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“Il fatto che l'attività svolta in modo 

così imperfetto sia stata e sia tuttora per me fonte inesauribile di gioia, mi 

fa ritenere che l'imperfezione nell'eseguire il compito che ci siamo prefissi o 

ci è stato assegnato, sia più consona alla natura umana così imperfetta che 

non la perfezione.” 

Rita Levi Montalcini, 

Elogio dell’imperfezione 
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The Piglet 

 

 

Figure 1 Piglets (https://www.pennywellfarm.co.uk/perfect-piglets) 
 

Taxonomic Classification and Breeds 

 

The taxonomic classification of pigs, according to Erxleben1, is the following:  

 Phylum: Chordata 

o Subphylum: Vertebrata 

 Class: Mammalia 

 Order: Artiodactyla 

o Suborder: Suiforme 

 Family: Suidae 

 Genus: Sus 

 Species: scrofa 

 Subspecies: domestica 
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Pigs are even-toed ungulates mammals2. When talking about swine breeds, 

the two main chapters are the ones represented by standard domesticated pigs and 

minipigs. The domesticated pig and its variations, including minipigs, have a strong 

phylogenetic relationship with the Eurasian wild boar (Sus scrofa scrofa) and the 

Asia wild boar (Sus scrofa vittatis)3,4. Nowadays, the breeds of both pigs and 

minipigs are numerous and, to certain extents, uncertain since they depend on how 

the breed is defined itself. Two important overviews summarizing pigs and minipigs 

breeds, can be find in two “holy grail” books for biomedical researcher: “Swine in 

the Laboratory”, edited by M. Michael Swindle4, and “The Minipig in Biomedical 

Research”, edited by Peter A. McAnulty, Anthony D. Dayan, Niels-Christian 

Ganderup, and Kenneth L. Hastings5. Roughly, it is safe to talk about at least 73 pure 

breeds of pigs, as reported by the Table 

1(http://www.thepigsite.com/info/swinebreeds.php6) and 16 of minipigs. 

Table 1 Pig breeds 

Pig Breeds 

American Landrace Danish Landrace Lacombe Philippine Native 
American Yorkshire Dermantsi Pied Large Black Pietrain 
Angeln Saddleback Duroc Large Black-white Poland China 
Arapawa Island Dutch Landrace Large White Red Wattle 
Ba Xuyen Fengjing Lithuanian Native Saddleback 
Bantu Finnish Landrace Mangalitsa Spots 
Banza French Landrace Meishan Swabian-Hall Swine 
Beijing Black German Landrace Middle White Swedish Landrace 
Belarus Black Pied Gloucestershire Old 

Spot 
Minzhu SwallowBelied 

Mangalitza 
Belgian Landrace Guinea Hog Mong Cai Tamworth 
Bentheim Black Pied Hampshire Mukota Thuoc Nhieu 
Berkshire Hereford Mora Romagnola Tibetan 
Black Slavonian Hezuo Moura Turopolje 
British Landrace Iberian Mulefoot Vietnamese Potbelly 
British Lop Italian Landrace Neijiang Welsh 
Bulgarian White Jinhua Ningxiang Wuzhishan 
Cantonese Kele Norwegian Landrace  
Chester White Krskopolje Ossabaw Island  
Czech Improved 
White 

Kunekune Oxford Sandy and 
Black 
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General Biology 

 

Before starting talking about the biology of the piglet, it has to be stated and 

stressed that the high number and variability between breeds makes for an extreme 

difficult generalization on some biological and zootechnical patterns. The above-

mentioned variability immediately finds an example when discussing one of the main 

fertility parameter: the litter size, which indicates the number of offspring produced 

at one birth by an animal. Several studies have been published about it, with numbers 

going from 7.2 up to 14.3 depending on the sow’s breed7. In addition, the weights of 

the piglets at birth can have huge fluctuations not only depending on the breed, but 

also on the number of born and the nutritional status of the sow2. Generally speaking, 

newborns range from 0.5kg (miniature pigs8) to 2kg (domestic pigs9).  

Piglets do not have brown fat and, during the first days of life, struggle to 

maintain homeothermy since they are not immediately able to metabolize energetic 

stores such as lipids and glycogen to thermoregulate10. It is therefore mandatory to 

supply them with an external heating source in order to compensate the difference 

between body temperature (39°C) and the external environment (extremely 

dependent on breeding conditions) (Fig 2). This situations evolves within the first 

weeks of life with maturation of the physiological pattern involved in this process11. 

Behavior is also a pivotal factor in thermoregulation and hypothermia prevention: 

piglets will indeed move towards the warmest spot of the pen when in need for 

additional heating12. 
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Obviously, piglets solely rely on sow’s milk during the first weeks of life. 

The Council Directive 2008/120/EC of 18 December 2008 dictates that: “no piglets 

shall be weaned from the sow at less than 28 days of age unless the welfare or health 

of the dam or the piglet would otherwise be adversely affected”13. During this period, 

newborn can develop severe iron deficiency eventually leading to anemia due to the 

high zootechnical standards and poor maternal storages14,15. This condition occurs 

regardless of the breed and management system, and is the result of interactions of 

several factors16. It is therefore mandatory to administer animals with exogenous iron 

dextrane (intramuscularly) within the first 48 hours of life to prevent it17.  

Once weaned, piglets are usually fed commercial diets, either in the form of 

solid pellet or broth. Depending on the kind of chosen diet, water requirement varies, 

but it is usually 2.5 liters for each kg of feed eaten2.  

Figure 2 The picture shows a standard delivery pen where the 
piglets have easily access to the sow and are provided with an infrared 
heating lamp. 
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The weaning process is extremely delicate and, unfortunately, often leads to 

the development of pathologies, either subclinical or clinical, and eventually death18. 

It has been proved that colostrum intake actually is the main determinant of neonatal 

survival by providing energy and immune protection19. Experiments showed how 

lack of colostrum negatively influences protection towards those physiological 

system changes20. The change in diet, from milk to diets rich in complex proteins, 

carbohydrates and anti-nutritional factors21,  subsequently determines important 

changes in gut function, reflecting on the inflammatory and immune status22. It was 

proved how the majority of piglets, at weaning, have a strong reduction in feed 

intake, with only approximately the 50% of animals eating within 24h23. Weaning is 

also a strong behavioral stress factor since piglets are force to abruptly change their 

social interaction status with both the sow and the littermates, and immediately need 

to adapt to new environmental situations21.  

Among the most feared viral neonatal pathologies, the Post-weaning 

multisystemic wasting syndrome (PMWS) is probably one of the most important. 

The disease is caused by the Porcine circovirus type 2 (PCV2) and represents the 

most important porcine circovirus disease24. Nonetheless, when combined with other 

pathogens,  PCV2 infection leads to a variety of diseases including reproductive 

alterations25, Porcine respiratory disease complex (PRDC)26, enteritis27 and porcine 

dermatitis and nephropathy syndrome (PDNS)28. 

Viruses aside, the most high incidence pathology, dreaded by any breeding 

facility either commercial or experimental, is the post weaning diarrhea (PWD) This 

pathology is almost always associated with over-proliferation of one or more strains 
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of enterotoxigenic Escherichia Coli (ETEC)29,30.  It is characterized by frequent 

discharge of watery feces and can last up to fifteen days post weaning31, and is the 

primary cause of mortality in young piglets. The pathology is probably the first 

reason why swine starter diets are implemented with antibiotics, that unfortunately 

leads to the development of antibiotic resistance32. Nowadays, in the light of the 

prospective of in-feed antibiotics ban, the search for valid alternatives to antibiotics 

is still open. 

After weaning, growth rate can be tricky to be analyze since, again, depends 

on too many variables. In domestic pigs, the daily weight gain can go from  0.2 to 

1kg2. Recent studies have been carried out in order to try and find any association 

between genomic patterns and food intake, weight gain and feed efficiency 33,34. This 

topic is extremely important for both biomedical and zootechnical use of this 

mammal. As expected, the growth rates are highly different between domestic and 

minipigs.  Figure 2 shows a standard growth rate curve for domestic pigs35, while 

figure 3 the one of Göttingen minipigs36.  

 

Figure 3 Growth rate curve. (http://www.thepigsite.com/stockstds/17/growth-rate) 
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Figure 4 Göttingen minipig growth rate 
(http://en.wikipedia.org/wiki/G%C3%B6ttingen_minipig) 

 

 Still today, it is extremely hard to summarize the life cycle of pigs and to 

define when they can actually be considered as adults. Usually, adult life overlaps 

with puberty and sexual maturation. Table 2 approximately shows the key life cycle 

point of domestic pigs. This important steps are also highly variable when taking into 

account different breeds: minipigs and Asian domestic pigs seem to reach puberty 

quite earlier than North American and European domestic pigs37.  

 

Table 2 Life Cycle of domestic pigs37 

Prenatal period 114 ± 4 days 

Suckling period 28 days 

Growing-finishing period (90kg) 90 - 200 days 

Age at puberty 150 – 200 days 

Reproductive longevity 4 – 8 years 

Longevity 12 – 15 years 
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Genetics and Genomics 

 

During the last twenty year, huge progresses have been made in the 

characterization of the swine genome. The pig, indeed, has always been one of the 

most widely studied farm animals when it comes to cytogenetics and genetics in 

general. This may be due to the fact that, compared to other mammalian domestic 

species, the pig has fewer chromosomes (2n=38)38. In addition to that, pigs 

chromosomes are easy to distinguish between each other, and can mostly be 

identified without the need for special stainings38. Molecular hybridization-based 

methods have rapidly become an important tool for cytogenetics, leaning toward the 

integration of cytogenetics itself and molecular biology. This overlap of methods and 

capabilities probably represents the pivotal point for the new era of cytogenomics39, 

and the pig is no exception. 

The first porcine karyotype dates back to 1972 and was based on the banding 

method known as Q-banding (quinacrine fluorescence banding)40. Several advances 

have been made since then, including the development and improvement of the 

RBG-banding technique (reverse (R)-banding with Giemsa staining), eventually 

leading to the standardized schematic karyotype of the pig41 represented in Figure 5. 

It actually represented the first nomenclature of chromosomes for domestic animals 

and enabled the analysis of normal karyotypes and their aberrant patterns acting as 

foundation for physical chromosome mapping38. 
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Figure 5 Schematic drawings of G.banded porcine chromosomes41 
 

 

On a different scale, also porcine gene mapping studies have witnessed huge 

improvements starting from the 90s. In this decade, the quantity, but most 

importantly the quality of the pre-existent maps were improved thanks to radiation 

hybrid panels and in situ hybridization (ISH). Eventually, the construction of 

radiation hybrid42 and high-resolution BAC contiguous maps43 was incredibly 

facilitated by novel tool such as cDNA and BAC genomic libraries44. Nowadays, the 

number of mapped loci within the pig genome is higher than 10000 and provide vital 

information for both pigs themselves and humans38. 
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In the light of the successful generation of the porcine genetic map, studies 

for genome sequencing started to take over with the foundation of the Swine Genome 

Sequencing Consortium (SGSC) in 200345. Almost nine years after, the first draft 

reference genome sequence of the Sus scrofa, derived from a female Duroc pig, was 

publshed3. It was the result of the implementation of hierarchical shotgun Sanger 

sequencing of BAC (bacterial artificial chromosome) clones and Illumina next-

generation sequencing data46,47. This first step was then rapidly followed by the 

publication of genomes of the Chinese Wuzhishan minipig48, the Göttingen minipig49 

and the Tibetan wild boar50. To this date, the number of completely sequenced 

porcine genomes has grown up to 35051, allowing researches from the scientific 

community to study their variations, evolution and selection. 

Despite the incredible amount of advances in this field, further genomics 

studies are still needed before being able to talk about a complete and standardized 

knowledge. Indeed, the current draft status of the genome of reference somehow 

hampers the analysis at a considerably high number of loci within the porcine 

genome52. Moreover, the analyses showed selective sweeps at regions lacking 

annotated genes that might hold regulatory sequences form contiguous genes51 

Finally, a recent publication about the assembly of X and Y chromosomes53 further 

highlighted the need for improved reference genome54 and annotation for all pig 

chromosomes51.  
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Biomedical Models 

 

History and Applications of Animal Models 

 

The use of animal models can be traced back to the Second Century Common 

Era (CME)55,56 and plays a pivotal role in the biomedical research field due to two 

main reasons: not only they can provide key information regarding the pathogenesis 

of the diseases, but they can also help in developing and analyzing new therapeutic 

approaches57. In 186558, a French physiologist named Claude Bernard, father of what 

is considered to be the modern experimental medicine, stated that: “I not only 

conclude that experiments made on animals from the physiological, pathological and 

therapeutic points of view have results that are applicable to theoretic medicine, but I 

think that without such comparative study of animals, practical medicine can never 

acquire a scientific character”59. Always with Bernard, the idea of creating induced 

Figure 6 Image from the bottom panel of the title page to the 1541 Junta edition of Galen's 
Works. Depicts Galen demonstrating that the recurrent laryngeal nerves render an animal voiceless 
when cut (http://commons.wikimedia.org/wiki/File:Galen-Pig-Vivisection.jpg) 
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model of diseases using both chemicals and physical methods came along56, thus 

allowing for a much more extensive use of animals in research. 

Another important turning point in experimental medicine came in the 20th 

century with the “germ theory of disease” and the use of animal models of infectious 

diseases56. Nowadays preclinical studies performed on animals are still extremely  

necessary, if not mandatory, when it comes to this research field and provide pivotal 

information regarding both pathogenic mechanisms and therapeutic approaches. This 

statement is indeed validated by the large use of animal models for study of two 

important infectious pathogens like HIV60 and Influenza Virus61 among other.  

One of the most important chapter in the history of animal models is probably 

represented by the one about genetic diseases. Indeed, in the second half of the 20th 

century, veterinarians started describing the presence of spontaneous genetic diseases 

in several animal species, perfectly mimicking the analogue ones in the human 

species, and  spontaneous mutants in mice perfectly suitable for experimental 

studies62,63. Nonetheless, the search was still open for all of the diseases that did not 

seem to naturally occur in animals. The biggest answer to this question was 

represented by genetic engineering, allowing to potentially customize and tailor any 

model for genetic diseases.  

The first genetically modified mice was created by Rudolf Jaenisch in 1974, 

who microinjected explanted blastocysts with simian virus 40 (SV40) viral DNA in 

the blastocoel cavity64. The injection proved to be safe and effective since the 

technique did not interfere with the physiological development of the mice, and the 

animals showed the presence of the virus-specific DNA sequences. In 1988, Robert 
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P. Erickson wrote and published one of the first reviews regarding the creation of 

murine animal models of genetic diseases63, discussing mutations and direct 

screening, transgenic mice and genetic alterations of embryonic cells. One of the first 

report, if not the first one, of transgenic livestock animals came in 198565. Aim of the 

study was to introduce relatively new techniques, such as the microinjection of genes 

into the pronuclei or nuclei, to larger animals including rabbits, sheep and pigs. 

Twelve years later, in 1997, Patters (et al.) successfully created a large animal model 

of a human disease, the retinitis pigmentosa, using pigs66. 

Nowadays, the number of genetically engineered animals for biomedical 

research, whether small or large, has incredibly grown, and they probably represent 

one the key factor for scientific progress. This phenomenon has to be imputed to new 

transgenesis techniques such as Somatic Cell Nuclear Transfer (SCNT)67, Sperm 

Mediated Gene Transfer (SMGT)68 and, ultimately, CRISPR/Cas969. In the last 10 

years, more than 35000 papers were published regarding transgenic animal models, 

proving their vital importance and constant growth (data collected from NCBI – 

Pubmed, https://www.ncbi.nlm.nih.gov/pubmed). 
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Piglets’ Biomedical Models 

 

 As previously stated, swine are extremely similar to humans in different 

fields including genetics, physiology, and anatomy making it a highly relevant model 

for biomedical research70. Therefore, if compared to mice and rats, they actually 

share several patterns with humans with respect to the cardiovascular, respiratory, 

hepatic metabolism, gastrointestinal, renal, reproductive, endocrine, immune, central 

nervous, optical, dermal, and musculoskeletal systems71,70. As a consequence, pigs 

are deservedly one of the most important large animal models for preclinical studies 

including tests of drugs and other therapeutic interventions72, toxicity testing73, 

studies of disease pathogenesis74, and functional genomics75. 

 In this chapter, as in this entire thesis, the focus will be only directed to the 

use of newborn and neonatal piglets in the biomedical research world. Over the last 

two decades, the piglet has strongly emerged as the most complete and accurate 

model for pediatric nutrition, metabolism and toxicology76,77. In addition to that, the 

piglets also acts as a “perfect” preterm model, as long as any model can be perfect. It 

is indeed clear how pigs are born at a stage of organ maturation that still needs 

maternal care78. Moreover, quite a considerable number of piglets is born few days 

before or even earlier for either maternal problems or mistakes in the labor induction, 

with an important increase of mortality79, thus proving to be a sensitive model to 

study the mechanisms behind near-term mortality78.   
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Gastrointestinal System 

When discussing about the piglet model, it is very hard to summarize its 

application fields, since it is almost possible to find at least one publication for every 

apparatus and metabolic/physiological process. Most certainly, amongst the most 

relevant biomedical applications, the gastrointestinal one is the most representative 

and important. An important example is the use of piglets to study and analyze the 

Necrotizing Enterocolitis (NEC), a potentially lethal disease of preterm neonates80. 

This pathology is unfortunately highly common, with an incidence that goes from 3 

to 10 %81. The piglet is an attractive model because of its similarities with the infant 

when it comes to gastrointestinal (GI) system. The majority of the GI development 

and maturation, in the porcine species, happens within the first few weeks of life, 

while in humans it is mainly in-utero80. This delay provides a good advantage in 

using a near term piglet to reflect a definitely more premature infant. It is indeed 

ascertained how a preterm pig at 90% gestation accurately mimics an infant at 75% 

gestation82. Moreover, the preterm pig shows other characteristics that make it a 

good model for NEC such as its weight and the ease of handling and surgical 

approaches83 and the fact that both symptoms and pathological finding resemble 

those seen in humans84,85. Finally, when compared to other models, the pig also 

shows the ability to be easily administered with Total Parenteral Nutrition (TPN), 

which again, is a condition often recurring in infants with GI issues86. 

Another important GI pathology often studied on the piglet model is the Short 

Bowel Syndrome (SBS). Different animals have been used in order to create 

translational animal of SBS, but even in this case, the similarities between the human 
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and the porcine species make the pig a better model87. For this kind of pathology, 

piglets ranging from 1-12 days88 old up to 4-5 weeks89,90 old have been used. It has to 

be acknowledged though that while juvenile pigs can approximate the physiology in 

young children, piglets within this age range are probably too old for adaptation 

studies91. As a consequence of this gap, preterm piglet models of SBS have recently 

been developed92. 

When discussing the GI system, it is important to notice that models of 

pathology only represent a small fraction of the piglet biomedical capabilities. 

Neonatal and juvenile pigs in physiological conditions can indeed be enrolled in 

nutritional studies providing important data regarding the absorption and overall 

effects of novel products of the food industry93. Generally speaking, it is safe to say 

that piglets, both wild type and transgenic, are providing vital information regarding 

the GI system and its pathologies.  

 

Cardiopulmonary System  

 Pigs share important characteristics with humans in anatomy and physiology 

patterns even when it comes to the cardiovascular and pulmonary system94. 

Alongside with morphometric characteristics, similarities can be found as well in 

coronary blood flow, growth of the cardiovascular system and pulmonary 

development in the neonatal stages94. Differently from other mammals such as dogs, 

the circulation to the conduction system, in pigs, is mainly right-side dominant from 

the posterior septal artery, therefore porcine models accurately mimic humans with 

acute myocardial infarction (MI)94–96. Several studies have used ameroid constriction 
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as a way to determine initial high-grade coronary stenosis followed by occlusion95. 

Despite the fact that progressive occlusion of a coronary artery can lead to left 

ventricle (LV) dysfunction, the heart failure (HF) phenotype is better produced by 

total coronary artery occlusion. Acute coronary occlusion depresses LV function and 

prompts neurohormonal activation, therefore satisfying most criteria characteristic of 

the HF phenotype97. Moreover, pig models of MI can also be useful to study infarct 

expansion and LV remodeling in the post-MI setting98. 

Even in this research area, the use of piglets has rapidly increased in the last 

decade. For instance, the piglet is becoming the most important animal model for 

hypoxia and most importantly resuscitation studies99,100. In this latter field there is a 

paucity of good-quality evidence mainly due to difficulties in obtaining informed 

consent to conduct clinical trials. Furthermore, restricting resuscitation or applying 

methods of uncertain benefit in human neonates is not ethically acceptable101. 

Moreover, it is unethical to use novel techniques in humans unless they have already 

been applied effectively to animal models. Therefore animal and extrapolated adult 

data have been used, in order to revise the neonatal resuscitation guideline102.  

It is important to mention one of the latest “trend” in the field which is 

therapeutic hypothermia, again well studied in the piglet neonatal models of perinatal 

asphyxia103. This kind of approach aims to lower body temperature in order to 

minimize brain injuries, and is considered to be one of the safest and most effective 

treatment for moderate and severe neonatal encephalopathy104. 
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Nervous System 

When it comes to neuroscience, the porcine brain resembles the human brain 

in terms of weight, volume, cortical surface area, myelination, composition and 

electrical activity, and its development, just like in humans, extends from prenatal to 

early postnatal life105,106. Those similarities not only apply to the brain, but to the rest 

of the entire nervous system107. Moreover, the fact that the life span of pigs better 

resembles humans’ when compared to smaller laboratory animals108, makes it a 

better model to study congenital and genetic neurodegenerative diseases76. 

As previously stated for the other mentioned apparatuses, even in this case 

the piglet, finds a variety of different applications and it is pretty hard to summarize 

them. Standard wild type healthy piglets, for example, are often used for preclinical 

studies to be later on applied to transgenic or naturally occurring models of 

pathologies.  

The number of swine model of neurological diseases in constantly 

increasing105,109, including Huntington disease110, Amyotrophic Lateral Sclerosis111, 

Spinal Muscular Atrophy(SMA)112 and Parkinson disease113. 

In this application area, it is mandatory to mention the huge amount of gene 

therapy studies performed on the porcine species. Gene therapy, nowadays, probably 

represents the most promising and effective therapeutic approach to a variety of 

neurological disorders114, and again pigs proved to be a vital model for preclinical 

protocols115.  
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By the analysis of the literature and in the light of the introduction hereby elaborated, 

it looks like the strive for new piglets’ models of disease have prevaricated the 

necessity for a deeper knowledge of the physiology of the animal to be modified. 

As researchers, we all know how difficult it can be to interpret obtained data when 

poor to none reference standards are provided and how hard it is to apply techniques 

and methods borrowed from other models, no matter how similar they can look. 

The key for successful translational medicine lies within the capability to overlay the 

model and the final recipient as accurately as possible, and this require deep 

knowledge. 

The aim of the present work was to collect knowledge and information regarding the 

piglets, its physiology and its pivotal utility in translational medicine. It is indeed 

clear how different piglets are when compared to adult pigs, thus the need for age-

specific knowledge. 
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Experimental Part 
  



24 
 

Physiological Investigations 

 

This section shows two experiments aimed to expand the knowledge 

regarding physiological and metabolic patterns of the piglet by analyzing, in both a 

qualitative and quantitative manner, two important body fluids such as blood and 

cerebrospinal fluid. 

Blood is a relatively easy to sample body fluid that can provide vital 

information regarding both the health of the animal used as a model and the success 

of the experimental treatment. As previously stated in the introduction of the present 

work, the biology of the piglet, just like any mammalian, can be quite different from 

the adults’, thus requiring age-related reference intervals. 

Cerebrospinal fluid, on the other hand, requires an experienced staff and 

advanced equipment to be performed safely as in involves general anesthesia. 

Nonetheless, its importance has largely been proved for any experimental protocol 

involving the Central Nervous System (CNS) or toxicity in general. For this 

specimen, we decided to use an innovative metabolic approach, tailored for this kind 

of analyses, capable of high sensitivity and reliability. 

As expected, a large population is a mandatory requirement when trying to 

set standard reference intervals in order to obtain strong and reliable data. This is 

why we enrolled a total number of 130 piglets for the blood experiment and 44 for 

the Cerebrospinal Fluid one. Animals used for this two physiological investigations 

were actually enrolled in other experimental protocols, approved by the Italian 
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Ministry of Health, as untreated controls or in occasion of the pre-treatment 

samplings. It is indeed extremely important to try and gain as much information from 

every animal that takes part in an experimental protocol in accordance to the 

principles of the Refinement and Reduction of the 3Rs116. Refining the knowledge 

about a model helps reducing the number of animals needed, thus making any 

research more ethical and sustainable. 
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Physiological Investigations 
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Age-Related 1H NMR Characterization of Cerebrospinal Fluid in 
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Abstract
When it comes to neuroscience, pigs represent an important animal model due to their

resemblance with humans’ brains for several patterns including anatomy and developmen-

tal stages. Cerebrospinal fluid (CSF) is a relatively easy-to-collect specimen that can pro-

vide important information about neurological health and function, proving its importance as

both a diagnostic and biomedical monitoring tool. Consequently, it would be of high scien-

tific interest and value to obtain more standard physiological information regarding its com-

position and dynamics for both swine pathology and the refinement of experimental

protocols. Recently, proton nuclear magnetic resonance (1H NMR) spectroscopy has been

applied in order to analyze the metabolomic profile of this biological fluid, and results

showed the technique to be highly reproducible and reliable. The aim of the present study

was to investigate in both qualitative and quantitative manner the composition of Cerebro-

spinal Fluid harvested form healthy newborn (5 days old-P5) and young (30-P30 and 50-

P50 days old) piglets using 1H NMR Spectroscopy, and to analyze any possible difference

in metabolites concentration between age groups, related to age and Blood-Brain-Barrier

maturation. On each of the analyzed samples, 30 molecules could be observed above their

limit of quantification, accounting for 95–98% of the total area of the spectra. The concentra-

tions of adenine, tyrosine, leucine, valine, 3-hydroxyvalerate, 3-methyl-2-oxovalerate were

found to decrease between P05 and P50, while the concentrations of glutamine, creatinine,

methanol, trimethylamine and myo-inositol were found to increase. The P05-P30 compari-

son was also significant for glutamine, creatinine, adenine, tyrosine, leucine, valine, 3-

hydroxyisovalerate, 3-methyl-2-oxovalerate, while for the P30-P50 comparison we found

significant differences for glutamine, myo-inositol, leucine and trimethylamine. None of

these molecules showed at P30 concentrations outside the P05 –P50 range.
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Introduction
Pigs represent an important animal model, being phylogenetically similar to primates [1],
therefore extremely similar to humans, especially when compared to other models such as the
murine one [2]. It is therefore necessary and mandatory to acquire as much knowledge as pos-
sible regarding porcine genetics and physiology in order to create specific models for each
pathology and understand its correlation to its human analogue. When it comes to neurosci-
ence, the porcine brain resembles the human brain in terms of weight, volume, cortical sur-
face area, myelination, composition and electrical activity, and its development, just like in
humans, extends from prenatal to early postnatal life [3]. Throughout the years, several porcine
models carrying gene variants that cause neurological pathologies in men have been created
[3] validating and proving the importance of this species in the laboratory and translational
medicine.

Due to its position and fragility, Central Nervous System (CNS) samples can be hard to col-
lect and the procedure may lead to severe damage, but Cerebrospinal fluid (CSF) represents a
relatively easy to collect specimens that can provide important information about neurological
health and function [4]. CSF functions include regulation of the intracranial pressure (ICP),
regulation of the chemical environment of the CNS and intracerebral transport [5]. CSF is the
product of plasma ultrafiltration and membrane secretion, usually clear and colorless [5]. It is
nearly acellular, and does not contain erythrocytes in physiological conditions [6]. On average,
dogs and cats have from 0 to 2 cells/μl, with specific normal nucleated cell count ranges for dif-
ferent species [7]. Protein concentration is usually very low: canine CSF samples usually show
10-40mg/dl of proteins compared to 5–7 g/dl in serum, the majority of which is represented by
albumin (50–70%) [5]. Its production and absorption are the result of the interaction of several
interfaces such as the Blood-Brain-Barrier (BBB) and the blood-CSF barrier [8], therefore it
can vary depending on the age and the maturation of the above-mentioned barriers.

Recently, canine CSF small organic molecules profile, referred to as metabolome [9], was
investigated using proton nuclear magnetic resonance (1H NMR) spectroscopy [10], in order
to outline a fingerprint of healthy status useful for designing and interpreting clinical trials. 1H
NMR is indeed ideally tailored for metabolomics investigations on biofluids, due to its high
reproducibility, its intrinsic quantitative nature and the minimum sample preparation required
[11]. Investigations of this kind have been, in the recent past, precious for characterizing dis-
eases [12–13] and inflammation conditions [14]. In addition, focusing on rats, it was proven
that CSF metabolomics can reveal changes in CNS metabolism in key conditions, strongly sug-
gesting that interesting insights of CNS metabolism can be obtained also during animal growth
[15]. In order for these investigations to be effective, a key role is covered by the exploration of
the widest possible portions of the metabolome space [11], given by the number of quantified
molecules and the by the knowledge about the connection between the metabolome profile and
natural fluctuations of the physiological status, such as those connected to ageing.

Regarding the swine metabolome, the characterization of urine, serum, liver and kidney
metabolome was recently performed, using both one and two-dimensional 1H and 13C nuclear
magnetic resonance spectroscopy (NMR) and high-resolution magic angle spinning
(HR-MAS) NMR [16]. The study provided valuable information for translational medicine,
validating once again the importance of metabolomics.

The aim of the present study was to investigate in both qualitative and quantitative manner
the composition of Cerebrospinal Fluid harvested form healthy newborn (5 days old) and
young (30 and 50 days old) piglets using 1H NMR Spectroscopy, and to analyze any possible
difference in metabolites concentration between age groups, related to age and Blood-Brain-
Barrier maturation.
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Material and Methods

Animals
Animals used in this study were Large White x Landrace x Duroc commercial hybrids. The
total amount of animals sampled for this study was 44: 17 5-days old piglets (P05), 18 30-days
old piglets (P30) and 9 50-days old piglets (P50). None of the animals was sampled at two dif-
ferent time points. Pregnant sows (for P05 animals) and weaned piglets (for P30 and P50 ani-
mals) were delivered to our facility from the same farm (Societa' Agricola Pasotti S.s, Imola
40026, Italy) in order to obtain a population as consistent and coherent as possible. P05 ani-
mals were housed with the sow in the farrowing crate with a heating lamp, while P30 and P50
in multiple pens according to their age. Weaned animals (P30-P50) were fed an age-appropri-
ate commercial diet twice a day. All animals were enrolled as negative controls or as pre-treat-
ment individuals in different protocols approved by the Italian Ministry of Health (art.7, D.Lgs
116/92), and were monitored at least once a day by the veterinarian. The sampling procedure
was performed under general anaesthesia in order to avoid stress and guarantee the welfare of
the animals. All pigs were constantly monitored during and after the procedure to rule out any
possible complication. According to the individuals’ protocols, all animals were eventually
euthanized upon intravenous administration of Tanax (embutramide, mebenzonium iodide
and tetracaine hydrochloride; 0.3 ml/kg; MSD Animal health, Milano, Italy) after general
anesthesia.

Sampling procedure
Animals were considered to be healthy on the basis of clinical examination and blood tests,
including a Complete Blood Count (CBC) and Chemistry Profile. Sampling procedures were
performed as previously described by Romagnoli et al. [17]. Briefly, animals were anesthetized
using inhalational induction with 8% Sevoflurane (SevoFlo; Abbott Laboratories, Chicago, IL,
USA) in a oxygen and air mixture (1:1). After endotracheal intubation, piglets were positioned
in lateral recumbency, and the dorsal area of the neck was clipped and surgically prepared. Cis-
terna Magna was punctured using a 75mm 22gauge spinal needle, and 1 ml of clear, non-hem-
orrhagic Cerebrospinal Fluid was collected into a sterile cryogenic tube and immediately
frozen in liquid nitrogen, then stored in a-80°C freezer until analysis.

NMR spectra acquisition and treatment
The samples constituting each of the three groups were collected in two batches of similar size.
The samples from each batch were prepared for 1H-NMR analysis simultaneously, to minimize
possible variability due to preparation conditions. To meet the sample volume specifications of
the NMR probe, 300 μl of CSF were added to 300 μl of distilled water. The samples were centri-
fuged for 15 minutes at 15,000 rpm at 4°C. 500 μl of supernatant were added to 100 μl of a
D2O 1M phosphate buffer at pH 7.00 solution of 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid
sodium salt (TSP) 6.25 mM, added as reference compound, and of 2 mM sodium azide, to
avoid bacteria proliferation [18]. To minimize time at room temperature between sample prep-
aration and spectra acquisition, the samples were stored at -20°C prior to analysis for a time
varying between 12 and 24 hours. Immediately before spectra acquisition the samples were
thawed and centrifuged again. The samples underwent analysis in random order, requiring a
maximum of 6 hours. 1H-NMR spectra were recorded in 5 mm NMR tubes at 298 K with an
AVANCE III spectrometer (Bruker, Milan, Italy) operating at 600.13 MHz.

Following Öhman et al. [19], the signals from broad resonances originating from large mol-
ecules were suppressed by a CPMG-filter composed by 400 echoes with a τ of 400 μs and a
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180° pulse of 24 μs, for a total filter of 330 ms. The HOD residual signal was suppressed by
means of presaturation. This was done by employing the cpmgpr1d sequence, part of the stan-
dard pulse sequence library. Each spectrum was acquired by summing up 256 transients using
32 K data points over a 7184 Hz spectral window, with an acquisition time of 2.28s. In order to
apply NMR as a quantitative technique [20], the recycle delay was set to 5s, keeping into con-
sideration the relaxation time of the protons under investigation. Pre-analytical sample man-
agement protocol and NMR experiments are conveniently summarized in S1 File, according to
Rubtsov et al. guidelines [21]. The signals were assigned by comparing their chemical shift and
multiplicity with Chenomx software (Chenomx Inc., Canada, ver 8.1) standard (ver. 10) and
HMDB (ver. 2) data banks, as described in detail in S1A and S1B Fig. In case of ambiguity, pro-
ton-proton 2D experiments were performed, as shown in S1C Fig.

Data analysis
Spectra were manually phase adjusted by means of Tospin (ver 3 –Bruker, Milan, Italy) and
then transferred to Mestrenova (ver 10.0.2—Mestrelab Research S.L., Spain). Here a line broad-
ening of 0.3 Hz was applied and an alignment towards TSP signal, set to 0 ppm, was applied.
The baseline was adjusted by means of the Whittaker smoother algorithm [22], by applying a
filter of 100 and a smoothing factor of 16384. Finally, the irregularities of the magnetic field
leading to imperfections of the signals shape were compensated by reference deconvolution, by
considering TSP singlet and a target linewidth of 1.2 Hz. No manual alignment of the signals
was necessary, different to other body fluids [23]. Differences in water content among samples
were taken into consideration by probabilistic quotient normalization [24], applied to the
entire spectra array.

Data analyses were performed on R environment (version 3.2.2; the R Foundation for Statis-
tical Computing, Vienna, Austria). Molecules showing different concentrations between time
points were analyzed using a non-parametric Mann-Whitney U test. A probability lower than
0.05 was considered as significant, adjusted for multiple comparisons through Bonferroni
correction.

Models of discriminant analysis based on projection on latent structures (PLS-DA) were
built and graphically represented by means of the package mixOmics, formerly known as inte-
grOmics [25]. For the purpose 75% of the samples from each group were randomly employed
as a training set, while the remaining samples were used to test the model’s performance. The
optimal number of new space components was found by 10 fold cross-validation. The trends
in the individuals distribution were highlighted by representing them in the XY-variate sub-
space described by PLS-DA model. For each component, the importance of the molecules in
the samples distribution was highlighted by calculating the correlation between each metabolite
and the selected latent variable, thus obtaining the so called correlation circle plot. To rank the
overall importance of each molecule in the model, we calculated its variable importance over
projection (VIP) [26]. As an alternative criterion, PLS-DA models were built in their sparse
version (sPLS-DA) [27]. Briefly, sPLS-DA algorithm does not build DA models on the entire
set of molecules, but pre-selects only those with the highest discriminative power, thus indi-
rectly acting as a molecules ranking procedure. In our case, for each iteration models of
increasing complexity were built by adding one new molecule at each iteration to a starting
number of two.

The concentrations of the molecules observed in the present work spanned four orders of
magnitude. The most concentrated molecules, with no biological reasons, would have domi-
nated any multivariate model if employed as is. This forced us to scale each concentration to
unit variance. This choice reduced the possibility for the reader to visually rank the molecules
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according to their importance in the models. Such drawback was solved by setting up a cascade
analysis protocol, where each multivariate algorithm refined the information granted by the
previous.

Results
The sampling procedure proved to be strong and reliable, allowing the operator to collect
blood-contamination free samples, suitable for analysis. Moreover, none of the animals showed
alterations related to the procedure.

All the raw data are showed in S1 Table.
A 1D-NMR spectrum of CSF from a 30d pig, representative of all the spectra registered in

the present work, is depicted in Fig 1. On each of the analyzed samples, 29 molecules could be
observed above their limit of quantification, accounting for 95–98% of the total area of the
spectra. Their concentration was obtained by integrating each spectrum over the ranges listed
in Table 1, comprising complete multiplets, as in the case of lactate, or portions, as in the case
of glucose. The concentration of the molecules quantified by NMR in CSF are reported in
Table 2.

To gain an overall first impression of how the samples spread in the 29 dimensions space,
for each P05 sample we calculated the median euclidean distances from the other P05 samples
and from the samples collected at P50. The so obtained intergroup/intragroup distance ratio
resulted statistically higher than 1 (P<7.63 E-6). The same significant difference was found for
the P05 –P30 and the P30-P50 comparisons. In the same 29 dimension space, we found that
P30 samples were equally distant from those collected at P05 and to those collected at P50.
These observations show that the metabolome of each of three groups of samples was different
from the others and that the characteristics of the samples at P30 were intermediate. To have a
pictorial representation of this status, we calculated a PCA model on the centered and scaled
concentrations of the molecules (Fig 2). The first principal component, even if representing the
22.7% of the total samples variance only, allowed a clear view of the samples metabolome over-
all evolution over time.

To focus on the molecules that mostly contributed to such overall trend along swine growth,
we performed comparisons between P05 and P50 sample on a molecular basis. The concentra-
tion of adenine, tyrosine, leucine, valine, 3-hydroxyvalerate and 3-methyl-2-oxovalerate was
found to decrease between P05 and P50, while the concentration of glutamine, creatinine,
methanol, trimethylamine and myo-inositol was found to increase. The P05-P30 comparison

Fig 1. A 1D-NMR spectrum of CSF from a 30d pig, representative of all the registered spectra.

doi:10.1371/journal.pone.0157623.g001
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was also significant for glutamine, creatinine, adenine, tyrosine, leucine, valine, 3-hydroxyiso-
valerate, 3-methyl-2-oxovalerate, while for the P30-P50 comparison we found significant dif-
ferences for glutamine, myo-inositol, leucine and trimethylamine. None of these molecules
showed at P30 concentrations outside the P05 –P50 range.

Focusing on the molecules that were found to differ between P05 and P50 samples, we
desired to robustly rank them according to their importance in discriminating the three groups
of samples. For the purpose, we followed a double procedure based on PLS-DA with VIP calcu-
lation on one side, and on sPLS-DA models on the other side. In detail, the concentrations of
the molecules were employed to build 100 PLS-DA models, one of which presented in Fig 3.
The discriminant models were preferred to the regression counterparts because we did not
have any a-priori information about linearity of metabolome evolution along swine growth.
Over the 100 built models, the average variance of the original samples explained by the first
component was 83.1% ± 1.7%. No error was made in the assignment of the samples constitut-
ing the test set. The average number of latent components required by the models for such cor-
rect classification was 2.25 ± 1.67, with a median of 1. Over the 100 models, tyrosine,
3-hydroxyisovalerate and trimethylamine were the only variables with average VIP above 1,
which is typically considered as a safe threshold of importance for variables in PLS [26].

For each PLS-DA model, we created also a sPLS-DA counterpart, to take advantage of its
pre-screening procedure of the molecules with the highest discriminating power. Over the 100
sPLS-DA models, the system selected as most important 3-hydroxyisovalerate and tyrosine
100 times, and creatinine, leucine and trimethylamine, 68, 61 and 57 times respectively.

Discussion
In the present work, we wanted to characterize the metabolome of cerebrospinal fluid of
healthy newborn piglets, and to observe its modifications over the very first stages of life. The
metabolome characterization was conveniently performed by means of 1H-NMR, one of the
leading techniques in the field due to its high reproducibility. The modifications along swine

Table 1. Location of the NMR signals employed for molecules quantification, identified in CSF of pigs in the 5–50 days range

Molecule Range* Protons** Molecule Range* Protons**

Glucose 3.698–3.711 0.25 3-hydroxyisobutyrate 1.075–1.085 1.5

Lactate 1.298–1.356 3 Adenine 8.193–8.226 1

Formate 8.444–8.473 1 Acetate 1.914–1.933 3

Glutamine 2.433–2.484 2 Tyrosine 6.891–6.923 2

Citrate 2.521–2.563 2 Leucine 0.951–0.98 3

myo-inositol 3.608–3.636 1.5 Pantothenate 0.877–0.882 3

Pyruvate 2.373–2.385 3 Phenylalanine 7.416–7.452 2

Ascorbate 4.515–4.527 1 Valine 1.035–1.056 3

Ethanol 1.171–1.206 3 3-hydroxyisovalerate 1.267–1.277 6

Mannose 5.185–5.197 0.5 Dimethylamine 2.728–2.718 6

Creatinine 3.046–3.056 3 Isoleucine 1.004–1.023 3

Alanine 1.472–1.497 3 Isobutyrate 1.057–1.065 3

Creatine 3.036–3.045 3 Trimethylamine 2.879–2.894 9

Dimethyl sulfone 3.154–3.161 6 3-methyl-2-oxovalerate 1.117–1.136 3

Methanol 3.362–3.37 3

* Portion of spectrum (expressed in ppm) where the multiplet employed for quantification were identified

** Number of protons giving rise to the multiplet. A fractional number indicates that a multiplet was not considered in its entirety.

doi:10.1371/journal.pone.0157623.t001
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development were looked for through a multistep protocol, based on uni- and multivariate
algorithms, able to put in progressive evidence the molecules mainly evolving over time.

The time points used in this paper were 5, 30 and 50 days of life. As previously stated, all the
animals analyzed in this study were enrolled in different experimental protocols held in our
facility, therefore samplings occurred according to the previously chosen times. One of the few
attempts to compare swine and human ages suggests that our time points might approximately
mimic 1, 6 and 12 months of age in humans. [28]. Due to the lack of specific data, every time
point can provide important insights, and the 30 days old model has recently been used to
describe new techniques [17, 29] and characterize new gene therapy patterns [30].

Before discussing the most representative molecules and the ones showing statistical differ-
ences, it is important to acknowledge the presence of ethanol within all of the samples. Its role
in the CSF has recently been thoroughly analyzed by van der Sar et al. [31]: its presence has
been interpreted as either a contaminant or a disease process-related molecule, but the same
work also proved its capability to diffuse into ex vivo CSF samples via air transmission,

Table 2. Concentration of the molecules quantified by NMR in CSF (mM).

P05* P30 P50 P05—P50 P-values

Lactate 2.42E+00 ± 3.68E-01 2.11E+00 ± 2.69E-01 2.84E+00 ± 3.99E-01 2.14E-02

Glucose 2.01E+00 ± 1.89E-01 1.72E+00 ± 2.89E-01 1.92E+00 ± 3.89E-01 8.33E-01

myo-inositol 3.87E-01 ± 7.38E-02 3.86E-01 ± 1.18E-01 6.03E-01 ± 1.49E-01 1.23E-03**

Ethanol 3.76E-01 ± 4.85E-01 8.42E-01 ± 1.51E+00 1.45E-01 ± 1.53E-01 2.87E-01

Glutamine 2.78E-01 ± 1.81E-02 3.56E-01 ± 9.99E-02 5.14E-01 ± 1.19E-01 6.40E-07**

Formate 2.27E-01 ± 2.82E-02 1.78E-01 ± 5.03E-02 2.56E-01 ± 4.71E-02 1.20E-01

Citrate 1.99E-01 ± 3.10E-02 1.27E-01 ± 2.19E-02 2.30E-01 ± 4.85E-02 1.33E-01

Pyruvate 1.52E-01 ± 3.26E-02 1.46E-01 ± 2.47E-02 1.13E-01 ± 2.02E-02 2.86E-03

Ascorbate 1.06E-01 ± 5.17E-02 1.11E-01 ± 6.94E-02 7.30E-02 ± 1.00E-02 3.96E-01

Mannose 9.16E-02 ± 1.09E-02 9.05E-02 ± 2.13E-02 7.79E-02 ± 1.51E-02 5.10E-02

Alanine 7.53E-02 ± 1.47E-02 9.52E-02 ± 1.61E-02 5.74E-02 ± 1.31E-02 1.10E-02

Acetate 6.72E-02 ± 2.30E-02 4.93E-02 ± 3.56E-02 6.96E-02 ± 1.88E-02 7.11E-01

Creatine 5.28E-02 ± 1.09E-02 4.38E-02 ± 7.42E-03 5.54E-02 ± 1.44E-02 7.11E-01

Creatinine 3.54E-02 ± 3.40E-03 4.39E-02 ± 6.01E-03 4.99E-02 ± 7.82E-03 2.56E-06**

3-hydroxyisobutyrate 3.04E-02 ± 7.63E-03 1.63E-02 ± 9.46E-03 2.22E-02 ± 4.03E-03 5.27E-03

Leucine 2.88E-02 ± 4.40E-03 2.11E-02 ± 3.87E-03 1.61E-02 ± 3.02E-03 6.40E-07**

Adenine 2.73E-02 ± 8.21E-03 1.47E-02 ± 7.44E-03 1.60E-02 ± 6.74E-03 4.09E-04**

Tyrosine 2.71E-02 ± 7.18E-03 1.19E-02 ± 3.75E-03 8.58E-03 ± 1.53E-03 6.40E-07**

3-methyl-2-oxovalerate 2.21E-02 ± 4.52E-03 1.36E-02 ± 5.88E-03 1.40E-02 ± 3.79E-03 2.30E-04**

Methanol 1.44E-02 ± 1.89E-03 2.74E-02 ± 1.45E-02 4.08E-02 ± 1.77E-02 6.40E-07**

3-hydroxyisovalerate 1.22E-02 ± 3.35E-03 4.22E-03 ± 2.10E-03 3.90E-03 ± 9.29E-04 6.40E-07**

Valine 1.13E-02 ± 2.47E-03 8.10E-03 ± 3.37E-03 5.52E-03 ± 1.85E-03 6.40E-07**

Phenylalanine 8.71E-03 ± 2.58E-03 7.56E-03 ± 2.38E-03 6.23E-03 ± 2.00E-03 2.50E-02

Dimethyl sulfone 8.45E-03 ± 2.09E-03 1.05E-02 ± 4.88E-03 5.35E-03 ± 2.08E-03 2.86E-03

Isoleucine 5.48E-03 ± 1.54E-03 6.53E-03 ± 4.49E-03 3.97E-03 ± 1.46E-03 1.31E-02

Pantothenate 3.91E-03 ± 2.76E-03 4.94E-03 ± 4.16E-03 2.58E-03 ± 8.16E-04 3.39E-01

Dimethylamine 2.71E-03 ± 5.03E-04 2.79E-03 ± 5.84E-04 2.27E-03 ± 6.14E-04 9.52E-02

Isobutyrate 2.53E-03 ± 7.23E-04 2.06E-03 ± 1.46E-03 3.06E-03 ± 1.24E-03 3.12E-01

Trimethylamine 7.57E-04 ± 3.49E-04 4.56E-04 ± 4.29E-04 4.97E-03 ± 3.82E-03 9.02E-04**

*The concentrations are expressed as mean ± standard deviation. The molecules are sorted according to their concentration at P05.

**Molecules showing statistical differences between P05 and P30.

doi:10.1371/journal.pone.0157623.t002
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therefore altering the metabolome post sample collection [31]. In addition, it is important to
mention that the area of the neck used for puncture was prepped by means of a chlorhexidine
gluconate/ethanol surgical scrub. Therefore, considering this potential contaminative source
and the fact that our animals showed no signs of disease, its presence is most likely to be due to
contamination.

The most representative molecules, consistently throughout the analyzed groups, are glu-
cose and lactate, related to energy metabolism. This finding is coherent with the data already
available for dogs [10] and humans [32]. Glucose represents the most important energy supply,
and, within the CNS, plays an important role in the synthesis of pivotal neurotransmitters as
glutamate, GABA and aspartate [33], so that high concentrations are highly common. Regard-
ing the neonatal brain, the specific glucose metabolism has been recently described, showing
that, compared to adult brains, more of this compound is prioritized to the pentose phosphate

Fig 2. Scoreplot of a PCAmodel built on the concentrations of 29 molecules listed in Table 1. For each
group, segments are drawn from each sample position to the median of the group. “Expl.Var.” stands for
explained variance of the original data.

doi:10.1371/journal.pone.0157623.g002

Fig 3. Scoreplot (A) and correlation plot (B) of one of the PLS-DAmodels built. The base of data was
represented by the centered and scaled concentrations of the 11 molecules showing statistically significant
differences between P05 and P50. The inner and outer circles of the correlation plots represent correlations
of 0.5 and 1 respectively. P05, P30 and P50 samples are represented with filled circles, empty squares and
empty tringles respectively.

doi:10.1371/journal.pone.0157623.g003
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pathway (PPP). The latter is pivotal for the synthesis of DNA/RNA and the regeneration of
NADPH [34]. Alongside, lactate represents the major product of anaerobic glycolysis, so that
its high concentration is consistent with CSF composition of any animal species. As a diagnos-
tic marker, high concentrations of lactate are reported to be related with both hypoxia and bac-
terial infections, particularly meningitis [35]. The characterization of glycolysis through the
CSF metabolome might have extreme diagnostic capabilities. Indeed it seems that the shift
from aerobic to anaerobic glycolysis is related with improvements of cognitive status in HIV
affected patients [36].

Out of the 29 identified molecules, only 11 showed significant differences between the three
groups, with P30 animals leaning more towards P5 or P50 depending on the specific com-
pound. It has already been demonstrated that the concentration of the metabolites within CSF
is influenced by several factors such as genetics, breeding, diet, and environment [37]. The
impact of age on the CNS metabolome is nowadays an object of study, with one the most recent
aiming to describe the brain metabolome of rats throughout their lifespan. The analyses proved
that compared with regional differences, age contributed more substantially to the detected dif-
ferences [38]. Differences in metabolites concentrations may be due to a number of factors
related to both cerebral and systemic processes, including the maturation of the Blood-Brain-
Barrier (BBB), age-related differences in brain metabolic rates and blood composition. It is
therefore very likely to detect both increasing and decreasing trends when analyzing these mol-
ecules. Obviously, molecules fluctuating between individuals may be due as well to underlying
pathologies. CSF metabolomics is indeed one of the most innovative and promising technique
for the diagnosis of CNS diseases such as glioma [39] and leptomeningeal carcinomatosis [40].
Our animals were proved to be healthy on the bases on clinicopathological evaluations, and no
individual differences were noticed. It is therefore safe to say the differences between homoge-
nous groups are to be imputed to the progression of the developmental stages.

Glutamine (glutamatergic system), myo-inositol (second messenger pathways), creatinine
(energy metabolism), methanol (diet/systemic metabolism), and trimethylamine (diet/systemic
metabolism) were found to significantly increase in concentration over time. The first three
molecules, while ubiquitous, are involved in brain metabolism processes [10]; their increasing
trend might reflect higher cerebral activity rates alongside with higher blood concentrations
and BBB permeability. It is important to discuss the trend of glutamine, since it has been
proven that it can act as an important biomarker in human medicine: an increase in its CSF
concentration can be related to pathological processes such as depression [41]. On the other
hand, concentrations lower than normal were detected in patients affected by multiple sclerosis
[42]. We suggest that its increase in our animals may be reported to a higher rate in glucose
metabolism and the proliferation of astrocytes within the neonatal brain. Astrocytes are the
only cells containing Glutamine Synthetase, the only enzyme capable of converting glutamate
and ammonia to glutamine in the mammalian brain [43]. The number of astrocytes at birth is
sensibly lower when compared to adults, but the majority of gliogenesis occurs during the first
weeks of life, making them the most present cells of CNS [44]. These cells play a pivotal role in
the function and maintenance of the BBB [45], therefore, if we relate high concentrations of
glutamine to an increasing number of astrocytes, we might use this finding as an indirect index
of BBB maturation. Methanol and Trimethylamine, on the other hand, are considered to be
waste products of food and/or systemic metabolism. In particular, metabolic methanol may
occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl
methionine [46]. Food probably represents the most important source of exogenous methanol
and trimethylamine, and it is important to state that animals enrolled in the three groups,
received different feed. P05 did not receive any solid feed in addition to the milk produced by
the sows. P30 animals were freshly weaned (28th day of life) piglets that had just started eating
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solid feed, and P50 had eaten solid feed for the previous 20 days. This feeding difference may
be related to higher methanol and trimethylamine blood concentrations reflecting in increasing
CSF concentrations. Unfortunately, due to the complexity of the metabolic pathways, partly
still unknown, it is not possible to rule out any other hypothesis regarding these molecules.
However it is important to stress this important correlation between metabolomics and food.
The reflection of ingested molecules and their metabolites in the CSF metabolome profile
might open new doors for more in depth analyses. This statement is true especially when it
comes to orally administered integrators expressing their beneficial effects on the CNS such as
quercetin [47] or to potential toxic agents introduced with food such as mercury [48].

Molecules showing significant decrease were adenine (protein synthesis/cellular respira-
tion), tyrosine, leucine, valine (amino acids),and 3-hydroxyisovalerate and 3-methyl-2-oxova-
lerate (amino acid metabolism). It is very well acquainted that amino acids take part in a
variety of biological processes, regulating in general the proteome. Free amino acids are pivotal
for protein synthesis, acting as substrate for the growth and maintenance of tissues. They have
impact on several events such as gene expression or transcription, immune response and
autophagy. Moreover, as signaling molecules, they might have regulatory functions on protein
turnover [49]. The influx of amino acids from the blood to the brain, and the regulatory role of
the BBB has been extensively reviewed by Saunders et al [50], stating that essential amino acids
are transported into the brain to a greater extent than non-essential ones; the correlation with
BBB developmental state was not investigated. 3-Hydroxyisovalerate is derived from isova-
leryl-CoA, a catabolic intermediate of leucine, and its concentration in adults’ CSF was ana-
lyzed in the human metabolome database [32]. It was suggested that a decrease of
3-hydroxyisovalerate level in the human serum may be related to the development of neoplas-
tic disease and in particular pancreatic cancer [51], but its role in the CSF has not been investi-
gated. 3-methyl-2-oxovalerate, just like the previously mentioned compound, is involved in
amino acid metabolism, representing the first degradation product of isoleucine [52]. In
authors’ opinion, the decrease of nucleobases and amino-acids, and of their metabolism prod-
ucts, might be related with the maturation and the increase in selectivity of the blood-brain bar-
rier, but it is not possible to exclude an increase in their utilization within the CNS, thus
making free concentrations lower. The concentrations of amino-acids in infant and newborn
CSF were analyzed due to their possible role as diagnostic biomarkers for inborn errors of
metabolism [53], therefore standard reference for piglets can be of extreme interest, especially
considering transgenic models for this class of diseases.

Alongside the physiological analysis of CSF, a secondary aim of the present paper was to
evaluate the evolution and the dynamics of the blood brain barrier in the swine model. Our
data doesn’t allow us to hypothesize a physiological age range for complete maturation of the
blood brain barrier as suggested by differences between 30 and 50 days old piglets. Further
studies on older animals are needed in order to be able to set a possible mark on complete mat-
uration when no differences will be noticed between two age groups.

In conclusion, the present paper seems to supply with robust and valuable data regarding
the physiological description of the swine CSF, providing new knowledge about such an impor-
tant animal model. The extensive statistical analyses proved the 3 groups to be well assorted
and homogeneous, providing more relevance and impact to the results and interesting hints
for further studies about the BBB physiology. Diagnostic procedures involving CSF analyses
for the swine medicine itself are very unlikely to be performed on a routine basis, but the situa-
tion is completely different regarding pigs enrolled in translational medicine protocols. This
approach towards the quali-quantitative analysis of CSF and the maturation of the BBB is
indeed an important step for the refinement and the standardization of the swine model.
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Abstract

Background: The similarities between swine and humans in physiological and genomic patterns, and the great
correlation in size and anatomy, make pigs extremely useful in preclinical studies. New-born piglets can represent
a model for congenital and genetic diseases in new-born children. It is known that piglets may have significant
differences in clinicopathological results compared to adult pigs. Therefore, adult laboratory reference intervals
cannot be applied to piglets. The aim of this study was to compare haematological and chemical variables in
piglets of two ages and determinate age-related reference intervals for commercial hybrid young pigs.
Blood samples were collected under general anaesthesia from 130 animals divided into five- (P5) and 30- (P30)
day-old piglets. Only P30 animals were treated with parenteral iron after birth. Samples were analysed using
automated haematology (ADVIA 2120) and chemistry analysers, and age-related reference intervals were calculated.

Results: Significant higher values of RBC, Hb and HCT were observed in P30 animals when compared to P5, with
an opposite trend for MCV. These results were associated with a reduction of the RBC regeneration process and
the thrombopoietic response. The TSAT and TIBC were significantly higher in P30 compared to P5; however, piglets
remained iron deficient compared to adult reference intervals reported previously.

Conclusions: In conclusion, this paper emphasises the high variability occurring in clinicopathological variables
between new-born and 30-day-old pigs, and between piglets and adult pigs. This study provides valuable reference
data for piglets at precise ages and could be used in the future as historical control improving the Reduction in
animal experiments, as suggested by the 3Rs principle.
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Background
The interest in the pig as an animal model for experi-
mental medicine can be traced back to Galen, in 1586
[1]. One reason for this interest is the strong similar-
ities between the pig and the human in both physio-
logical [2] and genomic [3] patterns. In addition, size
and anatomy can be easily related to the development
stages of people, making the pig the perfect preclinical
model for human diseases [4, 5], surgical techniques
and, more recently, for transplantation research [6–8].
When compared to other models such as mice or rats, the
pig has a longer lifespan of 10–15 years [9], so disease
progression is more similar to that seen in humans [1].
Furthermore, in the neonatal period, pigs represent an ac-
curate model for studying congenital and genetic diseases
in humans [10]. Piglets can even represent a good model
for the preterm neonate, as they show similar anthropo-
metric and physiological characteristics [11].
However, age differences, even within the same species,

significantly affect the comparison of some developmental
patterns, especially in extremely young subjects. There-
fore, these processes need to be thoroughly investigated in
order to create an accurate and standardised preclinical
model and to help reduce and refine experimental proto-
cols. As an important example, iron deficiency, which is
one of the most common nutritional defects during the
neonatal period in mammals [12, 13], is extremely com-
mon in swine, due to the high reproductive performance
required of these animals. Unless given iron supplements,
piglets may develop iron-deficiency a few days after birth
[14, 15]. This condition occurs regardless of the breed
and management system, and is the result of interac-
tions of several factors including low levels of iron
stores, increased requirements, poor exogenous supply
and immaturity of absorption mechanisms [15, 16].
Similarly, iron requirements cannot be completely ful-
filled by hepatic reserves and milk consumption due to
the constant request for larger litter sizes, higher birth
weights and faster growth that result in a greater blood
volume and red blood cell (RBC) count [17]. It is there-
fore mandatory to supplement piglets with exogenous
iron to prevent dangerous deficiency [18]. This proced-
ure may interfere with several clinical chemistry param-
eters [19] and is the reason why it is very inaccurate to
evaluate piglets based on the clinicopathological find-
ings of older pigs. Therefore, it is extremely important
to have specific age-related reference intervals for both
haematological and chemical variables for piglets. Some
values have been described in a single litter of Duroc x
Jersey piglets [20], but the small number of animals and
the lack of information about iron supplementation make
them hard to rely on.
The aim of this study was to evaluate haematological

and chemical variables in two groups of healthy hybrid

piglets of different ages. Secondary objectives were to
establish age-related reference intervals (RI) for both
haematology and clinical chemistry variables and to
evaluate the iron profile in new-born piglets without
exogenous supplementation (5 days old) and young pigs
administered with exogenous iron within 3 days after
birth (30 days old).

Methods
Animals
All of the animals were Italian Large White x Duroc x
Landrace commercial hybrids used in our facility. We only
selected control and/or pre-treated animals previously
enrolled in other experimental protocols and approved by
the local ethical committee to be part of this study. The
above mentioned protocols included blood tests to evalu-
ate the animals, and we decided to work on the obtained
data set of blood values.
We analysed piglets at two different time points: P5

were five-day-old piglets born in our facility that had not
received any iron supplementation before blood sam-
pling and were not neutered; P30 were 30-day-old pigs
that were transferred to our piggery on the day of wean-
ing (28th day of life) and were administered a single iron
injection (100 mg IM; Endofer, FATRO, Italy) within the
first 72 h after birth, and males were neutered. None of
the animals was included in both age groups. In order to
rule out any possible variation in genetic line and man-
agement, both pregnant sows and pigs were born and
raised in the same farm. All of the animals were housed
in multiple stalls and fed with a standard swine diet; P5
were housed in the farrowing crate with the sow until
weaning. Body weight (kg) was measured in P5 and P30
and recorded.
A total of one hundred-thirty animals were included

in the study; 74/130 (57%) were females, while 56/130
(43%) were males. Body weight was 2.3 (1.2–3.8) kg in
P5 and 8.0 (5.3–11.2) kg in P30. For haematologicalal
analyses, samples from 130 animals were available: 66 P5
and 64 P30. For chemistry evaluations, samples from
119 animals were available: 56 P5 and 63 P30.

Blood sample collection and analyses
Blood samplings were performed on day 5 (P5) or 30
(P30) under general anaesthesia, using an advanced an-
aesthesia delivery unit (Datex-Ohmeda ADU S/5, GE
Healthcare, USA), achieved by inhalation induction
with sevoflurane (Sevoflo, Abbott Laboratories, Chicago,
USA). No premedication was performed in order to
avoid blood alterations due to injected drug adsorption.
After oro-tracheal intubation, anaesthesia was main-
tained with 4 ± 0.5% sevoflurane in a 1:1 oxygen/air
mixture. Samples were obtained from the femoral ar-
tery using a 21 G butterfly needle and a vacuum system;
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tubes with K3EDTA anticoagulant, citrate and clot acti-
vator were used. The total volume of withdrawn blood
was approximately 10 ml, which was considered com-
pletely safe and negligible for these animals.
Blood samples (K3EDTA tubes) were analysed within

30 min from collection; serum (clot activator tubes) and
citrate plasma (citrate tubes) were obtained by centrifu-
gation (10 min at 3000 × g) within 1 h and analysed or
stored at −80 °C until analysis.
Complete blood count (CBC) was performed with a

new automated haematology analyser (ADVIA 2120,
Siemens Healthcare Diagnostics, Tarrytown NY, USA)
that combines classic haematological variables with
individual cell indices. The variables evaluated in our
study were haematocrit value (HCT), haemoglobin con-
centration (Hb), cellular haemoglobin content (CH),
cellular haemoglobin content of mature red blood cells
(CHm), red blood cells count (RBC), mean corpuscular
volume (MCV), mean corpuscular volume of mature
RBCs (MCVm), mean corpuscular haemoglobin con-
centration (MCHC), mean corpuscular haemoglobin
(MCH), corpuscular haemoglobin concentration mean
(CHCM), corpuscular haemoglobin concentration mean
of mature RBCs (CHCMm), haemoglobin concentra-
tion distribution width (HDW), haemoglobin concen-
tration distribution width of mature RBC (HDWm),
RBC distribution width (RDW) and mature RBC distri-
bution width (RDWm). Total white blood cell (WBC)
count and differential WBC count were also performed.
Platelet indices were analysed and included platelet
count (PLT), mean platelet volume (MPV), PLT volume
distribution width (PDW), plateletcrit (PCT), mean PLT
component (MPC), platelet component distribution width
(PCDW), mean PLT mass (MPM) and platelet mass distri-
bution width (PMDW).
In addition to the above mentioned variables, we

evaluated the following reticulocyte indices: absolute
reticulocyte count (Retic), percentage of reticulocytes
(%Retic), average size of reticulocytes (MCVr), average cell
haemoglobin concentration (CHCMr), average haemoglo-
bin content (CHr), distribution width of reticulocyte cell
size (RDWr), distribution width of CHCMr (HDWr), per-
centage of microcytic reticulocytes (%Micro-r), percentage
of macrocytic reticulocytes (%Macro-r), percentage of
hypochromic reticulocytes (%Hypo-r), percentage of
hyperchromic reticulocytes (%Hyper-r), percentage of re-
ticulocytes with a low CH (%LowCHr), percentage of re-
ticulocytes with a high CH (%HighCHr), CHr-CHm (CH
delta), CHCMr-CHCMm (CHCM delta), CHDWr-
CHDWm (CHDW delta), HDWr-HDWm (HDW delta),
MCVr-MCVm (MCV delta), and RDWr-RDWm (RDW
delta). The haematologicalal evaluation was completed
by a blood smear microscopic examination using
Romanovsky staining.

All chemistry analyses were carried out on an auto-
mated chemistry analyser (Olympus AU 400, Beckman
Coulter/Olympus) and included aspartate transaminase
(AST), alanine transaminase (ALT), alkaline phosphatase
(ALP), creatinine, urea, glucose, total proteins (TP), albu-
min, albumin to globulin ratio (A/G), sodium, potassium,
total iron (TI), unsaturated iron binding capacity (UIBC),
total iron binding capacity (TIBC) and TIBC saturation
(TSAT). Total iron and UIBC were measured using colori-
metric methods (Iron Ferene, KAL 002, Olympus/Sentinel
Diagnostics, Milan, Italy; UIBC OSR61205, Olympus/
Beckman Coulter, O’Callaghan’s Mills, Ireland). Total iron
binding capacity and TSAT were calculated as follows:
TIBC = TI + UIBC; TSAT = (TI × 100)/TIBC.
ADVIA 2120 erythrocytes, reticulocytes and platelet

indices, and other variables evaluated in the study are
reported in the Additional file 1, including their
abbreviations.

Statistical analyses
Statistical analyses were performed using MedCalc
statistical software (version 15.6; MedCalc Software,
Ostend, Belgium). The D’Agostino-Pearson test was used
to assess normal distribution of data. Data were reported
as mean ± SD or median (minimum-maximum) based
on their distribution. Comparisons between the two age
groups were performed using the Mann-Whitney U test
due to the non-Gaussian distribution of the majority of
the data. Reference intervals were obtained using the
2.5th – 97.5th percentiles method following the Clinical
and Laboratory Standards Institute (CLSI) guidelines for
estimating percentiles and their 90% confidence intervals
[21]. Outliers were identified with the Tukey test. Differ-
ences were considered to be statistically significant with
P < 0.05.

Results and discussion
For the haematological and chemical analyses, the num-
ber of samples available for each analyses, descriptive
statistics, differences between groups and estimated RI
in P5 and P30 are reported in Tables 1, 2 and 3. A
significant increase in the circulating erythrocyte mass
was detected in P30 compared to P5 as demonstrated by
the higher values of Hb, HCT and RBC count. This find-
ing was associated with a significant reduction in volume
(MCV, MCVm) and a significant increase in anisocytosis
(RDW, RDWm). Erythrocyte haemoglobin content indi-
ces (CH, CHm, MCH) were significantly lower in P30
compared to P5 with the exception of CHCM which was
significantly higher in P30, while MCHC and CHCMm
were not significantly different between groups (Table 1).
Absolute reticulocyte count and percentage of reticulo-
cytes were significantly lower in P30 compared to P5.
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Many other reticulocyte indices were significantly differ-
ent between age groups (Table 2).
Circulating platelet number (PLT, PCT) was signifi-

cantly decreased in P30 compared to P5; these results
were associated with a significant reduction in platelet
volume and mass (MPV, MPM) in P30 animals.

In the chemistry analysis, P5 subjects had significantly
lower values of creatinine, urea, ALT, albumin and A/G
and significantly higher ALP and potassium compared
to P30 animals. Total iron concentration and TSAT %
were significantly higher in P30 piglets compared to P5
(Table 3).

Table 1 Descriptive statistics, differences between groups and estimated reference intervals for haematological variables. Data are
expressed as mean ± SD or median (minimum-maximum)

Variable P5 P5 P5 P30 P30 P30 P-value

Descriptive data Reference Interval n Descriptive data Reference Interval n

Hb (g/dL) 6.03 ± 1.02 3.56-7.74 61 8.84 ± 2.0 4.32-13.31 64 <0.0001

HCT (%) 20 ± 3 13-25 61 29 ± 6 16-41 64 <0.0001

CH (pg) 16.85 (14.10–22.30) 14.30–21.82 66 14.0 (9.0–19.0) 9.3–18.9 64 <0.0001

CHm (pg) 18.3 (16.1–22.4) 16.27–22.01 50 15.4 ± 1.5 12.7–18.8 33 <0.0001

CHDW (pg) 3.72 (2.90–5.84) 3.01–5.71 66 3.99 ± 0.66 2.66–5.33 64 0.3541

CHDWm (pg) 3.36 (2.82–5.47) 2.83–5.34 50 4.78 (2.61–5.55) 2.61–5.50 33 <0.0001

RBC (106/μL) 3.26 ± 0.52 1.88–4.11 61 6.08 ± 0.93 4.08–8.17 64 <0.0001

MCV (fL) 61.97 ± 5.39 51.41–73.65 61 48.5 (32.4–61.5) 34.2–61.3 64 <0.0001

MCVm (fL) 65.9 ± 4.5 56.4–74.9 50 52.9 ± 3.9 45.3–60.5 33 <0.0001

MCHC (g/dL) 30.0. ± 1.6 26.1–32.7 61 29.9 ± 1.59 26.5–33.6 63 0.9606

MCH (pg) 18.50 ± 1.36 15.45–21.54 61 14.8 (9.1–20.2) 9.4–19.8 64 <0.0001

CHCM (g/dL) 27.35 ± 1.11 24.84–29.13 66 28.35 ± 1.60 25.13–31.62 64 0.0003

CHCMm (g/dL) 28.2 (26.7–30.8) 26.8–30.8 50 28.6 (26.8–30.9) 26.8–30.9 33 0.5389

RDW (%) 18.8 (15.8–25.7) 15.9–25.7 56 26.5 (13.5–38.5) 13.5–38.0 64 <0.0001

RDWm (%) 15.9 (14.2–25.7) 14.2–25.1 50 25.5 (12.7–32.2) 12.7–32.0 33 <0.0001

HDW (g/dL) 2.89 (2.28–4.13) 2.29–3.93 66 2.63 ± 0.40 2.02–3.50 64 <0.0001

HDWm (g/dL) 2.60 (2.14–3.68) 2.16–3.63 50 2.73 ± 1.99–3.28 1.99–3.28 33 0.1685

WBC (103/μL) 7.47 (4.39–12.58) 4.50–12.55 58 11.6 ± 3.2 5.6–18.5 58 <0.0001

neutrophil (%) 44.71 ± 9.66 22.77–61.33 60 35.3 ± 15.0 10.8–70.6 63 0.0001

lymphocyte (%) 49.30 ± 9.49 33.45–70.86 60 57.9 ± 14.5 26.2–82.9 64 0.0005

monocyte (%) 3.11 ± 1.13 1.10–5.85 59 4.4 ± 1.5 1.4–8.3 64 <0.0001

eosinophil (%) 0.5 (0.1–3.1) 0–2.3 57 0.6 (0.1–7.6) 0–1.9 64 0.5699

basophil (%) 0.41 ± 0.16 0–0.79 60 0.4 (0.2–1.2) 0–0.9 63 0.1183

neutrophil (103/μL) 3.17 ± 0.98 1.15–5.43 54 3.5 (0.8–9.9) 0.8–9.7 61 0.1472

lymphocyte (103/μL) 3.85 ± 1.11 1.91–6.45 58 6.6 ± 2.4 2.7–12.8 60 <0.0001

monocyte (103/μL) 0.23 (0.07–0.7) 0.075–0.68 59 0.4 (0.1–1.1) 0.1–1.1 59 <0.0001

eosinophil (103/μL) 0.04 (0.01–0.48) 0–0.28 60 0.07 (0.01–0.38) 0.00–0.20 63 0.0014

basophil (103/μL) 0.03 (0.01–0.2) 0–0.08 60 0.05 (0.02–0.33) 0.00–0.13 63 <0.0001

PLT (103/μL) 594 (219–1142) 253–1286 61 503 ± 141 192–832 63 <0.0001

MPV (fL) 17.84 ± 3.78 9.99–25.32 61 8.5 (6.2–13.0) 6.5–12.7 63 <0.0001

PDW (%) 84.22 ± 8.32 69.17–100.30 61 60.40 (17.90–106.60) 18.59–101.98 64 <0.0001

PCT (%) 1.20 ± 0.50 0.29–2.52 61 0.40 (0.12–0.94) 0.18–0.91 62 <0.0001

MPC (g/dL) 24.5 (17.2–26.3) 17.81–26.30 61 24.09 ± 0.96 21.69–26.50 64 0.0182

MPM (pg) 2.84 ± 0.34 2.10–3.44 61 1.96 ± 0.22 1.58–2.45 63 <0.0001

PCDW (g/dL) 4.6 (4.0–5.7) 4.0–5.6 66 4.6 (3.8–5.9) 3.9–5.9 64 0.4354

PMDW (pg) 1.45 (0.99–1.62) 0.99–1.61 66 0.87 (0.61–1.55) 0.62–1.54 64 <0.0001
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Table 2 Descriptive statistics, differences between groups and estimated reference intervals for reticulocyte indices. Data are
expressed as mean ± SD or median (minimum-maximum)

Variable P5 P5 P5 P30 P30 P30 P-value

Descriptive data Reference Interval n Descriptive data Reference Interval n

Retic (109cell/L) 369.3 ± 101.1 152.2–547.9 45 148.2 (53.4–554.5) 53.4–554.5 33 <0.000001

%Retic (%) 11.8 ± 3.8 4.6–20.7 49 2.5 (0.8–9.2) 0.8–9.2 33 <0.000001

MCVr (fL) 74.5 ± 7.3 60.7–89.4 48 56.5 ± 6.8 43.0–71.1 33 <0.000001

CHCMr (g/dL) 24.9 ± 0.9 23.4–27.0 48 26.1 ± 1.0 24.2–28.0 33 0.000008

CHr (pg) 18.1 (16.0–24.3) 16.2–23.8 48 14.6 ± 1.4 12.1–18.0 33 <0.000001

CHDWr (pg) 3.7 ± 0.3 3.1–4.4 48 3.5 (2.4–4.6) 2.4–4.6 33 0.166288

RDWr (%) 17.6 ± 2.1 14.2–20.7 48 19.5 (13.0–33.0) 13.0–33.0 33 0.055130

HDWr (g/dL) 3.36 ± 0.36 2.66–3.84 48 3.9 ± 0.62 2.7–5.1 33 0.000003

%Micro-r (%) 0.05 (0–0.8) 0.0–0.45 48 0.7 (0.0–15.5) 0.0–15.5 33 0.000005

%Macro-r (%) 26.5 (4.8–71.9) 6.7–70.7 48 2.6 (1.0–17.4) 1.0–17.4 33 <0.000001

%Hypo-r (%) 83.0 (62.8–94.3) 62.2–92.2 48 76.4 (57.2–85.8) 57.2–85.8 33 0.000036

%Hyper-r (%) 0.1 (0.0–0.3) 0.0–0.3 48 0.3 (0.0–2.7) 0.0–2.7 33 <0.000001

%LowCHr (%) 10.9 (0.5–35.4) 0.5–32.1 48 57.3 (6.0–76.8) 6.0–76.8 33 <0.000001

%HighCHr (%) 22.6 (9.2–76.3) 10.1–74.9 48 7.1 ± 2.5 3.3–13.0 33 <0.000001

CH delta (pg) −0.1 ± 1.6 −3.3–2.1 48 −0.7 ± 0.7 −2.4–0.7 33 0.012741

CHCM delta (g/dL) −3.4 ± 0.9 −5.2–(−1.8) 48 −2.6 ± 1.7 −5.3–0.8 33 0.075

CHDW delta (pg) 0.38 (−0.54–0.86) −0.33–0.67 48 −1.0 ± 0.6 −2.19–(−0.05) 33 <0.000001

HDW delta (g/dL) 0.66 ± 0.27 0.12–1.07 48 1.26 ± 0.46 0.18–2.06 33 <0.000001

MCV delta (fL) 8.9 ± 6.6 −3.4–18.3 48 3.6 ± 4.4 −3.8–12.5 33 0.000255

RDW delta (%) 1.4 (−7.4–5.2) −6.3–4.2 48 −3.8 ± 4.3 −12.6–3.0 33 <0.000001

Table 3 Descriptive statistics, differences between groups and estimated reference intervals for clinical chemistry. Data are
expressed as mean ± SD or median (minimum-maximum)

Variable P5 P5 P5 P30 P30 P30 P-value

Descriptive data Reference Interval n Descriptive data Reference Interval n

Glucose (mg/dL) 124 (69–200) 71–196 49 111 ± 26 34–159 62 0.0016

Urea (mg/dL) 12.4 (4.9–31.7) 5.0–30.8 55 17 (4–40) 4–39 59 0.0002

Creatinine (mg/dL) 0.65 (0.30–0.88) 0.38–0.85 56 1.09 (0.31–1.41) 0.51–1.39 62 <0.0001

AST (U/L) 29 ± 7 10–47 56 31 (11–68) 13–65 62 0.9915

ALT (U/L) 23 ± 6 5–38 56 30 (11–58) 14–54 60 <0.0001

ALP (U/L) 3773 ± 1017 1324–6031 56 770 ± 270 110–1292 61 <0.0001

TP (g/dL) 5.0 ± 0.5 3.7–6.2 54 4.8 (1.2–6.7) 2.5–6.6 59 0.4464

Albumin (g/dL) 1.8 ± 0.3 1.0–2.6 55 3.0 (1.8–4.0) 1.9–4.0 59 <0.0001

A/G 0.56 (0.36–0.99) 0.37–0.98 53 1.5 ± 0.3 0.7–2.2 60 <0.0001

TI (μg/dL) 15 (9–31) 9–30 49 34 (7–157) 7–151 60 <0.0001

UIBC (μg/dL) 338 ± 72 218–524 44 326 (40–1058) 63–980 62 0.2031

TIBC (μg/dL) 354 ± 72 230–542 44 397 (128–882) 142–877 60 0.0031

TSAT (%) 4.2 ± 1.2 1.3–6.7 42 8.6 (0.8–55.6) 0.9–54 61 0.0058

Potassium (mEq/L) 4 ± 0.5 2.8–5.1 54 3.7 ± 0.4 2.9–4.6 63 0.0252

Sodium (mEq/L) 135 (126–140) 126–140 53 136 ± 4.7 125–147 63 0.2448
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Swine are probably one of the most important models
for translational medicine [7], and therefore a complete
and accurate knowledge of their physiology should be
mandatory. This kind of knowledge would represent a big
improvement when it comes to refinement of animal ex-
periments. When using commercial hybrids for scientific
purposes, it is important to acknowledge that those ani-
mals are the products of strong zootechnical manipulation
that constantly requires higher breeding and production
performance [18]. Moreover, very young piglets (first
month of age) present high variability in many clinical and
clinicopathological variables due to rapid growth, nutri-
tion and other metabolic conditions, some which are po-
tentially related to iron status [15, 20]. As in other species,
new-born and young piglets are extremely different than
adult animals regarding laboratory results [20], thus, the
determination of reliable age-related reference intervals
for both haematology and chemistry variables in 5- and
30-day-old piglets is warranted. It is important to acknow-
ledge the fact that our results may not perfectly translate
to every other pigs’ breeds, but still represent a valid and
robust general reference especially because obtained by
one of the most common hybrid cross in Europe. Another
important issue to address, before the discussion of the re-
sults, is the feeding protocol: P5 only received milk from
the sows, while P30 were weaned at 28 days of life, there-
fore only ate solid feed for 2 days before blood sampling.
This difference in alimentation may have contributed to
some of the differences alongside with evolution of the
gastro-intestinal system.
The results reported in this study showed high vari-

ability in the blood profiles among P5 and P30 animals.
Unfortunately, it is hard to compare our data with the
ones previously described in the literature mainly be-
cause of the poor or absent age distinction and the dif-
ferent types of animals used. However, our P5 and P30
animals had lower Hb, HCT, RBC, MCV and MCH
values compared to animals of similar ages (days 6 and
36 from birth, respectively) [20].
In our study, P5 animals had a RBC regenerative re-

sponse that was significantly reduced in P30, as further
demonstrated by the results of reticulocyte indices (signifi-
cantly higher Retic, %Retic, MCVr, %Macro-r and MCV
delta). Similar findings have been reported previously and
could represent a physiological response in the new-born
pigs [15, 20]. However, a condition of iron deficiency
could not be excluded in our piglets. It is well known that
piglets can suffer from iron deficiency due to many causes
such as immature iron metabolism, decreased iron intake
or absorption and rapid growth. Iron deficiency can be as-
sociated with reduced weight gain, anaemia and even with
increased mortality in these animals [22]. For these rea-
sons, iron supplementation is highly recommended and
the benefit of this treatment is well documented [18]. The

role of iron deficiency in P5 animals, although sus-
pected based on haematological results, could not be
demonstrated with the current study design. In the ini-
tial phase, iron deficiency is characterised by enhanced
erythropoiesis and even a regenerative anaemia, while
microcytosis and hypochromasia (reduction of MCV
and MCHC) are late findings associated with iron defi-
ciency in animals and humans [23, 24]. The P30 ani-
mals that were supplemented with parenteral iron
within the first 72 h after birth had a decreased reticu-
locyte response compared to the new-born animals. In
addition, the results of iron profile parameters, particu-
larly TI and TSAT, supported the potential role of iron
deficiency in the piglets included in the present study.
Total iron and TSAT values in P5 and even P30 animals
were extremely decreased compared to the adult pig
values reported in the literature [25]. However, TI and
TSAT values were significantly higher at 30 days after
birth, compared to new-born piglets. A previous study,
using a different schedule of iron treatment, reported
different results with particular regard to the iron pro-
file parameters, compared to our study [15]. In our study,
the upper limit for TI in P30 animals was five times higher
than the P5 upper limit, however the lower limit was simi-
lar; the same happened for TSAT. The TIBC showed a
slightly different trend, with a wider interval and both
lower and higher values in P30 compared to P5. The over-
all pattern shown by iron-related parameters indicated
that circulating iron was very low in these healthy animals.
For this reason iron deficiency is hard to investigate in
piglets and the determination of other iron-related vari-
ables such as ferritin, which is considered the main iron
storage protein, may be helpful. Further studies on non-
treated animals should be performed in order to investi-
gate and quantify the physiological erythroid response of
growing pigs. However, it is possible that an enhanced
erythropoiesis accompanied by a relative iron deficiency
may be considered a paraphysiological condition for this
type of piglet in the first month after birth.
Swine are known to have an elevated platelet count

compared to other animals, with frequent platelet clump-
ing upon blood smear examination [20]. Although the
total platelet count at both experimental times was com-
parable to adult animal values available in the literature,
PLT, volume and mass were significantly reduced in P30
pigs compared to the new-born piglets. Similar data for
young pigs are lacking in veterinary medicine to the best
of our knowledge. Analogous to erythropoiesis, an en-
hanced thrombocytopoiesis that decreases shortly after
birth could be explained by the increased need for plate-
lets due to rapid growth or even iron deficiency. Iron defi-
ciency, in fact, is recognised as a stimulus for the bone
marrow to produce and release platelets, leading to
thrombocytosis in small animals and humans [26].
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The P5 and P30 total WBC count results in our study
were consistent with the literature: neutrophil percent-
age decreased from P5 to P30 while the neutrophil total
number did not differ significantly. On the contrary, the
lymphocyte count and percentage were significantly in-
creased in older animals, as previously reported [20].
Many chemistry variables evaluated were significantly

different between the two age groups. These differences
may impact the RI definition, however, it is difficult to
clarify the exact physiological significance of these changes
from an observational study. Interestingly, new-born
swine may have a very low concentration of albumin that
was significantly higher in 30-day-old animals, while TP
concentration did not differ significantly between groups.
As supported by the increase in A/G in P30 piglets, albu-
min concentration increased with the growth of these
animals and this process was associated with a progressive
reduction in the globulin fraction. Similar findings are
lacking in previous studies.
Creatinine and urea values were significantly higher

in P30 animals compared to P5, however both values
were fully comparable to the adult values available in
the veterinary literature [27]. In the authors’ opinion,
this is the result of the fast growing rate of pigs leading
to a rapid increase in muscle mass, helped by the grad-
ual supplementation of enriched solid diet throughout
the lactation period.
Another significant difference can be noticed in the

ALP concentration, which was extremely higher in youn-
ger animals. The literature suggests that this finding is
related to higher osteoblast activity in young, growing
animals; nevertheless the exact role of ALP in swine in
poorly understood, and its clinicopathological usefulness
needs to be clarified in further studies [28, 29].
Age-related reference intervals for haematological and

biochemical variables in wild boars have been recently
published [30]. Although a similar automated haematol-
ogy system (ADVIA 120) was used in that study, animals
from zero to six months were referred to as piglets, and
therefore a comparison of their data with our results
would not be accurate or reliable. This different stratifi-
cation of the population in their study design reflects
changes in chemical variables as well, and their data
seem to be more comparable to our P30 results.

Conclusions
In conclusion, this paper highlights the high variability in
haematological and chemistry variables between new-born
and 30-day-old pigs, and between these animals and adult
pigs. Moreover, our study provides specific age-related ref-
erence intervals for healthy commercial hybrid piglets that
can be used as physiological standards for both transla-
tional and swine medicine. Age-related reference intervals
will help in the correct interpretation of experimental

results and should be considered an important step to-
wards a more in-depth knowledge and standardisation of
the swine animal model.
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New Techniques and Future Applications 

 

This section shows three experiments aimed to develop and validate new 

techniques and future application of the piglet in the biomedical field. 

The aim of the first two experiments was to develop a safe technique for both 

the collection of cerebrospinal fluid and injection of any compound within the 

intrathecal space, either by centesis of the Cisterna magna or lumbar spinal catheter 

insertion. When performing such procedures without the support of advanced 

imaging, operators usually rely of external anatomical landmarks acting as outer 

projection of the site to be injected. Again, those landmarks obviously follow the 

physiological body development of animals, therefore are susceptible to high 

variability. Both of the experiments were successful in standardizing novel 

approaches, seemingly safe and repeatable, in piglets. Again, the standardization of 

newer and safer techniques, represents an additional step toward an ethical use of 

biomedical animals. These two techniques, for example, represent an evolution of 

older surgical approaches that involved high pain, and often mortality, for piglets. 

Easier approaches are the key to better results and most reliable data, and should be 

the goal for every researcher involved in the biomedical field.  

The third paper, result of more than 3 years of work, represent the vital 

foundation of a larger project involving piglets as preclinical models for gene therapy 

approaches. The aim was to create a complete and comprehensive map of CNS 

transduction by different serotypes of Adeno-associated Virus (AAV) upon 

intrathecal administration, since those viruses tend to show selective tropisms 
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towards different cellular populations. In the author’s opinion, this experiment 

represents a pivotal step for gene therapy preclinical-study, helping the research 

community to pick the right serotype on the basis of the specific protocol.  
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Abstract 

Cerebrospinal fluid collection is necessary for analysing its composition and can be 

used for the diagnosis of different diseases. The aim of the study was to develop and 

optimise a technique for performing a safe centesis both for the collection of 

cerebrospinal fluid and injection through the Cisterna Magna in piglets. The study 

was divided into two phases: 1) an anatomical study of 6 piglet cadavers and 2) an in 

vivo application of the technique in 6 anaesthetised piglets. The proposed technique 
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resulted in a safe puncture of the Cisterna Magna. The authors identified and 

confirmed the correspondence of the Cresta Occipitalis and the wings of the atlas 

with the external landmarks on the cadaver by means of direct radiological 

visualisation. The punctures were performed successfully at the first attempt in 5/6 

piglets. The technique herein described provides a reproducible safe and easy route 

for approaching the Cisterna Magna for both cerebrospinal fluid collection, drug 

administration and gene delivery. 

Keywords: Centesis technique, cerebrospinal fluid, cisterna magna, general 

anaesthesia, piglets. 

Introduction 

The cerebrospinal fluid (CSF) puncture technique has been described in several 

animal models: rats,1 rabbits,2 guinea pigs,3 primates4 and adult pigs;5 however, 

there are no specific studies in the literature regarding collection techniques in 

newborn piglets.  

Moreover, the intrathecal delivery of drugs or other compounds, including viral 

vectors for gene therapy, into the CSF is a convenient method for targeting the 

central nervous system (CNS), thus overcoming the obstacle of crossing the blood 

brain barrier (BBB) following systemic administration and avoiding unwanted 

exposure of the visceral organs and involvement of the renal and hepatic 

metabolisms.4,6,7 The injection of drugs or substances in pigs has been used to 

experimentally reproduce human diseases8,9,10 and to study delivery methods for 

widespread gene transfer to the CNS.11,12  
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In order to develop a specific and reliable centesis/injection technique in newborn 

piglets (which have size and age-dependent anatomical specificities as compared to 

adult subjects, a fast reproducible sampling and compound administration technique 

with minimal side effects is necessary.  

The aim of the study was to develop and optimise a technique for performing a safe 

centesis both for the collection of cerebrospinal fluid and injection through the 

Cisterna Magna (CM) in piglets using a 22G spinal needle; the first part (phase I) of 

this study focused on the anatomical study of the piglets in order to approach the CM 

whereas the second part (phase II) was aimed at testing and validating the procedure 

in live anaesthetised newborn piglets.  

 

Animals 

The experiment (in vivo study) was conducted in accordance with the provisions of 

European Economic Community (EEC) Council Directive 86/609, adopted by the 

Italian Government (D.L. 27/01/1992 no. 116). The total number of animals used in 

the study was 12, of which 6 were Large White crossbreed female piglet cadavers 

and 6 were Large White crossbreed live male piglets (age range: 2-30 days; weight 

range:1.2-8 kg), housed in the Department of Veterinary Medical Sciences of the 

University of Bologna. 
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Materials and Methods 

The study was divided in two phases:  

• Phase I: anatomical study on cadavers,  

• Phase II: in vivo application of the technique  

Phase I  

Six Large White crossbreed female piglet cadavers, (age range: 2-30 days; weight 

range:1-10 kg) were used for this phase of the experiment. 

Landmarks: After hand palpation and identification of the Cresta Occipitalis, 

(occipital protuberance), a surgical pen was used to draw a line caudally along the 

spine extending from the occipital protuberance. This was done in order to identify 

the median spinal line. A second line was traced between the cranial margins of the 

wings of the right and left atlas. Using the right hand, the spinal needle (22 Gauge 

(G) x75 mm, Pic indolor, Artsana, Italy) was introduced along the median line to a 

depth of 4 mm, 5 mm posteriorly to the intersection of the two lines; the tip of the 

needle was directed cranio-ventrally using the cranial margin of the wings as an 

external landmark. The cadaver was placed in right lateral recumbency without any 

flexion of the head throughout the entire procedure. The centesis of the first female 

cadaver (8 kg) was performed using C-arm X-ray (Technix s.p.a., Italy) to evaluate 

the correct correspondence between the anatomical and the suggested external 

landmarks. 
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The centesis was performed using the suggested external landmarks without any 

radiological guidance for the remaining 5 female cadavers which were also always 

placed in right lateral recumbency without any flexion of the head. Small 

adjustments regarding the insertion site (range 4-7 mm caudally to the intersection of 

the two lines) and regarding the depth of the needle placement (range: 4.5-7 mm) 

were required according to the varying size of the cadavers. After the placement of 

the spinal needle in the CM, 2.5 ml of radiopaque contrast medium were injected for 

radiological evaluation. A radiological lateral view of the cervical spine was carried 

out in each animal to verify the correct distribution of the radiopaque contrast 

medium. 

Phase II 

Six male piglets (age range: 2-30 days; weight range:1.2-8 kg) were used in the in 

vivo study. Venous access was achieved through a lateral auricular vein. 

General anaesthesia was induced through a small animal induction mask by means of 

the administration of an air/oxygen mixture (1:1) and 8% sevofluorane (SevoFlo, 

Abbott Laboratories, Abbott Park, Illinois, U.S.A.). The level of anaesthesia was 

continuously assessed by clinical evaluation of the respiratory pattern, heart rate, eye 

signs and muscle relaxation. Once stable, the piglets were orally intubated and 

allowed to breathe spontaneously. Following intubation, the fraction of inspired 

sevofluorane was reduced to 2.5-3%. Non-invasive blood pressure (oscillometric 

method), heart rate (BPM), electrocardiogram measurements (ECG), hemoglobin 

saturation (SpO2), respiratory rate (RPM), End tidal CO2 (EtCO2) and rectal 

temperature were recorded every 5 minutes. Body temperature was maintained above 
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37.5°C using forced-air warming. The piglets were placed in right lateral 

recumbency without any flection of the head as reported in phase I. The collection 

site (5x5 cm) was clipped and surgically prepared. The lines already described in 

phase I were drawn with a sterile surgical pen (Viscot Medical, Italy) (Fig.1) and 

puncture of the CM using a 75 mm 22 gauge spinal needle was performed. The CSF 

collected (range: 1-2.5ml) was replaced with an equal volume of radiopaque contrast 

medium, and a radiographic examination was performed within 5 minutes after the 

puncture. At the end of the procedure, the piglets were sacrificed with a bolus of 

Tanax (Tanax, Intervet Italia, Segrate, Milano, Italy) at a dose of 0.3 ml/kg IV. 

 

Results  

The technique described allowed the puncture of the CM to be carried out. In phase I, 

the authors identified and confirmed the correspondence between the Cresta 

Occipitalis and the wings of the atlas and the external landmarks on the first cadaver 

by direct radiological visualisation; the correct orientation of the needle was also 

tested and verified. After drawing the lines, the spinal needle was successfully placed 

into the CM of 4/5 animals at the first attempt. In the last case, the spinal needle was 

oriented too caudally, thus encountering the bone surface. The operator had to 

remove and reinsert the needle with a more cranial orientation in order to perform the 

CM puncture in the correct place. 

In all the cases, the radiopaque medium confirmed the correct placement of the 

spinal needle. The contrast medium was identified by a sharply marginated thin 

column in the subarachnoid space up to the seventh cervical space; it was clearly 
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present in the cranial cavity. The first step of phase II was the induction of general 

anaesthesia, which was rapidly accomplished in about 2 minutes. Intubation was 

challenging in the newborn animals due to the particular anatomy of the mouth and 

the laryngeal inlet. The clinical parameters remained stable throughout the entire 

procedure in all animals. In phase II of the study, the punctures were performed 

successfully in 5/6 piglets at the first attempt. In one subject, the operator 

accidentally drew a paramedian rather than a median line, thus making it impossibile 

to carry out the puncture; it was necessary to draw a second line to obtain the correct 

landmark and the correct puncture of the CM. In the beginning of the collection of 

the CSF, the fluid showed a mild blood contamination in 5/6 animals due to the 

accidental puncture of the dorsal venous plexus. In every case, the radiopaque 

medium confirmed the correct placement of the spinal needle (Fig. 2), highlighting 

the ventral and dorsal contrast columns on the lateral radiograph; the spinal cord 

created a non-opacified band between the columns. Moreover, the cranial diffusion 

of the contrast medium was observed in 6/6 anaesthetised animals.  

 

Discussion 

The technique herein described provides a reproducible and easy route for 

approaching the CM for CSF collection, drug administration and gene delivery. The 

anatomical landmarks validated during phase I of the project allowed the puncture of 

the CM and the collection of CSF in the 6 anaesthetised piglets.  

All the punctures were performed by the same experienced operator in order to 

minimise variables and to evaluate the “learning curve”, which was fast and 
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relatively problem free. The correct drawing of the reference lines (the median spinal 

line and the line traced between the cranial margins of the wings of the right and left 

atlas) was of primary importance in the procedure since any mistake, such as a 

misdrawn line, would have precluded achieving the correct injection into the CM. 

The lines were drawn with the patient in lateral recumbency; however, the results 

suggested that the same procedure performed in sternal recumbency would have 

helped in the correct positioning of the reference lines during this phase.  

The anatomy of newborn piglets is substantially different since the occipital 

protuberance has a rounder and less inclined caudal profile as compared to adult 

subjects.13 This is the reason why, in this study, the operator decided to insert the 

needle more caudally along the median line and with a more cranio-ventral 

orientation as compared to the injection site described in the technique used for 

adults.5,14 Within the study itself, it was necessary to adjust the distance between 

the intersection of the lines and the insertion point of the needle in order to adapt to 

the different sizes of the animals. In fact, in the smaller ones, it was necessary to 

puncture more caudally by 1 r 2 mm.  The wings of the atlas are not easily palpable, 

and the cartilaginous consistency of the bones makes it difficult to determine the 

correct positioning of the needle during its insertion since the operator strongly relies 

on the different consistency of tissues when puncturing the CM.  

As shown by the anatomical study in neonatal patients,15 the dura contains an inner 

vascular plexus which is larger in the infant than in the adult. The vascular plexus in 

the piglet is extremely wide, making it difficult to avoid the puncturing the vessel, 

thus obtaining a blood-contaminated CSF while carrying out the procedure. No 
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clinical signs of cerebral hypertension after puncturing the vascular plexus were 

reported in this study; however, the blood contamination of the CFS could represent 

a limit when performing a cell count or even biochemical analysis. 

Performing the procedure without flexing the head, allowed the piglets to breath 

normally, ensuring adequate ventilation. The technique here described demonstrates 

an easily accessible route to the CSF and widespread diffusion of the radiopaque 

contrast medium into distinct central nervous system (CNS) areas, allowing for both 

the sampling and the administration of substances in different medical and 

experimental procedures. The limitation of the study was the lack of follow-up of 

anaesthetised animals in order to evaluate the recovery and eventually any 

neurological complications resulting from this procedure. 

In a subsequent study, the authors have verified the excellent recovery during the 

postoperative period in the piglets treated (unpublished data).   
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Fig 1. The external landmarks (CO: Cresta Occipitalis; AW: Atlas Wings) and the 

lines drawn on the piglet skin in order to identify the correct place for carrying out 

the centesis with the spinal needle; (a) lateral view; (b) dorsal view . The photo was 

obtained with the piglet in sternal recumbency (in the study the centesis was 

performed with the animal in lateral recumbency) in order to achieve better 

visualisation of the landmarks.  
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Fig 2. Contrast radiography of the head and cervical spine, lateral view 

(anaesthetised piglet): the contrast medium diffusing along the cervical tract of the 

spinal cord and is clearly present in the cranial cavity. 
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Abstract 

Background: The swine species represent a perfect model for translational medicine 

due to its physiological and anatomical resemblance to humans. The development of 

techniques for spinal catheter insertion in swine is significantly useful, but at the 

moment the only technique described requires laminectomy as surgical approach. 

New Method: The proposed techniques represents a transdermal approach for 

catheter’s placement in piglets. The study was divided in: Phase I (anatomical study 

on 8 cadavers); and Phase II (in vivo application of the technique in 20 anaesthetized 

30 days old piglets). A spinal needle was introduced between the spinous processes 

of L2-L3 with ventro-cranial orientation until the intrathecal space. It was then 

replaced with a Tuohy needle, used to introduce the catheter. Before inserting the 

catheter, the approximate length was measured from the insertion point to the 

external projection of the Cisterna Magna using the gradation markings on the 

device. 

Results: The technique described allowed the spinal catheter placement in every 

piglet. In Phase I the right placement was confirmed using fluoroscopy, while in 

Phase II we relied on Cerebrospinal Fluid leakage from the needle. No alterations 

were detected both during the procedure and the following days. 

Comparison with Existing Method(s): This technique is easy and requires less skilled 

operators when compared to the only existing method that involves a surgical 

approach. Moreover, being less invasive, it potentially leads to fewer complications. 
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Conclusions: In conclusion, the technique can be performed safely in piglets, and 

provides an easier and less invasive approach for spinal catheter insertion. 

1. Introduction 

The swine species represent a perfect model for the study of different techniques in 

translational medicine due to its physiological and anatomical resemblance to 

humans (Tumbleson & Schook, 1996; Swanson et al., 2004; Karali et al., 2011; Testa 

et al., 2011). The development of techniques for spinal catheter insertion in swine is 

significantly useful in different scientific fields, including anaesthesia and analgesia, 

and gene delivery (Fairbanks, 2013; Bottros & Christo, 2014)  

The administration of analgesic compounds through an intrathecal catheter represents 

a worthwhile technique for continuous pain relief (Fairbanks, 2013). The systemic 

administration of analgesic drugs could lead to side systemic effects such as sedation, 

respiratory depression (Gutstein & Akil, 2006), bradycardia, nausea, vomiting, 

constipation (Lamont & Mathews, 2007). It has been proved that regional analgesic 

techniques are superior in terms of postoperative analgesia when compared to 

intravenous opioid administration, reducing these adverse effects in case of both 

thoracic (Behera et al., 2008) and abdominal surgery (Kainzwaldner et al., 2013). 

Somatic cells gene transduction via viral vectors directly in the intrathecal space of 

the spinal cord is an indispensable tool in neurosciences. For example the 

administration of Adeno Associated Virus (AAV) vectors targeting the Central 

Nervous Sistem (CSN) cells is useful for gene therapy for the treatment of pediatric 

neurological diseases such as lysosomal storage disorders (Spampanato et al, 2011; 
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Bevan et al., 2011), the Spinal Muscular atrophy, the Rett syndrome, and 

amyotrophic lateral sclerosis (Federici et al., 2012). 

The systemic administration of these vectors produces an extensive transgene 

expression throughout the brain and in multiple organs too (Bevan et al., 2011). 

However, intrathecal administration improves the direct effect on the target cells 

using lower vector doses than the one used for parenteral injections, reduces the 

peripheral expression and can minimize the risk of a systemic immune response 

(Bevan et al., 2011; Dayton et al., 2012). Intrathecal injection techniques by single 

puncture of the spinal space have already been described in laboratory animals 

(Bevan et al., 2011) including pigs (Romagnoli et al., 2014); but studies concerning 

the placement of a spinal catheter are limited to few animal models (Fairbanks, 2003; 

Poon et al., 2011).  

To the best of the author’s knowledge there is only one study describing the insertion 

of a spinal catheter in pigs using a surgical approach: laminectomy (Federici et al., 

2012). However, there are no studies describing a less invasive insertion technique as 

refinement strategy for animal experimentation.  

The aim of this study was to evaluate and validate the technique for spinal catheters 

placement in piglets using a transdermal approach. 

2. Materials and Methods 

The experiments were conducted in accordance with the provisions of European 

Economic Community (EEC) Council Directive 86/609 adopted by the Italian 

Government (DL 27/01/1992 No. 116). 
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The study was divided in two phases: Phase I (anatomical study on 8 piglet 

cadavers); Phase II (in vivo application of the technique in 20 anaesthetized 30 days 

old piglets).  

2.1 Phase I 

The cadaver was placed in lateral recumbency with the hind limbs flexed forward in 

order to widen the intervertebral spaces. The operator palpated with the non-

dominant hand the last rib and detected with the index the spinous processes of the 

lumbar vertebrae L2 and L3 and the corresponding intervertebral space, which 

resulted wider than the other spaces. 

A 20 G 0.9 x 70 mm spinal needle was introduced between the spinous processes of 

L2-L3 with ventro-cranial orientation forming an angle of 75° and as close as 

possible to L3 (fig. 1a). The needle was inserted trough the skin and the 

subcutaneous tissue and then through the interspinous ligament over the epidural 

space up to the intrathecal space. Resistance was felt as the needle penetrated the 

ligament and a loss of resistance as the needle penetrated the epidural space. 

The needle was then removed and substituted with a 24-gauge (G) Tuohy needle 

following the path previously created. It was then visualized under fluoroscopy and 

removed after the introduction of a 20 G catheter (fig. 1b). The injection of 

radiopaque contrast medium (Optiray Mallinckrodt Italia S.p.A.) through the catheter 

and his intrathecal spread, confirmed the right placement of the device under 

fluoroscopy (fig. 2). 

2.2 Phase II 
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Piglets enrolled in this part of the study were transferred to our facility from a local 

breeding farm (Società Agricola Pasotti S.S., Imola, Italy) on the day of weaning (28 

days post birth). 

The day of the procedure anaesthesia was induced with sevoflurane (SevoFlo; Abbott 

Laboratories, 

Chicago, IL, USA) in oxygen (1 L/min) delivered via a mask attached to a circle 

system and a small animal anaesthetic machine. Pigs were tracheally intubated and 

anaesthesia was maintained with sevoflurane in oxygen (10 ml/kg/min). Heart rate 

(HR), respiratory rate (RR) and End Tidal Carbon dioxide (EtCO2) were monitored 

during the procedure. Venous access was achieved from an auricular vein and fluid 

therapy (Ringer Lactate) was administered at the rate of 10 ml/kg/h. 

For the catheter insertion the piglet was positioned in lateral recumbency and the area 

was clipped and surgically prepared. The procedure was performed as above 

described. The right placement of the Tuohy needle was confirmed by the 

cerebrospinal fluid (CSF) leakage.  

Before inserting the catheter, the approximate length was measured from the 

insertion point to the external projection of the Cisterna Magna using the gradation 

markings along the catheter as a reference and the device itself was filled with 0.2 ml 

of PBS. This step was crucial in order to avoid kneeling of the device into the 

intrathecal space and air injection. The catheter was inserted and advanced until the 

operator felt a resistance due to the arrival of the tip within the cranial margin of the 

Cisterna Magna.  
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At the end of the procedure, the catheter was removed and sevoflurane 

administration was stopped. All of the piglets recovered from anaesthesia within 15 

minutes, and were strictly monitored concerning neurological alteration, for the 

following 6 hours to detect any complication caused by the procedure. Animals were 

housed in multiple stalls with heat lamps in accordance with the animal welfare and 

were monitored at least 5 times per day for the following week. 

3. Results 

The technique described allowed the spinal catheter placement in every piglet. The 

catheter slid in easily, proving the size of the device to be adequate for such small 

animals. 

During phase I the authors confirmed L2-L3 intervertebral space as the widest 

therefore more reliable for the introduction of the needle, and the lateral recumbency 

as the most comfortable for the operator. At the insertion of the spinal needle, the 

operator felt only a mild resistance passing through the interspinous ligament and 

didn’t felt any loss of resistance at the entrance of the epidural space as usually 

appreciable in vivo animals. 

The technique, applied in Phase II, allowed the correct placement of the catheter in 

all of the animals enrolled, as confirmed by CSF leakage. Induction was smooth and 

rapid and recovery uneventful, minimizing any kind of stress related to the procedure 

itself. Anaesthesiological monitoring did not show any alterations related to the 

increase of pressure within the subarachnoideal space. The device was left in place 

for about 15 minutes, still no alterations were detected. None of the complications 

already described in literature such as bleeding, CSF leakage, neurological injury and 
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ataxia (Bottros & Christo, 2014) were observed during the recovery period and for 

the following days. One animal out of 20 showed a mild ataxia that disappeared 

without any kind of pharmacological treatment in 2 hours. 

Animals were able to display all of their normal behavioural and physiological 

patterns within few hours from recovery, proving the procedure to be minimally 

invasive and painful. 

4. Discussion 

In the present study, we described the technique for the transdermal spinal catheter 

placement in piglets. The procedure was feasible in all animals both in cadavers and 

anesthetized animals. 

Phase I helped finding the adequate technique for needles and catheter insertion. The 

intervertebral space was chosen as the most reliable and easy to puncture according 

to our experience and pediatric literature: in human medicine indeed, the 

intervertebral space L2-L3 is associated to a major incidence of correct catheter 

position in children (Kim et al., 2010). Since it is hard to verify the correct placement 

in cadavers due to the lack of CSF leakage and of differential tissue resistance, 

fluoroscopy and contrastographic examinations were pivotal to the success of the 

study as previously described by Federici et al. (2012). This part of the study was 

extremely useful to verify that the resistance encountered during the advancement of 

the device is imputable to its reaching the rostral area of the Cisterna Magna. In fact, 

further advancement can result in looping of the catheter itself (Firebanks, 2003).  
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During Phase II, the described technique allowed the correct catheter placement in all 

animals and the piglets recovered without any problem within minutes after the end 

of the procedure, with the exception of only one animal, which showed a mild brief 

ataxia. It is still important to say that the only direct confirmation to the procedure is 

the CSF leakage, and it is not advisable to rely on the tissue consistency, especially 

in neonatal animals.  

Federici et al. (2012) described the insertion of the spinal catheter in pigs after 

laminectomy, but this kind of approach is more painful, therefore requiring higher 

levels of analgesia, and may lead to postoperative infections and trauma to the spinal 

cord. In addition, the surgical technique requires more experienced staff and more 

expensive equipment.  

The used recumbency was the most stable and comfortable for the operator, allowing 

the intervertebral space to widen and, in vivo, to see the leakage of the CSF. Spinal 

needle, with sharp cutting point allows the operator to easily appreciate the 

sequential penetration of skin, adipose tissue and ligaments as it is advanced through 

the different tissue planes. Moreover, the clear hub allows to check the presence of 

blood or CSF (Read, 2013). 

Thouy needles instead, have a polished and rounded inner bevel, which is useful for 

directing the insertion of a spinal catheter and to minimize the risk of shearing the 

catheter itself (Read, 2013). 

Therefore, we decided to use a spinal needle first and the Thouy needle in second 

instance.   



74 
 

The epidural catheters have gradation markings along their length and they are 

radiopaque. These features helped us, in phase I, to verify its correct placement in the 

spinal space for the right length. In Phase II the gradations along the device were 

useful to direct it for the fitting length as previously described. A specific mark on 

the distal tip of the catheter assured us on the integrity of the device once removed 

from the piglets.  

In the study we used a closed tip catheter with multiple fenestration located round the 

tip. In human medicine the use of multiport catheters was associated with lower 

incidence of inadequate analgesia (D’Angelo et al., 1997). This allowed the 

spreading of the contrast medium in the intrathecal space above the third lumbar 

vertebra up to the Cisterna Magna. While the use of open end catheter allows the 

diffusion of the compounds, the retraction of the device would allow the diffusion of 

the compound injected close to specific medulla metameres avoiding unilateral 

diffusion.  

In conclusion, the technique can be performed safely in piglets, and provides an 

easier and less invasive approach for spinal catheter insertion when compared to the 

surgical one. 
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Fig 1. Steps for spinal catheter insertion (anatomical study) - With piglet in lateral 

recumbency a spinal needle is introduced between the spinous processes of L2-L3 

with ventro-cranial orientation forming an angle of 75° with the spinal column and as 

close as possible to L3 (a). The spinal needle is then replaced with a Tuohy needle 

for spinal catheter insertion (b). 
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Fig 2. Fluoroscopy image of catheter placement (anatomical study)- 

Contrastographic evaluation in lateral recumbency . The contrast medium shows the 

spreading within the intrathecal space: (a) dorsal wall, (b) ventral wall, (c) catheter. 
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Cerebrospinal fluid administration of recombinant adeno-
associated viral (rAAV) vectors has been demonstrated to 
be effective in delivering therapeutic genes to the central 
nervous system (CNS) in different disease animal models. 
However, a quantitative and qualitative analysis of trans-
duction patterns of the most promising rAAV serotypes for 
brain targeting in large animal models is missing. Here, we 
characterize distribution, transduction efficiency, and cel-
lular targeting of rAAV serotypes 1, 2, 5, 7, 9, rh.10, rh.39, 
and rh.43 delivered into the cisterna magna of wild-type 
pigs. rAAV9 showed the highest transduction efficiency 
and the widest distribution capability among the vectors 
tested. Moreover, rAAV9 robustly transduced both glia 
and neurons, including the motor neurons of the spinal 
cord. Relevant cell transduction specificity of the glia was 
observed after rAAV1 and rAAV7 delivery. rAAV7 also dis-
played a specific tropism to Purkinje cells. Evaluation of 
biochemical and hematological markers suggested that all 
rAAV serotypes tested were well tolerated. This study pro-
vides a comprehensive CNS transduction map in a useful 
preclinical large animal model enabling the selection of 
potentially clinically transferable rAAV serotypes based on 
disease specificity. Therefore, our data are instrumental 
for the clinical evaluation of these rAAV vectors in human 
neurodegenerative diseases.

Received 1 June 2015; accepted 22 November 2015; advance online  
publication 5 January 2016. doi:10.1038/mt.2015.212

INTRODUCTION
Gene transfer of recombinant adeno-associated virus (rAAVs) 
holds promises to treat neurological disorders.1 Studies on differ-
ent recombinant vector serotypes and modes of delivery to the 

central nervous system (CNS) showed that the combination of 
both rAAV serotype used and delivery routes play a key role in 
CNS transduction properties and thus in disease phenotype res-
cue outcome. However, one of the major hurdles to developing 
an effective clinical protocol for neurological disorders is the effi-
ciency of vectors to reach the specific cell types in disease-specific 
CNS subdomains.

Attempts to treat CNS defects based on parenchymal deliv-
ery of rAAV vectors demonstrated efficacious proof-of-principle 
studies. Nonetheless, clinical trials using this approach showed 
limited benefit for Batten disease, Canavan disease, aromatic 
l-amino acid deficiency, and Parkinson’s disease.2–6 One possible 
explanation for this limited success, in addition to potential local 
inflammatory responses, is that widespread distribution within 
the affected brain area from the injection site was inadequate and 
did not target relevant cell populations. The systemic delivery of 
rAAVs with the ability to efficiently cross the blood–brain bar-
rier was recently shown as an attractive means to treat diseases 
with widespread CNS involvement.7–10 However, the vector doses 
required and exposure to visceral organs may raise concerns 
related to manufacturing costs and safety, respectively. An alter-
native route to efficiently transduce the CNS is based on delivery 
of viral vectors directly into the cerebrospinal fluid (CSF). CSF 
delivery can be achieved through ventricular, lumbar, and cister-
nal administration. The main advantage of CSF-mediated delivery 
is the exposure of the virus circulating in the CSF to a large CNS 
surface area resulting in a broad distribution of delivered viral 
particles within the CNS with a relatively limited amount of vector 
required.11 CSF-mediated delivery and spreading of molecules/
virus within the CNS occurs in two steps: (i) pia mater fenestra-
tion allows access to superficial brain parenchyma (mainly com-
posed of astroglia cells: glia limitans), which is in direct contact 
with the CSF. Access to deeper brain parenchyma areas is instead 
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mainly mediated by perivascular CSF transport12 and (ii) uptake 
by brain cells, which depends on the specific tropism of rAAV 
serotypes.13

Therefore, the CSF delivery is an attractive administra-
tion route to develop CNS gene therapy–based approaches. 
Interestingly, proof-of-concept studies based on CSF delivery 
of rAAVs have been reported for various neurological disorders 
affecting CNS in different animal species.14–17 However, to date, 
little is known about how CSF delivery of potentially clinically 
transferable rAAV serotypes impacts transgene transduction pat-
terns in specific CNS subdomains/cell types in large preclinical 
animal models. This information is crucial for the future develop-
ment of clinical protocols for CNS diseases based on CSF delivery 
of rAAV vectors. Neurological disorders often exhibit an onset/
presentation that affects discrete, disease-specific structures of the 
brain that then spread along the entire CNS with disease progres-
sion. Therefore, in principle, a viral vector that targets the CNS 
substructure initially affected in disease manifestation would 
result in an overall therapeutic benefit, and therapy via CSF deliv-
ery may mitigate the potential for systemic toxicity.

Here, we provide a detailed side-by-side analysis of CNS 
region/cell transduction specificity of eight rAAV serotypes 
(rAAV1, 2, 5, 7, 9, rh.10, rh.39, and rh.43) selected for their 
potential CNS tropism from the large portfolio of rAAV sero-
types available.13,18 This transduction pattern has been evaluated 
together with an assessment of safety parameters CSF injection 
of the viral vectors in pigs, a large animal model that is useful 
for preclinical studies.19 These data will provide guidance and 
immediate impact for the design of future translational clinical 
studies.

RESULTS
Pattern of GFP expression in the CNS upon  
 intra-cisterna magna injection of rAAV1,  
2, 5, 7, 9, rh.10, rh.39, and rh.43 in P30 pigs
Eight rAAV serotypes (rAAV1, 2, 5, 7, 9, rh.10, rh.39, and rh.43) 
carrying genes encoding for the green fluorescent protein (GFP) 
under the control of the CMV ubiquitous promoter were injected 
in the CSF at a dose of 1.5 × 1012 GC/Kg in wild-type (WT) pigs 
at age 30 days (P30) (Supplementary Table S1). CSF administra-
tion was based on an intra-cisterna magna (ICM) protocol pre-
viously described.20 Age-matched WT pigs ICM injected with 
 phosphate-buffered saline (PBS) were used as controls.

In order to evaluate the transduction capability of the dif-
ferent rAAV serotypes, we first analyzed the GFP expression 
patterns in the CNS of injected animals. Injected pigs were sac-
rificed 1 month postinjection, and the brains were collected and 
sliced in eleven 0.5-cm-thick coronal sections covering the main 
regions of the brain and processed either for biochemical analy-
sis or for GFP immunostaining (Supplementary Figure S1). The 
cervical region of the spinal cord was also collected (as slice S12) 
and analyzed in order to evaluate the transduction of rAAV vec-
tors in the CNS regions localized posteriorly to the injection site 
including the neurodegenerative relevant areas of motor neurons 
(Supplementary Figure S1).

GFP immunohistochemical (IHC) analysis was performed 
on frozen sections cut from selected CNS coronal slices derived 
from both rAAV-injected and control PBS-injected pigs. Frontal 
and parietal cerebral cortex (from slices S4 and S5, respectively), 
hippocampus (from slice S8), cerebellum (from slice S11), basal 
ganglia (from slice, S4 and S5), and cervical tract of the spinal 

Figure 1 IHC analysis of GFP distribution pattern in main representative areas of pig brain upon ICM delivery of rAAV1, 2, 5, 7, 9, rh.10, rh.39, 
and rh.43. GFP expression in the brain of rAAV-injected pigs was evaluated 1 month after injection by IHC analysis in four representative 40-μm coro-
nal cryosections (slice S4, S5, S8, and S11). The ×0.3/×0.4 pictures are scanned images (see Materials and Methods). Enlarged images (×4) from each 
slice showed transduction in layers I–IV of frontal cerebral cortex (slice S4), glia limitans (GL) of parietal cerebral cortex (slice S5), dentate gyrus (DG), 
and CA3 areas of hippocampus (slice S8) and cerebellum (Cb) (slice S11). Arrows indicated Purkinje cells. Bars for ×0.3 and ×0.4 images = 4 mm. Bar 
of enlarged images (×4) = 200 μm.
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cord (from slice S12) were analyzed (Supplementary Figure S1). 
The GFP signal was distributed in several CNS regions in pigs that 
were injected with rAAV9, as seen in Figure 1. In the cerebral cor-
tex, the GFP expression was evident in the layers I–IV, particularly 
in the glia limitans of layer I (Figure 1). Cerebellum also appeared 
transduced in rAAV9-injected pigs, with GFP signal observed 
in the Purkinje cells (Figure  1). rAAV9 vectors penetrated into 
the brain parenchyma also transducing the brain stem and basal 
ganglia, with GFP signal present in the accumbens and putamen 
(Supplementary Figure S2). Transduction was also evident in the 
dentate gyrus and CA3 areas of hippocampus (Figure 1).

IHC analysis of rAAV1-injected pig brains showed that the 
first layer of the cerebral cortex was transduced with preferential 
localization of the GFP signal in the glia limitans (Figure 1 and 
Supplementary Figure S2). GFP expression was also observed in 
the Purkinje cell layer of the cerebellum and in the hippocampus 
(dentate gyrus and CA3; Figure 1). rAAV7 showed a distribution 
pattern similar to that observed for rAAV1, with higher trans-
duction of Purkinje cell layer compared with the rAAV1 serotype 
(Figure 1 and Supplementary Figure S2). The glia limitans of the 
cerebral cortex and the Purkinje cells of the cerebellum appeared 
transduced also by the rAAV2 (Figure 1 and Supplementary Figure 
S2). The rAAV5 showed few GFP-positive cells in the layers I–IV of 
the cerebral cortex (Figure 1 and Supplementary Figure S2). GFP 
transduction was observed in the Purkinje cell layer of animals 
injected with rAAVrh.10, rAAVrh.39, and rAAVrh.43, while only 
a few GFP signal mainly localized to the layer I was detected in 
the cerebral cortex of these animals (Figure 1 and Supplementary 
Figure S2). rAAVrh.39-injected pigs also displayed a few GFP sig-
nal in dentate gyrus and CA3 areas of hippocampus (Figure 1). 
IHC analysis of the cervical region of the spinal cord showed that 
rAAV9 was able to transduce both neurons of lamina IX and fibers 
in the ventral column and fibers of gracile and cuneate fasciculi in 
the dorsal column (Figure 2). Both rAAV1 and rAAV7 displayed 
an astroglial transduction pattern in the spinal cord; however, the 
GFP signal was stronger in rAAV1-injected animals compared with 
rAAV7-injected animals (Figure 2). In the spinal cord, rAAV5 and 
rAAVrh.43 showed a weak GFP expression, which was localized 
in the gray matter of the ventral horn in rAAV5-injected animals 
and in the glia limitans of the ventral region in rAAVrh.43-injected 
animals (Figure  2). All  remaining rAAV serotypes analyzed did 
not exhibit any detectable GFP signal in the spinal cord (Figure 2).

Levels of GFP expression in CNS regions upon ICM 
injection of rAAV1, 2, 5, 7, 9, rh.10, rh.39, and rh.43 
in P30 pigs
GFP expression levels in brain and spinal cord were quantified by 
western blotting experiments on 20 selected CNS areas of interest, 
which were dissected from coronal slices in both rAAV-injected 
and control PBS-injected pigs (Supplementary Figure  S1). 
As seen in Figure 3, P30 injected pigs showed a GFP distribution 
pattern that overall correlated with the IHC data confirming the 
wide distribution of the rAAV9 serotype and underlining the spe-
cific distribution pattern of the other rAAV serotypes analyzed. 
However, the quantitative analysis allowed us to evaluate not 
only the distribution pattern of GFP but also the intensity of GFP 
expression in specific CNS regions of injected pigs.

Cerebral cortex. The cerebral cortex of rAAV9-injected pigs 
exhibited the highest intensity of GFP expression (Figure  3). 
rAAV1, rAAV5, and rAAV7 also showed relevant GFP protein 
levels in the cerebral cortex, with rAAV1 and rAAV7 displaying 
higher expression levels compared to rAAV5 (Figure 3).

Hippocampus. rAAV9 displayed the highest GFP expression lev-
els in the hippocampus, followed by rAAV1, rAAV5, and rAAV7 
serotypes (Figure 3). No detectable GFP expression was observed 
for all the other rAAV serotypes tested (Figure 3).

Midbrain and basal ganglia. The colliculi (superior and infe-
rior) and the substantia nigra were transduced with the  highest 
GFP  expression intensity by the rAAV9 serotype (Figure  3). 
Quantitation of GFP protein levels in the substantia nigra showed 
higher GFP expression in rAAV5-injected animals compared to 

Figure 2 IHC analysis of GFP distribution pattern in spinal cord of 
rAAV-injected pigs. IHC GFP staining on coronal cryosections (40 μm) of 
spinal cord cervical region from rAAV-injected pigs. The ×0.8 pictures are 
scanned images (see Materials and Methods). The black dashed lines indi-
cate the butterfly shape of gray matter of the spinal cord. Magnification 
images (×10) show the ventral column (VC), the lamina IX (L-IX) of the 
ventral horn, and the dorsal column (DC) of the spinal cord. Arrows in 
the panels of rAAV9-injected pigs indicate fiber transduction in the ventral 
columns, motor neurons transduction in the L-IX, and transduction of 
gracile and cuneate fasciculi fibers in the dorsal column. Ventral (V) and 
dorsal (D) sides of the spinal cord are shown in the ×0.8 scanned images. 
Bar of ×0.80 images= 1 mm. Bar of ×10 images = 200 μm.
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that observed in rAAV1- and rAAV7-injected animals (Figure 3). 
Low GFP protein levels were detected in the colliculi of pigs 
 injected with rAAV1 serotype (Figure  3). rAAV9 exhibited the 
highest intensity of GFP expression in basal ganglia region followed 
by rAAV5, rAAV7, and rAAV1 (Figure 3). All other serotypes did 
not show detectable GFP expression in the midbrain and basal gan-
glia areas (Figure 3).

Cerebellum. The rAAV9 and rAAV7 serotypes showed similar 
levels of GFP expression in the cerebellum, and these protein levels 
were the highest among all rAAV serotypes analyzed (Figure 3). 
Lower levels of cerebellar GFP expression were displayed by 
the rAAVrh.39, rAAVrh.10, and rAAV1 serotypes (Figure  3). 
The GFP expression levels were very low or undetectable in the 
cerebellum of rAAV2-, rAAV5-, and  rAAVrh.43-injected pigs 
(Figure 3).

Spinal cord. rAAV9 displayed the highest GFP protein levels 
in the spinal cord, followed by rAAV1, rAAV7, and rAAVrh.39 
(Figure 3). All other serotypes did not show detectable GFP ex-
pression in the spinal cord region (Figure 3).

In order to further characterize the GFP transduction pat-
tern, we quantified delivered rAAV genomes in different CNS 
areas of injected pigs by quantitative polymerase chain reaction. 
High copy numbers of rAAV genomes were observed in the CNS 
regions in which strong GFP expression was observed, while neg-
ligible values of genome copy numbers were observed in the CNS 
regions with low/absent GFP expression, thus supporting the GFP 

expression profiles obtained by both IHC and western blotting 
experiments (Supplementary Figure S3).

Cell type transduction upon ICM injection of rAAV 1, 
2, 5, 7, 9, rh.10, rh.39, and rh.43 in P30 pigs
In order to precisely evaluate the specific cell types transduced 
by the different rAAV serotypes analyzed, we co-labeled the CNS 
coronal sections from rAAV-injected pigs with anti-GFP and anti-
bodies for cell-specific markers of glial and neuronal cells.

Cerebral cortex. Analysis of parietal cerebral cortex (layers  
I–IV from slice S6) revealed that ~16% of cells were GFP-positive 
in rAAV9-injected pigs, ~2–3% of cells were GFP-positive in 
rAAV1-, rAAV2-, and rAAV7-injected pigs, while less than 1% 
of GFP-positive cells were found for all other serotypes (Figure 4 
and Table 1). In rAAV1-, rAAV2-, and rAAV7-injected animals 
GFP-expressing cells almost completely co-localized with either 
GFAP or S100β astroglial markers in the layer I of cerebral cor-
tex (GFAP and S100β stain, respectively, fibrous and protoplasmic 
astrocytes), while few/no GFP-positive cells co-localizing with the 
microglial marker Iba1 or the neuronal marker NeuN were found, 
thus indicating a predominant transduction of cerebral cortical as-
trocytes for rAAV1-, rAAV2-, and rAAV7 serotypes (Figure 4). In 
rAAV9-injected pigs, ~26% of GFP-containing cells were GFAP-
positive (mostly in the glia limitans), ~41% were S100β-positive, 
~12% were Iba1-positive, and ~25% were  NeuN-positive, thus in-
dicating the capability of this serotype to efficiently transduce both 
neurons and different types of glial cells in this region (Figure 4 

Figure 3 GFP expression levels in representative areas of the CNS of rAAV-injected pigs. Western blotting analysis with anti-GFP antibody 
performed on rAAV-injected pigs. Indicated areas were taken from the rostral to the caudal part of pig CNS (see Materials and Methods and 
Supplementary Figure S1 for details). The GFP protein levels were quantified in dissected areas by densitometric analysis of GFP signals. For the 
cerebral cortex, we analyzed frontal (from slice S1 and S2), parietal (from slice S5), and occipital (from slice S8–S10) regions. Values were normal-
ized to both actin and purified GFP protein (70 ng loaded on sodium dodecyl sulfate gels) and expressed as arbitrary units (a.u., see Materials and 
Methods for details). Three animals for each serotype were analyzed. Bars represent means ± SEM from three samples (one sample for each animal).
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and Table 1). In the cerebral cortex of pigs injected with all other 
rAAV serotypes, the few GFP-positive cells found mostly co-local-
ized with astroglial markers in the  layer I (Figure 4).

Hippocampus. Analysis of the dentate gyrus and CA3 areas of 
hippocampus in rAAV9-injected pigs revealed the presence of 
several GFP-expressing cells, which, as in the cerebral cortex, 
 reflected both neuronal and astroglial cells transduction (Figure 5, 
Supplementary Figure S4, and Table 1). In the dentate gyrus area, 
GFP-positive cells co-localized with NeuN (~15%), GFAP (~43%), 
S100β (~45%), and Iba1 (~11%) markers (Figure 5 and Table 1). 
GFP-positive cells co-localizing with NeuN, GFAP, and S100β 
markers were also observed in the hippocampus (dentate gyrus 
and CA3) of rAAV1-injected pigs (Figure  5, Supplementary 
Figure S4, and Table  1). Few GFP-positive cells co-localizing 
with astroglial and neuronal markers were observed in rAAV7- 
and rAAVrh.39-injcted pigs, while negligible  GFP-positive cells 
were found in pigs injected with all other serotypes (Figure  5, 
Supplementary Figure S4, and Table 1).

Basal ganglia. In the stria terminalis and putamen areas of 
basal ganglia, only rAAV9-injected animals displayed detect-
able GFP-positive cells (Figure  6a and Table  1). Confocal im-
ages of stria terminalis showed that these GFP-expressing cells 
 co-localized with the oligodendroglial marker OLIG2 (Figure 6a). 
Remarkably, analysis of this region also showed the presence of 
some  GFP-positive signal, which, although did not co-localize 
with astroglial or neuronal markers, narrowed several projec-
tions, thus suggesting transduction of neuronal bodies resident in 
other brain regions that circuit with stria terminalis (Figure 6a).

Cerebellum. In the cerebellum, several GFP-positive cells were 
observed in rAAV7- and rAAV9-injected pigs (respectively ~12 
and ~15%), lower numbers of GFP-expressing cells were found 
in rAAVrh.10, rAAVrh.39-, rAAV2-, and rAAV1-injected pigs, 
while few/negligible GFP-positive cells were found for all other 
serotypes (Figure 6b and Table 1). Co-localization analysis with 
Calbindin marker revealed that these values reflected an efficient 
transduction of Purkinje cells (Figure 6b and Table 1). GFP co-lo-
calization with either Iba1 or astroglial markers were also found in 
both rAAV9- and rAAV7-injected pigs (Figure 6b and Table 1).

Spinal cord. In the spinal cord, several GFP-expressing cells 
were observed in rAAV9-injected pigs (Figure 7 and Table 1). 
In the ventral horn, GFP-positive cells displayed a predomi-
nant co-localization with NeuN marker (Figure 7 and Table 1). 
A few GFP signal co-localizing with NeuN marker was observed 
in both rAAV1- and rAAV5-injected pigs, while no other 
sero type showed detectable GFP-positive cells in this region 
(Figure  7 and Table  1). The use of choline acetyltransferase 
(ChAT) marker revealed that NeuN-positive GFP-expressing 
cells were mostly motor neurons in rAAV9-injected animals 
(Figure 7 and Table 1). The other serotypes tested were nega-
tive for ChAT co-staining, including rAAV5, thus indicating 
that the NeuN-positive  GFP-expressing cells in the spinal cord 
of rAAV5-injected pigs represent a different neuronal subtype 
(Figure 7 and Table 1).
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Evaluation of toxicity and immune-responses after 
ICM injection of rAAV 1, 2, 5, 7, 9, rh.10, rh.39, and 
rh.43 in P30 pigs
We then evaluated the presence of a humoral immune response in 
treated animals. Serum and CSF were collected and screened before 
and 1 month after injection in order to determine the presence of 

neutralizing antibodies (NAbs) against the rAAV capsids. None 
of pigs analyzed showed preexisting NAbs either in serum or in 
CSF (Supplementary Table S2). At the time of sacrifice, no NAbs 
were observed in the serum or CSF of rAAV9-, rAAVrh39-, and 
rAAVrh43-injected pigs (Supplementary Table S2). In contrast, 
all animals injected with rAAV2 exhibited NAbs in both serum 

Figure 4 Cell type tropism of rAAV serotypes in the cerebral cortex of injected pigs. Epi-fluorescent images (×10) showed GFP-expressing cells 
co-stained with DAPI in the parietal cerebral cortex (layers I–IV from slice 6) of rAAV-injected pigs. Confocal images (×40) showed GFP co-localization 
with neuronal (NeuN), astroglial (GFAP, S100β), and microglial (Iba1) markers in the same region. Bar for epifluorescent images = 75 μm. Bar for 
confocal images = 50 μm.

Epi (×10) Epi (×10)Confocal (×40) Confocal (×40)
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and CSF. Results for the remaining rAAV serotypes were variable 
with some, but not all, animals displaying NAbs in serum and CSF 
(Supplementary Table S2).

In order to assess early safety signals, panels of biochemi-
cal and hematological markers potentially indicative of renal 
or hepatic damage/failure, as well as inflammation, were 
evaluated, and piglet weight was determined on the day of 

the injection and at sacrifice to evaluate normal physiologi-
cal development. No significant differences were detected 
between rAAV-injected animals and controls for markers 
tested before injection and at the end of the experimental pro-
tocol (Supplementary Table  S3). The change in the variables 
that were observed in pigs (either controls or rAAV-injected) 
when comparing pre- and post-injection time is easily related to 

Figure 5 Cell type tropism of rAAV serotypes in the hippocampus of injected pigs. Epi-fluorescent images (×10) showed GFP-expressing cells 
 co-stained with DAPI in the dentate gyrus of hippocampus of rAAV-injected pigs. Confocal images (×40) showed GFP co-localization with NeuN, 
S100β, and GFAP markers in the same region. Bar for epifluorescent images: 75 μm. Bar for confocal images: 50 μm.

Epi (×10) Epi (×10)Confocal (×40) Confocal (×40)
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the physiological developmental stages of the pig.21 Moreover, 
weight increase in rAAV-injected pigs was about 75%, similar 
to that observed in control PBS-injected pigs (Supplementary 
Table S1). No differences in behavioral patterns were observed 
between rAAV- and PBS-injected pigs. None of the animals 
showed pain-related postures or signs. A small number of ani-
mals (six pigs injected with rAAV5 and rAAV9) exhibited a very 
mild ataxia that resolved within 12 hours post-injection. In the 
following days, they were able to eat, drink, and interact nor-
mally, without any signs of stress.

Overall, these data suggest that the ICM procedure and rAAV 
administration were safe and well tolerated over a 1-month period 
without a significant impact on a number of key physiological 
parameters.

DISCUSSION
In this study, we generated a comprehensive and detailed CNS 
transduction map for eight recombinant rAAV viral vector sero-
types administered via CSF delivery in a large animal model, Sus 
scrofa. We evaluated the transduction efficiency in 20 regions 
covering the entire brain from the prefrontal to the occipital 
region, including the spinal cord. This analysis encompassed the 

quantification of rAAV-delivered GFP protein levels and the char-
acterization of both the CNS distribution and cellular-specific 
transduction profile for each of the serotypes tested (summarized 
in Supplementary Table S4). Importantly, since CSF-mediated 
transport provides CSF-circulating molecules access to both 
superficial and deeper regions of the brain parenchyma,12 the 
observed CNS distribution of rAAV vectors reflected the intrinsic 
capability of rAAV serotypes to transduce specific brain regions 
when taken up by different cells (i.e., tropism).

Overall, our data showed a significant differential tropism of 
the rAAV serotypes tested, as illustrated by the GFP expression 
patterns observed. Moreover, the present study provides impor-
tant information on both regional and cellular specificity of the 
transduction patterns that suggest potential therapeutic advan-
tages/disadvantages when considering rAAV-based treatments 
for both cell-autonomous and non–cell-autonomous CNS disor-
ders. Injection of rAAV9 resulted in the widest GFP expression 
along the entire CNS, showing efficient and widespread trans-
duction of neurons and glial cells of different layers of cerebral 
cortex, basal ganglia, midbrain, and brain stem areas including 
motor neurons of the spinal cord. These data are consistent with 
the CNS transduction pattern of rAAV9 described by us and other 

Figure 6 Cell type tropism of rAAV serotypes in the stria terminalis and cerebellum of injected pigs. Epi-fluorescent images (×10) showed 
 GFP-expressing cells co-stained with DAPI in the (a) stria terminalis and in the (b) cerebellum of rAAV-injected pigs. Confocal images (×40) showed 
GFP co-localization with NeuN, OLIG2, and S100β markers in the (a) stria terminalis and with (b) Calbindin and S100β in the cerebellum of 
 rAAV-injected pigs. Bar for epifluorescent images = 75 μm. Bar for confocal images = 50 μm.
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groups.14–16,22–24 In contrast to the wide-transduction spectrum of 
rAAV9, the other rAAV serotypes tested displayed more promi-
nent cell-specific transduction profiles. In particular, rAAV1 and 
rAAV7 efficiently transduce the glia limitans, with rAAV7 also 
showing a specific Purkinje cell tropism. rAAVrh.10 also dis-
played a tropism to Purkinje cells, as previously reported in rats.17 
Transduction of microglial cells was observed for several rAAV 
serotypes tested including rAAV1, rAAV2, rAAV7, and rAAV9.

An important aspect of translational studies is the demonstra-
tion of safety. While the experiments herein described were not 
designed to fully investigate the potential for treatment-related 
toxicities, an effort was made to look for early safety signals. 
Beside transient ataxia post-surgery in some animals, no overt 
signs of distress were observed. Moreover, consistent with previ-
ous studies,25 we did not observe preexisting NAbs against any of 
the rAAV capsids tested while NAbs were present only for some 
serotypes (rAAV1, rAAV2, rAAV5, rAAV7, and rAAVrh.10) in a 
few injected animals (Supplementary Table S2). Nevertheless, 
it has been described that low levels of circulating NAbs do not 
interfere with CNS gene transfer after CSF delivery.14,15,26 Recently, 
Samaranch et  al.27 described antigen-presenting cell–mediated 
neuroinflammation against non-self protein (GFP). In the present 
study, we did not evaluate the presence of such an inflammatory 
response; however, its potential toxicity could be overcome by the 
use of a self-protein as reported.27 Moreover, although we observed 
a lack of immunotoxicity at 1 month after injection, we do not 

exclude that tardive immune responses (e.g.,  cell-mediated) might 
be present in treated animals after long-term analysis (>8 weeks).

The data described herein demonstrate the value of rAAV 
delivery via CSF as a mode to efficiently transduce the CNS, com-
pare, contrast, and map the tropism, transduction efficiency, and 
cell specificity of eight rAAV serotypes in a large animal model. 
Therefore, although translating these results to human should take 
into account potential differences in the tropism features of the 
AAV vectors tested, our work provides a guide to investigators 
to better match rAAV serotypes with the needs of specific neu-
rodegenerative diseases that could be potentially treated with a 
 gene-therapy approach.

MATERIALS AND METHODS
Viral vectors. rAAV vectors were produced by the TIGEM rAAV Vector 
Core by triple-plasmid transfection of HEK293 cells and were purified by 
two rounds of CsCl2 gradient centrifugation.28 Viral vector titers (genome 
copies/ml) were determined by real-time PCR quantification using 
TaqMan (Applied Biosystems, Foster City, CA) and dot-blot analysis.28

The final titer of each preparation was calculated as the average 
between the PCR quantification and dot-blot results.

Animals, rAAV administration, and tissue collection. The study was 
conducted in accordance with the provisions of European Economic 
Community Council Directive 86/609 adopted by the Italian Government 
(DL 27/01/1992 No. 116) under the local approval of the Ethical Committee 
of the University of Bologna and under the approval of Italian Ministry of 
Health.

Figure 7 Cell type tropism of rAAV serotypes in the spinal cord of injected pigs. Epi-fluorescent scanned images (×4) showed GFP-expressing 
cells co-stained with NeuN in the spinal cord (cervical region) of rAAV-injected pigs. Confocal images (×20 and ×40) showed GFP co-localization with 
either NeuN or ChAT (marker of motor neurons) in the ventral horn of the spinal cord (cervical region). Arrows in epifluorescent ×4 images indicate 
the lamina IX area containing the motor neurons. D, dorsal horn; V, ventral horn. Bar for ×4 images = 400 μm. Bar for ×20 images = 100 μm. Bar for 
×40 images = 150 μm.
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All animal studies have been approved by the authors.
The animals enrolled were WT large White × Duroc hybrids, and the 

sex ratio between females and castrated males was ~1:1.
These animals were transferred to our facility on the day of weaning 

(28th day after birth) and housed in multiple stalls with infrared heating 
lamps. They were strictly monitored in order to rule out any pathology 
that may have affected the entire experiment.

AVV administration. All of the activities performed on the day of the injec-
tion have been thoroughly described by Romagnoli et al.20 In brief, ani-
mal received an i.m. bolus of tiletamine-zolazepam (5 mg/kg) 10 minutes 
before induction; general anesthesia was achieved using sevoflurane with 
an induction mask. After orotracheal intubation and stabilization, venous 
access for fluid therapy was achieved from an auricular vein. Blood sam-
ples (6 ml) were collected through the femoral artery.

The dorsal area of the neck was trimmed and surgically prepared, 
and the puncture of the cisterna magna was performed as previously 
described.20 One ml of CSF was collected before the injection in order to 
analyze it as a preinjection physiological standard. The dose of 1.5 × 1012 
GC/Kg of viral vector in the volume range from 0.5 to 2.8 ml was injected 
slowly to avoid a sudden increase in intracranial pressure. Piglets were 
then placed in Trendelenburg position for 2 minutes in order to help the 
injected compound to spread toward the more rostral parts of the CNS. 
Animals were then monitored until complete recovery.

During the following days, all animals were strictly monitored in 
order to rule out any possible side effect of the procedure and to evaluate 
any changes in behavior and consequentially in welfare.

Sacrifice and tissue collection. Procedures for anesthesia, venous access, 
and blood sampling were exactly the same as performed on the day of 
the injection. CSF samples were collected by puncturing the lumbar spi-
nal space rather than the cisterna magna. Percutaneous cystocentesis was 
performed to obtain sterile urine samples (3 ml). Animals were then sac-
rificed with a single bolus (0.3 ml/kg) of Tanax and total body perfusion 
with Dulbecco’s phosphate-buffered saline was started. After median ster-
notomy, the right atrium was opened and the left ventricle was infused 
with 500 ml of warm Dulbecco’s phosphate-buffered saline (+38 °C) and 
1,000 ml of cold Dulbecco’s phosphate-buffered saline (+4 °C); blood 
ejected from the right atrium was drained using a surgical aspirator.

As far as CNS samples, collected tissues were the whole brain and 
cervical region of spinal cord. Dissection was performed using the 
technique described by Wischnitzer29 modified by Prof C. Bombardi. 
Blood samples were collected using a vacuum system, and tubes with 
K3ethylenediaminetetraacetic acid anticoagulant, citrate, and clot activator 
were used. Samples were processed within 1 hour from collection and 
analyzed or stored at −80 °C until analysis.

All animals had a complete blood work (ADVIA 2120, Siemens 
Healthcare Diagnostics, Tarrytown, NY) including complete blood count 
with hematocrit value, hemoglobin concentration, erythrocyte indices, 
platelet count, white blood cell with differential white blood cell counts 
and blood smear examination, and a chemistry profile including aspartate 
transaminase, alanine transaminase, creatinine, urea, total protein, 
albumin, albumin to globulin ratio. All chemistry analyses were carried 
out on an automated chemistry analyser (Olympus AU 400, Beckman 
Coulter/Olympus, Brea, CA).

Evaluation of AAV vector copy number in the CNS. Genomic DNA was 
extracted from five selected regions of CNS using a DNeasy Blood and Tissue 
Extraction kit (Qiagen, Valencia, CA). We selected CNS regions, which were 
efficiently transduced at least by three viral vectors. DNA concentration was 
determined by using a Nanodrop. Real-time PCR was performed on 100 ng 
of genomic DNA using a LightCycler SYBR green I system (Roche, Almere, 
The Netherlands). For the amplification, the EGFP fwd (5′ AGC AGC ACG 
ACT TCT TCA ACT CC 3′) and EGFP rev (5′ CCA TGA TAT AGA CGT 
TGT GG 3′) were used. Amplification was run on a LightCycler 96 device 

(Roche) with standard cycles. A standard curve was generated, using the cor-
responding AAV vector plasmid pAAV2.1CMV-EGFP.

GFP immunoblotting. To quantify the GFP protein, 20 main regions cover-
ing the entire CNS of injected pigs were dissected and then snap-frozen 
in liquid nitrogen (see Supplementary Figure S1). Approximately 70 mg 
of each dissected region were homogenized with TissueLyser using 10 vol-
umes (700 μl) of 3× Flag lysis buffer (50 mmol/l Tris–HCl pH8, 200 mmol/l 
NaCl, 1% Triton X100, 1 mmol/l ethylenediaminetetraacetic acid, and 50 
mmol/l 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and a prote-
ase inhibitor cocktail (Sigma-Aldrich, St Louis, MO). The lysates were incu-
bated in ice for 1 hour and cleared by centrifugation. Protein concentration 
was determined using the Bio-Rad colorimetric assay (Bio-Rad, Hercules, 
CA). Thirty micrograms of homogenate protein were separated on a 12% 
sodium dodecyl sulfate polyacrylamide gel electrophoresis, transferred 
to polyvinyl difluoride membrane at 30 V over night. As control, 70 ng of 
purified GFP was loaded on sodium dodecyl sulfate gels. Anti-GFP rab-
bit polyclonal (1:1,000, NB600-308; Novus BIO, Littleton, CO) and anti-
β-actin mouse monoclonal antibodies (1:2,000, A5441, Sigma-Aldrich) 
were, respectively, used for the detection of GFP and actin proteins. The 
membranes were incubated with secondary antirabbit and antimouse anti-
bodies (1:5,000, CALBIOCHEM, San Diego, CA), and protein bands were 
visualized using UVP-ChemiDoc-It (Life Science Software, Hopkinton, 
MA). Relative band intensity was quantified by densitometric analysis using 
ImageJ software (National Institutes of Health, Bethesda, MD).

The intensity of bands corresponding to the GFP expressed in brain 
lysates was quantified by densitometric analysis. Each of these values was 
divided for both the value resulting from densitometric quantitation of 
the band corresponding to the purified GFP (which was loaded on the 
same sodium dodecyl sulfate gel in which the brain samples were loaded) 
and the value resulting from densitometric quantitation of actin. The 
resulting ratio was expressed as arbitrary units (a.u.)

Immunolabeling. IHC staining of GFP was performed on 40 μm floating 
cryosections derived from brain and spinal cord of injected pigs.

Sections were washed in PBS/Triton X-100 0.1% (wash buffer), 
incubated for 30 minutes at room temperature in 1% hydrogen peroxidase 
diluted in PBS 1× and incubated overnight at 4 °C in primary antibody 
solution: PBS 1×/ Triton X-100 0.1%, 2% horse serum, rabbit anti-GFP 
(1:1,500, NB600-308; Novus BIO). Anti-GFP was detected with MACH4 
Universal HRP-Polymer Biotin-Free Detection Polymer Detection Kit 
(BIOCARE Medical, Concord, CA). After 1 hour, we washed three times 
the sections and developed the signal with diaminobenzidine (Vectorstain 
Kit; Vector Laboratories, Burlingame, CA). Sections were then mounted 
with CV Ultra Mounting Media (Leica, Wetzlar, Germany).

To identify the cell types, we performed immunofluorescence 
experiments on 30-μm cryosections. Samples were blocked in  TBS1X-Triton 
0.3% and Donkey Serum 5% for 1 hour at room temperature and incubated 
with anti-GFP either rabbit polyclonal (1:1,000,  NB600-308; Novus BIO) 
or chicken polyclonal 9 (1:800, AB13970; Abcam, Cambridge, UK), anti-
S100β mouse monoclonal (1:800, AB66028; Abcam), anti-IBA1 rabbit 
polyclonal (1:500, 234003; Synaptic System, Gottingen, Germany), anti-
NeuN mouse monoclonal (1:400, MAB377; Millipore), anti-GFAP mouse 
monoclonal (1:200, MAB3402; Millipore, Amsterdam, the Netherlands), 
anti-Olig2 mouse monoclonal (1:200, MABN50; Millipore), and anti-CHAT 
goat poyclonal (1:100, AB144P; Millipore) to, respectively, identify GFP 
protein, neurons, astrocytes, oligodendrocytes, and motor neurons. After 
overnight incubation with primary antibody, sections were washed in PBS 
1× and incubated with Alexa Fluor 488-conjugated donkey antirabbit (1:500; 
Invitrogen, Carlsbad, CA), Alexa Fluor 594-conjugated donkey anti-mouse 
(1:500; Invitrogen), and Alexa Fluor 594-conjugated donkey anti-goat (1:500; 
Invitrogen). Rinsed sections were mounted with VECTASHIELD mounting 
medium with 4’,6-diamidino-2-phenylindole, dihydrochloride (DAPI) 
(Vinci-Biochem, Florence, Italy) and analyzed by either epi-fluorescent and 
confocal microscopy.
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GFP quantitation (% of GFP-positive cells) in immunofluorescence 
experiments. We quantified the GFP immunofluorescence signal in the 
CNS of injected pigs in five main CNS regions (parietal cerebral cor-
tex from slice S6, dentate gyrus of hippocampus from slice S8, putamen 
from slice S5, cerebellum from slice S11, and lamina IX of the cervical 
tract of spinal cord (slice S12). One square millimeter area of four dif-
ferent sections (30 μm) stained with DAPI and co-labeled with GFP, and 
the specific cell type markers (NeuN, Calbindin, ChAT, GFAP, S100β, 
Iba1, or OLIG2) were scanned in z-stack using Zeiss LSM 710 micro-
scope equipped with a Zeiss confocal-scanning laser using a 40× objec-
tive (Zeiss, Oberkochen, Germany). The exposure time used to acquire 
all images was identical. The co-localization analysis was performed by 
the microscope ZEISS 2008 program. Total number of DAPI- and GFP-
positive signals were counted using the cell-counter program (ImageJ 
software) with a fixed threshold. Total GFP cell counts present in the 
1 mm2 area analyzed were then expressed as percentage of total cells 
(DAPI positive) expressing the GFP (%GFP-positive cells). For CNS 
regions in which the %GFP-positive cells was >10%, NeuN-, Calbindin-, 
ChAT-, GFAP-, S100β-, Iba1-, or OLIG2-positive cells were also counted 
and expressed as percentage of GFP-positive cells expressing the specific 
cell type marker.

Microscopy. 3,3’-Diaminobenzidine-processed brain and spinal cord 
sections were digitized using a Scan-Scope slide scanner (Leica scn400). 
Virtual slides were viewed using Leica digital image hub, and images were 
generated using the same software. Immunofluorescence images of the 
entire cervical region of the spinal cord were digitized using a Scan-Scope 
slide scanner (Leica scn400). Fluorescence images at ×10 magnification 
were visualized by  epi-fluorescence microscope. Confocal microscopy was 
performed with a Zeiss LSM 710 confocal microscope equipped with a 
Zeiss  confocal-scanning laser using 40× objective.

Neutralizing antibody assay. The presence of NAbs to rAAV capsid was 
assessed, on serum and CSF collected at the day of injection and 1 month 
after injection, as previously described.30

Data analysis. Biochemical and hematological results among groups 
were compared using nonparametric statistics (Mann–Whitney U-test, 
Kruskal–Wallis ANOVA, and Friedman test for paired data). Data are 
expressed as mean ± 1 SEM (n = 3). A P value of <0.05 was considered to 
be statistically significant.

SUPPLEMENTARY MATERIAL
Figure S1. Scheme of pig brain and spinal cord dissection.
Figure S2. IHC analysis of GFP distribution pattern in basal ganglia of 
pig brain upon ICM delivery of rAAV1, 2, 5, 7, 9, rh.10, rh.39, and rh.43.
Figure S3. Distribution of rAAV vector genomes following ICM injec-
tion in pig.
Figure S4. Cell type tropism of rAAV serotypes in the CA3 area of the 
hippocampus of injected pigs.
Table S1. Summary of injections in P30 pigs.
Table S2. Neutralizing anti-AAV antibody levels.
Table S3. Biochemical and hematological parameters.
Table S4. Summary of GFP transduction.
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Supplementary Figure Legends 

 
Supplementary Figure S1: Scheme of pig brain and spinal cord dissection. (a) Pig 

brain and spinal cord cervical region were divided in 12 coronal slices (0,5 cm) from the 

rostral to the caudal part to the central nervous system (CNS). Different areas were 

dissected from one half of each slice for biochemical analysis (western blot). The other 

half of each slice was used for histological analysis. (b) Sagittal representation of sliced 

pig brain (adapted figure derived from31) in which the main areas of interest are shown. 

In the table are listed the main areas of interest associated with each of the twelve 

coronal slices. (c) The CNS areas dissected for western blot analysis were shown. 

 

Supplementary Figure S2: IHC analysis of GFP distribution pattern in basal 

ganglia of pig brain upon ICM delivery of rAAV1, 2, 5, 7, 9, rh.10, rh.39, and rh.43. 

(a) IHC GFP expression in the brain of rAAV-injected pigs in basal ganglia (Putamen 

and accumbens) are shown in the enlarged (4X) images taken from the 40 µm coronal 

cryosections (slice S4 and S5). (b) IHC GFP in different CNS areas of control PBS-

injected pigs is also shown. 

Pu: Putament; Ac:Accumbens; SC: frontal superficial cerebral cortex (layers I-III); DG: 

Dentate gyrus of hippocampus; Cb: Cerebellum. 

Scale bar for 0,4X images: 4mm. Scale bar of 4X images: 200 µm. 

 

 

Supplementary Figure S3: Distribution of rAAV vector genomes following ICM 

injection in pig. 

Five different regions of pig brain were isolated from two animals for each serotype 

injected. The number of viral genome within each region was analyzed by using a 

LightCycler SYBR green I system. The abundance of vector genomes is showed as 

copies per diploid cell.  

GC: genome copies; mdg: molecules of diploid genome. 

 



 

 

Supplementary Figure S4. Cell type tropism of rAAV serotypes in the CA3 area of 

the hippocampus of injected pigs. Epi-fluorescent images (10X) showed GFP 

expressing cells co-stained with DAPI in the CA3 area of the hippocampus of rAAV-

injected pigs. Confocal images (40X) showed GFP co-localization with NeuN marker in 

the same area. 

Scale bar for epifluorescent images: 75 µm. Scale bar for confocal images: 50 µm. 

 



	  

	  

	  

 Supplementary Table S1. Summary of injections in P30 pigs 

 Subjects Weight BI 
(Kg) 

Weight PI 
(Kg) 

Dose 
(E+12 

GC/Kg) 
 

Volume 
(mL) 

rAAV1 
 

A78 7.3 10.7 1.5 0.95 
A79 3.6 5.8 1.5 0.5 

A142 9.5 13.5 1.5 1.3 
rAAV2 A81 6.5 10.8 1.5 2.2 

A82 6.4 13 1.5 2.2 
A83 4.9 8.3 1.5 1.8 

rAAV5 A52 8.9 14 1.5 2.8 
A53 7.3 13.2 1.5 2.4 
A54 6.2 10.7 1.5 2 

rAAV7 A87 3.7 6.5 1.5 1.5 
A137 6.5 11.3 1.5 2.3 
A138 8.3 13.1 1.5 2.9 

rAAV9 A55 6.1 11 1.5 2 
A56 7 12 1.5 2.3 
A57 5.7 11.3 1.5 2.2 

rAAV 
rh.10 

A84 4.8 7.3 1.5 1.7 
A85 5.3 10.5 1.5 1.8 
A88 6.9 11.4 1.5 2.3 

rAAV 
rh.39 

A102 7.8 14.1 1.5 2.5 
A103 9 13.9 1.5 3 
A104 8.3 12.8 1.5 2.7 

rAAV 
rh.43 

A139 7.3 13.3 1.5 2.3 
A141 7.9 13 1.5 2.5 
A143 7.8 11.1 1.5 2.5 

CTRL A86 8.5 12 - 2 
A89 6.2 10.6 - 2 

A133 9 12.1 - 2 
 Abbreviations: GC, genome copies; CTRL, Control-PBS injected pigs.  

BI: before injection; PI: post injection. 



 

 

 

 

 

Supplementary Table S2. Neutralizing anti-AAV antibody levels  
AAV vector Subject Serum Anti-AAV CSF Anti-AAV 

 Pre inj. 1 month 
 Post inj. 

 

Pre inj. 1 month 
Post Inj. 

 
rAAV1 

 
#A78 - + 

 
- + 

 
#A79 - - - - 

#A135 - - - - 

rAAV2 
 

#A81 - + - + 
#A82 - + - + 
#A83 - + - + 

rAAV5 
 

#A52 - - - + 
#A53 - + - + 
#A54 - + - + 

rAAV7 
 

 

#A87 - - - - 
#A137 - + - - 
#A138 - + - - 

rAAV9 
 
  

#A55 - - - - 
#A56 - - - - 
#A57 - - - - 

rAAVrh.10 
 

#A84 - - - - 
#A85 - + - - 
#A88 - - - - 

rAAVrh.39 #A102 - - - - 
#A103 - - - - 
#A104 - - - - 

rAAVrh.43 
 

#A139 - - - - 
#A141 - - - - 
#A143 - - - - 

Abbreviations: CSF, cerebrospinal fluid; AAV, Adeno-Associated Viral vector; inj., injection.  
“-“ Indicates undetectable Nab response. “+” indicates the presence of anti-AAV neutralizing 
antibodies in the sample 



 
  

Supplementary Table S3. Biochemical and hematological parameters 
Target Variable 

unit 
Control 
group 

rAAV1 rAAV2 rAAV5 rAAV7 rAAV9 rAAVrh.10 rAAVrh.39 rAAVrh.43 

  Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

Renal 
Damage 

Creatinine 
mg/dL 

1.06 
±0.08 

0.99 
±0.04 

0.99 
±0.14 

0.93 
±0.08 

0.96 
±0.07 

0.95 
±0.06 

1.11 
±0.14 

1.00 
±0.05 

0.92 
±0.07 

0.82 
±0.02 

1.09 
±0.08 

0.99 
±0.06 

0.91 
±0.03 

0.82 
±0.08 

0.99 
±0.03 

0.88 
±0.07 

1.11 
±0.04 

0.89 
±0.03 

Urea 
mg/dL 

11.63 
±2.31 

20.24 
±4.56 

10.30 
±3.40 

19.19 
±2.95 

12.81 
±3.18 

15.11 
±2.26 

7.53 
±2.18 

10.22 
±1.09 

13.28 
±6.21 

13.01 
±0.94 

10.73 
±5.17 

18.28 
±2.73 

17.40 
±5.62 

18.74 
±2.58 

13.40 
±2.63 

16.80 
±4.26 

8.57 
±2.77 

17.64 
±3.06 

Liver 
Damage 

AST 
U/L 

27.67 
±3.17 

43.60 
±7.54 

30.75 
±3.47 

45.00 
±4.63 

47.20 
±6.16 

50.00 
±7.78 

41.00 
±9.99 

40.25 
±7.09 

33.33 
±9.40 

48.50 
±6.50 

34.75 
±2.95 

43.00 
±3.69 

46.00 
±4.80 

46.75 
±4.31 

60.50 
±7.01 

52.00 
±9.11 

31.67 
±3.84 

51.07 
±9.95 

ALT 
U/L 

39.50 
±5.68 

52.80 
±9.26 

41.50 
±8.29 

49.33 
±7.40 

36.80 
±3.61 

49.40 
±8.28 

45.50 
±2.50 

40.50 
±8.10 

39.33 
±5.61 

62.50 
±4.50 

35.00 
±1.08 

47.43 
±4.91 

49.00 
±6.77 

53.50 
±0.65 

50.75 
±6.56 

50.25 
±9.88 

36.00 
±1.53 

58.10 
±6.00 

Inflammation 
Acute Phase 

Response 

Albumin 
g/dL 

3.01 
±0.17 

2.35 
±0.28 

2.61 
±0.21 

2.10 
±0.19 

2.33 
±0.22 

2.04 
±0.26 

2.98 
±0.44 

2.08 
±0.10 

2.59 
±0.65 

2.06 
±0.52 

2.96 
±0.09 

2.50 
±0.13 

2.08 
±0.37 

1.75 
±0.26 

2.80 
±0.18 

2.49 
±0.35 

2.80 
±0.07 

1.80 
±0.45 

Albumin/ 
globulin 

Ratio 

1.75 
±0.14 

0.99 
±0.20 

1.58 
±0.18 

0.95 
±0.17 

1.50 
±0.21 

0.85 
±0.18 

2.27 
±0.48 

1.18 
±0.13 

1.74 
±0.64 

0.85 
±0.26 

1.70 
±0.08 

1.14 
±0.10 

0.90 
±0.30 

0.66 
±0.13 

1.18 
±0.17 

0.94 
±0.25 

1.90 
±0.05 

0.68 
±0.12 

Total Protein 
g/dL 

4.77 
±0.17 

4.88 
±0.13 

4.29 
±0.24 

4.51 
±0.10 

3.95 
±0.16 

4.72 
±0.31 

4.31 
±0.35 

3.90 
±0.16 

4.49 
±0.35 

4.52 
±0.39 

4.73 
±0.12 

4.78 
±0.20 

4.67 
±0.10 

4.50 
±0.18 

5.39 
±0.48 

5.89 
±0.70 

4.28 
±0.09 

4.88 
±0.19 

 WBC 
x 103/µL 

10.41 
±0.34 

17.27 
±1.91 

9.28 
±0.71 

17.27 
±2.65 

11.33 
±0.76 

18.69 
±2.01 

12.20 
±2.72 

18.29 
±2.18 

11.72 
±2.35 

18.17 
±3.59 

8.64 
±1.47 

15.2 
±1.72 

18.53 
±8.53 

19.51 
±2.15 

16.38 
±2.60 

17.48 
±2.49 

10.60 
±1.54 

17.57 
±3.14 

 Hb 
g/dL 

8.80 
±0.39 

8.98 
±0.34 

8.97 
±0.42 

8.85 
±0.46 

9.70 
±0.79 

8.54 
±0.76 

9.80 
±0.50 

9.56 
±0.52 

8.67 
±0.74 

7.37 
±1.02 

11.77 
±0.94 

10.50 
±0.50 

10.10 
±0.81 

8.00 
±0.91 

10.18 
±1.30 

10.28 
±0.97 

8.90 
±0.38 

9.33 
±0.33 

Inflammation 
Immunodeficiency 

Lymphocytes 
x 103/µL 

5.31 
±0.64 

9.14 
±1.42 

5.33 
±0.57 

9.13 
±0.86 

6.33 
±1.04 

9.81 
±0.88 

7.90 
±3.53 

9.43 
±0.90 

5.41 
±0.74 

7.37 
±1.62 

4.17 
±0.85 

7.33 
±0.87 

12.00 
±5.75 

8.93 
±0.99 

6.20 
±1.37 

8.31 
±0.84 

5.94 
±1.19 

9.03 
±1.45 

Monocytes 
x 103/µL 

0.38 
±0.07 

0.74 
±0.13 

0.43 
±0.07 

0.74 
±0.09 

0.45 
±0.05 

0.79 
±0.31 

0.67 
±0.29 

0.83 
±0.12 

0.36± 
0.09 

0.74 
±0.20 

0.43± 
0.03 

0.67 
±0.11 

1.18 
±0.82 

0.73 
±0.14 

0.59 
±0.21 

0.63 
±0.14 

0.51 
±0.07 

0.92 
±0.21 

Neutrophils 
x 103/µL 

4.44 
±0.76 

6.72 
±0.63 

3.24 
±0.21 

6.77 
±1.90 

4.28 
±0.48 

7.33 
±1.24 

3.38 
±1.05 

7.43 
±1.69 

5.81 
±1.91 

9.29 
±3.23 

3.73 
±1.02 

6.71 
±1.10 

4.78 
±1.73 

9.12 
±1.51 

9.31 
±1.10 

7.80 
±1.55 

3.85 
±0.48 

7.09 
±2.13 

Eosinophils 
x 103/µL 

0.13± 
0.08 

0.44 
±0.01 

0.09 
±0.01 

0.32 
±0.07 

0.07 
±0.01 

0.50 
±0.23 

0.09 
±0.05 

0.28 
±0.03 

0.05 
±0.01 

0.64 
±0.26 

0.20 
±0.13 

0.30 
±0.04 

0.06 
±0.02 

0.52 
±0.17 

0.08 
±0.01 

0.56 
±0.26 

0.15 
±0.05 

0.34 
±0.11 

Pre- and post-injection biochemical and hematological markers. Data are reported as mean ± standard error (SEM).  Abbreviations: AST, aspartate aminotransferase; 

ALT, alanine aminotransferase; WBC, white blood cells; Hb, hemoglobin.           



 
 
 

	  

Supplementary Table S4. Summary of GFP transduction 
Brain areas WB n=3 IF/IHC n=2 

rAAV1 rAAV2 rAAV5 rAAV7 rAAV9 rAAV 
rh.10 

rAAV 
rh.39 

rAAV 
rh.43 rAAV1 rAAV2 rAAV5 rAAV7 rAAV9 rAAV 

rh.10 
rAAV 
rh.39 

rAAV 
rh.43 

Cortex ++ n.d. + ++ ++++ n.d. n.d. n.d. ++ ++ ½ + ++ ++++ ½ + n.d. + 
Putamen + n.d. + + + n.d. n.d. n.d. n.d. 

n=2 n.d. n.d. n.d. ++ n.d. n.d. n.d. 
N.caudatus n.d. n.d. ++ ½ + ++ n.d. n.d. n.d. ½ + n.d. n.d n.d. + n.d. n.d. n.d. 
Accumbens ½ + n.d. + ½ + +++ n.d. n.d. n.d. ½ + n.d. n.d n.d. ++ n.d. n.d. n.d. 
Corpus 
callosum n.d. n.d. + ½ + ++ n.d. n.d. n.d. + n.d. + n.d. + n.d. n.d. n.d. 
Thalamus ½ + n.d. + ½ + ++ n.d. n.d. n.d. n.d. n.d. ½ + n.d. + n.d. n.d. n.d. 
Hypothalamus ½ + n.d. + + ++ n.d. n.d. ½ + n.d. n.d. ½ + n.d. ½ + n.d. n.d. n.d. 
Stria terminalis ½ + n.d. + ½ + ++ n.d. n.d. n.d. n.d. n.d. n.d. ½ + + n.d. n.d. n.d. 
Sub. Nigra ½ + n.d. + ½ + ++ n.d. n.d. n.d. n.d. n.d. ½ + n.d. + n.d. n.d. n.d. 
Hippocampus  + n.d. + ½ + ++ n.d. n.d. n.d. + n.d. ½ + ½ + ++ n.d. n.d. n.d. 
N. Pontis ½ + n.d. n.d. n.d. + n.d. n.d. n.d. ½ + n.d. ½ + ½ + ++ n.d. n.d. n.d. 
Colliculi ½ + n.d. n.d. n.d. + n.d. n.d. ½ + n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 
Cerebellum + n.d. n.d. ++ +++ + ½ + n.d. + ½ + ½ + +++ ++++ ½ + + ½ + 
Medulla 
Ablongata ½ + n.d. n.d. n.d. + n.d. n.d. n.d. n.d. n.d. n.d. n.d. ++ n.d. n.d. n.d. 
Spinal cord + n.d. n.d. ½ + ++ n.d. + n.d. ++ n.d. ½ + +. +++ n.d. ½ + ½ + 
Abbreviations: AAV, adeno-associated virus; WB, western blotting; IHC, immuhistochemistry; IF, immunofluorescence; n,the number of animals analyzed Scoring: 

maximum GFP signal detected was scored with ++++;  minimum GFP signal detected was scored with ½+; n.d. not detected. 
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Conclusions 
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In the author’s opinion, this PhD thesis represents an additional step toward 

the standardization of the physiological piglet model, thus its refinement and 

reduction. 

The quali-quantitative studies performed on both cerebrospinal fluid and 

blood, thanks to the extensive statistical analyses and the high number of sampled 

population, provide with important reference intervals that will allow better 

understanding of a variety of metabolic processes. For example, the differences in 

cerebrospinal fluid composition found between the animals at 5, 30 and 50 days of 

life, can give new interesting insights regarding the timing of maturation of the 

blood-brain barrier and the Central Nervous System in general. This will help 

researchers in better translating preclinical studies to humans. 

Technical experiments, aimed to find easier and relatively pain free 

procedures for the animal model itself, are often consider to have less impact when it 

comes to biomedical animal and translational medicine in general. It has to be 

acknowledged though that operators’ skills often are a limiting factor for the 

feasibility of experimental protocols within a certain facility, and that easier 

techniques are the best way to break down these walls. Moreover, when leading to 

lower mortality and higher welfare of the enrolled animals, those techniques are 

extremely valuable and necessary, allowing for better results and higher ethical 

standards. 

All of the above statements are completely coherent with the last experiment 

aimed to create a comprehensive map of CNS transduction upon intrathecal 

administration of adeno-associated viral vector in the piglet and to evaluate their 
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potential toxicity. Indeed, the obtained result will help choosing the right serotype 

depending on the targeted cell population, thus avoiding preliminary studies and 

higher number of animals.  

In conclusion, studies aimed to acquire a deeper knowledge of the piglet and 

its applications will always be needed to fulfill all of the ethical and scientific 

requirement of the biomedical field. 
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Additional research fields and studies performed during the PhD  

 

Throughout the last 3 years, as a PhD candidate within the Department of 

Veterinary Medical Sciences of the University of Bologna, I had the chance to study 

and work on a variety of different fields alongside the one here discussed, always 

under the guidance of prof. Maria Laura Bacci. These include the physiology of the 

reproduction, mainly focusing on the male gametes, and the anesthesia and 

analgesia of both pets and other experimental mammalians, and led to the 

publication of other papers: 

 

• Romagnoli N, Zambelli D, Cunto M, Lambertini C, Ventrella D, Baron Toaldo M. 

Non-invasive evaluation of the haemodynamic effects of high-dose medetomidine in 

healthy cats for semen collection. J Feline Med Surg. 2016 Apr;18(4):337-43. doi: 

10.1177/1098612X15583345 

• Barone F, Ventrella D, Zannoni A, Forni M, Bacci ML. Can Microfiltered Seminal 

Plasma Preserve the Morphofunctional Characteristics of Porcine Spermatozoa in 

the Absence of Antibiotics? A Preliminary Study. Reprod Domest Anim. 2016 

Aug;51(4):604-10. doi: 10.1111/rda.12699. 

• Romagnoli N, Buonacucina A, Lambertini C, Ventrella D, Peli A. Constant-Rate 

Infusion of Dexmedetomidine to Manage Thiopental Anesthesia during Intracranial 

Surgery in Cynomolgus Macaques (Macaca fascicularis). J Am Assoc Lab Anim 

Sci. 2016 Nov;55(6):801-804. 

• Bryszewska MA, Laghi L, Zannoni A, Gianotti A, Barone F, Taneyo Saa DL, Bacci 

ML, Ventrella D, Forni M. Bioavailability of Microencapsulated Iron from Fortified 

Bread Assessed Using Piglet Model. Nutrients. 2017 Mar 13;9(3). pii: E272. doi: 

10.3390/nu9030272. 
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