaluate quantile forecasts focusing exclusively

on models based on RV in order to understand if the results presented for stock returns can

be carried over exchange rates. According to the results in Clements et al. (2008) the distribu-

tional assumption for expected future returns is needed for computing quantile, irrespective

of the frequency of data used. Brownlees and Gallo (2010) forecast VaR using different volatil-

ity measures based on ultra-high-frequency data using a two-step VaR prediction procedure.

They find that using ultra-high-frequency observations, VaR predictive ability is considerably

improved upon relative to a baseline GARCH but not so relative to the range. The reason is

related to the microstructure noise issue which arises when ultra high-frequency data are used.

Indeed I want to contribute to the existing literature focusing on the measurement and the ef-

ficient use of the information embedded in HF data with respect to the information content

of daily observations. Assuming both jumps and leverage effects in the returns dynamics for

both data categories, I provide a more balanced comparison than in the previous work.

In the choice of the model to use for the comparison, I consider the GARJI model of Maheu and

McCurdy (2004), as the baseline for the daily data models. The latter is a mixed-GARCH jump

model which allows for asymmetric responses to past innovations in asset returns: the news

impact (resulting in jump innovations) may have a feedback effect on the expected volatility,

in addition to the feedback effect associated with the normal error term. For the case of HF

data, I consider models in which Realized Volatility (RV) is decomposed into continuous and

discontinuous volatility components. The continuous component is captured by means of the

bi-power variation (BV), introduced by Barndorff-Nielsen and Shephard (2004), whereas the

discontinuous component (JV) is obtained as the difference between RV and BV at given point

in time4. In Andersen et al. (2007), JV is obtained considering only jumps that are found to be

significative, and neglecting the others5. Corsi et al. (2010) consider instead all jumps, stress-

ing the importance to correct the positive bias in BV due to jumps classified as consecutive.

In this paper, I consider both these approaches and make a comparison among them, finding

evidence in favor of jump identification strategy of Corsi et al. (2010) when the leverage effect

is introduced. To account for the leverage effect, I introduce in this class of models the hetero-

4As shown in Andersen et al. (2002), Andersen et al. (2007), RV is a consistent estimator for the quadratic
variation, whereas BV represents a consistent estimator of the continuous volatility component, i.e. the so-called
integrated volatility, in the presence of jumping prices.

5The authors with significant jumps refer to large value of RVt − BVt while small positive values are treated
both as part of continuous sample path variation or as measurement errors.
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geneous structure proposed by Corsi and Renó (2009).

Throughout this paper, the GARJI-VaR measures are obtained by following Chiu et al. (2005),

that is, by adjusting for skewness and fat tails in the specification of the conditional distribution

of returns6. The HF-VaR measures, instead, are computed by assuming a conditional Gaussian

distribution for asset returns: as shown in Andersen et al. (2010), returns standardized for the

square root of RV are indeed approximatively Normal7.

In order to assess the model’s capability to forecast future volatility, I implement a backtesting

procedure based on both the Christoffersen (1998) test and the Kupiec (1995) test. In addition

to comparing the economic value of daily data and HF-data models, the analysis performed

in this paper sheds light on three other issues. The first is represented by the economic value

per se, i.e. out of the comparison, of the class of forecasting volatility models adopting HF-

data. This is done by considering different specifications of this family models. I first run a

comparison among them (based on their forecasting performances); then, I compare some of

them with their variant, obtained by using the Range estimator (RA) of Parkinson (1980). The

choice of this particular benchmark is motivated by the fact that the RA estimator is likely to

deliver a measure of volatility which lies in the middle of the measure obtained from HF esti-

mators and that obtained from daily data models8. My findings suggest that HF-data models

which explicitly provide both jumps and leverage factors stand out from the others in term of

forecasting capability.

The second by-product of my analysis is a quantitative assessment of the importance of the

explicit jump component in the conditional distribution of asset returns 9. This point is ad-

dressed in both the family models considered in this paper. Hence, I first compare the fore-

casting volatility performances of each HF-data model with and without a decomposition of

6The computation of VaR measure requires, in addition to the conditional volatility dynamics, the specification
of the conditional distribution of returns.VaR is a conditional risk measure so an assumption on the conditional
distribution of returns is needed. Conditional normality is an acceptable assumption (returns standardized by their
conditional volatility could be approximately Gaussian even if the unconditional returns are not Gaussian) only if
the volatility model is able to fatten conditionally Gaussian tails enough to match the unconditional distribution.
If this is not the case another conditional distributional assumption is necessary.

7This result is confirmed by the standardized returns of the sample used in this paper. See Section 1.2.
8The RA estimator exploits information on the highest and the lowest price recorded in a given day for a partic-

ular asset. In this respect, it requires information on the intra-day activity (going beyond the simple closing price
of the asset), but without relying on further information, that might be not readily available).

9The presence of a jump component is justified both at theoretical and empirical level. From a theoretical per-
spective, an explicit discontinuous volatility-component allows to have information on the market response to
outside news, which is key for many applications. From an empirical standpoint, instead, it is very difficult to dis-
tinguish power-type tails from exponential-type tails, given that is not clear to what extent the return distribution
is heavily tailed. In this regard, the jump component of a jump-diffusion model may be interpreted as the market
response to outside news: when good or bad news arrive at a given point in time, the asset price changes according
to the jump size (and the jump sign) and an extreme sources of variation is added to the idiosyncratic component.
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the RV into the continuous and the discontinuous component. Then, I run a similar anal-

ysis for the case of the daily data models, considering the GARCH-t model, as well as the

Beta-t model10 proposed by Harvey and Luati (2014). According to my analysis, introducing

an explicit, persistent jump component in the conditional return dynamics (together with an

asymmetric response to bad and good news into conditional volatility dynamics) may help to

forecast the ex-post volatility dynamics and obtain more accurate VaR measures, at least at the

VaR level required by Basel accords (1%). For HF-data models, accounting for jumping prices

does not seem to improve significantly the accuracy of the estimates.

The last issue of my analysis is related to the importance of leverage effect in forecasting volatil-

ity. The findings in this paper recommend the explicit introduction of a factor that generates

the asymmetric volatility response to price movements in the forecasting model.

The rest of the paper is organized as follows. Section 1.2 summarizes the volatility measures

and the forecasting models based on both HF and daily data. Section 1.3 and Section 1.4 show,

respectively, the backtesting methods used to evaluate forecasting models accuracy and the

empirical results. Section 2.5 concludes.

1.2 Volatility Measures and Forecasts

1.2.1 Estimates of volatility with High Frequency Data

The RV measure is an estimator for the total quadratic variation, namely, it converges in

probability, as the sampling frequency increases, to the continuous volatility component if

there are no jumps. Instead, it converges to the sum of continuous and discontinuous volatility

components if at least one jump occurs. As explained in Andersen et al. (2012), it is possible to

use the daily RV measures, the ex-post volatility observations, to construct the ex-ante volatility

forecasts. This is possible simply by using standard ARMA time series tools but it is important

to take into account the difference with GARCH-type forecasting. The fundamental difference

is that in the former case the risk manager treats volatility as observed while in the latter

framework volatility is inferred from past returns conditional on a specific model. The idea

behind the RV is the following: even if prices are not available on continuous basis, prices are

recorded at higher frequency than daily. Using these squared returns a daily RV could easily

be computed. In this way the ex-post volatility is considered as observable at each point in

10Beta-t model, belongs to the general class of Dynamic Conditional Score (DCS) model. They are also known as
Generalized Autoregressive Score (GAS) model proposed by Creal et al. (2013).
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time.

More precisely, the RV on day t based on returns at the ∆ intraday frequency is

RVt(∆) ≡
N(∆)

∑
j=1

r2
t,j

where rt,j = pt−1+j∆ − pt−1+(j−1)∆ and pt−1+j∆ is the log-price at the end of the jth interval on

day t and N(∆) is the number of the observations available at day t recorded at ∆ frequency.

In the absence of microstructure noise, as ∆ → 0 the RV estimator approaches the integrated

variance of the underlying continuous-time stochastic volatility process on day t:

RVt −→p IVt where IVt =
∫ t

t−1
σ2(τ) dτ

Furthermore, in this paper I assume that the the underlying price process is characterized

by discontinuities. Indeed, the previous convergence is not valid but the RV estimators ap-

proaches in probability to the sum of the integrated volatility and the variation due to jumps

that occurred on day t:

RVt −→p

∫ t

t−1
σ2(τ) dτ +

ζt

∑
j=1

J2
t,j

If jumps (Jt,j) are absent, the second term vanishes and the realized volatility consistently esti-

mates the integrated volatility. A nonparametric estimate of the continuous volatility compo-

nent is obtained by using the bipower variation (BV) measures:

BVt ≡
π

2
N(∆)

N(∆)− 1

N(∆)−1

∑
j=1

|rt,j||rt,j+1| (1.1)

Furthermore, the contribution to the total return variation stemming from the jump component

(JVt) is consistently estimated by

RVt − BVt −→p

ζt

∑
j=1

J2
t,j

Considering the suggestion of Barndorff-Nielsen and Shephard (2004) the empirical measure-

ments are truncated at zero in order to ensure that all of the daily estimates are nonnegative:

JVt = max{RVt − BVt, 0} (1.2)
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According to Andersen et al. (2007), this truncation reduces the problem of measurement error

with fixed sampling frequency but it captures a large number of nonzero small positive values

in the jump component series. These small positive values can be treated both as part of the

continuous sample path variation process or as measurement errors

In order to identify statistically significant jumps, i.e. large values of RVt − BVt, the authors

suggest the use of the following statistic:

Zt =
log(RVt)− log(BVt)√

N(∆)−1(µ−4
1 + 2µ−2

1 − 5)TQtBV−2
t

−→d N(0, 1) (1.3)

where µ1 =
√

2/π. In the denominator appears the realized tripower variation (TQ) that is the

estimator of the integrated quarticity as required for a standard deviation notion of scale:

TQt = N(∆)µ−3
4/3

N(∆)

∑
j=3
|rt,j|4/3|rt,j+1|4/3|rt,j+2|4/3

where µ4/3 = 22/3Γ(7/6)Γ(1/2). The significant jumps and the continuos component are

identified and estimated respectively as:

JVt = 1{Zt>Φα}(RVt − BVt)

CVt = RVt − JVt = 1{Zt≤Φα}RVt − 1{Zt>Φα}BVt

(1.4)

where 1 is the indicator function and Φα is the α quantile of the standard Normal cumulative

distribution function.

Corsi et al. (2010) show that the nonparametric estimator BV can be strongly biased in finite

sample because of the presence of consecutive jumps and they define a new nonparametric es-

timator, called Threshold Bipower Variation (TBV). In particular, TBV corrects for the positive

bias of BV in the case of consecutive jumps:

TBVt = µ−2
1

N(∆)

∑
j=2
|rt,j||rt,j+1)|1{|rt,j|2<θj}1{|rt,j+1||2<θj+1}

where θ is strictly positive random threshold function equal to V̂tc2
θ , V̂t is an auxiliary estimator

and c2
θ is a scale-free constant that allows to change the threshold. The jump detection test
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presented by Corsi et al. (2010) is the following:

C-Tz = N(∆)−1/2 (RVt − TBVt)RV−1
t√

(π2

4 + π − 5)max{1, TTriPVt
TBV2

t
}
−→d N(0, 1) (1.5)

where TTriPV is a quarticity estimator which is obtained by multiplying the TBV by µ−3
4/3.

Also in this case the jumps and the continuos component are identified and estimated respec-

tively as:

JVt = 1{C-Tzt>Φα}(RVt − TBVt)

CVt = RVt − JVt = 1{C-Tzt≤Φα}RVt − 1{C-Tzt>Φα}TBVt

(1.6)

The other measure chosen in this work is the Range volatility (RA) presented by Parkinson

(1980):

RAt =
1

4 log 2
(log(Ht)− log(Lt))

2 (1.7)

This estimator is constructed by taking the highest price (H) and the lowest price (L) for each

day as summary of the intraday activity, i.e. the full path process. Its major empirical ad-

vantage is that for many assets these informations are ready available. Alizadeh et al. (2002),

it is affected by a much lower measurement error than the RV estimator, it is more robust to

microstructure noise in a stochastic volatility framework and it allows to extract efficiently la-

tent volatility. On the one hand, the RA estimator contains informations comparable to those

embedded in RV. On the other hand, RA is easy to compute also for those assets that are not

frequently traded. Indeed, this estimator has advantages typical of both HF data and daily

observations.

1.2.2 Forecasting volatility using High Frequency Data

In the literature, there is no consensus if jumps help to forecast volatility. In this sense,

this work can be useful in order to understand if allowing for an explicit jump component is

important to forecast volatility, independently of the sampling frequency of the price process.

Moreover, if different sampling frequencies (daily and 5-minutes) are considered then a dis-

crimination between the two kinds of data used, can be done.

For all forecasting models that I am going to describe in this section, I define a log specification

both for inducing normality and for ensuring positivity of volatility forecasts 11. The natural

11Volatility forecasts at each time is obtained by applying the exponential transformation.
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starting point in forecasting volatility is to use an Autoregressive (AR) specification12. The

first model for both RV and RA is the AR model. In particular, an AR(8) model is identified

for both RV measure and for Range estimator13. The AR specification is easy to implement

but it does not capture the volatility long-range dependence due to the slowly decaying auto-

correlation of returns. As an alternative, it is possible to use the Heterogenous Autoregressive

model proposed by Corsi (2009). This model can be seen as an approximation of long mem-

ory model with an important advantage: it is easier to implement than the pure long-memory

model (see Andersen et al., 2007, Corsi and Renó, 2009). Indeed, the second forecasting model

for both volatility measures is the Heterogeneous Autoregressive model (HAR). The aggregate

measures for the daily, weekly and monthly realized volatility are computed as sum of past

realized volatilities over different horizons:

RV(N)
t =

1
N

RVt + · · ·+ RVt−N+1 (1.8)

where N is typically equal to 1, 5 or 22 according to if the time scale is daily, weekly or monthly.

Then, HAR-RV becomes:

log RVt+h = β0 + β1 log RVt+h−1 + β2 log RV(5)
t+h−1 + β3 log RV(22)

t+h−1 + εt (1.9)

where εt is IID zero mean and finite variance noise 14

Moreover, as suggested in Corsi and Renó (2009), the heterogeneous structure applies also

to leverage effect. As a consequence, volatility forecasts are obtained by considering asym-

metric responses of realized volatility to previous daily, weekly and monthly negative returns.

The past aggregated negative returns are constructed as:

l(N)
t =

1
N
(rt + · · ·+ rt−N+1)1{(rt+···+rt−N+1)<0} (1.10)

12It is also possible to use an ARMA model to forecast volatility in order to consider some measurement errors
since the empirical sampling is not done in continuous time.

13The identification procedure for the order of both AR models is done by exploiting the sample autocorrelation
and the sample partial autocorrelation function, by running both AIC and BIC information criteria and significance
of single parameters. Then I check the properties of the residuals: they are normal and the Ljung Box test does not
reject the null of no autocorrelation at any significance level.

14Corsi and Renó (2009) model the dynamic of the latent quadratic variation, call it σ̃t. Suppose that V̂t is a generic
unbiased estimator of σ̃t and log(σ̃t) = log(V̂t)+ωt where ωt is a zero mean and finite variance measurement error.
Then εt is independent from ωt.
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Then the L-HAR model is defined as:

log RVt+h =β0 + β1 log RVt+h−1 + β2 log RV(5)
t+h−1 + β3 log RV(22)

t+h−1+

β4lt+h−1 + β5l(5)t+h−1 + β6l(22)
t+h−1 + εt

(1.11)

The explanatory variables of the HAR-RV model can be decomposed into continuous and jump

components, in this way the forecasting model obtained is:

log RVt+h =β0 + β1 log CVt+h−1 + β2 log CV(5)
t+h−1 + β3 log CV(22)

t+h−1+

β4 log (1 + JVt+h−1) + β5 log (1 + JV(5)
t+h−1) + β6 log (1 + JV(22)

t+h−1) + εt

(1.12)

Depending on how the jump component is detected three different forecasted realized volatil-

ity are obtained. First, the HAR-Jumps is obtained according to (1.2) and for the continu-

ous component to (1.1). Second, the HAR-CV-JV model is obtained following Andersen et al.

(2007), namely according to (1.4). The last model, HAR-C-J is defined according to (1.6) fol-

lowing the estimation strategy presented in Corsi and Renó (2009).

If a cascade leverage structure is considered as in (1.10) then the forecasting volatility model

becomes:

log RVt+h =β0 + β1 log CVt+h−1 + β2 log CV(5)
t+h−1 + β3 log CV(22)

t+h−1+

β4 log (1 + JVt+h−1) + β5 log (1 + JV(5)
t+h−1) + β6 log (1 + JV(22)

t+h−1)+

β7lt+h−1 + β8l(5)t+h−1 + β9l(22)
t+h−1 + εt

(1.13)

As before, according to the estimators used for the volatility components, I obtain the LHAR-

Jumps, LHAR-CV-JV and LHAR-C-J models.

In order to asses the forecast ability of the RA, I extend the idea of the heterogeneity in the time

horizons of investors in the financial markets and I define two different forecasting models, in

addition to the AR(8) model:

log RAt+h =β0 + β1 log RAt+h−1 + β2 log RA(5)
t+h−1 + β3 log RA(22)

t+h−1 + εt (1.14)

called Range-HAR and

log RAt+h =β0 + β1 log RAt+h−1 + β2 log RA(5)
t+h−1 + β3 log RA(22)

t+h−1+

β4lt+h−1 + β5l(5)t+h−1 + β6l(22)
t+h−1 + εt

(1.15)
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called Range-L-HAR.

1.2.3 Forecasting volatility using daily data

The first specification for the continuous volatility component is the GARJI model:

Rt = µ + σtzt +
Nt

∑
i=1

X(i)
t (1.16)

λt = λ0 + ρλt−1 + γξt−1 (1.17)

σ2
t = γ + g(Λ,Ft−1)ε

2
t−1 + βσ2

t−1 (1.18)

g(Λ,Ft−1) = exp(α + αjE(Nt|Ft−1) (1.19)

+ 1{εt−1<0}[αa + αa,jE(Nt|Ft−1)])

where εt = ε1,t + ε2,t = σtzt + ∑Nt
i=1 X(i)

t , zt ∼ N (0, 1), Nt ∼ Poisson(λt), X(j)
t ∼ N (µ, ω2) and

ξt−1 = E[Nt−1|Ft−1)− λt−1.

As explained in Maheu and McCurdy (2004), the last equation allows for the introduction of

a differential impact if past news are deemed good or bad. If past news are business as usual,

in the sense that no jumps occurred, and are positive, then the impact on current volatility

will be exp(α)ε2
t−1. If no jump takes place but news are bad, the volatility impact becomes

exp(α + αa)ε2
t−1. If a jump takes place, with good news, the impact is exp(α + αj)ε

2
t−1. If a

jump takes place, with bad news, then the impact becomes exp(α + αj + αa + αa,j)ε
2
t−1.

The arrival rate of jumps is assumed to follow a non homogeneous Poisson process while

jump size is described by a Normal distribution. In this way, the single impact of extraordi-

nary news on volatility is identified through the combination of parameters in g(Λ,Ft−1). The

idea of the authors is the following: the conditional variance of returns is a combination of a

smoothly evolving continuous-state GARCH component and a discrete jump component. In

addition previous realization of both innovations, ε1,t and ε2,t affect expected volatility through

the GARCH component of the conditional variance. This feedback is important because once

return innovations are realized, there may be strategic or liquidity tradings related to the prop-

agation of the news which are further sources of volatility clustering15. With this model it is

possible to allow for several asymmetric responses to past returns innovations and then obtain

a richer characterization of volatility dynamics, especially with respect to events in the tail of

15A source of jumps to price can be important and unusual news, such as earnings surprise (result as an extreme
movement in price) while less extreme movements in price can be due to typical news events, such as liquidity
trading and strategic trading.
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the distribution (jumps).

In particular E[Nt−1|Ft−1) is the ex-post assessment of the expected number of jumps that oc-

curred from t− 2 to t− 1 and it is equal to ∑∞
j=0 jP(Nt−1 = j|Ft−1). Therefore ξt−1 is the change

in the econometrician’s conditional forecast on Nt−1 as the information set is updated, it is the

difference between the expected value and the actual one. As shown by Maheu and McCurdy

(2004) this expression may be inferred using Bayes’ formula:

P(Nt = j|Ft−1) =
f (Rt|Nt = j,Ft−1)P(Nt = j|Ft−1)

f (Rt|Ft−1)
for j = 0, 1, 2, . . . (1.20)

Indeed, conditional on knowing λt, σt, and the number of jumps that took place over a time

interval, Nt = j, the density of Rt in terms of observable is Normal:

f (Rt|Ft−1) =
∞

∑
j=0

f (Rt|Nt = j,Ft−1)× P(Nt = j|Ft−1) (1.21)

where

f (Rt|Nt = j,Ft−1) =
1√

2π(σ2
t + jδ2)

exp
(
− (Rt − µ + θλt − θ j)2

2(σ2
t + jδ2)

)
(1.22)

Naturally the likelihood function is defined starting from (1.22), where θ̃ is the vector of the

parameters of interest, i.e. θ̃ = (γ, ρ, θ, δ2, α, αj, αa, αaj, ω, β, λ0, µ):

L(Rt|Nt = j,Ft−1; θ̃) =
T

∏
t=1

f (Rt|Nt = j,Ft−1) (1.23)

and the log-likelihood is:

l(Rt|Nt = j,Ft−1; θ̃) =
T

∑
t=1

log f (Rt|Nt = j,Ft−1) (1.24)

The maximum number of jumps in each day in the filter (1.20) is set equal to 10. This is be-

casue, as suggested in Maheu and McCurdy (2004), the conditional Poisson distribution has

almost zero probability in the tails for values of Nt ≥ 10.

In order to isolate the role of jumps, I estimate a nested version of the GARJI model, i.e. ARJI,

which is obtained by imposing αj = αa = αa,j = 0.

In addition, I consider the GARCH-t model and Beta-t-GARCH model for conditional volatil-

ity. The aim is to understand if the ARJI model can provide a better fit to the empirical distribu-
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tion of the data and a better quantile forecast with respect to volatility specifications based on

fat tails, such as t-Student. In particular, Beta-t-GARCH presents a more sophisticated volatil-

ity specification with respect to GARCH-t model. The former consists of an observation driven

model based on the idea that the specification of the conditional volatility as a linear combina-

tion of squared observations is taken for granted but, as a consequence, it responds too much to

extreme observations and the effect is slow to dissipate. Harvey and Luati (2014) define a class

of models (DCS) in which the observations are generated by a conditional heavy-tailed dis-

tribution with time-varying scale parameters and where the dynamics are driven by the score

of the conditional distribution. In this way, Beta-t-GARCH counts the innovation outliers but

also the additive outliers.

1.3 Computing and comparing VaR forecasts

The VaR is defined as the 100α% quantile of the distribution of returns. The probability that

the return of a portfolio over a t holding period will fall below the VaR is equal to 100α%.

The predicted VaRs are based on the predicted volatility and they depend on the assumption

on the conditional density of daily returns. The one day-ahead VaR prediction at time t + 1

conditional on the information set at time t is:

V̂aRt+1|t =
√

σ̂2
t+1|tF

−1
t (α) (1.25)

In (1.25) σ̂2
t+1|t is the returns variance, estimated in both parametric and non-parametric mod-

els, F−1
t (α) is the inverse of the cumulative distribution of daily returns while α indicates the

degree of significance level. In the case of HF data σ̂2
t+1|t is equal to R̂Vt or R̂At estimated as ex-

plained in Section 1.2.2 while for GARJI model the returns variance is not simply the modified

GARCH dynamic but it also consist of the variance due to jumps (Hung et al., 2008):

V̂aRt+1|t =
√

σ̂2
t+1|t + (θ̂2

t + δ̂2
t )λ̂t F̃−1

t (α) (1.26)

where F̃−1
t (α) = F−1

t (α) + 1
6 ((F−1

t (α))2 − 1)Sk(Rt|tFt−1) and Sk(Rt|tFt−1) is the conditional

return skewness computed after estimating the model. Once obtained VaR forecasts, I assess

the relative performance of the models through the violation16 rate and the quality of the esti-

16In the testing literature exception is used instead of violation because the former is referred, as I explain later,
to a loss function. The loss function changes according to the test applied and the motivation behind the testing
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mates by applying backtesting methods17.

A violation occurs when a realized return is greater than the estimated ones (VaR). The viola-

tion rate is defined as the total number of violations divided by the total number of one period-

forecasts18The tests used in this paper are the Unconditional Coverage (LUC) and Conditional

Coverage (LCC) tests suggested respectively by Kupiec (1995) and Christoffersen (1998). The

LUCand LCC are the most popular tests among practitioners and academics. This is because

they are very simple to implement and because they are incorporated in the Basel accords re-

quirements 19. These two motivations represent also the reason why both tests are used also in

the academic literature. The LUC and the LCCtests assess the adequacy of the model by consider-

ing the number of VaR exceptions, i.e. days when returns exceed VaR estimates. If the number

of exceptions is less than the selected significance level would indicate, the system overesti-

mates risk; on the contrary too many exceptions signal underestimation of risk. In particular,

the first test examines whether the frequency of exceptions over some specified time interval

is in line with the selected significance level. A good VaR model produces not only the “cor-

rect” amount of exceptions but also exceptions that are independent each other and, in turn,

not clustered over time. The test of conditional coverage takes into account for the number of

exceptions and when the exceptions occur.

The tick loss function considered is defined as Binary loss function (BLF) which counts the

number of exceptions, that are verified when the loss is larger than the forecasted VaR:

BLFt+1 =


1 if Rt+1 < V̂aRt+1|t

0 if Rt+1 ≥ V̂aRt+1|t

(1.27)

where V̂aRt+1|t is the estimated VaR at time t that refers to the period t + 1.

The Likelihood Ratio test of unconditional coverage tests the null hypothesis that the true

strategies.
17The backtesting tests give the possibility to interpret the results and then the quality of the forecasting model

choose in inferential terms.
18As well explained in Gençay et al. (2003) atq th quantile, the model predictions are expected to underpredict

the realized return α = (1− q) percent of the time. A high number of exceptions implies that the model excessively
underestimates the realized return. If the exception ratio at the q th quantile is greater than α percent, this implies
excessive underprediction of the realized return. If the number of exceptions is less than α percent at the q th
quantile, there is excessive overprediction of the realized return by the underlying model.

19See ? for a review on VaR forecasting and evaluation through backtesting.
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probability of occurrence of an exception over a given period is equal to α:

H0 : p = α

H1 : p 6= α

where p̂ = n0
n1+n0

is the unconditional coverage (the empirical coverage rate) or the failure rate

and n0 and n1 denote, respectively, the number of exceptions observed in the sample size and

the number of non-exceptions.

The unconditional test statistic is given by:

LRUC = −2 log
(
(1− α)n1 αn0

(1− p̂)n1 p̂n0

)
∼ χ2(1) (1.28)

So, under the null hypothesis the significance level used to forecast VaRs and the empirical cov-

erage rate are equal. The test of conditional coverage proposed by Christoffersen (1998) is an

extended version of the previous one taking into consideration whether the probability of an

exception on any day depends on the exception occurrence in the previous day. The loss func-

tion in constructed as in (1.27) and the log-likelihood testing framework is as in (1.28) including

a separate statistic for the independence of exceptions. Define the number of days when out-

come j occurs given that outcome i occurred on the previous day as nij and the probability of

observing an exception conditional on outcome i of the previous day as πi. Summarizing:

π0 =
n01

n00 + n01
π1 =

n11

n10 + n11
π =

n01 + n11

n00 + n01 + n10 + n11
(1.29)

The independence test statistic is given by:

LRIND = −2 log
(

(1− π)n00+n10 πn01+n11

(1− π0)n00 πn01
0 (1− π1)n10 πn11

1

)
(1.30)

Under the null hypothesis the first two probabilities in (1.29) are equal, i.e. the exceptions do

not occur in cluster. Summing the statistics (1.28) and (1.30) the conditional coverage statistic is

obtained, i.e. LRCC = LRUC + LRIND and it is distributed as a χ2 with two degrees of freedom

since two is the number of possible outcomes in the sequence in (1.27). In order to avoid the

possibility that the models considered passing the joint test but fail either the coverage or the

independence test I choose to run LRCC and also its decomposition in LRUC and LRIND.
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1.4 Data and Empirical results

1.4.1 Data

In order to assess the informational content of HF and daily data, I use S&P 500 index from

5 Jan.1996 to 30 Dec.2005 for both samples.

Figure 1.1: Top: daily S&P 500 index from 5 Jan.1996 to 30 Dec.2005. The horizontal axis
corresponds to time while the vertical axis displays the value of the index. Bottom: daily S&P
500 percentage returns calculated by rt = log(pt/pt−1), where pt is the value of the index at
time t.

The total number of trading days is equal to 2516 which coincides with the number of daily

returns. In the top panel of Figure 1.1 the level of the S&P 500 index is presented. The corre-

sponding daily returns are displayed in the bottom panel of Figure 1.1. Given the literature

on the effects of microstructure noise of estimates of RV and the forecast performance of RV

models based on different sampling frequency, I use 5-minutes data for a total of 197, 689 ob-

servations. I compute 5-minutes intraday returns as the log-difference of the closing prices in

two subsequent periods of time. The daily returns are computed taking the last closing prices

in each trading day. The range volatility at each date is calculated as scaled log difference

between the highest and the lowest price in a trading day. Table 1.1 reports the descriptive

statistics of S&P 500 index for RAt, RVt and its decomposition in BVt and JVt. In particular

17



Table 1.1: Summary Statistics. The rows report the sample mean, standard deviation, skewn-
wss, kurtosis, sample minimum and maximum for the daily returns (Rt), the standardized
daily returns (Rt/

√
RVt) the daily realized volatility (RVt), the daily bipower variation (BVt),

the daily jump component (JVt) and the daily range estimator (RAt). Returns are expressed in
percentage.

Rt Rt/
√

RVt RVt BVt JVt RAt

Mean 0.0279 0.1378 0.8250 7.93E-05 3.15E-06 9.70E-05
St. Dev. 1.1520 1.3138 1.0097 9.85E-05 1.00E-05 1.52E-04
Skewness -0.0951 0.253 4.8721 4.8786 19.9283 7.1671
Kurtosis 5.9165 2.8505 39.1013 39.3401 659.3967 84.1687
Min -7.1127 -3.6092 0.0281 0.0281 0 0.0206
Max 5.3080 4.7161 11.890 11.890 3.6200 25.931

JVt is computed as max{RVt− BVt, 0}20. A number of interesting features are founded. Firstly,

returns exhibit negative asymmetry and leptokurtosis. As shown in Andersen et al. (2007) the

daily returns standardized with respect to the square root of the ex-post realized volatility are

closed to Gaussian. In fact its mean and asymmetry are close to zero, its variance is close to

one while its kurtosis is near to 3. This result is clear from Figure 1.2 in which the empirical

density distribution is plotted with the normal density distribution for Rt/
√

RVt. Moreover if

I compare RVt and BVt the latter is less noisy than the former, considering the role of jumps.

Finally, jump process does not show any Gaussian feature 21.

Figure 1.3 shows the plot of RVt, BVt, JVt and RAt estimators. It is evident that RVt, BVt and

JVt follow a similar pattern and the latter tends to be higher when RVt is higher. JVt exhibits a

relatively small degree of persistence as consequence of the clustering effect. Not surprisingly,

RAt follows the same pattern of RVt since both of them are ex-post volatility measures.

Estimation results based on daily data

Table 1.2, provides parameter estimates for both the GARJI and ARJI model applied to the

S&P500. The parameter estimates are presented separating the diffusion component from the

jump component. First, both parameters ρ and γ are significantly different from zero. The for-

mer represents the persistence of the arrival process of jumps that is quite high for both models

20The summary statistics of the continuous and disontinuous components computed according to Andersen et al.
(2007) and Corsi et al. (2010) are not reported because are very similar to those presented in Table 1.1.

21In particular, jumps computed according to (1.6) exhibit a higher mean with respect to those computed accord-
ing to (1.4), given that the former exploits the possibility of consecutive jumps.
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Figure 1.2: Standardized log-returns distribution of the S&P 500 index.The standard normal
distribution (solid line) is compared with the standardized log-returns distribution (dashed
line).

implying the presence of jump clustering. The latter, γ, measures the change in the conditional

forecast of the number of jumps due to the last day information. The significance of these two

parameters suggests that the arrival process of jumps can deviate from its unconditional mean.

The implied unconditional jump intensity is 0.8727 while the average variance due to jumps

is equal to 0.5516: the index is volatile. This result is confirmed by the average proportion

of conditional variance explained by jumps which is equal to 0.3068, jumps explained almost

the 23% of the total returns variance. Moreover the jump size mean θ is negative for both

model and the most interesting feature is that it affects conditional skewness and conditional

kurtosis. The sign of θ indicates that large negative return realizations due to jumps are asso-

ciated with an immediate increase in the variance explaining the contemporaneous leverage

effect: when jumps are realized they tend to have a negative effect on returns. In particular

the average conditional skewness is equal to −0.2766 while the average conditional kurtosis

is equal to 3.2814. Furthermore the feedback coefficient g(Λ,Ft−1) tends to be smaller when

at least one jump occurs because the total innovation is larger after jumps . Considering the

first column of Table 1.2, the feedback coefficient associated with good news and no jump is

equal to 0.0005 and it increases if one jump occurs, i.e. 0.0010. If no jumps occur and if news

are bad the coefficient is equal to 0.0411; it is equal to 0.0348 in case of bad news if one jump

occurs. These results provide evidence for the asymmetric effect of good and bad news and
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Figure 1.3: Top: RVt computed using 5- minutes data from 5 Jan.1996 to 30 Dec.2005. Second:
BVt computed using 5- minutes data from 5 Jan.1996 to 30 Dec.2005. Third: JVt = max{RVt −
BVt, 0} is computed using 5- minutes data from 5 Jan.1996 to 30 Dec.2005. Bottom: Range
estimator computed using daily data from 5 Jan.1996 to 30 Dec.2005. Time is on the horizontal
axis.

they show that the asymmetry associated to bad news is more important in the absence of

jumps, namely for normal innovations. In fact the difference between the coefficient estimates

for both good and bad news in the case of no jumps and one jump are quite similar. This

means that news associated with jump innovations is incorporated more quickly into current
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prices. The second column of Table 1.2 presents the estimated parameters for the model with

αj = αa = αa,j = 0. With this specification and through the LR test it is possible to understand

if the asymmetric effect of good versus bad news is statistically significant: the asymmetric

news effect is statistically significant.

Table 1.2: GARJI and ARJI models estimates. ARJI model is obtained assuming αj = αa =
αa,j = 0. Standard errors are in parenthesis.

Process Parameters S&P 500

GARJI ARJI
Diffusion

µ 0.0106 (1.9839) 0.0153 (2.1142)
ω 0.0036 (0.0005) 0.0034 (0.0005)
α -7.7048 (0.4332) -4.7623 (0.3063)
αj 0.8096 (0.7538) -
αa 4.5131 (0.4213) -
αa,j -0.9776 (0.7204) -
β 0.9696 (0.0002) 0.9787 (0.0000)

Jump
λ0 0.0211 (0.0039) 0.0229 (0.0052)
ρ 0.9758 (0.0025) 0.9757 (0.0030)
γ 0.5262 (0.0501) 0.4792 (0.0641)
θ -0.9895 (0.3985) -0.9793 (0.4501)
δ2 0.0005 (0.0000) 0.0000 (0.0000)

Log-likelihood -3570.8 -3574.4

Estimation results based on high frequency data

All the estimates presented in Table 1.3, Table 1.4 and Table 1.5 are computed employing

the OLS method over the entire sample period, i.e. from 5 Jan. 1996 to 30 Dec. 2005, for the

S&P500 index. Table 1.3 and Table 1.4 show the results for the models presented in Section

1.2.2 for models based on RV, its decomposition in BV and JV and the cascade structure for the

leverage effect.

The coefficients of the continuous component expressed as daily, weekly and monthly mea-

sures, respectively β1,β2 and β3 are significants in all models. Moreover, jump components ap-

pear to be fundamental to forecast one step ahead volatility; the predictive power is larger for

those specifications that allow for RV decomposed in its continuous and discontinuous compo-

nents, regardless the identified method used for jump magnitude. Furthermore, the estimates
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Table 1.3: Estimation of models based on high frequency data: AR(8), HAR, L-HAR, HARC-
Jumps, LHARC-Jumps. The coefficients refer to models presented in Section 1.2.2. Standard
errors are in parenthesis.

Parameter AR(8) HAR L-HAR HARC-Jumps LHARC-Jumps

β0 -0,0615 (0,0130) -0,1086 (0,0125) -0,3916 (0,0474) -0,0670 (0,0260) -0,3658 (0,0552)
β1 0,3877 (0,0195) 0,4020 (0,0189) 0,2763 (0,0199) 0,4047 (0,0189) 0,2799 (0,0199)
β2 0,1670 (0,0211) 0,3537 (0,0317) 0,3257 (0,0336) 0,3452 (0,0318) 0,3218 (0,0335)
β3 0,0693 (0,0212) 0,1735 (0,0314) 0,2029 (0,0372) 0,1691 (0,0331) 0,1891 (0,0387)
β4 0,0902 (0,0213) - - -0,2374 (0,0152) -0,0886 (0,1554) 0,0009 (0,1477)
β5 0,0831 (0,0213) - - -0,1962 (0,0422) -0,0828 (0,3146) -0,1692 (0,2987)
β6 0,0332 (0,0213) - - -0,0840 (0,0907) 0,1147 (0,6055) 0,4391 (0,5776)
β7 0,0567 (0,0210) - - - - - - -0,2349 (0,0152)
β8 0,0316 (0,0195) - - - - - - -0,1914 (0,0422)
β9 - - - - - - - - -0,0862 (0,0911)

Obs. 2494 2494 2494 2494 2494
R2 0,6463 0,6444 0,6744 0,6459 0,6752
Adj. R2 0,6452 0,6439 0,6736 0,6450 0,6740

for the aggregate leverage variables are negatives (as expected) and significant. Moreover, the

predictive power increases adding the cascade structure for the leverage regressors.

Table 1.4: Estimation of models based on high frequency data: HAR-CV-JV,LHAR-CV-JV,
HAR-C-J, LHAR-C-J. The coefficients refer to models presented in Section 1.2.2. Standard er-
rors are in parenthesis.

Parameter HAR-CV-JV LHAR-CV-JV HAR-C-J LHAR-C-J

β0 -0,0666 (0,0244) -0,3671 (0,0549) -0,0482 (0,0182) -0,3225 (0,0512)
β1 0,4040 (0,0188) 0,2792 (0,0198) 0,4085 (0,0185) 0,2906 (0,0195)
β2 0,3450 (0,0317) 0,3219 (0,0334) 0,3115 (0,0310) 0,2942 (0,0327)
β3 0,1711 (0,0327) 0,1902 (0,0385) 0,1942 (0,0313) 0,2153 (0,0371)
β4 -0,0938 (0,1545) 0,0059 (0,1468) -0,1345 (0,1004) -0,1242 (0,0954)
β5 -0,0676 (0,3115) -0,1511 (0,2958) 0,4000 (0,1733) 0,2607 (0,1649)
β6 0,0435 (0,5948) 0,4172 (0,5686) -0,4836 (0,2960) -0,2292 (0,2827)
β7 - - -0,2351 (0,0152) - - -0,2310 (0,0151)
β8 - - -0,1909 (0,0422) - - -0,1888 (0,0419)
β9 - - -0,0869 (0,0913) - - -0,0604 (0,0908)

Obs. 2494 2494 2494 2494
R2 0,6458 0,6752 0,6497 0,6781
Adj. R2 0,6450 0,6740 0,6489 0,6769
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This finding confirms the different reaction of daily volatility to negative returns. The es-

timates of the forecasting models based on the Range estimator are reported in Table 1.5. The

coefficients of the HAR specification are statistically significant; these results imply a hetero-

geneous structure also for RA volatility measure. The highest predictive power is recorded for

the L-HAR model. Indeed also, in this case, the heterogenous structure in the leverage effect

has an important role in predicting future volatility.

Table 1.5: Estimation of models based on Range estimator: AR(8), HAR, L-HAR. The coeffi-
cients refer to models presented in Section 1.2.2. Standard errors are in parenthesis.

Parameter AR(8) HAR L-HAR

β0 -0,0937 (0,0212) -0,2694 (0,0194) -0,8699 (0,0724)
β1 0,1094 (0,0204) 0,0993 (0,0205) -0,0455 (0,0224)
β2 0,2054 (0,0205) 0,4580 (0,0422) 0,2970 (0,0484)
β3 0,1212 (0,0209) 0,3255 (0,0463) 0,3486 (0,0566)
β4 0,0918 (0,0209) - - -0,3069 (0,0260)
β5 0,1002 (0,0209) - - -0,4060 (0,0707)
β6 0,0791 (0,0209) - - -0,4148 (0,1479)
β7 0,0573 (0,0205) - - - -
β8 0,0938 (0,0204) - - - -
β9 - - - - - -

Obs. 2494 2494 2494
R2̂ 0,3964 0,3914 0,4337
Adj. R2̂ 0,3945 0,3907 0,4323

1.4.2 VaR accuracy results

To assess the model’s capability of predicting future volatility, I report the results of the Ku-

piec (1995) and the Christoffersen (1998) tests described in Section 1.3. Both tests address the

accuracy of VaR models and their results interpretation give insights into volatility models use-

fulness to risk managers and supervisory authorities. The tests are computed for both models

based on HF data and on daily data. In evaluating models performance, the available sample

is divided into two subsamples. The in-sample period is equal to 1677 observation, around 2/3

of the total sample, while the out-of-sample period is around 1/3 of the total sample, equal to

839 observations. A rolling window procedure is used to implement the backtesting proce-

dure and, in turn, to choose among different specifications. After estimating the alternative
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VaR models, the one-day-ahead VaR estimate is computing using the in-sample period. Then

the in-sample period is moved forward by one period and the estimation is run again. This

procedure is repeated step by step for the remaining 839 days, until the end of the sample. For

both tests the expected number of exceedances is chosen equal to 5% and 1% level22. Table

1.6 and Table 1.7 shows the VaR accuracy results at both 5% and 1% level, respectively, for all

models presented in Section 1.2.2 and Section 1.2.3. The economic value per se of the HF-data

forecasting models is assessed looking at the first part of Table 1.6 and Table 1.7: All mod-

els that allow for explicit jumps and leverage components do not reject the null at 1% while

LHAR-C-J (jumps specified according to Corsi et al., 2010) is the only model that does not re-

ject the null conditional coverage at both αs level. In fact, for this model, the average number

of violations for the VaR at 5% level is the closest to the true probability of occurrence of an

exception over one day.

Instead, looking at the accuracy of daily data models, GARCH-t and Beta-t-GARCH do not

reject the null of conditional coverage at 5%, while all models pass the LCC test at 1% level.

Comparing this last result with the accuracy of the LHAR-C-J model, both GARCH-t and Beta-

t-GARCH provide an average number of violations closer to the theoretical one. AR(8) pro-

vides accurate VaR measures if the Range estimator is used to proxy the latent volatility. Even

if the statistical significance of all βs parameters in both Range HAR and L-HAR models give

insight on the possibility to extend the heterogeneous structure to such forecasting models (see

Table 1.5), these models do not pass accuracy tests at both considered level.

Indeed, the VaR forecasts according to both LUC and LCC are more accurate for daily data than

HF-data models.

Furthermore, allowing for an explicit jump component improves over HF-based VaR per-

formance at 1% level. No matter what the jump identification strategy is chosen, all models

(HARC-Jumps, HAR-CV-JV, and HAR-C-J) do not reject the null of unconditional and con-

ditional coverage at 1% significance level. At odds, the null is rejected for VaR computed at

5% level. For what concerns daily-data models, accounting for an explicit jump component

(GARJI, ARJI) or supposing a fat-tails distribution for log-returns gives the same VaR accu-

racy at 1% in terms of LUC and LCC. Allowing for an explicit jump factor in the conditional

log-returns distribution provides more accurate VaR measure, in addition to important infor-

22Both tests are also implemented to 10% level and the results are shown in the A.1. The quantile required by
Basel accords is 1%. Financial institutions, recently, has implemented stress tests which require VaR forecasts for
level smaller than 1%.
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Table 1.6: VaR accurancy at 5%. The first column shows the model chosen in order to compute
the VaR forecasts. H is the average number of violations computed for each model. VaR is the
average VaR forecasts. LRUC, LRCC and LRIND represent the pvalue associated to the Kupiec
(1995) and Christoffersen (1998) tests. All tests are evaluated at 1% significance level.

Model H VaR LRUC LRIND LRCC

AR(8) 0.074 -1.276 0.003 0.493 0.009

HAR 0.075 -1.267 0.002 0.134 0.002

L-HAR 0.073 -1.268 0.004 0.096 0.004

HARC-Jumps 0.076 -1.261 0.001 0.597 0.004

LHARC-Jumps 0.074 -1.266 0.003 0.114 0.003

HAR-CV-JV 0.076 -1.260 0.001 0.597 0.004

LHAR-CV-JV 0.074 -1.265 0.003 0.114 0.003

HAR-C-J 0.075 -1.257 0.002 0.544 0.006

LHAR-C-J 0.072 -1.261 0.007 0.399 0.018

GARJI 0.029 -1.646 0.002 0.030 0.001

ARGJI 0.024 -1.673 0.000 0.087 0.000

GARCH-t 0.032 -2.221 0.012 0.279 0.023

Beta-t-GARCH 0.032 -2.195 0.012 0.279 0.023

Range AR(8) 0.070 -1.255 0.010 0.664 0.034

Range HAR 0.075 -1.233 0.002 0.055 0.001

Range L-HAR 0.098 -1.135 0.000 0.453 0.000

mation about the market response to outside news.

Another focus of this paper is represented by the leverage effect. Looking at Table 1.6 and

Table 1.7 , leverage effect has an important role in improving volatility forecasts and, in turn,

VaR accuracy. In fact, at least for daily data and HF-data, models that allow for an asymmetric

volatility response to price movements, do not reject the null of conditional coverage, passing

both Kupiec (1995) and Christoffersen (1998) tests at 1% level. Surprisingly, L-HAR model at

1% level generates the same proportion of hits (13%) of LHAR-CV-JV and LHARC-Jumps, in-

volving an equal value for the LCC statistic. This means that adding jumps as an explanatory

variable in the forecasting volatility model does not improve over VaR accuracy if a leverage

component is considered.

A slightly different result is registered for the HAR-C-J and the L-HAR-C-J models, under-

lying a superior ability of jump identification strategy proposed by Corsi et al. (2010).
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Table 1.7: VaR accurancy at 1%. The first column shows the model chosen in order to compute
the VaR forecasts. H is the average number of violations computed for each model. VaR is the
average VaR forecasts. LRUC, LRCC and LRIND represent the pvalue associated to the Kupiec
(1995) and Christoffersen (1998) tests. All tests are evaluated at 1% significance level.

Model H VaR LRUC LRIND LRCC

AR(8) 0.017 -1.805 0.075 0.490 0.162

HAR 0.019 -1.791 0.019 0.034 0.007

L-HAR 0.013 -1.794 0.385 0.129 0.217

HARC-Jumps 0.018 -1.783 0.039 0.025 0.010

LHARC-Jumps 0.013 -1.790 0.385 0.129 0.217

HAR-CV-JV 0.018 -1.782 0.039 0.025 0.010

LHAR-CV-JV 0.013 -1.790 0.385 0.129 0.217

HAR-C-J 0.017 -1.778 0.075 0.019 0.013

LHAR-C-J 0.015 -1.783 0.138 0.191 0.142

GARJI 0.004 -2.423 0.031 0.883 0.098

ARGJI 0.002 -2.486 0.008 0.922 0.029

GARCH-t 0.008 -3.449 0.622 0.731 0.835

Beta-t-GARCH 0.010 -3.409 0.894 0.695 0.918

Range AR(8) 0.020 -1.775 0.009 0.350 0.021

Range HAR 0.023 -1.744 0.002 0.070 0.001

Range L-HAR 0.029 -1.606 0.000 0.180 0.000

Summing up, daily-data models are preferred to HF-data models when the VaR is required at

5% level23. At 1% VaR level, all daily data models pass the Kupiec (1995) and the Christoffersen

(1998) tests, at odd of HF-data models. For this data category, only the more sophisticated

volatility forecasting models give accurate VaR forecasts. Finally, both jumps and leverage

effect are important factors in order to obtain reliable VaR measures.

1.5 Conclusion

This paper assesses the economic value of different forecasting volatility models, in terms

of informational content embedded in the HF observations and daily data. In order to do so,

23From Table A.1 in the A.1 only the AR(8) model passes all accuracy tests. This result can be interpreted in favor
of more sophisticated forecasting models when the α level required is less conservative.
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I compare the performance of HF-data and daily data models in a VaR framework. Two key

assumptions are introduced: jumps in price and leverage effect in volatility dynamics.

Specifically, I consider various specifications of HF-data models for volatility forecast, which

differs along three main dimensions: different time-horizons for investors, separation of con-

tinuous and discontinuous volatility components and, finally, a cascade dynamic for the lever-

age effect. I also consider different variants of the daily data models, in form of GARJI models

either with or without an asymmetric effect of news on volatility, as well as in form of two

fat-tails models, namely the GARCH-t and the Beta-t GARCH models. All these models are

compared with a correspondent and equivalent model, based on the Range volatility measure;

the latter is expected to estimate a level of volatility which is intermediate with respect to those

measured by HF-data and daily data models. This analysis highlights important issues. First,

it stresses the importance of the sampling frequency for data needed in economic applications

such as the VaR measurement. Second, it emphasizes the strict relationship between VaR mea-

sures and the type of model used to forecast volatility. In sum, daily-data models are preferred

to HF-data models at 5% and 1% VaR level.

The accuracy of the VaR measure significantly improves when introducing both an explicit

jump component and a fat-tails distribution in forecasting volatility models. Specifically, in-

dependently from the data frequency, allowing for jumps in price (or providing fat-tails) and

leverage effects translates in more accurate VaR measure. However, introducing jumps allows

risk managers to have relevant information on the market reaction to outside news.
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Appendix A

Additional Results of Chapter 1

A.1 VaR accurancy at 10% level

Table A.1: VaR accurancy at 10% level. The first column shows the model chosen in order to
compute the VaR forecasts. H is the average number of violations computed for each model.
VaR is the average VaR forecasts. LRUC, LRCC and LRIND represent the pvalue associated to
the Kupiec (1995) and Christoffersen (1998) tests. All tests are evaluated at 1% significance
level.

Model H VaR LRUC LRIND LRCC

AR(8) 0.132 -1.276 0.003 0.670 0.010
HAR 0.139 -1.267 0.000 0.817 0.001
L-HAR 0.136 -1.268 0.001 0.881 0.004
HARC-Jumps 0.142 -1.261 0.000 0.945 0.001
LHARC-Jumps 0.138 -1.266 0.000 0.987 0.002
HAR-CV-JV 0.142 -1.260 0.000 0.726 0.001
LHAR-CV-JV 0.137 -1.265 0.001 0.949 0.003
HAR-C-J 0.147 -1.257 0.000 0.979 0.000
LHAR-C-J 0.141 -1.261 0.000 0.913 0.001

GARJI 0.070 -1.646 0.003 0.165 0.004
ARGJI 0.068 -1.673 0.001 0.279 0.003
GARCH-t 0.052 -2.221 0.000 0.029 0.000
Beta-t-GARCH 0.052 -2.195 0.000 0.029 0.000

Range AR(8) 0.143 -1.255 0.000 0.559 0.000
Range HAR 0.145 -1.233 0.000 0.621 0.000
Range L-HAR 0.166 -1.135 0.000 0.439 0.000
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Chapter 2

Option Pricing with High Frequency

Estimates of Continuous and

Discontinuous Volatility Components

Building on Majewski et al. (2015), I propose an affine discrete-time model based on high

frequency measure which is characterized by a multi-factor volatility specification, labeled

VARG-J model. The latent volatility process is modeled as the sum of two independent fac-

tors: a diffusive and a jump one. The former involves small changes while the latter allows

volatility to experience periods of extreme movements. The estimation under historical mea-

sure is done via Extended Kalman Filter. This strategy allows to filter out both volatility factors

introducing a measurement equation that relates the Realized Volatility (RV) to latent volatility.

In this way it is possible to take into account three RV-related problems: microstructure noise,

measurement errors and the overnight effect. The change of measure is performed adopting

an exponentially affine stochastic discount factor which preserves all the analytical results in

order to obtain closed-form option pricing formula. An empirical analysis of S&P 500 index

options show that this model makes out-of-the-money and in-the-money options more expen-

sive proving superior ability to capture the volatility smile with respect to some benchmark

models. A superior performance is registered also for at-the-money options.

JEL-Classification: C13, G12, G13

Keywords: Volatility Jumps, ARG-Zero, Realized Volatility, High Frequency, Option Pricing
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2.1 Introduction

The specification of the volatility1 dynamics of the underlying asset represents a key point

in option pricing. Since the stock market crash on October 19, 1987, extraordinary deviations of

stock index option prices from the benchmark Black-Scholes (BS henceforth) model have been

registered. According to the BS assumptions, all option prices on the same underlying secu-

rity with different expiration date and different exercise prices should have the same implied

volatility. On the contrary, looking at financial data, implied volatilities computed on traded

options change across various strike prices, displaying a U-shaped curve 2.

Attempts in the financial literature to reconcile the theory with the data have mostly centered

around two approaches: jump diffusion model (see for example Merton, 1976,Kou, 2002) and

stochastic volatility model (see for example Duan et al., 1995, Heston, 1993 and Heston and

Nandi, 2000). In the former stock prices are allowed to jump, i.e. the data generating process

for asset prices features discontinuities in its trajectories. Asset prices, being observable quan-

tities, signal the presence and magnitude of jumps, providing a simplified estimation for such

model. On the contrary, the estimation of stochastic volatility model is more challenging since

volatility is latent and unobservable.

Recently, the literature has mainly focused on models that incorporate both stochastic volatility

and jumps in returns since they are able to generate fat tails in the return distribution. Bakshi

et al. (1997) compare competing option pricing models in order to understand how each model

characteristic improves option pricing. They find that a model with stochastic volatility and

random jumps in price represents a significant alternative to BS model but it requires highly

implausible levels of volatility variation. Bates (2000) examines two possible explanations for

the deviations implicit in option prices since the crash of 1987. The two competing hypothesis

are stochastic volatility that incorporates leverage effects (i.e. time-varying volatility inversely

related to market returns) and stochastic volatility with jumps in price (i.e. crash fear). Bates

(2000) presents strong evidence against the model with both stochastic volatility and jumps

since, even if the square root diffusion hypothesis guarantees many desirable features, it can-

not account for the large implicit volatility shocks observed in the S&P 500 options market after

1I use the term volatility for both measures of variance and standard deviation. It is clear from the contest to
which I refer to.

2It is demonstrated that excess of kurtosis (skewness) in the underlying asset return distribution is the main
source of volatility smile (smirk) in option prices. Allowing for fatter tails makes extreme observations more likely
than the value predicted by the BS model. The consequence is that the value of away-from-the-money options
increases relative to at-the-money options.
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the 1987 crash. Pan (2002) sheds some light on how various types of uncertainty, i.e. volatil-

ity and jump risks, are priced in the financial market. The author underlines the stochastic

volatility with jumps in price misspecification: the volatility of volatility cannot increase fast

enough during volatile markets. Therefore, both stochastic volatility and jumps in price do

not generate the level of kurtosis (skewness) implied by the volatility smile (smirk) observed

in the data.

Adding discontinuities (or jumps) in the stochastic volatility process, represents a possible so-

lution to this issue, providing the so-called ”double-jump” specification. Duffie et al. (2000)

provide jumps in volatility as the explanation for the high volatility of volatility in the stochas-

tic volatility model with jumps only in price. Moreover, the authors suggest that jumps in

volatility may attenuate the overpricing of out-of-the-money call options. Eraker et al. (2003)

provide empirical evidence supporting the presence and the importance of jumps in volatil-

ity. Jumps in volatility reduce the misspecification of stochastic volatility model with jumps

in price and they play an important role in generating rapid bursts in volatility. Furthermore,

models with jumps in volatility result in a significant increase in implied volatility for deep-in-

the-money or deep-out-of-money options. Besides the cross-sectional impact on option prices,

an important issue is related to the type of changes through which the volatility evolves over

time.

Traditionally, stochastic volatility models have assumed that the spot variance is continuous.

Todorov and Tauchen (2011) make nonparametric inference regarding the activity level of stock

market volatility and find that market volatility is a very vibrant process, i.e. it involves many

small changes as well as occasional big moves. The presence of big moves justifies the use of

jumps in volatility modeling. More recenty, Caporin et al. (2015) focus on the estimation of the

volatility jump component in a discrete time setting in order to understand if the introduction

of discontinuities in the volatility process could be an interesting way for describing rapid and

large volatility increments. They find a positive probability of jumps in volatility and, espe-

cially when the level of volatility is high, the jump component represents a relevant part of the

estimated conditional volatility.

Thanks to the availability of HF data, Christensen et al. (2014) examine the price evolution at

the finest tick-by-tick resolution and show that the traditional measures of jump variation (An-

dersen et al., 2007, Corsi et al., 2010) tend to erroneously assign a burst of volatility to jumps

in price. In particular, jumps in price account for a very small proportion, about 1%, of the

quadratic price variation. Moreover, Christensen et al. (2014) provide a detailed selection of
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literature results reporting estimates of the jump variation component, expressed as a fraction

of total return variation. The results can be summarized as follows: the jump component de-

creases in magnitude as the sampling frequency increases. In tick-by-tick data, most of the

jumps identified at lower frequency vanish and what is left are high volatility episodes. The

consequence is that what a stochastic volatility model with jumps in price identifies as genuine

price jumps are periods of heightened volatility.

I contribute to this strand of the financial econometrics literature by proposing an affine discrete-

time model based on a HF volatility measure, labeled as VARG-J, which is characterized by a

multifactor volatility specification. In the VARG-J model volatility experiences periods of ex-

treme movements through a jump factor modeled as an Autoregressive Gamma Zero (ARG0)

process. Surprisingly, to the best of my knowledge, this paper is the first attempt at introduc-

ing discontinuities in the volatility dynamics in an option pricing framework.

This work is mostly related to the class of Realized Volatility (RV) option pricing models, intro-

duced by Corsi et al. (2013) . Corsi et al. (2013) propose the HARGL-RV model in which the RV

dynamics follows the HAR process by Corsi (2009) with a daily binary variable that accounts

for leverage effect. Majewski et al. (2015) introduce a heterogeneous parabolic structure for

leverage in the HARGL-RV, defining the LHARG-RV model. More recently, Alitab et al. (2015)

design a more advanced version, labeled as J-LHARG, where the volatility is positively af-

fected by price jumps. All these RV-based models focus on continuous time stochastic volatil-

ity and assume that volatility is perfectly observable through an intra-day volatility measure.

From an econometric perspective, the introduction of volatility jumps requires an additional

latent state variable.

In this work, the latent volatility is equal to the sum of two independent random variables

which account for continuous and discontinuous factors of volatility. The continuous com-

ponent is modeled as an ARG process with an autoregressive structure for the non-central

parameter. The jump factor is modeled as an ARG0 process obtained by setting to zero the

shape parameter. Monfort et al. (2014b) build this process in order to explain the zero lower

bound (ZLB) on bond yield which has become a common situation in several countries after

the 2008 financial crisis. The point-mass at zero that characterizes the conditional distribution

given the past of the Zero-ARG process can be exploited in order to describe the dynamics of

the volatility jump component.

In order to obtain the complete specification of the VARG-J model under the P measure, I de-

rive the analytical formula of the Moment Generating Function (MGF) of the log-returns. Fol-
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lowing the approach of Majewski et al. (2015), the change of measure is performed adopting a

stochastic discount factor (SDF) which incorporates risk premia associated with the sources of

risk concerning the two volatility factors, beyond the risk related to shocks in returns. Thanks

to the SDF exponential affine-form, I prove that the risk neutral (Q) dynamics is from the same

family as the historical P dynamics, namely the Q model is still a VARG-J model. Furthermore,

thanks to the recursive expression for the MGF, there is a one-to-one mapping between the set

of parameters under P and the set of parameters under Q. A great advantage of VARG-J is

represented by the model estimation. I estimate the P parameters via pseudo maximum like-

lihood with the Extended Kalman Filter. This estimation procedure allows to filter out both

volatility factors, by exploring information on the latent volatility through the realized volatil-

ity estimator and, at the same time, by controlling for measurement errors and overnight ef-

fects. To be more precise, I assume that the total volatility is approssimated by the ex-post RV

volatility estimator (by Andersen and Bollerslev, 1998), computed at 5 minutes frequency, as

suggested by Liu et al. (2015) but I introduce a measurement equation for the total volatility

in order to correct the RV bias due to measurement errors and overnight effects. The analysis

under P is done using spot price of S&P 500 index sampled at 5 minutes frequency from 4

Jan. 1996 to 30 Dec. 2005. I empirically assess the option pricing performance of the model

using Plain Vanilla Call options written on S&P500 Index for the same time span. The results

clearly illustrates the important contribution of the jump factor in the pricing performance of

the S&P500 Index options and the economic significance of the volatility jump risk premia.

The paper is organized as follows. Section 2.2 introduces the model under both the histori-

cal and the risk-neutral probability measure. Section 2.3 discusses the estimation under the

historical measure and the competing models. Section 2.4 discusses the calibration under the

risk-neutral measure and the pricing performance. Section 2.5 concludes.

2.2 The VARG-J Model

2.2.1 The asset retun process

Given the result reported in Christensen et al. (2014), I assume a price process free of jumps.

Specifically, I consider the following discrete-time stochastic volatility model for daily log-

returns:

yt+1 := log

(
St+1

St

)
= ry

t+1 + λy ft+1 + zt+1 (2.1)
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where ry
t+1 denotes the risk-free rate at time t + 1, assumed to be exogenous, and where λy

is the market price of risk. Moreover, the latent factor ft+1 denotes the true volatility and the

innovation, zt+1, represents a heteroskedastic Gaussian Innovation:

zt+1 =
√

ft+1ε
y
t+1

ε
y
t+1 ∼ IIDN (0, 1)

(2.2)

This framework allows volatility to experience periods of extreme movements in addition to

the diffusive ones, thanks to the multifactor volatility specification. More precisely, I assume

that the true volatility is given by the sum of two independent factors3:

ft+1 = f1,t+1 + f2,t+1. (2.3)

In (2.3) f1,t+1 is the diffusive or continuous volatility factor while f2,t+1 is a burst factor of the

volatility dynamics (henceforth volatility jump). Given the information set at time t, denoted

Ft, the former follows an Extended Autoregressive Gamma (EARG) process:

f1,t+1|Ft ∼ γν(θ1t, µ1) (2.4)

This process is coherent with strictly positive volatitiliy values, it can describe the dynam-

ics of volatility process and is very tractable from an analytical point of view. The volatility

jump component, f2,t+1, conditionally on Ft and f1,t+1, evolves according to an Autoregres-

sive Gamma Zero (ARG0) process:

f2,t+1| f1,t+1,Ft ∼ γ0(θ2t, µ2) (2.5)

This process is, instead, consistent with non-negative volatility jumps and is able to accomo-

date extended periods of zero or close-to-zero values. These features make the ARG0 a suitable

process to model the volatility jump factor. Furthermore, the ARG0 is a particular case of the

Extended ARG of Monfort et al. (2014a) and it is obtained by extending it to a zero shape

parameters. Past information enters both volatility factor dynamics, through the non-central

3In this paper, I focus my attention on the application of the simplest version of the VARG-J model: both non-
central parameters have an autoregressive structure of order one. I plan to relax this specification and allow for a
richer characterization of volatility in future work.
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parameters:

θt =

 θ1t

θ2t

 =

 d1 + β1 f1,t

d2 + β2 f2,t

 (2.6)

The dynamics in Equation (2.1) differs from that employed by Corsi et al. (2013) and Majewski

et al. (2015) since I do not assume that the spot volatility (the total ft) coincides with some real-

ized measure, i.e. an estimator of asset return volatility constructed using high frequency data.

In particular, realized volatility aims at estimating the quadratic variation (or the integrated

variance in the case of jumps in price) of the price process over a some time interval. Consis-

tently with the absence of jumps in price, the quadratic variation of the log-price process over

period t + 1 is:

QVt+1 = p lim
n→∞

n

∑
j=1

r2
t+ j

n

rt+ j
n
= pt+ j

n
− pt+ j−1

n

(2.7)

wherept+j/n is the log-price at the end of the jth interval on day t and n is the number of

the observations available at day t recorded at frequency 1
n . The simplest realized variance

estimator is the empirical analog of QV, which is:

RVt+1 =
n

∑
j=1

r2
t+ j

n
. (2.8)

Realized measures are used by practitioners because they contain information on the true la-

tent volatility process. These estimators, however, are affected by microstructure noise, mea-

surement errors and overnight effects.

The first contaminates the price measurement and is due, among others, to price discreteness

and rounding, to the properties of the trading mechanism, to the existence of bid-ask spreads

and to data recording mistakes. The consequence is that microstructure noise induces serial

autocorrelation in the observed returns, which biases the realized measure computed at high

frequency. The literature offers a wide range of alternative realized measures in order to cap-

ture the microstructure noise effect on high frequency returns. Liu et al. (2015) compare a large

collection of realized measures across a range of assets and conclude that it is very rare to find

a realized measure that significantly outperforms 5-minutes RV estimator. Moreover the au-

thors, in a panel investigation, explain differences in performace, in terms of microstructure

noise and market conditons and find that the gains from using a more sophisticated realized
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measure rather that RV 5-minutes fall when the microstructure noise is large and in periods of

high volatility.

In addiction to microstructure noise, RV estimators are affected by a discretization error due to

the unavailability of a continuous price record and a downward bias due to the unavailability

of overnight intraday returns.

Therefore, in this paper, I introduce the following measurement equation which relates the

observed 5-minutes RV (hencefoth RV) to the latent process ft:

RVt+1 = η0 + η1 ft+1 + εrv
t+1, εrv

t+1 ∼ IIDN (0, σ2) (2.9)

where εrv
t+1 is independent from ε

y
t+1 in equation (2.1). According to equation (2.9), εrv

t+1 models

the measurement erros in RV while η1 corrects the RV bias due to the overnight effect.

Equations (2.1) and (2.4)-(2.5) completely characterise the Vector Autoregressive Gamma with

Jumps (VARG-J) model. A great advantage of the VARGJ model is that it satisfies the affine

property. The following propositions are directly derived from the theoretical results presented

in Majewski et al. (2015) and are proposed according to the same scheme.

Proposition 1. Under P, the MGF for VARG-J model has the following form

ϕP
t,T,z = EP[ezyt,T |Ft] = exp

(
at + b′tft

)
(2.10)

where

as = as+1 + zrs − νW1,s+1 + d1V1,s+1 + d2V2,s+1 (2.11)

b′s = (V1,s+1, V2,s+1)β (2.12)

(2.13)

with

xh,s+1 = xh(z, bs+1) = b′s+1 + zλ +
z2

2
, h = 1, 2

subject to the initial conditions:

aT = 0, b′T = 0
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The functions V and W are defined as follows:

Vh,s+1 = Vh(xh,s+1, µh) =
xh,s+1µh

1− xh,s+1µh
, h = 1, 2

W1,s+1 = W1(x1,s+1, µ1) = log [1− x1,s+1µ1]

Proof. See B.1

The parameters under historical measure (P) are given by

ψ = [λ, ν, µ1, µ2, d1, d2, β1, β2, σ2] (2.14)

Apart from λ, all of them are assumed to be nonnegative. The estimation startegy used to

estimate the vector ψ is presented in the Section 2.3.1

2.2.2 Risk-neutral dynamics

In the previous section, I characterized the behaviour of the underlying asset under the P

measure. In this section, I introduce an assumption on the Stochastic Discount Factor (SDF)

that allows to transform the distribution under P to a distribution under the risk neutral (Q)

probability measure and, therefore, to compute option prices. In specifying the SDF, I follow

Majewski et al. (2015):4

Mt,t+1 =
exp(−δ2yt+1 − δ11 f1,t+1 − δ12 f2,t+1)

EP[exp(−δ2yt+1 − δ11 f1,t+1 − δ12 f2,t+1)|Ft]
(2.15)

This SDF is a very flexible specification since it identifies two risk premia, i.e. δ11 and δ12 in

addition to the usual equity premium, i.e. δ2.

More precisely, δ11 compensates for the continuous volatility while δ12 compensates for the

discontinuous source of risk5. Also in this Section, the propositions are directly derived from

the theoretical results presented in Majewski et al. (2015) and are proposed according to the

same scheme.

4Corsi et al. (2013) introduce a SDF involving both the log-return and Realized Volatility, applying a modified
version of the standar discrete-time exponential affine SDF applied in Gourieroux and Monfort (2007). Majewski
et al. (2015) present a more general and flexible version.

5Many authors (see Gagliardini et al., 2011,Christoffersen et al., 2013, Corsi et al., 2013 and Majewski et al., 2015)
recognized the importance of variance-dependent risk premia in SDF in reconciling the time series properties of
asset returns with the cross-section of option prices.
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Proposition 2. Under the model specification in (2.1) and (2.4)-(2.5) with the SDF specified as in

(2.15), the VARG-J satisfies the no-arbitrage condition if and only if

δ2 = λ +
1
2

(2.16)

Proof. See B.2

Given the result in Preposition 2 and the market incompleteness, δ11 and δ12 are free parame-

ters to be calibrated while δ2 is considered as fixed.

The SDF in (2.15) belongs to the family of the exponential-affine factors. Thanks to this char-

acteristic, it is possible to compute analogous recursion under Q and provide a one-to-one

mapping between the set of parameters under P and the set of parameters under Q.

Proposition 3. Under the risk-neutral measure Q the latent volatility still follows a VARG-J process

with parameters

dQ
1 = d1

1−y∗1 µ1
dQ

2 = d2
1−y∗2 µ2

βQ
1 = β1

1−y∗1 µ1

βQ
2 = β2

1−y∗2 µ2
µQ

1 = µ1
1−y∗1 µ1

µQ
2 = µ2

1−y∗2 µ2

νQ = ν

where y∗h = −δ1h − δ2λ +
δ2

2
2 for h = 1, 2.

Proof. B.3

The result proved in Proposition 3 and the analytical tractability of the VARG-J process sim-

plify the computation of the risk-neutral MGF. The latter is obtained starting from the MGF

under P and substituting the parameters under P with those under Q.

Corollary 4. Under Q the MGF for the VARG-J model has the same form as in (1) with equity risk

premium

λQ = − 1
2 and dQ, βQ, µQ

1 , µQ
2 , µQ as in (2.17).

Therefore, ft is still a VARG-J process under Q measure and the two risk premia δ11andδ12 are

the only parameters to be calibrated on option prices, as explained in Section 2.4.2. Once the

value of δ11andδ12 are calibrated, all the parameters can be computed in closed-form following

the Corollary 4.
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2.3 Estimation under P and statistical properties

2.3.1 VARG-J estimation methodology

The parameters under P are estimated via pseudo-maximum likelihood with the Extended

Kalman filter. The two transition equations can be specified using the first two conditional

moments:

E( f jt+1|Ft) = µj(dj + β j f jt) + µjνj for j = 1, 2

V( f jt+1|Ft) = 2µ2
j (dj + β j f jt)) + µ2

j νj for j = 1, 2
(2.17)

Clearly, ν2 is equal to zero since f2t is distributed as a γ0 as in equation (2.5). Both volatility

factors are stationary if µjβ j < 1. To this purpose, I formulate the VARG-J model in state space

form. For the measurement equations, I consider two type of observables: the return and the

RV. The first measurement equation is directly obtained from the daily log-returns dynam-

ics. The second measurement equation relates the observed RV to the latent ft according to

equation (2.9). Specifically, the transition equations are directly derived from Equation (2.17):

 f1,t+1

f2,t+1

 =

µ1(ν + d1)

µ2d2

+

µ1β1 0

0 µ2β2

 f1,t

f2,t

+

v1
t+1

v2
t+1


Qt =

√µ2
1(ν + 2d1 + 2β1 f1,t) 0

0
√

µ2
2(2d2 + 2β2 f2,t)

 (2.18)

while the two measurement equations read:

 yt

RVt

 =

ry
t

η0

+

λy λy

η1 η1

 f1,t

f2,t

+

w1
t

w2
t


Rt =

√ f1,t + f2,t 0

0 σ

 (2.19)

To estimate the model, I use second order pseudo-maximum likelihood with the Extended

Kalman filter, since both latent factors and the returns in the first measurement equation are

conditionally heteroskedastic. In order to do so, the first two conditional moments are correctly

specified and vt+1 is approximated by a bivariate uncorrelated Gaussian white noise. In par-

ticular, the true log-likelihoods derived from the conditional noncentral Gamma distributions

are replaced by the log-likelihoods obtained from Gaussian distributions.
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2.3.2 Alternative models

The VARG-J is a discrete time model in which the volatility dynamics is given by the sum

of two independent factors, i.e. diffusive and jump. The first natural alternative is represented

by the ARG model. It is obtained by setting the volatility jump factor equal to zero, namely the

true volatility involves a sequence of small increments, and by assuming that the unobservable

total variation of the log-price process is estimated by some realized volatility measure.

Specifically the discrete-time stochastic volatility model for daily log-returns is:

yt+1 = rt+1 + λ ft+1 +
√

ft+1εt+1, εt+1 ∼ IIDN (0, 1)

ft+1 = RVt+1

(2.20)

The RV measure is modeled as the autoregressive gamma process of order one by Gouriéroux

and Jasiak (2006):

RVt+1|Ft ∼ γω(α + βdRVt, θ) (2.21)

The introduction of the discontinuous factor in the volatility dynamics generates additional

persistence in the volatility process which plays an important role in explaining long-term

part of the inplied volatility (IV) surface. Thus, the second natural alternative is the HARG

model by Corsi et al. (2013). In this model the volatility jump factor is set equal to zero and

at each point in time volatility is perfectly observable. The difference with the VARG-J model

lies in the assumption on the volatility measure. In particular, the conditional mean of the RV

is modeled according the HAR specification of Corsi (2009) and RVt+1 follows a noncentral

gamma transition distribution:

RVt+1|Ft ∼ γω(α + βdRVd
t + βwRVw

t + βmRVm
t , θ) (2.22)

where

RVd
t = RVt

RVw
t =

1
4

4

∑
i=1

RVt−i

RVm
t =

1
17

21

∑
i=5

RVt−i

are the short-term (daily), medium-term (weekly) and the long-term volatility factors, respec-
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tively6.

A comparison between the ARG and the VARG-J models illustrates the importance of a mul-

tifactor specification, i.e. the addition of a volatility jump factor, in stochastic volatility option

pricing models. This comparison is possibly unfair since the latent volatility is not perfectly

observed in the VARG-J, at odds with the ARG model. Majewski et al. (2015) concludes that

the use of RV helps in pricing short term options, especially at-the-money. On the contrary

other factors, as the persistence in volatility, have a prominent impact on pricing long-term

options. Therefore, looking at the pricing performance on long-term options far from at-the-

money should give insights on the role of jumps in volatility process. Additional intuitions on

the jump volatility factor can be pbtained by comparing the VARG-J with the HARG model.

Both of them should improve on the pricing of long-term options with differences in terms of

moneyness. The reason is that both HARG and VARG-J models generate persistent volatility

dynamics but through different mechanisms. The former allows memory persistence by using

an heterogeneous structure for the RV conditional mean. In the latter model the jump volatil-

ity factor, generates persistence and bursts in the volatility process. This last feature should

have consequences on pricing deep-in-the-money and deep-out-of-the-money options. In this

case the comparison can be considered more balanced since, as Corsi et al. (2013) point out,

the heterogeneous structure helps in smoothing the noise affecting the RV measure. Thanks

to the use of the RV as a proxy for the latent volatility process, the parameters of both ARG

and HARG models are stimated via the Maximum Likelihood Estimator (MLE) on intra-day

historical data, using the available formula of the conditional transition density provided by

Gouriéroux and Jasiak (2006). As shown in Corsi et al. (2013), the market price of risk λ in the

log return equation is estimated rewriting the equation (2.1) as:

yt+1 − rt+1√
RVt+1

= λ
√

RVt+1 + εt+1 with εt+1 ∼ IIDN (0, 1) (2.23)

and applying the ordinary least squares (OLS).

2.3.3 Results

In this Section I report the estimation results for the VARG-J model and for both com-

petiting models7. Daily return and RV time series are obtained from spot prices of the S&P

6Clearly, the ARG model can be nested in the HARG model by setting βw = βm = 0.
7For identification purpose the diffusive-intercept coefficients (α and d1) are imposed equal to zero in all models.
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500 index sampled at 5 minutes frequency for a total of 2517 daily observations from January

5,1996 to December 30, 2005. Since the daily risk free rate is assumed to be exogenous, I proxy

it with the FED Fund rate for the same time period of log-returns.

Table 2.1 shows the estimated parameters, and the relative standard errors for the VARGJ

Table 2.1: Estimates of parameter under the historical measure and standard errors (in paren-
thesis) for the VARG-J, ARG and HARG model. The parameters reported in the first column
are estimated via pseudo maximum likelihood with Extended Kalman filter of order two. The
parameter of both ARG and HARG models are estimated using Maximum Likelihood. The
historical data for all models are daily RV computed on 5-minutes data for the S&P 500 from
January 5,1996 to December 30, 2005.

Parameter VARG-J Parameter ARG HARG

λ -0,0010 λ 2,1368 2,1368
(0,0002) (2,8952) (2,8952)

µ1
2,93E-05

θ
1,69E-05 1,40E-05

(4,41E-06) (1,46E-09) (2,34E-09)

β1
2,74E+04

βd
3,99E+04 3,06E+04

(5,10E+03) (87,608) (1,53E+03)

µ2
0,0002

βw - 1,72E+04
(0,0001) (2,15E+03)

ν
0,8085

βm - 6,91E+03
(0,1358) (1,86E+03)

d2
5,29E-08

ω
1,5875 1,3757

(1,40E-07) (0,0084) (0,0270)

β2
4,19E+03
1,47E+03

σ
5.22e-06
(3.76e-06)

η0
7.05e-06
(1.14e-06)

η1
0,4898
(0,0514)

Persistence f1 0,8021 Log-likelihood -14997 -14772
Persistence f2 0,9431 Persistence 0,6746 0,7674

model and the alternative models presented in the Section 2.3.2. Table 2.1 also reports the

log-likelihood values for only the last family of models in order to compare their performance

According to the estimates, all VARG-J coefficients are statistically significant with the only
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exception of d2. It is important to note that d2 must be different from zero preventing the pos-

sibility that f2t = 0 becomes an absorbing state. In fact, if d2 is equal to zero once the jump

component reaches zero, it remains at zero for all the next periods. From Table 2.1, the param-

eter η1 is smaller than 1 and significant. This means that the approach presented in this paper

allows to adjust the downward bias due to overnight effect.

The sensitivity of f1,t on the conditional mean of f1,t is smaller than that of f2,t on its conditional

mean, which means that the jump factor is more persistent than the diffusive one. The ARG

and HARG models’ coefficients are all significant. The parameters of the HARG model show

a decreasing impact of the past lags on the present value of the RV, in line with the literature.

An interesting difference is in the λ estimates across the two models categories 8. For the

VARG-J model λ is negative and significant, implying that the distribution of returns is nega-

tively skewed. In this paper the conditional distribution of returns is non- Gaussian since the

volatility process is not observable. The negative sign for λ in the VARG-J model, hence, is

coherent with the argument of a risk premium related to skewness and negative tails events

(leverage effect) rather than to volatility per se. In fact, investors fear large negative drops

of their wealth induced by neagtive events, which contribute to the negative skewness of the

distribution.

The conditional distribution of log-returns is Gaussian in the (H)ARG framework, since RV

is observed at each point in time. For these models the risk premium is positive and not

significant, leading to a sligthly different interpretation. Namely, from Equation(2.23), more

volatilile stocks are more profitable. As said before, the Extended Kalman Filter estimation

strategy allows to filter out the time series of both volatility factors. Figure 2.1 shows the up-

dated9 values estimated by the Extended Kalman Filter procedure. From this figure f1t is the

diffusive volatility factor that describes the asset’s idyosincratic changes while f2,t represents

the discontinuous component which provides bursts in the volatility process.

The Extended Kalman Filter procedure allows to take into account measurement errors, i.e.

microstructure noise and overnight effects, in the RV measure. Figure 2.2 shows the RV and

the updated values for ft. The VARG-J modelbetter fits volatility changes, measured ex-post by

RV.

8Note that the risk premium estimate is the same for both ARG and HARG models since it is estimated using
the same regression formula on the same data.

9At each point in time the current value of the state variable (volatility) is updated on the basis of the observation
of the returns and RV.
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Figure 2.1: This figure shows the updated time series of the diffusive ( f1,t, green line) and the
jump ( f2,t, blue line) factors which are obtained applying the estimation procedure based on
the Extended Kalman filter. The sample consists of S&P 500 index data from January 5, 1996 to
December 30, 2005.

Figure 2.2: This figure shows the comparison between RVt (top figure) and the updated time
series of ft (bottom figure). The sample consists of S&P 500 index data from January 5, 1996 to
December 30, 2005.
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2.4 Empirical analysis under Q

2.4.1 Data and stylized facts

The option dataset consists of daily European call options written on the S&P 500 index.

The observations for the option prices range from January 5, 1996 to December 30, 2005. I only

use Wednesday options data10 yielding to a total of 30061 observations. As it is customary

in the literature (see Barone-Adesi et al., 2008, Corsi et al., 2013,Majewski et al., 2015), I filter

out options with time to maturity less than 10 days or more than 360 days, implied volatil-

ity larger than 70% or prices less that 0.05. To perform the analysis, I split the options into

different categories according to time to maturity and moneyness. Moneyness (m) is defined

as St/K, i.e. the underlying index level divided by the option strike price. A call option is

said to be deep out-of-the-money (DOTM hereafter and therein) if m≤ 0.94, OTM if 0.94 <

m≤ 0.97, ATM if 0.97 <m≤ 1.03, DITM if 1.03 <m ≤ 1.06 and ITM if m > 1.06. Using time

to maturity (T), options are classified in four categories: short maturity if T≤50, medium-short

maturity if 50 < T ≤ 90, medium-long if 90 < T ≤ 160, and long maturity if T > 160. Table 2.2

reports descriptive statistics for the options classified by the moneyness and maturity defini-

tions given above. From Panel A, the DOTM call options are heavly traded: they represent an

insurance against an increase of the underlying price. From Panel B and Panel C, it is possible

to observe that the data show a volatility smile/smirk and, in particular the volatility smirk is

pronunced for long maturity options. Hence, ITM (DITM) calls are more expensive compared

to OTM (DOTM) calls. This implies that the risk-neutral distribution of the log-return is far

from Gaussian, suggesting that a richer characterization of the volatility process is needed to

explain these features both qualitatively and quantitatively. In this paper I try to assess this

feature by increasing the excess kurtosis in the log-return distribution.

2.4.2 The calibration of risk premia

Given the parameters under P measure obtained via the procedure described in the Sec-

tion 2.3.1, the risk premia parameters in (2.15) need to be calibrated in order to derive the risk-

neutral dynamics. Specifically, δ2 is determined by the no-arbitrage condition in the Proposi-

tion 2, and δ11 and δ12 are calibrated on observed option prices. The purpose of the calibration

10The first motivation for using Wednesday data is that Wednesday is the day of the week least likely to be a
holiday. Therefore, it is less likely than other days to be affected day-of-the-week effects (see Bakshi et al., 1997,
Christoffersen et al., 2008). Moreover this procedure is customary in the literature.
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Table 2.2: Summary statististics for the S&P 500 index option data. The observations refer to
each Wednesday during the January 5, 1996 to December 30, 2005. Panel A shows the number
of option contracts sorted by moneyness and maturity. Panel B shows the average option prices
sorted by moneyness and maturity. Panel C shows the average implied volatilities sorted by
moneyness and maturity. Implied volatilities are calculated using the Black & Scholes formula.
T refers to the number of days to maturity while m represents the moneyness defined as the
underlying index level divided by the option strike price.

Moneyness T≤50 50<T≤90 90<T≤160 T>160 All

Panel A: Number of Contracts

m≤0.94 2391 2294 1496 2650 8831
0.94<m≤0.97 2246 1393 595 656 4890
0.97<m≤1 2671 1732 637 809 5849
1<m≤1.03 2169 1160 475 633 4437
1.03<m≤1.06 1240 546 274 285 2345
m>1.06 1631 853 602 623 3709
All 12348 7978 4079 5656 30061

Panel B: Average Option Prices

m≤0.94 0.9188 3.2835 6.9051 17.044 7.3858
0.94<m≤0.97 3.8515 11.450 23.346 46.767 14.145
0.97<m≤1 13.009 24.920 39.597 65.467 26.687
1<m≤1.03 29.895 42.033 55.952 81.544 43.226
1.03<m≤1.06 54.066 65.985 78.103 103.23 65.625
m>1.06 131.48 148.11 169.64 195.13 152.19
All 31.740 34.817 48.920 58.595 39.940

Panel C: Average Implied Volatility

m≤0.94 0.1726 0.1555 0.1498 0.1474 0.1568
0.94<m≤0.97 0.1378 0.1410 0.1490 0.1556 0.1425
0.97<m≤1 0.1454 0.1503 0.1593 0.1611 0.1505
1<m≤1.03 0.1594 0.1619 0.1644 0.1664 0.1616
1.03<m≤1.06 0.1800 0.1785 0.1758 0.1735 0.1784
m>1.06 0.2762 0.2312 0.2199 0.2034 0.2445
All 0.1725 0.1624 0.1650 0.1599 0.1664

is the selection of risk premia such that the model implied unconditional volatility under the

risk-neutral measure matches the unconditional risk-neutral volatility. Since it is not possible

to directly observe the latter, I follow the same strategy used in Corsi et al. (2013): the market-

observed IV is used as an instrument to be matched with the model-generated IV, since both

depend on the volatility under Q measure. The two risk premia, δ11 and δ12, are calibrated by
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minimizing the loss function which measures the distance between the model generated IV for

two options and the market IV corresponding to the same two options in the sample11:

f (δ11, δ12) =

√
1
2
[
(IVmkt

1 − IVmod
1 )2 + (IVmkt

2 − IVmod
2 )2

]
(2.24)

where IVmkt
i,t is the market IV of the option i, IVmod

i,t is the IV computed from the model, for i =

1, 2. In order to deal with the risk premia calibration for the VARG-J model, I randomly select

two ATM options from the entire sample, observed in two different days. For the competitor

models the motivation behind the calibration is the same but, since the risk premium to be

calibrated is only δ11, I select only one option from the sample. To avoid the problem of a

possible unfair comparison among models, I randomly choose one of the two options12 used

to minimize the objective function in (2.24). Then, I proceed pricing options, first mapping

the parameters of the model estimated under P into the parameters under Q according to

Proposition 3; second approximating option prices by COS method by Fang and Oosterlee

(2008) using the MGF formula in Proposition 1. Finally, I compute the relative model IVs. As

expected13, both δ11 and δ12 are negative and equal to -0,8197 and -0,2386, respectively. These

values ensure that the persistence under P is lower than the persistence under Q or, in other

words, that the investors have a lower conditional mean under the historical than under the

risk-neutral distribution.

2.4.3 Option pricing results

As is customary in the literature, I analyze the option pricing performances of each model

in terms of Root Mean Square Error on the percentage IV:

RMSEIV =

√
1
2
[
(IVmkt

1 − IVmod
1 )2 + (IVmkt

2 − IVmod
2 )2

]
(2.25)

where IVmkt
i,t is the market IV of the option i, IVmod

i,t is the IV computed from the model, for

i = 1, 2. For completness I report the performance results also for Root Mean Square Error on

11A better choice would be to explore the entire volatility surface, i.e. to use all the options in the sample, but in
this case, the calibration becomes difficult and time-demanding. For this reason, I decide to use only two options.

12I also calibrate both the ARG and HARG model on the other option and the results are the same, in terms of
pricing performance.

13Options are volatility-sensitive investments. They typically pay off in adverse states of nature, i.e. when the
marginal utility of wealth is high. This means that such investment are negative-beta and, in turn, are characterized
by negative risk premia.
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option prices:

RMSEP =

√
1
2
[
(Pmkt

1 − Pmod
1 )2 + (Pmkt

2 − Pmod
2 )2

]
(2.26)

Pmkt
i,t is the market price of the option i, Pmod

i,t is the price computed from the model, for i = 1, 2.

The former metric represents an intuitive weighting of options across strikes and maturities.

The latter gives more weigth to options with high intrinsic value (DITM) and time value

(longer maturity) but has the advantage of interpreting RMSE as $ errors. Table 2.3 reports

the global option pricing performance on S&P 500 call option from January 5, 1996 to Decem-

ber 30, 2005. The first row shows the absolute RMSEIV and the RMSEP for the VARG-J model,

while the remaining rows display the VARG-J relative performance with respect to other mod-

els. In particular, I compute the ratio between the RMSEIV (RMSEP) of the VARG-J and that of

each competiting model. A value less than one indicates an outperformance of the model set

as numerator, which for all the results presented here is the VARG-J model.

At first sight, the VARG-J model outperforms all competitors, both via RMSEIV and RMSEP.

Table 2.3: Global option pricing performance. The first row shows the implied volatility root
mean square error and the price root mean square error. RMSEIV and RMSEP are both ex-
pressed in percentage. The second and the thir rows show the RMSEIV and RMSEP of the
competitor models relative to the VARG-J. A ratio smaller than 1 indicates an outperformance
of the VARG-J model. I use the parameter estimates from Table 2.1 and S&P 500 Call options
from January 5, 1996 to December 30, 2005.

Model RMSEIV RMSEP

VARGJ 6.2924 0.6648

VARGJ/ARG 0.8661 0.5992
VARGJ/HARG 0.9649 0.6389

Specifically, looking at the RMSEIV (RMSEP), the VARG-J model improvement is about 14%

(40%) over ARG and about 4% (36%) over HARG model. In order to get a deeper understand-

ing of the VARG-J pricing performance, Table 2.4 (Table 2.5) reports the results in terms of

RMSEIV (RMSEP) disaggregated for different maturities and moneyness. Looking at Table 2.4,

Panel A shows that the VARG-J model involves some degree of underpricing for DITM call

(DOTM put) options. This is because the VARG-J model does not take into account the lever-

age effect. Consequently, the VARG-J model attaches more probability to extreme events but

is not completely able to match the smirk (negative skewness of returns) observed in the S&P
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500 options (see Table 2.2). Moreover, the largest underpricing is registered for short-time to

maturity options. This could be interpreted in favour of an option pricing model that allows

for jumps in price. This additional factor should also attenuate also the underpricing for DITM

call options. In fact, negative skewness can arise either because of negative correlation between

stock index and volatility or through negative-mean jumps in price. I leave the possibility to

allow for these feature to future research.

Panel B compares the performance of the VARG-J and ARG models. Overall, the VARG-J

model overperforms the ARG for all moneyness and maturity, with the exceptions of DOTM

short-maturity and DITM options for which the performance is quite similar between the mod-

els. The improvements on the ARG are evident especially for long-term (T>90) options. For

the reason explained in the Section 2.3.2, the measurement equation in (2.9), improves the

VARG-J pricing over ARG for short maturity options. This confirms the importance of jumps

in volatility process. The ratio between RMSEIV of VARG-J and HARG model is displayed

in Panel C of Table 2.4. The advantage provided of the volatility jump factor is strong for

long-term options: the improvement varies from about 25% to about 45%. So, allowing for

a factor that on the one hand generates persistence and, on the other hand, generates bursts

in the volatility process results in a better pricing with respect to an heterogeneous structure

for the RV conditional mean. It is interesting to note that the VARG-J model outperforms the

HARG model also for ATM options. In fact, in Corsi et al. (2013) and in Majewski et al. (2015)

the pricing performance for all HAR-RV specifications is similar for this region. The reason-

able explanation for the VARG-J underperformance in Panel C of Table 2.4 is that in order

to explain the volatility smirk for short-time options an option pricing model should include

also a transient price jump component. In fact, if prices jump, the RV estimator measures also

price-jumps contribution to QV, inflating the estimated historical volatility over short time.

Therefore, adding jumps in volatility generates volatility bursts, resulting in a fatter-tailed re-

turn distribution, making OTM and ITM options more expensive, especially long-maturity,

and closing the gap between implied volatility and that directly observed from the market. All

these results are in line with those reported in Table 2.5.

I now provide some more insight into the improved performance by analyzing the differ-

ences across models along two dimensions: the spot volatility level and the term structure.

The VARG-J model should better match the volatility features in periods of higher volatility.

For this reason I study the differences across models in both dimensions in different volatil-

ity regimes. In order to do so, I study at-the-money options in three different sample periods
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Table 2.4: Option pricing performance via the percentage implied volatility root mean square
error (RMSEIV). The Panel A shows the RMSEIV of the VARG-J model sorted by moneyness
and maturity. Panel B shows the RMSEIV of the ARG model relative to the VARG-J sorted
by moneyness and maturity. Panel C shows the RMSEIV of the HARG model relative to the
VARG-J sorted by moneyness and maturity. A ratio smaller than 1 indicates an outperformance
of the VARG-J model. I use the parameter estimates from Table 2.1 and S&P 500 Call options
from January 5, 1996 to December 30, 2005. T refers to the number of days to matutiry while m
represents the moneyness defined as the underlying index level divided by the option strike
price.

Moneyness T≤50 50<T≤90 90<T≤160 T>160

Panel A: VARGJ Implied Volatility RMSE

m≤0.94 7.1135 5.8068 4.8609 4.4883
0.94<m≤0.97 5.6552 4.9842 4.2245 4.1220
0.97<m≤1 4.6264 4.3465 3.7574 3.7756
1<m≤1.03 4.0896 3.9320 3.6435 3.7939
1.03<m≤1.06 4.6424 4.1310 3.7545 3.6637
m>1.06 15.570 9.9653 7.5613 7.5643

Panel B: VARGJ/ARG Implied Volatility RMSE

m≤0.94 1.1848 0.8495 0.6589 0.5767
0.94<m≤0.97 0.8528 0.6492 0.5758 0.5651
0.97<m≤1 0.7676 0.6302 0.5763 0.5557
1<m≤1.03 0.7394 0.6446 0.5896 0.5826
1.03<m≤1.06 0.9011 0.7679 0.6664 0.6050
m>1.06 1.1488 1.1255 0.9567 1.0451

Panel C: VARGJ/HARG Implied Volatility RMSE

m≤0.94 1.1663 1.0004 0.6908 0.5540
0.94<m≤0.97 1.2042 0.8638 0.6573 0.5652
0.97<m≤1 1.1133 0.8702 0.6697 0.5534
1<m≤1.03 1.0999 0.9222 0.7010 0.5857
1.03<m≤1.06 1.1961 1.1177 0.7995 0.6057
m>1.06 1.1392 1.2127 0.9863 1.0953

characterized by different level of volatility. Volatility regimes are identified from the implied

volatility index (VIX) dynamics from January 5,1996 to December 30, 2005, displayed in the

Figure 2.3. The first sample period is from January 5, 1996 until October 2, 1998 with an aver-

age VIX value of 15,60% and it represents a low volatility period. The second period is from
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Table 2.5: Option pricing performance via the percentage price root mean square error
(RMSEP). The Panel A shows the RMSEP of the VARG-J model sorted by moneyness and
maturity. Panel B shows the RMSEP of the ARG model relative to the VARG-J sorted by mon-
eyness and maturity. Panel C shows the RMSEP of the HARG model relative to the VARG-J
sorted by moneyness and maturity. A ratio smaller than 1 indicates an outperformance of the
VARG-J model. I use the parameter estimates from Table 2.1 and S&P 500 Call options from
January 5, 1996 to December 30, 2005. T refers to the number of days to matutiry while m
represents the moneyness defined as the underlying index level divided by the option strike
price.

Moneyness T≤50 50<T≤90 90<T≤160 T>160

Panel A: VARGJ Price RMSE

m≤0.94 0.2801 0.4441 0.6308 0.9909
0.94<m≤0.97 0.4015 0.7520 0.9128 1.2694
0.97<m≤1 0.4781 0.8102 0.9014 1.2068
1<m≤1.03 0.4184 0.6788 0.8588 1.2224
1.03<m≤1.06 0.3549 0.5680 0.8026 1.0551
m>1.06 0.2423 0.3772 0.5922 0.8743

Panel B: VARGJ/ARG Price RMSE

m≤0.94 1.3588 0.6709 0.5202 0.4926
0.94<m≤0.97 0.7974 0.6156 0.5503 0.5604
0.97<m≤1 0.7213 0.6216 0.5784 0.5790
1<m≤1.03 0.7113 0.6252 0.6185 0.6383
1.03<m≤1.06 0.8950 0.7580 0.7215 0.6523
m>1.06 0.9925 0.9943 0.9173 0.8830

Panel C: VARGJ/HARG Price RMSE

m≤0.94 1.5242 0.8285 0.5458 0.4632
0.94<m≤0.97 1.1435 0.8287 0.6151 0.5479
0.97<m≤1 1.0532 0.8536 0.6581 0.5625
1<m≤1.03 1.0616 0.8861 0.7199 0.6295
1.03<m≤1.06 1.1979 1.1149 0.8479 0.6382
m>1.06 1.1036 1.2833 1.0844 0.8735

October 5, 1998 to July 06, 2001. The average VIX value is 26,06% and I therefore define it as a

high volatility regime. The third period is April 12, 2004 to December 30, 2005 and, since the

average VIX is 18,27%, an intermediate volatility period.

I investigate the first dimension by comparing the differences over time between implied
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Figure 2.3: Volatility regimes. Plot of VIX index from January 5, 1996 to December 30, 2005.
I identify three different volatility regimes: low volatility from January 5, 1996 to October 2,
1998, high volatility from October 5, 1998 to July 06, 2001 and medium volatility from April 12,
2004 to December 30, 2005.

volatility from the data and the models. Figure 2.4 displays the dynamics of the average

weekly ATM implied volatility bias computed as the difference between the average observed

market implied volatility and the average implied volatility obtained from the model. The def-

inition of ATM options is the same used above (moneyness between 0.97 and 1.03). The ARG

model has the same bias profile of the HARG model but it presents a greater bias in magni-

tude. The HARG model presents a negative bias both during low volatility and high volatility

regimes. The VARG-J model has a negative bias during low volatility period and a positive

bias during high volatility period. In 2004-2005, an intermediate volatility period, both models

present a negative bias. In comparison, the VARG-J model shows a smaller bias in all volatility

regimes. In particular, during the high volatility period, the average VARG-J bias is smaller, in

absolute term, than the HARG bias (-0.0131 vs. 0.0050). This suggests that the VARG-J model

is better able to capture the dynamics of market volatility, especially, as expected, during high

volatility regime.

Figure 2.5 analyses the second dimension of interest: the volatility term structure. At first sight

the VARG-J model outperforms both competitors during all three volatility regimes. In partic-

ular, it performs better in the high volatility period. In the VARG-J model the spot volatility

has a larger impact on implied volatility at short maturities. This feature is more evident dur-
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Figure 2.4: Weekly implied volatility bias for at-the-money options. On each Wednesday I com-
pute the B&S implied volatility for at-the-money option contracts using parameters estimates
from Table 2.1. Options with moneyness between 0.97 and 1.03 are considered at-the-money.

ing low and high volatility periods, in which the VARG-J model captures a smaller bias with

respect to the other models. The jump volatility factor, allowing for bursts in the volatility

dynamics, captures the variation in longer-maturity implied volatilities. Moreover, since the

jump factor can experience periods of zero values, the VARG-J model is able to adequately

capture short-maturity implied volatilities.

The same conclusions can be drawn looking at Figure 2.6 in which I plot the difference
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Figure 2.5: Implied volatility term structure for at-the-money options. Options with money-
ness between 0.97 and 1.03 are considered at-the-money. I compute the B&S implied volatility
for at-the-money option contracts using parameters estimates from Table 2.1 for three different
volatility regimes: low, medium and high. In each panel, a ”�” represents the market implied
volatility, a ”∗” represents the VARG-J model, a ”◦”represents the HARG model and a ”×”
represents the ARG model. The time to maturity is on the horizontal axis.

between the average IV of ATM long maturity options and the level. Options with moneyness

between 0.97 and 1.03 and maturity greater than 120 days are considered ATM long maturity.

By looking at the dynamics of the IV term structure, the VARG-J model performs well and it

is possible to clearly identify the improvement due to the introduction of a jump factor in the

volatility dynamics. I conclude that the VARG-J model is able to capture both dimensions of

the implied volatility surface thanks to the jump factor that generates a higher persistence and

54



bursts in the volatility dynamics.

Figure 2.6: Term structure of the implied volatility surface. The slope of the volatility surface is
computed as the difference between the average at-the-money long maturity options and level.
Options with moneyness between 0.97 and 1.03 are considered at-the-money while options
with maturity greater than 120 days are considered long maturity options. In each panel the
black line represents the average market implied volatility while the blue line represents the
average model implied volatility.

2.5 Conclusion and directions of future work

In this paper I propose an affine discrete-time model which features a multi-factor volatility

specification and exploits information about the latent volatility process using high frequency

data. In the VARG-J model volatility experiences periods of extreme movements through a
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volatility jump factor that is modeled as an ARG0 process, in addition to a continuous com-

ponent, modeled as an EARG. Whitin this framework, I show how to analytically characterize

the MGF under both P and Q; the change of measure is performed adopting a SDF which

incorporates risk premia associated to the sources of risk concerning the two volatility factors,

beyond the risk related to shocks in returns. The MGF allows to obtain closed-form option

pricing formulas in the VARG-J model. A great advantage of VARG-J is represented by the

model estimation strategy. I estimate the model’s parameters under the historical measure via

pseudo-maximum likelihood with the Extended Kalman Filter. This estimation procedure al-

lows to filter both volatility factors, exploiting the information on the latent volatility in the RV

estimates and, at the same time, by controlling for measurement errors and overnight effect. I

choose the 5-minute RV estimator in order to reduce at minimum the impact of microstructure

noise and I introduce a measurement equation for the total volatility in order to correct the RV

bias due to measurement erros and overnight effects.

The results show a good pricing performance for all moneyness and maturities. The high-

est improvement is registered for D-OTM and ITM options at medium and long maturity. For

these option categories the VARG-J model outperforms both competiting models and provides

an improvement also for ATM options. The multi-factor volatility specification presented in

this paper is able to generate a fatter-tailed return distribution and bursts in volatility. In this

way OTM and ITM options are more expensive and the gap between implied volatility and

that directly observed from the market is reduced. Moreover, the VARG-J model is able to cap-

ture both dimensions of the implied volatility surface thanks to the jump factor that generates

bursts in the volatility dynamics and allows for a higher persistence. Specifically, the VARG-

J model fits the data better showing a small bias in all volatility regimes and it captures the

dynamics of market implied volatility especially during high volatility periods. Moreover, by

looking at the term structure of the implied volatility surface, the VARG-J model adequately

captures the slope in the implied volatility surface along the time dimension. The model pre-

sented here matches the stylized fact that shocks on the current conditional volatility impact

on the conditional variance forecast up to one year in the future. This has an impact on the

price of at-the-money options at different maturities.

The simplified model specification presented in this paper does not fit some important retun

stylized facts. Nevertheless, I think that the performance results underline the importance of

the jump factor in the volatility dynamics. Therefore, a number of extensions to the VARG-J

model are warranted. First, price jumps are needed to decrease the ?gap? between model
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implied volatility and that directly observed from the market. According to the specification,

the introduction of jumps in price should improve the pricing over different options categories

and explain different features of volatility surface. Second, a leverage effect component should

be introduced in order to take into account the asymmetry in the volatility smile. Finally I be-

lieve that introducing a dependence between volatility components should leads to precise

and accurate measurement and forecast of the unobservable asset volatility improving pricing

performance.
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Appendix B

Technical Details of Chapter 2

B.1 MGF for VARG-J model under P measure

The Assumption 1 in Majewski et al. (2015) is the following:

EP
[
exp(zyt+1 + b′ft+1 + c′lt+1)|Ft,Lt

]
(B.1)

= exp

[
At(z, b, c) +

p

∑
i=1
Bi(z, b, c)′ · ft+1−i +

q

∑
j=1
Cj(z, b, c)′ · lt+1−j

]

for some functions A : R×Rk ×Rk → R,Bi : ×Rk ×Rk → Rk and Ci : ×Rk ×Rk → Rk,

where b, c ∈ Rk and · stands for the scalar product in Rk.

For the setup in Section 2.2.1, assumption (B.1) is satisfied imposing lt = 0 for t = 1, . . . , T and

p = 11.

To check that and to derive the expressions for At(z, b, c) and Bi(z, b, c):

EP
[
exp(zyt+1 + b′ft+1|Ft

]
= EP

[
exp(zrt + zλ ft+1 + z

√
ft+1εt+1 + b1 f1,t+1 + b2 f2,t+1|Ft

]
= ezrEP

[
exp[(b1 + zλ) f1,t+1 + (b2 + zλ) f2,t+1 + z

√
ft+1εt+1]|Ft

]
= ezrEP {exp [(b1 + zλ) f1,t+1 + (b2 + zλ) f2,t+1]

×EP
[
exp

[
z
√

ft+1εt+1

]∣∣∣ f1,t+1, f2,t+1,Ft

]∣∣∣Ft

}

To compute the inner expectation I now use the following property: if Z ∼ N (0, 1) and

1Richer characterization of volatility dynamics are left for future work.
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Y = aZ, then

E{exp[xY]} = exp
[

1
2
(xa)2

]
Hence:

EP
[
exp(zyt+1 + b′ft+1)|Ft

]
= ezrEP

{
exp

[
(b1 + zλ) f1,t+1 + (b2 + zλ) f2,t+1 +

z2

2
ft+1 ]

∣∣∣∣Ft

}
= ezrEP

{
exp

[
(b1 + zλ) f1,t+1 + (b2 + zλ) f2,t+1 +

z2

2
f1,t+1 +

z2

2
f2,t+1 ]

∣∣∣∣Ft

}
= ezrEP {exp [x1(z, b) f1,t+1 + x2(z, b) f2,t+1]| Ft}

where:

x1(z, b) = b1 + zλ +
z2

2
(B.2)

x2(z, b) = b2 + zλ +
z2

2
(B.3)

In what follows I will sometimes simplify the notation using x1 (resp. x2) instead of x1(z, b)

(resp. x2(x, b)). I now use the following assumption of the noncentral Gamma-zero distribu-

tion: if Z ∼ γ0(θ, µ), then

E[exp(xZ)] = exp
[

xµ

1− xµ
θ

]
.

I get:

EP
[
exp(zyt+1 + b′ft+1)|Ft

]
= ezrEP

{
exp[x1(z, b) f1,t+1]E

P [exp (x2(z, b) f2,t+1)| f1,t+1,Ft]
∣∣∣Ft

}
= ezr x2µ2

1−x2µ2
θ2t EP {exp [x1 f1,t+1]| Ft}

= ezr+V2(x2,µ2)θ2t EP {exp [x1 f1,t+1]| Ft}

where:

V2[x2, µ2] =
x2(z, b)µ2

1− x2(z, b)µ2
(B.4)

I now use the following property of the noncentral Gamma distribution: if Z ∼ γν(θ, µ), then

E[exp(xZ)] = exp
[

xµ

1− xµ
θ − ν log(1− xµ)

]
.
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I get:

EP
[
exp(zyt+1 + b′ft+1)|Ft

]
= exp

{
zr + V2(x2, µ2)θ2t − ν log(1− x1µ1) +

x1µ1

1− x1µ1
θ1t

}
= exp {zr− νW1(x1, µ1) + V1(x1, µ1)θ1t + V2(x2, µ2)θ2t} (B.5)

W1[x1, µ1] = log[1− x1(z, b)µ1] (B.6)

V1[x1, µ1] =
x2(z, b)µ2

1− x1(z, b)µ1
(B.7)

Substituting (2.6) in (B.5) and collecting terms, it is easy to check that Assumption B.1 is

satisfied, with:

A(z, b, c) = A(z, b) = zr− νW1(x1, µ1) + V1(x1, µ1)d1 + V2(x2, µ2)d2 (B.8)

Bi(z, b, c)′ = B(z, b)′ = [V1(x1, µ1) , V2(x2, µ2)] β (B.9)

Cj(z, b, c)′ = C(z, b)′ = 0 (B.10)

where d = (d1, d2)′ and β = (β1, β2)′.

As explained in Majewski et al. (2015) the above expressions represent the main ingredient to

compute the MGF of the log-return yt,T = ∑T
i=t+1 yi for VARG-J model

ϕP
t,T,z = EP[ezyt,T |Ft] = exp

(
at + b′tft

)
where

as = as+1 + zr− νW1,s+1 + d1V1,s+1 + d2V2,s+1 (B.11)

b′s = (V1,s+1, V2,s+1)β (B.12)

(B.13)

with

xh,s+1 = xh(z, bs+1) = bs+1 + zλ +
z2

2
, h = 1, 2
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The functions V and W are defined as follows:

Vh,s+1 = Vh(xh,s+1, µh) =
xh,s+1µh

1− xh,s+1µh
, h = 1, 2

W1,s+1 = W1(x1,s+1, µ1) = log(1− x1,s+1µ1)

B.2 No-arbitrage condition

The SDF assumed is

Mt,t+1 =
exp(−δ2yt+1 − δ11 f1,t+1 − δ12 f2,t+1)

EP[exp(−δ2yt+1 − δ11 f1,t+1 − δ12 f2,t+1)|Ft]
(B.14)

The no-arbitrage conditions are

EP[Ms,s+1|Fs] = 1 for s ∈N (B.15)

EP[Ms,s+1eys+1 |Fs] = ers+1 for s ∈N (B.16)

Let δ1 = (δ11, δ12)
′. To enforce no arbitrage, I use Proposition 2 in Majewski et al. (2015),

which shows that absence of arbitrage is equivalent to

A(1− δ2,−δ1) = r + A(−δ2,−δ1)

B(1− δ2,−δ1) = B(−δ2,−δ1)

These equalities are implied by

x1(1− δ2,−δ1) = x1(−δ2,−δ1)

x2(1− δ2,−δ1) = x2(−δ2,−δ1).

For this to hold, it is easy to check that it is sufficient to impose

δ2 = λ +
1
2

(B.17)

So, the no-arbitrage condition fix the level of the equity risk premium, while both the contin-

uous and discontinuous variance risk premia are free parameters to be calibrated on option

sample.
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B.3 MGF for VARG-J model under Q

Let yt,T = log(ST/St)

ϕQ
δ2,δ1

(t, T, z) = EQ (ezyt,T |Ft) = exp
(
a∗ + b∗′ft

)
(B.18)

where:

a∗s = a∗s+1 +As(z− δ2, b∗s+1 − δ1)−As(−δ2,−δ1) (B.19)

b∗s = B(z− δ2, b∗s+1 − δ1)−B(−δ2,−δ1) (B.20)

(B.21)

subject to the initial conditions:

a∗T = 0, b∗T = 0

We now specialize these expression for the setup outlined in section 2.2.1. Consider equation

(B.19). Using (B.8), I get

a∗s = a∗s+1 + zrs − ν(W∗1,s+1 −Wy
1 ) + d1(V∗1,s+1 −Vy

1 ) + d2(V∗2,s+1 −Vy
2 ) (B.22)

where:

x∗h,s+1 = xh(z− δ2, b∗s+1 − δ1), h = 1, 2

y∗h = xh(−δ2,−δ1) = −δ1h − δ2λ +
δ2

2
2

, h = 1, 2

V∗h,s+1 = Vh(x∗h,s+1, µh), h = 1, 2

Vy
h = Vh(y∗h, µh), h = 1, 2

W∗1,s+1 = W1(x∗1,s+1, µ1)

Wy
1 = W1(y∗1 , µ1)

Using (B.9) and (B.10), equation (B.20) becomes:

b∗′s = (V∗1,s+1 −Vy
1 , V∗2,s+1 −Vy

2 )β (B.23)

Note that o compute the MGF of yt,T under P it is simply needed to plug δ2 = 0 and δ1 = 0

in the expression of ϕQ
δ2,δ1

(t, T, z).

62



The MGFs ϕQ
δ2,δ1

(t, T, z) and ϕP
0,0(t, T, z) derived above depend on the parameters under P,

ψ, defined in (2.14), and on the risk premium parameters δ = (δ2, δ′1)
′ introduced in the SDF

(B.14). I now show that the MGF under Q can be rewritten as the MGF under P using a new

set of parameters, ψQ, the risk-neutral ones

ψQ = [λQ, νQ, µQ
1 , µQ

2 , dQ, βQ] (B.24)

To derive the expression of ψQ as a function of ψQ and δ, I match the parameters using the

identity:

ϕQ
δ2,δ1

(t, T, z; ψ, δ) = ϕ0,0(t, T, z; ψQ) (B.25)

It is useful to denote

xQ
h,s+1 = xh(z, b∗s+1; ψQ), h = 1, 2

VQ
h,s+1 = Vh(xQ

h,s+1, µQ
h ), h = 1, 2

WQ
1,s+1 = W1(xQ

1,s+1, µQ
1 )

For this to hold, (B.22) needs to be matched with (B.11) and (B.23) with (B.12) , where (B.11)

and (B.12) are evaluated at VQ
1,s+1, VQ

2,s+1 and WQ
1,s+1. Note that since I start from the same initial

conditions (B.25) requires

ν(W∗1,s+1 −Wy
1 ) = νQWQ

1,s+1 (B.26)

d1(V∗1,s+1 −Vy
1 ) = dQ

1 VQ
1,s+1 (B.27)

d2(V∗2,s+1 −Vy
2 ) = dQ

2 VQ
2,s+1 (B.28)

(V∗1,s+1 −Vy
1 , V∗2,s+1 −Vy

2 )β = (VQ
1,s+1 , VQ

2,s+1)βQ (B.29)

for all s.

Consider (B.26). This requires

ν[log(1− x∗1,s+1µ1)− log(1− y∗1µ1)] = νQ log(1− xQ
1,s+1µQ

1 )

Sufficient conditions for this equality to hold are

νQ = ν, µQ
1 =

µ1

1− y∗1µ1
and xQ

1,s+1 = x∗1,s+1 − y∗1 .
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In turn, it can be checked that the latter equality is valid if I pose

λQ = −1
2

.

Note that under these conditions I also have xQ
2,s+1 = x∗2,s+1 − y∗2 .

I now consider (B.27):

d1

(
x∗1,s+1µ1

1− x∗1,s+1µ1
− y∗1µ1

1− y∗1µ1

)
= dQ

1

xQ
1,s+1µQ

1

1− xQ
1,s+1µQ

1

. (B.30)

Substituting the expressions for xQ
1,s+1 and µQ

1 , I get

dQ
1 =

d1

1− y∗1µ1
.

Note that (B.27) also implies the equality VQ
1,s+1 = (1− y∗1µ1)(V∗1,s+1 −Vy

1 ).

Now turn to (B.28):

d2

(
x∗2,s+1µ2

1− x∗2,s+1µ2
− y∗2µ2

1− y∗2µ2

)
= dQ

2

xQ
2,s+1µQ

2

1− xQ
2,s+1µQ

2

.

If I substitute for xQ
2,s+1 and µQ

2 the expressions obtained above, I get an identity with the same

structure as (B.30). Its validity thus requires expressions for dQ
2 and µQ

2 which are specular to

those for dQ
1 and µQ

1 :

µQ
2 =

µ2

1− y∗2µ2
and dQ

2 =
d2

1− y∗2µ2

Note that these solutions also imply that VQ
2,s+1 = (1− y∗2µ1)(V∗2,s+1 −Vy

2 )

Finally, I turn to (B.29) which implies:

βQ
h =

βh

1− y∗hµh
, h = 1, 2
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Chapter 3

Explaining Contagion during European

Debt Crisis with Mutually Exciting

Jump Processes

The European sovereign debt crisis has raised many questions about financial contagion. The

sovereign debt crisis has influenced the general economic conditions across European coun-

tries, affecting, among others, the banking market. This paper is concerned with two main

questions: a) whether the crisis in Greece spreads in other European countries; b) whether con-

tagion, if present, is mainly due to being a member of a single currency union or to regional

proximity. The answer to both questions is addressed by estimating an econometric model for

the dynamics of asset returns by Aı̈t-Sahalia et al. (2015) in which contagion is defined as the

within and between country transmission of shocks. According to the empirical evidence, the

European banking markets are exposed to contagion which is transmitted through inter-bank

connections. Countries belonging to the monetary union are less exposed to contagion with

respect to Eurozone countries. Moreover, news about the crisis in Greece affects European

markets, especially Eurozone countries, generating panic about domestic financial stability as

well as domestic news.

JEL-Classification: C58, G01, C32

Keywords: Contagion, Sovereign debt crisis, Jumps, Hawkes process
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3.1 Introduction

Contagion represents the mechanism by which financial instability becomes so widespread

that a crisis in one country reaches systemic dimensions, as proved by the recent Greek crisis.

The Greek debt crisis officially started on late 2009, when the prime minister revealed a large

gap in Greece’s accounts. In early 2010, the major agencies downgraded Greece’s credit rat-

ing. Very soon, the situation became tense because of the fear that the Greek’s crisis could

cause contagion and, in turn, cause the default of those countries with a similarly economy, i.e

GIPS countries1. These tensions immediately reflected on all major financial markets. The ma-

jor rating agencies also lowered the rating of different European countries and, consequently,

banks based in those countries or with substantial exposure to government bonds of down-

graded countries were in difficulty. In many cases, the market turmoil was amplified. Hence,

the sovereign debt crisis contaminated the general economic conditions across European coun-

tries, affecting, among others, the banking market.

There is consensus in the literature that sovereign crises can be transmitted to banks through

three main channels. First, the bank’s funding capacity depends on the value of government

bonds held in its portfolio. This means that a loss in the value of government bonds implies a

reduction in credit supply (see Angeloni and Wolff, 2012). Second, banks typically use govern-

ment bonds as collateral both in interbank transactions and in operation with central banks:

a reduction in the value of sovereign bonds has adverse effect on credit supply (see Correa

et al., 2013). Third, the yield on sovereign debt as well as the sovereign rating may impact on

the cost of credit to the economy. Indeed, a rise in the government bond yields increases the

banks’ funding cost and can worsen the access of banks to money market and deposit markets

(see Arezki et al., 2011).

There is a wide literature on contagion (see Caporin et al., 2013, Ang and Longstaff, 2013,

Longstaff et al., 2011, Mauro et al., 2002 and Pan and Singleton, 2008) as well as a vast litera-

ture on contagion between sovereign and banking market (see Acharya et al., 2014, Alter and

Beyer, 2014, Alter and Schüler, 2012, De Bruyckere et al., 2013, Angeloni and Wolff, 2012 and

Gross and Kok, 2013). Both streams of literature show significant evidence of contagion across

European countries, during the recent sovereign crisis. To the best of my knowledge, there is

1GIPS is an acronym coined during the recent sovereign crisis which refers to Greece, Italy, Portugal and Spain.
These countries were identified as the economies where sovereign debt had increased sharply due to banks bailouts
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no empirical work that looks at whether mutual contagion exists at the bank level2, i.e. once

the sovereign crisis affects the banking system in one country, whether banks based in other

European countries are affected or not by the crisis.

I contribute to the empirical literature on financial contagion by analyzing whether there is

empirical evidence of contagion at the bank level, measuring the direction and the size of

contagion transmission between European banking markets. Specifically, I am interested in

studying mutual contagion in the European banking marketand in understanding whether the

Greek sovereign crisis spread across countries. In order to understand and quantify the con-

tagion transmission on the banking market, I estimate the econometric model by Aı̈t-Sahalia

et al. (2015) in which contagion is defined as the within and between country transmission

of shocks. One of the main driver of the Greek crisis was the downgrade of rating agencies.

Credit rating changes are extreme events which are reflected into downfalls of stock prices.

In order to capture the magnitude and the direction of financial contagion, asset returns are

directly modeled as a Hawkes jump diffusion process. This process is able to reproduce both

time and space propagation during a crisis period: a jump in one market raises the probability

of future jumps both in the same market and elsewhere generating clusters both in time and in

space. Once there is an extreme news event in financial markets, jumps occur and the occur-

rence of jumps raises the probability of having future jumps both in time and across countries.

The cross-excitation could be asymmetric between countries. Indeed, contagion materializes

under the assumption of mutually exciting jump processes. This specification allows to have a

data generating process for returns that is able to generate the salient features of contagion: the

cross-sectional and serial dependence observed across markets during the European sovereign

debt crisis.

This paper is concerned with two main questions: a) whether the crisis in Greece spread in

other European countries; b) whether contagion, if present, is mainly due to being a member

of a single currency union or to regional proximity. The latter question is particularly relevant

since banks tend to hold a large amount of government debt securities because of the absence

of risk weight and limit on large exposures to sovereign bonds issued in domestic currency,

according to the Basel Accords 3. Manasse and Zavalloni (2013) look at the empirical evidence

2There exists a vast literature on systemic risk (see Allen et al., 2009 for a comprehensive overview), which is
strictly related to contagion since the latter can be the motivation for the failure of multiple financial institutions.

3The Basel Accords allows for a 0% risk weight to be assigned to government bonds issued in domestic currency.
Moreover, the Accord exempts sovereign debt issued in domestic currency from the 25% limit on large exposures,
at odds to all other assets holdings.
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of contagion during the sovereign debt crisis for several European countries both inside and

outside the monetary union. The authors find that before the crisis being part of the monetary

union worked as protection against contagion and systemic risk. However, during the Greek

crisis, countries belonging to the Euro area were more exposed to contagion with respect to

countries non belonging to the monetary union. Nevertheless, Manasse and Zavalloni (2013)

find that Sweden, Denmark, and UK were largely affected by sovereign debt crisis.

The answer to the former question is addressed considering bank market indexes for Greece,

Italy, and Spain, grouped as Eurozone while the latter question is addressed considering Den-

mark as no-Eurozone country. The estimation procedure is based on the generalized method of

moments (GMM) in which the moment restrictions are derived in closed-form. The empirical

analysis indicates that there is clear evidence of contagion from Greece to European countries

as well as self-contagion in all countries. Moreover, changes over time of contagion coefficients

can be linked to unexpected news about Greek economic conditions and to domestic news.

The rest of the paper is organized as follows. Section 3.2 describes the Hawkes jump diffusion

process used to analyze contagion. Section 3.3 discusses the empirical analysis and Section 3.4

concludes.

3.2 The Hawkes jump diffusion process

3.2.1 Asset return dynamics

I consider the bivariate version of the Hawkes jump diffusion process of Aı̈t-Sahalia et al.

(2015), since it is more tractable. In particular, country 1 is always assumed to be Greece while

country 2 changes for a total of three models, i.e. one for each pair (Greece-Italy, Greece-Spain

and Greece-Denmark).

In the Hawkes jump diffusion process, asset log-returns for each country follow a semimartin-

gale dynamics and consist in a drift term, a volatility dynamics and mutually exciting jumps:

dX1t = µ1dt + σ1dW1t + Z1tdN1t

dX2t = µ2dt + σ2dW2t + Z2tdN2t

(3.1)

where W1t and W2t are standard Brownian motions with a constant correlation coefficient and

N1t and N2t are Hawkes processes defined by their intensity processes λ1t and λ2t. These
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intensities describe the conditional mean jump rate per unit of time:


P (Nit+∆ − Nit = 0|Ft) = 1− λit∆ + o(∆)

P (Nit+∆ − Nit = 1|Ft) = λit∆ + o(∆)

P (Nit+∆ − Nit > 1|Ft) = o(∆)

(3.2)

where Ft is the information set until time t, and i = 1, 2.

Contagion is defined as the transmission of extreme shocks to economies. I assume that, λ1t

and λ2t have a time-varying dynamics:

dλ1t = α1(λ∞ − λ1t)dt + β11dN1t + β12dN2t

dλ2t = α2(λ∞ − λ2t)dt + β21dN1t + β22dN2t

(3.3)

Each jump intensity is stochastic, mean-revearting and depends on the path of the past jumps

both in its own country and in the other countries. Jumps are mutually dependent both in

space (across countries) and in time (across various business days in a single country). These

features are defined by Aı̈t-Sahalia and co-authors as self- (or time) and cross- (or space) excita-

tion. A crisis is made up of jumps and it is amplified in time and across markets. Hence, the

model produces clusters of jumps over time in each country and generates successive jumps

across European markets through the time-varying and predictable jump intensity. For exam-

ple, let’s consider two countries; once a jump occurs in country 1, the arrival rate of jumps in

this country moves up in response to the most recent jump by β11 and then decays back to-

wards the level λ1∞ at speed α1. At the same time, the arrival rate of jumps of country 2 jumps

up by β21 and then decays exponentially back. The cross-excitation between markets could be

asymmetric and it is signaled by the magnitude of βij for i 6= j. This mutually-excitation makes

the model appealing to measure the financial contagion on the banking market, focusing on

time and cross dimensions.

Finally, Z1t and Z2t are jump sizes, cross-sectionally and serially independently distributed.

The distribution of the jumps size is not specified and only the moments are parameterized

assuming the following cumulative probability distribution:

FZi(x) =


pie−γi1(−x) −∞ < x ≤ 0, i = 1, 2

pi + (1− pi)(1− e−γi2x) 0 < x < ∞, i = 1, 2
(3.4)
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where γi1 and γi2 are strictly positive and pi are probabilities. Since the moments of the process

are provided as functions of the generic moments of the jump size Zt, the law FZi allows to

express the generic moment of order k as:

E
(

Zk
i

)
= (−1)k k!pi

γk
1i

+
k!(1− pi)

γk
i2

(3.5)

3.2.2 Estimation procedure

The model presented in the Section 3.2.1 is estimated using the Generalized Method of

Moments (GMM). Since the Hawkes jump diffusion model does not have a closed-form like-

lihood, Aı̈t-Sahalia et al. (2015) derive closed-form expressions for the key moments of the

returns. In particular, the authors derive explicit expressions for the moments as functions

only of the observable state variable, i.e. returns, integrating out the latent state variables, i.e.

point processes Nit and the intensity processes λit, for i = 1, 2.

The moment conditions specified for the estimation are:



E [∆Xit] , i = 1, 2

E
[
(∆Xit −E (∆Xit))

r] , r = 2, . . . , 4

E
[
∆Xit∆Xjt −E [∆Xit]E

[
∆Xjt

]]
, i 6= j, i, j = 1, 2

E
[
(∆Xit+τ)

r (∆Xjt
)r −E

[
(∆Xit)

r]
E
[(

∆Xjt
)r
]]

, r = 1, 2, τ = 1, 2, 3, 4

(3.6)

For ease of exposition I do not report the final expression of these moments and I refer to Aı̈t-

Sahalia et al. (2015), in particular Section 3.3 and Appendix B.

The moment condiitons are specified as difference between the corresponding sample moment

of the log-returns and its closed-form expression derived under the model. This ensures that

the GMM estimator, presented below, is consistent.

Let θ be the vector of parameters to be estimated. The GMM estimator θ̂T is the value of θ ∈ Θ

that minimizes the quadratic form:

θ̂T := arg min
θ

gT(y, ∆, θ)′WTgT(y, ∆, θ) (3.7)

where gT(y, ∆, θ) represents the sample moment restrictions. Furthermore, WT is an M × M

positive definite weighting matrix where M is the number of moments used in the estimation

procedure, chosen greater than the number of parameters.
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During the estimation I set WT 6= I and I put extra weights in the third and fourth moments to

make them relatively comparable in magnitude to the other moments. Specifically, the weights

are chosen to be inversely related to the variance of the corresponding sample moments.

Under standard regularity conditions, as T → ∞, θ̂T is asymptotically normal with asymptotic

variance Ω equal to:

Ω−1 := ∆−1D′WD
(

D′WSWD
)−1 D′WD (3.8)

where D is the gradient of the moment conditions and S is the asymptotic variance of the

sample moment function. If WT is chosen optimally, W = S−1, then Ω−1 = ∆−1D′S−1D.

A nonnegative estimator for S is:

ŜT = Γ̂0,T +
q

∑
v=1

(
1− v

q + 1

) (
Γ̂v,T + Γ̂′v,T

)
(3.9)

where

Γ̂v,T =
1
N

N

∑
n=v+1

h(yn∆, ∆, θ̃)h(y(n−v)∆, ∆, θ̃)′ (3.10)

Here θ̃ is an initial consistent estimate of θ0 which is obtained by minimizing the quadratic

form in the equation (3.7) with WT 6= I.

3.3 Empirical analysis

3.3.1 Data

In order to asses the direction and the size of financial contagion transmission among Eu-

ropean banking markets, I use the Datastream Bank Sector Index for both Eurozone and no-

Eurozone countries. For all countries, the sample starts on January 4, 1988 and ends on January

31, 2017. From Table 3.1, Greece and Italy exhibit negative mean returns, indicating downward

movements for the price Index. The kurtosis is much larger than that for the standard Gaus-

sian distribution and the skewness for Greece and Italy is negative. Jumps in the Bank Sector

Index can generate large kurtosis and if the mean jumps in price are negative they can cause

negative skewness.

Figure 3.1 plots Bank Sector Index returns for Greece, Italy, Spain and Denmark from Jan-

uary 1, 2009 to December 31, 2010. The period displayed represents the period of highest tur-

moil on all European markets. In fact, the beginning of the Greek debt crisis can be identified

in late 2009 while 2010 is the year in which the most important monetary policy interventions
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Table 3.1: Summary Statistics Datastream Bank Sector Index. This table reports summary
statistics for the log-returns of the Datastream Bank Sector Index for Greece, Italy and
Spain.The sample period considered is from January 4, 1988 to January 30, 2017 for all coun-
tries.

Country Mean Std.Dev. Skew. Kurt. N. Obs.

Greece (GR) -0.00064 0.0308 -0.829 20.03 7585
Italy (IT) -3.2e-06 0.0177 -0.395 12.97 7585
Spain (SP) 0.00011 0.0168 0.013 14.40 7585

no-Eurozone
Denmark (DEN) 0.00028 0.0146 0.003 11.60 7585

were done. Generally papers that study the Greek debt crisis and its spreading around Europe,

consider this limited time period. In this paper, I look at a longer time period since contagion

is captured through mutually exciting jumps processes

3.3.2 Parameter estimates

Exacts daily means, autocovariances and cross-covariances of squared returns, third and

fourth moments and autocovariances and cross-covariances over 4 daily-lags 4 represent the

moment conditions used to identify and to estimate, the parameters of model (3.1)-(3.3).

Following the Monte Carlo simulation results in Aı̈t-Sahalia et al. (2015), parameters are re-

stricted as follows: α1 = α2, λ1∞ = λ2∞ = λ∞ and γ1i = γ2i = γi. Moreover, γi and pi are

pre-identified: the former is identified computing the average of absolute returns that exceed

2% (price movements of this magnitude are considered as jumps) while the latter is derived

from the ratio of the third and fourth moments. These two parameters do not enter θ and

are treated as known and fixed during the estimation. Table 3.2 records the estimates and the

standard errors of the parameters in θ for all countries.

Contagion in this context is defined as the within and between country transmission of

shocks. In other words, if contagion is present, the beta coefficients should be large and signif-

icantly different from zero. Specifically, β11 and β22 measure the time dimension of contagion,

i.e. the degree of self-excitation in each country, while β12 and β21 represent the level of cross-

excitation from country 1 (Greece) to country 2 and from country 2 to country 1, respectively.

4The autocovariances and the cross-covariances are chosen looking at the autocorrelograms and cross-
correlograms for each pair of countries. Visual inspection gives insights about the degree of excitation and the
fourth represents the highest significant correlation among all pairs.
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Figure 3.1: This figure shows the the Bank Sector Index returns for Eurozone (Greece, Italy and
Spain) and for no-Eurozone (Denmark). The sample period is from January 1, 2009 to December
31, 2010, which is the period of the explosion of the Greek sovereign debt crisis.

Looking at the first dimension of contagion, jumps in Greece are transmitted to the domestic

banking market generating self-excitation, i.e the probability of future jumps is higher. The

same evidence is reported for other countries: β22 is significantly different from zero. Through

β12 and β21, is possible to understand the direction of contagion transmission between Greece
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Table 3.2: Parameter estimates for the bivariate Hawkes jump diffusion process. This table
reports the GMM estimates for the parameters of the bivariate Hawkes jump diffusion process.
Standard errors are in parenthesis. The sample period considered is from January 4, 1988 to
January 30, 2017 for all countries.

Eurozone no-Eurozone

Country 1 Greece Greece Greece
Country 2 Italy Spain Denmark

α
4,1261 12,045 1,9950

(0,0021) (0,1423) (0,0013)

β11
4,0958 11,821 1,9888

(0,0088) (0,1004) (0,0012)

β12
0,0267 0,0000 0,0000

(0,0363) (0,3739) (0,0210)

β21
0,0813 0,2006 0,0071

(0,0357) (0,1016) (0,0038)

β22
3,6032 10,039 1,8705

(0,0079) (0,3407) (0,0022)

λ1
46,641 46,641 46,641

(0,0004) (0,0043) (0,0001)

λ2
9,4709 9,8656 4,9654

(0,0019) (0,0205) (0,0005)

λ∞
0,2811 0,8668 0,1440

(0,0644) (0,2335) (0,0168)

σ1
0,2092 0,2095 0,2107

(0,0831) (0,1024) (0,0915)

σ2
0,2485 0,2308 0,2222

(0,0247) (0,0091) (0,0132)

ρ
0,8071 0,8322 0,6500

(0,0033) (0,4419) (0,0028)

µ1
0,3431 0,3431 0,3431

(0,7406) (0,7404) (0,7391)

µ2
0,0766 0,0246 0,0704

(0,3456) (0,4750) (0,3266)

1/γ1 0,0448 0,0448 0,0448
1/γ2 0,0345 0,0333 0,0326

p1 0,6207 0,6207 0,6207
p2 0,6186 0,4964 0,4990

and each other country: a difference in terms of estimated coefficients signals an asymmetric

form of contagion. According to the evidence in Table 3.2, Greece affects the other countries

but it is not affected by the other European countries. Indeed it is possible to answer to the

first question of this paper saying that there is a clear evidence of contagion from Greece to
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European countries. On the one hand, jumps in Greece cause a significant increase in other

countries’ jump intensity. On the other hand, jumps in all other countries do not increase the

probability of having jumps in Greece. Furthermore, as expected, there is evidence of self-

contagion in all countries.

In this paper, the model for Greece and Denmark is estimated in order to undestand if the

contagion is mainly due to being a member of a currency union or for regional proximity. Re-

ferring to the Basel Accords we could expect that systemic risk should be less relevant for these

European countries with respect to those that belongs to the Eurozone. The evidence from Ta-

ble 3.2 does not confirm this conjecture: the contagion spread also in the no-Eurozone country

and the self- and cross-excitation is comparable to those observed for Eurozone, in terms of sta-

tistical significance while the estimated value of β21 for Denmark is smaller. This means that

no-Eurozone countries were affected by Greek crisis but were less exposed to contagion with

respect to Eurozone countries.

3.3.3 Analyzing jump intensities

An interesting feature of the model presented in Aı̈t-Sahalia et al. (2015) is represented

by the jump intensity of the Hawkes process. In particular, λit provides information on the

probability of having jumps in country i at each point in time. Since the jump intensity for

country i depends on the jumps that take place both in country i and in country j, λit (as well

as λjt) gives insights into the interaction over time between the two countries. In other words, if

λit is high then the probability of having jumps in country i increases, and if contagion spreads,

then also λjt increases. I use the parameter estimates displayed in Table 3.2 to compute each

jump intensity and I assume, coherently with the identification of γi, that a jump takes place

in a country if, at a given point in time, the observed absolute return for that country is greater

than 2%.

Figure 3.2 plots the jump intensity for the Eurozone pairs of countries analyzed in this paper,

from January 1, 2007 to January 30, 2017. The left panel shows both jump intensities for Greece

and Italy while the right panel plots the jump intensities for Greece and Spain. It is evident

that crisis in Greece affects the Italian and the Spanish banking markets. Moreover, referring

to the estimates recorded in Table 3.2, the contagion from Greece to Spain is stronger than

the contagion from Greece to Italy. In all cases, the two intensities follow the same evolution

during the sovereign Greek crisis (2010-2014) while, before and after the crisis co-movements,

still present, seem to be less evident. At odds, the evolution of the jump intensity of Denmark
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Figure 3.2: This figure shows the jump intensity for the Eurozone pairs of countries (Greece vs
Italy and Greece vs Spain). The sample period is from January 1, 2007 to January 30, 2017. The
parameters used to obtain all jump intensities are those displayed in Table 3.2.

does not perfectly mimic that of Greece, as displayed in Figure 3.3. In fact, looking at the

estimates in Table 3.2, the jump intensity of Denmark is mainly due to its own jumps.

3.3.4 Contagion: rolling estimation

The beta parameters trace the contagion effect across banking markets on two dimensions:

cross- and time- excitation. First I focus on the former dimension in order to understand how

the crisis in Greece affects other European countries. In particular, I report the time evolution

of β21 which indicates the contagion from the Greek bank market (country 1) to the other Eu-

ropean countries (country to 2). In order to understand how β21 parameter behaves over time,

I perform a monthly rolling window estimation. Namely, the in-sample period starts on Jan-

uary 4, 1988 and ends on May 20, 2007 while the out-of-sample period starts on May 21, 2007

and ends on January 30, 2017. Indeed, the one-month coefficients are computed using the in-

sample period. Then the in-sample period is moved forward by one period (one month or 22

days) and the estimation is run again. This procedure is repeated step by step until the end of

the sample. Notice that in model (3.1)- (3.3) mutual excitation is also present during ”normal”

market conditions because of the interconnection among banking markets. But if the connec-
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Figure 3.3: This figure shows the jump intensity for the no-Eurozone pair of countries (Greece
vs Denamrk). The sample period is from January 1, 2007 to January 30, 2017. The parameters
used to obtain both jump intensities are those displayed in Table 3.2.

tion becomes stronger due to the contagion effect, then β21 should increase, causing a rise in

the probability of future jumps, at least for the period in which unexpected news propagate

in Europe. The left panel of Figure 3.4 plots the rolling estimates of β21 for Italy and Spain.

The cross-excitation parameter changes over time capturing the domestic market reactions to

Greek news. Specifically, β21 records some changes from 2009 to 2010 for both countries, indi-

cating that news about a possible crisis in Greece affected European markets generating panic

about domestic financial stability. Moreover, β21 reaches a peak at the end of 2011 for both

countries. The peak can be due to important decisions of the European Central Bank (ECB)

about measures to enhance the response to the crisis in Greece and around Europe. For exam-

ple, on October 27, 2011, European leaders agreed on a comprehensive package of measures

focused on Greece and Europe and on measures strengthening the governance of the euro area

and the budgetary discipline. Finally, in the right panel of Figure 3.4, I plot the behaviour of

the time-excitation parameter for Italy and Spain. β22 measures the effect of domestic news on

the probability of having future jumps in the domestic country/market. The effect of the US

subprime crisis is evident from the peak across 2008-2009 for both countries. Italy records a rise

in the time-contagion at the end of 2011 (e.g. December 4, 2001 Mario Monti reveals a compre-

hensive package of measures to ensure Italy’s stability and to enhance growth). Furthermore,
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Figure 3.4: This figure shows the behaviour of the cross- and time- excitation coefficients for
Italy and Spain.The out-of-sample period is from May 20, 2007 to January 30, 2017. The pa-
rameters are estimated using the rolling procedure described in Section 3.3.4

β22 registers an increase at the beginning of 2012 for both Italy and Spain. For example, on

January 13, 2012 Standard and Poor’s carries out a sweeping downgrade Italian and Spanish

sovereigns which are stripped of A- and A status; at February 3, 2012 the Spanish government

adopts a new set of measures to reform and strengthen the domestic banking market. Figure

3.5 plots the rolling estimates of β21 and β22 for Denmark. The former records some increases

(see 2012) but they are very small: the effect of unexpected news in Greece affect Denmark but

the impact is very low. Instead, β22 registers larger changes, due to unexpected news about the

Danish economy.

A quantitative assessment of the effect of different news (good or bad, about interventions by

ECB, IMF or politicians speech) on contagion is outside the scope of this paper and is left to

future research.

3.4 Conclusion and direction of future works

This paper sheds some light on financial contagion during the European debt crisis at the

bank level. Specifically, this paper aims at understanding whether the crisis in Greece spread in
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Figure 3.5: This figure shows the behaviour of the cross- and time- excitation coefficients for
Denmark.The out-of-sample period is from May 20, 2007 to January 30, 2017. The parameters
are estimated using the rolling procedure described in Section 3.3.4

other European countries and whether contagion, if present, is mainly due to being a member

of the European monetary union or to regional proximity, looking at the propagation of shocks

at the bank level. In order to measure the direction and the size of contagion transmission

between banking markets, I consider the Datastream Bank Sector Index for Greece, Italy, and

Spain and I estimate the discrete time multivariate Hawkes processes proposed by Aı̈t-Sahalia

et al. (2015) for several European countries. The empirical evidence suggests that unexpected

news in Greece cause a significant increase in the jump intensity of the other countries . This

means that, during the Greek crisis, the European banking markets are exposed to contagion

which is transmitted through inter-bank connections, especially for those countries belonging

to the monetary union. Moreover, I perform a monthly rolling estimation in order to under-

stand how the contagion parameters change over time. Through a visual inspection of the beta

parameters behaviour, I can first conclude that news about the crisis in Greece affect European

markets generating panic about domestic financial stability. In particular for no-Eurozone coun-

tries contagion is present but it is less evident; I can conclude that it is mainly due to regional

proximity. Second, the main changes are linked to important announcements of interventions

to control the Greek crisis but also to domestic (Italian, Spanish or Danish) news.

I plan to enlarge the analysis presented in this paper, considering several European countries
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for both groups, i.e. Eurozone and no-Eurozone. Nevertheless, I think that a quantitative assess-

ment of the effect of different news on contagion can have important monetary policy implica-

tions. In this sense, an event study can be done in order to understand if specific interventions

to limit the crisis propagation around Europe generating a decrease in the contagion or not. I

leave these questions to future research.
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