
AAllmmaa MMaatteerr SSttuuddiioorruumm –– UUnniivveerrssiittàà ddii BBoollooggnnaa

DOTTORATO DI RICERCA IN

INGEGNERIA ELETTROTECNICA

Ciclo XXIX

Settore Concorsuale di afferenza: 09E2

Settore Scientifico disciplinare: INGIND/32

MULTI-DRIVE POWERTRAIN CONFIGURATIONS

FOR ELECTRIC AND HYBRID VEHICLES

Presentata da: Ing. Davide Pontara

Coordinatore Dottorato Relatore

Chiar.mo Prof. Domenico Casadei Chiar.mo Prof. Claudio Rossi

Esame finale anno 2017

i

Table of contents

Preface ... 1

Chapter 1 Multi-drive Powertrains .. 3

1.1 Powertrain power sizing .. 3

1.2 Multi-drive configurations for electric vehicles ... 6

1.3 System voltage analysis .. 11

Chapter 2 Traction management algorithm .. 17

2.1 Gas Pedal Management, Brake Pedal Management .. 19

2.2 Limits Evaluation ... 23

2.3 Force Reference Computation .. 26

2.4 Limits Application & Force split ... 27

2.5 Additional Logic ... 31

Chapter 3 Model-based design and automatic code generation .. 39

3.1 MBD development ... 41

3.2 Development of the Simulink Model .. 44

3.2.1 Building the Simulink Model .. 44

3.2.2 Setting of Model’s Parameters .. 46

3.3 Using the Simulink Compiled Model in LabVIEW ... 49

3.3.1 Target preparation ... 49

3.3.2 Executing compiled models with Model Interface Toolkit .. 50

Chapter 4 AMBER-ULV System Integration ... 55

4.1 Introduction .. 55

4.2 General Considerations and Sensor Selection ... 56

4.2.1 Analysis of necessary information from the field ... 56

4.2.2 Selection of Sensors for the AMBER prototype .. 56

4.3 Sensors Preliminary Test Bench ... 59

4.3.1 Direction lever sensor .. 59

4.3.2 Wheel speed measurement system .. 60

4.3.3 Inertial Measurement Unit UART to CAN interface ... 61

4.4 UCP Platform ... 63

4.4.1 Real Time Controller .. 63

4.4.2 I/Os .. 63

4.4.3 Hardware ... 65

4.4.4 Analog signals ... 65

ii

4.4.5 Digital signals .. 67

4.4.6 CAN Networks ... 71

4.5 Signals description .. 72

4.6 UCP Low Level Software .. 80

4.6.1 General approach for UCP algorithm .. 80

4.6.2 Low Level I/O functions ... 83

4.6.3 Low Level CAN-bus functions ... 93

4.6.4 High-level functions interface .. 108

Chapter 5 Prototype demonstration tests ... 113

5.1 Component test ... 114

5.2 Telemetry system .. 114

5.3 Shakedown .. 118

5.4 Acceleration ... 120

5.5 Energy consumption .. 121

5.6 Real traffic shakedown .. 122

5.7 Stability .. 126

Conclusions ... 129

References ... 131

Publications ... 133

1

Preface

In recent years, the considerable interest towards the electric vehicles (EV) and hybrid-

electric vehicles (HEV) pushed the major manufacturers to invest an increasing amount of

resources into the development of these systems, while also allowing new companies to

enter the market with innovative solutions.

The reasons behind this have to do, on the one hand, to the ever more stringent

environmental policies that have in fact forced manufacturers to seek alternative solutions

to improve conventional internal combustion engines (ICEs) or to substitute them altogether.

On the other hand, the economic downturn of the past few years encouraged the spread of

vehicles with alternative powertrains because, in addition to having a lower environmental

impact, they present lower operating costs compared to conventional vehicles, although in

the face of a higher purchase cost.

Moreover, governments often foster, by means of incentives, the purchase of low emission

vehicles, among which are obviously counted the electric and hybrid vehicles.

Under the technological point of view, developments in the field of electric and hybrid

vehicles led to novel powertrain configurations, thanks to advancements in the battery packs

and chemistry [1], [2], conversion components and control algorithms.

This work proposes technical solutions for electric powertrains, which could be introduced

into the market with lower investments and production costs with respect to the EV solutions

currently developed and sold by primary carmakers. Solutions proposed in this thesis foster

a new industrial approach to EV manufacturing, allowing small and medium size carmakers

to be competitive on the EV market.

A relevant industrial application of the technologies developed in this thesis is the

remanufacturing of existing thermal engine cars by substituting the ICE powertrain with a

new full electric powertrain. The “retrofit” was not initially considered at the beginning of

the work, but during the years has become of increasing interest and probably, at the end of

the work, represents the most promising application of the developed technologies. In these

terms, the thesis plays an important role and represents a new approach towards application

of circular economy principles to the EV sector.

This thesis will focus on traction systems in which the propulsive force is divided among

several drives, or even supplied by different powertrains, whose power stages are

independent from each other.

The research activity carried out by the Ph.D. student is included in the Design of Work (DOW)

of the FP7 European Project n. 604766 denominated “AMBER-ULV”, Automotive Mechatronic

Baselines for Electric Resilient Ultra-Light Vehicle, topic “GC.SST.2013-3”: Future light urban

electric vehicles.

The AMBER-ULV project aims to develop a Battery Electric Vehicle (BEV), in the compact car

segment, by integrating several innovative concepts, resulting from successfully completed

R&D projects, and giving a socially acceptable answer to safety concerns without penalizing

the driving experience [3].

2

This manuscript, albeit with the aim of providing an overall description of the topics covered

by the research activity, contains many references and links to the objectives of the

abovementioned European project. Its goal is to develop a “dual-drive, dual-battery” traction

system, with high-level control algorithms automatically generated through model-based

software design techniques, and executed on a centralized control system based on a real-

time (RT) platform, with the capability of integrating multiple algorithms provided by other

partners of the consortium.

The dissertation is organized as follows:

In Chapter 1, the advantages of multi-drive powertrain configurations are discussed.

The main drawback of multi-drive powertrains, that is the control complexity, is mitigated in

Chapter 2. It is also described the control algorithm developed for a “dual-drive, dual-

battery” electric powertrain.

In order to validate the control algorithm and apply it on the real vehicle produced during

the AMBER-ULV project, the “Model-Based Development” was studied by the Ph.D. and

deployed as presented in Chapter 3.

Chapter 4 outlines the integration process the Ph.D. student researched within the AMBER-

ULV project, as needed to make the prototype work for the official validation tests, which are

described in the following Chapter 5.

3

Chapter 1

Multi-drive Powertrains

1.1 Powertrain power sizing

In this chapter, a sizing example for a vehicle powertrain is shown. The case study refers to a

compact car, whose typical characteristics are summarized in Table 1.1.

For the given vehicle, the approach to determine the powertrain design power consists in

applying the “Road Load” equation (Equation 1-1) obtaining a simple model of vehicle power

losses, and simulating it with reference to the “ARTEMIS” standard cycles.

Once the design rated power is chosen, the feasibility of developing a multi-drive powertrain

and the resulting advantages will be evaluated.

Curb Mass mc 900 [kg]

Passengers + payload mp 300 [kg]

Frontal section Af 2 [m2]

Drag coefficient Cx 0.33

Rolling resistance coefficient CRR 0.016

Table 1.1 Compact electric car design characteristics

Equation 1-1 is used to determine the vehicle’s steady state power losses at the target speed.

The equation expresses the mechanical power (𝑃𝑚) required by the vehicle as a function of the

speed (𝑣) and of the parameters contained inTable 1.1.

𝑃𝑚 =
1

2
𝜌𝑎𝑖𝑟 𝐶𝑥 𝐴𝑓 𝑣3 + 𝐶𝑅𝑅 𝑔 𝑚𝑣 cos 𝛼 𝑣 + 𝑔 𝑚𝑣 sin 𝛼 𝑣.

Equation 1-1 Road Load

Where:

 𝑚𝑣 is the total vehicle mass. It includes the curb mass in march order 𝑚𝑐 and the mass

of the passenger and the payload 𝑚𝑝;

 𝜌𝑎𝑖𝑟 is the air density which is 1.2041 [𝑘𝑔 𝑚3⁄] at sea level;

 𝑔 is the conventional gravitational acceleration equal to 9.80665 [𝑚 𝑠2⁄];

 𝛼 represents the road grade [𝑟𝑎𝑑];

 𝐶𝑟𝑟 is the tires coefficient of friction;

 The multiplication of 𝐶𝑥 (coefficient of aerodynamic friction) by the frontal area of the

vehicle 𝐴𝑓 results in the aerodynamic drag coefficient.

Figure 1.1 shows the graphical result of the speed-dependant forces acting on the vehicle and

the required power.

Chapter 1

4

Figure 1.1 Vehicle Road Load

Accounting for the vehicle segment and its performance requirements, the results of the analysis

gave a good indication of the total power that could satisfy the target top speed, in this case 30

kW. Therefore, further investigation was carried out to confirm the dynamic behaviour goals

using this value.

In order to evaluate the required power related to the vehicle dynamic performance, the simple

model above described is applied with several standard cycles and with the chosen available

vehicle power. Figure 1.2 and Figure 1.3 show the simulation results related to the ARTEMIS-

Rural and the ARTEMIS-Highway driving cycles, respectively. These tests are standard driving

cycles used to perform fuel consumption and emissions tests.

Multi-drive Powertrains

5

Figure 1.2 ARTEMIS-Rural Simulation

Figure 1.3 ARTEMIS-Highway Simulation

These charts report that, assuming a powertrain power of 30 kW, the vehicle under

consideration, having the features indicated in Table 1.1, is able to provide acceptable

performance in terms of both acceleration and maximum speed.

Chapter 1

6

1.2 Multi-drive configurations for electric vehicles

The possibility to drive a vehicle with more than one motor is widely covered in recent years’

literature [4], [5].

Considering two axles vehicles, the most common solutions are those summarized in Figure 1.4

and Figure 1.5. The first shows the “two motors – one driven axle” solutions, where each motor

is connected to a wheel of the same axle through a reduction gear.

Figure 1.4 Two motors - One driven axle

Solutions with “two motors – two driven axles” (Figure 1.5a) are common as well: the two

motors are connected one to each axle through a reducer/differential gear set.

Moreover, literature also considers traction systems with four direct drive motors integrated in

the wheel hub, as shown in Figure 1.5b.

FD

REAR AXLE

FRONT AXLE

a

M

REAR AXLE

FRONT AXLE

b

FD

M

FD

M

FD

M

Multi-drive Powertrains

7

Figure 1.5: a) Two motors- two driven axles; b) Four hub-motors

It is proved that multi-drive powertrains, compared to those that provide only one motor, give

some outstanding benefits:

Lower power rating, since the total power is divided among two or more components, these

can be designed for a lower rated power, thus being more compact and easier to accommodate

in the vehicle.

Higher reliability as the propulsion is allotted to different drives, even in case of failure or

malfunction of one of them the vehicle may be able to move, although with reduced power.

Yaw moment control, the dynamics control is a topical issue, especially since it is related to

safety aspects of vehicles. One of the main aspects is related to the lateral stability in turns.

Considering the simplified model of Figure 1.6, the cornering vehicle dynamics is defined by the

state variables �̇� (the vehicle slip angle) and �̇�, namely Yaw Rate, that is the body angular speed

relative to the 𝑧 (vertical) axis [6], [7], [8].

Safety standards for cars requires a minimum level of stability performance that can be only

satisfied by installing an Electronic Stability Control (ESC). ESCs are very complex systems that

estimate the vehicle ideal trajectory from speed, acceleration and steering angle, and, by acting

individually on the braking system of each wheel, are able to generate a yaw moment capable

to limit the effects of a loss of stability when cornering. ESC reduces oversteering and

understeering of the vehicle in a plurality of driving condition improving automobile handling

even in case of tire losing grip. Electric vehicle must comply with the same specification for

vehicle stability performance of standard cars.

FD

REAR AXLE

FRONT AXLE

a

M

REAR AXLE

FRONT AXLE

b

M

FD

M

M

MM

Chapter 1

8

Figure 1.6 Two DOF vehicle model

An electric vehicle with four motorized wheels, as the example of Figure 1.5b, can control the

torque of each wheel in both directions, positive and negative, allowing to generate a moment

along the 𝑧-axes of the vehicle [9]. This moment can be used in order to either prevent losing of

stability or cooperate with the ESC system, increasing the stability of the vehicle with respect to

the sole use of the braking system. This condition is met, although with lower effectiveness,

even for the other configurations shown in Figure 1.4 and Figure 1.5 [10].

Extended high power region, taking as an example the “two drives – two driven axles”

configuration of Figure 1.5a, the power is split between two different drives. In other words, by

employing two motors with the same rated power but with different characteristic or by

choosing different final drive ratios for the two motors, it is possible to extend the high-power

operating range as in the example of Figure 1.7 [11], with improved performance both at high

speed and low speed compared to the single drive configuration with full power.

b a

v
FXf

β

X

Y

δ f

FYf

FXr

FYr

γ

MY

c

Multi-drive Powertrains

9

Figure 1.7 Dual-drive force and power characteristics

The benefit is also valid for the other configurations of Figure 1.4 and Figure 1.5, howsoever the

Ph.D. activity was performed considering the “two drives – two driven axles” configuration of

Figure 1.5a.

The configurations shown in Figure 1.4 and Figure 1.5 have advantages and disadvantages from

the point of view of performance and vehicle integration complexity.

The solution that provides for a motor directly coupled to each of the four wheels is certainly

the one that allows the best dynamics control capabilities because it can effectively control the

force applied to each wheel in both directions. However, this configuration is particularly

complex under the design and construction point of view, because the motor must fit in the

wheel hub, sharing the limited room with the brake disk, calliper and wheel suspension.

The solutions with two motors driving the two wheels of the same axle have lower efficacy with

regard to the vehicle dynamics. Moreover, they show a limit in terms of performance due to the

fact that the power is applied only to two wheels, therefore friction is a limiting factor as well.

The “two drives – two driven axles” configuration is also less effective than Figure 1.5b under

the stability control potential. Even so, it represents a good trade-off between the presented

solutions. This configuration was chosen for the Ph.D. project. The subsequent discourse will

refer largely to this type of traction system.

Notwithstanding the several advantages described above, these systems have an additional

degree of freedom which is the power sharing between drives, which may be an advantage but

it still represents a variable to manage and therefore an increased complexity from the control

point of view.

Chapter 1

10

Furthermore, this is a characteristic they have in common with hybrid powertrains, which by

definition are multi-drive and consisting of at least two energy sources.

The Ph.D. activity also concentrated on the control algorithms development for these

powertrains, this topic will be discussed in the following chapters.

Figure 1.8 reports two spread hybrid powertrain configurations for cars: Figure 1.8a is the well-

known Series-Parallel Power-Split Hybrid configuration, which employs a planetary gear set, an

internal combustion engine (ICE) and two electric machines. Figure 1.8b refers to the Parallel

through the road configuration, where the conventional ICE powertrain and an electrical

powertrain are installed on different axles, so that they are not mechanically coupled unless

through the road surface.

Figure 1.8 a) Series-Parallel power-split hybrid; b) Parallel “through the road” hybrid

FD

REAR AXLE

FRONT AXLE

a

PG

MG
1 ICE

FD

REAR AXLE

FRONT AXLE

b

M

MG
2 ICE

FD

Multi-drive Powertrains

11

1.3 System voltage analysis

A key point for the optimal design of an electric powertrain is the choice of the system voltage

(therefore the battery voltage) and the resulting inverter’s rated voltage.

The possibility to develop a “two drives – two driven axles” configuration using low and extra-

low voltage solutions was investigated within the Ph.D. research activity [12], [13]. A comparison

among different available components is presented hereinafter. Figure 1.9 compares the power-

cost density of active components suitable to be used for the power stage of a three-phase

traction inverter. This preliminary comparison does not take into account the mounting and

assembling cost.

As it is widely known, IGBTs are preferred when working at higher voltage, while MOSFETs are

preferred at lower voltage. This first analysis indicates that there is a commercial availability of

MOSFETs and IGBTs with similar power-cost density and that the current MOSFET technology

shows its optimal power-cost density at lower voltage levels. The very high voltage is out of the

scope of the project for the induced cost of battery pack, power wiring harness and EM shields

and also considering the relatively low power of the system to be developed. The comparison

has been focused on MOSFET technology. Figure 1.10 shows the single MOSFET performance in

terms of theoretical converted power vs. lost power. Under this point of view, MOSFETs with

very similar and very good performance are available for almost all the voltage range.

Figure 1.9 Power-cost density for commercially available power active components suitable for the power stage of
traction inverter

Considering the single MOSFET analysis, the three-phase inverter is designed assuming a target

power output of 15 kVA, according to the simulations described in Paragraph 1.1 and in view of

the fact that two drives will be used. The rated battery voltage considered in this analysis ranges

between 50 V and 130 V. Table 1.2 summarizes the corresponding electrical characteristic of five

possible inverters in rated and overload condition.

0

50

100

150

200

250

300

[V
A

*/
€

]

ACTIVE COMPONENTS: POWER-COST DENSITY
mosfet

75V
mosfet
120V

mosfet
200V

IGBT
600V

*VA=VDSS_70% · ID_125°C

mosfet
100V

mosfet
150V

Chapter 1

12

For each solution, starting from the MOSFET characteristic, it is possible to choose the right

number of MOSFETs to be connected in parallel. An even number of parallel MOSFET is

necessary due to layout optimization. Table 1.3 gives the main MOSFET characteristics for every

component under study. Table 1.4 shows the number of MOSFETs in parallel required to obtain

the performance demanded in Table 1.2 and the resulting real performance of the inverter.

Figure 1.10 Performance factor of commercially available MOSFETS suitable for realizing the power stage of traction
inverter

Description unit Values

Component break-down voltage [V] 75 100 120 150 200

Approx. number of Ion-lithium cells 16 20 24 32 40

Approx. rated DC-link voltage [V] 52 67 80 105 140

Minimum line-to-line voltage for obtaining the rated motor performance [VRMS] 33 42 52 67 84

Maximum rated current from the inverter [ARMS] 260 210 170 130 105

Maximum overload current from the inverter for 240 s [ARMS] 520 420 340 260 210

Maximum overload current from the inverter for 60 s [ARMS] 700 560 450 340 280

Maximum battery power [kW] 27

Table 1.2 Electrical data of the inverter supply for different DC voltage ratings

Multi-drive Powertrains

13

n. Name Manufacturer package

Id 125°C

[A]

Breakdown

voltage

VBRDS

[V]

reference

battery

voltage

[V]

RDSON

[m]

1 IRFS7734-7P IR D2Pack-7pin 139 75 52 3.05

2 IPB031NE7N3 G INFINEON D2Pack 100 75 52 3.10

3 IRFS4010-7 IR D2Pack-7pin 130 100 67 3.30

4 IPB017N10N5 INFINEON D2Pack-7pin 180 100 67 1.70

5 IPB038N12N3 G INFINEON D2Pack 105 120 80 3.80

7 IPT059N15N3 INFINEON HSOF-8 110 150 105 5.90

8 IRFS4115-PPbF IR D2Pack 55 150 105 10.00

9 IRFS4321PbF IR D2Pack 40 150 105 12.00

10 IPB072N15N3 G INFINEON D2Pack 75 150 105 7.20

11 IRF3415 IR D2Pack 25 150 105 42.00

12 IPB107N20N3 G INFINEON D2Pack 63 200 140 10.70

13 IXTA 86N20T IXIS D2Pack 40 200 140 29.00

14 STB75NF20 ST D2Pack 47 200 140 34.00

15 IRFS4127Pbf IR D2Pack 51 200 140 12.00

Table 1.3 Main characteristics of the considered active components (MOSFETs)

n. Name

VBRDS

[V]

MOSFET

in parallel

Equivalent

RDS

[m]

Output

rated

current

[ARMS]

Output

maximum

current

[ARMS]

Nominal

power

[VA]

Maximum

power

[VA]

1 IRFS7734-7P 75 6 0.51 237 710 15240 45721

2 IPB031NE7N3 G 75 8 0.39 227 681 14619 43857

3 IRFS4010-7 100 4 0.83 148 443 12670 38009

4 IPB017N10N5 100 4 0.43 204 613 17543 52628

5 IPB038N12N3 G 120 6 0.63 179 536 18420 55260

7 IPT059N15N3 150 4 1.48 125 374 16081 48243

8 IRFS4115-PPbF 150 8 1.25 125 374 16081 48243

9 IRFS4321PbF 150 12 1.00 136 409 17543 52628

10 IPB072N15N3 G 150 6 1.20 128 383 16446 49339

11 IRF3415 150 16 2.63 113 340 14619 43857

12 IPB107N20N3 G 200 6 1.78 107 322 18420 55260

13 IXTA 86N20T 200 8 3.63 91 272 15594 46781

14 STB75NF20 200 6 5.67 80 240 13742 41226

15 IRFS4127Pbf 200 6 2.00 87 260 14911 44734

Table 1.4 Main parameters and performance for possible inverter configuration

Chapter 1

14

For any inverter configuration, Figure 1.11 and Figure 1.12 represent conduction power losses

for output powers of 15 kVA (rated condition) and 35 kVA (overload condition) respectively.

Figure 1.11 Conduction losses of three-phase traction inverters realized with different MOSFETs at 15kVA (rated

condition)

Figure 1.12 Conduction losses of three-phase traction inverters realized with different MOSFETs at 35kVA (overload
condition)

The cost of the active components roughly represents 30% to 50% of the cost of the power stage

of the inverter. The higher the current, the higher the cost of the power circuit and then the

lower the percentage of the active components cost. Recent improvement in mounting

technologies (IMS, DBC and Thick copper PCB) contribute to lower the cost of the power circuitry

even for very high current output.

Multi-drive Powertrains

15

The cost of the DC-link capacitors is mainly associated to the “kVA” rating, but a certain

dependency can be found to the DC-link voltage. For example, the cost for the 200 V voltage

rating is increased due to lack of suppliers. For this reason, inverter cost comparison is

performed taking into account only the active components. Resulting components cost for each

inverter is given in Figure 1.13.

Figure 1.13 Component costs for a 15kVA three-phase traction inverter with different MOSFETS

Chapter 1

16

The results obtained with the different solutions can be summarized as follows:

• All the voltage range (VBRDS) between 75 V and 200 V can be used for the selected

application. It means a battery pack composed of 16 to 42 cells connected in series.

• The number of MOSFET in parallel ranges from 4 to 16. A number higher than 12 should be

avoided in order to minimize the complexity of the power circuits. The higher the number

of power MOSFETs in parallel, the wider the planar footprint of the inverter power stage.

• Voltage level VBRDS=120V has only one supplier. For this reason, at the time of this research,

it should be avoided.

• Losses are minimized for the 100 V and 150 V rating. The lower the conduction losses, the

simpler the design of the cooling system.

• Voltage level VBRDS=100 V has the best results in terms of cost. It is worth noting that the

best solution at VBRDS=150 V has a cost of active component 60% higher than the best

solution at VBRDS=100 V.

A first conclusion of this analysis is that the MOSFETs in the voltage classes VBRDS=150 V and 100

V represent the two best options, at the time of this research, for realizing an automotive

inverter with a rated power of approximately 15 kVA and a maximum power of at most 35 kVA.

A second conclusion is the demonstration of the technical and economic feasibility of very low

voltage system for the power range under investigation.

From this analysis, the design of the two traction inverters using MOSFETs at VBRDS=75 V for the

DC-link voltage in the range 48-53 V (approximatively 14 to 16 ion-lithium cells in series) is fully

justified [11].

17

Chapter 2

Traction management algorithm

The vehicle’s powertrain configuration, as discussed in Chapter 1, is of the type “two drives –

two driven axles”. Additionally, each drive is powered by a separate battery pack, as shown in

Figure 2-1. The two drives are therefore independent of each other. However, their high-level

control is centralized.

Figure 2-1 Traction system layout

For the described powertrain configuration, the aim of the high-level control (also referred to as

Traction Management) is to generate a torque reference for both the front and rear drives,

taking into account the driver’s demand as well as the actual system state and the commands

coming from an external stability control algorithm, which takes the priority and can modify the

absolute output reference. It is worth noting that the traction management and the stability

control were developed independently in two different environments and a great deal of work

was carried out by the candidate to put them together on the vehicle hardware.

The control algorithm described in this chapter is developed in the MATLAB/Simulink

environment with the possibility, as it will be described afterwards, to reuse the simulation

model, along with proper compiling tools, to automatically generate executable code for the

vehicle ECU. For the correctness of the model configuration, some aspects were considered and

described in this chapter.

Figure 2-2 gives an overview of the traction management model. The algorithm receives inputs

(green blocks) from the field (measurements, status signals, etc.) and from the driver

(commands). It computes all of them outputting the torque reference for both rear- and front-

drive, making use of predefined maps, complying with the protection limitations and giving the

possibility to receive an external priority reference from a stability control algorithm.

BATTERY PACK 1

FD2FD1

M1

I1

BATTERY PACK 2 M2

I2

REAR AXLE FRONT AXLE

Chapter 2

18

Figure 2-2 Traction Management Scheme

REAR AXLEFRONT AXLE

Li
m

it
s

Ev
al

u
at

io
n

G
as

 P
e

d
al

M
an

ag
e

m
e

n
t

ES
C

Li
m

it
s

A
p

p
lic

at
io

n

Fo
rc

e
 S

p
lit

B
ra

ke
 P

e
d

al
M

an
ag

e
m

e
n

t

B
ra

ki
n

g
Fo

rc
e

 M
ap

s

Tr
ac

ti
ve

Ef

fo
rt

 M
ap

s

P
o

w
e

r
M

ap
s

Li
m

it
s

U
se

r
In

p
u

ts

Fo
rc

e
R

e
fe

re
n

ce
C

o
m

p
u

ta
ti

o
n

G
as

 P
e

d
al

 P
o

si
ti

o
n

B
ra

ke
 P

e
d

al
 P

o
si

ti
o

n
M

o
d

e
 S

e
le

ct
io

n
 L

e
ve

r
..

.

V
o

lt
ag

e
s

(C
e

ll,
 P

ac
k,

 …
)

C
u

rr
e

n
t

Te
m

p
s

(I
n

v.
, M

o
t.

, B
at

t.
, T

C
SS

, …
)

Sp
e

e
d

s
(M

o
t.

, W
h

e
e

ls
, …

)
..

.

M
e

as
u

re
s

V
o

lt
ag

e
s,

 C
u

rr
e

n
ts

,
Te

m
p

s,
 S

p
e

e
d

s,
 ..

.

Sp
e

e
d

s,
 Ib

at
t

Sp
e

e
d

s

Sp
e

e
d

s

FD
2

M
2

I2 FD
1

M
1

I1

G
as

 P
o

si
ti

o
n

, G
as

 IV
S

B
ra

ke
 P

o
si

ti
o

n
, B

ra
ke

 IV
S

M
o

d
e

 S
e

le
ct

io
n

 L
e

ve
r

Fo
rc

e
 R

e
f,

 S
p

e
e

d
 R

e
f

Fo
rc

e
 R

e
f

A
ct

u
al

 M
ax

A
ct

u
al

 M
ax

Fr
o

n
t

Li
m

it
 F

ac
to

r,
 R

e
ar

 L
im

it

Fa
ct

o
r

(0
-1

)
<P

ro
te

ct
io

n
>

Fo
rc

e
 D

is
tr

ib
u

ti
o

n
 F

ac
to

r
–

So
C

-b
as

e
d

 (
0

-1
)

D
is

tr
ib

u
ti

o
n

V

al
u

e
 ‘E

X
T’

Fr
o

n
t

Li
m

it
 F

ac
to

r,
 R

e
ar

 L
im

it

Fa
ct

o
r

(0
-1

)
<C

o
n

su
m

p
ti

o
n

>

M
e

as
u

re
s

To
ta

l F
o

rc
e

R

e
fe

re
n

ce

Fr
o

n
t

To
rq

u
e

R
e

f

R
e

ar

To
rq

u
e

R
e

f

Fl
ag

s
Fo

rc
e

 t
o

 0
Fo

rc
e

 t
o

 V
al

D
is

tr
ib

u
ti

o
n

M

o
d

e

Fr
o

n
t

Si
n

gl
e

 A
xl

e
B

ra
ke

 C
o

m
m

an
d

(F
L-

FR
)

R
e

ar
 S

in
gl

e
 A

xl
e

B
ra

ke
 C

o
m

m
an

d
(R

L-
R

R
)

Traction management algorithm

19

In the following, the blocks of Figure 2-2, which correspond to the main functions, are described.

2.1 Gas Pedal Management, Brake Pedal Management

The Pedal Management functions are in charge of computing a vehicle force reference,

according to the driver inputs and force maps.

Figure 2-3 and Figure 2-4 show the actual Simulink block diagram of the Gas and Brake pedal

respectively.

Figure 2-3 Gas Pedal Management block diagram

Chapter 2

20

Figure 2-4 Brake Pedal Management block diagram

The information coming from the pedal position sensor consists on an analog signal,

proportional to the actual stroke, and a digital idle validation signal “IVS”, which is used as a

safety feature: the IVS signal is 0 when the pedal is completely below a given threshold, usually

10% of the full pedal travel, and it turns into 1 if the stroke exceeds the threshold.

The input blocks check the correct behaviour of the pedal sensor by monitoring these signals.

The position value is then rescaled, according to a parameterized rule, into a per-unit “pu” which

streamlines the subsequent operations. An example of this operation is given in Figure 2-5.

Traction management algorithm

21

Figure 2-5 Pedal rescaling and linearization

The pu signal then undergoes to a smoothing process, which eliminates dangerous

discontinuities in the signal that would translate into peaks of requested torque, harmful for the

drivetrain and inconvenient for the driving experience.

The conditioned pedal position signal is finally converted into a force reference according to

Tractive- and Braking-force Maps.

These maps are defined in a Force vs. Speed reference plane, an example is shown in Figure 2-6.

It can be noticed how two maps are defined for the Gas pedal computation, which represent

the upper limit and the lower limit, while only the upper limit map is defined for the brake pedal

computation, whose lower limit is always 0.

In the force computation, the pu input signal is made to cover all the values in between the

upper and lower limits, as exemplified in Figure 2-7.

Chapter 2

22

Figure 2-6 Gas- and Brake- force maps

Figure 2-7 shows a typical output of the Gas Pedal Management. The blue line represents the

pre-processed gas pedal position, after the validation, ramps and smoothing computation. Cyan

and green lines are the mapped force limits, while the red line is the computation of the pedal

position force request according to these limits.

Figure 2-7 Tractive-force computation

Different force maps are available for both the Gas- and Brake-pedal Management functions

and, since the driver is able to switch the selected map at run-time, a smoothing switch routine

is implemented, not to deliver a reference step as output during a map change.

The Gas Pedal Management function also implements a speed loop, which improves the driving

feeling while manoeuvring at very low speed. The contribution of the speed controller vanishes

above a pre-set speed threshold.

GAS PEDAL FORCE MAPS BRAKE PEDAL FORCE MAP

Traction management algorithm

23

2.2 Limits Evaluation

The block “Limit Evaluation” generates two limiting variables, one for each drive, from several

monitored system variables (temperatures, speed, voltages, etc.). This function has the main

objective to limit each drive to reach protection value of critical powertrain parameters.

The block diagram of Figure 2-8 provides a graphical explanation of the limitation working

principle. It refers to the computation of limits for one of the two drives (the rear-drive). An

identical one is implemented for the front drive.

The graph shown in Figure 2-9 provides an example of the limiting function intervention. The

monitored variable is the rear inverter temperature, for which the limitation is effected

proportionally to the temperature if it exceeds 60 °C, up to a total power cut-off the if the

temperature reaches 70 °C. The middle part of the graph shows the two limiting coefficients

calculated for the front- and the rear-drive, and it shows the limitation coefficient trend

compared with increasing temperature. The effect of the limitation on the torque demand is

shown in the lower part of the graph.

Chapter 2

24

Figure 2-8 Limits Evaluation (Rear)

Traction management algorithm

25

Figure 2-9 Example of limit intervention

Chapter 2

26

2.3 Force Reference Computation

The block represented in Figure 2-2 as Force Reference Computation recalculates the total force

reference, coming from the Pedal Management, by applying a power limitation function, which

in turn makes use of “Power Maps”, ensuring that the power exchanged with the batteries does

not exceed predetermined values, defined by the maps.

Figure 2-10 Power map selection

Traction management algorithm

27

Figure 2-11 Example of map intervention

In this block, the brake reference priority is also managed. It means that an action on the brake

pedal always overrides a gas command, thus reducing the risk of mistaken command from the

driver.

Moreover, it implements the “gearbox” function, reversing the force reference if the driver puts

the direction command in the position corresponding to the backward driving mode.

2.4 Limits Application & Force split

The total demanded force is finally processed in Limits Application & Force split. It calculates the

demanded force for the front and rear drive by applying a force sharing coefficient (“split”

coefficient) and the limit coefficient coming from the previous blocks. For each drive, the

conversion from force to torque reference is also performed by taking into account the vehicle

parameters (transmission/differential ratio and wheel radius).

Moreover, this block performs the key task of applying the commands coming from the

Electronic Stability Control algorithm (yellow block of Figure 2-2). In case of stability control

intervention, its reference takes the priority and the one coming from the upstream functions is

momentarily ignored. The ESC can set to zero one or both torque references. Additionally, a

fixed torque reference defined by a parameter, can be applied to one or both drives in order to

generate a yaw moment (Paragraph 1.2).

The split coefficient can be provided by the ESC algorithm as well as applied through a fixed

value. If the battery energy balance function is enabled, the coefficient may be varied of a small

percentage through a variable calculated within the Limits Evaluation block, in order to preserve

the balance of State of Charge (SoC) between the two battery packs.

Chapter 2

28

If a limitation occurs, the force split can be adjusted according to four force-sharing strategies

that can be selected by the ESC, or by other high level vehicle management functions.

The four functions are here summarized:

- Mode 1, Balance preservation: This mode applies the more stringent limitation on the

overall force and then applies the requested split ratio as is.

- Mode 2, Individual Max: This mode applies the limitation after the force split. It allows the

maximum percentage of available force, for both drives.

- Mode 3, Total Max Search: This mode finds the closest level of force to the requested one.

If one drive has limitation applied, the other will compensate.

- Mode 4, Delta Preservation: This mode preserves the difference in torque values, between

front and rear references, even if a limit is applied.

The working principle of the above described block can be graphically summarized through the

scheme of Figure 2-12. A simulation is also displayed in Figure 2-12.

Figure 2-12 Limits Application & Force Split block scheme

SINGLE MAX PRESERVATION

BALANCE PRESERVATION

TOTAL MAX PRESERVATION

DELTA PRESERVATION

Split %

Split %

Split %

Split %

Split %

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

Fref

Limit Rear

Split Mode

Limit Front

Fixed Split

Split SoC Bal

Mode 1

Mode 2

Mode 3

Mode 4

Only Split ‘‘Mode 1’’ available with Fixed Split

ESC

Zero

F*neg_stability

F*front

Zero

F*neg_stability

F*rear

F to Tfront

F to Trear

ESC intervention

ESC intervention

Torque* Rear

Torque* Front

Traction management algorithm

29

Figure 2-13 Limit and splitting modes simulations

The actual Simulink model of the Traction Management algorithm is shown in Figure 2-14.

Chapter 2

30

Figure 2-14 Simulink model of the "Traction Management" algorithm

Traction management algorithm

31

2.5 Additional Logic

Besides the features described above, it contains a Stateflow state machine (enlarged in Figure

2-15) for the management of events such as the start up and shutdown sequences and the fault

occurrences.

Figure 2-15 State Machine

The aim of the state machine is to prevent undesired behaviour during transient conditions like

the vehicle start up and shutdown. In these phases, the torque reference is forced to zero.

At start up, the powertrains are not activated unless the vehicle is turned on with both pedals

released and the direction lever positioned at “NEUTRAL”. After the “IGNITION” command, the

system waits for the drives to be ready and checks the BMS status. This check is continuously

performed during normal operation as well.

The state transition logic is schematized in Figure 2-16.

Chapter 2

32

Figure 2-16 State transition logic

Traction management algorithm

33

As just anticipated, this block is responsible for the implementation of a start-up procedure for

the traction control system. It takes into account the key position, both inverter statuses and

eventual warnings or errors. The goal of the system is to safely enable traction if no warnings or

faults are present in the system.

The power-on procedure requires a predefined sequence of key inputs that enables the inverter

power delivery if they are ready and no faults in the systems are detected.

Shut-down relays on the key position but also on emergency situations defined by the inverter

status and external fault requests.

Normal start-up procedure is as follows:

1. OFF state:
This state is encountered at first switch on of the VCU or after SHUTDOWN, the state

machine initializes all the outputs in the off condition waiting for the key input to

power on.

Figure 2-17 "OFF" State

2. WAKE state:
The driver turns the key into position 1 and the state changes to WAKE. It waits the

start up of devices other than the inverters. In this version, it does not introduce any

functionality. All the outputs keep the same value.

Figure 2-18 "WAKE" State

Chapter 2

34

3. INV_R and INV_F state:
These two blocks are activated after the driver requests the switch on of the power

inverters with the key “IGNITION” (or start button). It implements the correct

procedure to power up safely both inverters. The blocks have the same goal, the first

one starts the rear inverter while the second one starts the front one. A delay is

introduced to avoid the simultaneous closing of the power circuit breakers.

Figure 2-19 "INV_R" and “INV_F” (traction drive) State

Each block produces the output command for the inverter power-on (“INVreqR” and

“INVreqF” respectively). After the command, the two inverters controls are activated,

the power stage is energized and, after the procedure is completed and they are

ready, they produce the “Power-ON” message (status = 50).

4. ON state:
In this stage the program enables the delivery of the torque request from the traction

control system to the inverters by changing “T_R” and “T_F” to 1.

Figure 2-20 "ON" State

Traction management algorithm

35

During this state, the map selection is left up to the driver.

Now it will be described the normal shut-down procedure from the ON stage:

1. Normal shut down procedure is activated if at least one of these 3 conditions is true:
a. Key is turned into position “0” (Vehicle OFF);
b. The inverter statuses are both in the OFF situation;
c. The system receives a fault message either from the inverters or an external

source.
2. SHUTDOWN state:

If any of the above conditions is met, then the system goes into “SHUTDOWN” state. In

it, the torque request delivery is turned off by setting to 0 the “T_R” and “T_F” outputs

and the power down procedure of the inverters is initialized by putting the outputs

“INVreqR” and “INVreqF” to 0. The flag output “shutdown” is changed to 1 until the

inverter procedure has come to the end. When the inverters are powered down, the

system returns to the OFF state.

Figure 2-21 “SHUTDOWN” State

Other states are added to the scheme to take into account abnormal situations. They are

described below.

 WAKEERR state:
It is applied if both inverters fail to complete the power-on procedure in 5 seconds.

Consequently, the system stops sending the “INVreqR” and “INVreqF” signals and the

flag output “wakeerr” is set to 1 to highlight the problem. From this state, key position

2 (IGNITION) is requested to restart the inverters power-on. Otherwise, position 0 puts

the system in the OFF state.

Chapter 2

36

Figure 2-22 “WAKEERR” State

 R_OFF and F_OFF states:
They are triggered when one inverter completes successfully the power-on procedure

but the other does not, either because there is an error or because it takes more than

5 seconds to turn on. This state may also be triggered if a single inverter stops working

during normal conditions. In these states the torque reference request is active only

for the working inverter using the “T_R” or “T_F” output. Map selection is also free.

The inverter power-on requests are left active for the whole duration of this state.

When the system receives the input that the other inverter has completed the power-

on sequence and it is ready, it transitions to the ON state applying a linear ramp on the

appropriate “T_R” or “T_F”. Shut-down procedure may apply with the usual

conditions.

Figure 2-23 "R_OFF" and “F_OFF” States

 SAFETYMODE state:
It is activated when there is a warning from the inverter’s status or from external

sources. In this state the torque delivery (“T_R” and “T_F”) is enabled, but the torque

map 4 is forced on the system. Map 4 being the more restricting one, thus allowing the

vehicle to move, but with limited performances. If the warning input ceases to be a

problem, normal operation is restored by going to the ON state. Shut down is possible

through the normal conditions and procedure.

Traction management algorithm

37

Figure 2-24 "SAFETYMODE" State

The whole Traction Management algorithm is contained in a single block, presented in Figure

2-25.

This representation, with the input ports on the left side of the system block, and the output

ports on the right side, is useful for the subsequent automatic code generation, as described in

the next chapter.

Chapter 2

38

Figure 2-25 "Traction Management" algorithm block

39

Chapter 3

Model-based design and automatic code generation

As described in the previous chapters, a multi-drive powertrain makes available more degrees

of freedom and allows to better influence the vehicle behaviour, especially regarding the

drivability and the dynamics control. However, its control requires complex algorithms, which

must be suitably developed and tested.

This condition is in line with the current development trend in the automotive field, where the

number of electronic control units, their complexity and criticality is steadily increasing, whereas

the required time and the potential error connected to manual translation of the code is no

longer acceptable [14].

For several years, techniques for exploiting mathematical models for representing plants,

control systems and their interactions have been investigated [15]. Additionally, the possibility

to generate code to be loaded on microprocessors, starting from models used to perform system

simulations [16], [17], has been a research topic as well, as part of the Model-Based Design

(MBD) [18]–[20].

As described in Chapter 2, a Traction Management algorithm was developed during the Ph.D. in

form of a MATLAB/Simulink model. Aiming to use the same model to both perform system

simulations and program the vehicle ECU, it was decided to spend part of research in the study

of the abovementioned model-based design techniques [21], [22].

The description below, is intended to provide a general discussion on the model-based design

while also reporting on the AMBER-ULV case study.

Within the AMBER-ULV project, the Traction Management algorithm is integrated in the vehicle

electronic control unit, along with a stability control algorithm provided by a partner of the

European project, as shown in Figure 3.1. The control unit architecture will be comprehensively

explained in Chapter 4.

In this chapter the outcomes of the model-based development, as carried out at the LEMAD

laboratory, will be described. The task was performed in cooperation with SHERPA

ENGINEERING, a French consulting company with a 15-years expertise in modelling, simulation

and control design in the automotive, aerospace and energy fields.

Chapter 3

40

Figure 3.1 AMBER-ULV control architecture

FPGA

REAL TIME CONTROLLER

TRACTION
MANAGEMENT

(UNIBO)

STABILITY
CONTROL

(TNO)

FPGA INTERFACE (UNIBO)

FIELD

I/O MANAGEMENT (UNIBO)

Model-based design and automatic code generation

41

3.1 MBD development

The model-based design is thought to provide an efficient approach for the definition of a

common framework for communication throughout a design process, while supporting the

development cycle [15].

The general MBD development cycle is usually represented through the “V-diagram”, shown in

Figure 3.2. It was applied on during the Ph.D. with the necessary specifications of the project.

Figure 3.2 "V-diagram" of the MBD development process

The model-based design theory defines, step by step, the tasks to perform in each stage of the

development process.

In relation to the control systems, the main design phases are as follows:

 Analysis of requirements and specifications.

 Synthesis of a control algorithm.

 System and controller simulation. For this phase, a mathematical model of the system

to be controlled needs to be developed, as well as a series of “operating conditions”.

 Controller deployment. In this step, automatic code generation techniques

significantly reduce the development time.

The abovementioned phases, which embody the first part of the diagram in Figure 3.2, lead to

the completion of the system controller.

For the AMBER-ULV project, this task was entirely performed at the LEMAD laboratory for the

Traction Management algorithm, as described in Chapter 2.

REQUIREMENTS /
SPECIFICATIONS

MODELLING /
SIMULATION

RAPID
PROTOTYPING

ECU
FINAL CODE

GENERATION

HIL

UNIT TESTS

ACCEPTANCE
TESTS

TEST
MODULE

VERIFICATION

VALIDATION

Chapter 3

42

Moreover, this steps include also the first integration, as the Traction Management algorithm

was put together with the Stability Control algorithm (provided by a partner of the European

project as a compiled model) and simulated along with a vehicle model and an algorithm that

simulates the driver in predefined situations, such as standardized cycles or driving profiles

obtained from experimental tests. This step is represented in Figure 3.3.

Figure 3.3 First Integration of MBD

When the control algorithm has been sufficiently tested, revised when necessary and finally

validated, it can be used, through automatic code generation techniques (Paragraph 3.2), for

directly programming the controller ECU. This step represents, in fact, the central block of the

diagram in Figure 3.2.

According to the development cycle, the final version of the controller ECU is tested with a

simulation model of the controlled system and the operating condition, yet exchanging real

signals with the simulation environment. For this task, a proper interface needs to be put in

place, with the purpose of simulating the real field devices to be interfaced with the controller,

in terms of electrical signals, communication buses and so on. The above described phase is

known as Hardware-in-the-Loop (HIL) test, whose scheme is presented in Figure 3.4. This

analysis is very important because it allows to test the control algorithms without the real

system, thus without the risk of damaging it. Moreover, abnormal situations can be safely tested

as well [23], [24].

Figure 3.4 Hardware in Loop

VEHICLE

MODEL

TRACTION

MANAGEMENT

(UNIBO)

STABILITY

CONTROL

(TNO)
DRIVER &

SCENARIOS

MODEL

AUXILIARY

STRATEGIES

SIMULATION ENVIRONMENT

CONTROL UNIT

TRACTION

MANAGEMENT

(UNIBO)

STABILITY

CONTROL

(TNO)

AUXILIARY

STRATEGIES

HARDWARE-IN-THE-LOOP

CONTROL UNIT

VEHICLE

MODEL

DRIVER &

SCENARIOS

MODEL

Model-based design and automatic code generation

43

The last step consists in the validation tests: the controller and the controlled system are tested

in real operating conditions, as exemplified in Figure 3.5.

Figure 3.5 Final Implementation

Considering the AMBER-ULV project, Chapter 5 will analyse the validation tests performed on

the vehicle prototype.

VEHICLE

TRACTION

MANAGEMENT

(UNIBO)

STABILITY

CONTROL

(TNO)

DRIVER

AUXILIARY

STRATEGIES

REAL VEHICLE

CONTROL UNIT

Chapter 3

44

3.2 Development of the Simulink Model

In the following paragraphs, the process for the automatic executable code generation from the

MATLAB/Simulink model is explained.

In order to develop MATLAB/Simulink models that can be suitably built for use in the LabVIEW

environment, some aspects have to be taken into account.

3.2.1 Building the Simulink Model

Once the simulation model is completed, through the configuration window, the user has to

make sure the Solver is set with a “Fixed-step” iteration mode, and a “ODE” type, as it can be

seen in Figure 3.6.

Figure 3.6: Configuration window

In the “Code Generation” menu (Figure 3.7), the System Target file must be selected, depending

on which target (hardware) the model will be executed on.

Model-based design and automatic code generation

45

Figure 3.7: Code Generation window

By pressing the “Browse…” button, the System Target File Browser window appears as in Figure

3.8.

Figure 3.8: Target selection for building process

Chapter 3

46

For building models for LabVIEW, the three options listed in Table 3.1 are available.

Target System target file Description

Windows PC NIVeriStand.tlc
NI Veristand Real-Time Target for release

2007b or later

Linux ARM 32-bit

Real-Time Controller
NIVeriStand_Linux_ARM_32.tlc

NI Veristand Linux ARM 32-bit Real-Time

Target for release 2007b or later

VxWorks Real-Time

Controller
NIVeriStand_VxWorks.tlc

NI Veristand VxWorks Real-Time Target

for release 2007b or later

Table 3.1 Available building choices for LabVIEW target

For building the model allowing its execution on a Windows PC, “NIVeriStand.tlc” is the correct

choice, while “NIVeriStand_VxWorks.tlc” builds the model in order to execute it on a Real-Time

target based on VxWorks Real Time Operating System (like the CompactRIO-9022 used in the

project).

3.2.2 Setting of Model’s Parameters

Parameters used within the MATLAB/Simulink model can also be accessed, provided that they

are properly set up in the configuration process.

As shown in Figure 3.9 in the “Optimization” list, the “Signal and Parameters” menu opens the

window:

Figure 3.9 Set “inline” parameters

Model-based design and automatic code generation

47

By clicking the “Configure” button (Figure 3.10), the tunable parameters setting window appears

as in Figure 3.11.

Figure 3.10 “inline” parameters configuration

Figure 3.11 Tunable parameters setting window

The parameters present in the workspace must be added to the Global (tunable) parameters

table.

These parameters will be accessible through LabVIEW by setting them as “SimulinkGlobal

(Auto)” and checking “Inline parameters” in the window of Figure 3.10.

Chapter 3

48

3.2.2.1 Parameters order

As for the input and output ports (see Paragraph 3.3), the LabVIEW Model Interface Toolkit

treats parameters as a double precision floating point array, whose order reflects the order of

the MATLAB workspace, which is alphabetical.

Simple models have been developed in order to test how the compiler queues multiple

parameters and how it behaves when a model is updated adding or removing parameters (as in

Figure 3.12).

In order to prevent incorrect address of parameters (which may not be programmatically

detected) parameters are defined with an alphanumerical code in the form “P0000_param-

name”, allowing the developer to keep control of the alphabetical order by properly setting the

value of the four digits (parameter number), as well as maintaining the readability of the model

by including a brief description of the parameter function in its name.

Figure 3.12 Test example for parameter addressing

Model-based design and automatic code generation

49

3.3 Using the Simulink Compiled Model in LabVIEW

3.3.1 Target preparation

The model compiled within the Simulink environment must be in the target memory for the

interface functions to work. For Windows PC targets, the model file simply needs to be in the

same PC memory, and the path control will point to this file.

For Real-Time targets, the compiled file must be copied into the execution target’s memory, by

accessing it through an FTP protocol as shown in Figure 3.13:

Figure 3.13 Access to the target memory through FTP

The correct path for the CompactRIO execution example is “FTP -> IP.address -> ni-rt -> system

-> filename.out”.

The Model Interface Toolkit must also be installed on the execution target (Figure 3.14).

Chapter 3

50

Figure 3.14 Model Interface Toolkit installation on a Real-Time target

3.3.2 Executing compiled models with Model Interface Toolkit

The models compiled as described in (Paragraph 3.2) can be executed in the LabVIEW

environment thanks to the Model Interface Toolkit (MIT).

Figure 3.15 shows a typical programming structure for integrating a compiled model within the

LabVIEW environment using MIT.

As it can be seen, there are a few “single shot” functions at the beginning and at the end of the

code execution (described in Table 3.2) and two loops, which are described further on.

Model-based design and automatic code generation

51

Figure 3.15: Model Interface Toolkit typical programming structure

Chapter 3

52

Function block Description

Loads a model into memory and prepares it for execution. This Vi must be

called to load a model before you can execute it in a control loop.

The path to the model to be prepared for execution is specified with this

control. Models must conform to the NI VeriStand Model Framework header

file (NIVERISTAND_API.h). Otherwise, LabVIEW returns error code “-

383200”.

Returns the rate, in seconds, at which the model was compiled to run.

A model is set to run at a certain rate, or step size, as defined in the build

options when the model is compiled. However, the rate at which the Model

Interface API actually steps the model is determined by how often the Take

Model Time Step VI executes in the application.

Creates a reference for the parameters manipulation functions, to initialize or

update them from background-priority code as the model executes.

Closes all the references with the model and discards it from the target

memory.

Table 3.2 Model Initialization and finalization functions of MIT

The code snippet of Figure 3.16 contains the Take Model Time Step function, which actually runs

one iteration of the compiled model each time it is called. For the correct behaviour of the

compiled model, the loop iteration period is set at the same time step specified in the model

properties.

Both the input and the output of this function are floating point double precision arrays, the

order of which corresponds to the “port number” set within the Simulink model. With this

representation, there is no information about the port name. Therefore, an appropriate strategy

must be put in place to avoid errors in the assignment of inputs and outputs (see chapt 4). This

has been achieved with careful planning of the variables used and available during every

integration step encountered.

vsmitref.chm::/Take_Model_Time_Step.html
vsmitref.chm::/Take_Model_Time_Step.html

Model-based design and automatic code generation

53

Figure 3.16 Model Time Step of MIT

Additionally, model parameters can be read and written at run time through the function

displayed in Figure 3.17.

This function runs in background, thus allowing the use of a standard loop with a low iteration

frequency, as the tuning of parameters is not supposed to require high determinism and speed.

As well as the inputs and outputs, parameters are treated as “DBL” array, the order of which

corresponds to the alphabetical order of the parameters in the MATLAB workspace. Thus, a

similar strategy must be set up to prevent assignment mistakes.

Figure 3.17 Access to model parameters through MIT

55

Chapter 4

AMBER-ULV System Integration

4.1 Introduction

The research activity conducted in the field of multi-drive powertrains has also been applied to

accomplish the goals of the European project “AMBER-ULV”. The target architecture of the

project called for a single vehicle control unit, developed on a rapid prototyping hardware,

named Unified Control Platform “UCP”.

To achieve this purpose, the traction management functions reported in Chapter Chapter 2,

together with the code generation techniques described in Chapter Chapter 3, were exploited

to implement the high-level algorithm of the vehicle control unit.

This chapter deals with another fundamental task of the AMBER-ULV project, that is the system

integration. This statement refers to all the development activities necessary to ensure that all

the hardware and software components can function together as a system. For the AMBER-ULV

project, it includes all the design tasks related to the hardware connections between the “field”

and the ECU, and the low-level software which exchanges, with high-level algorithms, the

required information for the system to operate as expected.

A National Instrument Compact RIO was chosen as the rapid prototyping platform. It is a

modular platform consisting in a Real-Time microprocessor and a Field Programmable Gate

Array chip (FPGA) that can be connected to different modules depending on the type of signal

to be acquired or generated. The actual device used is shown in Figure 4.7.

The many sensors necessary to monitor and effectively control the vehicle behaviour needed to

be carefully selected and their signals conditioned to satisfy the UCP acquisition modules and

the range of operation desired.

In general, there are three types of signals produced by the sensors that are connected to the

UCP through specific acquisition modules: analog, digital and serial CAN-Bus. As it will be

described later, some sensors can also produce more than one signal type. For example, the gas

and brake pedals have both digital and analog outputs.

After the hardware conditioning, some software manipulation on the acquired signals is still

required to properly prepare them for the control algorithms.

In the following, the implemented development process will be described, itemizing those

aspects that have affected the design choices.

In particular, the following tasks will be analysed:

- Analysis of necessary information from the field. This include the selection of the sensors,

the development of a test bench for preliminary testing them with their acquisition chains

and the hardware design for signal conditioning;

- Real Time Controller;

- Definition of signals and their processing in UCP;

- Implementation of Low Level Software in UCP;

- Acquisition and Communication tests on AMBER T3 demonstrator.

Chapter 4

56

4.2 General Considerations and Sensor Selection

4.2.1 Analysis of necessary information from the field

According to the vehicle features described on the Project Description Of Work, several

information from the field are necessary for the correct UCP operation.

The Battery Management Systems (BMS), the Traction Inverters and the electronic differential

controller (TCSS), were designed providing CAN-Bus connection with UCP. It means that said

devices are in charge of the acquisition, the signal conditioning, the scaling and any other needed

signal processing. All information is then exchanged through the serial bus and is “ready” to be

used within the UCP.

The following signals, on the contrary, are not transmitted through any communication bus and

must therefore be acquired directly by the UCP:

- Gas and Brake Pedal Position;

- Direction (“Gear”) Lever Position;

- Traction Motor Temperature(s);

- Electronic Differential Controller “TCSS” Temperature(s);

- Brake Circuit(s) pressure;

- Wheel(s) Speed.

Moreover, the following signals are required for the proper operation of the stability control

algorithm:

- Three Axis Accelerometer;

- Three Axis Gyroscope;

- Steering Angle.

Considering the Steering Angle, the Electric Power Steering used on the prototype is equipped

with a CAN interface through which the required information (Steering Angle, status and

diagnostic signals) is broadcasted and commands are also received.

The Acceleration and Gyroscope signals, as it will be described later on, come from a device

equipped with a UART serial communication. A dedicated level adaptation and CAN interface

circuit was developed for this purpose.

4.2.2 Selection of Sensors for the AMBER prototype

In this section, the sensors used on the AMBER vehicle are listed.

4.2.2.1 Gas and brake pedal position

Both the Gas and Brake Pedal Sensors are based on Start STL1D Hall effect rotational angle

sensor. This sensor has a voltage output proportional to the angle, within the range 0.5 ÷ 4.5 𝑉.

Additionally, it provides, as most commercial pedal sensors do, the “IVS” digital signal (Idle

Validation Signal), which is used as a safety feature: the IVS signal is 0 when the pedal is

AMBER-ULV System Integration

57

completely released and up to a given threshold, usually 10% of the full pedal travel, and it turns

into 1 if the stroke exceeds the aforementioned threshold.

4.2.2.2 Direction (“Gear”) lever position

The Direction lever is a command intended to be used by the driver as a driving direction selector

(Forward – Reverse), as well as a driving mode selector (i.e. “Eco” – “Sport”) as it provides two

different “Drive” positions. This command is based on the Start SCE07 hall effect rotational angle

transducer. The lever position can be determined as combination of four digital signals.

4.2.2.3 Traction Motor Temperature(s)

The motor temperature is measured by means of a NTC thermistor enclosed in the stator

windings, connected as a leg of a voltage divider. The component used is the Amphenol

Advanced Sensors DKF103N3.

4.2.2.4 Stability Control Actuator “TCSS” Temperature(s)

The TCSS friction discs are mounted on the same frame as the final drive reducer, and share the

lubricant oil with the gear set. Therefore, the gearbox oil temperature is measured through an

NTC thermistor as a condition monitor variable. The selected sensor, connected as the lower leg

of a voltage divider, is the VDO 323-801-017-001K/N.

4.2.2.5 Brake Circuit(s) pressure

The AMBER vehicle braking system is designed with two independent hydraulic circuits with

independent pumps actuated by a common pedal. Each braking circuit is also equipped with a

piezo-resistive pressure transducer AVIORACE SP100M10x1.

4.2.2.6 Wheel(s) Speed

The speed of each wheel is measured on the AMBER-ULV prototype as part of the necessary

information for the vehicle state estimation which is, in turn, an essential information for the

stability controller to be effective. The wheel speed is measured thanks to a phonic wheel fitted

to the wheel hub and a OMRON E2A-S08KS02-WP-C1 proximity sensor. The algorithm

implemented for the wheel speed estimation is described in paragraph 4.6.2.5.

4.2.2.7 Three Axis Accelerometer and Gyroscope

The accelerations and rotation rates of the vehicle are also part of the required information for

the stability control algorithm. These measurements are obtained thanks to an Inertial

Measurement Unit (IMU) that broadcasts, over a serial RS232 bus (UART standard), the

accelerations over three perpendicular axes (x, y, z) and the rotation speeds with respect to

those axes.

Chapter 4

58

Figure 4.1 Inertial Measurement Unit employed on the AMBER vehicle

Its noteworthy features, as regards of the AMBER project, are here summarized:

- Triple axis 16-bit gyroscope - Selectable range up to ±2000 °/s;

- Triple axis 12-bit accelerometer - Selectable range up to ±8 g;

- Factory calibrated;

- Temperature compensated (gyroscope only);

- Selectable data rates up to 512 Hz.

AMBER-ULV System Integration

59

4.3 Sensors Preliminary Test Bench

All the above listed sensors were tested at the LEMAD laboratories before the final assembly on

the AMBER-ULV vehicle, with the goal of verifying the real sensor compliance with the provided

specifications and experimentally tuning the prototype signal conditioning circuitry.

Significant examples are reported below.

4.3.1 Direction lever sensor

Figure 4.2 shows the preliminary test setup realized for the direction lever.

Figure 4.2 Direction (“Gear”) Lever Position sensor preliminary test

This angular sensor presented some differences compared to the datasheet specifications. In

particular, the digital “PARK” signal wire was not installed, so that four digital signals were

brought to the UCP instead of five. The “FORWARD” signal has been found to differ from the

datasheet specifics, but it was of no consequence for the overall functionality of the lever.

Test results and differences are summarized in Figure 4.3. The green lines represent the

datasheet specifications, that were probably referred to a similar sensor of the same

manufacturer. Red lines are the preliminary test results obtained at LEMAD.

The parking brake active condition is detected thanks to a micro switch fitted on the parking

brake lever. This signal, however, was not managed by the UCP in its first release.

Chapter 4

60

Figure 4.3 Direction Lever's demonstrator tests with differences from the datasheet outputs

4.3.2 Wheel speed measurement system

Figure 4.4 reports tests made by installing the wheel speed sensor and its phonic wheel on a

lathe, in order to check the performance of such a measurement system and to prove the

correctness of the conversion functions.

The wheel speed estimation algorithm is described in 4.6.2.5.

Figure 4.4 Wheel Speed sensor preliminary test

AMBER-ULV System Integration

61

4.3.3 Inertial Measurement Unit UART to CAN interface

Considering the acquisition of the quantities coming from the IMU device, the first investigated

approach consisted in the connection of the x-IMU serial bus to the UCP real time controller

RS232 port. For this purpose, a level conversion circuit was developed (see left side of Figure

4.5) in order to adapt the x-IMU output (3.3 V UART standard) to the cRIO serial port (RS-232

standard). Figure 4.6 shows the input and output signals of the developed circuit: the yellow

signal represents the x-IMU 3.3 V UART output, while the pink one is the ±5 V RS-232 output.

The firsts tests conducted on the described configuration proved that this execution is not as

effective as expected, because of the lack of available documentation and libraries for the

implementation of the needed functions on a NI real-time target [25].

In order to achieve a better result, after literature analysis, the development of an external RS-

232 to CAN interface seemed to be the right choice.

As a first trial, such a device was simulated on a Windows computer, using the NI LabVIEW

programming language, a RS-232 to USB and a NI CAN-USB interface.

Figure 4.5 shows the test of the Inertial Measurement Unit, the UART to RS-232 converter

developed at LEMAD and the software simulated Serial to CAN interface developed in LabVIEW.

Figure 4.5 Three Axis Accelerometer and Gyroscope preliminary test

Chapter 4

62

Figure 4.6 UART to RS-232 converter, I-O comparison

AMBER-ULV System Integration

63

4.4 UCP Platform

4.4.1 Real Time Controller

As anticipated, the chosen solution for the real-time controller was the National Instruments

Compact-RIO: a rapid prototyping platform that combines a VxWorks Real-Time Microprocessor

with an FPGA, obtaining a high determinism of the developed code, as well as the possibility to

customize the I/Os by means of specific I/O modules, according to the needs.

The actual platform is the “NI cRIO-9022”, that comes with a 533 MHz Real Time processor, 2

GB of non-volatile memory and a 256 MB DDR2 memory.

4.4.2 I/Os

The assessments carried out showed that the UCP must be able to interface with the following

signal types:

- CAN Bus (4);

- Analog Inputs (8);

- Digital Input (6);

- High Speed Digital Input (4);

- Digital Output (1);

- Analog Output (4);

The numbers in brackets represent the required number of channels for each signal type.

Up to four Analog Outputs were also added and used during the debug processes, although not

required by the UCP tasks related to the traction management.

According to what previously stated, the following National Instruments “C-Series” I/O modules

were chosen to be mounted on the cRIO chassis:

- 2x NI 9853 – 2 Ports High Speed CAN;

a two ports high speed CAN module, based on the Philips TJA1041 transceiver, for which

the maximum baud rate is 1 Mbps.

- 1x NI 9205 – Analog Input;

used in the range ±10 V, it’s a 32 channel (single ended) 16-Bit Analog Input Module.

- 1x NI 9411 – High Speed Digital Input;

this is a 6-Channel Differential Digital Input Module (even though used in single ended

configuration for the AMBER UCP), with high sample rate, in the order of magnitude of

microseconds.

- 1x NI 9425 – Digital Input;

provides 32 sinking digital inputs, 24 V maximum.

- 1x NI 9476 – Digital Output;

32-Channel, 24 V, sourcing digital output module

- 1x NI 9263 – Analog Output;

this module, used to check the correct operation of the control algorithms in the debug

phase, has four Analog Outputs, ±10 V, 16 Bit, 100 kS/s/ch simultaneous.

Chapter 4

64

Figure 4.7 shows the final configuration of the AMBER control platform, also known as the

Unified Control Platform.

Figure 4.7 AMBER UCP based on NI cRIO Platform

AMBER-ULV System Integration

65

4.4.3 Hardware

Considering the characteristics of the sensors used for the prototype and those of the UCP I/O

modules, it was necessary to develop a dedicated hardware for interfacing the sensors with the

UCP and for obtaining the appropriate signal conditioning for each type of sensor.

In this chapter, the hardware interface, as designed by the writer, is presented with reference

to the main UCP connections with sensors.

A 12 V power supply is provided to the UCP box (Figure 5.2). Also in this box, a voltage regulation

circuit provides a 5 V power supply for the sensors requiring it.

4.4.4 Analog signals

4.4.4.1 Gas and Brake analog signal

Figure 4.8 shows the connections with the Gas and Brake pedal position sensors. As described

in 4.2.2.1, the pedal sensor provides both an analog and a digital signal. This means that they

share the same connector.

The digital signal and the analog signal of the gas pedal are marked, in Figure 4.8, with “DI1” and

“AI1” label, respectively. The same goes for the brake pedal, with “DI2” and “AI2”.

Figure 4.8 Gas and Brake pedal connection

“C1” and “C3” represent a hardware arrangement for mounting a filter capacitor in case of

excessive noise on the signal. On the AMBER-ULV prototype no abnormal disturbances were

detected, therefore the filter capacitors have not been mounted.

The double diode “BAV99” protects the analog input of the acquisition module from signal

values outside of the range 0-5 V.

Chapter 4

66

4.4.4.2 Motor temperature signals

The temperature sensor is a resistor whose value varies with the temperature. The thermistor

is connected as a leg of a voltage divider and the intermediate voltage is temperature-

dependent according to the thermistor characteristic and the voltage divider equation.

Figure 4.9 reports the interface circuitry for the motor temperature measurement. The

connection is similar to the one presented for the pedals, except for resistors “R2” and “R4”,

which are the fixed legs of the voltage dividers.

Figure 4.9 Front and Rear motor temperature sensor connection

The circuit designed for TCSS temperature measurement is basically identical to the one here

described, so it is not reported hereinafter.

AMBER-ULV System Integration

67

4.4.5 Digital signals

4.4.5.1 Gas and Brake validation signals

As described for the analog signals, the digital signals mounting arrangements for filter

capacitors and signal range limiters are also provided.

In this case, a pull-up resistor is required and it can be seen labelled as “R12” and “R13”

respectively in Figure 4.10.

Figure 4.10 Gas and Brake pedal digital signals

4.4.5.2 Direction lever signals

As described in 4.2.2.2, the lever position sensor provides four digital signals.

Their connections with the UCP, shown in Figure 4.11, are identical to those described for pedals

validation signals. The signals required a pull-up connection.

Chapter 4

68

Figure 4.11 Lever position signals

AMBER-ULV System Integration

69

4.4.5.3 x-IMU UART to RS232 converter

In order to connect the x-IMU to a SERIAL-CAN interface, a level conversion circuit was

developed based on the integrated circuit. The connections are presented in Figure 4.12 and

Figure 4.13.

Figure 4.12 UART to SERIAL level converter connections

In accordance with the x-IMU and the MAX3232E specifications, the following electronic circuit

was developed and tested, as shown in Paragraph 4.3.361.

Connections with the x-IMU are marked with a label starting with “x_IMU_...”, while the

“UCP_...” labeled ports are actually connected to the SERIAL-to-CAN interface.

Chapter 4

70

Figure 4.13 UART to SERIAL level converter integrated circuit

Summarizing, Figure 4.14 shows the acquisition chain developed for the Inertial Measurement

Unit, as described in Paragraph 4.3.3 and 4.6.3.2)

Figure 4.14 IMU device acquisition chain

IMU
SENSOR

UART to
RS232

CONVERTER

RS232 to
CAN

INTERFACE

UART SERIAL RS232 CAN #3

AMBER-ULV System Integration

71

4.4.6 CAN Networks

As previously introduced, a field bus network was deployed on the vehicle prototype, allowing

the correct communication between the various installed ECUs. Four CAN networks were set up

as outlined in Table 4.1. and Figure 4.15.

CAN network

identification

UCP port

connection

Baud

Rate

CAN

Standard

Field devices

connection

CAN#1
Module 1

Port 1
1 Mbps 2.0A BMS Front, BMS Rear, MFU

CAN#3
Module 2

Port 1
1 Mbps 2.0A

TCSS Front, TCSS Rear, IMU,

Telemetry (optional)

CAN#4
Module 2

Port 0
1 Mbps 2.0A Traction Drive Front, Traction Drive Rear

CAN#5
Module 1

Port 0
500 kbps 2.0B Electric Power Steering (EPS)

Table 4.1 CAN network configuration

Figure 4.15 CAN network configuration

EPS

Bus CAN#1
(cRIO Port 1-1)

1 Mbps / CAN2.0-A

BMS
An

BMS
A2

BMS
Ax

BATTERY
CHARGER

A

BMS
A1

BMS
MASTER

117
(MAIN)

BMS
Bn

BMS
B2

BMS
Bx

BATTERY
CHARGER

B

BMS
MASTER

118
(EXTENSION)

BMS
B1

TRACTION
INVERTER

41
(REAR AXLE)

M F U

###

 UNIFIED
CONTROL

PLATFORM

31

DIFF-LOCK
CONTROLLER

(FRONT AXLE)

TRACTION
INVERTER

42
(FRONT AXLE)

IMU SENSOR
RS232 – CAN converter

DIFF-LOCK
CONTROLLER

(REAR AXLE)

POWER
SUPPLY

POWER
SUPPLY

Bus CAN#5
(cRIO Port 1-0)
500 kbps / CAN2.0-B

Bus CAN#3
(cRIO Port 2-1)

1 Mbps / CAN2.0-A

Bus CAN#4
(cRIO Port 2-0)

1 Mbps / CAN2.0-A

MODULE 1
PORT 1

MODULE 1
PORT 0

MODULE 2
PORT 0

MODULE 2
PORT 1

TELEMETRY

Chapter 4

72

4.5 Signals description

Following the selection of the sensors to be used on the AMBER-ULV prototype, a collection of

all the relevant information required for the design of the hardware interface between the

National Instruments controller and field devices was carried out. The resulting document was

then updated with the information necessary for the development of low-level UCP software.

In the following pages, a set of tables is presented, which are extracted from the document

above described. Such a document, during the phases of UCP development, was also shared

with the partners involved in tasks related to UCP, namely EOS, SHERPA and SIEMENS.

The document is related to those quantities that are “acquired” through the lower hardware

level of the UCP controller, namely the FPGA. A similar report was prepared for the CAN bus

broadcasted quantities, but it is not described in this manuscript.

The document is organized in a way that reflects the information flow.

The first part, Table 4.2, contains the sensor information, then the manufacturer name and the

model name, the supply voltage, the reference to the datasheet and a brief description of the

sensor working principle.

In Table 4.3 the information related to the sensor connection with FPGA is reported. The table

contains the CompactRIO C-series module type and its position in the cRIO chassis, the channel

name and the pin number, and the signal connection mode for each signal.

From Table 4.4 onwards, information concerning the UCP software is collected. Table 4.4 in

particular, contains the lowest level acquisition settings, such as the channel operating range,

the channel resolution, the loop name wherein the acquisition takes place and the sample rate.

It is important to consider that all the analog acquisitions are handled, on the FPGA target, with

a fixed-point representation.

Most of the signals are also processed on the FPGA. This include filtering, but also conversions

and validity checks. These operations are described in Table 4.5 and they are also the lasts

performed by the FPGA before sending them to the real-time part. Table 4.5 also reports the

variables through which the information is sent to the RT code.

Table 4.6 describes how the variables are imported into the real-time part of the UCP, reporting

the loop name and its timing along with whether or not any conversion is applied and the data

type the variable assumes within the RT code.

Table 4.7, summarizes the scaling settings, if implemented, for each signal acquired.

Table 4.8, finally, lists the global variables in which the processed information is available for the

RT functions.

AMBER-ULV System Integration

73

Table 4.2 Sensor physical information

NAME
MANU

FACTURER
MODEL

SUPPLY

VOLT.

SUPPLY

SOURCE
Datasheet brief description

gear selector SUPER_DRIVE START SCE07 12V 12V_UCP Annex 10.2
From lever selector, Hall sensor. Open

collector output. Active low

gear selector DRIVE START SCE07 12V 12V_UCP Annex 10.2
From lever selector, Hall sensor. Open

collector output. Active low

gear selector NEUTRAL START SCE07 12V 12V_UCP Annex 10.2
From lever selector, Hall sensor. Open

collector output. Active low

gear selector REVERSE START SCE07 12V 12V_UCP Annex 10.2
From lever selector, Hall sensor. Open

collector output. Active low

Gas Pedal Position START STL1D 5 V 12V_UCP Annex 10.1 Hall effect, compensated

Gas Pedal Validation START STL1D 12V 12V_UCP Annex 10.1
0=pedal released or at the beginning of

the downward pedal stroke

Brake Pedal Position START STL1D 12V 12V_UCP Annex 10.1 Hall effect, compensated

Brake Pedal Validation START STL1D 12V 12V_UCP Annex 10.1
0=pedal released or at the beginning of

the downward pedal stroke

F-L Wheel Speed Sensor OMRON
E2A-S08KS02-

WP-C1
12V 12V_UCP Annex 10.6 Proximity

F-R Wheel Speed Sensor OMRON
E2A-S08KS02-

WP-C1
12V 12V_UCP Annex 10.6 Proximity

R-L Wheel Speed Sensor OMRON
E2A-S08KS02-

WP-C1
12V 12V_UCP Annex 10.6 Proximity

F-R Wheel Speed Sensor OMRON
E2A-S08KS02-

WP-C1
12V 12V_UCP Annex 10.6 Proximity

BRAKE PRESSURE 1
AVIO RACE

SOLUTIONS
SP100_M10x1 5V

5V_UCP

BOX
Annex 10.5 Active, ratiometric

BRAKE PRESSURE 2
AVIO RACE

SOLUTIONS
SP100_M10x1 5V

5V_UCP

BOX
Annex 10.5 Active, ratiometric

Front motor temperature GE DKF103N3 5V
5V_UCP

BOX
Annex 10.3

NTC resistor installed inside the motor.

Voltage divider required

Rear motor temperature GE DKF103N3 5V
5V_UCP

BOX
Annex 10.3

NTC resistor installed inside the motor.

Voltage divider required

Front TCSS temperature VDO
323-801-017-

001K/N
5V

5V_UCP

BOX
Annex 10.4

NTC resistor in close contact with oil.

Voltage divider required

Rear TCSS temperature VDO
323-801-017-

001K/N
5V

5V_UCP

BOX
Annex 10.4

NTC resistor in close contact with oil.

Voltage divider required

SENSOR

ACQUISITION

Chapter 4

74

Table 4.3 Connection to FPGA

NAME Module type
MODULE

POSITION
Channel Id pin Terminal Mode

gear selector SUPER_DRIVE NI9425 5 DI7 8 Sinking Digital

gear selector DRIVE NI9425 5 DI6 7 Sinking Digital

gear selector NEUTRAL NI9425 5 DI5 6 Sinking Digital

gear selector REVERSE NI9425 5 DI4 5 Sinking Digital

Gas Pedal Position NI9205 3 AI1 2 Single Ended

Gas Pedal Validation NI9425 5 DI1 2 Sinking Digital

Brake Pedal Position NI9205 3 AI2 3 Single Ended

Brake Pedal Validation NI9425 5 DI2 3 Sinking Digital

F-L Wheel Speed Sensor NI9411 4 DI0a 1 Single Ended

F-R Wheel Speed Sensor NI9411 4 DI1a 2 Single Ended

R-L Wheel Speed Sensor NI9411 4 DI2a 3 Single Ended

F-R Wheel Speed Sensor NI9411 4 DI3a 6 Single Ended

BRAKE PRESSURE 1 NI9205 4 AI3 4 Single Ended

BRAKE PRESSURE 2 NI9205 4 AI4 5 Single Ended

Front motor temperature NI9205 3 AI8 20 Single Ended

Rear motor temperature NI9205 3 AI9 21 Single Ended

Front TCSS temperature NI9205 3 AI10 22 Single Ended

Rear TCSS temperature NI9205 3 AI11 23 Single Ended

PHISICAL CONNECTION

FPGA DOMAIN

AMBER-ULV System Integration

75

Table 4.4 FPGA acquisition information

NAME Channel Range Res. DATA Type SIGN
WORD

LENGTH

INTEGER

WORD

LENGHT

FPGA Loop Reference
SAMPLE

RATE [ms]

gear selector SUPER_DRIVE 0-24V / boolean / / / Gear Selector Acquisition 5

gear selector DRIVE 0-24V / boolean / / / Gear Selector Acquisition 5

gear selector NEUTRAL 0-24V / boolean / / / Gear Selector Acquisition 5

gear selector REVERSE 0-24V / boolean / / / Gear Selector Acquisition 5

Gas Pedal Position +/-10V 16bit Fixed point signed 16 5
GAS Pedal Position & Validation;

BRAKE Pedal Position & Validation
2

Gas Pedal Validation 0-24V / boolean / / /
GAS Pedal Position & Validation;

BRAKE Pedal Position & Validation
2

Brake Pedal Position +/-10V 16bit Fixed point signed 16 5
GAS Pedal Position & Validation;

BRAKE Pedal Position & Validation
2

Brake Pedal Validation 0-24V / boolean / / /
GAS Pedal Position & Validation;

BRAKE Pedal Position & Validation
2

F-L Wheel Speed Sensor 0-24V / boolean / / / Phonic Wheels Period-Meter 0.005

F-R Wheel Speed Sensor 0-24V / boolean / / / Phonic Wheels Period-Meter 0.005

R-L Wheel Speed Sensor 0-24V / boolean / / / Phonic Wheels Period-Meter 0.005

F-R Wheel Speed Sensor 0-24V / boolean / / / Phonic Wheels Period-Meter 0.005

BRAKE PRESSURE 1 +/-10V 12bit Fixed point 16 5
FL-RR Brake Pressure; FR-RL Brake

Pressure
10

BRAKE PRESSURE 2 +/-10V 12bit Fixed point 16 5
FL-RR Brake Pressure; FR-RL Brake

Pressure
10

Front motor temperature +/-10V 12bit Fixed point 16 5
Motor 1 Temp.; Motor 2 Temp.; AUX

1 Temp.; AUX 2 Temp.
250

Rear motor temperature +/-10V 12bit Fixed point 16 5
Motor 1 Temp.; Motor 2 Temp.; AUX

1 Temp.; AUX 2 Temp.
250

Front TCSS temperature +/-10V 12bit Fixed point 16 5
Motor 1 Temp.; Motor 2 Temp.; AUX

1 Temp.; AUX 2 Temp.
250

Rear TCSS temperature +/-10V 12bit Fixed point 16 5
Motor 1 Temp.; Motor 2 Temp.; AUX

1 Temp.; AUX 2 Temp.
250

SAMPLING & CONVERSION

FPGA DOMAIN

Chapter 4

76

Table 4.5 FPGA signal processing and interface with RT

ACQUISITION FPGA-RT INTERF.

NAME Filter Type Filter Characteristics
UPDATE

RATE [ms]
VALID RANGE

Validity Check

Variable
variable name

gear selector SUPER_DRIVE
truth table

conversion
7.2.2 5 0 or 1 Table 7.1 Gear Sel Pos

gear selector DRIVE
truth table

conversion
7.2.2 5 0 or 1 Table 7.1 Gear Sel Pos

gear selector NEUTRAL
truth table

conversion
7.2.2 5 0 or 1 Table 7.1 Gear Sel Pos

gear selector REVERSE
truth table

conversion
7.2.2 5 0 or 1 Table 7.1 Gear Sel Pos

Gas Pedal Position
Multichannel

Butterwoth Filter

Lowpass, 2nd order, rate

500Sa/s, cutoff f 1/5
2 tbd

AI Pedal Range

element 0
AI Pedal element 0

Gas Pedal Validation none none 2 none none Pedal Valitadion element 0

Brake Pedal Position
Multichannel

Butterwoth Filter

Lowpass, 2nd order, rate

500Sa/s, cutoff f 1/5
2 tbd

AI Pedal Range

element 1
AI Pedal element 1

Brake Pedal Validation none none 2 none none Pedal Valitadion element 1

F-L Wheel Speed Sensor period-meter multiple of 5 µs 10
check on update

within period

Wheel Update

Count element 0
Wheel Period element 0

F-R Wheel Speed Sensor period-meter multiple of 5 µs 10
check on update

within period

Wheel Update

Count element 1
Wheel Period element 1

R-L Wheel Speed Sensor period-meter multiple of 5 µs 10
check on update

within period

Wheel Update

Count element 2
Wheel Period element 2

F-R Wheel Speed Sensor period-meter multiple of 5 µs 10
check on update

within period

Wheel Update

Count element 3
Wheel Period element 3

BRAKE PRESSURE 1
Multichannel

Butterwoth Filter

Lowpass, 2nd order, rate

100Sa/s, cutoff f 1/10
10 tbd

AI Press Range

element 0
AI Press element 0

BRAKE PRESSURE 2
Multichannel

Butterwoth Filter

Lowpass, 2nd order, rate

100Sa/s, cutoff f 1/10
10 tbd

AI Press Range

element 1
AI Press element 1

Front motor temperature
Multichannel

Butterwoth Filter

Lowpass, 2nd order, rate

4Sa/s, cutoff f 1/4
250 tbd

AI Temps Range

element 0
AI Temps element 0

Rear motor temperature
Multichannel

Butterwoth Filter

Lowpass, 2nd order, rate

4Sa/s, cutoff f 1/4
250 tbd

AI Temps Range

element 1
AI Temps element 1

Front TCSS temperature
Multichannel

Butterwoth Filter

Lowpass, 2nd order, rate

4Sa/s, cutoff f 1/4
250 tbd

AI Temps Range

element 2
AI Temps element 2

Rear TCSS temperature
Multichannel

Butterwoth Filter

Lowpass, 2nd order, rate

4Sa/s, cutoff f 1/4
250 tbd

AI Temps Range

element 3
AI Temps element 3

PRE-PROCESSING VALIDITY CHECK

FPGA DOMAIN

AMBER-ULV System Integration

77

Table 4.6 Real Time data interface

ACQUISITION

NAME NAME PERIOD [ms] TYPE CONVERSION
INPUT DATA

TYPE

gear selector SUPER_DRIVE RLTM_Intrf_Lever_v17 FPGA sync IRQ5 no uint8

gear selector DRIVE RLTM_Intrf_Lever_v17 FPGA sync IRQ5 no uint8

gear selector NEUTRAL RLTM_Intrf_Lever_v17 FPGA sync IRQ5 no uint8

gear selector REVERSE RLTM_Intrf_Lever_v17 FPGA sync IRQ5 no uint8

Gas Pedal Position RLTM_Intrf_Pedals_v17 FPGA sync IRQ3 fxp to dbl fxp<±,16,5>

Gas Pedal Validation RLTM_Intrf_Pedals_v17 FPGA sync IRQ3 boolean to 0-1 + to dbl boolean

Brake Pedal Position RLTM_Intrf_Pedals_v17 FPGA sync IRQ3 fxp to dbl fxp<±,16,5>

Brake Pedal Validation RLTM_Intrf_Pedals_v17 FPGA sync IRQ3 boolean to 0-1 + to dbl boolean

F-L Wheel Speed Sensor RLTM_Intrf_WhlSpd_v17 FPGA sync IRQ4 uint16 to dbl uint16

F-R Wheel Speed Sensor RLTM_Intrf_WhlSpd_v17 FPGA sync IRQ4 uint16 to dbl uint16

R-L Wheel Speed Sensor RLTM_Intrf_WhlSpd_v17 FPGA sync IRQ4 uint16 to dbl uint16

F-R Wheel Speed Sensor RLTM_Intrf_WhlSpd_v17 FPGA sync IRQ4 uint16 to dbl uint16

BRAKE PRESSURE 1 RLTM_Intrf_Press_v17 FPGA sync IRQ2 fxp to dbl fxp<±,16,5>

BRAKE PRESSURE 2 RLTM_Intrf_Press_v17 FPGA sync IRQ2 fxp to dbl fxp<±,16,5>

Front motor temperature RLTM_Intrf_Temps_v17 100 fxp to dbl fxp<±,16,5>

Rear motor temperature RLTM_Intrf_Temps_v17 100 fxp to dbl fxp<±,16,5>

Front TCSS temperature RLTM_Intrf_Temps_v17 100 fxp to dbl fxp<±,16,5>

Rear TCSS temperature RLTM_Intrf_Temps_v17 100 fxp to dbl fxp<±,16,5>

INPUT LOOP DATA TYPE

REAL TIME

Chapter 4

78

Table 4.7 Real Time data processing information

ACQUISITION

NAME Scaling Loop Scaling Period
Measurement

unit
Scale Factor MIN value MAX value Offset

gear selector SUPER_DRIVE NA NA NA NO NA NA NO

gear selector DRIVE NA NA NA NO NA NA NO

gear selector NEUTRAL NA NA NA NO NA NA NO

gear selector REVERSE NA NA NA NO NA NA NO

Gas Pedal Position same as input same as input p.u. 1/5 0 1 NO

Gas Pedal Validation same as input same as input boolean NO 0 1 NO

Brake Pedal Position same as input same as input p.u 1/5 0 1 NO

Brake Pedal Validation same as input same as input boolean NO 0 1 NO

F-L Wheel Speed Sensor same as input same as input [rad/s] 27925.2680 0 130 NO

F-R Wheel Speed Sensor same as input same as input [rad/s] 27925.2680 0 130 NO

R-L Wheel Speed Sensor same as input same as input [rad/s] 27925.2680 0 130 NO

F-R Wheel Speed Sensor same as input same as input [rad/s] 27925.2680 0 130 NO

BRAKE PRESSURE 1 same as input same as input [bar] 25.0000 0 100 -12.5

BRAKE PRESSURE 2 same as input same as input [bar] 25.0000 0 100 -12.5

Front motor temperature same as input same as input [°C] 7.2.3 -30 200 7.2.3

Rear motor temperature same as input same as input [°C] 7.2.3 -30 200 7.2.3

Front TCSS temperature same as input same as input [°C] 7.2.3 -30 200 7.2.3

Rear TCSS temperature same as input same as input [°C] 7.2.3 -30 200 7.2.3

SCALING

REAL TIME

AMBER-ULV System Integration

79

Table 4.8 Real Time global variables

ACQUISITION

NAME OUT DATA TYPE
UPDATE RATE

[ms]
VARIABLE NAME

gear selector SUPER_DRIVE double same as input GV_LeverPos

gear selector DRIVE double same as input GV_LeverPos

gear selector NEUTRAL double same as input GV_LeverPos

gear selector REVERSE double same as input GV_LeverPos

Gas Pedal Position double same as input GV_Pedals, Element "Gas Signal"

Gas Pedal Validation double same as input GV_Pedals, Element "Gas Valid"

Brake Pedal Position double same as input GV_Pedals, Element "Brk Signal"

Brake Pedal Validation double same as input GV_Pedals, Element "Brk Valid"

F-L Wheel Speed Sensor double same as input GV_WheelSpeed, Element "FL Speed"

F-R Wheel Speed Sensor double same as input GV_WheelSpeed, Element "FR Speed"

R-L Wheel Speed Sensor double same as input GV_WheelSpeed, Element "RL Speed"

F-R Wheel Speed Sensor double same as input GV_WheelSpeed, Element "RR Speed"

BRAKE PRESSURE 1 double same as input GV_BrakePress, Element "Press Brk1"

BRAKE PRESSURE 2 double same as input GV_BrakePress, Element "Press Brk2"

Front motor temperature double same as input GV_Temps, Element "Temp Mot2"

Rear motor temperature double same as input GV_Temps, Element "Temp Mot1"

Front TCSS temperature double same as input GV_Temps, Element "Temp Aux2"

Rear TCSS temperature double same as input GV_Temps, Element "Temp Aux1"

OUTPUT

REAL TIME

Chapter 4

80

4.6 UCP Low Level Software

4.6.1 General approach for UCP algorithm

Part of the Ph.D. activity consisted in the development of the low-level algorithms for the correct

management of the field devices, sensors and actuators.

This activity required the development of two LabVIEW software, one for the FPGA chip, which

is then automatically translated to HDL programming language thanks to a dedicated tool, and

the other one for the real-time controller. The capability to exchange information between them

was also implemented.

Figure 4.17 reports the scheme of the implemented architecture. As it can be seen, the I/O

modules are connected to the FPGA. Dedicated functions like filtering, range validity checks,

“FIFO” buffers and other necessary computations were developed for the FPGA target of the

UCP. Additionally, actuator control loops were developed, such as the CAN frame transmissions,

digital outputs with PWM functions and analog outputs. The real-time microcontroller, as it

exchanges data with FPGA, receives the acquired or received information and sends the

reference values for output controls.

Figure 4.16 provides a legend of how the information exchange is managed from the FPGA to

the Real-Time controller of the UCP and vice-versa.

Figure 4.16 Data sharing strategies used in the UCP algorithm

As it is shown, three different solutions are adopted, depending on the criticality and the

requested update rate of the data.

As an example, the CAN frames from the BMS system and the traction drives are sent to the RT

processor as soon as they are received, by means of a FIFO buffer, in order to reduce the amount

of calculations on the FPGA deriving from rescaling [26].

Considering specific input variables, such as the gas and brake pedal positions, the acquiring and

processing loop on the FPGA sets an interrupt every time a new data is available to which the

RT controller synchronizes its interface loop with, in order to keep the total delay as low as

possible.

Eventually, for those variables that are associated to physical quantities with low dynamics,

simple timed loops are used.

SYNCHRONIZED WITH SAMPLING

TIMED

FIFO BUFFERED

AMBER-ULV System Integration

81

Figure 4.17 UCP software architecture scheme

D
R

IV
ER

D

EM
A

N
D

M
A

P
S

R
EF

ER
EN

C
E

G
EN

.

ES
C

D

EM
A

N
D

P
R

O
TE

C
.S

FPGA

P
ED

A
LS

(a
n

al
o

g
&

d

ig
it

al
)

G
EA

R
 L

EV
ER

(d
ig

it
al

)

W
H

EE
L

SP
EE

D

SE
N

SO
R

S
(h

ig
h

 s
p

e
e

d
)

TE
M

P
.S

(a
n

al
o

g)

B
R

A
K

E
P

R
ES

SU
R

ES
(a

n
al

o
g)

ED
G

E
D

ET
EC

TI
O

N
 &

P

ER
IO

D

M
EA

SU
R

LO
W

P
A

SS

FI
LT

ER
&

R
A

N
G

E
C

H
EC

K

LO
W

P
A

SS

FI
LT

ER
&

R
A

N
G

E
C

H
EC

K

LO
W

P
A

SS

FI
LT

ER
&

R
A

N
G

E
C

H
EC

K

P
O

SI
TI

O
N

D

ET
EC

TI
O

N

A
LG

O
R

IT
H

M

C
A

N
 1

(B
M

S
–

M
FU

)

R
EC

EI
V

E
FI

FO
 T

O

R
LT

M

B
U

IL
D

FR

A
M

ES
 T

O

M
FU

C
A

N
 3

(I
M

U
 –

 T
C

SS
)

(T
EL

EM
ET

R
Y

)

R
EC

EI
V

E,

D
EC

O
D

E,

SC
A

LE
 IM

U

B
U

IL
D

FR

A
M

ES
 T

O

TC
SS

,
TE

LE
M

ET
R

Y

C
A

N
 4

(T
R

A
C

TI
O

N
)

R
EC

EI
V

E
FI

FO
 T

O

R
LT

M

B
U

IL
D

FR

A
M

ES
 T

O

D
R

IV
ES

C
A

N
 5

(E
P

S)

R
EC

EI
V

E
&

D

EC
O

D
E

EP
SB

U
IL

D

FR
A

M
ES

 T
O

EP

S

REAL TIME CONTROLLER

FI
FO

IN

TE
R

FA
C

E,
FR

A
M

E
D

EC
O

D
ESE

N
D

 D
A

TA

FO
R

 M
FU

SC
A

LI
N

G
IM

U
D

A
TA

SE
N

D
 D

A
TA

FO

R
 T

C
SS

 &

TE
LE

M
ET

R
Y

FI
FO

IN

TE
R

FA
C

E,
FR

A
M

E
D

EC
O

D
ESE

N
D

 D
A

TA

FO
R

 D
R

IV
ES

SC
A

LI
N

G
EP

S
D

A
TA

SE
N

D
 D

A
TA

FO

R
 E

P
S

SC
A

LI
N

G
P

ED
A

LS
D

A
TA

C
O

N
V

ER
SI

O
N

P
R

ES
S

D
A

TA

C
O

N
V

ER
SI

O
N

W
H

EE
L

SP
EE

D
D

A
TA

C
O

N
V

ER
SI

O
N

TE
M

P
S

D
A

TA

R
T

-
FP

G
A

 IN
TE

R
FA

C
E

ES
C

A
LG

O
R

IT
H

M

TRACTION
MANAGEMENT

STABILITY
CONTROL

UCP

Chapter 4

82

Figure 4.18 shows what the software developed (the real-time part) looks like in the LabVIEW

environment.

The lower part of the code snippet is relative to the traction management and stability control

algorithms, while the whole upper part is formed by the low-level functions, which contains, in

addition to the communication with the FPGA, all the scaling, decoding and filtering functions

required.

Figure 4.18 Real Time software

AMBER-ULV System Integration

83

In the following, some examples are reported with the purpose to show the general coding

strategy used in the development of the UCP software.

4.6.2 Low Level I/O functions

4.6.2.1 Gas and Brake pedal acquisition

Figure 4.19 and Figure 4.20 show the implementation of the Gas and Brake pedal acquisition for

the FPGA and the real-time controller respectively. The two pedals are managed together in the

same loop both on the FPGA and RT side. In the FPGA loop it can be seen how both the analog

signals and digital signals (see 4.2.2.1) are acquired simultaneously, with a sampling period of 2

ms. Moreover, for the analog signals a 2nd order Butterworth filter is applied, in order to reduce

noise. A range validity check is also performed with the purpose of increasing the detection

probability of hardware failures in the acquisition chain.

Figure 4.19 FPGA loop for Gas and Brake pedal acquisition

After the acquisition and signal processing loop has finished, it sets an interrupt the RT

synchronizes with, as it can be seen in Figure 4.20. In the RT loop the signal is scaled to [pu.]

dividing it by the maximum output of the sensor, in this case 5 V.

After the processing described above, the variables are addressed into a global variable and are

then available for any functions that need this information within the RT software side.

Chapter 4

84

Figure 4.20 Real Time loop for Gas and Brake pedal acquisition

4.6.2.2 Direction lever acquisition

Figure 4.21 shows the FPGA loop in charge of acquiring and computing of the direction lever

position. Although the sampling frequency of the four digital signals is set to 500 Sa/s, the

acquisition loop is designed so that a transition in the lever position is trusted only if the signals

remain stable within a time window of 50 ms, in order to discard any possible spike, thus

preventing unexpected vehicle behaviour.

Figure 4.21 FPGA loop for direction lever acquisition

The digital signals are then converted into a position value according to the truth table presented

in the following Table 4.9.

Unexpected values (which may be caused by a hardware failure) are assigned as “GEAR ERROR”,

and this state is safely handled by the traction management algorithms in the RT target.

AMBER-ULV System Integration

85

Lever Position
“DI4”

value

“DI5”

value

“DI6”

value

“DI7”

value

Boolean

array to

number

Output

REVERSE 1 0 0 0 1 1

NEUTRAL 0 0 0 0 0 2

DRIVE 0 1 1 0 6 3

SUPER

DRIVE
0 1 0 1 10 4

GEAR

ERROR
? ? ? ?

None of the

previous
5

Table 4.9 Truth Table for the lever position

As for the Gas and Brake pedals, the lever position is also sent, as soon as it is available, to the

real-time target with an interrupt synchronization mechanism.

As it can be seen in Figure 4.22, its value is then made available for the whole RT code through

a global variable.

Figure 4.22 Real Time loop for direction lever acquisition

4.6.2.3 Temperature acquisition

To ensure safe operation of the prototype, it is necessary to measure the temperature of critical

components, in order to trigger the necessary protections in case of abnormalities.

On the AMBER vehicle, some critical components, such as traction inverters and BMS,

independently measure system temperatures and transmit them to the UCP via CAN-Bus. The

two traction motors and actuators for the stability control (TCSS) are also equipped with

temperature sensors but they are acquired directly by the UCP.

Figure 4.23 shows the acquisition loop implemented on the FPGA. It performs the acquisition

with a sample period of 250 ms, the low-pass 2nd order Butterworth filter and the range check

for two motor temperatures and two TCSS temperatures, simultaneously.

Chapter 4

86

Figure 4.23 FPGA loop for motors and TCSSs temperatures acquisition

The acquired temperatures are then received by the RT loop shown in Figure 4.24, in which the

acquired voltage is scaled to obtain degrees Celsius.

As described in the previous chapters, motor and TCSS temperatures are measured by means of

thermistors, connected in voltage dividers. The voltage—temperature characteristics is

therefore non-linear.

AMBER-ULV System Integration

87

Figure 4.24 Real Time loop for motors and TCSSs temperatures acquisition

Chapter 4

88

In order to simplify the conversion, the voltage—temperature relationship was linearized in the

normal operating range, obtaining the trends shown in Figure 4.25 and Figure 4.26, for the

measurement of motor and TCSS temperatures respectively.

A trend line is also shown in the figures, whose equation was used as conversion factor, as shown

in Figure 4.24.

Figure 4.25 Linearized motor temperature sensor characteristics

Figure 4.26 Linearized TCSS temperature sensor characteristics

y = 26,784x - 1,052
10

30

50

70

90

110

130

0.0 1.0 2.0 3.0 4.0

Te
m

p
er

at
u

re
 [

°C
]

Voltage [V]

y = -31,347x + 77,452
20

25

30

35

40

45

50

55

60

65

70

0.3 0.8 1.3 1.8

Te
m

ep
ra

tu
re

 [
°C

]

Voltage [V]

AMBER-ULV System Integration

89

4.6.2.4 Brake pressure acquisition

As described earlier, the hydraulic pressure of the two brake circuits is measured on the AMBER-

ULV prototype. The two pressure sensors provide a ratiometric voltage signal proportional to

the applied hydraulic pressure, acquired by the loop shown in Figure 4.27, in which the signals

are also filtered and the validity range is checked.

Figure 4.27 FPGA loop for brake pressure acquisition

The signals, acquired within a sampling period of 10 ms, are then sent to the RT loop, in which

they are scaled according to the sensor specifications and made available in a dedicated global

variable, as shown in Figure 4.28.

Chapter 4

90

Figure 4.28 Real Time loop for brake pressure acquisition

AMBER-ULV System Integration

91

4.6.2.5 Wheel speed acquisition

The individual wheel speed evaluation can be considered, as a more precise definition, an

estimation, rather than a measurement.

As introduced in paragraph 4.2.2.6, in fact, the measurement principle consists of a proximity

sensor facing a phonic wheel which in turn is rigidly coupled to the wheel hub. The proximity

sensor changes its digital output state whether or not it is in front of a tooth of the phonic wheel.

With the wheel moving, the output signal assumes a square waveform (see Figure 4.4).

By measuring the waveform period, or its frequency, we get information about the wheel

rotational speed.

On the FPGA software (Figure 4.29), the wheel speed is estimated through the period-meter

algorithm. The period estimation is carried out for both rising and falling edges of the acquired

signal. Moreover, a validity variable is used to notify that, at very low speeds, the update may

not occur within a given time limit.

Figure 4.29 FPGA loop for wheel speed acquisition

The FPGA function calculates the signal period as a multiple of 5 µs, which is the sampling period

of the digital signals coming from the proximity sensors. At each sampling a counter is

incremented and its value is written on the Wheel Period variable each time an edge is detected.

The function running on the RT target, then, calculates the wheels speed through Equation 4-1,

where 𝜔𝑊 is the calculated wheel speed in [rad/s], 𝑇𝑆𝑎 is the sampling period in [s], 𝑧 is the

number of teeth of the phonic wheel and 𝑇𝐶𝑛𝑡 is the counter value between two signal edges of

the same direction.

𝜔𝑊 =
1

𝑇𝑆𝑎

2𝜋

𝑧

1

𝑇𝐶𝑛𝑡

Equation 4-1

Chapter 4

92

The relationship expressed in Equation 4-1 is graphically shown in Figure 4.30.

Figure 4.30 Period – Wheel Speed relationship

In Figure 4.31 the Real-Time function is shown. It gets the period update from FPGA every 10

ms, along with the validity check. Then, the signal is converted as described and filtered through

a moving window algorithm and, finally, the values are stored in a global variable.

Figure 4.31 Real Time loop for wheel speed estimation

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000

W
h

ee
l S

p
ee

d
 [

ra
d

/s
]

Period Counter []

AMBER-ULV System Integration

93

4.6.3 Low Level CAN-bus functions

As previously described, four CAN networks are connected to the UCP in order to exchange

information with the different field devices. The low-level coding for the field bus management

is here reported.

4.6.3.1 “CAN #1” Receive

As summarized in Table 4.1, the “CAN#1” connects the central controller with the two separate

BMSs and the vehicle human-machine interface (MFU). Considering the receiving functions,

Figure 4.32 shows the FPGA loop in charge of receiving frames from the CAN network “CAN#1”.

Figure 4.32 FPGA loop for the CAN #1 frame receiving

The frames are buffered in a FIFO as soon as they are received. This FIFO, in turn, is emptied by

a RT loop, as seen in Figure 4.33.

In the real-time loop, the conversion of the data field is performed according to the frame

arbitration identifier and the CAN specifications.

Figure 4.33 Real Time loop for the CAN #1 frame receiving

Chapter 4

94

4.6.3.2 “CAN #3” Receive

CAN network “CAN#3” allows the information exchange between the UCP, the stability control

actuators, the serial to CAN interface for the IMU sensor and a telemetry device.

To be more precise, the UCP receives only frames coming from the IMU interface, while it sends

one reference frame to the TCSS and eleven frames to the telemetry system.

Figure 4.34 FPGA loop for the CAN #3 frame receiving

Figure 4.34 shows the receiving functions for the CAN frames broadcasted by the IMU CAN

interface.

Unlike “CAN#1”, where the frames are queued in a FIFO and processed by RT, the frames

received on “CAN#3”, containing the x-IMU outputs, are directly processed on the FPGA, so that

no operation are required on the RT side. This is shown in Figure 4.35.

AMBER-ULV System Integration

95

Figure 4.35 Real Time loop for the CAN #3 frame receiving

Chapter 4

96

4.6.3.3 “CAN #4” Receive

On the AMBER-ULV system, “CAN#4” is reserved for communication between the two traction

drives and the UCP. Traction drives send all the relevant states and measures, while UCP sends

the torque reference command.

The receiving frame is managed in the same way as described for the “CAN#1”. This means that

the received frames are buffered in a FIFO which is read directly by the RT target and frame

conversions are performed on that target. This logic is reported in Figure 4.36 and Figure 4.37.

Figure 4.36 FPGA loop for the CAN #4 frame receiving

Figure 4.37 Real Time loop for the CAN #4 frame receiving

4.6.3.4 “CAN #5” Receive

The Electric Power Steering receives from UCP the enable command and the vehicle speed

information (for adjusting the response) and returns the actual steering angle.

AMBER-ULV System Integration

97

Figure 4.38 FPGA loop for the CAN #5 frame receiving

The frame containing the steering angle is directly converted on FPGA (Figure 4.38) and the RT

loop is updated with an interrupt.

The same RT loop that receives information from EPS, also sends to FPGA the enable command

and the vehicle speed (Figure 4.39).

Chapter 4

98

Figure 4.39 RT loop for the CAN #5 frame receiving

AMBER-ULV System Integration

99

4.6.3.5 “CAN#1” Transmission

The UCP sends through CAN-Bus “CAN#1” vehicle information which are used by the MFU for

vehicle control and Human-Machine Interface purposes.

The variables to be transmitted to MFU are scaled and converted in an integer representation

within the RT loop shown in Figure 4.40.

Figure 4.40 Real Time loop for the CAN #1 frame transmitting

Chapter 4

100

On the FPGA side, a FPGA loop is implemented for each frame to be transmitted to the UCP

(Figure 4.41). Each loop is in charge of properly filling the data field of each defined frame and

transmit it to the CAN network.

Figure 4.41 FPGA loop for the CAN #1 frame transmitting

4.6.3.6 “CAN#3” Transmission

As mentioned earlier, the UCP sends braking torque references through “CAN#3” to the TCSS

actuator.

The functions for this task are shown in the following Figure 4.42 to Figure 4.48.

For the “CAN#3” bus, the RT side is developed with the same strategy presented for “CAN#1”.

The RT function of Figure 4.42 shows the single conversion applied to the TCSS references, that

is the double precision float to integer conversion.

Figure 4.43 and Figure 4.44 show the RT loops scaling and updating to FPGA the variables for the

Telemetry system. Also, some information from the MFU loop (Figure 4.40) are bridged over

“CAN#3”.

Figure 4.45 to Figure 4.48, moreover, show the FPGA loops for the transmission of the TCSS

reference and Telemetry frame.

“CAN#3” is the network with the highest number of frames sent by UCP. Most of them also have

the same transmission rate of 100 Hz. For this reason, each frame, composed through dedicated

function on FPGA, is buffered into a FIFO memory. The CAN transmitting function takes the

frames to be sent from that FIFO.

AMBER-ULV System Integration

101

Figure 4.42 Real Time loop for the CAN #3 frame transmitting (TCSS reference)

Chapter 4

102

Figure 4.43 Real Time loop for the CAN #3 frame transmitting (Telemetry-1)

AMBER-ULV System Integration

103

Figure 4.44 Real Time loop for the CAN #3 frame transmitting (Telemetry-2)

Chapter 4

104

Figure 4.45 FPGA loop for the CAN #3 frame transmitting (1)

Figure 4.46 FPGA loop for the CAN #3 frame transmitting (2)

AMBER-ULV System Integration

105

Figure 4.47 FPGA loop for the CAN #3 frame transmitting (3)

Figure 4.48 FPGA loop for the CAN #3 frame transmitting (4)

Chapter 4

106

4.6.3.7 “CAN#4” Transmission

For each traction drive, the commands sent to them are the power on request, which determine

whether or not the traction drive is enabled to follow a torque reference, and the torque

reference itself. The logic is shown in Figure 4.49 and Figure 4.50.

Figure 4.49 RT loop for the CAN #4 frame transmitting

AMBER-ULV System Integration

107

Figure 4.50 FPGA loop for the CAN #4 frame transmitting

4.6.3.8 “CAN#5” Transmission

The EPS enable frame and vehicle speed frame are built and sent, on the FPGA side, as displayed

in Figure 4.51. This information comes from the RT thanks to the same receiving loop of Figure

4.39.

Figure 4.51 FPGA loop for the CAN #5 frame transmitting

Chapter 4

108

4.6.4 High-level functions interface

As described in Chapter 3, the integration process also included the development of a low-level

interface for the automatically generated high-level code.

Figure 4.52 shows the low-level interface for both high-level algorithms, namely the Traction

Management (described in Chapter 2) and the stability control (provided by the partner).

Figure 4.52 Interface for high-level algorithms

For both the high-level algorithms, a start up function is implemented which can be seen on the

left side of Figure 4.52 and enlarged in Figure 4.53. This loads the model library from the path it

is stored in the controller’s memory, opens the “parameter interface” allowing on-line tuning of

model parameters and, critically, gets the model period (set in the pre-build configuration),

which will be used as loop timing, ensuring the correct behaviour of the compiled model.

Figure 4.53 High-level code initialization

4.6.4.1 Traction Management

The Traction Management algorithm is, therefore, run as shown in Figure 4.54. As explained in

Chapter 3, the LabVIEW function only treats the input ports and output ports as floating point

array. For ensuring the correct address of each variable, a dedicated function was developed,

shown in Figure 4.55.

The output array is indexed in a dedicated global variable to make the model output variables

available for the whole control algorithm.

AMBER-ULV System Integration

109

Figure 4.54 Traction Management algorithm execution

Chapter 4

110

Figure 4.55 Traction Management input array update

AMBER-ULV System Integration

111

4.6.4.2 Stability Control

The Stability Control function is handled at low-level exactly as the Traction Management is, so

that Figure 4.56 shows how the built model is executed, while Figure 4.57 displays the input

array indexing with all the required variables.

Figure 4.56 Stability Control algorithm execution

Chapter 4

112

Figure 4.57 Stability Control input array update

113

Chapter 5

Prototype demonstration tests

The research activities performed during the Ph.D. and described in the previous chapters, were

applied for the deployment on a demonstration prototype, part of the AMBER-ULV project.

The electric vehicle was extensively tested, aiming to prove the successful outcomes of the

development.

Among the performed mechanical, industrial, safety and electric tests, the followings will be

described in this section, relevant to this dissertation:

 Component tests;

 Vehicle “shakedown” tests;

 Acceleration;

 Energy consumption characteristics;

 Real traffic performance;

 Stability.

Figure 5.1 AMBER-ULV “T3” demonstration prototype

Chapter 5

114

5.1 Component test

As described in Chapter 4, all the sensors, hardware connections and field buses were tested at

the LEMAD laboratory before their installation on the vehicle prototype.

A component-level check was carried out after the prototype final assembly as well, proving the

correct installation of the low-level devices.

All the voltage levels, scaling and conversions performed by the high-level traction management

software were checked and recorded. The communication between the controller ECU and the

CAN bus devices was tested both in “reading” and “writing” mode, the latter correctly

performed the transmission of manual commands to the various devices.

Figure 5.2 shows the controller box, also containing the hardware connection circuitry described

in Chapter 4.

Figure 5.2 Example of sensor’s hardware circuitry on the vehicle demonstrator

5.2 Telemetry system

For the security during tests and for post-processing purposes, a telemetry and data-log system

was set up on the AMBER-ULV prototype. This was accomplished by the vehicle ECU

broadcasting over a CAN network some of its internal variables and most of the measurements.

The broadcasted quantities are listed in Table 5.1 and Table 5.2

A PC interface able to display these quantities (Figure 5.3) and log them in a spreadsheet file was

developed for the purpose.

Prototype demonstration tests

115

Index Variable
Meas.

Unit
Notes

1 Timestamp [s]

2 Vehicle speed [m/s]

3 Rear requested torque [Nm]

4 Front requested torque [Nm]

5 Rear actual torque [Nm]

6 Front actual torque [Nm]

7 Rear maximum positive torque [Nm]

8 Rear maximum negative torque [Nm]

9 Front maximum positive torque [Nm]

10 Front maximum negative torque [Nm]

11 Rear drive speed [rpm]

12 Front drive speed [rpm]

13 Rear battery current [A]

14 Front battery current [A]

15 Rear battery voltage [V]

16 Front battery voltage [V]

17 Rear maximum cell voltage [V]

18 Rear minimum cell voltage [V]

19 Front maximum cell voltage [V]

20 Front minimum cell voltage [V]

21 Gas pedal position [pu]

22 Brake pedal position [pu]

23 “brk_ref” [pu] Traction Management internal variable

24 “brk_ref” [pu] Traction Management internal variable

25 “Lim_pwr R” [pu] Traction Management internal variable

26 “Lim_pwr F” [pu] Traction Management internal variable

27 “Limit R” [pu] Traction Management internal variable

28 “Limit F” [pu] Traction Management internal variable

29 “SoC equl” [pu] Traction Management internal variable

30 “rear drive status” [code] Traction Management internal variable

31 “front drive status” [code] Traction Management internal variable

32 “Rear limitation” [code] Traction Management internal variable

33 “Front limitation” [code] Traction Management internal variable

34 “Hill” [flag] Traction Management internal variable

35 “on T R” [flag] Traction Management internal variable

36 “on T F” [flag] Traction Management internal variable

37 “Shutdown” [flag] Traction Management internal variable

38 “Safety mode” [flag] Traction Management internal variable

39 “Spare1” [flag] Traction Management internal variable

40 “Spare2” [flag] Traction Management internal variable

41 “Spare3” [flag] Traction Management internal variable

Table 5.1 Telemetry and logged variables

Chapter 5

116

Index Variable
Meas.

Unit
Notes

42 Rear inverter temperature [°C]

43 Rear motor temperature [°C]

44 Front inverter temperature [°C]

45 Front motor temperature [°C]

46 Rear TCSS temperature [°C]

47 Front TCSS temperature [°C]

48 Brake pressure circuit 1 [bar]

49 Brake pressure circuit 2 [bar]

50 Steering angle [code]

51 TCSS LF torque request [Nm] Stability Control Output

52 TCSS RF torque request [Nm] Stability Control Output

53 TCSS LR torque request [Nm] Stability Control Output

54 TCSS RR torque request [Nm] Stability Control Output

55 TCSS LF status [code]

56 TCSS RF status [code]

57 TCSS LR status [code]

58 TCSS RR status [code]

59 TCSS LF actual value [deg]

60 TCSS RF actual value [deg]

61 TCSS LR actual value [deg]

62 TCSS RR actual value [deg]

Table 5.2 Telemetry and logged variables

Prototype demonstration tests

117

Figure 5.3 Telemetry interface

Chapter 5

118

5.3 Shakedown

The shakedown represents the first real-environment test of a prototype. Its objective is to

demonstrate that the system can operate all-in-all and to bring to light as many design-induced

early failures as possible.

For the AMBER-ULV prototype, the shakedown test was conducted for several days, both on

closed circuit performing predefined speed profiles and on public roads, under real traffic

conditions.

During these tests, the telemetry was continuously monitored, in order to detect any

abnormalities as soon as possible, while the logged data were post-processed between test

sessions. Hereinafter, some results are proposed.

As it can be seen from Figure 5.4, the presented test is constituted by four accelerations and

decelerations. According to the Gas and Brake pedal position (see Figure 5.6), the two drives

deliver positive or negative torque, so that energy is recovered during decelerations.

Figure 5.4 Shakedown: Speed, power, motor torques

Figure 5.5 displays the individual battery power exchanged by both battery packs (left part of

the graphs), where the energy recovery is highlighted, although blended with the fiction brakes

during very sudden decelerations, as evinced from the brake pressure graph.

Prototype demonstration tests

119

Figure 5.5 Shakedown: Battery power, acquired temperatures, brake hydraulic pressure

Figure 5.5 also reveals an abnormality on the rear motor temperature (upper-right graph).

During subsequent investigation, it turned out to be due to insufficient air flow to the rear motor

assembly.

Figure 5.6 Shakedown: Pedal positions, traction management internal variables

p
u

p
u

p
u

p
u

Chapter 5

120

5.4 Acceleration

The acceleration is one of the parameters to determine the performance of a vehicle. It consists

in applying, with the vehicle at standstill, the maximum available force and measuring the time

it takes to reach a certain speed or to travel a certain distance.

Several acceleration tests were carried out with the AMBER-ULV prototype. Figure 5.7 provides

an example in which the variables of interest concerning the acceleration tests, recorded from

the telemetry system, are displayed.

Figure 5.7 Acceleration: Vehicle speed, gas pedal position, motor torques

It should be noted that some parts of the prototype chassis were realized with metallic materials

rather than composites as originally drafted. This led to an increase in weight compared to the

initial design and, therefore, the acceleration performance was slightly lower than expected.

Prototype demonstration tests

121

5.5 Energy consumption

The energy consumption is one of the most important features of any vehicle. The characteristic

can be experimentally determined driving at constant speed on a flat and straight road and

measuring the power used by the car.

By conducting this test at various speeds, the power vs. speed curve can be obtained.

Figure 5.8 Prototype energy consumption characteristic

For the AMBER-ULV prototype, consumption tests were carried out on a suitable stretch road

and produced the characteristic of Figure 5.8, obtained as a curve fitting of experimental power

measures taken at different speeds up to 80 km/h.

Figure 5.9 Location of the experimental energy consumption measurements

Chapter 5

122

5.6 Real traffic shakedown

After adequate tests on closed tracks, real-traffic tests were also performed on the public roads

of Rome.

The following graphs are an excerpt obtained from the telemetry log.

Figure 5.10 displays the vehicle speed profile and the corresponding motor speed for both

drives, while Figure 5.11 represent the requested and actual motor torques.

Figure 5.10 Road tests: Vehicle speed, motor speeds

Figure 5.11 Road tests: motor torques

Figure 5.12 shows the instantaneous battery power (for both front and rear battery) obtained

in post-processing as product of the battery current and the battery voltage, which are shown

in Figure 5.13.

Prototype demonstration tests

123

Figure 5.12 Road tests: Battery power

Figure 5.13 also shows the minimum and maximum cell voltages for the rear and the front

battery.

Figure 5.13 Road tests: Battery measurements (current, voltage, minimum and maximum cell voltages)

Chapter 5

124

Figure 5.14 Road tests: Drive temperatures, TCSS temperatures, brake hydraulic pressures

Figure 5.14 displays measurements like the drive temperatures, the controlled differential

temperatures and the hydraulic braking pressure. On the other hand, Figure 5.15 is related to

internal variables of the controller which were used during tests as system state monitors.

In particular, it can be seen that the Limit Code for the rear drive ranges between 32 and 48.

These values indicate that motor over-temperature (32) and motor + inverter overtemperature

(48) limits are in effect. From Figure 5.14, in fact, the motor temperature exceeded 100 °C and

the inverter temperature reached more than 60 °C, which are the respective limit intervention

thresholds.

Figure 5.15 Road tests: traction management internal variables

Prototype demonstration tests

125

The effect of the limit intervention can be appreciated in Figure 5.16, enlargement of Figure 5.11

and representing the trend of requested and applied torques. Considering the rear drive, the

actual torque (cyan line) slightly differs from the requested one (blue line) because of the

limitation.

Figure 5.16 Road tests: detail of motor torques: effect of limitation

As it can be seen in Figure 5.11, the motor requested torque can be either positive or negative.

This means, as explained in shakedown, that the two drives help to slow the vehicle down during

braking, recovering energy that is then stored in the batteries, as seen in Figure 5.12 where the

battery power becomes negative during braking.

The effect of recovery braking is better appreciated in Figure 5.17: the blue line represents the

total energy required to overcome the considered driving cycle, computed by integrating the

positive battery power, while the red line represents the recovered energy, as integration of the

negative battery power.

Chapter 5

126

Figure 5.17 Road tests: Energy recovery during braking

It is clear that the traction management algorithm, allowing energy regeneration during braking,

made it possible to save more than 20% of the total energy during real-traffic conditions.

5.7 Stability

The good dynamic behavior of the vehicle was among the AMBER-ULV project objectives and it

was assessed through appropriate tests.

The typical test for evaluating the vehicle stability is the sine with dwell manoeuvre, defined by

the ISO 19365 standard as a tool for validating the vehicle dynamic simulations. During the test,

the vehicle is steered by a robot following a steering pattern of a sine wave at a frequency of 0.7

Hz with a delay of 500 ms beginning at the second peak amplitude, as shown in Figure 5.18.

Figure 5.18 Stability test: “Sine with dwell” pattern (ISO 19365:2016)

Prototype demonstration tests

127

This test was conducted on the AMBER-ULV prototype by a licensed test centre in Bollate (MI) –

Italy.

The following graphs report the variables of interest for the stability evaluation through the sine

with dwell manoeuvre, which mainly are the vehicle speed (Figure 5.19), the steering angle, the

lateral acceleration and the yaw rate (Figure 5.20).

Figure 5.19 Stability test: Vehicle speed

Figure 5.20 Stability test: Steering angle, lateral acceleration, yaw rate

Chapter 5

128

Figure 5.21 Stability test: Motor torques

This test was repeated many times, with both left and right steering for the first half of the cycle

and for increasing entry speeds and steering angle amplitudes.

The passing criteria considers the yaw rate at the end of the cycle, which should be smaller than

a given parameter.

The presented example refers to an entry speed of 60 km/h and a steering amplitude of 120 °,

with a left steering for the first half of the cycle.

Figure 5.22 Stability test: place for “sine with dwell” manoeuvre

129

Conclusions

This thesis presents several aspects related to the design of a multi-drive traction system, in

which the tractive power is divided between more than one motor.

The dissertation has general validity although, by way of example, it mainly refers to a traction

system for compact electric car with two drives and two battery packs.

The first part provides analysis of the literature related to multi-drive powertrains. It describes

the most common configurations and enunciate their advantages and disadvantages.

Among the benefits that are common across multi-drive powertrains, the effects of the power

splitting, such as the extension of the high power operating range and vehicle dynamics

enhancements, are explained. Moreover, the technical and economic feasibility of a very low

voltage power system (48 V) is performed.

Because the increased complexity of the control represents the main drawback of multi-drive

powertrains, a traction management algorithm was studied. The algorithm takes commands

from the driver and generates the torque references for all the drives, while managing the state

of the system with the implementation of proper protections and complying to the integration

of an external stability control algorithm.

The studies conducted on multi-drive powertrains found practical application in the European

project “AMBER-ULV”, for which the LEMAD laboratory developed a dual-axle, dual-drive, dual-

battery traction system and its controller. In order to make the prototype work, an extensive

integration activity was carried out defining the control system architecture, designing the

connections with the field and writing the low-level software for interfacing signals between the

controller and the vehicle, and manage high-level algorithms.

The model-based design approach was exploited to effectively develop the control system and

to automatically generate the code for the microprocessor starting from the aforementioned

traction management algorithm.

The completed prototype was extensively tested in several conditions, aiming to demonstrate

the validity of the studies presented in this dissertation.

For the good outcome of the tests, a telemetry system was devised and deployed. It allowed to

effectively monitor the vehicle parameters during tests and record them for post-processing

purposes.

Examples of the conducted tests, which include accelerations, energy consumption estimation

and real-traffic runs, are presented in this thesis.

The proposed approach for the development of multi-drive systems allows realizing electric

powertrain for cars with the following characteristics:

 Higher reliability of the electric driveline, due to the intrinsic redundancy

characteristics of the system and to the capability of the control system to operate the

powertrain even in case of component faults.

130

 Possibility to realize a full electric powertrain for compact cars using inverter with

limited kVA ratings, sized for a fraction of the whole traction power. This characteristic

enables the possibility to realize a full electric car using a voltage level for the power

system of 48 V.

 Possibility to enhance the road handling of the vehicle by combining the traction

system with the mechanical brake control implemented in the active stability system

(ESC).

The listed outcomes of the project are paired with the reduction of the system cost, mainly due

to the use of smaller size and simpler technology components. In this way the proposed

approach for realizing the control system of multi drive, full electric powertrains facilitates the

implementation of low-voltage, multi-drive system.

The results of this Ph.D. work could significantly contribute to reducing the cost of electric

powertrain, yielding to increase the spreading of electric vehicles.

131

References
[1] E. Chemali, M. Peindl, P. Malysz, and A. Emadi, “Electrochemical and Electrostatic Energy

Storage and Management Systems for Electric Drive Vehicles: State-of-the-Art Review
and Future Trends,” IEEE J. Emerg. Sel. Top. Power Electron., 2016.

[2] J. M. Timmermans et al., “Batteries 2020 - Lithium-ion battery first and second life ageing,
validated battery models, lifetime modelling and ageing assessment of thermal
parameters,” 2016 18th Eur. Conf. Power Electron. Appl. EPE 2016 ECCE Eur., 2016.

[3] “AMBER-ULV (604766) Grant agreement - Annex 1: ‘Description Of Work,’” 2013.

[4] S. Cui, S. Han, and C. C. Chan, “Overview of multi-machine drive systems for electric and
hybrid electric vehicles,” Transp. Electrif. Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conf.
Expo, no. Mcm, pp. 1–6, 2014.

[5] V. Agarwal and M. Dev, “Introduction to hybrid electric vehicles: State of art,” Eng. Syst.
(SCES), 2013 Students Conf., pp. 1–6, 2013.

[6] C. Geng, L. Mostefai, M. Denai, and Y. Hori, “Direct yaw-moment control of an in-wheel-
motored electric vehicle based on body slip angle fuzzy observer,” IEEE Trans. Ind.
Electron., pp. 1411–1419, 2009.

[7] L. De Novellis et al., “Direct yaw moment control actuated through electric drivetrains
and friction brakes: Theoretical design and experimental assessment,” Mechatronics, vol.
26, pp. 1–15, 2015.

[8] Q. Lu et al., “Enhancing vehicle cornering limit through sideslip and yaw rate control,”
Mech. Syst. Signal Process., vol. 75, pp. 455–472, 2016.

[9] L. De Novellis, A. Sorniotti, and P. Gruber, “Driving modes for designing the cornering
response of fully electric vehicles with multiple motors,” Mech. Syst. Signal Process.,
2015.

[10] Y. Li, G. Yin, X. Jin, C. Bian, and J. Li, “Impact of Delays for Electric Vehicles With Direct
Yaw Moment Control,” J. Dyn. Syst. Meas. Control, 2015.

[11] C. Rossi, D. Pontara, M. Bertoldi, and D. Casadei, “Two-motor , two-axle traction system
for full electric vehicle,” EVS29 Int. Batter. Hybrid Fuel Cell Electr. Veh. Symp., 2016.

[12] A. Patzak, F. Bachheibl, A. Baumgardt, G. Dajaku, O. Moros, and D. Gerling, “Driving range
evaluation of a multi-phase drive for low voltage high power electric vehicles,” 2015 Int.
Conf. Sustain. Mobil. Appl. Renewables Technol. SMART 2015, 2016.

[13] F. Bachheibl and D. Gerling, “High-current, low-voltage power net,” 2014 IEEE Int. Electr.
Veh. Conf. IEVC 2014, 2015.

[14] M. Orehek and C. Robl, “Model-based design of an ECU with data- and event-driven parts
using auto code generation,” Proc. 2001 ICRA. IEEE Int. Conf. Robot. Autom. (Cat.
No.01CH37164), pp. 1346–1351, 2001.

[15] M. Ahmadian, Z. J. Nazari, N. Nakhaee, and Z. Kostic, “Model based design and sdr,” 2nd
IEE/EURASIP Conf. DSP Enabled Radio, 2005.

[16] W. Li, G. Xu, H. Tong, and Y. Xu, “Design of Vehicle Control Unit Based on DSP for a Parallel
HEV,” 2007 IEEE Int. Conf. Autom. Logist., pp. 1597–1601, 2007.

[17] M. Hu, Y. Huang, C. Zhao, X. Di, B. Liu, and H. Li, “Model-based development and

132

automatic code generation of powertrain control system,” 2014 IEEE Conf. Expo Transp.
Electrif. Asia-Pacific (ITEC Asia-Pacific), 2014.

[18] A. Wagener, C. Koerner, and H. Kabza, “Simulation-Based Automatic Code Generation for
ECUs in Distributed Control Systems, Applied in a Testbed for a Hybrid Vehicle
Drivetrain,” IEEE Int. Symp. Ind. Electron., pp. 643–648, 2000.

[19] B. Vogel-Heuser, D. Schütz, T. Frank, and C. Legat, “Model-driven engineering of
Manufacturing Automation Software Projects - A SysML-based approach,” Mechatronics,
vol. 24, no. 7, pp. 883–897, 2014.

[20] J. Kang, S. Jin, and W. Lee, “Developing Software of Electronic Throttle Controller using
Automatic Code Generation Technique,” SICE-ICASE Int. Jt. Conf., pp. 4393–4397, 2006.

[21] P. M. Menghal and a J. Laxmi, “Real time control of electrical machine drives: A review,”
Power, Control Embed. Syst. (ICPCES), 2010 Int. Conf., 2010.

[22] S. E. Viswanathan and P. Samuel, “Automatic code generation using unified modeling
language activity and sequence models,” IET Softw., Jul. 2016.

[23] M. Yamazaki, S. Sureshbabu, M. Loftus, R. Crandell, and M. Brackx, “Analysis of
automatically generated vehicle system control software in a HIL environment,” Proc.
Am. Control Conf., vol. 4, pp. 3135–3140, 2002.

[24] A. Ingalalli, H. Satheesh, and M. Kande, “Platform For Hardware In Loop Simulation,”
2016 Int. Symp. Power Electron. Electr. Drives, Autom. Motion, 2016.

[25] “High CPU usage when reading serial port.” [Online]. Available: http://forums.ni.com/.

[26] “Best Practices for DMA Applications (FPGA Module).” [Online]. Available:
http://zone.ni.com/.

133

Publications

C. Rossi, D. Pontara and D. Casadei, “e-CVT Power Split Transmission for Off-Road Hybrid-Electric

Vehicles,”. Proc. of 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE The

Institute of Electrical and Electronics Engineers, Inc., Coimbra (Portugal), 27 - 30 October 2014.

S. Schiavitti, C. Rossi and D. Pontara, “An innovative Energy Management System acting on

multiple battery packages,”. Proc. of 16th Stuttgart International Symposium on Automotive and

Engine Technology, Stuttgart (Germany), March 15-16, 2016.

C. Rossi, M. Alirand, A. Galli, P. Phiani and D. Pontara, “Achievements with Model-based

Development on the Innovative traction and stability system of the AMBER-ULV Car,”. Proc. of

16th Stuttgart International Symposium on Automotive and Engine Technology, Stuttgart

(Germany), March 15-16, 2016.

C. Rossi, D. Pontara, M. Bertoldi, D. Casadei, “Two-motor, Two-axle Traction System for Full

Electric Vehicle,” Proc. of EVS 29, Electric Vehicle Symposium & Exhibition, Montreal (Canada)

June 19-22 2016.

AMBER-ULV Project Deliverables

M. Alirand, D Pontara, P. Magnin: “Preliminary vehicle virtual model,”. AMBER-ULV Project

Deliverable D4.1, November 2014.

C. Rossi, Y Gritli, D. Casadei, F. Filippetti, D. Pontara: “Motor Control Algorithm,”. AMBER-ULV

Project Deliverable D3.3, January 2015.

C. Rossi, D. Pontara, M. Bertoldi: “Unified Hardware Control Board,”. AMBER-ULV Project

Deliverable D4.4, September 2016.

A. Galli, D. Pontara, M. Bertoldi, S. Gerstmayr: “Electric/Hydraulic Brake Blending,”. AMBER-ULV

Project Deliverable D6.2, August 2016.

A. Galli, S. Gerstmayr, O. Mannuß, D. Pontara, M. Bertoldi: “AMBER-ULV Demonstrator Results,”.

AMBER-ULV Project Deliverable D7.2, August 2016.

	0a_FrontespizioTesiDott_Pontara
	z_Tesi_Pontara_v00

