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Introduction

As is clearly suggested by its title, all the results presented in this thesis concern
linear partial differential operators whose main model is the following:

(1.0) L=-> X;"X;.
j=1
Here, X1,...,X,, are smooth vector fields on R and, for every j = 1,...,m,

X; " denotes the formal adjoint of X; with respect to a Radon measure p which
assumed to be equivalent to the standard Lebesgue measure.

Among infinitely many other natural problems involving these operators,
we are particularly interested in the following key issues, widely recognized as
fundamental topics by the PDE community:

(1) the Strong Maximum Principle;
(2) existence and uniqueness of a “well-behaved” global fundamental solution;

(3) existence of a Lie group on R w.r.t.which Xi,..., X,, are left-invariant.

R ANTS

“Strong Maximum Principle”, “global fundamental solution” and “left-invariance
on Lie groups” are precisely the keywords of this thesis.

Now, if we denote by V the density of u w.r.t.the Lebesgue measure (and if
we assume that ¥V > 0 on RY), it is not difficult to recognize that any operator
L as in (1.0) can be written in the following quasi-divergence form !

N
(1.1) L= Véx) 3 aii (V(m) ai ; () ;xj), v e RV

i,7=1

As we shall describe in detail in Chpt. 4, such a class of PDOs is general enough
to comprehend, along with our prototype operators (1.0), Hormander operators,
sub-Laplace operators on real Lie groups (e.g., on Carnot groups, [37]), as well
as linear PDO intervening in the study of function theory of several complex
variables, CR and Riemannian Geometry (see e.g., [74, 75, 96, 98, 123]).

To face problem (1) in the case of PDOs L of the form (1.1) and problems (2)
and (8) in the case of PDOs L of the form (1.0), we adopt a unitary approach
which crucially relies on the study of the geometry of the integral curves of
suitable vector fields associated with L (or with L) and of their composition.

!ncidentally, this is the form of the operators studied by Feffermann and Phong since the
early ’80s (see, e.g., the fundamental papers [69, 70]).
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We now turn to describe more closely how such a geometrical approach is
exploited in order to study each one of the problems listed above.

(1)

As concerns with the Strong Maximum Principle (SMP, for short) it is
well-known that, in presence of the Hérmander rank condition, the SMP
can be obtained by following the classical scheme:

Hormander Chow-Rashevsky N Propagation of

. . . MP.
condition connectivity theorem maxima S

Our aim is to prove the SMP for our operators £ without assuming Hor-
mander’s rank condition. In order to do this, we profitably exploit assump-
tion (HY) plus a theorem of Control Theory due to Amano [7], based on
the properties of the flows of the vector fields Ay, ..., Ay associated with
the quadratic form of £ (see also [120]).

We can then schematize our approach as follows:

(HY) SMP

without assuming
(plus (S)-to-(NTD)) Hormander’s rank condition.

We now turn to discuss the problem of the existence (and of the unique-
ness) of a global fundamental solution for our PDOs £.

There is no doubt that this is a very difficult issue, even in the particular
case of Hormander operators. Indeed, to the best of our knowledge, in
this general situation one can only prove the existence of local fundamental
solution (see, e.g., the celebrated papers by Folland [72], Folland and Stein
[75]) or of a parametrix (see Rothschild and Stein [123]). We thus limit
ourselves to considering a further sub-class of the Hérmander operators,
namely that of the homogeneous Héormander operators: by this, we mean
linear partial differential operators of the form

L :ixf,
j=1

where {X1,...,X,,} is a Hérmander system on R™ and Xi,...,X,, are
assumed to be homogeneous of degree 1 w.r.t.a family of non-isotropic
dilations. A key tool for proving the existence of a global fundamental
solution for these operators is the lifting method developed by Folland
[72], where a fundamental role is played by the following map:

7w Lie{X1,..., Xm} = R”, 7(X) :=exp(X)(0).

The homogeneity assumption on the vector fields Xy, ..., X,, implies that
7 is well-defined and that it can be turned into a global canonical projec-
tion. Note again the key role of the flows of the vector fields involved.

Finally, we come to the problem of finding a Lie group on RY with respect
to which a PDO £ of the form (1.1) is left-invariant.

Quite surprisingly, this problem seems to be exquisitely of algebraic/geo-
metrical nature, in that it involves flows of vector fields and (in a crucial
way) the Campbell-Baker-Hausdorff-Dynkin Theorem for ODEs.
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To be more precise, let us assume that £ can be written as a sum of
squares of m v.f.s X1,...,X,,. Then, under suitable assumptions on

g=Lie{Xy,..., X0},

we can use the cited CBHD Theorem for ODEs to construct a local Lie
group structure on RY with Lie algebra (in the sense of local Lie groups)
equal to g. To globalize this structure, we exploit a completeness result
for the flows of time-dependent vector fields.

After this general picture of the ideas underlying this thesis, we now describe
more closely the results we obtained for each one of the problems (1)-to-(3).

One of the main motivations for our interest in PDOs £ of the form (1.1) is
represented by the (well-known) fine properties of the sub-Laplace operators on
Carnot groups, which take the cited form (1.1).

For this reason, the first natural question we answer is the following;:

(Q): isit possible to find a set of independent necessary and sufficient conditions
for £ to be left-invariant on a suitable Lie group G = (R, *)?

In the particular case of operators £ which can be written as a sum of squares
of real-analytic vector fields, a complete answer to question (Q) is given by the
following theorem, which is the main result of Chpt. 2.

Theorem A. Let g be a Lie algebra of real-analytic vector fields on RN . There
exists a real-analytic Lie group G = (RN, x) with Lie(G) = g if and only if

(C): every element of g is a complete vector field;
(H): g is a Hormander system of vector fields;
(ND): the dimension of g is equal to N.

In a forthcoming study, we shall show that the hypothesis of real-analyticity
of the vector fields can be replaced by their being of class C*° (in this case G
will be a smooth Lie group); see Sec.2.1.4.

Some examples, of relevance in the applied setting, to which our results apply
are: the Kolmogorov-Fokker-Planck operators studied in [29, 32]; the degenerate
Ornstein-Uhlenbeck operators in [33]; the homogeneous operators in [28, 31]. As
regards Kolmogorov-Fokker-Plank operators, we also highlight the paper [91] by
Helffer and Nier, where the authors show the relation between these operators
and the Witten Laplacian, together with some notable applications.

The proof of Thm. A makes crucial use of the powerful tool provided by the
Campbell-Baker-Hausdorff-Dynkin Theorem; for this reason, a deep study of
the convergence of the Campbell-Baker-Hausdorff-Dynkin series (both from the
algebraic and the analytic view-point) will be carried out in the Appendix. It
is worth noting that the study of the convergence domain of the CBHD series
has a long history, tracing back to Hausdorff [90].2

2Concerning this topic, we address the reader to the papers [25, 26, 27, 48, 49, 60, 63, 110,
111, 113, 114, 115, 118, 126, 128, 129, 133].
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We now briefly describe the proof of Thm. A. First of all, by means of the
cited Campbell-Baker-Hausdorff-Dynkin Theorem and by exploiting assump-
tions (C), (H) and (ND), we are able to show the existence of an open neigh-
borhood U C R¥ of 0 and of a real-analytic map

m:]RNXU—HRN, (%y)'_}m(l’»y)v

such that (R™,m) is a local Lie group, with neutral element 0 and Lie algebra
(in the sense of local Lie groups) equal to g. Then, we globalize this structure
by using a completeness result for time-dependent vector fields.

In fact, for every fixed x,y € RY we prove that the function

| —ee[ 3t m(z,ty)

solves a Cauchy problem which possesses a maximal solution ¢, , defined on
the whole of R; hence, for every z,y € R we define

Txy = Pg(1).

By classical results of ODE Theory, the map # is real-analytic on RY x RY;
furthermore, by Unique Continuation, it is not difficult to see that x globalizes
all the local group properties satisfied by m.

One of the most notable properties of sub-Laplace operators on Carnot
groups is probably the existence of a global fundamental solution, which be-
haves like the fundamental solution of the classical Laplace operator on RY
(with N > 3). More precisely, if G = (RY, %, 6, ) is a Carnot group (with homo-
geneous dimension @ > 2) and if Lg is a sub-Laplacian on G, a deep result by
Folland [72] ensures the existence of a homogeneous and continuous symmetric
norm d € C*°(RY \ {0}, R) such that

I:{(z,y) e RN xRN : 2 £y} — R, D(x,y) := dQ_Q(x_l )
is the unique global fundamental solution for Lg satisfying

lim T(z,y) =0, forevery z € RV,
llyll—o0

The existence of a global fundamental solution for L¢ brings along several con-
sequences of great importance: for example, the availability of surface and solid
mean value formulas for C? functions, the Strong and Weak Maximum Prin-
ciples, some extensions of the classical Harnack Inequality and of the Hardy
Inequality, and so on (see, e.g., [37]).

Motivated by these facts, we shall turn our attention to the problem of the
existence (and of the uniqueness) of a global fundamental solution for our PDOs
L of the form (1.1). As we said earlier, for a selected subclass of such operators,
namely that of the homogeneous Hérmander operators on R™, we solve this
problem by proving the following two theorems, which are the central results of
Chpt. 3: Thm. B for the case of stationary (homogeneous Hérmander) operators
L, Thm. C for parabolic operators of the form £ — 9; (with £ as above).

In the following theorems, instead of the usual notation RY we use R", for
a reason which will become apparent in a moment.



Theorem B. Let X = {Xy,..., X} be a set of linearly independent ® smooth
vector fields on R™ satisfying the following assumptions:

(H1): Xy,...,X,, are homogeneous of degree 1 with respect to
In(z) = (A"'xq, ..., A% xy),
where 1 =01 < ... < o0p;
(H2): Xy,...,X,, satisfy the Hormander rank condition:

dim {X(z) : X € Lie{X1,..., Xn}} =n, for every z € R".

We set q := E?Zl o; and define £ := E;"Zl X;. If ¢ > 2, there exists a unique
global fundamental solution I" for £ satisfying the following properties:

(i) T(x;y) =T(y; ) for every x,y € R™ with x # y;
(ii) T'(z;-) =T(:;x) s smooth and L-harmonic on R™ \ {z};
(iii) T(x;-) = T(-; ) vanishes at infinity (uniformly for x in compact sets);
(iv) T(z;-) =T(;;2) is locally integrable on R™;
(v) T is locally integrable on R™ x R™ and C*° out of the diagonal of R™ x R™.

Now, the parabolic version of the above theorem.
Theorem C. Let the assumptions and the notations in the above theorem apply.
We consider the heat-type operator 3 associated with £, that is,
m
Hi=L-0,=Y X =0, onR""=R,xR]
j=1
Then, there exists a unique global fundamental solution T for H (usually referred
to as a heat kernel for ) satisfying the following properties:
(i) T >0 on its domain and, for every (t,), (s,y) € R**™, we have

I(t,z;s,y) =0 if and only if s < t.

(ii) For every (t,z) # (s,y) € R**™, the function ' depends on t and s only
through the difference s — t: in fact, we have

F(ta x;s, y) = F(Oﬂ ;s — ta y)
Moreover, T is symmetric w.r.t. the space variables x,y € R, that is,

Lt x;8,y) =T(ty;8,2).

3Here and throughout, we consider the set X(RV) of the smooth vector fields on RY as a
real vector space and not as C°°-module; therefore, the vector fields Xi,..., Xy, are linearly
dependent if there exist A1,..., A\ € R, not all vanishing, such that

>\1X1+"'+>\me:0

as a first order linear PDO (i.e., all of its coefficient functions are identically equal to 0).
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(iii) For every A\ > 0 and every (t,x) # (s,y) € R, we have

L(N%t,0x(2); A%s,0x(y)) = AIT(t, 23, 9).

(iv) T is smooth out of the diagonal of R*T™ x R*™,
(v) For every compact set K C R, we have

lim (supT'(z;¢)) = lim (supI'(¢;2)) =0.

[¢ll=oe "2k [¢ll=o0 " zeK

(vi) T € LL (RY™ x RY™) and, for fized every z € R, we have

loc

D(2;-) and T(2) € Lig(RM™).
(vii) For every fized (t,z) € R'™ we have
/n L(t,z;s,y)dy =1, for every s > t.
(viii) For every fized p € C§°(R™™, R), the function
A, R*" — R, Ay (Q) == /]RH” I'(z;¢) p(z)dz

is smooth, it vanishes at infinity and H(A,) = —p on R,
Furthermore, if we consider the function I'* defined by
U*(t,2;5,y) == D(s,yst,2),  for every (t,2) # (s,y) € RM*™,

then T'* is a global fundamental solution for the adjoint operator H* = L + Oy,
satisfying the dual statements of (i)-to-(viii).

The key ingredient for proving these results, which is at our disposal in the
case of homogeneous Hormander operators, is the notable lifting method for
homogeneous vector fields proved by Folland in [73], plus an ad-hoc change of
variables. Folland’s approach is essentially a geometric re-interpretation of the
lifting construction made by Rothschild and Stein [123], in the particular case
when the vector fields involved are assumed to be homogeneous of degree 1
w.r.t. a family of non-isotropic dilations.

Under the latter assumption, Folland showed that the local lifting proved
by Rothschild and Stein is actually global, and the vector fields can be directly
related via a submersion 7 to left-invariant vector fields on a suitable higher-
dimensional homogeneous Carnot group G on RY, with N > n. Taking into
account this fact, we prove Thm.s B and C by using a naive saturation argument.

Let us take a closer look to the proof of Thm.s B and C. First of all, by using
Folland’s result and a suitable change of variables turning 7 into the canonical
projection from R onto R"™, we can prove the existence of a sub-Laplacian Lg
on a Carnot group G = (R, *,dy) which is a lifting of £ on RY. We then use
the following notation for the points of R :

(2,6), withzeR",(€eRP andp=N —n.
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If T'g(z, &y, m) denotes the unique global fundamental solution for L¢ vanishing
at infinity (with pole (z,¢)), we show that the function

R? 51— Ig(z,0;y,7m)

is integrable on RP for every x # y € R™, this result being non-trivial. Setting

I'(zyy) = /R Le(z,0;y,m)dn  x#yeR",

we then prove that I' defines a global fundamental solution for £, further satis-
fying properties (i)-to-(v) in the statement of Thm. B.

As for Thm.C, we argue exactly in the same way: if I'g(z,£;(,n) is the
unique heat kernel for Hg = Lg — 9; on R x G (with pole (z,£)), we prove that

R? 5 0 Tg(z,05¢,n)

is locally integrable on R? for every fixed z # ¢ € R'*". Therefore, setting
Do) = [ Te(0iCmdy 2 ACERI™
RP

it turns out that I' is a global fundamental solution for H, further satisfying all
the properties in the statement of the theorem.

In the literature, there are many examples of lifting involving meaningful
PDOs: for instance, consider the case of the Grushin operator

9 = (8301)2 + (xl 8;82)2
on R?, a lifting of which is given by the PDO
§ = (8171)2 + (a'rg + T 82:2)2 on Rs.

In turn, the latter is nothing but a copy (via a change of variable) of the well
known Kohn-Laplacian on the first Heisenberg group. The idea of obtaining
a fundamental solution for the Grushin operator § via a saturation argument
applied to the (explicit!) fundamental solution of G has already been exploited
in the literature: see e.g., Bauer, Furutani, Iwasaki [16]; see also Calin, Chang,
Furutani, Iwasaki [46, Sec. 10.3] for the Heat kernel; more generally, see Beals,
Gaveau, Greiner, Kannai [19] for operators lifting to sub-Laplacians on 2-step
Carnot groups. To the best of our knowledge, when the existence of a global
fundamental solution I" for a PDO is provided, it seems that in the vast majority
of cases (though exceptions are available):

- PDOs with polynomial coefficients are considered;
- existence is a by-product of an explicit (integral) formula for T.

Note that the same happens in the present case, since our homogeneous op-
erators necessarily have polynomial coefficients, and an integral representation
for T' (albeit not explicit) is furnished. Global fundamental solutions, with-
out an explicit representation, are given for example, in Folland [72]; Nagel,
Ricci, Stein [117]; Bonfiglioli and Lanconelli [32]; Bramanti, Brandolini, Lan-
conelli and Uguzzoni [40]. Existence results without an exact representation are
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also available, based on the so-called Levi parametrix method [107] (see also
[40, 78, 95]); concerning Levi’s parametrix method, we also highlight the recent
paper by Bramanti, Brandolini, Manfredini, Pedroni [41], where a local Lifting
technique and a local saturation argument are also applied. See also the paper
[52] by Citti, Manfredini, where it is exploited a local Lifting technique involving
hypoelliptic Hérmander operators and their local fundamental solutions.

Finally, as regards the use of a lifting argument to study some classes of
PDOs, we address the reader to the notable paper [92] by Helffer and Nourrigat,
where a lifting technique is profitably exploited in order to investigate the C°°-
hypoellipticity of PDOs modelled on Hérmander vector fields.

Once the existence of a global fundamental solution for our homogeneous
Hormander operators has been proved, we focus on the Strong Maximum Prin-
ciple (SMP) and on Hardy’s inequality for PDOs £ of the form (1.1).

As is well-known, in the particular case of Hérmander operators, Bony
proved in [39] the Strong Maximum Principle as a consequence of a Maximum
Propagation argument, based on the Carathéodory-Chow-Rashevsky Theorem.
Moreover, when a strictly positive global fundamental solution I' exists, such a
principle can be deduced from the mean value formulas related to T' (see [1]).

As regards Harnack inequalities and Maximum Principles, during the 80’s
many important results on degenerate-elliptic operators under the divergence-
form (1.1) were established; see e.g. [50, 64, 65, 66, 76, 77, 89, 96]. As for
the assumptions made on the involved PDOs, in [96] a suitable subellipticity
hypothesis is assumed, whereas in the other cited papers, operators of the form
(1.1) are considered with very low regularity assumptions on the coefficients,
but under the hypothesis that the degeneracy of A(x) be controlled on both
sides by some appropriate weights.

In the present thesis, we do not require £ to be a Hoérmander operator,
our results holding true in the infinitely-degenerate case as well, nor do we
make any assumption of subellipticity or weighted degeneracy. In obtaining
our main results we are much indebted to the ideas in the pioneering paper
by Bony, [39], where Hérmander operators are considered. The main novelty
of our framework is that we have to renounce to the geometric information “of
propagation-type”, encoded in Hérmander’s Rank Condition: indeed the latter
implies a connectivity property (leading to the Strong Maximum Principle), as
well as it implies hypoellipticity, due to Hérmander’s theorem [94].

In our setting, the approach is somewhat reversed: hypoellipticity is the
main assumption, and we need to derive from it some appropriate connectivity
and propagation features, even in the absence of a maximal rank condition.
This will be made possible by exploiting a Control Theory result by Amano [7]
on hypoelliptic PDOs. Our result can be stated as follows (see Chpt. 4).

Theorem D. Let £ be a linear PDO of the form (1.1) and satisfying the fol-
lowing structural assumptions: *

(S): £ has smooth coefficient functions V,a; ; € C*°(RN,R) and V is strictly
positive on the whole of R ;

4The Strong Maximum Principle concerning L-subharmonic functions, we could limit
ourselves to only consider the case V = 1, since the general case can be easily reduced to this
particular one. The main reason why we preferred to deal with operators £ of the general
form (1.1) is the need to keep the role of the function V and of the matrix A(z) distinct.
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(DE): £ is degenerate elliptic, i.e., A(z) = (a;;(x)) > 0 for every x € RY;
(NTD): £ is non-totally degenerate at every point of RY (see (4.1.2));

(HY): £ is C>-hypoelliptic in every open subset of RY, that is, for every open
set Q CRY and every u € D'(Q) we have

sing supp(u) = sing supp(Lu).

If Q C RY is open and connected, the following facts hold true:

(1) Any function u € C?(2, R) satisfying Lu > 0 on Q and attaining a maxi-
mum in $) is constant throughout ).

(2) Ifc € C=(RN,R) is nonnegative on RY, then any function u € C%(Q, R)
satisfying Lu — cu > 0 on Q and attaining a nonnegative mazimum in )
is constant throughout 2.

Since we touched upon very classical facts together with a less known result
by Amano, some clarification on our arguments may be welcome. Our proof of
the Strong Maximum Principle in Thm. D follows, & la Bony, a rather classical
scheme, in that it rests on a Hopf Lemma for £. However, the passage from
the Hopf Lemma to the SMP is, in general, non-trivial and the same is true in
our framework. As anticipated, we are able to supply the lack of Hérmander’s
Rank Condition by using the notable control-theoretic property encoded in the
hypoellipticity assumption (HY), proved by Amano in [7]: indeed, thanks to
the hypothesis (NTD), we are entitled to use [7, Theorem 2| which states that
(HY) ensures the controllability of the ODE system

N
7:£0A0(7)+Z£2A2(7)7 (507513"'7£N) ER1+Na
i=1

on every open and connected subset of R™. Here A;,..., Ay denote the vector
fields associated with the rows of the principal matrix of £, whereas Aq is the
drift vector field obtained by writing £ in the form

Y9
i=1

By definition of a controllable system, Amano’s controllability result provides
another geometric connectivity property (a substitute for Chow’s Theorem): any
couple of points can be joined by a continuous path which is piece-wise an
integral curve of some vector field Y belonging to spang { Ao, A1, ..., Ax}. Then,
to complete the proof of Thm.D it suffices to show that there is a propagation
of the maximum of any £-subharmonic function u along all integral curves ~yy

For example, operators of the general form (1.1) have been recently studied by Battaglia and
Bonfiglioli [14] with the aim at obtaining invariant Harnack inequalities under a low regularity
assumption on the coefficients. In this context, the roles of the function V' and of the matrix
A(z) are drastically different: on the one hand, V is a strictly positive L -function in RY
which is aimed at being the density of a doubling measure; on the other hand, A(z) is a matrix
of measurable function which must satisfy some suitable X-elliptic. Therefore, it seems not
convenient, for future purposes, to incorporate V into the matrix A.



of every vector field Y in spang{Ao, 41,...,Ax}. This, in turn, is done by
exploiting a characterization by Bony [39] of the invariant sets for the C! vector
fields in terms of (a suitable notion of) tangentiality. It is worth mentioning
that this kind of operators (and the fine geometrical properties of the associated
vector fields Ay, ..., Ax) were first studied by Fefferman and Phong [70].

Finally, we turn our attention to a notable application of the existence of a
fundamental solution: Hardy-type inequalities (see Sec.4.2 for a list of related
references). Following the techniques by Garofalo, Lin [82, 81] and by Garo-
falo, Lanconelli [80], we derive from the Hardy inequality a result of Unique
Continuation for the solutions of the Schrodinger-type equation

—Lu+Vu=0,

where £ is a sub-Laplacian on a Carnot group G, V is a continuous function
on G (satisfying suitable estimates), and when u satisfies a (differential) growth
condition. In the framework of Carnot groups and for L-harmonic functions
(i-e., when V = 0), a thoroughly comprehensive analysis of Unique Continuation
has been recently given by Garofalo and Rotz [83], by means of a new notion
of Almgren’s frequency function. In [83] it is also demonstrated that, without
some control on the growth of u, the solutions of the above equation may fail
to have a bounded frequency: see the example given in [83, Remark 7.5]. Thus,
our assumption on the growth of u cannot be deleted without possibly losing
the approach based on the boundedness of the frequency, which is the approach
that we also follow (in line with [80, 81, 82, 83]) in proving Unique Continuation.
See also Bahouri, [8], for the problems connected with perturbations of sum-of-
squares and (the loss of) Unique Continuation.

To conclude the Introduction, let us briefly describe the structure of the the-
sis. There are four chapters plus an Appendix, whose contents are the following:

e Chpt. 1is introductory and it is devoted to recalling the main notions and
results concerning real Lie groups, with particular emphasis on homoge-
neous Carnot groups and on sub-Laplace operators on such groups.

e Chpt. 2 is subdivided into two sections: the first one is devoted to present-
ing the announced characterization of those Lie algebras g of vector fields
for which there exists a Lie group G = (R, %) such that

Lie(G) = g;

in the second section, we collect sufficient conditions (surely well-known)
for a general linear second-order PDO (with smooth coefficients) to be
re-written as a sum of squares of smooth vector fields.

e Chpt. 3 is totally devoted to proving the existence and the uniqueness of
a well-behaved global fundamental solution for homogeneous Hormander
operators. Due to its relevance in our approach, we also present the lifting
method for homogeneous vector fields introduced by Folland [73].

e Chpt.4 is also subdivided into two sections: the first one is devoted to
establishing the Strong Maximum Principle for hypoelliptic PDOs £ of
the form (1.1) and to presenting an application of such a principle to the



xi

Harnack Inequality for £; in the second section, we assume the existence
of a global fundamental solution for £ and, by making use of suitable
mean value operators associated with £, we prove a generalization of the
classical Hardy Inequality. We also present, as an application of such
an inequality, a Unique Continuation result for the solution of a class of
Schrédinger-type equations on Carnot groups.

e Finally, Appendix A is devoted to briefly presenting a fine convergence
result for the Campbell-Baker-Hausdorff-Dynkin in Banach-Lie algebras.
Such a result is profitably exploited in Chpt. 2.

From the results contained in Sec. 2.1 of Chpt. 2 we obtained the recent paper
[23]; from the results presented in Chpt.3 we obtained the very recent paper
[24]; from the results presented in Chpt.4 we obtained the paper [15]. Finally,
from the results contained in Appendix A we obtained the paper [22].
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Chapter 1

Sub-Laplace operators on real
Lie groups

The main purpose of this chapter is to recall some basic elements of Lie group
Theory, in order the make this thesis as self-contained as possible. Since all the
results we aim to present concern the analysis of partial differential equations
and of partial differential operators on Euclidean spaces, we limit ourselves to
only consider Lie groups on R”; in this sense, we closely follow the approach of
Bonfiglioli, Lanconelli and Uguzzoni in [37], to which we refer the reader for a
comprehensive exposition of this topic and for any further detail.

1.1 Generalities on Lie groups
In this first section, we briefly present the relevant definitions and properties
concerning Lie groups on R .

First of all we recall that, if * is a group law on Euclidean space RY, then
the couple G = (R", %) is a Lie group (on RY) if the map

RY x RN 5 (z,y) = zxy e RY

is of class C*° on RN x RY (w.r.t.the usual differentiable structure). Unless
otherwise specified, the (unique) neutral element of G will be denoted by e,

while the inverse of 2 € RY will be denoted by z~'; moreover, for every fixed
a € RN we also define

To : RN = RY, 7.(z) :=axux;
pa :RY - RN, po(z) =z *a.

The maps 7, and p, are called, respectively, the left-translation and the
right-translation by a (on G). By exploiting the fact that (RY, ) is a group,
it is immediate to see that the following properties hold true:

e The maps 7, and p, coincide with the identity map on RY;
e For every o, 3 € RY, one has 7, 0 pg = pg 0 Ta;

e For every a, 3 € R, one has To.s = 7o 0 75 and pass = pg © pa;
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e For every o € RY, the maps 7, and 7,-1 are inverse to each others,
whence 7, is a smooth diffeomorphism of RY, and the same is true of p,.

Let now G = (R", %) be a Lie group on R" and let X be a smooth vector field
on RY (meant as a first order PDO). We say that X is left-invariant on G if
the following property is satisfied:

X(fora) =(Xf)or, foralla€RY and every f € C*(R",R). (1.1.1)

We denote by g the set of all left-invariant (smooth) vector fields on G. A
direct computation shows that g is actually a Lie sub-algebra of the Lie algebra
of vector fields on RY, that is,

AX +uY eg forevery X, Y € gand every A\, u € R, and
[X,Y]=XY -YX eg, forevery X,Y €g.
For this reason, g is called the Lie algebra of G, and we shall also denote it

by Lie(G). We now observe that, taking into account identity (1.1.1), it is very
easy to see that a smooth vector field X is left-invariant on G if and only

XI(z)=13.,(e)- XI(e), forallzec RN, (1.1.2)

where I denotes the identity map on RY and ., (e) denotes the Jacobian matrix
of the map 7, at the neutral element e of G.

From this, one easily obtains the following simple but important character-
ization of the Lie algebra Lie(G) of G, which shall be useful in the sequel (for a
proof see, for example, [37, Proposition 1.2.7]).

Theorem 1.1.1. Let G = (RY %) be a Lie group on RY and let Lie(G) be the
Lie algebra of G. Then the map

A : Lie(G) — RV, A(X) == X1(e), (1.1.3)
defines a linear isomorphism of vector spaces. Hence, in particular, Lie(G) is a
finite-dimensional real vector s pace and dim(Lie(G)) = N.

Remark 1.1.2. Let G = (RY, %) be a Lie group on R and let X be a left-
invariant vector field on G. Let us assume that there exists a point zo € RN
such that XI(zo) = 0. Then XI(x) = 0 for every x € RY.

Indeed, let = € RN be fixed and let o := z * (x9) . By (1.1.2) we get
XI(x) = XI(a*xg) =3dr, (x0) - XI(x0) =0,
and this proves that X = 0 in X(R"), as claimed.

By means of the map A in the statement of Thm.1.1.1, it is possible to
construct a distinguish basis for the Lie algebra Lie(G) of a Lie group G.

Definition 1.1.3. Let G = (RY,x) be a Lie group on R and let Lie(G) be
the Lie algebra of G. Moreover, let A be the map defined in (1.1.1) and let
& ={e1,...,en} be the canonical basis of R. If we define

Jii=A"1(e;), forali=1,...,N, (1.1.4)

then the vector fields Jy, ..., Jy form a basis of Lie(G), which will be referred
to as the Jacobian basis of Lie(G).
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Remark 1.1.4. Let G = (RY, %) be a Lie group and let g be the Lie algebra of
G. By Thm.1.1.1, the set g is a real vector space with dimension N; therefore, if
{X1,...,Xn}and {Y7,..., Yy} are two different basis of g (as a vector space),
there exists a non-singular N x N constant matrix A = (am)i ; such that
N
Y; = ZamXi, for every j=1,...,N.

i=1
Remark 1.1.5. Let G = (R", %) be a Lie group and let {Ji,...,Jx} be the
Jacobian basis of Lie(G). For every 1 <i < N and every € R, one has
1.1.2 1.1.3 1.1.4
T(@) "L g e 0i1(e) MY g, (o) AT T2V 4 (e) - e
hence, J;I(x) is nothing but the i-th column of the Jacobian matrix J._(e).

Let now G = (R", %) be a Lie group on R and let X € Lie(G). Again
by making use of identity (1.1.2), it is very easy to recognize that the maximal
domains of all the integral curves of X do coincide; moreover, for every t in such
a common maximal domain, the following identity holds true:

a*exp(tX)(B) = exp(tX)(a x B), for every a, 8 € RV, (1.1.5)

As a consequence of identity (1.1.5), we easily obtain the following remarkable
result (for a proof see, e.g., [37, Lemma 1.2.23]).

Proposition 1.1.6. Let G = (RY, %) be a Lie group on R™. Then any vector
field belonging to Lie(G) is global.

Thanks to Prop. 1.1.6, the following (central) definition is well-posed.

Definition 1.1.7 (Exponential Map of G). Let G = (R¥, %) be a Lie group on
RY and let Lie(G) be the Lie algebra of G. Then the function

Exp : Lie(G) — RY, Exp(X) := exp(1- X)(e), (1.1.6)
is well-defined and it is called the Exponential Map of G.

We conclude this section with the following theorem, showing how the com-
position law of a Lie group G can be somehow “recovered” from the Exponential
Map of G; this result will play a fundamental role in Chpt. 2.

Theorem 1.1.8. Let G = (RY, %) be a Lie group on RN and let Lie(G) be the
Lie algebra of G. Moreover, let z € R and lety € RN be such that y = Exp(Y)
for a certain Y € Lie(G). Then we have

zxy =exp(Y)(x). (1.1.7)

Proof. This is a direct consequence of identity (1.1.5) and of the very definition
of Exponential Map: in fact, we have

xxy =x*Exp(Y) LD 0y exp(Y)(e) (115 exp(Y)(x).

This ends the proof. O
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1.2 Homogeneous groups

In this second section we briefly introduce two selected classes of Lie groups,
namely, the homogeneous groups and the Carnot groups. We shall recall the
basic notions and properties concerning such groups, needed for a complete com-
prehension of Chpt. 3. Also in this case, we refer the Reader to the monograph
[37] for a complete treatment of the argument.

Homogeneous groups

Let G = (R™,*) be a Lie group on RY. We say that G is a homoge-
neous Lie group (or simply a homogeneous group) if there exists a N-tuple
(01,...,0n) of positive real numbers satisfying the following properties:

1. oy =1and 0; < 0g;4; forevery i =1,..., N;
2. For every A\ > 0, the dilation 6y : RY — RY given by
() = (A zq,..., A NaN),
is an automorphism of the group G, that is,
Sa(z xy) = 0x(2) * 6x(y), for every z,y € RV,

We shall denote by G = (RY, *,8,) the datum of a homogeneous Lie group,
with composition law * and family of dilations {d)}x>0, and we set

N
Q=) oj (1.2.1)
j=1

Such a number @ is called homogeneous dimension of the group G.

We explicitly observe that, since the map §y is an automorphism of G for
every A > 0, we necessarily have Jy(e) = e for every A > 0, so that e = 0;
this means that the neutral element of a homogeneous group is always 0. We
also notice that the family of dilations {d)} x>0 forms a one-parameter group of
automorphisms of G whose identity is 6; = I, that is,

Sxpu(®) = 0x(0,(x)), forall z € RN and every A, p > 0.
In particular, the inverse of d, is the dilation 41,5 = -1, since
drxo0dyy=01n000 =01 =1

In the theory of homogeneous Lie groups, a central role is played by homo-
geneous functions and homogeneous vector fields; we then quickly recall such
notions. Let G = (R”, *,d)) be a fixed homogeneous Lie group on RY and let
f: RN — R. We say that f is §y-homogeneous of degree m € R if

f(6x(z)) =A™ f(x), for all z € RV and for every A > 0. (1.2.2)

Analogously, if P is a linear PDO on R”Y, we say that P is §y-homogeneous
of degree m € R if, for every function u € C°(R", R), it satisfies

P(u(0x(z)) = A™ (Pu)(8x(x)), for all z € R and for every A > 0. (1.2.3)
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Finally, given a multi-index (o, ...,ay) € (NU {0})N, we set

N
lolg = (,0) = > ajo;,
j=1

and we call it the G-length (or G-height) of the multi-index c.

Remark 1.2.1. Let G = (RY,,4,) be a homogeneous Lie group. Then we
have the following facts:

(i) The zero function and the identically vanishing linear PDO are dx-ho-
mogeneous of every degree. Conversely, if a function f (or a linear PDO P) is
dx-homogeneous of two different degrees, then f =0 (or P =0 on RY).

(ii) For every j = 1,..., N, the j-th projection 7;(x) = z; and the j-th
partial derivative 0/0,, are dy-homogeneous of degree ;. Moreover, if a is
a fixed multi-index, the function z — 2% = z{" ---2%" and the linear PDO
o1 --- 09N are dx- homogeneous of degree |a/g.

(iii) If P is a linear dy-homogeneous PDO of degree n and if f € C*°(R, R)
is dy-homogeneous of degree m € R, then the function Pf is §y\-homogeneous
of degree m — n, while the linear PDO fP is y-homogeneous of degree n —m.

We explicitly observe that, if f € C(RY,R) is dx-homogeneous of degree
m and if f(zg) # 0 for a certain g € RY, then m > 0; analogously, if
g € C(RN,R) is dy-homogeneous of degree 0, then g is comstant on RY.
In the particular case of smooth dy-homogeneous functions and smooth 0x-
homogeneous vector fields, we have the following characterization (for a proof
see, e.g., [37, Propositions 1.3.4 and 1.3.5 and Corollary 1.3.6]).

Theorem 1.2.2. Let G = (RN, %,6,) be a homogeneous Lie group on RY.
Then we have the following facts:

(i) A smooth function f € C®(RN R) is 6x-homogeneous of degree m € R if
and only if f is a polynomial function of the form

flz) = Z caz®, xRV,

lalg=m

where c,, are real constants. In particular, the function f only depends on
the variables x; such that 0; < m, and m > 0.

(ii) A smooth vector field X on RY™ of the form

N
X = Zaj 8wj,
j=1

is dx-homogeneous of degree n € R if and only if, for every j =1,..., N,
the function a; is dy-homogeneous of degree o; —n. Equivalently,

S\(XI(z)) = A" XI(6x(z)), for allz € RY and every A >0. (1.2.4)
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By gathering together statements (i) and (ii) in the preceding theorem, we
can obtain a more explicit characterization of smooth Jj-homogeneous vector
fields of positive degree.

Remark 1.2.3. Let G = (R, x,d,) be a homogeneous Lie group on R and
let X be a smooth vector filed of the form

N
X = Zaj(a:) Oz; -
j=1

Let us assume that X is §x-homogeneous of positive degree n > 0. It then follows
from statements (i) and (ii) of Theorem 1.2.2 that, for every j = 1,..., N, the
function a; is 6x-homogeneous of degree o; — n, hence

a;(z) = Z dx®, xeRY,

lajg=0;—n

where ¢/, are real constants. In particular, if a; is not identically vanishing, then
we must have o; > n, and a; can only depends on those variables x; such that
o; < 05 —n. As a consequence, since n > 0, we derive that a; can only depends
on zi,...,r;—1 and that the v.f. X is actually a “pyramid-shaped” vector field
of the form (we agree to let a; be constant when j = 1)

N
X = Z aj(xl,...,xj_l)amj.

=1
gj=zn

We conclude this first section by briefly describing the structure of a ho-
mogeneous Lie group on RY. To this end, we present two different theorems:
the first one gives a somehow explicit expression of the composition law of a
homogeneous Lie group, while the second one shows some interesting properties
of the Lie algebra of such a group. For a proof of these theorems see, e.g., [37,
Theorem 1.3.15 and Proposition 1.3.12].

Theorem 1.2.4 (Structure of a homogeneous group). Let G = (RY, x,5)) be
a homogeneous Lie group. Then the composition law * of G has polynomial
component functions. More precisely, for every z,y € RN one has

(x*xy)1 =21 + 41, and
(xxy); =x; +y; + Pj(z,y), foreveryj=2,...,N,

where, for every j =2,..., N, the function P; satisfies the following properties:
(i) P; only depends on those variables x; and y; such that o; < o;;
(i) P; is actually a sum of mized monimials in = and y;

(iii) P;(6x(x),07(y)) = A% Pj(x,y), for every x,y € RY.

In particular, we have P; =0 for every j € {2,...,N} such that o; = 1.
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Theorem 1.2.5 (Lie algebra of homogeneous groups). Let G = (RY,x,3,) be
a homogeneous Lie group and let Lie(G) be the Lie algebra of G. Then Lie(G) is
nilpotent of step r < oy, that is, every commutators of vector fields in Lie(G)
containing more than oy terms vanishes identically.

Moreover, if {J1,...,J N} is the Jacobian basis of Lie(G) (see Def.1.1.3),
then for every j =1,..., N the vector field J; is dx-homogeneous of degree o;.

By combining Thm.s 1.2.4 and 1.2.5, we obtain the following very explicit
description for the Jacobian basis of the Lie algebra of a homogeneous group.

Corollary 1.2.6 (Jacobian basis of a homogeneous group). Let G = (RY,x,4))
be a homogeneous Lie group on RN and let Lie(G) be the Lie algebra of G.
Moreover, let {J1,...,Jn} be the Jacobian basis of Lie(G). Then we have

N
Ji = 0, + Z ay)(x)@mj, for everyi=1,..., N —1, and

JN = 6a:1\/7
where agi) is a smooth d)-homogeneous polynomial of degree o; — 0;
Proof. By Thm.1.2.4, the matrix J.,(0) takes the following form
1 0 0
(1) - :
ay’(z 1 - :
o= ’
: K " 0
1 N—1
af(@) - ay V() 1
where, for every i =1,...,N — 1 and every j = 2,..., N, we have
i OP;
a§- )(x) = —2(2,0), forevery z € RV,
9yi
Moreover, for every j € {2,..., N}, again from Thm. 1.2.4-(i) we infer that
, P
ay) = g—yj(-,()) =0, foreveryie {l,...,N—1}s.t.0; > 0.

From this, recalling that the Jacobian basis of Lie(G) is given by the vector
fields associated with the column vectors of J,,(0), we immediately derive that
J1,...,Jn are precisely of the form (1.2.5).

Finally, since we know from Thm. 1.2.5 that, for every i = 1,..., N — 1, the
vector field J; is dx-homogeneous of degree o;, it follows from Thm. 1.2.2 that,
for every j = 2,...,N, the function ay) is a dy-homogeneous polynomial of
degree o; — 0;, and the proof is complete. O

Remark 1.2.7. Let G = (R",*,0,) be a homogeneous Lie group and let
a € RN. By exploiting Thm. 1.2.4, it is easy to see that the Jacobian matrices
of the translations 1, and p, are both of the following lower triangular form

1 0 -0

1 (1.2.6)



1.2. Homogeneous groups 10

therefore, the well-known Change of Variables formula implies that
HN(1o(E)) = HY (pa(E)) = HN(E), for every Borel set £ C RV, (1.2.7)

that is, the standard Lebesgue measure on R” is invariant with respect to the left
and the right translations on G (any Radon measure on G with these properties
is called a bi-invariant Haar measure).

We explicitly notice that the Lebesgue measure is also Q-homogeneous with
respect to the family of dilations {0 }xs0: in fact, since for every A > 0 one has

N0 .- 0
0 A ... 0
Js, (z) = ., for every z € RY,
: . . 0
0 0 AN

again from the Change of Variables formula we obtain
HN(6A(E)) = AeHN(E), for every Borel set E C RV, (1.2.8)

where Q = Zjvzl o; is the homogeneous dimension of G (see (1.2.1)).

Carnot groups

We conclude this second section by turning our attention to a particular subclass
of homogeneous Lie groups, namely, the Carnot groups. Such a class of Lie
groups is widely studied in the literature, and it represents the starting point
for all the investigations carried out in this thesis.

Let G = (RY,x,8)) be a homogeneous Lie group on R¥ (according to the
definition recalled above). We say that G is a homogeneous Carnot group
(or simply a Carnot group) if the vector fields of the Jacobian basis which are
dx-homogeneous of degree 1 form a set of Lie-generators of Lie(G).

The number m of such Jacobian vector fields is called the number of gen-
erators of the Carnot group G.

Since Carnot groups are, in particular, homogeneous groups, all the results
recalled so far do apply to such a class of groups; on the other hand, the structure
of a Carnot group can be described in a very precise way, as the following
theorem shows (for a proof see, e.g., [37, Section 1.4]).

Theorem 1.2.8. Let G = (RY,x,6,) be a homogeneous Carnot group and let
Lie(G) be the Lie algebra of G. We define

V1 :={X € Lie(G) : X is dx-homogeneous of degree 1}.
Then the following facts hold true:
(i) the exponents o1,...,0n are consecutive integers;
(il) r = on is the step of nilpotency of Lie(G);
(ii) Lie(G) =V1 @ -+ @ V., where

Vigr = [V1,Vi] - for every 1 <i <r—1,
and [V1,V,] ={0}.
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Furthermore, if 1 < i < r, the vector space V; is generated by the elements of
the Jacobian basis which are §y-homogeneous of degree i, and it coincides with
the set of vector fields in Lie(G) which are dx-homogeneous of degree 1.

It is worth noting that not all homogeneous groups are Carnot groups. For
example, the classical Euclidean group E = (R?, +) is endowed with a structure
of homogeneous group by the family of dilations {d)}>0 given by

5y : R? — R?, Sxa(z) = (M1, \2a).

However, E = (R2, +,6y) is not a Carnot group: in fact, the Jacobian basis of
Lie(E) is given by d = {J1 = Ou,,J2 = 04, }, and J; is the unique element of
d which is §y-homogeneous of degree 1; since J; does not Lie-generates Lie(G),
we conclude that E is not a Carnot group.

Let G = (RY,*,0,) be a homogeneous Carnot group, with m generators and
nilpotent of step r = oy, and let g = Lie(G) be the Lie algebra of G. Recalling
that o1, ..., 0N are consecutive integers between 1 and r, we can define a r-tuple
(N1, ..., N;) of natural numbers in the following way:

Ni:card{je{l,...,N}:aj:i}, forevery 1 <i<r

(note that, since G has m generators, we have N; = m). If we now denote a
point z € RN by z = (), ..., 2("), with

2 = (xgi), .. ,:175\1,)) e RN, foreveryi=1,...,r,
we have the split RN = R™M x ... R and we can write, for every \ > 0,
Ixn(z) = (/\x(l), Nz )\Tx(r)), for every z € RY;
moreover, taking into account Thm. 1.2.4, for every z,y € R we have
(zxy)D) =2 44D and
(x * y)(j) =z 4y 4 Q(j)(x,y), for every j =2,...,7,
where, for every 2 < j < r, QU) is a RNi-valued function such that
(i) QY only depends on z(, ..., 20~ and y, ... 4=,
(ii) the components of Q) are sums of mixed monimials in = and y;
(iii) Q(j)(ék(x),é)\(y)) =M QU (z,y), for every z,y € RN,
Finally, if we introduce the notation

IO,

r

SO W

AP
for the Jacobian basis of Lie(G), we know from Thm.1.2.5 that Ji(p) is dx-
homogeneous of degree p, and we derive form Cor.1.2.6 that

s Nk

JZ.(p) = 8/8@@) + Z Zaﬁh)(x) 8/33:,(:1),

h=p+1 k=1
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where, the function a(?,';h) is a 0y-homogeneous polynomial of degree n, —n,, (we
agree to let the sum in the right-hand side be equal to 0 when p = r).

We conclude this section by briefly introducing a distinguished class of
Carnot groups, namely, the (prototype) groups of Heisenberg-type.

Example 1.2.9 ((Prototype) H-type groups). Let m,n € N with m > 2 and
let BW, ... B™ be m x m matrices satisfying the following properties:

(1) B® is skew-symmetric and orthogonal for every i = 1,...,n;
(2) BWBU) = —BUBW for every i,j = 1,...,n with i # j.

We then denote a generic point z in the product RY = R™ x R" with z = (x,1),
where x € R™ and t € R", and we define

(x,t) * (&, 7) :=

1 1 1.2.9
(m+§7t1+7—1+2<3(1)xa€>’7tn+Tn+2<B(n)$7£>> ( )

It is very easy to recognize that (R”,x) is a Lie group on R”, with neutral
element 0 and where the inverse of an element z = (x,t) is given by

27l = 2= (—z,1);
moreover, if we consider the family of dilations {d)}x>0 given by
5y :RY — RY, Ox(2) = Ox(z,t) = (Ax, A1), (1.2.10)
it is not difficult to see that H = (RY, x,d,) is a homogeneous Lie group.

Now, a direct computation shows that, for every z = (z,t) € RY, the
Jacobian matrix of the left-translation 7, at 0 takes the following block form:

Im Oan

3..(0) = | 2 (BYa), - 5 (BYa),,
: : L,
% (B(n)w)l % (B(n)x)m

therefore, according to Rem. 1.1.5, the Jacobian basis of Lie(G) is given by

1 & ,
Ji(l) = 0/0x; + 3 Z(B(J)x)i(')/(')tj, foreveryi=1,...,m;
j=1 (1.2.11)

Jj@) =0/0t;, forevery j=1,...,n.

Since conditions (1) and (2) imply the linear independence of the matrices
BW ... B from (1.2.11) one can easily infer that Jl(l), e 7(,%), which are
precisely those element of the Jacobian basis that are d)-homogeneous of de-
gree one, form a set of Lie-generators for Lie(H); therefore, according to the
definition, H is a Carnot group, which is called a (prototype) group of
Heisenberg-type, or simply a (prototype) group of H-type.

We point out that H has m generators and that Lie(H) is nilpotent of step
2; furthermore, we have Lie(H) = V; @ V4, where

Vi =span({J{",..., J{}) and Vo = V1, V1] = span({J{7, ..., J@)}).
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1.3 Sub-Laplace operators on Carnot groups

The aim of this last section is to briefly introduce the sub-Laplace operators
on Carnot groups: we shall recall the main definition and properties concern-
ing such operators, and we will shortly describe the result by Folland on the
existence of a (global) fundamental solution.

1.3.1 DMain definitions and properties

Let G = (RY,%,8,) be a fixed homogeneous Carnot group on RY, with m
generators and nilpotent of step r. As usual, we denote by Ji,...,Jy the
N element of the Jacobian basis of Lie(G); accordingly, Ji,...,J,, are those
elements of the basis which are Jy-homogeneous of degree 1. We also set

Vi :=span({J1,...,Jm}) = {X € Lie(G): X is d-homogneous of degree 1}.

If X ={Xy,...,X,,} is any (linear) basis of V1, the second-order PDO

m

L:ZX]?

Jj=1

is called a sub-Laplace operator (or simply a sub-Laplacian) on G. In
particular, if we take X = {Jy,...,Jn}, the operator

AG = zm: Jz2’
i=1

is called the canonical sub-Laplacian on G.

Example 1.3.1 (Sub-Laplacians on (prototype) H-groups). Let m,n € N with
m > 2 and let H = (R", *,6,) be (prototype) H-group on RN = R™ x R" as
in Exm. 1.2.9 (with group law  given by (1.2.9) and dilations as in (1.2.10)).

By means of the expression of the Jacobian basis of Lie(H) obtained in
(1.2.11) (and recalling that B, ..., B(™ are skew-symmetric and orthogonal),
we can write explicitly the canonical sub-Laplacian on H: we have

Ay = ;aﬁi + % |2 ;a@ n ;;(Bmx)i Do,

1 Sy
=8t g Il At (B, V1) B,

In particular, Ay does not contain first order terms.

We now would like to list some simple yet important properties of any sub-
Laplacian £ = Z;nzl X? on G, directly following from the properties of the
vector fields Jy,. .., Jn,. For a proof we refer, e.g., to [37, Section 1.5].

(P1) £ is invariant w.r.t.the left-translations on G, i.e., for every a € RY

L(uoTy) = (Lu)or,, foreveryue C*(RN,R). (1.3.1)
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(P2) Lx is dx-homogeneous of degree 2, i.e., for every A > 0 one as

L(uody) =N (Lu)ody, foreveryue C®RY,R). (1.3.2)

(P3) The operator £ is of the following divergence form

9 9

where the principal matrix A(z) = (a;;(x));,; is given by the product
A(z) = S(z) S(z)t, for every x € RV, (1.3.4)

and S(zx) is the N x m matrix whose columns are the coefficient vectors
of X1,...,X,,, that is,

S(x) = (X1I(x) - XpI(z)), forevery z € RY. (1.3.5)

As a consequence, £ has (smooth) polynomial coefficients and it is (for-
mally) self-adjoint on the space L?(RY), when restricted to smoothly and
compactly supported functions, that is,

/ o Lypdr = Y Lodr, for every p,¢ € C5°(RYN,R).
RN RN

(P4) The principal m x m minor
ara(z) - arm(z)
A171(J))= s Z‘GIR,N,
ama(x) o amm(2)

of the principal matrix A(x) of £ is constant, symmetric and positive
definite. As a consequence, there exists ¢ € {1,...,m} such that

(P5) L is C>-hypoelliptic on every open subset of R”, i.e., every distributional
solution to the equation Lu = f is of class C'°° whenever f is of class C*°.

Properties (P1)-to-(P5) listed above posses a large number of interesting con-
sequences; we conclude this first part of the section by highlighting a couple of
them, which will be important for us in the sequel.

For a proof of the following results we refer, e.g., to [37, Section 5.13]

Theorem 1.3.2 (Strong Maximum Principle for £). Let G = (RY, x,5,) be a
homogeneous Carnot group and let L be a sub-Laplacian on G. Moreover, let
Q C RN be an open and connected set and let u € C*(2, R) be such that

u<0 and Lu>0 in Q.

If there ezists a point xo € Q such that u(xzg) = 0, then u =0 throughout (2.
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Theorem 1.3.3 (Weak Maximum Principle for £). Let G = (R, *,8)) be a
homogeneous Carnot group and let £ be a sub-Laplacian on G. Moreover, let
Q C RYN be an open and bounded set and let u € C%(Q, R) be such that

Lu >0 on €,
limsup u(z) < 0 for every £ € 09.

x—§
Then u(x) <0 for every x € Q.

Corollary 1.3.4. Let G = (RY,,0,) be a homogeneous Carnot group and let
L be a sub-Laplacian on G. If u € C?>(RN,R) is such that

Lu=0onRY and lim wu(z) =0,
llzll—o0

then u(z) = 0 for every RY.

1.3.2 Fundamental solution

As anticipated above, we conclude this section by briefly describing a deep
result due to Folland, which will be of fundamental interest for us in Chpt. 3:
roughly put, it ensures the existence (and the uniqueness) of a smooth global
fundamental solution for any sub-Laplacian on a Carnot group.

To begin with, since there is no common agreement on the notion of what
fundamental solutions are, we fix the relevant definitions.
In what follows we use the notation

a la]
bz = (%) = axlaax

for higher order derivatives on R™. Here a = (ay,...,ayx) € (NU{0})" and
|a] = a1 + -+ - 4+ ay is the length of a.

Definition 1.3.5 (Fundamental solution). On Euclidean space R™, we consider
a generic linear partial differential operator of order d € N,

P = Z aq(z) Dy,

la<d
with smooth real valued coefficients a, (z) on RY. We say that a function
:{(z,y) e RN xRN :z #9y} — R,
is a (global) fundamental solution for P if it satisfies the following property:

(FS) For every x € R", the function I'(z;-) is locally integrable on R™ and
| M@ Peu)dy=—pla)  for every ¢ € CRRNR), (13)
RN

where P* denotes the usual formal adjoint of P 1.

1We point out that, since both the coefficient functions of the operator P and the test
functions considered in identity (1.3.7) are assumed to be real-valued, the formal adjoint P*
of P actually coincide with the transpose PT.
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It is worth noting that, if P is a linear PDO as in Def.1.3.5 and if " is a
fundamental solution for P, identity (1.3.7) can be re-written as follows:

PT, = —Dir, in D'(RY), (1.3.8)
where Dir, is the Dirac distribution supported at {x}.

Example 1.3.6 (The Laplace operator). Probably, one of the best examples
of fundamental solution is the one of the Laplace operator: if A is the classical
Laplace operator on RY, with N > 3, then a (global) fundamental solution for
A is given by the function

1 _ .
[(x,y) = ~ llz —yl2™, with z #y,

Nw
where wy denotes the (Lebesgue) measure of the Euclidean ball B(0,1).

Note that, together with property (FS) in Def.1.3.5, the function T' also
satisfies the following additional properties:

(i) T is smooth and strictly positive out of the diagonal of RY x RY;
(ii) ['(z,y) = I(y, ) for every z,y € RY with x # y;
(iii) T € LL (RN x RY) and, for every fixed y € RV, I'(-;y) € LL (RY);

loc loc

(iv) for every fixed z € RY, the function y ~— I'(z;y) vanishes as ||y|| — oo;

(v) for every fixed z € R™, the function y +— T'(z;y) goes to co as y — .

Before proceeding to the description of Folland’s result, we give some re-
marks concerning the problem of the existence and the uniqueness of a global
fundamental solution for a general linear PDO.

Remark 1.3.7. (a) The existence of a global fundamental solution for P is far
from being obvious and it is, in general, a very delicate issue. In the particular
case of C*°-hypoelliptic linear PDOs P having a C*°-hypoelliptic formal adjoint
P*, it is possible to prove the local existence of a fundamental solution on
a suitable neighborhood of each point of R™ (see, e.g., [131]); moreover, in
[39] Bony showed that any Hérmander operator admits a smooth fundamental
solution on every bounded open set satisfying suitable regularity assumptions.

(b) Fundamental solutions are, in general, not unique since the addition of
a P-harmonic function (that is, a smooth function h such that Ph = 0 in RY)
to a fundamental solution produces another fundamental solution.

(¢) Nonetheless, if P is a second order C*°-hypoelliptic operator which
fulfills the Weak Maximum Principle on every bounded open set of RY, then
there exists at most one fundamental solution I" for P such that

lim I'(z,y) =0, forevery z e RY.
llyll—o0

Indeed, if I'y, T’y are two such functions, then (for every fixed 2 € R") the map
ug := Iy(z,) — Ta(x,-) belongs to LL _(RY) and it is a solution of Pu, = 0
in the sense of distributions on R”Y; the hypoellipticity of P ensures that u,
is (a.e.equal to) a smooth function on RY which vanishes at infinity by the
assumptions on I'y, I'y; from the Weak Maximum Principle for P it is readily
obtained that u, = 0 (a.e.), that is, I'y = I's (a.e.). When continuity of I'(x,-)
is also requested, this gives I'; = I's.
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Now we have specified what we mean by fundamental solution of a general
linear PDO, we can turn our attention to the particular case of the sub-Laplace
operators on Carnot groups. In order to clearly state the notable result by
Folland, we first recall the notion of homogeneous norm on a Carnot group.

Definition 1.3.8 (Homogeneous norm). Let G = (R, *,J,) be a homogeneous
Carnot group on RY. We say that a continuous function

d: RN — [0, 00]
is a homogeneous norm on G if it satisfies the following properties:
(i) d(0x(z)) = Ad(x) for every A > 0 and every z € RY;
(ii) d(x) > 0 for every x € RN with x # 0.
Furthermore, we say that d is symmetric if
d(z~') = d(x), for every z € RV.

Let G = (RY,*,d,) be a homogeneous Carnot group and let oq,...,0n
be the exponents in the family of dilations {d)}x>o (recall that o1,...,0n5 are
consecutive integers and that o1 = 1). Then, setting

N
I lle : BRY — (0,00, llle =D layl/ 7, (1.3.9)
j=1

it is straightforward to recognize that | - || is a homogeneous norm on G, which
is symmetric if 7! = —z for all z € G. Actually, it is very easy to prove that
all the homogeneous norms on G are equivalent to | - ||g: more precisely, if d is
a homogeneous norm on G, there exists a constant ¢ > 0 such that

c |zl < d(z) < cllz|g, for every = € RY. (1.3.10)

With the notion of homogeneous norm at hand, we are finally in a position to
state the announced theorem by Folland (the complete proof of this result can
be found in [72, Theorem 2.1]; see also [37, Sections 5.1 and 5.3]).

Theorem 1.3.9 (Existence of the fundamental solution). Let G = (RN, *,6)
be a homogeneous Carnot group (with homogeneous dimension QQ > 2) and let

L be a sub-Laplacian on G. It is then possible to find a homogeneous symmetric
norm d € C° (RN \ {0}, R) such that the function

D:{(z,y) e RN xRV :x £y} - R, T(z,y):=d> (a1 xy), (1.3.11)
is a fundamental solution for L, further satisfying the following properties:

o T is smooth and strictly positive out of the diagonal of RN x RY;

o [' is symmetric, that is,

D(z,y) =T (y,z), for every x,y € RN with x # y;
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o [ is 0x-homogeneous of degree 2 — Q, that is, for every A > 0 we have

L(0r(z),6x(y)) = NCQTD(x,y), for every x,y € RN with x # y;

e For every x € RN, I'(z,-) has a pole at x and it vanishes at infinity, i.e.,

lim I'(z,y) = oo and lim T'(z,y)=0.

y— llyll—o0

Remark 1.3.10 (Uniqueness of the fundamental solution). Let G = (RY, ,6))
be a homogeneous Carnot group on RY and let £ be a sub-Laplacian on G.

Since the operator £ is C'*° hypoelliptic (see property (P5) on page 14)
and since it satisfies the Weak Maximum Principle on every open and bounded
subset of RV (see Thm. 1.3.3), we infer from Rem. 1.3.7-(c) that the function I’
in Thm. 1.3.9 is the unique global fundamental solution for £ such that

lim T(z,y) =0, for every fixed z € RV.

llyll—oo

Example 1.3.11 (The case of H-type groups). Let m,n € N with m > 2 and
let H = (RY,,d,) be (prototype) H-group on RY = R™ x R" as in Exm. 1.2.9
(with group law * given by (1.2.9) and dilations as in (1.2.10)). Denoting by
(z,t) the points of H, with z € R™ and ¢t € R™, we know that the canonical
sub-Laplacian Ap on H takes the form (see Exm.1.3.1)

1 n )
Ay =As+7 212 Ay + ;w%, V) 8y,

then, by a notable result by Kaplan [97], the (unique) global fundamental solu-
tion I' of Ay is explicitly known: if we set

dy : RN 0 d t) = 4161521/4
H — [0, 00, u(r,t) = ([|=]" + 16 ||¢]| ;

there exists a constant ¢ > 0 such that, for every z,y € RV with = # v,
[(z,y) = cd]%fQ (y_l * x)

The constant c¢ is somehow a “geometrical” constant, and it can be expressed as
the integral of a suitable kernel, depending only on dy (see [37, Theorem 5.5.6]).



Chapter 2

PDOs structured on complete
vector fields

In this second chapter of the thesis we shall be concerned with linear partial
differential operators (PDOs, in the sequel) of the following form

m
L=> X7+ Xo,

j=1

where X1,...,X,, and X, are smooth vector fields defined on R". Obviously,
a sufficient condition for £ to be left-invariant w.r.t.some Lie group structure
G = (R, %) is that each Xo,..., X,, belongs to the Lie algebra Lie(G) of G,
and the convenience to deal with left-invariant PDOs (both for the analysis of
PDOs and PDEs) needs no further justifications.

Motivated by this fact, we shall dedicate Sec.2.1.1 to the study of finite-
dimensional Lie algebras of vector fields: more precisely, we shall provide both
necessary and sufficient conditions for a Lie algebra g to coincide with the Lie
algebra of a Lie group G (on R¥). In Sec. 2.2, instead, we shall consider second-
order linear PDOs L of the general form

N N
L= ;@) 0+ bj(x)0s,,
i,j=1 j=1

(with smooth coefficients a; ; and b;) and we shall present sufficient conditions
allowing L to be re-written as a sum of squares of smooth vector fields.

2.1 Characterization of left-invariance
As anticipated, the main aim of this section is to provide an exhaustive answer
to the following very natural question:

(Q) Given a Lie sub-algebra g of the smooth vector fields on R, is it possible
to find a Lie group G = (R", *) on R such that Lie(G) = g?

It is clear that, if we do not assume any hypothesis on g, the answer is
negative: for example, if a vector field in g is not global, then g cannot be the

19
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Lie algebra of any Lie group on RY (see Prop. 1.1.6 on page 5). Taking into
account the results recalled in Chpt. 1, it is not difficult to find some necessary
conditions for (Q) to have a positive answer:

1. every X € g must be a global vector field, i.e., all of its integral curves
must be globally defined on the real line;

2. g must satisfy Hérmander’s rank condition:

dim ({XI(z) e RN : X € g}) = N, for every z € RY;

3. the dimension of g, as a linear subspace of X(RY), must be equal to N.

The main result of this chapter shows that, if all the vector fields in g are
assumed to be real analytic on R, then the above conditions a re also a set of
independent and sufficient conditions for g to coincide with the Lie algebra of
an analytic Lie group G = (R, *) on RY. The tools we will use in order to
prove this fact are the following:

e the Campbell-Baker-Hausdorff-Dynkin Theorem (for composition of flows
of vector fields) in order to equip R™ with a local Lie-group structure;

e the use of a completeness result for time-dependent vector fields, in order
to globalize this local Lie group (here, the hypothesis of real-analyticity
of the vector fields in g plays a crucial role).

As regards question (Q), we highlight the paper by Bonfiglioli and Lanconelli
[32], where it is proved that, if g is a Lie algebra of real-analytic vector fields
satisfying the above (1)-to-(3) plus the assumption that the local Lie group
attached to g can be globalized, then it is possible to positively answer to (Q).
In the subsequent Sec.2.1.3 we show that the latter Bonfiglioli and Lan-
conelli’s globalization assumption is automatically guaranteed by the validity of
(1)-to-(3); in this perspective, we give an improvement of Theorem 1.1 in [32].

2.1.1 Exponential map and Logarithmic map

The main goal of this section is to introduce, for a selected class of Lie algebras
g C X(RY), the exponential map and the logarithmic map. Such maps will be
fundamental to answer question (Q) posed above.

Definition 2.1.1. Let g C X(R”Y). We shall say that g satisfies hypothesis

(C): if every X € g is a global vector field;

(H): if Hormander’s rank condition holds:

dim ({XI(z) e RN : X € g}) =N for every z € RY; (2.1.1)

(ND): if g is N-dimensional, as a linear subspace of X(R").
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Remark 2.1.2. In order to distinguish the two dimensions appearing in condi-
tions (H) and (ND) we observe that, for every linear subspace V of X(R") and
every © € RV, one has

dim ({XI(z) e RV : X € V}) < dim(V). (2.1.2)
Indeed, setting A, : V — RN, A(X) := XI(z), the map A, is linear and
(V) = {(XI(2) : X € V};
hence, dim (A, (V)) < dim(V), as claimed.

We have already remarked that conditions (C), (H) and (ND) in Def.2.1.1
are necessary for question (Q) to have a positive answer. We now highlight the
independence of these conditions with the aid of the following examples.

Example 2.1.3 ((H)+(ND)=(C)). Let us consider, in X(R), the v.f.

X :=(1 5 —
( + 1’1) 6I17

and let g := Lie{X}. It is easy to recognize that g satisfies conditions (H) and

(ND) with N = 1, but it violates (C): indeed, the integral curve of X starting

at 0 is the function ¢ — tan ¢, which is not defined on the whole of R.

Example 2.1.4 ((C)+(ND)=(H)). Let us consider, in X(R), the v.f.

0
X =z —
o 831‘1 ’
and let g := Lie{X}. It is easy to recognize that g satisfies conditions (C) and
(ND) with N = 1. On the other hand, condition (H) does not hold, since (2.1.1)
is not satisfied at « = 0.

Example 2.1.5 ((C)+(H)=(ND)). Let us consider, in X(R), the v.f.s

0 0
X=z,—, Y:i=_—
o 81'1 ’ 8x1 ’
and let g := Lie{X,Y}. Since [X,Y] = X, condition (ND) does not hold: in
fact, X and Y being linearly independent (remind that we are considering X(RR)
as a real vector space and not as a C°°-module), we have

g = spang{X, Y}, whence dimg(g) = 2.

On the other hand, g satisfies conditions (C) and (H) with N = 1.

We remark that a Lie algebra g can satisfy conditions (C) and (H) without
being finite-dimensional (as a subspace of X(R")). This is the case, e.g., of the
Lie algebra generated by

o ., 1 2

oy 1% cxm).
Oxy’ 1+x%8x2€ (R%)

Thanks to Def. 2.1.1, we can state the main theorem of this chapter, which
provides a complete answer to question (Q). The proof of this theorem is ac-
complished in Sec.s 2.1.2 and 2.1.3.
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Theorem 2.1.6. Let g C X(RY) be a Lie algebra of real-analytic vector fields
satisfying conditions (C), (H) and (ND) of Def. 2.1.1.

Then, there exists an analytic Lie group G = (RN, %) on RN, with neutral
element 0, such that Lie(G) = g.

The first ingredient to prove Thm. 2.1.6 is the definition of exponentiation of
a Lie algebra g C X(RY) satisfying condition (C). As we shall see in a moment,
such a definition has a strong analogy with the definition of Exponential Map
on a Lie group on RY.

Definition 2.1.7 (Exponentiation of g). Let g C X(R") be a Lie algebra sati-
sfying condition (C). We set

Exp,: g9 — RY, Exp,(X) = vx,0(1),

where vx o denotes the integral curve of X starting at 0. We shall often call
this map the exponential map of g. We also denote Exp,(X) by exp(X)(0).

We remark that assumption (C) on g is essential for Def. 2.1.7 to make sense:
indeed, if X € g is not complete, the integral curve of X (starting at 0) may
not be defined for ¢ = 1.

Remark 2.1.8. Let g C X(RY) satisfy condition (C), and let us suppose that
there exists a Lie group G = (R, ) with Lie algebra equal to g. If the neutral
element of G is 0, then the exponential map Exp, of g is nothing but the
Exponential Map of G (see Def. 1.1.7 on page 5).

Our next purpose is to investigate the regularity of the map Exp: to this
end, we need an additional structure on g allowing us to talk about open sets and
smooth functions. Hence, we assume that g also satisfies condition (ND): if this
is the case, the vector space g can be endowed with a topological-differentiable
structure by identifying it with RY via the choice of a basis.

Lemma 2.1.9. Let g C X(RY) satisfy conditions (ND) and (H). Then there
exists a basis of g (as a subspace of X(RY)), say {Ji,...,J n}, such that

det(JiI(z)--- InI(z)) #0 for all z € RY, (2.1.3)
(J11(0) -~ INI(0)) = L,

where I 4s the N x N identity matriz.

Proof. First of all, since g satisfies condition (ND), there exist Zi,...,Zy in
gs.t.{Z1,...,Zn} is a basis of g (as subspace of X(R")). We claim that, for
every © € RV, the vectors Z,I(x),..., ZyI(x) are linearly independent in R™.

Indeed, since g also satisfies condition (H), there exist Wi,..., Wy € g such
that the vectors WiI(z),..., WxI(z) are linearly independent (in R™V); on the
other hand, since Z is a basis of g, we have

spanp {W11(x),...,WnI(z)} C spang{Z11(z),..., ZyI(z)},

and this shows that Z11(x),...,ZyI(z) are linearly independent, as claimed.
We now perform a simple linear change of coordinates, in order to obtain from
Z a basis satisfying conditions (2.1.3) and (2.1.4). We set

A= (am)i’j:l,m’]\r = (211(0) e ZNI(O))il, (215)
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and we define, for all j =1,..., N,
N
Jj = Zai_’jZi. (216)
j=1

Since A is invertible, J := {Ji,...,Jn} is a basis of g (as a subspace of X(R"))
and the vectors JiI(z),...,JJyI(z) are linearly independent for all z € RY;
moreover, from the definition of J it follows that

N N
(R1(0)--In1(0) *=” (Y aaZ1(0) -+ Y a,nZ,1(0)
j=1 j=1

— (Z11(0) - Zy1(0)) - A VLV 1y
This ends the proof. O

Remark 2.1.10. Let g € X(R”). The proof of Lem.2.1.9 contains the fol-
lowing fact: if g satisfies conditions (ND) and (H), then there exists a basis
{J1,...,Jn} of g (as a subspace of X(RY)) such that

Jlf(.%'), ey JNI(LL'),

are linearly independent (in RY™) for all #+ € R™. On the other hand, if g
satisfies condition (ND) and if it is possible to find a basis {J1,...,Jx} of g (as
a subspace of X(R™)) such that J;1(z),..., JyI(z) are linearly independent for
all x € RY, then it is easy to recognize that g also satisfies condition (H).

We can then summarize these facts in the following way: if g C X(RY)
satisfies condition (ND), then it fulfills condition (H) if and only if it fulfills
condition (H’), where

(H’): there exists a basis {Ji,...,Jy} of g such that JiI(x),...,JnI(z) are
linearly independent for every z € RY.

Remark 2.1.11. Let g C X(RY) satisfy conditions (H) and (ND), and let us
assume that G = (RY, %) is a Lie group on RY, with neutral element equal to
0, such that Lie(G) is equal to g. Then, a basis of g as in lemma. 2.1.9 is unique,
and it is nothing but that the Jacobian basis of Lie(G) (see Def. 1.1.3 on page 4,
and recall that a left invariant vector fields X is completely determined by its
value X1(0) at the neutral element).

Proposition 2.1.12. Let g C X(RYN) satisfy conditions (C), (H) and (ND).

Then Exp, is a smooth map on g with non-singular differential at X =0 € g.
If, in addition, every vector field in g is real-analytic, then Exp, is real analytic.
Consequently, there exists an open and connected neighborhood U of 0 in g such
that (Expg)|u is a diffeomorphism.

Proof. We first prove the regularity of Exp,. To this end, let J = {J1,...,Jn}
be a basis of g as in Lem.2.1.9 and let 7 : RN — g, 7(¢) := Zf\il &J;. We set

N
E:RY RN, B(¢) = (Expy o )(€) = Expg(Z§ka). (2.1.7)
k=1
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Then, by definition, Exp, is smooth (resp. real-analytic) on g if and only if E
is smooth (resp. real-analytic) on R™. Now, the regularity of E follows from
classical results of ODE Theory. Indeed, let us we define

FiRY xRN — RN, f(2,8) =) Gl (x)

Obviously, f has the same regularity (w.r.t. both x and ) of Jy,..., Jy; more-
over, E(&) is nothing but v(1;¢), where ~(-;¢) is the unique maximal solution
(which is defined on the whole of R) of the parametric problem

&= f(x;€)
z(0) = 0.

Hence, we deduce from classical results ODE Theory that E has the same reg-
ularity (w.r.t.&) of Ji,...,Jn, as desired.

We now turn to show that the differential of Expy at X = 0 in non-singular.
To this end, we consider once again the map F in (2.1.7) and we compute its
Jacobian matrix at £ = 0. From the Maclaurin expansion (with an integral
remainder) of the map

ty(t:€) —eXP( kajk)

we obtain (here I stands for the identity map of R")

N
B(e) = (1;€) = mez / (1=5) S (Enbn D) (2(5:€)) ds
h k=1
- N
= Z §hfk/ (1= 8) (JnJeI)(7(5;€)) ds; (2.1.8)
hk=1

on the other hand, since (¢,£) — 7(t;€) is continuous on R x RY, it is not
difficult to recognize that

Zghsk / (1= ) (kD) ((5:€) ds = O([l€][?), as € —0.  (2.1.9)

h,k=1

Therefore, by gathering (2.1.8) and (2.1.9), we obtain
B =¢+0([¢l*), as&—0,

whence Jg(0) = Ly, which proves that the differential of Exp, at 0 is a non-
singular linear map. O

Remark 2.1.13. The proof of Prop.2.1.12 contains the following fact: let
g C X(RY) satisfy conditions (C), (H) and (ND) and let J := {J1,...,Jn} be
a basis of g as in lemma. 2.1.9. If we set 7 : RN — g, 7(¢) := Zszl & Jy and if
we define £/ := Exp, o, then F is a smooth map on RY and

Je(0) = Iy, (2.1.10)

where I is the identity IV x N matrix.
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Definition 2.1.14 (Logarithmic map on g). Let g C X(R") be a Lie algebra
satisfying conditions (C), (H) and (ND), and let U be as in Prop.2.1.12.

We set V' := Exp,(U) and we denote by Log, : V' — U the inverse map of
Exp, : U — V. We call this map the logarithmic map of g (relative to U).

2.1.2 Construction of the local Lie group

In this section we shall show that, if g C X(R") satisfies conditions (C), (H)
and (ND), it is possible to endow R with a local Lie group structure in such a
way that the vector fields in g are left invariant. The results presented here are
not new: indeed, we closely follow the approach in [32]; our new improvement
will be given in the globalization of the local Lie group, in the next section.

To begin with, to keep the exposition clear, we fix once and for all the main
notations used in the sequel:

e we denote by g a fixed Lie algebra of real-analytic vector fields on R
satisfying conditions (C), (H) and (ND) in Def. 2.1.1;

e we denote by Exp the exponential map Exp, of g and we let Log : V — U
denote its local inverse (with V' := Exp(U)) as in Def. 2.1.14;

e we fix a basis J = {J1,...,Jn} of g as in lemma. 2.1.9 and we introduce
the map 7 : RN — g by setting (&) := S0, &
With these notations, we set
m:RN xV — RY, m(z,y) = exp(Log(y))(x). (2.1.11)

As usual, if X € X(RY) and if x € RY, we denote by R > t + exp(t X)(x) the
maximal integral curve of X starting at x. By classical results of ODE Theory,
we deduce that m is real-analytic on RN x V.

Remark 2.1.15. Let us assume that there exists a Lie group G = (R, %),
with neutral element 0, and such that Lie(G) = g. As pointed out in Rem. 2.1.8,
the exponential map Exp on g coincides with the Exponential Map of G; as a
consequence, if y € V and if Y = Log(y) € g, Thm. 1.1.8 implies that

m(z,y) = exp(Y)(x) = vy (1) =z *y.

We want to show that m in (2.1.11) is locally associative near 0, and that
0 is a neutral element for m. To this end, we need the following result (for a
proof see, e.g., [29] or [32]).

Theorem 2.1.16. Let h be a Lie algebra of real-analytic vector fields on RN
satisfying conditions (C) and (ND), ant let || - || be a fized norm on Y. There
exists a positive real number ¢, depending on || - ||, such that the CBHD series

Z(X,Y) = f: Zn(X,Y)
h=1

is totally convergent on B(0,¢) x B(0,¢e), where B(0,e) :={V € bh: ||V < e}.
Furthermore, for every X, Y € B(0,¢), we have the following ODE identity

exp(Y) (exp(X)(x)) = exp (Z(X,Y))(z), for every x € RN, (2.1.12)
As usual, we also use the notation X oY = Z(X,Y).
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In order to apply the remarkable identity (2.1.12) to our setting, we need
to fix a norm on g; for simplicity, we consider the Euclidean norm obtained by
identifying g with RY via the basis J, that is,

N
> G| = \/m (2.1.13)
k=1 d

It is worth noting that, since g is finite-dimensional (by assumption (ND)), all
norms on g are actually equivalent.

By means of Thm. 2.1.16, we are able to derive a powerful representation for
the map m as in the next theorem.

Theorem 2.1.17. Lete > 0 be as in Thm. 2.1.16 and let us suppose (by possibly
shrinking ¢) that B(0,e) C U. It is then possible to find an open and connected
neighborhood W C V' of O such that the function

3:WxW — B(0,¢) 3(x,y) := Log(z) ¢ Log(y) (2.1.14)
is well-defined and, for every x,y € W, the following identity holds true

m(z,y) = Exp(3(z,y)). (2.1.15)

Proof. Let Z : B(0,¢) x B(0,e) = g, Z(X,Y) := X Y. Since, by Thm.2.1.16
(and by the choice of ¢), the CBHD series X ¢ Y is totally convergent on the
product B(0,¢e) x B(0,¢), Z is well-defined and continuous on its domain; as a
consequence, it is possible to find 0 < €7 < ¢ such that

Z(X,Y) € B(0,e), forall X,Y € B(0,zy). (2.1.16)

Analogously, since Log is continuous on V and Log(0) = 0, there exists § > 0
such that B(0,d) C V and

Log(z) € B(0,e1), for all € B(0,9). (2.1.17)

We then set W := B(0,0) and we show that it satisfies all the properties in the
statement of the theorem. To this end, let z,y € W be fixed.

By (2.1.17) we see that Log(z) and Log(y) belong to B(0,e1); therefore,
recalling that e; < e, from (2.1.16) we infer that the series Log(z) ¢ Log(y) is
convergent, whence 3 is well-defined, and

3(x,y) € B(0,e), forevery z,y € W.

As for identity (2.1.15) we observe that, since W C V| we have

mizy) = exp(Log(y)(@) (v = Bxp(Log(x)))
= exp (Log(y)) (Exp(Log(z)))
= exp (Log(y)) (exp(Log())(0)).

Thus, by gathering together (2.1.17) and (2.1.12), we conclude that

m(z,y) = exp(Log(z) o Log(y))(0) = Exp(3(,y)),

which is exactly what we wanted to prove. O
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Remark 2.1.18. Let W be the open (and connected) neighborhood of 0 con-
structed in the proof of Thm.2.1.17. Then, for every x € W, we have

[|[Log(z)[[g < e. (2.1.18)

Indeed, if z € W, we have Log(z) = 3(z,0); thus, from Thm.2.1.17 we infer
that Log(z) € ©(0,¢), which is exactly (2.1.18). In particular, since B(0,¢) is
symmetric, we have the following useful property

—Log(z) € B(0,¢), forallxz e W. (2.1.19)

By exploiting Thm. 2.1.17, and in particular identity (2.1.15), we can provide
a simple proof of the local associativity of m.

Theorem 2.1.19. Let W C V be as in Thm. 2.1.17. Then m(a,b) € V for
every a,b € W and m 1is associative on W, that is,

m(x,m(y,z)) = m(m(z,y), z) forall x,y,z e W. (2.1.20)
Furthermore, the point 0 € RN provides a local neutral element for m, i.e.,

m(x,0) =z, forallx € RN, (2.1.21)
m(0,y) =y, forallyeV. (2.1.22)

Proof. Let a,b € W. Since 3 takes values in B(0,e) C U, we have

m(a,b) P Exp(3(a, b)) € Exp(U) = V. (2.1.23)

We now turn to show identity (2.1.20). To this end, let x,y, z € W. Firstly, by
the above (2.1.23) (and since W C V), both sides of (2.1.20) are well-defined;
moreover, by means of Thm.2.1.17 we can write

Log(m(y, z)) N Log(Exp(3(y,2))) (3(y,2) € U) (2.1.24)

As a consequence, the left-hand side of (2.1.20) can be rewritten as follows:

m(x,m(y, z)) = exp(Log(m(y. ))(x) “= exp(3(y,2))(@).  (2.1.25)

As for the right-hand side we observe that, by definition of m, we have
m(m(z,y), z) = exp(Log(z))(m(z,y)) = exp (Log(z)) (exp(Log(y)(z));

therefore, since Log(y),Log(z) € B(0,e) (by the choice of W, see identity
(2.1.18)), we can apply identity (2.1.12), which gives

2.1.12
m(m(z,y), 2) "= exp(Log(y) o Log(2)) () = exp(3(y, 2)) (). (2.1.26)
Finally, by comparing (2.1.25) and (2.1.25), we derive that

m(z,m(y, z)) = m(m(z,y), 2),
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which is (2.1.20). As for identity (2.1.21), it is a straightforward consequence
of the definition of m: indeed, if # € R”Y, we have (note that 0 € V and
Log(0) = 0)

m(z,0) =Y exp(Log(0)) () = exp(0)(z) = 2.

On the other hand, if y € V, by definition of Exp we have
m(0,y) = exp(Log(y))(0) = Exp(Log(y)) = v,
and this is precisely the desired (2.1.22). This ends the proof. O
Definition 2.1.20. We set
LV — RN, t(x) := Exp(—Log(x)). (2.1.27)

As in the case of m, the real-analyticity of the vector fields in g implies the
real-analyticity of the map ¢ on its domain V.

Remark 2.1.21. Let us assume that there exists a Lie group G = (R, %),
with neutral element 0 and s.t. Lie(G) = g. Then, for every z € V, we have
o(z) =2t

In fact, since the map Exp is precisely the Exponential Map of G, if x € V and
if X = Log(z) € g, we then have
xxu(x) = z*xExp(—Log(z)) =z xexp(—X)(0) (1.15) exp(—X)(z)
= exp(—X)(Exp(X)) = exp(—X)(exp(X)(0))
= exp((—X + X))(0) =0,

and this proves that ((z) = 27!

, as claimed.
We now prove that the map ¢ provides a local inverse for m.

Theorem 2.1.22. Let W C V be as in Thm. 2.1.17. Then the map ¢ in (2.1.27)
provides a local inverse for m on W, that is,

m(z,u(z)) =0 forallx e W, (2.1.28)
m(u(x),x) =0, forallzeW. (2.1.29)

Proof. Let x € V and let X = Log(z). By Rem.2.1.18, —X € B(0,¢), whence
t(xz) = Exp(—Log(z)) = Exp(—X) € Exp(U) =V, (2.1.30)

moreover, since B(0,¢) C U, we have
Log((z)) = Log(Exp(—X)) = —X = —Log(x). (2.1.31)

From these identities we deduce that m(z,:(z)) is well-defined (since ¢(z) be-
longs to V') and that

m(z,u(x)) = exp (Log(u(x))) () “E" e

= exp(—X) ( eXp(X)(O)).

xp(—X)(z)
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As a consequence, since X,—X € B(0,¢), we are entitled to apply the crucial
identity (2.1.12), which gives

(2.1.12)

m(x,(x)) exp(X o (—X))(0). (2.1.32)

The desired (2.1.28) now follows from (2.1.32), by noticing that
oo o0
Xo(-X)=X+(-X)+ Y Zn(X,-X)=-_ Zy(X,X)=0.
h=2 h=2

As for identity (2.1.29) we observe, by definition of ¢, we have

m(u(z), ) = exp(Log(z))(v(z)) = exp (X) (exp(—X)(0));
thus, by arguing as above, we conclude

m(u(z), z) “E exp((—X) o X)(0) = exp(0)(0) = 0.

This ends the proof. O

By gathering the results in Thm.s 2.1.19 and 2.1.22, we see that m actually
defines a local Lie group structure on R¥; we end this section by showing that
the Lie algebra g is deeply connected to this structure.

Theorem 2.1.23 (Local left-invariance of g). For every X € g it holds that

XI(m(z,y)) = 22

oy (z,y) - XI(y), for every (z,y) € RN x V. (2.1.33)

Proof. We first prove that identity (2.1.33) holds for y = 0, that is,

XI(z) = %—’;1(:5,0) - XI(0), forallz € RYN. (2.1.34)

To this end, let x € RY and let > 0 be such that tX € U for all ¢t € R with
|t| < n. For these values of ¢, we have Exp(tX) € Exp(U) = V, whence

exp(tX)(x) = exp (Log(Bxp(tX))) (z) = m(z, Bxp(tX)).  (2.1.35)

By taking the derivative w.r.t. ¢t of both sides of identity (2.1.35) and evaluating
at t =0, we get (since ¢t — exp(tX)(x) is an integral curve of X)

XI(x) = %‘tzo{exp(tX)(x))} - %

_om

dy

{m(z,Exp(tX))}

t=0

(2,0) - %’tzoExp(tX) - %(x,o) - X1(0),

which is exactly the desired (2.1.34).
Let now W be an open and connected neighborhood of 0 as in Thm. 2.1.17.
Since m is associative on W (as ensured by Thm.2.1.19), we have

m(m(z,y),z) = m(z,m(y, 2)), forall x,y,zeW;
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thus, by differentiating w.r.t. z the above identity and evaluating at z = 0, we
get (setting, to avoid ambiguities, m = m(«, §))

1o} 1o} 1o}
5 (), 0) = 52 (0, m(y,0) - 52 (5,0), forall zy €W, (2.1.36)

From this, by multiplying both sides of (2.1.36) by the column vector XI(0),
we obtain (since m(y,0) = y)

om om om

%(m(%y),o) - X1(0) = 676(%3/) : 676(%0) - X1(0),
which gives, by (2.1.34) (returning to the m = m(z, y) notation),
(2130 Im _om gm
(2.1.34) %—m(x, y)- XI(y), forall o,y e W.
Y

This is precisely the desired (2.1.33) for z,y € W.

For the general case (that is, for x € RY and y € V), we use the Unique
Continuation Principle: since both sides of identity (2.1.33) are real-analytic in
the couple (z,y) and since they coincide on the open set W x W, they must be
equal on the whole of RN x V (since V is connected), that is,

X1(m(a.9) = G

This ends the proof. O

(z,y) - XI(y), forall (z,y) € RN x V.

2.1.3 Local to global

The aim of this last section is to show that the local-group structure constructed
in Sec.2.1.2 can be (uniquely) continued to be global; this provides a complete
answer to question (Q) and represents the main novelty with respect to the
paper by Bonfiglioli and Lanconelli [32], where the prolongation of the local-
group structure is assumed as an additional hypothesis.

In what follows, we take for fixed all the notations introduced so far.

To begin with, we prove that the map m can be analytically extended to
the whole of RY x R™. Our idea is the following: for every fixed =,y € RY, let
Y2,y De the curve defined by

Va,y(t) == m(z, ty).

Since m is defined on RN x V, there exists a (possibly small) open neighborhood
of 0 € R on which v, , is well-defined. We show that v, , satisfies a suitable
Cauchy problem which possesses a (unique) global maximal solution, say ¢ —
©z.y(t). Then it is natural to extend m as follows

Ty = g (1)

Keeping in mind this idea, we start with establishing the following lemma.
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Lemma 2.1.24. Let J = {J1,...,JJn} be a basis of g as in lemma. 2.1.9. There
exist N functions ay,...,ay € C*(R x RV, R) such that

N

y = Z ar(t,y) R I(ty), for all (t,y) € R x RY. (2.1.37)
k=1

Proof. For every x € RN, we consider the matrix J(z) := (JiI(x)--- JyI(x))
and we define (J(z) being non-singular)

(a1(t,y),...,an(t,y)) = (J(ty)) " -y

Obviously, ai,...,ay € C“(R x RY,R) (since Ji,...,JJy are real-analytic);
moreover, a direct computation shows that

N
1
> ar(t,y)kI(ty) = J(ty) - ((J(2) -y) =,
k=1
which is exactly the desired (2.1.37). This ends the proof. O

Remark 2.1.25. Let aq,...,ay be as in lemma. 2.1.24. We observe that, for
fixed t € R and y € RY, the N-tuple (a;(t,y),...,an(t,y)) € RY is nothing
but the solution z of the linear system

J(ty) -z =y. (2.1.38)

Since J(ty) is non-singular for every choice of (¢,4) € R x RY, the system
(2.1.38) has a unique solution, given by (J(ty))~! - y.

Theorem 2.1.26. Let z,y € RY be fived and let I C R be an open neighborhood
of 0 such that ty € V for allt € I. We set

Yoyt L — RY, Yo,y (t) = m(z, ty).

Then, for all t € I, the function v, is a solution of the following Cauchy
problem (depending on the parameter y)

N
2t = an(t,y) Il (2(1))
k=1

2(0) =z,

(2.1.39)

where ay,...,an are the functions given in lemma. 2.1.24.

Proof. Firstly, since m is real-analytic on RY x R, then ~,, € C¥(I,RY);
moreover, by exploiting identity (2.1.33) in Thm. 2.1.23, we get

N
) = 2 ) -y B %—Z(x,tw (3 alt, ) Il (ty)

k=1

I
M= &|¥

N
ontt ) (2200, 2)- 1)) “EV S au(e) Ll 1)
k=1

>
Il
—

I
WE

ar(ty) Jid (Ve y (1)),

e
Il
—_
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and this proves that v, , satisfies the ODE in (2.1.39). Finally, since 0 is a local
neutral element for m, we have

(2.1.21)
Vo,y(0) =m(z,0) "=""x,

and this shows that +, , solves the Cauchy problem (2.1.39). O

Our aim is now to prove that the Cauchy problem (2.1.39) admits a unique
maximal solution which is actually defined on the whole of R. To this end, we
first establish the following result.

Theorem 2.1.27. Let X;,..., X, € g and let aq,...,a, € C(R;R). Then,
for every £ € RN, the mazimal solution of the Cauchy problem

2(t) = Yooy an() XpI(2(1)),
2(0) =¢,

is defined on the whole of R.

(2.1.40)

Proof. Let ¢ : D — RY be the unique maximal solution of (2.1.40) and let us
assume, by contradiction, that D # R. To fix ideas, we suppose that

0 < T :=sup(D) < 0.

We then set K := [0, 7] and we choose & > 0 in such a way that the ball B(0, h)
is contained in V. Now, by exploiting classical results of ODE Theory, there
exists € > 0 such that the (unique) maximal solution us of the problem

=Yg ap(t+ ) Xpl(x),
{x(o) :ko, (2.1.41)

is defined at least on [—¢, €], uniformly for s € K, and it satisfies
lus(t)| < h, forallte [—e,e] and every s € K. (2.1.42)

Let now 7 € ]0,T[ be such that T — 7 < € and let © := ¢(7) (note that x is
well-defined, since 7 € ]0,7[ C D). We then define

v:[0,e] — RY, v(t) == m(z,u,(t)), (2.1.43)

where u, is the maximal solution of the Cauchy problem (2.1.41) with s = 7.
We observe that v is well-defined and real-analytic on [0, €], since m belongs
to C“(RN x V,RY) and, by (2.1.42), we have

ur(t) € B(0,h) CV, foralltel0e]

We claim that, on [0, h], v solves the following Cauchy problem

{2(15) =3 r ap(t + 1) XiI(2(1)),

)=z (2.1.44)

Indeed, since m(z,0) = x, we have

v(0) = m(x,u,(0)) = m(zx,0) L2y x;
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moreover, by Thm. 2.1.23, for every 0 < ¢ < ¢ one has

o Om . (2.1.41) Om -
(1) = G (s () e () 2 T (1) (kZ_lakaH)XkI(uT(t)))
- ;mwﬂ(%’jm,uxt»~ka<u7<t>>>
CLD S 0t 4+ 1) XeI(m(aur (1)) 2D S gt + )X I (0(0)).
k=1 k=1

We then consider the gluing of ¢ and v, that is, the map

©:[0,7+h —RY, @)= {fg)i7> tigi’jm.

By definition, ®(0) = ¢(0) (2-140) ¢and U € C([0,7 +¢],RY), since

lim ®(t) = lim o(t) = p(r) =2 "= 0(0) = lim v(t —7) = lim ®(t);

t—T— t—T— t—7t t—7t
moreover, it is not difficult to recognize that ® € C*([0,7 + ¢}, RY) and that ®
is a solution of (2.1.40). Indeed, for every 0 < ¢ < 7 we have

Z a; ()X, 1(p()) FEY Z HX;1(D(1)),
while, for every 7 < t < ¢, one has (since v solves (2.1.44))

2.1.4

) =v(t—7) = Zaj (t—7+7) Xt —7) = a;()X;1(D(1)).
j=1
Therefore, recalling that ® is continuous on [0, 7 4 €], we obtain

lim ®(t z": ®(7)) = lim ®(¢),

t—71— t—7t

and this proves that ® € C1([0,7 + ¢],RY) and it solves the problem (2.1.40).

As a consequence, since 7 + ¢ > T (by the choice of 7), ® turns out to
be a prolongation of ¢ beyond [0,T]; this is clearly in contradiction with the
maximality of ¢, and the proof is complete. O

Remark 2.1.28. Let us assume that there exists a Lie group G = (R, ) on
RY such that Lie(G) = g. In this case, the proof of the globality of a Cauchy
problem of the form (2.1.40) can be accomplished by exploiting the existence
of a group-inversion; however, we cannot follow this approach in order to prove
Thm. 2.1.27, since we do not possess a global inversion yet.

From Thm. 2.1.27, we immediately deduce the following result.
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Corollary 2.1.29. Let z,y € RN and let a1,...,ayx be as in lemma. 2.1.24.
Then the mazimal solution ¢, , of the Cauchy problem (2.1.39) (depending
on the parameter y) is defined on the whole of R.

By means of Cor.2.1.29, we are able the extend the map m.

Definition 2.1.30. Let 2,y € RY and let ¢,y be the unique maximal solution
of the Cauchy problem (2.1.39). We set

#: RV xRN — RV, T kY = Qg (1). (2.1.45)
As it is natural to expect, * turns out to be a real-analytic extension of m.

Theorem 2.1.31. The function * defined in (2.1.45) is a real-analytic function
on RN x RN which extends the function m, that is,

zxy=m(x,y) = exp(Log(y))(z), for all (z,y) € RN x V. (2.1.46)

Proof. We first prove the regularity of . To this end, for every z,y € RV, let
gy be the (unique) maximal solution of the parametric Cauchy problem

N

(2.1.47)

Since the function defined on R x RN x RN
N
(t,zy) = > an(t,y)Jel (2)
k=1

is real-analytic w.r.t. ¢, z and y (since ay, . .., ax are real-analytic on RxR”), we
infer that the map (¢;2,y) — ¢y, (t) is real-analytic w.r.t.t € R and z,y € RY;
as a consequence, we deduce that

(@,y) = @ay(l) =z %y

is real-analytic on RN x RY, as desired.

To prove identity (2.1.46), we choose a real > 0 such that B(0,r) C V
and we fix € RN and y € B(0,r). Moreover, we choose an open interval I
containing [0, 1] (note that B(0,r) is convex) and we define

Yy : T — RN, Va,y(t) = m(z, ty).

By Thm.2.1.26, v, , is solution of the Cauchy problem (2.1.47) for all t € I;
therefore, since ¢, , is the maximal solution of the same problem, we have

Va,y(t) = @z y(t), foralltel.
In particular, since 1 € I (by the choice of I), we get
m(z,y) = Yey(1) = @ay(l) =z %y, (2.1.48)

and this proves that * coincides with m on RY x D(0,7).
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To conclude the demonstration, we apply the Unique Continuation Principle:
since both m and * are real-analytic on RY x V and they coincide on the open
set RY x B(0,r), we obtain (recall that V is connected)

m(x,y) =xxy, forevery (z,y) € RN xV,
which is precisely the desired (2.1.46). O

Remark 2.1.32. It is worth noting that, as a consequence of Thm.2.1.31, the
map * defined in (2.1.45) is the unique analytic extension of m. Indeed, if
f € C¥RYN x RY,RY) is another extension of m, we have

zxy = f(x,y) =m(zx,y), forall (z,y)c RN xV;

therefore, since both f and * are real-analytic and they coincide on RY x V,
the Unique Continuation Principle ensures that

f(z,y) =xxy, forallz,ycRY.

As a consequence of the Unique Continuation Principle, the map x inherits
all the local properties of m proved in the previous section, turning them into
global ones.

Theorem 2.1.33. The map * is globally associative on RY, that is
rx(yxz)=(xxy)*z, forallzyzecRY. (2.1.49)
Moreover, the point 0 € RN is a global neutral element for *, that is,
rx0=0xx=ux, foralzecR". (2.1.50)
Finally, the map ¢ in (2.1.27) provides an inversion map for the x, that is,
zxulx)=vlx)xx=0, forallzeV. (2.1.51)

Proof. Let W C V be as in Thm.2.1.19 and let z,y,z € W. Since, by
Thm. 2.1.31, the map = is an extension of m, we have (recall that both m(x,y)
and m(y, z) belong to W C V)

(2.

—_

.46 (2.

—
i
=

6

) g% m(y, z) m(x, m(y, 2));

(2.

—
i
=

¢ m(x *y, z) =

—_

.46

)
(xxy)*2 m(m(z,y),z);
therefore, since m is locally associative (as ensured by Thm.2.1.19), we get

xx (y*z) =m(x,m(y,z)) (2120 m(m(z,y),z) = (x *xy) * 2. (2.1.52)

We can now apply the Unique Continuation Principle: since both sides of iden-
tity (2.1.52) are real-analytic w.r.t.z,y, z and since they coincide on the open
set W x W x W, we necessarily have

zx(y*xz)=(xxy)xz, forallz,y,zc R,

This is precisely the desired (2.1.49).
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Since 0 € V, by Thm. 2.1.31, we obtain

(2.1.46) (2.1.21)

xx0 m(z,0) x, forall z € RV,
On the other hand, if z € V| again by Thm.2.1.31 we get

(2.1.22)

0%z T 1m0, 2) (2.1.53)

We can then apply once again the Unique Continuation Principle: since both
sides of identity (2.1.53) are real-analytic on RY and they coincide on the open
set V, they must coincide on the whole of R”, that is,

Oxz =2z, forallazeRY.

Finally, let W C V be as in Thm.2.1.22 and let x € W. By Thm.2.1.31, we
have (recall that t(z) € V, since x € W)

hence, the map ¢ providing an inverse for m on W (by Thm. 2.1.22), we get
xxu(x) =m(z,(x)) = m((z),x) =z *x(x) =0, forallzeW. (2.1.54)
We then apply the Unique Continuation Principle: since both maps
x = x () and x () *x

are real-analytic on V and since, by (2.1.54), they are equal to 0 on the open
set W, they must identically vanish on the whole of V', that is,

xxu(r) =u(z)*xx =0, forallzeV.
This ends the proof. O

Now that we have globalized the local-group properties of m, we proceed
by establishing a global version of Thm.2.1.23. Before doing this, we give the
following definition. To be noted that we do not yet know that the following
maps are the left-/right-translations on a Lie group.

Definition 2.1.34. Let z € RY be fixed. We let

7. : RY — RY T2(y) ==z *xy, (2.1.55)
pe : RY — RV pe(y) =y *x. (2.1.56)

Theorem 2.1.35 (Global left-invariance of g). Ewvery vector field X in g is
left-invariant w.r.t. %, that is, the following identity holds true

XI(xxy)=3. (y)- XI(y), foralzyecR". (2.1.57)
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Proof. Let X € g be fixed. By Thm. 2.1.23 we know that

XI(m(z,y)) = 20

3 (z,y)- XI(y), forall (z,y) € RN xV;
Y

from this, since * coincides with m on the open set RY x V, we get

S X m(a.9)) = G ) XT(0)

(y) - XI(y) = 3, (y) - XI(y), forall (z,y) € RN x V.

XI(z*y)

_ O
-5

(2.1.58)

We now apply the Unique Continuation Principle: since both sides of identity
(2.1.58) are real-analytic on R x RY (any vector field in g being real-analytic)
and since they coincide on the open set RY x V, we must have

XI(x*y) =3, (y)  XI(y), forallzyecRN.

This is precisely the desired (2.1.57), and the proof is complete. O

Together with the map m and its analytic extension *, in order to prove our
Thm.2.1.6 we also need a global (analytic) extension of the inversion map ¢,
allowing us to define a group structure on RY.

Theorem 2.1.36. For every x € RY, the map 7, in Def. 2.1.3/ is a local
diffeomorphism on RN of class C*.

Proof. We first prove that, if € RY is fixed, then 7, is an analytic diffeomor-
phism near the origin. To this end, we consider the following maps

N
et RY — RY ex(§) 1= exp (Z&m) (z),
k=1
L:V—RY L(z) := (7! o Log)(x).

Since * is a prolongation of m, by definition of 7, we have

) = xy CEY () CEY exp (Logy) (@) = ex(L(y);  (2.1.59)

therefore, to prove that 7, is a C“-diffeomorphism at 0 we show that both L
and e, are real-analytic maps with non-singular Jacobian matrix at 0.
Now, the analyticity of L readily follows from that of Log; moreover, from

Rem.2.1.13 we deduce that J.,(0) = Iy. As for the map e,, we first observe
that, if v(-; &) denotes the unique maximal solution of the Cauchy problemnce

{z' =0l &l (2)
2(0) =z,

then e, (£) = v(1;€); therefore, (t,&) — ~(t; ) is real-analytic on RY x RV, and
we deduce that e, € C¥(RY,RY).
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To compute the Jacobian matrix of e, at 0, we write the Maclaurin expansion
(with integral remainder) of ~(-;¢&) for t = 1:

116 =10 +3(0:6) + [ (1= sh" (s ds

N N ’ 1 (2.1.60)
— x4y Gal(z)+ Y &G /0 (1= 5) (Jade)(7(s:€)) ds.

k=1

k=1

From this, by arguing as in the proof of Prop.2.1.12, we infer that

N
() =7(1;) =2+ Y &Jpl(x) + O(lI€]%), as & —0,

k=1

and this proves that J. (0) = (J1I(x)--- JnI(x)). Since J1I(z),..., n(x) are
linearly independent in R™ (by the choice of the basis J), we see that also J., (0)
is non-singular. By gathering together all these facts, the matrix

2.1.59)

3., 0) "2 3..(0) - 3.(0) = 8., (0) = (I (x)--- InI(x))

is non-singular, whence 7, is a C¥-diffeomorphism near 0, as desired.
To conclude the demonstration of the theorem, we crucially exploit the as-
sociativity of x: since, for every z,y,z € RY, we have

(xxy)*xz=2xx(y=*2),

by differentiating both sides of the above identity w.r.t. z at z = 0, we get

37..,(0) =87, (y % 0) - 3r,(0) = 3, (y) - 3r, (0); (2.1.61)

from this, since both matrices J.,,,(0) and g, (0) are non-singular (as we have
already proved), we infer that

3., (y) = 3..,(0) - (3,,(0) ",

is non-singular as well. By the Inverse Function Theorem, we then conclude
that 7, is a local diffeomorphism on RY, as desired. O

Since every local diffeomorphism (on RY) is an open map, Thm.2.1.36 im-
mediately gives the following non-trivial result.

Corollary 2.1.37. For any x € RN, the map 1, in Def. 2.1.84 is an open map.

By means of Thm. 2.1.36 and of Cor. 2.1.37, we can prove a simple topological
result, which will allow us to extend the map ¢ to the whole of RY.

Proposition 2.1.38. Let W CV be as in Thm. 2.1.17. Then we have

IRN:U{wl*-n*wn:wl,...,wnEW}. (2.1.62)

n=1
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Proof. We denote by A the set in right-hand side of (2.1.62). To prove the
proposition, we show that A is both open and closed (in RY).

A is open: We consider the family {A, },en of subsets of RY defined by
A, = {w1 KooKWy P WL, ..., Wy € W}, for all n € N. (2.1.63)

By definition, A = J,,~; An; moreover, it is easy to see that each A,, is open.
Indeed, A; = W is open and, if n > 2, we can write (since * is associative)

An:{x*w:meAn_l,weW}: U To(W).

TE€EAL_1

Since W is open and since any left-translation is an open map (by Cor.2.1.37),
we see that A, is the union of open sets, whence it is open.

A is closed: Let zo € A be fixed. Since ¢ is continuous (on V) and +(0) = 0,
there exists an open neighborhood U C W of 0 such that

WU) CW; (2.1.64)

moreover, since 7., (U) is an open neighborhood of zg = 7,,(0) (7, being an
open map), we must have 7, (U) N A # @. As a consequence, it is possible to
find wy,...,w, € W and u € U such that

Wy ek Wy = Ty (U) = Tg * U

From this, by the associativity of *, we get

(wy * - xwy) *lu) = (xo*u)*(u) (2-149) 2o * (uxe(u))
o (2.1.65)
=" 20 %0 = xo;
therefore, since wy, ..., wy,t(u) € W (by (2.1.64)), we see that zy € A.
Since obviously A # @, we conclude that A = RY, as desired. O

Remark 2.1.39. If G = (RY, %) is a Lie group with neutral element 0, the result
contained in Prop. 2.1.38 is a straightforward consequence of the following more
general fact: a connected topological group is generated (as a group) by any
neighborhood of the identity.

From Prop. 2.1.38, we easily deduce the following crucial result.

Proposition 2.1.40. For every x € RY, there exists a unique y, € RV s.t.
T H Yy =Yg xx =0. (2.1.66)

Proof. Let W C V be as in Thm.2.1.17. By Prop. 2.1.38, it is possible to find
wy, ..., w, € W, not necessarily unique, such that

T = W1 k- % Wy
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hence, we define y := v(wy,) * -+ * t(wy). Since W C V, y is well-defined;
moreover, by the associativity of * we have

gy = (wi k- xwp)* (W(wy) %k o(wr))
CE (wy xwna) * (W x (wn)) * (Lwa—r) - 5 o(wn))
CE (wy wwa) % 0% () % o(wr)
CLSO) (g k- sk wn1) # ((wn1) % - - % o(w1)) = [...] = 0.

Analogously, we have y x x = 0, whence y satisfies (2.1.66).
As for the uniqueness part, let z € RN be such that

zxx=x%xz=0.

By the associativity of *, we get

(2.1.50)

y FE0 L0 (2.1.66)

y* (xx2) (2.1.49) (y*x)*z (2-1.96) Oxz =" 2,

whence y is the unique point in RV satisfying (2.1.66). O

The result contained in Prop.2.1.40 provides a very natural way to extend
the map ¢ to the whole of RY.

Definition 2.1.41. For every z € RY, let y, € R™ be the unique point satis-
fying identity (2.1.66) in Prop.2.1.40. We define

RY — RN i(z) =y, (2.1.67)
As we did for x, we prove that 7 is a real-analytic extension of .

Theorem 2.1.42. The map [ defined in (2.1.41) is real-analytic on RN and it
extends the map v, that is,

(z) =u(z), forallzeV. (2.1.68)

Proof. We first prove that 7 € C*(RY,R™). To this end, let zo € RY and
let yo := (xp). Then, by definition, we have xg * yo = 0. We claim that the
Jacobian matrix of x at (x, yo) has full rank. Indeed, recalling the definition of
the maps 7, and p,, (see Def.2.1.34), we have

3*(x07y0) = <3py0 (.T()) g'ryg (x0)>7 (2169)

therefore, since d,, (zo) is non-singular (7, being a local diffeomorphism of
RY, see Thm. 2.1.36), we deduce that

rank(H*(xmyo)) =N,

as claimed. By the Inverse Function Theorem (in the real-analytic setting),
we can then find two open neighborhoods U, U’ C RY of 0 and a real-analytic
function f : U — U’ such that f(zo) = yo = i(x) and

{(x,y) eUx U :xxy=0}={(x, f(z)):x €U}
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Now, by Prop. 2.1.40, for every € RY there exists a unique point y € RY such
that  * y = 0, which is precisely 7(x); therefore,

f(z) =i(z), forevery z e U,

and this proves that 7 is real-analytic on U. From the arbitrariness of zy, we
then conclude that i € C*(RY,RY), as desired.
As for identity (2.1.68) we recall that, if x € V, we have

xxi(z) =u(z)xx =0
hence, by Prop.2.1.40 (and the very definition of 7), we get ¢(z) = i(x). O

Thanks to all the results proved in this section, we can provide a complete
proof of Thm. 2.1.6 stated at the beginning of the chapter.

Proof (of Thm. 2.1.6). Let G := (R", %), where x is the map defined in (2.1.45).
By Thm.2.1.31, # is real-analytic on RY x R"; moreover, Thm.2.1.33 shows
that « is associative and that 0 provides a neutral element for . Finally, if 7 is
the map defined in (2.1.67), by Thm. 2.1.42 we know that i € C“(R™,R") and
that it provides an inversion map for .

Summing up, G is a real-analytic group on R" with neutral element 0. To
conclude the demonstration of the theorem, we turn to show that Lie(G) = g.
To this end we observe that, since Thm. 2.1.35 ensures that

XI(xxy) =3, (y)- XI(y) forallz,y € RN and X € g,

then g C Lie(G); from this, recalling that g has dimension N (by assumption
(ND)), we conclude that g = Lie(G), and the proof is complete. O

We easily obtain the following improvement of Thm. 2.1.6.

Theorem 2.1.43. Let g be a Lie algebra of real analytic vector fields on RN
satisfying conditions (C), (H) and (ND) in Def. 2.1.1. Then, for every xq in
RN there exists a unique real-analytic Lie group G,, = (RN,x) with neutral
element xo and Lie algebra equal to g. More precisely, we have

rxy=xx*(xo) ' xy, forallz,yc RV, (2.1.70)

where * is the map defined in (2.1.45) and (xo)~' is the inverse of o w.r.t. x.
As a consequence, the group G = (RN, ) is the unique (real-analytic) Lie
group on RY with neutral element 0 and such that Lie(G) = g.

Proof. Let 2o € RY be fixed and let x be the map defined in (2.1.70). Moreover,
let G,, := (RN, ). Since G = (R, *) is a Lie group with neutral element 0,
it is very easy to recognize that G,, is also a (real-analytic) Lie group on RY,
with neutral element xo (note that % is the push-forward of x via 7).

To prove that Lie(G,,) = g we first observe that, by the Chain Rule, we
have (denoting by 7 the left-translation by x on G,,)

1

37; (z0) = 3-,(0) - 3710_1 (z0) = 3-,(0) - (JTZO (0))_ )

from this, recalling that the Jacobian basis of Lie(G,,) is given by the vector
fields J, ..., Jy associated with the columns of J,: (zo) (and, analogously, the
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Jacobian basis of Lie(G) is given by the vector fields Ji, ..., Jy associated with
the columns of J,,(0)), we derive that

N
Jr = E Ch,i Jk,
k=1

where (c14,...,cn )T is the i-th column of Jr, (o). Finally, since Lie(G)
and Lie(G,,) are both N-dimensional, we conclude that

Lie(G,,) = Lie(G) = g.

As for the uniqueness of the group G, let us assume that there exists another
(real-analytic) Lie group F = (R”,0), with neutral element xy and Lie algebra
coinciding to g. Then, if we denote by Exp® : g = Lie(F) — R” the Exponential
Map on F (and by Exp* the Exponential Map on G, ), we have

Exp°(X) = exp(1 - X)(z9) = Exp*(X), for every X € g.

As a consequence, since Exp® = Exp* is local diffeomorphism of an open neigh-
borhood U of 0 € g onto an neighborhood U of zo € RY, if z € RY and if
y = Exp*(Y) = Exp°(Y) € U (with Y € U), we obtain

zxy=zxExp*(Y)=exp(Y)(z) =z 0 Exp°(Y) =z o0y,

and this proves that x and o do coincide on the open set RY x U. Since both *
and o are real-analytic on RY x RY, the Unique Continuation Principle ensures
that they coincide on the whole of RY x R¥, and the proof is complete. O

2.1.4 The C® case: a brief overview

The main aim of this section is to roughly describe how Thm. 2.1.6 can be proved
also in the case of Lie algebras of smooth vector fields. More details will be given
in a future planned thorough investigation (presently, in preparation).

To begin with, let us fix once and for all a Lie algebra g C X(R"Y) of smooth
(but not necessarily real-analytic) vector fields on R” satisfying the assumptions
(C), (H) and (ND) introduced in Def. 2.1.1, that is,

(C): every X € g is a global vector field;
(H): the Hormander rank condition holds for g;
(ND): g is N-dimensional, as a linear subspace of X(RY).

We also choose a basis J = {J1,...,Jny} of g as in Lem. 2.1.9 and we set
J(z):= (Ll(z) - InI(z)), zeRN. (2.1.71)
Now, according to Prop.2.1.12, the Exponential Map of g
Exp:g — RY, Exp(X) = exp(X)(0)

is of class C*° on g; moreover, there exists an open and connected neighborhood
U C g of 0 such that Expyy is a smooth diffeomorphism, with inverse

Log: V := Exp(U) — U, Log(z) = (Explu)_l
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Then, by proceeding exactly as in the real-analytic case, we define

m:RN xV — RV, m(z,y) = exp (Log(y))(z),

1:V — RV, u(z) := Exp( — Log(z)).
Obviously, Exp and Log being smooth on their domains of definition, we have
meC®RN xV,RY) and 1€ C®(V,RY);

moreover, since Thm. 2.1.16 holds true also for (finite-dimensional) Lie algebras
of smooth vector fields, by arguing wverbatim as in Sec.2.1.2 we can prove the
following facts (see, respectively, Thm.s 2.1.19, 2.1.22 and 2.1.23):

(1) There exists an open and convex neighborhood W C R¥ of 0 such that
m(a,b) € V for every a,b € V and m is associative on W, that is,

m(z,m(y, z)) = m(m(z,y),2), YVeecRYN andVy,zeW. (2.1.72)
Moreover, 0 is a neutral element for m, that is,

m(z,0) =z, forallzeRY,

2.1.73
m(0,y) =y, foralyeV. ( )

(2) If W is as in statement (1), we have ¢(a) € V for every a € W and ¢
provides a local inverse for m on W, that is,

m(z,(z)) = m((z),z) =0, forevery x € W. (2.1.74)
(3) Any vector field in g is locally left-invariant w.r.t. m, that is,

XT(m(z,y)) = 22

oy (z,y) - XI(y), forevery (z,y) € RN x W. (2.1.75)

We explicitly observe that, in contrast to the real-analytic case, we are not able
to extend (at this very point of the proof) identity (2.1.75) to the whole of
RY x V: indeed, due to the lack of analyiticity, we cannot exploit the Unique
Continuation Principle (cf the proof of Thm. 2.1.23).

Summing up, also in the C'"*° case it is possible to construct a local Lie group
Gioe = (RN, m), with neutral element 0 and inverse given by ¢, such that

Lie(Gioc) = g, in the sense of local Lie groups.

We now turn to briefly describe how this local group can be globalized.
First of all, by following the same profitable idea explained in Sec.2.1.3, we
fix (z,y) € RN x W and we consider the curve v, , : [0,1] — RY defined by
v(#) = m(z,ty), 0<t<1.

Obviously, v € C*([0,1],RY); moreover, by exploiting identity (2.1.75) and
by arguing as in the proof of Thm.2.1.26, we see that 7, solves on [0,1] the
following Cauchy problem (recall that m(zx,0) = z, see (2.1.73)):

7% (t )J I( ) al(tay)
z= k_lak s Y)Jl(2 where : _ (J(ty))A . (2.1.76)

z(0) = x, aN('t,y)
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On the other hand, again by exploiting the crucial identity (2.1.75) (and by
arguing as in the the proof of Thm.2.1.27) we recognize that, for every fized
x,y € RN, the Cauchy problem (2.1.76) possesses a unique maximal solution
¢z,y Which is defined on the whole of R; therefore, we define

#: RV x RN — RV, T kY = Qg (1). (2.1.77)

We also introduce, for every fixed z € RY, the notations 7, and p, for the left
and the right translation by x associated with %, that is,

7o : RN — RY T:(y) == x *y,
px:RNHRN pz(y) ==y * .

Now, by classical results of ODE Theory we know that * is of class C*° on
RY x RY: moreover, from the previous discussion we infer that

TxyY =@yy(1) =72,(1) =m(z,y), ifze RY and y e W.

In other words, * is a smooth prolongation of m to the whole of RV x RY.
Hence, to complete the globalization of the local group Gj,e, we have to show
that * inherits all the properties of m, turning them into global properties.

Unfortunately, due to the lack of analyticity, we have to renounce the power-
ful tool provided by the Unique Continuation Principle (which played a crucial
role in the real-analytic case); instead, we shall use the uniqueness of the mazi-
mal solution of a Cauchy problem. The key steps are thus the following:

Step I: First of all we observe that, ¢, , being the unique maximal solution of
the problem (2.1.76), for every x,y € RV and every t € R we have

T2(ty) = * (ty) = Paty(1) = o y(t).
As a consequence, we obtain the following crucial identity:

0

@(wz,y(t)) = a%(n(ty)) =tJ,,(ty) - e, (2.1.78)

holding true for every i € {1,..., N}, every 2,y € R" and every t € R.
Step II: For every fixed i € {1,..., N} and every z,y € RY, we define
u; : R — RV, u;(t) ::tJ(x*ty)~(J(ty))7l-ei.

Obviously, u; € C®(R,RY) and u;(0) = 0; moreover, after some non-
trivial computations we recognize that, for every ¢ € R, one has

() = A(t) - ui(t) + bi(¢), (2.1.79)
where we have used the notations

N N
3aj

At) = a;(t,y) - Ix,1(zxty) and bit) =) " (t,y) X, I(z * ty).

j=1 j=1
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Since the equation (2.1.79) is nothing but the variational ODE satisfied by
the function t — 0/9y, (¢4, (t)), from identity (2.1.78) we conclude that

Jaxy) () e =u(l) = a%(<pgc,y(1)) =3.,(y) €. (2.1.80)

In particular, the matrix J(z) being non-singular for every z € RY (by
Lem. 2.1.9), we infer that 7, is a local diffeomorphism of RY of class C°.

Step III: Thanks to identity (2.1.80) we can give an easy proof of the (global)
associativity of x. Indeed, let z,y,z € RY be arbitrarily fixed and let
v, € C®(R,RY) be the curves in RY defined as follows:

Y(t) = x % (y x tz), p(t) = (xxy) *tz.

By crucially exploiting the cited (2.1.80), it is easy to see that v and u
solves on RY the same Cauchy problem, namely

N

U= Zak(t, 2) i 1(2)
k=1

u(0) = z * y.

Thus, by uniqueness, we have (t) = u(t) for every ¢t € R, whence
zx (y*z) =7(1) = p(1) = (z*y) * 2.
This gives the global associativity of x.

Step IV: We now turn to show that 0 is a neutral element for *. To this end,
let z € RY be fixed. Since, obviously, the constant function () = z is a
solution (on the whole of R) of the Cauchy problem (see (2.1.76))

N

= ap(t,0)JpI(z) =0,
k=1

u(0) =z,

we immediately infer that z+0 = ¢, (1) = (1) = . On the other hand,
a direct computation shows that the linear function u(t) = ta is a solution
(on the whole of R) of the Cauchy problem

N

Z= Zak(t,x)JkI(z),
k=1

z(0) = 0;

hence, by uniqueness, we conclude that 0% x = ¢ (1) = (1) = =.

Step V: Once Steps I-to-IV have been established, the existence of a global
extension for the map ¢ can be proved as in the real-analytic case.
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(i) First of all, we choose an open and connected neighborhood Wy of
0 such that Wy and «(Wy) lie W; then, by arguing as in the proof
of Prop.2.1.62 (and recalling that the left-translation are smooth
diffeomorphisms of R”, see Step II), we can write

oo

RY = U {w1*~~~*wn:w1,...,wn€W0}~

n=1

(i) Let 2 € RN be arbitrarily fixed and, according with point (i), let
Wy, ..., W, in Wy be such that z = wy * -+ - x w,. By crucially ex-
ploiting all the properties of x established so far (and proceeding as
in the proof of Prop.2.1.40), we see that

y = t(wp) * % 1(wy)

is the unique point of RY such that zxy =y %2 = 0.

(iii) Finally, let 7 : RY — RY be the function defined as follows: for every
x € RN, we set y = i(x) to be the unique point of RY such that

rxy=yxx=0.

By the previous point (ii), 7 is well-defined; moreover, by definition,
we have z x I(z) = I(x) * = 0. Thus, 7 provides a global inverse for
x and, by uniqueness, it is an extension of ¢, that is,

o(x) =1i(z), forevery x € Wy.

As for the regularity of 7 we observe that, by definition, 7 is implicitly
defined (in a unique way) by the equation x x y = 0; moreover,

rk(d.(z,y)) = rk((ﬂpy (z) | 3-, (y))) =N, for every z,y,€ R".

Thus, the Implicit Function Theorem ensures that 7 € C>°(RY, RY).

By gathering together Steps I-to-V, we then recognize that G = (R", ) is a Lie
group on RY, with neutral element 0 and inversion map given by 7; moreover,
from identity (2.1.80) in Step IT it follows that

Ji(z*xy) = 3., (y) - Jil(y),

for every z,y € RN and every i € {1,..., N}, whence Ji,...,Jy € Lie(G). As
a consequence, we deduce that g = span{Jj,...,JJy} C Lie(G) and thus, both
g and Lie(G) being N-dimensional, we conclude that

Lie(G) = g.
This proves Thm. 2.1.6 also in the C*° case.

Remark 2.1.44. It is worth noting that, also in the C°° case, it is possible
to prove a refinement of Thm. 2.1.6 analogous to Thm. 2.1.43: indeed, one can
prove that for every fired xo € RY there exists a unique Lie group G = (R",0)
with neutral element xy and Lie(G) = g. More precisely, we have

Toy=u1x%* (xo)_l xy, for every x,y € RY,

where * is the map defined in (2.1.77) and zgl is the inverse of xg w.r.t. *.
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2.2 Regularity of vector fields underlying second-
oder PDOs

Let us consider, on an open set 2 C RY, a generic linear PDO L of the form

N N
L= Z ;,j (%) Op,a; + ij(x) Oz;, x €K,
ij=1 j=1

where a; j,b; € C*(Q,R) for every i,j € {1,..., N}. We also assume, without
loss of generality, that the matrix A(z) := (a; ;(x)):; (usually referred to as the
principal matriz of L) is symmetric and positive semi-definite for every x € Q.
As anticipated in the introduction of the chapter, the main aim of this section
is to provide a simple sufficient condition allowing L to be re-written as a sum
of squares of smooth vector fields (plus, possibly, a drift term).

First of all we observe that, if { X, ..., X,,} is a set of smooth vector fields
(on Q) such that L = >77" | X7 + X, setting (for every z € Q)

R(z) = (X1I(2) - XmI(2)),

we then have A(z) = R(z) - R(z)”; on the other hand, if S(z) = (0 ;(z));,; is
a N x m matrix of smooth functions o; ; € C°°(2,R) such that

A(x) = S(z) - S(z)*, for every z € Q,
it is straightforward to see that L = Z;n:l Z]2 + Zy, where

N

N
Zj = ZO'i7j($) 811 and Zy = Z bk(l‘) - ZXJ'(O’W) 8%.
i=1

k=1 j=1

Therefore, the operator L can be re-written as a sum of squares of smooth
vector fields (plus, eventually, a drift) if and only if it is possible to find a
smooth matriz-valued map > x — S(z) such that

A(x) = S(z) - S(x)*, for every z € Q.

In the following section we shall prove, under a suitable constant rank condition,
the existence of such a decomposition for A(z). We point out that this result is
not new: in fact, it can be found (although without a proof) in the introduction
to the celebrated paper by Hoérmander [94]. We also address the reader to the
book by Oleinik and Radkevi¢ [120] for an example of a linear PDO which
cannot be re-written as a sums of squares of (smooth) vector fields.

2.2.1 The main result

We first introduce a couple of notations we shall use in the sequel. Given any
N > 1, we denote by Symy(R) the real vector space of all N x N matrices with
real entries; moreover, for every 1 < m < N we set

St(m) :={A € Symy(R) : A >0 and rk(A) = m}. (2.2.1)
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We also denote by My« (IR) the (real) vector space of the N x m matrices with
real coeflicients and we define

Qn(m) :={M € Myxm(R) : tk(M) = m}. (2.2.2)
We then have the following theorem, which is the main result of this section.

Theorem 2.2.1. Let Q@ C RY be an open set and let A : Q — S}, (m) be a map
of class C* (with k € NU {oo,w}). If Q is contractible, it is possible to find a
map R : Q — Qn(m), with the same regularity of that of A, such that

A(z) = R(z) - R(z)T  for all x € Q. (2.2.3)
More precisely, the map R can defined as follows:

R(z) = /A(z) - O(x), for every x € Q, (2.2.4)

where O : Q — Myxm(R) is a map of class C* on Q and, for any x € Q, the
columns of O(x) form an orthonormal basis of Im(A(x)).

The key ingredient for proving Thm.2.2.1 is notion of C*-vector bundle on
a manifold, which we now recall for the sake of completeness; we refer, e.g., to
[93], [105], [109], and [134] for an exhaustive treatment of the argument.

Let kK € NU {oo,w} and let M be a C*-manifold. Moreover, let m € N be
fixed. A C*-vector bundle of rank m over M is a triple F = (E, M, 7), where
E is a C*-manifold and 7 : E — M is a map of class C* such that:

(i) For every z € M, the fiber V(x) := 7~ !(x) C E is endowed with the
structure of a m-dimensional vector space;

(ii) For every & € M, there exist an open neighborhood U C M of x and a
diffeomorphism ® : 771(U) — U x R™ of class C* such that

e Tod =3 on U,

e for every y € U, the restriction of ® to V(y) is a vector space iso-
morphism between V(y) and R™.

If F = (E, M,7) is a C*-vector bundle of rank m over M, a (global) section of
Fis map ¢ : M — E of class C* such that 7 o ¢ = id on M, that is,

o(x) € V(z)=n"1(z), forevery z € M;

a (global) frame of F is an m-tuple {01 ..., } of sections of F such that, for
any © € M, the set B(z) := {o1(x),...,0m(x)} is a basis of the fiber V(x).
With the above preliminaries at hand, we can give the proof of Thm.2.2.1.

Proof (of Thm.2.2.1). For every z € Q, let V(z) := Im(A(z)). Since, by as-
sumption, the dimension of V(z) is constant and equal to m (and since the
function = + A(z) is of class C* on ), the assignment

Qsz—V(z)
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defines a C*-vector bundle of rank m on Q. More precisely, setting

E:=[]V(x)

z€Q

and denoting by 7 the canonical projection of E onto €2, there exist a unique
topology and a unique C*-structure on E such that the triple F4 := (F,Q,7)
is C*-vector bundle of rank m on ) (see, e.g., [106, Lemma 10.6]).

Now, since (2 is contractible, the bundle F 4 is globally C*-trivial (see, e.g.,
[93, Corollary 2.5]); therefore, it is possible to find a (global) frame {o1,...,0m}
for F4 such that (see [106, Corollary 10.20])

B(z) :={o1(x),...,om(x)}

is an orthonormal basis of V (z) for every z € Q. We then consider the function
R:Q— Myum(R),  R(z) = \/Ax)-O(x),
where O : Q — Qn(m) is given by
O(z) == (o1(z) - -om(z)), =z €

Obviously, R(z) has rank equal to m for every x € €, since the same is true
of y/A(x) and since O(z) has full rank; moreover, since the sections o1, ...,0p,
are of class C* on 2 and since, by Cor.2.2.7 in Sec.2.2.2, the same is true of

x =/ A(z),

the function R is of class C* on Q as well. Finally, the matrix O(x) - O(x)T
being the projection matrix onto V(z) (recall that o1(x),...,0.m(z) form an
orthonormal basis of V(x) for every = € 2), we obtain

R(z)- R(z)" = (VA(@) - O(x)) - (VA() - O(x))"
= VA(@) - (0(x) - O()" - VA@)) = VA(@) - /A(z)

= A(z), for every x € Q.

This is precisely the desired (2.2.3), and the proof is complete. O
From Thm. 2.2.1 we immediately derive the following result.

Corollary 2.2.2. Let A : RN — S§(m) be a map of class C* (for some
0 < k < oo). Itis possible to find a map R : RN — Qn(m), with the same
regularity of that of A, such that

A(z) = R(z) - R(x)T  for all z € RV, (2.2.5)

Cor. 2.2.2 can be profitably used in order to obtain a simple result concerning
the problem described at the beginning of the section: the possibility to re-write
a general PDO as a sum of squares of vector fields (plus, eventually, a drift).
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Theorem 2.2.3. Let Q C RY be a contractible open set and let £ be a second-
order linear operator on Q) of the general form

N
=D (@) Oaa, + Zb ) Ox; + c(z), (2.2.6)
i,j=1

with (real and) smooth coefficients. We assume that, for every x € Q, the
principal matriz (ai,j(z))ij of £ is symmetric, positive semi-definite and that

rk(A(z)) =m, for every z € Q (with 1 <m < N).

It is then possible to find m + 1 smooth vector fields Xg, ..., X,, on Q s.t.
(i) dim (spanR({Xll(az), e ,X,,J(a:)})) =m for every x € Q);

(i) £=37", X7+ Xo+conQ.

Proof. Thanks to hypothesis on the matrix (a;;);;, we can define a smooth
function A : Q — S{(m) by setting

A(x) = (ai3(2)),

g
Then, by Thm.2.2.1, there exists a smooth map R : Q — Qx(m) such that
A(z) = R(z) - R(z)T, for every x € Q. (2.2.7)
If R(xz) = (rij(x)):;, we define m + 1 v.fs Xo,..., Xy, on Q as follows:
o X, = ZZ]\LI 73 (x)0y, for every j=1,...,m;
o Xo =20, (@) = X7 X, 00) (@) O,

Since the map R and the coefficients of £ are smooth on €, then Xo,..., X,,
are smooth vector fields on R™; moreover, since R(z) € Qn(m) for every z in
Q, condition (i) is fulfilled. Finally, from the very definition of X, and from
identity (2.2.7) it easily follows that

L:ZXJZ+X0+C, on €.
j=1

This ends the proof. O

Remark 2.2.4. Let Q C RY be a contractible open set and let £ be a second-
order linear PDO on Q of the form (2.2.6) and such that

A(z) = (ai (= )) € S} (m), Vaz € Q and for some m € {1,...,N}.

Since, by Thm.2.2.1, it is possible to find a map R : Q@ — Qu(m), with the
same reqularity of A and such that

A(z) = R(z) - R(z)T, for every z € Q,
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we immediately obtain the following generalization of Thm. 2.2.3: if the operator
L is assumed to have (real) coefficients of class C* on Q (for some natural
k > 1), then there exist m wvector fields X1,...,X,, of class C* on Q and a
vector field Xo of class C*~1 (on Q) such that

L= X}+Xo+c, onRM.

j=1

It is worth mentioning that Thm. 2.2.1 can be proved in a slightly different
way, without using the regularity of \/A(x) but invoking the Homotopy Lifting
Property for principal G-bundles. We are very grateful to one of the referees of
the thesis for bringing to our attention the simpler proof presented here.

2.2.2 Appendix: Regularity of the square root
The aim of this brief appendix is to prove that the map
V-iSh(m) — St(m), A—VA

is a real-analytic diffeomorphism of S};(m). It is well-known that S}, (m) is an
embedded submanifold of Symy(R) = RVN(V+1/2 | with dimension

m(m—1)

dn(m) = Nm — 5 ; (2.2.8)

furthermore, given a diagonal matrix A € S{ (m), it is easy to describe the
tangent space Tx (S (m)) of S§(m) at A: indeed, since the map

¥ : Symy(R) — RY=W0) - w(4) = <det (aij)ieq,.... m}u{p}>
j€{l,...,m}u{q} ) p,g=m+1,...N
r=q

can be used as a local defining function for S};(m) in a suitable neighborhood
of A, one has (due to the characterization of T) (S} (m)) as ker (dyV))

Ta(S{(m)) ={H € Symn(R) : h;j =0for alli,j =m+1,...,N}. (2.2.9)
We then have the following theorem.
Theorem 2.2.5. For every 1 < m < N, the map
q: Sk (m) — Sk(m), q(M) := M?, (2.2.10)
is a real-analytic diffeomorphism from SE(m) onto itself.

In order to prove Thm. 2.2.5, we first establish the following auxiliary lemma.

Lemma 2.2.6. Let q be the map defined in (2.2.10) and let
A = diag(A1, ..., A, 0,...,0) € S§(m).

Then the differential of q at A is non-singular.
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Proof. First of all we observe that, since A is positive semi-definite and its rank
is equal to m, its non-zero eigenvalues A1, ..., A, are (real and) strictly positive.
We now compute the differential of the map ¢ (as a map on Symy(R)) at the
point A. For every ¢t € R and for every H € Symyn(R), we have

qA+tH) = (A+tH)* = (A +tH)(A +tH) = A> + t(AH + HA) + 1*H?,

and thus, for all H € Symn(R), we have

dag(H) q(A+tH) = AH + HA.

~dtp=o
The differential of g at A, considered as a map from T (S§ (m)) to Txz(S% (m)),
is just the restriction of dag to Tx(SE(m)) € Ta(Symn(R)) = Symn (R).

To show that dyg is an isomorphism between the two spaces Th(S% (m))
and Tpz(S},(m)) we prove that ker (dyg) N Ta(S% (m)) = {0}. To this end, let
H € Tx(S};(m)) be such that dyg(H) = 0. For every j = 1,..., N we then have

0=daq(H)e; = (AH+ HA)e; = A - (He;) + H - (Aey).

If 1 < j < m, from the above identity we then infer that He; is an eigenvector for
A where (—);) is the correspondent eigenvalue; since A is positive semi-definite,
this implies that He; =0 forall j =1,...,m.

If, instead, m + 1 < j < N, then the above computation shows that
He; is an eigenvector for A with correspondent eigenvalue 0, whence the set
{Hem+1,...,Hen} is included into the vector space spanned by €, 41,...,€en.
By exploiting the fact that H belongs to Tx(S};(m)) (and by using the expres-
sion of Tx(S%(m)) given in (2.2.9)), we immediately see that He; = 0 for all
j=m++1,..., N, and this proves that H = 0, as desired. O

We are now ready to give the proof of Thm. 2.2.5.

Proof (of Thm. 2.2.5). We first observe that the map ¢ is real-analytic and bi-
jective on S}(m). Thanks to the Implicit Function Theorem, it then suffices to
show that the differential of ¢ (is non-singular at every point of S¥ (m).

To this end, let A € S},(m) be arbitrarily fixed and let P be an orthogonal
N x N matrix such that

PT.A.P=A=diag(\,...,A\m,0,...,0),
for some (real and) positive A1,..., \;,. If we denote by L the linear map
L:Symy(R) — Symn(R), L(M):=P"-M-P,

it is straightforward to see that L restricts to a smooth (actually, real-analytic)
linear diffeomorphism from S (m) onto itself and that

g=(L"togoL) on Si(m).
By differentiating both sides of such an identity at A, we then obtain
dag=L""'o draygolL = L™ 'odagoL, on Ta(Sk(m)).

Since, by Lem.2.2.6, the linear map d,q is non-singular, we immediately infer
that d 4q is non-singular as well, and the proof is complete. O
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From Thm. 2.2.5 we immediately derive the following corollary.

Corollary 2.2.7. Let 2 C RY be an open subset of RN and let A : Q — S (m)

be a function of class C* on Q (for some k € NU{oo,w}). If q is the map defined
in (2.2.10), then the function

S:Q—S§m), S(z):=A(x):=q"(Az)), (2.2.11)

is of class C* on Q. Moreover, if A is locally-Hélder continuous with exponent
a €)0,1] on Q, then the same is true of S.






Chapter 3

PDOs structured on
homogeneous vector fields

Throughout this third chapter of the thesis, we shall be concerned with linear
PDOs structured on homogeneous vector fields, that is, of the form

L= ixf,
j=1

where X7i,...,X,, are smooth vector fields on R™, homogeneous of degree 1
w.r.t. a suitable family of non-isotropic dilations {d)} x>0 on R™. Our main aim
is to prove, for such operators £ and for their parabolic counterpart H = £ — J;,
the existence of a well-behaved global fundamental solution.

Roughly speaking, our argument consists of two steps:

(a) By means of a global Lifting method for homogeneous operators proved by
Folland in [73], there exist a homogeneous Carnot group and a polynomial
surjective map m : G — R” such that the operator £ is m-related to a sub-
Laplacian £g on G; we shall prove that it is always possible to perform a
(global) change of variable on G such that the lifting map = becomes the
projection of G = R™ x R? onto R".

(b) If T'g(z,&y,n) (z,y € R™; £,n € RP) is the fundamental solution of Lg,
we shall show that T'g(z,0;y,n) is always integrable with respect to the
variables n € RP, and its integral is a fundamental solution for £.

Analogously, if I'g(z,&;¢,n) (2, € RY™; € n € RP) is the fundamental
solution of Hg = L — 0;, we shall exploit suitable (uniform) Gaussian e-
stimates to prove that I'g(z, 0; (,n) is always integrable w.r.t. the variables
n € RP, and its integral is a fundamental solution for H = £ — 0.

The main ingredient for step (b) is a general saturation argument for obtaining
fundamental solutions, which will be presented in Sec. 3.1.

3.1 Saturation of fundamental solutions

As anticipated, the aim of this section is to present a general result concerning
the possibility for obtaining (global) fundamental solutions via a saturation

95
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argument. Roughly put, it is about a generalization of a very well-know fact: if
H = A, — 0, is the Heat operator on R¥*! = RY x R; (with N > 3) and if

1 2 —y|?
pt(l'7y):W exp (4t ) I‘,ngN,t>0

is the associated Heat kernel, then the “saturated function”

(z,y) — /Ooopt(x,y) dt

coincides with the fundamental solution for the Laplace operator A in RY.

In order to clearly describe this result, we begin with the following definition.

Definition 3.1.1 (Lifting of a linear PDO). On Euclidean space R", we con-
sider a generic linear partial differential operator of order d € N,

P = Z aq(x) DY,

|la|<d

with smooth real valued coefficients aq (z) on RY. We say that a linear PDO
P, defined on a higher-dimensional space RY = R" x RP?, is a lifting of P if
the following conditions are fulfilled:

(a) P has smooth real coefficients, possibly depending on z € R™ and £ € RP;
(b) for every fixed f € C°°(R™), one has

P(fom)(z,€) = (Pf)(x), forevery (z,£) € R" x R?, (3.1.1)
where 7(z,£) = x is the canonical projection of R™ x R? onto R™.

Remark 3.1.2. Let P be a linecar PDO as in Def.3.1.1 and let P be a linear
PDO on a higher-dimensional space RY = R"™ x R? with smooth coefficients.
It is immediate to recognize that (3.1.1) holds true if and only if

P=P+R with R=)> raps(x,§)DID;, (3.1.2)
B#0
for (finitely many) real-valued coefficient functions r, 5 € C®(RY), possibly

identically vanishing on R . In other words, every summand of R operates, at
least once necessarily, in the &;,...,§, variables.

Remark 3.1.3. We explicitly observe that, if P is a linear PDO (of arbitrary
order) on R™ with smooth coefficients, then a lifting for P always ewxists, and it
is far from being unique: in fact, for every p, k € N, the operator

k
P
ﬁp,k =P+ Z@gj =P+ (A]Rp)k, on RY =R" x R?,

Jj=1

is a lifting for P on the Euclidean space R” x RP, and R = P-p= (A]Rp)k.
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Let now P be a linear PDO on R"™ with smooth real coefficients, as in
Def.3.1.1. If P is a lifting of P and if P admits a fundamental solution I', it is
not at all obvious if the same holds true for P, nor if a fundamental solution
for P may be obtained via a saturation argument. Technically, this is the case
if the following heuristic argument can be made rigorous: by the very definition
of fundamental solution for P we have

~pw&) = [ Fa &) P B dyd,

R™xRP

for every ¢ € C3°(R"” x RP); if we take ¢ of the form ¢(z)6;(§) (with ¢ in

Ci°(R™) and 6; in C§°(RP)) and we recall that P = P + R, then the above

equality gives, by choosing & = 0,
o) 0500 = [ ([ T 09 6,00) dn) P (o)
g * .1.

+/R N F(x, 0;9.m) B (0(u)6; () dydy ~ (315)

"X RP

We want to pass to the limit as j — oo in such a way that (3.1.3) produces

—p(z) = /}Rn (/]Rpf(m,();y,n) dn)P*w(y) dy,

so that a fundamental solution for P is available by saturating the 7 variable in
I'(x,0;y,n). Our idea is to choose a sequence §; € C§°(RRP) such that the set

{neRP:0;(n) =1}

invades R? as j — oo, and such that II; in (3.1.3) goes to 0 as j — oco. This
may be reasonably possible (together with some integrability assumptions on

') provided some conditions are fulfilled by the remainder operator R:

- if one chooses 8;(n) = 0(n/j) for some § € C§° identically equal to 1 on a
suitable neighborhood of the origin,

- if the operator R* acts in the lifting variables, so that R*(6(n/j)) always
gives out at least 1/j,

- and if a dominated convergence argument can apply.

The above argument justifies the following definition of “saturable Lifting”; im-
mediately after the technicalities, we show (see Remark 3.1.5) that a saturable
Lifting is always available in meaningful cases.

Definition 3.1.4 (Saturable Lifting). Let P be a smooth linear PDO on R™,
and P = P + R be a lifting of P on R™ x R? as in (3.1.2). We say that P is a
saturable lifting for P if the following conditions hold:

(S.1) Every summand of the formal adjoint R* of R operates at least once in
the £ variables, i.e., R* has the form

R* = "1} 4(x,6) DIDZ, (3.1.4)
B#0

for (finitely many, possibly vanishing) smooth functions 77, 5(z,§).



3.1. Saturation of fundamental solutions 58

(S.2) There exists a sequence (6;); in C§°(R?,[0,1]) such that!
{ejzl}TRp7 as j T oo;

moreover, for every compact set K C R™ and for any coefficient function
1% 5 of R* asin (3.1.4), one can find constants C,,5(K) such that

1@ 0)(5¢) (9] < Canlr), (315

for every z € K, £ € RP and for every j € N.

We next give some sufficient conditions for a lifting to be saturable. In what
follows we always assume that P is a linear PDO on R™ with smooth coefficients,
and that P = P 4+ R is a lifting of P on R™ x R?, with R as in (3.1.2). The
notation (z, &) for the points of R x RP is always understood.

Remark 3.1.5. (a) If the coefficients of R are independent of €, then P is a
saturable lifting for P. In fact, under this assumption, R takes the form

R=" ras(z) DSDY,
870
and thus its formal adjoint R* acts on smooth functions v as follows:

R =3 (—1)l+11 po (Ta,[a(m) D?#’(%E))
B#0

=) "1 5(x) DY Dp(,€).
B#0

(3.1.6)

Thus condition (S.1) in Def.3.1.4 is fulfilled. In order to verify (S.2) as well,
we choose a function 8 € C§°(R?,[0,1]) such that § = 1 on the Euclidean ball
centered at 0 and radius 1, and we set

0;(¢) :==0(¢/j), for every £ € R? and every j € N.

Clearly, {6; =1} T R? as j 1 oo; moreover, if K C R™ is compact, we have

* By. < NEl * B
Ta,B(‘r) Dgej(g)’ = (1/]) mlgx‘ra,[?’ I%aPX‘D 9‘7

and (3.1.5) follows.

(b) If, for every compact set K C R"™, the coefficient functions of the oper-
ator R* are bounded on K x RP, then (S.2) of Definition 3.1.4 is satisfied. It
suffices to take 6;(£) = 60(£/j) as in (a) above.

(¢) If £ is a smooth second-order operator on R™ and if we consider the
associated Heat-type operator H = £ — 0y in R™ x R, then we have the above

!By this we mean that, denoting by Q; the set {¢ € RP : 0,(¢) = 1}, one has

U Q; =RP and Q; C Qj41 forany j €N
JEN
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with R = —0;. Since R has constant coefficients, we are in case (a) above and
H is therefore a saturable Lifting of £.

(d) As we shall prove in Section 3.2, if £ is a sum of squares of Hérmander
vector fields which are dy-homogeneous of degree 1 w.r.t. a suitable family of
dilations &y, then there exists a saturable lifting £ of £, which is actually a
sub-Laplacian on a suitable Carnot group G on R . This fact is non-trivial and
it will be proved in Sec. 3.2 (see, precisely, Thm. 3.2.13).

We are now to prove the main result of this section.

Theorem 3.1.6. Let P be a linear PDO on R™ with smooth coefficients and
let P be a saturable ifting of P on R™ x RP, according to Def. 3.1.4.

Let us assume that there exists a fundamental solution I' for P on the whole
of R™ x RP (see Def. 1.8.5), further satisfying the following properties:

(i) for every fized x,y € R™ with x # y, one has
n > f(a:,O;y,n) belongs to L' (RP); (3.1.7)
(i) for every fized x € R™ and every compact set K C R"™, one has
(y,m) — f(x,O;y,n) belongs to L'(K x RP); (3.1.8)

Then the function T : {(z;y) € R" x R™ : & # y} — R defined by

I(z;y) == /]Rp f(m,O;y,n) dn, (3.1.9)

is a global fundamental solution for P on R™.

Proof. First of all we observe that, thanks to (3.1.7), ' is well-defined. In order
to prove that I' is a fundamental solution for P on R™, we have to prove the
following fact: for every fixed z € R™, one has I'(z;-) € L _(R") and

loc
PT(x;-) = —Dir,, in D'(R").

To this end, we fix a point z € R™ and a function ¢ € C§°(R™). Moreover, the
lifting P being saturable, it is possible to find a sequence of test functions 6; as

in Def.3.1.4. Since the function T is a fundamental solution for P on R™ x RP,
we have (for sufficiently large j’s in such a way that 6,(0) = 1)

[ T 0im) P (o(0) 63 ) dy i = —() 8,(0) = (o)
n o RP
thus, recalling that P = P+ R (where R is a linear PDO operating in y and 7),

—p(z) = / T (z,0;9,7m) 0;(n) P*o(y) dydn
Ry (3.1.10)

+ / T(, 05, m) B* (9(y) 0;(n)) dy dn =: T, + 11,
R” xRP

with the obvious notation. Our aim is now to pass to the limit for j — oo in
(3.1.10). To this end we first notice that, if we denote by K the support of the
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function ¢, then both integrals expressing I; and II; are actually performed over
K xRP. As for 1;, a simple application of the Lebesgue Dominated Convergence
Theorem, made possible by (3.1.7), shows that

lim I; = /n T(x;y) P*o(y) dy. (3.1.11)

j—o0

We next turn to II;. First we observe that, since the sets {n : 6;(n) = 1}
increasingly invade RP, and since the operator R* always differentiate w.r.t.n
(see (S.1) in the definition of saturable lifting), we obtain that

lim R*(¢(y)0;(n)) =0, pointwise for (y,n) € K x RP.

Jj—o0
Moreover, by writing R* as in (3.1.4), we get

[R*(e(w) 0;(m)| < D i swam)| - [Dye()| - | DE6; ()]
570

< C(p) Y |ra sy, m) DO; ().
520

From this, by crucially exploiting property (3.1.5) of the sequence 6;, we infer
the existence of a positive constant C = C(p, K) > 0 such that

IT (2, 0:9,m) R* (¢(y) 0;(n)| < C'|T (2, 0;9,m)],

uniformly for (y,n) € K x R? and j € N. Therefore, due to property (3.1.8) of
T", we can apply once again a dominated convergence argument to infer that

lim II; = 0. (3.1.12)

j—o0
Finally, by gathering together (3.1.11) and (3.1.12), we can pass to the limit for
j — o0 in (3.1.10), obtaining

—p(x) = /nl“(:c;y) P p(y) dy.

This ends the proof. O

Remark 3.1.7. Let P be a linear PDO on R™ with smooth real coefficients
and let P be a saturable Lifting of P on R™ x RP. B

It is worth noting that, if I' is a fundamental solution for P on R™ x RP,
then we have, for every fixed z € R™ (see Def. 1.3.5-(i)),

(y,n) = T(2,0;5,7m) € Li(R" x RP). (3.1.13)

This means that the integrability assumption (3.1.8) in Thm.3.1.6 is actually
an integrability condition at infinity, which is equivalent to the following one:

(ii)’ for every x € R™ and every compact set K C R"™, there exists a compact
set K' C RP such that

(y,m) = T(x,0;y,m) belongs to L' (K x (RF\ K')).
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Example 3.1.8. Let P be a linear PDO on R"™, with smooth coefficients and
let H the heat operator related to P, that is,

H=P-0, on R"™ = R" x R.

As already pointed out in Rem.3.1.5 - (c), the operator H is a regular lifting for
P on the higher-dimensional space R"*!, so we can apply to this case the result
contained in our Thm. 3.1.6: if the operator H admits a fundamental solution
I =T ((z,€);(y,n)) satisfying assumptions (i) and (ii) in the statement of the
cited Thm. 3.1.6, then the function

[(z;y) ::/f(l’,O;y,n)dn
R

is a fundamental solution for P on the whole of R™.

Let P be a linear PDO on R™ with smooth coefficients and let P be a
saturable lifting for P admitting a (global) fundamental solution T'. It could
happen that, together with properties (i) and (ii) in the statement of Thm. 3.1.6,
the function I' satisfies some additional properties: this is the case, e.g., if Pis
a sub-Laplacian on some Carnot group. We then conclude this section with a
couple of results which give sufficient conditions on I' in such a way that these
additional properties are inherited by the T" function in (3.1.9).

Proposition 3.1.9 (Continuity and limit at infinity). Let the notation and the
hypotheses of Thm. 3.1.6 apply. Let us assume, in addition, that the fundamental
solution T' of P satisfies the following bound property:

(B) For every fized x € R™, there exist a compact set K, C RP and a
nonnegative function g, € L*(RP \ K,) such that

f(m, 0; y,n) < gz(n), foreveryyec R" and everyn € RP \ K,. (3.1.14)
Then the following facts hold true:

(a) if, for every fized x € R"™, the function (y,n) — f(m,O; y,n) is continuous
away from (x,0), then the function y — T'(x;y) is continuous on R™\{z};

(b) if, for every fized x € R", the function (y,n) — f(m,O;y,n) vanishes at
infinity, then the same is true of y — T'(z;y).

Proof. (a) We fix a point yo € R™\ {2} and a real p > 0 such that the Euclidean
ball B,(yo) centered at yo and radius p is contained in R™ \ {z}. Moreover, we
choose a sequence (y;); in this ball converging to yo as j — oco. If K, C RP is
as in assumption (B), for every j € N we have

F(w;yj)=/K I (2,0;y;,n) dn+/m\;< T (2,05y;,7) dn. (3.1.15)

We pass to the limit as j — oo in the right-hand side of (3.1.15). To this end
we first observe that, under condition (a), we obviously have

lim f‘(:z:,O;yj,n) = f(x,();yo,n), for every n € RP.

Jj—o0
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Moreover, since the set K := B,(yo) x K, is compact, there exists a positive
real constant M, > 0 such that

I'(z,0;y;,m) < My, forevery j € N and every n € K,.

By a dominated convergence argument, we then obtain

lim f(z,O;yj,n) dn = / f(x, 0; yo,n) dn. (3.1.16)

j—o0 K.

x

As for the second integral in the right-hand side of identity (3.1.15), assumption
(B) in the statement of the proposition is shaped in such a way that another
dominated convergence argument can apply, so that

lim f(m, 0;y;, 77) dn = / f(m, 0; yo, n) dn. (3.1.17)
I JRP\ K, RP\ K,

By gathering together identities (3.1.16) and (3.1.17), we finally conclude that
I'(x;y;) = IT'(z;90) as j — oo, whence the continuity of I'(z;-) at yo.

(b) Let K, C RY be as in assumption (B) and let {y;}; C K, be a sequence
such that |ly;|| — oo as j — oo. For every j € N we write

F(w;yj):/ f(x,O;yjyn)dn+/ L(z,0;y;,7) dn. (3.1.18)
K, RP\K,

Since, by assumption, f(x, 0; ) vanishes at infinity, we have

lim f(x,O;yj,n) =0, for every fixed n € R?;

j—o0
as a consequence, it is possible to find a certain jo € N such that
f(x,O;yj,n) <1, forevery j > jo and every n € RP.

We are then entitled to apply the Lebesgue Dominated Convergence Theorem
to the first integral in the right-hand side of (3.1.18), obtaining

lim I'(z,0;y;,n)dn =0. (3.1.19)

j—o0 K,

As for the second integral, assumption (B) ensures that another dominated
convergence argument can be applied, so that

lim I'(z,0;y5,n)dn = 0. (3.1.20)

By gathering together identities (3.1.19) and (3.1.20), we then get

lim (/ f(xvo;yj,n)dnJr/ f(ﬂc,O;yj,n)dn> = 0.
J—00 K. RP\ K,

This proves that I'(z; y;) — 0 as j — oo, whence I'(z; -) vanishes at infinity. [
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Proposition 3.1.10 (Pole of T'). Let the notation and the hypotheses of Theo-

rem. 3.1.6 apply. Let us assume, in addition, that the fundamental solution r
of P enjoys the following properties:

(a) T is nonnegative;

(b) for every x € R™, the function (y,n) — f(x,O;y,n) is lower semi-conti-
nuous outside (x,0);

(c) for every x € R™, the function n — f(x, 0;xz,m) is not integrable on RP.
Then the function y — I'(x;y) defined in (3.1.9) has a pole at z, i.e.,

lim T'(z;y) = oo.
Yy—x
Proof. Let (y;); be a sequence in R™ \ {«} converging to = as j — oco. Since,

by our assumptions, the function (y,n) — f(m, 0;y,n) is nonnegative and lower
semi-continuous on R™ x R? \ {(z,0)}, from Fatou’s lemma we obtain

liminfI'(z;y,) > / liminff(x,();yj,n) dn > / f(x,O;x,n) dn = oo,
R RP

J—0o0 P J—00

thanks to hypothesis (c). This ends the proof. O

3.2 Lifting of homogeneous vector fields

With the general saturation argument described in Sec.3.1 at hand, we now
enter the “real core” of this chapter: as anticipated, in this section we shall
prove that any homogeneous Hérmander operator admits a saturable lifting (in
the sense of Def. 3.1.4), which is actually a sub-Laplacian on a Carnot group.

The main ingredient for establishing this fact is a general result on the lifting
of homogeneous vector fields due to Folland [73]; for the sake of completeness,
we now describe this notable result in all the details.

Compared with the contents of the cited paper [73], the contents of this
section are essentially the same, modulo some changes of notation (due to the
specific setting we are dealing with); 2 as we shall describe later on, we added
a new feature to Folland’s argument which will be fundamental for our aim: an
ad hoc change of variables turning the map 7 into the canonical projection.

To begin with, let us fix a family {X;, ..., X,,} of linearly independent smooth
vector fields on Euclidean space R", satisfying the following properties:

(H1) Xi,...,X,, are dy-homogeneous of degree 1 with respect to a family of
non-isotropic dilations {dy}>o of the following type:

Gy i R™ 5 R, 6x(z) = (A7, ... \T"x),

where o1 < ... < 0, are positive integers and o = 1;

2The substantial difference between our setting and the one presented in [73] is that
Folland considers finite-dimensional vector spaces V' equipped with a suitable homogeneous
structure, whereas we fix a basis in V' and we write everything in coordinates, that is, we have
V = RY with a family of non-isotropic dilations taking the usual form.
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(H2) Xq,...,X,, satisfy Héormander’s rank condition at 0, i.e.,

dim {X(0) : X € Lie{Xy,...,X;n}} = n.

Remark 3.2.1. We explicitly observe that, by to Thm.1.2.2 on page 7, the
homogeneity assumption (H1) is equivalent to any of the following facts:

o If X; =57 | ak,;(x) 0y, the coefficient function ay ; is dx-homogeneous
of degree o — 1.

e For every fixed j € {1,...,m}, the following identity holds true

S\(X;I(z)) = AXI(6x(z)), for every z € R" and every A > 0. (3.2.1)

In particular, the coefficient function ay, ; is a polynomial and it is independent of
Tk, -..,Zn. Thislast fact ensures that the vector fields X3, ..., X, are complete.

Example 3.2.2. Let us consider the Grushin vector fields on R?
0 0

X2 =T —

Xy .
! 8372

T 8.’171’

Obviously, X1, X» are linearly independent in the real vector space X(R?) (al-
though not pointwise linearly independent); moreover, since [ X1, X3] = 0,,, it
is straightforward to recognize that

{XI(0): X € Lie{X1, X2}} 2 span { (é) , (?) } =R?,

whence X7, Xy satisfy assumption (H2) (that is, the Hormander rank condition
at 0). Finally, if we consider the family of dilations {5y }x>0 on R? defined by

5A : ]R2 — ]R2, (SA(Il, 132) = ()\1171, /\QIQ),
we have ¢ = Z?:l o; = 3 and, for every z € R and every A > 0,
X I(x)) = )\Xll(é,\(:z:)) and 0)(XoI(x)) = AXQI((;)\(I')).

According to Rem. 3.2.1, this ensures that X;, Xo are both §)-homogeneous of
degree 1, whence they also fulfill assumption (H1).

We point out that there cannot exists any Lie group G on RY with respect to
which X7, X5 are left-invariant: to see this it suffices to notice that X2I(0) =0
but X5 is not the zero vector field (see Rem.1.1.2 on page 4).

Our main goal is to prove the following theorem, by using Folland’s results
in [73] plus an ad hoc change of variable.

Theorem 3.2.3. Let N = dim(Lie{X1,..., X, }). There exists a homogeneous
Carnot group G = (IRN7 *, D,\), with m generators and nilpotent of step r, and
there exists a system {Z1,...,Z,} of Lie-generators of Lie(G), such that

Z; is a lifting for X; on RY,  for everyi=1,...,m.
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The proof if this theorem is constructive, and it rests on the notable prop-
erties of the Campbell-Baker-Hausdorff operation. To begin with, let us denote
by a the Lie algebra generated by Xi,..., X,:

a:=Lie{X1,..., Xn}.

It follows from the homogeneity assumption (H1) that every commutator of
Xi,...,X,, containing more than o, terms vanishes identically, hence a is nilpo-
tent of step r < o,. Moreover, the rank condition (H2) ensures that r cannot
be smaller than o,,, so that a is nilpotent of step equal to o,,, which is therefore
an integer which we also denote by r.

As a consequence, a being finitely generated, its dimension (as a subspace
of the linear space of the smooth vector fields on R"™) is finite. We then set

N :=dim(a) and p:=N —n,

and we assume from now on that N > n. Now, since a is generated by
X1,...,X,, and since it is nilpotent of step r, we have

ar :=span{X1,..., X, },
a=a;P---Pa,, with ag = [a1,a5-1] for 2 <k <r; (3.2.2)
[a1, ar] = {0}.
In other words, the Lie algebra a is stratified. In particular, a vector field X € a
belongs to a; (with 1 < k <r) if and only if X is dy\-homogeneous of degree k.

By means of the stratification (3.2.2), we can define a family {Ax}xso of
dilations on a in the following way:

AN(X) :ZAka7 WhereX:ZVk and Vi € ap forany k=1,...,r.

k=1 k=1
(3.2.3)
Moreover, since a is nilpotent, the Campbell-Baker-Hausdorff multiplication
1 1 1
XoY=X+Y + é[X,Y] + E[X’ [X,Y]] - E[Y’ (X, Y]]+, (3.2.4)

is actually a finite sum and it defines a group on a. We now transfer the operation
o and the dilation {Ay}rs0 to a copy of a by fixing a suitable coordinate system
on (the finite-dimensional vector space) a.

To this end we first observe that, by means of (3.2.2) and of the rank con-
dition (H2), we can complete X7, ..., X,, to form a basis

A={X1, ..., X, Xont1s-- s XN}
of a satisfying the following properties:
(P1) the set {X71(0),...,Xn(0)} is a set of generators for the vector space R";
(P2) the basis A is adapted to the stratification, that is,

A={xM x o xD XD,

mi)
where m; = m, X](l) = Xj for every j =1,...,m and

my, = dim (a;) and a = Spaﬂ({ka)a XY,

for every k=2,...,r.
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We then consider the linear isomorphism ¢ associated with the basis A, i.e.,
N
o :RY — aq, <I)(a):(I~X::Zanj.
j=1

In the sequel we also set, for brevity, a - X := Zjvzl a; X;. Next we define an
operation * and a family of dilations {Dy}xso on RY by pushing ¢ and D,:

axb:=® 1 (®(a)o®(b)), forevery a,be RY, (3.2.5)
Dy :RY — RY, Dy(a) := 0 H(Ax(B(a))). (3.2.6)
Remark 3.2.4. The following facts hold:
(a) For every a,b € R, the operations * and o are related by the identity
(axb)- X =(a-X)o(b-X). (3.2.7)

(b) For every A > 0 and every a € RY, the dilations Dy and Ay are related
by the notable identity

Dy(a)- X = Ax(a- X). (3.2.8)
As a consequence of identity (3.2.8), the dilation D, can be written as follows
Dy(a) = (\ay,...,\*Nay), for every a € RV,

where 1 = s; < ... < sy are consecutive integers between 1 and r, and

(s1,--,sn) = (1,...,1,2,...,2,....r,...,7). (3.2.9)
—— —— ——
m mo m,
With this notation, X1,..., Xy are jy-homogeneous of degrees si,...,sy re-

spectively, and one has

AN(X;) =A% X, foreveryi=1,...,N.
As it is reasonable to expect, the following fact holds true (for a proof of this
non-trivial result see, e.g., [37, Theorem 17.4.2]).

Theorem 3.2.5. The triple A = (RY, %, D)) is a homogeneous Carnot group
on RN, with m generators and nilpotent of step r. Furthermore, the Lie algebra
Lie(A) of A is isomorphic to a.

Example 3.2.6. Before proceeding, we illustrate the explicit construction of
the group A in the case of the Grushin v.f.s. X7, X5 introduced in Exm. 3.2.2.

To begin with we observe that, since X3 := [X;, X5] = 0., and since X3
commutes with both X; and X5, we have

a:= Lie{X1, Xo} = spang{ X3, X5, X3} and N =dim(a)=3.

Moreover, a is nilpotent of step r = o9 = 2 (note that [X;, X3] = 0 for every
1 =1,2,3) and, according to (3.2.2), we can write
a = span{Xl,Xg},
a=a; Gay, with ag := [a7, a1] = span{ X3},
a1, az] = {0}.
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We now consider the set A := {X7, X2, X3} C a and we prove that it is a basis
of a satisfying properties (P1) and (P2) on page 65.

In fact, obviously, Xy, X5 and X3 are linearly independent in the vector
space X(IR?); moreover, A is adapted to the stratification a = a; @ ag, since

a; = span{Xy, Xo} and a3 =span{Xs}.

Finally, since X11(0) = e, X2I(0) = 0 and X31(0) = e (where e; and e denote
the element of the canonical basis in R?), we deduce that

{X;1(0), i =1,2,3} is a system of generators of R?.

If we thus introduce the linear isomorphism ® associated with A, that is,
3
®:R> — a, O(a) =(a-X) 5:ZaiXi7
i=1

for every a,b € R3 and every A > 0 we can write (remind the definition of the
Campbell-Baker-Hausdorff multiplication ¢ and of the dilation Ay):

3 3
®(a) o B(b) = (Z a; Xi> o (Z b; X,»)
i=1 i=1
(by (3.2.4), since a is nilpotent of step 2)
3 3 1 [ 3
;aiXi +szXz + 5 ;azX“;bzXZ]

i=1
since [Xl,XQ] = X3 and [Xl,Xg} = [XQ,Xg] = 0)

—

V]

1
— Z(ai —+ bz) XZ —+ <a3 -+ b3 —+ 5 (albg — a2b1)) X3;
1=1

A,\(fI)(a)) = A)\ (Z a; Xz) = A,\((al Xl + as XQ) + (a3 X3))

(by (3.2.3), since (a1 X1+ as X2) € a; and (Clg Xg) S Clg)
= )\(al X1+ as XQ) + A2 a3 X3.
Taking into account (3.2.5) and (3.2.6), we then obtain

1
axb= (I)—1(<I>(a) O(I)(b)) = (a1 + b1,a9 + by, as + by + 3 (a1b2 — agbl)) ;

Dy(a) =2 1 (Ax(@(a))) = (Aa1, Aas, \2ag).
(3.2.10)

It can be directly checked that A = (R?, *, D) is a homogeneous Carnot group
on R3, which is actually isomorphic to first Heisenberg group H'; furthermore,
reminding that the Jacobian vector fields .J1, Jo, J3 in Lie(A) are associated with
the columns of J,, (0) (see Rem. 1.1.5 on page 5), we get

1 1
J1 = Gal — = a2 8,13, Jo = 6a2 + 5 ay 8a3, J3 = aa3. (3.2.11)

2
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Since the structure constants of Lie(A) and of a (with respect to {J1,J2, J3}
and A, respectively) are the same, we conclude that Lie(A) & a.

Following Folland [73], we now consider the crucial map
7:RY — R", 7(a):=exp(a- X)(0) = ¥{¥(0), (3.2.12)

where, for every fixed vector field V' € a, we denote by ¥} (0) the integral curve
at time ¢ of the vector field V starting from 0 € R™ at time 0. We also use
the notation exp(tV)(0) for ¥} (0). We explicitly observe that 7 is well-defined,
since any vector field in a is complete (see Remark 3.2.1).

The selected properties of 7 are given in the following result.

Theorem 3.2.7 (Folland, [73]). Let w be the map defined in (3.2.12). Then the
following properties hold true:

1. For every fixzed A > 0, one has

m(Dx(a)) = 6x(m(a)), for every a € RY. (3.2.13)

2. 7 is a surjective polynomial map.

3. Let Jy,...,Jy be the (unique) vector fields in Lie(A) coinciding at 0 € RN
with the coordinate partial derivatives; then, for every j =i4,..., N,

dr(J;)(a) = Xi(n(a)), for every a € RN. (3.2.14)

Proof. (1) For every A > 0 and every a € R, one has

(Da(a)) “E exp(@(Dx(0)))(0) “Z* exp(An(a- X))(0),

while dx(m(a)) = dr(exp(a - X)(0)). We then consider, for every ¢t € R, the
following integral curves (recall that any v.f. in a is complete):

A(t) = exp(t Ax(a- X))(0) and  pu(t) = Sx(exp(t (- X))(0)).

One has 7(0) = p(0) = 0. Moreover, since X is dy-homogeneous of degree s,

fu(t) = 6x((a- X) (¥ (0 Z%fh (W5 X(0)))
(321)ZAs]aX(6A\I,aX Z/\ejaj

= (Daa) - X)(u() P2 Ax((a- X)) (u(t)).
On the other hand, from the very definition of v we get
3(t) = Ax((a - X))(v(t)),

and this shows that + and u solve the same Cauchy problem, whence they
coincide; by taking t = 1 we get (3.2.13).
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(2) Clearly m € C°(RY,R"™). Moreover, by Taylor’s formula, we get
m(a) = (a- X)(0) +O(||a]|?), asa— 0.
This shows that the Jacobian matrix of 7 at a = 0 is given by the matrix
3(0) = (X1(0) - -- Xn(0)), (3.2.15)

and thus rank(J.(0)) = n. As a consequence, it is possible to find an open
neighborhood W of 0 = 7(0) € R™ such that 7 : RV — W is surjective. We
claim that the homogeneity property (3.2.13) implies that 7 is also onto R™.
Indeed, let z € R™ be fixed and let A > 0 be such that y = §x(x) € W. Since 7
is onto W, there exists a point a € RY such that 7(a) = y, and thus

3.2.13

m(Diya(a) VY 50 (w(@) = 815 (0r(2) = ,
proving that 7 is surjective.

(3) Let ¢ € {1,...,N} be fixed and let e; denote the i-th vector of the
canonical basis of RY. By definition of J;, for every a € R we have

don(h(a)) = Ji(m(a) = 5| _ wlax (ten)
(3.2.12) i
dt

(
t=0
20 2| fexpl(a- X) o ((ter) - X))(0))

exp((a - X) o (t X;))(0)).

exp((a * (te;)) - X)(0))

d
T at ‘t:O(
We now recall that, since a is nilpotent, the Campbell-Baker-Hausdorff multi-
plication satisfies the remarkable formula (see also Thm.2.1.16 on page 25)

exp(W)(exp(V)(z)) = exp(V o W)(x), for all z € RY and every V,W € q;

therefore, by inserting this in the above computation, we obtain

dar(a)) = | (explt Xo)(expla- X)(0)

= Xi(exp(a - X)(0)) “E

Xi(m(a)).
This is precisely the desired (3.2.14), and the proof is complete. O

Example 3.2.8. The aim of this example is to compute the explicit expression
of the map 7 in the particular case of the Grushin vector fields X7, X5.

Keeping fixed all the notations introduced in Exm. 3.2.6, we choose a vector
a € R? and we consider the following Cauchy problem (on R?)

3 .

. Y1 = ai,

¥=) a; Xil(v), )
ZZ:; o A Y2 = azm +as,

7(0) =0 7(0) =0.
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Since 41 = ay and 71(0) = 0, we obviously have v;(t) = ait; moreover, by
inserting this expression in the second equation of the problem, we get

aia9

t
Yo (t) = / (a2 v1(s) + a3)ds = ast + t?,  for every t € R.
0

As a consequence, from the very definition of m we obtain

am) . (3.2.16)

m(a) = WX(0) = (1(1).72(0) = (ar.a3 + 7

With this explicit expression of 7w at hand, we can check the validity of iden-
tity (3.2.14). In fact, taking into account the expression of the Jacobian basis
{J1,J2, J3} of Lie(A) obtained in Exm. 3.2.6, for every a € R?® we have

ai
2 2

wme{éS$)3>:®=mwm

Ix(a) - JoI(a) = (% é (1))

MWM@(im?)§G>&MW-

2 2

In order to construct a projection acting as a lifting for X5, ..., X,,, we add
a new feature to Folland’s ideas: we find an appropriate change of coordinates of
the group A constructed above which transforms the vector fields Jy, ..., J,, on
A into new vector fields Z1, ..., Z,, on R" lifting X1, ..., X,, via the projection
of RN onto R" (that is, Z1,..., Zny lift X1,...,X,, in the sense of Def.3.1.1).
This change of variables is not contained in [73] and represents the main novelty
of this section; moreover, it will play a crucial role in the sequel.

To begin with we observe that, since the vectors X;(0),..., X5 (0) generate
the whole of R™, we can find n indexes in {1,...,r}

1:i1<i2<"'<in,

such that the set B := {X;,(0),..., X
the vector fields X, ,...,
respectively. We then set

Utsoodo = {1\ {in,-.yin}  (p=N—n), (3.2.17)

and we note that, from Hoérmander’s rank condition (H2), it follows that

:,(0)} is a basis of R". As a consequence,
must be dy-homogeneous of degree o1,...,0p,,

in

Jp <1 —1,

that is, all the vector fields in the basis A which are §y-homogeneous of maximum
degree r = o, contribute to B.

So far we have assumed that Hormander’s rank condition holds at O only;
the last remark shows that it automatically holds at any point of R™.
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Remark 3.2.9. With the above notation, we claim that
dim{X;, I(z),...,X; I(x)} =n, forevery z € R". (3.2.18)
In order to see this, we consider the matrix-valued function M defined by
M:R" — M,(R), M(z):= (X;,I(z) - X;,I(z)).

Since {X;,1(0),...,X;, I(0)} is a basis of R", the matrix M(0) is non-singular;
therefore, it is possible to find a small open neighborhood U of 0 (in R™) such
that det(M(x)) # 0 for every = € U.

We now fix a point x € R™ and we choose A > 0 such that Jy(z) € U.

Then, recalling that the vector fields X, , ..., X, are §x-homogeneous of degrees
o1,...,0, respectively, we have (see Rem. 3.2.1)

M (5 (z)) = det (Xill(éx(x)) . ~Xinl(6,\(x))>
B2 qot (xffl On (X I(x)) - A" 6y (Xinl(x)))
= AT AT det (5A (Xi, I(x)) -+ O (Xinl(q:))),
and thus, since the point dy(x) belongs to 1, we obtain
det (5A (X, I(2)) -0 (Xinl(x))) £0.

This ensures that the vectors 6x (X, I(z)),...,0x(X;,I(z)) form a basis of R",
whence the same is true of X;, I(x),...,X; I(z), since the map ¢, is a (linear)
isomorphism of R™. As a consequence, we see that X1, ..., X,, satisfy Horman-
der’s rank condition not only at the origin 0 (see assumption (H2)), but at every
point of x € R™, that is,

dim {XI(z): X € Lie{Xy,...,X;,}} =n, for every z € R™.

We are now ready to introduce our change of coordinates: we set, with
reference to the above (3.2.17),

T:RY — RN, T(a):= (n(a),aj,,...,a;,). (3.2.19)
We also define a new family {dy},>o of dilations on RY by setting
dx(a) := (ANay, ..., A" an, A any1,. .., APay). (3.2.20)
We then have the following crucial result.

Lemma 3.2.10. The map T in (3.2.19) satisfies the following properties:

(i) For every fized X\ > 0, one has

T(Dx(a)) = dx(T(a)), for every a € RY; (3.2.21)

(i) The map T is a C™-diffeomorphism of RN onto itself.
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Proof. (i): For every A > 0 and every a € R™ we have

T(D(@) “E" (7(Dr(@), (Da(@) .- (Da(@) )

= ((5,\ (m(a)), Xraj, ..., A% ajp>

(3'2:'20) dx (71'(@)3 Ajyy- - ,Cljp)

= d)\ (T(a’)) )
which is precisely the desired identity (3.2.21).
(ii): Obviously 7' € C*°(RN,RY). Moreover,

d=(0) X1(0)--- Xn(0)
32(0) € (3.2.15) €1
T = . = . )
€ip €ip
where e;,,...,e;, denote some of the vectors (written as row 1 x N vectors) of

the canonical basis of RY. From this, by recalling that X;, (0),...,X; (0) form
a basis of R™ and by (3.2.17), we derive that Jr(0) is invertible, so that there
exist neighborhoods U, W of 0 in RY such that

Ty : U — W, is a C*-diffeomorphism.

We now claim that the homogeneity property (i) implies that the map T is
actually a C*°-diffeomorphism of R onto itself. To prove this claim, we first
show that T is a bijection.

T is 1-1: Suppose that a,b € RY are such that T'(a) = T(b), and let A > 0
be so small that Dy (a), Dx(b) € U. This gives

3.2.21 3.2.21
T(Dr(@) 2 a\(T(@) = dy(T) “EY T(DA0)),
and thus, since Dy (a), Dx(b) € U and T'|y is injective, we get Dy(a) = Dx(b),
hence a = b. This proves that 7' is injective.
T is onto: Let u € RY be fixed and let A > 0 be such that v = dy(u) € W.

Since Ty is onto W, it is possible to find a (unique) point a € U such that
T(a) = dx(u), and thus

T(Dy s (a) 2 dy ) (da(u) = .

This proves that T is surjective.

In order to end the proof, we are left to show that the map 7! (which is
globally defined) is smooth. To this end we first notice that, from the homo-
geneity property (i) of T, we get

T71(dy(u)) = Dy(T"(u)), for every u € RY. (3.2.22)
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Let now uy € RY and A > 0 be such that d)(ug) € W. The map dy being
continuous, it is possible to find a positive p > 0 such that dy(B(ug,p)) CW;
thus, for every u € B(ug, p) we have

T (w) = T~ (dyja(da(w))) E Dy (T (dr ()

= (Dl/)\ e} (T_1)|W e} d)\)(u)

This shows that T~ coincides with the smooth function Dy, o (T71)],, © dx
on the open ball B(ug, p), hence T~! is smooth near uy. The arbitrariness of
the point ug completes the proof. O

Thanks to Lem. 3.2.10, we are entitled to use the change of variable T' in
order to define a new homogeneous Carnot group G = (RY,x, D}) starting
from A = (R", %, Dy). We henceforth denote a generic point of RV = R™ x RP
by (z,€), with z € R™ and £ € RP, and we define

(,8) % (y,n) =TT (2, &) « T (y,m)), V (x,€),(y,n) €eRY; (3.2.23)

D :RYN — RN, Di(z,8) := T(DA(T (,€))). (3.2.24)

It is obvious that G = (R, x, D}) is a homogeneous Carnot group on R", with
m generators and nilpotent of step r. Furthermore, the map 7T is a (smooth)
isomorphism between A and G, that is,

T(a)xT(b) = T(axb), forevery a,bec RN.

We also have, for every A > 0,

D¥(x,€) = T(DA(T X (2,))) “E (T (dr(2,€)) = dr(x, ).

There is therefore no reason to use the notation D3 any longer, and we replace
it by dy. In the new coordinates (z,€) it is useful to write

dk(l‘,f) = ((5,\(@‘), 5;(5))’
where, for every A > 0 and every £ € RP, we have
85(6) = (A\71€y,...,\72E,), where o} :=s;, forany i =1,...,p. (3.2.25)

Now, since T is an isomorphism of Lie groups, it induces the Lie algebra iso-
morphism dT (see, e.g., [37, Section 2.1])

dT' : Lie(A) — Lie(G), dT(X)@e) = dT(X)p-1(z.¢)- (3.2.26)
We can then consider, in particular, the vector fields
Z; =dT(J;), foreveryi=1,...,N. (3.2.27)
The map dT being an isomorphism of Lie algebras, we immediately infer that
e the set {Z1,...,Zn} is a basis of Lie(G);
e Lie(G) =Lie{Z1,...,Zn}.
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We can finally prove the following result.
Theorem 3.2.11 (Lifting property). Let Z1,...,Zy be as in (3.2.27). Then

(i) Z1,...,ZnN are dx-homogeneous of degree s1, . .., sy respectively (see iden-
tity (3.2.9) in Rem. 3.2.4 for the definition of s1,...,8N);

(ii) Z; is a lifting of X;, that is,
Zi=X;+R; (i=1,...,N), (3.2.28)

where R; is a vector field on RN only operating in the & variables (with
coefficients possibly depending on (x,£)). As a consequence, the sub-La-
placian L == >, Z¢ on G is a lifting of the operator L =3 _," | XZ.

Thm. 3.2.11 proves Thm. 3.2.3 stated at the beginning of the section.
Proof. (i) We fix i € {1,..., N} and A > 0. We recall that

Ji is Dy-homogeneous of degree s;. (3.2.29)

For every (x,€) € RN = R"™ x RP, we have the following computation

(3.2.27) (3.2.26)

AT (J;)(da(2,€)) =" Jy(T) (T~ (dx(x,€)))
(3.2.24)

220 L) (AT (@, €))) PE A~ (T o DA)(T (=, €))
(3.2.21)

Zi(dx(x,€))

A% Ji(dy o )T (2, €))

PV AT AT () () (@,6) = A dA(AT () @, €))

dx(Zi(,€)),

and this proves that Z; is dy-homogeneous of degree s;, as claimed.
(i) We fix i € {1,..., N} and (z,¢) € RY; we have

Zi(x,€) = dT(Ji)(x, &) = Ji(T) (T (x,€))
(3.2.30)

CED (Jim), Jila s az,), o dila e az,) ) (T (2,6))
On the other hand, by (3.2.14) we infer
T[T (@,€)) = Xi(=(T7(,€))). (3:2.31)
Now, since T(x,€) = (r(2), ), we derive that
(T, &) = 3 (3.2.32)

therefore, by inserting (3.2.31) and (3.2.32) in (3.2.30), we infer

Zz(wvf) = (Xi(l',g), fi,l(xag)v ey fi,p(xag)),
where, for £ =1,...,p we have used the notation

fis(x,€) = Jila = a;, (T~ (x,€)) = (Ji(T~H(2,6)))j-
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This shows that Z; can be written (as a vector field on RY) in the form

P
0
Zi :X1+Rz, with R’L = fi,k x,f Y
2 Jikl@€) 5
hence Z; is a lifting for X; and this ends the proof. O

Example 3.2.12. In this last example of the section we consider once again
the Grushin vector fields X7, X5 introduced in Exm. 3.2.2 and we compute the
explicit expression of the map T, of the group law * and of the dilation d.

To begin with, keeping fixed all the notations introduced in the previous
examples, we consider the basis A = {X7, X5, X3} of a = Lie{ Xy, X5} and we
construct the two sets of indexes defined in (3.2.17).

Since X11(0) = e; and X3I(0) = ez (where ey, ez denote the elements of the
canonical basis of R?), we have {iy,i2} = {1,3} and

(i} ={1,2,3) \ {in, 2} = {2}
therefore, according to the definition of T given in (3.2.19), we have

T(a) = (n(a),aj,) (3210 (ah as + %, ag) , ac€R3 (3.2.33)
With this expression of T" at hand, we now write down the explicit expression

of the composition x and of dy. In fact, a direct computations shows that

T*l(a%g) = <$17§,I2 - 17;5) ) for every ($1,$2,§) € R37

as a consequence, by exploiting the expression of x and of D, obtained in
Exm. 3.2.6, for every (z,¢), (y,n) € R® = R? x R and every A > 0 we obtain

(,8)*(ym) = T(T ' (x,&) =T (y.n))

= T<(55‘1a§,$2_x;§)*(ylﬂ%y2—y12n)>

3.2.10 1
52 )T(x1+y17§+n,x2+y2—2(

1€ +yn) + % (w1m — £y1)>

(@1 +y1, 22 +y2 + 210, § +1);

T(DA(T~(2,€))) = T<DA (9”175’9”2‘25»

= Az, %€ o).

d,\(;v,ﬁ)

Finally, due to their relevance in our argument, we determine the explicit ex-
pression of the vector fields Z;, Zs, Z3 introduced in (3.2.27). By exploiting the
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expression of .Jy,Jo, J3 given in (3.2.11), for every (z,¢) € R? we have

ZyI(z, &) = dT(J1)1(z,€) = I (T~ (2,€)) - W I(T~ (2,€))

1 0 1 1
=15 2 1 0| = 0),
0 1 0o/ \-§ 0
ZI(w,€) = dT(J2)I(x,€) = 37 (T~ (x,€)) - oI (T (2,€))
1 0 0 0
= % % 1 1 = | Z1];
0 1 0 o 1
Z31(x,€) = dT(J3)I(x,€) = 37 (T~ (2,€)) - JsI (T (2,€))
1 0 0 0
=15 & 1 0ol =1{1];
0 1 0 1 0

as a consequence, we can write
leawl, 2223?18932—"-65, Zgzagm.

In particular, we have Z; = X, Z3 = X3 and Zy = Xp + O¢.

The next result motivates all the algebraic machinery developed so far.

Theorem 3.2.13. The sub-Laplacian L = >, Z} on the homogeneous Ca-
rnot group G = (R™ x RP, %,d)) constructed in this section is a saturable lifting
of the operator £L =", X2, in the sense of Def. 3.1.4.

Proof. With reference to the notation in Definition 3.1.4, we need to prove
properties (S.1) and (S.2).

(S.1) Since Zy, ..., Z,, are dy-homogeneous of degree 1, the operator Lg is
(formally) self-adjoint on L?(RY). The same is true of £, this time invoking
the dy-homogeneity of degree 1 of X1,..., X,,. Thus the formal adjoint R* of

R=Lg—-CL

coincides with R, whence (Lg being a lifting for £) it has the form (3.1.4).

(S.2) With reference to the dilations ¢} introduced in (3.2.25), we consider
the 63-homogeneous map

p
N:RP —R, N(&):=)_ &% (3.2.34)
k=1

We now choose a smooth function 6 € C§°(R?, [0, 1]) such that
e supp(f) € { € R”: N(¢) <2}
e f=1on{{cRP:N( <1}
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We then define a sequence 6; in C§°(RRP) by setting, for every j € N,
0,(€) == (63, (€)), (with € € RY). (3.2.35)

Obviously, any 6, is valued in [0, 1]; furthermore, since the function N is J3-
homogeneous of degree 1, we have

e supp(6;) C{€ € RP: N(§) < 271}
° QElon{feﬂpzN(§)<2j}.

Consequently {#; = 1} T R? as j 1 co. In order to complete the verification of
(5.2), let us fix a compact set K C R™ and let o g be the coordinate coefficient
function of the second-order PDO

R=R=Lc-L=) (2} -X}) =) raps(@§DID;.
k=1 a,B

The functions r, g are polynomials; a simple but tedious computation shows
that any monomial decomposing 74 g(x, &), has the following feature: as a func-
tion of & only it is §-homogeneous of degree not exceeding |3]. — 1, where we
have used the notation (see also (3.2.25))

p
|8« := Zﬂk oy, for every multi-index g € (NU{0})".
k=1

With this notation, note that, for any £ € RP and any multi-index £,
(53(9)" = A7 €. (3.2.36)
We can write ro g in the following way
rap(@ 8= > capy(@)E, (3.2.37)
vl <18l —1

where ¢, g () are polynomial functions only depending on z.

Now, for every multi-index v with |y]. < |8]« — 1, every (z,§) € K x RP and
every j € N, we have the following estimate (we use the notation 1p for the
characteristic function of a set B):

a8 (1) €7 DLO;(§)| < max |ca54(2)] - 7] [DEO; (€)]
(recall that 6; is constant outside the set B; := {27 < N(¢) < 2771}
= max|ca,5q] - [€7] - 1D0; ()] - 15, ()

(3.2.35) 5 PN
< maxfea,p| 'S]}RlplD o] - (277)" - |&7] - 1, ()
P

(we denote by ¢4 5.~ a constant bounding the product of the first two factors,
we write £ = 05; 0 05—, (&) and we use (3.2.36))

< Capn - (279811 ‘(55% (5))7‘ 1p,(6). (3.2.38)
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Observe that, if the point £ belongs to the annulus B; = {27 < N(£) < 271}
then the point 0;_;(£) belongs to the compact set

By ={¢eRP:1<N() <2}

as a consequence, it is possible to find a positive constant A, > 0, only depend-
ing on v but independent of j € N, such that

95— (5)7’ “1p,(§) < M, forevery £ € R”. (3.2.39)
Since |B]+ — 7|« > 1, from (3.2.38) and (3.2.39), we then obtain
lca,py (@) € DLO;(E)| < Capy My, Yo eK, E€RPand jeN.  (3.2.40)

We are now ready to conclude: by taking into account (3.2.37), for every for
every x € K, £ € R? and j € N we have

ras(2,8) - DLOEN < Y [eapnq(@) € DLO;(E)]

[v1-<IBl«—1

(3.2.40)
< Z Ca,8y My,
[v[«<IBl«—1

and this completes the verification of property (S.2) of a saturable lifting. [

We conclude this section by turning our attention the homogeneous second-
order linear PDO associated with X7,..., X, that is,

m
2
L=> X7
j=1
By exploiting the dy-homogeneity of X, ..., X,, and Thm. 1.2.2 - (ii), it is easy
to recognize that £ can be written in the following divergence form
n

L= Zam iai’j(sc)aajj s
i=1 j=1

where the matrix A(z) = (a;; (x))ij is given by the product

and S(z) is the n x m matrix whose columns are the coefficient vectors of
Xq,..., Xy, that is,

S(z) = (X11(z) - XnI(z)), forevery z € R™.
Furthermore, £ is dx-homogeneous of degree 2: for every A > 0, we have
L(uody) =N (Lu)ody, foreveryue C®R"R).

Finally, since X1, ..., X,, satisfy Hormander’s rank condition at every point of
R™ (see Rem. 3.2.9), we derive the following notable facts:
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(a) The operator £ is C*°-hypoelliptic on every open subset of R";

(b) The operator £ satisfies the so-called Strong Maximum Principle on every
open and connected subset  of R"™: any function u € C?(Q, R) satisfying
Lu >0 on Q and attaining a maximum in ) is constant throughout €0,

(c) As a consequence of the Strong Maximum Principle, the operator £ also
satisfies the Weak Maximum Principle on every open subset U of R":

u € C*(U,R);
Lu >0, on U; = u<0 onU.
limsupu(z) <0 for every y € 9U;

Ty

Remark 3.2.14. As regards the lifting in the sub-elliptic contexts of Carnot
groups, we briefly highlight the paper by Bonfiglioli and Uguzzoni [38].
Roughly put, in this paper the authors prove that any Carnot group G
(nilpotent of step r and with m generators) can be lifted to the free Carnot
group [y, .. Compared with the lifting by Folland presented in this section,
the result by Bonfiglioli and Uguzzoni is essentially a lifting for vector fields
generating the Lie algebra of a Carnot group; this, however, is not our case.

3.3 Fundamental solution for homogeneous Hor-
mander operators

Thanks to all the results proved in the previous sections, we are finally in a
position to prove the main result of this chapter, namely the existence of a
(global) fundamental solution for any homogeneous Hérmander operator.

For the reader’s convenience (and to improve the readability of this section),
we summarize in Thm. 3.3.1 below all the results we are going to prove.

Theorem 3.3.1. Let Xq,...,X,, be a family of linearly independent smooth
vector fields satisfying assumptions (H1) and (H2) in Sec. 3.2.

Then the operator L = Z;”:l Xj2 admits a unique global fundamental solu-
tion T which satisfies the following (joint) §x-homogeneity property:

T(0x(2);0x(y)) = A* 71 T(z;y), VY a,y € R™ with x #y and X > 0.
Moreover, T' is continuous out of the diagonal of R™ x R™, and it is symmetric:
[(z;y) =T(y;x) for every x,y € R™ with = # y.

Finally, for every fized x € R™, we have the following properties:

(i) L(a;-) =

(ii) T(x;-) =T(-;x) vanishes at infinity (uniformly for x in compact sets);
i) D(z;-) =

(vi) T is locally integrable on R™ x R™ and C*° out of the diagonal of R™ x R™.

T(-;2) is smooth and L-harmonic on R™ \ {z};

(iii T(-;2) is locally integrable on R™;

)
)
)
)
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To give a complete proof of Thm. 3.3.1, we begin by fixing some notations.

Throughout this section, £ = Z;"Zl X; is a sum of squares of (linearly in-
dependent) vector fields satistying assumptions (H1) and (H2) in the incipit of
Section 3.2. Without further comments, we denote by G = (R™,*,d,) the ho-
mogeneous Carnot group on RN = R" x R? constructed in the previous section,
with the sub-Laplacian L = Z;”:l ZJ2 which lifts £ through the projection of

R™ x R? onto R"™. As usual, we denote a generic point of RY = R"™ x R? by
(x,€), where x € R™ and £ € RP. We know that d takes the form

dx(x, &) = (0x(2),0%(8)), (3.3.1)

where 63 is the dilation on R? introduced in (3.2.25). Three homogenous di-
mensions naturally arise:

- that of (R",d)), namely ¢ := }_7_, 0y;
- that of (R?,d3), namely ¢* := Y7, o¥;
- that of (R¥,d)), namely Q = ¢ + ¢*.

Let us now assume that the Jy-dimension of R" is greater than 2:

q=3 5,05 >2. (3.3.2)

In the sequel, we consider the homogeneous norm on G (in the sense of Def. 1.3.8
on page 17) defined by

hz,€) = (@ Olle = X layVo7 + D lah (339

k=1

Since L is a sub-Laplacian on the Carnot group G, we know from Thm.1.3.9
that there exists a homogeneous norm d € C*(R" \ {0}, R) such that

Lo, &y,n) = %((,6) 7 * (y,m),  (with (,6) # (y,m))  (3.34)
is the unique fundamental solution for L satisfying the additional property

lim Dg(z,&y,n) =0, for every fixed (z,¢) € RV,
l(y:m)l| =00
Moreover, by the equivalence of all the homogeneous norms on G (see identity
(1.3.10) on page 17), there exists a (group) constant ¢ > 0 such that

' hP9((2,6) 7 x (y,m) < Tala, &y,m) < ch® 9 ((x,8) 7"+ (y,m), (3.3.5)

for every (z,€), (y,n) € RY with (z,¢) # (y,1). By means of this equivalence,
we want to show that I'g satisfies the integrability assumptions Thm. 3.1.6 (plus
the other good properties in Prop. 3.1.9). As a consequence, since we proved in
Thm. 3.2.13 that Lg is a saturable lifting of £, then £ admits a fundamental
solution obtained by a saturation of I'g.

Due to its central role in the saturation formula (3.1.9), we briefly study
some properties of the “convolution-like” map

F:R"xRY = RN, F(z,y,n) = (,0) " % (y,7). (3.3.6)



3.3. Fundamental solution for homogeneous Hormander operators 81

First of all we observe that, since the family {d)}x>o forms a one-parameter
group of automorphisms of G, for every x € R™ and every (y,1) € RY one has

F(0x(z),dx(y,m)) = (0x(x),0) " % dx(y,n)

(Sil) (d,\(x, 0))71 *dA(yﬂ]) = d)\((x, 0)71 * (y, 77)) = dA(F(Ia (yﬂ?)));

hence, if we consider the family of dilations {Dy}x>o on R™ x RN given by

Dy:R" xRV 5 R" xRN, Di(z,y,1) = (0r(x), dx(y,m)),
then the components of F', say
F17~-~aFn7 Fn+17"'aFNa

are IND,\—homogeneouS of degrees, respectively,

* *
Olye--30ny  O1ye-30p.

On the other hand, if we take x = 0, we get F(0,(y,n)) = (y,n), whilst
F(z,(z,0)) = (0,0) (since the origin is the neutral element of G). By all these

facts, we deduce that the components of F are ﬁ,\—homogeneous polynomials,
and that, for every z € R™ and every (y,7n) € RY, they take the form

Fl('r7y777)) =Y — T1,
Fi(%yﬁ):yi—iﬁri‘pi(%yﬂ?) (’6'22,...,71), (337)
Fn+k(x7y777):nk+Qk(xayan)a (k:177p)3

where, for every ¢ = 2,...,n and every k = 1,...,p, p; and ¢, are EA—
homogeneous polynomials of degrees o; and o}, respectively, and

e p; only depends on those variables zp,y, and 7; such that op, 07 < 035
e g;; only depends on those variables xp, y, and 7; such that op, 07 < oy;

e pi(0,y,m) = qx(0,y,m) = 0, for every (y,n) € RV.

Remark 3.3.2. Let x,y € R™ be fixed. Since the polynomial ¢; does not
depend on 71, ..., 7, and since, for every k € {2,...,p}, the polynomial g; only
depends on 7, ...,Mr—1, we see that the map

\I/w,y (R — Rpa \Ill,y(’r}) = (Fn_t,_l(.]?, Y, n)a RS FN(Q]‘, Y, n))’ (338)

defines a C'°°-diffeomorphism of R?, with polynomial components. Hence, in
particular, ¥, , is a proper map, which is equivalent to saying that

lim ¥, ,(n) = occ. (3.3.9)

Furthermore, by (3.3.7), we get

det(H\I,m’y (n)) =1, forevery n € RP. (3.3.10)
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Summing up, from the estimate (3.3.5) we obtain (whenever (y,n) # (z,0))
¢ K7z, y,m) < Tg(w,0;y,m) < c K>~ (z,y,7), (3.3.11)
where we have set
K(z,y,m) := h((x,0)" " x (y,n)), with h as in (3.3.3). (3.3.12)

Taking into account (3.3.3) and (3.3.7), a more explicit expression for K is

& loi & /oy,
K(x,y,m) Z fcyn‘ +Z Fn+k(x,y,n)’
1/0’,‘
= [y Yi — i + pi(z y,n)‘ (3.3.13)

1/o},
+Z‘m«+%(xayﬂl)’ .
k=1

Thanks to (3.3.11), we are now able to prove the following crucial result:

Theorem 3.3.3. Suppose that (3.3.2) holds true. Then the fundamental solu-
tion I'g of L satisfies assumptions (1) and (ii) in Thm. 3.1.6.

Proof. First we prove condition (i). We need to show (3.1.7) when I"is I'g; due
o (3.3.11), we need to prove that, for fixed x # y in R"™, we have

n K?~9(z,y,1m) belongs to L'(RP). (3.3.14)

We perform the change of variable n = \Il;y( u) introduced in Rem. 3.3.2:

- KQ*Q(;I;’ y,m)dn = . KzfQ(x, Y, \11;7;(11)) . \det(aq,;g (u))|du
(3.3.10) _ _
= K? Q(a:, Y, \I/xj!(u)) du.
RP
We now observe that, since x # y, the function u — K?~9(z, y, U (u)) is
continuous on R?, hence it is integrable on every compact subset of RP. In fact,
K(z,y,%,} (u)) =0 if and only if

(2,0) 7" (1, 97, (w) = 0,

which necessarily implies x = y. Thus, if we consider the homogeneous norm N
n (3.2.34), (3.3.14) will follow if we show that

/ K% %(x,y, \IJ;L(U)) du < 0.
{N(u)>1} ’

By the expression of K given in (3.3.13) and the definition of ¥, ,, we infer

T,y

(3.3.13) P .
> ) Pk, y, Uy (w)] 7
k=1
(3.3.8) P * L *
=0 Wy (U ()[R = fug | TE=N (u).

k=1 k=1

K(z,y, v, (u))
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Therefore, we are left to show that
/ N%9(u) du < co. (3.3.15)
{N(u)=1}

In proving (3.3.15), we use a typical argument on diadic annuli (modeled on the
homogeneous norm N): setting, for j € N, C; :={u € R : 2771 < N(u) < 27},
then (see (3.2.25) for the definition of 0%)

/ N%Q(u)du = Z/ N?"9(u)du (change of variable u = &3; (1))
{N(w>1} e

(29)" / N2-Q(83, (n)) i
- 53,(Cy)

1

<.

(/ N>79(n) dn) D (27279 < o0,
{1/2<N(n)<1} j=1

since 2 — Q + ¢* =2 — ¢ > 0 by (3.3.2). This ends the proof of (i).

Finally we prove (ii) of Thm.3.1.6. We need to prove (3.1.8) when I is I'g.
If x € R™ is fixed and K C R" is compact, we perform the change of variable
(u,v) = (y, ¥z 4(n)) and we get (arguing as in part (i) to recognize that this
substitution has Jacobian determinant identically 1)

/ Lg(z,0;y,n)dydn = / L (z,0;u, ¥, ), (v)) dudy
K xRP K xRP ’

:/ {...}dudH/ {--} dudo = T+TI,
Kx{N(v)<1} Kx{N(v)>1}

where N is as above. Clearly I is finite since we integrate a continuous function
over a compact set. As for IT, we use (3.3.11) and we have to prove the finiteness
of the following integral:

/ K% 9(z,u, ¥ L (v))dudv
Kx{N(v)>1} '

2-Q
(3.3.13) p .
< S Pl WA@Y | dud
Kx{N(v)>1} ’

k=1
P

2-Q
Z ARAC dudv =c / N%*Q(v) du dv.
Kx{N(v)>1} \j,—1 Kx{N(v)>1}

The finiteness of the last integral follows by the same argument as in the previous
part of the proof (and the fact that K is compact). This ends the proof. O

(3.3.8)

By gathering together Thm. 3.2.13 proved in Sec. 3.2 and Thm. 3.3.3, we can
finally prove our existence result of a fundamental solution for L.

Theorem 3.3.4 (Existence of a fundamental solution for £). Suppose that
(3.3.2) holds true. Then the function

F(z;y)=APFG(z,O;y,n)dn (x #y)
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is a fundamental solution for L. Moreover, if h is as in (3.3.3), one has
e [ BO(@0) s () dn < Do)

<ec /R O 0)7 x (g ) d,

holding true for every x,y € R™ with x # y. Here, ¢ > 0 is a constant only de-
pending on the homogeneous Carnot group G, Q) is the homogeneous dimension
of G and * is the (polynomial) composition law of G.

Proof. By Thm. 3.2.13, we know that the sub-Laplacian Lg is a saturable lifting
for £; moreover, Thm. 3.3.3 shows that the fundamental solution I'g of Lg in
(3.3.5) satisfies assumptions (i) and (ii) in Thm. 3.1.6.

Therefore, by applying the cited Thm. 3.1.6, we conclude that I is a (global)
fundamental solution for £. This ends the proof. O

The last part of this section is dedicated to establish some further notable
properties of the fundamental solution I'" for £ constructed in Thm. 3.3.4.

Proposition 3.3.5. Let the assumption and the notation of Thm. 3.3.4 apply.
Then the function T is (jointly) §x-homogeneous of degree 2 — q, that is,

T(0x(2);0x(y)) = N2 9T(2;y), Y,y € R" withx #vy and X > 0. (3.3.16)
Proof. Let A > 0 and let x,y € R™ be distinct. We have

T(6(2); 6 (y)) = /R Do), 0553 (y). ) iy

3.3.1
SER : Lo (da(z,0);0x(y), n) dn.

By the substitution = d%(u), and thanks to the dy-homogeneity of degree
2 —Q of T'g (see Thm. 1.3.9 on page 17), we obtain

F(Ea(@)idn(m) = A [ Telda(@,0):d(y.u) du

=@ [ (a0 u)du = X i),
RP
since @ = ¢ + ¢*. This gives (3.3.16), and the proof is complete. O

Proposition 3.3.6. Let the assumption and the notation of Thm. 3.3.4 apply.
Then, for every fized x € R™, we have the following properties:

(i) T(x;-) is continuous on R™\ {x};
(ii) T'(x;-) vanishes at infinity, that is, T'(z;y) — 0 as y — 0.

Proof. First of all, by performing (for every fixed y € R™) the change of variables
u=¥,;,(n) in Rem. 3.3.2, we can write

Mlaig) = [ To(w. 0 Wohu) - [ det(d () du

3.3.10 _
G& )/ Lg(z, 05y, ¥, 1 (u)) du (3.3.17)
RP

:/ {}dqu/ {...}du :=T1411,
{N(u)<1} {N(u)=1}
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where N denotes the §,* - homogeneous norm in (3.2.34); moreover, by the
properties of I'c (see Thm.1.3.9 on page 17) and the continuity of the map
(y,m) = ¥y (n) (see Rem. 3.3.2), we have that

(a) RN 5 (y,u) — Tg(x,0;y, ¥, L (u)) is continuous on RN \ {(z,0)};
(b) Te(z,0;y, ¥, (u)) = 0 as [ly|| = oo, for every fixed u € RP.

Therefore, to prove the proposition it suffices to show that a dominated conver-
gence argument can be applied in the above (3.3.17).

(i) Let yo € RY and let » > 0 be such that = ¢ B(yo,r). Since the set
K := B(yo,7) x {N <1} CRY

is compact and contained in RY \ {(x,0}, we deduce from property (a) that
there exists a constant C > 0 such that

Tg(x,0;y, ¥, (1) < C, for every (y,u) € K;

therefore, we can apply a simple dominated convergence argument to pass to
the limit for y — yo in the integral I. As for integral II, we argue as in the proof
of Thm. 3.3.3: by estimate (3.3.11), the expression of K given in (3.3.13) and
the very definition ¥, ,, for every (y,u) € R™ x {N(u) > 1} we obtain

D(z,0;y, ¥, (1) < ¢ K279z, y, ¥, ) (1)) = ¢ N> 9 (u); (3.3.18)

therefore, the function N being integrable on {N(u) > 1} (as we have shows in
the proof of Thm. 3.3.3), another dominated convergence argument allows us to
pass to the limit for y — yo also in this case.

(ii) By property (b), there exists a real p > 0 such that
T, 0:, W5 () <1, for every (y,u) € RY with ||| > p;

therefore, a simple dominated converge argument ensures us the possibility for
passing to the limit as ||y|| — oo in the integral I. As for integral II, it suffices
to observe that estimate (3.3.18) allows us to apply the Lebesgue Dominated
Convergence Theorem to pass to the limit also for ||y|| — .

The proposition is thus completely proved. O

Corollary 3.3.7. Let the assumption and the notation of Thm. 3.3.4 apply.
Then, for every fized x € R™, we have I'(x;-) € C*(R"™\ {z},R) and

LT(z;-) =0, onR™\ {z}.

Proof. Since T is fundamental solution for £, by definition we have (see identity
(1.3.8) on page 16) LT'(z;-) = —Dir, in D’'(R™); as a consequence, one has

LD (z;-) =0, in D'(R™\ {x}).

Now, since £ is C*°-hypoelliptic on every open subset of R™ (see property (a)
on page 79), it is possible to find a function v € C*°(R" \ {z},R) such that

Lu=0on R"\ {z} and u = I'(z;-) almost everywhere on R" \ {z};

on the other hand, I'(z;-) being continuous out of = (see Prop.3.3.6 - (1)), we
necessarily have I'(z;-) = v on R™ \ {z}, and the proof is complete. O
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Remark 3.3.8. Let the assumption and the notation of Thm. 3.3.4 apply. Then
T" is the unique fundamental solution for £ such that, for every x € R,

I(z;-) € C(R™\ {z},R) and | IHIT I'(x;y) = 0.

This is a consequence of Rem.1.3.7 - (c) on page 16, since the operator £ is

C*°-hypoelliptic and it satisfies the Weak Maximum Principle on every open
and bounded subset of R™ (see properties (a)-to-(c) listed on page 79).

Remark 3.3.9. Before proceeding, we would like to briefly comment the state-
ments of Prop. 3.3.6 and of Cor.3.3.7. First of all we observe that, since I" is a
fundamental solution of £ and £ is C°°-hypoelliptic in R", for every x € R"™ it
is possible to find a function u, € C*°(R™\ {z}, R) such that

Lu, =0on R"\ {z} and u, = I'(z;-) almost everywhere on R" \ {z};

as a consequence, there exists a (unique) smooth function in the equivalence
class of T'(x;-) in L{ (R™), which satisfies

loc
Lu, = —Dir,, in D'(R").

Our main issue, however, is that we need to know that this u,, is everywhere iden-
tical to the integral function defined in Thm. 3.3.4, not only out of a Lebesgue-
neglibile set, which would unpleasantly depend on x. In fact, since we are
interested in establishing some pointwise properties of I', it is important for us
to know that, for every 2 € RY, we do not need to modify I'(x;-) in order to
obtain a smooth function vanishing at infinity.

Having established Prop.s 3.3.5 and 3.3.6, our aim is to prove that the func-
tion I' is actually symmetric, that is,

D(z;y) =T(y;z), for every z,y € R" with z # y.
To this end, we need some preliminary results of independent interest.

Lemma 3.3.10. Let I'g be the fundamental solution for Lg introduced in
(3.3.4). Then the following properties hold true:

(i) The map (z,y,n) — Tg(z,0;y,n) is locally integrable on R™ x RN ;

(i) For every y € R™, the map (x,n)  Ig(x,0;y,7n) belongs to Li (RY).

loc

Proof. (i) Let K; C R™ and Ky C RY be compact sets. By Fubini’s Theorem
and by performing the change of variables (y,7n) = (z,0) x (z, (), one has

[ rewommdedyay "2 [ ([ 0o dzdc) do,
Kix Ko Ky \J7s H(K2)

where 7,, denotes the left-translation by (x,0) on the Carnot group G. We now
observe that, for every x € Ki, the set 7, !(K3) is included in the compact set
H = (K x {0})_1 x Ky; therefore, by recalling that d?>~9 = I'g(0;-) is locally
integrable on RY, we obtain property (i).
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(if) We fix a point y € R™ and a compact set K C R", and we set
Cy:RY = RY, Cylz,n) = (2,0)"" * (y,n).

It can be easily deduced from identity (3.3.7) that C, is a C*°-diffeomorphism
of RN onto itself and that, for every (z,7) € RY, one has

|det(dc, (z,m))| = 1.

Therefore, by the change of variables (z,7) = C,'(z,(), we get

[ Pelwopmdedn= [ @00 dzac
K Cy M (K)

Since C,*(K) is compact and d*>~9 € L (R"), we obtain property (ii). O

Proposition 3.3.11. Let the assumption and the notation of Thm. 3.5.4 apply.
Then the following properties hold true:

() T € L (R" x R");
(ii) For every y € R™, we have I'(;y) € Li (R").
Proof. (i) Let K1, K5 C R"™ be compact sets and let

o:R"xRY 5 R" xRN, @(z,y,7n) = (2,9, Vsy(n)).

As pointed out in Rem. 3.3.2, ¥, , is a smooth diffeomorphism of R” onto itself,
and the map (z,y,n) — ¥, ,(n) is smooth on R™ x RY; therefore, ® defines a
smooth diffeomorphism of R™ x RY and,by (3.3.10),

det (Hé(x,y,n)) =1, forevery (z,y,17) € R" x RV,

From this, by applying Fubini’s Theorem and by performing the change of
variables (z,y,7n) = ® 1 (u,v,v), we get

/ I'(x;y) dxdy:/ Ig(u, 00,9, (v)) dudvdy

KixKaz K1 xKoxRP ’

:/ {...}dudvdqu/ {...}dudvdy = T+1I,
K1><K2><{N(l/)<1} K1XK2X{N(V)21}

where, as usual, we have set N(v) = >_0_, |vg|"/ .

Now, since the product K; x Ko x {N(v) < 1} is bounded in R™ x R", it
follows from Lem.3.3.10 - (i) that I is finite. As for the integral IT we notice
that, by exploiting estimate (3.3.18) in the proof of Prop. 3.3.6, we have

II<c / N* Q) dudvdr
Ky xKax{N(v)>1}

= c-mis(K; x K») / N* Q) dv;
{N@)=1}

therefore, the function N2~% being integrable on {N(v) > 1} (see the proof of
Thm. 3.3.3), we conclude that IT is finite as well.
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(ii) Let y € R™ and let K C R™ be a compact set. We consider the map
o, :RY RN, @,(x,n) = (2, Uqy(n)).

By arguing as above, we see that ®, defines a C°°-diffeomorphism of R" onto
itself and that, for every (z,7) € RV, one has

det (Jo, (z,m)) = 1;

therefore, by the change of coordinates (z,n) = CD;l(u, v), we get

/ T(a;y)dz = / P, 0, U (0)) dud
K K xRp

:/ {...}dudv+/ {...}dudv = T4+1L
Kx{N(v)<1} Kx{N(v)>1}

Since the set K x {N(v) < 1} € RY is bounded, we deduce from Lem. 3.3.10 -
(ii) that the integral I is finite; the finiteness of the integral II can be proved by
exploiting estimate (3.3.18) and by arguing exactly as in (i). O

The next proposition provides a slight improvement of the results contained
in Prop. 3.3.6, showing that I" is well-behaved as a function of both = and y.

Proposition 3.3.12. Let the assumption and the notation of Thm. 8.3.4 apply.
Then the following facts hold true:

(i) Setting O := {(z,y) e R" x R": & # y}, then T € C(O,R);
(ii) For every compact set K C R™, then

lim T'(z;y) =0, wuniformly forz € K;

lyll—o0

(iii) For every fized y € R™, the function T'(-;y) vanishes at infinity.

Proof. (i) Let (z9,90) € O and let r > 0 be s.t. B(xo,7) N B(yo,r) = @. By
performing the usual change of variables u = ¥, ,(n), we have

F(x;y):/]R Ig(x,0;y, \I/lfly(u))du

:/ {}du+/ {...}du=T+1I,
{N(u)<1} {N(u)>1}

where we have set N (u) = > F_, |ug|'/*. Moreover, from Thm.1.3.9 (on page
17) and the continuity of (x,y,u) — ¥, | (u), we infer that

Lg(x, 05y, ¥, (1) € C(O x R”, R). (3.3.19)

Therefore, to prove the continuity of I' it suffices to show that a dominated
convergence argument can be applied to I and II.
To this end we first observe that, since the product

K = (B(zo,r) x B(yo,r)) x {N(u) <1} CO x R?
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is compact, by (3.3.19) it is possible to find a constant C' > 0 such that
Pe(x,0;y, ¥, (u) < C,  for every (2,y,u) € K;

hence, a simple dominated convergence argument can be applied to pass to the
limit as (x,y) — (xo,yo) in the integral I. As for the integral II, we argue as
usual: by estimate (3.3.11), the expression of K given in (3.3.13) and the very
definition ¥, ,, for every (z,y) € O and every u € {N(u) > 1} we obtain

I'(z,0;y, \I/;L(u)) < cK* 9.y, \IJ;Z(U)) = c N?79(u); (3.3.20)

therefore, the function N2~% being integrable on the set {N(u) > 1}, we are
entitled to apply the Lebesgue Dominated Convergence Theorem to pass to the
limit for (x,y) — (xo,yo) also in this case.

(ii) Let K C R™ be a compact set. We consider the map

S:(R"\K) xR — R, S(y,u) := sup I'g(z,0; y, \Il;;(u))
zeK

By (3.3.19), the function S is well-defined and continuous on R™ \ K; moreover,
by performing the usual change of variables u = ¥, , (1), we obtain

sup ['(z;y) = sup (/ Ie(x,0;y, ‘I’;.},(U» d“)
rxeK rzeK RP

< sup / {...}du | + sup / {...}du (3.3.21)
zek \ J{N(u)<1} z€K \ J{N(u)>1}

§/ S(y, u) du+/ S(y,u)du =: T+ 1L
{N(u)<1} {N(u)>1}

We now observe that, since d>~9 = I'g(0, -) vanishes at infinity (see Thm.1.3.9
on page 17) and (z,0)"! x (2,{) — oo as ||(2,¢)|| = oo, uniformly for x € K
(recall that the left-translations are diffeomorphisms), we have

lim S(y,u) =0, uniformly for u € R?; (3.3.22)

lyll—o0

therefore, to prove property (ii) it suffices to show that a dominated convergence
argument can be applied in both integrals I and II.
As for T we notice that, by (3.3.22), there exists p > 0 such that

S(y,u) <1, for every y € RP with ||y|| > p and every u € R?;

therefore, the Lebesgue Dominated Convergence Theorem allows us to pass to
the limit for ||y|| — oo. As for integral II, we argue as in (i): by estimate (3.3.20)
(holding true for every (x,y) € O and every u € {N(u) > 1}) we get

S(y,u) < cN?"9(u), for every y € R™ and every u € {N(u) > 1};

thus, the function N2~9 being integrable on {N(u) > 1}, a dominated conver-
gence argument allows us to pass to the limit for |ly|| — oo also in this case.



3.3. Fundamental solution for homogeneous Hormander operators 90

(iii) Let y € R™ be fixed. By the usual change of coordinates u = ¥, ,(n) in
Rem. 3.3.2 and the expression of ' given in (3.3.4), we can write

Plasy) = /R Do, 0y, W5 ) (u)) du

= / dZ_Q((x, 0)_1 * (y, \II;Z(U)) du
RP

:/ {}du+/ {..}du=T+1J;
{N(u)<1} {N(u)>1}

moreover, since both maps

Cy(w,n) = (2,0) " x (y,n) and Uy (z,n) = (, Vs, (n)
are C'*°-diffeomorphisms of RY (see the proofs of Lem.3.3.10 and Prop. 3.3.11,

respectively), we easily deduce that

(.0 % (g, T () = T (G, 0¥, ) (w,u) = .

Il (2,u) || o0 Il (2,u) ||~ o0 Y

From this, recalling that d>~9 = I'g(0, -) vanishes at infinity, we get

lim  d*> 9 ((z,0)"" * (v, \Ilgjly(u)) =0, uniformly for v € R?. (3.3.23)

llzll—o0

To complete the demonstration of property (iii), we are then left to show that
a dominated convergence argument can be applied to both integrals I and II.
As for T we observe that, by (3.3.23), there exists p > 0 such that

dQ_Q((x, 0)_1 * (y, \Il;;(u)) <1

for every x € R™ with ||y|| > 1 and every u € RP; therefore, a simple dominated
convergence argument allows us to pass to the limit for [|z|| — oco. As for
integral II, we argue exactly as in (i): by estimate (3.3.20) we obtain

dQ*Q((x,O)*1 * (y, \Il;L(u)) < cNQ*Q(u), VeeR"and u e {N(u)>1};
thus, the function N2~9 being integrable on {N(u) > 1}, a dominated conver-
gence argument allows us to pass to the limit for ||z|| — oo also in this case. O

Thanks to all the results proved so far, we are now in a position to prove
that I" provides a right inverse for the operator £ in the sense of distribution.

Theorem 3.3.13 (T right-inverts £). Let the assumption and the notation of
Thm. 3.3.4 apply. For every fized ¢ € C§°(R™, R), the function

Ay :R" =R, Ay(y) = / T(z;y) p(z) dz, (3.3.24)

is well-defined and it satisfies the following properties:
(i) Ay € Lig(R™);

loc

(i) Ay € C(R™\ supp(y),R) and it vanishes at infinity;
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(iii) L(Ag,) = — in the sense of distributions on R™.

Proof. By Prop.3.3.11 - (ii) we know that, for every y € R", I'(;y) € Li .(R™);
thus A, is well-defined. We now turn to prove properties (i)-to-(iii).

(i) Let K C R™ be a compact set. Setting Ko := supp(p), one has
/ Ap(y) dy < sup o] ['(z;y) dz dy;
K R™ Kx Ko

therefore, the function I being locally integrable on R™ x R™ (as we know from
Prop.3.3.11 - (i)), we obtain property (i).

(ii) Let yo € R™\ Ko and let r > 0 be such that B(yo,r) C R" \ K. Since,
by Prop.3.3.12, T is continuous out of the diagonal of R™ x R"™, we have

lim I(z;y) =T(x;y0), for every fixed z € Ky;

Y—Yo

moreover, by the same reason, there exists a constant C' > 0 such that
I'(z;y) < O, for every (z,y) € Ko x B(yo,r)

(note that Ko x B(yo,r) is compact and Ko N B(yo,7) = 9). A simple domina-
ted convergence argument thus ensures that A,(y) — Ay(yo) as y — yo, hence
that A, € C(R™\ Ko,R). To prove that A, vanishes at infinity we observe
that, for every y outside Ky, we have (by definition)

Ae0)] < (sup Tlasy)- /K ()| da

thus, since we know from Prop.3.3.12 that sup,cx, I'(z;y) — 0 as [ly]| — oo,
we conclude that A, vanishes at infinity.

(iii) By Fubini’s theorem, for every ¢ € C3°(R™, R) we have

Ap(y) LY(y) dy = /m (/ T(@y) ele) dm) Ly(y) dy

N / w(z) (/n%;y)wy) dy) da;

therefore, by recalling that LI'(z;-) = —Dir, in D'(R"™) (as it follows from very
definition of fundamental solution, see (1.3.8) on page 16), we obtain

R™

[ A o)y = [ ela)via)dn,  for every v € CRR"R),

This means that £(A,) = —¢ in D’(R"), as desired. O

Corollary 3.3.14. Let the assumption and the notation of Thm. 3.3.4 apply.
For every fized p € C3°(R"™,R), one has

Acp(y) = /}Rn L(z;y) Lo(x)dz = —p(y), a.e.on R". (3.3.25)
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Proof. By Thm.3.3.13, we have Az, € L} (R") and £(Ag,) = —L¢p in the

loc
sense of distributions on R”™; therefore, the operator £ being C'°°-hypoelliptic

on every open subset of R™, there exists h € C°>°(R"™, R) such that
e h = Ay, almost everywhere on R™;
e Lh = —Lp pointwise on R".

Furthermore, since A, is continuous outside supp(y) (again by Thm.3.3.13),
we have h = A on the open set R™ \ supp(y); as a consequence, the function
A, vanishing at infinity, then the same is true of h.

We now consider the function u := h + ¢. Obviously, v € C*°(R"™,R) and
Lu=Lh+Lp=—-Lp+Lp=0, onR" (3.3.26)
moreover, since ¢ has compact support and h vanishes at infinity, we have
u(y) — 0, as |y|| — oo. (3.3.27)

By (3.3.26) and (3.3.27), we deduce from the Weak Maximum Principle for £
(see property (c) on page 79) that u must vanish identically on R™, whence

h(y) = —¢(y), for every y € R"™.

From this, by recalling that h coincides almost everywhere with A, we obtain
the desired identity (3.3.25). This ends the proof. O

We are finally ready to prove the announced symmetry of T'.

Theorem 3.3.15 (Symmetry of I'). Let the assumption and the notation of
Thm. 3.3.4 apply. Then the function I is symmetric, that is,

D(x;y) =T(y;2z), for every x,y € R™ with x # y. (3.3.28)

Proof. For the sake of clarity, we split the proof into three different steps.

STEP I: We first prove the existence of a measurable set £ C R", with
vanishing Lebesgue measure, such that

LT(;;z) = —Dir,, forevery z € R"\ E. (3.3.29)

To this end we observe that, the space C§°(R"™,R) being separable (with the
usual LF-topology), there exists a countable dense set ¥ C C§°(RR"™, R); more-
over, thanks to Cor.3.3.14, for ¢ € JF it is possible to find a measurable set
E(p), with vanishing Lebesgue measure, such that

/ L(y; z) Lo(y) dy = —p(z), for every z € R™ \ E(p).
We then set £ := (J,cq E(p). Since F is countable and E(p) has vanishing

Lebesgue measure for every ¢ € F, we see that £ has measure 0 as well; fur-
thermore, for every x € R™ \ E, we have

/ D(y;2) Lo(y) dy = —p(z), for every p € F.
IR‘n
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This proves that, for every z ¢ E, the distribution LT'(+; x) coincides with —Dir,
on J; the latter being dense, we immediately obtain the claimed (3.3.29).

STEP II: We now consider, for a fixed z ¢ F, the function
Uy :=T(z;) = T(5 ).

Since both T'(z;-) and I'(-;x) are locally integrable on R™ (see Prop.3.3.11 -
(ii)), we see that u, € LL _(R™); moreover, thanks to identity (3.3.29), we have

loc
Lu, = LT (x;-) — LT(-;2) = —Dir, + Dir, =0, in D'(R™).

As a consequence, the operator £ being C*°-hypoelliptic on every open subset
of R™, there exists h, € C*°(R",R) such that

L h, =0on R" and h, = u, almost everywhere on R".

In particular, as u, is continuous on R™ \ {2} and it vanishes at infinity (since
the same is true of both I'(x;-) and I'(-; z), see Prop. 3.3.12), we have

e h.(y) = us(y) = [(x;y) — T(y;z), for every y € R™ \ {z};
e h.(y) = 0 as ||y — oo

By gathering together all these facts, we deduce from the Weak Maximum Prin-
ciple for £ that h, identically vanishes on R", whence

I(x;y) =T(y;z), forevery x ¢ F and every y € R" \ {z}. (3.3.30)

STEP III: To complete the proof of the theorem, we show that identity
(3.3.30) actually holds out of the diagonal of R™ x R™. To this end, let z,y € R"
with « # y and let » > 0 be such that y ¢ B,.(z). Since R™ \ F is dense (as F
has measure 0), there exists a sequence {z;}; C (R™\ E)N B,(z) converging to
x as j — 00; hence, identity (3.3.30) implies that

[(zj;y) = T(y; x5), for every j € N.

From this, as I is continuous out of the diagonal of R™ x R (see Prop. 3.3.12),
we deduce that T'(z;y) = I'(y; ). This ends the proof. O

Corollary 3.3.16. Let the assumption and the notation of Thm. 3.3.4 apply.
Then the following properties hold true:

(i) T(52) € C=R"\ {z}, R);
(ii) LT(:;x) = 0 pointwise on R™ \ {x}.
Proof. This is an immediate consequence of Thm. 3.3.15 and of Cor.3.3.7. O
We conclude this section with the following non-trivial result.

Theorem 3.3.17. Let the assumption and the notation of Thm. 3.3.4 apply.
Then the function I' is smooth out of the diagonal of R™ x R™.
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Proof. We introduce the 2m vector fields )?1, s Xoms }71, ..., Y,,, operating on
(z,y) € R™ x R™, defined in the following way:

Xj =Y (X;D)i(x)0n,, Y=Y (X;D)i(y)0y, (G=1,....,m).
=1 i=1

We then set £ := Z;nzl(f(f +Y?). Obviously, £ has smooth coefficients; more-
over, since [XZ, ffj] = 0 for every 4,7 = 1,...,m, it is immediate to see that £ is
a Hormander operator on the whole of R™ x R"™, hence C'*°-hypoelliptic on the
same space. Since, by Cor.s 3.3.7 and 3.3.16 we have

El"(x;y) =LT(;y) + LT (x;-) =0, for every z,y € R"” with x # y,

and since I" is continuous out of the diagonal of R™ x R™ (see Prop.3.3.12), we
thus conclude that I' is actually of class C*° on the same set. O

3.4 Some examples

This section is devoted to present some explicit examples of homogeneous Hor-
mander operators to which our theory applies.

Example 3.4.1 (Grushin operator on R?). Let us consider once again the
Grushin vector fields X7, Xz introduced in Exm. 3.2.2, that is,

X1 :8;81, X2 =1 6352 on R2.

As already pointed out in Exm. 3.2.2, X7, X5 satisfy assumptions (H1) and (H2)
of Sec. 3.2; in particular, they are homogeneous of degree 1 w.r.t. the dilations

(5)\(1'17932) = ()\1‘17 )\2{,62).

Taking into account all the explicit computations carried out in Exm. 3.2.12, we
know that the relevant Carnot group is G = (R3, x,d,) with

dx(x1,22,8) = a1, N220,\E), Q =4,
while the composition law is
(@1, 22,8) * (y1,92,m) := (21 +y1, 22 + Y2 + 217, § + 7).
Furthermore, the vector fields 77, Z, lifting X; and X, are
Zy = 0Oy, s Zy = 21 Ogy + Of. (34.1)
The operator £ = X? + X3 lifts to the sub-Laplacian
Lo =27 + 25 =02 + (2104, +0c)°.

The latter is (modulo a change of variable) the Kohn-Laplacian on the first
Heisenberg group (remind that A = H!, see Exm. 3.2.6), whence its fundamental
solution with pole at the origin is given by the function

Po(@. &) = o (@ + €2 416 (e~ 1/20007) . (2.6) £ (0.0)
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where ¢ > 0 is a suitable constant. According to Thm. 3.3.3, the function

F(itl,xz;yhyz) =
C/ dn (3.4.2)
RV —y1)2 + 722+ 4222 — 292 + 1 (21 +11))%

is the unique fundamental solution for the Grushin operator £ vanishing at
infinity. From (3.4.2) we also derive that, for every = € R?, the function I'(z;-)
has a pole at z: in fact (see Proposition 3.1.10)

liminf T'(z;y) > ¢

L
=00
y—x R /Nt + 16 2212

Finally, the integral in (3.4.2) can be expressed in terms of Elliptic Functions.
More precisely, we have

cV2 K 1+ Z1Y1
V(@ +y)? + 4 (22 — y2)? 2 @+ +A(m—y)? )

where K denotes the complete elliptic integral of the first kind, that is,

D(z;y) =

/2
K(m) := /0 (1 —msin(t))~Y2dt, for —1 <m < 1.

This gives back a formula already obtained by Greiner [88] (see also the mile-
stone works by Beals, Gaveau, Greiner [17, 18]; Beals, Gaveau, Greiner, Kannai
[19]; Bauer, Furutani, Iwasaki [16]).

Example 3.4.2 (Another Grushin-type operator). Let us consider, on
Euclidean space R?, the smooth vector fields

Xlzazl, ngxfam.

Obviously, X1, X5 are linearly independent in the real vector space X(R?) and
it is very easy to check that they are homogeneous w.r.t. the dilations

Sx(z1,22) = (Aw1, N20);

moreover, since X3 := [X1, Xs] = 221 0., and Xy := [X1, X3] = 20,,, we see
that X7, Xy satisfy the Hormander rank condition at the origin. As a conse-
quence, X7, X5 fulfill assumptions (H1) and (H2) of Sec. 3.2.

We now observe that, since X, commutes with all the X;s and since, by
deﬁnition, [Xl,XQ] = X3, [Xl,Xg] = X4 and [Xl,X4] = [X37X4] = 0, we have

a:= Lie{Xl,Xg} = SpanR{X17X2,X3,X4} and N = dlm(a) =4.
Moreover, a is nilpotent of step r = 09 = 3 and, according to (3.2.2), one has

a, = span{Xl,Xg},

ag = [a1,a1] = span{ X3},
az := [a1,a2] = span{ X4},
[a1, a3] = {0}.

a=a; ®ay dag, with
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We now consider the set A := {X;, X5, X3, X4} C a and we prove that it is a
basis of a satistying properties (P1) and (P2) on page 65.

In fact, obviously, X1, X5, X3 and X, are linearly independent in the vector
space X(R?); moreover, A is adapted to the stratification a = a; @© as @ a3, since

a; =span{X;, Xo}, as =span{X3} and a3 =span{X,}.

Finally, since X11(0) = e, X2I(0) = X3I(0) = 0 and X4I(0) = 2e5 (where e;
and ey denote the element of the canonical basis in R?), we deduce that

{X;1(0), i =1,2,3,4} is a system of generators of R

If we thus introduce the linear isomorphism ® associated with A, that is,

®:R* — q, ®(a) = (a-X) ::ZaiXi,

for every a,b € R* and every A\ > 0 we can write (remind the definition of the
Campbell-Baker-Hausdorff multiplication ¢ and of the dilation Aj):

D(a)o P

Ax(P(a

() (0

(by (3.2.4), since a is nllpotent of step 3)

4
= aX+ZbX+ ZaZXZ,Zb X]
i=1 i=1
N 4 4
BT > (ai —bi) Xi, [Zai Xi7zbiXiH
i=1 i=1 i=1

(by using the commutator identities between the Xs)

1
Z a; +b;) (a3+b3+2(a1b2—a2b1)> X3

1
+ (a4 + by + 5 (a1b3 — a3b1) + 12

1
— (a1 —b1) (a1bs — a2bl)) Xy;

(Z a; z) = Ax((a1 X1 + a2 X2) + (a3 X3) + (a4 X4))

(by (3.2.3), since (a1 X1+ as XQ) € ay,
(a3 X3) € as and (a4 X4) S Cl3)

= /\(&1 X1 +as XQ) + A2 az X3 + A3 ag X4.
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Taking into account (3.2.5) and (3.2.6), we then obtain
axb=o""(®(a)o ®(b))

1
= <a1 +b1,a2 +b2,a3 + b3 + 2 (a1b2 — agby),

1 1 (3.4.3)
ag + by + 5 (a1b3 - a3b1) + E (a1 — bl) (a1b2 — a2b1)>;
Dy(a) = @71 (Ax(@(a))) = (Aa1, Aaa, N2az, Nay).

By Thm.3.2.5, A = (R*,%, D)) is a Carnot group with Lie algebra isomorphic
to a; in particular, the Jacobian vector fields of Lie(A) are given by

1

1 1 1
J1 = &h — §a2 6a3—— (6(13 — a1a2)8a4, Jo = 8a2 + 5&1 8a3 + —a?9

12 12 1T
1
J3:8a3—|—§a18a4, J4:8a4.

We now turn to compute the explicit expression of the map 7 defined in (3.2.12).
To this end, we fix a € R* and we consider the following Cauchy problem:

4 .
. 71 = aq,
= a; X;I(y), .
K ; e (7) <~ ’yg:agfyf+2a3’yl+2a4,
¥(0) =0 ~(0) = 0.

Since 41 = a; and 7;(0) = 0, we obviously have ~;(t) = a;t; moreover, by
inserting this expression in the second equation of the problem, we get

¢ 2
aja
72(15):/ (az’y%(s)+2a3’y1(s)+2a4)d5:2a4t+a1a3t2+172t3.
0

As a consequence, from the very definition of © we obtain

m(a) = U§¥(0) = (n(1),72(1)) = <a172a4 taa + = 2> '

With this expression of 7 at hand, we proceed by writing down the explicit
expression of the diffeomorphism 7" defined in (3.2.19). To this end, we first
need to determine the two sets of indexes defined in (3.2.17).

Since X11(0) = e; and X4I(0) = 2e5, we have {i1,i2} = {1,4} and

{i1,02F = {1,2,3,4} \ {ix,i2} = {2,3};
therefore, according to the definition of 7' given in (3.2.19), we have
ajas 4
T(a) = (n(a),a;,,a;,) = | a1,2a4 + aras + 5 02,03), @ eR* (3.44)
Having established this expression of T', we can finally write down the expression

of the group law *, of the dilation dy and of the vector fields Z;, Z5 lifting X,
and Xs. In fact, a direct computation shows that

T_l(.’E,f) = (561,51752, %(31"2 - x%gl - 337162)) ) ($1,$2,§1,§2) S R47
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as a consequence, by exploiting the expression of * and of D) written in (3.4.3),
for every (z,¢), (y,n) € R* = R? x R? and every A > 0 we obtain

(@, ) % (y,m) = T(T (2, ) * T~ (y,m))
((Il,fl,fg, (32 — 2261 — 3x1§2))*
* (91777177727 é(?»yz —yim — 3y1n2))>

- (ml oy, w2 + Yo + 21 (1 + y1)m + 2019, &1+ 71,

S+ m2+1/2(xm - ylé“l));
da(z,€) = T(DA(T ™ (2,€)))
—T (D,\ <m1,§1,£2, (3w — 2261 — 33;152)))
= (Aw1, N3mg, A &1, \2Ey).

Furthermore, according to (3.2.27), for every (z,&) € R* we have
U (2,€) = dT ()1 (2,€) = Ir (T~ (2,€)) - LI (T (2,€))

1 0 0 0 1 1
2
_|e+mE 3 w2 0 | O .
0 1 0 0 -4 0]’
0 0 1 0 (652—m1£1) -4

ZoI(2,€) = dT(Jo)I(x,€) = 37 (T (2,8)) - LI (T (2,€))
0

1 0O 0 O 0
_ | e+ 2ma ? Ty 2 L] |at ],
- Z1 - )
0 1 0 O JL22 .
0 0 1 0 Té 5

Summing up, the vector fields Z7, Z; can be written as follows:

&

71 = 8$1 — 852, oy = 1‘% 8$2 + 651 + il (952.

2

Thanks to all this algebraic machinery, we can proceed by using Thm. 3.3.3 to
find a global fundamental solution for the Grushin-type operator £ = X7 + X2.

Indeed, since the sub-Laplacian £g = Z2 + Z32 lifts £, the cited Thm. 3.3.3
ensures that, if I'g is the fundamental solution for Lg, the function

Do) = [ Tel(@.0) = (n) dy
R
= / I'c (y1 —x1,Y2 — T2+ x1n1(T1 — Y1) — 27102,01, 72 — %551771> dnidng,
RZ

is the unique fundamental solution for £ vanishing at infinity.
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Furthermore, from Thm. 3.3.3 we derive that I'(z;y) is bounded from above
and from below (up to two structural constants) by

KﬁB(‘Ia Y, 77) dn1d7727
]RQ
where the function K is

K(z,y.n) = |y1 — 21] + |y2 — @2 + 21 (21 — y1) — 221m0| />

+ |+ |2 — Szam |2

In this case we are able to deduce that, for every fixed z € R?, the function
I (z;-) has a pole at x (see Prop. 3.1.10): indeed, for some constant ¢ > 0

-5
liminfI'(z,y) > ¢ * / (|2x1772|1/3 +m| +|ne — 1/2171171|1/2) dn = oo.
R2

Yy—x

Example 3.4.3 (An Engel-type operator). Let us consider, on Euclidean
space R3, the smooth vector fields

Xlzaml, X2:$18m2+$%am3.

Obviously, X1, X» are linearly independent in the real vector space X(R?) and
it is very easy to check that they are homogeneous w.r.t. the dilations

Sx (21, w2, 23) = (A\x1, \222, NP23);

moreover, since X3 := [X1, X3] = 0y, + 221 0y and Xy = [X1, X3] = 20,5,
we see that X, X5 satisfy the Hormander rank condition at the origin. As a
consequence, X1, X fulfill assumptions (H1) and (H2) of Sec. 3.2.

We now observe that, since X, commutes with all the X;s and since, by
definition, [X1, Xs] = X3, [X1, X3] = X4 and [X;, X4] = [X3, X4] = 0, we have

a:= Lie{X1, X5} = spanp{ X1, X2, X5, X4} and N =dim(a)=4.
Moreover, a is nilpotent of step r = o3 = 3 and, according to (3.2.2), one has

span{Xl,Xg},
[a1,01] = span{ X3},
as := [a1, as] = span{ Xy},
[a1, a5] = {0}.

We now consider the set A := {X;, X2, X3, X4} C a and we prove that it is a
basis of a satisfying properties (P1) and (P2) on page 65.

In fact, obviously, X7, Xo, X3 and X, are linearly independent in the vector
space X(R?); moreover, A is adapted to the stratification a = a; @ az @ a3, since

ai
as

a=ua; dasPag, with

a; =span{Xy, Xo}, az =span{X3} and a3z =span{Xy}.

Finally, since X11(0) = ey, X2I(0) =0, X3I(0) = e2 and X4I(0) = 2e3 (where
e1, ez and ez denote the element of the canonical basis in R?), we deduce that

{X;1(0), i =1,2,3,4} is a system of generators of R>.
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If we thus introduce the linear isomorphism ® associated with A, that is,
4
¢:IR4—>CI, P(a)=(a-X) ::ZaiXi’

for every a,b € R* and every A\ > 0 we can write (remind the definition of the
Campbell-Baker-Hausdorff multiplication ¢ and of the dilation Aj):

4 4
®(a) o @(b) = (Z a; Xi> o (Z b; Xi)

(by (3.2.4), since a is nllpotent of step 3)

=Y aX; +Zb X; + ZalX“Zb X]

i=1 =1

4

> (ai —by) X, [Z a; Xi, ) b, XZH

i=1

T

(by using the commutator identities between the X js)

2
1
= E (ai + bz) X,j + (ag + b3 + 5 (a1b2 — a2b1)> X3
i=1

1
+(a4+b4+

1
5 (a1b3 — asbi) + 1 (a1 —b1) (a1b2 — azbl)) Xy;

Ax (D (Z a; 1) A((a1 X1 + a2 X2) + (a3 X3) + (a1 X4))

(by (3.2.3), since (a1 X1 + a2 X2) € ay,
(a3 X3) € ag and (a4 X4) € a3)

=Aa1 X1 4+ as Xa) + A a3 X5 + A\ ag Xy
Taking into account (3.2.5) and (3.2.6), we then obtain
axb=o""(®(a)o D(b))

1
<a1 +b1,a2 + b2, a3 + b3 + 5 (a1ba — agby),

. . (3.4.5)
aq + by + 3 (a1bs — agby) + P (a1 —b1) (a1bs — a2bl)>;

Dy(a) = @71 (Ax(®(a))) = (A1, Aaz, Naz, N as).

By Thm.3.2.5, A = (R*, %, D)) is a Carnot group with Lie algebra isomorphic
to a; in particular, the Jacobian vector fields of Lie(A) are given by

1

1 1
12 (6&3 — alag) 6a4, Jo = 8a2 + = Cll 6(13 + —

1
leaal—*agaas 12

2 8(14 )

1
= Ouy + 5

2 a1 8(143 J4 = 8(14
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We explicitly notice that the group A just constructed coincides with the
group (also denoted by A) constructed in Exm. 3.4.2: this is a consequence of
the fact that the Lie algebras involved have the same structure constants with
respect to the chosen basis (in both cases denoted by A).

We now turn to compute the explicit expression of the map 7 defined in (3.2.12).
To this end, we fix a € R* and we consider the following Cauchy problem:

4 Y1 = a1,
"YZZGiXiI(W)a Y2 = a2 + as,
=1 Y3 = a2} +2a3 1 + aa,
7(0)=0 0) =0
7(0) = 0.

Since 41 = a; and 71(0) = 0, we obviously have ~;(t) = a;t; moreover, by
inserting this expression in the last two equations of the problem we get

t
1
Y2(t) = / (azyi(s) +az)ds = 5 0102 2 + ast;
0

t
1
v3(t) = / (a3 (s) +2azyi(s) +as)ds = 3 afagt® +ajazt® +2ayt.
0

As a consequence, from the very definition of = we obtain
m(a) = ¥FX(0) = (n(1),72(1),73(1))

1 1
= (al, 3 aiaz + as, 3 a%ag +aias + 2a4) .

With this expression of 7 at hand, we proceed by writing down the explicit
expression of the diffeomorphism T' defined in (3.2.19). To this end, we first
need to determine the two sets of indexes defined in (3.2.17).

Since X171(0) = ey, X3I(0) = e3 and X41(0) = 2e3, we have

{i1,42,i3} = {1,3,4} and {j1} ={1,2,3,4} \ {i1, 42,43} = {2};

therefore, according to the definition of T' given in (3.2.19), we have

T(a) = (n(a),a;) = (n(a), az)
(3.4.6)

1 1
= <a1, 3 aias + as, 3 afag 4+ aras + 2 ay, a2> , a€ R

Having established this expression of T', we can finally write down the expression
of the group law x, of the dilation d) and of the vector fields 77, Zs lifting X3
and X,. In fact, a direct computation shows that, if (21,22, 73,£) € R?,

T_l(xvé-) = <x17§7x3 - }mlfv %

5 2($?§+6$3—6x1x2)>;

as a consequence, by exploiting the expression of * and of D) written in (3.4.5),
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for every (,¢), (y,n) € R* = R? x R and every A > 0 we obtain
(2,8 % (y,n) = T(T(2,6) T~ (y,m))

1 1
= T<($1,§7ﬂf3 - §$15,5($%§+6$3 - 6561992))*

1

1
* (yhn,ys - §y1n7ﬁ(yfn+6y3 - 6y1y2)>)

= (xl + Y1, T2+ Y2 + 217, T3 + Y3 + 2212 + 2310, £ + n);
dx(z, &) = T(DA(T(2,€)))

=T (D,\(acl,f,xg - %xlg, %(w?f +6x3 — 63311:2)))

= (A1, Ao, N33, NE).

Furthermore, according to (3.2.27), for every (z,&) € R* we have
ZuI(w,€) = AT(J)(x,€) = Ir (T~ (x,€)) - LI (T (=,€))

1
0
§ =

3
— L (625 —421&1)

—_
oONn OO
SO o

1 0 0 0 0
Sz o) (1) (e

- 1€ ;p2 L1 = 2 ;
xr3 — 6 ?1 1 2 w22 1’1
0 1 0 0 & 1

Summing up, the group G = (R*, %, d,) is isomorphic to the Engel group on R*
and the vector fields Z1, Z> can be written as follows:

lea'vl; Z2:$18:E2 +x%6933+8€

Thanks to all this algebraic machinery, we can proceed by using Thm.3.3.3 to
find a global fundamental solution for the Engel-type operator £ = X? + X3.

Indeed, since the sub-Laplacian L = Z7 + Z2 lifts £, the cited Thm. 3.3.3
ensures that, if I'g is the fundamental solution for £g, the function

F($1,$27I3; ylay27y3)

= / FG(?h — T1,Y2 — T2 — 211, Y3 — 3 + 2x1 (T2 — Y2) +$§77777) dn
R

is the unique fundamental solution for £ vanishing at infinity.
Furthermore, from Thm. 3.3.3 we derive that I'(z;y) is bounded from above
and from below (up to two structural constants) by

1/3 -5
/ {Iyl—x1|+|y2—x2—xm|1/2+ y3—$3+2$1($2—yz)+$?77‘ +|Tl\} dn.
R
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In this case we are able to deduce that, for every fixed z € R3, the function
I'(z;-) has a pole at « (see Prop. 3.1.10): indeed, for some constant ¢ > 0

it ) 2 e [ anl? 4 lednl! 4+ )~y = o
R

Yy—x

We explicitly notice that, in each of the examples discussed in this section,
the fundamental solution I' of £ obtained by saturating I'g satisfies the following
additional property: for every x € R, I'(z;-) has a pole at x, i.e.,

lim I'(z; y) = oo. (3.4.7)
yA)CE
It is straightforward to check that this property guarantees that, for every fixed
x € RV, the family of superlevel sets of I'(x; ), that is,

{yG]I~’JN:I‘(:v;y)>i}u{:ﬂ}7 r >0,

forms a basis of open neighborhoods of z which invades RY (as r — oo) and
which shrinks to z as » — 0. Most importantly, it can be used to prove that
the set of non-negative £-superharmonic functions separates the points of R™.

Ou this account, property (3.4.7) plays an important role in developing a
satisfactory Potential Theory for £ (see, e.g., [1, 13, 34, 37]).

3.5 Fundamental solution for Heat Operators

The aim of this last section is to prove, by using the same techniques exploited
in the previous sections, the existence of a “well-behaved” global fundamental
solution for any “heat-type” operator H of the form

H=L-0;, onR'™=R;xR",

where £ is a homogeneous Hérmander operator on R™ (see Sec. 3.2). Although it
could appear naive, the idea of obtaining global fundamental solutions for heat-
type operators via a saturation argument seems very natural in the Euclidean
setting. Indeed, it is well-known that a global fundamental solution for the
classical heat operator 3(,, = A — 9; on R!'*" is given by the function

[Edls

Lt 0) = Lol (8) - (1m0) 2 exp (1510

thus, is we consider the heat operator on R'*"*? and if we integrate its funda-
mental solution I', 4, with respect to the last p variables, we obtain

[l

/ F’I’L+P(t’ 1‘75) df = 1]0100[(t) (47'(' t)_(n+p)/2 exp <_) X
RP

4t
2
X /Rp exp (—i'l > d¢
_ —n/2 _HxHQ
= Lol (1) (47 1) exp (- 21

=T,(t ).
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In other words, the fundamental solution I',, of HH,, can be recovered by that
of H,,4+p by saturation. Motivated by this fact, we then try to extend such an
approach to the more general setting of homogeneous Hérmander PDOs.

To begin with, let us fix a family {X;,...,X,,} of linearly independent
smooth vector fields on Euclidean space R™ satisfying the assumptions (H1)
and (H2) already introduced in Sec. 3.2, that is,

(H1) Xi,...,X,, are homogeneous of degree 1 with respect to a family of non-
isotropic dilations &y of the following form

0y : R® — R", Oxn(x) = (Nay, ..., A7 ay,),
where 1 =01 < ... < g, are positive integers;
(H2) Xi,...,X,, satisfy Hormander’s rank condition at 0.

Moreover, we set L := Z;n:l X?. We then denote the point z € R!'*" by
z = (t,x), where t € R and = € R™, and we consider the heat operator H
associated with £, that is, the linear PDO defined on R'*™ as follows:

m
H:=L—0, = ZX? — 0, on R't™. (3.5.1)
j=1

The following theorem summarizes all the results we are going to prove.

Theorem 3.5.1. The operator H defined in (3.5.1) admits a (unique) global
fundamental solution T which satisfies the following properties:

(i) T >0 on its domain and, for every (t,), (s,y) € R, we have

T(t,x;8,y) = 0 if and only if s < t.

(ii) For every (t,z) # (s,y) € R**™, the function ' depends on t and s only
through the difference s — t: in fact, we have

L(t,x;s,y) =T(0,2;8 — t,y).
Moreover, T is symmetric w.r.t. the space variables x,y € R, that is,
T(t,x;s,y) =T(t,y; s, ).
(iii) For every A > 0 and every (t,x) # (s,y) € R'™, we have
T(A%t, 65 (x); A%5,05(y)) = AT9T(t, 23 8,9).
(iv) T is smooth out of the diagonal of R*T™ x R*";
(v) For every compact set K C R*™, we have

lim ( sup I'(z; = lim (supl(¢;z)) =0.
HC\HOO(zeIg ( O) HCIHOO(zeE « )>

(vi) T € LL (R x RY™™) and, for fized every z € R, we have

loc

I'(z;-) and T'(:; 2) € L (RY™).
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(vii) For every fived (t,z) € R*™ we have
/ L(t,z;s,y)dy =1, for every s > t.
(viii) For every fized ¢ € Cg°(R**™ R), the function
AR SR A= [ TE )

is smooth, it vanishes at infinity and H(A,) = —¢ on R
Furthermore, if we consider the function T'* defined by
D*(t,235,y) 1= D(s,y3t,2), for every (t,2) # (s,y) € RI*™,

then T* is a global fundamental solution for the adjoint operator H* = L + Oy,
satisfying the dual statements of (i)-to-(viii).

Remark 3.5.2. Before proceeding, we briefly highlight a couple of properties
of the operator H which will be important in the sequel.

(a) H is C>-hypoelliptic on every open subset of R¥: this is a consequence
of the Hérmander Hypoellipticity Theorem, since {Xi,...,X,,,d;} is a
Hérmander system on the whole of Rt (recall that X7, ..., X,, satisfy
the Hérmander rank condition at every point of R", see Rem. 3.2.9).

(b) H satisfies the Weak Maximum Principle on every open and bounded
subset of R**™: this follows from the fact that the principal matrix A(x)
of H is given by A(z) = S(z) - S(x)*, where

S(x) = (X1I(z) - XpI(z)), x€R™

Since X1,...,X,, are dy-homogeneous of degree 1 and since they satisfy
the Hérmander rank condition at 0, it is possible to find an index 7 in
{1,..., N} such that a;; is constant and strictly positive.

Let now a := Lie{Xy,...,X,,} and let N := dim(a). By Thm.3.2.3, it is
possible to find a homogeneous Carnot group G = (RV,x,dy) on RV (with m
generators and nilpotent of step r = o,,) and a system Z = {Z1,...,Z,,} of
Lie-generators of Lie(G) such that, for every i = 1,...,m,

Z; is a lifting of X; on RY.
As a consequence, if we denote by Lg the sub-Laplacian on G associated with
{Z1,...,Zn}, it is straightforward to recognize that the heat operator
m
:H:G = L(G - 8,5 = 2232 - at, on ]R1+N =R; x Ra,&)’
j=1

is a lifting of 3 on RN = R'*" x RP. The following lemma shows that Hg
actually provides a saturable lifting for H (see Def. 3.1.4).
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Lemma 3.5.3. Let the above assumptions and notations apply. Then the ope-
rator Hg is a saturable lifting of 3 on RN,

Proof. First of all we observe that, by definition, we have
Ri=Hg—H=Lsg—L, onR'TY,

thus, Lg being a saturable lifting of £ on R (as we know from Thm. 3.2.13),
it is immediate to recognize that Hg is a saturable lifting of . O

With Lem. 3.5.3 at hands, the path to the existence of a global fundamental
solution for H is traced in Thm. 3.1.6, and it consists of two parts:

e Firstly, we need to prove that Hg admits a fundamental solution I'g;

e Secondly, we have to show that such a I'g satisfies the integrability as-
sumptions (i) and (ii) in the statement of Thm.3.1.6.

As for the existence of a global fundamental solution for Hg, we have the fol-
lowing fundamental result (for a proof see, e.g., [36, Theorem 2.1]).

Theorem 3.5.4 (Existence of a global fundamental solution for Hg). There
exists a map v € C°(R™N \ {0}, R) such that the function

Lotz &8,9,m) = ve(s —t, (2,8 % (y,n), (.8 # (s,9,m) (3.52)

is a global fundamental solution for Hg (here, x is the composition law of the
Carnot group G). Moreover, g satisfies the following additional properties:

() vg(t,z,&) >0 for every (t,z,&) € R*N\ {0} and
Ve (t,x, &) = 0 if and only if t < 0;
(ii) re(t, 2,€) =1t (2,6)7") for every (t,x,&) € RMN\ {0};
(iii) For every A\ > 0 and every (t,z,£) € RN \ {0}, we have
76 (A%, Da(2,€)) = A9 e(t,2,€),
where @ is the homogeneous dimension of the group G;
(iv) g vanishes at infinity, that is, v¢(t,z,&) — 0 as ||(¢,z,€)|| — oo;

(v) For everyt > 0, we have
[ ttdodg =1
RN

Finally, if we consider the function I't, defined by

Itz & s y,m) :=To(s,y,mt,2,8),  (t,2,8) # (s,9,m), (3.5.3)

then I', is a global fundamental solution for the adjoint operator HE = L + 0;.
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Remark 3.5.5. It is worth noting that the function ' defined in (3.5.2) is the
unique global fundamental solution of Hg s.t., for every (t,z,&) € RV,

FG(ta$a§§57ya77) —0 as ||(8?y777)|| — 0.

This follows form Rem. 1.3.7 - (c), since Hg is C°°-hypoelliptic and it satisfies
the Weak Maximum Principle on every open and bounded subset of R'*™.

The needed integrability properties of I'g, instead, crucially rely on the fol-
lowing uniform Gaussian estimates (of ~g). For a proof of these profound
estimates we refer, for example, to [36, Theorem 2.5].

Theorem 3.5.6 (Uniform Gaussian estimates of I'g). Let the assumptions and
the notations in Thm. 3.5.4 apply. Moreover, let d € C(RY \ {0}, R) be the
unique homogeneous symmetric norm on G such that

(@, x ), (@6 # ()

is the global fundamental solution of L (see Thm. 1.8.9). It is then possible to
find a constant ¢ > 0 s.t., for every (z,&) € RN and every t > 0, one has

c1t79/% exp < - W) <glt,z,€) < ct™9/? exp ( - M)

ct
(3.5.4)

Thanks to Thm. 3.5.6, we can now prove the following central result.

Theorem 3.5.7. Let the assumptions and the notations of Thm. 3.5.4 apply.
Then the global fundamental solution g of Hg satisfies the integrability as-
sumptions (i) and (ii) in the statement of Thm. 3.1.6.

Proof. We first prove that I'g satisfies assumption (i). According with our
Thm. 3.1.6 we have to show that, for fixed (¢,7) # (s,y) € R'™, one has

0 Telt, z,0;5,y,m) € L1(RP). (3.5.5)

If s <t, the above (3.5.5) is an immediate consequence of Thm. 3.5.4, since

Lg(t, x,05s,9,m) B2 ve((s — ¢, (#,0)" % (y,m)) =0, for every n € RP.

We can then assume that s > t. In this case, by exploiting the Gaussian
estimates of 7g contained in Thm. 3.5.6 and by performing the usual change of

variables 17 = ¥} (u) (see Rem. 3.3.2), we obtain

C
/Rprg(t,z,o,s,y,n)dnﬁ (s—per”

(2,007 * (1, (w)
X/RPGXP< c(s—1) )dU,

on the other hand, since d is a homogeneous norm on G, it is possible to find a
universal constant o > 0 such that (recall the definition of h given in (3.3.3))

d*((2,0) 7"+ (5, U5, (w) > ah((z,0)7" * (y, Uy, (u))

(3.3.12) aK(z,y, \IJ;L(U)), for every u € RP.
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Thus, the very same computation carried out in the proof of Thm.3.3.3 gives

& ((2,0) " x (y, ¥, 1 (v) > aN?(u), for every u € R.

YY)

where N is the homogeneous norm on RP defined in (3.2.34). By gathering
together all these facts, we see that (3.5.5) follows if we show that

a N?(u)

C(S_t)> € L' (RP). (3.5.6)

u— o(u) ;= exp (—
Now, since ¢ € C(R?,R), we obviously have ¢ € L] _(RP); moreover, by using
the classical inequality exp(22) > Bg (14 22)~@/2 (holding true for every z € R
and for a suitable constant 5o > 0 only depending on @), we get

B (c(s — )%

(u) <
7 (c(s —t) + aN2(u))

a7 < BN~®(u), forevery u e RP\ {0}.

The function N~ being integrable on {N > 1} (as one can recognize by arguing
as in the proof of Thm. 3.3.3), we conclude that ¢ € L'(RRP), as desired.

To complete the demonstration of the theorem, we are left to prove that
I'g also satisfies assumption (ii) in Thm.3.1.6. We then have to show that, for
every fixed (¢,7) € R and every compact set K C R'*", one has

(s,9,m) — Dg(t,z,0;5,y,m) € L' (K x RP).
To this end, let 7' > 0 be such that K C [t — T,t + T] x RP. We have

t+T
/ Lg(t,,0;s,y,m)dsdydn S/ (/ Lg(t,z,0;s,9,m) dydn) ds
K xRP t—T RN

= /tHTT </}RN Ve(s =t (z,0) 7! * (yyn))dydn> ds

(by the change of variables (y,n) = (z,0) * (u,v))

t+T
= / (/ Yo (s — t,u,v) dudv) ds
-7 \JRN

(by Thm. 3.5.4 - (i) and (v))

t+T
:/ 1ds =T,
t

so that (s,y,n) — Tg(t,r,0;s,y,1m) € L}(K x RP), as desired. O

Remark 3.5.8. The proof of Thm. 3.5.7 contains the following remarkable fact:
there exists an absolute constant M > 0 such that, for every (¢,z), (s,y) € R**"
with s > ¢ and for every u € RP \ {0}, one has

Lo(t,,058,y, Uy (w) = e (s — 1, (2,0) 7" (y, Uy (w))) < M- N(u)~?.

On the other hand, since yg identically vanishes on (]—o0,0] x RY) \ {(0,0)}
(by Thm.3.5.4 - (i)) and ¥, ,(0) = 0, we conclude that
Yo (s —t, (2,0) " % (y, T L (u)) < M- N-%(u), (3.5.7)

[ YY)

for every (t,z) € R'*™ and every (s,y,u) € R with (¢,2,0) # (s,y,u).
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By gathering together Lem. 3.5.3, Thm. 3.5.7 and Thm. 3.1.6, we are finally
in a position to prove the existence of a global fundamental solution for J.

Theorem 3.5.9 (Existence of a fundamental solution for H). Let the above
assumptions and notations apply. Then the function

T(t, 25 5,) i= / To(t,z,0;s,y,m)dn,  (t.2) % (5,9),
RP

is a fundamental solution for H. Moreover, if d is as in Thm. 3.5.6, one has

1 (s -2 /RpexP<_°d2<<%0>1*@“7))) dn < Titzis9)

s—t
<cls— )2 /}RP exp ( d ((J:,(:O();_*t)(y,ﬁ))> dn,

holding true for every (t,z), (s,y) € R with s > t. Here, ¢ > 0 is a constant
only depending on the homogeneous Carnot group G and on the operator L.

Proof. By Lem.3.5.3, we know that the heat operator Hg = L5 —J; on R x G
is a saturable lifting of H; moreover, Thm. 3.5.7 ensures that the fundamental
solution I'g of Hg in (3.5.2) satisfies assumptions (i) and (ii) in Thm. 3.1.6.
Therefore, by the cited Thm.3.1.6, we conclude that the function I' is a
global fundamental solution of H, and the proof is complete. O

Remark 3.5.10. Let the assumptions and the notations of Thm.3.5.9 apply.
It is worth noting that, for every (¢,2) # (s,y) € R'™", the function I' depends
on t and s only through the difference s — ¢: in fact, we have

F(t,x;s,y)=/ Lg(t,x,05s,9,m)dn
RP

(by the definition of I'g in (3.5.2))

- /}Rp Yo (s —t, (2,0)" % (y,m)) dn (3.5.8)

:/ FG((),%O%S*LZJW) d77
RP

=T1(0,7;y,5 — ).
As a consequence, for every (t,x) # (s,y) € R we have

F(t,x;s,y) = F(*Sa% 7t7y)' (359)

3.5.1 Further properties of I

As for Sec. 3.3, the last part of this section is devoted to establish some further
properties of the fundamental solution I' of H constructed in Thm. 3.5.9.
To begin with, we prove the following very simple lemma.

Lemma 3.5.11. Let the assumptions and the notations of Thm. 3.5.9 apply.
Then T > 0 on its domain and, for every (t,z) # (s,y) € R*™, we have

[(t,z;s,y) =0 if and only if s < t. (3.5.10)
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Proof. By Thm.3.5.4 - (i), we know that yg > 0 on R!*" \ {0} and that, for
every (7,2) € R'™ one has vg (7, z) = 0 if and only if 7 < 0; as a consequence,

F(t,x;s,y)=/ Lg(t,,0;s,y,m)dn
RP

= /R 16 (s =t (2,0) 7 % (y,m)) dn > 0,V (t,2) # (s,y) € R'F"

and T'(¢,z; s,y) = 0 if and only if s — ¢ < 0. This ends the proof. O

Since the operator £ is §x-homogeneous of degree 2, the fundamental solution
T" of 3 also satisfies the following homogeneity property.

Proposition 3.5.12. Let the assumptions and the notations of Thm. 3.5.9 ap-
ply. Then, for every X > 0 and every (t,x) # (s,y) € R™™ we have

T(A%t, 05 (2); A%s, 0 (y)) = ATIT(t, 2 8,y) (3.5.11)
where ¢ = Z;;l o; is the sum of the exponents in the dilation 0.

Proof. Let A > 0 and let (¢,7) # (s,y) € R'™". By definition, we have

(A%t 6x(x); A5, 05 (y)) = /]Rp Lo (A\%t, 0\ (x),0; A5, 0x(y), 1)) dn

= [ 2603 = . (322,07 # (Bl ) .
On the other hand, the family of dilations {d)} x>0 of G taking the form
dy(z,€) = (6x(x),05(€)), for every (z,¢) € RY and every A > 0

(where 67 is the dilation on R? introduced in (3.2.25)), we get

F()‘Qta (5)\<:L‘); )‘257 6>\(y)> = /]RP '7(51()‘2(5 - t)’ (dk(xa O))_l * (5>\(y)a77>) d77-

From this, by performing the change of variables = 6,*(u) and by using the
homogeneity property of vg in Thm. 3.5.4 - (iii), we obtain

T(A\%t, 05 (2); A%s, 0\ (y)) = AT / 16 (A (s — 1), (da(2,0)) " % da(y,u)) du
(dy is auﬂ‘:gmorphism of G)
X [ e (s = 1), dr((2,0)7 (g 0) du
(by Thmﬂ}j;.5.4 - (iii) )
= \"Q+ / Yo (s —t, (z,0) 71 % (y,u)) du
= \TIT(4, acRs Y),

since @ = g + ¢* (see the beginning of Sec.3.3). This is precisely the desired
(3.5.11), and the proof is complete. O
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Another interesting property of I' is contained in the next proposition.

Proposition 3.5.13. Let the assumptions and the notations of Thm. 3.5.9 ap-
ply. Then, for every fized (t,x) € R'™™ we have

/ D(t,z;s,y)dy =1, for every s > t. (3.5.12)
Proof. Let s >t be fixed. By Thm. 3.5.4 - (v) and the definition of I, we have
/ L(t,2;s,y)dy = / Lg(t,2,0;s,y,m)dydn
n RN

=/ 6 (s =t (2,0) 7"+ (y,m)) dy dn
RN
(by the change of variables (y,n) = (z,0) * (u,v))
:/ Y (s — t,u,v) dudv
]RN
(by Thm.3.5.4 - (v), since s > t)
=1.
This is precisely the desired (3.5.12), and the proof is complete. O

The following proposition, which is a sort of analogous of Prop. 3.3.12, con-
cerns the regularity and the behavior at infinity of the function I'.

Proposition 3.5.14. Let the assumptions and the notations of Thm. 3.5.9 ap-
ply. Then the following facts hold true:

(i) T is continuous out of the diagonal of R'T" x R*";
(ii) For every fized compact set K C R'™", we have

supI'(z;¢) = 0 as |[(]| = oo. (3.5.13)
z€K

(iii) For every fized ¢ = (s,y) € R, we have

I'(z;¢) =0 as|z|| = . (3.5.14)

Proof. (i) Let 20 = (to,20), o = (s0,%0) € R'*™ be distinct and let p > 0
be such that B(zo, p) N B(Co, p) = @. Moreover, let {z,}nen € B(z0,p) and
{¢n}nen € B((o, p) be two sequences converging, respectively, to zo and (o as
n — oo. Weset O := {(z,¢) € R x R : 2 # (} and we consider the
function ¢ : O x RP — R defined in the following way:

o(z,C,u) == 7@(5 —t,(2,0)7 % (y, \II;L(U))), (2,) € O,u e RP. (3.5.15)

Since the map (z,y,u) — ¥, (u) is smooth on R™ x R and, by Thm.3.5.4,
g € C®(RYN\ {0}, R), it is readily seen that ¢ is continuous on O x RP;
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moreover, by means of the map ¢, for every n € N we can write

F(Zn; Cn) = F(tny Tn; snayn) = /]R 7G(Sn —tn, (xna O)_l * (yna 77)) dn

(by the change of variables n = U, (u))

TnsYn

= [ 26l = s (0 0 ¢ W, ()
=/ ©(2n, G, w) du.
RP

Our aim is now to pass to the limit as n — oo in the above identity. To this end
we first observe that, since K := B(zo,p) x B((o,p) € O and ¢ is continuous
on the product O x RP, we obviously have

lm ©(zn, Cn,u) = @(20,Co,u), for every u € RP;

n—oo

furthermore, if N is the homogeneous norm on R? defined in (3.2.34), it is
possible to find a constant M > 0 such that

©(zn, Cn,u) < M, for every n € N and every u € {N < 1}.

Thus, a simple dominated convergence argument gives

lim ©(zn, Gy ) du:/ (20, Co, u) du. (3.5.16)
nreo Jin<iy {N<1}

On the other hand, by exploiting estimate (3.5.7) in Rem. 3.5.7, we obtain
©(Zn, Cnyuw) < M- N79(u), for every n € N and every u € {N > 1};

therefore, the function N~% being integrable on {N > 1} we are entitled to
apply the Lebesgue Dominated Convergence Theorem, which gives

lim ©(zn, Cnyu) duz/ (20, Co, u) du. (3.5.17)
n=oo JIN>1} {N>1}

By gathering together (3.5.16) and (3.5.17), we finally get

lim T'(z,;¢,) = lim ©(zn, Cn,u) du

n—roo n—oo RP

/ (P(ZO’CO;U) du
Rp

= / G (30 - tOv (Jfo, 0)71 * (yOa \I/;;()l,yo (U))) du
Rr

(by the change of variables u = Wy, (1))

/ Ye(s0 — to, (20,0) " * (yo, 7)) dn
RP

= I'(20; (o),

and this proves that T' is continuous at (zo,(p), as desired.
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(i) Let K C R*™ be a fixed compact set and let {(,}neny € RY™\ K be
such that ||{,|| — oo as n — oco. We then consider the map ® defined by

U: (RYM\K) xRP — R,  ®(C,u) :=sup ¢(z,(,u),
zeK

where ¢ is as in (3.5.15). Since, obviously, (R'*" \ K) C O and ¢ is continu-
ous on O x RP, the function ® is (well-defined and) continuous on its domain;
moreover, by means of the map @, for every natural n we can write

sup I'(t,2;50,yn) = sup I'(2; () = sup (/ o(2, G, 1) du)
RP

(t,z)eK z€K z€K

S/ sup ¢(z, Cn,u) du
Rpr zeK

= /Rv D(Cn,u) du.

Our aim is now to pass to the limit as n — oo in the above identity. To this
end we first notice that, since ¢ vanishes at infinity (by Thm.3.5.4) and

lim ||(sn — £, (2,0) 7" % (Y, Yoy, (u)))]| = 00

n—oo

uniformly for z = (t,z) € K and u € RP (as is easy to see), we have

lim ®(¢,,u) =0, uniformly for u € R?;

n— oo

in particular, there exists a constant M > 0 such that
D(Cp,u) < M, for every n € N and every u € RP.

Thus, if N is as in (3.2.34), a simple dominated convergence argument gives

lim O (Cp,u)du =0. (3.5.18)

On the other hand, again by exploiting estimate (3.5.7) in Rem. 3.5.7, for every
n € IN and every u € {N > 1} we have the following bound for ®:

sup ©(z, Cu,u) = (G u) < M- N*Q(u);
zeK

therefore, the function N~ being integrable at infinity, another application of
the Lebesgue Dominated Convergence Theorem gives

lim O (Cp,u)du=0. (3.5.19)
n—o00 {N>1}

By gathering together (3.5.18) and (3.5.19), we obtain

limsup (sup I'(2;¢,)) < lim D((p,u)du =0,
RP

n— o0 zeK n—00

which implies the desired (3.5.13), since I' > 0 on its domain.
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(iii) Let ¢ = (s,y) € R'™ be fixed and let {z,}n,en € R\ {¢} be s.t.
||zn]| = oo as n — co. We then consider the map 6 defined as follows:

0(z,u) == (s —t,(2,0) " * (y, \I/;j!(u)), z=(t,z) € R"™" u e RF.

Since the map (z,y,u) — \I/;%l(u) is smooth on R™ x RY, it is easy to see that,
0 is a smooth diffeomorphism of R'* onto itself; moreover, we can write

P(Zm C) = F(tmxn;xvy) = /]R G (s —tn, (mmo)_l * (ZN?)) dn

(by the change of variables n = W' (u))

TnY

= / (vg ©0)(zn,u)du, for every n € IN.
RP

Our aim is now to pass to the limit as n — oo in the above identity. To this
end we first notice that, § being a smooth diffeomorphism, we have

16(z, w)|| = oo, as [|(z,u)[| — oo;
therefore, since v vanishes at infinity (by Thm. 3.5.4 - (iv)), we get
nl;ngo VG (9(Zn, u)) =0, uniformly for u € RP.
As a consequence, there exists a constant M > 0 such that
7@(9(zn,u)) < M, for every n € IN and every u € R?.

We now argue exactly as in the proof of statement (ii): since {N < 1} is
compact, an obvious dominated convergence theorem gives

lim 76 (0(zn,u)) = 0; (3.5.20)

on the other hand, by exploiting once again estimate (3.5.7) in Rem. 3.5.7 and
by recalling that N~ is integrable at infinity, we obtain

lim 76 (0(zn,u)) = 0. (3.5.21)
n—o0o (N>1}

By gathering together (3.5.20) and (3.5.20) we finally conclude that I'(+; {) van-
ishes at infinity, and the proof is complete. O

Corollary 3.5.15. Let the assumptions and the notations of Thm. 3.5.9 apply.
Then, for every fized z = (t,x) € R**™, one has

(i) T(z;) € C=(R"™\ {2}, R);
(ii) HI(2;¢) =0 for every ¢ = (s,y) € R with ¢ # 2.
Proof. Since T is a global fundamental solution of H, we have HI'(z;-) = —Dir,
in D’(R**™) (see identity (1.3.8) on page 16); as a consequence, one has
HD(2;-) =0, in D'(R™\ {z}).

From the C°°-hypoellipticity of H (see Rem.3.5.2 - (a)) and the continuity of
I'(z;-) out z (see Prop. 3.5.14 - (i)), we infer that I'(z;-) is actually smooth out
of z and that HI'(z;-) = 0 on R'™™ \ {z}. This ends the proof. O
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Remark 3.5.16. The same remarks made about the stationary case apply now,
mutatis mutandis, to the statements of Prop. 3.5.14 and of Cor. 3.5.15.

More precisely, the C'*°-hypoellipticity of £ and the fact that T" is a fun-
damental solution for £ imply that, for every fixed z € R!*", there exists a
smooth function u, € C*° (RN R) such that

Hu, =0 on R\ {2} and u, = I'(z;-) a.e.on R\ {z}.

However, also in this case the point is that we need to know that u, is everywhere
identical to the integral function defined in Thm. 3.5.9, not only out of a set with
vanishing Lebesgue measure (and depending on z).

Remark 3.5.17. Let the assumptions and the notations of Thm. 3.5.9 apply.
Then T is the unique fundamental solution of ¥ s.t., for every z € R'*7,

I'(z;-) € CRY™™\ {z},R) and T(2;¢) = 0 as ||¢]| — oo.

This follows from Rem.1.3.7 - (c), since the operator H is C*°-hypoelliptic on
every open subset of R and it satisfies the Weak Maximum Principle on
every open and bounded subset of R1™" (see Rem. 3.5.2).

Having established some interesting properties of I, we proceed in this sec-
tion by proving that, as it happens for I'g, the function

I*(t,zs,y) =T(s,y5t,2),  (t,2)# (s,9)
provides a global fundamental solution for the adjoint operator H* = £ + 0.

Theorem 3.5.18 (Fundamental Solution for H*). Let the assumptions and the
notations of Thm. 3.5.9 apply. Then the function

T*(t,z;8,y) :=T(s,y;t,x), (t,x) # (s,y), (3.5.22)

is a global fundamental solution for the adjoint operator H* = L+0,. Moreover,
if d is as in Thm. 3.5.6, for every (t,z), (s,y) € R with t > s one has

(1 5@ /Rpexp<_cd?((yﬂ)**(m))) dn < T(s,yit.)

t—s
<elt—s) 92 /R e ( d <<y,co(>t—z )(x n>>> .

Remark 3.5.19. Let the assumptions and the notations of Thm. 3.5.18 apply.
Since T is continuous out of the diagonal of R**" x R!*" and I'(; 2) vanishes at
infinity for every z = (¢,2) € R**™ (see Prop.3.5.14), the function I'* defined
in (3.5.22) is the unique fundamental solution for H* such that

I*(z;-) € CRM™™\ {z},R) and T*(2;¢) = 0 as ||¢]| — oo.

This follows once again from Rem.1.3.7 - (c¢), since the operator H* is C°-
hypoelliptic on every open subset of R!*" (by Hérmander’s theorem) and it
satisfies the Weak Maximum Principle on every open and bounded subset of
R*™ (the principal matrix of H* being the same of ).
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The proof of Thm.3.5.18 is not difficult, but it requires some preliminary
results of independent interest. To begin with, we establish some further inte-
grability properties of the fundamental solution I" for K.

Lemma 3.5.20. Let the assumptions and the notations of Thm. 3.5.9 apply.
Then the following facts hold true:

(i) T e LL (RY" x R1™);

(ii) For every fized ¢ = (s,y) € R*™, we have

(t,z,n) = Te(t,z,0;5,y,m) € Lipo(R™FY); (3.5.23)

(iii) For every fized ¢ = (s,y) € R, we have I'(+;¢) € L{ (R'™).
Proof. (i) Let K1, Ky C R'*™ be compact sets and let T > 0 such that
K> C [-T,T] x R".

By exploiting Fubini-Tonelli’s theorem and Prop. 3.5.13, we obtain

/KIXKQF(z;C)ddeS/Kl (/i (/nr(z;s,y)dy) ds) ac
S/K (/TTld5> d¢ < 2T - meas(Ky),

and this proves the integrability of I' on K; x Ko C R'*™ x R,

(ii) Let ¢ = (s,y) € R**™ be fixed and let K C R'*¥ be a compact set. We
then consider the map H, defined as follows (see also Lem. 3.3.10):

H,: RN 5 RN, Hy(t,z,n) = (8 —t, (z, O)_1 * (y,n)).

By arguing as in the proof of Lem. 3.3.10 - (i), it is easy to recognize that H,
defines a smooth diffeomorphism of R** onto itself and that

|det(Jm, (t,,n))| = 1.

Therefore, by performing the change of variables associated with H,~ 1 we get
/ Lg(t, 2,0;s,y,m) dtdrn = / Yo (s —t,(2,0) "+ (y,n)) dtdzn
K K

= / Y6 (T, z)dT dz.
Hy ' (K)

Since v¢ = I'(0;-) is locally integrable on R**" and H,*(K) is compact, we
immediately deduce the desired (3.5.23).

(iii) Let K C R*™ be a fixed compact set. We define

T:RY™WN 5 RYN T(t,x,u) = (t,x,zb;;(u)).



3.5. Fundamental solution for Heat Operators 117

Since the map (z,y,u) — W, (u) is smooth and ¥} is a smooth diffeomor-

phism of R? onto itself, it is readily seen that T defines a smooth diffeomorphism
of R'¥; moreover, a direct computation shows that (see also Rem’3.3.2)

Ir(t,z,u) =1, for every (t,x,u) € RV,

From this, by performing the change of variables associated with 7', we obtain

[rE0d= [ st 0« () dedrdy
K

K xRp

[ el 0 e W ) didedu
K xRpP

:/ {-~-}dtdxdu+/ {--}dtdedn =T+11,
Kx{N<1} Kx{N>1}

where N denotes the homogeneous norm in R? defined in (3.2.34). Now, since
the product K x {N < 1} is compact, we deduce from (3.5.23) that I is finite;
on the other hand, by exploiting estimate (3.5.7) in Rem. 3.5.8, we get

II<M N~%(u)du < M - meas(K) / N=9(u) du.
Kx{N>1} {N>1}

Since N~9 is integrable at infinity we deduce that II is finite as well, and thus
I'(+;¢) is integrable on K. This ends the proof. O

Thanks to Lem. 3.5.20, we can now prove the following key result.
Proposition 3.5.21. Let the assumptions and the notations of Thm. 3.5.9 ap-
ply. For every fired p € C§°(R'™ R), the function

Ay iR R, Ay(Q) = /}RHH I'(z;C) p(z) dz, (3.5.24)

is well-defined and it satisfies the following properties:
(i) Ay € C®(RY™™, R) and H(A,) = —¢ pointwise on R*";
(i) Ayp(¢) — 0 as ||C]| = oo.

Proof. By Lem. 3.5.20 - (iii), we know that I'(-;¢) € L{ (R'™) for every fixed
¢ € R'™™; thus A, is well-defined. We now prove assertions (i) and (ii).

(1) We first show that the function A, is continuous on R'*™. To this end,
let ¢o = (S0,%0) € R*™ be fixed and let {2, }new € RN be a sequence
converging to (o as n — oco. We then choose a real T' > 0 such that

Ko = supp(p) C [-T,T] x R",
and we consider the map H, : R"*" — R!*" defined by (see Lem. 3.3.10):
Hy(ta I)”) = (8 - tv Cy(xa 77)) = (S - t? (1‘70)71 * (yﬂ?))

As already pointed out in the proof of Lem.3.5.20, H, is a smooth diffeomor-
phism of R and, for every (¢t,2,1) € R'™" and every y € R", we have

‘det(HHy (t,z,m)| = 1.
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Therefore, by means of such a map we can write, for every n € N U {0},

Aol6) = [ TG el ds

Ko

(by Lem. 3.5.20 - (ii) and since Ko C [-T,T] x R")

= / Dg(t, z,0; 8, yn, n) @(t, x) dt dzdn
[T, T]xRN

(by definition of I'g, see (3.5.2))

:/ VG(sn_ta (mvo)_l*(y’run)) @(tvl‘)dtdxdn
[T, T]xRN

(by the change of variables (t,z,7) = (s — 7, C’;l(u, v)))

Sp+T
/ / Ve (T, u,v) ¢(s n—T,C?;}(u,v))deudU.
Sn RN
We now aim to pass to the limit as n — oo in the above identity. To this end
we first notice that, {{,}nen being bounded, there exists a real Ty > 0 s.t.
[sn = T, 80+ T) C [T, To], forevery n € NU{0};

as a consequence, for every n € INU {0} we can write
Ao (Gr) = / Ye (T, u, v) <p(sn -7, Cy_nl(u, v)) dr dudv.
[ Tg,To]XRN

On the other hand, since the map (y,u,v) — C, ' (u,v) is smooth on R™ x RY
(see identity (3.3. 7)) and since, by assumptlons ¢ € C°(RM*™, R), one has

lim (s, — 7, Cy Hu,v)) = ¢(s0 — 7. Cpt (u,v))
and there exists a real constant M > 0 such that
lo(sn — T,Cy_nl(u,v))\ <M, VYneNand VY (r,u,v) € R*¥,

Thus, v¢ = I'g(0;-) being integrable on [—Tp, Tp] x RY (as it follows from
Thm.3.5.4 - (v)), we are entitled to apply the Lebesgue Dominated Conver-
gence Theorem, which shows that A,((n) — Ay(Co) as n — oo. Due to the
arbitrariness of (o € R'*™, we conclude that A, € CR'*" R), as desired.

We now claim that H(A,) = —¢ in D'(R'™™). Indeed, if ¢y € C5° (R, R)
is fixed, by applying Fubini-Tonelli’s theorem (and recalling that T' is a global
fundamental solution for H), we obtain

[ A@3eu dc = ( JIRICHERTS dc) o) dz
R1+m Rl+n Rl+n
(since HI'(2;-) = —Dir,)

o R OLoL

which precisely mean that HA, = —¢ in D’(R'*™). From this, since the opera-
tor 3 is C*°-hypoelliptic on every open subset of R and A, € C(R'T" R),
we deduce that A, is actually smooth on the whole of R'™™ and that

H(A,) = —¢ point-wise on R' ™.
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(ii) By definition of A, for every ¢ ¢ supp(y) we have

A1 sup T [ o)l

z€Kyp

thus, since we know from Prop.3.5.14 that sup,c g, I'(2;¢) — 0 as ||C[| — oo,
we conclude that A, vanishes at infinity. This ends the proof.

Corollary 3.5.22. Let the assumptions and the notations of Prop. 3.5.21 apply.
For every ¢ € C®°(R**™, R) and every ¢ € R*™, we have

M) = [ PO Helz) dz = =p(0). (35.25)
Proof. We consider the function u : R'*" — R defined as follows
u(€) = Asce(Q) +9(Q), ¢ = (s,9) € R
From Prop. 3.5.21 - (i), we infer that u € C*°(R'*", R) and
Hu = H(Age,) + Hop = —Hp +Hp =0, on R*™;

moreover, since ¢ is compactly supported and Agc, vanishes at infinity (see
Prop.3.5.21 - (ii)), one has u(¢) — 0 as ||(|| — co. By summing up, u is a
smooth H-harmonic function on R!*™ vanishing at infinity; therefore, since
satisfies the Weak Maximum Principle on every open and bounded subset of
R'*", we have u = 0 on R'*". By the very definition of u, we then get

Agcp = —p, on R'"
which is precisely the desired (3.5.25). This ends the proof. O
With Cor. 3.5.22 at hands, we are finally in a position to prove Thm. 3.5.18.
Proof (of Thm. 3.5.18). We recall that we have to prove the following fact:
I'*(z;¢) =T'(¢; 2) is a global fundamental solution for F{*.

Obviously, I'* is defined out of the diagonal of R'*” x R'*" and, by Lem. 3.5.20,
I'*(z;-) = T'(;2) € L (RY™) for every fixed z € R'™; thus, according with
Def. 1.3.5 on page 15, we are left to show that, for every z € R, one has

H*T*(z;-) = —Dir,, in D'(R*™). (3.5.26)

On the other hand, by Cor. 3.5.22, for every ¢ € C§°(R'*™™, R) we have

O ENE) = [ TEOHAOA = [ 162 H0(0) de
Rl+n Rl+n
(3.5.25) .
= Nscp(z) =" —¢(2) = —Dir.(p),
which is precisely the needed (3.5.26). This ends the proof. O

Now we have established Thm. 3.5.18, we continue in this section by exploit-
ing such a result to obtain some further properties of I' and I'*.

To begin with, we prove the following regularity theorems.
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Corollary 3.5.23. Let the assumptions and the notations of Thm. 3.5.18 apply.
Then, for every fized z = (t,x) € R**™", one has

(i) T*(z;-) € C*(R"*™\ {2}, R);
(ii) H*T*(2;¢) = 0 for every ¢ = (s,y) € R with { # 2.

Proof. Since, by Thm.3.5.18, I'* is a global fundamental solution for H*, we
have 3*I'*(z;-) = —Dir, in D'(R'*™); in particular, one has

H*T*(z;-) =0, in D'(R™™\ {2}).

From this, since H* is C°°-hypoelliptic on every open subset of R**™ and I'*(z; -)
is continuous out of z (see Rem.3.5.19), we infer that I'*(z;-) is smooth on
R\ {z} and H*T*(2;-) = 0 point-wise on R!*"\ {z}. This ends the proof. [

Theorem 3.5.24 (Smoothness of T'). Let T' be the fundamental solution of H
introduced in Thm. 8.5.9. Then T is smooth out of the diagonal of R* ™" x R1*™.

Proof. As we did in the proof of Thm.3.3.17, we consider the 2m vector fields
X1,...,Xm,Y1,...,Y,,, operating on (z,y) € R™ x R™, defined as follows:

i=1 i=1
We then introduce the following linear PDO on R'*" x R!*":

JN{::Z ~32+8t+217f—85.
j=1

j=1 =
Obviously, H has smooth coefficients; moreover, since [f(z,}}j] = 0 for every
1,7 = {1,...,m}, it is readily seen that H is a Hormander operator on the

whole R'™" x R'*", hence C°°-hypoelliptic on the same set. From this, since
I'(z;¢) is continuous for z # ¢ € R'*™ and, by Cor.s 3.5.15 and 3.5.23,

HL(2;¢) = HT(5¢) + HL(25-) = FHT*(¢; ) + HI(23-) =0,

for every z,¢ € R with 2 # ¢, we infer that I is actually smooth out of the
diagonal of R*" x R'*", as desired. This ends the proof. O

The next result shows that the fundamental solution I' of J is actually
symmetric with respect to the space variables x,y € R”.

Theorem 3.5.25 (Spacial symmetry of I'). Let I' be the fundamental solution
of K introduced in Thm. 3.5.9. Then, for every (t,z) # (s,y) € R**™ we have

T(t,x;s,y) =T(t,y; 8, ). (3.5.27)
Proof. For the sake of clarity, we split the proof into three steps.
STEP I: We first prove that the function G defined by

G(t,z;s,y) =Tt y;s,2), (L) #(s9), (3.5.28)

is a global fundamental solution for . To this end we first notice that, ob-
viously, G is defined out of the diagonal of R!*" x R!*"; thus, according with
Def. 1.3.5, we have to show that, for every fixed z = (t,2) € R**", one has



3.5. Fundamental solution for Heat Operators 121

(a) G(237) € Lygo(RY™);
(b) HG(z;-) = —Dir, in D’'(R*").
As for assertion (a), let K C R'*™ be a compact set and let T, > 0 be s.t.
K C[-T,T) x B(0,r) =: C(T,r).

Since I' > 0 and I'(:;¢) € L (R**™) for every ¢ € R, one then has

/ G(t,r;s,y)dsdy < G(t,r;s,y)dsdy
K C(T,r)

/ L(t,y;s,2)dsdy
C(T,r)
(by identities (3.5.8) and (3.5.9) in Rem. 3.5.10)
/ T(t—s,9;0,2)dsdy
C(T,r)

(by the change of variables (s,y) = (—7 +t,y))

t+T
= / / I(7,y;0,2) drdy < co.
t—T JB(0,r)

We now turn to prove statement (b). To this end, let p € C§° (R, R) be fixed

and let ¥(s,y) := ¢(—s,y). Since I'(w;{) = T'(¢;w) is a global fundamental
solution for H* (as we know from Thm. 3.5.18), we have

—plto) = —v(=tia) = [ Ty —t) (o) dsdly

(3,5:8) / L0, y; =t — s,2) Hp(s,y) ds dy
R1+n

(by the change of variables (s,y) = (—7,y))
- /R | DOyiT— ) () (~7,y) dr dy
(since (Hp)(—7,y) = H*o(, y))

= / L(t,y; 7, 2) H (7, y) dr dy
]R1+n

= G(t,x;7,y) Ho(1,y) dT dy,

]R1+n
and this proves that HG(z;-) = —Dir, in D'(R*™), as desired.
STEP II: In this step we show that, for very z = (¢,z) € R!*", one has
G(z;-) € CRM™\ {z},R) and G(z;¢) — 0 as ||¢]| — oo.

On the one hand, the continuity of G(z;-) out of z is a direct consequence of the
continuity of I' out of the diagonal of R'*™ x R'*"; on the other hand, since

)

I'(+;¢) vanishes at infinity and, by Rem. 3.5.10, we have

G(t,335,y) = T(t, s 5,2) = Tt - 5,30,), for every (s,) # (t,),
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we immediately deduce that G(z;-) vanishes at infinity as well.

STEP III: We are now ready to prove identity (3.5.28). Indeed, by Steps I
and II, G is a fundamental solution for H such that, for every z € R*",

G(z;-) € CRM™\ {z},R) and G(z;¢) — 0 as ||¢]| = oo;
thus, by the uniqueness property of I" in Rem. 3.5.17, we conclude that
L(t,z;s,y) = G(t,x;s,y) =T(t,x;8,y), for every (t,x) # (s,y).
This ends the proof. O

Corollary 3.5.26. Let I' and I'* be the global fundamental solutions of H and
H*, respectively. Then, for every (t,z) # (s,y) € R*™ we have

I*(t,x;s,y) =T (t,y;8,2) = T(s, x;t, y). (3.5.29)
Proof. Let (t,x) # (s,y) € R*™ be fixed. By Thm. 3.5.25, we have

T (t, 2 5,y) = D(s, s t,0) 27 (s, m5t,y) = T (1, ys 5, 2),

which is precisely the desired (3.5.29). This ends the proof. O
Thanks to Cor. 3.5.26, we can give an easy proof of the following theorem.

Theorem 3.5.27 (Properties of I'*). Let T'* be the global fundamental solution
of the operator H*. Then the following facts hold true:

(i) T* > 0 on its domain and, for every (t,z),(s,y) € R'*", we have

I*(t,x;s,y) = 0 if and only if s > t.

(ii) For every (t,x) # (s,y) € R*™, the function T'* depends on t and s only
through the difference s — t: in fact, we have

T*(t,x;8,y) =T7(0,2;8 — t, y).
(iii) For every A > 0 and every (t,x) # (s,y) € R, we have
T*(A%t, 55 (2); A%s, 05 (y)) = A "IT*(t, 73 5, ).
(iv) For every fized compact set K C R, we have

sup I'(z;¢) = 0 as ||¢|| — oc.
zeK

(v) For every fized (t,z) € R'™™ we have
/ *(t,z;s,y)dy =1, for every s < t.

Proof. Statements (i)-to-(v) are straightforward consequence of the analogous
properties of I" established so far and of identity (3.5.29) in Cor. 3.5.26. O
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Remark 3.5.28. Let I' be the global fundamental solutions of H introduced
in Thm. 3.5.9. By combining statement (v) of Thm. 3.5.27 with statement (ii)
of Prop. 3.5.14 we recognize that, for every compact set K C R'*",

lim ( sup I'(z; = lim (supI'(¢;2)) =0.
HCHHOO(zeIg ( O) HCIHOO(zeIg « ))

Remark 3.5.29 (T'f lifts I'*). Let I'* be the global fundamental solution of the
operator 3*. Then, for every (t,z) # (s,y) € R'™ we have

F*(Lx;s,y):/ I't(t, z,0;s,9,m)dn, (3.5.30)
RP

where I't; is the fundamental solution of the operator Hf = Lg + 0; on G. In
fact, from Cor. 3.5.26 and the definition I'" in Thm. 3.5.9 we obtain

T*(t,z;s,y) (3-5.29) D(s,x;t,y) = / Tg(s,x,0;t,y,n)dn
RP

- /]Rp 6 (t = s, (2,0)" % (y,m)) dn
(by Thm. 3.5.4 - (ii))

= /}R et = s, (y,n) " (2,0)) dn
= / Lg(s,y,n;t,x,0)dn

(by (];Reﬁnition of I'y;, see (3.5.3))

= / gt 2,05 s,y,m)dn.
RP

Remark 3.5.30. Let I'* be the global fundamental solution of the operator
H*. Then T'* satisfies the following dual statement of Prop.3.5.21: for every
fized ¢ € C3° (R, R), the function A% : R'" — R defined by

Q= [ TEOE e =g e R

is well-defined and it satisfies the following properties:
(i) AL € C*(R"™, R) and H*(A}) = —¢ pointwise on R'*";
(ii) A%L(¢) — 0 as II<Il — oo.

Indeed, since I'* (z; -) is locally integrable on R**", we see that A7 is well-defined;
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moreover, by identity (3.5.29), for every ¢ = (s,y) € R'™ we can write
O = [ T et deds
]R1+n

(3'5:'29)/ D(s,z;t,y) p(t, ) dt da
]R1+n
(by identity (3.5.9) in Rem. 3.5.10)
:/ (=t 25 —s,y) p(t,z) dt dz (3.5.31)
]R1+n

(by the change of variables (t,z) = (—7,u))

= / D(r,u;—s,y) (—7,u)dr du
R1+1L

= A¢(_57 y)a

where we have set ¥(s,y) := ¢(—s,y). From this, since A, is smooth on R
and it vanishes at infinity (see Prop.3.5.21), we immediately infer that

AL € C®(R™R) and A%(C) = 0 as ]| oo,

On the other hand, since we know from Prop.3.5.21 - (ii) that H(A,) = —¢ on
R!*", from the above (3.5.31) we also get, for every ¢ = (s,y) € R!*",
F(AL)(C = T (AL) (s,y) = I (7, u) = Ay (=7,u)) (s,9)
= H(Ay)(=s,y) = —¢(=s,y)
= 7@(3’ y)

3.5.2 The Cauchy problem for H

Now we have established several qualitative properties of the functions I" and
I'*, we finally conclude this section by briefly studying the existence and the
uniqueness of (classical) solutions of the Cauchy problem for H.

To begin with, we remind the following definition.

Definition 3.5.31. Let ¢ € C(R",R) be fixed and let  :=]0, 00 xR". We
say that a function u : @ — R is a (classical) solution of the Cauchy problem

{ug{(q(;,;)o’ o(x), lfl(jrt’very r e R"” (8.5.52)
if the following conditions are satisfied:
(i) u € C?(Q,R) and Hu(t,z) = 0 for every (¢,z) €
(ii) For every fixed z € R™, we have
lim wu(t, z) = p(z). (3.5.33)

t—0+t



3.5. Fundamental solution for Heat Operators 125

Remark 3.5.32. Let p € C(R", R) be fixed and let u € C?(Q2, R) be a classical
solution of the Cauchy problem (3.5.32), according to Def. 3.5.31.

It is worth noting that, since the operator H is C°°-hypoelliptic on every
open subset of R™ and since, by definition, Hu = 0 point-wise in {2, the function
u is actually smooth on its domain. In other words, any classical solution of the
Cauchy problem (3.5.32) is actually a smooth function.

We then have the following notable result.
Theorem 3.5.33. Let ¢ € C(R™,R) be bounded. Then the function

u:Q=10,00[ xR" — R, u(t,x) := / L0,y;t,x) p(y)dy, (3.5.34)

is a classical solution of the Cauchy problem (3.5.31), further satisfying
lu(t, z)| < ||¢lloo, for every (t,z) € Q. (3.5.35)

Proof. First of all, by Thm.3.5.1 - (ii) and (vii), the function u is well-defined
and it satisfies the estimate (3.5.35): indeed, for every (¢,z) € 2 we have

| Tty < el [

R
(by Thm. 3.5.1 - (ii) and (vii))

= gl /R 10, 2:,5) dy = ]l

L0, y;t,2)dy

To complete the proof of the theorem, we then consider the following steps.

STEP I: In this step we prove that w is continuous on 2. To this end, let
zo = (to, o) € 2 be arbitrarily fixed and let p > 0 be such that

K = [tg —r,to + 7] x B(zo,7) C Q.

Moreover, let {z,}neny € K be a sequence converging to zgp as n — oo. By
arguing as in the proof of Lem. 3.5.20 - (ii), one can easily recognizes that

(ya 77) = FG(Oa:%O; tv‘ran) € Llloc(RN)a for every (tvx) € ]R1+n;
therefore, by Fubini’s theorem, for every n € INU {0} we can write

u(zn) :u(tnvl'n):/n L0, y; tn, xn) ©(y) dy

(by definition of I', see Thm. 3.5.9)
=/ (/ Tc(0,y,0;tn, 2n,m) dn) o(y) dy
n RP
:/ Le(0,y,05tn, zn,n) ¢(y) dy dn
RN

(3.5.2) _
= /RN 6 (tns (4,0) ™" % (20, m)) @(y) dy dn.
We then consider, for fixed z € R™, the map defined as follows:

Co :RY — RN, Cu(y,n) = (y,0)"" % (z,n).
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As already pointed out in the proof of Lem.3.5.20, C,, is a smooth diffeomor-
phism of RY such that |detJc, (y,1)| = 1 for every (y,n) € RY; therefore, by
performing the change of variables associated with C-! we obtain

Tn

u(zn) = /}RN Ve (tn, u,v) o(Cy M (u,v)) dudv, for every n € NU{0}. (3.5.36)

Our aim is now pass to the limit as n — oo in the above (3.5.36). To this end
we first notice that, since ¢ € C(R™, R), 7 is smooth on R'*V \ {0} and

{tntnen C [to — 1o + 1] € ]0, 0],
we have (remind that (z,u,v) — C; *(u,v) is continuous on R"™ x RY)
nlgr;@ Y (tn, u,v) 9(Cy H(u,v)) = v6(to, u, v) @(Cajol (u,v)), V¥ (u,v) € RN,

Moreover, by exploiting the Gaussian estimates for v¢ in Thm. 3.5.6 (and re-
minding that ¢ is bounded), for every n € IN and every (u,v) € R we obtain

6t 11 0) (€ (1 0)) | < [1lloe A6 (s, 0)
< e [lollo(tn) @ exp (—

(since {tn}nen C [to — 1 to + 7))

d?(u,v) > .

c(to—r)

cty,

< c(to+ 7)Y @] exp (

By gathering together all thee facts, we see that a dominated convergence ar-
gument can be applied in the identity (3.5.36) if we show that
d*(u,v)

RN 5 (u,v) — f(u,v) := exp <_c(t0—r)

)eLl(IRN).

Now, since d is a (continuous) homogeneous norm on G, there exists a universal
constant a > 0 such that (cf the proof of Thm.3.5.7),

2
n P
P, 0) = ah?(u,0) “E o | ST V7 oy 17

Jj=1 Jj=1
2 2

n p
>« Z|uj|1/”f + Z|vj|1/”; .V (u,v) € RY;
j=1 j=1

therefore, if we set P(u) := Z;.Lzl luj|V/ 7 (with u € R™), we get

F(u,v) < exp (-ﬂ) exp <_CO‘(£Z2(U2)) . for every (u,v) € RN,

where N (v) is the homogeneous norm on R? defined in (3.2.34).
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From this, by arguing exactly as in the proof of Thm. 3.5.7 (note that P is
dx-homogeneous of degree 1), we infer that f € L'(R"); hence, an application
of the Lebesgue Dominated Convergence Theorem in the above (3.5.36) gives

lim u(z,) = lim Ve (tn, u,v) o(Cy M (u,v)) dudv

n— 00 n—oo JpN

= /}RN Ve (to, u,v) 9(Cpt (u,v)) dudv = u(zp).

Due to the arbitrariness of zg € €, we conclude that u € C(Q2, R).

STEP II: We now turn to prove that Hu = 0 in D’(2) (note that u € L, (),
as it is continuous on the same set). To this end we first observe that, if
K C R'*™ is a fixed compact set, we have

(t,z,y) 3 K x R" +— T(0,y;t,x) € L'(K x R"). (3.5.37)

Indeed, by Thm. 3.5.1 - (ii) and (vii) we have

/ F(O,y;t,x)dtdxdyz/ (/ F(O,x;t,y)dy) dtdz
KxR" K n
< / 1dt dz = meas(K) < 0.
K

Let now ¢ € C§°(2,R). By (3.5.37) and Fubini’s theorem, we obtain
| w@sev@ac= [ ([ 100 day) e ac
]R1+" Rl+n n

[ ( JIREER dc) o(y) dy

(T is a fundamental solution for H, see (1.3.7))

=— [ ¥(0,y)¢y)dy
Rﬂ,

(since supp(¢)) € Q = ]0,00[ xR")
=0,

and this proves that Hu = 0 in D’'(2), as desired. From this, since H is C'*°-
hypoelliptic on every open subset of R"™ and u € C(£2,R), we infer that

u € C™®(Q,R) and Hu(t,z) = 0 for every (¢,z) € Q.

STEP III: To conclude the demonstration of the theorem, we turn to prove
that w satisfies condition (ii) in Def. 3.5.31. To this end, let z € R™ be arbitrarily
fixed and let {t;},ew C ]0,1] be a sequence converging to 0 as n — oco.

By means of the diffeomorphism C,, already considered in Step I and of the
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Gaussian estimates of g in Thm. 3.5.6, for every natural n we can write

utn, ©) = p(z)] =

/n L0, y3tn, 2) p(y) dy — ()
(by Thm. 3.5.1 - (ii) and (vii))

[ POt (o00) = o)

< [ DOyt 0)le) - plo)ldy
(by definition of I' and by (3.5.2))

= [ 76l 00) (@) [olw) — )| dy

(by the change of variables (y,n) = C; ' (u,v))

— /}RN VG (tn, U, v) ‘@(Cz_l(u,v)) — @(x)‘ dudv

3.5. 2(u. v
NPT /R exp (d c(t; )> 0(C (1,0) — ()| dudo.

On the other hand, since d is dy-homogeneous of degree 1, by performing the
change of variables (u,v) = d, ;- (w, 2) (for every fixed n € IN), we obtain

u(tn, x) — ()] <
c /]RN exp (—W) le((Cytod ) (w, 2)) — p(x)] dwdz.
(3.5.38)

We now claim that the rhs of the above (3.5.38) tends to 0 as n — oo. Indeed,
since ¢ is continuous on R" and C,(z,0) = (z,0)~! x (x,0) = (0,0), we have
lim ¢((C5 " od z)(w,2)) = 9(C7(0,0)) = p(x);

n—oo

moreover, ¢ being bounded on the whole of R"™, one has
d*(w, 2) _
exp (-2 o050 d ). 2) - (o)
d2
<2l exp (~F2E) o every (u,0) € R

Since the function (u,v) — exp(—d?(u,v)/c) is integrable on RY (see Step I),
by applying the Lebesgue Dominated Convergence Theorem we obtain

2(w, z
lim exp (d(c’)> |<p((C;1 od ) (w,2)) — ¢(z)| dwdz = 0.

n—oo RN
By gathering together this last identity and the above (3.5.38), we then get

lim_fu(t,, z) — ()| =0,

n—oo

and this shows that u satisfies (3.5.33), as desired. This ends the proof. O
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We now turn our attention to the issue of the uniqueness of solutions of the
Cauchy problem for H. To this end, we prove the following proposition.

Proposition 3.5.34. Let u € C%(Q, R) be a bounded solution of the problem

(3.5.39)
u(0,2) =0, for every x € R™.

{Huzo, on Q =10, 00[xR™,
Then u vanishes identically on 2.

Proof. We denote by m : RN — R” the standard canonical projection of RY
onto R™ and we consider the function v defined as follows:

v:]0,00[xRY — R, v(t,z,€) = (uom)(t,x,&) = u(t, ).

Obviously, the function v is of class C? and bounded on its domain of definition
(since the same is true of w); moreover, since u is a classical solution of the
problem (3.5.39) and Hg = L — 0; is a lifting of H on R x G, we get

e v(0,2,¢) = u(t,z) = 0 for every (z,&) € RY;
e Hgv = Hg(uom) =Hu = 0 point-wise on |0, co[x RY.
Summing up, v is a bounded solution of the Cauchy problem
{}Cguzo, on ]0, 0o[xRY,

u(0,7) =0, for every z € RN.

We are then entitled to apply [36, Theorem 2.1], which ensures that v vanishes
identically on its domain; from this, we deduce that

u(t, z) = 0 for every (¢,z) € ]0, co[xR".
and the proof is complete. O

By combining Thm. 3.5.33 with Prop. 3.5.34, we obtain the following result.
Theorem 3.5.35. Let o € C(R™,R) be bounded. Then the Cauchy problem

Hu = in = "
(CP) w="0 in & = 0, co[R"; (3.5.40)
u(0,z) = p(x), for every x € R™
admits a unique bounded solution u € C*°(Q, R), which is given by
u(t,z) = / L0,y;t,2) o(y)dy, for every (t,x) € Q. (3.5.41)

Proof. By Thm.3.5.2, the function u defined in (3.5.41) is a bounded solution
of the Cauchy problem (3.5.40) (see (3.5.35)) ; therefore, Prop.3.5.34 ensures
that v is actually the unique bounded solution of this problem. O






Chapter 4

Degenerate divergence-form
PDOs

In this last chapter of the thesis we go beyond the sums of squares of vector
fields considered so far, and we turn our attention to linear PDOs (possibly
degenerate-elliptic) in quasi-divergence form

N
(%) L= sz) Z aii (V(x) a; ;(x) 82])7 reRY,

ij=1

where V € C°(RM,R) is strictly positive, the matrix A(z) := (a;;(z));; is
symmetric and positive semi-definite at every point € R, and it has real-
valued C'*° entries. As is well-known, such a class of operators comprehends
sub-Laplacians on Carnot groups, sums of squares of vector fields and differen-
tial operators arising from CR geometry and general Lie group theory; moreover,
there exist linear PDOs of the quasi-divergence form (%) which are not Hor-
mander nor sub-elliptic (see Exm.4.1.4 below). For these reasons, this class
of linear PDOs has been extensively studied since the early 80’s (see, e.g., the
fundamental works by Fefferman and Phong [69, 70]).

In this context, our aim is twofold: on the one hand, by exploiting a Control
Theory result on hypoellipticity to recover a meaningful geometric information
on connectivity and maxima propagation, we shall establish for such operators
the Strong Maximum Principle; on the other hand, by means of suitable ge-
ometrical objects properly introduced, we shall prove a Hardy-type inequality
generalizing the classical Hardy inequality for the Laplace operator.

4.1 The Strong Maximum Principle

According with the incipit of the chapter, this first section is completely devoted
to establish the Strong Maximum Principle (SMP, for short) for a suitable class
of hypoelliptic PDOs of the (quasi-)divergence form (3%). The key tool for prov-
ing this principle is a notable Control Theory result due to Amano, which we
shall briefly present in Sec.4.1.2; thanks to this result, we are able to demon-
strate the Strong Maximum Principle for our PDOs by following the very same
approach exploited by Bony in the case of Hormander operators.

131
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We now describe more closely how this first section is organized.

In Sec.4.1.1 we properly introduce the class of linear PDOs we aim to
study, and we present several examples.

In Sec.4.1.2 we briefly describe a deep Control Theory result by Amano
[6] on hypoelliptic PDOs (long forgotten in the PDE literature), relating
the hypoellipticity of a PDO £ with the controllability of a suitable family
of vector fields naturally associated with £: as anticipated, this will be a
fundamental tool in order to prove the SMP.

Sec.4.1.3 is devoted to call up some elements of ODE Theory/Control
Theory; in particular, we remind the notion of invariant set for a vector
field and a related result by Bony [39].

By means of all the result presented in the preceding sections, we give in
Sec.4.1.4 the proof of the Strong Maximum Principle.

Finally, in Sec.4.1.5 we briefly show how the Strong Maximum Principle
can be profitably used in order to prove the solvability of the Dirichlet
problem and a Harnack Inequality for £.

The contents of Sec.s 4.1.3 and 4.1.4 are inserted in this thesis for the sake of
completeness: in fact, by crucially exploiting the result by Amano presented
in Sec.4.1.2; the proof of the Strong Maximum Principle for our PDOs can be
carried out by arguing exactly as in Bony [39].

4.1.1 Main assumptions and notations

Throughout this section, we shall be concerned with linear PDOs £ satisfying
the following properties, where the acronyms stand for

(DS): Divergence Structure;
(DE): Degenerate-Ellipticity;
(NTD): Non-Total-Degeneracy;
(HY): Hypo-Ellipticity;

Here we have the definitions:

(DS): £ has the following (quasi-)divergence structure

N

L= V(lx) 3 aii (V@) ais(x) aij)’ (4.1.1)

1,j=1

where a; ; € C*°(RY,R) for every i,j € {1,..., N} and V is real-valued,
C and strictly positive on the whole of RY;

(DE): £ is degenerate-elliptic on R, that is, the principal matrix of £

A() = (a4,5())i

is symmetric and positive semi-definite at every point 2 € RY;
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(NTD): £ is non-totally degenerate at every point of RY, that is (recalling
that A(x) is symmetric and positive semi-definite),

trace(A(z)) > 0, for every z € RY; (4.1.2)

(HY): £ is C>-hypoelliptic in every open subset of R™V: following, e.g., Treves
[131], this means that for every open set Q C R, for every u € D'(Q2),
for every open set U C Q and every f € C*°(U,R), the equation Lu = f
in U implies that u is a function-type distribution associated with a C'*®
function (on U). Equivalently, we can say that

sing supp(u) = sing supp(Lu),
for every open set Q C R and every u € D'(Q).

A wide class of linear PDOs satisfying all the assumptions listed above, which
also represents a main motivation for our investigation, consists of the sub-
Laplacians on the Carnot groups:

Example 4.1.1. Let G = (R", %,6,) be a homogeneous Carnot group and let
X ={Xy,..., X.n} be aset of Lie-generators of Lie(G). Then the sub-Laplacian

L= zmzxj
j=1

satisfies all the assumptions listed above.

In fact, by the results recalled in Chap.1 (see, precisely, properties (P1)-to-
(P5) in Sec. 1.3), we know that £ takes the quasi-divergence form (4.1.1) (with
V =1) and it is semielliptic on RY, since A(z) = S(x) - S(x)?, where

S(z) = (X1I(2) - XpnI(2)), zeRY;

from this, it also follows that £ is non-totally degenerate at every x € RM.
As for assumption (HY), it is a consequence of Hérmander’s Hypoellipticity
Theorem, jointly with the fact that X, ..., X,, Lie-generate Lie(G).

More generally, any sub-Laplacian on a Lie group G = (R¥, %) (not neces-
sarily homogeneous nor Carnot) satisfies all the other assumptions listed above.

Example 4.1.2. Let G = (R", %) be a Lie group on RY, let X = {X1,..., X,,}
be a set of Lie generators for Lie(G) and let u be a fixed Haar measure on G'.
Then the linear partial differential operator

m

Li==> X;"X;
j=1

satisfies the assumptions (DS)-to-(HY) listed above (here, X;* denotes the
formal adjoint of X; with respect to the fixed Haar measure p).

1'We remind that a Radon measure p : B(RN) — [0, 0o is called a Haar measure for G
if it is left-invariant, that is, for every fixed = € G it holds that

w(mz(E)) = u(E), for every E € B(RY),

where 7, denotes the left-translation by = on G.
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It is out of any doubt that the sum of squares P := 3 7", X # would be a
noteworthy PDO to be studied. This is not however the PDO we study here, for
the following reason: both £ and P are left-invariant, but P is not necessarily
self-adjoint neither with respect to Lebesgue measure (this depending on the
divergence of the Xj;s), nor with respect to the more natural measure to be
considered, namely the Haar measure of the group. Besides, we observe that
self-adjointness implies the symmetry of Gamma, another pleasant feature.

To prove that £ satisfies assumptions (DS)-to-(HY) we first remind that,
1 being a Haar measure on G, it is absolutely continuous with respect to the
Lebesgue measure; more precisely, if e denotes the neutral element of G, there
exists a positive constant ¢ > 0 such that

1
=cV(z)dz, where V(z) = ——.
As a consequence, for every smooth vector fields Z € X(RY) one has
W =—7 — <div(ZI) + Z;/) . (4.1.3)

In fact, if ¢,v € C°(RYN,R) are arbitrarily fixed, we have

/z/JZ*“god,u:/ cprdu:/ Vi Zypdx
RN RN RN
N
(by writing Z = Z a;(x) 833)

i=1
N
=c Z/ (Va; ) O, da
i=1/RY
(by performing an integration by parts)
N
=-c Z/ w((az— 92, V) + (0z,0:) Vo + (a; 3ziso)V)dw
i=1/RY
(since = ¢V (z)dz and V(z) > 0 on RY)

= _/]RN P ((Z‘y +div(ZI)) ¢+ Z<p> du,

and this obviously implies the above formula (4.1.3) . We explicitly notice that
Z*# does not depend on the constant ¢, but only on the function V.

Having established identity (4.1.3), we can now proceed to show that £
satisfies assumptions (DS)-to-(HY). In fact, by (4.1.3) and by writing

N
X, = Z on,j(x)0y,, foreveryj=1,...,m,
h=1
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a direct computation gives

ZX*MX +19) i(x + div(X;1) + XV)Xj

<|<

Zm:X +1 iv div(X;1) + X;V) X;

j=1 J:1
N m N m N
= D oni@oni(@) | 0, 0n, + D DD 0n(@) Ouy ok (@) | O,
hk=1 \j=1 k=1 \j=1h=1
N m N
Z >N o, (vawh%( )+ onj(z) O, v) Da,
k=1 \j=1h=1
(setting, for each h,k € {1,...,N}, anx( Zohd x)og;(x ))

N 1 N N
Z ap, k 8%8% + = v Z (Z (ah,k(:c) 8%‘/ + Vﬁmah,k(m))> 8%
k=

h,k=1 1 \h=1

we can write

Therefore, if we introduce the matrix A(x) := (anx(x)), ,,

N

8i< ) ank(z )aik),

and this proves that £ takes the form (4.1.1). In particular, we see that £ has
smooth coefficient functions. Moreover, since X1, ..., X,, satisfy Héormander’s
rank condition (as they Lie-generate Lie(G)) and since

h k=1

A(z) = S(z) - S(x)T, where S(z) = (X1I(z) - X I(x)),

we deduce that A(x) > 0 and that A(x) # 0 for every € RY, that is, £ satisfies
assumptions (DE) and (NTD). Finally, £ also satisfies assumption (HY): this is
a consequence of the Héormander Hypoellipticity Theorem and of the fact that
X1,...,Xm Lie-generate Lie(G) (see Exm.4.1.1).

We explicitly notice that the operator £ does not depend on the chosen Haar
measure p, but only on the function V' naturally associated with the group G;
this is coherent with the fact that the formal adjoint Z** of a smooth vector
field Z w.r.t.the measure p only depends on the function V.

As an explicit example, let us consider the group G = (R?, ), where
(1, 22) * (Y1,92) = (21 +y1€™, 22 + ¥2).

A direct computation shows that, for every fixed = € R?, one has (note that the
neutral element e of the group G is 0)

0= 1)
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as a consequence, according to Rem.1.1.5 on page 5, the relevant Jacobian
vector fields Jp, Jo of Lie(G) are given by

Jp = e aml, J2:amga
and {Jy, J2} is a system of Lie-generator for Lie(G). Furthermore, we have

v
det (J-,(0))

Thus, if x is an arbitrary fixed Haar measure on G (hence, pn = ¢V (z) dzx for a
suitable constant ¢ > 0), from the above general discussion we obtain

=e 72 for every = € R2.

V(z) =

N

P A > i(V(ﬂb‘) an,k(x) i)

( b k=2 8:ck

)
(note that, in this case, A(z) = J,,(0) - d-,(0)")
z5 1: er2 0 Oz,
=e*2div << 0 e_’”2> . <8932>)
0
T

)
(D (i DN O (e D
- ¢ Oz c Ox1 Oxa 02
R

2 * 0z%  Oxo’

We point out that the operator £ cannot be re-written as pure divergence-form
operator; more precisely, there cannot exist a matrix-valued function B(z) s.t.

L= div(B(a:) : v) = hil % (bh’k(x) 8‘;) .

Indeed, if such a matrix B existed, then it should necessarily coincide with the
principal matrix A(x) of £, that is,
212

B(z) = A(z) = (60 (1)) , forevery x € R2.

On the other hand, the PDO £ = div(A(x) - V) is different from £: in fact,

c=av (77 9)(5))
(2 () ()

0? 0?
262””1824-82#5

Another wide class of linear PDOs satisfying all the assumptions listed above
is that of homogeneous Hérmander operators.

Example 4.1.3. Let X = {X3,..., X,,,} be a set linearly independent smooth
vector fields on RY satisfying the following assumptions (see Sec. 3.2):
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(1) Xy,...,X,, are homogeneous of degree 1 with respect to a suitable family
{0x}as0 of dilations on RY of the form

oa(z) = (AN"'zq,..., A\ NayN),
where 1l =01 < ... <opn andQ:sz-VzlajZE

(2) X1,...,X,, satisfy Hérmander’s condition at every point of R¥.
Then the linear PDO .
2
L= X3,
j=1
satisfies all the assumptions listed above. In fact, a direct computation shows
that £ is of the form (4.1.1), with V' = 1 and with principal matrix
A(z) = S(z) - S(2)7,

where S(z) = (X11(x),...,XnI(z)); as a consequence, £ is semielliptic and
non-totally degenerate. Moreover, the hypoellipticity of £ is a direct conse-
quence of assumption (2) and of Hérmander’s Hypoellipticity Theorem.

Finally, the following is an example of a class of PDOs satisfying all the
assumptions listed above, but not Hormander nor sub-elliptic.

Example 4.1.4. Let us consider the class of operators in R? defined by
2
m o (s 2 140
where a € C*°(R,R) is a smooth function satisfying the following properties:
e a is even and a(z) = 0 if and only if x = 0;
e ¢ is nonnegative on R;
e q is non-decreasing on [0, col.

Then the operator £, satisfies assumptions (DS) (being a sum of squares),
(NTD) (obviously) and (HY), thanks to a result by Fedii, [68]; on the other
hand, £, does not satisfy Hormander’s Rank Condition at z; = 0 if all the
derivatives of a vanish at 0, as for

a(z1) =
! exp(—1/z%) if x; #0.

Other examples of operators satisfying our assumptions (NTD) and (HY) but
failing to be Hormander operators can be found, e.g., in the following papers:
Bell and Mohammed [20]; Christ [51, Section 1]; Kohn [99]; Kusuoka and Stroock
[104, Theorem 8.41]; Morimoto [116]. Explicit examples are, for instance,

82
92

o2 - o
Tx% + (exp(—l/ ‘.’L'l|) T@) + 871‘% 1n R y (414C)

+ (exp(—1/|x1|) %)2 + (exp(—1/|x1|) %)2 in R, (4.1.4b)

=N

52 O \2 o2 5 O \2 . 4
92 + (x2 87:) + Py + (exp(—l/\/|$1|) 873) in R*. (4.1.4d)
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For the hypoellipticity of (4.1.4b) see [51]; for (4.1.4c) see [104]; for (4.1.4d) see
[116]. Note that the smallest eigenvalue in all the above examples vanishes very
quickly (like exp(—1/|z|%) for x — 0, with positive ) and it cannot be bounded
from below by any weight w(x) with locally integrable reciprocal function.

4.1.2 Amano’s Hypoellipticity result

As anticipated, the aim of this brief section is to present a profound result by
Amano [6], which will be fundamental in order to prove the Strong Maximum
Principle (see Sec.4.1.4). To begin with, we give the following definitions.

Definition 4.1.5. Let 2 be an open set and let F C X(Q2) be a family of smooth
vector fields on Q. A function v : [0,7] — Q is called an integral curve of F
if it satisfies the following properties:

(i) v € C([0,T],9);
(ii) there exist a partition 0 = ¢ty < t; < --- < t, = T of [0,T] and vector
fields X1,..., X, € F such that, for every i =1,...,p, we have
L4 ’Y|]ti_17ti[ S Cl(]tlflatl[)Q);
o 4(t) = X;I(y(t)), for every t €]t;—1,t;[.
Remark 4.1.6. Let Q2 C R” be an open set and let X € X(£2). According with

Def.4.1.5, a function v : [0,7] — € is an integral curve of the family F = {X}
if it is continuous and it is piecewise an integral curve of the vector field X.

Definition 4.1.7 (Controllable family). Let 2 C RY be an open set and let F
be a family of smooth vector fields on Q). We say that F is controllable on ()
if, for every z,y € Q, there exists an integral curve v : [0,T] — 2 of F s.t.

7(0) =2 and A(T)=y.

Remark 4.1.8. Let Q@ C R”Y be an open set and let F C X(2). From a
geometric point of view, we see that F is controllable on € if any two points in
Q can be joined with a continuous curve which is piecewise an integral curve of
some vector field in F. Thus, for example, it is readily seen that the family

E= (... 00}
is controllable on the whole of RY.

Let now Q C RY be a fixed open set, and let L be a second-order linear
PDO on Q of the following general form

ol 9 ol B
L= ai(x) p P —1—251-(:5) Fo: +y(z), zeq.

i,5=1 i=

We assume that the coefficients of L are real-valued and smooth on €, i.e.,

ai,jaﬂivvecm(Qvlﬁ)a for every 27]6{177N}7
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and that the matrix (o ;(x)); ; is symmetric and positive semi-definite for every
x € Q; furthermore, we assume that the second order terms and the first order
ones of L never vanish simultaneously, that is,

N

Z | j ()] + Z |B:(x)] £ 0, for every z € Q.

i,j=1

We then introduce the following smooth vector fields (on ) associated with L,
which we shall referred to as L-canonical vector fields:

N
0
X; = Zai’j(ax)%, foreveryi=1,...,N;

w3 (R )

j=1

By means of these vector fields, we can re-write L in the following way:

ZaZ,J 7 +X0+’7($)

= AMZ

X;+ Xo+v(x), on Q.
X

i=1

Moreover, they play a central role in the study of the hypoellipticity of L: in
fact, as anticipated, Amano proved the subsequent result (for a demonstration
of this profound theorem, we refer to [6, Theorems 1 and 2 and Remark 1]).

Theorem 4.1.9 (Amano [6]). In the above assumptions and notations, if the
operator L is C*°-hypoelliptic on every open subset of ), then the family

Fr :=span{Xo,..., Xy}

is controllable on every open and connected subset of Q2. Conversely, if the
family Fy, is controllable on every open and connected subset of €2, the set

Cp = {z € Q: dim{Lie{Xo,...,Xn}}(z) <N} (4.1.5)

is closed in Q and has no interior. As a consequence, 1 := Q\ Cp, is an open
dense subset of Q, and L is C*°-hypoelliptic on every open subset of €);.

Remark 4.1.10. It is worth noting that, in the real-analytic case, the first part
of Thm.4.1.9 can be reversed, that is, the set Cy, in (4.1.5) is actually empty.

To be more precise, let us assume that the coefficients of L are real-analytic
on 2 and that the family F;, is controllable on every open and connected subset
of Q. Since the vector fields Xy, ..., Xy are real-analytic on §2 (the same being
true of the coefficients of L), it can be proved that the family {Xo,..., Xn} is
a Hormander system on 2 (see, e.g., [127]), whence

€r ={z € Q:dim{Lie{Xo,..., Xn}}(z) <N} = 2.
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We are then entitled to apply [120, Theorem 2.8.2] by Oleinik and Radkevi¢:

since Xy, ..., Xy satisfy Hormander’s rank condition on 2, the operator
A
L= X+ X
; 83:1 7 0

is C*°-hypoelliptic in every open subset of 2, whence Cp = @.

4.1.3 Invariant sets and the Nagumo-Bony Theorem

In this section we remind the notion of invariant set w.r.t.a vector field and
a classical result by Bony [39], which characterizes such a notion in a very
intuitive geometric way. Together with Amano’s Thm.4.1.9, this result will
lead to a simple proof of the Strong Maximum Principle.

To begin with, we give the following important definition.

Definition 4.1.11. Let  C RY be an open set and let F be a relatively closed
subset of Q. Moreover, let y € QN JF. We say that a vector v € RV \ {0} is
externally orthogonal to F at y if

Bly+v,v]) € (2\ F) U{y}. (4.1.6)
If this is the case, we shall write v 1 F' at y. We also set
F* = {y € QN OF : there exists v externally orthogonal to F at y}.

Remark 4.1.12. Let the assumptions and the notations in Def.4.1.11 apply.
We explicitly observe that, if € is connected and if F' # 2, then

F*+ 2.

In fact, since 2 is connected, we have Q N OF # &; we then choose a point
z € QN OF, areal R > 0 such that B(z, R) C Q and a point zy € B(z, R/2)
not belonging to F. Since OF is closed, there exists y € 2N JF such that

ly — ol = mf{flwo — 2] : = € IF}; (4.1.7)

moreover, the vector v := £[ly — xo|| being externally orthogonal to F at y (as
one can easily deduce from (4.1.7)), we conclude that y € F™*.

We then introduce the notion of invariant set w.r.t.a vector field.

Definition 4.1.13 (Invariant set w.r.t. a vector field). Let @ C RY be an open
set, let X be a continuous v.f.on 2 and let F' C 2 be a relatively closed set. We
say that F' is positively X-invariant (or positively invariant w.r.t. X) if,
for every integral curve v : [0, 7] — Q of X such that v(0) € F', we have

v(t) € F, forevery 0 <t <T.

We say that F' is X-invariant (or invariant w.r.t. X) if F is positively invari-
ant with respect to both X and —X.
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Remark 4.1.14. Let the assumption and the notations in Def.4.1.13 apply.
Obviously, the role of 0 is immaterial: more precisely, a simple re-parametriza-
tion argument shows that the set F' is positively X-invariant if and only if, for
every integral curve 7 : [a,b] — Q of X such that v(a) € F, we have

~(t) € F, for every t € [a,b];

as a consequence, we see that F' is invariant with respect to X if and only if,
for every integral curve v : [a,b] — Q of X s.t.y([a,b]) N F # &, we have

~(t) € F, for every t € [a, b].

With the above Def.s 4.1.11 and 4.1.13 hand, we are now in a position to
state the aforementioned theorem by Bony; for a proof of this result see, e.g.,
[39, Théoréme 2.1] or [37, Section 5.13].

Theorem 4.1.15 (Bony [39]). Let @ C RY be an open set, let X be C* vector
field on ©Q and let F C Q) be a relatively closed set.
Then F is positively X -invariant if and only if

(XI(y),v) <0, foreveryye F* and everyv L F aty. (4.1.8)
We end this section with the following simple yet crucial corollary.

Corollary 4.1.16. Let Q C RY be an open set, let X be C' vector field on
and let F C Q) be a relatively closed set. Then F' is X -invariant if and only if

(XI(y),v) =0, foreveryy€ F* and everyv L F at y. (4.1.9)

Proof. By Def.4.1.13, F' is X-invariant if and only if F' is positively invariant
with respect to X and —X. By the Bony Thm. 4.1.15, this is equivalent to

(£X1(y),v) <0 for every y € F* and every v L F at y,

which is possible in and only if (4.1.9) is satisfied. This ends the proof. O

4.1.4 The proof of the Strong Maximum Principle

Gathering all the results recalled in Sec.s 4.1.2 and 4.1.3, we are finally in a
position to prove the announced Strong Maximum Principle for our PDOs £
satisfying the structural assumptions in Sec.4.1. As anticipated, the proof we
are going to present is completely analogous to that given Bony in the case of
Hormander operators (see, precisely, [39, Corollaire 3.1]).

To begin with, we establish the following useful Hopf-type lemma.

Lemma 4.1.17 (Hopf-type lemma). Let £ be a linear PDO satisfying the as-
sumptions introduced in Sec. 4.1, and let Q C R be a connected open set.
Then the following facts hold true:

(i) Let u € C?(Q,R) be such that Lu > 0 on Q. If the set
Fu)={zeQ:u(z) = mgxu} (4.1.10)
is a proper subset of ) (that is, @ # F # ), then
(A(y)v,v) =0 for everyy € F(u)* and every v L F(u) aty. (4.1.11)
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(ii) Let c € C*(RN,R) be nonnegative on RN and let L. := L —c. Moreover,
let u € C?(Q,R) be such that L.u > 0 on Q. If the set F(u) in (4.1.10)
is a proper subset of Q and if maxqu > 0, then (4.1.11) holds true.

Proof. (i) First of all we observe that, by assumptions, the function u attains
the maximum in ; we then set M := maxqu and, arguing by contradiction,
we assume that there exist a point y € F(u)* and a vector v L F(u) at y s.t.

(A(y)v,v) > 0. (4.1.12)
Then, by definition, we have B(y + v, ||v||) C (Q\ F(u)) U {y} and
u(zr) < M, for every x € B(y + v, ||v||) \ {y}- (4.1.13)
We now consider the smooth function
w(z) = e Memwtn)l* _ =AWl

where A > 0 is a constant which will be fixed later on. By definition, we have
ew>0on B(y+uv,|v|]);
o w=00ndB(y+v,|v|);
e w < 0 outside B(y + v, ||v]]).

Moreover, a direct computation shows that

Lw(y) = 4 2e I ((A(y)u, V) + 0 G)) : (4.1.14)

then, thanks to assumption (4.1.12), we can choose and fix A > 0 in such a way
that Lw(y) > 0. As a consequence, Lw being continuous on RY, there exists
r > 0 such that V := B(y,r) is compactly contained in Q and Lw > 0 on V.
We now define, for € > 0, a function v, : V. — R by setting

Ve () == u(x) + e w(z).

Obviously, v. € C?(V,R) N C(V,R); moreover, we claim that it is possible to
choose € > 0 in such a way that the maximum of v, on V is attained in V.
In fact, let us consider the splitting of 9V given by the two sets

K, :=0VNnB(y+vv|]) and Ky:=090V\Kj.

For every x € K (and every € > 0), one has
ve(z) = u(z) + ew(z) < u(z) < M;
on the other hand, for every x € K; (and every € > 0) we have
ve(x) < maxu + £ max w.
K, K,

Since K1 C B(y+v,||v|]) and y ¢ K, we infer from (4.1.13) that maxg, u < M;
as a consequence, it is possible to choose £ > 0 so small that

ve(x) < M, for every x € Kj.



4.1. The Strong Maximum Principle 143

By gathering together these facts we see that, for every x € JV and with the
above choice of €, we have (note that y € F(u) NV and w(y) = 0)

ve(x) < M = u(y) = ve(y) < maxw,
14

and this proves the claim. We are now ready to conclude: from
Lv.=Lu+elw>eLlw >0, onV,

we infer that v, is a strictly L-subharmonic function on V, that is, Lv. > 0 on
V', admitting a maximum point on the open set V, say pp; then we have (recall
that A(po) > 0 and notice that Vv.(po) = 0 and H(po) := (0; ;v (po))s; < 0)

0< Lvs(po) = Zaiyj(po)ai,jva(po) = trace(A(po) . H(po)) <0, (4.1.15)
1)
which is a contradiction.

(if) We proceed exactly as in part (i), from which we also inherit all notations:
we replace £ with £, and we notice that w(y) = 0, so that £L.w(y) = Lw(y) and
(4.1.14) is left unchanged. Arguing as above (and using the same notations),
we let again py € V' be such that v.(py) = maxy-v., which gives

ve(po) > ve(y) = u(y) = M.

Hence (4.1.15) becomes

0 < Lev:(po) = trace(A(po) - H(po)) — ¢(po) ve(po) < —c(po) M,

where in the last inequality we used the assumption ¢ > 0 and the fact that
ve(po) > M. By the assumption M > 0 (and again by the assumption on the
sign of ¢), we have —c(po) M < 0, and we obtain another contradiction. O

With the Hopf-type Lem.4.1.17 at hand, we can finally state and prove the
announced Strong Maximum Principle for our PDOs £ as in Sec.4.1.1.

Theorem 4.1.18 (Strong Maximum Principle for £). Let £ be a linear PDO
satisfying the assumptions introduced in Sec. {.1.1, and let Q@ C RN be a con-
nected open set. Then the following facts hold true:

(i) Any function u € C?(2, R) satisfying Lu > 0 on Q and attaining a maxi-

mum in §) is constant throughout 2.

(ii) If ¢ € C®(RM,R) is nonnegative on RN and if we set L. == L — c,
then any function u € C%(Q,R) satisfying L.u > 0 on Q and attaining a
nonnegative mazimum in ) is constant throughout €.

Proof. (i) For the sake of clarity, we split the proof into three steps.
STEP I: Let F'(u) be the set introduced in the Hopf-type Lem.4.1.17:

Fu):={z e Q:u(x) = mgxu}.
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By assumptions, F'(u) is non-empty, say £ € F(u); we thus prove that F'(u) = Q.
To this end, we first re-write the operator £ in its canonical form

N
L= sz) 2 aii (V@) aisto) ai)

ij=1
N N N N
0 0 1 0
= aij(z) — |+ == 0;,V(z aii(x) =— |;

from this, we see that the L£-canonical v.f.s are given by (see Sec.4.1.2)

N
0
X; = Zai,j(x) o foreveryi=1,...,N;
j=1 !

(4.1.16)

N
1

Xo = ) X;.

0 V(x)zzzla:ELV(m) i

Since £ satisfies assumptions (NTD) and (HY) in Sec.4.1.1, we are entitled to
apply Amano’s Thm. 4.1.9, which ensures that the family

S:L :{X07"'7XN}

is controllable on every open and connected subset of R". Thus, €2 being con-
nected, any point of Q can be joined to £ by a continuous curve v : [0,T] — Q2
which is piecewise an integral curve of a vector field belonging to F.

According with Def. 4.1.13, to prove the theorem it then suffices to show that
F(u) is invariant with respect to any vector fields belonging to F.

STEP II: Let now X € F; be fixed. By the Bony Thm.4.1.15 (or, more
precisely, by Cor.4.1.16), we know that F(u) is X-invariant if and only if

(XI(y),v) =0, foreveryye F(u)* and every v L F(u) at y.  (4.1.17)

On the other hand, since X is a linear combination of Xy, ..., Xy, identity
(4.1.17) follows if we show that, for every ¢ = 0,..., N, we have

(X:I(y),v) =0, foreveryyec F(u)* and every v L F(u) at y.

Finally, since Xy is a combination (with smooth coefficients) of Xi,..., Xy
(hence, XoI(z) is a linear combination of X;1(z),..., XyI(z) for every x € RY;
see (4.1.16)), we can limit ourselves to prove that, for every i = 1,..., N,

(XiI(y),v) =0, foreveryyec F(u)*and every v L F(u) at y.  (4.1.18)

STEP I11: Let i € {1,...,N} be fixed. Since, for every x € RY, the vec-
tor X;I(x) is precisely the i-th column of the principal matrix A(z) of £, the
Cauchy-Schwarz inequality provides a constant A(x) > 0 such that

(X;I(x),v)* < N\i(2) (A(x)v,v)  for every v € RV, (4.1.19)

From this, by exploiting identity (4.1.11) in the Hopf-type Lem.4.1.17, we im-
mediately obtain the desired (4.1.18). This completes the proof.
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(if) We consider once again the set F(u) # @ introduced above, and we prove
that F'(u) = Q. To this end, we proceed exactly as in part (i): by exploiting
Amano’s Thm.4.1.9 and Bony’s Thm.4.1.15, we see that the needed identity
F(u) = Q follows if we show that, for every ¢ =1,..., N,

(XiI(y),v) =0, foreveryye€ F(u)*and every v L F(u) at y.  (4.1.20)

Moreover, by part (ii) of Lem. 4.1.17, we have at our disposal a Hopf-type lemma
for operators of the form £, and for functions u such that £.u > 0 and attaining
a nonnegative maximum. Therefore, by combining identity (4.1.11) with the
above (4.1.19), we obtain the desired (4.1.20). This ends the proof. O

Remark 4.1.19. A closer inspection of the proof of Thm. 4.1.18 shows that we
have indeed demonstrated the following result as well.

Let £ be a linear PDO satisfying assumptions (DS), (DE) and (NTD) in
Sec. 4.1.1, and let c € C®(RN,R) be nonnegative on RY. Let us assume that
the operator L. := L — c is hypoelliptic on every open subset of RY.

If Q C RY is a connected open set, any function u € C*(Q,R) satisfying
Leu >0 on Q and attaining a nonnegative mazimum in ) is constant on €.

In fact, let F(u) = {& € Q : u(zr) = maxqu} and let £ € F(u). Since the
operator L. is non-totally degenerate and C'*°-hypoelliptic on every open subset
of RV, we infer from Amano’s Thm. 4.1.9 that the vector space spanned by the
L.-canonical vector fields is a controllable family on €. On the other hand,
since the canonical vector fields of £. = £ — ¢ are the same as those of £, we see
once again that the identity F(u) = § follows if we show that F(u) is invariant
w.r.t. the L-canonical vector fields Xi,..., Xy introduced in (4.1.16). At this
point, it suffices to argue as in the proof of Thm.4.1.18 .

As it is well-know, the Strong Maximum Principle for a linear PDO easily
implies the Weak one. More precisely, we have the following result.

Theorem 4.1.20 (Weak Maximum Principle for £). Let £ be a linear PDO
satisfying the assumptions introduced in Sec. 4.1.1, and let ¢ € C*° (RN, R) be
nonnegative on RN (the case ¢ = 0 is allowed).

Setting L. := L — ¢, then the operator L. satisfies the Weak Maximum
Principle (WMP, for short) on every bounded open set  C RYN, that is:

ue C?*(Q,R)

Leu =0 on Q = wu<0onQ.  (4.121)
limsupu(z) < 0 for every xo € OS

rT—rT0o

Proof. Let Q C RY be bounded open set, and let u € C2(Q,]Rl be as in the
left-hand side of (4.1.21). Since 2 is bounded, there exists zy € Q s.t.

lim sup u(z) = supu. (4.1.22)
Q

T—T0

We then distinguish two cases.

o xy € 0. In this case, identity (4.1.22) and the above (4.1.21) give
supg u = limsup,_,, u(x) < 0, whence u(z) < 0 for every x € Q.
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e o € Q. In this case, identity (4.1.22) implies that u(xg) = maxq u, that
is, xo is an interior maximum point of u. If u(zg) < 0, we conclude as above
that maxgu = u(xg) < 0. If, instead, u(zg) > 0, we consider the connected
component Qy C Q of Q containing 9. Thanks to part (ii) of the Strong
Maximum Principle in Thm. 4.1.18, the existence of an interior maximum point
of u on Q D Qg (and the fact that u(xp) > 0) ensures that

u = u(zg), on Q.
Thus, if we choose any &, € 09y C 92, we obtain

maxu = u(zg) = limsup u(zr) < limsupu(z) <0,
Q Qodz—&o Q3x—&

where the last inequality follows from the assumption in (4.1.21). O

Remark 4.1.21. By arguing as in the proof of Thm.4.1.20 (and by exploiting
Rem. 4.1.19 instead of Thm.4.1.18 - (ii)) we also get the following result, where
we alternatively replace the hypothesis of hypoellipticity of £ by that of £ —c.

Let £ be a linear PDO satisfying assumptions (DS), (DE) and (NTD) in
Sec. 4.1.1, and let ¢ € C*° (RN, R) be nonnegative on RY. Let us assume that
the operator L. := L — c is hypoelliptic on every open subset of R™V.

Then L. satisfies the WMP on every bounded open set @ C RN .

4.1.5 Application to the Dirichlet problem and to Har-
nack’s Inequality

We conclude this first part of the chapter by briefly describing how the Strong
Maximum Principle can be profitably used for proving the solvability of the
Dirichlet problem and the Harnack inequality for our PDOs £ as in Sec.4.1.1.

All the results we are going to present here can be found in the very recent
paper [15]; for this reason, we prefer not to give any proofs of such results and
we directly refer to the cited [15] for all the details.

The first result we aim to state concerns the solvability of the Dirichlet
problem for our operators £. Such a result can be proved in a standard way,
by crucially exploiting the Strong Maximum Principle and a classical elliptic
approximation argument (see [39, Section 5] for all the details).

Theorem 4.1.22 (Solvability of the Dirichlet problem for £). Let £ be a linear
PDO satisfying assumptions (DS), (DE) and (NTD) in Sec. 4.1.1, and lete > 0
be fized (the case € = 0 being admissible). We set L. := L — ¢ and we assume
that L. is C™-hypoelliptic on every open subset of RY.

Then, there exists a basis B for the Euclidean topology of RY, independent
of €, made of open and connected sets Q (with Lipschitz boundary) with the
following properties: for every f € C(Q,R) and for every ¢ € C(9€, R), there
exists one and only one solution v € C(£2,R) of the Dirichlet problem

{ Lou=—f onQ (in the sense of distributions), (4.1.23)

u=q on I  (pointwise).

Furthermore, if f,p > 0 then v > 0 as well. Finally, if f € C*(Q,R)NC(Q,R),
then the same is true of u, and wu is a classical solution of (4.1.23).
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Remark 4.1.23. Let the assumptions and the notations in Thm.4.1.22 apply.
Before proceeding, we briefly describe (for the sake of completeness) how the
basis B can be constructed. We closely follow the idea of Bony [39, Sec. 5].

For every fixed 2o € R, the operator £. being nontotally degenerate (by
assumption (NTD)), there exists a unitary vector hg € RY such that

<A(£L’0)ho, h0> > 0. (4124)
We then consider, for every M, d > 0, the neighborhood of zy defined as follows:
Q(xg, M, 0) := B(xg + M ho, M + 6) N B(xg — M ho, M + ).

By exploiting (4.1.24), it is possible to find My, 0z, > 0 such that, for any
0 <4, and any M > M, , the set Q(zo, M, J) satisfies the following property:
for every y € Q(xg, M,d) there exists v € RN \ {0} such that

By + v, [vl) N Qao, M, 8) = {y} and (A(y)v,v) > 0;
then, the basis B can be obtained as
B = {Q(x0,0,M) : zg € RN,6 <6,, and M > M,, }.
With the existence of the weak solution of the Dirichlet problem for £, on
a bounded open set ), we can define the associated Green operator as usual.

Definition 4.1.24 (Green operator and Green measure). Let the assumptions
and the notations in Thm.4.1.22 apply, and let Q2 € B.

We consider the operator (depending on £. and 2; we avoid keeping track
of the dependence on 2 in the notation)

G. : C(Q,R) — C(L,R) (4.1.25)

mapping f € C (Q, R) into the function G (f) which is the unique distributional
solution u in C(£2, R) of the Dirichlet problem

{ L.u=—f onQ (in the sense of distributions), (4.1.26)

u=0 on 00 (pointwise).

We call G, the Green operator related to £. and to the open set .

By the Riesz Representation Theorem (which is applicable thanks to the
monotonicity properties in Thm. 4.1.22 with respect to the function f), for every
x € Q there exists a (nonnegative) Radon measure A, . on © such that

Ge(f)(z) = /ﬁf(y) dX;c(y), for every f € C(,R). (4.1.27)

We call \; . the Green measure related to £. (to Q and to z).

Let now £ be a linear PDO satisfying assumptions (DS) and (DE) in the
above Sec.4.1.1. We denote by v the Radon measure on RY with density V
with respect to the standard Lebesgue measure, that is,

v(B) := / V(x)dz, for every Borel set B C RY. (4.1.28)
B

Thm.4.1.25 below shows that the Green measure A, . related to £. admits
density with respect to the measure v, which is extremely “well-behaved”.
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Theorem 4.1.25 (Green kernel for £.). Let the assumptions and the notations
in Thm. 4.1.22 apply, and let Q € B.

If G. and A\, . are the Green operator and the Green measure related to L.
(Def. 4.1.24), there exists a function k. : Q x Q — R, smooth and positive out
of the diagonal of Q x Q, such that the following representation holds true:

Go()a) = [ F)bela)d(s), for every v € 0, (4.1.20)

and for every f € C(Q,R). We call k. the Green kernel related to £. (and to
the open set Q). Furthermore, we have the following properties:

(i) Symmetry of the Green kernel:

ko(x,y) = ko(y,x)  for every xz,y € Q. (4.1.30)

(ii) For every fized x € Q, we have L k.(x,-) =0 on Q\ {z}; moreover, for
every ¢ € C§°(Q,R) we have G.(L.p) = —p = L (G (p)) , that is

—p(x) :/QL',Eapkg(x,~)dV:LE(/Qcpks(x,') dl/). (4.1.31)

(iii) For every fized x € Q, one has

lim k.(x,y) =0 for any yo € ON. (4.1.32)
Y—Yo

(iv) For every fized x € 2, we have
ko(x,-) =k.(,x) € LY(Q) and k. L'(Qx Q).

The existence of a very regular Green kernel for L. is a key fact for proving
the announced Harnack Inequality for our PDOs £: in fact, it brings along with
a “Weak Harnack Inequality” for £, from which we shall derive the classical one.

In order to proceed in this direction, we shall need a further assumption,
very similar to (HY) (and, indeed, equivalent to it in many important cases):

HY)_ There exists € > 0 such that the operator L — ¢ is C°°-hypoelliptic in
€
every open subset of R,

For operators £ satisfying hypotheses (NTD), (HY) and (HY). we are able to
prove the Harnack Inequality (see Thm.4.1.30).

Remark 4.1.26. Hypothesis (HY). is implicit in hypothesis (HY) for notable
classes of operators, whence our assumptions for the validity of the Harnack
Inequality for £ reduce to (NTD) and (HY) solely: namely, (HY) implies (HY),
in the following important cases:

e for Hormander operators, and, more generally, for second order subelliptic
operators (in the usual sense of fulfilling a subelliptic estimate, see e.g.,
[96, 99]); indeed, any operator L in these classes of PDOs is hypoelliptic
(see Hormander [94], Kohn and Nirenberg [100]), and L still belongs to
these classes after the addition of a smooth zero-order term;
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e for operators with real-analytic coefficients. Indeed, in the C* case, one
can apply known results by Oleinik and Radkevi¢ ensuring that, for a
general linear second-order PDO L with real-analytic coefficients, hypoel-
lipticity is equivalent to the verification of Hérmander’s Rank Condition
for the L-canonical vector fields (see Sec.4.1.2); this condition is clearly
invariant under any change of the zero-order term of L, so that (HY) and
(HY). are indeed equivalent.

The problem of establishing, in general, whether (HY) implies (HY). seems
non-trivial. In this regard we recall that, for example, in the complex coefficient
case the presence of a zero-order term (even a small ) may drastically alter
hypoellipticity (see for instance the example given by Stein in [125]); see also
the very recent paper by Parmeggiani [122] for related topics.

We explicitly remark that the operators (4.1.4a)-to-(4.1.4d) in Exm.4.1.4
are not subelliptic (nor C%¥), yet they satisfy hypotheses (NTD), (HY) and
(HY).. The lack of subellipticity is a consequence of the characterization of the
subelliptic PDOs due to Fefferman and Phong [70, 69] (see also [99, Prop.1.3]
or [96, Th.2.1 and Prop.2.1], jointly with the presence of a coefficient with a
zero of infinite order in (4.1.4a)-to-(4.1.4d)). The second assertion concerning
the verification of (HY). (the other hypotheses being already discussed) derives
from the following result by Kohn, [99]: any operator of the form

Ll + )\(x) L2 in R;L X IRZ’

is hypoelliptic, where A € C*°(R,), A > 0 has a zero of infinite order at 0
(and no other zeroes of infinite order), and L; (operating in x € R"™) and Lo
(operating in y € R™) are general second order PDOs with smooth coefficients
and they are assumed to be subelliptic.

It is straightforward to recognize that by subtracting € to any PDO in
(4.1.4a)-to-(4.1.4d) we get an operator of the form (L; — €) + A(x) La, where
A has the required features, Lo is uniformly elliptic (indeed, a classical Lapla-
cian in all the examples), and L; — ¢ is a uniformly elliptic operator (cases
(4.1.4a)-to-(4.1.4c)) or it is a Hormander operator (case (4.1.4d)).

The role of the perturbation £—e¢ of the operator £ is clearly expressed by the
following lemma, which is a simple consequence of the Weak Maximum Principle
in Thm.4.1.20. Such a result, plus some topological facts on hypoellipticity, is
the key ingredient for the Weak Harnack Inequality related to L.

Lemma 4.1.27. Let £ be a linear PDO satisfying the assumptions in Sec. 4.1.1
and assumption (HY).. Moreover, let Q) be an open set in RN as in the thesis
of Thm. 4.1.22 and let ' be an open set containing Q. Finally, we denote by
ke the Green kernel related to L. and to the set Q (as in Thm. 4.1.25).

Then we have the estimate

u(x) > e/Qu(y) ke(z,y)dv(y), VzeQ, (4.1.33)

holding true for every smooth nonnegative £-harmonic function u in €Y.

As anticipated, Lem. 4.1.27 gives the following Weak Harnack Inequality.
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Theorem 4.1.28 (Weak Harnack inequality for derivatives). Let £ be a linear
PDO satisfying the assumptions in Sec. 4.1.1 and assumption (HY)..

Then, for every connected open set O C RN, every compact subset K of
O, every m € NU {0} and every yo € O, it is possible to find a real constant
C(yo) = C(L,e,0,K,m,yo) > 0 such that

laau(x)
ox®

sup

| < Clyo) ulyo), (4134
reK

|a]<m
for every nonnegative £-harmonic function u in O.

In order to obtain, from Thm.4.1.28, the classical version of the Harnack
Inequality, we exploit the following result of Potential Theory. A proof of a
more general abstract version of this useful result, in the framework of axiomatic
harmonic spaces, can be found in the survey notes [42, pp.20-24] by Brelot,
where this theorem is attributed to G. Mokobodzki.

Instead of appealing to an abstract Potential-Theoretic statement, we prefer
to formulate the result under the following more specific form (where a harmonic
sheaf related to a smooth PDO is considered).

Theorem 4.1.29. Let L be a general second order linear PDO in RN with
smooth coefficients. Suppose the following conditions are satisfied.

(Regularity) There exists a basis B for the Euclidean topology of RN (con-
sisting of bounded open sets) such that, for every Q € B\ {&} and for
every ¢ € C(0Q,R), there exists a unique function Hg e C*(Q)NCOQ)
solving the Dirichlet problem (related to L)

Lu=0 inQ
u=@ on 0f,

and satisfying Hg > 0 whenever ¢ > 0.

(Weak Harnack Inequality) For every connected open set O C RV, every
compact subset K of O and every yo € O, it is possible to find a constant
C(yo) =C(L,0, K,yo) > 0 such that

sup u < C(yo) u(yo),

for every nonnegative L-harmonic function u in O.

Then, the following Strong Harnack Inequality for L holds: for every connected
open set O and every compact subset K of O it is possible to find a real constant
M = M(L,0,K) > 1 such that

supu < M infu, (4.1.35)
K K

for every nonnegative L-harmonic function u in O.

By combining Thm. 4.1.28 with the above Thm.4.1.29, we finally obtain the
announced Harnack Inequality for our PDOs L.
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Theorem 4.1.30 (Harnack Inequality for £). Let £ be a linear PDO satisfying
the assumptions in Sec. 4.1.1 and assumption (HY),.

Then, for every connected open set O C RY and every compact subset K of
O, there exists a constant M = M(L,0,K) > 1 such that

supu < M infu, (4.1.36)
K K

for every nonnegative L-harmonic function u in O.

4.2 An Hardy-type inequality

In Euclidean space RY, with N > 3, it is very well known the following Hardy
inequality, holding true for every function u € C§°(RY,R):

/R ) 4o < (%)2 /RN V()| da (42.1)

~lzl?

Obviously, this inequality is profoundly connected with the Euclidean setting
under many respects: it involves the Euclidean norm ||-|| and the usual Euclidean
gradient V, both being related -in their turn- to the classical Laplace operator
A, since div(Vu) = Au and since the (unique global) fundamental solution T’
of A is a constant multiple of ||z]|>~" (see Exm. 1.3.6 on page 16).

The research in the different variants, in the possible improvements and
in new geometrical insight of the Hardy inequality (4.2.1) is still very active,
as the following (partial) list of references show: [2, 3, 4, 5, 9, 11, 12, 21,
43, 44, 45, 47, 53, 57, 59, 71, 82, 85, 103, 108, 112, 121, 132]. See also the
2015 survey monograph [10]. Furthermore, in the last 15 years many remark-
able contributions to Hardy-type inequalities have been provided in subelliptic
contexts. This is especially true: in the setting of the Heisenberg group H"™
[5, 55, 87, 119, 136]; for certain classes of linear and quasi-linear degenerate-
elliptic operators [54, 56, 61, 62, 101, 137]; for Carnot groups [86, 102, 124];
for general Carnot-Carathéodory spaces [58]. In 1990, Garofalo and Lanconelli
[80] first contributed to Hardy-type inequalities in the paramount prototype
of subelliptic contexts: indeed, in [80] it is proved a Hardy-type inequality in
the Heisenberg group H™, and it is derived from it an Uncertainty Principle as
well. Moreover, the Hardy-type inequality is employed in obtaining a Unique
Continuation result for the Schrédinger-type equation

—Agnu + Pu =0,

where Agn is the Kohn- Laplacian on H" (and P is a suitable potential). In
[80] it is followed (with all the novelties of a subelliptic context) the approach
to Unique Continuation previously introduced by Garofalo and Lin in [81, 82]
in the case of uniformly elliptic operators.

As it is proved by Garofalo in [79], when £ admits a well-behaved positive
and global fundamental solution I' (this is the case, e.g., of homogeneous Hor-
mander operators), an Hardy-type inequality holds true, with the Euclidean
gradient and the Euclidean distance replaced —roughly put— by the £-gradient
and by a substitute for a distance obtained by I' over a normalizing kernel.
Also, Lebesgue measure dx is replaced by the L-weighted measure V(z)dz.
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We first derive a general L2-Hardy inequality for C?-functions (not necessarily
compactly-supported) over the super-level sets Q(z,r) of I'(x;-): we frame this
result as a consequence of the mean-value formulas naturally associated with
the variational form of £, these mean-value formulas having already showed to
be very versatile in the study of the Potential Theory for £, as in the recent
investigations [1, 13, 34, 35] (where the same assumptions on £ as in the present
paper are made; in [34, 35] the case V' =1 is considered).

For the sake of clarity, we now briefly describe how we aim to proceed.

- In Sec.4.2.1 we describe the linear PDOs to which we aim to extend the
Hardy inequality (4.2.1), and we fix some notations.

- Sec.s 4.2.2 and 4.2.3 are devoted to introduce the relevant “geometrical
objects” needed for generalizing inequality (4.2.1).

- In Sec. 4.2.4 we prove some mean value formulas which generalize the very
well known surface and solid ones of the Laplace operator.

- In Sec.4.2.5 we present the generalization of the Hardy inequality obtained
by Garofalo [79] to the PDOs £ described in Sec.4.2.1; the mean value
formulas proved in Sec.4.2.4 will be a fundamental ingredient.

- Finally, in Sec. 4.2.6 we describe how the Hardy-type inequality presented
in Sec.4.2.5 can be used to establish a result of (strong) Unique Continu-
ation for the solutions of the Schrédinger-type equation

—Lu+ Pu=0,
where £ is a sub-Laplacian on a Carnot group G and P is a continuous

function on G (satisfying suitable estimates).

4.2.1 Main assumptions and notations

Throughout this section, we shall be concerned with linear PDOs £ satisfying
all the properties introduced in Sec.4.1.1, that is,

- (DS): Divergence Structure;

(DE): Degenerate-Ellipticity;

(NTD): Non-Total-Degeneracy;

(HY): Hypo-Ellipticity;

plus an important additional assumption which we now properly introduce. To
this end, we first give the following important definition.

Definition 4.2.1 (L-weighted measure). Let s be equal to N —1 or N. We
denote by uf the Borel measure on RY with density V with respect to the usual
s-dimensional Hausdorff measure H* on RY, that is,

pur(A) = / V(z)dH?*(z), for every Borel set A C RV, (4.2.2)
A
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Remark 4.2.2. Since V is continuous and strictly positive, a measurable func-
tion f : RN — R is locally integrable on RY with respect to H* if and only if
this holds true with respect to the measure u7 .

In the particular case s = N, the quasi-divergence form (4.1.1) of £ ensures
that £ is formally self-adjoint in the Hilbert space L?(RY, uiv ), when restricted
to the smooth and compactly supported functions, that is

/ oLy dud = / Y Loduy, for all p,v € C°(RY). (4.2.3)
RN RN

With the definition of £-weighted measure at hand, we now introduce the
announced additional assumption we require on our PDOs £ throughout this
chapter (the acronym (FS) stands for Fundamental Solution):

(FS): £ admits a well-behaved global fundamental solution with respect to the
measure 4% : by this, we mean that there exists a function

I:0={(z,y) eR" xR : 2 #y} - R

satisfying the following properties:

(a) For every z € RY, we have I'(z;-) € LL .(RY) and

loc
/}RN L(z;y) Lo(y) duy (y) = —o(z), Ve e CP(RY,R); (4.2.4)

(b) for every z € R™, I'(z;-) has a pole at  and it vanishes at infinity:

lim I'(z; y) = o0 and lim T'(z;y) =0; (4.2.5)
y—e lyl—oc

(c) for every z € RN, we have V(['(z;-)) # 0 on RN \ {z};

(d) T € C*(0,R) and T'(z;y) > 0 for every z,y € O;

(e) T € LL (RN x RN).

loc

For the sake of brevity, given z € R”, in the sequel we set:
L RY\ {2} — R, T.(y):=T(z;%).

Remark 4.2.3. Before proceeding, it is appropriate to stop for a moment to
compare the definition of fundamental solution w.r.t. Y with the notion of
fundamental solution introduced in Def. 1.3.5 on page 15.

To this end we observe that, since £ is (formally) self-adjoint w.r.t. the mea-
sure ;1Y (see Rem.4.2.2), we can write identity (4.2.4) in the following way

| T e rema = —pla), Voe RN (@20)

where £*# stands for the formal adjoint of £ with respect to the measure p
(note that, £ being self-adjoint w.r.t. u¥, we have £*# = £). Written in this
form, it is clear that identity (4.2.4) is totally analogous to identity (1.3.7) on
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page 15, if we replace the Lebesgue measure dx with the measure ug and the
classical adjoint £* of £ with the adjoint with respect to u% .

In the particular case when V' =1 (that is, £ is a pure divergence-form ope-
rator), identity (4.2.4) reduces to identity (1.3.7), and a fundamental solution
w.r.t.uy = HY is a fundamental solution in the sense of Def.1.3.5.

The main reason why, in the present chapter, we decided to deal with funda-
mental solutions w.r.t.the measure ﬂg comes from the Theory of sub-Laplace
operators on real Lie groups. To be more precise, let G = (R, %) be a Lie

group (with neutral element e), let {X1,..., X,,,} be a system of Lie generators
for Lie(G) and let 4 be the Haar measure on G defined as follows:
1

=V(x)dx, whereV(zx)= ——F———.
1 (x) (@) = 1 )

As already discussed in Exm.4.1.2, the linear PDO

m
Li==> X/"X;
j=1

satisfies assumptions (DE)-to-(HY), and it represents the main prototype for our
PDOs of the quasi-diverge form (4.1.1). Now, since £ and p are left-invariant
on G and since £ is self-adjoint with respect to p, it is not difficult to prove that
a (global) fundamental solution for £ w.r.t. u = p (which is actually unique,
see Remark (c) below) satisfies the following very natural properties:

P(z;y) =T(y;2) and T(z;y) = Te(a™ *y).

On the other hand, it is easy to check that these properties do not hold if T" is
a fundamental solution for £ in the sense of Def.1.3.5 on page 15.

It is thus clear that the notion of fundamental solution with respect to the
measure 4% is the most natural to work with in the present context.

We now continue by highlighting, in the subsequent examples, some wide
classes of linear PDOs satisfying all the assumptions listed above.

Example 4.2.4. Let G = (RY,*,6,) be a homogeneous Carnot group, with
homogeneous dimension @ > 2, and let {X1,..., X,,} be a set of Lie-generators
of Lie(G). We already know from Exm.4.1.1 that the sub-Laplacian

m

L:ZX?

Jj=1

satisfies assumptions (DS)-to-(HY) (with V' = 1 on RY); moreover, by Folland’s
Thm. 1.3.9 on page 17, there exists a (unique) global fundamental solution for
£ with respect to the measure uf¥ = H” satisfying properties (a)-to-(e).

Example 4.2.5. Let X = {X3,...,X,,} be a set linearly independent smooth
vector fields on RY satisfying the following assumptions (see Sec. 3.2):

(1) Xy,...,X,, are homogeneous of degree 1 with respect to a suitable family
{0x}a>0 of dilations on RY of the form

ox(z) = (A\""21,..., A\ VaN),

where 1 =01 < ... <opn andQ::ZévzlajZQ;
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(2) X1,...,X,, satisfy Hérmander’s condition at every point of RY.

As already pointed out in Exm.4.1.3, the homogeneous PDO

L= f:Xj?
j=1

satisfies assumptions (DS)-to-(HY) (with V = 1 on R”); moreover, thanks to
all the results obtained in Chpt. 3 (see, for example, the summarizing Thm. 3.3.1
on page 79), we know that £ admits a (unique) global fundamental solution I'
w.r.t. u¥ = HY which satisfies properties (a)-to-(c) and such that

lim T(z;y) =0, for every fixed z € RY.

lyll—o0

In many meaningful cases (as, for example, for the linear PDOs considered in
Sec.3.4), we are also able to prove that

lim I'(2;9) = oo, for every fixed z € RY.
y—x

We conclude this section with some remarks concerning assumption (FS).

(a) If £* is the classical formal adjoint operator of £ (in the usual Hilbert
space L2(RY,dx)), we deduce from (4.2.3) that

L*u=VL(u/V), foreveryuc C®RN, R);

as a consequence, we see that property (c) in our assumption (FS) is in
fact equivalent to the following more familiar identity

/ r(x;ywso(y)dy:—%so(x), Ve CP®RY), VreRV.
RN X

Hence LT, = —Dir,/V(z) in the distribution sense and, since T',, is of
class C> on RV \ {x} (as it follows from property (a)), we have

LT, (y) =0, forevery y € RV \ {z}. (4.2.7)

(b) Assumption (e) on I' is made only for technical purposes: we shall soon
consider the level sets of I' and we shall require that they be smooth
manifolds; this is the reason why assumption (e) is made. It is worth
noting that, if such an assumption is dropped, then Sard’s Lemma ensures
that almost every level set of I' is a smooth manifold; hence our results
may be restated in an obvious (but perhaps less effective) way.

(c) Since the operator £ is C'*°-hypoelliptic on every open subset of R (by
assumption (HY)) and it satisfies the Weak Maximum Principle (as a
consequence of properties (DS)-to-(HY); see Thm. 4.1.20), we derive from
Rem. 1.3.7 - (c) on page 16 that a global fundamental solution I" for £ with
respect to the measure p¥ (as in assumption (FS)) is actually unique.
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4.2.2 Preliminaries on [-balls

The main aim of this section is to introduce the so-called I'-balls, which represent
the appropriate substitute for the Euclidean balls in our sub-elliptic context.

From now on, we denote by £ a fized linear PDO satisfying all the assump-
tions introduced in Sec.4.2.1, and we denote by I its unique (global) fundamen-
tal solution with respect to u2 as in assumption (FS).

Definition 4.2.6 (I-ball). Let z € R" be fixed and let 7 > 0. The set

Oz, r) == {y eRV\ {z} : T(z;9) > 1/r} U {z} (4.2.8)
will be called the I'-ball (related to £) of centre x and radius r.

Remark 4.2.7. Let z € RY be fixed. Since, by assumption (FS)-(a), we have
I, > 0 on RV \ {z}, we allow ourselves to consider the I'-ball of centre = and
“infinite radius™ by an abuse of notation, we set

Oz, 00) = {y e RN\ {z}: T, > o} U{z} =RV, (4.2.9)
Example 4.2.8. Let us consider the classical Laplace operator £ = A on RY,

with N > 3. Since the fundamental solution I' of A is given by

1

- o 2—N

(x;y) =

we easily see that, for every x € RV and every r > 0, we have
r 1/(N-2)
Q = Ny — ithp=————— .
(1) =y € RV : ly—all < p}, with p (N(N_ MN)

Remark 4.2.9. By crucially exploiting the properties of I' contained in our
assumption (FS), it is not difficult to see that, for every z € RV:

e Q(z,r) is a bounded open neighborhood of = and
Upso Q(z,7) =RV, Nyso 2z, 7) = {x}.

e the family {Q(z,r)},>¢ is a basis of neighborhoods of z;

e for every compact set K C RY and every x € RY, it is possible to find
r =r(K,z) > 0 such that K C Q(z,r);

e the set S(x,r) = {y € RN\ {z} : T.(y) = 1/r} is a smooth submanifold
of RN of dimension (N — 1).

The following proposition shows that any I'-ball is extremely well-behaved
from a differentiable point of view.

Proposition 4.2.10. For every fived x € RY™ and every » > 0, the I'-ball
Q(x,7) is an open subset of RV with C™ boundary, coinciding with the interior
of its closure. In particular, one has

o0z, 1) = {y eRV\ {2} : Tu(y) = 1/r}, (4.2.10)
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and the unit exterior normal to Q(xz,r) is given by

VIL(y)

VL oty € 99, ). (4.2.11)

VoY) =

Proof. We first prove that (4.2.10) is fulfilled. To this end we observe that, since
I, is continuous, we obviously have 0Q(x,r) C S(z,r). To show the reverse
inclusion, let y € S(z,r) be fixed and let v be the (unit) vector given by

VI ( )
R I (4.2.12)

(note that v belongs to the normal space to S(x,r) at y). If § > 0 is such that
{y—l—tu:te (—5,5)} CRY\ {a},
by the Mean Value Theorem we can write (for a suitable |6;| < t)

Loy +tv) =Tu(y) + £ (VIu(y + O1v),v)

4.2.13
=1/r+t(Vl(y + 6v),v); ( )
from this, since 6; — 0 as t — 0, we get
. (4.2.12)
tlgr(l) (VT (y + 6v),v) = (VT(y), vy =" —||VI(y)|| <O. (4.2.14)

By gathering together (4.2.13) and (4.2.14), we can then find 6; < § such that
(a) Tx(y + tv) > 1/r for every t € (—61,0),
(b) T'y(y + tv) < 1/r for every t € (0,1);

hence, inequality (a) ensures that y + tv € Q(z,r) for every —§; < t < 0, and
this proves that y € 9Q(x, ), as desired.

With identity (4.2.10) at hand, it is easy to see that Q(x,r) is regular for
the Divergence Theorem: in fact, since 9Q(x,r) = S(z,r) is a smooth (N — 1)-
dimensional manifold, we have

Qz,r) C int(Qz,r)) € Qz,r) Uint(9Q(z, 7))
(42:10) Qz,r) Uint(S(z, 7)) = Qz,7),

and this proves that Q(x,r) is a regular open set of class C>°.

Finally, let y € 0Q(z,7) = S(z,7) and let v} (y) be the unit vector defined in
(4.2.11). Obviously, vg¥!(y) is orthogonal to 89(3: ) at y; moreover, inequalities

(a) and (b) show that there exists d; > 0, depending on y, such that
y—tgy(y) € Qa,r) and y+ g5 (y) € Qa,r), for 0 <t < éy.

This demonstrates that the unit exterior normal to Q(x,r) at y is precisely

vet(y), and the proof is complete. O

z,r
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Corollary 4.2.11. For every fized x € RN and every 0 < p < r, the I'-annulus

Oz, p,r) = {y eRN\ {z}: 1/r < Tu(y) < 1/p} (4.2.15)
is a regular open set of class C*°. In particular, we have
KUz, p,1) = 00z, 1) U O, p),

and the unit exterior normal to Q(z, p,r) is given by

VT, . ‘
_WEZZ;;” =: 1/2’} (y) ny c 39(1'77')’

fo/;cﬂ(y) = vr ( ) (4'2'16)
- Hvrx(z)u = —Vpp(y) iy € 0Q(z, p).

Another important property of the I'-balls is expressed by the following
lemma, which is a simple consequence of the Weak Maximum Principle for £.

Lemma 4.2.12. For every fized v € RN and every r > 0, the open I'-ball
Q(x,r) is a (path-wise) connected subset of RV .

Proof. We assume, by contradiction, that Q(z, ) is not connected. Hence, there
exist two disjoint open sets Uy, Us C RY such that

Q(IL‘,T) = U1 U UQ.

Only one of these sets, let Uy say, contains x. Thus the function u := I'; is
smooth on R \ {} D U; and it satisfies the following properties:

e Lu=0on U (see identity (4.2.7));
e u=1/r on Uy C 9N(x,r) (see identity (4.2.10)).

Since U; is bounded (as it is a subset of Q(x,r), see Rem.4.2.9), the Weak
Maximum Principle in Thm. 4.1.20 implies that « < 1/r on U;. This is clearly
a contradiction since, by definition, v =Ty > 1/r on Uy C Q(z, 7). O

We now establish some simple yet important properties of the measure ;17 .

To begin with, we observe that, by Rem. 4.2.9 and Prop. 4.2.10, for every € RY
and every r > 0 it holds that

e Q(z,r) is p¥ -measurable and its pY - measure is positive and finite;
o 0Q(xz,r)is uf‘l - measurable and its uf‘l -measure is positive and finite.

We also have the following simple lemma.

Lemma 4.2.13. For every fized x € RN we have
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Proof. First of all we observe that, by definition, we have

,uJX(Q(x,T))_l/ dHILV</ deuf-
r r Q(z,r) - Q(z,r)

Therefore, since the function I',, is locally integrable on RY with respect to the
measure pY (see Rem.4.2.2) and since .., Q(z,7) = {z}, we conclude that
the above rhs vanishes as r — 07, and the proof is complete. O

As for the integration of continuous functions on I'-balls and on I'-annuli
(which are bounded subsets of R”), we have the following useful results.

Lemma 4.2.14. Let x € RN and let 0 < p < r. If f is a locally integrable
function on the T'-annulus Q(x, p,r) and if 0 < p < a < b < r, then we have

1/a
/ / ! dp =t | dt :/ fdud. (4.2.17)
1/b o0(z,1/t) IVTz|l Q(z,a.b)

Proof. This is an immediate consequence of the notable Federer’s Coarea For-
mula [67]: since I'; is smooth (hence, locally Lipschitz-continuous) out of , and
since Q(z,a,b) C RV \ {z}, we have (note that f is integrable on the bounded
set Q(x,a,b) € Q(x, p,r) and recall the definition of u%)

N He fV o ona
Fdud = fVdy = dH a
Q(z,a,b) Q(z,a,b) 1/b o=ty VL]l
1/a f
= dpN =1 dt.
-/1/b </acz(w,1/t) VL] "~ )

This ends the proof. O

Proposition 4.2.15. Let Q := Q(x,7) be an open I'-ball (also the case r = oo
is allowed, see Rem. 4.2.7) and let u € C(Q\ {z},R). Then the function

m:(0,r) — R m(p) :z/ udpy !
oQ(z,p)
is continuous on (0,7). If, in addition, u € L (), then the function
M:(0,r) — R M(p) ::/ wdp®
Q(=,p)

is of class C' on (0,7) and

d 1 u
—M(p) = / —— Al foro<p<r. (4.2.18)
dp o (z,p) ||VFIH “

P2
Proof. Since 0Q(z,r) is a smooth manifold and the function I',, has no critical
points in RY \ {z} (see assumption (FS)-(e)), the continuity of m follows by
standard arguments of Geometric Measure Theory.
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As for the second assertion we observe that, if u € L{. () and if a € (0,7),
by Lem. 4.2.14 we can write, for every a < p < r,

M(p) = M<a>+/m wdn
T,a,p

1/a
(4.2.17) u N1
= M(a)—i—/ / du dt;
1/p ( o1/ IVTa|l %

therefore, since the integrand function in the far right-hand side of the above
identity is continuous with respect to ¢ (note that w/||VI'.| is continuous on
0\ {z}), the Fundamental Theorem of Calculus gives

d 1 U
—M(p):—/ ———dp¥ 7L, fora<p<r.
dp p2 oQ(x,p) ||VF$|| “

By the arbitrariness of a € (0,r), we obtain the desired (4.2.18). O
Finally, we have the following useful Green-type formulas for L.

Lemma 4.2.16 (Green’s identities for £). Let UC RY be an open set support-
ing the Divergence Theorem, and let u,v € C*(U,R). Then one has

/uLvdug:/ u (AVv, V{’}‘t>dug_lf/<AVu, Vo) dud, (4.2.19)
U U U

/ (ulv—vLu)duy = / (u (AVv, V5" — v (AVu, 1/5’“)) dp =,
U U
(4.2.20)

where vEX* is the exterior normal on OU. We call formulas (4.2.19) and (4.2.20),
respectively, Green’s first and second identities for L.
When u = 1 one gets

/Lvd,uiy:/ (AVv, gty dpy = (4.2.21)
U oU

Proof. Identity (4.2.19) is an obvious consequence of the Divergence Theorem,
taking into account the quasi-divergence form (4.1.1) of £, and the very defini-
tion of the L-weighted measures u and ug_l (see Def.4.2.1)

Identity (4.2.20) follows from (4.2.19) and from the symmetry of A(z). O

4.2.3 Average operators

Now we have defined the I'-balls related to £, we introduce the L-kernel and
the L-surface density. Such objects will be of fundamental importance in the
Hardy-type inequality for £ presented in Sec.4.2.5.

Definition 4.2.17 (L-gradient). Let U C R be a fixed open set and let
f:U — R be of class C*. We introduce the function

IVefl:U —R,  [[Vefll() = V(A@)V f(x), Vf(2)). (4.2.22)

We say that V f is the gradient of f associated with L.
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If £ = A is the classical Laplace operator on RY (with N > 3), for every
open set U C RN and every f € C*(U,R) we have (since A(z) = Idy)

IVaf@) = V@)l
We then give the following definition.

Definition 4.2.18 (£L-kernel and £L-surface density). Let z € RY be arbitrarily
fixed. The function

GERN\ {2} — R, 05 (y) = [ VelL]P(), (4.2.23)
will be called the £-kernel. Furthermore, we define

L
KELRV\ {2} — R,  KE(y) = ”é”lix(é))”. (4.2.24)

We shall call X% the £-surface density.

Taking into account the definition of the L-gradient, more explicitly we have

Ve (y) = (Ay)VIa(y), VT (y)),
KW = R Gl

Example 4.2.19. Let us consider once again the classical Laplace operator A
on RY, with N > 3, and let € R" be fixed. A direct computation, crucially
based on the explicit expression of the global fundamental solution T of A (see
Exm. 4.2.8), shows that, for every y € RV \ {x},

1 2
A 2 1-N

= ||VT, = —— |z — _

20 = IVE0)IP = (te = vl )

From this, we deduce that the A-surface density is the function given by

A
¢ (y) 1 ||y_x||1—N

K2 (y) =

= = , for every y # x.
VT2 ()l Nwn

Remark 4.2.20. Let + € RY be fixed. It is worth noting that, since T,
is smooth on RY \ {z}, then both %% and X% are smooth on the same set.
Furthermore, since A(x) is positive semidefinite on RY, we have

wf (v), fKﬁ (y) >0 forevery y € RN \ {z}.

In the next results we establish some integral identities satisfied by K5.

Lemma 4.2.21. Let x € RN be fized. Then the integral function
Koy [ KE@a o) (>0) (4.2.26)
oQ(z,r)

is constant on (0,00). More precisely, K =1 on (0,00).
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Proof. We choose r, p €]0, 0] with p < r. By applying identity (4.2.21) with U
given by the T-annulus Q(z, p,r) (with exterior normal denoted by »5*; ) and
with v set to be I',, one has

/ LT, dud = / (AVIg, v O duy
Q(z,p,r) OQ(z,r)UOQ(z,p)

from this, since LT, = 0 on RV \ {x} (see (4.2.7)) and recalling (4.2.16), we get
/ (AVT,, vty dpy ! = / (AVTg,veg)dpgy ~H =0, (4.2.27)
o (z,r) 0Q(z,p)

where v} is the exterior normal to 9Q(z, ). On the other hand, since we know

from Prop.4.2.10 that <! = —VT,. /|| VI.|| on 9Q(z,r), one has

z,r

(AW Ve (), 25 () = —¢7 /T2 ()l = =KZ (y) on 9Q(z,r);  (4.2.28)

therefore, the above (4.2.27) gives

0 = —/ Kﬁ(y)duffl(ywr/ KE (y) dpd " (y)
oQ(x,r) 0Q(z,p)

(4.2.26)

20 _K(r) + K(p).
As r and p are arbitrary, we infer that K is constant on (0,00), say K = K;.
We now turn to show that K; = 1. To this end, let v € C5°(RY,R) be such
that v(z) = 1 and let 7 > 0 be such that (see Rem. 4.2.9)

supp(v) C Q(z, 7).

For any 0 < p < r, we apply Green’s second identity (4.2.20) with U given by
Q(x, p,r) and with u =T, and v as above: by recalling that LT',, = 0 outside x
and that v = 0 on 9Q(x, ), from (4.2.16) we get

/ T, Lodpd =— / T, (AVo,vg%) duy ~
Q(z,p,r) oQ(,p) (4229)

+ / 0 (AVD g, vy dpy
0Q(z,p)

We now aim to pass to the limit as p — 0% in the above (4.2.29). As for the lhs
we observe that, as I';, is locally integrable on RY,

lim T, Lodul = / I, Lodud. (4.2.30)
P=0% Ja(z,pr) Qz,r)

Moreover, since ', = 1/p on 09Q(x, p), by applying identity (4.2.21) to the first
integral in the right-hand side of (4.2.29) we get

/ Ly (AVu,v5%) dpi =t
oQ(z,p)

1
/ Lodu®
Q(z,p)

p

N
<l 20000
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hence, thanks to Lem.4.2.13, we obtain

lim Ty (AVo, vy dp ~ = 0. (4.2.31)
P=0" Joq(z,p) ’

As for the second integral in the rhs of (4.2.29) we observe that, by arguing as
in (4.2.28) and by recalling that K(p) = K1, we get

/ v (AVT,, v5) dpy 1
0Q(z.p) ’

—— [ (o) - )XEW Y ) - Ky = () - Ko,
29a,p)

On the other hand, since v is continuous on RY and v(z) = 1 (and again
recalling that K(p) = K1), it is easy to recognize that that lim, o+ J(p) = 0;
as a consequence we derive

lim v AV, v dpy ™ = — K. (4.2.32)
P=0% Joq(z,p) ’

By gathering together identities (4.2.30), (4.2.31) and (4.2.32), we can pass to
the limit in the above (4.2.29), obtaining

/ I, Lvdpd = —K;. (4.2.33)
Q(z,r)

We are now ready to conclude: since v € C§°(RY) is supported in Q(z,r) and
since I is a fundamental solution for £ w.r.t. ul¥, we get (see identity (4.2.4))
(4.2.33) I, Lodpd (424 —v(x) = -1,
Q(z,r)

_Kl

and this gives out K; = 1, as desired. O

From Lem. 4.2.21, one straightforwardly obtains:

Corollary 4.2.22. Let x € RN be fized and let U C RN be an open set con-
taining x. If u € C(U,R), it holds that

lim u(y) K5 (y) dpy ' (y) = u(x). (4.2.34)
p=0% Joq(z,p)

Proof. Let r > 0 be such that Q(z,r) C U. For every fixed 0 < p < r, it follows
from Lem.4.2.21 that

/ u(y) X5 (y) dpy ()

F(ze) (4.2.35)

— [ ()~ @) KE () e~ ) + e
9%ap)

on the other hand, since v is continuous on U and by exploiting once again
Lem.4.2.21, we easily deduce that

lim, (u(y) — u(@)) Kz (y) dug ' (y) = 0.
p— oQ(z,p)

From this, by passing to the limit as p — 0T in the above (4.2.35), we immedi-
ately obtain the desired (4.2.34). This ends the proof. O
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We conclude this section by establishing another useful integrability property
of the L-kernel 1% (see Def.4.2.18).

Lemma 4.2.23. For every fivzed x € RN and every real a > 1, one has

VE(y) | N re!
- d = , or all v > 0. 4.2.36
/ﬂ(m) =t 1 (4:2.36)

Proof. Let r > 0 and let 0 < a < r. Since the function 5 /T'¢ is continuous on
RN\ {z}, identity (4.2.17) in Lem. 4.2.14 gives

vE N /1/“ 1 / Ui N
= duy = — L _du dt;
/Q(x,a,r) ro 74 e 1 \Joa@aye VTl %

therefore, from Lem. 4.2.21 we derive that

ﬁ 4 N 1/a i & — aafl o 7,0471
o e = o 1— '
Qz,a,r) Lo 1/r «

Finally, passing to the limit as a | 0%, the Monotone Convergence Theorem
applied to the above identity produces the desired (4.2.36). O

4.2.4 Mean Value Formulas

Thanks to the integral properties of the L-surface density 1% established in the
previous section, we are in a position to prove the following Surface Mean Value
formula for £. As we shall see in a moment, such a formula generalizes to our
setting the analogous one of the Laplace operator.

Theorem 4.2.24 (Surface Mean Value Formula for £). Let U C RY be an
open set and let v € C?(U,R). For every x € U and every v > 0 such that
Q(x,r) C U, one has the integral identity

u@ = [ )XW Al )
o) , (4.2.37)
o (=) o),

which we shall refer to as the Surface Mean Value Formula for L.

Proof. Let x € U and r > 0 be as in the statement above. For every 0 < p < r,
by applying Green’s second identity (4.2.20) to the I'-annulus Q(z, p,r) and to
the functions v and v :=T'y, we get (by recalling (4.2.7), (4.2.16) and the fact
that T, is constant on the boundary of any I'-ball)

—/ T, Ludpy =/ u AV, vgs) dug !
Q(x,p,r) oQ(x,r) ’

_ / w (AVT,, vty dpy !
Q(z,p)

1
[ v
T JoQu(z,r) '

1
—|—7/ <AVu,1/§’fpt>duiV_1.
P J o (z,p)
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By arguing as in (4.2.28) (in the proof of Lem. 4.2.21) and by exploiting (4.2.21)
in Lem. 4.2.16, the above identity becomes

- / Ly Ludpf = / uly) Kz (y) dug ~' (y)
Q(x,p,r) oQ(x,r)

1
— f/ Ludp®y
" JQ(wr)

(4.2.38)
- / u(y) K@) dp ()
0Q(z,p)

1
+ 7/ Ludpd.
P J(=,p)

We now aim to pass to the limit as p — 0" in (4.2.38). To this end we first
observe that, since ', is locally integrable in R, we have

lim I, Ludu® = / Iy Ludpl; (4.2.39)
p—0F Q(z,p,r) Q(z,r)
moreover, by Lem. 4.2.13 we get
1
lim — / Luduy = 0. (4.2.40)
p—0t p Q(z,p)
Finally, Cor.4.2.22 gives
lim uly) KE () dul ~(y) = ula), (4.2.41)

p—07F oQ(x,p,r)
and thus, by gathering together identities (4.2.39), (4.2.40) and (4.2.41) and by
letting p — 0T in the above (4.2.38), we obtain the desired (4.2.37). O

Example 4.2.25. Let us consider, on Euclidean space RY (with N > 3), the
classical Laplace operator £ = A. Moreover, let U C RY be an open set and
let u € C?(U,R). If # € U and if p > 0 is such that B(x, p) C U, we derive from
Exm. 4.2.8 that Q(z,r) = B(z, p) C U, where

, 1/(N=2)
= (o)

Therefore, by applying the Surface Mean Value Formula (4.2.37) to the I'-ball
Q(z,7) and to the function u, we get (note that, in this case, u} = H*)

u(z) = / u(y) K& (y) AHN ) (3)
0B(z,p)

o (=) duw

From this, by taking into account the explicit expression of I" and of the A-
surface density X2 (see Exm.4.2.19), we obtain

1 / N-1
u(x) = u(y)dH y
CR o=l IR OLL ()

_ /B . (T(y — z) = T(p)) Au(y) dy,

which is precisely the usual Surface Mean Value formula for A.
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Due to the relevance of the Surface Mean Value Formula in Thm.4.2.24,
and inspired by the particular case of the Laplace operator in Exm. 4.2.25, we
introduce the following operators.

Definition 4.2.26. Let U C RY be an open set and let v € C(U, R). For every
2z € U and every r > 0 such that Q(z,r) C U, we define

M) = [ )XWl ),
o) (4.2.42)
N = [ ) () - ) )

We shall refer to M, as the surface mean value operator (related to £).

By means of the above operators M, and N,., we can restate Thm. 4.2.24 as
follows: if U C RY is an open set and if v € C?(U,R), for every x € U and
every r > 0 such that the closure of Q(z,r) is contained in U, we have

u(z) = My (u)(x) — N (Lu)(x). (4.2.43)

Remark 4.2.27. Let € RY be fixed and let > 0. It worth noting that, by
Lem. 4.2.21, we have the following remarkable property:

M, (1)(z) = 1.
The following lemma concerns the regularity of r +— M, N,.

Lemma 4.2.28. Let U C RN be an open set and let u € C(U,R). Moreover,
let v € U and r > 0 be such that Q(x,r) CU. Then we have

(i) the function p — M,(u)(x) is continuous on ]0,7], and

plir(r)l+ M, (u)(x) = u(x); (4.2.44)

(ii) the function p — N,(u)(z) is of class C' on the same interval, and

lirgl+ N,(u)(z) = 0. (4.2.45)

If, in addition, uw € C*(U,R), for every p € (0,7] we have,
d 1
—M,(u)(z) = = / Ludpd
e = [ sudn

1 (AVu,VI'z) | n_q
=T 2 71" d:uL :
P~ Jo(x,p) ||v z”

(4.2.46)

Proof. (i) Since, by assumption, u is continuous on Q(z,r) C U and since the
L-surface density K% is smooth on RY \ {x}, the regularity of the function
p = M,(u)(z) on ]0,r] directly follows from Prop.4.2.15; moreover, the limit
(4.2.44) is precisely (4.2.34) proved in Cor. 4.2.22.

(i) The regularity of p — N,(u)(z) again follows from Prop.4.2.15, since u
is continuous on Q(z,r) and I', € C°(RN\ {z},R)NLL (RY). As for the limit

(4.2.45) we observe that, since I',,u € LL (U), we have

loc

lim u(y) Ta(y) dug (y) = 0;
P=0% JQ(z,p)
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moreover, from the continuity of v on U and from Lem.4.2.13 we get

limf/ u(y) du (y) = 0.
Jim o

By gathering together these identities, we obtain the desired (4.2.45).

To complete the demonstration, we turn to show (4.2.46). To this end we
observe that, if u € C%(U,R), by the Surface Mean Value Formula (4.2.37) we
have, for every fixed 0 < p < r,

M, (u)(z) = u(z) —l—/

1
I, Ludpd — = / Ludpd. (4.2.47)
Q(z,p)

Q(z,p)

We then differentiate the last two summands in the above (4.2.47): by (4.2.18)
(since T'y, Lu € C(U \ {z},R) N L (U)) we have

loc

d / N 1 / T.Lu | Ny
- Iy Ludp == 2= du
dp < Q(z,p) L) 0% Joatup VL] %

1 / Lu N—1
== o dud
P3 oQ(x,p) ”vrxH *

moreover, again from (4.2.18) we deduce that

d / N 1 / Lu N_1
-— Ludp = — dpN =1,
dp ( Q(z,p) L) p? Joap IIVEell "%

Summing up, from (4.2.47) we obtain

d 1 Lu 1
—M,(u)(x) = / —dp T+ < / Ludpdy
dp P 3 oQ(z,p) ||VF || e Q(z,p) “

1d
- = — Ludpd
P dp ( Q(z,p) “
1
= — Ludpd .
P* Jap) :

This is the first identity in (4.2.46). The second one is a consequence of (4.2.21)
and of the explicit expression of the unit exterior normal I/eXt on the boundary
of Q(z,r) (see Prop.4.2.10). This ends the proof. O

Remark 4.2.29. Let the assumption and the notations in Lem.4.2.28 apply.
Since both functions p — M, (u)(x) and p — N,(u)(x) are continuous on |0, ]
and they have finite limit as p — 07T, there exists a real constant ¢ > 0 s.t.

|M,(u)(z)| <c and  |N,(u)(z)| <c, forevery 0<p<r.
As a consequence, both M,(u)(z) and N,(u)(x) belong to L>([0,]).

We close this section by deriving, from the Surface Mean Value Formula
(4.2.37), a family of Solid Mean Value Formulas for the operator £. As in the
case of the Laplace operator A, we use a superposition argument.
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1

To begin with, we choose a nonnegative L;_.

for every fixed p > 0, we define

cp(p) = /Op (1) dt.

We then consider an open set U C RY and a function u € C*(U,R). If z € U
and if r > 0 is such that Q(z,r) C U, from (4.2.37) we get

function ¢ : [0,00[— R and,

w(x) = M,(u)(z) — Ny(Lu)(x), for every 0 < p <r;

therefore, by multiplying both sides of the above identity times (p) and by
integrating with respect to p on [0, r], we obtain

1 " 1 "
ue) = 5 [ oM@ dr - = [ el Ny L) d

(4.2.48)
—: M (u)(2) — N¢ (Lu) ().

We explicitly observe that M¢(u)(z) and N¥(Lu)(x) are well-defined, since
M, (u)(z) and N,(Lu)(z) are bounded on [0, r] (see Rem. 4.2.29) and ¢ is locally
integrable in [0, co[; moreover, by means of Federer’s Coarea Formula, we can
rewrite M?(u)(x) as follows (recall that ¢ > 0 on [0, co|)

@ () (z) — " " Vi () N-1

(by performing the change of variable p = 1/t)

IR Y0 W) v
- ). </ag<z,1m W o, (7 < (y)> @

__ 1\ vp(y) 1 Noi
o ( ‘yW(rx(y)) T 0P VLGl 2 @)) o

(by Federer’s Coarea Formula)

- L\ wEW) g
elp) /Q(m) ) ¢<Fz(y)> T, ()2 e W)

Summing up, we have thus proved the following notable result.

Theorem 4.2.30. Let ¢ : [0,00[— R be a nonnegative LllOC function, and let

er(i) = / Co(t) dt.

Moreover, let U C RN be an open set and let u € C?(U,R). For every x € U
and every v > 0 such that Q(x,r) C U, we have

_ 1 ) L\ e g~

_ Ci@) /O’"so(p) ( /Q (W)Lu(y) (Fm(y) - %) dp®y (y)> dp.

We shall call (4.2.49) the p-Solid Mean Value Formula for L.

(4.2.49)
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In particular, if in Thm.4.2.30 we choose
T2 [0,00[—) Rv @(p) = pa (Wlth a > _1)7
we obtain the following family of Solid Mean Value Formulas for £.

Proposition 4.2.31 (a-Solid Mean Value Formulas for £). Let U C RN be an
open set and let u € C*(U,R). Moreover, let a > —1 be fized. For every x € U
and every r > 0 such that Q(z,r) C U, we have

_a+l Y Uy (y) N
uw) =27 [ ) g

o ( L ) (R =) <y>) .

We shall call (4.2.50) the a-Solid Mean Value Formula for L.

Due to the relevance of the a-Solid Mean Value Formulas in Prop.4.2.31,
and in analogy with the surface mean value operators in Def.4.2.26, we also
define the following solid mean value operators.

Definition 4.2.32 (a-solid mean value operator for £). Let U C RY be an
open set and let v € C'(U,R). Moreover, let & > —1 be fixed. For every z € U
and every r > 0 such that Q(z,r) C U, we set

a L
M) = S [ ) s ),

Np(a) = O [ < Lo v (ret =) an <y>> .

We shall refer to M as the a-solid mean value operator (related to £).

(4.2.50)

(4.2.51)

By means of the operators M® and N, we can restate Prop. 4.2.31 as follows:
if U € RY is as open set, if u € C?>(U,R) and if a > —1, for every # € U and
every r > 0 such that Q(z,r) C U we have

u(x) = M7 (z)(u) — N2 (2)(Lu).

Remark 4.2.33. Let U C RY be an open set and let u € C(U,R). Moreover,
let @ > —1 be fixed. If z € U and if r > 0 is such that Q(z,r) C U, we have

«@ o+ 1 r a+1
N7 (u)(z) = P 7 Np(u)(z)dt, for 0 < p <
0

therefore, since p — N, (u)(x) is continuous on |0, 7] (see Lem. 4.2.28), we derive
that p — N%(u)(z) is of class C* on the same interval.
Analogously, since we have (by Federer’s Coarea Formula)

a+1
paJrl

p
Mp (u)(z) = /0 t*TEM (u)(z) dt, for 0 < p <7

again from Lem.4.2.28 we deduce that p — Mg (u)(x) is of class C'* on ]0,7].
Finally, if u = 1 on RY, from Lem. 4.2.23 we derive that

o a+tl vz (y)
M>(1)(z) = s /Q(m , W duf (y) =1, for every a > —1.
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Remark 4.2.34. Let U C R" be an open set and let u € C(U, R). Moreover,
let a > —1 be fixed. Since, by Rem. 4.2.33, M%(1)(z) = 1 for every x € R" and
every r > 0, it is very easy to recognize that

lim M (u)(z) = u(z), forevery z € U.
r—0+

Remark 4.2.35. Let the notation and the assumption in Thm.4.2.30 apply.
It is worth noting that, by Lem.4.2.23 (and the continuity of «), the integral

¥z () N
\/Q(z,r) uly) Ly (y)2te e (v)

is well-defined and finite precisely when « + 2 > 1, that is, if a > —1.

4.2.5 An L’-Hardy-type inequality

Thanks to the Surface Mean Value Formula (4.2.24) and to Lem.4.2.28 in
Sec. 4.2.4, we can finally present the L2-Hardy-type inequality for £ obtained by
Garofalo [79]. This inequality being a direct consequence of the results obtained
so far, we give its proof for the sake of completeness.

Theorem 4.2.36 (Hardy-type inequalities for £). For every = € RY, every
r >0 and every u € C2(RN,R), the following Hardy-type inequality holds true

£
/ u? w%duf < 4| M) () + / IVeul?duy ). (4.2.52)
Q(z,r) Fac 2 Q(z,r)
More explicitly, due to the very definition of the operator M, we have

£ r B
[ooetadsa(l [ estad e [ e and).
Q(z,r) T oQ(z,r) Q(z,r)

Proof. For every fixed 0 < a < r, we have

u? (217 [/ u? N_1
— el = / / — KE AN at
/Q(z,a,r) r3 “ 1r \Joo@aim I3 “

:/'1/(11 (/ Q:KLd Nl) dt
2 U Rg Aty
ir t 0(x,1/%)

1/a 1 )
1/r

where in the last equality we used the Def.4.2.26 of the surface mean value
operator M. Thanks to Lem. 4.2.28 we can integrate by parts, obtaining

1/a1 d
- 2
+/1/T - = (M0 )(@)) at

= M) — M) - /// 7 3 000)|,,,

2 M, (u2) (2) — a Mo (u2)(2)

. /”“1 / AV, VL) 4 v g,
e b \Joa,1/ V.|| “

t=1/a

/ 0 gt e = [~ Lo ) @)
Q(a:,a,'r‘)ri Gl = t 1/tu v

t=1/r
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We now focus on the last summand: from V(u?) = 2uVu and from identity
(4.2.17) in Lem.4.2.14, this last summand is

1/a
P / 1 / W AVEVT) g vt ) g
e\ Joa,1/0) [Vl

1/a
_ 2/ / i <Avua vrr> dﬂg—l dt
e \Joa@am Lz [IVIL|

= / AV, VT, d.
Q

(z,a,r) + @

By gathering the above identities, we get

2
u
[ el = G - adae?) @)
zar) "o (4.2.53)
u
+2 / — (AVu, VI, dpd.
Q(z,a,r)

x

The next step is to give an estimate of the integral in the right-hand side of
(4.2.53). Since A is positive semi-definite we have (we make use of the L-energy
notation introduced in Def.4.2.17 and of (4.2.23))

‘P“I (AVu, VT,)| < 'Fi‘ ((AVu, vu))/? - ((AVT,, VT,)) "/
= P weu) - e
Thus, by Hélder’s inequality with p = ¢ = 1/2, we get
o pavwvrga<e [ (v ) o

1/2 ) 1/2
u .
<> (/ |v/;u||2duf> (/ vt dﬂ)
Q(z,a,r) Q(z,a,r) tx

(by a Young’s inequality 2AB < ¢A® + B? /e with € = 2)
1 u?
<2 VedPand 4y [ Lutaud
Q(z,a,r) Q(z,a,r) t T

By inserting this estimate in (4.2.53) and moving terms around, we obtain

1 u?
2 / Fﬂﬁf dug <M (u)(x) — a Ma(u?)(2)
Q(z,a,r) L (4.2.54)

2 / IV call? du.
Q(z,a,r)

In order to complete the proof, we now pass to the limit as @ — 07. In the left-
hand side, one can use the non-negativity of the integrand, so that, in the limit,
Q(x, a,r) simply becomes Q(z,r). The same happens for the last summand in
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the right-hand side. Finally, from (4.2.44) we get lim,_,o+ M, (u?)(x) = v?(z),
so that lim,_,o+ a My (u?)(z) = 0. Therefore, (4.2.54) becomes

1 2
*/ ot dul STMT(UQ)($)+2/ 1V cuf]? g,
2 Q(z,r) Fa: Q(z,r)
which is exactly (4.2.52). This ends the proof. [

As a direct consequence of Thm. 4.2.36 we obtain the following result, which
represents the “true” generalization of the Hardy inequality (4.2.1).

Corollary 4.2.37. For every z € RY and every u € C° (RN, R), the following
Hardy-type inequality holds true

£
/}RN u“ﬁ—gdug <4 /RN IV cul|® dud . (4.2.55)

Proof. Let r > 0 be such that supp(u) C Q(xz,r). By applying the Hardy-type
inequality (4.2.52) to v and Q(z, ), we obtain

u? L4 N u? L4 N
RNE%- dpg = o )1721/)1- dpg

<olf [ westad e [ veulPaed
2 Joa(z,r Q(z,r)

(u=0on 0Q(z,7))

=1 [ veulPant =1 [ I9euland,
Q(z,r) RN

This ends the proof. O

Example 4.2.38. Let us consider, on Euclidean space RY (with N > 3), the
classical Laplace operator £ = A, and let z € RY be fixed.

By exploiting the explicit expression of T' (see Exm.4.2.8) and of 12 (see
Exm. 4.2.19), inequality (4.2.55) takes the following form

(N —2)? Md <4 |Vul|?dy, Vue CPRN,R)
R P s v PR

vy —=
In particular, taking x = 0, we obtain the Hardy Inequality (4.2.1).

By means of the Hardy-type inequality (4.2.55), we can easily extend to £
also the classical Heisenberg Uncertainty Principle of Quantum Mechanics.

Corollary 4.2.39 (Uncertainty Principle for £). For every x € RY, every
u € C (RN, R) and every a € R, the following inequality holds true:

2 Y5 N i 2 )1 2V N
(/}RNU Fg(f_gdﬂﬁ) (/]RNVLUH dML) Z§/RNU F%d“p
(4.2.56)

Furthermore, if a > 3/2 all the integrals are finite.
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Proof. Let us consider the nonnegative functions u;,us defined on RV \ {x} by

|u |ul
= 5. upi= Fg_l,\/i/);f-

Since uy - ug = u? 5 /T on RN \ {z}, by applying Hélder’s Inequality to the
integral at the right-hand side of (4.2.56) we get

1/2 - 1/2
vy vz Yz
-/]RN u? d/J, < . u? F2 dpy . u? 2= ngL .

By applying the Hardy-type Inequality (4.2.55) to the first factor in the above
right-hand side, we obtain (4.2.56). Thanks to Lemma 4.2.23, a sufficient con-
dition for all the integrals to be finite is o > 3/2. O

4.2.6 Application to Unique Continuation

The aim of this last section is to show how the Hardy-type inequality (4.2.52) in
the previous section can be profitably used in obtaining a Unique Continuation
result for the solutions of the Schréodinger-type equation

—Lu+ Pu =0, (4.2.57)

where £ is a sub-Laplacian on a Carnot group G, P is a potential satisfying
suitable assumptions, and w fulfills some (differential) growth condition.

We mainly follow the approach by Garofalo and Lanconelli in [80], where a
the Hardy-type inequality (4.2.52) is employed in obtaining a Unique Continua-
tion result for the Schrodinger-type equation —Agnu + Pu = 0, where Agn is
the Kohn-Laplacian on the Heisenberg group H” and V is a suitable potential.

Some preliminaries. Throughout the sequel, we denote by G = (R, *,d)
a fixed homogeneous Carnot group on RY, with homogeneous dimension Q > 2.
Moreover, we choose once and for all a system {Xj,...,X,,} of Lie-generators
for Lie(G) and we denote by £ the associated sub-Laplacian on G, that is,

m
L=> X7
j=1

As already pointed out in Exm. 4.2.4, the operator £ satisfies all the assumptions
introduced in Sec.4.2.1. More precisely, we know that

(i) £ is in the divergence form (4.1.1) with V = 1;
(ii) the principal matrix A(x) of £ is given by
A(x) = S(x) - S(z)T, (4.2.58)
where S(x) = (X11(z)--- X,,I(z)) for every z € RV;

(iii) there exists a unique global fundamental solution I' for £ w.r.t. u¥ satis-
fying properties (a)-to-(e) in assumption (FS), which is of the form

D(z;y) =d> Q@ txy), forevery z,y e RN with z #y, (4.2.59)

for a suitable homogeneous symmetric norm d € C*(RY \ {0},R) on G.
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As a direct consequence of (i), we derive that the £-weighed measures ,uN L and

plY are simply the Hausdorff measures HV =1 and HY (see Def.4.2.1); moreover,
identity (4.2.59) easily implies that, for every z € RY and every r > 0, one has
(denoting by 7, the left-translation by = on G)

Qz,r) = 2% 65 (2(0,1)) = (7, 06,)(2(0,1)), with A = /=9,
In particular, HV (Q(z,r)) = r?/C=@ wg, where wo = HY (2(0,1)).

Let now U C R” be an open set and let f € C1(U, R). By exploiting identity
(4.2.58), we see that the function ||V f|| introduced in Def.4.2.17 satisfies

IVefl?(@) = 375 (X (@) (zel). (4.2.60)
Therefore, if we define the £-horizontal gradient of f as
Vef(a) = (Xif(@),..., Xuf(2) = Vf(x) S@)", zeU,
then ||V f]|? turns out to be a genuine norm squared, that is,
IV fII? = (Ve f, Ve f).

By means of this fact, we can provide an easy proof of the subsequent result.
Lemma 4.2.40. The following properties hold true:

(i) v5 (y) =g (@" xy), for every x,y € RN with « # y;

(i) ¥f (6x(2)) = A2A=D yf (z) for every x € RN \ {0} and every A > 0.

Proof. (i) Let x € RN be fixed. By recalling the very definition of ¥* and by
exploiting identities (4.2.59) and (4.2.60), we can write

V2 (y) = Z iy = To(a™ « y))Q, for every y € RN \ {z}.

Jj=1

From this, X3, ..., X,, being left-invariant on G, we obtain
- 2 _
Z (X;To)(z t*y)) =v5(zt*y), VyeRV\{a},
Jj=1

which is exactly the desired property (i).
(ii) Let A > 0 be fixed. By arguing as in (i), we have

Vg (Ox(x Z ((X;T0)(0x( )))2, for every z € RV \ {0}.
j=1

From this, recalling that X1,..., X,, are Jy-homogeneous of degree 1 and that
Iy = d*>~“ is §y-homogeneous of degree 2 — @, we obtain

VE(Br@) = 3 (N (T0) @)’ = MO g (@), Vo € RV (o),
j=1

and this proves that ¥§ is §y-homogeneous of degree 2 — 2Q). O

Remark 4.2.41. Let U C R" be an open set and let f,g € C'(U,R). By
exploiting once again the above (4.2.58), we obtain the following useful identity

(Vi f(x),Veg(a)) = (A(z) Vf(z),Vg(z)), foreveryzeU.
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Three distinguished vector fields After all these preliminaries, we can
proceed towards the announced Unique Continuation result for (the solutions
of) the Schrodinger-type equation (4.2.57). To this end, we first introduce three
selected vector fields which will be of fundamental importance in the sequel.

Definition 4.2.42. We define the following three smooth vector fields:

X:=Y X;Ty-X; = (VeTo(x),Ve)  on RV \ {0} (4.2.61)
j=1
al 0
Z = ;oj zj a—m] on RY; (4.2.62)
Ry:rox+i5;§¢§z on RN\ {0} (4.2.63)

Here (01, ...,0n) denotes the N-tuple of the exponents defining the dilation §y
of G. We say that Z is the infinitesimal generator of the dilations of G, and
(following [83]) we say that R is the £- discrepancy.

Remark 4.2.43. Let U C RY be an open set and let w : U — R be of class
C*. For every fixed x € U, a direct computation shows that

Zu(z) = % )\Zlu(éA(x)); (4.2.64)
moreover, by Rem. 4.2.41, we have
Xu(z) = (A(z)Vu(z), VI (z)). (4.2.65)

As is expected, Z can be used in order to characterize the §y-homogeneous
functions on G, as in the following Euler-type result.

Lemma 4.2.44. The following facts hold true:
(i) A function f € CL(RYN \ {0},R) is dx-homogeneous of degree m € R iff

2 f(x) =mf(x), for every x € RN\ {0}. (4.2.66)

(i) A C' wector field Y on RY is §x-homogeneous of degree m € R iff

[Y,2] =mY. (4.2.67)

Proof. (i) Let us assume that f is dy-homogeneous of degree m, and let x # 0
be fixed. For every A > 0, we have

F(Ox(x)) = A™ f(2);

therefore, by differentiating both sides of this identity w.r.t. A\ and by taking
A =1, we immediately obtain the desired (4.2.66).

Conversely, let us assume that f satisfies (4.2.66) and, for a fixed x # 0, let
g :]0,00[— R be the function defined as follows:

g(A) = f(or(x)) =A™ f(x).
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Obviously, g € C1(]0, o[, R); moreover, we have the computation

g =27 ((2) (r(@) = m A" f(a)
(4.2.66) M

= (Fr@) =N fl)) =

This proves that g solves the linear ODE ¢y = (m/\)y on ]0,00[; since, by
definition, g(1) = 0, we conclude that g = 0 on ]0, o[, that is,

% g(A), for every A > 0.

f(ox(x)) =A™ f(x), for every A > 0.

Hence, f is §x-homogeneous of degree m, as desired.

(ii) First of all, if ay,...,any € CY(RM,R) are the coefficient functions of Y,
a direct computation based on the explicit expression of Z gives

N
Y,2] = Z (05 a;(x) — 2(a;)(z)) o (4.2.68)

Let us now assume that Y is dy-homogeneous of degree m. Since, for every
j=1,..., N, the function a; is ,-homogeneous of degree o, —m (see Thm. 1.2.2
on page 7), by combining identities (4.2.68) and (4.2.66) we get

J

N
Y, 7] = Z (ajaj(:r) —(0j —a)a;(x % =« ZaJ 690 mY,
J=1 J -

and this is precisely the desired (4.2.67).
Conversely, let us assume that Y satisfies identity (4.2.67). By equating the
coefficient functions of [V, Z] and mY’, we obtain (see (4.2.68))

oja; —Z(a;) =ma;, foreveryj=1,...,N.

From this and part (i) it then follows that any a; is dx-homogeneous of degree
oj —m, hence (again by Thm. 1.2.2) Y is §y\-homogeneous of degree m. O

Remark 4.2.45. It is worth noting that, since the vector fields Xi,..., X,
defining £ are dy-homogeneous of degree 1, identity (4.2.67) implies that

[X;,2] = X, forevery t =1,...,m, hence [V, Z]=V,. (4.2.69)

Remark 4.2.46. Let f :]0,00[— R be of class C! and let u : RV \ {0} - R
be the “radial function” defined by u(z) := f(To(z)) .

By means of Lem. 4.2.44 in can be proved that Ru = 0 on RY \ {0}: in fact,
since I'y is dy-homogeneous of degree 2 — @), we have

Ru = ['(To) (T ;Xjro)? + g V6 A1)
= 1'00)(To v + 5596 (2= QTo) = 0.

The vector fields X, Z and R have distinguished properties in terms of their
divergence and their action on the fundamental solution of £.
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Proposition 4.2.47. According with Def. 4.2.42, we have:
(L.a) div(XI) =0 on RN \ {0};
(1b) XTo = 6§ on RN\ {0};
(2.a) div(ZI) = Q on RY;
(2.b) ZTg = (2— Q) on RN \ {0};
(3.a) div(ﬂ%]) =0 on RN\ {0};
(3.b) R = 0 on RN \ {0}.

Proof. We prove each property separately.

(1.a) First of all we observe that, since Xq,...,X,, are dy-homogeneous of
degree 1, one has div(X;) = 0 for every j = 1,...,m; moreover, I' being a
fundamental solution for £, one has LTy =0 on RN \ {0} (see (4.2.7)).

As a consequence we have the following computation:

div(X1) = i div(X;To - X,1)

j=1
Z( XFOXI)—i—XFOdeI) ZXQI‘O
j=1

LTo=0, on RN\ {0}.

(1.b) By the definition of X and that of ¥§ = ||V To||?, we have
XLg = (Ve To, Vo) = [[Velol? =4, on RY\ {0}

(2.a) By the very definition of Z, we have
div(ZI) Zo] Q, onRM.

(2.b) It follows Lem. 4.2.44, since Ty is dy-homogeneous of degree 2 — Q).

(3.a) First of all we observe that, since ¥§ is Jx-homogeneous of degree
2(1 - Q) (see Lem.4.2.40), Lem. 4.2.44 implies that

2YF =2(1-Q)vy, on RN\ {0} (4.2.70)

Moreover, on RY \ {0} we have the following computation:

div(RI) = div (FO XT + % ry z,1>

Q
= (VLo, XI) + Do div(XI) + 555 (Vg , 2I) + T Y§ div(ZI)
= XT'o + o div(XT) + f 295 + Y§ div(ZI).

Q Q—2
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By exploiting, respectively, (1.b), (1.a), (4.2.70) and (2.a) we then obtain

. 2-2Q Q
— hE £ L_
div(RI) = 4 +0+Q_21/10 +Q_2¢0 0.
(3.b) Finally, by using (1.b) and (2.b), we get
1 1
Ry = (Do X + mwé 2)[g =g X T+ md}(f 2T
2-Q .
=F0¢§+7Q_2¢5F0:0-
This ends the proof. O

Remark 4.2.48. The statement RI" = 0 in (3.b) of Prop. 4.2.47 is equivalent
to saying that RI(x) is orthogonal to VI'o(z) at every point z in R \ {0}.

Now, since the boundary of a I'-ball ©(0,r) centered at the origin is a level
set of I" (so that the normal space to 9§2(0,r) at any of its point = is generated
by VTy(z)), we deduce that RI(x) is tangent to the sub-manifold 9Q(0, ).

By the above tangentiality property of R in Rem.4.2.48, and since the di-
vergence of R is null (see (3.a) in Prop. 4.2.47), we obtain the following result.

Corollary 4.2.49. Let r > 0 and let f : Q(0,7) — R be of class C'. Then

R
/ / dHN"Y=0 forevery0<p<r. (4.2.71)
09(0,p) IV To|
Proof. In the assumptions of the statement, we set
Rf
F(p) ;:/ ——dHN"Y pe(0,r).
29(0,p) IV Tol|

We also fix any pair of arbitrary a,b € R such that 0 < a < b < r. If we take
p = 1/t in both sides of the above identity, and if we integrate with respect to
t €[1/b,1/al], from Coarea Formula we obtain

b 1/a 1/a
F R
/ (j)dSZ F(l/t)dt:/ / I a1 a
o S 1/b 16 \Joaw,1/0 IVToll
(4.2.17)

= / RfAHN.
Q(0,a,b)

On the other hand, by using —respectively— the tangentiality of R on the boun-
dary of the I-annulus Q(0, a,b), the Divergence Theorem, and div(R) = 0, we

get (here v§*) . is the exterior normal vector on 9Q(0, a,b), see (4.2.16)):

0:/ FAR v ) dHN :/ div(f RI) dHN
99(0,a,b) i Q(0,a,b)

:/ fdiv(RI) dHN+/ indHN:/ RfAHYN.
Q(0,a,b) Q(0,a,b) Q(0,a,b)

As a consequence,

b
F
/ ;;)ds:O whenever 0 < a <b <.

From this, F' being continuous on ]0,7[ (see Prop.4.2.15), we conclude that
F =0on (0,r), which is what we intended to prove. O
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Unique Continuation Now we have introduced and studied the vector fields
X,Z and R, we are ready to enter the final part of this section, in which we state
and prove the announced Unique Continuation result for the solutions of the
Schrédinger-type equation (4.2.57). To begin with, we fix some notations.

First of all, given a nonnegative measurable function f : (a,b) — R (where
—o0 < a < b<o0), we say that f is a Dini function on (a,b) if

/bf(z)dz<oo.
. 2

Moreover, we fix once and for all a real R > 0, and we consider a C? solution
u: Q(0, R) = R of the Schrédinger-type equation

—Lu+ Pu=0 onQ0,R), (4.2.72)
where the potential P : Q(0, R) — R satisfies the following assumption:

(P) P is continuous on (0, R) and there exists a Dini function f on (1/R, c0),
non-increasing and positive, such that P satisfies the estimate

Vg (@)

@) < (To(e) Fos-

for almost every z € Q(0, R). (4.2.73)

Remark 4.2.50. It is worth noting that the computations in this final part of
the section can be adapted (as in [80]) to the more general case of weak solutions
u in a suitable I'-class (that is, u € L?(2(0, R)) and X,u € L*(Q(0, R)) for
every j = 1,...,m) and singular potentials P (so that (4.2.73) can allow gen-
uine singularities of P). We consider classical C? solutions u (and continuous
potentials P) for the sake of the simplicity only.

Definition 4.2.51. Let v € C*(Q(0, R), R). The three functions

v
VLol

H,:]0,R[— R, H,(r) ::/ v? dHNL,
)

oQ(0,r

D, :]0,R[— R, D,(r) ::/ |V col2dHY,

Q(0,r)
I,:]0, R— R, IL(r):= / (I9c0l? + Po?) am™
Q(0,r)
are called, respectively, the £-height of v, the L-Dirichlet integral of v, and
the L-total energy of v in (0, R).

Remark 4.2.52. Let v € C?(Q(0, R),R) and let » € (0, R). Due to the crucial
use that we shall make of it in the sequel, we observe that the Hardy-type
inequality (4.2.52) can be rewritten, with the above notations, as follows:

L
2 %o N r
0 < _
/sz(o,r)v v dH _4<2HU(7‘)+DU(7‘)),

As a consequence, we deduce that property (P) of P implies

/Q(O )IPIU2 dHN <4 f(1/r) (% Hv(r)+DU(r)>. (4.2.74)
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Remark 4.2.53 (Regularity of H,, D, I,). Let v € C?(2(0, R),R). We ex-
plicitly observe that, with our mean-value notation, the £-height of v satisfies

H,(r) = M,(v?)(0), for every 0 <r < R.
Thus, from Lem. 4.2.28 we infer that H, is of class C* on (0, R) and that

lim H,(r) = v*(0).

r—0+

Hence H, is bounded on any interval (0, p], with 0 < p < R. Furthermore, from
Lem. 4.2.15 we see that also D,, I,,, are of class C* on (0, R).

We now obtain some formulas for the first derivative of H,, D, and I,,.

Lemma 4.2.54. Let v € C%(Q(0, R),R). Then H, € C*((0,R),R) and

2 Vg _
B = 20— ooy E W 4 TEORL 427

Ifu € C?(Q(0,R),R) is a solution of the Schridinger-type equation (4.2.72), we
have an alternative expression for I, :

r Vg _
I,(r) = / u-Zu—2—dHY"1 e (0,R). 4.2.76
=372 Joon ™ F TV O.R). (427
AS a consequence
2
H,(r) = 3 L(r), r¢€(0R) (4.2.77)

Proof. As already observed in Rem.4.2.53, one has H,(r) = M,.(v?)(0) for every
r € (0,R) and H, € C'((0, R), R); moreover, from Lem. 4.2.28 we have

1 AVv?2, VT
H () = L0, (02)(0) = -~ / (AVe?, VTo) 4w
Q(0,r)

dr 72 IVl
1 X (v?
(4.2.65) 772/ (v°) dgN-1.
72 Jaao.r IVl

Since, by definition, X = (R — ﬁ Y§ 2)/To and T = 1/r on 9Q(0,7), we get

Z 2 L :R 2
Hi(r) = - / () 96y +/ (") gpyve
r \Joanr 2= Q IV 200, [IVToll

(4.2.71) 1 / N N-1
21 __ 1 2 (v dHN-1,
Q=9 oo 2 VLG

and this gives (4.2.75). Let now u € C?(2(0, R), R) be a solution of the equation
(4.2.72). A direct computation shows that

L(u2) — Q(HVLu”? +u£u) — 2<||Vgu||2 +Pu2>, on RV:

hence, for every 0 < r < R we have
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By using the Green identity (4.2.21) and identity (4.2.65) in Rem.4.2.43, we
obtain (recall the expression of the exterior normal on 9Q(0,r), see (4.2.11))

2 2
Iu(’]") _ _1 / <AV(U )7VP0> dHN—l _ _1 / f)C(v ) dHN_l.
2 Jao(o,r [V 2 Joaw,m IIVToll

From this, by arguing as above, one gets (4.2.76) and (4.2.77). O

The derivative of the L-Dirichlet integral of a function plays a key role;
hence we first give a general formula for it, for any C? function v which is not
necessarily a solution of (4.2.72). This formula also highlights the role of the
vector fields Z and X. See also [84, Corollary 3.3].

Theorem 4.2.55. Let v € C%(Q(0,R),R). Then, for every 0 < r < R, the
following first-variation formula for D, holds true:

1 2 Zv - Xv
D! (r :var—ki/ T dHN"tdHY
=3P 570) Joaws T9T]
2

+ — / Zv - Lo.
r(2-Q) Jaon

Proof. Let v € C?(2(0,R)) and let 0 < r < R be fixed. From (4.2.18) we have

d 1 |V cvl? N—
Dl(r) = — / Veo|?dHY | = / dHYN ! =: (%).
(r) dr ( Q(0,7) | | 2 Joaw,r IIVToll

Since I' = 1/r on 09(0,7) and ZI'y = (2 — Q) Iy (see (2.b) in Prop. 4.2.47),

1 / [Veoll? 200 L onq
*x) = — —= — _— —~dH
M =12=@ Jown VTl

1 / < 2 _VFO > N-1
- V0|22, dH
F@= @) Jooom NV T

(by the Divergence Theorem)

(4.2.78)

1
=50 /Q(O )div(||V,5v||2Z,) AHN = (24).
Recalling that div(Z) = @ (see (2.a) in Prop.4.2.47), we then get
1 2 2 N
- Z dH
)=~y o, (U0l +2(192017))
__Q 1 2 N _.
) D, (r) + 09 /Q(O,T) 2([[Vev|?) dHY =: (3%).

From the commutator identity in (4.2.69) we obtain

Z(HVL’UHz) = 2<VLU7 Z(VL’U» = 2<VL’U, VL (ZU) + [Z, VL]U>
4.2.69
4259 919 c0, Ve (20)) — 2|V 202
As a consequence, we have

(34) = 1 Do(r) +

SR v v N =: * ).
R /Q o (T Ve Y = (4
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Finally, integrating by parts and recalling that, for every ¢ = 1,...,m one has
div(X;) = 0, we get (here v§%' is the exterior normal on 9Q(0,7), see (4.2.11))

m

1
4x) = - D, / i(Zv dHN
(4x) " (r) H0=2) Z o0 )
7D / Zv - X (X1, vgd)y dHN 1
( ) Z oQ(0,r) < >

/ Zv - X2vdHN
Q(0,r)

1 2 2w “
:7Dv7~+7/ XiTo X0 | dHN!
PS80 Joaor TOTGl (Z ’ )

2
_|_7/ Lo ZvdHN.
r(2-Q) Q(0,r)

This is precisely (4.2.78), if one recalls the definition (4.2.61) of X. O

By expressing X in terms of R and Z (see (4.2.63)), formula (4.2.78) gives,
for a solution u of Lu = Pu, the following result.

Corollary 4.2.56. Let u € C%(Q(0, R),R) be a solution of (4.2.72) on Q(0, R).
Then, for every 0 < r < R, the following first-variation formula holds true:

1 2
D; (r) = = Dy(r +7/ PuZudHY
) r ) (2 - Q) Jago,
2 RuZu _ 2 w‘(ZuF N—
TR 7dHN1+7/ YOS N1,
2-Q Joaw,m VLol (2-Q)? Jagw,r IIVTo|

In the next proof we use for the first time the estimate (4.2.73) of P. Besides,
we apply the Hardy-type inequality (4.2.52).

Proposition 4.2.57. Let u € C?(Q(0,R),R) be a solution of (4.2.72) with a
potential P as in assumption (P). Then, there exists py € (0, R), depending on
the function f in (4.2.73), but independent of u, with the following properties:

1. if r € (0, po] is such that H,(r) = 0, then also I,(r) = 0 and D,(r) =0,
s0 that Veu =0 on Q(0,7);

2. if ||V gul|? is not identically zero on every I'-ball Q(0,7), with 0 < r < po,
then H,(r) # 0 for every r € (0, po].

Proof. (1) First of all we observe that, since f is a non-increasing Dini function
on (1/R,00) (see assumption (P)), we have

lim f(z) =

Z—r00

thus, it is possible to find py < R such that f(1/pg) < 1/8.
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Let now r € (0, po] be such that H,(r) = 0. The Cauchy-Schwarz inequality
applied to identity (4.2.76) in Lem. 4.2.54 gives out

1/2
I, " () 2 Y5y o,
L0 < 57 (a(0) /a o B0 0

Thus I,(r) = 0. Since, by definition, D, (r) = I,(r) — fQ(O " Pu?, from the
nullity of I,,(r) and H,(r) we then get

(4.2.74)
D.(r) < /Q(M Pl ary < ap(1/r) (5 ) + Du(r)

=4 f(1/r) Dy(r).

Note that we have applied here the result (4.2.74) of Rem. 4.2.52, depending on
the Hardy inequality (4.2.52) and the estimate (P) of P.

Since f is non-increasing and r < po, we have f(1/r) < f(1/po) < 1/8,
so that the above inequality gives D, (r) < D,(r)/2, which obviously implies
D, (r) = 0. We then obtain ||V zul[? =0 on Q(0,7), as desired.

(2) It is a direct consequence of (1). O

From now on, we understand that u € C%(Q(0, R),R) is a solution of the
Schrodinger-type equation (4.2.72), with a potential P as in assumption (P).
Following the approach of [80, 81, 82, 83] using Almgren’s frequency function,
we give the following crucial definition.

Definition 4.2.58. Let py be as in Prop.4.2.57. Suppose that ||V cul|? is not
identically zero on every I'-ball Q(0, ), with 0 < r < po.
Then the following function is well defined

I,(r)
r Hy(r)’

Ny:(0,p0] — R Ny(r) :=
and it is called the £-frequency of u. We also set

Au) == {7‘ € (0, p0] : Nu(r) > max{l,Nu(po)}}. (4.2.80)

Remark 4.2.59. Let the assumptions and the notations in Def. 4.2.58 apply.
Since both I,, and H, are of class C* on (0, R) (and since H,, # 0 on (0, po]),
we have N, € C*((0, po], R). Moreover, a direct computation gives

vy = L (L) L) Lu(r) Hi(r) on
N, (r) = 2 (Hu(r) Ha(r) 20 > (0,p0].  (4.2.81)

Finally, the continuity of N, on (0, po] ensures that A(u) is a (relatively) open
subset of (0, pg]. Note that, a priori, A(u) could be empty.

Remark 4.2.60. Let the assumptions and the notations in Def.4.2.58 apply.
By the very definition of A(u) C (0, pg], we have

I,(r) > r max{1, Ny (po)} Hyu(r) > r H,(r) > 0, for every r € A(u)

Hence, in particular, I,, # 0 on A(u).
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Remark 4.2.61. Let u € C?(Q(0, R),R) be as in Def.4.2.58. If u is §y-homo-
geneous of degree m > 0, its L-frequency N, can be explicitly computed.

In fact, under this additional assumption, the expression of I, given in
(4.2.76) and Lem.4.2.44 imply that, for every 0 < r < R,

m vE rm
I,(r)=—1r—— u? Y _JdHN = H,(r).
u(r) 2-Q Joaw,y IVToll Q-2 u(r)
Therefore, by the very definition of IV, we get
Ny(r) = %, for every 0 < r < pg.

From now on, when N, or A(u) are involved, we tacitly assume that u
satisfies the assumptions in Def.4.2.58. Since, by Rem. 4.2.60, I,, # 0 on A(u),
the logarithmic derivatives in the following statement are well posed.

Proposition 4.2.62. For every r € A(u) we have the following formulas for
the logarithmic derivatives of I, and N, :

!
L) 1, 1 2 / PuzudiN — 1 / Pu2diN
L(r) v L(r) | r(2-Q) Jaor T Joo,r)

2 / (Zu)? . dFN-1
NN GE 4 ZuRu | S
2-Q Jaao,r (2 -Q " Vol

1 / Pu®
+ — ———dH .
72 Joqo,n IVTol|

NI (r) 2I,(r) 1 2 w PudEY
N.(r) r2Hu<r>+fu<r>{r<2—Q> /Q(O,T)Z Pudtt
1

- 7/ Pu?dHN
T Ja(o,r)
2 / (Zu)? . dHN-1
+ Ve + ZuRu | ———
2-Q Jaao,r (2—Q 0 VTl

1 / Pu? N_1
+ = ———dH .
72 Jaao,r IVl

Proof. Since, by definition, I,(r) = D,(r) + fQ(O " Pu? for every r € (0, R),
identity (4.2.18) in Prop. 4.2.15 implies that

1 Pu?
I'(u) =D — —— —dHN"L f 0,R).
T(u) n(r) + . /BQ((),T) VTl , forevery r € (0,R)

Thus, the formula for I}, /I, easily follows from (4.2.79) and (4.2.18).
On the other hand, by identity (4.2.81) in Rem. 4.2.59 we have

Nyr) L) 12 L)

N.(r) IL(r) r rrH,(r)
and thus the formula for N/, /N, follows from that of I/, /I,,. O

for every r € A(u),
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From now on, we make the following growth assumption on the £- discrep-
ancy Ru of our solution u (see Def. 4.2.42):

(D) there exists a Dini function g on (1/R,00), non-increasing and positive,
such that u satisfies the condition

|Ru(z)| < g(T(x)) & Ju(z)|, for almost every = € Q(0, R). (4.2.82)

We then have the following keystone result.

Theorem 4.2.63. Let u € C*(Q(0, R),R) be a solution of (4.2.72) on Q(0, R)
satisfying condition (D) above, and such that ||V zu||? is not identically zero on
every T'-ball Q(0,7), with 0 < r < pg. We also recall that the potential P fulfills
assumption (P), and po is as in Prop. 4.2.57.

Then there exists a real constant M > 0 (independent of u) such that

At o M or every r u
Nu(r) = M( . > f yre Au). (4.2.83)

Here f and g are the Dini functions in the hypotheses (P) and (D), respectively.

Proof. We omit the proof, since this can be obtained by arguing wverbatim as
in [80, pages 341-345], once the expression for the logarithmic derivative of
N, (r) has been obtained (see Prop.4.2.62), and by making use of the results
obtained so far for I,,, N,,, D,,. We limit ourselves to remark that the Hardy-type
inequality (4.2.52) has a key role in this arguments as well. O

It is well known that control from below of the logarithmic derivative of IV,
as in Thm. 4.2.63 yields the boundedness of the frequency N, and a doubling
property for the mean-value of 12, as in the following corollary.

Corollary 4.2.64. Let u € C?(2(0, R),R) satisfy the hypothesis in the above
Thm. 4.2.63, and let py be as in Prop. 4.2.57. Then, there exist real constants
a,B,7 > 0 (depending on u) such that the following results hold:

(Upper boundedness of N,)
Ny(r) < a, for every r € (0, po). (4.2.84)

(Doubling properties)
H,(2r) < BH,(r), for everyr € (0,p0/2]; (4.2.85)

u? u?
/ = Yy dHY <« / = Y5 dHYN, Y r e (0,p0/2]. (4.2.86)
Q0,2r) + 0 Q(0,r) + 0

Proof. Let A(u) be as in (4.2.80). Outside A(u), N, is bounded from above by
0 := max{1, N,(po)}.

We can thus restrict to find an upper bound for N,, on A(u). If r is fixed in A(u),
we let (a,b) be the connected component of A(u) containing r. Then (4.2.83)
implies that (recall that f, g are positive Dini functions)

o () gz [ ()
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Since b < pg but b ¢ A(u), we have 0 < N, (b) < max{1, Ny,(po)}; therefore the
above inequality gives N, (r) < « for every 0 < r < pg, where

a=au) = e 9 max{1, N,(po)} (>6).
This proves (4.2.84). Next, we have

H,(p) @2am) 2L,(p) _, Nulp)
Hy(p) p? Hy(p) p

therefore, for every 0 < r < py/2, and by means of (4.2.84), we deduce that

20\ [T H) o [ Nup)
1°g<Hu<r>>‘ i Hu(p>d”‘2/T ) 4

, forevery 0 < p < po;

< 2a(u) / ' %dp = 2a(u) log(2),

which gives (4.2.85) with the choice 8 = f(u) = exp(2 a(u) log(2)). Finally, we
consider the function F': (0, R) — R defined by

2
F(r) = / % WEAHY, 7€ (0,R).
Q,r) +0

From Lem. 4.2.15, we have F' € C1((0, R),R) and
_ 1 u? g N-1
2 89(0,7) F% [V

c
= / u? Yo dHN=' = H,(r), for every r € (0, R).
oo, VLol

F'(r)
(4.2.87)

Thus, if 0 < a < r < po/2, from (4.2.85) we obtain

F(2r) - F(20) 5 F(2a) @287 / " Ha(20) dp

< B(u) / " Ha(p)dp I B)(F(r) - Fla)).

The function u? ¢§ /T2 being locally integrable on Q(0, R) (as it follows from
Lem. 4.2.23), we infer that F'(a) — 0 as a — 0; therefore, by passing to the limit
as a — 0 in the latter inequality, we obtain

F(2r) <28(u) F(r), forevery 0 <r < py/2.

Taking into account the definition of F', we conclude that (4.2.86) holds with
the choice v = y(u) := 26(u). This ends the proof. O

The boundedness of N,, and the doubling properties (4.2.85) and (4.2.86) in
the above Cor.4.2.64 are the final tools for the Unique Continuation. In order
to clearly state such a result, we first give the following definition.
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Definition 4.2.65. Let u be a bounded function defined on (0, R). We say
that v vanishes to infinite order at 0 if, for every fixed € N, one has:

L
/ UQ—I/J% dHN = 0(r*), asr—0".
r
Q(0,r) 0

By this we mean, precisely, that for every fixed o € N it is possible to find
7o € (0, R) and a real C, > 0 (both depending on «) such that

£
/ u? ¢—% dHYN < Cor®, forevery 0 <r <rq. (4.2.88)
Q(0,r) 0
We then have the following Unique Continuation property.
Theorem 4.2.66. Let u € C?(2(0, R),R) be a solution of the equation

—Lu+Pu=0, onQ0,R).

We assume that the L-discrepancy of u satisfies the growth estimate (D) and
that the potential P satisfies assumption (P).
If uw vanishes to infinite order at 0, the u = 0 in a neighborhood of the origin.

Proof. We begin by showing that «(0) = 0. To this end, we take « = 2 in
(4.2.88) and we let Co,ry be as in (4.2.88) as well. For 0 < r < rg, we have

1 2 Y6 N 1 > 2 Y8 N L2
CQTZ*/ u® —5 dH :f/ (u® —u*(0)) =5 dH™ 4 u*(0)
rJoos Lo T Jao,r) I's

=: J(r) + u*(0).
In the first equality we invoked (4.2.36) with a = 2, which proves that
c
/ ¢—02 dHYN =1
T
(@, 10

We now let r — 07 in the above inequality: since u is continuous at 0, one has
J(r) — 0 as r — 0T; thus, we get 0 > u?(0), whence u(0) = 0, as desired.

Now, if pg is as in Prop.4.2.57, only two cases can occur:
(1) there exists T € (0, po] such that |V zu? = 0 on Q(0,7);
(2) ||Vzul? is not identically zero on every I-ball (0, r), with 0 < 7 < po.
We show that (2) cannot occur and that under case (1) the theorem is proved.

In case (1), we have V,u = 0 on U := (0,7), and we claim that u is
constant on U. In fact, since Xi,...,X,, are Lie-generators for Lie(G), the
nullity of the £-horizontal gradient of u implies that

Jyu(xz) =... = Jyu(z) =0, forevery z €U,

where Ji,...,Jn denotes, as usual, the elements of the Jacobian basis for
Lie(G). As a consequence, we have (see Rem. 1.1.5 on page 5)

Vu(z)-J,,(0) =0, foreveryxzeU.
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Since, for every x € U, the matrix J,,(0) is non-singular (7, being a diffeomor-
phism), we have Vu = 0 on U; from this, U = Q(0,7) being connected (see
Lem.4.2.12), we infer that u is constant throughout U. Finally, since u(0) = 0
(see above), we conclude that u = 0 on U and the theorem is proved.

We suppose, by contradiction, that we are in case (2) so that we are entitled
to apply Cor.4.2.64. We thus fix any 0 < r < pg and we iterate k times the
doubling inequality (4.2.86). This gives

Vg Ve
/ u? =2 dHY < Ak / u? =2 dHY, forevery k € N. (4.2.89)
oo, 10 Q@,r/2¢) 1§

We fix some large integer « (to be chosen in a moment), in such a way that, if
k is sufficiently large (namely r/2¥ < r,), one has (see (4.2.88))

k 2 Y0 N k(T al Y
0% / u® = dH" < Cy7v (—) =Cyr (—a) .
aor29) Lo 2k 2
If we fix o € N such that a > log,(2v), we have /2% < 1/2 and the above right-

hand side vanishes as k — oo. This proves that the integral in the left-hand
side of (4.2.89) is null, whence u?y§ = 0 on Q(0,7) \ {0}. This gives

e
H.(p) :/ u? % dHN=' =0 forall p € (0,7r).
0200.0)  IVTol

Since r < pg is arbitrary, we get H,(r) = 0 for every r € (0, pp]. From (1)
in Prop.4.2.57 we deduce that ||[Vzul> = 0 on (0, pg) but this is clearly in
contradiction with assumption (2). This ends the proof. O



Appendix A

Finer convergence domain for
the Campbell-Hausdorff series

The aim of this Appendix is to briefly describe a convergence result for the
Campbell-Baker-Hausdorff-Dynkin (CBHD, in the sequel) series

[‘T’ [x’y” - i[y7 [Jf,y]] —+ -

> 1 1
n=1

2 12

in infinite-dimensional Banach-Lie algebras L. In the existing literature, this
problem is solved when L = Lie(G) is the Lie algebra of a finite-dimensional Lie
group G (see Blanes, Cases [25]) or of an infinite-dimensional Banach-Lie group
G (see Mérigot [110]). Indeed, one can obtain a suitable ODE for the map

L y(t) =D Znla,ty),
n=1

which follows from the well-behaved formulas for the differential of the Expo-
nential Map of the Lie group G. The novelty of the approach we are going to
present is to derive this ODE in any infinite-dimensional Banach-Lie algebra
(not necessarily associated with a Lie group), as a consequence of an analogous
abstract ODE firstly obtained in the most natural algebraic setting: that of the
formal power series in two commuting indeterminates s,¢ over the free unital
associative algebra generated by the non-commuting indeterminates x, y.

The plan of the chapter is the following:

- In Sec. A.1 we introduce the main definitions and notations concerning the
abstract algebraic setting in which the CBHD series is studied.

- Sec. A.2 is devoted to establishing two (formal) PDEs for the series
Z(xzs,yt) :=log (exp(x s) x exp(y t)),

in the algebra of formal power series in the two commuting indetermi-
nates s,t over the free unital associative algebra generated by the non-
commuting indeterminates x,y. As a consequence of such PDEs, we are
able to provide a simple a proof of the notable CBHD Theorem.

189
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- In Sec. A.3 we exploit the PDEs obtained in Sec. A.2 (plus a simple argu-
ment of ODE Theory) in order to prove the announced convergence result
for the CBHD series in any (infinite-dimensional) Banach-Lie algebra.

- Finally, as an application of the convergence result proved in Sec. A.3, we
derive in Sec. A.4 some notable PDEs related to the CBHD series.

A.1 Algebraic background

As anticipated, this first section is aimed to fix the notation used in the sequel.
First of all, we fix a field K of characteristic zero; all linear structures will be
tacitly understood over IK. Moreover, for the sake of simplicity, IN denotes the
set of the nonnegative integers, so that 0 € IN.

By (A, *) we shall always denote a fixed unital associative algebra, i.e., a vec-
tor space endowed with a bilinear associative operation *, possessing a neutral
element, denoted by 14. Addition in A and the action of I on A are denoted,
respectively, by A x A>3 (a,a’) » a+a and K x A > (k,a) — ka.

Definition A.1.1. A formal power series in the two commuting indetermi-
nates s, t, with coefficients in A (or, simply, a power series in A) is a map

F:NxIN— A, F(’L,]):FL]EA

The set of all formal power series in A will be denoted by A[s,t]. Moreover,
given any F' € A[s,t], we shall write it in the following equivalent ways

o0
F = Z Fi,j Sitj = Z Fi,j Sitj.
4,520 4,7=0
and we shall refer to F; ; as the coefficient of F' of place (i, j).

Remark A.1.2. We explicitly observe that any element a € A can be identified
with the formal power series F, € A[s,t] defined by

F,(0,0) =a and F,(i,j) =0 foreveryi,j>1.

As a consequence, we consider the algebra A as a subset of A[s,t] and we
identify the power series F, with the element a.

A distinguished subset of A[s,t] is that of the polynomials in the two com-
muting variables s and t, with coefficients in A.

Definition A.1.3. A power series F' € A[s, t] is called a polynomial (in s and
t with coefficients in A) if there exists n € IN such that

F;; =0 foreveryi,jc N withi4j > n.
The set of all polynomials in A will be denote by A[s,t]. Moreover, given any
couple (i, j) € INxIN, we shall denote by st/ the (unique) polynomial F' € A[s, t]

whose only non-vanishing value is

F(i,j) :=14.
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Finally, given any polynomial F' € Als, t] we define
deg(F') := min {n €IN: F;; =0 for every i 4+ j > n}
and we call it the jointly degree of F'.

Remark A.1.4. We explicitly observe that, by the very definition of A[s, ],
we have A C A[s, t] (the elements of A are polynomials of degree 0). Moreover,

Als, t] = spany ({s't/ : i, € N}).

As it is reasonable to expect, the set A[s,t] inherits from A the structure of
unital associative algebra. More precisely, we have the following theorem.

Theorem A.1.5. The set A[s,t] is endowed with a structure of unital associa-
tive algebra (over the field IX) by the following operations:

A[s, 8] x A[s,£] > (F,G) = (F +G) :

> (Fj+ Gig) st

2,7=0
K x Afs,t] 3 (a,F) — (a F) := Z (a F; ;) st/
i,j=0
Als, t] x Als,t] > (F,G) — (F* Q) := Z ( Z F o * Gh/’k,>sitj.
iJ=0 \ hh' =i
k+k'=j

In particular, the neutral element with respect to + is the polynomial FF = 0

while the neutral element with respect to % is the polynomial s9t° =1 4.
Remark A.1.6. Some remarks on the algebraic structure of A[s, t] are in order.

(a) All the operations defined on A[s,t] are compatible with the immersion
A — Als, t] mentioned in Rem. A.1.2; for this reason, we adopt for such
operations the same notations used for the ones defined on A.

(b) The operation * is the usual Cauchy product of formal power series, since
s'td x stk = §iTh itk for every (i,7), (h, k) € N x IN.
(c) A direct computation shows that A[s,t] is closed with respect to all the
operations defined on A[s,t]; hence A[s,t] is a sub-algebra of A[s,t].

We next show that A[s,t] is not only a unital associative algebra, but it
can be naturally endowed with a metric structure turning it into a topological
algebra, as well. To this end, we first give the following definition.

Definition A.1.7. Let F € A[s, t] be fixed. We define

0, if F=0,
ord(F) { min {i+j: Fiy #0), if F#0,

and we call it the order of F.
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By making use of the notion of order of a power series, and with the con-
vention 27°° = 0, we then introduce the following map.

Definition A.1.8. We define
d: Als,t] x Als,t] — [0, 0), d(F,G) := 27ordF=G),
Thm. A.1.9 below summirizes the most relevant properties of d.

Theorem A.1.9. Let d be the function introduce in the above Def. A.1.8. Then
d is a metric on A[s,t], and the couple (A[s,t],d) is a metric space.
Moreover, the following properties hold true:

(i) d is translation-invariant, that is,

d(F,G)=d(F+ H,G+ H), forevery F,G,H € A[s,t].

(ii) A basis of neighborhoods of 0 € A[s,t] is given by the family of sets
{FeAlst]: ord(F) >n}, nel.
As a consequence, (A[s,t],d) is first-countable.
(iii) d is an ultra-metric, i.e., the triangle inequality holds in the stronger form

d(F,G) < max{d(F,H),d(H,G)}, for every F,G,H € Als,t].

(iv) (A[s,t],d) is a complete metric space and, relative to the structure of
associative algebra (A[s,t], *) introduced in Thm. A.1.5, it is a topological
algebra (under the topology induced by the metric structure).

(v) Als,t] is dense in A[s,t]; more precisely, for every F' € Als,t] we have

n k
Als,t] Z Z F;js't! L F asn— oo
k=0 \i+5=0

Remark A.1.10. Some remarks are in order:

(a) Let {F(™},cn be a sequence in A[s,t]. As a consequence of properties
(i)-to-(iv) above (in particular, of the ultra-metric condition), the series

AR
neN

is convergent in (A[s,t],d) if and only if

lim F™ = 0;

n—oo

in turn, by the definition of d, the latter condition is satisfied iff

lim ord(F™) = co.

n—oo
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(b) Property (v) shows that the notation F = 377 _ F; j s't/ is far from being
a mere formal notation: F'is indeed the sum of a convergent series in the
complete metric space (A[s, t], d).

(¢) From the invariance of d, we see that a linear map ¢ : A[s, t] — A[s,t] is
continuous if and only if it is continuous in 0. A sufficient condition for
the latter is the existence of m(y) € IN such that (see (i) above)

ord(p(F)) > ord(F) —m(p), for every F € A[s,t].

The main motivation for the introduction of A[s, ] is to introduce two partial
differential operators ds and 9y, which will play a crucial role in the sequel.

Definition A.1.11. We define the following endomorphisms of A[s, ¢]:

0, : Als, 1] — Als, 1], as( i Fi sitj) = i (i +1) Fipq st

2,j=0 i,7=0
8t : A[[S, t]] — A[[S,t]], 8{»( Z Fi,j Sitj) = Z (] + 1) F1'7j+1 Sitj.
2,j=0 i,7=0

We say that 0,F and O, F are the partial derivatives of F' w.r.t. s and w.r.t.t.
Remark A.1.12. Some remarks concerning the maps ds and 0; are in order.

(a) It is easy to prove that both J, and J; are derivations of the associative
algebra (A[s,t], %), i.e., they are linear and they satisfy Leibniz’s rule:
Os(F *G) = 05(F) x G+ F % 05(G),

O (F xG) = 0u(F) * G+ F % 0(Q).

(b) By Rem.A.1.10 - (¢), both 95 and 9, are continuous maps on the metric
space (A[s,t],d): in fact, for every F € A[s,t] we have
ord(0s(F)) > ord(F) —1 and ord(0:(F)) > ord(F) — 1.

(c¢) It is possible to give an explicit characterization of the kernel of (the linear
maps) Js and ;. In fact, since K has characteristic zero, we see that

ker (05) = { Z F;;s'th € Als,t] : F;; =0 for alli > 1,j > 0}.

i,7=0

Roughly put, the kernel of s consists of those formal power series which
are independent of s. In the same way, one can see that the kernel of 9,
consists of those formal power series which do not depend on ¢.

We now introduce two important subsets of A[s,t], which will be relevant

in defining the exp and log maps on A[s, t]:
Als,t]4 :={F € A[s,t] : Fy,o = 0}, (A.1l.1a)
1+ Afs,t]4 :={F € A[s,t] : Foo = 1a}. (A.1.1b)
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Definition A.1.13. By taking into account the subsets of A[s,t] introduced
in (A.1.1a) and (A.1.1b), we define the two following functions:

oo

1
exp : Afs,t]l+ — 1+ A[s,t]+, exp(F):= Z = F",
=0 » (A.1.2)
—1)"
log : 1+ Als, ]+ — Afs,t]1, log(F):=>_ % (F—14)"
n=1

We say that exp and log are the exponential and logarithmic maps of A[s, t].

Remark A.1.14. We explicitly observe that the definitions of exp and log are
well-posed, since the series in (A.1.2) are convergent in (A[s, t], d).

In fact, due to Rem.A.1.10-(a), it suffices to notice that, for every F' in
Als, t]+, the sequence F™ vanishes as n — oo (for ord(G™) > nord(G) > n).

The following Thm. A.1.15 (whose elementary proof is skipped) contains the
most important features of the maps exp and log just defined.

Theorem A.1.15. The following facts hold true:
(i) The maps exp and log are inverse to each other, that is,
exp(log(F)) = F for every F € 1+ Als, t]+
log(exp(G)) = G, for every G € As, t].
(i) For every fited F' € A[s,t]+, the element exp(F) is invertible in the unital
algebra (Als, t], ), with inverse element given by exp(—F):
exp(F) x exp(—F) =14 = exp(—F) x exp(F). (A.1.3)

(iii) For every fivred a € A, we have as,at € Afs,t] and

s exp(as) = axexp(as) = exp(as) * a,
§ (A.1.4)

0
s exp(at) = 0.

Analogous formulas hold true for %.

Remark A.1.16. As already said, the proof of Thm. A.1.15 is elementary. We
limit ourselves to point out that statement (i) is a simple consequence of the
following identities, holding true in every field of characteristic O:

k k L )
Z Z (_1)n+1 (—1)7'1+ Fintn . {1 if k= 1,
i i Z Z 1.4 i o ;
VR AR P n -11...1 .
n=1 i1,.in>1 1 Tl iy >1 1 n 0 ifk>1
ity =k it =k

(A.1.5)
In their turn, these identities follow from

exp(logz) = z and log(expy) =y (valid for z > 0 and y € R),

by inserting the series expansions of exp and log, and by recalling that any field
of characteristic 0 possesses a sub-field isomorphic to Q.
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A notable generalization of (A.1.4) is given by the following Thm.A.1.18.
First we need a notation used throughout. Given a Lie algebra (g, [, ]) and
given an element g € g, we set, as customary,

adg:g — g, (adg)(¢) :=[9,9'], Vg €g.

Remark A.1.17. If (A, «) is an associative algebra, when we make any refer-
ence to A as a Lie algebra, we tacitly mean that it is equipped with the Lie
bracket associated with *, namely

[a,d]« :=axad —a' xa, Va,d € A.
For example, if F' € A[s,t], by ad F we mean the map
(ad F) : Afs, t] — A[s, t], (ad F)(G)=FxG— G« F,
where * is as in Thm. A.1.5.

Theorem A.1.18. Let F' € A[s,t]+. Then, the following identities hold:

oo 1 .
ds exp(F) = (,;)(nﬂ)' (ad F) (6SF)> s exp(F), (A.1.6a)
ds exp(F) = exp(F) * (;} ﬁ (—ad F)" (8SF)> . (A.1.6b)

Analogous identities hold true for the partial derivative with respect to t.

Remark A.1.19. Before sketching its proof, two remarks concerning the con-
tent of Thm. A.1.18 are in order:

(1) Let F € A[s,t]+ be fixed. By Rem. A.1.10 - (a) the series in (A.1.6a) and
(A.1.6b) are convergent since, for any G € A[s,t], one has

ord((ad F)"*(G)) > nord(F) + ord(G) > n — oo, asn — oo.

We shall compactly rewrite (A.1.6a) and (A.1.6b) as

eadF -1
Oy exp(F) = ———— <8SF) « exp(F), (A.1.7)
1— e—adF
8, exp(F) = exp(F) W(aszv). (A.1.7b)

(2) The above notation is not only formal: for any F' € A[s, ], the map

erdf —1 — 1

Als,t] 5 G ———(G) = > CE (ad F)"(G) (A.1.8)
n=0 :

is a well-posed linear map of the vector space A[s,t] into itself (see point

(1) above). Moreover, this map is invertible and its inverse is given by

@ =Y D aary@), (19

n=0

Als,t] > G~
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where {B,, }nen is the sequence of the Bernoulli numbers, defined by the
generating holomorphic function

As it is well-known, the B,, are rational numbers (hence meaningful in K)
since they satisfy the recursion formula

By,
By=1 B, = —n! B e —— >1 Al1l
o=1 n nkzzok!(n—kl—k)! (n21), (A.1.10)

as it follows by expanding in a Cauchy product the identity

e —1 z > " > B,
1: . = _— . = ,n .
z e —1 (Y;) (n+1)!> (; ! © )

=0

Proof (of Thm. A.1.18). We start from a result of non-commutative algebra,
whose proof follows by induction (see [30, Lemma 4.21]): for every fixed F' in
Als,t] and every natural n > 1 one has

|
—

n

Ou(F") =" (1)) (ad F)F (0,F ) + Pt

it
=

() F7 R (= adF)k(asF).

B
I
o

Now, Thm. A.1.18 can be proved arguing exactly as in the proof of [30, Theorem
4.22], since 0 is a continuous derivation of A[s,t] (see Rem. A.1.12 - (b)).
Indeed, by passing d; under the series sign, we get

00 1 . 0o 1 n—1 .
0s exp(F' nz::lﬁ (F™) :nz::l;kz:: k+1 (ad F) (8SF>*F k=1
(%S) o0 Fn— k—1
-3 (et or) - S )
ad F' __
= %((ZF) xexp(F).
Identity (A.1.6b) can be proved analogously. O

To end the section of algebraic preliminaries, we make our choice of the
unital associative algebra A = 7 (z,y), defined as follows.

Let {x,y} be a set of cardinality two, and let us denote by .7 (z,y) the (free)
associative KK-algebra of the polynomials in the non-commuting indeterminates
x,y. More precisely, if V := K(z,y) is the free IK-vector space generated by the
set {z,y} (i.e., the set of the formal KK-linear combinations of x and y), 7 (z,y)
is simply the tensor algebra of V. The operation in .7 (x,y) is the usual (tensor)
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multiplication (denoted by juxtaposition), and its unit is 1k (the unit of K);

moreover (as already discussed) 7 (x,y) is turned into a Lie algebra with the

Lie bracket associated with this associative multiplication (see Rem. A.1.17).
It is therefore well-posed the Lie-sub-algebra

L(z,y) € T (2,y),

which is the smallest Lie sub-algebra of .7 (z,y) containing  and y. We call
L(z,y) the (free) Lie algebra generated by x and y, and any of its elements is
said to be a Lie-polynomial in x,y.

Remark A.1.20. It is not difficult to recognize that both .7 (z,y) and L(x,y)
possess the following universal properties:

(UPT) For every unital associative K-algebra U and for every a,b € U, there
exists a unique morphism (of unital associative algebras)

Pa,b * y(xvy) —U
such that ¢, (z) = a and @, ,(y) = b.

(UPL) For every Lie algebra (over K) L and for every a,b € L, there exists a
unique morphism (of Lie algebras)

Pa,b * L($7y) —U

such that ¢, () = a and @, (y) = b.

A.2 Two formal PDEs in A[s,t] for the CBHD
series

Throughout this section, A denotes the free unital associative algebra 7 (x,y)
(over the field K), as introduced in the previous section, from which we also
inherit all other notation. Accordingly, (A[s, t], *) is the associated unital asso-
ciative algebra of the formal power series in the commuting indeterminates s, ¢
(equipped with the metric and associative structures in Sec. A.1).

We consider the notable element Z(s,t) of Afs,t] defined as follows:

Z(s,t) :=log(exp(z s) x exp(yt)), (A.2.1)
where exp and log are the maps on A[s, t] introduced in Def. A.1.13.
Remark A.2.1. We explicitly observe that Z(s,t) is well posed, since

exp(x s) xexp(yt) € 1+ Afs, ]+

(we denote by 1 the unit of A[s,t], coinciding with that of ). Moreover, the
element Z(s,t) € Afs,t] is completely characterized by the following identity

exp(Z(s,t)) = exp(z s) x exp(y t). (A.2.2)
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As an element of A[s,t], for any ¢,j > 0 there are uniquely defined elements
Z; i(z,y) € T (x,y) (occasionally denoted by Z; ;) such that

Z(s,t) = Z Zi (2, y) st (A.2.3)
i,§>0

We shall refer to the above (A.2.3) as the Campbell-Baker-Hausdorff-Dyn-
kin (CBHD, for short) double series. By unraveling the very definitions of
exp and log, it is obvious that Zy o(x,y) = 0 and, for every (7,7) # (0,0)

i+j 1 i i
(_1)n+ xlyjl...xny]n
n=1 (i1:41)e (i) # (0,0) FH I
i1 tin =i
Jittin =3

We next compute Z; ; when one of 7 and j is null. These values of Z; ; will soon
be used as “initial data” for two formal PDEs satisfied by Z(s,t).

Lemma A.2.2. In the above assumptions and notations, we have

ZLO(:C,:U) =, Zi,()(xa y) =0 Vi 7& 1a (A25a)
Zoa(z,y) =y,  Zoj(w,y)=0 Yj#L (A.2.5b)

Proof. By exploiting identity (A.2.4), for every k > 1 one has

(_1)n+1 phttin
n

k
Zro(z,y) = Z — Z il
n=1 o

11500y 70
i1t tin =k

.

(1)

1
— k - 7 J—
i1 3|
el n i i 0 21+ ...1p!
i1t tin =k
Therefore, (A.2.5a) (and analogously for (A.2.5b)) follows from (A.1.5). O
We are ready to prove the main result of this section.

Theorem A.2.3. Let Z(s,t) € A[s,t] be as in (A.2.1) and let O, O be the two
derivations of the (associative and Lie) algebra A[s,t] introduced in Def. A.1.11.
Then, if the By, denote the Bernoulli numbers (see (A.1.10)), we have

oo

0.2(s,5) =) % (ad Z(s, )" (x), (A.2.6a)
n=0 :

2Z(s,t) =Y % (—ad Z(5,1))"(y). (A.2.6b)
n=0 :

With the notations introduced for the (inverse to each other) automorphisms in
(A.1.8) and (A.1.9), identities (A.2.6a) and (A.2.6b) can be rewritten as

ad Z ad Z
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Proof. We prove (A.2.6a), since the proof of (A.2.6b) is analogous. We apply
the derivation Js on both sides of identity (A.2.2); on the left-hand side we
apply formula (A.1.7a), while on the right-hand side we apply (A.1.4) (and the
fact that 05 is a derivation, hence it satisfies Leibniz’s rule). This gives

6adZ -1

ad Z
By Thm. A.1.15 - (ii), the element exp(Z) is invertibile in A[s,t], with inverse
given by exp(—Z2); as a consequence, by multiplying both sides of the preceding
identity by exp(—Z2) we infer that
ead Z _ 1

a7 (0.2) ==

Since the endomorphism in (A.1.8) is invertible, its inverse being given by the
map in (A.1.9), we immediately get (A.2.6a) from this last identity. O

(GSZ) xexp(Z) = x xexp(x s) * exp(yt) A22) 4 & exp(2).

Remark A.2.4. Since 9, and 0, are derivations of the associative algebra
(Afs,t], %) (see Rem.A.1.12 - (a)), they are also derivations of the Lie alge-
bra associated with A[s,t], i.e., for every F,G € A[s,t] one has

55([F, G]*) = [0:F,Gl. + [F, 05Gl.
at([Fa G]*) = [atF’ G]* + [F7 atG]*
where [, ]« is the Lie bracket associated with % (see Rem.A.1.17). Roughly

speaking, this is why both equations in (A.2.7) (plus convenient initial data)
can be profitably solved providing a solution

7 = Z Z,’J' Sitj,
053

where Z; ; is a Lie polynomial in z,y (this is precisely the content of the
Campbell-Baker-Hausdorff-Dynkin Theorem).

As it is reasonable to expect, identities (A.2.6a) and (A.2.6b) in Thm. A.2.3 boil
down to a system of (recursive) identities involving the coefficients Z; ;(x,y).
More precisely, we have the following result.

Corollary A.2.5. For any given i,j > 0, let Z; ; := Z, j(xz,y) € T (x,y) be as
in (A.2.3) (see also the explicit expression in (A.2.4)).
Then, together with the initial conditions (proved in Lem. A.2.2)

Zy,0 =0, Zyo =z, Zio=0 for every i > 2, (A.2.8a)
Zp,o =0, Zp1 =1, Zop; =0 for every j > 2, (A.2.8Db)
we have the following recursive identities, for every i,j > 0 s.t. (4,7) # (0,0):
(i+1)Zip1; = > Ko lZiy g Zin o2l -+] (A2.9)
1<n<it
(i1,51)5--+,(in,Jn) # (0,0)
t1tetin =1
Jite+in =7
(G+1)Zij1= Z (—U)"Kn[Ziy jis [ Zin g y] -],
1<n<ity
(i1,41),---(in,Jn) # (0,0)
i1t tin =1
it =3

(A.2.9b)
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Here we have set K, := B, /n!, where {By}, is the sequence of the Bernoulli
numbers in (A.1.10). Furthermore, [-,-] denotes the Lie bracket associated with
the associative algebra 7 (z,y) (see also Rem.A.1.17).

Proof. We only prove (A.2.9a) since the proof of (A.2.9b) is analogous. With
the notation K, := B, /n! and Z := Z(s,t), identity (A.2.6a) is equivalent to

0,2 =Y K, (ad Z)"(x).
n=0
If we insert the decomposition Z = 3, . Z; ; st and we use the definition of

0s, then the above identity gives (recall that, by definition, Zy o = 0)

oo

Z (t+1)Zig1,; sitd

i,j=0
o0

L0 3 D DR P AP IR L
n=1 (1,51)5-+(in,dn) # (0,0)

=x+ Z ( Z K, [Zil,jn"'[Zin,jn7$]"‘]>sitj.

(1,5)#(0,0) * (i1,51),---,(in,Jn) # (0,0)

i1t tin =1
Jittin=17J

Since, in the inner sum, i1 +j1,...,9,+jn > land i1 +j1 4+ +in+jp =i+,

we infer that 1 < n < i+ j. By equating the coefficients of st/ (for every fixed
1,7 > 0) we then obtain (A.2.9a). This ends the proof. O

Remark A.2.6. From Cor.A.2.5 we obtain a proof of the Campbell-Baker-
Hausdorff-Dynkin (CBHD, for short) Theorem as follows.

1. Identities (A.2.9a) are not sufficient to determine all of the coeflicients
Z; ;; one needs to add the information contained in (A.2.8b). Analogously,
(A.2.9b) and (A.2.8a) determine all of the Z; ;. Alternatively, one could
use (A.2.9a), (A.2.9b) and Zyy = 0 to determine all of the terms Z; ;.

More precisely, if we think of Z as an infinite matrix (Z; ;)i j>o0, identity
(A.2.9a) allows to determine an entry Z; ;, provided that one knows all
the entries in the (finite) sub-matrix with rows strictly less than ¢ and
columns less than or equal to j. Thus, in order to obtain all the entries
of Z from (A.2.9a), one needs to know the entries in the first infinite row;
these are given by (A.2.8b) (see also Lem. A.2.2). Analogous remarks hold
for (A.2.9b), by reversing the roles of columns and rows.

2. Since all the elements Z ; belong to £(x,y) (see (A.2.8b)) and since the
right-hand side of (A.2.9a) only involves Lie-bracketing, by the results in
(1) above, we can prove by induction that

Z;i(z,y) € L(z,y), foreveryi,j>0. (A.2.10)

Then, by using the Dynkin-Specht-Wever Lemma (see e.g., [30, Lemma
3.26]), from (A.2.10) and (A.2.4) we obtain the following (Dynkin’s) Lie-
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representation of Z; ;(z,y), holding true for (4, j) # (0,0)

ity ( n+1
Zij(@,y) Z:: n H—J
y > (adz)" (ad y)’* - - - (ad )" (ad )"~ (y)
(11,31 )s---s(in i) # (0,0) it inljnt
Y, =4
Jit++in=17

(A.2.11)

A.3 Convergence domain of the CBHD series in
Banach-Lie algebras

The present section is the real core of this chapter and it is totally devoted
to state and prove the announced convergence result for the Campbell-Baker-
Hausdorff-Dynkin double series introduced in Sec. A.2.

To begin with, we need to introduce some preliminary definitions.

Definition A.3.1. Let (g,[-,-]) be a Lie algebra over K. Given a,b € g, if
©Yab + L(z,y) — g is the Lie-algebra morphism in property (UPL) of the free
Lie algebra £(z,y) (see Rem. A.1.20), we define

Z; i(a,b) == @qp(Z; j(x,y)), foreveryi,j>0. (A3.1)

Here, as in (A.2.3), Z; j(x,y) is the coefficient of place (i, ) in the expansion of
Z(s,t) = log(exp(x s) x exp(yt)) in A[s,t] (with A = T (z,y)).

Remark A.3.2. We explicitly observe that, thanks to Rem. A.2.6, the prece-
ding Def. A.3.1 is well-posed: in fact, identity (A.2.10) ensures that Z; ;(z,y)
actually belongs to £(z,y) for every 4,5 > 1. Moreover, for any (i,7) € N x IN,
the map (a,b) — Z; j(a,b) defines, unambiguously, a function from g x g to g.

Remark A.3.3. By using the explicit Lie representation of Z; ;(x,y) given in
(A.2.11), one can define Z; ;(a,b) in the following alternative way:

itJ (~)mtt 1)+
Zij (a,b) g n z+g
x > (ada)': (ad )t - - (ad a)'" (ad b~ (b)
i 1g 1 ;
(i1,41)5-+5(in>dn) # (0,0) 11:J1: InJnt
14ty =1
Jit+tin=7

(A.3.2)

for any (i,7) # (0,0), and Zyo(a,b) = 0. Obviously, in the above formula the
adjoint map ad is related to the Lie algebra g.

From the Universal Property (UPL) of the free Lie algebra £(z,y) presented
in Rem. A.1.20, one easily derives the following crucial result.
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Corollary A.3.4. Let (g,[-,-]) be a Lie algebra over the field K and let a,b € g
be fized. Then, for every m € W\ {1} and every (i,5) # (0,0), we have

Zl,O(a7 b) = a, Zrn,O(ayb) = Oa Z()J(ll, b) = ba ZO,m(a7 b) = Oa

1
Zi+17j(a7b) = i1 Z K, [Zilajl(a/7b)".'[Zinajn(a’b)’a].'.]’
1<n<it
(i1.31) e 7 (0,0)
it =
Jitetin =
1 n
Zij+1(a,b) = 1 > (=1)"K, [Zi, 4, (a,0), - [Zi, 5, (a,b),6] - -],
J 1<n< it
(i1541)5++5(#ns5n) # (0,0)
G1ttin =1
Jitetin =
(A.3.3)

Here, as usual, we have set K,, := B, /n!, where { By, }ncn is the sequence of the
Bernoulli numbers (see Rem. A.1.19 - (2)).

Proof. These formulas follow from identities (A.2.8a) through (A.2.9b), by the
very definition (A.3.1) of Z; ;(a,b), and since the map ¢, is a Lie-algebra-
morphism (see the Universal Property (UPL) in Rem. A.1.20). O

Next, we consider the Lie algebras we are interested in for the rest of the
chapter: Banach-Lie algebras. Here is the definition.

Definition A.3.5. Let (L, [-,-]) be a (possibly infinite-dimensional) Lie algebra
over Ror C, and let || - || : L — [0,00) be a norm on L. We say that L is a
Banach-Lie algebra if the following conditions are satisfied:

(i) (L, |- | is a Banach space;
(ii) the map [-,:] : L x L — L is continuous (w.r.t.the product topology).
If L is a Banach-Lie algebra and if a,b € L, the series in L defined by
> ( > Zi,j(a,b)>
n=1 \it;=0
is called the homogeneous CBHD series related to (a,b).

Remark A.3.6. Let (L,[-,]) be a (real or complex) Lie algebra and let || - ||
be a norm on L. Since the bracket is bilinear, the continuity assumption (ii) in
Def. A.3.5 is equivalent to the existence of a constant M > 0 such that

g, g'lll < Mllgllllg’ll,  for every g,g" € L.

By replacing || - || with the equivalent norm M || - ||, we can suppose (and we
shall do it henceforth) that || - || is Lie-sub-multiplicative, that is,

llg. gl < gl llg'll,  for every g,g" € L. (A.3.4)
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Example A.3.7. Let (A, %) be an associative algebra over R or C and let || - ||
be a norm on A. Let us assume that (A4, ] - ||) is a Banach space and that the
product * is continuous, that is, there exists M > 0 such that

|axa'|| < M |al |||, for every a,a’ € A.
Since, for the Lie bracket [-, -], associated with *, one has
la, )l = la+ @’ — d + al) < 20 |ja|| [a']l, for every a,a’ € A,

we conclude that the triple (A, [, ]+, - ||) is a Banach-Lie algebra, a Lie-sub-
multiplicative norm being provided by 2M|| - ||.

Given a Banach-Lie algebra (L, [-,], || - ||), our aim is to provide a subset of
L x L on which this series is convergent in L. More precisely, we shall prove the
convergence of the majorizing (numerical) series

> i)l

4,520

With the background algebraic identities in Corollary A.3.4 at hands, this will
be reduced to the problem of estimating the maximal domain of the solution of
a real ODE. The latter is investigated in the next result.

Lemma A.3.8. Let B be a nonnegative real constant and let
t t
Fi(-2m,2m) =R, F(t):=2+ (1 — cot (5)) (A.3.5)

(with the obvious convention F(0) := 1). Moreover, for any fized o € (—2m,27),
let v be the maximal solution of the (real) Cauchy problem

v =B F(v)
froem s

Then, if % (0) denotes the i-th derivative of v at 0, for every n > 0 one has

(n+1)(( 0 (@) (0) - .. ~Um)(Q
SO0 —a, 7 <>:BZ_1Km|< v 2O 7'<>>’

n! SLERER

i1y 20
i1+ +im =n
(A3.7)
all these series being convergent. Here K,, = By, /m!, where {B,,}men is the
sequence of the Bernoulli numbers. As a consequence, if a € [0,2m) then all the

derivatives of v at 0 are nonnegative real numbers.

Proof. To begin with, if Dy, is the complex disc with radius 27 centered at 0,
and F(z) is as in (A.3.5) (for z € Dy, ), we claim that

F(z) =307 o | Ky| 2" for every z € Doy. (A.3.8)

In fact, by definition of K,,, for any z € C with |z| < 27 we have

62

P(z) = Z_ 1= ZK,, Z".
n=0
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By well-known properties of the Bernoulli numbers (see e.g., [135]), we have
Ko=1, K1 = —1/2, Kopi1 =0, Koy = (=1)""1|Ky,| (n>1).

This ensures that ¢(iz) =1 — £ — 3> | |Ky,|2?" (whenever |z| < 2), hence

Zu( |z =1+= +Z\K2n\22”—2+7———w(zz)

:2—1—5(1—00’5(5)) = F(2),

as we claimed in (A.3.8). Now, (A.3.7) directly follows from (A.3.8) by inserting
the Maclaurin expansions of F' and of (¢) (which is real-analytic since it solves
(A.3.6), with F analytic) and by the standard power-series Ansatz. The last
assertion of the statement follows from (A.3.7) by an induction argument. [

From Lem. A.3.8 we obtain the following central result.

Theorem A.3.9 (Estimate of Z; ; in a Banach-Lie algebra). Let L be a Banach-
Lie algebra, equipped with a Lie-sub-multiplicative norm ||-|| (i.e., (A.3.4) holds),
and let a,b € L be such that ||al],||b|| < 27. Moreover, if F' is as in (A.3.5), let

Y= Vall ol and B = Vb, lal]

be the maximal solutions of the following (real) Cauchy problems

{7’ = [1bl F(v) {u’ = [lall £ ()
7(0) = lall; 1(0) = [|Bl].

If Z; ;(a,b) is as in (A.3.1), one has the estimates

> )
E 1 Zi,j(a,b)|| < 2 j'(()) for every j > 0;
i=0 :

0o (A.3.9)
u( )( ) )
Z | Zi j(a,b)| - for every i > 0.

Proof. We prove the first family of inequalities in (A.3.9), proceeding by induc-
tion on j € N. The proof of the second family is analogous and is omitted.
If j = 0, from the first group of identities in Cor. A.3.4 we infer that

Y1 Zioa,b)l| = 1Z1,0(a,b)|| = l|all = +V(0).

=0

Let now j > 0 be fixed and let us assume that

\_/

v(h)(
ZHZlhab Vh=0,...,j (A.3.10)
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We shall prove that the same holds true for h = j + 1. On the one hand, if
j =0, from (A.3.3) (and the sub-multiplicative property (A.3.4)), we get

> > (A.3.3)
Z 1Zi,1(a,b)|| = [ Zo,1(a,b)|| + Z 1Zi,1(a,b)| =" bl
1=0 =1

Z (=1)" Ky [Zi1,j1 (a,b),- - [Zimjn (a,b),b] -] H

1<n<i
(i1,51) -+, (inJn) # (0,0)
14ty =1
Jit++jn =0
< ol + Z > Kl Zio(a, bl (1 Zi, 0a, D)
i=1 1<n<1
1, 77'71750
i1t tin =1

3) i\ (A.3.8)
=" [loll <1 +Z Kl l|all ) =" [loll F(l[all)
1=1

= [l F(+(0)) = v(0).

On the other hand, if j > 1, again by exploiting the last identity in (A.3.3), we
obtain (see the induction hypothesis (A.3.10))

o0 o 1
Z;i ix1(a,b)]| < —_—
> 101000 ;(]H

x > (Knl 1 Zi, 5, (a, )| -+ - | Zi, 5, (a; D) ||b>
1<n<itg
(41,41 )55 (ins5n) # (0,0)
i1+ tin =1
Jitt+in=17J
161l
< - > (Knl 1 Zi, 5, (@, 0)| -+ - | Zi, 5, (a; )]

j+1

n>1, i1,...,in 20
J1+ +in=1J

IbH Z S|k, |<Z 1Z:, 5, (a,b) ||> (Z 1 Ziy gy (a,b |>

n=1ji1++jn=17J i1=0 i, =0

A310) |b|| Z\ | Z 71)(0) - - -4 (0) :7(j+1)(0)
! Y Jat-- ! G+t
Jit-tin =17

In the last identity we used in a crucial way (A.3.7). This ends the proof. [

We are finally in a position to state and prove the announced convergence
result for the homogeneous CBHD series in any Banach-Lie algebra.

Theorem A.3.10. Let L be a possibly infinite-dimensional) Banach-Lie algebra
on R or C, equipped with a Lie-sub-multiplicative norm || - ||. We set

G:[0,27) = R, G(r):= /%H ( ! du, (A.3.11)

5 (1—cot(3))
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and we denote by ipo(G) the ipograph of G, that is,
epi(G) = {(r,s) € R?*: r € [0,27), 0 < s < G(r)}.
We then define the set
A:={(a,b) € Lx L: (lal, I]) € epi(G) or (bl lal) € epi(G) }. (A.3.12)

Then, for every (a,b) € A, the homogeneous CBHD series related to (a,b) is
convergent in L. More precisely, we have the following bound

Z | Zij(a,b)|| <27  for any (a,b) € A. (A.3.13)
i,j=0
Finally, one has the improved estimate
Z 1 Zi ;(a,b)|| < C(a,b), for any (a,b) € A, (A.3.14)
i,j=0

where C(a,b) := min{M (a,b), M (b,a)}, and M = M(a,b) in [0, 27| is implicitly
defined (in a unique way) by the following integral equation

) : du=1o h(a,b) € A A3.15
U = with (a ) 3.
/|a|2+g<1_cot(;)) 6l (with (a,b) € A) (A515)

Proof. First of all we observe that the function G is well-posed (and finite-
valued), since the map F introduced in (A.3.5) has a positive infimum on the
interval (—2m,27). We then fix any (a, b) belonging to the half-set

Ay = {(a,b) €LxL: |a| <2m, [b] < G(||aH)}, (A.3.16)

and we pass to prove that, for every (a,b) € Ay, the series

> 1Zij(a )l

i,j=0
is convergent. The case of the set analogous to (A.3.16), with |la| and [b]|

interchanged, can be treated similarly, and is therefore omitted.

We can suppose that b # 0, since >, . [|Z; j(a,0)|| = [lal|. We denote by
Y = Y|, |p| the maximal solution of the (real) Cauchy problem

{7’ = |[bll F (),
7(0) = [a]l,

which is defined on its maximal domain, say D = (¢,d) C R (and 0 € D). From
the general theory of separable ODEs, we know that

1 /'al 1 1 /% 1 G(|lal)
c=— du, d=— du = . A3.18
160 /s F(0) 11 Sy F(0) o @818

(A.3.17)
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Moreover, since F' is real analytic, -y is real analytic too, and its Maclaurin series
has a positive radius of convergence, say p. We claim that

p>d. (A.3.19)

Indeed, by contradiction, let us suppose that p < d. We fix, throughout the
sequel, the notation for the complex disk of center w and radius r

D(w,r):={2€C: |z—w| <7}

The complex power series
Y1 ©)
n=0 '

has radius of convergence p, and by Lem. A.3.8, we know that it has real non-
negative coefficients. From the classical Vivanti-Pringsheim Theorem (see e.g.,
[130, Theorem 7.21]), it follows that the point z = p must be a singular point
for A, that is, p does not belong to the disc of convergence of any power series
deduced from A. ! Since v is real analytic on its maximal domain D = (c,d),
and since 0 < p < d (by our assumption), the complex power series

2 ~(n)
Be)=Y Ty

n=0

has a positive radius of convergence. Therefore, there exists § > 0 so small that
D(p,d) is contained in the disc of convergence of B, and such that

O<p—d<p+d<d.
In particular, we have the following crucial identity
A(t) =~(t) = B(t) foreveryrealt e (p—4,p). (A.3.20)

Since A(z) and B(z) are both holomorphic on O := D(0, p) N D(p,d), we infer
that they coincide on the whole of O. Let now

)

to =p— g

Since B is holomorphic on D(p, §), since the latter set contains ¢y, and since the
distance of ty from 0D(p,d) is 2§/3, the power series

> B
C(z) = Z BT(tO) (z —t0)",
n=0 :

which is deduced from B, has radius of convergence > 26/3. In particular, p
belongs to the disc of convergence of C. From (A.3.20) we see that

B™(tg) = A™(ty), for every n >0,

1We say that a power series B is deduced from a power series A, if B is the Taylor series
of the function z — A(z) about some point belonging to the disc of convergence of A.
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so that C' is also deduced from the power series A. Since ¢ also belongs to the
disc of convergence of A, we have obtained the power series

> An)
) =3 A0 (o gy,

|
"0 n!

deduced from A, with disc of convergence containing p. This is in contradiction
with the fact that p is a singular point for A. Therefore, (A.3.19) is proved.
From this, recalling that p is the radius of convergence of A(z), we get

X ~(n)
y(t) = Z 7 n!(O) ", for every t € [0,d). (A.3.21)

We are ready to conclude the demonstration: from the first family of inequalities
n (A.3.9) (see Thm. A.3.9), it follows that

ZIIZ
=0

and since (a,b) belongs to the set Ay in (A.3.16), from (A.3.18) we infer that

G(lal)
.

o0

(A.3.22)

Jj= Jj=0

so that ¢t = 1 is an admissible value in (A.3.21). This shows that the power
series on the right-hand side of (A.3.22) is indeed convergent, namely to v(1).
Since ~y(t) solves the Cauchy problem (A.3.17) for every t € (c¢,d), we have
v((¢,d)) C (—2m,27) so that 0 < (1) < 2. We have the estimate

s Zi,j<a7b>H < 3 12 b)] < (1),

n=1"i4+5=0 1,j=0

By taking into account that v(1) < 2, one obtains the estimate (A.3.13), which
also gives the (absolute) convergence of the homogeneous CBHD series related
to (a,b) € A. The improved estimate (A.3.14) follows from

> 125, ) < min {3y o1 (D Vo pan (D},

,j=0

where we recall that v(t) = )4, s (t) solves

{7’ = |[bll F (),
7(0) = [a]|.

From the basic theory of separable ODEs, one recognizes that (1) is implicitly
defined by the following integral equation

Ji— o
du = ||b]|,
a2+ 5 (L = cot(3))
and thus (1) = M(a,b). This ends the proof. O
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A.4 Application: Some differential equations re-
lated to the CBHD series

The aim of this last section is to prove, as a consequence of the results in the pre-
vious sections, the following Thm. A.4.2, concerning some differential equations
associated with the CBHD series in a generic (possibly infinite-dimensional)
Banach-Lie algebra. First we need some notation.

Let L be a Banach-Lie algebra, equipped with a Lie-sub-multiplicative norm
|| -] asin (A.3.4) (see Rem. A.3.6). We fix the following notation:

U(z) = ezz_l:Zan" (zeC: |2] < 2m),

where K,, := B, /n! and {B,},cn is the sequence of the Bernoulli numbers in
(A.1.10). (In the literature, ¥(—=z) is usually referred to as Todd’s function.)

Lemma A.4.1. Let g € L be such that ||g|| < 2m. Then the map
U(adg): L — L,  W(adg)(g ZK (ad g)" (). (A.4.1)

defines a continuous endomorphism of the normed space L.

Proof. The claimed properties of ¥(adg) are consequences of the following e-
stimate of the operator norm | ¥(ad g) | of U(adg) (together with the fact
that, by definition, (L, | - ||) is a Banach space):

| T(adg) | :HS}ﬁPIH‘I’(adg)( 2l <|‘Slﬁp ZlK | I(ad g)" (gl
g'lI< IN=%n=0

(see (A.3.4))

oo

< \|Sl|l\p Z Kl llg™ 19" = > 1Kal llg]™ = F(llgll) < oo
9 n=0 n=0
Here F is the map as introduced in (A.3.5) (see also (A.3.8)), which is finite-
valued on (—2m,27). This ends the proof. O

We are ready to state the following result.

Theorem A.4.2. Let L be Banach-Lie algebra, equipped with a Lie-sub-multi-
plicative norm || - ||, and let a,b € L be such that the couple (a,b) belongs to the
set A introduced in (A.3.12). We consider the function

Z:[-1,1]x[-1,-1] = L, Z(s,t): Z(ZZ”satb) (A.4.2)

n=1 i+j=n
Then, with the notation in (A.4.1), for every s,t € [—1,1] we have

0 0
%Z(S t) =W(ad Z(s,t))(a) aZ(s,t) = VU(—ad Z(s,t))(b)
Z(0,t) =tb, Z(s,0) = sa.

(A.4.3)
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Finally, setting Z(t) := Z(t,t) for every t € [—1,1], one has
Z'(t) =¥(ad Z(t))(a) + ¥(—ad Z(t)) (D),
on [—1,1]. (A4.4)
Proof. Let (a,b) € A be fixed. First, we observe that the series of functions in
(A.4.2) is normally convergent for every (s,t) € [-1,1] x [—1,1]: in fact, since
Zm-(s a, t b) S Sitj Zi,j ((1, b)

(as it trivially follows from identity (A.3.2)), one has

sup (| Zij(sa,tb)| =Y sup |5 [[Zi;(a,0)]
0 (el 20 (smel-1p2
= > 1Zi(a,b)]| < 2.
ij=0

Here we used the bound (A.3.13) in Thm. A.3.10. Therefore, Def. (A.4.2) is well-
given, the series being uniformly (hence pointwise and absolutely) convergent
on [—1,1] x [-1,1]. Furthermore, this also shows that Z(s,t) belongs to the
open disc of L with radius 27 and center 0; therefore ¥(+ad Z(s,t)) are well
posed for every s,t € [—1,1] (recall that we assumed that (a,b) € A).

For any given s,¢ € [—1, 1], the absolute convergence of the double series

Z Zi,j (a, b) Sitj

,j=0

allows us to commute and associate summands as we please. As a consequence,
fixed ¢ € [—1, 1], we can reorder the series defining Z(s, t) as a power series in the
real variable s (valued in the Banach space L): the radius of convergence of the
resulting power series is greater than or equal to 1 (as it follows from the above
argument), and differentiation term-by-term is therefore allowed. Hence, the
first system in the above (A.4.3) follows from the very definition of ¥(ad Z (s, t))
(see (A.4.1)), from the continuity of the adjoint map ad on L x L, and — in a
crucial way — from the family of algebraic identities in (A.3.3) (see Cor. A.3.4).
The second system in (A.4.3) can be proved analogously.

Finally, (A.4.4) directly follows from (A.4.3) and the Chain Rule. O
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