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Introduction

As is clearly suggested by its title, all the results presented in this thesis concern
linear partial di�erential operators whose main model is the following:

(1.0) L = −
m∑
j=1

X∗µj Xj .

Here, X1, . . . , Xm are smooth vector �elds on RN and, for every j = 1, . . . ,m,
X∗µj denotes the formal adjoint of Xj with respect to a Radon measure µ which
assumed to be equivalent to the standard Lebesgue measure.

Among in�nitely many other natural problems involving these operators,
we are particularly interested in the following key issues, widely recognized as
fundamental topics by the PDE community:

(1) the Strong Maximum Principle;

(2) existence and uniqueness of a �well-behaved� global fundamental solution;

(3) existence of a Lie group on RN w.r.t. which X1, . . . , Xm are left-invariant.

�Strong Maximum Principle�, �global fundamental solution� and �left-invariance
on Lie groups� are precisely the keywords of this thesis.

Now, if we denote by V the density of µ w.r.t. the Lebesgue measure (and if
we assume that V > 0 on RN ), it is not di�cult to recognize that any operator
L as in (1.0) can be written in the following quasi-divergence form 1

(1.1) L :=
1

V (x)

N∑
i,j=1

∂

∂xi

(
V (x) ai,j(x)

∂

∂xj

)
, x ∈ RN .

As we shall describe in detail in Chpt. 4, such a class of PDOs is general enough
to comprehend, along with our prototype operators (1.0), Hörmander operators,
sub-Laplace operators on real Lie groups (e.g., on Carnot groups, [37]), as well
as linear PDO intervening in the study of function theory of several complex
variables, CR and Riemannian Geometry (see e.g., [74, 75, 96, 98, 123]).

To face problem (1) in the case of PDOs L of the form (1.1) and problems (2)
and (3) in the case of PDOs L of the form (1.0), we adopt a unitary approach
which crucially relies on the study of the geometry of the integral curves of
suitable vector �elds associated with L (or with L) and of their composition.

1Incidentally, this is the form of the operators studied by Fe�ermann and Phong since the
early '80s (see, e.g., the fundamental papers [69, 70]).
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We now turn to describe more closely how such a geometrical approach is
exploited in order to study each one of the problems listed above.

(1) As concerns with the Strong Maximum Principle (SMP, for short) it is
well-known that, in presence of the Hörmander rank condition, the SMP
can be obtained by following the classical scheme:

Hörmander
condition

⇒ Chow-Rashevsky
connectivity theorem

⇒ Propagation of
maxima

⇒ SMP.

Our aim is to prove the SMP for our operators L without assuming Hör-
mander's rank condition. In order to do this, we pro�tably exploit assump-
tion (HY) plus a theorem of Control Theory due to Amano [7], based on
the properties of the �ows of the vector �elds A1, . . . , AN associated with
the quadratic form of L (see also [120]).

We can then schematize our approach as follows:

(HY)

(plus (S)-to-(NTD))
=⇒

SMP
without assuming

Hörmander's rank condition.

(2) We now turn to discuss the problem of the existence (and of the unique-
ness) of a global fundamental solution for our PDOs L.

There is no doubt that this is a very di�cult issue, even in the particular
case of Hörmander operators. Indeed, to the best of our knowledge, in
this general situation one can only prove the existence of local fundamental
solution (see, e.g., the celebrated papers by Folland [72], Folland and Stein
[75]) or of a parametrix (see Rothschild and Stein [123]). We thus limit
ourselves to considering a further sub-class of the Hörmander operators,
namely that of the homogeneous Hörmander operators: by this, we mean
linear partial di�erential operators of the form

L =

m∑
j=1

X2
j ,

where {X1, . . . , Xm} is a Hörmander system on Rn and X1, . . . , Xm are
assumed to be homogeneous of degree 1 w.r.t. a family of non-isotropic
dilations. A key tool for proving the existence of a global fundamental
solution for these operators is the lifting method developed by Folland
[72], where a fundamental rôle is played by the following map:

π : Lie{X1, . . . , Xm} → Rn, π(X) := exp(X)(0).

The homogeneity assumption on the vector �elds X1, . . . , Xm implies that
π is well-de�ned and that it can be turned into a global canonical projec-
tion. Note again the key role of the �ows of the vector �elds involved.

(3) Finally, we come to the problem of �nding a Lie group on RN with respect
to which a PDO L of the form (1.1) is left-invariant.

Quite surprisingly, this problem seems to be exquisitely of algebraic/geo-
metrical nature, in that it involves �ows of vector �elds and (in a crucial
way) the Campbell-Baker-Hausdor�-Dynkin Theorem for ODEs.
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To be more precise, let us assume that L can be written as a sum of
squares of m v.f.s X1, . . . , Xm. Then, under suitable assumptions on

g = Lie{X1, . . . , Xm},

we can use the cited CBHD Theorem for ODEs to construct a local Lie
group structure on RN with Lie algebra (in the sense of local Lie groups)
equal to g. To globalize this structure, we exploit a completeness result
for the �ows of time-dependent vector �elds.

After this general picture of the ideas underlying this thesis, we now describe
more closely the results we obtained for each one of the problems (1)-to-(3).

One of the main motivations for our interest in PDOs L of the form (1.1) is
represented by the (well-known) �ne properties of the sub-Laplace operators on
Carnot groups, which take the cited form (1.1).

For this reason, the �rst natural question we answer is the following:

(Q): is it possible to �nd a set of independent necessary and su�cient conditions
for L to be left-invariant on a suitable Lie group G = (RN , ∗)?

In the particular case of operators L which can be written as a sum of squares
of real-analytic vector �elds, a complete answer to question (Q) is given by the
following theorem, which is the main result of Chpt. 2.

Theorem A. Let g be a Lie algebra of real-analytic vector �elds on RN . There
exists a real-analytic Lie group G = (RN , ∗) with Lie(G) = g if and only if

(C): every element of g is a complete vector �eld;

(H): g is a Hörmander system of vector �elds;

(ND): the dimension of g is equal to N .

In a forthcoming study, we shall show that the hypothesis of real-analyticity
of the vector �elds can be replaced by their being of class C∞ (in this case G
will be a smooth Lie group); see Sec. 2.1.4.

Some examples, of relevance in the applied setting, to which our results apply
are: the Kolmogorov-Fokker-Planck operators studied in [29, 32]; the degenerate
Ornstein-Uhlenbeck operators in [33]; the homogeneous operators in [28, 31]. As
regards Kolmogorov-Fokker-Plank operators, we also highlight the paper [91] by
Hel�er and Nier, where the authors show the relation between these operators
and the Witten Laplacian, together with some notable applications.

The proof of Thm.A makes crucial use of the powerful tool provided by the
Campbell-Baker-Hausdor�-Dynkin Theorem; for this reason, a deep study of
the convergence of the Campbell-Baker-Hausdor�-Dynkin series (both from the
algebraic and the analytic view-point) will be carried out in the Appendix. It
is worth noting that the study of the convergence domain of the CBHD series
has a long history, tracing back to Hausdor� [90].2

2Concerning this topic, we address the reader to the papers [25, 26, 27, 48, 49, 60, 63, 110,
111, 113, 114, 115, 118, 126, 128, 129, 133].
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We now brie�y describe the proof of Thm.A. First of all, by means of the
cited Campbell-Baker-Hausdor�-Dynkin Theorem and by exploiting assump-
tions (C), (H) and (ND), we are able to show the existence of an open neigh-
borhood U ⊆ RN of 0 and of a real-analytic map

m : RN × U −→ RN , (x, y) 7→ m(x, y),

such that (RN ,m) is a local Lie group, with neutral element 0 and Lie algebra
(in the sense of local Lie groups) equal to g. Then, we globalize this structure
by using a completeness result for time-dependent vector �elds.

In fact, for every �xed x, y ∈ RN we prove that the function

]− ε, ε[ 3 t 7→ m(x, ty)

solves a Cauchy problem which possesses a maximal solution ϕx,y de�ned on
the whole of R; hence, for every x, y ∈ RN we de�ne

x ∗ y := ϕx,y(1).

By classical results of ODE Theory, the map ∗ is real-analytic on RN × RN ;
furthermore, by Unique Continuation, it is not di�cult to see that ∗ globalizes
all the local group properties satis�ed by m.

One of the most notable properties of sub-Laplace operators on Carnot
groups is probably the existence of a global fundamental solution, which be-
haves like the fundamental solution of the classical Laplace operator on RN

(with N ≥ 3). More precisely, if G = (RN , ∗, δλ) is a Carnot group (with homo-
geneous dimension Q > 2) and if LG is a sub-Laplacian on G, a deep result by
Folland [72] ensures the existence of a homogeneous and continuous symmetric
norm d ∈ C∞(RN \ {0},R) such that

Γ : {(x, y) ∈ RN ×RN : x 6= y} −→ R, Γ(x, y) := d2−Q(x−1 ∗ y
)

is the unique global fundamental solution for LG satisfying

lim
‖y‖→∞

Γ(x, y)→ 0, for every x ∈ RN .

The existence of a global fundamental solution for LG brings along several con-
sequences of great importance: for example, the availability of surface and solid
mean value formulas for C2 functions, the Strong and Weak Maximum Prin-
ciples, some extensions of the classical Harnack Inequality and of the Hardy
Inequality, and so on (see, e.g., [37]).

Motivated by these facts, we shall turn our attention to the problem of the
existence (and of the uniqueness) of a global fundamental solution for our PDOs
L of the form (1.1). As we said earlier, for a selected subclass of such operators,
namely that of the homogeneous Hörmander operators on Rn, we solve this
problem by proving the following two theorems, which are the central results of
Chpt. 3: Thm.B for the case of stationary (homogeneous Hörmander) operators
L, Thm.C for parabolic operators of the form L− ∂t (with L as above).

In the following theorems, instead of the usual notation RN we use Rn, for
a reason which will become apparent in a moment.
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Theorem B. Let X = {X1, . . . , Xm} be a set of linearly independent 3 smooth
vector �elds on Rn satisfying the following assumptions:

(H1): X1, . . . , Xm are homogeneous of degree 1 with respect to

δλ(x) = (λσ1x1, . . . , λ
σnxn),

where 1 = σ1 ≤ . . . ≤ σn;

(H2): X1, . . . , Xm satisfy the Hörmander rank condition:

dim
{
X(x) : X ∈ Lie{X1, . . . , Xm}

}
= n, for every x ∈ Rn.

We set q :=
∑n
j=1 σj and de�ne L :=

∑m
j=1X

2
j . If q > 2, there exists a unique

global fundamental solution Γ for L satisfying the following properties:

(i) Γ(x; y) = Γ(y;x) for every x, y ∈ Rn with x 6= y;

(ii) Γ(x; ·) = Γ(·;x) is smooth and L-harmonic on Rn \ {x};

(iii) Γ(x; ·) = Γ(·;x) vanishes at in�nity (uniformly for x in compact sets);

(iv) Γ(x; ·) = Γ(·;x) is locally integrable on Rn;

(v) Γ is locally integrable on Rn×Rn and C∞ out of the diagonal of Rn×Rn.

Now, the parabolic version of the above theorem.

Theorem C. Let the assumptions and the notations in the above theorem apply.
We consider the heat-type operator H associated with L, that is,

H := L− ∂t =

m∑
j=1

X2
j − ∂t, on R1+n = Rt ×Rnx .

Then, there exists a unique global fundamental solution Γ for H (usually referred
to as a heat kernel for H) satisfying the following properties:

(i) Γ ≥ 0 on its domain and, for every (t, x), (s, y) ∈ R1+n, we have

Γ(t, x; s, y) = 0 if and only if s ≤ t.

(ii) For every (t, x) 6= (s, y) ∈ R1+n, the function Γ depends on t and s only
through the di�erence s− t: in fact, we have

Γ(t, x; s, y) = Γ(0, x; s− t, y).

Moreover, Γ is symmetric w.r.t. the space variables x, y ∈ R1+n, that is,

Γ(t, x; s, y) = Γ(t, y; s, x).

3Here and throughout, we consider the set X(RN ) of the smooth vector �elds on RN as a
real vector space and not as C∞-module; therefore, the vector �elds X1, . . . , Xm are linearly
dependent if there exist λ1, . . . , λm ∈ R, not all vanishing, such that

λ1X1 + · · ·+ λmXm = 0

as a �rst order linear PDO (i.e., all of its coe�cient functions are identically equal to 0).
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(iii) For every λ > 0 and every (t, x) 6= (s, y) ∈ R1+n, we have

Γ(λ2t, δλ(x);λ2s, δλ(y)) = λ−q Γ(t, x; s, y).

(iv) Γ is smooth out of the diagonal of R1+n ×R1+n.

(v) For every compact set K ⊆ R1+n, we have

lim
‖ζ‖→∞

(
sup
z∈K

Γ(z; ζ)
)

= lim
‖ζ‖→∞

(
sup
z∈K

Γ(ζ; z)
)

= 0.

(vi) Γ ∈ L1
loc(R1+n ×R1+n) and, for �xed every z ∈ R1+n, we have

Γ(z; ·) and Γ(·; z) ∈ L1
loc(R1+n).

(vii) For every �xed (t, x) ∈ R1+n we have∫
Rn

Γ(t, x; s, y) dy = 1, for every s > t.

(viii) For every �xed ϕ ∈ C∞0 (R1+n,R), the function

Λϕ : R1+n −→ R, Λϕ(ζ) :=

∫
R1+n

Γ(z; ζ)ϕ(z) dz

is smooth, it vanishes at in�nity and H(Λϕ) = −ϕ on R1+n.

Furthermore, if we consider the function Γ∗ de�ned by

Γ∗(t, x; s, y) := Γ(s, y; t, x), for every (t, x) 6= (s, y) ∈ R1+n,

then Γ∗ is a global fundamental solution for the adjoint operator H∗ = L + ∂t,
satisfying the dual statements of (i)-to-(viii).

The key ingredient for proving these results, which is at our disposal in the
case of homogeneous Hörmander operators, is the notable lifting method for
homogeneous vector �elds proved by Folland in [73], plus an ad-hoc change of
variables. Folland's approach is essentially a geometric re-interpretation of the
lifting construction made by Rothschild and Stein [123], in the particular case
when the vector �elds involved are assumed to be homogeneous of degree 1
w.r.t. a family of non-isotropic dilations.

Under the latter assumption, Folland showed that the local lifting proved
by Rothschild and Stein is actually global, and the vector �elds can be directly
related via a submersion π to left-invariant vector �elds on a suitable higher-
dimensional homogeneous Carnot group G on RN , with N ≥ n. Taking into
account this fact, we prove Thm.s B and C by using a naive saturation argument.

Let us take a closer look to the proof of Thm.s B and C. First of all, by using
Folland's result and a suitable change of variables turning π into the canonical
projection from RN onto Rn, we can prove the existence of a sub-Laplacian LG
on a Carnot group G = (RN , ?, δλ) which is a lifting of L on RN . We then use
the following notation for the points of RN :

(x, ξ), with x ∈ Rn, ξ ∈ Rp and p = N − n.
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If ΓG(x, ξ; y, η) denotes the unique global fundamental solution for LG vanishing
at in�nity (with pole (x, ξ)), we show that the function

Rp 3 η 7→ ΓG(x, 0; y, η)

is integrable on Rp for every x 6= y ∈ Rn, this result being non-trivial. Setting

Γ(x; y) :=

∫
Rp

ΓG(x, 0; y, η) dη x 6= y ∈ Rn,

we then prove that Γ de�nes a global fundamental solution for L, further satis-
fying properties (i)-to-(v) in the statement of Thm.B.

As for Thm.C, we argue exactly in the same way: if ΓG(z, ξ; ζ, η) is the
unique heat kernel for HG = LG− ∂t on R×G (with pole (z, ξ)), we prove that

Rp 3 η 7→ ΓG(z, 0; ζ, η)

is locally integrable on Rp for every �xed z 6= ζ ∈ R1+n. Therefore, setting

Γ(z; ζ) :=

∫
Rp

ΓG(z, 0; ζ, η) dη z 6= ζ ∈ R1+n,

it turns out that Γ is a global fundamental solution for H, further satisfying all
the properties in the statement of the theorem.

In the literature, there are many examples of lifting involving meaningful
PDOs: for instance, consider the case of the Grushin operator

G = (∂x1
)2 + (x1 ∂x2

)2

on R2, a lifting of which is given by the PDO

G̃ = (∂x1
)2 + (∂x3

+ x1 ∂x2
)2 on R3.

In turn, the latter is nothing but a copy (via a change of variable) of the well
known Kohn-Laplacian on the �rst Heisenberg group. The idea of obtaining
a fundamental solution for the Grushin operator G via a saturation argument
applied to the (explicit!) fundamental solution of G̃ has already been exploited
in the literature: see e.g., Bauer, Furutani, Iwasaki [16]; see also Calin, Chang,
Furutani, Iwasaki [46, Sec. 10.3] for the Heat kernel; more generally, see Beals,
Gaveau, Greiner, Kannai [19] for operators lifting to sub-Laplacians on 2-step
Carnot groups. To the best of our knowledge, when the existence of a global
fundamental solution Γ for a PDO is provided, it seems that in the vast majority
of cases (though exceptions are available):

- PDOs with polynomial coe�cients are considered;

- existence is a by-product of an explicit (integral) formula for Γ.

Note that the same happens in the present case, since our homogeneous op-
erators necessarily have polynomial coe�cients, and an integral representation
for Γ (albeit not explicit) is furnished. Global fundamental solutions, with-
out an explicit representation, are given for example, in Folland [72]; Nagel,
Ricci, Stein [117]; Bon�glioli and Lanconelli [32]; Bramanti, Brandolini, Lan-
conelli and Uguzzoni [40]. Existence results without an exact representation are
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also available, based on the so-called Levi parametrix method [107] (see also
[40, 78, 95]); concerning Levi's parametrix method, we also highlight the recent
paper by Bramanti, Brandolini, Manfredini, Pedroni [41], where a local Lifting
technique and a local saturation argument are also applied. See also the paper
[52] by Citti, Manfredini, where it is exploited a local Lifting technique involving
hypoelliptic Hörmander operators and their local fundamental solutions.

Finally, as regards the use of a lifting argument to study some classes of
PDOs, we address the reader to the notable paper [92] by Hel�er and Nourrigat,
where a lifting technique is pro�tably exploited in order to investigate the C∞-
hypoellipticity of PDOs modelled on Hörmander vector �elds.

Once the existence of a global fundamental solution for our homogeneous
Hörmander operators has been proved, we focus on the Strong Maximum Prin-
ciple (SMP) and on Hardy's inequality for PDOs L of the form (1.1).

As is well-known, in the particular case of Hörmander operators, Bony
proved in [39] the Strong Maximum Principle as a consequence of a Maximum
Propagation argument, based on the Carathéodory-Chow-Rashevsky Theorem.
Moreover, when a strictly positive global fundamental solution Γ exists, such a
principle can be deduced from the mean value formulas related to Γ (see [1]).

As regards Harnack inequalities and Maximum Principles, during the 80's
many important results on degenerate-elliptic operators under the divergence-
form (1.1) were established; see e.g. [50, 64, 65, 66, 76, 77, 89, 96]. As for
the assumptions made on the involved PDOs, in [96] a suitable subellipticity
hypothesis is assumed, whereas in the other cited papers, operators of the form
(1.1) are considered with very low regularity assumptions on the coe�cients,
but under the hypothesis that the degeneracy of A(x) be controlled on both
sides by some appropriate weights.

In the present thesis, we do not require L to be a Hörmander operator,
our results holding true in the in�nitely-degenerate case as well, nor do we
make any assumption of subellipticity or weighted degeneracy. In obtaining
our main results we are much indebted to the ideas in the pioneering paper
by Bony, [39], where Hörmander operators are considered. The main novelty
of our framework is that we have to renounce to the geometric information �of
propagation-type�, encoded in Hörmander's Rank Condition: indeed the latter
implies a connectivity property (leading to the Strong Maximum Principle), as
well as it implies hypoellipticity, due to Hörmander's theorem [94].

In our setting, the approach is somewhat reversed: hypoellipticity is the
main assumption, and we need to derive from it some appropriate connectivity
and propagation features, even in the absence of a maximal rank condition.
This will be made possible by exploiting a Control Theory result by Amano [7]
on hypoelliptic PDOs. Our result can be stated as follows (see Chpt. 4).

Theorem D. Let L be a linear PDO of the form (1.1) and satisfying the fol-
lowing structural assumptions: 4

(S): L has smooth coe�cient functions V, ai,j ∈ C∞(RN ,R) and V is strictly
positive on the whole of RN ;

4The Strong Maximum Principle concerning L-subharmonic functions, we could limit
ourselves to only consider the case V ≡ 1, since the general case can be easily reduced to this
particular one. The main reason why we preferred to deal with operators L of the general
form (1.1) is the need to keep the rôle of the function V and of the matrix A(x) distinct.
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(DE): L is degenerate elliptic, i.e., A(x) =
(
ai,j(x)

)
≥ 0 for every x ∈ RN ;

(NTD): L is non-totally degenerate at every point of RN (see (4.1.2));

(HY): L is C∞-hypoelliptic in every open subset of RN , that is, for every open
set Ω ⊆ RN and every u ∈ D′(Ω) we have

sing supp(u) = sing supp(Lu).

If Ω ⊆ RN is open and connected, the following facts hold true:

(1) Any function u ∈ C2(Ω,R) satisfying Lu ≥ 0 on Ω and attaining a maxi-
mum in Ω is constant throughout Ω.

(2) If c ∈ C∞(RN ,R) is nonnegative on RN , then any function u ∈ C2(Ω,R)
satisfying Lu− c u ≥ 0 on Ω and attaining a nonnegative maximum in Ω
is constant throughout Ω.

Since we touched upon very classical facts together with a less known result
by Amano, some clari�cation on our arguments may be welcome. Our proof of
the Strong Maximum Principle in Thm.D follows, à la Bony, a rather classical
scheme, in that it rests on a Hopf Lemma for L. However, the passage from
the Hopf Lemma to the SMP is, in general, non-trivial and the same is true in
our framework. As anticipated, we are able to supply the lack of Hörmander's
Rank Condition by using the notable control-theoretic property encoded in the
hypoellipticity assumption (HY), proved by Amano in [7]: indeed, thanks to
the hypothesis (NTD), we are entitled to use [7, Theorem 2] which states that
(HY) ensures the controllability of the ODE system

γ̇ = ξ0A0(γ) +

N∑
i=1

ξiAi(γ), (ξ0, ξ1, . . . , ξN ) ∈ R1+N ,

on every open and connected subset of RN . Here A1, . . . , AN denote the vector
�elds associated with the rows of the principal matrix of L, whereas A0 is the
drift vector �eld obtained by writing L in the form

Lu =

N∑
i=1

∂

∂xi
(Aiu) +A0u.

By de�nition of a controllable system, Amano's controllability result provides
another geometric connectivity property (a substitute for Chow's Theorem): any
couple of points can be joined by a continuous path which is piece-wise an
integral curve of some vector �eld Y belonging to spanR{A0, A1, . . . , AN}. Then,
to complete the proof of Thm.D it su�ces to show that there is a propagation
of the maximum of any L-subharmonic function u along all integral curves γY

For example, operators of the general form (1.1) have been recently studied by Battaglia and
Bon�glioli [14] with the aim at obtaining invariant Harnack inequalities under a low regularity
assumption on the coe�cients. In this context, the rôles of the function V and of the matrix
A(x) are drastically di�erent: on the one hand, V is a strictly positive L1

loc-function in RN

which is aimed at being the density of a doubling measure; on the other hand, A(x) is a matrix
of measurable function which must satisfy some suitable X-elliptic. Therefore, it seems not
convenient, for future purposes, to incorporate V into the matrix A.
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of every vector �eld Y in spanR{A0, A1, . . . , AN}. This, in turn, is done by
exploiting a characterization by Bony [39] of the invariant sets for the C1 vector
�elds in terms of (a suitable notion of) tangentiality. It is worth mentioning
that this kind of operators (and the �ne geometrical properties of the associated
vector �elds A1, . . . , AN ) were �rst studied by Fe�erman and Phong [70].

Finally, we turn our attention to a notable application of the existence of a
fundamental solution: Hardy-type inequalities (see Sec. 4.2 for a list of related
references). Following the techniques by Garofalo, Lin [82, 81] and by Garo-
falo, Lanconelli [80], we derive from the Hardy inequality a result of Unique
Continuation for the solutions of the Schrödinger-type equation

−Lu+ V u = 0,

where L is a sub-Laplacian on a Carnot group G, V is a continuous function
on G (satisfying suitable estimates), and when u satis�es a (di�erential) growth
condition. In the framework of Carnot groups and for L-harmonic functions
(i.e., when V ≡ 0), a thoroughly comprehensive analysis of Unique Continuation
has been recently given by Garofalo and Rotz [83], by means of a new notion
of Almgren's frequency function. In [83] it is also demonstrated that, without
some control on the growth of u, the solutions of the above equation may fail
to have a bounded frequency: see the example given in [83, Remark 7.5]. Thus,
our assumption on the growth of u cannot be deleted without possibly losing
the approach based on the boundedness of the frequency, which is the approach
that we also follow (in line with [80, 81, 82, 83]) in proving Unique Continuation.
See also Bahouri, [8], for the problems connected with perturbations of sum-of-
squares and (the loss of) Unique Continuation.

To conclude the Introduction, let us brie�y describe the structure of the the-
sis. There are four chapters plus an Appendix, whose contents are the following:

• Chpt. 1 is introductory and it is devoted to recalling the main notions and
results concerning real Lie groups, with particular emphasis on homoge-
neous Carnot groups and on sub-Laplace operators on such groups.

• Chpt. 2 is subdivided into two sections: the �rst one is devoted to present-
ing the announced characterization of those Lie algebras g of vector �elds
for which there exists a Lie group G = (RN , ∗) such that

Lie(G) = g;

in the second section, we collect su�cient conditions (surely well-known)
for a general linear second-order PDO (with smooth coe�cients) to be
re-written as a sum of squares of smooth vector �elds.

• Chpt. 3 is totally devoted to proving the existence and the uniqueness of
a well-behaved global fundamental solution for homogeneous Hörmander
operators. Due to its relevance in our approach, we also present the lifting
method for homogeneous vector �elds introduced by Folland [73].

• Chpt. 4 is also subdivided into two sections: the �rst one is devoted to
establishing the Strong Maximum Principle for hypoelliptic PDOs L of
the form (1.1) and to presenting an application of such a principle to the
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Harnack Inequality for L; in the second section, we assume the existence
of a global fundamental solution for L and, by making use of suitable
mean value operators associated with L, we prove a generalization of the
classical Hardy Inequality. We also present, as an application of such
an inequality, a Unique Continuation result for the solution of a class of
Schrödinger-type equations on Carnot groups.

• Finally, Appendix A is devoted to brie�y presenting a �ne convergence
result for the Campbell-Baker-Hausdor�-Dynkin in Banach-Lie algebras.
Such a result is pro�tably exploited in Chpt. 2.

From the results contained in Sec. 2.1 of Chpt. 2 we obtained the recent paper
[23]; from the results presented in Chpt. 3 we obtained the very recent paper
[24]; from the results presented in Chpt. 4 we obtained the paper [15]. Finally,
from the results contained in Appendix A we obtained the paper [22].
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Chapter 1

Sub-Laplace operators on real

Lie groups

The main purpose of this chapter is to recall some basic elements of Lie group
Theory, in order the make this thesis as self-contained as possible. Since all the
results we aim to present concern the analysis of partial di�erential equations
and of partial di�erential operators on Euclidean spaces, we limit ourselves to
only consider Lie groups on RN ; in this sense, we closely follow the approach of
Bon�glioli, Lanconelli and Uguzzoni in [37], to which we refer the reader for a
comprehensive exposition of this topic and for any further detail.

1.1 Generalities on Lie groups

In this �rst section, we brie�y present the relevant de�nitions and properties
concerning Lie groups on RN .

First of all we recall that, if ∗ is a group law on Euclidean space RN , then
the couple G = (RN , ∗) is a Lie group (on RN ) if the map

RN ×RN 3 (x, y) 7→ x ∗ y ∈ RN

is of class C∞ on RN × RN (w.r.t. the usual di�erentiable structure). Unless
otherwise speci�ed, the (unique) neutral element of G will be denoted by e,
while the inverse of x ∈ RN will be denoted by x−1; moreover, for every �xed
α ∈ RN we also de�ne

τα : RN → RN , τα(x) := α ∗ x;

ρα : RN → RN , ρα(x) := x ∗ α.

The maps τα and ρα are called, respectively, the left-translation and the
right-translation by α (on G). By exploiting the fact that (RN , ∗) is a group,
it is immediate to see that the following properties hold true:

• The maps τe and ρe coincide with the identity map on RN ;

• For every α, β ∈ RN , one has τα ◦ ρβ = ρβ ◦ τα;

• For every α, β ∈ RN , one has τα∗β = τα ◦ τβ and ρα∗β = ρβ ◦ ρα;

3
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• For every α ∈ RN , the maps τα and τα−1 are inverse to each others,
whence τα is a smooth di�eomorphism of RN , and the same is true of ρα.

Let now G = (RN , ∗) be a Lie group on RN and let X be a smooth vector �eld
on RN (meant as a �rst order PDO). We say that X is left-invariant on G if
the following property is satis�ed:

X
(
f ◦ τα

)
= (Xf) ◦ τα, for all α ∈ RN and every f ∈ C∞(RN ,R). (1.1.1)

We denote by g the set of all left-invariant (smooth) vector �elds on G. A
direct computation shows that g is actually a Lie sub-algebra of the Lie algebra
of vector �elds on RN , that is,

λX + µY ∈ g for every X,Y ∈ g and every λ, µ ∈ R, and

[X,Y ] = XY − Y X ∈ g, for every X,Y ∈ g.

For this reason, g is called the Lie algebra of G, and we shall also denote it
by Lie(G). We now observe that, taking into account identity (1.1.1), it is very
easy to see that a smooth vector �eld X is left-invariant on G if and only

XI(x) = Jτx(e) ·XI(e), for all x ∈ RN , (1.1.2)

where I denotes the identity map on RN and Jτx(e) denotes the Jacobian matrix
of the map τx at the neutral element e of G.

From this, one easily obtains the following simple but important character-
ization of the Lie algebra Lie(G) of G, which shall be useful in the sequel (for a
proof see, for example, [37, Proposition 1.2.7]).

Theorem 1.1.1. Let G = (RN , ∗) be a Lie group on RN and let Lie(G) be the
Lie algebra of G. Then the map

Λ : Lie(G) −→ RN , Λ(X) := XI(e), (1.1.3)

de�nes a linear isomorphism of vector spaces. Hence, in particular, Lie(G) is a
�nite-dimensional real vector s pace and dim(Lie(G)) = N .

Remark 1.1.2. Let G = (RN , ∗) be a Lie group on RN and let X be a left-
invariant vector �eld on G. Let us assume that there exists a point x0 ∈ RN
such that XI(x0) = 0. Then XI(x) = 0 for every x ∈ RN .

Indeed, let x ∈ RN be �xed and let α := x ∗ (x0)−1. By (1.1.2) we get

XI(x) = XI(α ∗ x0) = Jτα(x0) ·XI(x0) = 0,

and this proves that X = 0 in X(RN ), as claimed.

By means of the map Λ in the statement of Thm. 1.1.1, it is possible to
construct a distinguish basis for the Lie algebra Lie(G) of a Lie group G.

De�nition 1.1.3. Let G = (RN , ∗) be a Lie group on RN and let Lie(G) be
the Lie algebra of G. Moreover, let Λ be the map de�ned in (1.1.1) and let
E = {e1, . . . , eN} be the canonical basis of RN . If we de�ne

Ji := Λ−1(ei), for all i = 1, . . . , N, (1.1.4)

then the vector �elds J1, . . . , JN form a basis of Lie(G), which will be referred
to as the Jacobian basis of Lie(G).
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Remark 1.1.4. Let G = (RN , ∗) be a Lie group and let g be the Lie algebra of
G. By Thm. 1.1.1, the set g is a real vector space with dimension N ; therefore, if
{X1, . . . , XN} and {Y1, . . . , YN} are two di�erent basis of g (as a vector space),
there exists a non-singular N ×N constant matrix A =

(
ai,j
)
i,j

such that

Yj =

N∑
i=1

ai,jXi, for every j = 1, . . . , N.

Remark 1.1.5. Let G = (RN , ∗) be a Lie group and let {J1, . . . , JN} be the
Jacobian basis of Lie(G). For every 1 ≤ i ≤ N and every x ∈ RN , one has

JiI(x)
(1.1.2)

= Jτx(e) · JiI(e)
(1.1.3)

= Jτx(e) · Λ(Ji)
(1.1.4)

= Jτx(e) · ei;

hence, JiI(x) is nothing but the i-th column of the Jacobian matrix Jτx(e).

Let now G = (RN , ∗) be a Lie group on RN and let X ∈ Lie(G). Again
by making use of identity (1.1.2), it is very easy to recognize that the maximal
domains of all the integral curves of X do coincide; moreover, for every t in such
a common maximal domain, the following identity holds true:

α ∗ exp(tX)(β) = exp(tX)(α ∗ β), for every α, β ∈ RN . (1.1.5)

As a consequence of identity (1.1.5), we easily obtain the following remarkable
result (for a proof see, e.g., [37, Lemma 1.2.23]).

Proposition 1.1.6. Let G = (RN , ∗) be a Lie group on RN . Then any vector
�eld belonging to Lie(G) is global.

Thanks to Prop. 1.1.6, the following (central) de�nition is well-posed.

De�nition 1.1.7 (Exponential Map of G). Let G = (RN , ∗) be a Lie group on
RN and let Lie(G) be the Lie algebra of G. Then the function

Exp : Lie(G) −→ RN , Exp(X) := exp(1 ·X)(e), (1.1.6)

is well-de�ned and it is called the Exponential Map of G.

We conclude this section with the following theorem, showing how the com-
position law of a Lie group G can be somehow �recovered� from the Exponential
Map of G; this result will play a fundamental role in Chpt. 2.

Theorem 1.1.8. Let G = (RN , ∗) be a Lie group on RN and let Lie(G) be the
Lie algebra of G. Moreover, let x ∈ RN and let y ∈ RN be such that y = Exp(Y )
for a certain Y ∈ Lie(G). Then we have

x ∗ y = exp(Y )(x). (1.1.7)

Proof. This is a direct consequence of identity (1.1.5) and of the very de�nition
of Exponential Map: in fact, we have

x ∗ y = x ∗ Exp(Y )
(1.1.7)

= x ∗ exp(Y )(e)
(1.1.5)

= exp(Y )(x).

This ends the proof.
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1.2 Homogeneous groups

In this second section we brie�y introduce two selected classes of Lie groups,
namely, the homogeneous groups and the Carnot groups. We shall recall the
basic notions and properties concerning such groups, needed for a complete com-
prehension of Chpt. 3. Also in this case, we refer the Reader to the monograph
[37] for a complete treatment of the argument.

Homogeneous groups

Let G = (RN , ∗) be a Lie group on RN . We say that G is a homoge-
neous Lie group (or simply a homogeneous group) if there exists a N -tuple
(σ1, . . . , σN ) of positive real numbers satisfying the following properties:

1. σ1 = 1 and σi ≤ σi+1 for every i = 1, . . . , N ;

2. For every λ > 0, the dilation δλ : RN → RN given by

δλ(x) := (λσ1x1, . . . , λ
σNxN ),

is an automorphism of the group G, that is,

δλ(x ∗ y) = δλ(x) ∗ δλ(y), for every x, y ∈ RN .

We shall denote by G = (RN , ∗, δλ) the datum of a homogeneous Lie group,
with composition law ∗ and family of dilations {δλ}λ>0, and we set

Q :=

N∑
j=1

σj , (1.2.1)

Such a number Q is called homogeneous dimension of the group G.

We explicitly observe that, since the map δλ is an automorphism of G for
every λ > 0, we necessarily have δλ(e) = e for every λ > 0, so that e = 0;
this means that the neutral element of a homogeneous group is always 0. We
also notice that the family of dilations {δλ}λ>0 forms a one-parameter group of
automorphisms of G whose identity is δ1 = I, that is,

δλµ(x) = δλ
(
δµ(x)

)
, for all x ∈ RN and every λ, µ > 0.

In particular, the inverse of δλ is the dilation δ1/λ = δλ−1 , since

δλ ◦ δ1/λ = δ1/λ ◦ δλ = δ1 = I.

In the theory of homogeneous Lie groups, a central role is played by homo-
geneous functions and homogeneous vector �elds; we then quickly recall such
notions. Let G = (RN , ∗, δλ) be a �xed homogeneous Lie group on RN and let
f : RN → R. We say that f is δλ-homogeneous of degree m ∈ R if

f
(
δλ(x)

)
= λm f(x), for all x ∈ RN and for every λ > 0. (1.2.2)

Analogously, if P is a linear PDO on RN , we say that P is δλ-homogeneous
of degree m ∈ R if, for every function u ∈ C∞(RN ,R), it satis�es

P
(
u(δλ(x)

)
= λm

(
Pu
)
(δλ(x)), for all x ∈ RN and for every λ > 0. (1.2.3)
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Finally, given a multi-index (α1, . . . , αN ) ∈
(
N ∪ {0}

)N
, we set

|α|G := 〈α, σ〉 =

N∑
j=1

αjσj ,

and we call it the G-length (or G-height) of the multi-index α.

Remark 1.2.1. Let G = (RN , ∗, δλ) be a homogeneous Lie group. Then we
have the following facts:

(i) The zero function and the identically vanishing linear PDO are δλ-ho-
mogeneous of every degree. Conversely, if a function f (or a linear PDO P ) is
δλ-homogeneous of two di�erent degrees, then f ≡ 0 (or P ≡ 0 on RN ).

(ii) For every j = 1, . . . , N , the j-th projection πj(x) = xj and the j-th
partial derivative ∂/∂xj are δλ-homogeneous of degree σj . Moreover, if α is
a �xed multi-index, the function x 7→ xα = xα1

1 · · ·x
αN
N and the linear PDO

∂α1
x1
· · · ∂αNxN are δλ- homogeneous of degree |α|G.

(iii) If P is a linear δλ-homogeneous PDO of degree n and if f ∈ C∞(R,R)
is δλ-homogeneous of degree m ∈ R, then the function Pf is δλ-homogeneous
of degree m−n, while the linear PDO fP is δλ-homogeneous of degree n−m.

We explicitly observe that, if f ∈ C(RN ,R) is δλ-homogeneous of degree
m and if f(x0) 6= 0 for a certain x0 ∈ RN , then m ≥ 0; analogously, if
g ∈ C(RN ,R) is δλ-homogeneous of degree 0, then g is constant on RN .
In the particular case of smooth δλ-homogeneous functions and smooth δλ-
homogeneous vector �elds, we have the following characterization (for a proof
see, e.g., [37, Propositions 1.3.4 and 1.3.5 and Corollary 1.3.6]).

Theorem 1.2.2. Let G = (RN , ∗, δλ) be a homogeneous Lie group on RN .
Then we have the following facts:

(i) A smooth function f ∈ C∞(RN ,R) is δλ-homogeneous of degree m ∈ R if
and only if f is a polynomial function of the form

f(x) =
∑
|α|G=m

cα x
α, x ∈ RN ,

where cα are real constants. In particular, the function f only depends on
the variables xj such that σj ≤ m, and m ≥ 0.

(ii) A smooth vector �eld X on RN of the form

X =

N∑
j=1

aj ∂xj ,

is δλ-homogeneous of degree n ∈ R if and only if, for every j = 1, . . . , N ,
the function aj is δλ-homogeneous of degree σj − n. Equivalently,

δλ(XI(x)
)

= λnXI
(
δλ(x)

)
, for all x ∈ RN and every λ > 0. (1.2.4)
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By gathering together statements (i) and (ii) in the preceding theorem, we
can obtain a more explicit characterization of smooth δλ-homogeneous vector
�elds of positive degree.

Remark 1.2.3. Let G = (RN , ∗, δλ) be a homogeneous Lie group on RN and
let X be a smooth vector �led of the form

X =

N∑
j=1

aj(x) ∂xj .

Let us assume thatX is δλ-homogeneous of positive degree n > 0. It then follows
from statements (i) and (ii) of Theorem 1.2.2 that, for every j = 1, . . . , N , the
function aj is δλ-homogeneous of degree σj − n, hence

aj(x) =
∑

|α|G=σj−n

cjα x
α, x ∈ RN ,

where cjα are real constants. In particular, if aj is not identically vanishing, then
we must have σj ≥ n, and aj can only depends on those variables xi such that
σi ≤ σj −n. As a consequence, since n > 0, we derive that aj can only depends
on x1, . . . , xj−1 and that the v.f.X is actually a �pyramid-shaped� vector �eld
of the form (we agree to let aj be constant when j = 1)

X =

N∑
j=1
σj≥n

aj(x1, . . . , xj−1) ∂xj .

We conclude this �rst section by brie�y describing the structure of a ho-
mogeneous Lie group on RN . To this end, we present two di�erent theorems:
the �rst one gives a somehow explicit expression of the composition law of a
homogeneous Lie group, while the second one shows some interesting properties
of the Lie algebra of such a group. For a proof of these theorems see, e.g., [37,
Theorem 1.3.15 and Proposition 1.3.12].

Theorem 1.2.4 (Structure of a homogeneous group). Let G = (RN , ∗, δλ) be
a homogeneous Lie group. Then the composition law ∗ of G has polynomial
component functions. More precisely, for every x, y ∈ RN one has

(x ∗ y)1 = x1 + y1, and

(x ∗ y)j = xj + yj + Pj(x, y), for every j = 2, . . . , N,

where, for every j = 2, . . . , N , the function Pj satis�es the following properties:

(i) Pj only depends on those variables xi and yi such that σi < σj;

(ii) Pj is actually a sum of mixed monimials in x and y;

(iii) Pj
(
δλ(x), δλ(y)

)
= λσj Pj(x, y), for every x, y ∈ RN .

In particular, we have Pj ≡ 0 for every j ∈ {2, . . . , N} such that σj = 1.
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Theorem 1.2.5 (Lie algebra of homogeneous groups). Let G = (RN , ∗, δλ) be
a homogeneous Lie group and let Lie(G) be the Lie algebra of G. Then Lie(G) is
nilpotent of step r ≤ σN , that is, every commutators of vector �elds in Lie(G)
containing more than σN terms vanishes identically.

Moreover, if {J1, . . . , JN} is the Jacobian basis of Lie(G) (see Def. 1.1.3),
then for every j = 1, . . . , N the vector �eld Ji is δλ-homogeneous of degree σi.

By combining Thm.s 1.2.4 and 1.2.5, we obtain the following very explicit
description for the Jacobian basis of the Lie algebra of a homogeneous group.

Corollary 1.2.6 (Jacobian basis of a homogeneous group). Let G = (RN , ∗, δλ)
be a homogeneous Lie group on RN and let Lie(G) be the Lie algebra of G.
Moreover, let {J1, . . . , JN} be the Jacobian basis of Lie(G). Then we have

Ji = ∂xi +

N∑
j=i+1
σj>σi

a
(i)
j (x) ∂xj , for every i = 1, . . . , N − 1, and

JN = ∂xN ,

(1.2.5)

where a
(i)
j is a smooth δλ-homogeneous polynomial of degree σj − σi

Proof. By Thm. 1.2.4, the matrix Jτx(0) takes the following form

Jτx(0) =


1 0 · · · 0

a
(1)
2 (x) 1

. . .
...

...
. . .

. . . 0

a
(1)
N (x) · · · a

(N−1)
N (x) 1

 ,

where, for every i = 1, . . . , N − 1 and every j = 2, . . . , N , we have

a
(i)
j (x) =

∂Pj
∂yi

(x, 0), for every x ∈ RN .

Moreover, for every j ∈ {2, . . . , N}, again from Thm. 1.2.4-(i) we infer that

a
(i)
j =

∂Pj
∂yi

(·, 0) ≡ 0, for every i ∈ {1, . . . , N − 1} s.t.σi ≥ σj .

From this, recalling that the Jacobian basis of Lie(G) is given by the vector
�elds associated with the column vectors of Jτx(0), we immediately derive that
J1, . . . , JN are precisely of the form (1.2.5).

Finally, since we know from Thm. 1.2.5 that, for every i = 1, . . . , N − 1, the
vector �eld Ji is δλ-homogeneous of degree σi, it follows from Thm. 1.2.2 that,
for every j = 2, . . . , N , the function a

(i)
j is a δλ-homogeneous polynomial of

degree σj − σi, and the proof is complete.

Remark 1.2.7. Let G = (RN , ∗, δλ) be a homogeneous Lie group and let
α ∈ RN . By exploiting Thm. 1.2.4, it is easy to see that the Jacobian matrices
of the translations τα and ρα are both of the following lower triangular form

1 0 · · · 0

? 1
. . .

...
...

. . .
. . . 0

? · · · ? 1

 ; (1.2.6)
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therefore, the well-known Change of Variables formula implies that

HN
(
τα(E)

)
= HN

(
ρα(E)

)
= HN (E), for every Borel set E ⊆ RN , (1.2.7)

that is, the standard Lebesgue measure onRN is invariant with respect to the left
and the right translations on G (any Radon measure on G with these properties
is called a bi-invariant Haar measure).

We explicitly notice that the Lebesgue measure is also Q-homogeneous with
respect to the family of dilations {δλ}λ>0: in fact, since for every λ > 0 one has

Jδλ(x) =


λσ1 0 · · · 0
0 λσ2 · · · 0
...

. . .
. . . 0

0 · · · 0 λσN

 , for every x ∈ RN ,

again from the Change of Variables formula we obtain

HN
(
δλ(E)

)
= λQHN (E), for every Borel set E ⊆ RN , (1.2.8)

where Q =
∑N
j=1 σj is the homogeneous dimension of G (see (1.2.1)).

Carnot groups

We conclude this second section by turning our attention to a particular subclass
of homogeneous Lie groups, namely, the Carnot groups. Such a class of Lie
groups is widely studied in the literature, and it represents the starting point
for all the investigations carried out in this thesis.

Let G = (RN , ∗, δλ) be a homogeneous Lie group on RN (according to the
de�nition recalled above). We say that G is a homogeneous Carnot group
(or simply a Carnot group) if the vector �elds of the Jacobian basis which are
δλ-homogeneous of degree 1 form a set of Lie-generators of Lie(G).

The number m of such Jacobian vector �elds is called the number of gen-
erators of the Carnot group G.

Since Carnot groups are, in particular, homogeneous groups, all the results
recalled so far do apply to such a class of groups; on the other hand, the structure
of a Carnot group can be described in a very precise way, as the following
theorem shows (for a proof see, e.g., [37, Section 1.4]).

Theorem 1.2.8. Let G = (RN , ∗, δλ) be a homogeneous Carnot group and let
Lie(G) be the Lie algebra of G. We de�ne

V1 := {X ∈ Lie(G) : X is δλ-homogeneous of degree 1}.

Then the following facts hold true:

(i) the exponents σ1, . . . , σN are consecutive integers;

(ii) r = σN is the step of nilpotency of Lie(G);

(iii) Lie(G) = V1 ⊕ · · · ⊕ Vr, where

Vi+1 = [V1, Vi] for every 1 ≤ i ≤ r − 1,

and [V1, Vr] = {0}.
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Furthermore, if 1 ≤ i ≤ r, the vector space Vi is generated by the elements of
the Jacobian basis which are δλ-homogeneous of degree i, and it coincides with
the set of vector �elds in Lie(G) which are δλ-homogeneous of degree i.

It is worth noting that not all homogeneous groups are Carnot groups. For
example, the classical Euclidean group E = (R2,+) is endowed with a structure
of homogeneous group by the family of dilations {δλ}λ>0 given by

δλ : R2 −→ R2, δλ(x) = (λx1, λ
2x2).

However, E = (R2,+, δλ) is not a Carnot group: in fact, the Jacobian basis of
Lie(E) is given by J = {J1 = ∂x1

, J2 = ∂x2
}, and J1 is the unique element of

J which is δλ-homogeneous of degree 1; since J1 does not Lie-generates Lie(G),
we conclude that E is not a Carnot group.

Let G = (RN , ∗, δλ) be a homogeneous Carnot group, with m generators and
nilpotent of step r = σN , and let g = Lie(G) be the Lie algebra of G. Recalling
that σ1, . . . , σN are consecutive integers between 1 and r, we can de�ne a r-tuple
(N1, . . . , Nr) of natural numbers in the following way:

Ni = card
{
j ∈ {1, . . . , N} : σj = i

}
, for every 1 ≤ i ≤ r

(note that, since G has m generators, we have N1 = m). If we now denote a
point x ∈ RN by x = (x(1), . . . , x(r)), with

x(i) = (x
(i)
1 , . . . , x

(i)
Ni

) ∈ RNi , for every i = 1, . . . , r,

we have the split RN = RN1 × · · ·RNr and we can write, for every λ > 0,

δλ(x) = (λx(1), λ2x(2), . . . , λrx(r)), for every x ∈ RN ;

moreover, taking into account Thm. 1.2.4, for every x, y ∈ RN we have

(x ∗ y)(1) = x(1) + y(1), and

(x ∗ y)(j) = x(j) + y(j) +Q(j)(x, y), for every j = 2, . . . , r,

where, for every 2 ≤ j ≤ r, Q(j) is a RNj -valued function such that

(i) Q(j) only depends on x(1), . . . , x(j−1) and y(1), . . . , y(j−1);

(ii) the components of Q(j) are sums of mixed monimials in x and y;

(iii) Q(j)
(
δλ(x), δλ(y)

)
= λj Q(j)(x, y), for every x, y ∈ RN .

Finally, if we introduce the notation

J
(1)
1 , . . . , J

(1)
N1
, . . . , J

(r)
1 , . . . , J

(r)
Nr
,

for the Jacobian basis of Lie(G), we know from Thm. 1.2.5 that J (p)
i is δλ-

homogeneous of degree p, and we derive form Cor. 1.2.6 that

J
(p)
i = ∂/∂x

(p)
i +

r∑
h=p+1

Nk∑
k=1

a
(ph)
jk (x) ∂/∂x

(h)
k ,
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where, the function a(ph)
jk is a δλ-homogeneous polynomial of degree nh−np (we

agree to let the sum in the right-hand side be equal to 0 when p = r).

We conclude this section by brie�y introducing a distinguished class of
Carnot groups, namely, the (prototype) groups of Heisenberg-type.

Example 1.2.9 ((Prototype) H-type groups). Let m,n ∈ N with m ≥ 2 and
let B(1), . . . , B(n) be m×m matrices satisfying the following properties:

(1) B(i) is skew-symmetric and orthogonal for every i = 1, . . . , n;

(2) B(i)B(j) = −B(j)B(i) for every i, j = 1, . . . , n with i 6= j.

We then denote a generic point z in the product RN = Rm×Rn with z = (x, t),
where x ∈ Rm and t ∈ Rn, and we de�ne

(x, t) ∗ (ξ, τ) :=(
x+ ξ, t1 + τ1 +

1

2
〈B(1)x, ξ〉, . . . , tn + τn +

1

2
〈B(n)x, ξ〉

)
.

(1.2.9)

It is very easy to recognize that (RN , ∗) is a Lie group on RN , with neutral
element 0 and where the inverse of an element z = (x, t) is given by

z−1 = −z = (−x, t);

moreover, if we consider the family of dilations {δλ}λ>0 given by

δλ : RN −→ RN , δλ(z) = δλ(x, t) = (λx, λ2t), (1.2.10)

it is not di�cult to see that H = (RN , ∗, δλ) is a homogeneous Lie group.

Now, a direct computation shows that, for every z = (x, t) ∈ RN , the
Jacobian matrix of the left-translation τz at 0 takes the following block form:

Jτz (0) =


Im 0m×n

1
2

(
B(1)x

)
1
· · · 1

2

(
B(1)x

)
m

...
... In

1
2

(
B(n)x

)
1
· · · 1

2

(
B(n)x

)
m

 ;

therefore, according to Rem. 1.1.5, the Jacobian basis of Lie(G) is given by

J
(1)
i = ∂/∂xi +

1

2

n∑
j=1

(B(j)x)i ∂/∂tj , for every i = 1, . . . ,m;

J
(2)
j = ∂/∂tj , for every j = 1, . . . , n.

(1.2.11)

Since conditions (1) and (2) imply the linear independence of the matrices
B(1), . . . , B(n), from (1.2.11) one can easily infer that J (1)

1 , . . . , J
(1)
m , which are

precisely those element of the Jacobian basis that are δλ-homogeneous of de-
gree one, form a set of Lie-generators for Lie(H); therefore, according to the
de�nition, H is a Carnot group, which is called a (prototype) group of
Heisenberg-type, or simply a (prototype) group of H-type.

We point out that H has m generators and that Lie(H) is nilpotent of step
2; furthermore, we have Lie(H) = V1 ⊕ V2, where

V1 = span({J (1)
1 , . . . , J (1)

m }) and V2 = [V1, V1] = span({J (2)
1 , . . . , J (2)

n }).
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1.3 Sub-Laplace operators on Carnot groups

The aim of this last section is to brie�y introduce the sub-Laplace operators
on Carnot groups: we shall recall the main de�nition and properties concern-
ing such operators, and we will shortly describe the result by Folland on the
existence of a (global) fundamental solution.

1.3.1 Main de�nitions and properties

Let G = (RN , ∗, δλ) be a �xed homogeneous Carnot group on RN , with m
generators and nilpotent of step r. As usual, we denote by J1, . . . , JN the
N element of the Jacobian basis of Lie(G); accordingly, J1, . . . , Jm are those
elements of the basis which are δλ-homogeneous of degree 1. We also set

V1 := span({J1, . . . , Jm}) = {X ∈ Lie(G): X is δλ-homogneous of degree 1}.

If X = {X1, . . . , Xm} is any (linear) basis of V1, the second-order PDO

L =

m∑
j=1

X2
j

is called a sub-Laplace operator (or simply a sub-Laplacian) on G. In
particular, if we take X = {J1, . . . , Jm}, the operator

∆G :=

m∑
i=1

J2
i ,

is called the canonical sub-Laplacian on G.

Example 1.3.1 (Sub-Laplacians on (prototype) H-groups). Let m,n ∈ N with
m ≥ 2 and let H = (RN , ∗, δλ) be (prototype) H-group on RN = Rm × Rn as
in Exm. 1.2.9 (with group law ∗ given by (1.2.9) and dilations as in (1.2.10)).

By means of the expression of the Jacobian basis of Lie(H) obtained in
(1.2.11) (and recalling that B(1), . . . , B(n) are skew-symmetric and orthogonal),
we can write explicitly the canonical sub-Laplacian on H: we have

∆H =

m∑
i=1

∂2
xi +

1

4
‖x‖2

n∑
i=1

∂2
ti +

m∑
i=1

n∑
j=1

(B(j)x)i ∂xitj

= ∆x +
1

4
‖x‖2 ∆t +

n∑
j=1

〈B(j)x,∇x〉 ∂tj .

In particular, ∆H does not contain �rst order terms.

We now would like to list some simple yet important properties of any sub-
Laplacian L =

∑m
j=1X

2
j on G, directly following from the properties of the

vector �elds J1, . . . , Jm. For a proof we refer, e.g., to [37, Section 1.5].

(P1) L is invariant w.r.t. the left-translations on G, i.e., for every α ∈ RN

L
(
u ◦ τα

)
=
(
Lu
)
◦ τα, for every u ∈ C∞(RN ,R). (1.3.1)
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(P2) LX is δλ-homogeneous of degree 2, i.e., for every λ > 0 one as

L
(
u ◦ δλ

)
= λ2

(
Lu
)
◦ δλ, for every u ∈ C∞(RN ,R). (1.3.2)

(P3) The operator L is of the following divergence form

L =

N∑
i=1

∂

∂xi

 N∑
j=1

ai,j(x)
∂

∂xj

 , (1.3.3)

where the principal matrix A(x) = (ai,j(x))i,j is given by the product

A(x) = S(x)S(x)t, for every x ∈ RN , (1.3.4)

and S(x) is the N ×m matrix whose columns are the coe�cient vectors
of X1, . . . , Xm, that is,

S(x) =
(
X1I(x) · · ·XmI(x)

)
, for every x ∈ RN . (1.3.5)

As a consequence, L has (smooth) polynomial coe�cients and it is (for-
mally) self-adjoint on the space L2(RN ), when restricted to smoothly and
compactly supported functions, that is,∫

RN
ϕLψ dx =

∫
RN

ψLϕdx, for every ϕ,ψ ∈ C∞0 (RN ,R).

(P4) The principal m×m minor

A1,1(x) =

a1,1(x) · · · a1,m(x)
...

. . .
...

am,1(x) · · · am,m(x)

 , x ∈ RN ,

of the principal matrix A(x) of L is constant, symmetric and positive
de�nite. As a consequence, there exists i ∈ {1, . . . ,m} such that

aii > 0. (1.3.6)

(P5) L is C∞-hypoelliptic on every open subset of RN , i.e., every distributional
solution to the equation Lu = f is of class C∞ whenever f is of class C∞.

Properties (P1)-to-(P5) listed above posses a large number of interesting con-
sequences; we conclude this �rst part of the section by highlighting a couple of
them, which will be important for us in the sequel.

For a proof of the following results we refer, e.g., to [37, Section 5.13]

Theorem 1.3.2 (Strong Maximum Principle for L). Let G = (RN , ∗, δλ) be a
homogeneous Carnot group and let L be a sub-Laplacian on G. Moreover, let
Ω ⊆ RN be an open and connected set and let u ∈ C2(Ω,R) be such that

u ≤ 0 and Lu ≥ 0 in Ω.

If there exists a point x0 ∈ Ω such that u(x0) = 0, then u ≡ 0 throughout Ω.
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Theorem 1.3.3 (Weak Maximum Principle for L). Let G = (RN , ∗, δλ) be a
homogeneous Carnot group and let L be a sub-Laplacian on G. Moreover, let
Ω ⊆ RN be an open and bounded set and let u ∈ C2(Ω,R) be such thatLu ≥ 0 on Ω,

lim sup
x→ξ

u(x) ≤ 0 for every ξ ∈ ∂Ω.

Then u(x) ≤ 0 for every x ∈ Ω.

Corollary 1.3.4. Let G = (RN , ∗, δλ) be a homogeneous Carnot group and let
L be a sub-Laplacian on G. If u ∈ C2(RN ,R) is such that

Lu = 0 on RN and lim
‖x‖→∞

u(x) = 0,

then u(x) = 0 for every RN .

1.3.2 Fundamental solution

As anticipated above, we conclude this section by brie�y describing a deep
result due to Folland, which will be of fundamental interest for us in Chpt. 3:
roughly put, it ensures the existence (and the uniqueness) of a smooth global
fundamental solution for any sub-Laplacian on a Carnot group.

To begin with, since there is no common agreement on the notion of what
fundamental solutions are, we �x the relevant de�nitions.
In what follows we use the notation

Dα
x =

( ∂
∂x

)α
=

∂|α|

∂xα1
1 · · · ∂x

αn
n
,

for higher order derivatives on RN . Here α = (α1, . . . , αN ) ∈ (N ∪ {0})N and
|α| = α1 + · · ·+ αN is the length of α.

De�nition 1.3.5 (Fundamental solution). On Euclidean space RN , we consider
a generic linear partial di�erential operator of order d ∈ N,

P =
∑
|α|≤d

aα(x)Dα
x ,

with smooth real valued coe�cients aα(x) on RN . We say that a function

Γ : {(x, y) ∈ RN ×RN : x 6= y} −→ R,

is a (global) fundamental solution for P if it satis�es the following property:

(FS) For every x ∈ Rn, the function Γ(x; ·) is locally integrable on RN and∫
RN

Γ(x; y)P ∗ϕ(y) dy = −ϕ(x) for every ϕ ∈ C∞0 (RN ,R), (1.3.7)

where P ∗ denotes the usual formal adjoint of P 1.

1We point out that, since both the coe�cient functions of the operator P and the test
functions considered in identity (1.3.7) are assumed to be real-valued, the formal adjoint P ∗

of P actually coincide with the transpose PT .
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It is worth noting that, if P is a linear PDO as in Def. 1.3.5 and if Γ is a
fundamental solution for P , identity (1.3.7) can be re-written as follows:

PΓx = −Dirx in D′(RN ), (1.3.8)

where Dirx is the Dirac distribution supported at {x}.
Example 1.3.6 (The Laplace operator). Probably, one of the best examples
of fundamental solution is the one of the Laplace operator: if ∆ is the classical
Laplace operator on RN , with N ≥ 3, then a (global) fundamental solution for
∆ is given by the function

Γ(x, y) =
1

N ωN
‖x− y‖2−N , with x 6= y,

where ωN denotes the (Lebesgue) measure of the Euclidean ball B(0, 1).
Note that, together with property (FS) in Def. 1.3.5, the function Γ also

satis�es the following additional properties:

(i) Γ is smooth and strictly positive out of the diagonal of RN ×RN ;

(ii) Γ(x, y) = Γ(y, x) for every x, y ∈ RN with x 6= y;

(iii) Γ ∈ L1
loc(RN ×RN ) and, for every �xed y ∈ RN , Γ(·; y) ∈ L1

loc(RN );

(iv) for every �xed x ∈ RN , the function y 7→ Γ(x; y) vanishes as ‖y‖ → ∞;

(v) for every �xed x ∈ RN , the function y 7→ Γ(x; y) goes to ∞ as y → x.

Before proceeding to the description of Folland's result, we give some re-
marks concerning the problem of the existence and the uniqueness of a global
fundamental solution for a general linear PDO.

Remark 1.3.7. (a) The existence of a global fundamental solution for P is far
from being obvious and it is, in general, a very delicate issue. In the particular
case of C∞-hypoelliptic linear PDOs P having a C∞-hypoelliptic formal adjoint
P ∗, it is possible to prove the local existence of a fundamental solution on
a suitable neighborhood of each point of Rn (see, e.g., [131]); moreover, in
[39] Bony showed that any Hörmander operator admits a smooth fundamental
solution on every bounded open set satisfying suitable regularity assumptions.

(b) Fundamental solutions are, in general, not unique since the addition of
a P -harmonic function (that is, a smooth function h such that Ph = 0 in RN )
to a fundamental solution produces another fundamental solution.

(c) Nonetheless, if P is a second order C∞-hypoelliptic operator which
ful�lls the Weak Maximum Principle on every bounded open set of RN , then
there exists at most one fundamental solution Γ for P such that

lim
‖y‖→∞

Γ(x, y) = 0, for every x ∈ RN .

Indeed, if Γ1,Γ2 are two such functions, then (for every �xed x ∈ RN ) the map
ux := Γ1(x, ·) − Γ2(x, ·) belongs to L1

loc(RN ) and it is a solution of Pux = 0
in the sense of distributions on RN ; the hypoellipticity of P ensures that ux
is (a.e. equal to) a smooth function on RN which vanishes at in�nity by the
assumptions on Γ1,Γ2; from the Weak Maximum Principle for P it is readily
obtained that ux ≡ 0 (a.e.), that is, Γ1 ≡ Γ2 (a.e.). When continuity of Γ(x, ·)
is also requested, this gives Γ1 ≡ Γ2.
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Now we have speci�ed what we mean by fundamental solution of a general
linear PDO, we can turn our attention to the particular case of the sub-Laplace
operators on Carnot groups. In order to clearly state the notable result by
Folland, we �rst recall the notion of homogeneous norm on a Carnot group.

De�nition 1.3.8 (Homogeneous norm). Let G = (RN , ∗, δλ) be a homogeneous
Carnot group on RN . We say that a continuous function

d : RN −→ [0,∞[

is a homogeneous norm on G if it satis�es the following properties:

(i) d(δλ(x)) = λd(x) for every λ > 0 and every x ∈ RN ;

(ii) d(x) > 0 for every x ∈ RN with x 6= 0.

Furthermore, we say that d is symmetric if

d(x−1) = d(x), for every x ∈ RN .

Let G = (RN , ∗, δλ) be a homogeneous Carnot group and let σ1, . . . , σN
be the exponents in the family of dilations {δλ}λ>0 (recall that σ1, . . . , σN are
consecutive integers and that σ1 = 1). Then, setting

‖ · ‖G : RN −→ [0,∞[, ‖x‖G :=

N∑
j=1

|xj |1/σj , (1.3.9)

it is straightforward to recognize that ‖ ·‖G is a homogeneous norm on G, which
is symmetric if x−1 = −x for all x ∈ G. Actually, it is very easy to prove that
all the homogeneous norms on G are equivalent to ‖ · ‖G: more precisely, if d is
a homogeneous norm on G, there exists a constant c > 0 such that

c−1 ‖x‖G ≤ d(x) ≤ c ‖x‖G, for every x ∈ RN . (1.3.10)

With the notion of homogeneous norm at hand, we are �nally in a position to
state the announced theorem by Folland (the complete proof of this result can
be found in [72, Theorem 2.1]; see also [37, Sections 5.1 and 5.3]).

Theorem 1.3.9 (Existence of the fundamental solution). Let G = (RN , ∗, δλ)
be a homogeneous Carnot group (with homogeneous dimension Q > 2) and let
L be a sub-Laplacian on G. It is then possible to �nd a homogeneous symmetric
norm d ∈ C∞(RN \ {0},R) such that the function

Γ : {(x, y) ∈ RN ×RN : x 6= y} → R, Γ(x, y) := d2−Q(x−1 ∗ y
)
, (1.3.11)

is a fundamental solution for L, further satisfying the following properties:

• Γ is smooth and strictly positive out of the diagonal of RN ×RN ;

• Γ is symmetric, that is,

Γ(x, y) = Γ(y, x), for every x, y ∈ RN with x 6= y;
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• Γ is δλ-homogeneous of degree 2−Q, that is, for every λ > 0 we have

Γ
(
δλ(x), δλ(y)

)
= λ2−Q Γ(x, y), for every x, y ∈ RN with x 6= y;

• For every x ∈ RN , Γ(x, ·) has a pole at x and it vanishes at in�nity, i.e.,

lim
y→x

Γ(x, y) =∞ and lim
‖y‖→∞

Γ(x, y) = 0.

Remark 1.3.10 (Uniqueness of the fundamental solution). Let G = (RN , ∗, δλ)
be a homogeneous Carnot group on RN and let L be a sub-Laplacian on G.

Since the operator L is C∞ hypoelliptic (see property (P5) on page 14)
and since it satis�es the Weak Maximum Principle on every open and bounded
subset of RN (see Thm. 1.3.3), we infer from Rem. 1.3.7-(c) that the function Γ
in Thm. 1.3.9 is the unique global fundamental solution for L such that

lim
‖y‖→∞

Γ(x, y) = 0, for every �xed x ∈ RN .

Example 1.3.11 (The case of H-type groups). Let m,n ∈ N with m ≥ 2 and
let H = (RN , ∗, δλ) be (prototype) H-group on RN = Rm×Rn as in Exm. 1.2.9
(with group law ∗ given by (1.2.9) and dilations as in (1.2.10)). Denoting by
(x, t) the points of H, with x ∈ Rn and t ∈ Rm, we know that the canonical
sub-Laplacian ∆H on H takes the form (see Exm. 1.3.1)

∆H = ∆x +
1

4
‖x‖2 ∆t +

n∑
j=1

〈B(j)x,∇x〉 ∂tj ;

then, by a notable result by Kaplan [97], the (unique) global fundamental solu-
tion Γ of ∆H is explicitly known: if we set

dH : RN −→ [0,∞[, dH(x, t) =
(
‖x‖4 + 16 ‖t‖2

)1/4

,

there exists a constant c > 0 such that, for every x, y ∈ RN with x 6= y,

Γ(x, y) = c d2−Q
H

(
y−1 ∗ x

)
.

The constant c is somehow a �geometrical� constant, and it can be expressed as
the integral of a suitable kernel, depending only on dH (see [37, Theorem 5.5.6]).



Chapter 2

PDOs structured on complete

vector �elds

In this second chapter of the thesis we shall be concerned with linear partial
di�erential operators (PDOs, in the sequel) of the following form

L =

m∑
j=1

X2
j +X0,

where X1, . . . , Xm and X0 are smooth vector �elds de�ned on RN . Obviously,
a su�cient condition for L to be left-invariant w.r.t. some Lie group structure
G = (RN , ∗) is that each X0, . . . , Xm belongs to the Lie algebra Lie(G) of G,
and the convenience to deal with left-invariant PDOs (both for the analysis of
PDOs and PDEs) needs no further justi�cations.

Motivated by this fact, we shall dedicate Sec. 2.1.1 to the study of �nite-
dimensional Lie algebras of vector �elds: more precisely, we shall provide both
necessary and su�cient conditions for a Lie algebra g to coincide with the Lie
algebra of a Lie group G (on RN ). In Sec. 2.2, instead, we shall consider second-
order linear PDOs L of the general form

L =

N∑
i,j=1

ai,j(x) ∂xixj +

N∑
j=1

bj(x) ∂xj ,

(with smooth coe�cients ai,j and bj) and we shall present su�cient conditions
allowing L to be re-written as a sum of squares of smooth vector �elds.

2.1 Characterization of left-invariance

As anticipated, the main aim of this section is to provide an exhaustive answer
to the following very natural question:

(Q) Given a Lie sub-algebra g of the smooth vector �elds on RN , is it possible
to �nd a Lie group G = (RN , ∗) on RN such that Lie(G) = g?

It is clear that, if we do not assume any hypothesis on g, the answer is
negative: for example, if a vector �eld in g is not global, then g cannot be the

19
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Lie algebra of any Lie group on RN (see Prop. 1.1.6 on page 5). Taking into
account the results recalled in Chpt. 1, it is not di�cult to �nd some necessary
conditions for (Q) to have a positive answer:

1. every X ∈ g must be a global vector �eld, i.e., all of its integral curves
must be globally de�ned on the real line;

2. g must satisfy Hörmander's rank condition:

dim
(
{XI(x) ∈ RN : X ∈ g}

)
= N, for every x ∈ RN ;

3. the dimension of g, as a linear subspace of X(RN ), must be equal to N .

The main result of this chapter shows that, if all the vector �elds in g are
assumed to be real analytic on RN , then the above conditions a re also a set of
independent and su�cient conditions for g to coincide with the Lie algebra of
an analytic Lie group G = (RN , ∗) on RN . The tools we will use in order to
prove this fact are the following:

• the Campbell-Baker-Hausdor�-Dynkin Theorem (for composition of �ows
of vector �elds) in order to equip RN with a local Lie-group structure;

• the use of a completeness result for time-dependent vector �elds, in order
to globalize this local Lie group (here, the hypothesis of real-analyticity
of the vector �elds in g plays a crucial role).

As regards question (Q), we highlight the paper by Bon�glioli and Lanconelli
[32], where it is proved that, if g is a Lie algebra of real-analytic vector �elds
satisfying the above (1)-to-(3) plus the assumption that the local Lie group
attached to g can be globalized, then it is possible to positively answer to (Q).

In the subsequent Sec. 2.1.3 we show that the latter Bon�glioli and Lan-
conelli's globalization assumption is automatically guaranteed by the validity of
(1)-to-(3); in this perspective, we give an improvement of Theorem 1.1 in [32].

2.1.1 Exponential map and Logarithmic map

The main goal of this section is to introduce, for a selected class of Lie algebras
g ⊆ X(RN ), the exponential map and the logarithmic map. Such maps will be
fundamental to answer question (Q) posed above.

De�nition 2.1.1. Let g ⊆ X(RN ). We shall say that g satis�es hypothesis

(C): if every X ∈ g is a global vector �eld;

(H): if Hörmander's rank condition holds:

dim
(
{XI(x) ∈ RN : X ∈ g}

)
= N for every x ∈ RN ; (2.1.1)

(ND): if g is N -dimensional, as a linear subspace of X(RN ).
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Remark 2.1.2. In order to distinguish the two dimensions appearing in condi-
tions (H) and (ND) we observe that, for every linear subspace V of X(RN ) and
every x ∈ RN , one has

dim
(
{XI(x) ∈ RN : X ∈ V }

)
≤ dim(V ). (2.1.2)

Indeed, setting Λx : V → RN , Λ(X) := XI(x), the map Λx is linear and

Λx(V ) = {XI(x) : X ∈ V };

hence, dim
(
Λx(V )

)
≤ dim(V ), as claimed.

We have already remarked that conditions (C), (H) and (ND) in Def. 2.1.1
are necessary for question (Q) to have a positive answer. We now highlight the
independence of these conditions with the aid of the following examples.

Example 2.1.3 ((H)+(ND);(C)). Let us consider, in X(R), the v.f.

X := (1 + x2
1)

∂

∂x1
,

and let g := Lie{X}. It is easy to recognize that g satis�es conditions (H) and
(ND) with N = 1, but it violates (C): indeed, the integral curve of X starting
at 0 is the function t 7→ tan t, which is not de�ned on the whole of R.

Example 2.1.4 ((C)+(ND);(H)). Let us consider, in X(R), the v.f.

X := x1
∂

∂x1
,

and let g := Lie{X}. It is easy to recognize that g satis�es conditions (C) and
(ND) with N = 1. On the other hand, condition (H) does not hold, since (2.1.1)
is not satis�ed at x = 0.

Example 2.1.5 ((C)+(H);(ND)). Let us consider, in X(R), the v.f.s

X := x1
∂

∂x1
, Y :=

∂

∂x1
,

and let g := Lie{X,Y }. Since [X,Y ] = X, condition (ND) does not hold: in
fact, X and Y being linearly independent (remind that we are considering X(R)
as a real vector space and not as a C∞-module), we have

g = spanR{X,Y }, whence dimR(g) = 2.

On the other hand, g satis�es conditions (C) and (H) with N = 1.
We remark that a Lie algebra g can satisfy conditions (C) and (H) without

being �nite-dimensional (as a subspace of X(RN )). This is the case, e.g., of the
Lie algebra generated by

X :=
∂

∂x1
, Y :=

1

1 + x2
1

∂

∂x2
∈ X(R2).

Thanks to Def. 2.1.1, we can state the main theorem of this chapter, which
provides a complete answer to question (Q). The proof of this theorem is ac-
complished in Sec.s 2.1.2 and 2.1.3.
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Theorem 2.1.6. Let g ⊆ X(RN ) be a Lie algebra of real-analytic vector �elds
satisfying conditions (C), (H) and (ND) of Def. 2.1.1.

Then, there exists an analytic Lie group G = (RN , ∗) on RN , with neutral
element 0, such that Lie(G) = g.

The �rst ingredient to prove Thm. 2.1.6 is the de�nition of exponentiation of
a Lie algebra g ⊆ X(RN ) satisfying condition (C). As we shall see in a moment,
such a de�nition has a strong analogy with the de�nition of Exponential Map
on a Lie group on RN .

De�nition 2.1.7 (Exponentiation of g). Let g ⊆ X(RN ) be a Lie algebra sati-
sfying condition (C). We set

Expg : g −→ RN , Expg(X) := γX,0(1),

where γX,0 denotes the integral curve of X starting at 0. We shall often call
this map the exponential map of g. We also denote Expg(X) by exp(X)(0).

We remark that assumption (C) on g is essential for Def. 2.1.7 to make sense:
indeed, if X ∈ g is not complete, the integral curve of X (starting at 0) may
not be de�ned for t = 1.

Remark 2.1.8. Let g ⊆ X(RN ) satisfy condition (C), and let us suppose that
there exists a Lie group G = (RN , ∗) with Lie algebra equal to g. If the neutral
element of G is 0, then the exponential map Expg of g is nothing but the
Exponential Map of G (see Def. 1.1.7 on page 5).

Our next purpose is to investigate the regularity of the map Expg: to this
end, we need an additional structure on g allowing us to talk about open sets and
smooth functions. Hence, we assume that g also satis�es condition (ND): if this
is the case, the vector space g can be endowed with a topological-di�erentiable
structure by identifying it with RN via the choice of a basis.

Lemma 2.1.9. Let g ⊆ X(RN ) satisfy conditions (ND) and (H). Then there
exists a basis of g (as a subspace of X(RN )), say {J1, . . . , JN}, such that

det(J1I(x) · · · JNI(x)) 6= 0 for all x ∈ RN , (2.1.3)

(J1I(0) · · · JNI(0)) = IN , (2.1.4)

where IN is the N ×N identity matrix.

Proof. First of all, since g satis�es condition (ND), there exist Z1, . . . , ZN in
g s.t. {Z1, . . . , ZN} is a basis of g (as subspace of X(RN )). We claim that, for
every x ∈ RN , the vectors Z1I(x), . . . , ZNI(x) are linearly independent in RN .

Indeed, since g also satis�es condition (H), there exist W1, . . . ,WN ∈ g such
that the vectors W1I(x), . . . ,WNI(x) are linearly independent (in RN ); on the
other hand, since Z is a basis of g, we have

spanR{W1I(x), . . . ,WNI(x)} ⊆ spanR{Z1I(x), . . . , ZNI(x)},

and this shows that Z1I(x), . . . , ZNI(x) are linearly independent, as claimed.
We now perform a simple linear change of coordinates, in order to obtain from
Z a basis satisfying conditions (2.1.3) and (2.1.4). We set

A = (ai,j)i,j=1,...,N := (Z1I(0) · · ·ZNI(0))−1, (2.1.5)
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and we de�ne, for all j = 1, . . . , N ,

Jj :=

N∑
j=1

ai,jZi. (2.1.6)

Since A is invertible, J := {J1, . . . , JN} is a basis of g (as a subspace of X(RN ))
and the vectors J1I(x), . . . , JNI(x) are linearly independent for all x ∈ RN ;
moreover, from the de�nition of J it follows that

(J1I(0) · · · JNI(0))
(2.1.6)

=
( N∑
j=1

aj,1ZjI(0) · · ·
N∑
j=1

aj,NZjI(0)
)

= (Z1I(0) · · ·ZNI(0)) · A (2.1.5)
= IN .

This ends the proof.

Remark 2.1.10. Let g ⊆ X(RN ). The proof of Lem. 2.1.9 contains the fol-
lowing fact: if g satis�es conditions (ND) and (H), then there exists a basis
{J1, . . . , JN} of g (as a subspace of X(RN )) such that

J1I(x), . . . , JNI(x),

are linearly independent (in RN ) for all x ∈ RN . On the other hand, if g
satis�es condition (ND) and if it is possible to �nd a basis {J1, . . . , JN} of g (as
a subspace of X(RN )) such that J1I(x), . . . , JNI(x) are linearly independent for
all x ∈ RN , then it is easy to recognize that g also satis�es condition (H).

We can then summarize these facts in the following way: if g ⊆ X(RN )
satis�es condition (ND), then it ful�lls condition (H) if and only if it ful�lls
condition (H'), where

(H'): there exists a basis {J1, . . . , JN} of g such that J1I(x), . . . , JNI(x) are
linearly independent for every x ∈ RN .

Remark 2.1.11. Let g ⊆ X(RN ) satisfy conditions (H) and (ND), and let us
assume that G = (RN , ∗) is a Lie group on RN , with neutral element equal to
0, such that Lie(G) is equal to g. Then, a basis of g as in lemma. 2.1.9 is unique,
and it is nothing but that the Jacobian basis of Lie(G) (see Def. 1.1.3 on page 4,
and recall that a left invariant vector �elds X is completely determined by its
value XI(0) at the neutral element).

Proposition 2.1.12. Let g ⊆ X(RN ) satisfy conditions (C), (H) and (ND).
Then Expg is a smooth map on g with non-singular di�erential at X = 0 ∈ g.

If, in addition, every vector �eld in g is real-analytic, then Expg is real analytic.
Consequently, there exists an open and connected neighborhood U of 0 in g such
that (Expg)|U is a di�eomorphism.

Proof. We �rst prove the regularity of Expg. To this end, let J = {J1, . . . , JN}
be a basis of g as in Lem. 2.1.9 and let π : RN → g, π(ξ) :=

∑N
i=1 ξiJi. We set

E : RN −→ RN , E(ξ) := (Expg ◦ π)(ξ) = Expg

( N∑
k=1

ξkJk

)
. (2.1.7)
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Then, by de�nition, Expg is smooth (resp. real-analytic) on g if and only if E
is smooth (resp. real-analytic) on RN . Now, the regularity of E follows from
classical results of ODE Theory. Indeed, let us we de�ne

f : RN ×RN −→ RN , f(x, ξ) :=

N∑
k=1

ξkJkI(x).

Obviously, f has the same regularity (w.r.t. both x and ξ) of J1, . . . , JN ; more-
over, E(ξ) is nothing but γ(1; ξ), where γ(· ; ξ) is the unique maximal solution
(which is de�ned on the whole of R) of the parametric problem{

ẋ = f(x; ξ)

x(0) = 0.

Hence, we deduce from classical results ODE Theory that E has the same reg-
ularity (w.r.t. ξ) of J1, . . . , JN , as desired.

We now turn to show that the di�erential of Expg at X = 0 in non-singular.
To this end, we consider once again the map E in (2.1.7) and we compute its
Jacobian matrix at ξ = 0. From the Maclaurin expansion (with an integral
remainder) of the map

t 7→ γ(t; ξ) := exp

(
t

N∑
k=1

ξk Jk

)
(0),

we obtain (here I stands for the identity map of RN )

E(ξ) = γ(1; ξ) =

N∑
k=1

ξk JkI(0) +

∫ 1

0

(1− s)
N∑

h,k=1

(ξhξk JhJkI)(γ(s; ξ)) ds

(2.1.4)
= ξ +

N∑
h,k=1

ξh ξk

∫ 1

0

(1− s) (JhJkI)(γ(s; ξ)) ds; (2.1.8)

on the other hand, since (t, ξ) 7→ γ(t; ξ) is continuous on R × RN , it is not
di�cult to recognize that

N∑
h,k=1

ξh ξk

∫ 1

0

(1− s) (JhJkI)(γ(s; ξ)) ds = O(‖ξ‖2), as ξ → 0. (2.1.9)

Therefore, by gathering (2.1.8) and (2.1.9), we obtain

E(ξ) = ξ + O(‖ξ‖2), as ξ → 0,

whence JE(0) = IN , which proves that the di�erential of Expg at 0 is a non-
singular linear map.

Remark 2.1.13. The proof of Prop. 2.1.12 contains the following fact: let
g ⊆ X(RN ) satisfy conditions (C), (H) and (ND) and let J := {J1, . . . , JN} be
a basis of g as in lemma. 2.1.9. If we set π : RN → g, π(ξ) :=

∑N
k=1 ξkJk and if

we de�ne E := Expg ◦ π, then E is a smooth map on RN and

JE(0) = IN , (2.1.10)

where IN is the identity N ×N matrix.
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De�nition 2.1.14 (Logarithmic map on g). Let g ⊆ X(RN ) be a Lie algebra
satisfying conditions (C), (H) and (ND), and let U be as in Prop.2.1.12.

We set V := Expg(U) and we denote by Logg : V −→ U the inverse map of
Expg : U→ V . We call this map the logarithmic map of g (relative to U).

2.1.2 Construction of the local Lie group

In this section we shall show that, if g ⊆ X(RN ) satis�es conditions (C), (H)
and (ND), it is possible to endow RN with a local Lie group structure in such a
way that the vector �elds in g are left invariant. The results presented here are
not new: indeed, we closely follow the approach in [32]; our new improvement
will be given in the globalization of the local Lie group, in the next section.

To begin with, to keep the exposition clear, we �x once and for all the main
notations used in the sequel:

• we denote by g a �xed Lie algebra of real-analytic vector �elds on RN

satisfying conditions (C), (H) and (ND) in Def. 2.1.1;

• we denote by Exp the exponential map Expg of g and we let Log : V → U

denote its local inverse (with V := Exp(U)) as in Def. 2.1.14;

• we �x a basis J = {J1, . . . , JN} of g as in lemma. 2.1.9 and we introduce
the map π : RN −→ g by setting π(ξ) :=

∑N
k=1 ξkJk.

With these notations, we set

m : RN × V −→ RN , m(x, y) := exp(Log(y))(x). (2.1.11)

As usual, if X ∈ X(RN ) and if x ∈ RN , we denote by R 3 t 7→ exp(tX)(x) the
maximal integral curve of X starting at x. By classical results of ODE Theory,
we deduce that m is real-analytic on RN × V .

Remark 2.1.15. Let us assume that there exists a Lie group G = (RN , ∗),
with neutral element 0, and such that Lie(G) = g. As pointed out in Rem. 2.1.8,
the exponential map Exp on g coincides with the Exponential Map of G; as a
consequence, if y ∈ V and if Y = Log(y) ∈ g, Thm. 1.1.8 implies that

m(x, y) = exp(Y )(x) = γY,x(1) = x ∗ y.

We want to show that m in (2.1.11) is locally associative near 0, and that
0 is a neutral element for m. To this end, we need the following result (for a
proof see, e.g., [29] or [32]).

Theorem 2.1.16. Let h be a Lie algebra of real-analytic vector �elds on RN

satisfying conditions (C) and (ND), ant let ‖ · ‖ be a �xed norm on h. There
exists a positive real number ε, depending on ‖ · ‖, such that the CBHD series

Z(X,Y ) :=

∞∑
h=1

Zh(X,Y )

is totally convergent on B(0, ε) × B(0, ε), where B(0, ε) := {V ∈ h : ‖V ‖ < ε}.
Furthermore, for every X,Y ∈ B(0, ε), we have the following ODE identity

exp(Y )
(

exp(X)(x)
)

= exp
(
Z(X,Y )

)
(x), for every x ∈ RN . (2.1.12)

As usual, we also use the notation X � Y := Z(X,Y ).
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In order to apply the remarkable identity (2.1.12) to our setting, we need
to �x a norm on g; for simplicity, we consider the Euclidean norm obtained by
identifying g with RN via the basis J, that is,∥∥∥∥ N∑

k=1

ξkJk

∥∥∥∥
J

:=
√
ξ2
1 + · · ·+ ξ2

N . (2.1.13)

It is worth noting that, since g is �nite-dimensional (by assumption (ND)), all
norms on g are actually equivalent.

By means of Thm. 2.1.16, we are able to derive a powerful representation for
the map m as in the next theorem.

Theorem 2.1.17. Let ε > 0 be as in Thm. 2.1.16 and let us suppose (by possibly
shrinking ε) that B(0, ε) ⊆ U. It is then possible to �nd an open and connected
neighborhood W ⊆ V of 0 such that the function

Z : W ×W −→ B(0, ε) Z(x, y) := Log(x) � Log(y) (2.1.14)

is well-de�ned and, for every x, y ∈W , the following identity holds true

m(x, y) = Exp(Z(x, y)). (2.1.15)

Proof. Let Z : B(0, ε)×B(0, ε)→ g, Z(X,Y ) := X � Y . Since, by Thm. 2.1.16
(and by the choice of ε), the CBHD series X � Y is totally convergent on the
product B(0, ε)× B(0, ε), Z is well-de�ned and continuous on its domain; as a
consequence, it is possible to �nd 0 < ε1 < ε such that

Z(X,Y ) ∈ B(0, ε), for all X,Y ∈ B(0, ε1). (2.1.16)

Analogously, since Log is continuous on V and Log(0) = 0, there exists δ > 0
such that B(0, δ) ⊆ V and

Log(x) ∈ B(0, ε1), for all x ∈ B(0, δ). (2.1.17)

We then set W := B(0, δ) and we show that it satis�es all the properties in the
statement of the theorem. To this end, let x, y ∈W be �xed.

By (2.1.17) we see that Log(x) and Log(y) belong to B(0, ε1); therefore,
recalling that ε1 < ε, from (2.1.16) we infer that the series Log(x) � Log(y) is
convergent, whence Z is well-de�ned, and

Z(x, y) ∈ B(0, ε), for every x, y ∈W.

As for identity (2.1.15) we observe that, since W ⊆ V , we have

m(x, y)
(2.1.11)

= exp(Log(y))(x)
(
x = Exp(Log(x)

))
= exp

(
Log(y)

)
(Exp(Log(x)))

= exp
(
Log(y)

)
(exp(Log(x))(0)).

Thus, by gathering together (2.1.17) and (2.1.12), we conclude that

m(x, y) = exp(Log(x) � Log(y))(0) = Exp(Z(x, y)),

which is exactly what we wanted to prove.
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Remark 2.1.18. Let W be the open (and connected) neighborhood of 0 con-
structed in the proof of Thm. 2.1.17. Then, for every x ∈W , we have

‖Log(x)‖J < ε. (2.1.18)

Indeed, if x ∈ W , we have Log(x) = Z(x, 0); thus, from Thm. 2.1.17 we infer
that Log(x) ∈ D(0, ε), which is exactly (2.1.18). In particular, since B(0, ε) is
symmetric, we have the following useful property

−Log(x) ∈ B(0, ε), for all x ∈W. (2.1.19)

By exploiting Thm. 2.1.17, and in particular identity (2.1.15), we can provide
a simple proof of the local associativity of m.

Theorem 2.1.19. Let W ⊆ V be as in Thm. 2.1.17. Then m(a, b) ∈ V for
every a, b ∈W and m is associative on W , that is,

m(x,m(y, z)) = m(m(x, y), z) for all x, y, z ∈W. (2.1.20)

Furthermore, the point 0 ∈ RN provides a local neutral element for m, i.e.,

m(x, 0) = x, for all x ∈ RN , (2.1.21)

m(0, y) = y, for all y ∈ V . (2.1.22)

Proof. Let a, b ∈W . Since Z takes values in B(0, ε) ⊆ U, we have

m(a, b)
(2.1.15)

= Exp(Z(a, b)) ∈ Exp(U) = V. (2.1.23)

We now turn to show identity (2.1.20). To this end, let x, y, z ∈W . Firstly, by
the above (2.1.23) (and since W ⊆ V ), both sides of (2.1.20) are well-de�ned;
moreover, by means of Thm. 2.1.17 we can write

Log(m(y, z))
(2.1.15)

= Log(Exp(Z(y, z)))
(
Z(y, z) ∈ U

)
= Log(Exp|U(Z(y, z))) = Z(y, z).

(2.1.24)

As a consequence, the left-hand side of (2.1.20) can be rewritten as follows:

m(x,m(y, z)) = exp(Log(m(y, z)))(x)
(2.1.24)

= exp(Z(y, z))(x). (2.1.25)

As for the right-hand side we observe that, by de�nition of m, we have

m(m(x, y), z) = exp(Log(z))(m(x, y)) = exp
(
Log(z)

)
(exp(Log(y)(x));

therefore, since Log(y),Log(z) ∈ B(0, ε) (by the choice of W , see identity
(2.1.18)), we can apply identity (2.1.12), which gives

m(m(x, y), z)
(2.1.12)

= exp(Log(y) � Log(z))(x) = exp(Z(y, z))(x). (2.1.26)

Finally, by comparing (2.1.25) and (2.1.25), we derive that

m(x,m(y, z)) = m(m(x, y), z),



2.1. Characterization of left-invariance 28

which is (2.1.20). As for identity (2.1.21), it is a straightforward consequence
of the de�nition of m: indeed, if x ∈ RN , we have (note that 0 ∈ V and
Log(0) = 0)

m(x, 0)
(2.1.11)

= exp(Log(0))(x) = exp(0)(x) = x.

On the other hand, if y ∈ V , by de�nition of Exp we have

m(0, y) = exp(Log(y))(0) = Exp(Log(y)) = y,

and this is precisely the desired (2.1.22). This ends the proof.

De�nition 2.1.20. We set

ι : V −→ RN , ι(x) := Exp(−Log(x)). (2.1.27)

As in the case of m, the real-analyticity of the vector �elds in g implies the
real-analyticity of the map ι on its domain V .

Remark 2.1.21. Let us assume that there exists a Lie group G = (RN , ∗),
with neutral element 0 and s.t. Lie(G) = g. Then, for every x ∈ V , we have

ι(x) = x−1.

In fact, since the map Exp is precisely the Exponential Map of G, if x ∈ V and
if X = Log(x) ∈ g, we then have

x ∗ ι(x) = x ∗ Exp(−Log(x)) = x ∗ exp(−X)(0)
(1.1.5)

= exp(−X)(x)

= exp(−X)(Exp(X)) = exp(−X)(exp(X)(0))

= exp((−X +X))(0) = 0,

and this proves that ι(x) = x−1, as claimed.

We now prove that the map ι provides a local inverse for m.

Theorem 2.1.22. Let W ⊆ V be as in Thm. 2.1.17. Then the map ι in (2.1.27)
provides a local inverse for m on W , that is,

m(x, ι(x)) = 0 for all x ∈W, (2.1.28)

m(ι(x), x) = 0, for all x ∈W. (2.1.29)

Proof. Let x ∈ V and let X = Log(x). By Rem. 2.1.18, −X ∈ B(0, ε), whence

ι(x) = Exp(−Log(x)) = Exp(−X) ∈ Exp(U) = V ; (2.1.30)

moreover, since B(0, ε) ⊆ U, we have

Log(ι(x)) = Log
(
Exp(−X)

)
= −X = −Log(x). (2.1.31)

From these identities we deduce that m(x, ι(x)) is well-de�ned (since ι(x) be-
longs to V ) and that

m(x, ι(x)) = exp
(
Log(ι(x))

)
(x)

(2.1.31)
= exp(−X)(x)

= exp(−X)
(

exp(X)(0)
)
.
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As a consequence, since X,−X ∈ B(0, ε), we are entitled to apply the crucial
identity (2.1.12), which gives

m(x, ι(x))
(2.1.12)

= exp(X � (−X))(0). (2.1.32)

The desired (2.1.28) now follows from (2.1.32), by noticing that

X � (−X) = X + (−X) +

∞∑
h=2

Zh(X,−X) = −
∞∑
h=2

Zh(X,X) = 0.

As for identity (2.1.29) we observe, by de�nition of ι, we have

m(ι(x), x) = exp(Log(x))(ι(x)) = exp
(
X
)
(exp(−X)(0));

thus, by arguing as above, we conclude

m(ι(x), x)
(2.1.12)

= exp((−X) �X)(0) = exp(0)(0) = 0.

This ends the proof.

By gathering the results in Thm.s 2.1.19 and 2.1.22, we see that m actually
de�nes a local Lie group structure on RN ; we end this section by showing that
the Lie algebra g is deeply connected to this structure.

Theorem 2.1.23 (Local left-invariance of g). For every X ∈ g it holds that

XI(m(x, y)) =
∂m

∂y
(x, y) ·XI(y), for every (x, y) ∈ RN × V . (2.1.33)

Proof. We �rst prove that identity (2.1.33) holds for y = 0, that is,

XI(x) =
∂m

∂y
(x, 0) ·XI(0), for all x ∈ RN . (2.1.34)

To this end, let x ∈ RN and let η > 0 be such that tX ∈ U for all t ∈ R with
|t| < η. For these values of t, we have Exp(tX) ∈ Exp(U) = V , whence

exp(tX)(x) = exp
(
Log(Exp(tX))

)
(x)

(2.1.11)
= m

(
x,Exp(tX)

)
. (2.1.35)

By taking the derivative w.r.t. t of both sides of identity (2.1.35) and evaluating
at t = 0, we get (since t 7→ exp(tX)(x) is an integral curve of X)

XI(x) =
d

dt

∣∣∣
t=0

{
exp(tX)(x))

}
=

d

dt

∣∣∣
t=0

{
m
(
x,Exp(tX)

)}
=
∂m

∂y
(x, 0) · d

dt

∣∣∣
t=0

Exp(tX) =
∂m

∂y
(x, 0) ·XI(0),

which is exactly the desired (2.1.34).
Let now W be an open and connected neighborhood of 0 as in Thm. 2.1.17.

Since m is associative on W (as ensured by Thm. 2.1.19), we have

m(m(x, y), z) = m(x,m(y, z)), for all x, y, z ∈W ;
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thus, by di�erentiating w.r.t. z the above identity and evaluating at z = 0, we
get (setting, to avoid ambiguities, m = m(α, β))

∂m

∂β
(m(x, y), 0) =

∂m

∂β
(x,m(y, 0)) · ∂m

∂β
(y, 0), for all x, y ∈W. (2.1.36)

From this, by multiplying both sides of (2.1.36) by the column vector XI(0),
we obtain (since m(y, 0) = y)

∂m

∂β
(m(x, y), 0) ·XI(0) =

∂m

∂β
(x, y) · ∂m

∂β
(y, 0) ·XI(0),

which gives, by (2.1.34) (returning to the m = m(x, y) notation),

XI(m(x, y))
(2.1.34)

=
∂m

∂y
(m(x, y), 0) ·XI(0) =

∂m

∂y
(x, y) · ∂m

∂y
(y, 0) ·XI(0)

(2.1.34)
=

∂m

∂y
(x, y) ·XI(y), for all x, y ∈W.

This is precisely the desired (2.1.33) for x, y ∈W .
For the general case (that is, for x ∈ RN and y ∈ V ), we use the Unique

Continuation Principle: since both sides of identity (2.1.33) are real-analytic in
the couple (x, y) and since they coincide on the open set W ×W , they must be
equal on the whole of RN × V (since V is connected), that is,

XI(m(x, y)) =
∂m

∂y
(x, y) ·XI(y), for all (x, y) ∈ RN × V .

This ends the proof.

2.1.3 Local to global

The aim of this last section is to show that the local-group structure constructed
in Sec. 2.1.2 can be (uniquely) continued to be global; this provides a complete
answer to question (Q) and represents the main novelty with respect to the
paper by Bon�glioli and Lanconelli [32], where the prolongation of the local-
group structure is assumed as an additional hypothesis.

In what follows, we take for �xed all the notations introduced so far.

To begin with, we prove that the map m can be analytically extended to
the whole of RN ×RN . Our idea is the following: for every �xed x, y ∈ RN , let
γx,y be the curve de�ned by

γx,y(t) := m(x, t y).

Since m is de�ned on RN×V , there exists a (possibly small) open neighborhood
of 0 ∈ R on which γx,y is well-de�ned. We show that γx,y satis�es a suitable
Cauchy problem which possesses a (unique) global maximal solution, say t 7→
ϕx,y(t). Then it is natural to extend m as follows

x ∗ y := ϕx,y(1).

Keeping in mind this idea, we start with establishing the following lemma.
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Lemma 2.1.24. Let J = {J1, . . . , JN} be a basis of g as in lemma. 2.1.9. There
exist N functions a1, . . . , aN ∈ Cω(R×RN ,R) such that

y =

N∑
k=1

ak(t, y)JkI(ty), for all (t, y) ∈ R×RN . (2.1.37)

Proof. For every x ∈ RN , we consider the matrix J(x) := (J1I(x) · · · JNI(x))
and we de�ne (J(x) being non-singular)

(a1(t, y), . . . , aN (t, y)) := (J(t y))−1 · y.

Obviously, a1, . . . , aN ∈ Cω(R × RN ,R) (since J1, . . . , JN are real-analytic);
moreover, a direct computation shows that

N∑
k=1

ak(t, y)JkI(ty) = J(ty) ·
((
J(x)

)−1 · y
)

= y,

which is exactly the desired (2.1.37). This ends the proof.

Remark 2.1.25. Let a1, . . . , aN be as in lemma. 2.1.24. We observe that, for
�xed t ∈ R and y ∈ RN , the N -tuple (a1(t, y), . . . , aN (t, y)) ∈ RN is nothing
but the solution x of the linear system

J(ty) · x = y. (2.1.38)

Since J(ty) is non-singular for every choice of (t, y) ∈ R × RN , the system
(2.1.38) has a unique solution, given by (J(ty))−1 · y.

Theorem 2.1.26. Let x, y ∈ RN be �xed and let I ⊆ R be an open neighborhood
of 0 such that ty ∈ V for all t ∈ I. We set

γx,y : I −→ RN , γx,y(t) := m(x, ty).

Then, for all t ∈ I, the function γx,y is a solution of the following Cauchy
problem (depending on the parameter y) ż(t) =

N∑
k=1

ak(t, y)JkI(z(t))

z(0) = x,

(2.1.39)

where a1, . . . , aN are the functions given in lemma. 2.1.24.

Proof. Firstly, since m is real-analytic on RN × RN , then γx,y ∈ Cω(I,RN );
moreover, by exploiting identity (2.1.33) in Thm. 2.1.23, we get

γ̇x,y(t) =
∂m

∂y
(x, t y) · y (2.1.37)

=
∂m

∂y
(x, t y) ·

( N∑
k=1

ak(t, y)JkI(t y)
)

=

N∑
k=1

ak(t, y)
(∂m
∂y

(x, t y) · JkI(t y)
)

(2.1.33)
=

N∑
k=1

ak(t y)JkI(m(x, t y))

=

N∑
k=1

ak(t y)JkI(γx,y(t)),
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and this proves that γx,y satis�es the ODE in (2.1.39). Finally, since 0 is a local
neutral element for m, we have

γx,y(0) = m(x, 0)
(2.1.21)

= x,

and this shows that γx,y solves the Cauchy problem (2.1.39).

Our aim is now to prove that the Cauchy problem (2.1.39) admits a unique
maximal solution which is actually de�ned on the whole of R. To this end, we
�rst establish the following result.

Theorem 2.1.27. Let X1, . . . , Xn ∈ g and let α1, . . . , αn ∈ C(R;R). Then,
for every ξ ∈ RN , the maximal solution of the Cauchy problem{

ż(t) =
∑n
k=1 αk(t)XkI(z(t)),

z(0) = ξ,
(2.1.40)

is de�ned on the whole of R.

Proof. Let ϕ : D → RN be the unique maximal solution of (2.1.40) and let us
assume, by contradiction, that D 6= R. To �x ideas, we suppose that

0 < T := sup(D) <∞.

We then set K := [0, T ] and we choose h > 0 in such a way that the ball B(0, h)
is contained in V . Now, by exploiting classical results of ODE Theory, there
exists ε > 0 such that the (unique) maximal solution us of the problem{

ẋ =
∑n
k=1 αk(t+ s)XkI(x),

x(0) = 0,
(2.1.41)

is de�ned at least on [−ε, ε], uniformly for s ∈ K, and it satis�es

|us(t)| ≤ h, for all t ∈ [−ε, ε] and every s ∈ K. (2.1.42)

Let now τ ∈ ]0, T [ be such that T − τ < ε and let x := ϕ(τ) (note that x is
well-de�ned, since τ ∈ ]0, T [ ⊆ D). We then de�ne

ν : [0, ε] −→ RN , ν(t) := m(x, uτ (t)), (2.1.43)

where uτ is the maximal solution of the Cauchy problem (2.1.41) with s = τ .
We observe that ν is well-de�ned and real-analytic on [0, ε], since m belongs

to Cω(RN × V,RN ) and, by (2.1.42), we have

uτ (t) ∈ B(0, h) ⊆ V, for all t ∈ [0, ε].

We claim that, on [0, h], ν solves the following Cauchy problem{
ż(t) =

∑n
k=1 ak(t+ τ)XkI(z(t)),

z(0) = x.
(2.1.44)

Indeed, since m(x, 0) = x, we have

ν(0) = m(x, uτ (0)) = m(x, 0)
(2.1.21)

= x;
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moreover, by Thm. 2.1.23, for every 0 ≤ t ≤ ε one has

ν̇(t) =
∂m

∂y
(x, uτ (t)) · u̇τ (t)

(2.1.41)
=

∂m

∂y
(x, uτ (t)) ·

(
n∑
k=1

ak(t+ τ)XkI(uτ (t))

)

=

n∑
k=1

ak(t+ τ)

(
∂m

∂y
(x, uτ (t)) ·XkI(uτ (t))

)
(2.1.33)

=

n∑
k=1

ak(t+ τ)XkI(m(x, uτ (t)))
(2.1.43)

=

n∑
k=1

ak(t+ τ)XkI(ν(t)).

We then consider the gluing of ϕ and ν, that is, the map

Φ : [0, τ + h] −→ RN , Φ(t) :=

{
ϕ(t), t ∈ [0, τ ]

ν(t− τ) t ∈ ]τ, τ + ε].

By de�nition, Φ(0) = ϕ(0)
(2.1.40)

= ξ and Ψ ∈ C([0, τ + ε],RN ), since

lim
t→τ−

Φ(t) = lim
t→τ−

ϕ(t) = ϕ(τ) = x
(2.1.44)

= ν(0) = lim
t→τ+

ν(t− τ) = lim
t→τ+

Φ(t);

moreover, it is not di�cult to recognize that Φ ∈ C1([0, τ + ε],RN ) and that Φ
is a solution of (2.1.40). Indeed, for every 0 ≤ t < τ we have

Φ̇(t) = ϕ̇(t) =

n∑
j=1

aj(t)XjI(ϕ(t))
(2.1.40)

=

n∑
j=1

aj(t)XjI(Φ(t)),

while, for every τ < t ≤ ε, one has (since ν solves (2.1.44))

Φ̇(t) = ν̇(t− τ)
(2.1.44)

=

n∑
j=1

aj(t− τ + τ)Xj(ν(t− τ)) =

n∑
j=1

aj(t)XjI(Φ(t)).

Therefore, recalling that Φ is continuous on [0, τ + ε], we obtain

lim
t→τ−

Φ̇(t) =

n∑
j=1

aj(τ)Xj(Φ(τ)) = lim
t→τ+

Φ̇(t),

and this proves that Φ ∈ C1([0, τ + ε],RN ) and it solves the problem (2.1.40).
As a consequence, since τ + ε > T (by the choice of τ), Φ turns out to

be a prolongation of ϕ beyond [0, T [; this is clearly in contradiction with the
maximality of ϕ, and the proof is complete.

Remark 2.1.28. Let us assume that there exists a Lie group G = (RN , ∗) on
RN such that Lie(G) = g. In this case, the proof of the globality of a Cauchy
problem of the form (2.1.40) can be accomplished by exploiting the existence
of a group-inversion; however, we cannot follow this approach in order to prove
Thm. 2.1.27, since we do not possess a global inversion yet.

From Thm. 2.1.27, we immediately deduce the following result.
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Corollary 2.1.29. Let x, y ∈ RN and let a1, . . . , aN be as in lemma. 2.1.24.
Then the maximal solution ϕx,y of the Cauchy problem (2.1.39) (depending

on the parameter y) is de�ned on the whole of R.

By means of Cor. 2.1.29, we are able the extend the map m.

De�nition 2.1.30. Let x, y ∈ RN and let ϕx,y be the unique maximal solution
of the Cauchy problem (2.1.39). We set

∗ : RN ×RN −→ RN , x ∗ y := ϕx,y(1). (2.1.45)

As it is natural to expect, ∗ turns out to be a real-analytic extension of m.

Theorem 2.1.31. The function ∗ de�ned in (2.1.45) is a real-analytic function
on RN ×RN which extends the function m, that is,

x ∗ y = m(x, y) = exp(Log(y))(x), for all (x, y) ∈ RN × V . (2.1.46)

Proof. We �rst prove the regularity of ∗. To this end, for every x, y ∈ RN , let
ϕx,y be the (unique) maximal solution of the parametric Cauchy problem

ż(t) =

N∑
k=1

ak(t, y)JkI(z(t))

z(0) = x.

(2.1.47)

Since the function de�ned on R×RN ×RN

(t, z; y) 7→
N∑
k=1

ak(t, y)JkI(z)

is real-analytic w.r.t. t, z and y (since a1, . . . , aN are real-analytic on R×RN ), we
infer that the map (t;x, y) 7→ ϕx,y(t) is real-analytic w.r.t. t ∈ R and x, y ∈ RN ;
as a consequence, we deduce that

(x, y) 7→ ϕx,y(1) = x ∗ y

is real-analytic on RN ×RN , as desired.
To prove identity (2.1.46), we choose a real r > 0 such that B(0, r) ⊆ V

and we �x x ∈ RN and y ∈ B(0, r). Moreover, we choose an open interval I
containing [0, 1] (note that B(0, r) is convex) and we de�ne

γx,y : I −→ RN , γx,y(t) := m(x, ty).

By Thm. 2.1.26, γx,y is solution of the Cauchy problem (2.1.47) for all t ∈ I;
therefore, since ϕx,y is the maximal solution of the same problem, we have

γx,y(t) = ϕx,y(t), for all t ∈ I.

In particular, since 1 ∈ I (by the choice of I), we get

m(x, y) = γx,y(1) = ϕx,y(1) = x ∗ y, (2.1.48)

and this proves that ∗ coincides with m on RN ×D(0, r).
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To conclude the demonstration, we apply the Unique Continuation Principle:
since both m and ∗ are real-analytic on RN × V and they coincide on the open
set RN ×B(0, r), we obtain (recall that V is connected)

m(x, y) = x ∗ y, for every (x, y) ∈ RN × V ,

which is precisely the desired (2.1.46).

Remark 2.1.32. It is worth noting that, as a consequence of Thm. 2.1.31, the
map ∗ de�ned in (2.1.45) is the unique analytic extension of m. Indeed, if
f ∈ Cω(RN ×RN ,RN ) is another extension of m, we have

x ∗ y = f(x, y) = m(x, y), for all (x, y) ∈ RN × V ;

therefore, since both f and ∗ are real-analytic and they coincide on RN × V ,
the Unique Continuation Principle ensures that

f(x, y) = x ∗ y, for all x, y ∈ RN .

As a consequence of the Unique Continuation Principle, the map ∗ inherits
all the local properties of m proved in the previous section, turning them into
global ones.

Theorem 2.1.33. The map ∗ is globally associative on RN , that is

x ∗ (y ∗ z) = (x ∗ y) ∗ z, for all x, y, z ∈ RN . (2.1.49)

Moreover, the point 0 ∈ RN is a global neutral element for ∗, that is,

x ∗ 0 = 0 ∗ x = x, for all x ∈ RN . (2.1.50)

Finally, the map ι in (2.1.27) provides an inversion map for the ∗, that is,

x ∗ ι(x) = ι(x) ∗ x = 0, for all x ∈ V . (2.1.51)

Proof. Let W ⊆ V be as in Thm. 2.1.19 and let x, y, z ∈ W . Since, by
Thm. 2.1.31, the map ∗ is an extension of m, we have (recall that both m(x, y)
and m(y, z) belong to W ⊆ V )

x ∗ (y ∗ z) (2.1.46)
= x ∗m(y, z)

(2.1.46)
= m(x,m(y, z));

(x ∗ y) ∗ z (2.1.46)
= m(x ∗ y, z) (2.1.46)

= m(m(x, y), z);

therefore, since m is locally associative (as ensured by Thm. 2.1.19), we get

x ∗ (y ∗ z) = m(x,m(y, z))
(2.1.20)

= m(m(x, y), z) = (x ∗ y) ∗ z. (2.1.52)

We can now apply the Unique Continuation Principle: since both sides of iden-
tity (2.1.52) are real-analytic w.r.t.x, y, z and since they coincide on the open
set W ×W ×W , we necessarily have

x ∗ (y ∗ z) = (x ∗ y) ∗ z, for all x, y, z ∈ RN .

This is precisely the desired (2.1.49).
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Since 0 ∈ V , by Thm. 2.1.31, we obtain

x ∗ 0
(2.1.46)

= m(x, 0)
(2.1.21)

= x, for all x ∈ RN .

On the other hand, if x ∈ V , again by Thm. 2.1.31 we get

0 ∗ x (2.1.46)
= m(0, x)

(2.1.22)
= x. (2.1.53)

We can then apply once again the Unique Continuation Principle: since both
sides of identity (2.1.53) are real-analytic on RN and they coincide on the open
set V , they must coincide on the whole of RN , that is,

0 ∗ x = x, for all x ∈ RN .

Finally, let W ⊆ V be as in Thm. 2.1.22 and let x ∈ W . By Thm. 2.1.31, we
have (recall that ι(x) ∈ V , since x ∈W )

x ∗ ι(x)
(2.1.46)

= m(x, ι(x)),

ι(x) ∗ x (2.1.46)
= m(ι(x), x);

hence, the map ι providing an inverse for m on W (by Thm. 2.1.22), we get

x ∗ ι(x) = m(x, ι(x)) = m(ι(x), x) = x ∗ ι(x) = 0, for all x ∈W. (2.1.54)

We then apply the Unique Continuation Principle: since both maps

x 7→ x ∗ ι(x) and x 7→ ι(x) ∗ x

are real-analytic on V and since, by (2.1.54), they are equal to 0 on the open
set W , they must identically vanish on the whole of V , that is,

x ∗ ι(x) = ι(x) ∗ x = 0, for all x ∈ V .

This ends the proof.

Now that we have globalized the local-group properties of m, we proceed
by establishing a global version of Thm. 2.1.23. Before doing this, we give the
following de�nition. To be noted that we do not yet know that the following
maps are the left-/right-translations on a Lie group.

De�nition 2.1.34. Let x ∈ RN be �xed. We let

τx : RN −→ RN τx(y) := x ∗ y, (2.1.55)

ρx : RN −→ RN ρx(y) := y ∗ x. (2.1.56)

Theorem 2.1.35 (Global left-invariance of g). Every vector �eld X in g is
left-invariant w.r.t. ∗, that is, the following identity holds true

XI(x ∗ y) = Jτx(y) ·XI(y), for all x, y ∈ RN . (2.1.57)
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Proof. Let X ∈ g be �xed. By Thm. 2.1.23 we know that

XI(m(x, y)) =
∂m

∂y
(x, y) ·XI(y), for all (x, y) ∈ RN × V ;

from this, since ∗ coincides with m on the open set RN × V , we get

XI(x ∗ y)
(2.1.46)

= XI(m(x, y)) =
∂m

∂y
(x, y) ·XI(y)

=
∂τx
∂y

(y) ·XI(y) = Jτx(y) ·XI(y), for all (x, y) ∈ RN × V .
(2.1.58)

We now apply the Unique Continuation Principle: since both sides of identity
(2.1.58) are real-analytic on RN ×RN (any vector �eld in g being real-analytic)
and since they coincide on the open set RN × V , we must have

XI(x ∗ y) = Jτx(y) ·XI(y), for all x, y ∈ RN .

This is precisely the desired (2.1.57), and the proof is complete.

Together with the map m and its analytic extension ∗, in order to prove our
Thm. 2.1.6 we also need a global (analytic) extension of the inversion map ι,
allowing us to de�ne a group structure on RN .

Theorem 2.1.36. For every x ∈ RN , the map τx in Def. 2.1.34 is a local
di�eomorphism on RN of class Cω.

Proof. We �rst prove that, if x ∈ RN is �xed, then τx is an analytic di�eomor-
phism near the origin. To this end, we consider the following maps

ex : RN −→ RN ex(ξ) := exp

(
N∑
k=1

ξkJk

)
(x),

L : V −→ RN L(x) := (π−1 ◦ Log)(x).

Since ∗ is a prolongation of m, by de�nition of τx we have

τx(y) = x ∗ y (2.1.46)
= m(x, y)

(2.1.11)
= exp

(
Log(y)

)
(x) = ex(L(y)); (2.1.59)

therefore, to prove that τx is a Cω-di�eomorphism at 0 we show that both L
and ex are real-analytic maps with non-singular Jacobian matrix at 0.

Now, the analyticity of L readily follows from that of Log; moreover, from
Rem. 2.1.13 we deduce that JL(0) = IN . As for the map ex, we �rst observe
that, if γ(· ; ξ) denotes the unique maximal solution of the Cauchy problemnce{

ż =
∑N
k=1 ξkJkI(z)

z(0) = x,

then ex(ξ) = γ(1; ξ); therefore, (t, ξ) 7→ γ(t; ξ) is real-analytic on RN ×RN , and
we deduce that ex ∈ Cω(RN ,RN ).
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To compute the Jacobian matrix of ex at 0, we write the Maclaurin expansion
(with integral remainder) of γ(· ; ξ) for t = 1:

γ(1; ξ) = γ(0; ξ) + γ̇(0; ξ) +

∫ 1

0

(1− s)γ′′(s; ξ) ds

= x+

N∑
k=1

ξkJkI(x) +

N∑
h,k=1

ξhξk

∫ 1

0

(1− s) (JhJkI)(γ(s; ξ)) ds.

(2.1.60)

From this, by arguing as in the proof of Prop. 2.1.12, we infer that

ex(ξ) = γ(1; ξ) = x+

N∑
k=1

ξkJkI(x) + O(‖ξ‖2), as ξ → 0,

and this proves that Jex(0) = (J1I(x) · · · JNI(x)). Since J1I(x), . . . , JN (x) are
linearly independent in RN (by the choice of the basis J), we see that also Jex(0)
is non-singular. By gathering together all these facts, the matrix

Jτx(0)
(2.1.59)

= Jex(0) · JL(0) = Jex(0) =
(
J1I(x) · · · JNI(x)

)
is non-singular, whence τx is a Cω-di�eomorphism near 0, as desired.

To conclude the demonstration of the theorem, we crucially exploit the as-
sociativity of ∗: since, for every x, y, z ∈ RN , we have

(x ∗ y) ∗ z = x ∗ (y ∗ z),

by di�erentiating both sides of the above identity w.r.t. z at z = 0, we get

Jτx∗y (0) = Jτx(y ∗ 0) · Jτy (0) = Jτx(y) · Jτy (0); (2.1.61)

from this, since both matrices Jτx∗y (0) and Jτy (0) are non-singular (as we have
already proved), we infer that

Jτx(y) = Jτx∗y (0) ·
(
Jτy (0)

)−1
,

is non-singular as well. By the Inverse Function Theorem, we then conclude
that τx is a local di�eomorphism on RN , as desired.

Since every local di�eomorphism (on RN ) is an open map, Thm. 2.1.36 im-
mediately gives the following non-trivial result.

Corollary 2.1.37. For any x ∈ RN , the map τx in Def. 2.1.34 is an open map.

By means of Thm. 2.1.36 and of Cor. 2.1.37, we can prove a simple topological
result, which will allow us to extend the map ι to the whole of RN .

Proposition 2.1.38. Let W ⊆ V be as in Thm. 2.1.17. Then we have

RN =

∞⋃
n=1

{
w1 ∗ · · · ∗ wn : w1, . . . , wn ∈W

}
. (2.1.62)
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Proof. We denote by A the set in right-hand side of (2.1.62). To prove the
proposition, we show that A is both open and closed (in RN ).

A is open: We consider the family {An}n∈N of subsets of RN de�ned by

An :=
{
w1 ∗ · · · ∗ wn : w1, . . . , wn ∈W

}
, for all n ∈ N. (2.1.63)

By de�nition, A =
⋃
n≥1An; moreover, it is easy to see that each An is open.

Indeed, A1 = W is open and, if n ≥ 2, we can write (since ∗ is associative)

An =
{
x ∗ w : x ∈ An−1, w ∈W

}
=

⋃
x∈An−1

τx(W ).

Since W is open and since any left-translation is an open map (by Cor. 2.1.37),
we see that An is the union of open sets, whence it is open.

A is closed : Let x0 ∈ A be �xed. Since ι is continuous (on V ) and ι(0) = 0,
there exists an open neighborhood U ⊆W of 0 such that

ι(U) ⊆W ; (2.1.64)

moreover, since τx0
(U) is an open neighborhood of x0 = τx0

(0) (τx0
being an

open map), we must have τx0(U) ∩ A 6= ∅. As a consequence, it is possible to
�nd w1, . . . , wn ∈W and u ∈ U such that

w1 ∗ · · · ∗ wn = τx0(u) = x0 ∗ u.

From this, by the associativity of ∗, we get

(w1 ∗ · · · ∗ wn) ∗ ι(u) = (x0 ∗ u) ∗ ι(u)
(2.1.49)

= x0 ∗ (u ∗ ι(u))

(2.1.51)
= x0 ∗ 0 = x0;

(2.1.65)

therefore, since w1, . . . , wn, ι(u) ∈W (by (2.1.64)), we see that x0 ∈ A.

Since obviously A 6= ∅, we conclude that A = RN , as desired.

Remark 2.1.39. IfG = (RN , ∗) is a Lie group with neutral element 0, the result
contained in Prop. 2.1.38 is a straightforward consequence of the following more
general fact: a connected topological group is generated (as a group) by any
neighborhood of the identity.

From Prop. 2.1.38, we easily deduce the following crucial result.

Proposition 2.1.40. For every x ∈ RN , there exists a unique yx ∈ RN s.t.

x ∗ yx = yx ∗ x = 0. (2.1.66)

Proof. Let W ⊆ V be as in Thm. 2.1.17. By Prop. 2.1.38, it is possible to �nd
w1, . . . , wn ∈W , not necessarily unique, such that

x = w1 ∗ · · · ∗ wn;
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hence, we de�ne y := ι(wn) ∗ · · · ∗ ι(w1). Since W ⊆ V , y is well-de�ned;
moreover, by the associativity of ∗ we have

x ∗ y = (w1 ∗ · · · ∗ wn) ∗ (ι(wn) ∗ · · · ∗ ι(w1))

(2.1.49)
= (w1 ∗ · · · ∗ wn−1) ∗ (wn ∗ ι(wn)) ∗ (ι(wn−1) ∗ · · · ∗ ι(w1))

(2.1.51)
= (w1 ∗ · · · ∗ wn−1) ∗ 0 ∗ (ι(wn−1) ∗ · · · ∗ ι(w1))

(2.1.50)
= (w1 ∗ · · · ∗ wn−1) ∗ (ι(wn−1) ∗ · · · ∗ ι(w1)) = [...] = 0.

Analogously, we have y ∗ x = 0, whence y satis�es (2.1.66).
As for the uniqueness part, let z ∈ RN be such that

z ∗ x = x ∗ z = 0.

By the associativity of ∗, we get

y
(2.1.50)

= y ∗ 0
(2.1.66)

= y ∗ (x ∗ z) (2.1.49)
= (y ∗ x) ∗ z (2.1.66)

= 0 ∗ z (2.1.50)
= z,

whence y is the unique point in RN satisfying (2.1.66).

The result contained in Prop. 2.1.40 provides a very natural way to extend
the map ι to the whole of RN .

De�nition 2.1.41. For every x ∈ RN , let yx ∈ RN be the unique point satis-
fying identity (2.1.66) in Prop. 2.1.40. We de�ne

ι̃ : RN −→ RN , ι̃(x) := yx. (2.1.67)

As we did for ∗, we prove that ι̃ is a real-analytic extension of ι.

Theorem 2.1.42. The map ι̃ de�ned in (2.1.41) is real-analytic on RN and it
extends the map ι, that is,

ι̃(x) = ι(x), for all x ∈ V . (2.1.68)

Proof. We �rst prove that ι̃ ∈ Cω(RN ,RN ). To this end, let x0 ∈ RN and
let y0 := ι̃(x0). Then, by de�nition, we have x0 ∗ y0 = 0. We claim that the
Jacobian matrix of ∗ at (x0, y0) has full rank. Indeed, recalling the de�nition of
the maps τx0

and ρx0
(see Def. 2.1.34), we have

J∗(x0, y0) =
(
Jρy0 (x0) Jτy0 (x0)

)
; (2.1.69)

therefore, since Jτy0 (x0) is non-singular (τy0 being a local di�eomorphism of
RN , see Thm. 2.1.36), we deduce that

rank
(
J∗(x0, y0)

)
= N,

as claimed. By the Inverse Function Theorem (in the real-analytic setting),
we can then �nd two open neighborhoods U,U ′ ⊆ RN of 0 and a real-analytic
function f : U → U ′ such that f(x0) = y0 = ι̃(x0) and

{(x, y) ∈ U × U ′ : x ∗ y = 0} = {(x, f(x)) : x ∈ U}.
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Now, by Prop. 2.1.40, for every x ∈ RN there exists a unique point y ∈ RN such
that x ∗ y = 0, which is precisely ι̃(x); therefore,

f(x) = ι̃(x), for every x ∈ U,

and this proves that ι̃ is real-analytic on U . From the arbitrariness of x0, we
then conclude that ι̃ ∈ Cω(RN ,RN ), as desired.

As for identity (2.1.68) we recall that, if x ∈ V , we have

x ∗ ι(x) = ι(x) ∗ x = 0;

hence, by Prop. 2.1.40 (and the very de�nition of ι̃), we get ι(x) = ι̃(x).

Thanks to all the results proved in this section, we can provide a complete
proof of Thm. 2.1.6 stated at the beginning of the chapter.

Proof (of Thm. 2.1.6). Let G := (RN , ∗), where ∗ is the map de�ned in (2.1.45).
By Thm. 2.1.31, ∗ is real-analytic on RN × RN ; moreover, Thm.2.1.33 shows
that ∗ is associative and that 0 provides a neutral element for ∗. Finally, if ι̃ is
the map de�ned in (2.1.67), by Thm. 2.1.42 we know that ι̃ ∈ Cω(RN ,RN ) and
that it provides an inversion map for ∗.

Summing up, G is a real-analytic group on RN with neutral element 0. To
conclude the demonstration of the theorem, we turn to show that Lie(G) = g.
To this end we observe that, since Thm. 2.1.35 ensures that

XI(x ∗ y) = Jτx(y) ·XI(y) for all x, y ∈ RN and X ∈ g,

then g ⊆ Lie(G); from this, recalling that g has dimension N (by assumption
(ND)), we conclude that g = Lie(G), and the proof is complete.

We easily obtain the following improvement of Thm. 2.1.6.

Theorem 2.1.43. Let g be a Lie algebra of real analytic vector �elds on RN

satisfying conditions (C), (H) and (ND) in Def. 2.1.1. Then, for every x0 in
RN there exists a unique real-analytic Lie group Gx0

= (RN , ?) with neutral
element x0 and Lie algebra equal to g. More precisely, we have

x ? y = x ∗ (x0)−1 ∗ y, for all x, y ∈ RN , (2.1.70)

where ∗ is the map de�ned in (2.1.45) and (x0)−1 is the inverse of x0 w.r.t. ∗.
As a consequence, the group G = (RN , ∗) is the unique (real-analytic) Lie

group on RN with neutral element 0 and such that Lie(G) = g.

Proof. Let x0 ∈ RN be �xed and let ? be the map de�ned in (2.1.70). Moreover,
let Gx0

:= (RN , ?). Since G = (RN , ∗) is a Lie group with neutral element 0,
it is very easy to recognize that Gx0

is also a (real-analytic) Lie group on RN ,
with neutral element x0 (note that ? is the push-forward of ∗ via τx0

).
To prove that Lie(Gx0) = g we �rst observe that, by the Chain Rule, we

have (denoting by τ?x the left-translation by x on Gx0)

Jτ?x (x0) = Jτx(0) · Jτx0−1 (x0) = Jτx(0) ·
(
Jτx0 (0)

)−1
;

from this, recalling that the Jacobian basis of Lie(Gx0
) is given by the vector

�elds J?1 , . . . , J
?
N associated with the columns of Jτ?x (x0) (and, analogously, the
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Jacobian basis of Lie(G) is given by the vector �elds J1, . . . , JN associated with
the columns of Jτx(0)), we derive that

J?i =

N∑
k=1

ck,i Jk,

where (c1,i, . . . , cN,i)
T is the i-th column of Jτx0−1 (x0). Finally, since Lie(G)

and Lie(Gx0
) are both N -dimensional, we conclude that

Lie(Gx0) = Lie(G) = g.

As for the uniqueness of the group Gx0
, let us assume that there exists another

(real-analytic) Lie group F = (RN , ◦), with neutral element x0 and Lie algebra
coinciding to g. Then, if we denote by Exp◦ : g = Lie(F)→ RN the Exponential
Map on F (and by Exp? the Exponential Map on Gx0), we have

Exp◦(X) = exp(1 ·X)(x0) = Exp?(X), for every X ∈ g.

As a consequence, since Exp◦ = Exp? is local di�eomorphism of an open neigh-
borhood U of 0 ∈ g onto an neighborhood U of x0 ∈ RN , if x ∈ RN and if
y = Exp?(Y ) = Exp◦(Y ) ∈ U (with Y ∈ U), we obtain

x ? y = x ? Exp?(Y ) = exp(Y )(x) = x ◦ Exp◦(Y ) = x ◦ y,

and this proves that ? and ◦ do coincide on the open set RN ×U . Since both ?
and ◦ are real-analytic on RN ×RN , the Unique Continuation Principle ensures
that they coincide on the whole of RN ×RN , and the proof is complete.

2.1.4 The C∞ case: a brief overview

The main aim of this section is to roughly describe how Thm. 2.1.6 can be proved
also in the case of Lie algebras of smooth vector �elds. More details will be given
in a future planned thorough investigation (presently, in preparation).

To begin with, let us �x once and for all a Lie algebra g ⊆ X(RN ) of smooth
(but not necessarily real-analytic) vector �elds onRN satisfying the assumptions
(C), (H) and (ND) introduced in Def. 2.1.1, that is,

(C): every X ∈ g is a global vector �eld;

(H): the Hörmander rank condition holds for g;

(ND): g is N -dimensional, as a linear subspace of X(RN ).

We also choose a basis J = {J1, . . . , JN} of g as in Lem. 2.1.9 and we set

J(x) :=
(
J1I(x) · · · JNI(x)

)
, x ∈ RN . (2.1.71)

Now, according to Prop. 2.1.12, the Exponential Map of g

Exp : g −→ RN , Exp(X) = exp(X)(0)

is of class C∞ on g; moreover, there exists an open and connected neighborhood
U ⊆ g of 0 such that Exp|U is a smooth di�eomorphism, with inverse

Log : V := Exp(U) −→ U, Log(x) =
(
Exp|U

)−1
(x).
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Then, by proceeding exactly as in the real-analytic case, we de�ne

m : RN × V −→ RN , m(x, y) := exp
(
Log(y)

)
(x),

ι : V −→ RN , ι(x) := Exp
(
− Log(x)

)
.

Obviously, Exp and Log being smooth on their domains of de�nition, we have

m ∈ C∞(RN × V,RN ) and ι ∈ C∞(V,RN );

moreover, since Thm. 2.1.16 holds true also for (�nite-dimensional) Lie algebras
of smooth vector �elds, by arguing verbatim as in Sec. 2.1.2 we can prove the
following facts (see, respectively, Thm.s 2.1.19, 2.1.22 and 2.1.23):

(1) There exists an open and convex neighborhood W ⊆ RN of 0 such that
m(a, b) ∈ V for every a, b ∈ V and m is associative on W , that is,

m(x,m(y, z)) = m(m(x, y), z), ∀ x ∈ RN and ∀ y, z ∈W. (2.1.72)

Moreover, 0 is a neutral element for m, that is,

m(x, 0) = x, for all x ∈ RN ,
m(0, y) = y, for all y ∈ V .

(2.1.73)

(2) If W is as in statement (1), we have ι(a) ∈ V for every a ∈ W and ι
provides a local inverse for m on W , that is,

m(x, ι(x)) = m(ι(x), x) = 0, for every x ∈W. (2.1.74)

(3) Any vector �eld in g is locally left-invariant w.r.t.m, that is,

XI(m(x, y)) =
∂m

∂y
(x, y) ·XI(y), for every (x, y) ∈ RN ×W. (2.1.75)

We explicitly observe that, in contrast to the real-analytic case, we are not able
to extend (at this very point of the proof) identity (2.1.75) to the whole of
RN × V : indeed, due to the lack of analyiticity, we cannot exploit the Unique
Continuation Principle (cf the proof of Thm. 2.1.23).

Summing up, also in the C∞ case it is possible to construct a local Lie group
Gloc = (RN ,m), with neutral element 0 and inverse given by ι, such that

Lie(Gloc) = g, in the sense of local Lie groups.

We now turn to brie�y describe how this local group can be globalized.
First of all, by following the same pro�table idea explained in Sec. 2.1.3, we

�x (x, y) ∈ RN ×W and we consider the curve γx,y : [0, 1]→ RN de�ned by

γ(t) := m(x, ty), 0 ≤ t ≤ 1.

Obviously, γ ∈ C∞([0, 1],RN ); moreover, by exploiting identity (2.1.75) and
by arguing as in the proof of Thm. 2.1.26, we see that γx,y solves on [0, 1] the
following Cauchy problem (recall that m(x, 0) = x, see (2.1.73)):

ż =

N∑
k=1

ak(t, y)JkI(z)

z(0) = x,

where

a1(t, y)
...

aN (t, y)

 =
(
J(ty)

)−1 · y. (2.1.76)
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On the other hand, again by exploiting the crucial identity (2.1.75) (and by
arguing as in the the proof of Thm. 2.1.27) we recognize that, for every �xed
x, y ∈ RN , the Cauchy problem (2.1.76) possesses a unique maximal solution
ϕx,y which is de�ned on the whole of R; therefore, we de�ne

∗ : RN ×RN −→ RN , x ∗ y := ϕx,y(1). (2.1.77)

We also introduce, for every �xed x ∈ RN , the notations τx and ρx for the left
and the right translation by x associated with ∗, that is,

τx : RN −→ RN τx(y) := x ∗ y,
ρx : RN −→ RN ρx(y) := y ∗ x.

Now, by classical results of ODE Theory we know that ∗ is of class C∞ on
RN ×RN ; moreover, from the previous discussion we infer that

x ∗ y = ϕx,y(1) = γx,y(1) = m(x, y), if x ∈ RN and y ∈W.

In other words, ∗ is a smooth prolongation of m to the whole of RN × RN .
Hence, to complete the globalization of the local group Gloc, we have to show
that ∗ inherits all the properties of m, turning them into global properties.

Unfortunately, due to the lack of analyticity, we have to renounce the power-
ful tool provided by the Unique Continuation Principle (which played a crucial
rôle in the real-analytic case); instead, we shall use the uniqueness of the maxi-
mal solution of a Cauchy problem. The key steps are thus the following:

Step I: First of all we observe that, ϕx,y being the unique maximal solution of
the problem (2.1.76), for every x, y ∈ RN and every t ∈ R we have

τx(ty) = x ∗ (ty) = ϕx,ty(1) = ϕx,y(t).

As a consequence, we obtain the following crucial identity:

∂

∂yi

(
ϕx,y(t)

)
=

∂

∂yi

(
τx(ty)

)
= t Jτx(ty) · ei, (2.1.78)

holding true for every i ∈ {1, . . . , N}, every x, y ∈ RN and every t ∈ R.

Step II: For every �xed i ∈ {1, . . . , N} and every x, y ∈ RN , we de�ne

ui : R −→ RN , ui(t) := tJ(x ∗ ty) ·
(
J(ty)

)−1 · ei.

Obviously, ui ∈ C∞(R,RN ) and ui(0) = 0; moreover, after some non-
trivial computations we recognize that, for every t ∈ R, one has

u̇i(t) = A(t) · ui(t) + bi(t), (2.1.79)

where we have used the notations

A(t) :=

N∑
j=1

aj(t, y) · JXjI(x ∗ ty) and bi(t) :=

N∑
j=1

∂aj
∂yi

(t, y)XjI(x ∗ ty).
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Since the equation (2.1.79) is nothing but the variational ODE satis�ed by
the function t 7→ ∂/∂yi(ϕx,y(t)), from identity (2.1.78) we conclude that

J(x ∗ y) ·
(
J(y)

)−1 · ei = ui(1) =
∂

∂yi

(
ϕx,y(1)

)
= Jτx(y) · ei. (2.1.80)

In particular, the matrix J(z) being non-singular for every z ∈ RN (by
Lem. 2.1.9), we infer that τx is a local di�eomorphism of RN of class C∞.

Step III: Thanks to identity (2.1.80) we can give an easy proof of the (global)
associativity of ∗. Indeed, let x, y, z ∈ RN be arbitrarily �xed and let
γ, µ ∈ C∞(R,RN ) be the curves in RN de�ned as follows:

γ(t) := x ∗ (y ∗ tz), µ(t) := (x ∗ y) ∗ tz.

By crucially exploiting the cited (2.1.80), it is easy to see that γ and µ
solves on RN the same Cauchy problem, namely

u̇ =

N∑
k=1

ak(t, z)JkI(z)

u(0) = x ∗ y.

Thus, by uniqueness, we have γ(t) = µ(t) for every t ∈ R, whence

x ∗ (y ∗ z) = γ(1) = µ(1) = (x ∗ y) ∗ z.

This gives the global associativity of ∗.

Step IV: We now turn to show that 0 is a neutral element for ∗. To this end,
let x ∈ RN be �xed. Since, obviously, the constant function γ(t) = x is a
solution (on the whole of R) of the Cauchy problem (see (2.1.76))

ż =

N∑
k=1

ak(t, 0)JkI(z) = 0,

u(0) = x,

we immediately infer that x ∗ 0 = ϕx,0(1) = γ(1) = x. On the other hand,
a direct computation shows that the linear function µ(t) = tx is a solution
(on the whole of R) of the Cauchy problem

ż =

N∑
k=1

ak(t, x)JkI(z),

z(0) = 0;

hence, by uniqueness, we conclude that 0 ∗ x = ϕ0,x(1) = µ(1) = x.

Step V: Once Steps I-to-IV have been established, the existence of a global
extension for the map ι can be proved as in the real-analytic case.
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(i) First of all, we choose an open and connected neighborhood W0 of
0 such that W0 and ι(W0) lie W ; then, by arguing as in the proof
of Prop. 2.1.62 (and recalling that the left-translation are smooth
di�eomorphisms of RN , see Step II), we can write

RN =

∞⋃
n=1

{
w1 ∗ · · · ∗ wn : w1, . . . , wn ∈W0

}
.

(ii) Let x ∈ RN be arbitrarily �xed and, according with point (i), let
w1, . . . , wn in W0 be such that x = w1 ∗ · · · ∗ wn. By crucially ex-
ploiting all the properties of ∗ established so far (and proceeding as
in the proof of Prop. 2.1.40), we see that

y := ι(wn) ∗ · · · ∗ ι(w1)

is the unique point of RN such that x ∗ y = y ∗ x = 0.

(iii) Finally, let ι̃ : RN → RN be the function de�ned as follows: for every
x ∈ RN , we set y = ι̃(x) to be the unique point of RN such that

x ∗ y = y ∗ x = 0.

By the previous point (ii), ι̃ is well-de�ned; moreover, by de�nition,
we have x ∗ ι̃(x) = ι̃(x) ∗ x = 0. Thus, ι̃ provides a global inverse for
∗ and, by uniqueness, it is an extension of ι, that is,

ι(x) = ι̃(x), for every x ∈W0.

As for the regularity of ι̃ we observe that, by de�nition, ι̃ is implicitly
de�ned (in a unique way) by the equation x ∗ y = 0; moreover,

rk
(
J∗(x, y)

)
= rk

((
Jρy (x) | Jτx(y)

))
= N, for every x, y,∈ RN .

Thus, the Implicit Function Theorem ensures that ι̃ ∈ C∞(RN ,RN ).

By gathering together Steps I-to-V, we then recognize that G = (RN , ∗) is a Lie
group on RN , with neutral element 0 and inversion map given by ι̃; moreover,
from identity (2.1.80) in Step II it follows that

Ji(x ∗ y) = Jτx(y) · JiI(y),

for every x, y ∈ RN and every i ∈ {1, . . . , N}, whence J1, . . . , JN ∈ Lie(G). As
a consequence, we deduce that g = span{J1, . . . , JN} ⊆ Lie(G) and thus, both
g and Lie(G) being N -dimensional, we conclude that

Lie(G) = g.

This proves Thm. 2.1.6 also in the C∞ case.

Remark 2.1.44. It is worth noting that, also in the C∞ case, it is possible
to prove a re�nement of Thm. 2.1.6 analogous to Thm. 2.1.43: indeed, one can
prove that for every �xed x0 ∈ RN there exists a unique Lie group G = (RN , ◦)
with neutral element x0 and Lie(G) = g. More precisely, we have

x ◦ y = x ∗ (x0)−1 ∗ y, for every x, y ∈ RN ,

where ∗ is the map de�ned in (2.1.77) and x−1
0 is the inverse of x0 w.r.t. ∗.
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2.2 Regularity of vector �elds underlying second-

oder PDOs

Let us consider, on an open set Ω ⊆ RN , a generic linear PDO L of the form

L =

N∑
i,j=1

ai,j(x) ∂xixj +

N∑
j=1

bj(x) ∂xj , x ∈ Ω,

where ai,j , bj ∈ C∞(Ω,R) for every i, j ∈ {1, . . . , N}. We also assume, without
loss of generality, that the matrix A(x) := (ai,j(x))i,j (usually referred to as the
principal matrix of L) is symmetric and positive semi-de�nite for every x ∈ Ω.
As anticipated in the introduction of the chapter, the main aim of this section
is to provide a simple su�cient condition allowing L to be re-written as a sum
of squares of smooth vector �elds (plus, possibly, a drift term).

First of all we observe that, if {X0, . . . , Xm} is a set of smooth vector �elds
(on Ω) such that L =

∑m
j=1X

2
j +X0, setting (for every x ∈ Ω)

R(x) :=
(
X1I(x) · · ·XmI(x)

)
,

we then have A(x) = R(x) · R(x)T ; on the other hand, if S(x) = (σi,j(x))i,j is
a N ×m matrix of smooth functions σi,j ∈ C∞(Ω,R) such that

A(x) = S(x) · S(x)T , for every x ∈ Ω,

it is straightforward to see that L =
∑m
j=1 Z

2
j + Z0, where

Zj =

N∑
i=1

σi,j(x) ∂xi and Z0 =

N∑
k=1

bk(x)−
m∑
j=1

Xj(σk,j)

 ∂xk .

Therefore, the operator L can be re-written as a sum of squares of smooth
vector �elds (plus, eventually, a drift) if and only if it is possible to �nd a
smooth matrix-valued map Ω 3 x 7→ S(x) such that

A(x) = S(x) · S(x)T , for every x ∈ Ω.

In the following section we shall prove, under a suitable constant rank condition,
the existence of such a decomposition for A(x). We point out that this result is
not new: in fact, it can be found (although without a proof) in the introduction
to the celebrated paper by Hörmander [94]. We also address the reader to the
book by Ole��nik and Radkevi£ [120] for an example of a linear PDO which
cannot be re-written as a sums of squares of (smooth) vector �elds.

2.2.1 The main result

We �rst introduce a couple of notations we shall use in the sequel. Given any
N ≥ 1, we denote by SymN(R) the real vector space of all N ×N matrices with
real entries; moreover, for every 1 ≤ m ≤ N we set

S+
N (m) := {A ∈ SymN(R) : A ≥ 0 and rk(A) = m}. (2.2.1)
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We also denote by MN×m(R) the (real) vector space of the N×m matrices with
real coe�cients and we de�ne

ΩN (m) := {M ∈ MN×m(R) : rk(M) = m}. (2.2.2)

We then have the following theorem, which is the main result of this section.

Theorem 2.2.1. Let Ω ⊆ RN be an open set and let A : Ω→ S+
N (m) be a map

of class Ck (with k ∈ N ∪ {∞, ω}). If Ω is contractible, it is possible to �nd a
map R : Ω→ ΩN (m), with the same regularity of that of A, such that

A(x) = R(x) ·R(x)T for all x ∈ Ω. (2.2.3)

More precisely, the map R can de�ned as follows:

R(x) =
√
A(x) ·O(x), for every x ∈ Ω, (2.2.4)

where O : Ω → MN×m(R) is a map of class Ck on Ω and, for any x ∈ Ω, the
columns of O(x) form an orthonormal basis of Im(A(x)).

The key ingredient for proving Thm. 2.2.1 is notion of Ck-vector bundle on
a manifold, which we now recall for the sake of completeness; we refer, e.g., to
[93], [105], [109], and [134] for an exhaustive treatment of the argument.

Let k ∈ N ∪ {∞, ω} and let M be a Ck-manifold. Moreover, let m ∈ N be
�xed. A Ck-vector bundle of rank m over M is a triple F = (E,M, π), where
E is a Ck-manifold and π : E →M is a map of class Ck such that:

(i) For every x ∈ M , the �ber V (x) := π−1(x) ⊆ E is endowed with the
structure of a m-dimensional vector space;

(ii) For every x ∈ M , there exist an open neighborhood U ⊆ M of x and a
di�eomorphism Φ : π−1(U)→ U ×Rm of class Ck such that

• π ◦ Φ = Φ on U ;

• for every y ∈ U , the restriction of Φ to V (y) is a vector space iso-
morphism between V (y) and Rm.

If F = (E,M, π) is a Ck-vector bundle of rank m over M , a (global) section of
F is map σ : M → E of class Ck such that π ◦ σ = id on M , that is,

σ(x) ∈ V (x) = π−1(x), for every x ∈M ;

a (global) frame of F is an m-tuple {σ1 . . . , σm} of sections of F such that, for
any x ∈M , the set B(x) := {σ1(x), . . . , σm(x)} is a basis of the �ber V (x).

With the above preliminaries at hand, we can give the proof of Thm. 2.2.1.

Proof (of Thm. 2.2.1). For every x ∈ Ω, let V (x) := Im(A(x)). Since, by as-
sumption, the dimension of V (x) is constant and equal to m (and since the
function x 7→ A(x) is of class Ck on Ω), the assignment

Ω 3 x 7→ V (x)
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de�nes a Ck-vector bundle of rank m on Ω. More precisely, setting

E :=
∐
x∈Ω

V (x)

and denoting by π the canonical projection of E onto Ω, there exist a unique
topology and a unique Ck-structure on E such that the triple FA := (E,Ω, π)
is Ck-vector bundle of rank m on Ω (see, e.g., [106, Lemma 10.6]).

Now, since Ω is contractible, the bundle FA is globally Ck-trivial (see, e.g.,
[93, Corollary 2.5]); therefore, it is possible to �nd a (global) frame {σ1, . . . , σm}
for FA such that (see [106, Corollary 10.20])

B(x) := {σ1(x), . . . , σm(x)}

is an orthonormal basis of V (x) for every x ∈ Ω. We then consider the function

R : Ω −→ MN×m(R), R(x) :=
√
A(x) ·O(x),

where O : Ω→ ΩN (m) is given by

O(x) :=
(
σ1(x) · · ·σm(x)

)
, x ∈ Ω.

Obviously, R(x) has rank equal to m for every x ∈ Ω, since the same is true
of
√
A(x) and since O(x) has full rank; moreover, since the sections σ1, . . . , σm

are of class Ck on Ω and since, by Cor. 2.2.7 in Sec. 2.2.2, the same is true of

x 7→
√
A(x),

the function R is of class Ck on Ω as well. Finally, the matrix O(x) · O(x)T

being the projection matrix onto V (x) (recall that σ1(x), . . . , σm(x) form an
orthonormal basis of V (x) for every x ∈ Ω), we obtain

R(x) ·R(x)T =
(√

A(x) ·O(x)
)
·
(√

A(x) ·O(x)
)T

=
√
A(x) ·

(
O(x) ·O(x)T ·

√
A(x)

)
=
√
A(x) ·

√
A(x)

= A(x), for every x ∈ Ω.

This is precisely the desired (2.2.3), and the proof is complete.

From Thm. 2.2.1 we immediately derive the following result.

Corollary 2.2.2. Let A : RN → S+
N (m) be a map of class Ck (for some

0 ≤ k ≤ ∞). It is possible to �nd a map R : RN → ΩN (m), with the same
regularity of that of A, such that

A(x) = R(x) ·R(x)T for all x ∈ RN . (2.2.5)

Cor. 2.2.2 can be pro�tably used in order to obtain a simple result concerning
the problem described at the beginning of the section: the possibility to re-write
a general PDO as a sum of squares of vector �elds (plus, eventually, a drift).
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Theorem 2.2.3. Let Ω ⊆ RN be a contractible open set and let L be a second-
order linear operator on Ω of the general form

L :=

N∑
i,j=1

ai,j(x) ∂xixj +

N∑
j=1

bj(x) ∂xj + c(x), (2.2.6)

with (real and) smooth coe�cients. We assume that, for every x ∈ Ω, the
principal matrix

(
ai,j(x)

)
i,j

of L is symmetric, positive semi-de�nite and that

rk
(
A(x)

)
= m, for every x ∈ Ω (with 1 ≤ m ≤ N).

It is then possible to �nd m+ 1 smooth vector �elds X0, . . . , Xm on Ω s.t.

(i) dim

(
spanR

(
{X1I(x), . . . , XmI(x)}

))
= m for every x ∈ Ω;

(ii) L =
∑m
j=1X

2
j +X0 + c on Ω.

Proof. Thanks to hypothesis on the matrix (ai,j)i,j , we can de�ne a smooth
function A : Ω→ S+

N (m) by setting

A(x) :=
(
ai,j(x)

)
i,j
.

Then, by Thm. 2.2.1, there exists a smooth map R : Ω→ ΩN (m) such that

A(x) = R(x) ·R(x)T , for every x ∈ Ω. (2.2.7)

If R(x) = (ri,j(x))i,j , we de�ne m+ 1 v.f.s X0, . . . , Xm on Ω as follows:

• Xj :=
∑N
i=1 ri,j(x)∂xi for every j = 1, . . . ,m;

• X0 :=
∑N
i=1

(
bi(x)−

∑m
j=1Xj(ri,j)(x)

)
∂xi .

Since the map R and the coe�cients of L are smooth on Ω, then X0, . . . , Xm

are smooth vector �elds on RN ; moreover, since R(x) ∈ ΩN (m) for every x in
Ω, condition (i) is ful�lled. Finally, from the very de�nition of X0 and from
identity (2.2.7) it easily follows that

L =

m∑
j=1

X2
j +X0 + c, on Ω.

This ends the proof.

Remark 2.2.4. Let Ω ⊆ RN be a contractible open set and let L be a second-
order linear PDO on Ω of the form (2.2.6) and such that

A(x) =
(
ai,j(x)

)
i,j
∈ S+

N (m), ∀x ∈ Ω and for some m ∈ {1, . . . , N}.

Since, by Thm. 2.2.1, it is possible to �nd a map R : Ω → ΩN (m), with the
same regularity of A and such that

A(x) = R(x) ·R(x)T , for every x ∈ Ω,
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we immediately obtain the following generalization of Thm. 2.2.3: if the operator
L is assumed to have (real) coe�cients of class Ck on Ω (for some natural
k ≥ 1), then there exist m vector �elds X1, . . . , Xm of class Ck on Ω and a
vector �eld X0 of class Ck−1 (on Ω) such that

L =

m∑
j=1

X2
j +X0 + c, on RN .

It is worth mentioning that Thm. 2.2.1 can be proved in a slightly di�erent
way, without using the regularity of

√
A(x) but invoking the Homotopy Lifting

Property for principal G-bundles. We are very grateful to one of the referees of
the thesis for bringing to our attention the simpler proof presented here.

2.2.2 Appendix: Regularity of the square root

The aim of this brief appendix is to prove that the map

√
· : S+

N (m) −→ S+
N (m), A 7→

√
A

is a real-analytic di�eomorphism of S+
N (m). It is well-known that S+

N (m) is an
embedded submanifold of SymN(R) ≡ RN(N+1)/2, with dimension

dN (m) = Nm− m(m− 1)

2
; (2.2.8)

furthermore, given a diagonal matrix Λ ∈ S+
N (m), it is easy to describe the

tangent space TΛ(S+
N (m)) of S+

N (m) at Λ: indeed, since the map

Ψ : SymN(R)→ RN−dN (m), Ψ(A) :=

(
det
(
ai,j
)
i∈{1,...,m}∪{p}
j∈{1,...,m}∪{q}

)
p,q=m+1,...,N
p≤q

can be used as a local de�ning function for S+
N (m) in a suitable neighborhood

of Λ, one has (due to the characterization of TΛ(S+
N (m)) as ker (dΛΨ))

TΛ(S+
N (m)) = {H ∈ SymN(R) : hi,j = 0 for all i, j = m+ 1, . . . , N}. (2.2.9)

We then have the following theorem.

Theorem 2.2.5. For every 1 ≤ m ≤ N , the map

q : S+
N (m) −→ S+

N (m), q(M) := M2, (2.2.10)

is a real-analytic di�eomorphism from S+
N (m) onto itself.

In order to prove Thm. 2.2.5, we �rst establish the following auxiliary lemma.

Lemma 2.2.6. Let q be the map de�ned in (2.2.10) and let

Λ = diag(λ1, . . . , λm, 0, . . . , 0) ∈ S+
N (m).

Then the di�erential of q at Λ is non-singular.
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Proof. First of all we observe that, since Λ is positive semi-de�nite and its rank
is equal to m, its non-zero eigenvalues λ1, . . . , λm are (real and) strictly positive.
We now compute the di�erential of the map q (as a map on SymN(R)) at the
point Λ. For every t ∈ R and for every H ∈ SymN(R), we have

q(Λ + tH) = (Λ + tH)2 = (Λ + tH)(Λ + tH) = Λ2 + t(ΛH +HΛ) + t2H2,

and thus, for all H ∈ SymN(R), we have

dΛq(H) =
d

dt |t=0
q(Λ + tH) = ΛH +HΛ.

The di�erential of q at Λ, considered as a map from TΛ(S+
N (m)) to TΛ2(S+

N (m)),
is just the restriction of dΛq to TΛ(S+

N (m)) ⊆ TΛ(SymN(R)) ≡ SymN(R).
To show that dΛq is an isomorphism between the two spaces TΛ(S+

N (m))
and TΛ2(S+

N (m)) we prove that ker (dΛq) ∩ TΛ(S+
N (m)) = {0}. To this end, let

H ∈ TΛ(S+
N (m)) be such that dΛq(H) = 0. For every j = 1, . . . , N we then have

0 = dΛq(H) ej = (ΛH +HΛ) ej = Λ · (Hej) +H · (Λej).

If 1 ≤ j ≤ m, from the above identity we then infer thatHej is an eigenvector for
Λ where (−λj) is the correspondent eigenvalue; since Λ is positive semi-de�nite,
this implies that Hej = 0 for all j = 1, . . . ,m.

If, instead, m + 1 ≤ j ≤ N , then the above computation shows that
Hej is an eigenvector for Λ with correspondent eigenvalue 0, whence the set
{Hem+1, . . . ,HeN} is included into the vector space spanned by em+1, . . . , eN .
By exploiting the fact that H belongs to TΛ(S+

N (m)) (and by using the expres-
sion of TΛ(S+

N (m)) given in (2.2.9)), we immediately see that Hej = 0 for all
j = m+ 1, . . . , N , and this proves that H = 0, as desired.

We are now ready to give the proof of Thm. 2.2.5.

Proof (of Thm. 2.2.5). We �rst observe that the map q is real-analytic and bi-
jective on S+

N (m). Thanks to the Implicit Function Theorem, it then su�ces to
show that the di�erential of q (is non-singular at every point of S+

N (m).
To this end, let A ∈ S+

N (m) be arbitrarily �xed and let P be an orthogonal
N ×N matrix such that

PT ·A · P = Λ = diag(λ1, . . . , λm, 0, . . . , 0),

for some (real and) positive λ1, . . . , λm. If we denote by L the linear map

L : SymN(R)→ SymN(R), L(M) := PT ·M · P,

it is straightforward to see that L restricts to a smooth (actually, real-analytic)
linear di�eomorphism from S+

N (m) onto itself and that

q = (L−1 ◦ q ◦ L) on S+
N (m).

By di�erentiating both sides of such an identity at A, we then obtain

dAq = L−1 ◦ dL(A)q ◦ L = L−1 ◦ dΛq ◦ L, on TA(S+
N (m)).

Since, by Lem. 2.2.6, the linear map dΛq is non-singular, we immediately infer
that dAq is non-singular as well, and the proof is complete.
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From Thm. 2.2.5 we immediately derive the following corollary.

Corollary 2.2.7. Let Ω ⊆ RN be an open subset of RN and let A : Ω→ S+
N (m)

be a function of class Ck on Ω (for some k ∈ N∪{∞, ω}). If q is the map de�ned
in (2.2.10), then the function

S : Ω→ S+
N (m), S(x) :=

√
A(x) := q−1

(
A(x)

)
, (2.2.11)

is of class Ck on Ω. Moreover, if A is locally-Hölder continuous with exponent
α ∈]0, 1] on Ω, then the same is true of S.





Chapter 3

PDOs structured on

homogeneous vector �elds

Throughout this third chapter of the thesis, we shall be concerned with linear
PDOs structured on homogeneous vector �elds, that is, of the form

L =

m∑
j=1

X2
j ,

where X1, . . . , Xm are smooth vector �elds on Rn, homogeneous of degree 1
w.r.t. a suitable family of non-isotropic dilations {δλ}λ>0 on Rn. Our main aim
is to prove, for such operators L and for their parabolic counterpart H = L−∂t,
the existence of a well-behaved global fundamental solution.

Roughly speaking, our argument consists of two steps:

(a) By means of a global Lifting method for homogeneous operators proved by
Folland in [73], there exist a homogeneous Carnot group and a polynomial
surjective map π : G→ Rn such that the operator L is π-related to a sub-
Laplacian LG on G; we shall prove that it is always possible to perform a
(global) change of variable on G such that the lifting map π becomes the
projection of G ≡ Rn ×Rp onto Rn.

(b) If ΓG(x, ξ; y, η) (x, y ∈ Rn; ξ, η ∈ Rp) is the fundamental solution of LG,
we shall show that ΓG(x, 0; y, η) is always integrable with respect to the
variables η ∈ Rp, and its integral is a fundamental solution for L.

Analogously, if ΓG(z, ξ; ζ, η) (z, ζ ∈ R1+n; ξ, η ∈ Rp) is the fundamental
solution of HG = LG − ∂t, we shall exploit suitable (uniform) Gaussian e-
stimates to prove that ΓG(z, 0; ζ, η) is always integrable w.r.t. the variables
η ∈ Rp, and its integral is a fundamental solution for H = L− ∂t.

The main ingredient for step (b) is a general saturation argument for obtaining
fundamental solutions, which will be presented in Sec. 3.1.

3.1 Saturation of fundamental solutions

As anticipated, the aim of this section is to present a general result concerning
the possibility for obtaining (global) fundamental solutions via a saturation

55
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argument. Roughly put, it is about a generalization of a very well-know fact: if
H = ∆x − ∂t is the Heat operator on RN+1 = RNx ×Rt (with N ≥ 3) and if

pt(x, y) =
1

(4πt)N/2
exp

(
−‖x− y‖

2

4t

)
, x, y ∈ RN , t > 0

is the associated Heat kernel, then the �saturated function�

(x, y) 7→
∫ ∞

0

pt(x, y) dt

coincides with the fundamental solution for the Laplace operator ∆ in RN .

In order to clearly describe this result, we begin with the following de�nition.

De�nition 3.1.1 (Lifting of a linear PDO). On Euclidean space RN , we con-
sider a generic linear partial di�erential operator of order d ∈ N,

P =
∑
|α|≤d

aα(x)Dα
x ,

with smooth real valued coe�cients aα(x) on RN . We say that a linear PDO
P̃ , de�ned on a higher-dimensional space RN = Rn × Rp, is a lifting of P if
the following conditions are ful�lled:

(a) P̃ has smooth real coe�cients, possibly depending on x ∈ Rn and ξ ∈ Rp;

(b) for every �xed f ∈ C∞(Rn), one has

P̃ (f ◦ π)(x, ξ) = (Pf)(x), for every (x, ξ) ∈ Rn ×Rp, (3.1.1)

where π(x, ξ) = x is the canonical projection of Rn ×Rp onto Rn.

Remark 3.1.2. Let P be a linear PDO as in Def. 3.1.1 and let P̃ be a linear
PDO on a higher-dimensional space RN = Rn × Rp with smooth coe�cients.
It is immediate to recognize that (3.1.1) holds true if and only if

P̃ = P +R with R =
∑
β 6=0

rα,β(x, ξ)Dα
xD

β
ξ , (3.1.2)

for (�nitely many) real-valued coe�cient functions rα,β ∈ C∞(RN ), possibly
identically vanishing on RN . In other words, every summand of R operates, at
least once necessarily, in the ξ1, . . . , ξp variables.

Remark 3.1.3. We explicitly observe that, if P is a linear PDO (of arbitrary
order) on Rn with smooth coe�cients, then a lifting for P always exists, and it
is far from being unique: in fact, for every p, k ∈ N, the operator

P̃p,k := P +

 p∑
j=1

∂2
ξj

k

= P +
(
∆Rp

)k
, on RN = Rn ×Rp,

is a lifting for P̃ on the Euclidean space Rn ×Rp, and R = P̃ − P =
(
∆Rp

)k
.
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Let now P be a linear PDO on Rn with smooth real coe�cients, as in
Def. 3.1.1. If P̃ is a lifting of P and if P̃ admits a fundamental solution Γ̃, it is
not at all obvious if the same holds true for P , nor if a fundamental solution
for P may be obtained via a saturation argument. Technically, this is the case
if the following heuristic argument can be made rigorous: by the very de�nition
of fundamental solution for P̃ we have

−ϕ̃(x, ξ) =

∫
Rn×Rp

Γ̃(x, ξ; y, η) P̃ ∗ϕ̃(y, η) dydη,

for every ϕ̃ ∈ C∞0 (Rn × Rp); if we take ϕ̃ of the form ϕ(x)θj(ξ) (with ϕ in
C∞0 (Rn) and θj in C∞0 (Rp)) and we recall that P̃ = P + R, then the above
equality gives, by choosing ξ = 0,

−ϕ(x) θj(0) =

∫
Rn

(∫
Rp

Γ̃(x, 0; y, η) θj(η) dη
)
P ∗ϕ(y) dy

+

∫
Rn×Rp

Γ̃(x, 0; y, η)R∗
(
ϕ(y)θj(η)

)
dydη

=: Ij + IIj .

(3.1.3)

We want to pass to the limit as j →∞ in such a way that (3.1.3) produces

−ϕ(x) =

∫
Rn

(∫
Rp

Γ̃(x, 0; y, η) dη
)
P ∗ϕ(y) dy,

so that a fundamental solution for P is available by saturating the η variable in
Γ̃(x, 0; y, η). Our idea is to choose a sequence θj ∈ C∞0 (Rp) such that the set

{η ∈ Rp : θj(η) = 1}

invades Rp as j → ∞, and such that IIj in (3.1.3) goes to 0 as j → ∞. This
may be reasonably possible (together with some integrability assumptions on
Γ̃) provided some conditions are ful�lled by the remainder operator R:

- if one chooses θj(η) = θ(η/j) for some θ ∈ C∞0 identically equal to 1 on a
suitable neighborhood of the origin,

- if the operator R∗ acts in the lifting variables, so that R∗
(
θ(η/j)

)
always

gives out at least 1/j,

- and if a dominated convergence argument can apply.

The above argument justi�es the following de�nition of �saturable Lifting�; im-
mediately after the technicalities, we show (see Remark 3.1.5) that a saturable
Lifting is always available in meaningful cases.

De�nition 3.1.4 (Saturable Lifting). Let P be a smooth linear PDO on Rn,
and P̃ = P + R be a lifting of P on Rn ×Rp as in (3.1.2). We say that P̃ is a
saturable lifting for P if the following conditions hold:

(S.1) Every summand of the formal adjoint R∗ of R operates at least once in
the ξ variables, i.e., R∗ has the form

R∗ =
∑
β 6=0

r∗α,β(x, ξ)Dα
xD

β
ξ , (3.1.4)

for (�nitely many, possibly vanishing) smooth functions r∗α,β(x, ξ).
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(S.2) There exists a sequence (θj)j in C∞0 (Rp, [0, 1]) such that1

{θj = 1} ↑ Rp, as j ↑ ∞;

moreover, for every compact set K ⊂ Rn and for any coe�cient function
r∗α,β of R∗ as in (3.1.4), one can �nd constants Cα,β(K) such that∣∣∣r∗α,β(x, ξ)

( ∂
∂ξ

)β
θj(ξ)

∣∣∣ ≤ Cα,β(K), (3.1.5)

for every x ∈ K, ξ ∈ Rp and for every j ∈ N.

We next give some su�cient conditions for a lifting to be saturable. In what
follows we always assume that P is a linear PDO on Rn with smooth coe�cients,
and that P̃ = P + R is a lifting of P on Rn × Rp, with R as in (3.1.2). The
notation (x, ξ) for the points of Rn ×Rp is always understood.

Remark 3.1.5. (a) If the coe�cients of R are independent of ξ, then P̃ is a
saturable lifting for P . In fact, under this assumption, R takes the form

R =
∑
β 6=0

rα,β(x)Dα
xD

β
ξ ,

and thus its formal adjoint R∗ acts on smooth functions ψ as follows:

R∗ψ =
∑
β 6=0

(−1)|α|+|β|Dα
x

(
rα,β(x)Dβ

ξ ψ(x, ξ)
)

=:
∑
β 6=0

r∗α,β(x)Dα
xD

β
ξ ψ(x, ξ).

(3.1.6)

Thus condition (S.1) in Def. 3.1.4 is ful�lled. In order to verify (S.2) as well,
we choose a function θ ∈ C∞0 (Rp, [0, 1]) such that θ ≡ 1 on the Euclidean ball
centered at 0 and radius 1, and we set

θj(ξ) := θ
(
ξ/j
)
, for every ξ ∈ Rp and every j ∈ N.

Clearly, {θj = 1} ↑ Rp as j ↑ ∞; moreover, if K ⊆ Rn is compact, we have∣∣r∗α,β(x)Dβ
ξ θj(ξ)

∣∣ ≤ (1/j)|β|max
K

∣∣r∗α,β∣∣ max
Rp
|Dβθ|,

and (3.1.5) follows.

(b) If, for every compact set K ⊆ Rn, the coe�cient functions of the oper-
ator R∗ are bounded on K × Rp, then (S.2) of De�nition 3.1.4 is satis�ed. It
su�ces to take θj(ξ) = θ(ξ/j) as in (a) above.

(c) If L is a smooth second-order operator on Rn and if we consider the
associated Heat-type operator H = L− ∂t in Rn ×R, then we have the above

1By this we mean that, denoting by Ωj the set {ξ ∈ Rp : θj(ξ) = 1}, one has⋃
j∈N

Ωj = Rp and Ωj ⊂ Ωj+1 for any j ∈ N.
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with R = −∂t. Since R has constant coe�cients, we are in case (a) above and
H is therefore a saturable Lifting of L.

(d) As we shall prove in Section 3.2, if L is a sum of squares of Hörmander
vector �elds which are δλ-homogeneous of degree 1 w.r.t. a suitable family of
dilations δλ, then there exists a saturable lifting L̃ of L, which is actually a
sub-Laplacian on a suitable Carnot group G on RN . This fact is non-trivial and
it will be proved in Sec. 3.2 (see, precisely, Thm. 3.2.13).

We are now to prove the main result of this section.

Theorem 3.1.6. Let P be a linear PDO on Rn with smooth coe�cients and
let P̃ be a saturable ifting of P on Rn ×Rp, according to Def. 3.1.4.

Let us assume that there exists a fundamental solution Γ̃ for P̃ on the whole
of Rn ×Rp (see Def. 1.3.5), further satisfying the following properties:

(i) for every �xed x, y ∈ Rn with x 6= y, one has

η 7→ Γ̃
(
x, 0; y, η

)
belongs to L1(Rp); (3.1.7)

(ii) for every �xed x ∈ Rn and every compact set K ⊆ Rn, one has

(y, η) 7→ Γ̃
(
x, 0; y, η

)
belongs to L1(K ×Rp); (3.1.8)

Then the function Γ : {(x; y) ∈ Rn ×Rn : x 6= y} −→ R de�ned by

Γ(x; y) :=

∫
Rp

Γ̃
(
x, 0; y, η

)
dη, (3.1.9)

is a global fundamental solution for P on Rn.

Proof. First of all we observe that, thanks to (3.1.7), Γ is well-de�ned. In order
to prove that Γ is a fundamental solution for P on Rn, we have to prove the
following fact: for every �xed x ∈ Rn, one has Γ(x; ·) ∈ L1

loc(Rn) and

PΓ(x; ·) = −Dirx, in D′(Rn).

To this end, we �x a point x ∈ Rn and a function ϕ ∈ C∞0 (Rn). Moreover, the
lifting P̃ being saturable, it is possible to �nd a sequence of test functions θj as
in Def. 3.1.4. Since the function Γ̃ is a fundamental solution for P̃ on Rn ×Rp,
we have (for su�ciently large j's in such a way that θj(0) = 1)∫

Rn×Rp
Γ̃
(
x, 0; y, η

)
P̃ ∗
(
ϕ(y) θj(η)

)
dy dη = −ϕ(x) θj(0) = −ϕ(x);

thus, recalling that P̃ = P +R (where R is a linear PDO operating in y and η),

−ϕ(x) =

∫
Rn×Rp

Γ̃
(
x, 0; y, η

)
θj(η)P ∗ϕ(y) dydη

+

∫
Rn×Rp

Γ̃
(
x, 0; y, η

)
R∗
(
ϕ(y) θj(η)

)
dy dη =: Ij + IIj ,

(3.1.10)

with the obvious notation. Our aim is now to pass to the limit for j → ∞ in
(3.1.10). To this end we �rst notice that, if we denote by K the support of the



3.1. Saturation of fundamental solutions 60

function ϕ, then both integrals expressing Ij and IIj are actually performed over
K×Rp. As for Ij , a simple application of the Lebesgue Dominated Convergence
Theorem, made possible by (3.1.7), shows that

lim
j→∞

Ij =

∫
Rn

Γ(x; y)P ∗ϕ(y) dy. (3.1.11)

We next turn to IIj . First we observe that, since the sets {η : θj(η) = 1}
increasingly invade Rp, and since the operator R∗ always di�erentiate w.r.t. η
(see (S.1) in the de�nition of saturable lifting), we obtain that

lim
j→∞

R∗
(
ϕ(y) θj(η)

)
= 0, pointwise for (y, η) ∈ K ×Rp.

Moreover, by writing R∗ as in (3.1.4), we get∣∣R∗(ϕ(y) θj(η)
)∣∣ ≤∑

β 6=0

∣∣r∗α,β(y, η)
∣∣ · ∣∣Dα

yϕ(y)
∣∣ · ∣∣Dβ

η θj(η)
∣∣

≤ C(ϕ)
∑
β 6=0

∣∣r∗α,β(y, η)Dβ
η θj(η)

∣∣.
From this, by crucially exploiting property (3.1.5) of the sequence θj , we infer
the existence of a positive constant C = C(ϕ,K) > 0 such that∣∣Γ̃(x, 0; y, η

)
R∗
(
ϕ(y) θj(η)

)∣∣ ≤ C |Γ̃(x, 0; y, η
)
|,

uniformly for (y, η) ∈ K ×Rp and j ∈ N. Therefore, due to property (3.1.8) of
Γ̃, we can apply once again a dominated convergence argument to infer that

lim
j→∞

IIj = 0. (3.1.12)

Finally, by gathering together (3.1.11) and (3.1.12), we can pass to the limit for
j →∞ in (3.1.10), obtaining

−ϕ(x) =

∫
Rn

Γ(x; y)P ∗ϕ(y) dy.

This ends the proof.

Remark 3.1.7. Let P be a linear PDO on Rn with smooth real coe�cients
and let P̃ be a saturable Lifting of P on Rn ×Rp.

It is worth noting that, if Γ̃ is a fundamental solution for P̃ on Rn × Rp,
then we have, for every �xed x ∈ Rn (see Def. 1.3.5-(i)),

(y, η) 7→ Γ̃
(
x, 0; y, η

)
∈ L1

loc(Rn ×Rp). (3.1.13)

This means that the integrability assumption (3.1.8) in Thm. 3.1.6 is actually
an integrability condition at in�nity, which is equivalent to the following one:

(ii)' for every x ∈ Rn and every compact set K ⊆ Rn, there exists a compact
set K ′ ⊆ Rp such that

(y, η) 7→ Γ̃
(
x, 0; y, η

)
belongs to L1

(
K × (Rp \K ′)

)
.



3.1. Saturation of fundamental solutions 61

Example 3.1.8. Let P be a linear PDO on Rn, with smooth coe�cients and
let H the heat operator related to P , that is,

H = P − ∂ξ, on Rn+1 = Rn ×R.

As already pointed out in Rem. 3.1.5 - (c), the operator H is a regular lifting for
P on the higher-dimensional space Rn+1, so we can apply to this case the result
contained in our Thm. 3.1.6: if the operator H admits a fundamental solution
Γ̃ = Γ̃

(
(x, ξ); (y, η)

)
satisfying assumptions (i) and (ii) in the statement of the

cited Thm. 3.1.6, then the function

Γ(x; y) :=

∫
R

Γ̃(x, 0; y, η) dη

is a fundamental solution for P on the whole of Rn.

Let P be a linear PDO on Rn with smooth coe�cients and let P̃ be a
saturable lifting for P admitting a (global) fundamental solution Γ̃. It could
happen that, together with properties (i) and (ii) in the statement of Thm. 3.1.6,
the function Γ̃ satis�es some additional properties: this is the case, e.g., if P̃ is
a sub-Laplacian on some Carnot group. We then conclude this section with a
couple of results which give su�cient conditions on Γ̃ in such a way that these
additional properties are inherited by the Γ function in (3.1.9).

Proposition 3.1.9 (Continuity and limit at in�nity). Let the notation and the
hypotheses of Thm. 3.1.6 apply. Let us assume, in addition, that the fundamental
solution Γ̃ of P̃ satis�es the following bound property:

(B) For every �xed x ∈ Rn, there exist a compact set Kx ⊆ Rp and a
nonnegative function gx ∈ L1(Rp \Kx) such that

Γ̃
(
x, 0; y, η

)
≤ gx(η), for every y ∈ Rn and every η ∈ Rp \Kx. (3.1.14)

Then the following facts hold true:

(a) if, for every �xed x ∈ Rn, the function (y, η) 7→ Γ̃
(
x, 0; y, η

)
is continuous

away from (x, 0), then the function y 7→ Γ(x; y) is continuous on Rn \{x};

(b) if, for every �xed x ∈ Rn, the function (y, η) 7→ Γ̃
(
x, 0; y, η

)
vanishes at

in�nity, then the same is true of y 7→ Γ(x; y).

Proof. (a) We �x a point y0 ∈ Rn\{x} and a real ρ > 0 such that the Euclidean
ball Bρ(y0) centered at y0 and radius ρ is contained in Rn \ {x}. Moreover, we
choose a sequence (yj)j in this ball converging to y0 as j → ∞. If Kx ⊆ Rp is
as in assumption (B), for every j ∈ N we have

Γ(x; yj) =

∫
Kx

Γ̃
(
x, 0; yj , η

)
dη +

∫
Rp\Kx

Γ̃
(
x, 0; yj , η

)
dη. (3.1.15)

We pass to the limit as j → ∞ in the right-hand side of (3.1.15). To this end
we �rst observe that, under condition (a), we obviously have

lim
j→∞

Γ̃(x, 0; yj , η) = Γ̃(x, 0; y0, η), for every η ∈ Rp.
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Moreover, since the set K := Bρ(y0) × Kx is compact, there exists a positive
real constant Mx > 0 such that

Γ̃(x, 0; yj , η) ≤Mx, for every j ∈ N and every η ∈ Kx.

By a dominated convergence argument, we then obtain

lim
j→∞

∫
Kx

Γ̃
(
x, 0; yj , η

)
dη =

∫
Kx

Γ̃
(
x, 0; y0, η

)
dη. (3.1.16)

As for the second integral in the right-hand side of identity (3.1.15), assumption
(B) in the statement of the proposition is shaped in such a way that another
dominated convergence argument can apply, so that

lim
j→∞

∫
Rp\Kx

Γ̃
(
x, 0; yj , η

)
dη =

∫
Rp\Kx

Γ̃
(
x, 0; y0, η

)
dη. (3.1.17)

By gathering together identities (3.1.16) and (3.1.17), we �nally conclude that
Γ(x; yj)→ Γ(x; y0) as j →∞, whence the continuity of Γ(x; ·) at y0.

(b) Let Kx ⊆ RN be as in assumption (B) and let {yj}j ⊆ Kx be a sequence
such that ‖yj‖ → ∞ as j →∞. For every j ∈ N we write

Γ(x; yj) =

∫
Kx

Γ̃(x, 0; yj , η) dη +

∫
Rp\Kx

Γ̃(x, 0; yj , η) dη. (3.1.18)

Since, by assumption, Γ̃(x, 0; ·) vanishes at in�nity, we have

lim
j→∞

Γ̃(x, 0; yj , η) = 0, for every �xed η ∈ Rp;

as a consequence, it is possible to �nd a certain j0 ∈ N such that

Γ̃(x, 0; yj , η) ≤ 1, for every j ≥ j0 and every η ∈ Rp.

We are then entitled to apply the Lebesgue Dominated Convergence Theorem
to the �rst integral in the right-hand side of (3.1.18), obtaining

lim
j→∞

∫
Kx

Γ̃(x, 0; yj , η) dη = 0. (3.1.19)

As for the second integral, assumption (B) ensures that another dominated
convergence argument can be applied, so that

lim
j→∞

∫
Rp\Kx

Γ̃(x, 0; yj , η) dη = 0. (3.1.20)

By gathering together identities (3.1.19) and (3.1.20), we then get

lim
j→∞

(∫
Kx

Γ̃(x, 0; yj , η) dη +

∫
Rp\Kx

Γ̃(x, 0; yj , η) dη

)
= 0.

This proves that Γ(x; yj)→ 0 as j →∞, whence Γ(x; ·) vanishes at in�nity.
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Proposition 3.1.10 (Pole of Γ). Let the notation and the hypotheses of Theo-

rem. 3.1.6 apply. Let us assume, in addition, that the fundamental solution Γ̃
of P̃ enjoys the following properties:

(a) Γ̃ is nonnegative;

(b) for every x ∈ Rn, the function (y, η) 7→ Γ̃(x, 0; y, η) is lower semi-conti-
nuous outside (x, 0);

(c) for every x ∈ Rn, the function η 7→ Γ̃
(
x, 0;x, η) is not integrable on Rp.

Then the function y 7→ Γ(x; y) de�ned in (3.1.9) has a pole at x, i.e.,

lim
y→x

Γ(x; y) =∞.

Proof. Let (yj)j be a sequence in Rn \ {x} converging to x as j → ∞. Since,
by our assumptions, the function (y, η) 7→ Γ̃(x, 0; y, η) is nonnegative and lower
semi-continuous on Rn ×Rp \ {(x, 0)}, from Fatou's lemma we obtain

lim inf
j→∞

Γ(x; yj) ≥
∫
Rp

lim inf
j→∞

Γ̃
(
x, 0; yj , η

)
dη ≥

∫
Rp

Γ̃
(
x, 0;x, η

)
dη =∞,

thanks to hypothesis (c). This ends the proof.

3.2 Lifting of homogeneous vector �elds

With the general saturation argument described in Sec. 3.1 at hand, we now
enter the �real core� of this chapter: as anticipated, in this section we shall
prove that any homogeneous Hörmander operator admits a saturable lifting (in
the sense of Def. 3.1.4), which is actually a sub-Laplacian on a Carnot group.

The main ingredient for establishing this fact is a general result on the lifting
of homogeneous vector �elds due to Folland [73]; for the sake of completeness,
we now describe this notable result in all the details.

Compared with the contents of the cited paper [73], the contents of this
section are essentially the same, modulo some changes of notation (due to the
speci�c setting we are dealing with); 2 as we shall describe later on, we added
a new feature to Folland's argument which will be fundamental for our aim: an
ad hoc change of variables turning the map π into the canonical projection.

To begin with, let us �x a family {X1, . . . , Xm} of linearly independent smooth
vector �elds on Euclidean space Rn, satisfying the following properties:

(H1) X1, . . . , Xm are δλ-homogeneous of degree 1 with respect to a family of
non-isotropic dilations {δλ}λ>0 of the following type:

δλ : Rn → Rn, δλ(x) = (λσ1x1, . . . , λ
σnxn),

where σ1 ≤ . . . ≤ σn are positive integers and σ1 = 1;

2The substantial di�erence between our setting and the one presented in [73] is that
Folland considers �nite-dimensional vector spaces V equipped with a suitable homogeneous
structure, whereas we �x a basis in V and we write everything in coordinates, that is, we have
V ≡ RN with a family of non-isotropic dilations taking the usual form.
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(H2) X1, . . . , Xm satisfy Hörmander's rank condition at 0, i.e.,

dim
{
X(0) : X ∈ Lie{X1, . . . , Xm}

}
= n.

Remark 3.2.1. We explicitly observe that, by to Thm. 1.2.2 on page 7, the
homogeneity assumption (H1) is equivalent to any of the following facts:

• If Xj =
∑n
k=1 ak,j(x) ∂xk , the coe�cient function ak,j is δλ-homogeneous

of degree σk − 1.

• For every �xed j ∈ {1, . . . ,m}, the following identity holds true

δλ(XjI(x)) = λXI
(
δλ(x)

)
, for every x ∈ Rn and every λ > 0. (3.2.1)

In particular, the coe�cient function ak,j is a polynomial and it is independent of
xk, . . . , xn. This last fact ensures that the vector �eldsX1, . . . , Xm are complete.

Example 3.2.2. Let us consider the Grushin vector �elds on R2

X1 :=
∂

∂x1
, X2 := x1

∂

∂x2
.

Obviously, X1, X2 are linearly independent in the real vector space X(R2) (al-
though not pointwise linearly independent); moreover, since [X1, X2] = ∂x2

, it
is straightforward to recognize that

{
XI(0) : X ∈ Lie{X1, X2}

}
⊇ span

{(
1
0

)
,

(
0
1

)}
= R2,

whence X1, X2 satisfy assumption (H2) (that is, the Hörmander rank condition
at 0). Finally, if we consider the family of dilations {δλ}λ>0 on R2 de�ned by

δλ : R2 −→ R2, δλ(x1, x2) = (λx1, λ
2x2),

we have q =
∑2
i=1 σi = 3 and, for every x ∈ RN and every λ > 0,

δλ(X1I(x)) = λX1I
(
δλ(x)

)
and δλ(X2I(x)) = λX2I

(
δλ(x)

)
.

According to Rem. 3.2.1, this ensures that X1, X2 are both δλ-homogeneous of
degree 1, whence they also ful�ll assumption (H1).

We point out that there cannot exists any Lie group G on RN with respect to
which X1, X2 are left-invariant: to see this it su�ces to notice that X2I(0) = 0
but X2 is not the zero vector �eld (see Rem. 1.1.2 on page 4).

Our main goal is to prove the following theorem, by using Folland's results
in [73] plus an ad hoc change of variable.

Theorem 3.2.3. Let N = dim(Lie{X1, . . . , Xm}). There exists a homogeneous
Carnot group G =

(
RN , ∗, Dλ

)
, with m generators and nilpotent of step r, and

there exists a system {Z1, . . . , Zm} of Lie-generators of Lie(G), such that

Zi is a lifting for Xi on R
N , for every i = 1, . . . ,m.
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The proof if this theorem is constructive, and it rests on the notable prop-
erties of the Campbell-Baker-Hausdor� operation. To begin with, let us denote
by a the Lie algebra generated by X1, . . . , Xm:

a := Lie
{
X1, . . . , Xm

}
.

It follows from the homogeneity assumption (H1) that every commutator of
X1, . . . , Xm containing more than σn terms vanishes identically, hence a is nilpo-
tent of step r ≤ σn. Moreover, the rank condition (H2) ensures that r cannot
be smaller than σn, so that a is nilpotent of step equal to σn, which is therefore
an integer which we also denote by r.

As a consequence, a being �nitely generated, its dimension (as a subspace
of the linear space of the smooth vector �elds on Rn) is �nite. We then set

N := dim
(
a
)

and p := N − n,

and we assume from now on that N > n. Now, since a is generated by
X1, . . . , Xm and since it is nilpotent of step r, we have

a = a1 ⊕ · · · ⊕ ar, with


a1 := span

{
X1, . . . , Xm},

ak := [a1, ak−1] for 2 ≤ k ≤ r;
[a1, ar] = {0}.

(3.2.2)

In other words, the Lie algebra a is strati�ed. In particular, a vector �eld X ∈ a
belongs to ak (with 1 ≤ k ≤ r) if and only if X is δλ-homogeneous of degree k.

By means of the strati�cation (3.2.2), we can de�ne a family {∆λ}λ>0 of
dilations on a in the following way:

∆λ(X) =

r∑
k=1

λk Vk, where X =

r∑
k=1

Vk and Vk ∈ ak for any k = 1, . . . , r.

(3.2.3)
Moreover, since a is nilpotent, the Campbell-Baker-Hausdor� multiplication

X � Y = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · · , (3.2.4)

is actually a �nite sum and it de�nes a group on a. We now transfer the operation
� and the dilation {∆λ}λ>0 to a copy of a by �xing a suitable coordinate system
on (the �nite-dimensional vector space) a.

To this end we �rst observe that, by means of (3.2.2) and of the rank con-
dition (H2), we can complete X1, . . . , Xm to form a basis

A = {X1, . . . , Xm, Xm+1, . . . , XN}

of a satisfying the following properties:

(P1) the set {X1(0), . . . , XN (0)} is a set of generators for the vector space Rn;

(P2) the basis A is adapted to the strati�cation, that is,

A =
{
X

(1)
1 , . . . , X(1)

m1
, . . . , X

(r)
1 , . . . , X(r)

mr

}
,

where m1 = m, X(1)
j = Xj for every j = 1, . . . ,m and

mk = dim
(
ak
)

and ak = span
(
{X(k)

1 , . . . , X(k)
mk
}
)
,

for every k = 2, . . . , r.
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We then consider the linear isomorphism Φ associated with the basis A, i.e.,

Φ : RN −→ a, Φ(a) = a ·X :=

N∑
j=1

aj Xj .

In the sequel we also set, for brevity, a ·X :=
∑N
j=1 aj Xj . Next we de�ne an

operation ∗ and a family of dilations {Dλ}λ>0 on RN by pushing � and Dλ:

a ∗ b := Φ−1
(
Φ(a) � Φ(b)

)
, for every a, b ∈ RN , (3.2.5)

Dλ : RN −→ RN , Dλ(a) := Φ−1(∆λ(Φ(a))). (3.2.6)

Remark 3.2.4. The following facts hold:

(a) For every a, b ∈ RN , the operations ∗ and � are related by the identity

(a ∗ b) ·X = (a ·X) � (b ·X). (3.2.7)

(b) For every λ > 0 and every a ∈ RN , the dilations Dλ and ∆λ are related
by the notable identity

Dλ(a) ·X = ∆λ(a ·X). (3.2.8)

As a consequence of identity (3.2.8), the dilation Dλ can be written as follows

Dλ(a) = (λs1a1, . . . , λ
sNaN ), for every a ∈ RN ,

where 1 = s1 ≤ . . . ≤ sN are consecutive integers between 1 and r, and(
s1, . . . , sN

)
=
(

1, . . . , 1︸ ︷︷ ︸
m

, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , r, . . . , r︸ ︷︷ ︸
mr

)
. (3.2.9)

With this notation, X1, . . . , XN are δλ-homogeneous of degrees s1, . . . , sN re-
spectively, and one has

∆λ(Xi) = λsi Xi, for every i = 1, . . . , N.

As it is reasonable to expect, the following fact holds true (for a proof of this
non-trivial result see, e.g., [37, Theorem 17.4.2]).

Theorem 3.2.5. The triple A = (RN , ∗, Dλ) is a homogeneous Carnot group
on RN , with m generators and nilpotent of step r. Furthermore, the Lie algebra
Lie(A) of A is isomorphic to a.

Example 3.2.6. Before proceeding, we illustrate the explicit construction of
the group A in the case of the Grushin v.f.s.X1, X2 introduced in Exm. 3.2.2.

To begin with we observe that, since X3 := [X1, X2] = ∂x2
and since X3

commutes with both X1 and X2, we have

a := Lie{X1, X2} = spanR{X1, X2, X3} and N = dim(a) = 3.

Moreover, a is nilpotent of step r = σ2 = 2 (note that [Xi, X3] = 0 for every
i = 1, 2, 3) and, according to (3.2.2), we can write

a = a1 ⊕ a2, with


a1 := span

{
X1, X2},

a2 := [a1, a1] = span{X3},
[a1, a2] = {0}.
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We now consider the set A := {X1, X2, X3} ⊆ a and we prove that it is a basis
of a satisfying properties (P1) and (P2) on page 65.

In fact, obviously, X1, X2 and X3 are linearly independent in the vector
space X(R2); moreover, A is adapted to the strati�cation a = a1 ⊕ a2, since

a1 = span{X1, X2} and a2 = span{X3}.

Finally, sinceX1I(0) = e1, X2I(0) = 0 andX3I(0) = e2 (where e1 and e2 denote
the element of the canonical basis in R2), we deduce that

{XiI(0), i = 1, 2, 3} is a system of generators of R2.

If we thus introduce the linear isomorphism Φ associated with A, that is,

Φ : R3 −→ a, Φ(a) = (a ·X) :=

3∑
i=1

aiXi,

for every a, b ∈ R3 and every λ > 0 we can write (remind the de�nition of the
Campbell-Baker-Hausdor� multiplication � and of the dilation ∆λ):

Φ(a) � Φ(b) =

(
3∑
i=1

aiXi

)
�

(
3∑
i=1

biXi

)
(
by (3.2.4), since a is nilpotent of step 2

)
=

3∑
i=1

aiXi +

3∑
i=1

biXi +
1

2

[
3∑
i=1

aiXi,

3∑
i=1

biXi

]
(
since [X1, X2] = X3 and [X1, X3] = [X2, X3] = 0

)
=

2∑
i=1

(ai + bi)Xi +

(
a3 + b3 +

1

2
(a1b2 − a2b1)

)
X3;

∆λ

(
Φ(a)

)
= ∆λ

(
3∑
i=1

aiXi

)
= ∆λ

(
(a1X1 + a2X2) + (a3X3)

)
(
by (3.2.3), since (a1X1 + a2X2) ∈ a1 and (a3X3) ∈ a2

)
= λ

(
a1X1 + a2X2

)
+ λ2 a3X3.

Taking into account (3.2.5) and (3.2.6), we then obtain

a ∗ b = Φ−1
(
Φ(a) � Φ(b)

)
=

(
a1 + b1, a2 + b2, a3 + b3 +

1

2
(a1b2 − a2b1)

)
;

Dλ(a) = Φ−1
(
∆λ

(
Φ(a)

))
= (λa1, λa2, λ

2a3).

(3.2.10)

It can be directly checked that A = (R3, ∗, Dλ) is a homogeneous Carnot group
on R3, which is actually isomorphic to �rst Heisenberg group H1; furthermore,
reminding that the Jacobian vector �elds J1, J2, J3 in Lie(A) are associated with
the columns of Jτa(0) (see Rem. 1.1.5 on page 5), we get

J1 = ∂a1 −
1

2
a2 ∂a3 , J2 = ∂a2 +

1

2
a1 ∂a3 , J3 = ∂a3 . (3.2.11)
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Since the structure constants of Lie(A) and of a (with respect to {J1, J2, J3}
and A, respectively) are the same, we conclude that Lie(A) ∼= a.

Following Folland [73], we now consider the crucial map

π : RN −→ Rn, π(a) := exp(a ·X)(0) = Ψa·X
1 (0), (3.2.12)

where, for every �xed vector �eld V ∈ a, we denote by ΨV
t (0) the integral curve

at time t of the vector �eld V starting from 0 ∈ Rn at time 0. We also use
the notation exp(tV )(0) for ΨV

t (0). We explicitly observe that π is well-de�ned,
since any vector �eld in a is complete (see Remark 3.2.1).

The selected properties of π are given in the following result.

Theorem 3.2.7 (Folland, [73]). Let π be the map de�ned in (3.2.12). Then the
following properties hold true:

1. For every �xed λ > 0, one has

π
(
Dλ(a)

)
= δλ

(
π(a)

)
, for every a ∈ RN . (3.2.13)

2. π is a surjective polynomial map.

3. Let J1, . . . , JN be the (unique) vector �elds in Lie(A) coinciding at 0 ∈ RN
with the coordinate partial derivatives; then, for every j = i, . . . , N ,

dπ(Ji)(a) = Xi(π(a)), for every a ∈ RN . (3.2.14)

Proof. (1) For every λ > 0 and every a ∈ RN , one has

π(Dλ(a))
(3.2.12)

= exp(Φ(Dλ(a)))(0)
(3.2.6)

= exp(∆λ(a ·X))(0),

while δλ(π(a)) = δλ(exp(a · X)(0)). We then consider, for every t ∈ R, the
following integral curves (recall that any v.f. in a is complete):

γ(t) := exp(t∆λ(a ·X))(0) and µ(t) := δλ(exp(t (a ·X))(0)).

One has γ(0) = µ(0) = 0. Moreover, since Xj is δλ-homogeneous of degree sj ,

µ̇(t) = δλ((a ·X)(Ψa·X
t (0))) =

N∑
j=1

ajδλ(Xj(Ψ
a·X
t (0)))

(3.2.1)
=

N∑
j=1

λsjajXj(δλ(Ψa·X
t (0))) =

N∑
j=1

λsjajXj(µ(t))

= (Dλ(a) ·X)(µ(t))
(3.2.8)

= ∆λ((a ·X))(µ(t)).

On the other hand, from the very de�nition of γ we get

γ̇(t) = ∆λ((a ·X))(γ(t)),

and this shows that γ and µ solve the same Cauchy problem, whence they
coincide; by taking t = 1 we get (3.2.13).
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(2) Clearly π ∈ C∞(RN ,Rn). Moreover, by Taylor's formula, we get

π(a) = (a ·X)(0) + O(‖a‖2), as a→ 0.

This shows that the Jacobian matrix of π at a = 0 is given by the matrix

Jπ(0) = (X1(0) · · ·XN (0)), (3.2.15)

and thus rank(Jπ(0)) = n. As a consequence, it is possible to �nd an open
neighborhood W of 0 = π(0) ∈ Rn such that π : RN → W is surjective. We
claim that the homogeneity property (3.2.13) implies that π is also onto Rn.
Indeed, let x ∈ Rn be �xed and let λ > 0 be such that y = δλ(x) ∈W . Since π
is onto W , there exists a point a ∈ RN such that π(a) = y, and thus

π(D1/λ(a))
(3.2.13)

= δ1/λ(π(a)) = δ1/λ(δλ(x)) = x,

proving that π is surjective.

(3) Let i ∈ {1, . . . , N} be �xed and let ei denote the i-th vector of the
canonical basis of RN . By de�nition of Ji, for every a ∈ RN we have

daπ(Ji(a)) = Ji(π)(a) =
d

dt

∣∣∣
t=0

π(a ∗ (t ei))

(3.2.12)
=

d

dt

∣∣∣
t=0

(exp((a ∗ (t ei)) ·X)(0))

(3.2.7)
=

d

dt

∣∣∣
t=0

(exp((a ·X) � ((t ei) ·X))(0))

=
d

dt

∣∣∣
t=0

(exp((a ·X) � (tXi))(0)).

We now recall that, since a is nilpotent, the Campbell-Baker-Hausdor� multi-
plication satis�es the remarkable formula (see also Thm. 2.1.16 on page 25)

exp(W )(exp(V )(x)) = exp(V �W )(x), for all x ∈ RN and every V,W ∈ a;

therefore, by inserting this in the above computation, we obtain

daπ(Ji(a)) =
d

dt

∣∣∣
t=0

(exp(tXi)(exp(a ·X)(0)))

= Xi(exp(a ·X)(0))
(3.2.12)

= Xi(π(a)).

This is precisely the desired (3.2.14), and the proof is complete.

Example 3.2.8. The aim of this example is to compute the explicit expression
of the map π in the particular case of the Grushin vector �elds X1, X2.

Keeping �xed all the notations introduced in Exm. 3.2.6, we choose a vector
a ∈ R3 and we consider the following Cauchy problem (on R2)γ̇ =

3∑
i=1

aiXiI(γ),

γ(0) = 0

⇐⇒


γ̇1 = a1,

γ̇2 = a2 γ1 + a3,

γ(0) = 0.
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Since γ̇1 = a1 and γ1(0) = 0, we obviously have γ1(t) = a1t; moreover, by
inserting this expression in the second equation of the problem, we get

γ2(t) =

∫ t

0

(a2 γ1(s) + a3) ds = a3t+
a1a2

2
t2, for every t ∈ R.

As a consequence, from the very de�nition of π we obtain

π(a) = Ψa·X
1 (0) = (γ1(1), γ2(1)) =

(
a1, a3 +

a1a2

2

)
. (3.2.16)

With this explicit expression of π at hand, we can check the validity of iden-
tity (3.2.14). In fact, taking into account the expression of the Jacobian basis
{J1, J2, J3} of Lie(A) obtained in Exm. 3.2.6, for every a ∈ R3 we have

Jπ(a) · J1I(a) =

(
1 0 0
a2
2

a1
2 1

)
·

 1
0
−a22

 =

(
1
0

)
= X1I(π(a));

Jπ(a) · J2I(a) =

(
1 0 0
a2
2

a1
2 1

)
·

 0
1
a1
2

 =

(
0
a1

)
= X2I(π(a));

Jπ(a) · J1I(a) =

(
1 0 0
a2
2

a1
2 1

)
·

0
0
1

 =

(
0
1

)
= X3I(π(a)).

In order to construct a projection acting as a lifting for X1, . . . , Xm, we add
a new feature to Folland's ideas: we �nd an appropriate change of coordinates of
the group A constructed above which transforms the vector �elds J1, . . . , Jm on
A into new vector �elds Z1, . . . , Zm on RN lifting X1, . . . , Xm via the projection
of RN onto Rn (that is, Z1, . . . , Zm lift X1, . . . , Xm in the sense of Def. 3.1.1).
This change of variables is not contained in [73] and represents the main novelty
of this section; moreover, it will play a crucial rôle in the sequel.

To begin with we observe that, since the vectors X1(0), . . . , XN (0) generate
the whole of Rn, we can �nd n indexes in {1, . . . , r}

1 = i1 < i2 < · · · < in,

such that the set B := {Xi1(0), . . . , Xin(0)} is a basis of Rn. As a consequence,
the vector �elds Xi1 , . . . , Xin must be δλ-homogeneous of degree σ1, . . . , σn,
respectively. We then set

{j1, . . . , jp} := {1, . . . , r} \ {i1, . . . , in} (p = N − n), (3.2.17)

and we note that, from Hörmander's rank condition (H2), it follows that

jp ≤ r − 1,

that is, all the vector �elds in the basisA which are δλ-homogeneous of maximum
degree r = σn contribute to B.

So far we have assumed that Hörmander's rank condition holds at 0 only;
the last remark shows that it automatically holds at any point of Rn.
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Remark 3.2.9. With the above notation, we claim that

dim{Xi1I(x), . . . , XinI(x)} = n, for every x ∈ Rn. (3.2.18)

In order to see this, we consider the matrix-valued function M de�ned by

M : Rn −→ Mn(R), M(x) :=
(
Xi1I(x) · · ·XinI(x)

)
.

Since {Xi1I(0), . . . , XinI(0)} is a basis of Rn, the matrix M(0) is non-singular;
therefore, it is possible to �nd a small open neighborhood U of 0 (in Rn) such
that det(M(x)) 6= 0 for every x ∈ U.

We now �x a point x ∈ Rn and we choose λ > 0 such that δλ(x) ∈ U.
Then, recalling that the vector �eldsXi1 , . . . , Xin are δλ-homogeneous of degrees
σ1, . . . , σn respectively, we have (see Rem. 3.2.1)

M
(
δλ(x)

)
= det

(
Xi1I

(
δλ(x)

)
· · ·XinI

(
δλ(x)

))
(3.2.1)

= det
(
λ−σ1 δλ

(
Xi1I(x)

)
· · ·λ−σn δλ

(
XinI(x)

))
= λ−σ1 · · ·λ−σn det

(
δλ
(
Xi1I(x)

)
· · · δλ

(
XinI(x)

))
,

and thus, since the point δλ(x) belongs to U, we obtain

det
(
δλ
(
Xi1I(x)

)
· · · δλ

(
XinI(x)

))
6= 0.

This ensures that the vectors δλ
(
Xi1I(x)

)
, . . . , δλ

(
XinI(x)

)
form a basis of Rn,

whence the same is true of Xi1I(x), . . . , XinI(x), since the map δλ is a (linear)
isomorphism of Rn. As a consequence, we see that X1, . . . , Xm satisfy Hörman-
der's rank condition not only at the origin 0 (see assumption (H2)), but at every
point of x ∈ Rn, that is,

dim
{
XI(x) : X ∈ Lie{X1, . . . , Xm}

}
= n, for every x ∈ Rn.

We are now ready to introduce our change of coordinates: we set, with
reference to the above (3.2.17),

T : RN −→ RN , T (a) :=
(
π(a), aj1 , . . . , ajp

)
. (3.2.19)

We also de�ne a new family {dλ}λ>0 of dilations on RN by setting

dλ(a) := (λσ1a1, . . . , λ
σnan, λ

sj1an+1, . . . , λ
sjpaN ). (3.2.20)

We then have the following crucial result.

Lemma 3.2.10. The map T in (3.2.19) satis�es the following properties:

(i) For every �xed λ > 0, one has

T
(
Dλ(a)

)
= dλ

(
T (a)

)
, for every a ∈ RN ; (3.2.21)

(ii) The map T is a C∞-di�eomorphism of RN onto itself.
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Proof. (i): For every λ > 0 and every a ∈ RN we have

T
(
Dλ(a)

) (3.2.19)
=

(
π
(
Dλ(a)

)
,
(
Dλ(a)

)
j1
, . . . ,

(
Dλ(a)

)
jp

)
=
(
δλ
(
π(a)

)
, λsj1aj1 . . . , λ

sjpajp

)
(3.2.20)

= dλ
(
π(a), aj1 , . . . , ajp

)
= dλ

(
T (a)

)
,

which is precisely the desired identity (3.2.21).

(ii): Obviously T ∈ C∞(RN ,RN ). Moreover,

JT (0) =


Jπ(0)
ej1
...
ejp

 (3.2.15)
=


X1(0) · · ·XN (0)

ej1
...
ejp

 ,

where ej1 , . . . , ejp denote some of the vectors (written as row 1×N vectors) of
the canonical basis of RN . From this, by recalling that Xi1(0), . . . , Xin(0) form
a basis of Rn and by (3.2.17), we derive that JT (0) is invertible, so that there
exist neighborhoods U,W of 0 in RN such that

T |U : U −→W, is a C∞-di�eomorphism.

We now claim that the homogeneity property (i) implies that the map T is
actually a C∞-diffeomorphism of RN onto itself. To prove this claim, we �rst
show that T is a bijection.

T is 1-1: Suppose that a, b ∈ RN are such that T (a) = T (b), and let λ > 0
be so small that Dλ(a), Dλ(b) ∈ U. This gives

T (Dλ(a))
(3.2.21)

= dλ(T (a)) = dλ(T (b))
(3.2.21)

= T (Dλ(b)),

and thus, since Dλ(a), Dλ(b) ∈ U and T |U is injective, we get Dλ(a) = Dλ(b),
hence a = b. This proves that T is injective.

T is onto: Let u ∈ RN be �xed and let λ > 0 be such that v = dλ(u) ∈W.
Since T |U is onto W, it is possible to �nd a (unique) point a ∈ U such that
T (a) = dλ(u), and thus

T (D1/λ(a))
(3.2.21)

= d1/λ(dλ(u)) = u.

This proves that T is surjective.

In order to end the proof, we are left to show that the map T−1 (which is
globally de�ned) is smooth. To this end we �rst notice that, from the homo-
geneity property (i) of T , we get

T−1(dλ(u)) = Dλ(T−1(u)), for every u ∈ RN . (3.2.22)
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Let now u0 ∈ RN and λ > 0 be such that dλ(u0) ∈ W. The map dλ being
continuous, it is possible to �nd a positive ρ > 0 such that dλ(B(u0, ρ)) ⊆ W;
thus, for every u ∈ B(u0, ρ) we have

T−1(u) = T−1(d1/λ(dλ(u)))
(3.2.22)

= D1/λ(T−1(dλ(u)))

= (D1/λ ◦ (T−1)|W ◦ dλ)(u).

This shows that T−1 coincides with the smooth function D1/λ ◦ (T−1)
∣∣
W
◦ dλ

on the open ball B(u0, ρ), hence T−1 is smooth near u0. The arbitrariness of
the point u0 completes the proof.

Thanks to Lem. 3.2.10, we are entitled to use the change of variable T in
order to de�ne a new homogeneous Carnot group G = (RN , ?,D?

λ) starting
from A = (RN , ∗, Dλ). We henceforth denote a generic point of RN = Rn×Rp
by (x, ξ), with x ∈ Rn and ξ ∈ Rp, and we de�ne

(x, ξ) ? (y, η) := T (T−1(x, ξ) ∗ T−1(y, η)), ∀ (x, ξ), (y, η) ∈ RN ; (3.2.23)

D?
λ : RN −→ RN , D?

λ(x, ξ) := T (Dλ(T−1(x, ξ))). (3.2.24)

It is obvious that G = (RN , ?,D?
λ) is a homogeneous Carnot group on RN , with

m generators and nilpotent of step r. Furthermore, the map T is a (smooth)
isomorphism between A and G, that is,

T (a) ? T (b) = T (a ∗ b), for every a, b ∈ RN .

We also have, for every λ > 0,

D?
λ(x, ξ) = T (Dλ(T−1(x, ξ)))

(3.2.22)
= T (T−1(dλ(x, ξ)) = dλ(x, ξ).

There is therefore no reason to use the notation D?
λ any longer, and we replace

it by dλ. In the new coordinates (x, ξ) it is useful to write

dλ(x, ξ) = (δλ(x), δ∗λ(ξ)),

where, for every λ > 0 and every ξ ∈ Rp, we have

δ∗λ(ξ) = (λσ
∗
1 ξ1, . . . , λ

σ∗pξp), where σ∗i := sji for any i = 1, . . . , p. (3.2.25)

Now, since T is an isomorphism of Lie groups, it induces the Lie algebra iso-
morphism dT (see, e.g., [37, Section 2.1])

dT : Lie(A) −→ Lie(G), dT (X)(x,ξ) := dT (X)T−1(x,ξ). (3.2.26)

We can then consider, in particular, the vector �elds

Zi := dT (Ji), for every i = 1, . . . , N. (3.2.27)

The map dT being an isomorphism of Lie algebras, we immediately infer that

• the set {Z1, . . . , ZN} is a basis of Lie(G);

• Lie(G) = Lie{Z1, . . . , Zm}.
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We can �nally prove the following result.

Theorem 3.2.11 (Lifting property). Let Z1, . . . , ZN be as in (3.2.27). Then

(i) Z1, . . . , ZN are dλ-homogeneous of degree s1, . . . , sN respectively (see iden-
tity (3.2.9) in Rem. 3.2.4 for the de�nition of s1, . . . , sN );

(ii) Zi is a lifting of Xi, that is,

Zi = Xi +Ri (i = 1, . . . , N), (3.2.28)

where Ri is a vector �eld on RN only operating in the ξ variables (with
coe�cients possibly depending on (x, ξ)). As a consequence, the sub-La-
placian LG :=

∑m
k=1 Z

2
k on G is a lifting of the operator L =

∑m
k=1X

2
k .

Thm. 3.2.11 proves Thm. 3.2.3 stated at the beginning of the section.

Proof. (i) We �x i ∈ {1, . . . , N} and λ > 0. We recall that

Ji is Dλ-homogeneous of degree si. (3.2.29)

For every (x, ξ) ∈ RN = Rn ×Rp, we have the following computation

Zi(dλ(x, ξ))
(3.2.27)

= dT (Ji)(dλ(x, ξ))
(3.2.26)

= Ji(T )(T−1(dλ(x, ξ)))

(3.2.24)
= Ji(T )(Dλ(T−1(x, ξ)))

(3.2.29)
= λ−si Ji(T ◦Dλ)(T−1(x, ξ))

(3.2.21)
= λ−si Ji(dλ ◦ T )(T−1(x, ξ))

(3.2.26)
= λ−si dT (Ji)(dλ)(x, ξ) = λ−si dλ(dT (Ji)(x, ξ))

= dλ(Zi(x, ξ)),

and this proves that Zi is dλ-homogeneous of degree si, as claimed.

(ii) We �x i ∈ {1, . . . , N} and (x, ξ) ∈ RN ; we have

ZiI(x, ξ) = dT (Ji)(x, ξ) = Ji(T )(T−1(x, ξ))

(3.2.19)
=

(
Ji(π), Ji(a 7→ aj1), . . . , Ji(a 7→ ajp)

)
(T−1(x, ξ)).

(3.2.30)

On the other hand, by (3.2.14) we infer

Ji(π)(T−1(x, ξ)) = Xi(π(T−1(x, ξ))). (3.2.31)

Now, since T (x, ξ) = (π(x), ξ), we derive that

π(T−1(x, ξ)) = x; (3.2.32)

therefore, by inserting (3.2.31) and (3.2.32) in (3.2.30), we infer

Zi(x, ξ) =
(
Xi(x, ξ), fi,1(x, ξ), . . . , fi,p(x, ξ)

)
,

where, for k = 1, . . . , p we have used the notation

fi,k(x, ξ) = Ji(a 7→ ajk)(T−1(x, ξ)) = (Ji(T
−1(x, ξ)))jk .
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This shows that Zi can be written (as a vector �eld on RN ) in the form

Zi = Xi +Ri, with Ri =

p∑
k=1

fi,k(x, ξ)
∂

∂ξk
,

hence Zi is a lifting for Xi and this ends the proof.

Example 3.2.12. In this last example of the section we consider once again
the Grushin vector �elds X1, X2 introduced in Exm. 3.2.2 and we compute the
explicit expression of the map T , of the group law ? and of the dilation dλ.

To begin with, keeping �xed all the notations introduced in the previous
examples, we consider the basis A = {X1, X2, X3} of a = Lie{X1, X2} and we
construct the two sets of indexes de�ned in (3.2.17).

Since X1I(0) = e1 and X3I(0) = e2 (where e1, e2 denote the elements of the
canonical basis of R2), we have {i1, i2} = {1, 3} and

{j1} = {1, 2, 3} \ {i1, i2} = {2};

therefore, according to the de�nition of T given in (3.2.19), we have

T (a) = (π(a), aj1)
(3.2.16)

=
(
a1, a3 +

a1a2

2
, a2

)
, a ∈ R3. (3.2.33)

With this expression of T at hand, we now write down the explicit expression
of the composition ? and of dλ. In fact, a direct computations shows that

T−1(x, ξ) =

(
x1, ξ, x2 −

x1ξ

2

)
, for every (x1, x2, ξ) ∈ R3;

as a consequence, by exploiting the expression of ∗ and of Dλ obtained in
Exm. 3.2.6, for every (x, ξ), (y, η) ∈ R3 = R2 ×R and every λ > 0 we obtain

(x, ξ) ? (y,η) = T
(
T−1(x, ξ) ∗ T−1(y, η)

)
= T

((
x1, ξ, x2 −

x1ξ

2

)
∗
(
y1, η, y2 −

y1η

2

))
(3.2.10)

= T

(
x1 + y1, ξ + η, x2 + y2 −

1

2
(x1ξ + y1η) +

1

2
(x1η − ξy1)

)
= (x1 + y1, x2 + y2 + x1η, ξ + η);

dλ(x, ξ) = T
(
Dλ(T−1(x, ξ))

)
= T

(
Dλ

(
x1, ξ, x2 −

x1ξ

2

))
(3.2.10)

= T

(
λx1, λξ, λ

2

(
x2 −

x1ξ

2

))
= (λx1, λ

2ξ, λx2).

Finally, due to their relevance in our argument, we determine the explicit ex-
pression of the vector �elds Z1, Z2, Z3 introduced in (3.2.27). By exploiting the
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expression of J1, J2, J3 given in (3.2.11), for every (x, ξ) ∈ R3 we have

Z1I(x, ξ) = dT (J1)I(x, ξ) = JT
(
T−1(x, ξ)

)
· J1I

(
T−1(x, ξ)

)
=

1 0 0
ξ
2

x1

2 1
0 1 0

 ·
 1

0

− ξ2

 =

1
0
0

 ;

Z2I(x, ξ) = dT (J2)I(x, ξ) = JT
(
T−1(x, ξ)

)
· J2I

(
T−1(x, ξ)

)
=

1 0 0
ξ
2

x1

2 1
0 1 0

 ·
 0

1
x1

2

 =

 0
x1

1

 ;

Z3I(x, ξ) = dT (J3)I(x, ξ) = JT
(
T−1(x, ξ)

)
· J3I

(
T−1(x, ξ)

)
=

1 0 0
ξ
2

x1

2 1
0 1 0

 ·
0

0
1

 =

0
1
0

 ;

as a consequence, we can write

Z1 = ∂x1 , Z2 = x1 ∂x2 + ∂ξ, Z3 = ∂x2 .

In particular, we have Z1 = X1, Z3 = X3 and Z2 = X2 + ∂ξ.

The next result motivates all the algebraic machinery developed so far.

Theorem 3.2.13. The sub-Laplacian LG =
∑m
k=1 Z

2
k on the homogeneous Ca-

rnot group G = (Rn×Rp, ?, dλ) constructed in this section is a saturable lifting
of the operator L =

∑m
k=1X

2
k , in the sense of Def. 3.1.4.

Proof. With reference to the notation in De�nition 3.1.4, we need to prove
properties (S.1) and (S.2).

(S.1) Since Z1, . . . , Zm are dλ-homogeneous of degree 1, the operator LG is
(formally) self-adjoint on L2(RN ). The same is true of L, this time invoking
the δλ-homogeneity of degree 1 of X1, . . . , Xm. Thus the formal adjoint R∗ of

R = LG − L

coincides with R, whence (LG being a lifting for L) it has the form (3.1.4).

(S.2) With reference to the dilations δ∗λ introduced in (3.2.25), we consider
the δ∗λ-homogeneous map

N : Rp −→ R, N(ξ) :=

p∑
k=1

|ξk|1/σ
∗
k . (3.2.34)

We now choose a smooth function θ ∈ C∞0 (Rp, [0, 1]) such that

• supp(θ) ⊆ {ξ ∈ Rp : N(ξ) < 2};

• θ ≡ 1 on {ξ ∈ Rp : N(ξ) < 1}.
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We then de�ne a sequence θj in C∞0 (Rp) by setting, for every j ∈ N,

θj(ξ) := θ(δ∗2−j (ξ)), (with ξ ∈ Rp). (3.2.35)

Obviously, any θj is valued in [0, 1]; furthermore, since the function N is δ∗λ-
homogeneous of degree 1, we have

• supp(θj) ⊆ {ξ ∈ Rp : N(ξ) < 2j+1};

• θ ≡ 1 on {ξ ∈ Rp : N(ξ) < 2j}.

Consequently {θj = 1} ↑ Rp as j ↑ ∞. In order to complete the veri�cation of
(S.2), let us �x a compact set K ⊆ Rn and let rα,β be the coordinate coe�cient
function of the second-order PDO

R∗ = R = LG − L =

m∑
k=1

(Z2
k −X2

k) =
∑
α,β

rα,β(x, ξ)Dα
xD

β
ξ .

The functions rα,β are polynomials; a simple but tedious computation shows
that any monomial decomposing rα,β(x, ξ), has the following feature: as a func-
tion of ξ only it is δ∗λ-homogeneous of degree not exceeding |β|∗ − 1, where we
have used the notation (see also (3.2.25))

|β|∗ :=

p∑
k=1

βk σ
∗
k, for every multi-index β ∈ (N ∪ {0})p.

With this notation, note that, for any ξ ∈ Rp and any multi-index β,(
δ∗λ(ξ)

)β
= λ|β|∗ ξβ . (3.2.36)

We can write rα,β in the following way

rα,β(x, ξ) =
∑

|γ|∗≤|β|∗−1

cα,β,γ(x) ξγ , (3.2.37)

where cα,β,γ(x) are polynomial functions only depending on x.
Now, for every multi-index γ with |γ|∗ ≤ |β|∗−1, every (x, ξ) ∈ K×Rp and

every j ∈ N, we have the following estimate (we use the notation 1B for the
characteristic function of a set B):∣∣∣cα,β,γ(x) ξγ Dβ

ξ θj(ξ)
∣∣∣ ≤ max

x∈K
|cα,β,γ(x)| · |ξγ | · |Dβ

ξ θj(ξ)|

(recall that θj is constant outside the set Bj := {2j ≤ N(ξ) ≤ 2j+1})

= max
K
|cα,β,γ | · |ξγ | · |Dβ

ξ θj(ξ)| · 1Bj (ξ)

(3.2.35)

≤ max
K
|cα,β,γ | · sup

Rp
|Dβθ| · (2−j)|β|∗ · |ξγ | · 1Bj (ξ)

(we denote by cα,β,γ a constant bounding the product of the �rst two factors,

we write ξ = δ∗2j ◦ δ
∗
2−j (ξ) and we use (3.2.36))

≤ cα,β,γ · (2−j)|β|∗−|γ|∗ ·
∣∣∣(δ∗2−j (ξ))γ∣∣∣ · 1Bj (ξ). (3.2.38)
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Observe that, if the point ξ belongs to the annulus Bj = {2j ≤ N(ξ) ≤ 2j+1},
then the point δ∗2−j (ξ) belongs to the compact set

B1 = {ξ ∈ Rp : 1 ≤ N(ξ) ≤ 2};

as a consequence, it is possible to �nd a positive constantMγ > 0, only depend-
ing on γ but independent of j ∈ N, such that∣∣δ∗2−j (ξ)γ∣∣ · 1Bj (ξ) ≤Mγ , for every ξ ∈ Rp. (3.2.39)

Since |β|∗ − |γ|∗ ≥ 1, from (3.2.38) and (3.2.39), we then obtain

|cα,β,γ(x) ξγ Dβ
ξ θj(ξ)| ≤ cα,β,γMγ , ∀ x ∈ K, ξ ∈ Rp and j ∈ N. (3.2.40)

We are now ready to conclude: by taking into account (3.2.37), for every for
every x ∈ K, ξ ∈ Rp and j ∈ N we have

|rα,β(x, ξ) ·Dβ
ξ θj(ξ)| ≤

∑
|γ|∗≤|β|∗−1

|cα,β,γ(x) ξγ Dβ
ξ θj(ξ)|

(3.2.40)

≤
∑

|γ|∗≤|β|∗−1

cα,β,γMγ ,

and this completes the veri�cation of property (S.2) of a saturable lifting.

We conclude this section by turning our attention the homogeneous second-
order linear PDO associated with X1, . . . , Xm, that is,

L =

m∑
j=1

X2
j .

By exploiting the δλ-homogeneity of X1, . . . , Xm and Thm. 1.2.2 - (ii), it is easy
to recognize that L can be written in the following divergence form

L =

n∑
i=1

∂xi

 n∑
j=1

ai,j(x)∂xj

 ,

where the matrix A(x) =
(
ai,j(x)

)
i,j

is given by the product

A(x) = S(x) · S(x)T ,

and S(x) is the n × m matrix whose columns are the coe�cient vectors of
X1, . . . , Xm, that is,

S(x) =
(
X1I(x) · · ·XmI(x)

)
, for every x ∈ Rn.

Furthermore, L is δλ-homogeneous of degree 2: for every λ > 0, we have

L
(
u ◦ δλ

)
= λ2

(
Lu
)
◦ δλ, for every u ∈ C∞(Rn,R).

Finally, since X1, . . . , Xm satisfy Hörmander's rank condition at every point of
Rn (see Rem. 3.2.9), we derive the following notable facts:
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(a) The operator L is C∞-hypoelliptic on every open subset of Rn;

(b) The operator L satis�es the so-called Strong Maximum Principle on every
open and connected subset Ω of Rn: any function u ∈ C2(Ω,R) satisfying
Lu ≥ 0 on Ω and attaining a maximum in Ω is constant throughout Ω;

(c) As a consequence of the Strong Maximum Principle, the operator L also
satis�es the Weak Maximum Principle on every open subset U of Rn:

u ∈ C2(U,R);

Lu ≥ 0, on U ;

lim sup
x→y

u(x) ≤ 0 for every y ∈ ∂U ;
=⇒ u ≤ 0 on U.

Remark 3.2.14. As regards the lifting in the sub-elliptic contexts of Carnot
groups, we brie�y highlight the paper by Bon�glioli and Uguzzoni [38].

Roughly put, in this paper the authors prove that any Carnot group G
(nilpotent of step r and with m generators) can be lifted to the free Carnot
group Fm,r. Compared with the lifting by Folland presented in this section,
the result by Bon�glioli and Uguzzoni is essentially a lifting for vector �elds
generating the Lie algebra of a Carnot group; this, however, is not our case.

3.3 Fundamental solution for homogeneous Hör-

mander operators

Thanks to all the results proved in the previous sections, we are �nally in a
position to prove the main result of this chapter, namely the existence of a
(global) fundamental solution for any homogeneous Hörmander operator.

For the reader's convenience (and to improve the readability of this section),
we summarize in Thm. 3.3.1 below all the results we are going to prove.

Theorem 3.3.1. Let X1, . . . , Xm be a family of linearly independent smooth
vector �elds satisfying assumptions (H1) and (H2) in Sec. 3.2.

Then the operator L :=
∑m
j=1X

2
j admits a unique global fundamental solu-

tion Γ which satis�es the following (joint) δλ-homogeneity property:

Γ(δλ(x); δλ(y)) = λ2−q Γ(x; y), ∀ x, y ∈ Rn with x 6= y and λ > 0.

Moreover, Γ is continuous out of the diagonal of Rn×Rn, and it is symmetric:

Γ(x; y) = Γ(y;x) for every x, y ∈ Rn with x 6= y.

Finally, for every �xed x ∈ Rn, we have the following properties:

(i) Γ(x; ·) = Γ(·;x) is smooth and L-harmonic on Rn \ {x};

(ii) Γ(x; ·) = Γ(·;x) vanishes at in�nity (uniformly for x in compact sets);

(iii) Γ(x; ·) = Γ(·;x) is locally integrable on Rn;

(vi) Γ is locally integrable on Rn×Rn and C∞ out of the diagonal of Rn×Rn.
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To give a complete proof of Thm. 3.3.1, we begin by �xing some notations.

Throughout this section, L =
∑m
j=1X

2
j is a sum of squares of (linearly in-

dependent) vector �elds satisfying assumptions (H1) and (H2) in the incipit of
Section 3.2. Without further comments, we denote by G = (RN , ?, dλ) the ho-
mogeneous Carnot group on RN = Rn×Rp constructed in the previous section,
with the sub-Laplacian LG =

∑m
j=1 Z

2
j which lifts L through the projection of

Rn × Rp onto Rn. As usual, we denote a generic point of RN = Rn × Rp by
(x, ξ), where x ∈ Rn and ξ ∈ Rp. We know that dλ takes the form

dλ(x, ξ) = (δλ(x), δ∗λ(ξ)), (3.3.1)

where δ∗λ is the dilation on Rp introduced in (3.2.25). Three homogenous di-
mensions naturally arise:

- that of (Rn, δλ), namely q :=
∑n
j=1 σj ;

- that of (Rp, δ∗λ), namely q∗ :=
∑n
j=1 σ

∗
j ;

- that of (RN , dλ), namely Q = q + q∗.

Let us now assume that the δλ-dimension of Rn is greater than 2:

q =
∑n
j=1 σj > 2. (3.3.2)

In the sequel, we consider the homogeneous norm on G (in the sense of Def. 1.3.8
on page 17) de�ned by

h(x, ξ) := ‖(x, ξ)‖G =

n∑
j=1

|xj |1/σj +

p∑
k=1

|ξk|1/σ
∗
k . (3.3.3)

Since LG is a sub-Laplacian on the Carnot group G, we know from Thm. 1.3.9
that there exists a homogeneous norm d ∈ C∞(RN \ {0},R) such that

ΓG(x, ξ; y, η) := d2−Q((x, ξ)−1 ∗ (y, η)
)
, (with (x, ξ) 6= (y, η)) (3.3.4)

is the unique fundamental solution for LG satisfying the additional property

lim
‖(y,η)‖→∞

ΓG(x, ξ; y, η) = 0, for every �xed (x, ξ) ∈ RN .

Moreover, by the equivalence of all the homogeneous norms on G (see identity
(1.3.10) on page 17), there exists a (group) constant c > 0 such that

c−1 h2−Q((x, ξ)−1 ∗ (y, η)
)
≤ ΓG(x, ξ; y, η) ≤ ch2−Q((x, ξ)−1 ∗ (y, η)

)
, (3.3.5)

for every (x, ξ), (y, η) ∈ RN with (x, ξ) 6= (y, η). By means of this equivalence,
we want to show that ΓG satis�es the integrability assumptions Thm. 3.1.6 (plus
the other good properties in Prop. 3.1.9). As a consequence, since we proved in
Thm. 3.2.13 that LG is a saturable lifting of L, then L admits a fundamental
solution obtained by a saturation of ΓG.

Due to its central role in the saturation formula (3.1.9), we brie�y study
some properties of the �convolution-like� map

F : Rn ×RN → RN , F (x, y, η) := (x, 0)−1 ? (y, η). (3.3.6)
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First of all we observe that, since the family {dλ}λ>0 forms a one-parameter
group of automorphisms of G, for every x ∈ Rn and every (y, η) ∈ RN one has

F (δλ(x), dλ(y, η)) = (δλ(x), 0)−1 ? dλ(y, η)

(3.3.1)
= (dλ(x, 0))−1 ? dλ(y, η) = dλ((x, 0)−1 ? (y, η)) = dλ(F (x, (y, η)));

hence, if we consider the family of dilations {D̃λ}λ>0 on Rn ×RN given by

D̃λ : Rn ×RN → Rn ×RN , D̃λ(x, y, η) = (δλ(x), dλ(y, η)),

then the components of F , say

F1, . . . , Fn, Fn+1, . . . , FN ,

are D̃λ-homogeneous of degrees, respectively,

σ1, . . . , σn, σ∗1 , . . . , σ
∗
p.

On the other hand, if we take x = 0, we get F (0, (y, η)) = (y, η), whilst
F (x, (x, 0)) = (0, 0) (since the origin is the neutral element of G). By all these
facts, we deduce that the components of F are D̃λ-homogeneous polynomials,
and that, for every x ∈ Rn and every (y, η) ∈ RN , they take the form

F1(x, y, η)) = y1 − x1,

Fi(x, y, η) = yi − xi + pi(x, y, η) (i = 2, . . . , n),

Fn+k(x, y, η) = ηk + qk(x, y, η), (k = 1, . . . , p),

(3.3.7)

where, for every i = 2, . . . , n and every k = 1, . . . , p, pi and qk are D̃λ-
homogeneous polynomials of degrees σi and σ∗k, respectively, and

• pi only depends on those variables xh, yh and ηj such that σh, σ∗j < σi;

• qk only depends on those variables xh, yh and ηj such that σh, σ∗j < σ∗k;

• pi(0, y, η) = qk(0, y, η) = 0, for every (y, η) ∈ RN .

Remark 3.3.2. Let x, y ∈ Rn be �xed. Since the polynomial q1 does not
depend on η1, . . . , ηp and since, for every k ∈ {2, . . . , p}, the polynomial qk only
depends on η1, . . . , ηk−1, we see that the map

Ψx,y : Rp −→ Rp, Ψx,y(η) :=
(
Fn+1(x, y, η), . . . , FN (x, y, η)

)
, (3.3.8)

de�nes a C∞-di�eomorphism of Rp, with polynomial components. Hence, in
particular, Ψx,y is a proper map, which is equivalent to saying that

lim
‖η‖→∞

Ψx,y(η) =∞. (3.3.9)

Furthermore, by (3.3.7), we get

det(JΨx,y
(η)) = 1, for every η ∈ Rp. (3.3.10)
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Summing up, from the estimate (3.3.5) we obtain (whenever (y, η) 6= (x, 0))

c−1K2−Q(x, y, η) ≤ ΓG(x, 0; y, η) ≤ cK2−Q(x, y, η), (3.3.11)

where we have set

K(x, y, η) := h((x, 0)−1 ? (y, η)), with h as in (3.3.3). (3.3.12)

Taking into account (3.3.3) and (3.3.7), a more explicit expression for K is

K(x, y, η) =

n∑
i=1

∣∣∣Fi(x, y, η)
∣∣∣1/σi +

p∑
k=1

∣∣∣Fn+k(x, y, η)
∣∣∣1/σ∗k

= |y1 − x1|+
n∑
i=2

∣∣∣yi − xi + pi(x, y, η)
∣∣∣1/σi

+

p∑
k=1

∣∣∣ηk + qk(x, y, η)
∣∣∣1/σ∗k .

(3.3.13)

Thanks to (3.3.11), we are now able to prove the following crucial result:

Theorem 3.3.3. Suppose that (3.3.2) holds true. Then the fundamental solu-
tion ΓG of LG satis�es assumptions (i) and (ii) in Thm. 3.1.6.

Proof. First we prove condition (i). We need to show (3.1.7) when Γ̃ is ΓG; due
to (3.3.11), we need to prove that, for �xed x 6= y in Rn, we have

η 7→ K2−Q(x, y, η) belongs to L1(Rp). (3.3.14)

We perform the change of variable η = Ψ−1
x,y(u) introduced in Rem. 3.3.2:∫

Rp
K2−Q(x, y, η) dη =

∫
Rp
K2−Q(x, y,Ψ−1

x,y(u)) · | det(JΨ−1
x,y

(u))|du

(3.3.10)
=

∫
Rp
K2−Q(x, y,Ψ−1

x,y(u)) du.

We now observe that, since x 6= y, the function u 7→ K2−Q(x, y,Ψ−1
x,y(u)) is

continuous on Rp, hence it is integrable on every compact subset of Rp. In fact,
K(x, y,Ψ−1

x,y(u)) = 0 if and only if

(x, 0)−1 ? (y,Ψ−1
x,y(u)) = 0,

which necessarily implies x = y. Thus, if we consider the homogeneous norm N
in (3.2.34), (3.3.14) will follow if we show that∫

{N(u)≥1}
K2−Q(x, y,Ψ−1

x,y(u)) du <∞.

By the expression of K given in (3.3.13) and the de�nition of Ψx,y, we infer

K(x, y,Ψ−1
x,y(u))

(3.3.13)

≥
p∑
k=1

|Fn+k(x, y,Ψ−1
x,y(u))|1/σ

∗
k

(3.3.8)
=

p∑
k=1

|Ψx,y(Ψ−1
x,y(u))|1/σ

∗
k =

p∑
k=1

|uk|1/σ
∗
k=N(u).
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Therefore, we are left to show that∫
{N(u)≥1}

N2−Q(u) du <∞. (3.3.15)

In proving (3.3.15), we use a typical argument on diadic annuli (modeled on the
homogeneous norm N): setting, for j ∈ N, Cj := {u ∈ Rp : 2j−1 ≤ N(u) < 2j},
then (see (3.2.25) for the de�nition of δ∗λ)∫
{N(u)≥1}

N2−Q(u) du =

∞∑
j=1

∫
Cj

N2−Q(u) du (change of variable u = δ∗2j (η))

=

∞∑
j=1

(2j)q
∗
∫
δ∗
2j

(Cj)

N2−Q(δ∗2j (η)) dη

=

(∫
{1/2≤N(η)≤1}

N2−Q(η) dη

) ∞∑
j=1

(2j)2−Q+q∗ <∞,

since 2−Q+ q∗ = 2− q > 0 by (3.3.2). This ends the proof of (i).

Finally we prove (ii) of Thm. 3.1.6. We need to prove (3.1.8) when Γ̃ is ΓG.
If x ∈ Rn is �xed and K ⊂ Rn is compact, we perform the change of variable
(u, v) = (y,Ψx,y(η)) and we get (arguing as in part (i) to recognize that this
substitution has Jacobian determinant identically 1)∫

K×Rp
ΓG(x, 0; y, η) dy dη =

∫
K×Rp

ΓG(x, 0;u,Ψ−1
x,u(v)) dudv

=

∫
K×{N(v)≤1}

{· · · } dudv +

∫
K×{N(v)>1}

{· · · } dudv =: I + II,

where N is as above. Clearly I is �nite since we integrate a continuous function
over a compact set. As for II, we use (3.3.11) and we have to prove the �niteness
of the following integral:∫
K×{N(v)>1}

K2−Q(x, u,Ψ−1
x,u(v)) dudv

(3.3.13)

≤
∫
K×{N(v)>1}

(
p∑
k=1

|Fn+k(x, u,Ψ−1
x,u(v))|1/σ

∗
k

)2−Q

dudv

(3.3.8)
=

∫
K×{N(v)>1}

(
p∑
k=1

|vk|1/σ
∗
k

)2−Q

dudv = c

∫
K×{N(v)>1}

N2−Q(v) dudv.

The �niteness of the last integral follows by the same argument as in the previous
part of the proof (and the fact that K is compact). This ends the proof.

By gathering together Thm. 3.2.13 proved in Sec. 3.2 and Thm. 3.3.3, we can
�nally prove our existence result of a fundamental solution for L.

Theorem 3.3.4 (Existence of a fundamental solution for L). Suppose that
(3.3.2) holds true. Then the function

Γ(x; y) =

∫
Rp

ΓG
(
x, 0; y, η

)
dη (x 6= y)
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is a fundamental solution for L. Moreover, if h is as in (3.3.3), one has

c−1

∫
Rp
h2−Q((x, 0)−1 ? (y, η)) dη ≤ Γ(x; y)

≤ c

∫
Rp
h2−Q((x, 0)−1 ? (y, η)) dη,

holding true for every x, y ∈ Rn with x 6= y. Here, c > 0 is a constant only de-
pending on the homogeneous Carnot group G, Q is the homogeneous dimension
of G and ? is the (polynomial) composition law of G.
Proof. By Thm. 3.2.13, we know that the sub-Laplacian LG is a saturable lifting
for L; moreover, Thm. 3.3.3 shows that the fundamental solution ΓG of LG in
(3.3.5) satis�es assumptions (i) and (ii) in Thm. 3.1.6.

Therefore, by applying the cited Thm. 3.1.6, we conclude that Γ is a (global)
fundamental solution for L. This ends the proof.

The last part of this section is dedicated to establish some further notable
properties of the fundamental solution Γ for L constructed in Thm. 3.3.4.

Proposition 3.3.5. Let the assumption and the notation of Thm. 3.3.4 apply.
Then the function Γ is (jointly) δλ-homogeneous of degree 2− q, that is,

Γ(δλ(x); δλ(y)) = λ2−q Γ(x; y), ∀ x, y ∈ Rn with x 6= y and λ > 0. (3.3.16)

Proof. Let λ > 0 and let x, y ∈ Rn be distinct. We have

Γ(δλ(x); δλ(y)) =

∫
Rp

ΓG(δλ(x), 0; δλ(y), η) dη

(3.3.1)
=

∫
Rp

ΓG(dλ(x, 0); δλ(y), η) dη.

By the substitution η = δ∗λ(u), and thanks to the dλ-homogeneity of degree
2−Q of ΓG (see Thm. 1.3.9 on page 17), we obtain

Γ(δλ(x); δλ(y)) = λq
∗
∫
Rp

ΓG(dλ(x, 0); dλ(y, u)) du

= λ2−Q+q∗
∫
Rp

ΓG(x, 0; y, u) du = λ2−q Γ(x; y),

since Q = q + q∗. This gives (3.3.16), and the proof is complete.

Proposition 3.3.6. Let the assumption and the notation of Thm. 3.3.4 apply.
Then, for every �xed x ∈ Rn, we have the following properties:

(i) Γ(x; ·) is continuous on Rn \ {x};

(ii) Γ(x; ·) vanishes at in�nity, that is, Γ(x; y)→ 0 as y →∞.

Proof. First of all, by performing (for every �xed y ∈ Rn) the change of variables
u = Ψx,y(η) in Rem. 3.3.2, we can write

Γ(x; y) =

∫
Rp

ΓG(x, 0; y,Ψ−1
x,y(u)) · | det(JΨ−1

x,y
(u))|du

(3.3.10)
=

∫
Rp

ΓG(x, 0; y,Ψ−1
x,y(u)) du

=

∫
{N(u)<1}

{. . .} du+

∫
{N(u)≥1}

{. . .} du := I + II,

(3.3.17)
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where N denotes the δλ
∗ - homogeneous norm in (3.2.34); moreover, by the

properties of ΓG (see Thm. 1.3.9 on page 17) and the continuity of the map
(y, η) 7→ Ψx,y(η) (see Rem. 3.3.2), we have that

(a) RN 3 (y, u) 7→ ΓG(x, 0; y,Ψ−1
x,y(u)) is continuous on RN \ {(x, 0)};

(b) ΓG(x, 0; y,Ψ−1
x,y(u))→ 0 as ‖y‖ → ∞, for every �xed u ∈ Rp.

Therefore, to prove the proposition it su�ces to show that a dominated conver-
gence argument can be applied in the above (3.3.17).

(i) Let y0 ∈ RN and let r > 0 be such that x /∈ B(y0, r). Since the set

K := B(y0, r)× {N ≤ 1} ⊆ RN

is compact and contained in RN \ {(x, 0}, we deduce from property (a) that
there exists a constant C > 0 such that

ΓG(x, 0; y,Ψ−1
x,y(u)) ≤ C, for every (y, u) ∈ K;

therefore, we can apply a simple dominated convergence argument to pass to
the limit for y → y0 in the integral I. As for integral II, we argue as in the proof
of Thm. 3.3.3: by estimate (3.3.11), the expression of K given in (3.3.13) and
the very de�nition Ψx,y, for every (y, u) ∈ Rn × {N(u) ≥ 1} we obtain

Γ(x, 0; y,Ψ−1
x,y(u)) ≤ cK2−Q(x, y,Ψ−1

x,y(u)) = cN2−Q(u); (3.3.18)

therefore, the function N being integrable on {N(u) ≥ 1} (as we have shows in
the proof of Thm. 3.3.3), another dominated convergence argument allows us to
pass to the limit for y → y0 also in this case.

(ii) By property (b), there exists a real ρ > 0 such that

ΓG(x, 0; y,Ψ−1
x,y(u)) ≤ 1, for every (y, u) ∈ RN with ‖y‖ ≥ ρ;

therefore, a simple dominated converge argument ensures us the possibility for
passing to the limit as ‖y‖ → ∞ in the integral I. As for integral II, it su�ces
to observe that estimate (3.3.18) allows us to apply the Lebesgue Dominated
Convergence Theorem to pass to the limit also for ‖y‖ → ∞.

The proposition is thus completely proved.

Corollary 3.3.7. Let the assumption and the notation of Thm. 3.3.4 apply.
Then, for every �xed x ∈ Rn, we have Γ(x; ·) ∈ C∞(Rn \ {x},R) and

LΓ(x; ·) = 0, on Rn \ {x}.

Proof. Since Γ is fundamental solution for L, by de�nition we have (see identity
(1.3.8) on page 16) LΓ(x; ·) = −Dirx in D′(Rn); as a consequence, one has

LΓ(x; ·) = 0, in D′(Rn \ {x}).

Now, since L is C∞-hypoelliptic on every open subset of Rn (see property (a)
on page 79), it is possible to �nd a function u ∈ C∞(Rn \ {x},R) such that

Lu = 0 on Rn \ {x} and u ≡ Γ(x; ·) almost everywhere on Rn \ {x};

on the other hand, Γ(x; ·) being continuous out of x (see Prop. 3.3.6 - (i)), we
necessarily have Γ(x; ·) ≡ u on Rn \ {x}, and the proof is complete.
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Remark 3.3.8. Let the assumption and the notation of Thm. 3.3.4 apply. Then
Γ is the unique fundamental solution for L such that, for every x ∈ Rn,

Γ(x; ·) ∈ C(Rn \ {x},R) and lim
‖y‖→∞

Γ(x; y) = 0.

This is a consequence of Rem. 1.3.7 - (c) on page 16, since the operator L is
C∞-hypoelliptic and it satis�es the Weak Maximum Principle on every open
and bounded subset of Rn (see properties (a)-to-(c) listed on page 79).

Remark 3.3.9. Before proceeding, we would like to brie�y comment the state-
ments of Prop. 3.3.6 and of Cor. 3.3.7. First of all we observe that, since Γ is a
fundamental solution of L and L is C∞-hypoelliptic in Rn, for every x ∈ Rn it
is possible to �nd a function ux ∈ C∞(Rn \ {x},R) such that

Lux = 0 on Rn \ {x} and ux ≡ Γ(x; ·) almost everywhere on Rn \ {x};

as a consequence, there exists a (unique) smooth function in the equivalence
class of Γ(x; ·) in L1

loc(Rn), which satis�es

Lux = −Dirx, in D′(Rn).

Our main issue, however, is that we need to know that this ux is everywhere iden-
tical to the integral function de�ned in Thm. 3.3.4, not only out of a Lebesgue-
neglibile set, which would unpleasantly depend on x. In fact, since we are
interested in establishing some pointwise properties of Γ, it is important for us
to know that, for every x ∈ RN , we do not need to modify Γ(x; ·) in order to
obtain a smooth function vanishing at in�nity.

Having established Prop.s 3.3.5 and 3.3.6, our aim is to prove that the func-
tion Γ is actually symmetric, that is,

Γ(x; y) = Γ(y;x), for every x, y ∈ Rn with x 6= y.

To this end, we need some preliminary results of independent interest.

Lemma 3.3.10. Let ΓG be the fundamental solution for LG introduced in
(3.3.4). Then the following properties hold true:

(i) The map (x, y, η) 7→ ΓG(x, 0; y, η) is locally integrable on Rn ×RN ;

(ii) For every y ∈ Rn, the map (x, η) 7→ ΓG(x, 0; y, η) belongs to L1
loc(RN ).

Proof. (i) Let K1 ⊆ Rn and K2 ⊆ RN be compact sets. By Fubini's Theorem
and by performing the change of variables (y, η) = (x, 0) ? (z, ζ), one has∫

K1×K2

ΓG(x, 0; y, η) dxdy dη
(3.3.4)

=

∫
K1

(∫
τ−1
x (K2)

d2−Q(z, ζ) dz dζ

)
dx,

where τx denotes the left-translation by (x, 0) on the Carnot group G. We now
observe that, for every x ∈ K1, the set τ−1

x (K2) is included in the compact set

H =
(
K1 × {0}

)−1
? K2; therefore, by recalling that d2−Q = ΓG(0; ·) is locally

integrable on RN , we obtain property (i).
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(ii) We �x a point y ∈ Rn and a compact set K ⊆ Rn, and we set

Cy : RN → RN , Cy(x, η) := (x, 0)−1 ? (y, η).

It can be easily deduced from identity (3.3.7) that Cy is a C∞-di�eomorphism
of RN onto itself and that, for every (x, η) ∈ RN , one has∣∣det

(
JCy (x, η)

)∣∣ = 1.

Therefore, by the change of variables (x, η) = C−1
y (z, ζ), we get∫

K

ΓG(x, 0; y, η) dxdη =

∫
C−1
y (K)

d2−Q(z, ζ) dz dζ.

Since C−1
y (K) is compact and d2−Q ∈ L1

loc(RN ), we obtain property (ii).

Proposition 3.3.11. Let the assumption and the notation of Thm. 3.3.4 apply.
Then the following properties hold true:

(i) Γ ∈ L1
loc(Rn ×Rn);

(ii) For every y ∈ Rn, we have Γ(·; y) ∈ L1
loc(Rn).

Proof. (i) Let K1,K2 ⊆ Rn be compact sets and let

Φ : Rn ×RN → Rn ×RN , Φ(x, y, η) :=
(
x, y,Ψx,y(η)

)
.

As pointed out in Rem. 3.3.2, Ψx,y is a smooth di�eomorphism of Rp onto itself,
and the map (x, y, η) 7→ Ψx,y(η) is smooth on Rn ×RN ; therefore, Φ de�nes a
smooth di�eomorphism of Rn ×RN and,by (3.3.10),

det
(
JΦ(x, y, η)

)
= 1, for every (x, y, η) ∈ Rn ×RN .

From this, by applying Fubini's Theorem and by performing the change of
variables (x, y, η) = Φ−1(u, v, ν), we get∫
K1×K2

Γ(x; y) dxdy =

∫
K1×K2×Rp

ΓG(u, 0; v,Ψ−1
u,v(ν)) dudv dν

=

∫
K1×K2×{N(ν)<1}

{. . .}dudv dν +

∫
K1×K2×{N(ν)≥1}

{. . .} dudv dν =: I + II,

where, as usual, we have set N(ν) =
∑p
k=1 |νk|1/sjk .

Now, since the product K1 ×K2 × {N(ν) < 1} is bounded in Rn × RN , it
follows from Lem. 3.3.10 - (i) that I is �nite. As for the integral II we notice
that, by exploiting estimate (3.3.18) in the proof of Prop. 3.3.6, we have

II ≤ c

∫
K1×K2×{N(ν)≥1}

N2−Q(ν) dudv dν

= c ·mis(K1 ×K2)

∫
{N(ν)≥1}

N2−Q(ν) dν;

therefore, the function N2−Q being integrable on {N(ν) ≥ 1} (see the proof of
Thm. 3.3.3), we conclude that II is �nite as well.
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(ii) Let y ∈ Rn and let K ⊆ Rn be a compact set. We consider the map

Φy : RN → RN , Φy(x, η) :=
(
x,Ψx,y(η)

)
.

By arguing as above, we see that Φy de�nes a C∞-di�eomorphism of RN onto
itself and that, for every (x, η) ∈ RN , one has

det
(
JΦy (x, η)

)
= 1;

therefore, by the change of coordinates (x, η) = Φ−1
y (u, v), we get∫

K

Γ(x; y) dx =

∫
K×Rp

ΓG(u, 0; y,Ψ−1
u,y(v)) dudv

=

∫
K×{N(v)<1}

{. . .} dudv +

∫
K×{N(v)≥1}

{. . .} dudv =: I + II.

Since the set K × {N(v) < 1} ⊆ RN is bounded, we deduce from Lem. 3.3.10 -
(ii) that the integral I is �nite; the �niteness of the integral II can be proved by
exploiting estimate (3.3.18) and by arguing exactly as in (i).

The next proposition provides a slight improvement of the results contained
in Prop. 3.3.6, showing that Γ is well-behaved as a function of both x and y.

Proposition 3.3.12. Let the assumption and the notation of Thm. 3.3.4 apply.
Then the following facts hold true:

(i) Setting O := {(x, y) ∈ Rn ×Rn : x 6= y}, then Γ ∈ C(O,R);

(ii) For every compact set K ⊆ Rn, then

lim
‖y‖→∞

Γ(x; y) = 0, uniformly for x ∈ K;

(iii) For every �xed y ∈ Rn, the function Γ(·; y) vanishes at in�nity.

Proof. (i) Let (x0, y0) ∈ O and let r > 0 be s.t. B(x0, r) ∩ B(y0, r) = ∅. By
performing the usual change of variables u = Ψx,y(η), we have

Γ(x; y) =

∫
Rp

ΓG(x, 0; y,Ψ−1
x,y(u)) du

=

∫
{N(u)<1}

{. . .}du+

∫
{N(u)≥1}

{. . .} du =: I + II,

where we have set N(u) =
∑p
k=1 |uk|1/sjk . Moreover, from Thm. 1.3.9 (on page

17) and the continuity of (x, y, u) 7→ Ψ−1
x,y(u), we infer that

ΓG(x, 0; y,Ψ−1
x,y(u)) ∈ C(O×Rp,R). (3.3.19)

Therefore, to prove the continuity of Γ it su�ces to show that a dominated
convergence argument can be applied to I and II.

To this end we �rst observe that, since the product

K :=
(
B(x0, r)×B(y0, r)

)
× {N(u) ≤ 1} ⊆ O×Rp
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is compact, by (3.3.19) it is possible to �nd a constant C > 0 such that

ΓG(x, 0; y,Ψ−1
x,y(u)) ≤ C, for every (x, y, u) ∈ K;

hence, a simple dominated convergence argument can be applied to pass to the
limit as (x, y) → (x0, y0) in the integral I. As for the integral II, we argue as
usual: by estimate (3.3.11), the expression of K given in (3.3.13) and the very
de�nition Ψx,y, for every (x, y) ∈ O and every u ∈ {N(u) ≥ 1} we obtain

Γ(x, 0; y,Ψ−1
x,y(u)) ≤ cK2−Q(x, y,Ψ−1

x,y(u)) = cN2−Q(u); (3.3.20)

therefore, the function N2−Q being integrable on the set {N(u) ≥ 1}, we are
entitled to apply the Lebesgue Dominated Convergence Theorem to pass to the
limit for (x, y)→ (x0, y0) also in this case.

(ii) Let K ⊆ Rn be a compact set. We consider the map

S : (Rn \K)×Rp −→ R, S(y, u) := sup
x∈K

ΓG(x, 0; y,Ψ−1
x,y(u)).

By (3.3.19), the function S is well-de�ned and continuous on Rn \K; moreover,
by performing the usual change of variables u = Ψx,y(η), we obtain

sup
x∈K

Γ(x; y) = sup
x∈K

(∫
Rp

ΓG(x, 0; y,Ψ−1
x,y(u)) du

)
≤ sup
x∈K

(∫
{N(u)<1}

{. . .} du

)
+ sup
x∈K

(∫
{N(u)≥1}

{. . .} du

)

≤
∫
{N(u)<1}

S(y, u) du+

∫
{N(u)≥1}

S(y, u) du =: I + II.

(3.3.21)

We now observe that, since d2−Q = ΓG(0, ·) vanishes at in�nity (see Thm.1.3.9
on page 17) and (x, 0)−1 ? (z, ζ) → ∞ as ‖(z, ζ)‖ → ∞, uniformly for x ∈ K
(recall that the left-translations are di�eomorphisms), we have

lim
‖y‖→∞

S(y, u) = 0, uniformly for u ∈ Rp; (3.3.22)

therefore, to prove property (ii) it su�ces to show that a dominated convergence
argument can be applied in both integrals I and II.

As for I we notice that, by (3.3.22), there exists ρ > 0 such that

S(y, u) ≤ 1, for every y ∈ Rp with ‖y‖ ≥ ρ and every u ∈ Rp;

therefore, the Lebesgue Dominated Convergence Theorem allows us to pass to
the limit for ‖y‖ → ∞. As for integral II, we argue as in (i): by estimate (3.3.20)
(holding true for every (x, y) ∈ O and every u ∈ {N(u) ≥ 1}) we get

S(y, u) ≤ cN2−Q(u), for every y ∈ Rn and every u ∈ {N(u) ≥ 1};

thus, the function N2−Q being integrable on {N(u) ≥ 1}, a dominated conver-
gence argument allows us to pass to the limit for ‖y‖ →∞ also in this case.
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(iii) Let y ∈ Rn be �xed. By the usual change of coordinates u = Ψx,y(η) in
Rem. 3.3.2 and the expression of ΓG given in (3.3.4), we can write

Γ(x; y) =

∫
Rp

ΓG(x, 0; y,Ψ−1
x,y(u)) du

=

∫
Rp
d2−Q((x, 0)−1 ? (y,Ψ−1

x,y(u)
)

du

=

∫
{N(u)<1}

{. . .}du+

∫
{N(u)≥1}

{. . .} du =: I + II;

moreover, since both maps

Cy(x, η) = (x, 0)−1 ? (y, η) and Ψy(x, η) = (x,Ψx,y(η)

are C∞-di�eomorphisms of RN (see the proofs of Lem. 3.3.10 and Prop. 3.3.11,
respectively), we easily deduce that

lim
‖(x,u)‖→∞

(x, 0)−1 ? (y,Ψ−1
x,y(u)) = lim

‖(x,u)‖→∞
(Cy ◦Ψ−1

y )(x, u) =∞.

From this, recalling that d2−Q = ΓG(0, ·) vanishes at in�nity, we get

lim
‖x‖→∞

d2−Q((x, 0)−1 ? (y,Ψ−1
xj ,y(u)

)
= 0, uniformly for u ∈ Rp. (3.3.23)

To complete the demonstration of property (iii), we are then left to show that
a dominated convergence argument can be applied to both integrals I and II.

As for I we observe that, by (3.3.23), there exists ρ > 0 such that

d2−Q((x, 0)−1 ? (y,Ψ−1
x,y(u)

)
≤ 1

for every x ∈ Rn with ‖y‖ ≥ 1 and every u ∈ Rp; therefore, a simple dominated
convergence argument allows us to pass to the limit for ‖x‖ → ∞. As for
integral II, we argue exactly as in (i): by estimate (3.3.20) we obtain

d2−Q((x, 0)−1 ? (y,Ψ−1
x,y(u)

)
≤ cN2−Q(u), ∀ x ∈ Rn and u ∈ {N(u) ≥ 1};

thus, the function N2−Q being integrable on {N(u) ≥ 1}, a dominated conver-
gence argument allows us to pass to the limit for ‖x‖→ ∞ also in this case.

Thanks to all the results proved so far, we are now in a position to prove
that Γ provides a right inverse for the operator L in the sense of distribution.

Theorem 3.3.13 (Γ right-inverts L). Let the assumption and the notation of
Thm. 3.3.4 apply. For every �xed ϕ ∈ C∞0 (Rn,R), the function

Λϕ : Rn → R, Λϕ(y) :=

∫
Rn

Γ(x; y)ϕ(x) dx, (3.3.24)

is well-de�ned and it satis�es the following properties:

(i) Λϕ ∈ L1
loc(Rn);

(ii) Λϕ ∈ C
(
Rn \ supp(ϕ),R

)
and it vanishes at in�nity;
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(iii) L
(
Λϕ
)

= −ϕ in the sense of distributions on Rn.

Proof. By Prop. 3.3.11 - (ii) we know that, for every y ∈ Rn, Γ(·; y) ∈ L1
loc(Rn);

thus Λϕ is well-de�ned. We now turn to prove properties (i)-to-(iii).

(i) Let K ⊆ Rn be a compact set. Setting K0 := supp(ϕ), one has∫
K

Λϕ(y) dy ≤ sup
Rn
|ϕ|
∫
K×K0

Γ(x; y) dxdy;

therefore, the function Γ being locally integrable on Rn×Rn (as we know from
Prop. 3.3.11 - (i)), we obtain property (i).

(ii) Let y0 ∈ Rn \K0 and let r > 0 be such that B(y0, r) ⊆ Rn \K0. Since,
by Prop. 3.3.12, Γ is continuous out of the diagonal of Rn ×Rn, we have

lim
y→y0

Γ(x; y) = Γ(x; y0), for every �xed x ∈ K0;

moreover, by the same reason, there exists a constant C > 0 such that

Γ(x; y) ≤ C, for every (x, y) ∈ K0 ×B(y0, r)

(note that K0×B(y0, r) is compact and K0 ∩B(y0, r) = ∅). A simple domina-
ted convergence argument thus ensures that Λϕ(y)→ Λϕ(y0) as y → y0, hence
that Λϕ ∈ C(Rn \ K0,R). To prove that Λϕ vanishes at in�nity we observe
that, for every y outside K0, we have (by de�nition)

|Λϕ(y)| ≤
(

sup
x∈K0

Γ(x; y)
)
·
∫
K0

|ϕ(x)|dx;

thus, since we know from Prop. 3.3.12 that supx∈K0
Γ(x; y) → 0 as ‖y‖ → ∞,

we conclude that Λϕ vanishes at in�nity.

(iii) By Fubini's theorem, for every ψ ∈ C∞0 (Rn,R) we have∫
Rn

Λϕ(y)Lψ(y) dy =

∫
Rn

(∫
Rn

Γ(x; y)ϕ(x) dx

)
Lψ(y) dy

=

∫
Rn
ϕ(x)

(∫
Rn

Γ(x; y)Lψ(y) dy

)
dx;

therefore, by recalling that LΓ(x; ·) = −Dirx in D′(Rn) (as it follows from very
de�nition of fundamental solution, see (1.3.8) on page 16), we obtain∫

Rn
Λϕ(y)Lψ(y) dy = −

∫
Rn
ϕ(x)ψ(x) dx, for every ψ ∈ C∞0 (Rn,R),

This means that L(Λϕ) = −ϕ in D′(Rn), as desired.

Corollary 3.3.14. Let the assumption and the notation of Thm. 3.3.4 apply.
For every �xed ϕ ∈ C∞0 (Rn,R), one has

ΛLϕ(y) =

∫
Rn

Γ(x; y)Lϕ(x) dx = −ϕ(y), a.e. on Rn. (3.3.25)
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Proof. By Thm. 3.3.13, we have ΛLϕ ∈ L1
loc(Rn) and L(ΛLϕ) = −Lϕ in the

sense of distributions on Rn; therefore, the operator L being C∞-hypoelliptic
on every open subset of Rn, there exists h ∈ C∞(Rn,R) such that

• h ≡ ΛLϕ almost everywhere on Rn;

• Lh = −Lϕ pointwise on Rn.

Furthermore, since ΛLϕ is continuous outside supp(ϕ) (again by Thm. 3.3.13),
we have h = ΛLϕ on the open set Rn \ supp(ϕ); as a consequence, the function
ΛLϕ vanishing at in�nity, then the same is true of h.

We now consider the function u := h+ ϕ. Obviously, u ∈ C∞(Rn,R) and

Lu = Lh+ Lϕ = −Lϕ+ Lϕ = 0, on Rn; (3.3.26)

moreover, since ϕ has compact support and h vanishes at in�nity, we have

u(y)→ 0, as ‖y‖ → ∞. (3.3.27)

By (3.3.26) and (3.3.27), we deduce from the Weak Maximum Principle for L

(see property (c) on page 79) that u must vanish identically on Rn, whence

h(y) = −ϕ(y), for every y ∈ Rn.

From this, by recalling that h coincides almost everywhere with Λϕ, we obtain
the desired identity (3.3.25). This ends the proof.

We are �nally ready to prove the announced symmetry of Γ.

Theorem 3.3.15 (Symmetry of Γ). Let the assumption and the notation of
Thm. 3.3.4 apply. Then the function Γ is symmetric, that is,

Γ(x; y) = Γ(y;x), for every x, y ∈ Rn with x 6= y. (3.3.28)

Proof. For the sake of clarity, we split the proof into three di�erent steps.

Step I: We �rst prove the existence of a measurable set E ⊆ Rn, with
vanishing Lebesgue measure, such that

LΓ(·;x) = −Dirx, for every x ∈ Rn \ E. (3.3.29)

To this end we observe that, the space C∞0 (Rn,R) being separable (with the
usual LF -topology), there exists a countable dense set F ⊆ C∞0 (Rn,R); more-
over, thanks to Cor. 3.3.14, for ϕ ∈ F it is possible to �nd a measurable set
E(ϕ), with vanishing Lebesgue measure, such that∫

Rn
Γ(y;x)Lϕ(y) dy = −ϕ(x), for every x ∈ Rn \ E(ϕ).

We then set E :=
⋃
ϕ∈F E(ϕ). Since F is countable and E(ϕ) has vanishing

Lebesgue measure for every ϕ ∈ F, we see that E has measure 0 as well; fur-
thermore, for every x ∈ Rn \ E, we have∫

Rn
Γ(y;x)Lϕ(y) dy = −ϕ(x), for every ϕ ∈ F.
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This proves that, for every x /∈ E, the distribution LΓ(·;x) coincides with −Dirx
on F; the latter being dense, we immediately obtain the claimed (3.3.29).

Step II: We now consider, for a �xed x /∈ E, the function

ux := Γ(x; ·)− Γ(·;x).

Since both Γ(x; ·) and Γ(·;x) are locally integrable on Rn (see Prop. 3.3.11 -
(ii)), we see that ux ∈ L1

loc(Rn); moreover, thanks to identity (3.3.29), we have

Lux = LΓ(x; ·)− LΓ(·;x) = −Dirx + Dirx = 0, in D′(Rn).

As a consequence, the operator L being C∞-hypoelliptic on every open subset
of Rn, there exists hx ∈ C∞(Rn,R) such that

Lhx = 0 on Rn and hx ≡ ux almost everywhere on Rn.

In particular, as ux is continuous on Rn \ {x} and it vanishes at in�nity (since
the same is true of both Γ(x; ·) and Γ(·;x), see Prop. 3.3.12), we have

• hx(y) = ux(y) = Γ(x; y)− Γ(y;x), for every y ∈ Rn \ {x};

• hx(y)→ 0 as ‖y‖ → ∞.

By gathering together all these facts, we deduce from the Weak Maximum Prin-
ciple for L that hx identically vanishes on Rn, whence

Γ(x; y) = Γ(y;x), for every x /∈ E and every y ∈ Rn \ {x}. (3.3.30)

Step III: To complete the proof of the theorem, we show that identity
(3.3.30) actually holds out of the diagonal of Rn×Rn. To this end, let x, y ∈ Rn
with x 6= y and let r > 0 be such that y /∈ Br(x). Since Rn \ E is dense (as E
has measure 0), there exists a sequence {xj}j ⊆ (Rn \E)∩Br(x) converging to
x as j →∞; hence, identity (3.3.30) implies that

Γ(xj ; y) = Γ(y;xj), for every j ∈ N.

From this, as Γ is continuous out of the diagonal of Rn×Rn (see Prop. 3.3.12),
we deduce that Γ(x; y) = Γ(y;x). This ends the proof.

Corollary 3.3.16. Let the assumption and the notation of Thm. 3.3.4 apply.
Then the following properties hold true:

(i) Γ(·;x) ∈ C∞(Rn \ {x},R);

(ii) LΓ(·;x) = 0 pointwise on Rn \ {x}.

Proof. This is an immediate consequence of Thm. 3.3.15 and of Cor. 3.3.7.

We conclude this section with the following non-trivial result.

Theorem 3.3.17. Let the assumption and the notation of Thm. 3.3.4 apply.
Then the function Γ is smooth out of the diagonal of Rn ×Rn.
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Proof. We introduce the 2m vector �elds X̃1, . . . , X̃m, Ỹ1, . . . , Ỹm, operating on
(x, y) ∈ Rn ×Rn, de�ned in the following way:

X̃j :=

n∑
i=1

(XjI)i(x) ∂xi , Ỹj :=

n∑
i=1

(XjI)i(y) ∂yi (j = 1, . . . ,m).

We then set L̃ :=
∑m
j=1(X̃2

j + Ỹ 2
j ). Obviously, L̃ has smooth coe�cients; more-

over, since [X̃i, Ỹj ] = 0 for every i, j = 1, . . . ,m, it is immediate to see that L̃ is
a Hörmander operator on the whole of Rn ×Rn, hence C∞-hypoelliptic on the
same space. Since, by Cor.s 3.3.7 and 3.3.16 we have

L̃Γ(x; y) = LΓ(·; y) + LΓ(x; ·) = 0, for every x, y ∈ Rn with x 6= y,

and since Γ is continuous out of the diagonal of Rn ×Rn (see Prop. 3.3.12), we
thus conclude that Γ is actually of class C∞ on the same set.

3.4 Some examples

This section is devoted to present some explicit examples of homogeneous Hör-
mander operators to which our theory applies.

Example 3.4.1 (Grushin operator on R2). Let us consider once again the
Grushin vector �elds X1, X2 introduced in Exm. 3.2.2, that is,

X1 = ∂x1
, X2 = x1 ∂x2

on R2.

As already pointed out in Exm. 3.2.2, X1, X2 satisfy assumptions (H1) and (H2)
of Sec. 3.2; in particular, they are homogeneous of degree 1 w.r.t. the dilations

δλ(x1, x2) = (λx1, λ
2x2).

Taking into account all the explicit computations carried out in Exm. 3.2.12, we
know that the relevant Carnot group is G = (R3, ?, dλ) with

dλ(x1, x2, ξ) = (λx1, λ
2x2, λ ξ), Q = 4,

while the composition law is

(x1, x2, ξ) ? (y1, y2, η) := (x1 + y1, x2 + y2 + x1η, ξ + η).

Furthermore, the vector �elds Z1, Z2 lifting X1 and X2 are

Z1 = ∂x1 , Z2 = x1 ∂x2 + ∂ξ. (3.4.1)

The operator L = X2
1 +X2

2 lifts to the sub-Laplacian

LG = Z2
1 + Z2

2 = ∂2
x1

+ (x1 ∂x2
+ ∂ξ)

2.

The latter is (modulo a change of variable) the Kohn-Laplacian on the �rst
Heisenberg group (remind that A ∼= H1, see Exm. 3.2.6), whence its fundamental
solution with pole at the origin is given by the function

ΓG(x, ξ) = c
(

(x2
1 + ξ2)2 + 16 (x2 − 1/2x1ξ)

2
)−1/2

, (x, ξ) 6= (0, 0),
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where c > 0 is a suitable constant. According to Thm. 3.3.3, the function

Γ(x1, x2;y1, y2) =

c

∫
R

dη√
((x1 − y1)2 + η2)2 + 4 (2x2 − 2 y2 + η (x1 + y1))2

,
(3.4.2)

is the unique fundamental solution for the Grushin operator L vanishing at
in�nity. From (3.4.2) we also derive that, for every x ∈ R2, the function Γ(x; ·)
has a pole at x: in fact (see Proposition 3.1.10)

lim inf
y→x

Γ(x; y) ≥ c
∫
R

dη√
η4 + 16x2

1η
2

=∞.

Finally, the integral in (3.4.2) can be expressed in terms of Elliptic Functions.
More precisely, we have

Γ(x; y) =
c
√

2
4
√

(x2
1 + y2

1)2 + 4 (x2 − y2)2
·K

(
1

2
+

x1y1√
(x2

1 + y2
1)2 + 4 (x2 − y2)2

)
,

where K denotes the complete elliptic integral of the �rst kind, that is,

K(m) :=

∫ π/2

0

(1−m sin2(t))−1/2 dt, for −1 < m < 1.

This gives back a formula already obtained by Greiner [88] (see also the mile-
stone works by Beals, Gaveau, Greiner [17, 18]; Beals, Gaveau, Greiner, Kannai
[19]; Bauer, Furutani, Iwasaki [16]).

Example 3.4.2 (Another Grushin-type operator). Let us consider, on
Euclidean space R2, the smooth vector �elds

X1 = ∂x1
, X2 = x2

1 ∂x2
.

Obviously, X1, X2 are linearly independent in the real vector space X(R2) and
it is very easy to check that they are homogeneous w.r.t. the dilations

δλ(x1, x2) = (λx1, λ
3x2);

moreover, since X3 := [X1, X2] = 2x1 ∂x2
and X4 := [X1, X3] = 2 ∂x2

, we see
that X1, X2 satisfy the Hörmander rank condition at the origin. As a conse-
quence, X1, X2 ful�ll assumptions (H1) and (H2) of Sec. 3.2.

We now observe that, since X2 commutes with all the Xjs and since, by
de�nition, [X1, X2] = X3, [X1, X3] = X4 and [X1, X4] = [X3, X4] = 0, we have

a := Lie{X1, X2} = spanR{X1, X2, X3, X4} and N = dim(a) = 4.

Moreover, a is nilpotent of step r = σ2 = 3 and, according to (3.2.2), one has

a = a1 ⊕ a2 ⊕ a3, with


a1 := span

{
X1, X2},

a2 := [a1, a1] = span{X3},
a3 := [a1, a2] = span{X4},
[a1, a3] = {0}.
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We now consider the set A := {X1, X2, X3, X4} ⊆ a and we prove that it is a
basis of a satisfying properties (P1) and (P2) on page 65.

In fact, obviously, X1, X2, X3 and X4 are linearly independent in the vector
space X(R2); moreover, A is adapted to the strati�cation a = a1⊕a2⊕a3, since

a1 = span{X1, X2}, a2 = span{X3} and a3 = span{X4}.

Finally, since X1I(0) = e1, X2I(0) = X3I(0) = 0 and X4I(0) = 2e2 (where e1

and e2 denote the element of the canonical basis in R2), we deduce that

{XiI(0), i = 1, 2, 3, 4} is a system of generators of R2.

If we thus introduce the linear isomorphism Φ associated with A, that is,

Φ : R4 −→ a, Φ(a) = (a ·X) :=

4∑
i=1

aiXi,

for every a, b ∈ R4 and every λ > 0 we can write (remind the de�nition of the
Campbell-Baker-Hausdor� multiplication � and of the dilation ∆λ):

Φ(a) � Φ(b) =

(
4∑
i=1

aiXi

)
�

(
4∑
i=1

biXi

)
(
by (3.2.4), since a is nilpotent of step 3

)
=

4∑
i=1

aiXi +

4∑
i=1

biXi +
1

2

[
4∑
i=1

aiXi,

4∑
i=1

biXi

]

+
1

12

[
4∑
i=1

(ai − bi)Xi,

[
4∑
i=1

aiXi,

4∑
i=1

biXi

]]
(
by using the commutator identities between the Xjs

)
=

2∑
i=1

(ai + bi)Xi +

(
a3 + b3 +

1

2
(a1b2 − a2b1)

)
X3

+

(
a4 + b4 +

1

2
(a1b3 − a3b1) +

1

12
(a1 − b1) (a1b2 − a2b1)

)
X4;

∆λ

(
Φ(a)

)
= ∆λ

(
4∑
i=1

aiXi

)
= ∆λ

(
(a1X1 + a2X2) + (a3X3) + (a4X4)

)
(
by (3.2.3), since (a1X1 + a2X2) ∈ a1,

(a3X3) ∈ a2 and (a4X4) ∈ a3

)
= λ

(
a1X1 + a2X2

)
+ λ2 a3X3 + λ3 a4X4.
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Taking into account (3.2.5) and (3.2.6), we then obtain

a ∗ b = Φ−1
(
Φ(a) � Φ(b)

)
=

(
a1 + b1, a2 + b2, a3 + b3 +

1

2
(a1b2 − a2b1),

a4 + b4 +
1

2
(a1b3 − a3b1) +

1

12
(a1 − b1) (a1b2 − a2b1)

)
;

Dλ(a) = Φ−1
(
∆λ

(
Φ(a)

))
= (λa1, λa2, λ

2a3, λ
3a4).

(3.4.3)

By Thm. 3.2.5, A = (R4, ∗, Dλ) is a Carnot group with Lie algebra isomorphic
to a; in particular, the Jacobian vector �elds of Lie(A) are given by

J1 = ∂a1 −
1

2
a2 ∂a3−

1

12
(6a3 − a1a2) ∂a4 , J2 = ∂a2 +

1

2
a1 ∂a3 +

1

12
a2

1 ∂a4 ,

J3 = ∂a3 +
1

2
a1 ∂a4 , J4 = ∂a4 .

We now turn to compute the explicit expression of the map π de�ned in (3.2.12).
To this end, we �x a ∈ R4 and we consider the following Cauchy problem:γ̇ =

4∑
i=1

aiXiI(γ),

γ(0) = 0

⇐⇒


γ̇1 = a1,

γ̇2 = a2 γ
2
1 + 2 a3 γ1 + 2 a4,

γ(0) = 0.

Since γ̇1 = a1 and γ1(0) = 0, we obviously have γ1(t) = a1t; moreover, by
inserting this expression in the second equation of the problem, we get

γ2(t) =

∫ t

0

(a2 γ
2
1(s) + 2 a3 γ1(s) + 2 a4) ds = 2 a4t+ a1a3 t

2 +
a2

1a2

3
t3.

As a consequence, from the very de�nition of π we obtain

π(a) = Ψa·X
1 (0) = (γ1(1), γ2(1)) =

(
a1, 2 a4 + a1a3 +

a2
1a2

3

)
.

With this expression of π at hand, we proceed by writing down the explicit
expression of the di�eomorphism T de�ned in (3.2.19). To this end, we �rst
need to determine the two sets of indexes de�ned in (3.2.17).

Since X1I(0) = e1 and X4I(0) = 2e2, we have {i1, i2} = {1, 4} and

{j1, j2} = {1, 2, 3, 4} \ {i1, i2} = {2, 3};

therefore, according to the de�nition of T given in (3.2.19), we have

T (a) = (π(a), aj1 , aj2) =

(
a1, 2 a4 + a1a3 +

a2
1a2

3
, a2, a3

)
, a ∈ R4. (3.4.4)

Having established this expression of T , we can �nally write down the expression
of the group law ?, of the dilation dλ and of the vector �elds Z1, Z2 lifting X1

and X2. In fact, a direct computation shows that

T−1(x, ξ) =

(
x1, ξ1, ξ2,

1

6

(
3x2 − x2

1ξ1 − 3x1ξ2
))

, (x1, x2, ξ1, ξ2) ∈ R4;
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as a consequence, by exploiting the expression of ∗ and of Dλ written in (3.4.3),
for every (x, ξ), (y, η) ∈ R4 = R2 ×R2 and every λ > 0 we obtain

(x, ξ) ? (y, η) = T
(
T−1(x, ξ) ∗ T−1(y, η)

)
= T

((
x1, ξ1, ξ2,

1

6

(
3x2 − x2

1ξ1 − 3x1ξ2
))
∗

∗
(
y1, η1, η2,

1

6

(
3y2 − y2

1η1 − 3y1η2

)))
=
(
x1 + y1, x2 + y2 + x1(x1 + y1)η1 + 2x1η2, ξ1 + η1,

ξ2 + η2 + 1/2 (x1η1 − y1ξ1)
)

;

dλ(x, ξ) = T
(
Dλ(T−1(x, ξ))

)
= T

(
Dλ

(
x1, ξ1, ξ2,

1

6

(
3x2 − x2

1ξ1 − 3x1ξ2
)))

= (λx1, λ
3x2, λ ξ1, λ

2ξ2).

Furthermore, according to (3.2.27), for every (x, ξ) ∈ R4 we have

Z1I(x, ξ) = dT (J1)I(x, ξ) = JT
(
T−1(x, ξ)

)
· J1I

(
T−1(x, ξ)

)

=


1 0 0 0

ξ2 + 2 x1ξ1
3

x2
1

3 x1 2
0 1 0 0
0 0 1 0

 ·


1
0

− ξ12
− 1

12

(
6 ξ2 − x1ξ1

)
 =


1
0
0

− ξ12

 ;

Z2I(x, ξ) = dT (J2)I(x, ξ) = JT
(
T−1(x, ξ)

)
· J2I

(
T−1(x, ξ)

)

=


1 0 0 0

ξ2 + 2 x1ξ1
3

x2
1

3 x1 2
0 1 0 0
0 0 1 0

 ·


0
1
x1

2
x2
1

12

 =


0
x2

1

1
x1

2

 ;

Summing up, the vector �elds Z1, Z2 can be written as follows:

Z1 = ∂x1
− ξ1

2
∂ξ2 , Z2 = x2

1 ∂x2
+ ∂ξ1 +

x1

2
∂ξ2 .

Thanks to all this algebraic machinery, we can proceed by using Thm. 3.3.3 to
�nd a global fundamental solution for the Grushin-type operator L = X2

1 +X2
2 .

Indeed, since the sub-Laplacian LG = Z2
1 + Z2

2 lifts L, the cited Thm. 3.3.3
ensures that, if ΓG is the fundamental solution for LG, the function

Γ(x; y) =

∫
R2

ΓG((x, 0)−1 ? (y, η)) dη

=

∫
R2

ΓG

(
y1 − x1, y2 − x2 + x1η1(x1 − y1)− 2x1η2, η1, η2 − 1

2x1η1

)
dη1dη2,

is the unique fundamental solution for L vanishing at in�nity.
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Furthermore, from Thm. 3.3.3 we derive that Γ(x; y) is bounded from above
and from below (up to two structural constants) by∫

R2

K−5(x, y, η) dη1dη2,

where the function K is

K(x, y, η) = |y1 − x1|+ |y2 − x2 + x1η1(x1 − y1)− 2x1η2|1/3

+ |η1|+ |η2 − 1
2x1η1|1/2.

In this case we are able to deduce that, for every �xed x ∈ R2, the function
Γ(x; ·) has a pole at x (see Prop. 3.1.10): indeed, for some constant c > 0

lim inf
y→x

Γ(x, y) ≥ c−1

∫
R2

(
|2x1η2|1/3 + |η1|+ |η2 − 1/2x1η1|1/2

)−5

dη =∞.

Example 3.4.3 (An Engel-type operator). Let us consider, on Euclidean
space R3, the smooth vector �elds

X1 = ∂x1 , X2 = x1 ∂x2 + x2
1 ∂x3 .

Obviously, X1, X2 are linearly independent in the real vector space X(R3) and
it is very easy to check that they are homogeneous w.r.t. the dilations

δλ(x1, x2, x3) = (λx1, λ
2x2, λ

3x3);

moreover, since X3 := [X1, X2] = ∂x2 + 2x1 ∂x3 and X4 := [X1, X3] = 2 ∂x3 ,
we see that X1, X2 satisfy the Hörmander rank condition at the origin. As a
consequence, X1, X2 ful�ll assumptions (H1) and (H2) of Sec. 3.2.

We now observe that, since X2 commutes with all the Xjs and since, by
de�nition, [X1, X2] = X3, [X1, X3] = X4 and [X1, X4] = [X3, X4] = 0, we have

a := Lie{X1, X2} = spanR{X1, X2, X3, X4} and N = dim(a) = 4.

Moreover, a is nilpotent of step r = σ3 = 3 and, according to (3.2.2), one has

a = a1 ⊕ a2 ⊕ a3, with


a1 := span

{
X1, X2},

a2 := [a1, a1] = span{X3},
a3 := [a1, a2] = span{X4},
[a1, a3] = {0}.

We now consider the set A := {X1, X2, X3, X4} ⊆ a and we prove that it is a
basis of a satisfying properties (P1) and (P2) on page 65.

In fact, obviously, X1, X2, X3 and X4 are linearly independent in the vector
space X(R3); moreover, A is adapted to the strati�cation a = a1⊕a2⊕a3, since

a1 = span{X1, X2}, a2 = span{X3} and a3 = span{X4}.

Finally, since X1I(0) = e1, X2I(0) = 0, X3I(0) = e2 and X4I(0) = 2 e3 (where
e1, e2 and e3 denote the element of the canonical basis in R3), we deduce that

{XiI(0), i = 1, 2, 3, 4} is a system of generators of R3.



3.4. Some examples 100

If we thus introduce the linear isomorphism Φ associated with A, that is,

Φ : R4 −→ a, Φ(a) = (a ·X) :=

4∑
i=1

aiXi,

for every a, b ∈ R4 and every λ > 0 we can write (remind the de�nition of the
Campbell-Baker-Hausdor� multiplication � and of the dilation ∆λ):

Φ(a) � Φ(b) =

(
4∑
i=1

aiXi

)
�

(
4∑
i=1

biXi

)
(
by (3.2.4), since a is nilpotent of step 3

)
=

4∑
i=1

aiXi +

4∑
i=1

biXi +
1

2

[
4∑
i=1

aiXi,

4∑
i=1

biXi

]

+
1

12

[
4∑
i=1

(ai − bi)Xi,

[
4∑
i=1

aiXi,
4∑
i=1

biXi

]]
(
by using the commutator identities between the Xjs

)
=

2∑
i=1

(ai + bi)Xi +

(
a3 + b3 +

1

2
(a1b2 − a2b1)

)
X3

+

(
a4 + b4 +

1

2
(a1b3 − a3b1) +

1

12
(a1 − b1) (a1b2 − a2b1)

)
X4;

∆λ

(
Φ(a)

)
= ∆λ

(
4∑
i=1

aiXi

)
= ∆λ

(
(a1X1 + a2X2) + (a3X3) + (a4X4)

)
(
by (3.2.3), since (a1X1 + a2X2) ∈ a1,

(a3X3) ∈ a2 and (a4X4) ∈ a3

)
= λ

(
a1X1 + a2X2

)
+ λ2 a3X3 + λ3 a4X4.

Taking into account (3.2.5) and (3.2.6), we then obtain

a ∗ b = Φ−1
(
Φ(a) � Φ(b)

)
=

(
a1 + b1, a2 + b2, a3 + b3 +

1

2
(a1b2 − a2b1),

a4 + b4 +
1

2
(a1b3 − a3b1) +

1

12
(a1 − b1) (a1b2 − a2b1)

)
;

Dλ(a) = Φ−1
(
∆λ

(
Φ(a)

))
= (λa1, λa2, λ

2a3, λ
3a4).

(3.4.5)

By Thm. 3.2.5, A = (R4, ∗, Dλ) is a Carnot group with Lie algebra isomorphic
to a; in particular, the Jacobian vector �elds of Lie(A) are given by

J1 = ∂a1 −
1

2
a2 ∂a3−

1

12
(6a3 − a1a2) ∂a4 , J2 = ∂a2 +

1

2
a1 ∂a3 +

1

12
a2

1 ∂a4 ,

J3 = ∂a3 +
1

2
a1 ∂a4 , J4 = ∂a4 .
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We explicitly notice that the group A just constructed coincides with the
group (also denoted by A) constructed in Exm. 3.4.2: this is a consequence of
the fact that the Lie algebras involved have the same structure constants with
respect to the chosen basis (in both cases denoted by A).

We now turn to compute the explicit expression of the map π de�ned in (3.2.12).
To this end, we �x a ∈ R4 and we consider the following Cauchy problem:

γ̇ =

4∑
i=1

aiXiI(γ),

γ(0) = 0

⇐⇒


γ̇1 = a1,

γ̇2 = a2 γ1 + a3,

γ̇3 = a2 γ
2
1 + 2 a3 γ1 + a4,

γ(0) = 0.

Since γ̇1 = a1 and γ1(0) = 0, we obviously have γ1(t) = a1t; moreover, by
inserting this expression in the last two equations of the problem we get

γ2(t) =

∫ t

0

(a2 γ1(s) + a3) ds =
1

2
a1a2 t

2 + a3t;

γ3(t) =

∫ t

0

(a2 γ
2
1(s) + 2 a3 γ1(s) + a4) ds =

1

3
a2

1a2 t
3 + a1a3 t

2 + 2 a4 t.

As a consequence, from the very de�nition of π we obtain

π(a) = Ψa·X
1 (0) =

(
γ1(1), γ2(1), γ3(1)

)
=

(
a1,

1

2
a1a2 + a3,

1

3
a2

1a2 + a1a3 + 2 a4

)
.

With this expression of π at hand, we proceed by writing down the explicit
expression of the di�eomorphism T de�ned in (3.2.19). To this end, we �rst
need to determine the two sets of indexes de�ned in (3.2.17).

Since X1I(0) = e1, X3I(0) = e2 and X4I(0) = 2 e3, we have

{i1, i2, i3} = {1, 3, 4} and {j1} = {1, 2, 3, 4} \ {i1, i2, i3} = {2};

therefore, according to the de�nition of T given in (3.2.19), we have

T (a) = (π(a), aj1) = (π(a), a2)

=

(
a1,

1

2
a1a2 + a3,

1

3
a2

1a2 + a1a3 + 2 a4, a2

)
, a ∈ R4.

(3.4.6)

Having established this expression of T , we can �nally write down the expression
of the group law ?, of the dilation dλ and of the vector �elds Z1, Z2 lifting X1

and X2. In fact, a direct computation shows that, if (x1, x2, x3, ξ) ∈ R4,

T−1(x, ξ) =

(
x1, ξ, x3 −

1

2
x1ξ,

1

12

(
x2

1ξ + 6x3 − 6x1x2

))
;

as a consequence, by exploiting the expression of ∗ and of Dλ written in (3.4.5),
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for every (x, ξ), (y, η) ∈ R4 = R3 ×R and every λ > 0 we obtain

(x, ξ) ? (y, η) = T
(
T−1(x, ξ) ∗ T−1(y, η)

)
= T

((
x1, ξ, x3 −

1

2
x1ξ,

1

12

(
x2

1ξ + 6x3 − 6x1x2

))
∗

∗
(
y1, η, y3 −

1

2
y1η,

1

12

(
y2

1η + 6 y3 − 6 y1y2

)))
=
(
x1 + y1, x2 + y2 + x1η, x3 + y3 + 2x1y2 + x2

1η, ξ + η
)

;

dλ(x, ξ) = T
(
Dλ(T−1(x, ξ))

)
= T

(
Dλ

(
x1, ξ, x3 −

1

2
x1ξ,

1

12

(
x2

1ξ + 6x3 − 6x1x2

)))
= (λx1, λ

2x2, λ
3x3, λξ).

Furthermore, according to (3.2.27), for every (x, ξ) ∈ R4 we have

Z1I(x, ξ) = dT (J1)I(x, ξ) = JT
(
T−1(x, ξ)

)
· J1I

(
T−1(x, ξ)

)

=


1 0 0 0
ξ
2

x1

2 1 0

x3 − x1ξ
6

x2
1

3 x1 2
0 1 0 0

 ·


1
0

− ξ2
− 1

12

(
6x3 − 4x1ξ1

)
 =


1
0
0
0

 ;

Z2I(x, ξ) = dT (J2)I(x, ξ) = JT
(
T−1(x, ξ)

)
· J2I

(
T−1(x, ξ)

)

=


1 0 0 0
ξ
2

x1

2 1 0

x3 − x1ξ
6

x2
1

3 x1 2
0 1 0 0

 ·


0
1
x1

2
x2
1

12

 =


0
x1

x2
1

1

 ;

Summing up, the group G = (R4, ?, dλ) is isomorphic to the Engel group on R4

and the vector �elds Z1, Z2 can be written as follows:

Z1 = ∂x1
, Z2 = x1 ∂x2

+ x2
1 ∂x3

+ ∂ξ.

Thanks to all this algebraic machinery, we can proceed by using Thm. 3.3.3 to
�nd a global fundamental solution for the Engel-type operator L = X2

1 +X2
2 .

Indeed, since the sub-Laplacian LG = Z2
1 + Z2

2 lifts L, the cited Thm. 3.3.3
ensures that, if ΓG is the fundamental solution for LG, the function

Γ(x1, x2, x3; y1, y2, y3)

=

∫
R

ΓG

(
y1 − x1, y2 − x2 − x1η, y3 − x3 + 2x1(x2 − y2) + x2

1η, η
)

dη

is the unique fundamental solution for L vanishing at in�nity.
Furthermore, from Thm. 3.3.3 we derive that Γ(x; y) is bounded from above

and from below (up to two structural constants) by∫
R

{
|y1−x1|+ |y2−x2−x1η|1/2 +

∣∣∣y3−x3 + 2x1(x2−y2) +x2
1η
∣∣∣1/3 + |η|

}−5

dη.
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In this case we are able to deduce that, for every �xed x ∈ R3, the function
Γ(x; ·) has a pole at x (see Prop. 3.1.10): indeed, for some constant c > 0

lim inf
y→x

Γ(x; y) ≥ c−1

∫
R

(|x1η|1/2 + |x2
1η|1/2 + |η|)−5 dη =∞.

We explicitly notice that, in each of the examples discussed in this section,
the fundamental solution Γ of L obtained by saturating ΓG satis�es the following
additional property: for every x ∈ RN , Γ(x; ·) has a pole at x, i.e.,

lim
y→x

Γ(x; y) =∞. (3.4.7)

It is straightforward to check that this property guarantees that, for every �xed
x ∈ RN , the family of superlevel sets of Γ(x; ·), that is,{

y ∈ RN : Γ(x; y) >
1

r

}
∪ {x}, r > 0,

forms a basis of open neighborhoods of x which invades RN (as r → ∞) and
which shrinks to x as r → 0. Most importantly, it can be used to prove that
the set of non-negative L-superharmonic functions separates the points of RN .

On this account, property (3.4.7) plays an important rôle in developing a
satisfactory Potential Theory for L (see, e.g., [1, 13, 34, 37]).

3.5 Fundamental solution for Heat Operators

The aim of this last section is to prove, by using the same techniques exploited
in the previous sections, the existence of a �well-behaved� global fundamental
solution for any �heat-type� operator H of the form

H = L− ∂t, on R1+n = Rt ×Rnx ,

where L is a homogeneous Hörmander operator onRn (see Sec. 3.2). Although it
could appear naïve, the idea of obtaining global fundamental solutions for heat-
type operators via a saturation argument seems very natural in the Euclidean
setting. Indeed, it is well-known that a global fundamental solution for the
classical heat operator Hn = ∆− ∂t on R1+n is given by the function

Γn(t, x) = 1]0,∞[(t) · (4π t)−n/2 · exp

(
−‖x‖

2

4 t

)
;

thus, is we consider the heat operator on R1+n+p and if we integrate its funda-
mental solution Γn+p with respect to the last p variables, we obtain∫

Rp
Γn+p(t, x, ξ) dξ = 1]0,∞[(t) (4π t)−(n+p)/2 exp

(
−‖x‖

2

4 t

)
×

×
∫
Rp

exp

(
−‖ξ‖

2

4 t

)
dξ

= 1]0,∞[(t) (4π t)−n/2 exp

(
−‖x‖

2

4 t

)
= Γn(t, x).
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In other words, the fundamental solution Γn of Hn can be recovered by that
of Hn+p by saturation. Motivated by this fact, we then try to extend such an
approach to the more general setting of homogeneous Hörmander PDOs.

To begin with, let us �x a family {X1, . . . , Xm} of linearly independent
smooth vector �elds on Euclidean space Rn satisfying the assumptions (H1)
and (H2) already introduced in Sec. 3.2, that is,

(H1) X1, . . . , Xm are homogeneous of degree 1 with respect to a family of non-
isotropic dilations δλ of the following form

δλ : Rn −→ Rn, δλ(x) = (λσ1x1, . . . , λ
σnxn),

where 1 = σ1 ≤ . . . ≤ σn are positive integers;

(H2) X1, . . . , Xm satisfy Hörmander's rank condition at 0.

Moreover, we set L :=
∑m
j=1X

2
j . We then denote the point z ∈ R1+n by

z = (t, x), where t ∈ R and x ∈ Rn, and we consider the heat operator H

associated with L, that is, the linear PDO de�ned on R1+n as follows:

H := L− ∂t =

m∑
j=1

X2
j − ∂t, on R1+n. (3.5.1)

The following theorem summarizes all the results we are going to prove.

Theorem 3.5.1. The operator H de�ned in (3.5.1) admits a (unique) global
fundamental solution Γ which satis�es the following properties:

(i) Γ ≥ 0 on its domain and, for every (t, x), (s, y) ∈ R1+n, we have

Γ(t, x; s, y) = 0 if and only if s ≤ t.

(ii) For every (t, x) 6= (s, y) ∈ R1+n, the function Γ depends on t and s only
through the di�erence s− t: in fact, we have

Γ(t, x; s, y) = Γ(0, x; s− t, y).

Moreover, Γ is symmetric w.r.t. the space variables x, y ∈ R1+n, that is,

Γ(t, x; s, y) = Γ(t, y; s, x).

(iii) For every λ > 0 and every (t, x) 6= (s, y) ∈ R1+n, we have

Γ(λ2t, δλ(x);λ2s, δλ(y)) = λ−q Γ(t, x; s, y).

(iv) Γ is smooth out of the diagonal of R1+n ×R1+n;

(v) For every compact set K ⊆ R1+n, we have

lim
‖ζ‖→∞

(
sup
z∈K

Γ(z; ζ)
)

= lim
‖ζ‖→∞

(
sup
z∈K

Γ(ζ; z)
)

= 0.

(vi) Γ ∈ L1
loc(R1+n ×R1+n) and, for �xed every z ∈ R1+n, we have

Γ(z; ·) and Γ(·; z) ∈ L1
loc(R1+n).
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(vii) For every �xed (t, x) ∈ R1+n we have∫
Rn

Γ(t, x; s, y) dy = 1, for every s > t.

(viii) For every �xed ϕ ∈ C∞0 (R1+n,R), the function

Λϕ : R1+n −→ R, Λϕ(ζ) :=

∫
R1+n

Γ(z; ζ)ϕ(z) dz,

is smooth, it vanishes at in�nity and H(Λϕ) = −ϕ on R1+n.

Furthermore, if we consider the function Γ∗ de�ned by

Γ∗(t, x; s, y) := Γ(s, y; t, x), for every (t, x) 6= (s, y) ∈ R1+n,

then Γ∗ is a global fundamental solution for the adjoint operator H∗ = L + ∂t,
satisfying the dual statements of (i)-to-(viii).

Remark 3.5.2. Before proceeding, we brie�y highlight a couple of properties
of the operator H which will be important in the sequel.

(a) H is C∞-hypoelliptic on every open subset of RN : this is a consequence
of the Hörmander Hypoellipticity Theorem, since {X1, . . . , Xm, ∂t} is a
Hörmander system on the whole of R1+n (recall that X1, . . . , Xm satisfy
the Hörmander rank condition at every point of Rn, see Rem. 3.2.9).

(b) H satis�es the Weak Maximum Principle on every open and bounded
subset of R1+n: this follows from the fact that the principal matrix A(x)
of H is given by A(x) = S(x) · S(x)t, where

S(x) =
(
X1I(x) · · ·XmI(x)

)
, x ∈ Rn.

Since X1, . . . , Xm are δλ-homogeneous of degree 1 and since they satisfy
the Hörmander rank condition at 0, it is possible to �nd an index i in
{1, . . . , N} such that ai,i is constant and strictly positive.

Let now a := Lie{X1, . . . , Xm} and let N := dim(a). By Thm. 3.2.3, it is
possible to �nd a homogeneous Carnot group G = (RN , ?, dλ) on RN (with m
generators and nilpotent of step r = σn) and a system Z = {Z1, . . . , Zm} of
Lie-generators of Lie(G) such that, for every i = 1, . . . ,m,

Zi is a lifting of Xi on R
N .

As a consequence, if we denote by LG the sub-Laplacian on G associated with
{Z1, . . . , Zm}, it is straightforward to recognize that the heat operator

HG := LG − ∂t =

m∑
j=1

Z2
j − ∂t, on R1+N = Rt ×RN(x,ξ),

is a lifting of H on R1+N = R1+n × Rp. The following lemma shows that HG
actually provides a saturable lifting for H (see Def. 3.1.4).
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Lemma 3.5.3. Let the above assumptions and notations apply. Then the ope-
rator HG is a saturable lifting of H on R1+N .

Proof. First of all we observe that, by de�nition, we have

R := HG −H = LG − L, on R1+N ;

thus, LG being a saturable lifting of L on RN (as we know from Thm. 3.2.13),
it is immediate to recognize that HG is a saturable lifting of H.

With Lem. 3.5.3 at hands, the path to the existence of a global fundamental
solution for H is traced in Thm. 3.1.6, and it consists of two parts:

• Firstly, we need to prove that HG admits a fundamental solution ΓG;

• Secondly, we have to show that such a ΓG satis�es the integrability as-
sumptions (i) and (ii) in the statement of Thm. 3.1.6.

As for the existence of a global fundamental solution for HG, we have the fol-
lowing fundamental result (for a proof see, e.g., [36, Theorem 2.1]).

Theorem 3.5.4 (Existence of a global fundamental solution for HG). There
exists a map γG ∈ C∞(R1+N \ {0},R) such that the function

ΓG(t, x, ξ; s, y, η) := γG
(
s− t, (x, ξ)−1 ? (y, η)

)
, (t, x, ξ) 6= (s, y, η) (3.5.2)

is a global fundamental solution for HG (here, ? is the composition law of the
Carnot group G). Moreover, γG satis�es the following additional properties:

(i) γG(t, x, ξ) ≥ 0 for every (t, x, ξ) ∈ R1+N \ {0} and

γG(t, x, ξ) = 0 if and only if t ≤ 0;

(ii) γG(t, x, ξ) = γG(t, (x, ξ)−1) for every (t, x, ξ) ∈ R1+N \ {0};

(iii) For every λ > 0 and every (t, x, ξ) ∈ R1+N \ {0}, we have

γG
(
λ2t,Dλ(x, ξ)

)
= λ−Q γG(t, x, ξ),

where Q is the homogeneous dimension of the group G;

(iv) γG vanishes at in�nity, that is, γG(t, x, ξ)→ 0 as ‖(t, x, ξ)‖ → ∞;

(v) For every t > 0, we have∫
RN

γG(t, x, ξ) dxdξ = 1.

Finally, if we consider the function Γ∗G de�ned by

Γ∗G(t, x, ξ; s, y, η) := ΓG(s, y, η; t, x, ξ), (t, x, ξ) 6= (s, y, η), (3.5.3)

then Γ∗G is a global fundamental solution for the adjoint operator H∗G = LG +∂t.
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Remark 3.5.5. It is worth noting that the function ΓG de�ned in (3.5.2) is the
unique global fundamental solution of HG s.t., for every (t, x, ξ) ∈ R1+N ,

ΓG(t, x, ξ; s, y, η)→ 0 as ‖(s, y, η)‖ → ∞.

This follows form Rem. 1.3.7 - (c), since HG is C∞-hypoelliptic and it satis�es
the Weak Maximum Principle on every open and bounded subset of R1+n.

The needed integrability properties of ΓG, instead, crucially rely on the fol-
lowing uniform Gaussian estimates (of γG). For a proof of these profound
estimates we refer, for example, to [36, Theorem 2.5].

Theorem 3.5.6 (Uniform Gaussian estimates of ΓG). Let the assumptions and
the notations in Thm. 3.5.4 apply. Moreover, let d ∈ C∞(RN \ {0},R) be the
unique homogeneous symmetric norm on G such that

d2−Q((x, ξ)−1 ? (y, η)
)
, (x, ξ) 6= (y, η)

is the global fundamental solution of LG (see Thm. 1.3.9). It is then possible to
�nd a constant c > 0 s.t., for every (x, ξ) ∈ RN and every t > 0, one has

c−1 t−Q/2 exp

(
− c d2(x, ξ)

t

)
≤ γG(t, x, ξ) ≤ c t−Q/2 exp

(
− d2(x, ξ)

c t

)
.

(3.5.4)

Thanks to Thm. 3.5.6, we can now prove the following central result.

Theorem 3.5.7. Let the assumptions and the notations of Thm. 3.5.4 apply.
Then the global fundamental solution ΓG of HG satis�es the integrability as-
sumptions (i) and (ii) in the statement of Thm. 3.1.6.

Proof. We �rst prove that ΓG satis�es assumption (i). According with our
Thm. 3.1.6 we have to show that, for �xed (t, x) 6= (s, y) ∈ R1+n, one has

η 7→ ΓG(t, x, 0; s, y, η) ∈ L1(Rp). (3.5.5)

If s ≤ t, the above (3.5.5) is an immediate consequence of Thm. 3.5.4, since

ΓG(t, x, 0; s, y, η)
(3.5.2)

= γG
(
(s− t, (x, 0)−1 ? (y, η)

)
= 0, for every η ∈ Rp.

We can then assume that s > t. In this case, by exploiting the Gaussian
estimates of γG contained in Thm. 3.5.6 and by performing the usual change of
variables η = Ψ−1

x,y(u) (see Rem. 3.3.2), we obtain∫
Rp

ΓG(t, x, 0; s, y, η) dη ≤ c

(s− t)Q/2
×

×
∫
Rp

exp

(
−
d2
(
(x, 0)−1 ? (y,Ψ−1

x,y(u)
)

c (s− t)

)
du;

on the other hand, since d is a homogeneous norm on G, it is possible to �nd a
universal constant α > 0 such that (recall the de�nition of h given in (3.3.3))

d2
(
(x, 0)−1 ? (y,Ψ−1

x,y(u)
)
≥ αh

(
(x, 0)−1 ? (y,Ψ−1

x,y(u)
)

(3.3.12)
= αK(x, y,Ψ−1

x,y(u)), for every u ∈ Rp.
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Thus, the very same computation carried out in the proof of Thm. 3.3.3 gives

d2
(
(x, 0)−1 ? (y,Ψ−1

x,y(u)
)
≥ αN2(u), for every u ∈ Rp.

where N is the homogeneous norm on Rp de�ned in (3.2.34). By gathering
together all these facts, we see that (3.5.5) follows if we show that

u 7→ ϕ(u) := exp

(
−αN

2(u)

c(s− t)

)
∈ L1(Rp). (3.5.6)

Now, since ϕ ∈ C(Rp,R), we obviously have ϕ ∈ L1
loc(Rp); moreover, by using

the classical inequality exp(z2) ≥ βQ (1 + z2)−Q/2 (holding true for every z ∈ R
and for a suitable constant βQ > 0 only depending on Q), we get

ϕ(u) ≤
βQ
(
c (s− t)

)Q/2(
c(s− t) + αN2(u)

)Q/2 ≤ β̃ N−Q(u), for every u ∈ Rp \ {0}.

The functionN−Q being integrable on {N ≥ 1} (as one can recognize by arguing
as in the proof of Thm. 3.3.3), we conclude that ϕ ∈ L1(Rp), as desired.

To complete the demonstration of the theorem, we are left to prove that
ΓG also satis�es assumption (ii) in Thm. 3.1.6. We then have to show that, for
every �xed (t, x) ∈ R1+n and every compact set K ⊆ R1+n, one has

(s, y, η) 7→ ΓG(t, x, 0; s, y, η) ∈ L1(K ×Rp).

To this end, let T > 0 be such that K ⊆ [t− T, t+ T ]×Rp. We have∫
K×Rp

ΓG(t, x, 0; s, y, η) dsdy dη ≤
∫ t+T

t−T

(∫
RN

ΓG(t, x, 0; s, y, η) dy dη

)
ds

=

∫ t+T

t−T

(∫
RN

γG(s− t, (x, 0)−1 ? (y, η)) dy dη

)
ds(

by the change of variables (y, η) = (x, 0) ? (u, v)
)

=

∫ t+T

t−T

(∫
RN

γG(s− t, u, v) dudv

)
ds(

by Thm. 3.5.4 - (i) and (v)
)

=

∫ t+T

t

1 ds = T,

so that (s, y, η) 7→ ΓG(t, x, 0; s, y, η) ∈ L1(K ×Rp), as desired.

Remark 3.5.8. The proof of Thm. 3.5.7 contains the following remarkable fact:
there exists an absolute constant M > 0 such that, for every (t, x), (s, y) ∈ R1+n

with s > t and for every u ∈ Rp \ {0}, one has

ΓG(t, x, 0; s, y,Ψ−1
x,y(u)) = γG

(
s− t, (x, 0)−1 ? (y,Ψ−1

x,y(u))
)
≤M ·N(u)−Q.

On the other hand, since γG identically vanishes on
(
]−∞, 0] × RN

)
\ {(0, 0)}

(by Thm. 3.5.4 - (i)) and Ψx,x(0) = 0, we conclude that

γG
(
s− t, (x, 0)−1 ? (y,Ψ−1

x,y(u))
)
≤M ·N−Q(u), (3.5.7)

for every (t, x) ∈ R1+n and every (s, y, u) ∈ R1+N with (t, x, 0) 6= (s, y, u).
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By gathering together Lem. 3.5.3, Thm. 3.5.7 and Thm. 3.1.6, we are �nally
in a position to prove the existence of a global fundamental solution for H.

Theorem 3.5.9 (Existence of a fundamental solution for H). Let the above
assumptions and notations apply. Then the function

Γ(t, x; s, y) :=

∫
Rp

ΓG(t, x, 0; s, y, η) dη, (t, x) 6= (s, y),

is a fundamental solution for H. Moreover, if d is as in Thm. 3.5.6, one has

c−1 (s− t)−Q/2
∫
Rp

exp

(
− c d2((x, 0)−1 ? (y, η))

s− t

)
dη ≤ Γ(t, x; s, y)

≤ c (s− t)−Q/2
∫
Rp

exp

(
− d2((x, 0)−1 ? (y, η))

c (s− t)

)
dη,

holding true for every (t, x), (s, y) ∈ R1+n with s > t. Here, c > 0 is a constant
only depending on the homogeneous Carnot group G and on the operator L.

Proof. By Lem. 3.5.3, we know that the heat operator HG = LG − ∂t on R×G
is a saturable lifting of H; moreover, Thm. 3.5.7 ensures that the fundamental
solution ΓG of HG in (3.5.2) satis�es assumptions (i) and (ii) in Thm. 3.1.6.

Therefore, by the cited Thm. 3.1.6, we conclude that the function Γ is a
global fundamental solution of H, and the proof is complete.

Remark 3.5.10. Let the assumptions and the notations of Thm. 3.5.9 apply.
It is worth noting that, for every (t, x) 6= (s, y) ∈ R1+n, the function Γ depends
on t and s only through the di�erence s− t: in fact, we have

Γ(t, x; s, y) =

∫
Rp

ΓG(t, x, 0; s, y, η) dη(
by the de�nition of ΓG in (3.5.2)

)
=

∫
Rp
γG
(
s− t, (x, 0)−1 ? (y, η)

)
dη

=

∫
Rp

ΓG(0, x, 0; s− t, y, η) dη

= Γ(0, x; y, s− t).

(3.5.8)

As a consequence, for every (t, x) 6= (s, y) ∈ R1+n we have

Γ(t, x; s, y) = Γ(−s, x;−t, y). (3.5.9)

3.5.1 Further properties of Γ

As for Sec. 3.3, the last part of this section is devoted to establish some further
properties of the fundamental solution Γ of H constructed in Thm. 3.5.9.

To begin with, we prove the following very simple lemma.

Lemma 3.5.11. Let the assumptions and the notations of Thm. 3.5.9 apply.
Then Γ ≥ 0 on its domain and, for every (t, x) 6= (s, y) ∈ R1+n, we have

Γ(t, x; s, y) = 0 if and only if s ≤ t. (3.5.10)
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Proof. By Thm. 3.5.4 - (i), we know that γG ≥ 0 on R1+N \ {0} and that, for
every (τ, z) ∈ R1+N , one has γG(τ, z) = 0 if and only if τ ≤ 0; as a consequence,

Γ(t, x; s, y) =

∫
Rp

ΓG(t, x, 0; s, y, η) dη

(3.5.2)
=

∫
Rp
γG
(
s− t, (x, 0)−1 ? (y, η)

)
dη ≥ 0, ∀ (t, x) 6= (s, y) ∈ R1+n

and Γ(t, x; s, y) = 0 if and only if s− t ≤ 0. This ends the proof.

Since the operator L is δλ-homogeneous of degree 2, the fundamental solution
Γ of H also satis�es the following homogeneity property.

Proposition 3.5.12. Let the assumptions and the notations of Thm. 3.5.9 ap-
ply. Then, for every λ > 0 and every (t, x) 6= (s, y) ∈ R1+n we have

Γ(λ2t, δλ(x);λ2s, δλ(y)) = λ−q Γ(t, x; s, y) (3.5.11)

where q =
∑n
j=1 σj is the sum of the exponents in the dilation δλ.

Proof. Let λ > 0 and let (t, x) 6= (s, y) ∈ R1+n. By de�nition, we have

Γ(λ2t, δλ(x);λ2s, δλ(y)) =

∫
Rp

ΓG(λ2t, δλ(x), 0;λ2s, δλ(y), η)) dη

=

∫
Rp
γG
(
λ2(s− t), (δλ(x), 0)−1 ? (δλ(y), η)

)
dη.

On the other hand, the family of dilations {dλ}λ>0 of G taking the form

dλ(x, ξ) = (δλ(x), δ∗λ(ξ)), for every (x, ξ) ∈ RN and every λ > 0

(where δ∗λ is the dilation on Rp introduced in (3.2.25)), we get

Γ(λ2t, δλ(x);λ2s, δλ(y)) =

∫
Rp
γG
(
λ2(s− t), (dλ(x, 0))−1 ? (δλ(y), η)

)
dη.

From this, by performing the change of variables η = δλ
∗(u) and by using the

homogeneity property of γG in Thm. 3.5.4 - (iii), we obtain

Γ(λ2t, δλ(x);λ2s, δλ(y)) = λq
∗
∫
Rp
γG
(
λ2(s− t), (dλ(x, 0))−1 ? dλ(y, u)

)
du(

dλ is automorphism of G
)

= λq
∗
∫
Rp
γG
(
λ2(s− t), dλ((x, 0)−1 ? (y, u))

)
du(

by Thm. 3.5.4 - (iii)
)

= λ−Q+q∗
∫
Rp
γG(s− t, (x, 0)−1 ? (y, u)) du

= λ−q Γ(t, x; s, y),

since Q = q + q∗ (see the beginning of Sec. 3.3). This is precisely the desired
(3.5.11), and the proof is complete.
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Another interesting property of Γ is contained in the next proposition.

Proposition 3.5.13. Let the assumptions and the notations of Thm. 3.5.9 ap-
ply. Then, for every �xed (t, x) ∈ R1+n we have∫

Rn
Γ(t, x; s, y) dy = 1, for every s > t. (3.5.12)

Proof. Let s > t be �xed. By Thm. 3.5.4 - (v) and the de�nition of Γ, we have∫
Rn

Γ(t, x; s, y) dy =

∫
RN

ΓG(t, x, 0; s, y, η) dy dη

=

∫
RN

γG(s− t, (x, 0)−1 ? (y, η)) dy dη(
by the change of variables (y, η) = (x, 0) ? (u, v)

)
=

∫
RN

γG(s− t, u, v) dudv(
by Thm. 3.5.4 - (v), since s > t

)
= 1.

This is precisely the desired (3.5.12), and the proof is complete.

The following proposition, which is a sort of analogous of Prop. 3.3.12, con-
cerns the regularity and the behavior at in�nity of the function Γ.

Proposition 3.5.14. Let the assumptions and the notations of Thm. 3.5.9 ap-
ply. Then the following facts hold true:

(i) Γ is continuous out of the diagonal of R1+n ×R1+n;

(ii) For every �xed compact set K ⊆ R1+n, we have

sup
z∈K

Γ(z; ζ)→ 0 as ‖ζ‖ → ∞. (3.5.13)

(iii) For every �xed ζ = (s, y) ∈ R1+n, we have

Γ(z; ζ)→ 0 as ‖z‖ → ∞. (3.5.14)

Proof. (i) Let z0 = (t0, x0), ζ0 = (s0, y0) ∈ R1+n be distinct and let ρ > 0
be such that B(z0, ρ) ∩ B(ζ0, ρ) = ∅. Moreover, let {zn}n∈N ⊆ B(z0, ρ) and
{ζn}n∈N ⊆ B(ζ0, ρ) be two sequences converging, respectively, to z0 and ζ0 as
n → ∞. We set O := {(z, ζ) ∈ R1+n × R1+n : z 6= ζ} and we consider the
function ϕ : O×Rp → R de�ned in the following way:

ϕ(z, ζ, u) := γG
(
s− t, (x, 0)−1 ? (y,Ψ−1

x,y(u))
)
, (z, ζ) ∈ O, u ∈ Rp. (3.5.15)

Since the map (x, y, u) 7→ Ψ−1
x,y(u) is smooth on Rn × RN and, by Thm. 3.5.4,

γG ∈ C∞(R1+N \ {0},R), it is readily seen that ϕ is continuous on O × Rp;
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moreover, by means of the map ϕ, for every n ∈ N we can write

Γ(zn; ζn) = Γ(tn, xn; sn, yn) =

∫
Rp
γG(sn − tn, (xn, 0)−1 ? (yn, η)) dη(

by the change of variables η = Ψ−1
xn,yn(u)

)
=

∫
Rp
γG
(
sn − tn, (xn, 0)−1 ? (yn,Ψ

−1
xn,yn(u))

)
du

=

∫
Rp
ϕ(zn, ζn, u) du.

Our aim is now to pass to the limit as n→∞ in the above identity. To this end
we �rst observe that, since K := B(z0, ρ) × B(ζ0, ρ) b O and ϕ is continuous
on the product O×Rp, we obviously have

lim
n→∞

ϕ(zn, ζn, u) = ϕ(z0, ζ0, u), for every u ∈ Rp;

furthermore, if N is the homogeneous norm on Rp de�ned in (3.2.34), it is
possible to �nd a constant M > 0 such that

ϕ(zn, ζn, u) ≤M, for every n ∈ N and every u ∈ {N ≤ 1}.

Thus, a simple dominated convergence argument gives

lim
n→∞

∫
{N≤1}

ϕ(zn, ζn, u) du =

∫
{N≤1}

ϕ(z0, ζ0, u) du. (3.5.16)

On the other hand, by exploiting estimate (3.5.7) in Rem. 3.5.7, we obtain

ϕ(zn, ζn, u) ≤M ·N−Q(u), for every n ∈ N and every u ∈ {N > 1};

therefore, the function N−Q being integrable on {N > 1} we are entitled to
apply the Lebesgue Dominated Convergence Theorem, which gives

lim
n→∞

∫
{N>1}

ϕ(zn, ζn, u) du =

∫
{N>1}

ϕ(z0, ζ0, u) du. (3.5.17)

By gathering together (3.5.16) and (3.5.17), we �nally get

lim
n→∞

Γ(zn; ζn) = lim
n→∞

∫
Rp
ϕ(zn, ζn, u) du∫

Rp
ϕ(z0, ζ0, u) du

=

∫
Rp
γG
(
s0 − t0, (x0, 0)−1 ? (y0,Ψ

−1
x0,y0(u))

)
du(

by the change of variables u = Ψx0,y0(η)
)

=

∫
Rp
γG(s0 − t0, (x0, 0)−1 ? (y0, η)) dη

= Γ(z0; ζ0),

and this proves that Γ is continuous at (z0, ζ0), as desired.
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(ii) Let K ⊆ R1+n be a �xed compact set and let {ζn}n∈N ⊆ R1+n \K be
such that ‖ζn‖ → ∞ as n→∞. We then consider the map Φ de�ned by

Ψ :
(
R1+n \K

)
×Rp −→ R, Φ(ζ, u) := sup

z∈K
ϕ(z, ζ, u),

where ϕ is as in (3.5.15). Since, obviously,
(
R1+n \K

)
⊆ O and ϕ is continu-

ous on O × Rp, the function Φ is (well-de�ned and) continuous on its domain;
moreover, by means of the map Φ, for every natural n we can write

sup
(t,x)∈K

Γ(t, x; sn, yn) = sup
z∈K

Γ(z; ζn) = sup
z∈K

(∫
Rp
ϕ(z, ζn, u) du

)
≤
∫
Rp

sup
z∈K

ϕ(z, ζn, u) du

=

∫
Rp

Φ(ζn, u) du.

Our aim is now to pass to the limit as n → ∞ in the above identity. To this
end we �rst notice that, since γG vanishes at in�nity (by Thm. 3.5.4) and

lim
n→∞

‖(sn − t, (x, 0)−1 ? (yn,Ψx,yn(u)))‖ =∞

uniformly for z = (t, x) ∈ K and u ∈ Rp (as is easy to see), we have

lim
n→∞

Φ(ζn, u) = 0, uniformly for u ∈ Rp;

in particular, there exists a constant M > 0 such that

Φ(ζn, u) ≤M, for every n ∈ N and every u ∈ Rp.

Thus, if N is as in (3.2.34), a simple dominated convergence argument gives

lim
n→∞

∫
{N≤1}

Φ(ζn, u) du = 0. (3.5.18)

On the other hand, again by exploiting estimate (3.5.7) in Rem. 3.5.7, for every
n ∈ N and every u ∈ {N > 1} we have the following bound for Φ:

sup
z∈K

ϕ(z, ζn, u) = Φ(ζn, u) ≤M ·N−Q(u);

therefore, the function N−Q being integrable at in�nity, another application of
the Lebesgue Dominated Convergence Theorem gives

lim
n→∞

∫
{N>1}

Φ(ζn, u) du = 0. (3.5.19)

By gathering together (3.5.18) and (3.5.19), we obtain

lim sup
n→∞

(
sup
z∈K

Γ(z; ζn)
)
≤ lim
n→∞

∫
Rp

Φ(ζn, u) du = 0,

which implies the desired (3.5.13), since Γ ≥ 0 on its domain.
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(iii) Let ζ = (s, y) ∈ R1+n be �xed and let {zn}n∈N ⊆ R1+n \ {ζ} be s.t.
‖zn‖ → ∞ as n→∞. We then consider the map θ de�ned as follows:

θ(z, u) :=
(
s− t, (x, 0)−1 ? (y,Ψ−1

x,y(u)
)
, z = (t, x) ∈ R1+n, u ∈ Rp.

Since the map (x, y, u) 7→ Ψ−1
x,y(u) is smooth on Rn ×RN , it is easy to see that

θ is a smooth di�eomorphism of R1+N onto itself; moreover, we can write

Γ(zn; ζ) = Γ(tn, xn;x, y) =

∫
Rp
γG
(
s− tn, (xn, 0)−1 ? (y, η)

)
dη(

by the change of variables η = Ψ−1
xn,y(u)

)
=

∫
Rp

(γG ◦ θ)(zn, u) du, for every n ∈ N.

Our aim is now to pass to the limit as n → ∞ in the above identity. To this
end we �rst notice that, θ being a smooth di�eomorphism, we have

‖θ(z, u)‖ → ∞, as ‖(z, u)‖ → ∞;

therefore, since γG vanishes at in�nity (by Thm. 3.5.4 - (iv)), we get

lim
n→∞

γG
(
θ(zn, u)

)
= 0, uniformly for u ∈ Rp.

As a consequence, there exists a constant M > 0 such that

γG
(
θ(zn, u)

)
≤M, for every n ∈ N and every u ∈ Rp.

We now argue exactly as in the proof of statement (ii): since {N ≤ 1} is
compact, an obvious dominated convergence theorem gives

lim
n→∞

∫
{N≤1}

γG
(
θ(zn, u)

)
= 0; (3.5.20)

on the other hand, by exploiting once again estimate (3.5.7) in Rem. 3.5.7 and
by recalling that N−Q is integrable at in�nity, we obtain

lim
n→∞

∫
{N>1}

γG
(
θ(zn, u)

)
= 0. (3.5.21)

By gathering together (3.5.20) and (3.5.20) we �nally conclude that Γ(·; ζ) van-
ishes at in�nity, and the proof is complete.

Corollary 3.5.15. Let the assumptions and the notations of Thm. 3.5.9 apply.
Then, for every �xed z = (t, x) ∈ R1+n, one has

(i) Γ(z; ·) ∈ C∞(R1+n \ {z},R);

(ii) HΓ(z; ζ) = 0 for every ζ = (s, y) ∈ R1+n with ζ 6= z.

Proof. Since Γ is a global fundamental solution of H, we have HΓ(z; ·) = −Dirz
in D′(R1+n) (see identity (1.3.8) on page 16); as a consequence, one has

HΓ(z; ·) = 0, in D′(R1+n \ {z}).

From the C∞-hypoellipticity of H (see Rem. 3.5.2 - (a)) and the continuity of
Γ(z; ·) out z (see Prop. 3.5.14 - (i)), we infer that Γ(z; ·) is actually smooth out
of z and that HΓ(z; ·) = 0 on R1+n \ {z}. This ends the proof.
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Remark 3.5.16. The same remarks made about the stationary case apply now,
mutatis mutandis, to the statements of Prop. 3.5.14 and of Cor. 3.5.15.

More precisely, the C∞-hypoellipticity of L and the fact that Γ is a fun-
damental solution for L imply that, for every �xed z ∈ R1+N , there exists a
smooth function uz ∈ C∞(R1+N ,R) such that

Huz = 0 on R1+n \ {z} and uz ≡ Γ(z; ·) a.e. on R1+n \ {z}.

However, also in this case the point is that we need to know that uz is everywhere
identical to the integral function de�ned in Thm. 3.5.9, not only out of a set with
vanishing Lebesgue measure (and depending on z).

Remark 3.5.17. Let the assumptions and the notations of Thm. 3.5.9 apply.
Then Γ is the unique fundamental solution of H s.t., for every z ∈ R1+n,

Γ(z; ·) ∈ C(R1+n \ {z},R) and Γ(z; ζ)→ 0 as ‖ζ‖ → ∞.

This follows from Rem. 1.3.7 - (c), since the operator H is C∞-hypoelliptic on
every open subset of R1+n and it satis�es the Weak Maximum Principle on
every open and bounded subset of R1+n (see Rem. 3.5.2).

Having established some interesting properties of Γ, we proceed in this sec-
tion by proving that, as it happens for ΓG, the function

Γ∗(t, x; s, y) := Γ(s, y; t, x), (t, x) 6= (s, y)

provides a global fundamental solution for the adjoint operator H∗ = L + ∂t.

Theorem 3.5.18 (Fundamental Solution for H∗). Let the assumptions and the
notations of Thm. 3.5.9 apply. Then the function

Γ∗(t, x; s, y) := Γ(s, y; t, x), (t, x) 6= (s, y), (3.5.22)

is a global fundamental solution for the adjoint operator H∗ = L+∂t. Moreover,
if d is as in Thm. 3.5.6, for every (t, x), (s, y) ∈ R1+n with t > s one has

c−1 (t− s)−Q/2
∫
Rp

exp

(
− c d2((y, 0)−1 ? (x, η))

t− s

)
dη ≤ Γ(s, y; t, x)

≤ c (t− s)−Q/2
∫
Rp

exp

(
− d2((y, 0)−1 ? (x, η))

c (t− s)

)
dη.

Remark 3.5.19. Let the assumptions and the notations of Thm. 3.5.18 apply.
Since Γ is continuous out of the diagonal of R1+n×R1+n and Γ(·; z) vanishes at
in�nity for every z = (t, x) ∈ R1+n (see Prop. 3.5.14), the function Γ∗ de�ned
in (3.5.22) is the unique fundamental solution for H∗ such that

Γ∗(z; ·) ∈ C(R1+n \ {z},R) and Γ∗(z; ζ)→ 0 as ‖ζ‖ → ∞.

This follows once again from Rem. 1.3.7 - (c), since the operator H∗ is C∞-
hypoelliptic on every open subset of R1+n (by Hörmander's theorem) and it
satis�es the Weak Maximum Principle on every open and bounded subset of
R1+n (the principal matrix of H∗ being the same of H).
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The proof of Thm. 3.5.18 is not di�cult, but it requires some preliminary
results of independent interest. To begin with, we establish some further inte-
grability properties of the fundamental solution Γ for H.

Lemma 3.5.20. Let the assumptions and the notations of Thm. 3.5.9 apply.
Then the following facts hold true:

(i) Γ ∈ L1
loc(R1+n ×R1+n);

(ii) For every �xed ζ = (s, y) ∈ R1+n, we have

(t, x, η) 7→ ΓG(t, x, 0; s, y, η) ∈ L1
loc(R1+N ); (3.5.23)

(iii) For every �xed ζ = (s, y) ∈ R1+n, we have Γ(·; ζ) ∈ L1
loc(R1+n).

Proof. (i) Let K1,K2 ⊆ R1+n be compact sets and let T > 0 such that

K2 ⊆ [−T, T ]×Rn.

By exploiting Fubini-Tonelli's theorem and Prop. 3.5.13, we obtain∫
K1×K2

Γ(z; ζ) dz dζ ≤
∫
K1

(∫ T

−T

(∫
Rn

Γ(z; s, y) dy

)
ds

)
dζ

≤
∫
K1

(∫ T

−T
1 ds

)
dζ ≤ 2T ·meas(K1),

and this proves the integrability of Γ on K1 ×K2 ⊆ R1+n ×R1+n.

(ii) Let ζ = (s, y) ∈ R1+n be �xed and let K ⊆ R1+N be a compact set. We
then consider the map Hy de�ned as follows (see also Lem. 3.3.10):

Hy : R1+N → R1+N , Hy(t, x, η) :=
(
s− t, (x, 0)−1 ? (y, η)

)
.

By arguing as in the proof of Lem. 3.3.10 - (ii), it is easy to recognize that Hy

de�nes a smooth di�eomorphism of R1+N onto itself and that∣∣det
(
JHy (t, x, η)

)∣∣ = 1.

Therefore, by performing the change of variables associated with H−1
y , we get∫

K

ΓG(t, x, 0; s, y, η) dtdx η =

∫
K

γG
(
s− t, (x, 0)−1 ? (y, η)

)
dtdx η

=

∫
H−1
y (K)

γG(τ, z) dτ dz.

Since γG = ΓG(0; ·) is locally integrable on R1+N and H−1
y (K) is compact, we

immediately deduce the desired (3.5.23).

(iii) Let K ⊆ R1+n be a �xed compact set. We de�ne

T : R1+N → R1+N , T (t, x, u) :=
(
t, x, ψ−1

x,y(u)
)
.
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Since the map (x, y, u) 7→ Ψ−1
x,y(u) is smooth and Ψ−1

x,y is a smooth di�eomor-
phism of Rp onto itself, it is readily seen that T de�nes a smooth di�eomorphism
of R1+N ; moreover, a direct computation shows that (see also Rem
 3.3.2)

JT (t, x, u) = 1, for every (t, x, u) ∈ R1+N .

From this, by performing the change of variables associated with T , we obtain∫
K

Γ(z; ζ) dz =

∫
K×Rp

γG
(
s− t, (x, 0)−1 ? (y, η)

)
dtdx dη

=

∫
K×Rp

γG
(
s− t, (x, 0)−1 ? (y,Ψ−1

x,y(u))
)

dtdx du

=

∫
K×{N≤1}

{· · · }dtdx du+

∫
K×{N>1}

{· · · }dtdxdη =: I + II,

where N denotes the homogeneous norm in Rp de�ned in (3.2.34). Now, since
the product K × {N ≤ 1} is compact, we deduce from (3.5.23) that I is �nite;
on the other hand, by exploiting estimate (3.5.7) in Rem. 3.5.8, we get

II ≤M

∫
K×{N>1}

N−Q(u) du ≤M ·meas(K)

∫
{N>1}

N−Q(u) du.

Since N−Q is integrable at in�nity we deduce that II is �nite as well, and thus
Γ(·; ζ) is integrable on K. This ends the proof.

Thanks to Lem. 3.5.20, we can now prove the following key result.

Proposition 3.5.21. Let the assumptions and the notations of Thm. 3.5.9 ap-
ply. For every �xed ϕ ∈ C∞0 (R1+n,R), the function

Λϕ : R1+n −→ R, Λϕ(ζ) :=

∫
R1+n

Γ(z; ζ)ϕ(z) dz, (3.5.24)

is well-de�ned and it satis�es the following properties:

(i) Λϕ ∈ C∞(R1+n,R) and H(Λϕ) = −ϕ pointwise on R1+n;

(ii) Λϕ(ζ)→ 0 as ‖ζ‖ → ∞.

Proof. By Lem. 3.5.20 - (iii), we know that Γ(·; ζ) ∈ L1
loc(R1+n) for every �xed

ζ ∈ R1+n; thus Λϕ is well-de�ned. We now prove assertions (i) and (ii).

(i) We �rst show that the function Λϕ is continuous on R1+n. To this end,
let ζ0 = (s0, y0) ∈ R1+n be �xed and let {zn}n∈N ⊆ R1+N be a sequence
converging to ζ0 as n→∞. We then choose a real T > 0 such that

K0 := supp(ϕ) ⊆ [−T, T ]×Rn,

and we consider the map Hy : R1+N → R1+N de�ned by (see Lem. 3.3.10):

Hy(t, x, η) :=
(
s− t, Cy(x, η)

)
=
(
s− t, (x, 0)−1 ? (y, η)

)
.

As already pointed out in the proof of Lem. 3.5.20, Hy is a smooth di�eomor-
phism of R1+N and, for every (t, x, η) ∈ R1+N and every y ∈ Rn, we have∣∣det

(
JHy (t, x, η)

)∣∣ = 1.
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Therefore, by means of such a map we can write, for every n ∈ N ∪ {0},

Λϕ(ζn) =

∫
K0

Γ(z; ζn)ϕ(z) dz(
by Lem. 3.5.20 - (ii) and since K0 ⊆ [−T, T ]×Rn

)
=

∫
[−T,T ]×RN

ΓG(t, x, 0; sn, yn, η)ϕ(t, x) dtdx dη(
by de�nition of ΓG, see (3.5.2)

)
=

∫
[−T,T ]×RN

γG
(
sn − t, (x, 0)−1 ? (yn, η)

)
ϕ(t, x) dtdxdη(

by the change of variables (t, x, η) = (s− τ, C−1
y (u, v))

)
=

∫ sn+T

sn−T

∫
RN

γG(τ, u, v)ϕ
(
sn − τ, C−1

yn (u, v)
)

dτ dudv.

We now aim to pass to the limit as n → ∞ in the above identity. To this end
we �rst notice that, {ζn}n∈N being bounded, there exists a real T0 > 0 s.t.

[sn − T, sn + T ] ⊆ [−T0, T0], for every n ∈ N ∪ {0};

as a consequence, for every n ∈ N ∪ {0} we can write

Λϕ(ζn) =

∫
[−T0,T0]×RN

γG(τ, u, v)ϕ
(
sn − τ, C−1

yn (u, v)
)

dτ dudv.

On the other hand, since the map (y, u, v) 7→ C−1
y (u, v) is smooth on Rn ×RN

(see identity (3.3.7)) and since, by assumptions, ϕ ∈ C∞0 (R1+n,R), one has

lim
n→∞

ϕ
(
sn − τ, C−1

yn (u, v)
)

= ϕ
(
s0 − τ, C−1

y0 (u, v)
)

and there exists a real constant M > 0 such that

|ϕ
(
sn − τ, C−1

yn (u, v)
)
| ≤M, ∀ n ∈ N and ∀ (τ, u, v) ∈ R1+N .

Thus, γG = ΓG(0; ·) being integrable on [−T0, T0] × RN (as it follows from
Thm. 3.5.4 - (v)), we are entitled to apply the Lebesgue Dominated Conver-
gence Theorem, which shows that Λϕ(ζn) → Λϕ(ζ0) as n → ∞. Due to the
arbitrariness of ζ0 ∈ R1+n, we conclude that Λϕ ∈ C(R1+n,R), as desired.

We now claim that H(Λϕ) = −ϕ in D′(R1+n). Indeed, if ψ ∈ C∞0 (R1+n,R)
is �xed, by applying Fubini-Tonelli's theorem (and recalling that Γ is a global
fundamental solution for H), we obtain∫

R1+n

Λϕ(ζ)H∗ψ(ζ) dζ =

∫
R1+n

(∫
R1+n

Γ(z; ζ)H∗ψ(ζ) dζ

)
ϕ(z) dz(

since HΓ(z; ·) = −Dirz
)

= −
∫
R1+n

ϕ(z)ψ(z) dz,

which precisely mean that HΛϕ = −ϕ in D′(R1+n). From this, since the opera-
tor H is C∞-hypoelliptic on every open subset of R1+n and Λϕ ∈ C(R1+n,R),
we deduce that Λϕ is actually smooth on the whole of R1+n and that

H(Λϕ) = −ϕ point-wise on R1+n.
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(ii) By de�nition of Λϕ, for every ζ /∈ supp(ϕ) we have

|Λϕ(ζ)| ≤ sup
z∈K0

Γ(z; ζ) ·
∫
R1+n

|ϕ(z)|dz;

thus, since we know from Prop. 3.5.14 that supz∈K0
Γ(z; ζ) → 0 as ‖ζ‖ → ∞,

we conclude that Λϕ vanishes at in�nity. This ends the proof.

Corollary 3.5.22. Let the assumptions and the notations of Prop. 3.5.21 apply.
For every ϕ ∈ C∞(R1+n,R) and every ζ ∈ R1+n, we have

ΛHϕ(ζ) =

∫
R1+n

Γ(z; ζ)Hϕ(z) dz = −ϕ(ζ). (3.5.25)

Proof. We consider the function u : R1+n → R de�ned as follows

u(ζ) := ΛHϕ(ζ) + ϕ(ζ), ζ = (s, y) ∈ R1+n.

From Prop. 3.5.21 - (i), we infer that u ∈ C∞(R1+n,R) and

Hu = H(ΛHϕ) + Hϕ = −Hϕ+ Hϕ = 0, on R1+n;

moreover, since ϕ is compactly supported and ΛHϕ vanishes at in�nity (see
Prop. 3.5.21 - (ii)), one has u(ζ) → 0 as ‖ζ‖ → ∞. By summing up, u is a
smooth H-harmonic function on R1+n vanishing at in�nity; therefore, since H

satis�es the Weak Maximum Principle on every open and bounded subset of
R1+n, we have u ≡ 0 on R1+n. By the very de�nition of u, we then get

ΛHϕ = −ϕ, on R1+n,

which is precisely the desired (3.5.25). This ends the proof.

With Cor. 3.5.22 at hands, we are �nally in a position to prove Thm. 3.5.18.

Proof (of Thm. 3.5.18). We recall that we have to prove the following fact:

Γ∗(z; ζ) = Γ(ζ; z) is a global fundamental solution for H∗.

Obviously, Γ∗ is de�ned out of the diagonal of R1+n×R1+n and, by Lem. 3.5.20,
Γ∗(z; ·) = Γ(·; z) ∈ L1

loc(R1+n) for every �xed z ∈ R1+n; thus, according with
Def. 1.3.5 on page 15, we are left to show that, for every z ∈ R1+n, one has

H∗Γ∗(z; ·) = −Dirz, in D′(R1+n). (3.5.26)

On the other hand, by Cor. 3.5.22, for every ϕ ∈ C∞0 (R1+n,R) we have

(H∗Γ∗(z; ·))(ϕ) =

∫
R1+n

Γ∗(z; ζ)Hϕ(ζ) dζ =

∫
R1+n

Γ(ζ; z)Hϕ(ζ) dζ

= ΛHϕ(z)
(3.5.25)

= −ϕ(z) = −Dirz(ϕ),

which is precisely the needed (3.5.26). This ends the proof.

Now we have established Thm. 3.5.18, we continue in this section by exploit-
ing such a result to obtain some further properties of Γ and Γ∗.

To begin with, we prove the following regularity theorems.
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Corollary 3.5.23. Let the assumptions and the notations of Thm. 3.5.18 apply.
Then, for every �xed z = (t, x) ∈ R1+n, one has

(i) Γ∗(z; ·) ∈ C∞(R1+n \ {z},R);

(ii) H∗Γ∗(z; ζ) = 0 for every ζ = (s, y) ∈ R1+n with ζ 6= z.

Proof. Since, by Thm. 3.5.18, Γ∗ is a global fundamental solution for H∗, we
have H∗Γ∗(z; ·) = −Dirz in D′(R1+n); in particular, one has

H∗Γ∗(z; ·) = 0, in D′(R1+n \ {z}).

From this, sinceH∗ is C∞-hypoelliptic on every open subset ofR1+n and Γ∗(z; ·)
is continuous out of z (see Rem. 3.5.19), we infer that Γ∗(z; ·) is smooth on
R1+n\{z} andH∗Γ∗(z; ·) = 0 point-wise on R1+n\{z}. This ends the proof.

Theorem 3.5.24 (Smoothness of Γ). Let Γ be the fundamental solution of H
introduced in Thm. 3.5.9. Then Γ is smooth out of the diagonal of R1+n×R1+n.

Proof. As we did in the proof of Thm. 3.3.17, we consider the 2m vector �elds
X̃1, . . . , X̃m, Ỹ1, . . . , Ỹm, operating on (x, y) ∈ Rn ×Rn, de�ned as follows:

X̃j :=

n∑
i=1

(XjI)i(x) ∂xi , Ỹj :=

n∑
i=1

(XjI)i(y) ∂yi (j = 1, . . . ,m).

We then introduce the following linear PDO on R1+n ×R1+n:

H̃ :=

m∑
j=1

X̃2
j + ∂t +

m∑
j=1

Ỹ 2
j − ∂s.

Obviously, H̃ has smooth coe�cients; moreover, since [X̃i, Ỹj ] = 0 for every
i, j = {1, . . . ,m}, it is readily seen that H̃ is a Hörmander operator on the
whole R1+n × R1+n, hence C∞-hypoelliptic on the same set. From this, since
Γ(z; ζ) is continuous for z 6= ζ ∈ R1+n and, by Cor.s 3.5.15 and 3.5.23,

H̃Γ(z; ζ) = H∗Γ(·; ζ) + HΓ(z; ·) = H∗Γ∗(ζ; ·) + HΓ(z; ·) = 0,

for every z, ζ ∈ R1+n with z 6= ζ, we infer that Γ is actually smooth out of the
diagonal of R1+n ×R1+n, as desired. This ends the proof.

The next result shows that the fundamental solution Γ of H is actually
symmetric with respect to the space variables x, y ∈ Rn.

Theorem 3.5.25 (Spacial symmetry of Γ). Let Γ be the fundamental solution
of H introduced in Thm. 3.5.9. Then, for every (t, x) 6= (s, y) ∈ R1+n we have

Γ(t, x; s, y) = Γ(t, y; s, x). (3.5.27)

Proof. For the sake of clarity, we split the proof into three steps.

Step I: We �rst prove that the function G de�ned by

G(t, x; s, y) := Γ(t, y; s, x), (t, x) 6= (s, y), (3.5.28)

is a global fundamental solution for H. To this end we �rst notice that, ob-
viously, G is de�ned out of the diagonal of R1+n ×R1+n; thus, according with
Def. 1.3.5, we have to show that, for every �xed z = (t, x) ∈ R1+n, one has
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(a) G(z; ·) ∈ L1
loc(R1+n);

(b) HG(z; ·) = −Dirz in D′(R1+n).

As for assertion (a), let K ⊆ R1+n be a compact set and let T, r > 0 be s.t.

K ⊆ [−T, T ]×B(0, r) =: C(T, r).

Since Γ ≥ 0 and Γ(·; ζ) ∈ L1
loc(R1+n) for every ζ ∈ R1+n, one then has∫

K

G(t, x; s, y) dsdy ≤
∫
C(T,r)

G(t, x; s, y) dsdy

=

∫
C(T,r)

Γ(t, y; s, x) ds dy(
by identities (3.5.8) and (3.5.9) in Rem. 3.5.10

)
=

∫
C(T,r)

Γ(t− s, y; 0, x) dsdy(
by the change of variables (s, y) = (−τ + t, y)

)
=

∫ t+T

t−T

∫
B(0,r)

Γ(τ, y; 0, x) dτ dy <∞.

We now turn to prove statement (b). To this end, let ϕ ∈ C∞0 (R1+n,R) be �xed
and let ψ(s, y) := ϕ(−s, y). Since Γ∗(w; ζ) = Γ(ζ;w) is a global fundamental
solution for H∗ (as we know from Thm. 3.5.18), we have

−ϕ(t, x) = −ψ(−t, x) =

∫
R1+n

Γ(s, y;−t, x)Hψ(s, y) dsdy

(3.5.8)
=

∫
R1+n

Γ(0, y;−t− s, x)Hψ(s, y) dsdy(
by the change of variables (s, y) = (−τ, y)

)
=

∫
R1+n

Γ(0, y; τ − t, x) (Hψ)(−τ, y) dτ dy(
since (Hψ)(−τ, y) = H∗ϕ(τ, y)

)
=

∫
R1+n

Γ(t, y; τ, x)H∗ϕ(τ, y) dτ dy

=

∫
R1+n

G(t, x; τ, y)H∗ϕ(τ, y) dτ dy,

and this proves that HG(z; ·) = −Dirz in D′(R1+n), as desired.

Step II: In this step we show that, for very z = (t, x) ∈ R1+n, one has

G(z; ·) ∈ C(R1+n \ {z},R) and G(z; ζ)→ 0 as ‖ζ‖ → ∞.

On the one hand, the continuity of G(z; ·) out of z is a direct consequence of the
continuity of Γ out of the diagonal of R1+n × R1+n; on the other hand, since
Γ(·; ζ) vanishes at in�nity and, by Rem. 3.5.10, we have

G(t, x; s, y) = Γ(t, y; s, x) = Γ(t− s, y; 0, x), for every (s, y) 6= (t, x),
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we immediately deduce that G(z; ·) vanishes at in�nity as well.

Step III: We are now ready to prove identity (3.5.28). Indeed, by Steps I
and II, G is a fundamental solution for H such that, for every z ∈ R1+n,

G(z; ·) ∈ C(R1+n \ {z},R) and G(z; ζ)→ 0 as ‖ζ‖ → ∞;

thus, by the uniqueness property of Γ in Rem. 3.5.17, we conclude that

Γ(t, x; s, y) = G(t, x; s, y) = Γ(t, x; s, y), for every (t, x) 6= (s, y).

This ends the proof.

Corollary 3.5.26. Let Γ and Γ∗ be the global fundamental solutions of H and
H∗, respectively. Then, for every (t, x) 6= (s, y) ∈ R1+n we have

Γ∗(t, x; s, y) = Γ∗(t, y; s, x) = Γ(s, x; t, y). (3.5.29)

Proof. Let (t, x) 6= (s, y) ∈ R1+n be �xed. By Thm. 3.5.25, we have

Γ∗(t, x; s, y) = Γ(s, y; t, x)
(3.5.27)

= Γ(s, x; t, y) = Γ∗(t, y; s, x),

which is precisely the desired (3.5.29). This ends the proof.

Thanks to Cor. 3.5.26, we can give an easy proof of the following theorem.

Theorem 3.5.27 (Properties of Γ∗). Let Γ∗ be the global fundamental solution
of the operator H∗. Then the following facts hold true:

(i) Γ∗ ≥ 0 on its domain and, for every (t, x), (s, y) ∈ R1+n, we have

Γ∗(t, x; s, y) = 0 if and only if s ≥ t.

(ii) For every (t, x) 6= (s, y) ∈ R1+n, the function Γ∗ depends on t and s only
through the di�erence s− t: in fact, we have

Γ∗(t, x; s, y) = Γ∗(0, x; s− t, y).

(iii) For every λ > 0 and every (t, x) 6= (s, y) ∈ R1+n, we have

Γ∗(λ2t, δλ(x);λ2s, δλ(y)) = λ−q Γ∗(t, x; s, y).

(iv) For every �xed compact set K ⊆ R1+n, we have

sup
z∈K

Γ∗(z; ζ)→ 0 as ‖ζ‖ → ∞.

(v) For every �xed (t, x) ∈ R1+n we have∫
Rn

Γ∗(t, x; s, y) dy = 1, for every s < t.

Proof. Statements (i)-to-(v) are straightforward consequence of the analogous
properties of Γ established so far and of identity (3.5.29) in Cor. 3.5.26.
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Remark 3.5.28. Let Γ be the global fundamental solutions of H introduced
in Thm. 3.5.9. By combining statement (v) of Thm. 3.5.27 with statement (ii)
of Prop. 3.5.14 we recognize that, for every compact set K ⊆ R1+n,

lim
‖ζ‖→∞

(
sup
z∈K

Γ(z; ζ)
)

= lim
‖ζ‖→∞

(
sup
z∈K

Γ(ζ; z)
)

= 0.

Remark 3.5.29 (Γ∗G lifts Γ∗). Let Γ∗ be the global fundamental solution of the
operator H∗. Then, for every (t, x) 6= (s, y) ∈ R1+n we have

Γ∗(t, x; s, y) =

∫
Rp

Γ∗G(t, x, 0; s, y, η) dη, (3.5.30)

where Γ∗G is the fundamental solution of the operator H∗G = LG + ∂t on G. In
fact, from Cor. 3.5.26 and the de�nition Γ in Thm. 3.5.9 we obtain

Γ∗(t, x; s, y)
(3.5.29)

= Γ(s, x; t, y) =

∫
Rp

ΓG(s, x, 0; t, y, η) dη

=

∫
Rp
γG
(
t− s, (x, 0)−1 ? (y, η)

)
dη(

by Thm. 3.5.4 - (ii)
)

=

∫
Rp
γG
(
t− s, (y, η)−1 ? (x, 0)

)
dη

=

∫
Rp

ΓG(s, y, η; t, x, 0) dη(
by de�nition of Γ∗G, see (3.5.3)

)
=

∫
Rp

Γ∗G(t, x, 0; s, y, η) dη.

Remark 3.5.30. Let Γ∗ be the global fundamental solution of the operator
H∗. Then Γ∗ satis�es the following dual statement of Prop. 3.5.21: for every
�xed ϕ ∈ C∞0 (R1+n,R), the function Λ∗ϕ : R1+n → R de�ned by

Λ∗ϕ(ζ) :=

∫
R1+n

Γ∗(z, ζ)ϕ(z) dz, ζ = (s, y) ∈ R1+n,

is well-de�ned and it satis�es the following properties:

(i) Λ∗ϕ ∈ C∞(R1+n,R) and H∗(Λ∗ϕ) = −ϕ pointwise on R1+n;

(ii) Λ∗ϕ(ζ)→ 0 as ‖ζ‖ → ∞.

Indeed, since Γ∗(z; ·) is locally integrable onR1+n, we see that Λ∗ϕ is well-de�ned;
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moreover, by identity (3.5.29), for every ζ = (s, y) ∈ R1+n we can write

Λ∗ϕ(ζ) =

∫
R1+n

Γ∗(t, x; s, y)ϕ(t, x) dtdx

(3.5.29)
=

∫
R1+n

Γ(s, x; t, y)ϕ(t, x) dtdx(
by identity (3.5.9) in Rem. 3.5.10

)
=

∫
R1+n

Γ(−t, x;−s, y)ϕ(t, x) dtdx(
by the change of variables (t, x) = (−τ, u)

)
=

∫
R1+n

Γ(τ, u;−s, y)ϕ(−τ, u) dτ du

= Λψ(−s, y),

(3.5.31)

where we have set ψ(s, y) := ϕ(−s, y). From this, since Λψ is smooth on R1+n

and it vanishes at in�nity (see Prop. 3.5.21), we immediately infer that

Λ∗ϕ ∈ C∞(R1+n,R) and Λ∗ϕ(ζ)→ 0 as ‖ζ‖ → ∞.

On the other hand, since we know from Prop. 3.5.21 - (ii) that H(Λψ) = −ψ on
R1+n, from the above (3.5.31) we also get, for every ζ = (s, y) ∈ R1+n,

H∗(Λ∗ϕ)(ζ = H∗(Λ∗ϕ)(s, y) = H∗
(
(τ, u) 7→ Λψ(−τ, u)

)
(s, y)

= H(Λψ)(−s, y) = −ψ(−s, y)

= −ϕ(s, y).

3.5.2 The Cauchy problem for H

Now we have established several qualitative properties of the functions Γ and
Γ∗, we �nally conclude this section by brie�y studying the existence and the
uniqueness of (classical) solutions of the Cauchy problem for H.

To begin with, we remind the following de�nition.

De�nition 3.5.31. Let ϕ ∈ C(Rn,R) be �xed and let Ω :=]0,∞[ ×Rn. We
say that a function u : Ω→ R is a (classical) solution of the Cauchy problem{

Hu = 0, in Ω;

u(0, x) = ϕ(x), for every x ∈ Rn
(3.5.32)

if the following conditions are satis�ed:

(i) u ∈ C2(Ω,R) and Hu(t, x) = 0 for every (t, x) ∈ Ω;

(ii) For every �xed x ∈ Rn, we have

lim
t→0+

u(t, x) = ϕ(x). (3.5.33)
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Remark 3.5.32. Let ϕ ∈ C(Rn,R) be �xed and let u ∈ C2(Ω,R) be a classical
solution of the Cauchy problem (3.5.32), according to Def. 3.5.31.

It is worth noting that, since the operator H is C∞-hypoelliptic on every
open subset of Rn and since, by de�nition, Hu = 0 point-wise in Ω, the function
u is actually smooth on its domain. In other words, any classical solution of the
Cauchy problem (3.5.32) is actually a smooth function.

We then have the following notable result.

Theorem 3.5.33. Let ϕ ∈ C(Rn,R) be bounded. Then the function

u : Ω = ]0,∞[ ×Rn −→ R, u(t, x) :=

∫
Rn

Γ(0, y; t, x)ϕ(y) dy, (3.5.34)

is a classical solution of the Cauchy problem (3.5.31), further satisfying

|u(t, x)| ≤ ‖ϕ‖∞, for every (t, x) ∈ Ω. (3.5.35)

Proof. First of all, by Thm. 3.5.1 - (ii) and (vii), the function u is well-de�ned
and it satis�es the estimate (3.5.35): indeed, for every (t, x) ∈ Ω we have∫

Rn
Γ(0, y; t, x)|ϕ(y)|dy ≤ ‖ϕ‖∞

∫
Rn

Γ(0, y; t, x) dy(
by Thm. 3.5.1 - (ii) and (vii)

)
= ‖ϕ‖∞

∫
Rn

Γ(0, x; t, y) dy = ‖ϕ‖∞.

To complete the proof of the theorem, we then consider the following steps.

Step I: In this step we prove that u is continuous on Ω. To this end, let
z0 = (t0, x0) ∈ Ω be arbitrarily �xed and let ρ > 0 be such that

K := [t0 − r, t0 + r]×B(x0, r) ⊆ Ω.

Moreover, let {zn}n∈N ⊆ K be a sequence converging to z0 as n → ∞. By
arguing as in the proof of Lem. 3.5.20 - (ii), one can easily recognizes that

(y, η) 7→ ΓG(0, y, 0; t, x, η) ∈ L1
loc(RN ), for every (t, x) ∈ R1+n;

therefore, by Fubini's theorem, for every n ∈ N ∪ {0} we can write

u(zn) = u(tn, xn) =

∫
Rn

Γ(0, y; tn, xn)ϕ(y) dy(
by de�nition of Γ, see Thm. 3.5.9

)
=

∫
Rn

(∫
Rp

ΓG(0, y, 0; tn, xn, η) dη

)
ϕ(y) dy

=

∫
RN

ΓG(0, y, 0; tn, xn, η)ϕ(y) dy dη

(3.5.2)
=

∫
RN

γG
(
tn, (y, 0)−1 ? (xn, η)

)
ϕ(y) dy dη.

We then consider, for �xed x ∈ Rn, the map de�ned as follows:

Cx : RN −→ RN , Cx(y, η) := (y, 0)−1 ? (x, η).
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As already pointed out in the proof of Lem. 3.5.20, Cx is a smooth di�eomor-
phism of RN such that |det JCx(y, η)| = 1 for every (y, η) ∈ RN ; therefore, by
performing the change of variables associated with C−1

x we obtain

u(zn) =

∫
RN

γG(tn, u, v)ϕ
(
C−1
xn (u, v)

)
dudv, for every n ∈ N ∪ {0}. (3.5.36)

Our aim is now pass to the limit as n → ∞ in the above (3.5.36). To this end
we �rst notice that, since ϕ ∈ C(Rn,R), γG is smooth on R1+N \ {0} and

{tn}n∈N ⊆ [t0 − r, t0 + r] ⊆ ]0,∞[,

we have (remind that (x, u, v) 7→ C−1
x (u, v) is continuous on Rn ×RN )

lim
n→∞

γG(tn, u, v)ϕ
(
C−1
xn (u, v)

)
= γG(t0, u, v)ϕ

(
C−1
x0

(u, v)
)
, ∀ (u, v) ∈ RN .

Moreover, by exploiting the Gaussian estimates for γG in Thm. 3.5.6 (and re-
minding that ϕ is bounded), for every n ∈ N and every (u, v) ∈ RN we obtain∣∣γG(tn, u, v)ϕ

(
C−1
xn (u, v)

)∣∣ ≤ ‖ϕ‖∞ γG(tn, u, v)

≤ c ‖ϕ‖∞(tn)−Q/2 exp

(
−d

2(u, v)

c tn

)
(
since {tn}n∈N ⊆ [t0 − r, t0 + r]

)
≤ c (t0 + r)−Q/2 ‖ϕ‖∞ exp

(
− d2(u, v)

c (t0 − r)

)
.

By gathering together all thee facts, we see that a dominated convergence ar-
gument can be applied in the identity (3.5.36) if we show that

RN 3 (u, v) 7→ f(u, v) := exp

(
− d2(u, v)

c (t0 − r)

)
∈ L1(RN ).

Now, since d is a (continuous) homogeneous norm on G, there exists a universal
constant α > 0 such that (cf the proof of Thm. 3.5.7),

d2(u, v) ≥ αh2(u, v)
(3.3.3)

= α

 n∑
j=1

|uj |1/σj +

p∑
j=1

|vj |1/σ
∗
j

2

≥ α


 n∑
j=1

|uj |1/σj
2

+

 p∑
j=1

|vj |1/σ
∗
j

2
 , ∀ (u, v) ∈ RN ;

therefore, if we set P (u) :=
∑n
j=1 |uj |1/σj (with u ∈ Rn), we get

f(u, v) ≤ exp

(
− αP 2(u)

c (t0 − r)

)
· exp

(
− αN2(v)

c (t0 − r)

)
, for every (u, v) ∈ RN ,

where N(v) is the homogeneous norm on Rp de�ned in (3.2.34).
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From this, by arguing exactly as in the proof of Thm. 3.5.7 (note that P is
δλ-homogeneous of degree 1), we infer that f ∈ L1(RN ); hence, an application
of the Lebesgue Dominated Convergence Theorem in the above (3.5.36) gives

lim
n→∞

u(zn) = lim
n→∞

∫
RN

γG(tn, u, v)ϕ
(
C−1
xn (u, v)

)
dudv

=

∫
RN

γG(t0, u, v)ϕ
(
C−1
x0

(u, v)
)

dudv = u(z0).

Due to the arbitrariness of z0 ∈ Ω, we conclude that u ∈ C(Ω,R).

Step II: We now turn to prove thatHu = 0 inD′(Ω) (note that u ∈ L1
loc(Ω),

as it is continuous on the same set). To this end we �rst observe that, if
K ⊆ R1+n is a �xed compact set, we have

(t, x, y) 3 K ×Rn 7→ Γ(0, y; t, x) ∈ L1(K ×Rn). (3.5.37)

Indeed, by Thm. 3.5.1 - (ii) and (vii) we have∫
K×Rn

Γ(0, y; t, x) dtdxdy =

∫
K

(∫
Rn

Γ(0, x; t, y) dy

)
dtdx

≤
∫
K

1 dtdx = meas(K) <∞.

Let now ψ ∈ C∞0 (Ω,R). By (3.5.37) and Fubini's theorem, we obtain∫
R1+n

u(ζ)H∗ψ(ζ) dζ =

∫
R1+n

(∫
Rn

Γ(0, y; ζ)ϕ(y) dy

)
H∗ψ(ζ) dζ

=

∫
Rn

(∫
R1+n

Γ(0, y; ζ)H∗ψ(ζ) dζ

)
ϕ(y) dy(

Γ is a fundamental solution for H, see (1.3.7)
)

= −
∫
Rn
ψ(0, y)ϕ(y) dy(

since supp(ψ) ⊆ Ω = ]0,∞[×Rn
)

= 0,

and this proves that Hu = 0 in D′(Ω), as desired. From this, since H is C∞-
hypoelliptic on every open subset of Rn and u ∈ C(Ω,R), we infer that

u ∈ C∞(Ω,R) and Hu(t, x) = 0 for every (t, x) ∈ Ω.

Step III: To conclude the demonstration of the theorem, we turn to prove
that u satis�es condition (ii) in Def. 3.5.31. To this end, let x ∈ Rn be arbitrarily
�xed and let {tj}n∈N ⊆ ]0, 1] be a sequence converging to 0 as n→∞.

By means of the di�eomorphism Cx already considered in Step I and of the
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Gaussian estimates of γG in Thm. 3.5.6, for every natural n we can write

|u(tn, x)− ϕ(x)| =
∣∣∣∣∫
Rn

Γ(0, y; tn, x)ϕ(y) dy − ϕ(x)

∣∣∣∣(
by Thm. 3.5.1 - (ii) and (vii)

)
=

∣∣∣∣∫
Rn

Γ(0, y; tn, x)
(
ϕ(y)− ϕ(x)

)
dy

∣∣∣∣
≤
∫
Rn

Γ(0, y; tn, x)|ϕ(y)− ϕ(x)|dy(
by de�nition of Γ and by (3.5.2)

)
=

∫
RN

γG
(
tn, (y, 0)−1 ? (x, η)

)
|ϕ(y)− ϕ(x)|dy dη(

by the change of variables (y, η) = C−1
x (u, v)

)
=

∫
RN

γG(tn, u, v)
∣∣ϕ(C−1

x (u, v)
)
− ϕ(x)

∣∣ dudv

(3.5.4)

≤ c (tn)−Q/2
∫
RN

exp

(
−d

2(u, v)

c tn

) ∣∣ϕ(C−1
x (u, v)

)
− ϕ(x)

∣∣dudv.

On the other hand, since d is dλ-homogeneous of degree 1, by performing the
change of variables (u, v) = d√tn(w, z) (for every �xed n ∈ N), we obtain

|u(tn, x)− ϕ(x)| ≤

c

∫
RN

exp

(
−d

2(w, z)

c

) ∣∣ϕ((C−1
x ◦ d√tn)(w, z)

)
− ϕ(x)

∣∣dw dz.

(3.5.38)

We now claim that the rhs of the above (3.5.38) tends to 0 as n→∞. Indeed,
since ϕ is continuous on Rn and Cx(x, 0) = (x, 0)−1 ? (x, 0) = (0, 0), we have

lim
n→∞

ϕ
(
(C−1

x ◦ d√tn)(w, z)
)

= ϕ
(
C−1
x (0, 0)

)
= ϕ(x);

moreover, ϕ being bounded on the whole of Rn, one has

exp

(
−d

2(w, z)

c

) ∣∣ϕ((C−1
x ◦ d√tn)(w, z)

)
− ϕ(x)

∣∣
≤ 2 ‖ϕ‖∞ exp

(
−d

2(w, z)

c

)
, for every (u, v) ∈ RN .

Since the function (u, v) 7→ exp(−d2(u, v)/c) is integrable on RN (see Step I),
by applying the Lebesgue Dominated Convergence Theorem we obtain

lim
n→∞

∫
RN

exp

(
−d

2(w, z)

c

) ∣∣ϕ((C−1
x ◦ d√tn)(w, z)

)
− ϕ(x)

∣∣dw dz = 0.

By gathering together this last identity and the above (3.5.38), we then get

lim
n→∞

|u(tn, x)− ϕ(x)| = 0,

and this shows that u satis�es (3.5.33), as desired. This ends the proof.
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We now turn our attention to the issue of the uniqueness of solutions of the
Cauchy problem for H. To this end, we prove the following proposition.

Proposition 3.5.34. Let u ∈ C2(Ω,R) be a bounded solution of the problem{
Hu = 0, on Ω = ]0,∞[×Rn,
u(0, x) = 0, for every x ∈ Rn.

(3.5.39)

Then u vanishes identically on Ω.

Proof. We denote by π : RN → Rn the standard canonical projection of RN

onto Rn and we consider the function v de�ned as follows:

v : ]0,∞[×RN −→ R, v(t, x, ξ) := (u ◦ π)(t, x, ξ) = u(t, x).

Obviously, the function v is of class C2 and bounded on its domain of de�nition
(since the same is true of u); moreover, since u is a classical solution of the
problem (3.5.39) and HG = LG − ∂t is a lifting of H on R×G, we get

• v(0, x, ξ) = u(t, x) = 0 for every (x, ξ) ∈ RN ;

• HGv = HG(u ◦ π) = Hu = 0 point-wise on ]0,∞[×RN .

Summing up, v is a bounded solution of the Cauchy problem{
HGu = 0, on ]0,∞[×RN ,
u(0, x) = 0, for every x ∈ RN .

We are then entitled to apply [36, Theorem 2.1], which ensures that v vanishes
identically on its domain; from this, we deduce that

u(t, x) = 0 for every (t, x) ∈ ]0,∞[×Rn.

and the proof is complete.

By combining Thm. 3.5.33 with Prop. 3.5.34, we obtain the following result.

Theorem 3.5.35. Let ϕ ∈ C(Rn,R) be bounded. Then the Cauchy problem

(CP)

{
Hu = 0, in Ω = ]0,∞[×Rn;

u(0, x) = ϕ(x), for every x ∈ Rn
(3.5.40)

admits a unique bounded solution u ∈ C∞(Ω,R), which is given by

u(t, x) =

∫
Rn

Γ(0, y; t, x)ϕ(y) dy, for every (t, x) ∈ Ω. (3.5.41)

Proof. By Thm. 3.5.2, the function u de�ned in (3.5.41) is a bounded solution
of the Cauchy problem (3.5.40) (see (3.5.35)) ; therefore, Prop. 3.5.34 ensures
that u is actually the unique bounded solution of this problem.





Chapter 4

Degenerate divergence-form

PDOs

In this last chapter of the thesis we go beyond the sums of squares of vector
�elds considered so far, and we turn our attention to linear PDOs (possibly
degenerate-elliptic) in quasi-divergence form

(F) L :=
1

V (x)

N∑
i,j=1

∂

∂xi

(
V (x) ai,j(x)

∂

∂xj

)
, x ∈ RN ,

where V ∈ C∞(RN ,R) is strictly positive, the matrix A(x) := (ai,j(x))i,j is
symmetric and positive semi-de�nite at every point x ∈ RN , and it has real-
valued C∞ entries. As is well-known, such a class of operators comprehends
sub-Laplacians on Carnot groups, sums of squares of vector �elds and di�eren-
tial operators arising from CR geometry and general Lie group theory; moreover,
there exist linear PDOs of the quasi-divergence form (F) which are not Hör-
mander nor sub-elliptic (see Exm. 4.1.4 below). For these reasons, this class
of linear PDOs has been extensively studied since the early 80's (see, e.g., the
fundamental works by Fe�erman and Phong [69, 70]).

In this context, our aim is twofold: on the one hand, by exploiting a Control
Theory result on hypoellipticity to recover a meaningful geometric information
on connectivity and maxima propagation, we shall establish for such operators
the Strong Maximum Principle; on the other hand, by means of suitable ge-
ometrical objects properly introduced, we shall prove a Hardy-type inequality
generalizing the classical Hardy inequality for the Laplace operator.

4.1 The Strong Maximum Principle

According with the incipit of the chapter, this �rst section is completely devoted
to establish the Strong Maximum Principle (SMP, for short) for a suitable class
of hypoelliptic PDOs of the (quasi-)divergence form (F). The key tool for prov-
ing this principle is a notable Control Theory result due to Amano, which we
shall brie�y present in Sec. 4.1.2; thanks to this result, we are able to demon-
strate the Strong Maximum Principle for our PDOs by following the very same
approach exploited by Bony in the case of Hörmander operators.
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We now describe more closely how this �rst section is organized.

- In Sec. 4.1.1 we properly introduce the class of linear PDOs we aim to
study, and we present several examples.

- In Sec. 4.1.2 we brie�y describe a deep Control Theory result by Amano
[6] on hypoelliptic PDOs (long forgotten in the PDE literature), relating
the hypoellipticity of a PDO L with the controllability of a suitable family
of vector �elds naturally associated with L: as anticipated, this will be a
fundamental tool in order to prove the SMP.

- Sec. 4.1.3 is devoted to call up some elements of ODE Theory/Control
Theory; in particular, we remind the notion of invariant set for a vector
�eld and a related result by Bony [39].

- By means of all the result presented in the preceding sections, we give in
Sec. 4.1.4 the proof of the Strong Maximum Principle.

- Finally, in Sec. 4.1.5 we brie�y show how the Strong Maximum Principle
can be pro�tably used in order to prove the solvability of the Dirichlet
problem and a Harnack Inequality for L.

The contents of Sec.s 4.1.3 and 4.1.4 are inserted in this thesis for the sake of
completeness: in fact, by crucially exploiting the result by Amano presented
in Sec. 4.1.2, the proof of the Strong Maximum Principle for our PDOs can be
carried out by arguing exactly as in Bony [39].

4.1.1 Main assumptions and notations

Throughout this section, we shall be concerned with linear PDOs L satisfying
the following properties, where the acronyms stand for

- (DS): Divergence Structure;

- (DE): Degenerate-Ellipticity;

- (NTD): Non-Total-Degeneracy;

- (HY): Hypo-Ellipticity;

Here we have the de�nitions:

(DS): L has the following (quasi-)divergence structure

L :=
1

V (x)

N∑
i,j=1

∂

∂xi

(
V (x) ai,j(x)

∂

∂xj

)
, (4.1.1)

where ai,j ∈ C∞(RN ,R) for every i, j ∈ {1, . . . , N} and V is real-valued,
C∞ and strictly positive on the whole of RN ;

(DE): L is degenerate-elliptic on RN , that is, the principal matrix of L

A(x) := (ai,j(x))i,j

is symmetric and positive semi-de�nite at every point x ∈ RN ;
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(NTD): L is non-totally degenerate at every point of RN , that is (recalling
that A(x) is symmetric and positive semi-de�nite),

trace(A(x)) > 0, for every x ∈ RN ; (4.1.2)

(HY): L is C∞-hypoelliptic in every open subset of RN : following, e.g., Treves
[131], this means that for every open set Ω ⊆ RN , for every u ∈ D′(Ω),
for every open set U ⊆ Ω and every f ∈ C∞(U,R), the equation Lu = f
in U implies that u is a function-type distribution associated with a C∞

function (on U). Equivalently, we can say that

sing supp(u) = sing supp(Lu),

for every open set Ω ⊆ RN and every u ∈ D′(Ω).

A wide class of linear PDOs satisfying all the assumptions listed above, which
also represents a main motivation for our investigation, consists of the sub-
Laplacians on the Carnot groups:

Example 4.1.1. Let G = (RN , ∗, δλ) be a homogeneous Carnot group and let
X = {X1, . . . , Xm} be a set of Lie-generators of Lie(G). Then the sub-Laplacian

L =

m∑
j=1

X2
j

satis�es all the assumptions listed above.
In fact, by the results recalled in Chap. 1 (see, precisely, properties (P1)-to-

(P5) in Sec. 1.3), we know that L takes the quasi-divergence form (4.1.1) (with
V ≡ 1) and it is semielliptic on RN , since A(x) = S(x) · S(x)T , where

S(x) =
(
X1I(x) · · ·XmI(x)

)
, x ∈ RN ;

from this, it also follows that L is non-totally degenerate at every x ∈ RN .
As for assumption (HY), it is a consequence of Hörmander's Hypoellipticity
Theorem, jointly with the fact that X1, . . . , Xm Lie-generate Lie(G).

More generally, any sub-Laplacian on a Lie group G = (RN , ∗) (not neces-
sarily homogeneous nor Carnot) satis�es all the other assumptions listed above.

Example 4.1.2. Let G = (RN , ∗) be a Lie group on RN , letX = {X1, . . . , Xm}
be a set of Lie generators for Lie(G) and let µ be a �xed Haar measure on G1.

Then the linear partial di�erential operator

L := −
m∑
j=1

X∗µj Xj

satis�es the assumptions (DS)-to-(HY) listed above (here, X∗µj denotes the
formal adjoint of Xj with respect to the �xed Haar measure µ).

1We remind that a Radon measure µ : B(RN )→ [0,∞[ is called a Haar measure for G
if it is left-invariant, that is, for every �xed x ∈ G it holds that

µ
(
τx(E)

)
= µ(E), for every E ∈ B(RN ),

where τx denotes the left-translation by x on G.
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It is out of any doubt that the sum of squares P :=
∑m
j=1X

2
j would be a

noteworthy PDO to be studied. This is not however the PDO we study here, for
the following reason: both L and P are left-invariant, but P is not necessarily
self-adjoint neither with respect to Lebesgue measure (this depending on the
divergence of the Xjs), nor with respect to the more natural measure to be
considered, namely the Haar measure of the group. Besides, we observe that
self-adjointness implies the symmetry of Gamma, another pleasant feature.

To prove that L satis�es assumptions (DS)-to-(HY) we �rst remind that,
µ being a Haar measure on G, it is absolutely continuous with respect to the
Lebesgue measure; more precisely, if e denotes the neutral element of G, there
exists a positive constant c > 0 such that

µ = cV (x) dx, where V (x) =
1

det
(
Jτx(e)

) .
As a consequence, for every smooth vector �elds Z ∈ X(RN ) one has

Z∗µ = −Z −
(

div(ZI) +
ZV

V

)
. (4.1.3)

In fact, if ϕ,ψ ∈ C∞0 (RN ,R) are arbitrarily �xed, we have∫
RN
ψ Z∗µϕdµ =

∫
RN

ϕZψ dµ =

∫
RN

V ϕZψ dx

(
by writing Z =

N∑
i=1

ai(x) ∂xi
)

= c

N∑
i=1

∫
RN

(V ai ϕ) ∂xiψ dx

(
by performing an integration by parts

)
= −c

N∑
i=1

∫
RN

ψ
(

(ai ∂xiV )ϕ+ (∂xiai)V ϕ+ (ai ∂xiϕ)V
)

dx

(
since µ = cV (x) dx and V (x) > 0 on RN

)
= −

∫
RN

ψ

((
ZV

V
+ div(ZI)

)
ϕ+ Zϕ

)
dµ,

and this obviously implies the above formula (4.1.3) . We explicitly notice that
Z∗µ does not depend on the constant c, but only on the function V .

Having established identity (4.1.3), we can now proceed to show that L

satis�es assumptions (DS)-to-(HY). In fact, by (4.1.3) and by writing

Xj =

N∑
h=1

σh,j(x) ∂xh , for every j = 1, . . . ,m,
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a direct computation gives

L = −
m∑
j=1

X∗µj Xj
(4.1.3)

=

m∑
j=1

(
Xj + div(XjI) +

XjV

V

)
Xj

=

m∑
j=1

X2
j +

1

V

m∑
j=1

(V · div(XjI) +XjV )Xj

=

N∑
h,k=1

 m∑
j=1

σh,j(x)σk,j(x)

 ∂xh∂xk +

N∑
k=1

 m∑
j=1

N∑
h=1

σh,j(x) ∂xhσk,j(x)

 ∂xk

+
1

V

N∑
k=1

 m∑
j=1

N∑
h=1

σk,j(x)
(
V ∂xhσh,j(x) + σh,j(x) ∂xhV

) ∂xk

(
setting, for each h, k ∈ {1, . . . , N}, ah,k(x) :=

m∑
j=1

σh,j(x)σk,j(x)
)

=

N∑
h,k=1

ah,k(x) ∂xh∂xk +
1

V

N∑
k=1

(
N∑
h=1

(
ah,k(x) ∂xhV + V ∂xhah,k(x)

))
∂xk .

Therefore, if we introduce the matrix A(x) :=
(
ah,k(x)

)
h,k

, we can write

L =
1

V (x)

N∑
h,k=1

∂

∂xh

(
V (x) ah,k(x)

∂

∂xk

)
,

and this proves that L takes the form (4.1.1). In particular, we see that L has
smooth coe�cient functions. Moreover, since X1, . . . , Xm satisfy Hörmander's
rank condition (as they Lie-generate Lie(G)) and since

A(x) = S(x) · S(x)T , where S(x) := (X1I(x) · · ·XmI(x)),

we deduce that A(x) ≥ 0 and that A(x) 6= 0 for every x ∈ RN , that is, L satis�es
assumptions (DE) and (NTD). Finally, L also satis�es assumption (HY): this is
a consequence of the Hörmander Hypoellipticity Theorem and of the fact that
X1, . . . , Xm Lie-generate Lie(G) (see Exm. 4.1.1).

We explicitly notice that the operator L does not depend on the chosen Haar
measure µ, but only on the function V naturally associated with the group G;
this is coherent with the fact that the formal adjoint Z∗,µ of a smooth vector
�eld Z w.r.t. the measure µ only depends on the function V .

As an explicit example, let us consider the group G = (R2, ∗), where

(x1, x2) ∗ (y1, y2) = (x1 + y1e
x2 , x2 + y2).

A direct computation shows that, for every �xed x ∈ R2, one has (note that the
neutral element e of the group G is 0)

Jτx(0) =

(
ex2 0
0 1

)
;
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as a consequence, according to Rem. 1.1.5 on page 5, the relevant Jacobian
vector �elds J1, J2 of Lie(G) are given by

J1 = ex2 ∂x1
, J2 = ∂x2

,

and {J1, J2} is a system of Lie-generator for Lie(G). Furthermore, we have

V (x) =
1

det
(
Jτx(0)

) = e−x2 , for every x ∈ R2.

Thus, if µ is an arbitrary �xed Haar measure on G (hence, µ = cV (x) dx for a
suitable constant c > 0), from the above general discussion we obtain

L = −J∗µ1 J1 − J∗µ2 J2 =
1

V (x)

N∑
h,k=2

∂

∂xh

(
V (x) ah,k(x)

∂

∂xk

)
(
note that, in this case, A(x) = Jτx(0) · Jτx(0)T

)
= ex2 div

((
ex2 0
0 e−x2

)
·
(
∂x1

∂x2

))
= ex2

(
∂

∂x1

(
ex2

∂

∂x1

)
+

∂

∂x2

(
e−x2

∂

∂x2

))
= e2x2

∂2

∂x2
1

+
∂2

∂x2
2

− ∂

∂x2
.

We point out that the operator L cannot be re-written as pure divergence-form
operator; more precisely, there cannot exist a matrix-valued function B(x) s.t.

L = div
(
B(x) · ∇

)
=

2∑
h,k=1

∂

∂xh

(
bh,k(x)

∂

∂xk

)
.

Indeed, if such a matrix B existed, then it should necessarily coincide with the
principal matrix A(x) of L, that is,

B(x) = A(x) =

(
e2x2 0

0 1

)
, for every x ∈ R2.

On the other hand, the PDO L̃ = div(A(x) · ∇) is di�erent from L: in fact,

L̃ = div

((
e2x2 0

0 1

)
·
(
∂x1

∂x2

))
=

(
∂

∂x1

(
e2x2

∂

∂x1

)
+

∂

∂x2

(
∂

∂x2

))
= e2x1

∂2

∂x2
1

+
∂2

∂x2
2

6= L.

Another wide class of linear PDOs satisfying all the assumptions listed above
is that of homogeneous Hörmander operators.

Example 4.1.3. Let X = {X1, . . . , Xm} be a set linearly independent smooth
vector �elds on RN satisfying the following assumptions (see Sec. 3.2):
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(1) X1, . . . , Xm are homogeneous of degree 1 with respect to a suitable family
{δλ}λ>0 of dilations on RN of the form

δλ(x) = (λσ1x1, . . . , λ
σNxN ),

where 1 = σ1 ≤ . . . ≤ σN and Q :=
∑N
j=1 σj ≥ 2;

(2) X1, . . . , Xm satisfy Hörmander's condition at every point of RN .

Then the linear PDO

L =

m∑
j=1

X2
j ,

satis�es all the assumptions listed above. In fact, a direct computation shows
that L is of the form (4.1.1), with V ≡ 1 and with principal matrix

A(x) = S(x) · S(x)T ,

where S(x) = (X1I(x), . . . , XmI(x)); as a consequence, L is semielliptic and
non-totally degenerate. Moreover, the hypoellipticity of L is a direct conse-
quence of assumption (2) and of Hörmander's Hypoellipticity Theorem.

Finally, the following is an example of a class of PDOs satisfying all the
assumptions listed above, but not Hörmander nor sub-elliptic.

Example 4.1.4. Let us consider the class of operators in R2 de�ned by

La =
∂2

∂x2
1

+
(
a(x1)

∂

∂x2

)2

, (4.1.4a)

where a ∈ C∞(R,R) is a smooth function satisfying the following properties:

• a is even and a(x) = 0 if and only if x = 0;

• a is nonnegative on R;

• a is non-decreasing on [0,∞[.

Then the operator La satis�es assumptions (DS) (being a sum of squares),
(NTD) (obviously) and (HY), thanks to a result by Fedĭ�, [68]; on the other
hand, La does not satisfy Hörmander's Rank Condition at x1 = 0 if all the
derivatives of a vanish at 0, as for

a(x1) =

{
0 if x1 = 0;

exp(−1/x2
1) if x1 6= 0.

Other examples of operators satisfying our assumptions (NTD) and (HY) but
failing to be Hörmander operators can be found, e.g., in the following papers:
Bell and Mohammed [20]; Christ [51, Section 1]; Kohn [99]; Kusuoka and Stroock
[104, Theorem 8.41]; Morimoto [116]. Explicit examples are, for instance,

∂2

∂x2
1

+
(

exp(−1/|x1|)
∂

∂x2

)2

+
(

exp(−1/|x1|)
∂

∂x3

)2

in R3, (4.1.4b)

∂2

∂x2
1

+
(

exp(−1/
√
|x1|)

∂

∂x2

)2

+
∂2

∂x2
3

in R3, (4.1.4c)

∂2

∂x2
2

+
(
x2

∂

∂x1

)2

+
∂2

∂x2
4

+
(

exp(−1/ 3
√
|x1|)

∂

∂x3

)2

in R4. (4.1.4d)
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For the hypoellipticity of (4.1.4b) see [51]; for (4.1.4c) see [104]; for (4.1.4d) see
[116]. Note that the smallest eigenvalue in all the above examples vanishes very
quickly (like exp(−1/|x|α) for x→ 0, with positive α) and it cannot be bounded
from below by any weight w(x) with locally integrable reciprocal function.

4.1.2 Amano's Hypoellipticity result

As anticipated, the aim of this brief section is to present a profound result by
Amano [6], which will be fundamental in order to prove the Strong Maximum
Principle (see Sec. 4.1.4). To begin with, we give the following de�nitions.

De�nition 4.1.5. Let Ω be an open set and let F ⊆ X(Ω) be a family of smooth
vector �elds on Ω. A function γ : [0, T ] → Ω is called an integral curve of F
if it satis�es the following properties:

(i) γ ∈ C([0, T ],Ω);

(ii) there exist a partition 0 = t0 < t1 < · · · < tp = T of [0, T ] and vector
�elds X1, . . . , Xp ∈ F such that, for every i = 1, . . . , p, we have

• γ|]ti−1,ti[ ∈ C1(]ti−1, ti[,Ω);

• γ̇(t) = XiI(γ(t)), for every t ∈ ]ti−1, ti[.

Remark 4.1.6. Let Ω ⊆ RN be an open set and let X ∈ X(Ω). According with
Def. 4.1.5, a function γ : [0, T ] → Ω is an integral curve of the family F = {X}
if it is continuous and it is piecewise an integral curve of the vector �eld X.

De�nition 4.1.7 (Controllable family). Let Ω ⊆ RN be an open set and let F
be a family of smooth vector �elds on Ω. We say that F is controllable on Ω
if, for every x, y ∈ Ω, there exists an integral curve γ : [0, T ]→ Ω of F s.t.

γ(0) = x and γ(T ) = y.

Remark 4.1.8. Let Ω ⊆ RN be an open set and let F ⊆ X(Ω). From a
geometric point of view, we see that F is controllable on Ω if any two points in
Ω can be joined with a continuous curve which is piecewise an integral curve of
some vector �eld in F. Thus, for example, it is readily seen that the family

E = {∂x1 , . . . , ∂xN }

is controllable on the whole of RN .

Let now Ω ⊆ RN be a �xed open set, and let L be a second-order linear
PDO on Ω of the following general form

L =

N∑
i,j=1

αi,j(x)
∂

∂xi∂xj
+

N∑
i=1

βi(x)
∂

∂xi
+ γ(x), x ∈ Ω.

We assume that the coe�cients of L are real-valued and smooth on Ω, i.e.,

αi,j , βi, γ ∈ C∞(Ω,R), for every i, j ∈ {1, . . . , N},
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and that the matrix (αi,j(x))i,j is symmetric and positive semi-de�nite for every
x ∈ Ω; furthermore, we assume that the second order terms and the �rst order
ones of L never vanish simultaneously, that is,

N∑
i,j=1

|αi,j(x)|+
N∑
i=1

|βi(x)| 6= 0, for every x ∈ Ω.

We then introduce the following smooth vector �elds (on Ω) associated with L,
which we shall referred to as L-canonical vector �elds:

Xi :=

N∑
j=1

αi,j(x)
∂

∂xj
, for every i = 1, . . . , N ;

X0 :=

N∑
j=1

(
βj(x)−

N∑
i=1

∂αi,j
∂xi

(x)

)
∂

∂xj
.

By means of these vector �elds, we can re-write L in the following way:

L =

N∑
i=1

∂

∂xi

 N∑
j=1

αi,j(x)
∂

∂xj

+X0 + γ(x)

=

N∑
i=1

∂

∂xi
Xi +X0 + γ(x), on Ω.

Moreover, they play a central role in the study of the hypoellipticity of L: in
fact, as anticipated, Amano proved the subsequent result (for a demonstration
of this profound theorem, we refer to [6, Theorems 1 and 2 and Remark 1]).

Theorem 4.1.9 (Amano [6]). In the above assumptions and notations, if the
operator L is C∞-hypoelliptic on every open subset of Ω, then the family

FL := span{X0, . . . , XN}

is controllable on every open and connected subset of Ω. Conversely, if the
family FL is controllable on every open and connected subset of Ω, the set

CL :=
{
x ∈ Ω : dim

{
Lie{X0, . . . , XN}

}
(x) < N

}
(4.1.5)

is closed in Ω and has no interior. As a consequence, Ω1 := Ω \ CL is an open
dense subset of Ω, and L is C∞-hypoelliptic on every open subset of Ω1.

Remark 4.1.10. It is worth noting that, in the real-analytic case, the �rst part
of Thm. 4.1.9 can be reversed, that is, the set CL in (4.1.5) is actually empty.

To be more precise, let us assume that the coe�cients of L are real-analytic
on Ω and that the family FL is controllable on every open and connected subset
of Ω. Since the vector �elds X0, . . . , XN are real-analytic on Ω (the same being
true of the coe�cients of L), it can be proved that the family {X0, . . . , XN} is
a Hörmander system on Ω (see, e.g., [127]), whence

CL =
{
x ∈ Ω : dim

{
Lie{X0, . . . , XN}

}
(x) < N

}
= ∅.
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We are then entitled to apply [120, Theorem 2.8.2] by Ole��nik and Radkevi£:
since X0, . . . , XN satisfy Hörmander's rank condition on Ω, the operator

L =

N∑
i=1

∂

∂xi
Xi +X0,

is C∞-hypoelliptic in every open subset of Ω, whence CL = ∅.

4.1.3 Invariant sets and the Nagumo-Bony Theorem

In this section we remind the notion of invariant set w.r.t. a vector �eld and
a classical result by Bony [39], which characterizes such a notion in a very
intuitive geometric way. Together with Amano's Thm. 4.1.9, this result will
lead to a simple proof of the Strong Maximum Principle.

To begin with, we give the following important de�nition.

De�nition 4.1.11. Let Ω ⊆ RN be an open set and let F be a relatively closed
subset of Ω. Moreover, let y ∈ Ω ∩ ∂F . We say that a vector ν ∈ RN \ {0} is
externally orthogonal to F at y if

B(y + ν, |ν|) ⊆ (Ω \ F ) ∪ {y}. (4.1.6)

If this is the case, we shall write ν⊥F at y. We also set

F ? = {y ∈ Ω ∩ ∂F : there exists ν externally orthogonal to F at y}.

Remark 4.1.12. Let the assumptions and the notations in Def. 4.1.11 apply.
We explicitly observe that, if Ω is connected and if F 6= Ω, then

F ? 6= ∅.

In fact, since Ω is connected, we have Ω ∩ ∂F 6= ∅; we then choose a point
z ∈ Ω ∩ ∂F , a real R > 0 such that B(z,R) ⊆ Ω and a point x0 ∈ B(z,R/2)
not belonging to F . Since ∂F is closed, there exists y ∈ Ω ∩ ∂F such that

‖y − x0‖ = inf{‖x0 − x‖ : x ∈ ∂F}; (4.1.7)

moreover, the vector ν := 1
2‖y − x0‖ being externally orthogonal to F at y (as

one can easily deduce from (4.1.7)), we conclude that y ∈ F ?.

We then introduce the notion of invariant set w.r.t. a vector �eld.

De�nition 4.1.13 (Invariant set w.r.t. a vector �eld). Let Ω ⊆ RN be an open
set, let X be a continuous v.f. on Ω and let F ⊆ Ω be a relatively closed set. We
say that F is positively X-invariant (or positively invariant w.r.t.X) if,
for every integral curve γ : [0, T ]→ Ω of X such that γ(0) ∈ F , we have

γ(t) ∈ F, for every 0 ≤ t ≤ T .

We say that F is X-invariant (or invariant w.r.t.X) if F is positively invari-
ant with respect to both X and −X.
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Remark 4.1.14. Let the assumption and the notations in Def. 4.1.13 apply.
Obviously, the role of 0 is immaterial: more precisely, a simple re-parametriza-
tion argument shows that the set F is positively X-invariant if and only if, for
every integral curve γ : [a, b]→ Ω of X such that γ(a) ∈ F , we have

γ(t) ∈ F, for every t ∈ [a, b];

as a consequence, we see that F is invariant with respect to X if and only if,
for every integral curve γ : [a, b]→ Ω of X s.t. γ([a, b]) ∩ F 6= ∅, we have

γ(t) ∈ F, for every t ∈ [a, b].

With the above Def.s 4.1.11 and 4.1.13 hand, we are now in a position to
state the aforementioned theorem by Bony; for a proof of this result see, e.g.,
[39, Théorème 2.1] or [37, Section 5.13].

Theorem 4.1.15 (Bony [39]). Let Ω ⊆ RN be an open set, let X be C1 vector
�eld on Ω and let F ⊆ Ω be a relatively closed set.

Then F is positively X-invariant if and only if

〈XI(y), ν〉 ≤ 0, for every y ∈ F ? and every ν ⊥ F at y. (4.1.8)

We end this section with the following simple yet crucial corollary.

Corollary 4.1.16. Let Ω ⊆ RN be an open set, let X be C1 vector �eld on Ω
and let F ⊆ Ω be a relatively closed set. Then F is X-invariant if and only if

〈XI(y), ν〉 = 0, for every y ∈ F ? and every ν ⊥ F at y. (4.1.9)

Proof. By Def. 4.1.13, F is X-invariant if and only if F is positively invariant
with respect to X and −X. By the Bony Thm. 4.1.15, this is equivalent to

〈±XI(y), ν〉 ≤ 0 for every y ∈ F ? and every ν ⊥ F at y,

which is possible in and only if (4.1.9) is satis�ed. This ends the proof.

4.1.4 The proof of the Strong Maximum Principle

Gathering all the results recalled in Sec.s 4.1.2 and 4.1.3, we are �nally in a
position to prove the announced Strong Maximum Principle for our PDOs L

satisfying the structural assumptions in Sec. 4.1. As anticipated, the proof we
are going to present is completely analogous to that given Bony in the case of
Hörmander operators (see, precisely, [39, Corollaire 3.1]).

To begin with, we establish the following useful Hopf-type lemma.

Lemma 4.1.17 (Hopf-type lemma). Let L be a linear PDO satisfying the as-
sumptions introduced in Sec. 4.1, and let Ω ⊆ RN be a connected open set.

Then the following facts hold true:

(i) Let u ∈ C2(Ω,R) be such that Lu ≥ 0 on Ω. If the set

F (u) := {x ∈ Ω : u(x) = max
Ω

u} (4.1.10)

is a proper subset of Ω (that is, ∅ 6= F 6= Ω), then

〈A(y)ν, ν〉 = 0 for every y ∈ F (u)? and every ν ⊥ F (u) at y. (4.1.11)
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(ii) Let c ∈ C∞(RN ,R) be nonnegative on RN and let Lc := L−c. Moreover,
let u ∈ C2(Ω,R) be such that Lcu ≥ 0 on Ω. If the set F (u) in (4.1.10)
is a proper subset of Ω and if maxΩ u ≥ 0, then (4.1.11) holds true.

Proof. (i) First of all we observe that, by assumptions, the function u attains
the maximum in Ω; we then set M := maxΩ u and, arguing by contradiction,
we assume that there exist a point y ∈ F (u)? and a vector ν ⊥ F (u) at y s.t.

〈A(y)ν, ν〉 > 0. (4.1.12)

Then, by de�nition, we have B(y + ν, ‖ν‖) ⊆ (Ω \ F (u)) ∪ {y} and

u(x) < M, for every x ∈ B(y + ν, ‖ν‖) \ {y}. (4.1.13)

We now consider the smooth function

w(x) := e−λ|x−(y+ν)|2 − e−λ|ν|
2

,

where λ > 0 is a constant which will be �xed later on. By de�nition, we have

• w > 0 on B(y + ν, ‖ν‖);

• w = 0 on ∂B(y + ν, ‖ν‖);

• w < 0 outside B(y + ν, ‖ν‖).

Moreover, a direct computation shows that

Lw(y) = 4λ2e−λ|ν|
2

(
〈A(y)ν, ν〉+ O

(
1

λ

))
; (4.1.14)

then, thanks to assumption (4.1.12), we can choose and �x λ > 0 in such a way
that Lw(y) > 0. As a consequence, Lw being continuous on RN , there exists
r > 0 such that V := B(y, r) is compactly contained in Ω and Lw > 0 on V .
We now de�ne, for ε > 0, a function vε : V → R by setting

vε(x) := u(x) + εw(x).

Obviously, vε ∈ C2(V,R) ∩ C(V ,R); moreover, we claim that it is possible to
choose ε > 0 in such a way that the maximum of vε on V is attained in V .

In fact, let us consider the splitting of ∂V given by the two sets

K1 := ∂V ∩B(y + ν, |ν|) and K2 := ∂V \K1.

For every x ∈ K2 (and every ε > 0), one has

vε(x) = u(x) + εw(x) < u(x) ≤M ;

on the other hand, for every x ∈ K1 (and every ε > 0) we have

vε(x) ≤ max
K1

u+ εmax
K1

w.

Since K1 ⊆ B(y+ν, ‖ν‖) and y /∈ K1, we infer from (4.1.13) that maxK1 u < M ;
as a consequence, it is possible to choose ε > 0 so small that

vε(x) < M, for every x ∈ K1.
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By gathering together these facts we see that, for every x ∈ ∂V and with the
above choice of ε, we have (note that y ∈ F (u) ∩ V and w(y) = 0)

vε(x) < M = u(y) = vε(y) ≤ max
V

vε,

and this proves the claim. We are now ready to conclude: from

Lvε = Lu+ εLw ≥ εLw > 0, on V ,

we infer that vε is a strictly L-subharmonic function on V , that is, Lvε > 0 on
V , admitting a maximum point on the open set V , say p0; then we have (recall
that A(p0) ≥ 0 and notice that ∇vε(p0) = 0 and H(p0) := (∂i,jvε(p0))i,j ≤ 0)

0 < Lvε(p0) =
∑
i,j

ai,j(p0)∂i,jvε(p0) = trace
(
A(p0) ·H(p0)

)
≤ 0, (4.1.15)

which is a contradiction.

(ii) We proceed exactly as in part (i), from which we also inherit all notations:
we replace L with Lc and we notice that w(y) = 0, so that Lcw(y) = Lw(y) and
(4.1.14) is left unchanged. Arguing as above (and using the same notations),
we let again p0 ∈ V be such that vε(p0) = maxV vε, which gives

vε(p0) ≥ vε(y) = u(y) = M.

Hence (4.1.15) becomes

0 < Lcvε(p0) = trace
(
A(p0) ·H(p0)

)
− c(p0) vε(p0) ≤ −c(p0)M,

where in the last inequality we used the assumption c ≥ 0 and the fact that
vε(p0) ≥ M . By the assumption M ≥ 0 (and again by the assumption on the
sign of c), we have −c(p0)M ≤ 0, and we obtain another contradiction.

With the Hopf-type Lem. 4.1.17 at hand, we can �nally state and prove the
announced Strong Maximum Principle for our PDOs L as in Sec. 4.1.1.

Theorem 4.1.18 (Strong Maximum Principle for L). Let L be a linear PDO
satisfying the assumptions introduced in Sec. 4.1.1, and let Ω ⊆ RN be a con-
nected open set. Then the following facts hold true:

(i) Any function u ∈ C2(Ω,R) satisfying Lu ≥ 0 on Ω and attaining a maxi-
mum in Ω is constant throughout Ω.

(ii) If c ∈ C∞(RN ,R) is nonnegative on RN and if we set Lc := L − c,
then any function u ∈ C2(Ω,R) satisfying Lcu ≥ 0 on Ω and attaining a
nonnegative maximum in Ω is constant throughout Ω.

Proof. (i) For the sake of clarity, we split the proof into three steps.

Step I: Let F (u) be the set introduced in the Hopf-type Lem. 4.1.17:

F (u) := {x ∈ Ω : u(x) = max
Ω

u}.
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By assumptions, F (u) is non-empty, say ξ ∈ F (u); we thus prove that F (u) = Ω.
To this end, we �rst re-write the operator L in its canonical form

L =
1

V (x)

N∑
i,j=1

∂

∂xi

(
V (x) ai,j(x)

∂

∂xj

)

=

N∑
i=1

∂

∂xi

 N∑
j=1

ai,j(x)
∂

∂xj

+
1

V (x)

N∑
i=1

∂xiV (x)

 N∑
j=1

ai,j(x)
∂

∂xj

 ;

from this, we see that the L-canonical v.f.s are given by (see Sec. 4.1.2)

Xi :=

N∑
j=1

ai,j(x)
∂

∂xj
, for every i = 1, . . . , N ;

X0 :=
1

V (x)

N∑
i=1

∂xiV (x)Xi.

(4.1.16)

Since L satis�es assumptions (NTD) and (HY) in Sec. 4.1.1, we are entitled to
apply Amano's Thm. 4.1.9, which ensures that the family

FL = {X0, . . . , XN}

is controllable on every open and connected subset of RN . Thus, Ω being con-
nected, any point of Ω can be joined to ξ by a continuous curve γ : [0, T ] → Ω
which is piecewise an integral curve of a vector �eld belonging to FL.

According with Def. 4.1.13, to prove the theorem it then su�ces to show that
F (u) is invariant with respect to any vector �elds belonging to FL.

Step II: Let now X ∈ FL be �xed. By the Bony Thm. 4.1.15 (or, more
precisely, by Cor. 4.1.16), we know that F (u) is X-invariant if and only if

〈XI(y), ν〉 = 0, for every y ∈ F (u)? and every ν ⊥ F (u) at y. (4.1.17)

On the other hand, since X is a linear combination of X0, . . . , XN , identity
(4.1.17) follows if we show that, for every i = 0, . . . , N , we have

〈XiI(y), ν〉 = 0, for every y ∈ F (u)? and every ν ⊥ F (u) at y.

Finally, since X0 is a combination (with smooth coe�cients) of X1, . . . , XN

(hence, X0I(x) is a linear combination of X1I(x), . . . , XNI(x) for every x ∈ RN ;
see (4.1.16)), we can limit ourselves to prove that, for every i = 1, . . . , N ,

〈XiI(y), ν〉 = 0, for every y ∈ F (u)? and every ν ⊥ F (u) at y. (4.1.18)

Step III: Let i ∈ {1, . . . , N} be �xed. Since, for every x ∈ RN , the vec-
tor XiI(x) is precisely the i-th column of the principal matrix A(x) of L, the
Cauchy-Schwarz inequality provides a constant λ(x) > 0 such that

〈XiI(x), ν〉2 ≤ λi(x) 〈A(x)ν, ν〉 for every ν ∈ RN . (4.1.19)

From this, by exploiting identity (4.1.11) in the Hopf-type Lem. 4.1.17, we im-
mediately obtain the desired (4.1.18). This completes the proof.



4.1. The Strong Maximum Principle 145

(ii) We consider once again the set F (u) 6= ∅ introduced above, and we prove
that F (u) = Ω. To this end, we proceed exactly as in part (i): by exploiting
Amano's Thm. 4.1.9 and Bony's Thm. 4.1.15, we see that the needed identity
F (u) = Ω follows if we show that, for every i = 1, . . . , N ,

〈XiI(y), ν〉 = 0, for every y ∈ F (u)? and every ν ⊥ F (u) at y. (4.1.20)

Moreover, by part (ii) of Lem. 4.1.17, we have at our disposal a Hopf-type lemma
for operators of the form Lc, and for functions u such that Lcu ≥ 0 and attaining
a nonnegative maximum. Therefore, by combining identity (4.1.11) with the
above (4.1.19), we obtain the desired (4.1.20). This ends the proof.

Remark 4.1.19. A closer inspection of the proof of Thm. 4.1.18 shows that we
have indeed demonstrated the following result as well.

Let L be a linear PDO satisfying assumptions (DS), (DE) and (NTD) in
Sec. 4.1.1, and let c ∈ C∞(RN ,R) be nonnegative on RN . Let us assume that
the operator Lc := L− c is hypoelliptic on every open subset of RN .

If Ω ⊆ RN is a connected open set, any function u ∈ C2(Ω,R) satisfying
Lcu ≥ 0 on Ω and attaining a nonnegative maximum in Ω is constant on Ω.

In fact, let F (u) = {x ∈ Ω : u(x) = maxΩ u} and let ξ ∈ F (u). Since the
operator Lc is non-totally degenerate and C∞-hypoelliptic on every open subset
of RN , we infer from Amano's Thm. 4.1.9 that the vector space spanned by the
Lc-canonical vector �elds is a controllable family on Ω. On the other hand,
since the canonical vector �elds of Lc = L−c are the same as those of L, we see
once again that the identity F (u) = Ω follows if we show that F (u) is invariant
w.r.t. the L-canonical vector �elds X1, . . . , XN introduced in (4.1.16). At this
point, it su�ces to argue as in the proof of Thm. 4.1.18 .

As it is well-know, the Strong Maximum Principle for a linear PDO easily
implies the Weak one. More precisely, we have the following result.

Theorem 4.1.20 (Weak Maximum Principle for L). Let L be a linear PDO
satisfying the assumptions introduced in Sec. 4.1.1, and let c ∈ C∞(RN ,R) be
nonnegative on RN (the case c ≡ 0 is allowed).

Setting Lc := L − c, then the operator Lc satis�es the Weak Maximum
Principle (WMP, for short) on every bounded open set Ω ⊆ RN , that is:

u ∈ C2(Ω,R)
Lcu ≥ 0 on Ω
lim sup
x→x0

u(x) ≤ 0 for every x0 ∈ ∂Ω
=⇒ u ≤ 0 on Ω. (4.1.21)

Proof. Let Ω ⊆ RN be bounded open set, and let u ∈ C2(Ω,R) be as in the
left-hand side of (4.1.21). Since Ω is bounded, there exists x0 ∈ Ω s.t.

lim sup
x→x0

u(x) = sup
Ω
u. (4.1.22)

We then distinguish two cases.

• x0 ∈ ∂Ω. In this case, identity (4.1.22) and the above (4.1.21) give
supΩ u = lim supx→x0

u(x) ≤ 0, whence u(x) ≤ 0 for every x ∈ Ω.
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• x0 ∈ Ω. In this case, identity (4.1.22) implies that u(x0) = maxΩ u, that
is, x0 is an interior maximum point of u. If u(x0) < 0, we conclude as above
that maxΩ u = u(x0) < 0. If, instead, u(x0) ≥ 0, we consider the connected
component Ω0 ⊆ Ω of Ω containing x0. Thanks to part (ii) of the Strong
Maximum Principle in Thm. 4.1.18, the existence of an interior maximum point
of u on Ω ⊇ Ω0 (and the fact that u(x0) ≥ 0) ensures that

u ≡ u(x0), on Ω0.

Thus, if we choose any ξ0 ∈ ∂Ω0 ⊆ ∂Ω, we obtain

max
Ω

u = u(x0) = lim sup
Ω03x→ξ0

u(x) ≤ lim sup
Ω3x→ξ0

u(x) ≤ 0,

where the last inequality follows from the assumption in (4.1.21).

Remark 4.1.21. By arguing as in the proof of Thm. 4.1.20 (and by exploiting
Rem. 4.1.19 instead of Thm. 4.1.18 - (ii)) we also get the following result, where
we alternatively replace the hypothesis of hypoellipticity of L by that of L− c.

Let L be a linear PDO satisfying assumptions (DS), (DE) and (NTD) in
Sec. 4.1.1, and let c ∈ C∞(RN ,R) be nonnegative on RN . Let us assume that
the operator Lc := L− c is hypoelliptic on every open subset of RN .

Then Lc satis�es the WMP on every bounded open set Ω ⊆ RN .

4.1.5 Application to the Dirichlet problem and to Har-

nack's Inequality

We conclude this �rst part of the chapter by brie�y describing how the Strong
Maximum Principle can be pro�tably used for proving the solvability of the
Dirichlet problem and the Harnack inequality for our PDOs L as in Sec. 4.1.1.

All the results we are going to present here can be found in the very recent
paper [15]; for this reason, we prefer not to give any proofs of such results and
we directly refer to the cited [15] for all the details.

The �rst result we aim to state concerns the solvability of the Dirichlet
problem for our operators L. Such a result can be proved in a standard way,
by crucially exploiting the Strong Maximum Principle and a classical elliptic
approximation argument (see [39, Section 5] for all the details).

Theorem 4.1.22 (Solvability of the Dirichlet problem for L). Let L be a linear
PDO satisfying assumptions (DS), (DE) and (NTD) in Sec. 4.1.1, and let ε ≥ 0
be �xed (the case ε = 0 being admissible). We set Lε := L − ε and we assume
that Lε is C

∞-hypoelliptic on every open subset of RN .

Then, there exists a basis B for the Euclidean topology of RN , independent
of ε, made of open and connected sets Ω (with Lipschitz boundary) with the
following properties: for every f ∈ C(Ω,R) and for every ϕ ∈ C(∂Ω,R), there
exists one and only one solution u ∈ C(Ω,R) of the Dirichlet problem{

Lεu = −f on Ω (in the sense of distributions),
u = ϕ on ∂Ω (pointwise).

(4.1.23)

Furthermore, if f, ϕ ≥ 0 then u ≥ 0 as well. Finally, if f ∈ C∞(Ω,R)∩C(Ω,R),
then the same is true of u, and u is a classical solution of (4.1.23).
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Remark 4.1.23. Let the assumptions and the notations in Thm. 4.1.22 apply.
Before proceeding, we brie�y describe (for the sake of completeness) how the
basis B can be constructed. We closely follow the idea of Bony [39, Sec. 5].

For every �xed x0 ∈ RN , the operator Lε being nontotally degenerate (by
assumption (NTD)), there exists a unitary vector h0 ∈ RN such that

〈A(x0)h0, h0〉 > 0. (4.1.24)

We then consider, for everyM, δ > 0, the neighborhood of x0 de�ned as follows:

Ω(x0,M, δ) := B(x0 +M h0,M + δ) ∩B(x0 −M h0,M + δ).

By exploiting (4.1.24), it is possible to �nd Mx0 , δx0 > 0 such that, for any
δ ≤ δx0

and any M ≥Mx0
, the set Ω(x0,M, δ) satis�es the following property:

for every y ∈ Ω(x0,M, δ) there exists ν ∈ RN \ {0} such that

B(y + ν, ‖ν‖) ∩ Ω(x0,M, δ) = {y} and 〈A(y) ν, ν〉 > 0;

then, the basis B can be obtained as

B :=
{

Ω(x0, δ,M) : x0 ∈ RN , δ ≤ δx0
and M ≥Mx0

}
.

With the existence of the weak solution of the Dirichlet problem for Lε on
a bounded open set Ω, we can de�ne the associated Green operator as usual.

De�nition 4.1.24 (Green operator and Green measure). Let the assumptions
and the notations in Thm. 4.1.22 apply, and let Ω ∈ B.

We consider the operator (depending on Lε and Ω; we avoid keeping track
of the dependence on Ω in the notation)

Gε : C(Ω,R) −→ C(Ω,R) (4.1.25)

mapping f ∈ C(Ω,R) into the function Gε(f) which is the unique distributional
solution u in C(Ω,R) of the Dirichlet problem{

Lεu = −f on Ω (in the sense of distributions),
u = 0 on ∂Ω (pointwise).

(4.1.26)

We call Gε the Green operator related to Lε and to the open set Ω.
By the Riesz Representation Theorem (which is applicable thanks to the

monotonicity properties in Thm. 4.1.22 with respect to the function f), for every
x ∈ Ω there exists a (nonnegative) Radon measure λx,ε on Ω such that

Gε(f)(x) =

∫
Ω

f(y) dλx,ε(y), for every f ∈ C(Ω,R). (4.1.27)

We call λx,ε the Green measure related to Lε (to Ω and to x).

Let now L be a linear PDO satisfying assumptions (DS) and (DE) in the
above Sec. 4.1.1. We denote by ν the Radon measure on RN with density V
with respect to the standard Lebesgue measure, that is,

ν(B) :=

∫
B

V (x) dx, for every Borel set B ⊆ RN . (4.1.28)

Thm. 4.1.25 below shows that the Green measure λx,ε related to Lε admits
density with respect to the measure ν, which is extremely �well-behaved�.
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Theorem 4.1.25 (Green kernel for Lε). Let the assumptions and the notations
in Thm. 4.1.22 apply, and let Ω ∈ B.

If Gε and λx,ε are the Green operator and the Green measure related to Lε
(Def. 4.1.24), there exists a function kε : Ω × Ω → R, smooth and positive out
of the diagonal of Ω× Ω, such that the following representation holds true:

Gε(f)(x) =

∫
Ω

f(y) kε(x, y) dν(y), for every x ∈ Ω, (4.1.29)

and for every f ∈ C(Ω,R). We call kε the Green kernel related to Lε (and to
the open set Ω).Furthermore, we have the following properties:

(i) Symmetry of the Green kernel:

kε(x, y) = kε(y, x) for every x, y ∈ Ω. (4.1.30)

(ii) For every �xed x ∈ Ω, we have Lεkε(x, ·) = 0 on Ω \ {x}; moreover, for
every ϕ ∈ C∞0 (Ω,R) we have Gε(Lεϕ) = −ϕ = Lε(Gε(ϕ)) , that is

−ϕ(x) =

∫
Ω

Lεϕkε(x, ·) dν = Lε

(∫
Ω

ϕkε(x, ·) dν
)
. (4.1.31)

(iii) For every �xed x ∈ Ω, one has

lim
y→y0

kε(x, y) = 0 for any y0 ∈ ∂Ω. (4.1.32)

(iv) For every �xed x ∈ Ω, we have

kε(x, ·) = kε(·, x) ∈ L1(Ω) and kε ∈ L1(Ω× Ω).

The existence of a very regular Green kernel for Lε is a key fact for proving
the announced Harnack Inequality for our PDOs L: in fact, it brings along with
a �Weak Harnack Inequality� for L, from which we shall derive the classical one.

In order to proceed in this direction, we shall need a further assumption,
very similar to (HY) (and, indeed, equivalent to it in many important cases):

(HY)ε There exists ε > 0 such that the operator L − ε is C∞-hypoelliptic in
every open subset of RN .

For operators L satisfying hypotheses (NTD), (HY) and (HY)ε we are able to
prove the Harnack Inequality (see Thm. 4.1.30).

Remark 4.1.26. Hypothesis (HY)ε is implicit in hypothesis (HY) for notable
classes of operators, whence our assumptions for the validity of the Harnack
Inequality for L reduce to (NTD) and (HY) solely: namely, (HY) implies (HY)ε
in the following important cases:

• for Hörmander operators, and, more generally, for second order subelliptic
operators (in the usual sense of ful�lling a subelliptic estimate, see e.g.,
[96, 99]); indeed, any operator L in these classes of PDOs is hypoelliptic
(see Hörmander [94], Kohn and Nirenberg [100]), and L still belongs to
these classes after the addition of a smooth zero-order term;
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• for operators with real-analytic coe�cients. Indeed, in the Cω case, one
can apply known results by Ole��nik and Radkevi£ ensuring that, for a
general linear second-order PDO L with real-analytic coe�cients, hypoel-
lipticity is equivalent to the veri�cation of Hörmander's Rank Condition
for the L-canonical vector �elds (see Sec. 4.1.2); this condition is clearly
invariant under any change of the zero-order term of L, so that (HY) and
(HY)ε are indeed equivalent.

The problem of establishing, in general, whether (HY) implies (HY)ε seems
non-trivial. In this regard we recall that, for example, in the complex coe�cient
case the presence of a zero-order term (even a small ε) may drastically alter
hypoellipticity (see for instance the example given by Stein in [125]); see also
the very recent paper by Parmeggiani [122] for related topics.

We explicitly remark that the operators (4.1.4a)-to-(4.1.4d) in Exm. 4.1.4
are not subelliptic (nor Cω), yet they satisfy hypotheses (NTD), (HY) and
(HY)ε. The lack of subellipticity is a consequence of the characterization of the
subelliptic PDOs due to Fe�erman and Phong [70, 69] (see also [99, Prop.1.3]
or [96, Th.2.1 and Prop.2.1], jointly with the presence of a coe�cient with a
zero of in�nite order in (4.1.4a)-to-(4.1.4d)). The second assertion concerning
the veri�cation of (HY)ε (the other hypotheses being already discussed) derives
from the following result by Kohn, [99]: any operator of the form

L1 + λ(x)L2 in Rnx ×Rmy

is hypoelliptic, where λ ∈ C∞(Rx), λ ≥ 0 has a zero of in�nite order at 0
(and no other zeroes of in�nite order), and L1 (operating in x ∈ Rn) and L2

(operating in y ∈ Rm) are general second order PDOs with smooth coe�cients
and they are assumed to be subelliptic.

It is straightforward to recognize that by subtracting ε to any PDO in
(4.1.4a)-to-(4.1.4d) we get an operator of the form (L1 − ε) + λ(x)L2, where
λ has the required features, L2 is uniformly elliptic (indeed, a classical Lapla-
cian in all the examples), and L1 − ε is a uniformly elliptic operator (cases
(4.1.4a)-to-(4.1.4c)) or it is a Hörmander operator (case (4.1.4d)).

The rôle of the perturbation L−ε of the operator L is clearly expressed by the
following lemma, which is a simple consequence of the Weak Maximum Principle
in Thm. 4.1.20. Such a result, plus some topological facts on hypoellipticity, is
the key ingredient for the Weak Harnack Inequality related to L.

Lemma 4.1.27. Let L be a linear PDO satisfying the assumptions in Sec. 4.1.1
and assumption (HY)ε. Moreover, let Ω be an open set in RN as in the thesis
of Thm. 4.1.22 and let Ω′ be an open set containing Ω. Finally, we denote by
kε the Green kernel related to Lε and to the set Ω (as in Thm. 4.1.25).

Then we have the estimate

u(x) ≥ ε
∫

Ω

u(y) kε(x, y) dν(y), ∀x ∈ Ω, (4.1.33)

holding true for every smooth nonnegative L-harmonic function u in Ω′.

As anticipated, Lem. 4.1.27 gives the following Weak Harnack Inequality.
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Theorem 4.1.28 (Weak Harnack inequality for derivatives). Let L be a linear
PDO satisfying the assumptions in Sec. 4.1.1 and assumption (HY)ε.

Then, for every connected open set O ⊆ RN , every compact subset K of
O, every m ∈ N ∪ {0} and every y0 ∈ O, it is possible to �nd a real constant
C(y0) = C(L, ε, O,K,m, y0) > 0 such that∑

|α|≤m

sup
x∈K

∣∣∣∂αu(x)

∂xα

∣∣∣ ≤ C(y0)u(y0), (4.1.34)

for every nonnegative L-harmonic function u in O.

In order to obtain, from Thm. 4.1.28, the classical version of the Harnack
Inequality, we exploit the following result of Potential Theory. A proof of a
more general abstract version of this useful result, in the framework of axiomatic
harmonic spaces, can be found in the survey notes [42, pp.20�24] by Brelot,
where this theorem is attributed to G. Mokobodzki.

Instead of appealing to an abstract Potential-Theoretic statement, we prefer
to formulate the result under the following more speci�c form (where a harmonic
sheaf related to a smooth PDO is considered).

Theorem 4.1.29. Let L be a general second order linear PDO in RN with
smooth coe�cients. Suppose the following conditions are satis�ed.

(Regularity) There exists a basis B for the Euclidean topology of RN (con-
sisting of bounded open sets) such that, for every Ω ∈ B \ {∅} and for
every ϕ ∈ C(∂Ω,R), there exists a unique function HΩ

ϕ ∈ C2(Ω) ∩ C(Ω)
solving the Dirichlet problem (related to L){

Lu = 0 in Ω
u = ϕ on ∂Ω,

and satisfying HΩ
ϕ ≥ 0 whenever ϕ ≥ 0.

(Weak Harnack Inequality) For every connected open set O ⊆ RN , every
compact subset K of O and every y0 ∈ O, it is possible to �nd a constant
C(y0) = C(L,O,K, y0) > 0 such that

sup
K
u ≤ C(y0)u(y0),

for every nonnegative L-harmonic function u in O.

Then, the following Strong Harnack Inequality for L holds: for every connected
open set O and every compact subset K of O it is possible to �nd a real constant
M = M(L,O,K) ≥ 1 such that

sup
K
u ≤M inf

K
u, (4.1.35)

for every nonnegative L-harmonic function u in O.

By combining Thm. 4.1.28 with the above Thm. 4.1.29, we �nally obtain the
announced Harnack Inequality for our PDOs L.
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Theorem 4.1.30 (Harnack Inequality for L). Let L be a linear PDO satisfying
the assumptions in Sec. 4.1.1 and assumption (HY)ε.

Then, for every connected open set O ⊆ RN and every compact subset K of
O, there exists a constant M = M(L, O,K) ≥ 1 such that

sup
K
u ≤M inf

K
u, (4.1.36)

for every nonnegative L-harmonic function u in O.

4.2 An Hardy-type inequality

In Euclidean space RN , with N ≥ 3, it is very well known the following Hardy
inequality, holding true for every function u ∈ C∞0 (RN ,R):∫

RN

u2(x)

‖x‖2
dx ≤

(
2

N−2

)2
∫
RN
‖∇u(x)‖2 dx. (4.2.1)

Obviously, this inequality is profoundly connected with the Euclidean setting
under many respects: it involves the Euclidean norm ‖·‖ and the usual Euclidean
gradient ∇, both being related -in their turn- to the classical Laplace operator
∆, since div

(
∇u) = ∆u and since the (unique global) fundamental solution Γ

of ∆ is a constant multiple of ‖x‖2−N (see Exm. 1.3.6 on page 16).
The research in the di�erent variants, in the possible improvements and

in new geometrical insight of the Hardy inequality (4.2.1) is still very active,
as the following (partial) list of references show: [2, 3, 4, 5, 9, 11, 12, 21,
43, 44, 45, 47, 53, 57, 59, 71, 82, 85, 103, 108, 112, 121, 132]. See also the
2015 survey monograph [10]. Furthermore, in the last 15 years many remark-
able contributions to Hardy-type inequalities have been provided in subelliptic
contexts. This is especially true: in the setting of the Heisenberg group Hn
[5, 55, 87, 119, 136]; for certain classes of linear and quasi-linear degenerate-
elliptic operators [54, 56, 61, 62, 101, 137]; for Carnot groups [86, 102, 124];
for general Carnot-Carathéodory spaces [58]. In 1990, Garofalo and Lanconelli
[80] �rst contributed to Hardy-type inequalities in the paramount prototype
of subelliptic contexts: indeed, in [80] it is proved a Hardy-type inequality in
the Heisenberg group Hn, and it is derived from it an Uncertainty Principle as
well. Moreover, the Hardy-type inequality is employed in obtaining a Unique
Continuation result for the Schrödinger-type equation

−∆Hnu+ Pu = 0,

where ∆Hn is the Kohn- Laplacian on Hn (and P is a suitable potential). In
[80] it is followed (with all the novelties of a subelliptic context) the approach
to Unique Continuation previously introduced by Garofalo and Lin in [81, 82]
in the case of uniformly elliptic operators.

As it is proved by Garofalo in [79], when L admits a well-behaved positive
and global fundamental solution Γ (this is the case, e.g., of homogeneous Hör-
mander operators), an Hardy-type inequality holds true, with the Euclidean
gradient and the Euclidean distance replaced �roughly put� by the L-gradient
and by a substitute for a distance obtained by Γ over a normalizing kernel.
Also, Lebesgue measure dx is replaced by the L-weighted measure V (x)dx.
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We �rst derive a general L2-Hardy inequality for C2-functions (not necessarily
compactly-supported) over the super-level sets Ω(x, r) of Γ(x; ·): we frame this
result as a consequence of the mean-value formulas naturally associated with
the variational form of L, these mean-value formulas having already showed to
be very versatile in the study of the Potential Theory for L, as in the recent
investigations [1, 13, 34, 35] (where the same assumptions on L as in the present
paper are made; in [34, 35] the case V ≡ 1 is considered).

For the sake of clarity, we now brie�y describe how we aim to proceed.

- In Sec. 4.2.1 we describe the linear PDOs to which we aim to extend the
Hardy inequality (4.2.1), and we �x some notations.

- Sec.s 4.2.2 and 4.2.3 are devoted to introduce the relevant �geometrical
objects� needed for generalizing inequality (4.2.1).

- In Sec. 4.2.4 we prove some mean value formulas which generalize the very
well known surface and solid ones of the Laplace operator.

- In Sec. 4.2.5 we present the generalization of the Hardy inequality obtained
by Garofalo [79] to the PDOs L described in Sec. 4.2.1; the mean value
formulas proved in Sec. 4.2.4 will be a fundamental ingredient.

- Finally, in Sec. 4.2.6 we describe how the Hardy-type inequality presented
in Sec. 4.2.5 can be used to establish a result of (strong) Unique Continu-
ation for the solutions of the Schrödinger-type equation

−Lu+ Pu = 0,

where L is a sub-Laplacian on a Carnot group G and P is a continuous
function on G (satisfying suitable estimates).

4.2.1 Main assumptions and notations

Throughout this section, we shall be concerned with linear PDOs L satisfying
all the properties introduced in Sec. 4.1.1, that is,

- (DS): Divergence Structure;

- (DE): Degenerate-Ellipticity;

- (NTD): Non-Total-Degeneracy;

- (HY): Hypo-Ellipticity;

plus an important additional assumption which we now properly introduce. To
this end, we �rst give the following important de�nition.

De�nition 4.2.1 (L-weighted measure). Let s be equal to N − 1 or N . We
denote by µsL the Borel measure on RN with density V with respect to the usual
s-dimensional Hausdor� measure Hs on RN , that is,

µsL(A) :=

∫
A

V (x) dHs(x), for every Borel set A ⊆ RN . (4.2.2)
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Remark 4.2.2. Since V is continuous and strictly positive, a measurable func-
tion f : RN → R is locally integrable on RN with respect to Hs if and only if
this holds true with respect to the measure µsL.

In the particular case s = N , the quasi-divergence form (4.1.1) of L ensures
that L is formally self-adjoint in the Hilbert space L2(RN , µNL ), when restricted
to the smooth and compactly supported functions, that is∫

RN
ϕLψ dµNL =

∫
RN

ψLϕdµNL , for all ϕ,ψ ∈ C∞0 (RN ). (4.2.3)

With the de�nition of L-weighted measure at hand, we now introduce the
announced additional assumption we require on our PDOs L throughout this
chapter (the acronym (FS) stands for Fundamental Solution):

(FS): L admits a well-behaved global fundamental solution with respect to the
measure µNL : by this, we mean that there exists a function

Γ : O = {(x, y) ∈ RN ×RN : x 6= y} → R

satisfying the following properties:

(a) For every x ∈ RN , we have Γ(x; ·) ∈ L1
loc(RN ) and∫

RN
Γ(x; y)Lϕ(y) dµNL (y) = −ϕ(x), ∀ϕ ∈ C∞0 (RN ,R); (4.2.4)

(b) for every x ∈ RN , Γ(x; ·) has a pole at x and it vanishes at in�nity:

lim
y→x

Γ(x; y) =∞ and lim
‖y‖→∞

Γ(x; y) = 0; (4.2.5)

(c) for every x ∈ RN , we have ∇(Γ(x; ·)) 6= 0 on RN \ {x};
(d) Γ ∈ C∞(O,R) and Γ(x; y) > 0 for every x, y ∈ O;

(e) Γ ∈ L1
loc(RN ×RN ).

For the sake of brevity, given x ∈ RN , in the sequel we set:

Γx : RN \ {x} −→ R, Γx(y) := Γ(x; y).

Remark 4.2.3. Before proceeding, it is appropriate to stop for a moment to
compare the de�nition of fundamental solution w.r.t.µNL with the notion of
fundamental solution introduced in Def. 1.3.5 on page 15.

To this end we observe that, since L is (formally) self-adjoint w.r.t. the mea-
sure µNL (see Rem. 4.2.2), we can write identity (4.2.4) in the following way∫

RN
Γ(x; y)L∗µϕ(y) dµNL = −ϕ(x), ∀ ϕ ∈ C∞0 (RN ,R), (4.2.6)

where L∗µ stands for the formal adjoint of L with respect to the measure µNL
(note that, L being self-adjoint w.r.t.µNL , we have L∗µ = L). Written in this
form, it is clear that identity (4.2.4) is totally analogous to identity (1.3.7) on
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page 15, if we replace the Lebesgue measure dx with the measure µNL and the
classical adjoint L∗ of L with the adjoint with respect to µNL .

In the particular case when V ≡ 1 (that is, L is a pure divergence-form ope-
rator), identity (4.2.4) reduces to identity (1.3.7), and a fundamental solution
w.r.t.µNL = HN is a fundamental solution in the sense of Def. 1.3.5.

The main reason why, in the present chapter, we decided to deal with funda-
mental solutions w.r.t. the measure µNL comes from the Theory of sub-Laplace
operators on real Lie groups. To be more precise, let G = (RN , ∗) be a Lie
group (with neutral element e), let {X1, . . . , Xm} be a system of Lie generators
for Lie(G) and let µ be the Haar measure on G de�ned as follows:

µ := V (x) dx, where V (x) =
1

det
(
Jτx(e)

) .
As already discussed in Exm. 4.1.2, the linear PDO

L := −
m∑
j=1

X∗µj Xj

satis�es assumptions (DE)-to-(HY), and it represents the main prototype for our
PDOs of the quasi-diverge form (4.1.1). Now, since L and µ are left-invariant
on G and since L is self-adjoint with respect to µ, it is not di�cult to prove that
a (global) fundamental solution for L w.r.t.µNL = µ (which is actually unique,
see Remark (c) below) satis�es the following very natural properties:

Γ(x; y) = Γ(y;x) and Γ(x; y) = Γe
(
x−1 ∗ y

)
.

On the other hand, it is easy to check that these properties do not hold if Γ is
a fundamental solution for L in the sense of Def. 1.3.5 on page 15.

It is thus clear that the notion of fundamental solution with respect to the
measure µNL is the most natural to work with in the present context.

We now continue by highlighting, in the subsequent examples, some wide
classes of linear PDOs satisfying all the assumptions listed above.

Example 4.2.4. Let G = (RN , ∗, δλ) be a homogeneous Carnot group, with
homogeneous dimension Q > 2, and let {X1, . . . , Xm} be a set of Lie-generators
of Lie(G). We already know from Exm. 4.1.1 that the sub-Laplacian

L =

m∑
j=1

X2
j

satis�es assumptions (DS)-to-(HY) (with V ≡ 1 on RN ); moreover, by Folland's
Thm. 1.3.9 on page 17, there exists a (unique) global fundamental solution for
L with respect to the measure µNL = HN satisfying properties (a)-to-(e).

Example 4.2.5. Let X = {X1, . . . , Xm} be a set linearly independent smooth
vector �elds on RN satisfying the following assumptions (see Sec. 3.2):

(1) X1, . . . , Xm are homogeneous of degree 1 with respect to a suitable family
{δλ}λ>0 of dilations on RN of the form

δλ(x) = (λσ1x1, . . . , λ
σNxN ),

where 1 = σ1 ≤ . . . ≤ σN and Q :=
∑N
j=1 σj ≥ 2;
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(2) X1, . . . , Xm satisfy Hörmander's condition at every point of RN .

As already pointed out in Exm. 4.1.3, the homogeneous PDO

L =

m∑
j=1

X2
j

satis�es assumptions (DS)-to-(HY) (with V ≡ 1 on RN ); moreover, thanks to
all the results obtained in Chpt. 3 (see, for example, the summarizing Thm. 3.3.1
on page 79), we know that L admits a (unique) global fundamental solution Γ
w.r.t.µNL = HN which satis�es properties (a)-to-(c) and such that

lim
‖y‖→∞

Γ(x; y) = 0, for every �xed x ∈ RN .

In many meaningful cases (as, for example, for the linear PDOs considered in
Sec. 3.4), we are also able to prove that

lim
y→x

Γ(x; y) =∞, for every �xed x ∈ RN .

We conclude this section with some remarks concerning assumption (FS).

(a) If L∗ is the classical formal adjoint operator of L (in the usual Hilbert
space L2(RN ,dx)), we deduce from (4.2.3) that

L∗u = V L(u/V ), for every u ∈ C∞(RN ,R);

as a consequence, we see that property (c) in our assumption (FS) is in
fact equivalent to the following more familiar identity∫
RN

Γ(x; y)L∗ϕ(y) dy = − 1

V (x)
ϕ(x), ∀ ϕ ∈ C∞0 (RN ), ∀x ∈ RN .

Hence LΓx = −Dirx/V (x) in the distribution sense and, since Γx is of
class C∞ on RN \ {x} (as it follows from property (a)), we have

LΓx(y) = 0, for every y ∈ RN \ {x}. (4.2.7)

(b) Assumption (e) on Γ is made only for technical purposes: we shall soon
consider the level sets of Γ and we shall require that they be smooth
manifolds; this is the reason why assumption (e) is made. It is worth
noting that, if such an assumption is dropped, then Sard's Lemma ensures
that almost every level set of Γ is a smooth manifold; hence our results
may be restated in an obvious (but perhaps less e�ective) way.

(c) Since the operator L is C∞-hypoelliptic on every open subset of RN (by
assumption (HY)) and it satis�es the Weak Maximum Principle (as a
consequence of properties (DS)-to-(HY); see Thm. 4.1.20), we derive from
Rem. 1.3.7 - (c) on page 16 that a global fundamental solution Γ for L with
respect to the measure µNL (as in assumption (FS)) is actually unique.
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4.2.2 Preliminaries on Γ-balls

The main aim of this section is to introduce the so-called Γ-balls, which represent
the appropriate substitute for the Euclidean balls in our sub-elliptic context.

From now on, we denote by L a �xed linear PDO satisfying all the assump-
tions introduced in Sec. 4.2.1, and we denote by Γ its unique (global) fundamen-
tal solution with respect to µNL as in assumption (FS).

De�nition 4.2.6 (Γ-ball). Let x ∈ RN be �xed and let r > 0. The set

Ω(x, r) :=
{
y ∈ RN \ {x} : Γ(x; y) > 1/r

}
∪ {x} (4.2.8)

will be called the Γ-ball (related to L) of centre x and radius r.

Remark 4.2.7. Let x ∈ RN be �xed. Since, by assumption (FS)-(a), we have
Γx > 0 on RN \ {x}, we allow ourselves to consider the Γ-ball of centre x and
�in�nite radius�: by an abuse of notation, we set

Ω(x,∞) :=
{
y ∈ RN \ {x} : Γx > 0

}
∪ {x} = RN . (4.2.9)

Example 4.2.8. Let us consider the classical Laplace operator L = ∆ on RN ,
with N ≥ 3. Since the fundamental solution Γ of ∆ is given by

Γ(x; y) =
1

N (N − 2)ωN
‖x− y‖2−N , x 6= y,

we easily see that, for every x ∈ RN and every r > 0, we have

Ω(x, r) = {y ∈ RN : ‖y − x‖ < ρ}, with ρ =

(
r

N (N − 2)ωN

)1/(N−2)

.

Remark 4.2.9. By crucially exploiting the properties of Γ contained in our
assumption (FS), it is not di�cult to see that, for every x ∈ RN :

• Ω(x, r) is a bounded open neighborhood of x and⋃
r>0 Ω(x, r) = RN ,

⋂
r>0 Ω(x, r) = {x}.

• the family {Ω(x, r)}r>0 is a basis of neighborhoods of x;

• for every compact set K ⊆ RN and every x ∈ RN , it is possible to �nd
r = r(K,x) > 0 such that K ⊆ Ω(x, r);

• the set S(x, r) := {y ∈ RN \ {x} : Γx(y) = 1/r} is a smooth submanifold
of RN of dimension (N − 1).

The following proposition shows that any Γ-ball is extremely well-behaved
from a di�erentiable point of view.

Proposition 4.2.10. For every �xed x ∈ RN and every r > 0, the Γ-ball
Ω(x, r) is an open subset of RN with C∞ boundary, coinciding with the interior
of its closure. In particular, one has

∂Ω(x, r) =
{
y ∈ RN \ {x} : Γx(y) = 1/r

}
, (4.2.10)
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and the unit exterior normal to Ω(x, r) is given by

νext
x,r (y) = − ∇Γx(y)

‖∇Γx(y)‖
, for all y ∈ ∂Ω(x, r). (4.2.11)

Proof. We �rst prove that (4.2.10) is ful�lled. To this end we observe that, since
Γx is continuous, we obviously have ∂Ω(x, r) ⊆ S(x, r). To show the reverse
inclusion, let y ∈ S(x, r) be �xed and let ν be the (unit) vector given by

ν := − ∇Γx(y)

‖∇Γx(y)‖
(4.2.12)

(note that ν belongs to the normal space to S(x, r) at y). If δ > 0 is such that{
y + tν : t ∈ (−δ, δ)

}
⊆ RN \ {x},

by the Mean Value Theorem we can write (for a suitable |θt| < t)

Γx(y + tν) = Γx(y) + t 〈∇Γx(y + θtν), ν〉
= 1/r + t 〈∇Γx(y + θtν), ν〉;

(4.2.13)

from this, since θt → 0 as t→ 0, we get

lim
t→0
〈∇Γx(y + θtν), ν〉 = 〈∇Γx(y), ν〉 (4.2.12)= −‖∇Γx(y)‖ < 0. (4.2.14)

By gathering together (4.2.13) and (4.2.14), we can then �nd δ1 < δ such that

(a) Γx(y + tν) > 1/r for every t ∈ (−δ1, 0),

(b) Γx(y + tν) < 1/r for every t ∈ (0, δ1);

hence, inequality (a) ensures that y + tν ∈ Ω(x, r) for every −δ1 < t < 0, and
this proves that y ∈ ∂Ω(x, r), as desired.

With identity (4.2.10) at hand, it is easy to see that Ω(x, r) is regular for
the Divergence Theorem: in fact, since ∂Ω(x, r) = S(x, r) is a smooth (N − 1)-
dimensional manifold, we have

Ω(x, r) ⊆ int
(
Ω(x, r)

)
⊆ Ω(x, r) ∪ int

(
∂Ω(x, r)

)
(4.2.10)

= Ω(x, r) ∪ int
(
S(x, r)

)
= Ω(x, r),

and this proves that Ω(x, r) is a regular open set of class C∞.

Finally, let y ∈ ∂Ω(x, r) = S(x, r) and let νext
x,r (y) be the unit vector de�ned in

(4.2.11). Obviously, νext
x,r (y) is orthogonal to ∂Ω(x, r) at y; moreover, inequalities

(a) and (b) show that there exists δ1 > 0, depending on y, such that

y − tνext
x,r (y) ∈ Ω(x, r) and y + tνext

x,r (y) /∈ Ω(x, r), for 0 < t < δ1.

This demonstrates that the unit exterior normal to Ω(x, r) at y is precisely
νext
x,r (y), and the proof is complete.
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Corollary 4.2.11. For every �xed x ∈ RN and every 0 < ρ < r, the Γ-annulus

Ω(x, ρ, r) :=
{
y ∈ RN \ {x} : 1/r < Γx(y) < 1/ρ

}
(4.2.15)

is a regular open set of class C∞. In particular, we have

∂Ω(x, ρ, r) = ∂Ω(x, r) ∪ ∂Ω(x, ρ),

and the unit exterior normal to Ω(x, ρ, r) is given by

νext
x,ρ,r(y) =


− ∇Γx(y)

‖∇Γx(y)‖
=: νext

x,r (y) if y ∈ ∂Ω(x, r),

+
∇Γx(y)

‖∇Γx(y)‖
=: −νext

x,ρ(y) if y ∈ ∂Ω(x, ρ).

(4.2.16)

Another important property of the Γ-balls is expressed by the following
lemma, which is a simple consequence of the Weak Maximum Principle for L.

Lemma 4.2.12. For every �xed x ∈ RN and every r > 0, the open Γ-ball
Ω(x, r) is a (path-wise) connected subset of RN .

Proof. We assume, by contradiction, that Ω(x, r) is not connected. Hence, there
exist two disjoint open sets U1, U2 ⊆ RN such that

Ω(x, r) = U1 ∪ U2.

Only one of these sets, let U2 say, contains x. Thus the function u := Γx is
smooth on RN \ {x} ⊇ U1 and it satis�es the following properties:

• Lu = 0 on U1 (see identity (4.2.7));

• u ≡ 1/r on ∂U1 ⊆ ∂Ω(x, r) (see identity (4.2.10)).

Since U1 is bounded (as it is a subset of Ω(x, r), see Rem. 4.2.9), the Weak
Maximum Principle in Thm. 4.1.20 implies that u ≤ 1/r on U1. This is clearly
a contradiction since, by de�nition, u = Γx > 1/r on U1 ⊆ Ω(x, r).

We now establish some simple yet important properties of the measure µsL.

To begin with, we observe that, by Rem. 4.2.9 and Prop. 4.2.10, for every x ∈ RN
and every r > 0 it holds that

• Ω(x, r) is µNL -measurable and its µNL -measure is positive and �nite;

• ∂Ω(x, r) is µN−1
L -measurable and its µN−1

L -measure is positive and �nite.

We also have the following simple lemma.

Lemma 4.2.13. For every �xed x ∈ RN we have

lim
r→0+

µNL
(
Ω(x, r)

)
r

= 0.
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Proof. First of all we observe that, by de�nition, we have

µNL
(
Ω(x, r)

)
r

=
1

r

∫
Ω(x,r)

dµNL ≤
∫

Ω(x,r)

Γx dµNL .

Therefore, since the function Γx is locally integrable on RN with respect to the
measure µNL (see Rem. 4.2.2) and since

⋂
r>0 Ω(x, r) = {x}, we conclude that

the above rhs vanishes as r → 0+, and the proof is complete.

As for the integration of continuous functions on Γ-balls and on Γ-annuli
(which are bounded subsets of RN ), we have the following useful results.

Lemma 4.2.14. Let x ∈ RN and let 0 < ρ < r. If f is a locally integrable
function on the Γ-annulus Ω(x, ρ, r) and if 0 < ρ < a < b < r, then we have∫ 1/a

1/b

(∫
∂Ω(x,1/t)

f

‖∇Γx‖
dµN−1

L

)
dt =

∫
Ω(x,a,b)

f dµNL . (4.2.17)

Proof. This is an immediate consequence of the notable Federer's Coarea For-
mula [67]: since Γx is smooth (hence, locally Lipschitz-continuous) out of x, and
since Ω(x, a, b) ⊆ RN \ {x}, we have (note that f is integrable on the bounded
set Ω(x, a, b) b Ω(x, ρ, r) and recall the de�nition of µsL)∫

Ω(x,a,b)

f dµNL =

∫
Ω(x,a,b)

f V dy =

∫ 1/a

1/b

(∫
{Γx=t}

f V

‖∇Γx‖
dHN−1

)
dt

=

∫ 1/a

1/b

(∫
∂Ω(x,1/t)

f

‖∇Γx‖
dµN−1

L

)
dt.

This ends the proof.

Proposition 4.2.15. Let Ω := Ω(x, r) be an open Γ-ball (also the case r =∞
is allowed, see Rem. 4.2.7) and let u ∈ C(Ω \ {x},R). Then the function

m : (0, r) −→ R m(ρ) :=

∫
∂Ω(x,ρ)

udµN−1
L

is continuous on (0, r). If, in addition, u ∈ L1
loc(Ω), then the function

M : (0, r) −→ R M(ρ) :=

∫
Ω(x,ρ)

udµNL

is of class C1 on (0, r) and

d

dρ
M(ρ) =

1

ρ2

∫
∂Ω(x,ρ)

u

‖∇Γx‖
dµN−1

L , for 0 < ρ < r. (4.2.18)

Proof. Since ∂Ω(x, r) is a smooth manifold and the function Γx has no critical
points in RN \ {x} (see assumption (FS)-(e)), the continuity of m follows by
standard arguments of Geometric Measure Theory.
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As for the second assertion we observe that, if u ∈ L1
loc(Ω) and if a ∈ (0, r),

by Lem. 4.2.14 we can write, for every a < ρ < r,

M(ρ) = M(a) +

∫
Ω(x,a,ρ)

udµNL

(4.2.17)
= M(a) +

∫ 1/a

1/ρ

(∫
∂Ω(x,1/t)

u

‖∇Γx‖
dµN−1

L

)
dt;

therefore, since the integrand function in the far right-hand side of the above
identity is continuous with respect to t (note that u/‖∇Γx‖ is continuous on
Ω \ {x}), the Fundamental Theorem of Calculus gives

d

dρ
M(ρ) =

1

ρ2

∫
∂Ω(x,ρ)

u

‖∇Γx‖
dµN−1

L , for a < ρ < r.

By the arbitrariness of a ∈ (0, r), we obtain the desired (4.2.18).

Finally, we have the following useful Green-type formulas for L.

Lemma 4.2.16 (Green's identities for L). Let U ⊆ RN be an open set support-
ing the Divergence Theorem, and let u, v ∈ C2(U,R). Then one has∫

U

uLv dµNL =

∫
∂U

u 〈A∇v, νext
U 〉dµN−1

L −
∫
U

〈A∇u,∇v〉dµNL , (4.2.19)∫
U

(
uLv − vLu

)
dµNL =

∫
∂U

(
u 〈A∇v, νext

U 〉 − v 〈A∇u, νext
U 〉

)
dµN−1

L ,

(4.2.20)

where νext
U is the exterior normal on ∂U . We call formulas (4.2.19) and (4.2.20),

respectively, Green's �rst and second identities for L.

When u ≡ 1 one gets∫
U

Lv dµNL =

∫
∂U

〈A∇v, νext
U 〉dµN−1

L . (4.2.21)

Proof. Identity (4.2.19) is an obvious consequence of the Divergence Theorem,
taking into account the quasi-divergence form (4.1.1) of L, and the very de�ni-
tion of the L-weighted measures µNL and µN−1

L (see Def. 4.2.1)
Identity (4.2.20) follows from (4.2.19) and from the symmetry of A(x).

4.2.3 Average operators

Now we have de�ned the Γ-balls related to L, we introduce the L-kernel and
the L-surface density. Such objects will be of fundamental importance in the
Hardy-type inequality for L presented in Sec. 4.2.5.

De�nition 4.2.17 (L-gradient). Let U ⊆ RN be a �xed open set and let
f : U → R be of class C1. We introduce the function

‖∇Lf‖ : U −→ R, ‖∇Lf‖(x) :=
√
〈A(x)∇f(x),∇f(x)〉. (4.2.22)

We say that ∇Lf is the gradient of f associated with L.
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If L = ∆ is the classical Laplace operator on RN (with N ≥ 3), for every
open set U ⊆ RN and every f ∈ C1(U,R) we have (since A(x) = IdN )

‖∇∆f(x)‖ = ‖∇f(x)‖.

We then give the following de�nition.

De�nition 4.2.18 (L-kernel and L-surface density). Let x ∈ RN be arbitrarily
�xed. The function

ψL
x : RN \ {x} −→ R, ψL

x (y) := ‖∇LΓx‖2(y), (4.2.23)

will be called the L-kernel. Furthermore, we de�ne

KL
x : RN \ {x} −→ R, KL

x (y) :=
ψL
x (y)

‖∇Γx(y)‖
. (4.2.24)

We shall call KL
x the L-surface density.

Taking into account the de�nition of the L-gradient, more explicitly we have

ψL
x (y) = 〈A(y)∇Γx(y),∇Γx(y)〉,

KL
x (y) =

〈A(y)∇Γx(y),∇Γx(y)〉
‖∇Γx(y)‖

.
(4.2.25)

Example 4.2.19. Let us consider once again the classical Laplace operator ∆
on RN , with N ≥ 3, and let x ∈ RN be �xed. A direct computation, crucially
based on the explicit expression of the global fundamental solution Γ of ∆ (see
Exm. 4.2.8), shows that, for every y ∈ RN \ {x},

ψ∆
x (y) = ‖∇Γx(y)‖2 =

(
1

NωN
‖x− y‖1−N

)2

.

From this, we deduce that the ∆-surface density is the function given by

K∆
x (y) =

ψ∆(y)

‖∇Γx(y)‖
=

1

N ωN
‖y − x‖1−N , for every y 6= x.

Remark 4.2.20. Let x ∈ RN be �xed. It is worth noting that, since Γx
is smooth on RN \ {x}, then both ψL

x and KL
x are smooth on the same set.

Furthermore, since A(x) is positive semide�nite on RN , we have

ψL
x (y), KL

x (y) ≥ 0 for every y ∈ RN \ {x}.

In the next results we establish some integral identities satis�ed by KL
x .

Lemma 4.2.21. Let x ∈ RN be �xed. Then the integral function

K(r) :=

∫
∂Ω(x,r)

KL
x (y) dµN−1

L (y) (r > 0) (4.2.26)

is constant on (0,∞). More precisely, K ≡ 1 on (0,∞).
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Proof. We choose r, ρ ∈ ]0,∞[ with ρ < r. By applying identity (4.2.21) with U
given by the Γ-annulus Ω(x, ρ, r) (with exterior normal denoted by νext

x,ρ,r) and
with v set to be Γx, one has∫

Ω(x,ρ,r)

LΓx dµNL =

∫
∂Ω(x,r)∪∂Ω(x,ρ)

〈A∇Γx, ν
ext
x,ρ,r〉dµN−1

L ;

from this, since LΓx ≡ 0 on RN \{x} (see (4.2.7)) and recalling (4.2.16), we get∫
∂Ω(x,r)

〈A∇Γx, ν
ext
x,r 〉dµN−1

L −
∫
∂Ω(x,ρ)

〈A∇Γx, ν
ext
x,ρ〉dµN−1

L = 0, (4.2.27)

where νext
x,r is the exterior normal to ∂Ω(x, r). On the other hand, since we know

from Prop. 4.2.10 that νext
x,r = −∇Γx/‖∇Γx‖ on ∂Ω(x, r), one has

〈A(y)∇Γx(y), νext
x,r (y)〉 = −ψL

x /‖Γx(y)‖ = −KL
x (y) on ∂Ω(x, r); (4.2.28)

therefore, the above (4.2.27) gives

0 = −
∫
∂Ω(x,r)

KL
x (y) dµN−1

L (y) +

∫
∂Ω(x,ρ)

KL
x (y) dµN−1

L (y)

(4.2.26)
= −K(r) +K(ρ).

As r and ρ are arbitrary, we infer that K is constant on (0,∞), say K ≡ K1.
We now turn to show that K1 = 1. To this end, let v ∈ C∞0 (RN ,R) be such
that v(x) = 1 and let r > 0 be such that (see Rem. 4.2.9)

supp(v) ⊆ Ω(x, r).

For any 0 < ρ < r, we apply Green's second identity (4.2.20) with U given by
Ω(x, ρ, r) and with u = Γx and v as above: by recalling that LΓx ≡ 0 outside x
and that v ≡ 0 on ∂Ω(x, r), from (4.2.16) we get∫

Ω(x,ρ,r)

Γx Lv dµNL =−
∫
∂Ω(x,ρ)

Γx 〈A∇v, νext
x,r 〉dµN−1

L

+

∫
∂Ω(x,ρ)

v 〈A∇Γx, ν
ext
x,ρ〉dµN−1

L .

(4.2.29)

We now aim to pass to the limit as ρ→ 0+ in the above (4.2.29). As for the lhs
we observe that, as Γx is locally integrable on RN ,

lim
ρ→0+

∫
Ω(x,ρ,r)

Γx Lv dµNL =

∫
Ω(x,r)

Γx Lv dµNL . (4.2.30)

Moreover, since Γx ≡ 1/ρ on ∂Ω(x, ρ), by applying identity (4.2.21) to the �rst
integral in the right-hand side of (4.2.29) we get∣∣∣∣∣

∫
∂Ω(x,ρ)

Γx 〈A∇v, νext
x,ρ〉dµN−1

L

∣∣∣∣∣
=

1

ρ

∣∣∣∣∣
∫

Ω(x,ρ)

Lv dµNL

∣∣∣∣∣ ≤ sup |Lv| ·
µNL
(
Ω(x, ρ)

)
ρ

;
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hence, thanks to Lem. 4.2.13, we obtain

lim
ρ→0+

∫
∂Ω(x,ρ)

Γx 〈A∇v, νext
x,ρ〉dµN−1

L = 0. (4.2.31)

As for the second integral in the rhs of (4.2.29) we observe that, by arguing as
in (4.2.28) and by recalling that K(ρ) = K1, we get∫

∂Ω(x,ρ)

v 〈A∇Γx, ν
ext
x,ρ〉dµN−1

L

= −
∫
∂Ω(x,ρ)

(
v(y)− 1

)
KL
x (y) dµN−1

L (y)−K1 =: −J(ρ)−K1.

On the other hand, since v is continuous on RN and v(x) = 1 (and again
recalling that K(ρ) ≡ K1), it is easy to recognize that that limρ→0+ J(ρ) = 0;
as a consequence we derive

lim
ρ→0+

∫
∂Ω(x,ρ)

v 〈A∇Γx, ν
ext
x,ρ〉dµN−1

L = −K1. (4.2.32)

By gathering together identities (4.2.30), (4.2.31) and (4.2.32), we can pass to
the limit in the above (4.2.29), obtaining∫

Ω(x,r)

Γx Lv dµNL = −K1. (4.2.33)

We are now ready to conclude: since v ∈ C∞0 (RN ) is supported in Ω(x, r) and
since Γ is a fundamental solution for L w.r.t.µNL , we get (see identity (4.2.4))

−K1
(4.2.33)

=

∫
Ω(x,r)

Γx Lv dµNL
(4.2.4)

= −v(x) = −1,

and this gives out K1 = 1, as desired.

From Lem. 4.2.21, one straightforwardly obtains:

Corollary 4.2.22. Let x ∈ RN be �xed and let U ⊆ RN be an open set con-
taining x. If u ∈ C(U,R), it holds that

lim
ρ→0+

∫
∂Ω(x,ρ)

u(y)KL
x (y) dµN−1

L (y) = u(x). (4.2.34)

Proof. Let r > 0 be such that Ω(x, r) ⊆ U . For every �xed 0 < ρ < r, it follows
from Lem. 4.2.21 that∫

∂Ω(x,ρ)

u(y)KL
x (y) dµN−1

L (y)

=

∫
∂Ω(x,ρ)

(u(y)− u(x))KL
x (y) dµN−1

L (y) + u(x);

(4.2.35)

on the other hand, since v is continuous on U and by exploiting once again
Lem. 4.2.21, we easily deduce that

lim
ρ→0+

∫
∂Ω(x,ρ)

(u(y)− u(x))KL
x (y) dµN−1

L (y) = 0.

From this, by passing to the limit as ρ→ 0+ in the above (4.2.35), we immedi-
ately obtain the desired (4.2.34). This ends the proof.
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We conclude this section by establishing another useful integrability property
of the L-kernel ψL

x (see Def. 4.2.18).

Lemma 4.2.23. For every �xed x ∈ RN and every real α > 1, one has∫
Ω(x,r)

ψL
x (y)

Γαx(y)
dµNL (y) =

rα−1

α− 1
, for all r > 0. (4.2.36)

Proof. Let r > 0 and let 0 < a < r. Since the function ψL
x /Γ

α
x is continuous on

RN \ {x}, identity (4.2.17) in Lem. 4.2.14 gives∫
Ω(x,a,r)

ψL
x

Γαx
dµNL =

∫ 1/a

1/r

1

tα

(∫
∂Ω(x,1/t)

ψL
x

‖∇Γx‖
dµN−1

L

)
dt;

therefore, from Lem. 4.2.21 we derive that∫
Ω(x,a,r)

ψL
x

Γαx
dµNL =

∫ 1/a

1/r

1

tα
dt =

aα−1 − rα−1

1− α
.

Finally, passing to the limit as a ↓ 0+, the Monotone Convergence Theorem
applied to the above identity produces the desired (4.2.36).

4.2.4 Mean Value Formulas

Thanks to the integral properties of the L-surface density ψL
x established in the

previous section, we are in a position to prove the following Surface Mean Value
formula for L. As we shall see in a moment, such a formula generalizes to our
setting the analogous one of the Laplace operator.

Theorem 4.2.24 (Surface Mean Value Formula for L). Let U ⊆ RN be an
open set and let u ∈ C2(U,R). For every x ∈ U and every r > 0 such that
Ω(x, r) ⊆ U , one has the integral identity

u(x) =

∫
∂Ω(x,r)

u(y)KL
x (y) dµN−1

L (y)

−
∫

Ω(x,r)

(
Γx(y)− 1

r

)
Lu(y) dµNL (y),

(4.2.37)

which we shall refer to as the Surface Mean Value Formula for L.

Proof. Let x ∈ U and r > 0 be as in the statement above. For every 0 < ρ < r,
by applying Green's second identity (4.2.20) to the Γ-annulus Ω(x, ρ, r) and to
the functions u and v := Γx, we get (by recalling (4.2.7), (4.2.16) and the fact
that Γx is constant on the boundary of any Γ-ball)

−
∫

Ω(x,ρ,r)

Γx LudµNL =

∫
∂Ω(x,r)

u 〈A∇Γx, ν
ext
x,r 〉dµN−1

L

−
∫
∂Ω(x,ρ)

u 〈A∇Γx, ν
ext
x,ρ〉dµN−1

L

− 1

r

∫
∂Ω(x,r)

〈A∇u, νext
x,r 〉dµN−1

L

+
1

ρ

∫
∂Ω(x,ρ)

〈A∇u, νext
x,ρ〉dµN−1

L .
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By arguing as in (4.2.28) (in the proof of Lem. 4.2.21) and by exploiting (4.2.21)
in Lem. 4.2.16, the above identity becomes

−
∫

Ω(x,ρ,r)

Γx LudµNL =

∫
∂Ω(x,r)

u(y)KL
x (y) dµN−1

L (y)

− 1

r

∫
Ω(x,r)

LudµNL

−
∫
∂Ω(x,ρ)

u(y) KL
x (y) dµN−1

L (y)

+
1

ρ

∫
Ω(x,ρ)

LudµNL .

(4.2.38)

We now aim to pass to the limit as ρ → 0+ in (4.2.38). To this end we �rst
observe that, since Γx is locally integrable in RN , we have

lim
ρ→0+

∫
Ω(x,ρ,r)

Γx LudµNL =

∫
Ω(x,r)

Γx LudµNL ; (4.2.39)

moreover, by Lem. 4.2.13 we get

lim
ρ→0+

1

ρ

∫
Ω(x,ρ)

LudµNL = 0. (4.2.40)

Finally, Cor. 4.2.22 gives

lim
ρ→0+

∫
∂Ω(x,ρ,r)

u(y) KL
x (y) dµN−1

L (y) = u(x), (4.2.41)

and thus, by gathering together identities (4.2.39), (4.2.40) and (4.2.41) and by
letting ρ→ 0+ in the above (4.2.38), we obtain the desired (4.2.37).

Example 4.2.25. Let us consider, on Euclidean space RN (with N ≥ 3), the
classical Laplace operator L = ∆. Moreover, let U ⊆ RN be an open set and
let u ∈ C2(U,R). If x ∈ U and if ρ > 0 is such that B(x, ρ) ⊆ U, we derive from
Exm. 4.2.8 that Ω(x, r) = B(x, ρ) ⊆ U , where

ρ =

(
r

N (N − 2)ωN

)1/(N−2)

.

Therefore, by applying the Surface Mean Value Formula (4.2.37) to the Γ-ball
Ω(x, r) and to the function u, we get (note that, in this case, µsL = Hs)

u(x) =

∫
∂B(x,ρ)

u(y)KL
x (y) dHN−1(y)

−
∫
B(x,ρ)

(
Γx(y)− 1

r

)
∆u(y) dy.

From this, by taking into account the explicit expression of Γ and of the ∆-
surface density K∆

x (see Exm. 4.2.19), we obtain

u(x) =
1

N ωN ρN−1

∫
∂B(x,ρ)

u(y) dHN−1(y)

−
∫
B(x,ρ)

(
Γ(y − x)− Γ(ρ)

)
∆u(y) dy,

which is precisely the usual Surface Mean Value formula for ∆.
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Due to the relevance of the Surface Mean Value Formula in Thm. 4.2.24,
and inspired by the particular case of the Laplace operator in Exm. 4.2.25, we
introduce the following operators.

De�nition 4.2.26. Let U ⊆ RN be an open set and let u ∈ C(U,R). For every
x ∈ U and every r > 0 such that Ω(x, r) ⊆ U , we de�ne

Mr(u)(x) :=

∫
∂Ω(x,r)

u(y)KL
x (y) dµN−1

L (y),

Nr(u)(x) :=

∫
Ω(x,r)

u(y)
(

Γx(y)− 1

r

)
dµNL (y).

(4.2.42)

We shall refer to Mr as the surface mean value operator (related to L).

By means of the above operators Mr and Nr, we can restate Thm. 4.2.24 as
follows: if U ⊆ RN is an open set and if u ∈ C2(U,R), for every x ∈ U and
every r > 0 such that the closure of Ω(x, r) is contained in U , we have

u(x) = Mr(u)(x)−Nr(Lu)(x). (4.2.43)

Remark 4.2.27. Let x ∈ RN be �xed and let r > 0. It worth noting that, by
Lem. 4.2.21, we have the following remarkable property:

Mr(1)(x) = 1.

The following lemma concerns the regularity of r 7→Mr,Nr.

Lemma 4.2.28. Let U ⊆ RN be an open set and let u ∈ C(U,R). Moreover,
let x ∈ U and r > 0 be such that Ω(x, r) ⊆ U . Then we have

(i) the function ρ 7→Mρ(u)(x) is continuous on ]0, r], and

lim
ρ→0+

Mρ(u)(x) = u(x); (4.2.44)

(ii) the function ρ 7→ Nρ(u)(x) is of class C1 on the same interval, and

lim
ρ→0+

Nρ(u)(x) = 0. (4.2.45)

If, in addition, u ∈ C2(U,R), for every ρ ∈ (0, r] we have,

d

dρ
Mρ(u)(x) =

1

ρ2

∫
Ω(x,ρ)

LudµNL

= − 1

ρ2

∫
∂Ω(x,ρ)

〈A∇u,∇Γx〉
‖∇Γx‖

dµN−1
L .

(4.2.46)

Proof. (i) Since, by assumption, u is continuous on Ω(x, r) ⊆ U and since the
L-surface density KL

x is smooth on RN \ {x}, the regularity of the function
ρ 7→ Mρ(u)(x) on ]0, r] directly follows from Prop. 4.2.15; moreover, the limit
(4.2.44) is precisely (4.2.34) proved in Cor. 4.2.22.

(ii) The regularity of ρ 7→ Nρ(u)(x) again follows from Prop. 4.2.15, since u
is continuous on Ω(x, r) and Γx ∈ C∞(RN \{x},R)∩L1

loc(RN ). As for the limit
(4.2.45) we observe that, since Γx, u ∈ L1

loc(U), we have

lim
ρ→0+

∫
Ω(x,ρ)

u(y) Γx(y) dµNL (y) = 0;
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moreover, from the continuity of u on U and from Lem. 4.2.13 we get

lim
ρ→0+

1

ρ

∫
Ω(x,ρ)

u(y) dµNL (y) = 0.

By gathering together these identities, we obtain the desired (4.2.45).

To complete the demonstration, we turn to show (4.2.46). To this end we
observe that, if u ∈ C2(U,R), by the Surface Mean Value Formula (4.2.37) we
have, for every �xed 0 < ρ < r,

Mρ(u)(x) = u(x) +

∫
Ω(x,ρ)

Γx LudµNL −
1

ρ

∫
Ω(x,ρ)

LudµNL . (4.2.47)

We then di�erentiate the last two summands in the above (4.2.47): by (4.2.18)
(since Γx,Lu ∈ C(U \ {x},R) ∩ L1

loc(U)) we have

d

dρ

(∫
Ω(x,ρ)

Γx LudµNL

)
=

1

ρ2

∫
∂Ω(x,ρ)

Γx Lu

‖∇Γx‖
dµN−1

L

=
1

ρ3

∫
∂Ω(x,ρ)

Lu

‖∇Γx‖
dµN−1

L ;

moreover, again from (4.2.18) we deduce that

d

dρ

(∫
Ω(x,ρ)

LudµNL

)
=

1

ρ2

∫
∂Ω(x,ρ)

Lu

‖∇Γx‖
dµN−1

L ,

Summing up, from (4.2.47) we obtain

d

dρ
Mρ(u)(x) =

1

ρ3

∫
∂Ω(x,ρ)

Lu

‖∇Γx‖
dµN−1

L +
1

ρ2

∫
Ω(x,ρ)

LudµNL

− 1

ρ

d

dρ

(∫
Ω(x,ρ)

LudµNL

)

=
1

ρ2

∫
Ω(x,ρ)

LudµNL .

This is the �rst identity in (4.2.46). The second one is a consequence of (4.2.21)
and of the explicit expression of the unit exterior normal νext

x,r on the boundary
of Ω(x, r) (see Prop. 4.2.10). This ends the proof.

Remark 4.2.29. Let the assumption and the notations in Lem. 4.2.28 apply.
Since both functions ρ 7→ Mρ(u)(x) and ρ 7→ Nρ(u)(x) are continuous on ]0, r]
and they have �nite limit as ρ→ 0+, there exists a real constant c > 0 s.t.∣∣Mρ(u)(x)

∣∣ ≤ c and
∣∣Nρ(u)(x)

∣∣ ≤ c, for every 0 < ρ ≤ r.

As a consequence, both Mρ(u)(x) and Nρ(u)(x) belong to L∞([0, r]).

We close this section by deriving, from the Surface Mean Value Formula
(4.2.37), a family of Solid Mean Value Formulas for the operator L. As in the
case of the Laplace operator ∆, we use a superposition argument.
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To begin with, we choose a nonnegative L1
loc function ϕ : [0,∞[→ R and,

for every �xed ρ > 0, we de�ne

cρ(ϕ) :=

∫ ρ

0

ϕ(t) dt.

We then consider an open set U ⊆ RN and a function u ∈ C2(U,R). If x ∈ U
and if r > 0 is such that Ω(x, r) ⊆ U , from (4.2.37) we get

u(x) = Mρ(u)(x)−Nρ(Lu)(x), for every 0 < ρ ≤ r;

therefore, by multiplying both sides of the above identity times ϕ(ρ) and by
integrating with respect to ρ on [0, r], we obtain

u(x) =
1

cr(ϕ)

∫ r

0

ϕ(ρ)Mρ(u)(x) dρ− 1

cr(ϕ)

∫ r

0

ϕ(ρ)Nρ(Lu)(x) dρ

=: Mϕ
r (u)(x)−Nϕ

r (Lu)(x).

(4.2.48)

We explicitly observe that Mϕ
r (u)(x) and Nϕ

r (Lu)(x) are well-de�ned, since
Mρ(u)(x) and Nρ(Lu)(x) are bounded on [0, r] (see Rem. 4.2.29) and ϕ is locally
integrable in [0,∞[; moreover, by means of Federer's Coarea Formula, we can
rewrite Mϕ

r (u)(x) as follows (recall that ϕ ≥ 0 on [0,∞[)

Mϕ
r (u)(x) =

1

cr(ϕ)

∫ r

0

ϕ(ρ)

(∫
∂Ω(x,ρ)

u(y)
ψL
x (y)

‖∇Γx(y)‖
dµN−1

L (y)

)
dρ(

by performing the change of variable ρ = 1/t
)

=
1

cr(ϕ)

∫ ∞
1/r

ϕ(1/t)

t2

(∫
∂Ω(x,1/t)

u(y)
ψL
x (y)

‖∇Γx(y)‖
dµN−1

L (y)

)
dt

=
1

cr(ϕ)

∫ ∞
1/r

(
u(y)ϕ

(
1

Γx(y)

)
ψL
x (y)

Γx(y)2

1

‖∇Γx(y)‖
dµN−1

L (y)

)
dt(

by Federer's Coarea Formula
)

=
1

cr(ϕ)

∫
Ω(x,r)

u(y)ϕ

(
1

Γx(y)

)
ψL
x (y)

Γx(y)2
dµNL (y).

Summing up, we have thus proved the following notable result.

Theorem 4.2.30. Let ϕ : [0,∞[→ R be a nonnegative L1
loc function, and let

cr(ϕ) =

∫ r

0

ϕ(t) dt.

Moreover, let U ⊆ RN be an open set and let u ∈ C2(U,R). For every x ∈ U
and every r > 0 such that Ω(x, r) ⊆ U , we have

u(x) =
1

cr(ϕ)

∫
Ω(x,r)

u(y)ϕ

(
1

Γx(y)

)
ψL
x (y)

Γx(y)2
dµNL (y)

− 1

cr(ϕ)

∫ r

0

ϕ(ρ)

(∫
Ω(x,ρ)

Lu(y)
(

Γx(y)− 1
ρ

)
dµNL (y)

)
dρ.

(4.2.49)

We shall call (4.2.49) the ϕ-Solid Mean Value Formula for L.
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In particular, if in Thm. 4.2.30 we choose

ϕ : [0,∞[−→ R, ϕ(ρ) := ρα (with α > −1),

we obtain the following family of Solid Mean Value Formulas for L.

Proposition 4.2.31 (α-Solid Mean Value Formulas for L). Let U ⊆ RN be an
open set and let u ∈ C2(U,R). Moreover, let α > −1 be �xed. For every x ∈ U
and every r > 0 such that Ω(x, r) ⊆ U , we have

u(x) =
α+ 1

rα+1

∫
Ω(x,r)

u(y)
ψL
x (y)

Γx(y)2+α
dµNL (y)

− α+ 1

rα+1

∫ r

0

ρα+1

(∫
Ω(x,ρ)

Lu(y)
(

Γx(y)− 1

ρ

)
dµNL (y)

)
dρ.

(4.2.50)

We shall call (4.2.50) the α-Solid Mean Value Formula for L.

Due to the relevance of the α-Solid Mean Value Formulas in Prop. 4.2.31,
and in analogy with the surface mean value operators in Def. 4.2.26, we also
de�ne the following solid mean value operators.

De�nition 4.2.32 (α-solid mean value operator for L). Let U ⊆ RN be an
open set and let u ∈ C(U,R). Moreover, let α > −1 be �xed. For every x ∈ U
and every r > 0 such that Ω(x, r) ⊆ U , we set

Mα
r (u)(x) :=

α+ 1

rα+1

∫
Ω(x,r)

u(y)
ψL
x (y)

Γx(y)2+α
dµNL (y),

Nα
r (u)(x) :=

α+ 1

rα+1

∫ r

0

ρα+1

(∫
Ω(x,ρ)

u(y)
(

Γx(y)− 1

ρ

)
dµNL (y)

)
dρ.

(4.2.51)

We shall refer to Mα
r as the α-solid mean value operator (related to L).

By means of the operators Mα and Nα, we can restate Prop. 4.2.31 as follows:
if U ⊆ RN is as open set, if u ∈ C2(U,R) and if α > −1, for every x ∈ U and
every r > 0 such that Ω(x, r) ⊆ U we have

u(x) = Mα
r (x)(u)−Nα

r (x)(Lu).

Remark 4.2.33. Let U ⊆ RN be an open set and let u ∈ C(U,R). Moreover,
let α > −1 be �xed. If x ∈ U and if r > 0 is such that Ω(x, r) ⊆ U , we have

Nα
ρ (u)(x) =

α+ 1

ρα+1

∫ ρ

0

tα+1 Nρ(u)(x) dt, for 0 < ρ ≤ r;

therefore, since ρ 7→ Nρ(u)(x) is continuous on ]0, r] (see Lem. 4.2.28), we derive
that ρ 7→ Nα

ρ (u)(x) is of class C1 on the same interval.
Analogously, since we have (by Federer's Coarea Formula)

Mα
ρ (u)(x) =

α+ 1

ρα+1

∫ ρ

0

tα+1 Mt(u)(x) dt, for 0 < ρ ≤ r;

again from Lem. 4.2.28 we deduce that ρ 7→ Mα
ρ (u)(x) is of class C1 on ]0, r].

Finally, if u ≡ 1 on RN , from Lem. 4.2.23 we derive that

Mα
r (1)(x) =

α+ 1

rα+1

∫
Ω(x,r)

ψL
x (y)

Γx(y)2+α
dµNL (y) = 1, for every α > −1.
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Remark 4.2.34. Let U ⊆ RN be an open set and let u ∈ C(U,R). Moreover,
let α > −1 be �xed. Since, by Rem. 4.2.33, Mα

r (1)(x) = 1 for every x ∈ RN and
every r > 0, it is very easy to recognize that

lim
r→0+

Mα
r (u)(x) = u(x), for every x ∈ U.

Remark 4.2.35. Let the notation and the assumption in Thm. 4.2.30 apply.
It is worth noting that, by Lem. 4.2.23 (and the continuity of u), the integral∫

Ω(x,r)

u(y)
ψL
x (y)

Γx(y)2+α
dµNL (y)

is well-de�ned and �nite precisely when α+ 2 > 1, that is, if α > −1.

4.2.5 An L2-Hardy-type inequality

Thanks to the Surface Mean Value Formula (4.2.24) and to Lem. 4.2.28 in
Sec. 4.2.4, we can �nally present the L2-Hardy-type inequality for L obtained by
Garofalo [79]. This inequality being a direct consequence of the results obtained
so far, we give its proof for the sake of completeness.

Theorem 4.2.36 (Hardy-type inequalities for L). For every x ∈ RN , every
r > 0 and every u ∈ C2(RN ,R), the following Hardy-type inequality holds true∫

Ω(x,r)

u2 ψ
L
x

Γ2
x

dµNL ≤ 4

(
r

2
Mr(u

2)(x) +

∫
Ω(x,r)

‖∇Lu‖2 dµNL

)
. (4.2.52)

More explicitly, due to the very de�nition of the operator M, we have∫
Ω(x,r)

u2 ψ
L
x

Γ2
x

dµNL ≤ 4

(
r

2

∫
∂Ω(x,r)

u2 KL
x dµN−1

L +

∫
Ω(x,r)

‖∇Lu‖2 dµNL

)
.

Proof. For every �xed 0 < a < r, we have∫
Ω(x,a,r)

u2

Γ2
x

ψL
x dµNL

(4.2.17)
=

∫ 1/a

1/r

(∫
∂Ω(x,1/t)

u2

Γ2
x

KL
x dµN−1

L

)
dt

=

∫ 1/a

1/r

1

t2

(∫
∂Ω(x,1/t)

u2 KL
x dµN−1

L

)
dt

=

∫ 1/a

1/r

1

t2
M1/t(u

2)(x) dt,

where in the last equality we used the Def. 4.2.26 of the surface mean value
operator M. Thanks to Lem. 4.2.28 we can integrate by parts, obtaining∫

Ω(x,a,r)

u2

Γ2
x

ψL
x dµNL =

[
−1

t
M1/t(u

2)(x)

]t=1/a

t=1/r

+

∫ 1/a

1/r

1

t

d

dt

(
M1/t(u

2)(x)
)

dt

= rMr(u
2)(x)− aMa(u2)(x)−

∫ 1/a

1/r

1

t3
d

dρ

(
Mρ(u

2)(x)
)∣∣∣
ρ=1/t

(4.2.46)
= rMr(u

2)(x)− aMa(u2)(x)

+

∫ 1/a

1/r

1

t

(∫
∂Ω(x,1/t)

〈A∇(u2),∇Γx〉
‖∇Γx‖

dµN−1
L

)
dt.
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We now focus on the last summand: from ∇(u2) = 2u∇u and from identity
(4.2.17) in Lem. 4.2.14, this last summand is

2

∫ 1/a

1/r

1

t

(∫
∂Ω(x,1/t)

u
〈A∇u,∇Γx〉
‖∇Γx‖

dµN−1
L

)
dt

= 2

∫ 1/a

1/r

(∫
∂Ω(x,1/t)

u

Γx

〈A∇u,∇Γx〉
‖∇Γx‖

dµN−1
L

)
dt

(4.2.17)
= 2

∫
Ω(x,a,r)

u

Γx
〈A∇u,∇Γx〉dµNL .

By gathering the above identities, we get∫
Ω(x,a,r)

u2

Γ2
x

ψL
x dµNL = rMr(u

2)(x)− aMa(u2)(x)

+ 2

∫
Ω(x,a,r)

u

Γx
〈A∇u,∇Γx〉dµNL .

(4.2.53)

The next step is to give an estimate of the integral in the right-hand side of
(4.2.53). Since A is positive semi-de�nite we have (we make use of the L-energy
notation introduced in Def. 4.2.17 and of (4.2.23))∣∣∣∣ uΓx 〈A∇u,∇Γx〉

∣∣∣∣ ≤ |u|Γx

(
〈A∇u,∇u〉

)1/2 · (〈A∇Γx,∇Γx〉
)1/2

=
|u|
Γx

(
‖∇Lu‖2

)1/2 · (ψL
x

)1/2
.

Thus, by Hölder's inequality with p = q = 1/2, we get

2

∫
Ω(x,a,r)

u

Γx
〈A∇u,∇Γx〉dµNL ≤ 2

∫
Ω(x,a,r)

|u|
Γx

(
‖∇Lu‖2

)1/2 · (ψL
x

)1/2
dµNL

≤ 2

(∫
Ω(x,a,r)

‖∇Lu‖2 dµNL

)1/2(∫
Ω(x,a,r)

u2

Γ2
x

ψL
x dµNL

)1/2

(
by a Young's inequality 2AB ≤ εA2 +B2/ε with ε = 2

)
≤ 2

∫
Ω(x,a,r)

‖∇Lu‖2 dµNL +
1

2

∫
Ω(x,a,r)

u2

Γ2
x

ψL
x dµNL .

By inserting this estimate in (4.2.53) and moving terms around, we obtain

1

2

∫
Ω(x,a,r)

u2

Γ2
x

ψL
x dµNL ≤ rMr(u

2)(x)− aMa(u2)(x)

+ 2

∫
Ω(x,a,r)

‖∇Lu‖2 dµNL .

(4.2.54)

In order to complete the proof, we now pass to the limit as a→ 0+. In the left-
hand side, one can use the non-negativity of the integrand, so that, in the limit,
Ω(x, a, r) simply becomes Ω(x, r). The same happens for the last summand in
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the right-hand side. Finally, from (4.2.44) we get lima→0+ Ma(u2)(x) = u2(x),
so that lima→0+ aMa(u2)(x) = 0. Therefore, (4.2.54) becomes

1

2

∫
Ω(x,r)

u2

Γ2
x

ψL
x dµNL ≤ rMr(u

2)(x) + 2

∫
Ω(x,r)

‖∇Lu‖2 dµNL ,

which is exactly (4.2.52). This ends the proof.

As a direct consequence of Thm. 4.2.36 we obtain the following result, which
represents the �true� generalization of the Hardy inequality (4.2.1).

Corollary 4.2.37. For every x ∈ RN and every u ∈ C∞0 (RN ,R), the following
Hardy-type inequality holds true∫

RN
u2 ψ

L
x

Γ2
x

dµNL ≤ 4

∫
RN
‖∇Lu‖2 dµNL . (4.2.55)

Proof. Let r > 0 be such that supp(u) ⊆ Ω(x, r). By applying the Hardy-type
inequality (4.2.52) to u and Ω(x, r), we obtain∫

RN

u2

Γ2
x

ψL
x dµNL =

∫
Ω(x,r)

u2

Γ2
x

ψL
x dµNL

≤ 4

(
r

2

∫
∂Ω(x,r)

u2 KL
x dµN−1

L +

∫
Ω(x,r)

‖∇Lu‖2 dµNL

)
(
u ≡ 0 on ∂Ω(x, r)

)
= 4

∫
Ω(x,r)

‖∇Lu‖2 dµNL = 4

∫
RN
‖∇Lu‖2 dµNL .

This ends the proof.

Example 4.2.38. Let us consider, on Euclidean space RN (with N ≥ 3), the
classical Laplace operator L = ∆, and let x ∈ RN be �xed.

By exploiting the explicit expression of Γ (see Exm. 4.2.8) and of ψ∆
x (see

Exm. 4.2.19), inequality (4.2.55) takes the following form

(N − 2)2

∫
RN

u2(y)

‖y − x‖2
dy ≤ 4

∫
RN
‖∇u‖2 dy, ∀u ∈ C∞0 (RN ,R).

In particular, taking x = 0, we obtain the Hardy Inequality (4.2.1).

By means of the Hardy-type inequality (4.2.55), we can easily extend to L

also the classical Heisenberg Uncertainty Principle of Quantum Mechanics.

Corollary 4.2.39 (Uncertainty Principle for L). For every x ∈ RN , every
u ∈ C∞0 (RN ,R) and every α ∈ R, the following inequality holds true:(∫

RN
u2 ψL

x

Γ2α−2
x

dµNL

)1/2(∫
RN
‖∇Lu‖2 dµNL

)1/2

≥ 1

2

∫
RN

u2 ψ
L
x

Γαx
dµNL .

(4.2.56)
Furthermore, if α > 3/2 all the integrals are �nite.
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Proof. Let us consider the nonnegative functions u1, u2 de�ned on RN \ {x} by

u1 :=
|u|
Γx

√
ψL
x , u2 :=

|u|
Γα−1
x

,
√
ψL
x .

Since u1 · u2 = u2 ψL
x /Γ

α
x on RN \ {x}, by applying Hölder's Inequality to the

integral at the right-hand side of (4.2.56) we get∫
RN

u2 ψ
L
x

Γαx
dµNL ≤

(∫
RN

u2 ψ
L
x

Γ2
x

dµNL

)1/2(∫
RN

u2 ψL
x

Γ2α−2
x

dµNL

)1/2

.

By applying the Hardy-type Inequality (4.2.55) to the �rst factor in the above
right-hand side, we obtain (4.2.56). Thanks to Lemma 4.2.23, a su�cient con-
dition for all the integrals to be �nite is α > 3/2.

4.2.6 Application to Unique Continuation

The aim of this last section is to show how the Hardy-type inequality (4.2.52) in
the previous section can be pro�tably used in obtaining a Unique Continuation
result for the solutions of the Schrödinger-type equation

−Lu+ Pu = 0, (4.2.57)

where L is a sub-Laplacian on a Carnot group G, P is a potential satisfying
suitable assumptions, and u ful�lls some (di�erential) growth condition.

We mainly follow the approach by Garofalo and Lanconelli in [80], where a
the Hardy-type inequality (4.2.52) is employed in obtaining a Unique Continua-
tion result for the Schrödinger-type equation −∆Hnu + Pu = 0, where ∆Hn is
the Kohn-Laplacian on the Heisenberg group Hn and V is a suitable potential.

Some preliminaries. Throughout the sequel, we denote by G = (RN , ∗, δλ)
a �xed homogeneous Carnot group on RN , with homogeneous dimension Q > 2.
Moreover, we choose once and for all a system {X1, . . . , Xm} of Lie-generators
for Lie(G) and we denote by L the associated sub-Laplacian on G, that is,

L =

m∑
j=1

X2
j .

As already pointed out in Exm. 4.2.4, the operator L satis�es all the assumptions
introduced in Sec. 4.2.1. More precisely, we know that

(i) L is in the divergence form (4.1.1) with V ≡ 1;

(ii) the principal matrix A(x) of L is given by

A(x) = S(x) · S(x)T , (4.2.58)

where S(x) = (X1I(x) · · ·XmI(x)) for every x ∈ RN ;

(iii) there exists a unique global fundamental solution Γ for L w.r.t.µNL satis-
fying properties (a)-to-(e) in assumption (FS), which is of the form

Γ(x; y) = d2−Q(x−1 ∗ y), for every x, y ∈ RN with x 6= y, (4.2.59)

for a suitable homogeneous symmetric norm d ∈ C∞(RN \ {0},R) on G.
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As a direct consequence of (i), we derive that the L-weighed measures µN−1
L and

µNL are simply the Hausdor� measures HN−1 and HN (see Def. 4.2.1); moreover,
identity (4.2.59) easily implies that, for every x ∈ RN and every r > 0, one has
(denoting by τx the left-translation by x on G)

Ω(x, r) = x ∗ δλ
(
Ω(0, 1)

)
= (τx ◦ δλ)

(
Ω(0, 1)

)
, with λ = r1/(2−Q).

In particular, HN
(
Ω(x, r)

)
= rQ/(2−Q) ωQ, where ωQ = HN

(
Ω(0, 1)

)
.

Let now U ⊆ RN be an open set and let f ∈ C1(U,R). By exploiting identity
(4.2.58), we see that the function ‖∇Lf‖ introduced in Def. 4.2.17 satis�es

‖∇Lf‖2(x) =
∑m
j=1(Xjf(x))2 (x ∈ U). (4.2.60)

Therefore, if we de�ne the L-horizontal gradient of f as

∇Lf(x) := (X1f(x), . . . , Xmf(x)) = ∇f(x) · S(x)T , x ∈ U,

then ‖∇Lf‖2 turns out to be a genuine norm squared, that is,

‖∇Lf‖2 = 〈∇Lf,∇Lf〉.

By means of this fact, we can provide an easy proof of the subsequent result.

Lemma 4.2.40. The following properties hold true:

(i) ψL
x (y) = ψL

0 (x−1 ∗ y), for every x, y ∈ RN with x 6= y;

(ii) ψL
0

(
δλ(x)

)
= λ2 (1−Q) ψL

0 (x) for every x ∈ RN \ {0} and every λ > 0.

Proof. (i) Let x ∈ RN be �xed. By recalling the very de�nition of ψL
x and by

exploiting identities (4.2.59) and (4.2.60), we can write

ψL
x (y) =

m∑
j=1

(
Xj(y 7→ Γ0(x−1 ∗ y)

)2
, for every y ∈ RN \ {x}.

From this, X1, . . . , Xm being left-invariant on G, we obtain

ψL
x (y) =

m∑
j=1

(
(XjΓ0)(x−1 ∗ y)

)2
= ψL

0 (x−1 ∗ y), ∀ y ∈ RN \ {x},

which is exactly the desired property (i).

(ii) Let λ > 0 be �xed. By arguing as in (i), we have

ψL
0

(
δλ(x)

)
=

m∑
j=1

(
(XjΓ0)(δλ(x))

)2
, for every x ∈ RN \ {0}.

From this, recalling that X1, . . . , Xm are δλ-homogeneous of degree 1 and that
Γ0 = d2−Q is δλ-homogeneous of degree 2−Q, we obtain

ψL
0

(
δλ(x)

)
=

m∑
j=1

(
λ1−Q (XjΓ0)(x)

)2
= λ2 (1−Q) ψL

0 (x), ∀x ∈ RN \ {0},

and this proves that ψL
0 is δλ-homogeneous of degree 2− 2Q.

Remark 4.2.41. Let U ⊆ RN be an open set and let f, g ∈ C1(U,R). By
exploiting once again the above (4.2.58), we obtain the following useful identity

〈∇Lf(x),∇Lg(x)〉 = 〈A(x)∇f(x),∇g(x)〉, for every x ∈ U.
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Three distinguished vector �elds After all these preliminaries, we can
proceed towards the announced Unique Continuation result for (the solutions
of) the Schrödinger-type equation (4.2.57). To this end, we �rst introduce three
selected vector �elds which will be of fundamental importance in the sequel.

De�nition 4.2.42. We de�ne the following three smooth vector �elds:

X :=

m∑
j=1

XjΓ0 ·Xj = 〈∇LΓ0(x),∇L〉 on RN \ {0}; (4.2.61)

Z :=

N∑
j=1

σj xj
∂

∂xj
on RN ; (4.2.62)

R := Γ0 X +
1

Q− 2
ψL

0 Z on RN \ {0}. (4.2.63)

Here (σ1, . . . , σN ) denotes the N -tuple of the exponents de�ning the dilation δλ
of G. We say that Z is the in�nitesimal generator of the dilations of G, and
(following [83]) we say that R is the L- discrepancy.

Remark 4.2.43. Let U ⊆ RN be an open set and let u : U → R be of class
C1. For every �xed x ∈ U , a direct computation shows that

Zu(x) =
d

dλ

∣∣∣
λ=1

u(δλ(x)); (4.2.64)

moreover, by Rem. 4.2.41, we have

Xu(x) = 〈A(x)∇u(x),∇Γ0(x)〉. (4.2.65)

As is expected, Z can be used in order to characterize the δλ-homogeneous
functions on G, as in the following Euler-type result.

Lemma 4.2.44. The following facts hold true:

(i) A function f ∈ C1(RN \ {0},R) is δλ-homogeneous of degree m ∈ R i�

Z f(x) = mf(x), for every x ∈ RN \ {0}. (4.2.66)

(ii) A C1 vector �eld Y on RN is δλ-homogeneous of degree m ∈ R i�

[Y,Z] = mY. (4.2.67)

Proof. (i) Let us assume that f is δλ-homogeneous of degree m, and let x 6= 0
be �xed. For every λ > 0, we have

f
(
δλ(x)

)
= λm f(x);

therefore, by di�erentiating both sides of this identity w.r.t.λ and by taking
λ = 1, we immediately obtain the desired (4.2.66).

Conversely, let us assume that f satis�es (4.2.66) and, for a �xed x 6= 0, let
g : ]0,∞[→ R be the function de�ned as follows:

g(λ) := f(δλ(x))− λm f(x).
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Obviously, g ∈ C1(]0,∞[,R); moreover, we have the computation

g′(λ) = λ−1
((

Z f
)(
δλ(x)

)
−mλm f(x)

)
(4.2.66)

=
m

λ

(
f
(
δλ(x)

)
− λm f(x)

)
=
m

λ
g(λ), for every λ > 0.

This proves that g solves the linear ODE y′ = (m/λ) y on ]0,∞[; since, by
de�nition, g(1) = 0, we conclude that g ≡ 0 on ]0,∞[, that is,

f(δλ(x)) = λm f(x), for every λ > 0.

Hence, f is δλ-homogeneous of degree m, as desired.

(ii) First of all, if a1, . . . , aN ∈ C1(RN ,R) are the coe�cient functions of Y ,
a direct computation based on the explicit expression of Z gives

[Y,Z] =

N∑
j=1

(
σj aj(x)− Z(aj)(x)

) ∂

∂xj
. (4.2.68)

Let us now assume that Y is δλ-homogeneous of degree m. Since, for every
j = 1, . . . , N , the function aj is δλ-homogeneous of degree σj−m (see Thm. 1.2.2
on page 7), by combining identities (4.2.68) and (4.2.66) we get

[Y,Z] =

N∑
j=1

(
σjaj(x)− (σj − α)aj(x)

) ∂

∂xj
= α

N∑
j=1

aj(x)
∂

∂xj
= mY,

and this is precisely the desired (4.2.67).
Conversely, let us assume that Y satis�es identity (4.2.67). By equating the

coe�cient functions of [Y,Z] and mY , we obtain (see (4.2.68))

σj aj − Z(aj) = maj , for every j = 1, . . . , N.

From this and part (i) it then follows that any aj is δλ-homogeneous of degree
σj −m, hence (again by Thm. 1.2.2) Y is δλ-homogeneous of degree m.

Remark 4.2.45. It is worth noting that, since the vector �elds X1, . . . , Xm

de�ning L are δλ-homogeneous of degree 1, identity (4.2.67) implies that

[Xj ,Z] = Xj , for every i = 1, . . . ,m, hence [∇L,Z] = ∇L. (4.2.69)

Remark 4.2.46. Let f : ]0,∞[→ R be of class C1 and let u : RN \ {0} → R

be the �radial function� de�ned by u(x) := f(Γ0(x)) .
By means of Lem. 4.2.44 in can be proved that Ru ≡ 0 on RN \ {0}: in fact,

since Γ0 is δλ-homogeneous of degree 2−Q, we have

Ru = f ′(Γ0)
(

Γ0

m∑
j=1

(XjΓ0)2 +
1

Q− 2
ψL

0 ZΓ0

)
= f ′(Γ0)

(
Γ0 ψ

L
0 +

1

Q− 2
ψL

0 (2−Q) Γ0

)
= 0.

The vector �elds X,Z and R have distinguished properties in terms of their
divergence and their action on the fundamental solution of L.
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Proposition 4.2.47. According with Def. 4.2.42, we have:

(1.a) div
(
XI
)

= 0 on RN \ {0};

(1.b) XΓ0 = ψL
0 on RN \ {0};

(2.a) div(ZI) = Q on RN ;

(2.b) ZΓ0 = (2−Q)Γ0 on RN \ {0};

(3.a) div
(
RI
)

= 0 on RN \ {0};

(3.b) RΓ0 ≡ 0 on RN \ {0}.

Proof. We prove each property separately.

(1.a) First of all we observe that, since X1, . . . , Xm are δλ-homogeneous of
degree 1, one has div(Xj) = 0 for every j = 1, . . . ,m; moreover, Γ being a
fundamental solution for L, one has LΓ0 ≡ 0 on RN \ {0} (see (4.2.7)).

As a consequence we have the following computation:

div
(
XI
)

=

m∑
j=1

div
(
XjΓ0 ·XjI

)
=

m∑
j=1

(
〈∇(XjΓ0), XjI〉+XjΓ0 div(XjI)

)
=

m∑
j=1

X2
j Γ0

= LΓ0 = 0, on RN \ {0}.

(1.b) By the de�nition of X and that of ψL
0 = ‖∇L Γ0‖2, we have

XΓ0 = 〈∇L Γ0,∇L Γ0〉 = ‖∇LΓ0‖2 = ψL
0 , on RN \ {0}.

(2.a) By the very de�nition of Z, we have

div(ZI) =

N∑
j=1

σj = Q, on RN .

(2.b) It follows Lem. 4.2.44, since Γ0 is δλ-homogeneous of degree 2−Q.

(3.a) First of all we observe that, since ψL
0 is δλ-homogeneous of degree

2 (1−Q) (see Lem. 4.2.40), Lem. 4.2.44 implies that

ZψL
0 = 2 (1−Q)ψL

0 , on RN \ {0}. (4.2.70)

Moreover, on RN \ {0} we have the following computation:

div(RI) = div

(
Γ0 XI +

1

Q− 2
ψL

0 ZI

)

= 〈∇Γ0,XI〉+ Γ0 div(XI) + 1
Q−2 〈∇ψ

L
0 ,ZI〉+

1

Q− 2
ψL

0 div(ZI)

= XΓ0 + Γ0 div(XI) +
1

Q− 2
ZψL

0 +
1

Q− 2
ψL

0 div(ZI).
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By exploiting, respectively, (1.b), (1.a), (4.2.70) and (2.a) we then obtain

div(RI) = ψL
0 + 0 +

2− 2Q

Q− 2
ψL

0 +
Q

Q− 2
ψL

0 = 0.

(3.b) Finally, by using (1.b) and (2.b), we get

RΓ0 = (Γ0 X +
1

Q− 2
ψL

0 Z)Γ0 = Γ0 XΓ0 +
1

Q− 2
ψL

0 ZΓ0

= Γ0 ψ
L
0 +

2−Q
Q− 2

ψL
0 Γ0 = 0.

This ends the proof.

Remark 4.2.48. The statement RΓ = 0 in (3.b) of Prop. 4.2.47 is equivalent
to saying that RI(x) is orthogonal to ∇Γ0(x) at every point x in RN \ {0}.

Now, since the boundary of a Γ-ball Ω(0, r) centered at the origin is a level
set of Γ (so that the normal space to ∂Ω(0, r) at any of its point x is generated
by ∇Γ0(x)), we deduce that RI(x) is tangent to the sub-manifold ∂Ω(0, r).

By the above tangentiality property of R in Rem. 4.2.48, and since the di-
vergence of R is null (see (3.a) in Prop. 4.2.47), we obtain the following result.

Corollary 4.2.49. Let r > 0 and let f : Ω(0, r) −→ R be of class C1. Then∫
∂Ω(0,ρ)

Rf

‖∇Γ0‖
dHN−1 = 0 for every 0 < ρ < r. (4.2.71)

Proof. In the assumptions of the statement, we set

F (ρ) :=

∫
∂Ω(0,ρ)

Rf

‖∇Γ0‖
dHN−1, ρ ∈ (0, r).

We also �x any pair of arbitrary a, b ∈ R such that 0 < a < b < r. If we take
ρ = 1/t in both sides of the above identity, and if we integrate with respect to
t ∈ [1/b, 1/a], from Coarea Formula we obtain∫ b

a

F (s)

s2
ds =

∫ 1/a

1/b

F (1/t) dt =

∫ 1/a

1/b

(∫
∂Ω(0,1/t)

Rf

‖∇Γ0‖
dHN−1

)
dt

(4.2.17)
=

∫
Ω(0,a,b)

Rf dHN .

On the other hand, by using �respectively� the tangentiality of R on the boun-
dary of the Γ-annulus Ω(0, a, b), the Divergence Theorem, and div(R) ≡ 0, we
get (here νext

0,ρ,r is the exterior normal vector on ∂Ω(0, a, b), see (4.2.16)):

0 =

∫
∂Ω(0,a,b)

f 〈R, νext
0,ρ,r〉dHN−1 =

∫
Ω(0,a,b)

div
(
f RI

)
dHN

=

∫
Ω(0,a,b)

f div
(
RI
)

dHN +

∫
Ω(0,a,b)

Rf dHN =

∫
Ω(0,a,b)

Rf dHN .

As a consequence,∫ b

a

F (s)

s2
ds = 0 whenever 0 < a < b < r.

From this, F being continuous on ]0, r[ (see Prop. 4.2.15), we conclude that
F ≡ 0 on (0, r), which is what we intended to prove.
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Unique Continuation Now we have introduced and studied the vector �elds
X,Z and R, we are ready to enter the �nal part of this section, in which we state
and prove the announced Unique Continuation result for the solutions of the
Schrödinger-type equation (4.2.57). To begin with, we �x some notations.

First of all, given a nonnegative measurable function f : (a, b) → R (where
−∞ ≤ a < b ≤ ∞), we say that f is a Dini function on (a, b) if∫ b

a

f(z)

z
dz <∞.

Moreover, we �x once and for all a real R > 0, and we consider a C2 solution
u : Ω(0, R)→ R of the Schrödinger-type equation

−Lu+ Pu = 0 on Ω(0, R), (4.2.72)

where the potential P : Ω(0, R)→ R satis�es the following assumption:

(P) P is continuous on Ω(0, R) and there exists a Dini function f on (1/R,∞),
non-increasing and positive, such that P satis�es the estimate

|P (x)| ≤ f
(
Γ0(x)

) ψL
0 (x)

Γ2
0(x)

, for almost every x ∈ Ω(0, R). (4.2.73)

Remark 4.2.50. It is worth noting that the computations in this �nal part of
the section can be adapted (as in [80]) to the more general case of weak solutions
u in a suitable Γ2-class (that is, u ∈ L2(Ω(0, R)) and Xju ∈ L2(Ω(0, R)) for
every j = 1, . . . ,m) and singular potentials P (so that (4.2.73) can allow gen-
uine singularities of P ). We consider classical C2 solutions u (and continuous
potentials P ) for the sake of the simplicity only.

De�nition 4.2.51. Let v ∈ C1
(
Ω(0, R),R). The three functions

Hv : ]0, R[−→ R, Hv(r) :=

∫
∂Ω(0,r)

v2 ψL
0

‖∇Γ0‖
dHN−1,

Dv : ]0, R[−→ R, Dv(r) :=

∫
Ω(0,r)

‖∇Lv‖2 dHN ,

Iv : ]0, R[−→ R, Iv(r) :=

∫
Ω(0,r)

(
‖∇Lv‖2 + P v2

)
dHN

are called, respectively, the L-height of v, the L-Dirichlet integral of v, and
the L-total energy of v in Ω(0, R).

Remark 4.2.52. Let v ∈ C2(Ω(0, R),R) and let r ∈ (0, R). Due to the crucial
use that we shall make of it in the sequel, we observe that the Hardy-type
inequality (4.2.52) can be rewritten, with the above notations, as follows:∫

Ω(0,r)

v2 ψ
L
0

Γ2
0

dHN ≤ 4
(r

2
Hv(r) +Dv(r)

)
,

As a consequence, we deduce that property (P) of P implies∫
Ω(0,r)

|P | v2 dHN ≤ 4 f(1/r)
(r

2
Hv(r) +Dv(r)

)
. (4.2.74)



4.2. An Hardy-type inequality 180

Remark 4.2.53 (Regularity of Hv, Dv, Iv). Let v ∈ C2(Ω(0, R),R). We ex-
plicitly observe that, with our mean-value notation, the L-height of v satis�es

Hv(r) = Mr(v
2)(0), for every 0 < r < R.

Thus, from Lem. 4.2.28 we infer that Hv is of class C1 on (0, R) and that

lim
r→0+

Hv(r) = v2(0).

Hence Hv is bounded on any interval (0, ρ], with 0 < ρ < R. Furthermore, from
Lem. 4.2.15 we see that also Dv, Iv, are of class C1 on (0, R).

We now obtain some formulas for the �rst derivative of Hv, Dv and Iv.

Lemma 4.2.54. Let v ∈ C2(Ω(0, R),R). Then Hv ∈ C1((0, R),R) and

H ′v(r) =
2

r(Q− 2)

∫
∂Ω(0,r)

v · Zv ψL
0

‖∇Γ0‖
dHN−1, r ∈ ]0, R[. (4.2.75)

If u ∈ C2(Ω(0, R),R) is a solution of the Schrödinger-type equation (4.2.72), we
have an alternative expression for Iu:

Iu(r) =
r

Q− 2

∫
∂Ω(0,r)

u · Zu ψL
0

‖∇Γ0‖
dHN−1, r ∈ (0, R). (4.2.76)

As a consequence

H ′u(r) =
2

r2
Iu(r), r ∈ (0, R). (4.2.77)

Proof. As already observed in Rem. 4.2.53, one has Hv(r) = Mr(v
2)(0) for every

r ∈ (0, R) and Hv ∈ C1((0, R),R); moreover, from Lem. 4.2.28 we have

H ′v(r) =
d

dr
Mr(v

2)(0) = − 1

r2

∫
∂Ω(0,r)

〈A∇v2,∇Γ0〉
‖∇Γ0‖

dHN−1

(4.2.65)
= − 1

r2

∫
∂Ω(0,r)

X(v2)

‖∇Γ0‖
dHN−1.

Since, by de�nition, X = (R− 1
Q−2 ψ

L
0 Z)/Γ0 and Γ ≡ 1/r on ∂Ω(0, r), we get

H ′v(r) = −1

r

(∫
∂Ω(0,r)

Z
(
v2
)

2−Q
ψL

0

‖∇Γ0‖
dHN−1 +

∫
∂Ω(0,r)

R
(
v2
)

‖∇Γ0‖
dHN−1

)
(4.2.71)

=
1

r(Q− 2)

∫
∂Ω(0,r)

Z
(
v2
) ψL

0

‖∇Γ0‖
dHN−1,

and this gives (4.2.75). Let now u ∈ C2(Ω(0, R),R) be a solution of the equation
(4.2.72). A direct computation shows that

L
(
u2
)

= 2
(
‖∇Lu‖2 + uLu

)
= 2
(
‖∇Lu‖2 + P u2

)
, on RN ;

hence, for every 0 < r < R we have

Iu(r) =
1

2

∫
Ω(0,r)

L
(
u2
)

dHN .
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By using the Green identity (4.2.21) and identity (4.2.65) in Rem. 4.2.43, we
obtain (recall the expression of the exterior normal on ∂Ω(0, r), see (4.2.11))

Iu(r) = −1

2

∫
∂Ω(0,r)

〈A∇(v2),∇Γ0〉
‖∇Γ0‖

dHN−1 = −1

2

∫
∂Ω(0,r)

X(v2)

‖∇Γ0‖
dHN−1.

From this, by arguing as above, one gets (4.2.76) and (4.2.77).

The derivative of the L-Dirichlet integral of a function plays a key role;
hence we �rst give a general formula for it, for any C2 function v which is not
necessarily a solution of (4.2.72). This formula also highlights the role of the
vector �elds Z and X. See also [84, Corollary 3.3].

Theorem 4.2.55. Let v ∈ C2(Ω(0, R),R). Then, for every 0 < r < R, the
following �rst-variation formula for Dv holds true:

D′v(r) =
1

r
Dv(r) +

2

r(2−Q)

∫
∂Ω(0,r)

Zv · Xv
‖∇Γ0‖

dHN−1 dHN

+
2

r(2−Q)

∫
Ω(0,r)

Zv · Lv.
(4.2.78)

Proof. Let v ∈ C2(Ω(0, R)) and let 0 < r < R be �xed. From (4.2.18) we have

D′v(r) =
d

dr

(∫
Ω(0,r)

‖∇Lv‖2 dHN

)
=

1

r2

∫
∂Ω(0,r)

‖∇Lv‖2

‖∇Γ0‖
dHN−1 =: (?).

Since Γ ≡ 1/r on ∂Ω(0, r) and ZΓ0 = (2−Q) Γ0 (see (2.b) in Prop. 4.2.47),

(?) =
1

r(2−Q)

∫
∂Ω(0,r)

‖∇Lv‖2 ZΓ0

‖∇Γ0‖
dHN−1

= − 1

r(2−Q)

∫
∂Ω(0,r)

〈
‖∇Lv‖2Z,

−∇Γ0

‖∇Γ0‖

〉
dHN−1

(by the Divergence Theorem)

= − 1

r(2−Q)

∫
Ω(0,r)

div
(
‖∇Lv‖2Z

)
dHN =: (2?).

Recalling that div(Z) = Q (see (2.a) in Prop. 4.2.47), we then get

(2?) = − 1

r(2−Q)

∫
Ω(0,r)

(
Q ‖∇Lv‖2 + Z

(
‖∇Lv‖2

))
dHN

=
Q

r(Q− 2)
Dv(r) +

1

r(Q− 2)

∫
Ω(0,r)

Z
(
‖∇Lv‖2

)
dHN =: (3?).

From the commutator identity in (4.2.69) we obtain

Z
(
‖∇Lv‖2

)
= 2〈∇Lv,Z(∇Lv)〉 = 2〈∇Lv,∇L(Zv) + [Z,∇L]v〉

(4.2.69)
= 2〈∇Lv,∇L(Zv)〉 − 2‖∇Lv‖2.

As a consequence, we have

(3?) =
1

r
Dv(r) +

2

r(Q− 2)

∫
Ω(0,r)

〈∇Lv,∇L(Zv)〉dHN =: (4?).
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Finally, integrating by parts and recalling that, for every i = 1, . . . ,m one has
div(Xi) = 0, we get (here νext

0,r is the exterior normal on ∂Ω(0, r), see (4.2.11))

(4?) =
1

r
Dv(r) +

2

r(Q− 2)

m∑
i=1

∫
Ω(0,r)

Xiv ·Xi(Zv) dHN

=
1

r
Dv(r) +

2

r(Q− 2)

m∑
i=1

∫
∂Ω(0,r)

Zv ·Xiv 〈XiI, ν
ext
0,r 〉dHN−1

− 2

r(Q− 2)

m∑
i=1

∫
Ω(0,r)

Zv ·X2
i v dHN

=
1

r
Dv(r) +

2

r(2−Q)

∫
∂Ω(0,r)

Zv

‖∇Γ0‖

(
m∑
i=1

XiΓ0Xiv

)
dHN−1

+
2

r(2−Q)

∫
Ω(0,r)

Lv Zv dHN .

This is precisely (4.2.78), if one recalls the de�nition (4.2.61) of X.

By expressing X in terms of R and Z (see (4.2.63)), formula (4.2.78) gives,
for a solution u of Lu = Pu, the following result.

Corollary 4.2.56. Let u ∈ C2(Ω(0, R),R) be a solution of (4.2.72) on Ω(0, R).
Then, for every 0 < r < R, the following �rst-variation formula holds true:

D′u(r) =
1

r
Du(r) +

2

r(2−Q)

∫
Ω(0,r)

PuZudHN

+
2

2−Q

∫
∂Ω(0,r)

RuZu

‖∇Γ0‖
dHN−1 +

2

(2−Q)2

∫
∂Ω(0,r)

ψL
0 (Zu)2

‖∇Γ0‖
dHN−1.

(4.2.79)

In the next proof we use for the �rst time the estimate (4.2.73) of P . Besides,
we apply the Hardy-type inequality (4.2.52).

Proposition 4.2.57. Let u ∈ C2(Ω(0, R),R) be a solution of (4.2.72) with a
potential P as in assumption (P). Then, there exists ρ0 ∈ (0, R), depending on
the function f in (4.2.73), but independent of u, with the following properties:

1. if r ∈ (0, ρ0] is such that Hu(r) = 0, then also Iu(r) = 0 and Du(r) = 0,
so that ∇Lu ≡ 0 on Ω(0, r);

2. if ‖∇Lu‖2 is not identically zero on every Γ-ball Ω(0, r), with 0 < r ≤ ρ0,
then Hu(r) 6= 0 for every r ∈ (0, ρ0].

Proof. (1) First of all we observe that, since f is a non-increasing Dini function
on (1/R,∞) (see assumption (P)), we have

lim
z→∞

f(z) = 0;

thus, it is possible to �nd ρ0 < R such that f(1/ρ0) < 1/8.
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Let now r ∈ (0, ρ0] be such that Hu(r) = 0. The Cauchy-Schwarz inequality
applied to identity (4.2.76) in Lem. 4.2.54 gives out

|Iu(r)| ≤ r

Q− 2

(
Hu(r)

)1/2
(∫

∂Ω(0,r)

(Zu)2 ψL
0

‖∇Γ‖
dHN−1

)1/2

= 0.

Thus Iu(r) = 0. Since, by de�nition, Du(r) = Iu(r) −
∫

Ω(0,r)
P u2, from the

nullity of Iu(r) and Hu(r) we then get

Du(r) ≤
∫

Ω(0,r)

|P |u2 dHN
(4.2.74)

≤ 4 f(1/r)
(r

2
Hu(r) +Du(r)

)
= 4 f(1/r)Du(r).

Note that we have applied here the result (4.2.74) of Rem. 4.2.52, depending on
the Hardy inequality (4.2.52) and the estimate (P) of P .

Since f is non-increasing and r ≤ ρ0, we have f(1/r) ≤ f(1/ρ0) < 1/8,
so that the above inequality gives Du(r) < Du(r)/2, which obviously implies
Du(r) = 0. We then obtain ‖∇Lu‖2 ≡ 0 on Ω(0, r), as desired.

(2) It is a direct consequence of (1).

From now on, we understand that u ∈ C2(Ω(0, R),R) is a solution of the
Schrödinger-type equation (4.2.72), with a potential P as in assumption (P).
Following the approach of [80, 81, 82, 83] using Almgren's frequency function,
we give the following crucial de�nition.

De�nition 4.2.58. Let ρ0 be as in Prop. 4.2.57. Suppose that ‖∇Lu‖2 is not
identically zero on every Γ-ball Ω(0, r), with 0 < r ≤ ρ0.

Then the following function is well de�ned

Nu : (0, ρ0] −→ R Nu(r) :=
Iu(r)

r Hu(r)
,

and it is called the L-frequency of u. We also set

Λ(u) :=
{
r ∈ (0, ρ0] : Nu(r) > max{1, Nu(ρ0)}

}
. (4.2.80)

Remark 4.2.59. Let the assumptions and the notations in Def. 4.2.58 apply.
Since both Iu and Hu are of class C1 on (0, R) (and since Hu 6= 0 on (0, ρ0]),
we have Nu ∈ C1((0, ρ0],R). Moreover, a direct computation gives

N ′u(r) =
1

r2

(
r I ′u(r)

Hu(r)
− Iu(r)

Hu(r)
− r Iu(r)H ′u(r)

H2
u(r)

)
, on (0, ρ0]. (4.2.81)

Finally, the continuity of Nu on (0, ρ0] ensures that Λ(u) is a (relatively) open
subset of (0, ρ0]. Note that, a priori, Λ(u) could be empty.

Remark 4.2.60. Let the assumptions and the notations in Def. 4.2.58 apply.
By the very de�nition of Λ(u) ⊆ (0, ρ0], we have

Iu(r) > r max{1, Nu(ρ0)}Hu(r) ≥ r Hu(r) > 0, for every r ∈ Λ(u)

Hence, in particular, Iu 6= 0 on Λ(u).
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Remark 4.2.61. Let u ∈ C2(Ω(0, R),R) be as in Def. 4.2.58. If u is δλ-homo-
geneous of degree m ≥ 0, its L-frequency Nu can be explicitly computed.

In fact, under this additional assumption, the expression of Iu given in
(4.2.76) and Lem. 4.2.44 imply that, for every 0 < r < R,

Iu(r) = −r m

2−Q

∫
∂Ω(0,r)

u2 ψL
0

‖∇Γ0‖
dHN−1 =

rm

Q− 2
Hu(r).

Therefore, by the very de�nition of Nu we get

Nu(r) =
m

Q− 2
, for every 0 < r ≤ ρ0.

From now on, when Nu or Λ(u) are involved, we tacitly assume that u
satis�es the assumptions in Def. 4.2.58. Since, by Rem. 4.2.60, Iu 6= 0 on Λ(u),
the logarithmic derivatives in the following statement are well posed.

Proposition 4.2.62. For every r ∈ Λ(u) we have the following formulas for
the logarithmic derivatives of Iu and Nu:

I ′u(r)

Iu(r)
=

1

r
+

1

Iu(r)

{
2

r(2−Q)

∫
Ω(0,r)

PuZudHN − 1

r

∫
Ω(0,r)

Pu2 dHN

+
2

2−Q

∫
∂Ω(0,r)

(
(Zu)2

2−Q
ψL

0 + ZuRu

)
dHN−1

‖∇Γ0‖

+
1

r2

∫
∂Ω(0,r)

Pu2

‖∇Γ0‖
dHN−1

}
.

N ′u(r)

Nu(r)
= − 2Iu(r)

r2Hu(r)
+

1

Iu(r)

{
2

r(2−Q)

∫
Ω(0,r)

ZuPudHN

− 1

r

∫
Ω(0,r)

P u2 dHN

+
2

2−Q

∫
∂Ω(0,r)

(
(Zu)2

2−Q
ψL

0 + ZuRu

)
dHN−1

‖∇Γ0‖

+
1

r2

∫
∂Ω(0,r)

P u2

‖∇Γ0‖
dHN−1

}
.

Proof. Since, by de�nition, Iu(r) = Du(r) +
∫

Ω(0,r)
Pu2 for every r ∈ (0, R),

identity (4.2.18) in Prop. 4.2.15 implies that

I ′r(u) = D′u(r) +
1

r2

∫
∂Ω(0,r)

Pu2

‖∇Γ0‖
dHN−1, for every r ∈ (0, R).

Thus, the formula for I ′u/Iu easily follows from (4.2.79) and (4.2.18).
On the other hand, by identity (4.2.81) in Rem. 4.2.59 we have

N ′u(r)

Nu(r)
=
I ′u(r)

Iu(r)
− 1

r
− 2

r

Iu(r)

r Hu(r)
, for every r ∈ Λ(u),

and thus the formula for N ′u/Nu follows from that of I ′u/Iu.



4.2. An Hardy-type inequality 185

From now on, we make the following growth assumption on the L- discrep-
ancy Ru of our solution u (see Def. 4.2.42):

(D) there exists a Dini function g on (1/R,∞), non-increasing and positive,
such that u satis�es the condition

|Ru(x)| ≤ g
(
Γ(x)

)
ψL

0 |u(x)|, for almost every x ∈ Ω(0, R). (4.2.82)

We then have the following keystone result.

Theorem 4.2.63. Let u ∈ C2(Ω(0, R),R) be a solution of (4.2.72) on Ω(0, R)
satisfying condition (D) above, and such that ‖∇Lu‖2 is not identically zero on
every Γ-ball Ω(0, r), with 0 < r ≤ ρ0. We also recall that the potential P ful�lls
assumption (P), and ρ0 is as in Prop. 4.2.57.

Then there exists a real constant M > 0 (independent of u) such that

N ′u(r)

Nu(r)
≥ −M

(
f(1/r) + g(1/r)

r

)
, for every r ∈ Λ(u). (4.2.83)

Here f and g are the Dini functions in the hypotheses (P) and (D), respectively.

Proof. We omit the proof, since this can be obtained by arguing verbatim as
in [80, pages 341�345], once the expression for the logarithmic derivative of
Nu(r) has been obtained (see Prop. 4.2.62), and by making use of the results
obtained so far for Iu, Nu, Du. We limit ourselves to remark that the Hardy-type
inequality (4.2.52) has a key role in this arguments as well.

It is well known that control from below of the logarithmic derivative of Nu
as in Thm. 4.2.63 yields the boundedness of the frequency Nu and a doubling
property for the mean-value of u2, as in the following corollary.

Corollary 4.2.64. Let u ∈ C2(Ω(0, R),R) satisfy the hypothesis in the above
Thm. 4.2.63, and let ρ0 be as in Prop. 4.2.57. Then, there exist real constants
α, β, γ > 0 (depending on u) such that the following results hold:

(Upper boundedness of Nu)

Nu(r) ≤ α, for every r ∈ (0, ρ0]. (4.2.84)

(Doubling properties)

Hu(2r) ≤ β Hu(r), for every r ∈ (0, ρ0/2]; (4.2.85)

∫
Ω(0,2r)

u2

Γ2
0

ψL
0 dHN ≤ γ

∫
Ω(0,r)

u2

Γ2
0

ψL
0 dHN , ∀ r ∈ (0, ρ0/2]. (4.2.86)

Proof. Let Λ(u) be as in (4.2.80). Outside Λ(u), Nu is bounded from above by

θ := max{1, Nu(ρ0)}.

We can thus restrict to �nd an upper bound for Nu on Λ(u). If r is �xed in Λ(u),
we let (a, b) be the connected component of Λ(u) containing r. Then (4.2.83)
implies that (recall that f, g are positive Dini functions)

log

(
Nu(b)

Nu(r)

)
=

∫ b

r

N ′u(t)

Nu(t)
dt ≥ −M

∫ ∞
1/ρ0

(
f(z) + g(z)

z

)
dz =: C.
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Since b ≤ ρ0 but b /∈ Λ(u), we have 0 < Nu(b) ≤ max{1, Nu(ρ0)}; therefore the
above inequality gives Nu(r) ≤ α for every 0 < r ≤ ρ0, where

α = α(u) = e−C max{1, Nu(ρ0)} (≥ θ).

This proves (4.2.84). Next, we have

H ′u(ρ)

Hu(ρ)

(4.2.77)
=

2 Iu(ρ)

ρ2Hu(ρ)
= 2

Nu(ρ)

ρ
, for every 0 < ρ ≤ ρ0;

therefore, for every 0 < r ≤ ρ0/2, and by means of (4.2.84), we deduce that

log

(
Hu(2r)

Hu(r)

)
=

∫ 2r

r

H ′u(ρ)

Hu(ρ)
dρ = 2

∫ 2r

r

Nu(ρ)

ρ
dρ

≤ 2α(u)

∫ 2r

r

1

ρ
dρ = 2α(u) log(2),

which gives (4.2.85) with the choice β = β(u) = exp(2α(u) log(2)). Finally, we
consider the function F : (0, R)→ R de�ned by

F (r) :=

∫
Ω(0,r)

u2

Γ2
0

ψL
0 dHN , r ∈ (0, R).

From Lem. 4.2.15, we have F ∈ C1((0, R),R) and

F ′(r) =
1

r2

∫
∂Ω(0,r)

u2

Γ2
0

ψL
0

‖∇Γ0‖
dHN−1

=

∫
Ω(0,r)

u2 ψL
0

‖∇Γ0‖
dHN−1 = Hu(r), for every r ∈ (0, R).

(4.2.87)

Thus, if 0 < a < r ≤ ρ0/2, from (4.2.85) we obtain

F (2r)− F (2a)

2

(4.2.87)
=

∫ r

a

Hu(2ρ) dρ

≤ β(u)

∫ r

a

Hu(ρ) dρ
(4.2.87)

= β(u)(F (r)− F (a)).

The function u2 ψL
0 /Γ

2
0 being locally integrable on Ω(0, R) (as it follows from

Lem. 4.2.23), we infer that F (a)→ 0 as a→ 0; therefore, by passing to the limit
as a→ 0 in the latter inequality, we obtain

F (2r) ≤ 2β(u)F (r), for every 0 < r < ρ0/2.

Taking into account the de�nition of F , we conclude that (4.2.86) holds with
the choice γ = γ(u) := 2β(u). This ends the proof.

The boundedness of Nu and the doubling properties (4.2.85) and (4.2.86) in
the above Cor. 4.2.64 are the �nal tools for the Unique Continuation. In order
to clearly state such a result, we �rst give the following de�nition.
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De�nition 4.2.65. Let u be a bounded function de�ned on Ω(0, R). We say
that u vanishes to in�nite order at 0 if, for every �xed α ∈ N, one has:∫

Ω(0,r)

u2 ψ
L
0

Γ2
0

dHN = O
(
rα
)
, as r → 0+.

By this we mean, precisely, that for every �xed α ∈ N it is possible to �nd
rα ∈ (0, R) and a real Cα > 0 (both depending on α) such that∫

Ω(0,r)

u2 ψ
L
0

Γ2
0

dHN ≤ Cα r
α, for every 0 < r < rα. (4.2.88)

We then have the following Unique Continuation property.

Theorem 4.2.66. Let u ∈ C2(Ω(0, R),R) be a solution of the equation

−Lu+ Pu = 0, on Ω(0, R).

We assume that the L-discrepancy of u satis�es the growth estimate (D) and
that the potential P satis�es assumption (P).

If u vanishes to in�nite order at 0, the u ≡ 0 in a neighborhood of the origin.

Proof. We begin by showing that u(0) = 0. To this end, we take α = 2 in
(4.2.88) and we let C2, r2 be as in (4.2.88) as well. For 0 < r < r2, we have

C2 r ≥
1

r

∫
Ω(0,r)

u2 ψ
L
0

Γ2
0

dHN =
1

r

∫
Ω(0,r)

(u2 − u2(0))
ψL

0

Γ2
0

dHN + u2(0)

=: J(r) + u2(0).

In the �rst equality we invoked (4.2.36) with α = 2, which proves that∫
Ω(0,r)

ψL
0

Γ2
0

dHN = r.

We now let r → 0+ in the above inequality: since u is continuous at 0, one has
J(r)→ 0 as r → 0+; thus, we get 0 ≥ u2(0), whence u(0) = 0, as desired.

Now, if ρ0 is as in Prop. 4.2.57, only two cases can occur:

(1) there exists r ∈ (0, ρ0] such that ‖∇Lu‖2 ≡ 0 on Ω(0, r);

(2) ‖∇Lu‖2 is not identically zero on every Γ-ball Ω(0, r), with 0 < r ≤ ρ0.

We show that (2) cannot occur and that under case (1) the theorem is proved.

In case (1), we have ∇Lu ≡ 0 on U := Ω(0, r), and we claim that u is
constant on U . In fact, since X1, . . . , Xm are Lie-generators for Lie(G), the
nullity of the L-horizontal gradient of u implies that

J1u(x) = . . . = JNu(x) = 0, for every x ∈ U,

where J1, . . . , JN denotes, as usual, the elements of the Jacobian basis for
Lie(G). As a consequence, we have (see Rem. 1.1.5 on page 5)

∇u(x) · Jτx(0) = 0, for every x ∈ U.
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Since, for every x ∈ U , the matrix Jτx(0) is non-singular (τx being a di�eomor-
phism), we have ∇u ≡ 0 on U ; from this, U = Ω(0, r) being connected (see
Lem. 4.2.12), we infer that u is constant throughout U . Finally, since u(0) = 0
(see above), we conclude that u ≡ 0 on U and the theorem is proved.

We suppose, by contradiction, that we are in case (2) so that we are entitled
to apply Cor. 4.2.64. We thus �x any 0 < r ≤ ρ0 and we iterate k times the
doubling inequality (4.2.86). This gives∫

Ω(0,r)

u2 ψ
L
0

Γ2
0

dHN ≤ γk
∫

Ω(0,r/2k)

u2 ψ
L
0

Γ2
0

dHN , for every k ∈ N. (4.2.89)

We �x some large integer α (to be chosen in a moment), in such a way that, if
k is su�ciently large (namely r/2k < rα), one has (see (4.2.88))

γk
∫

Ω(0,r/2k)

u2 ψ
L
0

Γ2
0

dHN ≤ Cα γk
( r

2k

)α
= Cα r

α
( γ

2α

)k
.

If we �x α ∈ N such that α > log2(2γ), we have γ/2α < 1/2 and the above right-
hand side vanishes as k → ∞. This proves that the integral in the left-hand
side of (4.2.89) is null, whence u2ψL

0 = 0 on Ω(0, r) \ {0}. This gives

Hu(ρ) =

∫
∂Ω(0,ρ)

u2 ψL
0

‖∇Γ0‖
dHN−1 = 0 for all ρ ∈ (0, r).

Since r ≤ ρ0 is arbitrary, we get Hu(r) = 0 for every r ∈ (0, ρ0]. From (1)
in Prop. 4.2.57 we deduce that ‖∇Lu‖2 ≡ 0 on Ω(0, ρ0) but this is clearly in
contradiction with assumption (2). This ends the proof.



Appendix A

Finer convergence domain for

the Campbell-Hausdor� series

The aim of this Appendix is to brie�y describe a convergence result for the
Campbell-Baker-Hausdor�-Dynkin (CBHD, in the sequel) series

∞∑
n=1

Zn(x, y) = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]]− 1

12
[y, [x, y]] + · · ·

in in�nite-dimensional Banach-Lie algebras L. In the existing literature, this
problem is solved when L = Lie(G) is the Lie algebra of a �nite-dimensional Lie
group G (see Blanes, Cases [25]) or of an in�nite-dimensional Banach-Lie group
G (see Mérigot [110]). Indeed, one can obtain a suitable ODE for the map

t 7→ γ(t) =

∞∑
n=1

Zn(x, ty),

which follows from the well-behaved formulas for the di�erential of the Expo-
nential Map of the Lie group G. The novelty of the approach we are going to
present is to derive this ODE in any in�nite-dimensional Banach-Lie algebra
(not necessarily associated with a Lie group), as a consequence of an analogous
abstract ODE �rstly obtained in the most natural algebraic setting: that of the
formal power series in two commuting indeterminates s, t over the free unital
associative algebra generated by the non-commuting indeterminates x, y.

The plan of the chapter is the following:

- In Sec.A.1 we introduce the main de�nitions and notations concerning the
abstract algebraic setting in which the CBHD series is studied.

- Sec. A.2 is devoted to establishing two (formal) PDEs for the series

Z(xs, yt) := log
(

exp(x s) ? exp(y t)
)
,

in the algebra of formal power series in the two commuting indetermi-
nates s, t over the free unital associative algebra generated by the non-
commuting indeterminates x, y. As a consequence of such PDEs, we are
able to provide a simple a proof of the notable CBHD Theorem.

189
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- In Sec.A.3 we exploit the PDEs obtained in Sec.A.2 (plus a simple argu-
ment of ODE Theory) in order to prove the announced convergence result
for the CBHD series in any (in�nite-dimensional) Banach-Lie algebra.

- Finally, as an application of the convergence result proved in Sec.A.3, we
derive in Sec.A.4 some notable PDEs related to the CBHD series.

A.1 Algebraic background

As anticipated, this �rst section is aimed to �x the notation used in the sequel.
First of all, we �x a �eld K of characteristic zero; all linear structures will be
tacitly understood over K. Moreover, for the sake of simplicity, N denotes the
set of the nonnegative integers, so that 0 ∈ N.

By (A, ∗) we shall always denote a �xed unital associative algebra, i.e., a vec-
tor space endowed with a bilinear associative operation ∗, possessing a neutral
element, denoted by 1A. Addition in A and the action of K on A are denoted,
respectively, by A×A 3 (a, a′) 7→ a+ a′ and K×A 3 (k, a) 7→ k a.

De�nition A.1.1. A formal power series in the two commuting indetermi-
nates s, t, with coe�cients in A (or, simply, a power series in A) is a map

F : N×N −→ A, F (i, j) := Fi,j ∈ A.

The set of all formal power series in A will be denoted by A[[s, t]]. Moreover,
given any F ∈ A[[s, t]], we shall write it in the following equivalent ways

F =
∑
i,j≥0

Fi,j s
itj =

∞∑
i,j=0

Fi,j s
itj .

and we shall refer to Fi,j as the coe�cient of F of place (i, j).

Remark A.1.2. We explicitly observe that any element a ∈ A can be identi�ed
with the formal power series Fa ∈ A[[s, t]] de�ned by

Fa(0, 0) = a and Fa(i, j) = 0 for every i, j ≥ 1.

As a consequence, we consider the algebra A as a subset of A[[s, t]] and we
identify the power series Fa with the element a.

A distinguished subset of A[[s, t]] is that of the polynomials in the two com-
muting variables s and t, with coe�cients in A.

De�nition A.1.3. A power series F ∈ A[[s, t]] is called a polynomial (in s and
t with coe�cients in A) if there exists n ∈ N such that

Fi,j = 0 for every i, j ∈ N with i+ j > n.

The set of all polynomials in A will be denote by A[s, t]. Moreover, given any
couple (i, j) ∈ N×N, we shall denote by si tj the (unique) polynomial F ∈ A[s, t]
whose only non-vanishing value is

F (i, j) := 1A.
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Finally, given any polynomial F ∈ A[s, t] we de�ne

deg(F ) := min
{
n ∈ N : Fi,j = 0 for every i+ j > n.

}
.

and we call it the jointly degree of F .

Remark A.1.4. We explicitly observe that, by the very de�nition of A[s, t],
we have A ⊆ A[s, t] (the elements of A are polynomials of degree 0). Moreover,

A[s, t] = spanK
(
{si tj : i, j ∈ N}

)
.

As it is reasonable to expect, the set A[[s, t]] inherits from A the structure of
unital associative algebra. More precisely, we have the following theorem.

Theorem A.1.5. The set A[[s, t]] is endowed with a structure of unital associa-
tive algebra (over the �eld K) by the following operations:

A[[s, t]]×A[[s, t]] 3 (F,G) 7→ (F +G) :=

∞∑
i,j=0

(Fi,j +Gi,j) s
itj ;

K×A[[s, t]] 3 (a, F ) 7→ (aF ) :=

∞∑
i,j=0

(aFi,j) s
itj ;

A[[s, t]]×A[[s, t]] 3 (F,G) 7→ (F ∗G) :=

∞∑
i,j=0

( ∑
h+h′=i
k+k′=j

Fh,k ∗Gh′,k′
)
sitj .

In particular, the neutral element with respect to + is the polynomial F = 0
while the neutral element with respect to ? is the polynomial s0 t0 = 1A.

Remark A.1.6. Some remarks on the algebraic structure of A[[s, t]] are in order.

(a) All the operations de�ned on A[[s, t]] are compatible with the immersion
A ↪→ A[[s, t]] mentioned in Rem.A.1.2; for this reason, we adopt for such
operations the same notations used for the ones de�ned on A.

(b) The operation ∗ is the usual Cauchy product of formal power series, since

si tj ∗ sh tk = si+h tj+k, for every (i, j), (h, k) ∈ N×N.

(c) A direct computation shows that A[s, t] is closed with respect to all the
operations de�ned on A[[s, t]]; hence A[s, t] is a sub-algebra of A[[s, t]].

We next show that A[[s, t]] is not only a unital associative algebra, but it
can be naturally endowed with a metric structure turning it into a topological
algebra, as well. To this end, we �rst give the following de�nition.

De�nition A.1.7. Let F ∈ A[[s, t]] be �xed. We de�ne

ord(F ) :=

{
∞, if F = 0,
min

{
i+ j : Fi,j 6= 0

}
, if F 6= 0,

and we call it the order of F .
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By making use of the notion of order of a power series, and with the con-
vention 2−∞ = 0, we then introduce the following map.

De�nition A.1.8. We de�ne

d : A[[s, t]]×A[[s, t]]→ [0,∞), d(F,G) := 2−ord(F−G).

Thm.A.1.9 below summirizes the most relevant properties of d.

Theorem A.1.9. Let d be the function introduce in the above Def. A.1.8. Then
d is a metric on A[[s, t]], and the couple (A[[s, t]], d) is a metric space.

Moreover, the following properties hold true:

(i) d is translation-invariant, that is,

d(F,G) = d(F +H,G+H), for every F,G,H ∈ A[[s, t]].

(ii) A basis of neighborhoods of 0 ∈ A[[s, t]] is given by the family of sets{
F ∈ A[[s, t]] : ord(F ) ≥ n

}
, n ∈ N.

As a consequence, (A[[s, t]], d) is �rst-countable.

(iii) d is an ultra-metric, i.e., the triangle inequality holds in the stronger form

d(F,G) ≤ max{d(F,H), d(H,G)}, for every F,G,H ∈ A[[s, t]].

(iv) (A[[s, t]], d) is a complete metric space and, relative to the structure of
associative algebra (A[[s, t]], ∗) introduced in Thm.A.1.5, it is a topological
algebra (under the topology induced by the metric structure).

(v) A[s, t] is dense in A[[s, t]]; more precisely, for every F ∈ A[[s, t]] we have

A[s, t] 3
n∑
k=0

 k∑
i+j=0

Fi,j s
itj

 d→ F as n→∞.

Remark A.1.10. Some remarks are in order:

(a) Let {F (n)}n∈N be a sequence in A[[s, t]]. As a consequence of properties
(i)-to-(iv) above (in particular, of the ultra-metric condition), the series∑

n∈N
F (n)

is convergent in (A[[s, t]], d) if and only if

lim
n→∞

F (n) = 0;

in turn, by the de�nition of d, the latter condition is satis�ed i�

lim
n→∞

ord(F (n)) =∞.
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(b) Property (v) shows that the notation F =
∑∞
i,j=0 Fi,j s

itj is far from being
a mere formal notation: F is indeed the sum of a convergent series in the
complete metric space (A[[s, t]], d).

(c) From the invariance of d, we see that a linear map ϕ : A[[s, t]]→ A[[s, t]] is
continuous if and only if it is continuous in 0. A su�cient condition for
the latter is the existence of m(ϕ) ∈ N such that (see (i) above)

ord(ϕ(F )) ≥ ord(F )−m(ϕ), for every F ∈ A[[s, t]].

The main motivation for the introduction of A[[s, t]] is to introduce two partial
di�erential operators ∂s and ∂t, which will play a crucial rôle in the sequel.

De�nition A.1.11. We de�ne the following endomorphisms of A[[s, t]]:

∂s : A[[s, t]]→ A[[s, t]], ∂s

( ∞∑
i,j=0

Fi,j s
itj
)

:=

∞∑
i,j=0

(i+ 1)Fi+1,j s
itj ;

∂t : A[[s, t]]→ A[[s, t]], ∂t

( ∞∑
i,j=0

Fi,j s
itj
)

:=

∞∑
i,j=0

(j + 1)Fi,j+1 s
itj .

We say that ∂sF and ∂tF are the partial derivatives of F w.r.t. s and w.r.t. t.

Remark A.1.12. Some remarks concerning the maps ∂s and ∂t are in order.

(a) It is easy to prove that both ∂s and ∂t are derivations of the associative
algebra (A[[s, t]], ∗), i.e., they are linear and they satisfy Leibniz's rule:

∂s(F ∗G) = ∂s(F ) ∗G+ F ∗ ∂s(G),

∂t(F ∗G) = ∂t(F ) ∗G+ F ∗ ∂t(G).

(b) By Rem.A.1.10 - (c), both ∂s and ∂t are continuous maps on the metric
space (A[[s, t]], d): in fact, for every F ∈ A[[s, t]] we have

ord(∂s(F )) ≥ ord(F )− 1 and ord(∂t(F )) ≥ ord(F )− 1.

(c) It is possible to give an explicit characterization of the kernel of (the linear
maps) ∂s and ∂t. In fact, since K has characteristic zero, we see that

ker (∂s) =

{ ∞∑
i,j=0

Fi,js
itj ∈ A[[s, t]] : Fi,j = 0 for all i ≥ 1, j ≥ 0

}
.

Roughly put, the kernel of ∂s consists of those formal power series which
are independent of s. In the same way, one can see that the kernel of ∂t
consists of those formal power series which do not depend on t.

We now introduce two important subsets of A[[s, t]], which will be relevant
in de�ning the exp and log maps on A[[s, t]]:

A[[s, t]]+ := {F ∈ A[[s, t]] : F0,0 = 0}, (A.1.1a)

1 +A[[s, t]]+ := {F ∈ A[[s, t]] : F0,0 = 1A}. (A.1.1b)



A.1. Algebraic background 194

De�nition A.1.13. By taking into account the subsets of A[[s, t]] introduced
in (A.1.1a) and (A.1.1b), we de�ne the two following functions:

exp : A[[s, t]]+ −→ 1 +A[[s, t]]+, exp(F ) :=

∞∑
n=0

1

n!
Fn,

log : 1 +A[[s, t]]+ −→ A[[s, t]]+, log(F ) :=

∞∑
n=1

(−1)n+1

n
(F − 1A)n.

(A.1.2)

We say that exp and log are the exponential and logarithmic maps of A[[s, t]].

Remark A.1.14. We explicitly observe that the de�nitions of exp and log are
well-posed, since the series in (A.1.2) are convergent in (A[[s, t]], d).

In fact, due to Rem.A.1.10-(a), it su�ces to notice that, for every F in
A[[s, t]]+, the sequence Fn vanishes as n→∞ (for ord(Gn) ≥ n ord(G) ≥ n).

The following Thm.A.1.15 (whose elementary proof is skipped) contains the
most important features of the maps exp and log just de�ned.

Theorem A.1.15. The following facts hold true:

(i) The maps exp and log are inverse to each other, that is,

exp(log(F )) = F for every F ∈ 1 +A[[s, t]]+

log(exp(G)) = G, for every G ∈ A[[s, t]].

(ii) For every �xed F ∈ A[[s, t]]+, the element exp(F ) is invertible in the unital
algebra (A[[s, t]], ∗), with inverse element given by exp(−F ):

exp(F ) ∗ exp(−F ) = 1A = exp(−F ) ∗ exp(F ). (A.1.3)

(iii) For every �xed a ∈ A, we have a s, a t ∈ A[[s, t]] and

∂

∂s
exp(a s) = a ∗ exp(a s) = exp(a s) ∗ a,

∂

∂s
exp(a t) = 0.

(A.1.4)

Analogous formulas hold true for ∂
∂t .

Remark A.1.16. As already said, the proof of Thm.A.1.15 is elementary. We
limit ourselves to point out that statement (i) is a simple consequence of the
following identities, holding true in every �eld of characteristic 0:

k∑
n=1

∑
i1,...,in≥ 1
i1+···+in = k

(−1)n+1

n · i1! . . . in!
=

k∑
n=1

∑
i1,...,in≥ 1
i1+···+in = k

(−1)i1+···+in+n

n! · i1 . . . in
=

{
1 if k = 1,

0 if k > 1.

(A.1.5)
In their turn, these identities follow from

exp(log x) = x and log(exp y) = y (valid for x > 0 and y ∈ R),

by inserting the series expansions of exp and log, and by recalling that any �eld
of characteristic 0 possesses a sub-�eld isomorphic to Q.
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A notable generalization of (A.1.4) is given by the following Thm.A.1.18.
First we need a notation used throughout. Given a Lie algebra (g, [·, ·]) and
given an element g ∈ g, we set, as customary,

ad g : g −→ g, (ad g)(g′) := [g, g′], ∀ g′ ∈ g.

Remark A.1.17. If (A, ∗) is an associative algebra, when we make any refer-
ence to A as a Lie algebra, we tacitly mean that it is equipped with the Lie
bracket associated with ∗, namely

[a, a′]∗ := a ∗ a′ − a′ ∗ a, ∀ a, a′ ∈ A.

For example, if F ∈ A[[s, t]], by adF we mean the map

(adF ) : A[[s, t]] −→ A[[s, t]], (adF )(G) = F ∗G−G ∗ F,

where ∗ is as in Thm.A.1.5.

Theorem A.1.18. Let F ∈ A[[s, t]]+. Then, the following identities hold:

∂s exp(F ) =

( ∞∑
n=0

1

(n+ 1)!
(adF )n (∂sF )

)
∗ exp(F ), (A.1.6a)

∂s exp(F ) = exp(F ) ∗

( ∞∑
n=0

1

(n+ 1)!
(−adF )n (∂sF )

)
. (A.1.6b)

Analogous identities hold true for the partial derivative with respect to t.

Remark A.1.19. Before sketching its proof, two remarks concerning the con-
tent of Thm.A.1.18 are in order:

(1) Let F ∈ A[[s, t]]+ be �xed. By Rem.A.1.10 - (a) the series in (A.1.6a) and
(A.1.6b) are convergent since, for any G ∈ A[[s, t]], one has

ord((adF )n(G)) ≥ n ord(F ) + ord(G) ≥ n→∞, as n→∞.

We shall compactly rewrite (A.1.6a) and (A.1.6b) as

∂s exp(F ) =
eadF − 1

adF

(
∂sF

)
∗ exp(F ), (A.1.7a)

∂s exp(F ) = exp(F ) ∗ 1− e−adF

adF

(
∂sF

)
. (A.1.7b)

(2) The above notation is not only formal: for any F ∈ A[[s, t]]+, the map

A[[s, t]] 3 G 7→ eadF − 1

adF
(G) :=

∞∑
n=0

1

(n+ 1)!
(adF )n(G) (A.1.8)

is a well-posed linear map of the vector space A[[s, t]] into itself (see point
(1) above). Moreover, this map is invertible and its inverse is given by

A[[s, t]] 3 G 7→ adF

eadF − 1
(G) :=

∞∑
n=0

Bn
n!

(adF )n(G), (A.1.9)
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where {Bn}n∈N is the sequence of the Bernoulli numbers, de�ned by the
generating holomorphic function

z

ez − 1
=

∞∑
n=0

Bn
n!

zn, |z| < 2π.

As it is well-known, the Bn are rational numbers (hence meaningful in K)
since they satisfy the recursion formula

B0 = 1, Bn = −n!

n−1∑
k=0

Bk
k! (n+ 1− k)!

(n ≥ 1), (A.1.10)

as it follows by expanding in a Cauchy product the identity

1 =
ez − 1

z
· z

ez − 1
=

( ∞∑
n=0

zn

(n+ 1)!

)
·

( ∞∑
n=0

Bn
n!

zn

)
.

Proof (of Thm.A.1.18). We start from a result of non-commutative algebra,
whose proof follows by induction (see [30, Lemma 4.21]): for every �xed F in
A[[s, t]] and every natural n ≥ 1 one has

∂s(F
n) =

n−1∑
k=0

(
n
k+1

)
(adF )k

(
∂sF

)
∗ Fn−k−1

=

n−1∑
k=0

(
n
k+1

)
Fn−k−1 ∗ (−adF )k

(
∂sF

)
.

Now, Thm.A.1.18 can be proved arguing exactly as in the proof of [30, Theorem
4.22], since ∂s is a continuous derivation of A[[s, t]] (see Rem.A.1.12 - (b)).

Indeed, by passing ∂s under the series sign, we get

∂s exp(F ) =

∞∑
n=1

1

n!
∂s(F

n) =

∞∑
n=1

1

n!

n−1∑
k=0

(
n
k+1

)
(adF )k

(
∂sF

)
∗ Fn−k−1

=

∞∑
k=0

(
1

(k + 1)!
(adF )k

(
∂sF

)
∗

∞∑
n=k+1

Fn−k−1

(n− k − 1)!

)

=
eadF − 1

adF

(
∂sF

)
∗ exp(F ).

Identity (A.1.6b) can be proved analogously.

To end the section of algebraic preliminaries, we make our choice of the
unital associative algebra A = T (x, y), de�ned as follows.

Let {x, y} be a set of cardinality two, and let us denote by T (x, y) the (free)
associative K-algebra of the polynomials in the non-commuting indeterminates
x, y. More precisely, if V := K〈x, y〉 is the free K-vector space generated by the
set {x, y} (i.e., the set of the formal K-linear combinations of x and y), T (x, y)
is simply the tensor algebra of V . The operation in T (x, y) is the usual (tensor)
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multiplication (denoted by juxtaposition), and its unit is 1K (the unit of K);
moreover (as already discussed) T (x, y) is turned into a Lie algebra with the
Lie bracket associated with this associative multiplication (see Rem.A.1.17).

It is therefore well-posed the Lie-sub-algebra

L(x, y) ⊂ T (x, y),

which is the smallest Lie sub-algebra of T (x, y) containing x and y. We call
L(x, y) the (free) Lie algebra generated by x and y, and any of its elements is
said to be a Lie-polynomial in x, y.

Remark A.1.20. It is not di�cult to recognize that both T (x, y) and L(x, y)
possess the following universal properties:

(UPT) For every unital associative K-algebra U and for every a, b ∈ U , there
exists a unique morphism (of unital associative algebras)

ϕa,b : T (x, y) −→ U

such that ϕa,b(x) = a and ϕa,b(y) = b.

(UPL) For every Lie algebra (over K) L and for every a, b ∈ L, there exists a
unique morphism (of Lie algebras)

ϕa,b : L(x, y) −→ U

such that ϕa,b(x) = a and ϕa,b(y) = b.

A.2 Two formal PDEs in A[[s, t]] for the CBHD

series

Throughout this section, A denotes the free unital associative algebra T (x, y)
(over the �eld K), as introduced in the previous section, from which we also
inherit all other notation. Accordingly, (A[[s, t]], ∗) is the associated unital asso-
ciative algebra of the formal power series in the commuting indeterminates s, t
(equipped with the metric and associative structures in Sec.A.1).

We consider the notable element Z(s, t) of A[[s, t]] de�ned as follows:

Z(s, t) := log(exp(x s) ∗ exp(y t)), (A.2.1)

where exp and log are the maps on A[[s, t]] introduced in Def. A.1.13.

Remark A.2.1. We explicitly observe that Z(s, t) is well posed, since

exp(x s) ∗ exp(y t) ∈ 1 +A[[s, t]]+

(we denote by 1 the unit of A[[s, t]], coinciding with that of K). Moreover, the
element Z(s, t) ∈ A[[s, t]] is completely characterized by the following identity

exp(Z(s, t)) = exp(x s) ∗ exp(y t). (A.2.2)
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As an element of A[[s, t]], for any i, j ≥ 0 there are uniquely de�ned elements
Zi,j(x, y) ∈ T (x, y) (occasionally denoted by Zi,j) such that

Z(s, t) =
∑
i,j≥0

Zi,j(x, y) sitj . (A.2.3)

We shall refer to the above (A.2.3) as the Campbell-Baker-Hausdor�-Dyn-
kin (CBHD, for short) double series. By unraveling the very de�nitions of
exp and log, it is obvious that Z0,0(x, y) = 0 and, for every (i, j) 6= (0, 0)

Zi,j(x, y) =

i+j∑
n=1

(−1)n+1

n

∑
(i1,j1),...,(in,jn) 6= (0,0)

i1+···+in = i
j1+···+jn = j

xi1yj1 · · ·xinyjn
i1!j1! . . . in!jn!

. (A.2.4)

We next compute Zi,j when one of i and j is null. These values of Zi,j will soon
be used as �initial data� for two formal PDEs satis�ed by Z(s, t).

Lemma A.2.2. In the above assumptions and notations, we have

Z1,0(x, y) = x, Zi,0(x, y) = 0 ∀ i 6= 1; (A.2.5a)

Z0,1(x, y) = y, Z0,j(x, y) = 0 ∀ j 6= 1. (A.2.5b)

Proof. By exploiting identity (A.2.4), for every k ≥ 1 one has

Zk,0(x, y) =

k∑
n=1

(−1)n+1

n

∑
i1,...,in 6=0

i1+···+in = k

xi1+···+in

i1! . . . in!

= xk
k∑

n=1

(−1)n+1

n

∑
i1,...,in 6=0

i1+···+in = k

1

i1! . . . in!
.

Therefore, (A.2.5a) (and analogously for (A.2.5b)) follows from (A.1.5).

We are ready to prove the main result of this section.

Theorem A.2.3. Let Z(s, t) ∈ A[[s, t]] be as in (A.2.1) and let ∂s, ∂t be the two
derivations of the (associative and Lie) algebra A[[s, t]] introduced in Def. A.1.11.

Then, if the Bn denote the Bernoulli numbers (see (A.1.10)), we have

∂sZ(s, t) =

∞∑
n=0

Bn
n!

(adZ(s, t))n(x), (A.2.6a)

∂tZ(s, t) =

∞∑
n=0

Bn
n!

(−adZ(s, t))n(y). (A.2.6b)

With the notations introduced for the (inverse to each other) automorphisms in
(A.1.8) and (A.1.9), identities (A.2.6a) and (A.2.6b) can be rewritten as

∂sZ =
adZ

eadZ − 1
(x) and ∂tZ =

adZ

1− e−adZ
(y). (A.2.7)
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Proof. We prove (A.2.6a), since the proof of (A.2.6b) is analogous. We apply
the derivation ∂s on both sides of identity (A.2.2); on the left-hand side we
apply formula (A.1.7a), while on the right-hand side we apply (A.1.4) (and the
fact that ∂s is a derivation, hence it satis�es Leibniz's rule). This gives

eadZ − 1

adZ

(
∂sZ

)
∗ exp(Z) = x ∗ exp(x s) ∗ exp(y t)

(A.2.2)
= x ∗ exp(Z).

By Thm.A.1.15 - (ii), the element exp(Z) is invertibile in A[[s, t]], with inverse
given by exp(−Z); as a consequence, by multiplying both sides of the preceding
identity by exp(−Z) we infer that

eadZ − 1

adZ

(
∂sZ

)
= x.

Since the endomorphism in (A.1.8) is invertible, its inverse being given by the
map in (A.1.9), we immediately get (A.2.6a) from this last identity.

Remark A.2.4. Since ∂s and ∂t are derivations of the associative algebra
(A[[s, t]], ∗) (see Rem.A.1.12 - (a)), they are also derivations of the Lie alge-
bra associated with A[[s, t]], i.e., for every F,G ∈ A[[s, t]] one has

∂s
(
[F,G]∗

)
= [∂sF,G]∗ + [F, ∂sG]∗

∂t
(
[F,G]∗

)
= [∂tF,G]∗ + [F, ∂tG]∗

where [·, ·]∗ is the Lie bracket associated with ∗ (see Rem.A.1.17). Roughly
speaking, this is why both equations in (A.2.7) (plus convenient initial data)
can be pro�tably solved providing a solution

Z =
∑
i,j

Zi,j s
itj ,

where Zi,j is a Lie polynomial in x, y (this is precisely the content of the
Campbell-Baker-Hausdor�-Dynkin Theorem).

As it is reasonable to expect, identities (A.2.6a) and (A.2.6b) in Thm.A.2.3 boil
down to a system of (recursive) identities involving the coe�cients Zi,j(x, y).
More precisely, we have the following result.

Corollary A.2.5. For any given i, j ≥ 0, let Zi,j := Zi,j(x, y) ∈ T (x, y) be as
in (A.2.3) (see also the explicit expression in (A.2.4)).

Then, together with the initial conditions (proved in Lem.A.2.2)

Z0,0 = 0, Z1,0 = x, Zi,0 = 0 for every i ≥ 2, (A.2.8a)

Z0,0 = 0, Z0,1 = y, Z0,j = 0 for every j ≥ 2, (A.2.8b)

we have the following recursive identities, for every i, j ≥ 0 s.t. (i, j) 6= (0, 0):

(i+ 1)Zi+1,j =
∑

1≤n≤ i+j
(i1,j1),...,(in,jn) 6= (0,0)

i1+···+in = i
j1+···+jn = j

Kn [Zi1,j1 , · · · [Zin,jn , x] · · · ], (A.2.9a)

(j + 1)Zi,j+1 =
∑

1≤n≤ i+j
(i1,j1),...,(in,jn) 6= (0,0)

i1+···+in = i
j1+···+jn = j

(−1)nKn [Zi1,j1 , · · · [Zin,jn , y] · · · ],

(A.2.9b)
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Here we have set Kn := Bn/n!, where {Bn}n is the sequence of the Bernoulli
numbers in (A.1.10). Furthermore, [·, ·] denotes the Lie bracket associated with
the associative algebra T (x, y) (see also Rem.A.1.17).

Proof. We only prove (A.2.9a) since the proof of (A.2.9b) is analogous. With
the notation Kn := Bn/n! and Z := Z(s, t), identity (A.2.6a) is equivalent to

∂sZ =

∞∑
n=0

Kn (adZ)n(x).

If we insert the decomposition Z =
∑
i,j Zi,j s

itj and we use the de�nition of
∂s, then the above identity gives (recall that, by de�nition, Z0,0 = 0)

∞∑
i,j=0

(i+ 1)Zi+1,j s
itj

= x+

∞∑
n=1

Kn

∑
(i1,j1),...,(in,jn) 6= (0,0)

[Zi1,j1 , · · · [Zin,jn , x] · · · ] si1+···+intj1+···+jn

= x+
∑

(i,j) 6=(0,0)

( ∑
(i1,j1),...,(in,jn) 6= (0,0)

i1+···+in = i
j1+···+jn = j

Kn [Zi1,j1 , · · · [Zin,jn , x] · · · ]
)
sitj .

Since, in the inner sum, i1 + j1, . . . , in+ jn ≥ 1 and i1 + j1 + · · ·+ in+ jn = i+ j,
we infer that 1 ≤ n ≤ i+ j. By equating the coe�cients of sitj (for every �xed
i, j ≥ 0) we then obtain (A.2.9a). This ends the proof.

Remark A.2.6. From Cor.A.2.5 we obtain a proof of the Campbell-Baker-
Hausdor�-Dynkin (CBHD, for short) Theorem as follows.

1. Identities (A.2.9a) are not su�cient to determine all of the coe�cients
Zi,j ; one needs to add the information contained in (A.2.8b). Analogously,
(A.2.9b) and (A.2.8a) determine all of the Zi,j . Alternatively, one could
use (A.2.9a), (A.2.9b) and Z0,0 = 0 to determine all of the terms Zi,j .

More precisely, if we think of Z as an in�nite matrix (Zi,j)i,j≥0, identity
(A.2.9a) allows to determine an entry Zi,j , provided that one knows all
the entries in the (�nite) sub-matrix with rows strictly less than i and
columns less than or equal to j. Thus, in order to obtain all the entries
of Z from (A.2.9a), one needs to know the entries in the �rst in�nite row;
these are given by (A.2.8b) (see also Lem.A.2.2). Analogous remarks hold
for (A.2.9b), by reversing the rôles of columns and rows.

2. Since all the elements Z0,j belong to L(x, y) (see (A.2.8b)) and since the
right-hand side of (A.2.9a) only involves Lie-bracketing, by the results in
(1) above, we can prove by induction that

Zi,j(x, y) ∈ L(x, y), for every i, j ≥ 0. (A.2.10)

Then, by using the Dynkin-Specht-Wever Lemma (see e.g., [30, Lemma
3.26]), from (A.2.10) and (A.2.4) we obtain the following (Dynkin's) Lie-
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representation of Zi,j(x, y), holding true for (i, j) 6= (0, 0)

Zi,j(x, y) =

i+j∑
n=1

(−1)n+1

n(i+ j)
×

×
∑

(i1,j1),...,(in,jn) 6= (0,0)
i1+···+in = i
j1+···+jn = j

(adx)i1(ad y)j1 · · · (adx)in(ad y)jn−1(y)

i1!j1! . . . in!jn!
.

(A.2.11)

A.3 Convergence domain of the CBHD series in

Banach-Lie algebras

The present section is the real core of this chapter and it is totally devoted
to state and prove the announced convergence result for the Campbell-Baker-
Hausdor�-Dynkin double series introduced in Sec.A.2.

To begin with, we need to introduce some preliminary de�nitions.

De�nition A.3.1. Let (g, [·, ·]) be a Lie algebra over K. Given a, b ∈ g, if
ϕa,b : L(x, y) → g is the Lie-algebra morphism in property (UPL) of the free
Lie algebra L(x, y) (see Rem.A.1.20), we de�ne

Zi,j(a, b) := ϕa,b(Zi,j(x, y)), for every i, j ≥ 0. (A.3.1)

Here, as in (A.2.3), Zi,j(x, y) is the coe�cient of place (i, j) in the expansion of
Z(s, t) = log(exp(x s) ∗ exp(y t)) in A[[s, t]] (with A = T (x, y)).

Remark A.3.2. We explicitly observe that, thanks to Rem.A.2.6, the prece-
ding Def. A.3.1 is well-posed: in fact, identity (A.2.10) ensures that Zi,j(x, y)
actually belongs to L(x, y) for every i, j ≥ 1. Moreover, for any (i, j) ∈ N×N,
the map (a, b) 7→ Zi,j(a, b) de�nes, unambiguously, a function from g× g to g.

Remark A.3.3. By using the explicit Lie representation of Zi,j(x, y) given in
(A.2.11), one can de�ne Zi,j(a, b) in the following alternative way:

Zi,j(a, b) =

i+j∑
n=1

(−1)n+1

n(i+ j)
×

×
∑

(i1,j1),...,(in,jn) 6= (0,0)
i1+···+in = i
j1+···+jn = j

(ad a)i1(ad b)j1 · · · (ad a)in(ad b)jn−1(b)

i1!j1! · · · in!jn!
,

(A.3.2)

for any (i, j) 6= (0, 0), and Z0,0(a, b) = 0. Obviously, in the above formula the
adjoint map ad is related to the Lie algebra g.

From the Universal Property (UPL) of the free Lie algebra L(x, y) presented
in Rem.A.1.20, one easily derives the following crucial result.
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Corollary A.3.4. Let (g, [·, ·]) be a Lie algebra over the �eld K and let a, b ∈ g
be �xed. Then, for every m ∈ N \ {1} and every (i, j) 6= (0, 0), we have

Z1,0(a, b) = a, Zm,0(a, b) = 0, Z0,1(a, b) = b, Z0,m(a, b) = 0,

Zi+1,j(a, b) =
1

i+ 1

∑
1≤n≤ i+j

(i1,j1),...,(in,jn) 6= (0,0)
i1+···+in = i
j1+···+jn = j

Kn [Zi1,j1(a, b), · · · [Zin,jn(a, b), a] · · · ],

Zi,j+1(a, b) =
1

j + 1

∑
1≤n≤ i+j

(i1,j1),...,(in,jn) 6= (0,0)
i1+···+in = i
j1+···+jn = j

!(−1)nKn [Zi1,j1(a, b), · · · [Zin,jn(a, b), b] · · · ],

(A.3.3)

Here, as usual, we have set Kn := Bn/n!, where {Bn}n∈N is the sequence of the
Bernoulli numbers (see Rem.A.1.19 - (2)).

Proof. These formulas follow from identities (A.2.8a) through (A.2.9b), by the
very de�nition (A.3.1) of Zi,j(a, b), and since the map ϕa,b is a Lie-algebra-
morphism (see the Universal Property (UPL) in Rem.A.1.20).

Next, we consider the Lie algebras we are interested in for the rest of the
chapter: Banach-Lie algebras. Here is the de�nition.

De�nition A.3.5. Let (L, [·, ·]) be a (possibly in�nite-dimensional) Lie algebra
over R or C, and let ‖ · ‖ : L → [0,∞) be a norm on L. We say that L is a
Banach-Lie algebra if the following conditions are satis�ed:

(i) (L, ‖ · ‖) is a Banach space;

(ii) the map [·, ·] : L× L→ L is continuous (w.r.t. the product topology).

If L is a Banach-Lie algebra and if a, b ∈ L, the series in L de�ned by

∞∑
n=1

( n∑
i+j=0

Zi,j(a, b)

)

is called the homogeneous CBHD series related to (a, b).

Remark A.3.6. Let (L, [·, ·]) be a (real or complex) Lie algebra and let ‖ · ‖
be a norm on L. Since the bracket is bilinear, the continuity assumption (ii) in
Def. A.3.5 is equivalent to the existence of a constant M > 0 such that

‖[g, g′]‖ ≤M ‖g‖ ‖g′‖, for every g, g′ ∈ L.

By replacing ‖ · ‖ with the equivalent norm M ‖ · ‖, we can suppose (and we
shall do it henceforth) that ‖ · ‖ is Lie-sub-multiplicative, that is,

‖[g, g′]‖ ≤ ‖g‖ ‖g′‖, for every g, g′ ∈ L. (A.3.4)
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Example A.3.7. Let (A, ∗) be an associative algebra over R or C and let ‖ · ‖
be a norm on A. Let us assume that (A, ‖ · ‖) is a Banach space and that the
product ∗ is continuous, that is, there exists M > 0 such that

‖a ∗ a′‖ ≤M ‖a‖ ‖a′‖, for every a, a′ ∈ A.

Since, for the Lie bracket [·, ·]∗ associated with ∗, one has

‖[a, a′]∗‖ = ‖a ∗ a′ − a′ ∗ a‖ ≤ 2M ‖a‖ ‖a′‖, for every a, a′ ∈ A,

we conclude that the triple (A, [·, ·]∗, ‖ · ‖) is a Banach-Lie algebra, a Lie-sub-
multiplicative norm being provided by 2M‖ · ‖.

Given a Banach-Lie algebra (L, [·, ·], ‖ · ‖), our aim is to provide a subset of
L×L on which this series is convergent in L. More precisely, we shall prove the
convergence of the majorizing (numerical) series∑

i,j≥0

‖Zi,j(a, b)‖.

With the background algebraic identities in Corollary A.3.4 at hands, this will
be reduced to the problem of estimating the maximal domain of the solution of
a real ODE. The latter is investigated in the next result.

Lemma A.3.8. Let β be a nonnegative real constant and let

F : (−2π, 2π)→ R, F (t) := 2 +
t

2

(
1− cot

( t
2

))
(A.3.5)

(with the obvious convention F (0) := 1). Moreover, for any �xed α ∈ (−2π, 2π),
let γ be the maximal solution of the (real) Cauchy problem{

γ′ = β F (γ)

γ(0) = α.
(A.3.6)

Then, if γ(i)(0) denotes the i-th derivative of γ at 0, for every n ≥ 0 one has

γ(0)(0) = α,
γ(n+1)(0)

n!
= β

∞∑
m=1

|Km|
( ∑

i1,...,im≥ 0
i1+···+im =n

γ(i1)(0) · · · γ(im)(0)

i1! · · · im!

)
,

(A.3.7)
all these series being convergent. Here Km = Bm/m!, where {Bm}m∈N is the
sequence of the Bernoulli numbers. As a consequence, if α ∈ [0, 2π) then all the
derivatives of γ at 0 are nonnegative real numbers.

Proof. To begin with, if D2π is the complex disc with radius 2π centered at 0,
and F (z) is as in (A.3.5) (for z ∈ D2π), we claim that

F (z) =
∑∞
n=0 |Kn| zn for every z ∈ D2π. (A.3.8)

In fact, by de�nition of Kn, for any z ∈ C with |z| < 2π we have

ψ(z) :=
z

ez − 1
=

∞∑
n=0

Kn z
n.
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By well-known properties of the Bernoulli numbers (see e.g., [135]), we have

K0 = 1, K1 = −1/2, K2n+1 = 0, K2n = (−1)n−1 |K2n| (n ≥ 1).

This ensures that ψ(iz) = 1− iz
2 −

∑∞
n=1 |K2n| z2n (whenever |z| < 2π), hence

∞∑
n=0

|Kn| zn = 1 +
z

2
+

∞∑
n=1

|K2n| z2n = 2 +
z

2
− iz

2
− ψ(iz)

= 2 +
z

2

(
1− cot

(z
2

))
= F (z),

as we claimed in (A.3.8). Now, (A.3.7) directly follows from (A.3.8) by inserting
the Maclaurin expansions of F and of γ(t) (which is real-analytic since it solves
(A.3.6), with F analytic) and by the standard power-series Ansatz. The last
assertion of the statement follows from (A.3.7) by an induction argument.

From Lem.A.3.8 we obtain the following central result.

Theorem A.3.9 (Estimate of Zi,j in a Banach-Lie algebra). Let L be a Banach-
Lie algebra, equipped with a Lie-sub-multiplicative norm ‖·‖ (i.e., (A.3.4) holds),
and let a, b ∈ L be such that ‖a‖, ‖b‖ < 2π. Moreover, if F is as in (A.3.5), let

γ = γ‖a‖,‖b‖ and µ = γ‖b‖,‖a‖

be the maximal solutions of the following (real) Cauchy problems{
γ′ = ‖b‖F (γ)

γ(0) = ‖a‖,

{
µ′ = ‖a‖F (µ)

µ(0) = ‖b‖.

If Zi,j(a, b) is as in (A.3.1), one has the estimates

∞∑
i=0

‖Zi,j(a, b)‖ ≤
γ(j)(0)

j!
for every j ≥ 0;

∞∑
j=0

‖Zi,j(a, b)‖ ≤
µ(i)(0)

i!
for every i ≥ 0.

(A.3.9)

Proof. We prove the �rst family of inequalities in (A.3.9), proceeding by induc-
tion on j ∈ N. The proof of the second family is analogous and is omitted.

If j = 0, from the �rst group of identities in Cor.A.3.4 we infer that

∞∑
i=0

‖Zi,0(a, b)‖ = ‖Z1,0(a, b)‖ = ‖a‖ = γ(0)(0).

Let now j ≥ 0 be �xed and let us assume that

∞∑
i=0

‖Zi,h(a, b)‖ ≤ γ(h)(0)

h!
∀ h = 0, . . . , j. (A.3.10)
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We shall prove that the same holds true for h = j + 1. On the one hand, if
j = 0, from (A.3.3) (and the sub-multiplicative property (A.3.4)), we get

∞∑
i=0

‖Zi,1(a, b)‖ = ‖Z0,1(a, b)‖+

∞∑
i=1

‖Zi,1(a, b)‖ (A.3.3)
= ‖b‖

+

∞∑
i=1

∥∥∥∥∥ ∑
1≤n≤ i

(i1,j1),...,(in,jn) 6= (0,0)
i1+···+in = i
j1+···+jn = 0

(−1)nKn [Zi1,j1(a, b), · · · [Zin,jn(a, b), b] · · · ]

∥∥∥∥∥

≤ ‖b‖+

∞∑
i=1

∑
1≤n≤ i
i1,...,in 6= 0
i1+···+in = i

|Kn| ‖Zi1,0(a, b)‖ · · · ‖Zin,0(a, b)‖ ‖b‖

(A.3.3)
= ‖b‖

(
1 +

∞∑
i=1

|Ki| ‖a‖i
)

(A.3.8)
= ‖b‖F (‖a‖)

= ‖b‖F (γ(0)) = γ(1)(0).

On the other hand, if j ≥ 1, again by exploiting the last identity in (A.3.3), we
obtain (see the induction hypothesis (A.3.10))

∞∑
i=0

‖Zi,j+1(a, b)‖ ≤
∞∑
i=0

(
1

j + 1
×

×
∑

1≤n≤ i+j
(i1,j1),...,(in,jn) 6= (0,0)

i1+···+ih = i
j1+···+jh = j

|Kn| ‖Zi1,j1(a, b)‖ · · · ‖Zin,jn(a, b)‖ ‖b‖
)

≤ ‖b‖
j + 1

∑
n≥1, i1,...,in≥ 0
j1+···+jn = j

|Kn| ‖Zi1,j1(a, b)‖ · · · ‖Zin,jn(a, b)‖

=
‖b‖
j + 1

∞∑
n=1

∑
j1+···+jn = j

|Kn|

( ∞∑
i1=0

‖Zi1,j1(a, b)‖

)
· · ·

( ∞∑
ih=0

‖Zi1,j1(a, b)‖

)

(A.3.10)

≤ ‖b‖
j + 1

∞∑
n=1

|Kn|

 ∑
j1,...,jn≥ 0
j1+···+jn = j

γ(j1)(0) · · · γ(jn)(0)

j1! · · · jn!

 =
γ(j+1)(0)

(j + 1)!
.

In the last identity we used in a crucial way (A.3.7). This ends the proof.

We are �nally in a position to state and prove the announced convergence
result for the homogeneous CBHD series in any Banach-Lie algebra.

Theorem A.3.10. Let L be a possibly in�nite-dimensional) Banach-Lie algebra
on R or C, equipped with a Lie-sub-multiplicative norm ‖ · ‖. We set

G : [0, 2π)→ R, G(r) :=

∫ 2π

r

1

2 + u
2

(
1− cot

(
u
2

)) du, (A.3.11)
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and we denote by ipo(G) the ipograph of G, that is,

epi(G) = {(r, s) ∈ R2 : r ∈ [0, 2π), 0 ≤ s < G(r)}.

We then de�ne the set

∆ :=
{

(a, b) ∈ L× L : (‖a‖, ‖b‖) ∈ epi(G) or (‖b‖, ‖a‖) ∈ epi(G)
}
. (A.3.12)

Then, for every (a, b) ∈ ∆, the homogeneous CBHD series related to (a, b) is
convergent in L. More precisely, we have the following bound

∞∑
i,j=0

‖Zi,j(a, b)‖ < 2π for any (a, b) ∈ ∆. (A.3.13)

Finally, one has the improved estimate

∞∑
i,j=0

‖Zi,j(a, b)‖ < C(a, b), for any (a, b) ∈ ∆, (A.3.14)

where C(a, b) := min{M(a, b),M(b, a)}, andM = M(a, b) in [0, 2π] is implicitly
de�ned (in a unique way) by the following integral equation∫ M

‖a‖

1

2 + u
2

(
1− cot(u2 )

) du = ‖b‖, (with (a, b) ∈ ∆). (A.3.15)

Proof. First of all we observe that the function G is well-posed (and �nite-
valued), since the map F introduced in (A.3.5) has a positive in�mum on the
interval (−2π, 2π). We then �x any (a, b) belonging to the half-set

∆1 :=
{

(a, b) ∈ L× L : ‖a‖ < 2π, ‖b‖ < G(‖a‖)
}
, (A.3.16)

and we pass to prove that, for every (a, b) ∈ ∆1, the series

∞∑
i,j=0

‖Zi,j(a, b)‖

is convergent. The case of the set analogous to (A.3.16), with ‖a‖ and ‖b‖
interchanged, can be treated similarly, and is therefore omitted.

We can suppose that b 6= 0, since
∑
i,j ‖Zi,j(a, 0)‖ = ‖a‖. We denote by

γ = γ‖a‖,‖b‖ the maximal solution of the (real) Cauchy problem{
γ′ = ‖b‖F (γ),

γ(0) = ‖a‖,
(A.3.17)

which is de�ned on its maximal domain, say D = (c, d) ⊆ R (and 0 ∈ D). From
the general theory of separable ODEs, we know that

c =
1

‖b‖

∫ ‖a‖
−2π

1

F (u)
du, d =

1

‖b‖

∫ 2π

‖a‖

1

F (u)
du =

G(‖a‖)
‖b‖

. (A.3.18)
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Moreover, since F is real analytic, γ is real analytic too, and its Maclaurin series
has a positive radius of convergence, say ρ. We claim that

ρ ≥ d. (A.3.19)

Indeed, by contradiction, let us suppose that ρ < d. We �x, throughout the
sequel, the notation for the complex disk of center w and radius r

D(w, r) := {z ∈ C : |z − w| < r}.

The complex power series

A(z) :=

∞∑
n=0

γ(n)(0)

n!
zn

has radius of convergence ρ, and by Lem.A.3.8, we know that it has real non-
negative coe�cients. From the classical Vivanti-Pringsheim Theorem (see e.g.,
[130, Theorem 7.21]), it follows that the point z = ρ must be a singular point
for A, that is, ρ does not belong to the disc of convergence of any power series
deduced from A. 1 Since γ is real analytic on its maximal domain D = (c, d),
and since 0 < ρ < d (by our assumption), the complex power series

B(z) :=

∞∑
n=0

γ(n)(ρ)

n!
(z − ρ)n,

has a positive radius of convergence. Therefore, there exists δ > 0 so small that
D(ρ, δ) is contained in the disc of convergence of B, and such that

0 < ρ− δ < ρ+ δ < d.

In particular, we have the following crucial identity

A(t) = γ(t) = B(t) for every real t ∈ (ρ− δ, ρ). (A.3.20)

Since A(z) and B(z) are both holomorphic on O := D(0, ρ) ∩D(ρ, δ), we infer
that they coincide on the whole of O. Let now

t0 = ρ− δ

3
.

Since B is holomorphic on D(ρ, δ), since the latter set contains t0, and since the
distance of t0 from ∂D(ρ, δ) is 2δ/3, the power series

C(z) :=

∞∑
n=0

B(n)(t0)

n!
(z − t0)n,

which is deduced from B, has radius of convergence ≥ 2δ/3. In particular, ρ
belongs to the disc of convergence of C. From (A.3.20) we see that

B(n)(t0) = A(n)(t0), for every n ≥ 0,

1We say that a power series B is deduced from a power series A, if B is the Taylor series
of the function z 7→ A(z) about some point belonging to the disc of convergence of A.
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so that C is also deduced from the power series A. Since t0 also belongs to the
disc of convergence of A, we have obtained the power series

C(z) =

∞∑
n=0

A(n)(t0)

n!
(z − t0)n,

deduced from A, with disc of convergence containing ρ. This is in contradiction
with the fact that ρ is a singular point for A. Therefore, (A.3.19) is proved.
From this, recalling that ρ is the radius of convergence of A(z), we get

γ(t) =

∞∑
n=0

γ(n)(0)

n!
tn, for every t ∈ [0, d). (A.3.21)

We are ready to conclude the demonstration: from the �rst family of inequalities
in (A.3.9) (see Thm.A.3.9), it follows that

∞∑
j=0

∞∑
i=0

‖Zi,j(a, b)‖ ≤
∞∑
j=0

γ(j)(0)

j!
, (A.3.22)

and since (a, b) belongs to the set ∆1 in (A.3.16), from (A.3.18) we infer that

d =
G(‖a‖)
‖b‖

> 1,

so that t = 1 is an admissible value in (A.3.21). This shows that the power
series on the right-hand side of (A.3.22) is indeed convergent, namely to γ(1).
Since γ(t) solves the Cauchy problem (A.3.17) for every t ∈ (c, d), we have
γ((c, d)) ⊆ (−2π, 2π) so that 0 < γ(1) < 2π. We have the estimate

∞∑
n=1

∥∥∥∥ n∑
i+j=0

Zi,j(a, b)

∥∥∥∥ ≤ ∞∑
i,j=0

‖Zi,j(a, b)‖ ≤ γ(1).

By taking into account that γ(1) < 2π, one obtains the estimate (A.3.13), which
also gives the (absolute) convergence of the homogeneous CBHD series related
to (a, b) ∈ ∆. The improved estimate (A.3.14) follows from

∞∑
i,j=0

‖Zi,j(a, b)‖ ≤ min
{
γ‖a‖,‖b‖(1), γ‖b‖,‖a‖(1)

}
,

where we recall that γ(t) = γ‖a‖,‖b‖(t) solves{
γ′ = ‖b‖F (γ),

γ(0) = ‖a‖.

From the basic theory of separable ODEs, one recognizes that γ(1) is implicitly
de�ned by the following integral equation∫ γ(1)

‖a‖

1

2 + u
2

(
1− cot(u2 )

) du = ‖b‖,

and thus γ(1) = M(a, b). This ends the proof.
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A.4 Application: Some di�erential equations re-

lated to the CBHD series

The aim of this last section is to prove, as a consequence of the results in the pre-
vious sections, the following Thm.A.4.2, concerning some di�erential equations
associated with the CBHD series in a generic (possibly in�nite-dimensional)
Banach-Lie algebra. First we need some notation.

Let L be a Banach-Lie algebra, equipped with a Lie-sub-multiplicative norm
‖ · ‖ as in (A.3.4) (see Rem.A.3.6). We �x the following notation:

Ψ(z) :=
z

ez − 1
=

∞∑
n=0

Kn z
n (z ∈ C : |z| < 2π),

where Kn := Bn/n! and {Bn}n∈N is the sequence of the Bernoulli numbers in
(A.1.10). (In the literature, Ψ(−z) is usually referred to as Todd's function.)

Lemma A.4.1. Let g ∈ L be such that ‖g‖ < 2π. Then the map

Ψ(ad g) : L −→ L, Ψ(ad g)(g′) :=

∞∑
n=0

Kn (ad g)n(g′). (A.4.1)

de�nes a continuous endomorphism of the normed space L.

Proof. The claimed properties of Ψ(ad g) are consequences of the following e-
stimate of the operator norm

Ψ(ad g)
 of Ψ(ad g) (together with the fact

that, by de�nition, (L, ‖ · ‖) is a Banach space):Ψ(ad g)
 = sup

‖g′‖≤1

‖Ψ(ad g)(g′)‖ ≤ sup
‖g′‖≤1

∞∑
n=0

|Kn| ‖(ad g)n(g′)‖

(see (A.3.4))

≤ sup
‖g′‖≤1

∞∑
n=0

|Kn| ‖g‖n ‖g′‖ =

∞∑
n=0

|Kn| ‖g‖n = F (‖g‖) <∞.

Here F is the map as introduced in (A.3.5) (see also (A.3.8)), which is �nite-
valued on (−2π, 2π). This ends the proof.

We are ready to state the following result.

Theorem A.4.2. Let L be Banach-Lie algebra, equipped with a Lie-sub-multi-
plicative norm ‖ · ‖, and let a, b ∈ L be such that the couple (a, b) belongs to the
set ∆ introduced in (A.3.12). We consider the function

Z : [−1, 1]× [−1,−1]→ L, Z(s, t) :=

∞∑
n=1

( ∑
i+j=n

Zi,j(s a, t b)

)
. (A.4.2)

Then, with the notation in (A.4.1), for every s, t ∈ [−1, 1] we have
∂

∂s
Z(s, t) = Ψ(adZ(s, t))(a)

Z(0, t) = t b,


∂

∂t
Z(s, t) = Ψ(−adZ(s, t))(b)

Z(s, 0) = s a.
(A.4.3)
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Finally, setting Z(t) := Z(t, t) for every t ∈ [−1, 1], one hasZ
′(t) = Ψ(adZ(t))(a) + Ψ(−adZ(t))(b),

Z(0) = 0,
on [−1, 1]. (A.4.4)

Proof. Let (a, b) ∈ ∆ be �xed. First, we observe that the series of functions in
(A.4.2) is normally convergent for every (s, t) ∈ [−1, 1]× [−1, 1]: in fact, since

Zi,j(s a, t b) = sitj Zi,j(a, b)

(as it trivially follows from identity (A.3.2)), one has

∞∑
i,j=0

sup
(s,t)∈[−1,1]2

‖Zi,j(s a, t b)‖ =

∞∑
i,j=0

sup
(s,t)∈[−1,1]2

|sitj | ‖Zi,j(a, b)‖

=

∞∑
i,j=0

‖Zi,j(a, b)‖ < 2π.

Here we used the bound (A.3.13) in Thm.A.3.10. Therefore, Def. (A.4.2) is well-
given, the series being uniformly (hence pointwise and absolutely) convergent
on [−1, 1] × [−1, 1]. Furthermore, this also shows that Z(s, t) belongs to the
open disc of L with radius 2π and center 0; therefore Ψ(±adZ(s, t)) are well
posed for every s, t ∈ [−1, 1] (recall that we assumed that (a, b) ∈ ∆).

For any given s, t ∈ [−1, 1], the absolute convergence of the double series

∞∑
i,j=0

Zi,j(a, b) s
itj

allows us to commute and associate summands as we please. As a consequence,
�xed t ∈ [−1, 1], we can reorder the series de�ning Z(s, t) as a power series in the
real variable s (valued in the Banach space L): the radius of convergence of the
resulting power series is greater than or equal to 1 (as it follows from the above
argument), and di�erentiation term-by-term is therefore allowed. Hence, the
�rst system in the above (A.4.3) follows from the very de�nition of Ψ(adZ(s, t))
(see (A.4.1)), from the continuity of the adjoint map ad on L × L, and � in a
crucial way � from the family of algebraic identities in (A.3.3) (see Cor.A.3.4).
The second system in (A.4.3) can be proved analogously.

Finally, (A.4.4) directly follows from (A.4.3) and the Chain Rule.
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