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1) INTRODUCTION 

The current global carbon footprint raises important concerns about the sustainability of human 

activities, largely dominated by the consumption of fossil fuels. Natural gas and oil will continue to 

be a bedrock of the global energy system for many decades to come.1 Regulatory targets are 

required to reform the energy sector, responsible for at least two-thirds of greenhouse-gas 

emissions, and should promote the renewables. The Paris Agreement, which entered into force on 4 

November 2016, is centered on the energy sector, and represents a major step forward in the fight 

against global warming. The target of limiting future temperature increase to “well below 2°C”, as 

well as pursuing efforts towards 1.5°C is globally agreed.2 Biomass feedstocks, particularly those 

derived from waste streams, are depicted as valuable options for the abatement of greenhouse gas 

emissions.3 However, current values of atmospheric carbon dioxide are considered inacceptable, 

therefore strategies for its capture and storage become relevant to contain the increase of global 

average temperature. According to the scenarios developed by the International Energy Agency, 

implementing current international pledges will only slow down the projected rise in energy-related 

carbon emissions.1 Carbon capture and storage (CCS) is the only solution for deep emissions 

reductions from industrial processes and from fossil fuel use in the power sector.2 Pyrolysis and 

gasification are thermochemical processes that decompose organic materials in an oxygen-limited 

environment. Three fractions, variable in yields depending on the technology and process 

parameters are generated: a mixture of non-condensable gases, namely syngas, mainly composed of 

carbon monoxide and hydrogen; a liquid product with complex chemical composition, bio-oil and a 

solid carbonaceous material.4,5 The syngas produced can be used as a fuel, while the upgraded bio-

oil can generate biofuels or valuable chemicals. The remaining solid material can be burned to fulfil 

the energy requirements of the process. Alternatively, the valorization of this carbonaceous product 

by its application to soil was proposed as a novel strategy for the long-term storage of carbon 

dioxide into a stable form, allowing to reverse the climate change.6,7 Biochar is therefore the solid 

product of pyrolysis, designed to be used for environmental management 8.The official definition of 
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biochar is given by the International Biochar Initiative “Biochar is a solid material obtained from 

the thermochemical conversion of biomass in an oxygen-limited environment. Biochar can be used 

as a product itself or as an ingredient within a blended product, with a range of applications as an 

agent for soil improvement, improved resource use efficiency, remediation and/or protection against 

particular environmental pollution, and as an avenue for greenhouse gas (GHG) mitigation”.9 Apart 

from the carbon sequestration potential, biochar was found to enhance the fertility of tropical soils 

named “Terra Preta”. This was explained by the unique physicochemical properties of biochar. As 

low density highly porous material, biochar can reduce the soil bulk density and improving soil 

aeration and water holding capacity. Moreover, the mineral content and the cation exchange 

capacity can provide the soil with nutrients, preventing their leaching by increasing the nutrient 

retention capacity of the soil and increase soil pH.10–12 Furthermore, the affinity of biochar for 

organic and inorganic compounds raised its potential use as sorbent for contaminants and 

reclamation of polluted areas.13,14 Therefore, the production of biochar integrated with bioenergy 

production to maximize the efficiency of the process and increase carbon efficiency, can be a 

strategy for carbon sequestration and soil amelioration. However, biochar chemical and physical 

properties were found to be highly heterogeneous and strongly dependent on the variety of 

production conditions and biomass feedstocks.15,16 These parameters can be therefore optimized to 

produce engineered biochars with unique properties for specific applications. Given the importance 

of the biochar characteristics on its quality for environmental applications, a thorough identification 

of the most important properties needs to be performed. The characterization should be aimed at the 

determination of threshold values and optimal range of the most important parameters. Given the 

complexity of biochar structure, a wide range of analytical techniques are employed for the 

determination of quality parameters. Moreover, standardization of analytical procedures is required 

as well as the definition of reference biochar materials.17 Guidelines for the sustainable production 

of biochar, standardized testing and measurement methods, and parameters for quality and safety 

assessment are proposed, and periodically updated by the European Biochar Certificate (EBC) and 
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the International biochar Initiative (IBI).9,18 In the following sections the most relevant biochar 

physicochemical properties to assure their environmental applications are presented, with particular 

attention to the analytical methods commonly used for their determination. In the last section, a 

series of non-conventional techniques are presented. These could represent a perspective to 

characterize non-regulated trace organic compounds, that could be trapped into the biochar matrix 

during pyrolysis (e.g. bio-oil residue), and may affect biochar performance (e.g. stability) and 

environmental behavior (e.g. plant growth), therefore enhancing the knowledge of biochar 

chemistry. 

 

Figure 1: The benefits of biochar applied as a tool for soil fertility management19 
 

1.1) Biochar bulk physicochemical properties  

Biochar physical structure can directly influence soil mechanical properties and soil conditions like 

aeration, water holding capacity, in turn affecting soil biota. Moreover, biochar density and porosity 

will ultimately affect its transport in the environment (Figure 2).20 Zhao et al. characterized a wide 

range of biochar physicochemical properties as effect of feedstock and process conditions: pore 

volume, average pore size and surface area are some examples of physical properties.21 Specific 

surface area is an indication of biochar porous structure, in turn associated to the affinity for the 

adsorption of organic compounds and can influence contaminant mobility in soil.22 Many studies 
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assessed the surface area with the Brunauer-Emmet-Teller (BET) method, which measures the 

nitrogen gas sorption at 77 K of biochar samples.23–26 This method allows to characterize pores in 

the range of 2-50nm (micro and meso-pores), while for the analysis of sub-micropores (<2nm) the 

most common methods involve carbon dioxide adsorption.20 Along with these techniques, biochar 

structure and surface topography, are often analyzed by scanning electron microscopy (SEM). With 

the SEM a visual indication of biochar macro-porosity (pores >50nm) and particle size distribution 

can be achieved. If SEM is coupled with Energy Dispersive X-ray spectroscopy (EDX) also 

compositional information can be investigated.27 Brewer et al. proposed a combined skeletal- and 

envelope-density analysis as method for quantifying biochar porosity characteristics at micro- to 

macro-pore scales. Both measure the volume of a known mass by a displacement technique. In the 

case of skeletal density, the displaced material is helium gas, while for envelope density, a micro-

granular suspension is used. Skeletal density and micropore volume were found to be primarily 

controlled by pyrolysis temperature, whereas envelope density, porosity, and macropore volume 

were feedstock dependent.20 

 

Figure 2: pore size ranges by classification, analytical characterization techniques available, and 
relevant physiochemical phenomena for biochar interactions with the environment. Solid lines 
indicate methods that produce pore size distributions. Ranges framed by dots indicate methods that 
give cumulative pore volumes in that range. Plant-available water pore size range based on soil 
pore size classifications (solid line) extended to pore sizes accessible if only capillary pressure is 
considered (dashed line).20 
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The electrical conductivity (EC) is determined in a given volume of deionized water (e.g. ASTM-

D1125A: Electrical Conductivity of Non-Flowing Water Samples, or DIN 11265). However, the 

different conditions (e.g. dilution factors) resulted in different values. Cation exchange capacity 

(CEC) is a useful indicator to measure the potential capability of biochar to provide soil with its 

sorbed positively charged ions. Kloss et.al calculated CEC expressed in mmol/kg as the sum of Na, 

K, Mg, Ca, Al, Fe, and Mn cations in the extract of a sequential water-BaCl2 extraction, by means 

of inductively coupled plasma mass spectrometry (ICP-MS).24 Wu et al. measured extractable 

cations (K+, Ca2+, Na+, Mg2+) and the cation exchange capacity (CEC) of untreated biochar samples 

using 1 M ammonium acetate (pH 7) methods. pH is usually carried out by preparing a mixture of a 

certain quantity of biochar in a fixed volume of CaCl2 solution.28 However, dilutions with deionized 

water were also reported. Different dilution factors and the presence or absence of CaCl2 will 

provide different pH values.17 Kloss et al. made use of dispersive X-ray fluorescence to evaluate 

also the K, P and S content, while Brewer et.al employed this technique to gain information about 

the mineral content of biochar.23,24 Wu et al. determined the atomic structure of biochar with 

traditional powder X-ray diffraction.28 Proximate analysis, gives the content (as %) of moisture, 

ash, volatile matter (VM), fixed carbon (FC) and is a typical characterization method as official 

procedures have been developed, such as DIN51719, 51720. VM and FC contents give relative 

measures of the more labile and more stable components of chars, respectively. Usually VM 

decreased and FC increased with pyrolysis temperature.29 For instance, Brewer et.al and Wu et al. 

determined the moisture, and proximate analysis with ASTM D1762-84. The Higher Heating Value 

(HHV) of chars was also calculated by oxygen bomb calorimeter.23,28 The ASTM D1762-84 method 

was applied to a vast array of biochar samples by Enders et al.30 Pereira et al. and Wang et al. 

calculated the ash content of biochar samples by thermal analysis with a thermogravimetric 

analyzer, while Kloss et al. coupled this analysis with the Differential scanning calorimetry 

(DSC).24,31,32 The elemental analysis of carbon, hydrogen and nitrogen is usually performed by 

combustion,30,31,33,34 while the oxygen content is generally determined by difference (all expressed 
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as mass %). Elemental analysis is useful to determine some important parameters like O/C, H/C and 

C/N atomic ratios as described in the next section. Different methodologies have been applied in the 

analysis of trace metals. Fellet et al. analyzed Al, Cd, Cr, Cu, Fe, Ni, Pb, Ti and Zn by means of 

Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES).27 Biochar samples were 

previously treated with a microwave assisted acid digestion (USEPA-EPA method 3052). Enders et 

al. performed digestion with HNO3 and H2O2, then ICP-OES. Zhao et al. applied the USEPA 

method 3050B for the digestion of biochar in the analysis of trace metals.21,30 According to an inter-

laboratory comparison of analytical methods for biochar characterization, the digestion method 

significantly affect the concentration of the main biochar elements (P, K, Na, Mg, Mn, Ca, Fe). The 

digestion with aqua regia in a microwave system is proposed as the most practical and reliable.17 

1.2) Biochar chemical structure 

Biochar is usually produced under controlled conditions. However, the variability of the process 

parameters, such as highest treatment temperature (HTT), residence time of the biomass inside the 

reactor, and the wide range of feedstocks available, result in heterogeneous chemical structures and 

elemental composition of the biochar materials.12,15,21 The combustion continuum concept is used to 

describe the several forms of pyrogenic carbon that occur in the environment and are produced 

during natural events, like lava flows, prairie and forest fires and geologic diagenesis, encompassing 

slightly charred plant matter, charcoal as well as soot and graphite.12,15,29 The heat-induced 

transformation of plant biomass generates transient chemical properties, with gradual increase in 

aromaticity. The increasing charring temperature, produces the formation of aromatic ring 

structures, followed by a progressive condensation of smaller aromatic units into larger conjugated 

sheets.29,35 Moreover, with increasing degree of thermal modification, biomass loses functional 

groups and C, H, O, N, and other elements, progressively aromatizes, via dehydration, 

decarboxylation, dehydrogenation, demethylation and cyclization reactions.31 Keiluweit et al. 

studied phase transitions experienced by lignin rich (Pinus ponderosa) and lignin-poor (Festuca 

arundinacea) biomass as result of thermal alteration in the range of 100-700°C. Four distinct 
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categories of chemical phases and physical states were observed (Figure 3): transition chars, with 

preserved crystalline character of the precursor materials; amorphous chars, in which the heat-

altered molecules and incipient aromatic polycondensates are randomly mixed; composite chars 

consisting of poorly ordered graphene stacks embedded in amorphous phases; and turbostratic 

chars, dominated by disordered graphitic crystallites (Figure 3).29 The aromaticity is therefore a 

defining property of carbonized materials and can be generalized with a model with two phases: an 

amorphous phase, comprising randomly organized aromatic rings, and a crystalline phase, 

comprising condensed polyaromatic sheets that are turbostratically aligned.36 The varying extent of 

these two features is assumed to largely determine the relatively high persistence of charred 

material in the environment.  

 

Figure 3: Dynamic molecular structure of plant biomass-derived black carbon (biochar) across a 
charring gradient and schematic representation of the four proposed char categories and their 
individual phases.29 

Given that biochar is produced with the purpose of soil application, its stability is fundamental, as 

determines how long biochar C can be sequestered in soil, but also how long biochars can benefit 

the soil environment. The H/C and O/C molar ratios were used in coal research to describe maturity, 

decomposition rate, and thereby combustion behavior of fossil chars and coal.12 Similarly, these 

ratios were used as indicators for the degree of condensation of biochar, with high values suggesting 

a large proportion of non-carbonized material. Spokas evidenced that the O:C ratio is a function of 
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biochar production temperature, but also accounts for other impacts (e.g., parent material and post-

production conditioning/oxidation) that are not captured solely with production temperature. 

Therefore, the O:C ratio could provide a more robust indicator of biochar stability than production 

parameters like pyrolysis temperature and biomass type.15 Schimmelpfennig et al. analyzed 66 

biochars from animal and plant-based materials produced from pyrolysis, gasification and 

hydrothermal carbonization platforms under different temperature conditions. The study indicates 

that desirable ratios of biochar for soil application with the effect of sequestering carbon are H/C 

≤0.6 and O/C ≤0.4.12 Wang et al. examined models originating from coal chemistry to estimate the 

C aromaticity of biochar, based on its elemental composition (H/C) and fixed carbon (FC) by 

proximate analysis. All models were found able to successfully fit the literature data of biochar 

samples when atomic H/C ratio was below 1.31 Solid state 13C nuclear magnetic resonance (NMR) 

spectroscopy methods were applied in several studies to measure carbon functionality and 

aromaticity of chars.23,34,37,38 In the analysis of a thermosequence of biochar samples in the range 

250-550°C, Wang et al observed significant changes in peak intensity and chemical shifts of NMR 

spectra. As pyrolysis temperature increased, the resonances associated with hemicellulose, 

cellulose, lignin and proteins decreased. For 450°C and 550°C biochars no distinctive peaks for 

these compounds were observed in the spectra. This result was consistent with findings that 

hemicellulose degradation mainly occurred at 220–315°C, cellulose decomposition at 315–400°C, 

lignin within 250–450°C (with a small fraction of lignin that can be stable at higher temperature), 

and protein at 300–400°C.31 A thermosequence of plant and animal-based biochars (250-650°C) 

revealed that aromatic C was the main C-containing functional group in all biochars and therefore, 

its formation was mainly controlled by the production temperature.21 Wiedemeier et al. employed 7 

methods (elemental analysis, MIR spectroscopy, NEXAFS spectroscopy, 13C NMR spectroscopy, 

benzene polycarboxylic acids analysis, lipid analysis and helium pycnometry) to investigate the 

aromaticity and degree of aromatic condensation of two thermosequences of wood and grass 

biochars in the temperature range 100-1000°C. Aromaticity increased sharply from 200°C on, 
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reaching maximum values at 500–600°C, and remained constant at the maximum with higher HTT. 

Aromatic condensation measurements, on the other hand, increased smoothly from 300°C on, 

reaching highest values at 1000°C. The study concludes that some indirect, relatively inexpensive 

and simple methods like elemental analysis appropriately measured the aromaticity of the biochar 

like the more sophisticated spectroscopies.36 VM was proposed as a parameter to assess the labile 

carbon prone to be biodegraded for applications related to soil remediation, amelioration and carbon 

sequestration.39 Harvey et al. proposed a thermal oxidation method for assessing the biochar quality 

relative to its resistance to a/biotic degradation. The “recalcitrance index” R50 is based on the 

relative thermal stability of a given biochar to that of graphite and was determined by TGA under 

air from 30 °C at 10 °C /min until weight loss finished. R50 was described by the authors as an 

inexpensive and fast approach to evaluate the environmental recalcitrance and carbon sequestration 

potential of biochar.40 The index was recently revised to take into account the ash content.41 

Analytical pyrolysis (Py-GC-MS) is another technique that can be used to infer biochar structure 

and stability through molecular indicators. Conti et al. characterized 35 biochars produced from 

switchgrass under different pyrolysis temperatures and residence times with Py-GC-MS.42,43 The 

thermally labile fraction of biochar was classified into weakly, moderately and highly charred, 

according to the percent contribution of molecular markers. For example, dimethylfuran is a typical 

pyrolysis product of holocellulose, while naphthalene represents more charred aromatic structure. 

The study found that dimethylfuran/naphthalene ratio linearly correlated with H/C values indicating 

the progressive deoxygenation and polycondensation with the increasing pyrolysis temperature.42 

Further study revealed that toluene/naphthalene ratio was indicative of the carbonization degree of 

biochar from lignocellulosic biomass, but this molecular ratio along with the indole/naphthalene 

could be also indicative of the presence of proteinaceous biomass in the original feedstock. The 1-

methylnaphthalene/naphthalene ratio was therefore proposed as a more reliable proxy of thermal 

stability of biochars from different feedstock and fitted the H/C trend.43 Xiao et al. proposed the 

H/C ratio of biochar as the parameter that links biochar production temperature with its aromatic 
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clusters and sorption properties (Figure 4), and established quantitative relationships between these 

properties and H/C values.44 In conclusion, all the aforementioned methods, based on elemental 

analysis, TGA, NMR, Py-GC-MS, and the corresponding parameters (e.g. H/C, O/C, VM, FC) 

correlate with the aromaticity and thermal stability of biochar. Moreover, biochar thermal stability 

reflects its recalcitrance against biological/abiotic oxidation, ultimately representing biochar 

environmental stability in soil. 

 

Figure 4: The relationships among pyrolytic temperature, structural characteristics and adsorption 
properties of biochars derived from diverse precursors via H/C ratio as a universal linkage. The 
H/C ratio acts as a linkage between all these parameters. The adsorption behavior of aromatic 
pollutant onto 700 °C derived biochar is higher than that produced at 500 °C.44 
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1.3) Guidelines for biochar quality and safety 

Currently two international organizations published protocols for the determination of biochar 

quality and safety. IBI guidelines establish standardized testing and measurement methods for 

selected physicochemical properties of biochar materials. Production and handling parameters for 

biochar are not prescribed, but management practices for safe production and handling are 

recommended. Two categories of tests for biochar are required for all biochars, and include the 

most basic properties required to assess the utility of a biochar material for use in soil (Test 

Category A), and toxicant assessment (Test Category B). An additional test (Test Category C) for 

advanced analysis and enhancement properties is suggested as optional.9 EBC guidelines prescribe 

precise indications of process conditions for biochar production and analytical methods for proper 

characterization. Two different grades of biochar quality are indicated according to a series of 

threshold values, “basic” and “premium” respectively.18 The list of the parameters for the 

evaluation of biochar quality according to IBI and EBC is reported in Table 1, along with the 

analytical methods for their determination. 
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Table 1: Analytical methods for the determination of biochar quality/safety parameters according 
to the EBC and IBI guidelines 

Parameters 

EBC IBI 
Values Methods Values Methods 

Required parameters Test Category A (basic utility properties) 

Carbon content > 50% (d.w.) DIN 51732 
Class 1: > 60%, 

Class 2: 30-60 %, 
Class 3: 10-30% ASTM D4373 

CHN declaration DIN 51732 - ASTM D4373 

S declaration DIN 51724-3 - ASTM D4373 
O declaration DIN 51733 - ASTM D4373 

H/C < 0.7 DIN 51732 < 0.7 ASTM D4373 

O/C <0.4 
DIN 51733  
ISO 17247 

- 
- 

VOC declaration TGA - - 

N, P, K, Mg, Ca declaration 

DIN EN ISO 17294 – 2 (E29)                     
DIN 51729                       

DIN EN ISO 11885             
DIN EN ISO 17294-2 - - 

pH 

declaration 

DIN ISO 10390 declaration TMECC (2001) 

EC DIN ISO 11265 declaration TMECC (2001) 

ash content 
DIN 51718                           

TGA 701 D4C declaration ASTM D1762-84 

moisture 
DIN 51718                            

TGA 701 D4C declaration ASTM D1762-84 

BET surface area ISO 9277 - - 

bulk density VDLUFA-Method A 13.2.1 - - 

carbonate declaration DIN 51726 declaration AOAC 955.01 

particle sieze distribution - - declaration 

Progressive dry sieving with 
50, 25, 16, 8, 4, 2, 1 and 0.5 

mm sieves. 

 
Basic Premium 

 
Test Category B: Toxicant Assessment 

As - - - 13-100 mg/kg (d.w.) 

TMECC (2001), US EPA 7000 
(2007), US EPA 6010 (2007) 

Co - - - 34-100 mg/kg (d.w.) 
Mo - - - 5-75 mg/kg (d.w.) 
Se - - - 2-200 mg/kg (d.w.) 

B - - - declaration 
Cl - - - declaration 
Na - - - declaration 

Pb < 150 g/t (d.w.) < 120 g/t (d.w.) 

DIN EN ISO17294-2 (E29), 
DIN 22022-2, DIN 22022-7, 
DIN EN ISO 17294-2 / DIN 

EN 1483 

121-300 mg/kg (d.w.) 
Cd < 1.5 g/t < 1 g/t (d.w.) 1.4-39 mg/kg (d.w.) 
Cu < 100 g/t (d.w.) < 100 g/t (d.w.) 143-6000 mg/kg (d.w.) 

Ni < 50 g/t (d.w.) < 30 g/t (d.w.) 47-420 mg/kg (d.w.) 

Zn < 400 g/t (d.w.) < 400 g/t (d.w.) 416-7400 mg/kg (d.w.) 

Cr < 90 g/t (d.w.) < 80 g/t (d.w.) 93-1200 mg/kg (d.w.) 
Hg < 1g/t (d.w.) < 1g/t (d.w.) DIN EN1483 (E12) 1-17 mg/kg (d.w.) US EPA 7471 (2007) 

PAHs 

< 12 mg/kg (d.w.) < 4 mg/kg (d.w.) 

DIN EN 15527: 2008-09, DIN 
ISO 13877: 

1995-06, DIN CEN/TS 16181 6 – 300 mg/kg (d.w.) US EPA 8270 (2007) 

PCB < 0.2 mg/kg (d.w.) 

 
AIR DF 100, HRMS 0.2-1 mg/kg (d.w.) 

US EPA 8082 (2007), US EPA 
8275 (1996) 

dioxins/furans (PCDD/Fs) < 0.02 mg/kg (d.w.) 

 
AIR DF 100, HRMS 17 ng/kg WHO-TEQ US EPA 8290 (2007) 

Germination inhibition assay n.d n.d n.d pass/fail 
OECD(1984), Van Zwieten et 

al. 2010 

Additional parameters Test Category C: optional parameters 

calorific value declaration DIN 51900 - - 

ash content (815°C) declaration DIN 51719 - - 

VM declaration DIN 51720 declaration ASTM D1762-84 

WHC declaration DIN ISO 14238-2011 - - 
total surface area/ external surface 

area - - declaration ASTM D6556 

NH4 and NO3 - - declaration Rayment and Higginson 1992 

Total P and K - - declaration Enders and Lehmann 2012 

Available P - - declaration Wang et al. 2012 

Total Mg and S - - declaration Enders and Lehmann 2012 

Available Ca, Mg and Sulfate-S - - declaration Camps Arbestain et al. 2015 
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1.4) Biochar priority contaminants 

Biochar environmental applications can positively impact soil functions and mitigate climate 

change, however, thorough evaluation on the presence of potentially toxic elements must be 

monitored prior to large scale application. IBI and EBC guidelines define polycyclic aromatic 

hydrocarbons (PAHs), polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzodioxins 

(PCDDs) and heavy metals as biochar priority contaminants. The proposed threshold levels together 

with the methods for their determination were reported in the previous section (Table 1). However, 

the analysis of these priority contaminants is challenging due to the effect of the biochar complex 

matrix. In the case of trace metals, the recalcitrance of the carbonaceous matrix to degradation and 

acid dissolution is the main hurdle. As for the extraction of the main biochar elements (P, K, Na, 

Mg, Mn, Ca, Fe) described in section 1.1, the combination of acid and microwave digestion are 

considered appropriate procedures for the analysis of metals and metalloids in biochar.17 On the 

other hand, biochar aromaticity hinders the extractability of PAHs with the traditional extraction 

under reflux conditions.17 To this purpose, Soxhlet extraction was proved to be the best performing 

method for the extraction of PAHs from biochar. Hilber et al. compared the use of Soxhlet and 

Accelerated Solvent Extraction (ASE) under different conditions but concluded that ASE was 

consistently inferior.45 Therefore, different methods based on Soxhlet extraction were developed, 

that made use of different solvents, like toluene,45,46 dichloromethane,47 acetone/cyclohexane.48 

However, ASE was used for method development by some authors.49 Schimmelpfennig et al. 

evidenced that biochars from different technological processes can be distinguished by their PAH 

composition. Especially the naphthalene/phenanthrene ratio and the total PAH content appeared to 

be useful parameters to distinguish biochars from different production processes.12 In fact, biochar 

production process could intrinsically generate potentially harmful organic compounds such as 

PAHs, that are carcinogenic and persistent pollutants ubiquitous in the environment. Madej et al. 

evidenced that among the process parameters for biochar production, neither the feedstock nor the 

oxygen content had a significant influence on the PAH formation, but the temperature range of 500–
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700° C was considered suitable to obtain minimal PAH concentrations.50 Buss et al. evidenced that 

residence time at peak temperature did not influence the PAH concentration in biochar, but the 

feedstock selection played an important role.51 However, both studies stressed that complete 

removal of gas-phase pyrosynthesized PAHs from the reactor due to high carrier gas flow led to 

biochars with low PAH concentrations. Fabbri et al. developed a method for the determination of 

the most relevant PAHs defined by the US Environmental Protection Agency (16 US EPA PAHs) 

in biochar. The extraction procedure with Soxhlet and acetone/cyclohexane (1:1) solvent mixture is 

followed by GC-MS analysis. Biochars produced by slow pyrolysis from woody biomass presented 

the lowest concentrations (<10 µg/g).48 Naphthalene was the most abundant PAH, while higher 

molecular weight homologues were present in trace concentrations, but their presence pose the 

highest health and environmental hazards due to the established carcinogenic potential of this class 

of compounds.48 The method was further applied to quantify the concentration of PAHs in a 

vineyard soil after amendment with 33 t/ha of biochar over a period of two years.52 The content of 

PAHs increased remarkably (five times on average) after biochar treatment and remained 

significantly higher than that in the control soil without biochar addition. However, the levels in the 

amended soils remained within the range reported for background soils and decreased over time. 

The nature of the feedstock also affects the formation of noxious organic compounds that could be 

adsorbed onto biochar structure during its production. For example, the presence of chlorine can 

lead to the formation of PCDFs and PCDDs.46 Hale et al. quantified total and bioavailable PAHs 

and dioxins in a set of 59 biochars produced from slow pyrolysis, fast pyrolysis and gasification. 

Passive samplers were by exposed to a mixture of biochar and water, followed by solvent extraction 

of the cartridges and GC-MS analysis. Concentrations of bioavailable PAHs in slow pyrolysis 

biochars ranged from 0.17 ng/L to 10.0 ng/L which is lower than concentrations reported for 

relatively clean urban sediments. The gasification produced biochar sample had the highest 

bioavailable concentration. Total dioxin concentrations were low (up to 92 pg/g) and bioavailable 

concentrations were below the analytical limit of detection.46 On the other hand, in ash-rich 
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biomass, the enrichment of metal and metalloids within biochar can occur during pyrolysis, even if 

some elements can be volatilized during the process, such as Cd, Pb, Hg and As.17,49 Biochar 

contamination by Zn and Ni could also occur due to the contact with steel and tin materials during 

its production and storage.17 Freddo et al. analyzed metal and metalloids in lignocellulosic biochars 

produced at 300 and 600°C, with ICP-MS after acid digestion of the samples. The concentrations of 

Cd, Cr, Cu, Ni, Pb, Zn and As were variable, however, the study concluded that biochar application 

to soil (up to an application rate of 100 t/ha) is unlikely to make any real difference to metal and 

metalloid concentrations in the receiving soil.47 Oleszczuk et al. estimated the content of 

contaminants in four lignocellulosic biochar and correlated the results obtained with 

ecotoxicological estimation on bacteria, plants, algae, invertebrates. The content of trace metals 

(Cd, Cu, Cr, Ni, Pb, Zn) was comparable to uncontaminated soils. Therefore, the study concluded 

that no significant negative effect on the environment after the introduction of biochars to soils 

should be expected.49 Luo et al. 2014 determined total, bioavailable and leachable trace metals in a 

thermosequence of sewage sludge biochar (200-700°C). The concentrations in most of the sample 

were below the control standards of sludge for agricultural use in China, USA, and Europe. On the 

other hand, the leachable Mn concentrations in sludge biochars produced at below 500 °C exceeded 

the groundwater or drinking water standards of these countries.53 

1.5) Biochar volatile organic compounds (VOCs) and water-soluble organic compounds 

(WSOCs) 

Chemical characterization of biochar is necessary prior to large scale application in order to prevent 

possible detrimental environmental effects or avoid exposure to toxicants during its handling and 

storage. As above mentioned, biochar quality and safety were primarily focused on its 

physicochemical bulk properties, chemical structure and priority contaminants. However, other 

parameters could affect biochar performance in soils. There are indications that organic compounds 

trapped onto biochar can be released in the environment potentially causing adverse as well as 

beneficial effects on soil biota, such as phytotoxicity.54,55 or growth promotion.56,57 Their release 
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could occur in the gaseous phase (air), as volatile organic compounds (VOCs) or in the water phase 

(e.g. pore water) as water-soluble organic compounds (WSOCs). Studies on the chemical nature, 

concentration, mobility and bioavailability of these organic compounds are required and certainly 

represent a new interesting field of research. Condensation of pyrolysis vapors with subsequent 

adsorption on the porous biochar structure during its synthesis could be the source of these chemical 

species.58,59 Other possible hypotheses of their presence onto the biochar structure could be the 

formation during pyrolysis by in-situ reactions or sorption during the storage of biochar.58,60 VOCs 

and WSOCs have not been inserted in present guidelines, thus they are considered here as non-

conventional parameters of biochar quality, given their potential influence on its environmental 

performance. Accordingly, as no methods for their characterization have been standardized, the 

analytical techniques devoted to their detection are considered non-conventional. This section 

describes the analytical techniques that could potentially be suitable for the study of biochar mobile 

organic compounds. 

Volatile organic compounds (VOCs) 

During pyrolysis, the breakdown and rearrangement of the original biomass chemical structure can 

generate variable amounts of VOCs that can eventually be adsorbed onto biochar surface. Spokas et 

al. employed headspace instrumentation (headspace thermal desorption) coupled to GC-MS to 

qualitatively identify VOCs sorbed on biochar. This technique was selected because is common for 

the analysis of sorbed compounds on charcoal sample tubes. Over 70 biochars encompassing a 

variety of parent feedstocks and manufacturing processes (fast pyrolysis, slow pyrolysis, traditional 

kilns, gasification, wood fire boilers, activated chars, hydrothermal biochars and microwave 

assisted biochars) were evaluated and were observed to possess diverse sorbed VOC composition. 

Biochar samples (0.5 grams) were placed into a 10mL headspace vial and VOCs were thermally 

desorbed from the biochars using a head space sampler. For headspace methods, vial temperature 

and equilibration time are the most important parameters. A fixed thermal desorption temperature of 

150°C was selected similarly to other studies using headspace methods for charcoal desorption. 
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Furthermore, a desorption time of 10 min was used. Over 140 individual chemical compounds were 

qualitatively detected. Feedstock type seemed not to be the primary determining factor for VOCs, 

while the presence of oxygen appeared to be a controlling factor, decreasing the amount and 

number of VOCs. Lower pyrolytic temperatures (< 350°C) produced biochars with VOCs 

consisting of short carbon chain aldehydes, furans and ketones; elevated temperature biochars 

(>350°C) were typically dominated by aromatic species and longer carbon chain hydrocarbons. The 

top ten most frequently observed compounds were: acetone, benzene, methylethyl ketone, toluene, 

methyl acetate, propanal, octanal, 2,3-butadiene, pentanal, and 3-methylbutanal. Carbon dioxide, 

methane, ethylene/acetylene, and ethanol were detected in all of the sampled biochars.61 Bernardo et 

al. used the same technique to determine the concentration of 15 VOCs in the eluates of a leaching 

test in which biochar from the pyrolysis of pine biomass was extracted with a calcium chloride 

solution (0.001mol/l). The headspace sampling was performed using an equilibration time of 30min 

and an extraction temperature of 60°C. Organic compounds monitored and quantified were: 

benzene, toluene, ethylbenzene, o/m/p/-xylenes, cumene, propylbenzene, 4-ethyltoluene, tert-

butylbenzene, 1,2,4-trimethylbenzene, 1-methylpropylbenzene, butylbenzene, 1,4-diethylbenzene 

and 1,2,4,5-tetramethylbenzene.62 These studies opened the way for the characterization of a wide 

range of compounds that could be mobilised from biochar. However, further investigation on the 

quantity of these species and the relationships between VOCs and biochar bulk properties could 

better explain their role on biochar quality. Becker et al. used head space chromatography with 

mass spectrometry and flame ionization detector to separate, identify and quantify VOCs thermally 

desorbed from a series of carbonized materials produced by hydrothermal carbonization at 190-

270°C. A variety of potentially harmful benzenic, phenolic and furanic volatiles along with various 

aldehydes and ketones were identified in feedstock- and temperature-specific patterns. These 

species were indicative of the degradation and partial carbonization of the parent biomass material 

under high pressure and relatively low temperature compared to those usually maintained with 

pyrolysis.63 Solid-Phase Microextraction (SPME) is a simple and efficient, solventless sample 
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preparation technique 64. Since its first applications SPME has been widely used in different fields 

of analytical chemistry, like environmental, food and bioanalytical analysis and is ideally suited for 

coupling with mass spectrometry (MS).65–67 SPME proved to be powerful for the analysis of trace 

compounds in complex matrices, due to the integration of multi-staged procedures (extraction, 

concentration, purification) into a single step, considerably simplifying the sample preparation and 

reducing the risk of analytes loss. The technique is based on the use of a fused-silica fibre coated 

with a polymeric stationary phase. In combination with GC-MS, the analytes in the sample are 

directly extracted onto the fibre coating compounds and transferred into the injector of a gas 

chromatograph for thermal desorption and analysis. The versatility of fibre SPME allows the 

possibility of sampling the analytes in the head-space (HS-SPME), for the detection of volatile 

compounds or by direct insertion (DI-SPME) into the sample matrix for the analysis of less volatile 

components.64,68 Piri-Moghadam et al. compared SPME methods for the detection of environmental 

pollutants in water samples (VOCs, PAHs) with officially standardized procedures (US EPA, 

ASTM). The accuracy of SPME was in good agreement with the traditional ones based on liquid-

liquid extraction (LLE) and solid phase extraction (SPE), but SPME can overcome some concerns 

regarding the greenness of LLE technique and provides broader range of applications.68 Soria et al 

reported HS-SPME as an advanced method for the analysis of pyrolysis products in bio-oil. Its 

application was seldom reported for biochar analysis while detailed performance studies have not 

been conducted yet.69 Clough et al.2010 applied the SPME to qualitatively detect VOCs in a 

biochar sample. Divinyl benzene fibre was selected for the analysis in the head space mode, with 

the fibre exposed at 40°C for 40 minutes. Only α,β-pinene and acetaldehyde were identified among 

the VOCs evolved from the biochar.70 Higashikawa et al.2013 selected DVB fibre (20°C and 20 

minutes fibre exposure) to quantitatively detect model VOCs in complex environmental matrices 

and demonstrated that poultry manure and oak biochars presented high affinity for the spiked 

compounds.71 Studies specifically aimed at the determination of VOCs in biochar in relation to its 

bulk chemical properties have not been published. Therefore, SPME has the potential for the 
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evaluation of trace amounts adsorbed onto biochar as consequence of re-condensation of pyrolysis 

vapours.  

Water-soluble organic compounds 

In comparison to VOCs, more studies are available on compounds that can be released in water 

from biochar. Lin et al. investigated the composition of water-extractable fraction of four 

lignocellulosic slow pyrolysis biochars produced at increasing temperatures (380-600°C) by means 

of liquid chromatography organic carbon detection (LC-OCD), that allowed to compare the 

separated substances with classes usually employed to characterize natural organic matter.72 The 

detected species were attributed to: biopolymers consisting of polysaccharides and nitrogen 

containing materials, humic acids, fulvic acids and their degradation products, low molecular 

weight acids and neutral species, and hydrophobic components. Organic acids were important 

species even in biochars produced at higher temperatures, while humic-like acids and low molecular 

weight neutral species were the principal components of the compounds extracted from the low 

temperature chars (<450°C). Similar results were observed by Tahesimoosavy et al 2015 in which 

dissolved organic carbon (DOC) decreased in biochar produced from 450 to 650°C. The pyrolysis 

temperature greatly affected the composition of DOC as led to a degradation of the high molecular 

weight species into low molecular weight acids.73 Lievens et al. investigated the nature of the 

leached organic compounds from biochar produced from mallee leaf and bark, by a fluidized-bed 

pyrolysis reactor at 400 and 580°C. The biochar solvent-extractable organic compounds 

(chloroform/methanol) were analyzed by GC-MS, and a total of 9 compounds were detected, 

including phenolic species (phenol, 4-methoxy phenol, 3,4-dimethoxy phenol), organic acids (acetic 

acid, propionic acid, methyl butanoic acid), levoglucosan, 1,2,4-trimethoxybenzene and 4-hydroxy-

3-methoxybenzaldehyde. The structure of water-leached aromatic compounds was suggested to be 

composed of structures with 2–3 and 3–5 fused aromatic rings, according with maxima of 

synchronous fluorescence spectra centred around 340 and 390 nm, respectively.74 Qu et al. 

characterized the dissolved black carbon released into water by two slow pyrolysis biochars 
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(400°C) with different analytical techniques (elemental analysis (EA), X-ray photoelectron 

spectroscopy (XPS), UV-vis, Raman, X-ray diffraction (XRD), FTIR, and solid-state 13C NMR). 

The characteristics of biochar dissolved black carbon were similar to that of the humic acids, but 

with a higher aromatic and carboxylic structures.75 Fluorescence excitation-emission 

spectrophotometry is a rapid, sensitive and non-destructive technique often used for tracing the 

dynamics of dissolved organic matter (DOM) in marine and freshwaters as well as soils and 

sediments.76–80 The specific excitation and emission wavelengths are characteristic of the molecular 

nature of the fluorophores.81 The concentration and chemical composition of DOM influence the 

intensity and shape of the fluorescence spectra.82 At low concentrations, the peak intensity is 

directly proportional to the concentration of a given fluorophore in solution. This relationship is not 

valid at high sample concentrations as a result of absorption of excitation and emission light by the 

sample matrix.81 The results of the fluorescence analysis can be assembled in Excitation-Emission 

Matrices (EEMs), obtained by combining fluorescence emission spectra measured from a series of 

different excitation wavelengths and subsequently arranging the composite scan in a grid (excitation 

X emission X intensity). Interpretation of fluorescence EEMs can be performed by means of 

multivariate analysis and multiway techniques, like the Principal Component Analysis, Partial Least 

Squares Regression, Principal Filter Analysis. Parallel factor analysis (PARAFAC) which can 

decompose the fluorescence signal into underlying individual fluorescent phenomena has been 

widely used.81,82 Uchimiya et al. used the PARAFAC analysis to resolve the overlapping spectra 

obtained from the EEM to investigate the structural changes in biochar-derived DOC as a function 

of feedstock and pyrolysis temperature. In that experiment, five feedstocks (almond shell, broiler 

litter, lignin, cottonseed hull and pecan shell) were pyrolysed at 4 incremental temperatures between 

350 and 800°C and each kind of biochar was sequentially extracted using hot water (80°C) and a 

cold NaOH solution (0.05M) for 16h.83 Zhang et al. investigated the properties of water-extractable 

fractions of four biochar samples with the fluorescence excitation-emission matrix (EEM) analysis 

and adopted the fluorescence regional integration (FRI) technique for the interpretation of the 
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spectra. Wood, bamboo and rice based biochars were extracted by shaking with room temperature 

deionized water at 200r/min for 4h. EEM spectra were normalized to the TOC concentration of the 

samples. According to FRI, EEM spectra were divided into five excitation-emission regions 

(tyrosine-like organic compounds, tryptophan-like organic compounds, fulvic acid-like materials, 

soluble microbial byproduct-like materials, humic acid-like materials). The cumulative Ex/Em areas 

of region indicative of fulvic acid-like materials and humic acid-like materials were the highest for 

the wood biochar sample, whereas bamboo biochar had the lowest levels of humification 

materials.84 Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) is a 

technique that effectively converts ionic mass to charge ratio to an experimentally measurable ion 

cyclotron orbital frequency. Because frequency can be measured more accurately than any other 

physical property, FT-ICR-MS offers highest resolving power and mass accuracy among all types 

of mass spectrometers. Its unique analytical characteristics made FT-ICR-MS important tool for 

proteomics, metabolomics, petroleomics, and investigation of complex mixtures.85–88 Electrospray 

ionization (ESI) is a soft ionization method designed to produce charged species that could be 

manipulated within the gaseous or high-vacuum phase of mass spectrometers. ESI takes place at 

atmospheric pressure, ionizes a wide range of polar, hydrophilic molecules with both acidic and 

basic functional groups. The production of positive or negative ions depends on the ionization 

efficiency. Samples with easily ionizable and/or numerous acidic groups, such as carboxylic acids, 

will readily lose a proton and be negatively ionized very efficiently. In contrast, samples with many 

basic groups, such as amines, will easily pick up a proton and be positively ionized.89 ESI-FT-ICR-

MS has been used to unravel the molecular complexity of natural organic matter.90–93 Given the 

similarity between some of the structures of biochar WSOCs and those of NOM evidenced by 

spectroscopy studies, ESI-FT-ICR-MS analysis could be extended to the detailed characterization of 

biochar WSOCs. Smith et al. studied the compounds released in water by three different biochar 

samples produced from peanut shell, chicken litter, and pinewood at 450°C with negative ESI-FT-

ICR-MS. The molecular composition of pinewood-derived biochar water extracts showed unique 
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carbohydrate ligneous components and sulfur containing condensed ligneous components that are 

both absent from the peanut shell water extracts.94 In a following study, the same authors 

investigated the chemical composition of lignocellulosic biochar produced at 300, 400 and 500°C 

together with the residues of lignin and cellulose produced at the same temperatures. The amount of 

WSOCs extracted from biochar, irrespective of biomass starting material, decreased significantly as 

a function of pyrolysis temperature.59 Riedel et al. conducted batch and soil column experiments to 

investigate the composition of DOM leached from an arable topsoil amended with biochar. 

Negative ESI-FT-ICR-MS revealed a marked change in the composition of the OM mobilized. The 

most saturated and reduced compounds were removed in the solutions leached from the biochar 

amended soil. Newly-appeared ‘‘lignin-type’’ compounds were detected, indicating that non-black 

carbon was also leached from the amended soil in the form of highly oxygenated DOM.95 

 

Figure 5. Proposed constituents of biochar-borne pyrogenic dissolved organic carbon.96 
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Environmental importance of biochar VOCs and WSOCs 

As previously discussed, the biochar heterogenous complex structure can adsorb and retain several 

organic and inorganic compounds during its production, and these fractions can be subsequently 

mobilized in the environment after biochar application to soil. It is therefore fundamental to screen 

the potential effects of biochar mobile species prior to large scale application. IBI guidelines for 

biochar quality recognizes the importance of the evaluation of potential toxicity arising from the 

biochar in soil applications and proposes biochar toxicity assessment by following the requirements 

commonly used for soil amendments, composts and fertilizers. In particular, the germination 

inhibition assay is indicated as compulsory test for the determination of suitable biochar quality.9 

Seed germination and root elongation tests are among the simplest short-term bioassays for 

estimating the potential impacts of contaminants in the soil.97 Many procedures used for testing 

biochar phytotoxicity were followed by different authors. One of the reference method is the OECD 

Guideline for testing of chemicals “Terrestrial plants, growth test”, in which the test substance has 

to be incorporated at various concentrations into soil where the seeds are sown, and the number of 

seedlings that emerge is recorded.98 Van Zwieten et al. applied this procedure to test the toxicity of 

two biochar produced by slow pyrolysis of papermill waste at 550°C with two agricultural soils, 

using three plant species, radish (Raphanus sativus), wheat (Triticum aestivum) and soybean 

(Sorghum bicolor). The study concluded that no negative effects on plant germination in the 

presence of biochar were observed suggesting the absence of detrimental components. Contrarily, 

germination of wheat in the ferrosol was significantly improved in the presence of either biochar.99 

Free et al. tested the effects of the incorporation of biosolids and corn stover biochar produced at 

550°C at different rates (0-10 t/ha) into soil. Germination tests were performed with 50 seeds of 

maize (Zea mays) and showed no effects of biochar feedstock or rate of biochar application neither 

on germination of maize or dry weight of coleoptiles, roots and coleoptile length.100 Alburquerque 

et al. tested biochars produced from five feedstocks (olive stone, almond shell, wheat straw, pine 

woodchips, and olive-tree pruning) at different temperatures from 368 to 507°C with sunflower 
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(Helianthus annuus). The percentage of germinated seed with respect to control soil increased with 

increasing biochar-application rates. Statistically significant correlations between the number of 

germinated sunflower seeds and soil variables such as pH, EC, field capacity, bulk density, and 

DOC were proposed to explain the positive effect.101 The bioactivity of the compounds that can be 

released into water by biochar was highlighted by Rogovska et al.54 Six biochars produced from 

hardwood, corn and switchgrass at different pyrolysis temperatures ranging from 450 to 850°C 

were extracted with deionized water for 24 hours and twelve corn seeds were germinated with the 

aqueous extracts. Biochars produced at high conversion temperatures caused a significant reduction 

in the shoot and root lengths of the seedlings, while the germination rate was not affected. The 

comparison with the results of nutrient solutions prepared to mimic the nutrient composition and pH 

of the biochar extracts suggested that the nature of biochar phytotoxicity was due to water-soluble 

organic compounds. Polycyclic aromatic hydrocarbons were detected in the aqueous extracts and 

attributed responsible for the reduction in seedling growth.54 Busch et al. developed germination 

and growth tests for the determination of phytotoxic substances and salt stress of biochars and 

hydrochars. The first one with chars mixed into unfertilized peat substrate and barley, as plant not 

sensitive to salt stress. The second test was carried out on salad (Lactuca sativa) a salt-sensitive 

plant. Negative effects on salad germination, but not barley germination and growth, may indicate 

high ash contents but no harmful substances, whereas effects on barley germination would indicate 

potential toxic effects. Moreover, a germination test with cress (Lepidium sativum) designed for 

compost testing, was modified to evaluate the effect of gaseous substances emitted by the chars. 

While the biochar did not induce negative effects hydrochar showed negative effects in all tests. A 

sequential test with the same hydrochar showed positive results and allowed to hypothesize that the 

harmful substances must have been degraded or they were water soluble and leached. It was 

proposed that the negative effect observed with fresh hydrochar was most likely associated with the 

emission of phytotoxic volatile substances, such as formic or acetic acid.102 Bargmann et al 

developed tests with spring barley (Hordeum vulgare) to assess phytotoxic effects of biochar, 
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hydrochar and process-water from hydrothermal carbonization (HTC) as soil amendments.103 The 

content of dissolved organic carbon (DOC) in the chars correlated with the formation of seedlings 

(Figure 6). While low DOC of the biochars did not show inhibiting effect, higher values associated 

to the extracts of hydrochars presented significant reduction of the germination rate. It was 

concluded that the inhibiting substances are partly gaseous and are released to the atmosphere after 

application, and partly water-soluble. An additional experiment was performed to test 11 selected 

potentially phytotoxic substances on cress. Total inhibition of the germination was observed for 

glycolic acid and levulinic acid, while guaiacol caused a 50 % impediment of germination. Acetic 

acid, glycolaldehyde dimer and catechol had a negative impact on growth. It was concluded that 

substances such as organic acids, phenols and aldehydes may be responsible for phytotoxic effects 

of the hydrochars.103  

 

Figure 6: Correlation between germination of barley seeds and DOC content of hydrochars and 
biochars in substrates with 10 % char amendment.103 

Zakaria et al. proposed Petri dish bioassays as simple and rapid ecotoxicological tests for 

preliminary assessment of biochars in soil-less conditions. The study compared the performance of 

five biochars in soil-less versus soil-based germination and growth tests. The soil-less procedure 

was finally proposed as a simpler preliminary screening method than a soil-based bioassay using a 

standard soil like OECD 1984.104 Buss et al. studied softwood biochar produced at 550°C that were 

contaminated with pyrolysis gases during process operation (Figure 7). VOC contaminated biochar 

showed phytotoxicity on cress seeds (germination tests) while non-contaminated biochar produced 
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under the same conditions did not present any negative effect.58 Even after four weeks of storage, 

the contaminated biochar released small quantity of vapours inhibiting germination. The nature of 

toxicity was only hypothesized but the chemical nature not determined. Further studies led Buss et 

al. to conclude that VOCs posed greater concern for plant growth than PAHs.105 In summary, 

biochars produced from different feedstocks and conditions exhibited contrasting effects in 

germination tests. The summary of biological effects on a variety of plant species is reported in 

Table 2 along with the possible cause.  

 

Figure 7: Germination test for assessing the effect of biochar mobile compounds on cress seeds.58 

 

Table 2: Summary of the biological effects of biochar and hydrochar on seed germination and 
seedling growth. 

Feedstock 
Production 

temperature (°C) 
Test  Effect Proposed cause Reference 

papermill  550 
Raphanus sativus (radish), 
Triticum aetivum (wheat), 

Sorghum bicolor (soybean) 
Improved germination of wheat  liming effect, CEC,  

Van Zwieten et 
al.99 

biosolids, corn stover 550 Zea mays (maize) 
no significant effect in the 

germination and early growth 
- Free et al.100 

olive stone, almond 
shell, wheat straw, 

pine woodchips olive-
tree pruining 

368-507 Helianthus annus (sunflower) 
increase in the germination rate with 
increasing biochar application rate 

pH, EC, field capacity, bulk 
density, DOC 

Albuquerque et 
al.101 

hardwood, corn, 
switchgrass 

450-850 Zea mays (maize) 
No effects in the germination rate. 

Reduction in shoot and root lengths 
with high temperature biochar 

PAHs in water extracts of 
the biochar 

Rogovska et al.54 

peanut hull residue, 
beet-root chip 

203 (hydrochar), 498 
(biochar) 

Hordeum vulgare (barley), 
Lactuca sativa (salad), 

Lepidium sativum (cress) 

Biochar did not inhibit germination, 
while hydrochar showed negative 

effects 

phytotoxic VOCs in 
hydrochar (formic acid, 

acetic acid) 
Busch et al.102 

several lignocellulose, 
manure, sewage 

sludge 

190 (hydrochar), 860 
(biochar) 

Hordeum vulgare (barley) 
DOC content correlated with the 

formation of seedlings 

VOCs and WSOCs 
inhibited seedlings growth 
(glycolyc acid, levulinic 

acid, guaiacol) 

Bargmann et al.103 

oil mallee, rice husks, 
jarrah, wheat chaff 

550-700 Triticum aetivum (wheat) 
biochar both increased and decreased 

seed germination rates 

trace organic compounds, 
high alkalinity acidity can 
cause the negative effects  

Zakaria et al.104 

softwood pellets  550 Lepidium sativum (cress) inhibition of germination 
high VOCs emission from 

biochar 
Buss et al.58 
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2) AIM OF THE STUDY 

Biochar application to soil requires the careful consideration of organic compounds that can be 

adsorbed or generated onto biochar surface during its production. The mobility of these species in 

the environment can produce impacts on soil system and biota. The importance of priority 

contaminants like PAHs, PCDD/Fs and heavy metals, was established by the definition of threshold 

levels for biochar quality and safety. However, compounds that can be mobilized in the air as 

volatile organic compounds (VOCs), and in water as water-soluble organic compounds (WSOCs) 

were less investigated. A wide array of compounds could be present in VOCs and WSOCs, ranging 

from highly polar to less polar species. Due to its versatility for the analysis in the gas and water 

phases, solid-phase microextraction (SPME) could be eligible for the sampling of VOCs and 

WSOCs in biochar. The principal aim of this study was to evaluate the potential of SPME for the 

characterization of VOCs and WSOCs in biochar. Preliminary experiments showed that Carboxen-

PDMS SPME fiber resulted adequate for the analysis of pyrolysis products of biomass. A second 

objective was the correlation of mobile organic compounds with biochar bulk properties and 

production conditions, to shed lights on the definition of quality parameters. Finally, the chemical 

information obtained by the developed analytical methods tailored for the determination of biochar 

organic compounds was used interpret the biological effects observed on plant growth. The present 

thesis is structured into the following sections:  

- Volatile organic compounds: the first section is focused on the development of an analytical 

method based on SPME and gas chromatography-mass spectrometry (GC-MS) for the 

determination of VOCs released from biochar, in relation to its carbonization degree and 

thermal stability.  

- Water-soluble organic compounds: the section is aimed at the characterization of organic 

compounds released from biochar into water (WSOCs) in relation to its carbonization degree 

and thermal stability. Due to the limitation of SPME-GC-MS to the determination of volatile 
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and semi-volatile species, fluorescence spectroscopy and ultrahigh resolution mass spectrometry 

techniques were employed to investigate the composition of higher molecular weight 

constituents of WSOCs. 

- Characterization of biochar produced from a pilot plant pyrolysis process: the section presents 

the application of the methods developed on biochar from a bench scale reactor, to samples 

produced with the thermo-catalytic reforming process at Fraunhofer UMSICHT (Germany). 

Differences in the profiles of VOCs and WSOCs can be used to test the incidence of the process 

on biochar quality. 

- Relationships between VOCs, WSOCs and seed germination: the section provides the 

correlation between the fingerprints of VOCs and WSOCs released by biochar and their effects 

on plant growth at different stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

3) DETERMINATION OF VOLATILE ORGANIC COMPOUNDS (VOCs) IN BIOCHAR  

3.1) INTRODUCTION 

Biochar is the solid carbonaceous material produced by the pyrolysis of biomass for a variety of 

applications in the agro/environmental field.7 The wide range of feedstocks that can be thermally 

converted, including animal (poultry litter, residues from anaerobic digestion) as well as vegetable 

based materials (agricultural residues, energy crops), and the different technologies currently under 

optimisation for biochar production highly influence its physical and chemical properties.36,106 The 

increasing interest in finding suitable biochar applications (e.g soil amendment, greenhouse gas 

mitigation, feed additive, new materials, remediation of polluted areas)14,107 led to a comprehensive 

investigation on its chemical characteristics to determine its quality prior to large scale use.23,108 

Standardisation of analytical methods for biochar testing is under investigation with conventional 

and non-conventional techniques and standard parameters for its quality/safety were proposed.9,17,18 

During pyrolysis condensable gases could be retained onto the biochar porous structure and these 

compounds could have a certain degree of mobility. Few studies dealt with the determination of 

trace compounds that can be released in air or water, however, these are important parameters for 

biochar quality because their mobility could exert positive or negative effect on plants, 

microorganisms or other organisms in natural environments as well as soil chemical 

properties.52,58,109–111 Biochar labile substances can have a priming effect on soil biota112 and the 

potential to influence the pyrogenic black carbon cycle.113 Moreover, if large amounts of biochar 

are produced for soil application, the presence of harmful compounds such as monoaromatic 

hydrocarbons (benzene, toluene, ethylbenzene, xylenes: BTEX), polyaromatic hydrocarbons 

(PAHs) and heavy metals, has to be monitored for health and safety concerns during its handling 

and storage and to prevent impacts on plants,52,58,109,111 or other organisms.49 Spokas et al.61 

qualitatively investigated volatile organic compounds (VOCs) released by 77 biochars produced 

from different processes and different temperatures with traditional head space gas 
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chromatography-mass spectrometry (HS)-GC-MS instrumentation. Differences in the amounts of 

VOCs (total ion current) from similar feedstocks (oak hardwood), pyrolysis units and temperatures 

were found as well as VOCs profiles of corn stover biochar produced at similar conditions but from 

different units. The top ten most frequently observed compounds were acetone, benzene, 

methylethyl ketone, toluene, methyl acetate, propanal, octanal, 2,3-butadiene, pentanal, and 3-

methyl butanal.61 The overall trend associated with an increase in pyrolysis temperature within the 

same unit was a net decrease in total sorbed VOCs with an increasing proportion of aromatic 

compounds. Buss et al.58 studied softwood biochar produced at 550°C that were contaminated with 

pyrolysis gases during process operation. VOCs contaminated biochar showed phytotoxicity on 

cress seeds (germination tests) while non-contaminated biochar produced under the same conditions 

did not present any negative effect. Even after 4 weeks storage, contaminated biochar released small 

quantity of vapours inhibiting germination, but the chemical nature of the contamination was only 

hypothesized. Further studies led Buss et al.111 to conclude that VOCs posed greater concern for 

plant growth than PAHs. EBC guidelines for biochar quality indicates that the VOCs are very 

important for the determination of biochar quality but no quantitative information or thresholds 

were given.18 The report cites the qualitative study conducted by Spokas et al.61 and concluded 

proposing the assessment of total VOCs by thermogravimetric analysis (TGA). IBI proposed the 

same determination of VOCs as advanced analysis optional for biochar quality.9 Solid phase 

microextraction (SPME) is a powerful solventless technique for the analysis of trace components in 

complex matrices by GC-MS, that integrates several analytical steps (sampling, extraction, pre-

concentration and sample introduction for instrumental analysis).65 The potential of SPME for the 

analysis of mobile organic compounds was described in the characterisation of poultry litter biochar 

where the technique enabled the detection of alkyl phenols, small hydrocarbons, alkyl aromatics, 

small PAHs and nitrogen containing compounds.55 However, the effect of biochar characteristics on 

the qualitative and quantitative distribution of VOCs determined by HS-SPME has not been 

investigated yet. In this study, a method based on HS-SPME-GC-MS was developed in order to 
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understand the pattern of VOCs retained or formed in biochar during pyrolysis of biomass and how 

they relate to process conditions and biochar bulk properties. The method was tested on seven 

biochars obtained from the pyrolysis of a typical lignocellulosic biomass, corn stalk, at increasing 

pyrolysis temperatures (350-650 °C). The purpose of this study was the detailed characterisation of 

the mobile organic compounds that could be volatilised from biochar, potentially affecting its 

environmental performance, and the correlation of the VOCs species with biochar carbonisation 

degree. Secondly, the potential of HS-SPME data for the evaluation of biochar quality for 

sustainable applications was discussed.   

3.2) MATERIALS AND METHODS  

Chemicals 

2-allyl-6-methoxy phenol (o-eugenol) and methanol were purchased from Sigma Aldrich. SPME 

fibre holder and Carboxen-polydimethylsiloxane (Car-PDMS) fibre were purchased by Supelco.  

Biochars 

Pellettised corn stalks were pyrolysed in a bench-scale horizontal quartz reactor114 at different 

temperatures (350, 400, 450, 500, 550, 600 and 650 °C) with fixed residence time of 20 minutes 

and 1000 ml/min nitrogen flow. During pyrolysis actual temperature in the reactor was measured 

with a thermocouple. For each pyrolysis batch about 15 grams of biomass were processed. The char 

produced was let to cool in the reactor under nitrogen flow, collected and after homogenisation, 

stored in the freezer. The syntheses of biochar were performed in triplicate, with relative standard 

deviation (RSD) of the yields for each pyrolysis condition less than 2%. Biochar samples obtained 

at a given pyrolysis temperature XXX °C were grouped, homogenised and stored in closed vials at – 

25°C before analysis; the resulting sample was named as CSXXX. Spent mushroom substrate was 

pyrolyzed under the same conditions at 500°C and the resulting biochar was named SM500 
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Biochar characterisation   

Elemental analysis of biochar samples was performed with a Thermo Scientific FLASH 2000 Series 

CHNS/O Elemental Analyser. TGA of thermosequence biochar samples was performed with a 

Mettler Toledo TGA/DSC. Between 5 and 10 mg of biochar were placed in alumina pans. TGA 

analyses were performed with nitrogen purge gas (50ml/min) and the following temperature 

program: 25°C for 2 min, 25-110°C at 25°C/min, 110°C for 10min (segment A); 110-900°C at 

25°C/min, 900°C for 10min (segment B); 900°C for 20 min in air at 50ml/min (segment C). A 

blank curve of an empty pan was acquired for baseline correction during the evaluation of the 

biochar samples. Proximate analysis was conducted from the weight loss curve of each sample. 

Moisture content was calculated from the weight loss during segment A, while the volatile matter 

(VM) and fixed carbon (FC) from segments B and C, respectively. The ash content was calculated 

from the residual weight after fixed carbon oxidation (segment C). Analyses were performed in 

triplicate. Data were normalised by sample weight and expressed in % dry basis. 

HS-SPME procedure  

One gram of biochar was exactly weighed in 20 ml HS vials and spiked with 1 µl (weighed at ± 

0.01 mg) of methanol containing o-eugenol as surrogate pyrolysis product (1.00 mg/ml). Sealed 

vials were placed on a heating plate at 150°C where only the bottom part containing biochar was in 

contact with the heated surface. The Car-PDMS fibre was placed in the HS where the temperature 

was about 40°C. Temperatures were constantly measured by means of a PSC-MS Plus Portable 

Handheld infrared thermometer. The exposure time was fixed at 30 minutes according to Becker et 

al.63 Spokas et al.61 Preliminary experiments during method development showed that: Car-PDMS 

fibre gave better performance in terms of signal intensity compared to polyacrylate and 

polyethylene glycol SPME fibres; increasing exposure time more than 30 minutes did not 

significantly increase GC signal. The HS-SPME procedure was also applied to calibration solutions, 
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1 g of CaCO3 spiked with 1µl of internal standards and CS biochar samples heated at different 

temperatures (25, 50, 100, 150°C) during sampling. 

GC-MS conditions 

After fibre exposure, the Car-PDMS was inserted into the split/splitless injector of an Agilent 5977 

gas chromatograph equipped with a straight SPME liner. Analytes were thermally desorbed at 

250°C for 10 minutes and separation performed with a DB-FFAP polar column (30m length, 

0.25mm i.d, 0.25µm film thickness). Starting GC oven temperature was set to 36°C (5 minutes) and 

increased to 250°C (10°C/min). Detection was made with a quadrupole mass spectrometer Agilent 

7820A operating under electron ionization at 70eV with acquisition at 1 scan/sec in the m/z 29 and 

450 range. Mass spectra were acquired in full scan mode properly adjusting the electron multiplier 

voltage. Identification was based on library mass spectra matching (NIST) and literature data. 

Quantification was made from the peak area integrated by extracting characteristic ions from total 

ion current.  

Quantification and statistical analysis 

The quantity of each analyte released by biochar and captured by the SPME fibre in the HS of test 

vials (20 mL) was expressed in terms of normalised peak area NA. NA was calculated from the peak 

areas of the analyte (Aanalyte) and the internal standard (Ais), the quantity of added internal standard 

(µgis of methanol) and the analysed biochar using the following equation (Eq.1):   

Eq.1: ܰܣ =
ೌೌ

ೞ

ஜೞ
್ೌೝ

 

This approach was considered adequate for the purposes of this study intended to compare the 

relative behaviour of different biochar samples produced from the same feedstock. The linearity of 

the HS-SPME method was tested on o-eugenol. Ordinary least squares regression computed on the 

peak area of o-eugenol in the calibration range of 108-0.108 ng (12 data points) resulted in the 

following linear model (ݕ = ݔܽ + ݕ :(ܾ = ݔ06ܧ4.43 −  are the amount of ݕ and ݔ where ,06ܧ4.56
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internal standard and its peak area respectively. 95% confidence intervals for a and b were 

;06ܧ4.34] ;06ܧand [9.42  [06ܧ5.55  respectively, while the standard errors were [05ܧ8.38

 R2 and Pearson correlation coefficient (r) were both 0.999. Average S/N .06ܧand 2.94 04ܧ5.43

values for 0.1 ng level was 50 (n=3, 4% RSD) indicating that under the selected conditions VOCs at 

the sub-ng level could be detected in the HS of biochar. When the methanolic solution of o-eugenol 

was added to the biochar matrix, the GC signals of o-eugenol were strongly reduced in comparison 

to those observed from the HS-SPME of the neat calibration solution. The values were rather low 

(less than 5 % the value of the calibration solution), especially for the more carbonised biochars. 

This effect was attributed to the strong hydrophobic adsorption of o-eugenol onto the biochar 

surface. In fact, when the calibration solution was added to powdered CaCO3 the HS-SPME 

produced a value more similar (73% ± 15) to that in the absence of a solid matrix (i.e. the 

calibration solution 100% ± 7). A different behaviour was exhibited by methanol that produced a 

signal lower than that in the absence of biochar, but similar in all the tested biochar samples (17.0 % 

± 1.3) with a reasonable precision (RSD < 10%) for each biochar. For these reasons, methanol was 

selected as internal standard in the calculation of the quantity of analyte evolved from a given 

quantity of biochar under HS-SPME conditions. The RSD of methanol peak area (Ais) from 

triplicate analyses of each biochar was < 10%. All the analyses were conducted in triplicate; data 

were reported as mean values ± 1 standard deviation (s.d.) or % relative standard deviation (RSD). 

Blanks were performed to ascertain the absence of cross-contamination. Ordinary least squares 

regression was computed with the software PAST (Paleontological Statistic vers. 2.16) while 

Pearson product moment correlation coefficients (r, with P level of significance) were calculated 

with the software SigmaPlot vers.12.0. Kruskal-Wallis and Jonckheere-Terpstra statistics were 

performed with the NSM3 package of R according to Hollander et al.115  
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3.3) RESULTS AND DISCUSSION  

Biochar characteristics  

The elemental composition of biochar samples produced in this study was reported in Table 3. The 

hydrogen and oxygen content decreased with increasing pyrolysis temperature and accordingly the 

values of H/C and O/C atomic molar ratios decreased (from 0.80 to 0.32 and from 0.17 to 0.07 from 

350 °C to 650 °C, respectively). The content of nitrogen also decreased with increasing pyrolysis 

temperature. Proximate analysis of biochar samples were reported in Table 4. The FC and ash 

content tended to increase with the pyrolysis temperature while the VM decreased. These trends 

were typical observed in thermosequence biochars due to the more severe thermal decomposition of 

biopolymers at higher temperature with enhanced elimination of volatile compounds and 

polycondensation, aromatisation and defunctionalisation of the carbonaceous matrix.116–119 H/C and 

O/C atomic molar ratios were proposed as an index of biochar carbonisation degree or its degree of 

aromaticity.42  

Table 3: Elemental composition (% d.w.) and atomic molar ratios of corn stalk (CS) biochar 
samples. Mean values and %RSD (n=3). Oxygen content by difference. 

 

 

 

 

 

Table 4: Proximate analysis of corn stalk thermosequence. Data are reported as % on dry basis 
with %RSD (n=3) 

 

 

 

biochars N RSD C RSD H RSD O H/C O/C C/N 

CS350 1.2 2.1 55 0.43 3.7 1.2 13 0.80 0.17 56 

CS400 1.0 2.9 54 1.1 3.2 1.2 9.6 0.71 0.13 61 

CS450 1.0 2.2 56 1.3 2.7 0.2 7.1 0.59 0.095 63 

CS500 0.92 3.6 56 1.7 2.3 5.4 5.5 0.49 0.074 70 

CS550 0.87 5.3 55 5.5 2.0 6.3 5.6 0.44 0.078 73 

CS600 0.84 5.0 55 2.2 1.6 1.6 3.9 0.36 0.053 77 

CS650 0.69 12 54 7.0 1.4 9.0 5.1 0.32 0.071 91 

Biochars VM %RSD FC %RSD Ash %RSD 
CS350 33 1.4 43 1.0 24 3.6 
CS400 26 0.67 45 2.1 28 3.8 
CS450 21 2.3 49 1.2 30 2.9 
CS500 20 0.46 49 3.3 31 4.9 
CS550 18 3.0 50 2.6 32 4.5 
CS600 16 4.3 50 0.87 34 2.0 
CS650 15 2.9 51 1.7 35 3.2 
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H/C values were preferred in this study given that O/C values may not be adequate for biochars 

with high ash content.36 The trend of H/C demonstrated to be statistically significant with the 

Jonckheere-Terpstra statistics (P < 0.01). FC increased with the decreasing H/C of the biochars, 

with correlation coefficients of 0.83 (P < 0.05) indicating a good correlation between different 

parameters representative of the carbonisation degree, while the volatile matter progressively 

decreased with the increasing H/C (r = 0.97, P < 0.01).   

Qualitative analysis: biochar volatilome  

Thermosequence biochars evolved a variety of organic compounds in the HS that were detected by 

SPME GC-MS. A typical chromatogram obtained from the HS-SPME of the biochar sample CS350 

(H/C 0.80) is presented in Figure 8. In total 88 compounds were tentatively identified belonging to 

several compounds classes (Tables S1 and S2). The initial part of the chromatogram presented an 

intense and poorly resolved sequence of peaks formed by volatile compounds, principally C3-C4 

oxygenated compounds, for example propanaldehyde, butanaldehyde, butan-2-one, methyl acetate. 

Some of these compounds were also detected in previous studies with different biochars.55,61,70,71 

Blank analyses confirmed that these compounds were not present in reagents and glassware utilised 

in the analytical procedure, however, it cannot be excluded that biochar might adsorb volatile 

compounds from the ambient air and release them under HS conditions even though precautions 

were made to limit contact with air. The attention in this study was focused to C≥5 compounds that 

eluted later in the chromatogram and were structurally related to the original biopolymers 

composing the original plant biomass or indicative of their charring intensity (Figure 8). Typical 

thermal degradation products of lignin (2-methoxyphenol, i.e. guaiacol, and its alkylated 

derivatives) and holocellulose (e.g. 1,4:3,6-dianhydro-β-D-glucopyranose, C1-C3 furans and 

furanones, C1-C2 cyclopentenones and pyranones) could be identified in CS350 (Figure 

8).42,120,121Aromatic (benzoic and benzeneacetic) and short chain (up to C8) aliphatic acids 
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principally in the form of methyl esters were identified. Apparently, methylation of carboxylic 

groups could take place during sampling. Lipids could be the source of these acids. These 

compounds were detected in HS and aqueous extracts of biochar from poultry litter where they 

could play a role in the inhibition to plant seed germination.55 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Total ion current chromatogram from HS-SPME-GC-MS analysis of corn stalk biochar 

produced at 350°C. The pattern of the most relevant VOCs was reported in the expanded 
chromatogram between 10 and 22 minutes. 

 

Aromatic compounds not directly related to the structure of original biomolecules, but indicative of 

their carbonisation were detected in almost all biochar samples. These compounds included 

monoaromatic (benzenes, biphenyls, indanes) and polycyclic aromatic hydrocarbons (PAHs), 

benzonitrile and benzofurans.42,120 Benzene, toluene, C2-benzenes, naphthalene, benzonitrile, and 

benzofurans were released from all the samples including the highly carbonised biochars of the 

thermosequence (CS600 and CS650). Interestingly, these aromatics compounds were proposed as 

molecular indicators of charring in analytical pyrolysis studies.42,120,121The ratio of alkylated/non-
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alkylated analogues (e.g. toluene/benzene, methylnaphthalene/ naphthalene) were found to decrease 

with decreasing H/C ratios. Similarly, the degree of alkylation of VOCs released by biochars tended 

to diminish with charring intensity. While C1-C2 benzenes were observed in all thermosequence 

biochars, C3, C4 and C5 benzenes were not detected for biochar with H/C lower than 0.44, 0.49 and 

0.7 respectively. Alkyl substituted benzenes are well known harmful compounds122 and their 

presence in biochar could pose direct issues on its safety during handling and storage. The number 

of products detected by GC-MS after HS-SPME decreased with increasing charring degree 

expressed by the H/C ratio of biochars, from 88 in CS350, to 15 in CS650. For instance, the large 

group of phenols (phenol, methyl phenols and C2-C4 phenols) and guaiacols (guaiacol and its C1-C2 

derivatives) released from CS350 was restricted to only phenol, 4-methylphenol, guaiacol and 4-

methylguaiacol in biochar with higher carbonisation degree. To the purpose of investigating the 

relationship between the degree of charring and the presence of mobile compounds, a quantitative 

approach was applied and discussed in the next section.   

Relationship with biochar properties 

The quantity of VOCs, expressed as normalised areas (NA) were reported in Tables S1 and S2. 

These values were meant to estimate the magnitude of VOCs that could be released in air from 

different biochars under fixed conditions rather than absolute concentrations. The aim was to 

evaluate the dependence of emitted VOCs on the carbonisation degree of biochars produced with 

the same feedstock and pyrolysis apparatus. Pearson product-moment correlation coefficient (r) 

showed statistically significant (P < 0.05) correlation (r = 0.95) of VOCs vs. H/C trend. Similarly, 

total VOCs and VM were strongly correlated (Figure 9, r> 0.9, P < 0.05). The strong correlation 

with indexes of the degree of charring and aromaticity (H/C, VM) indicated that highly carbonised 

biochars should be produced in order to reduce the risk of VOCs emission. Notably, the molecular 

pattern of the volatilome of biochars produced at different temperatures was different. This was 

evidenced in Figure 10 showing the quantity of the different chemical families as a function of H/C 

values, for the most abundant (Figure 10 A) and less abundant (Figure 10 B) compounds. 
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Aldehydes and ketones (mostly benzaldehydes and furaldehydes) were the most abundant family in 

weakly charred biochars (around 30%), but their quantity decreased sharply with decreasing H/C 

becoming negligible in biochars with H/C < 0.59.  

  

 

 

 

 

Figure 9: Correlation between the normalized area (NA) of VOCs (HS-SPME-GC-MS) and the VM 
measured by TGA of cornstalk biochars. Mean values and SD from three replicates. 

 

Aromatics (principally benzene, toluene and C2-bezenes) and phenols were the principal class of 

VOCs in all the biochars. Their contributions to total VOCs of slightly carbonised biochar were 20 

and 14%, respectively. In all other corn stalk biochars (H/C 0.71-0.32) aromatics were the most 

abundant compounds. Interestingly, aliphatic as well as aromatic (benzoic acid) acids represented a 

significant class of compounds featuring biochar volatilomes (25% for CS350). These compounds 

were detected principally as methyl ester derivatives probably from biochar-catalysed methylation. 

Traces of cyclic ketones like cyclopentanone and cyclohexanone were detected only in biochars 

with H/C of 0.49 and 0.44. In this range of temperature there could be a cyclic rearrangement of 

their smaller linear precursors. Aromatic aldehydes like furaldehyde and benzaldehyde were 

identified in all thermosequence biochars. Cyclopentenones, lactones, alkyl and aryl furans are 

representatives of thermal degradation of holocellulose.42,114 Their signal was strongly suppressed in 

biochars with H/C < 0.49. C1-C3 cyclopentenones were not found at H/C lower than 0.59. Volatile 

aldehydes and ketones could also originate from pyrolysis of holocellulose.120 C3-C4 alkyl 

aldehydes and substituted derivatives of benzaldehyde were detected only in biochars with H/C > 

TGA vs HS-SPME
Linear regression
95% Confidence intervals

R^2 = 0,980 
r = 0,990 
P < 0,050 

4e+6 

6e+6 

8e+6 

2e+6 

0 

T
ot

al
 V

O
C

s 
(N

A
) 

%VM (TGA) 
14 16 18 20 22 24 26 28 30 32 34 



41 

0.59. Incomplete degradation of cellulose at low pyrolysis temperature (0.80 < H/C < 0.59) could be 

evidenced by the presence of 1,4:3,6-dianhydro-β-D-glucopyranose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:  Box plots of the normalized areas (NA) of major (A) and minor (B) VOCs compound 
classes vs. H/C of corn stalk biochars and pyrolysis temperature. The tops and bottoms of each 

"box" reported the 25th and 75th percentiles of the samples, respectively, while the whiskers were 
drawn from the ends of the interquartile ranges to the furthest observations within the whisker 

length. 
 

Kruskal-Wallis test was applied to determine differences of VOCs concentrations in biochars with 

increasing carbonization degree. Results evidenced statistically significant differences (1% level of 

significance) on the medians of all VOCs compound classes except alkyl amides. The level of 

significance of alcohols was 5%. Jonckheere-Terpstra statistic was also performed to test the 
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alternative hypothesis of an increasing trend in the medians of VOCs with the increasing H/C. The 

outcome evidenced statistically significant differences (1% level of significance) for all compound 

classes. These results were in accordance with those of Pearson product-moment correlation 

coefficients and confirmed the relevant effect of the carbonisation degree on the volatiles released 

by biochar. Quantitative analysis highlighted differences in VOCs relative abundance (Table S1 and 

S2), but all corn stalk biochars had toluene, acetic acid methyl ester and phenol among the most 

abundant compounds. The presence of aromatic compounds, volatile fatty acids and phenols in 

biochar could be therefore a crucial marker for its safety and quality for environmental applications. 

The %RSD calculated on total VOCs concentrations in triplicate analysis were 17, 18, 27, 23, 31, 

34 and 14% for corn stalk biochars with H/C of 0.80, 0.71, 0.59, 0.49, 0.44, 0.36 and 0.32 

respectively. Considering the complexity of the matrix and the number of compound identified, 

%RSD values were acceptable and demonstrated the suitability of the HS-SPME method for the 

analysis of VOCs in biochar. A rough estimation of the concentrations could be accomplished by 

utilising for all the compounds the response factor of the surrogate pyrolysis product o-eugenol. 

VOCs concentrations progressively decreased with the increasing carbonisation degree from about 

6 to 0.09 µg/gbiochar. These values are within the range conservatively estimated in biochars (pg-

µg/gbiochar) through direct HS-GC-MS analysis and could be sufficient to affect the soil 

microbiome.61 

VOCs emissions at ambient temperatures 

The effect of biochar temperature on the pattern of evolved compounds detectable by HS-SPME 

was investigated at 25, 50, 100 °C (the results at 150 °C were described in the previous section). 

The lowest value was chosen in order to verify if biochar could release volatile compounds at 

ambient temperature, while 50°C approximated a possible condition achieved in terrestrial soils 

during warm periods. The values of 100 °C was tested by Becker et al.63 As expected, temperature 

greatly affected the pattern and intensity of GC traces. As an example, the mass chromatograms 

relative to the ions m/z 122 in the elution region of interest indicative of alkyl aromatics, alkyl 
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aldehydes and lignin phenols were shown in Figure 11 for different temperatures. GC peaks were 

barely detected at 25 and 50 °C, they could be revealed at 100 °C and became intense at 150°C. 

This latter temperature was selected in the procedure. Concerning the possibility of VOCs emission 

at ambient temperatures, quantitative results (Table S3) showed that VOCs could be detected only 

in CS350 and CS400 biochars with low carbonisation degree (H/C 0.80 and 0.71).  

 

 

 

 

 

 

 

Figure 11: Mass chromatograms at m/z 122 from cornstalk biochar (CS350) heated at different 
temperatures (25, 50, 100 and 150 °C) during HS-SPME. 

 

The most abundant compounds were aldehydes like propanal, furfural, benzaldehyde, formic and 

acetic acids. The possible correlation of such compound classes, especially organic acids and 

phenols with the environmental performance of biochar were highlighted55,58,111 and their presence 

could be a useful proxy to discriminate biochar quality. Biochars with H/C < 0.71 did not exhibit 

detectable compounds in HS at 25 and 50 °C. The threshold value of 0.70 for H/C was considered 

as a quality parameter for biochar.9,18 Similarly, the results of this study suggest that sufficiently 

carbonised biochars (H/C ≤ 0.70) obtainable at relatively high pyrolysis temperatures (≥ 450 °C) are 

not prone to evolve VOCs at normal conditions.  
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VOCs profiles evolved from biochar produced from different feedstocks 

The HS-SPME-GC-MS method was tested on a biochar produced from spent mushroom substrate 

at 500°C (SM500) to compare its applicability to the detection of VOCs in biochars from different 

feedstocks. SM500 evolved 76 VOCs in the HS that were captured by the SPME fibre (Table S4) 

and its volatilome is presented in the chromatogram of Figure 12. Given the presence of 

lignocellulose in spent mushroom substrate, several compounds found in CS analysis were detected 

in the HS of the corresponding biochar obtained at 500 °C (SM500). However, a wider range of 

alkyl aldehydes and ketones was present (C3-C6), including unsaturated species (e.g methyl butenal, 

methyl pentenal, pentenone). SM500 evolved also a distinctive pattern of heterocyclic compounds, 

especially with nitrogen and sulfur that could be attributed to the protein content as well as specific 

biopolymers, like chitin.123–125 The origin of nitrogen and sulphur containing organic compounds 

could be tentatively attributed to the thermal degradation of proteins (e.g. benzeneacetonitrile) and 

heat promoted reactions of proteins with carbohydrates (Maillard products such as pyrazines) and 

lipids (e.g. aliphatic alkylnitriles). Other characteristic compounds were homologues of thiophenes, 

pyridines, thiazoles and amides. The approximated average concentration of total VOCs on three 

replicates was 166 ± 12 ng cm-3. The value was similar to corn stalk biochar with H/C 0.71, but in 

this case the H/C value was slightly lower (0.62). The average %RSD value of all VOCs quantified 

(n=76) was 7%, indicating that the proposed method could have a satisfactorily precision for the 

characterization of VOCs in biochar. Consistently with the results of corn stalk biochars with H/C 

lower than 0.71, the most abundant compound class in SM500 was the alkyl and methoxy 

monoaromatics (41% of total VOCs), with toluene as most abundant compound. Nitriles and phenol 

accounted for 19 and 18% respectively while the characteristic heterocyclic compounds represented 

the 2% of total VOCs.  
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Figure 12: total ion current chromatogram of HS-SPME-GC-MS analysis of VOCs evolved from 
spent mushroom substrate biochar produced at 500°C. 

 

Evaluation of the HS-SPME-GC-MS method for biochar quality assessment 

The presence of trace VOCs in biochar was investigated with a green analytical method based on 

SPME. SPME application to biochar was seldom reported.70,71 Clough et al. applied the technique 

using DVB/CAR/PDMS fibre exposed at 40°C for 40 minutes but only α,β-pinene and acetaldehyde 

were identified.70 Higashikawa et al. selected DVB/CAR/PDMS fibre (20°C and 20 minutes fibre 

exposure) to quantitatively detect model VOCs in complex environmental matrices and showed that 

the biochar-matrix reduced method performance due to high affinity for the spiked compounds.71 In 

the present study, several compound classes with different polarities and representative of biomass 

thermochemical degradation products were detected. Recently, it was shown that the composition of 

pyrolysis vapours provided by SPME with Car-PDMS fibre was similar to that of the bio-oil 

analysed by direct GC-MS.114 This similarity confirms the suitability of the Car-PDMS fibre for the 

detection of biomass pyrolysis products. The ability of the methods to detect molecular markers of 
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feedstock and carbonisation could allow the control of the occurrence of biochar contamination 

from vapour re-condensation during pyrolysis.59,126 The analytical performance of the method for 

quantitative analysis was found to be satisfactory when considering the high number of compounds 

identified, the complexity of the matrix and the low concentrations of analytes. In fact, the method 

resulted adequate to the scope of evidencing quantitative relationships between VOCs and biochar 

properties (degree of carboniastion). The composition and quantity of biochar VOCs was dependent 

on chemical characteristics, as VOCs decreased with increasing carbonisation degrees, while the 

molecular pattern shifted from the prevalence of oxygenated compounds towards that of aromatic 

hydrocarbons. The risk of VOCs emissions can be reduced by producing biochar with a high 

carbonisation degree, represented by low values of H/C and volatile matter. The emission of VOCs 

at ambient conditions resulted minimal for cornstalk biochars with H/C<0.70 and volatile matter < 

20%. These limits that favour highly carbonised biochars should be taken into consideration for the 

selection of sustainable biochar. However, in soil applications the extent of carbonisation could 

affect in an opposite direction other biochar properties beneficial to plant growth, such as the cation 

exchange capacity (CEC).127 Therefore, a careful consideration of several parameters should be 

taken into account in order to identify the suitable biochar for the intended use. 
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4) CHARACTERIZATION OF ORGANIC COMPOUNDS RELEASED FROM BIOCHAR 

INTO WATER 

4.1) INTRODUCTION 

Biochar (BC) research has made consistent progress since its first appearance, when it was 

proposed as a sustainable strategy for the abatement of greenhouse gases in terrestrial ecosystems.6 

However, the ameliorating effect of BC in soil applications is highly dependent on its physical and 

chemical properties, in turn affected by production technology and biomass feedstocks. The 

definition of BC quality is therefore fundamental, and different criteria were proposed for its 

classification, like carbon content, aromaticity, and the presence of harmful chemical species such 

as heavy metals or polyaromatic hydrocarbons (PAHs).17 Apart from priority contaminants, the role 

of BC mobile organic compounds is being evaluated as potentially affecting its performance in soil. 

Volatile organic compounds (VOCs) and water soluble organic compounds (WSOCs) were deemed 

responsible for the positive 56 and negative55,58 effects on plants, microorganisms128 and aquatic 

organisms.59,129 BC labile carbon structures could also affect the composition of soil derived 

dissolved organic matter, in turn influencing soil ecosystem processes. The presence of organic 

species leached from BC was confirmed in soil application. Riedel et al.95 evidenced a 

compositional change in the molecular fingerprint of the organic matter released from a soil mixed 

with BC compared to untreated soil in column experiments. The amendment caused a marked 

reduction of the organic matter mobilization from the soil, but a net increase in the intensities of 

black carbon-type and lignin-type compounds was observed. Uchimiya et al.130 demonstrated the 

existence of polyaromatic moieties in the dissolved organic carbon (DOC) extracted from a BC-

amended soil, attributed to unique structures of pyrogenic DOC. Vapors re-condensation and 

pyrolysis temperature were found to be of primary importance for the production of BC suitable for 

soil application.58–60 The contact of the pyrolysis vapors with the carbonized biomass inside the 

reactor and their removal is critical to prevent BC contamination.58,59 Temperature and residence 
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time are crucial process parameters. At temperatures higher than 400°C a sharp decrease in VOCs 

adsorbed on BC was evidenced.59,60 High nitrogen flow can reduce the content of PAHs.50,51 The 

effect of process conditions on the composition of WSOCs has not been widely investigated, 

nonetheless WSOCs may play an important role in BC environmental impact due to their mobility 

in water. WSOCs were investigated by means of two dimensional GC59 and liquid 

chromatography,56,72,131 while ultrahigh resolution mass spectrometry (Fourier Transform Ion 

Cyclotron Resonance Mass Spectrometry FT-ICR-MS) revealed the presence of thousands 

hydrophilic species, non-detectable with other techniques.59,94,95 Fluorescence spectroscopy and 

Parallel Factor Analysis (PARAFAC) were used as rapid and sensitive techniques to investigate its 

aromatic fraction.83,96,130,132 These studies have noticeably increased the understanding on the 

chemical composition of BC WSOCs, however, the relationship with production parameters and 

especially with the composition of the pyrolysis vapors are poorly known. The present study was 

primary focused on the comprehensive characterization of BC WSOCs with spectroscopic, 

chromatographic and mass spectrometry techniques in relation to the composition of the water-

soluble fraction of the pyrolysis vapors, condensed (bio-oils) during the pyrolyses for BC 

production. The linkage between WSOC patterns, BC bulk properties and their implications on 

seeds germination, could eventually shed light on the role of BC mobile organic compounds in the 

determination of its quality for environmental applications, and possible threshold levels can be 

proposed.  
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4.2) MATERIALS AND METHODS  

Samples  

BC were produced from pellettized corn stalks at the temperature of 350, 400, 450, 500, 550, 600, 

650°C and characterized in the previous section (3.2). During pyrolysis experiments vapors were 

condensed in two ice/salt cold traps at -14°C to collect the pyrolysis liquids. The content of the two 

traps was merged to produce one bio-oil (OL) sample per temperature. In this study, the samples 

produced at the temperature XXX °C are named BCXXX and OLXXX.  

Lipid extraction from corn stalk biomass 

The total lipid fraction of the corn stalk biomass used in the pyrolysis experiments was determined 

by sequentially extracting the feedstock with CHCl3-MeOH 2:1 (v/v) at 50°C for 1.5 hours 

(triplicate analysis). The profile of fatty acids was determined by GC-MS after methanolysis 

followed by the production of fatty acid methyl esters (FAME)133. 

Extraction of biochar WSOCs 

An amount of BC was weighed (1 g ± 0.01 mg) into 20 ml vials and 10 ml of deionized water (DW, 

HPLC grade) was added. The vials were sealed with aluminum crimp seals with PTFE/rubber septa. 

The sealed vials were then placed on a mechanical shaker (IKA KS 260) covered with an aluminum 

foil, and left shaking at 150 rpm for 72 hours at ambient temperature. The resulting solutions were 

centrifuged at 3800 rpm for 10 min (ALC4232 centrifuge) to separate the solid material and filtered 

with PTFE syringe filters 0.45µm (Sartorius Minisart SRP) thereafter. 

Analysis of BC WSOCs by direct immersion (DI)-SPME-GC-MS 

Each BC extract (1ml) was added with 0.5 ml of 2M phosphate buffer (KH2PO4/Na2HPO4) at pH 

5.7 in 1.5 ml vials. Carboxen-PDMS (Car-PDMS) SPME fiber was exposed to the solution under 

magnetic stirring for 30 minutes55. The thermal desorption of the analytes and GC-MS analysis 

were performed with the method developed in a previous study.60 The amounts of WSOCs were 
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expressed as peak area counts normalized by the sample weight (NA). Blank analysis of phosphate 

buffer and DW were performed to check procedural contaminations. A calibration curve of volatile 

fatty acids (VFA) was performed with a standard VFA solution (0.1%) containing acetic acid, 

propanoic acid, methyl propanoic acid, butanoic acid, methyl butanoic acid and pentanoic acid in 

deionized water. Serial dilutions were prepared at 10, 5, 1 and 0.1 mg/l in phosphate buffer, spiked 

with 2-ethyl butyric acid 5mg/l in DW (internal standard) and analyzed in triplicate. The 

concentration of each VFA was calculated using the response factors from the calibration curve and 

expressed as (µg/gbiochar). Calibrations on model VFA solutions (10-0.1mg/l) demonstrated the 

suitability of DI-SPME to this purpose, as ordinary least square regressions led to values of R2 and 

Pearson product-moment correlation coefficients (r) higher than 0.97 and 0.98 for each VFA. S/N at 

the lowest concentration was still about 400, indicating the possibility of quantification even at 

lower levels. A response factor f for each VFA was used in the quantification. 

Analysis of BC WSOCs by ESI(-)FT-ICR-MS 

BC extracts were diluted 1:10 in methanol and analyzed by negative electrospray ionization 

(capillary voltage 4kV) on a Bruker solariX 12T FT-ICR-MS. 500 scans were acquired for each 

spectrum (syringe infusion, 200µL·h-1) using an 8 MW acquisition size (broadband). Ion 

accumulation time was set at 0.8sec. Samples were spiked with ES tuning mix (Agilent) and a 

starting calibration list was developed from single point correction on the m/z 301.998139. Mass 

spectra were analyzed using Data Analysis software (Bruker Daltonics). Peaks were assigned with a 

signal to noise threshold of 4 and absolute intensity threshold of 2·106. Calibration lists were 

developed over the m/z range 100-600 by Kendrick mass analysis. Mass spectra without the 

calibrant were recalibrated with a quadratic equation with a standard deviation < 100ppb (67 

points). Calibrated mass lists were processed with PetroOrg software. Peaks were assigned with a 

threshold of 100ppb and molecular formulas within the range: C1-100, H4-200, O1-20, N0-4.  
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Analysis of BC WSOCs by fluorescence spectroscopy and PARAFAC 

BC extracts were diluted in DW until the absorbance in the UV-Vis wavelength range 200-800 nm 

was <0.1134, recorded with a PerkinElmer λ650 spectrophotometer, using quartz cells with 1.0 cm 

optical path. Fluorescence excitation/emission matrices (EEMs) were acquired (duplicate analysis) 

on an Edinburgh Instrument F900 with excitation and emission wavelengths in the range of 220-

500 and 280-600 nm respectively, both at 5nm intervals. Solutions of 16 EPA PAHs (1µg/ml), 

IHSS Suwanee River Fulvic Acid (SRFA, 1mg/ml), o-cresol and o-eugenol (0.1 mg/ml) in DW 

were analyzed under the same conditions. PARAFAC was performed on the EEMs corrected for 

instrument bias and non-trilinear signals, with N-way toolbox135, drEEM tool for Matlab 136.The 

number of PARAFAC components was selected considering the Stoke’s shift, leverage values, 

analysis of residuals and core consistency diagnostic82,136. 

Analysis of bio-oil WSOCs 

The OL samples were diluted 1:10 in DW and centrifuged (3800 rpm for 15 min) to precipitate the 

water-insoluble part, while the WSOCs were analyzed by DI-SPME-GC-MS, FT-ICR-MS and 

fluorescence-PARAFAC. An aliquot of 250µl was spiked with 150 µl of o-eugenol 10 µg/ml in 

DW, phosphate buffer and DW to a final volume of 1.5 ml. DI-SPME and GC-MS conditions were 

those used for BC. FT-ICR-MS was performed on solutions further diluted 1:100 in methanol. 500 

scans were acquired for each spectrum using an 8 MW acquisition size (broadband). Ion 

accumulation time was set at 0.5sec. Peaks were assigned with a signal to noise threshold of 4 and 

absolute intensity threshold of 2·106. Mass spectra without the calibrant were recalibrated with a 

quadratic equation with a standard deviation < 100ppb (89 points). Calibrated mass lists were 

processed with PetroOrg software. Peaks were assigned with a threshold of 100ppb and molecular 

formulas within the range: C1-100, H4-200, O1-20, N0-4, S0-2. Fluorescence-PARAFAC conditions were 

the same used for BC. 
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4.3) RESULTS AND DISCUSSION 

Semi-volatile WSOCs (DI-SPME-GC-MS)  

The corn stalk BC and the corresponding OL presented noticeable dissimilarities in the patterns of 

semi-volatile WSOCs. Representative examples are reported in the chromatograms of Figure 13, 

while all the compounds detected in BC and OL are listed in Table S5 and S6 respectively. The 

series of peaks in BC350 extracts were predominantly associated to carboxylic acids, which were 

the main components of the low molecular weight fraction of BC WSOCs, with C1-12 straight-chain 

and branched, saturated and unsaturated aliphatic acids, and aromatic acids like benzoic acid and its 

C1-2 alkylated derivatives.  

 

 

 

 

 

 

 

 

Figure 13: Total ion chromatograms of BC350 and OL350 WSOCs after DI-SPME-GC-MS 
analysis. Principal compounds are evidenced, while the complete lists of the volatile and semi-

volatile WSOCs are reported in Tables S5 and S6 

The composition of the OL was more complex (Figure 13), with 124 tentatively identified 

compounds in contrast with the 36 of BC350. OL profiles included primarily lignin markers (2-

methoxy-, 2,6-dimethoxy- and C1-3 alkyl substituted phenols) and typical degradation products of 

the cellulose and hemicellulose fractions of the parent corn stalk (5-6 membered rings heterocyclic 
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aldehydes ketones and diketones, C1-3 alkyl substituted and hydroxyl substituted cyclopentenones, 

and furans). Only 5 lignin markers characterized BC WSOCs out of the 15 of OL (phenol, C1-2 

phenols, guaiacol and 4-methyl guaiacol). Their signals became negligible in the BC produced 

above 500°C. However, traces of alkylated phenols were observed in all the BC WSOCs, possibly 

indicating their stronger interaction with the aromatic structure of the BC compared to the 

methoxylated homologues. Furthermore, WSOCs of BC produced below 450°C featured 8 proxies 

of hemicellulose (furfural and methyl furfural, benzaldehyde and hydroxyl benzaldehyde, 2-acetyl 

furan and C1-3 cyclopentenones) compared to the 34 of OL. A series of compounds generated by the 

progressive carbonization of the biomass inside the reactor during the pyrolysis were detected in all 

the OL, like monoaromatic hydrocarbons (benzene, toluene and C1-5 alkylated derivatives), and low 

molecular weight PAHs. None of these species characterized the BC WSOCs, but minor 

contribution of some of these compounds was evidenced in other studies.59 Low molecular weight 

aliphatic aldehydes (C3-4), ketones and diketones (C4-6) were detected in the OL, but not in BC 

WSOCs, indicating that, if retained by the BC after their production, they could be released 

preferentially as VOCs.60 OL composition included also nitrogen containing aromatic compounds 

deriving from the protein fraction of the biomass feedstock (pyridines, pyrazines, aromatic nitriles 

quinolines and indoles). Interestingly, BC WSOCs did not present any of these species, indicating 

an effective removal as pyrolysis vapors or a stronger interaction with BC. Finally, VFA, C3-5 

unsaturated and higher molecular weight aromatic acids were present in the OL as free carboxylic 

acids but also in the form of methyl esters, probably originated from the reactivity with methylating 

products (e.g. methanol) at low pH. OL WSOCs lacked in the C4-12 and the methyl substituted 

homologues of carboxylic acids, indicating their possible formation and preferential adsorption onto 

the biochar surface during pyrolysis. However, it cannot be excluded that the mass spectra of the 

missing aliphatic acids, were covered by the dominance of other more intense signals from lignin. 

The formation of low molecular weight fatty acids during pyrolysis (acetic and propanoic) is 

associated with the thermal decomposition of the hemi/cellulose fraction. Nevertheless, the higher 



54 

molecular weight fatty acids could form from the fragmentation of the parent corn stalk lipid 

fraction. The lipids accounted for 7.0 ± 0.7 % of the biomass dry weight. The pattern of FAME by 

GC-MS revealed a total of 14 compounds (Table 5), ranging from saturated (8:0-30:0) to 

unsaturated species (16:1, 18:1 and 18:2). Palmitic, stearic, linoleic and oleic acids were the 

principal constituents of the FAME in corn seeds,137 whose residues left in the field could contribute 

to the composition of the collected corn stalk.  

Table 5: FAME profile of corn stalk biomass: Average concentrations (µg/gbiomass), SD (n=3), m/z 
quantitation ion, r.t. retention time (min) 

Acronym r.t m/z Compound name µg/g SD 

8:0 7.45 74 octanoic acid, methyl ester 180 40 

12:0 12.81 74 dodecanoic acid, methyl ester 26 5.9 

14:0 15.11 74 tetradecanoic acid, methyl ester 47 7.6 

16:1 17.01 55 9-hexadecenoic acid, methyl ester 74 15 

16:0 17.22 74 hexadecanoic acid, methyl ester 1831 329 

18:2 19.02 67  9,12-octadecadienoic acid, methyl ester 237 53 

18:1 19.11 55 9-octadecenoic acid, methyl ester 561 148 

18:0 19.37 74 octadecanoic acid, methyl ester 938 139 

20:0 21.75 74 eicosanoic acid, methyl ester 81 23 

22:0 24.31 74 docosanoic acid, methyl ester 57 17 

24:0 26.90 74 tetracosanoic acid, methyl ester 61 23 

26:0 28.96 74 hexacosanoic acid, methyl ester 14 6.0 

28:0 30.70 74 octacosanoic acid, methyl ester 14 6.2 

30:0 32.17 74  triacontanoic acid, methyl ester 14 5.7 

   Total GC-MS detected 4134 755 

 

A net decrease of the fatty acids was observed in the WSOCs of BC with increasing carbonization 

degree, measured by the H/C atomic molar ratio. Trace amounts were released even by highly 

carbonized BC (H/C 0.32), while branched and C3-7 unsaturated homologues were typical of less 

carbonized ones (H/C 0.80-0.59). In accordance with their presence in the water extracts, fatty acids 

were also volatilized by BC in the form of methyl esters.60 Rombolà et al.55 evidenced the inhibiting 

activity of WSOCs of poultry litter BC on the germination of cress and VFA were the potential 

cause. Due to their mobility in air and solubility in water, VFA could play a considerable role in the 

agronomic/environmental performance of BC application to soil and their quantification could be 
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useful for the determination of its quality. Total VFA concentrations decreased with the increasing 

BC production temperature from 3.0 ± 0.3 mg/g of CS350 to 35 ± 14 µg/g of CS650 and 

statistically significant correlations (r> 0.9, p<0.01) were observed between the values of each 

single and total VFA (Figure 14/TableS7) and the decreasing H/C values of the BC. This correlation 

is in line with the decreasing amount of VOCs.60 In summary, the great majority of species detected 

in the OL WSOCs were not found in the water extracts of BC. While OL WSOCs featured mostly 

lignocellulosic derived pyrolysis products, BC was dominated by carboxylic acids from 

hemi/cellulose and lipids.  

 

 

 

 

 

 

Figure 14: Quantitative analysis of VFA in BC WSOCs (µg/gbiochar) depending on BC carbonization 
degree (H/C atomic molar ratio), (n=3) 

 

Hydrophilic WSOCs (ESI-FT-ICR-MS) 

BC contamination could occur if pyrolysis vapors are not correctly swept from the reactor during its 

production.58,59 Given the divergent patterns of BC and OL WSOCs discussed in the previous 

section, the comparison was extended to the less-volatile components that could be detected by 

ESI(-)FT-ICR-MS. Because ionization with ESI is suitable for polar compounds with both acidic 

and basic functionalities,89 the fraction investigated was categorized as hydrophilic. The mass 

spectra of the OL WSOCs confirmed the complex composition evidenced in other studies on similar 
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feedstocks,138 as molecular formula assignment allowed to identify up to 4000 peaks (Table S8 and 

S9). Oxygenated (CcHhOx) and nitrogen (CcHhNyOx) species together accounted for more than 60% 

of the total intensity. Trace contribution of sulfur was observed. The CcHhOx distributions were 

similar in all the OL, encompassing oxygen atoms in the range O1-16, with O5 and O6 as most 

abundant classes (Figure 15). Interestingly, the N1Ox class, followed the same pattern with NO6 as 

most abundant group, while for the minor N2Ox and N3Ox classes, O4 and O3 species had the highest 

abundance (Figure 16).  

 

 

 

 

 

 

Figure 15: Distribution of oxygenated species (CcHhOx) in BC (A) and OL (B) WSOCs by ESI(-)FT-
ICR-MS 

 

The number of identifiable peaks in the WSOCs of BC350 and BC400 was comparable to that of 

the OL (about 2000) but sharply decreased to 40 in BC650 (Table S10 and S11). In contrast to the 

dissimilarities evidenced in the GC detectable fraction, the distribution of WSOCs in BC and OL 

pictured by ESI presented common features, with CcHhOx compounds as most abundant, followed 

by the CcHhNyOx distributions (Table S10 and S11). The same range of oxygen atoms characterized 

BC350 and BC400 with O5 as most abundant group, but from BC450 the distributions progressively 

shifted to the prevalence of O2 species (Figure 15). 
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Figure 16: Distribution of nitrogen species (CcHhNyOx) in OL WSOCs by ESI(-)FT-ICR-MS 

The oxygenated species of BC WSOCs revealed a high bioactivity, as some carboxyl and hydroxyl 

functionalities were the main source of toxicity on algal growth.94,129 Given their prevalence in both 

the BC WSOCs and the OL, the attention was focused primarily on CcHhOx compounds. Van 

Krevelen diagrams are useful to understand the nature of these species as the molecular formula 

assigned in the mass spectra can be compared to the major biochemical classes of compounds.139 To 

highlight the considerable changes occurring in the WSOCs of OL and BC due to the pyrolysis 

temperature, Van Krevelen plots of the samples produced at 350, 450, 650°C are reported in Figure 

17. The patterns of OL350, 450 and 650, suggest that the pyrolysis temperature did not affect OL 

composition. Contrarily, those of BC450 and BC650 were distinctly different compared to the 

corresponding OL, and the increasing BC production temperature caused a net decrease in the 

number of WSOCs. However, BC350 and OL350 were highly similar, with the series of Ox classes 

shifting towards higher values of O/C, as consequence to the increasing number of oxygen atoms. 

Linear regression of the data points in Figure 17 revealed two main pathways: series with an 

intercept of 2 and those aligning along the equation y=2x.  
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Figure 17: Van Krevelen diagrams of WSOCs by ESI(-)FT-ICR-MS, in BC produced at 350, 450, 
650 °C and the corresponding OL 

 

The first one is associated to species differing by units of CH2.139 Coherently, alkyl chain elongation 

was observed also in all the principal compound classes of the volatile and semi-volatile fractions of 

BC and OL WSOCs (organic acids class, aldehydes, ketones, phenols and mono-aromatic 

hydrocarbons), as evidenced in Figure 18, where Van Krevelen plots of BC350 and OL350 mass 

spectra by GC-MS were produced.  

 

 

 

 

 

Figure 18: Van Krevelen plots of OL350 and BC350 by DI-SPME-GC-MS 
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The latter pathway is indicative of dehydration reactions. Noteworthily, BC350, BC400 and all the 

OL displayed a point with coordinates (1,2) and molecular formula C6H12O6, that could be 

tentatively attributed to glucose or one of its isomers. The dehydration pathway could play an 

important role in the formation of BC and OL WSOCs from the pyrolysis products of the 

cellulose/hemicellulose, as many data points in Figure 17 fall in the region conservatively attributed 

to carbohydrates (0.67<O:C<1.2, 1.5<H:C<2.4).92 Differently, Kendrick mass defect analysis, 

revealed chain elongation of molecular formulas ascribed to guaiacols and syringols, which were 

confirmed by DI-SPME analysis. Therefore, the O2 and O3 species appearing in the region 

attributed to lignin structures 0.1<O:C<0.7, 0.7<H:C<1.5,90 could be assigned to higher molecular 

weight phenolic functionalities originated from the pyrolysis of the corn stalk lignin fraction. 

Similarly, those with higher oxygen content within the same range of H:C and O:C values could 

represent dimers, trimers or higher molecular weight homologues. Their presence in the BC 

WSOCs could led to the release of lighter monomers in water by photochemical degradation.140 

Several peaks fell in the region indicative of lipids (1.6<H:C<2, 0<O:C<0.2),139 and especially the 

O2 species can be correlated to analogues of the fatty acids composing the lower molecular weight 

WSOCs. Generally, the carbon numbers of all the OL WSOCs were comparable to those observed 

by Hertzog et al in the OL of a lignocellulosic material.141 Likewise, the values ranged from 5 to 35 

in BC350 and BC400 (Figure 19), corroborating the similarity between the WSOCs of poorly 

carbonized BC and those of OL. Double bond equivalent (DBE), or degree of unsaturation is the 

number of rings and double bonds and can provide information on the aromaticity of the WSOC 

species. The DBE values ranged from 1 to 18 in BC350, BC400 and all the OL. For DBE>2 an 

increase in the carbon number was associated to an increase of the number of oxygens (Figure 19). 

In summary, BC350 and BC400 WSOCs resembled those of the OL, but for BC>450 the cellulose 

and hemi-cellulose derivatives disappeared (Figure 17 and 18), while lignin degradation products 

could be detected until 550°C (BC550). The trend was associated to a sharp decrease of the more 

aromatic species with DBE>10 (Figure 19). At higher pyrolysis temperatures (> BC550), WSOCs 
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tended to have increased H:C and low DBE values (<5) ascribable to organic acids, still detectable 

at the highest pyrolysis temperature (BC650) (Figures 16-19).  

 

 

 

 

 

 

 

 

Figure 19: Plots of DBE vs Carbon number of BC 350, 450, 650 WSOCs and the corresponding OL 

Aromatic structures of biochar WSOCs (Fluorescence-PARAFAC) 

All the aqueous extracts of BC and OL exhibited fluorescence indicative of the occurrence of 

aromatic functionalities. Figure 20 reports the EEMs of the BC and OL WSOCs, and those of the 

standard compounds, that were acquired to qualitatively compare known chemical species with the 

aromatic structures recurring in biochar WSOCs. PAHs were selected for their high fluorescence 

even though detected only in traces in the chromatograms of the OL (Table S6), alkylated and 

methoxylated phenols (o-cresol and o-eugenol) as lignin derivatives, and IHSS-SRFA as model 

humic substance. A PARAFAC model with 4 components (C1-4) suitably represented the dataset 

(95% of the variance explained) and is reported in Figure 21. C1 and C2 presented 

excitation/emission maxima at 320/405 and 350/470 nm respectively. Fluorophores of the natural 

organic matter (NOM) are characterized by broad excitation/emission spectra, with representative 

peaks in the wavelength range of 300-370/400-500 nm.93  
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Figure 20: EEMs of BC, OL WSOCs and standard solutions of EPA PAHs, IHSS-SRFA, o-cresol 
and o-eugenol 

Zhongqui et al.142 characterized 13 IHSS standard humic substances (aquatic and soil derived humic 

and fulvic acids) with PARAFAC, and two components resembled C1 and C2, while the spectral 

characteristics of IHSS-SRFA in Mobed et al.143 showed the same peaks at 320/405 and 350/470. 

C3 and C4 featured maxima at 285/335 and 275/310 nm respectively. Similar peaks in NOM were 

associated to protein-like structures.93 The intensities of the PARAFAC components are reported in 

Table S12, and their relative percent contributions to the total signal of each sample are presented in 

Figure 22. The BC WSOCs were mainly composed by C1 and C2 and lacked in the C3 and C4 

structures, that featured the OL.  
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Figure 21: Spectral characteristics of the four components (C1-4) PARAFAC modeling of BC and 
OL WSOCs 

 

Overall, the total signal intensity of BC WSOCs sharply decreased from BC450 and likewise that of 

C1 and C2, even though were still detectable at 650°C (Table S12). Contrarily, the total EEM 

intensity of the OL was not dependent on the pyrolysis temperature and showed values one order of 

magnitude higher than that of the BC (Table S12). The percent contribution of C1 sharply increased 

with the pyrolysis temperature in the BC WSOCs while C2 decreased accordingly. Similar trends 

were observed by Uchimiya et al.83 in which pyrogenic DOC of lignocellulosic and animal based 

BC were investigated: two peaks (310/420 and 350/470 nm) were attributed to polyphenolic 

pyrolysis products and aromatic humic-like compounds that decomposes above 350°C, with the 

first one increasing and the second one decreasing with the pyrolysis temperature. C3 presented a 

maximum in OL350 and decreased at higher temperatures, while C4 smoothly increased. A high 

contribution of C3-C4-like components was observed in non-completely pyrolyzed BC from 

sawmill waste feedstocks132 and the pyrolysis of lignocellulosic biomass with low nitrogen and 

sulfur content is known to produce phenolic species. Given the low nitrogen content in the BC 

(1%),60 and their similarity with the EEMs of the lignin markers (Figure 20), C3 and C4 could be 

associated to phenolic-like species. However, it cannot be excluded that protein-like structures 

could contribute to C3, as several nitrogen-containing compounds were detected in the OL. 
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Moreover, the standard PAHs solution showed a similar peak at 280/335 nm, that could be 

attributed the naphthalene or fluorene.144 Nevertheless, PAHs exhibited distinctively narrower peaks 

compared to the broader ones observed for C1 and C2. Noteworthily, C3 and C4 had lower 

emission wavelengths than C1 and C2. A red shift in the excitation/emission maximum can be 

associated to an increased aromaticity and higher molecular weight,96,132 therefore C3 and C4 

presented a lower degree of aromaticity compared to C1 and C2. Similarly, Uchimiya et al.96 

observed a component comparable to C2 (380/460 nm) that was associated to recalcitrant 

polyaromatic fraction substituted with carboxyl and phenolic functionalities, especially in low 

temperature BC (350-500°C). In summary, BC WSOCs were composed of fulvic-like structures 

and depleted in the phenolic-like less aromatic functionalities C3 and C4. Interestingly C1 and C2 

were also primary components of the OL suggesting that biomass pyrolysis could intrinsically 

produce aromatic NOM-like moieties. 

 

 

 

 

 

 

 

 

Figure 22: Score loadings of the four PARAFAC components (C1-4) in BC and OL WSOCs 
expressed as relative percent contribution (%) to the total intensity of each sample. 

In this study it was shown that after three days in water at r.t, even highly carbonized BC released 

WSOCs. Interestingly, in a leaching study lasted for 17 days, most of the BC WSOCs were released 

within the first 3 days of the experiment.132 Thus, under environmental conditions, a wide array of 

compounds can contribute to the pool of natural organic matter in soil. Overall, SPME-GC-MS, 

ESI(-)FT-ICR-MS and fluorescence-PARAFAC indicated that the release of WSOCs from BC was 
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strongly reduced above 450°C, in agreement with the trend observed for VOCs, that began to 

decrease above 400°C.60 The investigation of OL WSOCs revealed original clues about the 

formation and release of those from BC. Organic acids were the main semi-volatile components 

released in water, suggesting that the more abundant OL components of lignin were strongly 

adsorbed onto the biochar matrix or efficiently volatilized during pyrolysis. Given the porous 

structure of biochar, pores could be accessible by water solutions and the retention of phenolic 

compounds could possibly occur due to a hydrophobic effect, or by π-π interactions,145 that become 

more pronounced as the matrix gets more carbonized.14 Previous studies categorized biochar water-

extractable organic compounds into classes used to describe NOM and evidenced that low 

molecular weight acids were important species even in BC produced at higher temperatures, while 

humic acids and low molecular weight neutral species were the principal components of the lower 

temperature BC (<450°C).72,73 The higher molecular weight and aromatic structures of BC WSOCs 

were comparable to the species recurring in NOM. In D’Andrilli et al.93 the standard IHSS-SRFA 

was dominated by CcHhOx species by ESI(-)FT-ICR-MS and likewise BC and OL WSOCs of  this 

study, that displayed similar structures in the lignin region of the Van Krevelen diagrams, but 

unique formulas in that of carbohydrates and lipids. Besides, the principal mass spacing patterns in 

the mass spectra (ESI-FT-ICR-MS) were alkyl chain elongation (14.01565 Da) and substitution of 

CH4 versus O (0.0364 Da)146 in both SRFA and WSOCs. Fluorescence EEMs further confirmed the 

fulvic-like nature of the BC WSOCs, that was composed of labile (C1) less aromatic, and more 

recalcitrant polyaromatic (C2) structures substituted with carboxyl and hydroxyl groups, in 

agreement with previous hypotheses.75,96,130 The bioactivity of biochar WSOCs were tested by 

germination experiments on cress seeds, revealing stimulating effects. In conclusion, WSOCs 

influence the suitability of BC for environmental applications. Previous studies proposed that high 

amounts of PAHs,54 phenolic and carboxylic acids55,59 in BC WSOCs caused harmful effects on 

cress seeds. In this study, fulvic-like WSOCs and concentrations of VFA< 3mg/g induced 

statistically significant positive effects on the seedlings of cress, corroborating the hypothesis that 
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the complex biological effects of BC WSOCs are the results of an interaction between contrasting 

factors.56,57 However, this study demonstrated that BC to soil application can be sustainable when 

BC contamination (organic and inorganic) is limited. 
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5) APPLICATIONS OF THE DEVELOPED ANALYTICAL METHODS 
 

5.1) Process conditions: profiles of VOCs and WSOCs in biochar produced from a pilot scale 

pyrolysis reactor 

In the previous sections (Chapter 3 and 4) it was evidenced that corn stalk biochars produced at 

increasing pyrolysis temperature can release variable amounts of organic compound in air (VOCs) 

and water (WSOCs). The correlation between the profiles of VOCs/WSOCs and biochar bulk 

parameters was therefore fundamental to understand the mechanism of release by the biochar 

matrix. Higher pyrolysis temperature and residence time increase the carbonization of biomass 

producing biochar with increasing aromatic ring condensation. Aromaticity, porosity and surface 

functionalities are among the most important parameters for the adsorption of organic compounds.14 

Biochar aromaticity was investigated by means of different techniques as outlined in section 1.2. It 

was demonstrated that atomic ratios determined by elemental analysis can be a suitable parameter 

for aromatic polycondensation.36 Recently H/C ratio was proposed as fundamental parameter that 

links biochar production conditions, aromaticity and sorption capacity.44 Finally, the aromaticity of 

the biochar structure is directly connected to its thermal stability and ultimately the stability in soil 

(environmental stability).41,147 To this purpose, the patterns of VOCs and WSOCs were correlated to 

the H/C values of the corn stalk thermosequence biochars. The levels of VOCs and WSOCs 

decreased sharply with the decreasing carbonization degree indicating progressively lower release 

as the biochar becomes more carbonized. The data obtained from biochar produced with a bench 

scale quartz reactor in laboratory showed that the emission of VOCs resulted minimal when 

H/C<0.70 (section 3.3), while WSOCs release was strongly reduced for H/C < 0.59 (section 4.3). 

The application of the developed analytical methods to biochar produced at larger scale is important 

to test the incidence of process on biochar quality. This section deals with the characterization of 

biochar produced with a pilot plant pyrolysis reactor named thermocatalytic refoming (TCR), 

developed at the Fraunhofer Institute for Environmental, Safety, and Energy Technology 
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(UMSICHT). The technology is based on intermediate pyrolysis followed by the reforming of the 

biochar at high temperature.148,149 The profiles of VOCs and WSOCs were then correlated to the 

biochar charring degree in order to verify the applicability of the methods for the determination of 

biochar quality.  

MATERIALS AND METHODS 

Samples 

Biochars were produced from digestate pellets from anaerobic digestion plants (maize silage (62%), 

cattle and pig slurry (34%) and cereals (4%)) and sewage sludge with the TCR process. Four 

samples were produced with the reforming step of the biochar and one without (V66). The 

characteristics of the process and samples are reported in Table 6.  

Table 6: Feedstocks and pyrolysis conditions used for the production of the TCR biochar samples 

Name Feedstock Pyrolysis temperature 
(°C) 

Reforming temperature 
(°C) 

V66 digestate 400 non-reformed 

V40 digestate 390 720 

V44 digestate 500 720 

DIG digestate 400 700 

SEW sewage sludge 400 700 

 

Elemental analysis of biochar samples  

Elemental analysis of the biochar samples was performed in triplicate as described in section 3.2 

Characterization of mobile organic compounds  

The profiles of VOCs in biochar samples were determined with the HS-SPME-GC-MS method 

reported in section 3.2. WSOCs were extracted from the biochar and analyzed with DI-SPME-GC-

MS and Fluorescence-PARAFAC according with the procedures described in section 4.2. 
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RESULTS AND DISCUSSION 

Profiles of mobile organic compounds in biochar and relationships with thermal stability 

The elemental composition and atomic molar ratios of the biochar samples are reported in Table 7. 

Overall, the digestate biochars that underwent the reforming step during pyrolysis presented higher 

C and lower O content compared to the non-reformed biochar (V66). Sewage sludge biochar had 

lower values of C and high ash content compared to the digestate biochars. These results are in 

accordance with previous studies on the composition of biochar produced from the TCR process.148–

150 

Table 7: elemental composition of digestate and sewage sludge biochars produced by the TCR 
process 

Sample 
C H N O Ash 

H/C O/C 
% SD % SD % SD % % SD 

V40 62 2.6 1.0 0.056 0.91 0.08 5.7 31 0.64 0.20 0.069 

V44 64 1.4 1.0 0.059 1.1 0.079 2.8 30 0.57 0.18 0.033 

V66 59 0.51 4.0 0.082 2.3 0.042 18 17 0.67 0.82 0.22 

TCR-DIG 44 3.1 0.9 0.22 1.0 0.242 7.6 46 0.13 0.24 0.15 

TCR-SEW 23 0.52 0.72 0.022 1.9 0.060 3.0 71 0.37 0.38 0.10 

 

The increasing carbonization of the biochar due to the effect of the reforming step in the TCR is 

evidenced by the lower H/C and O/C values exhibited by the reformed biochars compared to the 

non-reformed sample (V66). The pattern of VOCs and WSOCs released from the biochar samples 

was investigated in relation with their aromaticity, in turn affected by the reforming step of TCR. 

Chromatograms of VOCs released from non-reformed and reformed biochars sorted by decreasing 

values of H/C are reported in Figure 23. The non-reformed digestate biochar (V66) presented 

intense signals of VOCs released from the poorly carbonized biochar matrix. The most intense 

peaks are associated to the degradation products of the lignin fraction of the digestate, and include 

alkylated and methoxy phenols. The non-complete carbonization of the biochar is also suggested by 

the presence of degradation products of hemi/cellulose, like cyclopentenones. Volatile and straight 



69 

chain fatty acids were detected as proxies of lipids while nitrogen compounds (indoles) as 

representative of the protein fraction of the digestate. All these molecular markers were detected 

during HS-SPME method development on thermosequence corn stalk biochars and proposed as 

important proxies for biochar quality. On the other hand, the reformed biochars from digestate and 

sewage sludge presented simplified chromatograms, especially in the regions associated with the 

aforementioned molecular markers, but with more intense peaks at the earlier retention times. For 

example, sewage SEW biochar displayed only traces of alkylated phenols and no methoxy phenols. 

Despite the different feedstock, this is in accordance with the corn stalk biochars having similar H/C 

values (0.36). The VOCs profile of SEW still included signals of nitrogen and sulfur species 

(benzonitrile, pyridine, thiophene), but the most abundant compounds were the monoaromatic 

hydrocarbons (benzene and C1-3 alkylated derivatives) and low molecular weight PAHs 

(naphthalene, methyl naphthalene). DIG biochar, with H/C 0.24, also presented these characteristic 

peaks but without contributions of PAHs (Figure 23). In summary, as observed for VOCs in 

thermosequence biochar samples, carbonization degree decreased the release of VOCs from biochar 

produced by the scaled-up TCR pyrolyser. Similarly, the carbonization degree influenced also the 

release of WSOCs. The chromatograms in Figure 24 show the semi-volatile fraction by DI-SPME-

GC-MS analysis.  
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Figure 23: Chromatograms of VOCs released by digestate and sewage sludge biochars produced 
with the TCR process in relation to their increasing aromaticity measured by the decreasing H/C 

values. At high values of H/C, the distribution of VOCs was mainly composed by semi-volatile 
thermal degradation products of lignocellulose. For higher carbonized biochars the profile shifted 

towards lower molecular weight volatile compounds. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

MCounts

10

20

30

40

50

60 H/C 0.38

5 10 15 20 25 30 35 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 

H/C 0.24

H/C 0.82 

O H

O

O H

O H

O

OH

O H

OO

O

O

O

O

N H2

O

OH

O

OH

O H

OO

O

OH

OO

O H

O

O

O

S
S

S

N
H

N

OH

OH

N

N

O

O H

N

MCounts

MCounts

minutes



71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Chromatograms of WSOCs released from non-reformed (V66) and reformed (V44) 
digestate biochars. The dotted red line was used to indicate the suppression of the peak of the 
internal standard interpreted by the effect of the carbonization in the reformed sample (V44). 

 

Non-reformed digestate biochar (V66) presented the pattern of lignin phenols as the most abundant 

compounds released in water. These species were already evidenced for VOCs. Instead, the 

reformed biochar (V44) did not present detectable signals of WSOCs, confirming the hypothesis 

that highly carbonized biochars are less prone to release WSOCs. In fact, the high adsorption 

affinity of the reformed biochars was confirmed, as the peak of the internal standard (o-eugenol) 

was strongly suppressed in Figure 25. The fluorescence spectra of WSOCs highlighted considerable 

dissimilarities in the aromatic structures released from the reformed versus the non-reformed 

biochars. Examples of the marked changes occurring in the fluorophores of WSOCs due to the 

biochar carbonization degree are reported in Figure 25, that represents the EEMs of V66 and V44. 
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Figure 25: EEMs of WSOCs extracted from non-reformed V66 (A) and reformed V44 (B) biochars. 

 

Non-reformed biochar presented two peaks at 325/400 and 350/470 nm. The aromatic 

functionalities associated with these fluorophores were detected in the characterization of corn stalk 

biochar WSOCs and representatives of fluvic-like structures (section 4.3). These moieties were not 

detected in the EEMs of reformed biochars, that were characterized by a peak at 280/310 nm 

possibly representing protein-like structures or low molecular weight polyaromatic hydrocarbons. 

In conclusion, the characterization of biochar samples produced with a pilot plant pyrolysis reactor 

revealed that the increasing carbonization degree induced by severe reforming conditions of the 

biochar in the TCR notably affected the release of VOCs and WSOCs from the resulting biochar. 

Highly carbonized biochars are less prone to release organic compounds in air and water and 

presented the opposite tendency to adsorb organic compounds (internal standard suppression). 

Besides, the analytical methods developed for the characterization of mobile organic compounds in 

biochar successfully correlated with the thermal stability measured with the H/C molar ratio.  
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5.2) Biological response: relationships of VOCs and WSOCs with seed germination 

In the previous sections, analytical methods were developed for the determination of VOCs and 

WSOCs in biochar produced in a bench scale quartz reactor and applied to the characterization of 

biochar produced from a pilot plant pyrolysis reactor. Strong correlations between the quantity of 

these mobile organic species released from biochar and its carbonization degree emerged, indicating 

that less carbonized biochars are more prone to release organic contaminants than the more 

carbonized ones. As discussed in section 1.5 organic species released from biochar can induce 

biological activity, ultimately affecting biochar performance in soil. Germination tests were 

proposed as a rapid and easy tool to screen biochar toxicity. It was evidenced that soil-less 

germination tests can successfully evaluate the performance of the biochar for environmental 

application104 and that cress (Lepidium sativum) is a suitable specie for the evaluation of harmful 

effects due to organic compounds.58 To this purpose germination tests on cress seeds were 

conducted to evaluate the performance of biochar in relation to the presence of organic compounds 

released into water (WSOCs) and volatilized in the air (VOCs).  

MATERIALS AND METHODS 

Biochar materials 

Poultry litter biochar was produced from the apparatus described in section 3.2 at 400°C with 20 

min residence time and named PL400. The production of the thermosequence of corn stalk biochar 

was already discussed in section 3.2. TCR-DIG and V66 digestate biochars from TCR pyrolysis 

process were described in the previous section (5.1). 

Characterization of biochar mobile organic compounds 

VOCs and WSOCs were characterized by means of HS- and DI-SPME-GC-MS with the procedures 

described in Chapters 3 and 4. 
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Germination tests  

The germination tests were conducted in four replicates by incubating 50 seeds of cress (L. sativum) 

with 5 g of a mixture containing biochar and deionized water onto sterilized cellulose filter paper 

(Whatman no. 1) placed in a Petri dish sealed with para-film. Two levels of biochar concentration 

were tested 5 and 40 g/L. These rates were equivalent to 5, and 40 t/ha on an area basis of 10 cm 

soil depth and a dry bulk density of 1.5 kg/m3. Before incubation, the samples were shaken at 150 

rpm on a platform shaker at room temperature for 24 h. All Petri dishes were covered and incubated 

at room temperature, 25 ± 2 °C, for 72 ± 0.5 h in the dark. Similarly, a control was prepared with 

deionized water. After 72 h of exposure, visible root development was used as the operational 

definition of seed germination. Data were reported as relative seed germination (RSG) percentage 

with respect to the control (deionized water): RSG = (number of germinated seeds in the 

sample/number of germinated seeds in control) ×100. Fifteen seeds per Petri dish were sampled and 

seedlings elongation was measured (root and shoot lengths in cm). The following statistics were 

performed with the software PAST (Paleontological Statistic vers. 2.16): Kruskal-Wallis test (non-

parametric), one-way ANOVA (after data transformation with Box-Cox, to achieve normality of the 

distributions and homogeneity of the variance), post-hoc tests (Mann-Whitney and Tukey test). 

RESULTS AND DISCUSSION 

Poultry litter biochar 

VOCs and WSOCs of PL400 biochar are reported in Figure 26. The biochar from poultry litter 

released a wide range of VOCs and WSOCs. VOCs included compounds deriving from the thermal 

degradation of polysaccharides (e.g., cyclopentenones, furans), lignin (e.g., 4-vinylphenol, 

guaiacol), proteins (e.g., pyrroles, pyridines, indole), lipids (e.g., VFAs; acetic acid is also derived 

from hemicellulose). Alkylated pyrazines and acetamide were probably derived from Maillard 

reactions between carbohydrates and proteins. Notably, a suite of short-chain n-alkanes/alkenes 

were identified, supporting previous studies on the occurrence of aliphatic components in poultry 

litter biochar.151 It is expected that the polar fraction of VOCs will be preferentially distributed into 
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the aqueous phase in comparison to nonpolar constituents. In fact, the SPME-GC-MS analysis of 

the PL400 water extract showed a predominance of organic acids, including C2 −C10 aliphatic and 

C7 −C9 aromatic acids. PL400 significantly inhibited seed germination at 5 and 40 g/L in water 

suspensions. Further investigation allowed to conclude that the inhibition of germination was 

suppressed after solvent extraction or treatment of biochar with active sludge, and that the 

phytotoxicity could be attributed to hydrophilic biodegradable substances derived from lipids or 

proteins.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Total ion chromatograms obtained after (A) DI-SPME of WSOCs and (B) HS-SPME of 
VOCs of poultry litter biochar (PL400). 

 

 

 

 

 

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 
2e+06

4e+06

6e+06

   1e+07 
 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

   2e+07 
 2.2e+07

 2.4e+07

 2.6e+07

Minutes 

Counts 

   8e+06 

O HO

i.s. 

i.s. 

O H

O

OH

O

O H

O

O H

O

O H

O

O H

O

O H

O

O H

O

O H

O

O H

O

O H

O

O H

O

C O O H

C O O H

O H

M eO

Minutes 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00

5e+06

   1e+07

 1.5e+07 
   2e+07

 2.5e+07 
   3e+07

 3.5e+07 
   4e+07

 4.5e+07 
   5e+07

 5.5e+07 
   6e+07

Counts 
O

O

O

S

N

O C 5

O

C6-C10 
hydrocarbons 

i.s. 

O H

M e O

N H 2

O

O

O H

O H

O

O

O H

C 3

C H O

N

N

N

C 2

N

N

N

C 2

O

S



76 

TCR biochar samples 

Figure 27 represents the results of the germination tests conducted on the digestate biochars 

produced by the TCR process with (V66) and without the reforming step (TCR-DIG) versus the 

control with deionized water only.  

 

 

 

 

 

 

 

 

 

Figure 27: Results of phytotoxicity tests of TCR digestate biochars in water suspension at 5 and 40 
g/l. Average values of germination rate (n=4) are expressed as percentage relative seed 

germination (% RSG) with respect to the control (no biochar) ± standard deviation. 
 

TCR-DIG biochar (produced at temperature 400°C and reformed at 700°C) led to average 

germination rates of 94±1 and 96±3% (5 and 40 g/l treatment solutions), V66 (non-reformed 

biochar) to 90±4 and 67±4% in the same concentration range, while the average germination rate of 

the control (no biochar) was 97±2%. TCR biochar had a germination rate very similar to the control 

without biochar in both treatments, while V66 was toxic even at the lowest treatment. As outlined in 

section 5.1, the profiles of VOCs determined by HS-SPME-GC-MS showed that V66 featured 

mainly phenolic species, while the reformed biochar volatilized protein-derived aromatic 

compounds. The germination inhibition observed with V66 could be due to alkyl and methoxy 

phenols that are no longer present after TCR process.103 Alkylated monoaromatic hydrocarbons 

detected in both cases seemed not to be associated with toxic effect. The reduced occurrence of 

VOCs in the reformed biochar could explain the suppression of the potential toxicity. However, 

other causes could also support this observation, such as the nutrient release associated to the 
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increased ash content with the carbonization intensity. The effect of the charring degree was 

examined in the next section.   

Thermosequence of corn stalk biochar samples  

Germination tests on the thermosequence of corn stalk biochar were carried out to evaluate the 

performance of biochar containing variable amounts of WSOCs in consequence of the pyrolysis 

temperature, and to correlate these effects with the charring intensity. In total, seven biochar 

samples with values of H/C ranging from 0.8 to 0.3 were examined (section 3.2). The germination 

rates of the biochar samples were not significantly different from the controls (p> 0.05) and the 

average value of all the treatments was 97 ± 2.5 %. In agreement with previous studies on corn stalk 

biochar with high VOC content,60 WSOCs did not present inhibiting effect. Surprisingly, the 

seedlings emerged after the germination showed significantly longer shoots in all the biochar 

treatments versus the controls without BC (p < 0.001), and the values for the biochar with greater 

WSOCs content (BC 350-500) were higher (p < 0.05) than those of the more carbonized ones (BC 

550-650) (Figure 28 and 29). Apparently, biochar released compounds that promoted the shoot 

growth. Among the possible candidates, karrikins are a group of smoke derived compounds that 

originate during the combustion of cellulose and act as potent plant stimulants, particularly KAR1 

(3-methyl-2Hfuro[2,3-c]pyran-2-one).152 Recently KAR1 was determined in slow pyrolysis biochar 

from green waste and in the corresponding pyrolysis water, and induced longer shoot lengths of 

tomato and lettuce seedlings in germination tests.57 Interestingly, ESI(-)FT-ICR-MS mass spectrum 

of all the bio-oils collected during biochar synthesis presented a peak at m/z 149.02442 [M-H]- with 

molecular formula [C8H5O3]-, that could be associated to KAR1. However, the peak was not 

revealed in the mass spectra of the water extracts of biochar samples. The stimulant could be absent 

or present at undetectable concentration. Prior studies indicated that KAR1 in biochar presented 

trace values (0.8 ng/g) and its determination required a tailored method, while pyrolysis water 

showed markedly higher values (70ng/ml).57 The highly carbonized biochar caused significantly 

shorter root lengths in comparison with the controls (p < 0.001), especially BC550-650 (p < 0.001). 
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In summary, less carbonized biochar favoured shoot against root growth in comparison with the 

more carbonized samples. The difference could be caused by a series of concomitant factors. A 

higher supply of micronutrients could be associated to the increasing ash content of the biochar with 

the charring degree, ranging from 24 (BC350) to 35% (BC650)60. However, the promotion of 

shoots could be also derived from the release of trace organic compounds such as karrikins or 

fulvic-like aromatic structures.   

 

 

 

 

 

 

 

 

Figure 28: Box and whisker plots of shoot and root lengths (cm) of the cress seedlings for each 
treatment with biochar (BC) and without biochar (Controls). 25-75 percent quartiles are drawn 

using a box. The median is shown with a horizontal line inside the box. Horizontal lines outside the 
box represents the variability outside the lower and upper quartiles. Values >1.5 times the box 

height are reported as circles. 

 

 

 

 

 

 

 

Figure 29: Examples of cress seedlings emerged after the germination tests with thermosequence 
corn stalk biochars versus the control with only deionized water. 
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5.3) Relationships of VOCs and WSOCs with corn growth at different stages  

The results of germination tests of cress seeds in soil-less conditions highlighted the importance of 

mobile organic species in the determination of biochar quality. Therefore, it is likely that also 

biochar application to soil can influence the growth of plants. Depending on soil type and condition, 

biochar application can impede or facilitate root growth, which can impact aboveground 

biomass.153–156 Furthermore, VOCs or WSOCs contained in biochars may indirectly affect plant 

growth by affecting microbial mediated processes in soil such as C and N cycling.8 In this section 

the properties of three biochar materials were compared to the biological effects induced on corn 

growth at different stages, as the combination and interaction of biochar bulk properties, VOCs, 

WSOCs and physicochemical properties on plant physiology and growth in biochar-amended soils 

remain unclear.  

MATERIALS AND METHODS  

Biochar samples 

Three biochar materials were characterized: a softwood chip biochar prepared by slow pyrolysis at 

500 °C for 12 minutes (PYR) (Pyrovac, Jonquière, Québec, Canada) and two biochars prepared by 

slow pyrolysis from biosolids at 270 or 320 °C by Anaergia Inc. (ALT and AHT, respectively) 

(Burlington, Ontario, Canada). It has to be noted that, given the low content of carbon (<50%), 

ALT and AHT should be named pyrogenic carbonaceous materials according to EBC Guidelines.18 

Biochar characterization 

VOCs and WSOCs were determined for each biochar with HS- and DI-SPME according with the 

methods developed in Chapter 3 and 4. Biochar bulk chemical properties, specifically, fixed C, VM, 

ash content, carbonization degree (H/C), pH, EC, and its mobile species, that included available 

nutrients were also determined.  
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Corn growth at different stages 

A germination assay determined whether biochar effects on root length resulted from (1) direct 

contact of seeds with biochar, due to exposure to VOCs, WSOCs, salts and water retention, (2) only 

water extract of biochar, containing WSOC and salts or (3) only VOCs emitted at 25 ˚C. Moreover, 

a greenhouse experiment tested the effects of the three biochars (ALT, AHT and PYR) on corn 

early root growth, biomass accumulation and N uptake. The experiment was performed on two 

sandy loam soils with an application of biochar of 2 % (w/w) or 26 Mg ha-1 (based on a depth of 

incorporation of 10 cm and 2.24 x 106 kg soil ha-1). Corn was grown until the V3 stage, that 

represents a method for the evaluation of corn growth by measuring the stages of leaves.157 The 

experiments were conducted at the Department of Plant Science of the McGill University, Quebec, 

Canada. 

RESULTS AND DISCUSSION 

The feedstock type and pyrolysis temperature highly influenced the bulk chemical characteristics of 

the biochars, that could in turn affect soil properties and plant growth after biochar amendment. The 

physicochemical and bulk chemical properties of biochar samples are reported in Table 8. In order 

to evaluate the potential influence of biochar mobile organic species on corn growth at different 

stages, i.e. germination and V3, the compounds that can be volatilized (VOCs) and those that can be 

released in water (WSOCs) were determined by SPME-GC-MS. VOCs were sampled in the head 

space (HS-SPME) of biochar samples, while WSOCs in the water extracts, by means of direct 

immersion (DI)-SPME-GC-MS. Representative chromatograms obtained from the analysis of ALT, 

AHT and PYR are reported in Figure 30.   
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Table 8: physicochemical properties of biochar samples. Average values of triplicate analysis are 
reported with standard deviations (tests were performed at the Department of Plant Science of the 

McGill University, Quebec, Canada) 

 

The GC traces of ALT and AHT presented intense peaks associated to WSOCs and VOCs, while 

the signals of PYR were significantly reduced.  A total of 111 compounds were detected and 

tentatively identified in the WSOCs and VOCs extracted from the three biochars (Table S13). ALT 

and AHT WSOCs were mainly characterized by aldehydes and ketones, accounting for 53 % of the 

total amounts for both biochars.  The principal constituents of this class were typical pyrolysis 

products of hemi/cellulose evolved from poorly carbonized biochars, such as furfural, C1-3 alkyl 

substituted cyclopentenones, benzaldehyde and its alkylated/hydroxylated derivatives.42 

Benzaldehyde was the most abundant compound in both samples, while furfural was the second in 

ALT, and 2-butanone in AHT. C4-9 straight-chain and branched ketones were also detected, 

especially in AHT. Carboxylic acids were the second most abundant class of WSOCs in ALT 

(23%) and included C2-12 saturated, unsaturated (2-butenoic acid) and aromatic acids (benzoic acid 

 ALT AHT PYR 
    
pH 5.8 6.4 8.7 
TGA, % dry weight 
VM 67.2 (2.94) 43.1 (4.10) 33.0 (2.05) 

Fixed C 7.86 (0.67) 16.8 (0.72) 57.3 (0.18) 

Ash 26 (1.3) 41 (0.046) 8.7 (0.099) 

Available elements, mg kg-1 
N 494 (2.94) 10.8 (0.138) 12.3 (0.349) 

P 759 (8.13) 565 (26.2) 111 (2.24) 

K 377 (29.8) 45 (0.693) 464 (5.38) 

Na 358 (5.56) 51 (2.27) 39 (0.119) 

Elemental composition, % dry weight 
N 5.9 (0.034) 5.4 (0.017) 0.50 (0.0028) 

C 38 (0.134) 39 (0.20) 62 (0.057) 

H 5.8 (0.029) 3.8 (0.026) 3.2 (0.041) 

S 2.5 (0.15) 1.9 (0.059) 0 (0) 

O 21 (1.4) 9.2 (0.27) 26 (0.19) 

Atomic molar ratios 
H/C 1.8 (0.0026) 1.2 (0.011) 0.63 (0.0074) 

O/C 0.41 (0.029) 0.18 (0.0061) 0.31 (0.0026) 
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and its C1-3 alkylated derivatives), with n-octanoic and n-decanoic acids as the most prominent 

species. Their content sharply decreased in AHT and the total amounts of organic acids decreased 

accordingly (13%). The presence of carboxylic acids can explain the slightly acidic pH of ALT 

(5.8) and AHT (6.4) compared to PYR, that was weakly basic (8.7). Carboxylic functional groups 

on the biochar surface can also contribute to this effect.158 In an experiment with oak, pine and grass 

biochars prepared at three different temperatures (250, 400 and 650 °C), an increasing pyrolysis 

temperature increased the loss of acidic surface functional groups which were transformed to give 

neutral or basic groups159 which explains the higher pH of PYR. ALT and AHT presented 

significant contributions of nitrogen containing compounds (13 and 15 % respectively), that were 

the second most abundant class in AHT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: total ion chromatograms of WSOCs and VOCs released at 25°C from ALT, AHT and 
PYR. The most abundant common compounds in the chromatograms are indicated by the dotted 

lines. 
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Their distributions differed between the two biochars, as pyrrolic species (pyrrole-2-

carboxaldehyde) and C1-3 pyrazines were the most abundant in ALT, while aliphatic/aromatic 

nitriles were the most important in AHT.  The presence of moieties like aromatic nitriles 

(benzonitrile, 1,2-benzenedicarbonitrile, benzenepropanenitrile), indoles, pyrroles and pyrazines 

indicated the significant protein content of the feedstock biomass.55 The presence of sulfur species 

in ALT and AHT (8 and 2% respectively) is in accordance with the sulfur content of biochar42 

(Table 8) and S-containing compounds sharply decreased in AHT compared to ALT, probably due 

to protein degradation at the higher pyrolysis temperature.  Derivatives of thiophene and thiazole 

were the principal components of this class, with methyl-thiophencarboxaldehyde as most abundant 

compound.  Phenolic species were detected in both ALT and AHT WSOCs as markers of the lignin 

fraction.42,60 The content of alkyl substituted phenols and methoxy phenols significantly increased 

in AHT (14%) compared to ALT (2%), possibly due to incomplete degradation of lignin at 270°C 

that becomes more severe at 320°C.160 The occurrence of monoaromatic hydrocarbon units in the 

volatilome of biochars was associated to the extent of carbonization.43 Despite their solubility in 

water, trace amounts were detected in the WSOCs of ALT (1 %) and AHT (2%) with toluene as 

most representative species.  The majority of the compounds detected in ALT and AHT WSOCs 

were also identified as VOCs evolved from biochars heated at 150°C.  However, the VOC profiles 

at 150°C presented additional species that were not (or barely detected) in the WSOCs, including 

monoaromatic (C3-8 alkylated benzenes) and low molecular weight polyaromatic hydrocarbons (C1-3 

alkylated naphthalenes), amides, C14-16 fatty acids, benzenediols, volatile sulfur compounds (carbon 

disulfide) and chlorobenzenes (Table S13). The release of VOCs was tested also at ambient 

temperature (25°C) and confirmed that many of the aforementioned species were released 

preferentially in the air, like amides, C3-6 benzenes, naphthalene, carbon disulfide and 

chlorobenzenes.  On the other hand, VOC profiles at 25°C included several compounds detected in 

the WSOCs (aromatic aldehydes, ketones phenols, volatile fatty acids, nitrogen and sulfur 

containing compounds), confirming that the mobility of organic species in biochar can occur both in 
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air and water phase.55 The VOC pattern of PYR was characterized by signals more than one order 

of magnitude lower than those of ALT and AHT (Table S13), and only 12 species could be 

identified.  Among the compounds detected, only 5 were released as WSOCs, acetic acid, 2-

butanone, methyl phenol, phenol and furfural, respectively in order of abundance.  These species 

were also detected in the VOC profiles at 150°C, while only acetic acid was volatilized at 25°C.  

Traces of other volatiles were detected at 150°C including benzaldehyde and 2-pentanone, while 

benzene, toluene, ethylbenzene, trimethyl benzene and indane are representative of the higher 

carbonisation degree of the biochar.60 The absence of nitrogen and sulfur compounds in PYR is 

indicative of the lower protein content in the feedstock material, compared to that of biosolids, as 

highlighted by the elemental composition (Table 8). The much lower content of VOCs and WSOCs 

released from PYR and the presence of aromatic hydrocarbons in VOCs due to the effect of the 

carbonization degree is in accordance with Ghidotti et al.60 The increasing pyrolysis temperature is 

known to increase fixed C, decrease VM and concentrate ash in the resulting biochar.30,108,159 The 

effect of pyrolysis temperature on the pH, FC, VM, H/C and ash content in the biochar samples 

(Table 8)  is in accordance with other studies in literature.42,43 The values of H/C (Table 8) 

confirmed that the degree of carbonization decreased in the order PYR>AHT>ALT. There was a 

large reduction in available N, P, K and Na when pyrolysis temperature was increased from 270 °C 

(ALT) to 320 °C (AHT).  The higher ash content of AHT did not result in higher available N, P, K 

and Na concentrations, which suggests loss of these nutrients by volatilization with increasing 

pyrolysis temperature.  The reduction in available Na concentration is desirable due to the potential 

phytotoxicity of this element.  The reduction in available N, P and K, however, reduces the fertilizer 

value and nutrient recovery of AHT versus ALT.  PYR had a similar available N and Na as AHT, 

higher K and lower P concentrations than AHT and ALT. Germination tests on corn seeds revealed 

that biochar treatments did not alter the number of seeds germinated compared to the control 

without biochar, in accordance with Ghidotti et al.60 In contrast, shoot and root lengths were 

markedly affected, highlighting the importance of  biochar characteristics and its mobile species on 
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the biological response induced on corn. The exposure to VOCs released by ALT led to longer root 

lengths, while in the case of PYR, trace amounts of 2-butanone, 2-pentanone, benzaldehyde, acetic 

acid and phenols could explain the increased shoot growth. Contrarily, the species released in water 

by ALT reduced the root length, and can be possibly explained by the phytotoxic activity of 

WSOCs and the high concentrations of available N and K. Under greenhouse conditions, corn plants 

were grown to the V3 stage on two coarse-textured temperate zone soils, amended with 26 Mg ha-1. 

In accordance with the results of germination tests, ALT and AHT reduced root length compared to 

the control soil without biochar application, while the more carbonized PYR increased root length. 

AHT also improved biomass accumulation and N uptake. In conclusion, VOCs, WSOCs, available 

nutrient concentration and degree of carbonization are biochar characteristics that should be taken 

into consideration to predict effects on plant growth. Biochars with low H/C could help plants 

develop longer root systems and therefore higher resilience to drought and nutrient stress.  Biochars 

with higher H/C and available N and K concentrations may provide fertilization value and 

consequently reduce root development but increase N uptake. 
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6) CONCLUSIONS 

The application of biochar to soil for agronomic and environmental purposes requires the 

comprehensive investigation on its chemical properties. Priority contaminants (polycyclic aromatic 

hydrocarbons, polychlorinated dibenzofurans, dioxins and heavy metals) that could limit biochar 

utilization were established and threshold values for the determination of its suitability were 

proposed. Apart from this suite of regulated compounds, a wide range of other organic species can 

be retained onto the biochar aromatic and porous structure, in consequence of re-condensation of 

pyrolysis vapors during its production, or adsorption during its storage. These compounds can be 

subsequently mobilized in the environment and could impact plants, soil organisms or affect the 

pool of natural organic matter. The present study provided insights into the chemical nature of 

organic compounds released from biochar into air as volatile organic compounds (VOCs), and 

water, as water-soluble organic compounds (WSOCs). For the first time, solid-phase 

microextraction (SPME) was applied to the sampling of VOCs and WSOCs in biochar. The 

relationship between these species and the carbonization degree was evidenced through the analysis 

of a set of biochar from corn stalks produced at increasing temperatures under reproducible 

conditions. A fast and solvent-less method for the analysis of VOCs was developed, based on head 

space (HS)-SPME sampling of compounds volatilized when biochar was heated at 150°C, and 

detection by gas chromatography mass spectrometry (GC-MS). The procedure suitably revealed 

VOCs at the sub-ng level. The principal classes of VOCs identified were aldehydes and ketones, 

especially benzaldehydes and furaldehydes, aromatic hydrocarbons (benzene, toluene, C2 

benzenes), phenols and methyl esters of fatty acids. The %RSD of the intensities ranged from 14 to 

34%. Considering the complexity of the matrix and the number of compounds constituting the 

biochar volatilome, the method resulted adequate to the scope of evidencing the relationship 

between the molecular pattern and relative intensities of VOCs and the biochar carbonization 

degree, expressed by the H/C atomic ratios and volatile matter (VM). Total VOCs concentrations 

were significantly correlated with VM, indicating that highly carbonized biochar should be 
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produced to reduce the risk of VOCs emission. Overall, when H/C<0.70 VOCs emission was 

sharply reduced compared to the samples with lower carbonization degree (H/C 0.80) and resulted 

minimal at ambient temperatures (25, 50°C). The organic compounds released in water (WSOCs) 

exhibited a complex composition and required the integration of different analytical techniques for 

a detailed characterization. Direct immersion (DI)-SPME-GC-MS was employed for the analysis of 

the semi-volatile WSOCs, high resolution mass spectrometry (Fourier Transform Ion Cyclotron 

Resonance Mass Spectrometry, FT-ICR-MS) to investigate the hydrophilic fraction ionized by 

negative electrospray ionization ESI(-), and fluorescence spectroscopy with Parallel Factor Analysis 

(PARAFAC) for the characterization of aromatic structures. The pattern of WSOCs was compared 

to that of the pyrolysis vapours collected into bio-oil during pyrolysis. The bio-oil WSOCs were 

composed mainly by lignocellulosic-derived compounds (alkylated and methoxy phenols) and their 

composition did not change with the increasing pyrolysis temperature. On the contrary, biochar 

WSOCs distribution presented remarkable differences. Interestingly, biochar water extracts featured 

carboxylic acids, principally volatile fatty acids, that ranged from 3 mg to 14µg per gram of 

biochar. The pattern of higher molecular weight species (<600 Da) in poorly carbonized biochar 

was comparable to that of the corresponding bio-oils, but the increasing charring degree noticeably 

reduced the homologues with higher degree of aromaticity. The aromatic functionalities of biochar 

WSOCs resembled those of natural organic matter (fulvic acids), while lignin-like moieties 

characterized mostly the bio-oils. Overall, SPME-GC-MS, ESI(-)FT-ICR-MS and fluorescence-

PARAFAC indicated that the release of WSOCs from biochar was strongly reduced for biochar 

with H/C < 0.59, in agreement with the trend observed for VOCs. A mechanism of released of 

WSOCs was hypothesized related to the biochar structure: the fractionation of carboxylated, lipid-

derived aliphatic structures into water of the more carbonized biochar could be attributed to a 

combination of porosity, hydrophobic effect and π-π interactions, favouring their release while 

retaining phenolic species. The methods developed were employed to characterize biochars from 

different feedstocks (spent mushroom substrate, digestate from anaerobic digestion, sewage sludge, 
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poultry litter, biosolids, softwood) and pyrolysis units. The profiles of VOC and WSOCs differed 

markedly and presented a variety of thermal degradation products of biomass biopolymers (lignin, 

hemi/cellulose, lipids and proteins). The extent of carbonization, in turn related to biochar 

recalcitrance in soil, highly affected the mobility of organic species in air and water. Biochar 

reformed under the severe temperature conditions of the thermo-catalytic reforming process (TCR) 

not only were less prone to release VOCs/WSOCs but exhibited the opposite tendency to strongly 

adsorb organic compounds. The information gathered on the molecular composition could be 

utilized to interpret potential bioactivity of the organic species retained in the biochar matrix. The 

biological response was evaluated by means of germination assays and early stage growth tests. 

VOC and WSOCs induced contrasting biological effects. Generally, carbonized biochars which 

were less prone to release organic species did not suppress the growth of the investigated plant 

species. Noticeably, corn stalk biochar improved the shoot lengths of cress seedlings, regardless of 

the carbonization extent and the presence of mobile organic species, and the effect was more 

pronounced for less carbonized samples that released WSOCs. This effect could be correlated to the 

occurrence of growth promoters such as karrikins or fulvic-like aromatic structures mimicking 

dissolved organic matter in soil. On the contrary, poorly carbonized biochar from digestate, poultry 

litter and biosolids released organic compounds that could be involved in the inhibition of 

germination and growth of cress and corn seedlings, possibly phenolic species, carboxylic acids, 

nitrogen and sulfur containing compounds. These results support the view that VOCs and WSOCs 

are crucial parameters in the assessment of biochar quality in environmental applications. This 

study provided new insights into the source and release of VOCs and WSOCs, but a comprehensive 

understanding of the role played by these species in the induction of biological effects requires 

further investigation. Fast analytical methods based on SPME developed in this study are suitable 

for screening the effect of pyrolysis process conditions on the mobile compounds in the resulting 

biochar and their potential impact in the soil system.  
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7) SUPPLEMENTARY MATERIAL 

Table S1. Quantitative HS-SPME analysis of VOCs in CS biochars with H/C 0.80-0.49. Average quantities 

and SD were expressed as normalised areas (NA), (n=3), m/z quantitation ion. 

compound classes H/C   0.80 0.71 0.59 0.49 

Compound m/z r.t 
(min) 

NA SD NA SD NA SD NA SD 

alkyl amides formamide 45 17.44 8651 1732 12338 2544 19377 5396 19545 1344 

formamide-N-
methyl 

59 15.77 22867 6757 6148 3759 - - - - 

acetamide 59 17.17 17647 5318 10526 3491 8186 2476 4005 1296 

propanamide-N-
methyl- 

87 16.09 2439 937 - - - - - - 

acetamide-N,N-
dimethyl- 

87 17.05 3663 469 1625 215 301 264 200 196 

aldehydes and 
ketones 

propanal 58 1.987 259902 6410 99685 9993 13364 3099 5200 1146 

butanal 72 2.524 132772 23578 56327 11499 4747 1556 2671 771 

2-butanone 84 9.106 210989 29490 106291 16693 23798 8518 10169 2796 

2-butenal-3-methyl- 72 2.759 - - 24687 5669 6959 2967 1360 339 

2-pentanone 86 3.820 61231 15550 51309 43653 - - - - 

benzaldehyde 106 14.29 620496 120782 138350 31516 15088 3220 7622 1869 

 benzaldehyde, 4-
methyl- 

120 15.49 21369 4337 5457 1422 595 347 160 55 

benzaldehyde, 2-
hydroxy- 

134 16.93 9448 6877 2234 568 342 592 310 367 

Benzaldehyde, 2,5-
dimethyl- 

122 16.24 2950 620 - - - - - - 

furfural 96 13.50 406962 108427 27761 7265 2776 1262 3776 2627 

2-
furancarboxaldehyde

, 5-methyl- 

110 14.95 69007 22950 5026 1526 716 403 607 727 

cyclopentanone 84 8.703 - - - - - - 562 169 

cyclohexanone 98 10.70 - - - - 1143 1286 1384 487 

ethanone, 1-(2-
furanyl)- 

120 15.88 42870 12418 2455 704 342 200 288 333 

ethanone, 1-(2-
hydroxyphenyl)- 

136 17.66 3023 798 440 125 - - - - 

acetophenone 110 14.04 18606 3654 3792 1257 605 106 396 83 

aromatics benzene 78 3.237 40567 9108 89177 21019 172635 60304 75247 21683 

toluene 91 5.238 943133 190185 1071113 214917 942228 289812 289861 70102 

C2 benzene 106 7.668 63834 10398 113922 21118 61837 17230 14652 2719 

C3 benzene 120 10.54 36463 6448 49156 11742 12551 3107 3095 722 

C4 benzene 134 13.00 10745 1835 10050 2806 3058 1113 594 148 

C5benzene 148 12.45 5375 1055 7310 2048 - - - - 

benzene, methoxy- 108 11.63 28770 6073 5776 1266 1329 439 807 262 

benzene, 1-methoxy-
4-methyl- 

122 13.08 54210 14557 3778 1131 - - - - 

benzene, 1-ethyl-4-
methoxy- 

136 13.96 9939 1949 - - - - - - 

benzene, 1,4-
dimethoxy-2-

methyl- 

152 19.33 4812 1238 - - - - - - 

furans Furan, 2-pentyl- 81 9.644 29137 8773 3442 1202 - - - - 

3-methyl-furan  82 2.472 25347 4480 8396 982 6355 1430 3123 488 

furan, 2,5-dimethyl- 96 3.424 30683 7674 11894 2749 6478 1901 1632 335 

cyclopentenones 2-cyclopenten-1-one 82 11.86 87072 22123 31571 7684 8486 3334 3215 931 

 2-cyclopenten-1-
one-2-methyl- 

96 12.04 59959 16494 14667 4204 2578 949 658 570 



90 

2-cyclopenten-1-one, 
2,3-dimethyl- 

110 14.49 44030 12991 6791 2143 457 179 195 176 

2-cyclopenten-1-one, 
2,3,4-trimethyl- 

124 13.87 11839 3219 2316 735 - - - - 

lactones butyrolactone 86 15.69 21079 6349 1771 313 - - - - 

 2(5H)-furanone, 3-
methyl- 

98 16.74 24944 6354 9964 2024 1568 246 349 121 

 2-furanone, 2,5-
dihydro-3,5-

dimethyl 

112 17.60 6004 4117 1084 266 130 136 - - 

phenols phenol 94 19.70 537960 117085 471769 75607 362405 58862 144423 46590 

methyl phenol  108 20.45 89238 25413 53543 12172 35659 3903 6260 2616 

C2 phenol 122 21.23 49420 16788 23057 6562 6104 1899 1699 1272 

C3 phenol  136 20.60 10191 5088 5073 2917 506 186 78 136 

C4 phenol 150 21.61 1930 552 1699 2091 - - - - 

phenol, 2-methoxy- 124 18.22 120773 31991 5062 1652 1005 525 1473 861 

phenol, 2-methoxy-
4-methyl- 

138 19.23 26519 7084 907 334 396 273 520 327 

phenol, 4-ethyl-2-
methoxy- 

152 19.96 11729 3437 411 273 153 264 271 367 

anhydrosugars 1,4:3,6-dianhydro-
alfa-d-glucopyranose 

69 23.40 5034 1993 765 211 192 41 - - 

organic acids formic acid-methyl 
ester 

60 1.875 187339 37241 23971 5615 9941 1134 9382 3864 

acetic acid-methyl 
ester 

74 2.187 850572 38731 623686 60141 194077 53699 68049 21150 

butanoic acid methyl 
ester 

88 2.816 161466 44323 53043 16834 3823 1671 1808 442 

Propanoic acid, 2-
methyl-, methyl ester 

87 3.000 3190 831 1433 1274 - - - - 

2-hydroxy-propanoic 
acid-methyl ester 

45 11.24 12459 3508 6139 2213 1232 510 - - 

 Butanoic acid, 
methyl ester 

74 3.997 45788 13334 15305 4935 - - - - 

Pentanoic acid, 
methyl ester 

87 6.447 10670 3120 3407 1259 - - - - 

Pentanoic acid, 3-
methyl-, methyl ester 

87 8.796 8219 2155 1594 428 - - - - 

Heptanoic acid, 
methyl ester 

87 10.68 3984 521 490 164 - - - - 

 Octanoic acid, 
methyl ester 

87 12.30 4747 1191 - - - - - - 

benzoic acid methyl 
ester 

136 15.52 248246 53071 114174 31570 16466 6369 6021 2051 

methyl benzoic, 
methyl ester 

150 17.12 9519 2512 1773 544 413 140 - - 

alcohols benzyl alcohol 82 12.49 6445 1730 1073 349 217 50 - - 

2-furanmethanol 98 15.92 12650 4309 1049 230 - - 83 144 

Cyclohexanol 108 18.38 - - - - 1340 703 1679 718 

nitrogen 
compounds 

carbamic acid, 
methyl ester 

75 15.60 14152 2389 15366 3968 10502 3124 7696 2393 

Benzonitrile 103 15.35 - - 5568 1246 2746 413 1456 293 

low molecular 
weight PAHs 

Naphtalene 128 16.95 14246 698 5255 1207 2293 415 1114 468 

naphthalene, 1-
methyl- 

142 18.58 7260 268 2859 707 731 145 197 60 

indane/benzofura
n derivatives 

Indane 117 12.00 21123 3365 22330 5180 6084 1512 1169 267 

Benzofurane 132 13.90 27685 5152 12941 3050 3805 661 1313 372 

 benzofuran, 2,3-
dihydro- 

132 19.91 6737 3016 4714 5591 5314 7202 10619 15460 

indan, 1-methyl- 146 16.54 8591 2563 8985 2008 1014 188 128 113 

 Benzofuran, 2-
methyl- 

118 14.03 22583 3722 29437 38771 1105 232 244 251 

1-indanone 120 23.30 4848 1401 453 225 240 188 293 407 

C2 indane 132 15.18 9895 2346 3861 1213 279 83 - - 

benzofuran, 4,7-
dimethyl- 

146 16.19 11625 1539 4307 1183 396 98 - - 

TOTAL VOCs - - - 6014633 1041954 3521363 642344 1986275 530254 717657 167229 
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Table S2. Quantitative HS-SPME analysis of VOCs in CS biochars with H/C 0.44-0.32. Average quantities 
and SD were expressed as normalised areas (NA), (n=3), m/z quantitation ion. 

compound classes H/C   0.44 0.36 0.32 

Compound m/z r.t 
(min) 

NA SD NA SD NA SD 

alkyl amides formamide 45 17.44 20126 4575 22131 10682 19169 4353 

formamide-N-methyl 59 15.77 - - - - - - 

acetamide 59 17.17 1882 1892 548 949 - - 

propanamide-N-methyl- 87 16.09 - - - - - - 

acetamide-N,N-dimethyl- 87 17.05 210 60 - - - - 

aldehydes and 
ketones 

propanal 58 1.987 1363 148 - - - - 

butanal 72 2.524 722 134 - - - - 

2-butanone 84 9.106 3530 1089 - - - - 

2-butenal-3-methyl- 72 2.759 318 77 - - - - 

2-pentanone 86 3.820 - - - - - - 

benzaldehyde 106 14.29 3147 746 1718 232 1544 250 

 benzaldehyde, 4-methyl- 120 15.49 - - - - - - 

benzaldehyde, 2-hydroxy- 134 16.93 500 866 - - - - 

Benzaldehyde, 2,5-dimethyl- 122 16.24 - - - - - - 

furfural 96 13.50 5369 6867 2094 967 2017 834 

2-furancarboxaldehyde, 5-
methyl- 

110 14.95 1314 2119 289 500 - - 

cyclopentanone 84 8.703 245 72 - - - - 

cyclohexanone 98 10.70 402 140 105 183 - - 

ethanone, 1-(2-furanyl)- 120 15.88 565 859 112 194 - - 

ethanone, 1-(2-hydroxyphenyl)- 136 17.66 132 228 - - - - 

acetophenone 110 14.04 290 502 - - - - 

aromatics benzene 78 3.237 38448 10187 25339 6932 10619 3564 

toluene 91 5.238 93970 29202 24205 6056 22632 10197 

C2 benzene 106 7.668 3707 1349 697 218 315 112 

C3 benzene 120 10.54 568 198 - - - - 

C4 benzene 134 13.00 - - - - - - 

C5benzene 148 12.45 - - - - - - 

benzene, methoxy- 108 11.63 - - - - - - 

benzene, 1-methoxy-4-methyl- 122 13.08 - - - - - - 

benzene, 1-ethyl-4-methoxy- 136 13.96 - - - - - - 

benzene, 1,4-dimethoxy-2-
methyl- 

152 19.33 - - - - - - 

furans Furan, 2-pentyl- 81 9.644 - - - - - - 

3-methyl-furan  82 2.472 1041 157 - - - - 

furan, 2,5-dimethyl- 96 3.424 855 93 - - - - 

cyclopentenones 2-cyclopenten-1-one 82 11.86 1297 430 - - - - 

 2-cyclopenten-1-one-2-methyl- 96 12.04 - - - - - - 

2-cyclopenten-1-one, 2,3-
dimethyl- 

110 14.49 110 191 - - - - 

2-cyclopenten-1-one, 2,3,4-
trimethyl- 

124 13.87 - - - - - - 

lactones butyrolactone 86 15.69 - - - - - - 

 2(5H)-furanone, 3-methyl- 98 16.74 - - - - - - 

 2-furanone, 2,5-dihydro-3,5-
dimethyl 

112 17.60 - - - - - - 

phenols phenol 94 19.70 33396 12587 6535 3316 5106 1635 

methyl phenol  108 20.45 2278 2560 694 468 662 306 

C2 phenol 122 21.23 2017 3190 490 596 346 311 
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C3 phenol  136 20.60 312 540 - - - - 

C4 phenol 150 21.61 - - - - - - 

phenol, 2-methoxy- 124 18.22 1794 2104 953 415 1047 299 

phenol, 2-methoxy-4-methyl- 138 19.23 771 819 495 180 529 92 

phenol, 4-ethyl-2-methoxy- 152 19.96 586 1014 - - - - 

anhydrosugars 1,4:3,6-dianhydro-alfa-d-
glucopyranose 

69 23.40 - - - - - - 

organic acids formic acid-methyl ester 60 1.875 7143 1598 10103 1345 8275 788 

acetic acid-methyl ester 74 2.187 19549 4089 7614 1339 6996 189 

butanoic acid methyl ester 88 2.816 416 94 - - - - 

Propanoic acid, 2-methyl-, 
methyl ester 

87 3.000 - - - - - - 

2-hydroxy-propanoic acid-
methyl ester 

45 11.24 - - - - - - 

 Butanoic acid, methyl ester 74 3.997 - - - - - - 

Pentanoic acid, methyl ester 87 6.447 - - - - - - 

Pentanoic acid, 3-methyl-, 
methyl ester 

87 8.796 - - - - - - 

Heptanoic acid, methyl ester 87 10.68 - - - - - - 

 Octanoic acid, methyl ester 87 12.30 - - - - - - 

benzoic acid, methyl ester 136 15.52 1037 951 - - - - 

Methyl benzoic acid, methyl 
ester 

150 17.12 190 330 - - - - 

alcohols benzyl alcohol 82 12.49 - - - - - - 

2-furanmethanol 98 15.92 217 376 - - - - 

cyclohexanol 108 18.38 662 260 902 469 1378 597 

nitrogen 
compounds 

carbamic acid, methyl ester 75 15.60 6010 1307 4715 2669 3952 345 

benzonitrile 103 15.35 1045 527 642 97 816 186 

low molecular 
weight PAHs 

naphtalene 128 16.95 977 1294 269 138 161 147 

Naphthalene, 1-methyl- 142 18.58 229 397 - - - - 

indane/benzofuran 
derivatives 

indane 117 12.00 - - - - - - 

benzofurane 132 13.90 594 401 125 217 - - 

 benzofuran, 2,3-dihydro- 132 19.91 27629 44867 3395 5096 2790 3734 

indan, 1-methyl- 146 16.54 - - - - - - 

 Benzofuran, 2-methyl- 118 14.03 219 380 - - - - 

1-indanone 120 23.30 687 1190 170 197 - - 

C2 indane 132 15.18 - - - - - - 

benzofuran, 4,7-dimethyl- 146 16.19 - - - - - - 

TOTAL VOCs - - - 287870 88827 114339 38378 88355 12579 
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Table S3: VOC quantities (NA) released by CS thermosequence biochars at ambient temperatures (25 and 
50°C). 

 H/C 0.8  0.71  0.59  0.49  0.44  0.36  0.32  

 Sampling 
temperature 

25°C 50°C 25°C 50°C 25°C 50°C 25°C 50°C 25°C 50°C 25°C 50°C 25°C 50°C 

Compounds 
classes 

Compound NA 

alkyl amides formamide - 5288 - - - - - - - - - - - - 

acetamide 639 1888 - - - - - - - - - - - - 

aldehydes and 
ketones 

propanal 101173 301871 18918 30320 - - - - - - - - - - 

butanal - 63000 - - - - - - - - - - - - 

2-butenal-3-
methyl- 

- 364 - - - - - - - - - - - - 

2-butanone - 37107 - - - - - - - - - - - - 

benzaldehyde 560 957 - - - - - - - - - - - - 

furfural 425 2737 - - - - - - - - - - - - 

furans 3-methyl-
furan  

- 6127 - - - - - - - - - - - - 

cyclopentenones 2-
cyclopenten-

1-one 

373 2533 - - - - - - - - - - - - 

 2-
cyclopenten-

1-one-2-
methyl- 

- 597 - - - - - - - - - - - - 

2-
cyclopenten-
1-one, 2,3-
dimethyl- 

- 122 - - - - - - - - - - - - 

lactones butyrolactone 549 1682 - 2210 790 - - - - - - - - - 

 2(5H)-
furanone, 3-

methyl- 

- 192 - - - - - - - - - - - - 

phenols phenol 5858 4460 7885 13659 5410 - - - - - - - - - 

methyl 
phenol  

223 122 - - - - - - - - - - - - 

phenol, 2-
methoxy- 

- 169 - - - - - - - - - - - - 

organic acids formic acid-
methyl ester 

57755 291146 17593 10535 11650 7118 24241 35556 - 6772 - 3519 - - 

acetic acid-
methyl ester 

15365 399609 2615 36836 - - - 8891 - 914 - - - - 

propanoic 
acid-methyl 

ester 

- 34717 - - - - - - - - - - - - 

alcohols cyclohexanol 1001 374 - - - - - - - - - - - - 

Total VOCS - 183922 1155061 47011 93561 17850 7118 24241 44447 - 7686 - 3519 - - 
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Table S4: Quantitative HS-SPME analysis of VOCs in SM500 biochars. Average quantities and SD were 
expressed as normalised areas (NA), (n=3), m/z quantitation ion. 

Compound classes Compound name m/z r.t NA SD 

alkyl amides 

formamide 45 17.42 53500 19702 

formamide, N-methyl- 59 15.84 10440 3236 

acetamide 59 17.18 26811 4231 

acetamide, N-methyl- 73 15.76 3127 1542 

acetamide, N,N-dimethyl- 87 17.05 2781 818 

nitriles 

methyl isocyanide 41 4.866 592347 39667 

propanenitrile 54 5.399 19929 2097 

butanenitrile 41 6.861 7803 870 

isobutyronitrile 68 4.354 1428 181 

benzonitrile 103 15.35 18202 3178 

methyl-benzonitrile 117 16.44 1340 348 

aldehydes and ketons 

2-propenal, 2-methyl- 70 2.571 22615 4041 

butanal 72 2.531 16085 943 

hexanal 82 6.366 1131 261 

2-butenal 70 5.375 28900 2104 

2-butenal, 2-methyl-, (E)- 84 6.692 12250 2573 

2-butenal, 3-methyl- 84 9.106 19458 4058 

2-pentenal, 2-methyl- 98 8.376 1004 237 

benzaldehyde 106 14.29 169170 34038 

benzaldehyde, 3-methyl- 120 15.89 7498 1404 

3-furaldehyde 96 13.00 7738 1707 

2-furancarboxaldehyde, 5-methyl- 110 13.55 3175 777 

2,5-furandicarboxaldehyde 124 14.81 293 128 

3-thiophenecarboxaldehyde 111 16.43 1660 434 

methyl vinyl ketone 70 3.601 4937 822 

2-butanone 72 2.765 87877 5783 

3-penten-2-one, (E)- 84 7.526 7234 1806 

2-pentanone 86 3.837 13739 3162 

2,3-butanedione 86 3.920 8260 401 

methyl isobutyl ketone 100 4.424 2250 234 

2,3-pentanedione 100 5.950 1231 135 

2-hexanone 100 5.600 6112 400 

cyclopentanone 84 8.708 3292 78 

cyclohexanone 98 11.02 8330 384 

aromatics 

benzene 78 3.453 93278 4048 

toluene 91 5.245 1276935 58050 

C2 benzene 106 7.668 26170 3440 

benzene, methoxy- 108 11.64 2800 774 

C3 benzene 120 10.55 10250 988 

C4 benzene 134 11.30 1412 170 

C5 benzene 162 13.51 379 43 

benzene, 1-ethyl-4-methoxy- 136 13.90 1376 370 

furans 

furan, 2-methyl- 82 2.481 15300 515 

vinylfuran 94 12.78 2990 684 

furan, 2,5-dimethyl- 96 3.439 13787 487 

furan, 2-methoxy- 98 8.023 5368 934 

furan, 2,3,5-trimethyl- 110 5.727 5408 227 

cyclopentenones 

2-cyclopenten-1-one 82 15.64 25710 5519 

2-cyclopenten-1-one, 2-methyl 96 12.05 6426 1654 

2-cyclopentene-1,4-dione 96 15.13 1528 588 

2-cyclopenten-1-one, 2,3-dimethyl 110 16.71 1213 420 

lactones 
4-methyl-5H-furan-2-one 98 16.74 12601 2340 

2-furanone, 2,5-dihydro-3,5-dimethyl 112 16.19 3271 502 

phenols 

phenol 94 19.69 547040 49144 

methyl phenol 108 19.66 75519 10745 

C2 phenol 122 21.33 8457 1431 

C3 phenol 136 22.10 947 243 
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phenol, 2-methoxy- 124 18.23 717 351 

alcohols 
cyclohexanol 82 12.47 5220 459 

benzyl Alcohol 108 18.39 578 226 

heterocyclic compounds 

pyridine 79 8.752 20934 7880 

pyrazine 80 9.343 754 124 

pyridine, 3-methyl- 93 9.414 15946 3487 

pyridine, 2,3-dimethyl- 107 10.03 3494 955 

thiophene 84 4.817 3086 338 

thiazole 85 10.05 5218 1144 

thiophene, 3-methyl- 97 7.221 3260 710 

1,3-benzodioxole 121 14.43 5524 1398 

1,3-benzodioxole, 5-methyl- 135 15.46 1278 354 

benzofurane 118 14.03 8082 1374 

benzoxazole 119 15.84 7265 1125 

other compounds 

indane 117 12.01 2996 255 

naphtalene 128 16.96 2208 357 

carbamic acid, methyl ester 75 15.59 41018 15538 

cyclohexene 82 2.075 5029 189 

Total VOCs - - - 3443760 236006 
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Table S5: BC volatile and semi-volatile WSOCs by DI-SPME-GC-MS. Average NA are reported with 
standard deviation (SD), (n=3), m/z quantitation ion, r.t. retention time (min) 

   BC350 BC350 BC400 BC400 BC450 BC450 BC500 BC500 BC550 BC550 BC600 BC600 BC650 BC650 

r.t. m/z Compound  Mcounts SD Mcounts SD Mcounts SD Mcounts SD Mcounts SD Mcounts SD Mcounts SD 

14.18 46 formic acid 29 25 31 27 44 42 27 46 56 61 16 28 38 35 

13.29 60 acetic acid 1104 770 903 474 600 454 80 19 92 91 14 17 18 8.3 

15.49 60 butanoic acid 1766 1184 1190 653 1129 741 175 13 120 57 0 0 6.1 11 

15.97 60 methyl butanoic acid 407 285 237 131 217 131 45 7.5 42 3.9 0 0 0 0 

16.67 60 pentanoic acid  1262 921 1246 633 1288 853 182 17 140 33 0 0 0 0 

17.37 60 methyl pentanoic 
acid 

240 174 176 75 123 77 25 8.7 90 104 0 0 0 0 

17.95 60 hexanoic acid 1005 782 1345 509 1471 1060 191 55 551 603 22 28 12 8.7 

18.36 74 methyl hexanoic acid  43 28 82 14 73 31 9.4 9.0 19 21 0 0 0 0 

19.07 60 heptanoic acid 758 619 1133 266 761 415 59 88 224 171 0 0 0 0 

20.15 60 octanoic acid  395 320 452 62 221 167 15 27 79 107 18 25 4.4 7.7 

21.19 60 nonanoic acid 24 39 28 49 18 18 3.2 5.6 2.9 5.0 1.9 3.3 3.8 6.6 

22.33 60 decanoic acid 4.5 7.8 4.2 7.2 0 0 0 0 0 0 0 0 0 0 

24.15 60 dodecanoic acid 4.8 8.3 7.4 12.8 5.7 9.9 0 0 0 0 0 0 0 0 

14.40 74 propanoic acid 623 416 467 261 411 317 58 12 44 33 1.2 2.1 2.9 5.0 

16.23 86 2-propenoic acid, 2-
methyl- 

28 20 12 5.3 11 8.5 0.67 1.2 0 0 0 0 0 0 

17.22 86 2-butenoic acid 115 91 37 22 23 25 1.7 2.9 0 0 0 0 0 0 

18.01 100 2-butenoic acid, 3-
methyl- 

51 26 49 19 22 23 0 0 0 0 0 0 0 0 

18.30 100 2-pentenoic acid  66 54 15 6.4 0 0 0 0 0 0 0 0 0 0 

18.78 114  2-pentenoic acid, 2-
methyl- 

39 43 16 15 1.4 2.5 0.74 1.3 0 0 0 0 0 0 

19.75 68 3-heptenoic acid 34 32 10 18 0 0 0 0 0 0 0 0 0 0 

23.67 122  benzoic acid 260 225 187 28 400 300 60 74 23 40 3.2 5.6 2.3 3.9 

24.49 136 benzoic acid, 3-
methyl- 

169 92 179 67 369 213 44 76 16 27 1.4 2.4 0 0 

24.84 150 benzoic acid, 3,5-
dimethyl- 

25 24 21 26 29 25 8.4 15 2.6 4.6 0 0 0 0 

14.05 110 ethanone, 1-(2-
furanyl)- 

7.0 5.4 2.4 2.5 1.2 2.1 0.92 1.6 0 0 0 0 0 0 

12.11 96 2-cyclopenten-1-one, 
3-methyl- 

11 7.2 0 0 0 0 0 0 0 0 0 0 0 0 

14.52 110 2-cyclopenten-1-one, 
2,3-dimethyl- 

7.8 6.5 1.1 2 0.51 0.89 0 0 0 0 0 0 0 0 

13.88 124 2-cyclopenten-1-one, 
2,3,4-trimethyl- 

2.8 3.2 0 0 0 0 0 0 0 0 0 0 0 0 

13.76 96 furfural 62 45 19 21 12 21 1.0 1.8 0.67 1.2 4.6 8.0 2.2 3.8 

14.98 110 2-
furancarboxaldehyde, 

5-methyl- 

13 11 4.2 7.2 3.5 3.4 0 0 0 0 0 0 0 0 

14.26 106 benzaldehyde 50 37 27 23 15 13 0 0 0 0 0 0 0 0 

16.22 122 benzaldehyde, 2-
hydroxy- 

8.2 8.6 16 9.9 24 21 0 0 0 0 0 0 0 0 

19.70 94 phenol 86 46 84 33 148 63 61 7.9 39 21 21 17 21 14 

20.44 108 methyl phenol 11 8.5 10 4.7 11 2.2 3.0 0.93 2.3 2.9 1.8 2.3 1.8 1.6 

21.32 122 C2 phenol 6.3 7.5 6.2 3.2 6.1 3.6 1.3 0.69 1.4 2.5 0.89 1.5 0.48 0.83 

18.22 124  phenol, 2-methoxy- 17 15 4.6 5.4 5.2 4.7 3.1 3.5 0 0 0 0 0 0 

19.22 138 phenol, 2-methoxy-
4-methyl- 

5.2 5.7 3.3 4.1 3.8 4.3 2.3 2.5 0 0 0 0 0 0 
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Table S6: OL volatile and semi-volatile WSOCs by DI-SPME-GC-MS. Average NA are reported (n=2), m/z 
quantitation ion, r.t. retention time (min) 

   OL350 OL400 OL450 OL500 OL550 OL600 OL650 
m/z r.t  Compound Mcounts Mcounts Mcounts Mcounts Mcounts Mcounts Mcounts 
46 14.52 formic acid 48 63 89 41 53 57 12 
60 1.86 formic acid, methyl ester 49 45 64 20 49 50 12 
60 13.59 acetic acid  1477 1494 1893 1182 1549 1890 1186 
74 2.27 acetic acid, methyl ester 15 38 40 17 39 33 11 
74 14.79 propanoic acid  157 160 194 119 161 203 111 
88 3.02 propanoic acid, methyl ester 10 6.8 13 2.7 5.2 4.9 1.0 
72 16.20 2-propenoic acid 26 35 53 32 50 69 47 
55 3.58  2-propenoic acid, methyl ester 10 12 47 6.7 24 20 0 
69 7.60 2-butenoic acid, methyl ester,  40 36 54 27 22 21 22 

114 9.56 2-Pentenoic acid, methyl ester,  1.8 1.7 2.1 6.4 1.1 1.0 4.8 
122 15.88 benzoic acid 197 201 180 187 186 0 0 
136 15.91 benzoic acid, methyl ester 145 126 148 115 127 121 111 
166 20.27  benzoic acid, 3-methoxy-, methyl ester 116 108 144 117 71 78 35 
168 23.37 benzoic acid, 3-hydroxy-4-methoxy- 524 609 669 485 155 0 0 
148 20.14 cinnamic acid  0 0 113 522 1315 985 826 
162 24.57 4-methylcinnamic acid 96 136 199 190 174 235 164 
53 4.72  2-propenenitrile 0 0 12 6.6 16 15 18 
67 8.72 2-butenenitrile 0.91 2.0 3.5 4.3 5.5 7.1 44 
54 5.64 propanenitrile 4.2 6.4 16 15 18 17 23 

103 15.74 benzonitrile 34 78 154 190 282 332 327 
117 16.83 benzonitrile, 3-methyl- 0 55 114 110 120 102 125 
117 19.39 benzyl nitrile 0 82 0 155 190 274 277 
79 9.79 pyridine 25 28 29 70 35 0 162 
93 10.29 pyridine, 2-methyl- 3.7 6.9 13 17 13 0 73 

105 13.19 pyridine, 2-ethenyl- 0 3.3 0 0 0 14 49 
80 9.99 pyrazine 0 31 0 0 0 0 62 
94 10.90 pyrazine, methyl- 46 55 0 76 104 65 147 

107 11.94 pyrazine, ethyl- 0 0 0 20 0 0 26 
129 19.54 quinoline 48 61 79 113 123 227 233 
143 20.74 quinoline, 6-methyl- 30 45 80 109 98 122 148 
130 24.61 indole, 4-methyl- 131 147 221 233 140 230 127 
145 25.26 indole, 2,3-dimethyl- 30 33 0 97 58 103 80 
56 2.46 2-propenal 4.6 7.9 15 6.6 62 105 116 
70 5.98 2-butenal 435 414 521 407 478 377 420 
84 7.26 2-butenal, 2-methyl- 8.3 10 18 13 17 19 23 
72 2.94 2-butanone 32 42 26 23 54 47 18 

100 14.73 3-pentanone, 2-methyl- 0 0 0 41 47 49 38 
84 8.13  3-penten-2-one 28 29 36 36 54 59 71 
69 9.48 4-hexen-3-one 16 20 28 139 49 50 291 
86 4.38 2,3-butanedione 52 57 75 63 75 74 80 

100 6.57 2,3-pentanedione 25 26 34 27 31 28 34 
114 8.34 3,4-hexanedione 1.9 1.6 2.2 1.6 1.6 1.5 1.4 
74 11.59 2-propanone, 1-hydroxy- 164 173 267 139 225 280 153 
88 12.66 2-butanone, 1-hydroxy- 44 38 53 30 40 54 29 
82 12.38 2-cyclopenten-1-one 364 434 507 456 577 649 651 
96 12.52  2-cyclopenten-1-one, 2-methyl- 208 289 323 314 396 436 472 

110 14.92 2-cyclopenten-1-one, 2,3-dimethyl- 154 242 314 267 305 385 369 
124 14.31 2-cyclopenten-1-one, 2,3,4-trimethyl- 40 68 86 83 89 81 100 
98 17.63 2-cyclopenten-1-one, 2-hydroxy- 149 160 200 93 111 129 53 

112 18.26 2-cyclopenten-1-one, 2-hydroxy-3-methyl- 227 268 369 241 256 361 253 
126 18.95  2-cyclopenten-1-one, 2-hydroxy-3-ethyl- 116 133 172 105 117 123 112 
96 15.53 2-cyclopentene-1,4-dione 324 381 439 416 464 520 466 

110 18.44 2-cyclohexene-1,4-dione   282 311 96 82 265 345 86 
124 17.24 2-cyclohexen-1-one, 4,4-dimethyl- 503 460 520 407 383 417 380 
82 10.07  furan, 2-methyl- 85 51 3.6 14 12 0 0 
96 11.42 furan, 2,5-dimethyl- 21 26 33 50 134 151 187 
94 13.22 vinylfuran 67 80 89 84 111 144 189 

110 14.47 ethanone, 1-(2-furanyl)- 690 698 733 637 705 788 814 
124 15.31 1-propanone, 1-(2-furanyl)- 0 0 166 0 0 128 0 
98 16.33 2-furanmethanol 572 539 597 453 513 600 478 
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140 14.81 2-furanmethanol, acetate 65 53 56 42 43 45 32 
112 10.92 furan, 2-(methoxymethyl)- 40 29 39 26 21 20 12 
126 15.38 3-furancarboxylic acid, methyl ester 285 252 263 212 212 230 216 
96 13.96 furfural 4341 4475 4764 4415 4308 4712 4372 

110 14.36 2-furancarboxaldehyde, 5-methyl- 1249 1344 1439 1352 1360 1535 1482 
84 17.59  2(5H)-furanone 112 127 183 137 106 100 47 
84 9.29 cyclopentanone 4.7 5.8 7.6 29 6.9 0 44 
86 16.16 butyrolactone 42 43 56 35 52 69 0 

106 14.69 benzaldehyde  195 222 283 274 363 364 341 
120 15.96 benzaldehyde, 4-methyl- 80 84 115 121 155 173 139 
122 16.63 benzaldehyde, 2-hydroxy- 157 181 241 375 762 862 815 
136 17.02 benzaldehyde, 2-hydroxy-4-methyl- 62 59 85 161 345 391 236 
148 23.07  1,4-benzenedicarboxaldehyde, 2-methyl- 228 194 223 182 95 149 88 
120 16.29 acetophenone 78 178 123 150 171 208 332 
134 14.50 acetophenone, 3-methyl- 0 0 145 0 186 215 182 
121 18.04 acetophenone, 2-hydroxy- 0 0 307 314 0 0 342 
105 17.13 1-propanone, 1-phenyl- 173 176 0 0 276 311 232 
160 24.16 2H-1-benzopyran-2-one, 3-methyl- 114 108 123 104 72 121 60 
94 20.08 phenol  1713 2001 2280 2269 2400 2652 2742 

108 20.85 phenol, 4-methyl- 508 866 989 1027 1094 1350 1408 
122 21.72 phenol, 4-ethyl- 1174 1294 1550 1411 1471 1755 1693 
136 21.62 phenol, 2-ethyl-5-methyl- 385 338 535 512 613 940 707 
150 18.81 phenol, 2-ethyl-4,5-dimethyl- 71 88 0 0 312 412 239 
134 23.55 phenol, 4-(2-propenyl)- 221 207 275 267 437 674 488 
148 24.64 2-allyl-4-methylphenol 0 51 228 86 159 235 167 
124 18.62 phenol, 2-methoxy- 1940 1995 2299 1741 1234 1011 466 
138 19.63 phenol, 2-methoxy-4-methyl- 976 1129 1302 995 570 422 173 
152 20.37 phenol, 2-methoxy-4-ethyl- 1725 1719 1827 1420 816 633 227 
166 21.13 phenol, 2-methoxy-4-propyl- 250 239 306 243 98 80 18 
150 21.97 2-methoxy-4-vinylphenol 5500 5549 5781 5095 3609 3513 1236 
154 22.61  phenol, 2,6-dimethoxy- 1504 1577 1699 1280 644 505 156 
194 26.46 phenol, 2,6-dimethoxy-4-(2-propenyl)- 2346 2149 2249 1434 355 249 38 
182 23.84 5-tert-butylpyrogallol 735 700 744 515 145 117 23 
78 3.46 benzene  3.2 4.3 12 17 26 32 10 
91 5.81 toluene  71 107 252 266 241 241 153 

106 8.95 benzene, 1,4-dimethyl- 3.4 5.1 10 9.4 15 18 20 
120 10.84  benzene, 1,2,4-trimethyl- 7.3 13 28 25 23 26 14 
148 23.96 benzene, pentamethyl- 0 0 0 90 155 205 148 
104 10.51  styrene 74 75 125 111 119 94 79 
108 12.04 benzene, methoxy- 66 88 67 62 43 39 33 
122 13.47 benzene, 1-methoxy-4-methyl- 256 331 443 335 286 284 132 
136 14.55 benzene, 1-methoxy-4-ethyl- 111 119 143 108 91 93 0 
134 16.57 benzene, 1-methoxy-4-ethenyl- 859 586 750 596 465 520 190 
152 18.51 3,5-dimethoxytoluene 62 215 105 218 107 117 57 
116 14.09 indene 70 147 66 197 279 112 164 
130 15.61 2-methylindene 24 39 44 64 77 84 42 
117 12.22 indane 10 24 46 42 34 39 25 
128 17.43 naphthalene  74 92 221 382 724 1046 537 
142 18.59 naphthalene, 1-methyl- 29 48 133 203 267 340 179 
166 23.35 fluorene 0 0 0 0 60 89 37 
118 14.41 benzofuran 102 114 184 196 257 254 185 
132 15.56 benzofuran, 2-methyl- 118 158 270 221 271 312 170 
146 16.88 benzofuran, 4,7-dimethyl- 37 65 121 102 66 136 86 
144 18.47  benzofuran, 2-ethenyl- 0 0 34 0 105 149 79 
120 23.67 benzofuran, 2,3-dihydro- 7357 7138 6970 7077 5801 8223 6498 
168 22.69 dibenzofuran 0 0 0 38 49 74 35 
154 20.01 biphenyl 0 0 0 35 23 51 40 
132 20.33 1-indanone 511 620 719 677 694 938 854 
146 20.44 1-indanone-7-methyl 335 363 433 401 387 504 364 
160 21.28 1-indanone, 3,3-dimethyl- 117 120 167 160 148 219 110 
148 21.52 1-indanone-7-hydroxy 214 216 259 236 228 227 277 
144 28.77 1-naphthalenol 30 60 89 87 86 135 81 
172 28.00 1-naphthol, 6,7-dimethyl- 8 10 21 20 25 39 22 
158 26.93 1-naphthalenol, 2-methyl- 46 50 80 79 72 150 74 
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Table S7: Concentrations of VFA in biochar and bio-oil WSOCs. Values are expressed as µg/g biochar, with 
SD (n=3), m/z quantitation ion, r.t. retention time (min) 

 BIOCHAR WSOCs 

 BC350 BC400 BC450 BC500 BC550 BC600 BC650 

 (µg/g) SD  (µg/g) SD (µg/g) SD (µg/g) SD (µg/g) SD (µg/g) SD (µg/g) SD 

acetic acid 2459 173 1973 564 1135 601 208 16 196 129 20 15 33 12 

propanoic acid 439 92 312 82 243 167 47 11 31 12 0.40 0.69 1.8 3.2 

butanoic acid 189 30 122 26 104 51 23 7.4 13 2.6 0 0 0.59 1.0 

methyl butanoic 
acid 

35 5.4 20 4.5 17 6.9 4.8 2.0 4.4 1.9 0 0 0 0 

pentanoic acid 46 5.5 45 7.9 41 13 8.0 2.1 5.7 0.86 0 0 0 0 

 BIO-OIL WSOCs 

 OL350 OL400 OL450 OL500 OL550 OL600 OL650 

 (µg/g) SD  (µg/g) SD (µg/g) SD (µg/g) SD (µg/g) SD (µg/g) SD (µg/g) SD 

acetic acid 7065 773 8089 95 7931 2151 6434 484 7200 312 6683 2016 5314 343 

propanoic acid 211 30 256 8.9 237 57 187 18 233 36 204 63 151 3.9 

butanoic acid 8.9 0.84 12 2.4 11 2.2 9.5 1.71 13 3.80 13 3.3 11 0.39 

 

 

Table S8: Main classes of compounds identified in OL WSOCs by ESI(-)FT-ICR-MS. The number of peaks 
assigned with a molecular formula are reported with their percent abundance relative to all the peaks in the 

mass spectra (%R.A.) 

 

 

 

 

 

 

 

Table S9: Average errors (ppb) in the molecular formula assignment of the compound classes identified in 
OL WSOCs by ESI(-)FT-ICR-MS.  

Group OL350 OL400 OL450 OL500 OL550 OL600 OL650 

Ox 8 5 12 17 19 11 4 

NxOy 7 3 8 7 9 3 4 

OxSy 3 0.2 5 1 3 1 5 

NxOySz 3 9 9 11 8 15 5 

Ox13Cy 8 5 10 11 11 7 1 

NxOy13Cz 10 3 11 5 4 1 6 

OxSy13Cz 11 0.5 18 0 6 23 7 

 

 

 

 

 OL350 OL400 OL450 OL500 OL550 OL600 OL650 

Group N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

Ox 1133 55 1004 40 1027 53 1012 45 1026 45 932 37 917 36 

NxOy 1210 11 1288 12 1452 19 1548 19 1733 26 1775 28 1947 35 

OxSy 130 1.1 100 0.79 147 1.2 109 1.5 184 2.6 115 0.91 118 1.1 

NxOySz 68 0.27 120 0.47 97 0.38 92 0.34 140 0.47 164 0.59 179 0.69 

Isotopic 
peaks 

726 8 674 6 748 8 711 7 815 8 722 6.999 764 7 

Total 
identified 

3267 76 3186 60 3471 81 3472 73 3898 83 3708 74 3925 80 
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Table S10: Main classes of compounds identified in BC WSOCs by ESI(-)FT-ICR-MS and percent 

abundance relative to all the peaks in the mass spectra (%R.A.) 

 

 

Table S11: Average errors (ppb) in the molecular formula assignment of the compound classes identified in 

BC WSOC with ESI(-)FT-ICR-MS 

Group BC350 BC400 BC450 BC500 BC550 BC600 BC650 

Ox 0.3 1 6 5 7 1 10 

NxOy 3 5 6 23 8 14 n.d 

OxSy 9 7 12 5 23 6 9 

Ox13Cy 1 1 22 1 1 5 1 

NxOy13Cz 4 17 24 n.d n.d 4 n.d 

 

 

 

 

 

 

Biochar BC350 BC400 BC450 BC500 BC550 BC600 BC650 

Group N° 
Peaks 

% 
R.A 

N° 
Peaks 

% R.A N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

N° 
Peaks 

% 
R.A 

Ox 993 13 924 12 161 1.8 122 2.5 2 2 106 1.3 30 0.20 

NxOy 874 5.6 511 2.4 17 0.92 5 0.046 11 0.44 17 0.59 n.d n.d 

OxSy 33 0.17 8 0.051 14 0.29 12 0.37 8 0.18 9 0.14 4 0.051 

Isotopic 
peaks 

307 1.7 276 1.4 22 0.39 42 0.49 27 0.30 32 0.32 6.0 0.023 

Total 
identified 

2207 21 1719 16 214 3 181 3 150 3 164 2 40 0.28 
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Table S12: Score loading results for 4 component PARAFAC modelling of BC and OL WSOCs, and standard 
solutions. Average values are reported with standard deviations (SD), (n=2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples C1 C2 C3 C4 TOTAL INTENSITY 

Loading 
(x106) 

SD Loading 
(x106) 

SD Loading 
(x106) 

SD Loading 
(x106) 

SD Loading 
(x106) 

SD 

Bio-oils WSOCs 

OL350 28903 313 20966 6169 40251 4021 8787 4894 98907 2433 

OL400 32086 1927 25097 8559 29622 1512 8864 4500 95669 4473 

OL450 33899 562 26113 7833 28621 2706 12726 6894 101358 1206 

OL500 39262 3995 28352 5244 26515 5610 11507 7343 105637 11703 

OL550 40978 3690 25810 5076 25426 5081 13705 8598 105920 12293 

OL600 40839 3887 27136 5200 24287 4980 13811 8718 106073 12385 

OL650 37431 1552 23368 7573 24009 1663 14733 7620 99541 157 

Biochar WSOCs 

BC350 2261 98 1831 595 282 20 4.5 6 4378 666 

BC400 3744 162 3031 985 467 34 7.5 10 7250 1103 

BC450 3405 593 1374 157 263 76 4.8 0.17 5047 511 

BC500 1393 82 373 85 47 8.5 2.3 0.36 1815 5.7 

BC550 908 269 157 1.9 20 8.6 4.7 6.6 1089 286 

BC600 50 20 10 6.4 0.36 0.085 0.59 0.02 60 26 

BC650 33 26 5.9 5.8 0.090 0.13 0.76 0.18 39 32 

Standard solutions  

16 EPA 
PAHs 

138 138 52 43 97 102 98 119 385 403 

IHSS 
fulvic acid 

2908 1433 7231 5243 45 16 133 2.0 10316 6690 

o-cresol 143 202 41 59 1471 2080 61100 14022 62755 16363 

o-eugenol 11 4.3 14 8.9 166 45 369 74 560 16 
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Table S13:Mobile compounds ALT, AHT and PYR biochars. Normalised area (NA) of Water Soluble 
Organic Compounds (WSOC) sorted by functional groups were reported (triplicate analysis) with standard 
deviation (SD), retention time (r.t) and characteristic ions (m/z). VOCs directly released from biochars were 
qualitatively investigated at 25 °C (‘V’ = detected, ‘-‘= not detected). 

r.t. m/z compound ALT  AHT  PYR 

Average SD VOC 
150°C 

VOC 
25°C 

Average SD VOC 
150°C 

VOC 
25°C 

Average SD VOC 
150°C 

VOC 
25°C 

1.86 72 2-butanone  142 27 V - 691 219 V V 4.1 1.9 V - 
4.48 84 2-butenal, 2-methyl- 34 16 V - 46 12 V - - - - - 
2.77 86 2-pentanone 14 4.7 V - 118 31 V V - - V - 
4.21 100 2-hexanone - - - - 15 2.6 V - - - - - 
5.81 114 2-hexanone, 5-methyl- 4.6 1.6 V - 4.9 0.8 V - - - - - 
6.73 128 2-heptanone, 6-methyl- 2.2 0.93 V - 4.4 0.69 V - - - - - 
8.65 126 5-hepten-2-one, 6-methyl- 19 10 V - - - - - - - - - 
9.51 142  2-nonanone 17 18 V - - - V - - - - - 
11.16 96 furfural 1487 595 V V 254 72 V V 0.87 0.76 - - 
11.89 110 ethanone, 1-(2-furanyl)- 36 12 V V 34 10 V V - - - - 
12.30 140  2-furanmethanol, acetate 15 7.2 V V - - - - - - - - 
13.09 110 2-furancarboxaldehyde, 5-methyl- 567 223 V V 73 22 V V - - - - 
9.37 96  2-cyclopenten-1-one, 2-methyl- - - - - 39 13 V V - - - - 
12.45 110 2-cyclopenten-1-one, 2,3-

dimethyl- 
- - - - 24 7.0 V - - - - - 

11.59 124 2-cyclopenten-1-one, 2,3,4-
trimethyl- 

- - - - 8.2 2.5 - - - - - - 

12.11 106 benzaldehyde 2956 1487 V V 2186 537 V V - - V - 
13.73 120 benzaldehyde, 2-methyl- 73 37 V V 15 5.0 V V - - - - 
15.76 134 benzaldehyde, 4-ethyl- 18 10 V V - - - - - - - - 
14.81 122 benzaldehyde, 2-hydroxy- 35 18 V V 8.4 2.6 V - - - - - 
26.89 152 benzaldehyde, 3-hydroxy-4-

methoxy- 
33 9.2 - - - - - - - - - - 

14.33 120 acetophenone 158 70 V V 72 20 V V - - - - 
16.36 134 acetophenone, 4-methyl- 42 18 V V - - - - - - - - 

    aldehydes and ketones 5652 2528     3592 954     4.9 2.7     

19.69 94 phenol 129 30 V V 444 136 V V 1.2 0.52 V - 
20.76 108 methyl phenol  68 22 V V 388 122 V V 1.8 1.4 V - 
22.00 122 phenol, 4-ethyl- 20 7.0 V - 37 13 V V - - - - 
21.43 136 phenol, 3-ethyl-5-methyl- - - V - 6.1 1.8 V - - - - - 
17.62 124 phenol, 2-methoxy- 26 8.4 V - 51 17 V V - - - - 
19.02 138 phenol, 4-methoxy-3-methyl- 20 7.6 V - 35 12 V V - - - - 
20.05 152 phenol, 4-ethyl-2-methoxy- - - V - 16 5.0 V - - - - - 
42.05 110 1,4-benzenediol - - - - - - V - - - - - 
42.45 124 1,4-benzenediol, 2-methyl- - - - - - - V - - - - - 

    phenols 263 75     977 306     3.0 1.9     

11.11 60 acetic acid  169 88 V V 56 46 V V 6.5 7.6 V V 

12.39 74 propanoic acid  36 10 V V 28 12 V V - - - - 
13.85 60 butanoic acid  84 14 V V 45 14 V V - - - - 
14.50 60 butanoic acid, 2-methyl- 106 13 V V 75 26 V V - - - - 
16.23 86 2-butenoic acid 33 1.6 V - 14 11 V - - - - - 
15.61 60 pentanoic acid  49 7.2 V V 49 16 V V - - - - 
16.61 60 pentanoic acid, 4-methyl- 23 3.0 V - 19 6.6 - - - - - - 
17.25 60 hexanoic acid  198 34 V - 107 36 V - - - - - 
18.83 60 heptanoic acid 123 25 V - 115 41 V - - - - - 
20.33 60 octanoic acid 522 178 V - 176 60 V - - - - - 
21.77 60 nonanoic acid 198 82 V - 89 29 V - - - - - 
23.15 60 decanoic acid 496 262 V - 35 10 - - - - - - 
23.85 60 undecanoic acid  69 35 V - 4.3 0.54 - - - - - - 
25.72 60 dodecanoic acid  142 87 V - 8.8 1.6 - - - - - - 
37.39 60 tetradecanoic acid  - - V - - - - - - - - - 
38.21 60 pentadecanoic acid  - - V - - - - - - - - - 
40.49 60 hexadecanoic acid  - - V - - - - - - - - - 
25.18 122 benzenecarboxylic acid 38 3.6 V - 47 19 V - - - - - 
26.58 136 benzeneacetic acid 15 4.0 V - - - - - - - - - 
27.39 150 benzenepropanoic acid 150 46 V - 15 6.6 V - - - - - 

    organic acids 2451 884     882 315     6.5 7.6     

0.98 76 carbon disulfide - - V V - - V V - - - - 
4.07 94  disulfide, dimethyl 46 24 V - - - - - - - - - 
4.74 97 thiophene, 2-methyl- 11 5.1 V - 8.4 1.6 V V - - - - 
10.27 114  thiophene, 3-methoxy- 4.7 2.5 V V - - - - - - - - 
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17.81 140 2-acetyl-5-methylthiophene 38 17 V - - - V - - - - - 
15.08 111  2-thiophenecarboxaldehyde 141 58 V V 29 8.2 V V - - - - 
16.66 125 3-methyl-2-

thiophenecarboxaldehyde 
455 220 V V 14 3.9 V - - - - - 

6.66 73 thiocyanic acid, methyl ester 9.0 4.0 V - 18 5.3 - - - - - - 
7.32 85 thiazole 28 8.2 - - 25 7.3 - - - - - - 
7.09 99 thiazole, 2-methyl- 42 13 V V 35 9.3 - - - - - - 
8.53 113 thiazole, 2,5-dimethyl- 20 10 V V 18 4.8 V - - - - - 
9.61 127 thiazole, 2,4,5-trimethyl- 12 4.8 - - 6.2 1.4 V - - - - - 
10.56 141 thiazole, 5-ethyl-2,4-dimethyl- 10 3.8 - - - - - - - - - - 
14.27 127  2-acetylthiazole - - - - 4.3 1.3 V - - - - - 

    organosulfur compounds 816 368     159 43     0 0     

7.76 94 pyrazine, methyl- 126 49 V V 38 8.9 V V - - - - 
8.79 108 pyrazine, 2,3-dimethyl- 88 17 V - 43 11 V - - - - - 
9.80 121  pyrazine, 2-ethyl-6-methyl- 27 5.4 V - 25 8.5 V - - - - - 
10.70 136 pyrazine, 3-ethyl-2,5-dimethyl- 12 4.1 V - - - - - - - - - 
25.43 117 indole 15 5.8 V - 10 3.4 V - - - - - 
25.98 130 indole, 2-methyl- 10 3.7 V - 15 4.4 V - - - - - 
4.89 43  butanenitrile, 3-methyl- 22 5.3 - - 180 58 - - - - - - 
4.24 55 butanenitrile, 2-methyl- - - - - 168 57 - - - - - - 
6.60 81 3-butenenitrile, 3-methyl- - - - - 15 3.3 - - - - - - 
6.83 55 pentanenitrile, 4-methyl- 5.1 2.3 - - 207 51 - - - - - - 
7.91 96 hexanenitrile - - - - 3.6 0.78 - - - - - - 
9.86 82 heptanonitrile - - - - 9.0 1.5 - - - - - - 
13.52 103 benzonitrile 179 89 V V 63 14 V V - - - - 
18.63 117 benzyl nitrile 95 41 V V 97 27 V V - - - - 
20.23 131 benzenepropanenitrile 11 4.6 V - 87 29 V V - - - - 
23.51 128  1,2-benzenedicarbonitrile - - - - 7.1 2.6 V - - - - - 
9.71 93 2-furancarbonitrile 37 19 V V 13 3.1 V V - - - - 
26.10 92 1H-pyrrole-2-carbonitrile 20 5.3 V - 39 13 V - - - - - 
20.01 95 1H-pyrrole-2-carboxaldehyde 393 91 V V - - V - - - - - 
21.13 109 1H-pyrrole-2-carboxaldehyde, 1-

methyl- 
203 59 V V - - - - - - - - 

16.74 123  2-formyl-4,5-dimethyl-pyrrole 37 14 V - - - - - - - - - 
19.25 109 ethanone, 1-(1H-pyrrol-2-yl)- 79 21 V V - - V V - - - - 
21.30 45 formamide - - - - - - V V - - - - 
21.05 59 acetamide - - V V - - V V - - - - 
21.81 73 propanamide - - - - - - V V - - - - 
10.54 73 formamide, N,N-dimethyl- - - V V - - V V - - - - 
18.08 73 acetamide, N-methyl- - - V - - - V V - - - - 
12.54 87 acetamide, N,N-dimethyl- - - V V - - V V - - - - 
18.80 87 propanamide, N-methyl- - - - - - - V V - - - - 

    nitrogen containing compounds 1360 426   1036 299     0 0     

2.22 78 benzene 9.2 3.9 V - 9.3 2.6 V V - - V - 
3.58 91 toluene 13 5.0 V - 106 15 V V - - V - 
4.97 91 benzene, ethyl  4.9 1.6 V V 3.0 0.69 V V - - V - 
7.32 91 benzene, propyl- - - V V - - V V - - - - 
9.24 120 benzene, trimethyl - - - - - - - - - - V - 
9.85 91  benzene, butyl- - - V V - - V V - - - - 
12.38 91 benzene, pentyl- - - V V - - V V - - - - 
14.96 91 benzene, hexyl- - - V V - - V V - - - - 
17.43 91 benzene, heptyl- - - V - - - V - - - - - 
19.84 91  benzene, octyl- - - V - - - V - - - - - 
11.29 117 indane - - - - - - - - - - V - 

    monoaromatic hydrocarbons 27 10     119 17     0 0     

20.11 128 naphthalene - - V V - - V V - - - - 
23.25 142 naphthalene, methyl  - - V V - - V V - - - - 
24.81 156 naphthalene, dimethyl- - - V - - - V - - - - - 
27.68 170 naphthalene,trimethyl- - - V - - - V - - - - - 

    LMW PAHs 0 0     0 0     0 0     

16.73 160 benzene, 1,3-dichloro-5-methyl- - - - - - - V V - - - - 
22.05 194 benzene, 1,2,4-trichloro-3-methyl- - - - - - - V V - - - - 

    chlorobenzenes                         

  total 10569 4282   6764 1921   14 12   
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