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Introduction

In past years, improvements in the computational speed of computers and the avail-

ability of large datasets have further fostered the research in forecasting analysis

for financial time series. This thesis contributes to the empirical literature on fi-

nancial forecasting by addressing issues related to the problem of improving models

performance by exploiting larger information sets.

The first paper investigates the distribution of high frequency financial returns,

with special emphasis on the seasonality. With the availability of detailed informa-

tion on trades and quotes, due to the implementation of electronic trading systems,

intraday data has become a major pole of interest for researchers and financial

agents that practice intraday trading. Within the day there are significant varia-

tions in asset prices, which imply different evaluations of the return’s distribution

through the day, these variations are partly deterministic and due to the intraday

seasonality. Intraday value at risk evaluations therefore depend on the time of the

day. If an intraday trader does not take this seasonality into account in her risk

estimations, she will underestimate the expected loss at the opening and closing

and overestimate it at noon. I propose a quantile regression approach (Koenker

and Basset, 1978) to model the distribution of high frequency financial returns and

to forecast intraday value at risk. This choice is motivated by several reasons. First

of all, not only the volatility of high frequency financial returns presents seasonal

movements, but also the skewness and kurtosis. Moreover, quantile regression does

not assume the existence of any moment, is distribution free and robust to the pres-

ence of outliers or jumps. Using 15 minutes quote midpoints of three stocks traded
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at the Spanish stock exchange from January 2001 to December 2003, I show that

indeed the conditional probability distribution depends on the time of the day.

Results, in terms of quantiles, permit straightforward intraday risk evaluations,

such as value at risk. I show how the intraday value at risk at 2.5%, 1% and 0.5%

confidence levels depend on the time of the day and I perform out-of-sample value

at risk forecasts. The tests performed on the out-of-sample value at risk forecasts

confirm that the model is able to provide good risk assessments and to outperform

standard approaches (Gaussian and Student-t GARCH).

In the second paper, I focus on the problem of forecasting yields including large

datasets of macroeconomic information. The interaction between financial markets

and macroeconomic conditions has raised the necessity of developing new financial

models which are able to efficiently summarize the macroeconomic information.

I propose an innovative way to exploit the linkages between macro variables and

yields. Rather than including in the yield curve model macroeconomic variables as

factors, I directly extract the latent factors from a data set composed of both yields

(seventeen series) and macro variables (one hundred-eighteen) which includes real

variables (sectoral industrial production, employment and hours worked), nominal

variables (consumer and producer price indices, wages, and money aggregates)

and asset prices (stock prices and exchange rates). To identify the yield curve

factors, I follow the approach based on the Nelson and Siegel (1987) curve imposing

restrictions only on the loadings relative to the yields, leaving the loadings relative

to macro variables free. This allows to use latent yield curve factors which are

enriched with information from macro variables, thereby keeping parsimony. I

estimate the model by maximum likelihood, combining EM algorithm and Kalman

filter, using monthly observations from January 1970 to December 2000. Results

show that out-of-sample forecast performances improves at mid and long horizons

(i.e. 6 and 12-months ahead) compared with the forecasts generated by a model

estimated using only the yields, a model augmented with three key macro variables,

a model augmented with the first three principal components extracted from the
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same dataset of macroeconomic variables and the random walk (which is a standard

benchmark for yield curve forecasting).

In the third paper, I test whether the Nelson and Siegel (1987) yield curve model

is arbitrage-free in a statistical sense. Fixed-income wealth managers in public

organizations, investment banks and central banks rely heavily on Nelson and Siegel

(1987) type of models to fit and forecast yield curves. Despite its empirical merits

and wide-spread use in the finance community, two theoretical concerns can be

raised against the Nelson-Siegel model. It is not theoretically arbitrage-free and it

falls outside the class of affine yield curve models. I estimate the Nelson and Siegel

factors and use them as exogenous factors in an essentially-affine term structure

model to estimate the implied arbitrage-free factor loadings. For the no-arbitrage

model with time-varying term premia, I use the two-step approach of Ang, Piazzesi

and Wei (2006). Using a non-parametric resampling technique and zero-coupon

yield curve data from the US market covering the period from January 1970 to

December 2000 and spanning 18 maturities from 1 month to 10 years, I find that

estimated parameters from the no-arbitrage model are not statistically different

from those obtained from the Nelson-Siegel model, at a 95 percent confidence level.

To corroborate this result, I show that the Nelson-Siegel model performs as well as

its no-arbitrage counterpart in an out-of-sample forecasting experiment. I therefore

conclude that the Nelson and Siegel yield curve model is compatible with arbitrage-

freeness.
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Chapter 1

A Quantile Regression Approach

to Intraday Seasonality

ABSTRACT: This paper investigates the distribution of high frequency financial

returns, with special emphasis on the seasonality. Using quantile regression, we

show the expansions and shrinks of the probability law through the day for three

years of 15 minutes sampled stock returns. Returns are more dispersed and less

concentrated around the median at the hours near the opening and closing. We

provide intraday value at risk assessments and we show how it adapts to changes of

dispersion over the day. The tests performed on the out-of-sample forecasts of the

VaR show that the model is able to give good risk assessments and it outperforms

Gaussian and Student’s t GARCH models.

Keywords: High frequency returns, Quantile Regression, Seasonality, Intraday

VaR.

JEL classification: C14, C22, C53, G10.

This chapter is adapted from the paper ”Intraday seasonality of returns distribu-

tion. A quantile regression approach and intraday VaR estimation” written with

David Veredas (Universite Libre de Bruxelles), CORE DP 2006/77.
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1.1 Introduction and Motivation

The interest of intraday seasonal patterns of the probability law of high frequency

financial returns rests on two facts. First, intraday data has become a major

pole of interest for researchers and financial agents that practice and analyze high

frequency trading. This practice and this analysis is used in an array of instruments

such as derivative pricing, efficient estimation of security’s beta, liquidity analysis,

responses to news arrivals, and any operation that involves risk measures. For

instance, high frequency hedge fund managers often open and close positions within

the day. For these managers intraday risk evaluation is an important tool to follow

the market and to build optimal intraday trading strategies.

Second, the analysis of risk is intimately related with the analysis of probabil-

ities and, therefore, the analysis of the conditional probability distribution. Asset

returns are realizations of a random variable and their behavior is fully described

by their conditional probability law. Any function, such as the density function,

describing this law conveys information about the likelihood that the next realiza-

tion will take a certain value. But within the day these odds depend partly on a

deterministic seasonal component that makes the probability density function to

expand or shrink as a function of the time of the day. This effect is illustrated in the

kernel densities for returns at different hours of the day shown in Figure 1.1. Data

are 15 minutes sampled returns for three stocks (large, medium and small caps)

traded at the Spanish stock exchange.1 The kernel density estimates for returns

at different times of the day vary significantly. Around lunch the density is more

peaked and the tails are thinner while it is more dispersed at the hours near the

opening and closing.

One of the most common risk-related intraday measures, that make use of the

probability law of returns, is value at risk.2 Value at risk evaluations depend very

1All over the analysis we use standardized returns for comparison purposes. Otherwise the
scale of the plots depends on the price, perturbing the interpretation.

2There are many other risk-measures that may be constructed from the intraday return’s
distribution, such as volatility or left extreme tail analysis. Alternatively we may, exploit the
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much on the time of the day. If an intraday trader does not take this seasonality

into account in her risk estimations, she will underestimate the expected loss at

the opening and closing and overestimate it at noon.

[FIGURE 1.1 AROUND HERE]

Moreover, not only volatility presents seasonal movements, but also skewness

and kurtosis. Table 1.1 shows descriptive statistics for the data grouped according

to the hour of the day. We report the sample mean, the sample standard deviation,

the skewness and the kurtosis indices for four different hours.3 These estimates are

proxies of the intraday behavior of the probability law. There is no evidence of

an intraday seasonal pattern in the sample mean of returns. However, there is a

very clear U-shaped pattern in the sample standard deviation, as found in many

former studies. In addition to this, the last two columns suggest the presence of

an intraday seasonality in the skewness and kurtosis indices. While the movements

in the skewness are small in magnitude, for the kurtosis index there are large

variations during the day. For all the stocks, there is a significant increase in the

thickness of the tails just after 15:00, right before the opening of the NYSE.

[TABLE 1.1 AROUND HERE]

The standard approach to analyze the conditional distribution function of in-

traday asset returns is to fit a model for the second moment as a function of two

components. One for the dynamics and another for the seasonality. If returns are

Gaussian, the second moment provides information enough to describe the con-

ditional probability law, as all the odd moments are zero and the even moments

intraday distribution to construct daily measures that can be used to compute daily volatilities
and daily value at risk. Yet, the way dynamic models for the density aggregate (e.g. aggregation
of quantile regression models as the one we present here) is still an open research question.

3The table displays the bias adjusted skewness index computed as
√

n(n−1)

n−2 m3/s3 where n
is the number of days (there is one observation for each day), m3 is the third sample central
moment and s2 is the sample standard deviation. And the bias adjusted kurtosis computed as

n−1
(n−1)(n−3)

(
(n + 1)m4

s4 − 3(n − 1)
)

where m4 is the fourth sample central moment.
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are functions of the second moment. This property of the Gaussian distribution

is very appealing but, at the same time, this distribution is not able to reproduce

the tail behavior present in the data. This is one of the reasons for which it is now

commonly accepted that asset returns are not normally distributed. More flexible

distributions, such as the Student’s t distribution, are needed. However, the draw-

back of these laws is that moments beyond the second are either zero -e.g. the

third moment- or functions of an invariant tail index -e.g. the fourth moment. For

instance, a GARCH model with a Student’s t distribution has constant kurtosis

given by a function of the estimated degrees of freedom, which is not consistent

with the data features. A possible solution to overcome this problem would be to fit

models for different moments, similarly to Hansen (1994) or Harvey and Siddique

(1999) among others, but it is not clear the functional forms that these models

should take and/or which regressors to use.

Since our interest is the analysis of the seasonality of the conditional distribu-

tion, a natural alternative is to model directly the conditional probability. Among

all the functions that characterize the conditional probability (density, cumula-

tive, characteristic, Laplace, hazard, etc), the conditional quantiles are the better

suited due to the existence of quantile regression, introduced by the seminal work

of Koenker and Basset (1978). Indeed quantile regression has a number of useful

features. First, quantile regression is one of the possible ways to characterize the

conditional probability law and, since there is a one to one relation with all the

other possible characterizations, it allows, indirectly, to analyze the effect of the

time of the day on the density function of asset returns. Second, quantile regression

does not assume the existence of any moment. In fact, it does not assume anything

about the moments. Often it happens that the tails of returns are so thick that

some important moments do not exist. For instance, Table 1.2 shows the estimated

parameters of a GARCH(1,1) with Student’s t distribution. The estimated degrees

of freedom for the three stocks are very low. So low that, according to the model,

kurtosis does not exist for any of them and variance does not even exist for one of

8



them.4

[TABLE 1.2 AROUND HERE]

Third, quantile regression is robust in the sense that the estimated coefficients

are not sensitive to outliers on the dependent variable. This is particularly useful

in the analysis of high frequency financial returns since often we do find outliers

or, al least, observations that are remarkably different to the rest of the process.

For instance, Figure 3.3 shows the actual returns for the three stocks we analyze.

For all there is at least one observation that is unusually high. Fourth, quantile

regression is a distribution free model. This is a very compelling feature. It does

not rely on any distribution specification but, ironically, it is an estimate of the

conditional probability distribution. As noted earlier, and shown in Table 1.2,

assuming a parametric distribution for intraday asset returns entails a series of

problems that sometimes, e.g. infinite variance, are difficult to overcome.

[FIGURE 3.3 AROUND HERE]

The use of quantile regression in asset returns is not new. One of the first to

use it are Engle and Manganelli (2004) who introduce the CAViaR (Conditional

Autoregressive Value at Risk). CAViaR extends the traditional linear quantile

regression to a nonlinear framework and develop a new test of model adequacy, the

Dynamic Quantile (DQ) test, using the criterion that each period the probability

of exceeding the VaR must be independent of all the past information. Gourieroux

and Jasiak (2005) introduce a new dynamic quantile model univariate series and

panel data as well as the Quantile Factor Model. Less related, Bouye and Salmon

(2003) use quantile regression in a copula context, that is they deduce the form

4We am here abusing a bit of the estimation results. According to the table, the variance does
exist for the stock ANA, as the estimated degrees of freedom is higher than two, though very
close to it. However, in the software we use -the GARCH toolbox of Matlab- the parameter is
constrained to be greater than two (as it often happens due to the way in which the Student’s
t distribution is written). Therefore, in some sense, it can be expected that the unbounded
estimator for the degrees of freedom to be below two.
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of the non linear conditional quantile regression implied by the copula. As for

intraday VaR, Giot (2005) quantify intraday VaR (15 and 30 minute returns) using

normal GARCH, Student GARCH, RiskMetrics and Log-ACD models. He shows

that Student GARCH model performs best. Last, Dionne et al. (2005) investigate

the use of tick-by-tick data for market risk measurement and propose an intraday

Value at Risk at different horizons based on irregularly time-spaced high-frequency

data by using an intraday Monte Carlo simulation.

Using quote midpoints of three stocks traded at the Spanish stock exchange

from January 2001 to December 2003, we show that indeed the conditional prob-

ability distribution depends on the time of the day. At the opening and closing

the density flattens and the tails become thicker, while in the middle of the day

returns concentrate around the median and the tails are thinner. Results are in-

tuitive, in the sense that they confirm the general perception that in the opening

and closing the probabilities of finding large price fluctuations are higher than at

lunch. Results, in terms of quantiles, permit straightforward intraday risk eval-

uations, such as value at risk. We show the intraday variation of the maximum

expected loss at 2.5%, 1% and 0.5% confidence levels. The maximum expected loss

is maximal at the opening and closing and minimal at lunch time. Failure rates

tests, based on Kupiec (1995) and Christoffersen (1998) confirm that the model is

able to provide good forecasts of the maximum expected loss. Comparison with

standard approaches (Gaussian and Student-t GARCH) show that the latter miss

the correct probabilities and that quantile regression outperforms them.

The structure of the paper is as follows. Section 1.2 introduces the data and

the market structure. Section 1.3 briefs quantile regression, the model that is used

for estimation and how to interpret results in term of density functions. Section

1.4 shows the estimation results, while Section 1.5 contains intraday value at risk

forecast and evaluation with the quantile regression model as well as its GARCH

competitors. Section 1.6 concludes.
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1.2 Market and Data

Data come from the Spanish Stock Exchange (SSE), the 9th world largest stock

exchange in terms of capitalization (the 3th among continental European markets),

and the 7th in terms of total value of share trading (the 3th in continental Europe)

according to the World Federation of Exchanges. The Spanish stock exchange

interconnection system is the electronic platform that connects, since 1995, the

four exchanges that compose the SSE (Barcelona, Bilbao, Madrid, and Valencia).

This system holds all the Spanish stocks that achieve pre-determined minimum

levels of trading frequency and liquidity. Every order submitted to the system is

electronically routed to a centralized limit order book (LOB) to proceed with its

immediate execution or storage. The matching of orders is, therefore, computerized.

The LOB on the brokers’ screens is updated each time there is a cancelation,

execution, modification or new submission. The SSE is organized as an order-

driven market with a daily continuous trading session from 9:00 a.m. to 5:30 p.m.

and two call auctions that determine the opening and closing prices.

During the continuous trading session, a trade takes place if an only if an order

hits the quotes. Pre-arranged trades are not allowed during the continuous session,

and price-improvements are impossible. There are no market makers and there is

no floor trading. The market is governed by a strict price-time priority rule, but an

order may lose priority if modified. Stocks are quoted in euros. The minimum price

variation (tick) equals 0.01 for prices below 50 and 0.05 for prices above 50. The

minimum trade size is one share. There are three basic types of orders: market,

limit, and market-to-limit. Market orders are executed against the best prices on

the opposite side of the book. Any excess that cannot be executed at the best bid

or ask quote is executed at less favorable prices by walking down (up) the book

until the order is fulfilled. Market-to-limit orders do not specify a limit price but

are limited to the best opposite-side price on the book at the time of entry. Any

excess that cannot be executed is converted into a limit order at that price. Finally,

limit orders are to be executed at the limit price or better. Any unexecuted part of
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the order is stored in front of the book at the limit price. By default, orders expire

at the end of the session.

The official market index of the SSE is the IBEX-35, which includes the 35

most liquid and active stocks of the exchange, weighted by market capitalization.

Its composition is regularly revised every semester. Our initial sample is formed

by the 35 index constituents from January 2001 to December 2003. The data used

in this study consists of 15 minutes sampled quote midpoints during 3 years, from

January 2001 to December 2003, of the 35 companies listed in the IBEX-35. For

each stock there are 34 intraday observations for a total of 25.430 observations.

For simplicity, we will report the analysis only on 3 of the 35 companies but the

results are valid for all of them and they are available upon request. Among the

35 companies of the IBEX-35, we report the results for Telefonica (TEF), Endesa

(ELE) and Aciona (ANA) that are, respectively, a big, medium and small company,

weighting, approximately, 20%, 6% and 0.8% in the index.

1.3 Quantile Regression as Density Regression

The probability law of a random variable rt can be characterized by means of

different functions. Some, like the density or the cumulative functions, are common.

Others, like the quantile function, the hazard function or the characteristic function

are less used. Yet, any can be written as a function of the others and hence the

knowledge of one implies the knowledge of the others. The quantile function is

particularly compelling in the context of conditional distributions. This is due to

the existence of a solid theory on quantile regression (see Koenker, 2005, for a

survey). Let Qrt(τ) be the τ -th quantile of rt. It is well known that

f(rt) =
∂

∂rt
F (rt) and

Qrt(τ) = F−1(τ) = inf{rt : F (rt) ≥ τ}, τ ∈ (0, 1),
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where f(rt) is the probability density function, pdf hereafter, and F (rt) is the

cumulative distribution function, cdf hereafter. Top row of Figure 1.3 shows this

idea. The density is symmetric around the mean, which implies that the quantiles

are also symmetric around the median (that equals the mean). The density is

centered at zero, and hence the quantile function at the median, Qrt(0.5), is zero.

One may question what happens with the pdf and the quantile function if there

is a location-scale shift. Second to fourth rows of Figure 1.3 illustrate these cases.

The second row shows a positive location shift in the density, which produces a

parallel upward shift of the quantile function. Or, inversely, if the quantile function

shifts, the density shifts the location. It is worth noticing that after the shift the

quantile function at the median, Qrt(0.5), is not zero anymore as the mean in the

pdf is not zero anymore either.

[FIGURE 1.3 AROUND HERE]

The third row shows the effect of a positive scale shift in the density. This shift

produces an expansion of the quantile function, or, inversely, an expansion of the

quantile function implies a positive scale shift in the density.5 The expansion in

the quantile function implies an increase in the dispersion of the quantiles. This

happens when we compare the probability law at, for instance, lunch and the clos-

ing, as already noted in Figure 1.1. By contrast, the dispersion of the observations

decreases if we compare the probability law the opening and at lunch which means

a contraction of the quantiles. Finally, last row illustrates a positive location shift

and a scale shift in the density, implying an asymmetric shift -a mix of shift and

expansion effects- in the quantile function. More complex shifts are possible. For

instance a one-sided expansion in the quantile implies an increase of the dispersion

in only one side of the density, creating skewness. Fat tails can be also created

in the density if the quantile are stretched only at the highest and lowest values,

say 1% and/or 99% quantiles. In sum, either a location shift or a scale shift, or

5These type of shifts are of particular relevance for this article.
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both, in the pdf has a clear representation in terms of quantiles, as both functions

contain the same information about the random variable of interest.

The understanding of the effect of these shifts and how the quantile and the

density function are affected by them is important in a conditional context. In

fact, the movements in the densities of Figure 1.1 are produced by the intraday

seasonality. It is therefore meaningful to model how the probability distribution

evolves conditional to the time of the day. Quantile regression (QR henceforth),

introduced by Koenker and Bassett (1978), is the appropriate tool. The problem

of finding the τ -th unconditional quantile can be expressed as the solution of a

simple linear optimization problem. Generalizing these results to the case in which

the quantiles are linear functions of some explanatory variables leads to the QR

method. The fundamental difference of QR with respect to mean regression is

that the latter considers the effect of the regressor on the mean of the regressand

while QR considers the effect of the regressor on the specific τ -th quantile of the

regressand. Hence, for a sufficiently narrow grid of τ , the QR method can fully

describe the quantile function. The basic QR model is

Qrt(τ |xt) = ω(τ) +

J∑
j=1

βj(τ)xjt, τ ∈ (0, 1), (1.3.1)

where the intercept ω(τ) and the slope parameters βj(τ) are functions of τ . While

in the mean regression model there is a unique parameter βj that describes the

effect that xjt has on the conditional mean of rt, in QR for each τ ∈ (0, 1) there is

a parameter βj(τ) that describes the effect of xjt on the τ -th conditional quantile

of rt. In other words, QR measures the effect of the regressors on each quantile

of the conditional distribution of the dependent variable. In this way it allows to

analyze how a shock in the regressors affects the different quantiles and hence the

pdf of returns.

The set of regressors xjt is divided in two parts. One accounts for the intraday

seasonality, the main object of interest, and the second controls for the dynamics.
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As for the seasonality, we model it using a Fourier series of order 3:

seasd(τ) =
3∑

j=1

αj(τ) cos

(
2πj

d

34

)
+ γj(τ) sin

(
2πj

d

34

)
, (1.3.2)

where 34 is the number of intraday time intervals (for the 15 minutes sampled

returns) and d denotes the time of the day in ordinal sense (i.e. the sequence 1, 2,

..., 34).6 Fourier series are convenient expressions for seasonality as the combination

of cosines and sines is flexible enough to capture virtually any seasonal pattern. The

cosine component of the first Fourier series reaches the maximum at the opening

and at the closing, the hours of the day in which the dispersion is higher, and has

the minimum at lunch time, the time of the day in which the dispersion is minimal.

We therefore expect this cosine term to capture most of the seasonal pattern.

To control for the dynamics, we follow Koenker (2005) choosing one lag of the

absolute value of returns: β(τ)|rt−1|. More lags or other functions of rt to capture

the dynamics as, for instance, square returns are possible. However, in a robust

setting, the choice of absolute values is more sensible.7 Putting all the elements

together the model we estimate is

Qrt(τ |d, |rt−1|) = ω(τ) + +β(τ)|rt−1| +

+

3∑
j=1

αj(τ) cos

(
2πj

d

D

)
+ γj(τ) sin

(
2πj

d

D

)
. (1.3.3)

Estimation has been implemented in GAUSS using a modified version of the

library Qreg.8 Parameters are estimated using the interior point method, as de-

scribed by Portnoy and Koenker (1997). The chosen grid of quantiles is (0.05,

6We tried higher orders of the Fourier series but results do not change substantially.
7We have also tried with more lags of absolute returns and results, available upon request,

don’t change qualitatively.
8Qreg, a GAUSS library for computing quantile regression, D. Jacomy, J. Messines and

T. Roncally (2000), Groupe de Recherche Operationelle, Credit Lyonnais, France: http :
//gro.creditlyonnais.fr/content/rd/homegauss.htm. All the codes have also been translated
into Matlab, using the function lp fnm of Daniel Morillo and Roger Koenker, translated from
Ox to Matlab by Paul Eilers 1999, modified by Roger Koenker 2000 and by Paul Eilers 2004.
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0.10,..., 0.95) and the limiting covariance matrix has been computed in GAUSS

using the procedure described in Appendix.

1.4 Estimation Results

Parameters in equation (1.3.3) depend on the quantile considered, τ . There are as

many parameters as quantiles times the number of explanatory variables plus those

in the intercept ω(τ). Because this number may become large, in our case is 168

per stock, we follow the literature, see for instance Koenker (2005), and we present

all the results graphically. This presentation nicely dovetails with Figure 1.3 as the

interpretation of density movements in terms of quantiles applies. Figure 1.4 shows

the estimated parameters of model (1.3.3) for TEF, ELE and ANA respectively.

Every point is an estimated parameter for a different quantile. We also plot the

5% point-wise confidence intervals.

Top left plots of each panel show the intercept parameters, ω̂(τ) while the

coefficients for past absolute returns, β̂(τ), are in the top right plots. For all the

stocks, the magnitude of the lagged value of the return is an important source of

variation. But it affects differently the different quantiles of the distribution. The

median is unaffected by a shock in |rt−1|. Following the logic of Figure 1.3, there is

no location shift and hence the median remains unchanged for any value of |rt−1|.
It changes however any quantile beyond and below 50%. For a given past absolute

return, the effect on the extreme quantiles is larger than for the quantiles near

the median. Exemplifying, if return at t − 1 was zero, the density, conditional to

the time of the day, remains unchanged. If, by contrast, at t − 1 there is a large

movement in returns, the density becomes more sparse around the median, that

remains unchanged, increasing the probabilities of finding a large price variation

the next period. If return at t − 1 is small, the density shrinks, decreasing the

probabilities of finding large price variations.

The remaining six plots show the estimated values of the parameters for the

Fourier series. The second line refers to the estimated parameters of the first
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Fourier series, the third one to the estimated parameters of the second Fourier

series and the last one to the third Fourier series. The coefficients for the cosine

terms, the alphas, are larger, for all stocks, than the sinus ones, the gammas. This

is due to the fact that the cosine series peak at the opening and the closing, the

times of the day at which trading activity is more intense and return dispersion is

bigger. None of the coefficients is different from zero for τ = 0.5, meaning that the

median is not affected by past observation nor the time of the day. In other words,

no profit strategies based on the time of the day are found. Consequently, since

also the estimated coefficient of |rt−1| for τ = 0.5 is zero, the conditional median

is equal to the unconditional one, that is zero. Figure 1.5 shows the estimated

seasonal component, ˆseasd(τ), computed as in (1.3.2). The plots read as follows.

Each line is the seasonal component for a specific hour of the day for different

quantiles. The estimated seasonal components displays different shapes within the

day and some conclusions can be drawn. First, the shape and the magnitude of

the seasonal component is fairly similar for all the stocks. In particular, there is

no seasonal behavior at the median. But there is beyond it and becomes more

remarkable as we approach the extreme quantiles. Second, the seasonal component

is clearly different at the opening and the closing, with values that are negative for

taus smaller than 0.5 and positive for taus bigger than 0.5. Third, the seasonal

component at 13:00 and 14:00 displays exactly the opposite behavior with respect

to the one at the opening and closing, but with a smaller magnitude.

To better see how the conditional distribution of returns moves though the day,

Figure 1.6 plots the conditional quantiles of the 15 minutes returns for different

hours of the day. Rewriting equation (1.3.3) conditional to a particular value of

past absolute return and on different hours of the day, we have

Qrt(τ |d, |rt−1|) = ω(τ) + β(τ)|rt−1| + seasd(τ).

The choice of the conditioning value of |rt−1| has a quantitative but not qualita-

tive effect. For a given τ , β(τ)|rt−1| is constant, while the term seasd(τ) changes
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according to the hour of the day (as shown in Figure 1.5). The only effect that

the chosen value of |rt−1| has is to shift all the conditional quantiles at the same

τ by the same amount. The figure reads as follows: the closer the line is to the

horizontal zero line, the more concentrated is the density around the median. And

the further it is, the more dispersed it is. The time of the day at which there is the

largest seasonal effect is at 17:00, the closure of the market, followed by the effect at

9:30, the opening. At these hours the conditional density becomes more dispersed.

In the opposite direction, for all the companies, are the seasonal effects at 13:00

and 14:00. They decrease (in absolute value) the conditional quantiles, decreasing

the dispersion. This effect can be associated to a reduced trading activity during

the lunch break.

1.5 Intraday Value at Risk

As shown in Section 1.3, there is a one to one relation among the quantile and den-

sity functions. This is particularly appealing in the construction of risk measures,

which are intimately related with the analysis of the tails of the density function.

Using the results of Figure 1.6 and equation (1.7.2) in the Appendix, we can com-

pute the conditional density at different quantiles. Figure 1.7 shows the tails of

these densities.9 Each point of the conditional density is derived from its relative

conditional quantile. As expected, the density mass at the extremes is way larger

around the opening and closing than around lunch. This seasonal tail behavior

has to be taken into account in the computation of intraday risk measures, such as

VaR.

Value at Risk was developed to provide a single number that could summarize

the information about the risk in a portfolio. Over the last ten years, this technique

has been increasingly used by banks and regulators all over the world as a way to

9A full picture of the density is possible but not relevant as the financial interest lies on the tails
and not around the median. And, moreover, it has been shown earlier that nothing interesting
happens around the median.

18



estimate possible losses related to the trading of financial assets, i.e. as a tool

designed to quantify and forecast market risk. In particular, the goal of VaR is

to assess the possible loss that can be incurred by a trader or bank, for a given

portfolio of assets, over a given time period and for a certain confidence level. The

time period and the confidence level are the two major parameters that should be

chosen in a way appropriate to the overall goal of risk measurement. When the

primary goal is to satisfy external regulatory requirements, such as bank capital

requirements of the Basel II Capital Accord, the confidence level is typically small,

1%, and the time horizon is long (usually a 10 day period). However for an internal

risk management model, used by a company to control the risk exposure, the typical

confidence level is even smaller and the time horizon shorter. In particular, for

active market participants such as high frequency traders, floor traders or market

makers, the time horizon of their returns is shorter and the corresponding trading

risk must be assessed on such short time intervals. Therefore a VaR model that

characterizes the market risk on an intraday basis is useful for market participants

(such as intraday traders and market makers) involved in frequent intraday trades.

The VaR at a confidence level of τ for a given portfolio is the loss at the τ

percent probability level, which can simply be defined as the τ empirical quantile

of the conditional distribution of returns:

Pr[rt < V aRt(τ |�t−1)] = τ ⇔ V aRt(τ |�t−1) = Qrt(τ |�t−1).

From an empirical point of view, the computation of the V aRt(τ |�t−1) of a port-

folio of assets requires the computation of the empirical quantile at level τ of the

distribution of the future returns of the portfolio given the information set avail-

able at time t − 1, �t−1. Engle and Manganelli (1999) introduced nonlinear QR

as a method for computing VaR. The originality of our model relies on two points:

the use of high frequency data to forecast VaR at intraday time horizon and the

use of the Fourier series to model the intraday seasonality of returns in a quantile

regression framework. Our model defines the information set available up to time
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t − 1, �t−1, as including the lagged absolute value of returns, |rt−1|, and the three

deterministic Fourier series, that are indexed by the time of the day d

V aRt(τ |d, |rt−1|) = Qrt(τ |d, |rt−1|).

The one step ahead out-of-sample VaR forecast is conducted using a rolling

window scheme, a method popular among practitioners since Fama and MacBeth

(1973) and Gonedes (1973). The use of rolling windows is justified by parame-

ter instability, which can distort the out-of-sample forecast. The window size is

adapted to the liquidity of the stock. For the most liquid stock, TEF, we use a

rolling window of 2000 observations, for ELE a window of 2500 observations and

for ANA the less liquid stock a bigger window of 3000 observations.10 This choice

is motivated by the fact that in the same time spam, there is a different number of

transactions. While for the most liquid stocks (like TEF) in 2000 observations of

15 minutes returns there is enough information due to the high number of transac-

tions, for the less liquid stocks (like ANA) this time interval is too short because it

includes a fewer number of transactions.11 This lead to 23.430, 22.930 and 22.430

one-step ahead forecasts for TEF, ELE and ANA respectively.

Figure 1.8 displays the last 500 observations of the 15 minutes sampled returns

for TEF, ELE and ANA with the relative VaR forecasts at the confidence levels of

2.5%, 1% and 0.5%.12 The estimated VaRs show clearly the effects of the two com-

ponents that we used to model the conditional quantiles. The seasonal component

is responsible of the deterministic daily oscillations, while the dynamic one is am-

plifying or reducing the oscillations to take into account the dispersion clustering.

Moreover, as the confidence level of the VaR decreases, the dynamic component

102500 observation of 15 minutes return correspond to 58 days (three months), while 2500
observation of 15 minutes observation cover a time span of 73 days (four months) and, finally,
3000 observations are equivalent to 88 days (five months).

11The choice of the optimal window, although relevant in this literature, is out of the scope of
this paper.

12These are reasonable confidence levels for intraday market risk evaluations as Basel threshold
is 1%.
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becomes more relevant.

At first sight, it looks that the estimated VaR for the three confidence levels

and for all the stocks are close enough to the data, i.e. we are not overestimating

the risk, and that the number of times that the realized retunrs are be below the

estimated VaR is not too big. As a check, we computed the failure rates. That is

the percentage of times that the observations are below the VaR. If the VaR is well

specified, then the empirical failure rates, denoted by f̂ , should be close enough

to the confidence level. Table 1.3 reports the empirical failure rates for the three

stocks and for the confidence levels of 2.5%, 1% and 0.5%. The values that are

in parenthesis refer to the confidence intervals computed according to the Kupiec

(1995) test. The null hypothesis of the test is that the empirical failure rate, f̂ , is

equal to the confidence level of the VaR, τ . The 5% confidence interval for τ is given

by f̂ ±1.96

√
f̂(1 − f̂)/N , where N is the total number of observations that we are

evaluating, that is 23.430, 22.930 and 22.430 for TEF, ELE and ANA respectively.

For all the stocks and all the confidence levels, the confidence interval contains

the theoretical confidence levels of 2.5%, 1% and 0.5% respectively, therefore we

do not reject the null hypothesis that the empirical failure rates are equal to the

theoretical ones for all the confidence levels of the VaR and for all the stocks.

A test that is equivalent the Kupiec’s is the likelihood ratio test of unconditional

coverage developed by Christoffersen (1998). This test is based on a hit variable,

that takes value 1 if there is a success, that is if the realized return is bigger than the

expected VaR, and 0 otherwise, and therefore distributed according to a binomial

distribution. The test is

LRuc = −2 log

(
(1 − τ)n0τn1

(1 − f̂)n0 f̂n1

)
∼ χ2

1,

where n0 is the number of failures and n1 the number of successes. The first panel

of Table 1.4 reports the values of the test with the relative p-values. The conclusion

are similar to Kupiec’s test. The model is able to predict well the VaR for all the

stocks and for all the confidence levels considered.
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However, a drawback of the Kupiec and the likelihood ratio test of Christoffersen

is that they just count the number of successes and of failures, testing only the

equality between the VaR violations and the confidence level. In a risk management

framework, it is also important that the VaR violations are not correlated in time.

The likelihood ratio test of independence, Christoffersen (1998), examines serial

independence of VaR estimates. As the previous likelihood ratio test, this test is

built starting from a hit variable that takes values according to

It =

⎧⎨⎩ 1, if rt > V aRt(τ |d, |rt−1|);
0, otherwise.

The likelihood ratio test of independence tests the null of independence against a

the alternative of a first order Markov process of the violations. Denoting with nij

the number of observation of I with value i followed by j, the likelihood ratio test

of independence can be expressed as

LRind = −2 log

(
(1 − f̂)n00+n10 f̂n01+n11

(1 − f̂01)n00 f̂n01
01 (1 − f̂11)n10 f̂n11

11

)
∼ χ2

1,

where f̂01 is the percentage of successes after a failure and f̂11 is the percentage of

successes after a success. The null of the test is that f̂01 = f̂11 = f̂ . Third panel

of Table 1.4 reports the value of the test with the relative p-values. The null of

independence of the violations is accepted for all the stocks and all the confidence

levels of the VaR. Finally, as a more powerful tool, we performed the joint likelihood

ratio test of independence and coverage. The Christoffersen’s likelihood ratio test

of conditional coverage

LRcc = LRuc + LRind ∼ χ2
2,

in which the null of the unconditional coverage is tested against the alternative of

the independence test. Bottom panel of Table 1.4 reports the results. For all the
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confidence levels, we do not reject the null of conditional coverage confirming that

the model is well specified. The tests results show the ability of the model to provide

good out-of-sample forecasts of the intraday VaR confirming the importance of well

specifying the intraday seasonality. This component, as shown in Figure 1.8, seems

to have a crucial role in the determination of the intraday VaR.

We compare the performance of the VaR using quantile regression with the

benchmark in risk modelling: GARCH type of models. To account for the intraday

seasonality in the variance, we follow a common used approach, see for example

Giot (2005), which is to seasonally adjust the return series:

r̃t =
rt√
φd

,

where φd is the deterministic intraday seasonal component. The latter is defined as

the expected volatility conditioned on the time of the day, where the expectation

is computed by averaging the squared raw returns for each time of the day. If r̃t

has no mean effects, a GARCH(1,1) can be written as

r̃t = εtht

h2
t = ω + αr̃2

t−1 + βh2
t−1

where ω > 0, α ≥ 0 and β ≥ 0 and εt is an i.i.d. sequence of random variables

following either a Gaussian N(0, 1) or a Student-t St(0, 1, ν). Once that we have

estimated the parameters, we compute the forecast of the variance of the desea-

sonalized returns and the intraday VaR for rt at a confidence level τ as

V aRt(τ |d, r̃t−1)G = zG
τ

√
ĥtφd (1.5.1)

V aRt(τ |d, r̃t−1)St = zSt
τ

√
ĥtφd

where zG
τ and zSt

τ denote the τ -th quantiles of a standard Gaussian and Student-

t distributions respectively, r̃t−1 is the set of past adjusted returns and ĥt is the

one-step ahead forecasted variance.
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Table 1.5 reports the estimation results for the two distributions. Notice that

these results refer to the standardized returns series, while in Table 1.2 we reported

the estimation results on raw data. These results confirm that there is a strong

seasonal component in the intraday return and that forgetting about that can be

misleading. Indeed, for all the deseasonalized returns, Table 1.5, the estimated

degrees of freedom of the Student t model are larger than the ones obtained on

the raw returns even if the increase for ANA seems to be marginal. Yet, both the

Gaussian and the Student-t models are close to be integrated. Table 1.6 reports

Kupiec test and the empirical failure rates the VaR forecast for the three stocks,

computed like in (1.5.1) and using the same rolling windows as for quantile regres-

sion. Both models fail to forecast correctly -for all the stocks and all the confidence

levels.13 With a Gaussian distribution failure rates are systematically bigger than

the theoretical ones while the GARCH(1,1) with a Student t distribution does the

opposite. This means that the Gaussian model underestimates the risk -assigns

too little mass to the tails of the distribution- and the Student t overestimates it

-assigns too much mass to the tails. This makes evident the advantage of using

a semiparametric method such as quantile regression that does not require any

assumption on the underlying distribution.

1.6 Conclusions

We investigate intraday seasonal patterns on the probability law of high frequency

financial returns. Within the day there are significant variations in asset prices,

which imply different evaluations of the tails of the return’s distribution through

the day. And these variations are partly deterministic and due to the intraday

seasonality. As returns are realizations of a random variable and as such their

behavior is fully described by their conditional probability law. To analyze the

intraday behavior of the probability law, we use quantile regression, where the

13We do not show results for the LR tests as the model already failed to pass the simple Kupiec
test. They are available under request.
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regressors are Fourier series that capture the time of the day and past absolute

returns.

Using quote midpoints of three stocks traded at the Spanish stock exchange

from January 2001 to December 2003, we show that indeed the conditional proba-

bility distribution depends on the time of the day. At the opening and closing the

density flattens and the tails become thicker, while in the middle of the day returns

concentrate around the median and the tails are thinner. Results are intuitive, in

the sense that they confirm the general perception that in the opening and closing

the probabilities of finding large price fluctuations are higher than at lunch. Re-

sults, in terms of quantiles, permit straightforward intraday risk evaluations, such

as value at risk. We show the intraday variation of the maximum expected loss at

2.5%, 1% and 0.5% confidence levels. The maxima expected losses are, as expected,

maximal at the opening and closing and minimal at lunch time. Moreover the test

performed on the out-of-sample forecasts of the value at risk show that the model

is able to provide good risk assessments contrary to the standard GARCH(1,1)

models.
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1.7 Appendix

In this appendix, we describe the estimation procedure that we followed for the

estimation of the asymptotic covariance matrix of the QR estimates. We follow

Koenker (2005). Consider the basic model presented in equation (1.3.1). The

asymptotic distribution of the QR estimator in a non-iid setting

√
T (β̂(τ) − β(τ)) → N(0, τ(1 − τ)H−1

T JT H−1
T )

where

JT (τ) = T−1

T∑
t=1

xtx
′
t

and

HT (τ) = lim
T→∞

T−1

n∑
t=1

xtx
′
tft(ξt(τ)) (1.7.1)

and ft(ξt(τ)) denotes the conditional density of the rt evaluated at the τ -th per-

cent conditional quantile. The asymptotic covariance among estimates at different

quantiles has blocks

Cov(
√

T (β̂(τt)−β(τt)),
√

T (β̂(τs)−β(τs))) = [τt∧τs−τtτs]HT (τt)
−1JT HT (τs)

−1

The conditional density ft(ξt(τ)) in (1.7.1) is estimated using the Hendricks and

Koenker (1992) sandwich form. This estimation procedure requires at first to

compute the optimal bandwidth for each τ , hT . To do it, we used the optimal

bandwidth suggested by Bofinger(1975)

hT = T 1/5

(
4.5φ4(Φ−1(τ))

(2Φ−1(τ)2 + 1)2

)1/5
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where T is the sample size, φ is the normal pdf and Φ−1 is the normal quantile

function, i.e. the inverse of the normal cdf. Last, we re-perform the QR estimation

for the grids τ − hn and τ + hn.

As showed in Figure 1.3, the cdf can be obtained inverting the quantile function

and, once that we have the cdf, we can recover the density function differentiating.

Following this intuition, Hendricks and Bofinger suggest to estimate the conditional

density function as

f̂t = max{0, 2hT/(x′
tβ̂(τ + hT ) − x′

tβ̂(τ − hT ) − ε)} (1.7.2)

where β̂(τ + hn) and β̂(τ − hn) are the estimated parameters at τ − hn and τ + hn

and ε is a small tolerance parameter that we fixed to 0.01 to avoid dividing by zero.
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Table 1.1: Descriptive statistics at different hours of the day

TEF
Mean S. Dev Skew Kurt

09:30 0.000 0.065 -0.283 7.053
12:00 0.002 0.035 -0.196 5.945
15:15 0.000 0.035 -0.274 7.296
17:15 -0.002 0.048 -0.559 6.062

ELE
Mean S. Dev Skew Kurt

09:30 -0.004 0.063 -0.076 6.512
12:00 0.001 0.039 0.353 9.017
15:15 -0.001 0.033 -1.075 12.684
17:15 0.002 0.051 0.183 6.066

ANA
Mean S. Dev Skew Kurt

09:30 -0.008 0.136 -0.604 8.077
12:00 0.005 0.080 -0.249 8.368
15:15 -0.003 0.084 -2.338 34.049
17:15 -0.002 0.111 0.253 6.290
The first column reports the time of the day to
which the statistics refer. The second displays
the sample mean of all the observation at the
selected time of the day. The third the sam-
ple standard deviation. The fourth the bias
corrected skewness and the last one shows the
bias adjusted kurtosis.
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Table 1.2: GARCH(1,1) estimates with Student-t distribution

ω α β ν

TEF 0.048 0.270 0.730 3.48
ELE 0.097 0.354 0.646 3.35
ANA 0.164 0.424 0.576 2.49
Student’s t GARCH(1,1) ht = ω +
αr2

t−1 + βht−1 estimates. ν stands for
degrees of freedom.

Table 1.3: Kupiec test on the VaR forecasts

VaR(2.5%) VaR(1%) VaR(0.5%)

TEF 2.37 (2.17 2.56) 1.00 (0.88 1.13) 0.54 (0.44 0.63)
ELE 2.33 (2.13 2.52) 1.04 (0.91 1.17) 0.58 (0.48 0.67)
ANA 2.54 (2.34 2.75) 1.06 (0.93 1.20) 0.58 (0.48 0.68)
Empirical failure rates of the VaR forecasts at the confidence levels of 2.5% 1%
and 0.5%. Confidence intervals in parenthesis and values are in percentage.
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Table 1.4: Christoffersen’s likelihood ratio test on the VaR forecasts

LRuc

VaR(2.5%) VaR(1%) VaR(0.5%)

TEF 1.68 (0.19) 0.00 (0.96) 0.66 (0.42)
ELE 2.81 (0.10) 0.41 (0.52) 2.52 (0.11)
ANA 0.16 (0.69) 0.83 (0.36) 2.72 (0.10)

LRind

VaR(2.5%) VaR(1%) VaR(0.5%)

TEF 1.06 (0.30) 0.15 (0.69) 1.38 (0.24)
ELE 0.96 (0.33) 1.96 (0.16) 1.38 (0.24)
ANA 0.50 (0.48) 1.26 (0.26) 0.06 (0.80)

LRcc

VaR(2.5%) VaR(1%) VaR(0.5%)

TEF 2.74 (0.25) 0.16 (0.92) 2.04 (0.36)
ELE 3.77 (0.15) 2.37 (0.31) 3.89 (0.14)
ANA 0.66 (0.72) 2.09 (0.35) 2.78 (0.25)
Christoffersen’s likelihood ratio test for the the VaR fore-
casts at the confidence levels of 2.5% 1% and 0.5%. The
first panel presents results for the Christoffersen’s likeli-
hood ratio test of unconditional coverage, LRuc with p-
values in parenthesis. The second panel presents results for
Christoffersen’s likelihood ratio test of independence, LRind

with p-values in parenthesis. Last panel presents results for
Christoffersen’s joint likelihood ratio test of coverage and
independence, LRcc with p-values in parenthesis.
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Table 1.5: GARCH(1,1) estimates of the standardized returns

Gaussian
ω α β

TEF 0.001 0.032 0.967
ELE 0.002 0.029 0.970
ANA 0.022 0.060 0.920

Student’s t
ω α β ν

TEF 0.001 0.035 0.965 6.018
ELE 0.008 0.062 0.934 4.681
ANA 0.125 0.266 0.734 2.501
GARCH(1,1) ht = ω + αr̃2

t−1 + βht−1 esti-
mates. ν stands for degrees of freedom.

Table 1.6: Kupiec test on the VaR forecasts

Gaussian
VaR(2.5%) VaR(1%) VaR(0.5%)

TEF 2.78 (2.57 2.99) 1.56 (1.40 1.72) 1.07 (0.94 1.20)
ELE 2.86 (2.64 3.07) 1.62 (1.46 1.79) 1.08 (0.95 1.22)
ANA 3.14 (2.91 3.37) 2.07 (1.88 2.25) 1.56 (1.39 1.72)

Student’s t
VaR(2.5%) VaR(1%) VaR(0.5%)

TEF 1.62 (1.46 1.78) 0.63 (0.53 0.73) 0.37 (0.29 0.44)
ELE 1.20 (1.06 1.34) 0.42 (0.34 0.50) 0.18 (0.13 0.24)
ANA 0.38 (0.30 0.46) 0.10 (0.06 0.14) 0.03 (0.01 0.05)
Empirical failure rates of the VaR forecasts using a GARCH(1,1) at the confidence
levels of 2.5% 1% and 0.5%. Confidence intervals in parenthesis and values are in
percentage.
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Figure 1.1: Kernel estimates at different hours of the day.
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Nonparametric density estimate of the 15 minutes returns at different hours of the day. For each
day, we included the observation at the selected hour, therefore each sample contains a number
of observation equal to the number of days. The estimate is based on a Gaussian kernel with
optimal bandwidth.
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Figure 1.2: 15 minutes returns
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Figure 1.3: Location and scale shifts in the pdf through the quantile function
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Top row shows the pdf, cdf and quantile function of a standardized normal. For the other three
rows, the continuous line indicates the pdf, cdf and quantile function of the standardized normal.
The dashed line in the second row refers to the pdf, cdf and quantile function of a normal with
mean 1 and variance 1. In the third row the dashed line indicates a normal with mean 0 and
variance 1.5 and in the last row a normal with mean 1 and variance 1.5.
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Figure 1.4: Estimated parameters
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The figure displays the estimated parameters of equation (1.3.3). The continuous line indicates the
estimated parameters for each τ quantile. The dashed one refers to the 5% point-wise confidence
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Figure 1.5: Seasonal component
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Figure 1.6: Seasonality in the quantiles
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Figure 1.7: Seasonality and the tails
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Figure 1.8: VaR
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Chapter 2

Forecasting the yield curve using

large macroeconomic information

ABSTRACT: This paper investigates whether macroeconomic indicators are help-

ful in forecasting the yield curve. We incorporate a large number of macroeconomic

predictors within the Nelson and Siegel (1987) model for the yield curve which can

be cast in a common factor model representation. Estimation is performed by

EM algorithm and Kalman filter using a data set composed by 17 yields and 118

macro variables. Results show that incorporating large macroeconomic informa-

tion improves the accuracy of out-of-sample yield forecasts at medium and long

horizons.

Keywords: Yield Curve, Factor Models, Forecasting, Large Cross-Sections, Quasi

Maximum Likelihood.

JEL classification: C33, C53, E43, E44.

This chapter is adapted from the working paper ”Forecasting the term structure

of interest rates using a large panel of macroeconomic data” with Domenico Gian-

none (ECB and Universite Libre de Bruxelles) and Michele Modugno (ECB and

Universite Libre de Bruxelles).
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2.1 Introduction

The interaction between the yield curve and macro variables is a clear phenomenon

manifested in the behavior of market agents and policy makers. On one hand,

market participants closely monitor macro data releases and try to asses their

impact in the yields, see for example Fleming and Remolona (1999) and Furfine

(2001). On the other one, central banks, in the standard view of the monetary

transmission mechanisms, react to current macroeconomic situation, stimulating

aggregate demand and controlling inflation by fixing the short term interest rates.

Following the expectation theory, long term interest rates depend on present and

future expected short term interest rates. This suggests that macro variables can

incorporate important information in order to forecast the behavior of market and

central bank practitioners, and thereby the evolution of the yield curve.

The term structure of interest rates is characterized by a high degree of correla-

tion among yields with different maturities. This collinearity can be explained by

few sources of co-movement. As a consequence, a parsimonious representation of

the yield curve can be obtained by modeling fewer factors than observed maturi-

ties. Accordingly, the two main approaches for yield curve modeling can be cast in

a factor model representation, which differ from each other for the restrictions im-

posed on the model parameters. The first approach, the Nelson and Siegel (1987)

model, is a parsimonious model based on the relation between the yields and their

corresponding maturities. This model is able to reproduce the historical stylized

facts concerning the average shape of the yield curve, the variety of shapes assumed

at different times and the strong persistence of yields. Moreover, Diebold and Li

(2006) reinterpret the Nelson and Siegel model as a dynamic three latent factors

model with restricted loadings and show that it is able to provide good forecasts

of the yield curve. The second approach, the no-arbitrage term structure models,

is characterized by restrictions on the factor loadings that rule out arbitrage op-

portunities. These models impose a structure on the factor loadings such that the

resulting yield curves, in the maturity dimension, are compatible with the time-
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series dynamics of the yield curve factors. This consistency between the dynamic

evolution of the yield curve factors, and hence the yields at different maturities, is

what ensures the absence of arbitrage opportunities and makes these models par-

ticularly useful for derivative pricing.1 However the imposition of the no-arbitrage

restrictions on the term structure models imply that the resulting model is clearly

not parsimonious and therefore not suitable for forecasting purposes.2 This is con-

firmed by Duffee (2002) who finds that this type of models forecasts the yield curve

poorly. Accordingly, given that the main focus of this paper is on forecasting of

the term structure of interest rates, we adopt the more parsimonious Nelson and

Siegel approach.

In the literature there has been a lot of interest in the relationship between

macroeconomic variables and the yield curve. In their seminal paper, Ang and

Piazzesi (2003) study the interactions between yields and macroeconomic variables

augmenting the standard no-arbitrage affine term structure model with two observ-

able macroeconomic factors, measuring inflation and real activity. The idea behind

this model is to use macroeconomic variables to capture the variability of the yields

not explained by the latent factors, improving the forecasting performance of the

model. Their main conclusion is that macroeconomic factors help in forecasting

the yield curve. Following this finding, several papers investigate the links between

the yield curve and macroeconomic variables, incorporating macro determinants as

factors, into multi factor no-arbitrage affine models. Among others Dai and Philip-

pon (2005), Dewachter and Lyrio (2006), Kozicki and Tinsley (2001), Wu (2006).

Mönch (2005) uses, as additional factors, principal components extracted from a

large macroeconomic data- set, instead of single macro variables.3 Rudebusch and

Wu (2004) and Hördhal, Tristani and Vestin (2006) develop a theoretical framework

which allows to identify the sources of co-movements by structural macroeconomic

1For more details about the no-arbitrage term structure models see Duffie and Kan (1996),
Litterman and Scheinkman (1991) and Dai and Singleton (2000).

2For a more detailed comparison between the Nelson and Siegel model and the no-arbitrage
term structure models see Chapter 3.

3A similar approach is used to forecast the excess bond returns in Ludvigson and Ng (2005).
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relations. On the other side, following the Nelson and Siegel approach, Diebold,

Rudebush and Aruoba (2006) introduce a yield curve model where, in addition to

the Nelson and Siegel latent factors, they include some observable macroeconomic

factors. They show that observable macroeconomic factors have strong effects on

the future yield curve and that there is evidence of reverse influence. Mönch (2006)

proposes to use principal components extracted from a large data set of macro eco-

nomic variables to augment the Nelson and Siegel latent factors. Favero, Niu and

Sala (2007) and De Pooter, Ravazzolo and Van Dijk (2007) investigate the impact

of macro variables on the forectast of yields. They provide an exhaustive compar-

ison of the existing yield curve models, with and without macro factors, and they

find that additional factors extracted from large macro dataset are important for

yield curve forecasting.

To summarize, the general idea behind the previous literature is to use macro

variables as extra factors to capture the co-movement among yields not explained by

the yield curve latent factors. One can raise three criticisms against this approach.

First, the idea behind factor models is parsimony. Augmenting the number of fac-

tors goes against this notion, specially if the three latent factors already explain

most of the variation of the yields. Moreover, these latent factors are frequently

identified as proxies of macro variables, therefore adding macro variables can be re-

dundant. Second, adding macro variables as factors has not been proven successful

at improving the out-of-sample performance of these models. This can be due to

the fact that the gain of exploiting a larger information set does not counterbalance

the loss in terms of lack of parsimony. Third, this approach allows to exploit only

a small set of macro variables. One could use principal components to summarize

the information content of a larger macro variables set, but in this way it would not

be possible to understand which macroeconomic variables are important in fitting

and forecasting the yield curve. Moreover, in the presence of a high correlation

among the principal components and the latent yields curve factors, there would

be a problem of parsimony.
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In this paper, we propose a model for forecasting the yield curve using parsimo-

niously a large amount of macroeconomic information. We suggest an innovative

way to exploit the linkages between macroeconomic variables and yields. Rather

than including macroeconomic variables as factors in the yield curve model, we di-

rectly extract the latent factors from a data set composed of both yields (seventeen

series) and macro variables (one hundred-eighteen). The macroeconomic variables

considered in the analysis include real variables (sectorial industrial production,

employment and hours worked), nominal variables (consumer and producer price

indices, wages, and money aggregates) and asset prices (stock prices and exchange

rates). To identify the yield curve factors, we impose the Nelson and Siegel restric-

tions on the loadings relative to the yields, leaving the loadings relative to macro

variables free. This allows to enrich the yield curve latent factors with the informa-

tion contained in the macroeconomic variables. This approach allows to preserve

parsimony and include a large amount of information at the same time, since it

is not necessary to augment the standard three latent factor models in order to

include the additional information coming from the macroeconomic variables. In-

deed, as shown by Diebold and Li (2006), the Nelson and Siegel factors are highly

correlated with some macro variables, in particular with measures of inflation and

industrial production. This means that the sources of co-movement for the yields

co-move with the rest of the economy. Accordingly, in the aim of the factor model

literature, extracting the latent factors from a panel of yields enriched with a large

amount of macroeconomic variables, allows us to better identify them. Moreover,

by looking at the loadings it is possible to discriminate which macro variables have

significant information content for each factor. Related to this work is Law (2006),

who extracts the latent factors, using a no arbitrage model, from twenty-four macro

series plus the yields. We differ from him in several aspects. First, we exploit a

broader quantity of information. Second, we perform an out of sample forecast

exercise. Third, we use the Nelson and Siegel approach.

We estimate the model by maximum likelihood combining EM algorithm and
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Kalman filter. Doz, Giannone and Reichlin (2006) show that this procedure makes

maximum likelihood estimation of factor models feasible for large cross sections,

in the sense that it delivers consistent estimates for large cross sections and large

sample sizes (for any relative size of the time span and cross sectional dimension).

Consistency is guaranteed even if the hypothesis of orthogonality and of absence

of serial correlation are violated for the idiosyncratic part. Moreover, this method-

ology allows us to impose the crucial restrictions on the loadings to identify the

factors.

Results show that the out-of-sample forecasting performance improves at mid-

dle and long horizons (i.e. 6 and 12-months ahead) compared with the forecasts

generated by a model estimated using only the yields, the ones generated by a

model á la Diebold, Rudebush and Aruoba (2006) where the Nelson and Siegel

factors are augmented with three macroeconomic variables (the manufacturing ca-

pacity utilization, the federal funds rate and the annual price inflation), a model á

la Mönch (2006) where the Nelson and Siegel factors are augmented with the first

three principal components extracted from the same macro dataset and the ones

generated by a random walk.

The paper is organized as follows. Section 2.2 introduces the macro-yields model

and the four alternative models considered in the analysis. Section 2.3 presents the

data describing how the yields are constructed and providing a description of the

macroeconomic dataset. Section 2.4 describes the estimation technique used, with

a more detailed description in Appendix, and derives the modified Bai and Ng

(2002) information criterion that we use for model selection. Section 2.5 shows

the estimation results of the macro-yields model and the in sample performances

of the proposed models. The importance of using parsimoniously macro variables

becomes clear in Section 2.6 where we compare the forecasting performances of the

proposed model. Section 2.7 concludes.
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2.2 Model

The Nelson and Siegel (1987) model is a parsimonious model to fit yields of different

maturities at a specific point in time. Diebold and Li (2006) reinterpret the Nelson

and Siegel model as a latent factor model, where the evolution in time of the yields

depends on three latent factors identified as level, slope and curvature through

the restrictions on their relative factor loadings. Denoting with yt(τi) the yield of

maturity τi at time t, the Nelson and Sigel model, as reinterpreted by Diebold and

Li (2006) can be expressed as

yt(τi) = Lt + St

(
1 − e−λτi

λτi

)
+ Ct

(
1 − e−λτi

λτi
− e−λτi

)
+ vt(τi) (2.2.1)

where the level, slope and curvature are denoted by Lt, St and Ct, and vt(τi) is the

residual, or pricing error. The predetermined loadings (1, 1−e−λτi

λτi
, 1−e−λτi

λτi
− e−λτi)

allow to identify the three factors as level, slope and curvature of the yield curve

because of the effects that they have on its shape. The loadings relative to the

first factor, equal to one for all maturities, imply that an increase in Lt increases

all yields equally, shifting the level of the yield curve. The loadings of the second

factor are high for short maturities decaying to zero for the long ones. Accordingly,

as increase in St increases the slope of the yield curve. The loadings relative to

Ct are zero for the shortest and the longest maturities, reaching the maximum for

medium maturities. Therefore, an increase of Ct augments the curvature of the

yield curve. The parameter λ governs the exponential decay rate, a small value of

λ can better fit the yield curve at long maturities, while large values can better fit

it at short maturities. Diebold and Li (2006) keep this parameter constant over

time. Rewriting equation (2.2.1) in vector notation

yt = Γ∗
yf ft + vy,t (2.2.2)
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where yt collects the yields of different maturities available at time t, Γ∗
yf is the

matrix of restricted factor loadings with row i equal to (1, 1−e−λτi

λτi
, 1−e−λτi

λτi
− e−λτi)

and ft is the vector of factors (Lt, St, Ct)
′.

The aim of this paper is to introduce a parsimonious model that exploits all the

information about the state of the economy in order to fit and forecast the yield

curve. To summarize all the information in the macroeconomic variables, we do

not add any specific macroeconomic variable as a factor, neither we add principal

components extracted from a macroeconomic data set. We rather extract the level,

slope and curvature from a large panel composed by yields and macroeconomic

variables. Generalizing the Nelson and Siegel factor model of equation (2.2.2), we

have ⎛⎝yt

xt

⎞⎠ =

⎛⎝Γ∗
yf

Γxf

⎞⎠ ft +

⎛⎝vy,t

vx,t

⎞⎠ (2.2.3)

where yt is the vector of yields, xt is a large set of macroeconomic variables and ft

collects the yield curve latent factors. To identify the three unobservable factors

as level, slope and curvature, we restrict the matrix Γ∗
yf of factor loadings relative

to the yields á la Nelson and Siegel as in equation (2.2.2). While the matrix Γxf ,

that collects the loadings relative to the macro variables, is left unrestricted.

Rather than including macro variables as additional factors, we use them to

extract the Nelson and Siegel factors. Yields co-move with the whole economy,

therefore the few sources that generate the evolution of the yields have to be re-

lated to the whole economy. This implies that extracting the Nelson and Siegel

factors not only from yields but also from macro variables allows to use the extra

information of the macro variables to better identify the factors. This feature is in

line with the previous macro-finance literature, which links the level with different

measures of inflation and the slope with capacity utilization or industrial produc-

tion, see among others Diebold and Li (2006), Diebold, Rudebusch and Aruoba

(2006), Rudebusch and Wu (2004) and Hördhal et al (2002). Moreover, using a
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large set of macro-variables allows to discriminate, through the loadings, which

variables are related to the factors and useful to forecast out-of-sample the yields.

The model presented in equation (2.2.3) can be easily extended to allow the

presence of additional unobservable and unidentified factors in the following way⎛⎝yt

xt

⎞⎠ =

⎛⎝Γ∗
yf 0

Γxf Γxg

⎞⎠⎛⎝ft

gt

⎞⎠ +

⎛⎝vy,t

vx,t

⎞⎠ (2.2.4)

In this model, both yields and macro-variables participate in determining the yield

curve factors (level, slope and curvature) collected in the vector ft, while the factors

collected in gt are determined only by the macro variables and are unidentified since

we do not impose any restriction on the matrix of factor loadings Γxg. In this model,

even if we added additional and unidentified factors to explain the variation in the

large data set of macro variables, the yields still load only on the three yield curve

factors. This is consistent with the standard view that three factors are able to

exploit all the information in the yield curve.4

The model presented in equation (2.2.4) can be easily put in a state-space

representation. The macro-yields model that we propose is⎛⎝yt

xt

⎞⎠ =

⎛⎝Γ∗
yf 0

Γxf Γxg

⎞⎠⎛⎝ft

gt

⎞⎠ +

⎛⎝vy,t

vx,t

⎞⎠ (2.2.5)

⎛⎝ft

gt

⎞⎠ = A

⎛⎝ft−1

gt−1

⎞⎠ +

⎛⎝uf,t

ug,t

⎞⎠ (2.2.6)

where v = (vy,t, vx,t) ∼ iid N(0, R) and u = (uf,t, ug,t) ∼ iid N(0, Q), with a

diagonal variance matrix of the idiosyncratic disturbances R and a non-diagonal

variance matrix of the shocks driving the common factors Q.

4We also estimated the model allowing Γyg to be different from zero and, as expected, the
estimated loadings were small in magnitude and not significant. All the results presented in the
paper do not change allowing Γyg to be different than zero and are available upon request.
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2.2.1 Alternative models

We compare the macro-yields model, presented in equations (2.2.5) - (2.2.6), with

three alternative models: the only yields model, the basic macro-yields model and

the large macro-yields model.

The only yields model uses only the information contained in the yields series

to extract the yield curve factors. This model is a generalization of the Diebold and

Li (2006) one, which has been showed to outperform several models in forecasting

the U.S. yields. It can be represented as

yt = Γ∗
yfft + vy,t, vy,t ∼ iid N(0, R) (2.2.7)

ft = Aft−1 + uf,t, uf,t ∼ iid N(0, Q) (2.2.8)

where the matrix of factor loadings of the yields Γ∗
yf is restricted á la Nelson and

Siegel. This model can be obtained from the macro-yields model, presented in

equations (2.2.5) - (2.2.6), imposing the following restrictions: the macro variables

do not participate in the determination of the yield curve factors, i.e. Γxf = 0, and

there are only the three yield curve factors, i.e Γxg = 0.

The basic macro-yields model augments the yields curve factors with a minimal

set of fundamental macro variables as extra factors to capture basic macroeconomic

dynamics. In particular, following Diebold, Rudebush and Aruoba (2006), we

consider as additional factors the manufacturing capacity utilization (CU), the

federal funds rate (FFR) and the annual price inflation (INFL). Therefore imposing

gt = (CUt, FFRt, INFLt), the basic macro-yields model can be written as

yt = Γ∗
yfft + Γyggt + vy,t, vy,t ∼ iid N(0, R) (2.2.9)⎛⎝ft

gt

⎞⎠ = A

⎛⎝ft−1

gt−1

⎞⎠ + ut, ut ∼ iid N(0, Q) (2.2.10)

with Γ∗
yf restricted á la Nelson and Siegel to identify the three yield curve factors.

This model can be obtained from the macro-yields model, presented in equations
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(2.2.5) - (2.2.6), imposing that the yield curve factors are extracted only from

the yields, i.e. Γxf = 0, that the yields load both on the yield curve factors

and the macro factors, i.e. Γyg 
= 0, that the additional factors are equal to the

manufacturing capacity utilization (CU), the federal funds rate (FFR) and the

annual price inflation (INFL), i.e. gt = (CUt, FFRt, INFLt), and coincide with

the additional macro variables, i.e. Γxg = I and Rx = 0.

The large macro-yields model exploits a larger information set with respect

to the basic macro-yields models. This model augments the three yield curve

factors, extracted only from the yields, with the first three principal components

extracted from the large data-set of macroeconomic variables. Denoting with PCt

the vector of three principal components at time t, the large macro-yields model

can be represented as

yt = Γ∗
yfft + ΓygPCt + vy,t, vy,t ∼ iid N(0, R) (2.2.11)⎛⎝ ft

PCt

⎞⎠ = A

⎛⎝ ft−1

PCt−1

⎞⎠ + ut, ut ∼ iid N(0, Q) (2.2.12)

with Γ∗
yf restricted á la Nelson and Siegel to identify the three yields curve factors.

Also this model can be considered as a restricted version of the macro-yields model,

presented in equations (2.2.5) - (2.2.6), with the following restrictions: the yield

curve factors are extracted only from the yields, i.e. Γxf = 0, the yields load both on

the yield curve factors and the macro factors, i.e. Γyg 
= 0, the additional factors

are equal to the principal components extracted form a large dataset of macro

variables gt = PCt and coincide with the additional macro variables, i.e. Γxg = I

and Rx = 0. The large macro-yields model is closely related to the model proposed

in Mönch (2006) and, through the comparison with the macro-yields model, we

want to emphasize the importance of extracting the factors from both the yields

and the macro series.

The information set used for the analysis expands passing from the only yields

to the basic macro-yields and to the large macro-yields models. While the large
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macro-yields and the macro-yields model use the same information set. However

the macro-yields model, presented in equations (2.2.5) - (2.2.6), is the only model

that includes a large amount of macroeconomic information and has only three

factors in the observation equation of the yields.

2.3 Data

The data-set used for the empirical analysis contains monthly observations of zero-

coupon yields and a large set of macro variables from January 1970 to December

2000.

The zero-coupon yields have maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36,

48, 60, 72, 84, 96, 108 and 120 months. This data, available on Diebold’s home

page, are constructed from end-of-month price quotes (bid/ask average) for U.S.

Treasuries taken from the CRSP government bonds files. CRSP filters the data

eliminating bonds with option features (callable and flower bonds), and bonds with

special liquidity problems (notes and bonds with less than one year to maturity, and

bills with less than one month to maturity), and then converts the filtered bond

prices to unsmoothed Fama-Bliss (1987) forward rates. Then these unsmoothed

forward rates are converted into unsmoothed Fama-Bliss zero-coupon yields, using

fixed maturities. To pool the data in the fixed maturities listed above a month is

defined as 30,4375 days, given that not every month has the same maturities, the

data are obtained by linearly interpolating nearby maturities. For example in each

month there are many bonds with either 30, 31, 32, 33 or 34 days to maturities, and

by interpolating them it is possible to get the yields with maturity of one month

(of 30.4375 days).

Summary statistics for the zero-coupon yields used in this paper are presented

in Table 2.1. The stylized facts common to yield curve data are clearly present:

the sample average curve is upward sloping and concave, volatility is decreasing

with maturity and autocorrelations are very high and increasing with maturity.
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[TABLE 2.1 AROUND HERE]

Figure 2.1 shows a plot of the zero-coupon yields for the period considered and

highlights how the yields at different maturities tend to move together through

time. Correlations between yields of different maturities are high, specially for

yields with maturities that are close to each other.

[FIGURE 2.1 AROUND HERE]

The macro dataset is the same as used in Giannone, Reichlin and Sala (2004)

and consists of 118 monthly US series. We exclude all interest and spread series,

except for the federal funds rate, from the original panel dataset of 132 series.

The federal funds rate closely follows the federal fund target rate, which is the key

monetary policy instrument for the US Federal Reserve, and should therefore be

important for capturing the movements of the short end of the term structure. The

variables contained in the macro dataset include real variables (sectorial industrial

production, employment and hours worked), nominal variables (consumer and pro-

ducer price indices, wages, and money aggregates), asset prices (stock prices and

exchange rate). Table 2.2 lists the series included in the macro dataset.

[TABLE 2.2 AROUND HERE]

We transform the monthly recorded macro series, whenever appropriate, to ensure

stationarity by using levels, log levels, monthly differences, monthly log differences

or annual log differences. The last column in Table 2.2 lists the applied transforma-

tion. In general, for real variables such as employment and industrial production we

use the monthly growth rates. We use first differences for series already expressed

in rates: unemployment rate and capacity of utilization. We do not transform in

first differences the federal funds rate to be able to extract level, slope and curvature

from the data.

52



2.4 Estimation procedure

The macro-yields model, presented in equation (2.2.5) - (2.2.6), allows to identify

the Nelson and Siegel yield curve factors through the restrictions imposed in the

relative factor loadings, Γ∗
yf . Thus the macro-yields model is a restricted dynamic

factor model and it cannot be estimated by standard principal components, since

this estimator does not allow to impose the necessary restrictions on the factor

loadings. For this reason, using the results in Doz, Giannone and Reichlin (2006),

we estimate the macro-yields model using quasi maximum likelihood.

The procedure proposed by Doz, Giannone and Reichlin (2006) combines EM

algorithm and Kalman filter. This method makes feasible maximum likelihood

estimation of factor models for large cross sections providing consistent estimates

for any relative size of the time span and of the cross sectional dimension. Moreover,

this procedure guarantees consistency even when hypothesis of orthogonality and

absence of serial correlation of the idiosyncratic component are violated.

The estimation procedure alternates Kalman filter extraction of the factors to

the maximization of the likelihood. In particular, for given parameters of the

model, we use the Kalman filter to extract the factors. Then given the extracted

factors, we maximize the Gaussian likelihood function implied by the Kalman filter

using the EM algorithm. The estimation procedure is described in details in the

Appendix.

As shown in section 2.2.1, the alternative models considered in this paper can

be considered as restricted versions of the macro-yields model. For this reason, we

use the same estimation procedure for all the models included in the analysis.

2.4.1 Model selection

The macro-yields model, presented in equation (2.2.5) - (2.2.6), is a general frame-

work that allows for the presence of both the three Nelson and Siegel yield curve

factors ft and any number of unidentified and unobservable factors gt. Therefore,
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in order to estimate the model, we need a statistical criteria to select the number

of factors to include.

The most used procedure to determine the number of factors in approximate

factor models is the information criterion proposed by Bai and Ng (2002). The

idea is to choose the number of factors that maximizes the general fit of the model

using a penalty function to account for the loss in parsimony. The general form of

the information criterion IC3 introduced by Bai and Ng (2002) is

IC(r) = log(V (r, F̂ r)) + rg(N, T ), g(N, T ) =
log C2

NT

C2
NT

(2.4.1)

where r denotes the number of factors, F̂ r are the estimated factors and V (r, F̂ r)

is the sum of squared residuals (divided by NT) when r factors are estimated.

Moreover, the penalty function g(N, T ) is a function of both N and T and de-

pends on C2
NT , the convergence rate of the principal component estimator, C2

NT =

min{T, N}.
The macro-yields model is estimated by quasi maximum likelihood and not by

principal components, for this reason the IC information criterion, as presented in

equation (2.4.1), cannot be used. However, in Corollary 2 of Bai and Ng (2002)

it is shown that the IC information criterion can be applied to any consistent

estimator of the factors provided that the penalty function is derived from the

correct convergence rate. Thus, in order to apply this criterion to the macro-yields

model, it is necessary to substitute the convergence rate of the quasi maximum

likelihood estimator in equation (2.4.1).

Doz, Giannone and Reichlin (2006) in Proposition 1 show that the quasi max-

imum likelihood estimator of the common factors converges to the true value at

a rate equal to C∗2
NT = min{√T , N

log N
}. Therefor substituting C∗2

NT in equation

(2.4.1), we obtain the modified Bai and Ng information criterion IC∗ which can be
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used when the common factors are estimated by maximum likelihood:

IC∗(r) = log(V (r, F̂ r)) + r
log min{√T , N

log N
}

min{√T , N
log N

} . (2.4.2)

The estimated modified Bai and Ng information criterion IC∗(r) for different spec-

ification of the macro-yields model is reported in Table 2.3. The model has been

estimated on the full sample, from January 1970 to December 2000, varying the

number of factors included. In particular, the model with three factors, i.e. r = 3,

includes only the three Nelson and Siegel yield curve factors extracted from both

yields and macro variables. While the models with r = 4 , 5 and 6 include also

one, two or three unidentified additional factors. The table also reports the values

of the sum of the variance of the idiosyncratic components, denoted by RR(r, F̂ r),

for each specification of the model.

[TABLE 2.3 AROUND HERE]

The modified Bai and Ng information criterion indicates that the best model is the

model with the three Nelson and Siegel yield curve factors plus one unidentified

factor, i.e. r = 4. This is also confirmed by the fact that the strongest reduction in

the sum of the variances of the idiosyncratic components is obtained passing from

the three to the four factors specification. Intuitively, this result can be explained by

the large dimension of the data-set (17 yields plus 118 macroeconomic variables)

that cannot be explained only through the three Nelson and Siegel yield curve

factors. Figures 2.2-2.4 show the in sample fit of the macro-yields model with

only the three Nelson and Siegel yield curve factors, i.e. r = 3, and adding the

unidentified factor, i.e. r = 4.

[FIGURES 2.2-2.4 AROUND HERE]

The in sample fit of the yields does not improve passing from the three to the four

factors specification, as it can be seen in Figure 2.2. However, the picture is com-

pletely different for the macroeconomic variables. Figures 2.3-2.4 highlight how the
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fourth factor is important to capture the dynamics of most of the macroeconomic

variables. Indeed, the three Nelson and Siegel yield curve factors do a poor job in

fitting most of the macroeconomic variables, except price indexes. Figure 2.4 shows

that the yield curve factors are by themselves able to fit really well the producer

price index (PPI), the consumer price index (CPI) and the personal consumption

expenditure implicit price deflator (PCE). This is due to the fact that the first

Nelson and Siegel factor is highly correlated with inflation, as also confirmed by

Diebold, Rudebush and Aruoba (2005).

Following this findigs from now on we will refer to the macro-yields model as

the model with the three Nelson and Siegel yield curve factors plus one unidentified

factor.

2.5 Estimation Results

Estimation of the macro-yields model, requires a joint procedure to extract the

latent factors, to identify the first three as the Nelson and Siegel yields curve

factors and to estimate the loadings of all the 118 macroeconomic variables on the

extracted factors. As explained in section 2.4, we address this issue estimating the

model by quasi maximum likelihood.

Figure 2.5 shows the estimated factors of the macro-yields model and, for com-

parison purposes, also the relative Nelson and Siegel factors.

[FIGURE 2.5 AROUND HERE]

The first three factors of the macro-yields model, which we identified as the Nelson

and Siegel factors, indeed are really close to the original Nelson and Siegel factors.

The difference between the original Nelson and Siegel factors and the macro-yields

Nelson and Siegel factors comes from the fact that the macro-yields factors include

not only the information contained in the yields but also the one contained in

the macroeconomic series. The factor that is more affected by the macroeconomic

information is the curvature, since the macro-yields curvature factor is way more
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persistent than the original Nelson and Siegel curvature. This is also confirmed in

Table 2.4 where we report summary statistics of the estimated macro-yields factors

and of the Nelson and Siegel factors.

[TABLE 2.4 AROUND HERE]

Table 2.4 highlights also a certain difference in the persistence of the macro-yields

slope factors and the Nelson and Siegel one. In general, the macro-yields factors

tend to be more persistent than the Nelson and Siegel ones. The last panel of Figure

2.5 reports the fourth factor, the unidentified one. The plot highlights how this

factor accounts for the macroeconomic situation. Indeed, during all the recessions

in the sample the unidentified factor decreases drastically. Summary statistics for

the unidentified factor in Table 2.4 show that it has zero mean and almost unit

variance, but a high degree of persistency.

Table 2.5 displays the goodness of fit of the macro-yields model compared with

the alternative models presented in section 2.2.1. In particular, the table reports

the mean square error of the only yields model (OY), the basic macro-yields (BMY),

the large macro-yields (LMY) and the macro-yields (MY) models for selected ma-

turities.

[TABLE 2.5 AROUND HERE]

The four models display almost the same performances in fitting the term structure

of interest rates except for the shortest yield, where adding a large set of macro-

variables clearly worsens the fit. Moreover, the basic macro-yields and the large

macro-yields models, even if they are the only models with six factors, they do not

display a significant improvement with respect to the other two models, namely

the only yields model and the macro-yields model. Macro variables do not improve

the fit of the yield curve, but this does not imply that they do not have leading

information for the yields. The aim of the following chapter is to show that a

large set of macro variables helps in forecasting the yields provided they are used

parsimoniously.
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2.6 Out-of-sample forecast

The out-of-sample forecasts of the only yields, basic macro-yields, large macro-yields

and macro-yields models are obtained iteratively. As mentioned in Section 2.2.1,

the only yields, large macro-yields the basic macro-yields models are nested in the

macro-yields model.5 Therefore rewriting the macro-yields model (2.2.5)-(2.2.6) in

compact notation we obtain a general representation of all the models presented

zt = ΓFt + vt, vt ∼ iidN(0, R) (2.6.1)

Ft = AFt−1 + ut, ut ∼ iidN(0, Q) (2.6.2)

where Ft = (ft, gt), vt = (vy,t, vx,t) and ut = (uf,t, ug,t). We generate iterative

forecasts for all the models at first projecting forward the factors

F̂t+h|t = ÂhF̂t

and then computing the out-of-sample forecast given the projected factors

ẑt+h|t = Γ̂F̂t+h|t

To evaluate the prediction accuracy at a given forecast horizon h, we use the

mean square forecast error (MSFE), the average square error between time t0 and

t1 for the h-months ahead forecast of the yield with maturity τ , using a particular

model m

MSFEt1
t0 (τ, h, m) =

1

t1 − t0 + 1

t1∑
t=t0

(
ŷ(τ)m

t+h|t − y(τ)t+h

)2
(2.6.3)

where y(τ)t+h is the realized yield with maturity τ at time t+h and ŷ(τ)m
t+h|t is the

5The only yield model is obtained setting Γxf = Γxg = Γyg = 0 in equations (2.2.5)-(2.2.6).
The basic macro-yields model is obtained setting xt = (CUt FFRt INFLt), Γxf = 0, ,Γxg = I,
Γyg 
= 0 and Rx = 0 in the same equations. And the large macro-yields model can be obtained
setting gt = PCt, Γxf = 0, Γxg = I, Γyg 
= 0 and Rx = 0 in equations (2.2.5)-(2.2.6).
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h-steps ahead forecast of the yield with maturity τ made at time t with a particular

model m.

Forecast results for yields are usually expressed as ratios of the MSFEs of the

considered model and the MSFE of a random walk, which is a näıve model very

difficult to outperform given the high persistency of the yields. The random walk

h-steps ahead prediction at time t of the yield with maturity τ is

ŷt+h|t(τ) = yt(τ)

where the optimal predictor does not change regardless of the maturity of the yield

and the forecast horizon.

Ang and Piazzesi (2003), Mönch (2006), Favero et al. (2007) and De Pooter et

al. (2007) found that macroeconomic variables help in forecasting the yield curve.

For this reason, it can be expected that the macro-yields model will outperform

the only yields one. However, from the comparison of the macro-yields model with

the basic macro-yields and the large macro-yields, it will be possible to show that,

not only it is important to use large information to forecast the yields, but it is

also crucial to extract the yield curve factors from both the yields and the macro

variables in order to be able to capture the co-movement between the yields and

the whole economy.

2.6.1 Forecast performances

We forecast the yields estimating each model recursively using data from January

1970 until the time that the forecast is made, beginning in January 1985 to Decem-

ber 2000. We use the random walk as benchmark, therefore we construct ratios of

each model’s MSFEs over the random walk MSFEs. Table 2.6 reports these ratios

for the only yields (OY), basic macro-yields (BMY), large macro-yields (LMY) and

macro-yields (MY) models, for selected maturities.

[TABLE 2.6 AROUND HERE]
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The out-of-sample performances of the only yields, the basic macro-yields and

the large macro-yields models are similar. This, rather than being interpreted as

evidence that the macroeconomic variables are not useful in forecasting the yields,

should be considered as a consequence of the lack of parsimony of the basic macro

yields model and the large macro-yields models, which both include six factors.

The only yields model can be seen as a restricted basic macro-yields, or large

macro-yields, model where the loadings of the yields on the observable macroe-

conomic factors are zero. Therefore, if the macro variables would not be useful

in forecasting the yields, it should be expected that the only yields model would

outperform the basic macro yields and large macro-yields models. This is not the

case, meaning that the macro variables are helpful in forecasting the yields but in

the basic macro-yields and the large macro-yields model they are used in a non

parsimonious way.

The macro-yields model is suited to solve this problem and to exploit a large

amount of macro information in a parsimonious way. Indeed the relevance of the

macroeconomic variable in forecasting the yields, specially on medium and long

horizons, becomes evident looking at the out-of-sample forecasting performance of

the macro-yields model. For 6 and 12 months ahead, the macro-yields model not

only outperforms the only yields, the basic macro yields and the large macro-yields

models but also the random walk. However, at the shortest horizon, i.e. one month

ahead, the random walk in most cases provides the best forecast.

To investigate the out-of-sample performances of all the models over time, Fig-

ures 2.6-2.7 plot the smoothed square forecast errors and the smoothed forecast

errors of all the models considered for some selected maturities. The smoothed

square forecast errors are computed as a 30 months moving average of the squared

forecast errors, while the smoothed forecast errors are computed as a 30 months

moving average of the forecast errors.

[FIGURES 2.6-2.7 AROUND HERE]
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The square forecast errors of all the models have a similar pattern both for

6-months and 12-months ahead forecasts. In general, they start to increase just

before the recession of July 1981 - November 1982, they peak after the recession

and then they decline at the end of the period. However, it is possible to distinguish

different behaviors across the models. The macro-yields model at both 6-months

and 12-months ahead outperforms all the other models, and often also the random

walk, for almost all the sample except at the two last years. The opposite happens

for the basic macro-yields model, which at both 6-months and 12-months ahead

is the worst model for almost all the sample, but just at the last year it slightly

outperforms the other models. This can indicate that large macroeconomic infor-

mation is particularly useful just before and after the recessions, provided it is used

parsimoniously. While in the other periods, few macro indicators are enough to

convey information about the state of the economy. Figure 2.6 highligts also a bad

performance of the benchmark, the random walk, at the beginning and the end of

the sample.

The forecast errors plotted in Figure 2.7 are also particulary small at the be-

ginning and at the end of the sample, while they increase just before the recession

with all the models, sometimes except the macro-yields one, overestimating the

yields. However the conclusions, slightly change looking at the forecast errors. In

this case, the random walk is always one of the best models, providing small fore-

cast errors. The macro-yields model outperforms all the competitive models in

almost the whole sample, and often also the random walk. The forecast errors also

indicate that the only yields model, which is the only model that does not use any

macro information, is the only model to systematically overestimate the yields.

In conclusion, the macro-yields model at 6 and 12-months ahead outperforms

on average all the competing models and also the random walk. This result is

driven from the fact that the model is particularly able to outperform the others

during and just after the recessions. The macro-yields model is the only model

able to provide forecast errors that are almost constant in time, while all the other
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models exhibit high variability of the forecast errors with huge peaks just after the

recession.

2.7 Conclusions

We propose a new framework to fit and forecast the yield curve using parsimo-

niously a large amount of macroeconomic information. Our approach is based on

a factor model, where the factors are extracted directly from a panel of 17 yields

and 118 macro variables. The loadings of the yields on the first three factors are

characterized by restrictions á la Nelson and Siegel that allow us to identify these

first three factors as the level, the slope and the curvature of the yield curve. This

is an innovative way to use macro variables to forecast the yields, given that the

most recent literature was using a small set of macro variables as extra regressors.

We show that our approach outperforms the existing methods for all the maturities

at mid and long horizons (i.e. 6 and 12-month ahead).
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2.8 Appendix

The more general version of our model can be written as

zt = ΓFt + vt vt ∼ N(0, R)

Ft = AFt−1 + ut ut ∼ N(0, Q)

where R is diagonal and Ft = [ft gt]
′ and we can partition the matrix Γ as

Γ =

⎡⎣Γ∗
yf 0

Γxf Γxg

⎤⎦
Where the identification of the yield curve factors is achieved through the restric-

tions on their loadings coming from the Nelson and Siegel representation, with

Γ∗
yf =

⎡⎢⎢⎢⎢⎢⎣
1 1−eλτ1

λτ1
1−eλτ1

λτ1
− eλτ1

1 1−eλτ2

λτ2
1−eλτ2

λτ2
− eλτ2

...
...

...

1 1−eλτN

λτN

1−eλτN

λτN
− eλτN

⎤⎥⎥⎥⎥⎥⎦
Following Diebold and Li (2006), we fix λ = 0.0609, the value that maximizes the

loading on the curvature factor for the yields with maturity to 30 months.6

The parameters are estimated by maximum likelihood combining EM algorithm

and Kalman filter. As shown in Doz, Giannone and Reichlin (2006), maximum

likelihood estimation of a dynamic approximate factor model, when the panel of

time series is large, is feasible, in the sense that it guarantees consistency, and

represents a valid alternative to principal components. Moreover this methodology

is particularly suitable in our case since it allows to impose restriction on the model.

Assuming F1 ∼ N(π1, V1) and labeling the time series (z1, z2, ...., zT ) = {z}
and (F1, F2, ...., FT ) = {F}, and the parameters {Γ, R, A, Q, π1, V1} = θ, the log-

6Using the ECM algorithm is also possible to estimate λ, but despite the increase in the
computation burden, the results remain substantially unchanged.
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likelihood is:

L({z}{F}; θ) = −
T∑

t=1

⎛⎝1

2

⎡⎣zt −
⎡⎣Γyf 0

Γxf Γxg

⎤⎦Ft

⎤⎦′

R−1

⎡⎣zt −
⎡⎣Γyf 0

Γxf Γxg

⎤⎦Ft

⎤⎦⎞⎠ +

−T

2
log |R| −

T∑
t=2

(
1

2
[Ft − AFt−1]

′Q−1[Ft − AFt−1]

)
+

−T − 1

2
log |Q|1

2
[F1 − π1]

′V −1[F1 − π1] +

−1

2
log |V1| − T (p + k)

2
log 2π

The EM algorithm alternates Kalman filter extraction of the factors to the

maximization of the likelihood. In particular, for given parameters of the model

we use the Kalman filter to extract the factors (E step). Then given the extracted

factors, we maximize the Gaussian likelihood function implied by the Kalman filter

(M step).

Therefore in the E step, we compute the expected log-likelihood

Q = E[L({z}{F}; θ)|{z}]

which depends on three expectations

F̂t ≡ E[Ft|{z}]

Pt ≡ E[FtF
′
t |{z}]

Pt,t−1 ≡ E[FtF
′
t−1|{z}]

And in the M step, we re-estimate the parameters θ = {Γyg, Γxf , Γxg, R, A, Q, π1, V1}
taking the corresponding partial derivative of the expected log likelihood, setting

to zero, and solving.

• Output matrix: since we have the restriction on the upper blocks, we derive

the first order conditions by blocks. We denote by ft the yield curve factors
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and by gt the macro factors, such that Ft =
[
ft gt

]
, and by yt the yields and

xt the macro variables, such that z =
[
yt xt

]′
.

- submatrix
[
Γxf Γxg

]
∂Q

∂
[
Γxf Γxg

] = E

[
−

T∑
t=1

R−1
xx (xt −

[
Γxf Γxg

]
Ft)F

′
t |{z}

]
= 0

[
Γxf Γxg

]
=

T∑
t=1

E [xtF
′
t |{z}]

(
T∑

t=1

E [FtF
′
t |{z}]

)−1

⇒
[
Γnew

xf Γnew
xg

]
=

T∑
t=1

(
xtF̂

′
t

)( T∑
t=1

Pt

)−1

• Output noise covariance:

∂Q
∂R−1

= E

[
−

T∑
t=1

1

2
(zt − ΓFt)(zt − ΓFt)

′ +
T

2
R|{z}

]
= 0

R =
1

T

T∑
t=1

E [ztz
′
t − ztF

′
tΓ

′ − ΓFtz
′
t + ΓFtF

′
tΓ

′|{z}]

⇒ Rnew =
1

T

T∑
t=1

(
ztz

′
t − ztF̂

′
tΓ

′new − ΓnewF̂tz
′
t + ΓnewPtΓ

′new
)

• State dynamics matrix:

∂Q
∂A

= E

[
−1

2

T∑
t=2

Q−1(Ft − AFt−1)F
′
t−1|{z}

]
= 0

A =
T∑

t=2

E
[
FtF

′
t−1|{z}

]( T∑
t=2

E
[
Ft−1F

′
t−1|{z}

])−1
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⇒ Anew =

(
T∑

t=2

Pt,t−1

)(
T∑

t=2

Pt−1

)−1

• State noise covariance:

∂Q
∂Q−1

= E

[
T − 1

2
Q − 1

2

T∑
t=2

(Ft − AFt−1)(Ft − AFt−1)
′|{z}

]
= 0

Q =
1

T − 1

T∑
t=2

E
[
FtF

′
t − FtF

′
t−1A

′ − AFt−1F
′
t + AFt−1F

′
t−1A

′|{z}]

Q =
1

T − 1

T∑
t=2

E [FtF
′
t − AFt−1F

′
t |{z}]

⇒ Qnew =
1

T − 1

(
T∑

t=2

Pt − Anew

T∑
t=2

Pt−1,t

)

• Initial state mean:

∂Q
∂πnew

1

= E
[
(F1 − π1) V −1

1 |{z}] = 0

∂Q
∂πnew

1

=
(
F̂1 − π1

)
V −1

1 = 0

⇒ πnew
1 = F̂1

• Initial state covariance:

∂Q
∂V −1

1

= E

[
1

2
V1 − 1

2
(F1 − π1)(F1 − π1)

′|{z}
]

= 0

V1 = E [F1F
′
1 − π′

1F1 − F ′
1π1 + π1π

′
1|{z}]

⇒ V new
1 = P1 − F̂1F̂

′
1

Now we go back to the E step and update the expectations. Using Ft|τ to

denote E(Ft|{z}τ
t=1) and Vt|τ to denote the V ar(Ft|{z}τ

t=1), we obtain the following
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Kalman filter forward recursions

Ft+1|t = AFt|t

Vt+1|t = AVt|tA′ + Q

Kt = Vt|t−1Γ(Γ′Vt|t−1Γ + R)−1

Ft|t = Ft|t−1 + Kt

(
zt − ΓFt|t−1

)
Vt|t = Vt|t−1 − KtΓ

′Vt|t−1

where F1|0 = π1 and V1|0 = V1. To compute F̂t ≡ Ft|T and Pt ≡ Vt|T + Ft|T Ft|T one

performs a set of backward recursion using

Jt = Vt|tA′V −1
t+1|t

Ft|T = Ft|t + Jt(Ft+1|T − AFt|t)

Vt|T = Vt|t + Jt(Vt+1|T − Vt+1|t)J ′
t

Moreover Pt,t−1 ≡ Vt,t−1|T + Ft|T Ft−1|T can be obtained through the backward re-

cursion

Vt,t−1|T = Vt|tJ ′
t−1 + Jt(Vt+1,t|T − AVt|t)J ′

t−1

which is initialized VT,T−1|T = (I − KT Γ))AVT−1|T−1.

The estimation procedure is initialized using the factors extracted by the two

steps OLS procedure introduced by Diebold and Li (2006). These factors are

centered around their means and are standardized with the average of the yield

standard deviations. The means of these factors multiplied by Γyf are used to

center the yields, that is equivalent to center the yields with the mean of the

means of the yields, and are standardized by the mean of the standard deviations.

The macroeconomic data are centered a round their own means and standardized

by their standard deviations.
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Table 2.1: Summary statistics of the US zero-coupon data

τ mean std dev min max ρ(1) ρ(2) ρ(3) ρ(12)

3 6.75 2.66 2.73 16.02 0.97* 0.94* 0.91* 0.71*
6 6.98 2.66 2.89 16.48 0.97* 0.94* 0.91* 0.73*
9 7.10 2.64 2.98 16.39 0.97* 0.94* 0.91* 0.73*
12 7.20 2.57 3.11 15.82 0.97* 0.94* 0.91* 0.74*
15 7.31 2.52 3.29 16.04 0.97* 0.94* 0.91* 0.75*
18 7.38 2.50 3.48 16.23 0.98* 0.94* 0.92* 0.75*
21 7.44 2.49 3.64 16.18 0.98* 0.95* 0.92* 0.76*
24 7.46 2.44 3.78 15.65 0.98* 0.94* 0.92* 0.75*
30 7.55 2.36 4.04 15.40 0.98* 0.95* 0.92* 0.76*
36 7.63 2.34 4.20 15.77 0.98* 0.95* 0.93* 0.77*
48 7.77 2.28 4.31 15.82 0.98* 0.95* 0.93* 0.78*
60 7.84 2.25 4.35 15.01 0.98* 0.96* 0.94* 0.79*
72 7.96 2.22 4.38 14.98 0.98* 0.96* 0.94* 0.80*
84 7.99 2.18 4.35 14.98 0.98* 0.96* 0.94* 0.78*
96 8.05 2.17 4.43 14.94 0.98* 0.96* 0.95* 0.81*
108 8.08 2.18 4.43 15.02 0.98* 0.96* 0.95* 0.81*
120 8.05 2.14 4.44 14.93 0.98* 0.96* 0.94* 0.78*
Descriptive statistics of monthly yields at different maturities τ for the sample
from January 1970 to December 2000. ρ(p) refers to the sample autocorrelation
of the series at lag p and * denotes significance at 95 percent confidence level.
Confidence intervals are computed according to Box and Jenkins (1976).
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Table 2.2: Macroeconomic series
Code Description Transf.

1 a0m052 Personal income (AR, bil. chain 2000 $) 4
2 A0M051 Personal income less transfer payments (AR, bil. chain 2000 $) 4
3 A0M224 R Real Consumption (AC) A0m224/gmdc 4
4 A0M057 Manufacturing and trade sales (mil. Chain 1996 $) 4
5 A0M059 Sales of retail stores (mil. Chain 2000 $) 4
6 IPS10 INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX 4
7 IPS11 INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL 4
8 IPS299 INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 4
9 IPS12 INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 4

10 IPS13 INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 4
11 IPS18 INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 4
12 IPS25 INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 4
13 IPS32 INDUSTRIAL PRODUCTION INDEX - MATERIALS 4
14 IPS34 INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 4
15 IPS38 INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 4
16 IPS43 INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 4
17 IPS307 INDUSTRIAL PRODUCTION INDEX - RESIDENTIAL UTILITIES 4
18 IPS306 INDUSTRIAL PRODUCTION INDEX - FUELS 4
19 PMP NAPM PRODUCTION INDEX (PERCENT) 1
20 A0m082 Capacity Utilization (Mfg) 2
21 LHEL INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA) 2
22 LHELX EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF 2
23 LHEM CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 4
24 LHNAG CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 4
25 LHUR UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA) 2
26 LHU680 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2
27 LHU5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 4
28 LHU14 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA) 4
29 LHU15 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 4
30 LHU26 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 4
31 LHU27 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) 4
32 A0M005 Average weekly initial claims, unemploy. insurance (thous.) 4
33 CES002 EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE 4
34 CES003 EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING 4
35 CES006 EMPLOYEES ON NONFARM PAYROLLS - MINING 4
36 CES011 EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION 4
37 CES015 EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING 4
38 CES017 EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS 4
39 CES033 EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS 4
40 CES046 EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING 4
41 CES048 EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, AND UTILITIES 4
42 CES049 EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE 4
43 CES053 EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE 4
44 CES088 EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES 4
45 CES140 EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT 4
46 A0M048 Employee hours in nonag. establishments (AR, bil. hours) 4
47 CES151 AV. WEEKLY HRS OF PROD OR NONSUP WORKERS ON PRIV NONFAR - GOODS PROD 1
48 CES155 AV. WEEKLY HRS OF PROD OR NONSUP WORKERS ON PRIV NONFAR - MFG OVERTIME 2
49 aom001 Average weekly hours, mfg. (hours) 1
50 PMEMP NAPM EMPLOYMENT INDEX (PERCENT) 1
51 HSFR HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA 3
52 HSNE HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 3
53 HSMW HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 3
54 HSSOU HOUSING STARTS:SOUTH (THOUS.U.)S.A. 3
55 HSWST HOUSING STARTS:WEST (THOUS.U.)S.A. 3
56 HSBR HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 3
57 HSBNE HOUSES AUTHORIZED BY BUILD. PERMITS:NORTHEAST(THOU.U.)S.A 3
58 HSBMW HOUSES AUTHORIZED BY BUILD. PERMITS:MIDWEST(THOU.U.)S.A. 3
59 HSBSOU HOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH(THOU.U.)S.A. 3
60 HSBWST HOUSES AUTHORIZED BY BUILD. PERMITS:WEST(THOU.U.)S.A. 3
61 PMI PURCHASING MANAGERS’ INDEX (SA) 1
62 PMNO NAPM NEW ORDERS INDEX (PERCENT) 1
63 PMDEL NAPM VENDOR DELIVERIES INDEX (PERCENT) 1
64 PMNV NAPM INVENTORIES INDEX (PERCENT) 1
65 A0M008 Mfrs’ new orders, consumer goods and materials (bil. chain 1982 $) 4
66 A0M007 Mfrs’ new orders, durable goods industries (bil. chain 2000 $) 4
67 A0M027 Mfrs’ new orders, nondefense capital goods (mil. chain 1982 $) 4
68 A1M092 Mfrs’ unfilled orders, durable goods indus. (bil. chain 2000 $) 4
69 A0M070 Manufacturing and trade inventories (bil. chain 2000 $) 4
70 A0M077 Ratio, mfg. and trade inventories to sales (based on chain 2000 $) 2
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Code Description Transf.

71 FM1 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA) 5
72 FM2 MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$, 5
73 FM3 MONEY STOCK: M3(M2+LG TIME DEP,TERM RP’S&INST ONLY MMMFS)(BIL$,SA) 5
74 FM2DQ MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI) 4
75 FMFBA MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 5
76 FMRRA DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 5
77 FMRNBA DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 5
78 FCLNQ COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI) 5
79 FCLBMC WKLY RP LG COM’L BANKS:NET CHANGE COM’L & INDUS LOANS(BIL$,SAAR) 1
80 CCINRV CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19) 5
81 A0M095 Ratio, consumer installment credit to personal income (pct.) 2
82 FSPCOM S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 4
83 FSPIN S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 4
84 FSDXP S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM) 2
85 FSPXE S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 4
86 FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA) 1
87 CP90 Cmmercial Paper Rate (AC) 2
88 FYAAAC BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM) 2
89 FYBAAC BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM) 2
90 EXRUS UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 4
91 EXRSW FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 4
92 EXRJAN FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 4
93 EXRUK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 4
94 EXRCAN FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 4
95 PWFSA PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 5
96 PWFCSA PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 5
97 PWIMSA PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 5
98 PWCMSA PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 5
99 PSM99Q INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A) 5

100 PMCP NAPM COMMODITY PRICES INDEX (PERCENT) 1
101 PUNEW CPI-U: ALL ITEMS (82-84=100,SA) 5
102 PU83 CPI-U: APPAREL & UPKEEP (82-84=100,SA) 5
103 PU84 CPI-U: TRANSPORTATION (82-84=100,SA) 5
104 PU85 CPI-U: MEDICAL CARE (82-84=100,SA) 5
105 PUC CPI-U: COMMODITIES (82-84=100,SA) 5
106 PUCD CPI-U: DURABLES (82-84=100,SA) 5
107 PUS CPI-U: SERVICES (82-84=100,SA) 5
108 PUXF CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) 5
109 PUXHS CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) 5
110 PUXM CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA) 5
111 GMDC PCE,IMPL PR DEFL:PCE (1987=100) 5
112 GMDCD PCE,IMPL PR DEFL:PCE; DURABLES (1987=100) 5
113 GMDCN PCE,IMPL PR DEFL:PCE; NONDURABLES (1996=100) 5
114 GMDCS PCE,IMPL PR DEFL:PCE; SERVICES (1987=100) 5
115 CES275 AV. HOURLY EARNINGS OF PROD OR NONSUP WORKERS ON PRIV NO - GOODS PROD 5
116 CES277 AV. HOURLY EARNINGS OF PROD OR NONSUP WORKERS ON PRIV NO - CONSTRUCTION 5
117 CES278 AV. HOURLY EARNINGS OF PROD OR NONSUP WORKERS ON PRIV NO - MANIFACTURING 5
118 HHSNTN U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2

The table lists the macro series included in the macroeconomic dataset. The first column counts
the position in the dataset, the second reports the code of the series, the third shows the name
of the variable. The last column reports the transformations applied to original series. These
tranformations are coded as: 1:=no transformation (levels are used), 2:= monthly differences, 3:=
logarithm of the level, 4:= monthly first differences of the log levels (in percentage), 5:= annual
first differences of the log levels (in percentage). The sample period is January 1970 - December
2000 (372 observations).
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Table 2.3: Model selection

r 3 4 5 6

RR(r, F̂ r) 90.12 69.40 64.69 57.14
IC∗(r) 0.06 -0.05 0.03 0.06

Notes: RR(r, F̂ r) is the sum of the variance of the
idiosyncratic component and IC∗(r) is the modi-
fied Bai and Ng information criteria presented in
equation (2.4.1). Both measures are computed for
different specifications of the macro yields model
(i.e. with the 3 Nelson and Siegel factors plus 1,
2 or 3 unidentified factors).

Table 2.4: Summary statistics of the estimated factors

LMY LNS SMY SNS CMY CNS UMY

Mean 8.26 8.26 -1.58 -1.58 0.19 0.19 0.00
Var 4.29 4.32 3.75 3.67 1.84 3.27 1.06
ρ(1) 0.98 0.98 0.96 0.94 0.95 0.79 0.92
ρ(2) 0.96 0.97 0.90 0.87 0.90 0.64 0.83
Min 4.20 4.43 -5.85 -5.62 -3.21 -5.25 -4.44
Max 14.28 14.15 5.36 5.32 3.71 7.62 2.37

Notes: summary statistics of the estimated factors of the macro-
yields model. LMY denotes the level factor of the macro-yields
model, SMY is the slope if the macro-yields model, CMY the curva-
ture and UMY is the unidentified factor. The table also reports the
relative summary statistics for the Nelson and Siegel factors LNS,
SNS and CNS .
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Table 2.5: Goodness of fit

maturities OY BMY LMY MY

3 0.063 0.051 0.046 0.266
12 0.010 0.010 0.010 0.017
36 0.006 0.006 0.006 0.011
60 0.008 0.008 0.008 0.007
120 0.024 0.024 0.024 0.039

Notes: MSE of the only yields model (OY), ba-
sic macro-yields model (BMY), the large macro-
yields (LMY) and macro-yields model (MY) on
the sample 1970:1 to 2000:12.
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Table 2.6: Out-of-sample performance

1-month ahead
maturities OY BMY LMY MY

3 1.00 1.28 1.15 4.33
12 1.22 1.30 1.17 1.24
36 1.26 1.20 1.11 0.98
60 1.17 1.01 1.05 0.97
120 1.10 1.07 1.03 1.68

6-months ahead
maturities OY BMY LMY MY

3 1.05 1.31 1.06 0.96
12 1.22 1.40 1.25 0.99
36 1.10 1.13 1.12 0.87
60 1.01 1.01 1.02 0.82
120 0.93 0.90 0.94 0.86

12-months ahead
maturities OY BMY LMY MY

3 1.02 1.01 1.05 0.69
12 1.04 1.04 1.13 0.80
36 0.95 0.91 1.02 0.74
60 0.87 0.82 0.92 0.69
120 0.77 0.73 0.82 0.65

Notes: ratios of the MSFEs of the only
yields model (OY), basic macro-yields model
(BMY), large macro-yields model (LMY) and
macro-yields model (MY) on the MSFE of the
random walk, evaluated on the sample 1985:1
to 2000:12.
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Figure 2.1: Yield data
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U.S. zero-coupon yield curve data at monthly frequency from 1970:1 to 2000:12 at maturities
3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months. The grey-shaded areas indi-
cate the recessions as defined by the NBER.
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Figure 2.2: Macro-yields model in sample fit: yields
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The figure displays the observed yields, for selected maturities, in blue and the relative in sample
fit of the macro-yields model. The green line refers to the macro-yields model with only three
factors, identified as the level, slope and curvature. The red line refers to the macro-yields model
with four factors: the level, slope and curvature plus one unidentified factor. The first plot refers
to the yields with maturity 3 months, the second to the yields with maturity 12 months, the
third one to the yields with maturity 60 months and the last one to the yields with maturity 120
months
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Figure 2.3: Macro-yields model in sample fit: key macro variables/1
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The figure displays some observed key macroeconomic variables in blue and the relative in sample
fit of the macro-yields model. The green line refers to the macro-yields model with only three
factors, identified as the level, slope and curvature. The red line refers to the macro-yields model
with four factors: the level, slope and curvature plus one unidentified factor. The first plot refers
to the personal income PI (the first variable in table 2.2), the second to the industrial production
IP (variable number 6 in table 2.2), the third to the capacity of utilization CU (variable number
20 in table 2.2) and the last one to the unemployment rate UR (variable number 25 in table 2.2).
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Figure 2.4: Macro-yields model in sample fit: key macro variables/2
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The figure displays some observed key macroeconomic variables in blue and the relative in sample
fit of the macro-yields model. The green line refers to the macro-yields model with only three
factors, identified as the level, slope and curvature. The red line refers to the macro-yields model
with four factors: the level, slope and curvature plus one unidentified factor. The first plot refers
to the employment EMP (variable number 33 table 2.2), the second to the producer price index
PPI (variable number 95 in table 2.2), the third to the consumer price index CPI (variable number
101 in table 2.2) and the last one the personal consumption expenditure implicit price deflator
PCE (variable number 111 in table 2.2).
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Figure 2.5: Estimated macro-yields factors
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Estimated factors of the macro-yields model. The first plot displays the estimated level of the
macro-yields model (MY) in blue and the relative Nelson and Siegel factor (NS) in green. The
second plot refers to the slope, the third to the curvature and the last one to the unidentified
factor. The gray-shaded area refers to the recessions.
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Figure 2.6: Smoothed square forecast errors
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Notes: 30 months moving average square forecast errors for the OY (only yields), BMY (basic
macro-yields), LMY (large macro-yields) and MY (macro-yields) models for yields with maturity
3, 12, 60 and 120 months. The MSFE is shown for the out-of-sample period 1985:1-2000:12 for a
6-month horizon in top panel and a 12-month horizon in the bottom panel. The shadowed area
indicates the recession between July 1990 and March 1991.
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Figure 2.7: Smoothed forecast errors
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Notes: 30 months moving average forecast errors for the OY (only yields), BMY (basic macro-
yields), LMY (large macro-yields) and MY (macro-yields) models for yields with maturity 3,
12, 60 and 120 months. The MSFE is shown for the out-of-sample period 1985:1-2000:12 for a
6-month horizon in top panel and a 12-month horizon in the bottom panel. The shadowed area
indicates the recession between July 1990 and March 1991.
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Chapter 3

How Arbitrage-Free is the

Nelson-Siegel Model?

ABSTRACT: This paper tests whether the Nelson and Siegel (1987) yield curve

model is arbitrage-free in a statistical sense. Theoretically, the Nelson-Siegel model

does not ensure the absence of arbitrage opportunities, as shown by Bjork and

Christensen (1999). Still, central banks and public wealth managers rely heavily on

it. Using a non-parametric resampling technique and zero-coupon yield curve data

from the US market, we find that the no-arbitrage parameters are not statistically

different from those obtained from the NS model, at a 95 percent confidence level.

We therefore conclude that the Nelson and Siegel yield curve model is compatible

with arbitrage-freeness.

Keywords: Nelson-Siegel model; No-arbitrage restrictions; affine term structure

models; non-parametric test.

JEL classification: C14, C15, G12.

This chapter is adapted from the paper ”How arbitrage free is the Nelson and Siegel

model?” written with Ken Nyholm (ECB) and Rositsa Vidova-Koleva (ECB and

Universitat Autonoma de Barcelona), ECB Working Paper 2008, No 874.
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3.1 Introduction

Fixed-income wealth managers in public organizations, investment banks and cen-

tral banks rely heavily on Nelson and Siegel (1987) type models to fit and forecast

yield curves. According to BIS (2005), the central banks of Belgium, Finland,

France, Germany, Italy, Norway, Spain, and Switzerland, use these models for es-

timating zero-coupon yield curves. The European Central Bank (ECB) publishes

daily Eurosystem-wide yield curves on the basis of the Soderlind and Svensson

(1997) model, which is an extension of the Nelson-Siegel model.1 In its foreign

reserve management framework the ECB uses a regime-switching extension of the

Nelson-Siegel model, see Bernadell, Coche and Nyholm (2005).

There are at least four reasons for the popularity of the Nelson-Siegel model.

First, it is easy to estimate. In fact, if the so-called time-decay-parameter is fixed,

then Nelson-Siegel curves are obtained by linear regression techniques. If this

parameter is not fixed, one has to resort to non-linear regression techniques. In

addition, the Nelson-Siegel model can be adapted in a time-series context, as shown

by Diebold and Li (2006). In this case the Nelson-Siegel yield-curve model can be

seen as the observation equation in a state-space model, and the dynamic evolution

of yield curve factors constitutes the transition equation. As a state-space model,

estimation can be carried out via the Kalman filter. Second, by construction, the

model provides yields for all maturities, i.e. also maturities that are not covered by

the data sample. As such it lends itself as an interpolation and extrapolation tool

for the analyst who often is interested in yields at maturities that are not directly

observable.2 Third, estimated yield curve factors obtained from the Nelson and

Siegel model have intuitive interpretations, as level, slope (the difference between

the long and the short end of the yield curve), and curvature of the yield curve.

This interpretation is akin to that obtained by a principal component analysis (see,

1For Eurosystem-wide yield curves see http://www.ecb.int/stats/money/
yc/html/index.en.html.

2This is relevant e.g. in a situation where fixed-income returns are calculated to take into
account the roll-down/maturity shortening effect.
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e.g. Litterman and Scheinkman (1991) and Diebold and Li (2006)). Due to the

intuitive appeal of the Nelson-Siegel parameters, estimates and conclusions drawn

on the basis of the model are easy to communicate. Fourth, empirically the Nelson-

Siegel model fits data well and performs well in out-of-sample forecasting exercises,

as shown by e.g. Diebold and Li (2006) and De Pooter, Ravazzolo and van Dijk

(2007).

Despite its empirical merits and wide-spread use in the finance community, two

theoretical concerns can be raised against the Nelson-Siegel model. First, it is not

theoretically arbitrage-free, as shown by Bjork and Christensen (1999). Second, as

demonstrated by Diebold, Ji and Li (2004), it falls outside the class of affine yield

curve models defined by Duffie and Kan (1996) and Dai and Singleton (2000).

The Nelson-Siegel yield curve model operates at the level of yields, as they are

observed, i.e. under the so-called empirical measure. In contrast, affine arbitrage-

free yield curve models specify the dynamic evolution of yields under a risk-neutral

measure and then map this dynamic evolution back to the physical measure via

a functional form for the market price of risk. The advantage of the no-arbitrage

approach is that it automatically ensures a certain consistency between the pa-

rameters that describe the dynamic evolution of the yield curve factors under the

risk-neutral measure, and the translation of yield curve factors into yields under

the physical measure. An arbitrage-free setup will, by construction, ensure internal

consistency as it cross-sectionally restricts, in an appropriate manner, the estimated

parameters of the model. It is this consistency that guarantees arbitrage freeness.

Since a similar consistency is not hard-coded into the Nelson-Siegel model, this

model is not necessarily arbitrage-free.3

The main contribution of the current paper is to conduct a statistical test for

the equality between the factor loadings of Nelson-Siegel model and the implied

arbitrage-free loadings. In the context of a Monte Carlo study, the Nelson and

Siegel factors are estimated and used as exogenous factors in an essentially-affine

3An illustrative example of this issue for a two-factor Nelson-Siegel model is presented by
Diebold, Piazzesi and Rudebusch (2005).
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term structure model to estimate the implied arbitrage-free factor loadings. The

no-arbitrage model with time-varying term premia is estimated using the two-step

approach of Ang, Piazzesi and Wei (2006), while we use the re-parametrization

suggested by Diebold and Li (2006) as our specification of the Nelson-Siegel model.

In a recent study Christensen, Diebold and Rudebusch (2007) reconcile the Nel-

son and Siegel modelling setup with the absence of arbitrage by deriving a class of

dynamic Nelson-Siegel models that fulfill the no-arbitrage constraints. They main-

tain the original Nelson-Siegel factor-loading structure and derive mathematically,

a correction term that, when added to the dynamic Nelson-Siegel model, ensures

the fulfillments of the no-arbitrage constraints. The correction term is shown to

impact mainly very long maturities, in particular maturities above the ten-year

segment.

While being different in setup and analysis method, our paper confirms the

findings of Christensen et al. (2007). In particular, we find that the Nelson-Siegel

model is not significantly different from a three-factor no-arbitrage model when it

is applied to US zero-coupon yield-curve data. In addition, we outline a general

method for empirically testing for the fulfillment of the no-arbitrage constraints

in yield curve models that are not necessarily arbitrage-free. Our results further-

more indicate that non-compliance with the no-arbitrage constraints is most likely

to stem from ”mis-specification” in the Nelson-Siegel factor loading structure per-

taining to the third factor, i.e. the one often referred to as the curvature factor.

Our test is conducted on U.S. Treasury zero-coupon yield data covering the

period from January 1970 to December 2000 and spanning 18 maturities from 1

month to 10 years. We rely on a non-parametric resampling procedure to gener-

ate multiple realizations of the original data. Our approach to regenerate yield

curve samples can be seen as a simplified version of the yield-curve bootstrapping

approach suggested by Rebonato, Mahal, Joshi, Bucholz and Nyholm (2005).

In summary, we (1) generate a realization from the original yield curve data us-

ing a block-bootstrapping technique; (2) estimate the Nelson-Siegel model on the
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regenerated yield curve sample; (3) use the obtained Nelson-Siegel yield curve fac-

tors as input for the essentially affine no-arbitrage model; (4) estimate the implied

no-arbitrage yield curve factor loadings on the regenerated data sample. Steps (1)

to (4) are repeated 1000 times in order to obtain bootstrapped distributions for the

no-arbitrage parameters. These distributions are then used to test whether the im-

plied no-arbitrage factor loadings are significantly different from the Nelson-Siegel

loadings.

Our results show that the Nelson Siegel factor loadings are not statistically

different from the implied no-arbitrage factor loadings at a 95 percent level of con-

fidence. In an out-of-sample forecasting experiment, we show that the performance

of the Nelson-Siegel model is as good as the no-arbitrage counterpart. We therefore

conclude that the Nelson and Siegel model is compatible with arbitrage-freeness at

this level of confidence.

3.2 Modeling framework

Term-structure factor models describe the relationship between observed yields,

yield curve factors and loadings as given by

yt = a + bXt + εt, (3.2.1)

where yt denotes a vector of yields observed at time t for N different maturities; yt

is then of dimension (N × 1). Xt denotes a (K × 1) vector of yield curve factors,

where K counts the number of factors included in the model. The variable a is a

(N ×1) vector of constants, b is of dimension (N ×K) and contains the yield curve

factor loadings. εt is a zero-mean (N × 1) vector of measurement errors.

The reason for the popularity of factor models in the area of yield curve modeling

is the empirical observation that yields at different maturities generally are highly

correlated. So, when the yield for one maturity changes, it is very likely that yields

at other maturities also change. As a consequence, a parsimonious representation of

85



the yield curve can be obtained by modeling fewer factors than observed maturities.

This empirical feature of yields was first exploited in the continuous-time one

factor models, where, in terms of equation (3.2.1), Xt = rt, rt being the short rate,

see e.g. Merton (1973), Vasicek (1977), Cox, Ingersoll and Ross (1985), Black,

Derman and Toy (1990), and Black and Karasinski (1993).4 A richer structure for

the dynamic evolution of yield curves can be obtained by adding more yield curve

factors to the model. Accordingly, Xt becomes a column-vector with a dimension

equal to the number of included factors.5 The multifactor representation of the

yield curve is also supported empirically by principal component analysis, see e.g.

Litterman and Scheinkman (1991).

Multifactor yield curve models can be specified in different ways: the yield

curve factors can be observable or unobserved, in which case their values have to

be estimated alongside the other parameters of the model; the structure of the

factor loadings can be specified in a way such that a particular interpretation is

given to the unobserved yield curve factors, as e.g. Nelson and Siegel (1987) and

Soderlind and Svensson (1997); or the factor loadings can be derived from no-

arbitrage constraints, as in, among many others, Duffee (2002), Ang and Piazzesi

(2003) and Ang, Bekaert and Wei (2007).

Yield curve models that are linear functions of the underlying factors can be

written as special cases of equation (3.2.1).6 In this context, the two models used

in the current paper are presented below.

3.2.1 The Nelson-Siegel model

The Nelson and Siegel (1987) model, as re-parameterized by Diebold and Li (2006),

can be seen as a restricted version of equation (3.2.1) by imposing the following

4The merit of these models mainly lies in the area of derivatives pricing.
5Yield curve factor models are categorized by Duffie and Kan (1996) and Dai and Singleton

(2000).
6Excluded from this list are naturally the quadratic term structure models as proposed by

Ahn, Dittmar and Gallant (2002).
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constraints:

aNS = 0 (3.2.2)

bNS =

[
1

1 − exp(−λτ)

λτ

1 − exp(−λτ)

λτ
− exp(−λτ)

]
, (3.2.3)

where λ is the exponential decay rate of the loadings for different maturities, and τ

is time to maturity. This particular loading structure implies that the first factor is

responsible for parallel yield curve shifts, since the effect of this factor is identical

for all maturities; the second factor represents minus the yield curve slope, because

it has a maximal impact on short maturities and minimal effect on the longer

maturity yields; and, the third factor can be interpreted as the curvature of the

yield curve, because its loading has a hump in the middle part of the maturity

spectrum, and little effect on both short and long maturities. In summary, the

three factors have the interpretation of a yield curve level, slope and curvature.

[FIGURE 3.1 AROUND HERE]

A visual representation of the Nelson and Siegel factor loading structure is given

in Figure 3.1. By imposing the restrictions (3.2.2) to (3.2.3) on equation (3.2.1) we

obtain

yt = bNSXNS
t + εNS

t , (3.2.4)

where XNS
t = [Lt St Ct] represents the Nelson-Siegel yield curve factors: Level,

Slope and Curvature, at time t.

Empirically the Nelson-Siegel model fits data well, as shown by Nelson and

Siegel (1987), and performs relatively well in out-of-sample forecasting exercises

(see among others, Diebold and Li (2006) and De Pooter et al. (2007)). However,

as mentioned in the introduction, from a theoretical viewpoint the Nelson-Siegel

yield curve model is not necessarily arbitrage-free (e.g. see Bjork and Christensen

(1999)) and does not belong to the class of affine yield curve models (e.g. see
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Diebold et al. (2004)).

3.2.2 Gaussian arbitrage-free models

The Gaussian discrete-time arbitrage-free affine term structure model can also be

seen as a particular case of equation (3.2.1), where the factor loadings are cross-

sectionally restricted to ensure the absence of arbitrage opportunities. This class

of no-arbitrage (NA) models can be represented by

yt = aNA + bNAXNA
t + εNA

t , (3.2.5)

where the underlying factors are assumed to follow a Gaussian VAR(1) process

XNA
t = μ + ΦXNA

t−1 + ut,

with ut ∼ N(0, ΣΣ′) being a (K × 1) vector of errors, μ is a (K × 1) vector of

means, and Φ is a (K × K) matrix collecting the autocorrelation coefficients. The

elements of aNA and bNA in equation (3.2.5) are defined by

aNA
τ = −Aτ

τ
, bNA

τ = −Bτ

τ
, (3.2.6)

where, as shown by e.g. Ang and Piazzesi (2003), Aτ and Bτ satisfy the following

recursive formulas to preclude arbitrage opportunities

Aτ+1 =Aτ + B′
τ (μ − Σ λ0) +

1

2
B′

τΣΣ′Bτ − A1, (3.2.7)

B′
τ+1 =B′

τ (Φ − Σ λ1) − B′
1, (3.2.8)

with boundary conditions A0 = 0 and B0 = 0. The parameters λ0 and λ1 govern

the time-varying market price of risk, specified as an affine function of the yield
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curve factors

Λt = λ0 + λ1X
NA
t .

The coefficients A1 = −aNA
1 and B1 = −bNA

1 in equations (3.2.7) to (3.2.8) refer to

the short rate equation

rt = aNA
1 + bNA

1 XNA
t + vt,

where usually rt is approximated by the one-month yield.

If the factors XNA
t driving the dynamics of the yield curve are assumed to

be unobservable, the estimation of affine term structure models requires a joint

procedure to extract the factors and to estimate the parameters of the model. This

is a difficult task, given the non-linearity of the model and that the number of

parameters grows with the number of included factors. As the factors are latent,

identifying restrictions have to be imposed. Moreover, as mentioned by Ang and

Piazzesi (2003), the likelihood function is flat in the market-price-of-risk parameters

and this further complicates the numerical estimation process.

The most common procedure to estimate affine term structure models is de-

scribed by Chen and Scott (1993). It relies on the assumption that as many yields,

as factors, are observed without measurement error. Hence, it allows for recovering

the latent factors from the observed yields by inverting the yield curve equation.

Unfortunately, the estimation results will depend on which yields are assumed to be

measured without error and will vary according to the choice made. Alternatively,

to reduce the degree of arbitrariness, observable factor can be used. For example,

Ang et al. (2006) use the short rate, the spread and the quarterly GDP growth

rate as yield curve factors. It is also possible to rely on pure statistical techniques

in the determination of yield curve factors, as e.g. De Pooter et al. (2007) who use

extracted principal components as yield curve factors.
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3.2.3 Motivation

The affine no-arbitrage term structure models impose a structure on the loadings

aNA and bNA, presented in equations (3.2.6) to (3.2.8), such that the resulting

yield curves, in the maturity dimension, are compatible with the estimated time-

series dynamics for the yield curve factors. This hard-coded internal consistency

between the dynamic evolution of the yield curve factors, and hence the yields at

different maturity segments of the curve, is what ensures the absence of arbitrage

opportunities. A similar constraint is not integrated in the setup of the Nelson-

Siegel model (see, Bjork and Christensen (1999)).

However, in practice, when the Nelson-Siegel model is estimated, it is possi-

ble that the no-arbitrage constraints are approximately fulfilled, i.e. fulfilled in a

statistical sense, while not being explicitly imposed on the model. It cannot be

excluded that the functional form of the yield curve, as it is imposed by the Nel-

son and Siegel factor loading structure in equations (3.2.2) and (3.2.3), fulfils the

no-arbitrage constraints most of the times.

As a preliminary check for the comparability of the Nelson-Siegel model and

the no-arbitrage model, Figure 3.2 compares extracted yield curve factors i.e. X̂NA
t

and X̂NS
t for US data from 1970 to 2000 (the data is presented in Section 3.3). We

estimate the Nelson-Siegel factors as in Diebold and Li (2006), and the no-arbitrage

model as in Ang and Piazzesi (2003) using the Chen and Scott (1993) method, and

assuming that yields at maturities 3, 24, 120 months are observed without error.

[FIGURE 3.2 AROUND HERE]

Although the two models have different theoretical backgrounds and use different

estimation procedures, the extracted factors are highly correlated. Indeed, the

estimated correlation between the Nelson-Siegel level factor and the first latent

factor from the no-arbitrage model is 0.95. The correlation between the slope and

the second latent factor is 0.96 and between the curvature and the third latent

factor is 0.65.7

7Correlations are reported in absolute value.
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On the basis of these results and in order to properly investigate whether the

Nelson-Siegel model is compatible with arbitrage-freeness, we conduct a test for

the equality of the Nelson-Siegel factor loadings to the implied no-arbitrage ones

obtained from an arbitrage-free model. To ensure correspondence between the

Nelson-Siegel model and its arbitrage-free counterpart, we use extracted Nelson-

Siegel factors as exogenous factors in the no-arbitrage setup. The model that we

estimate is the following

yt = aNA + bNAX̂NS
t + εNA

t , εNA
t ∼ (0, Ω), (3.2.9)

where X̂NS
t are the estimated Nelson-Siegel factors from equations (3.2.2) to (3.2.4),

the observation errors εNA
t are not assumed to be normally distributed and aNA and

bNA satisfy the no-arbitrage restrictions presented in equations (3.2.6) to (3.2.8).

In order to impose these no-arbitrage restrictions we have to fit a VAR(1) on the

estimated Nelson-Siegel factors

X̂NS
t = μ + ΦX̂NS

t−1 + ut, (3.2.10)

with ut ∼ N(0, ΣΣ′), to specify the market price of risk as an affine function of the

estimated Nelson-Siegel factors

Λt = λ0 + λ1X̂
NS
t , (3.2.11)

and the short rate equation as

rt = aNA
1 + bNA

1 X̂NS
t + vt. (3.2.12)

In this way, we estimate the no-arbitrage factor loading structure that emerges

when the underlying yield curve factors are identical to the Nelson-Siegel yield

curve factors. The test is then formulated in terms of the equality between the

intercepts of the two models, aNS and aNA, and the relative loadings, bNA and bNS .
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3.3 Data

We use U.S. Treasury zero-coupon yield curve data covering the period from Jan-

uary 1970 to December 2000 constructed by Diebold and Li (2006), based on end-of-

month CRSP government bond files.8 The data is sampled at a monthly frequency

providing a total of 372 observations for each of the maturities observed at the

(1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120) month segments.

[FIGURE 3.3 AROUND HERE]

The data is presented in Figure 3.3. The surface plot illustrates how the yield curve

evolves over time. Table 3.1 reports the mean, standard deviation and autocorre-

lations to further illustrate the properties of the data.

[TABLE 3.1 AROUND HERE]

The estimated autocorrelation coefficients are significantly different from zero at

a 95 percent level of confidence for lag one through twelve, across all maturities.9

Such high autocorrelations could suggest that the underlying yield series are inte-

grated of order one. If this is the case, we would need to take first-differences to

make the variables stationary before valid statistical inference could be drawn, or

we would have to resort to co-integration analysis. However, economic theory tells

us that nominal yield series cannot be integrated, since they have a lower bound

support at zero and an upper bound support lower than infinity. Consequently,

and in accordance with the yield-curve literature, we model yields in levels and

thus disregard that their in-sample properties could indicate otherwise.10

8The data can be downloaded from http://www.ssc.upenn.edu/ fdiebold/papers/
paper49/FBFITTED.txt and Diebold and Li (2006, pp. 344-345) give a detailed description of
the data treatment methodology applied.

9A similar degree of persistence in yield curve data is also noted by Diebold and Li (2006).
10It is often the case in yield-curve modeling that yields are in levels. See, among others,

Nelson and Siegel (1987), Diebold and Li (2006), Diebold, Rudebusch and Aruoba (2006), Ang
and Piazzesi (2003) and Dai and Singleton (2000).
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3.4 Estimation Procedure

To estimate the Nelson-Siegel factors X̂NS
t in equation (3.2.4), we follow Diebold

and Li (2006) by fixing the decay parameter λ = 0.0609 in equation (3.2.3) and

by using OLS.11 We treat the obtained Nelson-Siegel factors as observable in the

estimation of the no-arbitrage model presented in equations (3.2.6) to (3.2.12).

To estimate the parameters of the arbitrage-free model we standardize the Nelson

and Siegel factors and use the two-step procedure proposed by Ang et al. (2006).

In the first step, we fit a VAR(1) for the standardized Nelson-Siegel factors to

estimate μ̂, Φ̂ and Σ̂ from equation (3.2.10). And, we project the short rate (one-

month yield) on the standardized Nelson-Siegel yield curve factors, to estimate the

parameters in the short rate equation (3.2.12). In the second step, we minimize

the sum of squared residuals between observed yields and fitted yields to estimate

the market-price-of-risk parameters λ̂0 and λ̂1 of equation (3.2.11). Finally, we

un-standardize the Nelson-Siegel factors and compute âNA and b̂NA.

Our goal is to test whether the Nelson-Siegel model in equations (3.2.2) to

(3.2.4) is statistically different from the no-arbitrage model in equations (3.2.6) to

(3.2.12). Since the estimated factors, X̂NS
t are the same for both models we can

formulate our hypotheses is the following way:

H1
0 : aNA

τ = aNS
τ ≡ 0,

H2
0 : bNA

τ (1) = bNS
τ (1),

H3
0 : bNA

τ (2) = bNS
τ (2),

H4
0 : bNA

τ (3) = bNS
τ (3),

where bNA
τ (k) denotes the loadings on the k-th factor in the no-arbitrage model at

maturity τ , and bNS
τ (k) denotes the corresponding variable from the Nelson-Siegel

model.

11This value of λ maximizes the loading on the curvature at 30 months maturity as shown by
Diebold and Li (2006).

93



We claim that the Nelson-Siegel model is statistically compatible with arbitrage-

freeness if H1
0 to H4

0 are not rejected at traditional levels of confidence. Notice that

to test for H1
0 to H4

0 we only need to estimate aNA and bNA, since the Nelson-Siegel

loading structure is fixed from the model. To account for the two-step estimation

procedure of the no-arbitrage model and for the generated regressor problem, we

construct confidence intervals around âNA and b̂NA using the resampling procedure

described in the next section.

3.4.1 Resampling procedure

To recover the empirical distributions of the estimated parameters we conduct block

resampling and reconstruct multiple yield curve data samples from the original yield

curve data in the following way. We denote with G the matrix of observed yield

ratios with elements yt,τ/yt−1,τ where t = (2, . . . , T ) and τ = (1, . . . , N).

We first randomly select a starting yield curve yk, where the index k is an integer

drawn randomly from a discrete uniform distribution [1, . . . , T ]. The resulting k

marks the random index value at which the starting yield curve is taken.

In a second step, blocks of length w are sampled from the matrix of yield ratios

G. The generic i-th block can be denoted by g̃z,i where z is a random number from

[2, . . . , T −w +1] denoting the first observation of the block and I is the maximum

number of blocks drawn, i = 1 . . . I. 12 A full data-sample of regenerated yield

curve ratios G̃ can then be constructed by vertical concatenation of the drawn data

blocks g̃z,i for i = 1 . . . I.

Finally, a new data set of resampled yields can be constructed via:⎧⎪⎨⎪⎩ỹ1 = yk

ỹs = ỹs−1 
 {G̃}s, s = 2, . . . , S,
(3.4.1)

where {G̃}s denotes the sth row of the matrix of resampled ratios G̃, and 
 denotes

12We use ∼ to indicate the re-sampled variables.
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element by element multiplication.

We choose to resample from yield ratios for two reasons. First, it ensures posi-

tiveness of the resampled yields. Second, as reported in Table 3.1, yields are highly

autocorrelated and close to I(1). Therefore, one could resample from first differ-

ences, but as reported in Table 3.2, first differences of yields are highly autocorre-

lated and not variance-stationary. Yield ratios display better statistical properties

regarding variance-stationarity, as can be seen by comparing the correlation coeffi-

cients for squared differences and ratios in Table 3.2. Block-bootstrapping is used

to account for serial correlation in the yield curve ratios.

[TABLE 3.2 AROUND HERE]

A similar resampling technique has been proposed by Rebonato et al. (2005).

They provide a detailed account for the desirable statistical features of this ap-

proach. In the present context we recall that the method ensures: (i) the exact

asymptotic recovery of all the eigenvalues and eigenvectors of yields; (ii) the correct

reproduction of the distribution of curvatures of the yield curve across maturities;

(iii) the correct qualitative recovery of the transition from super- to sub-linearity

as the yield maturity is increased in the variance of n-day changes, and (iv) sat-

isfactory accounting of the empirically-observed positive serial correlations in the

yields.

To test hypotheses H1
0 to H4

0 we employ the following scheme:

1. Construct a yield curve sample ỹ following equation (3.4.1);

2. Estimate the Nelson-Siegel yield curve factors X̃NS
t on ỹ;

3. Use X̃NS
t to estimate the parameters ãNA and b̃NA from the arbitrage-free

model given in equations (3.2.6) - (3.2.12);

4. Repeat steps 1 to 3, 1000 times to build a distribution for the parameter

estimates âNA and b̂NA;
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5. Construct confidence intervals for âNA and b̂NA using the sample quantiles of

the empirical distribution of the estimated parameters.

Note that by fixing λ in step 2, the Nelson-Siegel factor loading structure remains

unchanged from repetition to repetition. We set the block length equal to 50

observations, i.e. w = 50, and generate a total of 370 yield curve observations for

each replication, i.e. S = 370.13

3.5 Results

This section presents three sets of results to help assess whether the Nelson-Siegel

model is compatible with arbitrage-freeness when applied to US zero-coupon data.

Our main result is a test of equality of the factor loadings on the basis of the resam-

pling technique outlined in section 3.4. In addition we compare the in-sample and

out-of-sample performance of the Nelson-Siegel model, equations (3.2.2) - (3.2.4),

to the no-arbitrage model based on exogenous Nelson-Siegel yield curve factors,

equations (3.2.6) - (3.2.12).

3.5.1 Testing results

Using the resampling methodology outlined in section 3.4, we generate empiri-

cal distributions for each factor loading of the no-arbitrage yield curve model in

equation (3.2.9). Results are presented for each maturity covered by the original

data sample. The Nelson-Siegel factor loading structure, in equations (3.2.2) and

(3.2.3), is constant across all bootstrapped data sampled because λ is treated as

a known parameter.14 Hence, only the extracted Nelson-Siegel factors vary across

the bootstrap samples.

13The last block is drawn to contain 20 observations as to obtain a total number of observations
for each regenerated sample close to the number of observations of the original sample, 372.

14The results presented in the paper are robust to changes in λ. We have performed the
calculations for other values of λ, namely λ = 0.08, λ = 0.045, and λ = 0.0996, and the results
for these values of λ are qualitatively the same as the ones presented in the paper.
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Parameter estimates and corresponding empirical confidence intervals for the

no-arbitrage model, equations (3.2.6) - (3.2.12), are shown in Table 3.3. The diago-

nal elements of the matrices holding the estimated autoregressive coefficients Φ̂ and

the covariance matrix of the VAR residuals Σ̂, in equation (3.2.10), are significantly

different from zero at a 95 percent level of confidence. In addition, the estimates

of aNA
1 , and the two first elements of the (3 × 1) vector bNA

1 in equation (3.2.12),

are also different from zero, judged at the same level of confidence.

[TABLE 3.3 AROUND HERE]

The estimated intercepts of the no-arbitrage model âNA, computed as in equa-

tions (3.2.6)- (3.2.7), are presented in Table 3.4, for each maturity covered by the

original data. This table reports also the 95 percent confidence intervals, obtained

from the resampling, and the Nelson-Siegel intercepts, aNS. Therefore, results in

Table 3.4 allow for testing H1
0 for the equality between the intercepts in the yield

curve equations for the no-arbitrage and the Nelson-Siegel models. Tables 3.5 to

3.7 present the corresponding results that allow us to test H2
0 , H3

0 , and H4
0 , i.e.

whether the corresponding yield curve factor loadings are identical, in a statistical

sense.

[TABLE 3.4 to 3.7 AROUND HERE]

Figure 3.4 gives a visual representation of the results contained in Tables 3.4

to 3.7. The figure shows the estimated no-arbitrage loadings, âNA and b̂NA, with

the relative 50 percent and 95 percent empirical confidence intervals obtained from

resampling, as well as the parameter values for the Nelson-Siegel model, bNS, for

comparison.

It is clear from Figure 3.4 that the empirical distributions are highly skewed for

most of the maturities. Consider, for example, the plot for the intercept estimates

(the top left plot in Figure 3.4) at maturity 120. It is evident that the distribution

of the no-arbitrage coefficient is highly right skewed.
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[FIGURE 3.4 AROUND HERE]

This non-normality of the distributions for the estimated no-arbitrage parameters,

is further analyzed in Table 3.8. This table shows that all distributions display

skewness, excess kurtosis, or both. Selected maturities are shown in Table 3.8,

however, this result holds for all maturities included in the sample. We also perform

the Jarque-Bera test for normality, and reject normality at a 95 percent confidence

level for all maturities.

[TABLE 3.8 AROUND HERE]

Visual confirmation of the documented non-normality is provided by Figures 3.5

to 3.8. For a representative selection of maturities, these figures show the empiri-

cal distribution of the estimated no-arbitrage loadings, and a normal distribution

approximation. In addition, the figures show the 95 percent confidence intervals

derived from the empirical distribution and the normal approximation.

[FIGURE 3.5 to 3.8 AROUND HERE]

The non-normality of the empirical distributions for the bootstrapped intercepts

âNA, and factor loadings b̂NA, indicates that the confidence intervals should be

constructed using the sample quantiles of the empirical distribution. The empirical

95 percent confidence intervals are included in Tables 3.4, 3.5, 3.6 and 3.7. The

lower bound of the confidence intervals is denoted by a subscript L, and the upper

bound by a U .

By inspecting the tables, we reach the following conclusions for the tested hy-

potheses:

H1
0 : aNA

τ = aNS
τ ≡ 0 not rejected at a 95% level of confidence,

H2
0 : bNA

τ (1) = bNS
τ (1) not rejected at a 95% level of confidence,

H3
0 : bNA

τ (2) = bNS
τ (2) not rejected at a 95% level of confidence,

H4
0 : bNA

τ (3) = bNS
τ (3) not rejected at a 95% level of confidence.

98



For the test of the curvature parameter in H4
0 an additional comment is warranted.

As can be seen from Figure 3.4, the curvature parameter, at middle maturities,

is the closest to violating the 95 percent confidence band, and this parameter

thus constitutes the “weak point” of the Nelson-Siegel model in relation to the no-

arbitrage constraints. This finding is in line with Bjork and Christensen (1999) who

prove that a Nelson-Siegel type model with two additional curvature factors, each

with its own λ, theoretically would be arbitrage-free. However, when acknowledging

that Litterman and Scheinkman (1991) find that the curvature factor only accounts

for approximately 2 percent of the variation of yields, and in the light of our results,

one can question the significance of imposing constraints on parameters that have

an explanatory power in the range of 2 percent. Our empirical finding is also

supported by the theoretical results in Christensen et al. (2007) who show that

adding an additional term at very long maturities reconciles the dynamic Nelson-

Siegel model with the affine arbitrage-free term structure models.

Using yield curve modeling for purposes other than relative pricing, as for ex-

ample central bankers and fixed-income strategists do, one might be tempted to

use the Nelson-Siegel model on the basis of its arbitrage-freeness compatibility.

The hypothesis H1
0 through H4

0 test the equality between each no-arbitrage

factor loading and the corresponding Nelson-Siegel factor loading separately. The

results reported above are confirmed by a joint F test. To perform the test we

use the empirical variance-covariance matrix of the estimates. The test statistic is

0.22 and the 95 percent critical F-value with 72 and 300 degrees of freedom is 1.34.

Therefore, we also cannot reject the hypothesis that the loading structures of the

two models are equal in a statistical sense.

3.5.2 In-sample comparison

To conduct an in-sample comparison of the two models, we estimate the Nelson-

Siegel model in equations (3.2.2) - (3.2.4) and the no-arbitrage model in equations

(3.2.6) - (3.2.12), where the latter model uses the yield curve factors extracted from
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the former. Measures of fit are displayed in Table 3.9.

A general observation is that both models fit data well: the means of the resid-

uals for all maturities are close to zero and show low standard deviations. The root

mean squared error, RMSE, and the mean absolute deviation, MAD, are also low

and similar for both models.

More specifically, Table 3.9 shows that the averages of the residuals from the

fitted Nelson-Siegel model, ε̂NS, for the included maturities, are all lower than 16

basis points, in absolute value. In fact, the mean of the absolute residuals across

maturities is 5 basis points, while the corresponding number for ε̂NA is 3 basis

points. The 3 months maturity is the worst fitted maturity for the no-arbitrage

model with a mean of the residuals of 8 basis points. For the Nelson-Siegel model

the worst fitted maturity is the 1 month segment with a mean of the residuals close

to -16 bp. Furthermore, the two models have the same amount of autocorrelation

in the residuals. A similar observation is made for the Nelson-Siegel model alone

by Diebold and Li (2006).

[TABLE 3.9 AROUND HERE]

Drawing a comparison on the basis of RMSE and MAD figures gives the conclusion

that both models fit data equally well.

3.5.3 Out-of-sample comparison

As a last comparison-check of the equivalence of the Nelson-Siegel model and the

no-arbitrage counterpart, we perform an out-of-sample forecast experiment. In

particular, we generate h-steps ahead iterative forecasts in the following way. First,

the yield curve factors are projected forward using the estimated VAR parameters

from equation (3.2.10)

X̂NS
t+h|t =

h−1∑
s=0

Φ̂sμ̂ + Φ̂hX̂NS
t ,
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where h ∈ {1, 6, 12} is the forecasting horizon in months. Second, out-of-sample

forecasts are calculated for the two models, given the projected factors,

ŷNS
t+h|t = bNSX̂NS

t+h|t,

ŷNA
t+h|t = âNA

t + b̂NA
t X̂NS

t+h|t,

where subscripts t on âNA
t and âNA

t indicate that parameters are estimated using

data until time t. To evaluate the prediction accuracy at a given forecasting horizon,

we use the mean squared forecast error, MSFE, the average squared error over the

evaluation period, between t0 and t1, for the h-months ahead forecast of the yield

with maturity τ

MSFE(τ, h, m) =
1

t1 − t0 + 1

t1∑
t=t0

(
ŷm

t+h,τ |t − yt+h,τ

)2
, (3.5.1)

where m ∈ {NA, NS} denotes the model.

The results presented are expressed as ratios of the MSFEs of the two models

against the MSFE of a random walk. The random walk represents a näıve forecast-

ing model that historically has proven very difficult to outperform. The success of

the random walk model in the area of yield curve forecasting is due to the high

degree of persistence exhibited by observed yields. The random walk h-step ahead

prediction, at time t, of the yield with maturity τ is

ŷt+h,τ |t = yt,τ .

To produce the first set of forecasts, the model parameters are estimated on a

sample defined from 1970:01 to 1993:01, and yields are forecasted for the chosen

horizons, h. The data sample is then increased by one month and the parameters

are re-estimated on the new data covering 1970:01 to 1993:02. Again, forecasts are

produced for the forecasting horizons. This procedure is repeated for the full sam-

ple, generating forecasts on successively increasing data samples. The forecasting
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performances are then evaluated over the period 1994:01 to 2000:12 using the mean

squared forecast error, as shown in equation (3.5.1).

Table 3.10 reports on the out-of-sample forecast performance of the Nelson-

Siegel and the implied no-arbitrage model evaluated against the random walk fore-

casts.

[FIGURE 3.10 AROUND HERE]

The well-known phenomenon of the good forecasting performance of the ran-

dom walk model is observed for the 1 month forecasting horizon. For the 6 and

12 month forecasting horizons, the Nelson-Siegel model and the no-arbitrage coun-

terpart generally perform better than the random walk model, as shown by ratios

being less than one.

Turning now to the relative comparison of the no-arbitrage model against the

Nelson-Siegel model, it can be concluded that they exhibit very similar forecasting

performances. If we consider every maturity for each forecasting horizon as an

individual observation, then there are in total 54 observations. In 18 of these cases

the Nelson-Siegel model is better, in 24 cases the no-arbitrage model is better, and

in the remaining 12 cases the models perform equally well. Even when one model

is judged to be better than its competitor, the differences in the performance ratios

are very small. Typically, a difference is only seen at the second decimal with a

magnitude of 1 to 3 basis points.

In summary, it can be concluded that there is no systematic pattern across

maturities and forecasting horizons showing when one model is better than its

competitor. Indeed, to formally compare the forecasting performance of the two

models we calculate the Diebold-Mariano statistic for each maturity and forecasting

horizon. At a 5 percent level we do not reject the hypothesis that the no-arbitrage

model and the Nelson-Siegel model forecast equally well, see Table 3.11.

[TABLE 3.11 AROUND HERE]
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3.6 Conclusion

In this paper we show that the model proposed by Nelson and Siegel (1987) is

compatible with arbitrage-freeness, in the sense that the factor loadings from the

model are not statistically different from those derived from an arbitrage-free model

which uses the Nelson-Siegel factors as exogenous factors, at a 95 percent level of

confidence.

In theory, the Nelson-Siegel model is not arbitrage-free as shown by Bjork and

Christensen (1999). However, using US zero-coupon data from 1970 to 2000, a

yield curve bootstrapping approach and the implied arbitrage-free factor loadings,

we cannot reject the hypothesis that Nelson-Siegel factor loadings fulfill the no-

arbitrage constraints, at a 95 percent confidence level. Furthermore, we show that

the Nelson-Siegel model performs as well as the no-arbitrage counterpart in an

out-of-sample forecasting experiment. Based on these empirical observations, we

conclude that the Nelson-Siegel model is compatible with arbitrage-freeness.

This conclusion is of relevance to fixed-income money managers and central

banks in particular, since such organizations traditionally rely heavily on the Nelson-

Siegel model for policy and strategic investment decisions.
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Table 3.1: Summary statistics of the US zero-coupon data

τ mean std dev min max ρ(1) ρ(2) ρ(3) ρ(12)

1 6.44 2.58 2.69 16.16 0.97* 0.93* 0.89* 0.69*
3 6.75 2.66 2.73 16.02 0.97* 0.94* 0.91* 0.71*
6 6.98 2.66 2.89 16.48 0.97* 0.94* 0.91* 0.73*
9 7.10 2.64 2.98 16.39 0.97* 0.94* 0.91* 0.73*
12 7.20 2.57 3.11 15.82 0.97* 0.94* 0.91* 0.74*
15 7.31 2.52 3.29 16.04 0.97* 0.94* 0.91* 0.75*
18 7.38 2.50 3.48 16.23 0.98* 0.94* 0.92* 0.75*
21 7.44 2.49 3.64 16.18 0.98* 0.95* 0.92* 0.76*
24 7.46 2.44 3.78 15.65 0.98* 0.94* 0.92* 0.75*
30 7.55 2.36 4.04 15.40 0.98* 0.95* 0.92* 0.76*
36 7.63 2.34 4.20 15.77 0.98* 0.95* 0.93* 0.77*
48 7.77 2.28 4.31 15.82 0.98* 0.95* 0.93* 0.78*
60 7.84 2.25 4.35 15.01 0.98* 0.96* 0.94* 0.79*
72 7.96 2.22 4.38 14.98 0.98* 0.96* 0.94* 0.80*
84 7.99 2.18 4.35 14.98 0.98* 0.96* 0.94* 0.78*
96 8.05 2.17 4.43 14.94 0.98* 0.96* 0.95* 0.81*
108 8.08 2.18 4.43 15.02 0.98* 0.96* 0.95* 0.81*
120 8.05 2.14 4.44 14.93 0.98* 0.96* 0.94* 0.78*
Descriptive statistics of monthly yields at different maturities, τ , for the sample
from January 1970 to December 2000. ρ(p) refers to the sample autocorrelation
of the series at lag p and * denotes significance at 95 percent confidence level.
Confidence intervals are computed according to Box and Jenkins (1976).
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Table 3.2: Autocorrelations

Yield differences
τ ρ(1) ρ(3) ρ(12) ρ2(1) ρ2(3) ρ2(12)

1 0.06 -0.07 -0.06 0.23* 0.08 0.08
3 0.12* -0.05 -0.13* 0.34* 0.07 0.22*
6 0.16* -0.09 -0.08 0.32* 0.09 0.20*
12 0.15* -0.10 -0.05 0.16* 0.11* 0.13*
24 0.18* -0.11* 0.00 0.21* 0.13* 0.13*
36 0.14* -0.11* 0.03 0.12* 0.14* 0.14*
60 0.13* -0.07 0.03 0.09 0.13* 0.13*
84 0.10 -0.09 -0.03 0.17* 0.22* 0.18*
120 0.10 -0.05 -0.03 0.15* 0.19* 0.23*

Yield ratios
τ ρ(1) ρ(3) ρ(12) ρ2(1) ρ2(3) ρ2(12)

1 0.07 -0.05 0.10 0.23* 0.12* 0.02
3 0.11* 0.00 0.01 0.34* 0.10 0.16*
6 0.16* 0.00 0.04 0.25* 0.13* 0.13*
12 0.16* -0.04 0.04 0.10 0.13* 0.07
24 0.16* -0.07 0.03 0.06 0.12* 0.03
36 0.13* -0.09 0.06 0.01 0.06 0.05
60 0.12* -0.04 0.05 0.01 0.01 0.01
84 0.11* -0.04 0.00 0.04 0.07 0.03
120 0.08 -0.03 0.00 0.03 0.06 0.06

Sample autocorrelations of first yield differences �y,
squared first yield differences �y2, yield ratios yt

yt−1
and

squared demeaned yield ratios
(

yt

yt−1
− μ̄

)2

, for selected
maturities τ , at lags 1, 3 and 12. ∗ denotes significance at
95 percent confidence level. Confidence intervals are com-
puted according to Box and Jenkins (1976). ρ(p) and ρ2(p)
denote, respectively, the correlation of the variables and
their squares, at lag p.
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Table 3.3: Parameter estimates

Parameter Estimated value Q2.5 Q97.5

μ̂1 -0.247 -1.170 0.911
μ̂2 -0.006 -0.992 1.158
μ̂3 -0.408 -1.164 0.895

Φ̂11 0.991* 0.926 1.021

Φ̂21 -0.031 -0.094 0.032

Φ̂31 0.070 -0.102 0.154

Φ̂12 0.024 -0.037 0.068

Φ̂22 0.933* 0.888 1.013

Φ̂32 0.036 -0.140 0.185

Φ̂13 0.000 -0.035 0.062

Φ̂23 0.038 -0.015 0.082

Φ̂33 0.771* 0.755 0.975

Σ̂11 0.162* 0.086 0.306

Σ̂21 -0.051 -0.192 0.042

Σ̂31 -0.110 -0.302 0.014

Σ̂22 0.324* 0.067 0.305

Σ̂32 0.009 -0.170 0.071

Σ̂33 0.596* 0.150 0.532
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Parameter estimates (continued)

Parameter Estimated value Q2.5 Q97.5

λ̂0,1 -0.215 -3.672 1.967

λ̂0,2 -0.354 -3.043 1.995

λ̂0,3 0.297 -2.390 3.053

λ̂1,11 -0.062 -0.470 1.262

λ̂1,21 -0.123 -0.799 0.523

λ̂1,31 0.124 -1.098 0.728

λ̂1,12 0.117 -2.734 1.051

λ̂1,22 -0.049 -0.633 1.343

λ̂1,32 0.150 -1.080 1.378

λ̂1,13 -0.187 -4.208 0.209

λ̂1,23 -0.169 -2.238 -0.019

λ̂1,33 -0.024 -0.399 3.209

âNA
1 0.537* 0.115 1.202

b̂NA
1 (1) 0.168* 0.064 0.390

b̂NA
1 (2) 0.146* 0.061 0.623

b̂NA
1 (3) 0.000 -0.039 0.023

Estimated parameters from the no-arbitrage model in
equations (3.2.6) to (3.2.12) with the 95 percent con-
fidence intervals obtained by resampling. The confi-
dence intervals [Q2.5 Q97.5] refer to the empirical 2.5
percent and 97.5 percent quantiles of the distributions
of the parameters. A star * is used to indicate when a
parameter estimate is significantly different from zero
at a 95 percent level of confidence.
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Table 3.4: Estimation results for aNA

τ aNS âNA ãNA
L ãNA

U

1 0.00 0.00 -0.10 0.05
3 0.00 0.00 -0.04 0.05
6 0.00 0.00 -0.02 0.06
9 0.00 0.01 -0.02 0.05
12 0.00 0.01 -0.02 0.05
15 0.00 0.00 -0.02 0.04
18 0.00 0.00 -0.02 0.03
21 0.00 0.00 -0.03 0.02
24 0.00 0.00 -0.04 0.01
30 0.00 0.00 -0.05 0.01
36 0.00 -0.01 -0.06 0.02
48 0.00 -0.01 -0.07 0.03
60 0.00 -0.01 -0.06 0.03
72 0.00 0.00 -0.04 0.03
84 0.00 0.00 -0.02 0.02
96 0.00 0.00 -0.01 0.04
108 0.00 0.01 -0.02 0.07
120 0.00 0.01 -0.04 0.10
Estimated intercepts from the
no-arbitrage model âNA with the
95 percent confidence intervals
obtained from the resampling
[ãNA

L ãNA
U ]. The confidence in-

tervals refer to the empirical 2.5
percent and 97.5 percent quantiles
of the distribution of the param-
eters. The second column of the
Table reports the Nelson-Siegel
loadings.
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Table 3.5: Estimation results for bNA(1)

τ bNS(1) b̂NA(1) b̃NA
L (1) b̃NA

U (1)

1 1.00 0.98 0.87 1.16
3 1.00 0.99 0.90 1.06
6 1.00 0.99 0.89 1.04
9 1.00 1.00 0.92 1.04
12 1.00 1.00 0.93 1.04
15 1.00 1.00 0.94 1.04
18 1.00 1.00 0.96 1.05
21 1.00 1.00 0.97 1.06
24 1.00 1.00 0.98 1.06
30 1.00 1.01 0.98 1.08
36 1.00 1.01 0.96 1.10
48 1.00 1.00 0.95 1.10
60 1.00 1.00 0.95 1.09
72 1.00 1.00 0.95 1.06
84 1.00 1.00 0.96 1.03
96 1.00 1.00 0.92 1.01
108 1.00 0.99 0.88 1.04
120 1.00 0.99 0.82 1.08
Estimated loadings of the level factor from the
no-arbitrage model b̂NA(1) with the 95 per-
cent confidence intervals obtained from the re-
sampling [̃bNA

L (1) b̃NA
U (1)]. The confidence in-

tervals refer to the empirical 2.5 percent and
97.5 percent quantiles of the distribution of
the parameters. The second column of the Ta-
ble reports the Nelson-Siegel loadings on the
level.
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Table 3.6: Estimation results for bNA(2)

τ bNS(2) b̂NA(2) b̃NA
L (2) b̃NA

U (2)

1 0.97 0.93 0.83 1.08
3 0.91 0.89 0.83 0.98
6 0.84 0.83 0.77 0.92
9 0.77 0.77 0.71 0.84
12 0.71 0.72 0.66 0.76
15 0.66 0.66 0.62 0.70
18 0.61 0.62 0.57 0.64
21 0.56 0.57 0.52 0.59
24 0.53 0.53 0.48 0.56
30 0.46 0.46 0.40 0.50
36 0.41 0.41 0.35 0.45
48 0.32 0.32 0.27 0.38
60 0.27 0.26 0.23 0.32
72 0.23 0.22 0.20 0.26
84 0.19 0.19 0.18 0.22
96 0.17 0.17 0.15 0.21
108 0.15 0.15 0.11 0.20
120 0.14 0.13 0.07 0.19
Estimated loadings of the slope factor from
the no-arbitrage model b̂NA(2) with the 95
percent confidence intervals obtained from the
resampling [̃bNA

L (2) b̃NA
U (2)]. The confidence

intervals refer to the empirical 2.5 percent and
97.5 percent quantiles of the distribution of
the parameters. The second column of the Ta-
ble reports the Nelson-Siegel loadings on the
slope.
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Table 3.7: Estimation results for bNA(3)

τ bNS(3) b̂NA(3) b̃NA
L (3) b̃NA

U (3)

1 0.03 0.00 -0.10 0.06
3 0.08 0.10 0.05 0.18
6 0.14 0.19 0.13 0.26
9 0.19 0.24 0.17 0.27
12 0.23 0.26 0.21 0.28
15 0.25 0.27 0.23 0.29
18 0.27 0.28 0.24 0.30
21 0.29 0.28 0.23 0.30
24 0.29 0.27 0.24 0.30
30 0.30 0.26 0.23 0.31
36 0.29 0.25 0.23 0.31
48 0.27 0.23 0.22 0.29
60 0.24 0.21 0.20 0.27
72 0.21 0.20 0.19 0.23
84 0.19 0.19 0.18 0.22
96 0.17 0.19 0.16 0.21
108 0.15 0.18 0.13 0.21
120 0.14 0.18 0.11 0.21
Estimated loadings of the curvature factor from
the no-arbitrage model b̂NA(3) with the 95 per-
cent confidence intervals obtained from the re-
sampling [̃bNA

L (3) b̃NA
U (3)]. The confidence in-

tervals refer to the empirical 2.5 percent and
97.5 percent quantiles of the distribution of the
parameters. The second column of the Table
reports the Nelson-Siegel loadings on the cur-
vature.
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Table 3.8: Summary statistics for the resampled parameters

Intercept ãNA

τ mean st.dev. skewness kurtosis

3 0.00 0.02 0.11 9.66
12 0.01 0.02 -0.24 8.91
24 0.00 0.01 -3.11 18.77
60 -0.01 0.02 0.34 9.25
84 0.00 0.01 5.49 57.71
120 0.02 0.04 1.06 7.71

Loading of the level b̃NA(1)
τ mean st.dev. skewness kurtosis

3 0.99 0.04 0.28 9.39
12 0.99 0.03 0.76 9.02
24 1.01 0.02 2.85 17.25
60 1.01 0.04 -0.88 10.97
84 1.00 0.02 -5.66 60.42
120 0.97 0.06 -1.03 8.17

Loading of the slope b̃NA(2)
τ mean st.dev. skewness kurtosis

3 0.91 0.03 0.47 5.56
12 0.71 0.02 -0.08 3.45
24 0.53 0.02 -0.99 6.67
60 0.27 0.02 0.52 5.01
84 0.20 0.01 3.00 34.43
120 0.14 0.03 -0.10 3.97

Loading of the curvature b̃NA(3)
τ mean st.dev. skewness kurtosis

3 0.10 0.03 0.93 3.39
12 0.25 0.02 -0.52 4.59
24 0.28 0.02 -0.73 2.71
60 0.22 0.02 1.72 8.99
84 0.19 0.01 1.05 5.42
120 0.16 0.02 -0.85 6.80

Summary statistics of the empirical distributions
of the estimated parameters obtained using re-
sampled data.
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Table 3.9: Measures of fit

Residuals from the Nelson-Siegel model
τ mean st dev min max RMSE MAD ρ(1) ρ(6) ρ(12)

1 -0.159 0.200 -1.046 0.387 0.200 0.040 0.513 0.332 0.443
3 0.027 0.114 -0.496 0.584 0.114 0.013 0.274 0.159 0.326
6 0.091 0.135 -0.412 0.680 0.135 0.018 0.543 0.346 0.471
12 0.046 0.122 -0.279 0.483 0.122 0.015 0.586 0.127 0.289
24 -0.040 0.073 -0.398 0.261 0.073 0.005 0.493 0.044 0.153
36 -0.066 0.090 -0.432 0.339 0.089 0.008 0.417 0.256 0.183
60 -0.053 0.096 -0.520 0.292 0.096 0.009 0.655 0.312 -0.037
84 0.006 0.097 -0.446 0.337 0.096 0.009 0.518 0.159 -0.083
120 0.002 0.140 -0.763 0.436 0.140 0.020 0.699 0.345 0.091

Residuals from no-arbitrage model
τ Mean st dev min max RMSE MAD ρ(1) ρ(6) ρ(12)

1 0.000 0.168 -0.730 0.752 0.168 0.028 0.361 0.197 0.363
3 0.080 0.132 -0.508 0.817 0.132 0.018 0.448 0.219 0.312
6 0.060 0.135 -0.295 0.795 0.134 0.018 0.579 0.361 0.432
12 -0.019 0.109 -0.355 0.439 0.109 0.012 0.514 0.147 0.306
24 -0.041 0.071 -0.323 0.217 0.071 0.005 0.491 0.134 0.096
36 -0.018 0.088 -0.286 0.405 0.088 0.008 0.474 0.320 0.263
60 0.004 0.100 -0.332 0.379 0.100 0.010 0.688 0.350 0.101
84 0.019 0.097 -0.479 0.343 0.097 0.009 0.527 0.157 -0.070
120 -0.060 0.144 -0.801 0.375 0.144 0.021 0.705 0.464 0.249

Summary statistics of residuals of the Nelson-Siegel and the no-arbitrage models. The
Nelson-Siegel model is estimated according to equations (3.2.2) - (3.2.4). The no-
arbitrage yield curve model is estimated according to equations (3.2.6) - (3.2.12). Statis-
tics are shown for selected maturities, τ . RMSE is the root mean squared error and
MAD is the mean absolute deviation. Autocorrelations are denoted by ρ(p), where p is
the lag.
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Table 3.10: Out-of-sample performance

1-m ahead 6-m ahead 12-m ahead
τ NS NA NS NA NS NA

1 0.82 0.67 0.67 0.56 0.66 0.59
3 0.91 0.89 0.72 0.70 0.64 0.63
6 1.08 1.03 0.81 0.82 0.65 0.67
9 1.06 1.21 0.80 0.83 0.64 0.66
12 1.01 1.00 0.80 0.81 0.64 0.65
15 1.06 0.98 0.79 0.79 0.64 0.65
18 1.04 1.03 0.80 0.80 0.65 0.65
21 1.06 1.07 0.80 0.80 0.66 0.66
24 1.09 1.11 0.80 0.80 0.67 0.67
30 1.04 1.04 0.80 0.78 0.68 0.67
36 0.99 0.98 0.80 0.78 0.70 0.69
48 0.98 0.98 0.84 0.81 0.76 0.73
60 1.10 1.04 0.88 0.85 0.81 0.79
72 1.02 1.01 0.90 0.88 0.85 0.84
84 1.08 1.08 0.91 0.91 0.87 0.86
96 1.03 1.03 0.93 0.94 0.91 0.92
108 1.04 1.08 0.95 0.98 0.93 0.96
120 1.08 1.32 1.02 1.08 1.00 1.05
Ratios of the Mean Squared Forecast Error (MSFE) of the no-
arbitrage model (NA) and the Nelson-Siegel model (NS) both mea-
sured against the performance of the random walk model. A ratio
lower than 1 means that the MSFE for the respective model is lower
than the forecast error generated by the random walk, and hence that
the model performs better than the random walk model. The models
are estimated on successively increasing data samples starting 1970:1
until the time the forecast is made, and expanded by one month each
time a new set of forecasts are generated. Forecasts for horizons of
1, 6 and 12 months ahead are evaluated on the sample from 1994:1
to 2000:12. Bold entries in the table indicate superior performance
of one model (NA or NS) against the other model.
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Table 3.11: Diebold-Mariano test statistics

τ 1-m ahead 6-m ahead 12-m ahead

1 -0.080 -0.214 -0.250
3 -0.037 -0.129 -0.146
6 -0.051 0.132 0.262
9 0.147 0.159 0.222
12 -0.015 0.085 0.154
15 -0.117 0.021 0.098
18 -0.040 0.017 0.086
21 0.048 -0.025 0.046
24 0.070 -0.318 - 0.165
30 -0.003 -0.174 -0.290
36 -0.022 -0.149 -0.239
48 0.002 -0.128 - 0.215
60 -0.082 -0.153 -0.233
72 -0.025 -0.121 -0.215
84 -0.007 -0.047 - 0.166
96 -0.016 0.315 0.447
108 0.069 0.231 0.322
120 0.266 0.290 0.366
Diebold-Mariano test statistic to compare forecast accu-
racy of two models. We compare the no-arbitrage model
against the Nelson-Siegel model. Negative numbers reflect
superiority of the no-arbitrage model, and positive numbers
indicate that the Nelson-Siegel model performs better. The
null hypothesis is that the mean squared forecast error of
the two models is identical. A number larger than 1.96 in
absolute terms indicates that the forecasts produced by the
models are significantly different at a 5 percent level.
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Figure 3.1: Nelson-Siegel factor loadings
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Nelson and Siegel (1987) factor loadings using the re-parameterized version of the model as
presented by Diebold and Li (2006). The factor loadings bNS are computed using λ = 0.0609 and
equation (3.2.3).
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Figure 3.2: No-Arbitrage Latent factors and Nelson and Siegel factors
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Extracted yield curve factors using US zero-coupon data observed at a monthly frequency and
covering the period from 1970:1 to 2000:12. Factors are extracted from the Nelson-Siegel model
and from the no-arbitrage model. “NS level” and “NA factor 1” refer to the first extracted factor
from each model. The second and third extracted factors are correspondingly labeled “NS slope”,
“NA factor 2” and “NS curvature”, “NA factor 3”.
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Figure 3.3: Zero-coupon yields data
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U.S. zero-coupon yield curve data observed at monthly frequency from 1970:1 to 2000:12 at
maturities 1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months.118



Figure 3.4: No-Arbitrage loadings of the Nelson and Siegel factors
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Estimated factor loadings and empirical 50 and 95 percent confidence intervals. Star * indicate the
factor loadings from the Nelson-Siegel model, i.e. aNS and bNS in equations (3.2.2) and (3.2.3),
while the continuous lines indicate the corresponding factor loadings estimated from the no-
arbitrage model, i.e. âNA and b̂NA in equations (3.2.6) to (3.2.8). The distributions of the latter
are obtained through resampling. The dark-shaded areas are the 50 percent confidence intervals,
while the light-shaded areas show the 95 percent confidence intervals. These are computed as
empirical quantiles.
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Figure 3.5: Distribution of the estimated loadings for aNA
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Empirical distributions, for selected maturities, of the no-arbitrage intercepts obtained from the
resampling (continuous line), with the relative 95 percent confidence interval (asterisks). The
dashed line is the Gaussian approximation with the relative 95 percent confidence intervals (cir-
cles). The diamonds are the estimated no-arbitrage intercepts and the dashed vertical line indi-
cates the Nelson and Siegel intercepts.
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Figure 3.6: Distribution of the estimated loadings for bNA(1)
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Empirical distributions, for selected maturities, of the no-arbitrage loadings of the level obtained
from the re-sampling (continuous line), with the relative 95 percent confidence interval (asterisks).
The dashed line is the Gaussian approximation with the relative 95 percent confidence intervals
(circles). The diamonds are the estimated no-arbitrage loadings of the level and the dashed
vertical line indicates the relative Nelson and Siegel loadings.
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Figure 3.7: Distribution of the estimated loadings for bNA(2)
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Empirical distributions, for selected maturities, of the no-arbitrage loadings of the slope obtained
from the re-sampling (continuous line), with the relative 95 percent confidence interval (asterisks).
The dashed line is the Gaussian approximation with the relative 95 percent confidence intervals
(circles). The diamonds are the estimated no-arbitrage loadings of the slope and the dashed
vertical line indicates the relative Nelson and Siegel loadings.
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Figure 3.8: Distribution of the estimated loadings for bNA(3)
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Empirical distributions, for selected maturities, of the no-arbitrage loadings of the curvature
obtained from the re-sampling (continuous line), with the relative 95 percent confidence interval
(stars). The dashed line is the Gaussian approximation with the relative 95 percent confidence
intervals (circles). The diamonds are the estimated no-arbitrage loadings of the curvature and
the dashed vertical line indicates the relative Nelson and Siegel loadings.
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