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ABSTRACT  
 

The mechanical performance of an asphalt mixture is largely dependent on the 

properties of its constituents and by the way they reciprocally interact in the 

bituminous layer. In particular, the stress-strain response of the road pavements is 

closely related to the rheological behavior of the bituminous binder and of its 

interaction with the finest part of the lytic skeleton. Therefore, it is important to study 

in the laboratory by means of advanced rheological tests, how mastics (Bitumen-Filler 

Systems) and mortars (Bitumen-Filler-Sand Systems) react to dynamic loads and 

thermal stresses. Moreover, the understanding of the contacts mechanisms within the 

bitumen-filler system, through 3D micro-mechanical models, should allow for a 

deeper analysis of the mastic rheological behavior. Based on these considerations, in 

a socio-economic context in which it is necessary to reduce the environmental impact 

caused by the construction and maintenance of transportation infrastructures, 

bituminous mastics containing different reclaimed fillers from the industrial 

production wastes were studied. For this purpose, advanced rheological tests have been 

first validated and then implemented and combined with the 3D DEM models 

development. Results showed that the methods used to study the bituminous mastics 

and mortars allowed to understand the effects due to the addition of innovative and 

recycled fillers within the mixtures blend, highlighting as these can increase the asphalt 

mixture performance during its service life. 
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ABSTRACT ITALIANO 
 

Le prestazioni meccaniche di una miscela di conglomerato bituminoso dipendono in 

gran parte dalle proprietà dei materiali che la compongono e dalle modalità con cui 

interagiscono reciprocamente. In particolare, la risposta tenso-deformativa delle 

sovrastrutture stradali è strettamente legata al comportamento reologico del legante 

bituminoso ed all’interazione che questo ha con la parte più fine dello scheletro litico. 

Risulta pertanto di fondamentale importanza studiare in laboratorio, attraverso test 

reologici avanzati, come mastici (sistema Bitume-Filler) e mortar (sistema di Bitume-

Filler-Sabbia) reagiscono alle sollecitazioni dinamiche e termiche imposte. Inoltre la 

comprensione dei meccanismi di contatto del sistema bitume-filler attraverso modelli 

micro-meccanici in 3D permette di approfondire l’analisi del comportamento 

reologico del mastice. Sulla base di tali considerazioni, e in un contesto socio-

economio in cui è necessario ridurre l’impatto ambientale causato dalla costruzione di 

nuove infrastrutture, con i metodi precedentemente descritti, si sono studiati mastici 

bituminosi contenenti filler da recupero industriale. A tale scopo sono stati prima 

validati e poi implementanti test reologici avanzati, associati allo sviluppo di modelli 

3D. I metodi validati ai fini dello studio del comportamento reologico dei mastici e dei 

mortar bituminosi, hanno consentito di studiare gli effetti apportati dall’aggiunta di 

filler innovativi all’interno della miscela, evidenziando quanto questi possano 

incrementare le prestazioni in opera della misce
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1. INTRODUCTION 
 

The analysis of the flexible pavements response to the stresses imposed by heavy 

vehicles and temperature change, starts from the rheological study of the bituminous 

mastics. In fact, the bituminous matrix influences the stress-strain response of the 

pavement structure in terms of fatigue cracking at low temperatures (high load 

frequency) and permanent deformations, with consequent rutting phenomenon, at high 

operating temperatures (low load frequencies). The Filler - Bitumen interaction 

increases the mastic stiffness, improving the mixture shear-stress response at high 

operating temperatures; in this conditions, in fact, the bitumen exhibits a deformation 

response predominantly viscous and its rheological behavior tends to a non - 

Newtonian fluid. In recent years research has therefore focused its attention on the 

study and design of bituminous mixtures that were able to optimize the amount and 

type of filler, searching for high performance standards and reusing waste materials, 

in order to reduce the environmental impact. In this context, the following work places 

its bases on the use and the optimization of industrial reclaimed filler able to give to 

the mixture higher performance than those produced using common mineral filler. In 

particular, in this thesis bituminous mastics containing three different types of fillers 

will be studied: 

• waste fillers from bleaching clays used for the decoloring process in the food 

industry; 

• rubbery fillers from the mechanical shredding of end of life tires . 

 

The aim of this thesis is also to implement innovative research methods that combine 

the laboratory rheological evaluation with the 3D numerical modeling of the laboratory 

tests, in order to better understand the micro-mechanical response of asphalt concrete. 

Part of the asphalt multiscale model approach will be here used; this approach is 

fundamental to understand the rheological phenomena, through volumetric study of 

individual components, morphological identification and mechanical properties 

analysis in the different size scales (bitumen, cement and mortar) (Figure I.1) 



Chapter 1 - Introduction 

 

18 

 

 

Figure I.1 Asphalt mixture multiscale Analysis 

Therefore, the micromechanical analysis associated to rheological analysis at different 

scales of size, it will allow to analyze the interaction and the role of each mixture 

constituent material. Through this study will be possible to identify the optimum 

combination to improve the asphalt layer performance. In particular, with reference to 

the experimental analysis in the laboratory, binders and the bituminous mastics will be 

tested using a Dynamic Shear Rheometer (DSR) in different testing configurations. 

This device is able, through the application of a sinusoidal dynamic load, to simulate 

the load conditions to which the bitumen matrix is subjected during its service life. 

Fundamental rheological parameters of the studied mastic will be extrapolated with 

dynamic tests in linear viscoelastic range and creep tests with different load mode.  

In the first analysis, standardized bitumen test will be validated on bituminous mastics 

containing traditional mineral filler and, in the second analysis the same methods will 

be applied on mastics containing the industrial reclaimed fillers. With regard to the 

modelling, the Discrete particle Element Method (DEM) considers particles as distinct 

interacting bodies, and it is an excellent tool to investigate the micromechanical 

behavior of mastics. Interactions between particles are considered to be a dynamic 

process with states of equilibrium developing whenever the internal forces are in 

equilibrium. Contact forces and displacements of an assembly are found by tracing the 

movements of individual particles. A commercial three-dimensional DEM code called 

Particle flow code (PFC), developed by Itasca Consulting Group, was used in this 

study. In PFC3D, particles are spheres that move independently and interact at contact 

points. The adoption of micromechanical three-dimensional discrete element 

approach, will be used to assess the real time-dependent behavior of asphalt mastics 
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and to predict its performance through the better understanding of its internal 

interaction. In this way Frequency Sweep Test will be simulated and the numerical 

results will be compared with the experimental ones. Figure I.2 shows the thesis 

experimental program. 

 

Figure I.2 Experimental program. 

Samples production, modeling and test execution were carried out at the School of 

Engineering and Architecture Engineering of Bologna, in the laboratory of DICAM 

(Department of Civil, Chemical, Environmental and Materials Engineering), Road 

section.  

In addition, the research related to the study of mastics and asphalt mortar modified 

with rubber powder from End of Life Tires (ELTs) was performed in collaboration 

with the laboratories of Nottingham Transport Engineering Centre of the University of 

Nottingham. 
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2. LITERATURE REVIEW: MATERIALS 
 

2.1 Introduction 

Asphalt mixtures are made of bitumen, filler, fine aggregates, coarse aggregates and 

air voids. Bitumen is the main element governing the mixture behavior and, with filler 

it constitutes the adhering agent mastic of the mixture. Incorporating fine aggregates 

with mastic constitutes the mortar scale; a material that exists between coarse 

aggregates (Elnasri M. 2014) and reflects the mechanical interactions between fine 

aggregates and mastic. In this chapter, therefore, the single components in the various 

scales of study are analyzed. Starting from the analysis of the bitumen and the mineral 

filler physical and chemical properties, a literature review of the bitumen-filler 

interaction within the bituminous mastics is needed. Nowadays, however, it is not 

possible to ignore the study of alternative materials instead of raw materials usually 

used in the production of asphalt mixtures. Therefore, detailed studies on the use of 

non – common fillers are presented, reviewing literature researches on nanoclays, 

fillers from C&D and industrial waste materials and fillers from ELTs crumb rubber 

being adopted within bituminous mortars. 
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2.2 Bitumen - Filler System: Mastic 

2.2.1 Bitumen 

2.2.1.1 Bitumen structure and constitution: SARA fractions 

Bitumen is a byproduct of the distillation process of the crude oil in refineries. It is an 

oily, viscous and flammable material. Bitumen properties highly depend on crude oil 

type and production technology. Production technology is adjusted to the crude oil 

type: extra heavy, heavy, medium or light. Nowadays heavy oils are processed more 

frequently than 20–30 years ago, therefore due to the use of different types of crude 

oils, the distillation residue can differ significantly (Paliukaite M. et al. 2014). At room 

temperature, bitumen has solid texture, color from black to dark brown, and has a 

thermoplastic behavior, excellent adhesion and water resistance. The bitumen is 

comparable to a hydrocarbons compounds mixture, with a small amount of structurally 

analogous heterocyclic species and functional groups containing sulfur, nitrogen and 

oxygen atoms. Bitumen can be described as a colloidal system consisting of high 

molecular weight asphaltene micelles dispersed in a lower molecular weight maltenes 

(resins, aromatics and saturates). Fractional composition of bitumen (asphaltenes, 

resins, aromatics and saturates) has a large influence on the bitumen performance. 

Bitumen is widely used in the field of pavement construction due to its excellent 

mechanical properties, which also depends on bitumen fractional composition 

(Paliukaite M. et al. 2014). Asphaltenes, resins, aromatics and saturates, mostly called 

SARA, can be determined by various methods. All methods are based on the difference 

in solubility of the particular chemical groups of bitumen. The traditional method used 

to determine bitumen fractional composition is column chromatography, commonly 

known as SARA method. Fractional composition of bitumen are descibed below: 

• asphaltenes are macromolecules of high molecular weight, responsible for the 

high viscosity of the bitumen, they represent the specific component. 

Microscopically are amorphous solids consisting of mixtures of hydrocarbons, 

have an aromatic structure, that is not cyclic saturated (Figure 2.1); 
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Figure 2.1 Molecular model of asphaltenes (“Evaluation of bitumen fractional composition 

depending on the crude oil type and production technology”). 

 

They are black or brown and insoluble in n-heptane. They are distinguished 

because of their high polarity, which can be translated as the presence of 

molecules in which the individual polar bonds are not placed in a perfectly 

symmetrical manner and therefore not in balance. The molecular weights are 

very variable, ranging between 600 and 300,000 mol. The evaluation of the 

molecular weight of asphaltene particles is, indeed, one of the most 

controversial aspects of the studies on bituminous materials. Asphaltenes, 

generally, are present in a concentration range between 5% and 25% by weight, 

and they have a great effect on the bitumen characteristics: as consequence of 

the percentage increasing of these fraction within the bitumen, it can be noticed 

a penetration value decreasing, viscosity and softening point increasing 

(Mazzotta F. 2010). This fraction has a high molecular weight (800–3500 

g/mol), and it is insoluble on n-heptane. Their elemental analysis is stable from 

one bitumen to the other with H/C ratio between 0.98 and 1.56. Their solubility 

parameter ranges between 17.6 and 21.7 MPa0.5 and their density at 20 °C is 

close to 1.15 g/cm3 (Paliukaite M. et al. 2014); 

• resins perform a dispersing action of asphaltenes in oily body of the bitumen 

and then give it stability and elastic properties. Compounds are soluble in n-

heptane, have a structure very similar to that of the asphaltenes; submit to view 

a dark brown color with solid or semi-solid consistency, similar to that of the 

whole bitumen. The resins are polar in nature and have remarkable adhesive 

properties; perform the function of dispersing or peptizers for the asphaltic 



Chapter 2 - Literature Review: MATERIALS 

 

23 

 

macromolecular structures. They are of the co-solvents for oils and 

asphaltenes, mutually insoluble if not present in appropriate concentrations. 

Constitute a part of bitumen of between 10% and 25% by weight and have a 

molecular weight varying between 500 and 50000 (Figure 2.2) (Mazzotta F. 

2010). Their solubility parameter ranges between 17.6 and 21.7 MPa0.5 and 

their density at 20 °C is close to 1.15 g/cm3 (Paliukaite M. et al. 2014); 

 

Figure 2.2 Molecular model of resins (“Evaluation of bitumen fractional composition 

depending on the crude oil type and production technology”). 

• maltenic oils are divided into two classes: saturated and aromatic oils. The 

division is made according to the types of chemical bonds that prevail in the 

structure. The aromatic oils are representable as a viscous liquid, characterized 

by a dark brown color, containing many low molecular weight compounds with 

aromatic rings. They are made from non-polar carbon chains in which the 

unsaturated rings systems dominate (aromatic). They have a high solvent 

power towards the other high molecular weight hydrocarbons. The aromatic 

constitute is the main bitumen fraction, between 40% and 60% by weight. Their 

molecular weight is comprised between 300 and 2000 (Figure 2.3) (Mazzotta 

F. 2010). Their solubility parameter lies between 18.5 and 20 MPa0.5 and their 

density at 20 °C is close to 1.07 g/cm3 (Paliukaite M. et al. 2014); 
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Figure 2.3 Molecular model of maltenic oils (“Evaluation of bitumen fractional composition 

depending on the crude oil type and production technology”)) 

• saturated oils are a viscous liquid, yellowish white in color, composed 

essentially saturated long chain hydrocarbons, some of which with 

ramifications, and naphthenes. They are non-polar compounds, of molecular 

weight similar to that of the aromatics, between 300 and 1500; constitute a 

percentage between 5% and 20% by weight of the bitumen (Paliukaite M. et 

al. 2014); 

 

Figure 2.4 Molecular model of satured oils (“Evaluation of bitumen fractional composition 

depending on the crude oil type and production technology”). 

Saturated contain the majority of the waxes present in the bitumen, which are 

in the form paraffin. The saturated and aromatic oils can be considered as 

elasticizing agents of the bitumen Their solubility parameter is between 15 and 

17 MPa0.5 and their density at 20 °C is around 0.9 g/cm3 (Paliukaite M. et al. 

2014). 

2.2.1.2 Bitumen physical and chemical  properties 

From a physical point of view the bitumen has a typical density between 1.01 and 1.04 

g/cm3. This range is influenced from the crude oil characteristics and it is assumed that 

the bitumen density is directly proportional to the source oil density. The density 

depends on the amount and quality of the carbon atoms, and it influences both refining 

and extraction. The crude oil density is measured in API degrees (American Petroleum 

Institute) and it is possible to define heavy oils, those having  API value smaller than 

25 (specific gravity greater than 0.9) and light oils those with API value greater than 

40 (lower specific weight of 0.83). Referring to a natural oil is generally called bitumen 

if its density exceeds 1g/cm3 at 15.6 °C. The bitumen has a glass transition around -20 
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°C, although it varies in a very wide range from +5 ° C to -40 ° C, as a function of the 

origin of the crude and the production process. Therefore, from a thermodynamic point 

of view the bitumen is defined as a very viscous liquid at room temperature (Leseur 

D. 2009). The chemistry of the bitumen study was conducted since the ‘80s, in the 

United States, within the Strategic Highway Research Program (SHRP). The chemical 

complexity of the bitumen analysis lies in its internal composition identified in a 

mixture of hydrocarbons. As mentioned in the previous paragraphs, the hydrocarbons 

are chemical compounds formed exclusively from carbon and hydrogen and, 

according to the proportions between these two elements and to their molecular 

structure, they are divided into several series: 

• paraffinic or alkanes are hydrocarbons also called saturated because their 

molecules are incapable to incorporate other hydrogen atoms from the time that 

the nature of their links is of simple type. This type of hydrocarbon form linear 

chains, or branched. The simplest paraffin is methane (CH4) which is the main 

natural gas, but there is also ethane (C2H6), propane (C3H8) and butane (C4H10). 

The propane and butane can be liquefied at low pressures and form what is 

called LPG (Low Pressure Gas) or LNG. The paraffins containing from 5 to 15 

carbon atoms molecules are liquid at room temperature and pressure. Above 

15 atoms they are extremely viscous or even solid (Leseur D. 2009); 

• naphthenic are saturated hydrocarbons constituted by one or more rings of 

carbon atoms, to which may be joined paraffinic side chains. The general 

formula is CnH2n+2-2Rn where Rn is the number of rings present in the molecule. 

The most stable rings are those in 5 (cyclopentane) or 6 (cyclohexane) atoms 

of C; 

• unsaturated are hydrocarbons that have at least one double atom carbon bond; 

• aromatic are hydrocarbons characterized by the presence of an aromatic ring; 

• resins and asphaltenes are called NSO compounds because in the molecule are 

present one or more heteroatoms, i.e. atoms different from carbon and 

hydrogen, and usually are nitrogen (N), sulfur (S) or oxygen (O). This 

molecular classification of the oils is applied to the corresponding bitumen. For 

example, the Venezuelan bitumen are generally known as naphthenic. The 

foregoing shows that the elemental composition of a bitumen resulting from 
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the extraction source although it is very difficult to make a geographical 

generalization. 

The most abundant element in the bitumen is carbon, typically present between 80-

88% by weight, then the hydrogen present between 8-12% by weight. The presence of 

hydrocarbons is accordingly greater than 90% by weight with a H/C ratio equal to 1.5. 

The H/C ratio assumes intermediate values between those of the aromatic structures 

with a H/C equal to 1, and that of saturated alkanes with a H/C close 2. Inside the 

bitumen are also present, heteroatoms such as sulfur between 0-9% by weight, nitrogen 

between 0-2% by weight, and oxygen between 0-2% by weight. Generally there are 

also traces of metals, the most numerous are the vanadium, up to 2000 parts per million 

(ppm) and nickel up to 200 ppm. The sulfur is generally the more polar atom present, 

is in the form of sulfides, thiols and, to a lesser extent, sulfoxides. The oxygen is 

typically present in the form of ketones, phenols, and to a lesser extent, of carboxylic 

acids. Nitrogen typically shaped structures with pyrrole and pyridine rings and shape 

even amphoteric species such as 2-quinolones. The chemical bonds that link together 

the molecules are relatively weak and can easily broken by heating or applying 

tangential actions, this fact explains the viscoelastic and thermoplastic nature of the 

bitumen (Leseur 2009). All bitumen molecules can be classified into two functional 

categories: 

• polar; 

• non-polar. 

The polar molecules form a network and provide to the bitumen elastic properties. 

Non-polar form a continuous body, arranged around the net, which gives the viscous 

characteristics to the material. From the relationship between these two molecular 

classes depends the binder properties. Bitumens having a large amount of non-polar 

molecules with high molecular weight, show a too brittle behavior at low temperatures. 

In order to have an accurate bitumen study, it is fractionated in homogeneous 

molecular groups, through methods that use, as basic principles for the separation the 

solubility in different solvents, the differences in molecular weight or the detection of 

particular chemical types. The quantitative relationships between the various 

components are then determined using these methods to split the bitumen in a few 
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groups of molecules that have similar properties and can be classified in colloidal 

schematic. The used methods can be classified into three main categories: 

• selective solvent; 

• chromatographic techniques of adsorption and desorption; 

• chemical precipitation procedures. 

The methods using selective solvents provide for the sequential treatment of the 

bitumen with increasing polarity solvents. Though these methods should avoid contact 

with the bitumen and supports that could alter, they are not frequently used because 

they do not allow to isolate those fractions not sufficiently different from each other. 

On the contrary, chromatographic techniques of selective adsorption and desorption 

instead have had a remarkable diffusion especially in the field of research (Mazzotta 

F. 2012). The principle used, common to these methods, is based on the separation of 

more polar and less soluble components, the asphaltenes, by precipitation in a non-

polar paraffinic solvent. The solution obtained is then introduced into a 

chromatographic column in which the components are first adsorbed by a support 

alumina then desorbed mediated the use of solvents in greater polarity thus allowing 

the isolation of the fractions with a gradually increasing polarity. The different 

techniques can be distinguished depending on the kind of solvent used, depending on 

the type of porous support employed, and according to the method of which use is 

made for the quantization of each fraction. The chemical precipitation methods are 

substantially obtained as a variation of the analytical method developed by Rostler and 

Sternberg. Once obtained the separation of the asphaltenes by precipitation in n-

pentane, the residual solution, composed by malthenes, is treated with increasing 

concentration solutions of sulfuric acid (H2SO4) and then with sulfuric acid fumes 

containing 30% of SO3 (sulfur trioxide ). The procedure described above allows and 

favors the precipitation thus allowing a quantitative evaluation of three other molecular 

classes, having gradually lower reactivity. These are called first acidaffine and second 

acidaffine. The remaining fractions of malthenes which do not react with sulfuric acid 

fumes are called paraffins. The Richardson method divides the bitumen into four 

classes based on solubility in certain solvents: 

• carboidi are insoluble components in carbon disulfide (CS2); 

• carbenes are insoluble components in carbon tetrachloride (CCl4); 



Chapter 2 - Literature Review: MATERIALS 

 

28 

 

• asphaltenes are insoluble elements in low-boiling alkane; 

• malthenes are soluble elements in the low-boiling alkanes which may, in turn, 

be further subdivided by the use of chromatographic processes of adsorption 

and elution. The malthenes facts are first adsorbed on silica gel and then it 

proceeds to the step elution: respectively, eluting with hexane, toluene, 

chloride of methylene/methanol are separated saturated oils, aromatic oils and 

resins. 

2.2.1.3 Bitumen colloidal model 

The particular properties of the bitumen against mechanical stresses have led to 

attributing to this a colloidal structure, similar to a particular blend in which a 

substance is located in a state finely dispersed, intermediate between the homogeneous 

solution and, the heterogeneous dispersion. Within the bitumen there is a structure able 

to respond differently to deformation as a function of the load frequencies. Such 

behavior, as opposed to typical of the newtonian fluids, is only found in bitumen 

containing asphaltenes; it therefore has a direct association between the colloidal 

nature and the presence of asphaltene core surrounded by aromatic components with 

high molecular weight, the resins. Each asphaltene is in the center of a structure, called 

"micelle", which is surrounded by the resins (the polar character which is proportional 

to the asphaltene distance); resins interact with the aromatic oils that form the line of 

the structure and can interface with saturated oils (non-polar phase in which is 

immersed the micelles). If the amount of resin is high, the asphaltenes are completely 

solvated or peptizers, this allows the micelles to have good mobility in the bitumen 

achieving a non-newtonian fluid behavior at high temperatures elastic behavior at low 

temperatures. A bitumen having such features is called a sol type (Figure 2.5a). In the 

opposite case, in the absence of resins, asphaltenes are added between them to form a 

continuous network where the lighter components are limited to fill the voids. It has a 

fluid type non-newtonian behavior at high temperatures and an elastic solid at low 

temperatures, the bitumen is defined gel-type (figure 2.5b) (Leseur D. 2009). 
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Figure 2.5 a) bitumen sol structure b) bitumen gel structure 

In practice the most common bitumens have intermediate features between these two 

structures. The bitumen behavior depends on the temperature and on the micelles state 

of aggregations, i.e. from the ratio between asphaltenes, resins, saturated and 

aromatics. Table 2.1 associates the specific structure to the bitumen compound. The 

bitumen with "intermediate" behavior have elasticity and better mechanical properties 

then the sol, while the gel-type bitumens have improved mechanical strength 

improved, but worse elastic properties. 

Table 2.1 Relationship between bitumen components and structure 

Structure 
Asphaltenes 

[%] 

Resins 

[%] 

Malthenes  

[%] 

Gel >25 <24 >50 

Sol <18 >36 <48 

Intermediate from 21 to 23 from 30 to 34 from 45 to 49 

 

The bitumen behavior depends on the proportion of saturated oils in the mixture 

because of their capacity to decrease the solvent power of malthenes on the 

asphaltenes. As a direct result, high content of saturated can lead to flocculation of the 

asphaltenes, thereby transforming the structure into another, as similar to that of the 

gel. If asphaltenes are highly branched, their interaction with the resins is greater, and 

therefore are less affected by the destabilizing effect of the saturated. From the 

qualitative point of view the rheological properties of bitumens depend from the 

asphaltenes amount. It is therefore possible to observe that at constant temperature the 

viscosity of a bitumen tends to increase wit asphaltenes concentration increasing. At 

low and average temperatures the bitumen rheology is strongly influenced by the 

degree of asphaltene agglomerates association and by the presence of other species 

that favor such associations in the system. It then assumes that in the mixture, an equal 

asphaltenes content, increasing the percentage presence of aromatic and maintaining 
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constant the saturated/resins ratio are obtained negligible effects on the rheology and 

a minimum reduction of the deformability (Leseur 2009). 

Conversely keeping constant the ratio resin/aromatic and increasing saturated bitumen 

becomes "softer". In general it is assumed that the increase in the resin content 

increasing the hardness of the bitumen, in other words increase in viscosity, reducing 

penetration of the deformability and shear. At the macroscopic level, the behavior of 

the bitumen is determined by the compatibility and the interactions between the 

different components in the mixture. To simplify the problem two different synthetic 

parameters, directly related to the rheological behavior, are defined. Colloidal 

instability index Ic defined as: 

I� = ������	�
�;                        (2.1) 

and Rc compatibility ratio expressed by the formula: 

R� = 
�������������	����
�  .                       (2.2) 

The numerator of the equation 2.1 shows the percentage of molecules that give body 

to the bitumen (asphaltenes) and the flocculating agents (saturated oils), while the 

denominator shows the sum of the percentages of solvents (aromatic oils) and of the 

peptizers (resins) agents. Ratio growing is followed by the transition from a dispersed 

sol type system to a flocculated gel-type. In equation 2.2 are instead related most 

reactive components with those less reactive: in general are considered acceptable 

values higher than 0.5 (Leseur 2009). 

2.2.2  Mineral Filler 

Mineral filler term refers to the fraction of the mineral aggregate, which mostly passes 

the 75 µm sieve. Filler can be defined as "solid material capable of changing the 

physical and chemical properties of materials through surface interactions and their 

physical characteristics". They may contain natural materials such as calcium 

carbonate, and materials obtained from industrial processes such as fly ash; other 

common fillers can included silica, kaolinite, mica and feldspar. The most widely used 

filler in bituminous mixtures is mainly composed of calcite (a form of calcium 

carbonate) generated from the micro-organisms solidification during the Earth's crust 



Chapter 2 - Literature Review: MATERIALS 

 

31 

 

formation. It may also contain magnesium carbonate, silica, clays, iron oxides and 

organic material. Also Portland cement is commonly used as filler in the asphalt 

increasing the mixture durability and its resistance to cracking and rutting failures.  

 

Figure 2.6 a) Limestone Filler b) Portland Cement 

The filler is important because of the surface area involved, and that properties of an 

asphalt pavement may be improved by the use of filler include strength, plasticity, 

amount of voids, resistance to water action and resistance to weathering; usually 

asphalt mixtures have been designed to include mineral filler (Liao 2007). Different 

filler types may be used interchangeably, and different quantities of one type may 

satisfy a single mixture design (Tunnicliff 1962). Kim et al. (2003) studied that the 

filler type affected the fatigue behavior of asphalt binders and mastics. Fillers stiffen 

the binders, providing to increase the resistance to micro cracking and, thus, increase 

fatigue life. Traxler and Miller (1936) classified filler characteristics as follows:  

• primary characteristics of fundamental importance: particle size, size distribution, 

and shape; 

• primary mineralogical characteristics of less importance: texture, hardness, 

strength, specific gravity and wettability; 

• secondary characteristics dependent on one or more primary characteristics: void 

content, average void diameter and surface area. 

2.2.2.1 Limestone Filler 

The limestone filler is the product of limestone crushing and is configured as a fine 

aggregate whitish in color and characterized by an amorphous structure. Limestone 

filler is one of the most suitable materials for the mastics production because of the 

mineralogical and chemical nature of the origin rock (proportional to its specific 

surface area and, therefore, the presence of very fine elements); it is, in fact, able to 

give advantages to the asphalt mixture such as: 



Chapter 2 - Literature Review: MATERIALS 

 

32 

 

• selective absorption of the oils; 

• improvement of the thermal susceptibility of the bitumen, due to a decrease in 

penetration and by a considerable increase in the softening point; 

• improvement of binding action and adhesion to the aggregates; 

• improvement of mixtures mechanical stability and resistance to the permanent 

deformations generated by the traffic action and, therefore, a increased strength 

and durability. 

Specifically, the limestone filler should comply with the following requirements: 

• calcium carbonate content ≥ 75% by mass; typically CaCO3 ≈ 95%; 

• clay content (adsorption of methylene blue) ≤ 1.20g /100g; 

• organic content (TOC) for the type L ≤ 0.20% by mass; for the type LL ≤ 0.50% 

by mass; typically FeO2 ≈ 0.2% to ≈ 0.4% SiO2; 

2.2.2.2 Portland cement 

Cement is a product from the milling and baking stones of various types that, mixed 

with water, returns with chemical and physical reactions, to its original solid state. It 

is used as a binder in mixture with inert materials (sand, gravel) to form the mortar and 

to produce concrete; in this case it is, therefore, used for the construction of buildings 

and structures in reinforced concrete. It, however, can be used as filler to produce 

bituminous mastics that, mixed with a suitable size and shape aggregates, improves 

asphalt mixture characteristics compared to the traditional ones. There are different 

types of cement, different to the composition, for the strength properties and durability 

and, therefore, for the use. From the chemical point of view it is in general a mixture 

of silicates and calcium aluminates, obtained by firing limestone, clay and sand. The 

material obtained, finely ground, once mixed with water hydrates and solidifies 

gradually over time. One of the most used cement is Portland cement, which is also 

configured as the most suitable type of cement to produce mastics. The raw materials 

for the production of Portland are minerals containing: 

• calcium oxide (44%); 

• silicon oxide (14.5%); 

• aluminum oxide (3.5%); 

• iron oxide (3%); 
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• magnesium oxide (1.6%). 

The extraction takes place in the slots arranged near the factory (although this is 

generally constructed of the material where it is possible to provide, with little expense 

for transport), which generally have already the desired composition, while in some 

cases it is necessary to add clay or limestone, or iron ore, bauxite or other waste of 

foundry materials. The mixture is heated in a special furnace consists of a huge 

cylinder (called Kiln) horizontally arranged with slight inclination and rotating slowly. 

The temperature is grown along the cylinder up to about 1480 °C so that minerals are 

aggregated, but does not melt. At low temperatures calcium carbonate (limestone, 

stones) splits itself into oxide calcium and dioxide carbon (CO2); at the high 

temperatures calcium oxide reacts with silicates to form calcium silicates (Ca2Si and 

Ca3Si). It also forms a small amount of tricalcium aluminate (Ca3Al) and tricalcium 

aluminoferrite (Ca3AlFe). The resulting material is generally referred to as clinker. 

The clinker may be stored for years before producing the cement, provided to avoid 

contact with the water. The theoretical energy needed to produce the clinker is about 

1700 J/g. This entails a great energy requiring for the production of cement and, 

therefore, a significant release of carbon dioxide into the atmosphere, greenhouse 

gases. The powder thus obtained is the cement ready to use, which has obtained a 

composition of the type: 

• 64% of calcium oxide; 

• 21% silicon oxide; 

• 5.5% of aluminum oxide; 

• 4.5% of iron oxide; 

• 2.4% magnesium oxide; 

• 1.6% sulfates; 

• 1% other materials, including especially water. 

2.2.3 The role of mineral fillers in asphalt mastics 

2.2.3.1Mastic characteristics depending on filler physical properties  

Several studies have showed that the filler physical properties affects the bitumen-filler 

interaction and consequently the mastic stresses response. In particular, Anderson and 

Goetz (1973) examined the stiffening effect of a series of one-sized fillers ranging 
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from 0.6 to 75 mm (passing through no. 200 sieves). They concluded that both the size 

of the filler and bitumen binder composition had a significant influence on the 

stiffening effect and that a proportion of the bitumen could be replaced by fine filler 

(<10 µm), but the mixtures produced were very sensitive to changes in the filler type. 

Chen and Peng (1998) investigated the effect of mineral fillers on tensile strength of 

bitumen-filler mastics. They found a considerable effect of particle size on tensile strength 

of bitumen-filler mastics. The 5µm bitumen-filler mastic (size distribution was 100% 

passing 5µm) exhibited higher tensile strength than the 75 µm bitumen-filler mastic (size 

distribution was 100% passing 75 µm). At a given filler concentration, smaller particles 

with higher surface areas carried more tensile loads than bigger ones. If the distance 

between particles was smaller than the stress concentration area, there would be an 

overlap area between particles, whereas the strength of the particulate filled composite 

was deteriorate. In addition to particle size and surface area, filler voids content can 

affect the mastic stiffness, increasing the shear stress response. Faheem et al. (2012) have 

demonstrated that the Rigden fractional voids can demonstrate the potential of 

stiffening effect of fillers. Beside they have found that the modified binders could 

have significantly different interactions with fillers. In terms of mastic 

volumetrically analysis, several researchers have evaluated the filler-filler 

interaction and bitumen-filler in the two regions of diluted and concentrated 

suspensions, in order to assess the stiffening effect that the filler has on the 

mastic. In a diluted suspension filler particles are limited to hinder the flow of the 

bitumen because the interparticle distance is compared to the average size of the 

particles; in a concentrated suspension the interparticle distance is reduced: the 

stiffness increases so rapidly and the filler-filler interaction and filler-bitumen 

begins to dominate the rheological behavior of the mastic. Faheem and Bahia 

(2009) proposed a conceptual model able to determine quantitatively the stiffness 

influence of the filler on the mastic volume. The graph in Figure 2.7 shows the 

trend of the ratio between the rigidity of the mastic and stiffness of the bitumen 

in a simple function of the volume fraction of filler. 
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Figure 2.7 G* Ratio vs Filler volume fraction (“Conceptual phenomenological model for interaction 

of asphalt binders with mineral fillers”).  

 

The model introduces three definitions: 

• initial stiffening rate: stiffness increase in the diluted region. The mastic stiffness 

increasing is low and exhibits a linear characteristic; 

• terminal stiffening rate: stiffness increase within the concentrated region, due to 

the free bitumen and bitumen-filler interaction; 

• critical filler concentration: the value of the volumetric concentration of filler in 

correspondence of the passage from dilute to concentrated phase to phase, 

obtained by the intersection between the two asymptotic lines. 

• the evaluation of the critical volume of filler is needed because a too high amount 

would lead to an increase of the fatigue resistance but also a worse performance 

of the bituminous conglomerate in terms of rutting resistance. 

 

The rheological behavior of mastic is influenced by the distribution, the size, the degree 

of dispersion and by the specific surface of the filler particles. Several studies showed that 

between bitumen and filler there is a chemical interaction; however, this reaction does not 

go to influence the linear viscoelastic behavior of the mastic: what matters most is the 

volume fraction of filler. The filler particles, at the time of mixing, are incorporated as a 

part of the bitumen and can absorb the fraction of light oils of the same leading, therefore, 

to stiffening. The amount of bitumen that coats the filler particles is called fixed bitumen 
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and represents the solid phase of the mixture, while the remaining quantity is called the 

free bitumen and represents the fluid phase (Figure 2.8).  

 

Figure 2.8 Schematic diagram of bitumen-filler system (Fatigue Characteristics of Bitumen-Filler 

Mastics and Asphalt Mixtures)  

The actual volume of filler will thus be greater, as the actual solid phase is formed by the 

filler particles coated by the: 

 

�� = �������������
                                 (2.3) 
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Where: 

• Mf = mass of filler in putty [GSF = filler density [g / cm3]; 

• Mb = mass of the bitumen in the sealing compound [g]; 

• Sb = bitumen density [g/cm3]; 

• VfR = maximum volume fraction of filler granules in a dry sample compacted. 

2.2.4 The role of mineral fillers in asphalt mixtures - The Stone Mastic Asphalt 

(SMA) 

Mineral fillers serve a dual purpose when added to asphalt mixtures. The proportion 

of mineral filler that is finer than the thickness of the asphalt film blends with asphalt 

cement binder to form a mortar or mastic that contributes to improved stiffening of the 

mix. Particles larger than the thickness of the asphalt film behave as mineral aggregate 

and hence contribute to the contact points between individual aggregate particles 

(Puzinauskas 1969). Furthermore, they affect the workability, moisture sensitivity, 
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stiffness and ageing characteristics of Hot Mix Asphalt (HMA) (Mogawer et al. 1996). 

Also, fillers vary in gradation, particle shape, surface area, void content, mineral 

composition, and physico-chemical properties and, therefore, their influence on the 

properties of HMA mixtures also varies. The maximum allowable amount should be 

different for various types of filler. The filler also influences the optimum asphalt 

content (OAC) in bituminous mixtures increasing the surface area of mineral particles 

and, simultaneously, the surface properties of the filler particles modify significantly 

the rheological properties of asphalt such as penetration, ductility, and also those of 

the mixture, such as resistance to rutting. In order to improve the pavement 

performance, it is necessary to ensure that adequate behavior of the bituminous 

mixtures is achieved, which depends essentially on their composition (Muniandy et al. 

2013). Therefore, selecting the proper type of filler in asphalt mixtures would improve 

the filler's properties and, thus, enhance the mixture's performance (Kandhal 1981). 

Several studies investigated the use of cement bypass dust (CBPD) as filler in asphalt 

concrete mixtures. Results indicated that the substitution of cement with limestone 

filler produces the same optimum asphalt binder content as the control mixture without 

any negative effect on the asphalt's concrete properties (stability, flow, and voids in 

total mix, mineral aggregate, and those filled with asphalt). Kandhal and Parker (1998) 

stated that the influence that mineral filler can have on the performance of HMA 

mixtures depended on the particle size, fines can act as a filler or an extender of asphalt 

cement binder. In the latter case, an over-rich HMA mix can lead to flushing and 

rutting. In many cases, the amount of asphalt cement used must be reduced to prevent 

a loss of stability or pavement bleeding. Some fines have a considerable effect on the 

asphalt cement, making it act as a much stiffer grade of asphalt cement as compared 

with the neat asphalt cement grade and, thus, affecting the HMA pavement 

performance, including its fracture behavior. Tayebali et al. (1998) investigated the 

possibility of increasing the amount of fines in asphalt mixtures based on a washed 

sieve analysis, from a maximum of about 8% as currently specified, without adversely 

affecting the performance of the mixture. At the same time, it was also desirable to 

investigate the influence of the mineral filler type (crushed versus natural river sands, 

or combinations thereof) on asphalt (Marshall) mix design and on the shear permanent 

deformation performance. They found out that by increasing the amount of mineral 
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filler, the Marshall stability and unit weight increased. This procedure led to a higher 

shear resilient modulus due to increased unit weight without adversely affecting its 

rutting during the repeated shear testing. Previous research by Superior Performing 

Asphalt Pavements (Superpave) Mix Design (1996) showed that the addition of 

mineral fillers such as LSD to asphalt could improve the rutting resistance performance 

of asphalt. The mineral powder improved the high-temperature thermal properties, 

presumably because of its small particle size which resulted in a large area of interface 

between mineral powder and asphalt. Kallas and Puzinauskas (1967) believed that 

filler performed a dual role in asphalt-aggregate mixtures. A portion of the filler with 

particles larger than the asphalt film will contribute in producing the contact points 

between aggregate particles, while the remaining filler is in colloidal suspension in the 

asphalt binder, resulting in a binder with a stiffer consistency. They also found that the 

stabilities of asphalt mixtures increased up to a certain filler concentration, then 

decrease with additional filler. Muniandy et al. (2013) found that filler type and 

particle size directly affect the engineering properties of the asphalt mixtures. In 

addition to filling the voids, the fillers' components interact with the binder present in 

the mix, potentially making it stiff and brittle. The change in mix properties is strongly 

related to the properties of the filler.  

 

Figure 2.9 Stone Mastic Asphalt composition 

 

The effect of mineral fillers is more prominent in gap graded asphalt mixtures such as 

the Stone Mastic Asphalt (SMA) mixture that contains large amounts of fines. The 

SMA (or "non-slip wear mixture") is a closed waterproof mixture, created by mixing 
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the lytic aggregate skeleton (crushed stone, gravel, sand, all by crushing) in hot-

kneaded with a mastic obtained by mixing modified bitumen and filler (and sometimes 

fibers that reinforce the mixture) (Figure 2.9). Mixture voids, resulting from the 

granular composition, are filled by the bituminous mastic made from modified bitumen 

and filler characterizing the asphalt mixture by high consistency and cohesion. 
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2.4 Bitumen - Filler - Sand System: The Mortar 

A simple recipe of a mortar mixture can be represented by idealized mixtures (Elnasri  

2014). Idealized mixture that contains fine aggregates of one size has been studied to 

simplify the complexity provoked by including various aggregate sizes in one mixture. 

Deshpande et al. (2000) prepared idealized mixtures of particle size from 2.36 to 1.18 

mm, 600 to 300 µm, and 300 to 150 µm with 50 pen bitumen grade. Cylindrical 

specimens were manufactured by casting in prepared moulds through compaction in 

three layers by a mechanical plunger. Uniaxial constant stress and strain rate tests were 

performed at temperatures ranging from 0 to 40°C. The temperature dependency of 

the mortar steady state deformation was seen to be governed by the bitumen 

unconstrained by the aggregates. The stiffening effect of single sized aggregates was 

measured by a stiffening factor ‘S’ included in the MCM. Also two types of idealized 

mixtures of 64% aggregate volume (300 to 600 µm size) and 75% aggregate volume 

(37.5% of 150 to 300 µm, and 37.5% of 1.18 to 2.36mm) were tested in triaxial by 

Deshpande et al. (1999) at 20°C. Again, the idealized mixes steady state had the same 

shape as the steady state of pure bitumen. The inclusion of fine aggregates increased 

the stiffness of the material and was found to increase with increasing the confinement 

pressure and the volume fraction of aggregates independent of the aggregate size. 

However, with larger fraction of aggregates the constitutive relationship may change 

from the pure bitumen as suggested. Khanzada (2000) followed the work of 

Deshpande and studied the deformation behaviour relationships of idealized mixtures 

with the same volumetrics, applied in uniaxial static compression, repeated load axial 

(RLA) and simulative wheel tracking tests. Specimens were manufactured through 

vibratory compaction with variation in density between specimens compacted in a 

single layer and compacted in three layers being less than 1%. The results from the 

uniaxial creep tests showed that above 500 kPa, the SSSR fitted a straight line with a 

slope of 2.4 indicating nonlinear behavior. Less than 70 kPa, the experimental points 

fitted a straight line with a slope of approximately 1 by means of linear behavior. The 

RLA standard test applied stresses ranging from 50 to 100 kPa and the plot of the 

SSSR against the stress level showed a power law relationship with a slope varying 

from 1.1 to 1.5. These relatively lower slope values compared to the static creep test 

were due to the lower operating stresses in the equipment. Therefore, it was pointed 
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out that the repeated loading technique could be utilized to rank rutting potential but 

with the inability to fully characterize the deformation behavior.  Finally for laboratory 

scale wheel tracking tests on idealized mixtures over stresses ranging between 500 and 

1500 kPa, the steady state rut rate after exceeding the linear region followed a 

nonlinear trend with a creep exponent that ranged from 1.9 to 2.4, similar to the creep 

exponent in the static creep test. It was therefore concluded that the static creep test 

proved to have the potential of characterizing materials in terms of rutting resistance 

(Elnasri 2014). Elnasri  (2014) developed a new type of mortar that from mastics. The 

researcher found that the fine aggregates stiffening effect in shear, uniaxial 

compression, and triaxial testing. In particular in his research Elnasri asserts that the 

resistance to shear deformation was found to be controlled by the filler content more 

than fine aggregate, however, fine aggregate affects more the shear stress linearity 

limit. On the other hand, the sensitivity of the linearity stress limit to the bitumen 

content is only at high temperature. Moreover from the single shear creep recovery 

results, a trend similar to the binder was obtained between the recovered strain and 

total strain comprising a linear relationship followed by a constant recovered strain 

stage. Interestingly, the mortar attained higher recovery than mastic in the linear stage. 

Nevertheless, the constant recovered strain level was reached earlier in mortar than 

mastic in the constant stage (Elnasri 2014) (Figure 2.10).  

 

 

Figure 2.10 Mortar test device and Mortar creep test at 10kPa (From binder to mixture; multiscale 

permanent deformation behavior). 
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2.5 Bitumen modified with non-traditional filler 

2.5.1 Nanoclay filler in bituminous mixtures 

Nanoparticles used as fillers to modify binders and asphalt mixtures desired have 

receiving an increased interest for research and development. Various types of 

nanoparticles, including nanoclays, are currently used to modify the bitumen 

performances. Many studies have shown that nanoclays and montmorillonite change 

the behavior of bituminous materials, however, before to describe the rheological 

effect on bituminous materials it may be necessary to understand the properties of 

nanoclay filler. Common clays are the naturally occurring minerals and thus subjected 

to natural variation in their formation. The purity of the clay can affect the final 

nanocomposite properties. Clay mostly consist of alumina–silicates, which have a 

sheet-like (layered) structure, and consist of silica SiO4 tetrahedron bonded to  alumina 

AlO6 octahedron in a various ways. A 2:1 ratio of the tetrahedron  to the octahedron 

results in mineral clays; however, the most common one is montmorillonite (Figure 

2.11) (Ghaffarpour Jahromi.and Khodaii 2009).   

 

Figure 2.11 Montmorillonite structure (“Effects of nanoclay on rheological properties of bitumen 

binder”) 

The thickness of the montmorillonite layers (platelets) is 1 nm with high aspect ratios, 

typically 100–1500 (Grim 1959). The expansion of montmorillonite is determined by 

their ion (e.g. cation) exchanging capacities, which can vary widely. One of the 

characteristics of these types of clay is the cation exchange capacity (CEC), which is 

a number for the amount of cations between the surfaces. The CEC of montmorillonite 

ranges from 80 to 120 meq/100 g (milli-equivalents per 100 g); whereas, kaolinite have 

CEC values ranging between 3 and 5. The expansion pressure of montmorillonite is 
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very high in which sodium ions constitute the majority of the adsorbed cations (called 

Na-montmorillonite), leading to exfoliation and dispersion of the crystal in the form 

of fine particles or even single layers. When Ca2+, Mg2+ and ammonium are the 

dominant exchangeable cations, dispersion is low and the size of the particle is 

relatively large. Separation of clay discs from each other results in a nanoclay with a 

large active surface area (it can be as high as 700–800 m2/g). This helps to have an 

intensive interaction between the nanoclay and its environment (bitumen in our case). 

In process, realizing the separation (surface treatment) depends upon the type of 

material mixed. A necessary prerequisite for successful formation of polymerclay 

nanocomposite is, therefore, alteration of the clay polarity to make it ‘organophilic’. 

To achieve fine dispersion, mechanical forces alone are not sufficient; rather, there 

should be a thermodynamic driving force to separate the layers into the primary silicate 

sheets. This thermodynamic driving force is being introduced by inserting a certain 

coating of surfactants (an agent such as detergent, which reduces surface tension) on 

each individual layer (Ghaffarpour Jahromi and Khodaii  2009). These surfactant 

molecules increase the layer distance. They, moreover, improve the compatibility with 

the polymer and can give an increase in entropy because they can be mixed with the 

polymer. Organophilic clay can be produced normally from hydrophilic clay by ion 

exchange with an organic cation. The organic reagents are quaternary ammonium salt 

with alkyl chains such as 12-aminododecanoic acid (ADA), octadecanoic alkyl 

trimethyl quaternary ammonium salt. Addition of a positively loaded surface active 

material will in this case form an ADA layer around each clay disc, and consequently 

changes from a hydrophilic into a hydrophobic disc. These modified clay discs will be 

separated automatically in water and can be used as nano particles. The proper 

selection of modified clay is essential to ensure effective penetration of the polymer 

into the interlayer spacing of the clay and so resulting in the desired exfoliated or 

intercalated product. In intercalate structure, the organic component is inserted 

between the clay layers in a way that the interlayer spacing is expanded but the layers 

still bear a well-defined spatial relationship to each other. In an exfoliated structure 

(Fig. 4), the layers of the clay have been completely separated and the individual layers 

are distributed throughout the organic matrix (Ghaffarpour Jahromi and Khodaii 

2009). Saeed Ghaffarpour Jahromi and Khodaii (2009) have performed rheological 
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dynamic test on bitumen samples modified with nanoclay. They have proved that the 

nanoclay modifications help to increase the stiffness and ageing resistances. The 

authors’ proposed approach has shown that when bitumen was modified with small 

amount of nanoclay, its physical properties were successfully enhanced on the 

condition that the clay disperses at nanoscopic level. Nanoclay materials possess big 

aspect ratio and large surface area and their particles are also not niform in size and 

arrangement. The nanofil particles are curly and smaller in size, compare to the cloisite 

particles. The existing plastic limit of nanoclay shows that it is an expansive 

characteristics material. Therefore, a low percent of nanoclay in bitumen leads to the 

changes in rheological parameter, decreasing penetration and ductility as well as 

increasing softening point and ageing resistance. DSR results also show that the 

complex modulus (G*) increases by decreasing temperature and/or increasing 

frequency whereas the phase angle increases as temperature increases and/or 

frequency decreases. On the other hand, in modified bitumen temperature 

susceptibility is lower compare to unmodified bitumen. The results confirm that 

addition of the nanoclay had a significant effect on the internal structure of the blends 

and, therefore, on its rheological behavior. In polymer modified bitumen, the main 

differences appeared at low frequencies or high temperatures, for example, from the 

onset of the Newtonian behavior. Generally, the elasticity of the nanoclay modified 

bitumen is much higher and the dissipation of mechanical energy much lower than in 

the case of unmodified bitumen. Nanoclay and bitumen showed easy and higher 

compatibility compare to bitumen and polymer that need special method to blend. 

Therefore, a physical mix of the bitumen and nanoclay lead to nonocomposite, in 

which the intercalation in the nanoclay layers is mainly due to bitumen molecules, 

while the bitumen/polymer interactions are completely different. A different 

morphology was obtained in modified bitumen. Nanoclay that was present in a small 

quantity with respect to the total asphalt content, remained bonded with the bitumen 

macromolecules and may have significantly affected the overall properties. Finally, it 

can be concluded that nanoclay modification increases the stiffness of bitumen and 

decreases the phase angle compare to unmodified bitumen; hence, this can reduce 

ageing effect on bitumen too.  
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2.5.2 Filler from waste materials in bituminous mixtures 

2.5.2.1 Filler from Construction & Demolition (C&D) waste materials  

The increase of civil infrastructures has led to a fast decrease of available natural 

resources, and seeking for other alternative is crucial. Recycling aggregates or fillers 

from the construction and demolition (C&D) waste is one of the preferable and 

environmental friendly solutions. The effective utilization of waste cement concrete is 

to gain Recycled Concrete Aggregate (RCA), which can be reused in asphalt concrete. 

Chen et al. (2011) have studied the effects of waste cement concrete filler in asphalt 

mixture replacing conventional limestone powder. The authors to investigate the 

properties of the recycled filler on the asphalt mixtures, at high temperatures, have 

conducted creep tests in load axial configuration. From the results of dynamic creep 

tests, they have shown that the mixture with traditional limestone filler has a higher 

creep strain than that with reclaimed cement concrete. The waste cement powder 

increases the stiffness modulus at high temperatures improving asphalt mixtures 

permanent deformation resistance (Chen M-Z. 2011). In addition, several researches 

have investigated the effect of using waste cement dust as mineral filler on the 

mechanical properties of asphalt mixture, and the results indicated that cement dust 

can totally replace limestone powder in asphalt paving mixture. Also using waste lime 

as mineral filler can improve the permanent deformation characteristics, stiffness and 

fatigue endurance of asphalt mixture. Recycling waste bricks as filler for asphalt 

mixture may be an economic way in road and construction engineering, which can 

enlarge the application range and improve the utilization rate of C&D waste. Chen M-

Z. et al. (2011) have investigated the mechanical properties of asphalt mixtures using 

brick powder as mineral filler, conducting indirect tensile strength and modulus, static 

and dynamic creep and fatigue tests to evaluate the properties of asphalt mixtures. 

They have shown that the mixture with recycled brick filler had higher indirect tensile 

modulus at 40°C, which indicated that the mixture with recycled brick filler exhibit 

better rutting resistance than the control mixture. As compared with the limestone filler 

in this study, the addition of recycled brick filler could improve the water sensitivity 

and the fatigue life of asphalt mixtures. The addition of recycled brick filler could also 

significantly decrease the permanent deformation at 60°C by both static and dynamic 
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creep tests, which result in better rutting resistance of asphalt mixture at high 

temperature.  

Based on these researches above, the use of such waste powders as filler in asphalt 

mixture not only has no negative influence on asphalt mixture, but also can improve 

its engineering characteristics. 

2.5.2.1 Filler from industrial waste materials  

There are now many studies on scrap and/or waste materials used as fillers in addition 

or in substitution of raw materials in the production of asphalt concretes (Melotti R. et 

al. 2014). Melotti et al. (2014) on their paper “A preliminary investigation into the 

physical and chemical properties of biomass ashes used as aggregate fillers for 

bituminous mixtures” have evaluated morphological, physical and chemical 

characteristics of 21 different ashes and two traditional fillers (calcium carbonate and 

‘‘recovered’’ plant filler). They found that the biomass ashes can be an alternative to 

natural filler in bituminous mixtures. In particular in this paper the main filler 

characteristics are analyzed through grading analysis (investigated by sieve analysis), 

water content (EN 1097-5), harmful fines (EN 933-9), particle density (EN 1097-7), 

voids of dry compacted filler (EN 1097-4), variation in ‘‘Ring and Ball’’ temperature 

(EN 13179-1) and water solubility (EN 1744-1). Beside the authors have investigated 

the main research on this topic, writing a completely literature review, extrapolated 

below: “European Directive 2009/28/CE defines biomass as the biodegradable fraction 

of products, waste and residues from biological origin from agriculture (including 

vegetal and animal substances), forestry and related industries including fisheries and 

aquaculture, as well as the biodegradable fraction of industrial and municipal waste. It 

is essentially any organic matter which contains stored solar energy and can, therefore, 

be used as an energy source. In this context, fossil fuels are not considered to be 

biomass. Fly and bottom ashes represent the main residues of a combustion process: 

they are composed of mineral materials (in their oxidized form) absorbed by the biomass 

during its lifecycle or incorporated during harvesting and of a small quantity (up to 

20%) of unburned organic matter. The amount of ashes produced depends on 

combustion chamber conditions and biomass type, with values that vary between 2% 

(i.e. woodchips) and 20% (i.e. rice husk). Bottom ashes, which settle under the grate 
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of the combustion chamber, are the coarsest and heaviest constituent part of the 

combustion by-products, while fly ashes, which remain suspended in the flue gases, 

are the finest part. Fly ashes representnup to 40% of the total ashes produced and are 

usually removed through electrostatic precipitators and fabric-filter baghouses. The 

recycling of biomass ashes as construction materials meets the recommendations of 

the European Directive on waste 2008/98/ CE and has significant environmental 

benefits related to the decrease in the quantity of natural aggregates extracted from 

quarries and to the reduction of waste carried to landfills. In Italy, since the European 

Waste Catalogue (European Commission Decision 2000/532/CE) classifies waste 

from biomass combustion as a non-hazardous material, a simplified procedure 

(Regulation DM 05/02/98), requesting a communication of intent rather than a 

submission for formal authorisation for recycling these types of ashes, is sufficient. 

According to this regulation, biomass ashes can only be recycled in concrete, cement 

and brick production, in embankment construction and environmental re-use, but not  

other applications such as the production of bituminous mixtures. In this case, the usual 

authorisation procedure is required. In Italy, as a result of legal constraints, the 

majority of these ashes are taken to landfills, involving considerable transportation, 

processing and disposal costs. Their re-use in bituminous materials could make a 

significant contribution to a reduction in ash disposal costs when one considers that 

34.9 million tons of bituminous mixtures were produced in Italy in 2009 (EAPA, 

2009). Bituminous mixtures are basically composed of aggregates of different sizes, 

filler and bitumen. Fillers are mineral grains most of which pass at 63 lm sieve (EN 

13043), and represent 5–10% of the aggregates by weight in the whole mixture. Filler 

can have a natural origin when derived from the crushing of rocks, or can be 

manufactured in industry as in the case of lime, cement, ash and slag. Although its 

main function is filling the voids in the aggregate skeleton to create a denser mixture, 

several studies have demonstrated that filler has other important roles. Depending on 

its particle size and structure, it stiffens and/or extends the binder (Kandhal and Parker, 

1998; Grabowski and Wilanowicz, 2008), consequently affecting the occurrence of 

rutting and fatigue phenomena. Furthermore, filler also modifies the ageing processes 

(Gubler et al., 1999; Recasens et al., 2005) and its finest part may act as an anti-

stripping agent preventing moisture damage (Kandhal and Parker, 1998). Although its 
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importance is well recognised, most recent regulations on filler for bituminous 

mixtures (EN 13043, ASTM D242, AASHTO M17) establish limits for only a few 

characteristics such as grading, water content, plasticity index and organic content. In 

addition, the Superpave volumetric mix design system (Cominisky et al., 1994) defines 

a limit for the quantity of filler in the mixture (corresponding to a filler/binder ratio in 

the range 0.6–1.2 by weight). The above mentioned characteristics are necessary 

primarily for quality control, but are not sufficient to obtain information correlated 

with the expected performance of bituminous mixtures. This is even more evident for 

manufactured fillers, like biomass ashes, which often exhibit unique behaviours. The 

study described in this paper is part of RICCO, a 3-year research project financed by 

the Italian Ministry of Agricultural, Food and Forestry Policies which aims to 

investigate the possible re-use of biomass ash as filler in bituminous mixtures. In 

particular, the goal of the first part of the project is to characterise several ashes  from 

biomass combustion by integrating the tests included in the technical standards on 

filler for bituminous mixtures EN 13043, with those tests that ongoing research has 

identified as reliable performance indicators. Furthermore, since it is important to 

substantiate the hazardous nature of ashes, their environmental impact can be assessed 

by the European regulation EN 12457-2 on the evaluation of leaching potential. 

Several studies have been carried out in recent years to assess the possible re-use of 

biomass ash and its recycling as a substitute for aggregates in concrete mixtures 

(Martin Morales et al., 2011), in cement production (Ajiwe et al., 2000), and also as a 

fertilizer (Insam and Knapp, 2011). In road applications, due to its cementing and 

pozzolanic properties, most of the researches focused on the recycling of biomass ash 

in soil stabilization (Basha et al.,2005; Nordmark et al., 2011). The recycling of 

biomass ashes as filler in bituminous mixtures has been studied in The Netherlands: 

an extensive study led by the Energy Research Centre of The Netherlands (Pels et al., 

2006) showed that fly ashes from the gasification of solid biomass are a valuable 

alternative to natural fillers. Sarabèr and Haasnoot (2012) investigated the physical 

and chemical characteristics of several fly ashes derived from the combustion of 

different solid biomasses. Their experimental results indicated that most of the ashes 

do not meet the requirement for passing 125 and/or 63 lm, concluding that, due to their 

gradation, biomass fly ashes can compete more with Municipal Solid Waste 
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Incinerator fly ash and sewage sludge ash than coal fly ash when recycled as filler in 

bituminous mixtures. Unfortunately, the physical– mechanical properties of ash–

bitumen mastics, slurries ormixtures were not investigated. Moreover, the 

investigation by Sarabèr and Haasnoot (2012) does not take into account the fact that 

characteristics like gradation, water solubility and soundness are insufficient for an 

assessment of the use of biomass ashes as filler in bituminous mixtures, as clearly 

indicated in the present paper. The majority of the studies concerning the possible re-

use of ashes as filler in bituminous mixtures investigate the behavior of fly and bottom 

ash derived from coal combustion. A great quantity of ash (20–30% of the original 

matter) is produced from this combustible which still represents the most widespread 

energy source in many countries. In the European Union (EU 15) 61 million tons of 

coal combustion products were produced in 2006 (European Coal Combustion 

Products Association, 2006), while in the US 125 million tons were produced in 2009 

(American Coal Ash Association, 2009). Kavussi and Hicks (1997) evaluated the 

properties of bituminous mixtures containing four different fillers (limestone, quartz, 

coal fly ash, kaolin): they found that mastics containing fly ash were more susceptible 

to brittle failure because of their high porosity, caused by the presence of very small 

air bubbles formed during the burning process. Sharma et al. (2010) demonstrated that 

coal fly ash having high calcium content exhibits anti-stripping properties. In order to 

avoid excessive stiffening of bituminous mixtures, they suggested a maximum value 

of 60% for the ratio between bulk volume of compacted filler and total filler– bitumen 

volume. This study also showed that high values for clay content in the ash, as revealed 

by the Methylene Blue (MB) test, were correlated to low tensile strength ratio and 

retained stability values, proving that this test can also provide a good estimate of 

moisture susceptibility. In recent years the National Cooperative Highway Research 

Program Project 9-45 (NCHRP, 2010) was developed in order to address the theme of 

filler role in bituminous mixtures. The study considered 32 different fillers for which 

the effect on bituminous mixture performance was thoroughly investigated. Out of the 

total set of analysed fillers, three were fly ashes collected from coal combustion plants. 

The research identified fractional voids, size distribution, content of calcium 

compound and active clay content as the most relevant properties for the 

characterisation of fillers. Compared to mineral fillers routinely used for paving 
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applications, the properties of fly ash encompassed a wider range of values. As a 

consequence, the prediction model developed to estimate mastic properties from filler 

characteristics was applicable only to natural fillers. The study concluded that 

manufactured fillers have a unique influence on mastics and mixtures, with this effect 

requiring a more detailed investigation. Although coal ash is the one most studied, 

many investigations deal with the possible re-use of other ashes in bituminous 

mixtures. Xue et al. (2009) investigated the effects of Municipal Solid Waste 

Incinerator (MSWI) ash on Stone Mix Asphalt (SMA). The use of 16% of MSWI ash 

meets the requirements of Marshall and Superpave mix design procedures. However, 

the ash lowers the water damage resistance of the mixtures due to its low CaO content 

causing poor adhesiveness between asphalt and ash. Hassan et al. (2007) studied the 

effect of replacing 0–3 mm natural aggregates with up to 40% of MSWI ash in 

bituminous mixtures: the Marshall mix design showed that optimum asphalt content 

increased significantly as more ash was introduced into the mix, owing to the high 

absorption properties of the ash. One solution to the problem of this increasing 

absorption of binder is represented by vitrification. Bassani et al. (2009) studied a 

bituminous mixture in which up to 32.5% of 0–2 mm natural sand was replaced with 

vitrified MSWI ash: they concluded that, due to the glassy surface of ash, a smaller 

percentage of bitumen can be used to reach given target values for mechanical and 

volumetric properties” (Melotti R. 2013). 

Sangiorgi et. al. 2014 proposed waste bleaching clays from the food industry as an 

alternative to common limestone mineral filler for the production of Hot Mix Asphalts 

(HMA). The bleaching clays used in this study come from two consecutive stages in 

the industrial process for decolouring vegetable oils and producing biogas from waste 

clay, where the former is richer in residual organic fats (20–25% in weight against less 

than 1%). The authors  have studied the performances of a common binder course 

asphalt mixture, in terms of physical and mechanical characteristics, when waste 

bleaching clays are used as an alternative. From the analysis of the dynamic creep test 

at 40°C (Figure 2.12),  the authors concluded  that the substitution of the limestone 

filler with the spent bentonite (first stage) filler determines a worsening of resistance 

to permanent deformations, which is, however, improved using the digested bentonite 

(second stage) filler. On the basis of the experimental results presented in this paper, 
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the conclusion is that it could be possible to substitute the traditional  limestone filler 

in HMA mixtures for binder layers with bleaching clays. In this thesis, on Chapter 5, 

this study has been completed by the rheological analysis of the binders modified with 

the waste bleaching clays.  

 

Figure 2.12 RLAT: accumulated strain vs. Number of load cycles (Waste bleaching clays as fillers in 

hot bituminous mixture). 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 - Literature Review: MATERIALS 

 

52 

 

2.6 Bitumen modified with Crumb Rubber  

2.6.1 Tyre 

Nowadays, because of the increasing of road transport in the global transport system, 

vehicles tires are creating a significant problem at the end of their useful life. The 

different tires types can be identified on two main categories: tires from passenger car 

and truck tires. These two type of tires differ in the composition of the materials from 

which they are made; these differences are not only expressed in terms of size, of steel 

or textile including in their structure, but also in the types and proportion of the 

ingredients used in the basic compound (Tataranni 2012). The composition, for the 

two sectors passenger cars and trucks, is determined mainly by natural and synthetic 

rubber, where the elastomeric component is made from the copolymer of Styrene-

Butadiene-Rubber (SBR). Each components of the rubber composition (rubber 

elastomers, carbon black, metal, textile fiber, zinc oxide, sulfur and chemical 

additives) contributes to the specific characteristics of the tire, in order to favor a 

greater life. A rubber untreated is relatively weak, soft, very flexible and not soluble 

in water, alkalis and weak acids, while it is soluble in benzene, diesel oil, chlorinated 

hydrocarbons and in the carbon-sulfur compounds. In order to give to the crude rubber 

strength and elasticity characteristics it must necessary to give rise to bonds between 

the molecules that compose it: such processes are known as vulcanization. Once the 

vulcanized rubber becomes resistant to abrasion and impermeable to gases, to chemical 

action, heat and electricity. Both types mentioned above have good resistance during 

the driving of vehicles and are designed to have the great service life; it follows that 

one of their key features is to have a high resistance to the action of microorganisms, 

employing more than 100 years before being able to destroy them. Although these 

properties on the one hand allow the new tire to prolong the life cycle, on the other 

hand result in a negative feedback when it becomes waste (Viola 2013). In general, the 

tires are constituted by an elastic toroidal structure of natural or synthetic rubber and 

may be of two types:  

• tube type: are tires with an air chamber that encloses the compressed air to 

obtain an adaptation effect and vehicle suspension from the road. The cover is 
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constituted by synthetic rubber, essential in transmitting the friction that is 

generated by the motion, and fiber canvas or metal;   

• tubeless: are tires which possess the function of the air chamber and not 

requiring it, while the cover is identical to that of the tube type. 

Currently all cars are produced with tubeless tires, while buses and trucks using both 

models. The structural composition of a tire is briefly consists of the following 

elements (Figure 2.13):  

1. synthetic rubber layer to perfect air-tightness;  

2. the casing is the structural part of the tire on which the tread is vulcanized. The 

carcass of a car tire is made up of thin textile fiber wires arranged in a straight 

arc and glued to the rubber that allow the tire to resist pressure; the textile 

component is not, however, present in tires for trucks, which incorporate a 

higher percentage of steel;  

3. the sidewall is the lateral part of the carcass which serves two opposing 

objectives: flexible on vertical direction to minimize the transfer of 

irregularities of the ground on the vehicle, while it is relatively rigid 

horizontally on the ground to transfer the loads due to understeer , braking and 

acceleration;  

4. the heels  (ending in circles), which are used to fix the tire on the wheel; they 

are formed by wire rope rings that have the function of keeping the carcass well 

adherent to the hoop;  

5. the hips, which protect the tires from shocks that could damage the casing; 

6.  the belts, which are as plans to put the material in a central position between 

the casing and the tread. They are generally armed with extremely resistant 

steel wires, obliquely crossed and glued one on the other and are joined 

together by vulcanization process that makes a unitary structure. These 

components are used to perfectly control the diameter of the tire and to 

overcome barriers;  

7. the tread  is the part of the tire designed to make contact with the road and 

essential to ensure adherence with the ground with which it is in contact. It 

consists of a compacted rubber ring that surrounds the housing and must be 



Chapter 2 - Literature Review: MATERIALS 

 

54 

 

able to withstand great forces, wear resistant  and abrasion and must undergo a 

low heating. The first part of the tread, which comes in contact with the wet 

surface, serves to remove water and then allow the remaining part to provide 

friction on the drained surface. The channels, ranging from the center to the 

edge of the tread, are used to expel the water.  

 

Figure 2.13 Tyre components. 

 

In general, the rubber is distinguished in natural (product derived from the plant Hevea 

Brasiliensis in Brazil with 70% of elastomers) and synthetic (made from artificial 

polymers with amounts less than 50% of elastomers). The tire rubber is generally 

synthetic rubber, which is never used in the rough layer, not only for the poor 

mechanical and elastic properties but also for its vulnerability with respect to time and 

temperature. In order to stabilize these properties, the rubber is subjected to a curing 

process which causes the formation of a stable three-dimensional molecular structure. 

The elements that constitute the rubber composition are generally: 

• vulcanizing agents and accelerators: allow the passage of the material from the 

plastic state to the elastic with a consequent increase in the mechanical strength 

and reduction of the solubility; 

• fillers (carbon black and zinc oxide): increase the breaking load, the abrasion 

resistance to tearing and to solvents. 

2.6.2 Management and procedures for recovery of ELTs 

The disposal and recovery of waste rubber consists for the most part from the tires use 

deriving both from the periodic replacement of worn tires, from the rubber scraps and 
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from the retreading of tires. In recent years, he has aroused increasing interest, so much 

so that its flow has been included among the priority flows of waste within the 

Community. This interest is evident, since the disposal in landfill can give rise to 

harmful effects, contributing to the possibility of fire development and to mechanical 

instability, within the mass of stored waste, due to the cavity of the tire and elasticity. 

Furthermore constitutes loss of resources, being the rubber material is a recoverable 

form of matter is energy, in fact, although the quantity of discarded tires is not 

remarkable, the recoverable amount of energy, due to the high calorific value (7,500 -

8000 kcal/kg, between the coal and the fuel oil) is still worth noting. In 2009 the 

European Union has faced the challenge of managing, in compliance with ecological 

criteria, 3.2 million tons of used tires, of which 581,000 tons are started to reuse, 

remarketing or to export, while about 2.6 million tons remain in the market as "PFU" 

or discarded tires. In fact, the tire used, once detached from the vehicle, is not 

automatically identified as waste. The roads can still figuratively take are varied and 

depend on numerous factors such as the level of wear, susceptibility to reconstruction, 

the market demand and the holder's intent. The combination of these factors may, in 

fact, to decide the fate of the tire, which can then be reused, rebuilt or crushed and 

developed in various forms of recovery and recycling. There is a match almost mirror 

in the list of priorities identified by the Waste Directive 2008/98 / EC, which serves 

the well-known waste hierarchy (Viola 2013): 

• prevention: reuse of used tires, in under-performing applications or 

reconstruction of those not become waste; this level you have to prefix to avoid 

creating waste wherever possible. The tires that still possess a depth of the 

upper tread to the legal limit and are not damaged in the structure can be used 

without any treatment in order to postpone in fact, production of a refusal; 

• preparation for reuse: reconstruction of used tires become waste. This process 

allows the use of carcasses still structurally intact to produce tires, using only 

about 30% of new polymers and saving about 70% of process energy. The 

reconstruction takes place through numerous processing steps which include 

the buffing of the tread and replacing it with a new one; 

• recycling: recovery of materials by ELTs, such as the production of rubber 

granules and powders. When the tires are worn out to be reused for their 
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original purpose, they are considered out of order and enter into a management 

system based on recycling. In this case, through the recovery of materials, other 

products are obtained as useful and, where this is not possible, an energy 

recovery (as described in the next point); this is because, unlike other types of 

waste, waste tires are difficult to recycle. The complete recycling, which is to 

process used tires to get the first, it is currently not possible because of the 

difficulties encountered in the full rubber devulcanization pretreatments 

materials 

• other recovery: energy recovery by ELTs, such as incineration in cement 

factories; 

• disposal: landfilling (mixed or dedicated) ELTs of large diameter (> 1.4 m). 

That level was until very recently the main destination of ELTs and still is in 

many geographical areas, not necessarily the most backward or developing; in 

Europe the landfilling ban was implemented in 2003 for the entire PFU and 

since 2006 for ELTs crushed. Since 2006, in fact, it prohibited landfilling of 

PFU, excluding tires used as engineering material, and those with outside 

diameter greater than 1400 mm. Data collected from ERTMA (European Tyre 

& Rubber Manufactorers' Association) show that the management of such a 

huge amount of material was possible only with the diffusion of management 

systems that enhance the materials through recycling (the problem is 

compounded by the presence of underground dumps ELTs, estimated at about 

5.5 million tons). 

Today in Europe there are three different ELTs management systems:  

• a tax system (in force in Denmark and Slovakia): each country is responsible 

for the recovery and recycling ELTs. Manufacturers pay a fee to the state which 

is responsible for organizing and remunerates the operators in the recovery 

chain. The fee is then applied to the consumer; 

• free market (in force in Austria, Bulgaria, Croatia, Germany, Ireland, United 

Kingdom and Switzerland), the law establishes the objectives to be achieved 

and the contact persons for the individual business segments, but does not 

provide for responsible supply chain. In this way, all players in the system enter 
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into contracts in accordance with free-market conditions and act in accordance 

with the local waste legislation; 

• producer responsibility (exists in Belgium, Estonia, Finland, France, Greece, 

Italy, Norway, Poland, Netherlands, Portugal, Romania, Slovenia, Spain, 

Sweden, Turkey, Hungary): The law defines the legal framework and grants 

the responsibility to manufacturers to organize the management of ELTs. This 

system led to the establishment of non-profit companies to manage ELTs 

through the most cost-effective solutions. Producers are obliged to monitor and 

report to national authorities, which is a good example of transparency and 

traceability. The management costs are paid through a contribution clearly 

indicated at the time of purchase by the user, through the "polluter pays."  

The common aim of these systems is the disposal of ELTs by the recovery of materials 

and energy, from which you derive environmental and economic benefits (Tataranni 

2012) (Viola 2013): 

• the re-use of a resource which, if not recovered, it would not biodegradable and 

would occupy deposits and dumps with serious damage to the environment and 

health; 

• remediation of landfills or illegal deposits; 

• use instead of precious raw materials, often imported; 

• the reduction of the amount of waste and consequently lower costs to the 

community; 

• improvement of the trade balance in relation to import of traditional fuels. 

 

 

 

 

2.6.3 Crumb rubber in bituminous mixtures 

The use of the modified bitumen with crumb rubber from recycled tires began in the 

United States, more than forty years ago, by the need to find an effective means to stop 

the propagation of cracks in flexible superstructures, mostly generated by particularly 
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high temperature gradients, which give rise to typical phenomena of thermal stress. 

Just need to find a product that would allow limiting the occurrence and spread of 

cracking conducted in the late '60s, the idea/patent Asphalt Rubber in Arizona by 

Charles McDonald. Later, the encouraging results made it possible to extend the scope 

of use in the field of surface treatment and, subsequently, of the asphalt. The practical 

applications of the results obtained over time made it possible to refine the production 

techniques and Asphalt Rubber performance, bringing the last decade to the definition 

of a specific rule that defines and identifies such material (ASTM D-6114) (Antunes 

et al.). Today the dust from ELTs can be included within the asphalt for road paving 

using two different production technologies: 

• "WET" technology, by which the powder is added and dispersed in the 

bitumen, by modifying the viscoelastic characteristics, to obtain a bituminous 

mastic from the improved properties; 

• "DRY" technology, in which the powder replaces a part of stone aggregates, 

modifying the characteristics of the resulting lytic skeleton and giving place to 

a limited interaction with the bituminous binder. 

2.6.3.1 WET technology 

WET technology consists in the dispersion of the rubber particles within the hot 

bitumen, through accurate mechanical mixing, at a temperature range between 170 and 

225 °C for at least 1-2 hour. The aim is to obtain a modified binder in which the 

rheological properties are changed substantially same. The bitumen modification 

occurs in a separate operation from the asphalt mixing. The rubber grains are able to 

absorb bitumen oils, obtaining the same result as any polymer additive. The result is 

to improve bitumen ductility and fatigue resistance, reducing oxidation phenomena. 

Depending on the type and dosage of powder used and the consequent interaction with 

the base bitumen, as well as the resulting product storage, rubber modify binders such 

technology can be divided into two categories (Ecopneus): 

• high viscosity binders, or Asphalt Rubber; are binders with a high dosage 

of powder to and with marked elastic characteristics, which require to be 

maintained in a "stirring" prior to use; 
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• low viscosity binders, or Terminal Blend, with more reduced dosage but 

characterized by an increased storage stability. 

Asphalt Rubber indicates a particular type of bitumen, with a specific rubber particle 

size, produced directly in work, close on the road construction site. These technologies 

and methods represent a solution to the problems related to the tire landfills due to the 

high application volume, fire risk and instability of the landfill and pollution due to 

their degradation. The Asphalt Rubber binders immediately after mixing are 

maintained in high temperature agitation (175-225 °C) for 45-60 minutes, necessary 

to activate the interaction between the two materials; the storage of these products must 

take place in tanks equipped with suitable stirring systems in order to ensure a 

homogeneous and stable dispersion of the powder particles. In particular, during the 

production phase, the particles of crumb rubber tend to absorb a part of the aromatic 

fractions of the bitumen, resulting in a significant bulge and the simultaneous 

formation of a gel which gives the binder its peculiar chemical-physical characteristics. 

The result is a composite material in which the individual particles of powder to 

maintain their integrity and are distinguishable, even visually, from the matrix in which 

they are included. From the physic-chemical point of view, the rubber powder mixed 

with a basic natural bitumen is able to absorb and fix the maltenic fraction own of 

aromatic volatile constituents of the bitumen. Just the fixing of maltenes allows to 

obtain a significant increase of the aging resistance of the bituminous mixtures, since 

this constituent of bitumen is, in general, destined to be lost over time to phenomena 

of oxidation and the action of UV rays. The introduction of the crumb rubber in 

bitumen at high temperatures (about 185 ºC) causes a physical-chemical reaction by 

which a three-component system is formed: bitumen, gels and powder. The gel is 

formed through the chemical reaction of dust with malthenes, consisting in the 

absorption of oily fractions; this process leads to swelling of the powder, altering the 

viscosity of the mastic, and to the formation of the same gel, which increases in 

percentage of the volume with the hot-curing time. Such are referred to as "high-

viscosity" as to a given reference temperature (equal to 175 °C as indicated in ASTM 

standards) possess a viscosity of not less than 1500 cP. They generally contain a 

proportion of bitumen, expressed by weight relative to the weight of the total binder 

of at least 15% (with typical values comprised between 18 and 22%). The swelling 
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process determines the modification of the rheological properties of the binder, which 

also depend on the chemical constitution of the constituent materials, the dosing of the 

powder and the size and morphology of its particles; in particular: 

• the viscosity proportionally increases as the percentage of powder added and 

the increase of the specific surface of the powder (in this sense are more 

reactive the powders of finer size particles consisting of rough and irregular in 

shape); 

• the viscosity varies depending on the degree of maturation (ie the degree of 

swelling) of the binder and the temperature at which this occurs; 

• the fatigue behavior of the binder tends to greatly improve: the properties of 

rubber are gradually transferred to the binder. These factors should be taken 

into account for the selection of the powder to be used in the editing process 

"wet". However, while the technical standards adopted by some departments 

of Transportation (DoT) US set of acceptance criteria based on their 

composition and grain size, ASTM D6114 merely requires a limit value to the 

maximum particle size (<2.36 mm ), pointing out, however, that the particle 

size of dust must be agreed between the manufacturer and the buyer of the 

binder. This rule also establishes limits for density (1.15 ± 0.05 g / cm3), the 

water content (≤ 0.75%) and the content of textile fibers (≤ 0.5%) and waste 

ferrous metals (≤ 0.01%) (Ecopneus). The use of high percentages of Asphalt 

Rubber bitumen allow to obtain asphalt concretes with excellent mechanical 

properties, such as high resistance to the propagation of cracks, high fatigue 

resistance and, in parallel, high resistance to permanent deformation, high 

stability to aging actions produced from UV rays and a sound absorbing 

significant contribution.  

The binders named Terminal Blend do not reach the specified value of the viscosity 

threshold; this is partly because of the fact that finer powders are used (usually through 

a sieve 0.3 mm) and with a lower dosage (generally not exceeding 10%). Due to the 

high specific surface of the powder, its interaction with the bitumen occurs rather 

rapidly during mixing, with the consequent creation of a macroscopically 

homogeneous matrix in which are no longer distinguishable originating particles. As 
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there are no stability problems, the finished product can be recirculated into the normal 

storage tanks present in production plants of bituminous conglomerates, without the 

need to provide special stirring devices. Since the production of such binders normally 

takes place at the refinery, they are called Terminal Blend. However, with the 

appropriate technical devices, they can also be prepared directly from the 

manufacturing plants of bituminous conglomerates (something, in this case, the "field 

blend"). The characteristics of the modified bitumen products with both the WET 

technology variants may change significantly depending on the type and dosage of the 

powder, as well as by the temperature and the arrangements by which the mixing is 

carried out. In some cases, during production, other components can be added, such as 

aromatic oils and natural rubbers to impart to the finished product specific chemical-

physical characteristics. The binders Asphalt Rubber and Terminal Blend can be used 

for the production of asphalt mixtures by following the same procedures as for the 

traditional mixtures. WET rubber modify binders must be used for the formation of 

asphalt concretes in which the aggregates grading curve is characterized by a certain 

discontinuity, necessary to be able to create an internal porosity which is sufficient to 

accommodate the particles of powder. This is the case of mixtures "gap-graded" and 

"open-graded", which fall respectively in the closed "semi type mixtures" (with 

residual voids in the work of the order of 5-8%), and "semi-open" (with 12-18% empty 

order). Both mixtures are characterized by a significant surface macrotexture, which 

leads to high tack values provided at the interface tire-pavement reeds in the presence 

of meteoric precipitation. While the mixtures "gap-graded" are actually waterproof, 

those "open-graded" have an internal porosity of morphology and size that allow 

rainwater to filter through them, resulting in a further increase in adhesion reason for 

the creation of a dry contact in all environmental conditions. To such effect, as in the 

case of the traditional draining mixtures (open), they are accompanied, in addition, 

certain advantages related to the elimination of the effects "splash" and "spray", 

sources of potential danger for the safety of road users. Discontinuity grading curve 

effects the internal structure of both types of mixture; the larger aggregates create 

indeed, in the case in which appropriate features of shape possess one lytic skeleton 

which stiffens the mixture and which opposes effectively the accumulation of 

permanent deformations under load.  The carrier matrix is lytic, then, filled in part with 
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the finer fractions and in part with the bituminous binder, for which are adopted 

significantly higher dosages than those usually adopted for the ordinary type mixtures. 

This causes an increase of the ductility of such bituminous conglomerates, which have, 

compared to the traditional ones, a higher resistance to fatigue and to the propagation 

of cracks. Note, also, that due to the high viscosity of the binder does not determine, 

even with the use of high doses, "drain-off problems" during production and 

transportation, nor occurring phenomena of surface chin wastewater during the 

installation and during operation. The presence of elevated amount of binder in these 

mixtures has additional beneficial effects as regards the resistance to thermo-oxidative 

aging phenomena, the durability to water and the generation of noise from rolling on 

the part of the tires. In relation to the first two aspects, it is noted that the aggressive 

external agents (air and water) can penetrate only a modest portion of the heavy 

volume of binder surface therefore retains over time much of its original characteristics 

also performing the barrier function for access to the surfaces of stone aggregates. The 

reduction of the rolling noise is, however, due to the particular behavior of the 

bituminous binder matrix owing to its rheological characteristics and the high volume 

occupied determines attenuation of the vibrations that arise at the interface tire-

pavement. Note, in this regard, that in the case of asphalt concretes "open-graded" can 

be added to these effects those due to surface porosity that provides an additional 

contribution of noise attenuation through the well-known sound absorption 

phenomena. According to literature, the identification of the optimal mixture of 

formula can be made with reference to the volumetric characteristics of the samples 

prepared in the laboratory by means of appropriate equipment. In particular, they are 

generally taken into account the percentage of residual voids, for which is set a target 

value, and the percentage of voids in the aggregate mixture (VMA), for which is often 

referred to a minimum admissible value. In some cases, also it verifies the 

compatibility of acceptance constraints related to the mechanical characteristics of the 

blends, usually measured with fairly simple techniques. The use of these 

conglomerates has been widely experienced so much in the construction of new 

infrastructure as in the maintenance and upgrading of existing ones, in particular for 

the realization of wear layers, the most superficial part of the road that has the purpose 

to ensure the functional characteristics of the pavement grip, smooth, quiet, etc. In 
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some cases it was also used, the combination of the two mixtures, with the laying of 

an "open-graded" conglomerate above of a connection layer "gap-graded.  To effect 

the advantageous properties listed above, mixtures containing "Asphalt Rubber" have 

been adopted, in some contexts, such as the greater effectiveness solutions for 

maintenance and upgrading of the flooring already in operation. In this regard, it 

should be emphasized that the higher costs of production of mixtures appear to be 

largely offset by lower future maintenance costs, resulting in a decrease of the total 

cost if assessed throughout the entire life cycle of the pavement. These advantages are 

particularly marked in all those cases in which there is adequate diffusion of 

production technology, with the consequent creation of a real of the binder "Asphalt 

Rubber" market in which the content can be transposed costs and defining unit prices 

with a view to commercial competition. Further considerations related to the cost of 

the work with "Asphalt Rubber" descended from assessments that can be made for the 

thicknesses of the mixes to be laid; by virtue of their high mechanical performances 

and of their high durability. It was estimated that these mixtures can ensure 

performance similar to that of traditional type mixtures while using more content 

thicknesses. This aspect in some cases has been encoded with equivalence laws, which 

however must be properly calibrated for each application context to take account of 

the effects of all the factors that have an influence on the damage phenomena. The 

products that fall in the "Terminal Blend" category are, instead, used for the 

preparation of closed mixtures (with residual voids in work order of 4%) in continuous 

grain size of the aggregates, completely similar to those of the ordinary type; the most 

frequent applications still relate to wear layers, which are required particularly high 

durability characteristics. Such mixtures have a mechanical behavior that deviates 

from that of conventional mixtures to a degree, which depends on the degree of 

alteration made to the binder during the production process. In particular, the effect of 

the variation of the rheological characteristics of the binder itself, there is an increase 

of the elastic response of the component under load, with consequent improvement in 

the resistance to the accumulation of fatigue and permanent deformation. As pertains 

to the formulation, production, implementation and monitoring it may be introduced 

to the already validated procedures for traditional closed-mixtures, taking into account 

only the higher temperatures required in the mixing stages and compacting. In terms 
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of general all, it can, however, conclude that if properly proportioned and thickened, 

such asphalt have characteristics such that they can be employed in the construction 

and road maintenance to complement or replace those of ordinary type. The 

performance collected on the field were in line with the above, with a reduction of the 

phenomena of surface cracking and rutting compared to conventional mixtures; it was 

also found that the additional cost arising from the binder modification process is 

largely compensated by lower maintenance costs occurring during the useful life of 

pavements. 

2.6.3.1 DRY technology 

Traditionally, in the dry process it is normally assumed that the rubber is part of the 

aggregate. Reaction between bitumen and CR is considered negligible because the 

mixtures are fabricated without any significant interaction time between bitumen and 

rubber. In this process, some fractions of the aggregate blend are generally substituted 

by rubber particles of similar size. Several studies indicate that with "DRY" 

technology is possible to produce "gap-graded" and "open-graded” mixtures. For their 

formulation may be introduced the same grading curve employed for mixtures 

containing binder product with "WET" method. Bitumen proportion must be 

determined taking into account that the rubber powder tends to absorb bitumen oils 

during the phases of transport and installation of the mixture. In the case of “gap 

graded” mixtures, in continuous grain size, best performances are obtained using fine 

crumb rubber. In the case of "open-graded concretes", the possible presence of dust 

coarse (larger than 4.75 mm) could reduce the aggregates cohesion. For the application 

of the "dry" technology, it can be use two different modes of production of asphalt: 

• dry-hot technology; 

• dry-cold technology; 

On dry-hot technology, aggregates and bitumen (equal to about 5% of the weight of 

aggregates) mixture is produced on range temperature between 160-180°C in places 

relatively close to the construction site. In addition to bitumen and aggregates, in this 

case also it is added a proportion of rubber powder, which must always be less than 

5% of the weight of the aggregates which are, in part, to be replaced by the dust 

particles. Dry-cold technology allows to obtain asphalt mixture, mixing aggregates and 
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rubber with bituminous emulsion and cement. The bitumen emulsion is composed of 

two liquids, emulsion and water-immiscible; the liquids are dispersed in one another 

using a colloidal mill. Often for the construction of base layers with this technique, the 

cement is added to improve the mechanical properties and to increase the moisture 

resistance; it also acts as catalyst, controlling the breaking of the emulsion, and 

increasing the initial resistance of the pavement properties. The rupture emulsion 

condition is important to achieve mixture desired performances. Obtained the 

stabilized mixture with emulsion, it must dissipate the excess water, ie mature, so that 

its resistance increases; the duration of this period is influenced by the moisture content 

of the material, by the interactions between emulsion and aggregates, from the local 

climate and the void percentage of the mixture. For both WET and DRY production 

technologies several studies, research, technical standards and test data related to the 

performance observed in operation, which are characterized mainly by: 

• longer life of the pavement; 

• less noise generated by passing vehicles; 

• increased resistance to staining; 

• increased resistance to weathering; 

• optimal water drainage, and increased visibility with rain; 

• better grip, especially in wet weather. 

Dondi G. et al. 2014 have evaluated the physical and mechanical characteristics 

induced by the shared use of two different types of Crumb Rubber in the Cold Recycled 

Mixes. They have found that the replacement of fine RAP with Crumb Rubber 

improved the self-compaction of the mixtures while influenced their volumetric 

characteristics after compaction. Moreover, the authors have shown that from failure 

fatigue results the adoption of crumb rubber increase the failure resistance at low strain 

levels. 
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3 LITERATURE REVIEW: METHODS 

3.1 Introduction  

The linear viscoelastic theory is the necessary base to understand the rheological 

behavior of bituminous materials. The viscoelastic material has properties between 

solid and fluid. The interaction of the two phases, elastic-solid and the viscous-liquid, 

means that there is internal energy dissipation and hence a deviation of the stress-strain 

response compared to perfectly elastic state. In fact, a perfectly elastic response 

requires that the potential energy gained during the deformation had been returned 

totally in order to respect the perfect reversible transformation from the 

thermodynamic point of view. The greater or lesser influence of the solid matrix of the 

liquid determines an infinite amount of viscoelastic responses, whose extreme limits 

are represented by the ideal states corresponding to the pure elastic solid and perfectly 

viscous fluid. On bituminous binders these limit situations can be achieved by varying 

the temperature or charging the load time. In the following chapter, clarifying the 

basics principles of elasticity and viscosity, the viscoelastic relations used on the 

rheological analysis are introduced. In order to represent the viscoelastic phenomena 

is essential to identify the real material as model continuous, homogeneous and 

isotropic. In fact all the materials, and in particular polyphase systems such as 

bitumens, are composed of a large number of discrete elements, the individual 

molecules, and their overall properties are the average of the elements of groups 

behavior. The aggregation of the various particles gives rise to a specific type of group 

from which the same group is characterized, and in respect of the overall response 

assume importance constitutive laws of connection between the individual particles 

rather than the intrinsic properties to the particles themselves. The concepts 

viscoelasticity theory, presented on this chapter, represent the theoretical basis to 

understand the rheological tests performed on bitumen. The set of problems related to 

the execution of those tests, the definition of operational protocols, treatment, 

processing and interpretation of experimental results, is a subject of rheometry. This 

can be defined as the branch of the rheology that concerns the measurement of the 

rheological quantities. The study and understanding of these variables assumes 

considerable importance to analyze bitumens and mastics performances; a binder, 
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which under the application of a load manifests high deformation, could generate 

rutting phenomena, on the contrary, a very hard bitumen, at low temperatures, could 

increases mixture sensitivity to fatigue flooring. For this reason is essential to 

investigate the material in the most varied conditions, which can be combined giving 

rise to a potentially unlimited number of test types. To date, the rheological properties 

of the binders are usually determined using equipment operating in oscillatory regime, 

including the DSR (Dyanamic Shear Rheometer), thanks to which it is possible to 

study the elastic, viscous and viscoelastic properties of the bitumen in a wide range of 

temperatures and loading frequencies. It also describes the torsional actions on 

cylindrical mortar specimens, highlighting the analytical complexity of the extracts 

results from this type of test. Finally, like the rheological tests will be analyzed in detail 

the Discrete Element Method (DEM) approach, studying the main researches that have 

led the micro - particles study of binders and asphalt concretes. 
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3.2 Rheology 

3.2.1 Elastic solid 

The elastic solid is deformed by force effect, and at the end of the solicitation, 

summarizes the initial shape. At the microscopic level, the elastic deformation is a 

coordinated and reversible distortion of the various atoms constituting the material. 

Considering a sample of dimension l (height) and d (diameter) after the vertical force 

application it is experimentally observed that the relative shortening, or deformation, 

is equal to: 

 

∆�� =	%� ∙ �&                        (3.1) 

where: 

E = Young's modulus [N/mm2]; 

∆l = vertical shortening; 

N = vertical force; 

S = specimen surface. 

If E is independent from the strain level there is direct proportionality between tension 

(N/S) and unitary deformation (∆l/l), in this case, there is linear elasticity, and the (3.1) 

takes the name of Hooke law. Contextually to the vertical deflection, the elastic body 

has a radial deformation equal to: 

∆'' = ν ∙ ∆��                                                                                                       (3.2) 

where: 

ν: Poisson's ratio; 

∆d: the diameter variation; 

d: diameter. 

 

In elastic bodies, the work spent in the deformation process is fully recovered 

when the stress is removed and returns in the initial non-deformed conditions 

(Mazzotta 2012). 
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3.2.2 Viscous flow 

It defines viscous fluid a deformation process in which the mechanical energy applied 

to a material is, completely or in part, dissipated irreversibly on heat form; when the 

mechanical energy is fully converted into heat this is purely viscous flow. The quantity 

characterizing the viscous flow is the viscosity, which can be defined as material 

sliding resistance opposite under the action of the effort. The viscous behavior is 

believed to have originated from a laminar motion of the components of the medium, 

said flow, which can take generically four different configurations of which are 

summarized below (Mazzotta 2012): 

• flow between two parallel planes, takes place between two planes, one fixed 

and one moving. The thickness of the two plates is not influential on the motion 

and the flow that is generated is for parallel planes to the two moving surfaces 

(Figure 3.1) (Mazzotta 2012); 

 

 

Figure 3.1 Viscous flow between two parallel planes at distance Z (“Studio reologico 

avanzato di bitumi modificati ed additivati: proposta di una nuova procedura di aging”). 

 

• rotational flow between coaxial cylinders, takes place by a fluid contained in 

the cavity formed by two coaxial cylinders. One of the two cylinders is fixed 

and the other rotates dragging with it in relative motion successive layers of 

fluid (Figure 3.2) (Mazzotta 2012); 
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Figure 3.2 Rotational flow between coaxial cylinders (“Studio reologico avanzato di bitumi 

modificati ed additivati: proposta di una nuova procedura di aging”). 

• capillary flow, it is realized in the fluid flowing in a pipe or in a thin element, 

subject to a pressure difference between the inlet and the outlet; in the capillary 

motion of the speed profile takes on a parabolic curve (Mazzotta 2012); 

• flow between a plate and a cone, in this case the plate constituting the fixed 

element while the wheel cone. The fluid present between the two elements 

assumes a motorcycle of the type circular that takes place on parallel layers 

(Mazzotta 2012).  

The viscous flow and viscosity concept is related by Newton's law: 

η = 	 *+,+-                        (3.3) 

where: 

τ = shear stress; 

dγ/dt  = shear rate; 

η = dinamic viscosity [Pa·s]. 

 

If η is constant, the fluid is Newtonian and the viscosity varies only with changing 

temperature. In addition to the dynamic viscosity exists the kinematic viscosity ν; it is 

measured trough special tools called capillary viscometers and is defined 

dimensionally on the basis of kinematic quantities such as the length and the time, in 

contrast to the dynamic viscosity for which also necessary to evaluate the intensity of 

the force which determines it. The relationship between the kinematic and dynamic 

viscosity is the following: 
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ν = 	./                      (3.4) 

where: 

ν: kinematic viscosity [mm2/s]; 

η: dinamic viscosity [Pa·s]; 

ρ: density. 

 

For a Newtonian fluid the shear stress diagram as function of shear rate is represented 

by a straight line whose angular coefficient defines precisely the viscosity (Figure 3.3) 

(Mazzotta 2012).  

 

Figure 3.3 Newtonian flow curve.  

Those fluids for which does not apply the law of proportionality between stress and 

strain gradient are generically called non-Newtonian; for such materials viscosity it 

depends not only on the temperature but is also a function of the sliding speed. In these 

cases, Newton's law becomes: 

τ = η(γ3 ) ∙ γ3                                              (3.5) 

 

As shown in Figure 3.4, the non-linearity behavior can manifest itself in many forms, 

depending on the variation law η = f(dγ/dt).  



Chapter 3 - Literature Review: METHODS 

 

72 

 

 

Figure 3.4 Non-Newtonian flow curves.  

 

3.2.3 Viscoelastic models 

Related both ideal elastic materials (solid Hooke) and ideal viscous fluids (Newton 

fluid) apply linear relationships between stress and deformation or between the strain 

and the strain rate: the proportionality coefficients (moduli and viscosity) are 

independent by stress conditions. This concept applies to the viscoelastic material is 

the linear viscoelasticity. The mechanical behavior of a viscoelastic body can be 

represented by models composed of elements in simple mechanical behavior, such as 

springs, dampers and shoes. Every real behavior can be described by a particular 

model, obtained combining the basic elements. The most known models are those of 

Maxwell and the Kelvin-Voigt, which describe, classically, the two phenomena of 

delayed and the viscous flow elasticity. In general these two aspects are simultaneously 

present in the bitumen, to which the complete viscoelastic behavior can be achieved 

by the superimposition of the effects (Mazzotta 2012). 

3.2.3.1 Hooke model 

The Hooke model, is constituted by a spring, that describes the behavior of a perfect 

elastic element, capable instantly to reach the deformed configuration under load 

action and to instantly take back the non-deformed configuration after the ending of 

the action. 
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Figure 3.5 Hooke model configuration.  

 

In energy terms, the hysteretic area is nil. The characterization of the material can be 

made by two parameters: the elastic modulus or Young modulus (E) and Poisson's 

ratio (ν). In the case of homogeneous and isotropic materials Hooke's law assumes the 

following formulation on three cardinal directions x, y, z: 

 

ε6 =	 �& [σ6 − 	ν(σ: + σ<)]	 	 	 	 	 	 	 	
ε: =	 �& [σ: − 	ν(σ6 + σ<)]	 	 	 	 	 	 	 		
ε< =	 �& [σ< − 	ν(σ6 + σ:)			γ6: =	 *>?@ 	 	 	 	 	 	 	 	 																											(3.6) 

γ:< =	 *?A@ 	 	
γ<6 =	 *A>@   

 

Where G is the shear modulus, which can be expressed as a function of the two 

independent constants in the following way: 

 G = &C(��D)                        (3.7)

                    

 

In the case of harmonic stress, the Hooke's model can be represented by a spring 

connected to a crank, which is driven by a rotating element with angular velocity ω. 

Knowing the equation of the imposed deformation is obtained the tension trend: 

 

γ =	 γ�sen(ω ∙ t) 



Chapter 3 - Literature Review: METHODS 

 

74 

 

 *I	 = G                                      (3.8) 

 

γ = 	G ∙ γ�sen(ω ∙ t)  

 

The spring gives a deformation perfectly in phase with the stress response, the phase 

angle between stress and strain is δ = 0 ° (Mazzotta 2012).   

3.2.3.2 Linear viscosity model (Newton viscous dasphot) 

In a perfect viscous body deformation is directly proportional to the tension application 

time according to a coefficient η, said dynamic viscosity. If the tension is removed the 

deformation not be returned, the energy used in the deformation process is completely 

dissipated. The viscous dashpot (Figure 3.6) obeys the law of Newton: 

 

 

Figure 3.6 Viscous Newton dasphot.  

 

τ = η ∙ γ3                                          (3.9) σ = λ ∙ ε3                      (3.10) 

 

where: 

η: dinamic viscosity;  

λ: elongational viscosity. 

 

In the oscillatory test schematization, it can be made a damper connected to a crank, 

which is driven by a rotating element with angular velocity ω. The tension equation 

can be derived from that of deformation: 

 γ = 	 γ�sen(ω ∙ t)                                      (3.11) 
 *I	3 = η                     (3.12)

     γ3 = 	ω ∙ γ�cos(ω ∙ t)                                                             (3.13) 
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τ = 	η ∙ ω ∙ γ�cos(ω ∙ t)                  (3.14) 

 

This demonstrates that the damper gives a deformation response in phase quadrature 

with the stress, ie there is a phase angle δ = 90 ° (Mazzotta F. 2012). 

3.2.3.3 Maxwell model 

It is the most simple viscoelastic model, consisting of the series combination of spring 

(stiffness G) and dashpot containing an ideal fluid viscosity η (Figure 3.7). As already 

specified earlier, the Maxwell model describes the behavior of a viscoelastic liquid. 

The strain rate of the system is given by the sum of the spring and dashpot strain rate: 

 

N'I'OPQRQ=  N'I'OP��	�
S +	N'I'OP'��T��O                                            (3.15) 

 

Figure 3.7 Maxwell linear viscoelastic model. 

 

By the laws of Hooke and Newton are derived as follows: 

 

N'I'OP��	�
S =	 1G dτdt	                                              (3.16) 

N'I'OP'�W��	 =	 *.                                     (3.17) 

 

from which the differential equation that adjusts the model: 

 

N'I'OPO�O =	 1G dτdt	+	 τη                                  (3.18)

   



Chapter 3 - Literature Review: METHODS 

 

76 

 

The relationship between the damper viscosity η and the spring stiffness G is defined 

relaxation time λ. Applying τ0  at time t=0 with constant deformation γ that occurs 

instantaneously, is measured the stress decreasing with time. Since dγ/dt =0 for t> 0: 

 

*(O)*X = eY(O/[)                                                                          (3.19) 

 

The (3.19) shows that the strain is zero at a sufficiently long time, after which 

deformation imposed remains in an irreversible way. In addition, if the deformation is 

kept constant, according to Hooke's law we have: 

 

*(O)*X =	@(O)@                                                                                         (3.20)     

 

There where the elastic constant of the spring and G (t) is the form of the deformed 

system, said relaxation modulus: 

 

@(O)@ 	= eY(O/[)		                     (3.21)     

However applying to the Maxwell model a stress τ0 at time t=0 there is an 

instantaneous deformation γ0 = τ0/G due to elongation of the Hook element; 

maintaining constant in time τ0, elongation of the elastic element is added to the 

viscous deformation. Integrating (3.18) is obtained: 

 

γ(t) = N�@+	 O.P ∙ τ�                                  (3.22)     

 

In the case in which it applies a periodic deformation to the Maxwell model equation 

it is obtained explaining the state equation and solving the differential equation 

(Mazzotta 2012): 

 γ3 = 	 γ3 e + γ3 	v                       (3.23)     

ω ∙ γ� ∙ cos(ωt) = 	 �@ ]*	]O	 +	 *.                                                                              (3.24)                       

τ = @∙.^∙_^��.^∙_^ sen(ωt) + 	cos(ωt)                     (3.25)     
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3.2.3.3 Kelvin-Voigt model  

It consists of a spring with stiffness G = 1/J and by a damper with constant η placed in 

parallel (Figure 3.8). The Kelvin-Voigt model describes the behavior of a viscoelastic 

solid. In this case the overall effort that emphasizes system is divided between spring 

and dashpot: 

 τO�O =	τ��	�
S +	τdasphot                                               (3.26)     

where: 

τ��	�
S = G ∙ γ	 = 	 Ic                                       (3.27) 

τ'�W��	 = η 'I'O                       (3.28) 

 

Figure 3.8 Kelvin- Voigt linear viscoelastic model.  

 

The differential relationship between stress and strain is therefore given by: 

 

τ = Ic + 	η dγ'O 	                                                                                                                                 (3.29) 

 

In the Kelvin-Voigt model the magnitude ηJ = λ is called the delay time. Assuming 

you perform a creep test, ie imposing at time t=0 a stress τ0 which is kept constant over 

time: 

 

γ	 = J ∙ τ�[1 − eYN-eP]                                               (3.30) 

     

This result highlights that the Kelvin-Voigt model behaves as an elastic solid ideal 

only in infinitely long times. From the comparison with the Hooke's law we can deduce 

the following: 
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J(t) = J[1 − eYN-eP]                                  (3.31) 

           

where λ is a measure of the delay with which the compliance becomes independent of 

time. Removing the stress τ0 at time t0, when the deformation has reached the value γ0, 

you are obtained: 

 

γ = γ� ∙ eNf-f-Xe P
                                                                             (3.32)   

 

The 2.29 shows that, for a sufficiently long time, the deformation is canceled; the 

Kelvin-Voigt model therefore does not give rise to permanent deformations and 

represents a delayed elasticity body. In the case in which the stress various periodically 

according to the law τ = τ0sin (ωt), obtaining the following expressions for the real and 

imaginary components of the complex deformability J* (Mazzotta 2102): 

 

Jg(ω) = cX��_^[^                                  (3.33) 

J"(ω) = cX_[��_^[^                    (3.34) 

 

3.2.3.4 Burger model  

As mentioned previously, the Maxwell and Kelvin-Voigt models are inadequate to 

describe the actual behavior of viscoelastic materials, except in special boundary 

conditions. In the specific case of bituminous binders that may be considered realized 

for very short load times and/or low temperatures (viscoelastic solid), or for very long 

load times and/or high temperatures (liquid-viscoelastic). To describe, however, the 

trends of G (t) in stress relaxation tests, and J (t) in the creep tests conducted on a large 

scale of the times and temperatures, it is appropriate to use more complex models. The 

simplest model that is traditionally considered is to Burger; it consists of two springs 

with G0 and G1 moduli and two dampers with coefficients η0 and η1. Using the 

principle effects superposition, for the elements connected in series, it is possible to 

write the system of equation in the form: 
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γ(t) = 	 *X.X t +	 *X@X +	 *X@i (1 − eYei- )                                (3.35) 

     

Understanding the model passes through the step by step analysis of its behavior under 

load. From the applied load occurs an instantaneous elastic deformation (τ0/G0) and 

simultaneously the creepy begins to manifest; immediately after delayed elastic 

deformation follows (with continuity of the tangent)  which, once died out, gives way 

to the viscous phase (always with continuity of the tangent). At the stop of the load, 

has a first elastic recovery, then an elastic recovery delayed until the degree of 

irreversible deformation that represents the stability condition (figure 3.9) (Mazzotta 

2012). 

 

Figure 3.9 Burger viscoelastic model. 

3.2.3.4 Generalized model  

The materials such as bitumen have a viscoelastic behavior that is much more complex 

than that defined by the model of Burger. The behavior can’t be simply described with 

reference to a relaxation time or to a delay time, but it is necessary to consider the 

spectrum of these magnitudes. In case it is sufficient not only to refer to a relaxation 

time, or a single system with spring and damper in parallel, multiple delay times are 

considered: born the extension of the Kelvin-Voigt model (Figure 3.10). In the case in 

which it is observed that the elastic deformation and viscose are not characterizable 

with a single elastic constant and only a viscous damper, reference is made to multiple 

systems of the type of Maxwell's interacting with each other, and then connected in 

parallel: born the extension of Maxwell model (figure 3.11). In the case, for example, 

of a generalized model with n elements Kelvin-Voigt in series, the resulting 
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deformation of the application of a constant shear stress τ0 varies with the following 

law: 

 

γ	 = 	 *X@X N1 +	 O[XP +	∑ *X@k 	l1 − exp	N− O[kPn
�o�                                                  (3.36)              

 

where G0 and λ0, represent the constants of the first element Maxwell (more sink spring 

in series) (Mazzotta 2012). 

 

Figure 3.10 Kelvin-Voigt generalized model. 

 

Figure 3.11 Maxwell generalized model. 
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3.3 Rheological parameters of bituminous binder 

3.3.1 Oscillatory rheological bitumen parameters  

The oscillatory tests consist to subject the sample to a stress or a deformation, which 

varies in time according to a harmonic law. Referring to the stress, this can be 

described according to the formula: 

τ = 	 τ� ∙ sen(ωt)                                                                                                                            (3.37)                                                                                                              

 

where 

τ0: stress oscillation amplitude; 

ω: pulse (equal to the frequency to less than 2π factor). 

 

The corresponding deformation is measured: 

 

γ = γ� ∙ sen(ωt − δ)                                                                           (3.38)                                                                                                                 

 

where: 

γ0: strain amplitude; 

δ: phase angle. 

 

The bitumen viscoelastic nature causes that the deformation oscillates with the same 

stress frequency, but on delay than this. The delay amount is represented by the phase 

angle δ; it can assume values on the range between 0 and π/2 and measures the ratio 

between the reversible and viscous components: value 0 corresponds to a condition of 

perfect elasticity while in correspondence of δ = π/2 the material behaves like ideal 

viscous fluid (figure 2.12) (Mazzotta 2012). 
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Figure 3.12 Materials behavior on phase angle function. 

 

Note the applied stress and measured the deformation (controlled stress) it is possible 

to determine the complex modulus G: 

G∗ =	 *XIX                                                                                                                   (3.39)        

The complex modulus G* is represented as a complex number: 

G∗ = Gg + iG"                                                                                                                                 (3.40) 

 

G' is the elastic modulus (storage modulus) and constitutes the complex modulus in-

phase component to the load application; G'' is said viscous dissipation modulus and 

is the component in phase opposition (loss modulus). In Figure 3.13 are reproduced 

the two components in the complex plane. 

 

Figure 3.13 Complex plane. 

So: 

Gg = G∗cosδ 

G" =	G∗sen                                    (3.41) G∗ =	√G′C + G"C 

The same considerations can be made in strain control. One of the main advantages to 

use oscillatory regime consists to perform a dynamic analysis of the behavior of 

bitumen, in order to simulate traffic load. 
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3.3.2 Data representation on sinusoidal oscillatory test 

3.3.2.1 Black Diagram 

One possible representation of the data from sinusoidal oscillatory test, alternative to 

viscoelastic functions representation in the frequency domain, is made from Black 

Diagram (Figure 3.14), in which each pair δ-G* is representative of one frequency and 

one temperature. 

 

Figure 3.14 Black Diagram. 

3.3.2.2 Cole-Cole Diagram 

A different data representation of the sinusoidal oscillatory test is possible on Cole-

Cole plane (Figure 3.15), where the origin functions are the storage modulus G' and 

the loss modulus G''. Referring to the equivalent mechanical models is possible to 

represent the behavior through Cole-Cole plane curves (Figure 3.16). 
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Figure 3.15 Cole-Cole diagram. 

 

 

Figure 3.16 Rheological model on Cole-Cole diagram. 

Complex modulus and phase angle variations are represented, varying the load 

frequencies, through the variation of storage and loss modulus. At high frequencies the 

loss modulus is 0, the opposite happens for low frequency. On the elementary models, 

special situations are obtained. The spring behavior is independent by the frequency 

and the Cole-Cole plot is identified by a single point in correspondence of the spring 

elastic modulus G. For the dashpot the curve coincides with the axis of ordinates, and 

the module tends to infinity for high values of the frequency, while it is zero for zero 

frequency (Mazzotta 2012). 

3.2.2.3 Time-temperature superposition principle (TTS) 

The viscoelastic properties are often heavily dependent on temperature. Several studies 

have shown that the G' and G'' moduli at different temperatures can be gathered 

together into a single curve, called master curve, through the time-temperature 



Chapter 3 - Literature Review: METHODS 

 

85 

 

equivalence principle, also known as the principle of time-temperature superposition 

(TTS). The principle implies that the same variation of a mechanical quantity, which 

the complex modulus G*, obtained by varying the frequency at fixed temperature can 

be obtained by varying the frequency and keeping the temperature fixed (Figure 3.17). 

Immediate consequence is the possible display on a single curve of the viscoelastic 

behavior of the test material in a frequency range far wider than that accessible 

experimental apparatus at fixed temperature. The materials whose behavior you can 

see in this way are said thermo-rheological simple. The principle of time-temperature 

superposition is therefore expected that a change of temperature variation across the 

relaxation times of a same factor said shift factor (Figure 3.17). If that is, τ1 (T0), τ2 

(T0), τ3 (T0), ... are the relaxation times at a reference temperature T0, then the effect 

of varying the temperature to a different value T will be to change these times in: τ1 

(aT), τ2 (aT), τ3 (aT) where aT is the shift factor, function of T. This factor is 1 for T = 

T0. Then: 

τ�(T) = 	 av ∙ τ�	(T�)                                                            (3.42) 

 

Figure 3.17 Master curve construction with TTS principle. 

 

P.E. Rouse proposed a theory that can explain the origins and deduce the implications 

of the principle of time-temperature superposition (Merusi F. 2009). It examines the 

motion of a polymer chain summarized as a masses connected by springs necklace 

(Figure 2.17). The masses then undergo the effect of viscous forces. The problem is 

studied searching the normal modes of oscillation. The results include the principle of 

time-temperature superposition (Merusi F. 2009). 
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Figure 3.18 Rouse model. 

 

It is shown that the stiffness of all of the individual spring elements Gi vary by an 

identical factor determined according to the following equation where ρ is the density 

of the material: 

G�(T) = G�(T�) v∙/vw∙/X                                                (3.43) 

The temperature dependence can then be made explicit in the formulation of the 

relaxation modulus of the generalized Maxwell model: 

G�(t, T) = v∙/vw∙/X 	 ∙ 	∑ G�(T�)
�o� e -yz∙ek(zX)                                                                                     (3.44) 

Defined the reduced relaxation modulus: 

G	(t) = G�(t, T) vX∙/Xv∙/                                                                                                                  (3.45) 

and the limited time: 
 t	 = O�z                        (3.46) 

The equation that describes the evolution of the module reduced in the domain of the 

reduced time, that contains in its interior both relating to the dependency information 

by time and temperature: 

G	(t	) = ∑ G�(T�)
�o� e -{∙ek(zX)                                                                         (3.47) 

 

It follows that G (t, T), as well as other viscoelastic magnitudes, directly dependent on 

both time and temperature, can be expressed as functions of a single variable, the 

reduced time. The law of variation of aT shift factors with temperature is constructed 

through the analysis of experimental data and is generally described by the Willimas-

Landel-Ferry (WLF): 
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log(av) = 	− ~i(viYvX)~^�	vYvX                                                                                                                   (3.48) 

where C1 and C2 are two constants which depend on the material of the fitting, or the 

law of Arrehnius:: 

log(av) = 	&�
 N�v− �vXP                      (3.49) 

 

The use of the law WLF or that of Arrhenius depends in general on external conditions 

and in particular, for bituminous and polymeric materials, on the location of the test 

temperature than the glass transition and the material. For T <Tg is generally has the 

domain of validity of the Arrhenius law while the WLF equation is applicable in the 

region T> Tg (Mazzotta 2012). 

3.3.3 Master curve and empirical model 

The TTS principle is realized in the development of master curves, the curves obtained 

by the translation of the data measured for several test temperatures that determine the 

trend of the viscoelastic function in question, in a new domain, more extensive than 

that of the individual initial curves, and in which effects of time and temperature 

coexist. The master curves can be used to represent the behavior of the material in a 

wide time or load frequency range where the experimental way determined by the only 

curve encloses both the effects of time and temperature. The extent of the transfer of 

individual curves defines the offset factors. For some thermo-theologically simple 

materials overlap Trends are requiring only horizontal translations. In this case, the 

offset factors coincide with the only horizontal shift factors aT, defined in the previous 

paragraph. In the case of data derived from analysis in sinusoidal oscillatory regime, 

the data translation, according to the determination of the reduced frequencies, are 

obtained: 

ω	(T�) = 	 avω(T)   
                                                                                                                                                           (3.50) 

av =	_{(vX)_(v)   

In more complex cases use it should be made also with vertical offsets (vertical shift 

factors, bT) attributable to non-negligible variation of the density ρ of the material with 
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temperature and defined in accordance with the assumptions set out in the preceding 

paragraph. 

bv =	vX/Xv/ 		                                                                                                                                      (3.51)       

 

The complex modulus and phase angle master curves have employees trends from the 

material but the general shape of the curve can however be described through some 

parameters and general considerations valid and commonly also applied in the case of 

road bitumens. 

• glassy asymptote, defines the limit behavior of the material T at low and high 

frequencies. The value of G * tending to glassy asymptote is shown with Gg; 

• viscous asymptote defines the limit behavior of the material at high T and low 

frequencies. Viscous asymptote defines the viscosity of the stationary state 

η�� = lim_→� @∗_  for small oscillation amplitudes can then place ηss = η0; 

• crossover frequency ωc: in correspondence of the oscillation frequency of 

which at a given temperature it has tan δ = 1, ie δ = π / 4 and G '= G''. 

•  rheological index R: difference between the glassy form and the complex form 

the crossover frequency,,	R = 	GSS − G∗(ω�). R indicates the "speed" at  which 

the curve reaches the asymptote glassy (Dalmazzo 2008) 

Hereinafter will be described a number of models derived empirically. All described 

models estimate the rheological properties of bitumen inside dl linear viscoelastic 

range (LVE). These properties are normally represented in terms of master curves and 

trend of 'phase angle δ to a specific reference temperature. In general, all the exhibited 

models are able to predict the rheological properties of bitumen (LVE) and will be 

processed in the following chapters in order to provide analytical support to the data 

collected empirically. 

3.3.3.1 Christensen and Anderson (CA) Model 

The linear viscoelastic model, developed at Pennsylvania State University (PSU), is a 

mathematical model which reproduces, for all temperatures and frequencies of interest 

of a road pavement, the behavior of the bitumen subjected to creep tests and tests in 
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oscillatory regime. The pattern consists of two sets of reports produced by Christensen 

and Anderson: one for the viscous zone, the other for the rest of the frequencies of the 

field. In Figure 3.19 the characterization of a master curve parameters are indicated: 

 

Figure 3.19 Characteristic master curve parameters on CA model. 

Linear viscoelastic limit definition, it is in the field of linear-viscoelastic (LVE) if the 

stress-strain relationship, τ / γ, is constant at any point. The model determines the linear 

limit on the curve-frequency elastic modulus defining the limit at the point at which 

the module drops to 95% of the maximum value obtained. It is also suggested to carry 

out the tests with voltage more than 75% of that of the linear limit. 

• the glassy form (glassy modulus) - horizontal asymptote value at which the 

complex modulus tends to low temperatures and high load frequency. It is a 

constant value for each type of bitumen and is approximately equal to 1 GPa. 

The phase angle, when the bitumen approaches the glassy form, tends to δ=0°. 

• the viscosity of the stationary zone - the zone Newtonian viscosity achieved at 

high temperatures and at low load frequencies; is also called the asymptote 

viscous and is represented by a straight line with angular coefficient equal to 

1. The phase angle is close to δ = 90°. 

• the "crossover" rate - defined as the frequency that the master curve of the 

diagram corresponds to the intersection between the asymptote glassy and 

viscous asymptote. Its inverse is called "crossover time". This value indicates 

the transition from the viscous zone at viscoelastic region, so it is an indicator 

of the consistency and hardness of the material. 
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• the rheological index - defined as the difference between the glassy form and 

the dynamic complex modulus obtained at the crossover frequency. It is a very 

important parameter because it is directly proportional to the amplitude of the 

relaxation spectrum, which gives it the property of being an excellent indicator 

of the rheological type of material; in practice, it characterizes the performance 

of the rheological curves. It is independent from the reference temperature but 

not the type of bitumen.  

The equations that describe the complex modulus |G*| and the phase angle δ, as a 

function of the previously described parameters, are followed below (Dalmazzo 2008): 

|G∗| = 	GS �1 + N_�_ P(�w�^)� �Y
��w�^

                   (3.52)      

δ = ��
l�� ���n

(�w�^)�                                                                                                                                 (3.53)       

R = 	 ��SC×��S�|�∗|�� !��S	(�Y ��X)                                                                                                        (3.54)      

          

with: 

Gg: glassy modulus; 

 ηss: stationary state viscosity ; 

��: crossover frequency [rad/s]; 

R: rheological index. 

 

3.3.3.2 Christensen, Anderson and Marasteanu (CAM) Model 

The CAM model was found by the rheological study performed on modified bitumen, 

and with respect to the CA model describes more accurately the behavior of such 

binders to low and high frequencies. Below the equations proposed by the researchers: 

|G∗| = 	GS l1 + N_�_ P�nY
��

                    (3.55)       

with v = log 2 / R, and R the rheological index previously described. The phase angle 

δ is described as follows: 
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δ = ��l����� n�                                                             (3.56)                 

 

The parameter w describes the speed with which the module |G*|. It tends to the two 

horizontal asymptotes (asymptote viscous at 45° and glassy asymptote Gg). During their 

studies Christensen, Anderson and Marasteanu, analyzing 35 modified bitumen and additives, 

and comparing the two models (CA-CAM) they found the form values that differed by about 

10-35%. This finding can be explained by the more or less high presence of waxes and 

asphaltenes, which influence the simple thermo-rheological behavior of the binders. While 

making significant improvements compared to the CA model, the model has shown some gaps 

especially at high temperatures (Yusoff et al. 2011). 

3.3.3.3Modified Christensen, Anderson and Marasteanu Model 

The model described below was proposed by Zeng, and was developed as a result of 

dynamic tests in oscillatory regime executed on 9 modified bitumen. All were tested 

with the Dynamic Shear Rheometer simulating a wide range of load frequencies, and 

temperatures. The model is valid for both ligands that for bituminous conglomerates. 

In particular models the behavior of the bitumen as a viscoelastic fluid, that of the 

mixture as a viscoelastic solid (Anderson and Marasteanu 2010) (Yusoff et al. 2011). 

Generalizing the CAM model, the complex module is described by the following 

formula: 

|G∗| = 	G� +	 @�Y@�
���N �����P��

���                      (3.57)      

            

where: 

Ge = |G*| per f        0, equilibrium moduls; 

Gg = |G*| per f       ∞, glassy modulus; 

fc = position parameter; 

f’c = reduced frequency. 
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The reduced frequency is a function of both the temperature that the deformation, 

and is equal to: 

f�g =	 f� �@�@�!
i�� 		                                                                                                                 (3.58)       

K with me and shape parameters, dimensionless and estimable during calibration of 

the model through a linear regression. The term fc, is comparable to the crossover 

frequency of the AC and CAM models. Figure 19.2 reproduces the model parameters, 

and through the course of the master curve is immediate notice how Gg and Ge are the 

two horizontal asymptotes when the frequency tends to infinity and zero, respectively. 

The third asymptote visible in the figure has slope m, and its intersection with the 

asymptotes Gg and Ge, on the horizontal axis identifies the crossover frequency fc and 

the reduced frequency f'c. Whereas a log decade as a unit, the distance between Gg (fc) 

and Gg is given by: 

R = log C���
���C��� Y�!����

          (3.59)       

 

 

Figure 3.20 Characteristic master curve parameters on CAM model. 

 

The phase angle: 

δ = 90I − (90I − δW) �1 + ���S	( �+���)
+ �C�
�+̂

       (3.60)       

con: 
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δm : phase angle at fd ; 

fd : frequency of bitumen inflection; 

Rd e md: shape parameters. 

 

Zeng has no I explicit parameter however, has shown that I = 0 if f ˃ fd and I = 1 if f 

<fd. Furthermore, the δ phase angle function satisfies the interval between 90° and 0°. 

Like other seekers the same Zeng used the WLF equation (described in the previous 

section) to detect the shift factor or alternatively the formulation of Arrheenius to 

translate the frequencies at low test temperatures. In the course of the study the author 

has found that the modulus | G * | derived from the model followed the trend of 

modules derived empirically. For what concerns the phase angle, on the contrary, it is 

not respected such two-way nature, probably due to some errors in measurement and 

analysis (Yusoff et al. 2011). 

3.3.3.4 Sigmoidal model (CAM)  

The function of the dynamic module obtained from the sigmoidal model, was 

introduced in the Mechanistic-Empirical Pavement Design Guide (ME PDG), 

developed in the course of the National Cooperative Highway Research Program 

(NCHRP), Project A-37A. Mathematically, the model takes the following form 

(Figure 3.21): 

log|G∗| = v +	  ���¡¢,£�w�(�)¤                                                                                    (3.61)       

with:  

log(ω) : logaritmic reduced frequency; 

v : lowest asymptote; 

β e γ : shape factors between the asymptotes and the local inflection points (points 

corresponding to a frequency ω = 10-β/γ); 
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Figure 3.21 Sigmoidal model master curve. 

 

In sigmoidal model the shift factor aT is calculated as a function of the viscosity of the 

bitumen, in order to have a correlation with the pavement aging. In this model the 

master curve construction refers to the modulus cannot regardless the phase angle. 

Normally in polymer modified bitumen assume values Gg = 1GPa (Yusoff N.I. et al. 

2011). Bonaquist and Christensen have proposed an amendment to the sigmoidal 

model in this report: 

log|G∗| = v +	 ¥�6Y����¡¢,£�w�(�)¤                                                                                     (3.62)       

with 

Max : limit value complex modulus. 
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3.4 Dynamic Oscillatory Test using DSR 

3.4.1 Dynamic Shear Rheometer 

DSR is the acronym for Dynamic Shear Rheometer and is used to measure the dynamic 

shear modulus and phase angle of bituminous binders at intermediate and high 

pavement temperatures. In the DSR dynamic oscillatory testing, the shear stresses and 

shear strains vary with time from positive to negative in a sinusoidal fashion. The DSR 

provides stress-strain moduli at different rate of loading expressed in terms of 

frequency at different test temperatures (Anderson et al. 1994). The DSR equipment 

used in bituminous binders characterisation can be divided into two categories:  

• controlled stress, when the rheometer applies a stress to the specimen and 

measures the resulting strain; 

• controlled strain, when the rheometer applies a strain to the specimen and 

measures the resulting stress. 

A 1-mm by 25-mm or 2-mm by 8-mm, hockey puck-shaped, sample of bituminous 

binder squeezed between two parallel metal plates is placed in a temperature controlled 

chamber, as shown in Figure 2.12. The chamber for controlling the test specimen 

temperature by heating or cooling maintains a constant specimen environment. The 

medium in the environment chamber can be liquid or gas. Due to the extreme 

temperature dependency of bituminous binders, it is necessary to control the 

temperature for the rheological testing of bituminous binders to a much finer degree 

than for most other viscoelastic materials. A change in temperature of 1°C can result 

in a modulus change of up to 25 percent for some binders (Anderson et al., 1994). Two 

types of spindles (upper plate) used in the DSR testing are 25-mm diameter parallel 

plate geometry, and 8-mm diameter parallel geometry. It is essential to select spindle 

geometry due to the effect of compliance of parallel plate geometry on rheological 

measurements for the extremely high stiffness binders under dynamic loading at low 

temperatures. Anderson et al. (1994) suggested that 25-mm parallel plates should be 

used when the complex modulus ranges from 103 to 105 Pa; 8-mm parallel plates 

should be used when the complex modulus ranges from 105 to 107 Pa; torsion bar or 

bending beam rheometer should be used when the complex modulus is greater than 

107 Pa. During the test, the sample of bituminous binder is sheared between two 

parallel plates. One of the parallel plates is oscillated with respect to the other at 
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selected frequencies and rotational deformation amplitude (or torque amplitude). As 

shown in Figure 2.13, the spindle (upper plate) is caused to oscillate sinusoidally while 

the base plate is fixed during testing. The testing is carried out by oscillating the spindle 

about its own axis such that a radial line through point A moves to point B, then 

reverses direction and moves through point A to point C, followed by moving back 

from point C to point A (Figure 2.1) (Airey G.,1997) . 

3.4.2 Plate – Plate configuration 

The measurement system consists of a lower plate which is generally fixed, and a top 

plate connected to the motor shaft of the instrument through which the rotation is 

applied (Figure 3.22).  

 

Figure 3.22 Configuration plate - plate 

The geometric quantities that define the system are the radius R and the so-called gap 

which is the distance between the plates, upper and lower measurement position 

(Figure 3.22). The gap must be appropriately determined based on the type of material 

to be tested. In general it can be said that it should be at least 5 times larger than the 

maximum size of the particles contained in the specimen, in order not to result in 

interference with the system and, therefore, errors in measurement. It is noted the 

torque T, the rotation angle Θ and the angular velocity Ω, the quantities of interest are 

obtained with the following equations (Figure 3.22) : 

τ = 2T
πr¨ 	 ;	 

γ = Θ	T 	 ;  
γ3 = Ω	T .  
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The value of the complex modulus G* is calculated from the ratio between the 

maximum applied shear stress and the maximum deformation obtained and expressed, 

as mentioned above, the measurement of the total resistance to the deformation of a 

material. Conversely, the phase angle δ is calculated by evaluating the delay of the 

wave of deformation respect to that of the load and represents the delay or the phase 

difference which occurs between the application of stress and the setting up of 

deformation. The following expressions show what was said: G*=τmax/γmax and ª= ∆«/t 
*360. 
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3.5 Mortar configuration test  

3.5.1 Viscoelastic stress analysis of torsional circular bars 

Figure 3.23 simply illustrates a sand asphalt sample installed in the DMA. The solid 

circular sand asphalt sample of length L and constant radius R is subjected to a twisting 

moment (torque) T , so as to produce a prescribed angle of twist φ . For a viscoelastic 

material, this problem can be treated by an approximate method to solve for the torque 

and stress distribution as a function of time resulting from the prescribed angle of twist. 

Equilibrium equations governing the problem are automatically satisfied because the 

problem is statically determinate (Kim Y-R. and Little D.N. 2005). 

 

Figure 3.23 Simple Illustration of the Cylindrical Bar under Torsion. 

Displacement of a general point can be reasonably expressed as a tangential direction 

displacement, uθ , in cylindrical coordinates r,θ,z : u­ = Θ(t)rz                                                                                                                      (3.63)       

Where Θ(t) = 	 φ(O)°   angle twist per unit length. The only valid strain-displacement 

relationship considering the tangential displacement, uθ, is given by: 

 γ(t) = 	 ]�±(O)]< + �	 ]�A(O)]­                      (3.64)       

It should be noted that the second term in equation 3.64 is negligible, because vertical 

displacement uz(t) is assumed to be zero. If the material is isothermal linear 

viscoelastic, the constitutive equation in terms of a convolution integral is given as 

follows: 

τ(t) = 	² G(t − ξ) ]I]´O� dξ                                 (3.65)       

γ(t) = 	² J(t − ξ) ]*]´O� dξ                                                                                                     (3.66)       
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Where τ (t) = time-dependent shear stress, 

γ (t)= time-dependent shear strain, 

G(t) = shear relaxation modulus, 

J (t)= shear creep compliance, 

t = time of interest, and 

ξ = time-history integration variable. 

The torque T(t) required to maintain a constant angle of twist Θ(t) can be calculated 

as follows by summing the moment of tangential force increments over the cross-

sectional area: 

 

 T(t) = ² ² r	�Cµ� τ(t)rdrdθ                      (3.67)       

 

It should be noted that the shear stress in equation 3.67 is not necessarily linear 

viscoelastic. Equation 3.67 can be expressed in the following simple form: 

 

τ(t) = v(O)c r                                        (3.68)       

J = ² ² r¨	�Cµ� drdθ                                                             (3.69)       

γ(t) = ·(O)° r                         (3.70)       

With the displacement function ϕ(t) , linear viscoelastic material property G(t), and 

sample geometry, corresponding shear stress and shear strain as a function of time can 

be calculated by equations 3.65 and 3.70. Alternatively, the shear stress can also be 

determined by equation 3.68, when the resisting torque is measured (Kim Y-R. and 

Little D.N. 2005). Given measurements of the displacement and torque, the linear 

viscoelastic material property is identified based on the constitutive relation, and 

viscoelastic stress analyses can be conducted analytically and/or numerically. The 

DMA instrument typically requires an oscillatory twisting displacement as input and 

provides resisting transducer torque responses. Under dynamic loading conditions, 

viscoelastic materials normally produce frequency domain dynamic properties such as 

storage modulus, loss modulus, and the phase angle between stress and strain due to 
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time-dependency. The combined form of the storage and loss properties reduces to a 

complex modulus and a dynamic modulus (Kim Y-R. and Little D.N. 2005): 

 

|G∗(ω)| = ¸|Gg(ω)|C + |G"(ω)|C                                (3.71)       

G∗(ω) = Gg(ω) + iG"(ω)C                    (3.72)       

ϕ = tanY� l@"(_)@�(_)n                                  (3.73)       

 

Where G* (ω) = dynamic shear modulus, 

G* (ω) = complex shear modulus, 

G' (ω) = storage shear modulus, 

G" (ω) = loss shear modulus, 

φ (ω) = phase angle, 

ω = angular frequency, and 

i = −1 . 

The shear stress-shear strain relation under the sinusoidal harmonic dynamic loading 

condition can be represented by: 

 τ(t) = G∗(ω)γ(t)                     (3.74)       

 

The relaxation modulus as a function of time can be determined by static creep, 

static relaxation, and/or dynamic frequency sweep tests within the linear viscoelastic 

region. Because torsional device usually employs dynamic loading, such as oscillatory 

vibration, the dynamic frequency sweep tests are performed to determine the linear 

viscoelastic relaxation behavior of materials. This is based on the theory of linear 

viscoelasticity inferring correspondence between frequency-domain and time-domain 

(Kim Y-R. and Little D.N. 2005). 

3.5.1 Dynamic Mechanical Analyzer 

The Dynamic Mechanical Analyzer DMA was originally intended to be used as a 

mechanical test system for evaluating viscoelastic properties of materials, especially 

polymers. The materials can be in solid, melt, or liquid state. The DMA system consists 
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of three main components: a test station, a system controller, and control computers. 

An environmental controller is optionally used for temperature control. The 

environmental controller provides low temperatures down to – 150°C using liquid 

nitrogen and high temperatures up to 600°C using a controlled electric heater. The 

impetus for the DMA testing of asphalt was originally from work performed by 

Goodrich (1988, 1991), Christensen and Anderson (1992), and Smith and Hesp (2000). 

Specifically, Smith and Hesp demonstrated that controlled-strain testing of mastics in 

a DMA leads to a controlled rate of microcrack development and growth, whereas 

controlled-stress testing would lead to rapid and uncontrolled crack growth (2000). 

Differences between the current study and those studies include the sample geometry 

used, the sample composition, and the loading sequence (including rest periods). A 

cylindrical rather than a rectangular sample was adopted in an attempt to avoid 

complex stress distribution in the samples and to make calculation easier. Rectangular 

samples have been the typical testing geometry for DMA (Kim Y-R. and Little D.N. 

2005). Sand asphalt mixtures were employed so that samples could be tested at an 

intermediate temperature to minimize unstable plastic flow. A sample holder capable 

of properly securing the cylindrical sample was developed. Epoxy glue was used to 

secure the sand asphalt sample to the holder. In the gluing process, care was taken not 

to cause any undesirable stress concentrations. Figure 3.24 shows a schematic diagram 

of the cylindrical DMA sample with holders. Each sample was mounted in the DMA 

instrument, and the chamber was closed and allowed to equilibrate to the desired 

testing temperature. All tests were started after at least a 20-minute equilibration period 

at the test temperature. Figure 3.24 shows the cylindrical sand asphalt sample 

configuration installed in the DMA The DMA machine measures resisting torque of a 

sample due to sinusoidal displacement-controlled rotational input. According to a 

study by Reese, torsional loading is a better simulation of damage than bending loads 

when considering traffic movements(1997). Test data (applied displacement and 

corresponding torque response) were collected by a data acquisition (DAQ) system 

with a 16-bit multichannel board (Kim Y-R. and Little D.N. 2005).. 
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Figure 3.24 Schematic Diagram of the Cylindrical DMA Sample with Holders (“Development of 

specification-type tests to assess the impact of fine aggregate and mineral filler on fatigue damage”). 
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3.6 Permanent Deformation Behavior and testing of bituminous binders 

3.6.1 Introduction of Rutting Phenomena 

Asphalt concrete is among the materials which are widely used for roads and airports 

pavement. About 95% of all of the world pavements is of asphalt type (Huang, 1993)   

(Shafabakhsh G.H. and Sadeghnejad Y.S. 2014). These pavements over time suffer 

failure due to passing traffic loads and exposure to different environmental conditions. 

Among the most important of these failures, we can mention rutting which is 

considered as the main concern of transportation agencies in the field of pavement. 

Annually, millions of dollars have been spending to compensate rutting failures in the 

pavement. The temperature and stress-induced by loading can be named as two main 

parameters that lead to permanent deformation in asphalt pavements. When the traffic 

loading increases and temperatures are high, rutting failure are more likely to 

occurring. Rutting is a surface depression in the wheel path where pavement uplift 

occurs along the side of the rut. Rutting may lead to pavement failure and potential of 

hydroplaning. Due to this, the design process has to be taken into consideration. The 

asphalt design mix must involve a proper proportioning. Compaction factor and the 

pavement thickness need to bear in mind. Rutting potential also can be minimized by 

limiting the stress inducting by moving wheel load besides maximizing its fatigue life. 

The influence of each of the properties of  the mixture in the performance of asphalt 

pavement must be determined to balance all the properties of the specific application 

embedded in mixtures of hot mix asphalt compacted asphalt can be evaluated through 

their  properties mixture. This is particularly the density, stability, flow and stiffness. 

Numerous test methods are  being used to evaluate the performance of Hot Mix 

Asphalt (HMA). Permanent deformation (Rutting), fatigue cracking, thermal cracking, 

loss of surface friction, and stripping are the five main distress types of (HMA) 

pavements. All of these distresses can result in loss performance, but rutting is the one 

distress that is the most likely to be a sudden failure as a result of unsatisfactory HMA. 

Other distresses are typically long term and show up after a few years of traffic. 

Permanent deformation or rutting is a primary failure mode of HMA pavements 

(Esmail M. et al. 2014). Rutting usually occur in the linear with wheel path. Rutting 

also known as  permanent deformation can be  defined as the accumulation of small 

amounts of unrecoverable strain as a result of applied loading to pavement  (Esmail 
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M. et al. 2014). It is seen as longitudinal depression which follows the line of the 

wheelpaths (Esmail M. et al. 2014). The phenomena of rutting are an accumulation of 

permanent  deformations and it is confined to the top layers of the pavement. These 

permanent  deformations in the wearing course layer could be developed due to 

densification and plastic flow of this layer. They also recommend that rutting progress 

in two stages. Initial stage is that of densification of the bituminous concrete under 

moving trafficwhile the second stage is resulted due to plastic flow of bituminous 

concrete. Excessive binder, inadequate compaction, substandard materials, excessive 

loading or high moisture content can also create this problem (Esmail M. et al. 2014). 

Besides that, rutting can also manifest because of a poor pavement subgrade. Two of 

the causes of a weak subgrade are moisture and poor compaction during  construction 

work. A weakened subgrade is susceptible to higher stress attributable to traffic 

loading; thus there is an increased probability of rutting in the pavement. Research in 

the field of improving the constituent materials of hot mix asphalt (HMA), mix designs 

and methods of analysis and pavements design, including laboratory and field tests are 

needed to cause providing more serves life for pavements and as a result, the loss of 

costs which are set to be spent to repair pavement failures is prevented. Researchers 

and engineers are continuously trying to improve asphalt pavement performance 

(Huang 1993) (Shafabakhsh G.H. and Sadeghnejad Y.S. 2014). 

 

Figure 3.25 Rutting phenomena on surface layer. 

 

Once two rheological values of G* and δ derived, it is possible to determine the 

"Performance Grade" to evaluate the rutting sensitivity at high temperatures. In fact, 
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each bituminous binder can be classified attributing to a class performance 

(Performance Grade PG), characterized by a number that defines a representative 

temperature range of the road paving project in which it is guaranteed satisfactory 

performance. This is the interval in which the binder is able to withstand, in operation, 

the dynamic stresses that simulate the behavior on the road. The standard identifies 

seven classes each in turn divided into subclasses. All classes are equivalent from the 

performance point of view; this means the level of required performance is equal in all 

cases but what distinguishes each class is the severity of the conditions at which this 

level should be guaranteed, and this makes a material more "practical (performance 

able)" than the other. A bitumen, for example, classified as PG 64 -28, may be used, 

without incurring deteriorations due to shortcomings in the performance of the binder, 

for a range of design temperatures between 64°C and -28°C. The logic that is the basis 

of this criterion is to provide the user with different territorial maps, divided into 

climatic areas, within each of them prescribes specific Performance Grade of the 

binder, always subordinate to the importance of the road. Related to environmental 

conditions, the territory is divided into climatic zones based on the minimum and 

maximum temperatures of the paving project, which is determined in accordance with 

appropriate models developed just under SHRP. On the basis of all the information 

available, the user can identify which type of binder must be used: in hot climates are 

suggested binders that meet the specifications in a wide range of temperatures, for 

example between 70°C and -22°C (PG 70 -22). In the cold areas are suggested binders 

with interval performance more shifted towards low temperatures, for example 

between 46°C and -34°C (PG 46 -34) Through G* and δ, we can calculate the PGs 

corresponding to the test material through the following two expressions:  

• PGmax = G* / sin δ, (representing the upper limit of performance that is the 

one referring to the phenomenon of deterioration at high temperatures, 

identified the rutting); 

•  PGmin = G* · sin δ, (representing the lower limit of performance that is what 

refers to the phenomenon of deterioration at low temperatures, identified by 

fatigue failure).  
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3.6.2 Creep characterization of bituminous binder 

It is widely recognised that the permanent deformation behavior of asphalt mixtures is 

dependent on the flow of bituminous binders. Theoretical considerations show that the 

binder contribution to rutting is a permanent deformation described by a viscosity 

(Philips and Robertus, 1995). In a long time creep test for the bituminous binder, the 

effect of delayed elasticity decreases with time and after a sufficient long time period, 

the rheological behavior of the bituminous binder is dominated by viscous flow. Under 

low stress creep, structures within the bituminous binder deform so slowly that they 

can continuously adapt thereby maintaining a situation close to equilibrium without 

building up any significant structural change in the material.  Three regions of behavior 

are included: linear elastic, delay elastic and viscous. The viscous component is 

operative whenever the bitumen is loaded and is solely responsible for the non-

recoverable deformation. The elastic and delay elastic strain are totally recoverable 

upon the release of an applied load. The elastic response dominates at short loading 

times or low temperatures, while the viscous response dominates at long loading times 

or high temperatures. At intermediate loading times and temperatures the delay elastic 

response dominates (Anderson et al., 1991). Collop et al. (2002) performed creep tests 

using a DSR on 50 and 100 penetration grade bitumens at 20°C over a range of shear 

stress levels. Creep curve can be divided into three regions. In the first region, namely 

primary creep, the shear strain rate (shear strain divided by time) decreases with time 

and the bitumen behavior is dominated by elastic and delay elastic effects. In the 

second region, namely steady-state creep region, the shear strain rate remains 

approximately constant with time and viscous effects dominate the bitumen behavior. 

In the third region, namely tertiary creep, the shear strain rate increases with time and 

the bitumen is progressively damaged (Liao M.C., 2007). 

3.6.3 Creep test using DSR 

3.6.3.1 Elastic Recovery Test 

Clopotel C.S. and Bahia H.U. (2012) have proposed a novel test procedure using the 

Dynamic Shear Rheometer (DSR) to measure elastic recovery of asphalt binders and 

mastics. They developed  a simple protocol for measuring the elastic recovery in the 

DSR (ER-DSR) :  
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• RTFO aged binder sample is heated in the oven until is fluid enough to be 

poured into a silicon mold. The procedure follows the ASTM D7175 “Standard 

Test Method for Determining the Rheological Properties of Asphalt Binder 

Using a Dynamic Shear Rheometer” [9].  

•  The binder sample is transferred from the silicon mold to the DSR plate. The 

gap is set to 2.10 mm to allow for trimming the excess binder from the sample. 

The gap is then set to 2 mm.  

• The temperature of the sample is kept at the required temperature (25⁰C) for 

20 minutes. This step is required to reach thermal equilibrium.  

• A constant strain rate of 0.023 1/s is applied for 2 minutes. This step is run in 

strain controlled mode.  

• A constant zero shear stress is applied for a period of 1 hour. This step is run 

in stress controlled mode and corresponds to the relaxation part of the test.  

The elastic recovery at the end of the relaxation step is calculated as follows: 

ER= 
»�¼R»�½	¾Q»¿ÀÁ	¿Q	QÂ�	�Á½	R�	»�Ã¿Ä¿QÀRÁ	¾Q�Å	(Æ^)¾Q»¿ÀÁ	¿Q	QÂ�	�Á½	R�	ÃR¿½ÀÁÇ	¾Q�Å	(Æ^) ∙ 100 

A typical plot for the shear strain versus time in the DSR is presented in Figure 3.26. 

 

Figure 3.26 Typical shear strain curve for the elastic recovery test in the DSR. (“Importance of 

Elastic Recovery in the DSR for Binders and Mastics”). 

 

In this study, a new procedure for measuring elastic recovery in the DSR was 

developed by the authors and used to measure the response for polymer modified 

binders and mastics. The DSR-ER results were first correlated to the standard ductility 

bath test for elastic recovery. The elastic recovery measured in the ductility bath can 

be replaced by elastic recovery measured in the DSR. A very good correlation between 
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these tests was obtained for both asphalt binder and mastics (R2 =0.97 and R2 =0.96 

respectively).  

3.6.3.2 Repeated Creep Recovery Test 

Suggested specification parameters and test protocols were developed on NCHRP 459 

(2001). In order to study permanent deformation, the viscous component of the binder 

creep stiffness, GV, measured by a repeated creep test in the dynamic shear rheometer 

(DSR) was extracted. To establish a better rating of the role of binders in mixture 

rutting, the parameter Gv, defined as the viscous component of the creep stiffness, is 

recommended to replace the current binder parameter G*/sinδ. This parameter is 

measured with a newly developed repeated creep test conducted with the dynamic 

shear rheometer (DSR). The protocol test consist to 100 creep cycles applying a shear 

stress of 1 kPa for 1 second and a shear stress of 0 kPa for 9 second in arrange 

temperarue between 46 and 64°C. The non recoverable compliance Jnr, the 

accumulated strain and the average recovery percentage can be extrapolated in order 

to study the permanent deformation response of bituminous materials. 

 

3.6.3.3 Multiple Stress Creep Recovery Test 

The Multiple Stress Creep Recovery (MSCR) test is the latest improvement to the 

Superpave Performance Graded (PG) Asphalt Binder specification. This new test and 

specification – listed as AASHTO TP70 ‘‘Standard Method of Test for Multiple Stress 

Creep and Recovery (MSCR) of Asphalt Binders using a Dynamic Shear Rheometer’’, 

AASHTO MP19, and AASHTO M320 – provide the user with a new high temperature 

binder specification that more accurately indicates the rutting performance of the 

asphalt binder and is blind to modification. The main benefit of the MSCR test is that 

it eliminates the need to run tests such as elastic recovery, toughness and tenacity, and 

force ductility, procedures designed specifically to indicate polymer modification of 

asphalt binders. A single MSCR test can provide information on both performance and 

formulation of the asphalt binder (Vignali et al. 2014). The MSCR test uses the well–

established creep and recovery test concept to evaluate the binder's potential 

permanent deformation. Using the Dynamic Shear Rheometer (DSR), the same piece 

of equipment used today in the existing PG specification, according to AASHTO 
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TP70, a constant one–second creep stress load is applied to the asphalt binder sample. 

After the 1–second load is removed, the sample is allowed to recover for 9 seconds 

(zero stress recovery). The test is started with the application of a low stress (0.1 kPa) 

for 10 creep/recovery cycles then the stress in increased to 3.2 kPa and repeated for an 

additional 10 cycles (Figure 3.27) (Vignali et al. 2014) (FHWA-HIF-11-038 2011) .  

 

Figure 3.27 Typical data of MSCR test for a polymer modified Binder (The Multiple Stress Creep 

Recovery (MSCR) Procedure).  

The non-recoverable compliance (Jnr) and the percent recovery after ten cycles at 0.1 

kPa and 3.2 kPa will be studied (Figure 3.28). The Jnr value was calculated as the ratio 

between the average non recoverable strain for 10 creep and recovery cycles, and the 

applied stress for those cycles. The testing temperatures is selected 58 ̊C and 64 ̊C in 

agreement with AASHTO M320 (FHWA-HIF-11-038 2011). The main MSCR 

parameters are described in Table 3.1. 
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Figure 3.28 First two MSCR cycles, strain values to obtain  results parameters.  

Table 3.1 Main bitumen characteristics 

Multiple Stress Creep Recovery Parameters 

R100% 
Average recovery of the 10 cycles 

tested at 100 Pa 
R100% =	 110 ÉÊstrain	Bstrain	A

��

o�

Í 100 

R3200% 
Average recovery of the 10 cycles 

tested at 3200 Pa 
R3200% =	 110 ÉÊstrain	Bstrain	A

��

o�

Í 100 

Jnr100(1/kPa) 
Average non – recoverable part of 

cycles tested at 100 Pa 
J
	100 = 	 110 ÉÊstrain	C0.1

��

o�

Í 
Jnr3200(1/kPa) 

Average non – recoverable part of 

cycles tested at 3200 Pa 
J
	3200 = 	 110 ÉÊstrain	C3.2

��

o�

Í 100 

Rdiff(%) Difference in recovery  (R100 − R3200)100/R100 

Jnrdiff(%) 
Difference in non-recoverable 

complience 
(J
	3200 −	J
	100)100/J
	100 

 

The material response in the MSCR test is significantly different than the response in 

the existing PG tests. In the PG system, the high temperature parameter, G*/sinδ, is 

measured by applying an oscillating load to the binder at very low strain. Due to the 

low strain level, the PG high temperature parameter doesn't accurately represent the 

ability of polymer modified binders to resist rutting (FHWA-HIF-11-038 2011). Under 

the very low levels of stress and strain present in dynamic modulus testing, the polymer 

network is never really activated. In the existing PG specification the polymer is really 
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only measured as a filler that stiffens the asphalt. In the MSCR test, higher levels of 

stress and strain are applied to the binder, better representing what occurs in an actual 

pavement. By using the higher levels of stress and strain in the MSCR test, the response 

of the asphalt binder captures not only the stiffening effects of the polymer, but also 

the delayed elastic effects (where the binder behaves like a rubber band) (FHWA-HIF-

11-038 2011). The MSCR test does a better job of identifying the rut resistance of both 

neat and polymer modified binders, but some highway agencies still want to make sure 

polymer is in the binder for other purposes such as crack resistance and durability. 

Here the MSCR test provides great improvements over the existing tests like the elastic 

recovery and toughness and tenacity. Data from the exact same sample from the MSCR 

test that was used to do high temperature grading provides information on the polymer 

modification as well. The one test provides the high temperature grade and quality of 

polymer modification eliminating the need to run additional tests like elastic recovery 

on additional samples. The compliance value Jnr from the MSCR test provides the rut 

resistance and the amount of recovered strain from the test identifies the presence of 

polymer and also the quality of the blending of the polymer in the binder (FHWA-HIF-

11-038 2011). 
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3.7 3D Discrete Element Method (DEM) 

3.7.1 Introduction of Discrete Element Method 

The mechanical response of asphalt composites is frequently modeled by 

computational methods. The traditional approach treats them at the macro-scale using 

continuum-based methods that usually involve undertaking careful experiments over 

a range of conditions, measuring the macroscopic materials response and fitting 

continuum-based constitutive models to the measured performance. Numerous 

research works, however, show that the mechanical performance of asphalt mixture is 

largely dependent on the material properties of its individual components and on the 

way they interact (contacting) at the microscale. A fundamental understanding of the 

contact mechanisms of a particulate system through a well-calibrated micromechanical 

model provides insight into the material behavior at macroscale, and guide material 

design and performance prediction. In this way, moreover, the effects of individual 

components on the performance of the mixture can also be captured by the calibrated 

micromechanical model. As Discrete particle Element Method (DEM) considers 

particles as distinct interacting bodies, it is an excellent tool to investigate the 

micromechanical behavior of binders. Interactions between particles are considered to 

be a dynamic process with states of equilibrium developing whenever the internal 

forces are in balance. Contact forces and displacements of an assembly are found by 

tracing the movements of individual particles. The calculations in the DEM procedure 

involve first applying Newton's second law to the particles and then a force-

displacement law to the contact points between particles. 

Figure 3.27 Schematic Diagram of the Cylindrical DMA Sample with Holders 
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3.7.1.1 DEM Fundamental Principles 

In recent years the traditional numerical methods to continuously have been 

progressively complemented by innovative methods based on the division of the 

problem domain into discrete elements. The fundamental difference between the 

continuous and discontinuous methods ones is that in the first contact between 

elementary units remain unchanged regardless of the response of the model, in seconds 

are updated at each iteration, based on the position and the relative movement of the 

individual elements. In the method of discrete elements defining the mesh and 

constitutive models of materials it is replaced by the determination of the distribution 

and size of the elements that make up the system and from the description of the 

contact behavior (Calvetti F. 2003). In addition, the stress state of departure cannot be 

specified independently of the initial distribution of the individual units. Using the 

DEM modeling is possible to investigate the evolution of the system response in stable 

equilibrium conditions, and limit at break, beyond which, as previously mentioned, it 

admits the domain separation into blocks that continue to feel the stress agents. This 

allows taking advantage of numerical modeling to outline the interaction between 

discrete objects and subject to large deformation or fracture processes. Discrete 

methods in the system is modeled as a set of independent bodies that interact with each 

other through mutual contact points, which are responsible for the transmission of 

forces inside the vehicle. The interaction between the elements is considered as a 

dynamic process that reaches equilibrium when the system internal stresses are 

balanced. The forces and means of the displacements are obtained by tracing the 

movements of individual bodies which compose it, which are the result of propagation 

within the soil of causes of disturbance that originate at the edge of the model. In 

particular, it applies the Newton's second law to the elements and the law force-

displacement to the contact points. The first is used to determine the motion of the 

individual units caused by stresses acting on them; the second is used to update the 

contact forces resulting (Jing L. 2003). To get an outcome consistent with the DEM 

model to simulate reality, there are five basic steps to follow: 

• the problem domain subdivision and the type identification of items with which 

divide the system; 
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• representation of the deformation of the individual blocks (which may be rigid 

or deformable); 

• development of an algorithm for the identification of the contacts; 

• formulation of the equations of motion of the system; 

•  integration of the equations of motion and updating of contacts between the 

blocks, which vary as a result of the movements and deformations which apply 

to the system. 

3.7.1.2 Particles DEM 

The method of distinct particulate elements, proposed by Cundall and Strack in 1979, 

is based on principles similar to those of the traditional DEM, unlike which 

summarizes the blocks forming the system as rigid particles of circular or spherical 

shape. The calculation algorithm requires at each cycle the update of contacts based 

on the position and the relative movement of the particles. The Newton's second law 

to determine the speed and the position on the basis of the forces and moments applied 

to every contact is applied the force-displacement law in order to assess the magnitude 

of the forces, while in each element is applied. To illustrate how are certain forces and 

displacements during a calculation cycle, it is possible to consider the case shown in 

Figure 3.30 used by Cundall and Strack to explain the basic principles of the method. 

Consider two disks, devoid of weight, indicated with x and y, squeezed between two 

rigid walls moving toward each other with constant velocity v. 

 

Figure 3.30 Disk compressed between  rigid walls. 

 

Initially, at time t = t0, the walls and the discs are in contact, but no force was born. 

After a time interval ∆t, the walls are moved inward by an amount equal to ν∆t. 

Assuming that the disturbances cannot propagate over a single disk during each time 
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interval, it is assumed that both disks maintain their initial position during the time 

interval between t = t0 and t = t0 + ∆t. The overlap is then instantly verify t1 = t0 + ∆t 

at the contact points A and C and its entities will amount to ∆n = ν∆t. The points 

A(D) and A(W) are respectively the points of the disc and the wall that lie on the same 

line perpendicular to and passing through the center of the wall; the contact A is 

defined as the midpoint between A(D) and A(W). With it indicates the relative 

displacement of A(D) with respect to point A(W) that occurs in a single time 

increment. The relative displacements which have at the contact points A and C at 

time t1 = t0 + ∆t are inserted in the force-displacement law for the calculation of the 

contact forces: 

 

( ) tvknkF ntnn ∆⋅⋅=∆⋅=∆ 1                                                                                 (3.75)                      	
 

where: 

kn = normal stiffness; 

∆Fn = increasing normal force. 

 

positive defining the direction 1 that goes from x to y disk (Figure 3.28), the resultant 

of the forces F(x) and F(x)1 for the disks x and y at time t1 = t0 + ∆t will be: 

 

( ) ( )
11 tnnx kF ∆⋅=                                          (3.76)                                                                                                                  

( ) ( )
11 tnny kF ∆⋅−=                                                                     (3.77)                                       

              	
These forces are used to determine the new acceleration by resorting to Newton's 

second law: 

( )

( )x
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1 =&&                                (3.78)                                                                            
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where:  

1x&&  = x disk acceleration towards 1; 

1y&&  = y disk acceleration towards 1; 

( )xm  = mass disk x; 

( )ym  = massa disk y. 

 

The accelerations thus found are assumed constant in the time interval from t1= t0 + 

∆t, t2 = t0 + 2∆t and can be integrated to derive the speed: 
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The displacement increases its contacts A, B and C at time t2 = t0 + 2∆t are determined 

through the following reports: 
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Where ∆n(A), ∆n(B) e ∆n(C) are considered positive if there is compression stress. The 

first calculation cycle provides for the application of the force-displacement law to all 

contacts of each element, in order to determine the resultant force. In this way through 

the second law of Newton are calculated before the new acceleration, then again the 

individual discs move. 
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3.7.1.3 Force - Displacement law 

The force-displacement law is applied to the contact points in order to determine the 

contact forces resulting from the respective movements. Consider the two disks x and 

y of Figure 3.31 in mutual contact. The coordinates of the centers are indicated with 

( )21, xxxi =  and ( )21, yyyi = , where the indices 1 and 2 refer to the axes of the 

cartesian reference system represented in Figure 3.31. The components of the velocity 

vectors of the two disks are respectively ( )21, xxxi
&&& =  and ( )21, yyyi

&&& = , while the 

angular velocities are ( )xθ& and ( )yθ& , if considered positive counterclockwise. The points 

P(x) and P(y) are defined as the points for intersection of the line connecting the centers 

of the disks xi and yi which have a radius equal to R(x) and R (y) and the masses equal 

to m(x) and m(y). 

 

Figure 3.31 Force – displacement law 

. 

Two disks are considered in contact only if the distance D between their centers 

appears to be less than the sum of their radii: 

( ) ( )yx RRD +<                                                            (3.85)                                                                                                                                                   

If this condition occurs, the relative displacement of the contact point C is determined 

by integrating the relative velocity, defined as the speed of the point P (x) with respect 

to point P (y). They introduce the normal unit vector with the direction from the disk 

center x to y of the center of the disc, such that: 

 

( )αα sin,cos=
−

=
D

xy
e ii

i
                                                                                             (3.86)                                                                                                                                                   
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and the unit vector tangential obtained through 90° rotation of ei: 

 

( )12 eeti −=                                                                                 (3.87)                                           

                                                                                                                                                                                                                  

The relative velocity of the point P (x) with respect to point P (y) can be expressed as: 

 

( ) ( ) ( ) ( ) ( )( ) iyyxxiii tRRyxX ⋅+−−= θθ &&&&&                                    (3.88)                  

                                                                                                                                                                                                                                            

The normal ( )n&  and tangential ( )s&  components of the relative velocities are calculated 

as the iX&  projections respectively long ei and ti : 

 

( ) ( ) ( ) ( ) ( )( ) ( ) iiiiiyyxxiiiii eyxetRReyxeXn ⋅−=⋅⋅⋅+⋅−⋅−=⋅= &&&&&&&& θθ                         (3.89)                                            

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
yyxxiiiiiyyxxiiiii RRtyxttRRtyxtXs ⋅+⋅−⋅−=⋅⋅⋅+⋅−⋅−=⋅= θθθθ &&&&&&&&&&       (3.90)                                                                                                                                                   

	
The integration with respect to time of the component of the relative speed provides 

the ∆n and ∆s components of the increase of the relative displacement.  

 

( ) ( ){ } teyxtnn iii ∆⋅⋅−=∆⋅=∆ &&&                                                                                       (3.91)                                                                                                                                                   

( ) ( ) ( ) ( ) ( ) ( )( ) tRRtyxtss yyxxiii ∆⋅⋅+⋅−⋅−=∆⋅=∆ θθ &&&&& 															 																									(3.92)                                                                                                                                  

																																											
These shift increments are used in the law on force-displacement with the purpose of 

calculating the increments of the normal and tangential forces ∆Fn and ∆Fs: 

 

( ) ( ) tkeyxnkF niiinn ∆⋅⋅⋅−=∆⋅=∆ &&                                                      (3.93)                                                                                                      

( ) ( ) ( ) ( ) ( )( ){ } tRRtyxkskF yyxxiiisss ∆⋅⋅+⋅−⋅−⋅=∆⋅=∆ θθ &&&&                                          (3.94)                                                                                                                                                   

 

where kn and ks respectively represent the normal and tangential stiffness. 

∆Fn and ∆Fs are added at each time interval to the sum of all increments of certain forces in 

previous intervals: 
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( ) ( ) nNnNn FFF ∆+=
−1

                               (3.95)                                                                                                                                                   

( ) ( ) sNsNs FFF ∆+=
−1

                                   (3.96)                                                                                   

                                      	
where the indices N and N-1 refer to the Rates and tN tN-1, so that. Fn and Fs are 

considered positive if oppositely directed to the unit vectors and and you (Figure 3.32). 

 

Figure 3.32 Sign convention Fn - Fs 

 

As regards the sliding between the two disks, the extent of the tangential force Fs 

calculated above is compared with the maximum permissible value, defined as: 

 

( ) cFF ns +⋅= µφtan
max

                                                             (3.97)                                                  

	
where µφ  is the smallest angle of friction of the disks in contact and c cohesion 

After determining the normal and tangential forces to each contact of a disc, for 

example, that x, they are broken down into two components along the directions 1 and 

2. The sum of these components and provides the resultant forces ( )∑ 1xF  e ( )∑ 2xF . 

The resulting moment acting on the disk x ( )∑ xM , is considered positive if it acts 

counterclockwise and is given by: 

 

( ) ( )∑∑ ⋅= xsx RFM                                (3.98)                                                                              

                                                                                     

where the sum is extended to all of the hard contacts. The resulting forces and moments 

acting on the disk x are subsequently inserted in the Newton's second law for the 

purpose of determining the new and accelerations ix&&  and  ( )xθ&& . 
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3.7.1.3 Equations of motions 

The velocities ix&  and ( )xθ&  are evaluated, as indicated by Cundall and Strack, assuming 

that the resulting force and moment to time tN acts on the disk x in the range from ∆t 

tN-1/2 to tN + 1/2. The Newton's second law applied to the dick x becomes: 

 

( ) ( )∑=⋅ ixix Fxm &&          (3.99)                                                 

( ) ( ) ( )∑=⋅ xxx MI θ&&                                (3.100)                                                                       

 

where Y (x) represents the moment of inertia of the disk x. Considering the range and 

time constants ∆t, from the previous equations the following expressions of the 

velocities are obtained: 
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
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θθ &&                                                                        (3.102)                                                                                                                                                   

	
These equations are applied to the rotation to each disk; the values of the speeds thus 

obtained can be inserted in the force-displacement law, and the cycle can be repeated 

for a new time increment. The new speed values are also used to update the positions 

and rotations of the discs by means of a further numerical integration: 

 

( ) ( ) ( ) txxx
NiNiNi ∆⋅+=

++ 211
&                                               (3.103)                                                                                                                                                   

( )( ) ( )( ) ( )( ) t
NxNxNx ∆⋅+=

++ 211
θθθ                                          (3.104)                                                                                                                                                   

	
In the model you can also be incorporated mass forces, such as gravitational ones. In 

this case we add the term to the sum of the forces that appears in the equation of the 

speed, it is where the two components of the acceleration vector due to the mass force. 
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3.7.1.3 Damping law 

The damping comes into play during the slip between two discs when the value of the 

tangential force at each contact is equal to (Fs) max. Taking into account the effect of 

damping the equations of speed turn: 

( ) ( ) ( ) ( )[ ]
( )

t
m
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xx

Nx

ixix

NiNi ∆⋅










 +

+= ∑−+ 2121
&&                       (3.105)                                                                                                                                                   
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



+= ∑−+ 2121
θθ &&                                      (3.106)                                                                                                                                                             

where it represents the sum of the components of the damping forces. 

To evaluate it considering the normal components (Dn) and tangential (Ds) as follows: 

 

( ) [ ] iNiinnNn eyxcncD ⋅−⋅=⋅=
− 21

&&&                               (3.107)                                                   

( ) ( ) ( ) ( ) ( ) ( )( )[ ]
2121 −−

⋅+⋅−⋅−⋅=⋅=
NyyxxiNiissNs RRtyxcscD θθ &&&&&                           (3.108)              

	
where the damping coefficients in the normal direction (cn) and tangential (cs) are 

assumed proportional to the stiffness kn and ks with β constant: 

nn kc ⋅= β                                                                                                                        (3.109)

ss kc ⋅= β                                                                                                                          (3.110) 

3.7.1.4 Time critical range 

Distinct Element Method Particle integrates the equations of motion using a scheme 

of finite difference; the solution thus calculated is stable only if the time interval ∆t 

does not exceed the critical value. For its determination is considered a system to a 

dimension it consists of a mass (m) and by a spring of stiffness k (Figure 3.33). 
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Figure 3.33 Mass and spring system. 

 

The motion of the point in which is concentrated the mass is governed by the following 

differential equation: 

 

xmkx &&=−                                                 (3.111) 

                                                                                              

Denoting by T the period of the system, the critical time interval becomes: 

π

π

π
k

m

T
tcrit

⋅⋅

==

2

                                                                                                        (3.112)	
	

The discretization of a circular particle system adopted in Distinct Element Method 

Particle may seem a simplistic schematic than in irregularly shaped blocks provided 

by traditional DEM. In fact this characteristic is the greater potential of this technique 

compared to other DEM proceedings, since making it particularly suitable for the 

modeling of granular materials, whose behavior is strongly influenced by the nature of 

individual particles that compose it. It is therefore possible to consider its discreet 

character through a microscopic approach, so as to understand the basic physical 

processes that determine the macroscopic stress-strain response (Manganelli  

2013). 

 

3.7.2The use of DEM to study rheological behavior of bitumen 

Dondi et al. 2014 through three-dimensional discrete element approach have captured 

the time-dependent behavior usually studied with the Dynamic Shear Rheometer 

analysis. In their research study Dondi et al. generated model geometry using an 

arrangement of spherical particles, contained inside walls which simulated the 

dynamic shear rheometer device. Only spherical particles were used because they can 

provide a close coupling between DEM simulations and laboratory tests. More 

information about the micro-mechanics of a real material could be achieved by 

incorporating more realistic particle geometries into the DEM model contact (Dondi 

et al. 2012).  
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Figure 3.34 - DEM model of the DSR sample (“Modeling the DSR complex shear modulus of asphalt 

binder using 3d discrete element approach”) 

 

In this study the authors have applied the linear contact model, where the normal and 

shear stiffness of a discrete element (the linear contact model parameters) change with 

loading time, based on the Burger’s constitutive relations (Collop et al. 2004-2006-

2007). It evaluates, in particular, the normal and shear stiffness of a discrete element 

by the following formulas (Abbas et al. 2004):  
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where:	 
t is the loading time; 

Kmn is the normal stiffness for Maxwell section;  

Kms is the shear stiffness for Maxwell section; 

Cmn is the normal viscosity for Maxwell section; 

Cms is the shear viscosity for Maxwell section; 

Kkn is the normal stiffness for Kelvin section; 

Kks is the shear stiffness for Kelvin section; 

Ckn is the normal viscosity for Kelvin section; 

Cks is the shear viscosity for Kelvin section. 

τn and τs are  the normal and shear components of the relaxation time: 

kn

kn

n
K

C
=τ                   (3.115)       

ks

ks

s
K

C
=τ                                     (3.116) 
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It has been chosen to equate the normal and shear direction parameters: 

mmsmn KKK ==
                 (3.117)       

mmsmn CCC ==
                 (3.118)       

kkskn KKK ==
                 (3.119)       

kkskn CCC ==
                 (3.120)       

The response of the Burger model to a constant shear stress is characterized using the 

dynamic shear compliance ( ( )ω*
J ) and the dynamic shear modulus ( ( )ω*G ).  These 

relationships are presented in following equations: 

( ) ( ) ( )22* ''' ωωω JJJ +=                (3.121)       
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==               (3.122)       

 

( ) ( ) δωω cos*' ⋅= GG                                                                                           (3.123)     

   

( ) ( ) δωω sin*'' ⋅= GG                    (3.124)       
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where:	 Ñ′(�) = is the real part referred to as the storage shear modulus;  Ñgg(�) = is the imaginary part referred to as the loss shear modulus; Òg(�) = is the real part referred to as the storage shear compliance;  Ògg(�) = is the imaginary part referred to as the loss shear compliance. 

Burger's model parameters, in particular, were obtained following the methodology 

developed by Baumgaertel and Winter, whereby the viscoelastic behavior of bitumen  

was determined by fitting the Burger model to DSR measurements. Two rheological 

measurements were fitted simultaneously, namely the storage and the loss shear 

moduli respectively. The fitting procedure was based on minimizing an objective 

function that is equal to the sum of square of errors in predicting the storage and loss 

shear moduli over the available range of testing frequencies (Abbas A. 2004): 
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where: 

G'0
j and G''0

j are respectively the storage and loss shear moduli measured at the jth 

frequency wj; G'j and G''j are respectively the predicted storage and shear moduli from 

equations (3.125) and (3.126); m is the number of data points. After  the extraction of 

Burgers’ parameter the authors have and imposed the boundary condition test. In 

particular boundary and loading conditions were defined in order to select a 

combination of parameters that best matched the stress-strain response observed in 

laboratory tests. An oscillatory shear load of constant amplitude was applied on the 

upper parallel wall, at nineteen loading frequencies ranging between 0.01 and 10 Hz 

and several different temperatures (10, 20, 30, 40 and 50°C). Since in PFC forces can 

be applied only to balls and not to walls, an oscillatory shear angular velocity was used 

for each temperature. Laboratory test results and numerical ones, have been evaluated 

and compared in terms of complex modulus (|G*|) and phase angle (δ). In according 
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to equation (3.131) and (3.132) the numerical results have been calculated using the 

following equations: 

MAX

MAX

S

S

S

F
G =*                   (3.131)       

360⋅
∆

=
t

t
δ                   (3.132)       

where: 

FS MAX  = is the maximum amplitude of the particles shear contact forces; 

SS MAX = is the maximum amplitude of the particles shear displacements; 

∆t = is the time lag between the peak shear contact force and the peak shear 

displacement; 

t = is the loading time of one cycle. 

The DEM approach used in this study is potentially good to predict the bitumen 

response in the frequency sweep configuration as shown on Figure 3.35. From the 

obtained master curves Dondi et al. confirm that the TTS principle is valid also for 

DEM simulations results, using the horizontal shifting obtained with WLF theory.  

 

Figure 3.35 – Master curves of experimental (LAB) and numerical (DEM) results for complex 

modulus (G*) and phase angle δ (“Modeling the dsr complex shear modulus of asphalt binder using 

3D discrete element approach”) 

Based on the obtained macro-scale results, that validates the DEM approach, the 

micro-scale response was analyzed by  the authors considering both the total number 

of contacts inside the specimen and the contact forces with their internal distribution. 

These are plotted as lines with thickness proportional to the contact force magnitude. 

During the frequency sweep test three significant conditions, representatives of the 
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PBM time-dependent behavior, were considered (Figure 3.36). Using the principle of 

time – temperature superposition, in fact, point A is representative of low temperatures 

and high frequencies, at which the bitumen behaves as elastic solid, while point C is 

characteristic of high temperatures and low frequencies, at which the bitumen behaves 

as viscous liquid. The intermediate range of temperature and frequency results in 

visco-elastic behavior (point B). 

 

 

Figure 3.36 – Conditions for evaluating the contact forces (“Modeling the dsr complex shear modulus 

of asphalt binder using 3d discrete element approach”) 

 

 

Figure 3.37 – Contact forces evaluated on the vertical plane of simmetry (“Modeling the dsr complex 

shear modulus of asphalt binder using 3d discrete element approach”) 

 

The results obtained, comparing the numerical simulation of a frequency sweep test 

with a laboratory one, show that the authors’ adopted approach is found to be 

successful in predicting, both quantitatively and qualitatively, the complex modulus 

and the phase angle of the studied polymer modified bitumen, over a wide range of 

temperatures and frequencies. In addition the microstructural analysis has permitted to 

evaluate the internal forces configuration induced by shear stress in the specimen 

(Figure 3.37).   
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3.7.3 The use of DEM to study rheological behavior of Asphalt Mixtures 

Over the past 10 years, the use of micromechanics to predict properties of asphalt 

mixtures has drawn increasing attention. A number of researchers have developed 

micromechanical models with the discrete particle element method (DEM). Among 

these, asphalt binders were usually simulated with elastic models. Buttlar and You 

(2001), for example, presented a 2D microfabric discrete element approach to simulate 

the behavior of asphalt mixture in indirect tension testing. They described the internal 

structure of the mix using clusters of circular particles, adopting elastic contact model 

with bonding and sliding capabilities to define the particles' interaction. Further they 

extended this approach to model compression tests and hollow cylinder tensile tests 

on asphalt mixtures, in order to estimate theirs stiffness, and the complex material 

behavior was always simulated by combining the elastic contact constitutive model 

with complex geometrical features. Also Kim et al. (2005-2006-2008) implemented 

the microfabric discrete element approach to investigate fracture mechanisms in 

asphalt concrete, and they described the material contact behavior by using an elastic 

contact-stiffness model. In the same years Collop et al. (2004-2006-2007) investigated 

the use of distinct element modelling to simulate the behavior of a highly idealized 

bituminous mixture in a uniaxial and triaxial compressive creep test. The effect of 

bitumen was represented as shear and normal contact stiffness. Elastic contact 

properties have been used to investigate the effect of sample size and of the values of 

the shear and normal contact stiffness on bulk material properties. Abbas et al. (2005) 

simulated the mechanical behavior of asphalt mastics with the discrete element 

method, in order to evaluate the effect of binder stiffness and mineral filler volume 

fraction on the overall mix stiffness. They used a combination of stiff and soft particles, 

representing the aggregate filler and the binder phases respectively, and bonding 

together by the linear elastic contact model. Dai and You (2007) presented 

micromechanical finite-element and discrete-element models for the prediction of 

viscoelastic creep stiffness of asphalt mixture, simulated by graded aggregates bound 

with mastic (asphalt mixed with fines and fine aggregates) through an elastic contact 

model.  In 2008 You et al. focused their research work on the development of 3D 

microstructure-based discrete element model of asphalt mixtures, studying the 

dynamic modulus from the stress-strain response under compressive loads. The 
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geometry of aggregates and mastic was simulated with the captured aggregate and 

mastic images, bonding by an elastic contact-stiffness model. Masad et al. 2009 

introduced a numerical approach that account for aggregate strength, gradation and 

shape to model the HMA performance. The simulation, adopting an elastic contact-

stiffness model of the particle interaction, showed that these factors were of significant 

influence on the HMA performance in terms of resistance to fatigue and rutting. 

Mahmoud et al. (2010) introduced an approach that combines the discrete element 

method and image processing techniques to analyze the combined effects of aggregate 

gradation, shape, stiffness and strength on HMA resistance to fracture. The DEM input 

parameters were determined based on measuring aggregate and HMA properties, 

adopting the elastic model at contact points. Consequently, the model was used to 

quantify the internal forces in asphalt mixtures and determine their relationship to 

aggregate fracture which cannot be accomplished by conventional experimental 

methods. The analyzed research studies shows that elastic models are found to be a 

useful tool to predict only some time-independent properties of asphalt binders, such 

as stiffness at a specified frequency or time, and not theirs real time-dependent 

behaviors. To overcome this limitation, therefore, the adoption of viscoelastic models 

is necessary. In this way, in fact, some real time-dependent behavior of asphalt binders, 

such as dynamic modulus and phase angle, can be predicted. The simplest option is to 

use a Burger’s model, which comprises a spring (Kk) and dashpot (Ck) in parallel 

(delayed elastic component) connected in series to a spring (Km, elastic component) 

and a dashpot (Ck, viscous component). Wu et al. (2011), starting from obtained results 

in DEM modeling of a creep test of a highly idealized bituminous mixture bonding 

linear elastic contact model, introduced a Burger’s model to give a time dependent 

shear and normal contact stiffness. It can be seen that the predicted and measured 

curves are similar in magnitude and shape, demonstrating the applicability of this type 

of approach. Its reliability was confirmed by Dondi et al. (2005-2007) by simulation 

of the behavior of an asphalt mixture under Marshall test, and of the fatigue 

performance of an asphalt pavement under traffic loading. Abbas et al. (2007) 

simulated with DEM the viscoelastic behavior of nine asphalt mixtures, containing 

unmodified and modified asphalt binders, in simple performance tests. Aggregates 

were modeled as rigid objects and the viscoelastic interaction among the mix 
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constituents was defined using a time-dependent viscoelastic model (Burger’s model). 

The predicted dynamic moduli compared well with the experimentally measured 

values for all mixes. Liu et al. presented a viscoelastic model of asphalt mixtures with 

the discrete element method, where the viscoelastic behaviors of asphalt mastics (fine 

aggregates, fines, and asphalt binder) were represented by a Burger’s model. 

Aggregates were simulated with irregular shape particles, consisting of balls bonded 

together by elastic contact models, and the interspaces between aggregates were filled 

with balls bonded with viscoelastic Burger’s model to represent asphalt mastic. The 

favorable agreement between the DEM prediction and the lab results on dynamic 

moduli and phase angles, from uniaxial compressive tests, indicates that the 

viscoelastic DEM model approach adopted in this study is very capable of simulating 

constitutive behavior of asphalt mixtures. According to the model developed by Liu et 

al. (2007-2008-2009), Chen et al. (2011) established a user-defined micromechanical 

model using DEM to investigate the cracking behavior of asphalt concrete. The 

comparison between numerical and laboratory results, obtained from uniaxial complex 

modulus tests and indirect tensile strength tests, showed that the 3D DEM model is 

able to predict accurately the fracture pattern of different asphalt mixtures. Adhikari 

and You (2010) used the discrete element model to predict the asphalt mixture 

dynamic modulus in a hollow cylindrical specimen across a range of test temperatures 

and load frequencies. The microstructure of the asphalt concrete specimen was 

captured by X-ray tomography techniques. The linear contact-stiffness model and 

Burger’s contact model, respectively for the aggregate and for the interactions within 

the sand mastics, were used to calculate this strain response. You et al. (2011) 

presented a method for the simulation of asphalt mixture creep compliance tests, with 

a 3D microstructural-based DE viscoelastic model (Burger’s model), on the basis of 

the time-temperature superposition principle to reduce the computation time. It was 

observed that the DE viscoelastic model and the experimental measurements yielded 

similar results. The background reported shows that the DEM method has been 

extensively adopted to reproduce the behavior of asphalt mixtures, while a very small 

number of research studies model asphalt binder. Moreover these cases confirmed that 

DEM elastic model is not efficient for modeling the time and temperature dependent 

behavior of binders, and the viscoleastic model is necessary. 
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4 RHEOLOGICAL AND 3D DEM CHARACTERIZATION OF 

TRADITIONAL BITUMINOUS MASTIC: METHODS 

VALIDATION 

4.1 Introduction 

Asphalt mastics are defined as dispersions of fillers within a medium of asphalt binder. 

The fillers refer to the fraction of mineral aggregate passing the 200-mesh sieve (i.e. 

smaller than 75 µm), as described on Chapter 2. All the test procedures described on 

Chapter 3 were implemented on cold mastics made with traditional filler. The 

objective of this study is to evaluate the effects of limestone filler and Portland cement 

on cold mastics properties. Two different fillers volumetric percentages were 

investigated. The mastics response to permanent deformation was investigated with 

two approaches: 

• a rheology-based approach, which includes temperature sweep and Multiple 

Stress Creep Recovery tests, implemented according to AASHTO TP 70-07 

(Dondi G., Mazzotta F., et al. 2014); 

• a micromechanical approach, to capture the real time-dependent behavior of 

asphalt mastic and to predict its performance through the better understanding of 

its internal interaction (Vignali V., Mazzotta F., et al. 2014). 

Numerous research works, in fact, show that the mechanical performance of asphalt 

mastic is largely dependent on the material properties of its individual components and 

on the way they interact (contacting) at the microscale. A fundamental understanding 

of the contact mechanisms of a particulate system through a well-calibrated 

micromechanical model provides insight into the material behavior at macroscale, and 

guide material design and performance prediction. As Discrete particle Element 

Method (DEM) considers particles as distinct interacting bodies, it is an excellent tool 

to investigate the micromechanical behavior of mastics. Interactions between particles 

are considered to be a dynamic process with states of equilibrium developing whenever 

the internal forces are in balance. Contact forces and displacements of an assembly are 

found by tracing the movements of individual particles. The calculations in the DEM 

procedure involve first applying Newton's second law to the particles and then a force-

displacement law to the contact points between particles. A commercially available 
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three-dimensional DEM code called Particle Flow Code (PFC), developed by Itasca 

Consulting Group, was used in this study. 
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4.2 Materials 

4.2.1 Bitumen 

A SBS modified bitumen, typically used to make bituminous emulsion, was used to 

produce the mastics. The bitumen main characteristics from traditional test are shown  

in Table 4.1: 

Table 4.1 Main bitumen characteristics 

Penetration [dmm] 

(UNI EN 1426) 

Softening point [°C] 

(UNI EN 1427) 

Fraass breaking point [°C] 

(UNI EN 12593) 

55 62 -16 

 

From Frequency Sweep Test (10-50°C) the master curve for base bitumen has been 

found by applying the appropriate shift-factor for all the bitumen (WLF theory Chapter 

3). Amplitude sweep test was performed to find the Linear Viscoelastic Elastic (LVE) 

range for the material 1.8% in this case. The test was controlled on shear strain and 

with the frequency of 1.59 Hz.. 

Figure 4.1 – Bitumen Master Curves  

4.2.2 Limestone Filler 

The filler used in this study is a product obtained from the fine grinding of limestone 

composed primarily of calcium carbonate (CaCO3). The limestone filler is referring to 

the particles passing 0.063 mm sieve. In this research natural limestone filler has been 
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choose to add in to the bitumen due to its good behavior with bitumen in the stiffness 

index. The limestone filler was characterized geometrically through a gradation 

analysis (EN 933-10) and volumetrically, determining their volumetric mass (EN 

1097-7). Rigden Voids (EN 1097-4) and Delta Ring & Ball (EN 13179-1) were also 

performed according to EN 13179-1. Table 4.2 shows the limestone filler 

characteristics. 

Table 4.2 Limestone filler main characteristics 

Test Name Standard Limestone filler 

Gradation analysis (mm) EN933-10 0.063 

Particle density (Mg/m3) EN 1097- 7 2.73 

Rigden voids (%) EN 1097- 4 33.82 

∆ Ring & Ball [°C] EN 13179-1 8 

 

4.2.3 Cement 

The cement used in this research is a Cement Portland 32.5R made by heating (calcium 

carbonate) with other materials (such as clay) to 1450 °C in a kiln, in a process known 

as calcination. The cement is referring to the particles passing 0.063 mm sieve. The 

cement was characterized geometrically through a gradation analysis (EN 933-10) and 

volumetrically, determining their volumetric mass (EN 1097-7). Rigden Voids (EN 

1097-4) and Delta Ring & Ball (EN 13179-1) were also performed according to EN 

13179-1. Table 4.3 shows the limestone filler characteristics 

Table 4.3 Cement main characteristics 

Test Name Standard Limestone filler 

Gradation analysis (mm) EN933-10 0.063 

Particle density (Mg/m3) EN 1097- 7 3 

Rigden voids (%) EN 1097- 4 25 

∆ Ring & Ball [°C] EN 13179-1 12 
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4.3 Mastics  

4.3.1 Mastics Design 

The volumetric analysis has been conducted on the two studied mastics. The 

calculation of the compositional volume of cement and limestone filler particles (Vf, 

Vc) has been obtained through the following equations: 

�� = �Ó�Ó������Ó�Ó                                 (4.1) 

�» = �Ô�Ô�����������Ó�Ó
                                (4.2) 

where Mc = mass of cement in the mastic; Sc = specific gravity of cement  Mf = mass 

of filler in the mastic; Sf = specific gravity of filler; Mb = mass of bitumen in the mastic; 

and  Sb = specific gravity of bitumen. The results of equations applied on studied 

mastic are reported on Table 4.4. 

Table 4.4 Mastics volumetric composition  

Mastic 

Name Code 

Vf 

[%] 

Vc 

[%] 

Vb 

[%] 

MC 0 25 75 

MCF 12.5 12.5 75 

 

4.3.2 Mastics Preparation 

Cement end filler were manually mixed with the bituminous emulsion and the obtained 

mastics were stored in a shallow container. The choice to produce small size test 

specimens has permitted to avoid separation between the materials with different 

densities, obtaining homogenous DSR samples. Moreover, curing of specimens of 

small size can be performed at room temperature and takes place in a relatively short 

time. 
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4.4 Test Programme 

4.4.1. Test Equipment and Sample Preparation 

Dynamic Shear Rheometers (DSR) Anton Paar - MCR 302, using peltier system 

temperature control with peltier hood (APPENDIX A), have been used to obtain the 

mastic rheological properties). Prior to mounting a bituminous sample between a 

parallel plate geometry, two plates should be sufficiently warm (approximately 90°C 

for modified bitumen) that a good adhesion between a sample and plates can be 

achieved. The procedure of bituminous sample preparation is listed as follows: 

• remove the bituminous sample from shallow container, being careful that the 

filler is homogeneous in the mix;  

• pour directly the mastic sample onto the upper plate until it nearly covered the 

plate. 

• close the plates to the target gap of 2.025mm or 1.025mm for the bulge. 

• trim the extra specimen by moving a heating trimming tool around the upper 

and lower plates. 

• adjust the gap to the desired testing gap after trimming. 

• the procedure causes a hockey puck-shaped specimen and a desired bulge at 

the periphery of specimen. It is noted that the periphery of a specimen retains 

a convex shape as the temperature is changed. The sample should not shrink to 

the point where the edge becomes concave (Liao 2007). 

 

4.4.2 Amplitude Sweep Test 

Amplitude Sweep (AS) tests were preliminary carried out, to investigate the 

viscoelastic region at 10°C, applying a constant frequency of 10 rad/s (1.59 Hz). The 

investigated strains level come from 0.01% to 100% of mastic deformation. It was 

chosen the strain amplitude at which the complex modulus not differ by more 10% of 

its initial value. 

4.4.3 Frequency Sweep Test 

The Frequency Sweep (FS) test was performed in strain control configuration, where 

the strain amplitude was limited within the linear viscoelastic (LVE) response. 
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Amplitude Sweep (AS) tests were preliminary carried out to investigate the 

viscoelasticity region at 10°C, applying a constant frequency of 10 rad/s (1.59 Hz). It 

was then chosen the strain amplitude at which the complex modulus does not differ 

more than 10% from its initial value, in this case 1% for both mastics. FS test was 

conducted in a range of frequencies between 0.01 and 10 Hz, at the temperatures of 0, 

10, 20, 30, 40, 50 and 60°C. The 8 mm plate with a 2 mm gap was adopted below 30°C 

and above this temperature 25 mm plate and 1 mm gap was used (Fig 4.2).  

 

Figure 4.2 – DSR 25mm configuration and shear tendion/deformation curves for a load  frequency of 

0.01Hz @30°C. 

4.4.4 Repeated Creep Recovery Test 

Repeated Creep Recovery tests (RCR) were conducted with 25 mm parallel plates (PP) 

and a 1 mm gap under two different temperature conditions. MC and MCF were tested 

with a 100 cycles RCR test at a stress level of 1 kPa. RCR tests were conducted at two 

different temperatures: 46°, 58°C. Each loading cycle consisted of 1 s creep and 9 s 

recovery (NCHRP report 459). Following AASHTO TP70-07 standard, Jnr was 

calculated as the ratio between the unrecovered shear strain and the applied shear 

stress. The percentages of recovery were obtained as the ratio between recovered strain 

and peak strain. 

4.4.5 Multiple Stress Creep Recovery Test 

The Multiple Stress Creep and Recovery test (MSCR) was run according to the 

ASSHTO TP 70-07 "Standard Method of Test for Multiple Stress Creep and Recovery 

(MSCR) of Asphalt Binders using a Dynamic Shear Rheometer”. According to this 

standard, mastic sample is loaded at a constant creep stress for 1 second, followed by 
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a zero stress recovery of 9 seconds. Ten cycles of creep and recovery are run at 0.1 

kPa creep stress, followed by ten at 3.2 kPa creep stress. The non-recoverable 

compliance (Jnr) and the percent recovery after ten cycles at 0.1 kPa and 3.2 kPa were 

studied. The Jnr value was calculated as the ratio between the average non recoverable 

strain for 10 creep and recovery cycles, and the applied stress for those cycles (Chapter 

3). The testing temperatures were selected in agreement with AASHTO M320 table, 

in particular 48°C and 56°C were chosen.  
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4.5 Discrete Element Test Simulation 

The three-dimensional discrete element modeling approach has been used in order to 

capture, both quantitatively and qualitatively, the behavior of MC and MCF mastics 

during the frequency sweep test. Since many research works show that the mechanical 

performance of mastics is largely dependent on the material properties of its individual 

components and on the way they interact (contacting) at the microscale, an 

understanding of the contacts mechanisms of the system through a 3D 

micromechanical model provides insight into the macroscale material behavior and 

guides its design and performance prediction. Therefore, for MC and MCF samples, 

the discrete element simulation includes three main steps: 

• definition of the model geometry; 

• description of the contact material properties; 

• simulation of the frequency sweep test. 

These aspects are here discussed in detail. A commercially available three-dimensional 

DEM code called Particle flow code (PFC), developed by Itasca Consulting Group, 

was used in this study. In PFC3D, particles are spheres that move independently and 

interact at the contact points. 

4.5.1 Model geometry  

According to Dondi et al. (2014) the model geometry was generated in PFC3D using 

an arrangement of spherical particles, contained inside walls which simulated the 

dynamic shear rheometer device. The bitumen spheres diameter was set to 200 µm 

according to the magnitude of the bitumen film coating aggregates in bituminous 

mixes (Kose et al. 2000) (Hammoum et al. 2012) and (Abbas et al. 2004). The spheres 

diameter of Portland cement and limestone filler was set to 100 µm according to their 

grading curves. The selection of these particle sizes was also motivated by the need of 

reducing the computational time. In fact it should be noted that in the DEM simulation 

it is almost impossible to take the fine particles fully into consideration because not 

only this significantly increase computational time, but it also affects the system's 

capability to reach equilibrium. The spheres material density was set as measured by 

the manufacturer (Table 4.5). Density scaling technique was not used, despite it 

reducing computation time. 
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Table 4.5 Properties of the DEM models 

Mastic Material Density [kg/m3] Spheres diameter [ µm] 

MC 
Bitumen 1000 200 

Portland cement 3000 100 

MCF 

Bitumen 1000 200 

Portland cement 3000 100 

Limestone filler 2700 100 

 

Three walls were adopted in order to simulate the dynamic shear rheometer, in which 

the samples of mastics, represented by 49,200 spheres, were generated (Figures 4.3 – 

4.4). The test device was modeled by a cylindrical wall closed at the top and bottom 

by planes simulating the parallel plates. The lower plane is fixed, while the upper one 

oscillates back and forth to create a shearing action. The samples of mastics, 2 mm 

thick and 8 mm in diameter, were sandwiched between walls. The contact stiffness of 

the cylindrical wall has been obtained by a calibration analysis and it is equal to 102 

N/m (Dondi et al. 2014).  

 

Figure 4.3 – MC, DEM model of the DSR sample (in blue the bitumen spheres, in red the Portland 

cement spheres) 

 

Figure 4.4 – MCF, DEM model of the DSR sample (in blue the bitumen spheres, in red the Portland 

cement spheres, in yellow the limestone filler spheres) 
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4.5.2 Contact material properties 

According to Dondi et al. (2014), in this study, the linear contact model, based on the 

Burger’s constitutive relations was applied the first approach was adopted. It evaluates, 

in particular, the normal and shear stiffness of the contact of a discrete element by the 

following formulas: 
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where:	 
t is the loading time; 

Kmn is the normal stiffness for Maxwell section;  

Kms is the shear stiffness for Maxwell section; 

Cmn is the normal viscosity for Maxwell section; 

Cms is the shear viscosity for Maxwell section; 

Kkn is the normal stiffness for Kelvin section; 

Kks is the shear stiffness for Kelvin section; 

Ckn is the normal viscosity for Kelvin section; 

Cks is the shear viscosity for Kelvin section. 

τn and τs are  the normal and shear components of the relaxation time: 

kn

kn
n

K

C
=τ                      (4.4)   

ks

ks
s

K

C
=τ                      (4.5) 

It has been chosen to equate the normal and shear direction parameters: 

mmsmn KKK ==                     (4.6) 

mmsmn CCC ==                     (4.7) 

kkskn KKK ==                     (4.8) 

kkskn CCC ==                     (4.9) 
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Burger's model parameters, in particular, were obtained following the methodology 

developed by Baumgaertel and Winter (1989), whereby the viscoelastic behavior of 

the studied mastics was determined by fitting the Burger model to DSR test results. 

Two rheological measurements were fitted simultaneously, namely the storage and the 

loss shear moduli respectively. The fitting procedure was based on minimizing an 

objective function (Equation 3.130): 
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The “Solver” option in Microsoft Excel was utilized for the purpose of minimizing the 

objective function and results were highly dependent on initial values inserted for the 

model parameters (Table 4.6). 

Table 4.6 Mastics Burger Parameters. 

Burger Parameter Initial Value 
“Solver” Value 

MC MCF 

Kk [MPa] 3 0.03 0.26 

Km [MPa] 2 56.09 24.36 

Ck [MPa·s] 4 1.10 3.61 

Cm [MPa·s] 5 8.18 13.11 

4.5.3 Simulation of Frequency Sweep Test 

The micro-scale contact parameters of each mastic has been validate through a 

comparison between DEM results and laboratory ones obtained in a frequency sweep 

test (FS), which is normally adopted to establish the response of mastic to different 

loading frequencies, in term of |G*| and δ master curves. The Frequency Sweep (FS) 

test was performed in strain control configuration, where the strain amplitude was 

limited within the linear viscoelastic (LVE) response. Since in PFC forces can be 

applied only to spheres and not to walls, an oscillatory shear angular velocity was used 

for each temperature as shown on Figure 4.4b. In laboratory, according to Dondi et al. 

(2014), FS test was conducted in a range of frequencies between 0.01 and 10 Hz, at 

the temperatures of 10°C, 20°C, 30°C, 40°C, 50°C and 60°C. The 8 mm plate with 2 

mm gap set-up was adopted in all the range of temperatures. 
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Figure 4.4b – Frequency sweep test loading wave. 

The complex shear modulus (G*) and the phase angle (δ) were measured.  G* is an 

indicator of the stiffness or resistance to deformation under load of bitumen and is 

defined by the following equation: 

SMAX

MAX

S

F
G =*                    (4.11) 

where FMAX is the maximum amplitude of the particles shear contact forces and the 

SSmax is the maximum amplitude of the particles shear displacements.  

The phase angle is defined by: 

360⋅
∆

=
t

t
δ                     (4.12) 

where t is the loading time and ∆t is the time lag between the peak shear contact force 

and the peak shear displacement. Using the principle of Time – Temperature 

Superposition (TTS) (Equation 3.48) the master curve of G* and δ were constructed 

at the reference temperature of 20°C.  

 

 

 

 

 

 



Chapter 4 – Rheological and 3D DEM characterization of traditional bituminous 

mastic: Methods Validation 

 

145 

 

4.6 Test Results and Discussion 

4.6.1 Master Curves 

4.6.2.1 Frequency Sweep Test Results 

The rheological parameters complex modulus G* and phase angle δ of mastics MC 

and MCF are represented in terms of master curves in Figure 4.6. As in Figure 4.5 the 

Black Diagram curves of mastics are continuous, it can be stated that the TTS principle 

is also valid for the studied mastics in the entire temperature domain (Tan and Guo 

2013).  

 

 

Figure 4.5 – MC and MCF  Black Diagram. 

At medium and high frequencies, G* tends to the same value for both mastics 

(1.32E+08 Pa at 176 Hz). Differences can be observed at low frequencies, where the 

MCF mastic shows slightly higher moduli. In particular the G* values of MCF at the 

frequencies of 0.002 Hz and 2.5E-06 Hz are equal to 144.0 kPa and 1.4 kPa; G* values 

of MC are equal to 95.6 kPa and 1.0 kPa at the same frequencies. The presence of 

limestone filler increases the sample stiffness at high temperature: that means 

resistance to the permanent deformation is increased (Saeed et al. 2010). The 

frequency dependence of MC phase angle shows a significant reduction of δ at low 
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frequencies. The mastic obtained by adding only cement exhibits lower phase angles 

than the mastic with both cement and limestone filler. This suggests that the cement 

preserves the elastic properties of the modified bitumen of the emulsion: for shear 

stresses applied at low frequencies MC shows reversible deformation greater than 

MCF’s ones and the phase angle curve appears similar in trend to that one of a Polymer 

modified Bitumen (PmB). At intermediate and high frequencies, phase angle values 

are about the same for both mastics, in particular at high frequencies/low temperatures 

the mechanical response of mastics is almost elastic (25°) (Figure 4.6). 

Figure 4.6 – MC and MCF  Master Curves. 

4.6.2 Creep Test Results 

4.6.2.1 Repeated Creep Recovery Test 

In order to evaluate the mastics response to permanent deformations, RCR tests in 

plate-plate (PP) configuration were performed at the temperatures of 46 and 58°C. A 

shear stress of 1 kPa was chosen to test the mastics in the LVE range, preventing both 

MC and MCF from reaching the tertiary flow behavior at the end of the 100 loading 

cycles (Motamed and Bahia 2011).  
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As shown in Figures 4.7- 4.8, the MC mastic has accumulated greater deformations at 

46 and 58°C. However, the temperature increase has produced a 87% increase of the 

accumulated strain value for both MC and MCF. As it is shown in Table 5, the average 

creep non-recoverable compliance was calculated during 100 cycles of loading and Jnr 

values referred to MCF were lower than the Jnr values of MC at both test temperatures. 

 

Figure 4.7 – MC and MCF  Master Curves. 

 

Figure 4.8 – MC and MCF  Master Curves. 
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Moreover, the non recoverable creep compliance, Jnr, was estimated also at different 

loading cycles in order to evaluate its variation as a function of the percentage of 

recovery (Fig 4.9). At the same Jnr and temperature, MC shows higher% recovery than 

MCF. From a different perspective, for the same% recovery the mastic with filler 

shows lower values of Jnr: hence it has accumulated less permanent deformation by 

applying the same shear stress. Table 6 shows strain levels attained by the two mastics 

at the first and 100th load cycle at both test temperatures. It can be noted how, at 46°C, 

are no evident differences of strain level between the first and the 100th cycle for the 

MC mastic. As opposed, at the temperature of 58°C, the same mastic has shown a 

greater deformation at the end of 100 load cycles. This difference was not found 

between the two test temperatures on MCF: the strain at the end of 100 loading cycle 

is not changing with accumulated strain. The MCF has shown greater resistance to 

deformation at both test temperatures (i.e. lower values of Jnr) and its behavior is not 

affected by the accumulated strain. 

Table 4.6 RCR results at 46 and 58°C. 

Mastic  

Name Code 

Temperature 

[°C] 

Accumulated 

Strain 100th cycle 

[%] 

Shear Stress 

[Pa] 

Average Jnr 

[Pa-1] 

MC 46 0.41 1000 0.006 

MCF 58 3.00 1000 0.030 

MC 46 0.15 1000 0.002 

MCF 58 1.40 1000 0.016 

 

 

Figure 4.9 – Comparison of RCR Jnr and Recovery @46 and 58°C. 
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4.6.2.3 Multiple Stress Creep Recovery Test 

In this study temperature sweep tests at 1.59 Hz were implemented and small 

deformations were employed. However pavement deformations in the top layers of 

pavements may be attributed to the accumulation of irreversible strains. For this reason 

it was chosen to study the potential rutting of the cold mastics through Multiple Stress 

Creep Recovery (MSCR) tests run at 0.1 and 3.2 kPa. For both stress levels the average 

percentage of recovery of ten cycles was determinate according to AASHTO TP 70-

07.  

Figures 4.10 – 4.11 shows the MSCR results at both test temperatures (46°C and 

58°C). The MC shows considerable larger creep strains than MCF for both test 

conditions. The rate of strain value increases and significantly changes when the 3.2 

kPa stress level starts.  

 

 

Figure 4.10 – MC and MCF  MSCR results. 



Chapter 4 – Rheological and 3D DEM characterization of traditional bituminous 

mastic: Methods Validation 

 

150 

 

 

Figure 4.11 – MC and MCF  MSCR results. 

The non recoverable compliance represented in Figure 4.12 clearly shows the 

sensitivity of mastic MC to permanent deformations under repeated loads. On the other 

hand MCF have lower values of non recoverable compliance. In particular, at 3.2 kPa 

and 58°C the mastic containing limestone filler shows a Jnr value of 0.17 1/kPa; this 

value is 2.5 times lower than the Jnr obtained for the mastic containing only cement at 

the same shear stress and temperature. For the MC the temperature rise from 46°C to 

58°C increases of 5 times the Jnr values at both stress levels. For the MCF the 

temperature stress increases of 8 times the Jnr values. The mastic with limestone filler 

is potentially less expose to the phenomenon of permanent deformations, while being 

more sensitive to temperature variations. Figure 4.13 shows the close relationship 

between average recoverable strain and average non recoverable compliance for the 

stress level of 3.2 kPa. The regression equations of the empirical points is well 

identified by power functions. For the same percentage recovery the mastic with filler 

shows lower values of Jnr, it has accumulated less permanent deformation by applying 

the same shear stress. 
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Figure 4.12 – MC and MCF non recoverable compliance.

 

Figure 4.13 – MC and MCF  MSCR results. 

4.6.3 DEM simulation results 

4.6.3.1 Frequency Sweep Test 

Figures 4.14 and 4.15 compare the G* and δ master curves from the DEM simulation 

with the results obtained from the DSR test, for each type of mastic. Both for MC and 
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for MCF mastic the measured data and the simulated ones have the same trend, 

confirming that the selected micro-scale contact parameters best matched the response 

observed in laboratory tests.  

 

Figure 4.14 - MCF, master curves of experimental (LAB) and numerical (DEM) results for complex 

modulus (G*) and phase angle (δ). 

 

 

Figure 4.15 - MCF, master curves of experimental (LAB) and numerical (DEM) results for complex 

modulus (G*) and phase angle (δ). 

 

 

For each temperature Figures 4.16 and 4.17 show the mean error (∆) between DEM 

and laboratory data, for complex modulus and phase angle. The obtained values are 

1E-007 1E-006 1E-005 1E-004 1E-003 1E-002 1E-001 1E+000 1E+001 1E+002 1E+003 1E+004

Reduced frequency [Hz]

1.0E+000

1.0E+001

1.0E+002

1.0E+003

1.0E+004

1.0E+005

1.0E+006

1.0E+007

1.0E+008

1.0E+009

C
o

m
p

le
x
 m

o
d

u
lu

s
 (

G
*)

 [
P

a
]

G* LAB

G* DEM

δ LAB

δ DEM

0

10

20

30

40

50

60

70

80

90

P
h

a
s
e

 a
n

g
le

 (
δ
) 

[°
]

1E-007 1E-006 1E-005 1E-004 1E-003 1E-002 1E-001 1E+000 1E+001 1E+002 1E+003 1E+004

Reduced frequency [Hz]

1.0E+000

1.0E+001

1.0E+002

1.0E+003

1.0E+004

1.0E+005

1.0E+006

1.0E+007

1.0E+008

1.0E+009

C
o

m
p

le
x
 m

o
d

u
lu

s
 (

G
*)

 [
P

a
]

G* LAB

G* DEM

δ LAB

δ DEM

0

10

20

30

40

50

60

70

80

90

P
h

a
s
e

 a
n

g
le

 (
δ
) 

[°
]



Chapter 4 – Rheological and 3D DEM characterization of traditional bituminous 

mastic: Methods Validation 

 

153 

 

small, confirming that the DEM approach used in this study has a good potential in 

predicting the mastic response in the frequency sweep configuration.  

 

 

Figure 4.16 - MC, mean error (∆) between DEM and laboratory data for each temperature, for 

complex modulus and phase angle. 

 

 

Figure 4.17- MCF, mean error (∆) between DEM and laboratory data for each temperature, for 

complex modulus and phase angle. 

 

Based on the obtained macro-scale results, that validates the DEM approach, the 

micro-scale response was analyzed by considering both the contact forces inside the 

specimens and the corresponding spheres displacements. For both cases three 

significant conditions, representative of the MC and MCF mastics time-dependent 

behavior, were considered during the frequency sweep tests: 0°C and 30°C are 

representative of low temperatures, at which the mastics do not show significant 

differences on the complex modulus and phase angle. 60°C is representative of high 
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temperatures, at which the limestone filler have larger effects on the mastic in terms 

of increase of the complex modulus. 

Contact forces have been evaluated inside the MC and MCF modeled samples at the 

end of the sweep test at different temperatures (0°C, 30°C, and 60°C). For each mastic 

the contact forces network is mainly horizontally oriented, reflecting the orientation of 

the shear stresses. Shear contact forces have a uniform distribution inside the specimen 

and they are significantly larger than normal ones. As shown in Table 4.7, as the 

temperature increases, the maximum shear contact force inside the sample increases. 

While at 0°C and 30°C the maximum shear contact force inside the MC and MCF 

specimens are very similar, increasing the temperature the difference between the 

MCF and the MC behavior increases. The maximum shear contact force of the MCF 

sample, in particular, are always higher than the MC one, and the relative difference 

(∆) increases passing from 60°C to 90°C. This trend confirms the ability of the 

limestone filler to improve the sample stiffness and the mastic resistance to permanent 

deformation, at high temperatures. 

Table 4.7 -  Maximum shear contact force inside the mastic sample [*10-3 N/m] 

Temperature [°C] 0 30 60 

MC 2.544 5.696 21.250 

MCF 2.840 5.731 28.470 

∆ -0.296 -0.035 -7.220 

 

For each mastic, as the temperature increases, the total number of spheres 

displacements inside the sample increases. From 0°C to 60°C, the 3D contacts network 

in the MC and MCF mastics is characterized by a better interconnection between 

particles. The spheres displacements, in particular, are evaluated in a Cartesian 

coordinate system, with: 

• the origin in the centre of the upper horizontal plane of the model, which simulates 

the oscillating plate; 

• the z direction is coincident to the vertical axis of symmetry of the sample, 

pointing to the lower plate. 

They are calculated at the end of the sweep test at different temperatures (0°C, 30°C, 

60°C). As shown in Table 4.8, for the same mastic, as the temperature increases, the 

maximum and minimum displacements of the particles in x, y and z directions 
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increase. The increase is lower for the x and y components and it is larger for the z 

direction.  

Comparing the MC and MCF specimens, for each temperature, the MC shows larger 

spheres displacements than the MCF one. Inside the MC sample, without limestone 

filler, the particles move more independently of each other. The difference between 

the MC displacements and the MCF ones increases as the temperature increases. At 

0°C and 30°C, in fact, the displacements are similar, while at 60°C the first ones are 

larger than the seconds. So the master curve trend, which shows that MCF is stiffer 

than MC, is confirmed by the displacements of the spheres of the two models. 

 

Table 4.8 - Particles displacements of MC and MCF models in x (xdisp), y (ydisp) and z (zdisp) 

direction [mm] 

Temperature 

[°C] 

Mastic xdisp  

min  

xdisp 

max  

ydisp 

min  

ydisp 

max  

zdisp 

min  

zdisp 

max  

0 
MC 0.000050 1.09 0.00004 1.10 0 0.28 

MCF 0.000049 1.03 0.00004 1.01 0 0.26 

30 
MC 0.000060 1.20 0.00005 1.20 0 0.50 

MCF 0.000058 1.11 0.00005 1.10 0 0.45 

60 
MC 0.000100 2.00 0.00015 1.90 0 1.03 

MCF 0.000090 1.80 0.00011 1.60 0 0.60 
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4.7 Summary 

The main objective of this study was to evaluate the rheological and micro-structural 

properties of cold mastics containing traditional filler in order to validate laboratory 

and model methods that will be applied, in the follow chapters, on mastics containing  

industrial reclaimed fillers. Based upon the developed research work, the following 

concluding remarks can be made; in terms of method validation: 

• there is a reproducibility of the rheological tests with the DSR in the study of 

cold bituminous mastics; the principles behind the linear analysis of hot 

bitumen have been validated also for that type of material; 

• the obtained results confirmed that the DEM is a useful and promising tool to 

model the rheological behavior of asphalt mastics. The adopted approach is 

successful in predicting, both quantitatively and qualitatively, the complex 

modulus and the phase angle in a temperature sweep test. On the micro-scale 

it is suitable to capture the real time-dependent behavior of asphalt binder and 

to predict its performance through the study of its internal interaction. 

In terms of limestone and cement fillers action on mastics: 

• it was found that at medium and low temperatures no substantial differences 

can be observed in terms of rheological properties between the two mastics. 

The complex modulus G* and phase angle δ values are similar as to the results 

of ER performed at 25°C; 

• the main differences between the MC and the MCF are found at high 

temperatures. At low frequencies, the mastic with only cement exhibits a 

perfectly viscoelastic response as opposed to the mastic with filler which shows 

a predominantly viscous response. The cement has increased the elastic 

component of the mastic, but the presence of the filler has increased the 

stiffness of the mixture. The MCF showed higher moduli than the MC’s; 

• the mastics behavior differences at high temperatures were investigated 

through ER and RCR test. The results of the recovery test show that the MC 

has higher values of elastic recovery than MCF. However, in repeated stress 

condition, the MCF has accumulated less deformation at the end of loading 

phase showing a better response in terms of resistant to permanent deformation. 
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• the Multiple Stress Creep and Recovery test has confirmed the temperature sweep 

test results. The mastic with limestone filler has accumulated less deformation at 

both test temperatures (46°C and 58°C) and at both stress levels (0.1 kPa and 3.2 

kPa). The presence of limestone filler has reduced the Jnr values, showing a better 

response of mastic to permanent deformations; 

• the DEM approach confirms the rheological data. The sample with limestone filler 

particles has lower displacement and higher shear contact force than the one with 

only cement, highlighting the stiffer behavior of the first. 
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5 RHEOLOGICAL CHARACTERIZATION OF BITUMINOUS 

MASTICS CONTAINING WASTE BLEACHING CLAYS 
 

5.1 Introduction 

As described on chapter 2 the analysis of the response to load and temperature stresses 

of the asphalt pavement cannot be separated from the rheological study of the asphalt 

mastic. Usually asphalt-filler mastic consists of bitumen and mineral filler that is 

defined as the portion of aggregates passing the 63 µm sieve (EN 13043) and that is 

generally added to the aggregate mixture during the asphalt mixing process. Numerous 

research works show that the mechanical performance of asphalt mastics is largely 

dependent on fillers properties and on the way they interact with the bitumen (Vignali 

V. et al. 2014). This also happens when alternative materials are used instead of 

common fillers. Sangiorgi et al. (2014) have examined two different types of bentonite 

clays as replacement of limestone filler for the production of binders course HMAs. 

The bentonites come from two consecutive industrial processes: spent bentonite (Ut) 

obtained from a vegetable oil bleaching process (stage 1), and digested spent bentonite 

(Ud) the result of the anaerobic digestion of spent bentonite within a reactor producing 

biogas (stage 2). From the analysis of Indirect Tensile Strength and Indirect Tensile 

Stiffness Modulus data, it was found that the presence of Ut or Ud fillers has a totally 

different effect on the bituminous mixture’s mechanical properties. While digested 

spent bentonite clay determines an increase in indirect tensile strength and stiffness 

compared to the mixture with limestone filler, the presence of Ut filler results in an 

evident reduction of these properties. Besides from the analysis of the dynamic creep 

test, it was concluded that the substitution of the limestone filler with the Ut filler 

determines a reduction of resistance to permanent deformations, which is, however, 

improved using the Ud filler. Based on these findings, the main objective of the 

research analyzed on this chapter is to investigate the rheological properties of 

bituminous mastics containing Ut and Ud fillers, to compare with a traditional mastic 

containing limestone filler (Mazzotta F. et al. 2015). The mastic stress-strain response 

is studied through Frequency Sweep (FS), Repeated Creep Recovery (RCR) and 
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Multiple Stress Creep Recovery (MSCR) tests, validated for cold mastic response on 

the previous paragraph. 
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5.2 Materials  

5.2.1 Bitumen 

In this study three different mastics were produced with a hot mixing process using a 

50/70 penetration grade bitumen. The characteristics of the bitumen are shown in 

Table 5.1.  

Table 5.1 Properties of the 50/70 pen bitumen 

 Unit Characteristic value Standard 

Penetration @ 25°C dmm 50-70 EN 1426 

Soft.Point °C 50 EN 1427 

Dynamic Visc. @60 °C Pa s ≥145 EN 12596 

Fraass °C -8 EN 12593 

 

From Frequency Sweep Test (0-60°C) the master curve for base bitumen has been 

found by applying the appropriate shift-factor for all the bitumen (WLF theory Chapter 

3). Amplitude sweep test was performed on all the bitumens to find the Linear 

Viscoelastic Elastic (LVE) range for the material (2.6%). The test was controlled on 

shear strain and with the frequency of 1.59 Hz.  

 

Figure 5.1 – Bitumen 50/70 pen Master Curve. 
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5.2.2 Fillers from bleaching clay 

5.2.2.1Bentonite 

The fillers used in this study come from bentonitic origin. Bentonite is the commercial 

name of a series of natural clays characterized by the capacity to  

absorb water inflating. The main component of bentonite is montmorillonite 

(described in details on Chapeter 2). In the bentonite, montmorillonite is always 

combined with other clay minerals (such as kaolin, mica, illite, etc.) and no clay (such 

as quartz, feldspar, calcite and gypsum). The presence or absence of these minerals 

can affect the bentonite quality and make it more or less suitable for certain 

applications. In its natural state the raw bentonite is a soft rock crumbly and variable 

color greasy. The specific dry density varies from 2.2 to 2.8 g/cm3. The specific density 

of  bentonite dug and crowded at the natural moisture state is between 1.5 and 1.8 

g/cm3. The various bentonites can be traced to a common basic structure, however, 

there are considerable differences between the various types, both as to chemical 

constitution, both to the physical state of the constituents which accentuate or not the 

properties toward a particular Lighting Technologies. Bentonite is a raw material 

common in many countries of the world that is mined in  open sky quarries. The 

deposits are generally lenticular of considerable size and the thickness is usually 

limited to a few meters. The production of bentonite provides for the mining, the 

eventual exchange of base treatment, drying and grinding. The exchange treatment is 

effective to transform the calcium bentonite in sodium bentonite in through the 

activation process which consists in cation exchange with sodium carbonate. The 

drying process allows to reduce the natural moisture of bentonite normally between 25 

and 35%. Because of the hygroscopic nature of bentonite water it is released slowly. 

It must be carried out at a controlled temperature to avoid the risk of ruining the 

structure molecular. Starting from temperatures above 500 °C in fact the bentonite 

away so irreversible water of crystallization, in these conditions permanently loses its 

features becoming an inert powder. A fundamental property of the bentonite is to 

absorb water by re-inflating, the absorption capacity depends on bentonite type. The 

degree of hydration and the power swelling depend on the types of exchangeable 
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cations present, each of them possessing a different hydrophilic and solvating power. 

The swelling is due to two main causes: the absorption of water to the surface of the 

crystalline lamellae and repulsive forces of type osmotic, for which the unitary strip 

are forced to come off each other, opening up to "accordion". The sodium bentonite, 

with a prevalence of sodium cation (Na+), allows water to enter deeply between the 

slats, separating them until elementary unit and thus giving rise to characteristic 

swelling. On the contrary, the calcium bentonite, with a prevalence of calcium cation 

(Ca2+), is hydrated in a similar way, but has absorbent properties minors being 

characterized by a strong positive charge which does not allow water molecules to 

penetrate between the lamellae; the particles then fall apart in packets rather than swell. 

The bentonite dispersed in water gives rise to very stable colloidal suspensions 

characterized by viscosity and thixotropy: these suspensions to the right concentrations 

are real gel. The formation of the suspension is due to penetration of water molecules 

in the interspaces present among the crystalline lamellae: between these layers of the 

bridges are established in which the water is bound by hydrogen bonds. When the 

system is subjected to a mechanical stress mechanics there is a partial braking of the 

ties that allows greater mobility of individual lamellae causing the system purchases a 

lower viscosity as its state rest. This sol-gel-sol transformation is reversible and is 

known as thixotropy. The property of aqueous bentonite suspensions are used mainly 

in the excavation fluid. A micelle of montmorillonite can be considered consists of a 

thin pack of layers elementary negatively charged. Because of this charge each micelle 

is able to repel another giving rise to the penetration and absorption of water molecules 

drawn around the grid elementary; for this reason, while the package expands, giving 

rise to swelling, around each particle it will form a stable casing which, reached its 

saturation limit, It rejects other water even when it is subjected to pressure. Thanks to 

these characteristics bentonite is used to stop water infiltration and waterproof land 

landfills, ponds and reservoirs. The absorption and adsorption properties of bentonite 

are determined by considerable specific surface area and the free charges present on 

each micelle. This particular configuration of fillers results in a considerable filtering 

capacity for the bentonite. 
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5.2.2.2 Use of Bentonite 

Thanks to its special properties uses of bentonite are numerous and diversified. 

Today the main areas of use include the following: 

• foundry: the bentonite is used as a binder in the green molding for the 

production of high quality castings in iron foundries, steel, and nonferrous. The 

use of bentonite as agglomerating sand gives it the necessary cohesion ensuring 

sufficient plasticity and refractoriness; 

• engineering: thanks to rheological properties and to the thixotropic suspension 

aqueous, the bentonite is employed for preparing the excavation sludge used in 

drilling. The role of the excavation fluid is mainly to stabilize the hole, seal up 

the wall and transport the excavated material. The bentonite are so used in oil 

drilling, in drilling water wells and drilling of tunnels and mini-tunnel. 

Execution of special foundations are used bentonite for the excavation of 

diaphragms and for the perforation of the poles. In the geotechnical Bentonite 

is used in the self-hardening mixtures used for plastic diaphragms, for the 

clogging of mortars and for the injections. Finally, the waterproofing properties 

of the bentonite are exploited in environmental engineering to seal the landfill 

and waterproof the soil. Water treatment: due to its ion exchange capacity, 

flocculation and sedimentation, the bentonite is used in water treatment as an 

auxiliary of polyelectrolyte and inorganic flocculants; 

• agriculture: having regard to the ion exchange capacity, the bentonite is used 

in the conditioning of land. It is also used to absorb moisture in soils for 

gardening and  as a support for pesticides and herbicides. 

• ceramic industry: the bentonite is used as a plasticizer in the ceramic bodies 

and how anti-sedimentation in glazes. 

• paper industry: the bentonite is used to improve the efficiency of the conversion 

from pulp to paper and to improve its quality by preventing the agglomeration 

of the particles chewy. Thanks to the adsorbent capacity is also useful in the 

recycling process for the ink elimination. 



Chapter 5 – Rheological Characterization of bituminous mastics containing waste 

bleaching clays 

 

164 

 

• food industry (wine, oil and edible fats): thanks to its absorbent properties, 

the bentonite is used in the purification of the oil and edible fats and in the 

clarification of alimentary drinks.  

From an ecological point of view and the preservation of health, the bentonite is neither 

dangerous for the environment or to humans according to the EC Regulation 

1272/2008 and Directive 67/548 / EC. 

5.2.2.3 Production Process of bleaching clays 

Two different bentonite fillers were used in the experimental study obtained from two 

consecutive phases in the process of bleaching vegetable oils and producing energy 

from biogas: 

• the filler named Ut (Fig. 5.2) was derived directly from the bleaching phase 

(stage 1) and, for this reason, its oil content ranges between 20% and 25% of 

its dry weight; 

 

Figure 5.2 – Spent Bentonite: Ut 

 

• the other filler, Ud (Fig. 5.3), i.e. the digested spent bentonite, is the result of 

the anaerobic digestion of the Ut filler during the process to produce biogas 

(stage 2). This phase of biochemical conversion determines a reduction of the 

content of residual oils, to below 1%. 

 

Figure 5.3 – Digested Bentonite: Ud 



Chapter 5 – Rheological Characterization of bituminous mastics containing waste 

bleaching clays 

 

165 

 

The following sections describes the production processes of bentonite filler 

exhausted; in particular, describes the oil refining process with specific reference to 

discoloration and the process of anaerobic digestion. 

5.2.2.3 Ut Production - oils and grease refining and bleaching process. 

Refining term covers all the manufacturing processes to eliminate from product all the 

unwanted substances in order to obtain a better oil quality. During this process is 

important, however, that no structural changes occur in the fat. The refining process 

aims to the satisfaction of three basic aspects: 

• qualitative: obtaining a better oil quality; 

• quantitative: get a yield as high as possible; 

• finalization of the product. 

As regards the qualitative aspect, the refining must not make changes in composition 

and structure of the fat. The second aspect concerns the quantitative yields of the 

refining process and it is linked to the quality of the raw material, the suitability of 

facilities, to consumption needed to reach the end of the refining. The purpose of 

bleaching is to remove substances that cause anomalous coloring of the oils. It can be 

done either by physical methods and chemical: in oil technology and fats  the physical 

method is resorted using absorbent materials. The adsorbent materials are of two types, 

namely bleaching clays and activated carbon; the bleaching clays, can be the source 

natural such as montmorillonite, or artificial. The natural clays have a less adsorbent 

capacity of those activated despite the washings, are slightly acidic, while the former 

are neutral. So the advantage of using natural clays is that these reacts to a lesser degree 

than those activated artificially; also having a higher density retains less oil.The ground 

apparent density is given by the unit of volume  weight and is one of the most important  

land characteristics. It depends on the volume of the empty spaces: more empty spaces 

there are, the less the apparent density. The bleaching clays  contain moisture close to 

20-18% In the specific case of montmorillonite, the molecules are arranged in parallel 

layers and the water molecules lie between these layers and serve as a backing to keep 

them separate. This explains the decrease of their activity that occurs when the lands 

are dried before their use; the operation, in fact, causes the collapse of the structure by 

preventing the pigments of reaching the active centers. It is therefore necessary to 
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operate the dehydration under vacuum at a suitable temperature for a certain time, thus 

allowing that water is removed in the same moment in which the earth is in contact 

with the material to decolorize. Another important feature of bleaching clays is the 

particle size distribution, represented by very small particles (<5 µm) up to the 

relatively large (80). The smaller the particle size and the greater the activity of the 

earth, but at the same time increases the amount of retained oil and is more difficult 

filtration. It is still important that the distribution of the particles remains in a narrow 

range between 5 and 80 microns. The retained oil can be an average of 20 and 70% of 

the weight of the land, whether natural or activated respectively artificially. Regardless 

of how it is made up of the bleaching plant, the operating steps are the following: 

• oil drying under vacuum at a temperature of about 60 °C; 

• mixing oil / land; 

• heating for 15-30 minutes at 90-110 ° C; 

• cooling to a suitable temperature (30-60 ° C); 

• filtration; 

• oil recovery held land. 

In conventional plants the land is separated from the oil by means of the press-bleached 

filters discontinuous operation, which require a considerable labor and also do not 

allow the recovering oil from the clay which remains on the filter cloths; another 

drawback is constituted by the short shelf life of filter cloths, which are often damaged 

during manual cleaning operations. On discontinuous rotating filters generally closed 

in a metal chamber and equipped with accessories that allow both the washing of the 

panels with solvents, either remove the residue and download it mechanically.  
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Figure 5.4– Bleaching clays plant. 

 

5.2.2.4 Ud Production - Anaerobic digestion for biogas 

Anaerobic digestion is a biochemical conversion process that takes place in the oxygen 

absence and consists of the demolition, by micro-organisms, of complex organic 

substances (lipids, proteins, carbohydrates) contained in plants and animal by-

products, which produces a gas (biogas) made from 50-70% methane and the rest is 

mainly CO2 and having an average calorific value of 23,000 kJ per cubic meter. The 

produced biogas is collected, dried, and compressed and stored and can be used as a 

fuel to power gas boilers to produce heat (perhaps coupled to turbines for the 

production of electricity), or combined cycle power plants or internal combustion 

engines. The plants anaerobic digestion can be fed by means of residues with a high 

moisture content, such as animal manure, the civil waste, food waste and the organic 

fraction of solid waste urban. In the factory where Ud filler is produced there is an 

anaerobic digestion plant with group of cogeneration constituted by an internal engine 

combustion able to use biogas as fuel in order to produce electricity and thermal 

energy. The entire production process of electrical energy from biomass waste is 

divided into the following phases: 

• power plant and mixing; 

• dosage of chemical agents; 
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• digestion step; 

• processing of gas; 

•  cogeneration; 

•  digestate treatment. 

5.2.2.5 Ut and Ud preliminary investigation 

In order to be used as fillers, both spent bleaching clays were geometrically 

characterized through a gradation analysis (EN 933-10) and volumetrically, 

determining their volumetric mass (EN 1097-7) and Rigden Voids (EN 1097-4) 

(Sangiorgi et al. 2014). Delta Ring & Ball test was also performed according to EN 

13179-1. Table 5.2 shows the fillers characteristics. 

 

Figure 5.5– Fillers Ut and Ud characterization devices. a)volumetric mass (EN 1097-7); 

b)Rigden voids (EN 1097-4); c) d) Delta Ring & Ball (EN 13179-1). 

Table 5.2 Main fillers characteristics 

 Standard Limestone filler Ut filler Ud filler 

Particle density (Mg/m3) EN 1097- 7 2.73 1.59 1.84 

Rigden voids (%) EN 1097- 4 33.82 31.69 53.75 

∆ Ring & Ball [°C] EN 13179-1 8 -22 32 
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5.3 Mastics 

5.3.1 Mastics Design  

The following mastics were produced according to the proportions of a typical binder 

layer mixture. All the filler percentages has been considered in weight of bitumen.  

mixtures studied and summarized in Table 5.3. 

• mastic Mff: 50/70 bitumen with limestone filler; 

• mastic MUt: 50/70 bitumen with spent bentonite Ut and limestone filler; 

• mastic MUd: 50/70 bitumen with digested bentonite Ud and limestone filler; 

Table 5.3 Weights percentages of fillers on bitumen 

Mastic Limestone filler Ut Ud 

Mff 70.6% - - 

MUt 41.8% 28.8% - 

MUd 41.8% - 28.8% 

 

5.3.2 Mastics Preparation 

The bitumen-filler mastics were produced by adding the correct mass of filler to heated 

bitumen at a temperature of 160°C while mixing the two components together with the 

Silverson L4RT high shear mixer until a homogeneous mastic was obtained. The 

mixing time was restricted to a maximum of 15 minutes. The mixing procedures are 

detailed as follows: 

• both Ut and Ud fillers were put into a 160°C oven for 24 hours to ensure 

moisture-free particle surfaces. 

• the 50/70 penetration grade bitumen stored in a 5 litre tin needed 5 hours to 

preheat in a 160°C oven and to make bitumen liquid and ready to mix. 

• the accurate quantity of the bitumen was poured into a 1  litre tin. The tin with 

the bitumen was left on a hot plate maintained at 160°C. 

• the bitumen was mechanically stirred for 30 seconds.  

• the designed mass of Ut and Ud fillers was added slowly while the mechanical 

stirring was continued for 4.5 minutes. 
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• the mastic was continuously stirred as it cooled to prevent settling and was then 

transferred to several vials to make samples for further testing. 

• the mixing process was carefully followed so that the mineral filler was 

homogeneously dispersed in the bitumen. 
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5.4 Test Programme 

Amplitude Sweep tests (AS), Frequency Sweep Test (FS), Repeated Creep Test (RCR) 

and Multiple Stress Creep Recovery (MSCR) tests have been performed as shown 

previously on validation methods (Chapter 4). The tests procedures are described on 

the following paragraphs. 

Test Equipment and sample preparation 

Dynamic Shear Rheometers (DSR) Anton Paar - MCR 302, using peltier system 

temperature control with peltier hood (APPENDIX A), have been used to obtain the 

mastic rheological properties). Prior to mounting a bituminous sample between a 

parallel plate geometry, two plates should be sufficiently warm (approximately 70°C) 

that a good adhesion between a sample and plates can be achieved. The procedure of 

bituminous sample preparation is listed as follows: 

• preheat the bituminous mastic in a 160°C oven to make the sample liquid and 

ready to pour. 

• remove the bituminous sample from an oven and then stir it manually for 20 

seconds to ensure the mineral filler were not settled. 

• pour directly the sufficient quantity of the bituminous sample onto the lower 

plate until it nearly covered the plate. 

• close the plates to the target gap of 2.025mm or 1.025mm for the bulge. 

• trim the extra specimen by moving a heating trimming tool around the upper 

and lower plates. 

5.4.2 Amplitude Sweep Test 

Amplitude Sweep (AS) tests were preliminary carried out, to investigate the 

viscoelastic region at 10°C, applying a constant frequency of 10 rad/s (1.59 Hz). The 

investigated strains level come from 0.01% to 100% of mastic deformation. It was 

chosen the strain amplitude at which the complex modulus not differ by more 10% of 

its initial value. Linear visco-elastic deformations, γLVE, found for the three mastic 

were: 1.5% for Mff, 2.5% for MUt and 1.0% for MUd. 



Chapter 5 – Rheological Characterization of bituminous mastics containing waste 

bleaching clays 

 

172 

 

5.4.3 Frequency Sweep Test 

Rheological measurements were performed using a stress/strain controlled Dynamic 

Shear Rheometer equipped with a parallel plate and plate geometry. The frequency 

sweep (FS) test was performed in strain control configuration, where the strain 

amplitude was limited within the linear viscoelastic (LVE) range. FS test was 

conducted in a range of frequencies between 0.01 and 10 Hz, at the temperatures of 0, 

10, 20, 30, 40, 50 and 60°C. The 8 mm plate with a 2 mm gap was adopted in all the 

range of temperatures (Dondi et al. 2014). With the FS test the complex shear modulus 

(G*) and the phase angle (δ) were measured. 

5.4.4 Repeated Creep Recovery Test 

Repeated Creep Recovery tests (RCR) were conducted with 25 mm parallel plates (PP) 

and a 1 mm gap under three different temperature conditions 46°C, 58°C and 64°C. 

The testing temperatures were selected in agreement with AASHTO M-320. Mff, MUt 

and MUd were tested with 100 cycles at a stress level of 1 kPa. Each loading cycle 

consisted of 1 s creep and 9 s recovery (NCHRP Report 459). The accumulated strain 

was calculated for each test at the end of 100 cycles. 

5.4.5 Multiple Stress Creep Recovery Test 

The Multiple Stress Creep and Recovery test (MSCR) was run according to the 

AASHTO TP 70-07 ‘‘Standard Method of Test for Multiple Stress Creep and Recovery 

(MSCR) of Asphalt Binders using a Dynamic Shear Rheometer’’. According to this 

standard, mastic sample is loaded at a constant creep stress for 1 s, followed by a zero 

stress recovery of 9 s. Ten cycles of creep and recovery are run at 0.1 kPa creep stress, 

followed by ten at 3.2 kPa creep stress. The non-recoverable compliance (Jnr) and the 

percent recovery after ten cycles at 0.1 kPa and 3.2 kPa were studied. The Jnr value 

was calculated as the ratio between the average non recoverable strain for 10 creep and 

recovery cycles, and the applied stress for those cycles. The testing temperatures of 

46°C, 58°C and 64°C were adopted. 
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5.5 Test Results and Discussion 

5.5.1 Master Curves 

The complex modulus G* and phase angle δ of mastics MUt, Mff and MUd are 

represented in terms of master curves in Figure 5.6. Using the principle of time-

temperature superposition (TTS) the master curves of G* and δ were plotted at the 

reference temperature of 20°C. The Williams-Landel-Ferry model was used to obtain 

the temperatures shift factors. 

 

 

Figure 5.6 Master Curves for Mff, MUt, and MUd mastics at 20°C 

Results show that in all range of frequencies the mastic containing the spent bentonite 

Ut attains G* values lower than the Mff and MUd mastics ones. Given the nature of 

the two recycled fillers it can be stated that this difference is mainly due to the different 

content in residual oil. This is evident at low temperatures or high frequencies where 

the behavior of the Ut mastic should be dominated by the properties of the base 

bitumen, but which, in this case, does not tend to the glassy modulus as the Mff and 

MUd mastics do. Consistent differences between Mff and MUd mastic can be seen at 

low frequencies, where the MUd mastic shows higher moduli. It can be inferred that 

if the presence of filler Ud increases the mastic stiffness at low frequencies it will 

potentially increase also the resistance to permanent deformations. This can be traced 
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back to the high level of Rigden voids that can demonstrate the stiffening power of the 

Ud filler (Faheem et al. 2012). The mastic containing Ut filler exhibits higher phase 

angles at medium and high temperatures than Mff and MUd phase angles. At the high 

temperatures the MUt phase angle decreases, but this effect is significantly far from 

the one of polymers in polymer modified bitumens. The Mff and MUd δ values are 

approximately equivalent at medium and high frequencies, and in particular at high 

frequencies/low temperatures the mastics response is almost elastic (30°). At high 

temperatures, on the contrary, the MUd phase angle shows a significant reduction 

compared to Mff phase angle. The presence of digested bentonite Ud shifts the rutting 

parameter G*/senδ to higher values. This could be seen in Table 5.4, in which G*/senδ 

values are reported for the three mastics at 60°C. 

Table 5.4 Rutting parameters of Mff, MUt and MUd 

Mastic 
Temperature 

[°C] 

G*/senδ 

[kPa] 

Mff 60 7.0 

MUt 60 2.5 

MUd 60 9.5 

 

5.5.2  Creep Test Results 

5.5.2.1 Repeated Creep Recovery  Test  

In order to investigate the materials response to permanent deformations RCR test in 

plate-plate (PP) configuration were performed at the temperatures of 46°C, 58°C and 

64°C. Figure 5.7 shows, as an example, the test results at the temperature of 46°C. In 

this case, the mastic containing the digested bentonite Ud has accumulated less 

deformations compared to Mff and MUt that has reached shear strain values close to 

100.  
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Figure 5.7 Results of the accumulated strain under repeated creep testing @ 46°C. 

Figure 5.8 shows the test results of the first cycle at 1 kPa at the three test temperatures. 

The MUt shows considerable higher creep strain at all test conditions. In particular, at 

58°C the mastic containing the spent bentonite reaches a peak of deformation even 

higher than the Mff and MUd peaks strain at 64°C. The MUd mastic shows less 

sensitivity to deformation in all test conditions. 

 

Figure 5.8 Strain/time for the first cycle of RCR test at 1 kPa at 46°C, 58°C and 64°C 

As shown in Figure 5.9 this mastics relative behavior is enhanced at the end of the 

100th cycle. In fact, MUt has accumulated 461 and 961 strain at 58°C and 64°C 

respectively, while Mff and MUd that have reached 75 and 158 strain at 58°C and 197 
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and 295 strain at 64°C. The accumulated strain difference between the Mff and MUd 

mastics is close to 10 at 46°C and undergoes a significant increase to 96 at the 

temperature of 58°C, remaining constant up to 64°C. 

 

Figure 5.9 Accumulated strain values at the end of 100th cycle at @46°C, 58°C and 64°C. 

From this analysis, it is possible to confirm the repeated load axial test results on binder 

course mixtures presented by Sangiorgi et al. (2014) where the presence of Ud filler 

used in substitution of the traditional limestone filler decreases the accumulated strain 

compared to the adopted control mixture. The percentage of recovery from RCR tests 

was also obtained and calculated as the ratio between recovered strain and peak strain 

at the 1st cycle and at the 100th cycle. In Figure 5.10, the MUd mastic has higher 

recovery than Mff and MUt at the three test temperatures. Mff and MUt have the same  

recovery for each test configuration. For MUd there is a constant decrease of 25% of 

recovery with increasing temperature than Mff and MUt mastics for which there is a 

decrease of 80% of recovery from 46 °C to 58 °C. At the last load cycle for MUt and 

Mff mastics the percentage of recovery is 0 at all temperatures. The MUd is the only 

mastic that shows a small percentage of recovery of 0.3% at 46°C and 0.13% at 58°C. 
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Figure 5.10 Comparison of RCR  % recovery at the 1st and 100th cycle @46°C, 58°C and 64°C. 

5.5.2.2 Multiple Stress Creep Recovery Test 

The multiple stress creep-recovery (MSCR) test was developed based on creep studies 

conduct during the NCHRP 9-10 research program (Bahia & Hanson 2001). According 

to the literature (D’Angelo et al. 2007; D’Angelo, 2009b; Wasage et al. 2010), this 

test can predict the deformation behavior of binders. By applying different stress 

levels, it can identify binders that are overly stress sensitive in the nonlinear region 

(Soenen et al. 2013). For this reason it was chosen to investigate further the potential 

rutting of the three mastics Mff, MUt and MUd through MSCR test run at 0.1 and 3.2 

kPa. Figure 5.11 shows the test results at the temperature of 46°C. Also in this test 

configuration the mastic containing the digested bentonite Ud always exhibits the 

stiffer behavior, accumulating less deformation at the end of the 10 cycles at 3.2 kPa. 

 

Figure  5.11 MSCR test results at @46°C. 
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As shown in Figure 5.12 the mastic MUt has accumulated the largest deformation 

under the two stress conditions, while the MUd mastic shows the lower values of 

deformation, even when the temperature increases. For the MUt mastic most part of 

the strains was developed at the higher stress level. 

 

 Figure 5.12 Accumulated strain values at the end of 10th cycle at 0.1kPa and 3.2kPa.  

Table 5.5 shows the average percentage of recovery of the three mastics under 3.2 kPa 

shear load at the three test temperatures of 46°C, 58°C and 64°C. At the temperature 

of 46°C the MUd mastic attains an average recovery % value higher than Mff and 

MUt; in particular, the average recovery % of mastic containing digested bentonite 

reaches 3%. At 58°C Mff and MUt do not recover and MUd recovers only the 0.25% 

of deformation. At the highest test temperature of 64°C all the mastics have no 

recovery.  

Table 5.5 Mff, MUt and MUd average percentage of recovery at 3.2 kPa 

Mastic 

Temperature [°C] 

 46 58 64 

Average 

% recovery 

Average 

% recovery 

Average 

% recovery 

Mff 1.00 0 0 

MUt 0.42 0 0 

MUd 3.07 0.25 0 

The creep compliance Jnr parameter is a measure of the non-recoverable behavior of a 

binder caused by creep-recovery cycles, and it is therefore suggested to describe the 

binder contribution to asphalt mixture permanent deformations (D’Angelo et al. 2006). 

The Jnr values were calculated for the three mastics under 0.1kPa (Figure 5.13 a) and 
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3.2 kPa (Figure 5.13 b) shear stresses at the three test temperatures of 46°C, 58°C and 

64°C. The MUd mastic has lower values of non recoverable compliance at both shear 

stresses, showing a less sensitivity of the mastic to permanent deformations. In 

particular, at 3.2 kPa the mastic containing the Ud filler shows a Jnr value of 13.0 1/kPa 

at 64°C while the Jnr value of mastic containing only limestone filler that is of 18.3 

1/kPa at the same shear stress and temperature. The MUt mastic has the higher values 

of Jnr under all test conditions, it is once again proven that the 25% of oil in the Ut 

filler acts on the base bitumen and makes the mastic softer and more susceptible to 

permanent deformations.  

 

Figure 5.13 Mff, MUt andMUd non recoverable compliance at 0.1 kPa and 3.2 kPa. 
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5.6   Summary 

In this chapter the rheological analysis of mastics containing waste bleaching clay was 

conducted, based on the methods validate on Chapter 4. On the basis of the 

experimental data the following conclusions can be drawn: 

• the comparison of the mastics master curves from FS and AS tests show that 

the substitution of part of the filler in the mixture with the proposed bleaching 

clays fillers is significantly effective on altering their rheological behavior. 

Substitutions were made so as to replicate the actual binding mastics of the 

HMAs tested in previous research. In particular, the study at the mastic scale 

confirmed that the Ud filler stiffens the base bitumen, while the Ut filler softens 

the mastic by a considerable amount.  

• the RCR and MSCR tests results corroborate the repeated load axial test results 

from previous research on HMAs. The Ut filler reduces the resistance to 

permanent deformations, while the Ud filler increases it at the different testing 

temperatures. Also the Jnr analysis confirms that the non recovered 

deformations are reduced in the MUd mastic. Again the rheological effect of 

the Ut filler is more evident in comparison with the traditional mastics 

containing only limestone filler. The residual oil in the Ut filler is evidently 

interacting with the bituminous phase more than the mineral particles, thus 

reversing the effects of the Ud filler; 
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6 RHEOLOGICAL CHARACTERIZATION OF BITUMEN, 

MASTICS AND MORTARS CONTAINING FINE CRUMB 

RUBBER 

6.1 Introduction 

The fields of use of crumb rubber in the road construction are various and the studies 

that validate the use are numerous as well as the quality of the results achieved by 

research in reuse of this recycled material. Traditionally, studies in Italy have followed 

the US research and have been catered embedding the crumb rubber within the hot mix 

asphalt with Wet and Dry techniques. Recently, many studies have been developed 

also as part of the warm and cold asphalt (low energy or WMA). In the latter, 

bituminous mixtures for base layers have been successfully studied, containing high 

percentages of Reclaimed Asphalt Pavement, cement and crumb rubber from 

dismissed tires. In this context, in which the rubber acquires the characteristics of the 

raw material inside the mixtures, more environmentally friendly, cheap and durable, 

the research proposal aims to optimize the crumb rubber content in the asphalt 

mixtures through advanced laboratory studies. The innovative proposal involves the 

use of rubber powder with dry technique within the bituminous mix, to reduce costs 

and externalities produced by bituminous binders traditionally produced with recycled 

rubber solutions. The aim is to improve both mechanical and mix workability 

characteristics. The obtained product is a modified bituminous binder (Binder Polymer 

Modified) in which the rubber powder is added mechanically to the mixer, without 

significant alterations of the production process of a modified asphalt mixtures. The 

embedding to the mixer constitutes a continuity with the dry technique, which 

preserves the advantages (absence of odors) and those related to the enhancement of 

the rheological properties of PmB modified binder content in the mixture. The rubber 

operates as active filler capable of increasing the workability of the modified binder 

inside of bituminous mixtures whose volumetric proportioning of the components 

plays a key role in terms of asphalt mixture elastic recovery increasing, acoustic 

emissions containing  (wheel-tire contact) and sound absorption. The compatibility 

between powder and bituminous binder can be an advantage in the production of rich 

bitumen asphalt (SMA type) for which the rubber can act as a stabilizer to equal the 
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traditional fiber. In order to study the fine rubber effects on the asphalt mixtures, 

Frequency Sweep Test and creep tests were implemented on the obtained mastics, 

following the methods described and validated on Chapter 4. This analysis was 

improved by the micromechanical model with Discrete Element Approach (validated 

for mastic on Chpater 4). Furthermore, based on multiscale approach, fine crumb 

rubber and filler interaction with the fine coarse aggregates was studied through 

Frequency Sweep Test on bituminous mortar.  

The rheological tests on bituminous mastics and mortar, described on this chapter, has 

been realized in collaboration with the laboratories of Nottingham Transport 

Engineering Centre of the University of Nottingham (UK). 
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6.2 Materials 

6.2.1 Bitumen 

Three different bitumens have been selected in this research to make the mastic 

combination: 

• Traditional Unmodified Bitumen to compare the result with the other two 

modified binders.  

• Zero_Bitumen and A_Bitumen which are polymer and wax modified binders 

(PWmB). 

The differences between Zero_Bitumen and A_Bitumen come from the differences of 

the two base binders used before the modification. For the base bitumen of the first 

PWmB the internal composition has shown an asphaltenic fraction higher than the 

second one, and an aromatic fraction less than the base bitumen of A binder. The 

characteristics of bitumens are shown in Tables 6.1-6.2-6.3. 

Table 6.1 Properties of the Unmodified Bitumen 

Unmodified Bitumen Unit Characteristic value Standard 

Penetration @ 25°C dmm 40 EN 1426 

Soft.Point °C 50 EN 1427 

Dynamic Visc. @160 °C Pa∙s 0.16 EN 12596 

Dynamic Visc. @150 °C Pa∙s 0.24 EN 12596 

Dynamic Visc. @135 °C Pa∙s 0.48 EN 12596 

 

Table 6.2 Properties of Zero - Bitumen 

Zero_Bitumen Unit Characteristic 

value 

Standard 

Penetration @ 25°C dmm 50 EN 1426 

Soft.Point °C 87.3 EN 1427 

Dynamic Visc. @160 °C Pa∙s 0.58 EN 12596 

Dynamic Visc. @150 °C Pa∙s 0.81 EN 12596 

Dynamic Visc. @135 °C Pa∙s 1.37 EN 12596 
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Table 6.3 Properties of A - Bitumen 

A_Bitumen Unit Characteristic value Standard 

Penetration @ 25°C dmm 48 EN 1426 

Soft.Point °C 78.4 EN 1427 

Dynamic Visc. @160 °C Pa∙s 0.29 EN 12596 

Dynamic Visc. @150 °C Pa∙s 0.39 EN 12596 

Dynamic Visc. @135 °C Pa∙s 0.63 EN 12596 

 

 

Figure 6.1 Setematic penetrometer – figure 1 (EN1426); RB365G Ring and Ball (EN1427); 

Brookfield Rotational Viscosimeter (EN 12596). 

Oscillating, sinusoidal shear stresses and strains have been applied on samples of 

bitumen using the DSR devices to find the complex modulus and the phase angle of 

the bitumen with respect to the different frequencies. Master curves for each bitumen 

have been found by applying the appropriate shift-factor for all the bitumen. Amplitude 

sweep test was performed on all the bitumens to find the Linear Viscoelastic Elastic 

(LVE) range for the material. The test was controlled on shear strain and with the 

frequency of 1.59 Hz. The LVE range for the three bitumen is shown in the following 

table. 

Table 6.4 Bitumen Linear Visco-Elastic range 

Bitumen γ LVE [%] 

Unmodified Bitumen 1.5 

Zero_Bitumen 2.0 

A_Bitumen 2.0 

 

For the Frequency Sweep the LVE ranges of the tables above were used testing the 

bitumen from 0.01Hz to 10Hz with temperature varying from 10°C to 60°C. 6 points 
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of observation were carried out between each decade with the total number of 19 for 

each temperature (Figure 6.2).  

 

Figure 6.2 Base Bitumens Master Curves 

The test result shows that A_bitumen and Zero_bitumen have complex modulus (G*) 

values higher than the unmodified bitumen G* values. The polymer increases the shear 

responses at high temperature and therefore reduces the bitumen thermos-sensitivity. 

The phase angle for the two modified bitumens is considerably lower than the 

unmodified bitumen, however the A_bitumen shows less elastic behaviour with high 

phase angle at high temperatures. These results combined to the traditional tests 

confirm that the A_bitumen is more aromatic than the ZERO_Bitumen. The linear SBS 

polymer reacts with the oils inside the A_bitumen and the stirenic part increase, in this 

way the elastic response given by the butadienic part is reduced and the stiffness at 

high temperature increases. All the bitumens are showing the same behaviour for the 

complex modulus at low temperature.  

6.2.2 Limestone Filler 

The filler used in this study is a product obtained from the fine grinding of limestone 

composed primarily of calcium carbonate (CaCO3). The limestone filler is referring to 
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the particles passing 0.063 mm sieve. In this research natural limestone filler was 

choosen due to its good interaction with bitumen. The limestone filler was 

geometrically characterized through a gradation analysis (EN 933-10) and 

volumetrically, determining their volumetric mass (EN 1097-7). Rigden Voids (EN 

1097-4) and Delta Ring & Ball (EN 13179-1) were also performed according to EN 

13179-1. Table 6.5 shows the limestone filler characteristics. 

Table 6.5 Limestone filler main characteristics 

Test Name Standard Limestone filler 

Gradation analysis (mm) EN933-10 0.063 

Particle density (Mg/m3) EN 1097- 7 2.73 

Rigden voids (%) EN 1097- 4 33.82 

∆ Ring & Ball [°C] EN 13179-1 8 

 

6.2.3 Fine Crumb Rubber 

The recycled powder rubber used in this study comes from scrap tires and it was 

produced in ambient mechanical grinding process at room temperature. Ambient 

grinding is a multi-step technology and uses whole or pre-treated car or truck tires in 

the form of shred or chips, or sidewalls or treads.  

 

6.2.3.1 Fine Crumb Rubber production 

The crumb rubber powder is one of the main products derived from ETLs; 

approximately the 25% of ETLs recovered in Italy start to a treatment and recovery 

process that allows reducing the ELTs into fragments less than a millimeter size. It to 

set up as the result of processing rubber to achieve finely dispersed particles with sizes 

less than 1 mm (Figure 6.3a). 

 

Figure 6.3 a) Fine Crumb Rubber b) Granulate Rubber 
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Rubber granule differ from crumb rubber (Figure 6.3b) because particles dimensions, 

in the range 1-10 mm. Both crumb and granulate rubber can be used as bitumen 

additive and  modifier; the granulate costs are inevitably less than fine crumb rubber. 

and if it can use more but the final product, or the modified bitumen, will have inferior 

characteristics compared to that obtained with powder, which has superior 

characteristics. More precisely, the shredded material is referred to as: 

• CRB (Crumb Rubber Modifier): size between 0.24 and 5 mm; 

• PRM (Powdered Rubber Modifier): smaller size of 0.24 mm; 

• poor ultrafine: size less than 0.074 mm. 

All the materials mentioned above are characterized by the grinding of the tires, in 

particular by crushing only the upper part of the carcass fibers and excluded. These 

materials are also recognized as Secondary Raw Materials by Italian law; In fact, since 

1998, the national legislation provides for the exclusion from the legislation on waste 

for the powder used for the production of modified bitumen. In order to reduce the 

generic waste rubber in a particle size suitable to allow the re-use in the rubber 

composition used for the production of artifacts, it may be used three different 

production processes: the traditional, cryogenic and electrothermic. 

 

6.2.3.2 The traditional granulation: Traditional Crumb Rubber 

The traditional granulation commonly called mechanical grinding. Mechanical 

grinding is a process that takes place in stages, performed by means of rotating knives 

and blades. It can be treated in different tires of trucks, cars and waste of rubber 

materials. The process is normally aimed at the production of granules and powder 

with a different treatment, depending on whether mentioned products are obtained 

from tires of a car or truck. For the latter is necessary a preliminary operation of 

removal of the bead, with which are separated, without breaking, the two rings on the 

tire to limit significantly the wear of the fragmentation machines. In this technology, 

all the phases of grinding and granulation are carried out in room temperature. The 

manufacturing process begins with the removal of the tire bead in order to separate the 

two rings without breaking the tire itself. This phase is done only for truck tires as they 

are equipped with two metal rings of variable section from 12 to 20 mm with the 
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purpose of supporting the bead. At this point is performed a real phase of coarse 

crushing of the tire. With this second phase, all the tires of passenger cars and light 

vehicles, as well as truck tires (individuals of the metal rings), are introduced in the 

different shredders who then reduce them into pieces ranging from 70 x70 mm to 100 

x100 mm  (Charamia et al. 1991). During this phase the speed of shredding can not be 

high to avoid the heating of the mills and so that the different rubber parts may adhere 

to the blades. The obtained fragments, through a system of conveyor belts operating 

in weight, they are conducted in other grinding chambers in which are cut in order to 

obtain increasingly smaller remains; this phase takes the name of granulation, as the 

building debris coming from the shredding increasingly smaller is reduced in the 

"grains". During the various phases of grinding, with the progress of the reduction of 

the size of the product, provision is made to separate and to remove in one or more 

subsequent moments the metal and the textile fiber. The absence of chemical or 

thermal treatment, maintains unchanged the molecular structure of the polymeric 

material. The cutting operations with metal blades are predominant and are carried out 

in successive phases, reducing the size rubber in stage to stage. The roughness of the 

surface obtained is predominantly related to the state of wear of the blades during the 

manufacturing process. new and sharp blades allow to reduce the roughness of the 

granulate, when compared to that obtained with worn blades. In the case of a prolonged 

use of the blades of the granulating unit life it is greatly reduced. It has, now, the step 

of micronization, thanks to which, through the use of magnetic tapes of a different 

nature, the rubber coming from the granulation step, is cleaned by the various 

impurities present, and thereafter, divided by grain size through the use of sifting 

machines, where the materials are divided according to particle size to be obtained. 

The final product is packaged or stored in silos. And possible to further reduce the 

particle size by adding to the system a few sprayers mills. Subsequently the material 

is stocked in different big-bag. 

 

6.2.3.3 Main characteristics of Crumb Rubber 

The rubber powder used in this research is fine crumb rubber with 0.4 mm size, and it 

was characterized geometrically (Fig. 6.4) through a gradation analysis (EN 933-10) 

and volumetrically, determining their volumetric mass (EN 1097-7).  
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Figure 6.4 Crumb Rubber grading curve. 

Table 6.6 shows the crumb rubber main characteristics. 

Table 6.6 Crumb rubber main characteristics 

Test Name Standard Crumb Rubber 

Gradation analysis (mm) EN933-10 0.4 

Particle density (Mg/m3) EN 1097- 7 1.01 
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6.3 Bitumen – Limestone Filler – Fine Crumb Rubber Mastic System 

6.3.1 Mastics Design 

Three binders (two modified with polymer and wax, one unmodified 40/60 pen.), 

limestone filler and fine crumb rubber, were mixed to obtain five mastics combinations 

for each bitumen type. Filler and rubber concentration was calculated by mass in order 

to easily compare with the proportions in asphalt mixture design in which the filler 

proportion is shown by mass content. The reference asphalt mixture is a Stone Mastic 

Asphalt (SMA) surface layer, therefore starting from a traditional SMA mixture, the 

mastics were produced according to the proportions of three different SMA surface 

layers. The mastics were designed by mixing the components with proportions linked 

to the weight of the aggregate mixture as reported in Tables 6.5-6.6-6.7. 

Table 6.5 Mastics percentages on weight of aggregates for the UNMODIFIED BITUMEN 

UNMODIFIED BITUMEN 

Mastic  

Name Code 

Bitumen/Aggregates 

[%] 

Rubber/Aggregates 

[%] 

Filler/Aggregates 

[%] 

UN_7_1_5 7.0 1.00 5 

UN_8.5_1.2_5 8.5 1.20 5 

UN_8_1_6 8.0 1.00 6 

UN_7.5_0.75_5 7.5 0.75 3 

UN_SMA 6.6 0.00 9 

Table 6.6 Mastics percentages on weight of aggregates for the ZERO BITUMEN 

ZERO BITUMEN 

Mastic  

Name Code 

Bitumen/Aggregates 

[%] 

Rubber/Aggregates 

[%] 

Filler/Aggregates 

[%] 

Z_7_1_5 7.0 1.00 5 

Z_8.5_1.2_5 8.5 1.20 5 

Z_8_1_6 8.0 1.00 6 

Z_7.5_0.75_5 7.5 0.75 3 

Z_SMA 6.6 0.00 9 
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Table 6.6 Mastics percentages on weight of aggregates for the A BITUMEN 

A BITUMEN 

Mastic  

Name Code 

Bitumen/Aggregates 

[%] 

Rubber/Aggregates 

[%] 

Filler/Aggregates 

[%] 

A_7_1_5 7.0 1.00 5 

A_8.5_1.2_5 8.5 1.20 5 

A_8_1_6 8.0 1.00 6 

A_7.5_0.75_5 7.5 0.75 3 

A_SMA 6.6 0.00 9 

 

The determination of filler and rubber concentration in a bitumen-filler mastic is given by: 

ÕÖ××ØÙ	ÚÛÜÚØÜ«ÙÝ«ÖÛÜ	Þß	àÝáá = 	 â�â��â��âÔ · 100                   (6.1) 

äåÞÞØÙ	ÚÛÜÚØÜ«ÙÝ«ÖÛÜ	Þß	àÝáá = 	 â â��â��âÔ ∙ 100     (6.2) 

The determination of ratio of filler to bitumen based on mass is given by: 

äÝ«ÖÛ	Ûæ	æÖ××ØÙ	ÛÜ	ÞÖ«åàÖÜÛåá	àÝáá		 = 	âçâè                    (6.3)     

äÝ«ÖÛ	Ûæ	ÙåÞÞØÙ	ÛÜ	ÞÖ«åàÖÜÛåá	àÝáá		 = 	â âè                    (6.4) 

The comparison of filler to bitumen (by mass) and rubber to bitumen (by mass) ratios 

for each mastic is shown in Tables 6.7-6.8-6.9. The requirement within Superpave 

system is a filler-to-bitumen ratios ranging  between 0.6 and 1.2 based on mass. In this 

investigation, the sum of filler-to-bitumen and rubber to bitumen ratios is between 0.73 

and 0.87, the filler and rubber particles are suspended in bitumen, excluding the mastic 

containing only filler for which the ratio of 1.36 exceeds the Superpave upper limit. 

For the SMA mastics the physical contact between filler particles is present in bitumen. 

The rubber presence has allowed to reduce the amount of filler inside the mastic. For 

this reason in this study the physical properties such as particle size distribution, 

Rigden voids, particle shape and specific surface must be associated with physical and 

chemical action induced by the rubber. 
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Table 6.7 Mastics composition for the UNMODIFIED BITUMEN 

UNMODIFIED BITUMEN 

Mastic 

Name Code 

Filler Concentration by 

mass [%] 

Rubber Concentration 

by mass [%] 

MF/MB 

 

MR/MB 

 

UN_7_1_5 38.46 7.69 0.71 0.14 

UN_8.5_1.2_5 34.01 8.16 0.59 0.14 

UN_8_1_6 40.00 6.67 0.75 0.12 

UN_7.5_0.75_5 37.74 5.66 0.67 0.10 

UN_SMA 57.69 0.00 1.36 0.00 

 

Table 6.8 Mastics composition for the ZERO BITUMEN 

ZERO BITUMEN 

Mastic 

Name Code 

Filler Concentration by 

mass [%] 

Rubber Concentration 

by mass [%] 

MF/MB 

 

MR/MB 

 

Z_7_1_5 38.46 7.69 0.71 0.14 

Z_8.5_1.2_5 34.01 8.16 0.59 0.14 

Z_8_1_6 40.00 6.67 0.75 0.12 

Z_7.5_0.75_5 37.74 5.66 0.67 0.10 

Z_SMA 57.69 0.00 1.36 0.00 

 

Table 6.9 Mastics composition for the A BITUMEN 

A BITUMEN 

Mastic 

Name Code 

Filler Concentration 

by mass [%] 

Rubber Concentration 

by mass [%] 

MF/MB 

 

MR/MB 

 

A_7_1_5 38.46 7.69 0.71 0.14 

A_8.5_1.2_5 34.01 8.16 0.59 0.14 

A_8_1_6 40.00 6.67 0.75 0.12 

A_7.5_0.75_5 37.74 5.66 0.67 0.10 

A_SMA 57.69 0.00 1.36 0.00 

 

The volumetric analysis has been conducted on the three studied mastic. The 

calculation of the compositional volume of bitumen, filler and rubber particle (Vb,Vf, 

Vr) has been obtained through the following equations: 

�� =
���������������Ô�Ô

· 100                   (6.6) 

�» = �Ô�Ô�����������Ô�Ô
∙ 100                    (6.7) 
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�é = ���������������Ô�Ô
∙ 100                   (6.8) 

where Mf = mass of filler in the mastic; Sf = specific gravity of filler; Mr = mass of 

rubber in the mastic; Sr = specific gravity of rubber; Mb = mass of bitumen in the 

mastic; and  Sb = specific gravity of bitumen. The results of the equations applied to 

the studied mastics are reported in Tables 6.10-6.11-6.12. 

Table 6.10 Mastics volumetric composition for the UNMODIFIED BITUMEN 

UNMODIFIED BITUMEN 

Mastic 

Name Code 

Vf 

[%] 

Vr 

[%] 

Vb 

[%] 

UN_7_1_5 19 10 71 

UN_8.5_1.2_5 16 11 73 

UN_8_1_6 20 9 70 

UN_7.5_0.75_5 19 7 74 

UN_SMA 33 0 67 

 

Table 6.11 Mastics volumetric composition for the ZERO BITUMEN 

ZERO BITUMEN 

Mastic 

Name Code 

Vf 

[%] 

Vr 

[%] 

Vb 

[%] 

Z_7_1_5 19 10 71 

Z_8.5_1.2_5 16 11 73 

Z_8_1_6 20 9 70 

Z_7.5_0.75_5 19 7 74 

Z_SMA 33 0 67 

 

Table 6.12 Mastics volumetric composition for the UNMODIFIED BITUMEN 

A BITUMEN 

Mastic 

Name Code 

Vf 

[%] 

Vr 

[%] 

Vb 

[%] 

A_7_1_5 19 10 71 

A_8.5_1.2_5 16 11 73 

A_8_1_6 20 9 70 

A_7.5_0.75_5 19 7 74 

A_SMA 33 0 67 
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In Table 6.13-6.14-6.15 the mastic compositions and the ratios between each 

components inside the mastics are reported. It can be noted that the studied mastics 

represent a wide panorama of design choice for asphalt mixtures. The mastics called 

SMA, containing only filler, represent the comparison parameter to understand better 

the fine crumb rubber action. The 8.5_1.2_5 mastic was studied to understand the 

action of the bitumen associated with the presence of rubber; in this mastic in fact the 

sum of volumetric part of filler and rubber is less than the others mastics and the 

presence of rubber is the highest. The 8_1_6 and 7_1_5 mastics have been designed to 

extrapolate the action of the filler within the mixture. Finally, the 7.5_0.75_5 mastics 

combines bitumen and fine crumb rubber percentages reduction. The rheological study 

is therefore connected with a parametric study of the individual components within the 

mastic. 

Table 6.13 Mastics composition for the UNMODIFIED BITUMEN 

UNMODIFIED BITUMEN 

Mastic Name 

Code 
%B %R %F 

%B/ 

%R 

%B/ 

%F 

%R/ 

%F 

%R/ 

%B 

%F/ 

%R 

%F/ 

%B 

UN_7_1_5 53.85 7.70 38.45 6.99 1.40 0.20 0.14 4.99 0.71 

UN_8.5_1.2_5 57.80 8.09 34.10 7.14 1.69 0.24 0.14 4.21 0.59 

UN_8_1_6 53.33 6.67 40.00 8.00 1.33 0.17 0.13 6.00 0.75 

UN_7.5_0.75_5 56.50 5.65 37.85 10.00 1.49 0.15 0.10 6.70 0.67 

UN_SMA 42.37 0.00 57.63 0.00 0.74 0.00 0.00 0.00 1.36 

 

Table 6.14 Mastics composition for the ZERO BITUMEN 

ZERO BITUMEN 

Mastic Name 

Code 
%B %R %F 

%B/ 

%R 

%B/ 

%F 

%R/ 

%F 

%R/ 

%B 

%F/ 

%R 

%F/ 

%B 

Z_7_1_5 53.85 7.70 38.45 6.99 1.40 0.20 0.14 4.99 0.71 

Z_8.5_1.2_5 57.80 8.09 34.10 7.14 1.69 0.24 0.14 4.21 0.59 

Z_8_1_6 53.33 6.67 40.00 8.00 1.33 0.17 0.13 6.00 0.75 

Z_7.5_0.75_5 56.50 5.65 37.85 10.00 1.49 0.15 0.10 6.70 0.67 

Z_SMA 42.37 0.00 57.63 0.00 0.74 0.00 0.00 0.00 1.36 
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Table 6.15 Mastics composition for the A BITUMEN 

A BITUMEN 

Mastic Name 

Code 
%B %R %F 

%B/ 

%R 

%B/ 

%F 

%R/ 

%F 

%R/ 

%B 

%F/ 

%R 

%F/ 

%B 

A_7_1_5 53.85 7.70 38.45 6.99 1.40 0.20 0.14 4.99 0.71 

A_8.5_1.2_5 57.80 8.09 34.10 7.14 1.69 0.24 0.14 4.21 0.59 

A_8_1_6 53.33 6.67 40.00 8.00 1.33 0.17 0.13 6.00 0.75 

A_7.5_0.75_5 56.50 5.65 37.85 10.00 1.49 0.15 0.10 6.70 0.67 

A_SMA 42.37 0.00 57.63 0.00 0.74 0.00 0.00 0.00 1.36 

 

6.3.2 Mastics Preparation 

The bitumen-filler mastics were produced by adding the mass of Limestone Filler and 

Fine Crumb Rubber to heated bitumen at a temperature of 160°C while mixing the 

three components together with an high shear mixer (shown in Figure 6.5) for one 

minute until a homogeneous mastic was obtained. This procedure simulates what 

happens in the production phase of the mixture in plant. The mixing procedures are 

detailed as follows: 

• limestone filler was put into a 160°C oven for 24 hours to ensure moisture free 

particle surfaces; 

• the unmodified bitumen was stored in a 5 litre tin needed 5 hours preheat into a 

160°C oven to make bitumen homogeneous and ready to mix; 

• the two modified bitumen was stored in a 5 litre tin needed 7 hours preheat into a 

160°C oven to make bitumen homogeneous and ready to mix; 

• the accurate amount  of the bitumen was poured into a 1 litre tin. The tin with the 

bitumen was placed on a hot plate and kept at 160°C; 

• the bitumen was mechanically stirred for 30 seconds; 

• the accurate mass of the limestone filler and crumb rubber was added slowly and 

the mixing process was followed so that the limestone filler and the fine crumb 

rubber were homogeneously dispersed in the bitumen. 
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Fig. 6.5 Mastic mixing process. 
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6.4 Mastics Testing Programme 

The general principle of the dynamic oscillatory shear load test is to determine the 

dynamic rheological properties of bituminous binders in a wide range of angular 

frequencies and test temperatures by means of an oscillatory rheometer with a parallel 

plate test geometry. A bituminous sample is squeezed between two concentric, 

circular, and parallel plates. The sample is subjected to either a sinusoidal torque or a 

sinusoidal angular displacement of constant angular frequency during the test. The 

DSR and dynamic mechanical analysis have been described in Chapter 3.  

6.4.1 Test Equipment and Sample Preparation 

Three different types of Dynamic Shear Rheometers (DSR) have been used to obtain 

the mastic rheological properties: 

• Bohlin - Gemini 200 (Figure 6.6a) using water (fluid) bath system controlling 

temperature (APPENDIX A). 

• Anton Paar - Smart Pave 102 (Figure 6.6b) using Peltier system temperature 

control with Peltier hood (APPENDIX A). 

• Anton Paar - MCR 302 (Figure 6.6c) using Peltier system temperature 

control with peltier hood (APPENDIX A). 

 

Figure 6.6 DSR used: a) Bohlin - Gemini 200 b) Anton Paar – Smart  Pave 102 c) Anton Paar – 

Smart Paar – MCR 302 

Using parallel plate geometry for the DSR, the set up machine steps described below 

were followed: 

• starting up the rheometer and the connected temperature/water control unit; 

• choosing and installing the correct geometry [8mm or 25mm parallel plate]. 
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• setting the Zero Gap; 

• sample loading, gap setting (inc. trimming if needed); 

• starting the test and data collection; 

• saving data, removing sample and the geometry; 

6.4.2 Amplitude Sweep Test  

Amplitude Sweep (AS) tests were preliminary carried out, to investigate the 

viscoelastic region at 10°C, applying a constant frequency of 10 rad/s (1.59 Hz). The 

investigated strain level range is between 0.01% and 100% of mastic deformation. It 

was chosen the strain amplitude at which the complex modulus not differ by more 10% 

of its initial value. 

6.4.3 Frequency Sweep Test 

Dynamic mechanical analysis, using oscillatory tests, was performed on the four 

bitumens to determine their rheological properties using a Dynamic Shear Rheometer 

(DSR). The tests were performed under controlled strain, and the strain amplitude was 

limited within the linear viscoelastic (LVE) response of the samples. Data were 

obtained from frequency sweep tests between 0.01 and 10 Hz, conducted between 

10°C and 60°C. The 8 mm measurement system with 2 mm gap was adopted in all the 

temperature range.  The rheological parameters obtained from frequency sweep tests 

were the complex shear modulus G*and phase angle δ. Using the principle of time – 

temperature superposition (TTS) the master curve of G*and δ were constructed at the 

reference temperature. 

6.4.4 Multiple Stress Creep Recovery Test 

The MSCR test was operated in rotational mode at 58 and 64°C using 1 s creep load 

followed by 9 s recovery for each cycle according to ASTM D7405. Ten creep and 

recovery cycles were run at 0.1 kPa creep stress followed by ten at 3.2 kPa creep stress. 

For each cycle, two parameters, the percent recovery (%R) and non-recoverable creep 

compliance (Jnr) are calculated. 
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6.5 Mastic Discrete Element Simulation 

The three-dimensional discrete element modeling approach has been used in order to 

capture, both quantitatively and qualitatively, the behavior of Z_8.5_1.2_5 and 

Z_SMA mastics, following the methods validated and described on Chapter 4. Also in 

this study for Z_8.5_1.2_5 and Z_SMA samples, the discrete element simulation 

includes three main steps: 

• definition of the model geometry; 

• description of the contact material properties; 

• simulation of the frequency sweep test. 

6.5.1 Model Geometry 

According to Dondi et al. (2014) the model geometry was generated in PFC3D using 

an arrangement of spherical particles, contained inside walls which simulated the 

dynamic shear rheometer device. The bitumen spheres diameter was set to 200 µm, 

the spheres diameter of crumb rubber and limestone filler was set to 100 µm. The 

bitumen, limestone filler and crumb rubber density and thermal properties  were set as 

measured by the manufacturer (Table6.16).  

Table 6.16 Properties of the DEM models 

Mastic Material Density [kg/m3] Spheres diameter [ µm] 

Z_8.5_1.2_5 

Bitumen 1000 200 

Limestone Filler 2700 100 

Crumb Rubber 1010 100 

Z_SMA 
Bitumen 1000 200 

Limestone filler 2700 100 

 

Three walls were adopted in order to simulate the dynamic shear rheometer, in which 

the samples of mastics, represented by 74400 spheres on Z_8.5_1.2_5 and 79440 

spheres on Z_SMA, were generated (Figures 6.7 – 6.8). The test device was modeled 

by a cylindrical wall closed at the top and bottom by planes simulating the parallel 

plates. The lower plane is fixed, while the upper one oscillates back and forth to create 

a shearing action. The samples of mastics, 2 mm thick and 8 mm in diameter, were 
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sandwiched between walls. The contact stiffness of the cylindrical wall has been 

obtained by a calibration analysis and it is equal to 102 N/m (Dondi et al. 2014).  

 

 

Figure 6.7 – Z_8.5_1.2_5, DEM model of the DSR sample (in blue the bitumen spheres, in red the 

Crumb Rubber Spheres, in yellow the limestone filler spheres) 

 

 

Figure 6.8 – Z_SMA, DEM model of the DSR sample (in blue the bitumen spheres, in yellow the 

limestone filler spheres) 

 

6.5.2 Contact Materials Properties 

According to Dondi et al. (2014), in this study in, the linear contact model was applied, 

where the normal and shear stiffness of a discrete element (the linear contact model 

parameters) change with loading time, based on the Burger’s constitutive relations 

(Collop et al. 2004 – 2006 - 2007). Burger's model parameters were obtained, as 

validated for mastics on chapter 4, fitting the Burger model to DSR measurements. 

The fitting procedure was based on minimizing an objective function reported on 

equation (3.130). The “Solver” option in Microsoft Excel was utilized to minimize the 

objective function. The obtained Burgers’ parameters are reported in (Table 6.17). 
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Table 6.17 Mastics Burger Parameters. 

Burger Parameter Initial Value 
“Solver” Value 

Z_8.5_1.2_5  Z_SMA 

Kk [MPa] 3 0.05 0.45 

Km [MPa] 2 26.05 47.32 

Ck [MPa·s] 4 3.90 7.65 

Cm [MPa·s] 5 37.16 45.97 

 

6.5.3 Simulation of Frequency Sweep Test 

According to Dondi et al. 2014 in the DEM simulation of the Frequency Sweep test 

an oscillatory shear load of constant amplitude was applied on the upper parallel wall, 

at nineteen loading frequencies ranging between 0.01 and 10 Hz and several different 

temperatures (10, 20, 30, 40, 50 and 60°C). An oscillatory shear angular velocity 

applied to the walls was used for each temperature. Numerical results have been 

evaluated and compared in terms of complex modulus (|G*|) and phase angle (δ) as 

reported in equations (4.11 and 4.12). The sinusoidal load, applied at low strain levels 

and transferred through the wall to the sample, allows for the adoption of a linear 

analysis. Using the TTS principle, the simulated master curves of complex modulus 

and phase angle were shifted at the reference temperature of 20°C.  
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6.6 Mastic Test Results and Discussion 

6.6.1 Linear Viscoelastic Limit  

The LVE range for each of the 15 studied mastics is shown in the following tables.  

Table 6.18 UNMODIFIED BITUMEN Linear Visco-Elastic range 

UNMODIFIED BITUMEN 

Mastic γ LVE [%] Temperature [°C ] 

UN_7_1_5 0.5 10 

UN_8.5_1.2_5 0.6 10 

UN_8_1_6 0.5 10 

UN_7.5_0.75_5 0.5 10 

UN_SMA 0.4 10 

 

Table 6.19 ZERO BITUMEN Linear Visco-Elastic range 

ZERO BITUMEN 

Mastic γ LVE [%] Temperature [°C] 

Z_7_1_5 0.8 10 

Z_8.5_1.2_5 0.9 10 

Z_8_1_6 0.8 10 

Z_7.5_0.75_5 0.8 10 

Z_SMA 0.5 10 

 

Table 6.20 A BITUMEN Linear Visco-Elastic range 

A BITUMEN 

Mastic γ LVE [%] Temperature [°C] 

A_7_1_5 0.4 10 

A_8.5_1.2_5 0.5 10 

A_8_1_6 0.4 10 

A_7.5_0.75_5 0.4 10 

A_SMA 0.2 10 

 

The Linear Visco-Elastic range reflects for each mastics the rheological properties of 

the base bitumen. Comparing Zero and A bitumen mastics, the linear LVE range is 

lower for mastics made with the A bitumen, demonstrating how the A bitumen is less 

sensitive to  polymer modification, and stiffer than the Zero one. 
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6.6.2 Master Curves 

6.6.2.1 Mastic made with the UNMODIFIED BITUMEN 

Results in Figure 6.9 show that in all the range of frequencies the mastics containing 

both limestone filler and crumb rubber attains G* values lower than the SMA mastic 

at high frequencies (low temperatures) and G* values higher than the SMA mastic at 

low frequencies (high temperatures).  

Figure 6.9 Master Curves of mastics made with Unmodified Bitumen 

It can be stated that the rubber effect on the rheological behavior of mastic is to reduce 

the bitumen thermo-sensitivity, giving high performances in terms of shear response 

at high temperatures and reducing the rigid behavior at low temperatures. The 

UN_8_1_6 mastic shows the highest complex modulus values at high temperature. 

The higher amount of limestone filler than the other mastics combined with the rubber 

increase the mastic resistance to permanent deformations. The rheological behavior of 

UN_8.5_1.2_5 and UN_7_1_5 mastics is equivalent, despite their internal differences 

in terms of single components percentages. The 1% addition of rubber in 

UN_8.5_1.2_5 mastic compensates the 4% less limestone filler comparing UN_7_1_5 

mastic. The UN_7.5_0.75_5 mastic shows an intermediate rheological behavior 
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between the UN_SMA mastic (57% limestone filler and 0% rubber by mass) and the 

other three mentioned above. Although within UN_7.5_0.75_5 mastic containing the 

37.74% by mass of limestone filler, reducing the proportion of rubber to 5.66% by 

mass leads to decrease complex modulus values at high frequencies. At medium and 

high frequencies the G* values of mastic containing crumb rubber are the same. It may 

noted that the SMA mastic has a behavior similar to the base bitumen one (Unmodified 

Bitumen), tending at high frequencies to values close to those the glassy modulus. 

The UN_8_1_6 mastic exhibits lower phase angles values at high temperatures than 

UN_8.5_1.2_5 and UN_7_1_5. The phase angle of mastics UN_8.5_1.2_5 and 

UN_7_1_5 tends towards the same phase angle versus frequency relationship at high 

frequencies. Figure 6.9 shows that phase angle values for the UN_7.5_0.75_5 tend to 

diverge at high frequencies compared to those for the mastic containing more than 6% 

by mass of rubber. At high temperatures, the phase angle values of mastic containing 

only limestone filler have the same trend of those of the base bitumen. The elastic 

response of the mastic containing rubber increase, however the rheological response 

of the mastic made with the unmodified bitumen is significantly far from the polymer-

modified bitumen. At medium frequencies, the visco-elastic response of mastics 

containing both rubber and filler is the same, in the other side the UN_SMA mastic 

shows higher phase angle values at medium frequencies than the other four mastics. 

At low temperatures the elastic response of the all mastics is the same, this may 

indicates that the base bitumen controls the behavior at the high frequencies.  

6.6.2.2 Mastic made with the ZERO BITUMEN 

Figure 6.10 shows the complex modulus and phase-angle master curves of mastics 

made with the modified bitumen named Zero.  
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Figure 6.10 Master Curves of mastics made with Zero Bitumen 

The master curves show greater complex modulus values and lower phase angle values 

than mastics made with the unmodified bitumen at all frequencies. The polymeric 

modification within the binder is evident particularly at high temperatures. The 

complex modulus tends to the horizontal asymptote and the phase angle, in the 

neighborhood of 45°, shows the perfect visco-elastic behavior. However even in this 

case there are clear differences between the mastics containing the fine crumb rubber 

and the Z_SMA mastic containing only limestone filler. This is the mastic that have 

lowest values of G* at high frequencies and highest values at high frequencies. The 

combined action of rubber and limestone filler increases the characteristics given by 

the SBS polymer to the bitumen, reducing the thermo-sensitivity and increasing the 

visco-elasticity range. The Z_8_1_6 mastic containing the greater percentage of 

limestone filler tends to have less thermo-sensitive behavior, showing a reduced 

difference between the complex modulus at high temperatures and the complex 

modulus at low temperatures. In terms of response to shear stress at high temperatures, 

the mastics with the rubber content higher than 6% by mass show the best shear stress 

response. The complex modulus values are higher than those of Z_7.5_0.75_5 and 
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Z_SMA mastics. Also with the Zero_Bitumen the rheological behavior of Z_8.5_1.2_5 

and Z_7_1_5 is the same at medium and low temperatures. Despite in the second 

mastic the filler-powder skeleton covers a wider surface than the first one, it is the 

bitumen-matrix itself that bears the shear stresses induced by the DSR. The phase angle 

values of mastic containing only limestone filler have the same trend of those of 

Zero_Bitumen but shifted to higher modulus values. At the high temperatures, the 

elastic response of the mastic containing rubber increases, exalting significantly the 

elastic behavior given by the polymer. At medium frequencies, the visco-elastic 

response of mastics containing both rubber and filler is the same. At low temperatures 

the mastic containing less filler and more rubber shows phase angles values lower than 

the δ values of mastics containing more filler. 

6.6.2.3 Mastic made with A BITUMEN 

The rheological behavior of mastics made with the A bitumen is affected by the 

interaction between the bitumen matrix, containing high aromatic fraction, with 

limestone filler and crumb rubber. Also in this case the A_SMA mastic with only 

limestone filler shows the highest complex modulus values at high frequencies and 

low stiffness at low frequencies. However, at high temperatures, the difference 

between the values of complex modulus G* between the A_SMA mastic and mastics 

with rubber powder is smaller than the two mastics described previously. On A 

bitumen, limestone filler exerts greater action to high temperatures in terms of 

response to shear stress. This is evident from the rheological behavior of all the studied 

mastics since the value of the complex modulus at high temperatures shows the same 

orders of magnitude. The main differences between the mastics are visible at low 

temperatures. The mastic A_8.5_1.2_5 containing more rubber and a prevailing 

bitumen matrix has the complex modulus values lower than the other mastics. 

Compared to the limestone filler, the action of the rubber powder is evident at low 

temperatures. The highest phase angle values of mastic containing only limestone filler 

confirms the previous analysis. Also in this case, at high temperatures, the elastic 

response of the mastic containing rubber has improved, exalting the elastic behavior 

given by the polymer. At medium frequencies, the visco-elastic response of mastics 

containing both rubber and limestone filler is the At low temperatures the mastic 
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containing less filler and more rubber shows phase angles values lower than the values 

of δ mastics containing filler. 

 

Figure 6.11  Master Curves of mastics made with A Bitumen 

6.6.3 Black Diagram 

Black diagram is also a common way to present and comment on the rheological 

characteristics of bituminous binders. The complex modulus and phase angle 

measurement obtained from a dynamic test are plotted in the graph. The effects of 

temperature and loading time are eliminated from the plot, which allow the dynamic 

data to be presented in a plot without requiring the shifting of raw data. The Black 

diagrams for the mastics made with the unmodified bitumen are presented in Figures 

6.12. The curves are not smooth and continuous compared to Black diagram curves 

typical of neat bitumen. In all mastic the high rubber and filler concentrations implies 

that the studied mastics has not a simple rheological behavior, and the particles are not 

suspended in the bitumen. However, as with the master curves, the Black diagram 

curves for the mastic made with only limestone filler mastics are distinctive. The Black 

diagram curves of the SMA mastics tend to a viscous behavior from high complex 

modulus values (low temperatures) to low complex modulus values (high 
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temperature). The mastic containing crumb rubber shows an increasing of the elastic 

behavior. For the mastic made with the unmodified bitumen at medium G* values it is 

evident the elastic recovery typical of the polymer modified bitumen. This behavior is 

enhanced for the mastics made with the PWmB, the elastic recovery covers the 

modulus range from medium to low values. Limestone filler and rubber act when 

combined to the SBS polymer increasing the materials stiffness at high temperatures 

and consequently their elastic response. As shown in the previous paragraph, the 

rubber elastic effects are enhanced on mastic made with the A bitumen (Figures 6.13-

6.14).  

 

 

Figure 6.12 Black diagram of mastics made with Unmodified Bitumen 
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Figure 6.13  Black diagram of mastics made with Zero Bitumen 

 

Figure 6.14 Black diagram of mastics made with A Bitumen 



Chapter 6 – Rheological Characterization of bitumen mastics and mortars 

containing fine crumb rubber 

 

210 

 

6.6.4 MSCR and Jnr Results 

6.6.4.1 Mastic made with UNMODIFIED BITUMEN 

The mastics potential rutting was evaluated through MSCR tests run at 0.1 and 3.2 

kPa. Figure 7.10 shows the test results at the temperature of 58°C related to the mastics 

made with the unmodified bitumen. In this test configuration, the UN_8_1_6 and 

UN_7_1_5 mastics have accumulated less deformation at the end of the 10 cycles at 

3.2 kPa.  For the mastics containing both limestone filler and crumb rubber, the mastics 

that have the highest concentration of limestone filler (40% and 38.5% by mass 

respectively) exhibit the stiffer behavior. The crumb rubber action in terms of recovery 

is also evident comparing the accumulated strains of the UN_SMA mastic with the 

other four mastics blended with the rubberized filler. As shown in Figure 6.13 the 

UN_SMA (58% of limestone filler by mass, 0% rubber) accumulated the highest strain 

percentage and, among the mastics containing both limestone filler and crumb rubber, 

the mastic UN_7.5_0.75_5 containing less crumb rubber (5.5% by mass) reaches the 

greatest accumulated strain. These results confirm the analysis made in the visco-

elastic range through the Frequency sweep test and commented in the previous 

paragraph. 

 

 

Figure 6.15 MSCR test results at @58°C for the mastics made with the unmodified bitumen. 
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Table 6.21 shows the results in terms of accumulated strain at the end of 10th cycle at 

0.1 and 3.2 kPa. For both shear stress levels, the accumulated strain of the UN_SMA 

mastic is one order of magnitude higher than those of the mastics containing both 

limestone filler and crumb rubber. It is also evident the crumb rubber effect at 3.2 kPa. 

For the UN_7.5_0.75_5 mastic the accumulated strain from 0.1 kPa to 3.2 kPa is 60 

times higher, compared to the other three mastics for which there is an increasing 

deformation 50 times higher. 

Table 6.21 Accumulated strain values at the end of 10th cycle at 0.1kPa and 3.2kPa for the mastics 

made with the Unmodified bitumen. 

Mastic 

Name Code 

Temperature 58°C 

0.1 kPa 3.2 kPa 

Accumulated 

Strain 10th cycle [%] 

Accumulated 

Strain 10th cycle [%] 

UN_7_1_5 0.03 1.92 

UN_8.5_1.2_5 0.04 2.17 

UN_8_1_6 0.04 2.17 

UN_7.5_0.75_5 0.06 3.46 

UN_SMA 0.30 11.4 

 

Table 6.22 shows the average percentage of recovery of the five mastics under 0.1 and 

3.2 kPa shear load at the test temperature of 58°C. The UN_8_1_6, UN_7_1_5 and 

UN_8.5_1.2_5 mastics attain an average recovery (%) higher than the UN_7.5_0.75_5 

and UN_SMA; in particular, the average recovery  of these mastics in close 30% at 

0.1 kPa and 16% at 3.2 kPa. At the highest shear stress level the mastics containing 

only limestone filler has no recovery. Comparing the UN_8_1_6 (6.67% of rubber by 

mass) and UN_7.5_0.75_5 (5.66% of rubber by mass) mastics it can be stated that a 

1% more rubber inside increases the recovery at both shear stress levels. 
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Table 6.22 Average percentage of recovery at 0.1 and 3.2 kPa  for the mastics made with the 

Unmodified bitumen. 

Mastic 

Name Code 

Temperature 58°C 

0.1 kPa 3.2 kPa 

Average 

% recovery 

[%] 

Average 

% recovery 

[%] 

UN_7_1_5 28 14 

UN_8.5_1.2_5 27 14 

UN_8_1_6 30 16 

UN_7.5_0.75_5 20 9 

UN_SMA 2 0 

As shown in chapter 3 the creep compliance Jnr parameter is a measure of the non-

recoverable behavior of the bitumen/mastics caused by creep-recovery cycles. The Jnr 

values were calculated for the five mastics under 0.1 and 3.2 kPa shear stresses at 

58°C. The UN_8_1_6, UN_7_1_5 and UN_8.5_1.2_5 mastics have lower values of 

non recoverable compliance at both shear stresses, showing  less sensitivity of these 

three mastics to stress increasing. Despite the limestone filler presence in the last 

mastic is 4% less than the others two (34% by mass for UN_8.5_1.2_5, 38.5% by mass 

for UN_7_1_5 and 40% for UN_8_1_6), the 1% crumb rubber more than UN_7_1_5 

and the 1.5% of crumb rubber more than UN_8_1_6, make the mastic less susceptible 

to permanent deformations. The UN_SMA mastic has the highest values of Jnr under 

all test conditions, it is once again proven that the absence of rubber increases the 

potential rutting sensitivity. 
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Figure 6.16 Non-recoverable compliance at 0.1 kPa and 3.2 kPa for the mastics made with the 

Unmodified bitumen. 

6.6.4.3 Mastic made with ZERO BITUMEN 

Figure 6.17 shows the test results at the temperature of 58°C related to the mastics 

made with the Zero bitumen. The Z_8.5_1.2_5 mastic has accumulated less 

deformation at the end of the 10 cycles at 3.2 kPa. Among the mastics containing both 

limestone filler and crumb rubber, the mastic that have the highest concentration 

percentage of rubber (8.16% by mass) has the lowest values of accumulated strain at 

both shear stress levels.  The A_SMA (58% of limestone filler by mass, 0% rubber)  

has accumulated the highest strain percentage and among the mastics containing both 

limestone filler and crumb rubber, the A_7.5_0.75_5 mastic containing less crumb 

rubber (5.5% by mass) shows the greatest accumulated strain. This differences are 

exalted at 3.2 kPa shear stress level at which the crumb rubber transmits its elastic 

properties to the mastics. 



Chapter 6 – Rheological Characterization of bitumen mastics and mortars 

containing fine crumb rubber 

 

214 

 

 

Figure  6.17 MSCR test results at @58°C for the mastics made with the Zero bitumen. 

At the shear stress level of 0.1 kPa the mastics containing both limestone filler and 

crumb rubber have accumulated, at the end of 10th cycle, the same strain (range 

between 0.002 and 0.005%) (Table 6.23). At 3.2 kPa the 8.16 % of rubber 

concentration acts in response to stresses such as is shown in Tables 6.23 and 6.24. 

However, as analyzed from the master curves, in the Z_8_1_6 mastic the 40% of 

limestone filler increases the mastic stiffness, obtaining, by MSCR test, that this mastic 

has the second best percentage of accumulated deformation. 

Table 6.23 Accumulated strain values at the end of 10th cycle at 0.1kPa and 3.2kPa for the mastics 

made with the Zero bitumen. 

Mastic 

Name Code 

Temperature 58°C 

0.1 kPa 3.2 kPa 

Accumulated 

Strain 10th cycle [%] 

Accumulated 

Strain 10th cycle [%] 

A_7_1_5 0.005 0.85 

A_8.5_1.2_5 0.002 0.50 

A_8_1_6 0.005 0.60 

A_7.5_0.75_5 0.005 1.40 

A_SMA 0.030 2.00 

The phase angle reduction analyzed in the FS test, at high temperatures, is visible in 

terms of % recovery and accumulated deformation in MSCR test. Among the mastics 
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made with the Zero bitumen, Z_SMA highlights the lowest percentage of recovery at 

3.2 kPa. The Z_8.5_1.2_5 and Z_8_1_6 (mastic with lowest phase angle values at high 

temperaures) have the highest recovery percentages at both shear stress level. As 

described on linear analysis, this result confirms that the limestone filler and crumb 

rubber action increases both stiffness and elastic mastic response at the high 

temperatures.   

Table 6.24 Average percentage of recovery at 0.1 and 3.2 kPa for the mastics made with the A 

Bitumen. 

Mastic 

Name Code 

Temperature 58°C 

0.1 kPa 3.2 kPa 

Average 

% recovery 

[%] 

Average 

% recovery 

[%] 

UN_7_1_5 61 27 

UN_8.5_1.2_5 87 32 

UN_8_1_6 61 29 

UN_7.5_0.75_5 61 25 

UN_SMA 40 20 

 

 

Figure 6.18 Non-recoverable compliance at 0.1 kPa and 3.2 kPa for the mastics made with the            

Zero Bitumen. 
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6.6.4.3 Mastic made with “A” BITUMEN 

Figure 6.19 shows the test results at the temperature of 58°C related to the mastics 

made with the A bitumen. The A_8.5_1.2_5 mastic has accumulated less deformation 

at the end of the 10 cycles at 3.2 kPa. Among the mastics containing both limestone 

filler and crumb rubber, the mastics that have the highest concentration of crumb 

rubber (8.16% by mass) has the lowest values of accumulated strain at both shear stress 

levels.  Also in this analysis it can be noticed that the A_SMA (58% of limestone filler 

by mass, 0% rubber)  has accumulated the highest strain percentage and among the 

mastics containing both limestone filler and crumb rubber, the A_7.5_0.75_5 mastic 

containing less crumb rubber (5.5% by mass) shows the greatest accumulated strain 

percentage. This differences are exalted at 3.2 kPa shear stress level at which the crumb 

rubber transmits its elastic properties to the mastics. 

 

Figure 6.19 MSCR test results at @58°C for the mastics made with the A bitumen. 

These results confirm the analysis made in the visco - elastic range through the 

Frequency sweep test. In the linear analysis for the mastics containing both limestone 

filler and crumb rubber it is recorded the same response with accumulated strains 

ranging between 0.002  and  0.007% (Table 6.25); with the increase of the shear stress 

the presence of an higher percentage of rubber acts in response to stresses as is shown 

in Table 6.25-6.26. 
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Table 6.25 Accumulated strain values at the end of 10th cycle at 0.1kPa and 3.2kPa for the mastics 

made with the A bitumen. 

Mastic 

Name Code 

Temperature 58°C 

0.1 kPa 3.2 kPa 

Accumulated 

Strain 10th cycle [%] 

Accumulated 

Strain 10th cycle [%] 

A_7_1_5 0.005 0.50 

A_8.5_1.2_5 0.002 0.30 

A_8_1_6 0.005 0.50 

A_7.5_0.75_5 0.007 0.85 

A_SMA 0.030 2.54 

 

As highlighted in the previous paragraphs the crumb rubber action increases the 

influence of the polymer modification. The phase angle reduction analyzed in the FS 

tests, at high temperatures, is visible in terms of recovery (%)  and accumulated 

deformation in the MSCR tests. The A_SMA mastics made with the A bitumen, shows 

a 17% of recovery at 3.2 kPa compared to a 0% of  the UN_SMA because of the 

presence of SBS in the bitumen matrix. This result highlights the rubber action that 

has increased the SBS polymer performances, ranging between 50 and 70% of the 

elastic recovery of the mastics. The Jnr values were calculated for the five mastics under 

0.1 and 3.2 kPa shear stresses at the test temperatures at 58°C are shown in figure 6.20. 

The UN_8.5_1.2_5 mastics have lower values of non recoverable compliance at both 

shear stresses, confirming a reduced sensitivity of this mastics to permanent 

deformations. The mastic A_7.5_0.75_5 (5.66% by mass of rubber) shows the highest 

Jnr values among the mastics containing both filler types. The A_SMA mastic has the 

highest values of Jnr under all test conditions, it is once again proven that the absence 

of rubber increases the potential rutting sensitivity. 
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Table 6.26 Average percentage of recovery at 0.1 and 3.2 kPa  for the mastics made with the A 

Bitumen. 

Mastic 

Name Code 

Temperature 58°C 

0.1 kPa 3.2 kPa 

Average 

% recovery 

[%] 

Average 

% recovery 

[%] 

UN_7_1_5 61 35 

UN_8.5_1.2_5 87 54 

UN_8_1_6 61 36 

UN_7.5_0.75_5 61 31 

UN_SMA 40 17 

 

 

Figure  6.20 Non-recoverable compliance at 0.1 kPa and 3.2 kPa for the mastics made with the         

A bitumen. 

6.6.5 DEM results 

6.6.5.1 Frequency Sweep Test Results 

In Figure 6.19 are shown the Z_SMA and Z_8.5_1.2_5 G* Master Curves obtained 

from DEM simulations. Master curves from DEM data confirm the laboratory test. In 

particular the differences between the mastics containing the fine crumb rubber and 

the Z_SMA containing only limestone filler are evident. This is the mastic that have 
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the lowest G* values at high frequencies and highest G* values at high frequencies. 

On the contrary, at the high temperatures, the mastic containing rubber shows a better 

response to shear stresses, attaining moduli values higher than Z_SMA. At high 

frequencies the crumb rubber properties reduce the mastic stiffness; at low temperature 

this mastic is less rigid than the mastic containing only limestone filler.  

 

Figure 6.21 Z_SMA and Z_8.5_1.2_5 3D DEM G*Master Curve comparison. 

 

The phase angle Master Curves also confirms the laboratory results as shown on figure 

6.22. At the high temperatures, the elastic response of the mastic containing rubber 

increases, exalting significantly the elastic behavior given by the polymer in all range 

frequencies. At medium and low temperatures the stress response of mastics 

containing rubber shows phase angles values lower than the δ values of mastics 

containing more filler. 
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Figure 6.22 Z_SMA and Z_8.5_1.2_5 3D DEM δ Master Curve comparison.   

Contact forces have been evaluated inside the Z_SMA and Z_8.5_1.2_5 modeled 

samples at the end of the sweep test at different temperatures (10°C, 30°C, and 60°C). 

The applied shear stresses increase the shear contact forces distribution inside the 

specimen and showing higher values than normal ones. As shown in Table 6.27, as the 

temperature increases, the maximum shear contact force inside the sample increases. 

While at 10°C and 30°C the maximum shear contact force inside the Z_SMA and 

Z_8.5_1.2_5 specimens are very similar, increasing the temperature the difference 

between the two mastics behavior increases. The maximum shear contact force of the 

Z_8.5_1.2_5 sample, in particular, are always higher than the Z_SMA one, and the 

relative difference (∆) increases passing from 30°C to 60°C. This trend confirms that 

at high temperatures both limestone filler and crumb rubber improve the sample 

stiffness and the mastic resistance to permanent deformations. 

Table 6.27 Maximum shear contact force inside the mastic sample [*10-3 N/m] 

Temperature 

 [°C] 10 30 60 

Z_SMA 2.809 6.173 11.357 

Z_8.5_1.2_5 2.477 8.138 17.323 

∆ 0.332 -1.965 -5.966 
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For each mastic, as the temperature increases, the total number of spheres 

displacements inside the sample increases. The spheres displacements, in particular, 

are evaluated in a Cartesian coordinate system, with: 

• the origin in the centre of the upper horizontal plane of the model, which simulates 

the oscillating plate (chapter 4); 

• the z direction coincident to the vertical axis of symmetry of the sample, pointing 

to the lower plate (chapter 4). 

Displacements are calculated at the end of the sweep test at different temperatures 

(10°C, 30°C, 60°C). As shown in Table 6.28, for the same mastic, as the temperature 

increases, the maximum and minimum displacements of the particles in x, y and z 

directions increase. In terms of displacement it is also visible the shear stress action in 

terms of horizontal spheres movement, higher than the normal one. 

Table 6.28 Particles displacement of Z_SMA and Z_8.5_1.2_5 models in x y z direction [mm]. 

Temperature 

[°C] 
Mastic 

xdisp  

min 

xdisp  

max 

ydisp 

min 

ydisp 

max 

zdisp 

min 

zdisp 

max 

10 
Z_SMA 3.85E-05 0.9500 3.79E-05 1.10 6.00E-07 0.11 

Z_8.5_1.2_5 4.02E-05 1.0050 3.95E-05 1.19 8.00E-07 0.13 

30 
Z_SMA 4.85E-05 1.5000 4.50E-05 1.40 3.00E-06 0.30 

Z_8.5_1.2_5 4.30E-05 1.3000 4.40E-05 1.35 2.00E-06 0.20 

60 
Z_SMA 6.00E-05 2.1000 5.60E-05 2.20 7.00E-06 0.80 

Z_8.5_1.2_5 4.70E-05 1.7000 4.50E-05 1.80 5.00E-06 0.50 

 

Comparing the Z_SMA and Z_8.5_1.2_5 specimens, for each temperature, in terms of 

horizontal displacement, the Z_8.5_1.2_5 shows larger spheres displacements than the 

Z_SMA at low temperatures. This trend is inverted as the temperature increases; at 30 

and 60°C the horizontal displacement of mastic containing only limestone filler are 

larger than the mastic containing both components. So the master curve trend, which 

shows that Z_8.5_1.2_5 is stiffer than Z_SMA at high temperature, and less fragile at 

low temperature, is confirmed by the displacements of the spheres of the two models. 
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6.7 Mortar System 

Mortar is the blend of the binder, limestone filler, small-size aggregate (sand) and 

additive (such as crumb rubber). The role of mortar is important to understand the 

behaviour of the fine particles (limestone filler and crumb rubber) with sand-size 

aggregates and binder. To investigate this role samples with normalized sand-size 

aggregates (below 2mm) were made, starting from a typical Stone Mastics Asphalt 

(SMA) grading curve as a reference, and normalizing the aggregates passing the 2 mm 

sieve. 

6.7.1 Mortar Design 

6.7.1.1 Fine aggregates normalization 

The A Bitumen (PWmB) was used for producing the mortar samples. The crumb 

rubber and the limestone filler are the same used for all the mastics. Bardon Hill Quarry 

dust (Fine igneous aggregates) was used for mortar blending. A traditional SMA 

grading curve has been normalized on the particle percentages below 2mm to find the 

mortar grading curve. The total passing at sieve 2[mm] was considered equal to 100% 

and consequently,  the other sieves have been normalized. Bitumen and crumb rubber 

percentages were  then calculated on the aggregates weight. Passing Fine Aggregate 

Normalized (i) below 2[mm] has been calculated from the following formula: 

Passing	Fine	Aggregate	Normalized	(i) = Total	passing	(i)	[mm] × ���v�O��	�����
S	[CWW]                (6.9) 

Table 6.29 and Figure 6.23 show the normalized SMA grading curve for mortar design. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 – Rheological Characterization of bitumen mastics and mortars 

containing fine crumb rubber 

 

223 

 

Table 6.29 Normalized SMA grading curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23 Total mixture and mortar grading curves. 

 

Sieve Size 

[mm] 

Total Passing 

[%] 

Passing [%] 

Normalized 

[2mm] 

40 100  

31 100  

20 100  

16 100  

14 100  

12.5 100  

10 100  

8 97.5  

6 82.8  

4 40.1  

2 24.8 100.00 

1 19.8 79.84 

0.5 16.8 67.74 

0.25 13.4 54.03 

0.125 10.9 43.95 

0.063 9 36.29 
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6.7.1.2 Bitumen, Rubber and Filler normalization 

For mixing a mortar with the right percentage of bitumen, a normalized percentages 

of the bitumen (and Rubber) is needed, therefore the percentages of Bitumen and 

Rubber have been also normalized;  

Bí� = 	B� 	× ���v�O��	�����
S[CWW]                    (6.10) 

Rí� =	R� 	× ���v�O��	�����
S[CWW]                                    (6.11) 

   

Fí� = 	F� 	× ���v�O��	�����
S[CWW] = passing	normalized[0.063	mm]                (6.12) 

where: 

Bí� = 	Bitumen	%	on	Fine	aggregates	 
Rí� = 	Rubber	%	on	Fine	aggregates		 
Fí� = Filler	%	on	Fine		aggregates 
B� = Bitumen	%	on	Total	aggregates																																						 
R� = Rubber	%	on	Total	aggregates 
F� = Filler	%	on		Total	aggregates																																																 
Finally, normalizing all the components the mortar mixture percentages were found as 

follows:  

FAí�(i − j) = Normalized	Fine	Aggregates	retained	between	sieves(i − j)	%(except	filler) 
FAW(i − j) = Fine	Aggregates	retained	between	sieves(i − j)	%(except	filler)	on	mortar	 
BW = ñòó∑í�òó(�Yô)�íòó�ñòó�
òó                    (6.13) 

RW = 
òó∑í�òó(�Yô)�ñòó�
òó�íòó                    (6.14) 

FW = íòó∑í�òó(�Yô)	�ñòó�
òó�íòó                    (6.15) 

	FAW(i − j) = í�òó(�Yô)∑ í�òó(�Yô)	�ñòó�
òó�íòó                  (6.16) 

 

6.7.1.3 Mortars Combinations 

The same combinations used in mastic have been used to create the mortars. The 

amount of limestone filler, bitumen and crumb rubber were normalized using the 

described normalization method. 



Chapter 6 – Rheological Characterization of bitumen mastics and mortars 

containing fine crumb rubber 

 

225 

 

Table 6.30 Mortar percentage composition. 

A BITUMEN 

Mortar Name Code %Bitumen %Rubber %Filler 
%Fine 

Aggregates 

MoA_7_1_5 23.73 3.39 16.95 55.93 

MoA_8.5_1.2_5 27.24 3.85 16.03 52.88 

MoA_8_1_6 26.23 3.28 19.67 50.82 

MoA_7.5_0.75_5 25.21 5.65 16.81 55.46 

MoA_SMA 42.31 0.00 28.66 50.32 

 

6.7.2 Mortar Preparation 

Maximum densities for all mortars have been found using the density of the materials 

shown in Table 6.31. 

Table 6.31 Mortar components density. 

Material Density [g/cm3] 

Bitumen 1.030 

Limestone Filler 2.500 

Rubber 1.000 

Bardon Hill dust 2.800 

The maximum density and target density have been found using 2% air void. 

Table 6.32 Mortar target density. 

Mortar sample 
Target Air 

void 

Maximum density 

[kg/m3] 
Target Density [kg/m3] 

MoA_7_1_5 2% 1880 1842 

MoA_8.5_1.2_5 2% 1800 1764 

MoA_8_1_6 2% 1826 1789 

MoA_7.5_0.75_5 2% 1868 1831 

MoA_ SMA 2% 2000 1960 

Mortar samples were made using normalized percentages of the fine aggregates, 

rubber and bitumen based on mass of aggregates. Fine aggregates were stored in oven 
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overnight at 160 °C to reach the dry condition needed for mixing. Mortar samples have 

been made at about 160 °C by hand mixing. Temperature was controlled regularly 

during mixing. First the fine aggregates were poured into the mixing pot, then the 

bitumen was added and after few minutes the rubber was added to the mixture.  

 

Figure 6.24 Mortar mixing process. 

The obtained mortar was mixed for 5 minutes. The mould described in Table 6.33  was 

used to make the mortar samples: 

Table 6.33 Mould description. 

Mould Sample Shape Diameter [mm[ Height [mm] 

Solid Fixture Mould Cylinder 12.3 50 

 

 

Figure 6.25 Mould and mortar samples extraction. 

The mortars have been extracted and stored in 5 ͦ C. Table below shows the sample 

densities and internal air voids. 
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Table 6.34 Mortar samples density. 

Mortar Sample 
Weight 

[kg] 

Air void 

[%] 

Density 

[kg/m3] 

Target Density  

[kg/m3] 

MoA_8.5_1.2_5 0.56 2.14 1806 1764 

MoA_7_1_5 0.59 1.04 1872 1842 

MoA_7.5_0.75_5 0.57 1.83 1863 1831 

MoA_8_1_6 0.58 1.90 1832 1789 

MoA_SMA 0.64 2.12 2022 1960 
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6.8 Mortar Testing Programme 

6.8.1 Test Equipment and Sample Preparation 

The Kinexus – Malevern DSR (Figure 6.26) Dynamic Shear Rheometers (DSR) has 

been used to measure the mortar rheological properties. 

 

Figure 6.26 Kinexus – Malvern rheometer. 

Mortar samples have been tested using Solid Fixture configuration for torsional 

loading. The Kinexus uses an active hood for reaching the required temperature in the 

chamber. The Peltier Cylinder cartridge for the Kinexus rheometer provides 

multifunctional configuration options to meet the temperature (Figure 6.27). 

 

 

Figure 6.27 Kinexus – Malvern temperature chamber. 

 

The samples were left at the room temperature (25°C approximately) from the store 

room (5°C) for an hour before conditioning to avoid sudden variation in the sample 

temperature. The conditioning was applied for an hour before commencing the test. A 
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sufficient amount of instant adhesive glue has to be placed on the disposable plate and 

sample surfaces on both sides. To ensure satisfactory bond additional glue sited around 

the circumference of the sample edges and plates. 10 minutes were allowed for the 

glue to stiffen enough (Elnasri 2014). The sample has been clumped to the solid fixture 

by two bolts before installing the system inside the device (Figure 6.28). 

 

 

Figure 6.28 Mortar samples installation. 

6.8.2 Frequency Sweep Test 

Dynamic mechanical analysis, using oscillatory tests, was performed on the five 

mortars to determine their rheological properties. The tests were performed under 

controlled strain, and the strain amplitude was limited within the Linear ViscoElastic 

(LVE) response of the samples. In particular a strain level of 0.0065 % has been 

imposed. Data were obtained from frequency sweep tests between 0.01 and 10 Hz, 

conducted between 10°C and 60°C. The solid fixture configuration with a cylindrical 

sample of 12.3 mm of diameter and 50 mm of height was adopted in all temperature 

range. The sample was conditioned for 30 minutes for each temperatures in order to 

reach the internal temperature equilibrium. Also for this configuration the rheological 

parameters obtained were the complex shear modulus G* and phase angle δ.  
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6.9 Mortar Test Results and Discussion 

6.9.1 Master Curves 

The mortar master curves were built applying the temperature-time superposition 

principle and the WLF theory. The TTS principle is valid also in the case of bituminous 

mortars, as demonstrated by the continuous master curves trends. As shown in Figures 

6.29-6.30-6.31-6.32-6.33 the mortar master curves in terms of  G* are parallel to those 

of  mastics. This result confirms that the proportion of the single components within 

the mortar has been correctly designed and that the rheological behavior of the mortar 

(master curve slope) is related to the rheological behavior of the mastic. The stiffness 

increase between mortar and mastics is because of the skeleton presence given by the 

combined action of the lytic fine aggregates and the limestone filler. In fact, as can be 

seen in Figures 6.29-6.30-6.31-6.32-6.33, in the case of mortar with the highest 

percentage of filler, the horizontal asymptote at high temperatures is accentuated; the 

limestone filler decreases the deformation susceptibility of the mixtures at high 

temperatures. The elastic response of bituminous mortar containing both limestone 

filler and crumb rubber is analogous to that of mastics at high temperatures. The 

MoA_SMA is the only mortar that show an elastic behavior higher than the 

corresponding A_SMA mastic. At medium and low temperatures the mortar shows 

higher elastic response than that of the mastics. If in fact in the case of bituminous 

mastics at low temperatures the phase angle values are between 30 and 40 ° in the case 

of the mortar the phase angle values are between 25 and 35°. This may be due to the 

fine aggregates skeleton that increases the mortar elastic behavior. In Table 6.35 the 

complex modulus rate increasing from mastics to mortar master curves are reported. 

The MoA_8.5_1.2_5 mortar with the highest bitumen percentage has the highest 

stiffness average  percentage increase. The mortar with lowest bitumen percentage 

(MoA_SMA, MoA_7_1_5 and MoA_7.5_0.75_5) have the lowest G* average 

percentage increase. The MoA_SMA and the MoA_8_1_6 show the highest 

percentage stiffness increasing at low frequencies, confirming the limestone filler 

action at the high temperatures. In Table 6.35 are reported the complex modulus rate 

increasing from mastics to mortar master curves. The MoA_8.5_1.2_5 mortar with the 

highest bitumen percentage has the highest stiffness average percentage increasing. 

The mortar with the lowest bitumen percentage (MoA_SMA, MoA_7_1_5 and 
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MoA_7.5_0.75_5) have the lowest G* average percentage increase. The MoA_SMA 

and the MoA_8_1_6 show the highest percentage stiffness increasing at low 

frequencies, confirming the limestone filler action at the high temperatures.   

Table 6.35 Mortar complex modulus rate increasing. 

Mortar Sample 

Low 

Frequencies 

Medium 

Frequencies 

High 

Frequencies 

Stiffness 

Increasing 

[%] 

Stiffness 

Increasing 

[%] 

Stiffness 

Increasing 

[%] 

MoA_8.5_1.2_5 92 95 95 

MoA_7_1_5 90 91 85 

MoA_7.5_0.75_5 93 92 89 

MoA_8_1_6 96 93 94 

MoA_SMA 94 91 88 

 

 

 Figure 6.29 MoA_7_1_5 Mortar and A_7_1_5 mastic master curves comparison. 
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Figure 6.30  MoA_8.5_1.2_5 Mortar and A_8.5_1.2_5 mastic master curves comparison. 

 

 

Figure 6.31 MoA_7.5_0.75_5 Mortar and A_7.5_0.75_5 mastic master curves comparison. 
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Figure 6.32 MoA_8_1_6 Mortar and A_8_1_6 mastic master curves comparison. 

 

Figure 6.33 MoA_SMA Mortar and A_SMA mastic master curves comparison. 

Figure 6.34 shows the mortar samples G* master curves comparison. At low 

frequencies (high temperatures) MoA_8_1_6, MoA_8.5_1.2_5 and MoA_SMA 

mortars have the highest values of complex modulus G*. However, it is necessary to 

distinguish the action of the individual components within each mortar. In the case of 

MoA_SMA, the presence of the highest proportion of limestone filler (28.66% by 
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mass) increases the cohesion between the fine aggregate and the bitumen, creating, at 

high temperatures, a matrix that is solid, homogeneous and resistant to torsion stresses. 

For the mortars containing both limestone filler and fine crumb rubber, the 

MoA_8_1_6 (50.82% by mass of fine aggregates, 19.67% by mass of limestone filler, 

28.3% by mass of rubber, 26.23% of bitumen) and MoA_8.5_1.2_5 (52.88% by mass 

of fine aggregates, 3.16% by mass of limestone filler, 3.85% by mass of rubber, 

27.24% of bitumen) have the same complex modulus and higher than those of the other 

studied mastics. However in the first case, the highest limestone filler percentage 

creates a strong cohesive bond with the fine aggregates fraction at high temperature; 

in the second case the 1% bitumen more and the 2% fine aggregates more, increasing 

the mortar stiffness at low frequencies in spite of 3.65% limestone filler reduction. 

MoA_7_1_5 and MoA_7.5_0.75_5 have the lower complex modulus. Both mastics 

have the highest percentage of fine aggregates (56% by mass), and the lowest bitumen 

percentage, 25 and 24% respectively. The lower specific surface of the fine aggregates 

and the low bitumen percentage affects the mortar cohesion, reducing its stiffness at 

high temperatures. At medium and high frequencies all the mortars containing both 

limestone filler and rubber tend to the same of complex modulus value. The 

MoA_SMA with only limestone filler showed the stiffer behavior, and consequently 

more fragile at low temperatures. The rubber powder therefore acts mainly at low 

temperatures reducing the stiffness of the mortar. As showed on Figure 6.35, all the 

studied mortars show a continuous trend of the phase angle, with a descending arm at 

high temperatures. At low frequencies mortars stress response is perfectly visco-elastic 

(δ=45°). At medium and high frequencies there are the main differences between the 

mortars containing both crumb rubber and limestone filler and MoA_SMA. For the 

mortar containing both limestone filler and crumb rubber the phase angle varying from 

a minimum value of 25° to a maximum value of 50°. For the mastic containing only 

limestone filler, the phase angle range is between a minimum of 25° and a maximum 

of 60°. From the analysis of the phase angle trend and Black diagram (Figures 6.35-

6.36) it is evident that the crumb rubber works mainly at low temperatures if compared 

to the limestone filler that increases the torsion stress response of mortar at high 

temperatures. 
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Figure 6.34 Mortar samples G*master curves comparison. 

 

Figure 6.35 Mortar samples δ master curves comparison. 
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Figure 6.36 Mortar Balck Diagram 
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6.10 Summary 

The main objective of this study is to evaluate the rheological properties of mastics 

and mortars containing crumb rubber and limestone filler, and find the optimum 

percentages of the components for the asphalt mixture increasing permanent 

deformations resistance. In particular: 

• the interaction between fine crumb rubber and  limestone filler, gives more 

stiffness to the mastics, reduces phase angles values and raises the rutting 

parameter; the fine crumb rubber used as filler reduces mastic thermo-

sensitivity; 

• on mastics with highest limestone filler amount G* values increases in all range 

frequencies. This effect continuous in mortar combination as well, at high 

temperatures, in correspondence of which the filler presence increases the 

permanent deformation resistance; 

• in terms of MSCR results, the mastics containing both limestone filler and 

crumb  rubber exhibits the lowest accumulated strains values at the end of load 

cycles. This results reflects the Jnr results on mastics containing rubber as part 

of active filler. The rubber presence increase the mastic recovery; 

• polymer modified bitumen plays a significant role especially when the polymer 

modification is enhanced by the base bitumen characteristics; the fine crumb 

rubber elastic behavior is exalted with the polymer modified bitumen; 

• the mortar master curve slope validates the mix design. The rheological 

behavior is depending on mastics matrix, the coarse aggregate increase the 

stiffening uniformly, the fine crumb rubber and limestone filler contribute to 

change the master curve slope; 

• the 3D DEM model has given more information to understand the internal 

mastic behavior, confirmed the shear stress response increasing for the mastic 

containing rubber. 
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CHAPTER 7 – CONCLUSIONS AND RECOMMENDATIONS 
 

The research presented in this thesis was based on three main topics: 

• Validation methods for the rheological characterization of cold bituminous 

mastics 

• Identifying 3D Discrete Elements Particles models that are able to reproduce  

rheological tests in the Linear Visco-Elastic range 

• Rheological study of bituminous mastics containing reclaimed filler from 

industrial wastes and by-products. 

7.1 Validation methods for the rheological characterization of cold bituminous 

mastics. 

It was proven that rheological tests with the DSR in the study of cold bituminous 

mastics provide consistent results and that the principles behind the linear analysis of 

hot bitumen is valid also for that type of material. In particular, the mastics tested 

within the linear viscoelastic range exhibited a simple thermo-rheological behavior, as 

derived from the study of complex modulus and phase angle master curves. The time-

temperature superposition principle (TTS) was applied. and results were represented 

by continuous curves in the Black Diagrams.  

The creep tests carried out in various test configurations were confirmed also for the 

mastics, to be useful for the assessment of the rutting phenomenon of asphalt 

pavements at high temperatures. Correlating the Jnr and the recovery percentage 

parameters allowed to study the mastics sensitivity to permanent deformations. The 

obtained results show sufficient reproducibility of RCR and MSCR tests on mastics. 

For these testing procedures it can be stated that the 3.2 kPa could be not sufficient to 

conduct a non-linear analysis in terms of deformations, in particular if the mastics 

exhibit high recovery rates.  

The dynamic tests conducted on mastics also permitted to better understand the role of 

mineral fillers in the mixtures, validating the multiscale approach through which it was 

possible to evaluate the interaction between bitumen and filler and consequently its 

effects on the asphalt mixtures stiffness In particular, based on the performed 

rheological analysis and the investigated volumetric proportions, it can be stated that, 
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in the cold mix design process, cement could be partly replaced with limestone filler, 

increasing the performance of the mixture related to the phenomenon of permanent 

deformations at high temperatures. 

7.2 Identifying 3D Discrete Elements Particles models that are able to reproduce  

rheological tests in the Linear Visco-Elastic range. 

3D Discrete Element Particles models to reproduce DSR Frequency Sweep Test on 

LVE range was developed. The mastic specimen was modeled through spherical 

particles for which radius, density, friction coefficient and temperature were defined. 

The contact particles parameters was defined through the Burger’s viscoelastic model, 

with a calibration procedure based on laboratory testing data. The DSR metal plates 

were schematized by means of two horizontal walls, for which a linear elastic stiffness 

model was also defined. The sinusoidal load was simulated imposing angular speed 

with a sinusoidal trend to the top of the wall. The obtained results in terms of contact 

forces and particles displacements were compared with laboratory data. There is very 

good correlation between model and laboratory results and it can be affirmed that the 

use of DEM method to model dynamic test on mastics is successful in predicting, both 

quantitatively and qualitatively, the mastics complex modulus and the phase angle. 

Moreover, the micro-scale analysis is suitable to capture the real time-dependent 

behavior of asphalt binder and to predict its performance through the study of its 

internal interaction. Contact forces and displacements obtained by the simulation tests 

have given useful information about the filler-bitumen interaction in terms of 

stiffening effects.  

7.3 Rheological study of bituminous mastics containing reclaimed filler from 

industrial wastes and by-products. 

7.3.1 Fillers from waste bleaching clays 

The effects on the rheological properties of bituminous mastics made with two waste 

bleaching clays, obtained from two different industrial processes, was here studied. 

Mastics with traditional limestone filler were made as reference to compare the 

rheological results. All the rheological test validated on cold mastic studies has been 

applied. From the analysis of mastics master curves it can be stated that the substitution 

of the limestone filler with the proposed bleaching clays fillers is significantly effective 

on altering their rheological behavior. In particular, the study at the mastic scale 
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confirmed that the digested bentonite increases the bitumen stiffness, while the spent 

bentonite filler softens the mastic by a considerable amount. The high specific surface 

area, and the high Rigden voids percentage, transmit to the digested filler good 

properties in terms of bitumen interaction. The RCR and MSCR tests results confirms 

that this filler increases the mastic resistance to permanent deformations. Furthermore, 

the residual oil in the spent bentonite filler is evidently interacting with the bituminous 

phase. This filler reduces the mastic stiffness in all the frequency range and the Jnr 

analysis confirms that the non recovered deformations are increasing in the mastic 

containing the spent bentonite.  

Positive aspects related to the possible use of these mastics in road bituminous 

pavements are referred to the fact that the mastic containing the oily filler does not 

reach the glassy modulus at high frequencies (low temperatures) and that the mastic 

obtained with the digested bentonite is stiffer than the mastic with traditional filler at 

high temperatures (low frequencies).  

The overall rheological analysis confirms that the fillers obtained as residual of Bio-

Gas production appears to have more positive effects on the mastic of an HMA and 

this is mainly due to the stiffening power of this digested bleaching clay; nevertheless 

some positive aspects of the use of filler from bleaching plants process  may be 

capitalized on the production of bituminous sealants or membranes were high 

percentages of fillers are used.  

7.3.3 Crumb Rubber Filler from ELTs 

The effects of fine crumb rubber from ELTs, used as active filler on SMA surface 

layers was investigated. The interaction between fine crumb rubber and limestone 

filler, provides the mastics with more stiffness, reduces the phase angles values and 

the MSCR rutting parameter. Also, the fine crumb rubber used as filler reduces the 

mastic thermo-sensitivity, emphasizing the polymer modification benefits within the 

bitumen.  

The multiscale analysis on bituminous mortars confirms that the mixtures rheological 

behavior depends on the mastics internal components. The fine rubber influenced the 

rheology increasing the elastic properties ,while the limestone fillers increased the 

mixture stiffness at high temperatures. The improvement of the characteristics of SMA 
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asphalt mixtures containing rubber modified by ELTs during production, installation 

and operation, required a careful study of fine rubber proportion with the mixtures.  

In terms of mix design it can be stated that the mixtures containing 8% of bitumen, 1% 

of fine crumb rubber and 6% of limestone filler on weight of aggregates could be 

suggested to combine the rubber elastic properties and the limestone filler stiffening 

power. In terms of mixture production the use of PmWB permits to use the fine rubber 

reducing the mixing temperatures (160°C temperatures mixing) and consequently the 

environmental externalities generated heating the rubber at temperatures higher than 

180°C. The here developed solution, subjected to experiments described in the 

experimental section, confirm the feasibility of mixing a fine rubber powder system 

together with a modified bitumen of high workability and aggregates. The process 

allows the elimination of the commonly used fibers and enables the production at 

reduced temperatures, with all the environmental benefits that this entails, especially 

in the coating phase.
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APPENDIX A 

 

Dynamic Shear Rheometer - Bohlin Gemini 200 

Dynamic Shear Rheometers – Bohlin Gemini 200  (DSRs), supplied at Nottingham 

Transportation Engineering Centre (NTEC) was used to measure the rheological 

characteristics of bituminous mastics obtained adding fine crumb rubber and limestone 

filler. The principles involving in dynamic shear rheometry testing and dynamic 

mechanical analysis have been reviewed in Chapter 3. In this investigation, a Bohlin 

Gemini 200 Dynamic Shear Rheometer having a torque range between 0.5 (µN·m) and 

200 (mN·m) was used for measuring the rheological parameters through Frequency 

Sweep Test. This DSR is a controlled stress and strain instrument, which either applies 

a stress to a specimen and thus measures a resultant displacement or applies a 

displacement to a specimen and thus measures a resultant stress. The principal 

component of this rheometer is schematically shown in Figure A.1. A constant motor 

in the rheometer works by a drag cup system. An angular position sensor detects the 

movement of the measuring system attached to the shaft. The software converts the 

applied torque to a shear stress when displaying data, and the reading from the position 

sensor is converted to a shear strain (Liao 2007). 

 

 

Figure 1.A Bohlin Gemini 200 device 



 

251 

 

A water bath temperature control system was used with the Bohlin Gemini 200 DSR. 

A  bituminous sample was submerged in the circulating water bath during testing. 

Small Strain Rheological Analysis between 0°C and 85°C less compared to Peltier and 

ETM (extended temperature module) temperature controlled system. The temperature 

controlled system is capable of maintaining a temperature to within 0.1°C.Three types 

of test geometry used for the DSR testing include 25-mm standard diameter parallel 

plate geometry, 8-mm diameter standard parallel geometry and 8-mm diameter thick 

shaft parallel plate geometry. It is essential to select spindle geometry (upper plate) for 

DSR testing on bituminous binders due to the effect of spindle compliance on 

rheological measurements when testing stiff binders. Anderson et al. (1994) suggested 

that 25-mm standard parallel plates should be used as the complex modulus ranges 

from 103 to 105 Pa, and 8-mm standard parallel plates should be used as the complex 

modulus ranges from 105 to 107 Pa (above the complex modulus of 107 Pa, torsion 

bar test is suggested to be used). The 8-mm thick shaft spindle is suggested to be used 

as the complex modulus is above 106 Pa (Bohlin DSR Manual). 
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Dynamic Shear Rheometer – Anton Paar MCR 302 – Anton Paar Smart Pave 102 

Figure 2.A shows the rotational Rheometer Physica MCR 302 Anton-Paar supplied to 

the DICAM laboratory - Section Roads, used for the test mastics validation methods 

described on chapter 4, for the rheological characterization of mastics containing waste 

bleaching clays and for the MSCR test on mastic containing both limestone filler and 

crumb rubber.  

   

Figure 2.A Anton-Paar MCR 302 

In Figure 3.A DSR- Anton Paar Smart Pave 102 is shown.  

Figure 3.A Anton Paar Smart Pave 102 

For both rheometers the measuring head are placed the electric motor, the bearing air 

and the optical encoder. All mechanical and electronic parts, such as the engine, the 

air bearings, the electronic control unit and the supporting structure, are incorporated 

in a single unit. Thanks to this configuration reduces the overall size and simplifies the 

instrument installation. The structure is extremely rigid, in order to optimize the 

mechanical and thermal stability. Together with the synchronous motor, the air bearing 
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used is very rigid and is equipped on the inside of a sensor able to monitor the normal 

stress. This system, specially developed, measuring the normal internal to the bearing 

efforts by identifying the normal movement of the same which is thus automatically 

mapped to 360°, eliminating the torque generated by turning unwanted effects at very 

low levels, greatly increasing accuracy and stability. The air bearing supports 

synchronous motor which has the task to enforce and control the torque on the motor 

shaft, characterized by a resolution of less than 0.002 µNm and a maximum applicable 

torque of 200 mNm. The motor is constituted by permanent magnets mounted on a 

small rotor capable of generating a constant magnetic field. The rotor surrounded by 

the stator comprising windings, synchronously rotates with respect to the generated 

magnetic field, ensuring a fast response and devoid of the system delays. It appears 

therefore possible to adjust the value of the torque in a simple and fast, being linearly 

related to the amount of current flowing through the stator. In contrast to induction 

motors, the magnetic field of the rotor in the synchronous motor does not change, since 

it does not present the problem of eddy currents that may generate heating and thus 

alter the characteristics of the engine. The linear response coupled to an advanced 

electronic control allow the system to operate in the rotation and deformation speed 

control. The optical encoder is used to measure the angular deflections; in combination 

with the Direct Strain Oscillation method (DSO), specially developed, they control the 

deformation oscillatory below 0.1 µrad. The Toolmaster TM system allows the 

recognition of the measurement systems and the fully automatic system configuration, 

as soon as these are ciollected. Each measuring system contains in its interior a chip 

on which are stored geometric coefficients and calibration, automatically transferred 

and managed by the software. The available allows a very accurate temperature control 

instrument, with minimal thermal gradients that can be monitored by means of suitable 

calibration of sensors due to the advanced Peltier system PTD 200. The temperature 

range is between -40° C and 200 °C. The system consists of a plate and a hood 

equipped with Peltier elements directly controlled by the rheometer. The combined 

control of the temperature from the top and from the bottom allows to minimize 

thermal gradients within the tested specimen. The hood can be raised to allow easy 

access to the sample. The Peltier cell is basically a heat pump solid state, by the 

appearance of a thin plate crossed by current; a face absorbs heat while the other makes 
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it. The direction in which the heat is transferred depends on the direction of the applied 

current. The principle of operation is simple: by passing a direct voltage through two 

conductors of different material, heat is absorbed from one side (side "cold"), and the 

other part is transferred ( "hot" side). The two conductors, of N type and P type, are 

connected by a copper slat. If you apply to the N-type conductor and a positive voltage 

to the conductor of the P type a negative voltage, the upper part of the blade will cool 

down, while the lower one will heat. By reversing the voltage of the thermal energy 

shift it will also be reversed. Due to the high thermal susceptibility to viscoelastic 

behavior of the materials, with decreasing test temperature (and the increase of the 

stress rate) greatly increases the stiffness of the specimen and can reach such values 

as to cause the occurrence of drawbacks related to the deformability of some of the 

measuring instrument components. One then speaks of machine compliance, ie the 

onset of measurement anomalies due to the fact that the stiffness of the material has 

exceeded that of the machine. When the temperature conditions are particularly severe 

must then check that this limit is not exceeded in order to avoid misinterpretation of 

test results. This anomaly is explained by comparing the torsional stiffness of the 

specimens (dependent on temperature and / or frequency) with that of the rheometer, 

assumed for simplicity independent. When operating at high temperatures (or low 

frequency), the measures are acceptable as the stiffness of the machine turns out to be 

much higher than that of the samples and therefore has no influence on them. When 

instead it operates at lower temperatures and / or higher frequencies, the deformability 

of the specimen is close to that of the system and the measures completely lose their 

meaning: this is because the deformation transducer begins to measure, together with 

their deformations of the sample also those of the machine, linked in particular to the 

torsional deformation of the shaft of transmission of loads. 

 


