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LIST OF ABBREVIATIONS 

 

ABTSμ 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid); AGEs: advanced glycation end 

products; BHT: 3,5-di-tert-4-butylhydroxytoluene; CH: bread made with Choteau grain; CTRL: 

control; CORN: Corno di Toro pepper; DCFHμ 2’,7’-dichlorofluorescein; DCFH-DAμ 2’,7’-

dichlorofluorescein diacetate; DMEMμ Dulbecco’s modified Eagle’s medium; DNA: 

Deoxyribonucleic acid; DPBSμ Dulbecco’s phosphate-buffered saline; DPPH: 1,1-diphenyl-2-

picrylhydrazyl; DTNBμ 5,5’-dithio-bis(2-nitrobenzoic acid); EBSSμ Earle’s balanced salt solution; 

EDTA: ethylenediaminetetraacetic acid; FO: bread made with Fortuna grain; GAE: gallic acid 

equivalent; GR: glutathione reductase; GSH: reduced glutathione; IL-1β: interleukin-1β; IL-8: 

interleukin 8; IL-10: interleukin 10; iNOS: inducible nitric oxide synthase; JU: bread made with 

Judy grain; KA: bread made with Kamut® grain; LAM: Lamuyo pepper; LDH: lactate 

dehydrogenase; LPS: lipopolysaccharides; MA: bread made with Marquis grain ; MJ: mandarin 

juice; MJ20: mandarin juice with homogenization at 20 MPa; MJ20+Tr: mandarin juice with 

homogenization at 20 MPa in the presence of 10% trehalose; MJ20+Ls: homogenization at 20 MPa 

in the presence of Lactobacillus salivarius; MRP: Maillard reaction products; MTT: 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NO: nitric oxide; RFU: relative 

fluorescence units; ROS: reactive oxygen species; RE: bread made with Redwin grain; RPMI: 

Roswell Park Memorial Institute; SD: standard deviation; SDS: sodium dodecyl sulfate; SP: bread 

made with Spelt grain; SS: sodium salicylate; TAA: total antioxidant activity; TAC: total 

antioxidant capacity; TBA: 2-thiobarbituric acid; TBARS: thiobarbituric acid reactive substances; 

TCC: total carotenoid content; TCA: trichloroacetic acid; TE: trolox equivalent; TNF- α: tumor 

necrosis factor α; TPC: total phenolic content; TQ: talis quails; TU: bread mead with Turkey red 

grain ; USx: unsupplemented cells.  
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PREFACE 

It has been well documented that consumption of vegetable foods plays an important role against 

the onset of chronic diseases such as diabetes, cardiovascular disease and cancer (1-2). These 

protective effects are generally ascribed to the characteristic nutritional composition of vegetables, 

which generally contains high amount of unsaturated fatty acids, fiber, vitamins, and minerals. In 

addition, the presence of various components also known as phytochemicals (3) represent a positive 

trait of vegetable food.   

In vitro and in vivo studies suggest that many of these phytochemicals have biological activities, 

and exhibit the capacity to modulate one or more metabolic processes, which results in the 

promotion of better health (4). These properties may be linked to their antioxidant and anti-

inflammatory activity (5-6).  

Each plant food has a different content and profile of bioactive compounds, with specific chemical 

structure, bioavailability, metabolism and excretion. In addition, several factors as genetics, 

agronomic conditions and processing are known to affect the content of these compounds (7).  

The overall objective of this PhD project was to evaluate the functional properties of different plant 

foods (fruits, vegetables and grains) and of their bioactive compounds, trying to highlight the 

differences existing among plant foods of similar type.  

Foods are mostly complex mixtures of macro and micro components organized in a structure that 

can trap active compounds, modulating their release or inhibiting their activity (8). Since it is 

known that the nutritional value of a food depends not only on the concentration of bioactive 

molecules, but also by their bioaccessibility, i.e. the fraction released from the food matrix during 

the digestive process, all studies described in this PhD thesis have the common characteristic to 

have evaluated not only the foods themselves, but mainly the products of their in vitro digestion.  

In vitro digestion was performed using a standardized model that simulates the oral, gastric and 

duodenal phases of the digestive process, followed by the separation of the fraction containing the 

potentially bioavailable compounds. Although it is difficult to exactly mimic the physiological 

conditions taking place in vivo, this models allows to predict the bioavailability of different food 

components and is considered an easy, economic and reproducibly tool (9-10).  

To study the products of in vitro digestion of foods represent a step ahead in the evaluation of their 

nutritional value for different reasons. First, phytochemicals exert their function synergistically, 

therefore the study of single molecules does not reflect what happens in vivo after food intake. For 

this reason the object of the research were not the single compounds, but foods in which they are 

contained.  
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Second, food digestibility depends also on the technological processing that food underwent before 

consumption. Submitting differently processed food to in vitro digestion allows the evaluation and 

comparison of the impact of processing on the nutritional value. 

Third, foods are classified in general categories (i.e. apples, pears, etc) without considering that 

different varieties may have different composition and/or active components may have a different 

bioavailability,  

In this PhD thesis, three types of plant food have been considering:  

➢ mandarin juices obtained using different technological treatments; 

➢ ancient and modern varieties of grains, that were used to make bread; 

➢ peppers of different varieties.  

 

In two studies, the variability of bioactive molecules and their effectiveness were investigated with 

a combined approach, including also the evaluation of their effectiveness in a biological system. 

The human hepatoma HepG2 cell line, widely used in biochemical and nutritional studies, was 

chosen as model system given that the liver is the organ mainly involved in xenobiotic metabolism 

(11).  

In the first study, the impact of different technological processing on the antioxidant effect of 

mandarin juice was evaluated. Samples were in vitro digested and the mix of the bioavailable 

components was used for cell supplementation in basal condition and after exposure to an 

exogenous oxidative stress. The second study was focused on the investigation of the protective role 

of eight breads made with different whole ancient and modern grain flours. Breads were 

characterized and in vitro digested, then the digesta was used to supplement HepG2. The biological 

antioxidant and anti-inflammatory effects were evaluated in basal conditions and after a 2 h cell 

exposure to a mix of inflammatory agents. At last, the third study aimed to compare the digestibility 

and bioaccessibility of the main functional components of two different cultivars of sweet peppers. 

Overall, the present PhD project allowed to consider some aspects that are often not considered or 

underestimated while evaluating the nutritional value of food: 1. The food matrix effect, including 

its intrinsic variability; 2. The bioavailability of components, and the impact of food processing; 3. 

The synergism among the different bioactive molecules; the biological response of cells. 

Despite in vitro digestion and the use of cultured cells resemble only partially the in vivo situation, 

they are faster, less expensive, more ethical, and allow to select the most promising food and 

technologies before validation in clinical studies This research sets a new effective approach in the 

study of the nutritional properties of food. 
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Impact of different processing on the nutritional value of mandarin juice 

ABSTRACT 

In recent years, consumer’s and food industry interest in food having a high nutritional value is 

greatly increased. Notwithstanding, the impact of processing on food nutritional value is often 

underestimated. 

Fruit juices are a good source of micronutrients and phytochemicals, that should be preserved 

during processing. Therefore, it is important to develop innovative technological treatments able to 

maintain the nutritional value of fruit juices. Homogenization is a process often used to improve 

physicochemical and functional properties of fruit juices. 

The aim of this study was to investigate the impact of homogenization in different technological 

condition on the antioxidant properties of mandarin juice. The evaluation was not only performed 

on juices, but also on the product of their in vitro digestion. In addition, digested mandarin juices 

were supplemented to liver cultured cells, to evaluate the protective effect in a biological system. 

Overall, data herein presented indicate that homogenization reduces antioxidant phenolics 

accessibility after in vitro digestion, but differences due to processing almost disappear when the 

antioxidant effectiveness of juices is evaluated in cultured cells.  

Although further investigations are needed, our results highlight the importance of technological 

processing, and underline the needs of its evaluation to formulate food with a high nutritional value.  

INTRODUCTION 

Epidemiological studies suggest that diets rich in fruits and vegetables are related to a lower 

incidence of several chronic diseases.  

Fruit juices are very popular in many countries and could represent an important strategy to 

improve the human diet as they retain most of the nutritional characteristics of the fruits from which 

they are extracted (1-2). 

Mandarin juices are predominantly composed of water, have a low energy density and contain a 

range of key nutrients such as vitamin C, folate and phytochemicals. The major phytochemicals are 

phenolic compounds, a large group of secondary plant products with an aromatic ring bearing one 

or more hydroxyl substituents. The most common phytochemicals in mandarin juices are phenolic 

acids, flavanones (hesperidin, narirutin and didymin, usually present as glycosides form) and 

carotenoids (cryptoxanthin) (3-5). Several health-related properties have been ascribed to 

flavonoids, including antihyperglycemic (6), antimicrobial (7) and anticarcinogenic (8-10) 

activities, and they have been reported to protect against cardiovascular diseases (11-12). Moreover, 

in vitro and in vivo studies (13-15) showed that mandarin juices exert antioxidant effects. 
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The nutritional value of fruit juices mainly depends on the original fruit, but also the further 

processing has an important role. Therefore, there is increased interest towards the goal of obtaining 

foods with added nutritional value by new technologically strategies. The study of the relationship 

between food matrix and processing can help the development of new products detecting strengths 

and weaknesses of the system.  

The objective of this work was to characterize mandarin juices obtained by different technological 

processing, and to evaluate their nutritional value by measuring their antioxidant capacity on human 

hepatoma cells (HepG2 cells). Oxidative stress contributes to the initiation and development of 

chronic diseases including cardiovascular disease, diabetes, dyslipidemia, and cancer (16-17). 

Therefore, bioactive compounds with antioxidant activity may influence numerous health outcomes 

by shifting the redox balance to reduce oxidative stress, (18).  

Cultured cells are often used to evaluate the biological effects of food in pre-clinical studies. 

Particularly, HepG2 cells are considered a good experimental model since the liver has a central 

role in the metabolism of nutrients, xenobiotics and cytotoxic agents (19). In in vitro studies, cells 

are usually supplemented with discrete food-derived molecules and/or extracts, thus not resembling 

the in vivo situation. In fact, the use of extracts does not allow to monitor and evaluate all 

modification elapsing in the food during digestion. Digestion is a physiological event that is 

mandatory for obtaining bioavailable molecules, i.e. molecules available for absorption and it 

represents the first step of the process, since it allows the component release from the food matrix.   

In this light, the overall nutritional value of foods cannot be simply ascribed to their concentration 

of nutrients and bioactive components, but also their bioaccessibility, i.e. their possible release from 

the food matrix. Digestion, and consequently food components bioaccessibility, is influenced by 

both gastrointestinal conditions (20-21) and chemical characteristics of the food matrix. 

Technological processes can improve the bioaccessibility of bioactive compounds, mainly through 

changes in the cell wall structure and properties. Plant matrix disruption and cell cluster 

disintegration due to applied processing steps determine phytochemical liberation and 

bioaccessibility (22). 

To understand the impact of technological processing on the bioaccessibility of antioxidant 

molecules in mandarin juice, different juices were in vitro digested. Total antioxidant capacity 

(TAC) and total phenolic content (TPC) of not-digested and digested samples were determined, 

then, the digesta containing bioaccesible components were used for cell supplementation.  

In order to evaluate the possible protective effects of the different mandarin juices, in the second 

part of the study supplemention to cultured hepatic cells was performed in both basal condition and 

after an exogenous oxidative stress. The effects of supplementation were verified by measuring cell 
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viability, reactive oxygen species (ROS) and reduced glutathione (GSH) intracellular content, and 

thiobarbituric acid reactive substances (TBARS) level in the media. 

MATERIALS AND METHODS  

Chemicals: Dulbecco’s modified Eagle’s medium (DMEM), penicillin, streptomycin and 

Dulbecco’s phosphate-buffered saline (DPBS) were purchased from Lonza (Milan, Italy). 1-

propanol was supplied by Carlo Erba (Milan, Italy). All other chemicals were purchased from 

Sigma-Aldrich (Milan, Italy) and were of the highest analytical grade.  

 

Mandarin juices preparation 

Mandarin juices were prepared as previously described in (23). Briefly, ortanique fruit, a hybrid of 

tangerine and sweet orange (Citrus sinensis x Citrus reticulata) was harvested in an orchard located 

in Turis (Spain) and sent to the Department of Agro-Food Sciences and Technologies, University of 

Bologna, Cesena (Italy). The fruits were immediately washed by immersing them in tap water, 

drained and squeezed in an industrial extractor with finger cups. Raw juice was homogenized with a 

Manton-Gaulin pilot homogenizer at 20 MPa pressure, centrifuged, and the low pulp juice 

pasteurized at 63° C for 15 s for microbial inactivation.  

The pasteurized juice was then submitted to three different technological processes: 1. 

homogenization at 20 MPa (MJ20); 2. homogenization at 20 MPa in the presence of 10% trehalose 

(MJ20+Tr); 3. homogenization at 20 MPa in the presence of Lactobacillus salivarius CECT 4063 

(MJ20+Ls). In the following experiments, pasteurized mandarin juice (MJ) not undergoing 

additional technological treatment was also considered.  

Homogenization reduces the particle size of fruit juice. It is widely used in the production of citrus 

juice to improve some quality factors such as viscosity, color, shelf-life, stability of the pulp, and to 

increase flavanone bioavailability (23).   

Threalose addition stabilizes the juice suspension through the interaction with cloud compounds, 

and exertsa protective effect on various technological processes (24). 

The CECT 4063 strain of L salivarius was chosen for its demonstrated activity against Helicobacter 

pylori infection (25). 

Total antioxidant capacity (TAC) and total phenolics content (TPC) of the juices were determined 

as described below. 
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In vitro digestion 

The four different juices were digested in vitro according to the standardized method of Minekus et 

al. (26) that simulates oral, gastric and duodenal phases. 

Digestion was performed twice for each kind of juices in a shaking water bath at 37°C; the resulting 

final digested solutions were centrifuged at 50,000 g for 15 min. The supernatants were filtered with 

0.2 µm membranes, and an aliquot was sequentially ultrafiltered with Amicon Ultra at 3 kDa of 

molecular weight cut-off (EMD Millipore, MA, US) in order to obtain mixtures of compounds 

which size is small enough to be potentially absorbable through the intestinal mucosa (<3K, bio-

accessible fraction). Solutions derived from the two different digestions of the same type of juice 

were mixed and frozen until experiments.  

Total antioxidant capacity (TAC) and total phenolics content (TPC) of the <3K fraction of digested 

juices were determined as described below. 

 

Total antioxidant capacity (TAC)  

TAC was measured using the method of Re et al. (27), based on the capacity of antioxidant 

molecules in the sample to reduce the radical cation of 2,2’-azino-bis-(3-ethylbenzothiazoline-6-

sulfonic acid) (ABTS•+). The decolorization of ABTS•+ was measured as the quenching of the 

absorbance at 734 nm. Values obtained were compared to the concentration-response curve of the 

standard Trolox solution and expressed as ȝmol of Trolox equivalents (TE)/ml.  

 

Total phenolic content (TPC) 

The concentration of total phenols was determined using Folin-Ciocalteau’s method (28), adapted 

to a 96-well plate assay according to Dicko et al. (29) with slight modifications. Briefly, 45 ȝL of 

water were first pipetted into each well. Then, 5 ȝL of sample and 25 ȝL of 50% in water Folin- 

Ciocalteau (v/v) were added. After 5 min shaking, 25 ȝL of 20% (w/v) Na2CO3 aqueous solution 

and 100 ȝL of water were added to the mixture. The absorbance was measured after 60 min at 750 

nm with a Tecan Infinite M200 microplate reader (Tecan, Männedorf, Switzerland). Results were 

expressed as mg gallic acid equivalent (GAE)/ml of juice.  

 

HepG2 cells culture and supplementation  

HepG2 human hepatoma cells were grown in DMEM with 10% (v/v) fetal calf serum, 100 U/mL 

penicillin, and 100 ȝg/mL streptomycin, and maintained in a humidified atmosphere of 95% air and 

5% CO2 at 37 °C. Once a week cells were split 1:20 into a new flask, and culture medium was 

changed every 48 h.  
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Cells were seeded in 12-well plates at the concentration of 8×105 cells/mL. Cell counting was 

carried out using the TC20™ Automated Cell Counter (Bio-Rad Laboratories; Hercules, CA, US). 

After 24 h (75-80 % confluence) cells were incubated with serum-free DMEM containing 100 

U/mL penicillin, 100 ȝg/mL streptomycin and the < 3KDa digested mixtures at the concentration of 

100 µL/mL. To avoid interference due to vehicle, control cells (Ctrl) received a corresponding 

amount of a solution obtained from a “blank” digestion, that is an in vitro digestion performed 

without food.  

Before determining whether the digested samples possessed hepatoprotective activity, the 

cytotoxicity of juices were measured by increasing its concentration and cells were supplemented 

with the highest non-cytotoxic concentrationIn some experiments, 24 h after supplementation cells 

were washed twice with warm DPBS and exposed for 1 h to 4 mM H2O2 in Earle’s balanced salt 

solution (EBSS) (116 mM NaCl, 5.4 mM KCl, 0.8 mM NaH2PO4, 26 mM NaHCO3, 2.38 mM 

CaCl2, 0.39 mM MgSO4) to cause an oxidative stress. The onset of oxidative stress was verified by 

quantification of ROS production and TBARS level.  

In these experiments, a control condition was run by the exposure of not supplemented cells to 

EBSS without H2O2 for 1 h.  

 

Cell viability  

Cell viability was measured using the 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) colorimetric assay (30). The test is based on the capacity of mitochondrial dehydrogenase in 

viable cells to convert MTT reagent to a soluble blue formazan dye.  

Briefly, cells were washed twice with DPBS, and MTT reagent in RPMI-1640 medium without 

phenol red (final concentration 0.5 mg/mL) added to cells. After 1 h of incubation at 37 °C, medium 

was completely removed, 1-propanol added to dissolve formazan product, and absorbance was 

measured against a propanol blank at 560 nm using a Tecan Infinite F200 microplate reader (Tecan, 

Männedorf, Switzerland). Cell viability was expressed as percent of corresponding control cells.  

 

Measurement of intracellular ROS concentration  

Intracellular ROS concentration was monitored spectrofluorometrically according to Valli et al. 

(31). Briefly, 30 min before oxidative stress, DCFH-DA, dissolved in absolute ethanol, was added 

to cells to a final concentration of 0.02 mM. DCFH-DA penetrates the cell membrane and is 

enzymatically hydrolyzed by intracellular esterases to the non-fluorescent DCFH, which can be 

rapidly oxidized to the highly fluorescent DCF in the presence of ROS. At the end of the oxidative 

stress, cells were washed twice with cold DPBS, lysed with 1 mL of cold Nonidet P-40 (0.25% in 
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DPBS), incubated for 30 min on ice under shaking and centrifuged at 14,000g for 15 min. DCF 

fluorescence intensity was detected (Ȝex=485 nm, Ȝem=535 nm) using a Tecan Infinite F200 

microplate reader (Tecan, Männedorf, Switzerland), normalized for protein content in the sample 

and expressed as percent value of corresponding control cells. 

 

GSH Content 

After the oxidative stress, cells were lysed with 500 ȝL of cold Nonidet P-40 (0.25% in DPBS), 

incubated for 30 min on ice under shaking, and centrifuged at 14,000g for 15 min. One hundred 

microliters of the supernatant were incubated with 50 ȝL of DPBS and 50 ȝL of reagent buffer (160 

mM sodium phosphate, 4 mM EDTA, 4% SDS and 500 ȝM DTNB) for 30 min. GSH was 

measured spectrophotometrically by reading the absorbance of the newly formed 5-thio-2-

nitrobenzoic acid at 415 nm. The obtained results were compared to the concentration-response 

curve of standard GSH solutions, normalized for protein content in the sample and expressed as 

GSH/mg protein. 

 

Thiobarbituric acid reactive substances (TBARS) concentration  

TBARS, the end-products of lipid peroxidation, were assayed in EBSS as reported. After 1 h of 

stress with hydrogen peroxide, EBSS was removed, centrifuged at 400g for 3 min, and used for the 

assay. One hundred microliters of EBSS buffer was added to a mixture containing 100 ȝL of TCA 

(30% in 0.25N HCl), 100 ȝL of TBA (0.75% in 0.25 N HCl), and 3 ȝL of BHT (1% in ethanol). 

The mixture was heated for 10 min in a boiling water bath, allowed to cool, and the TBA adducts 

were detected fluorometrically (Ȝex = 535 nm, Ȝem = 595 nm). TBARS level was normalized for 

mg of proteins in each well and expressed as percent value of corresponding control cells.  

 

Protein content  

Protein content was determined according to Bradford (33), using bovine serum albumin in water as 

standard. 

 

Statistical analysis  

Statistical analysis of TAC and TPC was performed by the one-way ANOVA using Tukey’s test as 

the post test. All other data were analyzed for statistical significance by the one-way ANOVA, 

using Dunnett’s post-hoc test. Data obtained in cell cultures are reported as means ± SD of at least 

six samples derived from three independent cell cultures. All the analyses were performed using 

GraphPad Prism 6.0 software (GraphPad Software, San Diego, CA) 
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RESULTS 

TAC and TPC of fresh and digested mandarin juices  

Before digestion, no differences in TAC were detected among fresh juices (Fig. 1A), while MJ 

showed the highest TPC (Fig. 2A).  

After digestion, TAC was significantly higher in digesta than in the corresponding fresh juices , 

with significant differences among juices (Fig 1B). TPC increased in MJ and MJ20+Tr digesta, and 

appeared higher than in the other juices (Fig 2B). 

In digested samples, a significant correlation was observed between the TAC and TPC (Pearson 

correlation coefficient: r2=0.9; p<0.05).  
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Figure 1. TAC of mandarin juices (A) and <3K digested mandarin juices (B).  

TAC is expressed as μmol of Trolox Equivalents (TE)/mL of juice.  Data are means ± SD. Statistical analysis 

was by one-way ANOVA (A:ns, B: p<0.001) with Tukey’s post-hoc test. Different letters indicate significant 

differences (at least p<0.05). 
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Figure 2. TPC of mandarin juices (A) and <3K digested mandarin juices (B).  

TPC is expressed as mg of Gallic Acid Equivalents (GAE)/mL of juice. Data are means ± SD. Statistical 

analysis was by one-way ANOVA (A and B: p<0.001) with Tukey’s post-hoc test. Different letters indicate 

significant differences (at least p<0.05). 

 

Effects of digested mandarin juices in cells 

In basal condition, cell viability measured was not modified by the different supplementations (Fig. 

3A). Compared to control cells in basal condition, incubation with 4 mM H2O2 resulted in a 
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significant decrease in cell viability in unsupplemented cells (USx), while no modification was 

observed in cells supplemented with the different juices (Fig. 3B).  
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Figure 3. Cell Viability in basal (A) and stressed (B) conditions. 
Results are means ± SD (n = 6) and are expressed as percent of value in Ctrl cells (assigned as 100%). 

Statistical analysis was by one-way ANOVA (A: ns; B: p<0.001) with Dunnett’s post-hoc test vs Ctrl 

(***p<0.001). 

 

 

In basal condition, all supplementations induced a significant reduction of ROS production 

compared to controls (Fig. 4A). Compared to basal control cells, treatment with H2O2 caused a 

significant increase of ROS concentration in all tested conditions (Fig. 4B). Comparing stressed 

cells, ROS concentration appeared significantly lower in MJ20 (p<0.05) and in MJ20+Ls (p<0.01) 

supplemented cells than in unsupplemented ones. 
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Figure 4: ROS intracellular concentration in basal (A) and stressed (B) conditions. 

Values are means ± SD (n = 6).  Results were normalized for protein content, and are expressed as percent 

of value in basal control cells (assigned as 100%). Statistical analysis was by one-way ANOVA (p<0.001) 

with Dunnett’s post-hoc test: ***p<0.001 and **p<0,01 vs Ctrl cells. 
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In basal condition, no differences in GSH content were detected between control and supplemented 

cells, regardless the type of supplementation (Fig. 5A).  

Upon H2O2 treatment, GSH level significantly decreased in cells supplemented with MJ and with 

the processed MJ20 and MJ20+Ls. (Figure 5B). 
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Figure 5: GSH in basal (A) and stressed (B) conditions.  
Results are means ± SD (n = 6). GSH concentration is expressed as nmol/mg protein and normalized for 

protein content. Statistical analysis was by one-way ANOVA (p<0.001) with Dunnett’s post-hoc test 

(*p<0.05 and **p<0.01) vs corresponding Ctrl cells. 

 

 

In basal condition, all supplemented cells except MJ showed a significant reduction of TBARS 
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Figure 6: TBARS level in the media in basal (A) and stressed (B) conditions.  

Values are means ± SD (n = 6). Results were normalized for protein content, and are expressed as percent of 

TBARS concentration  in the corresponding control cell ( assigned as 100%) . Statistical analysis was by the 

one-way ANOVA (p<0.001) with Dunnett’s post-hoc test (**p<0.01; ***p<0.001) vs corresponding Ctrl 

cells. 
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DISCUSSION 

In recent years, consumption of fruit juices is increasing, mainly due to their convenience. Since 

fruit juices have good concentration of nutrients (such as minerals and vitamins) and bioactive 

compounds (mainly carotenoids and phenolics), in many countries the Dietary Guidelines indicate 

them as a possible substitute of one out of the five recommended daily portions of fruit and 

vegetable. This indication is not included in the Italian Dietary Guidelines, due to concerns related 

to the low fiber content and the relatively high fructose concentration of fruit juices. 

 Among bioactive substances in fruit juices, phenolic compounds may have a major contribution to 

the health benefits of fruit juices consumption.  

 To exert biological effects, bioactive compounds must be released from the food matrix during 

digestion, so becoming bioaccessible. Technological processes could modify bioaccessibility, so it 

is important to identify suitable technological treatment, able to preserve both safety and nutritional 

value of fruit juices.  

In the present study, the impact of different technological processing on the protective effect of 

mandarin juice was investigated. Mandarin juice was chosen as model fruit juice, and its effect was 

evaluated on cultured liver cells after in vitro digestion. Although it is difficult to exactly mimic the 

physiological conditions taking place in vivo in the gastro-intestinal tract, the use of the in vitro 

model has several advantages due to its simplicity, ease of application, and low cost. 

The comparison between fresh mandarin juices and their corresponding digested samples allowed 

detecting a significant TAC and TPC increase in all 3k samples. This could depend not only on the 

release of bioactives during digestion, but also on the presence of antioxidants in the digestive 

juices (34).  

As already reported (35-37), our results evidenced that processing can affect the release of 

components from the matrix. Fresh mandarin juice showed a higher TAC and TPC than 

homogenized juices. Among the latters, the juice homogenized in the presence of trehalose had the 

highest TAC and TPC, probably due to the trehalose interaction with cloud compounds and 

consequent stabilization of the suspension (38-39).  

In basal condition, supplementation with the different mandarin juices was not toxic to cells. In 

addition, all juices appeared protective when cells underwent an exogenous oxidative stress. 

Oxidative stress, defined as an imbalance between pro-oxidants and antioxidants in the cell 

environment, has a key role in the pathogenesis of several chronic disease. In particular, oxidative 

stress has been implicated in the induction and progression of hepatic diseases, since the liver is the 

main target organ of several cytotoxic agents that can cause ROS- and free radical-mediated 

apoptosis (40). Hydrogen peroxide induces an array of cellular dysfunctions, including generation 
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of hydroxyl radicals, peroxidation of membrane lipids, deletion of GSH and protein thiol, and DNA 

damage, eventually leading to cell death (41-44).  

In basal condition, supplementation with all juices significantly decreased ROS concentration, and 

had no effect on GSH level, suggesting that technological processes do not affect their biological 

activity. On the contrary, a decreased TBARS level was observed only in cells supplemented with 

the processed juices, the fresh one having no effect on this marker of oxidative stress. 

Treatment with H2O2 caused a significant increase of ROS and TBARS levels in all cells, regardless 

supplementation. We can hypothesize that the induced stress was too strong to be efficiently 

reversed by juice components. Notwithstanding, some differences were detected comparing the 

different juices. In fact, compared to unsupplemented cells MJ20 and MJ20+Ls supplemented ones 

showed a lower ROS concentration, and GSH content significantly decreased in all supplemented 

cells except the MJ20+Trx ones.  

Overall, data herein presented indicates that homogenization reduces antioxidant phenolics 

accessibility after in vitro digestion, but differences due to processing almost disappear when the 

antioxidant effectiveness of juices is evaluated in a biological system. Mandarin juice 

supplementation can modify the cell response mainly in basal condition, but without differences 

related to the technological treatment. 

It is worth noting that the in vitro digestion model used in this study did not include the simulation 

of colonic digestion, where phenolics can be further metabolized by the microbiota (46). Therefore, 

results obtained on HepG2 cells could reflect only in part the overall effect on mandarin juice 

supplementation. 

Further investigations are needed before conclusions can be drawn. Anyway, our results highlight 

the importance of technological processing and underline the needs of its evaluation to formulate 

food with a high nutritional value.  
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Evaluation of the anti-inflammatory activity of ancient grains 

ABSTRACT 

Nowadays, the higher nutritional value of whole grains than refined grains is recognized, and 

epidemiological studies have clearly shown that consumption of whole grains and whole-grain-

based products is associated with a reduction of the risk of developing many diseases.  

Although in the last decade there is a renewed interest in the ancient varieties for producing high 

value food products with enhanced health benefits, the nutritional dominance of ancient vs modern 

grains is still controversial. 

In this study, the anti-oxidant and anti-inflammatory effects of four different ancient grains and four 

different modern grains have been compared. To minimize differences due to agronomic and 

environmental factors, all grains were cultivated in the same location and growing season. Whole 

grain flours were obtained from grains, and used to make breads. After characterization, breads 

were in vitro digested, and the ultra-filtered digesta were supplemented to cultured liver cells. 

 The biological effects of digested bread were evaluated by measuring cell viability, ROS 

intracellular content, nitric oxide production and interleukin-8 secretion both in basal conditions and 

after 2 h exposure to a mix of inflammatory agents. 

Overall, results herein reported clearly indicate that, despite the impossibility to discriminate breads 

made with ancient and modern based on their compositional characteristics, the effects exerted by 

their supplementation to cultured cells are different. Although in vivo studies are needed before 

drawing conclusions, this study represents a step ahead for the evaluation of the putative positive 

effects of ancient grains and for the formulation of cereal-based products with added nutritional 

value. 

INTRODUCTION 

In numerous countries food products derived from cereal grains constitute a major part of the daily 

diet. Particularly, wheat provides more nutritional sustenance to humans than any other crop and 

thus arguably remains the most important crop for humans (1).  

Today most of the wheat species grown are hybrids which have been created from ancient wheat 

over the last 100 to 150 years. Although these “modern” wheat varieties have positive properties in 

terms of yield compared with the original ancient wheat, little attention has been given to their 

nutritional value because wheat quality has traditionally been judged on the basis of its 

technological functionality (2-3).  

In the last decade, there is a renewed interest in the ancient varieties for producing high value food 

products with enhanced health benefits (4). These beneficial properties are ascribed to higher levels 
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of proteins, lipids (mostly unsaturated fatty acids), soluble fibers, minerals, vitamins and 

phytochemicals, such as phytosterols and phenolic compounds (5-8). They are chiefly concentrated 

in the outer layers of grains and exist as soluble free compounds, soluble conjugates esterified to 

sugars and other low molecular weight molecules, and as insoluble forms bound to cell wall 

components (9-10). The highest concentration of health-promoting compounds in the outer layers 

could explain the reduction of the risk of developing many diseases, such as cardiovascular disease, 

diabetes, metabolic syndrome, and certain cancers (11-12).  

Nowadays, the higher nutritional value of whole grains than refined grains is recognized (13), while 

the nutritional dominance of ancient vs modern grains is still controversial. In the literature, the 

most of the in vitro and animal studies aimed to demonstrate the health benefit of ancient grains 

have been performed using extracts/lysates (14-16) or discrete compounds derived from ancient 

wheats (17). This represents a limitation, since it is conceivable that the highest nutritional value 

and potential health benefit of ancient grains are not related to single compounds, but to their 

overall nutritional composition (18). Furthermore, the use of extracts is far from reproducing the 

physiological situation, since grains undergo extensive treatment to produce foods, and foods must 

be digested before exerting any action into the body. 

In addition, compositional differences existing among ancient grains and varieties of the same 

ancient species (19-21), often exacerbated by agronomic and environmental factors (22-23),  could 

make difficult to generalize results obtained in a specific study. Overall, a definitive comparison 

between ancient and modern grains is still lacking.  

In this study, the anti-oxidant and anti-inflammatory effects of four different ancient grains and four 

different modern grains have been compared. To minimize differences due to agronomic and 

environmental factors, all grains were cultivated in the same location and growing season. Whole 

grain flours were obtained from grains, and used to make breads. After characterization, breads 

were in vitro digested, and the ultra-filtered digesta were supplemented to cultured HepG2 liver 

cells. In some experiments, cultured cells were submitted to an exogenous inflammatory stress. The 

effects of the supplementation were investigated by measuring cell viability, reactive oxygen 

species (ROS) intracellular content, nitric oxide (NO) production, interleukin-8 (IL-8) and 

interleukin-10 (IL-10) secretion. 

MATERIALS AND METHODS  

Materials 

Dulbecco's modified Eagle's medium (DMEM) and Dulbecco's phosphate-buffered saline (DPBS) 

were from Lonza (Milan, Italy). All other chemicals were from Sigma-Aldrich (Milan, Italy). All 
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chemicals and solvents were of the highest analytical grade. Ingredients for bread formulation were 

purchased at local markets. 

 

Grains 

Four ancient (Kamut TM khorasan - KA; Spelt - SP; Marquis - MA; Turkey red - TU)  and four 

modern grains (Fortuna - FO; Redwin - RE; Choteau - CH; Judy - JU) were considered. 

Kernels were separated from the husk and cleaned from residues using sieves with different pores 

diameter. To obtain flour, grains were then milled with a small milling system (Molino Davide 4V, 

Novital, Italy). After every grinding each part was carefully cleaned in order to avoid 

contaminations, and flours were packed under vacuum and stored at 4°C. 

 

Bread preparation 

All breads were made according to the same recipe (Table 1), limiting as much as possible the 

amount of other ingredients besides flour. 

A small scale bread-maker (Pane Express, Ariete, Italy) was used to standardize the dough mixing 

and the baking steps; the same program (number 3) in the machine was set for all the breads. Once 

ready, breads were let to cool down at room temperature, cut in pieces and stored at -20 °C until 

analysis. 

 

Ingredients (g) Absolute quantity Relative quantity 

Flour 400 57.5 % 

Water 250 35.9 % 

Sugar 15 2.2 % 

Salt 3 0.4 % 

Dry yeast 28 4.0 % 

Table 1: Bread recipe 

 

Bread nutritional composition and color analysis 

Moisture, total nitrogen, carbohydrates, lipids, fibers and ashes were evaluated according to Baldini 

et al. (24). Selenium concentration in the different flours was determined by inductively coupled 

plasma-atomic emission spectrometry (25). 

To evaluate the total antioxidant capacity (TAC) and the total phenolic content (TPC) 1 g of each 

bread was extracted according to Danesi et al. (26) with a final volume of 6 mL ethanol/water 

(70:30) acidified with 0.1 % HCl. TAC was measured using the method of Re et al. (27), and 

expressed as µmol of Trolox equivalents (TE)/ g. TPC was determined using Folin-Ciocalteau’s 
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method, adapted to a 96-well plate assay according to Dicko et al. (28). Results were expressed as 

mg gallic acid equivalent (GAE)/ g.  

The total carotenoid content (TCC) was determined using the method described by Valli et al. (29) 

with some modifications. Briefly, 1 g of bread was mixed with 4 mL of hexane-acetone (50:50, 

v/v), let 20 min at 40 °C under shaking, vortexed at high speed, sonicated, vortexed again, and 

centrifuged at 120 × g for 3 min. The absorbance of the supernatants was measured at 450 nm and 

compared to the concentration–response curve of β-carotene standard. Results were expressed as 

micrograms of β-carotene equivalents (β-CE)/ g. 

The CIE system color profile of the eight breads was measured by a reflectance colorimeter (CR-

400, Minolta, Italy) using illuminant source C (30). Measurements were randomly taken at different 

locations in the bread samples. Results were expressed as values of the three color components: L* 

the lightness (that range from 0 black to 100 white), a* the redness (that range from green 

associated with negative values to red associated with positive values) and b* the yellowness (that 

range from blue associated with negative values to yellow associated with positive values). The 

colorimeter was calibrated using a standard white ceramic tile. 

 

In vitro digestion 

The breads were digested in vitro according to the standardized method of Minekus et al. (31). The 

digested solutions were centrifuged at 50,000 × g for 15 min, and the supernatants filtered with 0.2 

µm membranes. To separate compounds which size is small enough to be potentially absorbable 

through the intestinal mucosa, an aliquot was sequentially ultrafiltered with Amicon Ultra at 3 kDa 

of molecular weight cut-off (EMD Millipore, MA, US) (<3KDa, bio-accessible fraction). 

Ultrafiltered solutions derived from two different digestions of the same bread were mixed and 

frozen at -20°C until experiments. TAC and TPC of the digesta from different breads were 

determined as described above. 

 

HepG2 cells culture and supplementation 

HepG2 cells were grown in DMEM with 10 % (v/v) fetal calf serum, 100 U/mL penicillin, and 100 

ȝg/mL streptomycin, and maintained in a humidified atmosphere (λ5 % air and 5 % CO2) at 37°C. 

Once a week cells were split 1:20 into a new 75 cm2 flask, and culture medium was changed every 

48 h. 

Cells were seeded in 12-well plates at the concentration of 8×105 cells/mL. Cell counting was 

carried out using the TC20™ Automated Cell Counter (Bio-Rad Laboratories; Hercules, CA, US). 

After 24 h (75-80 % confluence) cells were incubated with DMEM without phenol red containing 
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100 U/mL penicillin, 100 ȝg/mL streptomycin, 1 mg/mL BSA, 2 mM glutamine, and the < 3KDa 

digested bread solutions at the concentration of 100 µL/mL. Cells were also supplemented with 

4mM sodium salicylate (SS) to compare the effect of digested breads to the effect of a well-known 

anti-inflammatory agent. To avoid interference due to vehicle, some cells received a corresponding 

amount of a solution obtained from a “blank” digestion, that is an in vitro digestion performed 

without food. Preliminary experiments were performed to check possible differences in term of cell 

viability and cytokines secretion between cells receiving the “blank” digesta and cells receiving a 

corresponding amount of sterile water. No significant differences were observed (data not shown), 

so cells receiving the “blank” digesta were used as control (Ctrl). 

In some experiments, 24 h after supplementation media were removed and cells were incubated for 

two additional hours with new DMEM containing the inflammatory agents lipopolysaccharide 

(LPS, 100 ng/mL), interleukin-1β (IL-1β, 10 ng/mL), and tumor necrosis factor α (TNF-α, 10 

ng/mL) (32). 

After 2 hours media were removed, cells scraped-off and maintained at -20 °C until analyses.  

 

Cell viability 

Cell viability was measured using the 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) colorimetric assay, according to Di Nunzio et al. (33). Results were expressed as percentage 

of value obtained in Ctrl cells. 

 

ROS intracellular concentration 

Intracellular ROS concentration was monitored spectrofluorometrically as described in details by 

Valli et al. (34). Briefly, DCFH-DA (2mM) in absolute ethanol was kept in the dark at -20°C until 

use. In basal condition, 10 µL DCFH-DA/mL medium were added to HepG2 cells 30 min prior to 

digesta supplementation. In inflammatory condition, DCFH-DA at the same concentration was 

added 30 min prior to the inflammatory stimulus. After 24 or 2 h respectively, cells were washed 

twice with cold DPBS, lysed with 500 µL of cold Nonidet P-40 (0.25% in DPBS), incubated on ice 

with shaking for 30 min and centrifuged at 14,000·g for 15 min. DCF fluorescence intensity was 

detected on supernatants (Ȝex=485 nm, Ȝem=535 nm) using a Tecan Infinite F200 microplate reader 

(Tecan, Männedorf, Switzerland), normalized for protein content in the sample, and expressed as 

percent of value in Ctrl cells. 
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Nitric Oxide (NO) production 

NO production was assessed measuring the final products of NO metabolism, nitrite and nitrate, in 

the cell media. The Nitrite/Nitrate Fluorometric Assay Kit (Cayman Chemical, Ann Arbor, 

Michigan USA) was used following the manufacturer’s instruction. Results were normalized for 

protein content in the well, and expressed as µM of nitrites and nitrates.  

 

Cytokines secretion in the cell media 

The level of the pro-inflammatory IL-8 and the anti-inflammatory IL-10 was estimated in cell 

media in both basal condition and after cell treatment with the inflammatory agents by AlphaLISA 

kits (IL-10 and IL-8 Immunoassay Research Kits; Perkin Elmer Inc., Waltham, MA, USA) 

following the manufacturer’s instructions (35). λ6-microwell plates (96 1/2 AreaPlate from Perkin 

Elmer) were used and read using an EnSpire™ plate reader (Perkin Elmer Inc., Waltham, MA, 

USA). Results were normalized for protein content in the well, and expressed in pg/ mL 

medium/mg protein. 

 

Protein content  

Cells were washed with cold DPBS, lysed with 500 µL of cold Nonidet P-40 (0.25% in DPBS), 

incubated on ice with shaking for 30 min and centrifuged at 14,000·g for 15 min. Supernatants were 

collected and stored at -20 °C until protein determination. Protein content was determined 

according to Bradford (36) using bovine serum albumin (BSA) as standard. 

 

Statistical analysis  

All data were analyzed for statistical significance by one-way ANOVA, using Dunnett’s test or 

Tukey’s honestly significant difference (HSD) test as post-hoc test. 

 

RESULTS 

Bread nutritional composition  

The nutritional composition of the different flours is presented in Table 2. MA, CH and FO breads 

had the highest content in total nitrogen, and MA and FO the lowest content of available 

carbohydrates. Water, lipids, ash, energy and selenium content was similar among the different 

breads.  
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 KA MA SP TU CH FO RE JU 

Water 

(g/100g) 

27.96 ± 
1.40 a 

30.18 ± 
1.51 a 

26.83 ± 
1.34 a 

30.74 ± 
1.54 a 

28.92 ± 
1.45 a 

29.66 ± 
1.48 a 

29.19 ± 
1.46 a 

29.66 ± 
1.48 a 

Total Nitrogen 

(g/100g) 

12.70 ± 
0.64 c,d 

15.39 ± 
0.77 a 

13.37 ± 
0.67 b,c 

12.56 ± 
0.63 c,d 

14.91 ± 
0.75 a,b 

15.30 ± 
0.77 a 

11.27 ± 
0.56 d 

12.21 ± 
0.61 d 

Carbohydrates 

(g/100g) 

49.85 ± 
1.66 a 

42.74 ± 
1.89 c 

49.66 ± 
1.66 a,b 

47.06 ± 
1.80 a,b,c 

45.23 ± 
1.81 a,b,c 

44.76 ± 
1.82 b,c 

49.13 ± 
1.73 a,b 

47.87 ± 
1.77 a,b 

Lipids 

(g/100g) 

1.67 ± 
0.17 a 

1.67 
±0.17 a 

1.75 ± 
0.18 a 

1.61 ± 
0.16 a 

1.53 ± 
0.15 a 

1.52 ± 
0.15 a 

1,58 ± 
0.16 a 

1.62 ± 
0.16 a 

Fibers 

(g/100g) 

5.90 ± 
0.59 b 

7.97 
±0.80 a 

6.17 ± 
0.62 a,b 

6.09 ± 
0.61 a,b 

7.32 ± 
0.73 a,b 

6.62 ± 
0.66 a,b 

6.69 ± 
0.67 a,b 

6.36 ± 
0.64 a,b 

Ash 

(g/100g) 

1.96 ± 
0.29 a 

2.05 
±0.31 a 

2.22 ± 
0.33 a 

1.94 ± 
0.29 a 

2.09 ± 
0.31 a 

2.15 ± 
0.32 a 

2.13 ± 
0.32 a 

2.29 ± 
0.34 a 

Energy 

(Kcal/100g) 
277 a 263 a 280 a 265 a 269 a 267 a 269 a 268 a 

Selenium 

(mg/100g) 

0.056 ± 
0.024 a 

0.034 
±0.014 a 

0.079 ± 
0.012 a 

0.045 ± 
0.019 a 

0.034 ± 
0.014 a 

0.040 ± 
0.017 a 

0.054 ± 
0.023 a 

0.052 ± 
0.022 a 

 

Table 2. Nutritional composition and Selenium content of the different breads.  

Data are means ± SD (n = 3). Statistical analysis was carried out by the one way ANOVA with 

Tukey’s HSD post-test (Total Nitrogen p<0.001, Carbohydrates p<0.01, Fibers p<0.05). Different 

letters in the same row indicate statistically significant differences (at least P < 0.05). 

 

The color profile of the different breads is reported in Table 3. The highest L* was detected in SP 

and JU breads, followed by TU. The ancient MA showed the highest a*, while KA the lowest. The 

highest b*value was detected in KA. 

 
 KA MA SP TU CH FO RE JU 

L* 
49.84 ± 1.24 

d,e 
47.57 ± 
0.25 e,f 

57.56 ± 
0.80 a 

55.40 ± 
1.29 a,b 

46.50 ± 
1.20 f 

52.17 ± 
2.74 c,d 

53.96 ± 
0.04 b,c 

57.29 ± 
0.04 a 

a* 3.46 ± 0. 19 f 
6.20 ± 
0.04 a 

4.79 ± 
0.25 d,e 

5.38 ± 
0.17 c 

5.76 ± 
0.08 b 

5.01 ± 
0.08 d 

5.37 ± 
0.07 c 

4.68 ± 
0.06 e 

b* 
21.45 ± 0.10 

a 
17.28 ± 
0.03 d,e 

19.27 ± 
0.76 b 

17.99 ± 
0.60 c,d 

16.22 ± 
0.42 f 

17.03 ± 
0.44 e 

18.73 ± 
0.05 b,c 

19.17 ± 
0.11 b 

 
Table 3. Breads color profile.  

Data are means ± SD (n=3). Statistical analysis was by one-way ANOVA(p< 0.001) with Tukey’s 
post-hoc test. Different letters indicate significant differences (at least p<0.05).  

 

As shown in Figure 1, the TAC, TPC, and TCC were specie-specific, with no clear discrimination 

between ancient and modern grains. Overall, SP showed the highest TAC, TPC and TCC.  

A significant positive correlation was observed between bread TAC and TPC (Pearson correlation 

coefficient: r2=0.87; p<0.001), while no correlation was detected between bread TAC and TCC. 
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Figure 1. TAC, TPC, and TCC of breads.  

Data are means ± SD (n=3). Statistical analysis was by one-way ANOVA (p<0.001) with Tukey’s 
post-hoc test. Different letters indicate significant differences (at least p<0.05). 

 
Digested bread 

Digestion causes the release of compounds from the food matrix. Consequently, after in vitro 

digestion, both TAC and TPC were higher in the digesta than in the corresponding bread. Both 

parameters were similar in ancient and modern grain bread digesta, except in modern RE bread 

which showed significantly lower TAC (Figure 2). In the digesta, a significant positive correlation 

was observed between TAC and TPC (Pearson correlation coefficient r2=0.57; p<0.05). 

TCC in the digested fraction was below detection limit, probably due to the low bioaccessibility of 

these molecules, as recently reported by Corte-Real et al (37). 
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Figure 2. TAC and TPC of digested breads.  

Data are means ± SD (n=3). Statistical analysis was by one-way ANOVA (p<0.001) with Tukey’s 
post-hoc test. Different letters indicate significant differences (at least p<0.05). 

 
Effects on cultured cells – basal condition 

Cell viability of cells supplemented with bread made with two ancient grains (KA and SP) was 

significantly higher than in controls. On the contrary, SS caused a significant decrease in cell 

viability (Figure 3A). 

Compared to controls, supplementation with all breads except MA and FO decreased ROS 

intracellular concentration (Figure 3B). NO secretion in the cell media increased in cells 

supplemented with KA and TU (ancient grains) and CH (modern grain), and mainly in SS 

supplemented cells (Figure 3C). 
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Figure 3: Effects on cells in basal condition.  

Results are means ± SD (n=6). Panel A: cell viability. Results are expressed as percent of value in 

the corresponding control cells (assigned as 100%). Panel B: ROS intracellular concentration. 

Results were normalized for protein content in the sample, and are expressed as percent of value in 

the corresponding control cells (assigned as 100%).Panel C: NO secretion. Results are expressed 

as nmol NO/ mL medium/ mg protein in the well. Statistical analysis was by one-way ANOVA 

(p<0.001) with Dunnett’s post-hoc test: *p<0.05, and ***p<0.001 vs corresponding control cells. 
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Within the modern grain supplemented group, secretion of pro-inflammatory IL-8 was significantly 

higher in 3 out of 4 supplemented cells than in control cells, and in cells supplemented with SS. On 

the contrary, the IL-8 secretion was significantly lower in KA supplemented cells than in controls 

(Figure 4).  

In all cells, IL-10 secretion was very low, below the detection limit (data not shown). 
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Figure 4: Interleukin-8 (IL-8) secretion in the cell media in basal condition.  

Data are means ± SD (n=6). Results are expressed as pg IL-8/ mL medium/ mg protein in the well. 

Statistical analysis was by one-way ANOVA (p<0.001) with Dunnett’s post-hoc test: *p<0.05, and 

***p<0.001 vs corresponding control cells. 

 

Effects on cultured cells – inflamed condition 

In inflamed cells, no significant differences in cell viability were detected between control and 

digested bread supplemented cells, and the detrimental effect of SS was still present (Figure 5A). 

Compared to corresponding controls, ROS concentration was significantly increased in all cells 

supplemented with breads made with modern grains, except CH ones (Figure 5B). 

NO production was not influenced by the different supplementation except JU and SS, which 

caused a significant increase of NO concentration in the media (Figure 5C) 
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Figure 5: Effects on cells  in inflammed condition.  

Results are means ± SD (n=6). Panel A: cell viability. Results are expressed as percent of value in 

the corresponding control cells (assigned as 100%). Panel B: ROS intracellular concentration. 

Results were normalized for protein content in the sample, and are expressed as percent of value in 

the corresponding control cells (assigned as 100%).Panel C: NO secretion. Results are expressed 

as nmol NO/ mL medium/ mg protein in the well. Statistical analysis was by one-way ANOVA 

(p<0.001) with Dunnett’s post-hoc test: *p<0.05, **p<0.01, and ***p<0.001 vs corresponding 

control cells. 

 

The inflammatory stimulus greatly increased IL-8 production in all cells compared to their basal 

counterparts. Compared to the corresponding control cells, IL-8 production was significantly higher 

in SS and modern grain supplemented cells except CH ones, while no differences were detected 

among controls and cells supplemented with ancient grains (Figure 6). 

Even in inflamed condition IL-10 secretion was below the detection limit (data not shown) 
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Figure 6: Interleukin-8 (IL-8) secretion in the cell media in  inflamed conditions.  

Data are means ± SD (n=6). Results are expressed as pg IL-8/ mL medium/ mg protein in the well. 

Statistical analysis was by one-way ANOVA (p<0.001) with Dunnett’s post-hoc test: *p<0.05, and 

***p<0.001 vs corresponding control cells. 

 

DISCUSSION 

In order to point out differences among the different grains, breads made with the corresponding 

flours were characterized in term of nutritional composition, color profile, TAC, TPC and TCC.  

Analyses evidenced a substantial similarity of nutritional profiles and selenium content among 

breads made with the different wheat varieties. Although these results are in disagreement with 

previous report (38), they could be explained by the same agronomic and environmental conditions 

in which grains were cultivated.  

Differences among varieties were detected in the bread color profile. The color of plant foods is 

mainly due to natural classes of pigment as carotenoids and anthocyanins. Several studies have 

investigated the relationship between color and carotenoids (39-40) underlining that the degree of 

yellowness in wheat grain and its end products is affected by carotenoids degradation during 

processing (41). In this study the highest L* and TCC were detected in SP and JU breads. 

According to Dinelli et al (42), a high variability of antiradical activity and polyphenol content was 

observed among the investigated breads, and a significant correlation was detected between TAC 

and TPC, as reported by Adom and Lui (43). Anyway, it was not possible to discriminate ancient 

and modern grains based on their TAC, TPC and TCC values.  

Digestion process and pH conditions result in starch hydrolysis, proteolysis and releasing phenolics 

from their conjugation forms as well as cell wall matrices (44-46). Accordingly, bread in vitro 

digestion allowed the release of phenolic substances from the food matrix, and an about 2 fold 

increase of TAC and TPC was observed in the digesta compared to the corresponding undigested 

bread. Even in the digested fractions, a significant positive correlation was observed between TAC 
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and TPC, but it was not possible a discrimination of ancient and modern grains based on these 

parameters. 

Since several of the phytochemicals in whole grain have been reported to exert antioxidant and anti-

inflammatory effects (47), in the second part of the study digested breads were supplemented to 

cultured liver cells to evaluate their protective role in basal condition and after an inflammatory 

stress. 

In basal condition, cell viability increased in cells supplemented with Kamut TM Khorasan bread and 

spelt bread, while no effect of bread supplementation was observed in inflamed cells.. 

Supplementation with SS caused a significant decrease in cell viability in both conditions. A similar 

effect of SS in HepG2 cells has been already reported by Raza et al (48), due to alteration in 

mitochondrial respiratory function, cell cycle arrest and increasing oxidative stress.  

In basal condition, the supplementation with the most of breads and with SS decreased ROS 

production, so suggesting a protective effect. On the contrary, this putative protective effect 

disappeared after the inflammatory treatment, and ROS concentration was similar in control and in 

cells supplemented with bread made with ancient grains. On the contrary, ROS concentration was 

higher in cells supplemented with 3 out of 4 breads made with modern grains (FO, RE and JU). 

It has been reported that SS increases NO production in HepG2 cells, via the modulation of 

inducible nitric oxide synthase (iNOS) (49). In agreement, in this study cells supplemented with SS 

showed an increased NO production in both basal and inflammatory condition. Phenolic 

compounds also modulate iNOS (50-51). This could explain the observed increase in NO 

production in cells supplemented with the ancient KA and TU and the modern CH compared to 

controls in basal condition. In inflamed condition, NO production was similar in control and 

supplemented cells, except the JU supplemented ones. The Janus role of NO is well known, and it 

can be protective or harmful depending on the kind of insult and the amount of NO (52). In this 

light, it is interesting to note that in all cells except the SS treated ones, NO concentration was 

higher after 2 h exposure to the inflammatory stimulus than after 24 h supplementation in basal 

condition. On the contrary, after 24 h treatment with SS NO concentration was about 35 nmol/mL 

medium/mg protein, and it decreased to about 10 nmol/mL medium/mg protein after 2 h 

inflammation.  

Since HepG2 cells have been reported to produce IL-8 and IL-10 in response to specific stimulation 

(29), these two cytokines were chosen as markers to further evaluate the possible modulation of 

inflammation by the different breads. Cytokines are the major local mediators of intercellular 

communications required to integrate the stimuli response in immune and inflammatory processes. 

IL-8 is a pro-inflammatory molecule inducing cytotoxic effects (53), whereas IL-10 is a 
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prototypical regulatory cytokine exerting several immune-modulatory effects, and cereals have been 

shown to stimulate its production in monocytes (54).  

The production of many pro-inflammatory cytokines, including IL-8, is mainly under control of the 

transcription factor NF-kB (55), which plays a critical role in the expression of many genes 

involved in immune and inflammatory responses activation in HepG2 cells. Callejas et al (49) 

evidenced that NSAIDs, including SS and aspirin, fail to interfere with NF-kB.  This could explain 

the increase of IL-8 secretion observed in SS supplemented cells in both basal and inflammatory 

conditions.  

In basal condition, supplementation with bread made with modern grains except RE increased IL-8 

secretion. On the contrary, supplementation with KA reduced IL-8 level. The inflammatory 

stimulus greatly increased IL-8 secretion in all cell groups compared to the basal counterparts. 

Compared to inflamed control cells, IL-8 concentration was higher in the media of cells 

supplemented with bread made with modern grains, except CH. 

IL-10 secretion was below the detection limit in all tested conditions. 

Overall, results herein reported clearly indicate that, despite the impossibility to discriminate breads 

made with ancient and modern based on their compositional characteristics, the effects exerted by 

their supplementation to cultured cells were different. 

Different markers were used to identify the protective role of bread (cell viability, ROS 

concentration, NO secretion and IL-8 production), and two ancient grains (KA and SP) ameliorated 

the most of them in basal condition. In inflamed condition, no differences were detected between 

controls and cells supplemented with ancient grains, while the most of modern grains had a 

detrimental effect on ROS concentration and IL-8 production. 

The observed protective effects of KA is in agreement with a previous studies in cultured cells (29), 

animals (56), and humans (57) and with a recent review (4) reported in Appendix. 

In addition to natural compounds, the protective activity in ancient grain-based foods could be due 

to increased browning reaction during baking and toasting processes (3). This effect could be 

related to the Maillard reaction, which is responsible for the characteristic color and taste of baked 

foods. It has been reported that some Maillard reaction products (MRPs), particularly melanoidins, 

have beneficial effects as antioxidant (through the activation of the gene expression of superoxide 

dismutase) and anti-inflammatory factors (58-59). On the other hand, advanced glycation end 

products (AGEs) are pro-inflammatory and toxic (60).  As reported in a previous study (29) it is 

conceivable that the use of different flours led to a different production of both MRPs and AGEs, 

contributing to the different antioxidant and anti-inflammatory effect.  
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Although this study does not allow to evidence exactly which flour components are the protective 

ones, this must not be considered as a limitation since it is known the possible synergism among the 

different molecules and the importance of some aspects related to the food matrix.  

Overall, our results confirm the potential health effects of ancient grains, particularly KA and SP. 

Although the use of in vitro digestion reduced in part the distance from the physiological situation 

in vivo, further investigations are needed. Until those studies are made, results herein reported 

highlight that ancient varieties could be useful in improving the nutritional value of cereal products, 

thereby stimulating producers to use these varieties in their current breeding strategies. 
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In vitro digestibility and bioaccessibility of bioactive compounds in different 

cultivar of Sweet Pepper (Capsicum annuum) 

ABSTRACT 

The high content of antioxidant bioactive compounds such as vitamin C, carotenoids, phenolics and 

flavonoids has increased the interest of consumers, food industry and the scientific community in 

sweet pepper fruits (Capsicum annum L.). However, a huge number of Caspicum annuum cultivars 

is grown worldwide, and it is known that the concentration of the bioactive compounds can be 

different among varieties of the same vegetable and may be affected by the harvesting period. In 

addition, the possible health benefits of phytochemicals depend not only on their concentration in 

the food, but also on their availability in the target tissue and therefore on their digestibility, that is 

the amount of the food constituent that is digested and released from the solid food matrix in the 

gastrointestinal tract. 

The current study was designed to evaluate and compare digestibility and bioaccessibility of the 

main functional components of two different cultivars of sweet pepper (Lamuyo and Cornelio) 

cultivated in Italy. Peppers were submitted to an in vitro digestion using the standardized model that 

simulates oral, gastric and duodenal digestion. Digested samples were centrifuged and filtered on 

0.2 µm membranes (TQ digested samples) and an aliquot was sequentially ultrafiltered (< 3K 

fractions), allowing the separation of potentially bioavailable compounds. Total phenolic content 

(TPC), vitamin C concentration, total carotenoid content and antioxidant activity (TAC) were 

assessed in fresh peppers, TQ digested samples and < 3K digested fractions, then digestibility and 

bioaccessibility indices of bioactive components were calculated.  

Results showed that TPC and TCC in fresh peppers were different between the two cultivars. 

TAC increased in digested samples compared to the not digested counterparts, suggesting the 

release of antioxidant components from the food matrix. Furthermore, red Lamuyo showed higher 

digestibility and bioaccessibility indices of TPC while Cornelio higher digestibility index of 

Vitamin C than Lamuyo peppers. 

At present, food are nutritionally evaluated on the basis of their chemical characteristics, without 

taking into account that their components must be released during digestion, and the food matrix 

can have a great impact on the entity of the release, and therefore on bioaccessibility. Considering 

the digestive process this work sets a new effective approach in the study of the nutritional 

properties of food. 
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INTRODUCTION 

Peppers (Capsicum annuum) are one of the most widely consumed vegetables for their combination 

of flavor and nutritional value (1). They are a good source of vitamin C, vitamin E, folate (2) and 

carotenoids that include β-carotene (pro-vitamin A) and oxygenated carotenoids such as zeaxanthin, 

capsantine, capsorubin and cryptocapsin. Carotenoids are lipid soluble compounds derived from the 

isoprenoid pathway and share a carbon isoprene backbone with a variety of ring structures, which in 

the case of pepper fruits are stored in the chromoplasts. Even though capsanthin seems to be the 

most abundant carotenoid in peppers, other studies reported different carotenoid composition. These 

findings could be explained by variations in sample preparation (whole fruit including seeds or not), 

extraction and quantification methods, the use of fresh or dehydrated fruits (3-4). 

In addition, peppers were reported to contain high quantities of neutral phenolic compounds or 

flavonoids (quercetin, luteolin, and capsaicinoids) which are important for a variety of plant defense 

responses (5). They have been recognised as being beneficial for human health, due to their 

antioxidant properties, which protect against the oxidative damage to cells and thus prevent the 

development of common degenerative diseases such as cancer, cardiovascular diseases, cataracts, 

diabetes and Alzheimer’s (6-8). 

Currently, a broad number of varieties of peppers are available worldwide, most of which changes 

for shape and color. Levels of bioactive compounds can be affected by maturity stage, growing 

conditions, genotype as well as storage and processing. The phytochemical changes that occur 

during maturation and the resultant effect on antioxidant activity are important considerations that 

may affect pepper’s nutritional value (λ-10).  

Moreover, it is noteworthy that the possible health benefits of phytochemicals depend not only on 

their concentration in food, but also on their digestibility, that is the amount of the food constituent 

that is released from the food matrix in the gastrointestinal tract. During digestion, many functional 

components are altered and transformed into other compounds. Numerous mechanisms may be 

responsible for the digestibility of food components, including physicochemical factors as the 

release from plant tissues and the solubility in gastrointestinal fluids (11-14).  

The objective of the present work was to assess and compare the digestibility of two varieties of 

peppers, namely Lamuyo and Corno di Toro.  

Digestibility was assessed by measuring the levels of phenolic compounds (TPC), Vitamin C, and 

carotenoids (TCC) in the raw peppers and in the corresponding digested samples. To do it, peepers 

were in vitro digested in order to reproduce the modifications of the food matrix occurring in vivo in 

the gastrointestinal tract.  The total antioxidant capacity (TAC) of raw peppers and digested samples 

was also measured. Digestibility and bioaccessibility indices were then calculated and compared.  
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MATERIALS AND METHODS  

 

Chemicals 

All chemicals, reagents, and solvents were purchased from Sigma-Aldrich (Milan, Italy) 

 

Sample preparation 

Two pepper varieties cultivated in Italy were considered: Corno di Toro (CORN) and Lamuyo 

(LAM). In both varieties, red and yellow peppers were analyzed (CORN R and CORN G, LAM R 

and LAM G). 

For both varieties and colors, two harvesting periods were considered, February and October.  

Three fresh whole peppers, chosen randomly from each type to consider intrinsic variability, were 

cut and chopped into small pieces. Twenty–five grams were weighted and submitted to in vitro. 

One g of the same fresh sample was extracted according to Danesi et al. (15) with a final volume of 

12 mL ethanol/water (70:30) acidified with 0.1 % HCl.  

 

In vitro digestion 

Peppers were submitted to an in vitro digestion using the standardized model of Minekus et al. (16) 

that simulates oral, gastric and duodenal phases, followed by separation of supernatant (Figure 1). 

Digestive juices were SSF (Simulated Salivary Fluid, ph 7), SGF (Simulated Gastric Fluid, ph 3) 

and SIF (Simulated Intestinal Fluid, ph 7). Digestion was performed in a shaking water bath at 

37°C; the resulting final digested solutions were centrifuged at 50,000 g for 15 min. The 

supernatants were filtered with 0.2 µm membranes (TQ fraction) and an aliquot was sequentially 

ultrafiltered with Amicon Ultra at 3 kDa of molecular weight cut-off (EMD Millipore, MA, US) in 

order to obtain mixtures of compounds which size is small enough to be potentially absorbable 

through the intestinal mucosa (<3K, bio-accessible fraction). Filtered and ultrafiltered digesta were 

frozen at -20°C until experiments. 
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Figure 1. Flowchart of the simulated human in vitro digestion method 

 

Total antioxidant capacity (TAC)  

TAC was measured in fresh and digested samples using the method of Re et al. (17), based on the 

capacity of antioxidant molecules in the sample to reduce the radical cation of 2,2’-azino-bis-(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS•+). The decolorization of ABTS•+ was measured as 

the quenching of the absorbance at 734 nm. Values obtained were compared to the concentration-

response curve of the standard Trolox solution and expressed as ȝmol of Trolox equivalents (TE)/g.  

 

Total phenolic content (TPC) 

The concentration of total phenols was determined in fresh and digested samples using the Folin-

Ciocalteau’s method (18), adapted to a 96-well plate assay according to Dicko et al. (19) with slight 

modifications. Briefly, 45 ȝL of water were first pipetted into each well. Then, 5 ȝL of sample and 

25 ȝL of 50% in water Folin- Ciocalteau (v/v) were added. After 5 min shaking, 25 ȝL of 20% 

(w/v) Na2CO3 aqueous solution and 100 ȝL of water were added to the mixture. The absorbance 

was measured after 60 min at 750 nm with a Tecan Infinite M200 microplate reader (Tecan, 

Männedorf, Switzerland). Results were expressed as mg gallic acid equivalent (GAE)/g. 
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Total carotenoid content (TCC) 

The total carotenoid content (TCC) was determined in fresh and digested samples using the method 

described by Valli et al. (20) with some modifications. Briefly, 1 g of pepper was mixed with 40 mL 

of hexane-acetone (50:50, v/v), let 20 min at 40 °C under shaking, vortexed at high speed, 

sonicated, vortexed again, and centrifuged at 120 × g for 3 min. For the evaluation of TCC in 

digested peppers, 2 ml of sample was mixed with 5 ml of hexane-acetone and with 3 mL of NaCl 

10%. The absorbance of the supernatants was measured at 450 nm and compared to the 

concentration–response curve of β-carotene standard. Results were expressed as micrograms of β-

carotene equivalents (β-CE)/g. 

 

Vitamin C concentration 

The Vitamin C concentration was measured in fresh and digested samples by iodine titration (21). 

Samples were titrated while stirring with iodine solution using starch indicator for the detection of 

the end point. As the iodine is added during the titration, the ascorbic acid is oxidized to 

dehydroascorbic acid, while the iodine is reduced to iodide ions. Titration was carried out till the 

formation of persistent blueblack starch-iodine complex, and vitamin C concentration was 

expressed as mol/g fresh sample. 

 

Digestibility and bioaccessibility indices 

The digestibility index was calculated based on total phenolic content, vitamin C concentration and 

TCC in the fresh samples and corresponding TQ digested fraction using the following equation:  

(concentration in TQ digested fraction/ concentration in fresh sample)  x 100. 

This index indicates the efficiency of the digestive process in releasing the considered compound(s) 

from the food matrix.  

The bioaccessibility index was calculated based on total phenolic content and vitamin C 

concentration in the fresh samples and corresponding <3K digested fraction using the following 

equation:  

(concentration in <3K digested fraction/concentration in fresh sample) x 100. 

This index estimates the percentage of potentially bioavailable compound(s), i.e. the fraction 

released from the matrix and hydrolyzed having a size that is small enough to be potentially 

absorbable through the intestinal mucosa (22). 
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Statistical analysis  

All data are reported as means ± SD of biological and technical replicates for peppers harvest in 

February (n = 4), and of biological replicates for peppers harvested in October (n=5). Data were 

analyzed for statistical significance by the Student’s t test. 

RESULTS 

Total Phenolic Content (TPC)  

Table 1 reports TPC of the different fresh peppers from the two harvesting periods. In the first 

study, TPC appeared significantly higher in CORN R and CORN G compared to the corresponding 

LAM, while in the second study TPC was significantly different in yellow peppers only.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. TPC of fresh peppers from the first (a) and second (b) harvesting period. 

Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN peppers with the 

corresponding LAM (*p<0.05, ** p<0,01).  

 

After digestion, no differences in TPC were detected between CORN and LAM peppers in the TQ 

fractions, regardless the color and the harvesting period (Table 2). 

a) TPC (mg GAE/g) b) TPC (mg GAE/g) 

 Digested TQ   Digested TQ  

LAM R  0,51 ± 0,05   LAM R  0,45 ± 0,07 

CORN R 0,53 ± 0,05  CORN R  0,37 ± 0,07 

    

LAM G 0,66 ± 0,03 LAM G 0,53 ± 0,11 

CORN G 0,64 ± 0,05 CORN G 0,56 ± 0,09 

 

Table 2. TPC of TQ digested fraction of peppers from the first (a) and second (b) harvesting period. 

Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN peppers with the 

corresponding LAM (ns).  

a) TPC (mg GAE/g) b) TPC (mg GAE/g) 

 Fresh samples  Fresh samples 

LAM R  1,09 ± 0,04 LAM R 0,71 ± 0,05 

CORN R 1,18 ± 0,04 * CORN R  0,73 ± 0,10 

    

LAM G 0,94 ± 0,07 LAM G 0,91 ± 0,06 

CORN G 1,17 ± 0,13 * CORN G 1,06 ± 0,06 ** 
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Comparing digested <3K samples, in the first study a lower TPC was observed in CORN R than in 

LAM R. This difference was not confirmed in the second study. On the contrary, both studies 

evidenced a higher TPC in CORN G than LAM G (Table 3).  

 

a) TPC (mg GAE/g) b) TPC (mg GAE/g) 

 Digested <3K  Digested <3K 

LAM R  0,43 ± 0,04 LAM R  0,40 ± 0,05 

CORN R  0,27 ± 0,01 *** CORN R  0,35 ± 0,08 

    

LAM G 0,49 ± 0,01 LAM G 0,39 ± 0,03 

CORN G 0,61 ± 0,04 ** CORN G 0,45 ± 0,05 * 

 

Table 3. TPC of <3k digested digested fraction of peppers from the first (a) and second (b) harvesting 

period. 
Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN with the 

corresponding LAM (*p<0,05;**p<0,01;***p<0.001).  

 

Digestibility and bioaccesibility indices based on TPC 

Figure 2 shows digestibility and bioaccessibility indices based on TPC content. In peppers from the 

first harvesting period, the digestibility index appeared similar in the two cultivars of red peppers, 

while it was lowest in yellow CORN compared to LAM (Figure 2A). The bioaccessibility index 

was lower in CORN R than LAM R, while no differences were found between yellow peppers.  
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Figure 2. Digestibility (A) and Bioaccessibility(B) Indices based on TPC of peppers from the first 

harvesting period. 

Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN with the 

corresponding LAM (*p<0,05; ***p<0.001).  

 

Results obtained in peppers from the first harvesting period were confirmed only in part in peppers 

from the second harvesting period (Figure 3). In this case, both indices for red peppers were higher 

in LAM than CORN, while no differences were detected between yellow peppers. 
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Figure 3. Digestibility (A) and Bioaccessibility(B) Indices based on TPC of peppers from the second 

harvesting period. 
Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN red or yellow pepper 

with the corresponding LAM (*p<0.05).  

 

Vitamin C content 

In both studies, ascorbic acid concentration in fresh red and yellow peppers appeared similar 

comparing the two cultivars (Table 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Vitamin C content of fresh peppers from the first (a) and second (b) harvesting period. 
Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN peppers with the 

corresponding LAM (ns) 
In all samples, in vitro digestion resulted in the release of Vitamin C from the matrix. As shown in 

Table 5, in the first study Vitamin C concentration appeared significantly higher in TQ fractions of 

CORN R than LAM R, but this higher ascorbic acid release was not confirmed in the second study. 

a) Vit. C (µmol Vit. C/g) b) Vit. C (µmol Vit. C/g) 

 Fresh samples  Fresh samples 

LAM R  6,30 ± 0,32 LAM R  4,89 ± 0,457 

CORN R  6,45 ± 0,21 CORN R  4,95 ± 0,3 

    

LAM G 5,18 ± 0,11 LAM G 6,66 ± 0,83 

CORN G 5,33 ± 0,11 CORN G 7,56 ± 0,62 
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Comparing yellow peppers, in both studies a significantly higher Vitamin C content was detected in 

CORN than LAM.  

 
a) Vit. C (µmol Vit. C/g) b) Vit. C (µmol Vit. C/g) 

 Digested TQ   Digested TQ  

LAM R  6,68 ± 0,51 LAM R  3,68 ± 0,39 

CORN R  8,80 ± 0,04 *** CORN R  4,32 ± 0,70 

    

LAM G 5,25 ± 0,38 LAM G 4,04 ± 0,71 

CORN G 6,55 ± 0,71 * CORN G 5,64 ± 0,97 * 

 

Table 5. Vitamin C concentration in TQ digested fraction of peppers from the first (a) and second (b) 

harvesting period. 
Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN peppers with the 

corresponding LAM (*p<0,05; ***p<0.001). 

 

Comparing the <3k digested fractions, no differences in Vitamin C content were detected (Table 6). 

 

a) Vit. C (µmol Vit. C/g) b) Vit. C (µmol Vit. C/g) 

 Digested <3K  Digested <3K 

LAM R  3,47 ± 0,33 LAM R  3,12 ± 0,7 

CORN R  3,37 ± 0,07 CORN R  2,6 ± 0,57 

    

LAM G 3,77 ± 0,07 LAM G 3,84 ± 0,73 

CORN G 4,17 ± 0,39 CORN G 4,64 ± 0,46 

 

Table 6. Vitamin C concentration in <3K digested fraction of peppers from the first (a) and second (b) 

harvesting period. 
Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN peppers with the 

corresponding LAM (ns). 

 

Digestibility and bioaccesibility indices based on Vitamin C content 

In both studies, the digestibility index based on Vitamin C content was higher in CORN R than 

LAM R (Figure 4A and 5A, respectively). A highest digestibility index of CORN G compared with 

LAM G was observed in the first study (Figure 4A), but it was not confirmed in the second one 

(Figure 5A). 

In the first study, a higher bioaccessibility index was evidenced in LAM R CORN R, and in CORN 

G than LAM G, while no differences were detected in the second study (Figure 4B and 5B).  
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Figure 4. Digestibility (A) and Bioaccessibility(B) Indices based on Vitamin C concentration of peppers 

from the first harvesting period.  
Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN red or yellow pepper 

with the corresponding LAM (**p<0,01; ***p<0.001).  
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Figure 5. Digestibility (A) and Bioaccessibility(B) Indices based on vitamin C concentration of peppers 

from the second harvesting period. 
Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN red or yellow pepper 

with the corresponding LAM (*p<0.05).  
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Total carotenoid content (TCC) 

In fresh samples, no differences in TCC were detected between the two varieties of red peppers. In 

yellow peppers, TCC appeared higher in Lam than CORN from the first harvesting period, while it 

was the opposite in peppers from the second harvesting period (Table 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. TCC of fresh peppers from the first (a) and second (b) harvesting period. 
Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN red or yellow pepper 

with the corresponding LAM (** p<0,01). 

 
No differences were detected in the TQ digested fractions between the two varieties (Table 8).  

In both studies, TCC in the <3K digested fraction was very low and below detection limit. This 

could be due to the low bioaccessibility of these molecules, as recently reported by Estevez-

Santiago et al (23). 

 

a) TCC (μg/g) b) TCC (μg/g) 

 Digested TQ   Digested TQ  

LAM R  5,40 ± 1,69 LAM R  3,20 ± 0,14 

CORN R  6,20 ± 0,08 CORN R  3,21 ± 0,28 

    

LAM G 3,98 ± 0,76 LAM G 2,94 ± 0,32 

CORN G 4,54 ± 0,98 CORN G 3,21 ± 0,19 

 

Table 8. TCC of TQ digested fraction of peppers from the first (a) and second (b) harvesting period. 

Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN peppers with the 

corresponding LAM (ns). 

a) TCC (μg/g) b) TCC (μg/g) 

 Fresh samples  Fresh samples 

LAM R  130,50 ± 55,27 LAM R  166,10 ± 17,59 

CORN R 185,00 ± 25,33 CORN R 187,32 ± 10,74  

    

LAM G 63,54 ± 8,62  LAM G 83,46 ± 12,57 

CORN G 41,67 ± 3,59** CORN G 117,92 ± 10,73 ** 
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Digestibility index based on TCC 

In peppers from the first harvesting period, no differences in digestibility index based on TCC were 

found between cultivars (Figure 6). A highest digestibility index in yellow LAM compared to 

CORN was observed in the second study (Figure 7). 
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Figure 6. Digestibility Index based on TCC of peppers from the first harvesting period Data are means ± 

SD. Statistical analysis was by the Student’s t test to compare CORN red or yellow pepper with the 

corresponding LAM (ns).  
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Figure 7. Digestibility Index based on TCC of peppers from the second harvesting period. 

Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN red or yellow pepper 

with the corresponding LAM (***p<0.001).  

 

 

Total antioxidant capacity (TAC)  

In both studies, TAC of red peppers from the two varieties was similar. In the first study, TAC was 

similar also between the yellow peppers, while in the second study it was higher in CORN than 

LAM (Table 9).  
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Table 9. TAC of fresh peppers from the first (a) and second (b) harvesting period. 

Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN red or yellow pepper 

with the corresponding LAM (* p<0,05). 

 

As reported in Table 10 and 11, TAC hugely increased in TQ samples compared to the not digested 

counterparts. Differences highlighted among fresh products disappeared after digestion. 

a) TAC (μmolTE/g) b) TAC (μmolTE/g) 

 Digested TQ   Digested TQ 

LAM R  54,24 ± 6,61 LAM R  39,388 ± 3,539 

CORN R  50,00 ± 4,65 CORN R  39,853 ± 3,137 

    

LAM G 54,91 ± 0,83 LAM G 43,239 ± 1,953 

CORN G 54,135 ± 2,6 CORN G 41,352 ± 2,127 

 
Table 10. TAC of TQ digested fraction of peppers from the first (a) and second (b) harvesting period. Data 

are means ± SD. Statistical analysis was by the Student’s t test to compare CORN red or yellow pepper with 

the corresponding LAM (ns). 

 

a) TAC (μmolTE/g) b) TAC (μmolTE/g) 

 Digested <3K  Digested <3K 

LAM R  31,18 ± 3,3 LAM R  28,873 ± 055 

CORN R  31,04 ± 1,89 CORN R  28,371 ± 0753 

    

LAM G 34,25 ± 3,02 LAM G 27,616 ± 0,897 

CORN G 32,44 ± 3,63 CORN G 26,249 ± 1,182 

 

Table 11. TAC of <3k digested fraction of peppers from the first (a) and second (b) harvesting period. 

Data are means ± SD. Statistical analysis was by the Student’s t test to compare CORN red or yellow pepper 

with the corresponding LAM (ns). 

 

a) TAC (μmolTE/g) b) TAC (μmolTE/g) 

 Fresh samples  Fresh samples 

LAM R  8,02 ± 0,47 LAM R  4,002 ± 0,362 

CORN R  8,63 ± 0,70 CORN R 4,530 ± 0,623  

    

LAM G 6,85 ± 0,23 LAM G 5,029 ± 0,512 

CORN G 7,2 ± 0,56 CORN G 6,163 ± 0,873 * 
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Data of TAC in fresh and digested peppers were not used to calculate digestibility and bioaccessibility 

indices as results could be influenced by the presence of antioxidant compounds in the digestive juices 

and bile salts (24). 

DISCUSSION 

Health and well-being of consumers are major drivers of the modern food industry. There is an 

increased interest in the role that some molecules may play in preventing or ameliorating the effect 

of major diseases (for example, some types of cancer, cardiovascular diseases, eye disorders, among 

others). An important strategy could be the selection of cultivars with higher nutritional and healthy 

value, since it is known that the concentration of bioactive compounds may be different between 

cultivars of the same species (25). However, it is important to note that the proportion of an 

ingested compound that is made available for its intended mode of action is more relevant than the 

total amount present in the original food. Indeed, although the total amount of a healthy nutrient 

may be obtained from composition analysis, its availability for absorption in the gut is in many 

cases quite uncertain and can varies for the same food depending on several factors such as 

processing conditions, chemical state of the nutrient, presence of other components, disruption of 

the natural matrix or the microstructure created during processing (26). Therefore, when selecting 

cultivars, bioavailability of food components need to be taken into account. 

Bioavailability, i.e. the proportion of a food constituent that is absorbed and utilized in the normal 

metabolism, depends on bioaccessibility, that is the amount of the food constituent that is released 

from the solid food matrix in the gastrointestinal tract (27). 

The present work aimed to evaluate and to compare digestibility and bioavailability indices of the 

main functional component between Lamuyo and Corno di Toro peppers, also in relation to the 

harvesting periods. 

Data clearly showed that phenolic compounds and TCC in fresh extracts were different in the 

various cultivars, in agreement with other studies in literature (28). The cultivar Corno di Toro 

showed higher TPC than LAM in both studies while carotenoid content was significant higher in 

CORN only in the second harvesting period. Overall red cultivar evidenced higher TCC then the 

yellow one. Several authors have identified capsanthin as the main carotenoid in different varieties 

of red peppers (5,29). 

Among the different phenolic compounds, bioavailability appears to differ greatly and the most 

abundant ones in our diet do not necessarily correspond to those with best bioavailability profile.  

Bioaccessible polyphenols were higher in Lamuyo peppers for the red type and in Cornelio for the 

yellow ones. The mechanical action with simulated mastication mediates the breakdown of fruits 
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cells with the release of these molecules contained in vacuoles and those linked weakly to the cell 

wall. In addition, acidic environment during the gastric phase contributes to the extraction of 

phenols from solid matrices (29-30). Digestibility and bioaccessibility indices were higher in 

Lamuyo peppers. This finding may be explained partially for a low molecular mass of their 

phenolic compounds, as previously reported and according to other authors (31-32).  

TCC decreased a lot after digestion in all samples. Only a very low proportion of carotenoids has 

been reported to become bioaccesible (33). In some fruits (such as mango, papaya) carotenoids are 

found in oil droplets in chromoplast and hydroxycarotenoids are mostly esterified with fatty acids, 

being more easily extracted during digestion. Carotenoids bioavailability from foods varies greatly 

depending on endogenous (product-related) and exogenous (process-related) factors. Amount and 

type of fat present in the vicinity is a key factor that affects bioaccessibility. A minimum amount of 

fat is necessary for absorption, so formulation of carotenoids in an oily matrix may enhance higher 

bioaccessibility. Important steps in carotenoid absorption are release from the food matrix, micelle 

formation, uptake into mucosal cells, packing into chylomicrons, and transport within the lymphatic 

system (36). In this study Lamuyo fruit showed higher bioaccessibility index than CORN only in 

the second harvesting period.  

Ascorbic acid concentration in fresh peppers appeared similar comparing the two cultivars but after 

digestion process Corno di Toro peppers (red and yellow) showed an higher digestibility and 

bioaccessibility indices than Lamuyo, suggesting a release of this nutrient from the food matrix. 

Overall, the noticeable level of phenolic compounds, ascorbic acid as well as carotenoids 

contributes to antioxidant properties in pepper fruits (5,37). Some authors have suggested that the 

antioxidant activity from phenolic is related to differences in chemical structure as the number and 

positions of hydroxyl groups in the aromatic rings and the methoxy substituents in the ortho 

position to the OH (38-39). In this study, no differences in TAC where evidenced between the two 

cultivars. TAC hugely increased in TQ and <3k fractions compared to the not digested counterparts, 

depending not only on the release of bioactives during digestion but also on the presence of 

antioxidants in the digestive juices.  

This work sets a new effective approach in the study of the nutritional properties of food. The use of 

in vitro digestion model allows to estimate the digestibility index, i.e. the efficiency of how a 

component is released from the food matrix by the action of the digestive enzymes. In addition, the 

bioaccessibility index indicates the percentage of a component, once solubilized, and released from 

the matrix, that has been brought to a size compatible with the intestinal absorption. This index 

represents an important nutritional value of food since it suggests the potential molecules that can 

exert biological activity in the body. To validate these data, it is necessary to repeat analysis by 
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considering a larger number of samples, because high variability is present in these cultivars. More 

studies are also needed to compare in vivo with in vitro results. 
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FINAL CONSIDERATIONS 

In the recent years, it has become evident that health benefits are associated with correct dietary 

choice. Fruits and vegetables are an essential part of the Mediterranean diet, and they contribute to 

the prevention of chronic and acute diseases.  

Fruits and vegetables are a good sources of potentially bioactive molecules known as 

phytochemicals.  

Many of the biological actions of phytochemicals have been generally related to their free radical 

scavenging and antioxidant capacity, but emerging findings seem to indicate that natural 

compounds may also act in increasing endogenous antioxidant defense. Epidemiological studies 

suggest that consumption of polyphenol-rich foods and beverages is associated with a reduced risk 

of cardiovascular diseases, diabetes and certain forms of cancer.  

Different plant foods have great intrinsic variability in content and composition of these 

compounds, which concentration can also be affected by several factors as maturity stage or 

agronomic conditions. In addition, in processed food the technological treatment may have an 

impact on the overall content and bioaccessibility of phytochemicals. 

At present, food is nutritionally evaluated on the basis of their chemical characteristics, without 

taking into account that their components must be released during digestion to exert functional 

effects, and that the food matrix can have a great impact on the entity of the release, and therefore 

on bioaccessibility.  

Numerous mechanisms may be responsible for the bioaccessibility of food components, including 

physico-chemical factors such as pH, temperature and texture of the matrix and their solubility in 

gastrointestinal fluids. In addition, technological processing modifies concentration and 

bioaccessibility of the food component, mainly through changes in the cell wall structure and 

properties, thus it is important to identify suitable treatment able to preserve the nutritional value of 

products. 

It is worth noting that foods are complex matrices in which components are not present alone, but 

with other molecules that could have additive, synergistic or antagonist effect. Therefore, the effect 

of the single, discrete bioactive could be different from the effect of the whole food in which it is 

embedded. 

In this context, the present PhD thesis aimed to test the effectiveness of bioactive compounds in 

different plant foods to clarify several aspects of the complex relationship among bioactives and 

their synergism, food matrix, and processing. An in vitro model has been used to investigate the 

effect of digestion on the release of bioactives from the food matrix, allowing the determination of 

their bioaccessibility in a relatively inexpensive and technically reproducible way. The bioactivity 
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of bioaccessible molecules was then investigated, including also the use of a biological system for 

the evaluation of a possible protective role.  

Three types of food were considered: mandarin juices prepared with different technological 

treatments, bread made with ancient and modern grains, and peppers of different varieties.  

The first study clearly evidenced that differences in bioactivity observed in the digested mandarin 

juice and ascribable to the different processing, almost disappear when juices effectiveness is 

evaluated in a biological system. Mandarin juice supplementation can modify the cell response to 

an oxidative stress regardless the technological treatment used to obtain it.  

On the contrary, the second study failed to discriminate bread made with ancient or modern grains 

based on their composition or bioactivity after digestion. In this case, significant differences were 

evidenced when cells were supplemented with the digested bread, confirming the potential health 

effects of ancient grains.  

Results of the third study evidenced that the different digestibility and bioaccessibility of the main 

functional components in peppers were more related to the harvesting period than to the variety. 

Besides specific results obtained in the different studies, data reported in this thesis underline the 

need to carefully assess the bioaccessibility of bioactive compounds, and its modification due to 

intrinsic and extrinsic factors. The experimental approach used in this study, combining in vitro 

digestion and the supplementation of the digesta to a biological system, can be very useful while 

studying the nutritional value of raw and processed food, and prior to in vivo investigation. 

Therefore, it could represent a useful tool to drive research and industry towards the improvement 

of the nutritional value of products. 
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ABSTRACT

After WWII, the industrialized agriculture selected modern varieties of Triticum turgidum spp.
durum and spp. aestivum (durum wheat and common wheat) based on higher yields and techno-
logical characteristics. Nowadays, the use of whole ancient grains and pseudo cereals is consid-
ered nutritionally important. How ancient grains have positive effects is not entirely known, the
fragmentation of the scientific knowledge being also related to the fact that ancient grains are
not a homogeneous category. The KAMUT

VR
trademark indicates a specific and ancient variety of

grain (Triticum turgidum ssp. turanicum, commonly khorasan wheat), and guarantees certain
attributes making studies sufficiently comparable. In this work, studies on KAMUT

VR
khorasan

wheat have been systematically reviewed, evidencing different aspects supporting its benefits.
Although it is not possible to establish whether all ancient grains share these positive characteris-
tics, in total or in part, this review provides further evidences supporting the consumption of
ancient grains.
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Introduction

Grains are seeds from plants of the Gramineae family

(such as wheat, corn, rice, barley, oat and rye) that

have been the basis for human nutrition for thousands

of years. Grains are fundamental for sustenance, both

for their nutritional value and for their chemical prop-

erties that allow for a variety of uses in the food

industry. Last, but not least, grains can be stored for

long periods, and easily transported.

Wheat was one of the first domesticated food crops,

and for about 8000 years it has been the basic staple

food of the major civilizations of Europe, West Asia

and North Africa. Today, wheat is grown on more

land area than any other commercial crop and contin-

ues to be the most important food grain source for

humans (Curtis 2002).

The most commonly used types of wheat, Triticum

turgidum ssp. durum (or durum wheat), used to make

pasta, and Triticum turgidum ssp. aestivum (or com-

mon wheat), used to make bread, originated thou-

sands of years ago through naturally occurring

hybridization of their progenitors. In the last 60 years,

there has been an ever-increasing number of the vari-

eties available, for both durum wheat and common

wheat, while ancient varieties of this cereal have been

largely forgotten or lost.

Ancient wheat is loosely defined as wheat that was

used by ancient civilizations. Usually ancient wheat is

considered to include einkorn, emmer, khorasan and

spelt. Another term used to describe wheat commonly

grown in the period between ancient wheat and modern

wheat is heritage wheat. This wheat consists of varieties

selected from either ancient wheat or wild wheat.

Ancient wheat and heritage wheat generally consist of

land races, which mean they were made up of many

closely related strains. Land races have a huge diversity

in their populations giving them great advantages in fac-

ing extremes in climate fluctuation and disease and

insect pressure. The reason for this is that this diverse

population contains strains which vary in their suscepti-

bility to the aforementioned challenges. Modern wheat,

by contrast is made up of homogeneous strains, which

are the result of intensive breeding programs generally

starting after WWII. During this period, the industrial-

ization of agriculture began to include high inputs of
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chemicals to help increase yields and a focus on bread

in and pasta production, which increased speed and effi-

cacy of the process. Especially the size of the loaf of

bread was of great importance therefore, one important

goal was to increase the number of loaves of bread from

each kg of flour used. So pure strains of wheat were

developed with greater yield potential and greater loaf

volume capacity.

In the last decade, some of these “ancient grains”,

not subjected to extensive genetic improvements, have

been reintroduced, and the growing awareness regard-

ing foods considered natural and healthy have further

increased the interest in alternative cereals. This inter-

est is also associated with the fact that some of them

are reported to be better tolerated by individuals that

suffer from intolerance or allergies to modern wheat

(Molberg et al. 2005; Spaenij-Dekking et al. 2005).

Ancient grains (khorasan wheat, barley, spelt, rye,

millet, oat and sorghum) and pseudo cereals (i.e. qui-

noa, amaranth and buckwheat) are considered healthy

due to their higher content of certain components

(Wijngaard & Arendt 2006) and to their common use

as whole grains. Whole grains contain higher amounts

of positive components compared to refined grains.

Most importantly, dietary fiber, vitamins and minerals,

but also other bioactive molecules such as omega 3

fatty acids, prebiotic oligosaccharides, phytosterols,

polyphenols, etc., and probably the interaction of all

the components rather than each individual one gives

whole grains their nutritional value (Slavin et al. 2001).

Epidemiological studies have scientifically proven

that regular eating of whole grains positively affects

human health, because it reduces the risk of type 2

diabetes (Maki & Phillips 2015) and manages obesity

(Giacco et al. 2011). It is also linked to both a lower

cardiovascular mortality rate in the elderly and a

reduction in colon cancer cases (Truswell 2002;

Sahyoun et al. 2006; Gil et al. 2011).

Despite dietary guidelines all over the world are rec-

ommending the inclusion of whole grains, the know-

ledge of the healthy effect of whole ancient grains is

fragmented and based more on the evaluation of the

properties of the main chemical components than on

the effect of the individual ancient grain on those who

have ingested it. In addition, compositional differences

existing among different ancient grains and among vari-

eties of the same grain (Gawlik-Dziki et al. 2012;

Carvalho et al. 2015), and the strong influence of agro-

nomic and environmental factors on the level of phyto-

chemicals in plants (Danesi et al. 2014) could make

difficult to generalize results obtained in a specific study.

In this respect, KAMUTV
R

khorasan wheat repre-

sents an interesting exception, since it is a specific and

ancient variety of grain (Triticum turgidum ssp. tura-

nicum, commonly called khorasan wheat). KAMUTV
R

is a registered trademark of Kamut International, Ltd.

(Big Sandy, MT) and Kamut Enterprises of Europe

(Oudenaarde, Belgium), bvba, and the trademark

guarantees certain attributes, mainly a protein content

of 12–18% and a selenium content between 400 and

1000 ppb, and several quality specifications related to

growing conditions. For example, the grain must be

always grown certified organic and never hybridized

or genetically modified (Quinn 1999). This makes pos-

sible the comparison among studies. The chemical

composition of KAMUTV
R

khorasan wheat, durum

wheat and common wheat is reported in Table 1.

In this work, studies performed to evaluate the

nutritional, technological and healthy characteristics of

KAMUTV
R

khorasan wheat compared to modern wheat

have been systematically reviewed, in the attempt to

go deeper inside the scientific basis for the possible

exploitation of this ancient grain to produce food hav-

ing an enhanced nutritional value.

Search strategy

The detailed selection process is presented in Figure 1.

First access in PubMed was performed on 30

Table 1. Chemical composition and energy of KAMUT
VR
khora-

san wheat, common wheat and durum wheat.

KAMUT
VR

khorasan wheat
Soft
wheat

Durum
wheat

Water (g/100 g) 11.07 10.42 10.94
Energy (Kcal/100 g) 337 340 339
Proteins (g/100 g) 14.54 10.69 13.68
Total lipid fat (g/100 g) 2.13 1.99 2.47
Saturated (g/100 g) 0.196 0.368 0.454
Monounsaturated (g/100 g) 0.213 0.227 0.344
Polyunsaturated (g/100 g) 0.621 0.837 0.978
Cholesterol (mg/100 g) 0 0 0
Carbohydrate (g/100 g) 70.58 75.36 71.13
Fibres total (g/100 g) 11.1 12.7 n.d.
Sugars (g/100 g) 7.84 0.41 n.d.
Vitamin C (mg/100 g) 0 0 0
Thiamine (mg/100 g) 0.566 0.410 0.419
Riboflavin (mg/100 g) 0.184 0.107 0.121
Niacin (mg/100 g) 6.375 4.766 6.738
Vitamin B6 (mg/100 g) 0.259 0.378 0.419
Folic acid (lg/100 g) n.d. 41 43
Vitamin B12 (lg/100 g) n.d. 0 0
Vitamin A (lg/100 g) 1 0 0
Vitamin E (mg/100 g) 0.61 1.01 n.d.
Vitamin D (lg/100 g) n.d. 0 0
Vitamin K (lg/100 g) 1.8 1.9 n.d.
Calcium (mg/100 g) 22 34 34
Iron (mg/100 g) 3.77 5.37 3.52
Magnesium (mg/100 g) 130 90 144
Phosphorus (mg/100 g) 364 402 508
Potassium (mg/100 g) 403 435 431
Sodium (mg/100 g) 5 2 2
Zinc (mg/100 g) 3.68 3.46 4.16

United States Department of Agriculture. USDA Food Composition
Database. Available from: http://ndb.nal.usda.gov/.
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November 2015 using “Kamut” as keyword and

English language, abstract availability and publication

in the year 1990-present as filters. The timeframe

period of the search was selected based on the year of

registration of KAMUTV
R

as a trademark. Twenty-two

records were retrieved. Search was performed again

using “Khorasan wheat” as keyword and the same fil-

ters, and it retrieved 12 records, six of them in com-

mon with the previous search. PubMed search was

performed again on 10 February 2016, and four add-

itional records, three for Kamut and one for khorasan

wheat were added to the list. First search on Scopus

was performed on 1 December 2015 using the same

keywords and filters. A second search was performed

on 10 February 2016.

Lists were compared to avoid duplicates, and

articles published in peer-reviewed journals were

selected, so obtaining 94 records. Records were then

checked based on their abstract by independent

researchers, and those out of the scope of this review,

as well as articles reporting data on khorasan wheat

but not specifically on KAMUTV
R

wheat were excluded.

In the end, 40 articles were included in the review.

Results and discussion

Technological and nutritional aspects

The organoleptic and nutritional properties of grain

products depend on the flour used for their

production. The physical result of the flour is

extremely important in the final product, especially in

baked goods, and therefore one of the primary limita-

tions in the use of flour made from something other

than wheat is its inadequate chemical properties. The

partial or complete substitution of normal flour with

flour from ancient grains could add nutritional value

to the final products, provided that the physical and

sensory characteristics of the substituting flour are

equal or better than those of wheat so that public

acceptance is not deterred.

The suitability of KAMUTV
R

khorasan wheat has

been positively ascertained in the production of bread

(Piergiovanni et al. 2009), tortillas (Carini et al. 2010)

and cookies (Chandi et al. 2015). In tortillas, the sub-

stitution of regular flour with KAMUTV
R

khorasan

wheat flour slightly modified flour reaction to water

(Serventi et al. 2009), but the physiochemical proper-

ties of the finished product were the same, even in

products with a long shelf-life (180 days) (Carini et al.

2010). In cookie production, the flour made from

KAMUT
VR
khorasan wheat appeared to be able to sub-

stitute common wheat for up to 50% without causing

qualitative physical alterations in the product’s proper-

ties (Chandi et al. 2015). Furthermore, bread made

with a mix of ancient cereals, including KAMUTV
R

khorasan wheat, demonstrated comparable sensorial

and physical properties as that of wheat flour

First access in PubMed on Nov 30, 2015 

First access in Scopus on Dec 1, 2015 

Filters:  English language, 

abstract availability, 

time frame 1990 - present

Keyword: Kamut

Keyword: Khorasan wheat

Second access in PubMed and in Scopus 

on Feb 14, 2016 

Filters:  English language, 

abstract availability,

time frame 1990 - present 

Keyword: Kamut

Keyword: Khorasan wheat

Exclusion of duplicates

Selection of articles in peer-reviewed journals

94 records

Selection based on the abstracts by independent researchers

40 articles included in the review

Figure 1. Flow diagram of search strategy and study selection.
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(Angioloni & Collar 2011). The physicochemical and

metabolomic characteristics of KAMUTV
R

khorasan

and durum wheat fermented dough were investigated

by Balestra et al. (2015), who found KAMUTV
R

flour

to be more suitable than durum wheat for the fermen-

tation processes tested, especially at acidic conditions.

Studies reported above indicate that KAMUTV
R

khorasan wheat enjoys great versatility as a raw mater-

ial because it is suitable for several consumer uses. In

addition, consumers enjoy products made with the

KAMUTV
R

khorasan wheat (Holmer et al. 2012), and

appreciate numerous quality attributes (e.g. it is

organically grown, it is managed according to a global

value-enhancement strategy) featured by KAMUTV
R

wheat (Canavari et al. 2009).

According to Canavari et al. (2009), Italian large-

scale retail chains are deeply interested in marketing

this type of product. At present, Italy is the largest EU

consumer of KAMUT
VR

and imports approximately

70% of all the KAMUTV
R

wheat exported in Europe.

Most of the Italian KAMUTV
R

-based products are

exported into other EU countries, while in Germany,

France and Belgium nearly all the imported KAMUTV
R

grains are domestically consumed.

The use of KAMUTV
R

khorasan wheat flour as a

substitute for other ingredients can contribute to the

improvement of the nutritional value of the final

product. Bread made with KAMUT
VR

khorasan wheat

flour had more carotenoid and was richer in protein

compared to breads made with modern wheat

(Pasqualone et al. 2011). Similarly, total phenolics,

total flavonoids and antioxidant capacity were higher

in spelt and KAMUTV
R

flakes and muesli than in cor-

responding conventional products, although lower

than in products made with Dickopf wheat and red

wheat (Sumczynski et al. 2015). In addition, products

made with spelt and KAMUT
VR
wheat had the highest

protein level (Sumczynski et al. 2015).

Shewry and Hey (2015) carried out an extensive lit-

erature review in order to determine whether ancient

wheat species differ from common wheat in a range

of components that have established or proposed ben-

efits to human health. Among studies included in the

review, Abdel-Aal el and Rabalski (2008) reported a

higher concentration of total phenolics in KAMUTV
R

wheat than in 10 common wheat cultivars. This could

be due to the low polyphenol oxidase found in

KAMUT
VR

flour compared to other 59 whole meal

flours (Hidalgo et al. 2013). In addition, a higher con-

tent of total carotenoids in KAMUT
VR
wheat compared

with common wheat was reported (Abdel-Aal el et al.

2007). The major component was lutein, which was

present at 5.77mg/g concentration compared with a

mean of 2.06mg/g in four common wheat cultivars.

The high content of lutein was confirmed by other

studies (Abdel-Aal el et al. 2002; Hidalgo et al. 2006;

Abdel-Aal el & Rabalski 2008). On the contrary, total

tocols were lower in KAMUTV
R

wheat than common

wheat cultivars (Hidalgo et al. 2006; Abdel-Aal el &

Rabalski 2008).

The evaluation of the functional components of 10

Italian durum wheat cultivars highlighted remarkable

differences between modern and old genotypes

(Dinelli et al. 2009). Besides no significant differences

among investigated cultivars were detected as regards

the amounts of total phenolic and flavonoid com-

pounds, the qualitative phytochemical profile between

old and modern varieties was remarkably diverse.

Ancient wheat varieties showed a mean number of

phenolic compounds and isomer forms significantly

higher than in modern genotypes. As examples, cou-

marin was detected only in the free phenolic fraction

of the old wheat genotype KAMUTV
R

khorasan, and

procyanidin B3 and occurred in the free phenolics of

Iride and KAMUTV
R

khorasan wheat.

The putative functionality of KAMUTV
R

khorasan

wheat could be not only connected to its high content

of phenols and carotenoids, but also to the presence

of other molecules such as bioactive peptides, small

protein fragments that have positive effects on body

functions in humans (Kitts & Weiler 2003). In the

study by Coda et al. (2012), a pool of selected lactic

acid bacteria was used for the sourdough fermentation

of various cereal flours. The highest radical-scavenging

activity of water/salt-soluble extracts was found for

whole wheat, spelt, rye and KAMUTV
R

sourdoughs

demonstrating that selected lactic acid bacteria have

the capacity to synthesize antioxidant peptides during

the sourdough fermentation of these cereal flours.

The health-promoting effects of wholemeal flours

could be related to the presence of other minor com-

ponents. Pedersen et al. (2011) evidenced the presence

of benzoxazinoids, a group of natural compounds hav-

ing documented physiological effects, in hydrother-

mally processed grains of KAMUTV
R

, a commercial

variety of rye (Secale cereale cv. Picasso) and an old

Nordic rye landrace (Secale cereale, Svedjerug), as well

as in bread baked with flour milled from those grains.

There is ample evidence that diet can modulate

both composition and functionality of the human gut

microbiota, in a complex and dynamic interplay cru-

cial for maintaining the host-microbiota mutualism

(Cotillard et al. 2013). KAMUT
VR

wheat could be a

special raw material for improving the prebiotic prop-

erties of wheat-based products. Although the content

of soluble dietary fiber was found lower in KAMUTV
R
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flour than in grains of Triticum polonicum (average of

nine spring lines) (Wiwart et al. 2013), it was higher

than in the Italian modern durum wheat variety

Claudio (Di Silvestro et al. 2014). In addition,

KAMUTV
R

fibers have been shown to have a prebiotic

effect and to promote the growth of Lactobacillus and

Bifidobacterium (Marotti et al. 2012). Taneyo Saa

et al. (2014) described for the first time the effect of

KAMUTV
R

khorasan wheat on the human gut micro-

bial ecology. According to their results, the KAMUT
VR

khorasan-based diet was mainly characterized by the

release of short fatty acids and phenol compounds, as

well as by a slight increase in health-promoting mutu-

alists of the gut microbiota in comparison to whole

durum wheat adopted as a control diet.

In vitro and animal studies

In the study by Valli et al. (2016), cookies baked

with three different whole grains flours (KAMUTV
R

khorasan wheat grown in North America, khorasan

wheat grown in Italy, and a modern durum wheat)

and two fermentation methods (standard and lactic

fermentation) were digested in vitro and supple-

mented to cultured liver cells. Cells were then

exposed to either an oxidative or an inflammatory

stress by adding H2O2 or lipopolysaccharides.

Overall, cell supplementation with the bioaccessible

fraction of all digested cookies evidenced protective

activities towards oxidative and inflammatory stress;

however, the extent of this protection varied from

flour to flour (KAMUT
VR

khorasan> Italian khorasan

> durum wheat).

The aim of the study by Gianotti et al. (2011) was

to evaluate in rats whether a diet comprised exclu-

sively of bread made from whole modern durum flour

or KAMUTV
R

khorasan wheat flour could affect the

response to the oxidative stress induced by the admin-

istration of doxorubicin. Two different bread-making

processes were used for whole grain KAMUTV
R

khora-

san, sourdough and baker’s yeast, while whole grain

durum wheat bread was made using standard fermen-

tation (baker’s yeast) only. The authors concluded that

diet based on the ancient cereal is able to supply a

variety of nutrients and bioactive components that

improve the organism’s ability to defend itself against

oxidative stress, independent of the type of fermenta-

tion used to make the bread. Using a similar experi-

mental design, Benedetti et al. (2012) confirmed these

findings and demonstrated that a diet based on bread

made from KAMUTV
R

khorasan wheat is able to

increase plasma antioxidant concentration and antioxi-

dant enzyme activity.

In addition, histologic tests on the liver evidenced

an inflammatory status in rats fed modern durum

wheat and not in rats fed KAMUT
VR
khorasan wheat.

Feeding rats with pasta made from KAMUTV
R

khora-

san wheat or durum wheat obtained similar results

(Carnevali et al. 2014). After 7 weeks, all of the rats

fed modern durum wheat pasta showed alteration in

the morphology of their duodenums’ mucosa, with an

unusual flattening of the intestinal villus and infiltra-

tion of lymphocytes, and an increased volume of

lymph follicles in the spleen and lymph nodes. These

signs of inflammation were not present in the rats fed

pasta made from KAMUTV
R

khorasan wheat.

Human intervention trials

Five intervention trials involving human volunteers

are reported in the literature. The first one (Scazzina

et al. 2008) evidenced that the incorporation of car-

rots, soy, and whole KAMUTV
R

meal in a standard

wheat tortillas formulation results in a product with a

lower glycaemic index (GI) and a relatively high total

antioxidant capacity. However, the GI of tortillas

made with KAMUT
VR
only did not differ from stand-

ard tortillas, suggesting the main contribution or the

synergistic action of other ingredients.

In the other trials, products made from KAMUTV
R

khorasan wheat were compared to products made

with modern common and durum wheat. Both the

KAMUTV
R

khorasan and the control wheat were culti-

vated in organic agriculture. Semi-whole wheat semo-

lina and flour from KAMUT
VR

and modern wheat

were similarly processed to obtain pasta and baked

products. All studies were randomized, double-

blinded, crossover trials with two intervention phases

in which subjects were assigned to consume either the

KAMUT
VR
or the control wheat.

The first study (Sofi et al. 2013) involved 22 healthy

volunteers carrying risk factors for cardiovascular dis-

eases. Volunteers were randomly divided into two

groups, assigned to consume the KAMUTV
R

khorasan

or control grain products made from organic semi-

whole-wheat for 8 weeks. Then, after an 8-weeks

washout, groups were crossed over for additional 8

weeks. The consumption of products made with

KAMUTV
R

khorasan wheat resulted in a significant

reduction in blood total cholesterol (–4.0%), LDL

cholesterol (–7.8%) and glucose levels (from 81.1 to

78.1mg/dL). Redox status, measured by the blood

level of thiobarbituric acid reactive substances

(TBARS) and carbonyl levels was significantly

improved only after the KAMUTV
R

intervention phase.

Furthermore, consumption of KAMUTV
R

khorasan
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products resulted in a significant decrease of the level

of pro-inflammatory cytokines: tumor necrosis factor

a (TNFa, –34.6%), interleukin 6 (IL6, –23.6%), inter-

leukin 12 (IL12, –28.1%) and vascular endothelial

growth factor (VEGF, �10.5%). No changes were

observed for the same patients after eating the control

products made from modern wheat.

In the second study (Sofi et al. 2014), 20 partici-

pants classified with moderate inflammatory bowel

syndrome (IBS) were divided into two groups, the first

receiving KAMUTV
R

khorasan products and the second

modern wheat products for 6 weeks. After a 6-week

washout period, volunteers were crossed over for add-

itional 6 weeks. The IBS-GAI (Global Assessment of

Improvement) and the IBS-SSS (Symptom Severity

Scale) were used to evaluate IBS symptoms, and evi-

denced significant improvements in patients consum-

ing KAMUTV
R

khorasan products. A concomitant

significant reduction in circulatory pro-inflammatory

cytokine levels, including interleukin 6 (–36.2%),

interleukin 17 (–23.3%), interferon c (–33.6%) and

VEGF (–23.7%) was detected after the KAMUTV
R

khorasan wheat intervention phase.

The third trial (Whittaker et al. 2015) involved 22

patients diagnosed with acute coronary syndrome with

a cross over study design with two intervention phases

(8 weeks each, with an 8 week wash-out period) in

which subjects were assigned to consume either the

KAMUTV
R

khorasan or the control wheat. Even in this

study consumption of products made with KAMUT
VR

khorasan wheat resulted in a significant amelioration

of blood total cholesterol (–6.8%), LDL cholesterol

(–8.1%), glucose (–8.0%) and insulin level (–24.6%)

from baseline levels. Moreover, a significant reduction

in reactive oxygen species (ROS), lipoperoxidation of

circulating monocytes and lymphocytes, and circulat-

ing TNFa was detected after consumption of

KAMUTV
R

products, while no changes were observed

after consumption of modern wheat products.

Last, the study by Whittaker et al. (2016) was a

randomized, double-blinded, crossover trial aimed at

testing whether a replacement diet with KAMUTV
R

khorasan wheat products and/or control wheat prod-

ucts could provide additive benefits to type 2 diabetes

mellitus patients. Even in this study, compared to

baseline a reduction in blood total (–3.7%) and LDL

cholesterol (–3.4%), insulin (–16.3%) and glucose

(–9.1%), as well as a significant reduction in circulat-

ing levels of ROS, VEGF, and interleukin 1 receptor

antagonist (IL1Ra) were observed after consumption

of KAMUTV
R

products. No significant differences from

baseline were noted after the modern wheat interven-

tion phase.

Celiac disease and non-coeliac gluten sensitivity

Celiac disease (CD) is a chronic autoimmune disease

of the intestine caused by exposure to gluten in genet-

ically predisposed subjects (Ludvigsson et al. 2013). In

Europe, South America, Australasia and the USA,

between 0.5% and 1% of the population are affected,

and a high percentage of celiac cases goes undiag-

nosed because of the large variety of symptoms

(Martucci et al. 2002). The only treatment for CD is

eliminating gluten from the diet. However, this is very

difficult because in many food products other than

pasta and baked goods contain gluten, which is also

used as an excipient in drugs and vitamin supplements

(van den Broeck et al. 2010). Furthermore, gluten-free

products (GFPs) are considered of lower quality and

poorer nutritional value compared to the gluten-con-

taining counterparts. GFPs often have a greater carbo-

hydrate and lipid content than their gluten containing

equivalents, and some commercially available GFPs

have a lower content of folates, iron and B vitamins.

In addition, some studies have reported that GFD is

associated with a lower intake of dietary fibre

(Penagini et al. 2013).

At present, it is unknown if all wheat varieties are

equally toxic to individuals with CD. In an attempt to

identify grains less toxic to celiac patients, several sci-

entists strongly focused on the analysis of grains con-

sidered forerunners of modern grains. Gregorini et al.

(2009) and Colomba and Gregorini (2012) reported

that both Graziella Ra and KAMUTV
R

khorasan wheat

are CD toxic as the modern durum accessions, and

contain greater amounts of a-gliadin. Similarly, results

by �Suligoj et al. (2013) underlined strongly the need

for all cereals from the tribe Triticeae to be considered

CD toxic.

Notwithstanding, KAMUTV
R

khorasan wheat has

been showed to have a lower percentage of epitopes

than Senatore Cappelli, a heritage durum wheat

selected and introduced over 100 years ago, and mod-

ern Claudio durum wheat and Manitoba common

wheat (Valerii et al. 2015). The concentration of glia-

din proteins carrying allergenic epitopes among the

total protein pattern can influence the inflammatory

response. Valerii et al. (2015) evidenced that wheat

proteins induce an overactivation of the pro-inflam-

matory chemokine (C-X-C motif chemokine 10,

CXCL10) in cultured peripheral blood mononucleated

cells (PBMC) from subjects with non-celiac gluten

sensitivity (NCGS), and overactivation level depends

on the cereal source from which proteins are obtained.

In this study, chemokine CXCL10 activation was

higher after exposure to modern than ancient grain
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protein. This could explain, at least in part, why

KAMUTV
R

wheat is reported to be better tolerated by

individuals suffering from NCGS (Molberg et al. 2005;

Spaenij-Dekking et al. 2005).

NCGS is characterized by intestinal and extra intes-

tinal symptoms that occur after the ingestion of glu-

ten-containing food in subjects in whom CD and

wheat allergy have been ruled out (Tovoli et al. 2015).

Gluten may not be the only triggers of NCGS, and

different wheat proteins such as wheat amylase and

trypsin inhibitors could contribute to the origination

of symptoms (Inomata 2009).

Fermentable oligosaccharides, disaccharides, and

monosaccharides and polyols (FODMAPs) can pro-

voke gastrointestinal symptoms through mechanisms

involving gut microbiota, gas production and fermen-

tation (Halmos et al. 2014). Some grains and cereals

are particularly rich in FODMAPs, and recent studies

have shown that a diet low in FODMAPs results in

improved symptoms in NCGS patients, supporting the

hypothesis of a major role of FODMAPs compared to

gluten (Biesiekierski et al. 2013). Although whole-grain

flour from ancient wheat inhibited yeast fermentation,

fructan levels were reported similar bread and pasta

made with KAMUT
VR
khorasan wheat and emmer and

with modern wheat (common wheat; durum) (G�elinas

et al. 2016).

Conclusions

The development of studies and research aimed to test

the effectiveness of preventive and protective nutrients

and food components has clarified many aspects of

the complex relationship between nutrition and well-

being. Notwithstanding, often a few things are forgot-

ten, first that our diet is based on foods and not on

individual molecules. If on one hand it is useful to

prove that a certain component has a positive effect in

the prevention of a disease, it is also important to

identify which foods contain it. Foods are complex

matrices in which that component is not present

alone, but along with many other molecules that could

have additive, synergistic or antagonist effect. In add-

ition, processing often modifies concentration and bio-

availability of the component. Finally, yet importantly,

foods having a high consumption frequency have the

highest possibility to allow the introduction of

the effective dose of the component. In one word, the

relationship among food components, food and health

must be studied with a foodomics vision (Bordoni &

Capozzi 2014).

Whole ancient grains in general, and KAMUTV
R

khorasan wheat in particular, are an example of

synergism among different components (Gianotti et al.

2011), and can be transformed into a large variety of

products that are consumed every day. Studies

reported in this review point out the health-promoting

properties of KAMUTV
R

khorasan wheat, not evident

in commercial modern varieties. At this stage, it is not

possible to establish whether the health effects are spe-

cific for KAMUTV
R

khorasan wheat or all ancient

grains share them. At present, further scientific evi-

dences are needed to consider KAMUTV
R

khorasan-

based products as functional foods, but results are

promising and there are several elements of great

interest that challenge the scientific community to

deepen the scientific knowledge about this ancient

grain in particular and ancient grains in general.
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