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A B S T R A C T

Salt crystallisation can induce high stresses in the micro-
structure of building materials constituting historic build-
ings and monuments.

This dissertation combines numerical methods at differ-
ent scales to model and analyse the mechanical effects in-
duced by salt crystallisation in porous building materials.
Two different scales are considered: the macro-scale, in which
the porous building material is seen as a homogeneous con-
tinuum, and the micro-scale, being the scale in which can
be distinguished the material matrix and the pores.

Regarding the macro-scale, a new Hygro-Thermo-Chemical
(HTC) model is presented. A suitable modelling of the crys-
tallisation/dissolution and hydration/dehydration processes
allows considering salts with multiple crystallised forms in-
volving hydrous and anhydrous crystals. The HTC model
presented is specialised for sodium sulphate solutions and
sodium chloride solutions. The predictive capabilities of the
model are validated on some experiments available in the
literature, involving fired-clay bricks. Moreover, an enriched
version of the HTC model is presented in order to describe
different drying kinetics, taking into account the kind of ef-
florescence formation. The validation is performed through
two different extensive campaigns on drying of Prague sand-
stone in presence of sodium chloride salt solution. The HTC

modelling results show a good agreement with the experi-
mental data, proving the effectiveness of the proposed model.

Concerning the micro-scale, a micro-mechanical model is
developed on the base of the real 3D micro geometry of a
porous material, coming from X-ray Micro Computed To-
mography (X-ray µCT) images. The micro-mechanical model
is obtained by automatically converting the images into a
finite element mesh. Some hypotheses on the loading con-
dition of the micro-mechanical model, accounting for dif-
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ferent crystallisation physics, are introduced. Moreover, a
procedure to obtain a simplified micro-mechanical model
of a porous material is conceived to define the most suit-
able micro simplified geometry representing the real mate-
rial. As case study, the proposed approaches are applied
to the Prague sandstone. Moreover, it is shown that the
micro-mechanical loading scheme adopted influences the
macro-scale mechanical effects and that some approaches
commonly used in the literature for their evaluation can
lead to their underestimation.

In order to establish a link between the micro and the
macro scales, a multi-scale approach, based on numerical
homogenisation, is presented. It allows to predict the ef-
fects of salt crystallisation occurring at the scale of the struc-
ture. Finally, the results of the proposed approach are in-
corporated in a Hygro-Thermo-Chemo-Mechanical (HTCM)
model, which combines hygro-thermo-chemical aspects and
the mechanical ones, to perform a structural computation
with environmental and mechanical loadings to forecast the
most probable damage scenarios.

These results about the modelling and the analysis of the
mechanical effect of salt crystallisation in porous media at
two different scale aim at shedding some light on the still
open issue of the relationship between the crystallisation
physics and its mechanical effects on porous building mate-
rials.
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A kg/m2/s1/2 water adsorption coefficient
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Bπα - partial Biot’s tensor

b - Biot’s coefficient
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Dl s liquid conductivity of pure water

Ds m2/s diffusion coefficient of a salt free so-
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Dv m2/s vapour permeability coefficient

Dairv m2/s vapour permeability coefficient for
the dry air
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E(X) Pa macroscopic strain

Eai J/mol activation energy of the i-th crystal-
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Heva J/kg latent heat of evaporation
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sentative elementary volume
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Mπ
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Ml
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n m−3 total amount of nuclei per unit vol-
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t s time
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α(X) K-1 thermal expansion tensor of the
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α0 - threshold value at which the disso-
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βπα J/kg/K specific heat capacity of α in π-
phase

βeff J/kg/K effective specific heat capacity of
the porous medium
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φeff m3/m3 effective porosity

γ - mean activity coefficient of the dis-
solved salt
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µ
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I N T R O D U C T I O N

Motivation
Centuries of masonry construction have left a wide heritage
of historic buildings and monuments, which are often of
extraordinary architecture and design. Their structures are
usually made of of masonry constituted by bricks or natu-
ral stones and mortar, i. e. porous building materials. During
their lifetime, they are subjected to different types of load-
ing, e. g. static service loads and cyclic mechanical loadings,
like earthquakes and vibrations. In addition to these loads,
historic buildings are subjected to chemical degradation pro-
cesses. They can be considered as loadings causing a reduc-
tion in mechanical properties and affecting the durability of
the constituting material. They usually are not considered
because their influence can be seen in the long period, but
they become important when dealing with historic struc-
tures exposed to aggressive environments. Understanding
the deterioration processes in a unified framework, involv-
ing not only mechanical causes but also the environmental
ones inducing mechanical effects, is necessary to conserve
these structures. Among factors of degradation in porous
building materials, heat, moisture and salt transport com-
bined with salt crystallisation strongly influence the dura-
bility of structural systems like masonry.
In particular, salts inside masonry structures – like sodium
chloride (NaCl) and sodium sulfate (Na2SO4) – can be nat-
urally present or absorbed from the atmosphere or ground-
water during the life of the structure. Indeed, the source of
salt may be one or a combination of the following (Abu Bakar
et al., 2009): (1) saline soils and groundwater, (2) sea spray,
(3) air-borne salt, (4) air pollutants, (5) animal excretion,
micro-organism, leaking sewers, (6) salt naturally occurring
in the stone, brick clay or mortar sand (7) salt water used
for puddling brick clay or mixing mortar, (8) salts used for

1



2 introduction

de-icing roads in cold climates, (9) inappropriate cleaning
compounds. Water and dissolved salt ions can penetrate
into building materials through the porous matrix and ex-
isting cracks. Due to water evaporation or a temperature
change, the supersaturation ratio – i. e. the rate between
salt concentration in the pore saline solution and the one
at saturation – increases; when the concentration exceeds
the saturation threshold, salts can precipitate in different
forms depending on the local hygro-thermal conditions. If
the salts precipitate on the outer surface of the material ef-
florescences may appear, if the salts precipitate beneath the
surface sub-florescences or crypto-florescences will be gen-
erated (Rodriguez-Navarro and Doehne, 1999). Several ex-
perimental evidences demonstrate that growing crystal can
exert a pressure, generated by solution supersaturation and
interfacial energies. Indeed, salt crystallisation induces high
stresses in the material micro-structure enhancing the dam-
age process and for this reason is recognized as one of the
major factors of degradation in porous building materials.
In the worst cases, these processes can cause complete struc-
tural disintegration of the material, leading to structural
problems and there is compelling evidence that its influence
will increase due to the global climate change and human
impacts (Goudies and Viles, 1997; Wüst and McLane, 2000).

Therefore, to conserve these structures the challenge for
structural engineers is to understand how salt crystallisa-
tion affect the structural integrity of historic structures made
of porous building materials. The physical mechanisms gov-
erning salt related problems in porous building materials
are: the diffusion – i. e. salt and moisture transport – the
chemistry of crystallisation, the thermodynamics and the
mechanics of material, including the damage induced by
salt crystallisation. This physical phenomenon is affected
by the salt in solution and the material micro-structure. It
is evident that it involves different scales: the macro-scale,
in which the porous building material is seen as a homoge-
neous continuum, and the micro-scale, being the character-
istic scale of the microporomechanics in which can be dis-
tinguished the material matrix and the pores. Indeed, salt
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transport and crystallisation phenomena are influenced by
the geometry at the micro-scale but their effects – e. g. efflo-
rescences, subflorescences, material pulverization, blistering
– can be seen at the macro-scale and, sometimes, at the scale
of the building, as depicted in Figure 1.1.

Despite many efforts, to date the kinetics of in-pore crys-
tallisation is not completely understood (Espinosa-Marzal
and Scherer, 2010a). Moreover, we are still facing with sev-
eral open issues (Espinosa-Marzal and Scherer, 2010b; Scherer
et al., 2001), concerning where nucleation and crystal growth
take place within a pore network; what is the effect of pore
site distribution on stress; under what conditions salt crys-
tallisation leads to crack and failure of the material.

The modelling of these phenomena is necessary to fore-
cast the most probably damage scenarios in the long term.
However, the prediction of mechanical effects induced by
salt crystallisation is still a challenge, since the process in-
volves several physics. Moreover, an accurate modelling of
such phenomenon, ranging from the hygro-thermal behaviour
to mechanical issues, should include the effects of the ma-
terial micro-structure. Indeed, almost all materials possess
heterogeneous structures at a certain scale of observation:
in particular, as it is well-known, porous building materi-
als can be modelled as a composite material constituted by
the microstructural matrix and voids. Understanding the be-
haviour of such media is not an easy task as their physi-
cal properties depend entirely on their underlying micro-
structures which may differ in morphology, porosity and
properties of the material matrix. The complexity of the
micro-structural behaviour is further pronounced by incor-
porating the presence inside the voids of different species in
different phases, like in the case under discussion, or dam-
age, caused by local fractures of the matrix, when the stress
in the material matrix exceeds the material strength. There-
fore, the prediction of the mechanical response of porous
materials requires appropriate methods, able to link the mi-
cro and the macro-scale, taking into account the influence
of geometry and the behaviour of the material at the micro-
scale. This is necessary because conducting experiments on
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(a) (b)

(c) (d)

(e)

Figure 1.1: Example of efflorescences and subflorescences devel-
oped in ten years on a building due to capillary ris-
ing of groundwater in winter: (a)-(d) Details of plaster
bulges; (e) Overview of plaster bulges and marks of
previous level of efflorescences.
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a large number of porous building materials with differ-
ent physical and geometrical properties is nearly impossi-
ble from time and cost point of views. Also, performing a
direct numerical simulation of the entire body including the
whole real micro-geometry leads to a huge problem whose
solution is computationally expensive and demands high
memory storage requirements, which cannot be fulfilled for
common engineering applications.

Objectives and
ContributionsThe scope of this dissertation is to give some contribu-

tions on the modelling and analysis of mechanical effects
induced by salt crystallisation in porous building materials
employing a two-scale approach, in order to better under-
stand the relationship between the crystallisation physics
and its mechanical effects. Much has been written on trans-
port processes of salts and higro-thermal behaviour of struc-
tures. Therefore this thesis is focused on the mechanical ef-
fects due to salt crystallisation. To do so it is very important
to understand the physics of the problem and the contribu-
tion already made in the literature to be able to develop an
appropriate mechanical model. To date, all contributions in
the literature are limited to make a rough estimate of the
stress induced at the macro-scale by salt crystallisation and
to compare it with a tensile sigma saying that the failure is
reached. The objective is to go further with a more sophisti-
cated mechanical approach that takes into account the real
micro-structure of the material and the distribution of the
crystallisation pressure.

To this aim, the coupled multiphase model for the hygro-
thermal analysis of hystoric masonry, presented in Castel-
lazzi et al. (2013a) is improved and extended, in order to de-
velop a general framework to include the crystallisation/dis-
solution and the hydration/dehydration processes of salts
with N crystallised forms. In the proposed model thermal
effects are fully considered. In particular, the dependency
on temperature of sorption/desorption curves as well as
of other material parameters, neglected in Castellazzi et al.
(2013a), are taken into account. In addition, it is specialised
for the most common and destructive salts: sodium chloride
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and sodium sulfate. It is also enriched to describe different
drying kinetics and take into account diverse efflorescence
formations. This HTC model and its validation constitutes
the first part of the dissertation and it is the first step to
proceed in the modelling and analysis of mechanical effects
induced by salt crystallisation.

The second part of the dissertation focuses on modelling
of mechanical effects employing a two-scale approach, in
order to take into account the micro-mechanical features
of the real porous media. Indeed, advanced experimental
techniques, like X-ray µCT, allow to obtain images of the real
micro structure of materials. These experimental techniques
combined with finite element analysis open new scenarios
on the possibility to simulate the local stress in the mate-
rial micro-structures and to upscale it at the scale of the
structure, allowing to refine macroscopic relations, which
estimate the mechanical effect induced by salt crystallisa-
tion in the material matrix. In particular, this analysis is
pursued proposing a multi-scale approach, based on nu-
merical homogenisation, which exploit the geometry of the
porous material at the micro-scale. The input data of the
proposed multi-scale approach are (i) the macro-scale distri-
bution of the crystallised salt or, equivalently, its saturation
degree and (ii) the real 3D geometry of the porous mate-
rial at the micro-scale. The former is the output of the HTC

model, which is developed and validated in the first part of
the dissertation. As regards the real 3D micro-geometry, in
this dissertation, we refer to images coming from X-ray µCT

of the porous material. In particular, inspired by the ap-
proach recently proposed in Castellazzi et al. (2015a, 2017),
we developed a procedure that enables the automatic trans-
formation of the X-ray µCT images into a three-dimensional
finite element mesh. This constitutes the basis of the micro-
mechanical finite element model used to perform the nu-
merical homogenisation. On this regards, the challenge is
to translate the physics of crystallisation in a mechanical in-
teraction between the phases filling the pores and the ma-
terial matrix, at the scale of the material micro-structure.
Thus, some hypotheses on the loading scheme of the micro-



introduction 7

mechanical model, based on the knowledge of crystallisa-
tion physics, are made and their effects in terms of mechan-
ical response at the macro-scale are compared. Moreover, a
procedure to obtain a simplified micro-mechanical model
of a porous material is conceived to define the most suit-
able micro simplified geometry representing the real ma-
terial. In the third part of the dissertation results deriving
from the proposed numerical procedure are incorporated
in a structural computation with environmental-mechanical
loadings to forecast the most probable damage scenarios.
In particular, a Hygro-Thermo-Chemo-Mechanical (HTCM)
model, combining hygro, thermal, chemical aspects and the
mechanical ones, is proposed and further specialised for
sodium chloride solutions. The model considers an elas-
tic porous material, isotropic at the macroscopic scale and
described by the simplified micro-mechanical model devel-
oped in the second part of the dissertation.

Outline of the
dissertationThe dissertation is organized as follows. It consists in

three parts and it starts with a concise state of the art in
Chapter 2. In the first part the Hygro-Thermo-Chemical as-
pects are investigated. In Chapter 3 a new fully coupled mul-
tiphase model for hygro-thermal analysis and prediction of
salt diffusion and crystallisation in porous building mate-
rials – called briefly HTC model – is presented. The model
is specialised for sodium sulphate solutions – Chapter 4 –
and for sodium chloride solutions in Chapter 5. Chapter 6

treats the extension of the HTC model to describe the drying
kinetics leading to different efflorescence formations and its
validation through two distinct extensive campaigns on dry-
ing in presence of NaCl salt solution.

In the second part of the dissertation a multi-scale ap-
proach for the analysis of mechanical effects induced by
salt crystallisation in porous media, based on numerical ho-
mogenisation, is presented. Chapter 7 gives some details
about the homogenisation approach adopted.
Chapter 8 deals with porous media saturated with one species:
a general procedure to find the size of a porous medium
Representative Elementary Volume (REV) and to compute
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the Biot’s tensor, starting from a X-ray Micro Computed
Tomography (X-ray µCT) dataset, is presented. On the other
hand, Chapter 9 is devoted to the development of a pro-
cedure to obtain a simplified micro-mechanical model of
a porous material. Porous media saturated with multiple
species are treated in Chapter 10. In particular, a multi-scale
approach for the analysis of mechanical effects induced by
salt crystallisation in porous media is presented.

In the last part of the dissertation – Chapter 11 – a Hygro-
Thermo-Chemo-Mechanical (HTCM) model, combining hygro-
thermal-chemical aspects and the mechanical ones, is devel-
oped. In the final Chapter 12, the conclusions of the work
are formulated, and an outlook for future developments is
given.



2
S TAT E O F T H E A RT

In this dissertation, the modelling and analysis of mechani-
cal effects induced by salt crystallisation in porous building
materials is investigated employing a two-scale approach.
As outlined, the growth and dissolution of salt crystals is
sensitive to temperature and relative humidity changes. There-
fore, the study of this problem can be subdivided in three
main steps:

1. the development of a general Hygro-Thermo-Chemical
(HTC) model which is able to predict how much salt
precipitates, where it crystallises and in which condi-
tions for different types of salt;

2. the development of a micro-mechanical model which
is able to model the mechanical effect induced by salt
crystallisation and a strategy which is able to link the
micro-macro scale;

3. the development of a HTCM model able to include both
HTC aspects and the mechanical ones.

In this Chapter an overview of the state of the art to date is
given.

2.1 salt transport and crystallisation : from

experimental evidences to the modelling

The action of salts on weathering of porous media and the
physics of crystallisation are widely treated in the literature:
however, to date, they remain incompletely understood. Ex-
perimental studies, at different scales, help to understand
these complex processes: they are necessary either to de-
velop a model of the physical phenomenon or to provide
input data and to validate numerical codes.

9
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In this Section a concise state of the art to date on all
Hygro-Thermo-Chemical aspects will be given both from
the experimental and the modelling side. In particular, the
background on the physics of crystallisation will be pre-
sented. Nevertheless, it is worth noting that to date some
open questions about crystallisation physics remain unan-
swered.

2.1.1 Crystallisation dynamics

With the variation of climatic conditions such as relative hu-
midity, temperature or rain followed by drying, the salts
present in porous media crystallise because of the pore so-
lution supersaturation, either in the form of efflorescence
(at the surface) or subflorescence (within the pore network)
(Rodriguez-Navarro and Doehne, 1999). Moreover, some salts
– e. g. sodium sulfate (Na2SO4) – have different crystallised
forms (Steiger and Asmussen, 2008); in particular, they can
precipitate in two kind of forms: hydrate, if some water
molecules are included in the crystal (e. g. mirabilite Na2SO4

· 10H2O) or anhydrous, if no water molecule is included in
the crystal (e. g. thenardite Na2SO4). Once crystallised, salts
can re-dissolve in two different ways: by contact with liquid
water (dissolution) or by contact with water vapour (deli-
quescence). The latter is due to the hygroscopic properties
of salts. For example, the fog can enhance the deliquescence
process, while the rain the dissolution one. The resulting
salt solution is then mobilized in the porous network and
salt subsequently re-crystallises on drying or under certain
temperature conditions. Depending on whether the salt re-
precipitation occurs directly from an homogeneous solution
or from pre-existing crystallites present in the solution, dif-
ferent growth rates and crystallisation patterns can result. It
is proven that the presence of salt changes the internal struc-
ture of a porous material (Lubelli et al., 2006) and pore size
distribution (Koniorczyk and Gawin, 2008; Koniorczyk et al.,
2016), affecting the properties of both solid skeleton and liq-
uid phase, e. g. sorption isotherms, solution density, and dy-
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namic viscosity (Koniorczyk and Wojciechowski, 2009; Ma-
jid Hassanizadeh and Leijnse, 1995).

The effect of the crystal growth on the drying behaviour
of porous media with NaCl solution has been recently exper-
imentally investigated in sandstone (Desarnaud et al., 2015),
and in fired clay bricks (Eloukabi et al., 2013; Gupta et al.,
2014). In all the cases, it has been noted that the formation
of salt crystal on the external surface deeply influences the
evaporation.

The most recent complete experimental study on the crys-
tallisation dynamics is reported in Desarnaud et al. (2015). It
is conducted in the frame of the JPI-JHEP European Project
KIDADAMA (de Miranda et al., 2013), aiming at studying
the Kinetic of Salt Crystallization and Mechanical Damage
in Historic Masonry. This study sheds some light on crys-
tallisation dynamics at different scales and can be useful to
develop or validate numerical models that predict salt dam-
age risks in building materials. In this study, the authors per-
form a multi-scale study on the behaviour of sodium chlo-
ride contaminated sandstones, exposed to different Relative
Humidity (RH) conditions, roughly representative of win-
ter and summer ones. Sodium chloride is chosen because
its solubility is only weakly temperature dependent, so that
the main driving forces for (re-)crystallisation are RH varia-
tions. Macro-scale experiments involve samples of three dif-
ferent sizes and evaporative surface ratios: they allow the
studying of crystallisation patterns and of drying kinetics
of saturated sandstones. In particular, samples of cylindri-
cal shape are initially saturated with a saturated NaCl solu-
tion and subsequently dried at 20% or 50% RH in a climatic
chamber at constant temperature. The experimental drying
tests show different kinetics for the different drying environ-
mental humidities. The monitoring of the drying process is
carried out by by measuring the weight change of the sam-
ple. In particular, drying at 20% RH is found to take longer
than at 50% RH due to the formation of a crusty efflores-
cence on the surface. The experiments conducted in Gupta
et al. (2014) on the drying behaviour of fired-clay brick sat-
urated of NaCl solution lead to the same conclusions. At
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very low relative humidity (0% RH) the drying process is
very slow comparing with the drying at higher relative hu-
midity (55% and 70% RH). These different kinetics depend
on the different efflorescences that are formed on the ex-
ternal surface. In particular, in Eloukabi et al. (2013) the ef-
florescences are classified as crusty or patchy (also referred
to as "cauliflower" in Shahidzadeh-Bonn et al. (2008)). The
crusty efflorescences block the pores, while the patchy ones
leave some pores space. In the first case the drying kinetics
of the evaporation is strongly slowed down. The formation
of patchy or crusty efflorescence has been found to depend
on the characteristic of the porous media (for example the
pore radius) (Eloukabi et al., 2013) and on the environmen-
tal conditions (Desarnaud et al., 2015; Gupta et al., 2014).
Moreover, in Desarnaud et al. (2015) the recrystallisation
behaviour and the drying of the salt contaminated sand-
stones once they are rewetted with liquid water or brought
in contact with water vapour (RH ∼100%) is investigated.
In general, recrystallisation that results from cycling differs
from the initial crystallisation (Desarnaud and Shahidzadeh-
Bonn, 2011): if the nucleation is primary, i. e. directly from
solution, high supersaturations can be achieved (De Yoreo
and Vekilov, 2003; Mullin, 2001) which is the case for the
evaporation of homogeneous salt solutions in confined sys-
tems (Desarnaud et al., 2014); on the contrary, the secondary
nucleation, from pre-existing crystallites present in the solu-
tion, typically happens around the saturation concentration
(De Yoreo and Vekilov, 2003). In the study is shown that
deliquescence-drying cycles at 20% RH induce a movement
of the salt precipitation, i. e. the salt skin partly disappears,
salt precipitates in the pores and the drying is faster than
the first drying. At 50% RH, deliquescence-drying cycling
does not cause any changes with respect to the first drying.

On the other hand, in Desarnaud et al. (2015) micro-scale
experiments are used to investigate the crystallisation pat-
tern in the core of the stone and at the surface in more de-
tail, after the samples has dried out. These experiments are
carried out using high resolution X-ray Micro Computed
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Tomography (X-ray µCT), optical and Scanning Electron Mi-
croscopy (SEM) combined with Energy-Dispersive X-ray (EDX).

The study presented in Desarnaud et al. (2015) is com-
pleted by experiments performed into square microcapillar-
ies, which simply model systems for a single pore within
a porous medium. They are conducted to investigate the
kinetics of dissolution and deliquescence of crystals, fol-
lowed by recrystallisation, and to quantify small-scale fea-
tures, in order to improve the understanding of the under-
lying basis of macroscopic fluid and solute transport be-
haviour. Other previous studies reported in the literature
deal either with unidirectional (1D) evaporation of a porous
material that is permanently supplied with the salt solution
or with evaporation-wicking experiments (Eloukabi et al.,
2013; Shokri, 2014), revealing the impact of the pore size
and the relative humidity on the type of crystallisation.

The results obtained in Desarnaud et al. (2015) for NaCl
are in good agreement with a previous work of Desarnaud
et al. (2013) on sodium sulfate for which humidity cycling
and rewetting/drying also leads to different crystallisation
mechanisms due to the difference between the primary or
secondary nucleation and the related supersaturation reached
in the solution during drying.

In order to improve the understanding of coupled drying
- crystallisation, or deliquescence - dissolution dynamics,
an experimental study (Derluyn et al., 2016) has been per-
formed recently to obtain data of the simultaneous measure-
ment of drying/deliquescence and salt precipitation/disso-
lution. In particular, data on the kinetics of drying and deli-
quescence, and on the precipitation and distribution of salt
crystals within the pore space of Ms̆ené (Prague) sandstone
are derived from quantitative image analysis on laboratory
X-ray Micro Computed Tomography (X-ray µCT) scans, ob-
tained developing climatic chambers compatible with X-ray µCT

scanners. This allows for inducing crystallisation under con-
trolled temperature and relative humidity, and for dynami-
cally visualizing salt weathering phenomena in building ma-
terials, by simultaneously imaging the transport and crys-
tallisation process during consecutive scanning. Cylindrical
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sandstone samples are initially capillary saturated with a
saturated NaCl-solution and subsequently dried at 20% RH

and at 50% RH, at room temperature. During drying, the
samples are scanned at defined moments in time, confirm-
ing the kinetics reported in Desarnaud et al. (2015). Further-
more, X-ray µCT scans are acquired during subsequent cycles
of deliquescence, i. e. exposure to high RH, and drying at
20% RH. The resolution of X-ray µCT scans results in 10 µm.
During the deliquescence, the salt efflorescence dissolves
first, followed by the subflorescence dissolution and the pore
space filling with saline fluid at a constant rate. The X-ray µCT

datasets reveal the direct coupling between the transport
and crystallisation dynamics through quantitative image anal-
ysis of the simultaneous visualization of both processes in
4D. These data can be helpful for numerical models that
predict salt damage risks in building materials, as model pa-
rameters for the transport and crystallisation kinetics need
to be defined, as well as for the validation of model which
aim the prediction of the distribution of crystals within the
pore space.

It is clear from the literature contributions to date that
the crystallisation dynamics in a porous medium depends
on both thermodynamic and transport processes; these will
have also a direct impact on the evaporation rate of the
solvent (water) from the porous network. Moreover, some
advanced experimental techniques – such as Scanning Elec-
tron Microscopy and X-ray Micro Computed Tomography
– allow to have some insight on the quantification of the
simultaneous drying/crystallisation kinetics, as well as the
deliquescence/dissolution kinetics.

2.1.2 Pressure exerted by growing crystals

Since the mid-19th century, several experiments demonstrated
that a growing crystal can exert pressure (Becker and Day,
1905, 1916; Correns, 1926; Correns and Steinborn, 1939; Lavalle,
1853; Taber, 1916). The general consensus in the literature is
that this pressure is a thermodynamic interaction, due to
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a non-equilibrium state, generated by solution supersatu-
ration (Coussy, 2006; Flatt, 2002; Flatt et al., 2007; Scherer,
1999, 2004; Steiger, 2005a,b) and interfacial energies, which
develops if a liquid film between the crystal and the confin-
ing surface is present (Espinosa-Marzal and Scherer, 2010b;
Scherer, 1999, 2004). The crystal is thus subjected to differ-
ent pressures on its different faces: the faces in contact with
the liquid solution are thought to be under the pressure
of the pore solution, while those in contact with the con-
fining surface (through the liquid film) are assumed to be
under the crystal pressure. It follows that the crystal pres-
sure results higher than the one of the surrounding solution
(Scherer et al., 2001; Steiger, 2005a), thus the crystallisation
pressure is generally defined as the overpressure induced
by the growing crystal, or, in other words, as the difference
between the crystal pressure acting on the loaded crystal
face - the pressure across the liquid film - and the liquid
pressure of the bulk solution, acting on the unloaded crys-
tal face (Steiger, 2005a). Recent experiments confirm that
the pressure originates from a repulsive interaction between
charged surfaces separated by the liquid film and the max-
imum force is achieved when there is no more solution
around the sides of the crystal (Desarnaud et al., 2016a).

Correns (1949) was the first who proposed a relationship
to evaluate the crystallisation pressure. However, through-
out years the literature proposed expressions more and more
refined to compute the crystal pressure acting on the pore
wall, based on experimental evidences and analytical mod-
els (Correns, 1949; Desarnaud et al., 2016a; Espinosa-Marzal
and Scherer, 2010a; Flatt et al., 2014; Steiger, 2005a,b). Ac-
cording to those expressions, the crystallisation pressure de-
pends on:

a. the solution temperature;

b. the supersaturation ratio, which is defined as the ratio
between the concentration of the solution and the one
at saturation;
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c. the kind of precipitated crystal: e. g. crystals exerting
the highest value of crystallisation pressure are halite
and thenardite (Steiger, 2005a).

For these reasons, the determination of solubility diagrams
is necessary. Solubility diagrams and the estimation of crys-
tallisation pressures can be found in the literature for a
great range of salt solutions (Steiger, 2005a; Steiger and As-
mussen, 2008; Steiger et al., 2008). Recently, also the crys-
tallisation behaviour of salt mixtures have been investigated
(Lindström et al., 2015, 2016) and compared to a single salt
behaviour.

2.1.3 Modelling of hygro-thermal issues, salt transport and crys-
tallisation

The problem of the hygro-thermal behaviour of porous me-
dia in presence of salt solution is very complex from the
modelling point of view because the diffusion and crystalli-
sation of the salt in porous media depends not only on the
transport of water and salt in different forms (gas, solid, liq-
uid) but also on the phase transitions between them and
furthermore on the interactions between the various pro-
cesses. In the literature the modelling of hygro-thermal is-
sues, salt transport and crystallisation is generally carried
out from a macroscopic point of view, i. e. idealising the
porous medium filled with air, water, salt in solution, etc...
as a multiphase homogeneous continuum. This underlies
the implicit definition of a Representative Elementary Vol-
ume (REV) which is generally defined as the minimum win-
dow allowing to obtain an homogeneous value of the con-
sidered property which is independent of the window size.
The definition of a REV ensure each material point of the
considered domain is representative of the porous material.

In order to model these processes in a macroscopic frame-
work, the starting point is an accurate transient Heat, Air
and Moisture (HAM) transfer model, since, as explained pre-
viously, the hygrothermal environmental conditions strongly
influence the salt precipitation. The numerical simulation of
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heat and moisture transport phenomena has been widely in-
vestigated in the literature and many models have been de-
veloped (see, for example, Castellazzi et al. (2015b); Grunewald
et al. (2003); Hansen (1986); Häupl et al. (1997); Lewis and
Schrefler (1998); Pel (1995); Tariku et al. (2010)); these mod-
els do not take into account the presence of salts, assuming
that pores contain only water in different phases.

Whether salts are in solution or in solid phase, the hy-
grothermal behaviour of building materials is strongly mod-
ified. Thus, some extended HAM models, embedding salt
diffusion and crystallisation, have been proposed in liter-
ature (Castellazzi et al., 2013a; Derluyn, 2012; Koniorczyk
and Gawin, 2008, 2011; Koniorczyk and Konca, 2013; Nico-
lai, 2007). Castellazzi et al. (2013a) developed a coupled mul-
tiphase model for hygrothermal analysis of masonry struc-
tures contaminated with sodium chloride salt, adopting the
description of porous material proposed by Schrefler (2002)
and Gawin and Schrefler (1996). In order to validate the pro-
posed model, they simulated salt transport and crystallisa-
tion in a 2D slice of a wall subjected to ageing for several
months in isothermal conditions and taking into account
the measured environmental relative humidity variation.
Koniorczyk and Gawin (2008, 2011), respectively for sodium
sulfate and sodium chloride solutions, extended the model
previously formulated for a general porous medium by Lewis
and Schrefler (1998) including the salt mass balance equa-
tion and the kinetics of the salt crystallisation/dissolution.
In Koniorczyk and Konca (2013) a mathematical model of
salt, moisture and energy transport concerning the salt phase
change kinetics for sodium sulfate solutions is derived on
the base of an experimental set-up constructed to measure
the thermal effect of the salt crystallisation/dissolution pro-
cess in building materials containing sodium sulphate. Fi-
nally, Derluyn, in her PhD dissertation (Derluyn, 2012), de-
velops a numerical model covering heat, water and salt trans-
port processes, salt crystallisation, deformation and crack-
ing for sodium chloride and sodium sulfate; experimental
results for the validation of the proposed model are ob-
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tained using neutron radiography and X-ray Micro Com-
puted Tomography.

These models are generally limited to the crystallisation/
dissolution process. Some efforts in the direction of mod-
elling and simulating also the transition from a hydrate crys-
tallised form to an anhydrous one and reverse the have been
attempted only in Nicolai (2007).

2.1.4 Needs for further research

Despite some models dealing with salt transport and crys-
tallisation at the macro-scale have been proposed, either for
sodium chloride solution or sodium sulfate solution, a gen-
eral framework in the modelling the phenomenon, able to
take into account several types of salt has not been proposed
yet. Indeed, these models are generally limited to the crys-
tallisation/ dissolution process and neglect the hydration/
dehydration one, i. e. they do not account for the transition
from a hydrate form to an anhydrous one and reverse. More-
over, in these models thermal effects are described through
the energy equation. However, numerical simulations based
on these models are often performed in isothermal regime,
particularly when dealing with salts having the mass frac-
tion at saturation constant with temperature, like for ex-
ample the sodium chloride (Castellazzi et al., 2013a). De-
spite many studies in the literature, we are still facing with
several open issues (Espinosa-Marzal and Scherer, 2010b;
Scherer et al., 2001), concerning where nucleation and crys-
tal growth take place within a pore network; what is the
effect of pore site distribution on stress; under what con-
ditions salt crystallisation leads to crack and failure of the
material. Finally, all numerical models proposed until now
cannot account for the different formations of efflorescences
according to environmental conditions and their influence
in the drying of salt contaminated porous media.

In this dissertation a general framework to model hygro-
thermal-chemical aspects, including the crystallisation/dis-
solution and the hydration/dehydration processes of salts
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with N crystallised forms, is developed and thermal effects
are fully considered. The proposed model is specialised for
the most common and destructive salts: sodium chloride
and sodium sulfate. Then it is enriched to describe different
drying kinetics and take into account diverse efflorescence
formations.

2.2 mechanical effects in multiphase porous

media

Crystallisation phenomena take place in the porous medium’s
voids, leading to the development of a crystallisation pres-
sure which is exerted on the material matrix. It follows that
the matrix of the porous medium is subjected to a stress
state. It is evident that salt transport, crystallisation and me-
chanical effects are strictly related and that the geometry at
the micro-scale plays a crucial role in the determination of
the latter.
Porous building materials, like masonry, mortar and natu-
ral stones, are composite materials (Dormieux et al., 2006;
Dormieux and Kondo, 2016; Dormieux and Ulm, 2005). The
most prominent heterogeneity of such natural composite
materials is of course the porosity, i. e. the space left in be-
tween the different solid phases at various scales, ranging
from interlayer spaces in between minerals, to the macro-
pore space in between microstructural units of the material
in the micrometer to millimetre range. The porosity and the
shape of the voids, which depends on the geometry of the
micro-structure, are the two ingredients to understand and
predict the macroscopic material behaviour, in particular the
mechanical one and the permeability. The mechanical be-
haviour of multiphase porous materials was perceived early
on in the ground-breaking work of M.A. Biot (1941) and
K. Terzaghi (1923), who developed the macroscopic basis of
what is now known as ’poromechanics’, i. e. a branch of contin-
uous mechanics which studies the mechanical behaviour of
porous materials. In the 1970s, a breakthrough was achieved
with pioneering works that relates macroscopic laws to mi-
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crostructural properties. It was the birth of ’micromechanics
of porous media’, or in short ’microporomechanics’.

The assessment of the mechanical response of porous ma-
terials subjected to salt crystallisation requires appropriate
methods, able to link the micro and the macro-scale, taking
into account the influence of geometry and the behaviour
of the material at the micro-scale. For these reasons, it is
fruitful to treat the problem with multi-scale techniques,
which are employed when at least two different scales co-
exist. These models are based on the physics of the micro-
structures and are usually employed to predict the macro-
scopic behaviour of heterogeneous materials, with random
or periodic micro-structures.

In this section the state of the art on the coupled mod-
elling of salt transport and damage due to salt crystallisa-
tion is presented. Moreover, basic principles of multi-scale
techniques and, in particular, of homogenisation theories
and microporomechanics are illustrated.

2.2.1 Coupled modelling of salt transport and damage due to salt
crystallisation

Some contributions on the modelling of the mechanical ef-
fects induced by salt crystallisation either at macro scale
(Coussy, 2006; Derluyn et al., 2014a; Flatt et al., 2014; Konior-
czyk and Gawin, 2012) or at the microscopic one (Scherer,
1999, 2004) can be found in literature.

In the pioneer work of Coussy (2006) the deformation and
the fracture of porous solids from internal crystallisation of
salt is explored in the framework of the thermodynamics of
unsaturated brittle poroelasticity, with the aim of combining
the mechanics of porous solids and the physical chemistry
of confined crystallisation under drying. In particular, the
usual theory of crystal growth in confined conditions is fur-
ther developed in order to include both the deformation and
the drying of the porous solid. This information is up-scaled
at the macroscopic scale on the base of an homogenisation
scheme with simplified pore geometries. The approach is
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used to perform a quantitative analysis of the role of the
pore size distribution on the crystal growth under repeated
imbibition-drying cycles. The deformation and the fracture
of the porous solid from drying-induced crystallisation are
then considered in the context of brittle poroelasticity. The
adoption of a fracture criterion based on the elastic energy
that the solid matrix can ultimately store finally leads to the
determination of how long a stone can resist repeated cycles
of drying-induced crystallisation of salt.

Nicolai (2007) included salt transport and crystallisation
in the porous micromechanics theory by Coussy (2006, 2004).
Indeed, in order to deal with real structures, it is necessary
to scale up to the macro level, as attempted in Koniorczyk
and Gawin (2012) and Derluyn et al. (2014a).

In Koniorczyk and Gawin (2012) a novel mathematical
model of chemo-hydro-thermo-mechanical behaviour of porous
building materials considering salt transport and crystalli-
sation is presented. The model describes salt transport and
crystallisation in a non-isothermal, partly saturated deformable
porous material. It allows to investigate the total stress in the
building elements exploiting in the realistic environment,
considering the external load, the stress induced by mois-
ture migration (capillary pressure), thermal stress and the
stress generated during crystal growth. The additional pres-
sure, which is generated during the salt crystallisation, is
taken into account by means of the effective stress principle.
The properties of the solution and the magnitude of crys-
tallisation pressure depends on the internal pore structure
of the material. Moreover, some efforts are made towards
the investigation of the influence of pore micro-structure on
the salt transport and crystallisation.

Derluyn et al. (2014a) present a computational model cou-
pling heat, water and salt ion transport, salt crystallisation,
deformation and damage in porous materials, focused on
crystallisation-induced damage. The theory of poromechan-
ics is employed to relate stress, induced by crystallisation
processes or hygro-thermal origin, to the material’s mechan-
ical response. In this model, a non-local formulation is devel-
oped to describe the crystallisation kinetics. The model per-
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formance is illustrated by simulating the damage caused by
sodium chloride crystallisation in a porous limestone, com-
paring the results with experimental observations based on
neutron and X-ray imaging.

In all these studies the modelling of salt transport and its
mechanical effects is performed employing a macro-scale
approach, without using up-scaling methods based on the
real microstructure of the considered material.

2.2.2 Multi-scale approaches

Multi-scale techniques are traditionally categorised into the
homogenisation method, where the length scales of micro- and
macro-problems are sufficiently separate, and the concurrent
method, which considers strong coupling between the scales.Homogenisa-

tion
Method

The main objective of the classical homogenisation method is
to estimate the effective macroscopic properties of a hetero-
geneous material from the response of its underlying micro-
structure, thereby allowing to substitute the heterogeneous
material with an equivalent homogeneous one. In particular,
it enforces the relation between homogenised quantities, i. e.
the homogenised constitutive law.
It was conceived to describe polycrystalline or composite
materials, but recently it has been successfully applied to de-
scribe macroscopic properties of porous materials (Dormieux
et al., 2006). Historically homogenisation methods were ap-
plied because of (i) the impossibility to carry out calcula-
tions which account for the whole micro-structure and (ii)
the lack of knowledge on the real micro-structure. It consists
in four main steps:

1. the defining of an observation window in the hetero-
geneous material, which ensures the principle of scale
separation: the Representative Elementary Volume (REV);

2. the defining of the equivalence between the heteroge-
neous and homogeneous material;
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3. the introduction of some hypotheses in the writing of
the micromechanical boundary value problem, in par-
ticular, on the choice of the boundary condition;

4. the analysis at the REV level;

5. the determination of the macroscopic behaviour from
the average mechanical response of the REV;

6. the expression of the microscopic solution in terms of
macroscopic variables. This is the so-called re-localization
step and it is optional.

Homogenisation methods can be classified in: analytical, semi-
analytical and computational or numerical homogenisation.
A detailed historical review on analytical, semi-analytical
and computational homogenisation can be found in Saeb
et al. (2016). Here, we recall the classic basic concepts.

2.2.2.1 Analytical and Semi-Analytical Homogenization
Voigt’s and
Reuss’ boundsPreliminary steps in homogenization date back to the 19th

century when Voigt (1889) proposed to assume a uniform
strain within the heterogeneous material. This assumption
was later followed by Reuss (1929) in a dual manner. Indeed,
Reuss approximated the stress field within the material as
uniform. They are called kinematic and static constant field
methods, respectively, since they are based on a very strong
assumption, that is the strain or stress, respectively, are con-
stant over the entire REV. These two opposite hypotheses
can be easily illustrated with a 1D example consisting in a
beam with two materials in parallel or in series subjected to
an imposed displacement or force, respectively (Figure 2.1).

This example assumes two extreme micro-structures, i. e.
materials in series and in parallel. However, the real micro-
structure is usually something in the middle. Therefore, these
two approximations, when applied to multiphase compos-
ites in pure mechanical problems, yield two bounds for the
elastic strain energy (Hill, 1952). The Voigt’s assumption, as
the upper bound, violates the equilibrium of the stress field.
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Figure 2.1: Voigt’s and Reuss’ bounds: 1D example

Also, the Reuss’ assumption, as the lower bound, violates
the compatibility of the strain field. The bounds are typi-
cally quite wide (Babuska, 1976) and are valid only for lin-
ear material properties.
The non-linear equivalents to Voigt’s and Reuss’ assump-Taylor’s and

Sachs’ bounds tions are usually referred to as Taylor’s and Sachs’ bounds
(Sachs, 1928; Taylor, 1938), respectively, originally derived
for polycrystals (Bishop and Hill, 1951). While universal and
very simple, these bounds do not carry any information of
the micro-structural morphology and take only the inhomo-
geneity volume fraction into account.Hashin’s and

Shtrikman’s
bounds

Some decades later, Hashin and Shtrikman presented an
extension of the method, based on variational formulations,
to obtain bounds on bulk and shear moduli (Hashin and
Shtrikman, 1963) for isotropic composites consisting of isotropic
constituents. These bounds are expressed in terms of phase
volume fractions and phase moduli but are independent
of the phase geometry. Their proposed bounds were later
generalized by Walpole (1966), Milton and Kohn (1988) for
anisotropic media, and by Zimmerman (1992) to obtain bounds
on the Poisson’s ratio of the composites. Nevertheless, it is
worth noting that Hashin-Shtrikman bounds and their im-
provements yield very wide bounds for the case of consider-
able mismatch in phase properties (Ostoja-Starzewski, 2007),
e. g. porous materials.

The generalization of the Hashin-Shtrikman variational
approach to predict tighter bounds compared to the Voigt’s
and Reuss’ bounds was made in Bornert et al. (1996); Li and
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Dunn (2001); Nemat-Nasser et al. (1993), mainly by taking
into account the geometrical information of the phases, like
inclusion shape, orientations and locations. Analytical

micro-
mechanical
models

A more sophisticated approach consists in estimating the
effective properties of heterogeneous media by making some
assumption on the geometry of the micro-structure and ob-
taining the homogenised mechanical properties in a closed
form. The first was established by Eshelby (1957) based on
dilute family methods assuming that the inhomogeneities are
so dilutely distributed that their interactions might be ne-
glected. So, the problem is reformed into the analysis of a
single inclusion embedded in an infinite matrix (Kanouté
et al., 2009). The Eshelby scheme can be adopted to model
porous media with porosity up to 10%. However, neglect-
ing the interaction of particles is an unrealistic assumption
of Eshelby for materials with randomly dispersed particu-
late micro-structure, even at a few percent volume fraction
(Zohdi and Wriggers, 2001). Further proposed models such
as Mori-Tanaka (Benveniste, 1987; Mori and Tanaka, 1973),
the self-consistent scheme (Hill, 1965; Kröner, 1958; Willis,
2000), the generalized self-consistent scheme (Huang et al.,
1994), and the differential method (McLaughlin, 1977; Nor-
ris, 1985) are mainly based on the mean-field approxima-
tion (Pierard et al., 2004) and approximate the interaction
between the phases.

Mori and Tanaka in their most popular work published
in 1973 (Mori and Tanaka, 1973) discussed a method of cal-
culating the average internal stress in the matrix of a ma-
terial containing inclusions with transformation strain. This
achievement was an improvement of the Eshelby’s problem
(Eshelby, 1957), since the proposed scheme takes into ac-
count the mechanical interaction between inclusions. Later,
Benveniste (Benveniste, 1987) reconsidered and reformulated
the Mori-Tanaka’s theory in its application to the computa-
tion of effective properties of composites. In particular, he
analysed two-phase composites with anisotropic elastic con-
stituents and an inclusion phase consisting of aligned or
randomly oriented ellipsoidal particles. Before him, Berry-
man and other authors (Berryman, 1980; Kuster and Toksöz,
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1974; Walpole, 1969; Walsh, 1969; Wu, 1966) found analyti-
cal solutions concerning randomly oriented ellipsoidal par-
ticles for any aspect ratio of the ellipsoid as well as for the
special cases of spheres, needles, disks and penny shaped
cracks. This scheme is expected to be relevant for a mor-
phology of the porous medium’s micro-structure, where the
pores can be regarded as inclusions embedded in a solid ma-
trix.

In contrast, the main idea of the self-consistent method is
to replace the problem of the interaction among many par-
ticles by the problem of interaction of one particle, which is
assumed to have spherical or ellipsoidal shape, and an infi-
nite matrix: but now the unbounded domain is made of the
effective medium. Unfortunately, the self-consistent method
can produce negative effective bulk and shear responses, for
voids, for volume fractions of 50% and higher.

To overcome this issue, the generalized self consistent
methods encase the particle in a shell of matrix material, sur-
rounded by the effective medium; despite this improvement,
some problems have been detected and discussed in Hashin
(1983). The difference between self-consistent schemes are
sketched in Figure 2.2.

Effective Medium

(a) (b)

Figure 2.2: Self-consistent scheme: (a) first version, and (b) gener-
alized version (Hashin, 1983).

On the other hand, the differential scheme has the advan-
tage that it always distinguishes between the two phases
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and, in contrast to the self-consistent scheme, no effective
medium is defined. This is advantageous when the ratios
of phase moduli are extreme as in the case of a porous
medium (McLaughlin, 1977). The method is based on the
idea that the heterogeneous material is constructed explic-
itly from an initial material through a series of incremental
additions. The construction process is uniquely specified by
parametrising the volume fractions of the included phases.
The properties of the final material depend upon the con-
struction path taken and not just on the final volume frac-
tions. The result is a system of ordinary differential equa-
tions for the moduli, which is integrated along the path
(Norris, 1985). Thus, the homogenised properties are com-
puted in a iterative way as illustrated in Figure 2.3.

Initial homogeneous material Replace small fractions

New homogeneous medium Replace

Iterate

Figure 2.3: The iterative construction process of the differential
scheme (Norris, 1985).
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Figure 2.4: Comparison of effective bulk moduli of an idealized
porous material as predicted by following microme-
chanical schemes: MoriâTanaka (MT), self-consistent
(SC), differential (DF), and Voigt (VO). The number in
the legend indicates the aspect ratio a that is common
to all randomly oriented spheroidal inclusions, while
the letter ’g’ next to a number indicates that the solid
properties are assigned to the solid inclusions (rather
than to the matrix), representing a material composed
of grains or crystals. Modulus values are normalized
with respect to the elastic properties of the microsc-
tructure, with the Poisson ratio of a the microsctruc-
ture assumed to be 0.25 (Vlahinić et al., 2011).

Finally, Hori and Nemat-Nasser (1993) proposed the double-
inclusion model which is a unified generalization of the self-
consistent and Mori-Tanaka schemes and takes the interac-
tion between the phases into account more appropriately.
The extension of the application of the analytical homog-
enization to non-linear composites and finite deformation
elasticity was studied in the pioneering works of Hill (1972)
and Ogden (1974). A detailed review and comparisons of
analytical models of micro-mechanics can be found in Mura
et al. (1996). On the other hand, Vlahinić et al. (2011) com-
pares Mori-Tanaka (MT), self-consistent (SC), differential (DF),
and Voigt (VO) schemes specialised for idealised porous me-
dia with different pore shapes, as reported in Figure 2.4.
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2.2.2.2 Numerical Homogenisation: a literature overview

In the past two decades, substantial progress has been made
in the numerical homogenization of complex multiphase
materials. Detailed reviews on computational homogenisa-
tion can be found in Geers et al. (2010) and Nguyen et al.
(2011). These approaches allow to take into account the mi-
crostructure geometry, even in detail, and use numerical
methods to perform the homogenisation. One of the widely
used approaches in modelling heterogeneous materials is
the unit-cell method which leads to a global macroscopic con-
stitutive model for a heterogeneous material based on de-
tailed modelling of the micro-structure, which is usually as-
sumed periodic. In the literature, the micro-scale sample is
referred to as Representative Elementary Volume (REV) for
geometrically irregular micro-structures and to Repeated
unit cell (RUC) for periodic ones. The equivalence between
the heterogeneous and homogeneous material is enforced
by means of an energy equivalence between the two scales,
known as Hill’s lemma or Hill-Mandel condition (Hill, 1972;
Mandel, 1972). The transition between the two scales is ob-
tained via averaging the internal fields within the REV.
The three key points in computational homogenisation are:

a. the choice of the boundary condition;

b. the size and morphology of the REV;

c. the analysis at the REV level.

choice of the boundary condition The more com-
mon options in the choice of boundary condition for the
micromechanical boundary value problem are: (i) linear dis-
placement boundary conditions, (ii) constant traction bound-
ary conditions, and (iii) periodic displacement and anti- pe-
riodic traction boundary conditions. The first and the sec-
ond ones are sometimes referred to as homogeneous bound-
ary conditions (Hashin, 1983) or uniform boundary condi-
tion (Dormieux et al., 2006): these are defined based on the
hypothesis of constant strain or stress on the boundary of
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the REV, respectively. If the former boundary condition is en-
forced in the micromechanical boundary value problem, we
speak of kinematic homogenisation; if the latter is adopted, the
approach is named static homogenisation. Generally speaking,
kinematic hypotheses yield a behaviour which is stiffer than
the real one, whereas static hypotheses yield a behaviour
which is more compliant than the real one.
On the other hand, the periodic boundary conditions in-
volve a mix of kinematic and static hypotheses. The dis-
placements of couples of points in the boundary are linked
to each other, but their value is not specified. This leads
to stresses which are equal and opposite in the same cou-
ple of points. Periodic boundary conditions simulate an in-
finite medium constituted of repetitions of the REV in all
directions. In pure mechanical linear and non-linear prob-
lems, the effective behaviour derived under periodic bound-
ary conditions is bounded by linear displacement boundary
conditions from above and constant traction boundary con-
ditions from below for a finite size of the REV (Kanit et al.,
2003; Nemat-Nasser and Hori, 1995; Perić et al., 2011; Van
Der Sluis et al., 2000). However, as remarked in Shen and
Brinson (2006), periodic boundary conditions require the
continuity of the inclusions on opposite boundaries to en-
sure the periodicity of the micro-structure. Since real hetero-
geneous materials – e. g. porous materials – are seldom peri-
odic, they are not appropriate for finite element models de-
veloped by cutting out fragments of actual micro-structures.
Moreover, Pecullan et al. (1999) demonstrated that linear dis-
placement boundary conditions produce a stiffness tensor
closer to the effective stiffness tensor for materials with stiff
matrix and compliant inclusions, like porous materials. In
contrast, constant traction boundary conditions yield better
estimates for composites with compliant matrix and stiff in-
clusions.
For more details on the aspects of the numerical solution
and computational cost associated with different types of
boundary conditions the interested reader can refer to (Fritzen
and Böhlke, 2010).
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size and morphology of the rev The choice of the
REV for heterogeneous materials with complex micro- struc-
tures is a delicate task. Ideally, one would like to reach the
maximum accuracy with the least computational effort. The
REV must be large enough to be statistically representative
of the material so that it effectively includes a sampling of
all micro-structural heterogeneities that occur in the mate-
rial (Drugan and Willis, 1996). On the other hand, it must re-
main sufficiently small to be considered as a material point
of continuum mechanics (Kanit et al., 2003).
The first-order computational homogenization scheme – e. g. peri-
odic and kinematic homogenization – critically relies on the
principle of separation of scales: this assumption is particu-
larly valid when macro-gradients remain small and material
failure does not occur. The second-order computational homoge-
nization partly alleviates the assumption of scale separation
by taking the gradient of the macro-deformation gradient
tensor into account (Geers et al., 2007; Gitman et al., 2005;
Kouznetsova et al., 2002, 2004; Nguyen et al., 2013) .
Strictly speaking, the response of the material must be inde-
pendent of the choice of boundary conditions imposed on
the REV (Ostoja-Starzewski, 1998; Sab, 1992). According to
Hill (1963), a REV is well defined when it contains a suffi-
cient number of inclusions and the responses under linear
displacement and constant traction boundary conditions co-
incide.
More details on the choice and morphology of a porous ma-
terial REV will be given in Chapter 8.

analysis at the rev level To date, numerous schemes
have been introduced to perform various analyses over the
Representative Elementary Volume (REV). Renard and Mar-
monier (1987) first introduced the idea of using a finite ele-
ment discretization at the microstructure. In the classic ap- FE2 method

proach for linear elastic materials, the analysis at REV level
is employed to assess elastic properties of homogenised con-
tinuum at the macro-scale. If non-linearities are present –
non-linear constitutive behaviour, damage, etc... – it is possi-
ble to follow two distinct paths: (i) the building of a macro-
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scopic non-linear behaviour, making some hypotheses on
kinetic at the micro-scale; (ii) the employing of a multilevel
finite element approach.

Feyel (1999) introduced a multilevel finite element (FE2)
approach, in which the stress-strain relationship is evalu-
ated at each point of the macro-scale through solving the
boundary value problem associated with the micro-scale.
These models are constructed using three main ingredients
(Feyel, 2003): (i) a modeling of the mechanical behaviour at
the micro-scale (the REV); (iii) a localization rule which de-
termines the local solutions inside REV, for any given over-
all strain; (ii) a homogenization rule giving the macroscopic
stress tensor, knowing the micromechanical stress state. In-
deed, in the general method of FE2, the constitutive equa-
tions are written only on microscopic scale and homogeni-
sation and localisation equations are used to compute the
macroscopic strains and stresses knowing the mechanical
state at microscopic level. In particular, a spatially resolved
REV discretised by finite elements corresponds to the macro-
scale integration points of finite elements at the macro-scale,
and separate finite element computations are performed si-
multaneously at the two scales. A schematic diagram of the
FE2 is illustrated in Figure 2.5

Although this method is known to be computationally ex-
pensive, it is trivially parallelisable as the computations at
the micro-scale are completely independent of each other
(Feyel, 1999; Mosby and Matous̆, 2015; Unger, 2013; S̆olinc
and Korelc, 2015). Also, a number of methods have been re-
cently developed aiming at reducing the computational cost
and increasing the accuracy of multi-scale analysis (Abdulle
and Bai, 2012; Otero et al., 2015; Somer et al., 2009; Terada
et al., 2003; Yadegari et al., 2015).

FFT method

The other technique recently developed to perform anal-
ysis at the REV level, as an alternative of the Finite Ele-
ment Method, is fast Fourier transform (FFT) proposed orig-
inally by Moulinec and Suquet (1998). The initial idea of
the method was to make direct use of the digital images of
the real micro-structure in the numerical simulation which
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Figure 2.5: Schematic diagram of the FE2 model (Feyel, 1999, 2003;
Feyel and Chaboche, 2000).

reduces the effort to generate compatible micro-structural
finite element discretisations (Moulinec and Suquet, 1998).
Michel et al. (1999) compared and reviewed the analysis
of REV using the finite element method and FFT. They con-
cluded that the FFT method is computationally superior for
linear composites given that the contrast between the phases
is not too large. However, the basic model of FFT fails to
produce reasonable results in the presence of voids – e. g.
porous media – or rigid heterogeneities as its rate of the con-
vergence is proportional to the contrast between the phases.
Recently, Monchiet and Bonnet (2012) proposed a polarization-
based FFT iterative scheme to determine the overall proper-
ties of multiphase composites with arbitrary phase contrast,
see also Brisard and Dormieux (2010); Michel et al. (2000);
Willot et al. (2014).

2.2.3 Microporomechanics basics

The goal of this Section is to give some basic elements of
the linear micromechanics of porous media, in short linear
microporomechanics. This technique will be used in the sec-
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ond part od this dissertation, so these concepts are prepara-
tory. In microporomechanics, the porous medium can be
treated as a particulate composite (Hashin, 1983) having in-
clusions with zero stiffness. More specifically, Hashin de-
fines a particulate composite when one phase is in the form
of particles embedded in the second matrix phase. Indeed,
the pore space can be considered as an elastic material with
null stiffness values (Dormieux et al., 2006).

In particular, according to Hashin (1983), it is necessary

a. to define a Representative Elementary Volume (REV),
ensuring the scale separation;

b. that the Statistical Homogeneity (SH) holds, i. e. all global
geometrical characteristics such as volume fractions,
two-point correlations, etc. are the same in any REV,
irrespective of its position. In particular, this implies
that body averages and REV averages are the same.

2.2.3.1 Geometrical and micromechanical modelling

Referring to a porous medium depicted in Figure 2.6, if L,
` and d are the characteristic lengths of the structure, ele-
mentary volume and local heterogeneities, respectively, the
conditions that allow defining the Representative Elemen-
tary Volume (REV) are:

d� `� L; (2.1)

The macro-scale is defined as the one in which the porous
material can be seen as a homogeneous continuum, while
the micro-scale is designated as the one in which can be dis-
tinguished the material matrix and the pores. In particular,
X is the position vector associated to the macroscopic refer-
ence system, while x is the one identifying the microscopic
reference system. Analogously, σ(X, x) and ε(X, x) are the
micro-scale stress and strain, respectively, while Σ(X) and
E(X) are the macroscopic ones.

Referring to the porous medium sketched in Figure 2.7, if
we denote by C(x) the microscopic linear elasticity tensor at
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Figure 2.6: Reference systems and characteristic lengths for the
macro- and micro- scales.

the micro-scale point x, and by S(x) = C(x)−1 the compli-
ance tensor, we can write:

x ∈ Ωp C(x) = Cp = 0 S(x) = Sp −→∞ (2.2a)

x ∈ Ωm C(x) = Cm
1 S(x) = Sm = (Cm)−1 (2.2b)

where

|Ωp| = |Ω|φ0 , |Ωm| = |Ω| (1−φ0) , (2.3)

Ω = Ωp ∪Ωm is the considered microscopic REV domain
and φ0 is porosity (volume of voids per unit volume of
porous medium), i. e. the volume fraction of the pore space.

2.2.3.2 Micromechanical boundary value problem formulation

The micromechanical boundary value problem formulation
can be stated for the porous media as:

∇ ·σ = 0 2 in Ω , (2.4a)

σ = C(x) : ε⇔ ε = S(x) : σ in Ω , (2.4b)

ε = sym(∇u) in Ω , (2.4c)

1 Cm is a positive definite fourth-order tensor
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Figure 2.7: Porous media: multi-scale mechanical model.

where σ(x) and ε(x), are the micro-scale stress and strain,
respectively, and u(x) is the displacement at the micro-scale.
It is worth noting that the micromechanical problem formu-
lation (2.4) is an ill-posed problem: it has no unique solu-
tion, without additional constraints, like the boundary con-
ditions.
As seen in Section 2.2.2.2, there are different options in the
choice of boundary conditions. To ensure a statistical homo-
geneous field in composite material some special boundary
conditions are required. These are called Uniform Bound-
ary Conditions and produce homogeneous field in a homo-
geneous body. Indeed, the fundamental postulate of the the-
ory of elastic heterogeneous media by Hashin (Hashin, 1983)
states:

Foundamental Postulate (of elastic heterogeneous media).
The stress and strain fields in a large Statistical Homogeneity het-
erogeneous body subjected to uniform boundary conditions are sta-
tistical homogeneous, except in a boundary layer near the external
surface.

2 It is possible to demonstrate that the mechanical effects of the microme-
chanical body forces can be neglected at the scale of REV, with regard to
the effects of the heterogeneity (Dormieux et al., 2006).



2.2 mechanical effects in multiphase porous media 37

For elastic bodies, Uniform Boundary Conditions are ei-
ther one of:

σ(x) ·n(x) = Σ0 ·n(x) on ∂Ω , (2.5a)

u(x) = E0 · x on ∂Ω . (2.5b)

where Σ0 and E0 are constant second order tensors, which
characterise the stress or the strain on the REV boundary,
respectively.
Equation (2.5a) is the so-called uniform stress boundary Uniform stress

boundary
condition

condition or constant traction boundary condition. The mi-
cromechanical boundary value problem (2.4) can be restated
in the form of a standard problem of linear elasticity im-
posing Eq. (2.5a). The resulting micromechanical boundary
value problem is typical of static homogenisation. The solv-
ing of this system yields the response of the REV subjected
to the stress state Σ0 at its boundary. However, it is worth
noting that in the case of the static approach it is neces-
sary to restrain the rigid body motions. Instead of the uni- Uniform

strain
boundary
condition

form stress boundary condition (2.5a), it is possible to ap-
ply the uniform strain boundary condition also called lin-
ear displacement boundary condition (2.5b). The resulting
micromechanical boundary value problem is typical of kine-
matic homogenisation. It is worth noting that E0 has replaced
Σ0 as the loading parameter, in comparison to (2.5a).

Another option is to enforce periodic boundary condi-
tions:

u(x1) = u(x2) ∀ (x1, x2) on ∂Ω in periodic position . (2.6)

However, they can be successfully applied only on periodic
micro-structures, so they are not suitable for the investiga-
tion of real porous media. Moreover, if the REV size is suf-
ficiently big with respect of the characteristic length of the
heterogeneity, there is a small difference between the kine-
matic and periodic approaches, since the resulting micro-
scopic fields are diverse only on the boundary.
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2.2.3.3 Energetic equivalence: the Hill’s lemma

The equivalence between the heterogeneous and equivalent
homogeneous material is established in terms of energy:

〈σ(X, x) : ε(X, x)〉 = Σ(X) : E(X) , (2.7)

where 〈•〉 is the average operator on the REV domain Ω,
defined as follows:

〈•〉 = 1

|Ω|

∫
Ω

• dVx ; (2.8)

and Σ(X) and E(X) are the macroscopic stress and strain
respectively. This energy equivalence is named the Hill’s
lemma (Hill, 1967): it imposes the same energy density at
the two scales. This equivalence needs to be fulfilled by the
homogenized material. Moreover, by imposing its satisfac-
tion, it is possible to derive (i) the expression of the macro-
scopic stresses and strains as functions of the corresponding
microscopic quantities and (ii) the homogenised behaviour.

static homogenisation When a uniform stress state
Σ0 is imposed along the REV boundary, it is possible to prove
that the microscopic stress field σ(X, x) satisfies the follow-
ing relation:

〈σ(X, x)〉 = Σ0 , (2.9)

where 〈σ〉 is the average microscopic stress field on the REV.
The macroscopic stress Σ(X)is thus naturally identified as
Σ0. The verification of the Hill’s lemma leads to the follow-
ing definition of the macroscopic strain: E(X)=〈ε(X, x)〉 .

kinematic homogenisation When a uniform strain
state E0 is imposed along the REV boundary, it is possible to
demonstrate that the microscopic strain field ε(X, x) satisfies
the following relation:

〈ε(X, x)〉 = E0 , (2.11)

where 〈ε〉 is the average microscopic strain field on the REV.
The macroscopic strain E(X) is thus naturally identified as
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E0. The verification of the energy equivalence expressed in
Eq. (2.7) leads to the following definition of the macroscopic
stress:

Σ(X) = 〈σ(X, x)〉 . (2.12)

2.2.3.4 The homogenised stiffness tensor

In this section derive the macroscopic constitutive law for
a dried porous material, defining the homogenised stiffness
tensor Chom starting from the micromechanical boundary
value problem (2.4), (2.5b).

Let us consider the definition of the micromechanical prob-
lem (2.4), (2.5b). Since it is linear, the relation between mi-
croscopic ε(x) and macroscopic E is linear, too. In particular, Localization

stepthis link is captured by a fourth-order strain localisation ten-
sor A(x) :

ε(x) = A(x) : E (2.13)

The components of A(x) satisfy the symmetry relations
Aijkl(x) = Ajikl(x) = Aijlk(x), since tensors ε(x) and E
are symmetric. The averaging of the strain field in Eq. (2.13)
leads to:

E = 〈ε〉 = 〈A : E〉 = 〈A〉 : E ⇔ 〈A〉 = I , (2.14)

where I is the fourth-order identity tensor. Following a dif-
ferent path, we get:

E = 〈ε〉 = 1

|Ω|

∫
Ω

ε(x)dV

=
(1−φ0)

|Ωm|

∫
Ωm

A(x) : EdVm+

+
φ0
|Ωp|

∫
Ωp

A(x) : EdVp

= [(1−φ0)〈A〉m +φ0〈A〉p] : E .

(2.15)

This expression is convenient to work with a composite and
separate the contributions of the matrix and the ones of the
inclusions. It follows that:

(1−φ0)〈A〉m +φ0〈A〉p = I , (2.16)



40 state of the art

where:

〈•〉m =
1

|Ωm|

∫
Ωm

•dVx ,

〈•〉p =
1

|Ωp|

∫
Ωp

•dVx .
(2.17)

Combining the constitutive equation (2.4b) with the strain
concentration rule (2.13) yields:

σ(x) = C(x) : A(x) : E . (2.18)

Finally, we adopt an upscaling procedure based on the stressMacroscopic
constitutive

law
average rule (2.12) to translate the microscopic stress field
into a macroscopic stress state. Relation (2.12) can be ex-
panded as follows:

Σ =
1

|Ω|

∫
Ω

σ(x)dV

=
(1−φ0)

|Ωm|

∫
Ωm

σ(x)dVm +
φ0
|Ωp|

∫
Ωp

σ(x)dVp .
(2.19)

Substituting (2.18) in (2.19) leads to the macroscopic consti-
tutive law:

Σ = Chom : E, (2.20)

where the homogenised stiffness tensor Chom reads:

Chom = (1−φ0)Cm : 〈A〉m +φ0Cp : 〈A〉p. 3 (2.21)

Taking into account the definition of mechanical properties
of a porous medium (2.2), the expression of Chom can be
simplified as follows:

Chom = (1−φ0)Cm : 〈A〉m = Cm : (I −φ0〈A〉p) , (2.22)

exploiting the identity (2.16).
A graph resuming the quantities involved in homogenisa-

tion approaches and their relations is reported in Figure 2.8.

3 This relation is valid for any composite material with inclusions
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Figure 2.8: Relation between micro and macro-scale quantities
in kinematic homogenization: A(x) = Aijkl(x) and
B(x) = Bijkl(x) are respectively the strain and the
stress localization tensors, C(x) = Cijkl(x) is the local
elasticity tensor.
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energy point of view The same problem can be ex-
amined with an energy approach. This is based on the av-
erage theorem of virtual work, which when specialized to
heterogeneous elastic bodies with Uniform Boundary Con-
ditions (2.5a), gives the elastic strain energy supplied to the
REV WE:

WE =
1

2
E : Chom : E |Ω| , (2.23)

where
Chom = 〈At : C : A〉 , (2.24)

showing that Chom is a symmetric tensor. This approach
allows to establish the bounds for the homogenised stiffness
tensor. In particular, it is possible to demonstrate that:

(∀E) E : Chom : E > 0 , (2.25a)

(∀E) E : (Chom − 〈C〉) : E 6 0 . (2.25b)

They can be formally summarized by:

Chom > 0 , (2.26a)

Chom 6 〈C〉 = (1−φ0)Cm . (2.26b)

The inequality 4 (2.26b) is a writing of the Voigt bound. It
is associated with the uniform strain boundary condition
(2.5b).
In the case of isotropic macroscopic behaviour Chom canIsotropic

macroscopic
behaviour

be expressed as a function of the homogenised shear and
bulk moduli µhom and κhom:

Chom = 3κhomJ + 2µhomK , (2.27)

where the fourth-order tensors J and K are defined as:

J =
1

3
I⊗ I , K = I − J , (2.28)

representing the spherical and deviator tensors, respectively.
From inequalities (2.26), it is readily seen that bounds of
elastic constants µhom and κhom are:

0 6 κhom 6 (1−φ0)κm , (2.29a)

0 6 µhom 6 (1−φ0)µm . (2.29b)

4 In the sense of quadratic forms in the space of second-order symmetric
tensors.
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In this section we have derived the macroscopic constitutive
law for a dried porous material, defining the homogenised
stiffness tensor Chom starting from the micromechanical
boundary value problem (2.4). Different expressions of Chom

are examined, finding that it depends on:

1. the mechanical properties of the material matrix (Cm);

2. the porosity φ0, i. e. the volume fraction of voids;

3. the geometry of the microstructure or pore space, which
is included in the definition of the average of the local-
isation tensor A.

In addition, the bounds of the homogenised stiffness ten-
sor are given and specified for the isotropic macroscopic
behaviour.

2.2.3.5 The principle of effective stress

For porous media, whose pore space is saturated with a
pressured fluid phase, it is possible to retrieve the princi-
ple of effective stress using a micro-mechanical approach.
In particular, given the constitutive behaviour of the porous
material matrix, we are interested in evaluating the mechan-
ical effect of the pore pressure. Assuming that the micro-
scopic and macroscopic pressure gradients are of the same
order of magnitude, the mechanical interaction between the
fluid and the solid at the microscopic level can be taken into
account through a uniform pressure P that is equal to the
macroscopic one, which is applied at the solid-fluid inter-
face. Thus, the macroscopic pressure P plays the role of an
additional loading parameter acting on the REV.

Let us consider that the pressure P, which is also the
constant pressure in the fluid, is acting along the whole
solid-pore interface. The loading applied to the matrix of the Boundary

value problem
formulation

porous medium Ωm is defined by the pressure P and ten-
sors E or Σ representing respectively the strain and stress
state of the REV at macroscopic scale. From this point on,
we choose to work with kinematic homogenisation, but of
course it is possible the writing of this problem in terms of
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static homogenisation. The most general form of the bound-
ary value problem, written on the solid phase only, can be
stated as:

∇ ·σ = 0 in Ωm , (2.30a)

σ = Cm : ε in Ω , (2.30b)

ε = sym(∇u) in Ωm , (2.30c)

u(x) = E · x on ∂Ω , (2.30d)

T = −P n(x) on ∂Ωp , (2.30e)

From (2.30) follows that the strain and stress fields ε(x)The
homogenised

state equation
and σ(x) are linear functions of the loading parameters. The
strain field can be written as:

ε(x) = A : E−A ′(x)P (2.31)

where the fourth-order tensor A takes into account the local
strain induced by the macroscopic strain Ewhile the second-
order tensor A ′ takes into account the local strain induced
by the pressure P. Substituting (2.31) in (2.30b) yields the
expression of the microscopic stress field σ(x):

σ(x) = Cm : A : E− Cm : A ′(x)P (2.32)

The macroscopic stress tensor Σ is derived from the micro-
scopic stress field using the average rule (7.6):

Σ =
1

|Ω|

∫
Ω

σ(x)dV =
(1−φ0)

|Ωm|

∫
Ωm

σ(x)dVm+

+
φ0
|Ωp|

∫
Ωp

−PIdVp =

= (1−φ0)Cm : 〈A〉m : E−
[
(1−φ0)Cm : 〈A ′〉m +φ0I

]
P .

(2.33)

Remembering the definition of Chom reported in Eq. (2.22)
and defining the Biot second order tensor B as:

B = (1−φ0)Cm : 〈A ′〉m +φ0I , (2.34)

yields the principle of effective stress:

Σ = Chom : E−BP , (2.35)
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which can be seen also as a macroscopic constitutive be-
haviour of saturated porous media. This equation repre-
sents the principle of effective stress, according to the Biot’s
theory (Biot, 1941, 1962), stated for the first time by Terzaghi
(1923), long before the microporomechanics was conceived.
In particular, we found that the term BP is a measure of the
mechanical effects induced by a pressurised phase inside
the saturated porous medium.

2.2.3.6 The Biot Tensor

The Biot tensor can be written in a different way applying
the Betti theorem (Dormieux et al., 2006):

B = I− (1−φ0)I : 〈A〉m . (2.36)

Moreover, remembering (2.16) it reduces to:

B = φ0I : 〈A〉p . (2.37)

Equating (2.34) and (2.36) we get the link between 〈A ′〉m
and 〈A〉m:

Cm : 〈A ′〉m = I− I : 〈A〉m (2.38)

the isotropic case . Let us consider that the solid be-
haviour is isotropic and defined by the elasticity tensor:

Cm = 3κmJ + 2µmK (2.39)

where κm and µm are respectively the bulk and shear mod-
ulus of the solid phase and J, K the fourth-order tensors
defined by (2.28). Let us further consider, a porous medium
composed of an anisotropic solid phase which is randomly
distributed at the microscopic scale. Since it entails a macro-
scopic isotropic behaviour, the average strain concentration
tensor 〈A〉m can be divided into a spherical and a deviatoric
part:

〈A〉m = (Am)v J + (Am)dK . (2.40)

Substituting (2.39) and (2.40) in (2.22) yields:

κhom = (1−φ0)κm (Am)v , (2.41a)

µhom = (1−φ0)µm (Am)d . (2.41b)
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It is worth noting that (Am)v and (Am)d capture the dis-
crepancy between homogenised bulk κhom and shear mod-
uli µhom with respect to the Voigt bounds (2.29). Under
these hypotheses and remembering (2.41a), the Biot tensor
can be written as:

B = bI , b = 1− (1−φ0) (Am)v = 1−
κhom

κm
. (2.42)

where b is called Biot’s coefficient. Moreover, applying (2.29)
obtained in the isotropic case leads to the derivation of up-
per and lower bounds for the Biot’s coefficient b:

φ0 6 b = 1−
κhom

κm
6 1 , (2.43)

where the Voigt bound constitutes the lower bound of the
inequality (2.43). From the Voigt bound also follows that
0 6 (Am)v 6 1.

In this Section we have found some interesting relations
regarding the Biot’s tensor; different writings are examined
and it is found that it depends on:

1. the porosity of the porous medium φ0, i. e. the volume
fraction of voids;

2. the geometry of the microstructure or pore space, which
is included in the definition of the average of the local-
isation tensor A.

This proves that mechanical effects due to a pressurised
phase saturating the porous medium depend on the poros-
ity and the geometry of the pore space. In addition, the
Biot’s tensor is derived for the isotropic macroscopic be-
haviour, defining the Biot’s coefficient. Finally, we derive the
bounds for the Biot’s coefficient.

2.2.4 Needs for further research

Contributions on the modelling of the mechanical effects
induced by salt crystallisation in multiphase porous media
either at macro scale or at the microscopic one can be found
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in the literature. Nevertheless, mechanical effects are not in-
vestigated from a rigorous micro-mechanical point of view.
Moreover, there is no application to real porous media, be-
cause, until now, there were few experimental tools capa-
ble of capturing the real three-dimensional micro-structure
of the porous material and simulation computational costs
were prohibitive.

Indeed, a rigorous mechanical approach to the analysis
of porous media imposes to apply multi-scale techniques
(Coussy, 2004; Dormieux et al., 2006), in order to properly
account for the effects of the micro-structure in a macro-
scale computation.

However, the approaches proposed in the frame of lin-
ear microporomechanics, are generally based on simplified
pore geometries and analytical schemes (Coussy, 2006; Flatt
et al., 2014; Vlahinić et al., 2011), like for example the Mori-
Tanaka’s (Mori and Tanaka, 1973) one, which require strong
assumptions on the pore shape.

We have seen that the Biot’s tensor is used to describe at
the macro-scale the mechanical effect induced by the pres-
ence of a pressure acting on pore walls for saturated porous
media. For porous media saturated with different phases,
a partial Biot’s tensor can be defined, which can be gener-
ally written as a function of the degree of saturation of the
considered phase. On this regards, the challenge is to trans-
late the crystallisation’s physics in a mechanical interaction
between the phases

filling the pores and the material matrix, at the scale of
the material micro-structure.

Advanced experimental techniques, like X-ray µCT, com-
bined with numerical methods and open new scenarios on
the possibility to simulate the local stress in the material
micro-structures and to upscale it at the scale of the struc-
ture, allowing to refine relations linking the mechanical ef-
fect induced by salt crystallisation with the degree of satu-
ration of the considered phase.





Part I

H Y G R O - T H E R M O - C H E M I C A L
A S P E C T S

A new fully coupled multiphase model for hygro-
thermal analysis and prediction of salt diffusion
and crystallisation in porous building materials
– called briefly HTC model – is presented. A suit-
able modelling of the crystallisation/dissolution
and hydration/dehydration processes allows con-
sidering salts with hydrous and anhydrous crys-
tals. The model is specialised for sodium sul-
phate solutions and for sodium chloride solu-
tions. The predictive capabilities of the model
are validated on some experiments available in
the literature, involving fired-clay bricks and sodium
sulphate solutions. As regards sodium chloride
solutions, the role of temperature in modelling
and simulation of the whole phenomenon is in-
vestigated. Moreover, the salt diffusion and crys-
tallisation process in a masonry column exposed
to weather conditions is simulated both in isother-
mal and non-isothermal regime. Finally, the model
is extended to describe the drying kinetics lead-
ing to different efflorescence formations. The ex-
tended version of the model is then validated
through two different extensive campaigns on
drying in presence of sodium chloride salt so-
lution.





3
T H E H Y G R O T H E R M A L
C H E M I C A L M O D E L

A new Hygro-Thermo-Chemical (HTC) model is presented. It con-
sists in a fully coupled multiphase model for hygro-thermal anal-
ysis and prediction of salt diffusion and crystallisation in porous
building materials.
The equivalent relative humidity, the temperature, the concentra-
tion of the dissolved salt and the concentration of precipitated salts
are assumed as independent variables. The governing equations
are: moisture mass conservation, salt mass conservation, energy
balance and evolution equations describing salt crystallisation/dis-
solution and salt hydration/dehydration kinetics. The equations
are highly non-linear and fully coupled.
A suitable modelling of the crystallisation/dissolution and hydra-
tion/dehydration processes allows considering salts with multiple
crystallised forms involving hydrous and anhydrous crystals.

3.1 introduction

We will develop a new fully coupled multiphase numeri-
cal model to describe the macroscopic behaviour of porous
building materials contaminated with salts and subjected
to environmental loadings. Its formulation derives from the
model proposed in Castellazzi et al. (2013a).
We employ the concept of a Representative Elementary Vol-
ume (REV), in which each point of the total volume of the
porous medium is considered to be the centre of a REV. The
position of the centre of the REV in a global coordinate sys-
tem is described by the position vector at macroscopic scale
X. The size of the REV depends on the studied problem and
it is generally defined as an infinitesimal part of the struc-
ture under consideration, large enough to be representative
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of the constitutive material (Figure 3.1).

Domain of heterogeneity Domain of homogeneity

Size of the averaging volume

V
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Figure 3.1: Definition of the Representative Elementary Volume.

If L, ` and d are the characteristic lengths of the struc-
ture, elementary volume and local heterogeneities respec-
tively, the conditions that allow the defining of REV are:

d� `� L . (3.1)

More details on the determination of REV’s size will be given
in Chapter 8.

3.2 assumptions

A multiphase continuous porous medium (Gawin and Schre-
fler, 1996; Schrefler, 2002) is considered. It is represented as
a superimposition of continuous media. The porous medium
consists of a network of interconnected voids (pores) inside
a solid skeleton. The voids are filled partly with a liquid
phase, partly with a gaseous phase and partly with solid
phase. The liquid phase is modelled as non-ideal solution
consisting of liquid water and dissolved salt. Only one salt is
assumed to be dissolved in the solution. The gaseous phase
is a perfect gas consisting of dry air and water vapour. For
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simplicity, the presence of dry air is not explicitly consid-
ered in the model. Moreover, N salt solid phases are consid-
ered. All the phases and species that constitute the porous
medium are summarized in Table 3.1.
In the following, gaseous, liquid and solid phases are de-

phases (π) species(α)

Gaseous phase g Water vapour w

Liquid phase l Liquid water w

(salt solution) Dissolved salt s

Solid phase s Matrix material m

Precipitated salt si
(i-th crystallised form i=1...N)

Table 3.1: Phases and species of the model

noted by superscripts g, l and s, respectively. The material
matrix, water, dissolved salt and precipitated salt are de-
noted by subscripts m, w, s and si, respectively. Subscript
i refers to the specific crystallised form of the dissolved
salt. The REV is sketched in Figure 3.2, in the hypothesis
of two precipitated salts. The pores are considered cylin-
drical with isotropic distribution (Castellazzi et al., 2013a;
Espinosa et al., 2008a). The effect of the deformation of the
material matrix on the transport of various phases (de Mi-
randa et al., 2009) is neglected as well as the gravitational
effects. The content of each component is described by the

liquid phase (l)

precipitated salts (s)gaseous phase (g)

liquid water

dissolved saltsprecipitated salts

gaseous phase solid matrixsolid matrix (s)

Figure 3.2: Porous medium: Representative Elementary Volume
(REV)

concentration cπα, defined as the mass of α in π-phase mπα
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per unit volume of porous medium, or by the corresponding
saturation degree Sπα, defined as the pore volume occupied
by α in π-phase. The concentration cπα and the correspon-
dent saturation degree Sπα can be related as:

cπα = (φ0 · Sπα) · ρπα , (3.2)

where ρπα is the mass density of α in π-phase and φ0 is the
total open porosity defined as the volume of voids per unit
volume of porous medium. The degrees of saturation of all
the components satisfy the relation:

Sgw + Slw + Sls + S
s
s = 1 , (3.3)

where the saturation degree of the precipitated salts Sss is
defined as the sum of the saturation degrees of the differ-
ent crystallised forms: Sss =

∑N
i=1 S

s
si

. The concentration of
the precipitated salt in the i-th crystallised form, cssi , can be
written as the sum of two contributes:

cssi = (cssi)cry + (cssi)hyd , (3.4)

where (cssi)cry is the amount of precipitated salt due to crys-
tallisation/dissolution process and (cssi)hyd is the amount
of precipitated salt due to hydration/dehydration process.

For simplicity, an instantaneous thermodynamic equilib-
rium is assumed between liquid phase and gaseous phase.
Based on this assumption, it is convenient to combine liquid
water concentration cgw and vapour water concentration clw
into moisture concentration cw = c

g
w + clw . Note that wa-

ter bound in hydride phases is not included in the moisture
definition. In order to keep the model simple, whereas use-
ful, the concentration of liquid water can be approximated
to the concentration of moisture cw ' clw.
Finally, the mass fraction ω of the dissolved salt per unit
mass of liquid phase can be used to describe the content of
dissolved salt. The mass fraction ω is defined by the follow-
ing expression:

ω =
mls

mls +m
l
w

=
mls
mlsw

=
cls
clsw

. (3.5)
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It follows that the relation between ω and cls is:

cls =
ω

1−ω
clw . (3.6)

3.3 balance equations

In this section, the balance equations of moisture mass, salt
mass and total stored energy are presented. Making refer-
ence to the REV in Figure 3.2, at the macroscopic scale the
mass conservation equations of water vapour, liquid water
and salt can be written respectively as:

∂c
g
w

∂t
+∇ · jg

w
= µlgw , (3.7)

∂clw
∂t

+∇ · jl
w

= µlgw − µlsw , (3.8)

∂cls
∂t

+∇ · jl
s
+

N∑
i=1

∂cssi
∂t

= µlsw . (3.9)

being jg
w

the flux of vapour water, jl
w

the flux of liquid
water, jl

s
the flux of dissolved salt, µlsw the rate of liquid

water consumed by crystallisation of hydrated salt crystals
or by the hydration/dehydration process and µlgw the water
evaporation rate. The derivative of cssi respect to the time in
Eq. (3.9) accounts for crystallisation/dissolution and hydra-
tion/dehydration rates. The moisture balance equation can
be obtained summing Eqs. (3.7) and (3.8):

∂cw

∂t
+∇ · j

w
= −µlsw , (3.10)

where j
w

= jg
w
+ jl
w

denotes the moisture flux.
Since all the components of the liquid phase are convected

by the liquid phase velocity, mass fractions can be used to
relate the flux of the individual component to the flux of the
phase. In particular, the flux of liquid water jl

w
and the flux

of dissolved salt jl
s

can be described based on the typical
expressions for binary solutions:

jl
w

= (1−ω) jl
ws

+ jl
w,diff = (1−ω) jl

ws
− jl
s,diff , (3.11)
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jl
s
= ωjl

ws
+ jl
s,diff , (3.12)

where jl
ws

is the flux of the liquid phase, jl
s,diff is the dif-

fusive flux of dissolved salt and jl
w,diff is the diffusive flux

of liquid water. It is worth noting that (1−ω) is the mass
fraction of liquid water per unit mass of the liquid phase
and the diffusive flux of liquid water jl

w,diff is simply the

opposite of the diffusive flux of dissolved salt jl
s,diff.

The conservation equation for the total stored energy within
the REV accounts for the energy transport by conduction and
transport of enthalpy associated with the mass flux of each
individual component:

∂e

∂t
+∇ · j

e
= 0 , (3.13)

with:

e = csme
s
m + cgwe

g
w + clwe

l
w + clse

l
s+ (3.14a)

+

N∑
i=1

[
(cssi)cry(e

s
si
)cry + (cssi)hyd(e

s
si
)hyd

]
,

j
e
= j

q
+ egw j

g
w
+ elw j

l
w
+ els j

l
s

. (3.14b)

In the above expressions, e is the total enthalpy per unit
volume of porous medium, eπα is the enthalpy of α in π-
phase and j

q
is the heat flux and csm is the bulk density of

material matrix csm = (1−φ0)ρ
s
m .

For sake of simplicity no heat source/sink are considered.
The enthalpies of various components are expressed with
respect to a reference state at T = 0 in the following forms:

esm = βsmT , (3.15a)

esm = βsmT +Heva , (3.15b)

elw = βlwT , (3.15c)

els = β
l
sT , (3.15d)

esm = βsmT +Heva , (3.15e)

(essi)cry = βssiT +Hcryi , (3.15f)

(essi)hyd = βssiT +Hhydij . (3.15g)
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where βπα is the specific heat capacity of α in π-phase,
Heva is the latent heat of evaporation, Hcryi is the latent
heat of crystallisation of the i-th crystallised form, Hhydij
is the latent heat of hydration/dehydration from the j-th
crystallised form to the i-th one. In general, βπα and Heva
depend on the temperature. Here, for the sake of simplicity,
the dependency of βπα from temperature is neglected.
Substituting expressions (3.15), (3.14) into Eq. (3.13) and
making use of Eqs. (3.7)-(3.9), it is possible to write the en-
ergy balance in the form:

ρeffβeff
∂T

∂t
+∇ · j

q
+

+
(
βgwj

g
w
+βlwj

l
w
+βlsj

l
s

)
· ∇T+

+ µlgw
[(
βgw −βlw

)
T +Heva

]
+ µlsw

(
βls −β

l
w

)
T+

+

N∑
i=1

(
∂cssi
∂t

)
cry

[(
βssi −β

l
s

)
T +Hcryi

]
+

+

(
∂cssi
∂t

)
hyd

[(
βssi −β

l
s

)
T +Hhydij

]
= 0 ,

(3.16)

where µlgw is the water evaporation rate, ρeff and βeff
are the effective mass density and the effective specific heat
capacity of the porous medium:

ρeff = c
s
m + cw + cls +

N∑
i=1

cssi , (3.17)

βeff =

βsmc
s
m + cgw

(
β
g
w +

∂Heva

∂T

)
+ clwβ

l
w + cls

ρeff
+

+

N∑
i=1

(
cssi
)
cry

(
βssi +

∂Hcryi
∂T

)
ρeff

+

+

N∑
i=1

(
cssi
)
hyd

(
βssi +

∂Hhydij
∂T

)
ρeff

.

(3.18)
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3.4 constitutive relations

The following relations are assumed as constitutive equa-
tions for the gas flow and the capillary liquid flow, respec-
tively:

jg
w

= −Kg∇pv ,

jl
ws

= −Kl∇pc ,
(3.19)

where Kg is the vapour permeability, Kl the liquid conduc-
tivity of the salt solution, pv the vapour pressure, pc the
capillary pressure. The vapour permeability Kg can be writ-
ten as:

Kg =
Dv

RvT
. (3.20)

where Dv is the vapour permeability coefficient and Rv is
the gas constant of water vapour. The vapour permeability
coefficient Dv is given by:

Dv =
Dairv
τv

fv(S
g
w) , fv = (Sgw)

ng , (3.21)

where Dairv is the vapour permeability for the dry air, τv is
a material reduction factor, fv a scaling factor which takes
into account the influence upon moisture, based on the re-
duction of available pore space through a scaling factor in
terms of Sgw (Scheffler and Plagge, 2010), ng a saturation
exponent that ranges from 1 to 3 (Koniorczyk and Gawin,
2011). Below a certain critical value of saturation, the gas
flow does not take place any more. Here, for simplicity, this
critical threshold is neglected. An expression to compute
Dairv [m2/s] is proposed in Sýkora et al. (2012):

Dairv = 2.306 · 10−5
(

T

273.15

)1.81

. (3.22)

Regarding the flux of the liquid phase given in Eq. (3.19),
the liquid conductivity can be expressed as:

Kl = gω(ω)Dlfl(S
l
w) , fl = (Slw)

ni . (3.23)
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where Dl is the liquid conductivity of pure water, gω is a
correction function which takes into account the presence
of salt and is function of the dissolved salt concentration, fl
is a correction factor which accounts for the water satura-
tion degree and the exponent nl ranges from 1 to 6 (Konior-
czyk and Gawin, 2011). The liquid flow is no longer possi-
ble when the water saturation degree is lower than a critical
threshold, because the liquid phase is disrupted. Here, for
simplicity, the threshold is set to zero. According to Sýkora
et al. (2012), an empirical expression for the salt-free con-
ductivity is:

Dl =
h

ρlwRvT

[
3.8
(

A

φ0ρlw

)2
103(S

l
w−1)

]
∂cw

∂h
, (3.24)

where A is a parameter called water adsorption coefficient
and ρlw is the mass density of liquid water. An expression
for the correction function gω is proposed in Nicolai (2007):

gω =
ρlws
ρlw

(1− 0.03m) , (3.25)

where m is the molality, m =
ω

1−ω

1000

Ml
s

being Ml
s [g/mol]

the molar mass of the solute, and ρlws is the mass density
of the liquid phase which is function of ω and can be evalu-
ated as discussed in Derluyn (2012). Precipitated salt dimin-
ishes the effective porosity and, as a consequence, influences
the intrinsic permeability of the porous medium. This effect
can be taken into account by modifying coefficients Dv and
Dl through a correction function depending on the effective
porosity φeff :

Dv ← gv(φeff)Dv , Dl ← gl(φeff)Dl , (3.26)

with:

φeff = φ0

(
1−

N∑
i=1

Sssi

)
. (3.27)

A simple choice for the correction functions is gv = (1 −

Sss)
nsv , gl = (1− Sss)

nsl , where nsv and nsl are material depen-
dent parameters that, in the absence of experimental data,
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can be set equal to 1. The vapour pressure and the capillary
pressure in Eq. (3.19) can be expressed in terms of equiva-
lent relative humidity h, which takes into account for the
reduction of vapour pressure over a salt solution, as:

pv = pv,sat h , pc = ρ
l
wRvT ln(h) , (3.28)

where pv,sat is the saturation vapour pressure of the salt
mixture, that depends on temperature as well as on dis-
solved salt concentration. In particular, the saturation vapour
pressure of salt mixture can be taken as:

pv,sat = pv,satw(T) · aw(ω) , (3.29)

where pv,satw is the saturation vapour pressure of the pure
water and aw is the water activity of salt solution. This latter
quantity is defined as:

aw = γXw . (3.30)

where γ is the mean activity coefficient of the dissolved
salt using the mole fraction scale, that can be evaluated by
the ion interaction approach as illustrated in Marliacy et al.
(2000) and Steiger et al. (2008), and Xw is the molar fraction
of the solvent, that is pure water. The latter quantity can be
expressed in terms of the mass fraction ω as follows:

Xw(ω) =
(1−ω)Ml

s

(1−ω)Ml
s +ωMH2O

, (3.31)

where MH2O (g/mol) is molar mass of the pure water. Un-
der the hypothesis of ideal solution, γ is equal to 1. It is
worth noting that the equivalent relative humidity is related
to the relative humidity h0 as follows:

h0 = awh . (3.32)

Indeed, the relative humidity for thermodynamic reasons
(Coussy, 2006; Nguyen et al., 2008) is generally defined as:

h0 =
pv

pv,satw(T)
; (3.33)
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note that when there is no salt the two humidity measures
coincide.
The diffusive flux of the dissolved salt, jl

s,diff is assumed as
follows:

jl
s,diff = −ρlwsKs∇ω , (3.34)

where Ks is the diffusion coefficient and ρlws is the mass
density of the liquid phase. The diffusion coefficient Ks can
be written as:

Ks =
Ds

τl
fs(S

l
w) , fs = (Slw)

ns , (3.35)

where Ds is the diffusion coefficient of a salt-free solution
and τl is the tortuosity. Based on the same arguments as
those used to derive the expression for liquid conductivity,
fs is a correction factor that takes into account the actual
cross section available for diffusion. A limit value of liquid
water content below which the diffusive process becomes
impossible should be taken into account, but, for simplicity,
such a limit value is neglected.
According to the Fourier’s Law, the heat flux j

q
is taken as:

j
q
= −λeff∇T , (3.36)

where λeff is the effective thermal conductivity of the porous
material. It accounts for the heat conduction through the
skeleton and the mobile phases. The thermal conductivity
of a salt solution is approximately proportional to its wa-
ter content, so λeff can be evaluated based on the following
relation:

λeff = λ
dry
m +φ0

(
Slwλw +

N∑
i=1

Sssiλsi

)
, (3.37)

where λw dry is the thermal conductivity of the dry mate-
rial, considering only the material matrix and empty pores,
λw is the thermal conductivity of the liquid water and λsi is
the thermal conductivity of precipitated salt in the i-th crys-
tallised form. Both λw and λsi depend on the temperature.
The thermal conductivity of the liquid water is reported in
Appendix A. The dependency of λdrym on the temperature
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can be neglected.
As regards the latent heat of evaporation Heva, the expres-
sion proposed in Sýkora et al. (2012) is adopted (Heva is
expressed in [J/kg]):

Heva = 2.5008 · 106
(
273.15
T

)(0.167+3.67·10−4T)
. (3.38)

The latent heats Hcryi and Hhydij depend on temperature
T and on salt concentration and can be calculated through
the method described in Derluyn (2012) and Marliacy et al.
(2000). According to Marliacy et al. (2000) and to the Pitzer’s
model, the latent heat of crystallisation for an anhydrous
salt, Hcryj , is given by:

Hcryj = −
∆solH∞ +∆HL

Ms
sj

. (3.39)

whereMs
sj

is the molar mass of the j crystallised form, ∆solH∞
is the molar dissolution enthalpy at infinite dilution of the
anhydrous salt and ∆HL is a correction term which takes
into account for the excess of enthalpy of a solution contain-
ing 1 kg of water. The derivation of the above expression is
reported in Appendix B. ∆solH∞ depends on temperature
T and a possible correlation is reported in Marliacy et al.
(2000):

∆solH∞ =a∞ + b∞(T − T0) ,

T0 =298, 15 K ,

273, 15 <T < 373.15 K ,

(3.40)

with a∞ and b∞ parameters tabled in Appendix A for chlo-
ride and sulphate solutions. If i is a hydrated crystallised
form and j is the anhydrous one, it is possible to write (Der-
luyn, 2012; Marliacy et al., 2000):

Hhydij =
hhyd

Ms
si

, Hhydji = −
hhyd

Ms
sj

. (3.41)

where hhyd is the molar enthalpy of hydration/dehydra-
tion which depends on temperature. A possible correlation
is reported in Appendix A for sulphate solutions.
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3.5 sorption/desorption curves

In this work, the instantaneous equilibrium between liquid
and vapour water is assumed. Accordingly, the moisture
content at a certain temperature can be expressed as a func-
tion of the relative humidity. This relation, known as sorp-
tion/desorption isotherm, can be considered as a material
property and can be obtained by experimental testing (Gar-
recht et al., 2013; Hansen, 1986; Karoglou et al., 2005; Treschler,
2001). In general, the desorption isotherm lies above the
sorption one, so that the two curves show a hysteresis loop
(Karoglou et al., 2005; Koniorczyk and Gawin, 2008). For the
sake of simplicity, this phenomenon is neglected. The sorp-
tion isotherm is commonly determined for pure water, but
it is influenced by the dissolved salt because of the changing
contact angle and the surface tension of the solution (Gar-
recht et al., 2013; Koniorczyk and Gawin, 2008), and can
be conveniently expressed in terms of saturation degree of
the solution Slws as a function of the equivalent relative hu-
midity. Moreover, the extension to a non-isothermal regime
can be made by the so-called modified Oswin model as pro-
posed in Karoglou et al. (2005). In particular, the analyti-
cal expression for sorption/desorption curves proposed in
Sýkora et al. (2012) for isothermal regime is here extended
to non-isothermal regime as:

Slws =
Ψ(T) − 1

Ψ(T) − h
h

(
1−

N∑
i=1

Sssi

)
, (3.42)

where Ψ is the sorption isotherm parameter, which depends
on the temperature, and it is obtained by fitting experimen-
tal data or the predicted data provided by the modified Os-
win model, for example by enforcing the value of water con-
tent at a certain value of relative humidity.
The relation (3.42) for sorption curves takes into account for
the presence of precipitated salt inside the pores and, in-
directly, the effect of the presence of dissolved salt. In fact,
denoting by h0 the relative humidity, the equivalent relative

humidity h can be written as
h0
aw

or, for an ideal solution,
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as
h0
Xw

. Then, the saturation degree of the solution, suppos-

ing that
N∑
i=1

Sssi = 0 , can be expressed in terms of relative

humidity h0 as:

Slws =
Ψ(T) − 1

awΨ(T) − h0
h0 . (3.43)

The trend of Slws(h0) while varying the water activity is
represented in Figure 3.3. Finally, the moisture content cw
and the water saturation degree Slw can then be expressed
in terms of Slws as:

cw = φ0(1−ω)ρlwsS
l
ws , (3.44a)

Slw = (1−ω)
ρlws
ρlw

Slws . (3.44b)

Figure 3.3: Degree of saturation of a salt solution function of wa-
ter activity.

3.6 kinetic laws

The kinetic law quantifies the amount of salt that precipi-
tates in a certain crystallised form. The crystallisation/disso-
lution as well as the hydration/dehydration process are con-
sidered. For simplicity the deliquescence process is not ex-
plicitly considered. As already outlined, reference is made
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to a pore model that considers cylindrical pores with isotropic
distribution (Espinosa et al., 2008a). In the conditions proper
to crystallisation we assume that a certain amount of nu-
clei is present in the solution and, to keep the mathematical
model as simple as possible, nuclei are assumed of cylindri-
cal form with radius rp (Figure 3.4) (Castellazzi et al., 2013a;
Espinosa et al., 2008a). The concentration of precipitated salt

Li

rp

Figure 3.4: Representation of the nucleation of n nuclei in the REV

pore volume

in the i-th crystallised form can be expressed as:

cssi =
mssi
Vtot

=
π r2p Li ρ

s
si
ni

Vtot
. (3.45)

where Liis the length of a crystal and ni is the number of
nuclei of the i-th kind of crystal in the REV, at a certain in-
stant t (see Figure 3.4 ). Through simple steps, it is possible
to show that:

ni
Vtot

= φ0 S
l
sw ni , (3.46)

where ni is the amount of nuclei per unit volume of solu-
tion of the i-th crystallised form and Slsw is the saturation
degree of the solution, Slsw = Slw + Sls.
During the kinetic processes we assume that the total amount
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of nuclei in the REV n does not change. Hence the following
constraint holds:

∂n

∂t
= 0 , n =

N∑
i=1

ni . (3.47)

In the numerical applications, ni has been taken propor-
tional to the number of precipitated moles of salt as:

ni = n

cssi
Ms
si

N∑
k=1

cssk
Ms
sk

. (3.48)

Differentiating cssi with respect to the time yields:

∂cssi
∂t

= π r2pρ
s
si

ni
Vtot

∂Li
∂t

+
π r2pρ

s
si
Li

Vtot

∂ni
∂t

, (3.49)

In Eq. (3.49), the first term of the sum accounts for the crys-
tallisation/dissolution process:(

∂cssi
∂t

)
cry

= π r2pρ
s
si

ni
Vtot

∂Li
∂t

= π r2pρ
s
si
φ0 S

l
swni

∂Li
∂t

,

(3.50)

the second term accounts for the hydration/dehydration
process, (

∂cssi
∂t

)
hyd

=
π r2pρ

s
si
Li

Vtot

∂ni
∂t

= π r2pρ
s
si
φ0 S

l
swLi

∂ni
∂t

.

(3.51)

The outlined model, which considers cylindrical pores with
the same radius, could be further improved by imaging the
material pore microstructure subdivided in a number of
pore classes. To complete the definition of the kinetic laws
we need to define the growth rate of the length of the crys-
tal for the crystallisation/dissolution process and rate of
hydration/dehydration process. The supersaturation ratio,
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defined as the current concentration of dissolved salt ω di-
vided by the concentration at saturationωsat, is assumed as
the driving force of salt crystallisation or dissolution. Crys-
tallization starts when the supersaturation ratio is greater
than the threshold α0 and dissolution starts when the su-
persaturation ratio is less than one:

ω

ωsat
> α0 → crystallisation,

ω

ωsat
< 1→ dissolution.

For primary crystallisation α0 > 1 and depends on porosity
and salt, further crystallisation proceeds at α0 = 1. Accord-
ing to Koniorczyk and Gawin (2011) and Derluyn (2012),
the growth rate of the i-th crystal characteristic length can
be written as:

∂Li
∂t

= Kci

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣Pcryi . (3.52)

where both the growth rate coefficient, KCi , and the crys-
tallisation process order, Pcryi , depend on the properties of
porous material and salt. An expression for KCi is reported
in Derluyn (2012):

KCi = Ci exp
(
−
Eai
RT

)
. (3.53)

with Ci the growth rate constant, Eai the activation energy
of the specific process, R the universal gas constant and T
the temperature. When in the REV there is a precipitated
salt in its i-th crystallised form, a variation of humidity or
temperature could lead to a hydration/dehydration of the
salt. The salt hydration describes the absorption of water
molecules in the salt crystal to build an hydrated salt. The
salt dehydration is the reverse process, and the hydration
rate can be defined as:

Li
∂ni
∂t

= KHij

∣∣∣∣ h0h∗(T)
− 1

∣∣∣∣Phydij , (3.54)
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where h∗(T) gives the equilibrium relative humidity at which
the phase change between hydrate and anhydrous salt starts,
KHij is the kinetic hydration/dehydration parameter, which
is the velocity needed by the j precipitated salt to transform
into the i-precipitated salt, Phydij is the process order which
can be assumed equal to 1 for a diffusion forced hydration
(Espinosa et al., 2008b). The rate of hydration is different
from the rate of dehydration, since the kinetic hydration pa-
rameter, KHij , and the kinetic dehydration parameter, KHji ,
are related by the following expression:

KHji =
Lj

Li
KHij . (3.55)

This relation can be derived by considering that in a certain
point and at a certain instant there is a unique value of rel-
ative humidity and temperature. Moreover, we assume that
the number of salt nuclei that dehydrates is equal to the one

that hydrates, i. e.
∂ni
∂t

=
∂nj

∂t
. The ratio LjLi can be calculated

taking into account the isotropic cylindrical pore model and
the fact that from 1 mol of hydrous salt, 1 mol of anhydrous
salt is obtained through the hydration/dehydration process:

πr2pLiρ
s
si

Ms
si

=
πr2pLjρ

s
sj

Ms
sj

. (3.56)

Consequently:

Lj

Li
=
Ms
sj
ρssi

Ms
si
ρssj

=
(Vm)ssj
(Vm)ssi

. (3.57)

where (Vm)ssj is the molar volume of the salt in the i-th
crystallised form. This can be evaluated using the following
expression:

(Vm)ssi =
NAV

i
cell

Zi
. (3.58)

where NA is the Avogadro constant, Vicell is the unit cell
volume of the i-th crystallised form and Zi is the number of
formula units in the unit cell of the i-th crystal.
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3.7 source and sink terms

The water evaporation rate µlgw in the porous medium can
be evaluated as:

µlgw = −∇ · (Kg∇pv) . (3.59)

Taking into account the dependency of pv,sat on T and ω,
it is possible to obtain the relation between the water evap-
oration rate and the independent variables h, T , ω :

µlgw = −

[(
∂Kg

∂T
pv,sat + 2Kg

∂pv,sat

∂T

)
∇T · ∇h

]
+

−

[
2Kg

∂pv,sat

∂ω
∇ω · ∇h+Kgpv,sat∇2h

]
+

−

[(
∂Kg

∂T
h
∂pv,sat

∂ω
+ 2Kgh

∂2pv,sat

∂ω∂T

)
∇ω · ∇T

]
+

−

[
Kgh

∂2pv,sat

∂ω2
∇ω · ∇ω

]
+

−

[(
∂Kg

∂T
h
∂pv,sat

∂T
+Kgh

∂2pv,sat

∂T2

)
∇T · ∇T

]
+

−

[
kgh

∂pv,sat

∂T
∇2T +Kgh

∂pv,sat

∂ω
∇2ω

]
.

(3.60)

The rate of liquid water trapped in hydrated crystals µlsw can
be be defined as:

µlsw =
∂clsw
∂t

. (3.61)

where clsw is the concentration of the liquid water trapped
in hydrated crystals that can be written as:

clsw =MH2O

N∑
i=1

ν0i
cssi
Ms
si

, (3.62)

being ν0i the number of water molecules trapped per salt
mole in order to form the i-th crystallised form. Substituting
Eq. (3.62) in Eq. (3.61) yields the rate of liquid water trapped
in hydrated crystals µlsw , that can be written as:

µlsw =

N∑
i=1

ν0i
MH2O

Ms
si

∂cssi
∂t

. (3.63)
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Using the latter expression, Eqs. (3.9) and (3.10) take the
forms:

∂cw

∂t
+∇ · j

w
+

N∑
i=1

ν0i
MH2O

Ms
si

∂cssi
∂t

= 0 , (3.64)

∂cls
∂t

+∇ · jl
s
+

N∑
i=1

(
1− ν0i

MH2O

Ms
si

)
∂cssi
∂t

= 0 . (3.65)

Finally, remembering that:

Ms
si

=Ml
s + ν0iMH2O , (3.66)

Equation (3.65) can be rewritten as:

∂cls
∂t

+∇ · jl
s
+

N∑
i=1

Ml
s

Ms
si

∂cssi
∂t

= 0 . (3.67)

3.8 summary of the htc model equations

Considering the crystallisation of a salt solution withN crys-
tallised forms and taking into account the dependencies out-
lined in the previous sections, the resulting governing equa-
tions of the model, that is the balance Eqs. (3.7), (3.8) and
(3.13) together with the kinetic law, Eq. (3.49), can be writ-
ten as:

ϕh
∂h

∂t
+∇ · [−Chh∇h−ChT∇T −Chω∇ω]+

+ϕhω
∂ω

∂t
+ϕhT

∂T

∂t
+

N∑
i=1

ϕhsi
∂cssi
∂t

+ µlsw = 0 ,
(3.68)

ϕω
∂ω

∂t
+∇ · [−Cωh∇h−CωT∇T −Cωω∇ω]+

+ϕωh
∂h

∂t
+ϕωT

∂T

∂t
+

N∑
i=1

ϕsi
∂cssi
∂t

− µlsw = 0 ,
(3.69)
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ϕT
∂T

∂t
+∇ · [−CTT∇T −CTh∇h−CTω∇ω]+

−µlswB
∗
w + µlgwBw +

N∑
i=1

(ϕTsi)cry

(
∂cssi
∂t

)
cry

+

+

N∑
i=1

(ϕTsi)hyd

(
∂cssi
∂t

)
hyd

= 0 ,

(3.70)

∂cssi
∂t

= ±Cssi

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣Pcryi ±Cshi ∣∣∣∣ hh∗ − 1
∣∣∣∣Phydi . (3.71)

It is worth remarking that the following constraints hold:

Sπα > 0 ,
∑

Sπα = 1 . (3.72)

The expressions of coefficients ϕij, Cij, Bi for the system
(3.68)-(3.71) are detailed in Appendix B.
The model equations are completed by the initial and bound-
ary conditions. In particular, the boundary conditions on a
certain portion of the domain boundary can be of Dirichlet
type:

h = h ,

ω = ω ,

T = T ,

(3.73)

and of Neumann’s or Robin’s type:

j
w
·n = qw + γw(h0 − hα) ,

jl
s
·n = qω ,

j
e
·n = qT + γT (T − Tα) ,

(3.74)

where n is the outward unit normal to the boundary, h, ω
and T are the prescribed equivalent relative humidity, salt
concentration and temperature, respectively, qw, qω and qT
are the prescribed normal fluxes of moisture, salt and heat,
hα and Tα are the prescribed environmental humidity and
temperature, and γw and γT are the convective humidity
and thermal coefficients, respectively.
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3.9 concluding remarks

A new coupled multiphase model for the hygrothermal anal-
ysis of porous building materials with salt crystallisation/dis-
solution and hydration/dehydration processes has been pre-
sented. The model is governed by three coupled, highly non-
linear differential equations – moisture mass conservation,
salt mass conservation and energy balance – completed by
evolution equations that describe the kinetics of the salt pre-
cipitation.
The HTC model can be specialised for a great range of elec-
trolytic salts. In the following chapters a specialisation of
this Hygro-Thermo-Chemical (HTC) model for sodium sul-
fate solution and sodium chloride solutions will be presented.



4
S O D I U M S U L P H AT E S O L U T I O N

The HTC model presented in Chapter 3 is specialised for sodium
sulphate solutions. The predictive capabilities of the model are
validated on some experiments available in the literature, involv-
ing fired-clay bricks and sodium sulphate solutions. In particular,
firstly a constant humidity test is used to validate the crystallisa-
tion/dissolution kinetics. Then, the hydration/dehydration kinetics
is validated through a constant temperature test. Finally, a test
with variable hygro-thermal conditions is considered, where both
the crystallisation/dissolution and hydration/ dehydration processes
are involved.
The illustrated numerical applications on fired-clay bricks show
the effectiveness of the proposed approach.

4.1 specialisation

Here, the HTC model described in Chapter 3 is specialised
for sodium sulphate solutions. A detailed experimental study
on the phase diagram can be found in Steiger and Asmussen
(2008). Under the assumptions of normal atmospheric con-
ditions and temperature higher than 273 K, the sodium sul-
phate has two stable crystallised forms, mirabilite and thenardite
V. Hereinafter, the subscript 1 denotes mirabilite and the
subscript 2 denotes thenardite. The solubility and phase di-
agrams for sodium sulphate solution are reported in Figure
4.1. According to the hygrothermal conditions, the diagrams
in Figure 4.1 can be simplified. In particular, in the numeri-
cal applications presented in the next section only the bold
curves are considered. Moreover, the solubility experimen-

73
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Figure 4.1: Solubility diagram (a) and the phase diagram (b); the
curves considered in the numerical applications are
highlighted

tal data are approximated by using the following function
proposed in Koniorczyk and Gawin (2011):

ωsat =


0.0488 exp (0.0625 (T − 273.15))

273.15 6 T 6 305.55 K

0.3697 T > 305.55 K

(4.1)

On the basis of the experimental data given in Steiger and
Asmussen (2008), the equilibrium relative humidities for the
mirabilite-thenardite V transition due to the hydration/de-
hydration process can be approximated using the following
expression:

h∗(T) = 0.0082767 T + 0.606 273.15 6 T 6 305.55 K (4.2)

with T∗ = 305.55 K.
Moreover, considering sodium sulphate solution, Eq. (3.63)
can be written as:

µlsw = 10
MH2O

Ms
s1

∂css1
∂t

, (4.3)
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and the kinetic equation, Eq. (3.71), particularizes as:

∂css1
∂t

=



0 ω 6 ωsat css1 = 0 ,

−Css1

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣Pcry1 ω 6 ωsat css1 > 0 ,

Css1

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣Pcry1 ω > α01ωsat T < T∗

h0 > h∗ css2 = 0 ,

Css1

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣Pcry1 +Csh1 ∣∣∣∣h0h∗ − 1
∣∣∣∣Phyd1

ω 6 α01ωsat T < T∗ h0 > h∗ css2 > 0 ,

−Csh1

∣∣∣∣h0h∗ − 1
∣∣∣∣Phyd1 ω > α01ωsat

T < T∗ h0 < h
∗ css1 > 0 ,

0 ω > α01ωsat T < T∗ h0 < h
∗

css1 = 0 ,

−Csh1

∣∣∣∣h0h∗ − 1
∣∣∣∣Phyd1 ω > α01ωsat

T > T∗ css1 > 0 ,

0 ω > α01ωsat T > T∗ css1 = 0 ,

(4.4)
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for mirabilite,

∂css2
∂t

=



0 ω 6 ωsat css2 = 0 ,

−Css2

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣Pcry2 ω 6 ωsat css2 > 0 ,

−Csh2

∣∣∣∣h0h∗ − 1
∣∣∣∣Phyd2 ω > α02ωsat

T < T∗ h0 > h∗ css2 > 0 ,

0 ω > α02ωsat T < T∗

h0 > h∗ css2 = 0 ,

Csh2

∣∣∣∣h0h∗ − 1
∣∣∣∣Phyd2 ω > α02ωsat

T < T∗ h0 < h
∗ css1 > 0 ,

0 ω > α02ωsat T < T∗

h0 < h
∗ css1 = 0 ,

Css2

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣Pcry2 ω > α02ωsat

T > T∗ css1 = 0 ,

Css2

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣Pcry2 +Csh2 ∣∣∣∣h0h∗ − 1
∣∣∣∣Phyd2

ω 6 α02ωsat T > T∗ css1 > 0 ,

(4.5)

for thenardite. In the above equations:

Css1 = S
l
ws(n1φ0ρ

s
s1
π r2p)KC1 , (4.6a)

Csh1 =
ρss1π r

2
p

Vtot
KH12 , (4.6b)

Css2 = S
l
ws(n2φ0ρ

s
s2
π r2p)KC2 , (4.6c)

Csh2 =
ρss2π r

2
p

Vtot
KH21 . (4.6d)

The calculation of the kinetic parameters of Eq. (3.54) for
a sodium sulphate solution and an expression for the mo-
lar enthalpy of hydration/dehydration are reported in Ap-
pendix B.
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4.2 numerical applications

In this section, the predictive capabilities of the multiphase
coupled model described in Chapter 3 and specialised for
sodium chloride solutions in Section 4.1 are evaluated on
some tests involving fired-clay bricks. Firstly, two bench-
mark tests taken from the literature are considered (Espinosa
et al., 2008b; Koniorczyk and Konca, 2013). The first one
(Koniorczyk and Konca, 2013) is a constant humidity test
and serves to validate the crystallisation/dissolution kinet-
ics. The second one (Espinosa et al., 2008b) is a constant
temperature test and serves to validate the hydration/ de-
hydration kinetics. Then, an example with varying condi-
tions of temperature and humidity is considered. In this
case the processes of crystallisation/dissolution and of hy-
dration/dehydration are both involved. In these tests the
liquid phase is modelled as an ideal solution.
In order to solve the model, the governing equations are dis-
cretized in space using the finite element method. The pri-
mary variables h,ω, T , css1 and css2 are interpolated based on
standard Lagrangian shape functions. The time discretiza-
tion is carried out by means of the backward finite differ-
ence method. A standard iterative strategy based on the
Newton- Raphson method is applied to solve the non-linear
system of equations. The implementation has been devel-
oped using COMSOL (2008).

4.3 results and discussion

4.3.1 Test at constant humidity: crystallisation of mirabilite

The experiment proposed by Koniorczyk and Konca (2013)
is used here to validate the crystallisation/dissolution ki-
netics. Two bricks, one saturated with pure water and one
saturated with sodium sulphates solution (25% wt), are cov-
ered with hygral insulation and put into a climatic chamber,
where they are cooled and warmed. The experiment starts
at 303 K, then the cooling to 284 K induces the growth of
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Figure 4.2: Test at constant humidity: geometry (a) ; boundary
conditions and mesh (b)

mirabilite and, after, the warming up to 303 K causes the
dissolution of mirabilite. Temperature sensors are placed
in each brick, in the same position. However, temperature
data from the two bricks are different because of the heat
released or absorbed during the process of salt crystallisa-
tion/dissolution. The brick dimensions are 125 mm × 250

mm× 65 mm, see Figure 4.2a. The brick is completely sealed
to humidity and dissolved salt. As regards the temperature,
null Neumann boundary conditions are assumed on all the
faces except for the two smallest ones, where Robin bound-
ary conditions are assumed, Figure 4.2b. The initial condi-
tions are: T0 = 303 K, h0 = 1, ω0 = 0.25, css1(0) = 0 kg/m3,
css2(0) = 0 kg/m3. Owing to the geometry and boundary
conditions, the brick is modelled as a bi-dimensional do-
main. Here and in the following tests, 8-node plane ele-
ments with quadratic shape functions are adopted. The fi-
nite elements mesh is shown in Figure 4.2b. The values of
the model parameters used in the simulation are collected
in Table 4.1.
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Table 4.1: Test at constant humidity - Summary of model parame-
ters for a sodium sulphate solution

Quantity Value Units Source

MH2O
Molar mass of pure
water

18.015 g/mol Literature

Mmir
Molar mass of
mirabilite

322.196 g/mol Literature

Mthe
Molar mass of
thenardite

142.043 g/mol Literature

φ0 Brick porosity 0.20 -

Koniorczyk
and

Konca
(2013)

ρlw

Density of the wa-
ter in the liquid
phase

1000 Kg/m3 literature

ρss1
Density of the
mirabilite

1460 Kg/m3

Haynes
(2012-
2013)

ρss2
Density of the
thenardite

2700 Kg/m3

Haynes
(2012-
2013)

Ψ
Sorption isotherm
parameter

1.0094 -
Castellazzi

et al.
(2013a)

ρbrick
Mass density of
brick

1700 Kg/m3

Koniorczyk
and

Konca
(2013)

Pcry1

Mirabilite crystalli-
sation process or-
der

1 -
Derluyn
(2012)

Pcry2

Thenardite V crys-
tallisation process
order

1.5 -
Derluyn
(2012)

Phyd
hydration process
order

1 -
Espinosa

et al.
(2008b)
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Quantity Value Units Source

C1
Mirabilite growth
rate constant

1.165×10
14 m/s

Derluyn
(2012)

C2

Thenardite V
growth rate con-
stant

4.75×10
2 m/s

Derluyn
(2012)

Ea1
Mirabilite activa-
tion energy

113386 J/mol
Derluyn
(2012)

Ea2
Thenardite activa-
tion energy

57321 J/mol
Derluyn
(2012)

Rv
Gas constant of wa-
ter vapour

461.5 J/kg/K Literature

Dv
Vapour permeabil-
ity

0.0039006 m2/h
Sýkora

et al.
(2012)

Ds/τl
Diffusion coeff./
tortuosity

0.499×10
-9 m2/s

Haynes
(2012-
2013)

τv brick
Vapour resistance
factor

24.5325 -
Castellazzi

et al.
(2013a)

n
Number nuclei in
solution

4×10
-6

1/µm3

Espinosa
et al.

(2008a)

α0
Crystallization
threshold

1.7 -
Derluyn
(2012)

Abrick
water adsorption
coefficient

0.185 kg/m2s1/2

Castellazzi
et al.

(2013a)

rp
Average brick pore
radius

0.7 µm
Castellazzi

et al.
(2013a)

Heva
latent heat of evap-
oration

2451800 J/kg
Sýkora

et al.
(2012)

Hcry1

Mirabilite latent
heat of crystallisa-
tion

-211100 J/kg
Derluyn
(2012)
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Quantity Value Units Source

Hcry2

Thenardite V latent
heat of crystallisa-
tion

69200 J/kg
Derluyn
(2012)

Hhyd12
Latent heat of hy-
dration

-241607 J/kg Calculated

Hhyd21
Latent heat of de-
hydration

548038 J/kg Calculated

βms brick
Specific heat capac-
ity of brick

840 J/kg/K
Tariku
et al.

(2010)

βwg
Specific heat capac-
ity of water vapour

1847.7 J/kg/K
Haynes
(2012-
2013)

βwl
Specific heat capac-
ity of liquid water

4181.3 J/kg/K Literature

βss1
Specific heat capac-
ity of Mirabilite

1743 J/kg/K
Ahl

(2004)

βss2
Specific heat capac-
ity of Thenardite

891 J/kg/K
Ahl

(2004)

λdry brick
Thermal conduc-
tivity of dry brick

0.77 W/(mK)
Derluyn
(2012)

γw
Convective humid-
ity coefficient

0.4 kg/(m2s)
Castellazzi

et al.
(2013a)

γT
Convective ther-
mal coefficient

23 W/(m2K)
Derluyn
(2012)

Figure 4.3(a) shows the temperature in the point S (see
Figure 4.2(b)) in the two cases of pure water and of sulphate
solution, together with the environmental temperature. As
expected, there are differences between the curves of the
temperature in the case of pure water and in the case of sul-
phate solution due to the heat released and adsorbed during
the crystallisation/dissolution process. As it can be easily
verified, the results obtained agree with the observed exper-
imental results reported in Koniorczyk and Konca (2013).
The temperature change inside the specimen is shown in
Figure 4.3a. In particular, the temperatures in the point on
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Figure 4.3: Test at constant humidity – temperature in the point
S for the specimen saturated of pure water and of sul-
phate solution 25 %wt (a); temperature in points S and
C for the case of sodium sulphate solution (b).

the surface and in the centre of the specimen (points S and
C in Figure 4.2b) are given. The dissolved salt concentra-
tion and the supersaturation ratio in points S and C of the
specimen saturated with sulphate solution are shown in Fig-
ure 4.4. Moreover, Figure 4.5 shows the saturation degree
of precipitated mirabilite and the rate of trapped water in
points S and C. The supersaturation ratio for the primary
crystallisation is fixed at 1.7, in accordance with Koniorczyk
and Konca (2013). Comparing Figures 4.4 and 4.5 it can be
noted that the precipitation of mirabilite starts when the
solution becomes supersaturated. After that, the dissolved
salt concentration rapidly decreases, starting from the sur-
face (Figure 4.4). Crystal growth starts from the surface and
occupies the 5% of the pores, as shown in Figure 4.5a.
Notice that the values of these peaks agree with those found
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Figure 4.4: Test at constant humidity – dissolved salt concentra-
tion (a) and supersaturation ratio (b) in points S and
C of the specimen saturated with sulphate solution 25

% wt

in Koniorczyk and Konca (2013). The volume of crystals that
appear during cooling dissolves during warming up, so that
the dissolved salt reaches the initial value. The cycle is re-
peated twice. The rate of liquid water trapped in hydrated
salt crystal is shown in Figure 4.5b. As it can be noted, it
is positive during the formation of mirabilite and negative
during the dissolution process. As consequence, during the
crystallisation of mirabilite the water content decreases be-
cause of the water trapped in the crystals, the reverse occurs
during dissolution. Finally, the check on the mass balance in
points S and C shows an error of 0.25%.

4.3.2 Test at constant temperature: hydration of thenardite

For the validation of the hydration kinetics, the experiment
reported in Espinosa et al. (2008b) is studied. A specimen
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Figure 4.5: Test at constant humidity – saturation degree of pre-
cipitated mirabilite (a) and rate of liquid water trapped
in hydrated salt crystal (b) in points S and C

of brick is posed in a climate chamber at constant temper-
ature subjected to the change of humidity from 0.8 to 0.85.
The hydration starts at humidity equal to 0.8 and proceeds
slowly. When the humidity is increased to 0.85 the hydra-
tion goes on faster. Since during the hydration process water
molecules are adsorbed or lost, the experiment is conducted
with an automatic water adsorption measuring system to
monitor the amount of water trapped or released. The ex-
periment has been simulated with the proposed model. A
cubic specimen with edge length of 1 cm is considered in
the simulation. Null Neumann boundary conditions are im-
posed on all the faces for dissolved salt, while Robin bound-
ary conditions are imposed for humidity. The temperature
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is assumed to be constant. On all the edges of the domain
(dashed line), boundary conditions are assumed as follows:

j
w
·n = γw(h0 − hα) , jl

s
·n = 0 , (4.7)

The problem domain and the finite element mesh are shown

Figure 4.6: Problem domain – geometry and mesh

in Figure 4.6. The initial conditions are: T0 = 296.15 K, h0 =
0.8,ω0 = 0.3, css1(0) = 0 kg/m3, css2(0) = 0.029(1−φ0) ρbrick

kg/m3. The model parameters that are different from those
used in the previous test are collected in Castellazzi et al.
(2016). Figure 4.7 shows the environmental humidity together
with the humidity of the specimen in point S (see Figure 4.6).
Inspecting the graphs in Figures 4.7 and 4.8 reveals how the
environmental humidity is reached in point S only after the
end of the hydration process. Figure 4.8a, 4.8b shows the hy-
dration process: the concentration of mirabilite css1 increases
and, in the meantime, the concentration of thenardite css2
decreases. Moreover, it shows that, as expected, the con-
centration and the saturation degree of mirabilite obtained
after the hydration process are higher than the thenardite
one at the beginning. This is because mirabilite is a hy-
drous salt and its formation requires the adsorption of wa-
ter molecules with a volume increase. In addition, it can be
noted that, as expected, the precipitation rate of mirabilite
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Figure 4.7: Test at constant temperature – humidity in point S and
environmental humidity

is much faster upon increasing the environmental humidity.
Obviously the same trend is followed by the saturation de-
gree of the two crystallised forms. Finally, Figure 4.8c shows
the rate of trapped liquid water and Figure 4.8d the water
uptake referred to the dry mass of the brick. It is worth to
note that the latter graph agrees with that reported in Es-
pinosa et al. (2008b).

4.3.3 Test with varying temperature and humidity

A third example with variable conditions of temperature
and humidity is presented here. The 1 cm edge square do-
main of Figure 4.6 is considered. It is assumed sealed to the
dissolved salt. Robin boundary conditions for temperature
and humidity are imposed on all the edges of the boundary:

j
w
·n = γw(h0 − hα) ,

jl
s
·n = 0 ,

j
e
·n = γT (T − Tα) .

(4.8)

The initial conditions are: T0 = 285 K, h0 = 1, ω0 = 0.05,
css1(0) = 0 kg/m3, css2(0) = 0 kg/m3.
The material parameters used for the simulation are the

same of the previous example. The environmental humid-
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Figure 4.8: Test at constant temperature – concentration of pre-
cipitated mirabilite and thernardite (a) and the corre-
sponding saturation degrees (b); rate of trapped liquid
water (c) and water uptake referred to the dry mass of
brick (d).
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Figure 4.9: Test with varying temperature and humidity – humid-
ity in point S and environmental humidity (a), temper-
ature in point S and environmental temperature (b);
supersaturation ratio (c), concentration of dissolved
salt (d) in point S.
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ity ha and temperature Ta vary in time as illustrated in
Figures 4.9a, 4.9b, dashed line. The environmental condi-
tions have been chosen to comprehend both the processes,
firstly the crystallisation and then the dehydration. The su-
persaturation ratio and the concentration of dissolved salt
are shown in Figures 4.9c, 4.9d, while the concentration of
precipitated mirabilite and thenardite and the saturation de-
gree of precipitated mirabilite and thernardite in Figures
4.10a and 4.10b, respectively. Inspecting these graphs re-
veals that, due to the changing environmental conditions,
at around 30 h the supersaturation ratio reaches 1 (see Fig-
ure 4.9a) and, since the temperature is under the temper-
ature 303 K (see Figure 4.1a), the mirabilite starts to pre-
cipitate (see Figures 4.10a, 4.10b). After this, the conditions
for dehydration are reached and the thenardite begins to
form. Note that, as soon as the thenardite starts to form,
the concentration of precipitated mirabilite decreases. More-
over, as expected, the concentration and the saturation de-
gree of thenardite obtained after the dehydration process is
lower than the mirabilite one at the beginning. Analogously
to what observed for the precipitated salts concentrations,
as soon as the amount of nuclei of the thenardite starts to
increase, the one of the mirabilite decreases (Figure 4.10c).
Finally, as expected, the rate of trapped water reveals a pos-
itive peak during the precipitation of mirabilite and a nega-
tive peak during the dehydration process (see Figure 4.10d).

4.4 concluding remarks

The Hygro-Thermo-Chemical (HTC) model proposed in Chap-
ter 3 has been specialised for sodium sulphate solutions.
The model has been validated through two benchmark tests
taken from the literature, referred to sodium sulphate so-
lutions and involving isothermal or isohygral conditions.
Moreover, in order to show the potentialities of the model
in more realistic cases, an example with non-isothermal and
non-isohygral conditions has been discussed. In all, the nu-
merical results, in very good agreement with the experimen-
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Figure 4.10: Test with varying temperature and humidity – con-
centration of precipitated mirabilite and thenardite
(a), saturation degree of precipitated mirabilite and
thernardite (b) in point S; number of nuclei of
mirabilite (n1) and of thenardite (n2) (c), rate of
trapped liquid water (d) in point S.
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tal evidences, demonstrate the effectiveness of the proposed
approach.





5
S O D I U M C H L O R I D E S O L U T I O N

The HTC Model is specialized for sodium chloride solutions. In ad-
dition, the role of temperature in modelling and simulation of the
whole phenomenon is investigated, with emphasis on the precip-
itated salt. Thermal effects on sorption/desorption curves and on
system coefficients are discussed. In particular, a correlation be-
tween sorption/desorption curves at various temperatures is pre-
sented and some system parameters depending on temperature are
analysed. Moreover, the salt diffusion and crystallisation process
in a masonry column exposed to weather conditions is simulated
both in isothermal and non-isothermal regime and the results are
compared and discussed.

5.1 specialisation

The HTC model presented in Chapter 3 can be specialised for
a great range of electrolytic salts. Here, it is specialized for
sodium chloride solutions. This leads to the same equations
presented in Castellazzi et al. (2013a), which are a particular
case of the HTC model.

According to the experimental solubility diagram of sodium
chloride solution (Derluyn, 2012; Steiger et al., 2008) in which
are shown solubility lines and expressing the equilibrium
concentration in function of temperature for the specific salt
crystal phase, when water is the solvent, under 273 K the
salt crystallises into a hydrated form, but if we consider a
range of temperatures greater than 273 K, halite is the only
crystallised form (i. e. N=1).
In this case there are no hydration/ dehydration processes
and ωsat can be assumed constant with temperature. If we
consider a sodium chloride solution in a range of tempera-
ture greater than 273 K, µlsw can be set equal to zero, because
is this case there are not hydrated forms.

93
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Finally, the degrees of saturation of all the components sat-
isfy the relation:

Sgw + Slw + Sls + S
s
s = 1 , (5.1)

where Sss is the degree of saturation of the crystallised salt.
If we take into account the following dependencies:
Slws = S

l
ws(h,ω, T) , pv,sat = pv,sat(ω, T) ,Heva(T) ,Hcry(T)

and the contribution of effective porosity φeff, the resulting
governing equations of the model (3.68)-(3.71) become:

ϕh
∂h

∂t
+∇ · [−Chh∇h−ChT∇T −Chω∇ω]+

+ϕhω
∂ω

∂t
+ϕhT

∂T

∂t
+ϕhs

∂css
∂t

= 0

(5.2)

ϕω
∂ω

∂t
+∇ · [−Cωh∇h−CωT∇T −Cωω∇ω]+

+ϕωh
∂h

∂t
+ϕωT

∂T

∂t
+ϕs

∂css
∂t

= 0

(5.3)

ϕT
∂T

∂t
∇ · [−CTT∇T −CTh∇h−CTω∇ω]+

+ϕTs
∂css
∂t

+ µlgwBw = 0

(5.4)

∂css
∂t

=


Css

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣p if ω > α0ωsat

−Css

∣∣∣∣ ω

ωsat
− 1

∣∣∣∣p if ω 6 ωsat and css > 0
(5.5)

Field equations are completed with the boundary and ini-
tial conditions. Here we recall the Dirichlet ones (3.73):

h = h ,

ω = ω ,

T = T ,

(5.6)

and the Neumann’s or Robin’s ones (3.74):

j
w
·n = qw + γw(h0 − hα) ,

jl
s
·n = qω ,

j
e
·n = qT + γT (T − Tα) .

(5.7)
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5.2 thermal effects

Considering thermal effects is essential for salts which have
solubility and phase diagrams depending on temperature,
like sulphates. Nevertheless, thermal effects are also rele-
vant on salts which have the mass fraction of dissolved salt
at saturation ωsat nearly constant with temperature (i. e.
sodium chloride) as will be shown in the following. In this
section, thermal effects on sorption/desorption curves and
on system coefficients are discussed. Starting from the as-
sumption of instantaneous equilibrium between liquid and
vapour water, the moisture content at a certain tempera-
ture can be expressed as a function of the relative humid-
ity, through a sorption/desorption isotherm. The analyti-
cal expression for sorption/desorption curves for isother-
mal regime, proposed in Sýkora et al. (2012), is extended
to non-isothermal regime with Eq. (3.42), where it has been
assumed that Ψ depends on the temperature. The correla-
tion between Ψ and T can be obtained fitting experimental
data or using the modified Oswin model (Karoglou et al.,
2005) which allows to investigate the dependency of Slws on
temperature:

cw = csmb0 exp

(
b1
T

)(
h

1− h

)b2
, (5.8)

where b0, b1, b2 are parameters which can be tuned experi-
mentally. For a fired-clay brick, Figure 5.1a shows the sorp-
tion isotherms at different temperatures obtained using Eq.
(3.42) for pure water, while the qualitative trend of Ψ(T) ,
obtained fitting the data predicted by the modified Oswin
model, is depicted in Figure 5.1b. Note that increasing tem-
perature, Ψ decreases.
In section 5.1 are shown the moisture balance equation (5.3)
expressed in terms of the moisture diffusivity coefficients:

ClhT = (1−ω)ρlwRvln(h)Kl ,

C
g
hT =

Dvh

RvT

∂pv,sat

∂T
,

ChT = ClhT +C
g
hT ,

(5.9)
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Figure 5.1: Sorption isotherms from 273 K to 323 K for pure wa-
ter implementing Eq. (3.42) (a); trend of Ψ function of
temperature (b)
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and the energy equation in terms of the thermal conductiv-
ities:

ClTT =
(
βlw(1−ω) +βls

)
ρlwRvln(h)KlT ,

C
g
TT = (βgwT +Heva)

Dvh

RvT

∂pv,sat

∂T
,

C
g+l
TT = ClTT +C

g
TT .

(5.10)

Figure 5.2 illustrates the moisture diffusivity coefficients
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(c)

Figure 5.2: Trend of CghT (a) , ClhT (b) , ChT (c) with relative hu-
midity in a range of temperatures from 273 K to 323

K.

C
g
hT , ClhT and ChT against equivalent relative humidity for
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different values of the temperature. As it can be noted, the
variation of CghT with temperature is remarkable, increasing
with high temperature. In fact, increasing temperature in-
creases the humidity diffusion. On the other hand, the vari-
ation with temperature of ClhT is very small and it is equal
zero when h=1. Finally, the resultant ChT coefficients is plot-
ted in Figure 5.2c. Note that, as expected, the contribution of
C
g
hT is predominant respect with ClhT . Figure 5.3 shows the
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(c)

Figure 5.3: Trend of CgTT (a) , ClTT (b) , Cg+lTT (c) with equivalent
relative humidity in a range of temperatures from 273

K to 323 K, for ω = 0.
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thermal conductivity due to liquid water, ClTT , and water
vapour, CgTT , against equivalent relative humidity for differ-
ent temperatures and ω = 0 (pure water). Analogously to
what observed for the moisture diffusivity coefficients, the
variation of CgTT with temperature is remarkable, increasing
with high temperature. On the other hand the variation with
temperature of ClTT is very small and it is equal zero when
h = 1. This latter term makes Cg+lTT almost discontinuous.

5.3 numerical applications

In this section, the predictive capabilities of the HTC model
specialised for sodium chloride solutions, described in 5.1,
are evaluated in a masonry column of 25×25×75 cm ex-
posed to weather conditions from June 2010 to the end of

Figure 5.4: Geometry of the masonry column and Boundary Con-
ditions (a); environmental temperatures and humidi-
ties in Bologna of June and July 2010 (b).

July 2010 in Bologna with the bottom face immersed in a
NaCl aqueous solution with ω = 0.05% (see Figure 5.4a ).
In these tests the masonry column is modelled as an equiv-
alent homogeneous material and the liquid phase inside it
is assumed an ideal solution.
Attention will be paid to effects of the temperature on the
salt transport and crystallisation processes, thus NaCl salt
is ideal because the mass fraction at saturation is nearly
constant with temperature ωsat = 0.264 kgsalt/kgsolution. In
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particular, the same sample is studied in isothermal and
non-isothermal regime. For simulations in non-isothermal
regime, daily environmental average humidities and tem-
peratures in Bologna from June 2010 to the end of July
2010 are chosen as boundary conditions (Figure 5.4). For the
isothermal regime, the simulation is performed at the aver-
age temperature in the whole period of 2 months (28 °C),
as shown in Figure 5.4b. In order to implement the model,
the equations are discretized in space using the finite el-
ement method. The primary variables h, ω, css and T are
interpolated based on standard Lagrangian shape functions.
27-node brick elements with quadratic shape functions are
adopted. The time discretization is carried out by means
of the backward finite difference method. A standard itera-
tive strategy based on the Newton-Raphson method is ap-
plied to solve the non-linear system of equations. The im-
plementation is developed using COMSOL MultiPhysics com-
sol2008. The typical element size for the finite element mesh
is around 3.5 cm. The total number of degrees of freedom is
38,700. The wall is modelled as an equivalent brick Castel-
lazzi2013717. Figure 5.5 shows the maps of temperature in

Figure 5.5: Evolution of temperature at 15 days (a), 1 month (b),
45 days (c) and 2 months (d).

non-isothermal regime after 15 days (b), 1 month (c), 45 days
(d) and 2 months (e). Note that the rising water front is evi-
dent in the map of the temperature, in which it is possible to
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see a lower temperature due to the hygro-thermal coupling.
In Figure 5.6 a comparison between maps of equivalent rel-

Figure 5.6: Relative humidity in isothermal regime and non-
isothermal regime at 15 days (a), 1 month (b), 45 days
(c) and 2 months (d).

ative humidity in isothermal and non-isothermal regime is
made. The height of damp rising is the same, but in the case
of isothermal regime the humidity is more diffused. Figure
5.7 shows that in non-isothermal regime higher values of su-
persaturation ratio are reached, leading to a greater amount
of precipitated salt, as displayed in Figure 5.8. In particular,
Figure 5.8 shows that the salt precipitation starts at the cor-
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Figure 5.7: Supersaturation ratio ω/ωsat in isothermal regime
and non-isothermal regime at 15 days (a), 1 month (b),
45 days (c) and 2 months (d).

ners of the sample, proceeding on the faces and in the inner
part of the masonry column. As it can be noted, the patterns
of crystallised salt in isothermal and non-isothermal regime
are considerably different.
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Figure 5.8: Precipitated NaCl in isothermal regime and non-
isothermal regime at 15 days (a), 1 month (b), 45 days
(c) and 2 months (d).

5.4 concluding remarks

The Hygro-Thermo-Chemical (HTC) model proposed in Chap-
ter 3 has been specialised for sodium chloride solutions.
Then, the influence of the thermal effects on salt transport
and crystallisation in masonry structures has been investi-
gated. A correlation between sorption/desorption curves at
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various temperatures has been presented and some model
parameters depending on temperature have been analysed.
The HTC model specialised for sodium chloride solutions
has been employed to simulate the capillary rising of a sodium
chloride solution in a masonry column in isothermal and
non-isothermal regime. The comparison between the results
of isothermal and non-isothermal simulations shows that
thermal effects have great influence on the transport process
and can considerably alter the salt crystallisation pattern.
Moreover, numerical results presented show how the HTC

model is able to reproduce the physics of the phenomenon
at the scale of the structure.



6
I N S I G H T O N B O U N D A RY
C O N D I T I O N S

In this Chapter the HTC model is enriched in order to describe
different drying kinetics, taking into account the different efflores-
cence formations. Indeed, some experiments recently appeared in
the literature about the drying of porous media in the presence of
salt have shown that the kinetics of drying strongly depends not
only upon the quantity of precipitated salt but also upon the form
in which the salt precipitates. The enriched HTC model is then
validated through two different extensive campaigns on drying in
presence of sodium chloride salt solution.

6.1 introduction

Drying of porous media in the presence of salt is a very
common phenomenon, which causes the formation of salt
crystals in the porous medium. Despite many contributions
in the literature have dealt with the drying of salt contam-
inated porous materials, as illustrated in Section 2.1.1, this
topic is still under discussion especially regarding the influ-
ence of salt crystallisation on drying. The problem of the
evaporation in porous media filled with a salt solution is
very complex from the modelling point of view because the
diffusion and crystallisation of the salt in porous media de-
pends not only on the transport of water and salt in different
forms (gas, solid, liquid) but also on the phase transitions
between them and furthermore on the interactions between
the various processes. In order to describe this phenomenon
we extend the HTC model presented in Chapter 3 and spe-
cialised for NaCl solutions in Chapter 5, taking into account
for the different formations of efflorescences influenced by
the environmental conditions. The model is then validated
through two extensive experimental campaigns, illustrated

105
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in the next Section (see also Section 2.1.1) and performed
within the European project called kisadama (de Miranda
et al., 2013).

6.2 experimental campaigns

We consider two parallel experimental campaigns on sam-
ples of cylindrical shape made by Prague (Mšené) sandstone
with porosity φ0 ∼ 29% and average pore diameter of 30

µm. The specimens were initially saturated with a NaCl so-
lution at saturation (6.1 M, ω = 0.264) and subsequently
dried at different RH-values.

The first campaign was partly conducted at Van der Waals-
Zeeman Institute of the University of Amsterdam and partly
at the Centre for X-ray Tomography at the Ghent University
(UGCT) (Desarnaud et al., 2015); while the second one was
totally performed at UGCT in Ghent.

During the first campaign the drying kinetics of cylindri-
cal samples (diameter of 8.5 mm and height 8.5 mm) im-
bibed by a NaCl saturated solution were followed through
automated balance with a precision of 0.001 g placed in a
home-made, controlled climatic chamber at T=21 °C, at RH

∼20%, 40% and 50%.
The crystallisation in the core of the stone and at the sur-
face were investigated for RH ∼20% and 50% using high res-
olution X-ray µCT, optical and Scanning Electron Microscopy
(SEM) combined with Energy Dispersive Spectroscopy (EDS).
X-ray µCT performed at the Centre for X-ray Tomography at
the Ghent University (UGCT) using the scanner HECTOR
(Masschaele et al., 2013). The samples were initially scanned
at the end of the drying process, and subsequently washed
out to be scanned in their natural state.
At RH 50%, the typical drying behaviour is found with a
constant drying rate during almost all the drying process.
Only in the a very late stage a much slower drying kinet-
ics is measured. At RH ∼ 20% the drying behaviour of the
sample consists of three regimes: first a constant drying rate
until the residual saturation is roughly half of the initial sat-
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uration, a second regime in which the drying kinetics fol-
lows an exponential decrease and a third regime is which
the drying rate is much slower. The change in the drying
kinetics is due to the different types of efflorescence forma-
tion arose in the surface of the specimen. In particular in the
drying test performed at 50% RH, the efflorescences formed
at the surface after drying is of "patchy" type and it allows
the water evaporation, while in case of the drying test per-
formed at 20% RH the formation is of "crusty" type and it
drastically reduces the water evaporation. The different for-
mations on the surface of the specimen are evident from the
SEM pictures reported in Figure 6.1 and 6.2, for drying tests
performed at environmental humidity equal to 50% RH and
20% RH, respectively. In the case of test performed at 20%
RH, the salt skin which covers the outer surface of the sand-
stone is itself a porous medium with a mean pore size of
about 3 µm, i. e. 10 times smaller than the pore diameter of
sandstone.

Figure 6.1: Drying at 50% RH. SEM pictures: (a) Patchy efflores-
cences formed at the surface after drying. (b) Crystal-
lization of NaCl inside the wetting films at the corners
of the pores. (Desarnaud et al., 2015)

In the second campaign, the drying kinetics has been in-
vestigated with a 4D X-ray µCT monitoring, the set-up is re-
ported in Derluyn et al. (2016, 2015). Two cylindrical sam-
ples of 8 mm in diameter and 10 mm in height were cored
from a Ms̆ené sandstone specimen.
The samples were initially scanned in their dry state at the
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Figure 6.2: Drying at 20% RH. SEM pictures: (a) crust formed at
the surface after drying. (b) details of the porous crust.
(Desarnaud et al., 2015)

µmCT scanner HECTOR of the UGCT. Next, the samples
were capillary saturated by immersing them in a saturated
NaCl solution for 30 minutes. The samples were then scanned
in their wet state and during their drying every 30 minutes
for the first 3 hours, and every hour during the succeed-
ing 12 hours. Drying was controlled by placing the sample
in a custom-built climatic chamber, compatible with the X-
ray scanner, having an inner volume of 4×4×3 cm3. Condi-
tioned air is blown in the plexi-glass test chamber at a slow
rate (3.3 ml/s). The drying was performed at the constant
temperature of 19.2 °C and a RH of 20% for the first speci-
men and at RH 50% for the second one.

Each scan resulted in a 3D volume of the upper 6 mm of
the sample with a reconstructed voxel size of 10 µm. Due
to the maximal spatial resolution aimed for, the complete
height of the cylindrical samples could not be imaged in
the field of view defined by the HECTOR set-up. The 3D
volumes were further analysed with the software AVIZO
(FEI). By working with differential images (Boone et al.,
2014), the salt solution in the sample and the crystal pre-
cipitation could be segmented, allowing to simultaneously
obtain quantitative data on the drying and the precipitation
kinetics. These data were calculated as volumetric ratios, i. e.
, the volume of solution/crystals with respect to the sam-
ple’s volume. It needs to be remarked that the quantification
based on the 4D X-ray µCT imaging is limited in accuracy by
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the spatial resolution of 10 µmm and by the image analysis
procedure, and as such can never be as precise as raw bal-
ance measurements to assess the drying kinetics. The added
advantage however is that these dynamic imaging datasets
provide also data on the crystallisation kinetics and enable
the analysis of drying and precipitation at the pore scale
level. The results of the experimental campaign confirmed
the kinetics seen in the first experimental campaign with the
added value to see the 4D map of whole process in terms of
crystallised salt and of water lose.

6.3 specialisation

The model presented in Chapter 3 and specialised in Chap-
ter 5 for sodium chloride solutions is extended in order to
take into account the possible formation of superficial salt
crust. The thermal part is not considered, since experiments
are carried out in isothermal conditions.
Thus, the equations of the model can be summarized in the
following form:

ϕh
∂h

∂t
+∇ · [−Chh∇h−Chω∇ω] +ϕhω

∂ω

∂t
+ϕhs

∂css
∂t

= 0 , (6.1a)

ϕω
∂ω

∂t
+∇ · [−Cωh∇h−Cωω∇ω] +ϕωh

∂h

∂t
+ϕs

∂css
∂t

= 0 , (6.1b)

∂css
∂t

= ±Css
∣∣∣∣ ω

ωsat
− 1

∣∣∣∣P . (6.1c)

The coefficients ϕi and Cij, used in expressions (6.1), are
reported in Appendix C. The equations describing the model
are completed by the initial and boundary conditions. They
can be of Dirichlet type:

h = h, (6.2)

ω = ω, (6.3)

and of Neumann’s or Robin’s type:

j
w
·n = qw + γw(aw h− hα) (6.4)

jl
s

= qω , (6.5)
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where n represents the outward unit normal to the bound-
ary. It is worth noting that aw h = h0 takes into account the
presence of salt: for sodium chloride solutions, aw is equal
to 1 when ω = 0 and equal to 0.75 when ω = ωsat (see
Barbosa-Canovas et al. (2007) and Figure 6.3).
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Figure 6.3: Water activity of a sodium chloride solution as a func-
tion of mass fraction (Barbosa-Canovas et al., 2007)

Moreover, h and ω represent the prescribed equivalent
relative humidity and salt concentration, respectively; qw
and qω denote the prescribed normal fluxes of moisture
and salt, respectively; hα is the prescribed environmental
relative humidity. Finally, γw is the convective humidity co-
efficient: a new expression will be proposed in the next sec-
tion, on the basis of experimental evidences.

6.4 convective humidity coefficient

From the experimental evidences (Desarnaud et al., 2015),
it is clear that the drying kinetics depends not only on the
quantity of precipitated salt but also on the form in which
the salt precipitates (for example patchy or crusty or some-
thing in between). The different forms of the precipitated
salt are function of the gap between the initial relative hu-
midity of the specimen surface and the environmental rela-
tive humidity, ∆h0 = aw h(0) − hα.
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Indeed, to describe the real physics of the drying kinet-
ics, the convective humidity coefficient γw is considered not
only function of the degree of saturation of the crystallised
salt Sss but also of the relative humidity gap ∆h0. In par-
ticular γw is considered constant and equal to the value of
the convective coefficient in case of pure water, γ̄w, if the
crystallised salt saturation degree does not reach a treshold
value S̄ss. Then, when the saturation degree of crystallised
salt exceeds S̄ss, γw generally decreases in relation to ∆h0
which influences the form of the crystallised salt. The con-
vective coefficient can decrease till a residual value γ̄crust.
This value is reached when Sss = 1 and takes into account
that the salt crystal is itself a porous medium. The expres-
sion of γw can be formulated as:

γw = (γ̄w − γ̄crust) e
−kφ0 ρ

s
s S
s
s + γ̄crust . (6.6)

where k > 0 is a linear function of the initial humidity gap
∆h0:

k =

0 if Sss 6 S̄ss ,

k(∆h0) if Sss > S̄ss .
(6.7)

The expression reduces to γ̄w for Sss = 0 while for Sss > 0

the decreasing function is modulated by the parameter k.
Since the dependence of k on ∆h0 is considered linear, k

can be tuned with two drying experiments named 1 and 2,
and computed as follows:

k =
k1 − k2

∆h
(1)
0 −∆h

(2)
0

(
∆h0 −∆h

(2)
0

)
+ k2 if Sss > S̄ss, (6.8)

where k1 and k2 are coefficients tuned with two drying ex-
periments having initial humidity gap ∆h(1)0 and ∆h(2)0 , re-
spectively. The effect of air velocity on the convective hu-
midity coefficient is not explicitly considered in this model.

6.5 simulation of drying experiments

The model has been coded by means of COMSOL Multi-
physics (COMSOL, 2008). The non-linear system of equa-
tions is solved through a standard iterative strategy, based
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on Newton-Raphson method. The time discretisation is car-
ried out by means of the backward finite difference method
and the space discretisation is performed by the finite ele-
ment method. Brick elements with standard Lagragian quadratic
shape functions are adopted. Each specimen has been spa-
tially discretised with smaller finite elements in correspon-
dence of the external surface, since it is the area in which
there are the more pronounced gradients (see Figure 6.4).
After a convergence study the mesh shown in Figure 6.4
has been adopted for all the simulations. The temperature is
considered constant in the domain during the simulations.
The initial conditions enforced in the simulations are:

	

	 	

	 	Figure 6.4: Geometry and mesh of the specimen.

h(t = 0) = 1.0 ,

ω(t = 0) = 0.264 kg/m3

css(t = 0) = 0 .
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Regarding the boundary conditions, null Neuman condi-
tions:

jl
w
·n = 0 ,

jl
s
·n = 0 ,

are enforced in the vertical planes of simmetry and on the
bottom plane, while the conditions:

jl
w
·n = γw(aw h− hα) ,

jl
s
·n = 0 ,

are enforced on the remaining external surfaces.

6.5.1 Parameters used

The specimens are made of Prague sandstone (Pavlík et al.,
2008), which has a unimodal pore system with an average
pore diameter of 30 µm (Desarnaud et al., 2015). From the
experimental evidences it is clear that the salt begins to
precipitate almost soon, so the supersaturation threshold at
which the crystallisation starts is close to the unity. In the nu-
merical simulation we adopted 1.01. The sorption isotherm
parameter Ψ is obtained by fitting the experimental data
reported in Pavlík et al. (2008) by enforcing the measured
value of water content at 0.8 relative humidity cw80 :

Ψ = 0.8
cw80 −φ0 ρ

l
w

cw80 −φ0 ρ
l
w 0.8

. (6.9)

The material parameters used are reported in Table 6.1.

6.5.2 Definition of γw

As described in Section 6.4, the expression of γw can be
defined tuning some parameters. In particular, we assume a
linear dependence of k on ∆h0, so its trend can be defined
with two experiments. We define the values of k1 and k2
in the Eq. (6.8) considering the drying tests performed with
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Par. Value Unit Description

Dv 1.9 · 10−6 m2/s Vapour permeability

Φ0 0.29 - Porosity

A 1.68 kg m-2s-0.5 Water adsorption coefficient

rp 15 · 10−6 m Average pore radius

Kc 1.08 · 10−4 m/h Growth rate coefficient

n 7 · 1012 1/m3 Nuclei in solution

p 1 Crystallization process order

ωsat 0.264 kg/kg
Mass fraction ω at

saturation

Ks 2.2 · 10−9 m2/h Diffusion coefficient

ρss 2170 kg/m3
Mass density of precipitated

NaCl

Ψ 1.0028 -
Sorption isotherm

parameter

Table 6.1: Parameters used in the simulations.

saturated NaCl solution at RH 50% and RH 20%, in both
experimental campaigns.

Since at RH 50% only one regime is observed till almost
the end of the drying test, γw is considered constant and
equal to γ̄w, i. e. considering k = k1 = 0.0.

The simulation at RH 20% is used to define k2 and the
threshold value of Sss at which the drying kinetics changes.

Once values k1 and k2 are calibrated it is possible to de-
fine the expression of k. Since for all the experiments, the
initial equivalent relative humidity is 1.0, the parameter k
can be expressed by Eq. (6.8) as a linear function of the en-
vironmental relative humidity as:

k =
k1 − k2
0.5− 0.2

(hα − 0.2) + k2. (6.10)

As regards the parameter γ̄w in Eq. (6.6), it can be tuned
with: (i) experimental results of drying tests after saturation
by imbibition with pure water at different relative humidi-
ties at the same environmental conditions or (ii) considering
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experimental results of drying with salt at RH 50%. Indeed,
it is worth noting that the air velocity flow, that is not explic-
itly considered in the model, influences its value. For all the
simulations of drying tests γ̄crust is taken equal to 0.02.

6.5.3 Simulation of the drying at 50% RH

In this Section, the simulation of drying experiments at 50%
RH for the two experimental campaigns is presented. As out-
lined in Section 6.5.2, according to experimental evidences
the expression of the convective humidity coefficient reported
in Eq. (6.6) results as:

γw = γ̄w ∀ Sss , (6.11)

since k is assumed equal to zero.

6.5.3.1 First experimental campaign

We present the results of simulations of drying tests at 50%
RH performed during the first experimental campaign. In
particular the drying test after the saturation by imbibition
with pure water are used to tune γ̄w, then the same value
is assumed to simulate the drying after the imbibition with
NaCl saturated solution. The comparison between numeri-
cal and experimental results is presented in terms of satura-
tion versus the square root of time in hours. The saturation,
sat, for the drying test with pure water is defined as fol-
lows:

sat(t) =
mlw(t)

mlw(0)
(6.12)

where
mπα(t) =

∫
Vspec

cπα(t)dV . (6.13)

On the other hand, the saturation for the test with salt solu-
tion is defined as:

sat(t) =
mlw(t) +m

l
s(t) +m

s
s(t)

mlw(0) +m
l
s(0) +m

s
s(0)

. (6.14)



116 insight on boundary conditions

Figure 6.5 shows that the experimental curves are recov-
ered by the proposed model considering a constant convec-
tive coefficient γ̄w = 0.21, in both the case of drying atfer
imbibition of pure water and after the imbibition of salt so-
lution.
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Figure 6.5: First experimental campaign. Drying at 50% RH: sat-
uration versus the square root of time in hours for
drying test performed with pure water and NaCl satu-
rated solution, experimental data and results obtained
with the proposed model.

6.5.3.2 Second experimental campaign

The second experimental campaign was performed with a
smaller volume of the test cell which leads to different en-
vironmental conditions in terms of air flow velocity in re-
spect to the first campaign. Indeed, in the second exper-
imental campaign the drying is faster, thus γ̄w increases.
In this campaign pure water drying data are not available,
thus we tuned the γ̄w considering the drying with salt at
50% RH. The resulting γ̄w is equal to 0.31. The comparison
between numerical and experimental results, presented in
terms of saturation versus the square root of time in hours,
is reported in Figure 6.6.
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Figure 6.6: Second experimental campaign. Drying at 50% RH: sat-
uration versus the square root of time in hours for
drying test performed with NaCl saturated solution,
experimental data and results obtained with the pro-
posed model.

6.5.4 Simulation of the drying at 20% RH

In this Section, the simulation of drying experiments at 20%
RH for the two experimental campaigns is presented. Since
the saturation curve of the salt contaminated sandstone at
RH 20% shows a double kinetics, it is necessary the calibra-
tion of the parameter k = k2 and of the threshold value
S̄ss.

6.5.4.1 First experimental campaign

The drying tests at 20% RH performed during the first exper-
imental campaign are simulated. Since γ̄w does not depend
on the environmental humidity, the value calibrated for the
tests at 50% RH (γ̄w = 0.21) is assumed. Figure 6.7 shows the
comparison between numerical and experimental results in
terms of saturation versus the square root of time in hours
according to Eqs. (6.12)-(6.14). In particular, the simulation
is used to define k = k2 and the threshold value of Sss at
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which the drying kinetics changes. The value of S̄ss = 0.19,
corresponding to css = 116 kg/m3 is assumed for the first
experimental campaign, and k = 0.018 is adopted for tests
at RH 20%.
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Figure 6.7: First experimental campaign. Drying at 20% RH: sat-
uration versus the square root of time in hours for
drying test performed with pure water and NaCl satu-
rated solution, experimental data and results obtained
with the proposed model.

6.5.4.2 Second experimental campaign

The same drying behaviour is confirmed in the second ex-
perimental campaign. In this campaign the parameter γ̄w is
tuned in Section 6.5.3.2 and assumed equal to 0.31. The com-
parison between numerical and experimental results, pre-
sented in terms of saturation versus the square root of time
in hours, is reported in Figure 6.8. In particular, k, which
depends on the humidity gap, is assumed also for the sec-
ond experimental campaign equal to 0.018. However, the
threshold value of S̄ss at which the drying kinetics changes
for the second experimental campaign is taken as S̄ss = 0.28,
corresponding to css = 175 kg/m3.
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Figure 6.8: Second experimental campaign. Drying at 20% RH: sat-
uration versus the square root of time in hours for
drying test performed with NaCl saturated solution,
experimental data and results obtained with the pro-
posed model.

6.5.5 Simulation of the drying at 40% RH

The drying tests performed after the saturating by imbibi-
tion with saturated NaCl solution at 40% RH are available
only for the first experimental campaign.

Once values k1 and k2 are fixed, it is possible to define the
value of k at 40% RH using Eq. (6.10). Thus, k results equal
to 0.006, while for the first experimental campaign the value
of S̄ss = 0.19, corresponding to css = 116 kg/m3 is adopted.

Figure 6.9 shows the comparison between numerical and
experimental results in terms of saturation versus the square
root of time in hours according to Eqs. (6.12)-(6.14), high-
lighting a very good agreement between numerical and ex-
perimental results.



120 insight on boundary conditions

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

sqrt(time[h])

sa
t

 

 

water exp.
water model

Figure 6.9: First experimental campaign. Drying at 40% RH: sat-
uration versus the square root of time in hours for
drying test performed with pure water and NaCl satu-
rated solution, experimental data and results obtained
with the proposed model.

6.5.6 Crystallization pattern

In order to investigate the crystallisation patterns obtained
in the first experimental campaign (Desarnaud et al., 2015),
the specimens were scanned once the drying process was
completed and then the same specimen were washed and
scanned again to have the reference state without the salt.
The scans at the end of the drying process at 20% and 50%
are reported in Figure 6.10. As it can be seen the salt is
essentially localized at the external surface. The crystallisa-
tion pattern obtained by the model is reported in Figure
6.11, where maps of the crystallised salt in terms of css are
depicted for simulations at 20% and 50% RH. In agreement
with the experimental data, the crystallised salt is localized
on the external surface. In particular the maximum localiza-
tion is in the corner. It is impossible for the model to de-
scribe the outgoing of the salt from the domain to form the
crust, so it is reasonable that the salt is located in a region
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Figure 6.10: First experimental campaign. Crystallization pattern
at RH 20 % (first raw) and RH 50% (bottom raw) (De-
sarnaud et al., 2015).

(a) (b)

Figure 6.11: First experimental campaign. Crystallized salt (css)
map at the end of the process in the case of drying at
RH 20% (a) and RH 50% (b).
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close to the surface with a sharp gradient. The second ex-
perimental campaign and its simulation confirm the results
of the first one.

6.5.7 Salt amount: global estimation in time

In order to estimate the global salt amount in time, we
consider the second experimental campaign entirely per-
formed at UGCT and described in Section 6.2 which al-
lows the monitoring of the dried out solution and of the
crystallised salt formation in time. In Figure 6.12 the curves
of saturation and of salt volume ratio versus time, defined
as mss(t)/mss(tend), are reported for drying tests performed
with environmental humidities equal to RH 20% and RH 50%.
These results allow to visualise the trend of the amount of
salt in respect to the trend of saturation in time. In particu-
lar, Figure 6.12a shows that the decreasing of the saturation
is accompanied by an increasing of the precipitated salt. Fur-
thermore, the normalisation of the total amount of precipi-
tated salt, the salt volume ratio, and of the dried out solution
reported in Figure 6.12b shows the same trend in time.

The comparison between model and experimental results
of the salt volume ratio versus time at 20% and 50% RH

is depicted in Figure 6.13, showing a very good agreement
between numerical and experimental results.

The global amount of salt in terms of the volume fractions
of precipitated salt versus time obtained with the model is
reported in Figure 6.14 for the first (Figure 6.14a) and the
second (Figure 6.14b) experimental campaigns. The curves
obtained by the model, as expected, start to zero precipi-
tated salt at t = 0 and arrive to a maximum final value
for the precipitated salt of 4.23% for both experimental cam-
paigns. This theoretical value can be calculated for a porous
medium having a porosity equal to 29% saturated with a
NaCl aqueous solution at ω = 0.264 (6.1 M). We can re-
mark that the trends shown by the curves obtained with the
model for the two experimental campaigns are qualitatively
similar: initially the curve related to the drying experiment



6.5 simulation of drying experiments 123

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time[h]

 

 

hα=0.5  sat

hα=0.5 salt volume ratio

hα=0.2 sat

hα=0.2 salt volume ratio

(a)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time[h]

 

 

hα=0.5  1−sat

hα=0.5 salt volume ratio

hα=0.2 1−sat

hα=0.2 salt volume ratio

(b)

Figure 6.12: Second experimental campaign. Salt volume ratio
and saturation versus time for the specimen dried at
RH 20 % and RH 50 %.

at 20% RH shows a steeper slope in respect to the curve re-
lated to drying at 50% RH while, after sometimes, it shows
a decreasing slope and reaches the maximum salt value af-
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Figure 6.13: Second experimental campaign. Salt volume ratio ver-
sus the time in hours for drying test at 20% and 50%
RH: experimental data and results obtained with the
proposed model.

ter the curve related to the drying at 50% RH. The faster
crystallisation of the simulation results of the second experi-
mental campaign is due to the different conditions in which
the specimen has been posed in the two campaigns. To bet-
ter understand the effectiveness of the simulation results of
the first experimental campaign, we can look at the trend of
the amount of salt in respect to the trend of saturation in
time. In Figure 6.12b the graphs show that the trends of salt
volume ratio and of the saturation is the same in time. Ex-
actly the same trends are obtained by the modelling results
of the two experimental campaigns as illustrated in Figure
6.15.
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Figure 6.14: Model results of crystallised salt volume fraction versus time for (a) the first experimental campaign – specimen
dried at RH 20%, 40% and 50% RH – and (b) the second one – specimen dried at RH 20% and 50% RH.
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Figure 6.15: Comparison between trends of drying curve and crystallised salt for (a) the fist experimental campaign and (b)
the second one.
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6.6 discussion

The proposed model, together with a suitable relation for
the convective humidity coefficient γw has been validated
through two experimental campaigns described in Section
6.2. The adopted parameters for Eqs. (6.6)-(6.7) are reported
in Table 6.2 and the resulting trends of γw are depicted in
Figure 6.16a and Figure 6.16b for the first and the second
experimental campaigns, respectively.

Par. Amsterdam Ghent

γ̄w 0.21 0.31

γ̄crust 0.02 0.02

S̄ss 0.19 0.28

k1 0.0 0.0

k2 0.18 0.18

Table 6.2: Parameters adopted for the convective humidity coeffi-
cient γw in the two experimental campaigns.

As already outlined, the difference of γ̄w for the two ex-
perimental campaigns is due to different environmental con-
ditions in terms of air flow velocity.

On the other hand, the different values of the threshold at
which crystals start to block the pores, Sss, can be explained
as follows (Derluyn, 2017): the different air flow velocity
leads to a different drying velocities of the specimen. In-
deed, if we consider the drying at 20% RH, for the first ex-
perimental campaign performed in Amsterdam, the start-
ing of a different regime seems to be at a higher value of
saturation, thus at a lower amount of salt, than for the sec-
ond experimental campaign. If the drying is faster, the ratio
of efflorescence/subflorescence at the surface will tend to
change. As a consequence, you can keep on drying faster
for a longer time before pores on the surface start to "close".
In other words, not all the salt precipitates as efflorescence
(which can form a crust), but there is also an amount of
salt that precipitates below the surface. In particular, the
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Figure 6.16: Representation of adopted trend of γw as a function
of Sss: (a) first experimental campaign (Amsterdam),
(b) second experimental campaign (Ghent).

more salt precipitates as subflorescence, the faster the dry-
ing will go. The same phenomenon can be observed also
during deliquescence-drying cycles at 20% RH (Desarnaud
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et al., 2015). Therefore, it seems that for this case, subflores-
cence does not block the pores so much.

Results of simulations prove that the model is able to cap-
ture the different drying kinetics at diverse values of relative
humidity with respect of both experimental campaigns con-
sidered.

6.7 concluding remarks

The HTC model specialised for sodium chloride solutions
has been extended to take into account the different kinetics
of the drying process, due to different salt crystallisation at
the external surface of the specimen examined. To this aim a
law for the convective humidity coefficient is proposed. The
model is used to simulate two experimental campaigns car-
ried out in the framework of the European project kisadama

(de Miranda et al., 2013). Numerical results show that the
model is able to catch the different kinetics of drying (satu-
ration curves), the amount of crystallised salt and, qualita-
tively, the position of the crystallised salt and the crystalli-
sation pattern over time.





Part II

M E C H A N I C A L A S P E C T S

In microporomechanics a porous media can be
treated as a particulate composite having inclu-
sions with zero stiffness. In the frame of linear
microporomechanics, it is found that the object
describing the mechanical effect induced by the
presence of a pressure acting on pore walls is the
Biot’s tensor, for saturated porous media, and
the partial Biot’s tensor, for porous media satu-
rated with different phases, which can be gener-
ally written as a function of the degree of satura-
tion of the considered phase. Approaches pro-
posed in literature are generally based on ho-
mogenisation schemes with simplified pore ge-
ometries. On the other hand, here we present
a multi-scale approach for the analysis of me-
chanical effects induced by salt crystallisation in
porous media, based on numerical homogenisa-
tion. It allows to predict the effects of salt crys-
tallisation occurring at the scale of the structure,
based on the real 3D micro geometry of the porous
material coming from Micro Computed Tomog-
raphy images.





7
H O M O G E N I S AT I O N A P P R O A C H

In this Chapter the homogenisation approach adopted in this work
is presented. In particular, the numerical homogenisation approach
and the application of an analytical homogenisation approach – the
Mori-tanaka scheme – to porous media are detailed.

7.1 the numerical homogenisation approach

In the second part of the dissertation, a multi-scale approach
for the analysis of mechanical effects induced by salt crys-
tallisation in porous media is presented. Basic concepts of
multi-scale techniques have been detailed in Section 2.2.2.
The multi-scale approach considered here is based on nu-
merical homogenisation (see Section 2.2.2.2). To this aim,
it is necessary to define a Representative Elementary Vol-
ume (REV), which is generally defined as the minimum win-
dow allowing to obtain an homogeneous value of the con-
sidered property which is independent of the window size.
Referring to a porous medium depicted in Figure 7.1, if L,
` and d are the characteristic lengths of the structure, ele-
mentary volume and local heterogeneities, respectively, the
conditions that allow defining the Representative Elemen-
tary Volume (REV) are:

d� `� L; (7.1)

In order to pass from the micro-scale to the macro-scale,
a linear microporomechanical approach which exploits ho-
mogenization theories (Coussy, 2006; Dormieux et al., 2006;
Hashin, 1983) is adopted. The aim is to link the micro-scale
stress σ(X, x), strain ε(X, x) and stiffness C(X, x) tensors,
which are heterogeneous at micro-scale, to macroscopic quan-
tities which are homogeneous on the REV, i. e. the macro-
scopic stress Σ(X), strain E(X) and homogenised stiffness

133



134 homogenisation approach
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Figure 7.1: Reference systems and characteristic lengths for the
macro- and micro- scales.

Chom(X) tensors (see Figure 7.2). An energy equivalence
between the micro-scale and the macro-scale is imposed:

Σ(X) : E(X) = 〈σ(X, x) : ε(X, x)〉 , (7.2)

where 〈•〉 is the average operator on the REV domain ΩREV ,
defined as follows:

〈•〉 = 1

|Ω
REV

|

∫
ΩREV

• dVx . (7.3)

This enables one to define the macroscopic stress and strain
as averages over the REV of the corresponding microscopic
quantities, as well as to compute the homogenized stiffness
tensor.

The macroscopic transformation of the REV is assumed in-
finitesimal and the response of REV at microscopic scale also
meets the conditions of infinitesimal deformation and small
displacements.
In this study, we refer to a first order homogenization pro-
cedure based on the solution of a boundary value problem
on the REV. It consists in the following steps:

1. Geometrical and mechanical modelling of the material
at the microscopic scale.



7.1 the numerical homogenisation approach 135

Equal Energy

Link: Hill’s lemma
ε(X, x)
σ(X, x)
C(X, x)

E(X)

Σ(X)
Chom(X)

REV Structure

Figure 7.2: Characteristic quantities at the micro- and macro-
scales and energy equivalence

2. Definition of an appropriate boundary condition on
the REV (i. e. formulation of a micromechanical bound-
ary value problem) and determination of the response
of the REV at the microscopic scale, in terms of the cor-
responding microscopic strain and stress fields ε(X, x)
and σ(X, x). This is the so-called localization step.

3. Determination of the macroscopic behaviour from the
average mechanical response of the REV.

As regards point 1, the geometry of the REV can be obtained
in several ways: from the assumption of simplified pore ge-
ometries to the measurements of REV’s real geometry.
Regarding the point 2, as explained in Sections 2.2.2 and
2.2.3, there are different options in the defining of the bound-
ary condition: here we choose kinematic homogenization, in
which the linear displacement boundary condition is usu-
ally enforced. In kinematic homogenization, the linear dis-
placement boundary condition ensure that the ε = E0 is
constant on the REV’s boundaries:

u(X, x) = E0(X) · x on ∂Ω
REV

, (7.4)

where E0 is the applied macroscopic strain and ∂Ω
REV

is the
external REV boundary. It is possible to demonstrate that

〈ε(X, x)〉 = E0(X) , (7.5)
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where 〈ε〉 is the average microscopic strain field on the REV.
Moreover, enforcing the Hill’s Lemma (Hill, 1967) expressed
in Eq. (7.2), which ensures the energy equality, it follows
that

〈σ(X, x)〉 = Σ(X) . (7.6)

For porous media, whose pore space is saturated with pres-
sured phases, a further loading condition must be consid-
ered. Assuming that the microscopic and macroscopic pres-
sure gradients are of the same order of magnitude, the me-
chanical interaction between the fluid and the solid at the
microscopic level can be taken into account in a simplified
way through a uniform pressure that is equal to the macro-
scopic one, which is applied at the solid-fluid interface. This
enables us to solve a micro-scale problem only on the solid
portion of the REV.
Finally, as regards point 3, the solution of the micromechan-
ical boundary value problem together with Eq. (7.2) allow
to write the macroscopic constitutive behaviour as:

Σ(X) = Chom(X) : E(X) −Σp,c(X) , (7.7)

where Σp,c denotes the mechanical effect induced by pore
pressures when the boundary of the REV is completely con-
strained and Chom is derived in Section 2.2.3.4. Equation
(7.7) represents a general writing of the principle of effec-
tive stress, derived in Section 2.2.3.6.
This two scales approach is classical in microporomechanics
(Dormieux et al., 2006). In this dissertation, the kinematic
homogenization will be performed numerically, employing
the real micro-structure of the material obtained from X-ray
Micro Computed Tomography images. This method can be
applied to porous media saturated with a single or mul-
tiple species: in the latter case, it enables us to test differ-
ent loading schemes, deriving from different hypotheses on
the way that crystals grow inside the porous medium. In-
deed, changing the loading scheme – i. e. the model of crys-
tal growth which determines the pore surfaces loaded by
the pressure – and/or the volume of crystal occupying the
pore space, the mechanical effects induced vary, both at the
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micro-scale and at the macroscopic one. Since we want to in-
vestigate the role of the real pore geometry and of different
loading schemes on the definition of the mechanical effects
of salt crystallisation on the porous material, we assume in
the following that the macroscopic strain E = 0 so that the
homogenised constitutive equation (7.7) reads as:

Σ(X) = −Σp,c(X) . (7.8)

In the literature, the calculation of the macroscopic mechan-
ical properties is typically performed exploiting analytical
schemes which require strong assumptions on the pore shape.
In the following we present the specialisation for porous
media of the Mori-Tanaka scheme (Mori and Tanaka, 1973),
which we will use for comparison with our numerical scheme.

7.2 the mori-tanaka scheme : application to

porous media

The Mori-Tanaka (MT) scheme can be applied to porous
materials. Since it takes into account mechanical interac-
tions between inclusions, it can describe porous media with
porosities up to 50%.
Analytical models, like the Mori-Tanaka scheme, still hold
great importance in all those cases where it is not possible
to have experimental information about the micro-structure
of the material (mainly due to the attainment of the maxi-
mum resolution of the instruments). Moreover, the applica-
tion of this scheme to porous media can also be useful to
obtain a simplified micro-mechanical model of the porous
material, which defines the most suitable micro simplified
geometry representing the real one, as will be shown in
Chapter 9. Here, we specialize the Mori-Tanaka’s scheme in
Benveniste (1987) for porous media, imposing the mechan-
ical properties of the pore space equal zero (κp = µp = 0).
We assume that the porous medium has an elastic isotropic
homogeneous material matrix with randomly oriented el-
lipsoidal pores. In particular, introducing an orthonormal
frame

(
Γ i, ti1, ti2,ni

)
, in which ni denotes the unit normal
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to the pore orientation plane and Γ i the centre of the pore,
the pore shape is described by the equation of an ellipsoid
of revolution, with aspect ratio r :

x2 + y2 +
z2

r2
= k2 , (7.9)

being x = x · ti1, y = x · ti2 and z = x ·ni. As shown in Table
7.1, r spans from 0 to ∞, determining the pore shape.

pore shape aspect ratio

Disk r = 0

Oblate spheroid 0 < r < 1

Sphere r = 1

Prolate spheroid r > 1

Needle r→∞

Table 7.1: Nomenclature of the ellipsoidal pore shapes as a func-
tion of the aspect ratio r.
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In addition to pore shapes depicted in Table 7.1, we can
mention also penny cracks as a particular case of oblate
spheroid with r� 1.

For porous media, homogenised bulk and shear moduli
κMT and µMT result as:

κMT = κm
1−φ0

1−φ0 (1−α)
, (7.10a)

µMT = µm
1−φ0

1−φ0 (1−β)
, (7.10b)

where α and β are scalar quantities depending on the pore
shape, which can be found in the literature for a wide range
of inclusion’s shapes (Berryman, 1980).

If the randomly oriented pores are oblate or prolate spheroids,
the specialization of α and β for porous media reads respec-
tively:

α =
F1
F2

, (7.11)

β =
1

5

(
2

F3
+
1

F4
+
F4F5 + F6F7 − F8F9

F2F4

)
, (7.12)

where:

F1 = 1−

(
3

2
(f+ θ) −

1− 2νm
2(1− νm)

(
3

2
f+

5

2
θ−

4

3

))
, (7.13)

F2 = 1−

(
1+

3

2
(f+ θ) −

1− 2νm
4(1− νm)

(3f+ 5θ)

)
+

+
1

2

(
3−

2(1− 2νm)

1− νm

)
(
f+ θ−

1− 2νm
2(1− νm)

(
f− θ+ 2θ2

))
.

(7.14)

F3 = f+
3

2
θ−

1− 2νm
2(1− νm)

(f+ θ) , (7.15)

F4 = 1−
1

4

(
f+ 3θ−

1− 2νm
2(1− νm)

(f− θ)

)
, (7.16)

F5 = f−
1− 2νm
2(1− νm)

(
f+ θ−

4

3

)
, (7.17)

F6 =
1− 2νm
2(1− νm)

(f+ θ) − f , (7.18)
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F7 = 2−
1

4

(
3f+ 9θ−

1− 2νm
2(1− νm)

(3f+ 5θ)

)
, (7.19)

F8 =− 1+
1− 2νm
1− νm

−
f

2

(
1− 2νm
2(1− νm)

− 1

)
+

−
θ

2

(
5
1− 2νm
2(1− νm)

− 3

)
,

(7.20)

and

F9 =
1− 2νm
2(1− νm)

θ−

(
1− 2νm
2(1− νm)

− 1

)
f . (7.21)

The functions θ and f are given by:

θ(r) =


r

(1− r2)
3
2

[
cos−1(r) − r

(
1− r2

) 1
2

]
0 6 r < 1 ,

r

(r2 − 1)
3
2

[
r
(
1− r2

) 1
2 − cosh−1(r)

]
r > 1 ,

(7.22)
and

f(θ, r) =


r2

1− r2
(3θ− 2) 0 6 r < 1 ,

r2

r2 − 1
(2− 3θ) r > 1 .

(7.23)

Parameters α and β can also be found in the literature for
spherical, needle-shaped, disk-shaped (Walpole, 1969; Wu,
1966) oblate, prolate (Kuster and Toksöz, 1974) and penny
crack inclusions (Walsh, 1969). Here, these expressions are
specialised for porous media. Coefficients α and β specialised
for porous media function of matrix Poisson’s cofficient are
reported in Table 7.2 for pores having shape of spheres, nee-
dles, disks and penny cracks.

If pores are randomly oriented, the Biot’s tensor results
spherical, thus a scalar parameter, the Biot’s coefficient, can
be defined. According to the expression derived in Section
2.2.3.6 – Eq. (2.42) – and to Biot (1962); Geertsma (1957), the
Biot’s coefficient can be expressed as:

b = 1−
κhom

κm
. (7.24)
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pore shape α β

Spheres (r = 1) 3
2
1−νm
1−2νm

10νm−8
5νm−7

Needles (r→∞) 2νm
1−2νm

+ 5
3

8
3 −

8νm
5

Disks (r→ 0) ∞ ∞
Penny Craks (r� 1)

2 (1−νm)
(1−2νm)πr

1
5 +

8ν2m−48νm+40
15πr(2−νm)

Table 7.2: Expressions of α and β for spherical, needle-shaped,
disk-shaped pores and penny cracks.

It follows that the Biot’s coefficient for porous media with
randomly oriented ellipsoidal pores according to the Mori-
Tanaka’s scheme and Eq. (7.10a) can be computed as:

bMT = 1−
κMT

κm
= 1−

1−φ0
1−φ0 (1−α)

, (7.25)

where expressions of parameter α, specialised for porous
media, are reported in Table 7.2 for pore shapes having
notable values of aspect ratio r . Equation (7.25) remarks
that the Biot’s coefficient depends on the value of poros-
ity, the Poisson’s coefficient of the material matrix νm and
the pore shape through α, but not on the elastic modulus
of the matrix. Moreover, remembering the inequality (2.43),
we remark that considering the Voigt bound, presented in
Section 2.2.2, it is possible to estimate the Biot’s coefficient
as bV = φ0, which constitute the lower bound for this pa-
rameter.

Assuming the solid skeleton of the porous media linear
elastic and isotropic, the trend of the Biot’s coefficient with
respect to the Poisson’s coefficient ν and the porosity φ0 is
investigated not only with the Mori-tanaka scheme, but also
considering its lower bound, the Voigt’s one.

Figure 7.3 shows the trend of the Biot’s coefficient com-
puted using the scheme of Voigt and Mori-Tanaka consider-
ing different forms of pores randomly oriented – spherical,
prolate, oblate and penny-shaped cracks –, as a function of
the Poisson’s ratio and the porosity of the material. In par-
ticular, spherical pores, needle-shaped, oblate with aspect
ratio r = 0.05, prolate with aspect ratio r = 3 and penny
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Figure 7.3: Biot coefficient b computed with MT scheme using dif-
ferent pore shapes

crack with three different aspect ratios are considered. As it
can be noted, the Voigt estimation gives only a rough esti-
mate of the Biot’s coefficient, because it assumes that strain
is uniform within the heterogeneous material, as pointed
out in Section 2.2.2.1.

The complete surface representation of the Biot’s coeffi-
cient as a function of the porosity of the material and of the
Poisson’s coefficient for the pore shapes considered above is
illustrated in Figure 7.4. It is worth noting that graphs in Fig-
ure 7.3 are sections of the complete surfaces depicted in Fig-
ure 7.4 for different pore shapes. Moreover, both Figure 7.3
and Figure 7.4 highlight that the assumed pore shape can
lead to very different results in terms of Biot’s coefficient.
For this reason it is interesting have some experimental in-
formation on the real geometry of the micro-structure.

Figure 7.5 represents the Biot’s coefficient calculated with
the Mori-Tanaka’s scheme as a function of the aspect ratio r
for assigned values of porosity and Poisson’s ratio. Contin-
uous black line represents the trend of the Biot’s coefficient
for oblate 0 < r < 1, spherical r = 1 and prolate r > 1 pores.
It is worth noting that the curve presents a minimum for
the spherical pore and a horizontal asymptote for r tending
to infinity (the needle-shaped pore). For r = 0, i. e. disk-
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shaped pores, the Biot’s coefficient has the maximum value,
i. e. 1. The red dotted line represents the trend of the Biot’s
coefficient in the case of pores having a penny crack shape:
these values are subjected to the condition r� 1.

Moreover, Figure 7.6 shows the trend of the shear mod-
ulus ratio µMT/µm computed using the scheme of Mori-
Tanaka considering different forms of pores randomly ori-
ented – spherical, prolate, oblate and penny-shaped cracks
–, as a function of the Poisson’s ratio and the porosity of
the material. In particular, spherical pores, needle-shaped,
oblate with aspect ratio r = 0.05, prolate with aspect ratio
r = 3 and penny crack with three different aspect ratios are
considered; the complete surface representation of the shear
modulus ratio as a function of the porosity of the material
and of the Poisson’s coefficient for the pore shapes consid-
ered above is illustrated in Figure 7.7. Graphs in Figure 7.6
are sections of the complete surfaces depicted in Figure 7.7
for different pore shapes. Moreover, both Figure 7.6 and Fig-
ure 7.7 highlight that the assumed pore shape can lead to
very different results also in terms of the shear modulus
ratio µMT/µm.

7.3 concluding remarks

In this Chapter the numerical homogenisation approach that
will be employed in this work is presented. In particular,
the numerical homogenisation approach and the applica-
tion of an analytical homogenisation approach – the Mori-
tanaka scheme – to porous media have been detailed. Re-
garding the former, the macroscopic constitutive behaviour
for a porous media whose pore space is saturated with pres-
surised phases have been derived: it accounts for the me-
chanical effect induced by pore pressures. Regarding the
latter, the specialisation of the Mori-Tanaka’s scheme in for
porous media has been shown. In particular, we have de-
rived mechanical properties and the Biot’s coefficient assum-
ing a porous medium with randomly oriented ellipsoidal
pores, having an aspect ratio r. Finally, the trend of Biot’s
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coefficient and shear modulus ratio as a function of poros-
ity and Poisson’s coefficient has been displayed.
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8
P O R O U S M E D I A S AT U R AT E D
W I T H O N E S P E C I E S

The aim of this Chapter is to illustrate a general procedure to
(i) find the size of a porous medium Representative Elementary
Volume (REV) and (ii) to compute the Biot’s tensor, starting from
a X-ray Micro Computed Tomography (X-ray µCT) dataset. The
micro-mechanical model is obtained by automatically converting
the images into a finite element mesh. The proposed procedure is
applied to a Prague sandstone. The results in terms of Biot’s tensor
are used to validate the size of the mechanical REV.

8.1 the choice of the representative elemen-
tary volume

The aim of this Section is to illustrate a general procedure
to find the size of a porous medium REV starting from a
X-ray µCT dataset. In the framework of multi-scale approaches
and, in particular, of homogenisation theories, the REV is de-
fined as the minimum observation window allowing to ob-
tain a homogenized behaviour which is independent of the
window size. In particular, the REV for a porous medium
has to be representative of:

(a) the overall porosity;

(b) the geometry of the pore space;

(c) the average mechanical properties.

These three features define the mechanical REV, which en-
sures that d� `. In order to satisfy the second part of the in-
equality (7.1) ensuring the scale separation, the wave length
of the load applied on the structure has to be much larger
than the size of mechanical REV. It is worth noting that the

149
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load considered can be of different natures: e. g. mechanical,
thermal, chemical.

8.1.1 The case study

Here, the X-ray µCT input dataset comes from a Prague sand-
stone (Pavlík et al., 2008) sample of 8 mm in diameter that
was scanned at the HECTOR scanner (Masschaele et al.,
2013) of the Centre for X-ray Tomography of the Ghent Uni-
versity (UGCT) (Derluyn et al., 2014b). The 3D volume was
reconstructed using a filtered backprojection algorithm in
the software Octopus (Inside Matters bvba, Belgium; Vlassen-
broeck et al. (2007)), resulting in a dataset consisting of cu-
bic voxels (3D equivalent of pixels) of 4.75 µm in size. Subse-
quently, a Volume Of Interest (VOI) of 5.225 mm × 5.225 mm
× 4.755 mm was selected and segmented using Morpho+, a
software package currently distributed as Octopus Analysis
(Inside Matters bvba, Belgium, Brabant et al. (2011)). The
segmentation leads to a stack of 1001 binary images of 1100

× 1100 pixels (see Figure 8.1). Black pixels represent the
solid matrix and the white ones the pore space. It is worth
noting that segmented images are always affected by un-
certainties due to the filtering and phase segmentation pro-
cesses, depending on the filter chosen to reduce the image
noise and on the choice of threshold value. These uncertain-
ties can impact the material micro-structure 3D geometry
which is treated in this study.

8.1.2 Overall Porosity

As pointed out, the REV has to be representative of the ma-
terial porosity. To achieve this goal, a number of Elementary
Volumes (EV) having different sizes are randomly extracted
from the VOI. For each of them the overall porosity value
is calculated. This parameter can be calculated by mean of
software packages for 3D analysis, which usually can com-
pute also the open and closed porosity. Here we compute
the overall porosity by mean of a simple Python code. Since
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Figure 8.1: Segmented binary image of a horizontal slice of the 3D
reconstructed volume of the Prague sandstone: solid
matrix (black) and pore space (white) (Derluyn et al.,
2014b).

voxels are cubic, we can imagine a voxel as the element aijk
of a 3D array A having value 0 (black) or 1 (white). In other
words:

aijk =

1 , if aijk ∈ pore

0 , if aijk ∈ solid
∈ Nn×m×l

0 (8.1)

where n, m, l are the dimensions of array A. Thus, the cal-
culation of the overall porosity φ0 is straightforward:

φ0 =
1

nml

n∑
i=1

m∑
j=1

l∑
k=1

aijk , (8.2)

resulting the arithmetic mean of the values associated with
EV voxels.
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Figure 8.2: evs’ porosities function of the EV size: the poros-
ity range 26.25-29.67% given for Prague Sandstone in
Pavlík et al. (2008) is highlighted in light grey.

Different sizes of cubic EVs are chosen: from 0.2375 mm (50

pixels) to 1.9000 mm (400 pixels). For each size, 80 EVs are
randomly extracted and for each of them the porosity is
calculated. Figure 8.2 shows the porosities of different EVs
obtained as a function of the EV size. Data are compared
with the value of porosity given for the Prague Sandstone
in Pavlík et al. (2008), ranging from 26.25% to 29.67%. It is
worth noting that, for the sake of simplicity, here we assume
that the overall porosity is equal to the total open porosity.
As expected, increasing the EV size the range of porosities
calculated gets narrower. Thus, inspecting Figure 8.2 it is
possible to conclude that 1.1875 mm is the best EV size from
a porosity point of view, ensuring representativeness and
affordable computational cost for the further steps. Indeed,
for this size the 80 EVs analysed have a range of porosities
between 26.25% and 29.47%, which are in agreement with
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Table 8.1: Porosity of evs chosen among those of 1.1875 mm.

ev# φ0 [%]

9 26.25

73 27.85

21 29.47

the porosity range given in Pavlík et al. (2008).
In the following, among the EVs of 1.1875 mm, we anal-
yse the geometry of the pore space and average mechanical
properties of the ones having the maximum (29.47%), the
minimum (26.25%) and the medium porosity (27.85%) val-
ues, to further assess the representativeness of this EV size.
The overall porosity of analysed EVs is given in Table 8.1.

8.1.3 Geometry of the pore space

The pore space’s geometry is usually investigated isolating
and analysing each part of the volume which is not con-
nected with another one. Thus, each detected object is mod-
elled as an equivalent shape, based on the equivalence of
geometrical indicators like moments of inertia or volume.
This procedure is usually performed by software packages
for 3D analysis (Brabant et al., 2011).

In this work, the geometry of the pore space is charac-
terised in a non-standard way, which is related to the devel-
opment of the mechanical model discussed in the rest of the
dissertation. In order to model the interaction between the
solid matrix and the different phases (water, moisture, salt,
...) contained in the pores, we need to associate the volume
of pores filled by each phase with the contact surfaces be-
tween this phase and the solid matrix. In order to create a
univocal link between the pores’ volume (white voxels) and
the contact surfaces (faces of the black voxels), the following
scheme is adopted:
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• the volume of each voxel, of side υ, is split into six
equal portions, each associated to one of the faces: this
yields a unitary volume Vu = υ3/6 associated to each
face of the voxel (see Figure 8.3a);

• for each face of the solid matrix voxels, the distance
di to the face of the solid matrix voxel directly facing
it is computed (see Figure 8.3b): this distance can be
expressed as di = kiυ, where ki is the number of pore
voxels crossed;

• the volume associated to each face of the solid matrix
voxels is the sum of the unitary volumes of each pore
voxel crossed: this yields Vi = kiVu = kiυ

3/6.

The distances di and the volumes Vi enable us to define two
indicators to analyse the geometry of the pore space:

• the frequency distribution of the distances di, calcu-
lated as

f(di) =
n(di)∑
i n(di)

,

where n(di) is the number of occurrences of the dis-
tance di within the considered sample;

• the weighted frequency distribution of the distances,
calculated as

fw(di) =
n(di)Vi∑
i n(di)Vi

.

It should be underlined that the second indicator also cor-
responds to the pore volume fraction associated to a given
distance di. This indicator will be used in the following to
compute the progressive filling of the pore space with the
crystallised salt. Figure 8.4 shows the two defined geome-
try indicators for EVs of 5 different sizes, extracted from the
VOI starting from the same seed: 0.2375 mm, 0.4750 mm,
0.7125 mm, 0.9500 mm, 1.1875 mm. It is worth noting that
increasing the EV size, the shape of graphs become smoother.
Moreover, only for dimensions of 0.9500 mm and larger it
is possible to capture the whole range of pore dimensions.
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Definitely, Figures 8.4a and 8.4b show that 1.1875 mm is a
good choice for the REV dimension. Once the REV size is
chosen, it is interesting to investigate its spatial variability.
To this end, the two geometry indicators f and fw are built
for the three EVs of Table 8.1 of 1.1875 mm and depicted
in Figures 8.5a and 8.5b. We observe that the trend of the
different graphs is similar, meaning that the REV dimension
chosen is not particularly affected by the spatial variability
and, thus, it is representative of the pore space geometry.

a b

υVa Vb

(a)

ba

z

y

x

da

db

(b)

Figure 8.3: (a) Sketch of the method to compute the volume as-
sociated to each distance di; (b) representation of dis-
tances between matrix voxels in x direction: da is the
distance between face a and face b while db is the one
spanning from face b to face a.
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Figure 8.4: (a) Frequency distribution of the distances and (b)
Weighted frequency distribution of the distances for
EVs of 5 different sizes: 0.2375 mm (50 px), 0.4750 mm
(100 px), 0.7125 mm (150 px), 0.9500 mm (200 px),
1.1875 mm (250 px).
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Figure 8.5: (a) Frequency distribution of the distances and (b)
Weighted frequency distribution of the distances for
3 different EVs of 1.1875 mm (250 px).

8.1.4 Average Mechanical Properties

The mechanical properties of a porous material REV can
be evaluated in terms of the homogenized stiffness tensor
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Chom and of Biot’s tensor B. If the behaviour of porous
material at the macro-scale is isotropic, the Biot’s tensor is
spherical and it is possible to define it in terms of the Biot’s
coefficient b as B = b I, where I is the identity matrix. The
Biot’s coefficient, and more generally the Biot’s tensor B, is
evaluated in literature in an experimental or an analytical
way. In particular, Biot (1962) gave a mechanically based ex-
pression to evaluate b (Eq. (2.42)), which relates the Biot’s co-
efficient to the ratio of the bulk modulus of the porous mate-
rial and the one of the solid matrix. It follows that the Biot’s
tensor is a function of the porosity and of the Poisson’s co-
efficient of the solid matrix. Moreover, many experimental
studies pointed out that the Biot’s coefficient is strongly in-
fluenced by the pore shape of the considered material (Nur
and Byerlee, 1971; Vlahinić et al., 2009; Walsh, 1965). Since
the Biot’s tensor depends on the overall porosity and on the
different arrangements of the pore space, in this study it is
chosen as an indicator to evaluate the representativeness of
REV’s mechanical properties.

8.2 calculation of the biot’s tensor

Here, the procedure to compute the Biot’s tensor starting
from the real 3D geometry of a porous material obtained by
X-ray µCT images is detailed.

8.2.1 Theoretical framework

Referring to Figure 8.6, ∂Ω
REV

is the external REV boundary
and ∂Ωp is the pore surface within the REV. We recall the fol-
lowing relations, which link the volumes of the pore space
Ωp and the one of the material matrix Ωm to the overall
porosity φ0:

|Ωp| = |Ω
REV

|φ0 , (8.3a)

|Ωm| = |Ω
REV

| (1−φ0) . (8.3b)
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Ω
REV

∂Ω
REV

Ωp

Ωm

Ω
REV

= Ωp ∪Ωm

∂Ωp

Figure 8.6: Notation in rev’s definition: ∂Ω
REV

is the external rev

boundary (black dashed line) and ∂Ωp is the pore sur-
face within the rev (continuos red line).

The micromechanical boundary value problem for the cal-
culation of the Biot’s tensor can be written as follows:

∇ ·σ = 0 in Ωm , (8.4a)

σ = Cm : ε in Ωm , (8.4b)

ε = sym(∇u) in Ωm , (8.4c)

u(x) = 0 on ∂Ω
REV

, (8.4d)

T = −P n(x) on ∂Ωp , (8.4e)

where u is the micro-scale displacement, n(x) is the outward
unit normal to the boundary ∂Ωp, T is the traction acting
at the pore-matrix interface and Cm is the local elasticity
tensor. In particular, the solid skeleton is supposed to be
homogeneous, linear elastic and isotropic, i. e. Cm (νm,Em),
where νm and Em are the Poisson’s coefficient and the elas-
tic modulus of the solid skeleton, respectively.
Eq. (8.4d) represents the linear displacement boundary con-
dition (7.4) for E = 0 and enforces that external boundaries
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of the REV are clamped. According to the micromechanical
boundary value problem (8.4), Eqs. (2.31) and (2.32) read:

ε(x) = −A ′(x)P , (8.5a)

σ(x) = −Cm : A ′(x)P . (8.5b)

We derive the macroscopic stress tensor Σ from the micro-
scopic stress field using the average rule (7.6), which is a
consequence of the Hill’s lemma:

Σ =
(1−φ0)

|Ωm|

∫
Ωm

σ(x)dVm +
φ0
|Ωp|

∫
Ωp

−PIdVp

= (1−φ0)〈σ〉m −φ0PI ,
(8.6)

being:

〈σ〉m =
1

|Ωm|

∫
Ωm

σdVx . (8.7)

Following the same path of Section 2.2.3.5 we get:

Σ = −Σp,c = −BP , (8.8)

where the Biot tensor is defined in (2.34). Equating (8.6) with
(8.8) yields:

〈σ〉m = −Cm : 〈A ′〉m P , (8.9a)
〈σ〉m
P

= −Cm : 〈A ′〉m = I : 〈A〉m − I . (8.9b)

These relations show that eigenvalues of 〈σ〉m are negative.
Moreover, it is worth noting that, owing to the linear de-
pendence of Cm on Em, 〈σ〉m/P, and hence 〈A〉m, does not
depend on Em but only on the Poisson’s coefficient of the
matrix νm.
Combining (2.36) and (8.9b) the Biot’s tensor can be writ-
ten as a function of the overall porosity φ0 and the average
stress on the matrix 〈σ〉m in the form :

B = φ0I− (1−φ0)
〈σ〉m
P

(8.10)

The isotropic
case
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If the macroscopic behaviour is found isotropic, remem-
bering (2.40), relation (8.9b) reduces:

〈σ〉m
P

= ((Am)v − 1) I . (8.11)

We can conclude that the tensor 〈σ〉m is spherical, i. e. 〈σ〉m =

σmI with σm < 0 and (Am)v can be written as:

(Am)v =
σm

P
+ 1 . (8.12)

Therefore, the Biot’s coefficient reads:

b = φ0 + (1−φ0)
|σm|

P
, (8.13)

and on the base of 2.43 we can conclude:

0 6 |σm| 6 P . (8.14)

In other words, if the macroscopic behaviour is found isotropic,
〈σ〉m is spherical and the modulus of its associated scalar
value σm spans from 0 to the value of P.

Assuming P = 1, the Biot’s tensor can be computed from
the solution of the above boundary value problem by means
of Eq. (8.8) as

B = Σp,c = −Σ = −〈σ〉 . (8.15)

It should be noted that the 〈σ〉 involves the matrix contribu-
tion 〈σ〉m and the the contribution of the phase inside the
pores. Thus, Eq. (8.10) can be simplified as follows:

B = φ0I− (1−φ0)〈σ〉m , (8.16)

The quantity 〈σ〉m can be calculated from a finite element
analysis, as will be detailed in Section 8.2.2 . Thus, we can
compute the Biot’s tensor B based on a micromechanical fi-
nite element analysis of the REV in which the pore surfaces
are loaded with a unit pressure and all the external bound-
aries are clamped, as illustrated in Figure 8.7.
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u = 0

u = 0

P=1

P=1 P=1

P=1

P=1

P=1

Figure 8.7: Boundary Conditions and loading scheme adopted for
the numerical calculation of the Biot’s Tensor.

8.2.2 The Finite Element Modelling

In order to calculate 〈σ〉m, a finite element model is built by
converting voxels representing the material matrix into exae-
dral, 8-node finite elements, based on the idea recently pro-
posed in Castellazzi et al. (2015a, 2017). The REVs choosen of
1.1875 mm consist in about 12M matrix voxels, which would
result in 37 635 861 degrees of freedom for the finite element
model. Therefore, the resolution of the images is decreased
for computational cost reasons, passing from 250 images of
250×250 pixels with a resolution of 4.75 µm to 125 images
of 125×125 pixels with a resolution of 9.5 µm. An algorithm
conserving the porosity is adopted for image scaling. The
rescaled segmented images are labelled via Python’s image
libraries and all the pieces smaller than 3 voxels and the
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(a) (b)

Figure 8.8: Comparison between the same slice of rev 73 before
and after the rescaling and "cleaning procedure": (a)
4.75 µm (b) 9.5 µm cleaned

Table 8.2: Comparison between porosities before and after the
rescaling and "cleaning procedure"

REV#
Porosity [%]

4.75 µm 9.50 µm cleaned

9 26.25 26.24

73 27.85 27.85

21 29.47 29.50

ones that do not belong to the REV boundary are erased.
The aim is to delete small pieces which are not connected
to the rest of the REV’s matrix, and which would cause the
presence of rigid body motions in the finite element model.
These adjustments have a very low impact on the REV poros-
ity, as shown in Table 8.2 and Figure 8.8. After the rescaling
and "cleaning procedure", the REV consists in about 1.4M
matrix voxels, which would result in 5 254 815 degrees of
freedom for the finite element model.

In order to verify that the geometry of the pore space is
conserved, the geometry indicator associated to the weighted
distances fw(di), defined previously, is plotted and com-
pared in Figure 8.9, showing that also the scaled REV repre-
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sents the material micro-structure. The procedure adopted
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Figure 8.9: Comparison between the geometry indicators fw(di)
computed for the two different resolution for REV #73.

to build the finite element model and to calculate the Biot’s
tensor B is summarized in Figure 8.10. Starting from the
set of segmented scaled X-ray µCT images, the reconstruction
of the original three-dimensional geometry is achieved by
stacking all of its slices. Then, by using a common space-
partitioning data structure (kd-tree), the 3D image is trans-
formed into the finite element mesh of the micro-structure,
by simply generating the connectivity and the node ma-
trices (Castellazzi et al., 2015a) of voxels representing the
material. Next, clamped boundary conditions are imposed
and all the pore surfaces are loaded with a unitary pressure
P = 1 thanks to an automatic loading procedure. A static
linear analysis allows to get the local stress maps, thus the
average stress on the matrix 〈σ〉m is obtained through Eq.
(8.7). Finally, the Biot’s tensor is calculated by means of Eq.
(8.16).
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Figure 8.10: Workflow for calculation of Biot’s tensor.

8.3 results and discussion

In this section, we report the results of the estimation of
Biot’s tensors, according to the numerical procedure exposed
in the previous sections. The Biot’s tensor is calculated for
the three samples of Prague sandstone reported in Table 8.2
with νm equal to 0.20 (no assumption is needed for Em since
the Biot’s tensor does not depend on it). The resulting Biot’s
tensors are nearly spherical. This means that the material
can be considered isotropic at the macro-scale: i. e. the pores
can be considered randomly oriented. Therefore, it is possi-
ble to compute the Biot’s coefficient b as the average of the
Biot’s tensor eigenvalues. The calculated Biot’s coefficients
are reported in Table 8.3. The difference between values of b
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Table 8.3: Biot’s coefficients

REV# φ0 [%] b

9 26.24 0.6099

73 27.85 0.6340

21 29.50 0.6504

is due to the different porosity values of the three samples. It
is worth noting that values in Table 8.3 are consistent with
a Mori-Tanaka (MT) scheme with randomly oriented ellip-
soidal inclusions (Benveniste, 1987; Berryman, 1980; Kuster
and Toksöz, 1974; Mori and Tanaka, 1973; Wu, 1966), spe-
cialised for porous media in Section 7.2. In particular, they
are in very good agreement with those of a MT scheme spe-
cialized for a porous medium having oblate pores with as-
pect ratio r = 0.168 (see Figure 8.11). Figure 8.11 proves that
in this case the difference between the values of Biot’s coef-
ficient depends only on the overall porosity. In other words,
for a choosen value of Poisson’s coefficient of the material
matrix, the variation of the average mechanical properties is
only function of the porosity; this means that a REV of 1.1875

mm is also representative of the average mechanical proper-
ties. Therefore, we can conclude that 1.1875 mm is a good
choice for the REV’s size for this Prague sandstone specimen.
For the further developments we will use only the REV #73

which has the average value of porosity among the EVs of
1.1875 mm.

8.4 concluding remarks

In this Chapter a general procedure to get the size of a
porous medium Representative Elementary Volume (REV)
starting from a X-ray Micro Computed Tomography dataset
and to compute the related Biot’s tensor have been illus-
trated. The proposed procedure have been applied to a Prague
sandstone. The results in terms of Biot’s tensor are used
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Figure 8.11: Calibration and validation of the Mori-Tanaka
scheme with data of Table 8.3

to validate the size of the mechanical REV which is found
1.1875 mm.





9
D E F I N I T I O N O F S I M P L I F I E D
P O R E G E O M E T R I E S

A procedure to obtain a simplified micro-mechanical model of a
porous material is developed. A representative mechanical param-
eter is assessed (i) numerically for the real material, using the Fi-
nite Element model of the real porous material’s micro-structure,
and (ii) analytically by a micro-mechanical model with simplified
geometry, making different assumptions about the shape of the
pores. The comparison between the two evaluations make it pos-
sible defining the most suitable micro simplified geometry repre-
senting the real material. The proposed approach is general and
applicable to any porous material. In order to prove its effective-
ness, the developed approach is validated with an application on a
Prague Sandstone.

9.1 the procedure

The Chapter is aimed at the development of a procedure
to obtain a simplified micro-mechanical model of a porous
material which is able to reproduce the same macroscopic
mechanical behaviour of the real one, taking into account
the pore shape and their orientation.
The idea is to chose a representative mechanical parame-
ter and to calibrate analytical homogenisation schemes, spe-
cialised for porous media, by making numerical simulations
on the real material micro-structure.
The Biot’s coefficient, and more generally the Biot’s tensor,
is selected as macroscopic mechanical property to compare
the micro-mechanical model based on simplified geometries
and the real material. Indeed, numerous experimental stud-
ies stress that the Biot’s coefficient is strongly influenced by
the pore shape of the material considered. Furthermore, it

169
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is also a function of the material porosity and the Poisson’s
ratio of the soil skeleton, as remarked in Section 8.1.4.

The proposed procedure can be summarised as follows:
the Biot coefficient is assessed (i) numerically for the real
material, using the Finite Element model of the real porous
material’s micro-structure presented in Section 8.2.2, and (ii)
analytically by a micro-mechanical model with simplified
geometry (making different assumptions about the shape
of the pores). The equivalence between the two evaluations
made it possible to define the most suitable micro simpli-
fied geometry representing the real material. The proposed
approach is general and applicable to any porous material.
In order to prove its effectiveness, the developed approach
is applied to the Prague Sandstone, for which the UGCT
of Gent University provided the X-ray µCT input dataset (see
Section 8.1.1).

9.2 numerical evaluation

The numerical evaluation of Biot’s tensors is performed ac-
cording to the workflow depicted in Figure 8.10 (see Sec-
tion 8.2.2). Biot’s tensors are computed for REV #9 and #21

assuming νm = 0.2, then for REV #73 for three different val-
ues of νm. The resulting Biot’s tensors are nearly spherical.
Therefore, it is possible to compute the Biot’s coefficient b
as the average of the Biot’s tensor’s eigenvalues. Computed
Biot’s coefficients are reported in Table 9.1. Moreover, since
resulting Biot’s tensors are nearly spherical, the material can
be considered isotropic at the scale of the structure; it fol-
lows that we can think pores as randomly oriented.

9.3 calibration of the analytical model and

validation

As remarked in Section 7.2, the Biot’s coefficient can be ex-
pressed as a function of the ratio between homogenised
porous medium’s bulk modulus and the one of solid ma-
trix (See Eq. (7.24)). In order to get an analytical evaluation,
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it is necessary to assess the homogenised porous medium’s
bulk modulus khom.

Homogenised bulk modulus’ evaluation is conducted with
a micromechanical model on the basis of the Mori-Tanaka
scheme specialized for porous media, presented in Section 7.2.
The model is calibrated using the results of numerical simu-
lations in Table 9.1 for νm=0.2, obtaining as pore ideal shape
an oblate ellipsoid (see Table 7.1) having the aspect ratio r
equal to 0.168. The model calibration is showed in Figure 9.1.
It shows the trend of the Biot’s coefficients b function of the
aspect ratio r of pores for νm = 0.2 and porosities values
of REVs # 9, 73 and 21 and the Biot’s coefficients evaluated
numerically. It is worth noting that for all the REVs the as-
pect ratio that ensures the equivalence between analytical
and numerical evaluation is r =0.168.

Next, the Mori-Tanaka model with randomly oriented pores
having r=0.168 is validated with numerical results for differ-
ent Poisson’s ratios. In Figure 9.3 are depicted the predicted
values of the analytical models and the ones computed by
means of numerical simulations (Table 9.1), showing a very
good agreement between numerical and analytical models.
Figure 9.3 illustrates the surface representing the Biot’s co-
efficient as a function of the porosity of the material φ0 and
Poisson’s ratio νm for the aspect ratio derived from the cal-
ibration with numerical simulations.

Table 9.1: Numerical assessment of Biot’s coefficients

b νm

REV # φ0 0.1 0.2 0.3

9 26.24 - 0.6099 -

73 27.85 0.5804 0.6340 0.7084

21 29.50 - 0.6504 -
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9.4 concluding remarks

A general procedure for the defining of micro-simplified ge-
ometries for a porous material, able to reproduce the same
macroscopic mechanical behaviour of the real one, is devel-
oped. The comparison between results of numerical simu-
lations with analytical schemes allows to quantify the pore
aspect ratio of the analytical model that best describes the
behaviour of the real porous media. In particular, we can
conclude that Mori-Tanaka model with randomly oriented
pores, presented in Section 7.2, is able to describe the trend
of the Biot’s coefficient for the Prague sandstone.
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Figure 9.1: Calibration of the analytical model with simplified micro-geometries for Prague sandstone. Dashed lines represent
numerical results for (a) REV #9; (b) REV #73; (c) REV #21. Biot’s coefficients calculated with the analytical model
based on the MT scheme function of the aspect ratio r are tracked using a continuous line.
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Figure 9.2: Validation of the analytical model with r= 0.168:
curves are the trends of Biot’s coefficients varing ma-
trix Poisson’s coefficient and porosity; markers repre-
sent data of Table 9.1.

Figure 9.3: Surface representing the Biot’s coefficient as a function
of the porosity of the material φ0 and Poisson’s ratio
νm for r =0.168. Black dots represent calculated val-
ues reported in Table 9.1.
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P O R O U S M E D I A S AT U R AT E D
W I T H M U LT I P L E S P E C I E S

A multi-scale approach for the analysis of mechanical effects in-
duced by salt crystallisation in porous media is presented. The ap-
proach is based on numerical homogenisation and allows to predict
the effects of salt crystallisation occurring at the scale of the struc-
ture, basing on the real 3D micro geometry of the porous mate-
rial coming from Micro Computed Tomography images. Some hy-
potheses on the loading condition of the micro-mechanical model,
accounting for different crystallisation physics, are introduced and
their effects in terms of mechanical response at the macro-scale are
compared. As case study, the proposed approach is applied to the
Prague sandstone.

10.1 the model

Due to salt transport and crystallisation the porous medium
can be saturated with different species α, i. e. air (a), water
(w), salt (s), in three phases π, i. e. gaseous (g), liquid (l),
solid (s). In this Chapter, the mechanical model for a porous
medium saturated with different species is presented. The
proposed formulation is based on homogenisation theories
and it is an extension of the models presented in Coussy
(2006); Dormieux et al. (2006). As case study, the proposed
approach is applied to the Prague sandstone.

10.1.1 Hypotheses

We refer to a porous medium filled with a certain number
of immiscible species α in π-phase (Figure 10.1), which oc-
cupies the whole pore volume. Each species α in π-phase
occupies the domain Ωπα and it has its own pressure pπα.
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Since the pressures pπα are different, there is no equilibrium
at the interface between phases. In order to balance the sys-
tem, surface tensions would be required. In the proposed
formulation, for the sake of simplicity, all the surface ten-
sion effects are neglected.
The degree of saturation of a species α in π-phase, Sπα, de-
scribes the pore volume fraction occupied by the phase:

Sπα =
|Ωπα|

|Ωp|
, (10.1)

where Ωp =
⋃

(α,π)Ω
π
α.

In this dissertation, the attention is focused on the mechani-
cal effects of salt that crystallises inside the pores, i. e. salt in
solid phase. The passage from the salt in solution to the crys-
tallised one involves a complex phase transition. Although
the growing crystal is in a solid phase, it is modelled like
a phase exerting a pressure on the pore surface without as-
suming a constitutive behaviour. Indeed, according to the
literature on crystallisation presented in Section 2.1, in par-
ticular Scherer (1999, 2004); Steiger (2005a), it is reasonable
to model the mechanical interaction between the growing
crystal and the pore surface as a pressure acting on the sur-
faces of the material matrix in contact with the crystal.

10.1.2 Equations

Referring to Figure 10.1 the micromechanical boundary value
problem can be written as:

∇ ·σ = 0 on Ωm , (10.2a)

σ = C(x) : ε on Ωm , (10.2b)

ε = sym(∇u) on Ωm , (10.2c)

u(x) = E(X) · x on ∂Ω
REV

, (10.2d)

Tπα = −pπα n(x) on ∂Ωπα , (10.2e)

(10.2f)
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∂Ω
REV

Ωp

Ωm

Ω
REV

= Ωp ∪Ωm

Ωπα

∂Ωπα

pπα

∂Ωp

Figure 10.1: Notation in partially saturated rev: ∂Ωp =⋃
(α,π) ∂Ω

π
α is the pore surface within the rev (con-

tinuos red line).

where C(x) = Cm is the local elasticity tensor, supposed
constant. Applying the Hill’s lemma, we get the extension
of Eq. (7.7) to unsaturated porous media:

Σ = Chom : E−
∑
(α,π)

Bπα p
π
α , (10.3)

where Bπα is the partial Biot’s tensor associated to the pres-
sure pπα and domain Ωπα. The framework of linear microp-
oromechanics allow to exploit the superposition principle:
each phase can be treated separately, then the mechanical
effect induced by each phase can be summed. Thanks to the
superposition principle, it is possible to demonstrate that:∑

(α,π)

Bπα = B . (10.4)

If we want to calculate one partial Biot’s tensor using the ge-
ometry of a real micro-structure, we can suppose that only
the partial pressures pπα associated to the one we want to
compute is non-zero; it follows that Eq. (10.3) can be rewrit-
ten as:

Σ = Chom : E−Bπα p
π
α . (10.5)
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The micromechanical boundary value problem formulation
for the calculation of Bπα can be written as follows:

∇ ·σ = 0 in Ωm , (10.6a)

σ = Cm : ε in Ωm , (10.6b)

ε = sym(∇u) in Ωm , (10.6c)

u(x) = 0 on ∂Ω
REV

, (10.6d)

Tπα = −pπα n(x) on ∂Ωπα . (10.6e)

Analogously to the case of porous medium saturated with
one species, assuming pπα = 1, the partial Biot’s tensor can
be computed as

Bπα = Σp,c = −Σ = −〈σ〉 , (10.7)

where σ is the solution of the boundary value problem
(10.6). Through mathematical passages, it is possible to write
the partial Biot’s tensor as a function of the overall porosity
φ0 and the average stress on the matrix 〈σ〉m :

Bπα = φ0 S
π
αI− (1−φ0)〈σ〉m . (10.8)

As in the case of porous medium saturated with one species,
the quantity 〈σ〉m can be calculated from a micromechani-
cal finite element analysis. Thus, we can compute the par-
tial Biot’s tensor Bπα starting from the micro-structural ge-
ometry, loading a portion of pore surface ∂Ωπα with a unit
pressure and clamping all the external surfaces of the REV.
Moreover, it is worth noting that Bπα(Sπα = 1) = B.

10.1.3 The law of partial pressures

Instead of Eq. (10.8) used in this work, in the literature
(Dormieux et al., 2006; Flatt et al., 2014), it is often used
a simple relation to compute the partial Biot’s tensor. Here,
it is briefly recalled since it will be compared with the pro-
posed approach in the following:

Bπα = SπαB . (10.9)
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According to Dormieux et al. (2006), Eq. (10.9) can be ob-
tained assuming that there is not morphological difference
between Ωπα and Ωp. The physical meaning of Eq. (10.9) is
that the contribute of each phase is distributed on the whole
pore surface, as shown in Figure 10.2 considering a domain
of only one pore and it is called "Law of Partial Pressures"
(hereinafter denoted by LPP). In this case, Bπα results from

Ωπα

∂Ωπα

pπα

∂Ωp

Ωp

Sπα p
π
α

∂Ωp

Ωp

Figure 10.2: Comparison between the physical meaning of the
proposed approach (on the left) and the one of Eq.
(10.9), the "Law of Partial Pressures" (LPP) (on the
right).

the computation of the boundary value problem (8.4), im-
posing P = Sπα instead of P = 1 . Indeed, substituting Eq.
(10.9) in Eq. (10.3), we get:

Σp,c = B
∑
(α,π)

Sπα p
π
α . (10.10)

If the Biot’s tensor is spherical – i. e. B = b I – then Eq. (10.9)
can be rewritten as:

Bπα = bπα I , (10.11)

where bπα is the partial Biot’s coefficient defined as:

bπα = Sπα b . (10.12)

Eq. (10.12) is used to describe the mechanical effect induced
by salt crystallisation in Flatt et al. (2014). More refined an-
alytical approaches, based on Self Consistent, Differential
(Vlahinić et al., 2011) and the Mori-Tanaka (Coussy, 2006;
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Vlahinić et al., 2011) schemes are proposed in literature. As
proven in Vlahinić et al. (2011), the latter leads to Eq. (10.12).

10.2 computation of partial biot’s tensors

The procedure to compute the partial Biot’s tensor Bπα is
similar to the one described for the Biot’s tensor in Section
8.2.2, but, in this case, the pore surfaces loaded with an uni-
tary pressure depend on the degree of saturation (see Fig-
ure 10.3 for differences between the two procedures). For
this reason, in order to build the micromechanical finite ele-
ment model, we develop the following automatic loading
procedure to implement the relationship between the de-
gree of saturation Sπα and loaded surfaces ∂Ωπα.

A distance di is associated to each face i of the finite ele-
ment mesh as explained in Section 8.1.3 ( see Figure 8.3b ).
The faces to be loaded are chosen on the basis of the value of
the associated distance di. The first step consists in comput-
ing the pores distances. After that, a number of pore classes
is defined, identifying surfaces where the pressure pπα is ap-
plied. For each pore class the corresponding value of degree
of saturation is computed.

In order to establish a relationship between Sπα and ∂Ωπα,
we need firstly to link the volume occupied by a species |Ωπα|
to the loaded surface ∂Ωπα. Of course, in general, the link
will depend on species α and phase π under consideration.
As anticipated, in the present study we focus the attention
on the crystallised salt (i. e. α = s and π = s) and, in this
case, the aforementioned link depends on the choice of a
crystal growth model; it can be implemented following the
approach described in section 8.1.3, where each voxel can be
split in six pyramids having a voxel’s face as its base. This
issue will be further detailed in the next Section.

10.2.1 From crystallisation’s physics to the mechanical model

In order to evaluate the Biot’s tensor associated to salt crys-
tallisation according to the approach described in Section
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Eq. (10.8)

Partial Biot’s tensor
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Figure 10.3: Workflow for calculation of Biot’s tensor and of par-
tial Biot’s tensor.

10.1, it is necessary to translate the physical context and re-
sults on crystallisation’s physics in a mechanical model. To
provide the input data to calculate the pressure exerted by
the crystal, pss, and the degree of saturation Sss, the Hygro-
Thermo-Chemical model presented in the first part of the
dissertation, describing heat and mass transfer including
salt transport and crystallisation at the macro-scale, can be
used. For the Prague sandstone, we can quantify the crys-
tallisation pressure, thus the crystal pressure, by means of
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the expression proposed by Steiger for large crystals (Steiger,
2005a), since we expect that crystal sizes will be greater than
about 0.1-1 µm and, hence, that size effects are negligible.
Next, to solve the boundary value problem (10.6), some hy-
potheses on where the load is applied have to be made. Ex-
cept in the most carefully controlled experiments (see for ex-
ample Desarnaud et al. (2016a)), salt crystallisation occurs
by heterogeneous nucleation (as shown in Desarnaud et al.
(2015)), where a nucleating agent provides a surface with
a relatively low interfacial energy with the crystal (Scherer,
1999). When the contact angle is low (less than 90°), concav-
ities, such as cracks and pits, constitute particularly favor-
able nucleation substrate since they maximize contact be-
tween the substrate and crystal (Christian, 1975).
According to equilibrium thermodynamics salt precipitates
preferentially in pores having a characteristic dimension >
0.1 µm (Espinosa-Marzal and Scherer, 2010a), i. e. all the
pores that the X-ray µCT of Prague Sanstone under consid-
eration is able to detect.
Considering the model for the crystal growth proposed in
Espinosa et al. (2008a), nucleation and crystal growth take
place equally in pores of different size. Thus, the contact
between crystal and pore wall will occur firstly in smaller
pores. The pore wall prevents growth in confined directions
and the crystals can only keep on growing in the non-confined
ones.
Finally, if we consider a real pore of a Prague sandstone, ac-
cording to physical observation we may theorise that nucle-
ation will take place in the pores’ zones where concavities
are present, i. e. we assume that crystallisation pressure will
act firstly in places were distances between two opposite
confining pore walls are smaller, as explained in Figure 10.4.
We name this "Hypothesis of Small Pores first" (hereinafter
denoted by HSP). Since the way crystal growth takes place in
the pore network is still an open question, we are interested
in testing also other loading schemes, e. g. the opposite situ-
ation: "Hypothesis of Large Pores first" (hereinafter denoted
by HLP).
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Figure 10.4: Exemplification of zones where it can be assumed
that crystallisation pressure acts if the maximum
distance between two opposite confining wall is as-
sumed 2 pixels in a pore of Prague Sandstone: the
boundaries in blue are assumed loaded by the crys-
tallisation pressure.

In the case of HSP, it follows that the degree of saturation
corresponding to the pore class comprehending all the pore
surfaces for which is associated a distance di 6 d is :

Sss (d) =

d/υ∑
i=1

fw (di) . (10.13)

where fw(di) is the geometry indicator associated to the
weighted distances.
On the contrary, if we assume HLP, the degree of saturation
corresponding to the pore class comprehending all the pore
surfaces for which is associated a distance di > d is :

Sss (d) = 1−

d/υ∑
i=1

fw (di) . (10.14)

Figure 10.5 shows the degree of saturation of crystallised
salt Sss as a function of the ratio between the pore distance
and the maximum pore distance for a Prague sandstone ac-
cording to the HSP.
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Figure 10.5: Saturation degree Sss according to the HSP REV #73

(υ = 9.5 µm).

10.3 results and discussion

In this section, we report the results of the computation of
partial Biot’s tensors, according to the numerical procedure
exposed in the previous sections. In particular, in Section
10.3.1, results in terms of partial Biot’s tensors related to
the various hypotheses on the crystal growth model are pre-
sented and discussed. On the other hand, in Section 10.3.2
stress distributions at the micro-scale are shown and dis-
cussed.

10.3.1 Partial Biot’s tensor

Here, we compute partial Biot’s tensors for the REV #73 of
Prague sandstone related to a crystallised salt at different
levels of degree of saturation Sss.
The partial Biot’s tensors are calculated according to the
three models of crystal growth exposed in section 10.2.1,
i. e. HSP, HLP and LPP, described by Eq. (10.9). The HSP and
LPP partial Biot’s tensors for different values of the degree of
saturation are compared in Figure 10.6. As for the Biot’s ten-
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Figure 10.6: Partial Biot’s coefficient function of degree of satura-
tion assuming different crystal growth models: HSP

vs. LPP.

sor of Section 8.3, also the partial ones are nearly spherical.
Hence, results are given in terms of partial Biot’s coefficient
bss, computed as the average of the partial Biot’s tensors
eigenvalues. As it can be noted, the relationship between
the partial Biot’s coefficient and the degree of saturation of
crystallised salt is non linear, if the HSP is considered. More-
over, in this case the partial Biot’s coefficient induced by salt
crystallisation is higher than the one considering the law of
partial pressure. This suggests that the law of partial pres-
sures can be non conservative. For example, in the case of
the Prague Sandstone it underestimates the partial Biot’s co-
efficient up to 10%. On the contrary, if we assume that the
larger pores are filled first (HLP), the law of partial pressures
results conservative as shown in Figure 10.7. This means
that the assumed loading scheme plays a crucial role in the
estimation of the partial Biot’s tensor in real porous media.
They are computed also for different values of Poisson’s co-
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Figure 10.7: Partial Biot’s coefficient function of degree of satura-
tion assuming different crystal growth models: HSP

vs. LPP.

efficient, as shown in Figure 10.8. Figure 10.8a illustrates
partial Biot’s tensors function of the saturation degree for
νm equal to 0.10, 0.20 and 0.30, in the "Hypothesis of Small
Pores first" (HSP) . If the Poisson’s coefficient of the mate-
rial matrix increases, partial Biot’s coefficients increases too.
Normalising the curves reported in Figure 10.8a and defin-
ing the ratio between partial Biot’s coefficients and Biot’s
coefficient χ = bπα/b, we get the trends depicted in Figure
10.8b. Results highlight that the values are different but the
trend is the same; so, we can remark that the Poisson’s co-
efficient of the material matrix has an influence only on the
value of the Biot’s coefficient. Therefore, we can write the
partial Biot’s tensor as:

bπα = χb (10.15)

where b is the Biot’s coefficient which is function of (a) the
porosity φ0, (b) the pore shape and (c) the Poisson’s coeffi-
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Figure 10.8: The influence of Poisson’s coefficient of the mate-
rial matrix on the partial Biot’s coefficient: (a) par-
tial Biot’s coefficient function of degree of saturation
assuming νm=0.10, 0.20, 0.30; (b) normalised partial
Biot’s coefficient function of degree of saturation as-
suming νm=0.10, 0.20, 0.30; (c) three dimensional rep-
resentation.
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cient of the material matrix νm and χ is a function of (a) the
saturation degree Sπα and (b) the loading scheme applied at
the micro-scale. Here we will focus the attention only on
results for νm= 0.20.

10.3.2 Stress distributions at the micro-scale

We have shown in the previous section that the choice of the
loading scheme influences the values of the partial Biot’s
tensor, that is the mechanical effect of salt crystallisation as
seen at the macro-scale. The proposed approach allows also
to inspect the effect of the loading scheme at the micro-scale.
To this aim, we are going to show local stress maps in the
case of HSP, since it seems the most reasonable hypothesis
on the basis of the literature. In particular, we choose the
maximum principal stress σIII(x) as an indicator, since it
could be related to a Rankine-type criterion, which is appro-
priate for the prediction of failure of brittle rocks.
Figures 10.9 and 10.10 show the maps on a section of the
REV of the maximum principal local stresses σIII(x) result-
ing from the static linear analysis to compute the partial
Biot’s tensor in the "Hypothesis of Small Pores first".

In particular, in these figures, the chosen colormap high-
lights the parts that are subjected to 0 6 σIII(x) 6 pπα = 1:
zones having σIII(x) < 0 are coloured in grey, since we do
expect that the failure will occur in traction, while zones
subjected to a positive maximum principal local stress σIII(x) >
pπα = 1 are coloured in dark red, being parts of the micro-
structure in which failure is most probably. As it can be
noted, increasing the degree of saturation, the parts of the
matrix that are subjected to tensile stress tend to dimin-
ish, while the stress’ gradients increase. Moreover, positive
maximum principal stresses tend to localise where grains
are cemented. The REV’s maximum and minimum values
of principal stresses are reported in Figure 10.11 and com-
pared with the law of partial pressures: it is worth noting
that varying the degree of saturation, they does not follow
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(a)

(b)

Figure 10.9: Hypothesis of smaller pores filled first: maximum
principal local stresses σIII(x) at: (a) Sπα = 4.15%, (b)
Sπα = 30.58%

a clear tendency, but they are an order of magnitude higher
than the macroscopic values obtained with LPP.

10.4 concluding remarks

In this Chapter, we have presented a multi-scale approach
for the analysis of the mechanical effects induced by salt
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(a)

(b)

Figure 10.10: Hypothesis of smaller pores filled first: maximum
principal local stresses σIII(x) at: (a) Sπα = 71.34%,
(b) Sπα = 100.00%

crystallisation at the scale of the structure (i. e. the macro-
scale) in porous materials saturated with different species,
starting from its real 3D micro geometry obtained by X-ray
Micro Computed Tomography images.

The proposed approach has been applied to the real porous
medium’s micro-structure of a Prague sandstone, comput-
ing the partial Biot’s coefficient referred to the crystal pres-
sure acting on the pore walls at different levels of saturation
degree. The numerical procedure developed enabled us:
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Figure 10.11: Comparison between the law of partial pressure and
REV’s maximum (σ

III
) and minimum (σI) values of

principal stresses for νm = 0.2.

1. to establish a macroscopic relationship between par-
tial Biot’s tensors and degree of saturation for a real
porous medium;

2. to test different loading schemes, deriving from some
hypotheses on the way that crystals grow inside the
porous medium;

3. to compare the achieved results with the simple rela-
tion often used in literature, i. e. "Law of Partial Pres-
sures" (LPP);

4. to inspect maps of local stress, which can be used for
a failure criteria or a damage model.

Results highlights that the loading scheme assumed plays a
crucial role in the estimation of the partial Biot’s tensor in
real porous media. In particular, we have shown that chang-
ing the loading scheme the induced mechanical effects vary,
both at the micro-scale and at the macro-scale, and that the
law of partial pressures can be non conservative.





Part III

C O U P L I N G H T C - M E C H A N I C S

Results deriving from the first and second part
of the dissertation are combined in a Hygro-Thermo-
Chemo-Mechanical (HTCM) model. Moreover, they
are incorporated in a structural computation with
environmental-mechanical loadings to forecast the
most probable damage scenarios.





11
T H E H Y G R O T H E R M O C H E M O
M E C H A N I C A L M O D E L

A Hygro-Thermo-Chemo-Mechanical (HTCM) model, combining
the hygro-thermo-chemical aspects – presented in Part I – and
the mechanical ones – studied in Part II –, is developed. The
proposed model is further specialised for sodium chloride solu-
tions. The model considers an elastic porous material, isotropic
at the macroscopic scale and described by the simplified micro-
mechanical model developed in Chapter 9. Results presented in
Chapter 10 are incorporated in the HTCM model. A structural
computation with environmental and mechanical loadings is per-
formed to forecast the most probable damage scenarios and to prove
the effectiveness of the proposed approach.

11.1 introduction

We develop here a Hygro-Thermo-Chemo-Mechanical (HTCM)
model to describe the macroscopic behaviour of porous build-
ing materials contaminated with salts and subjected to en-
vironmental and structural loadings. Its formulation com-
bines the HTC model presented in Chapter 3 and the macro-
scopic mechanical behaviour of porous materials saturated
with multiple species, illustrated in Chapter 10.
We employ the concept of a Representative Elementary Vol-
ume (REV). The position of the centre of the REV in a global
coordinate system is described by the position vector at
macroscopic scale X. While we treat the hygro-thermo-chemical
aspects only from the macroscopic point of view, the me-
chanical ones have been studied in Part II with a multi-scale
procedure illustrated in Figure 11.1. In order to combine
these two aspects in a unique model the mechanical fun-
damental equation has to be appended to the system of
equations of the HTC model. As regards the hygro-thermal-
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Figure 11.1: Multi-scale procedure for the evaluation of mechani-
cal effects induced by salt crystallisation.

chemical aspects, a multiphase continuous porous medium
(Gawin and Schrefler, 1996; Schrefler, 2002) is considered
and the pores are considered cylindrical with isotropic dis-
tribution (Castellazzi et al., 2013a; Espinosa et al., 2008a), ac-
cording to Chapter 3. As regards the mechanical part of the
model we consider an elastic porous material, isotropic at
the macroscopic scale and described by the simplified micro-
mechanical model developed in Chapter 9. The equivalent
relative humidity, the temperature, the concentration of the
dissolved salt, the concentration of precipitated salts and
the displacement field of the homogenized porous medium
are assumed as independent variables. The governing equa-
tions are: moisture mass conservation, salt mass conserva-
tion, thermal energy balance, evolution equations of the ki-
netics of the crystallisation and the mechanical equation de-
scribing the momentum balance in terms of displacements
at macroscopic scale. In the following the derivation of the
latter will be presented.
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11.2 mechanics

In this section we present the derivation of the momentum
balance equation in terms of displacements, i. e. the one
which includes compatibility, constitutive law and balance
for the mechanical problem.

11.2.1 Momentum Balance Equation

The momentum balance equation at the macro-scale reads
as:

∇ ·Σ+ F = 0 , (11.1)

where Σ = ΣT is the macroscopic or total stress and F are
the macroscopic external body forces, which can be written
as:

F = gρeff , (11.2)

being g the gravitational acceleration vector and ρeff the
effective mass density defined in Eq. (3.17).

11.2.2 Strain-displacement Equation

Under the assumption of small displacements, the macro-
scopic strain-displacement equation reads as:

E = sym(∇U) , (11.3)

where U is the macroscopic displacement field.

11.2.3 Constitutive Law

We are going to derive the constitutive law making the as-
sumption of linear elastic, isotropic and homogeneous mi-
croscopic elasticity tensor. As detailed in Chapter 10 the
constitutive relation for unsaturated porous media (see Eq.
(10.3)) reads as:

Σ = Chom : E−
∑
(α,π)

Bπα p
π
α . (11.4)
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Eq. (10.3) can be further generalised to account the thermal
expansion or contraction of the porous material:

Σ = Chom : (E− ET ) −
∑
(α,π)

Bπα p
π
α , (11.5)

where ET = α∆T is the thermal strain tensor, with α the
thermal expansion tensor of the porous material and ∆T the
temperature variation respect to the thermal reference state.
Equation (11.5) can be specialized considering species and
phases illustrated in Table 3.1 as follows:

Σ = Chom : (E− ET ) −Bl pl −Bg pg −

N∑
i=1

Bssi p
s
si

, (11.6)

where pl, pg and pssi are the liquid, the reference atmo-
spheric and the crystal pressure in its i-th form, respectively.
According to Eq. (10.4) the following constraint holds:

Bl +Bg +

N∑
i=1

Bssi = B . (11.7)

Summing and subtracting Bl pg to the second member of
Eq. (11.6), we can write the constitutive relation as a func-
tion of the capillary pressure pc = pl − pg :

Σ = Chom : (E− ET ) −Bl pc+

− (Bg +Bl)pg −

N∑
i=1

Bssi p
s
si

,
(11.8)

where pg and pc are defined in Equation (3.28), while pres-
sure exerted by the crystal in its i-th form pssi is defined as
follows (Derluyn et al., 2014a; Steiger, 2005a):

pssi = ∆pi + pl = ∆pi + pg + pc , (11.9)

being ∆pi the crystallisation pressure of the i-th crystallised
form. Substituting Eq. (11.9) in Eq. (11.8) we get:

Σ = Chom : (E− ET ) −

(
Bl +

N∑
i=1

Bssi

)
pc+

−Bpg −

N∑
i=1

Bssi ∆pi .

(11.10)
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11.2.3.1 Salts with one crystallised form

If we consider a salt with only one crystallised form, e. g.
NaCl, we can write Eq. (11.10) as:

Σ = Chom : (E− ET ) − (Bl +B
s
s) pc −Bpg −B

s
s∆p .

(11.11)
The Biot’s tensor B can be computed by means of the proce-
dure illustrated in Section 8.2 and Section 8.2.2 or defining
simplified pore geometries as shown in Chapter 9.
Assumptions on the constitutive law are summarised in

Ωss

∂Ωss

pss = ∆p+ pg + pc

∂Ωp

Ωp −Ω
s
s

pg +
Slws
1−Sss

pc

Figure 11.2: Assumptions made for the constitutive law in the
case of salts with one crystallised form: representa-
tion of a pore.

Figure 11.2. The trend of partial Biot’s tensor for crystallised
salt Bss(Sss) can be assessed choosing a suitable crystal growth
model and applying the procedure presented in Chapter 10.
Finally, the partial Biot’s tensor related to the liquid pres-
sure Bl and the one related to the vapour pressure Bg can
be evaluated making the assumption that the law of partial
pressures expressed by (10.9) is valid in the portion of the
domain occupied by the liquid and gaseous phase (see Fig-
ure 11.2) :

Bl =
Slws
1− Sss

(B−Bss) , Bg =
S
g
w

1− Sss
(B−Bss) , (11.12)
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being 1− Sss = Slws + S
g
w, where Slws is the degree of satura-

tion of the salt solution and Sgw is the one of the liquid water
in gaseous phase (see Table 3.1).
Inserting Eqs. (11.12) in Eq. (11.11), it is possible the writing
of the constitutive law as a function of B and Bss:

Σ = Chom : (E− ET ) −B
s
s p
s
s+

−

(
Slws
1− Sss

(pg + pc) +
S
g
w

1− Sss
pg

)
(B−Bss) ,

(11.13)

which can be reformulated as:

Σ = Chom : (E− ET ) −B
s
s (∆p+ pg + pc)+

−

(
pg +

Slws
1− Sss

pc

)
(B−Bss) .

(11.14)

11.2.3.2 Isotropic macroscopic behaviour

Now, we are going to derive the constitutive law making
the assumption of isotropic macroscopic behaviour of the
porous material.

We have seen that the constitutive law consists in two
terms:

1. Chom : (E− ET ), which is the effective stress Σ ′ rep-
resenting the elastic stress related to the elastic part of
the deformation. It consists in Chom : E, which takes
into account the contributes of macroscopic deforma-
tions and Chom : ET , which takes into account the
contributes of thermal deformations;

2.
∑

(α,π)B
π
α p

π
α , which takes into account the macro-

scopic stress induced by the presence of different species
in various phases inside the porous medium for a ma-
terial whose local deformation is prevented.

The term which takes into account the contributes of macro-
scopic deformations can be specialised as:

Chom : E = λhom∇ ·U I+ µhom
(
∇U+ (∇U)T

)
, (11.15)
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where λhom and µhom are the homogenised Lamé constants.
Thanks to the hypothesis of isotropic macroscopic behaviour,
the thermal strain tensor can be written as ET = α∆T I. It
follows that:

Chom : ET = λhomtr(ET ) I+ 2µhom(ET ) =

=
(
3λhom + 2µhom

)
α∆T I =

= 3κhom α∆T I ,

(11.16)

being κhom the homogenised bulk modulus.
Finally, the second term reduces to:

∑
(α,π)

Bπα p
π
α =

∑
(α,π)

bπα p
π
α

 I . (11.17)

Therefore, total stress can be written as:

Σ = λhom∇ ·U I+ µhom
(
∇U+ (∇U)T

)
+

− 3κhom α∆T I−
∑
(α,π)

bπα p
π
α I . (11.18)

salts with one crystallised form If we consider
a salt with only one crystallised form, according to Sec-
tion 11.2.3.1, we can write the third term as:∑

(α,π)

bπα p
π
α = bss (∆p+ pg + pc)+

+

(
pg +

Slws
1− Sss

pc

)
(b− bss) .

(11.19)

Exploiting the writing of the partial Biot’s coefficient accord-
ing to (10.15) bss = χss b the equation can be simplified as:∑

(α,π)

bπα p
π
α = bss (∆p+pg + pc)+

+

(
pg +

Slws
1− Sss

pc

)
(1− χss)b .

(11.20)
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crystallisation pressure According to Steiger (2005a),
the crystallisation pressure for large NaCl crystals can be
written as:

∆pNaCl ≈
νRT

Vs

(
ln

ω

ωsat
+ 0.56

(
ω

ωsat
− 1

))
, (11.21)

being ν a factor of ν = 2 in the case of 1-1 and 2-2 salts
(e. g. Nacl). It is worth noting that Eq. (11.21) is valid for
1.0 6 ω

ωsat
6 2.2 (Steiger, 2005a). Figure 11.3 shows the

trend of ln ω
ωsat

+ 0.56
(
ω
ωsat

− 1
)

with respect to the super-
saturation ratio for sodium chloride solutions.
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Figure 11.3: Trend of crystallisation pressure of Halite (NaCl) as
a function of supersaturation ratio

11.2.4 Fundamental equation

Inserting the constitutive law (11.5) and the strain - displace-
ment equation (11.3) in the momentum balance equation
(11.1), we obtain the fundamental equation of the mechani-
cal behaviour of the porous material saturated with multiple
species, which represent the formulation of the momentum
balance equation as a function of the macroscopic displace-
ment field U.
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11.3 numerical application

In this section, the potentialities of the HTCM model spe-
cialised for sodium chloride solutions are evaluated, simu-
lating the drying behaviour of a piece of Prague sandstone
saturated with an aqueous NaCl solution. In a particular,
we simulate the drying behaviour of a piece of Prague sand-
stone having dimensions 25×25×25 cm saturated with an
aqueous NaCl solution with ω = 0.5% and subjected to 50%
RH at 20°C for 6 days. From the mechanical point of view,
the specimen is simply supported on the bottom face. On
the other edges we do not apply any load: it follows that
the specimen is free to expand or shrink, since no deforma-
tion is restrained. The mechanical boundary conditions can
be summarised as follows: Uz = 0 on the bottom face, with
U = 0 in a corner point in order to restrain the rigid body
motions; Σ = 0 on the other faces. The macroscopic external
body force described by Eq. (11.2) is applied in the domain
of the specimen. The material is modelled as a linear elastic
solid. Only a quarter of the column is modelled thanks to
the symmetries of the considered problem. The temperature
is assumed constant in the domain during the simulations,
thus the thermal strain tensor is null. These environmental
conditions aim at the evaluation of damage scenarios ap-
plying plausible boundary and initial environmental condi-
tions to larger specimens of Prague sandstone than the ones
simulated in Chapter 6.

The model has been implemented by means of COM-
SOL Multiphysics (COMSOL, 2008). The non-linear system
of equations is solved through a standard iterative strategy,
based on Newton-Raphson method. The time discretisation
is carried out by means of the backward finite difference
method and the space discretisation is performed by the
finite element method. Brick elements with standard Lagra-
gian quadratic shape functions are adopted. Each specimen
has been spatially discretised with smaller finite elements
in correspondence of the external surface and the vertical
edge, since it is the area in which there are the most pro-
nounced gradients. The typical size of the mesh spans from
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15 mm in centre of the specimen to 3 mm at the corner, in
which there are the most pronounced gradients. The finite
element mesh is shown in Figure 11.4a, while the outer sur-
faces on which evaporation occurs are highlighted in blue
in Figure 11.4b.

(a) (b)

Figure 11.4: Geometry: (a) mesh; (b) evaporative surfaces.

Adopted parameters are shown in Table 11.1. It is worth
noting that the supersaturation ratio threshold is assumed
1.6 according to Desarnaud et al. (2014). Homogenised me-
chanical properties of the porous medium – such as λhom,
µhom and κhom – are calculated using the analytical model
based on the Mori-Tanaka scheme, which has been calibrated
and validated for the Prague sandstone in Chapter 9 and
assuming νm = 0.10 and κm = 37000 MPa. The Biot’s coef-
ficient results in 0.59. The trend of the partial Biot’s coeffi-
cient function of the saturation degree of precipitated salt
Sss is taken according to the "Hypothesis of Small Pores
first" (HSP) model presented in Chapter 10. In particular,
χss(S

s
s) is shown in Figure 11.5.
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Par. Value Unit Description

Dv 1.9 · 10−6 m2/s Vapour permeability

Φ0 0.29 - Porosity

A 1.68 kg m-2s-0.5 Water adsorption coefficient

rp 15 · 10−6 m Average pore radius

Kc 1.08 · 10−4 m/h Growth rate coefficient

n 7 · 1012 1/m3 Nuclei in solution

p 1 - Crystallization process order

α0 1.6 - Crystallisation threshold

ωsat 0.264 kg/kg
Mass fraction ω at

saturation

Ks 2.2 · 10−9 m2/h Diffusion coefficient

ρss 2170 kg/m3
Mass density of precipitated

NaCl

Ψ 1.0028 -
Sorption isotherm

parameter

κhom 15163 MPa Homogenised bulk modulus

µhom 16353 MPa
Homogenised shear

modulus

b 0.59 - Biot’s coefficient

Table 11.1: Parameters used in the simulations.

Figure 11.6 shows the maps of supersaturation ratio of
ω/ωsat every 24 hours. It can be remarked that the super-
saturation threshold α0 is exceeded after 5 days (120 hours).
Inspecting the maps we observe that the concentration of
the solution increases firstly at the edge. Consequently, it is
observed that the salt begins to precipitate at first in corre-
spondence of the edge. In Figure 11.7 the precipitated NaCl
is depicted after 5 days (120 hours): at 120 hours, 128 hours
136 hours and 144 hours (6 days).

Figure 11.8 shows the field of displacements induced by
crystallisation of the salt on Prague sandstone at 120 hours,
128 hours 136 hours and 144 hours (6 days). It can be noted
how a bulge in correspondence of the areas in which the
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Figure 11.5: Trend of the partial Biot’s coefficient as a function of
the saturation degree of precipitated Halite

crystallisation takes place (the corner) grows: a particular
showing the deformed and undeformed configurations is
reported in Figure 11.9. Figure 11.10 represents the areas
subjected to an spherical effective stress tr

(
Σ ′
)
/3 due to

crystallisation exceeding the tensile strength of the material
equal to 1.6 MPa (Pavlík et al., 2008) at 120 hours, 128 hours
136 hours and 144 hours (6 days). It can be remarked that
the tensile stress is exceeded, firstly, at the corner proceed-
ing towards the edges of the specimen. In Figure 11.11 the
trend of the maximum spherical effective stress as a func-
tion of time is reported. It is worth noting that this param-
eter increases when the quantity of crystallised salt arises.
The choice of considering the macroscopic effective stress
underlines the employing of a macroscopic failure or dam-
age criteria to evaluate damage scenarios. Another option
could consist in performing a re-localisation step (see Sec-
tion 2.2.2) and evaluating the microscopic stress due to salt
crystallisation and to the other applied loadings. In this case,
the stress state should be compared with a microscopic fail-
ure o damage criteria, which should be obtained with mi-
croscopic mechanical tests.
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(a) day 1 (b) day 2

(c) day 3 (d) day 4

(e) day 5 (f) day 6

Figure 11.6: Supersaturation ratio ω/ωsat at 1 (a), 2 (b), 3 (c), 4

(d), 5 (e) and 6 (f) days.
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(a) 120 hours (b) 128 hours

(c) 136 hours (d) 144 hours

Figure 11.7: Precipitated NaCl (css) at (a) 120, (b) 128, (c) 136 and
(d) 144 hours.

11.4 concluding remarks

In this chapter a Hygro-Thermo-Chemo-Mechanical (HTCM)
model is proposed, adding the fundamental equation of me-
chanics to the HTC model presented in the first part of this
dissertation. As constitutive law, a generalisation of the one
derived in Chapter 10 is assumed. Then, it is specialised for
materials having a macroscopic isotropic behaviour and a
linear elastic, isotropic and homogeneous microscopic elas-
ticity tensor. Finally, salts with one crystallised form, in par-
ticular NaCl, are considered. In order to show its potential-
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(a) 120 hours (b) 128 hours

(c) 136 hours (d) 144 hours

Figure 11.8: Magnitude of displacements at (a) 120, (b) 128, (c) 136

and (d) 144 hours.

ities, the HTCM model specialised for sodium chloride so-
lutions has been employed to simulate the first stages of
the drying of a sodium chloride solution in a column made
of Prague sandstone. The homogenised mechanical proper-
ties are computed by the Mori-Tanaka scheme considering
the simplified pore geometries of the Prague sandstone ob-
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(a) 136 hours (b) 144 hours

Figure 11.9: Magnitude of displacements (particular) at (a) 136

and (b) 144 hours.

tained in Chapter 9. The trend of the partial Biot’s coeffi-
cient is taken according to the "Hypothesis of Small Pores
first" discussed in Chapter 10. Results show that the salt
begins to precipitate at first in correspondence of zones in
which evaporation is faster (in this case the edge), causing
the material swelling where the crystallisation takes place.
This leads to the development of high effective stresses due
to salt crystallisation that may exceed the tensile strength of
the material, causing the beginning of weathering processes.
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(a) 120 hours (b) 128 hours

(c) 136 hours (d) 144 hours

Figure 11.10: Areas subject to an spherical effective stress due to
crystallisation exceeding the tensile strength of the
material at (a) 120, (b) 128, (c) 136 and (d) 144 hours.
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Figure 11.11: Trend of the maximum spherical effective stress as
a function of time.
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C O N C L U S I O N S A N D
P E R S P E C T I V E S

In this dissertation the modelling and analysis of mechan-
ical effects induced by salt crystallisation in porous build-
ing materials have been investigated employing a two-scale
approach. To this aim, it has been necessary to study in ad-
vance the hygro-thermo-chemical aspects affecting the phys-
ical phenomenon.

In the first part of the dissertation, a new coupled multi-
phase model for the hygrothermal analysis of porous build-
ing materials including salt crystallisation/dissolution and
hydration/dehydration processes – HTC model – has been
presented. The model describes the phenomenon at the scale
of the structure, the macro-scale, and it is governed by three
coupled, highly non-linear differential equations – moisture
mass conservation, salt mass conservation and energy bal-
ance – completed by evolution equations that describe the
kinetics of the salt precipitation. The HTC model has been
specialised for Na2SO4 and NaCl solutions. As regards the
former specialisation, the model has been validated through
two benchmark tests taken from the literature, referred to
sodium sulphate solutions and involving isothermal or iso-
hygral conditions. Moreover, in order to show the potential-
ities of the model in more realistic cases, an example with
non-isothermal and non-isohygral conditions has been dis-
cussed. As regards the latter specialisation, the influence of
the thermal effects on salt transport and crystallisation in
masonry structures has been investigated. A correlation be-
tween sorption/desorption curves at various temperatures
has been presented and some model parameters depending
on temperature have been analysed. Moreover, it has been
employed to simulate the capillary rising of a sodium chlo-
ride solution in a masonry column in isothermal and non-
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isothermal regime. Finally, the HTC model specialised for
sodium chloride solutions has been extended to take into ac-
count the different kinetics of the drying process. The model
is used to simulate two experimental campaigns carried out
in the framework of the European project kisadama. In all,
the numerical results demonstrate the effectiveness of the
proposed HTC model to simulate salt transport and crystalli-
sation at the macro-scale in a range of realistic cases involv-
ing different types of salts.

In the second part of the dissertation, mechanical aspects
have been investigated. In particular, we have developed a
multi-scale approach for the analysis of the mechanical ef-
fects induced by salt crystallisation at the macro-scale, start-
ing from the real 3D micro geometry of a porous mate-
rial obtained by X-ray Micro Computed Tomography im-
ages. The multi-scale approach is based on numerical ho-
mogenisation. The micro-mechanical model is obtained by
automatically converting the images into a finite element
mesh, specific loading conditions able to take into account
the crystallisation process are implemented and, finally, the
constitutive law at the macro-scale is retrieved through kine-
matic homogenisation. Much attention has been devoted to
the choice of the mechanical REV on the basis of the overall
porosity, the geometry of the pore space and the average me-
chanical properties in order to ensure its representativeness
of the real micro-scale. The proposed approach has been
applied to the real porous medium’s micro-structure of a
Prague sandstone, computing the partial Biot’s coefficient
referred to the crystal pressure acting on the pore walls at
different levels of saturation degree. The numerical proce-
dure developed enabled us: (i) to establish a macroscopic re-
lationship between partial Biot’s tensors and degree of satu-
ration for a real porous medium; (ii) to test different loading
schemes, deriving from some hypotheses on the way that
crystals grow inside the porous medium; (iii) to compare the
achieved results with the simple relation often used in liter-
ature, i. e. "Law of Partial Pressures"; (iv) to inspect maps of
local stress, which can be used for a failure criteria or a dam-
age model at micro-scale. Results highlight that the loading
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scheme assumed plays a crucial role in the estimation of the
partial Biot’s tensor in real porous media. In particular, we
have shown that changing the loading scheme the induced
mechanical effects vary, both at the micro-scale and at the
macro-scale, and that the law of partial pressures can be
non-conservative. We can conclude that the proposed multi-
scale approach for the analysis of the mechanical effect of
salt crystallisation in porous media could shed some light
on the still open issue of the relationship between the crys-
tallisation physics and its mechanical effects. In addition, a
general procedure for the defining of micro-simplified ge-
ometries for a porous material, able to reproduce the same
macroscopic mechanical behaviour of the real one, has been
developed. The comparison between results of numerical
simulations with analytical schemes, in the case of a Prague
sandstone, allowed to evaluate the pore aspect ratio of the
analytical model that best describes the behaviour of the
real porous media.

In the third part of the dissertation, hygro-thermo-chemical
aspects have been combined with the mechanical ones to de-
velop a Hygro-Thermo-Chemo-Mechanical (HTCM) model.
Results of the numerical procedure proposed in the second
part of the dissertation have been incorporated in a struc-
tural computation with environmental-mechanical loadings.
Some numerical applications show its potentialities.

Perspectives

In view of assessing the mechanical effects induced by salt
crystallisation in porous building materials, we developed a
two-scale approach. This involves a numerical model that
couples heat, water and salt transport, salt crystallization
at the macroscopic scale – HTC model – and a mechanical
part investigated employing a two-scale approach. However,
several topics remain to be studied in the future.

As regards the HTC model, although it is general and it
can be applied to electrolytic salts having different hydrous
and anhydrous crystallised forms, to date it has been spe-
cialised only for sodium sulfate and sodium chloride aque-
ous solutions. This salt library should be extended with the
properties of other salts and salt mixtures.
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In Chapter 6, the HTC model has been enriched in or-
der to describe the different drying kinetics, taking into ac-
count the different efflorescence formations, which can be
observed in NaCl contaminated sandstones. It can be fur-
ther improved to take into account the effects of different
efflorescence formations on the deliquescence or dissolu-
tion processes. In particular, the modelling of these effects
should be carried out also for other salts and different types
of porous building material, performing ad hoc experimen-
tal campaigns. This could be helpful to model the effect of
the micro-structural properties of the porous building mate-
rial on the type of efflorescence formation.

As regards the mechanical effects induced by salt crys-
tallisation it is evident that more knowledge is needed re-
lated to the nucleation and growth kinetics of salt crystals.
In this dissertation a multi-scale approach for the analysis of
mechanical effects induced by salt crystallisation in porous
media has been presented, making some hypotheses on the
loading condition of the micro-mechanical model. Experi-
mental data related to the nucleation and growth kinetics
of salt crystals at the microscopic scale would be required
in order to refine and improve the proposed methodology.
Moreover, maps of local stress obtained from numerical sim-
ulations could be used to express the microscopic stress-
strain fields in terms of the macroscopic variables, through
a re-localisation step, to forecast the most probable damage
scenario.

The proposed two-scale approach could be exploited to
develop a more sophisticated mechanical description, in-
cluding the damage evolution as a function of the hygro-
thermo-chemo-mechanical loading. In particular, the Hygro-
Thermo-Chemo-Mechanical (HTCM) model could be improved
with a suitable macroscopic damage law deriving from the
micro-structural behaviour of the considered porous mate-
rial subjected to salt crystallisation. Another option should
be the implementation of a multilevel finite element approach,
such as the FE2 approach (Feyel, 2003), in order to take into
account the non-linear behaviour and the micro-structure
of the considered porous material. Nevertheless, this step it
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is not trivial from a computational point of view, since the
finite element analysis of real micro-structures is computa-
tional demanding, as shown in Chapter 8 and Chapter 10.





Part IV

A P P E N D I X





A
TA B L E S

Some useful data are reported in this section.

a.1 thermal conductivity of the liquid wa-
ter function of temperature

Temperature [K]
Thermal Conductivity of

liquid water [W/m/K]

275 0.5606

280 0.5715

285 0.5818

290 0.5917

295 0.6009

300 0.6096

305 0.6176

310 0.6252

315 0.6322

320 0.6387

325 0.6445

330 0.6499

335 0.6546

Table A.1: Thermal Conductivity of the liquid water function of
temperature Ramires et al. (1995).
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a.2 molar dissolution enthalpy at infinite

dilution

Solid species a∞ [J/mol] b∞ [J/mol/K]

NaCl 3799.7 -115.80

Na2SO4 -1380.4 -302.09

Table A.2: Molar dissolution enthalpy at infinite dilution in J
mol-1 (273.15 < T < 373.15): ∆solH∞ = a∞ + b∞(T −

T0) with T0 = 298.15 K Marliacy et al. (2000).

a.3 molar latent heat of hydration/ dehy-
dration for h2 o-na2 so4 solutions

Solid species

hhyd(T0)

[J/mol]
∆hydCp

[J/mol/K]

Na2SO4 -81 556 -687.91

Table A.3: Molar latent heat of hydration/ dehydration for H2O-
Na2SO4 solutions function temperature (291.15 < T <
305.15): hhyd = hhyd(T0) + ∆hyd Cp(T − T0) with
T0 = 298.15 K Marliacy et al. (2000).



B
C O E F F I C I E N T S O F T H E H T C
M O D E L

Some useful expressions related to the HTC model are de-
rived in this section.

b.1 latent heat of crystallization for an

anhydrous salt

Latent heat of crystallization for an anhydrous salt Hcryi
Marliacy et al. (2000):

Hcryj =
mlw

′∆sol Ĥ(m
′) −mlw

′∆sol Ĥ(m)

xMs
sj

(B.1)

where:
∆sol Ĥ(m

′) = L̂(m ′) +m ′∆solH∞ (B.2)

∆sol Ĥ(m) = L̂(m) +m∆solH∞ (B.3)

m ′ = molality of the electrolytic solution at the end of the
crystallization process;
m = molality of the electrolytic solution at the beginning of
the crystallization process;
L̂(m ′) and L̂(m) = excess enthalpy of a electrolytic solution
containing 1 kg of water, calculated through the Pitzer’s
model as reported in Marliacy et al. (2000);
x = number of moles of salt formed during the crystalliza-
tion process.
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Hcryj =
mlw

′

xMs
sj

(
L̂(m ′) +m ′∆solH∞)+

−
mlw
xMs

sj

(
L̂(m) +m∆solH∞) =

=
1

Ms
sj

(
−∆Hinfty +∆HL

)
,

(B.4)

Taking into account that
mlw

′m ′ −mlwm

x
= −1 and defin-

ing ∆HL as:

∆HL =
mlw

′ L̂(m ′) −mlw L̂(m)

x
. (B.5)

b.2 kinetic hydration/dehydration param-
eter for sulphate solutions

KHij =
KespM

s
si

10MH2O ρ
s
si
π r2p

=
Kesp(Vm)ssi
10MH2Oπ r

2
p

(B.6)

KHji =
KespM

s
sj

10MH2O ρ
s
sj
π r2p

=
Kesp(Vm)ssj
10MH2Oπ r

2
p

(B.7)

i= hydrated crystallised form;
j= dehydrated crystallised form;
Kesp= 0.45-0.50 mg/min experimental water absorption co-
efficient for sodium sulphate solutions Espinosa et al. (2008b).

b.3 coefficients of the system of equations

The coefficient of the equations of the model are reported in
the following. In particular those related to Eq. (3.68) are:

ϕh =
∂cw

∂h
, (B.8)

ϕhω =
∂cw

∂ω
, (B.9)



B.3 coefficients of the system of equations 225

ϕhT =
∂cw

∂T
, (B.10)

ϕhsi =
∂cw

∂cssi
, (B.11)

Chh =
Dv

RvT
pv,sat + (1−ω)

ρlwRvT Kl
h

, (B.12)

ChT =
Dvh

RvT

∂pv,sat

∂T
+ (1−ω)ρlwRvln(h)Kl , (B.13)

Chω =
Dvh

RvT

∂pv,sat

∂ω
− ρlwsKs . (B.14)

Coefficients related to the equation (3.69) are:

ϕω =
cw

(1−ω)2
+

ω

1−ω
ϕhω, (B.15)

ϕωh =
ω

1−ω
ϕh, (B.16)

ϕωT =
ω

1−ω
ϕhT , (B.17)

ϕsi = 1+
ω

1−ω
ϕhsi , (B.18)

Cωω = ρlwsKs, (B.19)

Cωh = ωρlw
RvT

h
Kl, (B.20)

CωT = ωρlwRvln(h)Kl. (B.21)

Coefficients related to the equation (3.70) are:

CTT = λeff + (βgwT +Heva)
Dvh

RvT

∂pv,sat

∂T
+

+
(
βlw(1−ω) +βlsω

)
ρlwRvKlln(h)T ,

(B.22)
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CTh = (βgwT +Heva)
Dv

RvT
pv,sat+

+
(
βlw(1−ω) +βlsω

) ρlwRvKlT2
h

,
(B.23)

CTω = (βgwT +Heva)
Dvh

RvT

∂pv,sat

∂ω
+

+
(
βls −β

l
w

)
ρlws Ks T ,

(B.24)

Bw = (βlw −βgw)T +Heva , (B.25)

B∗w = βlw T , (B.26)

(ϕTsi)cry = (βssi −β
l
s)T +Hcryi , (B.27)

(ϕTsi)hyd = (βssi −β
l
s)T +Hhydi , (B.28)

ϕT = ρeff βeff , (B.29)

Coefficients related to the equation (3.71) are:

Cssi = S
l
ws(niφ0 ρ

s
si
π r2p)KCi , (B.30)

Cshi =
π r2p ρ

s
si

Vtot
KHij . (B.31)



C
C O E F F I C I E N T S O F T H E H T C
M O D E L F O R C H L O R I D E S

The expressions of coefficients ϕi, Cij, Bi are detailed for
the HTC model specialised for sodium chloride solutions in
Chapter 5. In particular, those related to (5.2) are:

ϕh =
∂cw

∂h
, (C.1)

ϕhω =
∂cw

∂ω
, (C.2)

ϕhT =
∂cw

∂T
, (C.3)

ϕhs =
∂cw

∂css
, (C.4)

Chh =
Dv

RvT
pv,sat + (1−ω)

ρlwRvT Kl
h

, (C.5)

ChT =
Dvh

RvT

∂pv,sat

∂T
+ (1−ω)ρlwRvln(h)Kl , (C.6)

Chω =
Dvh

RvT

∂pv,sat

∂ω
− ρlwsKs . (C.7)

Coefficients related to the equation (5.3) are:

ϕω =
cw

(1−ω)2
+

ω

1−ω
ϕhω, (C.8)

ϕωh =
ω

1−ω
ϕh, (C.9)

ϕωT =
ω

1−ω
ϕhT , (C.10)
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ϕs = 1+
ω

1−ω
ϕhs, (C.11)

Cωω = ρlwsKs, (C.12)

Cωh = ωρlw
RvT

h
Kl, (C.13)

CωT = ωρlwRvln(h)Kl. (C.14)

Coefficients related to the equation (5.4) are:

CTT = λeff + (βgwT +Heva)
Dvh

RvT

∂pv,sat

∂T
+

+
(
βlw(1−ω) +βlsω

)
ρlwRvKlln(h)T ,

(C.15)

CTh = (βgwT +Heva)
Dv

RvT
pv,sat+

+
(
βlw(1−ω) +βlsω

) ρlwRvKlT2
h

,
(C.16)

CTω = (βgwT +Heva)
Dvh

RvT

∂pv,sat

∂ω
+

+
(
βls −β

l
w

)
ρlws Ks T ,

(C.17)

Bw = (βlw −βgw)T +Heva , (C.18)

ϕTs = (βss −β
l
s)T +Hcry , (C.19)

ϕT = ρeff βeff , (C.20)

Coefficients related to the equation (5.5) are:

Css = S
l
ws(nφ0ρ

s
sπr

2
p)Kc. (C.21)
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