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1.1 Introduction 

There is a strong interest in the use of smartphone, alone or in 

conjunction with add-on devices as new generation POC diagnostic 

device. In recent years, the development of an accurate and user-

friendly diagnostic device for point-of-care (POC) applications has 

received increasing attention in the field of analytical chemistry [1] 

[2][3][4][5][6][7][8][9]. 

The POC systems  perform in-site tests providing fast and reliable 

analytical results, with the advantages of low sample and reagent 

consumption,   rapid and easy analysis, reduced costs, possibility of 

extra-laboratory application. Fulfill minimum requirements [10] that 

characterize a real POC system are: 

 

- the direct introduction of the sample without or with few steps of 

purification and pretreatment of sample 
 

- Reduced dimensions, be portable with a little weight and 

autonomous electrical power 

- be easy to use, in order to be used by unskilled operators outside of 

standard equipped laboratories 

- provides qualitative and quantitative results by analyzing and 

processing data outputs measured by portable device detector.   

 

Moreover an ideal POC device should be fabricated with low cost and 

disposable elements,  and at the same time, it should ensure stability 

and durability. Such analytical tool should be capable of automating the 

analysis (sample pre-treatment, reagents delivery, mixing, separation 

and detection) and determining multiple analytes (showing 
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multiplexing capability) and providing wide measurement range of 

analysis performances. Moreover point-of-care device should be robust 

and such as the tolerant to changes in air humidity and temperature 

[11]. 

The emerging field of analytical chemistry to develop portable 

miniaturized and self-operating system, in which is possible to scale 

down and transfer traditional bench-top analytical procedures, can 

pave the way for extra-laboratory analyses in clinical chemistry, 

environmental monitoring, food analysis, and bio-warfare protection 

[12]. A other characteristic of a good point of care device is the 

capability to use very small sample volumes, achieving low limits of 

detection of analyte of interest and the possibility to perform the test 

in shorten time and cost of analysis.  

Smartphones, thanks to their multifunction capabilities, imaging, and 

computing power, and the possibility to extend built-in functions of 

smartphones, can be considered as the natural evolution of point-of-

care (POC) analytical devices. Smartphones offer photography (still 

and video), location and other sensors (global positioning system 

[GPS], accelerometers, etc.), the long-distance transfer of information 

(data and images) via text messaging (Short Message Service – SMS), 

built-in apps (e-mail, calendar, document readers, etc.), and wireless 

data service. Moreover, hundreds of new applications (apps) are made 

available every day. The extensive distribution of smartphones and 

tablets, together with cloud services ensuring pervasive connectivity, 

creates an incredible market, largely untapped, especially in the field of 

healthcare self-management. So, smartphone itself can act as a 

transducer or detector and perform data analysis. The main advantage 

in comparison to existing biosensor diagnostic devices is the challenge 

to develop an user-friendly “all-in-one device” and the possibility to 
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perform analytical tests outside clinical laboratories by no-dedicated 

and unskilled equips. After running the analytical assay, it is possible to 

process data and sent results by E-mail, for example, to a physician for 

the diagnosis.  

In literature, there are many examples of smartphone use as  analytical 

device to perform diagnostic tests. Increasing interest in using 

smartphones to detect analytes of clinical interest [13] is due to the 

ubiquitous distribution and  international connectivity of smartphones 

and, it is due to changing the concept of mobile health.  

The exponentially increasing performance of CMOS-based 

photocameras, and the possibility to augment smartphone capabilities 

by other additional accessories make appropriate to use smartphone 

as portable biosensors and point-of-care platforms for healthcare, food 

safety, environmental monitoring, and biosecurity, especially in remote 

and rural areas.  

The continuous improvement of smartphone electronics and the 

development of new apps have stimulated research to expand the 

applications of smartphone photocamera as a “smart detector” to 

develop new diagnostic and prognostic tests for a large number of 

pathologies and for evaluating pharmaceutical therapies, integrating 

several optical-based methods as absorbance, reflectance, fluorescence 

and SPR.  
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1.2 Classification of smartphone based biosensors 

The classification of smartphone-based point-of-care devices is based 

on way of using smartphone technologies. It is possible distinguish two 

main categories: smartphone used as detector and smartphone used as 

instrumental interface. 

 

1.2.1 Smartphone as detector. 

In literature there are many examples of biosensors based on the 

integration of smartphone technology in complementary-coupled 

accessories as cartridges and other components needed to perform 

analytical tests. The smartphone chamber is used to detect the output 

signal. Breslauer et al., have reported the  development of smartphone-

based microscope for both bright-field and fluorescence imaging [14]. 

The apparatus of the device is composed by a standard microscope 

eyepiece, an emission filter, an objective, a condenser lens, an 

excitation filter, a collector lens, and an LED as excitation source 

(Figure 1.1). The filters and LED can be removed to transform the 

system in a bright-field microscope. The device, thanks to the camera’s 

high resolution, is able to image blood cell and microorganism 

morphology and it has been applied for clinical diagnostics by 

capturing bright-field high-resolution images of P. falciparum malaria-

infected blood samples and fluorescent images of Auramine-O-stained 

M.-tuberculosis-positive sputum smears.  

Another example where the smartphone’s camera is  used as a 

microscope, has been reported by Tseng et al. The system is very 

simple and elementary of the previous. The device does not provide for 

the using of lenses, laser, or other optical components, greatly 
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simplifying the system architecture [15]. It consists only of a LED to 

vertically illuminate the sample area. The LED light, that interacts with 

the sample, is scattered and refracted. The light waves that pass 

through the sampled objects (e.g. cells) interfere with the unscattered 

light, creating a hologram of each object, which is detected using the 

smartphone camera (Figure 1.2). The device is able to image various 

sized microparticles, red and white blood cells, platelets, and  

parasites. This lens-free smartphone microscope has several important 

features, including compactness, lightness (38 g), and cost-

effectiveness, which make it very suitable for decentralized point-of-

need use, particularly in developing areas.  

The problems associated with this kind of applications of the 

smartphone’s camera, are connected to the image spatial resolution, 

limited by the pixel size at the sensor, making the system less accurate 

than a standard microscope. Moreover, the image process needed to 

obtain the holographic reconstruction must be performed remotely, 

e.g. in a central hospital, because it would drastically reduce the speed 

of smartphone computing. 

The smartphone’s camera has been also used as a detector for the 

development of a smartphone-based rapid-diagnostic-test (RDT) 

reader platform for LFIA [16], and for fluorescence measurements and 

photometry. Erickson et al. have reported a portable smartphone 

device based on reflectance photometry to quantify cholesterol levels 

in blood. The accessory connected to smartphone is composed of a 

cartridge, and a strip on which the color-based assay takes place [17]. 

The reaction area is illuminated by the built-in smartphone flash. 

Thanks to a dedicated app, the device correlates the variations of color 

and brightness to analyte concentrations.  
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Preechaburana et al. proposed for the first time, the integration of 

angle-resolved surface plasmon resonance (SPR) detection techniques 

in smartphone technology to detect and quantify β2 microglobulin 

(β2M) levels in serum and urine [18] (Figure 1.3). This analyte is a 

biomarker for cancer, inflammatory disorders, and kidney disease. 

Even if smartphone based-SPR device performance is related to the 

spatial resolution of the smartphone camera, its platform’s resolution 

is comparable with compact conventional analytical SPR devices.  

Finally, smartphone camera has been used as detector to develop a 

portable miniaturized spectrometer for a label-free photonic crystal 

biosensor [19]. The smartphone-based device needed of optical 

components (collimator, polarizer, photonic crystal, and grating), and 

of  an app to process the camera images into the photonic crystal 

transmission spectrum (Figure 1.4). The device has been used to detect 

an immobilized protein monolayer and a concentration-dependent 

antibody binding to a functionalized photonic crystal. Moreover, the 

system is able to work only in a dry state.  

 

1.2.2 Smartphone as instrumental interface  

Alternatively, the smartphone can be used as instrumental interface, 

connecting the smartphone with the bioanalytical device for example 

via a micro-USB port, Bluetooth, or Wi-Fi. In this case, the smartphone 

isn’t used as detector, but are exploited its computing capabilities to 

control the experimental setup and display the test results on the 

screen. In literature there are few examples of this approach, while 

some commercial applications are very interesting. 
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Stedtfeld et al. developed a portable device called Gene-Z to quantify 

and detect rapidly multiple genetic markers by parallel analysis. [20]. It 

consists of a microfluidic chip composed of four arrays of 15 reaction 

wells. Each well contains complementary dehydrated primers for 

isothermal amplification. This device is able to perform simultaneous 

analysis of four samples. The Gene-Z can be controlled by an iPod 

Touch, to compute and elaborate data and send the results of analysis 

via a Wi-Fi interface (Figure 1.5). 

Among commercially available platforms connected with a 

smartphone, ethylometers and glucometers are essentially the most 

common examples. In particular, two main examples of smartphone 

based-breath sensors for detection of alchol are commercially 

presented by Europe company Vodafone (Floome) [21], and by US 

company, Breathometer Inc. [22]. Among smartphone-interfaced 

glucometer now commercially available, there are the glucometer 

iBGStar® (Sanofi) and two kinds of glucometer for smartphone 

developed by iHealth Lab Inc.: iHealth Align [23] and a wireless smart 

gluco-monitoring system [24]. iHealth Align is the world’s smallest 

FDA-approved mobile glucometer, which plugs directly into the 

smartphone’s audio jack. The device is controlled by an app that 

instantly displays results on the screen and automatically keeps a 

history of the data. The smart glucometer is wireless, portable, and 

connects to the smartphone or tablet using Bluetooth technology to 

give the test result in five seconds. It automatically records all glucose 

readings and tracks the quantity and expiration date of the test strips. 

Both the glucometers work with Apple devices and offer the option of 

sharing the information with a doctor or caregiver. 
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1.2.3 Electrochemical detection 

A very useful way to use your smartphone as instrumental interface 

can be exploited by its integration with electrochemical detection 

methods. Lillehoj et al. developed an electrochemical detection 

method-based platform connected via mini-USB port to smartphone. 

[25]. The device is composed of an embedded circuit for signal 

processing and data analysis, and of a disposable microfluidic chip for 

fluidic handling and biosensing (Figure 1.6). This system has been used 

to detect the malaria biomarker Plasmodium falciparum histidine-rich 

protein 2. The LOD is of 16 ng/mL in human serum, which is a value 

comparable with standard instrumentation. The assay is perfomed in 

15 min. 

The main disadvantage of these systems is the need to integrate the 

smartphone with devices such as electrical circuits, electrodes, and 

potentiostats. This requires additional costs and a more complex 

system. Furthermore, these devices are often connected to the 

smartphone, increasing its energy consumption. A lower power 

microcontroller is then required to secure a more efficient power 

rectification.  
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Figure 1. Panel 1: (a) a current prototype, with filters and LED installed, capable of 

fluorescence imaging and (b) cellphone microscopy optical layout for fluorescence and 

bright-field imaging (components required for fluorescence imaging only are indicated by 

‘fluo’). Panel 2: (a) lens-free cellphone microscope which operates based on incoherent in-

line holography and (b) schematic diagram of the microscope attachment. Panel 3: (a) 3D 

scheme of a representative setup for angle-resolved SPR using screen illumination and 

front camera detection optically coupled with a disposable device, (b) 2D raytrace of the 

experimental arrangement showing the light path from screen to camera, and (c) picture 

of the actual experimental arrangement. Panel 4: (a) schematic of the optical components 

within the smartphone cradle and (b) photo of the cradle with a PC biosensor slide 

inserted into the detection slot. Panel 5: picture of the Gene-Z prototype with the iPod 

docked on the recharge port and the disposable chip sitting on the door that is used for 

insertion. Panel 6: (a) photograph of the assembled prototype device (the arrow indicates 

the microfluidic chip), (b) photograph of the chip and a cellphone SIM card for comparison 

and (c) an enlarged image of the chip with labeled components (the channels are filled 

with dye for improved visualization of the fluidic network). 
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The smartphone-based biosensor can be classified according to the 

analytical detection method used.  

 

1.3 Smartphone-based biosensors 

Several works have been reported in which different detection 

principles have been used to develop smartphone-based biosensors 

that do not need additional devices, and they perform the entire 

analytical process, from analysis to data acquisition and elaboration.  

1.3.1 Color-based detection 

The development of analytical point of care devices that exploit color 

change to detect analytes of interest has attracted much attention. 

Generally these systems are inexpensive, stable, simple to realize. 

Moreover, CMOS array of smartphone camera is able to respond to red, 

green and blue (RGB) light. Today, smartphones integrate several 

function dedicated to make better the acquisition of image such as the 

automated Auto White Balance (AWB), which allow to adjust the 

detected RGB signals at differents ratios, reproducing good colors [26].  

The availability of an increasing number of mobile apps for photo 

editing, RGB color analysis, and image processing, make easier the 

quantitative analysis of the collected data. These biosensors are 

characterized by a relatively low sensitivity and can therefore be used 

to detect analytes present in relatively high concentrations in 

biological fluids and environmental and food samples.  

1.3.2 Absorbance-based devices 

These cellphone based-platforms are real miniaturized 

spectrophotometers. They have a complementary attachment, 

composed of an inexpensive plastic plano-convex lens, light-emitting 
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diodes (LEDs) to vertically illuminate the test and control cuvettes, 

specifically chosen to match the absorption spectrum of the 

colorimetric assay performed in the test tube with wavelength of LEDs, 

light diffusers, circular apertures to spatially control the imaging field-

of-view, a digital test reader and a smart application that measures the 

absorption of colorimetric assays. The transmitted light through the 

sample and control cuvettes is imaged onto the digital camera of the 

smartphone using a plano-convex lens. The limitations of these sensors 

are based on the difficulty of use these devices by unskilled personnel 

and by the complexity of the various device accessories (which often 

necessitate changing the smartphone’s physical and electronic 

components), the need to use laboratory instruments (such as 

pipettes) because reactions are performed in solution, the difficulty of 

storing reagents, and the incubation times.  

An interesting application of this kind of point-of-care biosensors has 

been presented by Ozcan’s research group. They developed a 

smartphone-based device for quantifying mercury (II) ions in water, 

using a plasmonic gold nanoparticle (AuNPs) and aptamer colorimetric 

transmission assay [27]. The chemical assay principle is based on 

different affinity of Thymine-rich sequence aptamers (5’-

TTTTTTTTTT-3’) toward gold nanoparticles and toward mercury ions 

and on the effect of absorption due to the degree of aggregation of gold 

nanoparticles. In the absence of mercury, the aptamer covers the 

surface of the gold nanoparticles and prevents the aggregation. In 

presence of mercury (II) ions, aptamers form a more stable complex T-

Hg2+-T.  To quantify mercury ion concentration (LOD ~ 3.5 ppb) is used 

a two-color ratiometric detection method. The change of ratio between 

transmitted light at two wavelengths (523 nm, green and 625 nm, red) 

is thus related to AuNPs aggregation. The smartphone accessory is 
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composed of  two battery-alimented LEDs emitting light at 523 nm 

(green) and 625 nm (red) to follow the shift in the extinction 

wavelengths of the dispersed and aggregated AuNPs, respectively; a 

light diffuser; a chamber for sample and control cuvettes; and an 

external lens to converge transmitted light and focus two color images. 

 Vashist et al. have recently reported  a smartphone-based colorimetric 

reader to detect human C-reactive protein (CRP) by an 

immunoenzymatic assay. [28].  

 

1.3.3 Reflectance-based devices   

Other devices use light reflectance to measure an end-point enzymatic 

reaction. Enzymes specific to a given analyte are immobilized on test 

strips. The reflected light color intensity of a chromogenic substrate is 

directly related to the amount of analyte in the biological fluids. 

The research group of Erickson has developed several systems that use 

dry reagent chemistry test based on light reflectance principle as 

detection method. They developed a smartphone-based device that 

uses uses dry reagent test strips manufactured by CardioChek 

(Polymer Technology Systems Inc., IN, USA) to quantify cholesterol 

levels in serum, called smartCARD (smartphone Cholesterol 

Application for Rapid Diagnostics) system [29]. The strip is composed 

of a series of filter papers that separate plasma from red blood cells 

and direct some of the plasma towards an analyte-specific reaction pad 

(Figure 2).  The enzymatic conversion of cholesterol and HDL by the 

cholesterol oxidase with the production of hydrogen peroxide and next 

reaction between this latter and an appropriate dye, leads to a color 

change in the detection area related to the concentration of analyte. As 



18 
 

 

light source, the smartphone accessory exploits the built-in flash 

illumination technology. To ensure a uniform illumination for 

repeatable image acquisition of the test strip, the device is equipped 

with a black PDMS diffuser ensures uniform illumination. An app 

developed for the iPhone iOS platform analyzes color parameters such 

as hue, saturation, and luminosity from the acquired image of the test 

area, quantifying  physiological total cholesterol levels in blood (100 – 

400 mg/dL) within 60s by imaging the standard test strips. 

Smartphone-based test reader platforms of different formats based on 

lateral flow immunochromatographic assays have been reported 

[30][31][32][33]. Various types of test strips can be integrated into the 

accessory device attached to the smartphone. Erickson’s group 

developed one example of reflectance-based smartphone device for  a 

LFIA assay (vitaAID) to evaluate vitamin D levels in serum. [34]. The 

analytical colorimetric detection principle to quantify  25-

hydroxyvitamin D is a gold-nanoparticle-based immunoassay (Figure 

2).  

The advantages of using these systems are due to operative simplicity 

thanks to which even unskilled persons can perform the tests, to the 

low cost of  material used to realize them and to the reduced sizes of 

the devices and to need of  using few volumes of sample for analysis. 

Furthermore, the availability of several colorimetric tests, make 

possible the analysis of a wide range of analytes. 

 However, there are also limitations. The results of analysis can be 

affected by variations in wetting time, environmental temperature, 

light, and humidity and homogeneity of light and color, that make 

difficult to obtain a quantitative information and to the possibility to 

quantify samples with high concentrations of analytes. (e.g. 

millimolar). 
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 Figure 2.Panel 1: (a) 3D schematic illustration of the internal structure of the opto-

mechanical attachment of the ratiometric optical reader on smartphone. (b) Photograph of 

screen of the smartphone displaying a typical image of the sample and control cuvettes 

when illuminated by red (625 nm) and green (523 nm) LEDs simultaneously. Panel 2: (a) 

Image of the iTube platform and smartphone screen of colorimetric assays reading. (b) A 

schematic illustration of components of the same iTube platform. Panel 3: a) Image of the 

smartCARD accessory and the test strip used; the inset shows the inside of the accessory 

with the black PDMS diffuser and the optical path of the flash used to illuminate the strip. 

b) Image of low cholesterol strip (<100 mg dl−1) and high cholesterol (>400 mg dl−1) strip 

camera acquisitions. Panel 4: Image of vitaAID accessory on a iPhone with the inset 

showing the components of the accessory.  

 

1.3.4 Photoluminescence detection 

Photoluminescence is another analytical method of detection that has 

been integrated with smartphone’s camera. In this case the 

instrumentation is more complex because it includes an optical module 

comprising a light source, optical filter, and lens. The measurement cell 

must also meet specific geometrical and transparency requirements. 

Despite these limitations, fluorescence is widely used as a detection 

principle in smartphone-based biosensors thanks to its high sensitivity.  
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Rajendran et al. developed a smartphone-based fluorimeter to detect 

the foodborne bacterial pathogens, Salmonella and Escherichia coli 

O157, by a conventional LFIA assay. [35]. The fluorophore (FITC) is 

doped in silica nanoparticles (SiNPs) conjugated to the biospecific 

respective antibodies. The components of this fluorimeter are a 

lightweight optical module containing an LED light source, a 

fluorescence filter set, and a lens attached to the integrated 

smartphone camera, which acquired high-resolution fluorescence 

images. 

Ozcan’s group developed another portable smartphone-based device 

albumin tester to quantify albumin concentration in urine samples, 

using a sensitive and specific fluorescent assay performed in a 

disposable test tube [36]. Recently, has been presented a fluorescence  

sandwich immunoassay assay for prostate-specific antigen (PSA) [37]. 

The performances of smartphone’s camera are enhanced with a 

magnifying lens. Other components are a simple light source, and a 

miniaturized immunoassay platform, the transparent Microcapillary 

Film (MCF).  
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1.4 Chemical Luminescence systems 

 

Luminescence is a spontaneous emission of radiation following the 

decay of a species from an electronically excited state to its ground 

state. Among different types of luminescence, we can distinguish the 

chemical luminescence, which consists in the phenomenon of 

luminescence via chemical reaction. Depending on type of stimulus 

which is used to trigger the reaction, it is possible to classify different 

kind of chemical luminescence: chemiluminescence (CL) and 

bioluminescence (BL) are referred to the chemical production of light 

started by mixing the reagents, the latter exploiting enzymes and 

photoproteins isolated from living organisms [36]; electrogenerated 

chemiluminescence (ECL) is the luminescence generated by relaxation 

of exited state molecules produced during an electron-transfer reaction 

that occurs at the surface of an electrode [37]; 

thermochemiluminescence (TCL) is the emission of light produced by 

the thermally-induced decomposition of a molecule. 

 

In order to realize the ideal conditions that allow the production of 

light through a chemical reaction, it is necessary that you meet the 

following requirements [38]: 

 

1. The free energy requirements needed to populate the electronically 

excited state (singlet) via an exergonic process, must meet the 

following mathematical relationship:  

 

 

 

Therefore, chemiluminescence reactions producing photons in the 

visible (400–750 nm) range require around 40–70 kcal mol-1. 
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2. This electronically excited state has to be accessible on the reaction 

coordinate. 

 

3. The radiation decay from the excited state to the ground state of the 

species involved in the reaction has to be a favorable energy release 

route. This means that either the product of the reaction has to be 

fluorescent or – if by energy transfer – an excited state can be 

populated (this energy transfer can occur intra- or intermolecularly). 

 

The chemical luminescence quantum yield is defined as the number of 

photons emitted per reacting molecule, and depends on the chemical 

yield of the reaction (R), the fraction of the product entering the 

excited state (ES) and  the fluorescent quantum yield (F) as shown in 

the following relationship: 

CL=RESF 

 

One of the most studied systems in chemiluminescence, is the 

production of photons following the oxidation reaction of luminol in 

presence of H2O2. Luminol can be considered a diprotic acid with pKA of 

6 and 13, respectively. During the CL reaction under basic conditions in 

presence of H2O2, luminol is oxidized to luminol radical anion in its 

excited state, which releases a photon while decaying to the ground 

state (Figure 3). The light is emitted at 428 nm (blue light emission) 

with a relatively low quantum yield of 1% [39]. The reaction can be 

catalyzed by horseradish peroxidase (HRP) that is commonly used as a 

label in binding assays thanks to its signal amplification capability [40] 
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Figure 3: HRP-catalyzed oxidation of luminol. 

 

The possibility to use an enzyme like horseradish peroxidase (HRP) or 

alkaline phosphatase (AP) as a label allows to amplify the CL signal, 

since in the presence of an excess of CL substrate many product 

molecules are generated from one enzyme molecule [41]. Moreover, 

the achievement of a steady-state of the CL emission allows the 

standardization of the experimental conditions and quantitation of the 

labeled probe under investigation, since the steady-state light intensity 

is directly related to the enzyme activity. To improve the analytical 

performance of the HRP-catalyzed CL oxidation of luminol, it is 

possible to add to the CL cocktail some enhancers like p-iodophenol 

(PIP), 4- (1-imidazolyl)phenol, [42] and other p-phenol derivatives, 

[43] para-phenylphenol and sodium tetraphenylborate as synergistic 

enhancer, [44] or K3Fe(CN)6 as electron mediator [45]. These 

enhancers allow to amplify and stabilize the CL signal making it easier 

to measure the analytical signal. The chemiluminescence production of 

photons with no need for photoexcitation, as it occurs in fluorescence 

detection, thereby avoiding problems arising from light scattering, 

background fluorescence or light source instability, makes it a very 

interesting analytical detection techniques. Therefore, instrumentation 

for chemical luminescence measurements is in principle very simple, 

since no excitation source is required. So the integration of this 

detection technique within portable imaging detection systems such as 

charge coupled device (CCD) or complementary metal-oxide 

semiconductor (CMOS) cameras, flexible configurations of the reading 
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cell (e.g., the spatial distribution of microarray spots on a 

functionalized surface) makes very simple to realize miniaturized 

portable lab-on-chip and point of care devices. Finally, chemical 

luminescence detection showed wide dynamic ranges, thus facilitating 

analysis of samples with very different analyte concentrations.  
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1.5 Enzyme in analytical chemistry 

As discussed so far, the incorporation of a biological assay into smartphone 

platforms is a potentially powerful development of new biosensing. In 

analytical chemistry, a good biosensor is an analytical system that permits a 

selective and sensitive measurement, but at the same time is easy to handle 

with low cost. Therefore, in addition to the transducer, which has the task to 

convert chemical reaction products into processable signals, great 

importance and attention in the development of a biosensor is dedicated to 

the biocomponent which is embedded in the device. The biocomponent 

determines the degree of specificity of the biosensor, as it reacts specifically 

with an analyte or substrate. Biospecific recognition of the analyte provides 

the analytical data of interest. And for this reason, the combination of this 

specificity, with a sensitive transducer, gives to biosensors their unique and 

unrivalled characteristics for the detection of a variety of analytes in complex 

matrices. The different components of a biosensor are shown in figure 4. 

 

Figure 4. Principle of a biosensor 

The principle of operation of a biosensor is very simple: the biological 

element interacts with the substrate following a specific recognition of the 



26 
 

 

analyte. A system of transduction converts the biochemical response into an 

electrical signal. Finally, the signal is processed and amplificated. 

 
Figure 5. Elements of a biosensor 

 
 

The recognition component, often called  bioreceptor, uses biomolecules from 

organisms or receptors modeled after biological systems to interact with the 

analyte of interest. High selectivity for the analyte among a matrix of other 

chemical or biological components is a key requirement of the bioreceptor. 

Biosensors can be classified according to common types bioreceptor 

interactions involving: antibody/antigen, enzymes, nucleic acids/DNA, 

cellular structures/cells, or biomimetic materials.  

The first application of an enzyme in development of a biosensor was carried 

out by Updike and Hicks [46]. They proposed for the first time in 1967 the 

term ”enzyme electrode” based on entrapped glucose oxidase in a 

polyacrilamide gel, thus increasing the operation stability of the enzyme and 

simplifying the sensor preparation. As early as 1970, Clark patented the 

sequential coupling of two enzymes for the determination of disaccharides 

[47]. Other biosensors were developed using this type of reaction sequence 

which was wide spread in metabolism.  
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1.5.1. Definition of Enzyme 
  
Enzymes are biological catalysts, which increase the rate of biological 

reactions without themselves being consumed in the reaction. Enzymes are 

found in all tissues and fluids of the body. Intracellular enzymes catalyze the 

reactions of metabolic pathways. Enzymes increase reaction rates sometimes 

by as much as one million fold, but more typically by about one thousand fold.  

Enzymes increase reaction rates by decreasing the amount of energy required 

to form a complex of reactants that is competent to produce reaction 

products. This complex is known as the activated state or transition state 

complex for the reaction. The free energy required to form an activated 

complex is much lower in the catalyzed reaction. Enzyme activity is the 

amount of substrate converted to product per unit time under specific 

reaction conditions for pH and temperature. Specific activity is defined in 

terms of enzyme units per mg enzyme protein. Turnover number, related to 

Vmax, is defined as the maximum number of moles of substrate that can be 

converted to product per mole of catalytic site per second. Vmax is the rate of 

enzyme activity in saturated concentration of substrate [48]. 

 
1.5.2 Michaelis-Menten kinetics  
 
In typical enzyme-catalyzed reactions, reactant and product concentrations 

are usually hundreds or thousands of times greater than the enzyme 

concentration. Consequently, each enzyme molecule catalyzes the conversion 

to product of many reactant molecules. In biochemical reactions, reactants 

are commonly known as substrates. The catalytic event that converts 

substrate to product involves the formation of a transition state, and it occurs 

most easily at a specific binding site on the enzyme. This site, called the 

catalytic site of the enzyme, has been evolutionarily structured to provide 
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specific, high-affinity binding of substrate(s) and to provide an environment 

that favors the catalytic events. The complex that forms, when substrate(s) 

and enzyme combine, is called the enzyme substrate (ES) complex. Reaction 

products arise when the ES complex breaks down releasing free enzyme.  

Between the binding of substrate to enzyme, and the reappearance of free 

enzyme and product, a series of complex events must take place. An ES 

complex must be formed; this complex must pass to the transition state (ES*); 

and the transition state complex must advance to an enzyme product complex 

(EP). The latter is finally competent to dissociate to product and free enzyme. 

The series of events can be shown thus: 

E + S <---> ES <---> ES* <---> EP <---> E + P 

The kinetics of simple reactions like that above were first characterized by 

biochemists Michaelis and Menten [48].  The Michaelis-Menten equation is a 

quantitative description of the relationship among the rate of an enzyme-

catalyzed reaction [V], the concentration of substrate [S] and two constants, 

V
max 

and K
M

. 

V = 
𝑉𝑚𝑎𝑥 [𝑆]

𝐾𝑚+[𝑆]
          (eq 1.1) 

Where:  

V is the reaction rate  

V
max 

is the maximum reaction rate  
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[S] is the substrate concentration  

K
M 

is the Michaelis-Menten constant  

The latter is an algebric statement of the fact that, for enzymes of the 

Michaelis-Menten type, when the observed reaction rate is half of the 

maximum possible reaction rate, the substrate concentration is numerically 

equal to the Michaelis-Menten constant. In this derivation, the units of K
M 

are 

those used to specify the concentration of S, usually molarity.  A typical 

Michaelis-Menten plot (graphical analysis of reaction rate (V) versus 

substrate concentration [S]) is shown in figure 6. The Michaelis-Menten 

equation is used to demonstrate that at the substrate concentration that 

produces exactly half of the maximum reaction rate, i.e., 1/2 V
max

, the 

substrate concentration is numerically equal to K
M

. 

 
Figure 6. Michaelis-Menten plot 

 
 
 

At high substrate concentrations the rate of the reaction is almost equal to 

V
max

, and the difference in rate at nearby concentrations of substrate is almost 
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negligible. If the Michaelis-Menten plot is extrapolated to infinitely high 

substrate concentrations, the extrapolated rate is equal to V
max

. When the 

reaction rate becomes independent of substrate concentration, or nearly so, 

the rate is said to be zero order. (Note that the reaction is zero order only 

with respect to this substrate. If the reaction has two substrates, it may or 

may not be zero order with respect to the second substrate). The very small 

differences in reaction velocity at substrate concentrations around point C 

(near V
max

) reflect the fact that at these concentrations almost all of the 

enzyme molecules are bound to substrate and the rate is virtually 

independent of substrate. At lower substrate concentrations, such as at points 

A and B, the lower reaction velocities indicate that at any moment only a 

portion of the enzyme molecules are bound to the substrate. In fact, at the 

substrate concentration denoted by point B, exactly half the enzyme 

molecules are in an ES complex at any instant and the rate is exactly one half 

of V
max

. At substrate concentrations near point A the rate appears to be 

directly proportional to substrate concentration, and the reaction rate is said 

to be first order.  

To avoid dealing with curvilinear plots of enzyme catalyzed reactions, 

biochemists Lineweaver and Burk introduced an analysis of enzyme kinetics 

based on the following rearrangement of the Michaelis-Menten equation [48]: 

1

𝑉
=

𝐾𝑚

𝑉𝑚𝑎𝑥[𝑆]
+

1

𝑉𝑚𝑎𝑥
        (eq 1.2) 

Plots of 1/V versus 1/[S] yield straight lines having a slope of K
M

/V
max 

and an 

intercept on the ordinate at 1/V
max 

(figure 7). 
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Figure 7.  Lineweaver- Burk plot 

 

An alternative linear transformation of the Michaelis-Menten equation is the 

Eadie-Hofstee transformation:  

𝑉 = 𝑉𝑚𝑎𝑥 −
𝐾𝑚𝑉

[𝑆]
        (eq 1.3) 

and when V/[S] is plotted on the y-axis versus V on the x-axis, the result is a 

linear plot with a slope of -1/K
M 

and the value V
max

/K
M 

as the intercept on the 

y-axis and V
max 

as the intercept on the x-axis. Both the Lineweaver-Burk and 

Eadie-Hofstee transformation of the Michaelis-Menton equation are useful in 

the analysis of enzyme inhibition. 
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1.5.3 Enzyme based biosensors. 

The enzyme-based biosensors are widely used, thanks to the wide availability 

of enzymes that catalyze the reactions of many substrates, to their specificity 

and catalytic properties. The classes of enzymes, integrated with different 

transducers to construct biosensors for applications in clinical, veterinary, 

medical and pharmaceutical areas, food and fermentation processes, 

environmental monitoring and defense applications [49].  To expand the 

applications of these biosensors and measuring molecules specific for 

enzymes that do not belong to the classes mentioned above, it is possible to 

build a cascade system of coupled enzymes. The primary product of the 

conversion of the analyte is further converted enzymatically with the 

formation of measurable secondary product [50][51]. The aim of those who 

fabricate an enzyme-based biosensor is obtaining a operationally stable 

biosensor for long term use in monitoring systems, and this characteristic is 

closely connected to enzyme stability.  In order to improve the stability of 

enzymes, many different techniques have been employed; such as protein 

engineering [52], the use of enzymes from naturally thermostable 

microorganisms [53][54], immobilized enzymes [55][56] and by addition of 

stabilizing agents to the enzymes [57][58]. 

 

 

 

 



33 
 

 

Table 1. Enzyme based biosensors for various analytes. 

Analyte Enzymes Transducer 
Glucose GOD O2 

Sucrose Invertase, 
Mutarotase & 
GOD 

O2 
H2O2 

Amino acids Amino acid 
oxidase 

O2 

Organophosphorous 
pesticides 

Butyryl 
cholinesterase 

H+ 

Morphine Morphine 
dehydrogenase 

Electron 
mediator 

Urea Urease Optical 
Metal ions Urease Optical 

 

 

1.5.4 Immobilization of enzymes for stability. 

The biological component, usually, fixed closely to the surface of the 

transducer, influences and shapes the long term stability and reliability of the 

biosensor. To preserve the biosensor and improve its performance, when you 

want to use a enzyme-based biosensor, we must pay attention to the 

conservation and working conditions, in particular, to improve storage 

stability and operational stability of enzymes, biological component in 

biosensors. To meet these requirements, it is often necessary to fix the 

enzyme on a solid support, usually placed near the transducer. The literature 

is rich of procedures which describe in detail the conditions for immobilizing 

different biological components to develop a biosensor. 
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Even if  the principles of stabilization of enzymes by means of immobilization 

for biotechnological applications are well documented [59][60][61], specific 

practicals and difficult aspects with respect to biosensor applications is 

insufficient and inadequate. Indeed, some experimental procedures to 

stabilize and fix a certain enzyme can’t be applied to all kind of enzymes 

belonging to the same classes and depend also by the specific analytical 

application as well as pH, temperature and environmental conditions. For 

example, lipase immobilized on ion exchange resins shows better stability in 

organic solvents [62], but the same is not true in aqueous media which is 

important for biosensor applications. On the other hand, methods which are 

widely used for biosensor applications like immobilization by using carbon 

paste and direct immobilization by activating electrode surface may not be 

suitable for other biotechnological applications. The development of methods 

for immobilizing an enzyme without affecting the stability and preserve the 

catalytic activity, is a critical point in the fabrication of a biosensor and 

requires a thorough study of the effects related to temperature, pH and 

denaturants. 

 

 

 

 

 



35 
 

 

1.5.5 Methods of immobilization of enzymes. 

Enzyme immobilization methods can be distinguished into two main classes: 

physical and chemical methods. The main advantage to fix the enzyme to a 

carrier material or inorganic support, is the improved stability of immobilized 

enzyme in respect to the enzyme free in solution.   

 

 

Figure 8. Scheme of enzyme immobilisation methods 
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Table 2. Common immobilization methods for biosensor construction 

Method Advantages Disadvantages 
Adsorption 
(physical) 

No modification of 
biocatalyst, matrix can be 
regenerated, low cost 

Binding forces are 
suceptible to change in pH, 
temperature and ionic 
strength, poor stability 

Entrapment 
(physical) 

Only physical confinement of 
the biocatalyst near the 
transducer 

High diffusion barrier, low 
stability 

Covalent bonding 
(chemical) 

Low diffusional resistance, 
stable under adverse 
conditions 

Harsh treatment by toxic 
chemicals, matrix not 
regeneratable 

Cross-linking 
(chemical) 

Loss of biocatalyst is 
minimum, moderate cost, 
can be prepared in desired 
shapes 

Harsh treatment of 
biocatalyst by toxic 
chemicals 

 

 

1.5.5.1 Physical methods. 

Physical methods of immobilization does not require chemical modification of 

the enzyme, so it is particularly suitable to avoid the risk of inactivating the 

enzyme. Physical methods of immobilization may be again divided into two 

classes. 

1.5.5.1.1 Adsorption 

The adsorption of an enzyme onto a water insoluble material is the simplest 

method for obtaining enzyme-support conjugates. The solution of bio-

molecules is put in contact with the active carrier material for a defined 

period of time. Thereafter, the molecules that are not adsorbed are removed 

by washing. . Since the adsorption is regulated by Van der Walls forces, a 
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change of pH, ionic strength, temperature, etc., may detach the bio-molecules 

from the carrier. 

1.5.5.1.2.Entrapment. 

In physical entrapment techniques, enzymes are introduced during the 

solidification/crosslinking stage of the matrix. Disadvantages of this method 

are the irregular pore size of the gel, lack of mechanical strength and 

diffusional limitations encountered by substrate and products. The 

disadvantages connected to this method are low sensitivity, poor lower 

detection limit and also poor stability of the biosensor. 

 

1.5.5.2 Chemical Methods. 

In these methods of immobilization, enzymes are chemically modified and 

coupled to carrier with the help of bi- or multifunctional reagents. There are 

many amino acid side chains that are amenable to chemical modifications of 

the enzyme. Depending on the nature of chemical modification, chemical 

methods are divided into two classes: Covalent coupling and Crosslinking. 

1.5.5.2.1 Covalent coupling. 

In covalent coupling, usually, first the water-insoluble support is activated, to 

which enzyme is then coupled. The reactive sites on the protein surface can 

be used for the coupling of the enzyme to the solid support. The surface of the 

inorganic support must be derivatized before activation. Most used molecules 
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as bridge between the inorganic and organic interface are: organosilanes like 

amino propyl triethoxysilane, marcapto propyl trimethoxysilane or glycidoxy 

propyl trimethoxysilane. Advantages of the use of covalent immobilization of 

enzymes, are that these immobilized enzyme preparations can be fabricated 

in sheets, beads, or membranes, which makes this method very useful for 

industrial and analytical applications. The most significant disadvantage is 

the relatively low recovery of the enzyme activity. This technique is 

particularly used to functionalized the electrode surface by a direct 

immobilization of the enzymes on the electrode. The amount of enzyme 

loaded on the electrode surface is small and may require a highly sensitive 

base sensor. These factors limit the application of immobilization by covalent 

coupling. 

 

1.5.5.2.2 Covalent crosslinking method. 

Biopolymers may be intermolecularly cross-linked by bi- or multi-functional 

reagents. The protein molecules may be cross-linked each other or with 

another functional protein (for example bovine serum albumine). 

Glutaraldehyde, bisisocyanate derivates, and bisdiazobenzidine are used as 

bifunctional reagents. The advantages of cross-linking are the simple 

procedure and the strong chemical binding of the biomolecules. The main 

drawback is the possibility of activity losses due to chemical alterations of the 

catalytically essential sites of protein. 
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CHAPTER 2 
 

 

 

 

 

 

SMARTPHONE EMBEDDED ENZYMATIC CHEMILUMINESCENCE-BASED 

BIOSENSOR FOR POINT-OF-NEED APPLICATION: SMARTCHOL 
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2.1 Introduction 

 

Today, smartphones  are not just phones, but are real miniaturized portable 

computers. They have several functions through which it is possible to meet 

users' needs and are finding wide use not only in recreational activities, but 

also in health and medicine. Thanks to the development of new apps and 

adding accessories, smartphones built-in functions and capabilities can be 

further extended. The extensive distribution of smartphones and tablets, 

together with cloud services ensuring pervasive connectivity, creates an 

incredible market, largely untapped, especially in the field of healthcare self-

management.1 The integration of smartphone camera as detector into point-

of-care (POC) analytical devices allow to realize a new evolution POC devices 

to perform tests outside clinical laboratories, even in low resource settings 

for critical and emergency medicine. Exploiting the multiple smartphone 

capabilities, it is possible to have an “all-in-one device”. Unlike existing 

biosensor technologies smartphone-based biosensor eliminate the need for 

separate devices and, after running the analytical test, processed data could 

be stored, or sent by E-mail to a physician to properly manage the diagnosis 

and follow-up, thus facilitating the new approach of “personalized medicine”.2 

In literature a lot of examples have been recently reported showing the use 

of smartphone-based platforms to detect biomarkers and analytes of clinical 

interest in bodily fluids including sweat, blood, and saliva.3,4 The smartphone 

camera has been previously used exploiting detection principles such as 

colorimetric measurements,5−7 fluorescence,8 and label-free formats.9 To the 

best of our knowledge, chemiluminescence (CL) has not yet been 

implemented as detection principle for smartphone-based biosensing. 
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In this work, for the first time, chemiluminescence (CL) is implemented as 

detection principle for smartphone-based biosensing. The main advantage of 

CL is the high sensitivity of technique that allows to improve the analytical 

performance of bioassays and measure down to 10−15−10−18 moles of the 

target analyte in a small volume or spot.10 Cooled charge-coupled device 

(CCD) is a suitable portable and compact device for the detection of proteins 

down to attomole levels and nucleic acids at femtomole levels. 11 Although 

their sensitivity is still lower than cooled CCDs,12 back-illuminated 

complementary metal-oxide semiconductors (BI-CMOS) integrated into 

smartphones could be suitable for the measurement of analytes present at 

medium-abundant concentrations (e.g., at micromolar levels) using CL 

detection. Coupled CL enzymatic reactions have been previously used to 

increase the sensitivity in comparison to conventional colorimetric 

substrates. Analytical assay based on CL coupled enzymatic reaction involves 

the use of oxidase enzymes such as glucose oxidase, cholesterol oxidase, urate 

oxidase that produce hydrogen peroxide, which, in turn, can be detected by 

the CL reaction with luminol and enhancers, catalyzed by horseradish 

peroxidase (HRP).13  The aim of this work is, for the first time, the use of  

smartphone camera as detector to image and quantify chemiluminescence 

coupled biospecific enzymatic reactions to measure analytes in blood. Using 

low-cost 3D printing technology17 we fabricated a smartphone accessory and 

a minicartridge for hosting biospecific reactions. As a proof-of-principle we 

develop a smartphone-based assay to quantify serum total cholesterol using 

cholesterol esterase/cholesterol oxidase in which the produced H2O2 is 

detected using the CL of the luminol− H2O2−HRP system. 
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2.2 Materials and Chemicals.  

Peroxidase type VI-A from horseradish 1080 units/mg, 3α-HSD, recombinant 

cholesterol oxidase from Brevibacterium sp. 50 units/mg protein, cholesterol 

esterase from Pseudomonas fluorescens (∼20% protein), hydrogen peroxide. 

Super Signal West Dura Extended Duration substrate was obtained from 

Thermo Scientific (Waltham, MA, USA). Blood  membranes LF1 and Whatman 

No.1 filter paper were purchased from Whatman International, Ltd. 

(Maidstone, England). 

2.3 Smartphone Camera Characterization. 

The smartphone used as CL detector has been an Iphone 5S (Apple, 

Cupertino, CA, USA) with a BI-CMOS sensor and 8-megapixel (8MP) camera. 

To evaluate the detection capabilities and sensitivity of smartphone camera, a 

comparative study has been performed by analyzing standard solutions of 

H2O2 by CL reaction with the smartphone camera and a thermoelectrically 

cooled MZ-2PRO CCD camera (MagZero, Pordenone, Italy) equipped with a 

Sony ICX285 image sensor (1360 × 1024 pixels, pixel size = 6.45 μm × 6.45 

μm) that has been previously reported by us.11 Briefly, a series of standard 

solutions of the system H2O2/luminol/enhancer/HRP with a concentration of 

hydrogen peroxide ranging from 0.01 μM to 10 mM where the reagents are 

adsorbed on a disk 4 mm in diameter were analyzed and the images collected 

with the two instrumentations (Figure 1). The images have been processed 

with ImageJ software to measure the signal over the sample spot area and 

expressed as relative light units (RLUs). 
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(a)                         (b)  
Figure 1. (a) Thermoelectrically cooled MZ-2PRO CCD camera (MagZero) equipped with a Sony 
ICX285 image sensor (1360 x 1024 pixels, pixel size 6.45 x 6.45 μm2) (b) Iphone 5s  with BI-CMOS 
sensor and 8MP camera. 
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2.4 3D-Printed Smartphone Accessory Device Fabrication. 

The assay minicartridge and the mini darkbox smartphone accessory were 

fabricated using the low cost 3D-printing technology. In particular have been 

used  a dual-extrusion 3D printer Replicator 2X (Makerbot, Boston, MA, USA), 

and a thermoplastic black acrylonitrile butadiene styrene polymer as 

fabrication material. To create three-dimensional (3D) models have been 

used the open-source Tinkercad browser-based 3D design platform (Auto-

desk, Inc.). MakerWare v.2.4 software, which uses an algorithm that slices 

digital files (exported as .stl files) into thin layers for 3D printing, was used to 

define printing options and settings. 

 
Figure 2. (a) Picture of the accessory, (b) picture of the minicartridge, and (c) picture of the 
accessory snapped into the smartphone. (d) Schematic cutaway drawings of the minicartridge 
showing the integration of the various components. The transparent ABS optical window (200 μm) 
of 4 mm diameter allows imaging of biochemiluminescent reaction. (e) Introduction of the 
minicartridge into the accessory and (f) picture of a representative CL acquisition with the 
smartphone. 
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The device accessory is composed of of two main parts: a phone adapter 

comprising the darkbox and lens holder and a cartridge for the bioassays 

(Figure 2). The depicted accessory, complementary as external housing 

accessory for the Iphone 5S,  holds a plano-convex lens 6 mm in diameter 

(Edmund Optics, York, U.K.) in contact with the phone objective and a mini-

cartridge (3.5 cm length, 1.2 cm width, and 5 mm thickness) with an optical 

window of 4 mm diameter, made by a thin layer (200 μm) of transparent 

acrylnitrile butadiene styrene (ABS, from Amazon.co.uk) deposited exploiting 

the dual-extrusion printing option. The disposable mini-cartridge contains a 

blood separator pad holder, with a LF1 glass fiber filter, connected to a 

reaction chamber where a 4 mm nitrocellulose disk supporting the specific 

enzymes is placed. A separate 15 μL reservoir for  CL reagents is connected 

via microfluidics to the reaction chamber at 200 μm height in order to 

prevent premature mixing. The minicartridge consists of two separate pieces, 

which are then glued together, in order to insert the specific supports and 

solutions. 

2.5 Sample Collection.  

Microsafe collection and dispensing tubes (with preset volume of 15 μL) were 

used for fingerprick sampling and dispensing of whole blood into the 

minicartridge.  

 

2.6 Total Cholesterol Smartphone-Based Assay (SmartChol).  

The assay principle consists in coupling three enzymatic reactions: (1) 



52 
 

 

esterified cholesterol hydrolysis by cholesterol esterase, (2) cholesterol 

oxidation by cholesterol oxidase, and (3) CL detection of the produced 

hydrogen peroxide using Super Signal West Dura Luminol/ Enhancer solution 

in the presence of HRP as a catalyst. 

The optimized assay conditions are the followings: the enzymes (1U 

cholesterol oxidase, 0.5U cholesterol esterase, and 0.05U HRP) have been co-

absorbed on the nitrocellulose disk (4 mm diameter), while a reagents’ 

reservoir contains the CL reagent (15 μL). A volume of 15 μL of blood is 

inserted into the minicartridge from the back inlet by touching the exposed 

pad. Within 2 min, the serum is directed toward the reaction chamber, where 

enzymatic reactions take place. CL reaction is triggered 3 min after sample 

injection with a simple flick in order to drive the CL reagent from the 

reservoir to the reaction chamber. The minicartridge is then inserted into the 

smartphone mini darkbox accessory and the light signal measured by the 

smartphone camera for 30 s using LongExpo app (Eyetap Soft LLC). To 

process the CL images and obtained quantitative results has been used ImageJ 

software v.1.46 (National Institutes of Health, Bethesda, MD). Regions of 

interest (ROIs) corresponding to the detection chamber and back-ground 

were selected and light emissions quantified as raw integrated densities. 

GraphPad Prism (GraphPad Software, Inc., La Jolla, CA) was used to plot CL 

signal as a function of total serum cholesterol concentration. Cholesterol 

Trinder assay (FAR Diagnostics, Verona, Italy) was used to evaluate accuracy 

of SmartChol. The standard solution of 200 mg/dL cholesterol contained in 

the kit was concentrated via rotary evaporation to obtain cholesterol 

solutions in the range of 140−386 mg/dL that were added to charcoal-

stripped serum. 
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2.7 Results and Discussion 

The simple accessory developed in this work was designed with the aim of 

using the smartphone camera as a luminometer, to measure the light 

produced by  CL systems coupled with analyte specific enzymatic reactions. 

2.7.1 Smartphone Camera Analytical Performance.  

New generation smartphones use BI-CMOS photodiodes as light sensors to 

increase light collection with reduced size. Compared to the conventional 

front-illuminated light sensors, this architecture allows one to reduce the 

pixel pitch and increase the optical efficiency,12 making mobile devices 

suitable to detect very weak light signals, such as those produced by CL 

reactions, with reasonable exposure time (e.g., few seconds, minutes). 

A comparative study using a lensless cooled CCD camera, previously reported 

by us,11 and an iPhone 5S, showed that the BI-CMOS is less sensitive but still 

adequate to measure the photons produced by CL reactions and to detect 

analytes present at concentrations from the micromolar level to the 

millimolar level, with the advantage of being integrated in a smartphone . For 

this purpose, a series of standards solutions of the system 

H2O2/luminol/enhancer/HRP with a concentration of hydrogen peroxide 

ranging from 0.01 μM to 10 mM were analyzed and the images collected with 

the two instrumentations (Figure 1). In terms of resolution, the images 

obtained with the smartphone camera show better performance thanks to 

the inclusion of a plano-convex lens to focus the image. In this configuration, 

two spots of 4 mm diameter at a distance of 1 mm can be simultaneously 

imaged without cross-talk, fitting the smartphone display size.  
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Figure 3. Chemiluminescence calibration curves for a series of standards solutions of the system 
H2O2/luminol/enhancer/HRP. 
 

 
Concerning detectability, even if the cooled CCD is able to image and quantify 

a concentration of H2O2 three decades lower, the BI-CMOS detector is suitable 

for detecting analytes present in biological fluids at micromolar levels, as the 

majority of common biomarkers of clinical interest. 

2.7.2 3D-Printed Accessory Device.  

We fabricated a compact smartphone accessory and a minicartridge for 

specific enzymatic reactions using a desktop 3D printer obtaining rapidly 

several prototypes, avoiding to realize for each one a master, such as with 

polydimethylsiloxane (PDMS) protocols. In addition, physical 3D models were 

quickly  generated with a printing time of ∼10 min for the minicartridge and 

30 min for the accessory. 3D models were easily designed using computer-

aided design (CAD) programs, converted to Stereo Lithography (.stl) file 

format and elaborated with a slicer software that allows the 3D object to be 

printed as subsequent layers of thermoplastic material at a defined horizontal 

resolution. ABS, which becomes moldable at 220−230 °C, was used as 

printing material. We chose to use an affordable yet versatile 3D printer that 
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allows one to print objects with two different colors or materials in order to 

develop more-sophisticated devices with less printing steps. This feature was 

exploited to create a 200-μm thin transparent ABS-based window over the 

minicartridge reaction chamber allowing the acquisition of CL signals while 

preventing any leakage. The constructed smartphone accessory device can be 

easily snapped to the smartphone, providing a minidarkbox for the 

minicartridge.  
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2.7.3 Total Cholesterol Quantification by Smartphone-Based Assay 

(SmartChol).  

 

The smartphone-based assay (SmartChol) quantifies the total cholesterol in 

15 μL of whole blood by exploiting cholesterol esterase and cholesterol 

oxidase that produces cholest-4-en-3-one and H2O2. The hydrogen peroxide is 

then measured reacting with luminol, enhancers, and HRP as a catalyst, 

producing light emission of CL reaction. In the minicartridge there are: a pad 

for one-step serum separation from whole blood, a nitrocellulose disk in 

which the enzymes, i.e., cholesterol esterase, cholesterol oxidase, and HRP, 

are co-adsorbed and a reservoir containing Super Signal West Dura for CL 

reaction. The ABS hydrophobicity and channel width avoid that no accidental 

release of the reagents occurs. In order to achieve the highest CL signal with a 

reasonably stable kinetics, different conditions were optimized including pH 

and concentrations of enzymes and reagents. Under the optimized conditions,  

the CL signal is proportional to the cholesterol concentration in the sample 

with a linear range from 20 mg/dL to 386 mg/dL and a limit of detection 

(LOD) of 20 mg/dL.  

 
Figure 4. Chemiluminescence calibration curve for cholesterol obtained with standard cholesterol 
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solutions in phosphate buffer 0.1M, pH 7.0. Data represent the mean value ± SD of three 
measurements. 

 

Figure 5 shows CL images acquired with the smartphone and quantitative 

analysis of physiologically relevant cholesterol concentration range (>240 

mg/ dL). 

 
Figure5. (a) Raw BL images of six charcoal-stripped human serum samples spiked with cholesterol 
measured by the smartphone camera, using the LongExpo app (30 s) showing low, medium, and 
high cholesterol concentrations. (b) Quantitative analysis of the same samples measured with 
SmartChol. Data represent the mean values ± the standard deviation (SD) obtained using three 
different minicartridges. 

 

The accuracy of the smartphone total cholesterol assay was determined by 

quantifying cholesterol levels in serum samples in the range of 140−386 

mg/dL and comparing them to results obtained using a commercial kit. At 

each concentration, six minicartridges were used and the within-run 

coefficient of variation was 5% for the sample containing 240 mg/dL 
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cholesterol. Figure 6 shows the correlation between SmartChol and Trinder 

method obtained analyzing 10 serum samples of unknown cholesterol 

concentration (r2 = 0.996, p < 0.0001). The smartphone-based CL test is able 

to discriminate and quantify the total cholesterol over the entire range of 

physiological values. Physiological desirable serum cholesterol levels (<200 

mg/dL) are reliably discriminated from border-line-high (200−240 mg/dL) 

and high risk values. 

 
Figure 6. (a) Correlation between SmartChol and Trinder method obtained analyzing 10 serum 
samples of unknown cholesterol concentration (r2 = 0.996, p < 0.0001).  
 
As shown by results, SmartChol assay has similar analytical performance 

when compared to electrochemiluminescence-based cholesterol biosensor 

(linear range from 0.83 mM to 2.62 mM, detection limit = 0.28 μM).19 Even if 

the reported assay having a higher LOD than other amperometric 

biosensors,20,21 it has the non-negligible advantage of requiring only a 

smartphone, thus eliminating the need to have additional detectors or 

devices for the test with a cost of ∼3−5 euros per assay including 

manufacturing and reagents. The availability of this simple and minimally 

invasive tool to measure blood cholesterol could be of clinical utility for 

several diagnostic needs such as the monitoring of subjects with ischemic 

stroke high risk, post-menopausal women, diabetic children, and, more 
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generally, to monitor a patient’s metabolic status.  

2.8 Conclusion 

The aim of this work has been to demonstrate, for the first time, that the 

smartphone camera can be used to image and quantify the light produced by 

chemiluminescence reactions used to amplify analyte-specific enzymatic 

reactions. A simple and compact smartphone accessory has been prototyped 

and fabricated using facile and cost-effective three-dimensional (3D) printing. 

This accessory has the dual role of acting as a darkbox for shedding from 

ambient light and hosting the minicartridge, used to perform analytical assay. 

The suitability of this accessory was demonstrated with SmartChol for 

measuring cholesterol in serum. This assay can be performed within 3 min in 

a very straightforward manner with just few easy actions: snap the accessory 

onto the smartphone, add sample (e.g., 15 μL of blood) to analyte-specific 

minicartridge, introduce the minicartridge in the accessory and flick it, wait 3 

min, and get results. The SmartChol could find relevant applications in the 

monitoring of cholesterol levels in children at risk with the possibility to 

perform the assay in pediatric outpatient clinic, helping the management of 

childhood obesity.24 Therefore, potential future applications span from 

monitoring of pregnancy with cholestasis, to infants with cholestatic jaundice, 

patients with duodenum gastric reflux, to pharmacological therapy 

monitoring. The extreme simplicity of the device widens it applicability and 

makes it suitable for the detection of many analytes of clinical interest, for 

instance any H2O2 producing oxidases such as those specific for glucose, 

lactate, and ethanol. Therefore, SmartChol could be considered as the 

forerunners of the integration.  
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3.1 Introduction 

Today, smartphones are becoming increasingly popular and are 

revolutionizing our lifestyles. Their use is no longer limited only to a private 

and recreational scope. It is used as a means of communication but, thanks to 

their various functionalities, it is integrated into the way we work. In fact 

there are many apps that allow us to exchange data and documents at various 

levels, through mails, bluetooth, internet, social networks. The computing 

power of smartphones, also allows you to write, edit and process documents 

and files in all areas. Particular interest is growing towards the development 

of apps for healthcare delivery, providing medical and diagnostic tools to 

reserved respond to need of end-users. In September 2013, the Food and 

Drug Administration (FDA) recommended that apps providing medical and 

scientific information can be distinguished from those with diagnostic 

potential.1 This distinction allows healthcare professionals and policy-makers 

to identify those apps which fall under the remit of the FDA. In contrast to 

conventional point-of-care (POC) devices, smartphone-based diagnostics 

eliminate the need for dedicated equipment. The smartphone itself can act as 

a transducer or detector and perform data analysis. Smartphones offer 

photography (still and video), location and other sensors (global positioning 

system [GPS], accelerometers, etc.), the long-distance transfer of information 

(data and images) via text messaging (Short Message Service – SMS), built-in 

apps (e-mail, calendar, document readers, etc.), the possibility of developing 

or installing new apps, and wireless data service.  

It is possible to download or buy a lot of apps specific for health self-

management, limited to medication reminders, post-intervention 

questionnaires, therapy adjustments, and supportive messages for patients 
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with chronic diseases like diabetes and asthma.2,3 Exploiting smartphone 

technology, it is much more challenging to use smartphones as instruments 

for point-of-need analysis, e.g. immuno- or enzyme-based tests. In literature, 

there are several examples which demonstrate the feasibility of this approach 

for monitoring biomarkers in biological fluids such as blood, saliva, and sweat 

using enzymatic reactions, paper-based immunoassays, and lateral ow 

immunoassays (LFIAs).4–6 Mobile phone embedded cameras have already 

been used for fluorescence or colorimetric detection to measure analytes and 

detect infectious pathogens in environmental and clinical samples.7–9 In a 

recent paper, Oncescu et al. have developed a smartphone accessory and a so 

ware app for measuring cholesterol levels in blood, based on the colorimetric 

changes induced by enzymatic reactions on a dry reagent paper strip.10 

Polymerase chain reaction (PCR) has also been integrated into a smartphone-

assisted device by combining solar heating with microfluidics.11 In contrast to 

fluorescence detection, CL produces photons as a byproduct of a chemical 

reaction, with no need for a light source. This bypasses problems connected 

with background fluorescence and light scattering.12 The main difficulty to be 

considered for the development of CL smartphone-embedded devices is that, 

despite the possibility of achieving low detection limits, CL is characterized by 

very low light emission intensities, especially when compared to 

fluorescence.13,14 Therefore, CL detection requires highly sensitive detectors 

and must be performed in a darkbox to avoid interference from ambient light. 

The latter inconvenience can be easily solved by adopting a light-proof 

minicase.  

The monitoring of lactate levels is relevant for diabetes control, sport 

medicine, and for critical-care patients at the risk of heart attack. There is a 

close relationship between lactate accumulation and muscle fatigue. Reaching 



66 
 

 

of anabolic threshold can be easily assessed by lactate monitoring. Lactate can 

be quantified in different biological fluids, including blood, saliva, and sweat.17 

Several lactate biosensors based on different detection principles 

(chemiluminescence and amperometric detection) have already been realized 

to evaluate the endurance performance of athletes via lactate monitoring in 

sweat and blood. 

 

The aim of this work is  the development of a smartphone-based device for 

non-invasive and easy monitoring of the endurance performance of athletes 

via lactate detection. This biosensor relies on CL detection and exploits the 

lactate oxidase (LOx) catalyzed reaction coupled with the enhanced 

luminol/H2O2/ horseradish peroxidase (HRP) CL system. The device was 

fabricated with low-cost 3D printing technology and is composed of a 

disposable analytical minicartridge, a mini dark box to avoid interference 

from ambient light during measurement, and a holder to connect the dark box 

to a smartphone. We have shown that the device could be used for the 

reliable real-time measurement of lactate levels in oral fluid and sweat 

samples. In principle, this biosensor could also find applications in detecting 

other analytes of clinical interest in oral fluid and sweat. 
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3.2 Materials and methods 

3.2.1 Chemicals 

Peroxidase (type VI-A from horseradish, 1080 U mg_1 protein), L-lactate 

oxidase (from Pediococcus sp., 50 U mg_1 protein), L-lactate sodium salt, L-

histidine monohydrochloride mono-hydrate, mucin (type II from porcine 

stomach) and urea were supplied from Sigma Aldrich (St. Louis, MO). Sodium 

chloride, disodium hydrogen orthophosphate anhydrous, sodium dihydrogen 

orthophosphate monohydrate were supplied from Carlo Erba Reagents S.r.l. 

(Milano, Italy). The luminol-based HRP substrate Super Signal® West Dura 

was from Thermo Scienti c (Waltham, MA). Artificial sweat was prepared 

according to the International Standard Organization (ISO105-E04-2008E) 

and the British Standard (BS EN1811-1999) with a pH 5.5 [0.05% (w/v) L-

histidine monohydrochloride monohydrate, 0.50% (w/v) NaCl, and 0.22% 

(w/v) NaH2PO4·2H2O].22 Artificial saliva at pH 7.2 was prepared by dissolving 

0.6 mg mL_1 Na2HPO4, 0.6 mg mL_1 anhydrous CaCl2, 0.4 mg mL_1 KCl, 0.4 mg 

mL_1 NaCl, 4.0 mg mL_1 mucin and 4.0 mg mL_1 urea in deionised water 

according to Tlili et al.23 The fluorometric lactate enzymatic assay in the 

standard 96-well microtiter plate format (EnzyFluo™ L-Lactate Assay Kit) 

was bought from BioAssay Systems, Hayward, CA and used according to the 

manufacturer's instructions. 
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3.2.2 Smartphone camera performance comparison 

The performance of the smartphone (Samsung Galaxy SII Plus, Samsung 

Group, Seoul, South Korea) embedded camera was compared with that of a 

benchtop low-light luminograph equipped with a thermoelectrically cooled 

CCD camera (LB 981 Night Owl, Berthold Technologies GmbH & Co. KG, Bad 

Wild-bad, Germany). A battery-powered blue LED (max = 466 nm) was used 

as a model source. To evaluate the response of the cameras to different light 

intensities, the emission of the LED was attenuated using Kodak Wratten 2 

neutral density (ND) filters of known optical density (Edmund Optics, 

Barrington, NJ). The image exposure time was set to 30 s for both cameras. 

For evaluation of the signal-to-noise (S/N) ratios of the images, signals (S) 

were calculated by averaging the pixel intensity over the LED image area, 

while noise (N) was taken as the standard deviation of the mean pixel 

intensity in a dark image area. 
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3.2.3 3D printed analytical device fabrication 

 

Fig. 1 The 3D printed analytical device made of black and transparent ABS polymers consisting of 
three separate components: a disposable analytical cartridge (42 mm _ 28 mm) with two reaction 
chambers, two reagents' reservoirs and a sample chamber, a mini dark box, and a smartphone 
adapter. (A) Cross-sections of the analytical cartridge and the cartridge lid and (B) the horizontal 
section of the analytical cartridge showing the internal chambers and fluidic connections. (C) Photo 
of the cartridge-lid assembly and of the mini dark box and smartphone adapter. 

 

The analytical device (Fig. 1) has been fabricated using as materials the black 

and transparent acrylonitrile-butadiene-styrene (ABS) polymers and has 

been printed using a low-cost commercial 3D printer (Replicator 2X Desktop 

3D Printer, MakerBot Industries, New York, NY). The device was designed 

using the open-source Tinkercad browser-based 3D design platform 

(Autodesk, Inc.). Files were exported as .stl les and MakerWare v.2.4 so ware, 

an algorithm that slices digital into thin layers for 3D printing, was used to 

define printing options and settings. The device is composed of three separate 

components: (a) a disposable analytical cartridge, (b) a mini dark box, and (c) 

a smartphone adapter. The analytical cartridge (42 mm × 28 mm) contains 

two reaction chambers (sample and control reaction chamber) (diameter 4 

mm, depth 5 mm) with small 4 mm-diameter disks of the nitrocellulose 

membrane, onto which LOx and HRP are co-absorbed. The enzyme amounts 

immobilized on the disks were as follows: LOx 1.0 U (for sweat analysis) or 

0.02 U (for saliva analysis), horseradish peroxidase 0.1 U. Two reagents' 

reservoirs adjacent to each reaction chamber (diameter 4 mm, depth 3 mm) 
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contain the luminol/enhancer solution of the Super Signal® West Dura HRP 

CL reagent (10 L) and a 0.1 M, pH 7.0 buffer phosphate solution (10 L). The 

buffer reservoir adjacent to the control reaction chamber also contains L-

lactate in artificial saliva or sweat matrices (the same volume of the sample 

analyzed: 15 L) to provide an adequate control (2.0 mmol L_1 and 4.0 mmol 

L_1 lactate for saliva and sweat, respectively). The sample reaction chamber is 

connected to a sample insertion well (diameter 9 mm, depth 4 mm), by which 

the biological fluid to be analyzed can be added. The cartridge is covered by a 

cartridge lid that avoids fluid leakage during storage and use of the cartridge. 

The lid can be fitted on the cartridge in two different orientations. When the 

cartridge is not in use, two lid pins are inserted in the reaction chambers, 

blocking the channels connecting the reaction chambers to the reagents' 

reservoirs and avoiding premature mixing of the reagents. During the 

analysis, the lid is fitted onto the cartridge in the opposite orientation: the 

reagents can freely flow from the reservoirs to the reaction chambers and 

two transparent ABS pins are inserted in the reaction chambers, allowing 

measurement of the CL emission. The lid holds a further pin with a patch (9 

mm diameter, 2 mm thickness) right by the sample insertion well, which 

allows a fixed volume of sample to be transferred to the sample reaction 

chamber. The mini dark box contains the analytical cartridge during the 

measurement, ensuring its correct positioning and avoiding interference from 

ambient light. The smartphone adapter holds the mini dark box and can be 

snapped onto the smartphone to correctly position the dark box in relation to 

the smartphone embedded camera. The adapter includes a plano-convex 

plastic lens (diameter 6 mm, focus 12 mm), which focuses the image of the 

reaction chambers of the cartridge onto the smartphone camera. 
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3.2.4 Assay procedure 

Oral fluid and sweat are collected by unsnapping the lid from the cartridge 

and applying the patch on the lid to the skin of the forearm or forehead or to 

the tongue, respectively. The lid is then inserted into the cartridge in the 

measurement orientation by applying a slight pressure. This closes the 

cartridge and drives a fixed volume of sample (15 L) into the reaction 

chamber. The CL enzymatic reaction is then triggered a after sample injection 

with two simple flicks, which drive the buffer phosphate solution (and the L-

lactate standard for the control) and the CL reagent from the reservoirs to the 

reaction chambers. The cartridge is then inserted into the mini dark box 

camera, which is already snapped to the smartphone. The light signal is 

measured by using the smartphone camera. Suitable smartphone 

photography apps are used to control the exposure time (which must be long 

enough to achieve the required detectability) and for image handling. For 

android-based smartphones, we used the Camera FV-5 (Android) Lite app to 

perform long (60 s) image acquisitions. Quantitative analysis of the CL images 

was performed using the open source so ware ImageJ v.1.46 (National 

Institutes of Health, Bethesda, MD). Regions of interest (ROIs) corresponding 

to the sample and control detection chambers, as well as a ROI of the same 

dimension in a dark area of each image for subtraction of the background 

signal, were selected. Light emissions of CL reaction were quantified as raw 

integrated densities. GraphPad Prism v. 5.04 (GraphPad So ware, Inc., La Jolla, 

CA) was used to plot the CL signal as a function of lactate concentration and 

for least-squares fitting of calibration curves. 
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3.3 Results and discussion 

The aim of this work was to develop a portable lactate CL biosensor to 

measure L-lactate levels in oral fluid and sweat, based on the coupling of the 

enzymatic oxidation of lactate catalyzed by L-lactate oxidase with the 

luminol/H2O2/HRP CL system. We realized a simple device using disposable 

analytical cartridges to detect  the light photons produced by the enzyme 

reaction using a smartphone embedded camera. This device exploits the 

backside-illumination complementary metal-oxide semiconductor (BI-CMOS) 

sensors integrated into modern smartphones. These offer improved low-light 

performance in comparison with conventional front-illuminated CMOS 

sensors. The device also takes advantage of low-cost 3D printing 

technologies, which allowed the rapid prototyping and production of device 

components. 

3.3.1 Smartphone camera performance 

Chemiluminescent reactions produce weak light emissions. An estimation of 

the light detectability required to satisfy the analytical requirement of the 

device can be done as follows. According to the L-lactate content of oral fluid 

with a physio-logical range of 0.1–2.5 mmol L_1 and sweat with values that 

vary up to 25 mmol L_1 according to an individual's metabolism and physical 

performance,24–26 we need a minimum L-lactate detectability of the order of 

0.1 mmol L_1. At this concentration level, a 15 mL sample of biological fluid 

contains as low as 1 nmole of L-lactate, which will be converted by L-lactate 

oxidase to the same amount of hydrogen peroxide. Assuming a quantum 

efficiency of the luminol/H2O2/HRP CL system of the order of 0.01, the HRP-

catalyzed reaction of the hydrogen peroxide with luminol will produce about 
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1013 photons, which should be imaged and detected by using the smartphone 

embedded camera. By taking into account the system optics and geometry, it 

could be estimated that the light collection efficiency of the device (the 

fraction of the photons emitted by the sample that effectively reach the CMOS 

sensor) should be of the order of 5%. Finally, by considering that the image of 

a reaction chamber of the cartridge covers an area of about 2.8 × 105 image 

pixels, we concluded that the minimum light detect-ability required is around 

103 photons per image pixel. We preliminarily compared the performance of 

the smartphone embedded camera to that of a low-light luminograph 

equipped with a thermoelectrically cooled CCD camera using a model LED 

light source. Both systems showed a good correlation between measured 

signals and light intensities. However, for any given intensity of the model 

light source, the S/N ratios of the luminograph images were about three 

orders of magnitude higher than those of the images acquired with the 

smartphone embedded camera (data not shown). Since the S/N ratio deter-

mines light detectability, it could be concluded that the minimum light 

intensity detectable with the smartphone embedded camera is about three 

orders of magnitude higher than that of the low-light luminograph. The lower 

light detect-ability of the smartphone embedded camera could be ascribed to 

several factors, such as the smaller pixels (1.4 × 1.4 mm2 vs. 9 × 9 mm2) and 

the absence of a sensor cooling system, which resulted in a higher thermal 

noise. Nevertheless, the sensitivity of the smartphone camera is still adequate 

for the quantitative measurement of analytes through enzyme-catalyzed CL 

reactions, at least for species present at relatively high concentrations, 

providing a careful optimization of the analytical system.  
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3.3.2 Analytical device design 

The analytical device obtained by low-cost 3D printing technology27 is 

designed to be snapped onto a Samsung Galaxy SII smartphone, allowing a 

simple one-step analytical procedure after introducing a sample into the 

cartridge. The 3D printing technology allows rapid prototyping of the 

analytical device (particularly the adapters, which are designed to t a specific 

smartphone model according to its size and the camera position). In principle, 

the system could also be adapted to tablets. Due to their larger screens, 

tablets may be preferable to smartphones for applications requiring image 

visualization (e.g. cell imaging or lateral ow immunochromatographic 

analyses). The analytical cartridge is the critical component. It allows a simple 

one-step analytical procedure in which a defined amount of sample is 

introduced into the cartridge and mixed with the enzymes and other 

reactants. Since enzyme reactions (thus CL emission intensities) are affected 

by temperature and other environmental variables, the cartridge includes a 

suitable control to improve assay accuracy and reproducibility. 

To fulfill these requirements, all the reagents required for the analysis are 

already contained in the analytical cartridge, either in the reagents' reservoirs 

or, in the case of the enzymes LOx and HRP, immobilized in the dry state on a 

nitrocellulose membrane. The analytical cartridge contains two separate 

reaction chambers (each of them connected to its own reagents' reservoirs), 

in which the sample and a lactate control are analyzed in parallel. For 

quantitative analysis, the CL signal of the sample is normalized to that of the 

control (2.0 mmol L_1 or 4.0 mmol L_1 lactate for oral fluid or sweat, 

respectively). In addition, the control sample is prepared in artificial oral fluid 

or artificial sweat to take into account the effect of the sample matrix on the 
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intensity of the CL signal. The whole analytical procedure is simply controlled 

by acting on the cartridge lid. Removal of the lid allows the reagents to ow 

from the reservoirs to the reaction chambers. The lid is also used for 

collecting and transferring oral fluid or sweat samples: upon collection of the 

sample in the lid patch, inserting the lid into the cartridge drives a fixed 

volume of sample (15 L) into the sample reaction chamber. Afterwards, 

shaking the cartridge transfers the reagents into the reaction chambers and 

initiates the enzyme reactions leading to light emission. 

 

3.3.3 Assay optimization. 

Due to the relatively low sensitivity of the embedded smart-phone cameras, 

experimental conditions (enzymes concentrations, pH, sample volumes, etc.) 

were optimized to provide a strong CL signal and a relatively fast emission 

kinetics. 

 

3.3.4 Enzyme immobilization.  

The enzymes required for the assay enzymes were co-absorbed on small 

nitrocellulose membrane disks (diameter 4 mm) placed in the reaction 

chambers of the analytical cartridge. Nitrocellulose membranes are 

commonly used for protein absorption because of their high binding capacity 

and low background staining, and because physical immobilization of 

enzymes on membranes is easy and does not affect enzyme activity as much 
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as covalent bonding or cross-linking methods. The enzyme amounts were 

optimized to obtain intense CL signals and fast reaction kinetics (rapid 

conversion of lactate into pyruvate and H2O2 followed by the HRP-catalyzed 

oxidation of luminol by H2O2) even in the presence of large amounts of 

lactate. Because of the higher lactate concentrations in sweat, different 

optimal amounts of LOx were individuated for the two matrices: cartridges 

for sweat analysis were loaded with a larger amount of LOx (1.0 U) than those 

for analysis of oral fluid (0.02 U). But both cartridges contained the same 

amount of HRP (0.1 U).  

 

3.3.5 Emission kinetics. 

 To achieve a low detection limit, it was necessary to collect a large fraction of 

the light emitted by the CL enzyme reaction. In addition to optimizing the 

geometry of the device, a suitable integration time was selected for acquiring 

the CL signal from the cartridge. The analysis of the kinetic pro les of the CL 

emission in the presence of different amounts of lactate showed the light 

emission kinetics emission slightly depended on the concentration of lactate. 

The maximum emission intensities were obtained at times varying from 15 s 

(for the lowest lactate concentrations) to 30 s (for the highest ones) upon 

introduction of the sample and triggering of the enzymatic reactions (Fig. 2). 

According to the kinetics of the reaction, an integration time of 60 s upon 

insertion of the cartridge into the device was chosen to collect at least 90% of 

the overall light emission independently from the lactate concentration of the 

sample. 
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Fig. 2 Chemiluminescence kinetic profiles obtained for the analysis of artificial sweat samples 
containing different lactate concentrations in the range 0.1–20 mmol L_1. Kinetics measurements 
were performed by imaging the analytical cartridge using an electron multiplying charge coupled 
device (EM-CCD) camera (ImagEM-X2, Hamamatsu, Japan) 
 

3.3.6 Matrix effect. 

 To perform a reliable measurement of lactate in real samples, the possible 

interference of oral fluid and sweat matrices on the CL signal was evaluated. 

To study the matrix effect, we compared the CL emissions obtained for 

samples with low (1 mmol L_1) and high (8 mmol L_1) lactate levels prepared 

in artificial oral fluid (or sweat) and in phosphate buffer. The sample matrices 

caused a significant decrease of the intensity of the CL signal (about 60–70% 

and 40% for oral fluid and sweat, respectively). A similar reduction of the CL 

signal was also observed by analyzing real samples prepared by spiking oral 

fluid and sweat samples with negligible (less than 0.1 mmol L_1) lactate 

concentrations with known amounts of lactate. To take into account the 

matrix effect, the calibration curves used for the quantitative analysis of 

lactate, as well as the control samples in the cartridges, were obtained using 

lactate solutions prepared in artificial oral fluid and sweat. This allowed a 

reliable evaluation of lactate concentrations in real samples as reported 

below. 
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3.3.7 Analytical performance 

 

Fig. 3 (A) Images obtained by analyzing lactate standard solutions in artificial oral fluid and 
calibration curves obtained in (B) oral fluid and(C) sweat. Chemiluminescence signals were 
normalized to the CL signals obtained for the control samples (2.0 and 4.0 mmol L_1 for oral fluid 
and sweat, respectively) of the same cartridge. The least-square fitting of the experimental data 
according to the empirical equation y = a(1 – e-bx) is also shown (R2 = 0.98–0.99). Data points 
represent the mean ± SD of three replicates. 

 

Fig. 3B and 3C show the calibration curves obtained by analyzing standard 

lactate solutions prepared in artificial oral fluid and sweat following the 

optimized analytical procedure described above. Each measure was 

performed in a separate cartridge and the CL signal obtained for the sample 

was normalized to the value recorded for the control (2.0 and 4.0 mmol L_1 

for oral fluid and sweat, respectively) in the same cartridge. Signal 

normalization is expected to increase assay reproducibility by reducing the 

effect of environmental variables (e.g. temperature) and other factors on the 

intensity of the CL signal. The CL signal showed a nonlinear dependence on 

the lactate concentration. To perform quantitative analysis, calibration curves 

were obtained by fitting the experimental data with the empirical equation y 

= a(1 – e-bx), where y and x represent the CL signal and the lactate 

concentration, respectively. According to the calibration curves, limits of 

detection (LOD) of 0.5 mmol L_1 (corresponding to 4.5 mg dL-1) and 0.1 mmol 
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L-1 (corresponding to 0.9 mg dL-1) of lactate were obtained in oral fluid and 

sweat, respectively. In addition, the smartphone-based lactate biosensor 

allowed measurement of lactate in oral fluid and sweat along the entire range 

of physiological values. 

3.3.8 Assay validation 

To validate the assay, oral fluid and sweat samples were analyzed in parallel 

with the smartphone-based lactate biosensor and with a commercial L-lactate 

enzymatic assay based on the lactate dehydrogenase-catalyzed oxidation of 

lactate, in which the formed NADH reduces a probe into a highly fluorescent 

product. Fluorescence detection allowed us to achieve a LOD (1 mmol L_1) 

lower than that of colorimetric lactate enzymatic assays. Samples could thus 

be analyzed upon dilution to avoid any matrix effect. Fig. 4 compares the 

concentrations measured in oral fluid and sweat samples, which indicated a 

good correlation between the effective concentration of lactate in the samples 

and the results obtained with the smartphone-based lactate biosensor. 

 
Fig. 4 Comparison of the lactate concentrations measured in (A) oral fluid and (B) sweat samples 
using the smartphone-based lactate biosensor and a fluorometric L-lactate enzymatic assay kit 
performed in the standard 96-well microtiter plate format (EnzyFluo™ L-Lactate Assay Kit). Each 
data represents the mean ± SD of three replicates. 
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3.3.9 Application 

Lactate levels increase during intense physical exercise, thus they are an 

indicator of performance development in training regimes, especially 

endurance sports. To demonstrate the applicability of the smartphone-based 

biosensor for monitoring lactate levels during physical exercise, we measured 

the lactate in sweat during the running track performed by a volunteer. Fig. 5 

shows the sweat lactate pro le measured in the volunteer and obtained by 

collecting  and immediately analyzing sweat sampled at regular intervals (10 

minutes). The data clearly showed the increase in lactate concentration 

during the exercise activity, demonstrating the possibility of real-time 

monitoring of lactate levels. 

 
Fig. 5 (A) Lactate concentrations in sweat measured in real-time during the exercise activity 
performed by a volunteer (each data represent the mean _ SD of three replicates). Sweat samples, 
collected by unsnapping the lid from the cartridge and applying the patch on the lid to the skin of 
the forearm or forehead, were taken at 10 min intervals and immediately analyzed. (B) Picture of a 
representative CL acquisition with the smartphone. 

 

Measurement of lactate in sweat or oral fluid also allowed assessment of the 

athlete's anaerobic threshold, i.e. the exercise level above which pyruvate 

production due to anaerobic metabolism is faster than pyruvate consumption 

due to aerobic metabolism. Above this threshold, accumulation of unused 
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pyruvate and its conversion into lactate causes acidosis, reducing exercise 

endurance. Instead of performing a lactate quantitative analysis to assess the 

reaching of the anaerobic threshold, the CL signal obtained for the sample 

could simply be compared to that of the internal control, providing that the 

lactate concentration in the control corresponded to the anaerobic threshold 

level in sweat or oral fluid. As an example of this approach, Fig. 6 shows the 

results obtained using cartridges containing a 4.0 mmol L_1 lactate control 

sample for the analysis of sweat samples with lactate concentrations of about 

2.0 and 8.0 mmol L_1, respectively. In accordance with the calibration curves, 

the CL signal intensities were not linearly proportional to the analyte 

concentration. But sweat samples with lactate concentrations below and 

above the control sample could easily be discriminated. This approach could 

therefore allow a simple assessment of the reaching of the anaerobic 

threshold by an athlete as a result of continual exercise at high intensity. 

However, the lactate level corresponding to the anaerobic threshold may 

present a significant inter individual variation, which will also depend on the 

fitness of the subject. This approach may therefore require the development 

of a series of cartridges, in which control samples cover a range of lactate 

concentrations. 
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Fig. 6 (A) CL images of cartridges with a 4.0 mmol L_1 lactate control obtained for the analysis of 
sweat samples with lactate concentrations of 2.0 and 8.0 mmol L_1. Sweat samples were assayed in 
the lower reaction chamber, while control samples were analyzed in the upper one. (B) Relative CL 
signals of the sweat samples (normalized to the CL signal of the control, mean ± SD of three 
replicates) 

 

 

3.3.10 Conclusions 

We have demonstrated the possibility to integrate chemiluminescence 

detection principle smartphone’s camera detector and 3D printing technology 

to realize a sort of new revolutionary and very simple “portable mini-

laboratory”. The most important element of this mini-lab is a disposable 

plastic cartridge for enzymatic assays and a smartphone accessory that can be 

easily tailored to different smartphones and tablets. As proof-of-concept, we 

developed an assay to monitor lactate levels in sweat and oral fluid. This 

device shows adequate analytical performance, offering a cost-effective 

alternative for non-invasive lactate measurement to monitor the intensity 

and the maximum duration of athletes' performance during physical exercise. 
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The device could also be adapted to a variety of other assays that require 

simplicity, low-cost, portability, and flexibility. The data reported in this work 

clearly demonstrate that using chemiluminescence-based analytical assay and  

a smartphone camera as a luminometer is an ideal strategy for developing 

simple, sensitive, and portable analytical devices. In addition, ad hoc 

applications can easily be implemented to process the image and elaborate 

the test results, providing the end user with a simple readout (e.g. analyte 

concentration in comparison with physiological ranges or a sort of “traffic 

light”). This smart test could activate a green light when the analyte is within 

physio-logical values (personalized to the individual according to results 

stored in the memory), amber light when concentrations are reaching the 

threshold, and red light (or a voice alert warning) for higher values. 

Moreover, the device could be used to monitor lactic acidosis to prevent heart 

attacks in critical-care patients.  
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CHAPTER 4 
 

 

 

 

 

 

COLOR-BASED SMARTPHONE APPLICATIONS 
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4.1 Color Theory 

For physics, color is a set of values, it is a graph that represents the amount of 

energy reflected from a surface at wavelength varying. But the human eye is 

not able to enter so much information for each individual color. The eye 

makes a summary measure of the components around the blue, green and 

red, according to the sensitivity curves of the cones of the retina (Figure1). 

 
Figure 1. Human spectral sensitivity to color 

 
 

The color is an elaboration of the brain human. The measurement of color can 

not only be based on the comparison performed from the eye of an average 

observer between the color assumed by the surface under consideration, 

when it is illuminated with a white light source standards, and the color 

assumed by a perfectly white surface(ie, with a coefficient of reflectance 

ideally equal to 100% at any wavelength) illuminated, in turn, by three lights 

with the basic colors (Figure 2): red, green, blue intensity values of a surface 

of interest, can be quantified in comparison with those of a reference surface. 

Indeed, according to the theory of the tristimulus, any color can be 

reproduced exactly by a suitable mixture of the three basic colors (Figure 3). 
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Figure 2. Curves of relative sensitivity (in white) of the three types of cones in the human eye in 
blue and red with green maximum values of wavelength indicated. The black curve indicates the 
relative sensitivity of the other kind of receptors: rods of eyes. The sensitivity threshold of the rods 
is much smaller than that of the cones. This explains because the human eye perception of vision is 
very low in presence of dimmed lighting conditions. 

 
The wavelengths of the three fundamental colors correspond to the values of 

maximum sensitivity of the eye in the red, in green and in the blue for the 

three types of specific receptors of each color exist in the retina (cones). The 

color that each of us perceives is produced by the intensity of nerve impulses, 

separately transmitted to the brain by the three types of cones.  

In general, the sum of different colors produces an additive color and the 

phenomenon is called additive synthesis. Exists also subtractive synthesis 

that, instead, consists in subtracting colors corresponding to certain 

wavelengths from the spectrum of white. This is achieved by using  partially 

opaque or, equivalently, partially transparent materials, such as colored glass, 

with which are produced the optical filters. So crossing some filters, it is 

possible to obtain other colors. For example, the yellow filter suppresses the 

blue. The filter that suppresses the green,  is  magenta (or purple), and the 

filter that suppresses red appears cyan (or turquoise). The superposition of 

the two filters returns one of the fundamental colors. The superposition of all 

3 filters produces black: that is, the absence of light. In figure 3a and 3b shows 

two examples of additive synthesis and subtractive synthesis in borderline 
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cases which serve to obtain respectively the white light and the complete 

absence of light that is black. 

 
Figure 3. (a) additive synthesis to obtain white light with three primary colors; (b) subtractive 
synthesis for obtaining black with three primary filters. 

 

The color that we perceive of a surface or of an object is the result of how to 

combine the light, usually white with a spectral composition similar to that of 

the Sun that lights our subject (illuminant) with the nature of the surface 

itself which could reflect differently the various wavelengths contained in the 

light illuminating it. Therefore, the true color of a surface is described by a 

curve, the spectral reflectance, which indicates the amount of light that is 

reflected, for each wavelength. The reflectance does not depend on the used 

light. A red surface does not reflect wavelengths corresponding to blue and 

green, but only those in the red. A bright red surface will reflect much the 

wavelengths of red in major measure, meanwhile, a dark red surface will 

reflect the red component in minor measure.  

In order for a surface to appear illuminated, or is visible, it is necessary that 

the spectrum of the light source and the spectral reflectance of the surface 

have a spectrum portion in common (Figure 4). 
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Figure 4. Overlay between spectrum of light and spectral reflectance 

 

4.2 Hue, Saturation and Value space. 

The literature describes different methods developed to quantify the color 

changes of a surface. These methods find their foundations on the color 

spaces that differently describe this property. The color spaces can be 

classified into four categories, connected by different types of mathematical 

transformations: linear light tristimulus, this color space was created by the 

International Commission on Illumination (CIE) (CIE XYZ, and CIE RGB), xy 

chromaticity (CIE xyY), perceptually uniform, and hue oriented (HLS, HSV)[1]. 

Scanners, digital cameras, and thus also smartphone’s camera use red, green, 

blue (RGB) color space. It describes an image as an additive representation of 

all colors consisting of different combinations of red, green and blue [2]. 

When using the HSV color space to analyze a digital image, the pixels are 

described by hue, saturation and value coordinates, which are derived 

mathematically from the values red, green and blue. Hue is a numerical 

representation of color. Saturation determines the degree to which a single 

channel dominates; it is the purity or shade of a color. Value represents color 

brightness or lightness.  The mathematical formulas that allow us to convert 

the RGB into HSV values are as follows: 
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H = cos-1 {
1

2
[(𝑅−𝐺)+(𝑅−𝐵)]

√(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)
}                                         (eq. 1) 

S = 1 – 
3

𝑅+𝐺+𝐵
[min(R,G,B)]             (eq. 2) 

V = 
1

3
 (R + G + B)                                                                                (eq. 3) 

R, G, and B values are the red, green, and blue color intensities, respectively 

and min represents the minimum values of R, G, and B. Hue is effected by  

wavelength of light, and by the Bezold-Brucke effect and the Abney effect. In 

accordance with the Bezold-Brucke effect, the hue values responds to 

changing the brightness or intensity of light. As brightness increases reds and 

yellows will become more orange and yellow [3]. The Abney effect is the 

notion that as white light is added (desaturation) hue will change; blue will 

appear more purple and orange will appear more red [3].  The main 

difference between the HSV and RGB color space is that HSV takes into 

account intensity of the image whereas, RGB does not, unable to differentiate 

small qualitative variations of the image that the RGB system alone is not able 

to do. Furthermore  HSV space uses the intensity of the red, green, and blue 

color values [4]. The three dimensional representation of HSV is a hexacone 

(Figure 5). 
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Figure 5. The HSV hexacone[5]  

 

In reference system of HSV hexacone, Value can take all the values that are 

located along the central vertical axis. Hue is represented by the angle built 

around the central axis and can range from zero to 2π. Finally, Saturation 

represents the purity of the color, and can assume all values from the origin of 

zero central axis to the outer surface of hexacone. The Hue represents the 

color, Saturation represents the shade of color, and Value is essentially the 

gray scales of color. The value axis moves from black to white and gets there 

via various shades of grey. If saturation is decreased while hue and value 

remain fixed the resultant color will be a shade of grey. The shade of grey is 

dependent upon value. If saturation is at or near zero all of the pixels will 

appear the same, but as it is at or near one the pixels are separate and can be 

perceived as color. 
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4.3 Smartphone’s technology and human eye capabilities comparison 

The concept of light immediately involves the concept of the mechanism of 

the vision and perception around us. The light is a particular magnitude as its 

definition and its extent depend not only from objective physical quantity, but 

also from human visual system. For light means electromagnetic radiation, in 

particular those included in the range between 380 nm and 760 nm, can 

stimulate the human eye retina, producing the visual sensation. 

 
Figure 6.  Human eye structure. 

 

The structure of the human eye can be viewed in Figure 6. Light enters the 

eye via the cornea and is focused by the lens [6]. The eye’s light sensor is a 

layered structure about 0.5 millimeters (mm) thick. This sensor covers about 

70 percent of the surface of the eyeball. The human eye photoreceptors are of 

two types: rods and cones. These photoreceptors are constituted by two 

segments: one inner and one outer. The photons are detected by the outer 

segment portion of retina. While cones in the eye are sensitive to color, rods 

are sensitive to light intensity. Moreover, the human eye is sensitive to a 

minimum of about five photons. Each rod is sensitive to one photon and rods 

are excited by a photon when it induces an electrochemical reaction. 

Optimally, the human eye can resolve an image if the angle between two 
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points is equal to or greater than a critical value. The human eye can be 

compared to a smartphone’s camera, as the camera was originally designed to 

mimic the eye. 

Human Eye Iphone 5 Camera 

Iris (2-8 mm, dependant 
on intensity of light) 

Aperture (f/2.4) 

Cornea and Lens Lens 

Retina CCD (digital 
images, film) 

Table 1: Human eye to Iphone5 comparison 

Table 1 presents this comparison, “image” quality of the eye will improve 

with a smaller iris aperture size, because as aperture size decreases it uses 

the optimal part of the lens and increases the depth of field [7]. 

 

4.4 Colorimetric Smartphone Applications 
 
An assay is an analytical method in medicinal and biological research 

which measures the presence and the amount of an entity of interest. 

Among the most common assays in the clinical chemistry, there are 

methods  relying on color change. These tests can be performated in 

liquid phase, by means of cuvettes or plates (Figure 7), or can be of 

paper-based. Measuring the change in color or absorbance, it is unable 

to quantify the analyte concentration. 
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Figure 7. (a) Example of an assay plate with color changes; (b) A microplate reader with a 96 well 
microtiter plate 

 

The results of this kind of assays are often determined by measuring the 

change in a color and its intensity.  Thanks to their computation and optical 

capabilities, cellphones are unable to easily measure the color intensities. 

The use of a smartphone as a mobile plate reader, it could make the analysis 

easier and more economical, and provide the opportunity to conduct assays 

out of a standard laboratory. Even if portability plays a big advantage, on the 

other hand the accuracy and precision of the measurements made with a 

portable  plate reader depend on the difficulty of controlling variables such 

as ambient light, color calibration and distance from point of measurement, 

which are constant for a commercial plate reader. For this reason, to better 

control all these variables and use smartphone as portable plate reader, it is 

necessary to fabricate an external housing or attachment for the phone. 

 

4.4.1 Smartphone Camera Technology 

The majority of smartphones use complimentary metal-oxide semiconductor 

(CMOS) cameras[8]. The CMOS camera circuit consists of an array of identical 

photo sensors in a grid. The light that reaches the photo sensor is converted 

to a digital signal by the camera circuit [9]. A colour filter array (CFA) with a 

Bayer pattern is placed over the photo sensor array (Figure 8) [10]. The CFA 

consists of a grid of red, green and blue filters and each photo sensor only 
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measures one colour band of the spectrum. Images are therefore the sum of 

distinct signals according to a RGB pattern. The intensity of the captured 

colours is directly proportional to the number of photons for each colour 

band [11]. The pattern is designed to capture an image similar to what a 

human eye would see. Moreover, smartphone cameras integrate a range of 

automated functions, such as Auto White Balance (AWB), which is designed to 

provide good color reproduction by adjusting the detected RGB signals at 

different ratios. 

 
Figure 8. Bayer RGB filter pattern 

 

Smartphone CMOS cameras have Bayer colour filters over the photo sensor 

array to respond to the red, green and blue bands of the visual spectrum, 

based on the trichromatic theory, from which arises the RGB space. As the 

camera has physical filters on which color determination depends, the RGB 

color space is defined as being device dependent [12]. The RGB color space is 

device dependent and vary from device to device due to different camera 

capabilities. Thus the measured colors are often converted to other color 

systems.  

 

 

 



98 
 

 

4.4.2 Smartphone Liquid Assay Readers 

A typical smartphone-based liquid assay reader setup has been described by 

the research group of Vashist. It consists of a dark hood, a smartphone as an 

image reader and a tablet as a backlight illumination source as depicted in 

Figure 9 [13]. The dark hood has the task of isolating the detection zone from 

ambient light to avoid interference during image processing. The integration 

of a tablet backlight as light source ensures an equal illumination for the 

colorimetric test. Thanks to the image processing algorithm, that  analyses the 

colour channel of the RGB spectrum depending on the type of assay, it is 

possible to determine the concentration by referencing that colour’s 

calibration curve. 

 
Figure 9. Box setup for point of care mobile plate reader. 

 

A key feature of standard plate readers is that they are able to measure 

specific wavelengths of light, in the same manner as spectrophotometers, 

which allows the measurement of absorbance assays. The CMOS camera in 

mobile phones makes use of three built-in physical filters to separate the 

incoming light into the three color bands in the RGB  space. Each filter has 

its own specific wavelength and thus the CMOS camera as a whole cannot 

be programmed to measure a single particular frequency such as 

traditional plate readers.  
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4.4.3 Smartphone Paper Assay Readers 

Paper based assays easier than liquid assays. However, the results are less 

accurate and the responses of these devices are more suitable to qualitative 

or semi-quantitative analysis. as they place a greater emphasis on producing 

qualitative or quantitative results with lower Also in this case, color 

determination is subject to development of a calibration curve. 

L. Shen et al. propose using a colour reference chart with 12 colours of known 

colour intensities (Figure 10) [14].First a photo of the reference card is taken 

in the same conditions as the measurement to follow. The colours are 

transformed into the C.I.E. colour space to avoid potential interference with 

built-in camera functions. B. Chang developed a similar paper colorimetric 

system (Figure 10) except using an image processing algorithm based on the 

HSV colour system - to avoid the inaccuracies in the standard RGB colour 

space [15]. The purpose of the reference chart is to reduce the effect of any 

lighting conditions which may impact the accuracy of colour determination.  

 
Figure 10. Examples of colour reference chart paper 

 

4.4.4 Limits of color-change smartphone based devices 

Although smartphones have integrated color-balancing functions, the 

smartphone camera is optimized for photography in high ambient light, and it 

is hard to control lighting conditions during imaging. This is especially true 

outside of controlled environments, such laboratories, and so it is difficult to 
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perform accurate quantitative measurements. Furthermore, analyzing the 

images is not always easy, especially when there are small changes in color. In 

these cases, it is not always possible to use the RGB space. Instead, an 

alternative, such as HSV or CIE, must be used. For all these reasons, when 

developing colorimetric tests to integrate with smartphones, phone-specific 

external housing units are often required. These units eliminate the variation 

in lighting conditions and camera positioning. Dedicated software and 

additional components, such as batteries, LED arrays (for reflection and 

transmission), and lenses, can further overcome these limitations and allow 

accurate measurements to be performed.  

 

 

4.5 TMB Dye 

The 3,3 ', 5,5'-tetramethylbenzidine (or TMB) is an aromatic amine.  Its 

empirical formula is C16H20N2 and the molecular weight of compound is 

240,35 g/mol. Its solubility in aqueous solutions is 8,2 mg/L at 25°C. At room 

temperature is presented as a whitish solid faint smell, while colors of a 

delicate blue-green in a slightly acidic solution. TMB is degraded by sunlight 

or UV. It is slightly soluble in water, while it has a high solubility in ethanol. 

The TMB is a derivative of benzidine and is one of the most widespread 

chromogenic non-carcinogenic for analyzes based on the peroxidase 

detection [16], is used in immunohistochemistry and as the peroxidase 

detector in the ELISA technique [Sigma Aldrich Catalog Entry for 3,3′,5,5′-

Tetramethylbenzidine]. 
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Figure 11. Oxidation scheme of TMB 

 
 

TMB can act as electronic donor for the reduction of hydrogen peroxide to 

water by means of an enzyme having peroxidase as the peroxidase action, for 

example the widespread horseradish peroxidase or, with slower mechanism, 

cytochrome c. Under the enzymatic action, the TMB assumes a blue coloring 

with absorption peaks at wavelengths of 370 nm and 650 nm. In slightly 

acidic solution (pH 4-7) the colorless TMB can undergo two successive single-

electron oxidation processes. The first stage leads to the formation of the 

intermediate radical product, which subsequently forms a complex at charge 

transfer with another radical of TMB, absorbing at 370 and 650 nm [17]. In a 

second stage is slowly form a chinodiimmina, which is the fully oxidized final 

product, absorbing at 450 nm [18][19][20].  

 
Figure 12. Changes in the spectrum of TMB due to oxidation enzyme 
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4.6 Properties of paper: an ideal material for bioassay. 

Paper-based sensors are a new alternative technology for fabricating simple, 

low-cost, portable and disposable analytical devices for many application 

areas including clinical diagnosis, food quality control and environmental 

monitoring. The unique properties of paper which allow passive liquid 

transport and compatibility with chemicals/biochemicals are the main 

advantages of using paper as a sensing platform.  

Paper has drawn much interest as a potential material for sensors and 

devices in analytical and clinical chemistry because of its versatility, high 

abundance and low cost [21][22][23]. These analytical devices can be 

integrated in a manner that is flexible, portable, disposable and easy to 

operate.  

There are several techniques and processes involving chemical modification 

and/or physical deposition that could be used to tune the properties of the 

paper such that it becomes available for further modification or direct usage 

in a range of applications [24]. A lot of techniques focused on confining the 

liquid to a specific region on the paper have been reported in the literature: 

they include photolithography [25], analogue plotting [26], inkjet printing 

[27] and etching [28], plasma treatment [29], paper cutting [30], wax printing 

[31], flexography printing [32], screen printing [33], and laser treatment [34].  

Colorimetric detection is probably the most suitable option for this kind of 

device, since results can be read by the nacked eye without the use of 

additional equipment. Concerning surface properties, specifically wettability, 

paper presents an advantage over nitrocellulose, since it is hydrophilic in 

nature and does not require additional processing steps. In order to compare 
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the surface morphology of nitrocellulose and cellulose based paper, figure 13 

shows their microstructures obtained by scanning electron microscopy. 

 
Figure 13. Scanning electron microscopy of chromatography paper Whatman no. 1 

 

It is clear that besides having a completely different microstructure, 

chromatography paper Whatman no. 1 has a higher porosity (68%) with a 

corresponding higher pore diameter (100 m) than nitrocellulose Whatman 

BA85 Protran (0,45 m), to which corresponds a much lower contact angle, of 

12°. Although nitrocellulose has been widely used for biological and clinical 

assays, it is not an ideal matrix for lateral flow devices. It does have certain 

amenable characteristics, such as high protein binding capacity and capillary 

flow properties, and it is available in a variety of products with varying 

wicking rates and surfactant contents. However, it is a highly flammable 

material, expensive when compared to paper, and presents low mechanical 

properties (brittle), which make it difficult to handle, and to pattern. Cellulose 

based paper does not have these disadvantages and has the ideal properties 

for the development of point of care colorimetric diagnostic platforms. So 

cellulose presents several advantages and has ideal properties for the 

development of point of care colorimetric diagnostic platforms. 

Although there are several drawbacks associated with this technology, the 

most remarkable one is the heterogeneity of the color distribution in the 

detection zones. This issue, which can be attributed to the mobility of 

enzymes and reagents towards the edge of the detection zone when the 
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sample wicks up the hydrophilic channels, can result in increased variability 

and poor judgment of the final color by the user [35]. Several strategies can 

be adopted to overcome this problem, including controlling the volume of 

reactants and the sample's wicking velocity [36]. Among those directed to the 

immobilization of the enzymes via chemical modification to the cellulose [37] 

PADs can also be modified using ceria nanoparticles [38], gold nanoparticles 

[39],  silver nanoparticles,[40] and carbon nanotubes [41] to aid with the 

detection step. Although each of these strategies presents their own 

advantages, they are not widely applicable and require the implementation of 

specific processes. Aiming to address these shortcomings, the hypothesis of 

this project was that silica nanoparticles, trapped within the structure of the 

cellulose, could provide a simple and efficient way to immobilize the 

components of the analysis and therefore improve the overall performance of 

colorimetric detection on PADs, since can provide a white background. 

 

4.7 Cellulose chemical modification by Layer by layer. 

Polyelectrolyte LbL deposition was introduced by Decher et al. in 1991. Thin 

multilayer films were assembled layer-wise onto a variety of surfaces by 

means of alternating deposition of polyanions and polycations [42]. The LbL-

technique can be applied to solvent accessible surfaces of almost any kind and 

any shape, the more exotic ones being colloids, fruit, textiles, paper or, even 

biological cells. One of the key advantages of LbL-assembly is that LbL-films 

often display close to identical properties after deposition of the first few 

layers, even if films are deposited on very different surfaces. Most of the 

multilayer films have been fabricated using mainly electrostatic attraction as 

the driving force for multilayer build-up, this is by no means a prerequisite. 

There are many other interactions that have successfully been used for 



105 
 

 

multilayer deposition including: donor/acceptor interactions, hydrogen 

bridging, adsorption/drying cycles, covalent bonds, stereocomplex formation 

or specific recognition. The driving forces leading to PEM films is the 

electrostatic interaction between oppositely charged chains. Indeed there is 

not only an enthalpic contribution due to the interactions between point 

charges on the oppositely polyelectrolyte chains, but also an entropic 

contribution due to chain dehydration, conformational changes, and release 

of counter ions. Usually the balance between enthalpic and entropic 

contributions changes with the salt concentration of the solution and with 

temperature. Thanks to mechanical and porosity properties of this kind of 

films, enzymes can be encapsulated in such films and remain active for longer 

time durations than in solution. 

 
Figure 14. Schematic representation of the processes used to fabricate polyelectrolyte multilayer 
films by LbL assembly. (a) Dipping LbL assembly. (b) Spin-assisted LbL assembly. (c) Spray-
assisted LbL assembly. Multilayer films are formed by repeating steps 1 to 4 in a cyclic fashion. 
 

The methods to obtain Layer-by-Layer assemblies can be classified in three 

fabrication processes: Dipping LbL assembly, Spin-assisted LbL assembly and 

Spray-assisted LbL assembly. In the case of the conventional solution-dipping 

method, polyelectrolyte chains are allowed to diffuse toward the substrate 
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under the influence of the electrostatic interaction and then the adsorbed 

chains rearrange themselves on the surface. On the other hand, in the spin-

coating process, the adsorption and rearrangement of adsorbed chains on the 

surface, and the elimination of weakly bound polymer chains from the 

substrate are almost simultaneously achieved at a high spinning speed for a 

short time. Spray-LbL, which consists of spraying the polyelectrolyte and 

rinse solutions directly onto a stationary vertical substrate. The convection of 

the spray droplets to the substrate surface created by the high pressure gas is 

the main driving force for Spray-LbL. As the droplets impact the surface, the 

polyelectrolyte chains must diffuse across a micron scale thin water film 

resulting from the drop impingement on the substrate, and onto the charged 

surface. The Spray-LbL method exposes the substrate to this atomized spray 

of polyelectrolyte solution for a short period of time, typically 3-10 seconds.  
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SMARTPHONE EMBEDDED ENZYMATIC REFLECTANCE COLOR-BASED 

BIOSENSOR FOR POINT-OF-NEED APPLICATION 
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5.1 Introduction and aim 

The widespread availability, affordability, mobility and sophisticated 

technology of smartphones has enabled them to be used for much more than 

communication alone. The advance in camera technology has encouraged a 

range of applications. A lot of colorimetric apps are developed by which 

accurate colour measurement is possible and this enables a single mobile 

phone to become an accurate spectrophotometer, colorimeter and plate 

reader at a fraction of the cost of the traditional machines. Among all the 

available reporting systems, colorimetric detection is the most popular, 

simple and straightforward method for producing signals on paper-based 

biosensors, due to specific enzymatic or chemical interaction. To enable 

colorimetric diagnosis in multimedia devices, color must be expressed in 

numeric coordinates. An image of a diagnostic paper is analyzed digitally to 

yield a mathematical representation of color by incorporating color models, 

such as RGB. The color primaries are changed as function of ambient 

illumination. The advantage of using HSV coordinates over RGB for 

smartphone-based colorimetric imaging has been demonstrated in several 

publications  [1][2][3]. The most remarkable drawback, associated with this 

technology, is the use of multiple reagents and the heterogeneity of the color 

distribution in the detection zones. This issue can be attributed to the 

mobility of enzymes and reagents towards the edge of detection zone when 

the sample is applied onto paper surface. With paper functionalization and 

chemical modification of cellulose [4][5][6], using layer by layer assembly 

technique, it is possible to realize a reagentless portable device and  improve 

the  heterogeneity of the color distribution [7]. We provide a simple and 

efficient way to immobilize all the components of the analysis on paper using 

the formation of a bilayer films of polyelectrolytes systems PAH-PSS coating 

the assay support. As application, we realized a portable smartphone-based 
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device to quantify lactate concentration in saliva. 

 

5.2 Materials and methods 

5.2.1 Chemicals 

Peroxidase (type VI-A from horseradish, 1080 U mg_1 protein), L-lactate 

oxidase (from Pediococcus sp., 50 U mg_1 protein), L-lactate sodium salt, 

3,3’,5,5’-tetramethylbenzidine (TMB), Poly(allylamine hydrochloride), 

Poly(styrenesulfonate),  L-histidine monohydrochloride mono-hydrate, 

mucin (type II from porcine stomach) and urea were supplied from Sigma 

Aldrich (St. Louis, MO). Sodium chloride, disodium hydrogen orthophosphate 

anhydrous, sodium dihydrogen orthophosphate monohydrate were supplied 

from Carlo Erba Reagents S.r.l. (Milano, Italy). Artificial saliva at pH 7.2 was 

prepared by dissolving 0.6 mg mL_1 Na2HPO4, 0.6 mg mL_1 anhydrous CaCl2, 

0.4 mg mL_1 KCl, 0.4 mg mL_1 NaCl, 4.0 mg mL_1 mucin and 4.0 mg mL_1 urea in 

deionised water according to Tlili et al. [8]. The colorimetric lactate enzymatic 

assay in the standard 96-well microtiter plate format (BioVision Incorporated 

L-Lactate colorimetric Assay Kit) was bought from BioVision Incorporated, 

Inc. U.S.A. and used according to the manufacturer's instructions. 
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5.2.2 3D printed analytical device fabrication 

 
Figure 1. The 3D printed analytical device made of black ABS polymers consisting of three 
separate components: a disposable analytical cartridge, a mini dark box, and a smartphone 
adapter. (A) Cross-sections of the analytical cartridge and the cartridge lid and (B) the horizontal 
section of the analytical cartridge showing the internal chambers and fluidic connections. (C) Photo 
of the cartridge-lid assembly and of the mini dark box and smartphone adapter. 

 

The analytical device (Figure 1) is made of black acrylonitrile-butadiene-

styrene (ABS) polymers and was produced using a low-cost commercial 3D 

printer (Replicator 2X Desktop 3D Printer, MakerBot Industries, New York, 

NY). The device was designed using the open-source SckechUp software 

(Trimble Navigation). Files were exported as .stl les and MakerWare v.2.4 

software, an algorithm that slices digital into thin layers for 3D printing, was 

used to define printing options and settings. The device consists of three 

separate components: (a) a disposable analytical cartridge, (b) a mini dark 

box, and (c) a smartphone adapter. The analytical cartridge (20 mm × 10 mm) 

contains one reaction chamber  (diameter 4 mm, depth 3 mm) with small 1cm 

× 1cm paper support of the cellulose, onto which LOx,  HRP and TMB are 

entrapped in bilayer film (PAH/PSS). The enzyme amounts immobilized on 

the disks were as follows: LOx 0.02 U (for saliva analysis), horseradish 

peroxidase 0.1 U. The mini dark box contains the analytical cartridge during 
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the measurement, ensuring its correct positioning and avoiding interference 

from ambient light.  As source of light is used the flash built-in of smartphone. 

The smartphone adapter holds the mini dark box and can be snapped onto 

the smartphone to correctly position the dark box in relation to the 

smartphone embedded camera. The adapter includes a plano-convex plastic 

lens (diameter 6 mm, focus 12 mm), which focuses the image of the reaction 

chambers of the cartridge onto the smartphone camera and a flash diffuser to 

homogenize the light toward the detection area. 

 

5.2.3 Assay procedure 

Oral fluid is collected by a salivette. Then, a volume of 50 l of sample is 

applied in reaction chamber of the cartridge. The cartridge is then inserted 

into the mini dark box camera, which is already snapped to the smartphone. 

The color change signal is measured by using the smartphone camera. 

Suitable smartphone photography apps are used to control the exposure time 

(which must be long enough to achieve the required detectability) and for 

image handling. For android-based smartphones, we used the Camera FV-5 

(Android) Lite app to perform image acquisitions, after 60s from sample 

loading. Quantitative analysis of the images was performed using the open 

source so ware ImageJ v.1.46 (National Institutes of Health, Bethesda, MD). 

Regions of interest (ROIs) corresponding to the sample and control detection 

chambers, as well as a ROI of the same dimension in a dark area of each image 

for subtraction of the background signal, were selected. Color change on 

detection area were quantified as HUE value. GraphPad Prism v. 5.04 

(GraphPad So ware, Inc., La Jolla, CA) was used to plot the HUE value as a 
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function of lactate concentration and for least-squares fitting of calibration 

curves.  

5.3 Results and discussion 

The aim of this work was to develop a reagentless portable lactate color 

change based biosensor for assessing L-lactate levels in oral fluid, based on 

the coupling of the enzymatic oxidation of lactate catalyzed by L-lactate 

oxidase with the TMB/H2O2/HRP colorimetric system. The novelty and the 

skills of this color-based biosensor are in no need of multiple reagents. All of 

components and reagents to perform the analysis are entrapped on assay 

support. The assay started when only sample is loaded on test PAD. We 

designed a simple device using disposable analytical cartridges to allow 

measurement of the color change of assay support relying on reflectance 

principle of light, produced by the enzyme reaction using a smartphone 

embedded camera. This device exploits the backside-illumination 

complementary metal-oxide semiconductor (BI-CMOS) sensors integrated 

into modern smartphones. These offer improved low-light performance and 

color and brightness control in comparison with conventional front-

illuminated CMOS sensors. The device also takes advantage of low-cost 3D 

printing technologies, which allowed the rapid prototyping and production of 

device components. 

5.3.1 Correlation between lactate levels and color-change based assay 

In order to quantify the colorimetric reaction and to obtain the saliva lactate 

concentration value, we have developed a calibration curve linking lactate to 

HSV (Hue, Saturation, Lightness) hexaconical-coordinate representation of 

the RGB (Red, Green, Blue) color values at the center of the lactate test PAD. 
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Hue has a piecewise definition and in the region of interest of the lactate 

colorimetric reaction can be written as a function of the red (R), green (G), 

and blue (B) color values: 

H = cos-1 {
1

2
[(𝑅−𝐺)+(𝑅−𝐵)]

√(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)
}                                    (eq. 1) 

S = 1 – 
3

𝑅+𝐺+𝐵
[min(R,G,B)]                                                      (eq. 2) 

V = 
1

3
 (R + G + B)                                                                          (eq. 3) 

5.3.2 Flash Diffuser (Homogeneity of light) 

The flash diffuser consists of a 5 mm thick membrane of polydimethylsiloxane 

(PDMS).  The purpose of the flash diffuser is to reduce variations in the 

reading for different lighting conditions. It allows light from smartphone’s 

flash to diffuse and illuminate the back of the test strip uniformly. In addition, 

the case is 3D printed using black ABS polymer material in order to isolate the 

test strip from variable external light. The case is designed in a way that 

minimizes the effect of external lighting. It has been seen that at low analyte 

concentrations, a light diffuser is needed so that the color change can be 

quantifiable. When no diffuser is used, the strip appears as white with either  

100% or 0% saturation levels [9]. 

                 (a)               (b)     
 
Figure 2. The figure illustrates the design of the case around the camera and flash that allows for 
uniform lighting of the test pad ( with flash diffuser(a); without flash diffuser(b)). 
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By guiding the flash light through the PDMS diffuser on the pad, we avoid the 

need to build in a lighting element, such as a LED, that would make the system 

bulkier and require power input. The pad is imaged at a distance of 1,5 cm 

from the smartphone camera and the whole optical piece has a depth of 6 

mm. 

The wide range of variations across different devices and of test strip 

illumination present significant challenges to accurate colorimetric 

quantification. Other investigators have addressed this problem by 

calibrating for ambient light conditions through conversion to color spaces 

which are less sensitive to changes in brightness. This approach still requires 

uniform external illumination, and false colorimetric readings can be made if 

the phone is not placed at the proper distance from the test strip. Our device 

is isolated from ambient light with the hardware accessory and diffuses light 

from the smartphone camera flash for reproducible and uniform illumination, 

improving measurement accuracy and minimizing the potential for user 

error. 

The accessory is designed in such a way as to illuminate the cellulose pad to 

ensure better uniformity of lighting on the circular detection area of the test 

strip. In order to improve the sensitivity of the system to variations in the 

color of the PAD and to reduce the effect of PAD misalignment into the 

device, we have incorporated a light diffuser over the flash (Figure 2).  
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5.3.3 Paper functionalization 

The main disadvantage with this kind of paper test is the use of multiple 

reagents and the heterogeneity of the color distribution in the detection 

zones.  

This problem can be attributed to the mobility of enzymes and reagents 

towards the edge of detection zone when the sample is applied onto paper 

surface. Cellulose functionalization with a nanomaterial, allows to realize a 

reagentless portable device and to improve the  heterogeneity of the color 

distribution. We provide a simple and efficient way to immobilize all the 

components of the analysis on paper using the formation of a bilayer films of 

polyelectrolytes systems PAH-PSS coating the assay support (Figure 3). 

 

 
(a)               (b) 

Figure 3. Images of mPAD unmodified (a) and modified (b) with polyelectrolites bilayer films. 

Thanks to this functionalization, we obtain that the assay support is 

composed of a cellulose paper (1×1 cm) onto which enzymes (HRP and LOx) 

and a chromogenic substrate, 3,3’,5,5’-tetramethylbenzydine (TMB), are 

entrapped using a bilayer component polymer coating of poly(styrene 

sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH). The causes of 

omogeneity distribution of color on paper surface, reached with this method 

can be attributed to following reasons: the PAH/PSS films retarde the 

realease of TMB through the polyelectrolyte bilayer shells avoiding an 
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hetereougeneus diffusion through the paper, homogeneus loading of enzymes 

in polymer multilayer coating and the negative PSS layer reduces the mobility 

of charged intermediates of oxidated TMB. 

Polyelectrolyte films were built by dipping the cellulose support  in 

polycation (PAH) and polyanion (PSS) solutions, respectively. Dipping in PSS 

(1mg/ml), containing TMB (2 mM) and PAH (1mg/ml), containing enzymes 

solutions were performed. All reagents are prepared in PBS 0,1M, pH7,5. 

After each poly-ion adsorption, the paper membrane was rinsed three times 

in PBS 0,1 M, pH 7,5 (Figure 4). 

 
Figure 4. LbL protocol: dipping in 1. polyanion solution, 2. rinsing solution, 3. polycation solution, 
4. rinsing solution. 
 
 

Deposition speed is dependent on physical parameters (pH, ionic force, 

temperature) but also on the chemical nature of the components. In our 

conditions, the adsorption should be complete and homogeneous after a few 

minutes. The dipping time was fixed to 30 minutes to ensure complete layer 

deposition.  
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5.3.4 Calibration curve 

The relationship between HUE value and lactate concentration for our PAD 

test was established using  artificial oral fluid and TMB-HRP colorimetric 

systems for 5 points of calibration (Figure 5). The color change from the last 

reaction is then imaged inside the smartphone accessory by the smartphone 

camera. Limits of detection (LOD) of 0.6 mmol L-1 (corresponding to 5.4 mg 

dL-1) of lactate were obtained in oral fluid. 

 
Figure 5. Lactate calibration curves obtained in artificial oral fluid. Hue values were normalized to 
the H value obtained for the blank sample of the same cartridge. Data points represent the mean ± 
SD of three replicates 

 

5.3.5 Matrix effect 

 To perform a reliable measurement of lactate in real samples, the possible 

interference of oral fluid matrix on color-change result was evaluated. To 

study the matrix effect, we developed the analytical method and the 

calibration curve in artificial oral fluid. 
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5.3.6 Image Processing 

To acquire the result image of colorimetric analysis of the lactate enzymatic 

reaction, has been used smartphone app dedicated to photo acquisition 

Camera FV-5 Lite. When the user takes a picture by the app, an image of the 

colorimetric color changes is acquired through the smartphone camera. 

Quantitative analysis of the  images was performed using the open source so 

ware ImageJ v.1.46 (National Institutes of Health, Bethesda, MD).  First, a 960 

px by 960 px calibration area is selected at the center of the image. The 

average RGB value is computed and converted to HSV. This average HSV 

value is then compared to a reference value and a background  shift is 

computed. The whole image is then subjected to this background shift. After 

the background shift, a 960 px by 960 px area in the middle of the detection 

circle is then selected and the same computation as before is done to obtain 

the average HSV value of the test area. In order to decrease fluctuations due 

to lightning conditions, the strip is imaged 3 times and the average hue value 

over those 3 images is taken.  GraphPad Prism v. 5.04 (GraphPad So ware, 

Inc., La Jolla, CA) was used to plot the hue signal as a function of lactate 

concentration. 

5.3.7 Accuracy and reproducibility (Time acquisition) 

A critical issue to consider for point-of-care testing is the accuracy of the 

measurement. Once the user applies a drop of saliva (a volume of 50 

microliters of sample) on the reaction area on the support of cellulose, it 

takes some time for the colorimetric change to occur. Enzymatic chemical 

reactions and the colorimetric change occurs gradually. If the PAD is imaged 

before the reaction has terminated then we will get a misleadingly low value 

for the saliva lactate level. In order to determine the approximate time 
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required for the reaction to occur we have monitored the color change for an 

oral fluid sample with an actual concentration of 2 mM. As can be seen in 

Figure 6, it takes about 60s for the colorimetric change to stabilize. It is 

therefore important to consider a time frame for imaging the test PAD. In 

addition averaging several acquired images during that time frame can 

helped further improve the accuracy. 

 
Figure 6. Different color images of lactate (2 mM) in time 

 

 

5.3.8 Assay validation 

To validate the assay, oral fluid samples were analyzed in parallel with the 

smartphone-based lactate biosensor and with a commercial colorimetric 
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lactate enzymatic assay in the standard 96-well microtiter plate format 

(BioVision Incorporated L-Lactate colorimetric Assay Kit).  Reaction time is 

30 min. at room temperature, and wavelength to read microplate is 570 nm. 

Figure 7 compares the concentrations measured in oral fluid and sweat 

samples, which indicated a good correlation between the effective 

concentration of lactate in the samples and the results obtained with the 

smartphone-based lactate biosensor. 

 
Figure 7.  Comparison of the lactate concentrations measured in (A) oral fluid and (B) sweat 
samples using the smartphone-based lactate biosensor and a BioVision Incorporated L-Lactate 
colorimetric Assay Kit performed in the standard 96-well microtiter plate format. Each data 
represents the mean × SD of three replicates. 
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5.3.8 Application 

To demonstrate the applicability of the smartphone-based biosensor for 

monitoring lactate levels during physical exercise, we measured the lactate in 

oral fluid during the running track performed by a volunteer. Figure 8 shows 

the saliva lactate pro le measured in the volunteer and obtained by collecting. 

 
 
Figure 8. Images of lactate levels in saliva monitored by smartphone-based biosensor  during the 
running track performed by a volunteer.    

 

5.4 Conclusions 

SmartAssay could be considered as the forerunner of the integration 

colorimetric detection on smartphones for point-of-care and point-of need 

analysis. Although less sensitive than techniques that exploit 

chemiluminescence as a detection principle, this method based on the color 

variation is a simple and rapid assay. It also allows us to monitor the variation 

of analyte in time. Moreover, the choise of cellulose as support for bioassay  
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presents several advantages and has ideal properties for the development of 

point of care colorimetric diagnostic platforms. In literature are present a lot 

of examples of using cellulose to develop paper-based analytical biosensor 

[10][11][12][13][14][15][16][17][18]. Chemical modification of cellulose by 

layer-by-layer (LbL) deposition of complementary polymers allows to realize 

a reagentless portable device and to improve the  heterogeneity of the color 

distribution. The extreme simplicity of the device widens it applicability and 

makes it suitable for the detection of many analytes of clinical interest, for 

instance H2O2 producing oxidases such as those specific for glucose and 

ethanol. 
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