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ABSTRACT 

Drug addiction is defined as a chronic relapsing disorder of compulsive drug seeking 

and taking, characterized by a three-stages recurring cycle: binge/intoxication, 

withdrawal/negative affect and preoccupation/anticipation. Several repetition of this 

cycle induces allostatic changes in brain reward and stress systems; in particular, 

allostatic changes represents a combination of the anti-reward system activation and 

subsequent chronic decrease function of rewards circuits. Although alcohol does not 

have a specific pharmacologic target, it directly and indirectly interacts with several 

targets activating the reward pathways. Similar to other drug of abuse, alcohol 

prolonged exposure and withdrawal induces a decrease of stress buffer system 

signaling, such nociceptin, neuropeptide Y and brain derived neurotrophic factor 

(BDNF), and promotes the recruitment of several brain stress systems, such as the 

corticotropin releasing factor (CRF) and the dynorphin (DYN) / κ opioid (KOP) 

receptor system. The misbalance of these systems contributes to the negative emotional 

states (i.e. anxiety, depression) associated with alcohol use disorder (AUD). 

A growing body of evidence underlines that neuroplasticity phenomena induced by 

alcohol and other drugs of abuse involve epigenetic modifications, such as histone 

modifications, which in turn regulate gene expression. Therefore, in the present study 

we aimed to investigate epigenetic and transcriptional alterations induced by alcohol in 

different paradigms of alcohol exposure, in order to identify molecular and functional 

mechanisms involved in the AUD and the associated negative emotional states.  

In the first part, the protein levels of histone deacetylases (HDACs) 1, 2 and 3 belonging 

to the class I in the caudate putamen (CPu) and prefrontal  cortex (PFCx), two areas of 

the mesocorticostriatal circuitry. In particular, BDNF heterozygous (+/-) mice, which 

voluntary consume high amount of alcohol, and wild type (WT) animals were acutely 
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injected with EtOH and subsequently molecular analysis was conducted. Results 

showed that EtOH-treated WT mice has lower protein levels of all HDAC isoforms 

investigated in the CPu and HDAC 3 in the PFCx, suggesting that EtOH is able to 

modulate the epigenetic machinery. Moreover, different basal levels of HDACs class I 

have been detected in the BDNF +/- mice. HDAC 1, 2, 3 protein levels are lower in the 

CPu as well as HDAC 3 in the PFCx; on the contrary, HDAC 1 and 2 protein levels are 

significantly higher in the PFCx of BDNF +/- animals.  Therefore, BDNF seems to be 

crucial in regulating epigenetic mechanisms comprising the levels of class I HDACs. 

Interestingly, genetic manipulation of BDNF has different consequences on HDAC 

levels in the CPu and PFCx suggesting that BDNF could play different role in distinct 

brain regions. 

In the second part, we focused on the role of DYN/KOP system in different model of 

alcohol dependence and tolerance. The first model of alcohol dependence is represented 

by alcohol preferring rats (Marchigian Sardinian alcohol preferring rats, msP) exposed 

to the chronic intermittent two bottle free-choice paradigm. The gene expression 

analysis was conducted in the amygdala (AMY) and bed nucleus of stria terminalis 

(BNST) and revealed that msP animals have higher basal levels of KOP receptor 

mRNA in the AMY compared to their counterpart Wistar rats. KOP receptor is involved 

in the alcohol preference and consumption; in fact, KOP knock out animals exhibited 

low preference for EtOH. Moreover, EtOH-exposed msP rats show a down-regulation 

of prodynorphin (PDYN) and KOP receptor gene expression in the AMY. The 

activation of DYN/KOP system has been associated with anxious and depressive signs; 

therefore, the down-regulation here reported could be related to the attenuation of the 

anxio-depressive phenotype of the msP rats following alcohol exposure previously 
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reported. Finally, a decrease of KOP receptor mRNA has been detected in the BNST of 

msP rats following alcohol consumption.  

The second model of alcohol dependence investigated is the chronic liquid diet; 

Sprague-Dawaley rats were fed with EtOH or control liquid diet for 15 days and then 

one group of EtOH exposed rats underwent 24 hours withdrawal. It has been previously 

reported that withdrawn animals after the chronic liquid diet exposure showed anxious 

symptoms. Here, we observed an increase of PDYN and KOP receptor mRNA levels in 

the AMY of withdrawn rats and a decrease of KOP receptor in the BNST. The opposite 

regulation of KOP receptor gene expression in the AMY and BNST observed during 

withdrawal and in msP rats suggests that dysregulation of the KOP receptor in these 

areas may contribute to the development of the negative emotional state associated to 

alcohol dependence. 

Finally, we investigated a model of rapid tolerance to the anxiolytic effects of EtOH 

(rapid EtOH tolerance, RET). EtOH was acutely injected and then animals were tested 

in the elevated plus maze showing anxiolytic-like behavior; however, a second injection 

of EtOH 24 hours apart does not elicit any anxiolytic effect indicating that animals 

developed tolerance. It is interesting to note that the development of tolerance is related 

to the anxiolytic effect exerted by EtOH since no metabolic tolerance, measured as 

blood alcohol levels, has been observed. Tolerant animals showed an increase of PDYN 

and KOP receptor mRNA levels in the AMY and no changes in the BNST. Similar 

alterations of DYN/KOP system in the AMY have been detected in the two alcohol 

dependence models and RET model, arising the hypothesis that amygdaloid neuronal 

mechanisms leading to the negative affective consequences of alcohol dependence and 

rapid tolerance can be analogue. Interestingly, in the present study epigenetic analysis in 

the AMY revealed that the DYN/KOP system gene expression can be mainly regulated 
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by two histone marks, the trimethylation of lysine 27 and 4 on histone 3 (H3K27me3 

and H3K4me3), during acute EtOH exposure and tolerance.  

In conclusion, the present thesis provide new information on epigenetic mechanisms 

involving the BDNF and DYN/KOP systems in the AUD identifying these epigenetic 

alterations as potential therapeutic targets to treat or prevent alcoholism and alcohol-

associated emotional disorders. 
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1. DRUG ADDICTION  

1.1. OVERVIEW 

Drug addiction is defined as a “chronic relapsing disorder of compulsive drug seeking 

and taking, characterized by a three-stages recurring cycle: binge/intoxication, 

withdrawal/negative affect and preoccupation/anticipation” (Koob and Le Moal, 1997). 

The binge/intoxication stage is the first phase in which drugs of abuse induces 

dopamine and opioid peptide release in the nucleus accumbens (NAc) (Volkow et al., 

2007) exerting rewarding effect and recruiting other areas, such as the dorsal striatum 

(DS), relevant for the habit formation. The second stage, the withdrawal/negative affect 

stage, is characterized by loss of function in the reward system, particularly in the NAc, 

and recruitment of the brain stress system (i.e. the extended amygdala). The occurrence 

of these phenomena induces subjects to pursue in drug seeking and taking. Finally, the 

preoccupation/anticipation stage derives from a disruption of decision-making and 

behavioural inhibition mediated by the prefrontal cortex (PFCx) (Koob, 2015).  

The repetition of this cycle over time induces allostatic changes in the brain reward and 

stress system. Allostasis can be defined as “stability through changes” (Koob, 2015); 

therefore, allostatic state is a state of chronic deviation of the regulatory system from its 

homeostatic level (Koob and Le Moal, 2001 and 2008) (Figure 1). Therefore, the 

allostatic state represents a combination of the anti-reward system activation and 

subsequent chronic decrease function of rewards circuits, both leading to the 

compulsive drug seeking behavior and loss of control in limiting drug intake. 
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Figure 1. Affective response to the presentation of a drug. On the top, there is a schematic 

representation of the initial experience of drug in a subject with no prior drug history. The a(+)-process 

represents the positive mood state, while the b(-)-process represents the negative emotional state; an 

appropriate opponent b-process balancing the activational a-process is hypothesized to retain the 

homeostatic point. On the bottom, individual with repeated frequent drug use may have a transition to an 

allostatic state in the brain reward systems and, as a consequence, to addiction. In this case, the opponent 

b-process does not counterbalance the a-process that shows a residual hysteresis (Koob and Le Moal, 

2001). 
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1.2. BRAIN REWARD SYSTEMS 

Alcohol and other drug of abuse are able to produce rewarding effect. The role of the 

mesocorticolimbic and nigrostriatal dopamine (DA) pathway is crucial in mediating 

drug reward (Wise, 2009). The mesolimbic dopamine pathway is enriched of 

dopaminergic neurons projecting from the ventral tegmental area (VTA) to cortical and 

forebrain regions, such as the NAc, the amygdala (AMY) and the PFCx (Di Chiara et al, 

2004; Nestler, 2005; Volkow et al, 2004) (Figure 2)., All drug of abuse, interacting with 

different molecular targets, induce an increase of DA release in the nucleus accumbens 

(NAc) (Di Chiara and Imperato, 1986). DA and opioid peptide release can induce other 

neuroadaptations, such as the recruitment of the glutamate-modulated N-methyl-D-

aspartate (NMDA) receptors, in glutamatergic projections from the PFCx and the AMY 

to the VTA and the NAc (Kalivas PW, 2009). These neuroadaptations are responsible 

for leading to tolerance and withdrawal and triggering drug-associated cue exposure to 

increase DA levels in the DS, a crucial region in the habit formation processes (Belin D 

et al., 2013). The subsequent recruitment of cortical-striatal-pallidal-thalamic circuits is 

important to maintain the strong desire (craving) and the compulsive use of the drug 

when subjects are exposed to drug-associated cues (Koob, 2015). 
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Figure 2. Brain reward circuit. Major dopaminergic, glutamatergic and GABAergic connections 

to and from the VTA and NAc in the rodent brain. The dopaminergic projections from the VTA to the 

NAc, which release dopamine in response to reward-related stimuli, is the primary reward circuit. There 

are also GABAergic projections from the NAc to the VTA. The NAc receives dense glutamatergic 

innervation from the medial PFCx, hippocampus (HIPPO) and amygdala (Amy). The VTA receives such 

inputs from amygdala, lateral dorsal tegmentum (LDTg), lateral habenula (LHb) and lateral hypothalamus 

(LH). (from Russo and Nestler, 2013. Nat Rev Neurosci. 14(9):609-25.)  

 

 

1.3. BRAIN STRESS SYSTEMS 

As mentioned above, the withdrawal/negative affect stage is characterized by loss of 

function in the reward system, particularly in the NAc, and recruitment of the brain 

stress system. The use of all major drug of abuse causes a dysregulation of the 

corticotropin-releasing factor (CRF) in the hypothalamic-pituitary-adrenal (HPA) axis 

and extrahypothalamic nuclei, resulting in an increase of adrenocortitropic hormone, 

corticosterone and amygdala CRF during acute withdrawal (Olive MF et al., 2002; 

Rasmussen DD et al., 2000; Roberto M et al., 2010). It has been hypothesized that the 

HPA axis activation can be an early dysregulation associated to the drug intake that 

triggers alterations of the extrahypothalamic CRF (Koob and Kreek, 2007; Vendruscolo 

et al., 2012). Together with the recruitment of the stress systems, during acute and 
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protracted withdrawal the occurrence of anxiety-like responses have been detected; the 

anxiety-like symptoms are reversed by administration of CRF antagonists (Zorrilla et 

al., 2014). In particular, the anxiolytic effect induced by CRF antagonists have been 

localized in the central nucleus of the amygdala (CeA) (Rassnick et al., 1993). 

Moreover, CRF antagonists are able to block the aversive-like motivational effects 

elicited by drug withdrawal (Heinrichs et al., 1995; Stinus et al., 2005) and the increase 

of drug self-administration (George et al., 2007; Greenwell et al., 2009; Specio et al., 

2008). 

Beside the CRF, the opioid peptide dynorphin (DYN) produces aversive and dysphoric-

like behavior and mediates negative emotional states (Wee and Koob, 2010). In fact, the 

DA and opioid peptide release activates the DYN system, which acting by a feedback 

mechanism decreases the DA release and contributes to the dysphoric syndrome 

(Nestler, 2004). Activation of DYN system in the extended amygdala is also responsible 

for depressive and anxiogenic-like responses to stress during drug withdrawal (Chartoff 

et al., 2012; Knoll et al., 2007; Land et al., 2008). Moreover, κ opioid (KOP) receptor 

antagonists block the excessive and compulsive-like drug self-administration (Walker et 

al., 2010; Wee et al., 2009).  

In order to counteract the effects of the pro-stress and pro-negative emotional state 

system activation, the return to the homeostasis can be facilitated by the emotional 

buffer system activation; components of the stress buffer system are the neuropeptide Y 

(NPY), nociceptin (N/OFQ) and endocannabinoids (Koob, 2015).  

Therefore, the decrease of the brain reward systems and activation of the brain stress 

systems produce a negative emotional state that is more than a transient homeostatic 

dysregulation and it is known as allostatic state (Koob, 2015). 
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Figure 3. Horizontal section of rat brain: the extended amygdala and modulation 

via brain arousal-stress systems. On the left, a schematic representation of the central division of 

the extended amygdala with the central nucleus of the amygdala and lateral bed nucleus of the stria 

terminalis and a transition area in the shell of the nucleus accumbens highlighted. On the right, a 

description of the brain stress systems and brain stress buffer systems in the extended amygdala. Most of 

the brain stress or brain stress buffer systems are either local circuits or derived from hypothalamus or 

brainstem (Koob, 2015). 
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2. ALCOHOL USE DISORDER (AUD) 

 

2.1. OVERVIEW 

The alcohol use disorder (AUD) is classified as a “Substance-Related and Addictive 

Disorder” in the fifth edition of the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5) (American Psychiatric Association, 2013). Although there is 

considerable overlap between the DSM-5 and the prior edition (DSM-IV), important 

differences in the terminology and diagnostic criteria were added. 

According the DSM-5, any subject meeting two or more symptoms from the list of 11 

criteria during the same 12-month period would receive a diagnosis of AUD. The 

number of symptoms defines the severity of the AUD as follow: 

 Mild, in the presence of 2 to 3 diagnostic criteria; 

 Moderate, in the presence of 4 to 5 symptoms; 

 Severe, in the presence of 6 or more symptoms. 

In the DSM-IV, there were different criteria for alcohol abuse and alcohol dependence, 

now integrated under a single disorder, the AUD. In the Figure 4, a comparison of 

previous and new diagnostic criteria is presented. It is interesting to note that in the 

DSM-IV, legal problems are listed as a criterion; however, this criterion has been 

removed in the DSM-5, and the criterion of craving was added. 

Based on the Global status report of the World Health Organization (WHO) on alcohol 

and health 2014, it has been estimated that all over the world in one year 3.3 million 

deaths result from harmful use of alcohol, representing about the 6 % of all deaths. 

Moreover, more than 200 disease and injury conditions are caused by the harmful use of 

alcohol, and again about 5 % of the global burden of disease and injury is attributable to 

alcohol, measured as disability-adjusted life years. In the young age group (20 – 40 
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years), approximately 25 % of the total early deaths are alcohol-attributable (World 

Health Organization, 2014). 

Alcohol consumption is affected by a variety of individual, societal and environmental 

factors, such as economic development, culture, availability of alcohol, and the 

comprehensiveness and levels of implementation and enforcement of alcohol policies. 

Although one risk factor is not more important than another is, generally the more 

vulnerabilities a person has, the more likely this person is to develop alcohol-related 

problems as result of alcohol consumption. 
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Figure 4. Criteria for the diagnosis of AUD. Comparison of diagnostic criteria between DSM-

IV and DSM-5. 
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2.2. POSITIVE REINFORCEMENT OF ALCOHOL 

Similarly to other drugs of abuse, alcohol is able to activate the reward pathways. In 

fact, it has been demonstrated that alcohol stimulates the DA release in the VTA-NAc 

pathway (Di Chiara and Imperato, 1986; Gessa et al, 1985). Pharmacological 

manipulation of dopamine D1 and D2 receptors was able to reduce alcohol consumption 

in animals, thus confirming the involvement of the DA system in mediating alcohol 

positive reinforcement (McBride et al, 1990; Samson et al, 1993). However, in contrast 

to other major drugs of abuse, alcohol does not have a specific pharmacologic target, 

but it directly and indirectly interacts with several targets. Alcohol directly interferes 

with the function of several ion channels and receptors, such as the ionotropic γ-

aminobutyric acid (GABA) A receptors, L-type Ca2+ channels, nicotinic acetylcholine 

receptors (nAChR), metabotropic glutamate receptors (mGluRs), NMDA receptor and 

5-hydroxytryptamine 3 (Vengeliene et al., 2008). For example, alcohol inhibits the 

function of NMDA receptor (Lovinger et al., 1989) and enhances the activity of 

GABAA receptors (Mihic, 1999). This is further supported by evidence demonstrating 

that during alcohol withdrawal GABAergic transmission is decreased and NMDA 

glutamatergic signaling is increased (Davidson et al., 1995; Roberts et al., 1996; Weiss 

et al., 1996).  

Beside direct effects, alcohol induces a variety of indirect effects on several 

neurotransmitter/neuropeptide systems. For instance, alcohol can indirectly interact with 

endogenous opioid system in the mesolimbic pathway, with an increase in endogenous 

opioid peptide release (Gianoulakis, 1989; Johnson and North, 1992). In particular, 

beta-endorphin and enkephalins released by alcohol bind to the μ and δ opioid receptor 

exerting rewarding properties by activation of the mesolimbic DA pathway from the 

VTA to the NAc; at the same time, alcohol induces the DYN release leading to 
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dysphoric effect (Herz, 1997). These opposing effects are the result of increase and 

decrease in DA release in the NAc, respectively (Herz, 1997). Although the VTA-NAc 

circuitry represents a key pathway in the alcohol positive reinforcement, it has been 

demonstrated that its rewarding properties may be results of the interactions with other 

brain regions, such as the CeA and ventral pallidum (Heyser et al, 1999; Melendez et al, 

2004). 

 

 

2.3. NEGATIVE REINFORCEMENT OF ALCOHOL 

Negative reinforcement has been defined as the process by which removal of an 

aversive state increases the probability of a response (Koob, 2015); both 

neuroadaptations in the reward circuit and the recruitment of the brain stress systems 

may concur to the negative reinforcement. The protracted use and abuse of alcohol 

induce changes in its rewarding effect (i.e. decrease of the DA release) and during 

alcohol withdrawal GABAergic transmission is decreased and NMDA glutamatergic 

signaling is increased (Davidson et al., 1995; Roberts et al., 1996; Weiss et al., 1996).  

In addition, ethanol (EtOH) withdrawal elicits anxiety-like behavior, thus suggesting the 

recruitment of the brain stress systems. The use of alcohol to alleviate anxiety (named 

as “relief drinking”) has been observed in human and several animal models of 

addiction (Sinha et al., 2011; Ciccocioppo et al, 2009; Schank et al, 2012). 

Dysregulation of CRF system seems to be responsible for anxiety-like behaviour 

observed in animals underwent acute and prolonged alcohol withdrawal, since CRF 

receptor antagonists are able to reverse anxiogenic symptoms (Funk et al., 2007; Knapp 

et al., 2004; Rassnick et al., 1993; Valdez et al., 2002). Similarly, the block of the CRF1 

receptor prevents the escalation of voluntary alcohol intake observed in post-dependent 
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animals during withdrawal (Gehlert et al., 2007; Overstreet et al., 2004; Gilpin et al, 

2008). Direct injections of CRF receptor antagonists in CeA blocks the EtOH self-

administration in dependent rats (Funk et al., 2006) by blocking the increase of GABA 

release (Roberto et al., 2010). 

As mentioned above, the excessive release of DA and opioid peptides induced by drugs 

of abuse, included alcohol, activates the DYN system. Similar to CRF, the increase of 

DYN in the CeA inhibits the GABAergic interneurons, leading to excitation of 

downstream neurons in the bed nucleus of stria terminalis (BNST) (Li et al., 2012; 

Kallupi et al., 2013). It has been demonstrated that intra-CeA infusions of KOP receptor 

antagonist prevent the escalation in the alcohol self-administration during both acute 

withdrawal and protracted abstinence (Kissler & Walker, 2016). Moreover, KOP 

receptor knock-out mice exhibit less alcohol consumption compared to wild-type (WT) 

(Kovacs et al., 2005). In contrast, N/OFQ and synthetic NOP receptor agonists are able 

to block alcohol consumption in a genetically selected alcohol-preferring animal line 

(Economidou et al., 2008), suggesting an anti-stress role for N/OFQ. Alcohol-preferring 

rats show high anxiety-like behavior, hypersensitivity to stress and an innate up-

regulation of CRF and N/OFQ levels in the CeA (Economidou et al, 2011; Hansson et 

al, 2006). Similar to N/OFQ, a protective role for NPY has been proposed, since 

alcohol-preferring animals show low innate levels of NPY (Hwang et al, 2004). 

Therefore, in the CeA NPY and N/OFQ may reduce GABA release increasing the 

excitability of CeA interneurons and promoting the GABAergic transmission to the 

BNST (Koob, 2015).  

In addition to these neurotransmitters, the brain-derived neurotrophic factor (BDNF) 

signaling is involved in anxiety and alcoholism (Pandey et al., 1999; Jeanblanc et al., 

2009; Moonat et al., 2010 and 2011). BDNF is a neurotrophic factor which activates the 
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tyrosine kinase B (TrkB) receptor resulting in the cAMP-responsive element binding 

protein (CREB) phosphorylation and in the upregulation of the CREB-target genes, 

such as the activity-regulated cytoskeleton-associated (Arc) gene (Messaoudi et al., 

2002; Pandey et al., 2008; Moonat and Pandey, 2012). It has been demonstrated that 

reduced BDNF expression may lead to an increased preference for EtOH (Hensler et al. 

2003; McGough et al. 2004). Accordingly, alcohol preferring (P) rats show innate 

preference for alcohol and low levels of BDNF in the central and medial nucleus of 

amygdala (CeA and MeA) (Prakash et al., 2008). Moreover, EtOH exposure increases 

BDNF expression in the DS (Logrip et al., 2008) suggesting that endogenous BDNF 

contributes to the regulation of EtOH intake (Jeanblanc et al. 2009).  

It has been reported that in the CeA and MeA, the alcohol exposure can increase BDNF 

signaling exerting an anxiolytic effect (Moonat et al., 2011; Pandey et al., 2006). For 

instance, blocking the BDNF expression in these amygdaloid subregions an increase of 

voluntary EtOH intake and anxiety-like behaviour was observed (Pandey et al., 2006). 

Acute EtOH exposure induces anxiolytic effects with an increase of BDNF-Arc 

signaling and dendritic spine density in the extended amygdala (Pandey et al., 2008). 

Finally, it has been demonstrated that during withdrawal from chronic EtOH exposure 

animals exhibited anxiety-like behaviour and reduced BDNF signaling in the CeA and 

MeA (Pandey et al., 2008).  
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3. EPIGENETICS 

In recent years, several study has focused on the epigenetic mechanisms to better 

understand the molecular mechanisms of human diseases (i.e. cancer, psychiatric and 

substance use disorders) and find new therapeutic targets. 

In the 1940s, Waddington was the first scientist referring to epigenetics as “the process 

by which the genotype gives rise to the phenotype” (Waddington, 1942). Epigenetics is 

currently defined as the study of changes in gene expression which occur in the absence 

of mutation, but are mitotically inheritable (Morange, 2002). Changes in DNA 

sequences and the complex relation between genotype and phenotype (included in the 

Waddington’s definition) are lacking in the current definition of epigenetics. It is 

interesting to note that in the 1960s the approach to the complex relationships between 

genotype and phenotype was transformed by the advent of molecular biology (Jacob & 

Monod, 1961). In fact, a single relation was replaced by a dual relation: one between 

gene and protein, and one between protein and phenotype.  

The term epigenetics refers to chemical modifications (e.g., covalent addition or 

removal of groups) of the proteins around which the DNA is wrapped (i.e., histone 

proteins) and the direct addition of methyl groups (i.e., methylation) to the DNA 

sequence (Murrell et al., 2013). These epigenetic mechanisms do not act as a single 

epigenetic mark, but act in concert to remodel the structure of the chromatin (i.e., the 

protein–DNA complex). The epigenetic marks can be deposited, removed or recognized 

by specific protein domains present in different proteins, thus regulating the access of 

the transcriptional machinery to the DNA and, consequently, the gene expression 

(Murrell et al., 2013; Jenuwein & Allis, 2001). Beside histone modifications and DNA 

methylation, new epigenetic mechanisms are emerging, such as the non-coding RNA 

and the short microRNAs (Khalil et al., 2009). 
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3.1. HISTONE MODIFICATIONS 

The nucleosome is composed of an octamer core of four histones (H3, H4, H2A, H2B) 

around which DNA is wrapped and it is the chromatin fundamental unit. Histone 

modifications contribute in regulating the chromatin state, making it more or less 

accessible to transcription factors (Kouzarides, 2007). Modifications include 

acetylation, methylation, phosphorylation, ubiquitination, SUMOylation, citrullination 

and ADP-ribosylation occuring mainly at lysine (K) amino acid residue located in the 

tails of histones, particularly H3 and H4, but H2A and H2B can be modified as well 

(Kouzarides, 2007).  

The most studied modifications are histone acetylation and methylation. In particular, 

histone acetylation is the result of the activity of two enzyme classes: the histone 

acetyltransferases (HATs) and the histone deacetylase (HDACs) (Struhl, 1998). The 

acetylation of the lysine residues is generally associated with the chromatin 

transcriptional active state (Strahl & Allis, 2000). In fact, in the presence of many acetyl 

groups the chromatin is relaxed and accessible to the transcription factors (i.e. 

euchromatin), resulting in increased gene transcription; conversely, when few acetyl 

groups are added to histone tails, the chromatin is condensed and the access to 

transcriptional proteins is prevented (i.e. heterochromatin), resulting in gene silencing 

(Strahl & Allis, 2000). The main acetylation sites include K9, K14, K18 and K23 on the 

H3 tail (Thorne et al., 1990). It has been noticed that the space between those 

acetylatable lysines is regular and, interestingly, this space periodicity is reminiscent of 

that of a α-helix (3,6 residues) (Strahl & Allis, 2000). Acetylation of specific lysine 

residues is also associated with biological processes apart from transcription; during 

DNA replication, H3 and H4 are involved in replicating chromatin processes (Turner & 

O'Neill, 1995). For example, the H4 acetylation sites (K5 and K12) are highly 
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conserved, while the H3K9 acetylation seems to have a more dominant role in histone 

deposition and chromatin assembly (Sobel et al., 1995). 

The addition of methyl groups is mostly hosted on H3 and H4, particularly in K4, K9 

and K27 (Strahl et al., 1999). Histone methylation differs from histone acetylation for 

several aspects; first, the lysine residue can accept one, two, or three methyl groups to 

form mono-, di-, or trimethylated products. Moreover, based on the specific lysine 

residue involved and the amount of methyl groups added, histone methylation can be 

associated to transcriptional active or silent state (Strahl & Allis, 2000). For example, 

the mono- and tri-methylation of H3K4 is related to gene transcription activation, 

whereas di- and tri-methylation of H3K9 and H3K27 are considered repressive markers. 

Moreover, the mono-methylation of H3K9 and H3K27 modulates the gene transcription 

in an opposite way compared to di- and tri-methylation on these same residues 

(Kouzarides, 2007). Finally, it is interesting to note that methylation can also occur on 

arginine (R) residues of H3 and H4; however, differently from what observed for K 

residues, R methylation serves for transcriptional activation only (Berger, 2007).  
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Figure 5. Schematic representation of the most important histone modifications. 

Covalent modifications occur at the aminoacidic residues on the histone tails. Most common chemical 

modifications are the addition or the removal of acetylation, methylation, phosphorylation and 

ubiquitination groups. These chemical alterations mostly involved the aminoacid lysine (K) on histone 

H2A, H2B, H3 and H4. However, other aminoacids, as serine (S) and arginine (R), can be modified.  
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3.2. DNA METHYLATION 

In eukaryotic cells, the DNA methylation involves the 5-position of cytosine bases and 

is generally associated with the repressive state of chromatin (Klose and Bird, 2006; 

Bird and Wolffe, 1999). Methylated cytosine bases prevent the association between 

DNA-binding factors and their DNA recognition sequences (Watt and Molloy, 1988); 

consequently, gene expression can be inhibited. Moreover, protein recognizing the 

methyl-CpG (such as the methyl-CpG-binding proteins, MBPs) indirectly elicit the 

repression of gene expression by recruiting other co-repressors (Boyes and Bird, 1991; 

Jones et al., 1998). 

DNA methyltransferase (DNMT) enzymes are responsible for the DNA methylation; in 

mammals, DNMT family includes four isoform: DNMT1, DNMT3A, DNMT3B, and 

DNMT3L (Subramaniam et al., 2014). DNMTs exert their action with associated 

factors, such as the polycomb proteins, and in the presence of the methyl donor S-

adenosyl-methionine (Robertson, 2001). In addition to their catalytic action, DNMTs 

can have a non-enzymatic role in transcriptional silencing (Fuks et al., 2001; Bachman 

et al., 2001); in fact, DNMTs biochemically interact with HDACs and histone 

methyltransferases mediating the gene silencing (Fuks et al., 2003 and 2001; Bachman 

et al., 2001).  

Methylated DNA sequence can be found in the promoter as well as in the body of the 

gene, both resulting in reduced gene expression; interestingly, DNA methylation can 

also interact with the RNA polymerase II reducing its occupancy over the gene body 

and consequently interacting with DNA elongation (Hsieh, 1997).  
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4. EPIGENETICS AND ALCOHOL USE DISORDER 

As mentioned, both genetic and environmental factors can play a crucial role in the 

manifestation of alcohol addiction. It has been demonstrated that epigenetic 

modifications can contribute to cellular adaptations in the brain leading to alcohol 

tolerance and dependence (Krishnan et al., 2014). In fact, neuroplasticity phenomena 

induced by alcohol and other drugs of abuse involve epigenetic modifications (i.e. 

histone modifications, DNA methylation and non-coding RNAs) which in turn regulate 

gene expression (Moonat and Pandey, 2012; Robison and Nestler, 2011). In addition to 

neuroplasticity, liver and gastrointestinal system can be subjected to epigenetic changes 

induced by alcohol exposure (Shukla and Lim, 2013); moreover, an important role of 

the epigenome has been ascertained in the fetal alcohol spectrum disorders (Perkins et 

al., 2013; Resendiz et al., 2013). Since alcohol exerts potent effects on the brain at the 

cellular and molecular level, the early life exposure can affect epigenetic regulation of 

several genes involved in imprinting, neural and glial development, cell cycle regulation 

and nervous system growth (Haycock and Ramsay, 2009; Hicks et al., 2010; Liu et al., 

2009; Zhou et al., 2011). Similarly, during adolescence the alcohol consumption may 

interfere with epigenetic processes inducing long-lasting functional changes and 

alcohol-related psychopathologies later in life (Kyzar et al., 2016).  

Epigenetic changes induced by alcohol exposure can play an important role in the 

development of the negative dysphoric state associated to the AUD. It has been shown 

that acute EtOH induces anxiolytic effects associated with chromatin transcriptional 

active state while repeated EtOH exposure followed by withdrawal causes chromatin 

condensation and increases anxiety-like behaviour (Moonat et al., 2013; Sakharkar, 

Zhang, et al., 2014; You et al., 2014). Studies using the HDAC inhibitors are indicating 

that these effects can be mediated by histone acetylation/de-acetylation mechanisms 
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proposing the HDACs as an attractive therapeutic target (Pandey et al., 2008; Moonat et 

al., 2013; Sakharkar et al., 2014).  

Human studies showed several changes in the global DNA methylation; interestingly, a 

hypomethylation in the brain while a hypermethylation in blood cells have been 

reported suggesting a cell type specificity of the DNA methylation profile (Tulisiak et 

al., 2016). Moreover, alcohol seems to induce different changes in DNA methylation 

based on the genomic location. For instance, normally high methylated intergenic 

regions are generally less methylated in the alcoholic brain (Ponomarev et al., 2012) and 

this condition may be related to a deficiency in methyl donors (Ponomarev, 2013). On 

the contrary, promoter regions and gene bodies show different and gene specific 

patterns of methylation (Manzardo et al., 2012; Wang et al., 2016). Different patterns of 

CpG methylation have been identified on the prodynorphin (PDYN) single-nucleotide 

polymorphisms (SNPs) in the dorsolateral PFCx of human alcoholics, representing a 

risk factor for developing AUD (Taqi et al., 2011).  

Considering all these evidence, the epigenetic studies are indicating the enzymes 

responsible for epigenetic alterations as potentially promising therapeutic targets to treat 

or prevent alcoholism and alcohol-associated emotional disorders.  
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5. RESEARCH AIM 

As mentioned, several neurotransmitters, such as opioid peptides and BDNF, have been 

identified to play a crucial role in the development of the AUD, including the associated 

negative emotional states. Understanding the role of these systems in alcoholism can 

contribute to develop new therapeutic approaches that could reduce the alcohol intake 

and prevent the relapse. 

In the recent years, epigenetic studies are indicating that alcohol induces chromatin 

remodeling which in turn regulates the expression of several genes. Particularly, it has 

been found that the enzymes responsible for the epigenetic modifications (i. e. HDACs 

and DNMTs) are deeply involved in the alcohol-induced neuroplasticity phenomena.     

The aim of the present dissertation is to investigate epigenetic and transcriptional 

alterations induced by alcohol in different paradigms of alcohol exposure, in order to 

identify molecular and functional mechanisms involved in the AUD and the associated 

negative emotional states.  

First, we focused on the HDACs role in a model of BDNF transgenic mice. In 

particular, we will discuss about the role of the corticostriatal BDNF in regulating AUD 

mechanisms and then we will provide an overview on the HDACs and their 

involvement in alcohol addiction. We will present the picture of the HDACs protein 

levels in the caudate putamen (CPu) and PFCx of animals with low BDNF levels, either 

in basal conditions and following acute alcohol exposure.  

Then, given the role of the DYN system in mediating negative emotional states 

associated to alcohol tolerance and dependence (Wee and Koob, 2010), we explored the 

role of DYN system in the AMY and the BNST.  

In addition, we will focus on two different model of alcohol addiction: one is 

represented by alcohol preferring rats, which show an innate preference for EtOH and 
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anxious and depressive phenotype; the second one refers to a model of rapid EtOH 

tolerance to the alcohol anxiolytic effect. 
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CHAPTER II.  

EFFECTS OF ACUTE EtOH EXPOSURE ON CLASS I HDACs IN WILD-TYPE 

AND BDNF (+/-) MICE 
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1. BDNF 

BDNF is a growth factor belonging to the family of neurotrophins (Park and Poo, 

2013). BDNF is a CREB-target gene; the phosphorylated CREB (pCREB) binds a 

specific region (the Ca2+ response element, CRE) in the BDNF gene sequence resulting 

in the BDNF transcription (Tao et al., 1998). BDNF is subjected to transcriptional 

modifications encoding for splice different variants, which share a common coding 

region but have different segments of the 5ʹ and 3ʹ UTRs (Kendall et al., 2000). It has 

been reported that rat neurons produce BDNF transcripts with either a short or a long 3ʹ 

UTR, and the long 3ʹ UTR form seems to be directed to dendrites, where BDNF protein 

synthesis may occur (Lau et al., 2010). BDNF is synthesized as a precursor, namely 

proBDNF, which can be processed into mature BDNF (mBDNF) and both these forms 

can be detected in the central nervous system (CNS) (Fahnestock M. et al. 2001). 

Moreover, it mainly binds the tropomyosin-related kinase B (TrkB) receptor (Soppet et 

al. 1991), but it was demonstrated that the proBDNF also interacts with the p75NTR 

receptor (Rodriguez-Tébar et al., 1990). 

In mouse and rat, BDNF mRNA and protein is already detectable during embryonic 

development and is highly expressed in the hippocampal neurons during adulthood  

(Ernfors et al., 1990; Hofer et al., 1990; Kawamoto et al., 1996; Conner et al., 1997). 

Different BDNF mRNA isoforms are controlled by multiple promoters and the 

expression of these isoforms is tissue-specific. For instance, BDNF exon I mRNA is 

highly expressed in several CNS region of rats and mice, except for the cerebellum 

where low levels of this transcript were found (Aid et al., 2007).  

Epigenetic mechanisms responsible for the chromatin remodeling can also plays an 

important role in the regulation of BDNF gene expression. In fact, using inhibitors of 

different HDAC classes it has been demonstrated that HDACs can differently modulate 
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the BDNF transcription (Koppel and Timmusk, 2013). Rat cultured neurons exposed to 

the class II HDACs inhibitors show a rapid upregulation of BDNF mRNA levels, 

suggesting that class II HDACs are involved in transcriptional regulation of BDNF 

(Koppel and Timmusk, 2013). Moreover, HDAC 2, which belongs to the class I, has 

been shown to bind BDNF promoters I, II and IV (Gräff et al., 2012; Guan et al., 2009), 

suggesting that class I HDAC isoforms can also play an important role in BDNF mRNA 

transcription (Fig. 6). 

 

 

 

 

Figure 6. Inhibitors of class I and II HDACs induce BDNF mRNA expression in 

cultured neurons. (A) BDNF mRNA expression in primary rat cortical neurons treated with different 

concentrations of HDAC inhibitors: suberoylanilide hydroxamic acid (SAHA) is a class I/II inhibitor, 

MS-275 is class I specific inhibitor and MC1568 is selective for class II. All three inhibitors are able to 

induce BDNF mRNA transcription (adapted from Koppel and Timmusk, 2013). 
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BDNF is a key factor in regulating neuronal development, neuroprotection, synaptic 

plasticity and learning and memory (Castren, 2004; Cowansage et al., 2010; Lu et al., 

2008; Minichiello, 2009). In contrast, dysfunction of BDNF activity has been 

implicated in several neuropsychiatric disorders (Autry and Monteggia, 2012; Castren, 

2014), such as depression (Duman and Li, 2012), schizophrenia (Buckley et al., 2007), 

anxiety (Andero et al., 2014) and drug abuse (Ghitza et al., 2010). 

 

 

1.1. CORTICOSTRIATAL BDNF AND ALCOHOL 

Depending on the drug of abuse and the neuronal circuitry implicated, BDNF 

differently regulates the drug self-administration. For instance, BDNF infusion into the 

VTA or NAc increased cocaine sensitization, self-administration and reinstatement of 

cocaine-seeking (Horger et al., 1999; Lu et al., 2004; Graham et al., 2007). In contrast, 

infusion of BDNF into the medial prefrontal cortex (mPFCx) of animals exposed to 

cocaine reduced the later cocaine seeking (Berglind et al., 2007; Hearing et al., 2008; 

Sadri-Vakili et al., 2010).  

It has been reported that BDNF has a protective action towards the excessive and 

uncontrolled intake of alcohol. In fact, innate low BDNF expression may predispose 

rats to higher alcohol intake; genetically selected alcohol-preferring (P) rats display high 

alcohol preference and intake (Li et al., 1987) and low levels of BDNF protein in the 

NAc, CeA, MeA and BNST compared to non-preferring (NP) rats (Yan et al., 2005; 

Prakash et al., 2008). Similarly, CREB heterozygous (+/-) mice express reduced levels 

of BDNF and exhibit higher alcohol preference than WT mice (Pandey et al., 2004). 

Acute administration of alcohol significantly increases BDNF mRNA levels in the DS 

of C57BL/6J mice (McGough et al., 2004). Similarly, the increase of BDNF mRNA 



36 
 

was observed in the DS following both the limited and chronic moderate self-

administration of alcohol (McGough et al., 2004; Logrip et al., 2009; Jeanblanc et al., 

2009). Accordingly, the acute alcohol treatment increases BDNF mRNA expression in 

striatal primary neurons, resulting in the protein translation and secretion and in the 

activation of TrkB receptor (Logrip et al., 2008). It is interesting to note that the 

alcohol-induced BDNF increase is regionally and substance specific, since no changes 

have been observed in the NAc (Logrip et al., 2009; McGough et al., 2004) and 

following sucrose consumption (Logrip et al., 2009). In contrast, escalation in alcohol 

intake induces no alteration of BDNF mRNA expression in the DS (Logrip et al., 2009). 

This lack of BDNF increase in the DS can contribute to enhance the drinking behavior 

suggesting a disruption of the BDNF protective mechanism observed during moderate 

and limited access (Logrip et al., 2015). In the same experimental paradigm, a long-

lasting decrease of BDNF mRNA levels has been observed in cortical regions (Logrip et 

al., 2009). In agreement with these findings, prolonged voluntary intake of high alcohol 

amount decreases BDNF expression in the mPFCx and BDNF levels are directly 

correlated with the alcohol amount consumed (Darcq et al., 2014).  

Systemic administration of RACK1, a protein that increases BDNF levels (He et al., 

2010; Neasta et al., 2012), significantly reduced the alcohol intake in the two bottle 

choice free-choice paradigm (Jeanblanc et al., 2006; McGough et al., 2004). Similarly, 

direct infusion of Tat-RACK1, a RACK1 protein expressed with a Tat sequence 

allowing the transduction across the blood-brain barrier (Schwarze et al., 2000), into the 

DS reduces the operant alcohol self-administration (Jeanblanc et al., 2006). Conversely, 

the effect of Tat-RACK1 on alcohol drinking is abolished in BDNF +/- mice or 

following the Trk inhibitor K252a treatment (McGough et al., 2004; Jeanblanc et al., 

2006). Therefore, these data suggest that BDNF in the DS functions as a negative 
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regulator of alcohol intake, maintaining moderate levels of alcohol consumption (Logrip 

et al., 2015) (Fig. 7). This role seems to be specific in the dorsolateral striatum, since the 

reduction of endogenous BDNF levels in this subregion, via RNAi, significantly 

elevates alcohol self-administration (Jeanblanc et al., 2009).  

Beyond the striatum, BDNF exerts the protective action on alcohol intake in other brain 

regions. In the AMY, BDNF is able to repress both anxiety-like behavior and alcohol 

intake (Pandey et al., 2006), suggesting that amygdaloid BDNF can regulate the 

anxiety-induced alcohol consumption. Indeed, the infusion of an antisense 

oligonucleotide repressing the BDNF expression in the CeA and MeA significantly 

increases both anxiety-like behavior and alcohol intake, which can be rescued by BDNF 

infusion (Pandey et al., 2006).  

In conclusion, the corticostriatal BDNF seems to play a crucial role in the regulation of 

alcohol consumption, maintaining a moderate intake and driving the transition from 

moderate to high intake when BDNF levels in the mPFCx are reduced. However, other 

brain regions are involved in mediating BDNF protective mechanisms in alcohol 

addiction.  
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Figure 7. Schematic representation for BDNF action in the DS. Moderate levels of 

alcohol stimulate the BDNF transcription and translation in the DS. Then, secreted BDNF activates its 

receptor TrkB, which in turn decreases the alcohol consumption (adapted from Logrip et al., 2015). 
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2. HDACs 

Chromatin remodeling is essential in regulating gene transcription. As mentioned in the 

paragraph 2.1, increased levels of histone acetylation are associated with increased 

transcriptional activity, whereas decreased levels of acetylation are associated with 

repression of gene expression (Strahl and Allis, 2000). The acetylation steady-state level 

of histones is the result of the balance between opposing activities of two classes of 

enzymes, the HATs and HDACs (Struhl, 1998). 

Two protein families with HDAC activity have been identified, the SIR2 family 

consisting of NAD+-dependent HDACs, and the classical HDAC family; classical 

HDACs are subdivided into two different classes, the class I and class II (de Ruijter AJ 

et al., 2003). The class I HDACs comprises the HDAC 1, 2, 3 and 8 and are mostly 

localized in the nucleus. In particular, the localization of HDAC 1 and HDAC 2 are 

exclusively nuclear (Johnstone, 2002) while HDAC3 has both nuclear and cytoplasm 

localization (Yang et al., 2002). Finally, HDAC8 has been demonstrated to be localized 

in the nucleus (Van den Wyngaert et al., 2000). Class II HDACs includes several 

HDAC isoforms (HDAC 4, 5, 6, 7, 9, 10 and 11) that might be involved in cellular 

differentiation and developmental processes (Morris and Monteggia, 2013). 

The HDAC enzymes remove the acetyl group from the lysine residues of the histones; 

the catalytic domain is formed by a stretch of ~ 390 conserved amino acids (Finnin, et 

al., 1999). Removal of an acetyl group occurs via a charge-relay system consisting of 

two adjacent histidine residues, two aspartic residues and one tyrosine residue and the 

presence of the Zn2+ ion (Finnin, et al., 1999). Inhibitors of the HDACs displace the 

Zn2+ ion resulting in the dysfunction of the charge-relay system. For example, the 

trichostatin A (TSA) has a hydroxamic acid group and a five-carbon atom linker to the 
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phenyl group that give it the optimal conformation to fit into the active site and potently 

inhibit the HDACs activity (Finnin, et al., 1999). 

In the present dissertation, we will focus on the class I HDACs. HDAC 1 and HDAC 2 

are highly similar enzymes (Li et al., 2002) and display activity within a complex of 

proteins that bind DNA, such as NuRD and Co-REST (Zhang et al., 1999). Both 

deacetylase activity and complex formation are regulated by HDAC 1 and HDAC 2 

phosphorylation, with an increased activity when these enzymes are phosphorylated and 

a decreased in the presence of hypophosphorylation (Galasinski et al., 2002; Pflum et 

al., 2001). HDAC 3 is most closely related to HDAC 8 and even if it shares structural 

and functional features with other class I HDACs, HDAC 3 can exist in multisubunit 

complexes that are different from other known HDAC complexes (de Ruijter AJ et al., 

2003). HDAC3 is able to form oligomers in vitro and in vivo with other HDACs, such 

as HDAC 4, 5 and 7 (Fischle et al., 2001; Yang et al., 2002). Finally, HDAC 8 has been 

recently discovered and is not well known the specific co-repressor complex regulating 

its action (Buggy et al., 2000). 

The involvement of HDACs in several pathologies have been described and the 

pharmacological inhibition of these enzymes has been proposed as an effective 

treatment of some cancers (Dokmanovic et al. 2007; Lane and Chabner, 2009). 

Recently, several studies have focused on the HDAC role in psychiatric disorders, 

including stress-related disorders and addiction, suggesting the HDAC inhibitors as 

potential therapeutic agents (Covington et al., 2009; Pandey et al., 2008; Renthal and 

Nestler, 2008; Tsankova et al., 2007). 
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2.1. HDACs AND ALCOHOL 

It has been shown that acute and chronic EtOH exposure induce histone acetylation of 

several genes (D’Addario et al., 2013; Finegersh and Homanics, 2014). Acute alcohol 

induces anxiolytic-like effect and decreases the HDACs activity in the AMY resulting 

in a global increased acetylation of H3K9 and H4K8 but not H3K14 (Moonat et al., 

2013; Pandey et al., 2008). It has been reported that the development of rapid tolerance 

to anxiolytic effects of ethanol is associated with HDAC-induced histone modifications 

(H3K9 and H4K8) and changes in NPY expression in the CeA and MeA (Sakharkar et 

al., 2012). Similarly, sensitized animals exhibit a reduction in the striatal HDAC activity 

following acute ethanol treatment and an increase of H4 acetylation specifically in the 

core of the NAc (Botia et al., 2012). Moreover, the non-specific HDAC inhibitor 

sodium butyrate (NaBut) can prevent and reverse the ethanol-induced behavioral 

sensitization and the gene expression alterations, such as the BDNF mRNA changes in 

the striatum and PFCx (Legastelois et al., 2013).  

In recent years, the role of specific HDAC isoforms in alcohol dependence and 

exposure has emerged. Results on primary monocyte-derived dendritic cells from 

alcohol users show that class I HDACs gene expression and protein levels are 

significantly higher than control subjects (Agudelo et al., 2016). In addition, HDAC 2 

expression is increased by alcohol in a dose-dependent manner (Agudelo et al., 2011). 

Using the selective class I HDACs inhibitor MS-275, a decrease motivation to consume 

EtOH and relapse has been showed, suggesting that class I HDACs can be a therapeutic 

target in alcohol addiction (Jeanblanc et al., 2015). Alcohol-preferring (P) rats innately 

show high levels of HDAC 2 protein and an increase in the total HDAC activity 

particularly in the CeA and MeA (Moonat et al., 2013). Similarly to what observed 

following the ethanol treatment, the intra-amygdala injection of the siRNA to 
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knockdown HDAC 2 attenuates the anxiety-like behavior, and increases the BDNF and 

Arc promoter acetylation in P rats (Moonat et al., 2013). Moreover, P rats treated with 

TSA, a HDAC inhibitor, has an attenuation of the anxiety-like behavior and a decrease 

of the amygdaloid nuclear HDAC activity and HDAC 2 protein levels (Sakharkar et al., 

2014). Taken together, all these results suggest that HDAC 2 is deeply involved in 

regulating the alcohol drinking behavior, particularly in the AMY. The involvement of 

HDAC specific isoform in other brain areas remains quietly unexplored; recently it has 

been demonstrated that chronic EtOH-treated mice exhibit a decrease of the HDAC 1, 2, 

5 and BDNF mRNA levels in the HIPPO (Stragier et al., 2015). Accordingly, a 

reduction of HDAC 1 mRNA levels and the translocation of HDAC 1/4 proteins from 

nuclear to cytosolic compartment has been observed in the rat HIPPO and entorhinal 

cortex following EtOH exposure (Zou and Crews, 2014).  

Finally, the involvement of HDACs has been also documented during withdrawal 

conditions; after chronic EtOH exposure, 24 hours withdrawal induces an increase of 

the anxious symptoms (Pandey, 2003; Pandey et al., 2008; You et al., 2014) and the 

HDAC activity, and a decrease of H3K9 and H4K8 acetylation levels in the AMY 

(Pandey et al., 2008). 
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3. AIM 

As described above, BDNF have been implicated in the development of alcohol 

addiction; in particular, the BDNF-signaling in DS plays a pivotal role in modulating 

alcohol intake. Moreover, EtOH exposure can modulate chromatin remodeling, 

affecting the histone acetylation/deacetylation mechanisms. Class I HDACs inhibition 

influences the BDNF expression and attenuates the alcohol drinking behavior and the 

withdrawal-associated anxiety symptoms. However, the role of the HDAC specific 

isoforms in EtOH-related phenomena remains to be deepened. 

Based on these premises, we aimed to investigate the protein levels of HDAC 1, 2 and 3 

in the CPu and PFCx, two areas belonging to the mesocorticostriatal circuitry. In 

particular, wild type (WT) and BDNF +/- mice, which voluntary consume high amount 

of EtOH, were acutely injected with EtOH and subsequently tested to the rota-rod; after 

that, animals were sacrificed and molecular analysis was conducted. 
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4. MATERIALS AND METHODS 

4.1. ANIMALS  

Animals were housed at temperature and humidity controlled conditions under a cycle 

of 12 h light/dark (lights on at 7:00 A.M.). Food and water were available ad libitum. 

Mice were allowed to settle down for one week before starting the experiments. 

Experiments were conducted in agreement with the European Communities Council 

Directive of 24 November, 1986 (86/609/EEC) and Italian National (Ministry of Health, 

Italy) laws and policies (authorization number 139/2012-B). The study received the 

approval of the “Ethic Scientific Committee for the Animal Experiments” of the 

University of Bologna.  

Male and female BDNF+/+ and BDNF+/− mice were used to generate BDNF +/- and 

WT littermate control mice (Korte et al., 1995). The specific genotype was ascertained 

by PCR analysis on DNA from the tail using the following primers: BD2A 

GTGTCTATCCTTATGAATCGCC; BKO-1 ATAAGGACGCGGACTTGTACA; 

3’NEO GATTCGCAGCGCATCGCCTT.  

 

 

4.2. TREATMENT 

A total of 24 animals (12 BDNF +/- and 12 WT mice) were used.  For the rota-rod test, 

6 BDNF+/− and 6 WT mice intraperitoneally (i.p.) received cumulative injections of 

20% EtOH in saline at the dose of 0.5 g/kg, every five minutes. The doses injected were 

five, for a total cumulative dose of 2.5 g/kg. After each injections, mice were place on 

the rota-rod and tested for motor coordination. 

For the Western blot analysis, BDNF+/− and WT mice (n = 6 for each group) were i.p. 

treated with an acute injection of 20% EtOH in saline at the dose of 2 g/kg, or saline as 
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vehicle. Mice were sacrificed 1 hours after EtOH treatment and the CPu and PFCx were 

rapidly dissected out, frozen on dry ice and stored at –80 ◦C until analysis. 

 

 

4.3. MOTOR COORDINATION: THE ROTA-ROD TEST 

BDNF+/− and WT mice were tested on the rota-rod in order to evaluate possible 

differences due to the genotype and to observe alterations of the animal coordination in 

response to a cumulative EtOH dose. The training period lasted for seven days during 

which mice were daily placed on a 3 cm diameter rota-rod apparatus (Ugo Basile Srl, 

Italy) and trained to run for 1 minute at 20 rpm. On the test day, the baseline 

performance was recorded and then mice were i.p. injected with a total cumulative dose 

of 2.5 g/kg EtOH. The latency to fall from the rota-rod was recorded after each injection 

three times for animal.  

 

 

4.4. FRACTIONATION OF NUCLEAR–CYTOPLASMIC PROTEINS  

For the protein analysis a second batch of BDNF+/− and WT mice (n = 6 for each 

group) were i.p. treated with a single 2 g/kg injection of 20% EtOH in saline. One hour 

later, animals were killed and CPu and PFCx were collected. Nuclear and cytoplasmic 

protein fractions were extracted from the dissected brain regions using the NE-PER® 

Nuclear and Cytoplasmic Extraction Reagents kit (Thermo Scientific) according to the 

manufacturer’s protocol. Briefly, tissues were homogenized in an appropriate volume of 

CER I buffer and protease inhibitor cocktail (PIC) and then incubated on ice for 10 

minutes. The samples were centrifuged at maximum speed for 5 minutes and then the 

supernatant (cytoplasmic fraction) was collected. The pellet was suspended in NER 
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buffer, vortexed and incubated 10 minutes on ice for several times. Finally, the samples 

were centrifuged at maximum speed and the supernatant (nuclear extract) was 

transferred. Both the cytoplasmic and the nuclear fractions were stored at – 80°C. The 

protein concentration was determined using Pierce® BCA protein assay kit (Thermo 

Scientific).  

 

 

4.5. WESTERN BLOT ASSAY 

The same amount of proteins (20 g) for each samples was mixed with an appropriate 

volume of 2X sodium dodecyl sulphate (SDS) loading buffer and boiled for 5 minutes. 

Then, the proteins were loaded and separated on 8–16% Precise Tris–Glycine Gels 

(Thermo Scientific) and transferred to 0.4 m nitrocellulose membranes (Bio-Rad). 

Membranes were blocked with 5% non-fat dry milk in TBS-T (Tris-buffered saline with 

1% Tween-20) for 60 min and then incubated with the specific antibody overnight at 

4°C. Accordingly to the datasheet of the antibodies, each antibody was diluted in the 

5% non-fat dry milk and TBS-T as follow: HDAC 1 (65 kDa, 1:1000; cod. no. 06-720 

Millipore), HDAC 2 (55 kDa, 1:700; cod. no. ab16032 Abcam) and HDAC 3 (50 kDa, 

1:900; cod. no. ab16047 Abcam), glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) (36 kDa, 1:2000; cod. no. MAB374 Millipore) and Actin (43 kDa, 1:1000; 

cod. no. A2066 Sigma). GAPDH and Actin were used as reference proteins for the 

cytoplasmic and nuclear fractions, respectively. Membranes were washed three times 

with TBS-T and incubated for 1 h at room temperature with a horseradish peroxidase-

linked anti-rabbit secondary antibody (1:3000, cod. no. NA934V GE Healthcare UK 

Ltd). Immunoreactive bands were visualized using the Pierce® ECL Western blotting 

Substrate (Thermo Scientific). The intensities of the bands were quantified by 
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densitometry, using a molecular analysis software system (Bio-RAD ChemiDocTM MP 

Imaging System). 

 

 

4.6. STATISTICAL ANALYSIS 

Data were analyzed by two-way ANOVA. F-values reaching significance (p < 0.05) 

were further analyzed by Bonferroni post-hoc test. Statistical analysis was performed 

using the GraphPad Prism software version 5 (GraphPad Software, San Diego, CA, 

USA) and results are reported as the mean of values ± SEM. 
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5. RESULTS 

5.1. MOTOR COORDINATION 

The cumulative doses of EtOH progressively affects motor coordination in both BDNF 

+/- and WT mice (Figure 8). Since no significant differences were observed, it can be 

assumed that the genotype has no effect on EtOH-induced motor coordination 

impairment.  

 

 

 

 

Figure 8. EtOH treatment progressively impairs motor performance of WT and 

BDNF+/− mice. The latency to fall was recorded after each single EtOH injection (up to a total 

cumulative dose of 2.5 g/kg). Data are presented as mean ± SEM (n = 6 mice per group; WT vs 

BDNF+/−). 
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5.2. CLASS I HDACs IN THE CPu 

Acute EtOH induces a significant reduction of nuclear HDAC 1 protein levels in the 

CPu of WT mice (WT EtOH-treated group = 13.33 ± 2.80 vs WT vehicle group = 100 ± 

7.64; p < 0.001) (Figure 9a). Moreover, an innate high difference in the nuclear HDAC 

1 levels has been detected between the WT and BDNF +/- mice, with lower protein 

levels in the BDNF+/− animals (WT vehicle group = 100 ± 7.64 vs BDNF+/− vehicle 

group = 26.96 ± 5.35; p < 0.001) (Figure 9a). Interestingly, EtOH treatment does not 

induce changes of the nuclear HDAC 1 levels in the BDNF+/− mice (Figure 9a). A 

significant genotype × treatment interaction has been also reported (F(1,20) = 66.76; p < 

0.0001). Finally, the cytoplasmic amount of HDAC 1 was very low and we could not 

adequately quantify it. 

Similar to what observed for HDAC 1, BDNF +/- mice innately exhibit lower levels of 

nuclear HDAC 2 compared to WT mice (WT vehicle group = 100 ± 6.97 vs BDNF+/− 

vehicle group = 27.60 ± 4.99; p < 0.001) (Figure 9b). EtOH induces a decrease of 

nuclear HDAC 2 protein levels in the CPu of WT mice (WT EtOH-treated group = 

23.32 ± 3.27 vs WT vehicle group = 100 ± 6.97; p < 0.001) whereas no changes in the 

BDNF+/− mice (Figure 9b). In addition, a significant interaction of genotype × 

treatment has been observed (F(1,20) = 52.35; p < 0.0001). Finally, the CPu cytoplasmic 

content of HDAC 2 is significantly reduced in the BDNF+/− EtOH-treated mice 

(BDNF+/− EtOH-treated = 46.87 ± 3.09 vs BDNF+/− vehicle group = 132.19 ± 28.10; p 

< 0.01) (Figure 9c). 

Accordingly to the HDAC 1 and 2 results, differences of basal HDAC 3 levels have 

been observed in the CPu of BDNF+/− compared to WT mice (WT vehicle group = 100 

± 5.50 vs BDNF+/− vehicle group = 28.33 ± 6.00; p < 0.001) (Figure 9d). WT EtOH-

treated mice has a reduction of nuclear HDAC 3 protein levels compared to WT 
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vehicle-treated animals (WT EtOH-treated = 23.30 ± 6.97 vs WT vehicle group = 100 ± 

5.50; p < 0.001), but no changes have been observed in the BDNF +/- EtOH-treated 

mice (Figure 9d). As observed for HDAC 1 and 2, a significant genotype × treatment 

interaction has been also reported for HDAC 3 (F(1,20) = 37.62; p < 0.0001). Finally, in 

the cytoplasmic fraction, BDNF+/− mice exhibit lower basal level of HDAC 3 protein 

compared to WT animals (WT vehicle group = 100 ± 16.63 vs BDNF+/− vehicle group 

= 49.11 ± 13.17; p < 0.05) (Figure 9e). 
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Figure 9. Protein levels of HDAC class I in the CPu: Western blot analysis. Nuclear 

(N) and cytoplasmic (C) contents of HDAC 1, 2 and 3 after acute EtOH i.p. (2 g/kg) or vehicle (Veh) in 

WT and BDNF+/− mice. The HDAC 1, 2 and 3 protein levels were assessed using specific antibodies 

compared to Actin (nuclear fraction) and GAPDH (cytoplasmic fraction). Data are presented as mean ± 

SEM (n = 6 mice per group) and analyzed by two-way ANOVA (*** p < 0.001; ** p < 0.01; * p < 0.05). 

In the upper right panel, representative immunoblots of HDAC 1, 2 and 3 were reported. 
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5.3. CLASS I HDACs IN THE PFCx 

In the PFCx, BDNF +/- mice innately show significant higher levels of the nuclear 

HDAC 1 levels compared to WT mice (BDNF+/− vehicle group = 174.10 ± 13.19 vs 

WT vehicle group = 100 ± 17.66; p < 0.05) (Figure 10a). Acute EtOH treatment does 

not induce any changes of nuclear HDAC 1 protein levels in this brain area. (Figure 

10a). As observed for the CPu, the cytoplasmic amount of HDAC 1 was too low to be 

adequately quantified. 

Similarly to what observed for HDAC 1, the nuclear HDAC 2 basal levels are 

significantly higher in the BDNF+/− than in WT mice (BDNF+/− vehicle group = 

142.20 ± 19.50 vs WT vehicle group = 100 ± 2.52; p < 0.05) (Figure 10b). In addition, 

there is a genotype effect in the EtOH-treated groups, with higher levels of HDAC 2 in 

the BDNF +/- than WT mice (WT EtOH-treated group = 109.85 ± 8.30 vs BDNF+/− 

EtOH-treated group = 153.84 ± 7.13; p < 0.05) (Figure 10b). Finally, no significant 

alterations of HDAC 2 has been observed in the cytoplasmic fraction (Figure 10c). 

Accordingly to the CPu results, BDNF+/− mice have innate lower levels of nuclear 

HDAC 3 levels compared to WT mice (BDNF+/− vehicle group = 45.90 ± 6.40 vs WT 

vehicle group = 100 ± 14.04; p < 0.001) (Figure 10d). In the WT mice, acute EtOH 

treatment induces a significant reduction of nuclear HDAC 3 protein levels (WT EtOH-

treated group = 55.52 ± 5.21 vs WT vehicle group = 100 ± 14.04; p < 0.01), whereas no 

alterations have been assessed in the BDNF+/− group (Figure 10d). In the cytoplasmic 

content, there is a significant genotype × treatment interaction (F(1,20) = 4.83; p < 0.05) 

(Figure 10e). In particular, EtOH treatment causes different effects on the HDAC 3 

protein levels in the PFCx of BDNF+/− compared to WT mice (BDNF+/− EtOH-treated 

group = 68.48 ± 3.40 vs WT EtOH-treated group = 118.38 ± 13.60; p < 0.05) (Figure 

10e). 
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Figure 10. Protein levels of HDAC class I in the PFCx: Western blot analysis. 

Nuclear (N) and cytoplasmic (C) contents of HDAC 1, 2 and 3 after acute EtOH i.p. (2 g/kg) or vehicle 

(Veh) in WT and BDNF+/− mice. The HDAC 1, 2 and 3 protein levels were assessed using specific 

antibodies compared to Actin (nuclear fraction) and GAPDH (cytoplasmic fraction). Data are presented 

as mean ± SEM (n = 6 mice per group) and analyzed by two-way ANOVA (*** p < 0.001; ** p < 0.01; * 

p < 0.05). In the upper right panel, representative immunoblots of HDAC 1, 2 and 3 were reported. 
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6. DISCUSSION 

Endogenous BDNF is largely involved in regulating alcohol consumption; for instance, 

BDNF+/− mice show spontaneous preference for EtOH consumption and high 

vulnerability to develop alcohol addiction (Hensler et al., 2003; McGough et al., 2004; 

Bosse and Mathews, 2011). Moreover, alcohol-preferring rats display high alcohol 

preference and intake (Li et al., 1987) and low levels of BDNF protein in the NAc, 

CeA, MeA and BNST compared to non-preferring rats (Yan et al., 2005; Prakash et al., 

2008).  

It has been demonstrated that low BDNF correlates to dopamine alterations in the 

nigrostriatal circuitry (Majovski et al., 1981; Hyman et al., 1991; Hoglinger et al., 1998) 

and these deficits might be responsible for sensorimotor impairment of BDNF+/− mice 

(Dluzen et al., 2001). In the present study, we tested WT and BDNF +/- mice for motor 

coordination on the rota-rod test following EtOH exposure. Both EtOH-treated groups 

progressively lose motor coordination with the increase of the administered dose, 

suggesting that the genotype does not affect the motor performance in response to 

EtOH. Even though specific sensorimotor impairments has been associated to low 

BDNF levels of the BDNF +/- mice (Dluzen et al., 2001), the performance of motor 

coordination does not seem to be affected. In particular, data here reported arise the 

hypothesis that the EtOH-induced impairment of the motor coordination might not 

require the BDNF involvement.  

Considering the involvement of HDACs in the EtOH-induced epigenetic alterations 

(Yang and Seto, 2007), in the present study we investigated the effects of acute EtOH 

on the class I HDACs protein levels. In particular, we used BDNF +/- mice as animal 

model since these animals have a spontaneous preference for alcohol (Hensler et al., 

2003; McGough et al., 2004; Bosse and Mathews, 2011) and class I HDACs can 
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regulate the expression of the BDNF gene (Koppel and Timmusk, 2013; You et al., 

2014). Giving the corticostriatal role of BDNF in regulating alcohol consumption 

(McGough et al., 2004; Logrip et al., 2009; Jeanblanc et al., 2009), we focused our 

attention on the CPu and PFCx. 

In the CPu, the nuclear HDAC 1, 2 and 3 protein levels are significantly reduced by 

acute EtOH treatment in WT mice. It has been demonstrated that acute alcohol 

decreases HDACs activity in the NAc (Botia et al., 2012) and AMY resulting in a 

global increased histone acetylation (Moonat et al., 2013; Pandey et al., 2008). Our 

results in the CPu are consistent with these findings. Supporting the hypothesis of the 

HDACs involvement in alcoholism, systemic administration of HDACs inhibitors 

modulates the binge alcohol drinking and seeking behavior (Warnault et al., 2013). 

Moreover, the HDACs activity increases during EtOH withdrawal when animals show 

anxiety-like behavior, and the TSA treatment attenuates anxious symptoms further 

supporting the HDACs involvement in alcohol addiction (Pandey et al., 2008).  

In the CPu nuclear fraction, BDNF+/− mice has lower basal levels of HDAC 1, 2 and 3 

than WT animals. Several studies on CNS disorders reported that BDNF expression can 

be increased by selective inhibitors of class I HDAC, suggesting a possible 

neuroprotective role of HDAC inhibitors (Chen et al., 2006; Fukuchi et al., 2009; 

Calabrese et al., 2013; Koppel and Timmusk, 2013). Moreover, all these findings 

underline that BDNF gene expression is sensitive to class I HDACs. Our results in 

BDNF+/− mice indicate for the first time that class I HDACs levels are in turn sensitive 

to the BDNF levels, since the presence/absence of BDNF allele might be determinant in 

modulating HDACs protein levels. The relationship between BDNF and class I HDACs 

can represent a new therapeutic target to treat alcohol abuse and EtOH-related disorders. 

In particular, several transcription factors are regulated by BDNF, including the Sp1 
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(Niu and Yip, 2011). Hence, reduced BDNF in the BDNF +/- mice may affect the class 

I HDACs levels throughout Sp1. In fact, recent evidence suggests that the transcription 

factor Sp1 can regulate the class I HDACs expression, since Sp1 binding sites have 

been found in the promoter regions of HDAC 1 and 2 genes (Yang et al., 2014). 

Therefore, low BDNF levels may result in low activation of the BDNF pathway, and as 

a consequence, low recruitment of transcription factors which in turn do not bind the 

class I HDACs promoters and block their expression. 

Interestingly, acute EtOH treatment induces no alterations of the three investigated 

HDAC isoforms in the CPu of BDNF +/- mice. One possible explanation could be 

found in the class I HDAC enzymes innate low levels of BDNF +/- mice. In fact, it is 

conceivable that the reduction induced by EtOH could be prevented to avoid a further 

loss of HDACs, crucial to maintain the transcriptional activity. Even though the exact 

mechanism remains unclear, the different effect on class I HDACs induced by EtOH 

observed in BDNF+/− and WT mice suggests the hypothesis that BDNF may play a key 

role in regulating the EtOH-induced chromatin remodeling.  

It is interesting to note that there are no EtOH-induced substantial changes of HDAC 2 

and 3 in the CPu cytoplasmic fraction of WT mice. However, BDNF+/− mice has high 

HDAC 2 basal levels in the cytoplasm. Considering that the HDAC 2 protein amount in 

the nuclear extract is very low, we can hypothesized that the translocation of this 

isoform from nuclear to cytoplasmic compartment takes place. On the other hand, 

BDNF +/- mice may have a global decrease of the HDAC 3 isoform, since the 

cytoplasmic basal levels of this enzyme are significantly lower compared to WT mice. 

Differently from what observed in the CPu, acute EtOH treatment does not induce any 

changes of nuclear HDAC 1 and 2 in the PFCx of WT mice. Similar differences 

between two distinct brain areas have been observed in previous studies. In fact, 
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depending on the brain region, different effects on HDACs can be induced by EtOH. 

For example, EtOH inhibits nuclear HDACs activity in the AMY but not in the BNST 

of adolescent rats (Sakharkar et al., 2014). Similarly, a decrease of HDAC activity has 

been reported in the striatum, whereas an increase has been observed in the PFCx (Botia 

et al., 2012). In contrast to what observed for HDAC 1 and 2, a significant decrease of 

HDAC 3 has been observed. An increase of nuclear HDACs activity in the PFCx has 

been reported after acute EtOH treatment (Botia et al., 2012). This finding seems to be 

in contrast with our results, but it is worth to underline that the HDACs activity 

measured by Botia and colleagues (2012) comprises the HDAC isoforms of all classes.  

BDNF+/− mice exhibit high innate levels of HDAC 1 and 2 isoforms in the nuclear 

protein fraction of the PFCx. The difference in the innate asset of HDAC 1 and 2 

between the CPu and PFCx may be the consequence of different BDNF distribution 

among distinct brain areas. For example, mice over-expressing BDNF has higher BDNF 

protein level in the cortical regions compared to the striatum (Cunha et al., 2009). 

Therefore, it is possible that our BDNF +/- mice have different BDNF levels in the 

PFCx compared to the CPu, differently influencing the HDAC protein levels. In 

contrast to HDAC 1 and 2, the basal protein levels of HDAC 3 are significantly lower in 

the PFCx of BDNF +/- mice. This may suggest that the transcription mechanisms 

regulating the expression of HDAC 3 are different from those involved in HDAC 1 and 

2 transcription. As mentioned above, binding sites for Sp1 have been identified on the 

HDAC 1 and 2 gene promoter (Yang et al., 2014), while analogous information about 

the HDAC 3 isoform are still lacking. 
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7. CONCLUSIONS 

In conclusion, in the present study we presented interesting results on the possible 

bidirectional relationship between BDNF and HDACs. In particular, in the CPu HDAC 

1, 2 and 3 protein levels are lower when the BDNF pathway is partially lacking (BDNF 

+/- mice). Therefore, BDNF seems to be crucial in regulating the epigenetic machinery 

comprising class I HDACs levels. Interestingly, genetic manipulation of BDNF can 

have different consequences on HDAC levels in distinct brain areas since different basal 

levels of HDAC 1, 2 and 3 have been found in the PFCx compared to the CPu. 

Moreover, EtOH-treated WT animals show a more marked effect on class I HDACs in 

the CPu than in the PFCx. Therefore, given the crucial role of the striatum, and in 

particular the striatal BDNF role in regulating EtOH consumption, data here presented 

may improve the knowledge on the involvement of epigenetic regulators and their 

relationship with BDNF. However, more information about the specific mechanism by 

which BDNF can differently regulate the HDAC isoforms expression are still needed. 
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CHAPTER III. 

MODULATION OF DYNORPHIN SYSTEM IN ALCOHOL TOLERANCE AND 

DEPENDENCE 
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1. THE DYN/KOP SYSTEM 

Dynorphin (DYN) is an opioid peptide and the endogenous ligand of the κ opioid 

(KOP) receptor. DYN was initially isolated as a 13 amino acids peptide (DYN 1-13) 

with the follow sequence: Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys 

(Goldstein et al., 1979). Subsequently, the DYN complete sequence of 17 amino acids 

(DYN A (1-17)) was reported (Goldstein et al., 1981). The biologically active peptides 

derives from the "processing" of the precursor prodynorphin (PDYN), isolated for the 

first time in 1983 (Watson et al., 1983). All the DYN peptides are contained in the 

precursor PDYN. As mentioned above, DYN is the endogenous ligand of the KOP 

receptor (Chavkin et al., 1982). Similarly to other opioid receptors, the KOP receptor 

belongs to the inhibitory G protein-coupled receptor family, with seven transmembrane 

helices; in fact, KOP receptor couples to the Gαi protein subunit that inhibits the 

production of cAMP from ATP (Cox, 1993; Mansour et al., 1995). The activation of 

KOP receptor by DYN induces the opening of Κ+ channels and / or the closure of Ca2+ 

channels, with the inhibition of several mediators release (Gross and McDonald, 1987; 

Bean, 1989; Grudt and Williams, 1993). 

The PDYN human gene was isolated in first (Horikawa et al., 1983), following by 

cloning of the rat gene (Civelli et al., 1985). The rat gene is comprised of four exons 

and three introns; exons 1 and 2 encodes for the UTR region 5 'of the messenger RNA 

(mRNA) sequence, while exons 3 and 4 encode for the translated region of the gene 

(Hollt, 1993). Different regulatory sequences are located in the PDYN gene promoter, 

particularly upstream of the CAP site; for instance, a functional element, the activator 

protein 1 (AP1), has been identified in the promoter region of the PDYN (Naranjo et al., 

1991). In addition, the PDYN gene promoter contains three cAMP responsive element 

(CRE) consensus sequence, named Dyn-CRE 1 (-1660 bp / -1653 bp), Dyn-CRE 2 (-
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1630 bp / - 1623 bp) and Dyn-CRE 3 (-1546 bp / -1539 bp), which are essential for the 

positive regulation by cyclic AMP mediated signaling in cell lines (Douglass et al., 

1994; Messersmith et al., 1994) and in rat striatum (Cole et al., 1995). The cAMP 

Responsive Element Binding protein (CREB) binds the CRE sequence and plays an 

important role in the regulation of PDYN gene transcription. In addition to CRE, an 

upstream region called Upstream Responsive Element (URE) has been identified in the 

promoter, capable to bind the Upstream Responsive Element Binding protein (UREB), 

and having an inhibitory activity in the regulation of PDYN gene transcription (Gu et 

al., 1997). Recently, it has been also reported the presence of a downstream region 

(Downstream Regulatory Element, DRE) regulated by the transcription factor DREAM, 

which in turn inhibits PDYN gene transcription blocking the action of RNA-polymerase 

II (Cheng et al., 2002; Costigan and Woolf, 2002).  

It has been demonstrated that the DYN/KOP system plays an important role in several 

psychiatric disorders, such as anxiety, depression and drug addiction (Carlezon et al., 

2006; Knoll et al., 2007; Walker et al., 2012; Koob, 2015). The activation of this 

pathway produces pro-depressive and dysphoric effects both in human and rats, 

mediating negative emotional state (Pfeiffer et al., 1986; Carlezon et al., 2006; Wee and 

Koob, 2010). 
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1.1. THE DYN/KOP SYSTEM IN ALCOHOL USE DISORDER AND STRESS-

RELATED DISORDERS 

Alcohol and other drug of abuse induce DA release in the NAc shell, stimulating the 

recruitment of CREB and promoting the PDYN mRNA transcription (Koob, 2013). The 

DYN once released acts to inhibit the DA release (Nestler, 2004; Knoll and Calzeron, 

2010) producing dysphoric effects and negative emotional state (Pfeiffer et al., 1986; 

Carlezon et al., 2006; Wee and Koob, 2010). In the recent years, several studies suggest 

that the DYN/KOP system may have an important role in mediating EtOH responses; in 

particular, this system can influence the escalation in EtOH consumption, and cognitive 

and affective state associated with alcohol dependence (Walker et al., 2012). 

DYN expression is upregulated in brain regions associated with motivation and reward 

after chronic EtOH exposure (Lindholm et al., 2000). KOP receptor knockout (KO) 

mice consume lower alcohol amount in comparison with WT littermate mice (Kovacs et 

al., 2005). The intracerebroventricular (icv) injection of the -antagonist nor-

binaltorphimine (nor-BNI) selectively attenuates the EtOH self-administration in 

alcohol-dependent animals, while no effects have been observed in non-dependent rats 

(Walker and Koob, 2008). Subsequent experiments confirm that systemic nor-BNI 

administration is effective in reducing EtOH self-administration (Walker et al., 2011). 

Acute EtOH exposure increases PDYN mRNA in the AMY and PFCx, and interestingly 

five days exposure induces an increase of KOP receptor mRNA in the AMY 

(D’Addario et al., 2011). In addition, animals underwent to one day withdrawal, after 

five days EtOH exposure, show an increase of PDYN gene expression in the AMY 

(D’Addario et al., 2011). In same experimental conditions, a decrease of H3K27me3 

(repressive mark) and an increase of H3K9ac (activating mark) have been detected in 

PDYN promoter gene in the AMY of EtOH-treated animals (D’Addario et al., 2013). 
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Further evidence about the involvement of DYN/KOP system have been collected using 

the KOP receptor agonist U50,488, which potentiates the EtOH-conditioned place 

preference and the alcohol consumption in mice (Sperling et al., 2010).  

The DYN/KOP system also mediates the effects of stress on alcohol reward and seeking 

behaviors. Nor-BNI attenuates the anxiety-like behavior observed during acute EtOH 

withdrawal (Valdez and Harshberger, 2012). Nor-BNI also blocks the enhanced 

responsiveness to stress observed during protracted EtOH withdrawal (Gillett et al., 

2013). In addition, animals subjected to the social-defeat stress increase EtOH 

consumption after U50,488 treatment (Kudryavsteva et al., 2006). It has been reported a 

role for KOP receptor in reinstatement of alcohol seeking behavior under stressful 

conditions (Funk et al., 2014).  

The activation of DYN/KOP system induces anxiogenic- (Knoll et al., 2007) and 

prodepressive-like effects (Todtenkopf et al., 2004). Accordingly, PDYN or KOP 

receptor KO mice show no or less depressive-like symptoms (McLaughlin et al., 2003). 

Interestingly, the implication of DYN/KOP system in modulating mood disorders has 

been established in the AMY and in the BNST (Mansour et al., 1995; Knoll et al., 2007; 

Crowley et al., 2016; Crowley and Kash, 2015). It has been demonstrated that the KOP 

receptor activation inhibits glutamate release from basolateral amygdala (BLA) inputs 

to BNST blocking the anxiolytic phenotype observed with optogenetic activation of 

BLA-BNST projections (Crowley et al., 2016). Moreover, deletion of KOP receptor 

from AMY neurons results in an anxiolytic phenotype (Crowley et al., 2016) and 

accordingly, the injection of KOP agonist in the BLA has anxiogenic effects (Narita et 

al., 2005).  
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For these reasons, understanding the role of DYN/KOP system in in regulating 

emotional state associated to alcohol use disorders can be useful to better understand the 

dependence mechanisms and to develop new drugs for the treatment of alcoholism. 
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2. ANIMAL MODELS TO STUDY THE ALCOHOL USE DISORDER 

The AUD is a complex disorder, characterized by many aspects (compulsive use, drug 

seeking behavior, negative emotional state). For this reason, the translation of AUD into 

preclinical model is difficult and it is not possible to use a univocal experimental 

condition or animal model. However, there are minimum criteria to be met for animal 

models to be considered as valid preclinical models that resemble the human condition:  

1) predictive validity: the model should be sensitive to symptoms amelioration or 

attenuation by treatment effective in humans, and insensitive to inactive treatments; 

2) face validity: the model should represent the behavioral characteristic of human 

population (i.e. alcoholic population) and should be characterized by the same 

symptoms; 

3) construct validity: the model pathology should involve similar neurochemical, 

neurobiological and psychobiological mechanisms. 

In the present study we focused our attention on two animal models: the first one is an 

animal model for genetic predisposition to alcoholism, the Marchigian Sardinian 

alcohol-preferring (msP) rats, and the second one reproduces the rapid tolerance to the 

anxiolytic effect of EtOH (rapid EtOH tolerance, RET). 
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2.1. MARCHIGIAN SARDINIAN ALCOHOL-PREFERRING RATS 

Genetically selected msP rats have been selected from Sardinian alcohol-preferring rats 

(Ciccocioppo et al., 1998). msP rats have innate preference for EtOH with spontaneous 

binge-type of drinking (Ciccocioppo et al., 2006). The µ opioid receptor antagonist 

naltrexone, a therapeutic agent utilized in the management of alcohol dependence 

(Volpicelli et al., 1992), is effective in reducing EtOH intake after acute as well as 

subchronic treatment (Perfumi et al., 2003; Ciccocioppo et al., 2006). Moreover, the 

GABAB receptor agonist baclofen reduces the EtOH consumption in msP rats (Perfumi 

et al., 2002). These results indicate a correlation between the efficacy of common 

medications for alcohol dependence in human and in msP rats, suggesting the validity 

of this animal model. Consistent with this hypothesis, the serotonin 5-HT2 ritanserin 

has no effect on alcohol intake in msP rats (Panocka et al., 1993) as well as in humans 

(Johnson et al., 1996). Interestingly, msP rats show anxiety, depressive-like phenotype 

and high sensitivity to stress (Ciccocioppo et al., 2006). It has been demonstrated that 

desipramine, an antidepressant drug, is effective in attenuate depressive-like behavior 

(Ciccocioppo et al., 1999). Similarly, alcohol has antidepressant action, since the 

depressive symptoms are attenuated following EtOH treatment (Ciccocioppo et al., 

1999), thus suggesting that msP rats might be drinking EtOH to self-medicate negative 

affective phenotypes. For these reasons, msP rats might represent the population with 

alcoholism diagnosis and comorbid depression and anxiety. 

To support the validity of alcohol dependence model, it has been shown that msP rats 

consume high daily dose of EtOH (7-8 g/kg) and have a blood alcohol level average 

around 70-80 mg/dl (Ciccocioppo et al., 2006). In addition, they do not show 

spontaneous aversion to alcohol or aversive reactions to EtOH directly infused into the 

mouth (Polidori et al., 1998).  
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After several days of EtOH withdrawal, msP rats show a higher alcohol consumption 

indicating the occurrence of a robust alcohol deprivation effect (Perfumi et al., 2005). 

Moreover, environmental conditioning factors associated with EtOH exposure are able 

to induce relapse in msP rats, even after a long period of abstinence (Ciccocioppo et al., 

2006). Accordingly, stressful stimuli, such as the foot-shock, induce relapse both in msP 

rats and their counterpart Wistar, but with a stronger effect in msP animals (Hansson et 

al., 2005).  

In regard neurochemical, neurobiological and physiological alterations, interesting 

findings have been reported in the recent years. In humans, polymorphisms in the CRF 

1 receptor gene promoter are linked to the risk of develop the AUD (Treutlein et al., 

2006). Similar polymorphisms have been identified on the promoter region of CRF 1 

receptor gene in msP rats (Ayanwuyi et al., 2013; Cippitelli et al., 2015). Additionally, 

msP rats exhibit high levels of CRF 1 receptor mRNA in several limbic brain areas 

(Hansson et al., 2006). Therefore, dysregulation or alterations of CRF system may play 

an important role in the comorbidity of alcohol abuse and mood disorders, such as 

anxiety and depression. Better understanding the gene expression profile in the brain of 

msP rats can be useful to identify neurobiological mechanism operative in excessive 

alcohol drinking behavior.  

All these characteristics indicate that msP animals may represent a suitable preclinical 

model for alcohol dependence; in fact, alcohol abuse is frequently an attempt to 

attenuate the negative emotional state and msP rats are able to mimic this situation. 

Therefore, msP rats can be useful animal model to investigate biological basis of 

alcoholism and also and also in screening potential drugs in the treatment of AUD. 
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2.2. RAPID ETHANOL TOLERANCE 

The development of tolerance is one of the consequences of the alcohol use and is 

characterized as the decrease of the physiological response to a specific dose of EtOH 

(Tabakoff et al., 1986). For this reason, alcohol tolerance can play an important role in 

promoting alcohol drinking behavior and developing alcohol dependence. Adaptive 

changes in the CNS have been found to participate in developing EtOH tolerance; for 

instance, several neural mechanisms related to learning and memory are involved in the 

development and maintenance of tolerance (Kalant, 1998). 

Behavioral tolerance can be divided into “intrinsic” and “extrinsic” tolerance; the first 

results from alterations in the neurons directly controlling a behavior, while the second 

results in behavioral adaptation throughout alterations in compensatory neural circuits 

(Hoffman and Tabakoff, 1989). Moreover, behavioral tolerance can be defined as acute, 

rapid and chronic (Crabbe et al., 1979; Kalant, 1998; LeBlanc et al., 1975). Acute 

tolerance develops fast (minutes) during a single drinking session, rapid tolerance 

shares several develops within 8 to 24 hours, whereas chronic tolerance occurs after 

days of continuous or intermittent EtOH exposure (Pietrzykowski and Treistman, 2008). 

Many molecular mechanisms trigger the tolerance development, but determining which 

molecular mechanism is responsible for the precise class of tolerance can be difficult. 

These molecular mechanisms include posttranslational modifications of proteins, 

trafficking, regulation of mRNA stability, and epigenetic and genetic mechanisms 

(Pietrzykowski and Treistman, 2008).  

As mentioned above, the rapid ethanol tolerance (RET) is a phenomenon developing 

between 8 and 24 hours after the first ethanol exposure (Crabbe et al., 1979; Khanna et 

al., 1996; Koob et al., 1987). The RET shares several similarities with chronic EtOH 

tolerance and can be considered as a good predictor of the chronic tolerance for some 
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alcohol effects such as, hypothermia and motor impairment (Khanna et al., 1991). 

However, few studies focused on the development of rapid tolerance to the anxiolytic 

effect of ethanol.  

In the ‘80s, Koob and colleagues observed that tolerance to the anxiolytic effect of 

alcohol was developed after two days of EtOH exposure or during the second session of 

three-repeated EtOH treatment in the same day (Koob et al., 1987). The development of 

tolerance to the alcohol anxiolytic effect was also observed in mice treated with 1.5 g/kg 

of EtOH 24 hours apart; interestingly, the pretreatment with isopregnanolone, an 

endogenous neurosteroid, interfered with the development of rapid tolerance (Debatin 

and Barbosa, 2006). Similarly, two same doses (1 g/kg) of EtOH 24 hours apart did not 

elicit anxiolytic effect, but higher doses (2 g/kg) can restore the alcohol anxiolytic effect 

(Sakharkar et al., 2012). Finally, it has been reported that animals underwent RET 

showed molecular changes in the AMY and BNST, such as a decrease in the nuclear 

DNMT and HDAC activity (Sakharkar et al., 2014). 

Therefore, alcohol tolerance can be an important factor in promoting alcohol-drinking 

behavior; in fact, higher doses of EtOH are required to reach the same anxiolytic effects 

suggesting that molecular adaptations occurring in several brain regions. 
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 3. AIM 

The DYN/KOP system is highly involved in regulating alcohol intake and promoting 

the development of negative emotional state associated to alcohol dependence. Hence, 

in the present study we investigated the role of DYN/KOP system in different model of 

AUD focusing on two brain areas relevant to modulate the affective state, the AMY and 

BNST. First, we measured the PDYN and KOP receptor mRNA levels in msP rats 

compared to their counterpart Wistar animals; PDYN and KOP receptor gene 

expression was also conducted in msP and Wistar rats exposed to the chronic 

intermittent two-bottle free choice paradigm. Second, we used a model of alcohol 

dependence in which rats were fed with Lieber DeCarli EtOH liquid diet and then 

underwent 24 hours withdrawal; in this model, we measured the PDYN and KOP 

receptor mRNA levels. Finally, we focused on the RET model investigating 

transcriptional and epigenetic alterations of the DYN/KOP system. 

The studies on the chronic liquid diet and the RET were conducted at Alcohol Research 

Center, Univeristy of Illinois at Chicago, in the laboratory directed by Dr. Subhash C. 

Pandey. 
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4. MATERIALS AND METHODS 

4.1 msP RATS: CHRONIC INTERMITTENT TWO-BOTTLE FREE CHOICE 

Adult msP and Wistar rats (~ 500 g b.w.) were housed under 12/12 hours light/dark 

cycles in condition of temperature and humidity. Animal experiment was conducted at 

University of Camerino, in the laboratory directed by Prof. Roberto Ciccocioppo. 

Two groups of animals (6 Wistar and 6 msP) were exposed to a chronic intermittent 

EtOH treatment, in order to establish alcohol dependence consuming high amount of 

alcohol (Wise, 1973). In particular, rats received a 10% alcohol solution (v/v) in the two 

bottles free-choice paradigm; EtOH was available for 24 hours every other day for a 

total of 30 days (Table 1). Daily EtOH intake was measured as g/kg at the end of every 

day in which EtOH was available. Two other groups of rats (6 Wistar and 6 msP) 

instead received water as vehicle. On day 30 animals were sacrificed and the AMY and 

BNST were rapidly harvested and frozen at -80°.  

 

 

Animal group EtOH (two bottles free-choice paradigm, chronic 

intermittent exposure) 

Wistar naïve NO 

Wistar EtOH YES 

msP naïve NO 

msP rats YES 

Table 1. Schematic group division in the msP and Wistar rats experiment 
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4.2. CHRONIC LIQUID DIET MODEL 

Male adult Sprague-Dawley rats (weight 300-350 g) were individually housed in a 

temperature- and humidity-controlled room with a 12/12 hours light/dark cycle. All 

procedures were conducted in accordance with the NIH guidelines for the Care and Use 

of Laboratory Animals, and approved by the Institutional Animal Care and Use 

Committee. For 3 days, rats were offered 80 ml/day of the nutritionally complete 

Lieber-DeCarli liquid control diet (Lieber-DeCarli Diet 82; Bio-Serv, Frenchtown, NJ). 

Control groups (n = 7) continued with control diet for 16 days; the remaining animals (n 

= 13) were gradually introduced to EtOH (1.8% through 8.1% within 7 days), and then 

maintained on 9% v/v EtOH diet for 15 days. One group of EtOH-diet fed rats (n = 7) 

underwent 24 hours withdrawal (Withdrawal group) receiving control diet (Table 2).  

It has been previously reported that the blood alcohol levels are ranged from 172-198 

mg (Pandey et al., 1996; Pandey et al., 2008) and these animals during ethanol 

withdrawal displayed anxiety-like behavior behaviors as reported in previous studies 

(Pandey et al., 2008; You et al., 2014). 

 

 

Animal group EtOH (liquid diet for 15 days) 24 hours withdrawal after 15 

days liquid diet 

Control group NO NO 

EtOH group YES NO 

Withdrawal group YES YES 

Table 2. Schematic group division in the chronic liquid diet experiment 
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4.3. RAPID ETHANOL TOLERANCE (RET) MODEL 

All procedures were conducted in accordance with the NIH guidelines for the Care and 

Use of Laboratory Animals, and approved by the Institutional Animal Care and Use 

Committee. For the development of RET, we divided animals in three group (n = 8 

animals each group): two group received intraperitoneal (ip) 0.9 % saline (5 μl/g) and 

one group was injected with EtOH (20 % w/v; 1 g/kg). 24 hours later, one group of 

animals treated with saline received a second saline injection (Control group), and the 

other one was treated with 1 g/kg EtOH (EtOH group). The Tolerance group received a 

second injection with the same dose of EtOH (Table 3). One hour post-injection, all 

groups were subjected to measurements of anxiety-like behaviors using the elevated 

plus maze (EPM) exploration test. Briefly, each rat was placed on the central platform 

of the plus maze; during the 5 minutes test period, the number of entries and the time 

spent in each arm (open or closed) were recorded. The anxiety-like behavior was 

determined as percentage of open arm entries and time spent in the open arm. The total 

number of closed arm entries was used to represent general activity of rats (Sakharkar et 

al., 2012). 

Immediately after the behavioral measurement, animals were anesthetized with 

isoflurane and decapitated. From all rats injected with EtOH, around 500 uL of blood 

was collected at the time of brains for the measurement of the blood alcohol level 

(BAL) using the Analox Alcohol Analyzer (Lunenburg, MA). The brains were dissected 

and the AMY and BNST were quickly frozen and stored at −80 °C until molecular 

analysis. 
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Animal group Day 1 Day 2 

Control group Saline 0.9 % Saline 0.9 % 

EtOH group Saline 0.9 % EtOH 1 g/kg 

Tolerance group EtOH 1 g/kg EtOH 1 g/kg 

Table 3. Schematic group division in the RET 

 

 

4.4. RET MODEL AND NOR-BNI TREATMENT 

A second batch of animals was treated as mentioned above to develop RET. In 

particular, groups were divided as follow: 1) Control group, which received i.p. 

injection of saline both days and saline as vehicle (n = 9); 2) nor-BNI + Saline group, 

which received i.p. injection of saline on the first day, then nor-BNI (20 mg/kg) 

followed by 0.9 % saline after 19 hours (n = 9), and 3) EtOH group, which received i.p. 

injection of saline and vehicle, followed by EtOH (1 g/kg) after 19 hours (n = 9). The 

next two groups were: 4) Tolerance group, which received i.p. injection of EtOH on the 

first day and vehicle followed by EtOH injection (1 g/kg) after 19 hours (24 hours after 

the first EtOH injection; n = 9) and 5) nor-BNI + Tolerance group, which received i.p. 

injection with EtOH and then nor-BNI (20 mg/kg) followed by ethanol injection (1 

g/kg) after 19 hours (n = 9) (Table 4). On day 2, one hour after the 0.9 % saline or EtOH 

injections and 20 hours after the vehicle or nor-BNI treatments, anxiety-like behavior of 

the rats was measured using the elevated plus maze (EPM) exploration test, as described 

above. Rats were anesthetized with isoflurane immediately after the behavioral 

measurement. Blood was obtained from all rats injected with ethanol for measurement 
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of BAL using the Analox Alcohol Analyzer (Lunenburg, MA). The AMY and BNST 

were dissected out and quickly frozen and stored at −80 °C until molecular analysis.  

 

 

Animal group Day 1 Day 1 (5 hours 

later) 

Day 2 

Control group Saline 0.9 % Saline 0.9 % Saline 0.9 % 

nor-BNI + Saline Saline 0.9 % nor-BNI 20 mg/kg Saline 0.9 % 

EtOH group Saline 0.9 % Saline 0.9 % EtOH 1 g/kg 

Tolerance group EtOH 1 g/kg Saline 0.9 % EtOH 1 g/kg 

Nor-BNI + Tolerance group EtOH 1 g/kg nor-BNI 20 mg/kg EtOH 1 g/kg 

Table 4. Schematic group division in the RET and nor-BNI treatment 
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4.5. RNA EXTRACTION AND REAL-TIME PCR 

Gene expression analysis was performed in the AMY and BNST for all experimental 

animal models. Total RNA was isolated from rat brain tissue with TriZOL (Life 

Technologies, Grand Island, NY, USA) followed by RNA purification. RNA integrity 

was checked by 1 % agarose gel electrophoresis and RNA concentrations were 

measured. Total RNA was then reverse transcribed using random primers and MuLV 

reverse transcriptase (Life Technologies, Grand Island, NY, USA). Quantitative real-

time PCR was performed using the SYBR Green master mix. The following primers 

were used to amplify the genes of interest: PDYN Forward 5’-

CCTGTCCTTGTGTTCCCTGT-3’ and Reverse 5’-AGAGGCAGTCAGGGTGAGAA-

3’; KOP receptor Forward 5'-TTGGCTACTGGCATCATCTG-3' and Reverse 5'-

ACACTCTTCAAGCGCAGGAT-3'. GAPDH and Hypoxanthine-guanine 

phosphoribosyltransferase (Hprt1) were used as reference genes for msP experiment, 

and chronic liquid diet and RET experiments respectively. All data were normalized to 

the reference gene GAPDH or Hprt1 using the ΔΔCt method (Livak and Schmittgen 

2001). Results are expressed as mRNA fold changes. 

 

 

4.6. CHROMATIN IMMUNOPRECIPITATION (ChIP) ASSAY 

ChiP assay was performed in RET animals. Chromatin was prepared from frozen tissues 

as follow: tissues were quickly homogenized in phosphate buffer saline (PBS) and 

rapidly crosslinked with 16 % non-methanol formaldehyde (final concentration 1 %) for 

5 minutes at 37 °C. The cross-linking reaction was quenched by adding 1 M glycine 

solution. The samples were washed with a solution of PBS and PIC (final concentration 

1X) and lysed by re-suspending pellet in a proper volume (50 µL/mg tissue) of lysis 
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buffer (1 % SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8.1) and PIC (final concentration 

1X). The samples (130 uL) were sonicated at Covaris (Covaris, Inc., Woburn, 

Massachusetts, USA) with the setting of 5 % duty factor for 5 minutes in order to obtain 

DNA fragments ranging in size from 150 to 700 bp. The chromatin was diluted to 700 

uL with ChIP dilution buffer (0.01 % SDS, 1.1 % Triton X-100, 1.2 mM EDTA, 16.7 

mM Tris-HCl pH 8.1, 167 mM NaCl) and PIC (final concentration 1X) and 110 µL 

were removed to serve as “input” DNA, for each immunoprecipitation. Chromatin was 

pre-cleared with protein A/G plus-agarose beads (Santa Cruz Biotechnology, sc-2003) 

for 30 minutes at 4 °C on the orbital shaker and, after discarding beads, was incubated 

overnight at 4 °C on orbital shaker with the 1 μg antibody (H3K9/K14ac Millipore 06-

599; H3K9me2 Abcam ab1220; H3K27me3 Abcam ab6002; H3K4me3 Abcam 

ab1012). After the incubation, 40 µL of agarose beads were added and incubated for 1 

hour and 30 minutes at 4 °C on rotation. The beads and associated immune complexes 

were washed five times with ChIP dilution buffer and then the crosslinking was reverted 

at 95° for 10 minutes using Chelex® as described by Schoppee Bortz and Wamhoff 

(2011). Input DNA from each samples was extracted using 100 % ethanol and sodium 

chloride at final concentration 100 µM and then the same procedure with Chelex® 

followed for the immunoprecipitated samples was used. Changes in histone 

modifications at the PDYN and KOP receptor promoter specific sites were evaluated by 

Real-Time qPCR. Several locations in the promoter regions and in the gene body of 

PDYN and KOP receptor genes were investigated. In particular, we designed primer to 

amplify the sequence located where the transcription factor cAMP response element-

binding protein (CREB) and the transcriptional coactivator P300 were predicted to bind 

the DNA sequence by TFBIND (http://tfbind.hgc.jp/). The primer used in the Real-

Time qPCR are listed in Table 5. 
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Gene bp from TSS  Sequence 5’ to 3’ 

PDYN around -1570 

 

Forward  

Reverse 

GTTGTATGAGGCATGCAATGAG 

CCTCGAGGTAATGGTGATGAAG  

PDYN around -600 

 

Forward  

Reverse 

GAGCTGAATGTTCCTCTTCCA 

CGAAGGCTGTCTCAGAATATAGG 

PDYN around -170 Forward  

Reverse 

AAGTGACAAACAGCGCTACA 

GGGCCTGAGTGAAACACAATA 

PDYN around +1550 Forward  

Reverse 

TGTGTGTGCGTGTGTTTATTG 

CCGTGGAACCGCTGATAC 

PDYN around +4400 Forward  

Reverse 

CCCACAGTGCTGAACTTCTAA 

CATCTCATTTCCTCCCTGTGAA  

PDYN around +5940 Forward  

Reverse 

GCTGTGTACAGGCTGGAGTA 

CTTCCCAAGGTCTGACTCTTCT 

PDYN around +7440 Forward  

Reverse 

CCACACAGTGATTTGGCTTA 

GGAACCAAACATGGTCCTTTG 

KOP receptor around -1250 Forward  

Reverse 

AAACCAACCAGTAGTCTTTCCA 

GCTGCATATAAGCCAGGACA 

KOP receptor around -600 Forward  

Reverse 

AGGAAAGGAGAGTCTGTGTAGTA 

TCTGTGCATCTTGTCACTCTG 

KOP receptor around -300 Forward  

Reverse 

GATTCCATGCTCTCTTGTCACT  

AGCTGCTTTCTGCTTCTCTC 

KOP receptor around +170 Forward  

Reverse 

GGGCAATTGTTGTGCTTAGTG 

TTGCTTCACCCTTAGGCATC 

Table 5. List of primers used in ChIP assay 
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4.7. STATISTICAL ANALYSIS 

All results are expressed as mean ± SEM. msP and Wistar rats data were analyzed by 

Two-way ANOVA followed by Bonferroni post-hoc test. Data from chronic liquid diet 

experiment, RET and RET + nor-BNI treatments were analyzed by One-way ANOVA 

followed by Tukey’s post-hoc test. The threshold for statistical significance was always 

set at a p value < 0.05. 
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5. RESULTS 

5.1. VOLUNTARY EtOH INTAKE OF msP AND WISTAR RATS  

msP and Wistar rats were exposed to the chronic intermittent two bottles free-choice 

paradigm. msP rats consume an higher amount of EtOH compared Wistar animals since 

the early phase of the procedure. Around day 15, this protocol leads to an escalation in 

alcohol consumption more remarkable in msP rats. Finally, the EtOH consumption 

remains high until the end of exposure (Table 6 and Figure 11). 

 

 

 

Figure 11. Voluntary EtOH intake of Wistar and msP rats. Data are represented as mean 

± SEM. Differences between groups were estimated by two-way ANOVA followed by Bonferroni post-

hoc test. (* p < 0.05; *** p < 0.001). 
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Day EtOH intake (g/kg) 

 Wistar rats msP rats 

1 1,592 2,767 

3 1,525 2,758 

5 1,533 3,625 

7 1,792 3,642 

9 1,900 3,542 

11 1,750 3,533 

13 1,767 3,883 

15 2,367 5,342 

17 2,417 6,642 

19 2,575 6,067 

21 3,367 7,283 

23 3,633 6,983 

25 3,083 6,800 

27 3,208 6,900 

29 3,208 6,900 

Table 6. EtOH intake amount of Wistar and msP rats 
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5.2. PDYN AND KOP RECEPTOR GENE EXPRESSION IN msP AND WISTAR 

RATS 

PDYN and KOP receptor mRNA levels were measured in the AMY and BNST of msP 

and Wistar rats, both naïve and EtOH exposed. There is a difference in the amygdaloid 

basal levels of KOP receptor mRNA in the AMY of msP rats (1.26 ± 0.05 vs 1.00 ± 

0.10 Wistar naïve rats, p < 0.05) (Figure 12). In the AMY and BNST, EtOH exposure 

does not induce any changes of PDYN and KOP receptor gene expression in Wistar 

animals (Figures 12 and 13). Conversely, EtOH induces a decrease of PDYN and KOP 

receptor mRNA levels in the AMY of msP rats (PDYN: 0.95 ± 0.11 msP naïve rats vs 

0.45 ± 0.09 msP EtOH rats, p < 0.05; KOP receptor: 1.26 ± 0.05 msP naïve rats vs 0.65 

± 0.04, p < 0.001) (Figure 12). Finally, msP rats exposed to EtOH show higher mRNA 

levels of KOP receptor in the BNST (1.41 ± 0.09 vs 0.88 ± 0.04 msP EtOH rats, p < 

0.001) (Figure 13). 
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Figure 12. PDYN and KOP receptor gene expression in the AMY. The PDYN and KOP 

receptor mRNA levels were assessed in the AMY using Real-Time qPCR analysis compared to GAPDH. 

Data are presented as mean ± SEM (n = 6 rats per group) and analyzed by two-way ANOVA (*** p < 

0.001; * p < 0.05).  

 

 

 

 

Figure 13. PDYN and KOP receptor gene expression in the BNST. The PDYN and 

KOP receptor mRNA levels were assessed in the BNST using Real-Time qPCR analysis compared to 

GAPDH. Data are presented as mean ± SEM (n = 6 rats per group) and analyzed by two-way ANOVA 

(*** p < 0.001).  
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5.3. PDYN AND KOP RECEPTOR GENE EXPRESSION IN THE CHRONIC 

LIQUID DIET MODEL 

After 15 day of EtOH exposure using liquid diet, a marked increase of PDYN mRNA 

levels has been observed in the AMY (2.28 ± 0.10 vs 1.06 ± 0.15 Control group, p < 

0.01), while no changes of KOP receptor have been detected (Figure 14). Interestingly, 

the PDYN mRNA levels remain high after 24 hours withdrawal (2.26 ± 0.32 vs 1.06 ± 

0.15 Control group, p < 0.01), and the KOP receptor gene expression is also increased 

(1.52 ± 0.08 vs 1.05 ± 0.13 Control group, p < 0.05) (Figure 14). On the other hand, 

KOP receptor mRNA levels were decreased without change in PDYN mRNA levels in 

the BNST of ethanol-withdrawn rats (0.62 ± 0.06 vs 1.01 ± 0.03 Control group, p < 

0.05).  
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Figure 14. The effect of chronic ethanol exposure and its withdrawal on PDYN and 

KOP receptor gene expression in the AMY. The PDYN and KOP receptor mRNA levels were 

assessed in the AMY using Real-Time qPCR and data were normalized using Hprt1 as a control gene. 

Data are presented as mean ± SEM (n = 6 or 7 rats per group) and analyzed by one-way ANOVA (* p < 

0.05; ** p < 0.01).  

 

 

 

 

Figure 15. The effects of chronic ethanol treatment and its withdrawal on PDYN 

and KOP receptor gene expression in the BNST. The PDYN and KOP receptor mRNA 

levels were assessed in the BNST Real-Time qPCR and data were normalized using Hprt1 as a control 

gene. Data are presented as mean ± SEM (n = 6 or 7 rats per group) and analyzed by one-way ANOVA (* 

p < 0.05).  
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5.4. BLOOD ALCOHOL LEVEL AND ANXIETY-LIKE BEHAVIOR IN THE 

RET MODEL 

The BAL of EtOH and tolerance group is similar suggesting that there is no tolerance in 

EtOH metabolism (Table 7).  

 

 

Animal group mg/dl of EtOH 

EtOH group 85.7 ± 5.4 

Tolerance group 85.5 ± 4.4 

Table 7. The BAL in the EtOH and tolerance group. 

 

 

Despite the same BAL, EtOH produces anxiolytic effects in the EtOH group but not in 

the Tolerance group (Figure 16). In fact, EtOH treated rats spend more time in the open 

arm than Control and Tolerance groups (% time spent 49.49 ± 4.84 vs 31.62 ± 3.00 

Control group and vs 29.07 ± 3.56 Tolerance group, p < 0.05 and < 0.01 respectively). 

Moreover, the open arm entries are significantly increased in the EtOH (49.77 ± 3.01 vs 

35.80 ± 1.32 Control group and vs 32.78 ± 1.98 Tolerance group, p < 0.01 and < 0.001 

respectively). However, in the Tolerance group the increase in the number of closed arm 

entries indicates that EtOH does not attenuate general activity of rats (9.13 ± 0.61 vs 

7.17 ± 0.40 Control group, p < 0.05). 
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Figure 16. Development of rapid ethanol tolerance to the anxiolytic effects of 

ethanol. Elevated plus maze exploration (EPM) test has been used to measure the anxiety-like behavior. 

Anxiolytic effect is evaluated by percentage of the time spent in the open arm and the open arm entries. 

Data are presented as mean ± SEM (n = 8 rats per group) and are analyzed by one-way ANOVA followed 

by Tukey’s test (* p < 0.05 and ** p < 0.01 vs Control group; ## p < 0.01 and ### p < 0.001  vs Tolerance 

group). 
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5.5. PDYN AND KOP RECEPTOR GENE EXPRESSION IN THE RET MODEL 

After behavioral tests, animals were sacrificed and gene expression analysis was 

conducted in the AMY and BNST. Similar to what observed in the chronic ethanol 

model, PDYN gene expression is increased in the AMY the EtOH group (2.23 ± 0.32 vs 

0.96 ± 0.13 Control group, p < 0.01) and remained increase in the Tolerance group 

(2.69 ± 0.30 vs 0.96 ± 0.13 Control group, p < 0.001) (Figure 17). Moreover, tolerant 

animals show an increase of KOP receptor mRNA levels in the AMY (1.50 ± 0.14 vs 

1.02 ± 0.07 Control group, p < 0.05) (Figure 17). Finally, no changes were observed in 

the BNST (Figure 18). 
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Figure 17. Changes in PDYN and KOP receptor gene expression in the AMY 

during RET. The PDYN and KOP receptor mRNA levels were assessed in the AMY using Real-Time 

qPCR using Hprt1 as a control gene. Data are presented as mean ± SEM (n = 8 rats per group) and 

analyzed by one-way ANOVA Tukey’s test (* p < 0.05; ** p < 0.01; *** p < 0.001).  

 

 

 

 

Figure 18. Changes in PDYN and KOP receptor gene expression in the BNST 

during RET. The PDYN and KOP receptor mRNA levels were assessed in the BNST using Real-

Time qPCR using Hprt1 as a control gene. Data are presented as mean ± SEM (n = 8 rats per group) and 

analyzed by one-way ANOVA.  
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5.6. HISTONE MODIFICATIONS AT PDYN GENE IN THE RET MODEL 

Since no alterations were detected in the BNST, epigenetic experiments were conducted 

in the AMY only. In the PDYN promoter, acute EtOH treatment induced a significant 

increase of H3K9/K14ac levels at + 1550 bp from the TSS (1.49 ± 0.12 vs 0.99 ± 0.09 

Control group, p < 0.01). However, a decrease of this mark at all locations of PDYN 

gene body was observed during tolerance (- 170 from TSS: 0.59 ± 0.07 vs 1.05 ± 0.11, p 

< 0.01; + 1550 bp: 0.59 ± 0.07 vs 0.99 ± 0.09 Control group, p < 0.05 and vs 1.49 ± 0.12 

EtOH group, p < 0.001; + 4400 bp: 0.71 ± 0.06 vs 1.05 ± 0.04 Control group, p < 0.05 

and vs 1.05 ± 0.10 EtOH group, p < 0.01; + 5940 bp: 0.56 ± 0.06 vs 1.05 ± 0.10 Control 

group, p < 0.01 and vs 0,89 ± 0,11 EtOH group, p < 0.05; + 7440 bp: 0.60 ± 0.09 vs 

1.04 ± 0.12 Control group, p < 0.05) (Figure 19). 

In regard to changes in H3K9me2 occupancy, an increase of this histone modification 

levels was observed at two location of the PDYN gene in the EtOH group (-170 bp from 

TSS: 1.53 ± 0.12 vs 0.99 ± 0.06 Control group, p < 0.01; + 4400 bp: 1.31 ± 0.08 vs 0.94 

± 0.07 EtOH group, p < 0.05) (Figure 19). 

Two other histone marks were investigated: H3K27me3 and H3K4me3. EtOH induces a 

marked increase of H3K27me3 levels at all sites investigated of the PDYN gene (- 1570 

bp from TSS: 1.36 ± 0.08 vs 1.01 ± 0.05 Control group, p < 0.01 and vs 1.00 ± 0.06 

Tolerance group, p < 0.01; - 600 bp: 1.35 ± 0.11 vs 1.03 ± 0.06 Control group, p < 0.05 

and vs 0.70 ± 0.08 Tolerance group, p < 0.001; - 300 bp: 1.73 ± 0.09 vs 1.02 ± 0.07 

Control group, p < 0.001 and vs 1.27 ± 0.09 Tolerance group, p < 0.01; + 1550 bp: 1.73 

± 0.05 vs 1.02 ± 0.07 Control group, p < 0.001 and vs 1.24 ± 0.08 Tolerance group, p < 

0.001; + 4400 bp: 1.39 ± 0.11 vs 0.99 ± 0.06 Control group, p < 0.01; + 5940 bp: 1.52 ± 

0.10 vs 1.03 ± 0.08 Control group, p < 0.01 and vs 1.15 ± 0.06 Tolerance group, p < 

0.05; + 7440 bp: 1.50 ± 0.13 vs 1.04 ± 0.07 Control group, p < 0.05 and vs 0.97 ± 0.12 
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Tolerance group, p < 0.05). Moreover, no changes were detected in the Tolerance 

group, except at one site where low levels of H3K27me3 were observed (- 600 bp from 

TSS: 0.70 ± 0.08 vs 1.03 ± 0.06 Control group, p < 0.05) (Figure 20).   

Finally, alterations of H3K4me3 levels were observed in the sites around the TSS. In 

particular, EtOH induced changes at three sites (- 600 bp from TSS: 1.49 ± 0.12 vs 1.05 

± 0.08 Control group, p < 0.01 and vs 0.81 ± 0.03 Tolerance group, p < 0.001; - 170 bp: 

1.48 ± 0.09 vs 1.01 ± 0.06 Control group, p < 0.01; + 1550 bp: 1.63 ± 0.14 vs 1.02 ± 

0.09 Control group, p < 0.01 and vs 1.10 ± 0.10 Tolerance group, p < 0.05). In addition, 

the site before the TSS also showed a significant increase of H3K4me3 levels during 

RET (- 170 bp from TSS: 1.41 ± 0.10 vs 1.01 ± 0.06 Control group, p < 0.05) (Figure 

20). 
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Figure 19. Changes in H3K9/K14ac and H3K9me2 levels at PDYN gene promoter 

and body. Real Time qPCR analysis of H3K9/K14ac and H3K9me2 immuno-precipitated DNA 

fragments in the PDYN promoter and gene body in rat AMY. Bar diagram shows the levels of specific 

histone modifications of gene, normalized to total input DNA. Data are represented as Mean ± SEM (n = 

8 rats per group) and analyzed by one-way ANOVA followed by Tukey’s test (* p < 0.05 and ** p < 0.01 

vs Control group; # p < 0.05, ## p < 0.01 and ### p < 0.001 vs Tolerance group). 
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Figure 20. Changes in H3K27me3 and H3K4me3 levels at PDYN gene promoter 

and body. Real Time qPCR analysis of H3K27me3 and H3K4me3 immuno-precipitated DNA 

fragments in the PDYN promoter and gene body in rat AMY. Bar diagram shows the levels of specific 

histone modifications of gene, normalized to total input DNA. Data are represented as Mean ± SEM (n = 

8 rats per group) and analyzed by one-way ANOVA followed by Tukey’s test (* p < 0.05, ** p < 0.01 

and *** p < 0.001 vs Control group; # p < 0.05, ## p < 0.01 and ### p < 0.001 vs Tolerance group). 
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5.7. HISTONE MODIFICATIONS AT KOP RECEPTOR GENE IN THE RET 

MODEL 

Similar to what observed at PDYN gene promoter, tolerant animals show a decrease of 

H3K9/K14ac levels in the KOP receptor gene promoter and body in the AMY (- 600 bp 

from TSS: 0.52 ± 0.05 vs 0.98 ± 0.10 Control group, p < 0.05 and vs 0.97 ± 0.08 EtOH 

group, p < 0.05; - 300 bp: 0.68 ± 0.06 vs 1.01 ± 0.09 Control group, p < 0.05; + 170 bp: 

0.66 ± 0.08 vs 1.12 ± 0.14 EtOH group, p < 0.05) (Figure 21).  

In addition, EtOH induces an increase of H3K9me2 levels at one site close to the TSS (- 

300 from TSS: 1.51 ± 0.08 vs 1.06 ± 0.09 Control group, p < 0.05). In the Tolerance 

group, a significant decrease of H3K9me2 levels was detected at + 170 bp from the 

TSS, even if no changes were detected in the EtOH group (0.68 ± 0.08 vs 1.03 ± 0.10 

Control group, p < 0.05 and vs 1.00 ± 0.08 EtOH group, p < 0.05) (Figure 21).  

A significant increase of H3K27me3 was detected in the EtOH group at three different 

locations on the KOP receptor gene promoter and body (- 600 bp from TSS: 1.43 ± 0.09 

vs 1.01 ± 0.06 Control group, p < 0.01 and vs 0.73 ± 0.10 Tolerance group, p < 0.001; -

300 bp: 1.32 ± 0.09 vs 1.02 ± 0.08 Control group, p < 0.05; + 170 bp: 1.61 ± 0.08 vs 

0.99 ± 0.05 Control group, p < 0.001 and vs 1.17 ± 0.08 Tolerance group, p < 0.01). 

Moreover, an increase of this histone mark levels was also observed in the Tolerance 

group at one site (- 300 bp from TSS: 1.35 ± 0.08 vs 1.02 ± 0.08 Control group, p < 

0.05) (Figure 22). 

Finally, there is one site before the TSS in the KOP receptor gene promoter showing an 

increase of H3K4me3 levels (- 300 bp from TSS: 1.49 ± 0.12 vs 1.03 ± 0.11 Control 

group, p < 0.05) (Figure 22).   
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Figure 21. Changes in H3K9/K14ac and H3K9me2 levels at KOP receptor gene 

promoter and body. Real Time qPCR analysis of H3K9/K14ac and H3K9me2 immuno-precipitated 

DNA fragments in the PDYN promoter and gene body in rat AMY. Bar diagram shows the levels of 

specific histone modifications, normalized to total input DNA. Data are represented as Mean ± SEM (n = 

8 rats per group) and analyzed by one-way ANOVA followed by Tukey’s test (* p < 0.05 vs Control 

group; # p < 0.05 vs Tolerance group). 
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Figure 22. Changes in H3K27me3 and H3K4me3 levels at KOP gene promoter and 

body. Real Time qPCR analysis of H3K27me3 and H3K4me3 immuno-precipitated DNA fragments in 

the PDYN promoter and gene body in rat AMY. Bar diagram shows the levels of specific histone 

modifications, normalized to total input DNA. Data are represented as Mean ± SEM (n = 8 rats per group) 

and analyzed by one-way ANOVA followed by Tukey’s test (* p < 0.05, ** p < 0.01 and *** p < 0.001 

vs Control group; ## p < 0.01 and ### p < 0.001 vs Tolerance group). 
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5.8. BLOOD ALCOHOL LEVEL AND ANXIETY-LIKE BEHAVIOR IN THE 

RET MODEL WITH AND WITHOUT NOR-BNI TREATMENT 

The BAL of EtOH, Tolerance and nor-BNI + Tolerance groups is similar suggesting 

that there is no change in EtOH metabolism (Table 8).  

 

 

Animal group mg/dl of EtOH 

EtOH group 84.5 ± 5.50 

Tolerance group 87.2 ± 5.42 

Nor-BNI + Tolerance group 82.2 ± 6.93 

Table 8. The BAL in the EtOH, Tolerance and nor-BNI + Tolerance groups. 

 

 

Results from the EPM test show that nor-BNI treatment was able to produce reversal of 

RET to anxiolytic effects of ethanol (% time spent in open arm: 52.08 ± 2.61 vs 38.76 ± 

2.45 Control group, p < 0.01; and vs 33.11 ± 1.97 Tolerance group, p < 0.001) and % 

number of open arm entries (51.19 ± 1.36 vs 39.78 ± 2.00 Control group, p < 0.01; and 

vs 40.89 ± 2.16 Tolerance group, p < 0.01). However, nor-BNI treatment itself exerts 

anxiolytic effects, with an increase of percentage of time spent in the open arm (50.55 ± 

1.76 vs 38.76 ± 2.45 Control group, p < 0.01) and percentage of number of open arm 

entries (51.00 ± 2.44 vs 39.78 ± 2.00 Control group, p < 0.01).  
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Figure 23. Anxiety-like behavior in RET model with nor-BNI treatment. Elevated 

plus maze exploration (EPM) test has been used to determine anxiety measures. Anxiolytic effect is 

evaluated by percentage of the time spent in the open arm and the open arm entries. Data are presented as 

mean ± SEM (n = 9 rats per group) and are analyzed by one-way ANOVA followed by Tukey’s test (** p 

< 0.01 and *** p < 0.001 vs Control group; ## p < 0.01 and ### p < 0.001 vs Tolerance group). 
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6. DISCUSSION 

The DYN/KOP system has been implicated in modulating EtOH consumption and 

cognitive and affective state associated with alcohol dependence (Walker et al., 2012). 

In particular, the activation of this system induces dysphoric effect promoting alcohol 

intake and anxiogenic-like responses during withdrawal (Walker et al., 2011; Valdez 

and Harshberger, 2012). Therefore, in the present study we investigated the role of 

DYN/KOP system in different model of alcohol tolerance and dependence. 

The first model investigated is an animal model of alcohol-preferring rats represented 

by msP rats. msP rats show spontaneous preference for EtOH and binge-type of 

drinking; moreover, they are highly sensitive to stress and exhibit anxiety and 

depressive-like phenotype that attenuates following alcohol drinking (Ciccocioppo et 

al., 2006). msP rats and their counterpart Wistar were subjected to the chronic 

intermittent two bottles free-choice paradigm; the intermittent exposure to EtOH 

consists in repeated cycles of drinking/withdrawal in order to establish alcohol 

dependence. From the early phase of the exposure msP rats drink significantly higher 

amount of EtOH compared to Wistar ones. Interestingly, approximately at day 15 

animals show an escalation in the alcohol consumption more remarkable in msP than 

Wistar rats; the EtOH consumption remains high until the end of exposure.  

Gene expression analysis was conducted in the AMY and BNST of naïve and alcohol 

dependent animals to identify innate and EtOH-induced differences in PDYN and KOP 

receptor mRNA levels of msP and Wistar rats. msP rats innately show higher levels of 

KOP receptor mRNA in the AMY compared to Wistar animals. Alcohol preference has 

been shown to be modulated by the changes in KOP receptor levels; in fact, KOP 

receptor KO mice showed low alcohol preference (Kovacs et al., 2005). Hence, 

spontaneous preference for alcohol exhibited by msP rats may be related to the high 
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levels of KOP receptor mRNA in the AMY. Moreover, the activation of the DYN/KOP 

system in the extended amygdala can be responsible for depressive and anxiogenic-like 

responses (Chartoff et al., 2012; Knoll et al., 2007; Land et al., 2008). Therefore, the 

high innate levels of KOP receptor mRNA in the AMY may also contribute to the 

anxiety and depressive-like behaviors exhibited by msP rats. Further supporting this 

hypothesis, we observed a decrease of both PDYN and KOP receptor mRNA content in 

the AMY of msP rats after alcohol exposure. It has been demonstrated that msP rats can 

attenuate the anxiety and depressive-like behaviors by alcohol intake and this may 

promote and maintain alcohol-drinking behavior (Ciccocioppo et al., 1999; Ciccocioppo 

et al., 2006). The attenuation of anxious and depressive symptoms may correspond to 

the decrease of the DYN/KOP system gene expression in AMY, suggesting that this 

system could have an important role in promoting alcohol intake and negative 

emotional state associated to alcohol dependence. Finally, chronic EtOH exposure 

induces an increase of KOP receptor mRNA in the BNST of msP rats, suggesting 

alcohol can differently regulate the KOP receptor expression in the AMY and BNST. 

The second model of alcohol dependence investigated is the ethanol exposed model 

using liquid diet. It has been reported that animals exposed to chronic EtOH do not 

show any anxiolytic effect induced by EtOH, but withdrawn rats exhibit anxiety-like 

behavior (Pandey et al., 2008; You et al., 2014). Here, we observed that chronic EtOH 

exposure induces a marked increase in PDYN mRNA levels in the AMY, but not KOP 

receptor. On the contrary, after 24 hours withdrawal both PDYN and KOP receptor 

gene expression is increased. These results suggest that the anxiety state may be 

mediated by to the up-regulation of the DYN/KOP system gene expression. In fact, the 

increase of PDYN mRNA alone could not induce anxiety, but it seems that the increase 

of the whole DYN/KOP system transcription is necessary. Similarly, we observed a 
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decrease of both PDYN and KOP receptor mRNA levels in the AMY of EtOH-exposed 

msP rats, in which attenuation of anxiety and depressive-like behaviors have been 

established. In addition, 24 hours withdrawal induces a decrease of KOP receptor 

mRNA levels in the BNST, thus confirming that opposite consequences on KOP 

receptor are detectable in the AMY and BNST, as observed in msP rats. Hence, the 

dysregulation of the KOP receptor expression in the AMY and BNST may contribute to 

the development of the negative emotional state associated to alcohol dependence.  

We then investigated the role of DYN/KOP system in alcohol tolerance. Despite several 

studies focus on the relevance of this system in alcohol dependence (Walker et al., 

2011; Valdez and Harshberger, 2012; Gillett et al., 2013; Funk et al., 2014), this study is 

the first focusing on the possible implication of DYN/KOP system in RET. It has been 

shown that two same doses of EtOH 24 hours apart do not elicit anxiolytic effect, but an 

alcohol higher dose restores the anxiolytic effect (Sakharkar et al., 2012). Here, we 

confirmed the development of tolerance to the anxiolytic effect of EtOH. Animals 

receiving two EtOH injections 24 hours apart spend almost the same time in the open 

arm of the EPM compared to Control group, and significantly less time compared to rats 

treated with a single EtOH injection, thus indicating that the Tolerance group shows no 

anxiolytic response. The development of RET seems to refer only to the anxiolytic 

effect of EtOH, since the BAL of EtOH and Tolerance groups is similar suggesting that 

there is no tolerance in alcohol metabolism. In addition, considering the number of 

entries, EtOH group has a higher percentage of open arm entries compared to Tolerance 

group, further indicating the anxiolytic effects of alcohol. On the contrary, tolerant 

animals preferentially enter in the closed arm of the maze; therefore, if we consider the 

number of total entries there is no difference between EtOH and Tolerance group 

suggesting that animals do not show any change in general activity of rats. Taken 
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together, these results suggest the development of RET to the anxiolytic effects of 

EtOH. We used this model to investigate the role of PDYN/KOP receptor system in 

RET. 

We observed that EtOH induces a remarkable increase of PDYN mRNA levels, which 

remain higher during tolerance in the AMY. In addition, tolerant rats exhibit increased 

KOP receptor gene expression. The lack of EtOH-induced anxiolytic effect observed in 

the Tolerance group may be related to the up-regulation of the DYN/KOP system 

expression. Interestingly, the DYN/KOP system alterations observed in the AMY are 

similar to those observed in the chronic liquid diet model, suggesting that alcohol 

dependence and RET may share common amygdaloid neuronal mechanisms leading to 

the negative affective consequences. However, different from what observed in the two 

models of alcohol dependence, we did not report any changes in the BNST of tolerant 

animals, suggesting that DYN/KOP system alterations in the BNST may be 

consequences of the primary changes occurring in the AMY. Anyway, the role of BNST 

may be crucial in modulating the anxiety behavior associated to the AUD. In fact, 

Tolerance group has a lack of anxiolytic effect and no alterations in the BNST, while 24 

hours withdrawal rats showed anxiety-like behavior (You et al., 2014) and changes of 

KOP receptor mRNA both in the AMY and BNST.  

Since transcriptional alterations only occur in the AMY, we investigated which 

epigenetic marks could be responsible for the DYN/KOP system changes in RET 

model. In particular, we focused our attention on four histone modifications, the 

H3K9/K14ac and H3K4me3, two marks of the transcriptional active state of the 

chromatin, the H3K9me2 and H3K27me3, two repressive marks. In particular, we 

analyzed these histone modifications at several sites on the PDYN and KOP receptor 

gene promoter and body sequences, where transcription factors, such as CREB and 
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P300, were predicted to bind. The PDYN gene has several sites in which tolerant 

animals show decrease levels of H3K9/K14ac; since PDYN gene expression is 

increased both in EtOH and Tolerance groups, our data suggest that H3K9/K14ac could 

not be primary responsible for the regulation of PDYN transcription. In addition, the 

histone modification H3K9me2 is altered at two sites in EtOH group, and considering 

that it is considered a repressive mark, it may not be involved in the regulation of 

PDYN gene expression. Similarly, results of H3K9/K14ac and H3K9me2 levels at 

different sites of KOP receptor gene suggest that these two histone marks may not be 

primarily involved in modulating the DYN/KOP system gene expression. 

Interestingly, EtOH induces an increase of H3K27me3 levels in PDYN gene. Actually, 

H3K27me3 is generally considered a repressive mark, and gene expression analysis 

revealed that EtOH increases PDYN mRNA levels. However, it has been demonstrated 

that some genes are highly expressed despite a high enrichment of H3K27me3 around 

the TSS (Young et al., 2011). These genes are known as bivalent genes, since the 

H3K27me3 modification simultaneously occurs with the activating mark H3K4me3 in a 

region called bivalent domain (Bernstein et al., 2006; Alder et al., 2010; Mazzarella et 

al., 2011). In agreement with this hypothesis, we observed an increase of H3K4me3 

levels around the TSS of PDYN gene in EtOH group. Although bivalent genes are 

prevalent in embryonic stem cells (Bernstein et al., 2006), our data suggest that EtOH is 

able to induce a pluripotent state of PDYN gene in amygdaloid neurons. Indeed, it has 

been demonstrated that the anxiolytic effect of acute EtOH is associated with increased 

BDNF and Arc (a marker for brain plasticity) expression, as well as increased density of 

dendritic spines in the AMY (Pandey et al., 2008). Therefore, in this context of synaptic 

plasticity induced by acute EtOH, PDYN gene could increase the transcription of its 

mRNA promoted by the bivalent domain. Interestingly, at one site close to the TSS (-
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170 bp) levels of H3K4me3 remain high during tolerance, suggesting that this site may 

be crucial in mediating the PDYN gene expression since mRNA levels also remain high 

during tolerance.  

As mentioned above, the mere increase of PDYN gene expression may not be sufficient 

to block the anxiolytic effect induced by EtOH. Indeed, the lack of anxiolytic behavior 

has been observed in Tolerance group, in which both PDYN and KOP receptor mRNA 

are increased. Epigenetic results revealed that H3K27me3 and H3K4me3 could also 

regulate KOP receptor gene transcription; in this case, acute EtOH only induces 

H3K27me3 increase around the TSS with no changes in H3K4me3 levels. Hence, we 

did not observed any EtOH-induced increase of KOP receptor mRNA and as behavioral 

consequence, animals exhibit anxiolytic responses. On the contrary, an increase of 

H3K4me3 levels is reported at one site close to the TSS (around -300 bp) in Tolerance 

group and this may be responsible for the KOP receptor gene expression increased 

observed in this group. 

Finally, to confirm the involvement of DYN/KOP system in RET, we treated animals 

with the KOP receptor antagonist nor-BNI. It has been reported that nor-BNI is 

effective in attenuating EtOH self-administration in alcohol-dependent animals (Walker 

and Koob, 2008; Walker et al., 2011) and the anxiety-like behavior observed during 

acute EtOH withdrawal (Valdez and Harshberger, 2012). Here, we observed that the 

nor-BNI treatment restores the anxiolytic effect of EtOH in Tolerance group; in fact, the 

time spent in the open arm and open arm entries are higher in nor-BNI + Tolerance 

group compared to tolerant animals. It is likely that nor-BNI treatment functionally 

block the upregulation of KOP receptor observed in the Tolerance group therefore 

preventing the RET to anxiolytic effects of EtOH. However, nor-BNI itself induces 

anxiolytic effect in agreement with previous studies showing that the nor-BNI dose of 
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20 mg/kg induces anxiolytic effects (Knoll et al., 2007; Valdez and Harshberger, 2012). 

Therefore, other studies investigating the specific mechanisms by which nor-BNI 

prevents the RET to the EtOH anxiolytic effects are still needed.  
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7. CONCLUSION 

In conclusion, similar alterations of DYN/KOP system in the AMY have been detected 

in the two alcohol dependence models and RET, arising the hypothesis that the neuronal 

mechanisms leading to the negative affective consequences of alcohol dependence and 

rapid tolerance could be similar. Moreover, the opposite regulation of KOP receptor 

gene expression in the AMY and BNST observed in msP rats and during withdrawal 

after chronic ethanol exposure in unselected stock of rats suggests that the dysregulation 

of the KOP receptor between these areas may contribute to the development of the 

negative emotional state associated to alcohol dependence. 

Finally, epigenetic results highlight that PDYN and KOP receptor gene expression can 

be mainly regulated by H3K27me3 and H3K4me3 marks during EtOH exposure and 

tolerance, suggesting that the modulation of these histone modifications may be useful 

in controlling the DYN/KOP system expression and consequently the development of 

tolerance. 
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CONCLUSIVE REMAKS AND FUTURE DIRECTIONS 

Drug and alcohol dependence is characterized by the occurrence of allostatic state 

represented by a combination of the anti-reward system activation and subsequent 

chronic decrease function of rewards circuits, leading to the compulsive drug seeking 

behavior and loss of control in limiting drug intake (Koob, 2015). In addition, the 

activation of brain stress system contributes to exacerbate the negative emotional state 

associated to alcohol dependence (Koob, 2015).  

Alterations of the endogenous opioid system, in particular the DYN/KOP system, have 

been detected in several animal models of alcohol dependence, and targeting this system 

may contribute to develop new therapeutic approach for alcohol dependence (Koob, 

2014). Other neurotransmitters and factors are studied for their involvement in 

regulating responses to alcohol abuse. For instance, BDNF is deeply involved in 

modulating alcohol intake and emotional state alcohol-related (Logrip et al., 2015; 

Moonat and Pandey, 2012). In the recent years, several studies have been focused on 

epigenetic mechanisms involved in neuroplasticity phenomena related to alcohol abuse 

(Moonat and Pandey, 2012; Robison and Nestler, 2011). 

The present study investigated epigenetic and transcriptional alterations induced by 

alcohol in different paradigms of alcohol exposure. In the first part of this study, we 

focused on a model of BDNF +/- mice, which show spontaneous preference for EtOH 

consumption and high vulnerability to develop alcohol addiction (Hensler et al., 2003; 

McGough et al., 2004; Bosse and Mathews, 2011). Here, we reported that HDACs class 

I are altered in the CPu and PFCx of BDNF +/- animals, suggesting that low levels of 

BDNF affect the HDACs levels. In addition, alcohol can modulate the HDACs class I 

protein levels. Considering the important role of the corticostriatal circuit in alcohol 

dependence mechanism, our results indicate that epigenetic changes may be crucial in 
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modulating neuroplasticity in these brain regions. Data here presented have been 

published in 2015 on the journal Drug and Alcohol Dependence (Caputi et al., 2015). 

In the second part of my PhD course, we transversally explored the DYN/KOP system 

role in models of alcohol dependence and tolerance. Some information have already 

been available on the role of DYN/KOP system in modulating alcohol intake (Walker et 

al., 2012). However, understanding specific mechanisms by which the DYN/KOP 

system control the development of negative emotional state associated with alcohol 

dependence and tolerance can be useful to discover promising therapeutic target.  

Interestingly, results here reported strengthen the hypothesis that similar changes of 

DYN/KOP system can occur during tolerance and dependence in the AMY suggesting 

that these pathologies may share common neuronal pathway alterations. Moreover, it 

seems that the crosstalk of DYN/KOP system between the AMY and BNST may be 

important in promoting alcohol dependence. Epigenetic data here presented report for 

the first time that two histone marks, H3K27me3 and H3K4me3, could mainly regulate 

the DYN/KOP system gene expression during acute EtOH exposure and RET. Taken 

together, all these results present a complete and interesting picture of the DYN/KOP 

system role in alcohol dependence and tolerance, also providing new epigenetic 

mechanisms. 

In conclusion, the discovery of epigenetic mechanisms involved in the neuroplasticity 

phenomena responsible for AUD development could be useful to identify new drugs 

targeting these alterations with more efficiency in treating the AUD and alcohol-related 

mood disorders. 
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