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Abstract 

Acid gases, such as sulphur dioxide and hydrogen halides and – in a broad sense – carbon dioxide, 

are typical pollutants generated by combustion processes. Their removal by means of solid sorbents 

represent an efficient and cost-effective approach in dry acid gas treatment systems for waste 

incineration flue gas, while for CO2 capture the process is exploratively studied as a promising 

alternative to amine scrubbing. The present study addressed both aspects. 

In waste incineration flue gas cleaning, acid gas removal by sorbent injection is a well-established 

process. Nonetheless, a thorough understanding of the gas-solid reactions involved in the process 

has not been reached yet and, thus, the operation of dry treatment systems is still highly empirical. 

In the present study, the process was analysed using different levels of detail: from the microscopic 

level of a lab-scale experimental campaign and phenomenological description of the kinetic and 

mass transfer phenomena governing the gas-solid reaction to the macroscopic level of techno-

economic and environmental assessment of alternative full-scale dry treatment systems. 

With respect to CO2 capture technologies, the process is still in the development stage and research 

is focused on the identification of highly-efficient sorbents. The present study analysed the 

enhancement of CO2 uptake potential of magnesium oxide, a promising sorbent for intermediate-

temperature carbon capture, by means of coating with alkali metal molten salts.  

The joint analysis of gas-solid reaction for flue gas cleaning in two diverse contexts allowed the 

identification of common issues and of possible shared solutions.   
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General Introduction 

“A clever person solves a problem. A wise person avoids it.” This quote attributed to physicist 

Albert Einstein is frequently used when referring to environmental issues to state an important 

concept: prevention is better than cure.  

Historically, environmental problems have been faced by introducing “cures”, i.e. pollution 

mitigation measures. Air pollution has been fought by implementing so-called end-of-pipe 

technologies, like dedusting equipment in energy plants or catalytic converters in cars, to treat 

emissions and reduce the load of pollutants. Likewise, waste accumulation has been faced by 

operating treatment and incineration plants aimed at reducing and sanitising the refuses generated 

by society.     

In the last decades, a novel approach to environmental protection has been increasingly put into 

practice: pollution prevention. Instead of managing a pollutant only after its emission, thus focusing 

on the reduction of its impact on the environment, pollution prevention aims to eliminate pollution 

at its source. Typical examples of prevention measures are the modification of a production process 

in order to generate less waste, the substitution of toxic chemicals with non-toxic alternatives, the 

implementation of water and energy conservation strategies, the recycling and reusing of materials. 

Intertwining concepts proper of engineering and management, of design and sociology, pollution 

prevention has been truly a Copernican revolution in the field of environmental protection.  

Yet, pollution prevention cannot be an all-healing panacea. Although prevention strategies can 

significantly curb our environmental impact, human activity still needs inherently polluting 

activities. Industries such as ceramics, glass manufacturing or steelmaking, which basically relies 

on thermal processes, unavoidably emit airborne pollutants. The sorted fractions of municipal and 

industrial waste can be recycled and reused to greater extent, but the management of residual 

unrecyclable waste fractions still requires incineration, in order to avoid landfilling. Even in the 

power sector, despite the remarkable progresses of renewable sources, the consumption of fossil 

fuels is expected to steadily increase in the upcoming years, as the thirst for cheap energy of 

emerging economies keeps growing and the political support for CO2 emission targets worldwide 

remains lukewarm.  

In this framework, the “clever person” of Einstein’s quote is still needed. Since we are not going to 

get rid of certain polluting activities any time soon, the optimisation of current pollution mitigation 

technologies and the implementation of new ones will still be relevant points in the environmental 

protection agenda. Problems typical of the process and chemical engineering await solution in order 

to further improve current end-of-pipe approaches and to start up new technologies to tackle new 

target pollutants such as CO2.  

*** 

The present PhD work aimed at offering a contribution towards a better understanding of theoretical 

and operational aspects in acid gas removal processes of either current industrial relevance (HCl 

and SO2 removal in waste incinerators) or perspective interest (pre- or post-combustion CO2 

capture). The manuscript is organised as follows. 

Part I of the thesis provides the general framework in which the present PhD project finds its 

motivation. Targets of the study are acid gases: HCl, SO2, HF and, in a broad sense, CO2. Their 

characteristics and the environmental problems associated with their emission in industrial 
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processes are illustrated in chapter 1. Chapters 2 and 3 provide the state of the art of acid gas 

removal in Waste-to-Energy plant and CO2 capture technologies, respectively. Chapter 4 outlines 

the pressing research needs which motivates the present study. 

Part II is focused on the analysis of acid gas removal by solid sorbents in the Waste-to-Energy 

context. The process is explored at different levels. Chapter 5 shows an experimental investigation 

of the gas-solid reaction between Ca(OH)2 and HCl (the most relevant target acid pollutant for WtE 

plants), testing the influence of different operating parameters and clarifying doubts regarding the 

actual solid product of chloridisation. Chapter 6 presents a phenomenological model for dry acid 

gas removal, based on the description of kinetics and mass transfer phenomena. The model is 

validated against both relevant literature data and experimental data illustrated in the previous 

chapter. Chapter 7 shifts the attention to a simplified approach to acid gas removal modelling: an 

empirical model, calibrated on operational plant data, is presented as a useful tool for process 

optimisation of full-scale dry treatment systems. This modelling approach is applied to an economic 

comparison between two-stage and benchmark single stage dry acid gas removal configurations. 

Chapter 8 expands the economic process optimisation shown in chapter 7 to a broader sustainability 

analysis, taking into account the indirect environmental impacts generated by the supply and 

disposal chains of solid reactants and residues. Final considerations about the overall optimisation 

of acid gas removal systems are drawn.  

Part III reports the investigation of CO2 capture by MgO-based sorbents. Chapter 9 introduces the 

research of new CO2 sorbents (also briefly discussing the possibility of re-use of aicd gas removal 

solid residues for CO2 capture) and illustrates potentialities and limitations of MgO as CO2 sorbent, 

identifies molten salt promotion as a viable route for the enhancement of reactivity and presents a 

facile and reproducible synthesis protocol for alkali metal nitrate-coated MgO sorbents. Chapter 10 

reports the CO2 uptake performances of the synthesised materials and delves into a spectroscopic 

investigation of the actual mechanisms governing MgO carbonation, eventually providing 

indications for further research in the area.  

The general conclusions highlight the cross problems identified between the two gas-solid removal 

processes respectively shown in Part II and Part III and the common strategies carried out to 

overcome them.  

 

Alessandro Dal Pozzo 
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Part I 

Acid gas removal by dry processes  
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1  Acid gases 
1.1 Typical acid pollutants in flue gases from combustion processes 
Acid gases are a class of atmospheric pollutants emitted by combustion processes, whose main 

components are sulphur dioxide and hydrogen halides. They are grouped on the basis of their acid 

behaviour, which determines their hazardous profile as corrosive substances, toxic compounds and 

precursors of environmental acidification, but also defines the chemical principle allowing their 

abatement in flue gas cleaning systems (see section 1.5).  

Figure 1.1 summarises the expected concentration range of acid pollutants in raw exhaust gas for 

different industrial processes. The present thesis will make specific reference to the waste 

incineration sector, since waste-to-energy (WtE) facilities – especially in Europe – are the most 

challenging proving ground for acid gas removal processes, because of the combined effect of 

stricter emission limit values at stack and higher loads of pollutants in the untreated gas. 

Nonetheless, findings and indications obtained for WtE plants are exportable to other relevant 

industrial contexts where acid gas control is a concern and more demanding emission regulations 

have been recently issued (BREF GLS, 2012). Furthermore, the present thesis identifies an 

interesting parallelism between concepts and issues proper of dry acid gas treatment and the 

challenges faced by the carbonate looping technology in the novel field of CO2 pre- and post-

combustion capture (see chapter 3).  

 

Figure 1.1. Typical concentration range of acid contaminants in the flue gas of some industrial processes.  

 

1.2 Sulfur dioxide and acid rains 
Sulphur dioxide (SO2) is a typical fuel-related contaminant of combustion off-gas. In waste 

incineration, its presence in the flue gas is related to the combustion of organic substances, due to 

the elementary oxidation reactions of S and H2S (Niessen, 2002). It is a major air pollutant, carrying 

significant impacts upon human health and integrity of habitats (EPA, 1999).  

In particular, sulfur dioxide emissions have been a historical precursor to acid rain. The collective 

term covers a variety of phenomena connected to the atmospheric precipitation of acid substances 

(acid rainfall, snowfall and fog). In addition to moist deposition, acid gases can also precipitate due 

to dry deposition on particulate matter, fumes and aerosol. Acid precipitations, having a pH lower 
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than 5 (Baird and Cann, 2008), cause soil acidification, suppress microbial fauna, wash nutrients out 

of terrains, dissolve and mobilise other toxic substances like aluminium. All these effects contribute 

to the weakening of vegetation. Thin soils, poor in organic matter, like the alpine soils, are 

particularly vulnerable (Krug and Frink, 1983). Likewise, effects on aquatic ecosystems are severe, 

since rivers and lakes – being the final receptors of meteoric waters – suffer the accumulation of the 

precipitated acid substances.    

Sulfur dioxide, along with other precursors like nitric oxide (NO), is the primary pollutant 

responsible for acid rain. During the transport of the air masses containing SO2, the primary 

pollutant is transformed in the actual strong acid provoking acid rain, i.e. sulphuric acid (H2SO4):  

𝑆𝑂2 + 𝐻2𝑂 +
1

2
𝑂2 → 𝐻2𝑆𝑂4 1.1 

Then, acid rain containing H2SO4 can precipitate far downwind from the original source of SO2 

emissions. For instance, acid rain was first scientifically characterised in Norway and Sweden in the 

1960s (Revelle and Revelle, 1992) and the Swedish scientist Svante Odén found enough evidences 

linking the acidification of Swedish lakes to pollutants emitted abroad (Odén, 1968) to allow 

Sweden drawing international attention on the issue of transboundary pollution at the 1972 United 

Nations Conference on the human environment (Schreurs, 2007). Nowadays, a similar pattern of 

long-range transport of pollutants is observed in China, where the South-eastern regions suffer the 

main effects of acid precipitations although coal burning and SO2 emissions are mainly 

concentrated in North-eastern regions (Tang and Wu, 2012).  

1.3 Hydrogen halides and airborne toxicity 
Hydrogen halides are diatomic inorganic compounds formed by a hydrogen atom and a halogen. 

Hydrogen chloride is the most abundant acid gas in flue gases generated in municipal solid waste 

incinerators. The main reaction responsible for the emission of HCl during waste combustion is the 

dechlorination of Cl-containing plastics (Matsukata et al., 1996):  

𝑅 − 𝐶𝑙 + 𝑂2 → 𝐻𝐶𝑙 + 𝐶𝑂2 + 𝐻2𝑂 1.2 

Cl-containing plastics include polyvinyl chloride (PVC, 59.0 wt. % of Cl), polyvinylidene chloride 

(PVDC, 73.2 wt. % of Cl) and polychloroprene (Neoprene, 39.5 wt. % of Cl). Conversely, 

inorganic chlorine (e.g., table salt) cannot release HCl at the typical temperatures attained in the 

combustion chamber (Wey et al., 2001).  

Hydrogen fluoride is the second most relevant halide released by waste combustion, although its 

concentration in the exhaust gas is usually 2-3 order of magnitudes lower than that of HCl (Dal 

Pozzo et al., 2017). Specific industrial waste fractions can be particularly rich in fluorine, like 

automotive shredder residues, which show F mass fractions up to 0.5-0.75% in dry waste, generally 

coupled with a high Cl content (Viganò et al., 2010).  

Similarly, halogens with higher atomic number are transformed during combustion in the respective 

halides. For example, the combustion of electronic boards containing brominated flame retardants 

gives rise to the emission of hydrogen bromide (Barontini et al., 2005). Likewise, exceptionally 

high loadings of pharmaceutical waste containing iodine can provoke a spike in hydrogen iodide 

concentration in flue gas (Zemba et al., 2013), generating a purple-tinted plume (Figure 1.2) and an 

understandable alarm in the nearby population.   
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Figure 1.2. Purple-coloured plume emanating from the exhaust stack of the WtE plant in Pisa (Italy) due to 

hydrogen iodide emission (March 2007).   

The emission of hydrogen halides can cause harm to both human health and ecosystem integrity. 

Concerning damages to human health, the halides are classified as toxic compounds. An evaluation 

of the dangerousness of acid gases is given by toxicological threshold values such as the ones 

presented in Table 1.1. The IDLH (Immediately Dangerous to Life or Health) is the minimum 

concentration of an airborne contaminant for which a 30 min exposure is “likely to cause death, or 

immediate or delayed permanent adverse health effects, or prevent escape from such an 

environment”. The AEGL (Acute Exposure Guideline Levels) values are the respective 

concentrations of an airborne pollutant which cause irritation and reversible effects (AEGL-1), 

permanent or long-term damages (AEGL-2), death risk (AEGL-3).  

Hydrogen chloride is irritating for eyes and skin. It forms corrosive hydrochloric acid on contact 

with water found in body tissue. Acute exposure can cause eye burns, inflammation and ulcer in the 

respiratory tracts and, in severe cases, pulmonary edema (EPA, 1999). Concerning chronic effects, 

long-term exposure to HCl is linked to gastritis, chronic bronchitis, dermatitis and 

photosensitisation (Hazardous Substances Data Bank, 1993; CalEPA, 1999). 

Hydrogen fluoride is extremely corrosive and toxic. The affinity of the F
-
 anion towards the 

ubiquitous biologically important Ca
2+

 and Mg
2+

 cations can cause severe interference with blood, 

bone and tissue calcium levels (Hoffman et al., 2007). For instance, the CML-IA methodology for 

life cycle assessment attributes to HF a human toxicity potential three orders of magnitude higher 

than those of HCl and SO2 (Huijbregts et al., 2000), 

Table 1.1. AEGL (60 min) and IDLH threshold limit values for the main acid gaseous species. Source: 

CAMEO Database, U.S. EPA.    

Composto 
AEGL-1 

(ppm) 

AEGL-2 

(ppm) 

AEGL-3 

(ppm) 

IDLH 

(ppm) 

SO2 0.2 0.75 30 100 

HCl 1.8 22 100 50 

HF 1 24 44 30 
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1.4 Carbon dioxide and the climate change challenge 
Although not usually included in the acid gas category, carbon dioxide (CO2), the product of 

complete combustion of carbon, is slightly acidic in nature. Its concentration in a typical flue gas 

exiting from a combustion chamber ranges from 8 vol. % for waste-to-energy plants (BREF WI, 

2006) to 15 vol. % for coal-burning power plants (Dieter et al., 2014).  

Carbon dioxide is not a pollutant stricto sensu, being non-toxic and non-harmful, unlike the acid 

gases presented so far. However, worldwide concern has grown in the last decade on the causality 

between CO2 emissions and global warming. CO2 is a so-called greenhouse gas, i.e. it absorbs and 

emits thermal radiation in the infrared range, thus producing an effect which is actually essential in 

keeping Earth surface at an average temperature compatible with life. Yet, the atmospheric 

concentration of CO2 has increased by more than 45% since 1750 (see Figure 1.3), as a 

consequence of human industrial activity and fossil fuel utilization, and this unprecedented trend 

has strengthened the radiative forcing of the greenhouse effect, leading to a steady increase in 

average global surface temperature (Figure 1.4). Since the scientific community has reached an 

overwhelming consensus regarding the anthropogenic cause of climate change (Cook et al., 2016) 

and world governments have decided to take action (Paris Agreement, United Nations, 2015), 

technological solutions for the mitigation of CO2 emissions are under widespread study and 

deployment.  

 

Figure 1.3. The Keeling curve of CO2 atmospheric concentration in the last 300 years (Scribbs Institution of 

Oceanography, 2016.   
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Figure 1.4. Global temperature anomaly in the last 150 years (IPCC, 2015).   

 

1.5 Acid neutralisation 
Tackling acid gas emissions has been one of the first challenges in the history of environmental 

protection and several environmental milestones have been put with reference to acid gases (Figure 

1.5). Actually, HCl has been the first major pollutant to be object of a pollution control legislation. 

The Leblanc process, the earliest industrial process for the production of soda ash – a crucial 

chemical in the glass, textile, soap and paper manufacturing –, generated significant amounts of 

HCl, which were simply vented into the atmosphere. In order to target these noxious emissions, in 

1863 the British Parliament passed the so-called Alkali Act, a law imposing that no more than 5% 

of the hydrochloric acid produced by soda plants could be vented to the atmosphere (Radojevic and 

Bashkin, 2006).  

 

Figure 1.5. Some key events in the history of acid gas emission control.  

Later, with the exponential growth of industrial production in the late XIX and early XX century, 

the soaring energy demand of the Western world was satisfied with increasing coal burning 

(Tertzakian, 2007), resulting in spiking SO2 emissions and consequent acid raining. As mentioned 

in section 1.2, the first scientific observations about acid rain damages in Scandinavia in the 1960s 
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raised global awareness on the issue, evidencing that pollution does not respect regional or national 

boundaries and atmospheric contaminants can undergo long-range transport. This leaded to the 

ratification of the international Convention on Long-Range Transboundary Air Pollution (1979) in 

Helsinki, which obligated the signatory countries to curb SO2 emissions. A decade after, the U.S. 

EPA Acid Rain Program (1990) introduced the first emissions trading scheme in history, a market-

based initiative aimed at promoting efforts in reducing SO2 emissions. Thanks to a combination of 

worldwide political will and efficient technological solutions, the global emissions of sulfur dioxide 

have been steadily declining since the 1980s (Smith et al., 2011).  

Flue gas cleaning systems currently implemented in power plants generate emissions that are 4-5 

orders of magnitude lower than before environmental legislation against acid gases was conceived 

(Damgaard et al., 2010). The chemical principle behind the vast majority of  technologies for the 

abatement of SO2, HCl and HF is the acid-base neutralisation:  

𝐵𝑎𝑠𝑒 + 𝐴𝑐𝑖𝑑 → 𝑆𝑎𝑙𝑡 +𝑊𝑎𝑡𝑒𝑟 1.3 

Putting the acid gaseous pollutants in contact with a basic reactant generates a salt, either in liquid 

or solid form, thus removing the acid compounds from the flue gas. Neutralisation can be 

performed by injecting in the flue gas a basic solution (wet scrubbing) or a powdered basic solid 

sorbent (dry scrubbing), as detailed in chapter 2. In spite of the apparent simplicity of equation 1.3, 

acid gas neutralisation is a complex process, encompassing a stunning richness of chemical reaction 

engineering principles, and research is still needed to grasp a fundamental understanding of the 

involved phenomena and perform a fully aware process optimisation (see the research needs listed 

in chapter 4).  

  



16 
 

2 Acid gas abatement in Waste-to-Energy plants: state of the 

art 
2.1 Overview of air pollution control in the waste incineration sector 
The thermal treatment of waste plays a relevant role even in the current paradigm of circular 

economy (European Commission, 2015), by contributing to landfill diversion (Nizami et al., 2016) 

and by guaranteeing energy recovery from those wastes for which recycling would be technically 

and economically unfeasible (Arena, 2015). The emission of pollutants typically related to the 

combustion of wastes is the main environmental drawback of a waste-to-energy (WtE) process 

(Ouda et al., 2016). However, properly operated plants can greatly reduce the load of pollutants 

emitted to atmosphere (Wojdyga et al., 2014). 

As mentioned in section 1.1, acid gases are typical pollutants in the flue gas emitted by waste 

combustion processes. Historically, acid gas treatment has been implemented by means of wet 

scrubbers, i.e. washing flue gas with basic solutions, taking advantage of both the high water 

solubility and acid/base reactivity of acid pollutants (Damgaard et al., 2010). In the last decades, the 

traditional wet processes have been increasingly replaced by the cheaper dry treatments, based on 

the injection of solid reactants in the flue gas. Surveying data from national environmental agencies, 

utility companies and industry consortiums (see Dal Pozzo et al., 2016), the market shares of wet, 

dry and semi-dry acid gas treatment systems over time in Europe were reconstructed in Figure 2.1, 

showing the unambiguous positive trend for the dry and semi-dry processes.  

The basic scheme for dry acid gas removal is the so-called dry sorbent injection (DSI). It consists in 

the direct injection of a powdered basic sorbent (typically, calcium hydroxide or sodium 

bicarbonate, as detailed in section 2.2 and 2.3 respectively) in the flue gas ductwork, downstream of 

the air preheater and upstream of  a dedusting equipment, such as an electrostatic precipitator (ESP) 

or a fabric filter, which collects the solid residues generated by acid gas neutralisation. When a 

fabric filter is used as dedusting equipment, the injected sorbent powders get captured by the filter 

bags, forming a filter cake which acts as a fixed bed reactor towards the flowing acid gases, actually 

incrementing the performance of the system.  

 

Figure 2.1. Market shares of wet, semi-dry and dry acid gas treatment units in European WtE plants.   
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The advantages attracting the interest of plant operators and technology suppliers towards dry 

methods are, mainly, i) lower capital and maintenance costs due to lower equipment complexity; ii) 

easier and cheaper handling of solid residues compared to the wastewater generated by wet 

methods; iii) avoidance of “rain-out” issues at stack due to the condensation of wet flue gas.  

The downside of dry methods is the intrinsic lower removal efficiency of gas-solid reactions when 

compared to gas-liquid reactions (Vehlow, 2015). This generally leads to the feed of solid reactant 

in relevant stoichiometric excess. Therefore, improving the removal efficiency to sorbent 

consumption ratio is a paramount target, pursued by the novel design choices illustrated in section 

2.4 and by renewed efforts in enhanced process modelling (see section 4.2).  

2.2 Solid sorbents for acid gas removal: Ca-based sorbents 
Calcium-based sorbents have been the first powders to be considered for dry acid gas removal. 

Earlier approaches focused on the use of raw limestone (chemically, calcium carbonate, CaCO3) to 

tackle HCl and SO2 emissions at high temperature, directly in the combustion chambers of coal-

fired or WtE plants (Petrini et al., 1979). Then, industrial interest quickly shifted towards calcium 

hydroxide, Ca(OH)2, the product of the calcination and subsequent hydration of limestone. 

Commonly known also as hydrated lime or slaked lime, Ca(OH)2 is more reactive than calcium 

carbonate, mainly because of the increased basic strength (Foo et al., 2016) and the higher porosity 

(Weinell et al., 1992).  

Calcium hydroxide is generally assumed to react with HCl according to the following reaction: 

𝐶𝑎(𝑂𝐻)2 + 2 𝐻𝐶𝑙 → 𝐶𝑎𝐶𝑙2 + 2 𝐻2𝑂 2.1 

although relevant studies (Allal et al., 1997; Bodénan and Deniard, 2003; Bogush et al., 2015) point 

out that the actual stable solid product of HCl removal by Ca(OH)2 is calcium hydroxychloride 

(CaOHCl), formed via partial chloridisation: 

𝐶𝑎(𝑂𝐻)2 + 𝐻𝐶𝑙 → 𝐶𝑎𝑂𝐻𝐶𝑙 + 𝐻2𝑂 2.2 

This topic will be explored in chapter 5.  

Towards other acid gases, Ca(OH)2 reacts as follows: 

𝐶𝑎(𝑂𝐻)2 + 2 𝐻𝐹 → 𝐶𝑎𝐹2 + 2 𝐻2𝑂 2.3 

𝐶𝑎(𝑂𝐻)2 + 𝑆𝑂2 → 𝐶𝑎𝑆𝑂3 + 𝐻2𝑂 2.4 

At the typical operating temperatures for acid gas removal, calcium sulphite (CaSO3) further 

oxidises to calcium sulphate (anhydrite): 

𝐶𝑎𝑆𝑂3 +
1

2
𝑂2 → 𝐶𝑎𝑆𝑂4 

2.5 

Conversion to sulphate is generally incomplete and both sulphite and sulphate can be found in the 

reaction products (Bodénan and Deniard, 2003).  

In addition, the undesired interaction between Ca(OH)2 and the carbon dioxide in flue gas cannot be 

neglected:  

𝐶𝑎(𝑂𝐻)2 + 𝐶𝑂2 → 𝐶𝑎𝐶𝑂3 + 𝐻2𝑂 2.6 

Although carbon dioxide shows only limited acidic behaviour, its concentration in combustion flue 

gases is 3-4 orders of magnitude higher than HCl or SO2, hence up to 30% of the injected hydrated 
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lime can be subtracted to useful acid gas removal by competing carbonation (Antonioni et al., 

2014).      

When in-duct injection of hydrated lime takes place at high temperatures (> 400 °C, Gullett et al., 

1992), calcium hydroxide is dehydrated to quicklime (calcium oxide, CaO): 

𝐶𝑎(𝑂𝐻)2 → 𝐶𝑎𝑂 +𝐻2𝑂 2.7 

Calcium oxide presents higher porosity and specific surface area than calcium hydroxide, but its 

prolonged exposure to heat can trigger severe sintering (see paragraph X). 

Figure 2.2. Gas-solid reaction according to the shrinking core model. 

Kinetics and mass transfer phenomena involved in the dry sorption of acid pollutants by Ca(OH)2 

will be thoroughly discussed in chapter 6. Here, in order to understand the conceptual framework 

behind the design of dry acid gas treatment systems (paragraph 2.4), the mechanisms governing the 

gas-solid reaction between Ca(OH)2 and acid gases can be simplified according to the so-called 

shrinking core model (Levenspiel, 1998). Chemical reaction takes place at the interface between gas 

and sorbent particles, where a shell of solid products (product layer) start accumulating. As reaction 

proceeds, the reacting particle gets consumed and shrinks, while product layer thickness increases 

(Figure 2.2). Consequently, acid gas sorption is mainly controlled by kinetics in the first seconds 

and by diffusional limitations afterwards.  

The ideal range of temperatures for Ca(OH)2 injection lays between 120 and 160 °C (Dal Pozzo et 

al., 2016), with improved efficiency as temperature decreases, because – while the water content in 

the flue gas remains constant – relative humidity (RH) increases (Harriott, 1990). The promoting 

effect of RH on the reactivity of Ca-based sorbents can be explained with reference to the shrinking 

core model: as sketched in Figure 2.3, adsorbed water can induce a rearrangement of the crystalline 

structure of the product layer, liberating new surface for reaction. Fonseca et al. (1998) advanced 

this hypothesis by comparing SEM images of lime reacted with HCl in dry or wet environment and 

Bausach et al. (2006) provided AFM imaging proving water-induced rearrangement of sulfate-

based product layers.  

 

 

 

sorbent 

particle 

unreacted core 

product layer 
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Figure 2.3. Product layer formed a) in dry gas conditions, b) in wet gas conditions. 

The solid residues of acid gas abatement by Ca(OH)2 are generally known as calcium-based waste 

(CBW) or residual calcium chemicals (RCC). RCC are a mixture of the products of reactions 2.2, 

2.3, 2.4, 2.5 plus unreacted calcium hydroxide. In addition, since they are usually collected by the 

first dedusting equipment in the flue gas cleaning line of a WtE plant, RCC are mixed with fly ash 

coming from the combustion chamber and activated charcoal injected for dioxine and furans 

adsorption.  

Although several research projects have recently been started up with the aim of exploring recycling 

routes for RCC (Margallo et al., 2015), the actual fate of RCC across Europe is the disposal in 

landfills for hazardous materials or in underground storage sites (ISWA, 2008).  

2.3 Solid sorbents for acid gas removal: Na-based sorbents 
The use of sodium carbonate (Na2CO3) as acid gas removal agent was first explored in the 1980s 

(Mocek et al., 1983; Kimura and Smith, 1987) and became a widespread approach in WtE plants in 

the mid-1990s (Vehlow, 2015), when Solvay S.A. marketed the so-called NEUTREC process 

consisting in the injection of NaHCO3 in flue gas and its subsequent collection by means of a fabric 

filter or electrostatic precipitator.  

When dry NaHCO3 is injected into the hot flue gas duct, it quickly decomposes to Na2CO3 via the 

reaction: 

2 𝑁𝑎𝐻𝐶𝑂3 → 𝑁𝑎2𝐶𝑂3 + 𝐻2𝑂 + 𝐶𝑂2 2.8 

The thermal decomposition is an almost instantaneous and complete process at temperature higher 

than 130 °C (Hartman et al., 2013). Nonporous bicarbonate particles release water vapour and 

carbon dioxide, turning into porous sodium carbonate (see Figure 2.4). Then, sodium carbonate 

reacts with the acid gases according to the following schemes: 

𝑁𝑎2𝐶𝑂3 +  2 𝐻𝐶𝑙 → 2 𝑁𝑎𝐶𝑙 + 𝐻2𝑂 + 𝐶𝑂2 2.9 

𝑁𝑎2𝐶𝑂3 + 𝑆𝑂2 +
1

2
𝑂2 → 𝑁𝑎2𝑆𝑂4 + 𝐶𝑂2 

2.10 

𝑁𝑎2𝐶𝑂3 +  2 𝐻𝐹 → 2 𝑁𝑎𝐹 + 𝐻2𝑂 + 𝐶𝑂2 2.11 

Thermal decomposition, sometimes referred as thermal activation (Brivio, 2007) in order to 

highlight its role in triggering reactivity towards acid gases, is a crucial step in generating a highly 

porous material. 

 

 

a b 
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Figure 2.4. SEM images of: a) raw sodium bicarbonate, b) sodium carbonate obtained via reaction 2.8 

(source: Kong and Davidson, 2010).  

The kinetics of acid gas sorption by Na2CO3 is knowingly higher than that of Ca-based sorbents 

(Duo et al., 1996; Antonioni et al., 2014; Vehlow, 2015). Although scholarly literature regarding 

gas-solid reactions between Na2CO3 and acid pollutants is limited (mainly due to the fact that Na-

based acid gas sorption is patented), the higher performance of Na2CO3 when compared to Ca(OH)2 

might be ascribed to an higher intrinsic chemical reaction rate and a lower volume expansion 

associated with acid gas neutralisation.  

In particular, volume expansion of the solid phase during sorption is a critical factor limiting the 

total molar conversion of sorbent particles. For example, with reference to reaction 2.1, the molar 

volume of CaCl2 is larger than that of Ca(OH)2 and, thus, the reaction causes an expansion in the 

pores of the solid, eventually filling the voids within sorbent particles before 100% conversion is 

reached. The theoretical final conversion due to the complete filling of intraparticle voids (Simons 

and Garman, 1986) can be expressed through eq. 2.12: 

𝑋𝑠,𝑚𝑎𝑥 =
𝜀𝑝

(1 − 𝜀𝑝)(𝛼 − 1)
 2.12 

where εp is the initial void fraction of the sorbent and α the volumetric expansion factor, defined as 

the ratio of the molar volume of the solid product to the molar volume of the solid reactant.  

Figure 2.5 shows the maximum theoretical conversion of sorbent exposed to HCl as a function of its 

initial void fraction and the volumetric expansion factor associated with chloridisation. The 

conversion of Ca(OH)2 to anhydrous CaCl2 entails an α = 1.54, while, if the CaCl2 product is 

assumed to be in dihydrate form, α = 2.39. Significantly less volume expansion (α = 1.29) is 

associated with Na2CO3 chloridisation. This means that, while a particle of Na2CO3 with a porosity 

εp = 0.3 can be in theory entirely converted to NaCl, a particle of Ca(OH)2 with the same starting 

porosity can only reach a maximum theoretical conversion of 80% if the product is anhydrous 

CaCl2 and 30% if the product is CaCl2 dihydrate. Further details about the importance of the issue 

of incomplete conversion in formulating a phenomenological model for Ca(OH)2-based acid gas 

removal will be given in chapter 6. As for the moment, it is sufficient to state that the absence of 

theoretical limitations to complete conversion is one of the main advantages of Na-based sorbents 

over Ca-based ones.  
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Figure 2.5. Maximum theoretical conversion for sorbent chloridisation as a function of its initial void 

fraction and the volumetric expansion associated with the specific reaction (eq. 2.12).   

The typical range of temperatures for NaHCO3 injection in the flue gas is 140-300 °C (Dal Pozzo et 

al., 2016), with slight improvement of performance as temperature increases due to kinetic effects. 

The residues of acid gas neutralisation by NaHCO3 are known as sodium-based waste (SBW) or 

residual sodium chemicals (RSC) and contain the products of reactions 2.9, 2.10 and 2.11. Unlike 

RCC, RSC benefits from a market-ready solution for their recycling, the brine recovery process 

performed by Solvay S.A. in two dedicated plants, in France and Italy (Brivio, 2005). The 

precondition is the separate collection of RSC and fly ash, which can be achieved by installing a 

dedusting equipment upstream of the NaHCO3 injection point. The process for recycling RSC is 

described by several sources (Brivio, 2005; Ninané et al., 1995; ISWA, 2008; Solvay, 2014). The 

RSC are mixed with water in order to obtain a saturated brine of the soluble salts (NaCl, Na2SO4, 

Na2CO3), while the heavy metals and impurities precipitate. Additives such as sodium sulphide, 

sodium silicate and iron chloride are usually added in this phase. The brine is then filtered in a filter 

press, and further purified by activated charcoal and ion exchange resins. The depurated brine is 

suitable for use as a raw material in the sodium carbonate production (BREF LVIC-S, 2007). 

2.4 Review of the latest developments in dry sorbent injection technologies 
As shown in section 2.1, dry treatment systems are increasingly valued as reliable and cost-efficient 

solutions for acid gas control in the waste incineration sector. However, European recommendation 

on best available techniques (BAT) for flue gas cleaning in WtE plants, collected in a dedicated 

BAT reference document, was released more than 10 years ago (BREF WI, 2006). Therefore, the 

document mentions only the simple DSI as state-of-the-art dry treatment technique, providing a 

narrow and incomplete representation of the wide gamma of dry acid gas removal solutions 

currently available on the market. The following overview, based on the technical Italian paper by 

Dal Pozzo et al. (2016), aims at filling the gap by concisely sketching the main innovations 

introduced to couple the compliance to stricter emission limit values (Directive 2010/75/EU) with 

cost optimisation. Some of the systems described hereunder are sketched in Figure 2.6. 
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DSI with pre-conditioning. At the typical operating temperatures of DSI systems (120-180 °C), 

even flue gases with relatively high water content (10-15 vol. %) such as the ones deriving from 

waste combustion present values of relative humidity only at 1-5%. Therefore, considering the link 

between RH and the acid gas sorption performance of Ca-based sorbents, further flue gas 

humidification is required if a European WtE plant has to rely only on a single stage injection of 

Ca(OH)2 in order to remove acid gases down to the emission limit values. Pre-conditioning is 

performed by installing a quenching tower upstream of the lime injection point: spraying pulverised 

water in the ductwork simultaneously increases the water content of the flue gas and decreases its 

temperature, rising its relative humidity. DSI units with pre-conditioning, fed with Ca(OH)2, are 

actually able to comply with the limits set by Directive 2010/75/EU and, for instance, have been the 

adopted solution in the recently-built MSWIs in Bialystok and Bydgoszcz (Poland). In order to 

reduce the consumption of fresh lime, a common approach is to recirculate part of the RCC 

collected by the fabric filter.  

Furnace sorbent injection (FSI). Another alternative to simple DSI is the sorbent injection 

directly performed in the combustion chamber, in order to take advantage of the higher chemical 

reaction rate achievable at high temperatures (850-1000 °C). The drawback is that high 

temperatures also trigger sorbent sintering, drastically reducing the active surface area of reactant 

particles.  

While historically FSI was the first approach at acid gas removal by limestone, as mentioned in 

paragraph 0, it has been recently revaluated after the successful testing of a dolomitic sorbent – 

commercially known as Depurcal – in three WtE plants in Northern Italy since 2011 (Biganzoli et 

al., 2015). The adopted sorbent is a mixture of calcium hydroxide and magnesium oxide 

(Ca(OH)2∙MgO, Ca/Mg ratio > 1.4) resulting from the calcination of dolomite. Upon furnace 

injection, Depurcal undergoes a thermal decomposition similar to the one of NaHCO3 in DSI, 

releasing hydration water and developing a microporous structure. Unlike regular Ca-based 

sorbents, Depurcal does not suffer significant sintering. Indeed, while acid gas sorption is mainly 

performed by the calcium fraction of Depurcal, the almost inert MgO acts as a structural agent, 

preventing the collapse of the pores thanks to its high resistance to sintering (the concept will be 

expanded in section 3.3 with reference to solid sorbents for CO2 capture).  

Biganzoli et al. (2015) observed that FSI with Depurcal allowed an average reduction of the 

loadings of SO2 and HCl to the flue gas cleaning line of 25 and 70%, respectively, and resulted 

particularly helpful in attenuating short-time spikes of acid gas emissions.  

Spray dryer absorption (SDA). SDA equipments are used to further enhance the reactivity of Ca-

based sorbents thanks to the promoting effect of water. In these systems, Ca(OH)2 is first 

suspended in water to produce a milk of lime with a 20-25 wt. % concentration (Gambarè, 2013) 

and then the obtained basic slurry is sprayed in a scrubber vessel. The contact between the flue gas 

and the pulverised slurry promotes the sequestration of acid pollutants via mass transfer from the 

gas phase to the liquid phase and subsequent chemical reaction. At the same time, the water content 

in the slurry evaporates, leading to the formation of solid residues.  

The main parameter governing the process is the so-called approach to saturation temperature 

(AST), defined as the difference between the temperature of the inlet flue gas and its adiabatic 

saturation temperature (Harriott et al., 1991). SDA performance increases when AST decreases (i.e., 

when RH increases), but at the same time a low AST implies problems in terms of acid 

condensation in the vessel and agglomeration of the filter cake on the bags of the fabric filter 

downstream. Optimal values of AST lie between 10 and 15 °C (Srivastava and Jozewicz, 2001).  
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The semi-dry approach of SDA systems shares the advantages of a typical wet process (viz. low 

consumption of reactants and high removal efficiency), without the drawback of generating liquid 

residues. Nonetheless, in order to avoid costs and complications related to slurry preparation, the 

most recent design practices tend to separate the injections of water and lime, thus resorting to the 

aforementioned DSI with pre-conditioning or to the so-called CDS systems. 

 

Circulating dry scrubbing (CDS). CDS are semi-dry solutions based on Ca(OH)2 injection which 

are aimed at achieving high acid gas removal efficiency with the lowest sorbent consumption, by 

increasing the residence time of solid reactants in the system. They can be sorted in two categories: 

circulating bed scrubbers and systems with humidified solids recirculation.  

In the former, water and lime are separately introduced inside a vertical reactor, designed to create a 

fluidised bed. The reactor is aimed at guaranteeing both high relative humidity and high solid 

residence time. Downstream, part of the solid residues of the process, collected by a fabric filter, are 

recirculated back to the reactor, in order to increase the sorbent-to-acid gas ratio.  

Conversely, systems based on the recirculation of humidified solids recall the essential design of 

DSI (for example, the reactor is often a simple vertical conduit), but focus on an optimised 

recirculation section as the key factor to enhance performance.  

As a matter of fact, the bare recirculation of RCC “as is”, adopted in several DSI units, has a strong, 

intrisic limitation: partially reacted lime particles exhibit a noticeably lower reactivity than fresh 

Ca(OH)2, because the shell of solid product covering the unreacted core of sorbent particles 

remarkably hinders the diffusion of acid pollutants towards reaction interface.  

In order to promote the reactivity of recirculated lime, several technology suppliers propose 

patented recirculation systems aimed at “reactivating” the partially reacted sorbent in two ways:  

 mechanical reactivation – the action of a mixing cochlea induces the fracture of product 

layers on sorbent particles via attrition and grinding between particles. 

 rehydration – pulverised water is sprayed in order to wet the partially reacted lime, 

triggering a rearrangement in the product layer (the effect already shown in Figure 2.3). 

Lime is a hygroscopic material and adsorbs water, which in turn interacts with the product 

layer, exposing fresh lime surface. A similar effect can be obtained without spraying water, 

but employing a stream of steam, generated e.g. by using the heat of flue gas exiting the 

combustion chamber.  

Two-stage dry treatment systems. Lastly, among the most novel solutions for dry acid gas 

removal,  the double reaction/double filtration dry treatment system (Acquistapace, 2014) – adopted 

since 2006 in some Italian WtE plants – consists in two consecutive stages of sorbent injection and 

dedusting with a fabric filter. This configuration, which is essentially the connection in series of two 

DSI units, has the twofold target of increasing the overall removal efficiency and significantly 

lowering operating costs in comparison with usual single stage approaches. A detailed economic 

analysis of the savings achievable with a two-stage acid gas removal system is presented in chapter 

7.  

In the typical two-stage system, the first stage is fed with the cheaper sorbent (i.e., hydrated lime) 

and has the role to remove most of the acid gas loading, while the more reactive sodium bicarbonate 

is injected in the second stage, in order to abate the residual acid pollutants down to the set-point for 

their concentrations at stack. Furthermore, by acting downstream of a fabric filter, the second stage 

generates RSC which are not contaminated with fly ash and thus recyclable.  

Anyway, the two-stage configuration, besides offering a useful redundancy, allows operating 

versatility in terms of choice of sorbents. It is also possible to operate with two Ca-based stages, 
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like in the Runcorn WtE facility and in the hazardous waste incinerator in Grundon, both in the 

United Kingdom (de Greef et al., 2013), or with two Na-based stages, in a set-up potentially able to 

further reduce operating costs (Guglielmi et al., 2014). In contrast, the high space requirements and 

the design focused on the removal of high loads of acid pollutants make the two-stage system a 

viable solution mainly for mid-to-large WtE plants (> 400 t/day of treated waste).  
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Figure 2.6. Some dry acid gas removal configurations: a) spray dryer absorption; b) circulating dry 

scrubber; c) furnace sorbent injection + dry sorbent injection w/ pre-dusting; d) system with rehydrated 

sorbent recirculation; e) two-stage dry treatment system.   
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3 Carbon capture with solid sorbents: state of the art 
3.1 The concept of carbon capture and storage 
Despite the scientific and politic awareness of the threats of climate change mentioned in section 

1.4, meaningful actions to limit CO2 emissions worldwide collide with the tight bond between CO2 

generation and energy production. Even if renewable energies are making remarkable progress, 

fossil fuel consumption worldwide is still increasing year-by-year (IEA, 2016). Coal, oil and natural 

gas are still expected to play a major role in the world energy mix in the near- to mid-term future 

(McKinsey & Company, 2008).  

Large stationary sources like coal-fired power plants are the main contributors to CO2 emissions 

(Choi et al., 2009) and, therefore, the deployment of industrial CO2 capture and storage (CCS) 

technologies could be a promising approach to achieve a meaningful reduction of CO2 emissions in 

the near term (MacDowell et al., 2010). The CCS process consists in capturing waste CO2 from 

large point sources and disposing of it in safe storage sites, like underground geological formations.  

Therefore, CCS has to be seen as an interim solution, a direct emissions mitigation option to buy 

time for a 50-year transition away from fossil fuels (Stuart Haszeldine, 2009).   

 

Figure 3.1. The life-cycle chain of fossil fuel use with CCS employment. CO2 is separated and captured at 

power plants and stored in porous rocks deep below ground. Source: Stuart Haszeldine, 2009.  

 

3.2 Approaches to CO2 capture 
Three methods of CO2 capture are currently under study: 

 Post-combustion capture. CO2 is removed from the flue gas of the combustion process 

with an end-of-pipe approach, like for the acid gases (chapter 2). Post-combustion schemes 

are attractive for retrofitting existing power plants. Here, the major challenge for separation 

technologies is obtaining a pure (> 95 vol. %), concentrated stream of CO2 from the 

typically dilute (< 15 vol. %) flue gas, without excessive energy penalty (Leung et al., 

2014). 
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 Pre-combustion capture. In this approach, the fuel (e.g., coal or natural gas) is pre-treated 

before combustion. For example, coal might be gasified to produce a syngas consisting of 

CO and H2. Then, the syngas undergoes water gas shift reaction with steam in order to form 

more H2 while CO is converted to CO2 (Rahman et al., 2017). The CO2 concentration in the 

gas stream is generally rather high (20-30%, Boon et al., 2016), facilitating the separation 

needed to obtain a hydrogen-rich fuel gas.  

 Oxyfuel combustion. In oxyfuel combustion, the fuel is combusted in nearly pure O2, 

instead of air. Therefore, the amount of nitrogen present in the flue gas is drastically reduced 

and the main exhaust gases are CO2 and H2O. The water content is easily removed by 

condensation, leaving a pure CO2 stream which is suitable for compression, transport and 

storage (MacDowell et al., 2010). 

Several technological solutions have been explored to realise pre- or post-combustion CO2 capture 

processes, as an emanation of the diverse research programmes financed by public institutions and 

private companies in the last years.  

Absorption, i.e. the use of a liquid sorbent to remove CO2 from the flue gas, has been the first 

separation process to be studied, with the first patent regarding amine scrubbing dating back to 1930 

(Rochelle, 2009). Currently, monoethanolamine (MEA) is the reference solvent used in CO2 

absorption pilot plants, showing CO2 separation efficiencies > 90% (Aaron and Tsouris, 2005), 

while other solvents such as piperazine (Zhang et al., 2016) and anion-functionalised ionic liquids 

(Macfarlane et al., 2014) are catalysing novel research efforts.   

Membranes constitute another viable option for selective CO2 separation. Current ceramic or 

polymeric membrane can achieve CO2 separation efficiencies in the range 80-85% (Leung et al., 

2014), but performances are strongly affected by CO2 concentration. Breakthrough developments in 

enhancing CO2 performance and solving fouling issues are needed to harness the full potential of 

this technology (Brunetti et al., 2010).  

Chemical looping combustion (CLC) is based on the use of a metal oxide as oxygen carrier in order 

to obtain a CO2-rich flue gas. During CLC, the metal oxide is reduced to metal while the fuel is 

being oxidised to CO2 and water. Hence, like in oxyfuel combustion, a pure CO2 stream can be 

easily produced via condensation. The metal is reconverted to metal oxide in a dedicated oxidation 

stage and recirculated back in the process. Several low-cost metal oxides, such as CuO (Imtiaz et 

al., 2012), Fe2O3 (Yüzbasi et al., 2016) and Mn2O3 (Hosseini et al., 2015), have been demonstrated 

suitable for CLC applications, but operating experience at pilot scale is still lacking. 

Adsorption processes, in contrast to absorption, make use of solid sorbents to physically or 

chemically bind CO2. Sorbent as diverse as activated carbon (Xing et al., 2012), zeolites (Bae et al., 

2013), metal-organic frameworks (Bae and Snurr, 2011), hydrotalcites (Coenen et al., 2016) and 

metal oxides (Wang et al., 2014) have been tested extensively. Adsorbed CO2 can be recovered via 

desorptive regeneration of the sorbent, by swinging pressure or temperature of the system (Leung et 

al., 2014). A particularly promising scheme is represented by the carbonate looping technology 

described in the following section.  
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Table 3.1. Summary of advantages and disadvantages of main CO2 separation technologies.    

Separation 

technology 

Advantages Disadvantages References 

Absorption 

 

- Most mature technology (the basic principle of the 

process was patented in 1930)  

- Regeneration by heating and/or depressurisation 

- MEA-based absorption mature process for CO2 

separation 

- Important industrial players actively engaged in 

research and deployment of this technology 

- New promising schemes based on piperazine as 

highly reactive CO2 solvent are under study 

- Significant energy penalty associated with solvent 

regeneration 

- High solvent flow rates required to achieve high 

rate of CO2 capture, given the low CO2 partial 

pressure in the flue gas 

- Generation of wastewater (exhaust solvent)  

- Fugitive solvent emissions rise environmental 

concerns 

Aaron and Tsouris (2005) 

Rochelle (2009) 

MacDowell et al. (2010) 

 

Adsorption - Use of abundant and inexpensive natural sorbents 

(e.g. limestone, dolomite) 

- Potential higher cost-efficiency compared to amine 

scrubbing  

- Important synergy with the cement industry  

- Process successfully tested at demonstration scale 

in Spain and Germany 

- Alternatives to Ca-based sorbents for CO2 capture 

at low, intermediate and high temperature currently 

under study (e.g. Na2CO3, MgO, Li4SiO4, etc.)   

- High energy penalty for CO2 desorption 

- Ca-based sorbents are vulnerable to decay in 

capture capacity over repeated cycling 

- Competitive reactions with acid gases (HCl, SO2) 

may consume relevant amounts of the sorbent, if 

separate desulfurisation is not employed 

 

Blamey et al. (2010) 

Dean et al. (2011) 

Boot-Handford et al. (2014) 

Membrane 

separation 

- Several membrane classes currently researched 

(inorganic membranes, polymeric membranes, 

facilitated liquid membranes) 

- Successful operational experience in the separation 

of other gases 

 

- At least a 10-fold higher CO2 permeance than 

current commercial membranes is required to 

provide enough driving force to the process 

- Reliability concerns due to several operational 

problems (e.g. low fluxes, fouling, etc.)  

 

Brunetti et al. (2010) 

D’Alessandro et al. (2010) 

Merkel et al. (2010) 

 

Chemical 

looping 

combustion 

- Like for the oxyfuel approach, CO2 is the main 

combustion process, thus avoiding energy intensive 

separation from N2 

- Wide portfolio of oxygen-carriers tested in 

literature for different combustion conditions 

- No large scale operational experience to-date 

- Lack of information on CLC performances in 

pressure 

 

Adanez et al. (2012) 
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3.3 Perspective of carbonate looping in pre- and post-combustion CO2 capture 
The carbonate looping concept for CO2 capture, first proposed by Shimizu et al. (1999), is based on 

the reversible reaction between certain metal oxides and carbon dioxide to form metal carbonate. 

The most studied solid sorbent candidate is calcium oxide (CaO), which can be derived from natural 

limestone. Hence, the process is frequently referred to as Calcium Looping (Blamey et al., 2010).  

The reaction of interest is the following: 

𝐶𝑎𝑂 + 𝐶𝑂2  ↔  𝐶𝑎𝐶𝑂3            ∆𝐻298 𝐾
0 = −178 𝑘𝐽 𝑚𝑜𝑙−1  3.1 

The carbonation reaction is exothermic and the reverse reaction, known as calcination, is 

endothermic. Carbonation is characterised by a rapid initial rate followed by an abrupt transition to 

a sluggish regime, whereas calcination typically proceeds rapidly to completion in minutes over a 

wide range of conditions (Silaban and Harrison, 1995).  

Calcium looping has been first conceived for post-combustion CO2 capture. The simplified post-

combustion process flow diagram is shown in Figure 3.2. In one vessel, the carbonator, the 

carbonation reaction removes CO2 from a flue gas (e.g., the exhaust gas from coal combustion), 

forming solid CaCO3. CaCO3 is then transferred to a second reaction vessel, the calciner, where it is 

heated to trigger the reverse calcination reaction, releasing CO2 and regenerating the CaO sorbent, 

which is recycled back into the carbonator. A circulating fluidised bed reactor (CFB), which is a 

mature technology at the large scale, is the typical configuration proposed for both carbonator and 

calciner (MacDowell et al., 2010). 

 

Figure 3.2. Post-combustion carbonate looping. Source: MacKenzie et al. (2007).  

Whilst originally introduced for post-combustion capture applications, carbonate looping is also 

suitable in pre-combustion capture schemes aimed at the selective production of hydrogen from 

hydrocarbons (coal and biomass gasification, methane reforming, etc.). These approaches, 
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commonly referred to as sorbent-enhanced reforming (SER; MacDowell et al., 2010), take 

advantage of the carbonation of sorbent for the twofold goal of separating CO2 and promoting H2 

generation. An explicative application is the sorbent-enhanced methane steam reforming (Broda et 

al., 2012). In a dedicated hydrogen production plant, the methane steam reforming reaction, 

performed over a Ni catalyst, proceeds as follows: 

𝐶𝐻4 + 𝐻2𝑂 ↔  𝐶𝑂 +   𝐻2            ∆𝐻298 𝐾
0 = 206 𝑘𝐽 𝑚𝑜𝑙−1  3.2 

and the effluent gas is further enriched in H2 thanks to the water gas shift reaction (over Fe or Cu 

catalyst, depending on operating temperature; Newsome, 1980): 

𝐶𝑂 + 𝐻2𝑂 ↔  𝐶𝑂2 + 𝐻2            ∆𝐻298 𝐾
0 = −41 𝑘𝐽 𝑚𝑜𝑙−1  3.3 

By coupling CO2 sorption by CaO (reaction 3.1) with reactions 3.2 and 3.3, the equilibrium of the 

overall process: 

𝐶𝐻4 + 2 𝐻2𝑂 + 𝐶𝑎𝑂 ↔  𝐶𝑎𝐶𝑂3 + 4 𝐻2            ∆𝐻298 𝐾
0 = −1  𝑘𝐽 𝑚𝑜𝑙−1  3.4 

is shifted on the product side, thus producing high-purity hydrogen.  

As summarised in Table 3.1, the carbonate looping scheme boasts the potential to provide cost-

effective CO2 capture. Sorbents derived from natural limestone are inexpensive and the process 

economics appears particularly favourable when the exhausted reactants are considered as a 

feedstock for cement manufacturing (Dean et al., 2011). In addition, several researchers pointed out 

that the carbonate looping process might significantly reduce the efficiency penalty (i.e. the net 

decrease in the power efficiency of a thermoelectric plant caused by the CO2 capture and 

compression process) when compared to the more mature amine scrubbing technology: the energy 

penalty associated with Calcium Looping have been estimated in the range 3-8% (Goto et al., 2013; 

Hanak et al., 2015), an extremely competitive figure compared to the 10-12% drop in efficiency 

estimated for MEA-based scrubbing (Xu et al., 2010; Hanak et al., 2014). These are the main 

reasons which have been driving a rapid evolution of post-combustion carbonate looping from the 

lab- and pilot- to demonstration-scale (Arias et al., 2013; Dieter et al., 2014). Furthermore, whereas 

calcium oxide is clearly the most studied carbonate looping sorbent, thriving research efforts are 

currently dedicated worldwide to the study of alternative sorbents, capable of operating at different 

temperature ranges or overcoming the intrinsic shortcomings of CaO (see sections 4.1 and 9.1), and 

the work presented in Part III of the thesis goes into that direction.  
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4 Research needs and motivation of the study 
4.1 Challenges in the use of sorbents for acid gas removal 
In the light of the state-of-the-art described in the above chapters, the perspectives for a 

strengthened role of solid sorbents in the energy sector appear promising. In the waste incineration 

sector, the market outlook is favourable for acid gas treatment systems based on dry sorbent 

injection over traditional wet approaches. In the CCS field, the development of the carbonate 

looping concept is making steady progress towards the deployment of marketable CO2 capture 

solutions based on the cycling of solid sorbents.  

Nonetheless, several aspects still need to be addressed.  

 Lack of fundamental understanding. Its heterogeneous nature makes gas-solid reaction a 

complex process, which results from the superimposition of different effects, such as flow 

through a porous fixed or fluidised bed of particles, diffusion in the particle pores and in the 

shell of solid products, and chemical reaction with the sorbent, where also equilibrium 

thermodynamics plays an important role (Antonioni et al., 2016). A detailed description of 

the kinetic and mass transfer phenomena involved in acid gas sorption will be given in 

chapter 6. Although the dry acid gas removal process has been serving as a reliable 

commercial technology for more than 30 years, some fundamental aspects are still obscure. 

For instance, even well-established gas-solid reaction models struggle to grasp the complex 

dependence of sorbent reactivity on several conditions (temperature, humidity, sorbent 

morphology, acid gas concentration) without resorting to empirical, adjustable parameters. 

At the same time, modelling efforts have been regularly focused to the description of 

laboratory data and to-date only a handful of studies approached the modelling of full-scale 

treatment systems (see chapter 7). Casting light on these open issues is the key step in 

enabling a fully-aware process optimisation, which can result in a reduced consumption of 

sorbents and, consequently, in lower operating costs and lower generation of residues to be 

disposed of.  

 

 Incomplete conversion. One of the main problems affecting acid gas removal by Ca-based 

sorbents is the incomplete utilisation of the solid reactant: the sorption of acid gases stops 

before the sorbent particles are completely converted to the solid product of reaction. The 

same behaviour has been observed for CaO reacting with CO2 in the carbonate looping 

process: after a fast, initial chemically-controlled reaction stage, reactivity declines abruptly 

and tends asymptotically to a “maximum conversion” value. The decay appears to be related 

to the total available reacting surface of the sorbent, since the maximum conversion 

decreases over cycling due to sintering, but even the increased resistance to CO2 diffusion 

generated by product layer growth plays a major role. According to a widely accepted 

explanation (Alvarez and Abanades, 2005), the maximum conversion should be related to a 

critical thickness of the carbonate layer, which stems from the same thermodynamic 

considerations which will be addressed in chapter 6 with reference to HCl removal. 

Analogous issue affects the conversion of MgO, the sorbent for CO2 capture at intermediate 

temperature investigated in Part III of the thesis.  

 

 Sintering. Shrinkage and loss of porosity upon exposure to heat affects materials prone to 

sintering such as the solid reactants for acid gas removal. In the industrial practice of dry 

injection systems, this issue prevents the use of Ca-based and Na-based sorbents at high 
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temperature, because the loss of reactivity due to sintering outweighs the gains in terms of 

reaction kinetics. Sintering is even more problematic for the CO2 capture technologies based 

on carbonate looping, which rely on the prolonged cycling of sorbents in loops of 

carbonation and calcination at high temperature. In both contexts, proper material choice 

and synthesis approaches are the routes currently investigated to tackle sintering: the 

introduction of commercial dolomitic sorbents has recently enabled efficient furnace sorbent 

injection for acid gas removal (Dal Pozzo et al., 2016), as mentioned in section 2.4, while 

the incorporation of sintering-resistant matrices in Ca-based CO2 sorbents has been explored 

by several investigators as a promising way to increase cyclic stability of CO2 capture 

(Kierzkowska et al., 2013).  

 

 Fate of the solid residues. Although one of the main advantages that have made dry 

sorption competitive towards wet treatment methods is the avoided generation of 

wastewater, even the solid waste associated to dry operation can constitute a problem in a 

holistic approach to environmental protection as the one underlying the European circular 

economy strategy (European Commission, 2014). Currently, disposal is the main 

management solution for dry sorption residues (Margallo et al., 2015) and the introduction 

of valorisation routes is sought after in order to divert waste fluxes from landfills and 

increase the overall sustainability of flue gas cleaning technologies. If the carbonate looping 

process for CO2 capture eventually breaks into market, management of carbonated residues 

will be a likewise issue and some studies are already exploring the possibility of integration 

with other industrial sectors, such as cement manufacturing (Hills et al., 2016). 

4.2 Overcoming the limitations of gas-solid reactions by process optimisation 
In the industrial practice of dry injection systems, the lack of detailed knowledge about gas-solid 

reactions is offset by over-stoichiometric feed rates of reactants and proper automated control 

systems, which ensure a safe compliance to emission limit values of acid pollutants.  

However, when multi-stage acid gas treatment systems or recirculating equipment are employed, 

the degrees of freedom increase and just setting the automated control in order to guarantee the bare 

emission compliance does not ensure that the treatment system is operated at its optimum (de Greef 

et al., 2013). Given the overall acid gas removal performance required, what is the most efficient 

repartition of reactants between the multiple treatment stages of the system? What is the best 

recirculation ratio for systems allowing recycling of residues? How does the optimal configuration 

change as a function of operating conditions (e.g., type of waste or acid gas concentration required 

at stack)?  

The answer to these questions, which translates in significant savings in operating costs and indirect 

environmental gains related to the lower consumption of sorbents, relies on process modelling. 

Models can derive from a fundamental approach, taking into account the actual physical and 

chemical phenomena involved in the gas-solid reaction and extending this microscopic description 

to geometries of increasing complexity (from the single sorbent particle to the filter cake growing 

on the bags of a fabric filter), or from an empirical “black box” approach, finding a relationship 

between sorbent feed rate and removal efficiency and calibrating a model fit thanks to operational 

plant data. Part II in the thesis shows the implementation of both these strategies.  

4.3 Overcoming the limitations of gas-solid reactions by synthesis approaches 
If careful process modelling allows harnessing the full potential of natural and commercial solid 

sorbents, the development of new, synthetic materials is needed when the required performances are 
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out of the reach of conventional materials. This is particularly urgent in the carbonate looping 

context, where substantial research efforts are dedicated to the modification of natural sorbents in 

order to obtain i) a high CO2 uptake capacity and ii) an appreciable stability of performance over 

repeated carbonation and calcination cycles (Kierzkowska et al., 2013).   

This is the main aim of Part III in the thesis. Magnesium oxide, a promising sorbent for 

intermediate temperature CO2 capture, boasts a very high theoretical CO2 uptake capacity (1.09 g 

CO2/ g MgO), but its reactivity is severely hindered by diffusional limitations which restrict the 

actual solid conversion after hours of exposure to CO2 to values lower than 2-3%. The problem of 

MgO incomplete conversion is akin to what observed for Ca-based acid gas removal at low 

temperature (section 6.2), but the effect is magnified by the superior diffusional resistance 

constituted by carbonate layer than that of chlorinated layer.  
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5 Experimental study of acid gas removal processes: the 

reaction between Ca(OH)2 and HCl  
5.1 The reaction 
As outlined in the motivation of the study (chapter 4), goal and scope of Part II in the thesis is to 

explore acid gas removal from the basics of gas-solid reaction mechanisms up to the economic and 

environmental considerations on full-scale process implementation. Firstly, in order to lay the 

foundations for the formulation of a fundamental model for acid gas removal, described in chapter 

6, an experimental campaign was carried out to study the reaction between calcium hydroxide, the 

most inexpensive and abundant natural sorbent (see section 2.2), and hydrogen chloride, the most 

relevant acid pollutant in flue gas deriving from waste combustion (see section 1.3).  

The overall reaction between Ca(OH)2 and HCl, also referred to as chloridisation, leads to the 

formation of calcium chloride (CaCl2), in anhydrous (5.1) or dihydrate form (5.2): 

𝐶𝑎(𝑂𝐻)2 (s) + 2 𝐻𝐶𝑙 (g) → 𝐶𝑎𝐶𝑙2 (s) + 2 𝐻2𝑂 (g) 5.1 

𝐶𝑎(𝑂𝐻)2(s) + 2 𝐻𝐶𝑙 (g) → 𝐶𝑎𝐶𝑙2 ∙ 2 𝐻2𝑂 (s) 5.2 

The formation of dihydrate calcium chloride besides that of anhydrous calcium chloride was 

evidenced by X-ray diffraction tests carried on by Gullett et. al (1992) and by Jozewicz and Gullett 

(1995). However, Partanen et al. (2005) observed that, given the highly hygroscopic nature of 

calcium chloride, it is possible that the actual reaction product is anhydrous CaCl2, that is then 

rapidly hydrated when the sample is extracted from the reactor and cooled at room temperature for 

XRD analysis. 

Several authors also reported the formation of calcium hydroxychloride (CaOHCl) as solid product 

at the typical temperatures of industrial acid gas removal treatments (150-200 °C): 

𝐶𝑎(𝑂𝐻)2(s) + 𝐻𝐶𝑙 (g) → 𝐶𝑎𝑂𝐻𝐶𝑙 (s) + 𝐻2𝑂 (g) 5.3 

Weinell et al.(1992) and Gullett et al. (1992) stated that CaOHCl is an intermediate product that can 

further react with HCl to form CaCl2: 

𝐶𝑎𝑂𝐻𝐶𝑙 (s) + 𝐻𝐶𝑙 (g) → 𝐶𝑎𝐶𝑙2 (s) + 𝐻2𝑂 (g) 5.4 

Conversely, some studies (e.g., Bausach et al., 2006; Chin et al., 2005b) suggest that CaOHCl is the 

final product of the reaction between Ca(OH)2 and HCl. Allal et al. (1998), confirming the study of 

Jozewicz et al. (1995), evidenced that Ca(OH)2 and CaCl2 can react to form CaOHCl: 

𝐶𝑎(𝑂𝐻)2(s) + 𝐶𝑎𝐶𝑙2 ∙ 2 𝐻2𝑂 (s) → 2𝐶𝑎𝑂𝐻𝐶𝑙 (s) + 2 𝐻2𝑂 (g) 5.5 

Bodénan and Deniard (2003) analysed air pollution control (APC) residues of the flue gas treatment 

systems of 12 European MSWIs and found CaOHCl as the only product of the chlorination process. 

However, it is still unclear if the formation CaOHCl from CaCl2 takes places during flue gas 

treatment or after the APC residues are removed from the process and stored at ambient conditions. 

Table 5.1 summarises the findings of studies aimed at specifying the products of Ca-based HCl 

sorption. Indeed, there is still a lack of knowledge about the yield of the HCl removal process by 

reaction with Ca(OH)2 and, as a consequence, of the entire flue gas treatment section (Yassin et al., 

2007), since the true utilisation of the sorbent depends on the actual reaction stoichiometry.  
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Table 5.1. Studies addressing identification of the solid product of the reaction between Ca(OH)2 and HCl. 

Source 
Identified 

product 

Experimental conditions 
Method of 

identification 
Notes T (°C) RH 

(%) 

CHCl,in 

(ppm) 

Gullett et 

al. (1992) 
57% CaCl2·2H2O 

28% unreacted 

CaO 

10% CaOHCl 

  5% Ca(ClO)2 

500 - 5000 XRD 

The hydrated form of 

CaCl2 may be due to 

reaction with ambient 

air humidity of the 

highly deliquescent 

sample during 

interlaboratory 

transfer 

Jozewicz 

and 

Gullett 

(1995) 

CaCl2·2H2O/ 

CaOHCl 
500 - 1000 DSC, XRD 

 

CaOHCl 200 - 1000 DSC, XRD 

Allal et al. 

(1998) 
CaOHCl 250 - 1000 XRD 

 

Bodénan 

and 

Deniard 

(2003) 

CaOHCl 140-170 0-10 ? XRD 

Samples of APC 

residues from 12 

MSWIs across Europe 

Bausach 

et al. 

(2004) 
CaOHCl 120 18 240 XRD 

Conversion to CaCl2 

can only take place if 

Ca(OH)2 is lacking, at 

least locally 

Chin et al. 

(2005a) 
CaOHCl 200 - 500 XRD 

 

Partanen 

et al. 

(2005) 

Final product: 

CaCl2 

Intermediate: 

CaOHCl 

650/850 - 2000 XRD 

Hydrous CaCl2 

detected by XRD, but 

attributed to hydration 

after the sample was 

taken out of the 

reactor 

Bogush et 

al. (2015) CaOHCl 150-200 0-10 ? 
XRD, FTIR, 

EDX 

Samples of APC 

residues from 6 British 

MSWIs  

 

5.2 Set-up of a dedicated laboratory apparatus 
Aim of the experimental investigation of chloridisation was to collect data on the reaction at 

different temperature and HCl concentration, in order to provide a dataset for the validation of the 

fundamental model proposed in chapter 6. Previous studies on the reaction (Weinell et al., 1992; 

Duo et al., 1996; Yan et al., 2003; Partanen et al., 2005) only provided data about solid conversion, 

whereas data on the gas phase could give additional information. Therefore, an experimental 

apparatus designed for monitoring the HCl abatement by means of a fixed bed reactor was set up 

and Fourier transform infrared technology was chosen as monitoring media for its capacity to 

follow through cascading IR spectra acquisition the time-scale evolution of reaction with accurate 

definition. Furthermore, the analysis of reacted solid samples via TGA and XRD methods allowed 

advancing new evidences about product identification. 
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Figure 5.1.  Layout of the experimental apparatus.  

The experimental setup is laid out in Figure 5.1. The designed apparatus consists in a tubular reactor 

filled with a solid sorbent, where a synthetic flue gas was fluxed (a fixed bed reactor, FBR, 

configuration). The gas mixture was synthesised by diluting the stream coming from a cylinder 

containing HCl at 3% in nitrogen with a stream of dry nitrogen coming from a laboratory supply 

line. The output of the N2/HCl cylinder was regulated by a mass flow controller (Bronkhorst, EL-

FLOW) operating in the range 0.4-20 NmL/min, while the dry N2 stream was controlled with a 

rotameter (Rota-Yokogawa, RAGK) of flow scale 1-14 NL/h.  

Before entering the reactor, the simulated flue gas flowed in a section of tube placed inside the oven 

that is aimed to bring the gas to the design temperature. When the gas reached the reactor, it flowed 

through a fixed bed of sorbent particles, where neutralization reactions of acid gases took place.  

The reactor was a cylinder 150 mm long by 15 mm of inner diameter, as shown in Figure 5.2. The 

tubular reactor housed a fixed bed of sorbent, deposited on a sintered glass frit disk settled at 20 mm 

from the outlet section. The body of the reactor was made of borosilicate glass, while screw joints 

and tubing were made of PTFE. In order to operate at a constant temperature, the reactor was placed 

in an oven (Binder, FD-53) and kept in contact with a K-type thermocouple. The reactor was 

designed to simulate the conditions of the cake of particles deposited on the filter bags of a fabric 

filter: in particular, inner diameter was chosen in order to obtain a superficial velocity of the flue 

gas of 0.9 m/min at 180 °C, which corresponds to a typical design value for baghouse (Green and 

Perry, 2007).  

A Fourier transform infrared (FTIR) spectrometer was used to characterise quantitatively the 

gaseous products of the neutralization process. The FTIR spectrometer was a Bruker TENSOR 27 

equipped with a low volume external gas cell (8.7 mL), which allowed an online measurement of 

the flue gas composition by recording infrared energy absorbance spectra over time. The reactor 

was connected to the FTIR spectrometer using a transfer line with a 2 mm internal diameter PTFE 

Oven and reactor

Bypass

FT-IR

detector

Soda

bath
Water 

seal

Flowmeters
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tube. A bypass line permitted to flux the reagent gas directly to the FTIR, both before starting and at 

the end of the neutralisation process in order to verify the actual composition of the reagent gas. 

Finally, the outgoing gas from the FTIR cell flowed through a soda bath, which operated as 

absorption system, while a cylinder filled with water was used as water seal.  

Given the highly corrosive nature of HCl, the section of the apparatus exposed to the acid gas 

exhibited tubing and tube fittings made of PTFE and 3-way stopcocks and cross connectors made of 

glass. The rest of the system was composed of polyamide-11 tubing. 

 

Figure 5.2.  Tubular reactor: a) sketch of the reacting system, b) drawing and c) picture of the reactor.   

5.3 Materials and experimental procedure 
The solid reactant was calcium hydroxide, ACS reagent grade, supplied by Sigma Aldrich. A 

thermogravimetric analysis (TA Instruments, Q300) determined that the material was composed of 

96% calcium hydroxide, Ca(OH)2, with the balance being calcium carbonate, CaCO3, as stated by 

the supplier. To prevent further carbonation of the samples due to contact with ambient air, the 

material was kept in HDPE sealed containers, placed in a ventilated cabinet. In order to restrict the 

natural variability of the material, the hydrated lime was sieved and only the fraction composed by 

particles between 45 and 123 µm of diameter was used in the experimental runs. The specific 

surface area of the sieved samples, as determined by nitrogen porosimetry (Micromeritics, Flow 

Sorb II 2300), was 15.1 m
2
/g.  Porosity and pore size distribution (see porosigram in Figure 5.3) 

were determined by mercury intrusion porosimetry (Carlo Erba Strumentazione, Porosimeter 2000).  

z

Porous support
z=L

z=0

Layer of 

particles

Glass frit disk

Screw joint 

GL25

PTFE tubing

4x6

Screw joint 

GL25

PTFE tubing

4x6

15

2
0

1
5

0

Reactor

vessel

(a) (b) (c)



45 
 

 

Figure 5.3.  Mercury porosigram of the calcium hydroxide adopted in the study and division of the pore 

volume in 8 pore classes (see section 6.7).  

Quartz sand was used as inert filling material in the sorbent bed, in order to reduce the tendency of 

calcium hydroxide to form agglomerates and to minimise gas channelling (Chisholm and Rochelle, 

1999). A fraction of the same range of diameters as calcium hydroxide (45-123 µm) was used and 

preliminary runs performed by flowing the gas mixture through the reactor with and without a bed 

of only quartz sand showed no HCl sorption, thus confirming the material as inert. 

The experimental FBR runs, listed in Table 5.2. were conducted as follows. For a typical 

experiment, the reactor was charged with sorbent and inert material, taking care of forming an even 

layer of particles, and put in oven in order to reach the temperature set for the run. Meanwhile, a 

mixture of nitrogen and HCl at the desired concentration was prepared by means of the mass flow 

controllers and sent through the bypass line to the FTIR in order to double-check the composition of 

the simulated flue gas and verify the attainment of a steady state.  

Table 5.2. Performed runs and experimental conditions. 

Type of 

run 

HCl conc. 

(ppm) 

Temperature 

(°C) 

Mass of sorbent 

(mg) 

Inert-to-sorbent mass 

ratio 

1 

2500 

120 

100 3:1 2 150 

3 180 

4 

2500 

120 

50 6:1 5 150 

6 180 

7 

1250 

120 

50 6:1 8 150 

9 180 

 

The FTIR scans from 8000 to 400 cm
-1

, at a resolution of 4 cm
-1

. Every spectrum recorded is 

obtained as average of 16 consecutive scans, giving an absorbance versus wavelength plot every 3.7 

seconds. The FTIR spectra were recorded and elaborated using the Bruker OPUS/IR software. The 

profile of HCl and of H2O in the outlet gas and the total amount reacted were obtained assessing the 

integrated absorbance as a function of time on the characteristic wavenumber intervals: for HCl, the 

absorption band between 3150 and 2500 cm
-1

, corresponding to roto-vibrational transitions of HCl 

in the gas phase (Tipler and Lllewellyn, 2012), and for water vapour, the interval between 4000 and 
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3500 cm
-1

. Integrated absorbance values were correlated to the concentration in the gas by the 

Lambert-Beer law, which can be expressed over a characteristic wavenumber interval as follows: 

𝐼 =  ∫ 𝐴 (𝜈) ∙ 𝑑𝜈 = ∫ 𝜀(𝜈) ∙ 𝑙 ∙ 𝐶 ∙ 𝑑𝜈 = 𝐾 ∙ 𝐶
𝜈2

𝜈1

𝜈2

𝜈1

 5.6 

where I is the integral absorbance value, A the measured spectral absorbance, ε the extinction 

coefficient of the gaseous compound, l the optical length used in the measurement, C the 

concentration, and (𝑣1, 𝑣2 ) the wavenumber interval selected for the measurement. The calibration 

constant, K, may be considered independent of the concentration if deviations from the Lambert-

Beer linear correlation can be neglected. The value of K for HCl was obtained from experimental 

calibration using gas mixtures of known composition, following the procedure described by Bak et 

al. (1995). No quantitative calibration was applied to water integrated absorbance.  

At a registered time, the flow of the simulated flue gas was switched from the bypass line to the 

reactor line and the subsequent measurement by the FTIR recorded the drop in the HCl infrared 

signal. The abatement of HCl took place according to a typical breakthrough curve, as shown in 

section 5.4. The run was stopped when the breakthrough curve of HCl showed a derivative close to 

zero. In order to verify that any further reaction happening is negligible, the gas flow was diverted 

to the bypass line. If the differences between traces of HCl coming from reactor or bypass were 

within the natural fluctuation of the signal, the N2/HCl cylinder was closed and the system purged 

with dry nitrogen.   

The conversion of the solid reactant Xs was calculated cumulatively from the registered data on HCl 

removal as follows: 

𝜒𝑠 =
𝑏

𝑛𝑠
∫ 𝑄 ∙ 𝐶𝑖𝑛 (1 −

𝐶𝑜𝑢𝑡
𝐶𝑖𝑛

)
𝑡𝑓𝑖𝑛

0

𝑑𝑡 5.7 

where b is the stoichiometric coefficient of the sorbent (1 if the product is CaOHCl, 0.5 if the 

product is CaCl2), ns the moles of sorbent initially charged in the reactor, Q the flow rate of the gas 

mixture, Cin and Cout respectively the inlet and outlet molar concentration of HCl in the gas. 

Part of the reacted solid samples was analysed to check the agreement of final solid conversion with 

the conversion calculated from HCl removal and to identify the actual product compound generated 

by the reaction (CaCl2 or CaOHCl). A first screening of the solid samples was conducted by 

thermogravimetric analysis (TG), abiding by the following procedure. Samples used in TG runs 

were previously dried at 105 °C under a dry nitrogen flux of 60 mL/min for 10 min. Then, the 

constant heating rate runs were carried out on the dried samples using the same nitrogen purge gas 

flow rate of 60 mL/min and a heating ramp of 10 °C/min. Other fractions of the reacted solid 

samples were subjected to phase identification via X-ray diffractometry. The powder XRD patterns 

were collected using a Philips PW 1840 diffractometer (40 kV/20 mA, Cu Kα radiation), step-

scanning over a 2ϑ range of 5-80°. 

5.4 HCl removal monitored by infrared spectroscopy 
By following the procedure in section 5.3, the acquisition of cascading IR spectra allowed to follow 

the time evolution of the gas-solid reaction, as exemplified in Figure 5.4 for a reference run. The 

figure shows the integrated absorbance of HCl and H2O during the time of an experiment, along 

with three illustrative IR spectra. As described in section 5.3, the gas flow was first sent to the 

spectrometer bypassing the reactor, in order to verify the attainment of a steady, given concentration 

of HCl in the gas mixture. At time 0, the activation of the switching valve diverted the flow to the 
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reactor. The permanence time of the gas in the system was estimated to be of 20 s and the time scale 

in the subsequent plots was corrected accordingly.   

 

 

Figure 5.4. Integrated absorbance of HCl and H2O for a reference FBR run (reactant gas sent to the reactor 

at experiment time = 0). Conditions: temperature = 180 °C, HCl inlet concentration = 2500 ppm, mass of 

sorbent = 100 mg. For selected characteristic instants, panels A-C show full IR spectra: A) before reaction 

starts, B) immediately after reaction starts, C) after 18 min of reaction. 

At first, HCl molecules encountered a bed of fresh Ca(OH)2 and almost complete removal of HCl in 

the outlet gas was detected, with the simultaneous release of water vapour, according to the reaction 

stoichiometry. The phenomenon is well illustrated by the comparison between spectrum A and 

spectrum B, respectively taken shortly before and after the reaction start, showing the disappearance 

of the HCl absorption peaks and the appearance of water-related absorption bands in the 4000-3500 

cm
-1

 and in the 2000-1200 cm
-1

 areas. The absorption peak around 2350 cm
-1

 is associated with the 

CO2 generation due to the reaction between HCl and the small fraction of CaCO3 included in the 

samples of hydrated lime. With the continuation of the reaction, the solid product accumulated at 

the surface of the calcium hydroxide particles, generating a growing diffusional resistance to the 

sorption of the gaseous reactant, which slowed down the reaction and led to an increasing HCl 

penetration through the bed (see spectrum C). 

The run was stopped when the curve of HCl integrated absorbance showed a derivative close to 

zero. By applying eq. 5.6, the curves of integrated absorbance of HCl obtained for the different 

experimental conditions listed in Table 5.2 were converted to curves of normalised HCl 

concentration exiting the reactor (breakthrough curves), shown in Figure 5.5 along with the 

associated curves of cumulative HCl removal for the first 30 min of reaction
1
. The time at which 

                                                           
1
 HCl breakthrough curves classified for reaction temperatures for all the experimental runs are reported in section 6.7, 

alongside model simulations.  
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50% of the inlet HCl concentration penetrated through the bed (t50) and the amount of HCl 

cumulatively removed at the end of each FBR run are reported in Table 5.3. The main parameter 

governing HCl sorption in dry gas conditions is temperature, with delayed breakthrough and higher 

cumulative HCl removal at higher temperatures. Clearly enough, for the same HCl inlet 

concentration of 2500 ppm, runs with 50 mg Ca(OH)2 show approximately halved t50 and 

cumulative HCl removal than runs with 100 mg Ca(OH)2. More interestingly, the runs at HCl = 

1250 ppm, Ca(OH)2 = 50 mg share the same Ca-to-HCl ratio of the runs at HCl = 2500 ppm, 

Ca(OH)2 = 100 mg, but their breakthrough time is consistently shorter, thus evidencing a slight 

positive effect of HCl concentration on bed reactivity. This is also noticeable from the curves of 

cumulative HCl sorption, which exhibit faster initial accumulation for runs at HCl inlet 

concentration of 2500 ppm.  

Table 5.3. t50 and total HCl removed at the end of experiment for the different FBR runs.   

Temperature (°C) 
HCl concentration 

(ppm) 

Mass of sorbent 

(mg) 
t50 (min) 

Total HCl 

removed (mg) 

120 

2500 100 3.3±0.2 3.8±0.1 

2500 50 1.6±0.0 1.5±0.1 

1250 50 3.0±0.5 1.5±0.2 

150 

2500 100 7.2±1.1 6.9±1.1 

2500 50 3.5±0.3 3.7±0.1 

1250 50 5.6±1.1 3.0±0.2 

180 

2500 100 15.8±0.9 12.8±0.9 

2500 50 7.3±0.4 6.3±0.2 

1250 50 14.3±0.8 6.7±0.4 
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Figure 5.5. Curves of normalised HCl outlet concentration (symbols) and cumulative HCl removal (lines) 

for the different experimental conditions in Table 5.2, at the reaction temperature of 120 °C (panel a), 150 

°C (panel b), 180 °C (panel c). 
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5.5 Identification of the solid reaction product 
The correct identification of the solid product generated by the gas-solid reaction is needed to 

correctly quantify the solid conversion on a molar basis. TGA and XRD analyses were employed to 

cast light on the issue regarding CaCl2 or CaOHCl formation (see section 5.1).   

In Figure 5.6 the TG runs of two samples, reacted respectively at 120 °C and 180 °C with the same 

inlet concentration of HCl (4000 ppm), are compared with the TG scan of unreacted calcium 

hydroxide. The unreacted material shows two separate weight losses approximately in the intervals 

350-400 °C and 500-600 °C, the former due to the release of chemically-bound water (dehydration 

of Ca(OH)2 to CaO) and the latter due to the release of CO2 (calcination of the CaCO3 impurities to 

CaO). The reacted samples display an additional, well distinguishable weight loss in the range 450-

500 °C, which is higher for higher reaction temperature. This positive relationship with reaction 

temperature reflects the positive effect of temperature on sorbent conversion. Therefore, the weight 

loss can be attributed to the thermal degradation of the solid product of the gas-solid reaction. The 

various hydrated forms of CaCl2 lose their water content at T < 200 °C (Patek et al., 2008; 

N’Tsoukoe et al., 2015), while CaCl2 itself does not exhibit thermal weight loss at temperatures 

lower than its melting point, 772 °C (Wang et al., 2014). By process of elimination, TG evidence 

leads to the identification of the solid product as calcium hydroxychloride, which might undergo 

thermal decomposition by dehydroxilation: 

2 𝐶𝑎𝑂𝐻𝐶𝑙 (s) → 𝐶𝑎𝑂 (s) + 𝐶𝑎𝐶𝑙2 (s) + 𝐻2𝑂 (g) 5.8 

as suggested by Allal et al. (1998) and observed by Prigiobbe et al. (2009). The occurrence of 

reaction 5.8 might also explain why previous investigators found the product of the Ca(OH)2/HCl 

reaction to be CaOHCl at temperatures of 150-200 °C and CaCl2 at temperatures above 500 °C (see 

Table 5.1). 

 

Figure 5.6. TG and dTG curves for unreacted Ca(OH)2 and Ca(OH)2 reacted with HCl (2500 ppm) at 120 

and 180 °C. 
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In order to confirm the TG observations, other fractions of the reacted samples were analysed via 

X-ray diffractometry. The PDF cards and the main peaks of the species of interest are reported in 

Table 5.4 for reference, while the XRD spectra of a sample reacted with 2500 ppm of HCl at 180 °C 

is shown in Figure 5.7. The strongest signals are related to quartz, as it was the dilution material 

used in the preparation of the sorbent bed. Regarding the Ca-based compounds, both unreacted 

calcium hydroxide and calcium carbonate can be seen and the only chlorinated phase identified is 

CaOHCl, in agreement with previous XRD investigations on products of Ca(OH)2/HCl reaction in 

laboratory apparatuses (Bausach et al., 2004; Chin et al., 2005a). 

 

Table 5.4. PDF card and 2-theta positions of the main peaks of the compounds of interest for XRD phase 

identification. 

Compound PDF no. 2-theta locations (°) 

Ca(OH)2, portlandite 04-0733i 18.1, 28.7, 34.1, 47.1, 50.8, 54.3 

CaOHCl, calcium hydroxide chloride 36-0883i 28.1, 32.3, 38.3, 47.0 

CaCl2, calcium chloride 24-0233 19.8, 29.3, 31.2, 38.6 

CaCO3, calcite 05-0586 23.0, 29.4, 36.0, 40.0, 47.5, 48.5 

 

 

Figure 5.7. XRD spectrum of Ca(OH)2 reacted with HCl (2500 ppm) at 180 °C. 

Therefore, the reaction product was assumed to be CaOHCl and the conversion of the solid reactant 

was calculated accordingly (eq. 5.7). Curves of solid conversion will be shown in section 6.7 

alongside model simulations, while final values of conversion obtained in the various FBR runs are 

listed in Table 5.5.  
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Table 5.5. Final conversion of the sorbent for the set of FBR runs.   

Temperature (°C) HCl concentration (ppm) Mass of sorbent (mg) Final conversion (%) 

120 

2500 100 7.0 

2500 50 5.7 

1250 50 6.2 

150 

2500 100 14.0 

2500 50 14.3 

1250 50 13.5 

180 

2500 100 24.2 

2500 50 24.8 

1250 50 23.3 

 

The asymptotic value of final conversion in dry gas conditions appears to be mainly dependent on 

temperature. For this reason, the values in Table 5.5 are in agreement with results obtained in 

previous studies on the dry Ca(OH)2/HCl system, even if other experimental conditions (mainly, 

sorbent-to-HCl ratio) are different. Weinell et al. (1992) showed final sorbent conversion values in 

the temperature range 100-200 °C varying between 5.2 and 21.9%. Chisholm et al. (1999) reported 

a total Ca(OH)2 utilisation at 120 °C of 5.1%. Yan et al. (2003) obtained an ultimate Ca(OH)2 

conversion of 20.1% at 170 °C and of 31.0% at 200 °C. For a full understanding of the interplay of 

kinetic and mass transfer phenomena determining the reaction outcome, the FBR runs were 

interpreted by modelling.  
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6 Phenomenological model for acid gas removal processes 
6.1 Literature overview 
As outlined in the introductory chapters 1 and 2, acid gas removal is a key step in the flue gas 

cleaning lines of Waste-to-Energy plants and dry sorbent injection (DSI) is a cost-effective and 

reliable treatment technique capable of reducing outlet concentrations of acid gases far below 

current legislative requirements (BREF WI, 2006). Nonetheless, industrial practice is still mostly 

empirical and DSI systems are often not operated at their optimum (de Greef et al., 2013). Detailed 

process modelling would allow a full-aware process optimisation, reducing sorbent consumption, 

waste production and operating costs. However, to date only few studies attempted the modelling of 

DSI performance. Chisholm and Rochelle (1999) adopted a semi-empirical approach to determine 

kinetic parameters and to simulate the performance of a dry treatment system using data from 

laboratory-scale experiments on hydrogen chloride removal by calcium hydroxide. Other authors 

modelled in-duct desulphurisation by applying empirical kinetic equations (Kaiser et al., 2000; 

Gutiérrez Ortiz and Ollero, 2008). Recently, an attempt was done to study such systems by 

computational fluid dynamics, yet applying a simplified model to the chemical reaction process 

(Marocco and Mora, 2013). The adoption of a more fundamental modelling approach, based on the 

description of the actual chemical and physical phenomena involved in the acid gas removal 

process, is an indispensable step in order to gain a deeper understanding of the process and interpret 

both laboratory-scale experimental results such as the ones of chapter 5 and full-scale applications.  

 

Figure 6.1.  a) grain model schematisation: a bed of sorbent particles is represented as an assembly of 

spheres formed by non-porous grain immersed in the sorbent porosity. The grains react according to the 

shrinking core model (Levenspiel, 1998). b) Diffusional mechanisms involved in the gas-solid reaction 

according to the grain model schematisation.  

Acid gas neutralisation with sorbent particles is a complex process, which results from the 

superimposition of different effects, such as flow through a porous fixed bed of particles, diffusion 

in the particle pores and reaction with the sorbent, where also equilibrium thermodynamics plays an 

important role. The gas-solid reaction is controlled by several kinetic and mass transfer phenomena: 

Figure 6.1, adopting the schematisation of the grain model (which will be detailed in section 6.3), 

shows that a molecule of acid gas has to penetrate the gas film covering sorbent particles, diffuse 

inside the particle pores according to different diffusion mechanisms depending on the size of the 

pores and flow through the growing shell of solid reaction products before reaching the interface 

with the unreacted core surface where chemical reaction takes place.  
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Several studies addressed single aspects of the process. Thermodynamic calculations to identify the 

theoretical limit for HCl removal by calcium- and sodium-based sorbents were undertaken by 

different authors (Shemwell et al., 2001; Verdone and De Filippis, 2004; Chin et al., 2005a). 

Weinell et al. (1992) carried out a comprehensive investigation of the reactivity of Ca(OH)2/CaO 

towards HCl considering a wide range of operating conditions (temperature, moisture, surface area 

of the solid reactant). Daoudi and Walters (1991) and Yan et al. (2003) focused on the 

determination of the chemical reaction rate respectively for the CaO/HCl and the Ca(OH)2/HCl 

systems, while Duo et al. (1995) and Fonseca et al. (1998) studied the role of the solid-state 

diffusion of the gaseous reactant in controlling the process over longer reaction times. 

In spite of the relevant work carried out in the field, to date no detailed model is available to 

describe the gas-solid heterogeneous reaction process and the associated transport phenomena 

taking place in acid gas removal processes with calcium-based sorbents. Actually, an unreacted 

shrinking core model (Levenspiel, 1998) for gas-solid reactions is not able to correctly predict the 

incomplete conversion of the solid sorbent observed in several experimental studies (Weinell et al., 

1992; Fonseca et al., 1998; Chisholm and Rochelle, 1999; Yan et al., 2003). Coupling the shrinking 

core model to a grain model (Szekely et al., 1976) to describe particle behaviour improved the 

quality of results, but still such approach is not able to reproduce experimental findings, and in 

particular the limited temperature-dependent final conversion of the solid sorbent (Duo et al., 1994). 

Presently, available models use empirical parameters derived from data fitting to introduce an 

arbitrary maximum conversion or an ultimate conversion value based on experimental data fitting 

(Chisholm and Rochelle, 1999). Alternatively, the diffusivity of the gaseous reactants through the 

layer of solid product is decreased introducing an empirical dependency on sorbent conversion as 

reaction proceeds (Wang and Teng, 2009). Such empirical approach allows the model to reproduce 

the abrupt decrease in the reactivity of the solid reactant observed experimentally (Stendardo and 

Foscolo, 2010). 

6.2 The issue of incomplete conversion 
As discussed above, the main open problem in the modelling of the reactions between Ca-based 

sorbents and acid gases (HCl, SO2, CO2) is the experimental evidence that shows unambiguously 

the presence of a limit in the conversion of solid particles (Weinell et al., 1992; Chisholm and 

Rochelle, 1999; Yan et al., 2003). This was found to be far lower than the almost complete 

conversion of the solid reactant that would be expected from equilibrium thermodynamics. 

The main parameters affecting the value of the experimental final conversion were reported to be: 

temperature (Weinell et al., 1992; Yan et al., 2003), relative humidity (Weinell et al., 1992; Fonseca 

et al., 1998; Chisholm and Rochelle, 1999), as well as the concentration of the gaseous reactant 

(Chisholm and Rochelle, 1999). 

Focusing on the reaction between HCl and Ca(OH)2 in dry gas conditions, available experimental 

evidence shows that the extent of final conversion is mainly dependent on temperature (Yan et al., 

2003). In the range between 150 and 300 °C, an Arrhenius dependence of the final conversion from 

temperature was observed (Figure 6.2). At lower temperatures (50-130°C) the data reported by 

Fonseca et al. (1998) do no show an influence of temperature on ultimate conversion. This could be 

due to the short duration of experimental runs (20 min), that may have been stopped before the 

ultimate conversion value was reached. Alternatively, due to the low temperatures, an effect of the 

interaction of the liquid water generated by reaction with the solid sorbents can also be supposed. It 

should be remarked that CaCl2 is a highly hygroscopic (deliquescent) salt. 
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Figure 6.2.  Literature values obtained for the ultimate sorbent conversion in dry conditions reported with 

respect to the reciprocal of temperature.  

Even if widespread evidence of incomplete conversion of the solid sorbent is available in the 

literature, a widely accepted theoretical explanation of this phenomenon has not been provided yet. 

Some authors (Simons and Garman, 1986; Yan et al., 2003) attributed the incomplete conversion to 

the plugging of the porous structure of the sorbent: since the molar volume of CaCl2 is larger than 

that of Ca(OH)2, the reaction causes an expansion of the solid fraction of the sorbent particles, 

eventually filling the available void fraction before 100% conversion is reached. The theoretical 

final conversion due to the complete filling of intraparticle voids (Simons and Garman, 1986) can 

be expressed through eq. 6.1: 

𝑋𝑠,𝑚𝑎𝑥 =
𝜀𝑝

(1 − 𝜀𝑝)(𝛼 − 1)
 6.1 

where εp is the initial void fraction of the sorbent and α the volumetric expansion factor. However, 

eq. 6.1 depends solely on the properties of the sorbent and of the reaction solid product, thus it 

cannot explain why the ultimate conversion value is affected by operating conditions and in 

particular by temperature. 

An alternative mechanism suggested by Yan et al. (2003) is the blockage of pore mouth (in other 

words, the occlusion of the external pores of the sorbent particles), which would exclude the inner 

part of a sorbent particle from further reacting. However, this does not agree with the findings 

reported by Weinell and coworkers (Weinell et al., 1992) concerning calcium hydroxide particles 

having the typical size range used in flue gas treatment systems (d < 50 μm). Experimental results 

evidenced an almost uniform conversion of solid particles along their radial coordinate. 

A modelling approach aimed at overcoming the limits in accounting the low values of the ultimate 

conversion is the comprehensive Crystallisation and Fracture (CF) model proposed by Duo et al. 

(1994; 1995). The model was based on free energy-work analysis in order to thermodynamically 

explain the presence of an ultimate conversion of the sorbent. The conventional models proposed 

for gas-solid reactions (namely, the shrinking core model and the grain model) represent the solid 
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product as a uniform shell (product layer) which is formed around the spherical core of the solid 

reactant. However, it is still uncertain how the product layer is formed and how the formation 

mechanism influences product layer diffusion. The approach of Duo et al. (1994), supported by the 

results of Scanning Electron Microscopy (SEM) observations (Duo et al., 2000; Li and Bie, 2006), 

is based on the assumption that the products, rather than forming an initial layer as thin as the size 

of a molecule, form clusters of molecules following a crystallisation process. Four main steps were 

assumed for the process, as sketched in Figure 6.3: i) nuclei of product are formed at the reaction 

interface (nucleation); ii) stable nuclei grow to larger crystals (a product layer composed by crystals 

is formed and gets thicker as the reaction progresses); iii) for reactions involving volume expansion, 

the growth phase requires mechanical work in order to displace the product layer and create a free 

volume at the interface for the newly generated solid; and iv) the reaction stops when the energy 

required for further crystallisation and fracture (surface energy and mechanical work) is higher than 

the chemical potential available (free energy change of the reaction). In the present implementation, 

the CF approach was modified and integrated in a conventional grain model framework to simulate 

the overall reaction process and the transport phenomena involved. 

 

Figure 6.3.  Product layer growth as described in the crystallisation and fracture model: 1) nuclei of 

product are formed at the reaction interface (nucleation); 2) stable nuclei grow to crystals: a product layer 

composed by crystals is formed and gets thicker as the reaction proceeds; 3) for reactions involving volume 

expansion, further nucleation needs mechanical work W(h) to displace the product layer and make room at 

the interface for the increased volume; 4) the reaction stops when the energy required for further nucleation 

is greater than the chemical potential available (W(h) > ΔG). Further details in section 6.4.  

6.3 Phenomenological model: the grain model framework 
Acid gas removal in full-scale flue-gas treatment systems mostly takes place on a thin layer of 

sorbent particles formed on the filtering surface of filter bags (Chisholm and Rochelle, 1999; 

Kavouras et al., 2002). Laboratory experiments aimed at the study of the reactivity of solid sorbents 

used for acid gas removal are usually based on feeding gaseous streams containing acid gases to 

fixed beds of solid reactants. Bed thickness is usually of few millimetres only (Weinell et al., 1992). 
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Figure 6.4.  Geometrical references for the model: bed (a), sorbent particle (b) and grain (c). Dimensions: 

thickness of the fixed bed (L), radius of a sorbent particle (Rp), total radius of a grain (rt) and radius of its 

unreacted core (rc). Concentration profile of the gaseous reactant within bed (C), particle pores (Cp) and 

product layer of a grain (Cpl). 

The geometry of the system suggests adopting a dispersed plug flow model for describing the 

continuity equation of the gas phase through the bed (Carberry, 1976; Levenspiel, 1998). The 

direction of the reference axis of the model is assumed parallel to the main flow direction across the 

bed, as shown in Figure 6.4a. The apparent reaction rate in the bed is described using a grain model 

(Szekely et al., 1976), which assumes that each porous particle of the bed is spherical and made up 

of individual non-porous spherical grains. Each grain reacts individually according to the unreacted 

shrinking core model described by Levenspiel (Levenspiel, 1998). This implies coupling a diffusion 

resistance model for the particle (i.e. gas film and pore diffusion of the acid gases from the bulk gas 

phase to the inner grain surface, Figure 6.4b) with an unreacted shrinking core model for the grain 

(i.e. diffusion through the product layer of the grain and reaction at the surface of the fresh reactant 

core, Figure 6.4c). Since the heat generation rate of the reaction is practically negligible due to the 

low concentrations of the acid-gas in the stream, isothermal conditions are assumed in the model 

set-up (Gullett et al., 1992; Verdone and De Filippis, 2006). 

This assumption was checked by calculating the significant non-dimensional parameters and overall 

heat balance for the experimental dataset provided by Yan et al. (2003), whose temperature and HCl 

concentration represent a worst-case scenario for most real applications. The grain and the particle 

Biot numbers (Ruthven, 1984) resulted respectively equal to 8.10
-3

 and 2.10
-2

, suggesting a uniform 

temperature profile within the grains and the particles. The Damköhler’s fourth dimensionless 

number (Land, 1972) resulted equal to 8.10
-7

, suggesting heat generation in reaction to be slower 

than the heat removal rate. Finally an overall heat balance assuming complete conversion of HCl 
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predicts a maximum temperature increase in the bed of 2.6⋅10
-3

 °C, thus confirming that isothermal 

conditions could reasonably be assumed
2
. 

The overall structure of the proposed model is sketched in Figure 6.5. The acid gas removal 

performed by a bed of solid reactant is described by a mass balance equation that considers an 

overall apparent reaction rate, rvb. This term takes into account inter- and intra-particle transport 

phenomena and the actual reaction kinetics. The value of rvb is determined by the mass balance of 

the gaseous reactant through the void fraction of the sorbent particles and the layer of solid product. 

This is carried out by applying a grain model approach, corrected by a reduction factor RF. RF is 

the output of the CF submodel and describes the reduction of the actual reactive area due to the 

mechanical inhibition of product nucleation exerted by the growing product layer. 

                                                           
2 The value calculated for the Biot number for heat transfer from grain to particle resulted: 

𝐵𝑖𝑔 =
ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑔𝑟𝑎𝑖𝑛 𝑡𝑜 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑎𝑖𝑛
=
𝑑𝑔

𝜆𝑠

𝜆𝑝

𝑑𝑝
= 8 ⋅ 10−3 

Nomenclature is explained in the table at the end of this note. 

The above reported value of the Biot number suggests that the temperature profile within a grain is essentially uniform. 

The value of the Biot number for particle-to-fluid heat transfer is: 

𝐵𝑖 =
ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑡𝑜 𝑓𝑙𝑢𝑖𝑑

ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
=
ℎ ⋅ 𝑑𝑝

𝜆𝑝
= 2 ⋅ 10−2 

This confirms that the external temperature gradient, whatever its value, is in general much higher than the temperature 

gradient within the particle and grain. Therefore, the heat-transfer resistance can be represented by the packed-bed-to-

fluid coefficient h, which controls the overall heat removal from the reactive system. The heat generated was compared 

to the heat removed by means of the Damköhler’s fourth dimensionless number (Land, 1972): 

𝐷𝑎𝐼𝑉 =
𝐻𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝐻𝑒𝑎𝑡 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑒𝑑
=
−Δ𝐻𝑟 ⋅ 𝑘𝑠 ⋅ 𝐴𝑟

′′′ ⋅ 𝐶𝐻𝐶𝑙,𝑖𝑛 ⋅ 𝑑𝑝
2

ℎ ⋅ 𝑑𝑝 ⋅ 𝑇𝑖𝑛
= 8 ⋅ 10−7 

where 𝐴𝑟
′′′is the surface area per unit volume. The value obtained for Da

IV
 confirms, that the heat generation is much 

slower than the heat transfer, suggesting practically isothermal conditions between bed and fluid. 

Finally, the temperature increase can be calculated from a global heat balance. Under the assumption of a pseudo-steady 

state approximation, this can be expressed as follows: 

�̇�𝑓 ⋅ �̃�𝑝,𝑓 ⋅ (𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡) + �̇�𝑟 = 0 

Calculating the heat of reaction �̇�𝑟  assuming a complete reaction (CHCl,out=0), the temperature increase results of only 

2.6⋅10
-3

 °C. 

Thus, since isothermal conditions may be assumed for the problem of interest, the introduction of free energy 

distribution seems an unnecessary complication of the model, with no real benefit for the results. 

Variables Definitions References 

dg Grain diameter Yan et al., 2003 

dp Particle diameter Yan et al., 2003 

λs Thermal conductivity of the sorbent Schaube et al., 2011 

λp Thermal conductivity of the porous particle Kantorovich and Bar-Ziv, 1999 

ΔHr Enthalpy of reaction R1 Chemistry WebBook (NIST) 

ks Chemical reaction rate constant Yan et al., 2003 

h Packed-bed-to-fluid heat-transfer coefficient Green and Perry, 2007 
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Figure 6.5.  Flow chart of the modelling procedure. Acronyms: crystallisation and fracture (CF), population 

of nuclei of critical size (PNC). Cin: inlet concentration of the gaseous reactant, T: temperature, ε: void 

fraction of the bed, ρs : true (particle) density of the sorbent, εpl: intra-particle void fraction of the sorbent, 

rk: radius of a critical nucleus, SBET: specific surface area, α: volumetric expansion factor, ΔGc: free energy 

change associated to the chemical reaction, σ: surface energy per unit area of the solid product, Cout: outlet 

concentration of the gaseous reactant, Xb: average sorbent conversion in the bed.   

 

Porous sorbent particles (Figure 6.4b) were described using the grain model (Szekely et al., 1976). 

The profile of hydrogen chloride concentration within particle pores and grains is schematically 

shown in Figure 6.4b and Figure 6.4c respectively. Hydrogen chloride diffuses through the gas 

boundary layer surrounding the external surface of the sorbent particle, then it enters the particle 

and diffuses inside the particle porosity. Different types of diffusion mechanisms are involved in 

intra-particle diffusion (i.e. molecular, Knudsen and surface diffusions). Once the acid gas 

molecules reach the grain surface, mass transfer becomes governed by solid-state diffusion through 

the product layer. Finally, the reaction takes place on the unreacted core surface. 

The equations governing the flow of the gaseous reactant through bed, particle and product layer, 

according to the processes described above, were discussed by several authors (e.g. see Hartman 

and Coughlin, 1976; Duo et al., 1993; Verdone and De Filippis, 2006) and are reported in Table 1. 

In the following, expressions for the reaction rates per unit volume of fixed bed, rvb,  and of sorbents 

particle, rvp, are derived.  

Mass balance in the fixed bed (eq. 6.2) 

Transport phenomena through the particle (eq. 6.3) 

Kinetics and transport phenomena in the grain (eq. 6.4) 

Energy balance for nucleation 
(eq. 6.18) 

Definition of PNC and r
k 

 

(eq. 6.21 and 6.22) 

 

𝐶𝑜𝑢𝑡 
𝑋𝑏 

Experimental conditions 

𝐶𝑖𝑛 , 𝑇 

Bed and sorbent morphology 

𝜀 , 𝜌𝑠 , 𝜀𝑝 , 𝑆𝐵𝐸𝑇, 

pore size distribution (optional) 

Product-related parameters 

𝛼 , ∆𝐺𝑐 , 𝜎 

GRAIN MODEL (section 6.3) CF SUBMODEL (section 6.4) 

Reduction factor 
of the reactive area 

(eq. 6.25) 
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Table 6.1. Equations of the grain model in the fixed bed geometry assumed (see the nomenclature section for 

symbols in equations).  

Type Equation and boundary conditions  

Mass balance in the 

fixed bed 

𝜀 ⋅
𝜕𝐶

𝜕𝑡
= −𝑢0 ⋅

𝜕𝐶

𝜕𝑧
+ 𝜀 ⋅ 𝐷𝑧 ⋅

𝜕2𝐶

𝜕𝑧2
− 𝑟𝑣𝑏 6.2 

𝐶(𝑧, 𝑡 = 0) = 0, for 0 < z < L 

𝑢0 ∙ [𝐶𝑖𝑛 − 𝐶(𝑧 = 0, 𝑡)] = −𝜀 ∙ 𝐷𝑧 ∙
𝜕𝐶

𝜕𝑧
|
𝑧=0

 

𝜕𝐶

𝜕𝑧
|
𝑧=𝐿

= 0 

(6.2a) 

 

(6.2b) 

 

(6.2c) 

Mass balance in the 

particle 

𝜀𝑝 ⋅
𝜕𝐶𝑝
𝜕𝑡

−
1

𝑅2

𝜕

𝜕𝑅
(𝑅2 ⋅ 𝐷𝑒𝑓 ⋅

𝜕𝐶𝑝
𝜕𝑅

) = −𝑟𝑣𝑝 6.3 

𝐶𝑝(𝑅, 𝑧, 𝑡 = 0) = 0 

𝐶𝑝(𝑅 = 𝑅𝑝, 𝑧, 𝑡) = 𝐶𝑔(𝑧, 𝑡) 

𝜕𝐶𝑝

𝜕𝑅
|
𝑅=0

= 0 

𝐷𝑒𝑓
𝜕𝐶𝑝
𝜕𝑅

|
𝑅=𝑅𝑝

= 𝑘𝑔 ∙ [𝐶(𝑧, 𝑡) − 𝐶𝑔(𝑧, 𝑡)] 

(6.3a) 

(6.3b) 

(6.3c) 

 

(6.3d) 

Mass balance in the 

product layer (grain i) 

𝜀𝑝𝑙 ⋅
𝜕𝐶𝑝𝑙,𝑖

𝜕𝑡
−

1

𝑟𝑖
2

𝜕

𝜕𝑟𝑖
(𝑟𝑖

2 ⋅ 𝐷𝑠 ⋅
𝜕𝐶𝑝𝑙,𝑖

𝜕𝑟𝑖
) = 0 6.4 

𝐶𝑝𝑙,𝑖(𝑟𝑖, 𝑅, 𝑧, 𝑡 = 0) = 0 

𝐶𝑝𝑙,𝑖(𝑟𝑖 = 𝑟𝑡,𝑖, 𝑅, 𝑧, 𝑡) = 𝐶𝑝(𝑅, 𝑧, 𝑡) 

𝐷𝑠
𝜕𝐶𝑝𝑙,𝑖

𝜕𝑟𝑖
|
𝑟𝑖=𝑟𝑐,𝑖

= 𝑘𝑠 ∙ [𝐶𝑐,𝑖(𝑅, 𝑧, 𝑡) − 𝐶𝑒𝑞] 

(6.4a) 

(6.4b) 

 

(6.4c) 

Shrinking rate of the 

unreacted core (grain i) 

𝑑𝑟𝑐,𝑖
𝑑𝑡

= −
𝑏𝑀𝑠

𝜌𝑠
⋅ 𝑘𝑠 ⋅ (𝐶𝑐,𝑖 − 𝐶𝑒𝑞) 6.5 

𝑟𝑐,𝑖(𝑅, 𝑧, 𝑡 = 0) = 𝑟𝑔,𝑖 (6.5a) 

 

The core of the model is the behaviour of sorbent grains. In the classical grain model approach, it is 

assumed that all the grains have the same initial radius, rg (Weinell et al., 1992). The initial grain 

radius can be calculated assuming that the sum of the surface of the grains in a single, unreacted 

particle corresponds to the specific surface area SBET of the solid reactant: 

𝑟𝑔 =
 

𝜌𝑠 ⋅ 𝑆𝐵𝐸𝑇
 6.6 

where ρs is the solid density. More generally, the distribution of pore sizes occurring in the particle 

can be taken into account by specifying a set of grain sizes (Maya and Chejne, 2014). Heesink et al. 



61 
 

(1993) proposed a method to correlate a set of size distribution of grains to the size distribution of 

pores, as determined by mercury porosimetry measurements. If the pores are divided into a set of 

size classes and the initial grain radius for each class is determined by: 

𝑟𝑔,𝑖 = 𝐹 ∙ 𝑟𝑝𝑜𝑟𝑒,𝑖 6.7 

where rg,i is the initial radius of the grains belonging to the size class i and rpore,i is the pore radius 

associated to the related pore class. The pore-to-sphere factor F, which is the proportionality factor 

between corresponding pore and grain radius introduced by Heesink et al. (1993), is given by: 

𝐹 =
 

𝜌𝑠 ⋅ 𝑆𝐵𝐸𝑇
∑

𝑣𝑖
𝑟𝑝𝑜𝑟𝑒,𝑖𝑖

 6.8 

where vi is the fraction of grains belonging to size class i and is equal to the ratio of the volume of 

the corresponding pore class to the total pore volume of the sorbent. 

Sintering phenomena could reasonably be excluded for the process of interest. In fact, proper 

sintering phenomena (the compacting and loss of surface area caused by heat or pressure) can be 

discarded for the typical operating temperatures of dry sorbent injection (DSI) processes (150-200 

°C), based both on experimental evidence (Borgwardt, 1989) and on the much higher value of the 

Tammann temperature for Ca-based compounds (Kierzkowska et al., 2013; Valverde, 2013). Loss 

of surface area due to pore blockage/occlusion, resulting in the coalescence of grains, could be 

excluded based on the results of Maya and Chejne Janna (2016) for the sulfation of lime.  

During the reaction process, the initially homogeneous grain undergoes partial conversion and the 

radius of the core of fresh sorbent, rc,i, has to be distinguished from the total radius of the grain, rt,i, 

comprising both the core and the external shell of solid product. When the reaction process starts, 

rc,i (t=0) = rt,i (t=0) = rg,i. Then, rt,i changes due to the formation of the solid product (e.g. CaCl2), 

which in general will have a different molar density. If α is defined as the ratio between the molar 

volume of the solid reactant and that of the solid product, the overall radius of the grain at a generic 

time t, rt,i, can be expressed as a function of the initial grain radius, rg,i, and of the unreacted core 

radius, rc,i, through a volume balance: 

𝑟𝑡,𝑖 = [𝑟𝑐,𝑖
3 + 𝛼 ⋅ (𝑟𝑔,𝑖

3 − 𝑟𝑐,𝑖
3 )]

1 3⁄
 6.9 

As reported in Table 6.1, the variation with time of the radius of the unreacted core of the grains, 

rc,i, can be expressed by the mass balance of the solid reactant at the core surface where the reaction 

takes place (eq. 6.5 in Table 6.1).  

The concentration of the gaseous reactant at the surface of the unreacted core of each class of 

grains, Cc,i, is dependent, through diffusive mass transfer in the ash layer of the solid product, on the 

concentration at the grain surface, which is equal to the concentration in the pores, Cp, at that 

position in the particle (see the concentration profile in Figure 6.4b). The relationship between Cc,i 

and Cp can be obtained from the integration of the mass balance for the diffusing gas in the layer 

formed by the solid product around the unreacted core (eq. 6.4), with the inner boundary condition 

including surface reaction (eq. 6.4c). Under the assumption of a pseudo-steady state approximation 

(Duo et al., 1993) the following solution is obtained: 

𝐶𝑐,𝑖 − 𝐶𝑒𝑞 =
𝐷𝑠

𝐷𝑠 + 𝑘𝑠 ⋅ 𝑟𝑐,𝑖 ⋅ (1 −
𝑟𝑐,𝑖

𝑟𝑡,𝑖⁄ )
⋅ (𝐶𝑝 − 𝐶𝑒𝑞) 6.10 
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where Ds is the solid-state diffusion coefficient of the gaseous reactant in the product layer and Ceq 

is the equilibrium concentration of the gaseous reactant, determined as in Shemwell et al. (2001). 

The difference Cc,i – Ceq may be considered the driving force of the reaction. The reaction rate per 

unit volume of a particle, rvp, in eq. 6.3, can be calculated as a function of the concentration of the 

gaseous reactant at the surface of the grains, Cc,i, by the following expression: 

𝑟𝑣𝑝 =∑[𝐴𝑣𝑝,𝑖 ∙ 𝑘𝑠 ∙ (𝐶𝑐,𝑖 − 𝐶𝑒𝑞)

𝑖

] 6.11 

where Avp,i, the reaction interfacial area associated to the grain class i per unit volume of sorbent 

particles, is given by: 

𝐴𝑣𝑝,𝑖 = 𝑣𝑖 ∙
 ⋅ (1 − 𝜀𝑝) ⋅ 𝑟𝑐,𝑖

2

𝑟𝑔,𝑖
3  6.12 

where εp is the void fraction of a sorbent particle and νi is the volumetric fraction of pores 

represented by the grain class i (see eq. 6.8), assumed to be the same at any radius of the particle 

(homogenous distribution of pores through the particle). Therefore, substituting eq. 6.12 into eq. 

6.11, the following expression may be obtained for the reaction rate per unit volume: 

𝑟𝑣𝑝 =∑[𝑣𝑖 ∙
 ⋅ (1 − 𝜀𝑝) ⋅ 𝑟𝑐,𝑖

2

𝑟𝑔,𝑖
3 ⋅

𝐷𝑠 ⋅ 𝑘𝑠

𝐷𝑠 + 𝑘𝑠 ⋅ 𝑟𝑐,𝑖 ⋅ (1 −
𝑟𝑐,𝑖

𝑟𝑡,𝑖⁄ )
]

𝑖

⋅ (𝐶𝑝 − 𝐶𝑒𝑞) 6.13 

Eq. 6.13 implies a first order overall rate for the process in the description of the reaction rate, 

which has indeed been observed by several investigators for the CaO/HCl system (Daoudi and 

Walters, 1991; Gullett et al., 1992; Li et al., 2000) and for the Ca(OH)2/HCl system (Yan et al., 

2003). Assuming a constant value for the particle radius, Rp, the overall reaction rate per unit 

volume of the fixed bed, rvb, in eq. 6.2, can be obtained by integrating eq. 6.13 over the volume of 

each particle, and multiplying the result by the average number of particles per unit volume in the 

fixed bed: 

𝑟𝑣𝑏 =
 ⋅ (1 − 𝜀)

𝑅𝑝
3 ⋅ ∫ 𝑟𝑣𝑝 ⋅ 𝑅

2𝑑𝑅

𝑅𝑝

0

 6.14 

where R is the radial coordinate inside a particle and ε is the void fraction of the bed packed with 

sorbent particles. Equation 6.14 can be easily extended to beds with a distribution of particles of 

different radius as described by Gbor and Jia (2004); this generalisation is not reported here for sake 

of simplicity in the discussion. 

Substituting eqs. 6.13 and 6.14 respectively in eqs. 6.3 and 6.2, the system in Table 6.1 is 

completely defined. Its solution provides the concentration of the gaseous reactant (C, Cp, Cpl,i) and 

the radius of the unreacted core rc,i as a function of time and position within the bed and the sorbent 

particles. The local conversion of the sorbent is then related to the unreacted core radius as follows: 

𝛸𝑠𝑙 =∑ [𝜈𝑖 (1 −
𝑟𝑐,𝑖

3

𝑟𝑔,𝑖
3)]

𝑖
 6.15 

From the local conversion the average solid conversion in the particle, Xp, and in the bed, Xb, can 

be calculated as follows: 
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𝛸𝑝 =
 

𝑅𝑝
3∫ 𝛸𝑠𝑙(𝑅) ∙

𝑅𝑝

0

𝑅2𝑑𝑅 6.16 

𝛸𝑏 =
1

𝐿
∫ 𝛸𝑝(𝑧)
𝐿

0

∙ 𝑑𝑧 6.17 

As mentioned in literature review, the grain model described in this section, although effectively 

accounting for transport phenomena and geometry changes due to reaction, does not address the 

issue of incomplete conversion. To overcome this limitation, in the following the model is coupled 

with a specific crystallisation and fracture submodel. 

6.4 Phenomenological model: the crystallisation and fracture submodel 
In order to address the issue of incomplete conversion of the sorbent, an active area reduction 

factor, RF, is introduced. The factor is obtained from a crystallisation and fracture (CF) model. The 

theoretical basis and the comprehensive mathematical derivation of CF models are discussed in Duo 

et al. (1994). In the following, the features of the specific model applied and the modifications 

introduced with respect to the model of Duo et al. (1994) are discussed. 

The trigger of the crystallisation process is nucleation. In the initial stage of the reaction, when a 

product layer has yet to be formed, the overall free energy change ΔG associated with the formation 

of a spherical nucleus of radius r of the new product phase is given by the sum of a volume term 

and a surface term (Duo et al., 1994). After the first layer of product is formed, if the molar volume 

of the solid product is greater than that of the solid reactant (α > 1), in order that a new nucleus is 

formed, the mechanical work required to displace the product layer in order to accommodate the 

increased volume at the boundary between the unreacted core of solid reactant and the product layer 

itself should be overcome. This new energy barrier to nucleation, W, adds to the other energy terms 

required for the nucleation process: 

∆𝐺 = ∆𝐺𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + ∆𝐺𝑣𝑜𝑙𝑢𝑚𝑒 +𝑊 = 4𝜋𝑟2𝜎 +
4

 
𝜋𝑟3𝜌𝑚∆𝐺𝑐 +𝑊 6.18 

where σ is the surface energy per unit area, ρm the molar density of product and ΔGc the molar free 

energy change due to chemical reaction, which can be expressed by means of eq. 6.19, if the 

reference reaction 5.1 is considered: 

∆𝐺𝑐 = ∆𝐺0 + 𝑅𝑇 ∙ 𝑙𝑛 (
𝑃𝐻2𝑂

2

𝑃𝐻𝐶𝑙
2) 6.19 

On the basis of the mechanism of adhesive fracture, derived from the work of Kendall et al. (1987) 

on the mechanical strength of assemblies of small particles, Duo et al. (1995) proposed a 

relationship in order to express W as a function of the thickness of the product layer h (the 

difference between rt and rc). The relationship can be expressed as follows: 

𝑊 =
𝐾 4𝜋𝑟 𝜎 (1 − 1 𝛼⁄ )

1
3 (1 − 𝜀𝑝𝑙)

4
 ℎ
3
2

𝑑
1
2

= 𝑀𝑊 4𝜋𝑟 𝜎 ℎ
3
2 6.20 

where K is a non-dimensional numerical coefficient accounting for the mechanical properties of the 

product layer, d the diameter of the developed crystallites that constitute the product layer and εpl 

the porosity of the product layer. In the following, these quantities will be represented by the 

parameter MW as shown in eq. 6.20. 
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With reference to the classical nucleation theory (Abraham, 1974), the key step of the nucleation 

and crystallisation process is the formation of nuclei of product having a critical radius rk (i.e. the 

nuclei for which the associated energy change expressed by eq. 6.18 reaches its maximum value). 

The nuclei of critical size are the primers for the crystallisation process, since only nuclei with 

radius greater than rk tend to grow in order to reduce their total free energy, thus producing stable 

nuclei (Fletcher, 1958; Duo et al., 1994). In particular, a nucleus becomes stable when it reaches a 

radius rs, larger than the critical radius, such that the associated ΔG equals zero (Duo et al., 1995). 

Thus, the critical radius is obtained deriving eq. 6.18 with respect to r and imposing that the 

derivative is equal to zero: 

𝑟𝑘 = −
𝜎

𝜌𝑚 ∆𝐺𝑐
(1 + √1 −

𝜌𝑚 ∆𝐺𝑐
𝜎

 𝑀𝑊 ℎ
3
2 ) 6.21 

When a product layer has not yet developed (h = 0) or the formation of a nucleus does not imply 

any deformation of the product layer (α = 1), the term into brackets in eq. 6.21 equals 1, and the 

value of the critical radius is the same obtained by conventional nucleation theory. However, if the 

product layer grows, the size of the critical nuclei increases (note that ΔGc is negative for 

spontaneous reaction). Conversely, the population of nuclei of critical size (PNC, i.e. the number of 

nuclei of critical size on the surface of a grain) tends to decrease during the reaction, owing to the 

increased mechanical work required to displace the increasingly thicker product layer. This 

phenomenon is that eventually stopping the reaction. 

The relationship between the PNC and the thickness of the product layer may be expressed as 

follows: 

𝑃𝑁𝐶 = 𝑁𝑠 ∙ exp (−
∆𝐺𝑘
𝑘𝑏 𝑇

) 6.22 

where Ns is the number of potential nucleation sites and ΔGk the maximum free energy change 

associated with the formation of a nucleus of critical size. It is assumed that each molecule of the 

solid reactant can act as a nucleation site, therefore Ns is equal to the total number of sorbent 

molecules at the reaction interface: 

𝑁𝑠 = 4𝜋 𝑟𝑐
2 𝜁 6.23 

where ζ is the number of sorbent molecules per unit area at the reaction interface. 

In the implementation of the model, a geometrical constraint was set for the PNC in order to take 

into account the maximum space available on the surface of one grain. Considering that the nuclei 

were described as spheres, the overall cross section of active nuclei lying on the surface of one grain 

cannot exceed the maximum surface area that can be covered by packed spheres of equal diameter: 

𝑃𝑁𝐶 𝑟𝑘
2 ≤ 

2𝜋

√ 
 𝑟𝑔
2 6.24 

The term ΔGk in eq. 6.22 incorporates the dependence of PNC on the thickness of the product layer. 

In Duo et al. (1994), ΔGk was calculated with reference to a single molecule. In the present 

approach, since the entire critical nucleus has to obtain its space at the interface, it was considered 

more adequate to evaluate the mechanical work required for the growth of a nucleus of critical 

radius rk, in order to take into account the contribution of all the molecules that coalesce to form a 

nucleus. 
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The parameters involved in the determination of the mechanical work, which takes into account the 

mechanical properties of the product layer that is formed during the reaction, can be estimated 

introducing some assumptions. The porosity of the product layer εpl can be assumed as the void 

fraction of a close-packing of equal, non-overlapping spheres. Therefore, physically consistent 

values lie in the range between (1 −
𝜋

3√2
) and (1 −

𝜋

6
), corresponding to the void fractions of 

hexagonal and cubic packing respectively. The lower value was selected in the present study, since 

product layers formed in dry gas conditions generally show limited porosity (Fonseca et al., 2001). 

The parameter d, according to the CF model, is the average diameter of spherical crystallites 

assembled together to form the product layer. Its value can float, at most, between the average 

diameter of the stable nuclei formed so far (2⋅rs) and the thickness of the product layer (h): 2⋅rs ≤ d 

≤ h. Dennis et al. (2009), who applied the CF approach to model the overall uptake of CO2 by a Ca-

based sorbent, used a constant value of d, that was used as an adjustable parameter. In the present 

application, in order to take into account the evolution of d during reaction, it was assumed that the 

increase in the size of the developed crystallites depends on the increase of the size of stable nuclei. 

Therefore, the growth of the crystallites was assimilated to the growth of the stable radius and it was 

thus imposed for d to be equal to 2⋅rs.  

In order to introduce the CF model in the kinetic framework previously described, the decrease of 

the population of active nuclei was related to the decrease of the surface area available for the 

reaction, which, for any grain of sorbent, is given by the number of nuclei of critical size multiplied 

by the cross section of a nucleus. The integration of the CF model in the grain model was realised 

defining a reduction factor for the active surface (RF), expressed as: 

𝑅𝐹 =
𝑃𝑁𝐶(𝐶𝑐 , ℎ) ∙ 𝑟𝑘(𝐶𝑐, ℎ)

2

𝑃𝑁𝐶(𝐶𝑐 , ℎ = 0) ∙ 𝑟𝑘(𝐶𝑐, ℎ = 0)2
 6.25 

The overall active area is proportional to the number of nuclei of critical size (PNC) multiplied by 

their cross section (π⋅rk
2
). The reduction factor is calculated as the ratio among the actual active area 

and the maximum potential active area. The maximum potential active area is obtained considering 

no product layer. The actual active area takes into account the inhibition of reactivity due to the 

accumulation of the product layer around the reacting grains, proportional to the layer thickness. 

Both terms are function of the thickness of the product layer, h. RF is equal to 1 at the beginning of 

the reaction, when the product layer is not formed yet, and decreases monotonically as h increases.  

Since product layer thickening for a given conversion degree is a function of grain radius, different 

RFi have to be defined for the classes i of grain size. RFi is applied to the reaction rate per unit 

volume of particle reported in eq. 6.13 independently for each grain class i: 

𝑟𝑣𝑝 =∑[𝑣𝑖 ∙ 𝑅𝐹𝑖 ∙
 ⋅ (1 − 𝜀𝑝) ⋅ 𝑟𝑐,𝑖

2

𝑟𝑔,𝑖
3 ⋅

𝐷𝑠 ⋅ 𝑘𝑠

𝐷𝑠 + 𝑘𝑠 ⋅ 𝑟𝑐,𝑖 ⋅ (1 −
𝑟𝑐,𝑖

𝑟𝑡,𝑖⁄ )
]

𝑖

⋅ (𝐶𝑝 − 𝐶𝑒𝑞) 6.26 

The reaction rate per unit volume of bed (eq. 6.14) is corrected accordingly. The introduction of RFi 

allows the grain model to incorporate the CF model in the evaluation of the overall reaction rate. 

Accordingly, RFi is also introduced as a multiplying factor in the equation for the time evolution of 

the grain radius (eq. 6.5): 

𝑑𝑟𝑐,𝑖
𝑑𝑡

= −𝑅𝐹𝑖 ⋅
𝑀𝑠

2 𝜌𝑠
⋅ 𝑘𝑠 ⋅ (𝐶𝑐,𝑖 − 𝐶𝑒𝑞) 6.27 

Actually, the velocity at which the reaction interface moves towards the centre of the grain has to be 

calculated taking into account the actual reactive area, as expressed by RFi. 
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It is worth remarking that the coupling of the CF with the grain model allows the model to include 

the quantitative dependence on the two factors that cause the decrease of the reaction rate due to the 

growth of the product layer: i) the grain model considers the increase of the characteristic length for 

solid-state diffusion, (rt,i – rc,i); ii) the CF model considers the increase in the mechanical work, W, 

needed for further product nucleation at the reaction interface. 

6.5 Model input and output parameters 
The input data and the model parameters that need to be defined in order to apply the model are 

summarised in Table 6.2. The table also reports the range of values or the correlations available to 

estimate the parameters for the Ca(OH)2/HCl system. 

As shown in Table 6.2, all the model parameters can be estimated from literature data, calculated a 

priori or obtained from the experimental characterisation of the solid reactant, except ks, Ds and K. 

These parameters are inherently dependent on the morphology of solid particles, which may show 

important differences even when the same reactant is used (Borgwardt et al., 1987; Koch et al., 

2005), and also on the experimental techniques used in their assessment (Koch et al., 2005).  

As further discussed in section 6.6, in the model validation a single value for ks was assumed, based 

on literature analysis with reference to the Ca(OH)2/HCl system. Generally speaking, the value of 

ks can be assessed in specifically designed experiments aimed at identifying the initial reaction rate 

in conditions where mass transfer limitations are negligible (Yan et al., 2003). However, the 

technical hindrances in performing the measurement as well as the limited influence of the chemical 

reaction rate on the overall rate of gas-solid reactions, typically dominated by diffusive control 

(Weinell et al., 1992) led to its use as a fitting parameter in previous studies (Duo et al., 1993; 

Wang and Teng, 2009). With reference to the Ca(OH)2/HCl system, values estimated using 

different modelling approaches are in the range between 10
-5

 and 10
-4

 m/s (Karlsson et al., 1981; 

Duo et al., 1993). 

Similarly, the assessment of the diffusion coefficient in the product layer is affected by 

uncertainties. Actually, direct measurement of diffusivity in the product layer is hardly possible, and 

the different modelling approaches used to-date to extrapolate such parameter from experimental 

data have an important influence on the values obtained, as shown in Figure 6.6. The values of 

Mura and Lallai (1994) were derived for the reaction between calcium carbonate and hydrogen 

chloride using a grain model and considering both chemical reaction and product layer diffusion. 

The data of Koch et al. (2005) were obtained from single-particle experiments for the Ca(OH)2/HCl 

system analysed taking into account pore diffusion, product layer diffusion and an interface reaction 

step. The data of Weinell et al. (1992) were obtained by the authors using the experimental data 

which are shown in section 6.6 and a grain model assuming only product layer diffusion control. 

The data of Duo et al. (1993) were obtained from the same experimental data but considering also 

pore diffusion and chemical reaction in the grain model, hence demonstrating how the estimated 

value of Ds is widely dependent on the modelling assumption introduced for experimental data 

analysis. 
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Table 6.2. Summary of input parameters required for the coupled grain and CF models (CALC: parameter calculated according to reported references or to 

equations in the text; FIT: fitting parameter as discussed in the text) 

Type Item Description / Definition Value Units Reference 

Geometrical 

parameters 

ε Inter-particle void fraction of the fixed bed 0.4-0.6 - 

Weinell et al. (1992) 

Duo et al. (1993) 

Verdone and De Filippis (2006) 

εp Intra-particle void fraction (porosity) 0.5† - Duo et al. (1993) 

ρb 
Bulk (apparent) density of sorbent 

 
500-650† kg/m

3
 Weinell et al. (1992) 

ρs 
True (particle) density of sorbent: 

ρs = (1-εp)∙ρb 
CALC kg/m

3
  

SBET 
Specific surface area (usually measured with the Brunauer-

Emmett-Teller method) 
10-20† m

2
/g 

Weinell et al. (1992) 

Gullett et al. (1992) 

Yan et al. (2003) 

Vm,s Molar volume of sorbent 51.6† m
3
/mol Chemistry WebBook (NIST) 

Vm,p Molar volume of solid product 33.1† m
3
/mol Chemistry WebBook (NIST) 

α 

Volumetric expansion factor, i.e. ratio of the molar volume of 

the solid product to that of the solid reactant: 

α = Vm,p/ Vm,s 

CALC -  

τ 
Tortuosity of the sorbent porous structure 

(used for Def estimation) 
CALC - 

Correlations: Mackie-Meares, 

Wakao-Suzuki, Suzuki-Smith 

(Green and Perry, 2007) 
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Thermodynamic 

parameters 

(dependent on 

the actual 

reaction equation 

assumed) 

Ceq Equilibrium concentration of the gaseous reactant CALC mol/m
3
 

JANAF Thermochemical Tables 

(NIST) 

ΔGc Free energy change associated to reaction (eq. 8.18) CALC J/mol 
JANAF Thermochemical Tables 

(NIST) 

kb Boltzmann constant 1.38·10
-23

 m
2
 kg s

-2
 K

-1
  

σ Surface energy per unit area of the solid product 0.1-0.5 J/m
2
 Duo et al. (1994) 

εpl Void fraction of the product layer 0.26-0.48 - Geometrical boundaries 

d 

Diameter of a crystallite of solid product, corresponding to the 

stable radius of a nucleus: 

d = 2∙rs 

CALC -  

K Mechanical work-related numerical coefficient  (eq. 8.27) FIT - 
Least squares method (Wolberg, 

2006) 

Kinetic and 

transport 

parameters 

ks Chemical reaction rate constant 3.2·10
-4 † m/s Yan et al. (2003) 

kg Exterior gas film mass transfer coefficient CALC m/s 
Ranz-Marshall correlation 

(Levenspiel, 1998) 

Ds Product layer diffusivity of the gaseous reactant (eq. 8.26) FIT m
2
/s 

Least squares method (Wolberg, 

2006) 

Dm 
Molecular diffusivity of the gaseous reactant 

 
CALC m

2
/s 

Fuller-Schettler-Giddings 

correlation 

(Fogler, 2005) 

Dz Axial dispersion coefficient 0.7·Dm m
2
/s Harker et al. (2002) 

Dk Knudsen diffusivity CALC m
2
/s 

Dusty gas model 

(Duo et al., 1993) 

Def 

Effective gas diffusivity in the pores: 

𝐷𝑒𝑓 =
𝜀𝑝

𝜏
(
1

𝐷𝑚
+

1

𝐷𝑘
)
−1

 
CALC m

2
/s Smith (1981) 

† with reference to Ca(OH)2 and the Ca(OH)2/HCl system 
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Lastly, the non-dimensional coefficient K, taking into account the mechanical properties of the 

product layer in the expression of the mechanical work W (eq. 6.20), is a specific feature of the 

present model. The parameter was introduced by Duo et al. (1994) in deriving the original CF 

model, but no numerical values were proposed. 

In the light of the above discussion, Ds and K were used as fitting parameters in the following, 

although their variation with temperature was bound to physical considerations. As shown in Figure 

6.6, available data suggest the exponential dependency of Ds on temperature, which is typical of an 

activated process such as solid-state diffusion (Bhatia and Perlmutter, 1982). Thus, an Arrhenius-

type behaviour was assumed: 

𝐷𝑠 = 𝐴𝐷 ∙ exp (−
𝐸𝑎,𝐷
𝑅𝑇

) 6.28 

where AD (m
2
/s) is the pre-exponential factor and Ea,D the activation energy (kJ/mol). 

Also for the coefficient K an exponential dependency on temperature was supposed. Assuming that 

K is the term in the expression of the mechanical work W which takes into account the mechanical 

resistance of the product layer, its log-linear decrease with temperature recalls the typical behaviour 

of the elastic modulus of several materials (Wachtman et al., 1961). Thus, by analogy with Ds, the 

following expression was used to calculate K: 

𝐾 = 𝐴𝐾 ∙ exp (
𝐸𝑎,𝐾
𝑅𝑇

) 6.29 

where AK (dimensionless) and Ea,K (kJ/mol) are an apparent pre-exponential factor and an apparent 

activation energy, respectively, which were estimated from data fitting. 

 

Figure 6.6. Product layer diffusivity for the reaction between Ca-based sorbents and HCl obtained from 

different literature sources. 

6.6 Model validation against literature data 
The model described in sections 6.3 and 6.4 was applied to the analysis of different sets of 

experimental data, reported in two different literature studies concerning the Ca(OH)2/HCl system 

(Weinell et al., 1992; Yan et al., 2003).  
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The set of data reported by Weinell et al. (1992) concerns the reaction of gaseous HCl with a thin 

particle layer of calcium hydroxide or calcium oxide in a tubular reactor at different temperatures. 

The data obtained for HCl reaction with calcium hydroxide at 100, 140, 200 and 250 °C were used 

in the present validation. Further details on the experimental runs are reported in Duo et al. (1993). 

The second validation data set was obtained from the study of Yan et al. (2003). The data concerned 

the reaction between gaseous HCl and calcium hydroxide in the range 170-300 °C in a 

thermogravimetric analyser. Further details on experimental conditions are reported in the original 

paper. Table 6.3 reports the specific values of the main parameters and operating conditions 

considered for the application of the model to the simulation of the two sets of experimental data 

considered. 

Table 6.3. Experimental parameters reported in the studies considered for model validation. 

Parameter Weinell et al. (1992) Yan et al. (2003) 

Total flow rate [L/min] 1  0.15 

Gas velocity [m/s] 5·10
-2

  3·10
-2 * 

HCl inlet concentration [ppm] 1000 562 

Mass of sorbent [mg] 25 10 

BET surface area of sorbent [m
2
/g] 12.1  17.1 

True density of sorbent [kg/m
3
] 2240  

Bulk density of sorbent: 

530 kg/m
3
 

Void fraction of the bed [-] 0.6 

Porosity of sorbent [-] 0.519 

Bed thickness [mm] 0.10 † 0.24 * 
*
 Superficial gas velocity and bed thickness were estimated on the basis of a standard 10 mm diameter platinum pan. 

†
 The thickness of the particle layer of calcium hydroxide was estimated from the axial Peclet number of 0.2 reported by 

the authors using the reported gas velocity and the molecular diffusivity of HCl. 

 

No porosimetry measurements providing the pore size distribution of the sorbent are reported in the 

two papers. Even if, in general, the model can take into account a distribution of the grains, at this 

stage a uniform radius of the grains, calculated according to eq. 6.6, was adopted in modelling the 

two datasets. Maya and Chejne Janna (2016) showed the possibility to reconstruct a reference pore 

size distributions from BET surface area and the porosity data by applying the method illustrated by 

John et al. (2007). This is however deemed to introduce arbitrary assumptions concerning unknown 

pore size distributions, and is therefore avoided in this validation step. 

Due to the specific geometrical features of the experimental systems, few simplifying assumptions 

were introduced. In particular, since the fixed reactant bed is formed by an extremely thin layer of 

solid particles (as confirmed by the value of the Peclet number reported by Weinell et al., 1992), a 

uniform concentration of HCl all through the bed, C(t), was assumed, neglecting position in the z 

axis. Accordingly, the reaction rate and the sorbent consumption are uniform within the bed. 

Furthermore, the accumulation term of eq. 6.2 can be neglected because the mean flow time through 

the bed is negligible with respect to the characteristic time of the reaction (Hartman and Coughlin, 

1976; Verdone and De Filippis, 2006). Therefore, the hydrogen chloride concentration in the bed at 

the initial condition (t = 0) is driven by the HCl removal at the initial reaction rate, when the inlet of 

the experimental system shows an abrupt step change from 0 to Cin. Thus, a pseudo steady-state 

perfect-mixing approximation was applied. Eq. 6.2 was accordingly changed to eq. 6.30 in Table 

6.4. 

In the simplified set-up assumed for experimental data simulation, the concentration of HCl in the 

bed depends only on the variation of the reaction term. Indeed, rvb decreases due to the formation of 
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the product layer and the consumption of the fresh sorbent, with velocity given by eq. 6.32 (Table 

6.4). With specific reference to the chemical system of interest, a further assumption introduced is 

that the HCl concentration within the pores (i.e. within the particle) can be considered as uniform. 

This was based on experimental results obtained by Weinell et al. (1992), that evidence that the 

conversion of the sorbent within a particle can be assumed as homogeneous. These results were 

confirmed by Guglielmi (2014), which solved the governing mass transport equations within 

particle porosity finding an almost uniform profile of HCl concentration inside the particles. 

Therefore, the intra-particle concentration of the gaseous reactant was assumed equal to the bulk 

gas concentration at any radial coordinate within the sorbent particles: Cp(R,t) = C(t). Accordingly, 

eq. 6.3 is no more necessary for the description of the simplified geometrical system considered. 

As a consequence of the simplifications discussed above, only the HCl concentration gradient 

within the product layer was considered in the model validation stage. Thus, governing phenomena 

result the chemical reaction and solid-state diffusion. This is in agreement with the findings of 

several investigators, specifically addressing the HCl/Ca(OH)2 system (Gullett et al., 1992; Weinell 

et al., 1992; Fonseca et al., 1998), as well as general acid gas removal processes (Stendardo and 

Foscolo, 2010). The overall reaction rate per unit volume of the fixed bed (eq. 6.15) may be 

modified as in eq. 6.31 (Table 6.4).  

The model results in the system of Table 6.4, where the main unknowns are the HCl concentration 

within the bed, C(t), and the radius of the unreacted core of the grains, rc(t). According to the 

assumption of a uniform HCl concentration profile within the bed and in the particle porosity, from 

the application of eqs. 6.16 and 6.17, the average conversion of the sorbent bed, Xb, results equal to 

the local conversion, Xsl. 

Table 6.4. Model equations associated with initial conditions under the assumptions introduced for model 

validation.   

Type Model equation  

Mass balance 

in fixed bed 
𝑢0(𝐶𝑖𝑛 − 𝐶(𝑡)) = 𝐿 ∙ 𝑟𝑣𝑏  6.30 

Reaction term 

in fixed bed 
𝑟𝑣𝑏 = 𝑅𝐹 ∙

 ⋅ (1 − 𝜀) ⋅ (1 − 𝜀𝑝) ⋅ 𝐷𝑠 ⋅ 𝑘𝑠
𝑟𝑔
3

⋅
𝑟𝑐
2

𝐷𝑠 + 𝑘𝑠 ⋅ 𝑟𝑐 ⋅ (1 −
𝑟𝑐

𝑟𝑡⁄ )
⋅ (𝐶 − 𝐶𝑒𝑞) 6.31 

Shrinking rate 

of unreacted 

core 

𝑑𝑟𝑐
𝑑𝑡

= − 𝑅𝐹 ⋅
𝑏 ∙ 𝑀𝑠

𝜌𝑠
⋅

𝐷𝑠 ⋅ 𝑘𝑠

𝐷𝑠 + 𝑘𝑠 ⋅ 𝑟𝑐 ⋅ (1 −
𝑟𝑐

𝑟𝑡⁄ )
⋅ (𝐶 − 𝐶𝑒𝑞) 6.32 

𝑟𝑐(𝑡 = 0) = 𝑟𝑔 6.32a 

 

For both experimental datasets considered, the stoichiometry of reaction 7.1 was assumed, since the 

sorbent conversion was reported accordingly in the original studies. The model parameters 

dependent on the reaction product formed were thus selected as follows: i) the molar free energy 

due to chemical reaction ΔGc was calculated from the energies of formation of the compounds 

involved in reaction 7.1  (NIST-JANAF Thermochemical Tables); ii) the volumetric expansion 

factor α was set to 1.58 (i.e. the ratio of the molar volumes of CaCl2 to that of Ca(OH)2); iii) the 

value of 0.25 J/m
2
 was assumed for the surface energy of the product, σ, since typical values for 

inorganic salts vary in the range between 0.1 and 0.5 (Duo et al., 1994), while for liquid CaCl2 

Ferguson (1928) assessed a value of 0.15 J/m
2
 and for CaCO3 estimated values between 0.23 and 

0.38 J/m
2
 are reported by Gilman (1960). 
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Limited data are available in literature for the surface reaction rate constant ks, since only 

experiments designed to minimise mass transfer limitations and aimed at evaluating only the initial 

stage of reaction (i.e. before the formation of a continuous product layer) could provide a reliable 

measure of the chemical reaction rate of a gas-solid reaction. For the Ca(OH)2/HCl system at the 

temperatures of interest for DSI application, Yan et al. (2003) estimated chemical reaction rates of 

2.1∙10
-4

 m/s and 3.2∙10
-4

 m/s for two lime samples of lower and higher surface area, respectively. 

No data are reported by Weinell et al. (1992). Thus, the value of 3.2∙10
-4

 m/s proposed by Yan et al. 

(2003) for the experimental conditions detailed in Table 6.3 was also used for the fitting of the data 

from Weinell et al. (1992). The adoption of the same value of ks is supported by the nature of the 

parameter, which should not be dependent on the morphology of the sorbent. Regarding the 

temperature dependence of ks, this was neglected by Yan et al. (2003), and Duo et al. (1993) found 

ks to be constant in the interval 100-250 °C. Actually, it will be shown that the value assumed for ks 

has a limited influence on model results. 

Eqs. 6.28 and 6.29 were used to determine Ds and K for the experimental data available. A least 

squares best-fit procedure was used to calculate the parameters in the equations. The values 

obtained are reported in Table 6.6. 

Figure 6.7 reports the results of model simulations for the overall conversion of Ca(OH)2 as a 

function of time compared to the experimental data by Weinell et al. (1992). Figure 6.8 reports the 

model results compared to experimental data by Yan et al. (2003). 

 

Figure 6.7. Sorbent conversion at different temperatures. Points: experimental data by Weinell et al. (1992); 

curves: model results. 
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Figure 6.8. Sorbent conversion at different temperatures. Points: experimental data by Yan et al. (2003); 

Curves: model results. 

Experimental data from Weinell et al. (1992) were available only for 20 minutes, hence the 

decrease of reactivity over time given by the increase of the diffusional resistance and the energy 

barrier to nucleation is captured only in its earlier stage. Nonetheless, the model is capable to fit the 

data with sufficient precision and, by extending the time scale to 30 minutes, to show the decline in 

reactivity leading to increasingly slower overall reaction rates. 

Differently, Yan et al. (2003) ran the reaction over a longer time scale (more than 13 hours). Figure 

6.8 clearly shows the good reproduction of the asymptotic tendency to a different ultimate 

conversion value at different temperature and in general a good agreement with experimental data, 

especially for larger time intervals, which are of main concern in conditions of practical interest. 

Even if a uniform size of the sorbent grains was assumed, a satisfactory fitting of the data was 

obtained. Thus, it was confirmed unnecessary to add further hypotheses about grain size distribution 

in the current model validation by available data.  

A direct comparison of the two datasets is difficult both because of the different time scale and of 

the different reactant ratios used. Although the mass of sorbent and the HCl inlet concentration set 

in the two experiments are similar (see Table 6.3), the gas flow rate in Yan et al. (2003) is an order 

of magnitude higher than in Weinell et al. (1992), resulting in a different sorbent to HCl ratio. A 

normalisation was thus introduced to compare the two datasets and the model results at a 

temperature of 200 °C, at which both studies provide experimental data. Figure 7 shows the sorbent 

conversion with respect to a normalised time variable t/τ, obtained dividing actual time of 

experimental runs, t, by the time τ needed to approach the stoichiometric saturation of the bed (i.e. 

the time at which the cumulated molar flowrate of HCl through the bed equals the moles of HCl 

which the sorbent bed could adsorb according to the stoichiometry of reaction 7.1). The time τ is 

calculated as follows: 

𝜏 =  
2 ⋅ 𝑛𝐶𝑎(𝑂𝐻)2

�̇�𝐻𝐶𝑙
 6.33 

where nCa(OH)2 is the number of moles of calcium hydroxide in the bed and ṅHCl is the molar flowrate 

of hydrogen chloride in the gas stream. 
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Figure 7 shows that the two samples of calcium hydroxide initially have a similar reactivity. 

However, for longer time periods, the reaction slows down and the two datasets become different, 

possibly due to the dissimilar structure of the product layer, resulting in different diffusion and 

work-related coefficients Ds and K, reported respectively in Figure 6.6 and in Table 6.5. 

Table 6.5. Values of K at different temperatures for the two datasets. 

Dataset T (°C) K (-) 

Weinell et al. (1992) 

100 1.22·10
-2

 

140 4.30·10
-3

 

200 1.25·10
-3

 

250 5.54·10
-4

 

Yan et al. (2003) 

170 9.80·10
-3

 

200 5.55·10
-3

 

230 3.36·10
-3

 

300 1.28·10
-3

 

 

Table 6.6. Parameters of solid-state diffusivity and mechanical work-related coefficient K (eqs. 6.28 and 

6.29) calculated from the data of Weinell et al. (1992) and Yan et al. (2003). 

Parameter Weinell et al. (1992) Yan et al. (2003) 

AD [m
2
/s] 2.12·10

-9
 1.64·10

-6
 

Ea,D [J/mol] 24.5 55.9 

KD [-] 2.53·10
-7

 1.25·10
-6

 

Ea,K [J/mol] 33.4 33.0 

 

 

Figure 6.9. Plot of the sorbent conversion at T = 200 °C versus normalised time according to eq. 6.33. 

Points: experimental data; curves: present model. 

In Figure 6.6 the values obtained for the diffusivity of HCl in the product layer are shown along 

with the values of Ds proposed in literature. The values of Ds obtained here cannot be directly 

compared to the literature values, since the effect of energy barrier to nucleation exerted by the 

product layer has been extracted from Ds through the definition of the reduction factor RF. 

Nonetheless, estimated solid layer diffusivities are still within the typical range of these reaction 
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systems. In addition, the activation energies calculated for the solid state diffusion process (Table 

6.6) are comparable with the broad range of values estimated by previous authors (10-15 kJ/mol 

(Weinell et al., 1992); 19 kJ/mol (Fonseca et al., 1998); 36.5 kJ/mol (Duo et al., 1993); 40 kJ/mol 

(Mura and Lallai, 1994). 

Furthermore, the difference in the values of Ds calculated in the present study for the two data sets 

considered is hardly surprising, even if the same modelling approach is adopted. Although for the 

sample of Yan et. al (2003) a higher BET surface was reported, the calculated diffusivity is almost 

one order of magnitude lower than that calculated for the data by Weinell et. al (1992). Actually 

SEM photographs of particles of calcium hydroxide after exposure to HCl show highly 

inhomogeneous solid textures and significant particle-to-particle variations (Koch et al., 2005). Hu 

et al. (2008), who performed direct sulfation experiments on limestone, observed oriented 

nucleation and growth of the solid product along fractures on the surface of sorbent particles. Duo 

et al. (2000) observed product crystals developing in “plate-like” structures in sulfation 

experiments, while Bausach et al. (2006) reported “needle-like” features. Due to the complexity of 

nucleation promoted by defect sites and due to the wide variation in morphology of the reactants, 

the crystalline structure of product layers might be highly sample-dependent. Hence, the cohesion 

and the diffusivity through product layers formed on different samples might differ. Nonetheless, 

the model developed proved to be suitable for the reproduction of experimental data from different 

datasets incorporating such conformational variations in the variation of Ds within a reasonable 

range of values, well in agreement with previous literature data and comprised between 10
-12

÷10
-14

 

m2/s for temperatures between 150 and 250 °C. 

With respect to the non-dimensional parameter K, the assumption of an Arrhenius-type behaviour 

allowed a satisfactory reproduction of experimental data. Almost identical values of the activation 

energy were found in the fitting of the two datasets, as shown in Table 6.6. This highlights that the 

variation of K with temperature is not a mere adjustable feature of the model, but is bound to 

physical considerations (i.e. mechanical properties and cohesion of the product layer, probably 

function of sample-dependent nucleation mode), although a further investigation of this issue falls 

out of the scope of the present study. 

It is also interesting to verify the influence of the value assumed for the kinetic constant, ks, on the 

overall reaction rate. An estimate of the influence of ks in determining the value of the sorbent 

conversion is given by the ratio of the % variation of the conversion to that of ks. The average solid 

conversion value at a quarter of the total experiment time (¼ tfin) and at the end of the experiment 

(tfin) were chosen for this calculation, as shown in Table 6.7. 

Table 6.7. Results of the sensitivity analysis carried out for ks values (experiments at T = 200 °C). 

Dataset 
ks  

(m/s) 

Xsl  

(t = 1/4 tfin) 
|
%∆𝑿𝒔𝒍

%∆𝒌𝒔
| 

Xs  

(t = tfin) 
|
%∆𝑿𝒔𝒍

%∆𝒌𝒔
| 

Weinell et al. (1992) 

1.0·10
-4

 0.176 0.227 0.319 0.087 

3.2·10
-4

 0.209 - 0.339 - 

5.0·10
-4

 0.209 0.002 0.333 0.033 

Yan et al. (2003) 

1.0·10
-4

 0.257 0.069 0.319 0.056 

3.2·10
-4

 0.245 - 0.307 - 

5.0·10
-4

 0.235 0.076 0.297 0.056 

 

The influence of ks is generally low and decreases as reaction proceeds. Varying the values within 

the order of magnitude of 10
-4

 m/s does not significantly affect the conversion of the sorbent over 
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long reaction times, which are of interest in flue gas treatment systems. In fact, ks exerts two 

opposite effects on solid conversion: a higher chemical reaction rate means faster conversion but 

also faster appearance of a thicker, reaction-inhibiting product layer. Therefore, with the exclusion 

of the very first instants, the reaction progress is mainly controlled by reactant diffusion in the 

product layer, in agreement with previous findings (Duo et al., 1993; Fonseca et al., 1998). This can 

be confirmed calculating a Thiele-like modulus (Stendardo et al., 2011) which evaluates the relative 

magnitude of the diffusion through the chloride layer and the reaction at the surface of Ca(OH)2 

grains: 

𝜑 = 𝑟𝑔√
𝑘𝑠 ∙ 𝜌𝑠 ∙ 𝑆𝐵𝐸𝑇

𝐷𝑠
 6.34 

According to eq. 6.6 and to data reported in Table 6.3, the values of 5.0 and 8.3 can be calculated 

for ϕ for the experiments at 200 °C of Weinell et al. (1992) and Yan et al. (2003) respectively, thus 

confirming diffusive control. 

6.7 Model validation against experimental data 
Once tested against relevant literature data, the phenomenological model was validated against the 

data collected in the experimental campaign described in chapter 5. In the adopted experimental 

configuration (section 5.2), acid gas removal takes place in a fixed bed of porous particles of 

thickness L, through which the gaseous phase flows at a constant velocity u0, mixing axially 

according to a dispersion coefficient Dz. Thus, the governing one-dimensional mass balance 

differential equation with convection, axial diffusion and reaction through a porous medium can be 

applied: 

𝜀 ⋅
𝜕𝐶

𝜕𝑡
= −𝑢0 ⋅

𝜕𝐶

𝜕𝑧
+ 𝜀 ⋅ 𝐷𝑧 ⋅

𝜕2𝐶

𝜕𝑧2
− 𝑟𝑣𝑏 6.35 

with the following initial and boundary conditions: 

𝐶(𝑧, 𝑡 = 0) = 0  

𝐶(𝑧 = 0, 𝑡) = 𝐶0  

𝜕𝐶

𝜕𝑧
|
𝑧=𝐿

= 0 

where C is the bulk concentration of reactant gas, ε is the interparticle void fraction of the packed 

bed, rvb is the reaction rate for a unit volume of bed and C0 is the concentration of the reactant gas at 

the entrance of the bed (z = 0).  

The reaction term rvb can be expressed through eq. (3), where ko is an overall reaction rate constant 

(expressed in s
-1

) and Ceq is the minimum theoretical concentration that would be reached at 

thermodynamic equilibrium: 

𝑟𝑣𝑏 = 𝑘𝑜 ⋅ (𝐶 − 𝐶𝑒𝑞) 6.36 

The expression for ko is derived following the steps of section 6.3 and 6.4, resulting in: 

𝑘𝑜 =∑[𝑣𝑖 ∙ 𝑅𝐹𝑖 ∙
 ⋅ (1 − 𝜀) ⋅ (1 − 𝜔𝑖𝑛) ⋅ (1 − 𝜀𝑝) ⋅ 𝑟𝑐,𝑖

2

𝑟𝑔,𝑖
3 ⋅

𝐷𝑠 ⋅ 𝑘𝑠

𝐷𝑠 + 𝑘𝑠 ⋅ 𝑟𝑐,𝑖 ⋅ (1 −
𝑟𝑐,𝑖

𝑟𝑡,𝑖⁄ )
]

𝑖

 6.37 
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Accordingly, the conversion of the sorbent is a weighted summation of the conversion of the grain 

classes i, which is a function of the shrinking of the unreacted grain core (equation 6.15). 

The parameters required by the model, as well as their related values in the present application, are 

reported in Table 8.7. In addition, pore size distribution of the sorbent sample, shown in Figure 5.3 

is used to determine the initial size of sorbent grains, following the method introduced by Heesink 

et al. (1993) as described in section 6.3. For the present case, the value of F was found to be 0.164. 

Computed grain radius for the 8 class subdivision of Figure 5.3 are reported in Table 6.8. 

Table 6.8. Division of the pore size distribution in Figure S1 in pore classes and related grain sizes. 

Pore 

class 

Average 

class radius 

Cumulative pore 

volume 
Class specific volume rg,i 

- µm mm
3
/g mm

3
/g % m 

1 2.239 16.1 16.1 3.6% 3.67E-07 

2 1.413 44.4 28.3 6.3% 2.32E-07 

3 0.891 188.3 143.9 32.2% 1.46E-07 

4 0.562 368.3 180.0 40.2% 9.23E-08 

5 0.355 444.4 76.1 17.0% 5.82E-08 

6 0.224 446.1 1.7 0.4% 3.67E-08 

7 0.141 447.2 1.1 0.2% 2.32E-08 

8 0.089 447.2 0.0 0.0% 1.46E-08 

 

In the light of the analyses on the reacted samples (section 5.5), the solid product was assumed to be 

CaOHCl and the parameters of the nucleation submodel were calculated accordingly. Three 

parameters (ks, Ds and K) were determined by experimental data fitting. It is assumed that their 

variation with temperature follows an Arrhenius-type law: in particular, ks and Ds increase 

exponentially with temperature, being chemical reaction and product layer diffusivity activated 

processes (Bhatia and Perlmutter, 1982), while K follows the log-linear decrease with temperature 

of the resistance to deformation of the product layer, as already detailed in section 6.5.  

Model training. In order to determine the temperature dependence of the fitting parameters, the set 

of experiments performed at HCl inlet concentration of 2500 ppm and 100 mg of sorbent in the bed 

(runs 1-3 in Table 5.2) was used as training case.  

The model fitting of HCl removal and Ca(OH)2 conversion is shown in Figure 6.10. The adherence 

to experimental data is satisfactory and the model succeeds in reproducing the decline in reactivity 

over time. The associated values of ks, Ds and K are listed in Table 6.9. Their trend with 

temperature is in line with the previous application of the model to literature data: values of Ds are 

within the range of relevant values reported in previous modelling studies of the chloridisation 

reaction in similar conditions (Figure 7), while the apparent activation energy for K, 38 kJ/mol, is 

comparable to the 33 kJ/mol found for the fitting of Weinell’s and Yan’s data in section 6.6.  

Table 6.9. Temperature-dependent parameters for the model fitting of Figure 6.10. 

Parameter 120 °C 150 °C 180 °C 

ks (m/s) 3.0 ∙ 10
-5

 3.9 ∙ 10
-5

 5.0 ∙ 10
-5

 

Ds (m
2
/s) 0.38 ∙ 10

-13
 1.87 ∙ 10

-13
 7.51 ∙ 10

-13
 

K (-) 2.55 ∙ 10
-2

 1.10 ∙ 10
-2

 0.53 ∙ 10
-2
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Figure 6.10. Training case. Model fitting of breakthrough curves of HCl removal (left) and corresponding 

Ca(OH)2 conversion (right). Mass of sorbent: 100 mg, HCl inlet concentration: 2500 ppm. Model in 

continuous lines, experimental data (average of 3 runs) in dotted lines. 

 

Figure 6.11. Product layer diffusivity for the reaction between Ca(OH)2 and HCl estimated in different 

studies. Continuous lines are specifically related to the applications of the phenomenological model. 

Model validation. In order to evaluate the capability of the model calibrated on the training case to 

predict the HCl removal behaviour in different conditions, the set of runs 4-6 and the set of runs 7-9 

(see Table 5.2) were used as validation cases. The former presents half the mass of calcium 

hydroxide in the bed, while in the latter also the HCl inlet concentration is halved. In both cases the 

model shows a satisfactorily match with experimental data. In particular, for runs 7-9 the Ca-to-HCl 

ratio is equal to the training case, but breakthrough time is slightly anticipated, since reaction 
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kinetics is slower due to the halved inlet concentration of gaseous reactant, and the model calibrated 

on the training case is capable to reproduce this phenomenon. This result is significant since 

previous modelling studies devoted to the Ca(OH)2/HCl system (Chisholm and Rochelle, 1999; 

Duo et al., 1993; Fonseca et al., 1998; Weinell et al., 1992) rarely explored the validity of model 

parameters over different concentrations of HCl and generally required the adoption of 

concentration-dependent coefficients (Duo et al., 2004). 

 

Figure 6.12. Validation cases. Breakthrough curves (left) and sorbent conversion (right) for the case with 

2500 ppm HCl and 50 mg of calcium hydroxide (up) and the case with 1250 ppm HCl and 50 mg of calcium 

hydroxide (down). 
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7 Operational model for process optimisation of acid gas 

removal systems 
7.1 Formulation of the operational model 
The approach followed in chapter 6 derives a description of the acid gas removal process by 

modelling the mass transfer and kinetic phenomena governing the gas-solid reaction. This sort of 

“bottom-up” route allows to define a comprehensive, physically-based model for the process, but 

requires due consideration of all the parameters possibly influencing the reaction, a thorough 

experimental campaign and carefulness in adapting laboratory results to process conditions.  

An alternative, operational approach consists in proposing a simplified description of the flue gas 

cleaning process, tailored on design data (mass flow rates, waste composition and plant 

components) of a specific WtE facility (Jannelli and Minutillo, 2007). This was the purpose of the 

operational “conversion model” formulated by Antonioni et al. (2012) for the process optimisation 

of acid gas control lines in WtE plants, successfully applied in the last years in joint collaboration 

with private plant operators and technology suppliers
3
.  

The conversion of the acid gas i (i.e. HCl, SO2 or HF) is defined as: 

𝜒𝑖,𝑗 =
�̇�𝑖,𝐼𝑁 − �̇�𝑖,𝑂𝑈𝑇

�̇�𝑖,𝐼𝑁
 7.1 

where ni,IN and ni,OUT are the molar flow rates of i respectively entering and exiting the stage where 

the sorbent j (i.e. calcium hydroxide or sodium bicarbonate) is injected. 

The operational model is based on a simplified Langmuir-type correlation linking the acid gas 

conversion to the feed rate of the solid reactant: 

𝜒𝑖,𝑗 =
𝑟𝑠𝑗

𝑛𝑖,𝑗 − 𝑟𝑠𝑗

𝑟𝑠𝑗
𝑛𝑖,𝑗 − 1

 7.2 

where 𝜒𝑖,𝑗 is the removal efficiency expressed as the conversion of the acid pollutant i when 

reacting with j, rsj is the ratio between the actual feed rate of solid reactant j and the stoichiometric 

rate of reactant j required for the total conversion of all the acid compounds present in the flue gas, 

and ni,j are fitting parameters to be determined for each neutralisation reaction. For a given value of 

rsj, the higher is the value of ni,j, the higher is the removal efficiency, as shown in Figure 7.1.   

Thus, the conversion of each reaction is a function only of a single fitting parameter that will take 

into account all the physical phenomena and operating conditions actually involved in the 

heterogeneous reactions taking place in the reference stage (e.g. temperature, contact time, sorbent 

properties, etc.). Therefore, the model needs to be tuned with specific plant data in order to properly 

predict the process operating performance. 

Besides the need of plant-specific tuning (which is discussed in section 7.2), the model is general 

and can be applied to the injection of different sorbents. However, while for sodium bicarbonate 

equation 7.2 is enough to correctly describe the acid gas removal process, the application to calcium 

hydroxide requires the due consideration of two additional aspects: the undesired reaction with CO2  

                                                           
3
 Formulation and first application of the operational model took place before the present PhD project and are reported 

in the doctoral thesis by Daniele Guglielmi (2014). Here, the operational model constitute the foundation for the 

comprehensive economic evaluation (chapter 7) and environmental assessment (chapter 8) of alternative acid gas 

removal systems, which are the original contributions in the present thesis.  
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Figure 7.1.  Acid gas conversion as a function of the rsj ratio according to the operational model, for 

different values of the empirical parameter ni,j.  

in the flue gas (see section 2.2)  and the already discussed incomplete conversion issue (see section 

6.2). The carbonation reaction has to be taken into account because CO2 concentration is orders of 

magnitude higher than the concentration of the other acid gases produced during waste combustion. 

Therefore, even if the reaction with Ca(OH)2 does not affect significantly the carbon dioxide 

concentration, it consumes a considerable amount of calcium hydroxide, which is then not directly 

available for the neutralisation of acid gases. The conversion of CO2 was assumed to be 

proportional to the feed rate of sorbent: indeed, the injected Ca(OH)2 is much lower than the 

stoichiometric amount theoretically needed to adsorb all the CO2 in the flue gas, thus (with respect 

to CO2) the model function of eq. 7.2 is on the very left part of the plot in Figure 7.1, where 

conversion and sorbent feed rate are proportional. Hence, in the model the CO2 conversion can be 

calculated by a pseudo-first order relationship: 

𝜒𝐶𝑂2 = 𝑘 ∙
�̇�𝐶𝑎(𝑂𝐻)2

�̇�𝐶𝑎(𝑂𝐻)2,𝑑𝑒𝑠𝑖𝑔𝑛
 7.3 

where �̇�𝐶𝑎(𝑂𝐻)2,𝑑𝑒𝑠𝑖𝑔𝑛 is the design value of the mass flow rate of lime in the analysed WtE plant 

and �̇�𝐶𝑎(𝑂𝐻)2 the actual mass flow rate entering the system. The proportionality factor k is 

determined from design data.  

The other adjustment to the model for Ca(OH)2 is required to take into account the limitation to the 

maximum sorbent conversion. To include this phenomenon, rsj is replaced in eq. 7.2 by an effective 

rsj*:  

𝑟𝑠𝑗
∗ = 𝑟𝑠𝑗 ∙ 𝜒𝑗,𝑚𝑎𝑥 7.4 

With this correction, when the solid reactant is in defect (i.e. for rsj < 1), the maximum acid gas 

conversion expressed by eq. 7.2 is limited to the corresponding sorbent conversion. As broadly 

discussed in section 6.2, χj,max strongly depends on process conditions (e.g. relative humidity, 

temperature, acid gas concentrations, initial void fraction of the Ca(OH)2 particles). In the empirical 

framework of the operational model, the actual value of χj,max is set on the basis of site-specific 

considerations.  

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

X
i,
,j

rsj

stoichiometric conversion



82 
 

7.2 Calibration of the model with operational data from Waste-to-Energy plants  
The empirical nature of the operational model requires tailored calibration. Two approaches can be 

followed in order to obtain plant-specific data for model tuning: fitting of historical operational data 

or planning of dedicated test runs.  

Historical operational data. This approach takes advantage of data already available at plant. WtE 

plants generally archive hourly averages of operational data which are relevant for model 

calibration: total volumetric flow rate, temperature, pressure, humidity, concentration of 

macropollutants like the acid gases, flow rate of solid reactants for DSI (calcium hydroxide and 

sodium bicarbonate). The parameters ni,j can be determined from the calculated hourly averaged 

values of Xi,j and rsj through non-linear regression techniques.  

Test runs. Test runs have the objective to systematically monitor the response of the flue gas 

treatment system for different, given input conditions. The advantage over the use of already 

available historical data is the possibility to explore a broader range of operating conditions. Indeed, 

even if the variability of the burnt waste generates a rather variable flue gas composition at the inlet 

of multi-stage acid gas removal system, the automated control tends to favour a balanced operation 

of stages. In contrast, dedicated test run for a multi-stage treatment system can force situations in 

which acid gas abatement is maximised in one stage and the other one has to fulfil very low 

conversion requirements: although these extreme configurations are usually far from the operational 

optimum of the system, their observation allows to obtain calibration data over a wide range of Xi,j 

and rsj. Therefore, the resulting model tuning is more accurate and, when applied to process 

optimisation, it is ensured that it won’t work in extrapolation mode.  

An example of test run procedure can be outlined with reference to the process monitoring scheme 

shown in Figure 7.2. Other than the measurement of acid gas concentration at stack, WtE plants 

operating a two-stage treatment system (see section 7.3 for process description) generally collect 

intermediate measurements before the injection of the first reactant, Ca(OH)2, and of the second 

reactant, NaHCO3 (respectively, SMP1 and SMP2 points in the figure). Therefore, a test run for the 

1
st
 reaction stage can be simply devised as follows: the flow rate of Ca(OH)2 is changed stepwise at 

regular intervals (e.g. 1 h) and the corresponding acid gas removal efficiency is calculated on the 

basis of the concentration of pollutants at SMP1 and SMP2. In contrast, in the 2
nd

 reaction stage the 

outlet concentration of acid gases has to remain fixed (being the actual value emitted at stack). 

Consequently, the test run can be conducted by inducing a stepwise variation in the concentration of 

inlet acid gases at SMP2 (as a consequence of a stepwise variation of Ca(OH)2 flow rate in the 1
st
 

stage) and measuring the varying flow rate of NaHCO3 commanded by the automated control 

system in order to ensure a constant emission value at stack. Clearly enough, the broad variability of 

process conditions due to temporal variations in waste composition and, thus, in the acid gas 

concentration entering the treatment system (point SMP1) requires redundance in test runs.  

Being covered by nondisclosure agreements with WtE operators and technology suppliers 

participating to the present research, test run results and related data treatment are not reported here. 

Table 7.1 summarises the model parameters obtained for a reference plant and applied in the 

following applications of the model (both chapters 7 and 8).  
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Figure 7.2.  Process monitoring scheme in a typical two-stage acid gas removal system (see section 2.4 and 

section 7.3 for process description).   

 

Table 7.1. Relations and empirical parameters used in the operational model to express the acid gas 

conversion X as a function of the actual-to-stoichiometric ratio of the sorbent rs.  

Correlation for the conversion of the acid gas i  

by means of solid reactant j  
𝑋𝑖,𝑗 =

𝑟𝑠𝑗
𝑛𝑖,𝑗 − 𝑟𝑠𝑗

𝑟𝑠𝑗
𝑛𝑖,𝑗 − 1

 

Parameters of the model ni,j 
 Ca(OH)2 NaHCO3 

HCl 2.29 11.6 

SO2 1.27 12.3 

Competitive effect due to carbonation  𝛸𝐶𝑂2 = 0.004 ∙
�̇�𝐶𝑎(𝑂𝐻)2

�̇�𝐶𝑎(𝑂𝐻)2,𝑑𝑒𝑠𝑖𝑔𝑛
 

Correction to take into account the maximum 

conversion of  

solid reactant  

𝑟𝑠𝑗
∗ = 𝑟𝑠𝑗 ∙ 𝑋𝑗,𝑚𝑎𝑥 
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7.3 Case study: optimisation and benchmarking of a two-stage treatment system 
The overview of the state-of-the-art in acid gas control outlined in chapter 2 showed that treatment 

methods based on dry sorbent injection have been increasingly applied in WtE plants worldwide in 

the last 20 years. In particular, since their introduction in the mid-1990s, dry treatment systems 

based on sodium bicarbonate (NaHCO3) injection have demonstrated cost-effectiveness and ease of 

operation and maintenance (Quicker et al., 2014). About 29% of municipal solid waste incinerators 

(MSWI) built in Europe after 2000 adopt NaHCO3 injection. In France and Italy sodium-based dry 

treatment systems are implemented respectively in 33% and 59% of the WtE plants that started 

operation after 2005 (ISWA, 2012).  

Recently, as described in section 2.4, the need to combine the compliance to increasingly lower 

emission limit values with cost optimisation requirements has led to the development of novel 

solutions. In particular, dry treatment systems based on double reaction and filtration stages are an 

emerging technology, which has been adopted by several WtE plants in Northern Italy since 2006 

(ISPRA, 2013). These two-stage systems carry out the removal of acid pollutants by two 

consecutive steps of neutralisation with alkali compounds (usually, calcium hydroxide in the 1
st
  

stage and sodium bicarbonate in the 2
nd

 stage) and subsequent filtration for the capture of the solid 

residues produced by the reaction. However, in spite of their growing industrial importance, the 

experience with two-stage technologies is mostly empirical (De Greef et al., 2013) and scarce data 

are reported on the optimal performance of this process. In particular, the optimal integration of first 

and second stage to maximise efficiency and removal of acid gases still needs to be explored 

(Acquistapace et al., 2014), since the operational optimum depends on the concentration of acid 

pollutants in the flue gas and ultimately on the waste composition. The empirical model developed 

by Antonioni et al. (2014), which needs to be calibrated on actual plant data, as described in section 

7.1 and 7.2, constitutes a first attempt to describe the acid gas removal efficiency of a two-stage 

system and to identify the configuration operating at the optimal economic performance, taking into 

account the costs for reactants and disposal of solid residues. 

Aim of the case study presented here is to show the application of the operational model in a 

methodology for the economic assessment of a two-stage (2S) dry acid gas removal system. Goal of 

the analysis is to assess the cost-effectiveness of a 2S system in comparison to single stage (1S) 

alternative processes. Three alternative 1S configurations (with electrostatic precipitator as pre-

dusting equipment, with fabric filter as pre-dusting equipment, without pre-dusting equipment) all 

based on the injection of NaHCO3, applied in several operating MSWI systems, were selected as 

benchmark technologies. The Na-based single stage dry alternatives may be considered as the most 

effective technologies currently adopted for acid gas removal in coupling emission standards 

compliance with low capital and operational costs (BREF WI, 2006). 

Figure 7.3 shows the reference schemes defined to carry out the comparison among the two stage 

(2S) technology and the selected benchmark single stage technologies. The reference scheme of the 

2S system shown in Figure 7.3a can be considered representative of a typical 2S dry treatment 

system, and is based on the design of an actual plant located in Italy, described in detail elsewhere 

(Antonioni et al., 2014). The untreated flue gas flows in a reactor (actually, a ductwork designed in 

order to assure a given residence time), where the injection of a dry powder of calcium hydroxide 

(Ca(OH)2, commercially known as hydrated lime or slaked lime) takes place. This alkaline material 

acts as a sorbent towards the acid pollutants, triggering the gas-solid reactions R1 to R3 reported in 

Table 7.2. The flue gas is then fed to a fabric filter, where the reactions continue on the filter cake 

of ash and powders deposited on the bags. Here, the solid products of the reactions (calcium-based 
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wastes, CBW) are captured and removed from the flue gas stream. Part of the solids collected by 

the filter can be recycled to the reactor feed, since they generally contain unreacted lime. 

Eventually, CBW and ash are stored in a silo and sent to appropriate disposal sites. The second 

stage of the process consists of another reactor (a vertical Venturi-shaped pipe section) followed by 

a fabric filter, and its goal is to complete the removal of acid gases by the injection of sodium 

bicarbonate (NaHCO3). Non-porous bicarbonate decomposes to porous carbonate with an almost 

instantaneous and complete process (see reaction R4 in Table 7.2) at temperatures above 130 °C 

(Brivio, 2007). Then, sodium carbonate reacts with the acid gases (reactions R5–R6 in Table 7.2). 

No solid recirculation is carried out, since sodium bicarbonate is much more efficient than slaked 

lime and very few unreacted particles can be found in the sodium-based wastes (SBW) collected by 

the fabric filter (Bodénan and Deniard, 2003). As already mentioned in section 2.3, the collected 

SBW can be sent to a processing plant in order to recover a purified brine suitable as raw material 

in the sodium carbonate production process (Brivio, 2005; ISWA, 2008), thus reducing the mass of 

residues to landfill. 

Table 7.2. Chemical reactions involved in acid gas removal process. 

1st stage: calcium hydroxide 2nd stage: sodium bicarbonate 

𝐶𝑎(𝑂𝐻)2 + 2 𝐻𝐶𝑙 → 𝐶𝑎𝐶𝑙2 + 2 𝐻2𝑂 R1 2 𝑁𝑎𝐻𝐶𝑂3 → 𝑁𝑎2𝐶𝑂3 + 𝐶𝑂2 +  𝐻2𝑂 R4 

𝐶𝑎(𝑂𝐻)2 + 𝑆𝑂2 + 1 2⁄ 𝑂2 → 𝐶𝑎𝑆𝑂4 +𝐻2𝑂 R2 𝑁𝑎2𝐶𝑂3 + 2 𝐻𝐶𝑙 → 2 𝑁𝑎𝐶𝑙 + 𝐶𝑂2 +  𝐻2𝑂 R5 

𝐶𝑎(𝑂𝐻)2 + 𝐶𝑂2 → 𝐶𝑎𝐶𝑂3 +𝐻2𝑂 R3 𝑁𝑎2𝐶𝑂3 + 𝑆𝑂2 + 1 2⁄ 𝑂2 → 𝑁𝑎2𝑆𝑂4 + 𝐶𝑂2 R6 

 

With respect to benchmark technologies, the reference scheme of single stage treatment without 

pre-dusting (1S) consists in the injection of sodium bicarbonate through a Venturi-shaped reactor, 

followed by a fabric filter (Figure 7.3b). Reactions R4-6 take place in the system and the process 

scheme itself is actually the same as the 2
nd

 stage of the reference 2S system. Although listed among 

the BAT for acid gas abatement (BREF WI, 2006), the 1S scheme has the drawback of not 

segregating SBW from fly ash. This prevents the possibility of recycling the SBW to produce 

sodium carbonate as described for the 2
nd

 stage of the 2S system. Therefore, the 1S system is often 

integrated with a de-dusting stage prior to the injection of bicarbonate (pre-dusting, Figure 7.3c). 

The pre-dusting device can be either an electrostatic precipitator (ESP-1S) or a fabric filter (FF-1S). 

1S, ESP-1S and FF-1S configurations share the same approach to acid gas removal (reactions R4-6) 

and differ only in the investment and operating costs related to the pre-dusting equipment and in the 

consequent fate of the SBW. 
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Figure 7.3.  Alternative acid gas removal systems: a) two-stage (2S), b) single stage without pre-dusting 

(1S), c) single stage with pre-dusting device: electrostatic precipitator (ESP-1S) or fabric filter (FF-1S). 

7.4 Methodology 
Figure 9.3 summarises the methodology followed for carrying out the comparison of the total cost 

of operation of alternative dry technologies for acid gas removal from flue gas, given as input data 

the elemental composition of the waste feed and the required emission limits for HCl and SO2. The 

methodology is summarised in Figure 1. The composition of the flue gas leaving the combustion 

system, if not available from operational data, is calculated from the waste composition through a 

simplified mass balance approach. Given the concentration of the acid components in the flue gas 

and the required removal performance, the operational model of Antonioni et al. (2014) allows 

quantifying the associated consumption of solid reactants and the generation of solid residues that 

 

  
  

  

  

  

                                    

      
 
 

  -                      
        

  -                           
 
 

  

  

  

          

          

                 

           -                           
 
 

  
  

  

  

           

         
                 

          -                           
 
 

      

   

             

   

   

   



87 
 

need to be disposed. Eventually, the costs related to reactant purchase and solid residue disposal are 

summed to the annualised cost of equipment and to other ancillary costs (utilities, replacement 

parts, maintenance) to determine the total operating cost per annum of the treatment system. 

Figure 7.4.  Flow chart of the modelling approach developed. 

The key point of the methodology is the application of the acid gas conversion model presented in 

section 7.1 and tuned on actual operational data, which links the removal efficiency of the system to 

the actual ratio of reactant feed to acid pollutants load in the flue gas. This approach allows 

avoiding the use of fixed generic values of reactant feed rate per mass unit of waste, which are 

usually introduced in life cycle studies of air pollution control lines (Scipioni et al., 2009, Damgaard 

et al., 2010). Thus, the selectivity of the different solid reactants towards HCl and SO2 is correctly 

taken into account.  

7.5 Benchmarking data 
In order to allow the benchmarking of the alternative technologies, some assumptions were 

introduced, and input data based on operating experience of actual facilities were defined. The same 

process specifications were applied to all the four alternatives considered. A medium-sized line was 

considered, treating an off-gas flow rate of 110,000 Nm
3
/h. The plant was assumed to operate 8000 

h/year. The required flue gas cleaning performance was set imposing an outlet HCl concentration of 

2 mg/Nm
3
, 5 times below the emission limit value set by Directive 2010/75/EU. This conservative 

choice is adopted by several plant operators, in order to guarantee a safety margin for HCl, which is 

the most critical pollutant in the MSWI context, and to assure at the same time that the emission 

concentrations of the other less abundant acid gases (SO2, HF) under typical process conditions are 

as well below their emission limits. 

Mass balance 
(combustion chamber) 

Conversion model 
(acid gas treatment) 

 

Cost estimate 

 Waste type and feed rate 

 Excess air 

 Flue gas volumetric rate 

 HCl, SO2, CO2 concentration 

 Consumption of sorbents 

 Production of residues 

Waste 

elemental 

composition 

data  

(Table 7.3) 

Model tuning 

(Table 7.1) 

Cost entries 

 (Table 7.6) 

Emission limit value 

CHCl,out = 2 mg/Nm
3
 

         Assumptions 

 Total cost of operation per annum 
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Table 7.3. Waste composition scenarios. 

Scenario 

Waste components (wt%) 
S + Cl 

(%wt) 

Cl/S 

ratio C H O N S Cl 
Moist

ure 
Ash 

W_A 

26 4 14 0.5 

0.05 0.3 

35 

20.15 0.35 6 

W_B 0.05 0.8 19.65 0.85 16 

W_C 0.1 1.6 19.6 1.7 16 

 

The concentrations of acid pollutants in the raw flue gas entering the treatment system were linked 

to the chemical composition of the waste fed to the furnace of the WtE plant. Clearly, the 

heterogeneous nature of waste makes the elemental composition of the fuel rather variable both 

geographically and temporally, thus influencing the emission of fuel-related pollutants as the acid 

gases addressed in the present study. The average composition of the municipal solid waste fed to a 

MSWI in Piacenza (LEAP, 2009), a town in Northern Italy, was used as a reference input data for 

the elemental waste composition: 35% of moisture, 20% of unburning matter (fly and bottom ash) 

and 45% of combustible fraction (26% C, 4% O, 14% H, 0.5% N and the remaining part made up of 

S and Cl). With the aim of investigating a meaningful range for the composition of acid gases 

generated during combustion, three different waste composition scenarios were derived from these 

data by slightly varying the Cl and S content and adjusting the mass fraction of inert material (ash) 

accordingly (see Table 7.3). The scenarios labelled W_A and W_B refer to typical municipal solid 

wastes, roughly corresponding respectively to the lower and upper limit of the mass fraction of Cl 

in urban waste, according to literature data (see Table 7.4). Scenario W_B generates HCl and SO2 

concentrations in the flue gas consistent with the operational data of the 2S reference plant on which 

the operational model was tuned (Antonioni et al., 2014), therefore it constitutes a case of particular 

importance. Finally, scenario W_C, presenting twice the Cl and S content of scenario W_B, 

represents a feed with a higher presence of chlorine typical of co-combustion of MSW with high 

fractions of industrial (Viganò et al., 2010) or biomedical wastes (Barba et al., 2015). Indeed, in 

order to compensate for the lack of household-generated waste or to increase the heating value of 

the waste feed (Petersen et al., 2005), MSW is increasingly burnt in association with wastes from 

commercial or industrial activities, which generally exhibit higher mass fractions of Cl and S 

(Biganzoli et al., 2015). Scenario W_C accounts for this significant trend, presenting a conservative 

upper limit for the expected Cl and S content. It should be remarked that the combustion of 

industrial waste “as is” falls out of the scope of the present study, since it is usually carried out in 

dedicated facilities that apply specific flue gas treatment strategies different from those applied in 

MSWI (Block et al., 2015). 

Table 7.4. Chlorine content in wastes according to literature references (MSW: municipal solid waste). 

Cl in waste (wt%) Waste type Source 

0.2-0.8 MSW Rigo et al., 1995 

0.2-0.8 MSW Randall and Shoraka-Blair, 1994 

0.32-0.78 MSW Wang et al., 2003 

0.58 MSW Themelis, 2005 

0.36 MSW Manders, 2009 

0.87 Refuse-derived fuel from MSW Patel et al., 2012 

0.55-0.83 Refuse-derived fuel from plastics Mapelli, 2014  

1.1-2.1 Biomedical waste Randall and Shoraka-Blair, 1994  

2.0 Biomedical waste Barba et al., 2015  
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On the basis of the assumed composition of the solid waste feed, the composition of the resulting 

flue gas was estimated from a mass balance approach, considering the combustion reaction of the 

combustible part of the waste, represented as the pseudo-component CaHbOcNdSeClf, where the 

stoichiometric coefficients were calculated on the basis of waste composition data (Table 7.3). 

Thus, the combustion reaction can be written as follows: 

𝐶𝑎𝐻𝑏𝑂𝑐𝑁𝑑𝑆𝑒𝐶𝑙𝑓 + 𝑧 𝑂2 → 

𝑎 𝑠𝑐 𝐶𝑂2 + 𝑎(1 − 𝑠𝑐)𝐶𝑂 +
𝑏 − 𝑓

2
 𝐻2𝑂 + 𝑑 𝑠𝑛 𝑁𝑂2 +

𝑑

2
(1 − 𝑠𝑛)𝑁2 + 𝑒 𝑆𝑂2 + 𝑓 𝐻𝐶𝑙 

7.5 

 

The combustion of elemental carbon was assumed to give both CO2 and CO, with the distribution 

between the two determined by the combustion completion grade sc. Nitrogen contained in the 

waste is converted to diatomic gaseous nitrogen, with the exception of a fraction sn converted to 

nitrogen oxides (reported to NO2). The parameters sc and sn were set at 0.9995 and 0.0001, 

respectively. These values were chosen in order to obtain a concentration of CO and NO2 in the 

untreated flue gas compatible with the actual data of the 2S reference plant (Antonioni et al., 2014), 

well within the typical range indicated by the BAT reference document for waste incineration 

(BREF WI, 2006). Actually, CO and NO2 are not among the pollutants addressed in this analysis 

and their estimate is only intended to replicate a likely composition of a typical flue gas. For further 

reference, operational estimates of CO and NOX generation in waste combustion processes are 

reported, for instance, by Yang et al. (2005) and Liuzzo et al. (2007). 

The chlorine and sulphur contents in the waste, listed in Table 7.3, were assumed to be entirely 

converted to HCl and SO2. As a matter of fact, part of the Cl and S in the waste (e.g. inorganic 

chlorine from NaCl) does not burn and remains in the bottom ash, but it is already accounted for in 

the “ash” entry of Table 7.3.  

Under the above assumptions, the moles of oxygen needed for the theoretical combustion of the 

waste can be calculated according to eq. 7.6. 

𝑧 = 𝑎 (
𝑠𝑐
2
+
1

2
) +

𝑏 − 𝑓

4
+ 𝑑 𝑠𝑛 + 𝑒 −

𝑐

2
 7.6 

 

Typical excess air requirements with reference to solid waste fuels in moving grate furnaces are 80-

100% of the stoichiometric demand (Petchers, 2003; Niessen, 2010). An 80% excess air was 

assumed. The moisture content of air was estimated with reference to mean temperature and relative 

humidity in Northern Italy (T = 15 °C, RH = 70%). Consequently, water content in the flue gas is 

the sum of waste moisture, moisture content of the air and water generated by reaction 7.5. 

Concentrations of HCl and SO2 in the flue gas generated by the combustion of the waste are listed 

in Table 7.5. Cases FG_A, FG_B and FG_C are those obtained directly considering the waste 

composition reported in Table 7.3 and will be used as base reference cases in the following. 



90 
 

Table 7.5. Concentration (mg/Nm
3
) of pollutants in untreated flue gas considered for the three waste 

composition scenarios and different Cl/S ratios. Cases FG_A, FG_B and FG_C are those corresponding to 

waste composition in Table 7.3. To generate the other cases, only the Cl/S ratio was changed as indicated in 

the table. 

Cases 
S and Cl content in input waste 

Concentrations in untreated flue gas 

(mg/Nm
3
)
a
 

Cl + S (%wt) Cl/S ratio SO2 HCl 

FG_A 

0.35 

6 170 525 

FG_A.1 1 600 300 

FG_A.2 2 400 405 

FG_A.16 16 70 580 

FG_A.40 40 25 600 

FG_B 

0.85 

16 170 1400 

FG_B.1 1 1440 740 

FG_B.2 2 960 990 

FG_B.6 6 410 1275 

FG_B.40 40 70 1455 

FG_C 

1.7 

16 340 2800 

FG_C.1 1 2870 1475 

FG_C.2 2 1915 1975 

FG_C.6 6 825 2545 

FG_C.40 40 140 2905 
a
 dry gas, 11 vol% O2 

 

Beside the reference cases used for benchmarking (based on waste composition in Table 7.3 and 

flue gas compositions FG_A, FG_B and FG_C in Table 7.5), a more extended set of flue gas 

composition cases was defined and is included in Table 7.5. The set was obtained considering the 

waste composition in Table 7.3, keeping constant the combined mass fraction of Cl and S with 

respect to that in Table 7.3, but varying the Cl/S ratio in the waste. The more extended set of flue-

gas compositions thus defined in Table 7.5 is intended to explore a wider range of S and Cl content 

in waste, resulting in combinations of SO2 and HCl raw flue gas concentration covering the 

operational experience of European MSWI (Rylander, 1997) and will be used to investigate in 

detail the influence of Cl/S on the flue gas treatment performance (see section 7.8).  

7.6 Cost estimate 
The costs related to the operation of the acid gas removal systems were assessed on the basis of the 

feed rate of reactants and the production of solid residues from the mass balance at each reaction 

stage, calculated according to the conversion model. The cost structure was assumed as the sum of 

the following terms: 

• Equipment costs (or capital costs), related to the purchase and installation of required 

process equipment; 

• Reactant costs, i.e. the purchase cost of calcium hydroxide and sodium bicarbonate required 

for process operation; 

• Disposal costs, i.e. the costs connected with the landfilling (for CBW and SBW mixed with 

fly ash) or recycling (for SBW without fly ash) of the solid residues; 

• Other operating and maintenance (O&M) costs, i.e. energy requirements, replacement parts, 

maintenance labour. 
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The values assumed for all the considered cost entries are summarised in Table 7.6, where the TIC 

entry stands for the total installed cost of the related equipment. In order to determine the capital 

costs, an inventory of the equipment items in the alternative acid gas removal systems was 

compiled. The overall investment cost ranges from 2.5 M€ for the 1S system to 4.7 M€ for the 2S 

system. These figures are in line with the estimates of Achternbosch and Richers (2002) and of 

Quicker et al. (2014) for similar air pollution control lines. Capital costs were translated in 

equivalent annual costs (EAC, annualised cost of equipment), considering a discount rate of 5 % 

and a service time of 20 years (EPA, 2002). The average values reported in Table 7.6 for operating 

costs were obtained from the analysis of commercial, technical and literature. Details on the 

estimate of capital and operating costs are reported hereafter. 

Table 7.6. Cost values assumed for the cost assessment phase. 

Cost entry Value Unit 

TIC 
Fabric filter 2,405,000 € 

ESP 2,040,000 € 

Reactant cost 
Calcium hydroxide 80 €/t 

Sodium bicarbonate 240 €/t 

Cost for residue 

management 

Disposal 200 €/t 

Brine recovery 200 €/t 

Electricity 0.07 €/kWh 

Compressed air 0.01 €/m
3
 

Replacement bags for fabric filter Initial purchase cost: 360,000 € 
a
 

Maintenance 
Fabric filter 1 % of equipment cost + labour cost (20 €/h) 

ESP 1 % of equipment cost + labour cost (20 €/h) 
a 
Annualised bag cost calculated as in eq. 7.8, assuming n = 2 years, i = 0.05 

 

Capital costs. An inventory of the equipment items in the alternative acid gas removal systems 

considered is presented in Table 7.7. Since the scope of the study is a comparative analysis of the 

four alternatives, the capital costs associated with the flue gas pipes and the fan were neglected, 

since such elements are common to all the benchmarking alternatives selected. 

The filtration devices are the more costly equipment items. The reference baghouse considered in 

all the alternatives is designed to treat 110,000 Nm
3
/h of flue gas. Its PTFE-made bags cover a total 

cloth area of 3460 m2, while the apparatus is made in stainless steel and thermally insulated. The 

basic equipment cost of a fabric filter is a function of the cloth area and it was estimated from the 

average between values taken from the online database Matches’ Process Equipment Cost 

Estimates (Matche, 2015) and Peters and Timmerhaus (2002). The stainless steel add-on and the 

insulation costs were taken as 2/3 and 1/3 of the basic equipment cost respectively, according to 

EPA (2002).  The cost for the PTFE-made bags was estimated from EPA (2002), as well.  

The sum of the aforementioned costs represents the fabricated equipment cost (FEC) of the 

baghouse. The purchased equipment cost (PEC) is higher than the FEC because of instruments and 

controls, sales tax and freight. These charges can amount to 18 % of the PEC (Cooper and Alley, 

1994). In addition, the installation costs (both direct and indirect) are approximately equal to the 

PEC: for fabric filtration systems, it is reported that the total installed cost (TIC) equals 2.17 times 

the PEC (Cooper and Alley, 1994).  

For the reference electrostatic precipitator (ESP), assuming a design efficiency of 99% and a drift 

velocity of 12 m/s, a collection plate area of the equipment equal to 1150 m
2
 was estimated by 
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following the simplified procedure described by EPA (2002). The basic equipment cost as a 

function of the collection area was estimated by following three methods (Vatavuk, 1990; EPA, 

2002; Peters and Timmerhaus, 2002). Figures calculated according to the three sources differ only 

for the 8% and an average value was chosen. The stainless steel add-on cost was estimated as 30% 

of the basic equipment cost (EPA, 2002). PEC was set to 1.18 FEC and TIC to 2.22 PEC (Cooper 

and Alley, 1994).  

Table 7.7. Equipment inventory for the considered treatment systems. 

System Elements 

Single stage without 

pre-dusting (1S) 

Silo with hopper bottom for reactant storage (volume: 84 m
3
) 

Silo with hopper bottom for residue storage (volume: 90 m
3
) 

2 x ball mill device for bicarbonate grinding 

4 x feeder device (auger) for silos 

2 x pneumatic conveyor (air flow rate: 2136 m
3
/h, min speed: 17 m/s) 

2 x blower (operating and reserve) 

Vertical Venturi-shaped reactor 

Baghouse with PTFE-made bags, stainless steel apparatus and thermal 

insulation (total cloth area: 3460 m
2
) 

Drag conveyor + dense phase pneumatic conveyor for the collection of 

baghouse residues 

Single stage with ESP 

as pre-dusting 

equipment (ESP-1S) 

Electrostatic precipitator (collection plate area: 1150 m
2
) 

Drag conveyor + dense phase pneumatic conveyor for the collection of ESP 

residues 

1S equipment inventory 

Single stage with 

baghouse as pre-

dusting equipment 

(FF-1S) 

Baghouse with PTFE-made bags, stainless steel apparatus and thermal 

insulation (total cloth area: 3460 m
2
) 

Drag conveyor + dense phase pneumatic conveyor for the collection of 

baghouse residues 

1S equipment inventory 

Two-

stage 

system 

(2S) 

1
st
 stage 

Silo with hopper bottom for fresh lime (volume: 84 m
3
) 

Silo with hopper bottom for residues to recirculation (volume: 10 m
3
) 

Silo with hopper bottom for residues to disposal (volume: 90 m
3
) 

6 x feeder device (auger) for silos 

2 x pneumatic conveyor (air flow rate: 2136 m
3
/h, min speed: 17 m/s) 

2 x blower (operating and reserve) 

Baghouse with PTFE-made bags, stainless steel apparatus and thermal 

insulation (total cloth area: 3460 m
2
) 

Drag conveyor + dense phase pneumatic conveyor for the collection of 

baghouse residues  

2
nd

 stage 1S equipment inventory 

 

The costs of other auxiliary equipment costs, among those listed in the equipment inventory, were 

taken from Matche (2015). Collected cost data were referenced to different years and different 

currencies. All values were reported to Euros, year 2015 and Italy as follows: 

𝐶€,2015 = 𝐶$,19𝑥𝑥 ∙
𝐶𝐸𝑃𝐶𝐼2015
𝐶𝐸𝑃𝐶𝐼19𝑥𝑥

∙ 𝐶𝑃𝐿𝐼𝑇/𝑈𝑆 ∙ 𝐸𝑋𝑈𝑆𝐷→𝐸𝑈𝑅 7.7 

 

where C€,2015 is the present cost in Euros and C$,19xx represents the cost in US Dollars referenced to 

the generic year 19xx. The CEPCI (Chemical Engineering Plant Cost Index) was adopted for 

inflation adjustment, while the difference in purchasing power across countries was taken into 
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account through CPLIT/US , the comparative price level between Italy and USA (OECD, 2015). The 

exchange rate US Dollar to Euro (EXUSD


EUR) as of October 2015 was considered. 

The investment cost of a system was translated in an equivalent annual cost (EAC, annualised cost 

of equipment), which is the yearly cost of owning and operating an asset (in the present case, an air 

pollution control system) over its entire lifespan. It is calculated by dividing the present value of the 

asset (PV) by the present value of an annuity factor (AF): 

𝐸𝐴𝐶 = 
𝑃𝑉

𝐴𝐹
= 𝑃𝑉 ∙

𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1
 7.8 

 

where i is the discount rate and n the lifetime of the project (in years). The term which multiplies 

the PV in the equation above is also known in engineering cost calculations as capital recovery 

factor (CRF). In estimating CRF for air pollution control equipment, EPA (2002) recommends to 

consider a lifetime of 20 years and a discount rate of 7%. The indication for the service life was 

applied in the present study, whereas a discount rate of 5%, more representative of the European 

scenario, was adopted. 

Reactant costs. A list of references for bulk supply prices of the reactants used in acid gas 

treatment systems is reported in Table 7.8. Calcium hydroxide is an abundant and relatively 

inexpensive material, obtained from the calcination and subsequent slaking of limestone. Its cost 

can vary depending on local availability and transportation needs. Since Italy is one of the main 

producers of limestone (USGS, 2012), the relatively low value of 80 €/t was taken as a 

representative figure for the bulk supply of hydrated lime for the reference plant. Sodium 

bicarbonate is produced by the Solvay process. In determining its price, the processing cost is the 

main part, thus the price is less geographically dependent than lime. The purchase cost adopted in 

the present study was 240 €/t. 

Table 7.8. Reactant costs. 

Material Cost Source 

Calcium 

hydroxide 

90 $/t Sinnott, 2005 

45-70 $/t 

(+ 10-40 $/t due to 

transportation) 

Sedlak, 1991 

65-74 $/t Chemical Market Reporter, 2006 

80 €/t Yassin et al., 2007 

90 €/t Quicker et al., 2014 

80 €/t Antonioni et al., 2014 

Sodium 

bicarbonate 

289 $/t Solvay Chem. North America, 2015 

245 €/t Quicker et al., 2014 

240 €/t Antonioni et al., 2014 

 

Disposal costs. As mentioned in chapter 4, the handling of solid by-products from flue gas cleaning 

processes (the so-called APC residues) is a controversial matter and no general consensus regarding 

residue disposal solutions has been reached even in the European Union (ISWA, 2008; Margallo et 

al., 2015). The management practices of APC residues are different from country to country, 

depending on the local regulations.  
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The Italian legislation (D.Lgs. 152/2006) classifies APC residues from WtE plants as a hazardous 

waste, due to their leaching potential. Therefore, disposal in landfill can take place only after a 

specific treatment, aimed to stabilise the residues by means of the addition of cement and 

chemicals. In Northern Italy, a diffuse alternative practice is the exportation of untreated APC 

residues to Germany, where they can be disposed in depleted salt mines as backfilling materials 

(Özarslan et al., 2001). The soundness of this alternative with respect to the stabilisation method is 

economically dependent on the transport cost and juridically on the respect of the closeness 

principle. 

A third alternative is viable in the case of Na-based residues. The alkaline salts produced by dry 

treatment units fed with sodium bicarbonate are collected by the seller and treated in a dedicated 

plant (Brivio, 2005), where a brine suitable for sodium carbonate production is recovered. As 

already mentioned in chapter 4 and in section 7.3, this solution requires that the air pollution control 

system is equipped with a pre-dusting device before sodium bicarbonate injection, in order to pull 

apart alkaline salts from fly ash. Consequently, the recovery process can be applied to SBW 

generated from the 2
nd

 stage of the 2S system or from the single stage systems with pre-duster 

(ESP-1S and FF-1S).    

The costs associated with the management alternatives described above are listed in Table 7.9. In 

the light of the above, in the present study it was assumed that CBW, as well as the SBW mixed 

with fly ash of the 1S system, are disposed of in authorised landfill sites after stabilisation 

treatments or in appropriate underground storage sites. Conversely, SBW coming from the 2
nd

 stage 

of the 2S system, the ESP-1S system or the FF-1S system were assumed to be sent to a processing 

plant for the recovery of a purified brine suitable for sodium carbonate production. The value of 200 

€/t was adopted both for CBW/SBW disposal and for SBW recycling. However, it has to be noted 

that these costs depend on different factors, thus different ranges of variability were attributed to 

them in the Monte Carlo sensitivity analysis on cost data.  

Table 7.9. Disposal costs. 

Disposal method Cost 

(€/t of residue) 

Source 

Stabilisation and 

landfilling 

225 
a
 IEA, 2000 (data about France) 

200 
a
 ATOR, 2008 

200 
a
 Antonioni et al., 2014 

Backfilling in 

German salt mines 

100-140 
b
 Bertin Technologies, 2000 

100-125 
b
 ISWA, 2003 

100 
b
 Nethe, 2008 

Brine recovery from 

alkaline salts 

(only for SBW) 

200 
a
 ATOR, 2008 

170 
b
 Lostorto, 2009 

200 
a
 Antonioni et al., 2014 

a
 including transport 

b
 excluding transport 

 

Other O&M costs. Operating an air pollution control line requires additional expenses other than 

the costs for reactants. In particular, the following costs were taken into account: 

 Fan operation: power is needed in order to overcome the pressure drop given by the 

passages through baghouse (estimated ΔP = 1.5 kPa) and ESP (estimated ΔP = 0.25 kPa). 

The required power was estimated according to the following relationship (EPA, 2002): 
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𝑃𝑜𝑤𝑒𝑟𝑓𝑎𝑛(𝑘𝑊) =
�̇� ∙ ∆𝑃

𝜂𝑓
 7.9 

where �̇� is the gas flow rate, ΔP  the pressure drop and ηf the combined fan-motor efficiency 

(assumed equal to 0.65). Energy cost was set to 0.07 €/kWh.  

 Compressed air: compressed air is needed for the pulse-jet cleaning of the fabric filter. 

EPA (2002) suggests that the required air flow rate is equal to 2 % of the flue gas flow rate 

(i.e. 360 m
3
/h in the design conditions of the reference plant), while the provider of the 

actual baghouses installed in the plant estimates a consumption of 275 m
3
/h. Discounted 

cost estimates for compressed air range from 0.20 €/1000 ft
3
 (Sinnott, 2005) to 0.35 $/1000 

ft
3
 (EPA, 2002). The latter value was adopted. 

 Replacement bags: the lifetime of PTFE-made bags was assumed to be 2 years. Therefore, 

the annualised replacement cost was estimated by evaluating a capital recovery factor for the 

initial purchase of bags assuming n = 2 years, i = 0.05 in equation (B.2) 

 ESP operating power: an empirical formula for the estimate of the power consumption of 

an ESP device as a function of collection plate area A is provided by EPA (2002): 

𝑃𝑜𝑤𝑒𝑟𝐸𝑆𝑃(𝑘𝑊) = 1.94 × 10−3 ∙ 𝐴 7.10 

 Maintenance: general rules of thumb for estimating maintenance costs are provided by 

EPA (2002). For ESPs having a collection area < 50,000 ft
2
, the average yearly labour cost 

associated to maintenance is around 3500 €. For fabric filters, it is estimated 1 h/day of work 

dedicated to maintenance (estimated cost: 20 €/h). As for the material costs due to 

maintenance, they are assumed as 1 % of FEC of the related equipment (EPA, 2002).  

 

7.7 Optimal configuration of the two-stage system and benchmarking results 
A first set of simulations was aimed at the determination of the optimal operating conditions of the 

2S system, i.e. the best distribution of the reactant feed between the two stages considering the three 

different cases of composition of the input waste (see Table 7.3). The optimal operating conditions 

were assessed only with respect to costs, neglecting the issue of the different environmental impact 

of solid residues produced by the two stages but considering the different cost of residue disposal or 

reuse (an extension of the present methodology to environmental assessment is the scope of chapter 

8). Moreover, only variable costs – costs of reactants and of waste disposal – were considered, since 

the limited variations considered in the required conversion of acid gases between first and second 

stage of the system do not affect equipment design but only operating conditions. 

The feed rate of waste was set at 18 t/h, which generates the flue gas flow rate of 110,000 Nm
3
/h 

under the assumptions introduced in section 7.5. The recirculation ratio of the CBW was kept 

constant at a value of 0.21, which is the operating value of the reference plant considered by 

Antonioni et al. (2014). Simulations were carried out by varying the HCl conversion in the first 

stage XHCl,Ca(OH)2, while keeping constant the concentration of hydrogen chloride in the outflow of 

second stage  at 2 mg/Nm
3
. Given the overall HCl conversion required, the second stage 

conversion, as well as the required feed rate of reactants in the first and in the second stage, were 

calculated using the equations of the operational model. 

In Figure 7.5 the hourly costs due to purchase of reactants and disposal of residues are plotted as a 

function of 1
st
 stage conversion for each of the three waste composition scenarios in Table 7.3. In 

the figure, square dots pinpoint the values of 1
st
 stage conversions for which reactant consumption 

is minimum, while circle dots indicate the values of 1
st
 stage conversions for which the economic 

optimum is obtained. For all the three waste composition scenarios, the optimised 1
st
 stage 
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conversion value is in the range 55-60%. The plots also evidence that deviation from the optimal 

operating point implies steeper cost increases when the acid gas concentration in the untreated flue 

gas is higher (scenario W_C). 

 

Figure 7.5.  Variable costs (reactant purchase and residue disposal) of the two-stage system as a function of 

1
st
 stage HCl conversion for the three different flue gas compositions FG_A, FG_B and FG_C in Table 7.5, 

generated by the waste composition scenarios in Table 7.3. Square dots: minimum reactant consumption; 

circle dots: minimum cost. 

Having identified the economic optimum of the 2S system for the different waste composition 

scenarios, it is possible to compare these figures with the single stage alternatives based on 

bicarbonate injection (with and without pre-dusting devices). As a term of comparison, the total 

annual cost of the system was assumed, which includes the annualised equipment cost, the reactant 

costs (purchase of reactants and disposal of residues) and the other O&M costs (energy 

requirements, replacement parts, maintenance). 

The parameters of the conversion model for the single stage fed with sodium bicarbonate were 

taken equal to those assumed for the 2
nd

 stage of the reference 2S facility (Table 7.1), which is 

actually identical to a single stage NaHCO3 injection. Thus, the reactant consumption was 

calculated imposing the same outlet value of HCl concentration assumed for the 2S system (2 

mg/Nm
3
). The single stage conversion required was calculated accordingly. Under these 

assumptions, the costs related to the operation of the single stage systems were estimated for the 

different waste composition scenarios. 

In Figure 4, the total costs calculated on annual basis for the four plant alternatives are reported for 

the three waste composition scenarios in Table 7.3. The three different 1S processes use the same 

amount of sodium bicarbonate (i.e. have same reactant costs), while waste disposal/reuse, 

equipment and O&M costs are different. 

In scenario W_B, representing a chlorine-rich unsorted municipal waste, the 2S system is more 

cost-effective than the 1S benchmarking systems considered. In particular, even if the costs related 

to equipment and disposal of residues are the highest, the 2S system emerges as the more 

economical alternative due to a 48% reduction in reactant purchase cost. The equipment cost, 
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depreciated over 20 years of operation, ranges from 6% of the total cost for the single stage without 

pre-dusting to 13% for the 2S system. 

When scenario W_A is considered, in which the concentration of acid gases in the untreated flue 

gas is the lowest, either single stage without pre-dusting or single stage with ESP pre-dusting are 

more economical than the 2S solution, thanks to their lower capital and maintenance costs. 

However, the 2S system still outperforms the FF-1S configuration.  

Conversely, for scenario W_C, which corresponds to the combustion of municipal solid waste 

mixed with industrial or medical waste, fixed costs become marginal and the savings granted by the 

2S system over the single stage alternatives become substantial (18% cost reduction with respect to 

the single stage without pre-dusting). In general, the 2S system shows less cost fluctuations across 

scenarios than the benchmarking alternatives. 

 

Figure 7.6. Total annual cost calculated for the four alternative dry treatment systems and waste 

composition scenarios W_A, W_B and W_C in Table 7.3 (flue gas composition: respectively FG_A, FG_B 

and FG_C in Table 7.5). A service time of 20 years was assumed. 

7.8 Influence of uncertain parameters and Monte Carlo sensitivity analysis 
The operating costs heavily depend also on the required performance of acid gas removal. The 

results discussed above all refer to a HCl outlet concentration of 2 mg/Nm
3
. However, depending on 

local regulations and requirements, systems might be operated on the basis of other emission limit 

values (ELVs). Thus, an assessment was carried out considering different ELVs for hydrogen 

chloride beside the base-case (2 mg/Nm
3
) considered above: 1, 5 and 10 mg/Nm

3
. The latter value, 

being the ELV prescribed by Directive 2010/75/EU, identifies the minimum performance currently 

allowed in the European framework. 
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As shown in Figure 7.7, calculated costs confirm the rankings of the alternative technologies 

obtained for the base-case discussed in section 7.7. A single deviation appeared: the 1S technology 

results more cost-effective than 2S system in scenario W_B when a HCl outlet concentration of 10 

mg/Nm
3
 is considered. 

As expected, the total costs of all technologies increase when the ELV is decreased. In this 

framework, the 2S configuration results more cost-effective when high performances are required. 

In particular, when a HCl outlet concentration of 1 mg/Nm
3
 is coupled to an incoming waste rich in 

Cl and S (scenario W_C), the 2S system provides savings as high as 1.11 M€ per annum compared 

to the cheapest 1S alternative for the feed rate considered (120,000 t/year waste). 

 

Figure 7.7. Total annual cost calculated for the four alternative dry treatment systems as a function of the 

required HCl outlet concentration (ELV). Scenarios W_A, W_B and W_C in Table 7.3 (flue gas composition: 

respectively FG_A, FG_B and FG_C in Table 7.5) were considered. 

As shown in Figures Figure 7.6 and Figure 7.7, the operating costs vary widely across scenarios. In 

order to investigate more systematically the effect of the input waste composition on the total 

annual cost of operation, the complete set of flue gas compositions presented in Table 7.5 was 
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considered. The cases are intended to explore a reasonably broad field of variation for S and Cl 

content. The resulting flue gas compositions in Table 7.5 are coherent with the operational 

experience of European MSWI (Rylander, 1997), although  cases with exceptionally high S content 

such as FG_B.1, FG_C.1, FG_C.2 are conservative, since even pure food waste rarely contain more 

than 0.5-0.6% S content on a dry basis (Komilis et al., 2012).  

 

Figure 7.8. (a) HCl conversion in the 1
st
 stage of the 2S system which optimises the operating costs 

expressed as a function of the Cl/S ratio in the waste feed and (b) corresponding SO2 conversion in the 1
st
 

stage. Dots and bars cover simulation results for the different cases of flue gas composition listed in Table 

7.5.  

As shown in Figure 7.8, the optimal operating point of the 2S system is highly influenced by the 

Cl/S ratio. As the Cl/S ratio decreases, the economic optimum of the 2S system is shifted towards a 

lower conversion in the 1
st
 stage and thus a higher conversion in the 2

nd
 stage. This is caused by the 

lower reactivity towards SO2 of calcium hydroxide with respect to sodium bicarbonate. When the 

costs of the 2S system are compared to that of the 1S alternatives, the ranking of alternatives is 

unchanged with respect to that reported in Figure 7.6 when the combined mass fraction of Cl and S 

in the input waste is 0.35 % (flue gas cases A) and 1.7 % (flue gas cases C). Differently, when the 

combined mass fraction of Cl and S in the waste feed is 0.85 % (flue gas cases B in Table 4) the 

ranking of alternatives changes at low values of the Cl/S ratio (cases FG_B.1 and FG_B.2). As 

shown in Figure 7.9, the total cost of each system rises, but the cost associated with the 2S system 

increases more rapidly due to the above mentioned low affinity of calcium hydroxide towards SO2. 

Thus, the single stage system without pre-dusting becomes more cost-effective. In general, adding a 

lime injection line before the pre-dusting section appears to be uneconomical when the WtE plant is 

fed with fuels rich in sulphur and poor in chlorine (e.g. co-combustion of sewage sludge). 
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Figure 7.9. Total annual cost calculated for the four alternative dry treatment systems as a function of Cl/S 

ratio for a fixed combined amount of Cl and S in the input waste of 0.85 wt% (flue gas cases B in Table 7.5). 

Eventually, it is worth considering that the cost values presented in section 7.6 are obviously 

dependent on the assumptions made during the cost estimate. Preliminary estimates for the 

equipment cost are affected by uncertainties, while the purchase cost of reactants can fluctuate both 

geographically and temporally. Furthermore, even the management costs for solid residues might 

vary with time: for instance, additional taxes on landfill disposal could be raised by policymakers in 

order to better compensate the externalities generated by the environmental burden of landfilling, 

whereas costs related to the brine recovery process might drop thanks to technological 

improvements. 

Therefore, a sensitivity analysis was performed in order to check the robustness of the results even 

for widely different values of the unit cost entries. The sensitivity analysis was carried out 

considering the three most cost-effective alternatives in the light of Figure 7.6 and Figure 7.9: the 

2S, 1S and ESP-1S systems. A Monte Carlo approach was adopted. The total annual cost was 

expressed as a function of 6 stochastic variables: the total installed costs of the ESP and the FF 

device, the purchase costs of lime and bicarbonate, the disposal cost of residues and the cost of 

recovering brine from SBW. A typical distribution of probability (a symmetric beta distribution 

with α = β = 2) was associated to each variable, within the respective intervals of variation reported 

in Table 7.10. The mean values were set equal to the base values discussed above and used in the 

assessment, while ranges were selected according to the scattering of cost data discussed in section 

7.6. The largest range of variability was given to the disposal cost, in order to reflect the uncertainty 

due to the wide variety of alternatives (stabilisation and disposal in common landfill or disposal in 

hazardous waste landfill or backfilling in salt mines) and the non-homogeneous regulatory 

framework even within the EU. 
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Table 7.10. Set of beta-distributed random variables considered in the Monte Carlo simulations. 

Variable 
Appears in… 

Range (€) 
2S 1S ESP-1S 

TIC of ESP equipment    0.5 ÷ 1.5 x estimated TIC 

TIC of FF equipment x2   0.5 ÷ 1.5 x estimated TIC 

Lime cost    70 ÷ 90 

Bicarbonate cost    230 ÷ 250 

Residue disposal cost    150 ÷ 250 

Brine recovery cost    170 ÷ 230 

 

The results of the Monte Carlo sensitivity analysis are reported in Figure 7.10. The figure shows the 

cumulative probability of the overall cost difference between the 2S system and the two 

benchmarking alternatives for all the flue gas composition cases considered in Table 7.5. The 

results confirm the previous findings.  

For a low content of Cl and S in the waste feed (flue gas cases A), the operation of a 2S system is 

not cost-effective, being the differences plotted in the corresponding panels of Figure 7.10 always 

higher than zero. Conversely, for medium mass fractions of Cl and S (flue gas cases B) the 2S 

system is usually more cost-effective than the alternative technologies. An exception can be noted 

in the comparison 2S versus 1S, which shows a higher cost of the 2S system for Cl/S ratios equal to 

2 and 1 (with associated probabilities of 70 and 90%, respectively). This effect is much lower in the 

comparison of 2S versus ESP-1S, where the corresponding probabilities decrease to 5 and 25%, 

respectively. For a high content of Cl and S in the input waste (flue gas cases C), the 2S system 

performance is noticeably higher than the 1S alternatives, independently of the relative costs of 

reactants and waste disposal. 
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Figure 7.10. Cumulative probability of the difference in terms of total annual cost between: i) the 2S and the 

1S system (left column), ii) the 2S and the ESP-1S system (right column). Flue gas composition for the cases 

considered is reported in Table 7.5. 
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8 Sustainability analysis of acid gas removal systems 
8.1 A holistic approach to environmental protection 
As mentioned in chapter 4, the optimisation of end-of-pipe technologies for air pollution control has 

to take into account not only process performance but also indirect impacts related to the production 

of reactants and the generation of residues. A very efficient flue gas cleaning technology might rely 

on the use of a particular reactant, whose supply chain gives rise to environmental impacts so high 

that offset the benefits obtained by flue gas cleaning and simply shift the environmental burden 

from the power plant to other processes. In this perspective, a thorough assessment of the life cycle 

impacts associated with the adoption of alternative technologies is a powerful tool for the selection 

of an all-round environmentally sound solution. 

Recently, the life cycle thinking (LCT) approach has been extensively applied to evaluate the 

environmental footprint of waste incinerators as a whole. However, as stated by Astrup et al. 

(2015), air pollution control systems have been frequently overlooked in life cycle assessment 

(LCA) studies on WtE technologies. Their review of 136 papers produced in the years 1995-2013 

evidenced that in more than 50% of the studies the acid gas cleaning technology was not even 

specified. 

Only a few studies specifically focused on the environmental performance of the flue gas cleaning 

section of a WtE plant. Damgaard et al. (2010) analysed the historical improvement of the 

environmental footprint of air pollution control lines in Danish incinerators over the last 40 years. 

Møller et al. (2011) and Van Caneghem et al. (2016) evaluated specific flue gas cleaning steps from 

a life cycle perspective, namely the selective non-catalytic and catalytic reduction of NOx. Scipioni 

et al. (2009) applied a comparative LCA to the selection of the best design solution between a dry 

and a wet acid gas removal system. Stasiulaitiene et al. (2016) proposed a LCA to explore the 

potential advantages of plasma-based technologies for the removal of NOX, SOX and volatile 

organic compounds in comparison with conventional end-of-pipe approaches. Margallo et al. (2014, 

2015) investigated the life cycle impacts of WtE plants in Spain and Portugal, devoting particular 

attention to flue gas treatment and fly ash disposal processes. Biganzoli et al. (2015) assessed the 

environmental consequences of introducing a furnace injection of a dolomitic sorbent – the 

commercially known Depurcal mentioned in section 2.4 – as a preliminary acid gas removal step 

before sodium bicarbonate addition. The literature review also evidenced a consolidated role of the 

LCA technique in the analysis of the environmental performance of these systems. 

In this chapter, the aim was to perform a LCA-type comparative evaluation of the two-stage dry 

treatment system versus two benchmarking single-stage solutions already presented in the previous 

chapter: sodium bicarbonate injection with (FF-1S) and without (1S) pre-dusting. The assumed 

system boundaries included the extraction and processing of the reactants and the disposal or reuse 

of the residues. A set of relevant environmental indicators (acidification, resource depletion, global 

warming contribution, photochemical oxidation, human toxicity, waste generation) was adopted in 

order to characterise the environmental profile of the alternative technologies.  

Eventually, the results of the following LCA assessment and of the economic performance 

assessment detailed in chapter 7 were put in comparison. It is worth recalling that a cornerstone of 

the environmental policy of the European Union is the concept of BATNEEC: best available 

technique not entailing excessive costs (Sorrell, 2002). Any pollution mitigation technology which 

guarantees only a slight improvement of the environmental performance but entails significant cost 

increases might not be worth the implementation, as it would be better investing on other actions 
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which provide higher environmental returns (Directive 2010/75/EU, 2010). In this perspective, the 

joint evaluation of environmental and economic aspects was needed in order to draw a conclusion 

on the overall sustainability of the two-stage dry treatment systems. 

8.2 Definition of the case study 
The aim of the study is performing a comparative sustainability assessment of alternative dry 

technologies for the acid gas removal in WtE plants, integrating the economic analysis of the case 

study shown in section 0. Three reference technological schemes, namely single stage without pre-

dusting (1S), single stage with pre-dusting (FF-1S), and two-stage (2S), are compared on the basis 

of the environmental and economic performances. The three schemes  

 

Figure 8.1.  Block diagrams for the acid gas removal systems considered: single stage without pre-dusting 

(1S), single stage with fabric filter as a pre-dusting device (FF-1S), two-stage (2S). 

The functional unit of the study is 1 hour of operation of the dry treatment system, installed on a 

medium-sized air pollution control line, treating a flue gas flow rate of 110,000 Nm
3
/h from a WtE 

plant. The same process specifications were assumed for the three alternatives considered. In order 

to realistically define the location-sensitive parameters of the system (emission limit values, 

transportation distances, etc.), the location of the plant was arbitrarily chosen in Northern Italy 

(Emilia-Romagna region). Three reference waste mixtures were considered, allowing the 

exploration of system performance under different acid gas concentrations: municipal solid waste 

(MSW), Plasmix, and sewage sludge. The elemental compositions assumed for the reference wastes 

are presented in Table 8.1. 

The MSW composition is representative of a typical unsorted MSW as collected in the European 

territory (CEWEP, 2008). The Plasmix is a refuse-derived fuel (RDF), sulphur-free but rich in 

chlorine, obtained from the recycling of plastic packaging (Mapelli, 2014). The sewage sludge is 

the residual product of municipal wastewater treatment. Along with anaerobic digestion, 

incineration is a common practice to recover energy from this sludge. The elemental composition of 

sewage sludge can vary widely, but at least with reference to S and Cl content even data collected in 

different geographical contexts do not differ significantly (Thipkhunthod et al., 2005; UBA, 2013). 
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Although both Plasmix and sludge are usually burnt in co-combustion with other wastes, they are 

considered here as extreme cases for waste composition in terms of Cl and S content of possible 

wastes fed to a WtE process. Fluorine content in the considered waste mixtures is usually negligible 

(CEWEP, 2008; Mapelli, 2014; UBA, 2013; LEAP, 2009), resulting in insignificant concentrations 

of HF in the flue gases (European Commission, 2006). Therefore, in the present application, the 

analysis of the acid gas removal was limited to HCl and SO2. 

The concentration of acid pollutants in the flue gas was derived from the stoichiometry of the 

wastes, assuming that the Cl and S content in the waste is completely converted to HCl and SO2, 

respectively. The Cl and S in the original waste which remains in the bottom ash (e.g. inorganic 

chlorine contained in NaCl) is actually already accounted for in the “ash” entry of the elemental 

analysis. The specifications for the off-gases leaving the plant at stack were set having in mind the 

current emission limit values (10 mg/Nm
3
 for HCl and 50 mg/Nm

3
 for SO2 as for Directive 

2010/75/EU): an off-gas concentration of 2 mg/Nm
3
 for HCl was considered as base case for all the 

technological options and reference wastes. This choice is in line with the common practice in 

actual WtE plants (Antonioni et al., 2014) and has the twofold goal of keeping a safety margin for 

HCl emission and ensuring complying with the emission threshold for SO2. The effect of different 

specifications for the off gases was also explored, considering outflow concentrations of HCl in the 

range from 1 to 10 mg/Nm
3
. 

Table 8.1. Elemental composition of the three reference wastes considered.  

Components Municipal solid waste
a
 Plasmix

b
 Sewage sludge

c
 

C 25.0 60.8 36.2 

H 4.0 5.6 3.5 

O 18.0 19.9 15.0 

N 0.8 0.3 4.0 

S 0.13 0.0 1.0 

Cl 0.36 0.8 0.3 

Ash 17.7 7.6 5.0 

Moisture 34.0 5.0 35.0 

LHV (MJ/kg) 10.1 24.3 13.7 

References: 
a
 CEWEP (2008), 

b
 Mapelli (2014), 

c
 UBA (2013) 

 

The boundaries of the system analysed are described in Figure 8.2. For what concerns the WtE 

plant, the system boundaries include only the unit processes which differ between the alternative 

dry treatment technologies. The boundaries include the production (including the extraction of raw 

materials) and transportation of the solid reactants (bicarbonate and lime) necessary for the dry 

treatment and the fate of the solid residual products of the plant. While RCC and ashes may be 

considered a solid waste to be appropriately disposed, RSC can be processed to recover a brine 

suitable for further bicarbonate production if they are collected separately from ash and activated 

charcoal. Therefore, in option 1S the produced RSC is disposed, while the system boundaries for 

the FF-1S alternative include the recycling route of RSC. In option 2S, instead, RCC is disposed 

and RSC is processed in a recovery plant. 

The process for recycling RSC, already mentioned in chapter 2, is described by several sources 

(Brivio, 2005; Ninane et al., 1995; ISWA, 2008; Solvay, 2014). The RSC are mixed with water in 

order to obtain a saturated brine of the soluble salts (NaCl, Na2SO4, Na2CO3), while the heavy 

metals and impurities precipitate. Additives such as sodium sulphide, sodium silicate and iron 

chloride are usually added in this phase. The brine is then filtered in a filter press, and further 
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purified by activated charcoal and ion exchange resins. The depurated brine is suitable for use as a 

raw material in the sodium carbonate production (European Commission, 2007). 

The solid fraction to be disposed is generally known under the collective name of “air pollution 

control (APC) residues”. The impacts associated with the handling of APC residues considered in 

the present analysis are limited to the fraction constituted by the unreacted sorbents and the reaction 

products (i.e. RCC and RSC). The other solid components mentioned above (e.g. fly ash, activated 

charcoal) are not affected by the acid gas treatment and are left outside the boundaries of the study. 

A detailed assessment of the impacts associated with the management of these components is 

provided by Fruergaard et al., 2010. The disposal method considered for APC is the long term 

storage in depleted salt mines (ISWA, 2008; Özarslan et al., 2001). These underground sites may be 

considered as permanent and safe deposits, since the host rock formation (salt rock) constitutes an 

impermeable and stable geological barrier to groundwater infiltrations which prevents leaching 

(European Commission, 2003). Therefore, even hazardous wastes with high leaching potential can 

be stored safely. In particular, refuses such as RCC and RSC mixed with fly ash, thanks to their 

pozzolanic activity, are used as backfilling material to fill excavations leftover from the mining 

activities. This use is claimed to be classified as “recovery” and not “landfilling” by German law 

(ISWA, 2008). Nonetheless, since the employed residues substitute other waste materials also 

utilised in the mines rather than virgin materials (Fruergaard et al., 2010), here the storage of RSC 

and RCC in mines is conservatively categorised as landfilling (e.g. for the determination of the 

waste production indicator).     
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Figure 8.2. Unit processes considered in the sustainability analysis for the reference technologies. 
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8.3 Data inventories and associated uncertainties 
Once defined the case study, data for the considered unit processes were obtained as follows. 

The main foreground process, i.e. the operation of the dry treatment system, was modelled by 

means of the operational model for acid gas removal presented in chapter 7. It is worth recalling 

here that this model takes into account the non-linear relationship between the injection of the 

sorbent and the removal of acid gases, as well as the competing effects between HCl, SO2 and CO2. 

Hence, its adoption allowed a more precise evaluation of the acid gas removal process if compared 

with the over-simplified fixed generic values of sorbent feed rate per mass unit of waste usually 

introduced in life cycle studies (Scipioni et al., 2009, Damgaard et al., 2010). 

Data for the supply chain of sorbents (bicarbonate and lime), as well as inventories for utilities and 

road transport, were retrieved from the European reference Life Cycle Database (ELCD, 2016) and 

CPM LCA Database (Swedish Life Cycle Center, 2014). The general overview of data sources is 

reported in Table 3. The energy consumption data for the disposal of residues in the underground 

sites are derived from Fruergaard et al. (2010). A pre-treatment with addition of hydrated lime and 

water (Rigamonti et al., 2012) is considered at WtE plant to stabilise the residues before sending 

them to disposal. 

The burdens from the RSC recycling are mainly associated with the electrical and thermal energy 

inputs and the use of chemicals. These were estimated from energy and mass balances on available 

process data (Brivio, 2005; Biganzoli et al. 2015; Bichisecchi, 2014). Electricity was modelled 

according to the current Italian energy mix (ELCD, 2016). A mass cut-off criterion (ISO, 2006a) led 

to neglecting the production cycle of most of the additives, with exception of sodium hydroxide 

(NaOH), used to keep a pH value at 11.2 (basic conditions) in the vessels for RSC treatment 

(Bichisecchi, 2014). The availability of the recovered brine in the bicarbonate production process 

was taken into account in terms of avoided impacts related to the extraction and processing of 

sodium chloride (see e.g. ISO, 2012). 

The transport distances for sorbents and residues were assessed considering the commercially 

available options for a WtE plant located in Northern Italy (see Figure 8.3). A distance of 100 km 

was assumed for the supply of hydrated lime (Nethe, 2008), given the high density of limestone 

quarries in Italy, which is one of the main worldwide producer of this raw material (USGS, 2012). 

While sodium bicarbonate production sites are quite evenly distributed across Europe, only two of 

them currently host a processing plant for the recycling of RSC: one of them is at a distance of 

about 400 km from the considered WtE plant. The nearest underground disposal site for solid waste 

is instead located in Germany, at a distance of about 700 km. Clearly enough, these distances can 

vary widely for a generic European WtE plant: this aspect is further discussed in section 8.5. 
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Figure 8.3. Location of bicarbonate production plants, RSC recycling plants and mines authorised for 

underground disposal of APC residues in Europe. The assumed location for the WtE plant is pinpointed. 

 

Table 8.2 reports the data quality pedigree matrix (Weidema and Wesnaes, 1996) for the processes 

considered. Although only semi-quantitative, this approach to data quality assessment allowed 

identifying where the most relevant data uncertainties lie. 

Reference location of the WtE plant

Bicarbonate production site

RSC recycling site

Underground disposal site
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Table 8.2. Data quality pedigree matrix. Rating is based on a scale from 1 (high data quality) to 5 (poor 

data quality) according to the category specific criteria detailed by Weidema and Wesnaes (1996). 

Process Source Reliability of 

source 

Completeness Temporal 

differences 

Geographical 

differences 

Further 

technological 

differences 

Hydrated lime production  ELCD 1 1 2 2 1 

Sodium 

bicarbonate 

production 

Limestone 

extraction 

ELCD 
1 1 2 2 1 

Salt 

extraction 

ELCD 
1 1 4 2 1 

Bicarbonate 

production 

CPM 
1 1 3 2 1 

Electricity ELCD 1 1 4 1 1 

Heat ELCD 1 1 4 1 1 

Acid gas treatment 

system at WtE 

Modelled 

according to 

Antonioni et 

al. (2014) 

1 1 1 1 1 

Road transport of 

reactants and residues 

ELCD 
1 1 4 1 1 

RSC 

recovery 

process 

RSC 

recovery 

process 

Brivio et al. 

(2005) 1 1 1 1 1 

Sodium 

hydroxide 

production 

ELCD 

1 1 4 2 1 

Electricity ELCD 1 1 4 1 1 

Solid residue disposal Fruergaard et 

al. (2010) 
1 1 1 1 1 

 

In order to quantitatively study uncertainty propagation from the dataset to the results, a Monte 

Carlo method was adopted, by assuming a probability distribution for each uncertain parameter and 

then repeating the calculation for a reasonably high number of times, randomly sampling in each 

one the input parameters according to a specific probability distribution (Clavreul et al., 2012).  

The approach is an extension of the one followed in the sensitivity analysis of the economic 

assessment in chapter 7. In the current application, both the main economic variables determining 

the cost index ICST and the input/output data of the considered unit processes were taken as 

stochastic variables following a beta distribution. Normal distributions are a common choice when 

attributing uncertainty to life cycle inventories (Meier, 1997; Sonnemann et al., 2003) and 

symmetrical beta distributions can reproduce the shape of a Gaussian bell without having to deal 

with unbounded tails.  

The parameters of each beta distribution were defined as follows: the mean value (µ) was based on 

the value used in the deterministic evaluations, while the shape parameters (α and β) were 

calculated on the basis of the desired standard deviation (σ) according to: 

𝛼 = 𝛽 = (
1 − 𝜇

𝜎2
−
1

𝜇
)𝜇2 8.1 
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The standard deviation for each variable was calculated on the basis of a coefficient of variation 

CV, defined as follows: 

𝐶𝑉 = 
𝜎

𝜇
 8.2 

 

The values of CV were assumed on the basis of the uncertainty expected. For the input/output 

dataset used in the environmental assessment, the score in the pedigree matrix of Table 8.2 was 

used as a guideline to assign the values of CV (Table 8.3), as described in Weidema and Wesnaes, 

1996.  

Table 8.3. Stochastic variables considered in the Monte Carlo method.  

Variable or inventory Source/mean value CV 

Environmental 

variables 

Hydrated lime production ELCD 20% 

Sodium bicarbonate production: energy, 

limestone and salt requirements 

CPM 10% 

Limestone extraction ELCD 20% 

Salt extraction ELCD 20% 

Electricity  ELCD 30% 

Heat  ELCD 30% 

Road transport of reactants and residues ELCD 20% 

RSC recovery process: energy and 

material requirements 

Calculations based on 

Brivio, 2005 

10% 

Solid residue disposal: energy and 

material requirements 

Fruergaard et al., 2010 10% 

Economic 

variables 

Hydrated lime cost 80 €/t 5% 

Sodium bicarbonate cost 240 €/t 2% 

Solid residue disposal cost 200 €/t 10% 

RSC recovery cost 200 €/t 10% 

Fabric filter capital cost Estimated TIC 25% 

 

8.4 Characterisation approach and adopted indicators 
The potential environmental impacts associated with the alternative dry acid gas removal 

technologies were characterised by a set of problem-oriented impact categories (resource depletion, 

global warming, rain acidification, photochemical oxidation, toxicity in air, waste generation). The 

choice was based on the review of the previous contributions analysing similar treatment systems 

(Damgaard et al., 2010; Møller et al., 2011; Van Caneghem et al., 2016; Scipioni et al., 2009; 

Stasiulaitiene et al., 2016; Biganzoli et al., 2015). 

Characterisation factors for all the indicators, except waste generation, were based on the CML-IA 

database (CML, 2016), which is a widely adopted midpoint system (EC-JRC, 2011) and quantifies 

the impact category in terms of impact benchmarking (equivalent mass of a relevant reference 

substance). The indicator for waste generation was specifically introduced to account for the impact 

of RCC and RSC disposal: it simply quantifies the amount of solid residues (kg) to be disposed, 

evidencing therefore a lack of opportunities for material recovery in a circular economy perspective 

(European Commission, 2015). 

An economic indicator was also used to group the overall costs associated with the operation of the 

alternative treatment systems, estimated according to the procedure described in chapter 7. As 

shown, the considered cost structure aimed to be comprehensive, including the purchase costs of the 
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reactants, the costs for the disposal of RCC/RSC with fly ash and for the recycling of RSC, as well 

as other operating & maintenance costs (electricity and compressed air for the operation of the de-

dusting devices, replacement parts, maintenance labour). The capital costs were taken into account 

in terms of an equivalent fixed hourly cost, considering 20 years of service time and 7500 h/year of 

operation.  

Normalisation was required for a direct comparison between the environmental indicators adopted. 

Several criteria can be followed in defining normalisation factors (Tugnoli et al., 2008). In the 

present case, an external normalisation was used (Norris, 2001). The normalisation factors were 

calculated on the basis of average annual environmental loads in the Emilia-Romagna region (Italy), 

where the reference WtE plant is fictitiously located. By analogy, the economic indicator (cost 

index, ICST) was normalised by a reference value for the same region. The values adopted for the 

normalisation factors and the sources and criteria used for their calculation are listed in Table 8.4. 

Table 8.4. Indicators, normalisation factors and set of weights considered in the analysis.  

Indicator Normalisation factor Unit Value Source Weight in 

IENV 

Resource 

depletion 

(RD) 

Regional consumption of oil, 

gas and solid fuels 
MJ/y 4.59×10

11
 

ENEA, 

2008 
0.1 

Global 

warming 

(GW) 

Regional CO2 and CH4 

emissions 
kg CO2 eq./y 4.74×10

10
 

ARPA, 

2011 
0.1 

Toxicity in 

air (TA) 

Normalisation value from 

CML, rescaled according to a 

population criterion 
a
 

kg 1,4-

dichlorobenzene 

eq./y 

2.93×10
10

 
CML, 

2016 
0.1 

Rain 

acidification 

(RA) 

Regional SO2 emissions + 

estimate on HCl emissions 

from WtE plants 
b
 

kg SO2 eq./y 2.07×10
7
 

ARPA, 

2011 
0.3 

Photochemic

al oxidation 

(PO) 

Regional NOX, CO, SO2, 

NMVOC emissions 
kg ethylene eq./y 2.81×10

7
 

ARPA, 

2011 
0.1 

Waste 

generation 

(WG) 

Regional generation of 

industrial waste 
kg waste/y 7.88×10

9
 

ARPA, 

2011 
0.3 

Cost index 

ICST 

Regional cost for the waste 

management service 
€/y 1.00×10

9
 

ISPRA, 

2013 
- 

a 𝑇𝐴𝐸𝑀𝑅 = 𝑇𝐴𝑁𝐸𝐷 ∙ (𝑃𝑂𝑃𝐸𝑀𝑅 𝑃𝑂𝑃𝑁𝐸𝐷)⁄  

TAEMR normalisation value for TA in the region of interest (Emilia-Romagna) 

TANED normalisation value for TA in Netherlands as for CML, 2016 

POPEMR population of Emilia-Romagna (ISTAT, 2016) 

POPNED population of Netherlands (EUROSTAT, 2016) 
b
 𝑅𝐴 = 𝐸𝑆𝑂2 + 𝐸𝐻𝐶𝑙  

𝐸𝐻𝐶𝑙 = Σ𝑝𝑙𝑎𝑛𝑡𝑠(�̇�𝑓𝑙𝑢𝑒 𝑔𝑎𝑠 ∙ 𝐶𝐻𝐶𝑙,𝑜𝑢𝑡)  

ESO2 regional SO2 emissions reported by ARPA (2011) 

EHCl estimate on HCl from WtE present plants 

Vflue gas flowrate of flue gas from each plant (ISPRA, 2013) 

CHCl, out HCl concentration in the flue gas (emission limit value of Directive 2010/75/EU) 

 

In order to present a more concise, yet representative comparison between the environmental 

footprints of the process alternatives, the normalised indicators were aggregated to an overall 

environmental index (IENV). This was accomplished by weighted summation (ISO, 2006b) 
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considering the base set of weight factors presented in Table 8.4. This set acknowledges greater 

importance (weight factor three times greater than other categories) to rain acidification and waste 

generation, which are recognized a priori as the core issues for dry acid gas removal. In fact, the 

former represents the actual environmental problem to be controlled by the treatment processes and 

the latter constitutes the main environmental drawback of any dry sorbent injection system 

(European Commission, 2006). The same weight factor value was assigned to all the remaining 

environmental categories, reflecting an equal a priori importance for the acid gas treatment.  

Obviously, the weighting stage implies intrinsic subjectivity and different weight sets entail 

different outcomes: this aspect was explored in the following by a dedicated analysis. Since a lower 

score in ICST represents a higher economic performance and a lower score in IENV indicates a higher 

environmental performance, Pareto plots were used to analyse the values obtained (Paolucci et al., 

2016; Azapagic et al. 1999a,b,c): this approach allows a meaningful comparison among the options, 

while avoiding an extra aggregation step. 

8.5 Two-stage system: environmental and economic optima 
In the two-stage system, as already stated in chapter 7, the required performance in terms of acid 

gas removal can be obtained by different combinations of removal efficiencies in the first and in the 

second stage. Given that two different solid reactants are used in the two stages, the choice to 

increase or decrease the acid gas removal in the first stage, consequently decreasing or increasing 

that of the second stage leads to important differences on the environmental and economic 

performance of the process.  

Under the assumptions detailed in section 8.2, a simulation of the different operative conditions of 

the process was performed by the operational model: the HCl conversion in the 1
st
 stage was 

changed modifying the feed rate of lime. The sodium bicarbonate feed in the second stage was 

modified accordingly, in order to maintain a constant specification for the hydrogen chloride 

concentration in the flue gas leaving to stack. Inevitably, while keeping HCl outlet concentration 

constant, SO2 concentration at stack changes when varying the reactant feed rates in the two stages; 

in facts, hydrated lime and sodium bicarbonate have different selectivity towards the two targeted 

acid pollutants. However, since waste feeds with limited amounts of sulphur are considered, such 

changes have a very limited effect on the overall performance of the 2S system. Nevertheless, the 

environmental effects of the variation of SO2 outlet concentration, which remains in any case well 

below the emission limits, is taken into account by the rain acidification indicator. The two sorbents 

considered have a different interaction with CO2, as described in equations R3 and R4 in Table 7.2. 

The simulations showed that only minor changes in CO2 concentration occur in the flue gases due 

to these phenomena (conversion changes less than ±1.1%).  

For the sake of clarity, the results obtained simulating the operative conditions of the process 

corresponding to the case of flue gases from the combustion of MSW are reported in Table 8.5. The 

material flows of reactants and the respective waste streams associated to different HCl conversion 

values in the 1
st
 stage are listed, along with corresponding values of SO2 concentration at the 

emission stack. The table also reports the total conversion of HCl, SO2 and CO2 in the treatment 

process. The conversion on a mass basis of the generic component i is defined as: 

𝜒𝑖 =
𝑚𝑖,𝐼𝑁 −𝑚𝑖,𝑂𝑈𝑇

𝑚𝑖,𝐼𝑁
 8.3 
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where mi,IN is the mass flowrate of i entering the system and mi,OUT is the mass flowrate of i leaving 

the system in the off-gases. Clearly enough, the generation of a substance (e.g. CO2 from reaction 

R4 in Table 7.2) yields negative values of conversion. The results of the benchmarking single stage 

systems are also reported for comparison: detailed comparative analysis is discussed in section 

Errore. L'origine riferimento non è stata trovata..  

Table 8.5. Results of the simulations obtained in the case of flue gases from the combustion of MSW and 

hydrogen chloride concentration at the stack of 2 mg/m
3
.  

System 

χHCl,1st 

stage 
mCa(OH)2 mNaHCO3 RCC RSC cSO2,out

 (3)
 χHCl χSO2 χCO2 

- kg/h kg/h kg/h kg/h mg/m
3
    

1S - - 672.7 - 457.0 0.16 99.50% 99.90% -1.07% 

FF-1S - - 672.7 - 457.0 0.16 99.50% 99.90% -1.07% 

2S 10.0% 27.0 601.6 37.8 409.3 0.17 99.50% 99.89% -0.93% 

 22.5% 63.9 516.2 88.2 352.2 0.19 99.50% 99.88% -0.76% 

 35.0% 
(1)

 107.6 432.6 146.0 296.2 0.22 99.50% 99.86% -0.59% 

 47.5% 163.1 350.5 216.6 241.2 0.26 99.50% 99.84% -0.41% 

 60.0% 
(2)

 240.6 270.0 311.3 187.1 0.34 99.50% 99.79% -0.21% 

 72.5% 366.2 191.1 458.6 134.0 0.47 99.50% 99.71% 0.03% 

 85.0% 638.5 113.7 765.5 81.6 0.81 99.50% 99.49% 0.39% 

Notes: 
(1)

 Corresponds to “environmental optimum” 
(2)

 Corresponds to “economic optimum” 
(3)

 Concentrations are expressed at a temperature of 273.15 K and a pressure of 101.3 kPa (as for Directive 

2010/75/EU) 

 

The material flows of reactants and the associated waste streams obtained from the model were 

combined with the data from the relevant unit processes in the analysed system producing the 

overall inventory of input and outputs. This inventory was used to calculate the indicators described 

in section 8.4. Figure 8.4 shows the results obtained in the case of flue gases from the combustion 

of MSW and hydrogen chloride concentration at the stack of 2 mg/Nm
3
. It can be noted how the 

costs and the environmental indicators of the 2S system vary as a function of the repartition of HCl 

removal between the 1
st
 and the 2

nd
 stage. 

The cost index ICST, taking into account both equipment and operating costs (reactant procurement, 

waste disposal, other O&M costs), shows a minimum when 1
st
 stage conversion is of about 60%. 

This operating point minimises the costs associated with acid gas removal and will be referred to as 

the “economic optimum” in the following. The existence of a minimum, as discussed in chapter 7, 

is due to the fact that the unit cost of hydrated lime (the reactant used in the 1
st
 stage) is lower than 

the unit cost of sodium bicarbonate (the reactant used in the 2
nd

 stage), but hydrated lime is less 

efficient in removing acid gases (i.e. a higher feed rate is needed to achieve the same acid gas 

removal performance). 

The economic optimum does not correspond to the optimal operating point in terms of 

minimization of environmental impacts (“environmental optimum”). In fact, most of the impact 

indicators (e.g. rain acidification, resource depletion, toxicity in air) show a decreasing trend when 

the HCl conversion in the 1
st
 stage rises from 0% to 70%: this can be explained considering that the 

production of sodium bicarbonate is more energy-consuming and emits more air pollutants than the 



115 
 

production of hydrated lime. Hence, a higher removal of acid gas in the 1
st
 stage reduces 

environmental burdens as far as the necessary quantities of lime does not become excessive 

compared to bicarbonate. On the other hand, the waste generation indicator shows a minimum when 

no sorbent injection in the 1
st
 stage is performed and increases monotonically with a higher acid gas 

removal in the 1
st
 stage. This is due to the fact that the RCC generated by the injection of hydrated 

lime in the 1
st
 stage need to be disposed, and therefore are accounted by the indicator, while the 

RSC produced by the injection of sodium bicarbonate in the 2
nd

 stage are recycled to a great extent 

thanks to the available dedicated treatment process. 

Since the waste generation indicator shows an opposite behaviour than the other environmental 

indicators, it is clear that the “environmental optimum” of the 2S system is a trade-off between the 

minimisations of solid waste and air pollutants, and depends on the relative weights attributed to the 

different environmental indicators. According to the weights introduced in Table 8.4, the 

environmental optimum for the system in Figure 8.3 is found at a 1
st
 stage HCl conversion of 35%. 

 

Figure 8.4. Normalised indicators evaluated for a 2S system as functions of HCl conversion in the 1st stage 

(reference waste: MSW; specification for HCl at stack: 2 mg/Nm
3
). ICST: cost index; WG: waste generation; 

RA: rain acidification; GW: global warming; RD: resource depletion; PO: photochemical oxidation; TA: 

toxicity in air. 
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8.6 Comparison of the alternative acid gas removal systems 
Having identified two 2S operative configurations corresponding to the economic optimum and the 

environmental optimum, it is now interesting to compare the associated normalised environmental 

indicators to those calculated for the alternative technologies (1S and FF-1S). The comparison is 

shown in Figure 8.5 and, again, it is referred to a single reference waste composition (MSW) and a 

single off-gas specification for HCl (2 mg/Nm
3
 at stack). 

As evident from Figure 8.5, the impacts resulting from the 2S system are lower than the 1S system 

for all the impact categories considered. Also in the case of the FF-1S process the impacts of 2S 

technology are lower except for waste generation. The better performance of FF-1S in the waste 

generation indicator is due to the possibility to recycle the RSC. For the same reason, the waste 

generation of the 2S system, which produces both disposable RCC and recyclable RSC, is lower 

than that of 1S, where all the residues need to be disposed. With respect to the other impact 

categories, the low environmental impact of the 2S system is the result of the low consumption of 

solid reactants and, in particular, of bicarbonate, which has a production chain that generates higher 

impacts than that of hydrated lime, as discussed above. These results evidence that the development 

of residue management routes for RCC alternative to disposal, which is actually the target of several 

research projects (Quina et al., 2008; Margallo et al., 2015), would definitely allow in the future an 

improved performance of the 2S system, possibly reducing the current high impact from waste 

disposal (Vehlow et al., 2015; Stasiulaitiene et al., 2016) and allowing a better compliance to the 

principles of circular economy.  

 

Figure 8.5. Comparison of the normalised environmental indicators for the reference technologies 

considered. Reference waste: MSW; specification for HCl at stack: 2 mg/Nm
3
. 

According to the normalised indicators, rain acidification appears to be the most relevant impact 

category for all the technologies. Figure 8.6 shows the contributions of the different unit processes 

to the overall RA system indicator. The sodium bicarbonate supply chain (extraction of salt and 
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limestone, synthesis of sodium bicarbonate and related heat and electricity requirements) is 

identified as the main contributor. The transport operations generate from 8 to 12% of the total 

impacts, while the impact credits from recycling of RSC (i.e. avoided impacts related to salt 

extraction) significantly lowers the impacts of 2S and FF-1S options. The actual impact of the 

operation of the acid gas removal system is determined by the residual HCl and SO2 in the stack 

emissions. While HCl emissions are the same in any case (2 mg/Nm
3
), different removal of SO2 

occurs among the technologies. In the case of 2S systems, the contribution is slightly higher than 1S 

and FF-1S systems because lime is slightly less efficient in removing SO2 than bicarbonate (SO2 

outlet concentration of 0.26 mg/Nm
3
 instead of 0.16 mg/Nm

3
). 

Even in the other impact categories the contributions of the different unit processes maintain similar 

proportions. For instance, in terms of global warming potential, the total life cycle emissions 

associated with the reference 2S system (environmental optimum) amount to 24.1 kg CO2/kg waste, 

in line with the 23.0 kg CO2/kg waste estimated by Biganzoli et al. (2015) for a similar kind of two-

stage dry treatment system (furnace injection of dolomite + sodium-based 2nd stage), and 

accordingly the production of reactants is the main contributor. 

 

Figure 8.6. Contribution of the unit processes to the rain acidification indicator. Reference waste: MSW; 

specification for the HCl at stack: 2 mg/Nm
3
. 

The overall environmental index (IENV) was obtained aggregating the environmental indicators by 

means of the set of weights introduced in Table 8.4. The values for the considered alternative 

technologies are reported in Table 8.6, along with the cost index ICST. The environmental index is 

dominated in any case by the rain acidification and waste generation indicators, and the 

performance of the different technologies is thus the same discussed in the analysis of the single 

indicators. From the economic point of view, the 1S system without pre-dusting (1S) is clearly less 

expensive than the FF-1S system thanks to the lower capital cost, while the 2S system can benefit 

from the lower purchase cost of hydrated lime. The versatility of the two-stage configuration 

permits the 2S to achieve both economic performances comparable with the 1S alternative and 

environmental performances typical of the FF-1S alternative. 
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Table 8.6. Scores in IENV and ICST of the alternative dry treatment systems. Reference waste: MSW; 

specification for the HCl at stack: 2 mg/Nm
3
. 

Index 
Acid gas dry treatment systems 

2S (eco. opt.) 2S (env. opt.) 1S FF-1S 

Environmental index IENV 3.11×10
-8

 2.85×10
-8

 5.25×10
-8

 3.03×10
-8

 

Cost index ICST 2.91×10
-7

 3.10×10
-7

 3.07×10
-7

 3.58×10
-7

 

 

Clearly enough, the score of IENV and the identified ranking between the alternative systems are 

dependent on the assumed set of weights. Following an approach similar to the “mixing triangle” of 

Hofstetter et al. (1999), the effect of different choices in the aggregation phase was explored in the 

ternary diagrams of Figure 8.7. Each point in the diagrams is representative of a set of weights 

(weight of rain acidification, waste generation and cumulative weight of all the other environmental 

categories). The light green shaded area in diagram (a) is the domain of weight combinations for 

which the 2S system (at economic optimum) has better overall environmental performance than the 

single stage systems. If the environmental optimum for 2S is considered, this area extends to the 

dark green shaded area (diagram b). On the other hand, the white area is the domain of weight sets 

for which the FF-1S has the lowest environmental impact. Since 1S has the highest values of the 

environmental indicators for each category (Figure 8.5), no weight set results in having the 1S 

system as the best option.  

Figure 8.7 shows that the FF-1S system presents a lower IENV score than 2S when the weight set 

attributes greater importance to waste generation than to rain acidification. As sensitivity analysis, 

Figure 8.7 also compares the results of the weight set described in Table 8.4 with alternative weight 

sets (see Table 8.7). The ‘egalitarian set’ assigns equal weights to all the impact categories 

considering equal importance for all of them (PRé Consultants, 2000). The ‘normative-driven set’ 

attributes weights only to the impact categories for which the WtE plant is subject to environmental 

regulation (i.e. management motivated only by legal compliance). The set presented by Tugnoli et 

al. (2011) referred to process plants located in the geographical context of the current study. The set 

of Huppes et al. (2012) is the result of a meta-method for combining weight factors from different 

midpoint indicator systems. Finally, the Environmental Profiles Methodology (BRE, 2008) 

indicated a set of weights for the evaluation of the environmental footprint of building materials. 

The figure shows that the 2S system, if operated at the environmental optimum, is stably the 

preferable option for most of the weight sets considered; the only exception being BRE, which was 

however developed for the construction sector, where acidification is not considered a relevant 

concern. 
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Figure 8.7. Comparison of the environmental preference of 2S system and FF-1S system as function of the 

weight set. In panel (a), light green shaded area identifies the sets of weights for which the 2S system, 

operated at its economic optimum, exhibits a IENV score lower than FF-1S. In panel (b), dark green shaded 

area identifies the sets of weights for which the 2S system, operated at its environmental optimum, exhibits a 

IENV score lower than FF-1S. Reference waste: MSW; specification for the HCl at stack: 2 mg/Nm
3
; : 

weight set in the present study. 

Table 8.7. Alternative sets of weights used for the analysis in Figure 8.7. 

Indicator Egalitarian 

set 

Normative-

driven set 

Tugnoli et 

al. (2011) 

Huppes et 

al. (2012) 

BRE  

(2008) 

Resource depletion (RD) 0.166 0.000 0.131 0.135 0.080 

Global warming (GW) 0.166 0.250 0.152 0.442 0.521 

Toxicity in air (TA) 0.166 0.250 0.284 0.250 0.207 

Rain acidification (RA) 0.166 0.250 0.197 0.077 0.001 

Photochemical oxidation (PO) 0.166 0.250 0.146 0.096 0.005 

Waste generation (WG) 0.166 0.000 0.090 0.000 0.186 

 

The stability of the results with respect to uncertainty in the input data sets was analysed by a 

dedicated Monte Carlo approach, as described in section 8.3. The results of the analysis are 

presented in Figure 8.8 as distribution of differences between selected couples of alternative options 

(discernibility analysis; Heijungs and Kleijn, 2001). The figure reports the cumulative probability of 

the overall difference in both IENV and ICST indices between the 2S system, taken at the operating 

point of economic optimum, and the two single-stage alternatives for the case of MSW as input 

waste. 

The 1S alternative is invariably outperformed by 2S and FF-1S on the environmental point of view 

and, with the assumed uncertainty ranges of the inputs, has only a 1% probability of being the most 

cost-effective solution. Instead, 2S and FF-1S have very similar environmental impacts and the 

ranking between them is affected by the input data variability. However, when economic aspects are 

adopted set of weights

egalitarian set

normative-driven set

Tugnoli et al., 2011

Huppes et al., 2012
BRE, 2008

(a) (b)

Weight WG Weight WG
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considered, the 2S system appears to be almost always the best option among the three. Since the 

sustainability profile of a technology must account for both environmental and economic aspects, 

the results of the sensitivity analysis confirm that the overall higher performance of 2S over the 

other alternatives is not affected by data uncertainty. 

 

Figure 8.8. Cumulative probability of the difference in IENV (left panel) and ICST (right panel) between the 2S 

system (economic optimum) vs. 1S (dashed blue line) and vs. FF-1S (red line). Reference waste: MSW; 

specification for the HCl at stack: 2 mg/Nm
3
. 

The results presented so far assumed a HCl outlet concentration of 2 mg/Nm
3
. However,  the 

specification on HCl at stack might vary. Given the location of the reference plant, the emission 

limit value (ELV) is set by the Directive 2010/75/EU to 10 mg/Nm
3
 for HCl and 50 mg/Nm

3
 for 

SO2. Internal decisions of the WtE plant management (e.g. safety margins) or local environmental 

authorisation agreements (e.g. presence of sensitive areas) may impose stricter ELVs for the stack 

emissions. The environmental index IENV and the cost index ICST were calculated for HCl outlet 

concentrations of 1 mg/Nm
3
, 2 mg/Nm

3
, 5 mg/Nm

3
 and 10 mg/Nm

3
. Given the low concentration of 

sulphur in the reference MSW, the current ELV for SO2 (50 mg/Nm
3
) was largely satisfied by the 

proposed technologies for all the specifications considered for the removal of HCl, thus is not 

considered as a constraint. Nonetheless, the different SO2 emissions are accounted in environmental 

indicators. 
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Figure 8.9. Environmental and economic performance indices of the alternative dry treatment systems for 

different HCl concentrations at stack (in mg/Nm
3
). Reference waste: MSW. 

In Figure 8.9 the environmental index IENV is plotted against the cost index ICST for the considered 

treatment system alternatives at different HCl outlet specifications. A lower score in IENV indicates 

lower environmental impacts, while a lower score in ICST means lower costs. Obviously, lower 

outlet concentrations imply higher expenditures for all the systems, but generally leads to better 

environmental performances (more acid gases are removed, lowering the RA indicator). In the case 

of very low specifications for the outlet concentration in single stage systems, the IENV rises its 

value because lower emissions of acid pollutants at the stack are compensated by the higher 

environmental impacts associated with the increased demand of reactants and generation of solid 

residues.  

The plot extends the conclusions of the previous section to all the HCl outlet concentrations 

considered: 2S technology, operated either at the economic or environmental optimum, has clearly 

better cost performances than FF-1S, although it allows achieving very similar profiles of 

environmental performance. On the other hand, 1S may result in interesting values of cost index for 

larger ELV (even 2% better than 2S economic optimum for 10 mg/Nm
3
) but the overall 

environmental performance is at least 38% worse than any other option. 

Figure 8.9 also shows as the 2S system limits the cost increases related to the shift toward stricter 

ELVs, thus demonstrating higher flexibility of operation. From the point of view of overall 

sustainability, it can be noted that the choice to operate a 2S acid gas removal system with a HCl 

outlet concentration of 2 mg/Nm
3
 appears a reasonable compromise for the management of a WtE 

plant, at least according to the adopted set of weights. In fact, lowering the outlet specification to 1 

mg/Nm
3
 of HCl produces, on the one hand, a significant cost increase and, on the other hand, only a 

slight improvement in IENV for the system. Generally speaking, such results highlight the 

importance of a life cycle perspective in correctly evaluating the sustainability of a process and call 

for due consideration of indirect environmental aspects in the field of air pollution control policies. 

Lastly, also the composition of the waste fed to the WtE plant constitutes a significant factor in 

determining the overall environmental footprint of the acid gas removal process (Astrup et al., 
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2011). Figure 8.10 reports the environmental and economic indices as calculated for the different 

technologies considering the three reference waste mixtures introduced in section 8.2. In each case 

the outlet concentration of HCl was specified to 2 mg/Nm
3
, which resulted in a SO2 concentration 

always largely below the ELV of 50 mg/Nm
3
. For each waste mixture, the options shifted towards 

the bottom left-hand corner of the graph are both more cost-effective and more environmental-

friendly. 

 

Figure 8.10. Environmental and economic indices of the alternative dry treatment systems for different 

waste mixture composition. Specification for the HCl at stack: 2 mg/Nm
3
. 

When composition of Plasmix is considered as WtE plant feed, both ICST and IENV exhibit lower 

values than in the MSW case. This is due to the absence of sulphur in the waste feed, which 

prevents the formation of SO2, the acid pollutant to which both lime and bicarbonate have the lower 

affinity (Chin et al., 2005). In the case of Plasmix, the 2S system still outperforms the 

environmental performance of the 1S alternative, and the economic performance of the FF-1S 

alternative. Moreover, the difference in the environmental indicator between 2S and FF-1S is 

extremely low, ruling out FF-1S as an optimal solution for this case. On the other hand, the 

preference between 2S and 1S depends on the relative importance given to the environmental and 

economic aspect (both options are Pareto optimal alternatives). 

In the case of sewage sludge, both ICST and IENV soar, because of the exceptionally high sulphur 

content of the waste mixture. As mentioned, dry sorbents are generally less reactive towards SO2 

than HCl, resulting in both higher consumption of reactants and generation of residues. In 

particular, while sodium bicarbonate still retains good performance when dealing with high SO2 

loads, the conversion of calcium hydroxide particles is significantly limited by pore plugging 

phenomena (Chisholm and Rochelle, 1999) and diffusional resistance (Duo et al., 2004). Therefore, 

the advantages of the Ca(OH)2-based 1
st
 stage of the reference 2S system are greatly reduced for 

high SO2 loads. In fact, the environmental optimum for 2S is achieved, in this case, by completely 

switching off the Ca(OH)2 injection: this actually converts 2S in the FF-1S configuration. The 

economic optimum for 2S is achieved with a low utilisation of the 1
st
 stage (approximately 30% of 
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HCl conversion in the 1
st
 stage) and it is only slightly cheaper (-3.5%) than FF-1S solution, causing 

a slightly higher burden on the environmental aspects (+8.7%). The 1S options is actually slightly 

cheaper than the 2S (-9.0%), but significantly more problematic for the environment.  

Though, while all the options belong to the Pareto frontier for sewage sludge treatment, it would be 

reasonable to discard this option as a best available technology for this waste mixture. It is worth 

remarking that the sewage sludge scenario has to be taken as a boundary case for waste 

composition, since the feed of sewage sludge to WtE furnaces is typically performed only in co-

combustion with other wastes. Nonetheless, the results show that the addition of sulphur-rich wastes 

to a WtE process feed can negatively affect the performance of the hydrated lime-based acid gas 

removal stage. It can be concluded that, while for the MSW the 2S option was clearly superior to 

the other alternatives, for waste compositions with extreme concentrations of Cl or S the preference 

of 2S is the result of a compromise between environmental and economic priorities of the plant 

management. In fact, the 2S system shows a significant flexibility of operative conditions that may 

strongly reduce the practical differences with other techniques when appropriate optimisation 

strategies are adopted. 

8.7 Closing remarks on single stage vs. multistage dry treatment systems 
In chapter 7, the state-of-the-art single stage technologies were found to be less cost-effective than 

the 2S system for most of the waste and flue gas compositions considered. The 2S system resulted 

highly cost-effective in particular when the Cl content in the waste feed is above 1 %, which is an 

operating condition that is common to several WtE facilities dealing with mixed MSW and 

industrial waste. Therefore, for plants operating single stage technologies with high chlorine-

content waste, the implementation of a lime injection line before the pre-dusting section is a retrofit 

that should be considered. The results of the sensitivity analysis evidenced that the 2S system 

assures a higher flexibility and total costs show a lower fluctuation when dealing with widely 

varying inlet waste compositions. 

In the present chapter, a sustainability assessment was carried out to integrate the information from 

the economic evaluation with a representation of the environmental profile of the alternative dry 

treatment systems for acid gas removal. The analysis evidenced that the operating versatility of the 

2S system can couple the cost-effectiveness of a 1S system with the lower environmental footprint 

of a FF-1S configuration. The results proved themselves stable to the uncertainties of the data sets 

used in the assessment. Moreover, the 2S option retained a good performance on both domains for 

any reasonable variation of the composition of the waste mixture fed to the WtE plant and the 

emission specifications set at plant stack. The retrofit of a FF-1S system to 2S in order to achieve 

cheaper operation, as proposed above, would not entail noteworthy environmental drawbacks. The 

main disadvantage of 2S operation is the high production of RCC and the lack of residue 

management routes alternative to disposal. The development of recycling solutions for RCC, in the 

light of the principles of circular economy, is therefore identified as a key issue for further 

improving the 2S option. Section 9.2 in Part III of the thesis exploratively proposes a possible 

valorisation route for RCC.  
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Part III 

Application to 

CO2 capture by MgO-based sorbents   

Sections 9.3 to 9.5 and chapter 10 report the research 

activity carried out during a 6-month stay at the Laboratory 

of Energy Science and Engineering, ETH Zürich 

(Switzerland), under the supervision of Prof. C.R. Müller.  
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9 Development of MgO-based sorbents 
9.1 Alternatives to limestone in carbonate looping technologies 
As introduced in section 3.3, carbonate looping is a potentially cost-effective solution to CO2 

capture, thanks to the lower energy penalty compared to amine scrubbing and the use of an 

inexpensive and widely available natural sorbent such as limestone (i.e. the calcium oxide, CaO, 

obtainable from limestone calcination). However, as mentioned in section 4.1, the extent of CaO 

carbonation suffers a relatively fast decline, resulting in a molar conversion of CaO to CaCO3 of 8-

10% after 20 or 30 cycles of carbonation/regeneration, due to sintering during high-temperature 

calcination (Blamey et al., 2010). Different limestones show qualitatively the same decay over a 

number of cycles (Grasa and Abanades, 2006), with the high temperature and high CO2 partial 

pressure encountered in the calcination step as the main causes determining the loss of performance 

(Manovic et al., 2009). Therefore, increasing the CO2 uptake and reducing the deactivation rate of 

CaO are the main targets in order to increase the economic attractiveness of carbonate looping 

systems (MacKenzie et al., 2007). Two main lines of research, summarised hereunder, stem from 

these considerations.  

Modified Ca-based sorbents. Methods such as hydration (Manovic and Anthony, 2007) or thermal 

treatment (Manovic and Anthony, 2008) can promote the carbonation of limestone, but superior 

performance for Ca-based sorbents can be mainly achieved by sorbent modification. First, there are 

natural alternatives to limestone. The CO2 uptake of the material can be promoted by synthesising 

Ca-based sorbents with high surface area and pore volume via approaches such as calcination of 

complex CaO precursors (Lu et al., 2006), sol-gel techniques (Broda et al., 2012), sacrificial 

templating (Naeem et al., 2016). The reduction of performance decay over cycling can be attained 

by introducing resistance to sintering, stabilising CaO by means of a support exhibiting high 

Tammann temperature (TT, the onset of sintering in ceramic materials). This area of research was 

inspired by the promising carbonation behaviour of natural dolomite, which is an equimolar mixture 

of CaCO3 and MgCO3. Although, after calcination, only the CaO part of dolomite can be 

carbonated in the typical Calcium looping conditions, the sintering-resistant MgO fraction (TT = 

1276 °C) acts as a structural agent, preventing the collapse of the pore structure of the sorbent (as 

already illustrated for the application of calcined dolomite in acid gas removal system; see section 

2.4) and producing a remarkably stable CO2 uptake upon cycling. The drawback of dolomite is that 

the MgO fraction, inactive for CO2 capture, amounts to approximately 45 wt. % of the material. The 

synthesis of supported Ca-based sorbents aims at coupling the effect of stabilisation with the 

minimisation of the quantity of support added. Hence, several investigators explored the 

incorporation of support materials like the oxides of Al (Broda and Müller, 2012), Mg (Filitz et al., 

2012), Zr (Broda and Müller, 2014) or Y (Naeem et al., 2016) in Ca-based sorbents: a recent review 

(Kierzkowska et al., 2013) illustrates the most interesting results in the field, but points out the lack 

of techno-economic assessment demonstrating the feasibility of scaling up the presented synthesis 

protocols. Routes employing waste materials could help improving the economics of modified Ca-

based sorbents while not dramatically depressing performance. Work in section 9.2 aims at 

speculatively suggesting a possible integration route with the dry acid gas removal process. 

Sorbents operating in different carbonation/calcination temperature windows. CaO, the active 

CO2 sorbent compound in both limestone and dolomite, shows high carbonation kinetics in the 

interval 600-700 °C and can be regenerated by calcination at T > 800 °C (Liu et al., 2012). It is of 

industrial interest to identify alternative sorbents with promising carbonation performance at 

different temperatures. For example, at temperatures below 100 °C sodium carbonate (Na2CO3) 
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captures CO2 in the presence of water to form sodium bicarbonate (Nelson et al., 2009), which in 

turn can be decomposed back to sodium carbonate with a moderate heating up to 130 °C, as 

discussed in section 2.3 with reference to its application in acid gas removal. Conversely, strontium 

oxide (SrO) can be carbonated at temperatures higher than 1000 °C and regeneration in pure CO2 

stream requires at least 1200 °C, making it potentially useful for direct furnace sorbent injection 

applications (Miccio et al., 2016). Magnesium oxide (MgO) represents the solution of choice for the 

intermediate temperature range (200-300 °C), with regeneration possible at T > 400 °C (Zarghami 

et al., 2015). Active research efforts in the synthesis and/or modification of CO2 solid sorbents face 

different challenges, functions of the inherent sorbent nature: for high-temperature sorbents, fast 

kinetics is ensured but sintering constitutes a major problem; viceversa, low-to-intermediate 

temperature sorbents face mild conditions in terms of sintering but generally exhibits a slower 

kinetics, which has to be somehow “promoted”. The latter case is the rationale behind the 

investigation of MgO-based CO2 sorbents which will be explored in sections 9.3-9.5 and chapter 

10. 

9.2 Use of residues from dry acid gas removal as CO2 sorbents 
As introduced in section 9.1, several investigators focused on the modification of Ca-based sorbents 

in order to obtain a noteworthy enhancement of CO2 uptake upon cycling (Kierzkowska et al., 

2013), but most complex methods of sorbent modification appear to be prohibitively expensive for 

scale-up (Erans et al., 2016). Some authors suggested that the use of waste materials – otherwise to 

be sent to disposal – as sorbents or precursors for modified sorbents could be a potential route for 

achieving cost-effective improvement of performance. For example, Tian et al. (2015) demonstrated 

that Fe-functionalised sorbents synthesised starting from slag from the steelmaking process can 

sustain efficient, autothermal CO2 capture process.  

Taking into account the dry acid gas removal systems studied in Part II of the thesis and, in 

particular, the Ca(OH)2-based sorbent injection, it has been shown that the sorbent conversion in the 

process is far from complete, due to the product layer-related limitations described in sections 6.1 

and 6.2. Thus, the Ca-based waste discharged by the process and generally sent to disposal, as 

described in chapter 8, contains a large amount of unreacted Ca(OH)2, as well as CaCO3 generated 

by the undesired reaction with CO2 facilitated by the high relative humidity in the flue gas from 

waste combustion (as recalled in section 7.1). The chemical composition of a typical Ca-based 

waste (from now on called RCC, in agreement with chapter 8)  generated by the Ca-based stage of a 

two-stage dry acid gas treatment system was analysed by means of thermogravimetric analysis, in 

analogy to the experiments performed in section 5.5 for the characterisation of the laboratory solid 

residues of the reaction between Ca(OH)2 and HCl. The analysed sample was dried at 105 °C under 

a dry nitrogen flow rate of 60 mL/min for 10 min and then heatep up to 900 °C under the same 

nitrogen purge gas flux at a heating ramp of 10 °C/min. As shown in Figure 9.1, the derivative 

weight loss curve allows to identify the main components according to their decomposition 

temperature: unreacted Ca(OH)2 calcines to CaO in the interval 350-400 °C, CaOHCl decomposes 

to CaCl2 at 450 °C (as illustrated in section 5.5), CaCO3 calcines to CaO at 600 °C and the sulphate 

phases (CaSO3 and CaSO4) show slow decomposition at temperatures higher than 800 °C, in 

agreement with Bogush et al. (2015). Other weight loss events can be ascribed to degradation of the 

activated charcoal which is injected in the flue gas system together with Ca(OH)2. Another relevant 

fraction of the sample, the fly ash originated from waste combustion (with its potential content of 

hazardous trace metals), which are inevitably mixed with RCC as a consequence of the typical 

layout of the flue gas cleaning system in WtE plants, does not undergo thermal degradation.  
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Figure 9.1. Derivative weight loss curve for a RCC sample from the Ca-based stage of a two-stage dry acid 

gas removal system. Heating up rate: 10 °C/min.  

Recently, accelerated carbonation has been considered as a management route for RCC. Instead of 

sending the residues to disposal “as is”, in this approach the RCC are contacted with a gas stream 

containing CO2 at high temperature, triggering the carbonation of the Ca(OH)2 fraction of the 

residues. Carbonation significantly decreases the mobility of some of the trace metals contained in 

the fly ash fraction (Pb, Zn and Cu, in particular) and reduces the solubility of the residues, thus 

effectively producing a residue that is less prone to leaching (Baciocchi et al., 2009). This effect 

improves the environmental behaviour of RCC, guaranteeing safer disposal, yet it appears not to be 

a sufficient driver to persuade WtE operators to invest on the accelerated carbonation process.  

Here, the carbonation behaviour of RCC was compared to the one of a reference limestone in order 

to understand the potential for the use of RCC in carbonate looping applications. If carbonation of 

RCC could be effectively performed upon multiple cycles, the accelerated carbonation approach 

would become not just a pre-treatment before disposal but an actual valorisation route, increasing 

its potential attractiveness. 

Figure 9.2a reports the CO2 uptake of both RCC and reference limestone (20 mg powdered 

samples) in TGA at different temperatures under a gas flow rate of 100 mL/min (60% CO2 in N2). 

At 600 and 700 °C, natural limestone exhibits a very fast initial reaction rate, thus achieving CO2 

uptake higher than 50 wt. % within a couple of minutes. Conversely, at 500 °C the fast reaction 

stage is abruptly interrupted at a CO2 uptake lower than 5 wt. % and replaced by a very slow 

reaction regime. The marked difference in performance with temperature could be explained by a 

change in the gas diffusion mechanism with temperature: Bhatia and Perlmutter (1983) suggest that 

at T < 515 °C diffusion is a solid-state process, while at higher temperature is gas diffusion. In 

contrast, RCC exhibits similar CO2 uptake both at the end of the fast initial reaction stage and after 

1 h carbonation for all the three operating temperatures. This is in agreement with similar findings 

by Prigiobbe et al. (2009) and Tian and Jiang (2012). Clearly enough, the total CO2 uptake capacity 

(≈30 wt. %) is lower than that of limestone at 600 and 700 °C due to the presence of the chlorinated 

and sulphated phases, which are inactive towards carbonation. More interestingly, at 500 °C RCC 
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outperforms limestone even if its Ca content available to carbonation is lower. This could be the 

consequence of a possible promoting effect produced by the chlorinated phase (CaOHCl/CaCl2). As 

a matter of fact, it has been observed in acid gas removal systems that CO2 sorption by Ca(OH)2 is 

enhanced in presence of HCl (Chin et al., 2005) and, in addition, both hydrogen halides and their 

salts have been found to act as dopants for limestone in calcium looping applications (Al-Jeboori et 

al., 2013). The observed phenomenon requires further investigation, but, for the scope of the present 

exploratory screening of RCC potentialities as CO2 sorbent, the following testing of cyclic CO2 

capture was performed at 700 °C, under the typical calcium looping conditions adopted for 

limestone. 

The cyclic performance of RCC and limestone was tested over 10 cycles of 20 min carbonation at 

700 °C under a gas flow rate of 100 mL/min (60% CO2 in N2) and 10 min calcination at 800 °C in 

N2. The results are reported in Figure 9.2b, along with the performance of “commercial lime” (the 

same Ca(OH)2 used in the WtE plant where the RCC was collected) and Depurcal, the commercial 

calcined dolomite used in acid gas removal by furnace sorbent injection as described in section 2.4.  

The reference limestone follows the characteristic decay over cycling mentioned in section 9.1. 

Commercial lime (i.e., calcium hydroxide) shows higher stability than limestone. Morphologically 

speaking, the improved performance could be ascribed to the formation of cracks during the 

hydration of the raw material (Wu et al., 2007), resulting in a higher pore surface area which is 

retained even when Ca(OH)2, at the temperatures tested in the TGA runs, is converted to CaO and 

cycled in that form. RCC, which is actually commercial lime after reaction with acid gases mixed 

with fly ash and charcoal, shows an abrupt decline in performance at the 2
nd

 cycle and a slow decay 

over the following cycles. Here, two counteracting effects could be at play:  

1) the CaCl2 fraction in the RCC has its melting point at 772 °C, thus it changes phase 

between the carbonation and the calcination steps. Although the presence of the 

chlorinated phase could entail a slight promoting effect on carbonation, as discussed 

with reference to Figure 9.2a, the repeated phase change should have detrimental effect 

on the morphology of the sorbent, actually favouring sintering. 

2) the fly ash included in the RCC are mainly Al2O3 and SiO2. These compounds, 

exhibiting high TT, could act as sintering-resistant support for the reactive Ca content of 

the RCC.  

Clearly enough, RCC performs poorly compared to natural limestone in the 10-cycle comparison. 

However, it is worth remarking that at the moment RCC is an unrecyclable waste, which can only 

be sent to disposal paying 150-250 €/t (as described in chapter 7). A residual CO2 uptake 

performance of 10 wt. % over multiple cycles, obtained with a waste material, could still be useful, 

if e.g. RCC were to be used as co-feeding to a carbonate looping vessel mainly fed with limestone. 

A thorough technoeconomic assessment is required to evaluate the viability of this option.  

Eventually, Figure 9.2b shows also the cyclic CO2 uptake performance of the calcined dolomite 

commercially known as Depurcal (chemically, MgO·Ca(OH)2). MgO does not undergo carbonation 

at these temperatures (as detailed in section 9.3 and the following) and, therefore, the stoichiometric 

capture capacity of calcined dolomite is just 0.46 g CO2/ g sorbent compared to 0.79 g CO2/ g 

sorbent for CaO. However, the lower CO2 uptake obtained in the first cycles is compensated by a 

remarkable stability in performance: no significant decay in reactivity is observed in a 10 cycles 

interval. This behaviour is a consequence of the preservation of the porous structure of the sorbent 

upon cycling (Valverde et al., 2015). The MgO fraction, although unreactive towards CO2, exhibits 
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a high Tammann temperature (Kierzkowska et al., 2013) and less sintering occurs. Its intrinsic 

resistance to sintering makes calcined dolomite an ideal sorbent for acid gas removal in combustion 

chamber in the first place (as presented in section 2.4) and a potential CO2 sorbent. In the present 

study, it has not been possible to collect solid residues derived from the reaction between Depurcal 

and acid gases in WtE plants employing the furnace sorbent injection of this material. Speculatively 

speaking, RCC derived from Depurcal could offer quite different characteristics than the RCC 

derived from commercial lime tested in Figure 9.2b: namely, a lower CO2 uptake capacity and a 

higher cyclic stability. Depending on the convenience of the trade-off, Depurcal-derived RCC could 

be more promising sorbents than lime-derived RCC.  

This very preliminary screening of the CO2 capture potential of Ca-based sorbents and residues 

related to acid gas treatment had the objective to highlight the possible integration between the acid 

gas removal and the carbonate looping processes. Similarly to cement plants where limestone could 

be used first as CO2 sorbent and then as feedstock (Dean et al., 2011), medium-to-large waste-to-

energy plants, emitting up to 10
3
 t CO2/day (ISWA, 2012), could host a dual use of Ca-based 

sorbents: the residues of acid gas removal could be fed to a carbonate looping system, as 

exploratively proposed in this section, or, viceversa, the limestone particles elutriated from the 

carbonate looping unit after some cycling could be fed to the acid gas removal system to use their 

residual sorption capacity to bind HCl and SO2.   

 

Figure 9.2. a) Carbonation behaviour of RCC versus a reference natural limestone (Rheinkalk) in 60% CO2 

atmosphere at different temperatures; b) CO2 uptake by RCC compared to their fresh counterpart 

(commercial lime), a dolomitic sorbent (Depurcal) and reference limestone over 10 cycles. Carbonation at 

700 °C in 60% CO2 (20 min), calcination at 800 °C in N2 (10 min). Data are average of 3 runs. 
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9.3 Potentiality of MgO as a CO2 sorbent 
Recently, there has been a resurgence of research into magnesium oxide (MgO) as an alternative 

CO2 sorbent. When compared to other solid sorbents (Dunstan et al., 2016a), MgO offers a number 

of promising characteristics such as (i) a high theoretical CO2 uptake capacity of ~1.09 g CO2/ g 

MgO, (ii) low- to moderate-temperature operating conditions and, thus, energy savings for sorbent 

regeneration with respect to competitive metal oxide-based CO2 sorbents, like the aforementioned 

CaO, Li2ZrO3 (Ida and Jin, 2003) or Li4SiO4 (Qi et al., 2013), (iii) low purchase cost due to natural 

abundance, and (iv) inherently safe and environmentally benign nature.  

MgO captures CO2 via the formation of magnesium carbonate: 

𝑀𝑔𝑂(𝑠) + 𝐶𝑂2(𝑔) → 𝑀𝑔𝐶𝑂3(𝑠)        ∆𝐻298 𝐾
0 = −116.9 𝑘𝐽 𝑚𝑜𝑙−1 9.1 

Regeneration (i.e. the release of a pure stream of CO2) can be performed through the reverse 

(calcination) reaction, possible in pure CO2 atmosphere for temperatures > 400°C (Zarghami et al., 

2015). Figure 9.3 puts the equilibrium of reaction 9.1 in comparison to that of CaO carbonation.  

 

Figure 9.3. Equilibrium for the reactions between CaO and CO2 and between MgO and CO2. 

Thermodynamic data of compounds from JANAF Thermochemical Tables (NIST, 2016). 

However, in spite of its high theoretical capture capacity, the actual uptake of CO2 by pure MgO is 

remarkably lower, viz. < 4 wt.%. This has been attributed to the formation of a dense MgCO3 layer 

on the surface of the material, severely hindering further carbonation through mass transfer 

limitations (Gregg and Ramsay, 1970; Fagerlund et al., 2012). Therefore, research efforts have been 

aimed at overcoming this issue. Zarghami et al. (2015) found that increasing the system pressure to 

20 bar and adding 30 vol. % water vapor improved the apparent rate of carbonation, leading in turn 

to the almost complete conversion of the solid sorbent, while Ding et al. (2016) showed that even at 

atmospheric pressure MgO in presence of 70% relative humidity can reach CO2 uptakes four times 

higher than for the reference dry gas. The improved kinetics in presence of steam was explained by 

the formation of an adsorbed water vapor layer, partially dissolving magnesium and carbonate ions, 

and, thus, promoting access to MgO unreacted surface (Fagerlund et al., 2012).  
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9.4 Enhancement of MgO reactivity with molten salt promotion 
More recently, the promotion of MgO reactivity with alkali metal salts has been found to increase 

appreciably the CO2 uptake of MgO. Double salts synthesized by mixing MgO and an alkali metal 

carbonate (e.g., K2CO3 or Na2CO3) via precipitation or simple wet mixing methods showed a 

significantly higher sorption capacity than pure MgO, namely up to 8 wt.% for K-promoted MgO 

(Singh et al., 2009; Xiao et al., 2011) and 15 wt.% for N-promoted MgO (Zhang et al., 2013) over 1 

h carbonation at intermediate temperature. This was associated with the fact that the double salt 

carbonate, K2Mg(CO3)2 or Na2Mg(CO3)2, formed during exposure to CO2 has a lower free energy 

of formation than that of MgCO3, according to density functional theory calculations (Duan et al., 

2014).  

Similarly, the addition of alkali metal nitrates (e.g., LiNO3, NaNO3, KNO3) to MgO in order to form 

nitrate-coated sorbents via wet mixing or ball milling was shown to produce an even higher 

promoting effect on MgO reactivity. Vu et al. (2014) reported that MgO∙KNO3 composites 

synthesised via an aerogel method exhibited 13.9 wt. % CO2 uptake after 2 h carbonation at 325 °C. 

Zhang et al. (2014) and Prashar et al. (2016) produced NaNO3-promoted MgO respectively via ball 

milling and impregnation and stated up to 75% conversion of MgO at 330 °C. Harada et al. (2015) 

showed that MgO coated with a ternary mixture of Li, Na, K nitrates presented 43.6 wt. % CO2 

uptake after 4 h carbonation at 300 °C, satisfactory regenerability and faster kinetics than MgO 

coated with single nitrates. The promoting effect of NaNO3 was also reported for dolomite (Yang et 

al., 2013a), Na-Mg double salts (Zhang et al., 2016) and synthetic hydrotalcite (Kim et al., 2016).  

The enhancement of MgO carbonation in presence of alkali metal nitrates has been attributed to a 

facilitation in the contact between the solid and gaseous reactants. In the intermediate temperature 

regime (250-350 °C) adopted for the carbonation of nitrate-coated MgO sorbents, the alkali metal 

nitrates melt, forming a molten layer around MgO particles. It is speculated that either MgO (Zhang 

et al., 2014) or CO2 (Harada et al., 2015) might dissolve in the liquid, reacting to form [Mg
2+

 ··· 

CO3
2−

] ionic pairs which subsequently form solid MgCO3 upon saturation. This reaction mechanism 

might overcome the aforementioned constraints of the unpromoted gas-solid reaction, preventing 

the deposition of the rigid surface layers of unidentate carbonates typically formed when CO2 

adsorbs on pure MgO (Leon et al., 2010). A possible reaction scheme is sketched in Figure 1.  

However, the formulated hypotheses still fall short of experimental verifications and the exact 

mechanism behind the improved MgO carbonation in the presence of molten salts is yet to be 

elucidated. In addition, there is still lack of understanding regarding the marked differences in 

performance between various nitrate coating mixtures, even if all are in molten state at the tested 

operating conditions. The latest studies that couple the coating of MgO with alkali metal salts with 

synthesis techniques (e.g. sol-gel) yielding highly-porous MgO, are demonstrating CO2 uptakes as 

high as 0.69 g CO2/g sorbent (Harada and Hatton, 2015; Vu et al., 2016). Addressing the still 

obscure theoretical aspects governing the alkali metal salt promotion could help identifying viable 

routes to improve the already promising performance of MgO-based CO2 sorbents.   
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Figure 9.4. Proposed reaction scheme for MgO carbonation promoted by alkali metal nitrates. Redrawn 

from Harada et al. (2015).   

9.5 Synthesis protocol for alkali metal nitrate-coated MgO-based CO2 sorbents 
In order to produce alkali metal nitrate-coated MgO-based CO2 sorbents, a synthesis approach 

similar to the one described in Harada et al. (2015) was adopted. Samples of alkali metal nitrate-

coated MgO were prepared by calcination of a suspension of a MgO precursor after impregnation 

with different compositions of alkali metal salts via wet mixing. The following MgO precursor were 

tested: commercial basic magnesium carbonate (Mg5(CO3)4(OH)2·4H2O, Acros Organics), 

commercial magnesium hydroxide (Mg(OH)2, Sigma-Aldrich) and laboratory-synthesised 

magnesium carbonate (MgCO3). The latter was prepared by precipitation of a 1 M solution of 

magnesium nitrate (Mg(NO3)2, Sigma-Aldrich) in a 2 M solution of sodium carbonate (Na2CO3, 

Sigma-Aldrich), keeping a constant pH of 11 by dropwise addition of a 3 M solution of sodium 

hydroxide (NaOH, Fisher Chemicals). Alkali metal nitrates (LiNO3, NaNO3, KNO3) were 

purchased from Sigma-Aldrich.  

Typically, 6 g of magnesium carbonate (corresponding to ∼0.015 mol of Mg) and appropriate 

amounts of salts in order to reach a 10% molar ratio with respect to Mg were mixed in 15 mL of 

water and stirred magnetically for 1 h at room temperature. Table 9.1 reports the synthesised 

samples sorted by composition of the alkali metal salt coating mixture. Samples coated with molar 

ratios of salts ranging from 5 to 25% mol. were also prepared in order to assess the effect of a 

varying quantity of coatant, while calcium oxide (CaO) and aluminum oxide (Al2O3) were used as 

alternative supports. The obtained aqueous slurries were oven dried at 120 °C overnight, ground in 

a crucible and put in a muffle furnace for calcination in air (450 °C, 4 h, heating rate 3 °C/ min). 

The selected temperature allowed the calcination of both magnesium carbonate and hydroxide 

without triggering the decomposition of alkali metal nitrates, which is significant above 550 °C 

(Stern, 2000). Furthermore, lower calcination temperatures generate MgO with higher reactivity 

(Liu et al., 2007). 

MgCO3 product layer

CO2 CO2

CO2

…-Mg-O-Mg-O-…

O2-

Mg2+

CO3
2-

MgCO3

Molten nitrate

Initial stage of carbonation

MgO …-Mg-O-Mg-O-Mg-O-…

O2- CO3
2-

MgCO3

CO2

MgO

Late stage of carbonation

CO2

MgO

CO2

MgO

MgO

MgCO3

CO2

CO2

MgO

Calcination



143 
 

Table 9.1. Different mixtures of alkali metal nitrates used to coat the synthesised MgO-based sorbents.   

Coating mixture 

Composition  

(mol. fraction in the mixture) 
Melting point of 

the mixture (°C) 
a
 

LiNO3 NaNO3 KNO3 

LiNO3 1 - - 255 

NaNO3 - 1 - 308 

KNO3 - - 1 334 

(Li-K)NO3 

0.9 - 0.1 240 

0.7 - 0.7 200 

0.45 - 0.55 130
 b
 

0.3 - 0.7 200 

0.1 - 0.9 300 

(Na-K)NO3 

- 0.9 0.1 290 

- 0.8 0.2 270 

- 0.6 0.4 230 

- 0.46 0.54 221
 b
 

- 0.4 0.6 230 

- 0.25 0.75 270 

(Li-Na)NO3 

0.8 0.2 - 230 

0.6 0.4 - 200 

0.5 0.5 - 200 
b
 

0.4 0.6 - 220 

0.2 0.8 - 270 

(Li-Na-K)NO3 0.30 0.18 0.52 120
 b
 

a experimental m.p. of the mixture of pure alkali metal nitrates, according to Coscia et al. (2013) 

b eutectic point of the listed binary or ternary mixture (Janz et al., 1978; Bradshaw and Meeker, 

1990) 

 

Before proceeding with a systematic investigation of alkali metal nitrate promotion, nitrate-coated 

MgO samples were prepared starting from different Mg precursors in order to identify the most 

suitable synthesis route to allow a facile preparation of performing sorbents.  

CO2 uptake of the synthesised sorbents was measured by means of a thermogravimetric analyser 

(TGA, Mettler Toledo TGA/DSC 3+). A small amount (~ 10 mg) of sorbent was placed in an 

alumina crucible and precalcined at 450°C under a N2 flow of 80 mL/min for 30 min to evaporate 

adsorbed water and ensure all magnesium to be in the oxide state. Then, the sample was cooled 

down at the desired reaction temperature and the gas flow was switched to pure CO2. Repeated 

cycles of carbonation and regeneration were tested in the same way, performing CO2 adsorption at 

the desired reaction temperature for 1 h and desorption at 450 °C for 15 min.   

As shown in Figure 9.5 for samples coated with 10% mol. (Li-Na-K)NO3 eutectic mixture, the 

sorbent prepared by using basic magnesium carbonate as MgO precursor showed higher CO2 uptake 

than the one prepared from magnesium hydroxide. Accordingly, BET measurements stated a 

surface area of 25.3 m
2
/g for the sample prepared from basic magnesium carbonate and of 3.3 m

2
/g 

for the sample prepared from Mg(OH)2. This result confirms for MgO the observations of 

Borgwardt (1989) for CaO: carbonate precursors generate more porous and more performing oxide 

sorbents than hydroxide precursors. Conversely, the performance of sorbents prepared from 

commercial basic magnesium carbonate and from precipitated magnesium carbonate were 

comparable.  
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Presenting higher reactiv ity than samples prepared from Mg(OH)2 and a quicker synthesis 

protocol than samples prepared from precipitated MgCO3, samples synthesised from commercial 

basic magnesium carbonate were selected for the following analyses. Nonetheless, it is worth 

remarking that precipitated magnesium carbonates or hydroxy-carbonates could constitute a 

promising precursor for industrial MgO-based sorbents. Ongoing research (Glasser et al., 2016) is 

focusing on CO2 mineralization by means of accelerated carbonation in Mg-containing solutions, 

resulting in the precipitation of different carbonated Mg-based species (hydromagnesite, dypingite, 

nesquehonite). The possible utilization of the product of CO2 mineralization for further CO2 

abatement in CCS systems could be a viable process integration.    

 

Figure 9.5. CO2 uptake at 300 °C in pure CO2 atmosphere for (Li,Na,K)NO3-coated MgO samples 

synthesised from different Mg precursors: commercial basic magnesium carbonate, magnesium carbonate 

prepared via precipitation and commercial magnesium hydroxide.  

 

The crystallinity and composition of the synthesised sorbents were investigated using powder X-ray 

diffraction (Bruker, AXS D8 Advance). The X-ray diffractometer was operated at 40 mA and 40 

kV. Each sample was scanned within the 2θ range of 10–90°. The step size was 0.025° with a time 

duration per step of 0.8 s.  

Figure 9.6 shows the XRD patterns and the SEM images of a representative MgO sample coated 

with 10% mol. NaNO3 synthesised and tested according to the protocol. The as-prepared sample, 

dried after wet mixing of basic magnesium carbonate and sodium nitrate, exhibited the typical 

plate-like aspect of hydromagnesite (Hänchen et al., 2008), as confirmed by XRD identification. 

Upon calcination, the Mg phase was converted to MgO, in the form of porous particles composed 

by grains of diameter < 100 nm. The sample after reaction with CO2 at 300 °C, whose performance 

will be discussed in section 10.1, maintained the grain-like geometry and XRD analysis stated that 

carbonation resulted in the formation of MgCO3. After repeated carbonation and calcination cycles 

(see section 10.4), the sample in carbonated form maintained the XRD speciation, with less intense 

MgCO3 peaks due to loss of carbonation performance over cycling.   
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Figure 9.6. SEM images and XRD spectra of MgO coated with 10% mol. NaNO3: a) after wet mixing and 

drying (as prepared); b) after calcination at 450 °C (calcined); c) after 1 h carbonation at 300 °C in pure 

CO2 (carbonated, 1 cycle); d) after 10 cycles of 1 h carbonation at 300 °C and regeneration at 450 °C 

(carbonated, 10 cycles). 
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10 Analysis of the carbonation of MgO-based sorbents 
10.1 CO2 uptake 
The CO2 uptake of MgO samples coated with a 10% mol. amount of different alkali metal nitrates 

after 1 h carbonation in pure CO2 atmosphere at 300 °C – tested in TGA as reported in section 9.5 –  

is presented in Figure 10.1. While uncoated MgO mainly reacted in the first minutes quickly 

reaching a limit loading of 19 mg CO2/g sorbent due to diffusional limitations, the carbonation of 

MgO samples coated with nitrates was initially slower, presenting an induction time of ~2 min 

before a substantial acceleration, which allowed significantly higher CO2 uptakes. Among the 

sorbents coated with single nitrates, MgO-LiNO3 and MgO-NaNO3 captured 196 and 432 mg 

CO2/g sorbent respectively and only MgO-KNO3 did not show the onset of any accelerating 

carbonation regime, resulting in an uptake of 8 mg CO2/g sorbent after 1 h reaction. The effect of 

binary and ternary mixtures of nitrates at their eutectic composition on MgO carbonation is also 

reported in Figure 10.1. MgO incorporating the eutectic mixture of (Na,K)NO3 exhibited a slower 

kinetics than MgO-NaNO3, in agreement with the results of Harada et al. (2015), while the not 

previously tested eutectic mixtures of (Li,Na)NO3 and (Li,K)NO3 promoted the uptake of their 

respective sorbents up to 433 and 470 mg CO2/g sorbent. The eutectic ternary mixture of 

(Li,Na,K)NO3 obtained the highest CO2 uptake of 474 mg CO2/g sorbent.   

 

Figure 10.1. CO2 uptake at 300 °C, in pure CO2 atmosphere, by MgO sorbents coated with different alkali 

metal nitrates (LiNO3, NaNO3, KNO3) and their eutectic mixtures: 1) (Na,K)NO3; 2) (Li,Na)NO3; 3) 

(Li,K)NO3; 4) (Li,Na,K)NO3.   

Figure 10.2 depicts the effect of different nitrate-to-Mg ratios on the CO2 uptake of LiNO3- and 

NaNO3-coated MgO. For the former, the conversion of MgO to MgCO3 monotonically increased 

when the molar ratio of LiNO3 to Mg increased from 5 to 25%. For the latter, the optimal ratio 

resulted to be 10% mol., with MgO conversion slightly decreasing for higher ratios.  
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Figure 10.2. MgO conversion to MgCO3 after 1 h carbonation at 300 °C, in pure CO2 atmosphere, for 

samples coated with different amount of LiNO3 or NaNO3. Inset: results reported as function of volume of 

coatant per mole of Mg.    

Figure 10.3 reports the temperature-programmed carbonation of different nitrate-promoted MgO 

sorbents. The samples were exposed to a pure CO2 gas flow during heating up to 500 °C. Uncoated 

MgO started reacting immediately at the onset of the experiment (50 °C), reaching its maximum 

CO2 uptake at 150 °C and then slowly releasing the adsorbed CO2. The gradual slope of the CO2 

release profile can be attributed to the variety of species formed during carbonation of pure MgO, 

viz. from weakly physisorbed CO2 to chemisorbed monodentate carbonates and bulk MgCO3 (Hu et 

al., 2007; Downing et al., 2014).   

Conversely, for the MgO samples coated with alkali metal nitrates, carbonation was negligible at 

low temperature and accelerated abruptly only after a sort of threshold temperature, different from 

sample to sample, was reached. The behaviour appears to be consistently linked to the physical state 

of the coating: while at low temperature the nitrates are in the solid state, hindering carbonation by 

covering active MgO surface, their phase change upon approaching melting point allows a sudden 

acceleration in the kinetics of CO2 sorption.  

For MgO-LiNO3 (m.p.LiNO3 = 255 °C), the acceleration took place at 230 °C. For MgO-NaNO3 

(m.p.NaNO3 = 308 °C), the acceleration occurred at 275 °C. The fact that enhanced CO2 sorption 

started at temperatures below the bulk melting temperature of the coatant could be attributed to 

“premelting” phenomena, i.e. the gradual disordering of the surface of the compound with the 

formation of liquid films at solid interfaces (Yang et al., 2013a), as suggested by Zhang et al. 

(2016). For instance, NaNO3 is known to undergo a solid-state transition at 275 °C before melting 

(Janz et al., 1964), causing a structural rearrangement that could be related to the observed 

simultaneous acceleration of CO2 uptake.  

Lee et al. (2014) postulated that eutectic mixtures of nitrates could lower the effective carbonation 

temperature. Indeed, Figure 10.3 shows that, by lowering the melting point of the coating by 
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adopting a (Na,K)NO3 mixture (60% NaNO3, 40% KNO3, m.p. 230 °C), the onset of significant 

carbonation was moved down to 250 °C. With a ternary eutectic mixture of (Li,Na,K)NO3 (m.p. 

120 °C), the onset of carbonation was further shifted down to 180 °C.  

 

Figure 10.3. CO2 uptake of different 10% mol. alkali metal nitrate-coated MgO samples during heating in 

pure CO2 atmosphere at a ramp rate of 10 °C/min.    

In order to get a broader picture of molten salt-promoted CO2 capture, LiNO3 was used to coat 

different supports: an inert material (aluminum oxide, Al2O3) and another alkaline earth metal oxide 

(calcium oxide, CaO). Figure 10.4 reports the outcome of their exposure to pure CO2 at 300 °C for 

1 h. LiNO3-coated Al2O3 showed no CO2 uptake, demonstrating that the alkali metal nitrate coating 

mixture cannot undergo carbonation per se. In contrast, LiNO3-coated CaO captured significantly 

more CO2 than its uncoated counterpart. Indeed, pure CaO showed a limited CO2 uptake which 

quickly plateaued to a maximum value of 40 mg CO2/g sorbent, as a consequence of the transition 

from a kinetic-controlled to a product layer diffusion-controlled regime (Li et al., 2012), while 

LiNO3-coated CaO presented enhanced performance in both the kinetic and diffusion-controlled 

stages, resulting in a final CO2 uptake of 160 mg CO2/g sorbent. The LiNO3 coating greatly 

extended the CO2 uptake achieved in the kinetic stage and allowed significant residual reactivity in 

the diffusion-limited stage. The promotion could be linked with the dissolution of CO2 in the 

nitrates and related enhanced mobility of carbonate ions, since for T < 500 °C the carbonation of 

CaO is supposed to be governed by solid-state diffusion of CO3
2-

 (Bhatia and Perlmutter, 1983). 

Since the temperature needed to regenerate CaO (> 800 °C; Liu et al., 2012) is far higher than the 

decomposition temperature of LiNO3 and the other alkali metal nitrates, this finding has no 

implications for carbonate looping applications, but it is nonetheless a clear confirmation that the 

molten salt promotion is a general mechanism catalyzing the carbonation of alkaline earth metal 

oxides.  
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Figure 10.4. CO2 uptake at 300 °C, in pure CO2 atmosphere, by different supports (MgO, CaO, Al2O3) 

coated with 20% mol. LiNO3. 

 

Although all nitrates appears to promote reactivity thanks to their molten state, there is a wide 

variation of performance between different nitrates and nitrate mixtures. In order to explore more 

systematically the effect of coating mixture composition, MgO samples coated with 10% mol. 

binary mixtures of nitrates of different composition were tested at 300 °C in pure CO2. Figure 10.5 

reports the CO2 uptake for MgO incorporating (Na,K)NO3, (Li,Na)NO3 and (Li,K)NO3 mixtures 

along with their respective melting point as a function of mixture composition. Raman spectra of 

selected samples before and after carbonation are presented in Figure 10.6 in order to show their 

different composition. Raman scattering was analysed by means of a Raman spectrometer (Thermo 

Scientific, DXR) equipped with a Olympus confocal microscope. The excitation wavelength was 

455 nm and the laser power was set at 3 mW, collecting each spectra with 3 exposures of 5 s each. 
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Figure 10.5. CO2 uptake at 300 °C, in pure CO2 atmosphere, by MgO sorbents coated with 10% mol. binary 

mixtures of alkali metal nitrates as a function of composition of the coating mixture: a) (Na,K)NO3, b) 

(Li,Na)NO3, c) (Li,K)NO3. Source for the melting points of the mixtures: Coscia et al. (2013). 
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Figure 10.6. Ex situ Raman spectra of sorbents before (blue line) and after (orange line) carbonation at 300 

°C. MgO coated with: a) (Li,K)NO3, Li:K ratio = 30:70; b) (Li,K)NO3, Li:K ratio = 70:30; c) (Na,K)NO3, 

Na:K ratio = 25:75; d) (Na,K)NO3, Na:K ratio = 60:40. See Table 10.1 for attribution of vibrational modes 

to nitrates. 

Table 10.1. Vibrational frequencies of alkali metal nitrates in solid state (Ref: Janz and James, 1961). 

Salt (solid state) 
Raman frequencies (cm

-1
) 

1 3 4 

LiNO3 1086 1391 728 

NaNO3 1069 1387 728 

KNO3 1050 1343/1361 714 

 

For MgO-(Li,K)NO3 there was a notable alignment between CO2 uptake and m.p. of the coating 

mixture. For MgO-(Na,K)NO3 and MgO-(Li,Na)NO3, CO2 uptake and m.p. were misaligned, with 

higher uptakes shifted towards higher Na content in the mixture. The fact that, at the same 

carbonation temperature of 300 °C, mixtures with lower melting point generate a stronger 

promoting effect on MgO reactivity could be attributed to enhanced CO2 diffusion in the molten salt 

0 400 800 1200 1600

In
te

n
s
it
y
 c

o
u
n
ts

 (
a
.u

.)

Raman shift (cm-1)

MgO

MgCO3

LiNO3

KNO3





 

 









 

/ 

0 400 800 1200 1600

In
te

n
s
it
y
 c

o
u
n
ts

 (
a
.u

.)

Raman shift (cm-1)

MgO

MgCO3

LiNO3

KNO3





 

 









 

/ 

 

0 400 800 1200 1600

In
te

n
s
it
y
 c

o
u
n
ts

 (
a
.u

.)

Raman shift (cm-1)

MgO

MgCO3

NaNO3

KNO3







 









/ 

 

0 400 800 1200 1600

In
te

n
s
it
y
 c

o
u
n

ts
 (

a
.u

.)

Raman shift (cm-1)

MgO

MgCO3

NaNO3

KNO3







 









/ 

 

 

 

  

 















 

 



152 
 

layer, thanks to either higher solubility of CO2 or lower viscosity of the nitrates. As a matter of fact, 

for pure nitrates it is known that CO2 solubility (see Figure 10.7) increases with temperature 

(Novozhilov et al., 2007) and it is expected that nitrate mixtures that are further from their m.p. 

better dissolve carbon dioxide. Consolidated data about viscosity of nitrate mixtures are lacking (see 

Figure 10.8), but a similar trend with m.p. is expected. 

For mixtures containing NaNO3, melting point appears not to be the only predictor of performance. 

Since the best performing (Na,K)NO3- and (Li,Na)NO3-coated samples have a higher Na content 

than the eutectic composition, their marked CO2 uptake might result from a superimposition of 

effects between a physical promotion which is higher for a lower m.p. of the coating mixtures and 

an “affinity” promotion which is exclusive of NaNO3.    

 

Figure 10.7. Henry’s law constant for CO2 solubility in different nitrates as a function of temperature. 

References: 1) Paniccia and Zambonin (1973); 2) Sada et al. (1981); 3) Bratland and Krohn (1969). 

 

Figure 10.8. Viscosity of nitrates as a function of the inverse of temperature. References: Janz (1967) for the 

single nitrates and Bradshaw (2010) for the ternary mixture. 
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10.2 In situ analysis of carbonation: DRIFTS spectroscopy 
A series of in situ analyses were performed in order to get further insights on the mechanism of 

MgO carbonation promoted by alkali metal nitrates. Diffuse reflectance infrared spectroscopy 

(Nicolet, 6700 FT-IR) was employed to characterize the speciation of carbonates adsorbed on the 

MgO sorbents. In situ DRIFTS data were collected by placing the sample to be tested in a Harrick 

Praying Mantis cell. After heating up to 450 °C in N2 to guarantee the desorption of CO2 and H2O 

adsorbed at room temperature, the sample was exposed to a CO2 flow of 30 mL/min at different 

temperatures (100, 150, 200, 250, 275, 300, 350, 400 °C).  

Firstly, the carbonation of nitrate-coated MgO was examined by DRIFTS in order to detail the 

chemical speciation of the adsorbed CO2. Figure 10.9 presents the variations occurring in the 

DRIFTS spectra of MgO coated with 10% mol. NaNO3 after carbonation at 300 °C in CO2 and 

subsequent regeneration at 450 °C in N2. The spectrum before reaction was clearly populated by 

peaks ascribed to the nitrate ion (see for comparison the spectrum of inert Al2O3 coated with NaNO3 

in Figure 10.11), like the out-of-plane bending at 836 cm
-1

, the antisymmetric stretch at 1380 cm
-1

 

and the 1 + 4 mode at 1780 cm
-1

 (Beleke et al., 2003), slightly shifted and broadened by the 

deformation of molten NaNO3 compared to its low-temperature structure (Harris et al., 1990). After 

carbonation, the sample exhibited a broad adsorption band in the range 1400-1600 cm
-1

, attributable 

to the reflectance of carbonate ions (Genge et al., 1995), and the characteristic peaks of out-of-plane 

and in-plane bending of the carbonate ion at 879 cm
-1

 and 749 cm
-1

 (Du et al., 2010), which 

disappeared after calcination at 450 °C. The speciation of carbonate species can be compared to the 

one exhibited on a pure, uncoated MgO sample exposed to CO2 at the same temperature (Figure 

10.10): in this case, the bending modes of the carbonate ion were not observable, while adsorption 

peaks typical of monodentate carbonates (Phillips and Fujimoto, 1992) emerged at 1526 and 1420 

cm
-1

.   

 

Figure 10.9. In situ DRIFTS spectra of MgO coated with 10% mol. NaNO3 before, during and after 

carbonation in pure CO2 atmosphere at 300 °C.  
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Figure 10.10. In situ DRIFTS spectra of pure, uncoated MgO before, during and after carbonation in pure 

CO2 atmosphere at 300 °C. 

 

 

Figure 10.11. In situ DRIFTS spectra of Al2O3 coated with 20% mol. NaNO3 before, during and after 

carbonation in pure CO2 atmosphere at 300 °C. 
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Samples coated with mixtures of nitrates (viz. the (Na,K)NO3- and (Li,Na,K)NO3-coated MgO 

sorbents in Figure 10.3) were also analyzed in situ, by collecting their DRIFTS spectra during 

heating up in CO2 atmosphere in order to reproduce the conditions of TGA runs in Figure 10.3. As 

shown in Figure 10.12, the temperature at which peaks related to the carbonate ion emerged were in 

agreement with the thermogravimetric data.  

A close-up on the low frequency region of the infrared spectra allowed pinpointing a subtle change 

in a peak ascribed to the nitrate ion. At temperatures higher than 275 °C, for both the tested 

samples, the frequency at 836 cm
-1

, attributable to the out-of-plane bending of the nitrate ion (Stein, 

2016), was gradually shifted to 825 cm
-1

. This variation is characteristic of the phase transition of 

NaNO3 from ordered to disordered calcite (Harris et al., 1990). The presence of a feature typical of 

NaNO3 in the spectra of both (Li,Na,K)NO3-MgO and (Na,K)NO3-MgO might reveal that the (Na-

K)NO3 coating still retains modes related to pure NaNO3. Actually, even a pure (Na,K)NO3 melt 

can exhibit vibrational bands proper of Na-rich or K-rich regons slightly beyond the melting point 

of the mixture (Berg and Kerridge, 2004) and similar inhomogeneities are reasonably expected to 

be more persistent in the complex environment of a (Na,K)NO3 mixture permeating voids and 

interstitial spaces of porous MgO particles. In terms of CO2 uptake performance, this might 

translate in the superimposition of promoting effects deriving from the mixture and from NaNO3, as 

postulated in section 10.1 as a possible explanation for the trends in Figure 10.5a and Figure 10.5b.    

 

Figure 10.12. In situ DRIFTS spectra of MgO coated with a) 10% mol. (Na,K)NO3 (Na:K ratio = 60:40), b) 

10% mol. (Li,Na,K)NO3 (eutectic composition) during heating in pure CO2 atmosphere at a ramp rate of 10 

°C/min.    

10.3 In situ analysis of carbonation: synchrotron-based XRD/PDF analysis 
In order to clarify if the reaction mechanism involved in molten salt promotion implies the 

formation of different intermediate species depending on the salt used in the coating, two MgO 

samples coated respectively with 20% mol. LiNO3 and NaNO3 were also analyzed in synchrotron-

based total scattering in situ experiments. In situ total scattering experiments aimed at 

characterizing the local structure of sorbents during CO2 sorption were performed at the ID31 

beamline of the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). The 

synthesised nitrate-coated MgO sorbents were placed in a capillary quartz reactor heated up to the 
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required temperature by hot-air blowing. Samples were heated up to 450 °C under a N2 flow of 5 

mL/min to desorb H2O and CO2 possibly adsorbed at room temperature and then brought to the 

reaction temperature of 300 °C and kept for 60 min under a CO2 flow of 5 mL/min. In addition to 

Bragg scattering (required for XRD analysis), diffuse scattering was also collected, in order to 

examine the local, short-range structure of samples. Diffraction data were converted to radial 

atomic pair distribution function (PDF) by means of the PDFgetX3 software (Juhás et al., 2013).  

XRD patterns (Figure 10.13) were collected for the samples at room temperature, after heating up to 

450 °C in N2 and during carbonation at 300 °C in CO2. At room temperature, the MgO-LiNO3 

sample showed also peaks related to Mg(OH)2, since LiNO3 is a highly deliquescent salt (Albayrak 

et al., 2014) and tends to attract moisture triggering hydration of the underlying MgO. Upon 

heating, peaks related to the nitrates disappeared because of melting and during carbonation MgCO3 

peaks emerged, while the intensity of MgO peaks diminished.  

 

Figure 10.13. XRD spectra of MgO coated with a) 20% mol. NaNO3, b) 20% mol. LiNO3 collected: 1) at 

room temperature, 2) after heating up to 450 °C in N2, 3) after 5 min carbonation at 300 °C in CO2, 4) after 

60 min carbonation at 300 °C in CO2.   

PDFs for the same samples before and during carbonation were generated from the X-ray total 

scattering data and put in comparison with theoretical PDFs for the MgO and MgCO3 phases in 

Figure 10.14.  

Focusing of the shorter radial range, the main peaks for both MgO-LiNO3 and MgO-NaNO3 before 

reaction were related to the interatomic distances of 2.1 Å, ascribed to the Mg-O bond, and 3.0 Å, 

attributable to the (100)-inclined edge of the octahedral MgO geometry (Effenberger et al., 1981). 

During carbonation, the peaks attributable to MgO shrinked, while concurrently the signal increased 

for distances related to the theoretical PDF of MgCO3 (e.g., 4.0 Å and 5.6 Å). This behaviour is 

similar to the results observed by Dunstan et al. (2016b) in their pioneering PDF analysis of CaO 

carbonation.  

MgO-LiNO3 and MgO-NaNO3 showed similar matches to the theoretical PDFs of MgO and 

MgCO3, differing only for the extent of carbonation (higher for the LiNO3-coated sample, in 

agreement with Figure 10.2). No differing intermediate species were identified, thus suggesting that 

the reaction proceeds with the same mechanism when different nitrates are involved.  
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Figure 10.14. Comparison of the experimental X-ray PDFs for MgO coated with a) 20% mol. NaNO3, b) 

20% mol. LiNO3 with the calculated PDFs of MgO and MgCO3. Experimental data were collected before 

and during carbonation at 300 °C in CO2. 
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10.4 Performance of MgO-based sorbents over repeated carbonation/calcination cycles 
The stability of the CO2 uptake of nitrate-coated MgO samples was tested over 10 cycles of 

carbonation at 300 °C in CO2 and subsequent regeneration at 450 °C in N2, as reported in Figure 

10.15. NaNO3-coated MgO showed a marked deterioration of performance in the first 3 cycles , in 

agreement with the findings of Zhang et al. (2014) and Prashar et al. (2016). In contrast, the CO2 

uptake of samples coated with (Li,Na,K)NO3 and LiNO3 exhibited a constant decline over cycles, 

resulting in the respective values of 353 and 73 mg CO2/g sorbent at the 10
th

 carbonation. The 

marked difference in cyclic stability among sorbents could be due to the fact that, while LiNO3 and 

(Li,Na,K)NO3 were in molten state during the entire experiment, NaNO3 during carbonation at 300 

°C was at a temperature slightly lower than its bulk melting point (308 °C).  

 

Figure 10.15. CO2 uptake by different 10% mol. alkali metal nitrate-coated MgO sorbents over 10 cycles of 

carbonation (300 °C, 100% CO2) and calcination (450 °C, 100% N2).  

The best performing sample, coated with (Li,Na,K)NO3, was also tested under lower partial 

pressures of CO2 (Figure 10.16a). Although the performance for 50 vol. % CO2 in the gas stream 

was comparable to the uptake obtained in pure CO2, further lowering CO2 volumetric fraction to 

20% resulted in a sharp decrease in performance (average CO2 uptake over 10 cycles of 101 mg 

CO2/g sorbent). The uptake in 20% CO2 gas stream was additionally tested by varying the operating 

conditions, as shown in Figure 10.16b: the studied variations were a slightly lower temperature and 

the presence of steam provided by a water bubbler at room temperature installed before the inlet of 

the TGA. By lowering the reaction temperature to 275 °C, the average CO2 uptake more than 

doubled, setting at 243 mg CO2/g sorbent. This phenomenon, reported also by Harada and Hatton 

(2015) for a sol-gel prepared metal nitrate/nitrite coated MgO sorbent, was probably due to a 

thermodynamic effect: distancing from the turnover temperature for MgO carbonation (i.e. the 

temperature at which the equilibrium of the reaction in presence of 100% CO2 at 1 bar shifts 

towards calcination) resulted in an increased driving force for reaction.  
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Figure 10.16. CO2 uptake by 10% mol. (Li,Na,K)NO3-coated over 10 cycles of carbonation and calcination: 

a) varying CO2 concentration during carbonation at 300 °C; b) varying temperature and steam presence 

during carbonation in 20% CO2 atmosphere. Calcination at 450 °C in N2. 

 

10.5 Indications for further research in MgO-based sorbents 
The investigation of the carbonation performance of the different nitrate-promoted MgO sorbents 

allowed to draw some preliminary considerations for the potential full-scale use of these materials 

in CCS systems. First, TGA runs in realistic gas conditions (Figure 10.16) highlighted the steep 

dependency of CO2 uptake by MgO on CO2 partial pressure in the gas. This implies that MgO-

based sorbents could perform better in pre-combustion (e.g., syngas upgrading) than in post-

combustion environments. While CO2 concentration in a typical flue gas exiting from a combustion 

chamber ranges from 8 vol. % for waste-to-energy plants (BREF WI, 2006) to 15 vol. % for coal-

fired power plants (Dieter et al., 2014), the syngas produced in coal gasification can contain up to 

35 vol. % CO2 (Boon et al., 2016). Furthermore, syngas is conventionally fed to water gas shift 

(WGS) reactors in which H2O and CO are catalytically converted to H2 and CO2. Coupling WGS 

with CO2 capture allows the purification of the generated H2 stream while shifting reaction 

equilibrium on the product side, by continuously removing CO2. This sorption-enhanced WGS 

process, firstly proposed by Hufton et al. (1999) with the use of K-promoted hydrotalcites as CO2 

sorbents, could effectively make use of nitrate-promoted MgO sorbents, since 250-400°C is an 

operating range compatible with both WGS and MgO carbonation (Abbasi et al., 2014).  

Secondly, the analysis of MgO sorbents coated with different alkali metal nitrate formulations 

evidenced that eutectic mixtures of nitrates can produce higher CO2 uptakes (Figure 10.3) and 

improved regenerability (Figure 10.15) than coatings with a single nitrate, NaNO3 or LiNO3. In 

addition, the lower melting point of eutectic mixtures enables a wider operability range in terms of 

carbonation temperatures: while NaNO3-coated MgO starts showing significant carbonation only 

for T > 275°C, MgO coated with an eutectic (Na-K)NO3 can be carbonated at T as low as 240 °C. 

This is noteworthy for industrial application for at least two reasons: 

i) while coated MgO sorbents show their highest CO2 uptake in pure CO2 atmosphere at T 

> 300 °C, when CO2 partial pressure is lowered to 15 vol. % CO2 uptake increases as 

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11

C
O

2
u
p
ta

k
e
 (

g
/g

 o
f 

s
o
rb

e
n
t)

Cycles

50% CO2

20% CO2

100% CO2

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11

C
O

2
u

p
ta

k
e

 (
g

/g
 o

f 
s
o

rb
e
n

t)

Cycles

275 °C, steam
300 °C, dry gas
275°C, dry gas
300 °C, steam

a b 



160 
 

temperature decreases (Figure 13), actually favouring sorbents active at lower 

temperatures (i.e., coatings having lower melting points).  

ii) a wider operating temperature window guarantees against loss in performance due to the 

inhomogeneous temperature distribution it can be expected in a carbonator vessel 

(Dieter et al., 2015).  

  



161 
 

References (Part III) 

Abbasi, E., Hassanzadeh, A., Zarghami, S., Arastoopour, H., Abbasian, J., 2014. Regenerable MgO-based 

sorbent for high temperature CO2 removal from syngas: 3. CO2 capture and sorbent enhanced water gas 

shift reaction. Fuel 137, 260-268. 

Albayrak, C., Barim, G., Dag, O., 2014. Effect of hygroscopicity of the metal salt on the formation and air 

stability of lyotropic liquid crystalline mesophases in hydrated salt–surfactant systems. Journal of Colloid 

and Interface Science 433, 26-33. 

Baciocchi, R., Costa, G., Di Bartolomeo, E., Polettini, A., Pomi, R., 2009. The effects of accelerated 

carbonation on CO2 uptake and metal release from incineration APC residues. Waste Management 29, 

2994-3003. 

Beleke, A.B., Mizuhata, M., Deki, S., 2003. Diffuse reflectance FT-IR spectroscopic study of interactions of 

α-Al2O3/molten NaNO3 coexisting systems. Physical Chemistry Chemical Physics 5, 2089-2095. 

Berg, R.W., Kerridge, D.H., 2004. The NaNO3/KNO3 system: the position of the solidus and subsolidus. 

Dalton Transactions 15, 2224-2229. 

Bhatia, S.K., Perlmutter, D.D., 1983. Effect of the product layer on the kinetics of the CO2-lime reaction. 

AIChE Journal 29 (1), 79-86.  

Blamey, J., Anthony, E.J., Wang, J., Fennell, P.S., 2010. The calcium looping cycle for large-scale CO2 

capture. Progress in Energy and Combustion Science 36 (2), 260-279.  

Bogush, A., Stegemann, J.A., Wood, I., Roy, A., 2015. Element composition and mineralogical 

characterisation of air pollution control residue from UK energy-from-waste facilities. Waste Management 

36, 119-129. 

Borgwardt, R.H., 1989. Sintering of nascent calcium oxide. Chemical Engineering Science 44, 53-60. 

Bradshaw, R.W., Meeker, D.E., 1990. High-temperature stability of ternary nitrate molten salts for solar 

thermal energy systems. Solar Energy Materials 21, 51-60.  

BREF WI, 2006. Reference Document on the Best Available Techniques for Waste Incineration. < 

Broda, M., Müller, C.R., 2012. Synthesis of highly efficient, Ca-based, Al2O3-stabilized, carbon gel-

templated CO2 sorbents. Advanced Materials 24 (22), 3059-3064. 

Broda, M., Müller, C.R., 2014. Sol-gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents. Fuel 127, 94-100. 

Chin, T., Yan, R., Liang, D.T., Tay, J.H., 2005. Hydrated lime reaction with HCl under simulated flue gas 

conditions. Industrial and Engineering Chemistry Research 44, 3742-3748.  

Choi, S., Drese, J.H., Jones, C.W., 2009. Adsorbent Materials for Carbon Dioxide Capture from Large 

Anthropogenic Point Sources. ChemSusChem 2 (9), 796-854. 

Coscia, K., Elliott, T., Mohapatra, S., Oztekin, A., Neti, S., 2013. Binary and Ternary Nitrate Solar Heat 

Transfer Fluids. Journal of Solar Energy Engineering - Transactions of the ASME 135 (2), 021011.  

Dean, C.C., Blamey, J., Florin, N.H., Al-Jeboori, M.J., Fennell, P.S., 2011. The calcium looping cycle for 

CO2 capture from power generation, cement manufacture and hydrogen production. Chemical Engineering 

Research and Design 89, 836-855. 

Dieter, H., Bidwe, A.R., Varela-Duelli, G., Charitos, A., Hawthorne, C., Scheffknecht, G., 2014. 

Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of 

Stuttgart. Fuel 127, 23-37.  



162 
 

Dieter, H., Bidwe, A.R., Scheffknecht, G., 2015. Pilot plant experience with calcium looping. In: Calcium 

and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture, Eds. Fennell, 

P., Anthony, E., Woodhead Publishing,  Cambridge (UK), 171-194. 

Ding, Y.-D., Song, G., Liao, Q., Zhu, X., Chen, R., 2016. Bench scale study of CO2 adsorption performance 

of MgO in the presence of water vapor. Energy 112, 101-110.  

Downing, C.A., Sokol, A.A., Catlow, C.R.A., 2014. The reactivity of CO2 on the MgO(100) surface. 

Physical Chemistry Chemical Physics 16, 184-195. 

Du, H., Williams, C.T., Ebner, A.D., Ritter, J.A., 2010. In Situ FTIR Spectroscopic Analysis of Carbonate 

Transformations during Adsorption and Desorption of CO2 in K-Promoted HTlc. Chemistry of Materials 22, 

3519-3526.  

Duan, Y., Zhang, K., Li, X.S., King, D.L., Li, B., Zhao, L., Xiao, Y., 2014. ab initio Thermodynamic Study 

of the CO2 Capture Properties of M2CO3 (M =Na, K)- and CaCO3-Promoted MgO Sorbents Towards 

Forming Double Salts. Aerosol and Air Quality Research 14, 470-479. 

Dunstan, M.T., Jain, A., Liu, W., Ong, S.P., Liu, T., Lee, J., Persson, K.A., Scott, S.A., Dennis, J.S., Grey, 

C.P., 2016a. Large scale computational screening and experimental discovery of novel materials for high 

temperature CO2 capture. Energy & Environmental Science 9, 1346-1360. 

Dunstan, M.T., Maugeri, S.A., Liu, W., Tucker, M.H., Taiwo, O.O., Gonzalez, B., Allan, P.K., Gaultois, 

M.W., Shearing, P.R., Keen, D.A., Phillips, A.E., Dove, M.T., Scott, S.A., Dennis, J.S., Grey, C.P., 2016b. 

In situ studies of materials for high temperature CO2 capture and storage. Faraday Discussions 192, 217-

240.  

Effenberger, H., Mereiter, K., Zemann, J., 1981. Crystal structure refinements of magnesite, calcite, 

rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of 

calcite type carbonates. Zeitschrift für Kristallographie 156, 233-243. 

Erans, M., Manovic, V., Anthony, E.J., 2016. Calcium looping sorbents for CO2 capture. Applied Energy 

180, 722-742. 

Fagerlund, J., Highfield, J., Zevenhoven, R., 2012. Kinetics studies on wet and dry gas–solid carbonation of 

MgO and Mg(OH)2 for CO2 sequestration. RSC Advances 2 (27), 10380-10393. 

Filitz, R., Kierzkowska, A.M., Broda, M., Müller, C.R., 2012. Highly efficient CO2 sorbents: Development of 

synthetic, calcium-rich dolomites. Environmental Science and Technology 46 (1), 559-565. 

Genge, M.J., Jones, A.P., Price, G.D., 1995. An infrared and Raman study of carbonate glasses: Implications 

for the structure of carbonatite magmas. Geochimica et Cosmochimica Acta 59 (5), 927-937.  

Glasser, F.P., Jauffret, G., Morrison, J., Galvez-Martos, J.-L., Patterson, N., Imbabi, M.S., 2016. 

Sequestering CO2 by Mineralization into Useful Nesquehonite-Based Products. Frontiers in Energy Research 

4 (3), 1-7.  

Grasa, G.S., Abanades, J.C., 2006. CO2 capture capacity of CaO in long series of carbonation/calcination 

cycles. Industrial and Engineering Chemistry Research 45, 8846-8851.  

Gregg, S., Ramsay, J., 1970. Adsorption of carbon dioxide by magnesia studied by use of infrared and 

isotherm measurements. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 2784-2787. 

Hänchen, M., Prigiobbe, V., Baciocchi, R., Mazzotti, M., 2008. Precipitation in the Mg-carbonate system—

effects of temperature and CO2 pressure. Chemical Engineering Science 63, 1012-1028. 



163 
 

Harada, T., Simeon, F., Hamad, E.Z., Hatton, T.A., 2015. Alkali Metal Nitrate-Promoted High-Capacity 

MgO Adsorbents for Regenerable CO2 Capture at Moderate Temperatures. Chemistry of Materials 27, 

1943-1949.  

Harada, T., Hatton, T.A., 2015. Colloidal Nanoclusters of MgO Coated with Alkali Metal Nitrates/Nitrites 

for Rapid, High Capacity CO2 Capture at Moderate Temperature. Chemistry of Materials 27, 8153-8161. 

Harris, M.J., Salje, E.K.H., Güttler, B.K., 1990. An infrared spectroscopic study of the internal modes of 

sodium nitrate: implications for the structural phase transition. Journal of Physics: Condensed Matter 2, 

5517-5527. 

Hu, J., Zhu, K., Chen, L., Kübel, C., Richards, R., 2007. MgO(111) Nanosheets with Unusual Surface 

Activity. Journal of Physical Chemistry C 111 (32), 12038-12044. 

Hufton, J.R., Mayorga, S., Sircar, S., 1999. Sorption-enhanced reaction process for hydrogen production. 

AIChE Journal 45 (2), 248-256.  

Ida, J.-I., Lin, Y.S., 2003. Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental 

Science and Technology 37 (9), 1999-2004.  

IEA, 2016. Key World Energy Statistics. International Energy Agency. 

<http://www.iea.org/publications/freepublications/publication/key-world-energy-statistics.html> (accessed: 

12/12/2016) 

IPCC, 2014. Fifth Assessment Report (AR5). Intergovernmental Panel on Climate Change. 

<http://www.ipcc.ch/report/ar5/> (accessed: 12/12/2016) 

ISWA, 2012. Waste-to-Energy – State-of-the-art report. 6
th
 edition, International Solid Waste Association. 

Janz, G.J., Allen, C.B., Downey, J.R., Tomkins, R.P.T., 1978. Physical Properties Data Compilations 

Relevant to Energy Storage – I. Molten Salts: Eutectic Data. Technical report, National Standard Reference 

Data System, USA. <http://www.nist.gov/sites/default/files/documents/srd/NSRDS-61_Part-1.pdf> 

(accessed: 12/12/2016) 

Janz, G.J., James, D.W., 1961. Raman Spectra and Ionic Interactions in Molten Nitrates. The Journal of 

Chemical Physics 35, 739-744. 

Janz, G.J., Kelly, F.J., Perano, J.L., 1964. Melting and Pre-Melting Phenomena in Alkali Metal Nitrates. 

Journal of Chemical and Engineering Data 9, 133-136.  

Juhás, P., Davis, T., Farrow, C.L., Billinge, S.J.L., 2013.  PDFgetX3: A rapid and highly automatable 

program for processing powder diffraction data into total scattering pair distribution functions. Journal of 

Applied Crystallography 46, 560-566. 

Kierzkowska, A.M., Pacciani, R., Müller, C.R., 2013. CaO-Based CO2 Sorbents: From Fundamentals to the 

Development of New, Highly Effective Materials. ChemSusChem 6 (7), 1130-1148.  

Kim, S., Jeon, S.G., Lee, K.B., 2016. High-Temperature CO2 Sorption on Hydrotalcite Having a High Mg/Al 

Molar Ratio. ACS Applied Materials & Interfaces 8, 5763-5767. 

Lafuente, B., Downs, R.T., Yang, H., Stone, N., 2015. The power of databases: the RRUFF project. In: 

Highlights in Mineralogical Crystallography, Eds. Armbruster, T., Danisi, R.M., De Gruyter, Berlin 

(Germany), 1-30. 

Lee, H.J., Kim, J.H., Kim, J.W., Cho, S.J., 2014. Structure Transformation of Na-Mg Based Salts for CO2 

Capture and Storage at High Temperature Probed with Variable Temperature X-ray Powder Diffraction. 

Energy Procedia 63, 253-265. 



164 
 

Leon, M., Diaz, E., Bennici, S., Vega, A., Ordonez, S., Auroux, A., 2010. Adsorption of CO2 on 

Hydrotalcite-Derived Mixed Oxides: Sorption Mechanisms and Consequences for Adsorption Irreversibility. 

Industrial & Engineering Chemistry Research 49 (8), 3663-3671. 

Li, Z.S., Fang, F., Tang, X., Cai, N., 2012. Effect of Temperature on the Carbonation Reaction of CaO with 

CO2. Energy & Fuels 26, 2473-2482. 

Liu, B., Thomas, P.S., Ray, A.S., Guerbois, J.P., 2007. A TG analysis of the effect of calcination conditions 

on the properties of reactive magnesia. Journal of Thermal Analysis and Calorimetry 88 (1), 145-149. 

Liu, W., An, H., Qin, C., Yin, J., Wang, G., Feng, B., Xu, M., 2012. Performance Enhancement of Calcium 

Oxide Sorbents for Cyclic CO2 Capture—A Review. Energy & Fuels 26, 2751-2767. 

Lu, H., Reddy, E.P., Smirniotis, P.G., 2006. Calcium Oxide Based Sorbents for Capture of Carbon Dioxide 

at High Temperatures. Industrial and Engineering Chemistry Research 45 (11), 3944-3949.  

MacDowall, N., Florin, N., Buchard, A., Hallett, J., Galindo, A., Jackson, G., Adjiman, C.S., Williams, C.K., 

Shah, N., Fennell, P., 2010. An overview of CO2 capture technologies. Energy & Environmental Science 3, 

1645-1669.  

Manovic, V., Anthony, E.J., 2007. Steam Reactivation of Spent CaO-Based Sorbent for Multiple CO2 

Capture Cycles. Environmental Science and Technology 41 (4), 1420-1425. 

Manovic, V., Anthony, E.J., 2008. Thermal Activation of CaO-Based Sorbent and Self-Reactivation during 

CO2 Capture Looping Cycles. Environmental Science and Technology 42 (11), 4170-4174. 

Manovic, V., Charland, J.P., Blamey, J., Fennell, P.S., Lu, D.Y., Anthony, E.J., 2009. Influence of 

calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles. Fuel 88, 1893-

1900. 

Martinez, A., Lara, Y., Lisbona, P., Romeo, L.M., 2012. Energy penalty reduction in the calcium looping 

cycle. International Journal of Greenhouse Gas Control 7, 74-81.  

McKinsey & Company, 2008. Carbon Capture & Storage: Assessing the Economics. Technical report. < 
http://assets.wwf.ch/downloads/mckinsey2008.pdf> (accessed: 12/12/2016)  

Naeem, M.A., Armutlulu, A., Broda, M., Lebedev, D, Müller, C.R., 2016. The development of effective CaO-

based CO2 sorbents via a sacrificial templating technique. Faraday Discussions 192, 85-95.  

Nelson, T.O., Coleman, L.J.I., Green, D.A., Gupta, R.P., 2009. The Dry Carbonate Process: Carbon dioxide 

recovery from power plant flue gas. Energy Procedia 1, 1305-1311.  

Novozhilov, A.L., Bamburov, V.G., Fedotova, N.N., 2007. Solubility of Carbon Dioxide in Molten Alkali-

Metal Nitrates. Russian Journal of Inorganic Chemistry 52 (11), 1679-1681. 

Philipp, R., Fujimoto, K., 1992. FTIR Spectroscopic Study of CO2 Adsorption/Desorption on MgO/CaO 

Catalysts. Journal of Physical Chemistry 96 (22), 9035-9038. 

Prashar, A.K., Seo, H., Choi, W.C., Kang, N.Y., Park, S., Kim, K., Min, D.Y., Kim, H.M., Park, Y.K., 2016. 

Factors Affecting the Rate of CO2 Absorption after Partial Desorption in NaNO3‑Promoted MgO. Energy & 

Fuels 30, 3298-3305. 

Prigiobbe, V., A. Polettini, Baciocchi, R., 2009. Gas–solid carbonation kinetics of Air Pollution Control 

residues for CO2 storage. Chemical Engineering Journal 148, 270-278. 

Qi, Z., Daying, H., Yang, L., Qian, Y., Zibin, Z., 2013. Analysis of CO2 sorption/desorption kinetic 

behaviors and reaction mechanisms on Li4SiO4. AIChE Journal 59 (3), 901-911.  



165 
 

Scribbs Institution of Oceanography, 2016. The Keeling Curve. < 

http://scripps.ucsd.edu/programs/keelingcurve/> (accessed: 12/12/2016) 

Singh, R., Ram Reddy, M.K., Wilson, S., Joshi, K., Diniz da Costa, J.C., Webley, P., 2009. High 

temperature materials for CO2 capture. Energy Procedia 1, 623-630.   

Stern, K.H., 2000. High Temperature Properties and Thermal Decomposition of Inorganic Salts with 

Oxyanions. CRC Press, Boca Raton, FL (USA).  

Stein, S.E., 2016. IR and Mass Spectra. In: NIST Chemistry WebBook, NIST Standard Reference Database 

Number 69, Eds. P. J. Linstrom and W. G. Mallard, National Institute of Standards and Technology, 

Gaithersburg, MD (USA). http://webbook.nist.gov (accessed: 12/12/2016). 

Tian, S., Jiang, J., 2012. Sequestration of flue gas CO2 by direct gas-solid carbonation of air pollution 

control system residues. Environmental Science and Technology 46 (24), 13545-13551. 

Tian, S., Jiang, J., Hosseini, D., Kierzkowska, A.M., Imtiaz, Q., Broda, M., Müller, C.R., 2015. Development 

of a Steel-Slag-Based, Iron-Functionalized Sorbent for an Autothermal Carbon Dioxide Capture Process. 

ChemSusChem 8 (22), 3839-3846. 

Valverde, J.M., Sanchez-Jimenez, P.E., Perez-Maqueda, L.A., 2015. Ca-looping for postcombustion CO2 

capture: a comparative analysis on the performances of dolomite and limestone. Applied Energy 138, 202-

215. 

Vu, A.-T., Park, Y., Jeon, P.R., Lee, C.-H., 2014. Mesoporous MgO sorbent promoted with KNO3 for CO2 

capture at intermediate temperatures. Chemical Engineering Journal 258, 254-264. 

Vu, A.-T., Ho, K., Jin, S., Lee, C.-H., 2016. Double sodium salt-promoted mesoporous MgO sorbent with 

high CO2 sorption capacity at intermediate temperatures under dry and wet conditions. Chemical 

Engineering Journal 291, 161-173.  

Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O’Hare, D., Zhong, Z., 2014. Recent 

advances in solid sorbents for CO2 capture and new development trends. Energy & Environmental Science 

7, 3478-3518.  

Wu, S.F., Beum, T.H., Yang, J.I., Kim, J.N., 2007. Properties of Ca-based CO2 sorbent using Ca(OH)2 as 

precursor. Industrial and Engineering Chemistry Research 46, 7896-7899.  

Xiao, G., Singh, R., Chaffee, A., Webley, P., 2011. Advanced adsorbents based on MgO and K2CO3 for 

capture of CO2 at elevated temperatures. International Journal of Greenhouse Gas Control 5, 634-639. 

Xu, K., 1999. Raman evidence for the congruently melting compound KLi(NO3)2 in the LiNO3–KNO3 system. 

Journal of Physics and Chemistry of Solids 60, 5-11. 

Yang, X., Zhao, L., Xiao, Y., 2013a. Effect of NaNO3 on MgO−CaCO3 Absorbent for CO2 Capture at Warm 

Temperature. Energy & Fuels 27, 7645-7653. 

Yang, Y., Asta, M., Laird, B.B., 2013b. Solid-Liquid Interfacial Premelting. Physical Review Letters 110, 

96−102. 

Zarghami, S., Hassanzadeh, A., Arastoopour, H., Abbasian, J., 2015. Effect of Steam on the Reactivity of 

MgO-Based Sorbents in Precombustion CO2 Capture Processes. Industrial & Engineering Chemistry 

Research 54 (36), 8860-8866.  

Zhang, K., Li, X.S., Duan, Y., King, D.L., Singh, P., Li, L., 2013. Roles of double salt formation and NaNO3 

in Na2CO3-promoted MgO absorbent for intermediate temperature CO2 removal. International Journal of 

Greenhouse Gas Control 12, 351-358.  



166 
 

Zhang, K., Li, X.S., Li, W.-Z., Rohatgi, A., Duan, Y., Singh, P., Li, L., King, D.L., 2014. Phase Transfer-

Catalyzed Fast CO2 Absorption by MgO-Based Absorbents with High Cycling Capacity. Advanced Materials 

Interfaces 1, 140030.  

Zhang, K., Li, X.S., Chen, H., Singh, P., King, D.L., 2016. Molten Salt Promoting Effect in Double Salt CO2 

Absorbents. The Journal of Physical Chemistry C 120, 1089-1096.  

  



167 
 

Conclusions 

The comprehensive investigation of dry processes for acid gas removal and CO2 capture performed 

in the present PhD study addressed both fundamental and operating aspects and contributed to cast 

light on issues ranging from gas-solid reaction mechanism to techno-economic comparison of full-

scale system configurations.   

The thorough analysis of the state-of-the-art on end-of-pipe technologies for HCl, SO2 and CO2 

sequestration presented in Part I allowed to identify a handful of key issues which are common to 

both the industry-ready acid gas removal systems and the developing sorbent-based CO2 capture 

technologies: namely, the intrinsic limitations of gas-solid reactions such as incomplete conversion 

and vulnerability to sintering of the sorbent.  

With reference to acid gas removal in the waste-to-energy industry, Part II proposed different 

approaches to the modelling of gas-solid reactions between solid sorbents (calcium hydroxide and 

sodium bicarbonate), which can constitute the theoretical basis for process optimisation, a way to 

overcome – or, at least, mitigate – the inherent shortcomings of solid sorbents for flue gas cleaning. 

A fundamental model, based on the integration of a conventional grain model with a crystallisation 

and fracture model to take into account the inhibition of the reaction caused by the product layer, 

was developed for the description of the reaction process between HCl and solid sorbent particles of 

Ca(OH)2, which accomplishes for a saturation effect that leads to a temperature-dependent ultimate 

conversion yield much lower that the equilibrium conversion. The model, validated against 

literature and experimental data, represents a step forward to interpret and predict the overall rate of 

gas-solid reactions in dry acid gas removal processes, laying the foundations for a broader 

modelling approach which should also take into account competitive reactions and promoting effect 

of humidity. In parallel, analysis of full-scale dry treatment systems was conducted by means of 

economic and environmental assessment relying on an empirical operational model for process 

simulation. The adopted methodology allowed to identify the optimal operating configuration of 

two-stage dry acid gas removal systems and to compare the performance of single stage and two-

stage systems in a wide range of process specifications (inlet waste composition, emission limit 

value at stack, varying unit costs for reactant purchase and residue disposal, varying indirect 

environmental impacts), thus resulting in a robust demonstration of the advantages associated with 

multistage acid gas treatment, if properly operated.   

With reference to the reaction between MgO and CO2, a promising route for carbon capture 

processes, Part III explored the possibility to overcome the inherent limitation of the gas-solid 

reaction by synthesis approach. Carbonation of pure MgO is severely hindered by mass transfer 

limitations, since the growth of a carbonate shell covering the unreacted MgO particles prevents 

molar conversions higher than 3-4%. Incorporating alkali metal nitrates in the sorbent was found to 

dramatically increase the total CO2 uptake up to values of 40-50 wt. % by altering the way the 

product layer grows. Different alkali metal nitrates and their mixtures were systematically tested as 

coating for MgO-based sorbents, identifying a relationship between carbonation performance of 

nitrate-coated MgO-based sorbents and melting point of the coating mixture. In situ analyses such 

as diffuse reflectance IR spectroscopy and X-ray total scattering provided a first attempt at 

observing the mechanisms of molten salt-mediated carbonation.  

Generally speaking, the study of gas-solid reactions in two different, albeit comparable flue gas 

cleaning contexts suggests that the practical knowledge and operational experience historically 
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developed in the acid gas removal sector can be usefully exported to the developing CO2 capture 

sector, whereas new ideas coming out in the latter could be adapted and experimented in the former.  

Suggestions for future work 

The work carried out in the present PhD project opens clear pathways for follow-up studies.  

As for the modelling of dry acid gas treatment in WtE plants, the phenomenological model of 

chapter 6 is a significant step towards a physically-based description of the acid gas removal 

process. A follow-up of the experimental campaign presented in chapter 5, exploring competitive 

sorption of HCl and SO2 in both dry and wet atmosphere, could provide the necessary basis for 

model validation in a wider framework, which would be preparatory for the modelling of full-scale 

systems. The simplified operational model presented in chapter 7 proved to be a useful tool for 

process optimisation, but requires plant-specific calibration to give reliable results. Training the 

operational model on the results of the phenomenological model could lead to linking its empirical 

parameters to the actual physical and chemical variables involved in the process, eventually 

emancipating the operational model from the need of site-specific tuning.  

The enhancement of MgO reactivity towards CO2 as mediated by molten salts was found to be 

promising, but the promising results obtained in TGA environment need to be verified in more 

realistic gas conditions (lower CO2 inlet concentration and presence of steam) and configuration 

(fluidised bed operation). Then, the best formulation for the alkali metal coating should be selected 

on the basis of a complete techno-economic assessment. Furthermore, since the promoting effect 

provided by molten salt resulted active also for Ca-based sorbent, it would be interesting to test the 

performance of nitrate-coated CaO in HCl/SO2 removal and assess if sorbent modification could 

mitigate the incomplete sorbent conversion issue also in this context.  

Lastly, section 9.2 in the thesis proposed, although only preliminarily, a possible route for 

valorising the solid residues from acid gas removal as CO2 sorbents. The integration between the 

acid gas removal process and the carbonate looping scheme for CO2 capture could be explored in 

both directions, testing both the use of acid gas treatment residues in CO2 capture and exhaust CO2 

sorbents in acid gas removal. 
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