
Alma Mater Studiorum – Università di Bologna

Dottorato di Ricerca in Automatica e Ricerca Operativa
Ciclo XVIII

Settore Concorsuale di afferenza: 01/A6 - RICERCA OPERATIVA

Settore Scientifico disciplinare: MAT/09 - RICERCA OPERATIVA

On the interplay of Mixed Integer Linear,
Mixed Integer Nonlinear and Constraint

Programming

Sven Wiese

Coordinatore Dottorato: Relatore:
Chiar.mo Prof. Daniele Vigo Chiar.mo Prof. Andrea Lodi

Esame finale anno 2016

Abstract

In this thesis we study selected topics in the field of Mixed Integer Programming

(MIP), in particular Mixed Integer Linear and Nonlinear Programming (MI(N)LP).

We set a focus on the influences of Constraint Programming (CP).

First, we analyze Mathematical Programming approaches to water network

optimization, a set of challenging optimization problems frequently modeled as non-

convex MINLPs. We give detailed descriptions of many variants and survey solution

approaches from the literature. We are particularly interested in MILP approx-

imations and present a respective computational study for water network design

problems. We analyze this approach by algorithmic considerations and highlight

the importance of certain convex substructures in these non-convex MINLPs. We

further derive valid inequalities for water network design problems exploiting these

substructures.

Then, we treat Mathematical Programming problems with indicator constraints,

recalling their most popular reformulation techniques in MIP, leading to either big-M

constraints or disjunctive programming techniques. The latter give rise to reformu-

lations in higher-dimensional spaces, and we review special cases from the literature

that allow to describe the projection on the original space of variables explicitly.

We theoretically extend the respective results in two directions and conduct com-

putational experiments. We then present an algorithm for MILPs with indicator

constraints that incorporates elements of CP into MIP techniques, including com-

putational results for the JobShopScheduling problem.

Finally, we introduce an extension of the class of MILPs so that linear expres-

sions are allowed to have non-contiguous domains. Inspired by CP, this permits to

model holes in the domains of variables as a special case. For such problems, we

extend the theory of split cuts and show two ways of separating them, namely as

intersection and lift-and-project cuts, and present computational results. We fur-

ther experiment with an exact algorithm for such problems, applied to the Traveling

Salesman Problem with multiple time windows.

i

Keywords

· Mixed Integer Linear Programming

· Mixed Integer Nonlinear Programming

· Constraint Programming

· Water network optimization

· Nonlinear network flows

· Piecewise linear approximations

· Indicator constraints

· big-M constraints

· Disjunctive Programming

· Job Shop Scheduling

· Cutting planes

· Split cuts

· Intersection cuts

· Lift-and-project cuts

· Traveling Salesman Problem with multiple time windows

iii

Acknowledgements

It was in late 2014 that I stumbled upon a video on YouTube, showing Steve Jobs,

the former CEO of Apple Inc., giving a speech at the 114th Stanford Commencement

ceremony [STF]. Part of that speech was a story entitled connecting the dots. It tells

how Jobs dropped out of college shortly after enrolling, but then stayed as a drop-in

and randomly attended classes that arose his curiosity. Calligraphy, for example,

was one of them. Only years after, he realized that his dropping out, that seemed

an unfortunate and desperate circumstance at the time, led to the fact that today’s

Apple’s personal computers (and possibly others) support beautiful typography in

the form of “multiple typefaces and proportionally spaced fonts”. It was an inspiring

speech, and for some reason, it was also a moment that made me inevitably think

of my time as one of Andrea Lodi’s PhD students at the University of Bologna.

I somehow remembered the feeling I had after so many research meetings during

which at some point, talking about one particular aspect of our work, we wondered

if and how there was an intimate connection to a supposedly different one that we

talked about the other day. And sometimes we managed to connect the dots. Not

everything is connected all the time, but I learned that it can be beneficial to at

least wonder whether it might be. In some sense I feel that I learned an important

life lesson here.

Andrea, if I were to put all my gratitude into a single sentence, I would probably

say: thank you for never being superficial, but trying to always get the full picture,

and for teaching me the value in that. Your persistent ambition to understand

Mathematical Programming more and more, and to open it to other areas of the

mathematical sciences constantly inspired me to write this thesis. I am sure that

sooner or later, I will be able to connect the dots and fully understand what writing

this thesis has done for me and means to me. Oh, and thank you for infecting me

with that affinity for electronic devices with an apple on them.

I would have never written this thesis if Prof. Aristide Mingozzi had not in-

troduced me to the beautiful world of Optimization and Operations Research, and

if Roberto Roberti and Enrico Bartolini had not taught me proper programming

during my stay in Cesena. I am very grateful for that. I thank the research group

in Bologna for having accepted me so warmly. Thanks to former and current fel-

low PhD students Eduardo Àlvarez-Miranda, Tiziano Parriani, Paolo Tubertini,

Claudio Gambella, Dimitri Thomopulos, Alberto Santini and Maxence Delorme for

discussions, lunches, aperitivi and dinners, and occasional help with bureaucracy in

Italian. Thank you Jonas Schweiger, your presence here has been an enrichment, in

many ways.

v

I feel indebited to Pierre Bonami and Andrea Tramontani for giving me the

possibility to work with them, for encouraging and advising me. Without them, I

woudn’t be able to implement Mathematical Programming algorithms into a com-

puter. I also thank Claudia D’Ambrosio and Cristiana Bragalli for all the time they

spent on discussions with me.

Thanks to the research group of Prof. Michael Jünger in Cologne for making

my stay there so pleasant and memorable. The same goes for Dennis Michaels and

my visit in Dortmund. Thanks to Jesco Humpola, Ambros Gleixner, Ralf Lenz

and Robert Schwarz for inviting me to and taking care of me at the Zuse-Intitut in

Berlin. Thanks to Felipe Serrano for being so curious when it comes to mathematics.

Passing time at ZIB has always been very inspiring to me.

I have to thank Stefan Vigerske and again Ambros Gleixner for giving technical

advice regarding SCIP, Wei Huang, Lars Schewe and Antonio Morsi for their helpful

comments in the context of water network operation, Slim Belhaiza and Marco

Lübbecke for sharing VRPMTW and RCPSP instances, Fabio Furini for pointing

my attention to the Lazy Bureaucrat Problem, and Marc Pfetsch for his eminent

interest in variables with non-contiguous domains and for sharing an extensively

long list of ideas in that regard.

Bologna, March 11, 2016

vi

To Giulia and Fefé.

vii

“God made the integers, all else is the work of man.”

Leopold Kronecker

ix

Contents

Abstract i

Acknowledgements v

Introduction 1

1 Concepts 3

1.1 Mixed Integer Linear Programming 3

1.1.1 Linear Programming . 4

1.1.2 Branch & bound . 8

1.1.3 Cutting planes . 11

1.2 Mixed Integer Nonlinear Programming 13

1.2.1 Nonlinear Programming . 14

1.2.2 Nonlinear branch & bound . 16

1.2.3 Outer approximation . 17

1.2.4 Spatial branch & bound . 19

1.2.5 Piecewise linearizations . 20

1.3 Constraint Programming . 22

1.4 Disjunctive Programming . 24

1.5 Examples of Mixed Integer Programs 26

1.5.1 TSP with (multiple) time windows 26

1.5.2 Scheduling problems . 28

1.5.3 Knapsack problems . 32

1.5.4 Supervised classification . 33

xi

2 MILP vs. MINLP insights in water network optimization 35

2.1 Modeling water networks . 38

2.1.1 Flow & pressure . 38

2.1.2 Pipes . 40

2.1.3 Pumps . 43

2.1.4 Valves . 46

2.1.5 Tanks . 46

2.2 Convex substructures . 47

2.3 Solution approaches . 51

2.3.1 Design in the literature . 51

2.3.2 Operation in the literature . 55

2.4 Piecewise linearizations of the potential-flow coupling equation 58

2.4.1 MILP- vs. NLP-feasibility . 59

2.4.2 The role of pumps . 61

2.4.3 Computational experiments 62

2.5 Unified modeling of design and operation 64

2.6 Nonlinear valid inequalities for water network design problems 66

2.6.1 The nice algebra of nonlinear network flows 72

2.7 Outlook . 75

3 Mixed Integer Programming with indicator constraints 77

3.1 BigM constraints . 80

3.2 Disjunctive Programming for indicator constraints 81

3.3 Single disjunctions . 83

3.3.1 Constraint vs. Nucleus . 83

3.3.2 Single indicator constraint . 84

3.3.3 Linear constraints . 86

3.4 Pairs of related disjunctions . 88

3.4.1 Complementary indicator constrains 88

3.4.2 Almost complementary indicator constraints 94

xii

3.5 Computation . 99

3.5.1 Single indicator constraints: Supervised classification 100

3.5.2 Complementary indicator constrains: Job Shop Scheduling . . 102

3.5.3 Almost complementary indicator constraints: TSPTW 103

3.6 Bound tightening . 104

3.6.1 Locally implied bound cuts 104

3.6.2 A tree-of-trees approach for MILP with indicator constraints . 107

3.7 Outlook . 117

4 MILPs with non-contiguous split domains 119

4.1 Real-valued split disjunctions . 122

4.1.1 Certifying split validity by primal information 124

4.1.2 Certifying split validity by dual information 128

4.2 Real-valued-split cuts . 131

4.2.1 Intersection cuts from real-valued split disjunctions 132

4.2.2 Lift-and-project cuts from real-valued split disjunctions 134

4.2.3 Strengthening intersection cuts 138

4.2.4 Computation . 142

4.3 Exactly solving MILPs with non-contiguous split domains 150

4.3.1 TSP with multiple time windows 152

4.4 Outlook . 154

Appendix 155

List of Figures . 155

List of Algorithms . 156

List of Tables / Tables . 156

Bibliography 182

xiii

Introduction

“You have different ideas of what a MIP is”, concluded the professor, as two of his

academic children did not reach a common denominator in a discussion during the

workshop1. MIP - Mixed Integer Programming. Should be pretty clear, right? Well,

it is not.

The acronym MIP and its usage currently undergo a certain change. In the

Mixed Integer Programming community, things like “MIP is not MIP anymore”2

can be heard here and there, and underline this development. Some time ago, say-

ing “MIP” actually meant, without much doubt, Mixed Integer Linear Programming

(MILP). Nowadays, notions like Mixed Integer Conic, Semidefinite or Convex Pro-

gramming are receiving more and more attention, thus making just “MIP” somewhat

ambiguous. Another, very popular extension has become Mixed Integer Nonlinear

Programming (MINLP). Some of these programming paradigms are extensions of

others, in the sense that the problem classes to which they can be applied exhibit in-

clusion relations among each other. For example, MINLP is an extension of MILP.

Nevertheless, because a programming paradigm is characterized not only by the

modeling tools it allows for, but also by the algorithmic frameworks it applies in

practice, it does make sense to keep a strict distinction. MILP and especially al-

gorithms for solving MILPs have been studied and developed over decades, while

MINLP can be seen as a more recent phenomenon. Commercial MILP codes have

been around for years, but reliable MINLP codes are relatively fresh. The latter

being an extension of the former, it is natural to attempt to extend also the algo-

rithms used to tackle MILPs. Although, or maybe just because this works only up

to a certain point, the two paradigms are intimately connected and influence each

other, in both directions, and this interplay is one of the subjects of this thesis.

Another paradigm in mathematical optimization is Constraint Programming

(CP), that in some sense has become a competitor of MILP, especially for solving

combinatorial optimization problems. Also for CP, commercial codes are nowadays

available. There have been efforts to explore the algorithmic synergies between CP

1Meant is the 20th Combinatorial Optimization Workshop, held in Aussois, France in January
2016.

2Jeffrey T. Linderoth at the 2015 Mixed Integer Programming workshop, held at the University
of Chicago

1

and MIP, and this is another subject of our work.

We study roughly three topics that live inside the world of MIP, divided into

three chapters. The aforementioned interactions of MILP, MINLP and CP are the

oxygen that nurtures our analysis in many cases, or at least its initial motivation. In

the first chapter we introduce some basics of MILP, MINLP and CP that we believe

to be useful for the exposition of the main Chapters 2 - 4. Figure 1.0 schematically

represents which interactions are intended to be treated, to what degree and in

which chapters and sections.

MILP

MILNP

CP

Chapter 2

Section 3.6.1

Section
3.6

C
hapter

4 Se
ct

io
n

3.
6.

1
C
hapter

3
C
ha

pt
er

3

Figure 1.0: Interactions of MILP, MINLP and CP

Parts of this thesis have been published as articles in scientific journals, in particular

the main parts of

• Chapter 2 in ‘Claudia D’Ambrosio, Andrea Lodi, Sven Wiese, and Cristiana

Bragalli. Mathematical programming techniques in water network optimiza-

tion. European Journal of Operational Research, 243(3):774–788, 2015’,

• and of Chapter 3 in ‘Pierre Bonami, Andrea Lodi, Andrea Tramontani, and

Sven Wiese. On mathematical programming with indicator constraints. Math-

ematical Programming, 115(1):191–223, 2015’.

We hope that our findings will be considered an original contribution to the under-

standing of Mixed Integer Programming.

2

1 Concepts

In this first chapter we try to complete the difficult, if not impossible task of pro-

viding an overview of the main concepts, that we build our work on, in a concise

manner. We keep a generally low level of detail, but will of course be more specific

in selective parts that serve the ease of exposition in successive chapters. We will

point the reader’s attention to more advanced material wherever possible, and stress

that none of the results and definitions given in this chapter are original. If their

origin is not indicated, they can be found in standard text books.

We consider optimization problems (c,F), given by a feasible region F and a

(for our purposes real-valued) objective function c defined on F . If we deal with a

minimization problem, we seek an x ∈ F such that

c(x) ≤ c(y) ∀ y ∈ F .

Maximization problems are treated in an analogue fashion. For any F̃ ⊆ F , we

call (c, F̃) a subproblem of (c,F). A special role often play convex optimization

problems, given by the minimization of convex functions over convex feasible regions.

Optimization problems that cannot be cast by this description are thus non-convex.

We will encounter various problems of both types in this text.

We mostly use standard notation that is self-explanatory, or otherwise introduce

more involved concepts whenever they are needed. The only recurring notation that

we use throughout the whole text is [n] := {1, . . . , n} for any positive integer n.

Also, in Chapter 3, bold letters like u will stand for constant vectors in Rn, and (u)i
for their i-th component.

1.1 Mixed Integer Linear Programming

MILP is the name for the mathematical problem of minimizing a linear function over

a subset of Rn, that can be described by using only linear (in-)equalities and requir-

ing a subset of the variables to take only integer values. MILP evolved from Linear

Programming (LP), cf. Section 1.1.1, in the mid-sixties [Bix12, Coo12]. Over the

years, MILP has become a technology and reliable and robust commercial codes for

solving MILPs are available. The most famous ones are probably the MILP versions

3

of the optimization codes IBM ILOG CPLEX [CPX], Gurobi Optimizer [GUR] and

FICO Xpress [XPR]. Also non-commercial codes like Cbc from COIN-OR [COIN]

are available. It is safe to say that there is competition going on in the industry of

MILP solvers, and their performance is steadily tested on the electronically available

MIPLIB, a library of test instances, updated several times since 1992. The current

version is MIPLIB 2010 [MLib, KAA+11]. This collection tries to cover the variety

of applications that can be modeled by MILP, that is fairly vast [Dan60]. In this

text, we consider an MILP of the general form

min cTx (1.1)

s.t. Ax = b (1.2)

x ∈ Rn−p
+ × Zp+, (1.3)

where A ∈ Rm×n and b ∈ Rm. In this form, we thus have n variables, corresponding

to the columns of the matrix A, and m equality constraints, aix = bi, corresponding

to its row vectors ai. The feasible region is completed by the fact that the variables

have to be non-negative, and that the last p of them have to take integral values.

A MILP is thus a non-convex optimization problem. In the spacial case of a purely

Integer Linear Program (ILP), where p = n, any feasible solution is thus a completely

integral vector. However, also when p < n, we will call a solution to (1.1) - (1.3),

i.e., a vector whose last p components only are integer values, an integral solution.

There is a lot of flexibility in obtaining an MILP formulation for a specific

problem. That is, there are degrees of freedom on the modeling side, and different

formulations can lead to more, or to less success when attempting to apply an MILP

solver [Vie15b]. This phenomenon, generalized to convex MINLPs, cf. Section 1.2,

will be the initial theme of Chapter 3 and is, on a somewhat large scale, due to

the general way in which the current generation of MILP solvers proceed in solving

such a problem. At the same time, also on this computational side there is, on a

smaller scale, much flexibility in using the arsenal of techniques that can be included

as ingredients into a solver. Many different components like presolving techniques,

branching schemes, cutting planes or primal heuristics interact, see, e,g , [LL11b]

and references therein. We will present the ones with most importance to the topics

of the later chapters in the following sections. A very complete handbook on the

interior of an MILP solver can be seen in [Ach09].

1.1.1 Linear Programming

A key to understanding the general way in which an MILP solver tackles a problem

like (1.1) - (1.3) is the study of a problem class that is contained in MILP itself,

4

namely, LP. One general form of an LP can be introduced by considering again (1.1)

- (1.3), but dropping the requirement that some variables have to be integral. This

is precisely how to obtain an LP in the so-called standard form,

min cTx (1.4)

s.t. Ax = b (1.5)

x ∈ Rn
+. (1.6)

There are other general forms of LPs, for example the canonical one, including

inequality constraints instead of equalities, aix Q bi. It is also possible to have

so-called free variables, that are unconstrained in sign, in an LP. However, different

forms can be transformed into each other by the use of slack variables and the

(dis-)aggregation of variables. We will analyze an LP of such a different form further

down. In the same way, also an MILP can be introduced in slightly different, but

equivalent general forms. Keeping that in mind, we can assume that upper bounds

on variables, if present, are contained in the matrix A in (1.1) - (1.3) or (1.4) - (1.6).

In this way, the notation (1.1) - (1.3) is flexible enough to include binary variables.

The point of view that allows inequality constraints in the feasible region of (1.1) -

(1.3) will become important in Section 1.1.3.

The hour of birth of LP as a programming paradigm is often claimed to be the

year 1947, when George B. Dantzig introduced the simplex algorithm [Bix12]. This

algorithm is based on the fact that the feasible region of (1.4) - (1.6) is a polyhedral

subset of a finite-dimensional space. Hence, differently from an MILP, an LP is a

convex optimization problem. Furthermore, this polyhedral set can be characterized

by a finite number of vertices and extreme rays, and the optimal objective value -

assuming that it is bounded - can be shown to be attained in at least one of these

vertices. It is therefore sufficient to concentrate on this finite set of points in order to

find an optimal solution to (1.4) - (1.6). In standard textbooks, this geometric point

of view usually goes hand in hand with algebraic approaches to the simplex method.

Therefore - assuming that A has full row rank - one chooses m linearly independent

columns of A, whose indices are collected in the set B ⊆ [n], thus defining one of

finitely many so-called bases. After a possible reordering of the columns, and setting

N = [n] \ B, one can rewrite (1.5) as ABxB + ANxN = b, and the multiplication

with A−1
B leads to the so-called simplex tableau, a reformulation of (1.5) - (1.6),

xi = x̂i +
∑
j∈N

rijxj i ∈ B (1.7)

xi ≥ 0 i ∈ [n]. (1.8)

5

Formulas for x̂i and rij can be recovered by linear algebraic transformations. The

point x̂, augmented by |N | zeros, is called the basic solution corresponding to the

basis B, in which the variables xi are partitioned into basic, i ∈ B, and non-basic

ones, i ∈ N . If x̂ ≥ 0, it is a basic feasible solution, and one can show that

such solutions exhibit a one-to-one correspondence to the vertices of the feasible

region of (1.4) - (1.6). The simplex tableau is fundamental for deciding whether

a given basis leads to an optimal solution, and if not, how to construct a new

basic feasible solution with strictly lower objective value. Most LP codes (that

are building blocks of MILP codes, as we will see in the next section,) give the

possibility of recovering the simplex tableau whenever an LP has been solved by the

simplex method, and this will play an important role in Section 4.2.1. For profound

textbooks of the theories of Linear Programming and polyhedral sets, we refer the

reader to [LY84, DT06a, DT06b, Sch98]. We point out that although the simplex

algorithm is complexity-wise not a polynomial algorithm, it is highly efficient in

practice, and this fact has vastly contributed to the advances made in the design of

algorithms for MILP.

We now spend some time on introducing an important theoretical concept in

the context of LP, that has, in turn, also significant impact on the practical imple-

mentation of the simplex algorithm. Namely, we will study the concept of duality.

This notion led, among other things, to the introduction of the dual simplex algo-

rithm, that is outside the scope of this text though. Therefore, consider an LP in

the form

max cTx (1.9)

s.t. A1x = b1 (1.10)

A2x ≤ b2 (1.11)

x ∈ Rn
+, (1.12)

with A1 ∈ Rm1×n and A2 ∈ Rm2×n. (1.9) - (1.12) could, as sketched before, also be

transformed into standard form. To every LP, in the context of duality called the

primal problem, is associated its so-called dual LP, that can be constructed following

concise rules. Roughly speaking, to every constraint in the primal LP corresponds

a variable in the dual, and whether such a variable is non-negative or free depends

on whether the constraint is an inequality or equality constraint1. Following these

rules, the dual of (1.9) - (1.12) can be shown to be

min bT1 λ+ bT2 µ (1.13)

1This sentence can be repeated after changing the roles of primal and dual.

6

s.t. AT1 λ+ AT2 µ ≥ c (1.14)

λ ∈ Rm1 (1.15)

µ ∈ Rm2
+ . (1.16)

The notion of duality also gives rise to explicit conditions for a feasible solution of

the primal LP, or equivalently, for a pair of primal and dual solutions, to be optimal.

These conditions are often referred to as complementary slackness, and for the above

pair of primal, (1.9) - (1.12), and dual LP, (1.13) - (1.16), they can be written as

(ai2x− bi2) · µi = 0 ∀ i = 1, . . . ,m2. (1.17)

We will see that these optimality conditions in LP can be extended to Nonlinear

Programming in Section 1.2.1. Furthermore, the so-called strong duality theorem of

LP states that the optimal objective values of a primal-dual pair like (1.9) - (1.12)

and (1.13) - (1.16) coincide. We will need the concept of duality in the context of

certain LPs in Section 4.2.2.

After having sketched how an LP can be solved algorithmically and having

discussed the notion of duality, we turn to the relation between an MILP as in

(1.1) - (1.3) and the LP (1.4) - (1.6), obtained by dropping the partial integrality

requirement on the variables. This relation can be seen in the light of a relaxation,

that we now define formally as is, e.g., [Geo71].

Definition 1.1. An optimization problem (ĉ, F̂) is a relaxation of (c,F) if and only

if F ⊆ F̂ and ĉ(y) ≤ c(y) ∀ y ∈ F .

In fact, the LP (1.4) - (1.6) is a relaxation of the MILP (1.1) - (1.3), and it is

commonly and inevitably called its LP-relaxation, sometimes also its continuous

relaxation. Every solution to the LP-relaxation of an MILP is also called - in contrast

to integral solutions - a fractional solution. The notion of a relaxation will be very

useful in the context of branch & bound, treated in the next section. If we denote

the optimal objective values of (c,F) (the MILP) and (ĉ, F̂) (the LP) by z and ẑ,

respectively, we have that ẑ ≤ z. That is, ẑ is a lower bound on z, also called a

dual bound2. We will see that a driving theme in Mixed Integer Programming is the

search for dual bounds that are close to z. These are often called tight, or simply

good dual bounds. The following definition provides a way to measure how close a

problem is to one of its relaxations.

2The name dual bound has its origin, as can be guessed, in LP duality; one can show that the
dual objective value of any dual feasible solution is a lower bound of the objective value of any
primal feasible solution.

7

Definition 1.2. Let (ĉ, F̂) be a relaxation of (c,F), and denote their optimal ob-

jective values by ẑ and z, respectively. The dual gap between (ĉ, F̂) and (c,F) is

defined as δ := (z − ẑ)/z.

The dual gap is only one of many possible measures of the aforementioned distance.

It is, however, a very meaningful one with regard to the way in which MILPs are

usually solved, as will become clear in the next section.

1.1.2 Branch & bound

Branch & bound is a generic framework for solving optimization problems (c,F) in

which every subset of F can be further partitioned into mutually exclusive subsets -

the branching part in branch & bound - in such a way that the arising subproblems

allow for relaxations with easily computable dual bounds. Discrete optimization

problems almost naturally satisfy the first requirement. For an MILP, such par-

titions are obtained by implicitly decomposing the feasible region into all possible

assignments of values to the integer constrained variables. Enumeration is often

used to describe this process. Every subproblem is again an MILP, and as such

has an LP-relaxation, that is (in practice and in comparison to the initial MILP)

easily solvable. In many cases, including that of MILPs, the way of decomposing

an initial problem into subproblems can be implemented in a way that gives rise to

a data structure that is a tree: every newly created subproblem can be seen as a

child node of the node whose feasible region has just been partitioned. The process

of finding an optimal solution in this way is therefore also called a tree-search3.

Of fundamental importance during the enumeration process are dual bounds of the

subproblems and an upper bound UB on the optimal objective value of the original

problem, also called a primal bound: whenever the dual bound of a subproblem

exceeds UB, the optimal solution cannot be contained in the subtree originating at

this node, and the latter can be discarded. This is the bounding part in branch &

bound. It highlights the importance of good dual and primal bounds and is the main

contributor to the success of branch & bound, because it makes the enumeration in

some sense intelligent.

We give the outline of a branch-and-bound procedure for an MILP like (1.1)

- (1.3) in Algorithm 1.1. As sketched before, subproblems correspond to nodes in

the tree, and these are explored one after another during the search process. If a

node has not been explored yet, it is also called open, and we denote the set of open

nodes by T . Because we always solve the LP-relaxation of a subproblem, the nodes

are conventionally already memorized as just LPs. The branching step in Lines 10

3In virtually all MILP codes, the feasible region of every subproblem is partitioned into at most
two subsets, and the tree is actually a heap.

8

Algorithm 1.1: MILP branch & bound

1 let the root node ρ be the LP-relaxation of (1.1) - (1.3);
2 set T = {ρ} and UB =∞;
3 while T 6= ∅ do
4 choose η ∈ T , set T = T \ {η};
5 solve η and denote by x̂ and ẑ its optimal solution and objective value;
6 if ẑ < UB then
7 if x̂ integral then
8 update UB = ẑ;

9 else
10 choose an integer-constrained xi with fractional value x̂i;
11 create nodes η− and η+ by adding the constraints xi ≤ bx̂ic and

xi ≥ dx̂ie, respectively, to η;
12 set T = T ∪ {η−, η+};
13 end

14 end

15 end

and 11 partitions the feasible region of a node by simply dividing it into those x

that satisfy xi ≤ bx̂ic, and those that satisfy xi ≥ dx̂ie. The primal bound UB is

the objective value of the best, and to (1.1) - (1.3) feasible, solution encountered so

far. Convergence of Algorithm 1.1 can be assured if, for example, the feasible region

of an MILP is a compact set. Figure 1.1 schematically represents the enumeration

of an MILP in a search tree. Open nodes are depicted in blue, and nodes in which

a feasible solution has been found are marked with an asterisk.

There are significant degrees of freedom in several steps of Algorithm 1.1. For

example, with respect to which criteria do we choose a node η in Line 4? And how

do we choose a fractional variable in the branching step? Answers to these highly

non-trivial questions lead to some of the aforementioned ingredients included in an

MILP solver and can significantly influence its performance. The bounding step

happens precisely in Line 6. Only if the optimal LP objective value ẑ is lower than

the current primal bound UB (and, of course, if the LP is feasible), the remaining

steps are executed. New nodes, that enlarge the list of LP problems to be solved and

thus represent computational workload, are only potentially created if the condition

in Line 6 is true. It is therefore desirable to be false as often as possible. Then, η will

not give rise to the creation of child nodes, and is said to be pruned or fathomed. The

diamond nodes in Figure 1.1 symbolize nodes that have been pruned. Apart from

just establishing a complete enumeration of the feasible solutions, the branching

step in Line 11 also serves this purpose: by adding one of the constraints xi ≤ bx̂ic
OR xi ≥ dx̂ie when creating a new child node, its feasible region is reduced with

9

∗

Figure 1.1: Schematic representation of a search tree in branch & bound

respect to the one of the parent node. Hence, by going downwards in the search tree,

the values of ẑ in Line 6 can only increase and therefore have higher probabilities of

leading to a pruning.

At any point during the tree-search, a lower bound on the optimal objective

value of an open node is given by the optimal objective value of its already solved

parent node. The current dual bound on the optimal objective value of the MILP

is then defined as the minimum of these lower bounds of all open nodes in the

tree. All in all, the importance of good, that is, possibly tight dual bounds on the

optimal objective value of the MILP is highlighted. If a tree-search is initiated with

an already good dual bound, it takes less depth in the tree to be able to perform

some pruning. For the same reason, an important component of an MILP solver are

primal heuristics, meaning any attempt to decrease the primal bound UB during

the search process, possibly already in Line 2 of Algorithm 1.1. Another component

that is again motivated by the need for good dual bounds is given by cutting planes,

that we will treat in the next section.

If in Line 7, we end up with an LP solution that is feasible to the underlying

MILP, we can update UB. Also this type of nodes does not lead to the creation of

new nodes, cf. Figure 1.1, because the solution of their relaxation has automatically

solved the actual associated subproblem. A special case of a node η for which the

condition tested in Line 7 will always be true, is the one in which all integer variables

10

Algorithm 1.2: MILP cutting plane

1 do
2 solve the LP-relaxation (1.1) - (1.3) to the point x̂;
3 identify one or more cutting planes in L that are violated by x̂;
4 if some were found, add them to the LP-relaxation;

5 while cutting planes have been added ;

have been completely fixed to integer values by previous branching decisions. Binary

variables for example become fixed immediately after they have been branched on

once. In any case, the subproblems associated to such nodes η deserve a special

name.

Definition 1.3. The LP that is obtained from (1.1) - (1.3) by additionally imposing

the constraint that the last p components of x be equal to some x̃(p) ∈ Zp+ is called a

leaf problem of (1.1) - (1.3).

Leaf problems can also be defined for MINLPs (cf. Section 1.2) and in that context

will become important in Chapter 2.

1.1.3 Cutting planes

Historically, the notion of cutting planes, or just cuts, arose from an approach of

solving (mostly pure) integer programs that is different from the concept of branch

& bound. A cutting plane or valid linear inequality of an MILP, αTx ≥ β, is a

linear inequality that is satisfied by all feasible solutions. If we assume that a family

of such valid linear inequalities L is given, a generic cutting-plane algorithm for an

MILP like (1.1) - (1.3) is outlined in Algorithm 5. The name cutting plane becomes

clear from therein: if a valid inequality, that is violated by the current fractional

solution, is added to the LP-relaxation, then this fractional solution is separated, or

cut off from its feasible region. The identification of violated cutting planes in Line

3 is also called the separation problem. Algorithm 5 can be seen to terminate in a

finite number of steps if, for example, L is finite. However, whether it terminates

with a feasible or even optimal solution to (1.1) - (1.3) or not depends on the given

family L. A sufficient condition to guarantee the former is given when L contains

all facet-defining inequalities of the polyhedral set that defines the convex hull of

the feasible region of (1.1) - (1.3). To find such a family L is usually pursued in the

discipline of polyhedral combinatorics. It is a strategy that has mostly been applied

in situations where problem-specific structure of the matrix A and the vector b are

given. The motivation behind this approach is that, ultimately, an MILP could be

solved to optimality by solving just an LP.

11

However, this holy grale of integer programming, i.e., finding such an L, has so

far not turned out practical for general MILPs. In contrast to facet-defining inequal-

ities that, by definition, are strong but might be hard to identify, general-purpose

MILP cutting planes have therefore been studied extensively, see, e.g., [Cor08] for

a nice tutorial. Such cutting planes do not rely on specific structure of the matrix

A, but in some sense only on the integrality requirements of the integer-constrained

variables. They are usually weaker than facet-defining ones, but are in turn easy to

generate. As an example, we introduce a special version of Gomory’s Mixed Integer

(GMI) cuts [Gom63], that relies on the optimal simplex tableau of the LP-relaxation

of an MILP.

Definition 1.4. Let the optimal simplex tableau of the LP-relaxation of (1.1) - (1.3)

be given as in (1.7) - (1.8), and let J := N ∩ {n− p+ 1, . . . , n} denote the integer-

constrained non-basic variables. If the i-th basic variable is integer-constrained and

x̂i is fractional, then the corresponding GMI cut is given by the linear inequality

∑
j∈J

min

{drije − rij
x̂i − bx̂ic

,
rij − brijc
dx̂ie − xi

}
xj

+
∑
j∈N\J

max

{ −rij
xi − bx̂ic

,
rij

dx̂ie − xi

}
xj ≥ 1.

Even in cases where Algorithm 5 does not terminate with an optimal solution to

(1.1) - (1.3), it does have a very important effect, the same that any addition of

valid inequalities should have. By adding cutting planes to the LP-relaxation of an

MILP we reduce its feasible region and thus increase the dual bound. Together with

the importance of good dual bounds inside branch & bound, this has led to the fact

that, at some point, the concepts of branch & bound and cutting planes have been

integrated into frameworks that are commonly called branch-and-cut algorithms.

The hour of birth of branch & cut is sometimes seen in the seminal work of Padberg

and Rinaldi on the Traveling Salesman Problem [PR91]. The basic idea of a branch

& cut algorithm for a general MILP is, after all that has been said up to now, easy

to understand. In line 5 of Algorithm 1.1, if after the LP-relaxation of the node

η has been solved, some violated cutting planes are separated, then the LP can

be resolved in order to increase the value ẑ. The separation of cutting planes at

a node can as well be iterated and several rounds of separation and LP resolves

can be performed. Cutting planes are nowadays an important ingredient of any

MILP code, and different strategies regarding the separation of different families of

general-purpose MILP cutting planes influence their performance. A special role

in this regard often plays the root node in Algorithm 1.1. Usually, more effort on

the separation of cutting planes is spent at this designated node. Nevertheless, also

12

at the remaining nodes cutting planes can be separated. In this case we further

encounter two conceptually different types of cutting planes, namely globally valid

and locally valid ones. A cutting plane is globally valid if it is guaranteed to be a valid

linear inequality for the original MILP, and thus for the subproblems corresponding

to all nodes in the tree. Instead, a locally valid cutting plane may be valid for

the nodes in the subtree originating at the node η at which it is generated only.

From a practical point of view, the discrepancy between global and local cuts is

non-negligible, and we will briefly come back to this issue in Section 3.6.1.

In any case, the most common empirical quality measure of cutting planes

is the amount by which they reduce the dual gap after they are added to the LP-

relaxation of an MILP. We will use this measure in order to analyze the performance

of an extension of a family of general-purpose MILP cutting planes in Section 4.2.4.

In Section 4.2.1 we compare two cutting planes theoretically, and therefore the

definition of dominance will be useful.

Definition 1.5. In the setting of (1.1) - (1.3), we say that the valid inequality

αTx ≥ β dominates the valid inequality α̃Tx ≥ β̃, if

{x ∈ P | αTx ≥ β} ⊆ {x ∈ P | α̃Tx ≥ β̃},

where P = {x ∈ Rn | Ax = b, x ≥ 0} denotes the feasible region of the LP-relaxation

of (1.1) - (1.3).

1.2 Mixed Integer Nonlinear Programming

Life is not always a straight line, and neither are the problems we encounter in

real-world applications always describable by linear functions. The modeling of

real-world phenomena by nonlinear optimization models has experienced growing

popularity over the last decades. As in the linear case, a collection of test instances

has been established by now in the MINLPLib [MNLib]. The straightforward exten-

sion of an MILP to an MINLP is achieved by allowing that the functions involved

in the constraints aix Q bi (or the objective function) are nonlinear in the variables

x. The general form of an MINLP that we consider in this text is

min f(x) (1.18)

s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m1 (1.19)

hj(x) = 0 ∀ j = 1, . . . ,m2 (1.20)

x ∈ Rn−p × Zp. (1.21)

13

In the context of MINLP, the transformation from inequality constraints to equality

constraints cannot be undertaken without any care as in the case of MILP and LP.

While the continuous relaxation of an MILP, its LP-relaxation, is always a convex

optimization problem, this is not true for the continuous relaxation of (1.18) - (1.21),

obtained again by dropping the partial integrality requirements. In fact, as soon as

one function hj(·) is non-linear, the set of points x that satisfy hj(x) = 0 is non-

convex. Also, if a function gi(·) is a non-convex function, the constraint gi(x) ≤ 0

describes a not necessarily convex set. Thus, (1.18) - (1.21) can be seen as the general

form of a non-convex MINLP. A convex MINLP instead is usually written as just

(1.18), (1.19) and (1.21), together with the specification that the functions f(·) and

gi(·) are convex. The name convex MINLP is of course not hundred percent precise,

since the integrality requirements make an MINLP always a non-convex optimization

problem. Instead. it refers to the fact that the continuous relaxation of a convex

MINLP is convex. Several subclasses of MINLP problems have their own acronym.

For example, Mixed Integer Quadratic Programming (MIQP) is identical to MILP,

except that it allows for a quadratic objective function. Allowing the constraints to

be quadratic as well leads to Mixed Integer Quadratically Constrained Quadratic

Programming (MIQCQP), and further extensions are possible.

MINLP as a programming paradigm has not been studied for as long as MILP

and respective codes are less robust. Yet, a variety of them, commercial and open-

source ones, are nowadays available. They are generally divided into solvers for

convex MINLPs on the one hand, and non-convex ones on the other. In the first

category fall, for example, BONMIN [BBC+08] or FilMINT [ALL10]. In the second

category we have BARON [Sah14, TS05], COUENNE [BLL+09], SCIP [BHV12] or

ANTIGONE [MF14]. In the special case of the involved non-linear functions being

(convex-)quadratic, also the software packages mostly famous for their MILP codes,

CPLEX, Gurobi and Xpress, now include MINLP codes.

In the following sections, after having introduced Nonlinear Programming, we

will sketch some of the algorithms implemented in the above MINLP codes. We

will see their application to a class of practical problems in Section 2.3. MILP often

plays a role as a building block. Also MINLP algorithms are driven by the need for

good dual bounds, the general theme of Mixed Integer Programming. The reader is

referred to [BKL+13] and [LL11a] for a comprehensive survey and further collections

on MINLP.

1.2.1 Nonlinear Programming

Just like the continuous relaxation of an MILP gives rise to a well-studied problem

class, namely LP, so does the one of an MINLP. Dropping the integrality require-

14

ments in (1.18) - (1.21) leads to the general Nonlinear Programming (NLP) problem

we consider here,

min f(x) (1.22)

s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m1 (1.23)

hj(x) = 0 ∀ j = 1, . . . ,m2 (1.24)

x ∈ Rn. (1.25)

NLP has been studied basically for as long as LP, and identical as in the case

of an MINLP, the difference between convex and non-convex NLPs can be made.

Convex NLPs are easier to handle because roughly speaking, any local minimum

of a convex function is automatically a global one. This is the reason why often in

the context of (MI)NLPs, the distinction between the attributes locally optimal and

globally optimal is made when talking about solutions. General-purpose algorithms

that have been proposed for NLPs can again be divided into two categories. There

are algorithms that converge to local minima, for example the very popular class of

interior-point algorithms. It should be clear from what was said before that such

an algorithm automatically solves a convex NLP to global optimality. Also, such

algorithms can be implemented efficiently in practice, and respective codes are often

called local NLP solvers. For non-convex NLPs instead, spatial branching is usually

required in order to solve a problem, and we will illustrate this concept in Section

1.2.4. Such approaches are exploited in the second category of algorithms for NLP,

that attempt to always converge to a global optimal solution, regardless of whether

the NLP at hand is convex or non-convex.

A powerful theoretical tool, that is general enough for both the convex and

non-convex case of NLPs, are the so-called Karush-Kuhn-Tucker (KKT) conditions.

We state them in the following result that can be found, e.g., in [BV04].

Theorem 1.6. Assume that x∗ is a local minimum of (1.22) - (1.25) that satisfies

a constraint qualification4, and that the involved functions are continuously differ-

entiable. Then, there exist constants µi, i = 1, . . . ,m1, and λj, j = 1, . . . ,m2, such

that

∇f(x∗) +

m1∑
i=1

µi∇gi(x∗)+
m2∑
j=1

λj∇hj(x∗) = 0 (1.26)

gi(x
∗) ≤ 0 ∀ i = 1, . . . ,m1 (1.27)

hj(x
∗) = 0 ∀ j = 1, . . . ,m2 (1.28)

µi ≥ 0 ∀ i = 1, . . . ,m1 (1.29)

4This is a technical condition of which several versions exist [BV04].

15

µi · gi(x∗) = 0 ∀ i = 1, . . . ,m1. (1.30)

The constants µi and λj are called KKT multipliers. The KKT conditions are nec-

essary conditions for a point x∗ to be a local minimum, and any point satisfying

them is called a KKT point. Since the conditions are, however, not sufficient in

general, not any KKT point is a local minimum. There is a set of sufficient con-

ditions, also called second-order conditions, because they involve second derivatives

of the functions. It turns out that these conditions are automatically satisfied in

the case of a convex NLP5, and thus, in a convex NLP, a KKT point is automat-

ically a local and hence global minimum. In the special case of an LP, the KKT

conditions reduce to the complementary slackness conditions (1.17), and the KKT

multipliers correspond to the dual variables. Interior-point algorithms, like the one

implemented in IPOPT [WB06], solve an NLP to a KKT point, and are also able to

return the KKT multipliers. We will use the KKT conditions in Section 2.6 when

deriving valid nonlinear inequalities for certain MINLPs.

1.2.2 Nonlinear branch & bound

We now discuss a first algorithm for an MINLP, that we assume to be convex for the

moment. It can be seen as the most straightforward extension of the branch-and-

bound concept, that has been proven to be very successful in the context of MILP,

to MINLP. Basically, a nonlinear branch-and-bound algorithm works like Algorithm

1.1. The only conceptual difference is that instead of being LP-relaxations of the

subproblems of the underlying MILP, the nodes correspond to NLP-relaxations of

the subproblems of the MINLP. These can be solved to global optimality efficiently,

since they are convex NLPs.

Remark 1.7. Most notions introduced in the context of branch & bound for MILP

can be naturally extended to nonlinear branch & bound, like dual bounds and gaps

for example. In particular, we can readily extend Definition 1.3, noting that a leaf

problem of an MINLP is an NLP.

Nonlinear branch & bound is implemented, for example, in BONMIN6. It should

be clear by now that any such implementation would use, as a building block for

solving the NLP-relaxations, a local NLP solver. If these NLPs were non-convex,

such a solver would return a not necessarily globally optimal solution. Thus, we

can explain what happens when a nonlinear branch-and-bound implementation is

applied to a non-convex MINLP. Assume that in that case, an NLP-relaxation is

5provided the involved functions are twice continuously differentiable
6among other algorithms for convex MINLPs

16

solved to a local minimum with value ẑ, while its global minimum value, say z̃,

is strictly lower. If now z̃ < UB ≤ ẑ, the node will be pruned, even though we

have no guarantee that the optimal solution to the entire MINLP is not contained

inside the feasible region of the subproblem of this node. If so and if the node is

pruned, the optimal solution will never be found during the tree-search. Yet, it is

not excluded that other sub-optimal feasible solutions are found, and so nonlinear

branch & bound acts as a heuristic algorithm, when applied to a non-convex MINLP.

It can find feasible, but not necessarily optimal solutions. We will see an example

of a practical application where this use of nonlinear branch & bound is made in

Section 2.3.1.

We note that, as in the context of MILP, valid inequalities could be generated

after a node’s NLP-relaxation has been solved during the tree-search. There is

literature on the topic of general-purpose MINLP cutting planes, see, e.g., [Bon11],

but the field is much less mature than in MILP. In Section 2.6 we will study valid

inequalities for a specific non-convex MINLP that rely, however, very much on the

problem structure.

1.2.3 Outer approximation

We now turn to the notion of outer approximations and the algorithms that are based

thereon. Outer approximation is, like nonlinear branch & bound, a concept that is

originally intended for optimization problems involving convex nonlinear functions.

The basic idea of outer approximation can be illustrated geometrically. Take the

feasible set that is described by the single constraint g(x) ≤ 0, and consider the

first-order Taylor approximation of the function g(x) at some point x̃,

Tgx̃(x) = g(x̃) +∇g(x̃)T (x− x̃).

Since g(·) is assumed to be convex, Tgx̃(x) ≤ g(x), and thus Tgx̃(x) ≤ 0 describes a

relaxation of the initial feasible set. Note that the first-order Taylor approximations

are always linear inequalities, and such a relaxation is a polyhedral set. An example

involving a bivariate function of the form g(x, y) = |x|κ − y, that corresponds to

the epigraph of a simple power function, and that is convex if we assume κ ≥ 1, is

shown in Figure 1.2 (a). The idea of outer approximation is thus to approximate

the feasible region of the continuous relaxation of a convex MINLP by these so-

called outer approximation cuts. Together with the integrality requirements on the

variables, one obtains an MILP-relaxation of the initial MINLP. A strong theoretical

and algorithmically handy result states that if the set of points, at which the outer

approximation cuts are generated, is the in some sense correct one, the optimal

17

x

y

(a) The epigraph of a power function

x

y

(b) The epigraph of a signpower function

Figure 1.2: Outer approximation cuts of non-polyhedral sets

solution of this MILP-relaxation is also optimal to the MINLP [DG86, FL94].

The original version of the outer approximation algorithm for a convex MINLP

is sometimes referred to as a multi-tree method, because in each iteration an MILP-

relaxation, obtained in the way described above, is solved by exploring an entire

search tree. Then, the (same) MILP is slightly modified by adding outer approx-

imation cuts and again solved by exploring another search tree from scratch. The

LP/NLP-based branch-and-bound algorithm [QG92], which is implemented for ex-

ample in FilMINT and BONMIN, aims at reducing this approach into a single

search tree. Instead of solving every single MILP-relaxation to optimality and then

adding the outer approximation cuts generated at the optimal solution, in every

integer feasible node of an initial MILP-relaxation, the corresponding leaf problem

of the MINLP is solved to optimality, and the outer approximation cuts generated

at that optimal point are added7. The LP-relaxation of the current node in the

MILP-relaxation with the newly added cuts is then resolved and the tree-search

continues.

Again, we spend some time on analyzing what happens when an algorithm,

that is based on outer approximation cuts, is applied to a non-convex MINLP. As

an example take a slight modification of the previous one, g̃(x, y) = sign(x)|x|κ− y,

corresponding now to the epigraph of a so-called signpower function, that is not

convex even if κ > 1. As can be seen in Figure 1.2 (b), there is no guarantee that an

outer approximation cut preserves all feasible solutions. Thus, like nonlinear branch

& bound, outer approximation algorithms are heuristic when applied to non-convex

MINLPs.

In a mixed integer setting, certain special cases involving the signpower function

7If the leaf problem is infeasible, one can add the outer approximation cuts corresponding to a
point that minimizes the infeasibility.

18

can be cast in the light of convex MINLPs. In fact, this overall non-convex function

is actually convex on the positive half-axis of its domain, and concave on the negative

half-axis. In Section 2.3.1 we will see a modification of the LP/NLP-based branch

and bound that exploits this property and thus remedies a situation similar to

the one depicted in Figure 1.2 (b) in the context of a certain MINLP arising from a

practical application in the context of water networks. Nevertheless, if the signpower

function appears in equality constraints in the underlying MINLP, these become

non-convex, as we will see in the next section.

1.2.4 Spatial branch & bound

As mentioned, solving non-convex NLPs to global optimality is a difficult task in

general. It is, in fact, NP-hard [SA13, TS02]. One way to do so is to use spatial

branching. The basic idea of such an algorithm remains to iteratively divide the

problem into subproblems and to solve (usually linear) relaxations of these. The di-

vision of subproblems though is done not by branching on integer variables, but by

branching on continuous ones. In other words, the continuous domain of some non-

linear function is divided at some breakpoint into two smaller domains, thus creating

two new subproblems. Provided that the relaxation of this nonlinear constraint be-

comes tighter when the domain of the corresponding nonlinear function is reduced,

spatial branching gradually refines the relaxations. In the case of a constraint of

the form sign(x)|x|κ − y = 0, this is depicted in Figure 1.3. Branching is continued

until the relaxations are tight enough to provide solutions that are ε-feasible to the

original problem for some small ε. Integrating spatial branching with mixed integer

branching techniques opens the possibility of solving non-convex MINLPs to global

optimality. Most non-convex MINLP codes, e.g., would start branching on integer

variables and apply spatial branching once all of them have been fixed, i.e., in the

leaf problems of the search tree.

One way to obtain relaxations of the subproblems of a non-convex MINLP is to

use reformulation techniques aiming for a decomposition of all nonlinear functions

into some basic ones. For these basic functions, linear relaxations are then readily

available. The tightness of such relaxations and thus the performance of the algo-

rithm are highly dependent on the bounds of the domains of the nonlinear functions

in a subproblem, as can be seen directly in Figure 1.3. Therefore, so-called bound-

tightening or domain-reduction techniques play an important role in the context of

non-convex MINLPs. We will come back to the importance of domain reductions in

other contexts in Sections 1.3 and 3.6.

19

x

y

(a) Initial polyhedral relaxation

x

y

(b) Relaxation after branching on the origin

Figure 1.3: Spatial branching for a signpower function

1.2.5 Piecewise linearizations

Another way to approach MINLPs, that is motivated by the success of MILP algo-

rithms, is to approximate all nonlinearities by piecewise linear functions. The catch

is that a piecewise linear function can be modeled by auxiliary binary variables and

linear constraints, which opens the possibility of applying MILP solvers as black-

boxes to an approximated MINLP. It has to be clear though that this is only an

approximation of the original problem. Therefore, when the MINLP at hand is con-

vex, there are more attractive methods, like the ones discussed in Sections 1.2.2 and

1.2.3, toward which one usually orients. However, when dealing with non-convex

MINLPs, piecewise linear approximations become an intriguing alternative to ex-

pensive and sometimes ineffective MINLP methods. The initial motivation of the

analysis that we will present in Chapter 2 arises in this context.

Piecewise linear approximations roughly work as follows. Imagine the domain

of a univariate function to be partitioned into several intervals. That function can

then be approximated by the line segments connecting the ordinates of the end

points of these intervals (the breakpoints), and there is an auxiliary binary variable

for each interval, controlling which of the several slopes is in use. Figure 1.4 (a)

depicts this situation in the case of a signpower function. This simple point of view

already makes clear that the accuracy of such an approximation depends on the

number of breakpoints that are used. There are several methods to model univari-

ate piecewise linear functions, such as the so-called incremental method [HMM57]

or the convex combination method [Dan60]. For a comparison of different piecewise

linear modeling techniques, particularly applied to the underlying applications of

Chapter 2, see [GMMS12]. It is also in this context that topics related to special

ordered sets of type 2 and therefore developed branching rules came up [BT70]. The

piecewise linear modeling techniques have also been extended to multivariate func-

20

x

y

(a) Piecewise linear approximation

x

y

(b) Piecewise linear relaxation

Figure 1.4: Piecewise linearizations of a signpower function

tions. Instead of intervals, the domain of such a function is usually partitioned into

several simplices, and over each simplex the function is approximated by an affine

function. Some kind of curse of dimension is encountered here because the number

of required simplices, that is directly connected to the number of auxilary binary

variables in a resulting MILP formulation, is strongly growing with the dimension

of the function’s domain. Therefore we often find reformulation ideas that increase

the number of variables and constraints, but decrease the dimension of the functions

to be approximated. A relatively new approach to piecewise linearly approximate

higher-dimensional nonlinear functions is proposed in [RDLM14].

Yet, one has to keep in mind that all the above leads to an approximation of

the original problem only. This means that the obtained globally optimal solution

of the MILP is not necessarily globally or locally optimal for the MINLP. Even

worse, it might not even be feasible to the nonlinear constraints. A way to estimate

a priori the approximation error and to refine the latter until it stays inside some

desired predefined error bound is proposed in [GMMS12]. The authors also show

how to use piecewise linear functions to create relaxations of the MINLP instead of

approximations only. Basically, the maximum error of an approximation over each

simplex is overestimated as tightly as possible, and a continuous variable, bounded

by this maximum error, is added to the ordinate. The resulting relaxation of this

procedure is a so-called ε-tube, depicted in Figure 1.4 (b).

There has also been some effort to integrate MILP and NLP concepts in the

context of piecewise linearizations. Very intuitively, by fixing the integer variables

to the values of a globally optimal MILP solution, one could solve the remaining

leaf problem of the MINLP to local optimality. This would guarantee at least the

feasibility of the solution, but not necessarily its global optimality. For a more

detailed idea of how to integrate MILP and NLP in the context of piecewise linear

approximations in the context of water networks, the topic of Chapter 2, see [KL12].

21

Figures 1.3 and 1.4 show one important difference between spatial branching

and piecewise linear relaxations. In the former case, the refinement of the approxi-

mating polyhedra is part of the branching, whereas in the latter, the fragmentation

of the respective domain is given a priori and is not changed during the optimization

process. However, there has recently been some attempt to overcome this difference

by extending the concept of piecewise linear relaxations to an algorithm where the

approximation is refined dynamically in order to compute a globally optimal solution

for the originally non-convex MINLP. This approach has been investigated in the

context of gas networks in [GMS13]. Therein is also contained a computational com-

parison between the proposed approach exploiting piecewise linear approximations

and several solvers that use spatial branching techniques.

The initial motivation of a large portion of Chapter 2 was the analysis of piece-

wise linearizations in the context of water networks, and we will discuss the success

of such approaches in that special case in Section 2.4.

1.3 Constraint Programming

Identifying a canonical or standard form of a CP can be considered a less trivial task

than it is in the case of an MILP or MINLP. This is somehow due to the modeling

flexibility it provides. CP can be described as the process of finding an assignment

of values to a set of variables (a solution) that satisfies a set of arbitrary constraints.

A variable x is usually assigned a domain D(x), that again is somewhat arbitrary.

Different categories of domains can be individualized in CP, for example integer

domains or, related to that, general finite domains given by arbitrary finite sets. As

well so-called interval variables, whose domains are subsets of the set of all intervals

on the real line, have been introduced.

“A constraint can be anything” is indeed a completely informal affirmation, but

highlights the modeling flexibility by which CP is characterized. A constraint can

be seen as the subset of values that, when assigned to the involved variables, satisfy

a certain condition. In this light, instead of giving a general and formal definition,

we choose to present an example of a constraint that is quite popular in the CP

literature, namely the alldifferent constraint [vH01].

Definition 1.8. Let x1, . . . , xn be variables with finite domains D(x1), . . . , D(xn).

Then,

alldifferent(x1, . . . , xn) := {(v1, . . . , vn) | vi ∈ D(xi), vi 6= vj ∀ i 6= j}.

Thus, alldifferent represents a way to describe that a series of variables have to

22

take pairwise different values. The constraints encountered in CP can be divided

into several categories, and CP implementations like IBM ILOG CPO [CPX] provide

the user with libraries for each category.

Mixed integer constraints, that are used in MIP, can be seen as one of these

constraint categories. One could therefore be tempted to claim that MIP is a sub-

class of CP. However, no objective function is traditionally present in CP, meaning

that often feasibility problems are solved. Even though it is possible to include

objective functions, the common point of view is to see MIP and CP as different

paradigms. This is mostly due to the algorithmic concepts that are behind the two.

Although in both cases branching plays an indispensable role, MIP algorithms, as

we have seen, heavily rely on the objective function through the use of dual bounds.

In CP instead, the concept of a dual bound does generally not exist. While MIP

is driven by the goal of closing the dual gap, CP is driven by the aim of reducing

the domains of the variables until they are reduced to single values. This can be

achieved by so-called filtering and propagation algorithms, treated further down.

Nevertheless, as anticipated in the introduction, there has been considerable effort

to integrate MIP and CP techniques [MT04], which is also a subject in this thesis.

The modeling flexibility of CP for example will motivate our actions in Chapter 4.

An important part of the machinery used in CP are filtering algorithms. Val-

ues, whose assignments to the variables result in a violation of a given constraint,

are called inconsistent. A filtering algorithm associated with that constraint is an

algorithm that is able to remove inconsistent values from the domains of the involved

variables.

Example 1.9. Consider the variables x1, x2, x3, x4 with domains

D(x1) = D(x2) = {1, 2}, D(x3) = {3} and D(x4) = {1, 2, 3, 4}.

Further suppose that alldifferent(x1, x2, x3, x4) is imposed. Any intelligent filter-

ing algorithm will remove the value 3, to which the variable x3 has been fixed, from

the domains of the other variables, if present. That is, 3 will be removed from D(x4).

Based on slightly more complicated reasoning, it should also remove the values 1 and

2 from therein, because these values will certainly be assigned to x1 and x2.

Filtering algorithms give rise to the notion of propagation. Anytime a value has been

removed from the domain of a variable x, this might cause values in the domains of

other variables, that are linked to x via some constraint, to be inconsistent. Thus,

a filtering algorithm might be able to further reduce some domains. Propagation is

the process of executing filtering algorithms associated with constraints in which x

appears whenever the domain of x changed. In this way, such a domain change is

23

“propagated” to the variables via the constraints.

As we have sketched in Section 1.2.4, the concept of domain reduction is im-

portant in the context of non-convex MINLPs, and respective algorithms make use

of the concept of propagation. This is often considered an important intersection

point of MIP and CP, and the former can learn from the latter. We will argue in

Section 3.6 that propagation might be equally important in the context of certain

MILPs and analyze its use inside an MILP-based algorithm for a subclass of MILP

problems.

1.4 Disjunctive Programming

A notion that is frequently encountered in the context of MILP or LP, but also

MINLP, is Disjunctive Programming. One could say that Disjunctive Programming

is a programming paradigm on its own, although there do not seem to be any widely

spread codes for it. That is, there is no such thing as a DP solver. Yet, this notion

has been highly influential in different areas of Mathematical Programming. It has

been originally proposed by Balas [Bal79, Bal98] and in that original form can be

described as the minimization of a linear function over the union of polyhedra, i.e.,

sets that can be described as the intersection of sublevel sets of affine functions.

Dropping this restriction and extending the point of view to general convex func-

tions, Disjunctive Programming becomes the minimization of a convex function over

the union of convex sets. Balas’ results have been extended in this direction in a

seminal paper by Ceria and Soares [CS99].

The key ingredient to be able to optimize over the union of sets is the ability

of describing the convex hull of this union. If this can be done by the sublevel sets

of convex functions, then such a program can be stated as a convex NLP. The main

result in [CS99] is precisely a theorem that shows how to build the convex hull of the

union of a finite number of sets, each one of which is described by convex functions.

Before stating that theorem we need to introduce the so-called perspective function,

which plays an important role in it.

Definition 1.10. For a given closed convex function g : Rn → R ∪ {∞}, the

perspective function g̃ : Rn+1 → R ∪ {∞} is defined as

g̃(x, λ) =

λ · g
(
x
λ

)
, λ > 0

∞, λ ≤ 0
. (1.31)

The perspective of a closed convex function is known to be convex, but not neces-

sarily closed. This issue will be discussed further down. For now, we have all the

24

required elements to state the main result of [CS99].

Theorem 1.11. Let Cj = {x ∈ Rn | gji(x) ≤ 0, i = 1, . . . , `j} 6= ∅, for j ∈ J ,

and assume each gji : Rn → R is a closed convex function. Then, we have that

conv (∪j∈JCj) = projx cl(C), where

C =



(x, x1, . . . , x|J |, λ1, . . . , λ|J |) ∈ R(|J |+1)n+|J |

x =
∑

j∈J x
j

g̃ji(x
j, λj) ≤ 0 ∀ i ∈ [`j], j ∈ J∑

j∈J λj = 1

λj ≥ 0, ∀ j ∈ J


.

The construction of Theorem 1.11 begins in a straightforward manner by creating

copies xj of the initial vector x, each one constrained to lie in one of the disjunctive

sets Cj. Then, the original x is a convex combination of these copies with weights

λj. In this way, the resulting bilinear terms λjx
j lead to a set description of the

convex hull that is, however, non-convex. A simple transformation is then used to

obtain the convex set C containing the perspective function. A big effort in [CS99]

is the insight that the closure of the perspective function also captures the elements

in the convex hull that have zero weights λj for some j ∈ J .

Although Theorem 1.11 provides a complete formal description of the convex

hull of the union of the convex sets we are concerned with, it bears two main practical

difficulties. First, the closure of the perspective function does not have an algebraic

representation in general. In other words, the perspective function becomes non-

differentiable for λj → 0. This is a significant difference with respect to the affine

case, where differentiability with respect to λj can be recovered by trivial algebra.

The second difficulty associated with the practical use of Theorem 1.11 is the

fact that the initial set is lifted into a space with a multiple dimension because a

copy of the initial space is created for each disjunctive set. Note that the set C in

Theorem 1.11 is a subset of R(|J |+1)n+|J |, i.e., it is defined in a space whose dimension

makes the optimization over it computationally challenging. There are special cases

of Theorem 1.11 in which the convex hull can be projected onto the original space

of variables explicitly. This will be the main topic of Chapter 3.

In the affine case, the theory of Disjunctive Programming also provided the

foundation of lift-and-project cutting planes [BCC93, BCC96, FLT11], where the

problem of optimizing a linear function over the union of polyhedra is solved as a

separation routine for devising cutting planes for MILPs. The relation between Dis-

junctive Programming and the separation of cutting planes has its roots in Farkas’

Lemma, see, e.g., [Sch98]. Roughly speaking, one can give a polyhedral description

25

of the set of all valid linear inequalities for the set of feasible points that in addition

satisfy a certain disjunction. We formally state these considerations in the following

result, that can be found in [Bal98].

Theorem 1.12. Let A ∈ Rm×n, b ∈ Rm and Wj ∈ Rmj×n, dj ∈ Rmj ∀ j ∈ J ,

and denote P = {x ∈ Rn | Ax = b, x ≥ 0}. The linear inequality αTx ≥ β is valid

for (the convex hull of) the set ∪j∈J {x ∈ P | Wjx ≥ dj} if and only if there exist

θj ∈ Rm and τj ∈ Rmj
+ such that

α ≥ AT θj −Wj
T τj and β ≤ bT θj − djT τj ∀ j ∈ J .

We will use a special version of this Theorem in Section 4.2.2 in order to prove the

validity of an extended version of a certain type of lift-and-project cuts for MILP.

Lift-and-project cuts are an ingredient of many existing commercial and open-source

MILP solvers, like the ones we mentioned in Section 1.1, and they are part of the

default setting of CPLEX [Tra13].

In the nonlinear case, the numerical difficulties mentioned above were already

noticed by Stubbs and Mehrotra [SM99] in the process of designing a branch-and-

cut algorithm for general 0–1 mixed convex programming problems, based on lift-

and-project cuts separated through an alternative version of Theorem 1.11. It is

worth noting that for more than ten years there was no significant progress in the

separation of lift-and-project cuts for general mixed integer convex programming

problems. More recently, two important steps toward the effective use of disjunctive

cuts for mixed integer convex programming have been made [Bon11, Kıl11, KLL10],

which circumvent the non-differentiability issue algorithmically through the solution

of some (potentially many) easier optimization problems. The reader is referred to

[BLL11b] and [BLL+11a] for recent surveys on disjunctive cuts for MINLPs and

applications and extensions of disjunctive inequalities, respectively.

1.5 Examples of Mixed Integer Programs

The purpose of this section is to introduce a few examples of problems that can be

modeled by MIP. They are mostly MILPs, and we will come back to most of them

in later chapters. In Chapter 2 is discussed a special class of MINLP models and a

specific model can be found in Section 2.3.1.

1.5.1 TSP with (multiple) time windows

Many problems in the field of combinatorial optimization have been modeled by

the means of MI(L)P. The probably most extensively studied one is the so-called

26

(asymmetric) Traveling Salesman Problem (TSP). This problem calls for finding a

least-cost Hamiltonian tour on a graph G = (N ,A). We give a concise description of

the problem variant that will play a role later on. We use the so-called Hamiltonian

path version: we assume the existence of two designated nodes p and q and seek

for a Hamiltonian path that starts at p and ends at q. We also consider the case in

which the arrival time at each node i is constrained to lie in some interval [li, ui],

leading to the TSP with time windows (TSPTW). Denoting the travel time from i

to j by tij, the process time at i by pi and the set of incoming and outgoing arcs of

node i by δ−i and δ+
i , respectively, a valid MILP formulation, that has been studied

in [DGLT12]8, is given by

min
∑

(i,j)∈A
i 6=q,j 6=p

tijxij (1.32)

s.t.
∑
j∈δ+i

xij = 1 ∀ i ∈ N \ {q} (1.33)

∑
i∈δ−j

xij = 1 ∀ j ∈ N \ {p} (1.34)

ai + pi + tij ≤ aj +Mij · (1− xij) ∀ (i, j) ∈ A : i 6= q (1.35)

li ≤ ai ≤ ui ∀ i ∈ N (1.36)

xij ∈{0, 1} ∀ (i, j) ∈ A : i 6= q, j 6= p. (1.37)

The variable ai models the arrival time at node i9 and the binary variable xij indi-

cates whether the path contains the arc (i, j). The constraints (1.35) are so-called

big-M constraints and include some “large” constants Mij. They work by making

the large constant vanish whenever the involved binary variable xij is equal to one,

thus imposing an actual constraint. Otherwise, when xij is equal to zero, the magni-

tude of Mij make the inequality a redundant constraint. In other words, the big-M

constraint imposes the logical condition

[xij = 1] =⇒ [ai + pi + tij ≤ aj]. (1.38)

Big-M constraints are widely used to formulate such logical implications in MIP,

which is one of the topics of Chapter 3. We will show in more detail in Section 3.1

how big-M constraints work, and how appropriate values for the large constants can

be determined in a specific MIP. Some of the following models also contain big-M

constraints, and the big-M values therein are just assumed to be reasonably large

8Therein, no process times are used.
9 These are usually fixed at p and q to the start and end date of some time horizon [0, T].

27

values for now. In Chapter 3, we will also consider the above MILP model for the

TSPTW.

One can extend model (1.32) - (1.37) to the TSP with multiple time windows

(TSPMTW). The time window associated with a node is now not anymore an in-

terval, but the union of several, non-intersecting ones. That is, the arrival time of

node i has to lie in the non-contiguous set ∪Lid=1[ldi , u
d
i]. A MILP formulation for the

TSPMTW, using another set of big-M constraints for imposing the multiple time

windows, was proposed in [BHL14]10. System (1.32) - (1.37) can be extended in the

same way by simply adding the constraints

ldi ≤ ai +Mid · (1− wid) ∀ d ∈ [Li], i ∈ N \ {p, q} (1.39)

ai ≤ udi +M ′
id · (1− wid) ∀ d ∈ [Li], i ∈ N \ {p, q} (1.40)

Li∑
d=1

wid = 1 ∀ i ∈ N \ {p, q} (1.41)

wid ∈ {0, 1} ∀ d ∈ [Li], i ∈ N \ {p, q}. (1.42)

We will analyze this constraint structure and the TSPMTW when we study variables

with non-contiguous domains in Section 4.1.1.

1.5.2 Scheduling problems

Another classical problem that has been modeled by MILP is Job Shop Scheduling

(JSS). Not only is it theoretically NP-hard, it has also proven to be one of the

computationally most stubborn combinatorial optimization problems. We have jobs

j ∈ [n] that all have to be executed on each of a set of given machines k ∈ [m].

The execution of a certain job on a certain machine is also called an operation. We

denote the operation of job i on machine k by (i, k) and the corresponding process

time by pik. Each job is further characterized by its proper routing on the machines,

defined by matrix O ∈ [m]n×m, i.e., O specifies the order in which a single job has to

be executed on the different machines. More precisely, Oik is the sequence number of

machine k in the order of operations of job i. Further, the machines are disjunctive

resources, i.e., they can process only one job at a time, and no preemption is allowed.

The objective of JSS is to minimize the overall makespan Ω. A MILP formulation,

again including big-M constraints, is given by

min Ω (1.43)

s.t. sik′ ≥ sik + pik ∀ i ∈ [n], k, k′ ∈ [m] : Oik < Oik′ (1.44)

10The MILP formulation therein is actually valid for the vehicle routing version of the problem
and is thus more general.

28

sik + ti ≤ sjk +Mk
ij · (1− xkij) ∀ i < j ∈ [n], k ∈ [m] (1.45)

sjk + tj ≤ sik + M̃k
ij · xkij ∀ i < j ∈ [n], k ∈ [m] (1.46)

Ω ≥ sik + pik ∀ i ∈ [n], k ∈ [m] (1.47)

sik ≥ 0 ∀ i ∈ [n], k ∈ [m] (1.48)

xkij ∈ {0, 1} ∀ i < j ∈ [n], k ∈ [m]. (1.49)

The variable sik models the start time of operation (i, k), and the binary variables

xkij indicate whether i is executed on k before j or vice versa. Also this MILP

formulation will be of interest in Chapter 3.

JSS is sometimes called the “mother” of all scheduling problems, and we will

study another scheduling problem in Section 4.1.1, namely the Multi-mode Resource

Leveling problem [CLS10]. Again, we are given a set of non-preemptable jobs j ∈ [n]

with a set of precedence relations E ⊆ [n] × [n], and a set of renewable resources

R. Furthermore, a job i may be run in exactly one mode ` ∈ Mi, and in that case

requires pi` time units and ri`k units of resource k ∈ R. Each resource k is assigned

a unit cost ck. Fixing a time horizon [0, T], the problem calls for determining the

resource capacities Rk that have to be provided, so that all jobs can be executed

within the time horizon but without exceeding these capacities, minimizing their

overall cost. A MILP model, that can be found in [CLS10]11, is given by

min
∑
k∈R

ckRk (1.50)

s.t.
T∑
t=0

∑
`∈Mi

xi`t = 1 ∀ i ∈ [n] (1.51)

T∑
t=0

∑
`∈Mi

t · xi`t = si ∀ i ∈ [n] (1.52)

T∑
t=0

∑
`∈Mi

(t+ pi`) · xi`t = ei ∀ i ∈ [n] (1.53)

ei ≤ sj ∀ (i, j) ∈ E (1.54)∑
i∈[n]

∑
`∈Mi

ri`k

t∑
τ=t−pi`+1

τ≥0

xi`τ ≤ Rk ∀ k ∈ R, t ∈ [0, T] (1.55)

xi`t ∈ {0, 1} ∀ t ∈ [0, T], ` ∈Mi, ∀ i ∈ [n]. (1.56)

Variables si again account for the start times of the jobs, but we also model their

completion time ei. The binary variable xi`k in this model indicates whether a job

11The model therein does not account for different modes.

29

i starts at a certain time t and in mode `. One instance of the above MILP model

has been included in MIPLIB 2010 (namely, instance 30n20b8), and we will further

investigate it in Section 4.1.1.

1.5.2.1 Disjunctive graphs in JSS

Of fundamental importance for JSS and for understanding the concepts we will apply

in Section 3.6.2 are so-called disjunctive graphs, see, e.g., [BPS00]. In general, a

disjunctive graph G = (N , C ∪D) consists of a set of vertices N , a set of conjunctive

arcs C ⊆ N 2 and a set of disjunctive arcs D ⊆ N 2. Conjunctive arcs are just

ordinary arcs. By definition, a disjunctive arc (v, w), instead, has the property that

necessarily also (w, v) ∈ D. In other words, disjunctive arcs can be thought of as

pairs of two oppositely directed arcs between two nodes. We require C ∩D = ∅, and

the conjunctive graph associated with G is just GC = (N , C).
Associated to any of the subproblems of the JSS model (1.43) - (1.49), that

can be obtained by fixing a subset of the binary variables xkij to zero or one and

thus imposing additional precedence relations (including the case in which none of

them are fixed), we can build a disjunctive graph in the following way. It contains a

vertex for each operation (i, k) plus two artificial vertices, the source o and the sink

∗. For each fixed precedence relation between two operations, either specified in the

matrix O, or deriving from a fixed binary variable, there is a conjunctive arc in the

graph. For example, if, by abuse of notation, ν = (i, k) precedes % = (i, k′), we have

(ν, %) ∈ C. The weight of any conjunctive arc (ν, %) is given by pν , the process time

of the operation corresponding to the tail of (ν, %). By convention, for each job i we

have a conjunctive arc from the source to the node u = (i, k) such that Oik = 1 (i.e.,

the first operation of job i), and one conjunctive arc going into the sink from node

w = (i, k′) such that Oik′ = m (i.e., the last operation of job i). All arcs leaving the

source node have weight 0.

For each binary variable xkij that has not been fixed, there is a pair of disjunctive

arcs between the two nodes u = (i, k) and w = (j, k) in D. Disjunctive arcs can

also be thought of as edges that still have to be directed, or, in a JSS context, as

precedence relations that still have to be established. Note that any two nodes that

are connected by a pair of disjunctive arcs correspond to operations that have to

be executed on the same machine. Figure 1.5 shows an example of the disjunctive

graphs of a JSS instance and one of its subproblems.

A feasible solution to (1.43) - (1.49) or to any of its subproblems can also be

described in terms of the disjunctive graph as follows. A pair of disjunctive arcs

(u,w), (w, u) is said to be selected if both are removed from D and either (u,w) or

(w, u) is added to C (meaning that the corresponding binary variable is fixed). A

30

∗o

(a) Original instance

∗o

(b) Subproblem with 3 binary fixings

Figure 1.5: Disjunctive graphs with n = m = 3

complete selection is a set of selections in a disjunctive graph such that D = ∅. A

feasible solution is given by a complete selection that results in a directed acyclic

graph (DAG). The makespan of that solution is the longest path from o to ∗ in the

remaining conjunctive graph GC .

The notion of disjunctive graphs is very useful for calculating lower and upper

bounds on the start time of an operation ν = (i, k) in any subproblem of a JSS

instance. These bounds are closely related to the so-called heads and tails in the

associated conjunctive graph GC , denoted by rν and qν , respectively. Namely, rν is

defined as the longest path from o to ν in GC . This quantity represents an amount of

time that passes before t can be executed, independently of the binary variables that

are yet to be fixed. Thus, rν is a valid lower bound on the start time of operation ν

31

in the subproblem at hand,

sik := rν ≤ sik. (1.57)

Symmetrically, qν is defined as the longest path from ν to the sink ∗ minus pν . It

represents a lower bound on the time that passes after ν has been executed. Thus, an

upper bound on the start time of operation ν in the subproblem can be calculated,

sik := UB − qν − pν ≥ sik, (1.58)

where UB is an upper bound on the optimal solution value of (1.43) - (1.49). A

trivial upper bound is given, e.g., by

UB =
n∑
i=1

m∑
k=1

pik. (1.59)

Heads and tails in the context of JSS and the resulting bounds will become important

in Section 3.6.2.

1.5.3 Knapsack problems

Another vastly studied and easily explained combinatorial optimization problem is

the so-called Knapsack problem [MT90]. We are given a set of items i ∈ [n], each

one equipped with a non-negative profit pi and a non-negative weight wi, and a

knapsack with capacity C. The aim is to pack a subset of items into the knapsack

such that the profit of all packed items is maximized, but their weight does not

exceed the capacity. A straightforward MILP formulation, that is actually an ILP,

is given by

max
n∑
i=1

pixi

s.t.
n∑
i=1

wixi ≤ C

xi ∈ {0, 1} ∀ i ∈ [n].

Knapsack problems have been studied extensively since the early days of integer

programming, and are often found as substructures in MILP. We will study a related

ILP in Section 4.1.2.

32

1.5.4 Supervised classification

At last, we introduce a problem studied in the literature related to machine learning,

namely, the so-called supervised classification problem. Consider a set of objects

i ∈ [m], where each object is characterized by the vector xi ∈ Rd and associated

with one of two classes, labeled by yi ∈ {−1, 1}. The task is to find a hyperplane

ωTx ≤ ω0 in Rd that separates the two classes by maximizing a confidence margin.

Because it is not always possible to find such a hyperplane, for each object i that is

misclassified, one models the violation of the associated constraint yi(ω
Txi−ω0) ≤ 0

with a continuous slack variable ξi whose value is penalized in the objective function.

Recently, Brooks [Bro11] suggested that the misclassification penalty must be upper

bounded, and beyond that bound a fixed penalty must be paid. This again leads

to a model with big-M constraints. We give a problem formulation as in [Bro11],

namely

min
ωTω

2
+
C

m

(
m∑
i=1

ξi + 2
m∑
i=1

(1− zi)

)
s.t. yi(ω

Txi + ω0)− 1 + ξi ≥ −Mi · (1− zi) ∀ i ∈ [m]

0 ≤ ξi ≤ 2 ∀ i ∈ [m]

(ω, ω0) ∈ Rd+1

z ∈ {0, 1}m,

where C is some non-negative constant. The quantities xi and yi are not variables

here, but constants. Instead, ξi measures the continuous classification error up to

a maximum of 2, at which point the binary variable zi indicates that i has been

misclassified. The continuous variables (ω, ω0) describe the coefficients and right-

hand side of the hyperplane that is to be determined, respectively. The above

formulation is a convex MIQP and will play a role in Chapter 3.

33

2 MILP vs. MINLP insights in water

network optimization

Classical network flow problems have been extensively studied as an application of

LP [BJS11], basically from its early days on, and later the applications were ex-

tended by introducing discrete decisions, thus giving rise to MILPs [MW84, Min89].

The basic common task in almost all variants is to route a flow through a network

from a set of sources to a set of sinks, established by imposing linear flow conser-

vation constraints, or balance equations, see (2.1) further down. Such basic models

can become coarse when dealing with pressurized water networks, where the fluid is

transported in pipes with no air contact and thus possibly varying pressure levels.

A first step toward accurately modeling the physical aspects of such networks, is the

introduction of pressure variables at nodes in addition to the classical flow variables

on arcs. From this perspective, what actually induces a flow between two nodes is

explained by a pressure difference. To subsume a broader field of applications, the

additional variables in such models are also referred to as node potentials, including

as well the electric potential of a point in an electric circuit. Pressure is again an im-

portant quantity in gas networks [KHPS15]. The drawback of the resulting accuracy

gain is the fact that the relation between flow and potential difference usually leads

to nonlinear equations. Consequently, the resulting models are sometimes called

nonlinear network flow models [Rag13]. Often, we also have to deal with the pres-

ence of discrete decisions that can be made regarding different network elements. In

that case, the optimization tasks faced when tackling nonlinear network flow models

are put in the context of non-convex MINLP. Several aspects and variants of this

modeling approach related to water networks will be discussed in more detail in

Section 2.1.

In this chapter we focus on topics related to the optimization of drinking wa-

ter distribution networks, a field in which the modeling enhancement of nonlinear

network flows has experienced eminent interest in order to develop physically sound

models for real-world applications. We will drop the attributes drinking and distri-

bution and for this chapter establish the convention that the term water networks

subsumes anything that is named by drinking water distribution networks, water

supply systems, or combinations of the two. Other types of water networks, such

35

as waste water networks [RH99] or water usage and treatment networks in chemical

plants [HCLC99] are not considered here. This is due to the fact that the underlying

network flow models, despite containing nonlinearities, differ from the ones that are

widely used for pressurized water networks, and that we are mostly interested in.

As mentioned earlier, nonlinear network flow problems belong to the class of

non-convex MINLPs and as such, in their general form, they involve two sources

of non-convexity. The first arises from the nonlinear equations that model the flow

of water into pipes (depending on the pressure difference at the nodes), and the

second from discrete choices. Thus, these problems are generally NP-hard. The ini-

tial motivation of the work presented in this chapter was the following observation.

For certain variants of water network optimization problems, satisfactory results

with piecewise linearization approaches as in Section 1.2.5 were repeatedly reported

[GMMS12, MGM12, Mor13], while this is not true for certain other variants. Id est,

in water network optimization, MILP approximations of the encountered MINLPs

sometimes lead to good and practically relevant computational results, but some-

times they do not. This raised a series of questions. Do we maybe just have to

find the right tuning of the MILP approach for each variant individually in order to

make it work? Or is there something intrinsically nonlinear in some problem variants

that make it impossible to achieve satisfactory results with MILP approximations?

The question that kept us awake at night was why an algorithmic approach, that is

practical for a certain problem class, does not work on an at first sight very related

class. The answers to such questions are, of course, never of black-or-white nature,

and we will try to give some in Section 2.4.

A partial and not rigorously defined classification of water network optimization

problems that separates the formerly mentioned variants (those for which MILP-

approximations seem to work), from the latter (those for which it does not) is

obtained by considering the somewhat different tasks of optimal operation of water

networks on the one hand and optimal design of water networks on the other. This

classification is suggested by surveying the water network optimization literature,

and this will become eminent in Section 2.3, where we summarize computational

results that were presented by several authors. We point out that besides operation

and design there are other topics related to the optimization of water networks,

for example the containment detection problem [LBvBW06] or topics related to

water quality management [RB96]. Thus, the aforementioned classification is by

no means exhaustive, but we choose to focus on these two problem variants. The

fact that it turns out to be difficult to obtain satisfactory computational results for

water network design problems with MILP approximations was, to the best of our

knowledge, first pointed out in [BDL+11]. In Section 2.4.3 we will report on com-

putational experiments that confirm this impression, and we will analyze possible

36

reasons for this phenomenon by algorithmic considerations. We will conclude that

the presence of certain convex substructures, that we treat in detail in Section 2.2,

makes some general purpose approaches, including MILP techniques applied to a

piecewise linearization of a water network design instance, impractical.

Water network operation and water network design represent two out of the

different stages into which water network optimization can be subdivided [dCS12].

On both sides, one assumes to have an underlying network with a fixed topology,

i.e., a fixed set of nodes and arcs representing sources, sinks, pipes, pumps, valves,

and tanks. The latter of the two optimization tasks, i.e., the design problem, usu-

ally disregards pumps, valves and tanks. One then seeks to choose for each pipe

in the network a diameter among a discrete set of commercially available diameters

in a cost-minimal way, while maintaining the satisfiability of all costumer demands

located at sinks. The diameter has an important impact not only on the pipe’s

capacity, but also on the pressure distribution in the network. The operation prob-

lem instead typically assumes fixed pipe diameters but allows for the modeling of

pumps, valves, and tanks. The task is then to operate pumps and valves, which

again affect flow and pressure distribution, over a certain time horizon in order to

satisfy the customer demands, while minimizing the operational costs mainly aris-

ing from power consumption of pumps. In its full-scale form, the operation problem

hence incorporates the aspect of time into the model and is thus a dynamic prob-

lem. Conversely, in order to model the design problem, no time parameter is neither

needed nor generally used in the literature, which is why we consider it a static

problem. The fact that active elements (pumps, valves, and tanks) are disregarded

in design problems, and that there are only passive elements (pipes), is prevalent in

the literature, although this does not necessarily have to be so. However, unifying

design and operational phases in a single model bears some difficulties, and we will

address this issue shortly in Section 2.5. In spite of the differences between design

and operation, there are still some obvious similarities from a mathematical point of

view, due to the way water dynamics in a pipe is described. Typically, the majority

of the arcs in a network is constituted by pipes, and the equation associated with a

pipe will be at the heart of Sections 2.3 and 2.4.

This chapter is mostly based on joint work with Claudia D’Ambrosio, Andrea

Lodi and Cristiana Bragalli, and part of it was published as a survey paper of

algorithmic nature in [DLWB15]. Thus, a lot of the following can harmlessly be

read as a survey that, however, serves the ultimate goal of answering the questions

about MILP-approximations raised above. In [DLWB15], we were interested in sur-

veying Mathematical Programming approaches, i.e., methods that explicitly use a

Mathematical Programming model. Those methods exploit (different variants of)

different algorithmic paradigms to solve MINLPs, including, as mentioned above,

37

MILP-techniques. We also try to provide an overview of how different techniques

succeed in different situations. In the last decade, Mathematical Programming ap-

proaches have experienced increasing popularity, whereas before that, optimization

problems related to water networks were prevalently attacked by (meta-)heuristic

methods, see, e.g., [dCaCR04, dCS12], without explicitly using a Mathematical

Programming formulation. In the following, we do not dwell on the variety of those

heuristic approaches that exist in the field. For a broader discussion of topics related

to water networks that covers also aspects that are not of algorithmic nature, we

refer the reader to [CAC14]. Finally, the existence of Partial Differential Equation

(PDE) approaches in the field of water network optimization is worth mentioning,

see, e.g. [LBvBW07], reflecting the fluid-dynamic nature of the topic. Again, this

is outside the scope of the present chapter.

In Section 2.6, we present some results on how to derive nonlinear valid in-

equalities for one of the water network optimization problems we consider in the

preceding sections. That section is inspired by techniques that were published in

the context of gas networks and is based on joint work with Jesco Humpola and

Andrea Lodi.

2.1 Modeling water networks

To begin with, we present the main modeling aspects found in the literature con-

cerning the design and the operation problems. Regarding the various network

elements, different variants at different levels of detail can be found. The most

detailed modeling description of the relevant aspects is provided in [BGS08]. A net-

work is naturally represented by a directed graph G = (N ,A), where nodes stand

for sources and sinks and arcs stand for pipes, pumps, and valves. Tanks are usually

modeled as nodes, but this is not always true, see, e.g., [MGM12].

2.1.1 Flow & pressure

A main difference between the design and the operation problems is of course the

contrast between the static and the dynamic setting. In the latter, in principle all

variables and parameters can be made continuous-time dependent on t ∈ [0, T],

where [0, T] ⊂ R is the considered time horizon. However, to get a tractable opti-

mization model, time is usually discretized and the quantities depend on the discrete

time period n ∈ [N] of length τn. A typical planning horizon is one day, divided in

24 hourly periods. In [BGS08] it is pointed out that the discretization has another

practical motivation. Namely, demand forecasts and electricity price tariffs are usu-

ally given for discrete and not continuous time. In the following we will highlight the

38

time dependency of variables or parameters with a superscript n only when different

periods are involved in an equation or constraint. Otherwise, the equation usually

has to be imposed in every time period. In a static setting there is of course no time

dependency to be highlighted. In any case, we introduce a flow variable qa on each

arc a ∈ A. By allowing the flow to take negative values, a directed graph accounts

for its both possible directions: a positive flow qa on an arc a = (i, j) means that it

goes from i to j, while a negative value of qa stands for a flow of amount |qa| from

j to i. It is as well possible to allow only positive flow values and account for the

directions with a binary variable.

From classical network flow problems one inherits the flow conservation con-

straints. For a node i ∈ N with demand di, which for the moment is assumed to be

a constant, and the set of incoming and outgoing arcs, δ−i and δ+
i , respectively, one

has the linear constraint ∑
a∈δ−i

qa −
∑
a∈δ+i

qa = di. (2.1)

Sinks have a positive demand, which means that water actually leaves the network at

those nodes. At sources, often called reservoirs in the water context, constraint (2.1)

is usually not imposed. Otherwise, at such nodes, one can model di as a variable

that can take only non-positive values, possibly bounded from below. Of course,

there can be nodes with zero demands. Sometimes all nodes with positive or zero

demand are called junctions. In real-world applications, there is usually uncertainty

in the data, for example in the demand di. This aspect has been addressed in

(meta-)heuristic approaches, see, e.g., [BKSW05]. However, in the Mathematical

Programming literature, which is focus of the present chapter, it has been very

rarely taken into account. Thus, in the following we consider approaches that assume

deterministic data for the demands, which is, in any case, quite reasonable because

generally one wants to establish a network design or operation that is feasible also

in worst-case scenarios.

Next, one introduces the node potential variables hi, i ∈ N , representing the

hydraulic head of the water at a node. This variable represents the pressure: In

fluid dynamics, total head is the total energy per unit weight of fluid and is the

sum of potential energy (elevation), pressure energy due to the pressure exerted on

its container (pressure) and kinetic energy (velocity head). Consistent with this

definition, total head and pressure are expressed dimensionally as a length. Due to

the small value of velocity head in relation to the other two terms of the sum, the

velocity head is generally neglected and the total head is assimilated to the hydraulic

head, given by the sum of elevation and pressure.

39

A set of constraints that is regularly found in diverse optimization approaches

arises from the fact that the two groups of variables introduced above are typically

bounded. The absolute value of the flow is bounded from above due to the capacity

of the arcs. For example, taking into account the maximum flow velocity that is

allowed in a pipe a, va, the flow bound can be written as

−π
4
vaD

2
a ≤ qa ≤

π

4
vaD

2
a, (2.2)

where Da is the diameter of pipe a, see [BDL+11]. The node potentials have to

stay between certain bounds in order to guarantee minimum and maximum pres-

sure levels at the nodes. Usually, the node potentials are fixed at source nodes,

reflecting the fact that at sources water is not pressurized, but it exploits a fixed

geographical height. We will see in Section 2.4 that the bounds on the potential val-

ues of non-source nodes often constitute the physical bottleneck in a water network

optimization task.

2.1.2 Pipes

Typically, the majority of the arcs in a network represents pipes in which water is

transported from one node to another, and this transportation is induced by different

potentials at the nodes. The fundamental equation for a pipe a = (i, j) is the head-

loss equation, also denominated potential-flow coupling constraint in [HF15] (and

we will use this term in the following), that is regularly of the form

hi − hj = Φa(qa), (2.3)

where Φa(·) is a strictly increasing uneven function, concave on the negative half-axis

of its domain and convex on the positive half-axis. These are properties that also

the signpower function from Sections 1.2.3 - 1.2.5 share. In fact, commonly used

potential-flow coupling constraints use different forms of signpower functions, as we

will see further down. Figure 2.1 (a) depicts hi − hj as a function of qa with these

characteristics. The induced flow is not linear in the potential difference because

this kind of function accounts for the modeling of friction in the pipes. A positive

potential difference as a function of the flow is strictly increasing but convex: higher

flow values mean higher influence of friction. The other way round, for the same

reason, a positive flow as a function of the potential difference is strictly increasing

and concave. Equation (2.3) is also referred to as the potential-loss equation, because

it describes the pressure, or equivalently the energy, loss along a pipe. It is easy

to see that once constraints (2.3) are embedded in a Mathematical Programming

problem, the latter becomes non-convex, cf. Section 1.2.4. This is the case in most of

40

the models we consider in this chapter. Explicit forms of the potential-flow coupling

equation are the so-called Darcy-Weisbach equation,

hi − hj =
sign(qa)q

2
a · 8 · La · λa

π2g ·D5
a

, (2.4)

or the Hazen-Williams equation,

hi − hj =
sign(qa)|qa|1.852 · 10.7 · La

k1.852
a D4.87

a

, (2.5)

both of which include some constants like the gravitational acceleration g, or ones

depending on the pipe, such as the length La or the roughness coefficient ka de-

pending on the material of the pipe. In the denominator appears the diameter Da

of a pipe, which in optimal water network design becomes a discrete variable but

stays a constant in the operation case. The solutions to the Hazen-Williams equa-

tion for some discrete diameters are depicted in Figure 2.1 (b). The friction factor

λa = λa(qa) actually depends on the Reynolds number, which in turn depends on the

flow, in a nonlinear, but continuous manner. There are several, partly implicit for-

mulas treating the relation between friction factor and Reynolds number, for details

see again [BGS08]. The most simplifying approximation neglects the dependency of

the friction factor on the flow and thus treats the friction factor as a constant. This

is done in most optimization models, see, e.g., [GHHV12, VA13], but sometimes also

in simulation models. It can however be kept in the model, see, e.g., [MGM12]. As

well in the Hazen-Williams equation, the dependency of the pressure drop on the

flow is limited to the term sign(qa)|qa|1.852. Another downside of the above head-loss

equations can arise when studying their differentiability for qa = 0. The second

derivative of the Darcy-Weisbach function is discontinuous at the origin, while the

Hazen-Williams equation is not even second-order differentiable there. This can cre-

ate problems when relying on derivative-based optimization methods as in [BGS08],

which is why therein is used some kind of second order polynomial approximation

of the Darcy-Weisbach equation with constant friction factor. The Darcy-Weisbach

equation is often found with the substitution sign(qa)q
2
a = qa|qa|. The coefficients of

the Hazen-Williams equation are based on empirical data, while the Darcy-Weisbach

equation is a theoretical formula. To the best of our knowledge, there is no compu-

tational study about the accuracy in the final results of using either formula in the

context of the design and operation problems we consider in this text.

The pipe models seen so far assume a constant flow in a pipe, which is natural

in a stationary setting. When dealing with a dynamic problem, this can be modeled

even more accurately. A pipe model that allows for varying flow inside a pipe is based

41

qa

hi − hj

(a) Potential-flow coupling equation

qa

hi − hj

Da

(b) Discrete but variable diameters

Figure 2.1: Functions describing water dynamics in pipes

on the so-called water hammer equations, see, e.g [GZMA05]. This set of partial

differential equations describes the variation of the state vector (q, h) in function of

time and space (index a is dropped here),

∂h

∂t
+

c2

gA

∂q

∂x
= 0 (2.6)

∂q

∂t
+ gA

∂h

∂x
= −λ q|q|

2DA
, (2.7)

again with some coefficients among which are the diameter D and the cross-sectional

area A of a pipe, the propagation speed of the pressure wave c and the friction

factor λ, as before possibly depending on the Reynolds number. Note that when

one assumes constant pressure and flow over time, i.e., turns to the static case, (2.6)

implies constant flow in the pipe, and (2.7) becomes the Darcy-Weisbach equation

with ∂h
∂x

approximated by
hj−hi
La

. Here, just like the time dimension, that, as already

mentioned, is usually discretized in optimization models, the same can be done

in space, for example by implicit box schemes, see, e.g., [KL12]. However, a slight

modification of the underlying graph model is necessary, see, e.g., [MGM12]. In fact,

the flow in a pipe a = (i, j) is not constant anymore, so a single variable qa is not

appropriate. Choosing the length of a pipe as spatial step size in the discretization

scheme results in one flow value at the beginning of a pipe, as well as one at the end.

This can be modeled by intermediate nodes. For node i ∈ N let δ−i denote the set of

incoming pipes and δ+
i the set of outgoing ones. Then, consider the additional nodes

ia, a ∈ (δ−i ∪ δ+
i), which can be imagined to be attached to the graph between the

original node and the corresponding incident arc. We then have two flow variables

per pipe per time step, qnia and qnja . With this, the discretized versions of (2.6) and

42

(2.7) for a pipe a = (i, j) become

hn+1
i + hn+1

j

2τn
−
hni + hnj

2τn
+

c2

gAa
·
qn+1
ja
− qn+1

ia

La
= 0 (2.8)

qn+1
ia

+ qn+1
ja

2τn
−
qnia + qnja

2τn
+ gAa

hn+1
j − hn+1

i

La
=

− 1

2DaAa

(
λ(|qn+1

ia
|)qn+1

ia
|qn+1
ia
|

2
+
λ(|qn+1

ja
|)qn+1

ja
|qn+1
ja
|

2

)
. (2.9)

While equation (2.8) is linear, (2.9) is not, just like its static counterpart (2.3).

2.1.3 Pumps

On the design side, the problem that is usually attacked disregards pumps and thus

assumes that the underlying network is gravity-fed. In other words, a source node

has a higher elevation than the nodes to which it induces a flow. If a network

is fed with groundwater so that gravity does not suffice, or if the flow has to be

transported over very long distances and hence loses too much pressure along an

arc in order to satisfy the required minimum pressure level at the end node, certain

node potentials have to be raised. This can be done by pumps. Moreover, on the

operational side pumps can serve to fill tanks for intermediate storage purposes over

time (see Section 2.1.5 below).

A pump is usually modeled as an arc a = (i, j), so in particular there is a

flow qa passing through it. In comparison to pipes, pumps have a negligible length

and thus the matter of constant or variable flow in a pump is not encountered.

The flow through a pump is usually restricted in sign, that is, qa ≥ 0, allowing for

flows from i to j only. Moreover, the flow through a pump is commonly considered

semicontinuous, that is, either zero or in an interval [q
a
, qa], with q

a
> 0. This

already shows the need of a binary variable xa for a pump, switching it on (xa = 1)

or switching it off (xa = 0), i.e., acting like a closed valve (qa = 0, see below).

In the context of the design of gas networks, the authors in [HF15] present an

elegant overall MINLP formulation for nonlinear network flow problems exploiting a

rather simple static model for potential raising elements, i.e., pumps in the context

of water networks. The potential-flow coupling equation in [HF15] has the explicit

form hi − hj = αaqa|qa|κa , where αa and κa summarize all the physical aspects of

flow and pipe, containing as special cases also (2.4) and (2.5). The potential loss

on the left-hand side is manipulated into a potential raise by multiplying the whole

equation by minus one and adding a variable operating term,

hj − hi = −αaqa|qa|κa + βaya. (2.10)

43

Here, βa is a positive scaling factor that subsumes the physical characteristics of

the pump and ya is a non-negative variable. Thus, the product βaya represents the

increment of the hydraulic head of node i due to pump operation plus the head loss

through the pipe. This means that instead of losing some potential along the arc

representing a pump, at its head node, the flow can have a potential value strictly

higher than the one at its tail node. In other words, although the flow is going from

i to j, we can have hj > hi. The same equation with βaya ≤ 0 can be used to model

network elements that are able to reduce the pressure in some way. We will come

back to this model in Section 2.4.2.

A different pump model tries to replicate the characteristic curve of a pump.

More precisely, for a pump a = (i, j), the potential raise can be written as

hj − hi = Θa − ϑ1
aq
ϑ2a
a , (2.11)

where the parameters Θa, ϑ
1
a and ϑ2

a are chosen to approximate empirical pump

data. A typical characteristic curve is shown in Figure 2.2 (a). There are also

pumps that operate at variable speed wa ≥ 0. Basically, this quantity allows to shift

the pump’s characteristic curve in the plane and thus to manipulate the relation

between potential raise and flow through the pump. Equation (2.11) becomes

hj − hi = w2
a

(
Θa − ϑ1

a

(
qa
wa

)ϑ2a)
. (2.12)

Also for a variable-speed pump the parameters of its characteristic curve are esti-

mated through empirical data of the pump working at its nominal speed (wa = 1).

Equation (2.11) describes fixed-speed pumps that work at their nominal speed only.

Instead, second order polynomials are used to fit the characteristic curve of a pump

in [VA13].

The obvious differences between the modeling approaches (2.10) and (2.11)/(2.12)

can be explained by the discrepancy between network design and network operation.

When designing a network, the pump to be installed might be chosen from a certain

production series. A typical pressure raise that can be realized by the pumps of

such a series is shown schematically in Figure 2.2 (b). A very simple way to roughly

model this operation range is actually equation (2.10), provided the variable ya is

bounded appropriately. Things change when considering the task to operate an al-

ready existing pump in an existing network. The specific pump is already chosen

and has its own specific characteristic curve, which can be modeled quite accurately,

for example by equations (2.11) or (2.12), respectively.

Another important quantity in the context of pumps is their power consump-

44

qa

hj − hi

(a) Characteristic curve of a single pump

qa

hj − hi

(b) Operation range of a pump series

Figure 2.2: Pressure raise in networks with pumps

tion, which often appears in the objective function. The power consumption can

be modeled as proportional to the product of the pressure raise of a pump and the

flow through it, which adds a nonlinear equality constraint as in [GHHV12]. Other-

wise, an equation similar to (2.12) or again a polynomial of degree two is fitted to

empirical power consumption data at nominal speed.

Pumps are part of the active elements in a network and thus they allow for

some discrete decision, that is, turning them on or off. Being turned on or off has

implications on two aspects, one of which is the already mentioned semi-continuity

of the flow variables. The same is valid in an analogous fashion also for the speed of

pumps wa. The second aspect instead concerns the potential-flow coupling equations

(2.10) - (2.12), that are to be imposed only when the pump is working (xa = 1).

When xa = 0, the pump is not working, and in this case it is usually regarded to act

as a closed valve. The potential values at the two ends of the arc are then uncoupled

and do not follow any equation, usually ensured by big-M constraints, see also the

next section on valves. In order to avoid these combinatorial aspects, the authors

in [BGS08] make some modeling modifications. A single pump a = (i, j) in a graph

often models an aggregation of real pumps in the network. The individual pumps in

such a pumping station a = (i, j) have a common pressure raise hj−hi, but the flow

qa through the pumping station is the sum of the individual flows. Approximately,

the pressure raise of a pumping station becomes a degree of freedom independent of

the aggregated flow value. To accurately measure the power consumption of such a

pumping station, additional considerations about its efficiency are made. But all in

all, the benefit is that there are no equations that have to be turned on or off, thus

avoiding the use of big-M constraints.

45

2.1.4 Valves

Another set of active elements is given by valves. As for pumps, a valve is modeled

by an arc a = (i, j) with negligible length. There are models for different types

of valves with no unified terminology in the literature. The authors in [MGM12]

for example consider a total of four different types of valves. Valves can be used

to actively block the flow completely or to reduce the pressure or the flow in its

direction by a variable amount. They are usually modeled by a binary variable xa.

As an example consider the (rather simple) valve type that can be used to separate

two pipes, that is, to avoid that fluid can pass between the two of them. If q
a

and qa
denote the upper and lower bounds of the flow, an open (xa = 1) or closed (xa = 0)

valve state can be modeled by the big-M constraints

q
a
xa ≤qa ≤ qaxa

−Ma · (1− xa) ≤ hi − hj ≤Ma · (1− xa).

A closed valve forces the flow to be zero and decouples the two potentials, while an

open valve forces the potential values to be equal. Again in [BGS08], the authors

model one specific valve type without auxiliary binary variables. Namely, the valve

type considered allows to reduce the pressure by a variable amount, but only in the

direction of the flow. This behavior is guaranteed by the inequality

(hi − hj)qa ≥ 0.

2.1.5 Tanks

Tanks can make the operation of the network more flexible. In a dynamic setting,

where the demand at consumer nodes can vary in time, water can be stored in a tank

during a period of low demand and be extracted from it to satisfy peak demands.

In the static setting of [GHHV12] tanks are modeled as nodes in the graph that

have a variable demand, which can also be negative so as to account for a positive

initial tank filling. The water in a tank is usually not pressurized, which means the

pressure head is zero, so that the potential value hi represents the elevation head

only. Accordingly, in [GHHV12] the potential value of the tanks is kept fixed as for

reservoirs. In a dynamic setting, variable potential values can be used to describe

the filling level of the tank at different points in time, which can then be linked to

the tank’s variable demand of a time period. A simplified version of the model for

46

tank i ∈ N in [BGS08] is given, for example, by∑
a∈δ−i

qna −
∑
a∈δ+i

qna = eni (2.13)

eni =
1

τn

(
hn+1
i − hni

)
Ai, (2.14)

with eni denoting the variable volumetric tank inflow and Ai being the cross-sectional

area of the tank. A quite detailed tank model that includes binary variables is found

in [VA13]. Unless the discretized water hammer equations (2.8)-(2.9) are used, the

tank filling equations constitute the most important point where subsequent time

periods are coupled. This fact is exploited, for example, in [GNSK+15], in order to

apply an algorithm based on Lagrangian decomposition relaxation. In Corollary 2.2,

we will provide a simple theoretic result for certain networks with tanks modeled by

(2.13) - (2.14). Note that it is also possible, see, e.g., [MGM12], to model tanks as

arcs in the graph, although this is far less common and essentially equivalent.

2.2 Convex substructures

As mentioned earlier, the optimization problems treated in this chapter are in the

problem class of non-convex MINLPs. However, a recurring feature is the possibility

of solving certain subproblems by convex optimization methods.

Consider a static network as in Section 2.1 with no active elements and with

fixed pipe diameters, that is, a network with a flow variable qa for each arc and a

potential variable hi for each node. Denote the set of source nodes by N src and

assume further that the potential values are fixed to some value hsrci at source nodes

i ∈ N src. Finally, assume that the flow conservation constraints (2.1) hold at each

non-source node for a given set of fixed demands, and that each arc satisfies a

potential-flow coupling equation like (2.3), where the only requirement about the

function Φa(·) is strictly increasing monotonicity. Formally, this gives rise to the

feasibility problem∑
a∈δ−i

qa −
∑
a∈δ+i

qa = di ∀ i ∈ N \ N src (2.15)

hi − hj = Φa(qa) ∀ a ∈ A (2.16)

hi = hsrci ∀ i ∈ N src (2.17)

qa ∈ R ∀ a ∈ A (2.18)

hi ∈ R ∀ i ∈ N . (2.19)

47

a1

a2

i j

Figure 2.3: Simple example of a network containing a circle

The relation between this system of equations and one of its reformulations as a

strictly convex optimization problem has originally been studied in [CCH+78], and

the main result therein has been slightly generalized in [Rag13]1. It turns out that

the solution space of the above set of |A| + |N | equations in the same number of

variables is a single point2, and we state the latter result here for completeness:

Theorem 2.1. If the functions Φa(·) are strictly monotonically increasing, system

(2.15) - (2.19) has a unique solution (q, h) ∈ R|A|+|N |.

A slightly different version of the problem is studied in [HF15] in the context of

gas networks; the flow conservation constraint is imposed at every node (also source

nodes) but the node potentials are not fixed there. The number of variables and

equations stays the same, and the existence of a solution is given for balanced flows

only, that is,
∑

i∈N di = 0. In that case, one flow conservation constraint at a node

becomes redundant and the solution is a one-dimensional subspace. More precisely,

the vector of flow variables q is unique and the vector of potential values h is located

on a straight line in R|A|+|N |. It is easy to deduce that if one fixes the potential at

any node, for example a source node, also the potential values become unique here.

The most crucial assumption leading to the striking argument in a potential

proof of Theorem 2.1 is the monotonicity of the function Φa(·). More precisely,

in absence of the potential-flow coupling constraint (as in classical network flow

models), a duplicity of flows can arise in the presence of circles only. By a circle

in a graph we mean the existence of two different (not necessarily directed) paths

between two nodes. As an illustrating example consider a simple (sub-)graph3 as

in Figure 2.3, see also [PT]. Flow conservation implies that the relation between

the flow values qa1 and qa2 is a line with negative slope, say qa2 = q0 − qa1 for some

q0 ∈ R. Taking into account also the potential-flow coupling constraints (2.3) we

1In that paper, Φa(·) is assumed to be also continuously differentiable, but one can check that
this assumption is not used in the proof of the theorem.

2Strictly speaking, in [Rag13], only the uniqueness of the solution is shown. However, its existence
can be derived in a similar way as in [HF15].

3Actually, this is a multigraph, the two arcs a1 and a2 are to be thought of as two different paths
from node i to node j.

48

get

Φa1(qa1) = Φa2(q0 − qa1). (2.20)

The function on the right-hand side of (2.20) is now strictly decreasing in qa1 and as

such has exactly one intersection point with the strictly increasing function on the

left-hand side. Such considerations, leading to Theorem 2.1, and resulting methods

are implemented in widely used software packages like EPANET [EPA], designed

for numerically calculating flow and potential values in pressurized water networks.

As already mentioned, problem (2.15)-(2.19) represents a network with only

pipes with fixed diameters and relaxed bounds on the variables. However, even

when we allow for discrete variable diameters, it occurs as a leaf problem with

relaxed bounds in a search tree, i.e., when all integer variables have been fixed,

cf. Definition 1.3 and Remark 1.7. In such a situation, a subproblem of this type

can in principle be solved to global optimality by a local NLP solver. The fact

that the bounds are relaxed does not create a problem in the exploitation of this

property, because their satisfaction can easily be checked after having obtained a

unique solution (as done, e.g., in [Rag13]). Also when the potential values are not

unique but located on a line as in the slightly different version of (2.15)-(2.19) studied

in [HF15], it is easy to check whether there is one solution inside the bounds. As

well in other situations the uniqueness of the solutions in subproblems can occur.

Consider, for example, a network with working pumps that follow equation (2.11).

Here, the pressure gain hj − hi on arc a = (i, j) is strictly decreasing in the flow

qa, meaning that the pressure loss is strictly increasing. At least this is true in the

domain of qa, so when relaxing the bounds maybe the function has to be extended

conveniently, in such a way that it stays strictly increasing on R. However, also a

network with such pumps has a unique solution in its leafs, i.e., when the discrete

decisions about which pumps are actually working and which are switched off have

been taken.

The situation becomes different when pumps follow models (2.10) or (2.12).

What actually happens here is that a degree of freedom is added. In the equa-

tion for a fixed-speed pump (2.11) the pressure raise is uniquely determined by the

unique flow through the pump. This is not true for variable-speed pumps, where the

pressure raise can be influenced by variation of the speed wa. The same happens for

model (2.10), where the pressure raise can be influenced by variation of the variable

ya independently of the flow qa. Uniqueness or just convexity get lost here. Staying

with the previous example, imagine the arc a2 in Figure 2.3 to be a pump obeying

49

equation (2.10). Equation (2.20) then becomes

Φa1(qa1) = Φa2(q0 − qa1) + βa2ya2 (2.21)

for some βa2 ∈ R, which is a non-convex subset of R3 in general. A remedy, just

like in [HF15], is to discretize the degree of freedom, i.e., to allow the variables ya or

wa to take values in a discrete set only. Then, when they are fixed to one of these

values in a leaf of a search tree, the functions describing the pressure loss are strictly

increasing in the flow qa and uniqueness or convexity can be made use of.

We believe that there is a lot of potential in the property of uniqueness, or

convexity, which has partially been exploited in water network optimization as we

will see later. It might also be a key feature when developing techniques for dis-

cretized dynamic problems in water network optimization. For example, one can

prove uniqueness of the solution when tanks are coupled by an equation of type

(2.14) in a passive network with relaxed bounds considered over several discrete

time periods. We have not seen a formalization of such a result yet, and to conclude

this section, we give one as a corollary of Theorem 2.1. We denote by N T the set

of nodes that represent tanks4 and the initial tank filling of i ∈ N T by hiniti . We

then study the extension of (2.15) - (2.19) to several discrete time periods, coupled

by (2.13) - (2.14):

Corollary 2.2. For N ≥ 1 and under the assumptions of Theorem 2.1, the system∑
a∈δ−i

qna −
∑
a∈δ+i

qna = dni ∀ i ∈ N \ (N src ∪N T), n ∈ [N] (2.22)

hni − hnj = Φa(q
n
a) ∀ a ∈ A, n ∈ [N] (2.23)

hni = hsrci ∀ i ∈ N src, n ∈ [N] (2.24)∑
a∈δ−i

qna −
∑
a∈δ+i

qna = eni ∀ i ∈ N T , n ∈ [N] (2.25)

eni =
1

τn
(hn+1

i − hni) ∀ i ∈ N T , n ∈ [N] (2.26)

h1
i = hiniti ∀ i ∈ N T (2.27)

qna ∈ R ∀ a ∈ A, n ∈ [N] (2.28)

hni ∈ R ∀ i ∈ N \ N T , n ∈ [N] (2.29)

hni ∈ R ∀ i ∈ N T , n ∈ [N + 1] (2.30)

eni ∈ R ∀ i ∈ N T , n ∈ [N] (2.31)

has a unique solution (q, h, e) ∈ R(|A|+|N |)·N+|NT |·(N+1).

4We assume N src ∩N T = ∅.

50

Proof. We use induction over N . If N = 1, by Theorem 2.1 we know that the

subsystem composed by (2.22) - (2.24) and (2.27) has a unique solution. Then

(2.25) uniquely determines the values e1
i ∀ i ∈ N T , that together with (2.26) uniquely

determine h2
i ∀ i ∈ N T . Now assume N ≥ 2 and that the Corollary is valid for N−1,

i.e., the system of equations composed of (2.22) - (2.31) for n ∈ [N − 1] admits a

unique solution. In particular, the values hNi are uniquely determined ∀ i ∈ N T .

This fact together with (2.22) - (2.24) for n = N uniquely determines the values qNa
∀ a ∈ A and hNi ∀ i ∈ N \ (N src∪N T) by Theorem 2.1. Just like before, uniqueness

of eNi and hN+1
i ∀ i ∈ N T can be deduced.

2.3 Solution approaches

In this section we show in more detail what kind of approaches have been presented

in the literature for solving water network design problems on the one hand, and

water network operation problems on the other. All of the following are based on

the general-purpose MINLP techniques presented in Section 1.2.2 - 1.2.5.

2.3.1 Design in the literature

On the design side, one specific formulation together with a set of literature and

real-world instances has been studied by several authors. As mentioned earlier,

active elements like pumps, valves, and tanks are disregarded. In return, we can

choose the diameter for each pipe from a discrete set. The formulation basically

consists of the flow conservation constraint (2.1) for each non-source node and the

Hazen-Willliams equation (2.5) for each pipe. The diameter Da on a single pipe a

is a variable constrained to belong to a discrete set {Da,1, . . . , Da,ra}. The solutions

to the Hazen-Williams equation for some discrete diameters have been shown in

Figure 2.1 (b). To each diameter Da,` is associated a positive unit length cost Ca,`

in such a way that costs increase with the diameter. Finally, there are lower and

upper bounds on the flows, cf. (2.2), as well as lower and upper bounds on the node

potentials, and the potentials at source nodes are fixed. In an MINLP formulation,

the membership of the diameter to a discrete set can be represented by introducing

additional binary variables xa,` and using SOS-1 type equations. We give here an

explicit MINLP formulation, because we will need it again in Section 2.6:

min
∑
a∈A

La ·
ra∑
`=1

Ca,`xa,` (2.32)

s.t.
∑
a∈δ−i

qa −
∑
a∈δ+i

qa = di ∀ i ∈ N \ N src (2.33)

51

qa|qa|0.852 10.7 · la
ka ·D4.82

a

= hi − hj ∀ a ∈ A (2.34)

ra∑
`=1

xa,` = 1 ∀ a ∈ A (2.35)

ra∑
`=1

xa,`Da,` = Da ∀ a ∈ A (2.36)

−π
4
va ·

ra∑
`=1

xa,`D
2
a,` ≤ qa ≤

π

4
va ·

ra∑
`=1

xa,`D
2
a,` ∀ a ∈ A (2.37)

hi ≤ hi ≤ hi ∀ i ∈ N \ N src (2.38)

hi = hsrci ∀ i ∈ N src (2.39)

xa,` ∈ {0, 1} ∀ ` ∈ [ra], a ∈ A (2.40)

qa ∈ R ∀ a ∈ A (2.41)

hi ∈ R ∀ i ∈ N . (2.42)

As seen in Section 2.2, if the diameters were fixed, this would result in a convex

(feasibility) problem. Convexity does not hold for a variable diameter, especially

not when it is discrete, cf. Figure 2.1 (b), and thus (2.32) - (2.42) is a non-convex

MINLP. As mentioned, there is a set of 9 instances for the design problem, out of

which 4 are smaller literature instances and 5 are larger real-world ones representing

water networks of three Italian cities, one of which is counted three times due to

three different diameter sets. These instances can be obtained at [LabOR], their

characteristics are subsumed in Table 2.1. The set of available diameters is actually

the same for each pipe in each instance, i.e., ra is constant over a ∈ A.

The nonlinear branch-and-bound algorithm implemented in BONMIN has been

applied to these instances in [BDL+11]. Remember that this acts as a heuristic

solver for non-convex MINLPs, cf. Section 1.2.2. Several amendments to the model,

on the one hand, and to the algorithm itself, on the other hand, were made. For

Da

Ca

Figure 2.4: Fitted polynomial and convex hull of diameter costs

52

qa

hi − hj

q̄a

(a) Convex relaxation of a positive head loss

qa

hi − hj

(b) Head loss of a pipe-valve-sequence

Figure 2.5: Relaxations of the potential-flow coupling constraint

example, a fitted polynomial Ca(Da) is used as objective function instead of the sum∑ra
`=1 xa,`Ca,` in order to get a smooth function. Moreover, this function usually

produces tighter bounds because the optimal cost value for pipe a of some NLP-

relaxation is a point on the graph of Ca(Da) instead of just a point in the convex hull

of the points (Da,1, Ca,1), . . . , (Da,ra , Ca,ra), see Figure 2.4. However, the polynomial

is not chosen to be an exact fit in the arguments {Da,1, . . . , Da,ra}, which is why the

fitted objective is only used to guide the search in the tree, while the real objective is

used to calculate the cost of integer feasible solutions. This is a nice example of how

problem specific solution paradigms can give rise to enhancements of general-purpose

solvers. Indeed, the option of working with two objective functions was added to the

implementation of BONMIN afterwards. Also the implementation of proper SOS-1

branching in BONMIN, which can be used instead of the binary requirement of the

variables xa,`, was stimulated by the water network design application.

A modified LP/NLP-based branch-and-bound framework that exploits the con-

vexity structure presented in Section 2.2 is proposed in [Rag13]. This algorithm is

then exact for the non-convex design problem. There are three crucial points in

the approach. First, each arc in the network is cloned as many times as there are

diameters available on it. One therefore gets much more potential-flow coupling

constraints, but each of them is given by a univariate function (because the diam-

eter on a cloned arc is fixed, see Figure 2.1). Second, for each arc, a record of the

flow direction is then kept by explicitly introducing an additional binary variable

indicating the direction. The gain of both reformulations above is that the result-

ing non-convex constraints can easily be relaxed to two convex constraints, because

only an either concave or convex part of the function Φa(·) has to be taken care of.

For example, for a positive flow qa with upper bound qa, these two constraints are

53

precisely

hi − hj ≥ Φa(qa) and hi − hj ≤
Φa(qa)

qa
· qa.

This situation is depicted in Figure 2.5 (a). In this way, in [Rag13] a convex MINLP

is obtained that is a relaxation of the original MINLP (2.32) - (2.42). A branch-and-

cut scheme as in an LP/NLP-based branch-and-bound algorithm is applied to such a

convex MINLP relaxation. Instead of solving the associated NLP of a leaf problem,

and this is the third crucial point, the unique solution to the feasibility problem

stated in Section 2.2 is found. If this unique solution additionally satisfies flow and

potential bounds, the node is feasible for the original non-convex MINLP. In this

way a stronger condition, directly related to the original MINLP, is tested instead

of just solving the sub-NLP of its convex relaxation. If the bounds are violated, the

node is eliminated from the search tree by some cut. Note that a globally optimal

solution to the non-convex MINLP is found since the objective function depends on

the integer variables only.

We now want to present the computational results that were reported in con-

clusion with the two algorithms presented above applied to the described water

network design instances. We also include the results of applying plain SCIP, i.e.,

spatial branch & bound, to these instances, without any exploitation of problem

structure, reported in [Vig12, Sec. 8.2], and updated in [Vig13b]. The results of

these three different approaches are shown in Table 2.2. All reported results were

obtained on different computers and with respect to some time limit and in one case

with respect to an additional memory limit in terms of branch-and-bound nodes.

The machine characteristics are given in the respective column. The best lower

and upper bounds found are reported. For the BONMIN-based approach in the

second column we obviously have no lower bounds due to the heuristic nature of

the approach. The algorithm in [BDL+11] reached the time limit in all except

the first instance. The results of the exact approach of [Rag13], for brevity called

LP/CVXNLP, are given in columns 3 and 4. Here, an optimal solution is found in

all of the four smaller literature instances, as a side effect certifying the optimal-

ity of the heuristic solutions in column 2. For the larger instances, the algorithm

LP/CVXNLP is not able to terminate within the specified limits, but in any case

finds feasible solutions, that, except for the instance pescara, are not better than the

solution found by the BONMIN-based algorithm. Taking into account the spatial

branch-and-bound algorithm of SCIP in columns 5 and 6, there appear some incon-

sistencies. The reported optimal solution of the small instance blacksburg is smaller

than the optimal solution found by LP/CVXNLP. In addition, the optimal solutions

of foss poly 0 and foss iron are below the lower bounds given by LP/CVXNLP. We

54

can only explain these inconsistencies with numerical issues in either of the two

algorithms. One source of these issues might be the reformulation techniques used

in SCIP, see Section 1.2.4, which sometimes produce slight infeasibilities [Vig13a].

The approach LP/CVXNLP is the only approach that makes use of the convexity

property described in Section 2.2. A clear advantage over the other two approaches

presented in the above summary of computational results cannot be seen. However,

given the heterogeneous experimental setups, the reported results are not suited for

making a truly fair comparison.

2.3.2 Operation in the literature

The full-scale problem of optimal water network operation appears to be a rather

hard task. By full-scale we mean being based on a time (and space) discretized

formulation. Until recently, to the best of our knowledge, there had not been any

successful solution approaches for this complete form in the literature. Three sim-

plifications had been proposed, which we will present in the following. After that,

we will come to a more recent approach that combines optimization and simulation

techniques and does not simplify the full-scale problem. Unfortunately, there does

not seem to be a unified test set, which makes a concise comparison, not only of the

performance of the algorithms, but also of their practicability, difficult.

The first simplification is obtained in [GHHV12] by dropping the time dimension

and regarding a static operation problem. Such a problem may arise as subproblem

in the full-scale task, possibly useful in heuristic approaches to the latter. At the

basis is a network model with fixed-speed pumps following equation (2.11), valves

that can be closed or reduce the pressure in the direction of the flow, and tanks with

a fixed initial filling level. The pipes have a fixed diameter and the potential-flow

coupling equation is given by (2.4). The objective function is the sum of the cost of

water purchased at source nodes and the cost of the power consumption of pumps.

An innovation of the study is the introduction of the concept of real and imaginary

flows. It is observed that due to valves, it is possible that actually no water is

present at certain nodes. Enforcing the potential-flow coupling constraint on an arc

that is incident to such a node, which means inducing a flow on that arc, is wrong.

If no water is present at a node, no flow emerging from it can be induced. The

concept of real and imaginary flows is modeled with the help of additional binary

variables. Some interesting preprocessing steps for that model are also presented,

one of which can be applied to sequences of pipes and valves. Due to the presence

of valves that can reduce the pressure in the direction of the pipe, the pressure loss

of an entire pipe-valve-sequence is not described by the Darcy-Weisbach equation

itself but by some relaxation of it, see Figure 2.5 (b). With some extra effort,

55

this union of two convex sets can be modeled by convex constraints. Again, as in

[Rag13], the potential-flow coupling function’s property of being “half-concave” and

“half-convex” is exploited. The resulting MINLP is solved by using SCIP, applying

the approach to two real-world networks. It is tested on different scenarios in the

two networks, given by different initial tank fillings and the forecast demands of

different time windows of a day. The larger of the two networks consists of 88 nodes

and 128 arcs, resulting in a program with about a hundred binary variables (without

presolve). The most difficult scenario requires about half an hour of computing time.

When applying the presolving steps, the computation times reduce drastically. All

of the tested scenarios are solved within less than two minutes of computation time,

on average much faster. A natural question to ask is how the solution method in

[GHHV12], that is, the spatial branch-and-bound algorithm of SCIP, works on the

full-scale operation problem. The authors reported that already going up to the

full-scale problem with only two or three time periods is troublesome with the - at

that time - current version of SCIP [Gle13].

Another simplification of the full-scale operational problem is obtained by piece-

wise linearly approximating the nonlinear functions in the time discretized model, as

shown in [MGM12] and [GKL+11], or in more detail in [Mor13]. The model therein

mainly consists of flow conservation constraints (2.1) adapted to time-dependent

variables, potential-flow coupling constraints (2.8) and (2.9) and pump equations

(2.12). As mentioned, four different types of valves are modeled and two types

of constraints on each tank, that are modeled as arcs, are imposed. The authors

also impose a terminal filling level of each tank and are able to model the so-called

breathing. This technical requirement imposes that a tank has to be filled and emp-

tied completely for a given number of times over the considered time horizon. Fi-

nally, there are additional linear constraints that account for minimum runtimes and

downtimes of pumps. Preprocessing techniques, see Section 1.2.5 and [GMMS12],

are used to approximate all nonlinear functions within a controlled error bound of

10−2. Some results on the comparison between the different models for piecewise

linear functions especially in the water network context are reported in [GMMS12].

The winning method therein is the incremental method, which is also the method

of choice in [MGM12] and [GKL+11]. The tests are conducted on three networks of

varying size, optimized over a time horizon of either four hours divided into 12 time

steps or one day divided into 24 hourly steps. It is interesting to note that there is

some flexibility of what is represented by the objective function, according to the

underlying application. So, in some tests, the objective function is chosen to be the

minimization of the number of tanks with a filling level below a certain limit, so as

to maximize the supply guarantee of the network. In other cases, the overall power

consumption is minimized. As we have seen earlier, also the purchase cost of water

56

at source nodes can be taken into account in the objective function. The largest

considered network consists of 25 arcs, resulting in an approximating MILP with

almost 11,000 binary variables, for which an MILP solver finds an optimal solution

within 694 CPU seconds. Further computational results can be found in [Mor13,

Sec. 8.1].

A MILP approach through piecewise linear approximations is also presented in

[VA13]. Besides the Darcy-Weisbach equation there are second-order polynomials

that represent the characteristic curve of pumps with fixed-speed only, while the

empirical power consumption of a pump is fitted by (linear) polynomials of degree

one. The objective function is again a combination of the cost of purchased water and

the power consumption of pumps. The nonlinear univariate functions are piecewise

linearly approximated by a modification of the convex combination method. This

modification was proposed in [VN09] and observes that in SOS-2 situations as for

piecewise linear approximations, the required number of auxiliary binary variables

is actually only logarithmic in the number of approximating line segments. The

formulation is further strengthened by adding valid inequalities. In addition, the

authors actually use a piecewise linear relaxation as described in [GMMS12] rather

than an approximation, see again Figure 1.4 (b). The test network consists of 30

arcs, and the time horizon of one day is divided into 5 time steps. The reported

results consider linear relaxations based on a number of approximation intervals

ranging from 2 to 8. An MILP solver terminates at an optimal solution in the range

of less than 30 seconds.

Computational results obtained with the very detailed model developed in

[BGS08] are reported in the follow-up paper [BGS09]. As stated at the end of

Sections 2.1.3 and 2.1.4, there are ways to approximate the MINLP model with-

out introducing binary variables. For their large network with 1,481 nodes and

1,935 arcs arising from the drinking water distribution network in the city of Berlin,

the authors apply purely nonlinear programming techniques without any kind of

branching, thus no search trees are explored. Due to the non-convexities that are

still present, this leads again to only locally optimal solutions of the problem with

discrete aspects neglected.

In [NSGAE15], an approach for the full-scale operational problem with fixed

speed pumps only, combining Mathematical Programming techniques with simula-

tion tools, is presented. In a master problem, the hydraulic constraints are disre-

garded completely and only requirements on the compatibility of the discrete de-

cisions related to pumps and tanks are imposed. This leads to an MILP that can

be solved by an MILP solver. However, whenever an integer feasible solution is

found, the hydraulic simulator EPANET is called and verifies whether the hydraulic

constraints are satisfied by this discrete configuration, or not. In principle, this ap-

57

proach is an exact approach for the considered problem. We note that implicitly, it

makes use of a property that is closely related to the result of Corollary 2.2. The

approach is thus somewhat related to LP/CVXNLP from the previous section in

the context of water network design. One difference, that is of more technical na-

ture, is that a simulation tool instead of an NLP solver is used to verify the discrete

configuration, or equivalently, to solve the leaf problems as NLPs. A disadvantage

could be seen in the fact that the hydraulic constraints are disregarded completely

and thus cannot contribute to the computation of a dual bound during the tree-

search. In the MINLP framework of LP/CVXNLP instead, relaxed versions of the

hydraulic constraints are present throughout the whole algorithm. In [NSGAE15],

computational results on two networks are reported, the larger one with 388 nodes

and 432 pipes. There is not a single case in which the algorithm terminates before

hitting the imposed time limit of one hour, and thus no provably optimal solutions

are provided. Nevertheless, the proposed combination of MILP and simulation soft-

ware is appealing, and we believe that the incorporation of MINLP techniques in

order to improve dual bounds during the search process is a promising way to go.

2.4 Piecewise linearizations of the potential-flow

coupling equation

We have surveyed a class of challenging optimization problems and the attempts

to solve them. The problems exhibit some differences among them, but all have in

common the underlying nonlinear network flow model. The potential-flow coupling

constraint is present in almost all formulations (and if not, its dynamic extension

(2.8)-(2.9) is), and this constitutes one of the main difficulties.

In this section, we discuss a very simple computational example. Consider the

water network design instance shamir from Section 2.3.1. The network is depicted in

Figure 2.6. Node 1 is the only source node and water is transported from there to all

the other (consumer) nodes. Originally being a water network design instance, the

shamir network does not have any active elements. In that figure are also listed the

diameters on each pipe, that we consider as fixed for the moment. This diameter set

actually represents the optimal diameter set of the water network design problem,

which on this small instance can be determined by any of the three methods pre-

sented in Section 2.3.1. Since this diameter set is optimal, it is in particular feasible,

i.e., leads to a feasible (and unique) solution (q, h) that satisfies the flow conser-

vation constraints, the potential-flow coupling constraints (that is, system (2.15) -

(2.16)) and the bounds on flow and pressure, and can be determined by any (also

local) NLP solver. The example can be seen as a subproblem of a water network

58

a1a2

a7

a8

a6

a5

a3

a4

123

45

67

Da [mm]
a1 457.2
a2 254.0
a3 406.4
a4 101.6
a5 406.4
a6 254.0
a7 254.0
a8 25.4

i hi [m]
1 201
2 180
3 190
4 185
5 180
6 195
7 190

Figure 2.6: The shamir network

optimization instance and helps to illustrate the physical bottleneck in many such

subproblems. This bottleneck is constituted by the lower pressure bounds. For ex-

ample, decreasing the diameter on arc a6 to the next available discrete one from the

water network design instance would result in a network flow that does not violate

the capacity on that arc, but violates the lower bound on the pressure of node 7.

This again can be certified by any NLP solver. The same effect can be obtained by

reducing the diameter on several other arcs.

2.4.1 MILP- vs. NLP-feasibility

In the following, we will distinguish between NLP- and MILP-feasibility of certain

subproblems of an original MINLP in the context of water networks. To be more

precise, assume that the underlying non-convex MINLP is of the form (1.18) - (1.21)

and that its MILP-approximation is given by

min cTx (2.43)

s.t. Ax+Wz ≤ b, (2.44)

x ∈ Rn−p × Zp, (2.45)

z ∈ {0, 1}p̃, (2.46)

Now when fixing the original discrete variables, that is, the last p components of

the vector x to some value x̂(p), (1.18) - (1.21) becomes an NLP, corresponding

to one of its leaf problems, while (2.43) - (2.46) remains an MILP. By NLP- and

MILP-feasibility, we mean the feasibility of these two subproblems, respectively,

with respect to a certain x̃(p). A question that arises is the one about the relation

59

between NLP- and MILP-feasible solutions, i.e., are there solutions that have, for

example, both of these attributes? When as a solution we mean the collection of

discrete decision values, i.e., x̃(p), plus flow and potential values, the answer to that

question is rather negative. Indeed, when approximating all nonlinear functions by

piecewise linear ones, the only points that lie on the graph of both functions are the

breakpoints. That means that only a solution that takes values exclusively in the

set of breakpoints would be both NLP- and MILP-feasible. Inside the continuous

domain of the flow and potential variables, however, this is a fairly small set of

points.

Instead, if as solution we intend only the discrete decision values x̃(p) (because

from a practical point of view the flow and pressure variables are not really deci-

sion variables), the situation simplifies. Therefore, we turn to the shamir network

from above. Imagine to have an MILP-approximation of the potential-flow coupling

equations for the shamir network with diameters fixed to the optimal diameter set,

as above. Since the potential-flow coupling function is convex in |qa|, the energy

loss will be overestimated by this approximation, cf. Figure 1.4 (a). The worse the

approximation is, the higher will be this overestimation. In fact, when fixing the

diameters to the optimal diameter set and using five linearization points per pipe in

an MILP model for our example, any MILP solver certifies the infeasibility of the

optimal (and thus NLP-feasible) diameter set. The bottleneck are again the lower

pressure bounds, this time at nodes 3, 5, 6 and 7. So, MILP approximations lead

to conservative solutions in general, because they overestimate the energy loss in a

network. The worse the approximation is, the more conservative gets the solution.

If one keeps the approximation coarse as to keep the number of auxilary binary vari-

ables low, fewer diameter configurations become feasible, which is why it becomes

harder to find feasible solutions in the search tree. Refining the approximation aug-

ments the number of binaries and thus slows down the MILP solver. The implicit

use of conservative solutions thus leads to this side effect of MILP-approximations

of water network optimization problems in practice.

Another characteristic of the underlying nonlinear network flow model, which

here leads to purely algorithmic considerations and does not aim at the discrepancy

between NLP- and MILP-feasibility, is given by the property described in Section 2.2.

We have seen that in some situations a nonlinear network flow in a subproblem (like

the shamir network above) is unique, provided it is feasible at all. It seems sensible to

compute this solution by a local NLP solver in polynomial time, instead of exploiting

other methods. Take, for example, the classic formulation for the water network

design problem (2.32) - (2.42) described in Section 2.3.1. It turns out that an MILP

approach via piecewise linear approximations performs terribly bad, see Section

2.4.3. Indeed, even when linearizing the Hazen-Williams equation with only a few

60

linearization points, no MILP-feasible solution is found by an MILP solver within a

reasonable time limit on medium size instances. This is because the leaf problems

in the search tree are either MILP-infeasible or have exactly one solution (note that

as well the linearized version of the potential-flow coupling constraint is strictly

increasing). Certifying MILP-infeasibility or searching this unique solution with an

MILP formulation cannot be a good idea. The same conceptual problem occurs

if the subproblem with an at most unique solution is solved by spatial branching.

An NLP-feasible solution will be found in at most one of the many branches. An

additional difficulty in design problems often arises from the fact that the objective

function is constant in such a subproblem, since it only depends on the diameter

choices. This results in exploring a sub-tree without the guidance of the objective

function. We conclude that in this situation the most promising thing to do is to

exploit the uniqueness of the leaf problems by some combination of integer branching

and nonlinear programming techniques (see Section 2.2 and references therein).

2.4.2 The role of pumps

At this point, it is possible to illustrate one aspect of the role of pumps. Abstracting

from the original physical setting of the shamir instance, imagine that there is a pump

associated with arc a3, modeled by the equation

h4 − h2 = −sign(qa3)|qa3|1.852 · 10.7 · La3
k1.852
a3

D4.87
a3

+ y, (2.47)

where y ∈ R+, cf. equation (2.10). Obviously, the network with fixed optimal

diameters still has an NLP-feasible solution. But also decreasing the diameter on arc

a6 leads to an NLP-feasible solution now, namely with y > 0. Adding another such

virtual pump on arc a2 turns feasible also the aforementioned MILP approximation

of the optimal diameter set with five linearization points, that before was infeasible.

In this case, pumps could also be placed on arcs a2 and a5 or just on arc a1 in

order to achieve feasibility. In other words, pumps are somehow able to compensate

for the approximation error made by MILP approximations. This could lead to

computational advantages by producing more quickly diameter configurations that,

tested a posteriori by solving convex leaf problems, show no need of pump usage.

Of course, this depends on the cost of the pumps that is, however, somehow difficult

to evaluate in a static framework like the design one. Namely, taking decisions on

pump usage in the design context might imply operation problems that are feasible

only if the pump is always used. Thus, the cost saved for installing pipes might be

spent for the continuous use of pumps. We will analyze this latter issue in more

detail in Section 2.5.

61

An interesting paradox is encountered in the context of pumps that are modeled

by (2.47). Imagine to have some water network optimization problem for which all

subproblems with fixed integer variables possess the convexity or uniqueness struc-

ture described in Section 2.2. Again, take for example the classic water network

design problem and imagine to have pumps modeled by equation (2.47) in the net-

work. In order to be able to use the aforementioned algorithmic combination of

integer branching and exploitation of uniqueness, one would have to discretize the

variable y as in [HF15], so that in a leaf problem with fixed discrete decisions, it

becomes a constant. Otherwise, the introduced pump destroys the convexity of the

subproblems, cf. (2.21). This is not true for an MILP-approximation of the problem.

Because everything is linear in such a model, the additive y does not destroy any

convexity. Discretizing the variable y instead would again lead to the same situation

as in an MILP approximation of the water network design problem without pumps:

a search tree where subproblems solvable in polynomial time are instead attacked

by integer branching.

Another aspect related to the role of pumps is more of algorithmic nature. As

seen above, they actually have the ability to augment the number of feasible integer

configurations in a search tree. It is in general easier to find feasible solutions. This

algorithmic advantage can be seen directly. In an equation like (2.47), y acts as a

slack variable. It becomes easier to find a solution somewhere above the graph of the

Hazen-Williams function instead of exactly on that graph. Another piece of evidence

of this can be found in [GHHV12]. One of the several effects of presolving therein

is that some Darcy-Weisbach constraints are replaced by their relaxations depicted

in Figure 2.5 (b). Instead of being constrained to find a feasible point on the graph,

we can find it somewhere above (or below) the graph, and the performance of the

algorithm is drastically improved by presolving. Also pumps with variable speed

in an operational setting somehow allow to augment the set of feasible solutions.

All in all, it depends of course on the cost of the above slacks, whether an overall

procedure is improved or not.

2.4.3 Computational experiments

Another way of approximating (sub-)problems in a manner that the space of feasible

solutions is augmented is to use piecewise linear relaxations instead of piecewise

linear approximations. In this way, it should become easier to find feasible solutions.

In [GMMS12] it is reported that the switch from piecewise linear approximation to

piecewise linear relaxation does not result in an overall speed-up for the problem

considered in that paper, i.e., a water network operation problem minimizing the

power consumption of pumps. In this concluding section, we want to report the

62

results of a small experiment with piecewise linear approximations and relaxations

of the water network design problem described in Section 2.3.1. We proceed as

in Section 6.3 in [BDL+11] as for how to obtain a piecewise linear approximation.

Without going too much into detail, this amounts to approximating the inverse

of the Hazen-Williams equation for each available diameter, and then deactivating

the constraints for those diameters that are not chosen, with big-M constraints. In

the inverse of the Hazen-Williams equation, the flow is expressed as a function of

the head loss. After having computed a (non-positive) lower and a (non-negative)

upper bound on the head loss, we distribute K breakpoints on each half axis. By

taking the inverse, we can use this segmentation for each diameter, because the

lower and upper bounds on the head loss are independent of the chosen diameter.

We model the approximations by either the convex combination method or the

incremental method, and optionally build piecewise linear relaxations as described

in [GMMS12]. Table 2.3 reports results for K = 2, 4, 10 on 8 out of 95 instances

introduced in Section 2.3.1. We report the computing times in seconds (columns

time) and the best integer solution found by CPLEX 12.6 through AMPL (columns

ub) within a time limit of two hours (indicated by ∞, when reached) on a single

core of a 3.1 GHz quad-core machine with 1.96 GB RAM. We checked the diameter

configurations of each obtained integer solution for feasibility with the simulation

software EPANET. Integer solutions that were certified feasible by EPANET are

marked with an asterisk in front of the corresponding objective value in Table 2.3.

The results show that it is in general very hard to find feasible solutions. The

piecewise linear approximation never finds a feasible solution within the time limit

for medium or large size instances. The piecewise linear relaxation does find one

in some cases on medium size instances for fairly few breakpoints when using the

incremental method, and the smaller size instances are usually solved faster by the

piecewise linear relaxation. However, the piecewise linear approximation provides a

conservative solution, in the sense that the diameter configuration is usually feasible

for the nonlinear problem. For the relaxation that is not true in general. In fact, as

shown by the results in Table 2.3, when the algorithm provides an optimal solution to

the piecewise linearly relaxed model, it is not always feasible. Instead, when hitting

the time limit, the integer solutions found by the algorithm using the relaxation were

all feasible in our experiment. However, there is clearly no controlled way of setting

a time limit that would guarantee finding an integer solution that is feasible. All in

all, we can see that the incremental method is generally a bit faster than the convex

combination method, provided an instance is solved. This confirms the observation

made in [GMMS12].

5The new york instance originates from the slightly different practical problem of doubling pipes
in an existing network, and we do not consider it here.

63

2.5 Unified modeling of design and operation

As mentioned before, the inherent difference of the design and the operation prob-

lems is the contrast between static and dynamic modeling, which is also intimately

related to the absence and presence of active network elements. Dynamic modeling

can make sense under two conditions. First of all, considering a dynamic model

is useful only if exogenous parameters that have impact on the decision variables,

like the demand patterns of consumers, naturally change over time. In such a sit-

uation, neglecting time completely and taking for example mean values to express

these parameters results in an accuracy loss. Of course, also a discretization leads to

mean values, but these mean values are based on single time windows. The second

condition is that it has to make physical sense to take different decisions at different

points in time. A pump, for example, can be switched on and off over time. For

design problems in the form that we discuss here, this is hardly the case. The vari-

ables in the model (2.32) - (2.42) represent the decision to build a pipe with some

diameter, which is not something that is easily reversed within a reasonable time

horizon. In other words, decisions regarding passive elements are inherently static

decisions.

Now if we want to put passive and active elements together in a unified model,

that is, tackling design decisions and operational decisions at once, we have two

choices. Either we consider the decisions regarding active elements (in an approx-

imative fashion) as static as well, or we find a model that can handle static and

dynamic decisions at the same time. In the first case, there arises the problem of

how to correctly measure the cost of active elements. The cost of a pump, for exam-

ple, is not only its installation cost, but also its variable working cost, and it is not

clear how to establish it in a static model. Another problem is that, in theory, the

decision of installing a pump implies that subsequently it is always working, which

makes it somewhat needless to pose the operational question of when to switch it

on and off.

In the second case, that is, when putting static and dynamic decisions in a

unified model, an obvious problem is how to compare fixed and time-dependent

costs. The weight of fixed costs decreases when considering longer time periods,

which, for example, would make a bigger pipe more profitable in the context of

water networks. Anyway, this raises the question of which is the correct period to

consider, which then can have varying answers according to different points of view

of what “correct” means.

Despite these difficulties, such a unified approach taking the first of the two

choices outlined above, i.e., using a static model with operational components, is

presented in [HF15] and [HFK15] in the context of gas networks. The basic structure

64

of that static model can in principle be applied to water networks as well. The

authors consider gas transmission networks, with flow conservation constraints at

the nodes and arc equations of type (2.10). Therein, the operational component βaya

is forced to be zero for pipes, positive for compressors (the equivalent of pumps in

gas networks) or negative for pressure regulators. The striking point is that variable

ya is modeled as a discrete variable. This leads to the fact that the leaf problems in a

search tree that branches on the integer variables are convex optimization problems,

as shown in Section 2.2. The first paper [HF15] is of operational type. Fixed

entry and exit flows into and out of the network at certain nodes are given, and

the task is to determine if the network is able to satisfy this scenario, also called

nomination in this context. Thus, a feasibility problem without the minimization

of power consumption or anything else is solved. The convex leaf problems are

therefore solved by an NLP solver via different relaxation strategies. For example,

one possibility is to relax the bounds on the variables q and h and minimize the

bound violation. A leaf is then feasible if the optimal value of the relaxed problem is

equal to zero. Networks with up to almost five hundred pipes are handled, although

in the computations variables ya’s are relaxed as continuous. Hence the procedure

is not able to prove infeasibility, but only the feasibility of a scenario. However, in

the considered tests infeasibility did not occur. The follow-up paper [HFK15] treats

the so-called topology optimization problem for the same type of gas networks.

Based on the same equations, the model is now allowed to extend a network (that

is infeasible for some scenario) by choosing on each arc exactly one of a discrete

number of parallel network elements with different characteristics in a cost-minimal

way. In principle, these elements can contain also pumps, but as a special case is

contained the problem of choosing on each arc exactly one pipe out of a discrete

set of pipes with varying parameters, i.e., an equivalent of the classic water network

design problem. Again the convex leaf problems are solved through a relaxation.

If such a relaxed leaf problem is infeasible for the original MINLP, a cutting plane

is derived that is based on information from the nicely interpreted dual problem of

the relaxed leaf problem. Some tests were conducted on networks with only pipes,

and it is shown that the cutting planes derived from the relaxed leaf problems can

significantly reduce the computing times. This again underlines the potential that

lies in the exploitation of the convexity property of the leaf problems. In the next

section, we show how to adapt the valid inequalities leading to the aforementioned

cutting planes from gas to water networks.

65

2.6 Nonlinear valid inequalities for water network

design problems

We now come to the derivation of nonlinear valid inequalities for the water network

design problem (2.32) - (2.42). The derivation and line of exposition are similar to

the one of analogue inequalities in the context of the topology optimization problem

of gas networks proposed in [HFK15], and the level of detail therein is more profound.

The step from gas to water networks bears slight differences in some constraints

describing the problem and thus requires some care. Highlighting this transfer is

the main purpose and contribution of this section. We start by considering a leaf

problem of the MINLP (2.32) - (2.42), whose binary assignments satisfy (2.35).

That is, we assume that ∀ a ∈ A, there is a `0(a) ∈ [ra] such that xa,`0(a) = 1, which

implies xa,` = 0 ∀ ` 6= `0(a). The left- and right-hand sides of (2.37) then simplify,

and for brevity we denote these quantities by

q
a

: = −π
4
vaD

2
a,`0(a) (2.48)

qa : =
π

4
vaD

2
a,`0(a). (2.49)

Further, we denote the Hazen-Williams function on arc a by Φa(·), that is,

Φa(qa) :=
10.7 · La
ka ·D4.82

a,`0(a)

qa|qa|0.852. (2.50)

Φa(·) can be easily checked to satisfy the assumptions of Theorem 2.1. This section

is therefore based on much of what has been said in Section 2.2. The following

NLPs are usually non-convex, because they contain the nonlinear functions Φa(·)
inside equality constraints. Yet, their feasible region is actually a convex set due

to Theorem 2.1. The leaf problem in question becomes the following feasibility

problem. ∑
a∈δ−i

qa −
∑
a∈δ+i

qa = di ∀ i ∈ N \ N src (2.51)

hi − hj = Φa(qa) ∀ a ∈ A (2.52)

hi = hsrci ∀ i ∈ N src (2.53)

q
a
≤ qa ≤ qa ∀ a ∈ A (2.54)

hi ≤ hi ≤ hi ∀ i ∈ N . (2.55)

The difference between the above system and (2.15) - (2.19) is just that in the latter,

66

the bounds on the variables are disregarded. We will go over to a reformulation of

(2.51) - (2.55) in which we relax the bounds on the variables, but account for their

violation by slack variables, that in turn are minimized in the objective function. In

[HFK15], this reformulation is called the domain relaxation problem,

min
∑

i∈N\N src
∆i +

∑
a∈A

∆a (2.56)

s.t.
∑
a∈δ−i

qa −
∑
a∈δ+i

qa = di ∀ i ∈ N \ N src (2.57)

hi − hj = Φa(qa) ∀ a ∈ A (2.58)

hi = hsrci ∀ i ∈ N src (2.59)

qa −∆a ≤ qa ∀ a ∈ A (2.60)

hi −∆i ≤ hi ∀ i ∈ N \ N src (2.61)

qa + ∆a ≥ q
a

∀ a ∈ A (2.62)

hi + ∆i ≥ hi ∀ i ∈ N \ N src (2.63)

∆a ≥ 0 ∀ a ∈ A (2.64)

∆i ≥ 0 ∀ i ∈ N \ N src (2.65)

qa ∈ R ∀ a ∈ A (2.66)

hi ∈ R ∀ i ∈ N . (2.67)

The relation between systems (2.15) - (2.19), (2.51) - (2.55) and (2.56) - (2.67) can

easily be deduced by Theorem 2.1.

Observation 2.3. System (2.56) - (2.67) has a unique solution (q, h,∆) ∈ R|A|+|N |×
R|A|+|N\N

src|
+ . Furthermore, the leaf problem (2.51) - (2.55) is feasible if and only if

in that unique solution, we have ∆ = 0.

Observation 2.3 implies that the domain relaxation problem, that is at first sight

a non-convex NLP, can be solved to global optimality by a local NLP solver, as

already noted in Section 2.2. For example, NLP solvers like IPOPT will return a

KKT point of (2.56) - (2.67) in order to certify (local) optimality. We will therefore

study the KKT conditions (cf. Section 1.2.1) of (2.56) - (2.67), satisfied by any

KKT point, in order to obtain some of their algebraic properties. In the following,

we denote the KKT multipliers of (2.57) - (2.65), in the order of appearance of these

constraints, by

(µ, λ, λ+, λ−, λ̃) ∈ R|N\N src|+|A| × RN src × R3·(|A|+|N\N src|)
+ .

In gas networks, as was anticipated in Section 2.2, the node potentials are usually

67

not fixed at source nodes, but in turn the balance equations are imposed. In that

case, the domain relaxation problem, and especially its associated KKT multipliers,

change slightly. The stationarity conditions (1.26) for the domain relaxation problem

can be written as in (2.68) - (2.73). Note that there is actually no multiplier µi for

a source node i ∈ N src, but we augment the following system by these variables and

fix them to zero. In that way, we can write (2.69) in a unified fashion.

µi = 0 ∀ i ∈ N src (2.68)

µj − µi + λ+
a − λ−a = µaΦ

′
a(qa) ∀ a ∈ A (2.69)∑

a∈δ+i

µa −
∑
a∈δ−i

µa = λ+
i − λ−i ∀ i ∈ N \ N src (2.70)

∑
a∈δ+i

µa −
∑
a∈δ−i

µa = λi ∀ i ∈ N src (2.71)

λ+
i + λ−i + λ̃i = 1 ∀ i ∈ N \ N src (2.72)

λ+
a + λ−a + λ̃a = 1 ∀ a ∈ A. (2.73)

Some of these equations will be useful in the proof of the next Lemma. In [HFK15],

a nice interpretation of the above system as a dual nonlinear network flow with flow

variables µa is provided. We can now prove the validity of a first nonlinear valid

inequality.

Lemma 2.4. Let (q∗, h∗,∆∗, µ∗, λ∗, λ+∗, λ−∗, λ̃∗) be a KKT point of (2.56) - (2.67).

Then the nonlinear inequality∑
a∈A

µ∗aΦa(qa) ≤
∑

i∈N\N src
(λ+∗

i hi − λ−∗i hi) +
∑
i∈N src

λ∗ih
src
i (2.74)

is valid for the leaf problem (2.51) - (2.55).

Proof. From (2.52), we get∑
a∈A

µ∗aΦa(qa) =
∑
a∈A

µ∗a(hi − hj),

where the right-hand side can be rearranged by summing over the nodes instead of

summing over the arcs and then using (2.70) and (2.71):

∑
a∈A

µ∗a(hi − hj) =
∑
i∈N

hi

∑
a∈δ+i

µ∗a −
∑
a∈δ−i

µ∗a


=

∑
i∈N\N src

hi
(
λ+∗
i − λ−∗i

)
+
∑
i∈N src

hiλ
∗
i .

68

Taking into account the sign of λ+∗ and λ−∗ together with (2.53) and (2.55) gives

(2.74).

The inequality (2.74) could in theory be used as a valid inequality inside a tree-search

method for the water network design problem. It bears, however, two difficulties,

the first one being the fact that it is only locally valid, i.e., valid for a leaf problem.

One could argue that globally valid inequalities are more desirable than local ones in

general, but this is not always true, and not even the point here. Instead, the way the

inequality is derived makes its use as a locally valid inequality useless: its derivation

hypothesizes that the domain relaxation (2.56) - (2.67) of a leaf problem (2.51) -

(2.55) has been solved in order to get a valid inequality for the leaf problem itself.

However, by Observation 2.3, once we have solved the domain relaxation problem,

there is no need anymore to solve the leaf problem. We will address the issue of

local validity later on and show how to lift the inequality to a globally valid one.

The second difficulty is more related to the computational efficiency of the use of a

nonlinear inequality and was also noted in [HFK15]. The inequality (2.74) actually

represents a non-convex constraint, and thus, if added to the original MINLP, would

trigger the need for (additional) spatial branching. More details about this are

given in [Hum14, Chapter 4]. Therefore, in [HFK15], a linear underestimator of

the nonlinear function involved in the inequality is sought, that in turn can be

used more efficiently inside a tree-search algorithm for a problem like (2.32) - (2.42).

Before that, yet another step is taken, that modifies (2.74) to another valid nonlinear

inequality, but makes the underestimation of the latter easier and also algebraically

elegant. We will go the same way but, due to the aforementioned difference between

gas and water networks, first have to introduce some additional notation.

It turns out that the presence of multiple source nodes makes the formaliza-

tion of some arguments more difficult, which is why we assume that there is one

distinguished i0 ∈ N src. The case |N src| = 1 is then contained as a special case in

the following derivation. With every vector of flows q ∈ R|A| in the network that

satisfies (2.51), ∀ i ∈ N src \ {i0} we define the quantities

q̃i : = −

∑
a∈δ−i

qa −
∑
a∈δ+i

qa

 . (2.75)

For i ∈ N src \ {i0}, the absolute value of this quantity represents the amount of

flow that is inserted into the network at source nodes i. The whole network flow

can then be interpreted as follows: the whole amount of flow in the network, given

by F :=
∑

i∈N\N src di, is provided at source node i0, and part of it is transported

to the other source nodes. In particular, the quantity q̃i is transported on some

69

imaginary arc ãi = (i0, i) with fixed pressure loss hsrci0 −h
src
i to source node i. In this

interpretation, the network has fixed demands at each node i ∈ N : demand di at

node i ∈ N \N src, negative but fixed demand −F at i0, and an imaginary and fixed

demand of zero at all other source nodes. In particular, we can write out balance

equations also at source nodes:

∑
a∈δ−i0

qa −

∑
a∈δ+i0

qa +
∑

i∈N src\{i0}

q̃i

 = −F (2.76)

∑
a∈δ−i

qa + q̃i

−∑
a∈δ+i

qa = 0 ∀ i ∈ N src \ {i0}. (2.77)

For ease of notation, we further define the linear function

ψ(q) :=
∑

i∈N src\{i0}

q̃i(h
src
i0
− hsrci).

With this additional notation, we can formulate and prove the following lemma.

Lemma 2.5. Let (q∗, h∗,∆∗, µ∗, λ∗, λ+∗, λ−∗, λ̃∗) be a KKT point of (2.56) - (2.67).

Then the identity ∑
a∈A

(qa − q∗a)Φa(qa) = ψ(q∗)− ψ(q) (2.78)

is fulfilled by any feasible solution of the leaf problem (2.51) - (2.55).

Proof. Definition (2.75) and its interpretation allows us to use the fact that the dif-

ference flow qa− q∗a consists of circulations only, provided we consider the imaginary

arcs as well. That is, ∀ i ∈ N \N src we know from the flow conservation constraints

(2.51) and (2.57) that ∑
a∈δ−i

(qa − q∗a)−
∑
a∈δ+i

(qa − q∗a) = 0.

For source node i0 instead, by (2.76) we can write∑
a∈δ−i0

(qa − q∗a)−
∑
a∈δ+i0

(qa − q∗a)−
∑

i∈N src\{i0}

(q̃i − q̃∗i) = 0,

70

while, ∀ i ∈ N src \ {i0}, we have∑
a∈δ−i

(qa − q∗a) + (q̃i − q̃∗i)−
∑
a∈δ+i

(qa − q∗a) = 0.

If we multiply the above equations by hi and sum over all i ∈ N , we get

∑
i∈N

∑
a∈δ−i

(qa − q∗a)−
∑
a∈δ+i

(qa − q∗a)

hi

+
∑

i∈N src\{i0}

(q̃i − q̃∗i)hsrci − hsrci0
∑

i∈N src\{i0}

(q̃i − q̃∗i) = 0.

By changing the summation over the nodes on the left-hand side to summation over

the arcs leads to∑
a∈A

(hj − hi)(qa − q∗a) +
∑

i∈N src\{i0}

(q̃i − q̃∗i)(hsrci − hsrci0) = 0,

which with (2.52) can be rearranged to (2.78).

Combining Lemmas 2.4 and 2.5 gives the following immediate corollary.

Corollary 2.6. Let (q∗, h∗,∆∗, µ∗, λ∗, λ+∗, λ−∗, λ̃∗) be a KKT point of (2.56) - (2.67).

Then for any ζ ≥ 0 and ξ ∈ R, the nonlinear inequality

∑
a∈A

(
ζµ∗a + ξ(qa − q∗a)

)
Φa(qa) ≤ζ

 ∑
i∈N\N src

(
λ+∗
i hi − λ−∗i hi

)
+
∑
i∈N src

λ∗ih
src
i


+ ξ

(
ψ(q∗)− ψ(q)

)
(2.79)

is valid for the leaf problem (2.51) - (2.55).

One of the reasons for the modification of the valid inequality (2.74) to (2.79) is that

each term on the left-hand side of (2.74) is not bounded by below, but in fact one

can show that limqa→+∞Φa(qa) = +∞ and limqa→−∞Φa(qa) = −∞. Instead, each

term on the left-hand side of (2.79) tends to either +∞ or −∞ for both decreasing

and increasing qa, depending on the sign of the remaining coefficients. In addition,

some algebraic properties based on the stationarity conditions help to simplify the

proposed underestimator significantly. We will show this in the next section.

71

2.6.1 The nice algebra of nonlinear network flows

We now derive the underestimator of (2.79) in a straightforward way. By imposing

the same slope that is used in [HFK15] on this one-dimensional linear function, we

can calculate the intercept in such a way that the resulting function is the tightest

underestimator among all linear functions with that particular slope on the domain

of the leaf problem. Using the properties (2.68) - (2.73), the resulting linear valid

inequality can be rearranged to a constant inequality. Everything is collected in the

following proposition.

Proposition 2.7. Let (q∗, h∗,∆∗, µ∗, λ∗, λ+∗, λ−∗, λ̃∗) be a KKT point of (2.56) -

(2.67), set µ∗i = 0 ∀ i ∈ N src and ∀ a ∈ A define

τa := inf
q
a
≤qa≤qa

{(
ζµ∗a + ξ(qa − q∗a)

)
Φa(qa)− ξ(h∗i − h∗j)qa − ζ(µ∗i − µ∗j − λ+∗

a + λ−∗a)qa
}
.

Then the constant inequality

∑
a∈A

τa ≤ ζ

(∑
i∈N\N src

(
λ+∗
i hi − λ−∗v hi

)
+

∑
i∈N\N src

µ∗i di +
∑
a∈A

(λ+∗
a qa − λ−∗a q

a
)

+
∑
i∈N src

λ∗ih
src
i

)
+ ξ

ψ(q∗) +
∑

i∈N\N src
h∗i di − hsrci0 F

 (2.80)

is valid for the leaf problem (2.51) - (2.55).

Proof. We first establish two identities that will be used further down. In particular,

using similar changes of summation as before and the balance equations for all nodes

(cf. (2.76) - (2.77)), we can write

ξ
∑
a∈A

(h∗j − h∗i)qa = ξ
∑
i∈N

h∗i

∑
a∈δ−i

qa −
∑
a∈δ+i

qa


= ξ·

∑
i∈N\N src

h∗i di + ξhsrci0

 ∑
i∈N src\{i0}

q̃i − F

− ξ· ∑
i∈N src\{i0}

hsrci q̃i

= ξ·
∑

i∈N\N src
h∗i di − ξhsrci0 F + ξ·

∑
i∈N src\{i0}

(hsrci0 − h
src
i)q̃i

= ξ·
∑

i∈N\N src
h∗i di − ξhsrci0 F + ξψ(q). (2.81)

72

Then, remembering that µ∗i = 0 ∀ i ∈ N src, we get

ζ
∑
a∈A

(µ∗j − µ∗i)qa = ζ·
∑

i∈N\N src
µ∗i di. (2.82)

Now by definition, we know that on the for a leaf problem valid domain of qa, we

have

τa ≤
(
ζµ∗a + ξ(qa − q∗a)

)
Φa(qa)− ξ(h∗i − h∗j)qa − ζ(µ∗i − µ∗j − λ+∗

a + λ−∗a)qa.

Summation over the arcs leads to∑
a∈A

τa ≤
∑
a∈A

(
ζµ∗a + ξ(qa − q∗a)

)
Φa(qa) + ξ

∑
a∈A

(h∗j − h∗i)qa

+ ζ
∑
a∈A

(µ∗j − µ∗i)qa + ζ
∑
a∈A

(λ+∗
a − λ−∗a)qa.

The first sum of the right-hand side can be bounded by (2.79), while the second and

third sum can be substituted by (2.81) and (2.82), so that we get

∑
a∈A

τa ≤ζ

 ∑
i∈N\N src

(
λ+∗
i hi − λ−∗i hi

)
+
∑
i∈N src

λ∗ih
src
i

+ ξ
(
ψ(q∗)− ψ(q)

)
+ ξ·

∑
i∈N\N src

h∗i di − ξhsrci0 F + ξψ(q) + ζ·
∑

i∈N\N src
µ∗i di + ζ

∑
a∈A

(λ+∗
a − λ−∗a)qa.

Bounding the last sum by use of the lower and upper bounds on qa that are valid in

the leaf problem, and rearranging gives (2.80).

We now come to the point of lifting the locally valid inequality to a global one. This

turns out to be rather easy, at least formally.

Observation 2.8. In the hypotheses of Lemmata 2.4 and 2.5, Corollary 2.6 and

Proposition 2.7, it is not required that the given KKT point comes from the domain

relaxation of the leaf problem for which the inequalities or identities are valid. In

fact, it can be a KKT point of the domain relaxation of any leaf problem of the

MINLP (2.32) - (2.42).

With Observation 2.8 in mind, lifting the inequality (2.80), that is still only locally

valid, to a globally valid one is straightforward. We just define the quantities in

(2.48) - (2.50) for any ` ∈ [ra]:

q
a,`

: = −π
4
vaD

2
a,`

73

qa,` : =
π

4
vaD

2
a,`

Φa,`(qa) : =
10.7 · La
ka ·D4.82

a,`

qa|qa|0.852.

Thus, we can define τa,` and substitute all quantities in (2.80), that depend on the

index `, by a weighted sum of the binary variables xa,`.

Corollary 2.9. Let (q∗, h∗,∆∗, µ∗, λ∗, λ+∗, λ−∗, λ̃∗) be a KKT point of any leaf prob-

lem of the MINLP (2.32) - (2.42). Further, ∀ a ∈ A and ` ∈ [ra] define

τa,` := inf
q
a,`
≤qa≤qa,`

{
(ζµ∗a + ξ(qa − q∗a)) Φa,`(qa)− ξ(h∗i − h∗j)qa + ζ(µ∗i − µ∗j − λ+∗

a + λ−∗a)qa
}
.

Then the linear inequality

∑
a∈A

ra∑
`=1

τa,`xa,` ≤ζ

 ∑
i∈N\N src

(
λ+∗
i hi − λ−∗v hi

)
+

∑
i∈N\N src

µ∗i di +
∑
i∈N src

λ∗ih
src
i


+ ζ

∑
a∈A

(
(λ+∗

a + λ−∗a)
π

4
va ·

∑
d=1,...,ra

D2
a,`xa,`

)

+ ξ

ψ(q∗) +
∑

i∈N\N src
h∗i di − hsrci0 F

 (2.83)

is valid for (2.32) - (2.42).

Finally, the question of how this inequality can actually be used in practice arises. A

natural approach would be to solve (2.32) - (2.42) with a spatial branch-and-bound

algorithm, cf. Section 1.2.4, and solve the domain relaxation problem at any leaf

problem that is encountered during the search process by a local NLP solver, so

as to get a KKT point. In [HFK15] for example, SCIP and IPOPT are used to

do precisely that. A hurdle in order to numerically obtain the cutting plane (2.83)

from that KKT point can then be seen in the computation of the coefficients τa,`.

In [HFK15] is shown that under certain conditions, ζ and ξ can be chosen in such

a way that the infimum in the definition of τa,` is always attained at q∗a and the τa,`

have a closed-form formula. The cut is therefore added whenever these conditions

are fulfilled. We conducted preliminary experiments with these cutting planes on

the water network design instances presented in Section 2.3.1. These experiments

have so far not been very successful [Wie14]. Intuitively, the underestimation of

the original nonlinear valid inequality is too rough. Further ideas of how to obtain

additional linear underestimators have been established, and possible future work

consists in the implementation of these ideas.

74

2.7 Outlook

We see two general potential future research directions, one of which concerns more

the modeling part, whereas the other one is of algorithmic nature. The first aspect is

the unification of design and operation problems. Despite the difficulties mentioned

in Section 2.5, this is an area that could be tackled in the future. Therefore, robust

and unified ways of modeling the costs of active and passive network elements are

necessary. Additionally, it seems not yet clear which is the right dynamic model

for the different network elements. For example, is the discretized version of the

water hammer equations (2.8)-(2.9) really necessary to describe the water dynamics

in pipes or is a static Hazen-Williams equation in every time step enough? A model

that balances well accuracy and tractability should be determined. Furthermore, we

think that the exploitation of convex leaf problems as described in Section 2.2 bears

a lot of potential, because it has the power of reducing the complexity of the problem

(maybe at the cost of discretizing some continuous parameters). First steps in this

direction on the operational side have been made, as described at the end of Section

2.3.2, and the further combination of such properties with MINLP techniques seems

fruitful.

75

3 Mixed Integer Programming with

indicator constraints

In computer science, every programming language provides a syntax for conditional

constructs like the simple, well known if-then. These basic structures have found

their way into MIP some time ago. Think back at the TSPTW model (1.32) - (1.37)

in Section 1.5.1, where we saw a fist example in (1.38). The condition therein, here

generalized to one involving a more general function g(·),

[z = 1] =⇒ [g(x) ≤ 0],

translates nothing else then the logical implication “if variable z is equal to one,

then impose the constraint that g(x) has o be non-negative.” In other words, the

so-called indicator variable z indicates whether the constraint g(x) ≤ 0 is switched

on or off. CPLEX for example supports this simple syntax since around 2006, and

the software LogMIP [VG99] provides even more functionality for directly express-

ing logical expressions in a Mathematical Programming model. Of course, once a

Mathematical Programming software gives its users the possibility of expressing such

constructs, it has to implement means to handle them algorithmically. The case of

indicator constraints in Mixed Integer Programming is the topic of this chapter: we

will analyze ways to reformulate indicator constraints with mixed integer variables.

Indicator constraints can be found in the literature in a number of applications.

This happens either because they model explicit logical arguments like “if facility

j is inactive, then no client i can be assigned to it”, as in the facility location

[CFN77]; or because the Mathematical Programming formulation is constructed

by imposing a specific order through (otherwise implicit) logical implications like

“either job i is executed on machine k before job j or vice versa”, as in Job Shop

Scheduling introduced in Section 1.5.2. That is, besides if-then, also structures of

if-then-else-type are encountered. Of course, the TSPTW model (1.32) - (1.37)

is another example. Devising efficient and computationally effective methods to

deal with logical implications is one of the most fundamental needs to enhance

the Mathematical Programming solvers’ capability of facing real-world optimization

problems [Lod10].

77

It may happen that a single indicator variable z controls more than one con-

straint. In order to elegantly express this circumstance, on can collect the functions

involved in all of these constraints, say gi(·), i = 1, . . . , `, and denote the intersection

of their sublevel sets by S, i.e.,

S = {x ∈ Rñ | gi(x) ≤ 0, i = 1, . . . , `}. (3.1)

Then, the optimization problem we consider in this chapter is of the general form

min f(x, z) (3.2)

s.t. hi(x, z) ≤ 0 ∀ i = 1, . . . ,m1 (3.3)

[zk = 0] =⇒ [x ∈ Sk0]

[zk = 1] =⇒ [x ∈ Sk1]

}
∀ k = 1, . . . , K (3.4)

x ∈ Rñ−p × Zp (3.5)

z ∈ {0, 1}K . (3.6)

System (3.2) - (3.6) can be interpreted in the following way. One wants to minimize

a function f(·) subject to a set of constraints. So-called global constraints are

expressed by the functions hi(·). Moreover, K pairs of logical implications are given,

each one involving a binary indicator variable zk. This variable indicates that either

x is constrained to belong to the set Sk0 or to the set Sk1 , that we both assume to be

of the form (3.1). In other words, each zk indicates whether all of the constraints

defining either of the two sets are imposed or not. System (3.2) - (3.6) is thus flexible

enough to model indicator constraints of type if-then-else. In fact, a single indicator

variable above cannot only switch on some constraints by being equal to one, but

also by being equal to zero. All in all, the essence of a system like (3.2) - (3.6) is

the fact that imposing one or more constraints of the form gki (x) ≤ 0 is linked to

discrete decisions.

In order to formulate system (3.2) - (3.6) as a Mathematical Programming prob-

lem one needs to remove the logical implications and write explicit constraints. We

have already seen the most straightforward way of doing that in several examples in

Section 1.5. It is given by the big-M method, where constraints are activated or de-

activated by multiplying the binary indicator variable by a very large (precomputed)

constant. We will revise this method in more detail in Section 3.1. Alternatively,

one can use Disjunctive Programming techniques, which are the main topic of the

present chapter. A general introduction to this has already been given in Section

1.4, and in Section 3.2 we will recall the most important aspects for indicator con-

straints. If (3.2) - (3.6), reduced by (3.4), is an MINLP or even an MILP, then both

78

techniques can again lead to an MINLP or an MILP. Either of the two techniques

bear some drawbacks, in the case of Disjunctive Programming given by the fact

that the obtained reformulations lead to dealing with large NLPs, defined in lifted

spaces, i.e., with an increased number of variables. This implies difficulties with

practically solving these NLPs in general. In this chapter we review the relevant

literature on mathematical optimization with logical implications that attempts to

avoid the issue of dealing with large NLPs. In particular, we review some existing

results that allow to work in the original space of variables for two relevant special

cases of (3.2) - (3.6) in Sections 3.3.1 and 3.3.2. We also shed particular light on the

resulting structures when the involved functions are affine in Section 3.3.3. Then,

we significantly extend these special cases by considering more general sets Sjk in

Section 3.4.1. In Section 3.4.2 we will go over to a system that even allows for in-

dicator variables that are not necessarily binary. The latter two sections represent

the main theoretical contribution of this chapter.

The results reviewed and proposed in Sections 3.3.3 - 3.4.2, if applied in a

straightforward way, give the possibility of writing down different, potential MI(N)LP

formulations of (3.2) - (3.6). Computational experiments comparing Disjunctive

Programming formulations in the original space of variables with big-M ones, pre-

sented in Section 3.5, show that the former are computationally viable and promis-

ing. However, we highlight in Section 3.6 that the obtained formulations can be seen

as parametrized by the bounds of the involved variables. In order to benefit from

this algorithmically, in Section 3.6.1 we will review some recently proposed algo-

rithmic principles that can be applied in this context. Thereby inspired, in Section

3.6.2 we will present an experimental, MILP-based algorithm for a special case of

(3.2) - (3.6) and present computational results for the Job Shop Scheduling problem.

Here, the connection to Constraint Programming, where propagation techniques are

crucial and sophisticated, will be drawn. We will thus investigate the incorporation

of such techniques for bound tightening purposes into the presented algorithm.

In some sense, this chapter can be seen in the light of the attempt to incorpo-

rate “new” types of constraints into MIP, or at least to reformulate them by MIP.

Especially in Section 3.2, the connection to so-called disjunctive constraints, that

are, for example, an omnipresent tool in CP for scheduling problems, will become

clear. This chapter is based on joint work with Pierre Bonami, Andrea Lodi and

Andrea Tramontani, and its main parts have been published in [BLTW15].

79

3.1 BigM constraints

The first modeling technique for expressing an indicator constraint, as was antici-

pated several times now, is the widely known big-M method. It is very straightfor-

ward and works as follows. Let us assume that the discrete decision linked to the

constraint g(x) ≤ 0 is modeled by the binary variable z. Then, in a Mathematical

Programming formulation, one can impose the constraint

g(x) ≤M · (1− z), (3.7)

where M is a very large positive constant. If z = 1, then constraint g(x) ≤ 0 is

imposed. Conversely, if z = 0, then constraint (3.7) is satisfied by any value of

x ∈ F , where F describes the feasible set for x (e.g., the feasible region of the

underlying MI(N)LP), and provided that M ≥ supx∈F g(x). Such a requirement for

the definition of M already leads to a major difficulty encountered in Mathematical

Programming with indicator constraints: the quantity supx∈F g(x) might not be

easily (or not even at all) computable. This might be the case, for example, if the

set F itself is unbounded. In such cases, setting a reasonably high value of M will

usually do the job in practice, but there is no theoretical guarantee that the system

with a big-M constraint (3.7) is actually equivalent to the original one. In fact,

when the set F is unbounded, the indicator constraints might not be representable

as an MILP1 and there might be no representation too by an MINLP with a convex

feasible region2. If, instead, one assumes that this difficulty does not occur, i.e., it

is possible, in practice, to compute supx∈F g(x) or at least an upper bound on this

value, then the big-M method leads to a valid reformulation of (3.2) - (3.6). For

example, when we deal with affine functions and bounded variables, it is possible to

obtain a valid big-M constraint.

Example 3.1. Assume that g(x) = a0 + aTx and that the variables x are bounded,

xi ≤ xi ≤ xi. It is easy to see that a safe choice for the big-M is then

M := a0 +
∑
ai>0

aixi +
∑
ai<0

aixi. (3.8)

We give two examples of the application of the big-M choice in (3.8). In the TSPTW

model (1.32) - (1.37), one can simply set

Mij := ui − lj + pi + tij.

1The reader is referred to [JL84] for a definition of sets that are MILP representable.
2The reader is referred to [HL14] for an example.

80

Analogously, in the JSS model (1.43) - (1.49), we set

Mk
ij : = sik − sjk + ti

M̃k
ij := sjk − sik + tj,

where the bounds s and s are calculated as in (1.57) - (1.59) (based on the disjunctive

graph of the original JSS instance without any binary fixings).

However, even under the assumptions of Example 3.1, the big-M method has two

main drawbacks. The first one is trivially rooted in numerical risks associated with

choosing a big-M value such that 1/M comes close to the machine precision, or, in

any case, to the tolerances that are used by any Mathematical Programming solver

working in floating point arithmetics (see, e.g., [KAA+11]). The other drawback

affects on a more algorithmic level the current generation of MI(N)LP solvers, i.e.,

the solution method that they implement. More precisely, MI(N)LP solvers heavily

rely on the iterative solution of the continuous relaxation of the given MI(N)LP, as

we have seen in Sections 1.1.2 and 1.2.2. At the same time, it is well-known that the

big-M formulations involving constraints (3.7) are characterized by continuous re-

laxations whose dual bounds depend on the value of M , but which are typically very

weak, i.e., very far away from the optimal solution value (see, e.g., [Lod10]). This

is because, in the continuous relaxation, a value of the binary variable z very close

to one is enough to satisfy a constraint, thus deactivating the original implication

g(x) ≤ 0. In [BBF+14] can be found a recently proposed way of improving on both

of the above difficulties by strengthening the M values within the branch-and-bound

tree by domain propagation and separation of local cutting planes. We will explain

this approach in more detail in Section 3.6.1.

3.2 Disjunctive Programming for indicator constraints

We announced the second way of reformulating (3.2) - (3.6) as an MI(N)LP to be

given by Disjunctive Programming techniques. In this section, we show how to cast

indicator constraints in the terminology of what has been presented in Section 1.4.

We will make a change of notation that allows us to immediately see the relation

of indicator constraints to Disjunctive Programming, but it will also facilitate the

notation of more general systems than (3.2) - (3.6) in Section 3.4.2. We consider a

system involving the union of sets,

min f(x, z) (3.9)

s.t. hi(x, z) ≤ 0 ∀ i = 1, . . . ,m1 (3.10)

81

(x, zk) ∈
⋃
j∈J

Γkj ∀ k = 1, . . . , K (3.11)

x ∈ Rñ−p × Zp (3.12)

z ∈ {0, 1}K , (3.13)

where Γkj := Skj × {j}. Unlike (3.2) - (3.6), where zk are binary variables, in the

Disjunctive Programming problem (3.9) - (3.13) we can consider an arbitrary set of

disjunctive terms indexed in J . Disjunctions with two disjunctive terms, leading

to binary variables, are contained as a special case. The theory of Disjunctive

Programming, especially Theorem 1.11 allows us to manage the union of bodies

Γkj as in (3.11), provided they are convex sets. Then, we can replace ∪j∈JΓkj by

conv
(
∪j∈JΓkj

)
and (possibly) end up with an MI(N)LP. Note that Theorem 1.11

can be applied to slightly more general disjunctive sets than the one in (3.11),

because the convex sets Γjk, whose union is taken therein, already have a specific

structure. However, this is not true for the sets Sjk.

The above constitutes the second way of dealing with logical implications, and

it is somewhat opposite to the big-M method. Indeed, the big-M drawback of weak

continuous relaxations is obviously overcome because there is no tighter convex

relaxation of a single disjunction than its convex hull. As anticipated in Section

1.4, two difficulties arise, though. First, we do not know if the closure of the convex

hull has an algebraic representation. This is related to the non-differentiability

issue mentioned therein, and also the reason why up to now, we always stressed

that we only possibly end up with MI(N)LPs. There has been and still is active

research going on regarding this issue of the general Theorem 1.11, see, e.g., [GL03,

Fur14]. Second, the convex hull in Theorem 1.11 is described as the projection of

a higher-dimensional set, and this can be prohibitive in practice. The focus of the

present chapter is on reviewing and providing new results that deal with this second

difficulty. This is done by projecting out additional variables, which is, of course,

a hard task in its most general form, but possible in several special cases that are

presented in the next sections.

It is worth noting that a somewhat parallel representation of optimization prob-

lems including logical implications in terms of boolean variables is given by the no-

tion of Generalized Disjunctive Programming (GDP), also at the basis of the afore-

mentioned software LogMIP. For a recent review on the GDP modeling paradigms,

we refer the reader to [GT13], and to [LG00, GL03] for the algorithmic aspects. In

GDP terms, system (3.9) - (3.13) can be equivalently expressed as

min f(x) +
K∑
k=1

ck

82

s.t. hi(x, z) ≤ 0 ∀ i = 1, . . . ,m1

∨
j∈Jk

 Y k
j

gkj (x) ≤ 0

ck = ckj

 ∀ k = 1, . . . , K

Ω(Y) = true

0 ≤ x ≤ U

c ∈ RK

Y k
j ∈ {true, false}

where Ω(Y) denotes logical propositions, often but not necessarily assumed to be

expressed in Conjunctive Normal Form [Pfa11]. Although technically equivalent, in

the remainder of the chapter we will work with notation (3.9) - (3.13) and abandon

the above GDP representation.

3.3 Single disjunctions

In this section we review two special cases in which the convex hull description

of Theorem 1.11, applied to (3.9) - (3.13), can be projected onto the space of the

original variables. More precisely, we assume that the appearing disjunctions are

unrelated and we consider a single disjunction at a time (thus, we can drop the index

k throughout the section). The considered special cases have |J | = 2 and are such

that one term of the disjunction is either a single point (Section 3.3.1) or a box

(Section 3.3.2). Further, in the following (including Section 3.4) we assume that the

subset of variables needed to express the disjunction is of dimension n. In other

words, for j ∈ J , we assume the sets Sj to be subsets of Rn. Note that this might

be a subspace of the original space Rñ in (3.9) - (3.13). The results in this section

and those in Section 3.4 can be used in a program like (3.9) - (3.13) by embedding

everything into Rñ.

3.3.1 Constraint vs. Nucleus

We first consider the case in which either a subset of variables (those involved in the

disjunction) is forced to zero, or a set of constraints is imposed. This occurs in many

applications, for example in uncapacitated facility location with quadratic costs

[GLW07], stochastic service systems design [Elh06], scheduling with controllable

processing times [AAG09] or the unit commitment problem [FG06]. In the notation

of (3.9) - (3.13), this special case can be written as

S0 = {x ∈ Rn | x = 0}

83

S1 = {x ∈ Rn | l1 ≤ x ≤ u1, g1,i(x) ≤ 0, i = 1, . . . , `}.

In this situation, Theorem 1.11 translates into the following, as has been proven in

[GL12]

Theorem 3.2. Let J = {0, 1} and for j ∈ J define Γj := Sj×{j}, with Sj specified

as above and non-empty. We then have that if Γ1 is a convex set, conv(Γ0 ∪ Γ1) =

cl(Γ), where

Γ =


(x, z) ∈ Rn+1

g̃1,i(x, z) ≤ 0, ∀ i = 1, . . . , `

zl1 ≤ x ≤ zu1

0 < z ≤ 1


.

In this first step, a fundamental property that persists throughout all the results in

the following sections can be seen. The indicator variable z of the initial indicator

constraint (or disjunction) takes over the role of the weight or multiplier inside the

perspective function g̃i(·). We make three remarks. First, Theorem 3.2 can also be

formulated for the situation in which on the zero side, the variables are not forced to

zero but to an arbitrary single point. Then, everything can be shifted to 0. Second,

Theorem 3.2 is also extendable to the situation in which on the zero side, the set S0

is not a single point, but a ray [GL12]. The two corresponding sets would be

Ŝ0 = {(x, y) ∈ Rn+1 | x = 0, y ≥ 0},

Ŝ1 = {(x, y) ∈ Rn+1 | l1 ≤ x ≤ u1, g1,i(x) ≤ 0, i = 1, . . . , `, g1,`+1(x) ≤ y}.

Third, if the form of the functions g1,i(·) is known in more detail, in some cases one

can avoid the need to take the closure and thus the differentiability issue, for exam-

ple for polynomial functions [GL12]. The remarkable computational advantages of

Theorem 3.2 are discussed, for example, in [GL12, FG06].

3.3.2 Single indicator constraint

We now consider a slightly more general case where the set S0 is not a point but a

box. Namely,

S0 = {x ∈ Rn | l0 ≤ x ≤ u0},

S1 = {x ∈ Rn | l1 ≤ x ≤ u1, g1(x) ≤ 0}.

We note that the special case of Section 3.3.1 with ` = 1 is obtained by setting

l0 = u0 = 0. Again, the above case occurs in several applications, for example, in

telecommunication for the so-called delay-constrained routing problem [BAO06].

84

In order to formulate an extension of Theorem 3.2 (under an additional condi-

tion), we need the following definition, that has originally been given in [HBCO12].

Definition 3.3. A function g : Rn → R is called independently non-decreasing

(resp. non-increasing) in the i-th coordinate, if ∀ x ∈ dom(g) and ∀ λ > 0, we

have g(x + λei) ≥ g(x) (resp. g(x + λei) ≤ g(x)). We say that g is independently

monotone in the i-th coordinate, if it is either independently non-decreasing or

non-increasing. Finally, g is called isotone, if it is independently monotone in every

coordinate.

For any subset I ⊆ [n] we denote by Ī the complement of I in [n], i.e., Ī := [n] \ I.

For an isotone function g(·) we denote by J1(g) (resp. J2(g)), the set of indices in

which g(·) is independently non-decreasing (resp. independently non-increasing). If

a function g(·) is constant in coordinate i, it is both independently non-decreasing

and non-increasing. In such a case, we assume that the index i is arbitrarily assigned

to exactly one of the sets J1(g) and J2(g). In this way, we always get a partition of the

index set, i.e., for any isotone function g, J1(g) ∪ J2(g) = [n] and J1(g) ∩ J2(g) = ∅.
From now on, we assume the existence of an underlying set of closed convex

functions {gj : Rn → R | j ∈ J } with associated bounds lj,uj and define for all

I ⊆ [n], x ∈ Rn, z > 0 and j, j′ ∈ J the function hj,j
′

I : Rn+1 7→ Rn, with

(
hj,j

′

I

)
i
(x, z) :=



(lj)i , i ∈ I ∩ J1(gj)

(uj)i , i ∈ I ∩ J2(gj)

xi −
(1−z)(uj′)i

z
, i ∈ Ī ∩ J1(gj)

xi −
(1−z)(lj′)i

z
i ∈ Ī ∩ J2(gj)

(3.14)

∀ i ∈ [n], and qj,j
′

I = gj ◦ hj,j
′

I . We can then state the main result of [HBCO12] in

our slightly different notation.

Theorem 3.4. Let J = {0, 1} and for j ∈ J define Γj := Sj×{j}, with Sj specified

as above and non-empty. If g1(·) is isotone, conv(Γ0 ∪ Γ1) = cl(Γ′), where

Γ′ =


(x, z) ∈ Rn+1

zq1,0
I (x

z
, z) ≤ 0, ∀ I ⊆ [n]

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0

0 < z ≤ 1


.

Hijazi et al. [HBCO12] have shown that formulating the delay-constrained routing

problem [BAO06] by means of Theorem 3.4 leads to a significant computational

advantage over a straightforward big-M formulation.

85

It is worth discussing the trade-off between applying Theorem 3.4 versus Theo-

rem 1.11. On the one side, the advantage of Theorem 3.4 is the fact that we project

back onto the original space of variables. In fact, we can express conv(Γ0 ∪ Γ1) =

cl(Γ′) as a subset of a (n + 1)-dimensional space. A direct application of Theorem

1.11 would lead to expressing the convex hull as the projection of a subset of a

(3n + 5)-dimensional space. On the other side, this gain does not come for free.

In Theorem 3.4, we need exponentially many constraints, indexed in I ⊆ [n]. In

particular, including all the simple bound constraints, we have 2n + 2n + 2 con-

straints opposed to 4n + 9 that would result from a direct application of Theorem

1.11. Similar considerations apply to the results presented in the following sections.

In essence, an upper bound on the number of constraints needed to describe the

convex hull is always exponential, although only in the number of variables involved

in the constraint. In the following, we will see that it is sometimes possible to detect

redundant constraints among the exponentially many ones. Moreover, these many

constraints could be potentially added in a cutting-plane fashion, for example on

top of a big-M formulation. In the next section, we will se that in the case of affine

functions, exactly one of the many inequalities is precisely a big-M constraint and

thus alone is sufficient in order to get a valid formulation. In Section 3.5, we will also

show some concrete examples that illustrate the growth of the number of constraints

when applying the results presented in this chapter, depending on the application,

and in particular on the number of variables that are involved in the disjunction.

3.3.3 Linear constraints

We now assume that g1(·) is an affine function. Such functions are easily seen to

be isotone, and thus Theorem 3.4 is still valid. However, the constraints needed

to describe the convex hull have a form that allows to avoid the need to take the

closure. For any affine function gj(x) = aj0 +
∑n

i=1 ajixi, j
′ ∈ J and I ⊆ [n] we

define the linear function

Hj,j′

I (x, z) :=
∑
i∈Ī

ajixi + z

aj0 +
∑

i∈I,aji>0

aji (lj)i +
∑

i∈I,aji<0

aji (uj)i


− (1− z)

 ∑
i∈Ī,aji>0

aji (uj′)i +
∑

i∈Ī,aji<0

aji (lj′)i

 . (3.15)

It is easy to check that, for example, H1,0
I (x, z) = zq1,0

I (x
z
, z). Then, Theorem 3.4

reads as the following, as was noted in [Hij10].

Corollary 3.5. Consider the situation of Theorem 3.4. We then have that if g1(·)

86

is affine, conv(Γ0 ∪ Γ1) = Γ′′, where

Γ′′ =


(x, z) ∈ Rn+1

H1,0
I (x, z) ≤ 0, ∀ I ⊆ [n]

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0

0 ≤ z ≤ 1


.

We make several observations regarding this corollary. The first and the fourth have

also been made in [Hij10].

Observation 3.6. In this special case of g1 being an affine function, we note that

in Corollary 3.5 we can restrict to subsets I ⊆ Ñ := {i ∈ [n] | a1i 6= 0}.

Observation 3.7. Consider the case where S1 is described by several linear con-

straints, for example S1 = {x ∈ Rn | Dx ≤ b, l1 ≤ x ≤ u1} with D ∈ Rm×n. If the

coefficients of D are monotonous for every column, i.e., if for all j ∈ [n], and for

any pair i, i′ ∈ [m], dij·di′j ≥ 0 holds, then Corollary 3.5 can be naturally extended.

Observation 3.8. Consider the context of Corollary 3.5 and assume further that

S1 ⊆ S0. (3.16)

This is equivalent to saying projx Γ1 ⊆ projx Γ0 and holds, for example, if l0 = l1 and

u0 = u1, which is the case in many applications. Furthermore, it is easy to see that

the non-redundant facets of Γ′′ among the set of inequalities H1,0
I (x, z) ≤ 0 indexed

in I ⊆ Ñ are binding on at least one point (x′, 1) ∈ Γ1, i.e., H1,0
I (x′, 1) = 0. Now,

if
∂H1,0

I

∂z
(x, z) was negative, then we would have H1,0

I (x′, 0) > 0, which contradicts the

fact that projx Γ1 ⊆ projx Γ0 and that H1,0
I (x, z) is a valid inequality for Γ0. Thus,

in order to describe conv(Γ0∪Γ1) in Corollary 3.5, under assumption (3.16) we can

further restrict to subsets I ∈ N̂ , where

N̂ :=

{
I ⊆ Ñ

∣∣∣∣ ∂H1,0
I

∂z
(x, z) ≥ 0

}
.

The derivatives are also easy to compute. Namely,

∂H1,0
I

∂z
(x, z) = a1,0 +

∑
i∈I,a1i>0

a1i (l1)i +
∑

i∈I,a1i<0

a1i (u1)i

+
∑

i∈Ī,a1i>0

a1i (u0)i +
∑

i∈Ī,a1i<0

a1i (l0)i .

87

Observation 3.9. If we assume that the bounds u1 and l1 are equal to some globally

known bounds x and x on the variables x, then it is an easy exercise to check that

H1,0
∅ (x, z) ≤ 0 is a big-M constraint with the big-M calculated precisely as in (3.8).

This shows that, in the light of what was said at the end of Section 3.3.2, only

one of the exponentially many constraints in Corollary 3.5 is enough to get a valid

formulation, while the rest could be used in a cutting-plane fashion.

To the best of our knowledge, there is no computational investigation so far on the

quality of the bound achievable by the reformulation based on Corollary 3.5. We will

show in Section 3.5.1 some results on it by solving supervised classification problems

(cf. Section 1.5.4) with the standard big-M formulation and with the disjunctive

one.

3.4 Pairs of related disjunctions

In this section we consider the case in which two disjunctions of the type introduced

in Section 3.3.2 are related to each other. Of course, we are still interested in

characterizing the cases in which the convex hull description of Theorem 1.11 can

be projected onto the space of the original variables. Namely, in Section 3.4.1 we

show how to deal with the case in which two disjunctions are complementary, i.e.,

precisely one of their associated indicator variables must take value one. This is

a significant generalization of the result in Section 3.3.2, also because it can be

interpreted as if both terms of a binary disjunction are actual constraints given as

the level sets of a single function. This can be seen as an actual if-the-else construct.

However, we will see that an additional technical condition is required. Moreover,

in Section 3.4.2 we consider the case in which at most one of the indicator variables

associated with a pair of related disjunctions can take value one and we examine its

relationship with a ternary disjunction.

3.4.1 Complementary indicator constrains

We now consider a pair of disjunctions of the type discussed in Section 3.3.2, which

are complementary to each other in the sense that the indicator constraint described

by the first disjunctive term, g0(x) ≤ 0, is deactivated when the indicator constraint

of the second disjunctive term, g1(x) ≤ 0, is active and vice versa. To model this

situation we consider the sets

S0 = {x ∈ Rn | l0 ≤ x ≤ u0},

S1 = {x ∈ Rn | l1 ≤ x ≤ u1, g1(x) ≤ 0},

88

S0 = {x ∈ Rn | l0 ≤ x ≤ u0, g0(x) ≤ 0},

S1 = {x ∈ Rn | l1 ≤ x ≤ u1}.

We denote by z the indicator variable associated with the first two sets: when it is

equal to one, the constraint g1(x) ≤ 0 is active. Conversely, the indicator variable

z is associated with the second pair of sets: when it is equal to one, the constraint

g0(x) ≤ 0 is active. The complementarity is assured by the fact that the two

indicators have to sum up to one. Therefore, we define

H= := {(z, z) ∈ R2 | z + z = 1} and L= := Rn ×H=.

Then, we can prove the following result.

Proposition 3.10. Let J = {0, 1} and for j ∈ J define Γj := Sj × {j} × [0, 1],

with Sj specified as above and non-empty, and Γj := Sj × [0, 1] × {1 − j}, with

Sj specified as above and non-empty. If g0(·) and g1(·) are isotone functions with

J1(g0) = J2(g1), then

conv
(
(Γ0 ∪ Γ1) ∩

(
Γ0 ∪ Γ1

)
∩ L=

)
= conv (Γ0 ∪ Γ1) ∩ conv

(
Γ0 ∪ Γ1

)
∩ L= = cl(Γ∗),

where

Γ∗ =



(x, z, z) ∈ Rn+2

zq1,0
I (x

z
, z) ≤ 0

zq0,1
I (x

z
, z) ≤ 0

}
∀ I ⊆ [n]

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0

0 < z, z < 1

z + z = 1


.

Proof. We will first show the second equality above. First of all, we note that

Γ0 ∪ Γ1 =
(
(S0 × {0}) ∪ (S1 × {1})

)
× [0, 1]

and thus

conv(Γ0 ∪ Γ1) = conv
(
(S0 × {0}) ∪ (S1 × {1})

)
× [0, 1].

To the convex hull on the right-hand-side one can apply Theorem 3.4 and then lift it

to its cartesian product with [0, 1], and the same applies to Γ0 ∪Γ1. By intersecting

the two resulting sets and L=, one gets exactly the set cl(Γ∗) after noting that the

constraints

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0 and zl0 + (1− z)l1 ≤ x ≤ zu0 + (1− z)u1

89

are identical after substituting z by 1− z.

Now we come to the first equality and prove it by showing two set inclusions.

First, the left-hand-side set is trivially included in the right-hand-side one. The

converse set inclusion requires a bit more work. Note that we can write

(Γ0 ∪ Γ1) ∩
(
Γ0 ∪ Γ1

)
∩ L= =

(
S0 × {0} × {1}

)
∪ (S1 × {1} × {0}) .

Using this identity and Theorem 1.11, we know conv
(
(Γ0 ∪ Γ1) ∩

(
Γ0 ∪ Γ1

)
∩ L=

)
to be the projection onto (x, z, z) of the closure of the set

(x, x0, x1, z, z0, z1, z, z0, z1, λ0, λ1) ∈ R3n+8

x = x0 + x1, z = z0 + z1, z = z0 + z1

λ0 + λ1 = 1, g̃0(x0, λ0) ≤ 0, g̃1(x1, λ1) ≤ 0

λ0l0 ≤ x0 ≤ λ0u0, λ
1l1 ≤ x1 ≤ λ1u1

z0 = 0, z1 = λ1, z0 = λ0, z1 = 0, λ0, λ1 > 0


.

By eliminating z0 = 0 and z1 = 0, identifying z = z1 = λ1 and z = z0 = λ0, and

substituting x0 = x− x1 and x1 by y, this set becomes

Γ̂ =



(x, y, z, z) ∈ R2n+2

zg1(y/z) ≤ 0

zg0 ((x− y)/z) ≤ 0

x− zu0 ≤ y ≤ x− zl0
zl1 ≤ y ≤ zu1

0 < z, z < 1


.

It remains to show that cl(Γ∗) ⊆ proj(x,z,z) cl(Γ̂). Therefore, let (x, z, z) ∈ Γ∗ and

define y ∈ Rn as

yi = max{z (l1)i , xi − z (u0)i} ∀ i ∈ J1(g1),

yi = min{z (u1)i , xi − z (l0)i} ∀ i ∈ J2(g1).

Then, one can check that there is a set I ⊆ [n] such that h1,0
I (x

z
, z) = y/z. Further-

more, taking into account that J2(g1) = J1(g0), we can also check that h0,1

I
(x
z
, z) =

x−y
z

. Because zq1,0
I (x

z
, z) = zg1(y

z
) ≤ 0 and zq0,1

I
(x
z
, z) = zg0

(
x−y
z

)
≤ 0, we deduce

that g1(y
z
) ≤ 0 and g0

(
x−y
z

)
≤ 0. The lower and upper bounds on y are easily

checked to hold and we have that (x, y, z, z) ∈ Γ̂.

We now come to the closure. Consider any point (x, z, z) ∈ cl(Γ∗) and let (xk, zk, zk)

90

be a sequence of points in Γ∗ such that limk→∞(xk, zk, zk) = (x, z, z). For every k ∈ N
one can define yk as above to get a point (xk, yk, zk, zk) ∈ Γ̂, and yk converges to

some y ∈ Rn. Thus, limk→∞(xk, yk, zk, z) = (x, y, z, z) ∈ cl(Γ̂). With this, the proof

is complete.

The proof of Proposition 3.10 is a straightforward extension of the proof of Theorem

3.4 given in [HBCO12]. We note that it can now also be recovered from the results

in the very recent work [Vie15a]. The interpretation of Proposition is somewhat sur-

prising. Under the technical condition that the functions g0(·) and g1(·) be isotone,

and that in addition J2(g1) = J1(g0), it shows that computing the convex hull of the

intersection of the two disjunctions does not allow any improvement with respect

to intersecting the individual convex hulls of the two single disjunctions considered

in isolation. Without this technical condition, this may not be true (see Example

3.14). Of course, Proposition 3.10 also shows that everything can be done in the

original space of variables.

Because the two disjunctions above are complementary, i.e., z = 1 − z, the

whole situation could be described as a single disjunction with a single indicator

variable, that is, as a subset of Rn+1. For example,

(x, z) ∈
(
S0 × {0}

)
∪ (S1 × {1}) .

Its convex hull is then just the projection of the closure of Γ∗ from Proposition 3.10

onto the first n+ 1 variables. The fact that the whole situation can be managed by

projecting out z was already somewhat anticipated in the proof of Proposition 3.10.

We formalize this observation in the following corollary.

Corollary 3.11. Let Γ̊0 := S0×{0} and Γ̊1 := S1×{1}, with S0 and S1 specified as

above and non-empty. Thus, if J2(g1) = J1(g0), then conv(̊Γ0 ∪ Γ̊1) = cl(̊Γ), where

Γ̊ =



(x, z) ∈ Rn+1

zq1,0
I (x

z
, z) ≤ 0

(1− z)q0,1
I (x

1−z , 1− z) ≤ 0

}
∀ I ⊆ [n]

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0

0 < z < 1


.

The condition about the index sets of the isotone functions required for Proposition

3.10 and Corollary 3.11 is interpreted in the following observation.

Observation 3.12. If J2(g1) = J1(g0), then there is a vertex v of the rectangle

[l0,u0] such that g0(v) ≤ 0. In fact, because S0 6= ∅, there is a x0 ∈ [l0,u0] with

91

9
10

1−e−
9
5

x1

z

x2

0

(a) Two disjunctive sets S0 and S1

9
10

1−e−
9
5

x1

x2

0

(b) Convex hull of S0 ∪ [0, 1]2

x1

z

x2

0

(c) Convex hull of [0, 1]2 ∪ S1

9
10

1−e−
9
5

x1

x2

0

(d) Intersection of the two convex hulls

Figure 3.1: Illustrative construction of the convex hull of two disjunctive sets

g0(x0) ≤ 0. If we set

vi :=

(l0)i , i ∈ J1(g0)

(u0)i , i ∈ J2(g0)
,

then g0(v) ≤ g0(x0) ≤ 0. Furthermore, because also S1 6= ∅, there is a x1 ∈ [l1,u1]

with g1(x1) ≤ 0. If we then define w ∈ [l1,u1] as the opposing vertex, i.e.,

wi :=

(u1)i , vi = (l0)i

(l1)i , vi = (u0)i

,

due to J2(g1) = J1(g0), we get that g1(w) ≤ g1(x1) ≤ 0. Thus, the resulting convex

hull contains at least two such opposing vertices of the underlying hyperractangles.

We now give an example of Corollary 3.11 involving functions in two variables, giving

rise to three-dimanesional sets.

Example 3.13. Let l0 = l1 = 0 ∈ R2 and u0 = u1 = 1 ∈ R2, and consider the

functions g0(x1, x2) = exp
(
2x1 − 9

5

)
+x2−1 and g1(x1, x2) = max

{
1
2
− x1,

1
2
− x2

}
.

92

z

x

1
2

(a)

z

x

3
4

(b)

z

x

(c)

Figure 3.2: Counterexample for the case in which J2(g1) 6= J1(g0)

One can show that they are both isotone and that J1(g0) = J2(g1) = {1, 2} and

J2(g0) = J1(g1) = ∅. The two disjunctive sets

{x ∈ R2 | l0 ≤ x ≤ u0, g0(x) ≤ 0}×{0} and {x ∈ R2 | l1 ≤ x ≤ u1, g1(x) ≤ 0}×{1}

are shown in Figure 3.1 (a). Figures 3.1 (b) and (c), respectively show the non-

redundant boundaries of the convex hull of

{x ∈ R2 | l0 ≤ x ≤ u0, g0(x) ≤ 0} × {0}
⋃
{x ∈ R2 | l1 ≤ x ≤ u1} × {1}

on the one hand, and those of the convex hull of

{x ∈ R2 | l1 ≤ x ≤ u1, g1(x) ≤ 0} × {1}
⋃
{x ∈ R2 | l0 ≤ x ≤ u0} × {0}

on the other. The convex hulls in Figures 3.1 (b) and (c) are obtained by Theorem

3.4 and Corollary 3.5, respectively. Figure 3.1 (d) then shows the intersection of the

latter two, giving the convex hull of the set

{x ∈ R2 | l0 ≤ x ≤ u0, g0(x) ≤ 0}×{0}
⋃
{x ∈ R2 | l1 ≤ x ≤ u1, g1(x) ≤ 0}×{1}.

Now, we switch from R2 to R in order to see what happens when the condition

J2(g1) = J1(g0) is not fulfilled.

Example 3.14. Let l0 = l1 = 0 and u0 = u1 = 1, and consider the two functions

H0(x) = x − 1
2

and H1(x) = x − 3
4
, both of which are non-decreasing in their first

and only coordinate. Figures 3.2 (a) and (b) show the convex hull when considering

one indicator constraint at a time. In Figure 3.2 (c) we see that their intersection

does not give the convex hull of the two complementary indicator constraints.

Informally, the condition J2(g1) = J1(g0) can be described as the fact that one

function is non-increasing in those coordinates where the other one is non-decreasing

93

and vice versa. This holds true in a number of applications, starting from the well-

known (and already mentioned) Job Shop Scheduling problem, where for each pair

of jobs i, j and each machine k, either i is executed on k before j or vice versa.

In Section 3.5.2 we will compare the quality of the bound provided by the dis-

junctive reformulation obtained by applying Corollary 3.11 above and the straight-

forward big-M formulation for JSS.

3.4.2 Almost complementary indicator constraints

In this section we will start again from the setting of Section 3.4.1, but weaken the

requirement on the relation between the two disjunctions. In particular, we relax

the constraint z+ z̄ = 1 by imposing z+ z̄ ≤ 1 instead. This means that in addition

to the two possibilities of activating one constraint at a time, we also allow that none

of them is active. By slightly modifying the notation from before, we will consider

the three sets

S0 = {x ∈ Rn | l0 ≤ x ≤ u0},

S1 = {x ∈ Rn | l1 ≤ x ≤ u1, g1(x) ≤ 0},

S−1 = {x ∈ Rn | l−1 ≤ x ≤ u−1, g−1(x) ≤ 0}.

Again, we denote by z the indicator variable that activates the constraint g1(x) ≤ 0,

and by z̄ the one that activates the constraint g−1(x) ≤ 0. Moreover, we extend

(3.16) as

S1 ⊆ S0 and S−1 ⊆ S0. (3.17)

If we define

H≤ := {(z, z̄) ∈ R2 | z + z̄ ≤ 1} and L≤ := Rn ×H≤,

and for j ∈ J = {0, 1}, by slight abuse of notation,

Γj := Sj × {j} × [0, 1] and Γ̄j := S−j × [0, 1]× {j},

then the situation can be modeled as the intersection of two disjunctions and L≤,

namely

(x, z, z̄) ∈ (Γ0 ∪ Γ1) ∩
(
Γ̄0 ∪ Γ̄1

)
∩ L≤. (3.18)

94

Observation 3.15. It is easy to check that (3.18) is equivalent to the ternary dis-

junction

(x, z, z̄) ∈ (S0 × {0} × {0}) ∪ (S1 × {1} × {0}) ∪ (S−1 × {0} × {1}) .

From an application perspective, such a ternary case holds, for example, in the

context of the TSPTW (cf. Section 1.5.1). There, for each pair of cities i and j,

either city j is visited immediately after city i (say, S1), or immediately before (say,

S−1), or the visit happens not adjacent to i (say, S0).

In the case of (3.18), we do not know a description of the convex hull in the

original space of variables, but using Theorem 3.4, we can compute a superset.

Corollary 3.16. Let S0, S1 and S−1 be specified as above and non-empty. Thus,

we have that if g−1 and g1 are isotone functions, then

conv
(
(Γ0 ∪ Γ1) ∩

(
Γ̄0 ∪ Γ̄1

)
∩ L≤

)
⊆ conv (Γ0 ∪ Γ1) ∩ conv

(
Γ̄0 ∪ Γ̄1

)
∩ L≤ = cl(Γ̆),

where

Γ̆ =



(x, z, z̄) ∈ Rn+2,

zq1,0
I (x

z
, z) ≤ 0

z̄q−1,0
I (x

z̄
, z̄) ≤ 0

}
∀ I ⊂ [n],

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0

z̄l−1 + (1− z̄)l0 ≤ x ≤ z̄u−1 + (1− z̄)u0

0 < z, z̄ < 1

z + z̄ ≤ 1


.

Proof. The set inclusion is a simple observation, while the set equality follows by

Theorem 3.4.

In Section 3.5.3 we will discuss some computational results comparing the straight-

forward big-M formulation of the TSPTW with the disjunctive one based on Corol-

lary 3.16 above.

3.4.2.1 Ternary disjunctions

Of course, a ternary case like the one described in the previous section can be

managed by means of a unique indicator variable, say z̃, which will lead to (3.9) -

(3.13) with J = {−1, 0, 1}. It is natural to ask, on the one side, if it is possible

to write the counterpart of Corollary 3.16 for this special case, and, on the other

hand, which is the relationship between these two ways of representing essentially

the same disjunction. The answer to the first question is positive under the technical

95

condition of the functions g−1(·) and g1(·) being affine (discussed later), while that

to the second one is once again a bit surprising: we will show in the following that

working with two distinct indicators (as in Corollary 3.16) is stronger than with one

indicator variable only.

To deal with the ternary case with a unique indicator variable we need to

extend the definition of the set N̂ of Observation 3.8 to pairs of indices j, j′ ∈ J =

{−1, 0, 1}:

N̂ j,j′ :=
{
I⊆Ñ

∣∣∣∣ aj,0 +
∑

i∈I,aj,i>0

aj,i (lj)i +
∑

i∈I,aj,i<0

aj,i (uj)i

+
∑

i∈Ī,aj,i>0

aj,i (uj′)i +
∑

i∈Ī,aj,i<0

aj,i (lj′)i ≥ 0.
}

Then, we can prove the following result.

Proposition 3.17. Let J = {−1, 0, 1} and for j ∈ J define Γj := Sj × {j}, with

Sj specified as above and non-empty. Moreover, let us assume that (3.17) holds and

that g−1(·) and g1(·) are affine functions. Then, conv(Γ0 ∪ Γ1 ∪ Γ−1) = Γ′′′, where

Γ′′′ =



(x, z̃) ∈ Rn+1

H1,0
I (x, z̃) ≤ 0, ∀ I ∈ N̂1,0

H−1,0
I (x,−z̃) ≤ 0, ∀ I ∈ N̂−1,0

z̃l1 + (1− z̃)l0 ≤ x ≤ z̃u1 + (1− z̃)u0

−z̃l−1 + (1 + z̃)l0 ≤ x ≤ −z̃u−1 + (1 + z̃)u0

−1 ≤ z̃ ≤ 1


.

Proof. We start by defining the two relaxed sets

Γ̃1 =


(x, z̃) ∈ Rn+1

H1,0
I (x, z̃) ≤ 0, ∀ I ∈ N̂1,0

z̃l1 + (1− z̃)l0 ≤ x ≤ z̃u1 + (1− z̃)u0

−1 ≤ z̃ ≤ 1


and

Γ̃−1 =


(x, z̃) ∈ Rn+1

H−1,0
I (x,−z̃) ≤ 0, ∀ I ∈ N̂−1,0

−z̃l−1 + (1 + z̃)l0 ≤ x ≤ −z̃u−1 + (1 + z̃)u0

−1 ≤ z̃ ≤ 1


,

96

and note that Γ′′′ = Γ̃1 ∩ Γ̃−1. By Corollary 3.5 and Observation 3.8, because

(3.16) holds for (1, 0) and (−1, 0), we have Γ̃1 ∩ (Rn × [0, 1]) = conv(Γ0 ∪ Γ1) and

Γ̃−1 ∩ (Rn × [−1, 0]) = conv(Γ0 ∪Γ−1). Thus, (Γ0 ∪ Γ1) ⊆ Γ̃1 and (Γ0 ∪ Γ−1) ⊆ Γ̃−1.

By the first of these two set inclusions, for any I ∈ N̂1,0, H1,0
I (x, z̃) ≤ 0 is a valid

inequality for Γ0. That is, H1,0
I (v, 0) ≤ 0 for any v ∈ projx Γ0. Since projx Γ−1 ⊆

projx Γ0 and
∂H1,0

I

∂z̃
(x, z̃) ≥ 0, we deduce that H1,0

I (w,−1) ≤ 0 for all w ∈ projx Γ−1,

i.e., that H1,0
I (x, z̃) ≤ 0 is valid for Γ−1. In a similar way, because (3.16) holds for

(1, 0), one can show that the bound inequalities in Γ̃1 are valid for Γ−1. Hence, we

deduce that (Γ0 ∪ Γ1 ∪ Γ−1) ⊆ Γ̃1.

In an analogue fashion, noting that
∂H−1,0

I

∂(−z̃) (x,−z̃) ≥ 0 for all I ∈ N̂−1,0 and

that (3.16) holds for (−1, 0), one gets (Γ0 ∪ Γ1 ∪ Γ−1) ⊆ Γ̃−1. All in all follows

that (Γ0 ∪ Γ1 ∪ Γ−1) ⊆
(

Γ̃1 ∩ Γ̃−1

)
= Γ′′′, and because Γ′′′ is clearly a convex

set, conv (Γ0 ∪ Γ1 ∪ Γ−1) ⊆ Γ′′′. In order to see the converse set inclusion, let

(x, z̃) ∈ Γ̃1 ∩ Γ̃−1. If z̃ ∈ [0, 1], by Corollary 3.5 we get (x, z̃) ∈ conv (Γ0 ∪ Γ1).

Otherwise, (x, z̃) ∈ conv (Γ0 ∪ Γ−1). In either case, (x, z̃) ∈ conv (Γ0 ∪ Γ1 ∪ Γ−1)

and we conclude that conv (Γ0 ∪ Γ1 ∪ Γ−1) = Γ′′′.

Proposition 3.17 is formulated for affine functions because for general isotone func-

tions it would require a definition of the perspective functions for negative values

of the multiplier λ (namely, the indicator z̃), different from the definition given in

(1.31). To the best of our knowledge, such a definition has not been proposed yet.

This is due to the fact that the perspective function with a negative multiplier looses

the convexity-preserving property.

In order to compare the two ways of modeling the ternary disjunction proposed

in the present and in the previous section, we maintain the more restrictive assump-

tion of affine functions required in Proposition 3.17, under which Corollary 3.16 is,

of course, still valid. Then, we define

H := {(z, z̄, z̃) ∈ R3 | z̃ = z − z̄} and L := Rn ×H,

Γ0 := S0 × {0} × {0} × [−1, 1],

Γ1 := S1 × {1} × {0} × [−1, 1],

Γ−1 := S−1 × {0} × {1} × [−1, 1],

Γ̃0 := S0 × [0, 1]× [0, 1]× {0},

Γ̃1 := S1 × [0, 1]× [0, 1]× {1},

Γ̃−1 := S−1 × [0, 1]× [0, 1]× {−1}.

97

and consider the two disjunctions

(x, z, z̄, z̃) ∈ (Γ0 ∪ Γ1 ∪ Γ−1) ∩ L and (x, z, z̄, z̃) ∈
(

Γ̃0 ∪ Γ̃1 ∪ Γ̃−1

)
∩ L. (3.19)

These two are equivalent in terms of indicator constraints, in the sense that either

z, z̄ (together) or z̃ alone indicate the activity of the involved constraints, and with

the trivial transformation z̃ = z − z̄ one can switch from one case to the other

without losing information. However, in terms of their continuous relaxations, the

two disjunctions are not the same. By Corollary 3.16 and Proposition 3.17, we

can (after projecting out either z̃ or z, z̄, respectively) compute a superset of the

convex hull of the first disjunction in (3.19) and the convex hull itself of the second

disjunction, and then lift them back into Rn+3 and intersect with L. The relation

of the two resulting sets is characterized by the following corollary.

Corollary 3.18. conv(Γ0 ∪ Γ1 ∪ Γ−1) ∩ L ⊆ Γ̇ and conv(Γ̃0 ∪ Γ̃1 ∪ Γ̃−1) ∩ L = Γ̌,

where

Γ̇ =



(x, z, z̄, z̃) ∈ Rn+3

H1,0
I (x, z) ≤ 0, ∀ I ∈ N̂1,0

H−1,0
I (x, z̄) ≤ 0, ∀ I ∈ N̂−1,0

zl1 + (1− z)l0 ≤ x ≤ zu1 + (1− z)u0

z̄l−1 + (1− z̄)l0 ≤ x ≤ z̄u−1 + (1− z̄)u0

0 < z, z̄ < 1

−1 < z̃ < 1

z + z̄ ≤ 1

z̃ = z − z̄


and

Γ̌ =



(x, z, z̄, z̃) ∈ Rn+3

H1,0
I (x, z̃) ≤ 0, ∀ I ∈ N̂1,0

H−1,0
I (x,−z̃) ≤ 0, ∀ I ∈ N̂−1,0

z̃l1 + (1− z̃)l0 ≤ x ≤ z̃u1 + (1− z̃)u0

−z̃l−1 + (1 + z̃)l0 ≤ x ≤ −z̃u−1 + (1 + z̃)u0

0 < z, z̄ < 1

−1 < z̃ < 1

z̃ = z − z̄



.

In addition, Γ̇ ⊆ Γ̌. Thus, conv(Γ0 ∪ Γ1 ∪ Γ−1) ∩ L ⊆ conv(Γ̃0 ∪ Γ̃1 ∪ Γ̃−1) ∩ L.

Proof. The set Γ̇ follows immediately from Γ̆ in the statement of Corollary 3.16 and

98

Observation 3.8. The inclusion conv(Γ0∪Γ1∪Γ−1)∩L ⊆ Γ̇ follows from the Corollary.

Similarly, the set equality conv(Γ̃0∪ Γ̃1∪ Γ̃−1)∩L = Γ̌ follows from Proposition 3.17.

The set inclusion Γ̇ ⊆ Γ̌ can be seen by the fact that the two sets are described by

the same constraints apart from z + z̄ ≤ 1 and the constraints indexed in I ∈ N̂1,0

and I ∈ N̂−1,0, respectively. Even if one added the former constraint, z + z̄ ≤ 1,

to the definition of Γ̌, note that the latter set of constraints is more restricting in

Γ̇, because, for example,
∂H1,0

I

∂z
≥ 0, but z ≥ z̃ for all (x, z, z̄, z̃) ∈ Γ̇. Similarly,

∂H−1,0
I

∂−z ≥ 0, but z̄ ≥ −z̃ for any (x, z, z̄, z̃) ∈ Γ̇.

The computation in Section 3.5.3 shows that the set inclusion Γ̇ ⊆ Γ̌ can be strict,

i.e., Γ̇ ⊂ Γ̌.

3.5 Computation

In this section we computationally compare the quality of straightforward big-M

formulations and the disjunctive ones implemented in the original space of variables

by making use of the results in the previous sections on several problems that expose

logical implications in their definition. We express this quality in terms of the dual

gap (as a percentage) between the continuous relaxation and the original problem,

cf. Definition 1.2. All problems that are solved in order to obtain the values that are

needed to calculate the dual gaps in the following sections are MILPs, LPs, MIQPs

or QPs, and we therefore use CPLEX 12.6. In particular, the feasible region in all

problems is a polyhedral set.

In addition to the dual gap, we compute and report the percentage gap of the

closure of rank-1 lift-and-project cuts [Bon12] of the two distinct formulations. We

will study this kind of MILP cutting planes in more detail in Chapter 4, and thus

postpone a formal definition3. We can think of the percentage gap of this closure

as an additional measure of the quality of an MILP formulation. In all problems we

consider in the following, the binary variables we apply this closure to are indicator

variables and it is thus interesting to analyze the impact of the closure on the stronger

formulation obtained by Disjunctive Programming with respect to the big-M one.

This is the reason we include it in our comparison. In [Bon12] is also described a

way to approximate the closure of strengthened rank-1 lift-and-project cuts, and

again we include the respective percentage gap in the comparison.

We do not compare the time spent to solve the continuous relaxation of the

disjunctive formulation with that of the big-M one, because we are mostly concerned

with assessing their strength in terms of dual gaps for now. Note that in the case

of linear functions, as mentioned earlier, there are no differentiability issues, i.e.,

3In particular, the closures were computed with a version of Algorithm 4.2.

99

taking the closures in any of the results in the previous sections just amounts to

taking 0 ≤ z ≤ 1, which can be implemented in a straightforward way. This is the

case for the constraint sets in all following cases.

We also note that in the case of linear indicator constraints, exactly one of the

inequalities given by the disjunctive formulation coincides with the big-M constraint

with the value of M chosen as tight as possible (see Observation 3.9). In this way,

the disjunctive formulation can be seen as the big-M formulation augmented by a

number of valid inequalities. In any case, we always need bounds on the variables to

be able to write either formulation, and we will indicate in each case how we obtain

them.

Throughout Tables 3.1 - 3.4, the continuous relaxation of the big-M formulation

is denoted by big-M lp, while the one of the continuous relaxation of the perspective

reformulation is denoted by CH lp. Similarly, the rank-1 lift-and-project closures are

denoted by Pe big-M and Pe CH, and the strengthened closures by P ∗e big-M and P ∗e
CH.

3.5.1 Single indicator constraints: Supervised classification

We first consider the supervised classification problem introduced in Section 1.5.4.

Therein, we gave an MIQP formulation that was already a big-M reformulation of

the problem. We restate the problem here as an MIQP with indicator constraints,

min
ωTω

2
+
C

m

(
m∑
i=1

ξi + 2
m∑
i=1

(1− zi)

)
s.t. [zi = 1] =⇒ [yi(ω

Txi + ω0)− 1 + ξi ≥ 0] ∀ i ∈ [m]

0 ≤ ξi ≤ 2 ∀ i ∈ [m]

(ω, ω0) ∈ Rd+1

z ∈ {0, 1}m.

The continuous variables (ω, ω0) ∈ Rd+1 are unbounded and, in order to be able to

reformulate, we have to apply some preprocessing. This was mentioned before; we

have to obtain bounds on the variables involved in the disjunctions. For feasible

sets described by linear constraints, ways to do so have been proposed. We choose

to follow the approach described in [BBF+14], that in addition can be applied with

several levels of intensity. In our computational tests, we compare two of these

intensities, say weak and strong. We thus have two different sets of bounds on

the variables (ω, ω0), one stronger and one weaker one. In any case, this is then

precisely the case of a linear single indicator constraint case discussed in Section

3.3.3, because for each object i either a linear constraint is active (say, S1) or the

100

variables are restricted into a box (say, S0).

We note that if each of the indicator constraints above is rewritten as a big-M

constraint, this results in a set of m constraints. This is opposed to a set of m · 2d+2

constraints resulting from Theorem 3.4. However, we observed that the number of

constraints can in practice be reduced significantly by means of Observation 3.8.

In Table 3.1 and Table 3.2 we report the various dual gaps as explained in

the previous section obtained with 31 instances from [Bro11] and after applying

the aforementioned weak or strong preprocessing, respectively. The results in Table

3.14 computationally confirm the theoretical dominance of the disjunctive formu-

lation with respect to the big-M one. However, the improvement is very small,

almost negligible, and although it gets slightly higher if the lift-and-project closure

is considered, still it does not look very promising to work with the disjunctive for-

mulation. It is worth noting that also in terms of lift-and-project (unstrengthened)

closures there is a theoretical dominance of the disjunctive formulation with respect

to the big-M one, while the same does not hold for the strengthened versions of the

closure because they are only approximations of the theoretical closure [Bon12].

In Table 3.2 we show only those instances from Table 3.1 in which the dual

gap is not closed in at least one of the six columns5. By considering a much more

strengthened version of the initial model (with tighter bounds on (ω, ω0)) the quality

of the bound provided by the disjunctive formulation looks better than that of the

big-M one. More precisely, on the instances 4nl 16 and 4nl 17, in which the big-M

formulation shows a small but still significant gap, the disjunctive formulation im-

proves significantly, showing no gap. On two out of three of the remaining “difficult”

instances, namely 2nl 10 and 3nl 13, the bound provided by the disjunctive reformu-

lation is significantly better. On these last two instances the two formulations did

not show any difference in Table 3.1, thus suggesting that the disjunctive reformu-

lation takes advantage of the strengthening of the bounds of the (ω, ω0) variables.

We will come back to this in Section 3.6.

If CPLEX 12.6 is used as a black-box for solving the two MIQP formulations

to optimality instead of just computing dual gaps, we do not observe much of a

difference in terms of computing times and branch-and-bound nodes between the

two formulations. Precisely, in the case of the disjunctive formulation we decide to

add all constraints that are not present in the big-M one (see again Observation 3.9)

as user cuts to CPLEX, instead of imposing them as regular constraints. This allows

the solver to decide a proper way of using the constraints, which is a conservative

strategy in case no clear assessment on their strength is possible. However, as

anticipated, no significant difference is observed.

4Shown are only 27 instances, while the mean values are computed over all 31.
5The mean values are computed over these 8 instances only.

101

3.5.2 Complementary indicator constrains: Job Shop Scheduling

We now turn to JSS. A MILP formulation with big-M constraints has been given in

(1.43) - (1.49), and we state one with indicator constraints here.

min Ω (3.20)

s.t. sik′ ≥ sik + pik ∀ i ∈ [n], k, k′ ∈ [m] : Oik < Oik′ (3.21)

[xkij = 1] =⇒ [skj ≥ ski + pki] ∀ i < j ∈ [n], k ∈ [m] (3.22)

[xkij = 0] =⇒ [ski ≥ skj + pkj] ∀ i < j ∈ [n], k ∈ [m] (3.23)

Ω ≥ sik + pik ∀ i ∈ [n], k ∈ [m] (3.24)

sik ≥ 0 ∀ i ∈ [n], k ∈ [m] (3.25)

xkij ∈ {0, 1} ∀ i < j ∈ [n], k ∈ [m]. (3.26)

The above is precisely the case of the complementary disjunctions discussed in Sec-

tion 3.4.1, in particular Corollary 3.11. It is an easy exercise to verify the technical

condition J1(g) = J2(g) required therein. Note therefore that each indicator con-

straint could be rewritten by either a single big-M constraint or four constraints

resulting from Corollary 3.11, one of which can be shown to be always redundant.

As bounds on the variables, we use the ones calculated according to (1.57) and

(1.58).

In Table 3.3 we consider 34 JSS instances from the literature [ABZ88, FT63,

KH06]6. The results in therein show that there is some advantage in using the

disjunctive formulation with respect to the big-M one, although the improvement in

the quality of the dual bound is not sufficient to make any of the 34 instances above

significantly easier for a general-purpose MILP solver if used as a black-box. More

precisely, within one hour CPU time limit, CPLEX 12.6, used as described in the

previous section, solves to optimality the same 17 instances for both formulations

and no dominance in performance is shown: the big-M formulation is slightly better

in terms of arithmetic mean, while the reverse is true in geometric mean.

However, we believe that combining the disjunctive reformulation, lift-and-

project cuts and effective special-purpose propagation (i.e., tailored for JSS) could

lead to an effective algorithm for optimally solving difficult JSS instances. Part of

this is precisely the topic of Section 3.6.2.

6The dual gaps are computed with respect to the best known solution for instances la23 and la26.
An asterisk indicates that the computation of the lift-and-project closure hit the time limit of
two CPU hours.

102

3.5.3 Almost complementary indicator constraints: TSPTW

As a last computational example we consider the TSPTW introduced in Section

1.5.1. We recall the MILP formulation, but this time with indicator constraints,

min
∑

(i,j)∈A
i 6=q,j 6=p

tijxij (3.27)

s.t.
∑
j∈δ+i

xij = 1 ∀ i ∈ N \ {q} (3.28)

∑
i∈δ+j

xij = 1 ∀ j ∈ N \ {p} (3.29)

[xij = 1] =⇒ [ai + pi + tij ≤ aj] ∀ (i, j) ∈ A : i 6= q (3.30)

li ≤ ai ≤ ui ∀ i ∈ N (3.31)

xij ∈{0, 1} ∀ (i, j) ∈ A : i 6= q, j 6= p. (3.32)

Taking two binary variables corresponding to the same arc, xij and xji, one can show

that the associated indicator constraints imply the relation xij + xji ≤ 1. Thus, the

above is precisely the case of almost complementary indicator constraints of Section

3.4.2, and we can compare a big-M formulation with a disjunctive formulation in the

original space of variables. Bounds on the variables are taken simply from (3.31).

The number of constraints needed for reformulating each indicator constraint is

exactly the same as in the case of JSS in the previous section.

In addition to what has been reported in the tables of the two previous sections,

we also report the dual gaps of the continuous relaxation of the big-M formulation

where a ternary variable is used to model the disjunction as described in Section

3.4.2.1 (column big-Mz lp), and the continuous relaxation of the associated dis-

junctive reformulation according to Proposition 3.17 (column CHz lp). For these

two (weaker) cases, however, we do not compute the closures. We use 50 TSPTW

instances from [Asc95]. On the one side, the numbers in Table 3.47 confirm the

dominance relationships discussed in Section 3.4.2.1, and, on the other side, show a

neat advantage obtained by using the disjunctive formulation (column CHx lp) with

respect to the big-M one (column big-Mx lp). This is also true for closures and the

improvement becomes even more significant.

As in the JSS case, however, there is no instance that is not solved with the

big-M formulation, but is instead solved with the disjunctive formulation within

the CPU time limit of one hour using CPLEX 12.6. Nevertheless, over the 36 (out

7Shown are only 26 instances, but the mean values are computed over all 50. Again, an asterisk
indicates that the computation of the lift-and-project closure hit the time limit of two CPU
hours.

103

of 50) instances solved by CPLEX in both cases, there is a neat improvement of

both the running times and the number of branch-and-bound nodes. Precisely, by

considering only the 21 nontrivial instances for which each of the two formulations

is solved in at least 0.5 secs, the running time goes from 107.4 seconds to 72.3 in

arithmetic mean, and from 33.1 to 27.4 in geometric mean. In turn, the number of

nodes changes from 524,557.7 to 382,049.7 in arithmetic mean, and from 140,002.1

to 96,037.7 in geometric mean. This roughly corresponds to a 30% reduction in the

number of nodes, which looks like a promising result.

3.6 Bound tightening

At several points throughout this chapter, the importance of the availability of

bounds on the variables in the context of MIPs with indicator constraints has been

noted. This importance can be seen directly in the reformulations of indicator con-

strains with either big-M constraints or disjunctive reformulations. In the case of

affine functions, consider for example (3.8) and (3.15). But also in the nonlinear

case it can be seen when looking at the definition in (3.14). Thus, the constraints of

the reformulations we studied in the previous sections are somehow parametrized in

the bounds on the involved variables. Of course, when the binary variable involved

in the indicator constraint is zero or one, changing these parameters (the bounds),

does not have any effect. The constraint will just be active or inactive. This is

not true in the continuous relaxation though. As was stressed in Section 3.1, big-M

constraints are characterized by weak continuous relaxations. Therefore it seems de-

sirable to strengthen these relaxations, and it is easy to see that a big-M constraint

with a big-M as in (3.8) for example, is dominated by one in which more restrictive

bounds are used. The same is true for the constraints that are constructed with

(3.14). Also the computational results in Section 3.5.1 suggest that the reformu-

lations benefit from the use of bound tightenings. Even more interesting, Table

3.2, that shows the results in which strong preprocessing was used to obtain more

restrictive bounds on the variables of the supervised classification problem, suggests

that the perspective reformulation benefits more than the big-M one. To further

analyze this computational evidence, we explore bound tightening techniques and

their use in MILPs with indicator constraints in this section, and in particular in

conjunction with disjunctive reformulations in the case of JSS in Section 3.6.2.

3.6.1 Locally implied bound cuts

As for MILPs and the more classical way of reformulating indicator constraints, i.e.,

the big-M method, using tightened bounds on the variables in order to strengthen the

104

LP-relaxation of a big-M constraints is relatively easy, cf. (3.8). For the purpose of

this section, we imagine two conceptually opposed ways of using tightened bounds on

the variables inside big-M coefficients of a reformulation of an MILP with indicator

constraints. We stress that for the moment, we are exclusively concerned with how

to use these bounds, but not how to obtain them. That is, whenever we say bound

tightening, this has to be understood as any generic algorithmic way of deducing

tighter bounds on the variables.

The first of the two aforementioned opposed ways of using tightened bounds

can be motivated in the following way. Since an MILP is usually solved by branch

& bound, cf. Section 1.1.2, we can imagine to use local bounds on the variables in

every node of the search tree, i.e., bounds that are valid in the subproblem associated

to the node only. Whenever going down in the search tree, these bounds can only

get more restrictive, since the subproblem of any node is more constrained than the

one of its parent node. As an example take JSS, where we have seen that bounds

on the start variables can be obtained via the heads and tails in the disjunctive

graph in Section 1.5.2.1. When going down in the search tree, more conjunctive

arcs are added to the disjunctive graphs associated to the nodes’ subproblems, and

the heads and tails can only increase. This in turn leads to more restrictive bounds

on the start variables, cf. (1.57) and (1.58). But also in any other MILP, it remains

true that local bounds on the variables can only get tighter when the depth of the

tree increases. Together with the fact that tighter bounds on the variables can

only strengthen the continuous relaxation of big-M constraints, this suggests the

use of these local bounds in the big-M coefficients at every node in the search tree.

Even more, it suggests that increased effort on bound tightening at the nodes can

be advantageous. The general idea of such a procedure is schematically depicted in

Figure 3.3 (a), where tighter continuous relaxations are symbolized by darker colors.

The reasons why an approach exploiting local bounds as described above has

traditionally not been used when indicator constraints are present lie in the techni-

calities of the implementation of an MILP code. A big-M constraint with a big-M

that is based on locally valid bounds can be seen as a locally valid cutting plane that

has to be separated at a non-root node in the search tree. However, the separation

of cutting planes at non-root nodes usually leads to a loss of efficiency in the way

the search tree can be handled. For example, the use of warm starting techniques

becomes slightly more involved.

For the reasons outlined above, the second and more traditional way of using

tightened big-M coefficients in MILP is much less aggressive. Bound tightening is

conducted in order to obtain globally valid bounds on the variables (i.e., bound

tightening is conducted only at the root node), which are then used to build a

big-M formulation, that in turn is solved by branch & bound without altering the

105

(a) Strengthened big-M coefficients at ev-
ery node in the tree

(b) Strengthened big-M coefficients at the root
node only

Figure 3.3: The use of strengthened big-M coefficients inside a search tree

coefficients again. This is schematically depicted in Figure 3.3 (b). The trade-off

between the two described approaches should become clear from Figures 3.3 (a)

and (b), and from what has been said so far. While in the first case, tightened LP

relaxations lead to more pruning in the tree, the (longer) list of nodes in the second

case can be explored more efficiently.

A recent study of the use of locally valid big-M coefficients together with ag-

gressive bound tightening techniques can be found in [BBF+14]. CPLEX 12.6.1

allows for the use of so-called locally-implied-bound cuts in the context of MIPs

with indicator constraints, that are based precisely on tightened big-M coefficients,

as outlined above. These cuts work particularly good on instances of supervised

classification problems from Sections 1.5.4 and 3.5.1.

An interesting connection to non-convex MINLPs can be drawn here. As we

have seen, the continuous relaxation of a reformulation of an indicator constraint

depend on the bounds of the variables that are present in the constraint. The same is

true for the relaxations that are usually used for non-convex nonlinear constraints,

see Section 1.2.4 and in particular Figure 1.3. Just like there, bound tightening

techniques are therefore a tool that should be taken into consideration when dealing

with MILPs with indicator constraints. In some sense, MILP can learn from MINLP

technology here. However, in that respect, both can learn from CP regarding the

use of propagation. This is precisely the motivation of the next section.

106

black-box MILP

(a) Black-box MILP solve right
after the root node

black-box MILP

(b) Black-box MILP solves of nodes with positive
depth

Figure 3.4: The use of black-box MILP solvers inside a search tree

3.6.2 A tree-of-trees approach for MILP with indicator

constraints

Inspired by the two extremes outlined in the previous section (cf. Figure 3.3), we

present here an experimental, generic approach for MILPs with indicator constraints.

The extreme sketched in Figure 3.3 (b) can also be seen as applying bound tightening

at the root node, and then using an MILP solver as a black-box, see Figure 3.4 (a).

Our approach is something in between the two extremes in Figure 3.3. The idea

is to use bound tightening inside the search tree up to a certain point, in order to

then use an MILP solver as a black-box on the subproblems of the open nodes, see

Figure 3.4 (b). Roughly speaking, the original problem is decomposed into several

subproblems, each of which has a tightened continuous relaxation, so as to make

them tractable enough for an MILP solver. One motivation behind this is of course

the fact that we can make use of the sophisticated MILP technology when solving

these subproblems. Such an approach could be attributed the descriptive name tree

of trees, because a series of MILPs is generated in a tree-search fashion, and each of

them is then solved as an MILP, i.e., by exploring yet another tree.

We assume to have an underlying MILP with indicator constraints, that is a

special version of (3.2) - (3.6),

min cTx+ dT z (3.33)

s.t. Ax+ Wz ≤ g (3.34)

[zik =1] =⇒ [aTk x ≤ bk] ∀ k = 1, . . . , K̄ (3.35)

[zik =0] =⇒ [ãTk x ≤ b̃k] ∀ k = K̄ + 1, . . . , K̃ (3.36)

x ∈ Rñ (3.37)

z ∈ {0, 1}K . (3.38)

107

(3.33) - (3.38) can be obtained from (3.2) - (3.6) by assuming that all involved

functions are affine, and by assuming that bounds on the variables in the sets Skj in

(3.2) are independent of j and k, and equal to some global bounds x and x implied

by the global constraints (3.34). Then, each of the binary variables zi corresponds

to complementary indicator constraints as in Section 3.4.1, if

i ∈ {ik | k = 1, . . . , K̄} ∩ {ik | k = K̄ + 1, . . . , K̃}.

Otherwise, it corresponds to a single indicator constraint as in Section 3.3.2. Note

that for ease of exposition, in (3.37) we assume that there are no integer-constrained

variables x. However, the following approach can easily be extended to the case

where this restriction does not hold.

Our generic tree-search method for a problem of the form (3.33) - (3.38) is

inspired by and similar to the general branch-and-bound procedure for an MILP, cf.

Algorithm 1.1. Yet, there are some amendments that we will describe in detail now.

A node η in our search tree is given by the original MILP with indicator constraints

(3.33) - (3.38), together with a set of binary variables that are fixed to one, denoted

by Bη+, and a set of binary variables that are fixed to zero, denoted by Bη−. Hence, a

node still corresponds to a subproblem of the original one. Further, it is attributed

lower and upper bounds on the variables x, denoted by xη and xη, respectively. All

these sets and quantities are initially inherited from the parent node. Finally, every

node is equipped with a lower bound on the optimal objective value of its associated

subproblem, denoted by ` and initially set to the optimal objective value of the

parent node. Every node has a depth, which is the succeeding integer of the depth

of the parent node. The root node ρ has Bρ+ = Bρ− = ∅, ` = −∞, depth equal to

zero and its associated bounds on the variables are equal to the global ones x and

x.

In order to measure the quality of the dual bound coming from the continuous

relaxation of a reformulation of the subproblem associated to a node η1 with respect

to the one associated to another node η2, we define their so-called relative tightness

as

τ(η1, η2) :=α · (|Bη1+ |+ |B
η1
− |)− (|Bη2+ |+ |B

η2
− |)

K̃ − (|Bη2+ |+ |B
η2
− |)

+ (1− α) ·


1−

K̄∑
k=1

zik /∈(Bη1+ ∪B
η1
−)

|Mη1
k |+

K̃∑
k=K̄+1

zik /∈(Bη1+ ∪B
η1
−)

|M̃η1
k |

K̄∑
k=1

zik /∈(Bη1+ ∪B
η1
−)

|Mη2
k |+

K̃∑
k=K̄+1

zik /∈(Bη1+ ∪B
η1
−)

|M̃η2
k |


,

108

where α ∈ [0, 1] is some parameter, and Mη
k and M̃η

k denote the big-M coefficients of

the indicator constraints (3.35) and (3.36), respectively, calculated as in (3.8) with

the bounds of node η, i.e., xη and xη. The relative tightness of two nodes is thus a

weighted sum of two more specialized quantities. The first precisely measures the

portion of the non-fixed binary variables in the second node η2, that are instead fixed

in η1. The second quantity measures the relative change of the magnitude of the

big-M coefficients corresponding to all indicator constraints with non-fixed binary

variables in η1. The relative tightness of two nodes is a measure for the relative

quality of their continuous relaxations because, on the one hand, the number of

fixed binary variables obviously contributes to this quality, as is true in any MILP

with binary variables. On the other hand, we have seen that the magnitude of the

big-M coefficients is another contributor of the quality of the LP-relaxation of a big-

M reformulation of an indicator constraints. Of course we are not only interested

in big-M reformulations, but especially in disjunctive reformulations. But also in

this case, in light of Observation 3.9, the magnitude of the big-M coefficients is a

valid indicator of the quality of the LP-relaxations. Finally, we define the absolute

tightness of a node η as τ̄(η) := τ(η, ρ), where ρ is the root node.

The main difference between Algorithm 1.1 and our approach is the fact that

the subproblems of some nodes are solved as LPs, while others are solved as MILPs.

We denote by T = L∪M the list of all open nodes, partitioned into an LP-list and

an MILP-list. Nodes in L will be solved as LPs (so-called LP-nodes), while nodes in

M will be processed as MILPs (MILP-nodes). L and M are always disjoint. The

approach we propose, that is a tree-search procedure, can be roughly described by

Algorithm 3.1.

As in the case of Algorithm 1.1, there are several degrees of freedom in Algo-

rithm 3.1, and we are going to explain the single steps in more detail now.

3.6.2.1 Initialization

In order to initialize the upper bound UB, we run CPLEX’s 12.6.2 root node heuris-

tics on a big-M reformulation of (3.33) - (3.38). The upper bound UB might not

only be important for pruning, but also for propagation. This is particularly true in

the case of JSS, as we will see further down.

3.6.2.2 Node selection

As for choosing a node in line 3 of Algotirhm 3.1, in theory, various strategies to

explore the search tree could be invented, possibly changing multiple times between

the lists L and M. However, we concentrate on one particular way that allows us

to describe Algorithm 3.1 by two phases. As long as there are open LP-nodes in the

109

Algorithm 3.1: Tree of trees for indicator constraints

1 initialize UB and the root node ρ, set L = {ρ} and M = ∅;
2 while T 6= ∅ do
3 choose η ∈ T , set T = T \ {η};
4 propagate fixings and bounds on η;
5 solve η and denote by (x̂, ẑ) and ŵ its optimal solution and objective

value;
6 if ŵ < UB then
7 if ẑ integral then
8 update UB = ŵ;

9 else
10 choose a binary variable zi with fractional ẑi;
11 create nodes η− and η+ by adding zi to Bη− and Bη+, respectively;
12 set T = T ∪ {η−, η+};
13 end

14 end

15 end

tree, we restrict to those. Only when there are no LP-nodes left, we start selecting

MILP-nodes from the tree. Note that whenever an MILP-node is processed, the

condition in Line 7 of Algorithm 3.1 is true and thus no new nodes, in particular no

new LP-nodes, are added to T . Thus, we have a first, the LP-phase, and a second,

the MILP-phase of the algorithm. Formally, line 3 of Algorithm 3.1 can be written

as:

if L 6= ∅ then choose node η from L;

else choose node η from M;

Roughly speaking, the list of MILP-nodes is slowly filled during the LP-phase (see

Section 3.6.2.6 below), and no MILP-node is processed before all LP-nodes are. In

any case, when choosing from either list, we always select the node with minimum

`, thus pursuing a so-called best-bound-first strategy.

3.6.2.3 Node solve

In line 5, we build the MILP with indicator constraints associated to the subproblem

of node η. By that, we clearly mean that for any fixed binary variable in Bη+∪B
η
−, the

respective constrained is either added to the global constraints, or simply discarded,

depending on whether it is activated or deactivate by the particular value of the

binary variable. We then build an MILP reformulation of the node’s subproblem,

containing the remaining indicator constraints, and solve it. More precisely, we

110

solve it as an MILP, if it was chosen from M, but relax integrality and solve it

as an LP, if it was chosen from L. Every time we build a reformulation, we can

further decide whether to use a single big-M constraint or all constraints coming

from the disjunctive reformulation of each indicator constraint. In any case, we will

always use the local bounds xη and xη to build either reformulation. We compare

two strategies for now:

• persp0: never use the disjunctive reformulation, but only big-M constraints

• persp1: use the disjunctive reformulation at MILP-nodes only

Note that when using either of the strategies persp0 or persp1, the LP-phase of

Algorithm 3.1 is identical. Therefore, the list of MILP-nodes on the tree when

entering the MILP-phase is the same. This makes the two strategies particularly

attractive for measuring the impact of the additional inequalities coming from the

disjunctive reformulation with local bounds: the same list of sub-MILPs is solved

either with (persp1) or without (persp0) perspective inequalities8. As LP- and

MILP-solver, we use CPLEX 12.6.2. Whenever an MILP is solved, we can set UB

as a cutoff value, that is, we can add a constraint imposing that the objective value

be upper bounded by UB9.

3.6.2.4 Propagation and specialization for JSS

The motivation behind Algorithm 3.1 lies, as has been mentioned before, in the use

of local bounds on the variables. Thus, an effective propagation procedure in Line

4 in order to tighten the bounds xη and xη as much as possible (in conjunction with

deducing more binary fixings), is the probably most important part of Algorithm 3.1.

In its general version, we allow the propagation procedure to be generic or problem-

specific. As in the previous section, we do not study general bound tightening

procedures here, but present the implementation of a propagation procedure for

JSS. Note that the MILP formulation for JSS with indicator constraints (3.20) -

(3.26) is in the form (3.33) - (3.38).

The propagation procedure for JSS consists of several subroutines that we de-

scribe in the following. We have seen how to compute bounds on the start variables

of any subproblem of JSS via heads and tails in the disjunctive graphs in (1.57) and

(1.58). The computation of the upper bound is based on local information (the tail)

as well as global information (the upper bound UB). Therefore, in the case of JSS,

we equip the nodes in the tree with the local heads and tails rην and qην , instead of

8A possible third strategy would be to use the disjunctive reformulation also in LP-nodes, say
persp2. However, we did not test this strategy in our computational experiments.

9CPLEX for example provides a user interface for this.

111

Algorithm 3.2: Propagation for JSS

1 set k = 1;
2 do
3 call longest path;
4 call cpo;
5 do
6 call disj;
7 call adjust;

8 while progress is made;
9 if k = 1 then call global;

10 k = k + 1;

11 while progress is made;

the local bounds xη and xη, directly (or, more precisely, with quantities that are

as least the local heads and tails, see Observation 3.19). Also, many subroutines

in the propagation procedure are based explicitly on these heads and tails. When

solving any node (cf. Section 3.6.2.3), in order to be able to apply a reformulation,

we always recover bounds on the variables via (1.57) and (1.58), using the currently

known upper bound UB (that can differ from the trivial one in (1.59)). Via the

sets Bη+ and Bη−, we can also build the disjunctive graph of the node’s subproblem

as described in Section 1.5.2.1. Therefore, for brevity, we will occasionally just refer

to the node’s disjunctive graph.

We omit the superscripts η from now on, assuming that all heads rν , tails qν , and

sets of fixed binary variables B+ and B− refer to the node in question. Tightening

the bounds on the variables can be achieved by increasing rν and qν , and this is

the aim of all of the following subroutines. Some of the procedures are also able

to detect an infeasibility. In such cases, the node is fathomed immediately. The

subroutines are the following.

• longest path: For each operation ν, we calculate its head in the node’s

disjunctive graph. If it is greater than rν , we update the latter. The same is

done with the tail and qν .

Observation 3.19. Some of the propagation procedures are able to modify rν and

qν without adding binary fixings, which is why calculating for example the head in a

node’s disjunctive graph might result in a quantity strictly lower than rν. Therefore,

in any node, we keep track of rν and qν as quantities that are at least the heads and

tails in the disjunctive graph, but not necessarily equal to them.

• cpo: In this subroutine we use CPO 12.6.2 as a black-box. In particular,

we compute local bounds on the start variables via (1.57) - (1.58) with the

112

currently known UB, and use them to build a CP model for (3.20) - (3.26).

Then, we add all the precedence relations coming from fixed binary variables

in B+ or B− and call the initial propagation of CPO 12.6.2. This can result in

detecting infeasibility or in a tightening of the bounds on the start variables.

In the latter case, we recover the increased rν and qν via (1.57) - (1.58).

• disj: This procedure has been proposed in [CP94]. Roughly speaking, it

represents an efficient way of detecting all binary fixings based on the following

observation. When for two operations that are to be executed on the same

machine, say ν = (i, k) and % = (j, k), we have that

r% + p% + pν + qν > UB,

then certainly operation ν has to precede operation % in any feasible solution

with an objective value that is at least as good as UB. Then if i < j, we

can add xkij to B+, or otherwise add xkji to B−. In any case, we can update

r% = max(r%, rν + pν) and qν = max(qν , q% + pν).

• adjust: Also this procedure has been proposed in [CP94]. For any subset of

operations that are to be executed on the same machine, say Ψ = {(i, k) | i ∈
I} for some I ⊆ [n], one can show that if for some t0 ∈ Ψ we have

min
ν∈Ψ

rν +
∑
ν∈Ψ

pν + max
ν∈Ψ\{ν0}

qν > UB,

all ν ∈ Ψ \ {ν0} have to precede ν0 in any feasible solution with an objective

value that is at least as good as UB. One can then fix all the corresponding

binary variables and set rν0 = max
(
rν0 ,maxν∈Ψ\{ν0} rν + pν

)
. The proposed

procedure represents an efficient way of detecting all binary fixings based on

this observation. An additional and analogue procedure by interchanging the

roles of heads and tails is used as well.

• global: This procedure, again proposed in [CP94], can be seen as a kind of

probing. Heads and tails are dichotomically increased inside their domain,

and each time other propagation procedures are called as subroutines. If an

infeasibility is detected, the respective counterpart can be updated. E.g., if

setting rt to a certain value f leads to an infeasibility, operation t cannot start

later than f−1, and st can be set to f−1, so that qt can be updated via (1.58).

The procedure can be described as in Algorithm 3.3. Again, an additional and

analogue procedure by interchanging the roles of heads and tails is used as

well.

113

Algorithm 3.3: Subroutine global

1 make copies r̃ν and q̃ν of all heads and tails;
2 foreach operation ν do
3 do

4 rν = dUB−(qν+pν)+rν
2

e;
5 do
6 call longest path, cpo, disj and adjust;
7 while progress is made;
8 if infeasibility is detected then
9 q̃ν = UB − (rν + pν) + 1;

10 end

11 while no infeasibility is detected and rν < UB − (qν + pν);
12 reinstall rν = r̃ν and qν = q̃ν for all ν and undo all binary fixings that

were made in line 6;

13 end

The whole propagation procedure can be described as in Algorithm 3.2. The pro-

cedure global is rather time-consuming and we use it only in the first iteration of

Algorithm 3.2. In MIP, we usually do not want to find the whole set of equivalent

optimal solutions, but at least one. In this spirit, in case a feasible solution has

already been found, we are only interested in solutions with an objective value that

is strictly better than UB. If in addition the data is integral (which is true for

all JSS instances in this chapter), we can artificially decrease UB by 1 inside the

propagation procedure.

3.6.2.5 Branching strategy

As a branching strategy in Line 10 of Algorithm 3.1, we choose one inspired by so-

called strong branching [AKM05]. For each fractional binary variable zi, we actually

create the two possible child nodes η+
i and η−i obtained by adding zi to Bη+ and Bη−,

respectively, and call the propagation procedure in Line 4 on these two nodes. This

can result in three cases:

• Both η+
i and η−i are detected infeasible by propagation. If this happens, the

parent node η is fathomed immediately.

• Exactly one of the nodes η+
i and η−i is detected infeasible, say η+

i . In that

case, we add zi to Bη− and go back to line 4 of Algorithm 3.1.

• None of the two is detected infeasible. In that case, we compute their relative

tightness with respect to η, and then compute

σi := (τ(η+
i , η) + ε) · (τ(η−i , η) + ε)

114

Provided that no infeasibility was detected in any of the two nodes for any fractional

zi, we choose the one with maximal σi.

We make a technical remark. The above branching strategy is relatively time-

consuming, because the propagation procedure is called twice for every fractional

binary variable in each iteration. One could therefore think to apply a lighter version

of Algorithm 3.2 inside the branching step in Line 10 of Algorithm 3.1. In the case

of JSS for example, we omit the relatively time consuming subroutine global when

calling the propagation procedure inside the branching step.

3.6.2.6 Adding nodes to the tree

Fractional solutions that lead to the creation of new nodes can only occur when the

node η was chosen from L. We have the following strategy for deciding whether

a new node as in Line 11 of Algorithm 3.1 will be added to L, and thus will be

processed as a LP-node, or to M, and thus will eventually be solved as an MILP,

based on its absolute tightness. We call the propagation procedure on the node that

is to be added to T and then compute its tightness τ̄ . When the node is “tight

enough”, we add it to M, or otherwise, we add it to L. Formally, after having

chosen some threshold γ, Line 11 of Algorithm 3.1 can be written as:

propagate fixings and bounds on η;

if τ̄(η) ≥ γ thenM =M∪ {η};
else L = L ∪ {η};

In case the propagation is ineffective and the tightness of a node is not augmented

substantially during the algorithm, this strategy would continue branching for a long

time and create too many new nodes. That is why we also add a newly created node

to M when its depth has reached d̄ = 10.

3.6.2.7 Computation for JSS

We now report on computational experiments with Algorithm 3.1 and the subrou-

tines described above on a set of small sized JSS instances, partly used in Section

3.5.2. In particular, we used all instances with up to 15 jobs and 10 machines therein,

but as well included instances with 15 jobs and 15 machines found at [JSS], leading

to a total number of 29 instances, in order to compare the two strategies persp0 and

persp1. Algorithm 3.1 has been coded in C/C++ and CPLEX’s C API. All exper-

iments were conducted on a single core of a 3.1 GHz quad-core machine with 1.96

GB RAM, and we imposed a time limit of 3 hours (indicated by ∞, when reached).

Table 3.5 summarizes several statistics regarding the application of Algorithm 3.1

115

with parameters α = 0.5 and γ = 0.15 to those instances of the testbed where at

most one of the two strategies hit the time limit. Shown are the duration of the

LP-phase of the algorithm in seconds (column tLP), the number of MILP-nodes in

which an MILP was solved to optimality (column nMILP), the computing time of the

whole algorithm in seconds (column time) and the average number of branch-and-

bound nodes needed to solve the MILPs of the MILP-nodes (column #nodes). Note

that the first two quantities are the same for both strategies10. The mean values are

computed over all instances for which none of the two strategies reached the time

limit.

In order to interpret the results in the table correctly, it is important to shed

some light on the role of the current UB inside the propagation procedure for JSS.

In fact, as was anticipated in Section 3.6.2.1, the propagation is highly dependent

on this upper bound. This can be seen, for example, in the subroutines disj and

adjust, but also in the calculation of the upper bound on the start variables, cf.

(1.58), that is in turn used to build a constraint programming model in the sub-

routine cpo. For example, we observe that the number of MILPs that are solved

during the algorithm is relatively low in all cases, but note that this number is not

necessarily equal to the number of MILP-nodes that are created. In fact, it often

happens that at the end of the first MILP-solve, an UB is found that is relatively

close to the optimal solution. With that UB, a lot of the open MILP-nodes on

the tree can be declared infeasible by the propagation procedure and are thus not

counted in nMILP . However, for the same reason, before the first MILP is solved

during the algorithm, UB is relatively far away from the optimal solution and the

propagation procedure on the so far created nodes, including the MILP-node that

is processed first, has not been as effective as it could have been with a “good”

UB. Thus, the computing time needed to solve this first MILP is usually relatively

high as compared to the remaining MILPs. This might also be one reason for the

fact that so far, we are not able to beat default CPLEX 12.6.2 in solving most JSS

instances with Algorithm 3.1. Nevertheless, we see an advantage of strategy persp1

that makes use of the disjunctive inequalities, in terms of computing times but as

well in terms of the branch-and-bound nodes that are explored, especially in the

more difficult instances in Table 3.5. This seems like a promising result.

10When executing the algorithm with the two different strategies, variability in the duration of
the LP-phase is negligible.

116

3.7 Outlook

We believe that the material in this chapter can stimulate future research in two

ways, one of more theoretical nature, the other more practical. We have seen some

kind of evolution in the various theorems presented. The high-dimensional space

description of Theorem 1.11 was first projected onto the original space of variables

in the special case of Theorem 3.2, that was then extended in several steps and

possibly varying directions throughout Theorem 3.4 to Proposition 3.17. We believe

that this line of research is open for further extensions, involving, for example, either

more complicated or simply more functions.

On the practical side, we still work on improving the results obtained with

Algorithm 3.1 on JSS, that can be classified as only preliminary so far. There is

much more room to do propagation on these problems, for example by the concept

of decision diagrams [Ake78]. Also, CP is still performing significantly better than

MILP on JSS. CP regularly has, however, difficulties in proving the optimality of

feasible solution of hard JSS instances. We believe that MILP can play an important

complementary role in this respect, possibly by integrating not only propagation,

but also CP-based search techniques into our MILP-based algorithm.

117

4 MILPs with non-contiguous split

domains

In this chapter, we study an approach to certain MILPs that is inspired by sim-

ple observations regarding some of the modeling techniques provided by the MILP

paradigm. We start by illustrating these observations through an examplatory su-

doku game as in Figure 4.1. In a sudoku of dimension n, the task is to place a

number between 1 and n2 into each cell of a n2 × n2-grid, given that some cells are

initially filled. The difficulty arises from the fact that in each row, each column,

and each of the designated smaller n × n-squares, each number is allowed to ap-

pear only once. If we were to model this combinatorial problem by any established

programming paradigm, we would probably start by assigning a variable to each

cell, so that its value is to describe the number we are going to place there. For

example, the variable y5,5 in Figure 4.1 is to describe the number we are going to

place in the 5th row of the 5th column. Let us neglect for a moment most of the

constraints that describe the entire problem and just focus on the single variable

y5,5. If the programming paradigm we choose is CP, we are allowed to work with

2 1 7 8 3

3 2 9

1 6

8 3 5

3 4

6 7 9 2

9 2

8 9 1 6

1 4 3 6 5

y5,5

Figure 4.1: A 3× 3 sudoku

119

finite domains. That is, we could just write down that the domain of y5,5 is

D(y5,5) = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

In Mixed Integer Programming instead, we would write

1 ≤ y5,5 ≤ 9, y5,5 ∈ Z,

i.e., y5,5 is an integer variable with lower and upper bounds equal to 1 and 9, re-

spectively. What triggers the attention in this illustrative example is what happens

when we take into account the initial problem data in Figure 4.1. We can see that

y5,5 cannot take the values 3, 4, 7 and 9. Back in CP, the problem could be mod-

eled with alldifferent constraints, cf. Definition 1.8 and Example 1.9, and any

effective propagation procedure would assure these straightforwardly implementable

changes with respect to our initial description of the domain. We can just cancel

these values from therein and get

D(y5,5) = {1, 2, 5, 6, 8}.

In Mixed Integer Programming, this process is less straightforward. Of course, we

can reduce the upper bound and write

1 ≤ y5,5 ≤ 8, y5,5 ∈ Z,

but we have not yet accounted for the constraint y5,5 /∈ {3, 4, 7}, which in this direct

form is not foreseen in the modeling tools provided by MIP.

Of course all integer programmers would object and (correctly) assert that they

know how to model the above situation. One can simply take a series of additional

binary variables and write

y5,5 = x1 + 2x2 + 5x5 + 6x6 + 8x8, (4.1)

x1 + x2 + x5 + x8 = 1, (4.2)

x1, x2, x5, x6, x8 ∈ {0, 1}. (4.3)

This is what has been done in integer programming for 50 years now and is thus

well-proven practice. Yet, it highlights exactly the point we want to make with our

admittedly informal example. In order to express the fact that a variable be different

from a value in the “interior” of its domain1, we have to use auxiliary variables. We

1In case of an integer variable, we actually mean the integer values inside the interior of the
convex hull of its domain.

120

always have to take some kind of detour and introduce additional variables, but there

are no means to model this phenomenon explicitly. As foreshadowed above, in CP

such constraints are routinely expressed and, much more important, also exploited

algorithmically, e.g., through filtering and propagation. In this chapter, our aim is

to analyze whether and how we can exploit such explicit representations in MILP.

Any integer-constrained variable has, strictly speaking, a domain that is a non-

contiguous set. But in the above example, it is in addition true that the domain of

variable y5,5 is given by the integer values inside an already non-contiguous set,

y5,5 ∈
(
[1, 2] ∪ [5, 6] ∪ {8}

)
∩ Z. (4.4)

In the above case, one could also say y5,5 has holes in its domains. For example,

it is allowed to take the values 2 and 5, but nothing in between. That is, there is

a hole between 2 and 5. More formally, this can be expressed by disjunctions. In

particular, in this situation, the disjunction

y5,5 ≤ 2 ∨ y5,5 ≥ 5 (4.5)

is valid: every feasible solution has to satisfy at least one of the (in this case two)

disjunctive terms. Actually, the above is a special case of real-valued split dis-

junctions, that we will introduce more formally in Section 4.1, and that are not

restricted to integer-constrained variables as in the above example. Therein, we will

also introduce an extension of the class of MILPs in such a way that non-contiguous

domains like in (4.4), or even more general ones involving so-called split vectors, can

be written as explicit constraints. In particular, disjunctions of the form (4.5) are

then valid disjunctions. We will analyze how such constraints can play a role in the

context of certain MILPs in Sections 4.1.1 and 4.1.2. Then, as anticipated above,

we are interested in ways of exploiting this explicit information algorithmically, of

course based on MILP techniques. In particular, we will spend much time on the

derivation of MILP cutting planes in Section 4.2. Later on, in Section 4.3, we will

analyze the exploitation of these constraints in branching, leading to an experimen-

tal exact algorithm for problems belonging to the aforementioned extension of MILP

problems. The findings of this chapter are based on joint work with Pierre Bonami,

Andrea Lodi and Andrea Tramontani.

121

4.1 Real-valued split disjunctions

For the moment, we assume the existence of an underlying MILP

min cTx (4.6)

s.t. Ax = b (4.7)

x ∈ Rn−p
+ × Zp+. (4.8)

We will then consider disjunctions of the form πTx ≤ πl ∨ πTx ≥ πu, where the

triple (πT , πl, πu) belongs to the set

Π := {(πT , πl, πu) ∈ Rn+2 | πl < πu}.

We call such disjunctions real-valued split disjunctions, or just real-valued splits. π

alone is also called the split vector. The case of a real-valued split such that the

split vector has its support on the integer constrained variables and only integral

entries, i.e.,

πi = 0 ∀ i = 1, . . . , n− p, πi ∈ Z ∀ i = n− p+ 1, . . . , n, (πl, πu) ∈ Z2

has already been studied in [ACL05b] under the name general split disjunction.

The extensively studied notion of ordinary split disjunctions [CKS90], usually just

called split disjunctions, can be seen as the special case of general splits with πl +

1 = πu. In a general split, the data is assumed to be integer because historically,

split disjunctions were designed to act on the integer variables of (4.6) - (4.8) only.

We introduce the notion of real-valued splits in order to be able to consider split

disjunctions that act on the continuous variables as well. However, in Sections 4.2.4

and 4.3 we will mostly pay attention to integer variables, i.e., to general splits. We

are particularly interested in the computational advantages of considering general

splits (πT , πl, πu) with πu − πl > 1 over corresponding ordinary splits, that is, splits

of the form (πT , π0, π0 + 1) with πl ≤ π0 ≤ πu − 1. Therefore, in the remainder, we

will use the denomination wide split disjunctions for general splits, due to the fact

that their “width” can be greater than one, i.e., πu − πl ≥ 1, whereas πu − πl = 1

for ordinary splits.

A natural question that arises is the one about the validity of a real-valued split

disjunction for an MILP. While it is easy to see that any solution to (4.6) - (4.8)

satisfies any ordinary split disjunction, this is not true for wide splits, not to mention

real-valued splits. Inspired by (4.4), for the remainder of this chapter, we therefore

introduce the notion of a Mixed Integer Linear Program with non-contiguous split

122

domains (MILPncsd),

min cTx (4.9)

s.t. Ax = b (4.10)

πk
T
x ∈

Lk⋃
j=1

[ljk, u
j
k] ∀ k ∈ [K] (4.11)

x ∈ Rn−p
+ × Zp+, (4.12)

assuming that K real-valued split vectors in Rn and associated unions of sets are

given. We note that the feasible region of a MILPncsd can be transformed to the

union of a finite number of polyhedra. Thus, a MILPncsd is a special case of a

Disjunctive Program [Bal79, Bal98]. For each j = 2, . . . , Lk and k ∈ [K], without

loss of generality, we will assume uj−1
k < ljk, and thus, by construction, the real-

valued split disjunction

πTx ≤ πl ∨ πTx ≥ πu (4.13)

with π = πk, πl = uj−1
k and πu = ljk is valid for (4.9) - (4.12). Equivalently, we say

that π has a hole [πl, πu] in its domain. We will see in Sections 4.1.1 and 4.1.2 how

the generic notion of an MILPncsd can actually play a role in the context of certain

(ordinary) MILPs.

A special role in the context of split disjunctions often play so-called simple

splits, that is π = ei for some i, the i-th unit vector. In that case the split disjunction

translates to just xi ≤ πl ∨ xi ≥ πu. If one of the given split vectors in (4.9) -

(4.12) is a unit vector, that constraint just translates to the fact that there is a

variable with a non-contiguous domain. Therefore, equivalent to (ei, πl, πu) being

valid, we can also say that variable xi has a hole in its domain. Most of the examples

we will present in Sections 4.1.1 - 4.1.2 are actually based on variables with non-

contiguous domains and thus lead MILPncsd’s in which all split vectors are simple

split vectors. In theory, by introducing a new variable xn+1 = πTx, every real-valued

split disjunction can be reduced to a simple one. However, for analyzing whether

non-contiguous split domains are valid for a given MILP, it might be disadvantageous

to restrict to simple splits only, which is why in the following, we establish our

theoretical results for not necessarily simple splits.

We will present some natural extensions of the theory of ordinary (and general)

split disjunctions, with particular focus on the separation of cutting planes in Section

4.2. We will make use of the fact that often, throughout the literature on split

cuts [CKS90], integrality of the split vector and adjacency of the right-hand sides

123

are only required for arguing the validity of the split, but not for deriving valid

inequalities. However, this observation is not true anymore when one goes over to

integer integer strengthening principles, that we will analyze those in Section 4.2.3.

In the remainder of this chapter, we call the MILP that is obtained by replacing

(4.11) in (4.9) - (4.12) by

l1k ≤ πk
T
x ≤ uLkk

the MILP-relaxation of (4.9) - (4.12). Also, the LP-relaxation of (4.9) - (4.12) is

just the LP-relaxation of its MILP-relaxation.

Observation 4.1. The notions introduced so far could trivially be extended by con-

sidering an MINLP instead of just an MILP (4.6) - (4.8). Also, what is said in

Sections 4.1.1 - 4.1.2 and parts of Section 4.3 remain true when allowing for under-

lying MINLPs. However, the derivation of cutting planes in Section 4.2 is restricted

to the context of MILPs, and the extension of MILP cutting planes to the case in

which nonlinear functions are involved is not trivial in general, see, e.g., [Bon11].

In the next two sections, we provide some examples of MILPs in which non-contiguous

domains of certain real-valued split vectors, and thus the validity of real-valued split

disjunctions, that are no ordinary splits, can be certified. In most cases, we end

up with simple wide splits, that is, holes in the domains of (integer) variables. A

conceptual difference will appear to be the fact whether these holes are deduced

from primal or dual information.

4.1.1 Certifying split validity by primal information

We first give examples in which non-contiguous domains in the form of holes in

the domains of variables are certified explicitly by the constraints present in an

underlying MILP. This happens when the modeling tricks, that we called a detour

in the introduction, are applied. In fact, such representations are always based on the

introduction of auxiliary variables. We present two modalities of this phenomenon,

the first one involving big-M constraints. The second one involves so-called GUB-

link constraints, that are precisely the constraint structure that we have seen in

(4.1) - (4.3).

4.1.1.1 Big-M constraints

The condition that a variable y has to lie inside a non-contiguous domain,

y ∈
L⋃
j=1

[lj, uj] (4.14)

124

with uj−1 < lj can be modeled in a mixed integer setting by introducing a binary

variable xj for each of the intervals and imposing big-M constraints, cf. Section 3.1,

lj − y ≤ (1− xj) · (lj − l1) ∀ j ∈ [L]

y − uj ≤ (1− xj) · (uL − uj) ∀ j ∈ [L]

L∑
j=1

xj = 1.

In any feasible solution, exactly one of the binary variables is equal to one. This will

impose the bounds of exactly one of the intervals on the variable y, while all other

constraints become redundant. In any case, any feasible solution has to satisfy the

simple real-valued split disjunctions

y ≤ uj−1 ∨ y ≥ lj, j = 2, . . . , L. (4.15)

Observation 4.2. If y is integer constrained, we may assume that all lj and uj are

integers. If in addition uj−1 + 1 < lj for some j, (4.15) contains at least one valid

wide split disjunction. Even if uj−1 +1 = lj for all j, they remain valid disjunctions,

in particular they are ordinary simple split disjunctions. However, this case is of less

interest for us, because (4.14) could be equivalently written as y ∈ Z, l1 ≤ y ≤ uL,

which can be readily expressed in an explicit way in any MILP solver. In particular,

any such MILP solver is already equipped to perform the algorithmic exploitation of

(4.15) that we seek in this chapter.

An example of an MILP where such a constraint structure can be found is the

TSPMTW. We have seen an MILP model in for this problem Section 1.5.1, namely

(1.32) - (1.37) augmented by (1.39) - (1.42)2. This example is perfect for showing

how an MILPncsd can arise in the context of MILPs. First of all, as explained

above, the big-M constraints (1.39) - (1.42) translate the non-contiguous domains

ai ∈
Li⋃
d=1

[ldi , u
d
i] ∀ i ∈ N \ {p, q}. (4.16)

Thus we could write an MILPncsd formulation for the TSPMTW by augmenting

the system (1.32) - (1.37), (1.39) - (1.42) by (4.16). In such an MILPncsd, clearly,

either (1.39) - (1.42) or (4.16) would be redundant. This leads to the following

interesting observation. As a matter of fact, the only purpose of the constraints

2We have seen in Chapter 3 how the related TSPTW can also be modeled by means of indi-
cator constraints, leading to different MILP reformulations. However, we use here the more
traditional approach of directly using big-M constraints in order to not mix several effects.

125

(1.39) - (1.42) and hence the variables wid is imposing the validity of the non-

contiguous domains. Therefore, if we account for them explicitly by (4.16), we can

drop the big-M constraints (1.39) - (1.42), including the variables wid, and as a side

effect reduce the number of variables in the model significantly. All in all, we get a

valid MILPncsd formulation for the TSPMTW:

min
∑

(i,j)∈A
i 6=q,j 6=p

tijxij (4.17)

s.t.
∑
j∈δ+i

xij = 1 ∀ i ∈ N \ {q} (4.18)

∑
i∈δ+j

xij = 1 ∀ j ∈ N \ {p} (4.19)

ai + pi + tij ≤ aj +Mij · (1− xij) ∀ (i, j) ∈ A : i 6= q (4.20)

ai ∈
Li⋃
d=1

[ldi , u
d
i] ∀ i ∈ N \ {p, q} (4.21)

xij ∈ {0, 1} ∀ (i, j) ∈ A : i 6= q, j 6= p. (4.22)

4.1.1.2 GUB-links

A GUB-link is characterized by the following pair of mixed integer equations involv-

ing a variable y and a series of binary variables xj and numbers ϕj ∈ R, that we

assume to be ordered increasingly,

y =
L∑
j=1

ϕjxj

L∑
j=1

xj = 1.

Here, in any feasible solution, exactly one of the binary variables is equal to one,

meaning that y is equal to exactly one of the ϕj. In other words, y has a non-

contiguous domain,

y ∈
L⋃
j=1

{ϕj}. (4.23)

Again, this implies that the real-valued split disjunctions

y ≤ ϕj−1 ∨ y ≥ ϕj, ∀ j = 2, . . . , L (4.24)

126

are valid.

Observation 4.3. Similar to what has been said in Observation 4.2, if y is integer

constrained, we may assume that all ϕj are integers. If the ϕj are non-consecutive

integers, (4.24) are valid wide split disjunctions. In case the ϕj are in fact consec-

utive, they remain valid, but this case is of less interest for us, because (4.23) could

also be written as y ∈ Z, ϕ1 ≤ y ≤ ϕL.

We now recall an example of an MILP where the above structure can be found,

namely the Multi-mode Resource Leveling problem introduced in Section 1.5.2. A

MILP formulation has been given in (1.50) - (1.56). One instance of that model has

been included in MIPLIB 2010 (namely, instance 30n20b8). It turns out that the

preprocessor of CPLEX 12.6.1 is able to fix a series of binary variables in (1.56) to

zero. In particular, for each job i we are able to identify a set

Υi =

Li⋃
j=1

[lji , u
j
i] ⊆ [0, T]

with uj−1
i +1 < lji , such that xi`t = 0 ∀ ` ∈ Mi, t /∈ Υj. In other words, job i

cannot start at such t and we are able to identify some holes in the domain of the

implicitly integer-constrained variables si and ei. Instead of imposing these holes

through big-M constraints as done in the previous section, one can just strengthen

the GUB-links in the model. Thus, a stronger MILP formulation is

min
∑
k∈R

ckRk (4.25)

s.t.
∑
t∈Υi

∑
`∈Mi

xi`t = 1 ∀ i ∈ [n] (4.26)∑
t∈Υi

∑
`∈Mi

t · xi`t = si ∀ i ∈ [n] (4.27)∑
t∈Υi

∑
`∈Mi

(t+ pi`) · xi`t = ei ∀ i ∈ [n] (4.28)

ei ≤ sj ∀ (i, j) ∈ E (4.29)∑
i∈[n]

∑
`∈Mi

ri`k

t∑
τ=t−pi`+1

τ∈Υi

xi`τ ≤ Rk ∀ k ∈ R, t ∈ [0, T] (4.30)

xi`t ∈ {0, 1} ∀ t ∈ [0, T], ` ∈Mi, ∀ i ∈ [n]. (4.31)

In any case, we can augment either of the two MILPs (1.50) - (1.56) or (4.25) -

127

(4.31) by the constraints

si ∈
Li⋃
j=1

[lji , u
j
i] ∀ i ∈ [n] (4.32)

ei ∈
Li⋃
j=1

[lji+ min
`∈Mi

{pi`}, uji + max
`∈Mi

{pi`}] ∀ i ∈ [n], (4.33)

in order to get an MILPncsd formulation. A difference to the TSPMTW is that

the binary variables involved in the GUB-links appear as well in other constraints,

namely (4.30), and we cannot just spare them here in order to reduce the model

size. Thus the constraints (4.32) - (4.33) remain redundant constraints.

4.1.2 Certifying split validity by dual information

In the previous section, we deduced the validity of non-contiguous split domains by

primal information. More precisely, every (primal) feasible solution was assured to

lie in these domains. Now instead, we will allow that non-contiguous domains are

imposed, that not every primal feasible solution satisfies. In the following MILP,

however, we will see that for every primal feasible solution that is excluded from

the feasible region in the resulting MILPncsd, there is at least one other feasible

solution with identical objective value. The MILP and the MILPncsd are thus

equivalent in the sense that they have the same optimal objective value. Hence, we

can characterize these domains to be derived from dual information.

The MILP we are going to analyze here is a formulation for the so-called Lazy

Bureaucrat Problem (LBP), and strictly speaking, it is an ILP. The Lazy Bureau-

crat Problem can be seen as a lazy counterpart of the classical Knapsack Problem

introduced in Section 1.5.3. Similar to therein, we are given a set of items i ∈ [n]

with non-negative profits pi and non-negative weights wi, both of which we assume

to be integral, and a knapsack with capacity C. The objective is slightly different

though. Namely, we want to pack a subset of items into the knapsack such that:

1. the profit of all packed items is minimized,

2. their weight does not exceed the capacity,

3. but adding any non-packed item would exceed it.

The task is thus to find a so-called maximal packing with minimum profit. In [FLS15]

are proposed several ILP formulations for the LBP. As therein, we assume that the

items are sorted non-decreasingly first according to their weights, then according to

128

their profits, and define the critical item,

ic = arg min
{
i ∈ [n]

∣∣∣ ∑
j≤i

wj > C
}
, (4.34)

as the first item that exceeds the capacity, assuming that all precedent items are

packed as well. The critical weight is wc = wic . In [FLS15] is shown that it is

sufficient to translate condition 3 from above into a constraint only up to the critical

item, and one of the most competing ILP formulations is

min
n∑
i=1

pixi (4.35)

s.t.
n∑
i=1

wixi ≤ C (4.36)

n∑
i=1

wixi + z ≥ C + 1 (4.37)

z ≤ wc − (wc−wi)(1− xi) ∀ i ∈ [ic] (4.38)

xi ∈ {0, 1} ∀ i ∈ [n] (4.39)

z ∈ Z+. (4.40)

The variable z models the weight of the smallest item left out of the packing, al-

though in the above model, it is not forced to be exactly equal to it. Nevertheless,

in some sense, it does satisfy the purpose it has been introduced for, and we state

this in the following simple result.

Lemma 4.4. For every feasible solution of (4.35) - (4.40), there is another feasible

solution with the same cost and

z ∈ {wi | i ≤ ic}. (4.41)

Proof. Let (x̂, ẑ) be feasible to (4.35) - (4.40) and denote the corresponding packing

by S := {i ∈ [n] | x̂i = 1}. Further, let ĩ := min{i ∈ [n] | i /∈ S}. Clearly, ĩ ≤ ic, and

from (4.38) we get ẑ ≤ wĩ. Because increasing the value of ẑ does not violate (4.37),

(x̂, wĩ) is feasible, satisfies (4.41), and since the objective function (4.35) depends

on x only, has the same cost as (x̂, ẑ).

Thus, if the weights are non-consecutive integers, imposing the domain of the (inte-

ger) variable z to be as in (4.41) is non-redundant, cf. also Observation 4.3. All in

all, we can introduce an MILPncsd for the LBP, whose feasible region is contained

in the one of (4.35) - (4.40), but whose optimal objective value remains unchanged,

129

by imposing the holes in the domain of z deriving from (4.41) explicitly,

min
n∑
i=1

pixi (4.42)

s.t.
n∑
i=1

wixi ≤ C (4.43)

n∑
i=1

wixi + z ≥ C + 1 (4.44)

z ≤ wc − (wc−wi)(1− xi) ∀ i ∈ [ic] (4.45)

z ∈
ic⋃
i=1

{wi} (4.46)

xi ∈ {0, 1} ∀ i ∈ [n] (4.47)

z ∈ Z+. (4.48)

We further examine the extension of the LBP to an analogue problem with several

bureaucrats, that is, several knapsacks. We call this problem the Multiple Lazy

Bureaucrat Problem (MLBP). In contrast to the setting of the LBP, we are given a

set of knapsacks j ∈ [K], each with a capacity Cj. We want to pack the items into

the knapsacks such that

1. the profit of all packed items is minimized,

2. the weight of the items packed into a single knapsack does not exceed its

capacity,

3. but adding any non-packed item into any knapsack would exceed it.

The model (4.35) - (4.40) is extendable to the MLBP by introducing binary variables

xij that indicate whether item i is packed into knapsack j, and by defining the

critical item ic and the critical weight wc as in (4.34), but via the cumulated capacity∑
j∈[K] Cj. Then, an MILP formulation for the MLBP is

min
n∑
i=1

pi
(K∑
j=1

xij
)

(4.49)

s.t.
n∑
i=1

wixij ≤ Cj ∀ j ∈ [K] (4.50)

n∑
i=1

wixij + z ≥ Cj + 1 ∀ j ∈ [K] (4.51)

130

K∑
j=1

xij ≤ 1 ∀ i ∈ [n] (4.52)

z ≤ wc − (wc−wi)

(
1−

K∑
j=1

xij

)
∀ i ∈ [ic] (4.53)

xij ∈ {0, 1} ∀ i ∈ [n], j ∈ [K] (4.54)

z ∈ Z+. (4.55)

Again, one can show that for every feasible solution of (4.49) - (4.55), there exists

an equivalent one in which

z ∈ {wi | i ≤ ic},

and we can build an MILPncsd formulation for the MLBP by augmenting (4.49) -

(4.55) with (4.41). Our interest in the MLBP will become clear in Section 4.2.4 and

is based on the following observation.

Observation 4.5. A difference between the models for LBP and MLBP is that in

the latter, the variable z, that is the only one involved in the constraints imposing

a non-contiguous split domain, appears in K so-called knapsack cover constraints,

(4.51), instead of just one, (4.44).

4.2 Real-valued-split cuts

We now assume the existence of an underlying MILPncsd as in (4.9) - (4.12), and

assume that

1. either its MILP-relaxation,

2. or its LP-relaxation

has been solved to the point x̂. Then, we know that the real-valued split disjunctions

(4.13) are valid, and provided that one of them is violated, i.e. πl < πk0
T
x̂ < πu with

πl = uj0−1
k0

and πu = lj0k0 for some k0, j0, our aim is to derive a cutting plane that

cuts off x̂. That is, we want to find a valid inequality αTx ≥ β, such that αT x̂ < β.

We consider one disjunction at a time, i.e., we can drop the indeces i0 and j0 in the

remainder of this section.

We denote the feasible region of (4.9) - (4.12) by F , and the feasible region of

its LP-relaxation by P , i.e., P = {x ∈ Rn | Ax = b, x ≥ 0}. Thus, we set

P
(π,πl)
l := {x ∈ P | πTx ≤ πl}, P (π,πu)

u := {x ∈ P | πTx ≥ πu},

131

and P (π,πl,πu) := conv(P
(π,πl)
l ∪ P (π,πu)

u). We call any linear inequality that is valid

for P (π,πl,πu) a real-valued-split cut. Since F ⊆ P (π,πl,πu), any real-valued-split cut

is valid for (4.9) - (4.12). If the considered split is a wide split, we call the valid

inequality wide split cut.

In the next two sections, we will show two ways of separating real-valued split

cuts, namely, as intersection cuts [Bal71] (possible in case 1 from above), and as

lift-and-project cuts [Bon12] (possible also in case 2). Without loss of generality, we

will assume that the matrix A has full row rank.

4.2.1 Intersection cuts from real-valued split disjunctions

In this section, we assume that we are given a simplex tableau of P as in (1.7) -

(1.8),

xi = x̂i +
∑
j∈N

rijxj, i ∈ B (4.56)

xi ≥ 0, i ∈ [n], (4.57)

where the index set of variables is partitioned into basic and non-basic variables,

[n] = B ∪ N . In particular, such a tableau is given when the LP-relaxation of

(4.9) - (4.12) has been solved to the point x̂ by means of the simplex method. In

that case, ∀ i ∈ N we have x̂i = 0, and thus

πT x̂ =
∑
i∈B

πix̂i. (4.58)

In [ACL05b] an explicit formula for the intersection cut derived from general splits

is given. This formula can easily be extended to real-valued splits, and we formally

state it here. There are several ways to derive the same valid inequality from split

sets (see further down), and the one we use to prove the following result relies on the

so-called maximum principle, used for example during the derivation of disjunctive

cuts [Bal98]. Therein, explicit formulas for disjunctive cuts, from which the valid

inequality in the next result can be recovered as well, are given. We will use similar

arguments for proving Proposition 4.12 later on.

Proposition 4.6. Assume that x̂ violates the real-valued split disjunction (πT , πl, πu),

i.e.,

πl < πT x̂ < πu,

and ∀ j ∈ N , define fj := πj +
∑

i∈B πir
i
j. A valid inequality for P (π,πl,πu) is then

132

given by

∑
j∈N

max

{
−fj

πT x̂− πl
,

fj
πu − πT x̂

}
xj ≥ 1. (4.59)

Proof. By taking into account the simplex tableau, we can rewrite

πTx =
∑
i∈B

πixi +
∑
j∈N

πjxj

=
∑
i∈B

πi

(
x̂i +

∑
j∈N

rijxj

)
+
∑
j∈N

πjxj

=
∑
i∈B

πix̂i +
∑
j∈N

(
πj +

∑
i∈B

πir
i
j

)
xj.

With the definition of the fj and (4.58), this gives

πTx = πT x̂+
∑
j∈N

fjxj.

By using this last equation and rearranging the disjunction πTx ≤ πl ∨ πTx ≥ πu,

we see that every point in P (π,πl,πu) has to satisfy∑
j∈N

fjxj ≤ πl − πT x̂ ∨
∑
j∈N

fjxj ≥ πu − πT x̂

⇐⇒
∑
j∈N

−fj
πT x̂− πl

xj ≥ 1 ∨
∑
j∈N

fj
πu − πT x̂

xj ≥ 1.

The claim follows by applying the maximum principle.

The valid inequality of Proposition 4.6 is clearly a real-valued-split cut, and it is easy

to check that it is violated by x̂. We call the inequality the intersection cut from

the real-valued split (πT , πl, πu), because it can also be derived like an intersection

cut from ordinary split sets [Bal71]. That is, if in (1.7) - (1.8) one relaxes the

non-negativity on the basic variables, then the resulting set can be shown to be a

translated polyhedral cone, often denoted by P (B). Then, (4.59) can as well be

obtained by computing the intersection points of the extreme rays of P (B) with the

boundary of the real-valued split set

S := {x ∈ Rn | πl ≤ πTx ≤ πu}.

Figure 4.2 (a) depicts an example of P (B), a split set and the corresponding ordinary

intersection cut in a two-dimensional basic space. Again, if (πT , πl, πu) is a wide split,

133

(a) Ordinary intersection cut (b) Wide Intersection cut

Figure 4.2: Intersection cuts in the plane

we call (4.59) a wide intersection cut.

As anticipated, we are particularly interested in the advantage of using wide

split cuts over ordinary split cuts. In the context of ordinary split cuts, whenever the

dot product of a given split vector π and x̂ is fractional, one can attempt to generate

a split cut from the violated ordinary split (πT , bπT x̂c, dπT x̂e). If in this situation,

there actually is a valid wide split (πT , πl, πu) with πl ≤ bπT x̂c and dπT x̂e ≤ πu, that

then is automatically violated by x̂, a wide split cut will intuitively be at least as

good as the ordinary split cut. This is illustrated in Figures 4.2 (a) and (b). In the

case of intersection cuts, it is easy to formalize this intuition by means of Definition

1.5. We have the following result.

Proposition 4.7. Assume that x̂ violates the wide split disjunction (πT , πl, πu) (i.e.,

πu − πl ≥ 1) and that πT x̂ is fractional. Then the corresponding wide intersection

cut dominates the intersection cut from the ordinary split (πT , bπT x̂c, dπT x̂e).

Proof. Obviously, (4.59) can also be used to compute the ordinary intersection cut.

We further note that the quantities fj in (4.59) do not depend the right-hand sides

of the split disjunction, but only on the simplex tableau and the split vector π.

Thus, the two intersection cuts in question only differ in the denominators of their

coefficients. Since πu−πl ≥ 1, πl ≤ bπT x̂c and πu ≥ dπT x̂e, which implies that each

coefficient of the wide intersection cut is bounded from above by the corresponding

coefficient of the ordinary intersection cut. Thus follows the dominance.

4.2.2 Lift-and-project cuts from real-valued split disjunctions

We now show how to derive valid inequalities from violated real-valued split dis-

junctions in the fashion of lift-and-project cuts [Bon12]. Lift-and-project cuts are

intimately related to the theory of Disjunctive Programming that we treated in Sec-

tion 1.4. This relation becomes intuitively clear when having a close look at the

definition of the set P (π,πl,πu) for which we want the cutting planes to be valid. It is,

134

in fact, the convex hull of the union of two polyhedral sets, which is why Disjunctive

Programming techniques are useful here. We state a special case of Theorem 1.12,

that we will use further down, in the following corollary.

Corollary 4.8. The linear inequality αTx ≥ β is valid for P (π,πl,πu) if and only if

there exist θ1, θ2 ∈ Rm and τ1, τ2 ∈ R+ such that

α ≥ AT θ1 − τ1π

α ≥ AT θ2 + τ2π

β ≤ bT θ1 − τ1πl

β ≤ bT θ2 + τ2πu.

The corollary can be applied in order to formulate a so-called cut-generating Linear

Program, that attempts to find one valid inequality that is violated by x̂. Different

versions of cut-generating Linear Programs, involving for example different normal-

ization constraints [BP02], have been proposed. In this section, we choose to follow

the lines of [Bon12], and we will present the theoretical foundations - mainly exten-

sions of results therein - that serve the derivation of real-valued-split cuts. In the

case of ordinary splits, much more detail, especially regarding the relations to other

cut-generating Linear Programs and other families of MILP cutting planes, can be

found in [Bon12]. Also, the rank-1 lift-and-project cuts that were at the basis of the

closures we computed in Section 3.5 were precisely the ones derived [Bon12].

We start by giving a characterization of when an x̂ ∈ P , that violates the real-

valued split disjunction, is also in P (π,πl,πu) or not. For brevity, we denote the inverse

of the width of the split by σπl,πu , that is

σπl,πu :=
1

(πu − πl)
.

Proposition 4.9. Let x̂ ∈ P and πl < πT x̂ < πu. Then x̂ ∈ P (π,πl,πu) if and only if

there is an y ∈ Rn such that

πTy−πu · σπl,πu(πT x̂− πl) ≥ 0

Ay = b · σπl,πu(πT x̂− πl)
0 ≤ y ≤ x̂.

Proof. Let π̃ := σπl,πuπ, π̃0 := σπl,πuπl and π̃u := σπl,πuπu. Note that π̃u = π̃0 +1 and

that x̂ ∈ P (π,πl,πu) is equivalent to x̂ ∈ P (π,π̃0,π̃0+1). If (π, π̃0, π̃0 + 1) is an ordinary

split, i.e., if all the data is integral, Proposition 1 of [Bon12] states that the latter

135

is true if and only if there is an y ∈ Rn such that

π̃Ty−π̃u · (π̃T x̂− π̃0) ≥ 0 (4.60)

Ay = b · (π̃T x̂− π̃0) (4.61)

0 ≤ y ≤ x̂. (4.62)

It is easy to check that Proposition 1 of [Bon12] remains true if the data of the

underlying split is real-valued. After dividing (4.60) by σπl,πu and rearranging, the

claim follows.

Proposition 4.9 leads to a Linear Program that can answer the question of whether

x̂ ∈ P does or does not lie in P (π,πl,πu). In [Bon12], this Linear Program is called

the membership LP:

max πTy − πu · σπl,πu(πT x̂− πl) (4.63)

s.t. Ay = b · σπl,πu(πT x̂− πl) (4.64)

0 ≤ y ≤ x̂. (4.65)

The membership LP can be used to answer the aforementioned question in a straight-

forward way. When the optimal solution value of the membership LP is negative,

x̂ /∈ P (π,πl,πu), and we can attempt to find a valid cutting plane that cuts off x̂. How

to compute this cutting plane is of course a much more interesting question, but it

turns out that again the membership LP is of help. In particular, an explicit valid

linear inequality that is violated by x̂ can be found by going over to the dual of the

membership LP, cf. Section 1.1.1. After transforming (4.63) - (4.65) into the form

(1.9) - (1.12), its dual can be deduced from (1.13) - (1.16) and is given by

min λT b · σπl,πu(πT x̂− πl)+µT x̂− πu · σπl,πu(πT x̂− πl) (4.66)

s.t. ATλ + µ ≥ π (4.67)

λ ∈ Rm (4.68)

µ ∈ Rn
+. (4.69)

If the optimal objective value of the membership LP is negative, we know that

there exists a dual feasible solution (λ, µ) (e.g., the optimal one) with negative dual

objective value. Then, for any such solution, by rearranging the objective function

(4.66), we know that the linear inequality(
σπl,πu(λT b− πu)πT + µT

)
x ≥ σπl,πuπl(λ

T b− πu) (4.70)

136

is violated by x̂. We call this inequality lift-and-project cut from the real-valued split

(π, πl, πu), and in case (πT , πl, πu) is a wide split, wide lift-and-project cut. So far,

we have not shown that it is actually valid for P (π,πl,πu). In [Bon12], this is done

by showing that the dual of the membership LP, (4.66) - (4.69), is equivalent to a

certain cut generating Linear Program, provided that its optimal solution value is

non-positive. We will now prove the validity of the linear inequality (4.70) by going

the somewhat opposite direction. That is, we will start with the explicit formula

(4.70) and show its validity by application of Corollary 4.8. The interest of the proof

is of course that we conduct it for real-valued splits, but it can also be seen as an

alternative proof of the result in [Bon12].

Proposition 4.10. Assume that (λ, µ) is a solution of (4.66) - (4.69) with non-

positive objective value. Then (4.70) is valid for P (π,πl,πu).

Proof. We start by defining τ1 := −σπl,πu(λT b−πu) and τ2 := 1−τ1 = σπl,πu(λT b−πl).
Also, let θ1 ∈ Rm, and set θ2 := θ1 − λ. With that, we define

α := AT θ1 + µ− τ1π and β := bT θ1 − τ1πl.

Next, we show that for any x ∈ P ,(
σπl,πu(λT b− πu)πT + µT

)
x− σπl,πuπl(λT b− πu) = αTx− β. (4.71)

This can be done by rearranging and noting that for any such x, Ax− b = 0:(
σπl,πu(λT b− πu)πT + µT

)
x− σπl,πuπl(λT b− πu)

= θT1 (Ax− b) + µTx+ σπl,πu(λT b− πu)πTx− σπl,πuπl(λT b− πu)
= (θT1 A+ µT − τ1π

T)x− bT θ1 + τ1πl = αTx− β.

Thus, if we show that αTx ≥ β is valid for P (π,πl,πu), so is (4.70). We will do that

by Corollary 4.8. Therefore, note that,

α = AT θ1 + µ− τ1π = AT θ2 + ATλ+ µ− π + τ2π ≥ AT θ2 + τ2π, (4.72)

where the last inequality follows from (4.67). Also,

β = bT θ1 − τ1πl = bT θ2 + bTλ+ σπl,πu(λT b− πu)πl
= bT θ2 + bTλ(1 + σπl,πuπl)− σπl,πuπuπl
= bT θ2 + bTλσπl,πuπu − σπl,πuπuπl
= bT θ2 + σπl,πu(bTλ− πl)πu = bT θ2 + τ2πu.

137

Altogether, since µ is non-negative, α and β satisfy the condition of Corollary 4.8,

provided we show that also τ1 and τ2 are non-negative. Because x̂ ∈ P , we know

from (4.71) and by hypothesis, that αT x̂− β ≤ 0. That is,

0 ≥ (θT1 A+ µT − τ1π
T)x̂− bT θ1 + τ1πl = µT x̂− τ1(πT x̂− πl).

Since µT x̂ ≥ 0 and πT x̂− πl > 0, this implies τ1 ≥ 0. By using (4.72) and the other

representation of β, the same can be deduced for τ2 and we are done.

4.2.3 Strengthening intersection cuts

Ordinary intersection cuts from split disjunctions, contained as a special case in the

theory presented in Section 4.2.1, are derived by taking into account the integrality

requirements of the basic variables. In fact, the split violation is determined by the

basic variables only, cf. (4.58). Intuitively, deriving a cutting plane by taking into

account the integrality requirements of the non-basic variables as well should result

in stronger cutting planes. This idea leads to the integer strengthening principle of

intersection cuts from split disjunctions, outlined for example in [ACL05a]. It can

also be recovered from the concept of monoidal strengthening introduced in [BJ80].

As well in the case of ordinary lift-and-project cuts there exists theory that allows to

strengthen the cutting planes [BCC96, BJ80]. The mentioned strengthening of ordi-

nary intersection cuts can be derived by modifying the underlying split disjunctions

in a certain way, and in the following we exploit an analogous approach in order

to strengthen intersection cuts from real-valued split disjunctions. Starting from

(4.13), we want to find (minimal) γl, γu ∈ Z+ such that ∀ ξ ∈ Z, the disjunction

πTx+ γlξ ≤ πl ∨ πTx+ γuξ ≥ πu (4.73)

is still valid. We will see further down that the introduction of the degree of freedom

represented by ξ allows to strengthen the intersection cut. Roughly speaking, we

can choose the best ξ in order to reduce the coefficients of the intersection cut for

each integer-constrained non-basic variable separately. However, we have to assure

that the modified disjunction (4.73) remains valid.

For an ordinary split, γl = γu = 1 does the job and gives rise to the aforemen-

tioned well-studied integer strengthening principle. In our more general case, this is

not necessarily true, i.e., such disjunctions are not necessarily valid. Intuitively, we

cannot shift the dot product of the underlying split vector with x̂ by an arbitrary

integer without leaving a valid hole. What we can do is shift it by integer multiples

of the distance from πl and πu to the upper and lower bounds of the expression

πTx, respectively. In other words, we have to shift at least by a quantity that will

138

push everything out of the feasible region. This is intuitively weaker than integer

strengthening for ordinary splits, where we can shift unitarily, especially if πl and

πu are far away from these bounds. Nevertheless, we assume in the following that

bounds of πTx are known,

π ≤ πTx ≤ π. (4.74)

In (4.9) - (4.12) for example, such bounds for the k-th split vector πk are given by

l1k and uLkk . We then have the following Lemma.

Lemma 4.11. Assume that (4.74) holds. Then, with γl = π − πl and γu = πu − π,

the disjunction

πTx+ γlξ ≤ πl ∨ πTx+ γuξ ≥ πu (4.75)

is valid ∀ ξ ∈ Z.

Proof. Without loss of generality, we may assume γl, γu ≥ 0. Otherwise, πl and πu

may always be modified such that this holds. For ξ = 0, there is nothing to show.

If ξ ≥ 1, for the left-hand-side of the right term of disjunction (4.75), since πTx ≥ π

and (πu − π) ≥ 0, we have

πTx+ γuξ = πTx+ (πu − π)ξ ≥ π + (πu − π) = πu.

Therefore, the right term of (4.75) is always fulfilled. In an analogue fashion, one can

show that if ξ ≤ −1, the first term of (4.75) is alway fulfilled. The claim follows.

With the above Lemma, we can prove the validity of a strengthened intersection cut

from the real-valued split (πT , πl, πu).

Proposition 4.12. Consider the setting of Proposition 4.6, and denote the set of

integer-constrained non-basic variables by J := N ∩ {n− p+ 1, . . . , n}. If we define

π̂j :=
−fj(πu − πl)

(πu − π)(πT x̂− πl) + (π − πl)(πu − πT x̂)
,

then the inequality

∑
j∈J

min

{
−fj − (π − πl)bπ̂jc

πT x̂− πl
,
fj + (πu − π)dπ̂je

πu − πT x̂

}
xj

+
∑
j∈N\J

max

{
−fj

πtx̂− πl
,

fj
πu − πT x̂

}
xj ≥ 1

is valid.

139

Proof. Consider an arbitrary split vector π̃ with π̃j = 0 ∀ j /∈ J . Clearly, π̃Tx ∈ Z.

Thus, by Lemma 4.11,

πTx+ (π − πl)π̃Tx ≤ πl ∨ πTx+ (πu − π)π̃Tx ≥ πu (4.76)

is a valid disjunction. Proceeding as in the proof of Proposition 4.6, (4.76) can be

written as∑
j∈N

−fj
πT x̂− πl

xj −
π − πl
πT x̂− πl

π̃Tx ≥ 1 ∨
∑
j∈N

fj
πu − πT x̂

xj +
πu − π
πu − πT x̂

π̃Tx ≥ 1.

Writing π̃Tx =
∑

j∈J π̃jxj, the latter can be rearranged to

∑
j∈J

−fj − (π − πl)π̃j
πT x̂− πl

xj+
∑
j∈N\J

−fj
πT x̂− πl

xj ≥ 1 ∨

∑
j∈J

fj + (πu − π)π̃j
πu − πT x̂

xj +
∑
j∈N\J

fj
πu − πT x̂

xj ≥ 1.

Applying the maximum principle gives the valid inequality

∑
j∈J

max

{
−fj − (π − πl)π̃j

πT x̂− πl
,
fj + (πu − π)π̃j

πu − πT x̂

}
xj

+
∑
j∈N\J

max

{
−fj

πT x̂− πl
,

fj
πu − πT x̂

}
xj ≥ 1.

For each j ∈ J , we minimize the coefficient of the above inequality over π̃j ∈ Z
independently. Therefore, let the two functions uj(·) and vj(·) be defined as the two

terms appearing in the coefficient for j ∈ J , i.e.

uj(π̃j) :=
−fj − (π − πl)π̃j

πT x̂− πl

vj(π̃j) :=
fj + (πu − π)π̃j

πu − πT x̂
.

One can check that uj(·) and vj(·) are monotonically decreasing and increasing,

respectively, and that uj(π̂j) = vj(π̂j). Thus, π̂j minimizes max{uj(π̃j), vj(π̃j)} over

R. The claim follows by going to the integer arguments adjacent to π̂j.

As anticipated, the integer strengthening principle underlying Proposition 4.12 is

intuitively weaker than the one for ordinary intersection cuts. While we could prove

for example a dominance relation between a wide intersection cut and correspond-

ing ordinary intersection cuts in Proposition 4.7, this is not true for the integer-

140

strengthened versions. For example, in the case of an intersection cut from a simple

ordinary split, the strengthened cut becomes precisely the GMI cut introduced in

Definition 1.4. One can show that all coefficients of a GMI cut lie in [0, 1], see,

e.g., [ACL05a], but there seems to be no analogue property for strengthened wide

intersection cuts. This can be seen as some kind of dilemma. Whenever we have a

violated wide split disjunction, it is not clear whether the best strategy is to sepa-

rate a wide intersection cut that can then be strengthened weakly, or to weaken the

disjunction to an ordinary split and separate an ordinary intersection cut, that can

then be strengthened strongly to a GMI cut. We will analyze this dilemma, that is

somewhat related to the work in [BQ10], computationally in Section 4.2.4.1. Also,

we make some considerations on how to improve on the tool provided by Lemma

4.11 in the following section.

4.2.3.1 Thoughts on regularly distributed non-contiguities

We return to the question of how to shift the real-valued split in order to get dis-

junctions that are still valid. Are there situations in which we can shift it by a

quantity less than the one that pushes everything outside of the feasible region? It

seems that we can answer this question positively if we assume regularly distributed

non-contiguities in the domain. We therefore consider a split vector π, for simplicity

assumed to be an integral vector giving rise to wide splits, whose domain is a subset

of ⋃
ξ∈Z

[l + sξ, u+ sξ], (4.77)

where l, u and s > u − l are fixed parameters. Basically, two adjacent intervals

have the same width and are just shifted with respect to each other by the quantity

s. In this situation Lemma 4.11 holds with πl = u, πu = l + s and γl = γu = s,

and Proposition 4.12 can be extended accordingly. The smaller s, the stronger the

integer strengthening that leads to the cut in Proposition 4.12 should be. Instead of

shifting the disjunction out of the feasible region, we can just shift it by one interval.

Example 4.13. Taking the special case of a simple split, we consider a variable y

with domain [0, 1] ∪ [3, 4] ∪ [12, 13], i.e., having holes [1, 3] and [4, 12]. Implied by

these holes (and the bounds 0 ≤ y ≤ 13) are the regularly distributed ones [1, 3],

[4, 6], [7, 9] and [10, 12]. The domain of y is a subset of ∪ξ∈Z[3ξ, 1 + 3ξ].

Continuing with the special case of simple splits, we examine how a variable y with

a domain like (4.77) can be modeled in a mixed integer setting:

y = l + sξ + z (4.78)

141

ξ ∈ Z (4.79)

z ∈ [0, u− l]. (4.80)

Further specializing, we go over to the case in which the intervals are actually single

points (l = u, or equivalently z = 0). The variable y is then just a translated

multiple of an integer variable3, and (4.78) becomes:

y = l + sξ. (4.81)

Basically, y is allowed to take only isolated values that are distributed periodically.

In this case, i.e., when we have (4.81), there is some doubt on the practical rele-

vance of a (strengthened or non-strengthened) wide intersection cut derived from

y. Whenever y violates a valid disjunction arising from the holes in its domain, ξ

violates the integrality requirement. In addition, it is likely that whenever y is basic,

so is ξ and vice versa. Therefore, the two intersection cuts that could be separated

might be somewhat equivalent. However, we did not test the separation of simple

real-valued split cuts from variables that are multiples of others computationally.

In any case, it is not clear whether the above doubts on the practical relevance

of wide intersection cuts also come up when we have either a non-simple split, or

l < u, i.e., a third variable z is involved in (4.78), or even both. Even more, these

doubts are potentially justified only if the regularly distributed non-contiguities are

modeled explicitly via (4.78) - (4.80) or (4.79)/(4.81). If this is not the case and

the hole information comes from dual considerations as in Section 4.1.2, an inte-

ger strengthening procedure that is based on regularities as in (4.77) is certainly

interesting.

4.2.4 Computation

We now present the results of some computational experiments with real-valued-split

cuts applied to several MILPncsd’s. In particular, we use instances of the problems

presented in Sections 4.1.1 and 4.1.2 as test instances. All problem instances here

are build from integer data, and thus all continuous variables therein are implicitly

integer constrained variables and we include their indices in {n − p + 1, . . . , n}.
Also, we tested on MIPLIB 2010 instances with randomly created non-contiguities

in the domains of integer-constrained variables. Hence, all splits in the considered

MILPncsd’s are simple wide splits. That is, the fact of a split disjunction being

violated is equivalent to saying that an integer variable lies in a hole. As has been

said right before Proposition 4.7, we are interested in testing the computational

3For example, for s = 2 we get a variable that takes either only even or only odd values.

142

Algorithm 4.1: r rounds of intersection cuts

1 solve the LP-relaxation of (4.9) - (4.12), and set k = 1;
2 do
3 let the optimal simplex tableau be given as in (4.56) - (4.57);
4 for i ∈ B ∩ {n− p+ 1, . . . , n} do
5 if b1 AND x̂i lies in a hole then
6 compute the corresponding wide intersection cut, if possible, and

add it to the LP-relaxation;

7 else if b2 AND x̂i is fractional then
8 compute the intersection cut corresponding to the ordinary simple

split, if possible, and add it to the LP-relaxation;

9 end

10 end
11 resolve the LP-relaxation;
12 k = k + 1;

13 while (k < r AND cuts added);

advantage of wide split cuts over corresponding ordinary split cuts. Therefore, we

include the latter in our experiments. However, we do not only include such cuts

corresponding to split disjunctions with the same split vectors π4 that appear in the

underlying MILPncsd, but also simple split cuts corresponding to all integer and

binary variables in the model. This is motivated by an observation that can be made

in the context of Section 4.1.1. In particular, when non-contiguous split domains

are modeled explicitly, part of the wide split disjunction is translated into ordinary

split disjunctions involving the auxiliary binary variables. In such a case, we want

to analyze the advantage of separating cutting planes from wide split disjunctions

in addition to ordinary split cuts related to these binary variables.

All in all, we can say that we only generate simple wide split or ordinary simple

split cuts in the following. The different cut generation procedures that we use

can be described as in Algorithms 4.1 and 4.2, that are more elaborate versions

of an approach as in Algorithm 5. In the former, we generate intersection cuts,

while the latter is designed for lift-and-project cuts. We never mix the separation

of intersection cuts and lift-and-project cuts into a single procedure. For ease of

exposition, they are formulated explicitly for simple wide split disjunctions, i.e.,

holes in the domains of integer variables. It should be clear though that both can

be extended easily to the separation of split cuts from arbitrary real-valued splits.

Algorithm 4.2 is a direct adaption of the procedure proposed in [Bon12]. It is slightly

more elaborate than Algorithm 4.1 in the sense that from one iteration to another,

only those variables, that led to a cut in the previous iteration, are considered,

4more precisely, ei in the case of simple splits

143

Algorithm 4.2: iterated lift-and-project cuts

1 initialize the membership LP with the data A and b;
2 solve the LP-relaxation of (4.9) - (4.12), and set k = 1, abort = false;
3 do
4 set K = {n− p+ 1, . . . , n}, reinit = true;
5 do
6 set I1 = I2 = ∅;
7 for i ∈ K do
8 if b1 AND x̂i lies in a hole then
9 I1 = I1 ∪ {i};

10 else if b2 AND x̂i is fractional then
11 I2 = I2 ∪ {i};
12 end

13 end
14 set K = ∅;
15 if k ≤ r then
16 for i ∈ I1 do
17 compute the corresponding wide lift-and-project cut by solving

the membership LP, if possible, add it to the LP-relaxation
and set K = K ∪ {i};

18 end
19 for i ∈ I2 do
20 compute the corresponding ordinary lift-and-project cut by

solving the membership LP, if possible, add it to the
LP-relaxation and set K = K ∪ {i};

21 end
22 k = k + 1;

23 else
24 abort = true;
25 end
26 resolve the LP-relaxation;

27 while K 6= ∅;
28 if reinit then abort = true;

29 while !abort ;

possibly reinitializing the whole list when no cut was separated5. Both algorithms

contain a limit r on the number of iterations of cut separation and two boolean

variables b1 and b2 as input parameters. Different combinations of the latter help

to describe the different cut generation strategies we apply. b1 indicates that we do

separate simple wide split cuts, while b2 indicates whether we do separate ordinary

simple split cuts. We use the following denomination for the three different strategies

5Restricting to the separation of (strengthened) ordinary lift-and-project cuts, Algorithm 4.2 is
precisely the one that has been used for computing the closures Pe and P ∗

e in Section 3.5.

144

we consider.

• w/o (without wide splits): For each fractional binary or integer variable, we

compute a split cut from an ordinary split, if possible.

• w (with wide splits): For each integer variable, we compute a wide split cut if

its value lies in a hole, if possible, or otherwise a split cut from an ordinary

split, if possible. In addition, for each fractional binary variable, we compute

a split cut from an ordinary split, if possible.

• o (only wide splits): For each integer variable, we compute a wide split cut if

its value lies in a hole, if possible.

In the case of intersection cuts, a separation is only possible, if the corresponding

variable is basic, while for lift-and-project cuts, the negativity of the optimal ob-

jective value of the membership LP is required6. The correspondence of the three

strategies to the parameters b1 and b2 is subsumed in the following table.

b2

b1
true false

true w w/o

false o -

It turned out that the separation of wide split cuts with either of the two algorithms

above in the context of the TSPMTW does not augment the dual bound, neither on

the MILPncsd formulation (4.17) - (4.22), nor the one where the big-M constraints

(1.39) - (1.42) are included as redundant constraints. A reason might be that the

TSPMTW can be seen as a combination of a TSP component and a scheduling

component. The TSP part alone makes the problem already quite hard, and the

wide split cuts applied to our MILPncsd model act on its scheduling part of the

model only, thus not being able to augment the dual gap. We exclude the TSPMTW

from the computational results in the following sections, but will get back to it in

Section 4.3.1. Algorithms 4.1 and 4.2 have been coded in C/C++, and as LP solver

we use CPLEX 12.6.1 through its C API. Throughout the following sections we

mostly report the percentage of the initial dual gap that is closed by the separation

of cutting planes through either of Algorithms 4.1 and 4.2 when imposing some

iteration limt r. That is, if δbef denotes the dual gap of the initial LP-relaxation,

and δaft the one after termination of the algorithm, the column % gap closed in the

following tables shows (δbef − δaft)/δbef (as a percentage). Also, the total number

of cuts that have been generated is sometimes shown.

6In addition, a cut might not be separated due to numerical issues in either case.

145

4.2.4.1 The Lazy Bureaucrat Problem

In order to create instances of the MILPncsd model (4.42) - (4.48) for the LBP we

used the knapsack instance generator presented in [MPT99] and available at [PIS].

This leads to instances with n items with profits and weights in the range [0, R], and

whose correlation is determined by the membership to one of nine different classes.

For each class q ∈ [9], we generated one instance for each combination of values

n ∈ {10, 20, 30, 40, 50, 100, 500, 1000, 2000}
R ∈ {1000, 10000}

C ∈ {b0.25W c,b0.5W c, b0.75W c},

where W is the cumulated weight
∑

i∈[n] wi, resulting in 54 instances for each class7.

Each time we apply Algorithms 4.1 or 4.2 with all three strategies w/o, w and o to

a set of instances, this set can be divided into four disjunct subsets, or groups:

• group 1: instances that result in a significant difference between strategies w/o

and w in terms of the initial dual gap closure (say, at least one percent)

• group 2: those of the remaining instances that result in a significant relative

difference between strategies w/o and w in terms of the number of cuts that

are separated (say, at least ten percent)

• group 3: those of the remaining instances that result in a positive dual gap

closure when applying strategy o

• group 4: the remaining instances, i.e., those that do not result in any significant

difference between strategies w/o and w, and wide split cuts alone are not able

to close any dual gap (including instances in which neither ordinary split cuts

nor wide split cuts have any effect)

For each of the nine classes, Table 4.1 shows the number of the instances out of

the 548 generated ones, that did not result in numerical difficulties (column “total”)

and their division into the different groups after the separation of (wide) intersection

cuts through Algorithm 4.1 with an iteration limit of r = 10. Not all classes seem

to be interesting from our point of view. In fact, it often happens that strategies w

and w/o perform essentially identical. However, this is not true for the classes 4, 6

and 7. Therefore, in what follows we restrict to class 4.

7When q = 9, instances with R = 1000 are almost always infeasible, and therefore only the 27
instances with R = 10000 are considered.

827 for class 9

146

Tables 4.2 - 4.4 show the results of the above application of Algorithm 4.1 on

class 4, divided by groups, in more detail. Table 4.2 shows the instances in which

we can close significantly more gap with strategy w than with w/o, i.e., group 1.

That means that the separation of wide intersection cuts on top of ordinary inter-

section cuts is highly advantageous. Interestingly, on these instances the separation

of only wide intersection cuts (strategy o) already leads to a gap closure that is

significantly greater than the one achieved with strategy w/o, and almost reaches

the one of strategy w. Another side effect of the separation of wide intersection cuts

becomes eminent in Table 4.2, namely the reduction of the number of cuts that

are separated in total. Apart from closing more gap, strategy w also decreases this

number significantly with respect to strategy w/o. This is a desirable effect since the

number of constraints in an LP, to which separated cutting planes have to be added

in order to benefit from the additional dual gap closure, influence the computational

effort when solving the latter. Remarkably, the significant gap closure achieved by

strategy o requires a very limited number of separated cuts. The side effect concern-

ing the number of cuts also persists throughout Table 4.3, where those instances are

shown that do not benefit significantly from the separation of wide intersection cuts

in terms of the gap closure, i.e. group 2. Again, strategy o is highly competitive

and requires a very limited number of cuts in total to achieve almost the same gap

closure as strategies w/o and w. In Table 4.4 we see those instances that do not result

in any significant difference between strategies w/o and w, but still wide intersection

cuts alone are able to close a positive amount of the initial dual gap, that is, group

3.

Tables 4.5 - 4.7 show analogue results for Algorithm 4.2 with r = 10. The

tendencies regarding the differences between the three strategies observed in the case

of wide intersection cuts mostly persist: wide lift-and-project cuts can significantly

increase the gap closure in various instances, when separated on top of ordinary lift-

and-project cuts as well as when separated alone. A slight difference with respect to

wide intersection cuts consists in the number of cuts that are separated. Although

this number is decreased on average by wide lift-and-project cuts throughout Tables

4.5 - 4.7, there is a non-negligible number of instances in which strategy w increases

the total number of cuts, especially in Table 4.6. In the remainder of this and in

the next two sections, we restrict to showing the results of the separation of wide

intersection cuts, underlining that for wide lift-and-project cuts we obtained results

that exhibited the same characteristics that we just outlined.

We also conducted experiments with the MLBP, for which an MILPncsd model

is given by (4.49) - (4.55) augmented by (4.46). An MLBP instance can be created

from an LPB instance by, for example, dividing the knapsack capacity C into K

smaller, equal knapsacks. In particular, for even C, we set Cj = 2·bC
2
c for all j ∈ [K]

147

in the following, and for odd C we set Cj = 2 · bC+1
2
c − 1. The weights and profits

remain unchanged. In this way, we create instances based the 25 LBP instances

assigned to group 1 through the separation of wide intersection cuts above, i.e.,

those in Table 4.2, for K ∈ {2, 5, 10}. Table 4.8 shows the results of the separation

of r = 10 rounds of intersection cuts (Algorithm 4.1) through strategies w/o and w

on all of these instances. Also, the same results in case of the LBP, i.e., columns two

and three of Table 4.2, are shown. In addition, in each case the column ∆ shows

the relative difference of the gap closures achieved with the two strategies. I.e., if

φw/o denotes the gap closure achieved by strategy w/o, and φw the one achieved by

strategy w,

∆ = (φw − φw/o)/φw/o.

The first observation we can make is that the problem gets more difficult with in-

creasing K. In fact, the gap closure of either strategy deteriorates. The second

observation is that the relative advantage of the strategy that exploits wide inter-

section cuts increases. Although there are single instances with a negative ∆, i.e.,

w/o is the winning strategy, on average ∆ increases significantly with increasing K.

Together with Observation 4.5, this can be seen as computational evidence of the

strength of wide intersection cuts. In fact, with increasing K the variable z plays a

more important role in the model, which is why the separation of wide intersection

cuts, that are separated based on valid disjunctions violated by z, helps relatively

more to strengthen the LP-relaxation.

Finally, we turn to some experiments concerning the integer strengthening of

wide intersection cuts discussed in Section 4.2.3. We want to analyze the dilemma

discussed therein: whenever a variable lies in a hole and is fractional, should we

separate the wide intersection cut and strengthen it by Proposition 4.12, knowing

that this strengthening is relatively weak, or should we just separate an ordinary

intersection cut, knowing that we can perform stronger strengthening and obtain a

GMI cut? In order to analyze this dilemma, we introduce two new strategies:

• w-s (with strengthened wide splits): Equal to strategy w, except that every

separated wide intersection cut is strengthened (in particular, for variables

without holes, we still separate ordinary intersection cuts, if possible).

• w/o-g (with GMI cuts instead of wide splits): equal to w, except that for

every basic variable that violates a wide split disjunction (in which case with

strategy w we separate a wide intersection cut), we separate a GMI cut.

Table 4.9 compares the gap closures achieved through r = 10 rounds of intersection

cuts (Algorithm 4.1) with strategies w, w-s and w/o-g on the instances of group

1 above, i.e., those in Table 4.2. We see that the strengthening of every wide

148

intersection cut leads to a significant improvement in rare cases, thus improving the

average slightly. In any case, strategies w and w-s both beat w/o-g. This means that

GMI cuts are not able to reach the gap closure that we can achieve by exploiting

the wide split disjunction.

4.2.4.2 Multi-mode Resource Leveling

We further tested our procedures on 9 instances of the Multi-mode Resource Leveling

problem, including the aforementioned one, 30n20b8, that has been included in

MIPLIB 2010. The remaining instances are pairs of variants of 4 underlying ones.

We use the model (4.25) - (4.31), augmented by (4.32) - (4.33). Table 4.10 shows

the results of applying Algorithm 4.1 with r = 10, that is, the separation of wide

intersection cuts. There is a slight improvement of strategy w with respect to w/o,

mostly due to one instance in which wide intersection cuts can close almost four

percent more of the initial dual gap. One might argue that in these instances, the

exploitation of the holes is already performed by the ordinary intersection cuts based

on the binary variables that translate the holes into explicit constraints, see also the

introductory part of Section 4.2.4. However, when looking at strategy o, we might

also motivate the only marginal improvement of w over w/o by the fact that the holes

do not seem to play a significant role at all in closing the dual gap in these instances.

We also note that in terms of the total number of cuts that are separated, we again

observe an only slight difference in case wide intersection cuts are separated. The

separation of wide lift-and-project cuts leads to similar results on these instances.

To further analyze the issue of explicitly modeled holes, we report on the results

obtained with further instances in which the non-contiguous domains are certified

by primal information in the next section.

4.2.4.3 MIPLIB 2010 - random holes

Finally, we conducted experiments with randomly created instances. In particular,

we took already existing instances from MIPLIB 2010 and randomly generated holes

that were distributed in the domains of the involved integer variables. We took all

MIPLIB 2010 instances of problem type MIP or IP and problem status easy9. We

then further discarded instances whose variable ranges are either to large (> 109)

or too small (< 2), infeasible instances, feasibility problems, or instances with a

single integer variable, ending up with a set of 14 instances that did not result in

numerical difficulties. We randomly distributed holes of three different sizes inside

the domain of each involved integer variable, where the size of a hole is always

relative to the range of the variable. Increasing the maximum number of holes of

9as per January 2016

149

each size, and increasing the probability that a hole is allocated or not, we created

non-contiguities with three different intensities µ ∈ {1, 2, 3}. As anticipated, we are

interested in demonstrating the computational advantage of wide split cuts even

when the wide split disjunctions are translated into ordinary split disjunctions via

auxiliary binary variables, that is, when the non-contiguous domains are certified

by primal information as in Section 4.1.1. In all of the considered instances, we

therefore explicitly added either big-M constraints or GUB-links in order to impose

generated the holes, which results in MILPncsd models with redundant constraints.

Table 4.11 shows the results of the separation of r = 10 rounds of intersection cuts

with strategies w, w/o and o10. Each cell in Table 4.11 shows the average dual gap

closure of either strategy over a number of instances that are derived from the same

original MIPLIB instance with the same µ. The number of instances underlying each

cell is shown in the columns “#”11. On average, we observe a significant advantage

of strategy w over w/o, and also wide split cuts alone are able to close a significant

portion of the initial dual gap. Furthermore, the gap closures of strategies w and o

increase with increasing µ on average, confirming the intuition that we can benefit

algorithmically by exploiting wide split disjunctions directly, although this is not

true in all single cases. We observe various scenarios. For example, it happens that

strategies w and w/o are more or less equivalent, but strategy o does not reach the

same level of gap closure (instance n4-3), similar to Multi-mode Resource Leveling

instances from the previous section. But it also happens that strategy w leads

to a significant advantage over w/o, while o can be less (instance lectsched-4-obj) or

equally (instance neos-555424) performing. Also, we observe that all three strategies

are comparable (instance sp98ir). All in all, we see that the exploitation of wide split

disjunctions can be advantageous even when their validity is certified by primal

information.

4.3 Exactly solving MILPs with non-contiguous split

domains

So far we focused on how to separate wide split cuts for MILPncsd problems and re-

ported on computational results concerning the dual gap closure achieved by these

cuts. In other words, we analyzed the algorithmic exploitation of wide split dis-

junctions in MILP through cutting planes. In this section we are concerned with

an experimental algorithm that solves such problems to optimality, exploiting wide

10In order to maintain a tractable model size, GUB-links were used to impose the holes in only 5
out of the 14 original MIPLIB instances.

11In all cases, we attempted to generate 5 random instances, but in some cases the procedure to
generate holes with a given intensity µ fails.

150

Algorithm 4.3: MILPncsd branch & bound

1 let the root node ρ be the LP-relaxation of (4.9) - (4.12);
2 set T = {ρ} and UB =∞;
3 while T 6= ∅ do
4 choose η ∈ T , set T = T \ {η};
5 solve η and denote by x̂ and ẑ its optimal solution and objective value;
6 if ẑ < UB then
7 if x̂ integral then
8 if x̂ satisfies the constraints (4.11) then
9 update UB = ẑ;

10 else

11 choose k ∈ [K] and 2 ≤ j ≤ Lk with uj−1
k < πk

T
x̂ < ljk;

12 create nodes η− and η+ by adding the constraints πk
T
x ≤ uj−1

k

and πk
T
x ≥ ljk, respectively, to η;

13 set T = T ∪ {η−, η+};
14 end

15 else
16 choose an integer-constrained xi with fractional value x̂i;
17 create nodes η− and η+ by adding the constraints xi ≤ bx̂ic and

xi ≥ dx̂ie, respectively, to η;
18 set T = T ∪ {η−, η+};
19 end

20 end

21 end

split disjunctions also in branching. We therefore assume to have an underlying

MILPncsd as in (4.9) - (4.12). Our proposal of such an algorithm builds on Algo-

rithm 1.1, the branch & bound for MILP, and is outlined in Algorithm 4.3.

Roughly speaking, Algorithm 4.3 works by initially applying a branch-and-

bound algorithm to the MILP-relaxation of an MILPncsd. The difference to Algo-

rithm 1.1 then lies in Lines 8 - 13. Whenever an integer feasible solution is found, we

check whether the non-contiguous split domains are satisfied, and if not create two

child nodes by imposing the bounds of a violated hole explicitly. One motivation

behind the fact that Algorithm 4.3 is built on top of a branch-and-bound algorithm

for MILP is that we can exploit MILP as a sophisticated technology, in the sense

that we can possibly use an MILP code as a black-box inside an implementation of

Algorithm 4.3. A special case in which we can do so is the following.

Example 4.14. If all split vectors in (4.9) - (4.12) are simple wide splits (i.e., there

are integer variables with holes in their domains), Algorithm 4.3 can be implemented

151

on top of CPLEX using the incumbent12- and branch-callback13. A direct integration

of the usual integer branching of Lines 16 - 17 with the branching on disjunctive

constraints as in Lines 11 - 12, also involving continuous variables, would be possible,

for example, in SCIP. However, also in that case primal heuristics would have to

adapted to satisfying the constraints (4.11).

In any case, we know that the disjunctions (4.13) are valid for the underlying

MILPncsd, and we can thus attempt to separate real-valued split cuts whenever

an LP has been solved in Line 5 of Algorithm 4.3. In that regard, we make some

technical remarks about the two ways of separating wide split cuts that we presented

in Sections 4.2.1 and 4.2.2.

Remark 4.15. If we separate real-valued split cuts at a non-root node η in Algorithm

4.3, they can be locally valid or globally valid, cf. Section 1.1.3. In order to separate

intersection cuts, we need a simplex tableau, and in most MILP codes, we obtain that

of node η, including local bounds on the variables. This means that the corresponding

intersection cuts are local cuts. In order to obtain globally valid cuts, one would have

to recover a globally valid tableau, which might be more involved. Implementation-

wise, lift-and-project cuts are less demanding in this respect. If we use Algorithm

4.2 to separate split cuts, we can control whether they are locally or globally valid

by initializing the membership LP, cf. Line 1 of Algorithm 4.2, with data of the LP

associated to η or data associated to the root node ρ.

4.3.1 TSP with multiple time windows

In what follows, we test Algorithm 4.3 in the context of the TSPMTW, cf. Section

1.5.1. We used instances that are based on the VRPMTW instances in [BHL14].

Therein, graphs with 100 nodes are used, and we thus created a TSPMTW instance

from a VRPMTW one on a subgraph by randomly selecting n ∈ {25, 40} of them.

The node characteristics such as the process time and the multiple time windows re-

main unchanged. For the two values of n, we created at most 5 TSPMTW instances

from an original VRPMTW one, ending up with 142 feasible instances in total.

As was noted in Section 4.1.1.1, for the TSPMTW we have a pair of MILPncsd

and MILP models, (4.17) - (4.22) and (1.32) - (1.37) augmented by (1.39) - (1.42),

12Unless primal heuristics are disabled, the condition in Line 8 of Algorithm 4.3 will also be checked
whenever CPLEX finds an integer feasible solution that is not necessarily the solution of an LP
solved at some node η.

13The branch-callback of CPLEX allows to branch only by tightening the integer variable bounds
on the two child nodes, thus mimicking a simple split. A possible workaround in order to be
able to branch on more general disjunctive constraints as in Line 12 of Algorithm 4.3 would be

to introduce an additional variable xn+1 = πkTx for every appearing split vector. We did not
do this in our experiments though.

152

that are equivalent, with the difference that the non-contiguous domains in the

former are reformulated with big-M constraints in the latter. The resulting auxiliary

binary variables in the MILP are not present in the MILPncsd, which makes the

total number of variables significantly smaller. In the MILPncsd model, all non-

contiguous domains are given by simple wide splits. Therefore, we can proceed as in

Example 4.14, implementing Algorithm 4.3 in C/C++ on top of CPLEX 12.6.1. In

Table 4.12 we compare such an implementation applied to the MILPncsd (column

CPXR) with the application of default14 CPLEX 12.6.1 to the MILP model (column

CPXF). We also include the results of Algorithm 4.3 implemented as before, but with

the separation of r = 20 rounds of wide intersection cuts at the root node, that is,

Algorithm 4.1 with b1 = true and b2 = false (column CPXR+cuts). Shown are the

CPU times in seconds and the number of nodes that were explored in each case. All

experiments were conducted on a single core of a 3.1 GHz quad-core machine with

1.96 GB RAM, and we imposed a time limit of one hour (indicated by ∞, when

reached).

Table 4.12 shows those instances in which at least one of the three algorithms

required at least 10 minutes of CPU time. The mean values instead are computed

over all instances out of the 142 for which none of the three algorithms hit the time

limit. We see that on average, Algorithm 4.3 reduces the computing times for solving

an instance by roughly 20 % with respect to default CPLEX applied to an MILP

model with auxiliary binary variables15. There is also a reduction in the number

of branch-and-bound nodes. This nice result confirms that the direct exploitation

of wide split disjunctions, in this case through branching, can be advantageous.

Going over to the implementation of Algorithm 4.3 with the separation of wide split

cuts at the root node, we observe yet another improvement on average, in terms of

computing times as well as in terms of nodes. However, this improvement is only

marginal, and in many cases, the number of nodes remains unchanged, meaning

that the two algorithms probably explore the exact same search tree. This is of

course consistent with what was said in the introductory part of Section 4.2.4; the

TSPMTW model is far too weak in order to benefit significantly from wide split

cuts that are separated at the root node.

14In order to maintain the results comparable, default means with empty incumbent-, branch-
and cut-callbacks. Also, in the light of Remark 4.15, CPLEX’s presolve was disabled in all
its variants in this section, in order to be able to retrieve the simplex tableaus of the original
instance for the generation of wide intersection cuts.

15Although the time limit is hit 3 times in the first case, and only 2 times in the latter

153

4.4 Outlook

The results presented in this chapter can be seen as a paradigm change in the way

we model and solve MILPs. We have seen significant advantages of exploiting non-

contiguous domains directly in some special cases of MILPs. So far, the appearance

of holes in the domains of integer variables in general MILPs seems to be marginal.

In MIPLIB for example, the majority of the variables in some instance is typically

given by binary variables, in which case the search for non-contiguous domains is

obsolete. Nevertheless, an admittedly provocative question that can be read between

the lines of this chapter is whether the relative rarity of integer variables in integer

programming problems arises naturally, or has been reinforced in some sense by the

evolution of the methodologies of integer programming, that are sometimes more

focused on binary variables. In that respect, we believe that the fresh view on some

modeling and algorithmic aspects of MILP that has been given in this chapter is

valuable.

154

Appendix

List of Figures

1.0 Interactions of MILP, MINLP and CP 2

1.1 Schematic representation of a search tree in branch & bound 10

1.2 Outer approximation cuts of non-polyhedral sets 18

1.3 Spatial branching for a signpower function 20

1.4 Piecewise linearizations of a signpower function 21

1.5 Disjunctive graphs with n = m = 3 31

2.1 Functions describing water dynamics in pipes 42

2.2 Pressure raise in networks with pumps 45

2.3 Simple example of a network containing a circle 48

2.4 Fitted polynomial and convex hull of diameter costs 52

2.5 Relaxations of the potential-flow coupling constraint 53

2.6 The shamir network . 59

3.1 Illustrative construction of the convex hull of two disjunctive sets . . 92

3.2 Counterexample for the case in which J2(g1) 6= J1(g0) 93

3.3 The use of strengthened big-M coefficients inside a search tree 106

3.4 The use of black-box MILP solvers inside a search tree 107

4.1 A 3× 3 sudoku . 119

4.2 Intersection cuts in the plane . 134

List of Algorithms

1.1 MILP branch & bound . 9

1.2 MILP cutting plane . 11

3.1 Tree of trees for indicator constraints 110

3.2 Propagation for JSS . 112

3.3 Subroutine global . 114

4.1 r rounds of intersection cuts . 143

155

4.2 iterated lift-and-project cuts . 144

4.3 MILPncsd branch & bound . 151

List of Tables

2.1 Characteristics of water network design instances 157

2.2 Reported computational results for water network design instances . . 157

2.3 Comparison of piecewise linearizations for water network design in-

stances . 158

3.1 Comparison of dual gaps of big-M and disjunctive formulations for

supervised classification instances with weak preprocessing 159

3.2 Comparison of dual gaps of big-M and disjunctive formulations for

supervised classification instances with strong preprocessing 159

3.3 Comparison of dual gaps of big-M and disjunctive formulations for

JSS instances . 160

3.4 Comparison of dual gaps of big-M and disjunctive formulations for

TSPTW instances . 161

3.5 Comparison of strategies persp0 and persp1 in the tree of trees for

JSS instances . 162

4.1 Division of LBP instances after the separation of wide intersection

cuts by instance class . 162

4.2 Separation of wide intersection cuts on LBP instances, group 1 163

4.3 Separation of wide intersection cuts on LBP instances, group 2 163

4.4 Separation of wide intersection cuts on LBP instances, group 3 164

4.5 Separation of wide lift-and-project cuts on LBP instances, group 1 . . 164

4.6 Separation of wide lift-and-project cuts on LBP instances, group 2 . . 165

4.7 Separation of wide lift-and-project cuts on LBP instances, group 3 . . 165

4.8 Separation of wide intersection cuts on LBP and MLBP instances . . 166

4.9 Separation of strengthened wide intersection cuts on LBP instances . 167

4.10 Separation of wide intersection cuts on Multi-mode Resource Leveling

instances . 167

4.11 Separation of wide intersection cuts on MIPLIB 2010 instances with

random holes . 168

4.12 Comparison of direct MILPncd and MILP approaches for TSPMTW

instances . 169

156

instance #nodes
of which

#pipes #diameters
sources

shamir 7 1 8 14
hanoi 32 1 34 6

new york 20 1 21 12
blacksburg 31 1 35 11
foss poly 0 37 1 58 7
foss iron 37 1 58 13
foss poly 1 37 1 58 22
pescara 71 3 99 13
modena 272 4 317 13

Table 2.1: Characteristics of water network design instances

BONMIN-based LP/CVXNLP [Rag13] SCIP [Vig13b, Vig12]

[BDL+11] time limit 14,400 sec.

time limit 7,200 sec. mem. limit 165,000 nodes time limit 10,000 sec.

single core 2.4 GHz dual core 2.63 GHz dual core 3.2 GHz

1.94 GB RAM 3 GB RAM 48 GB RAM

instance
ub lb ub lb ub

shamir 419,000.00 419,000.00 419,000.00 419,000.00 419,000.00

hanoi 6,109,620.90 6,109,620.90 6,109,620.90 6,109,620.90 6,109,620.90

new york 39,307,799.72 39,307,799.72 39,307,799.72 23,363,470.00 39,307,800.00

blacksburg 118,251.09 118,251.09 118,251.09 116,945.00 116,945.00

foss poly 0 70,680,507.90 70,062,509.72 71,741,922.90 67,559,218.00 67,559.218

foss iron 178,494.14 177,515.24 178,494.14 175,992.00 175,992.00

foss poly 1 29,117.04 26,236.17 31,352.87 28,043.86 28,043.86

pescara 1,820,263.72 1,700,108.17 1,814,271.91 1,639,746.00 1,938,885.00

modena 2,576,589.00 2,206,137,43 4,191,445.38 2,115,898.00 -

Table 2.2: Reported computational results for water network design instances

157

co
n
ve
x
co
m
b
in
at
io
n
m
et
h
o
d

in
cr
em

en
ta
l
m
et
h
o
d

p
ie
ce
w
.
lin
.
ap
pr
.

p
ie
ce
w
.
lin
.
re
l.

p
ie
ce
w
.
lin
.
ap
pr
.

p
ie
ce
w
.
lin
.
re
l.

in
st
an
ce

u
b

ti
m
e

u
b

ti
m
e

u
b

ti
m
e

u
b

ti
m
e

K
=

2

sh
am

ir
*5

08
,0
00

.0
0

40
.1
6

38
5,
00

0.
00

7.
97

*5
08

,0
00

.0
0

37
.5
3

38
5,
00

0.
00

4.
85

h
an
oi

-
∞

5,
93

2,
49

0.
90

12
5.
74

*7
,5
23

,5
18

.0
0

∞
5,
93

2,
49

0.
90

67
.2
3

b
la
ck
sb
u
rg

*1
37

,8
57

.7
1

45
17

.3
4

11
5,
59

2.
42

21
.3
8

*1
37

,8
57

.7
1

18
83

.2
9

11
5,
59

2.
42

31
.3
8

fo
ss

p
ol
y
0

-
∞

-
∞

-
∞

69
,9
94

,3
33

.1
0

53
96

.1
7

fo
ss

ir
on

-
∞

*1
76

,8
40

.7
7

38
61

.7
8

-
∞

*1
76

,8
40

.7
7

12
79

.9
1

fo
ss

p
ol
y
1

-
∞

-
∞

-
∞

*2
9,
13

9.
18

∞
p
es
ca
ra

-
∞

-
∞

-
∞

-
∞

m
o
d
en
a

-
∞

-
∞

-
∞

-
∞

K
=

4

sh
am

ir
*4

19
,0
00

.0
0

34
.9
6

38
3,
00

0.
00

27
.2
4

*4
19

,0
00

.0
0

9.
33

38
3,
00

.0
0

8.
97

h
an
oi

*6
,2
78

,4
34

.9
0

21
68

.9
8

5,
89

8,
28

5.
40

22
7.
71

*6
,2
78

,4
34

.9
0

61
4.
77

5,
89

8,
28

5.
40

15
7.
85

b
la
ck
sb
u
rg

*1
21

,5
95

.0
8

17
52

.5
6

11
6,
94

5.
44

24
2.
13

*1
21

,5
95

.0
8

32
4.
16

11
6,
94

5.
44

10
5.
48

fo
ss

p
ol
y
0

-
∞

-
∞

-
∞

-
∞

fo
ss

ir
on

-
∞

-
∞

-
∞

*1
80

,6
91

.0
1

∞
fo
ss

p
ol
y
1

-
∞

-
∞

-
∞

*3
0,
49

0.
68

∞
p
es
ca
ra

-
∞

-
∞

-
∞

-
∞

m
o
d
en
a

-
∞

-
∞

-
∞

-
∞

K
=

10

sh
am

ir
*4

19
,0
00

.0
0

19
31

.3
1

*4
19

,0
00

.0
0

77
9.
64

*4
19

,0
00

.0
0

52
.7
0

*4
19

,0
00

.0
0

80
.1
9

h
an
oi

*6
,1
24

,5
18

.8
0

45
31

.0
1

*6
,1
05

,3
81

.4
0

60
47

.3
7

*6
,1
24

,5
18

.8
0

77
9.
11

*6
,1
05

,3
81

.4
0

14
87

.9
9

b
la
ck
sb
u
rg

*1
18

,4
61

.5
0

77
8.
31

11
6,
94

5.
44

64
11

.5
1

*1
18

,4
61

.5
0

45
1.
16

11
6,
94

5.
44

39
5.
00

fo
ss

p
ol
y
0

-
∞

-
∞

-
∞

-
∞

fo
ss

ir
on

-
∞

-
∞

-
∞

-
∞

fo
ss

p
ol
y
1

-
∞

-
∞

-
∞

-
∞

p
es
ca
ra

-
∞

-
∞

-
∞

-
∞

m
o
d
en
a

-
∞

-
∞

-
∞

-
∞

Table 2.3: Comparison of piecewise linearizations for water network design instances

158

instance big-M lp CH lp Pe big-M Pe CH P ∗e big-M P ∗e CH
1nl 1 99.67 99.67 97.93 97.90 14.88 18.99
1nl 2 99.59 99.59 97.93 97.93 7.76 13.29
1nl 3 99.90 99.90 99.70 99.70 20.22 14.46
1nl 4 98.23 98.23 89.14 88.98 6.54 15.11
1nl 5 98.24 98.24 91.40 91.38 6.39 8.99
2nl 10 99.57 99.57 96.09 95.98 14.55 14.23
2nl 6 99.88 99.88 98.19 98.18 5.56 8.33
2nl 8 99.21 99.21 85.08 84.76 0.00 3.95
3nl 11 99.77 99.77 99.14 99.13 10.55 10.15
3nl 12 99.82 99.82 99.49 99.49 11.49 8.62
3nl 13 99.83 99.83 99.38 99.38 19.24 19.30
3nl 14 99.87 99.87 99.58 99.58 49.84 24.46
3nl 15 99.83 99.83 99.50 99.50 27.22 24.23
4nl 16 99.76 99.76 98.10 98.05 9.50 7.57
4nl 17 1.32 0.00 0.00 0.00 0.00 0.00
5nl 10 99.76 99.76 98.77 98.76 11.49 12.00
5nl 11 99.78 99.78 98.56 98.55 18.24 12.63
5nl 12 99.83 99.83 99.09 99.08 28.57 14.84
5nl 1 99.78 99.78 98.92 98.92 8.47 9.31
5nl 2 99.78 99.78 98.52 98.51 17.23 16.90
5nl 3 99.84 99.84 99.13 99.12 16.04 18.17
5nl 4 99.77 99.77 98.86 98.86 18.72 19.21
5nl 5 99.79 99.79 98.49 98.48 15.57 21.53
5nl 6 99.85 99.85 99.17 99.17 13.96 10.98
5nl 7 99.77 99.77 98.85 98.85 5.88 7.85
5nl 8 99.78 99.78 98.47 98.46 17.55 30.94
5nl 9 99.84 99.84 99.12 99.12 14.84 12.49
mean 96.58 96.54 94.65 94.62 14.39 14.10

Table 3.1: Comparison of dual gaps of big-M and disjunctive formulations for super-
vised classification instances with weak preprocessing

instance big-M lp CH lp Pe big-M Pe CH P ∗e big-M P ∗e CH
2nl 10 9.12 1.33 0.00 0.00 0.00 0.00
2nl 6 0.01 0.00 0.00 0.00 0.00 0.00
3nl 13 93.28 82.92 63.03 30.66 1.59 0.09
3nl 14 0.01 0.00 0.00 0.00 0.00 0.00
3nl 15 93.95 93.93 67.18 64.10 0.85 1.93
4nl 16 0.24 0.00 0.00 0.00 0.00 0.00
4nl 17 1.06 0.00 0.00 0.00 0.00 0.00
5nl 14 0.01 0.00 0.00 0.00 0.00 0.00
mean 24.71 22.27 16.28 11.85 0.31 0.25

Table 3.2: Comparison of dual gaps of big-M and disjunctive formulations for super-
vised classification instances with strong preprocessing

159

instance big-M lp CH lp Pe big-M Pe CH P ∗e big-M P ∗e CH
abz5-10x10 30.38 28.46 25.27 24.48 23.23 23.40
abz6-10x10 21.31 20.65 17.28 16.06 14.08 15.47
abz7-20x15 37.50 35.30 33.34 *32.42 *32.19 *32.44
abz8-20x15 33.78 31.75 30.53 *29.68 *30.35 *29.68
abz9-20x15 31.22 29.28 27.45 *27.03 *27.32 *26.96
ft06-6x6 14.54 14.54 14.25 13.47 11.86 12.59
ft10-10x10 29.56 28.12 25.68 24.12 22.04 23.93
ft20-20x5 66.78 64.52 63.24 61.56 60.86 60.75
la01-10x5 37.98 34.17 29.34 26.75 29.02 26.75
la02-10x5 39.84 39.70 37.40 34.95 35.45 33.01
la03-10x5 41.54 38.49 32.58 31.67 31.92 31.64
la04-10x5 37.45 34.05 27.95 26.17 27.16 26.16
la05-10x5 35.91 35.91 35.59 34.20 34.66 34.16
la06-15x5 55.39 52.65 49.78 49.01 49.31 47.91
la07-15x5 57.75 56.88 54.97 53.42 53.78 52.86
la08-15x5 57.24 53.56 49.06 47.70 47.03 47.47
la09-15x5 59.83 57.18 53.98 52.75 53.66 52.66
la10-15x5 53.75 52.98 51.30 49.94 50.30 49.32
la11-20x5 66.20 64.12 61.11 *60.47 60.92 60.42
la12-20x5 60.73 60.56 59.07 58.29 56.51 57.23
la13-20x5 66.78 63.97 60.69 58.99 60.08 *57.66
la14-20x5 65.71 64.97 62.04 61.17 60.62 60.80
la15-20x5 68.68 64.90 61.39 60.57 60.59 60.57
la16-10x10 24.12 22.49 20.09 19.80 20.03 19.51
la17-10x10 17.60 16.65 15.30 15.27 15.28 15.12
la18-10x10 21.81 20.89 18.39 17.95 17.81 17.65
la19-10x10 26.72 24.57 21.87 20.59 20.28 19.67
la20-10x10 16.18 16.18 15.58 15.04 13.83 14.72
la21-15x10 31.45 31.43 29.92 28.69 29.01 28.63
la22-15x10 33.22 30.72 27.26 25.63 27.26 25.59
la23-15x10 37.98 35.34 32.14 31.87 32.12 31.38
la24-15x10 24.70 24.65 23.49 22.11 21.78 21.87
la25-15x10 25.99 25.09 23.94 22.80 22.91 22.58
la26-20x10 41.13 39.18 36.59 *35.84 *36.27 *36.11

mean 40.31 38.64 36.11 35.01 34.98 34.60

Table 3.3: Comparison of dual gaps of big-M and disjunctive formulations for JSS
instances

160

in
st
an
ce

bi
g-
M
z
lp

C
H
z
lp

bi
g-
M
x
lp

C
H
x
lp

P
e
bi
g-
M
x

P
e
C
H
x

P
∗ e
bi
g-
M
x

P
∗ e
C
H
x

rb
g0
35
a.
2

0.
54

0.
51

0.
53

0.
50

0.
45

0.
39

0.
33

0.
34

rb
g0
35
a

2.
33

2.
27

2.
32

2.
25

1.
87

1.
15

1.
21

0.
83

rb
g0
38
a

0.
52

0.
52

0.
52

0.
52

0.
37

0.
25

0.
34

0.
23

rb
g0
40
a

4.
50

4.
40

4.
48

4.
37

3.
92

2.
97

2.
92

2.
55

rb
g0
41
a

3.
87

3.
85

3.
87

3.
85

3.
50

3.
06

2.
76

2.
62

rb
g0
42
a

2.
33

2.
24

2.
32

2.
23

1.
86

1.
45

1.
41

1.
22

rb
g0
48
a

1.
35

1.
35

1.
35

1.
35

1.
34

1.
31

1.
33

1.
29

rb
g0
49
a

1.
22

1.
22

1.
22

1.
22

1.
19

1.
18

1.
16

1.
15

rb
g0
50
a

0.
84

0.
82

0.
84

0.
82

0.
76

0.
57

0.
72

0.
49

rb
g0
50
b

1.
06

1.
06

1.
06

1.
06

1.
05

0.
98

1.
03

0.
95

rb
g0
50
c

0.
69

0.
68

0.
69

0.
68

0.
67

0.
63

0.
62

0.
61

rb
g0
55
a

0.
98

0.
98

0.
98

0.
98

0.
95

0.
87

0.
87

0.
74

rb
g0
67
a

0.
80

0.
80

0.
80

0.
80

0.
77

0.
70

0.
69

0.
55

rb
g0
86
a

0.
94

0.
93

0.
94

0.
92

0.
81

0.
66

0.
72

0.
64

rb
g0
92
a

0.
88

0.
86

0.
88

0.
86

0.
81

0.
70

0.
72

0.
66

rb
g1
25
a

1.
37

1.
32

1.
37

1.
31

1.
13

0.
96

0.
94

0.
76

rb
g1
32
.2

1.
54

1.
52

1.
54

1.
51

1.
42

1.
21

1.
24

1.
12

rb
g1
32

2.
22

2.
13

2.
21

2.
13

1.
87

1.
34

1.
46

1.
09

rb
g1
52
.3

0.
63

0.
62

0.
63

0.
61

*0
.5
8

*0
.5
2

*0
.5
3

*0
.5
0

rb
g1
52

1.
30

1.
24

1.
28

1.
22

*1
.0
5

*0
.7
0

*0
.7
6

*0
.5
0

rb
g1
72
a

1.
65

1.
57

1.
64

1.
56

1.
36

*1
.1
4

1.
15

*0
.9
1

rb
g1
93
.2

1.
68

1.
61

1.
68

1.
60

*1
.5
0

*1
.2
2

*1
.2
3

*1
.0
5

rb
g1
93

1.
67

1.
55

1.
67

1.
54

*1
.5
6

*1
.2
0

*1
.1
8

*1
.0
1

rb
g2
01
a

2.
03

1.
93

2.
02

1.
92

1.
88

*1
.4
5

1.
48

*1
.2
7

rb
g2
33
.2

1.
80

1.
74

1.
80

1.
73

*1
.6
3

*1
.4
2

*1
.3
9

*1
.3
7

rb
g2
33

2.
04

1.
91

2.
03

1.
88

*1
.7
7

*1
.5
5

*1
.5
1

*1
.3
8

m
ea
n

2.
81

2.
77

2.
80

2.
76

2.
62

2.
45

2.
42

2.
32

Table 3.4: Comparison of dual gaps of big-M and disjunctive formulations for
TSPTW instances

161

time #nodes
instance tLP nMILP persp0 persp1 persp0 persp1

abz5-10x10 14.84 8 58.01 121.54 2647.25 3828.50
abz6-10x10 13.75 8 18.03 20.25 381.12 478.38
ft06-6x6 1.95 4 2.01 2.01 35.75 21.75
ft10-10x10 140.69 6 349.12 590.04 16078.33 18016.17
la01-10x5 33.96 1 42.21 124.52 11089.00 11951.00
la02-10x5 60.15 1 66.00 137.06 6327.00 5065.00
la03-10x5 46.55 2 50.63 51.07 3081.00 2184.50
la04-10x5 23.40 4 26.00 26.36 1237.75 1349.50
la05-10x5 14.36 5 15.54 16.56 793.20 802.20
la16-10x10 15.81 5 26.58 35.25 1504.40 1749.20
la17-10x10 17.58 6 31.44 44.52 1828.67 1717.33
la18-10x10 63.47 2 68.00 68.05 1576.50 1109.50
la19-10x10 32.48 4 39.85 43.68 1000.75 1040.00
la20-10x10 14.98 6 19.53 21.78 743.00 731.00
la22-15x10 228.36 1 10379.87 ∞ 1537622.00 -
la24-15x10 244.00 1 9514.04 6311.43 1397201.00 675751.00
la25-15x10 141.29 4 3372.31 ∞ 140029.25 -
ta01-15x15 85.34 5 ∞ 3859.66 - 40137.80
ta02-15x15 232.72 3 ∞ 6211.82 - 111951.67
ta03-15x15 140.31 6 7608.38 6967.78 109298.67 69376.33
ta04-15x15 385.74 3 8080.79 6130.63 227370.33 103396.33
ta08-15x15 274.44 3 ∞ 9969.92 - 192434.67

mean 74.34 4.24 1530.36 1218.39 104834.92 52856.92

Table 3.5: Comparison of strategies persp0 and persp1 in the tree of trees for JSS
instances

q total group 1 group 2 group 3 group 4
1 53 3 3 2 45
2 54 4 1 7 42
3 54 6 0 2 46
4 53 25 14 8 6
5 54 5 0 2 47
6 50 21 20 2 7
7 51 22 19 3 7
8 53 4 0 2 47
9 26 0 0 1 25

Table 4.1: Division of LBP instances after the separation of wide intersection cuts
by instance class

162

% gap closed #cuts
instance w/o w o w/o w o

10000-4-100-75 9.21 12.53 11.73 139 62 5
10000-4-10-25 32.97 34.28 28.40 46 27 2
10000-4-10-50 79.12 100.00 100.00 1 1 1
10000-4-10-75 34.31 42.21 35.69 55 32 2
10000-4-20-50 16.58 22.69 1.50 38 43 1
10000-4-20-75 8.37 11.45 4.41 48 61 2
10000-4-30-25 22.37 29.34 21.16 51 42 3
10000-4-30-75 30.70 32.50 29.19 71 43 2
10000-4-40-75 12.35 24.40 22.84 120 64 5
10000-4-500-50 1.10 6.17 6.06 170 137 10
10000-4-500-75 0.38 1.41 1.34 123 81 6
10000-4-50-50 29.26 31.48 27.10 100 48 3
1000-4-1000-50 21.36 30.46 30.17 179 59 4
1000-4-100-25 3.30 5.16 0.00 39 36 0
1000-4-10-50 35.99 68.49 56.18 37 31 2
1000-4-10-75 18.75 21.15 14.57 50 33 1

1000-4-2000-75 5.21 7.11 6.83 158 76 4
1000-4-20-25 38.73 100.00 100.00 48 9 2
1000-4-20-75 28.94 100.00 100.00 117 21 3
1000-4-30-50 11.54 16.34 13.80 94 41 3
1000-4-40-25 17.78 23.10 19.18 70 46 3
1000-4-40-50 12.04 13.39 11.68 97 50 3
1000-4-40-75 8.92 42.90 41.38 150 53 5
1000-4-500-75 2.97 5.10 4.89 134 73 6
1000-4-50-50 13.01 17.12 15.26 113 60 4

mean 19.81 31.95 28.13 89.92 49.16 3.28

Table 4.2: Separation of wide intersection cuts on LBP instances, group 1

% gap closed #cuts
instance w/o w o w/o w o

10000-4-1000-25 1.32 1.96 1.73 124 72 5
10000-4-1000-50 0.92 1.39 1.22 161 69 5
10000-4-100-25 2.36 2.64 0.98 41 56 1
10000-4-100-50 2.26 2.16 1.30 82 57 3
10000-4-2000-25 0.39 0.49 0.37 61 38 3
10000-4-2000-50 0.41 0.42 0.35 69 48 3
10000-4-2000-75 1.32 1.34 1.16 67 50 3
10000-4-30-50 30.04 30.06 29.90 30 18 2
10000-4-500-25 1.59 2.03 1.59 98 53 4
1000-4-10-25 99.49 100.00 100.00 27 3 1
1000-4-20-50 22.83 22.59 19.18 85 37 3
1000-4-30-25 16.56 16.67 13.26 63 30 2
1000-4-30-75 17.46 17.53 16.34 93 50 3
1000-4-50-75 2.14 2.31 0.00 48 41 0

mean 14.22 14.39 13.38 74.92 44.42 2.71

Table 4.3: Separation of wide intersection cuts on LBP instances, group 2

163

% gap closed #cuts
instance w/o w o w/o w o

10000-4-1000-75 0.42 0.43 0.27 52 48 2
10000-4-20-25 32.03 31.62 25.15 52 48 2
10000-4-40-25 3.46 3.46 0.61 11 11 1
10000-4-40-50 5.70 6.07 2.30 58 64 4
10000-4-50-25 8.87 8.87 1.37 20 20 1
10000-4-50-75 3.09 3.09 0.56 64 64 2
1000-4-100-50 2.40 2.40 1.35 47 46 2
1000-4-50-25 8.28 8.64 5.24 61 66 3

mean 8.03 8.07 4.60 45.62 45.87 2.12

Table 4.4: Separation of wide intersection cuts on LBP instances, group 3

% gap closed #cuts
instance w/o w o w/o w o

10000-4-100-75 2.38 6.81 7.27 31 17 10
10000-4-10-25 27.00 30.40 28.40 7 9 3
10000-4-10-75 12.79 35.79 35.69 18 13 8
10000-4-20-25 14.12 26.22 25.15 16 13 8
10000-4-30-25 6.19 20.42 20.42 13 15 10
10000-4-30-50 21.34 29.95 29.90 11 14 3
10000-4-30-75 11.49 26.38 27.86 26 15 10
10000-4-40-75 2.93 12.14 9.81 46 17 10
10000-4-50-50 7.53 22.97 22.97 36 19 10
1000-4-1000-50 4.89 17.77 17.76 93 22 10
1000-4-10-50 10.52 56.72 56.18 5 9 5
1000-4-10-75 7.25 15.90 14.57 15 7 1
1000-4-2000-75 2.47 4.39 4.56 50 24 10
1000-4-20-25 9.80 100.00 100.00 11 9 6
1000-4-20-50 12.71 21.01 19.18 19 15 10
1000-4-20-75 5.91 25.95 25.30 68 17 10
1000-4-30-25 4.49 10.16 10.16 23 15 10
1000-4-30-50 3.04 10.63 12.19 30 15 10
1000-4-30-75 7.67 14.54 14.41 42 24 10
1000-4-40-25 4.17 12.96 11.60 29 17 10
1000-4-40-50 3.29 9.19 8.27 37 23 10
1000-4-40-75 2.52 11.23 9.11 33 22 10
1000-4-500-75 0.86 2.41 2.38 46 18 10
1000-4-50-25 5.10 6.36 5.24 19 15 5
1000-4-50-50 3.20 10.48 10.43 58 19 10

mean 7.74 21.63 21.15 31.28 16.12 8.36

Table 4.5: Separation of wide lift-and-project cuts on LBP instances, group 1

164

% gap closed #cuts
instance w/o w o w/o w o

10000-4-1000-25 0.46 1.20 1.27 12 17 10
10000-4-1000-50 0.27 0.72 0.64 52 20 10
10000-4-100-25 1.60 1.60 0.98 9 11 1
10000-4-100-50 1.54 1.69 1.30 11 16 4
10000-4-10-50 100.00 100.00 100.00 11 2 1
10000-4-2000-25 0.19 0.36 0.36 11 13 10
10000-4-2000-50 0.15 0.32 0.28 20 14 10
10000-4-20-50 6.44 6.44 1.50 11 13 1
10000-4-40-25 1.58 1.58 0.61 12 14 1
10000-4-40-50 3.92 3.92 2.30 14 17 4
10000-4-500-50 0.27 0.85 1.07 42 22 10
10000-4-500-75 0.10 0.54 0.50 47 17 10
10000-4-50-75 2.53 2.53 0.56 8 9 2
1000-4-100-50 1.76 1.76 1.35 10 12 3
1000-4-10-25 100.00 100.00 100.00 11 3 1

mean 14.72 14.90 14.18 18.73 13.33 5.20

Table 4.6: Separation of wide lift-and-project cuts on LBP instances, group 2

% gap closed #cuts
instance w/o w o w/o w o

10000-4-1000-75 0.35 0.35 0.27 12 13 2
10000-4-2000-75 0.69 1.20 1.15 27 25 10
10000-4-20-75 5.02 5.02 4.41 11 12 3
10000-4-500-25 0.47 1.31 1.17 22 21 10
10000-4-50-25 4.20 4.20 1.37 11 12 1

mean 2.14 2.41 1.67 16.60 16.60 5.20

Table 4.7: Separation of wide lift-and-project cuts on LBP instances, group 3

165

L
B
P

M
L
B
P
,
K

=
2

M
L
B
P
,
K

=
5

M
L
B
P
,
K

=
10

in
st
an
ce

w
/
o

w
∆

w
/
o

w
∆

w
/
o

w
∆

w
/
o

w
∆

10
00
0-
4-
10
0-
75

9.
21

12
.5
3

36
.0
4

6.
51

10
.2
1

56
.8
3

1.
45

0.
94

-3
5.
17

0.
04

22
.7
8

56
85
0.
00

10
00
0-
4-
10
-2
5

32
.9
7

34
.2
8

3.
97

19
.5
5

20
.3
5

4.
09

6.
94

45
.2
8

55
2.
44

0.
20

6.
88

33
40
.0
0

10
00
0-
4-
10
-5
0

79
.1
2

10
0.
00

26
.3
9

10
.4
7

10
.5
5

0.
76

2.
67

28
.5
8

97
0.
41

2.
87

25
.5
4

78
9.
89

10
00
0-
4-
10
-7
5

34
.3
1

42
.2
1

23
.0
2

35
.7
8

35
.9
0

0.
33

3.
06

4.
63

51
.3
0

1.
38

1.
55

12
.3
1

10
00
0-
4-
20
-5
0

16
.5
8

22
.6
9

36
.8
5

30
.3
0

35
.6
7

17
.7
2

2.
25

8.
58

28
1.
33

0.
02

18
.1
5

90
65
0.
00

10
00
0-
4-
20
-7
5

8.
37

11
.4
5

36
.7
9

11
.2
9

26
.3
3

13
3.
21

11
.4
4

42
.8
0

27
4.
12

0.
03

1.
78

58
33
.3
3

10
00
0-
4-
30
-2
5

22
.3
7

29
.3
4

31
.1
5

16
.6
8

20
.9
5

25
.5
9

2.
56

1.
94

-2
4.
21

0.
27

7.
70

27
51
.8
5

10
00
0-
4-
30
-7
5

30
.7
0

32
.5
0

5.
86

9.
08

9.
39

3.
41

5.
53

3.
89

-2
9.
65

0.
07

2.
04

28
14
.2
8

10
00
0-
4-
40
-7
5

12
.3
5

24
.4
0

97
.5
7

16
.5
8

27
.7
9

67
.6
1

4.
15

4.
18

0.
72

0.
00

0.
00

∞
10
00
0-
4-
50
0-
50

1.
10

6.
17

46
0.
90

3.
37

7.
40

11
9.
58

1.
95

2.
47

26
.6
6

0.
00

0.
13

∞
10
00
0-
4-
50
0-
75

0.
38

1.
41

27
1.
05

1.
17

1.
41

20
.5
1

0.
74

4.
79

54
7.
29

0.
01

0.
37

36
00
.0
0

10
00
0-
4-
50
-5
0

29
.2
6

31
.4
8

7.
58

15
.7
1

21
.1
0

34
.3
0

5.
80

8.
80

51
.7
2

0.
09

0.
00

-1
00
.0
0

10
00
-4
-1
00
0-
50

21
.3
6

30
.4
6

42
.6
0

13
.2
9

33
.2
2

14
9.
96

0.
63

4.
39

59
6.
82

0.
14

0.
14

0.
00

10
00
-4
-1
00
-2
5

3.
30

5.
16

56
.3
6

3.
41

5.
07

48
.6
8

2.
95

36
.6
4

11
42
.0
3

0.
04

0.
06

50
.0
0

10
00
-4
-1
0-
50

35
.9
9

68
.4
9

90
.3
0

33
.2
0

33
.7
4

1.
62

2.
77

79
.3
3

27
63
.8
9

2.
57

7.
01

17
2.
76

10
00
-4
-1
0-
75

18
.7
5

21
.1
5

12
.8
0

14
.3
6

13
.3
8

-6
.8
2

1.
66

8.
38

40
4.
81

4.
57

59
.7
1

12
06
.5
6

10
00
-4
-2
00
0-
75

5.
21

7.
11

36
.4
6

0.
18

0.
30

66
.6
6

0.
11

0.
36

22
7.
27

0.
01

0.
01

0.
00

10
00
-4
-2
0-
25

38
.7
3

10
0.
00

15
8.
19

52
.7
4

53
.6
2

1.
66

3.
10

5.
45

75
.8
0

2.
72

4.
94

81
.6
1

10
00
-4
-2
0-
75

28
.9
4

10
0.
00

24
5.
54

20
.4
4

53
.8
0

16
3.
20

6.
45

7.
59

17
.6
7

0.
00

2.
49

∞
10
00
-4
-3
0-
50

11
.5
4

16
.3
4

41
.5
9

7.
18

8.
30

15
.5
9

1.
85

1.
67

-9
.7
2

0.
02

7.
56

37
70
0.
00

10
00
-4
-4
0-
25

17
.7
8

23
.1
0

29
.9
2

16
.2
8

16
.5
0

1.
35

11
.5
1

13
.0
7

13
.5
5

0.
02

21
.2
4

10
61
00
.0
0

10
00
-4
-4
0-
50

12
.0
4

13
.3
9

11
.2
1

8.
71

9.
10

4.
47

11
.7
5

17
.7
9

51
.4
0

0.
03

3.
21

10
60
0.
00

10
00
-4
-4
0-
75

8.
92

42
.9
0

38
0.
94

34
.5
5

39
.6
8

14
.8
4

0.
90

5.
88

55
3.
33

0.
07

16
.9
8

24
15
7.
14

10
00
-4
-5
00
-7
5

2.
97

5.
10

71
.7
1

1.
12

2.
75

14
5.
53

0.
32

0.
69

11
5.
62

0.
18

2.
89

15
05
.5
5

10
00
-4
-5
0-
50

13
.0
1

17
.1
2

31
.5
9

8.
59

12
.1
7

41
.6
7

4.
33

4.
32

-0
.2
3

0.
02

3.
45

17
15
0.
00

m
ea
n

19
.8
1

31
.9
5

89
.8
5

15
.6
2

20
.3
4

45
.2
9

3.
87

13
.6
9

34
4.
76

0.
61

8.
66

16
60
2.
96

Table 4.8: Separation of wide intersection cuts on LBP and MLBP instances

166

% gap closed
instance w w-s w/o-g

10000-4-100-75 12.53 12.53 9.21
10000-4-10-25 34.28 34.28 32.96
10000-4-10-75 42.21 42.21 34.31
10000-4-20-50 22.69 30.20 7.89
10000-4-20-75 11.45 22.51 8.37
10000-4-30-25 29.34 29.34 22.37
10000-4-30-75 32.50 32.52 30.70
10000-4-40-75 24.40 24.37 12.35
10000-4-500-50 6.17 6.17 1.05
10000-4-500-75 1.41 1.41 0.34
10000-4-50-50 31.48 31.48 29.26
1000-4-1000-50 30.46 30.46 22.72
1000-4-100-25 5.16 5.16 3.48
1000-4-10-50 68.49 68.49 35.99
1000-4-10-75 21.15 22.54 18.78
1000-4-2000-75 7.11 7.11 6.49
1000-4-20-25 100.00 100.00 38.73
1000-4-20-75 100.00 100.00 28.94
1000-4-30-50 16.34 16.34 11.54
1000-4-40-25 23.10 23.10 17.78
1000-4-40-50 13.39 13.39 12.04
1000-4-40-75 42.90 42.81 8.55
1000-4-500-75 5.10 5.10 3.04
1000-4-50-50 17.12 17.12 13.01

mean 29.11 29.94 17.07

Table 4.9: Separation of strengthened wide intersection cuts on LBP instances

% gap closed #cuts
instance w/o w o w/o w o

30n20b8 18.73 18.49 0.07 2218 2169 203
N30-E60-W5-1hX 100.00 100.00 0.00 1105 1037 0
N30-E60-W5-1h 21.44 21.37 0.12 2280 2173 92

N30-E60-W5-20m5bX 25.37 25.37 0.00 1330 1370 136
N30-E60-W5-20m5b 33.93 37.80 0.27 1759 1729 185
N50-E70-W6-1hX 100.00 100.00 0.00 2144 1924 0
N50-E70-W6-1h 63.25 64.13 0.07 2964 2745 89

N50-E70-W6-20m5bX 32.97 32.21 0.10 3137 3144 137
N50-E70-W6-20m5b 6.87 7.18 0.07 3178 3134 279

mean 44.72 45.17 0.07 2235.00 2158.33 124.55

Table 4.10: Separation of wide intersection cuts on Multi-mode Resource Leveling
instances

167

µ
=

1
µ
=

2
µ
=

3
in
st
an
ce

w
/
o

w
o

(#
)

w
/
o

w
o

(#
)

w
/
o

w
o

(#
)

bi
g-
M

co
ns
tr
ai
nt
s

le
ct
sc
he
d-
4-
ob
j

65
.0
1

76
.8
1

0.
00

(5
)

65
.0
1

88
.5
6

0.
00

(5
)

64
.5
9

95
.0
0

0.
00

(5
)

m
ik
-2
50
-1
-1
00
-1

62
.4
8

69
.8
1

0.
00

(3
)

34
.3
5

65
.4
4

0.
00

(4
)

36
.6
4

61
.2
3

0.
00

(5
)

m
zz
v1
1

55
.8
4

59
.9
7

30
.6
9

(2
)

47
.1
8

59
.5
3

48
.4
0

(2
)

-
-

-
(0
)

n4
-3

37
.8
1

37
.8
9

3.
39

(5
)

32
.6
8

32
.9
3

2.
91

(5
)

32
.8
7

34
.8
5

5.
53

(5
)

n9
-3

23
.5
6

24
.0
9

0.
00

(1
)

22
.2
6

23
.2
1

4.
98

(4
)

31
.2
0

32
.7
6

17
.9
6

(3
)

ne
os
-1
22
45
97

0.
00

0.
00

0.
00

(5
)

0.
00

0.
00

0.
00

(4
)

0.
00

0.
00

0.
00

(4
)

ne
os
16

27
.0
6

28
.2
3

16
.4
7

(5
)

17
.6
5

17
.6
5

0.
00

(3
)

35
.9
6

60
.7
8

13
.7
2

(3
)

ne
os
-5
55
42
4

37
.7
3

38
.5
5

13
.1
6

(5
)

42
.4
5

73
.3
8

42
.0
2

(5
)

41
.6
5

76
.3
0

72
.9
7

(5
)

ne
os
-6
86
19
0

4.
64

7.
83

4.
63

(5
)

3.
23

4.
61

2.
77

(5
)

1.
35

1.
35

0.
00

(1
)

no
sw

ot
0.
00

0.
00

0.
00

(5
)

0.
00

0.
00

0.
00

(5
)

0.
00

0.
00

0.
00

(5
)

ro
co
co
B
10
-0
11
00
0

13
.6
7

20
.0
6

0.
41

(5
)

17
.6
6

17
.4
0

1.
41

(5
)

40
.7
4

43
.1
5

31
.5
2

(5
)

ro
co
co
C
10
-0
01
00
0

28
.8
1

28
.4
7

2.
25

(5
)

43
.7
2

43
.8
5

39
.5
8

(5
)

22
.8
6

22
.8
0

22
.3
9

(5
)

sp
98
ir

8.
41

8.
18

5.
12

(5
)

7.
38

7.
84

7.
41

(5
)

7.
11

7.
35

7.
24

(5
)

ti
m
ta
b1

31
.5
7

33
.2
0

3.
12

(5
)

32
.1
5

32
.6
9

1.
04

(5
)

31
.8
6

32
.9
4

2.
08

(5
)

m
ea
n

28
.3
3

30
.9
3

5.
66

26
.1
2

33
.3
6

10
.7
5

26
.6
8

36
.0
4

13
.3
4

G
U
B
-l
in
ks

le
ct
sc
he
d-
4-
ob
j

55
.0
1

86
.0
4

0.
00

(5
)

65
.0
5

90
.0
0

0.
00

(5
)

60
.2
0

99
.9
2

0.
00

(5
)

ne
os
-1
22
45
97

0.
00

0.
00

0.
00

(5
)

0.
00

0.
00

0.
00

(4
)

0.
00

0.
00

0.
00

(4
)

ne
os
16

17
.6
5

29
.4
1

16
.4
7

(5
)

23
.5
3

23
.5
3

0.
00

(3
)

23
.5
3

60
.7
8

13
.7
2

(3
)

sp
98
ir

7.
40

7.
57

5.
05

(5
)

6.
97

6.
66

6.
77

(5
)

6.
95

7.
03

7.
35

(5
)

ti
m
ta
b1

33
.3
1

33
.3
1

3.
12

(5
)

32
.7
3

32
.7
3

1.
04

(5
)

33
.0
2

33
.0
2

2.
08

(5
)

m
ea
n

22
.6
8

31
.2
6

4.
93

25
.6
6

30
.5
8

1.
56

24
.7
4

40
.1
5

4.
63

Table 4.11: Separation of wide intersection cuts on MIPLIB 2010 instances with
random holes

168

C
P
X
F

C
P
X
R

C
P
X
R
+
cu
ts

in
st
an
ce

ti
m
e

#
no

de
s

ti
m
e

#
no

de
s

ti
m
e

#
no

de
s

p
cm

20
1-
25
-1

20
5.
73

(3
21
13
3)

48
0.
73

(1
08
14
62
)

12
53
.6
2

(2
43
79
62
)

p
cm

20
3-
25
-2

33
58
.9
0

(5
44
03
57
)

14
34
.0
2

(2
71
52
01
)

14
28
.1
4

(2
71
52
01
)

p
cm

20
3-
25
-5

55
3.
25

(6
90
33
8)

64
2.
16

(1
06
79
73
)

64
3.
56

(1
06
79
73
)

pr
cm

20
1-
25
-5

20
7.
77

(3
16
15
2)

70
1.
80

(1
07
27
06
)

58
1.
16

(8
70
94
9)

pr
cm

20
3-
25
-5

24
4.
14

(3
43
00
0)

59
7.
33

(9
65
77
6)

82
7.
60

(1
26
77
87
)

pr
cm

20
4-
25
-1

11
45
.1
6

(1
53
85
53
)

95
9.
36

(1
33
09
37
)

98
3.
92

(1
33
09
37
)

pr
cm

20
4-
25
-4

21
69
.1
5

(2
64
22
72
)

∞
-

∞
-

pr
m
20
3-
25
-1

70
0.
74

(9
28
59
3)

11
31
.3
8

(1
63
81
84
)

11
27
.5
0

(1
63
81
84
)

pr
m
20
4-
25
-1

96
7.
65

(1
72
07
91
)

64
9.
95

(1
31
67
33
)

63
2.
09

(1
31
67
33
)

pr
m
20
4-
25
-4

16
32
.5
9

(2
18
13
47
)

∞
-

16
06
.1
9

(2
32
61
36
)

rc
m
20
1-
25
-4

20
73
.0
9

(2
85
38
13
)

20
1.
41

(3
75
22
4)

42
3.
19

(7
45
73
2)

rc
m
20
2-
25
-4

10
26
.3
6

(1
41
89
26
)

15
64
.7
1

(2
41
30
34
)

84
9.
43

(1
39
01
25
)

rc
m
20
2-
25
-5

16
66
.6
0

(2
02
04
90
)

99
2.
94

(1
65
43
61
)

16
8.
36

(3
04
36
9)

rc
m
20
3-
25
-4

57
1.
71

(1
11
33
11
)

70
7.
42

(1
22
39
08
)

35
0.
03

(6
19
84
9)

rc
m
20
3-
25
-5

11
65
.8
8

(1
54
18
38
)

60
5.
88

(9
71
50
5)

48
8.
71

(7
73
79
1)

rc
m
20
4-
25
-5

72
1.
98

(1
04
32
59
)

61
0.
87

(1
01
01
79
)

69
8.
71

(1
17
90
48
)

rc
m
20
5-
25
-4

∞
-

∞
-

∞
-

rc
m
20
6-
25
-4

∞
-

32
36
.2
5

(4
92
61
67
)

32
44
.0
5

(4
92
61
67
)

rc
m
20
6-
25
-5

33
66
.4
8

(4
54
50
09
)

26
36
.1
2

(3
98
76
79
)

26
55
.2
7

(3
98
76
79
)

rc
m
20
7-
25
-1

94
2.
16

(1
25
76
81
)

25
7.
59

(4
52
84
6)

48
7.
36

(8
33
11
3)

rc
m
20
8-
25
-4

14
85
.4
3

(2
13
35
49
)

21
43
.0
8

(3
16
12
91
)

21
37
.3
8

(3
16
12
91
)

rm
20
1-
25
-2

61
7.
10

(1
25
99
41
)

52
.9
5

(1
36
31
7)

34
.5
5

(8
37
81
)

rm
20
3-
40
-5

10
12
.0
6

(1
34
05
78
)

20
6.
49

(2
41
00
1)

20
6.
68

(2
41
00
1)

rm
20
7-
40
-5

12
06
.6
9

(1
02
42
37
)

99
6.
47

(9
54
22
6)

11
56
.1
4

(1
24
06
18
)

m
ea
n

27
8.
98

(4
14
10
6.
47
)

21
7.
22

(3
60
72
1.
99
)

21
1.
04

(3
49
96
5.
13
)

Table 4.12: Comparison of direct MILPncd and MILP approaches for TSPMTW
instances

169

Bibliography

[AAG09] M. Selim Aktürk, Alper Atamtürk, and Sinan Gürel. A strong conic

quadratic reformulation for machine-job assignment with controllable

processing times. Operations Research Letters, 37(3):187–191, 2009.

[ABZ88] Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck

procedure for job shop scheduling. Management science, 34(3):391–401,

1988.

[Ach09] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Tech-

nical University of Berlin, 2009.

[ACL05a] Kent Andersen, Gérard Cornuéjols, and Yanjun Li. Reduce-and-split

cuts: Improving the performance of mixed-integer gomory cuts. Man-

agement Science, 51(11):1720–1732, 2005.

[ACL05b] Kent Andersen, Gérard Cornuéjols, and Yanjun Li. Split closure and

intersection cuts. Mathematical programming, 102(3):457–493, 2005.

[Ake78] Sheldon B. Akers. Binary decision diagrams. Computers, IEEE Trans-

actions on, 100(6):509–516, 1978.

[AKM05] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching

rules revisited. Operations Research Letters, 33(1):42–54, 2005.

[ALL10] Kumar Abhishek, Sven Leyffer, and Jeffrey T. Linderoth. FILMINT:

An Outer Approximation-Based Solver for Convex Mixed-Integer Non-

linear Programs. INFORMS Journal on computing, 22(4):555–567,

2010.

[Asc95] Norbert Ascheuer. Hamiltonian path problems in the on-line optimiza-

tion of flexible manufacturing systems. PhD thesis, 1995.

[Bal71] Egon Balas. Intersection cuts–a new type of cutting planes for integer

programming. Operations Research, 19(1):19–39, 1971.

[Bal79] Egon Balas. Disjunctive programming. Annals of Discrete Mathemat-

ics, 5:3–51, 1979.

[Bal98] Egon Balas. Disjunctive programming: Properties of the convex hull

of feasible points. Discrete Applied Mathematics, 89(1):3–44, 1998.

170

[BAO06] Walid Ben-Ameur and Adam Ouorou. Mathematical models of the

delay constrained routing problem. Algorithmic Operations Research,

1(2), 2006.

[BBC+08] Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols,

Ignacio E. Grossmann, Carl D. Laird, Jon Lee, Andrea Lodi, François

Margot, Nicolas Sawaya, and Andreas Wächter. An algorithmic frame-

work for convex mixed integer nonlinear programs. Discrete Optimiza-

tion, 5(2):186 – 204, 2008.

[BBF+14] Pietro Belotti, Pierre Bonami, Matteo Fischetti, Andrea Lodi, Michele

Monaci, Amaya Nogales-Gómez, and Domenico Salvagnin. On handling

indicator constraints in mixed-integer programming. Technical Report

OR/13/1, revised OR/14/20, DEI, University of Bologna, 2014.

[BCC93] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project

cutting plane algorithm for mixed 0–1 programs. Mathematical pro-

gramming, 58(1-3):295–324, 1993.

[BCC96] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. Mixed 0-1 pro-

gramming by lift-and-project in a branch-and-cut framework. Manage-

ment Science, 42(9):1229–1246, 1996.

[BDL+11] Cristiana Bragalli, Claudia D’Ambrosio, Jon Lee, Andrea Lodi, and

Paolo Toth. On the optimal design of water distribution networks: a

practical MINLP approach. Optimization and Engineering, 13(2):219–

246, 2011.

[BGS08] Jens Burgschweiger, Bernd Gnädig, and Marc C. Steinbach. Optimiza-

tion models for operative planning in drinking water networks. Opti-

mization and Engineering, 10(1):43–73, 2008.

[BGS09] Jens Burgschweiger, Bernd Gnädig, and Marc C. Steinbach. Nonlinear

programming techniques for operative planning in large drinking water

networks. Open Applied Mathematics Journal, 3:14–28, 2009.

[BHL14] Slim Belhaiza, Pierre Hansen, and Gilbert Laporte. A hybrid variable

neighborhood tabu search heuristic for the vehicle routing problem with

multiple time windows. Computers & Operations Research, 52:269–281,

2014.

[BHV12] Timo Berthold, Stefan Heinz, and Stefan Vigerske. Extending a CIP

framework to solve MIQCPs. In Jon Lee and Sven Leyffer, editors,

171

Mixed Integer Nonlinear Programming, volume 154 of The IMA Vol-

umes in Mathematics and its Applications, pages 427 – 444. 2012.

[Bix12] Robert E. Bixby. A brief history of linear and mixed-integer program-

ming computation. Documenta Mathematica, pages 107–121, 2012.

[BJ80] Egon Balas and Robert G. Jeroslow. Strengthening cuts for mixed

integer programs. European Journal of Operational Research, 4(4):224–

234, 1980.

[BJS11] Mokhtar S. Bazaraa, John J. Jarvis, and Hanif D. Sherali. Linear

programming and network flows. John Wiley & Sons, 2011.

[BKL+13] Pietro Belotti, Christian Kirches, Sven Leyffer, Jeffrey T. Linderoth,

James Luedtke, and Ashutosh Mahajan. Mixed-integer nonlinear opti-

mization. Acta Numerica, 22:1–131, 2013.

[BKSW05] Artem Babayan, Zoran Kapelan, Dragan Savic, and Godfrey Wal-

ters. Least-cost design of water distribution networks under demand

uncertainty. Journal of Water Resources Planning and Management,

131(5):375–382, 2005.

[BLL+09] Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and A. Wächter.

Branching and bounds tightening techniques for non-convex MINLP.

Optimization Methods and Software, 24(4-5):597–634, 2009.

[BLL+11a] Pietro Belotti, Leo Liberti, Andrea Lodi, Giacomo Nannicini, and An-

drea Tramontani. Disjunctive inequalities: applications and extensions.

Wiley Encyclopedia of Operations Research and Management Science,

2011.

[BLL11b] Pierre Bonami, Jeffrey T. Linderoth, and Andrea Lodi. Disjunctive

cuts for mixed integer nonlinear programming problems. Progress in

Combinatorial Optimization, pages 521–544, 2011.

[BLTW15] Pierre Bonami, Andrea Lodi, Andrea Tramontani, and Sven Wiese. On

mathematical programming with indicator constraints. Mathematical

Programming, 151(1):191–223, 2015.

[Bon11] Pierre Bonami. Lift-and-project cuts for mixed integer convex pro-

grams. In Integer Programming and Combinatoral Optimization, pages

52–64. Springer, 2011.

172

[Bon12] Pierre Bonami. On optimizing over lift-and-project closures. Mathe-

matical Programming Computation, 4(2):151–179, 2012.

[BP02] Egon Balas and Michael Perregaard. Lift-and-project for mixed 0–1 pro-

gramming: recent progress. Discrete Applied Mathematics, 123(1):129–

154, 2002.

[BPS00] Jacek B lażewicz, Erwin Pesch, and Malgorzata Sterna. The disjunc-

tive graph machine representation of the job shop scheduling problem.

European Journal of Operational Research, 127(2):317–331, 2000.

[BQ10] Egon Balas and Andrea Qualizza. Stronger cuts from weaker disjunc-

tions. Working paper, Carnegie Mellon University, 2010.

[Bro11] J. Paul Brooks. Support vector machines with the ramp loss and the

hard margin loss. Operations research, 59(2):467–479, 2011.

[BT70] Martin Beale and John A. Tomlin. Special facilities in a general math-

ematical programming system for non-convex problems using ordered

sets of variables. In J. Lawrence, editor, Proceedings of the Fifth Inte-

national Conference on Operations Research, pages 447–454. Tavistock

Publications, 1970.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-

bridge University Press, 2004.

[CAC14] Bernardete Coelho and António Andrade-Campos. Efficiency achieve-

ment in water supply systems–a review. Renewable and Sustainable

Energy Reviews, 30:59 – 84, 2014.

[CCH+78] M. Collins, L. Cooper, R. Helgason, J. Kennington, and L. LeBlanc.

Solving the pipe network analysis problem using optimization tech-

niques. Management Science, 24(7):747–760, 1978.

[CFN77] Gérard Cornuéjols, Marshall L. Fisher, and George L. Nemhauser. Lo-

cation of BankAccounts to Optimize Float: An Analytic Study of Exact

and Approximate Algorithms. Management Science, 23:789–810, 1977.

[CKS90] William Cook, Ravindran Kannan, and Alexander Schrijver. Chvátal

closures for mixed integer programming problems. Mathematical Pro-

gramming, 47(1-3):155–174, 1990.

[CLS10] Eamonn Coughlan, Marco Lübbecke, and Jens Schulz. A branch-and-

price algorithm for multi-mode resource leveling. In Paola Festa, editor,

173

Experimental Algorithms, volume 6049 of Lecture Notes in Computer

Science, pages 226–238. Springer Berlin / Heidelberg, 2010.

[COIN] Computational Infrastructure for Operations Research.

http://www.coin-or.org. Accessed: 2016-01-15.

[Coo12] William Cook. Markowitz and Manne+ Eastman+ Land and Doig=

branch and bound. Optimization Stories, pages 227–238, 2012.

[Cor08] Gérard Cornuéjols. Valid inequalities for mixed integer linear programs.

Mathematical Programming, 112(1):3–44, 2008.

[CP94] Jacques Carlier and Eric Pinson. Adjustment of heads and tails for

the job-shop problem. European Journal of Operational Research,

78(2):146–161, 1994.

[CPX] IBM ILOG CPLEX Optimization Studio. http://www-

03.ibm.com/software/products/it/ibmilogcpleoptistud. Accessed:

2016-01-15.

[CS99] Sebastián Ceria and João Soares. Convex programming for disjunctive

convex optimization. Mathematical Programming, 86(3):595–614, 1999.

[Dan60] George B. Dantzig. On the significance of solving linear programming

problems with some integer variables. Econometrica, 28(1):30–44, 1960.

[dCaCR04] Maria da Conceição Cunha and Luisa Ribeiro. Tabu search algorithms

for water network optimization. European Journal of Operational Re-

search, 157(3):746 – 758, 2004.

[dCS12] Annelies de Corte and Kenneth Sörensen. Optimisation of water dis-

tribution network design: a critical review. Working Paper 2012016,

University of Antwerp, Faculty of Applied Economics, August 2012.

[DG86] Marco A. Duran and Ignacio E. Grossmann. An outer-approximation

algorithm for a class of mixed-integer nonlinear programs. Mathematical

Programming, 36(3):307–339, 1986.

[DGLT12] Sanjeeb Dash, Oktay Günlük, Andrea Lodi, and Andrea Tramontani. A

time bucket formulation for the traveling salesman problem with time

windows. INFORMS Journal on Computing, 24(1):132–147, 2012.

[DLWB15] Claudia D’Ambrosio, Andrea Lodi, Sven Wiese, and Cristiana Bragalli.

Mathematical programming techniques in water network optimization.

European Journal of Operational Research, 243(3):774–788, 2015.

174

[DT06a] George B. Dantzig and Mukund N. Thapa. Linear programming 1:

introduction. Springer Science & Business Media, 2006.

[DT06b] George B. Dantzig and Mukund N. Thapa. Linear programming 2:

theory and extensions. Springer Science & Business Media, 2006.

[Elh06] Samir Elhedhli. Service system design with immobile servers, stochastic

demand, and congestion. Manufacturing & Service Operations Manage-

ment, 8(1):92–97, 2006.

[EPA] EPANET. http://www.epa.gov/water-research/epanet. Accessed:

2016-01-15.

[FG06] Antonio Frangioni and Claudio Gentile. Perspective cuts for a class

of convex 0–1 mixed integer programs. Mathematical Programming,

106(2):225–236, 2006.

[FL94] Roger Fletcher and Sven Leyffer. Solving mixed integer nonlinear

programs by outer approximation. Mathematical programming, 66(1-

3):327–349, 1994.

[FLS15] Fabio Furini, Ivana Ljubić, and Markus Sinnl. ILP and CP Formula-

tions for the Lazy Bureaucrat Problem. In Integration of AI and OR

Techniques in Constraint Programming, pages 255–270. Springer, 2015.

[FLT11] Matteo Fischetti, Andrea Lodi, and Andrea Tramontani. On the separa-

tion of disjunctive cuts. Mathematical Programming, 128(1-2):205–230,

2011.

[FT63] Henry Fisher and Gerald L. Thompson. Probabilistic learning combina-

tions of local job-shop scheduling rules. Industrial scheduling, 3(2):225–

251, 1963.

[Fur14] Kevin Furman. A useful algebraic representation of disjunctive convex

sets using the perspective function, 2014. Presented to the MINLP

Workshop held at Carnegie Mellon University, Pittsburgh.

[Geo71] Arthur M Geoffrion. Duality in nonlinear programming: a simplified

applications-oriented development. SIAM review, 13(1):1–37, 1971.

[GHHV12] Ambros Gleixner, Harald Held, Wei Huang, and Stefan Vigerske. To-

wards globally optimal operation of water supply networks. Numerical

Algebra, Control and Optimization (to appear), 2012.

175

[GKL+11] B. Geißler, O. Kolb, J. Lang, G. Leugering, A. Martin, and A. Morsi.

Mixed integer linear models for the optimization of dynamical transport

networks. Mathematical Methods of Operations Research, 73(3):339–

362, 2011.

[GL03] Ignacio E. Grossmann and Sangbum Lee. Generalized convex disjunc-

tive programming: Nonlinear convex hull relaxation. Computational

optimization and applications, 26(1):83–100, 2003.

[GL12] Oktay Günlük and Jeffrey T. Linderoth. Perspective reformulation and

applications. In Jon Lee and Sven Leyffer, editors, Mixed Integer Non-

linear Programming, volume 154 of The IMA Volumes in Mathematics

and its Applications, pages 61–89. Springer New York, 2012.

[Gle13] Ambros Gleixner, 2013. Private communication.

[GLW07] Oktay Günlük, Jon Lee, and Robert Weismantel. MINLP strengthen-

ing for separable convex quadratic transportation-cost UFL. Technical

Report RC24213 (W0703-042), IBM Research Division, 2007.

[GMMS12] Björn Geißler, Alexander Martin, Antonio Morsi, and Lars Schewe.

Using piecewise linear functions for solving minlps. In Jon Lee and

Sven Leyffer, editors, Mixed Integer Nonlinear Programming, volume

154 of The IMA Volumes in Mathematics and its Applications, pages

287–314. Springer New York, 2012.

[GMS13] Björn Geißler, Antonio Morsi, and Lars Schewe. A New Algorithm

for MINLP Applied to Gas Transport Energy Cost Minimization. In

Michael Jünger and Gerhard Reinelt, editors, Facets of Combinato-

rial Optimization: Festschrift for Martin Grötschel, pages 321–353.

Springer Berlin Heidelberg, 2013.

[GNSK+15] Bissan Ghaddar, Joe Naoum-Sawaya, Akihiro Kishimoto, Nicole

Taheri, and Bradley Eck. A lagrangian decomposition approach for

the pump scheduling problem in water networks. European Journal of

Operational Research, 241(2):490 – 501, 2015.

[Gom63] Ralph E. Gomory. An algorithm for integer solutions to linear programs.

In Robert L. Graves and Philip Wolfe, editors, Recent Advances in

Mathematical Programming, pages 269–302. McGraw-Hill, New York,

1963.

176

[GT13] Ignacio E. Grossmann and Francisco Trespalacios. Systematic mod-

eling of discrete-continuous optimization models through generalized

disjunctive programming. AIChE Journal, 59(9):3276–3295, 2013.

[GUR] Gurobi Optimizer. http://www.gurobi.com. Accessed: 2016-01-15.

[GZMA05] Mohamed S. Ghidaoui, Ming Zhao, Duncan A. McInnis, and David H.

Axworthy. A review of water hammer theory and practice. Applied

Mechanics Reviews, 58(1):49–76, 2005.

[HBCO12] Hassan Hijazi, Pierre Bonami, Gérard Cornuéjols, and Adam Ouorou.

Mixed-integer nonlinear programs featuring “on/off” constraints. Com-

putational Optimization and Applications, 52(2):537–558, 2012.

[HCLC99] Ching-Huei Huang, Chuei-Tin Chang, Han-Chern Ling, and Cheng-

Chang Chang. A mathematical programming model for water usage

and treatment network design. Industrial & Engineering Chemistry

Research, 38(7):2666–2679, 1999.

[HF15] Jesco Humpola and Armin Fügenschuh. Convex reformulations for solv-

ing a nonlinear network design problem. Computational Optimization

and Applications, 62(3):717–759, 2015.

[HFK15] Jesco Humpola, Armin Fügenschuh, and Thorsten Koch. Valid inequal-

ities for the topology optimization problem in gas network design. OR

Spectrum, pages 1–35, 2015.

[Hij10] Hassan Hijazi. Mixed-integer nonlinear optimization approaches for

network design in telecommunications. PhD thesis, Université d’Aix

Marseille, 2010.

[HL14] Hassan Hijazi and Leo Liberti. Constraint qualification failure in

second-order cone formulations of unbounded disjunctions. Technical

report, NICTA, Canberra ACT Australia, 2014.

[HMM57] Alan S. Manne Harry M. Markowitz. On the solution of discrete pro-

gramming problems. Econometrica, 25(1):84–110, 1957.

[Hum14] Jesco Humpola. Gas network optimization by MINLP. PhD thesis,

Technical University of Berlin, 2014.

[JL84] Robert G. Jeroslow and James K. Lowe. Mathematical Programming

at Oberwolfach II. chapter Modelling with integer variables, pages 167–

184. Springer Berlin Heidelberg, 1984.

177

[JSS] Job shop scheduling instances. http://optimizizer.com/TA.php. Ac-

cessed: 2016-02-19.

[KAA+11] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert,

Timo Berthold, Robert E. Bixby, Emilie Danna, Gerald Gamrath, Am-

bros M Gleixner, Stefan Heinz, et al. MIPLIB 2010. Mathematical

Programming Computation, 3(2):103–163, 2011.

[KH06] Rainer Kolisch and Soenke Hartmann. Experimental investigation of

heuristics for resource-constrained project scheduling: An update. Eu-

ropean journal of operational research, 174(1):23–37, 2006.

[KHPS15] Thorsten Koch, Benjamin Hiller, Marc E. Pfetsch, and Lars Schewe.

Evaluating gas network capacities, volume 21 of MOS-SIAM Series on

Optimization. SIAM, 2015.

[Kıl11] Mustafa Kılınç. Disjunctive Cutting Planes and Algorithms for Con-

vex Mixed Integer Nonlinear Programming. PhD thesis, University of

Wisconsin-Madison, 2011.

[KL12] Oliver Kolb and Jens Lang. Simulation and continuous optimization.

In Alexander Martin, Kathrin Klamroth, Jens Lang, Günter Leuger-

ing, Antonio Morsi, Martin Oberlack, Manfred Ostrowski, and Roland

Rosen, editors, Mathematical Optimization of Water Networks, volume

162 of International Series of Numerical Mathematics, pages 17–33.

Springer Basel, 2012.

[KLL10] Mustafa Kılınç, Jeffrey T. Linderoth, and James Luedtke. Effective sep-

aration of disjunctive cuts for convex mixed integer nonlinear programs.

Optimization Online, 2010.

[LabOR] DEIS - Operations Research Group Library of Instances.

http://www.or.deis.unibo.it/research.html. Accessed: 2016-01-15.

[LBvBW06] Carl D. Laird, Lorenz T. Biegler, and Bart G. van Bloemen Waan-

ders. Mixed-integer approach for obtaining unique solutions in source

inversion of water networks. Journal of Water Resources Planning and

Management, 132(4):242–251, 2006.

[LBvBW07] Carl D. Laird, Lorenz T. Biegler, and Bart G. van Bloemen Waanders.

Real-time, large scale optimization of water network systems using a

subdomain approach. In Lorenz T. Biegler, Omar Ghattas, Matthias

Heinkenschloss, David Keyes, and Bart G. van Bloemen Waanders,

178

editors, Real-time PDE-constrained optimization, chapter 15. SIAM

Philadelphia, 2007.

[LG00] Sangbum Lee and Ignacio E. Grossmann. New algorithms for non-

linear generalized disjunctive programming. Computers & Chemical

Engineering, 24(9):2125–2141, 2000.

[LL11a] Jon Lee and Sven Leyffer. Mixed integer nonlinear programming, vol-

ume 154 of The IMA Volumes in Mathematics and its Applications.

Springer Science & Business Media, 2011.

[LL11b] Jeffrey T. Linderoth and Andrea Lodi. MILP software. Wiley encyclo-

pedia of operations research and management science, 2011.

[Lod10] Andrea Lodi. Mixed integer programming computation. In Michael

Jünger, Thomas Liebling, Denis Naddef, Geroge L. Nemhauser,

William Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence

Wolsey, editors, 50 Years of Integer Programming 1958-2008, pages

619–645. Springer, 2010.

[LY84] David G. Luenberger and Yinyu Ye. Linear and nonlinear programming,

volume 2. Springer, 1984.

[MF14] Ruth Misener and Christodoulos A. Floudas. Antigone: algorithms for

continuous/integer global optimization of nonlinear equations. Journal

of Global Optimization, 59(2-3):503–526, 2014.

[MGM12] Antonio Morsi, Björn Geißer, and Alexander Martin. Mixed integer

optimization of water supply networks. In Alexander Martin, Kathrin

Klamroth, Jens Lang, Günter Leugering, Antonio Morsi, Martin Ober-

lack, Manfred Ostrowski, and Roland Rosen, editors, Mathematical Op-

timization of Water Networks, volume 162 of International Series of

Numerical Mathematics, pages 35–54. Springer Basel, 2012.

[MNLib] MINLP Library. http://www.gamsworld.org/minlp/minlplib.htm. Ac-

cessed: 2016-01-15.

[Min89] Michel Minoux. Networks synthesis and optimum network design prob-

lems: Models, solution methods and applications. Networks, 19(3):313–

360, 1989.

[MLib] MIPLIB - Mixed Integer Problem Library. http://miplib.zib.de. Ac-

cessed: 2016-01-15.

179

[Mor13] Antonio Morsi. Solving MINLPs on Loosely-Coupled Networks with

Applications in Water and Gas Network Optimization. PhD thesis,

Friedrich-Alexander-Universität Erlangen-Nürnberg, 2013.

[MPT99] Silvano Martello, David Pisinger, and Paolo Toth. Dynamic program-

ming and strong bounds for the 0-1 knapsack problem. Management

Science, 45(3):414–424, 1999.

[MT90] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and

Computer Implementations. Wiley, Chichester, UK, 1990.

[MT04] Michela Milano and Michael Trick. Constraint and integer program-

ming. Springer, 2004.

[MW84] Thomas L. Magnanti and Richard T. Wong. Network design and trans-

portation planning: Models and algorithms. Transportation science,

18(1):1–55, 1984.

[NSGAE15] Joe Naoum-Sawaya, Bissan Ghaddar, Ernesto Arandia, and Bradley

Eck. Simulation-optimization approaches for water pump scheduling

and pipe replacement problems. European Journal of Operational Re-

search, 2015.

[Pfa11] Bernhard Pfahringer. Conjunctive Normal Form. In Encyclopedia of

Machine Learning, pages 209–210. Springer, 2011.

[PIS] David Pisinger’s optimization codes.

http://www.diku.dk/ pisinger/codes.html. Accessed: 2016-02-19.

[PR91] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm

for the resolution of large-scale symmetric traveling salesman problems.

SIAM review, 33(1):60–100, 1991.

[PT] S. Pilati and E. Todini. La verifica delle reti idrauliche in pressione (the

verification of hydraulic networks under pressure). Unpublished.

[QG92] Ignacio Quesada and Ignacio E. Grossmann. An LP/NLP based branch

and bound algorithm for convex MINLP optimization problems. Com-

puters & chemical engineering, 16(10):937–947, 1992.

[Rag13] Arvind U. Raghunathan. Global optimization of nonlinear network

design. SIAM Journal on Optimization, 23(1):268–295, 2013.

180

[RB96] Lewis A. Rossman and Paul F. Boulos. Numerical methods for modeling

water quality in distribution systems: A comparison. Journal of Water

Resources planning and management, 122(2):137–146, 1996.

[RDLM14] Riccardo Rovatti, Claudia D’Ambrosio, Andrea Lodi, and Silvano

Martello. Optimistic MILP modeling of non-linear optimization prob-

lems. European Journal of Operational Research, 239(1):32 – 45, 2014.

[RH99] Wolfgang Rauch and Poul Harremoës. Genetic algorithms in real time

control applied to minimize transient pollution from urban wastewater

systems. Water Research, 33(5):1265 – 1277, 1999.

[SA13] Hanif D. Sherali and Warren P. Adams. A reformulation-linearization

technique for solving discrete and continuous nonconvex problems.

Springer Science & Business Media, 2013.

[Sah14] Nikolaos V. Sahinidis. BARON 14.3.1: Global Optimization of Mixed-

Integer Nonlinear Programs, User’s Manual, 2014.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John

Wiley & Sons, 1998.

[SM99] Robert A. Stubbs and Sanjay Mehrotra. A branch-and-cut method for

0-1 mixed convex programming. Mathematical programming, 86(3):515–

532, 1999.

[STF] Steve Jobs’ 2005 Stanford Commencement Address.

https://www.youtube.com/watch?v=UF8uR6Z6KLc. Accessed:

2016-03-10.

[Tra13] Andrea Tramontani. Lift-and-project cuts in CPLEX 12.5.1, 2013. Pre-

sented to the INFORMS Annual Meeting, Minneapolis.

[TS02] Mohit Tawarmalani and Nikolaos V. Sahinidis. Convexification and

global optimization in continuous and mixed-integer nonlinear program-

ming: theory, algorithms, software, and applications. Springer Science

& Business Media, 2002.

[TS05] M. Tawarmalani and Nikolaos V. Sahinidis. A polyhedral branch-

and-cut approach to global optimization. Mathematical Programming,

103:225–249, 2005.

[VA13] Derek Verleye and El-Houssaine Aghezzaf. Optimising production and

distribution operations in large water supply networks: A piecewise

181

linear optimisation approach. International Journal of Production Re-

search, 51(23-24):7170–7189, 2013.

[VG99] Aldo Vecchietti and Ignacio E. Grossmann. LOGMIP: a disjunctive 0–1

non-linear optimizer for process system models. Computers & chemical

engineering, 23(4):555–565, 1999.

[vH01] Willem-Jan van Hoeve. The alldifferent constraint: A survey. arXiv

preprint cs/0105015, 2001.

[Vie15a] Juan Pablo Vielma. Extended and Embedding Formulations for

MINLP, 2015. Presented to the Oberwolfach Workshop “Mixed-integer

Nonlinear Optimization: A Hatchery for Modern Mathematics”, Ober-

wolfach, Germany.

[Vie15b] Juan Pablo Vielma. Mixed integer linear programming formulation

techniques. SIAM Review, 57(1):3–57, 2015.

[Vig12] Stefan Vigerske. Decomposition in multistage stochastic programming

and a constraint integer programming approach to mixed-integer non-

linear programming. PhD thesis, Humboldt-Universität zu Berlin, 2012.

[Vig13a] Stefan Vigerske, 2013. Private communication.

[Vig13b] Stefan Vigerske. Solving MINLPs with SCIP, 2013. Presented to the

21st International Symposium on Mathematical Programming, Berlin,

Germany.

[VN09] Juan Pablo Vielma and George L. Nemhauser. Modeling disjunctive

constraints with a logarithmic number of binary variables and con-

straints. Mathematical Programming, 128(1):49–72, 2009.

[WB06] Andreas Wächter and Lorenz T. Biegler. On the implementation of

an interior-point filter line-search algorithm for large-scale nonlinear

programming. Mathematical programming, 106(1):25–57, 2006.

[Wie14] Sven Wiese. Short scientific report of STSM Nonlinear network design

at Zuse Institute Berlin (ZIB). 2014.

[XPR] FICO Xpress Optimization Suite. http://www.fico.com/en/products/fico-

xpress-optimization-suite. Accessed: 2016-01-15.

182

	Abstract
	Acknowledgements
	Introduction
	Concepts
	Mixed Integer Linear Programming
	Linear Programming
	Branch & bound
	Cutting planes

	Mixed Integer Nonlinear Programming
	Nonlinear Programming
	Nonlinear branch & bound
	Outer approximation
	Spatial branch & bound
	Piecewise linearizations

	Constraint Programming
	Disjunctive Programming
	Examples of Mixed Integer Programs
	TSP with (multiple) time windows
	Scheduling problems
	Knapsack problems
	Supervised classification

	MILP vs. MINLP insights in water network optimization
	Modeling water networks
	Flow & pressure
	Pipes
	Pumps
	Valves
	Tanks

	Convex substructures
	Solution approaches
	Design in the literature
	Operation in the literature

	Piecewise linearizations of the potential-flow coupling equation
	MILP- vs. NLP-feasibility
	The role of pumps
	Computational experiments

	Unified modeling of design and operation
	Nonlinear valid inequalities for water network design problems
	The nice algebra of nonlinear network flows

	Outlook

	Mixed Integer Programming with indicator constraints
	BigM constraints
	Disjunctive Programming for indicator constraints
	Single disjunctions
	Constraint vs. Nucleus
	Single indicator constraint
	Linear constraints

	Pairs of related disjunctions
	Complementary indicator constrains
	Almost complementary indicator constraints

	Computation
	Single indicator constraints: Supervised classification
	Complementary indicator constrains: Job Shop Scheduling
	Almost complementary indicator constraints: TSPTW

	Bound tightening
	Locally implied bound cuts
	A tree-of-trees approach for MILP with indicator constraints

	Outlook

	MILPs with non-contiguous split domains
	Real-valued split disjunctions
	Certifying split validity by primal information
	Certifying split validity by dual information

	Real-valued-split cuts
	Intersection cuts from real-valued split disjunctions
	Lift-and-project cuts from real-valued split disjunctions
	Strengthening intersection cuts
	Computation

	Exactly solving MILPs with non-contiguous split domains
	TSP with multiple time windows

	Outlook

	Appendix
	List of Figures
	List of Algorithms
	List of Tables / Tables

	Bibliography

