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Abstract 

 

In mineral resources and ore reserves estimation, a crucial point is the 

geological domains that will be used for the modelling, as well as the type of 

boundaries between these domains. The most common geostatistical techniques 

are based on the assumptions of stationarity of the variable within estimation 

domains considered hard boundaries (sharp contact between geological units). 

However, in most cases, the geological mechanisms that generate a deposit are 

transitional -overlapping in geological units- in nature. In transitional boundary 

deposits, each geological zone has its own mineral grade distributions and 

spatial variability, but with an overlapping between geological zones. Hence, 

any method for estimation models, affects the mine planning with a significant 

sensitivity particularly in transition areas. Due to this point, the identification of 

the exact boundaries of mineralization is essential for an accurate estimate of 

resources. The objective of this dissertation is to develop a methodological 

framework to be used in presence of transitional boundaries. The 

methodological framework is introduced and then explained through a case 

study with transitional boundaries. Moreover, through a mining case study, it 

will be shown how choosing appropriate methodology for modelling variables 

and for interpreting the deposit geology will help to optimize parameters 

identification. The methodological framework in general allows decreasing the 

uncertainty in resources estimation and reserves selection. The method is 

general and can be used in other field of geoscience that incorporate numerical 

modelling, such as environmental modelling, petroleum or mining industry 

where complex geology deposits should be characterized. 
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INTRODUCTION 

 

In many geo-engineering applications, as hydrocarbon reservoir production, 

mineral extraction, tunneling and underground storage or disposal of hazardous 

wastes, a characterization of the geology of the earth is required. In the 

mentioned applications, at least in the planning stages, one of the direct 

accesses to geology is provided by boreholes, which must be kept to a 

minimum number for economic and/or physical reasons (Dowd and Pardo-

Ig´uzquiza, 2005). Obtaining accurate geological boundaries-exact borders of 

geological units- and assessing the uncertainty of these borders are crucial steps 

for any study in georesource field. For instance, in the case of mining, the 

uncertainty in the extent of an ore body can be reflected in a low reliability 

level in ore resource estimation. The borders between different geological units 

are traditionally interpreted as hard boundaries and it can be difficult to quantify 

uncertainty in the boundary and its impact on ore tonnage (Dowd and Pardo-

Igúzquiza, 2005). One of the evaluation methods used for ore reserve 

estimation and geological boundaries is geostatistical methods.  

Geostatistics proposed by Matheron (Matheron, 1971) as a scientific estimation 

method taking account structure and randomness inherent in any deposit. It is 

important to note that the origin of geostatistical studies is from the field of 

mining engineering (Krige, 1951). For the first time, an interpolation technique 

named “Kriging” was used to estimate a gold mine grade. Following this first 

application, the basis of the theory has been developed for general application 

by Georges Matheron. Matheron used Krige's innovative concepts and set them 

in a single powerful framework with his Theory of Regionalized Variables 

(Matheron, 1971). Originally developed for solving ore reserve estimation 
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problems, the techniques of Kriging spread in the seventies into other areas of 

the earth sciences. They are nowadays popular in many fields of science and 

industry where there is a need for evaluating spatially or temporally data. 

One of the main points in geostatistical evaluations is that prior to estimation of 

any spatial variable in georesource fields, it is necessary to construct the 

conceptual geological model and/or the domain model and to represent and 

identify the constraints and borders of mineralization zone to be estimated. This 

is usually a semi-automatic process, but generally requires a confining shape in 

which to estimate the mineralization zone. Hence, the determination of the 

boundary separating ore and waste/ or between geological units is an important 

aspect in ore reserve estimation because incorrect assumptions of stationarity 

can lead to a significant bias in the final resource estimation model. In statistics 

and geostatistics studies, stationary means that the distribution of a variable is 

invariant under translation. In the same way, a stationary random function is 

homogeneous and self-repeating in space, which means for any increment (h) in 

the space, the distribution of the variable remains the same (Armstrong, 1998). 

Estimation with hard boundaries is straightforward since only the samples 

within the domain are used. Hard boundaries mean that there is a sharp or 

abrupt between borders of geological units and therefore there is no continuity 

between variables in adjacent geological units. However, in many applications, 

the variables at either side of a boundary are not independent and there are 

some overlapping and continuity between them. Besides, the boundary may be 

defined by a change in the local mean grade, which is usually gradational rather 

than abrupt, and named soft or transitional boundaries
1
. 

Soft boundaries allow variables from multiple domains to be used in the 

estimation of each domain. Common practice is to share samples within a given 

                                                
1 Two expressions of soft and transitional boundaries have the same meaning in this dissertation 
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zone of influence of one domain over the other (Larrondo and Deutsch 2004). 

Samples from different domains are treated equal to those within the domain, 

that is, the same mean; variance and covariance model from samples within the 

domain are assumed. This generally has the effect of changing the 

representative statistics of the domain of interest. This corruption of the final 

variables, especially in the transition zones, often dissuades practitioners from 

using soft boundaries. Therefore, for deposits with soft boundaries, the 

geological constraints are gradual and a much more careful treatment is 

required when estimating using geostatistical tools (Larrondo and Deutsch 

2004). However, the following features of modelling soft boundary deposits 

have not been dealt with an accomplished model in the literature in depth. 

Hence, the milestones given below are the major contributions from this study:  

- Segmentation, defining domains and choosing the best input data set for 

global/local estimations; 

- Testing and proposing methods to face the problem of integrating 

samples and non-homogenous data, as we are dealing with samples with 

different supports;  

- Testing different variogram models to reflect accurately global/local 

uncertainty (proposing the theoretical punctual model in addition to the 

sample variogram models); 

- Comparison of different methodologies for prediction of the best result 

in a specific deposit and investigate the best locally/global adaptive 

methodology;  

- Prediction of the optimum parameters to produce the best efficiency in 

each process based on the geostatistical modelling;  

- Assessment of sensibility of each sector and indicating the best model 

for mine design and planning. 
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All the mentioned steps are essential for the understanding and development of 

geostatistical models for the particular case of transitional boundaries.  

This work has developed a framework for estimation in case of transitional 

boundaries. A case study of a metasomatite iron ore deposit, with complex 

geology and transitional boundaries, is estimated using the developed 

framework. The developed framework is integrated with methodologies 

introduced in recent literature and some novel approaches are proposed. In this 

case, the variable modelling is adapted by the geological modelling. Domains 

are defined by a combination of geostatistical means. In addition, by testing 

different models in the estimation methodologies through transitional 

boundaries, the investigation of the most coherent model is possible.  

In each part of this work, the theory is explained and then applied through the 

case study. Although, generally, each case study is distinguished by its specific 

geology and particular distribution of variables, the procedure considered for 

geostatistical modelling and proposed methods and tools in this work can be 

used in any other application (mining, petroleum environmental, etc.).   

This thesis is structured through two parts. In part one; it starts with a 

background Chapter, where the topic of the research is described. Chapter 2 

describes the case study and provides some general information about the iron 

mine, about the difficulties occurred in geological interpretations and reserve 

estimation, and the necessity of deepening the studies. Chapter 3 describes the 

first step of geostatistical modeling for reserve estimation particularly with 

transitional boundaries: data analysis, integrating samples for variable spatial 

analysis, statistical studies and their importance on variogram modelling and 

finally choosing the appropriate variogram model. All steps are developed 

through the mentioned case-study demonstrating applicable points through the 
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procedures. The procedures in this Chapter are done with programming in 

FORTRAN (FORTRAN software, n.d).   

In Chapter 4 different methods are applied to estimate the ore body and 

particularly transition areas using ISATIS software (ISATIS software, n.d), and 

the results are validated using blast hole data, considered as “true data”. In 

Chapter 5 the conclusions of this research are discussed.  

Part two of the thesis is described in Chapter 6, as a small work on the 

geostatistical characterization of stockpile with an example on an iron stockpile.  
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Part I 

1 BACKGROUND 

To generate a geological model in ore reserve estimation, the determination of 

the exact lithological and mineralogical domains is fundamental. Identification 

of geological domains should represent the estimator‟s best knowledge of the 

genesis of the deposit. Consequently, researcher focused to develop 

geostatistical methods to decrease the geological model uncertainty nearby 

boundaries.  

Geostatistical modelling depends on the type of variable to be estimated. In 

general, in different fields of geoscience, we can resume it in several steps: 

(Chiles and Delfiner, 2012, Journel and Huijbregts, 1991, Clark, 1977, Armstrong, 

1998, Wackernagel 2003). 

I) Preliminaries and statistical studies: collecting data and available 

information, uni/multivariate statistical studies, trend analysis etc.;  

II) Structural analysis: study of the main features of the regionalization, 

preliminary checking of the data and deep study of the problem, 

calculation of the experimental variogram and fitting of a 

mathematical model, cross-validation, and choose of the best model 

to evaluate the variable; 

III) Kriging using different methods: choosing appropriate geostatistical 

tools such as ordinary kriging, simple kriging, indicator kriging, 

disjunctive kriging, etc.;  

IV) Validating results: in the case of availability real data, the estimated 

results can be validated with real data.  
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In many applications, it is possible to define geological domains for resource 

estimation, considering several types of boundary conditions. However, in 

many literatures (Larrondo and Deutsch, 2004), domain boundaries are often 

referred to as either „hard‟ or „soft‟ (Figure 1). As mentioned, hard boundaries 

are considered when an abrupt change in average grade or variability occurs at 

the contact between two domains, such as coal seams or sedimentary zinc 

deposits. In deposits where the disseminated mineralisation has a gradational 

nature, such as some porphyry Cu-Au deposits or massive iron deposits, grades 

change transitionally across a boundary and the contact is referred to as a soft 

boundary (Larrondo and Deutsch, 2004). 

 

 

 

 

Figure 1. Schematic figures showing hard (left) and soft (right) boundaries 

 

 Soft boundaries are found in several types of deposits due to the transitional 

nature of the geological mechanisms involved in the formation of a deposit. 

There is often some degree of overlapping between geological domains. 

Nevertheless conventional grade estimation usually treats the boundaries 

between geological units as hard boundaries. This is primarily due to the 

limitations of current evaluation methods and procedures. So, considering the 

transitional boundaries fields -as an example- lead to investigate appropriate 

modelling approaches. 
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When considering resource estimation and reserve selection with a 

geostatistical block model, there are two main sources of uncertainty due to 

sparse sampling:  

- The uncertainty in the mineral variable distribution which controls the 

quality of ore found within each block of the model, and  

- The uncertainty in ore-body boundaries identification, which 

discriminates, mineralized ore from un-mineralized waste. 

A number of techniques currently exist for boundary modelling. A brief review 

is provided in the following; however, the literature is vast and encompasses 

many case studies. Note that in any case study, the used methods of modelling 

and estimation are according to the available data, genesis and geological 

information of the regarded area and the target point of the study.  

Beyond the linear basic geostatistical methods used for reserve evaluations such 

as ordinary kriging (OK), some probabilistic tools (such as indicators) are 

exploited in some applications to develop the geological and mineralised 

models (Dimitrakopoulos and Dagbert, 1993; Soares 1992). In mentioned 

researches, the use of indicators (the means to model qualitative variables) such 

as multiple lithology types was studied. Lithology types as indicator variables 

are defined sequentially. As a result, indicator type modelling approach was 

implemented to sequentially generate models of qualitative variables, using 

both indicator kriging and indicator conditional simulation (Dimitrakopoulos 

and Dagbert, 1993). In geostatistics, simulation is the realization of a random 

function that has the same statistical features as the sample data used to 

generate it (Chiles and Delfiner, 2012). In their work, Chiles and Delfiner 

introduced two examples: (i) estimating the lithology of a mineral deposit; (ii) 

simulating the lithofacies of a reservoir (Dimitrakopoulos and Dagbert, 1993). 

As another example, Gossage (1998) has used indicator kriging (IK) in an 

http://link.springer.com/article/10.1007/s12517-013-1093-0#CR6
http://link.springer.com/article/10.1007/s12517-013-1093-0#CR19
http://link.springer.com/article/10.1007/s12517-013-1093-0#CR6
http://link.springer.com/article/10.1007/s12517-013-1093-0#CR6
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application for a mesothermal gold deposit, which was interpreted as being both 

structurally complex and having multiple controls on the distribution of the 

gold mineralization. The geological data investigated includes lithology, 

alteration and veining, which had been reviewed both independently and in 

conjunction with geochemical drilling data. The results of the IK studies have 

been compared with the geological/mineralisation model and the advantages of 

the IK approach have also been briefly discussed (Gossage, 1998). In some 

other case studies, based on a probability criterion, IK methods have performed 

to objectively model the geometry of geological zones (Marinoni, 2003, 

Gholamnejad et al., 2010, Kameshwara and Narayana1, 2015). Gholamnejad 

(2010) suggested the use of geostatistical method of IK to determine the 

boundary of ore body in Choghart iron mine of Iran. However, in this study the 

cut-off grade is assumed in terms of the iron content mode and to identify 

boundaries. Cut-off grade is the lowest grade of the mineralized material 

considered economically exploitable and depends on many parameters (Cairns 

and Shinkumab, 2004).  

The estimated probability according to the selected cut-off identified the blocks 

inside the ore body and the wastes (Gholamnejad et al., 2010). Hence, in the 

presented applications the estimation results of different geological units could 

be improved using IK, but with no exact consideration of overlapping between 

units.  

Larrondo and Deutsch (2004) proposed to use a Linear Model of 

Coregionalization (LMC) to evaluate grades using data from adjacent rock 

types. The LMC approach assumes the linear model of variogram in the case of 

multivariate variables. Although the LMC is traditionally used to characterize 

the spatial variability of several petro-physical parameter of one rock type, it 

has shown that can be applied to model the spatial variability of one property 

http://www.sciencedirect.com/science/article/pii/S0301420704000303
http://www.sciencedirect.com/science/article/pii/S0301420704000303
http://www.sciencedirect.com/science/article/pii/S0301420704000303
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across the boundary between several rock types (Larrondo and Deutsch 2004). 

The proposed methodology was applied to a synthetic deposit and compared to 

the conventional approach of modelling, using hard boundaries. The method 

has provided an appealing alternative to capture grade distribution for deposits 

where complex contacts between different rock types exist. Furthermore, it has 

improved the resource estimation by reducing the uncertainty in transitional 

zones around boundaries. This method was showed using a synthetic deposit.  

Ortiz and Emery (2005, 2006) proposed to estimate grades within geological 

domains, using several methods and compared them through a case study on a 

copper mine. For instance: OK considering hard boundaries between geological 

domains; OK omitting the geological boundaries; traditional ordinary Co-

Kriging (CK) of the grades assayed in different domains; OK within dilated 

geological domains, that is, incorporating samples from adjacent domains up to 

a given radius from the boundary of the domain being considered. In their case 

study, the estimations are performed using a set of exploration data (drill hole 

samples) and results are validated using a set of production data (blast hole 

samples collected for grade control).  

Results of their research has indicated that kriging with dilated domains has 

more coherent results than OK using hard boundaries or no boundaries and 

better than the CK approaches. It therefore appears as a simple alternative to 

global kriging (without considering the geological domains) and allows 

accounting for changes in the grade average, dispersion and spatial continuity 

with the geological characteristics of the deposit. 

Besides estimation approaches, another approach for soft boundaries deposits is 

plurigaussian simulation (Emery et al. 2008). Simulation is simply a realization 

of a random function selected in the set of all possible realizations (Chiles and 

Delfiner, 2012). Plurigaussian simulation allows constructing lithofacies or rock 



31 

 

type models that reproduce the contacts between facies in accordance with the 

geologist‟s interpretation. Its implementation requires inferring the local facies 

proportions. There is a variation of the plurigaussian models, in which the 

facies proportions are represented by random fields. The realizations can be 

made conditional to soft geological information to account for local changes in 

the facies proportions. The model is illustrated via a case study of a porphyry 

copper deposit where four gaussian random fields are simulated conditionally 

to drill hole data and to constraints on the probability of finding a given facies 

at specific locations (control points) in the deposit. Then two fields of the 

copper deposit are truncated using the random thresholds defined by the last 

two, generating a three-facies model. The proposed random proportion model 

proves to be simple to use and to account for spatial variations of the geological 

characteristics and for the uncertainty in the facies proportions. As mentioned 

approaches have performed only on cupper deposits, testing other types of 

deposits with different genesis and mineralogy can show the benefits of each 

method. 

The potential field method is another approach to build geological models 

(Calcagno et al. 2008) and can be helpful for interpretations from the geologist 

(Fitzgerald et al. 2009). The original method has been developed to model 

geology using the location of the geological interfaces and orientation data. The 

orientation data, i.e. dip measurements, are not necessarily located on the 

geological interfaces. The orientation data can represent stratifications or 

foliations related to the contacts. Both types of data are Co-Kriged to estimate a 

continuous 3dimensional (3D) potential-field scalar function used to describe 

the geometry of the geology. Nonetheless, this method explains separate 

geological series with no referring to the particular case of transitional series.    
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Séguret (2011, 2012) in his work focused on mineral deposits consisting of 

geological bodies whose metal grades have different characteristics in space in 

terms of distribution and variogram. He mentioned that in such deposits 

estimating grades by OK may produce unrealistic spatial continuity. His paper 

proposes a method based on the indicators of the geological objects (in his work 

called units) and their multiplication with the metal grade. He illustrated his 

approach by an application to a porphyry copper deposit. According to the 

existence of border effect phenomena and transition analyses between 

geological domains (Rivoirard 1994), by multiplying indicator functions and 

metal grades, the concept of the Partial Grades (PG) method is developed 

(Séguret 2011). 

The method is based on the CK of partial grades variables, allowing for unit 

specificities coherently. The case study on the copper deposit showed some 

improvement compared to kriging, depending on the partial grades between 

geological units and the spatial behaviour of the grades inside each unit. 

Séguret mentioned that the partial grade approach should be tested in a deposit 

that presents important border effects. The partial grade method is tested on the 

three porphyry copper deposits (Cu), and on a zinc deposit (Pb) in Peru. 

However, none of the tested case studies have encountered an important border 

effect phenomena where this method has been applied so far (Séguret 2012). 

Lillah and Boisvert (2012) have referred to the uncertainty in the geological 

boundaries as a critical point for effective ore resource and reserve estimation. 

They have introduced the Local Varying Anisotropy field to consider stochastic 

modelling of the ore boundary with a distance function. Implementing locally 

varying anisotropy kriging retains the geologically realistic features of a 

deterministic model while allowing for a stochastic assessment of uncertainty 

(Lillah and Boisvert, 2012).  
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Due to the presented methods and tools, techniques have applied in various case 

studies with different purposes. However no specific method highlighted a 

methodological framework able to guarantee a correct and efficient method, 

necessary for getting the best estimation of a variable distribution in case of a 

complex geological deposit with transitional boundaries. 

 

1.1 MOTIVATION OF THE STUDY: SECHAHUN IRON 

MINE, ANOMALY XI-SOUTH 

 

In all georesource fields, it is necessary to define the geometric dimensions of 

resources prior to design and economic planning. For instance, in the mining 

projects definition of the geological units are based on the geological 

knowledge of the ore body and on sample information. Sample information can 

be obtained from two main sources: indirect methods (such as geophysics) and 

direct methods such as exploration-drilling grid. The first step in resources 

estimation is an exploratory analysis aimed at understanding the characteristics 

of the available data and identifying homogeneous geological domains within 

the deposit, according to the spatial continuity of grades and the geological 

features such as lithology, mineralogy and alteration. Once the geological 

model is as complete as the available data and knowledge of the setting and 

genesis of the mineralization allow, the data should be classified according to 

its domain.  

For the Sechahun iron anomalies, geological studies and reserve estimation 

researches are done by geologists and mining engineers of the mining sector in 

Iranian Central Company. The ZaminKav Company (2010-2013) did reserve 

estimation of the Sechahun iron mine and their results were published in 2014. 
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Geological domains were defined by a combination of statistical and 

geostatistical means, in addition IK by using the cut-off grade method 

(Kasmaee et Torab, 2014). In Sechahun iron ore deposit as a result of 

metasomatic replacement of host rock by iron-rich hydrothermal fluids (Moore 

and Modabberi, 2003), the geological boundaries can be considered as gradual 

or soft boundaries, requiring the use of a specific approach.  

The 3D geological model and reserve estimation of Sechahun iron ore were 

constructed by drill holes at 50 m average core drilling spacing and also 

available 3 m.4 m.10 m (length) blast hole data set from 10 benches within the 

open pit. According to the recent studies published for reserve estimation of the 

Sechahun iron mine, borehole samples with different lengths were composited 

into 2.5 m sample lengths (Kasmaee et Torab 2014). Then, borehole samples 

are mixed with blast hole samples which have 10 meters sample lengths.  

In the mentioned study (Kasmaee et Torab, 2014), the reserve estimation of 

anomalies was done by using borehole data and available blasthole samples and 

by applying OK for the two main geological units, Poor and Rich zones. Due to 

the bimodal distribution of Fe % data, the two main geological units (Poor and 

Rich) are estimated separately with two different variogram models. However, 

for indicating the Sechahun iron ore boundaries some difficulties raised. The 

main difficulty emerged when estimating recoverable resources for poor and 

rich ore zones especially near the grades measured at either side of boundaries.  

Comments present in the mentioned work (Kasmaee et Torab, 2014) about this 

ore body demonstrate the necessity of a deep research study in this dissertation. 

In particular:  

1) The two groups of data with different volumes (supports) (boreholes 

with composited length of 2.5 m and blast holes with 10 m length) are 
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mixed in the reserve estimation of anomaly XI south. This mix is not 

acceptable according to the geostatistical studies, which need data with 

the same volumes (support).   

2) Geostatistical estimation is done for the two main geological units (Poor 

and Rich zones) using two local variogram models (Poor and Rich 

variogram models). In this way, two nearby blocks near the boundaries 

can have remarkable difference in the estimated values. This is because 

of considering hard boundaries between geological units and so using 

independent models, which for this ore body seems not working 

properly. This comment is according to the final comparisons with blast 

holes data from 10 excavation benches (Kasmaee et Torab, 2014). 

3) To face with the second uncertainty of the estimation results, developing 

the geological model and a comparison with the traditional geological 

model (defined by geologists according to the geological constraints) 

was performed. Multiple indicator kriging for iron grade as the main 

variable was shown to be a viable approach to estimate poor and rich 

resources in Sechahun deposit, especially when boundaries are not sharp 

and show a gradational transition. This technique provides a novel 

method for increasing the productivity of senior geoscientists leading to 

a faster and better 3D modelling of ore bodies. In this work, MIK was 

used in order to determine the ore-waste and also the poor-rich contacts 

in Sechahun iron deposit (Kasmaee et Torab, 2014). However, the cut-

off grade is considered as threshold to choose final boundaries. 

Moreover, there is no deep study on boundaries and their characteristic 

on grade variability.  

Hence, due to lack of studies for Sechahun deposit, re-estimation of the ore 

body would be a benefit not only as a complex example for a dissertation to 

develop the geostatistical modelling, but also as an economic aspect to improve 
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the geological interpretations and mining procedures in Bafgh district. The 

methods and approaches proposed in each step of this work can be used for any 

other case with similar geological formation or in any case of transitional 

boundaries.  

According to the mining plan and available data in Sechahun iron mine, the XI-

south anomaly is studied in this dissertation.  

The first motivation is deepening the studies on the borehole samples and 

facing with general problems of data. Data with different supports as a general 

problem in many examples should be studied. Then through to the structural 

analysis, different methods for focusing on transitional boundaries should be 

developed.  

Blast hole data as an added value can be used for validating estimation and 

methods used for ore body evaluations. Considering blasts averaged in each 

block as the real values, the estimation results can be validated. 
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2 CASE STUDY INTRODUCTION: 

SECHAHUN IRON ORE DEPOSIT 

 

2.1 GENERAL INFORMATION  

 

There are more than 80 identified magnetic anomalies in the Bafq mining 

district, and the region is believed to host over two Giga tons of iron oxide ore 

(Daliran, 1999). An anomaly is a geologic feature or structure that departs 

markedly from its surrounding environment with respect to composition, 

texture, or genesis (Xinbiao and Pengda, 1998). The Bafq mining district is in 

central Iran, 12 kilometer (km) northeast of Bafq town and 125 km southeast of 

Yazd city. Most of the deposits are unexploited or only partially mined (Moore 

and Modabberi, 2003) and among these magnetic anomalies, Choghart, 

Chadormalu, Sechahun and Esfordi are mined. The Sechahun iron deposit is 

located 50 km northeast of Bafq and 170 km east of Yazd in central Iran 

(Figure 2). The Sechahun anomaly is blind, covered by conglomerate, young 

terraces, and gravel fans. Geophysical methods and extensive drilling have 

explored this deposit. The deposit is divided into two parts (north and south ore 

bodies) with a total reserve of about 140 Million tons (Mt) low-grade iron ore 

with an average grade of 36% iron concentration (Fe). 
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Figure 2. Location of Sechahun Iron Mine and important anomalies in central part of Iran 

  

2.2 GEOLOGY OF SECHAHUN ORE BODY 

 

The origin of Sechahun iron deposit and other similar iron oxide deposits in the 

Bafq mining district is like their counterparts in the rest of the world. This has 

been the subject of continuing controversy for local geologists with the 

difference that the controversy has been fuelled by the lack of absolute age 

determinations, accurate isotopic and fluid inclusion studies, and reliable 

analytical data. Magnetite is the main mineral in most of important iron ore 

bodies in Bafq (Moore and Modabberi, 2003). The central Iran consists of a 

complex set of volcano-sedimentary rocks (rocks consists of volcanic and 

sedimentary material), which hosts the most important iron oxide-apatite, Pb-

Zn (lead and zinc) and U (uranium) ore deposits in Iran (Bonyadi et al. 2011). 
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The iron ore deposits of the Bafq district are associated with volcano-

sedimentary rocks and high-level intrusions, and have a sulfide-poor mineral 

assemblage of low-titanium magnetite with varying but characteristic amounts 

of fluorapatite and actinolite. This assemblage is similar to the iron ore deposits 

of the Kiruna district in northern Sweden, whence such ores are known as 

“Kiruna-type” (Moore and Modabberi, 2003).  

The origin of these deposits, similar to their counterparts of the Kiruna-type 

systems, is controversial (Borook et al., 1998, Frietsch, 1978, Nyström and 

Henriquez, 1994). Several different genetically models, from carbonatic, to iron 

ore magma (intrusion or volcanic) to metasomatic replacement were proposed 

(see e.g., Samani, 1993; Daliran, 1999; Förster and Jafarzadeh, 1994; Mücke 

and Younessi, 1994; Daliran, 2002). Metasomatic process is a chemical 

composition of a rock, which involves the introduction and/or removal of 

chemical components as a result of the interaction of the rock with aqueous 

fluids (solutions) (Zharikovetal., 2004). These different interpretations may 

firstly derive from the complexity of the ore deposit system, but can also come 

from the lack of accurate dating of the ore, and insufficient geochemical 

investigations. For instance, it is not exactly clear in which geotectonic regime 

these deposits formed, and which the relationship of geotectonic setting and ore 

formation could be. 

The Sechahun deposit is composed of two major groups of ore bodies called the 

X and XI anomalies (National Iranian Steel Corporation: NISCO, 1975). 

Anomaly XI occurs 3 km northeast of Anomaly X (Figure 3). Each anomaly 

consists of two or three smaller tabular to lens shaped ore bodies (Figure 3) in 

association with many other small bodies.  
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Figure 3. Simplified geological map of the Sechahun deposit, showing Anomalies X and XI modified 

after (NISCO, 1975). The thick lines are the cross-sections shown in Figure 4. 

 

The mineralization is hosted by altered rhyolitic tuff (extrusive igneous rock) 

and intercalated shallow-water sandstone, dolomitic limestone and shale, 

representing the middle succession of the Saghand Formation (Samani, 1993). 

A persistent jaspilite horizon (banded compact siliceous rock) is present in the 

east of Anomaly X. Most mineralization occurs in sedimentary rocks that are 

stratigraphically 200 m below this jaspilite, and a relict, variably brecciated, 

sedimentary banding persists in parts of Anomaly X. The host rocks and the ore 

bodies are cross cut by E–W-trending normal faults. In addition, late E–W-

oriented, unaltered dolerite and dioritic dikes locally crosscut the ore bodies and 

the alteration (Bonyadi et al., 2011) which is shown in Figure 4. 

http://geology.com/rocks/igneous-rocks.shtml
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Figure 4. Simplified cross-sections of Anomaly XI, southern ore body (modified after NISCO, 1975) 

 

The Anomaly XI ore bodies contain 89% of the ore reserves (average grade of 

36–37% Fe), although the massive (with minor banded) magnetite-actinolite 

ore in Anomaly X has a higher grade (up to 67% Fe; NISCO, 1975; Förster and 

Jafarzadeh, 1994). The ore in Anomaly XI has a lower phosphorus content 

(0.08 wt.% P) than that of Anomaly X (0.13 wt.% P).  

The main iron mineral is magnetite, however all gradations towards hematite 

(martitization) can be recognized. The volcano-sedimentary host rocks have 

been pervasively altered and the original chemistry of these rocks is strongly 

modified by metasomatic alteration. These strongly altered rocks which are 

locally named metasomatite are widespread at the deposit and show a gradual 

transition toward poor iron ore. Several diabasic dikes cut the ore body and the 

metasomatite country rock. The plain that surrounds the ore body and its 

metamorphosed intrusive and volcanic country rocks are composed of 

Quaternary formations and recent alluvium, of fine grained sand and gravel, 

magnetite boulders, gypsum and intrusive fragments.  
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Based on previous studies and documents, the different types of Sechahun iron 

ore are:  

1) High-grade magnetite or rich iron ore ((Fe) > 45%);  

2) Oxidized high-grade magnetite (hematitized);  

3) Low-grade magnetite or poor iron ore ((Fe) < 45%). 

 

2.3 EXCAVATION AND MINING PROCEDURES  

 

Sechahun anomalies are located at about 1700 m above sea level. Anomaly XI 

is divided into two parts (north-XI and south-XI ore bodies) with a total reserve 

of about 140 Mt iron ore with an average grade of 36% for Fe. The mine is 

designed on the basis of two separate open pits (north and south pits). The south 

pit applies selective mining method; due to thick overburden, the north pit has a 

relatively high stripping ratio (the amount of waste material that should be 

removed to extract a given amount of iron in this mine) and it still is not 

excavated. The mineable reserve of the Sechahun deposit (both pits) has been 

classically estimated to be 106 Mt with a stripping ratio (W/O) equal to 2.48/1. 

South ore body is more complex geologically and discrimination between 

boundaries is highly sophisticated; for these reasons, it is the object of this 

study (Figure 5). This anomaly has the length of about 1200 meter and contains 

89% of the ore reserves (Bonyadi et al., 2011). 
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Figure 5. Picture of Sechahun mine open pit, anomaly south-XI 

 

The exploration on the deposit has been performed by vertical boreholes at 50 

m average core drilling spacing through 10 parallel profiles orthogonal to the 

extension of the ore body (Figure 6). The estimated geological reserve is 64 Mt 

based on a 20% cut-off grade which 51.3 Mt is mineable. Conventional open pit 

mining methods are used to extract at the rate of 3 million tons of iron 

concentration (Fe) rocks per year. The open pit mine is a truck-and-shovel 

operation using advanced mining equipment. The blasted rock is loaded by 

shovels and transferred via 30 ton trucks into the rock crushing plant bin that 

has a capacity of 250 m
3
. A primary crusher has been installed at Sechahun and 

the ore is transported to Choghart after primary crushing. Hence, Sechahun 

deposit is one of the important iron ore producers of Iran Steel Industry with a 

process line in Choghart iron mine, with the feed capacity of 3.4 Mt/y and feed 

quality of Fe>32% to produce 1.6 Mt/y of fine concentrate (Torab, 2008). 
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Figure 6. exploration profiles and bore holes of two Sechahun ore bodies, north-XI and south-XI 

 

The bench height is 10 m and the overall pit slope angle ranges between 48 to 

53 degrees depending on the rock mass characteristics. Blocks of rocks are 

excavated by blasting in a grid of 3m (width) ×4m (length) ×10m (height) and 

10 benches (excavation horizontal levels: Z(m)) are already excavated within 

the open pit which includes the five stages of drilling, blasting, loading, hauling 

and crushing. The mining depth at the time of received data (2013) was to 

Z=1550 m above sea level and mining will be continued down to an elevation 

of Z=1407 m.  

 

2.4 AVAILABLE  DATA  

 

All input data for this case study are provided from the geological office of the 

mine. Data is coming from exploration boreholes and blast holes. 
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2.4.1 Borehole data  

 

Available data of the anomaly XI south of Sechahun are mainly from 

exploration boreholes and blast holes. Available samples of bore holes (up to 

2013) are mainly from 42 vertical bore holes with 50 m average core drilling 

spacing, including iron (Fe %), Phosphorous (P %), and Sulphur (S %) 

concentrations. The main variable in this dataset is the iron concentration (Fe 

%). As the phosphorous and sulphur have low concentration in this ore body 

based on the processing plant of the mine, their distributions are not important 

and so they are not studied in this work. Statistical studies, about phosphorous 

and sulphur data, were applied to assess if there is a correlation between iron 

and phosphorous concentration. In addition to the data concentrations, there is 

geological information from which geological units each sample is taken. Note 

that there are some samples with geological information but without the iron 

concentration. This can be highlighted in histograms of the data, showing a 

different number of samples, for the several variables. 

A very important point relating to the borehole exploration data is the different 

lengths of the samples. Borehole exploration samples in Sechahun Iron Mine, 

have lengths from 0.4 to 7.3 meters (Figure 7). 
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Figure 7. Pseudo histogram of borehole samples obtained from Fe (%) and the histogram of length of 
relating samples 

 

 
 

Figure 8. Pseudo histograms of borehole samples obtained from P (%) (on the left) and S (%) (on the 
right) 

 

As showed in Figure 8, there are fewer samples with a measurable content of 

phosphorous and sulphur. Geological information of the Sechahun ore body is 

provided through different geological units (Figure 9). The maximum number 

of samples is related to the poor unit while the minimum number is related to 
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the waste unit. In any case, the length of samples largely varies in all geological 

units.  

 
Figure 9. Distribution of borehole samples in each geological unit (on the left) and scatter of sample 

lengths in different geological units (on the right) 

 

More details about borehole samples in each geological unit with the average of 

the iron concentration is shown in the Table 1.   

 
Table 1. Statistical data in all geological zones 

Six geological 

zones of the 

iron deposit 

Number 

of data 

Length of Samples (m) Grade Fe (%) 

Mean Min Mode Mean Min Max 

Waste 5 2.6 1.8 2.0 8.5 2.4 14.7 

Poor 477 3.2 0.4 2.0 and 4.0 30.4 15.4 53.2 

Rich 285 2.5 0.5 2.0 56.7 14.2 67.8 

Crush 50 2.7 0.8 2.0 15.1 3.0 31.0 

Dike 84 3.1 0.6 2.0 and 3.0 14. 9 4.9 46.4 

Metasomatite 138 3.5 0.7 5.0 15.1 4.1 40.6 
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The statistical correlation between Fe, P and S are shown in the Figure 10 to 

assess if there is a statistical correlation between iron, phosphorous and sulphur. 

Figure 10 shows that there is no important correlation between Fe, P and S.  

 
 
Figure 10. Scatter plot between Fe(%) and P(%) (on the left) and scatter plot between Fe(%) and S(%) (on 

the right) 

 

2.4.2 Blast hole data  

 

There are 20985 Blast hole data from the 10 levels of excavations, with the grid 

of sampling of 3 .4 .10 m
3
. The length of all the samples is 10 meters, however 

without any geological information. Figure 11 shows the location of blast holes 

at level Z=1585 m of excavation. For applying the classification of geological 

units for blast holes, a cut-off grade and a threshold are considered according to 

the mining plans:  

1) Waste zone: Fe < 20%  

2) Poor Zone: 20% ≤ Fe < 45%     
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3) Rich Zone: Fe ≥ 45%     

 

Figure 11. Elevation Z=1585 m:of blast holes, (white: waste (no grade), yellow: waste (grade), Orange: 
poor zone, red: rich Zone); classified by cut-of grades 

 

One important point about blast holes is multiple data in the database. While 

analyzing blast hole samples, two samples in neighborhood are mixed and 

analyzed as one sample, and then putting the result of its content (Fe (%) and P 

(%)) for the two locations. This might be due to the large number of analyzing 

samples. Hence, data processing was performed by removing duplicate 

concentration of samples. To clarify the removing duplicate data process, a 

simplified scheme with a regular grid is shown in Figure 12. For example, 

considering that concentrations are equal in points X1 and X2, X3 and X4, etc. 

(X1=X2, X3=X4, X5=X6, etc. in Figure 12.(a)), duplicate data are removed and 

the coordinate in the middle of two samples in the neighborhood, (with equal 

Fe (%) and P (%)) is calculated (Figure 12.(b)). Therefore, the concentration is 

considered for a point in the middle of two equal samples (Figure 12.(c)).   

Statistical analysis about processed borehole data is shown in Figure 12.  
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Figure 12.Changing blast holes locations according to the multiple data (a): all blast samples that each 
two points have equal concentration value; (b): calculating coordinates in the middle of two equal values; 

(c): putting the concentration value for the identified point 

 

 
 Figure 13. Histograms of blast hole samples obtained from Fe (%) –Left- and P (%) – Right 

 

Histogram of iron concentration in blast holes (Figure 13) shows the similarity 

of bi-modality in the two distributions (obtained from blast holes and bore 

holes). Moreover, correlation between iron and phosphorous obtained from 

blast holes confirm that there is no statistical correlation between iron and 

phosphorous concentrations (Figure 14).  
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Figure 14. Scatter plots of Fe and P –Left- and variation of Fe in vertical direction– Right 

 

According to the decrease of iron concentration with depth (Figure 14) there is 

a possibility to have a mild trend (presence of space-varying mean) in vertical 

direction. Statistical parameters are resumed in Table 2 from blast hole samples, 

from different excavation levels. However, as the number of samples in each 

excavation level is varying, the variation of the mean from first level to depth in 

Table 2 is not trustable to consider a trend. Hence, more detailed studies of 

geostatistical structural analysis is applied in the next chapters. 

Table 2. shows 10 excavation plans (from 1650 to 1560 in depth) 

Blast Hole 

Levels 

Number of 

Data 

Min 

(Fe%) 

Max 

(Fe%) 

Mean 

(Fe%) 

St. 

Deviation 

Mean 

(P%) 

Mean 

(FeO%) 

Mean 

Ratio 

Zmean=1550 1656 7.28 66.20 36.49 16.48 0.036 12.98 3.05 

Zmean=1560 2464 7.22 67.13 36.88 15.66 0.033 12.93 3.03 

Zmean=1570 2789 8.33 67.46 38.32 15.58 0.038 13.29 3.09 

Zmean=1580 3284 8.65 69.76 37.01 14.91 0.042 12.46 3.23 

Zmean=1590 3025 8.32 67.45 38.84 14.57 0.052 12.97 3.26 

Zmean=1600 3216 2.52 66.24 37.27 14.91 0.052 11.72 3.52 

Zmean=1620 2405 4.14 67.42 42.39 13.78 0.055 12.29 3.96 

Zmean=1630 1672 2.00 66.55 47.08 12.27 0.055 11.08 4.64 

Zmean=1640 423 5.44 63.89 48.25 11.21 0.048 7.76 6.66 

Zmean=1650 54 4.00 58.46 49.48 8.28 0.910 6.63 7.96 
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3 DIFFERENT DATA SUPPORTS 

 

Geostatistical analysis includes statistical studies and the analysis of the spatial 

variability of a variable considered as the realization of a random function 

(Armstrong 1998). The tool used to analyze the spatial variability is the 

variogram (Equation 1). Spatial covariance and correlation of sample values at 

two points in space can be used, as well for characterization the spatial 

variability (Chiles and Delfiner, 2012). In any case, the variogram is the 

simplest way to relate uncertainty with distance: 

  ( )   
 

 
 [( (   )   ( )) ]                                                                      (1) 

Where Z(x) is the variable value at point x (location, time, etc.) and Z(x+h) is 

the variable value at point x+h (at a distance of h).  

One of the main difficulties arising in the structural analysis is how to consider 

the variogram of a variable value at point x. Measured samples usually have a 

volume (based on their dimension), which is defined in geostatistics as 

“support”. Spatial variability analysis must be applied to data with the same 

support. The problem of the sample with different support was a topic of 

research that remains still open (Guarascio and Raspa, 1974, Clark, 1977, 

Atkinson and Tate, 2000, Carrasco et al., 2008, Kasmaee and Torab, 2014, 

Bassani and Costa., 2016). One frequently used solution in the case of samples 

with different support is to composite samples into the same volume (support). 

One of the simplest methods of processing data in order to use sample with the 

same support is averaging. (Armstrong, 1998; Chiles and Delfiner, 2012; 

Wackernagel, 2003). Another method, though rarely used, is to perform a 

theoretical punctual model that allows the use of samples with different 

supports (Guarascio and Raspa, 1974). This method requires modifying the 
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kriging system, which must be built using average covariances to account for 

the different sample supports (Bassani and Costa, 2016). Using average 

covariances in the kriging system also has the added value whereby instead of 

using a variogram model of composited samples (Bassani and Costa, 2016), a 

theoretical punctual model can be used, providing a more precise model with 

greater coherency with samples having different supports.  

To test the coherency of models obtained from mentioned methods, Cross-

validation techniques can be used. Cross-validation is a powerful model 

validation technique to check the performance of the model for kriging (Chiles 

and Delfiner, 2012). The principle underpinning cross-validation is to omit in 

turn a sample point    from the set of variables Z(x) and then predict it by 

kriging with the proposed model from neighboring data Z(  ), α≠β. 

Accordingly, at every sample point    the kriging estimate   
  and the 

associated kriging variance    

  are available.  

Since the true value     (  ) is known, it is therefore possible to compute 

the kriging error      
     and the standardized error:          

.  

To study the quality of the fitting,   
 

 
∑   

  
     can be considered as an 

appropriate parameter, and should be close to 1 (Chiles and Delfiner, 2012). 

This technique can show which model is more reliable. This helps 

understanding of the effect of integrating data, the efficiency of each method 

and their effect on the kriging results.  
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3.1 COMPOSITING SAMPLES WITH DIFFERENT 

SUPPORTS  

 

In many geo-resource applications, punctual data z(x) are rarely available. 

Available data zv(x) are defined on a support v, centered on a point x. For 

example, v is the volume of a core sample, or more generally, the volume of the 

sample. The support of a regionalized variable is the average volumes of 

samples for the measured data. As the size of the samples changes, the 

histogram of the samples varies. However, it is possible to predict distribution 

change when passing from one size of support to another, generally point to 

block (Journel and Huijbregts, 1991).  

The variable zv(x) of a sample is the mean value of the point variable z(x) in 

volume v  

    ( )  
 

 
∫  ( )  

 
                                                                                          (2) 

Where the variable value z(x), and zv(x) are said to be the integrated of the point 

variable z(x) over volume v.  

Integrating data significantly impacts geostatistical variability. To show this 

effect, the relation between variogram of z(x) and zv(x) (for instance regularized 

variograms    ( )) are shown in Figure 15. The Figure shows how the 

variogram changes when samples are integrated in a small volume (w) or into 

bigger volume (W) If we refer to a core samples of the same diameter, then the 

support can be  considered as the length of the core samples. 
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Figure 15. Variograms over two different supports w (small length) and W (long length) illustrating 
relationship between support size and changing sample variograms  

 

Therefore (Journel and Huijbregts, 1991): 

    
 =

  

 
 ,    aʹ= a+ (W-w),   Cʹ=C+  ̅(   )   ̅(   )                                          (3) 

Where   ( ) is the variogram of support w (small length),    the nugget effect, 

a the range and C the sill and 

  ( ) is the variogram of support W (long length),   
  is the nugget effect, aʹ 

the range and Cʹ the sill 

Hence, any transformations induced by integrating data generally have effects 

on the spatial variability and can be analyzed using the variogram: at a large 

distance, they impart more regular behavior on the small scale (Chiles and 

Delfiner, 2012). As shown in Figure 15 and Equation 3, when samples are 

coming from a small support (e.g. small length) and are processed, composing 

sample into a larger support, the range of the variogram increases due to the 

subtraction of two supports (e.g. the subtraction of two lengths), giving rise to a 

decreased variogram nugget effect and sill. 
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3.1.1 Regularization method 

 

The most used method of processing data for obtaining samples with the same 

support is regularization. Regularization is a weighted averaging method to 

estimate the average value for a defined support. This method is based on 

construction of a variogram of the mean values of samples along their length or 

volume. For example for a core sample along a bore hole length, it is assumed 

that all core samples have the same length L and the same cross-sectional area 

A (Figure 16). 

 

Figure 16. Core samples aligned along a bore hole (Journel and Huijbregts, 1991) 

 

Equation (2) can be used to perform the regularization method on support v of 

core samples (v=A.L). When the diameter of the core is small compared to 

sample length L, only the length of the samples can be considered, and the 

cross-sectional area A of the core sample may be considered as constant value: 

  ( )    ( )  
 

 
∫  ( )  

 
                                                                                  (4) 
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According to this equation, the regularized variogram can then be written: 

  ( )   
 

 
 [(  (   )    ( )) ]                                                                       (5) 

Regularization of samples with different supports is a useful means of 

analyzing nested structures (Chiles and Delfiner, 2012). Figure 17 shows the 

schematic example of regularization for four samples with different supports 

(here, length). In this example, as the selected support length for structural 

analysis was chosen equal to 2.0 meters, samples are therefore weighted 

averaged to 2.0 meters (regularized into 2.0 meters with a tolerance of 0.5 

meter). 

 

Figure 17. Schematic example of regularization borehole samples in a 2.0 meter support (colors only 
identify different samples) 

 

As shown in Figure 17, regularization permits the use of all available samples. 

However, compositing data by regularization change the measured values of the 

data, even when they are exactly of the same length as the support selected. For 

example, in the second sample in Figure 17, a 2.0 meter sample is integrated 

with the first 3.0 meter sample and so its measured value is changed. 
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Compositing the two initial samples create two new data, both with a length of 

2.5 meters. This leads to a reduction of dataset variance, with the result that 

regularized data will always have a smaller variance than measured data. This 

impact is significant when samples of larger lengths than the selected support 

length are used. To reduce this effect, another method named aggregation is 

proposed. The advantage of the regularization method is that most data may be 

used to perform the sample variograms, with the result that the more data used, 

the more accurate geostatistical modelling and evaluation become (Oliver and 

Webster, 2014). 

 

3.1.2 Aggregation method 

 

The regularization method applied into a very long length causes loss of some 

data, in other words, a loss of information. In contrast, regularizing to a short 

length entails splitting a large sample into equal variable pieces, which is, 

however, also inaccurate, since it reduces short-scale variability (Bassani and 

Costa, 2016). In order to reduce these effects on data, the aggregation method is 

proposed. This method entails setting a similar sample length tolerance as in the 

regularization method (for example, 0.5 m). The weighted average is then 

calculated using the same equation used for regularization but on selected data 

and depending on the lengths of the samples to be integrated. For instance, if 

the length selected for the support is 2.0 meters (similar to the regularization 

example with a tolerance of 0.5 m), then all samples of more than 2.5 meters 

must be removed from the input data. Samples exactly 2.0 meters long will be 

used unchanged and only samples of less than 2.0 meters will be integrated 

with the weighted average. Figure 18 shows the proposed method of 

aggregation in comparison with regularization. In summary, in the aggregation 
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method the smaller samples are composited into the appropriate support length 

as a weighted average (Figure 18) while the longer samples are not included.  

 

Figure 18. Schematic procedure of aggregation of samples into 2.0 meters 

 

When removing samples larger than the selected support in order to apply the 

aggregation method, it is fundamental to check whether the remaining data are 

representative of the spatial variety of area in question. In an application where 

sampling with different supports has been carried out on the basis of 

preferential criteria (for example, small samples in the richest zones and large 

samples in poor zones), removing large samples can lead to a substantial loss of 

information about the area. This is one of the disadvantages of the method.  

 

3.2 THE THEORETICAL PUNCTUAL MODEL 
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The theoretical punctual model  
 

(     ) is calculated as the average of point 

variograms  (  
    

 ) defined between any discretizing point   
  of data    and 

any discretizing point   
  of sample    :  

),(
1

),( 
1 1

p j

N

i

N

j

i

ji

ji xx
NN

vv
i j

 
 

                                                                         (6) 

Where  and are the number of discretizing points of data    and   . 

To clarify this discretizing procedure in the kriging system, Figure 19 shows the 

same example as the previous sections. 

 

Figure 19. Schematic procedure of sample aggregation to 2.0 meters 

 

The theoretical punctual model is applicable when the available data are 

defined on a non-point support v, and no constant support volume (length) can 

be considered with which to integrate the measured data. In many applications, 

when data are integrated, for example, by the regularization procedure, as 

shown in the previous sections (3.1.1 and 3.1.2), the regularized data differ 

iN jN
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from the raw measured data values. In addition, the aggregation method may 

not be able to include all samples, which again might impact data distribution 

and variogram modeling. Figure 19 shows the same example in order to 

demonstrate how, when using the theoretical punctual model for samples with 

different supports, in the kriging system, data would be discretized into a very 

small support, close to zero, in this case, 25 centimeters. 

The theoretical punctual variogram model has the advantage of using all raw 

data without transformation. The parameters of theoretical punctual 

model   ( ) must be consistent with the observed integrated (regularized or 

aggregated) variogram   ( ) parameters. In fact, deducing the theoretical 

punctual model   ( ) from the composited model    ( ) amounts to a “de-

convolution” of the model    ( ). The theoretical punctual model is not an 

experimental variogram model obtained from samples but is deduced from 

passing    ( ) to   ( ), that is an approximation by calculating parameters. An 

approximation expression is used because if the punctual variogram   ( ) is of 

a certain model - for instance spherical – in the the regularized variogram   ( ) 

may not be exactly of the same model (Figure 15). However, in practice the 

theoretical punctual model is an acceptable approximation of the 

regularized/aggregated variogram   ( ). Thus, if the regularized/aggregated 

variogram is spherical   ( ) with range a and sill C, the point variogram   ( ) 

can be deduced from Equation 3 (for distances | |   ) to a spherical model 

(Journel and Huijbregts, 1991): 

I) a sill       ̅(   )  

II) a range is equal to (    ) if the regularization or aggregation is 

done by support   . 
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Once the variogram model of the integrated data is determined, the theoretical 

expression for the punctual model can be deduced. The kriging system is 

modified when using the theoretical punctual model. In the kriging system, the 

estimated value   ( ) at point x in the OK is calculated (Matheron, 1971):  

  ( )  ∑     
(  )                                                                                                      (7) 

Where    is the ordinary kriging weights associated with data    
(  ) that have 

the constant support of v at each point    under the following conditions: 

{
∑     (     )     (     ) 

   

∑                                                        
i=1,2,…,n                                                   (8) 

Where   is the Lagrange multiplier and  (     ) is the variogram of point to 

point between data    and   , and  (     ) is the variogram between the 

estimated point and data   . In the kriging system, all samples should have and 

are considered with the same support used for the variograms. With the 

theoretical punctual model, samples can have different supports in the kriging 

system. In this case all samples must be discretized to a very small length (the 

punctual support is usually assumed to be close to zero length support) (Bassani 

and Costa., 2016):  

∑      
(     )      

 
(     ) 

                                                                          (9) 

 

3.3 APPLICATION TO THE CASE STUDY 

 

The available measured data are coming from 42 vertical borehole samples, as  

showed in the second Chapter; The baseline for investigation of the methods 

described in the previous Chapter are applied in this case study. 
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The selected variables are the iron concentration (Fe %) and the geological 

information for the six geological units. Statistical studies and structural 

analysis of data are presented as the primary step of the study (Table 1). The 

study included a total of 953 samples with varied iron ore concentration from 

different geological units. The distribution of the samples in each geological 

unit is not constant and so the number of samples for each geological unit is 

different. For economic reasons, there are more samples in poor and rich 

geological units and very few in the waste unit. The sample support length 

according to the mode of sample lengths in different geological units was 

mainly 2.0 meters (Table 1). The histogram of the sample lengths in all 

geological units (Figure.7) provides detailed raw data. Given the particular 

features of the geological units of the ore body and the existence of post-

processing geological structures such as dikes and faults, samples 

corresponding to the dike units and some crush zones were removed from the 

dataset, in order to have a homogeneous area of study. The scatter plot of 

sample lengths in all geological units in Figure 9 shows that different length 

samples are present in almost all the geological units. To choose the support 

length for all samples and integrating data for a global variogram model, the 

mode of sample lengths covering all geological units was considered. The 

lengths of 2.0 and 4.0 meters, according to the histogram of the sample lengths 

in Figure 7, were chosen. The above-mentioned theoretical methods were used 

to process the data. In addition, the theoretical punctual model was used to 

compare results obtained with the previous models.  

 

3.3.1 Regularization method 
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The case is summed up in Table 1, and the histogram of sample lengths in 

Figure 7 show that over 25% of all samples are 4.0 meters long, while more 

than 35% are 2.0 meters long. It follows that the support length with the largest 

number of samples has to be used as the selected support.  

As shown in Figure 17, borehole samples were regularized by weighted average 

over sample length considering a 0.5 tolerance for 2.0 and 4.0 meters.  

Minimum length is an important parameter for regularization, since it has a 

significant effect on the number of regularized samples (particularly on the 

number of samples, mean and variance) and experimental variograms (shown in 

Table 3). For instance, if the support selected is 2.0 meters, with a minimum 

length of 1.0 meter (Table 3), samples smaller than 1.0 meter will be excluded 

from the regularization process.  

Table 3. Statistical information of original and regularized data (2.0 and 4.0 meters regularized data) 

Input Data 
Minimum Length of 

samples considered (m) 

Iron concentration 

Number of 

data 

Fe Mean 

(%) 

Fe Standard 

deviation (%) 

Original data 0.3 953 35.1 16.7 

Regularization 2m 0.5 1477 33.5 15.9 

Regularization 2m 1.0 1436 33.4 15.9 

Regularization 2m 1.5 1378 33.4 15.8 

 

Input Data 
Minimum Length of 

samples considered (m) 

Iron concentration 

Number 

of data 

Fe Mean 

(%) 

Fe Standard 

deviation (%) 

Original data 0.3 953 35.1 16.7 

Regularization 4m 0.5 784 33.5 15.8 
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Regularization 4m 1.5 742 33.3 15.6 

Regularization 4m 3.0 665 33.5 15.5 

Regularization 4m 3.5 638 33.4 15.4 

 

As it is possible noting from the table, regularization modifies the information 

available since: a) it excludes some samples so that the mean values change (for 

example, the local means), and b) it generates a more regular, less scattered 

population, with a lower variance (Table 3). The bar charts in Figures 20 and 21 

show the different average Fe (%) concentrations obtained from regularized 2.0 

and 4.0 meters as well as the scatter plots between the real and regularized 

borehole mean. The scatter plots show how the mean value change of some 

boreholes can affect local estimation results (Figures 20 and 21). 

 

Figure 20. Bar chart shows difference of average obtained from Fe (%) between regularized to 2.0 and 4.0 
meters  
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 Figure 21. Scatter plots showing effect of regularization on average of iron concentration Fe (%) 

 

Regularization also has a vertical and horizontal effect on structural analysis as 

shown by the variograms in Figures 22 and 23: 

 

Figure 22. Comparison of vertical and horizontal sample variograms of Fe (%) following 2.0 meter 
regularization  
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Figure 23. Comparison of vertical and horizontal sample variograms of Fe (%) after 4.0 meter 
regularization  

 

As the behavior of sample variograms in vertical and horizontal directions are 

the same, (Figures 22 and 23) it is possible to consider the variable as almost 

isotropic (which means similar variogram behavior in different direction). 

The two regularized variograms (Figure 24) were compared in order to check 

the coherency between the sample variogram parameters obtained from two 

different supports (Equation 3). The comparison between the two support 

lengths, shows that the theoretical coherency between the two sample 

variograms is not strictly obeyed. In fact, the experimental variogram for 4.0 m 

regularization should show a lower variance/sill (<5%) and a larger range (+2 

m), whatever the structure considered, between 50 and 100 meters or over 150 

m.  
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Figure 24. Comparison of vertical sample variograms of Fe (%) from aggregation at 2.0 and 4.0 meters 

 

3.3.2 Aggregation method 

 

The same support lengths were used to perform the aggregation method. To 

apply aggregation, a tolerance of 0.5 meters was considered, with the result of 

the following application of the proposed aggregation method to the borehole 

sample lengths were as follows:  

- for 2.0 meter aggregation support: [1.5 m - 2.5 m]; 

- for 4.0 meter aggregation support: [3.5 m - 4.5 m]. 

If aggregation adopts a support length of 2.0 meters, it follows that only 

samples of less than 2.0 meters will be used and a weighted average will be 

applied to the samples from 1.5 to 2.5 meters. Similarly, aggregating at 4.0 

meters will consider only samples of less than 4.0 meters and the weighted 

average of samples from 3.5 to 4.5 meters. It should be noted that with this 

method, samples with an original length of 2.0 and 4.0 meters respectively are 
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not changed or smoothed while aggregating. Sample statistics are shown in 

Table 4: 

Table 4. Statistical information for original and aggregated data 

Input Data 

Iron concentration 

Minimum Length of 

samples considered 

Number of 

data 

Fe Mean 

(%) 

Fe Standard 

deviation (%) 

Original data 0.3 953 35.1 16.7 

Aggregation 2 m 1.5 371 42.0 17.5 

Aggregation 4 m 3.5 426 37.5 16.2 

 

Table 4, shows the mean and standard deviation of 4.0 meter aggregated 

samples are close to the statistical parameters of raw data. In addition, in 

comparison with the regularization method, the statistical parameters in 

samples of aggregation 4.0 meter have more similarity with the original data. 

The structural analyses in Figures 25 and 26 show the isotropic behavior of 

sample variograms (comparison of horizontal and vertical variograms) in 2.0 

and 4.0 meter aggregated sample variograms.  

 

Figure 25. Comparison of vertical and horizontal sample variograms of Fe (%) for 2.0 meter aggregation  
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Figure 26. Comparison of vertical and horizontal sample variograms of Fe (%) for 4.0 meter aggregation  

 

 

Figure 27. Comparison of vertical sample variograms of Fe (%) for 2 and 4.0 meter aggregation 

 

Comparison of two sample variograms obtained from aggregated supports (2.0 

and 4.0 meters) (Figure 27), similar to the regularized sample variograms, 

shows that the theoretical coherency between the sample variograms (Equation 

3) and the two different supports is not exactly obeyed. This could be due to 
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supports). To demonstrate this hypothesis, in-depth studies into the original 

data and their distribution in different geological units are required.  

 

3.3.3 Theoretical punctual model 

 

The theoretical punctual model uses all raw samples with their lengths with no 

need for transformation. The theoretical punctual model can be deduced on the 

basis of the coherency between two variogram models obtained from two 

supports of 2.0 and 4.0 meters. To gain more information on original data, 

particularly in two selected classes of samples 2.0 and 4.0 meters long, 

univariate statistic studies were performed on original data with the exact 

lengths of 2.0 and 4.0 meters and with a tolerance of 0.5 meter. Histograms of 

the two selected classes are shown in Figure 28. The lengths of the raw samples 

used for the histograms are: 

- Class of 2 m: [1.5 m - 2.5 m]; 

- Class of 4 m: [3.5 m - 4.5 m]. 

Comparison of the original data histograms in the two classes (Figure 28) with 

the pseudo-histogram of Fe (%) in shows that despite there being fewer 4.0 

meter than 2.0 meter samples, distribution is more similar to the total data 

pseudo-histogram.  
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Figure 28.Comparison of histograms of iron concentration in 2.0 (left) and 4.0 meter (middle) selected 
samples with original samples (right) 

 

 

Figure 29. Comparison of two vertical ore body sections with 2.0 meter (black) and 4.0 meter (white) 
samples, showing the non-homogeneity of sampling with different lengths in the geological units  

 

Moreover, Figure 29 shows the non-homogenous sampling of the measure. For 

instance, borehole number 222 (red circle) shows the 2.0 meter support samples 

to be in the upper part of the ore body while the 4.0 meter samples are in the 

lower part (2.0 and 4.0 meter samples are not in the same geological unit). In 

another example, borehole number 30 has only 4.0 meter and no 2.0 meter 
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samples. The non-homogenous samples between two classes of data (2.0 and 

4.0 meters) led to non-consistency between the two sample variograms obtained 

from supports of 2.0 and 4.0 meters. Using the theoretical punctual model 

might be a solution for the geostatistical modeling in this case study. In the 

theoretical punctual model, aggregated supports of 2.0 and 4.0 meters are used 

in order to avoid sample transforming and smoothing. Approximation of the 

punctual variogram can be derived indirectly from aggregated data on the basis 

of the parameters of two variogram models obtained from two aggregated 

supports (Clark, 1977).   

The mathematics of the process are explained by Matheron (Matheron, 1971). 

The appropriate length for the theoretical punctual model can be chosen on the 

basis of the minimum length of samples (      ). In this case study, the 

minimum length of data is 0.4 meter and so the length of the theoretical 

punctual model is considered to be 0.25 meter (close to zero). Hence, in the 

kriging system, samples can be discretized into 0.25 meter using the theoretical 

point variogram model. This model is indirectly deduced from the variograms 

of 2.0 and 4.0 meter aggregated samples.  

Two spherical models with the nugget effect are chosen for modeling the 

sample variograms obtained from aggregation of 2.0 and4.0 meters; 

The spherical model is expressed as: 

{ ( )   {
  

  
 

  

   
}                

                                                  
                                                                        (10) 

Where   is the sill of the sample variograms (once for 2.0 meter aggregation 

and then for the 4.0 meter aggregation) and a is the range. The sill of the 

aggregated variograms obviously will be lower than the sill of the 

corresponding point model (Equation 3). 
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As data from two classes of 2.0 and 4.0 meters are not homogenous (Figure 29), 

the coherency between aggregated sample variograms of 2.0 and 4.0 meters is 

not strictly obeyed, with the result that fitting a model on sample variograms 

obeying Equation 3 becomes difficult (Figure 30). After performing the best fit 

of sample variogram parameters, the theoretical punctual model can be 

deduced. Note that because of the isotropic behavior of variograms (coherency 

of the vertical and horizontal sample variograms), parameters of the vertical 

sample variograms were considered to deduce the theoretical punctual model. 

3.3.3.1 Range of the theoretical punctual model 

Punctual model range is calculated from the vertical variogram model range for 

the 2.0 (or 4.0) meter aggregation shown in Equation (3). The fitted models on 

sample variograms of 2.0 and 4.0 meter aggregation are shown in Figure 30 and 

Table 5 with a notice of following the coherency of the theory in Equation 3.  

 

Figure 30. Vertical experimental variograms (black dots) and models (red line) for justification of Point-
variogram in 2.0 and 4.0 meter aggregation  

 

Table 5. Parameters of two vertical variogram models of 2.0 and 4.0 meter aggregation 
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Variogram  
Nugget Effect C0 

(%
2
)  

Structure 1 (Spherical) Structure 2 (Spherical) 

Range (a1) 

(m) 

Sill (C1) 

(%
2
) 

Range (a2) 

(m) 

Sill (C1) 

(%
2
) 

Aggregation 2.0 m 16 8  48 260  223 

Aggregation 4.0 m 8 10  39 262  222 

 

According to Equation 3, the range of the theoretical punctual model is:  

                         (                         ) 

              (   )                                

This relation can be reached also from a 4.0 meter aggregation 

 

3.3.3.2 Sill of the theoretical punctual model 

The sill of the punctual model can be deduced from the relationship between 

the sill of   ( ) – variogram of aggregated data (2.0 or 4.0 meters) and that of 

  ( ) – theoretical punctual variogram, with 25-centimeter long samples. The 

theoretical value of sill Cp (sill of the punctual model) is deduced from the 

spherical model (Journel and Huijbregts, 1991):  

                       [  
           

          
 

           
 

           
 ]                                 (11) 

This procedure can be carried out using the variogram of 2.0 or 4.0 meter 

aggregation from the Equation 7:  
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3.3.3.3 Nugget effect of the theoretical punctual model 

To calculate the nugget effect of the punctual model the appropriate equation is: 

            ( ) 
           

         
                                                                           (12) 

Where   ( ) is the nugget effect of the composited variograms (2.0 or 4.0 meter 

aggregation) and           is 25-centimeters. A is calculated from aggregated 

variogram models, which is 128 for this case study. 

Table 6. Parameters of theoretical punctual model deduced from two variogram models of 2.0 and 4.0 m 
aggregation 

variogram 
Nugget Effect 

C0 (%
2
) 

Structure 1 

(Spherical) 

Structure 2 

(Spherical) 

Range (a1) 

(m) 

Sill (C1) 

(%
2
) 

Range (a2) 

(m) 

Sill (C1) 

(%
2
) 

Aggregation 2 m 16 8 vertical 48 260  223 

Aggregation 4 m 8 10 vertical 39 262  222 

Punctual 128 6 57 258 224 

 

The parameters for the theoretical punctual model deduced from variogram 

models of 2.0 and 4.0 meter aggregation are shown in Table 6. Figure 31 shows 

the simplified procedure of deducing the theoretical punctual model parameters.  
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Figure 31. Flowchart of procedure to deduce theoretical punctual model from variogram models of 2.0 
and 4.0 meter aggregation  

 

Given the parameters deduced from the variogram models of 2.0 and 4.0 meter 

aggregation (Table 6), the theoretical punctual model can be compared to the 

aggregated variogram models (Figure 32). The approximate theoretical 

coherency between three variogram models is seen to be obeyed, with the 

theoretical punctual model having a smaller range (-2.0 m) than the variogram 

model of aggregated 2.0 m and a higher sill with the same structure as the 

aggregated sample variograms.   
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Figure 32. Variogram models fitted on vertical experimental variograms obtained from 2.0 and 4.0 meter 
aggregation and the deduced theoretical punctual model  

 

The parameters obtained for the theoretical punctual model can be used in the 

kriging system, using an estimation that considers all raw sample values 

without any transformation.  

 

3.4 CROSS-VALIDATION 

 

To choose the appropriate model obtained from methods applied in the case 

study, cross validation is performed. Tables 7 and 8 show a comparison of the 

cross validation results. In the first column is reported the method of support 

change, (input), in the second column the number of samples. According to 

Table 7, the theoretical punctual model has a smaller variance of errors than the 

aggregation model, with the variance of standardized error closer to one. This 

seems to show the potential benefit of using the theoretical punctual 

parameters. The regularization method provides values close to the theoretical 

punctual model. However, as shown in Table 7, on account of the variance of 

standardized error, the model has a more precise fitting in the case of 2.0 meter 
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regularization because the standardized error is closer to one. The reason is the 

weak coherency between the two supports (2.0 and 4.0 meters) obtained from 

aggregated samples, which influences the theoretical punctual model deduced 

from the two above-mentioned variogram models. Therefore, as showed in 

Figures 29 and 30, it is not easy to have a precise fitting because samples are 

not homogenous in the ore body. 

The slope of regression, as shown in Tables 7 and 8, is a parameter to select the 

optimum neighborhood for performing kriging. It means identifying the 

maximum distance of the neighborhood and the number of samples used for 

kriging. An optimum neighborhood has a slope regression close to one 

(Rivoirard 1987).  

Table 7. Results of cross-validation using different models for 2.0 meter support 

Input data 

Number 

of Input 

data 

Minimum 

Length 

(m) 

Variogram 
Slope 

regression 

Estimation 

variance 

(%
2
) 

Variance 

of error 

(%
2
)  

Variance of 

Standardized error 

(%
2
) 

 

Number 

of 

target 

points 

Raw data 944 0.25 
Theoretical 

Punctual model 
1.00 141.37 109 0.78 346 

Aggregation 2.0 m 370 1.50 Aggregated 0.96 149.82 110 0.74 346 

Regularization 2.0 m 1378 1.50 Regularized 0.95 138.77 109 0.81 346 

Regularization 2.0 m 1436 1.00 Regularized 0.95 139.00 109 0.81 346 

Regularization 2.0 m 1477 0.50 Regularized 0.95 138.53 109 0.81 346 

 

Table 8. Results of cross-validation using different models for 4.0 meter support 

Input data 

Number 

of Input 

data 

Minimum 

Length 

(m) 

Variogram 
Slope 

regression 

Estimation 

variance 

(%
2
) 

Variance 

of error 

(%
2
) 

Variance of 

Standardized error 

(%
2
) 

 

Number 

of 

target 

points 
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Raw data 944 0.25 
Theoretical 

Punctual model 
1.00 145.20 141 0.94 234 

Aggregation 4.0 m 426 3.50 Aggregated 1.00 146.17 131 0.87 234 

Regularization 4.0 m 638 3.50 Regularized 0.91 162.05 127 0.76 234 

Regularization 4.0 m 665 3.00 Regularized 0.91 161.29 129 0.76 234 

Regularization 4 m 742 1.50 Regularized 0.91 161.04 141 0.85 234 

Regularization 4 m 784 0.50 Regularized 0.91 160.53 143 0.86 234 

 

In the case of a 4.0 meter support (Table 8), the variance of standardized error 

is closer to one on account of the precise fit of the variogram model (Figure 

29). Nonetheless, the theoretical punctual model has a lower variance value 

error compared to the regularized model (whose minimum length is 0.5 meter).  

In addition, the cross-validation results clarify how minimum sample length 

influences the estimation results. Considering different minimum lengths leads 

to considerable input data differences, which will have an important effect on 

estimation results (Oliver and Webster, 2014). For example, in the case of 4.0 

meter regularization with a minimum length of 3.0 (or 3.5) meters, some parts 

of samples with lengths of under 3.0 (or 3.5) meters are not regularized, with 

the result that the variance of error will be small, and the results not comparable 

with the results of the theoretical punctual model. This must also be considered 

in the case of aggregation, i.e. that some parts of data are used while integrating 

samples. Therefore, while performing cross validation and comparison, all 

effective parameters, which influence models (such as number of samples), 

should be considered in order to avoid ambiguous results. In this case study, the 

theoretical punctual model with the lower variance of error has a value of 

standardized error variance near to one and is one giving the most accurate 

estimation model, compared those obtained using other variogram models. To 

assess the correlation between the unprocessed measure data and estimated 

values, the scatter plots between estimated vs. measured data are shown in 
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Table 9. The scatter plots can be examined in the context of the properties of 

the kriging estimator, highlighting data that are poorly explained by their 

neighbors. In this case study, the theoretical punctual model (in a 2.0 meter 

support) shows a higher correlation between measured data and estimated 

values. The result is the same for the 4.0 meter example, and the variogram 

model obtained from regularized data (minimum length 0.5 m). As mentioned 

above, the aggregation method does not use some of the samples; consequently, 

the aggregation results in the case of the 4.0 meter support can only be 

compared with regularization for a minimum length of 3.5 meters, which 

presents the same situation with similar input data.  

In Table 8, the cross validation results of aggregated data are compared with 4.0 

meter regularization with a minimum length of 3.5 meters, showing that the 

aggregation method has a smaller estimation variance and a variance of 

standardized error closer to one.  

Table 9. Scatter plot of original data and estimated values using aggregation model (2.0 m and 4.0 m 
targets) 

Methods Support of 2.0 meter Support of 4.0 meter 
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3.5 CONCLUSION 

 

As illustrated in this Chapter, measured data rarely present the same support, a 

prerequisite for the geostatistical modeling. The data integration method for 

changing the support has a significant effect on variability analysis, and 

consequently, on estimation results. In addition to the commonly used 

regularization method to integrate data, the „Aggregation‟ method is proposed 

for homogenizing samples and constructing datasets for variogram modeling 

using sample with the same support. Each sample-compositing method has 

advantages and drawbacks, which affect subsequent spatial analysis and 

structural identification. Although all samples may be used in the regularization 

data-integration method, data will be smoothed, which decreases the variance. 

With the aggregation method, on the other hand, although compositing possibly 
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omits some of the data, it allows to consider all samples at their length. The 

regularization method uses a minimum regularization length and it has not only 

an important influence on the number of input data but also may change the 

local mean of samples. Besides the regularization and aggregation methods, 

theoretical punctual modeling is a further method allowing inclusion of all raw 

samples without transformation. Using all samples provides greater coherency 

with input data and an appropriate approximation of data spatial structures. 

Comparison of cross validation results shows the advantage of deducing the 

theoretical punctual model. Even so, the regularization method has similar 

results to the punctual model in this case study. The similarity of results is due 

to the fitting difficulties of the aggregated sample variograms and the knock-on 

negative effects on the deduced punctual model. In this case study, the fitting 

difficulties of the variogram model are due to different subsets of original data 

(as shown in the geological cross sections). However, in the case of a 4.0 meter 

support, the theoretical punctual model is more accurate than the regularized 

variogram model (with minimum length of 0.5 m).  

Non-homogeneous data and complex geological units (Figure 29) show the 

necessities of deep studies of the geostatistical methods for the selected case 

study. According to the cross-validation results and scatter plots, the 

regularized 2.0 meter samples can be considered as an appropriate input data 

and related model (regularized 2.0 meter model) can be used in the next 

Chapter. Because of the low variance of standardized error and high correlation 

coefficients similar into the theoretical punctual model in scatter plots, 

regularized 2.0 meter model can be chosen for ore body estimation in case of 

transitional boundaries.  
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4 ESTIMATION METHODS IN 

TRANSITIONAL BOUNDARIES 

 

Kriging is the main geostatistical estimation method that gives the unbiased 

linear estimates of point values or of block averages with the minimum 

variance. Different types of kriging estimators were developed, according to the 

available source of information and spatial variability of the variable of interest 

(Armstrong 1998): 

Simple kriging (SK) assume known mean, Ordinary Kriging (OK) assume 

unknown mean, Co-Kriging (CK) allows for estimation using information 

coming from multivariate variables. Indicator Kriging (IK) estimate indicators 

(binary-transformed variables), Universal Kriging (UK) incorporate trend 

(space-varying mean called trend). The literature about Kriging methods is vast 

and among the others, it is worth to mention (Armstrong, 1998; Chiles and 

Delfiner, 2012; Journel and Huijbregts, 1991; Wackernagel, 2003). In this 

study, an explanation of the kriging method adapted for the specific case study 

will be detailed. like CK, the use of geological information as auxiliary 

variable, makes possible to produce a coherent model between geological units 

in transitional areas and grade. The aim of this work is to test different 

geostatistical approaches and particularly different tools to identify the 

transitional areas such as contact plots and preferential relationship schemes 

(Séguret, 2012.).  
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4.1.LOCAL MODEL  

  
Geological domains are usually determined according to the spatial continuity 

of grades and the geological features, such as lithology, mineralogy and 

alteration (Ortiz and Emery, 2006). The local estimation is using spatial 

variability models and input data (only data within a specific geological unit) 

for each geological unit independently to estimate variables for each geological 

unit. In this work, based on the characterization studies done by the exploration 

office of Sechahun iron mine, the construction of the geological model (3D) 

was performed. To construct the geological ore model, geologists used the 

polygon interpolation method to represent the volume of mineralization in each 

geological unit. The geological ore model is given by a 3D model (poor and 

rich geological constrains). These geological models are generated by 

geological sections (Figure 33). The geological ore models (3D) have been 

constructed by geology office of the mine, according to mineralization units for 

the local ordinary kriging (Figure 34). Two models (with orange and red colors 

in Figure 34) identifying the rich and poor units are used to estimate the grade 

using only samples within rich and poor geological units (Kasmaee and Torab 

2014). The local OK estimation is performed by three sample variograms and 

their models obtained from three set of samples: poor, rich and metasomatite 

(Figures 35, 36 and 37), considering a unique block model (25 m. 25 m. 10 m). 

Mining engineers of the Sechahun iron mine have performed the local OK for 

three main geological units of the ore body considering hard boundaries: poor 

unit inside the orange model, rich unit inside the red model and metasomatite 

with a neighbourhood outside the mentioned models (Figure 34). In this study, 

the work is reconstructed, with the geological models provided and the exact 

block model.  
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Figure 33. Geological cross section illustrating use of bore holes and blast holes in 3D geological 
modelling 

 

Figure 34. Geological model in 3D indicating poor zone (orange) and rich zone (red) 

 

However, through this procedure some problems arise:  

1- The definition of geological domains relies on the subjective interpretation 

of the mining geologists and on their understanding of the genetic 
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processes causing the mineralization. Various interpretations are therefore 

possible; 

2- The description of the geological units is always subjected to errors, since 

only fragmentary information is available through a finite set of samples 

drilled in the deposit. For instance in Figure 36, in rich geological unit 

recognized by geologists, after analysing samples there are some data with 

very low iron concentration that might be an error;  

3- Delineating the domains must be done carefully, accounting for geological 

knowledge about the deposit genesis and the type of geological boundaries. 

The boundaries that define the contact between adjacent geological 

domains are seldom „hard‟, the grades measured at either side of a 

boundary are not independent. Besides, the boundary may be defined by a 

change in the local mean grade, which is usually gradational rather than 

abrupt.  

 

Figure 35. Histogram and Sample variogram (black points) and the variogram model (red line) for 
regularized 2.0 meter samples residuals- poor zone  
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Figure 36. Histogram and Sample variogram (black points) and the variogram model (red line) for 
regularized 2.0 meter samples residuals- rich zone  

 

 

Figure 37. Histogram and Sample variogram (black points) and the variogram model (red line) for 
regularized 2.0 meter samples residuals- metasomatite zone  

 

According to the models used for local estimations showed in Figures 35, 36 

and 37, OK is used to estimate iron concentration within each domain. To 

perform the OK method on the case study, the input data and the variogram 

model selected from the previous Chapter is regularized 2.0-meter samples. 

This is according to the conclusion of the Chapter 3, which results had the 

minimum variance of error and the maximum correlation between the estimated 
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values and real values. To estimate the ore body in this method three domains 

were identified. For each domain a variogram model is used, as follow: 

- Poor model (Figure 35) for estimating the poor unit (samples only inside 

the domain) considering hard boundaries; 

- Rich model (Figure 36) for estimating rich unit (samples only inside the 

domain) considering hard boundaries; 

- Metasomatite model (Figure 37) for estimating outside of the poor and 

rich units with a neighbourhood distance coherent with the range of 

variogram model  

After estimation by local OK method, the grade variability in three main 

geological units is showed on geological sections (including all geological 

units) to highlight problems of this method, especially in the transition 

zones showed in geological sections (Figure 38).  
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 Figure 38. An example of a geological section of the mine and estimation results obtained from 
local models (upper Figure) and zoom of three specific areas ( lower Figure) 

 

As shown in Figure 38, some estimated areas of the ore body have iron 

concentration higher than cut-off while are identified by geologists as “waste” 

unit, which can be used for excavation. Moreover, in areas between poor and 

rich units there are some estimated blocks with a big difference in iron 

concentration (about 8%) in comparison to other blocks (about 2-3%) (Figure 

38). This can be interpreted because of considering hard boundaries in this 

method and using only the data inside one geological unit (but not samples in 

neighbourhood from other geological units) the continuity of grades cannot be 

followed by local estimations. To address these problems, one must know if the 

boundaries can be called soft or hard and, if a soft boundary exists, how to 

incorporate information from across this boundary to estimate the grades in a 

particular geological domain. Hence a global model is suggested with deeper 

studies of boundaries.  
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4.2 GLOBAL MODEL  

 

To incorporate all available geological information and borehole samples the 

global model was performed. It means one variogram model for all borehole 

samples from all geological units. Several geostatistical methods were used to 

perform estimation and then a comparison of the results and with the local 

model is presented. 

The spatial variability model (Figure 39) is obtained from regularized 2.0 

meter-samples with minimum length of 0.5 meter according to the results 

obtained in Chapter 3.  

 

Figure 39. Histogram and vertical sample variogram (black points) and variogram model (red line) for 
regularized 2.0 meter samples  

 

Due to vertical sample variograms and complexity of the ore body shown in 

section 3.3.3, a deeper study for the hypothesis of vertical trend was performed. 

The values of the variogram after 150.0 m were higher than the variance and 

they were keeping increasing that was a possibility of a vertical trend in the ore 

body.  
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4.2.1 Hypothesis of modeling: trend 

 

Perhaps the most critical decision in geostatistical modeling is choosing the 

stationary domains or populations for reserve estimations. The boundaries 

between the stationary domains should be modeled and the correlations of 

variables and trend analysis across these boundaries should be used in 

modeling. When a trend is present one generally turns to the universal kriging 

(UK) model (Chiles and Delfiner, 2012). In UK model the random function is 

considered as the sum of a deterministic trend (a(x))  

F(x)=(a(x)+b)+ R(x) 

 where a(x) is the trend, x is the location in space, (a(x)+b) is as a polynomial 

with unknown coefficients (b) and a zero mean stationary or intrinsic random 

residual R(x) (Chiles and Delfiner, 2012).  

Then it is possible to perform UK estimation, when the residuals subtract from 

the original data: R(x), which are assumed to be random. The mean of all R(x) is 

zero. Conceptually, the variogram modeling can be performed on residuals and 

then kriging applied on raw data and the variogram models of residuals.  

Z (  ,      ) = a(  )+b + R(  ,      )                                                           (13) 

The hypothesis of trend is from the sample variograms (in this study 

regularization 2.0 meters) which showed the upward behavior after 150.0 

meters. To study deeply the presence of the trend, scatter plots are shown for 

three directions of Fe (%) variations. As it is shown in Figure 40, there is a 

decrease from top to bottom of the ore body (in vertical direction), and in 

North-South (Y) direction.   
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 Figure 40. Scatter plots showing the iron variation in 3 directions (North-South, East-West and 
vertical directions), from regularization 2.0 m data  

 

To test the hypothesis, by fitting a polynomial on data, residuals are calculated 

with the average of zero from Equation 13: 

R(  ,      ) = Z (  ,      ) - a(  )+b  

Where in this case study according to the Figure 40 and vertical trend, 

(a(x3)+b) is a linear function in vertical direction, and by performing this linear 

regression function on data (Z(x1,x2,x3)), residuals calculated (R(x1,x2,x3)). 

Variogram is calculated for residuals (Figure 41).  

The variogram model is fitted on residual variogram and then it is used in UK 

estimation.  
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Figure 41. Histogram of Fe(%) residuals and sample variogram (black points) and variogram model (red 
line) for regularized 2.0 meter samples residuals  

 

A comparison between OK and UK using cross-validation is presented in 

(Table 10). Moreover, scatter plots between true data (borehole samples) and 

estimated values are shown in Figure 42.  

 

Table 10. Results of cross-validation using different models for OK and UK  methods 

Method OK  UK 

mean-error (%) -0.14 -0.14 

variance-error (%2) 26.45 26.73 

variance-standardized- error 

(%2) 
0.89 0.91 

 

 

Results show that the model used for OK has the smaller variance of error, but 

the variance of standardized error in UK is closer to one that shows a more 

coherent fit of the variogram model.  



98 

 

4.3 INCORPORATE GEOLOGICAL INFORMATION  

 

To include geological information into reserve estimation, geological units (or 

zones) can be interpreted as realizations of random sets (Matheron, 1982).  

Indicator Kriging (IK) is a kriging analysis performed on a binary-transformed 

sample population. This approach firstly proposed by Journel (1983) can be 

used if the spatial correlation of a parameter is difficult to describe by raw data. 

Other applications of the IK are the modeling of categorical variables, e.g., if a 

sample belongs to a certain rock type, or if a variable lies above or below a 

defined cutoff value (Glachen and Snowden, 2001). Defining indicators for 

categorical variables would lead to the following transformation: 

otherwise

iunitxif
xix i

0

1
)(1,,


                                                                      (14) 

When x (a point at the location of x) belongs to just one unit, i is the indicator 

transform and the sum of the indicator functions is 1 





n

i

i xx
1

1)(1                                                                                            (15) 

The same notation i is used for unit indices and the sets themselves. It is 

important to distinguish between the independency of two random sets i and j, 

where in particular  

)()(),( jxPixPjxixP                                                                     (16) 

And disjoined sets defined by  

0)(1)(1,,  xxxjiji ji                                                                (17) 
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Equation 16 expresses a spatial link between the sets making disjoined sets 

dependent and Equation 17 is defined for disjoined sets. In the following, i and 

j are disjoined sets. 

As the indicator function is defined by Equation 14, its mathematical 

expectation is the probability for x to belong to i. When the indicator function 

1i(x) is sampled in n locations, its mathematical expectation pi, a probability, is 

interpreted as a spatial unit proportion and approximated by 
n

ni , (ni is the 

number of samples coded i).  

The indicator variogram is defined as in Serra (1982) by the variance of 

indicator increments and equals:  

)(hi =  ),(),(5.0 ixihxPixihxP  . Assuming the symmetry in h 

of the probabilities leads to: 

),()( ihxixPhi                                                                                  (18) 

If the indicator variogram is stationary, the variance becomes its sill: for large 

distances h, and the probability of the pair of events is the product of their 

probabilities  

Sill of )1()( iii PPh                                                                                    (19) 

The indicator cross variogram )(hij  is defined as:  

  ),()(1)(1 jhxixPhxxE jiij                                                  (20)  

For h close to 0, the absolute value of the cross variogram gives the probability 

of direct contact between i and j and practically, represents the counting of pairs 

of adjacent samples (i,j).  
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If the cross variogram is stationary, the events  ix  and  jhx   for h > 

range become independent and the probability of the pair of events equals the 

product of their probabilities  

Sill of jiij PPh )(                                                                                        (21) 

As i and j are disjoined,    ihxjhx  when ji   and we have  

),,()( ihxjhxixPhij                                                                  (22) 

Taking the absolute value of Equation (22) divided by Equation (18) and by 

definition of the conditional probability, we have 

),(
)(

)(
ihxixjhxP

h

h

i

ij





                                                               (23) 

Equation 22 gives the probability of reaching j when leaving i. In case of 

stationary direct and cross variograms, this ratio is bounded by a sill given by 

Equation (21) divided by Equation (19) 

i

j

i

ij

P

P

h

h




1)(

)(




                                                                                                    (24) 

This is the probability of belonging to j related to what is not i.  

 

4.3.1 Indicator kriging method 

 

The use of IK involves calculating and modeling indicator variograms at each 

geological unit. Applying this method to the case study, each geological domain 

of Sechahun iron mine is defined as an indicator and with the combination of 

statistical and geostatistical means, geological units can be estimated. 
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According to the selected input data in Chapter.3, all following studies are done 

by the use of the regularized 2.0 meter samples with the minimum length of 0.5 

meter.  

Geological information as Indicators is as follows:   

Example:                (  ) {
           
           

 

Geological information through indicators can be used as a spatial variable to 

be entered in the geostatistical modeling.  

Once all indicators have been defined, the structural analysis of the geological 

units in each of these areas should be described direct and cross sample 

variograms reveal important details of the geological interaction since they 

provide analytical means to quantify the anisotropy and the range of the 

underlying forming process (Figure 42). After establishing a model for the 

spatial correlation, the next step in a kriging analysis of blocks over the study 

area. 

In Figure 42, in the histogram of data, the Fe (%) data relating to each 

geological unit is highlighted in blue color.  

According to the available samples Fe(%) and indicators, it is possible to perform 

three estimations: 

I) Co-Kriging of indicators (ICK) to identify the probability of each 

geological domain in the ore body; 

II) Co-Kriging of indicators and Fe (%) to evaluate the iron concentration 

of the ore body, considering to have indicators as auxiliary variables, 

even at target points;  
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III) Co-Kriging of indicators (as auxiliary variables) and Fe (%) to evaluate 

the iron concentration of the ore body, considering not having 

indicators at target points. 

 

 

Figure 42. Sample variograms of indicators and Fe (%) (direct and cross variograms): Regularized 2.0 m 
samples 

 

Moreover, through ICK of all indicators, it is possible to have an imagination 

from different geological domains and their interaction in different parts of the 
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ore body. Direct and cross sample variograms and models fitted are shown in 

Figure 42.  

Figures 43, 44 and 45 show three examples of geological sections obtained 

from the ICK of indicators. 

 

Figure 43. Section 9 showing ICK results  

 

 

Figure 44. Section 11 showing ICK results  
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Figure 45. Section 13 showing ICK results  

 

As it is shown, in this case study the ore body has a complex geological 

interaction between different domains, which calls for further studies for 

estimating the Fe (%).  

To compare results of CK between indicators and Fe (%), cross validation is 

applied for each method. To perform cross validation, borehole samples are 

divided into five uniform distributed classes. Then cross validation is applied 

for each class, by removing data of one class and estimating borehole samples 

by the adapted spatial variability model using remaining samples. Results of 

cross validation are shown in Table. 11. Note that in all cases the input data are 

regularized 2.0 meter samples with the minimum length of 0.5 meter.  

Table 11. Cross-validation results for five classes of borehole samples  

Borehole 
classes 

Estimation method- Correlation coefficients (%)/(%) 

OK- model CK-without-Indicators CK-with-Indicators 

part1 0.95 0.95 0.97 

part2 0.93 0.95 0.96 

part3 0.93 0.93 0.95 

part4 0.87 0.89 0.92 

part5 0.96 0.96 0.98 
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It is possible to combine all cross validation results to conclude from statistical 

parameters of errors and scatter plots (Table.12, Table.13) which show the 

coherency of each method.  

 

Table 12. Total results of Cross-validation using two methods of CK and comparison with OK cross-
validation results  

Methods CK- indicators at target points CK- without indicators at target points OK 

mean-error (%) -0.02 0.12 -0.09 

variance-error(%2) 17.90 26.08 28.22 

Variance of 
standardized error (%2) 

0.82 0.99 1.04 

  

Table 13. Total results of Cross-validation using two methods of CK and comparison with OK cross-
validation results  
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As showed in Table.12, considering geological information leads to more 

coherent model for estimation. This shows that the model used for CK of 

indicators and Fe (%) when indicators are present at target points, gives reduced 

errors. To focus more on transitional boundaries and study the behavior of a 

variable within transitional areas, different methods are used.  

The vertical trend hypothesis is studied for the all variables (Fe(%) and 

indicators) with the same function used before in the section of OK (in this 

study regularization 2.0 meters) which showed the upward behavior after 100.0 

meters. Direct and cross sample variograms obtained from residuals are shown 

in Figure 46.  
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Universal co-kriging (UCK) can be used in this condition, considering 

indicators variables.. Results of cross-validation for the residual models are 

shown in Tables.14 and 15.  

 

Figure 46. Residual sample variograms of indicators and Fe (%) (direct and cross variograms) for 
regularized 2.0 m samples 

 

Table 14. Statistical parameters of cross-validation obtained from two CK and UCK   

Statistical parameters CK UCK 
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mean-error (%) 0.28 0.20 

variance-error (%2) 29.76 28.66 

variance-standardized- error (%2) 1.12 0.97 

 

Table 15. Scatter plots of cross-validation between real values (boreholes) and Fe (%) estimated by 
different kriging methods 
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According to the results shown in the Tables 14 and 15, the UCK results are 

very close to the CK results. However, cross-validation is used for the 

coherency of different models. For the comparisons of estimation methods, 

results are compared through validation methodology.  

 

 4.3.2 Spatial transitions  
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Using indicators of data, it is possible to study the spatial transitions between 

different geological units. Using indicator samples, through Equation (17) 

indicator variograms are calculated and analyzed. (Figure 47)  

According to the indicator variogram and the ratio (
)(

)(

h

h

i

ij




) with cross-

variogram (Equation 24), a new curve (variogram ratio) was calculated and 

analyzed. There are two quantities characterizing the curve (Seguret 2012):  

1. )(  ijP , the value of the ratio for h close to 0 which represents the 

probability of encountering j while leaving i (i.e., practically the counting of 

pairs of samples (i,j) directly in contact divided by the total number of samples i 

involved in the calculation),  

2. The sill of the variogram ratio (Figure 47), equal to 
i

j

P

P

1
 when the deposit 

is stationary and large compared to the range.  

As it is, )(  ijP  has no meaning for detecting preferential contacts because 

if the unit j into which we enter is omnipresent in the domain, upon leaving any 

i, j will be encountered often. However, it has to be compared to something. 

Can it be the proportion of j? Not exactly, because the contacts between i and 

itself have no interest, so the reference is the proportion of j relative to the 

proportion of what is not i and this gives 
i

j

P

P

1
, the sill of the ratio variogram. 

Finally, to quantify the preferential contacts, the interesting magnitude is the 

“Preferentiality value” from i to j 

Pref (ij) = P(j | i) -
i

j

P

P

1
                                                                    (25) 
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Preferential contact counting cannot be distinguished from the transition 

behavior. The physical interpretation is that if two units are more often in 

contact than they should be with regard to their proportions, their bodies share 

complementary shapes so their indicator functions are spatially linked. 

 

Figure 47. Practical inference of the parameter 

 

The variogram ratio is calculated, as defined by Equation (23). Behavior close 

to 0 represents the contact probability of encountering unit j when leaving i, the 

sill (if any) represents the same probability but when the events {entering j} and 

{leaving i} are independent (assuming that the dimension of the deposit is large 

compared to the range of the ratio). The difference between the two quantities is 

defined as the Preferentiality Value defined by Equation (25).  

There are four cases concerning the behavior of Equation (23) along h: 

1- P(j | i)=0  The units i and j are never in direct contact, the contact 

starts at h>h0 (Figure 48(a)). Imagine that there are only 3 units i, j and 

k. If P(j | i)=0, k separates i from j. There will be a preferential 

contact between i and k, and between j and k and h0 represents the 

minimum width of k that has to be crossed in order to travel from i to j; 
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2- P(ij)<0  The probability (
i

j

P

P

1
) is smaller than it should be 

regarding Pi and Pj. (Figure 48(b)). This case is similar to the previous 

one. The range of the ratio is linked to the average width of the units to 

be crossed before a return to the situation where 1i(x) and 1j(x+h) 

become spatially independent;  

3- P(ij)=0   The ratio (
i

j

P

P

1
) is flat. There is no spatial transition and 

no preferential contact (Figure 48(c)). )(hij  is proportional to )(hi . If 

the reverse situation is true 1i(x) and 1j(x) are in intrinsic correlation, 

and knowledge of one unit provides no information of the second one. If 

the reverse situation is false, the geometry of j is subjected to the 

geometry of i, leading to an indicator residual model where indicator j is 

expressed as a linear function of indicator i plus a spatially independent 

residual;  

4- P(ij)>0   The contact probability decreases with the distance (Figure 

48(d)). Units i and j are preferentially in contact and it is the latter case 

that is exploited to build preferential relationship schemes.  
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Figure 48. Different possible situations for the Preferentiality Values  

 

As shown in Figure 48. (a) Units i and j are never in direct contact before h0, 

which is the minimum width of the bodies that have to be crossed to reach j 

when leaving i. (b) Units i and j are in direct contact but less than they should 

be considering their proportions in the domain. (c) The Preferentiality Value is 

0, the transition does not depend on the distance, the cross variogram between i 

and j is proportional to the indicator variogram of unit i, (d) i and j have a 

preferential contact with regard to their proportions in the domain. 

Spatial transition analyses and the proportions involved in these calculations 

must be computed along directions to fit the anisotropies of the geological 

bodies and their preferential locations in space. Figure 48(d) shows an example 

of directional dependency issued from the case study of this paper. North-South 

and vertical transitions are similar, while the transition is different in the West-

East direction. Practically, the directional quantities P(j | i)
dir

 , Pi
dir and Pj

dir 

are based only on the pairs of samples (i,j) which respect the directional constraint.  
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4.4 TOOLS TO IDENTIFY TRANSITIONAL 

BOUNDARIES  

 

4.4.1 Preferential relationship schemes 

 

Séguret (2012) developed preferential relationship schemes. The method of 

Seguret was developed to detect preferential contacts, (i.e. only positive 

preferentiality values) and to assess the dominant behaviors of the several 

domains based on the theory of spatial transition. The idea is the mutual 

behavior of the geological units while analyzing transitions between the pairs 

(i,j), for the whole extent of the ore deposit.  

Therefore, Equation (23) is calculated in the three main directions and the pairs 

with positive Preferentiality Values Pref  ji   are retained as defined by 

Equation (25).  

To identify the mutual behavior on geological units in the case study, the 

variogram ratios (
)(

)(

h

h

i

ij




) are shown for three main directions (North-South, 

East-West and Vertical) in Figures 49 to 51. Variogram ratios make it possible 

to separate the units in contact with each other from those that are not and 

distinguish those with large contact zones. The number of the variogram plots is 

25 because we have five geological units and variogram ratios are calculated in 

three directions separately. 
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Figure 49. Cross indicator variogram divided by a single indicator variogram along the North-South 
direction 
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Figure 50. Cross indicator variogram divided by a single indicator variogram along the East-West 
direction 
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Figure 51. Cross indicator variogram divided by a single indicator variogram along the vertical direction 

 

To calculate the preferentiality, 
)(

)(

h

h

i

ij




as the first point (1) (Figure 47) and (

i

j

P

P

1
) as the second point (2) (Figure 47) are extracted from Figures 49 to 

51.The preferentiality values pref  ji   (Equation 25) are calculated and 

showed in Table.16.  



117 

 

 

Table 16. Preferentiality values; each cell contains one value per direction from top to bottom: N-S, W-E 
and vertical directions 

From/To 1=Waste 2=Poor 3=Rich 
4=Crush 

Zone 
5=Metasomatite 

 
Dir-1 -0.25 0.05 0.30 0.50 

1=Waste Dir-2 -0.24 -0.20 0.00 0.00 

 
Dir-3 -0.34 

 
0.00 -0.18 

 
-0.30 Dir-1 0.40 -0.10 0.10 

2=Poor -0.14 Dir-2 0.26 -0.10 0.12 

 
-0.12 Dir-3 -0.22 -0.08 0.20 

 
-0.15 0.30 Dir-1 0.00 -0.05 

3=Rich -0.28 0.18 Dir-2 -0.16 -0.14 

 
-0.28 -0.34 Dir-3 0.00 -0.18 

 
0.45 -0.25 -0.15 Dir-1 0.25 

4=Crush Zone 0.20 0.28 -0.16 Dir-2 0.00 

 
-0.24 0.12 -0.16 Dir-3 -0.02 

 
0.00 0.05 0.25 0.00 Dir-1 

5=Metasomatite -0.12 0.24 0.08 0.00 Dir-2 

 
-0.18 -0.14 -0.10 0.00 Dir-3 

 

To detect the preferential contacts, only positive values (Figure 48) from Table 

16 are considered and classified into four classes and schemes are drawn up for 

each direction showing the relationships (Figures 52, 53 and 54). An arrow 

represents a spatial transition, and its color the magnitude of the transition. 
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Figure 52. Preferential relationship schemes obtained after classification of  positive preferentiality 
values, transitions in North-South direction, upper part recalls units above cut-off (Fe>20%) and lower 

part recalls units mines the cut-off (Fe<20%) 

 

Figure 53. Preferential relationship schemes obtained after classification of positive preferentiality values, 
transitions in east-west direction  

 

Figure 54. Preferential relationship schemes obtained after classification of  positive preferentiality 
values, transitions in vertical direction 
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These schemes are not connected with geological location in space, and the 

only importance of the figures is presented by the colored arrows showing the 

mutual behavior and their probabilities between geological units. According to 

the preferential schemes obtained by the use of the variogram ratio, it is 

possible to detect if there is or not the spatial transition. This method allows 

assessing if there is a mutual transition and provide enough information to 

choose the appropriate estimation method. As shown in Figures 52 to 54, the 

variogram ratio interpretation show three main subsets of units with the 

maximum probability (in two directions) of mutual transition and will be named 

the “transition zone” (Séguret, 2012) .  

According to cutoff value of the deposit (Cut-off = 20% Fe), the geological 

subsets in Figure 52, can be classified into two groups: geological units above 

the cutoff grade and the geological units below the cutoff grade. Therefore, as 

shown in Figure 52, there is an important mixture between poor and rich units 

with metasomatite and collecting enough information about the metasomatite 

unit is fundamental. However, at the time of sampling, the mining sector almost 

decided to stop mining in the metasomatite part. With this method, it is possible 

to improve the spatial discrimination of the units giving accurate information 

about the expected grade of un-mined parts. 

 

4.4.2 Contact plots 

 

The Contact plots application calculates and displays the mean value of a 

variable in a geological unit as a function of the distance in a reference direction 

of the samples to the contact with another unit. The mean value is calculated on 
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samples along a core line by class of distance. The general form of the contact 

plot for both soft and hard boundaries are shown in Figure 55 as the second tool 

to determine the mutual behavior of boundaries. Plot can be classified as one of 

these four types based on the slope of expected value line and the width of 90% 

probability interval. For example, one could conclude that no boundary is 

present when the expected value at zero distance for each domain is within the 

range of variability at zero distance for the other domain. A hard boundary is 

likely present when the expected value at zero distance for at least one domain 

falls outside the range variability for the other domain. This hard boundary is 

considered as stationary when neither domain exhibits a strong trend near the 

boundary. The hard boundary would be considered non-stationary when a 

significant trend is present. A soft boundary is present when the grade within 

one or both domains exhibits a strong trend near the boundary with no 

significant change in grade (Wilde and Deutsch, 2012).  

 

 

Figure 55. The general form of contact plots for a hard and soft boundary 

 

Contact plots are performed for all geological units of the case study, and four 

of them are shown in Figures 56 and 57. However the number of samples 
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should be enough to show the continuity of the variable Fe (%) near 

boundaries. 

 

Figure 56. Contact plot showing the mean value of Fe (%) in rich domain (left) and poor domain (right) at 
a distance (a) and contact plot showing the mean value of Fe (%) in poor domain (left) and metasomatite 

domain (right) at a distance (b) 

 

 

Figure 57. Contact plot showing the mean value of Fe (%) in rich domain (left) and metasomatite domain 
(right) at a distance (a) and contact plot showing the mean value of Fe (%) in waste domain (left) and 

metasomatite domain (right) at a distance (b) 
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According to the lack of iron data Fe (%) in some geological units (such as 

waste, crush zone) contact plots could not be calculated for mentioned 

geological units. In addition, the number of pairs in long distances is not 

enough to have precise contact plots. Hence, to sum up with the preferential 

relationship schemes, it can be concluded that the main geological units are 

poor, rich and metasomatite, which show the most transitional areas.    

 

4.5 BORDER EFFECTS  

 

While working with indicator functions (Equations 16 and 17), according to 

Equation 17, when the sum of indicator function is multiplied by the grade Z(x), 

the proportion of a variable through an indicator (for instance a geological unit) 

is calculated within the following equation. 

xxxZxZ
n

i

i  


)(1)()(
1

                                                                                   (26) 

By inverting the sum sign, products of the grade by the indicators appear:  

xxxZxZ
n

i

i 


)(1)()(
1

                                                                                   (27) 

These products define the partial grades Zi(x) (Séguret 2011):  

xxxZxZ ii  )(1)()(                                                                                        (28) 

Then the cross variogram between the indicator of i unit and its partial grade Zi(x) 

defined by Equation (28) is  
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  ))()())((1(1
2

1
)( xZhxZxhxEh iiiiiZi

                                         (29) 

The equation is not null if  ixihx  ,  or  ixihx  ,  so we obtain 

 

 

  )(,)(

),(,)(
2

1

),(,)(
2

1
)(

hixihxhxZE

ixihxPixihxhxZE

ixihxPixihxxZEh

i

iZi











  

So another ratio intervenes 

 ixihxhxZE
h

h

i

iZi  ,)(
)(

)(




                                                                   (30) 

This ratio shows how the average grade increases or decreases when moving 

inside the i unit. This property is named “Border Effect (BE)” by Rivoirard 

(1994). If this ratio depend on h , )(h
iiZ  is proportional to )(hi , leading to a 

model where the partial grade is defined. In the presence of BE, the method 

named “Partial Grade” can be performed (Séguret 2011).  

 

4.6 PARTIAL GRADE 

 

 Given samples informed by a categorical variable and a grade, another method 

to estimate the average grade with a focus on transitional areas is the “Partial 

Grades” (PG) method (Séguret 2011). This method leads to an isotopic CK 

system based on the indicators of the units and their products with the grade.  

The definition of the PG for a variable Z(x) and indicator 1i is:   



124 

 

xxxZxZ i

n

i




)(1)()(
1

                                                                          (31) 

Where )(1 xi  is the indicator function for each unit i, and Z(x) is the variable. 

These products define the PG:  

xxxZxZ ii  )(1)()(                                                                               (32)  

By this approach, the optimal estimation of the grade at the scale of a 

production block V is performed by CK based on the PG that is equal to a 

sequence of partial-grade cokrigings: 

CK
n

i

i

CK VZVZ )()(
1




                                                                                       (33) 

This method can be useful in the case where the border effect is present 

(Séguret 2012). The cross variogram between indicator i and its partial grade Zi 

divided by the i indicator variogram is simply the way the average grade 

increases or decreases while crossing different geological units (Equation 30). 

Hence, by the help of variogram ratios is possible to quantify the enrichment or 

impoverishment when moving inside the unit. It means that when crossing from 

one geological unit into another, (Figure 58-left) for instance from poor into rich, if 

there is an increase in the iron grade Fe (%), this shows the BE between poor and 

rich units. In this case study, the variogram ratios were performed for all geological 

units, however as it is shown in Figure 58, the BE exists only between poor, rich 

and metasomatite.  
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Figure 58. Cross variogram between indicator and partial grade divided by indicator variogram 

 

Figure 58, represents the way the grade decreases or increases while entering 

unit i (entering to rich and poor units). Based on the existing of border effect 

between the three main geological domains of this case study (poor, rich and 

metasomatite), and as preferential relationship schemes highlighted, PG Co-

Kriging is performed on three main domains of the ore body. Direct and cross 

variograms and their models are shown in Figure 59. Variogram models are 

used to perform between indicators and partial grades.  
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Figure 59. Cross variogram between indicator and partial grade divided by indicator variogram 

 

Note that partial grade method (Equation 32) considers the proportion of each 

geological unit within one block. As cross-validation performs for a point 

variable (for example a borehole sample), cross-validation of partial grade is 

skipped for poor, rich and metasomatite models. Based on the definition of PG 

method Equation 33, because the results are the sum of three main geological 

units (poor, rich and metasomatite) and the method is performed for a block, it 

is possible to skip cross-validation. However, the validations of estimation 

results were compared for different methods.  
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The important step for choosing the most coherent estimator among all 

mentioned methods, Kriging (OK and UK), Co-kriging (CK and UCK) and PG, 

is to validate estimation results when real data are available. In this case study 

there are 10 excavated benches with blasthole data, which can be considered as 

the values of blocks. Hence, the estimation results can be compared with 

blasthole data to validate the estimators.  

 

4.7 VALIDATION OF ESTIMATIONS 

 

In geoscience applications, if real data are available the estimation results can 

be validated. For instance in mining studies, evaluations made from limited 

information (such as boreholes) can be validated by the real grades of blocks, 

approximated by the mean of blast holes (Chiles and Delfiner, 2012). The long 

road that leads to the opening of the mine is marked by drilling, to achieve the 

block model that will condition the exploitation at large scale as well as for 

medium- and long-term planning. Typically, kriging and Geostatistics are used 

to build the model at this stage. In addition, the blast holes are used for short 

term planning with no need of Geostatistics, a simple moving average is often 

used to estimate the block quantity of metal (Seguret 2015). 

Due to blast holes data available from 10 excavation benches in Sechahun case 

study it is possible to evaluate estimation results. With the same block model 

used for all estimation procedures with the dimension 25×25×25 m
3 

(height), 

the weighted average of blast hole samples inside each block are calculated and 

assumed as the true value of each block (Figure 60). 
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Figure 60. Histogram of true block values obtained from mean of blast holes (Left) and histogram of 
number of blast holes used for averaging block values 

 

However, as the excavation of the ore body is still ongoing, the available data 

are from blast holes only from 10 excavated levels but not yet completed. To 

have reliable results, only blocks with more than 16 numbers of blast samples 

are considered for the validation (Figure 60). This number was chosen after 

some tests on block averaging, where with more samples, the average values 

were stable. Results are shown in scatter diagrams between true and estimated 

grades in Table 17, using the estimators as described in previous chapters. 

Statistical parameters relating to validation of estimators are shown in Table.18 

to compare results obtained from the different methodologies.  

 

 

 

 



129 

 

Table 17. Scatter plots between real values (obtained from blast holes) and Fe (%) estimated by different 
kriging methods 
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 Table 18. Statistical parameters between real values (obtained from blast holes) and Fe (%) estimated by 
different kriging methods  

Methods OK UK CK UCK 

Mean of Error (%) -1.21 -1.50 1.20 0.69 

Variance of Error (%2) 71.19 72.78 78.59 79.77 

Standardized Variance (%2) 1.41 1.49 1.43 1.49 

Estimated variance (%2) 53.52 50.53 59.36 56.59 

 

According to the validation results shown in Tables 17 and 18, using a global 

model of spatial variability, OK has more coherent estimation results for the 

whole ore body. However, as mentioned before, focusing mainly on transitional 

boundaries it is necessary to highlight only those blocks located in transitional 

areas. Moreover, according to the non-homogenous geological domains of the 

case-study, it is important to assess how different methods or estimators are 

influenced by geology in different parts of the ore body and particularly in 

transitional areas. To identify the most coherent method in transitional areas, 

the error of each estimated block (true value-estimated value) is calculated 

within each method.  

It was assigned a code value from 1 to 5 (1=OK, 2=UK, 3=CK, 4=UCK and 

5=PG), for each block, to the best estimator (method with minimum error). 

Results show that best estimators are: Kriging, Co-kriging and Partial grade. 

Three groups are shown graphically for each level of excavation on true block 

values. True block values are calculated from blasts as described and for a 

clearer graphical representation, are classified into three main domains: poor, 

rich and waste. This classification is performed according to the mining 

exploitation plan: 

- Waste: Fe (%) < 20             (yellow color) 

- Poor:  20 < Fe (%) < 45       (orange color) 

- Rich: 45 < Fe (%)                (red color) 
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Maps of true block values calculated by the blast holes, for each excavation 

levels, are coincident with the optimum estimation method (minimum error) 

shown in Figure 61. Based on maps in Figure 61, with statistically accounting 

blocks with optimum method (minimum error), it is possible to interpret the 

most coherent method in three main geological domains with transitional areas.  
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Figure 61. Maps of real block values obtained from mean of blast holes with optimum estimation method 

 

To demonstrate the coherency of the optimum methods in Figure 61, the 

number of blocks is counted in each geological domain classified by blast holes 

(rich, poor and waste) according to three main estimators: 

- Kriging (K) consists of OK and UK;  
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- Co-kriging consists of CK and UCK (method using geological 

information as indicators); 

- Partial grade (PG) using proportion of geological information according 

to the grade of Fe(%). 

 

Results of statistical counting of blocks are shown in Table.19:  

Table 19. Comparison of number of blocks with optimum estimation methods for three main geological 
domains; poor, rich and waste (include metasomatite zone)  

Levels 
(m) 

total number 
of Blocks 

Rich zone 
(Num.Blocks) 

Poor zone 
(Num.Blocks) 

Waste zone 
(Num.Blocks) 

K CK PG K CK PG K CK PG 

Z=1540 31 5 0 2 5 8 7 1 0 3 

Z=1550 100 18 14 7 17 17 20 4 0 3 

Z=1560 145 19 18 13 34 22 35 0 1 3 

Z=1570 183 24 17 17 35 38 41 4 1 6 

Z=1580 203 46 8 10 40 50 45 3 1 0 

Z=1590 203 52 12 4 39 43 52 1 0 0 

Z=1600 203 58 9 2 41 40 48 1 3 1 

Z=1610 189 64 6 0 50 40 22 2 4 1 

  

Based on the results of Table 19, in each excavation levels, for rich domain 

mainly Kriging is the optimum method for estimation, while in poor domain it 

changed into the partial grade method. For waste domain, the number of 

available blocks with enough samples is so low and it is not easy to make a 

precise interpretation.  
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5 CONCLUSION 

5.1 DISCUSSION  

 

Geostatistical estimations and modeling by use of the available information and 

comparison of different methods, a complex ore deposit with transitional 

boundaries was estimated. A compositing method such as regularization helped 

to use all available samples with accurate models close to the theoretical 

punctual model as the most coherent model. Moreover, adding geological 

information through indicators makes it possible to incorporate different 

geostatistical approaches (for instance IK, CK, PG) to promote the knowledge 

about the complexity of the ore body.   

Theoretically, the punctual model shows improvement compared to the part of 

data with the same support. With given sources of information, the accuracy of 

the model depends strongly on the amount of data available, its nature and 

quality and its dispersion over the area of interest, which through the theoretical 

punctual model is optimum. However, in this study, the regularized samples 

have very close results to the theoretical punctual model, making it possible to 

use the regularized samples. This makes all procedures of estimation and 

validation results easier and less time consuming using the classical procedure 

of kriging with available software (ISATIS).  

Based on different tools used in this study to identify the types of boundaries, 

(such as contact plots and preferential relationship schemes), it showed that in 

some cases it is necessary to test both tools according to different number of 

samples in various geological domains. Geological boundaries in the deposit 

under study are not „hard‟ and are associated with gradational transitions in the 
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mean iron grade, except maybe the boundary between dikes and crush zones 

(faults) but, because of the reduced number of data it was not possible to 

demonstrate it through contact plots.  

As showed in the results of the validation, when an ore body has complex 

geological domains like the case study of this work, it is fundamental to test 

different approaches and in the case of the presence of the trend, using non-

stationary methods.  

Partial grade method uses both the spatial grade and the geometry of the 

domain. In this ore deposit, considering transitional areas with important border 

effect, CK of partial grade is performed. As far as is our knowledge (December 

2016), the application of the method on a mining case is a novelty. The 

estimation results validated with blast holes samples considering as real data 

(Table 20). Comparing different methodologies is an appropriate way to test 

different geological hypotheses and select the most plausible method.  

Table 20. Optimum estimation method (minimum error) for three main geological domains; poor, rich and 
waste (include metasomatite zone)  

Geological units Optimum Method 

Rich zone Kriging 

Poor zone Partial Grade 

Waste Partial Grade 

 

According to Table 20, the kriging approach with global model provides the 

best results (minimum error) for the rich zone. This is because the rich domain 

is more homogenous. Homogenous domain here means having the same spatial 

continuity of grades inside the domain, and similar geological features such as 

lithology, mineralogy and alteration. 

However, in poor domain partial grade method has less error for estimation, 

due to the proportion of geological domains for estimating each block. As other 
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tools (for instance preferential schemes and contact plots) also noted, poor 

domain is non-homogenous with transitional areas. For waste domain, instead 

as excavated procedures are not continued in this zone (because of economic 

reasons) there are not enough blocks to recognize the optimum estimator.   

In order to distinguish the rich, poor and metasomatite contacts in Sechahun 

deposit, the estimated probability map of each previously extracted bench is 

overlaid to the optimum estimators (minimum error). Estimation results from 

UK and OK methods. Maps are shown in the levels which have maximum 

number of blocks to perform validation, Z=1570 m and Z= 1580 m.  

      

Figure 62. Maps of ICK results with optimum estimation method for two excavated levels 

 

As Figure 62 showed, in rich zone, which is more homogenous, OK has 

minimum error while in poor zone UK is the optimum method.  

However, as it is shown in Figures 61 and 62, geology of the ore body is too 

complex and according to this complexity of units, different estimators can be 

used for estimating the ore deposit but one estimator as the optimum with 

minimum error.  
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Hence, due to the mentioned advantages and disadvantages of each estimation 

method, sometime relating to the complexity of the ore body, a combination of 

methods should be used to have a coherent estimation results. This point 

highlights the sensitivity of reserve estimation to different estimator methods 

particularly with transitional areas.  

 

5.2 FUTURE DEVELOPEMENTS  

 

The overall methodologies for modeling and for geostatistical estimation in the 

case of transitional boundaries are performed in this thesis. A number of details 

could be further investigated as they are likely to generate sizeable incremental 

improvements over the presented studies: 

1) The method of CK of partial grade can be performed in the case of non-

stationarity and compared with the demonstrated results;  

 

2) As in this work, geostatistical estimation methods are deeply studied; it 

would be a benefit to test geostatistical simulation methods particularly 

methods for simulating geological units such as gaussian truncated 

simulation;    

 

3) Based on the simulated geological units, estimating grade can be 

performed inside each domain in order to compare the results of 

estimation and simulation. 
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Part II 

6 FEASIBILITY OF GEOSTATISTICAL 

STOCKPILE CHARACTERIZATION 

 

6.1 INTRODUCTION 

 

Since the beginning of the mining activities, stockpiles are formed by dumping 

wastes or low-grade materials, considered unvalued at the time of excavation. 

Generally, stockpiles are located beside the open pit area without any economic 

benefits. However, advances in recovery and processing technology have 

helped to re-consider stockpile as a new source for feeding the processing 

plans. Depleting the in-situ reserves and increasing the need of using lower 

grade materials are additional reasons to consider stockpiles as recoverable 

resources. Recently environmental aspects caused a strong push for more 

effective managements of stockpiles in many mining sites. Some companies 

and environmental institutes have developed and put on the market proprietary 

technology allowing remediation for tailings and stockpiles, that is harmless to 

humans and environmentally friendly. Therefore, these aboveground stockpiles 

have to be quantified and classified and a reliable expected-revenue model 

developed to assess the feasibility of production.  

There are a large number of studies applied on stockpiles or mostly tailings due 

to completely divergent targets (Lèbre et al. 2016, Sracek et al, 2006, 

Guezennec et al, 2015, Alcolea ed al, 2015, Abrosimova et al,2015, Castillo et 

http://www.sciencedirect.com/science/article/pii/S0892687516304071
http://www.sciencedirect.com/science/article/pii/S1352231015001478
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al, 2013, Márlon et al. 2016). Among the others, we can mention the topic of 

characterization of environmental issues related to mine wastes. Some studies 

refer to the evaluation of the acid drainage production potential related to 

Sulphur mine waste (Sracek et al, 2006, Guezennec et al, 2015); some others 

refer to the characterization of the contaminated mine wastes and their effects 

on soil or other environmental aspects (Alcolea ed al, 2015, Abrosimova et 

al,2015, Castillo et al, 2013). Moreover, focusing on reutilizing stockpiles as 

economical sources -which are the direct products of mining procedures before 

the processing plans -causes more considerations on characterization of the 

grade of the mineral that is inside the stockpiles. The cut-off grades are 

dynamic, changing in time during mining operation (Ataei and Osanloo, 2003, 

Bascetin and Nieto, 2007, Osanloo et al., 2008, He et al., 2009, Meagher et al., 

2008). This implies the existence of low-grade ore stockpiles that although 

uneconomical to process in the past years, nonetheless contain sufficient metal 

grade to justify mining and refining later on (King 2001). Some authors have 

estimated stockpile grade-tonnage curves from the set of geostatistical 

simulated ore body realizations in order to establish possible long-term 

stockpiles (Asad and Dimitrakopoulos, 2012). In other cases, different 

methodologies are applied on stockpiles to figure out the blending opportunities 

of the different possibilities for building and reclaiming (Jupp et al., 2013). 

Moreover, geostatistical simulation methods are applied to optimize stockpile 

designs using sparse samples. Therefore, using the distribution of the variables 

the uncertainty at un-sampled locations is estimated (Kumral, 2006, Marques et 

al. 2009). 

Characterization of stockpiles requires adequate sampling, if possible by 

integrating existing data with new sampling. According to the sampling 

problems -sampling of compact solids and particulate solids- and different 

errors influenced in sampling procedure (Gy, 1982) in the cases with different 

http://www.sciencedirect.com/science/article/pii/S1352231015001478
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size of materials, errors of samplings may be negatively notable (Gy, 1982). 

Hence, sampling in extensive stockpiles containing rocks with different size can 

be cumbersome and costly. Huge stockpile size and the consequent difficulty of 

access to all parts of piles for sampling, along with grain size variety are some 

of the reasons why sampling may be complicated. However, at the 

prefeasibility stage of the study, sampling can be dispensed with numerical 

modeling using data from the exploited ore body and then reconstructing the 

piling procedures, namely: ore selection, haulage and piling. The spatial 

correlation of natural mineralization will be significantly modified with respect 

to the pilling procedure in the stockpiles, or even disappear (on the point of 

artificial aspect of stockpiles). Hence, stockpiles will show significant 

disruption with respect to the original spatial correlation of natural 

mineralization. On the other hand, the time sequence of blocks excavations and 

pilling them - or part of them- in nearby locations as stockpiles following the 

same time order, may lead to, in some way, maintain the natural spatial 

correlation of the main ore deposit. This is because stockpiles are part natural 

and part artificial, and they are located in the main deposit. Considering this 

point, initial data must be obtained regarding stockpile grade (as a variable) 

characterization and regarding selection from the main ore deposit and the 

stockpiling procedure. Stockpile construction method will determine the spatial 

variability of the grade. Back reconstruction of the exploitation flows of the 

main resource, the waste selection process, their transportation and disposal can 

provide predictions regarding stockpile variable distribution and spatial 

variability inside the stockpile.  

In this Chapter, a short study is presented on stockpile grade distribution and 

their variability estimation based on primary data from the main ore body. The 

case study is related to two stockpiles in an iron mine where sampling was 

considered economically and physically unfeasible. The iron and phosphate 
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grade distribution of stockpiles are estimated using numerical modeling. The 

iron and phosphorus grades, contained in a given piling volume – equal to the 

contents of a single truck – were estimated by CK. Reconstruction of the 

haulage process allowed calculation of stockpile grade distribution. 

In all reconstructing the haulage-piling procedures, it is fundamental to consider 

the same support for stockpiles and their main resource. The support varies 

widely from site to site and should be identified since it is a key for comparison 

between the main source and pile structure. Figure 63 summarizes the 

procedural steps. 

 

Figure 63. Simple chart of numerical modelling procedure of stockpiles 
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6.2 INTRODUCTION OF THE CASE STUDY: 

CHOGHART IRON ORE MINE 

 

The Iranian Choghart iron-ore mine has been operational since 1975. The first 

project was to exploit a large iron-ore deposit in the region of Bafgh, 

approximately 125 km southeast of the city of Yazd, Iran (Figure 64). 

 

Figure 64. Choghart iron ore mine in Iran and the Google map of the ore deposit and stockpiles 

 

Initially, the Choghart ore body was a prominent iron ore outcrop measuring 

800×300 m
2
, standing 150 m above the surrounding plain, itself some Z=1257 

m above sea level (Moor and Modabberi, 2003). The iron ore is low in Sulphur, 

90% of the ore body being non-oxidized (magnetite ore). Over 65% of the 

reserve is of the low phosphorous type (Torab and Lehman, 2006). However, a 

huge quantity of high-grade, high phosphorous ore (average above 0.6% 

phosphorous) and low-grade ore (average less than 50% iron) has been 
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removed from the pit and stored in high phosphate (HP): [Fe%≥50%, P≥0.6] 

and low grade: (LG) [Fe<50%] stockpiles for possible future beneficiation. The 

construction of a processing plant at Choghart able to produce 3.2 Mt of iron 

concentrate has made exploitation of the piles potentially economically viable 

(Gholamnejad and Kasmaee 2012).  

Exploitation at Choghart is open cast, with 10 m high blasting benches. Each 

blasting panel is almost 25m×25 m×10 m (height) and blast-holes lie in a 

regular pattern of 5 m×5 m×10 m (height). The blasted rocks are shoveled onto 

trucks and transferred to a 250 m
3
 crushing plant. The high phosphorous and 

low-grade iron ore are transported to separate stockpiles. Open pit operations 

entail five stages: drilling, blasting, loading, hauling and crushing. Loading and 

transporting is via a truck- shovel system.  

The two main - HP and LG - stockpiles were started in 1993 using 35-ton-

capacity trucks. Materials have been disposed in sequential horizontal layers, 

with each stockpile section being filled over 30 days. In both cases, stockpile 

construction followed all mining plan operations (drilling, blasting, loading and 

hauling to the two different locations) with the exception of the crushing stage 

(Figure 65).  

 

Figure 65. HP and LG stockpiles 



146 

 

 

Each stockpile is almost 400 (X) m×500 (Y) m× 20 (Z) m high and includes 

rocks with completely different grain dimension. Their huge size and wide rock 

grain dimension make sampling both difficult and costly. However, the 

availability of complete blast-hole data as well as the regular piling sequences 

from identified mine panels allow reliable prefeasibility studies to be carried 

out prior to embarking on costly sampling operations. Moreover, since 

stockpiles were built up in layers of material from specific areas of the mines, 

stockpile grade variability can also be estimated. As a result, preliminary main 

ore deposit data and structural analysis of preferred variability (iron and 

phosphorous) can be used to assess stockpile characterization and predictions. 

The first step is to make a direct link between deposit and pile, identifying the 

selection support from the primary blasted panels. The study considered blast 

hole data for low grade and high phosphorous blocks at level Z=1140 m of the 

Choghart mine. Figure 66 shows the base map of the selected panels with blast-

hole samples classified according to feeding destination: crusher (CR) or the 

different stockpiles (HP, LG).  

 

Figure 66. Base map of blast hole data for five panels, classified according destination (High Phosphorous 
stockpile: Red; Low Grade stockpile: Yellow; Crusher Feed: Blue) 
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The numerical modeling of the iron distribution of the deposit can be carried 

out employing geostatistical method CK for obtaining block estimates along 

with estimation variance.  These estimates are further used to predict stockpile 

grade variability. 

 

6.3 ORE DEPOSIT MODELLING 

 

Conventional statistical data analysis was performed prior to determine the 

basic characteristics of sampling. Figure 67 shows the summary statistics for Fe 

and P distributions, respectively.  

 

Figure 67. Histograms of Fe (left) and P (right) concentration (%) for blast hole data from 5 panels 

 

Blast hole data of five panels (numbers: 478, 480, 482, 484 and 486) at level 

1140 containing low grade (Fe<50%) and high phosphorous (Fe% ≥ 50%, P ≥ 

0.6) were considered as an example. Iron and Phosphor grades in the ore body 

(from mentioned panels) were found to be spatially structured and negatively 

correlated as shown by the direct and cross variograms (Figure 68) where a 
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linear coregionalisation model (nugget + exponential with range 20 m) was 

fitted. Depending on block shape - 5 panels (Figure 68) - the maximum distance 

of variography is equal to the length of 2 panels (less than 100 meters). As the 

spatial variability is same in all the directions, no significant anisotropy was 

observed in any two directions. An omni-directional variogram was used for 

modelling the deposit.  Based on the grid size, a lag distance of 5.0 meters with 

a lag tolerance of 2.5 meters is used for the variogram calculation.  

Figure 68. Experimental and cross variograms of Fe and P obtained from blast holes of five panels 

 

A comparison between the grade spatial variability in stockpile and deposit can 

be based  on  the ore sent to stockpiles, which is a portion of the main deposit 

that has been determined by cut-off selection (grade selection for PH and LG). 

Stockpile grades considered by the procedure; refer to the elementary unit (cell) 

that constitutes it, in other words, to a not-punctual support. The reconstruction 

of the ore flow from deposit to stockpile requires the identification of an 

elementary unit (a unique volume named support) of in situ ore corresponding 

to the piling unit, which is conditioned by truck capacity (35 tons). After 

regularization of support, stockpile grade spatial variability is significantly 

different from the grade of the original samples. With reference to variograms, 

after regularization, one would expect theoretically, the variable has a lower sill 

and increased range (Chiles and Delfiner, 2012). Depending on the dimension 

of the blasted panels (25×25×10 m
3
), the selected unit - in other words, the 
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elementary volume transported and piled (support) - is 10 (height) ×2.5 (X) 

×1.4 (Y) m
3
. These dimensions have been chosen with reference to: 

 i) bench, the 10 m height level of the mine to be exploited; 

 ii) volume, corresponding to truck capacity;  

iii) shovel bucket width. 

As previously mentioned, each stockpile was fed only by a selected part of the 

deposit. In compliance with Choghart‟s long-term production strategy, high-

grade rocks (Fe%≥50%, P≥0.6), and low-grade material (Fe<50%) were 

consigned to HP and LG stockpiles. Selection of stockpile materials in the main 

ore body requires estimation of the selected units or blocks (support of 10 ×2.5 

×1.4 m
3
) inside the blasted panels. A linear coregionalisation model was used 

for CK of the iron and phosphate sample grades. After estimation, the selected 

procedure was applied to separate the high and low-grade phosphorous parts of 

the panels. Then the structural analysis in the selected parts of the blocks and 

stockpile grade variability is performed.  

Since kriging is a linear averaging, kriging estimates can be expected to be less 

dispersed than the data (Chiles and Delfiner, 2012) and with lower variogram 

sill.  The cut-off grade criteria modify means, variances and variogram ranges 

(Matheron, 1982). Figures 69 and 70 show the direct and cross variograms of a 

specific portion of the estimated blocks (separated by cut-off for LG, HP). Note 

that the sign of the cross-variogram for the blast holes changes from negative to 

positive in the case of the cross-variograms of estimated selected blocks in both 

the LG and HP parts of the ore body. This reveals two different homogeneous 

populations of iron and phosphorous, which are in fact positively correlated. In 

addition, it is possible to interpret the result of the different composition and 

degree of oxidation, which is the basis for the classification of Choghart iron 
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ore into different groups (Torab, 2008). The stockpile characterization using 

data from different zones may prove to be quite different from that of one single 

zone estimated separately. 

 

Figure 69. Structural analysis of HP (estimated) blocks from 5 panels 

 

 

Figure 70. Structural analysis of LG (estimated) blocks from 5 panels 

 

In fact, in the HP portion of the deposit, the sill of the variogram obtained from 

block estimated grades shows P and Fe to be more homogeneous, with a 

variance 28% lower than samples in the LG part of the deposit. Only the Fe 

grade has a variogram sill 30% lower than the variogram obtained from 

samples, while the P variograms maintain almost the same sill.  
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6.4 STOCKPILE MODELING 

 

As mentioned above, parts of the excavated blocks, selected according to the 

cut-off grade were considered for piling in an area near the pit (Figure 64). The 

piling procedure was considered in order to follow grade flow from ore deposit 

to stockpiles. In particular, exact information from mine face to ship loading, 

haulage and dumping in the specific area should be gathered. Selected parts of 

the blasted panels were carried at regular intervals to specific locations within 

the HP and LG stockpiles and dumped separately (schematically in Figure 71). 

For the haulage construction, the volume transported was equated to a 35-ton 

truck capacity, which amounts to about 1/3 of estimated block volume. 

Therefore, the elementary stockpile model is conditioned by truck width and 

height, and so block dimension is considered 1 m high, 3 m large and 4 m long. 

Finally, based on the original information and blast-hole samples regularized 

over a length of 10 m (Figure 71), it was assumed that the 3 cells (as blocks) 

and cells were comprising the blocks delivered to the stockpiles with the equal 

grade.  

 

Figure 71. Simplified flowchart of piling modelling from ore deposit 
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Regarding stockpiles geometry, construction of the piling procedure considered 

that a level is filled by parallel lines, and when one line is completed, a new line 

is piled up. When one level is filled, a new level is started. Since the excavated 

benches are a constant height (10 m), the heights of each pile sequence 

(line/level) produced due to the height trucks can make (about 1 m). 

Subsequently, grade spatial variability in the reconstructed stockpiles (built up 

with the same support) can be compared with the specific part of the ore body 

excavated and transported to the stockpiles (main 5-panel ore body). The 

experimental and model variograms of piling cell grades along and across the 

piling directions are shown in Figures 72 and 73. Lag distance is about 5.0 (m). 

 

Figure 72. Structural analysis of cells grades of simulated HP pile in two orthogonal directions, N0 and 
N90 

 

Figure 73. Structural analysis of cell grades of simulated LG pile in two orthogonal directions, N0 and 
N90 



153 

 

 

According to the experimental variograms, no orthogonal spatial correlation 

was found for Fe in North-South direction (N0) because of the particular ore 

disposal process. In contrast, P grades did show some orthogonal spatial 

correlation to the piling lines, both for HP and LG stockpiles. Further 

investigation should be carried out to verify and explain this finding, which is 

probably linked to the long-range structure observed in deposit block grades.  

As the main East-West direction (N90) coincides with the direction of stockpile 

material disposal, stockpile variograms might be expected to have the same 

spatial behavior as the main 5-panel resource (from ore body) but no orthogonal 

spatial behavior. The fact that stockpiles are artificial constructions built up in a 

series of different layers with selected panels placed in proximity to each other 

is one of the reasons for the lack of orthogonal structure. The variograms in 

Figures 72 and 73 show the complete absence of Fe spatial correlation in 

direction N0 (orthogonal to material disposal). In contrast, P grades in HP and 

LG stockpiles still maintain some orthogonal spatial correlation to piling lines. 

In addition, the finding of one ore body panel placed in three stockpile 

sequences (Figure 71) requires further investigation and verification of its 

probable link to the long-range structure observed (Figures 72 and 73). Since 

the regular piling sequences maintain the spatial correlations along the direction 

of disposal, the range of structures in HP and LG stockpiles increases.  

 

6.5 CONCLUSION  

 

Numerical modeling of Choghart stockpile using estimated data from stockpiles 

allows the assessment and the comparison of piling design sequences with 
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selected parts of the deposit. This modeling technique also produces 

comparisons of spatial variability of the grade distribution of the main variables 

(Fe and P) of the two stockpiles. This can be performed by comparing structural 

analyses of the stockpiles and main ore body (selected panels).  

A simple, rapid verification method is a grade spatial variability coherence 

check in the stockpiles. Figures 72 and 73 show the results of a check from 

stockpile cell grade variability. According to the piling process construction, 

the mean of grades and variance of estimated grades of selected blocks should 

be constant in the piling procedure. This statement is strongly supported by the 

study because the results of the CK estimation are directly used for stockpile re-

construction. In addition, the horizontal variability along truck discharge lines 

may be expected to remain unaltered. The same spatial structure was observed 

within an increased range of a couple of meters (Figure 72 and 73) and with 

differentiable behavior near the origin due to the artificial homogeneity 

introduced by giving the same grade to three sequential cells in stockpiles. As 

mentioned in Section 6.4 (Stockpile modeling), as expected, variability without 

spatial correlation (nugget) was in fact observed in the direction orthogonal to 

piling disposal (Table 21). This is due to the fact that, once a row is finished, 

the next one is started either with materials from the same block (now deposited 

at the initial position) or from a subsequent block (Figure 74). 

 

Figure74. Scheme of stockpiling procedure from the panels 
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Table 21 shows the proper expectations (or predictions) in the case of spatial 

structure comparisons. The spherical spatial models are followed with a larger 

range in the stockpiles (because the materials from one panel of stockpiles are 

more widely spread out into three larger but thinner layers in stockpiles) 

(Figures 71, 74, and Table 21). In the case of HP, for example, adding the 

nugget effect to the sill of the Fe variograms in the HP blocks (the HP part of 

the estimated panels), the variance will be equal to 6 (%
2
) (3.7 (%

2
) the first 

structure sill + 0.8 (%
2
) the second structure sill +1.5 (%

2
) nugget effect of Fe 

variogram). The result is equal to the Fe variance in variograms of the HP 

stockpile (2.8 (%
2
) the first structure sill + 1.7 (%

2
) the second structure sill 

+1.5 (%
2
) nugget effect of Fe variogram).  

This proves that in this case study, the stockpiles have the same (spherical) 

model as the selected part of the deposit, with the same variance and a larger 

range. The same method can be applied for the LG stockpile with same 

variance equal to 25 for the Fe variable: 

The Fe sill (equal to 22(%
2
)) + nugget effect of Fe variogram (equal to 3(%

2
)) 

in the LG blocks in comparison to the Fe sill (equal to 16(%
2
)) + nugget effect 

of the Fe variogram in the LG pile (equal to 9(%
2
)) from Table 21. 

Table 21. comparison of variogram parameters of structured (spherical/spherical) components in 
stockpiles and deposit blocks 

Variogram Model Range(m) 
Sill-Fe 

(%2) 

Sill-P 

(%2) 

Sill Fe/P 

(%2) 

Nugget Fe 

(%2) 

Nugget P  

(%2) 

Nugget Fe/P 

(%2) 

HP-blocks Spherical 

8 3.7 0.005 0.06 

1.5 0.150 0.12 

35 0.8 0.028 0.00 
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HP-pile Spherical 

15 2.8 0.008 0.10 

1.5 0.150 0.05 

60 1.7 0.025 0.03 

LG-blocks Spherical 7 22.0 0.235 1.51 3.0 0.030 0.00 

LG-pile Spherical 23 16.0 0.228 1.21 9.0 0.037 0.30 

 

This comparison is also applied to P modeling and Fe/P cross variograms.  

Comparing the result of variogram modeling of piles with the geostatistical 

parameters of selected blocks from the main deposit allows approximation of 

pile grade spatial distribution and variability without resorting to extra 

sampling. Piling sequences can be reconstructed, referencing the data of the 

volumes transported to specific pile locations. Figure 75 shows Fe (%) 

distribution in HP and LG stockpiles after piling reconstruction.  

 

Figure 75. Map of Fe (%) variability in HP (left) and LG (right) stockpile obtained by construction piling 
procedure 

 

Assessing Fe (%) variability in stockpiles (Figure 75) allows mine planning 

decisions, regarding future stockpile excavation, processing feasibility, 

sampling advisability and most appropriate excavation site. 
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Stockpile reserves and grade variability can also be evaluated using the Grade-

Tonnage curves. Figure 76 gives the grade-tonnage curves only for iron in LG 

and HP stockpiles. Curves and pile grade variability are considered to be of 

assistance to managing decisions regarding sampling with a view to stockpile 

exploitation and the economic feasibility of waste materials as a new source.   

 

Figure 76. Grade-Tonnage curve for two simulated stockpiles 

 

The methodology of stockpiles reconstruction from selected parts of ore body is 

simple; it can be implemented in a short “macro”2 of Excel and may be of use 

especially when stockpile sampling is not an immediate or appropriate option. 

 

 

 

 

 

                                                
2 The macro of the reconstruction procedure is particular to the case study; according to the 

piling procedure it can be change from each case to another.  
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