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SINTESI 

 

L’amido, dopo la cellulosa, è il secondo biopolimero in termini di biomassa (Geigenberger, 

2011) ed è formato da lunghe catene di unità di glucosio legate da legami α-1,4 (Berg et 

al., 2002). Oltre a rappresentare la maggiore riserva di carboidrati nelle piante superiori è 

anche di fondamentale importanza per l’alimentazione umana (fornendo circa il 60% 

dell’apporto calorico giornaliero) e animale (Geigenberg, 2011), nonché per l’industria e 

per la produzione di energia rinnovabile (Davis et al., 2003; Smith, 2008). Nelle piante 

superiori, grazie alla fotosintesi ossigenica una parte del carbonio organicato viene 

utilizzato per la produzione di amido (Zeeman et al., 2010). L’amido può essere per 

semplicità distinto in amido di riserva (anche detto secondario) o transitorio (anche detto 

primario), a seconda che sia immagazzinato dalla pianta per lunghi o brevi periodi. Infatti, 

l’amido secondario si trova nei plastidi degli organi di riserva della pianta, come semi, 

tuberi o radici e viene degradato per fornire zuccheri e, quindi energia, necessari in casi 

specifici, come durante la germinazione o la secrezione del nettare (Fincher, 1989; Razem 

and Davis, 1999). L’amido primario invece viene sintetizzato nei cloroplasti delle foglie 

durante il giorno e viene degradato durante la successiva notte per fornire gli zuccheri che 

sono necessari a supportare i processi metabolici della cellula stessa o che vengono 

trasportati negli organi in cui è richiesta energia, permettendo la crescita della pianta 

anche nei periodi in cui la mancanza di luce non consente ulteriore fissazione di CO2 

(Zeeman et al., 2007). L’amido transitorio viene anche accumulato temporanemanete nei 

semi oleosi e nei frutti di alcune specie vegetali (Schaffer and Petreikov, 1997; Baud et al., 

2002; Andriotis et al., 2010) o nelle radici (per esempio negli statoliti della columella), per 

svolgere alcune funzioni specifiche. L’amido è quindi di fondamentale importanza per la 

crescita della pianta. 

L’amido forma granuli semi-cristallini, con schemi caratteristici di diffrazione ai raggi-X, di 

differenti dimensioni, compatti e osmoticamente inerti (Jane et al., 1994). Questi granuli 

sono composti da amilosio e da amilopectina, generalmente in un rapporto di 1:3 circa 

(Buléon et al., 1998). Mentre l’amilosio è una lunga molecola prevalentemente lineare, 

l’amilopectina contiene ramificazioni, date da unità di glucosio legate da legami α-1,6, ed 

è responsabile della natura semi-cristallina dei granuli d’amido (McPherson and Jane, 



 
 

1999; Gérard et al., 2002). Data la sua importanza, l’amido è presente in molte specie 

vegetali e in quasi tutti gli organi. In base alla sua origine botanica può avere diverse 

composizioni e strutture, caratteristiche che a loro volta si riflettono sulle sue proprietà 

chimico-fisiche (Alcázar-Alay and Meireles, 2015), per esempio temperatura di 

gelatinizzazione, viscosità, etc. Amidi con minore contenuto di amilosio, per esempio, 

hanno una maggiore resistenza al congelamento e allo scongelamento (caratteristica 

interessante per la preparazione dei cibi) (Jobling, 2004), mentre amidi con maggior 

contenuto di amilosio sono importanti a fini nutrizionali, dato che quest’ultimo è più 

resistente alla digestione umana nell’intestino tenue e può quindi raggiungere l’intestino 

crasso dove svolge la stessa funzione delle fibre alimentari (Nugent, 2005; Topping, 2007).  

La complessa struttura dell’amido è il risultato dell’azione di diversi enzimi, sia biosintetici 

che degradativi, che ne modificano le proprietà e che quindi sono rilevanti anche per 

applicazioni nutrizionali e industriali (Ball and Morrel, 2003; James et al., 2003; Jeon et al., 

2010; Zeeman et al., 2010).  

L’orzo (Hordeum vulgare L.) è il quarto più importante cereale in termini di area coltivata 

e tonnellate raccolte e la produzione globale è utilizzata principalmente come mangime 

animale e per l’industria del malto (http://faostat.fao.org). I semi di orzo contengono 

nell’endosperma il 50-60% di amido di riserva rispetto al peso secco del seme. Questo 

amido è immagazzinato in due tipi di granuli di differenti forme e dimensioni (Mazanec et 

al., 2011; Howard et al., 2011): i granuli di tipo A, che hanno maggiori dimensioni (in cui si 

trova la maggior parte dell’amido) e i granuli di tipo B, più piccoli, ma più numerosi. I 

granuli di tipo A sono più facilmente attaccati dagli enzimi idrolitici, mentre i granuli di 

tipo B sembrano essere più protetti, causando problemi tecnici durante la produzione 

della birra (MacGregor, 1991). In una prima parte del progetto di dottorato è stato 

analizzato il fenotipo (con particolare riguardo alla quantità e alla struttura dei granuli 

d’amido) di nove mutanti di orzo, ottenuti tramite strategia TILLING, che portavano 

mutazioni missenso o non-senso in cinque geni collegati al metabolismo dell’amido, noti 

per essere espressi nell’endosperma dell’orzo durante il riempimento del seme: BMY1 (β-

amilasi 1), GBSSI (amido sintasi associata al granulo I), LDA1 (Limit Dextrinasi 1), SSI (amido 

sintasi I), SSIIa (amido sintasi IIa). Mentre BMY1 è prevalentemente coinvolta nella 

degradazione, come anche LDA1, gli enzimi codificati dagli altri tre geni sono 

principalmente coinvolti nella sintesi del granulo d’amido. È stato osservato che sette 



 
 

linee mutanti presentavano amido con caratteristiche interessanti per applicazioni 

alimentari e industriali, come per esempio un alterato rapporto amilosio/amilopectina, 

un’alta percentuale di granuli di tipo A oppure granuli di tipo A più grandi rispetto a quelli 

di piante wild-type. I risultati hanno inoltre confermato il ruolo dell’enzima GBSSI nella 

biosintesi dell’amilosio e il ruolo della proteina SSIIa nella sintesi dell’amilopectina. 

Sorprendentemente, la proteina LDA1 sembra essere coinvolta nell’iniziazione della 

sintesi dei granuli, mentre l’enzima SSIIa è implicato nel controllo della dimensione dei 

granuli. 

La pianta modello Arabidopsis thaliana è stata di fondamentale importanza per lo studio 

del metabolismo dell’amido fogliare, sia perché converte più del 50% del carbonio fissato 

durante il giorno in amido transitorio, sia perché il suo genoma è interamente 

sequenziato, sia perché sono disponibili una serie di servizi pubblici, tra cui banche dati di 

semi mutanti che permettono di ottenere specifici knock out (KO). È stato proprio 

attraverso lo studio di piante KO con alterato metabolismo dell’amido che il pathway di 

degradazione dell’amido transitorio è stato compreso (per una review, Zeeman et al., 

2010).  

Mentre amido transitorio e amido di riserva condividono la medesima via biosintetica, la 

loro degradazione avviene tramite differenti pathway. Alla degradazione dell’amido di 

riserva prendono parte α-amilasi, β-amilasi, enzimi deramificanti (nello specifico LDA) e 

α-glucosidasi. Al contrario, per la normale degradazione dell’amido fogliare non è 

richiesta nessuna attività α-amilasica (Yu et al., 2005), ma è indispensabile un iniziale 

passaggio di fosforilazione del granulo, necessario a rendere la sua superficie accessibile 

ad una serie di enzimi degradativi (Blennow et al., 2000; Edner et al., 2007; Santelia et al., 

2015). Il genoma di Arabidopsis codifica per tre enzimi in grado di fosforilare l’amido. A 

seconda del substrato che utilizzano, questi enzimi vengono suddivisi in glucano, acqua 

dichinasi (GWD1 e GWD2) e fosfoglucano, acqua dichinasi (PDW). I primi sono in grado di 

fosforilare in posizione C-6 i residui di glucosio dell’amilopetina (Ritte et al., 2002), i 

secondi sono invece in grado di fosforilare in posizione C-3 i residui di glucosio di catene 

di amilopectina già pre-fosforilate (Baungaard et al., 2005; Kötting et al., 2005). Il livello di 

fosforilazione delle catene di glucano influisce sulla capacità di degradazione dell’amido, 

così come può variarne le proprietà chimico-fisiche. Ad eccezione della GWD2, le proteine 

GWD1 e PWD sono localizzate nello stroma del cloroplasto (Ritte et al., 200; Baunsgaard 



 
 

et al., 2005), dove l’amido si accumula durante il giorno. GWD2 è invece un enzima 

citoplasmatico, prevalentemente espresso nel tessuto vascolare e nel periodo di 

senescenza della pianta (Glaring et al., 2007) e sembra non essere coinvolto nella normale 

degradazione dell’amido primario. Molti esperimenti sottolineano l’importanza di GWD1 

e PWD nell’assicurare la corretta degradazione dell’amido fogliare: piante di Arabidopsis 

mancanti di GWD1 sono incapaci di degradare l’amido anche dopo un periodo prolungato 

di buio e sono perciò caratterizzate da un forte accumulo di amido nelle foglie, detto 

fenotipo starch excess (sex) (Lorberth et al., 1998). Piante KO mancanti della proteina 

PWD hanno un fenotipo sex più lieve, mentre in accordo con la sua localizzazione extra-

plastidiale, piante mancanti di GWD2 non presentano fenotipo sex (Glaring et al., 2007). 

Sono stati effettuati molti studi su piante con alterata espressione di geni coinvolti nel 

metabolismo dell’amido (Lloyd et al., 2005), tuttavia è stata posta maggiore attenzione 

sui mutanti che presentavano i fenotipi più severi ed i dati si riferiscono spesso a singole 

fasi di sviluppo della pianta o ad organi specifici. Quindi, è stato deciso di analizzare 

durante l’intero ciclo vitale e in differenti organi il fenotipo di piante di Arabidopsis 

mancanti dei geni GWD1, GWD2 e PWD. È stato osservato che, a parte il noto fenotipo 

sex delle piante gwd1 e pwd, solo le piante gwd1 apparivano chiaramente differenti dalle 

piante wild type, richiedendo circa il 50% del tempo in più per raggiungere la fase 

riproduttiva, probabilmente primariamente a causa della deplezione di zuccheri durante 

la notte. Di conseguenza, il numero delle foglie della rosetta nelle piante gwd1 era circa 

1,3 volte superiore a quello del wild-type. La crescita delle piante in condizioni di luce 

continua a bassa intensità luminosa (che permette la continua produzione ed un 

continuato apporto di zuccheri alla pianta), causava la reversione del fenotipo, anche se 

non completa, suggerendo che i mutanti gwd1 non soffrivano unicamente per la carenza 

di zuccheri. Considerando che l’incremento in termini di biomassa delle piante gwd1 è 

associato a una piccola perdita di produttività (in termini di numero di semi prodotti e 

delle loro dimensioni), questa mutazione potrebbe essere di interesse industriale, 

fornendo piante con maggiore biomassa, maggior contenuto di amido nelle foglie 

(incrementando il valore della materia prima), buona produttività e semi con maggior 

contenuto di amido e minor contenuto lipidico. Sono stati inoltre evidenziati ulteriori 

tratti fenotipici sia nelle piante pwd che nelle piante gwd2, come per esempio ridotta 

crescita radicale, minor contenuto di lipidi nei semi, insorgenza del fenotipo sex nelle 



 
 

foglie in piante esposte a luce continua, minore produttività della pianta (minor numero 

di foglie nella rosetta e di fiori, di silique e di semi sullo scapo principale) rispetto al wild-

type. L’enzima PWD è normalmente presente nei cloroplasti dove contribuisce alla 

degradazione dell’amido, sebbene agisca a valle dell’enzima GWD1 e quindi, quando 

assente, dia un fenotipo sex meno severo. Perciò, i dati ottenuti per i mutanti pwd 

possono essere ascritti a un mancato apporto di carboidrati necessari a sopperire alle 

richieste energetiche. Inoltre, sorprendentemente, questi risultati suggeriscono che 

anche GWD2 possa avere un ruolo nel mantenimento di un bilanciato apporto di zuccheri 

alle diverse parti della pianta. Vista la sua localizzazione nell’apparato vascolare e 

l’incrementata espressione durante le fasi avanzate dello sviluppo (Glaring et al., 2007), 

GWD2 potrebbe avere un ruolo nella mobilitazione degli zuccheri (sotto forma di 

eteroglicani solubili) nel floema o nella degradazione e nella ri-mobilitazione dell’amido 

rilasciato dai tessuti senescenti.  

Dopo un’iniziale fase di fosforilazione e defosforilazione, il granulo d’amido viene 

degradato dalle β-amilasi e dagli enzimi deramificanti. Mentre gli enzimi deramificanti 

sono in grado di scindere i legami α-1,6 tra le molecole di glucosio, le β-amilasi sono eso-

amilasi che rilasciano maltosio, idrolizzando i legami α-1,4 tra molecole di glucosio, a 

partire dalle estremità non riducenti delle catene lineari poliglucosidiche di amilosio e 

amilopectina. Il genoma di Arabidopsis codifica per 9 β-amilasi (BAM1-9), 4 delle quali 

(BAM1-4) a localizzazione cloroplastica. Mentre BAM3 sembra essere la principale 

responsabile della normale degradazione notturna dell’amido transitorio, BAM1 sembra 

avere un ruolo nella degradazione dell’amido nelle cellule del mesofillo in piante 

sottoposte a stress osmotico (Valerio et al., 2011; Monroe et al., 2014). Lo stress idrico ha 

un impatto forte e negativo sulla crescita della pianta e sulla sua produttività (Cattivelli et 

al., 2008; Rockström and Falkenmark, 2010; Osakabe et al., 2014). Un tratto comune a 

molte piante colpite da siccità o stress salino è l’accumulo di osmoprotettori, come per 

esempio prolina, betaina o zuccheri alcolici (Szabados and Savouré, 2009; Liang et al., 

2013). La prolina non solo è un soluto compatibile, ma ha anche una funzione di 

detossificazione nei confronti delle specie reattive dell’ossigeno (ROS), proteggendo la 

cellula dallo stress ossidativo (Matysik et al., 2002; Bartels and Sunkar, 2005). Nelle piante 

la sintesi della prolina avviene sia nel citosol che nei cloroplasti e gli scheletri carboniosi 

necessari provengono dal metabolismo primario attraverso il pool del glutammato. Non 



 
 

essendo noto se la degradazione dell’amido fosse coinvolta in questo processo e con lo 

scopo di indagare più approfonditamente il ruolo delle β-amilasi nella risposta allo stress 

osmotico in Arabidopsis, sono stati analizzati mutanti mancanti di BAM1 o di BAM3 

sottoposti a uno stress osmotico moderato (150 mM mannitolo) e prolungato (fino a una 

settimana). È stato dimostrato che le foglie di piante bam1 sottoposte a stress osmotico 

accumulavano più amido e meno zuccheri solubili durante il giorno delle piante bam3 e 

wild-type. Inoltre, è stato osservato che le piante bam1 presentavano un inficiato 

accumulo di prolina e soffrivano di una maggiore perossidazione lipidica rispetto alle 

piante bam3 e wild-type. Questi dati suggeriscono quindi che gli scheletri carboniosi 

derivanti dalla degradazione diurna dell’amido transitorio ad opera di BAM1 supportano 

la biosintesi di prolina necessaria a fronteggiare lo stress osmotico. Questo potrebbe 

essere un tratto interessante per il miglioramento della tolleranza allo stress nelle piante 

coltivate.  

Il genoma di Arabidopsis codifica inoltre per tre α-amilasi, endo-amilasi capaci di 

idrolizzare l’amido, una delle quali, AMY3, citosolica (Seung et al., 2013). Nonostante 

AMY3 sia un’amilasi attiva, piante mancanti di questa proteina (come quelle mancanti di 

BAM1) degradano l’amido normalmente in condizioni normali di crescita (Yu et al., 2005; 

Kaplan and Guy et al., 2005; Kötting et al., 2009). Tuttavia, quando altri enzimi degradativi 

sono assenti, la mancanza di AMY3 (come quella di BAM1), accentua il fenotipo sex. 

Inoltre, è stato dimostrato che AMY3 e BAM1 sono responsabili della degradazione diurna 

dell’amido nelle cellule di guardia, processo che sostiene l’apertura stomatica (Valerio et 

al., 2011; Horrer et al., 2016) e che le due proteine agiscono sinergicamente nella 

degradazione dell’amido in vitro (Seung et al., 2013). Un’altra similitudine fra le due 

proteine è che sembrano essere le uniche amilasi redox regolate. Vengono infatti attivate 

dalla luce mediante la riduzione di un ponte disolfuro intra-molecolare. L’espressione di 

AMY3, parallelamente a quella di BAM1, sembra anche essere promossa in Arabidopsis 

durante stress osmotico nelle cellule del mesofillo (Dr. Santelia, comunicazione 

personale). Tutto ciò suggerisce la possibilità di una via degradativa alternativa dell’amido 

transitorio in condizioni di luce, in piante sottoposte a stress osmotico, che coinvolge 

enzimi che non sono normalmente richiesti. Nelle ultime decadi, la glutationilazione è 

emersa come modificazione redox post-traduzionale alternativa, che consiste nella 

formazione di un ponte disolfuro fra una cisteina reattiva di una proteina e una molecola 



 
 

di glutatione e che avviene prevalentemente in condizioni di stress, momento in cui la 

produzione di specie reattive dell’ossigeno (ROS) è esacerbata (Zaffagnini et al., 2012b). 

Questa modificazione sembra avere diversi ruoli, tra cui la protezione di tioli proteici 

dall’ossidazione irreversibile, la modulazione dell’attività enzimatica e la segnalazione 

cellulare. Dato il coinvolgimento di AMY3 e BAM1 nella degradazione diurna dell’amido in 

condizioni di stress, le due proteine ricombinanti sono state espresse e purificate e ne è 

stata analizzata la suscettibilità all’ossidazione e alla glutationilazione, saggiando l’attività 

enzimatica in presenza di acqua ossigenata (H2O2), in presenza o in assenza di glutatione 

ridotto (GSH).  È stato osservato che entrambi gli enzimi venivano inibiti dal trattamento 

con H2O2, ma in presenza di GSH i tassi di inibizione erano minori per BAM1 o assenti per 

AMY3, suggerendo che entrambi le proteine fossero soggette a glutationilazione. Questa 

ipotesi è stata confermata tramite western blot e analisi di spettrometria di massa. Per 

identificare i residui coinvolti nella glutationilazione, tutte le varianti Cisteina/Serina sia di 

BAM1 che di AMY3 sono state analizzate mediante western blot utilizzando glutatione 

biotinilato e anticorpi anti-biotina, senza però ottenere risultati univoci. Tuttavia è stato 

osservato che la formazione del ponte disolfuro in BAM1 preveniva la glutationilazione e 

che i residui coinvolti sembravano essere due, facendo supporre che le cisteine 

interessate fossero le medesime. È quindi stato ipotizzato un ruolo della glutationazione 

nella prevenzione dell’inattivazione enzimatica causata da ossidazione e da formazione 

del ponte disolfuro. Per AMY3 non è stata evidenziata una interazione fra 

glutationilazione e ossidazione mediata da formazione del ponte disolfuro. Tuttavia è 

stato evidenziato che una delle due cisteine coinvolte nella regolazione redox era anche 

essenziale per la catalisi enzimatica e sembrava avere un pKa di 7.2, facendone un 

potenziale bersaglio anche per la glutationilazione. Ulteriori esperimenti sono necessari 

per verificare queste ipotesi. In generale, questi dati suggeriscono un ruolo della 

glutationilazione nella protezione di BAM1 e AMY3 da una veloce e irreversibile 

ossidazione in condizioni di stress ossidativo.  

In conclusione, in passato l’amido era considerato un biopolimero abbastanza statico, 

data la sua natura cristallina ed il suo ruolo di sostanza di riserva energetica non 

osmoticamente attiva. Sulla capacità delle piante di immagazzinare amido si basano anche 

l’industria alimentare ed energetica. Tuttavia nel corso degli anni è stato dimostrato che 

l’amido ha anche una natura transitoria ed altamente dinamica. È stato infatti evidenziato 



 
 

che l’amido non funge solo da riserva di energia a lungo termine ma è anche una fonte di 

carbonio che viene rapidamente utilizzata dalla pianta non solo per la crescita ma anche 

per supportare specifiche funzioni, come l’apertura stomatica e la produzione di osmoliti, 

in funzione degli stimoli esterni e delle condizioni ambientali. Per fare questo è necessaria 

una concertata e fine regolazione degli enzimi responsabili sia del suo accumulo che della 

sua degradazione. La comprensione di questi meccanismi, della modalità di ripartizione 

del carbonio derivante dalla degradazione dell’amido nella pianta e tra le differenti vie 

metaboliche e più in generale del ruolo dell’amido in risposta alle condizioni esterne ed 

agli stress, è particolarmente importante e può avere in futuro rilevanza applicativa. 

  



 
 

Preface: organization and brief description of the topics.  

This PhD thesis is composed of four chapters: 

- Chapter 1: “New starch phenotypes produced by TILLING in barley”;  

- Chapter 2: “Starch phosphorylating enzymes are required for a proper development 

of Arabidopsis plants”; 

- Chapter 3: “β-amylase 1 (BAM1) degrades transitory starch to sustain proline 

biosynthesis during drought stress”; 

- Chapter 4: “BAM1 and AMY3, two redox sensitive enzymes involved in Arabidopsis 

starch degradation, are target of glutathionylation”; 

having starch metabolism as leitmotif and corresponding to different stand-alone 

experimental works. More in detail, the first chapter deals with storage starch 

metabolism, whereas the other three discuss about transitory starch degradation; the 

third and fourth chapter also investigate the relationship between starch degradation and 

plant stress responses and stress redox physiology, respectively. The four chapters are 

preceded by a “General introduction” that aims to give an idea of the knowledge about 

plant carbon partitioning and about storage and transitory starch metabolism. References 

of this introductory chapter can be found at the very end of the thesis. 

 

 

 

  



 
 

 

  



 
 

Table of contents 

 

GENERAL INTRODUCTION 1 

Photosynthesis and starch 3 

Starch composition, structure and architecture 4 

Sucrose and starch are the products of carbon organication 8 

Mechanisms of AGPase regulation 9 

Starch biosynthetic enzymes 12 

Degradation of storage starch 17 

Degradation of transitory starch 20 

Hints on starch metabolism regulation 25 

The transport of sugars through the plant 30 

The role of starch in Arabidopsis seed development 35 

Phosphorylation and its effects on starch structure 39 

Starch phosphorylating enzymes 42 

Arabidopsis thaliana genome encodes for three GWDs 48 

Glucan, water dikinase 1 (GWD1) of Arabidopsis thaliana 49 

Phosphoglucan, water dikinase 1 (GWD1) of Arabidopsis thaliana 50 

Glucan, water dikinase 2 (GWD2) of Arabidopsis thaliana 51 

CHAPTER 1- New starch phenotypes produced by TILLING in barley 53 

Abstract 53 

INTRODUCTION 54 

MATERIALS AND METHODS 56 

TILLING analysis and plant materials 56 

Starch extraction from barley grains 57 

SDS-PAGE analysis of starch granule proteins 57 

Determination of total starch and amylose content 57 

Starch morphology 58 

Starch crystallinity 58 

RESULTS 59 

TILLING molecular analysis 59 



 
 

Total starch content 60 

Amylose content 60 

SDS-PAGE analysis 61 

Starch granules morphology 61 

Crystallinity of starch granules 64 

DISCUSSION 65 

Granule bound starch synthase I (GBSSI) 66 

Limit dextrinase (LDA1) 68 

Soluble starch synthase I (SSI) 69 

Soluble starch synthase IIa (SSIIa) 70 

CONCLUSIONS 71 

REFERENCES 71 

SUPPORTING INFORMATION 76 

CHAPTER 2 – Starch phosphorylating enzymes are required for a proper 

development of Arabidopsis plants 79 

Abstract 79 

Structured abstract 79 

INTRODUCTION 80 

MATERIALS AND METHODS 82 

Genotype analysis 82 

Plants growth conditions 83 

Phenotypic charachterization 84 

Quantification of starch, protein and lipids in seeds 84 

RESULTS 85 

Isolation of homozygous T-DNA lines and leaves starch 

quantification 85 

Seeds morphology and composition  86 

Seed viability and rate of growth of primary root 89 

Transition from vegetative to reproductive growth-phase and 

plant fitness 89 

Rescue by light 91 



 
 

DISCUSSION 92 

REFERENCES 96 

CHAPTER 2 – ADDENDUM (UNPUBLISHED PRELIMINARY RESULTS) 101 

MATERIALS AND METHODS 101 

Lignine and cellulose staining 101 

Stomatal aperture measurments 101 

Transpiration and carbon assimilation rates 101 

RESULTS 102 

Cellulose and lignin content 102 

Transpiration rate and photosynthetic rate 103 

DISCUSSION 107 

REFERENCES 108 

CHAPTER 3 – β-amylase 1 (BAM1) degrades transitory starch to sustain proline 

biosynthesis during drought stress 109 

Abstract 109 

INTRODUCTION 110 

MATERIALS AND METHODS 112 

Plant material and growth conditions 112 

Stress conditions 112 

GUS staining 112 

Determination of water loss 113 

Quantification of starch and soluble sugars 113 

Lipid peroxidation assay 113 

Proline quantification 113 

RESULTS 114 

Mild osmotic stress induces BAM1 promoter activity 114 

Water loss in response to stress 115 

Starch content at the end of the light period 116 

Starch content at the end of the night period 117 

Lipid peroxidation 118 

Proline content 119 



 
 

Soluble sugars 120 

DISCUSSION 121 

LITERATURE 123 

SUPPLEMENTARY INFORMATION 127 

CHAPTER 4 – BAM1 and AMY3, two redox sensitive enzymes involved in 

Arabidopsis starch degradation, are target of glutathionylation 133 

Abstract 133 

INTRODUCTION 135 

EXPERIMENTAL PROCEDURES 144 

In silico analysis of α- and β-amylases 144 

Cloning, expression, and purification of ATBAM1 and AtAMY3 

proteins 144 

Enzyme activity assays and oxidative treatments 145 

Biotynilation of GSSG 145 

Biotinylated GSSG assay 145 

ESI-ToF mass spectrometry 146 

Determination of cysteines pKa of AtBAM1 and AtAMY3 146 

RESULTS 147 

Sequence analysis of Arabidopsis thaliana BAM1 147 

The sensitivity to oxidizing conditions is not a common feature of 

all β-amylases 149 

Arabidopsis thaliana BAM1 is a possible target of glutathionylation 150 

Sequence analysis of Arabidopsis thaliana AMY3 152 

Oxidative treatments on AtAMY3 156 

Both AtBAM1 and ATAMY3 are glutathionylated 159 

Attempt to identify Cysteine residues that are target of 

glutathionylation in AtBAM1 and AtAMY3 161 

H2O2-dependent oxidation and sensitivity to glutathionylation of 

AtBAM1 single mutants C32S, C470S, C506S 163 

Determination of pKa values for AtBAM1 and AtAMY3 165 

DISCUSSION 167 



 
 

REFERENCES 173 

SUPPLEMENTARY INFORMATION 182 

GENERAL INTRODUCTION REFERENCES 187 

 

  





1 
 

 GENERAL INTRODUCTION 

 

Starch is the second bio-polymer on earth in term of biomass after cellulose 

(Geigenberger, 2011). Such as cellulose, starch is a polysaccharide composed by glucose 

units. The difference between cellulose and starch is that, in starch, glucose units are 

joined together by α-glycosidic bonds, whereas in cellulose by β-glycosidic bonds (Berg et 

al., 2002). This seemingly trivial diversity results in large differences in function, structure, 

physicochemical properties and enzyme susceptibility. Indeed, starch is the most 

abundant energy storage in plants and the most important carbohydrate in animal and 

human diet (Geigenberger, 2011). On the contrary, most animals including humans 

cannot digest cellulose. 

In higher plants, starch is produced and stored in plastids, either in photosynthetic and 

non-photosynthetic cells. It exists in form of insoluble and semi-crystalline inert granules 

and this allow storing a large amount of energy in a relatively small volume without 

affecting the osmotic balance of the cell (Valerio et al., 2011). Primary starch is 

synthesized in chloroplasts as a consequence of photosynthesis (Zeeman et al., 2007). 

Starch is then degraded by night to provide carbon to sustain leaf respiration and to 

produce sugars that are exported via vascular tissues to sustain plant growth even in 

absence of light (Zeeman et al., 2007). Because of its great fluctuations in content 

between day and night, primary starch is also named transient starch. Starch is also 

temporarily accumulated in oilseeds and fruits (Schaffer and Petreikov, 1997; Baud et al., 

2002; Andriotis et al., 2010) of some plant species or in roots (i.e. columella statoliths), to 

exploit some specific function, and for the same reason also this type of starch can be 

considered as transient (Baud et al., 2002; Andriotis et al., 2010). On the contrary, storage 

or secondary starch is retained in amyloplasts of perennating organs for longer periods 

and it is subsequently remobilized to give sugars to meet specific energy demands, as in 

case of germination or nectar secretion (Fincher, 1989; Razem and Davis, 1999). While 

transitory and storage starch share the same biosynthetic pathway, their degradation 

occurs in a different manner (Zeeman et al., 2010). 

The harvested part of our staple crops are starch storage organs (i.e. seeds, roots and 

tubers). Storage starch provides about the 60% of the human dietary energy supply (Food 
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and Agriculture Organization of the United Nations, values for 2014; www.fao.org).  About 

2500 million tons of starch crops are produced per year, and even if the edible plants 

species are about 50.000, only 15 provide the 90% of the world's food energy intake, the 

60% of which is due to three plant species (rice, maize and wheat) (Burrel, 2003; Food and 

Agriculture Organization of the United Nations, values for 2014; www.fao.org). Moreover, 

since the ancient times, prior by the Egyptians and then by the Romans, starch was used 

as adhesive and for medical preparations. Also nowadays starch is demanded for non-

food industry (Davis et al., 2003) and in the last decades, it is employed for the production 

of biofuels such as bioethanol, given that it can easily be converted into fermentable 

sugars (Smith, 2008).The world population is projected to increase (from almost 8 billion 

in 2020 to about 9 billion in 2050) and the per capita calories consumption is rising, while 

the problem of hunger in some part of the world is still far to be defeated (Food and 

Agriculture Organization of the United Nations, values for 2014; http://faostat.fao.org). 

Recent studies suggest a growth in food demand of about 70 to 100% by 2050 (Food and 

Agriculture Organization of the United Nations, values for 2014; www.fao.org). This 

imposes profound challenges in meeting the future food requirements. The need to 

increase staple crops yield can’t be faced by bringing into cultivation some new land, 

because of the necessity of defend biodiversity and natural ecosystems, but also because, 

as a matter of facts, available agricultural land is decreasing due to urbanization, 

desertification, salinization, soil erosion and unsustainable land management (Food and 

Agriculture Organization of the United Nations, values for 2014; www.fao.org). In 

addition, climate changes and the increasing competition for the use of the fields for 

biofuels production rather than for alimentary purposes are likely to exacerbate this 

scenario. 

There are still many “mysteries” concerning starch metabolism, structure and properties, 

despite the progresses in our understanding of its deposition processes, composition and 

characteristics. In fact, starch from different botanical sources have different polymer 

compositions and structures and therefore, different chemical-physical properties 

(gelatinization temperature, viscosity of cooked pastes and gels, etc.) (Alcázar-Alay and 

Meireles, 2015). For all these reasons, understanding the pathways by which starch is 

synthetized and degraded in model plants as Arabidopsis thaliana will facilitate the 

improvement of crops for both food and non-food uses. For example, this knowledge can 
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be exploited to increase starch accumulation in harvested organs, to prevent or increase 

starch degradation (depending upon the needing), as well as facilitate its structural 

modification to diversify its functionality and qualities as food and as industrial material. 

Obviously, the study of the model plants alone cannot provide sufficient information for 

this purposes and it must be accompanied in parallel by progresses in the study of these 

pathways in staple crops. 

 

Photosynthesis and starch 

Photosynthetic organisms are able to reduce CO2 into biomass using energy derived from 

light. In plants, algae and cyanobacteria, photosynthesis releases oxygen (oxygenic 

photosynthesis) to convert carbon dioxide into sugars (carbon fixation). On the contrary, 

some types of bacteria carry out anoxygenic photosynthesis, consuming carbon dioxide 

without releasing oxygen, and water is therefore not used as an electron donor (Bryant 

and Frigaard, 2006). 

Then, oxygenic photosynthesis is the only biological process able to collect solar energy 

to give organic carbon compounds starting from inorganic molecules as CO2 and water. 

As photosynthetic organisms, plants are at the bottom of the food chain, providing 

eatable biomass and thus energy to almost all the other living organisms. In addition, they 

are also a reservoir of energy, in the form of fuel, for the planet in either recent (biofuels) 

or ancient times (fossil fuels). In higher plants, photosynthesis take place in chloroplasts. 

The outfitted tissue for photosynthesis in plants is leaf mesophyll, which contains many 

chloroplasts. Photosynthesis can be divided in two parts colloquially called the “light 

phase” and the “dark phase”. The light reactions of photosynthesis, so called because they 

need the direct contribution of the light, occur on specialized internal membranes of the 

chloroplast, called thylakoid. Proteins and chlorophylls of the photosystems absorb the 

light energy and use it to rip electrons from water to produce oxygen gas and to reduce 

nicotinamide adenine dinucleotide phosphate (NADP+) to NADPH, meanwhile generating 

a trans-membrane proton gradient necessary for adenosine triphosphate (ATP) synthesis. 

NADPH and ATP are subsequently used for the reactions of the Calvin-Benson cycle, 

occurring in the chloroplast stroma. These reactions represents the dark phase of 

photosynthesis, in which carbon dioxide is used for the production of triose-phosphates 

(TPs). Triose-phosphates are finally converted in sucrose. Sucrose can be employed to 

https://en.wikipedia.org/wiki/Anoxygenic_photosynthesis
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support cell metabolism in the cytosol, exported through the phloem to sink organs, or 

spent for the synthesis of starch and hence retained in the chloroplast as dense insoluble 

granules. In some plant species, other carbohydrates are accumulated, for example 

fructans in barley (Vijn and Smeekens, 1999; Cairns et al., 2000), or exported, such as 

galactosyl-sucrose oligosaccharides in Cucurbita and Arabidopsis, sorbitol in apple trees 

and mannitol in celery (Edwin et al., 2009; Noiraud et al., 2001). Stems, roots and young 

leaves uses exported sugars to grow. In storage organs sugars are subsequently used to 

produce storage polysaccharides. Typically in tubers and grains secondary starch is 

accumulated and degradaded to boost other specific growth phases or to meet locally 

high demand for carbon (Fincher, 1989; Razem and Davis, 1999).  

In some species (e.g. soybean, sugar beet and Arabidopsis) starch is the major storage 

form and the ratio among sucrose and starch production in leaves is almost constant 

during the day (Upmeyer and Koller, 1973; Fondy et al., 1989; Zeeman and ap Rees, 1999). 

On the contrary, in other species (e.g. french bean and spinach), sucrose as well as starch 

accumulates in leaves during the day and starch biosynthesis is promoted when sucrose 

production overcomes the storage capacity of the leaf or the needing of the sink tissues 

(growth sites)  (Fondy et al., 1989; Stitt et al., 1983). Therefore, the division of assimilates 

between starch and sucrose can be variable between species. The balance between these 

two pathways is regulated by the amount of specific key metabolites as orto-phosphate, 

triose-phosphates and fructose-2,6-diphosphate.  

Due to the fact that starch is the main storage product in leaves of many plant species, 

mutations affecting starch metabolism (biosynthesis or degradation) significantly affect 

plant growth. For example, Arabidopsis mutant lines that are not able to produce and 

degrade starch have impaired growth rates in many conditions (Caspar et al., 1985; Caspar 

et al., 1991; Lin et al., 1991; Zeeman et al., 1998). However, these mutations have been 

instrumental to define the metabolic pathway of starch and are giving first indication of 

the mechanism that controls it.  

 

Starch composition, structure and architecture 

Starch granules are present in a wide array of species and almost in all plant organs 

including leaves, seeds, fruits, stems and roots. They may differ in size (from 1 to 100 μm 

in diameter); shape (round, lenticular, polygonal); size distribution (uni- or bi- modal); 
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association as individual (simple) or clusters (compound) and composition (moisture, 

association with lipids or proteins and mineral content, in particular phosphorus) (Jane et 

al., 1994). In general leaf starch granules are very small compared with storage starch 

granules and have a discoid or irregular shape rather than spherical or oval, probably to 

increase the surface available to synthetic and degrading enzymes responsible for the 

daily primary starch turnover (Badenhuizen, 1969). Independently from its shape, starch 

is always composed by amylose and amylopectin (Buléon et al., 1998). The relative 

amount of the two polymers varies according to the plant species, typically from 18-33% 

for amylose and 72-82% for amylopectin (Buléon et al., 1998). However, waxy starches 

containing less than 15% amylose as well as high amylose starches containing more than 

40% amylose, are known (Buléon et al., 1998). The building block of both amylose and 

amylopectin is the six-carbon sugar D-glucose.  

Amylose is a linear polymer mainly composed by α-1,4-linked glucose units (Fig. 1), though 

some α-1,6 branching points (typically less than 1%) are present in the molecule. The 

average number of chains in a single, branched molecule varies from 5 (rice and maize) to 

21 chains (wheat) (Shibanuma et al., 1994), with chain lengths between 4 and >100 

glucose units. The size of the polymer is more frequently given as the degree of 

polymerization (DPn, number of molecules composing the polymer) than as molecular 

weight values (DPw). Amylose possesses a broad molecular weight and DPn distribution, 

differing both between and within plant species and is thought to be smaller compared to 

amylopectin (105-106Da; DPn 500-5000). For example, amylose from barley (Takeda et al., 

1999) was reported to have DPn 1570 (DPw 5580) and maize (Takeda et al., 1988) 

possessed DPn 930–990 (DPw 2270–2500). The DPn in different wheat varieties ranged 

from 830 to 1570 (Shibanuma et al, 1994). 

Amylopectin is an highly branched molecule (about 5% of α-1,6 bonds) (Fig. 1) with a 

bigger molecular weight (107-109 Daltons). The DPn values of amylopectin range from 0.7 

to 26.5 x 103 (Perez and Bertoft, 2010).  
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Figure 1. Starch glucosidic bonds. Structure of amylose (upper panel) and amylopectin (lower panel). 

Amylose is a long polymer of glucose residues linked together by α-1,4 bonds.  In amylopectin α-1,4 glucose 

chains are linked together by α -1,6 linkages. Adapted from Tester et al., 2004.  

 

Current models for amylopectin fine structure suggest two populations of chains, A- and 

B-chains, so designated for their relative position in the macromolecule, which are 

present in almost equal proportions. A-chains are unbranched and attached to B-chains 

by a single linkage, whereas B-chains are branched and connected to two or more other 

chains. Each amylopectin molecule will also possess a single C-chain, which contains the 

sole reducing group. The different population of chains can be grouped depending on 

their size. The smaller chain size (DPn ~15) are prevalently composed of A-chains and small 

B-chains. Larger chains population (DPn ~45) is thought to comprise long B-chains. The 

chains are assembled in a cluster structure (French, 1973; Robin et al. 1974; Nikuni, 1978; 

Hizukuri 1986). 

The packaging of amylose and amylopectin within the granule is not random. In bigger 

granules, concentric “growth rings” can be seen (Fig. 2). These rings, which are between 

100 and 400 nm thick, originate from the alternation between semi-crystalline and 

amorphous shells (Gallant et Guilbot, 1971; Yamaguchi  et al., 1979; French, 1984; Gallant 

et al., 1997).  

The semi-crystalline regions are so called due to an alternation between crystalline and 

amorphous layers, with a periodicity of about 9 nm (Fig. 2) (Blanshard et al., 1984; 

Oostergetel et al., 1989; Pérez and Bertoft, 2010). This seems to be a universal feature in 

the structure of starch, independent of botanical source. Furthermore, it suggests a 

common mechanism for starch deposition (McDonald et al., 1991). Amylopectin, which is 

organized radially between such structures, is responsible for the formation of the semi-

crystalline regions. In fact α-glucans, although illustrated as straight chain structures, are 
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actually often helical. The helices formed by the branching chains of amylopectin can form 

double helices that can strictly interact with each other, forming crystalline layers that are 

generally 6 nm thick, while the branching zones of amylopectin, in which the interaction 

between helices is more lax, give rise to the amorphous layer (usually about 3 nm thick).  

Conversely, amylose helices are prevalently found in bundles between amylopectin 

clusters, randomly interspersed among clusters and in the amorphous shells (Blanshard, 

1987; Jane et al., 1992; Kasemsuwan and Jane, 1994).  

In the less strictly ordered zones, the hydrophobic regions of the helices can interact with 

other compounds as free fatty acids, lysophospholipids, iodine (this being an important 

diagnostic function for starch characterization). These set of crystalline structures 

(composed by several amylopectin molecules) integrated in amorphous material (given 

by less branched structures like amylose and lipids) are called blocklets. Blocklets can be 

seen as supramolecular structures that are not prone to be enzymatically digested (Oates, 

1997). 

Whereas amylopectin is a key factor for overall structure of starch granules, amylose does 

not (McPherson and Jane, 1999; Gérard et al., 2002), even if it seems to have a role in 

connecting semi-crystalline shells, contributing to its strength and flexibility. 

The diffraction patterns obtained from starch powders treated by mild acid hydrolysis to 

remove amorphous materials can be used to identify different allomorphs (Buléon et al., 

1998) and to group starches according with their physical properties. In general, most 

cereal starches give the so-called A-type pattern, some tubers (such as potato and lesser 

yam), rhizomes (e.g. canna), and cereal starches rich in amylose yield the B-pattern; 

legume starches generally have a mixed pattern of A-type and B-type pattern, defined as 

C-type (Gidley, 1987; Pérez and Bertoft, 2010). An additional form, called V-type, occurs 

in swollen granules and is typical of the complexes formed by amylose and lipids (Buléon 

et al., 1998; Perez and Bertoft, 2010). 
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Figure 2. Starch lamellar structure, adapted by O’Neill and Field (2015). In starch granules, concentric growth 

rings, formed by semi-crystalline (drawn as black rings in the granule) and amorphous regions (white rings), 

can be seen. The semi-crystalline shells (magnificated in the middle panel) are in turn formed by an 

alternation of crystalline (white portion of amylopectin molecules) and amorphous lamellae (grey portion), 

with a periodicity of 9 nm. On the right, a schematic representation of a single amylopectin molecule. 

Different types of chains are highlighted.  

 

Sucrose and starch are the products of carbon organication 

In mesophyll cells, sucrose and starch are synthesized in two different compartments. The 

biosynthetic pathway of sucrose takes place into the cytosol while the production of 

starch takes place into the chloroplast (Huber and Bickett, 1984; Stitt et al., 1984; Stitt and 

Quick, 1989; Ekkehard Neuhaus and Stitt, 1990). Despite their different subcellular 

localization, the two pathways compete for carbon skeletons deriving from the 

photosynthetic processes (Sage, 1990; Sage, 1994; Eichelmann and Laisk, 1994; Stitt 

1996). Because of the phosphate/triose-phosphates translocator (TPT), newly synthesised 

triose-phosphates (TPs) can be exported to the cytosol from the chloroplast in exchange 

for inorganic phosphate (Pi). Due to its mechanism of translocation, this antiporter control 

the ratio between TPs and Pi, reflecting the metabolic state of the two compartments (for 

a review see Flügge, 1999). Ultimately, TPs/Pi ratios control whether photosynthates are 

required in starch or sucrose production. Typically high levels of Pi in the cytosol, lead to 

the export of TPs to sustain sucrose biosynthesis, while low levels of Pi drive starch 

production in the stroma (reviewed by Pettersson and Ryde-Pettersson, 1990). Moreover, 

Pi and TPs control the activity of several enzymes belonging to both sucrose and starch 
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biosynthesis; for example the activity of ADP-glucose pyrophosphorylase (AGPase) is 

promoted by 3-phosphoglyceric acid (3PGA) and inhibited by Pi (Morell et al., 1988; 

Kleczkowski et al., 1993; Gómez-Casati and Iglesias, 2002;  Crevillén et al., 2003; Lee et al., 

2007; Tuncel et al., 2014)  (see also the following section). 

Once exported or retained into the stroma, TPs are the substrates of aldolases.  Fructose-

1,6-bisphosphate deriving from TPs aldolic condensation, is de-phosphorylated in 

fructose-6-phosphate (Fru6P) by fructose-1,6-phosphatase. Hexose phosphate isomerase 

(Phospho Glucose Isomerase, PGI) catalyses the conversion of Fru6P in glucose 6-

phosphate (Glc6P), that is in turn the substrate for a phosphoglucomutase (PGM) 

responsible of the production of glucose 1-phospate (Glc1P) (Zeeman et al., 2010; 

Geigenberger, 2011). Fru6P, Glc6P and Glc1P collectively form the hexose-phosphate pool 

whose concentration is kept close to equilibrium (Smith, 2009). 

Both sucrose and starch synthesis pathway begins with a primary event of activation of 

Glu1P. In starch synthesis, Glc1P is converted to ADP-glucose (ADPGlc) via AGPase, in a 

reaction that requires ATP and generates pyrophosphate (PPi) (Geigenberger, 2011). In 

the case of sucrose, Glc1P is used by the UDP-glucose pyrophosphorylase to catalyse the 

formation of UDP-glucose (UDPGlc) and PPi, consuming UTP (Kleczkowski, 1994). In 

plastids the PPi is suddenly removed by inorganic pyrophosphatase, displacing the 

equilibrium of the AGPase reaction and pushing toward the formation of ADPGlc (Weiner 

et al., 1987; George et al., 2010). In the cytosol an inorganic pyrophosphatase is missing, 

but PPi can be used by other enzymes for trans-phosphorylation reactions (Weiner et al., 

1987; George et al., 2010). 

 

Mechanisms of AGPase regulation  

As mentioned above, AGPase is responsible for the conversion of Glc1P and ATP into PPi 

and ADPGlc, the activated glucosyl donor required for starch synthesis. Once formed, 

ADPGlc is transferred to a short chain of malto-oligosaccharides (Recondo and Leloir, 

1961). Arabidopsis mutants with impaired activities in the chloroplast isoforms of PGI, 

PGM1 or AGPase, display greatly reduced levels of leaf starch (Caspar et al., 1985; Lin et 

al.,1988a; Lin et al., 1988b; Yu et al., 2000).  

In higher plants, AGPase is a heterotetrameric enzyme composed by two small and two 

large subunits (Fig.3) (Lin et al., 1988a; Lin et al., 1988b; Crevillén et al., 2003; Ventriglia 
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et al., 2008). The small subunit is the catalytically active portion of the protein while the 

large subunit plays the regulatory function (Crevillén et al., 2003). Arabidopsis genome 

encodes two different small subunits (APS1 and APS2, with the latter considered non-

functional) (Crevillén et al., 2003) and four large subunits (APL1-4) (Lin et al., 1988a; 

Ventriglia et al., 2008). APS1 and APL1 are the prevailing subunits in leaf enzyme, but 

other large subunits are expressed after treatment with exogenous sugars and are 

probably involved in starch synthesis in non-photosynthetic tissues (Fritzius et al., 2001; 

Crevillén et al., 2005; Ventriglia et al., 2008). As consequence, it has been proposed that 

the association of APS1 with different APL subunits can change the kinetic and the 

regulatory properties of the enzyme to better respond to environmental changes (Fig. 3) 

(Crevillén et al., 2003; Crevillén et al., 2005; Ventriglia et al., 2008). 

Typically the reaction catalysed by AGPase is promoted by 3-phosphoglycerate (3PGA) 

and inhibited by Pi (Fig. 3) (Iglesias et al., 1993). When photosynthesis is active and the 

production of TPs exceed the demand for sucrose synthesis, a negative feedback prevents 

the TPs export from the chloroplast. Consequently, the stromal concentration of 3PGA 

increases whereas the Pi concentration decreases. The high ratio 3PGA/Pi promotes the 

activation of AGPase and the synthesis of starch (Stitt and Quick, 1989; Streb and Zeeman, 

2012). AGPase activity is also redox regulated (Fu et al., 1998; Hädrich et al., 2012; Li et 

al., 2012). The presence or absence of light itself can limit carbon assimilation, but light 

can also act as a signal for the plant to switch its metabolism. Part of the electrons 

transported across the photosystems lead to the reduction of ferredoxin (Fdx), which in 

turn reduces the ferredoxin-thioredoxin reductase (FTR) able to reduce the small 

regulatory proteins named thioredoxins (Trxs) (Schürmann and Buchanan, 2008). 

Promoting a disulfide/dithiol exchange, several Trxs-target enzymes are regulated, 

including the AGPase (Schürmann and Buchanan, 2008). In AGPase, because of oxidation, 

the cysteine residues 81 at the N-terminal domain of the two small subunits form an inter-

molecular disulfide bond (Fu et al., 1998). This bond decreases the protein activity, making 

the enzyme less sensitive to the activation mediated by 3PGA and increasing the KM for 

ATP. On the contrary, reduction monomerises the small subunits and the enzyme 

becomes more active (Ballicora et al., 2000; Tiessen et al., 2002; Hendriks et al., 2003). In 

this way starch biosynthesis is actually coordinated with photosynthesis. 
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However, the extent of redox-activation of AGPase is also influenced by metabolites, 

independently from light. For example, it has been reported that 3PGA is required for fully 

activate the enzyme by Trxs (Ballicora et al., 2000; Hendriks et al., 2003; Geigenberger et 

al., 2005). Furthermore, AGPase can also be reduced by the NADP-thioredoxin reductase 

C (NTRC) (Michalska et al., 2009), a bimodular protein containing both an NADPH-

dependent thioredoxin reductase (NTR) domain and a Trx domain on a single polypeptide 

chain (Serrato et al., 2004; Pascual et al., 2011). In the light NTRC can consume the NADPH 

produced by the ferredoxin-NADP reductase (FNR), complementing the classical Fdx/Trx 

system (Michalska et al., 2009). NTRC seems also to play an important role in regulating 

AGPase activity in response to sugars, in particular glucose, in darkened leaves and in non-

photosyntetic tissues (i.e. roots), exploiting NADPH reducing power provided by the initial 

reactions of oxidative pentose phosphate pathway (Serrato et al., 2013). This mechanism 

could link the metabolic processes taking place in sink organs with light, processed via 

photosynthesis in source organs, through sugars transported via the phloem. Additionally 

sucrose, unlike glucose, can act independently from NADPH and NTRC on AGPase (Kolbe 

et al., 2005). Its mechanism seems to be linked to trehalose-6-phosphate (Tre6P), a signal 

metabolite that promotes redox activation of AGPase, most likely by modifying its 

interaction with Trxs (Kolbe et al., 2005; Lunn et al., 2006). In Arabidopsis, it has been 

demonstrated that Tre6P production is enhanced at the onset of the light period as a 

consequence of carbohydrate depletion occurring after an extended night, and it is 

preceded by a rapid sucrose accumulation (Gibon et al., 2004; Lunn et al., 2006). Given 

that, Tre6P is suggested to promote a greater partitioning of photo-assimilates into starch 

compared to the previous light period to meet the energy request for another extended 

night (Lunn et al., 2006). Hexokinase (for glucose) and SnRK1 kinase (for sucrose) have 

also been proposed to take part in this cytosolic sugar signalling process that lead to redox 

activation of starch biosynthesis (Tiessen et al., 2003). Although details need to be worked 

out, the interactions among these metabolites are likely required for the fine redox 

control of AGPase as the plant encounters changing environmental conditions. 
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Overall, the convergence of regulation on AGPase confirm the idea that it represent an 

important checkpoint to determine how much starch should be produced to supply the 

plant in the subsequent night, and how much carbohydrates are necessary for growth 

during the day (Smith and Stitt, 2007).  

Figure 3. Regulation of plastidial AGPase by multiple mechanisms, from Geigenberger (2011).  Plastidial 

AGPase is a heterotetramer that contains two large (APL; 51 kDa) and two slightly smaller (APS; 50 kDa) 

subunits, which both have regulatory functions. Allosteric regulation mediated by 3PGA and Pi (top) 

operates in a time frame of seconds to adjust the rate of starch synthesis. Posttranslational redox 

modulation (left) involves reversible disulfide bond formation between Cys82 of the two small APS1 

subunits, leading to changes in AGPase activity in response to light and sugar signals in a time frame of 

minutes to hours. The signaling components leading to redox modulation of AGPase involve Trx and NTRC, 

which are linked to photoreduced Fdx and interact with different sugar signals. In Arabidopsis leaves, APS1 

and APL1 have been identified as potential targets for reversible protein phosphorylation (right). 

Transcriptional regulation in response to changes in carbon and nutrient supply (bottom) allows more 

gradual changes in AGPase activity, which may require up to days to develop. Red font indicates inhibition, 

blue font indicates activation, and question marks indicate unknown. 

 

Starch biosynthetic enzymes 

In addition to AGPase, several other enzymes are involved in the biosynthesis of starch 

granules (Fig. 4). First, ADPGlc acts as the glucosyl donor for starch synthases, which 

catalyse the formation of a new α-glucosidic linkage by adding glucose to the non-

reducing end of an existing chain (Recondo and Leloir, 1961). Starch synthases can be 

divided into five subclasses based on amino-acid sequence comparisons (Ral et al., 2004; 
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Patron and Keeling, 2005; Leterrier et al., 2008): one granule-bound starch synthase 

(GBSS) and four types of soluble starch synthases (SS1–4). Arabidopsis genome contains 

one gene for each subclass. GBSS is exclusively found associated with the starch granule 

and it is responsible for amylose production (Tsai, 1974). Several plant species lacking 

GBSS produce starch containing only amylopectin (known as waxy starch) (Denyer et al., 

2001; Szydlowski et al., 2011). Cereals and eudicots have two isoforms of GBSS, GBSSI and 

GBSSII. While GBSSI expression is likely to be confined in storage tissues, GBSSII is mainly 

localized in the chloroplast (Cheng et al., 2012). GBSSs have a high affinity for starch 

granule and act in a processive manner, extending the same primer glucan to produce 

relatively long amylose molecules, but with the possibility to operate also on side chains 

of amylopectin (Zeeman et al., 2010). For these properties GBSS remains sheathed within 

the granule as amylopectin crystallises. Then, the newly synthesized amylose is not 

accessible for further modification and remains mostly linear (Streb and Zeeman, 2012). 

Even if starch granule consists up to about 30% of its weight of amylose, this is not 

required for granule crystallinity. However, amylose synthesis may be important for starch 

density, improving the efficiency of carbon storage, thus justifying the conservation of 

GBSS in higher plants (Zeeman et al., 2010). The four starch synthases (SS1-4) are 

prevalently situated in the stroma and are involved in the elongation of amylopectin 

chains (Streb and Zeeman, 2012). From the analyses of Arabidopsis mutants and other 

plant species, it has emerged that they act preferentially on different length chains. SS1 

preferentially elongates chains of 9-10 glucose units (Delvallé et al., 2005; Fujita et al., 

2006), SS2 chains of 13-22 glucose units (Craig et al., 1998; Morell et al., 2003), whereas 

SS3 act on chains longer than 25 glucose units (Zhang et al., 2005). In this way, SS1 

produces the substrate for SS2 and SS2 for SS3. Studies performed on single and multiple 

SS mutants shown that plants can still synthetize starch, although with different 

distribution in chains length compared to wild-type, indicating that SSs have overlapping 

functions and that they can, in combination with other enzymes (i.e. branching enzymes), 

generate all the different-length chains (for an overview see Santelia and Zeeman, 2011). 

The ss3ss4 double mutant seems to be the only exception because of its inability to initiate 

granules (Szydlowski et al., 2009). A recent study on Arabidopsis ss4 mutant revealed that 

SS4 is essential to coordinate the granule formation during chloroplasts division in leaf 
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expansion and to determine the abundance and the flattened, discoid shape of leaf starch 

granules (Crumpton-Taylor et al., 2012). 

Amylopectin is a highly branched molecule. Indeed, as soon as the linear chains reach a 

sufficient length (12 glucose units), two classes of starch branching enzymes (SBE 1 and 2, 

or B and A; Burton et al., 1995) introduce branching points. SBEs are glucanotransferases 

that can cut an existing α-1,4-linked chain and transfer this segment (with a minimum 

length of 6 glucose units) to another linear chain, creating a new α-1,6 linkage (Takaha et 

al., 1993). Studies on cereals and potato genes suggest that SB1 and SB2 differ in the 

length of the transferred chains, with SBE1 preferring longer chains than SBE2 (Takaha et 

al., 1993; Guan et al., 1997; Morell et al., 1997; Rydberg et al., 2001; Nakamura et al., 

2010). In Arabidopsis, the situation is out of the ordinary because there are only members 

of SBE2 subclass (BE2 and BE3) and the lack of only one of the two SBE2 enzymes does 

not affect starch structure, suggesting functional redundancy. There is also a third gene 

related to the SBE1 subclass (BE1), but it is not likely to encode for a functional BE (Dumez 

et al., 2006; Wang et al., 2010). Mutant analyses in potato, maize, and rice suggest that 

the loss of subclass I of SBEs, leads only to minor alterations in starch structure compared 

to the wild-type plants. Conversely, the absence of SBE2 subfamily, brings to altered 

starch content, structure and properties (i.e. longer chains and less branches), indicating 

that SBE2 can compensate for the loss of SBE1, but not vice-versa (Safford et al., 1998; 

Blauth et al., 2001; Blauth et al., 2002; Satoh et al., 2003; Stinard et al., 1993; Mizuno et 

al., 1993). Potato plants in which both SBE1 and 2 are repressed show severe reduced 

levels of starch, prevalently composed by amylose (Schwall et al., 2000).  

Initially it was thought that SSs and BEs were sufficient for amylopectin synthesis and 

starch granule formation (Zeeman et al, 2007b). Subsequently emerged that two types of 

starch debranching enzymes (DBEs), designated as isoamylases (ISA) and limit-dextrinases 

(LDA, also named pullulanase or R-enzyme), were involved in this process, overcoming the 

idea of their mere participation in starch degradation (Streb and Zeeman, 2012). Mutants 

depleted of particular classes of DBEs show a partial or complete replacement of starch 

with phytoglycogen (James et al., 1995; Burton et al., 2002; Delatte et al., 2005; Wattebled 

et al., 2005; Mouille et al., 1996), a very highly branched and water-soluble 

polysaccharide, with a high proportion of glucose short chains and a different distance 

between branching points in comparison to amylopectin (Ball et al., 1996). As suggested 
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by its name, phytoglycogen is rather similar to glycogen, a soluble polyglucan accumulated 

as storage compound in animals, fungi and bacteria (Ball et al., 1996). Different models 

have been proposed to explain the accumulation of phytoglycogen in the absence of DBEs. 

Currently the prevailing model suggests that during starch biosynthesis, DBEs selectively 

trim misplaced branches introduced by BEs, allowing the self-organization of amylopectin 

into the crystalline layers of starch granule (Ball et al., 1996; Myers et al., 2000; Streb et 

al., 2008). 

ISAs can in turn be divided in three subgroups (ISA1-3) (Hussain et al., 2003). Whereas 

mutations in ISA1 in cereals and in ISA1 or ISA2 in potato and Arabidopsis result in the 

production of phytoglycogen, mutations in genes encoding for LDA and ISA3 do not, 

suggesting a role of the latter enzymes in starch degradation rather than in synthesis 

(Streb and Zeeman, 2012). In Arabidopsis, potato and rice ISA1 and ISA2 form a 

heteromultimer (Bustos et al., 2004; Delatte et al., 2005; Utsumi and Nakamura, 2006; 

Utsumi et al., 2011), while in cereal endosperm the biosynthetic activity of DBEs is given 

by homomultimeric protein containing only ISA1 subunits (Kubo et al., 2010). 

Interestingly, ISA2 is catalytically inactive and it has been suggested to have a regulatory 

function, probably conferring substrate specificity to the catalytically active ISA1 subunit 

(Kubo et al., 2010; Utsumi et al., 2011). Despite their important role in amylopectin 

synthesis, the relative contribution of DBEs is still puzzling, presumably because of their 

redundancy. There are variations in the severity of the phytoglycogen-accumulation in 

ISA1-deficient plants, within the same plant and between different plant species (Delatte 

et al., 2005, Mouille et al., 1996; Dauvillée et al., 2001; Burton et al., 2002; Posewitz et al., 

2004). In fact, in plants lacking ISA1, starch is still synthesized, albeit with an altered 

structure, outside of the leaf mesophyll, for example in epidermal cells. Moreover, the 

entire complement of starch-synthesizing enzymes in the cell can influence the isa1 

phenotype, since double mutant plants lacking ISA1 and other SSs or BEs, make less 

phytoglycogen compared with starch granules. The Arabidopsis quadruple mutant 

isa1isa2isa3lda does not have starch granules at all, pointing toward the idea that DBEs 

activity is essential for starch granule synthesis (Wattebled et al., 2008; Streb et al., 2008). 

However, a more careful analysis overturns this view due to the fact that the loss of starch 

is the result of the action of starch degrading enzyme (such as α- and β-amylases, see 

sections “Degradation of storage starch” and “Degradation of transitory starch”) on 
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branched glucans (Streb et al., 2008). Indeed, DBEs-free mutants accumulate 

phytoglycogen, small-branched malto-oligo saccharides and maltose, the latest of which 

are produced by β- and α-amylase (Streb et al., 2008). This is also consistent with the 

evidence that starch granule production is partially restored in DBEs-free mutants that 

additionally lack AMY3 (an α-amylase able to hydrolyse α-1,4-glucosidic linkages) (Streb 

et al., 2008; Streb et al., 2012). 

All these results highlight the fact that such a complex granule structure is the outcome 

of the synergistic action of both biosynthetic and degradative enzymes, and that all these 

processes are interconnected. Therefore, the removal of branch points by ISA1 during 

starch synthesis enhances amylopectin crystallization. This crystallization itself can make 

starch inaccessible to other interfering enzymes and can prevent starch degradation, that 

otherwise would result in the futile cycling of sugars into and out of starch. According to 

this hypothesis, α-amylases usually does not influence starch biosynthesis. 

 

 

Figure 4. Pathway of starch synthesis in chloroplasts (Zeeman et al., 2007). Carbon is assimilated via the 

Calvin cycle. Part of the carbon give triose-phosphates that are exported to the cytosol for sucrose synthesis, 

whereas another part is retained in the chloroplast for starch synthesis. The limiting step of starch 

biosynthesis, AGPase activity, is controlled by allosteric and redox regulation and the reaction is pushed 
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toward the formation of ADPGlc by PPi degradation. Then, ADPGlc is the substrate for starch synthases 

(SSs). The complex structure of starch is given by the simultaneous action of SSs, BEs and DBEs. Fru6P, 

fructose-6-phosphate; Glc1P, glucose-1-phosphate; Glc6P, glucose-6-phosphate; TPT, triose-

phosphate/phosphate translocator. 

 

Degradation of storage starch 

In cereals storage starch degradation has been well characterized. Cereal grains consist of 

a seed coat (also named testa) surrounding both endosperm and embryo (Fig. 5). In 

mature seeds, the endosperm (the largest organ in the seed and the major site of storage) 

is a dead tissue without cellular integrity and composed by cell walls, starch granules and 

proteins surrounded by a single layer of living cells, the aleurone layer (Fig. 5) (Emes et al, 

2003). The embryo is formed by an embryonic root, a hypocotyl, a single cotyledon and 

the scutellum. Scutellum, that is composed by embryo living cells and is adjacent to the 

endosperm, can capture the final product of starch degradation, generally glucose, 

originating from the endosperm (Emes et al., 2003; Zeeman et al., 2010). 

   

Figure 5. Seed germination. Left panel, developing seed morphology 

(http://corn.agronomy.wisc.edu/Crops/Wheat). Right panel, barley seed structure during germination and 

key biochemical steps of endosperm degradation (adapted from Taiz and Zeiger, Plant physiology, Fifth 

edition).  

 

Several studies confirmed the involvement of four enzymes in endosperm starch 

degradation: α-amylases, β-amylases, DBEs (specifically LDA) and α-glucosidases (Tab. 1) 

(Kristensen et al., 1999; Mikami et al., 1999; Frandsen et al., 2000; Bozonnet et al., 2007). 

Alfa- and β-amylases are respectively endo- and exo-amylolitic enzymes. Both can 
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specifically hydrolyze α-1,4 glucose likages. Alfa-amylases can act randomly on soluble 

starch or amylose to produce a mixture of soluble linear and branched oligosaccharides 

(dextrins), whereas β-amylases can only cleave the non-reducing end of linear polyglucan 

chains, giving maltose as final product (Zeeman et al., 2010). Unlike α-amylases, β-

amylases cannot overcome α-1,6 glucose linkages. Alfa-glucosidases (or maltases) can 

degrade maltose and malto-oligosaccharides, producing glucose (Sun and Henson, 1990). 

As mentioned above (see section “Starch biosynthetic enzyme”), DBEs are debranching 

enzymes able to cleave α-1,6 linkages (Delatte et  al., 2006).  

 

Enzyme Activity Substrate Products Cleaved 
bond 

α-amylase Endo-amylase Branched and linear glucans Linear and branched 
oligosaccharides 

α-1,4 

β-amylase Exo-amylase Linear glucans Maltose α-1,4 

Limit 
dextrinase 

Debranching-
enzyme 

Small branched 
oligosaccharides 

Linear dextrins α-1,6 

α-glucosidases Exo-hydrolase Maltose or linear and 
branched oligosaccharides 

Glucose α-1,4 and  
α-1,6 

 

Table 1. Storage starch degrading enzymes. The first attack on starch granules is accomplished by α-

amylases. Alfa-amylases start to randomly cleave internal α-1,4 bonds of amylose and amylopectin, giving 

linear and branched oligosaccharides (or dextrins), that are further degraded by β-amyases, only able to 

cleave α-1,4 glucosidic bonds from the non-reducing end of glucan-chains, but not to overcome α-1,6 

linkages. Beta-amylases release maltose and leave intact small branched glucans (limit dextrins). The α-1,6 

bonds in branched limit dextrins are cleaved by limit-dextrinases (LDA), that release linear small 

oligosaccharides. Finally α-glucosidases, exo-hydrolysing enzymes able to cleave α-1,4 glucosidic bond from 

the non-reducing end of oligosaccharide chains, can act on both branched and linear small oligosaccharides 

as on maltose and maltotriose, producing glucose.  

 

Even if these enzymes are well biochemically characterized, little is known about their 

relative contribution in storage starch breakdown. In cereal endosperm it is widely 

accepted that α-amylases are the major player in storage starch degradation  (Fincher et 

al., 1989; Ritchie et al., 2000). In response to hormonal stimuli, α-amylases are synthesized 

in aleurone and scutellum and are released in the endosperm, where they can initiate the 

attack of starch granule surface, probably at specific sites known as pores (Fincher et al., 

1989; Ritchie et al., 2000; Zeeman et al., 2010). Subsequently, α-glucosidases come into 
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play. It has been proven that α-glucosidases act synergistically with α-amylases to remove 

glucose directly from starch granule surface (Sun and Henson, 1991; Stanley et al., 2011). 

In some cereal species (i.e. barley) β-amylases are accumulated in an inactive form in the 

endosperm and only during germination they are activated by proteolytic digestion 

triggered by aleurone cells (Sopanen and Laurière, 1989; Smith et al., 2005; Zeeman et al., 

2010). 

Differently from cereal endosperm, for other storage organs the situation is much less 

clear. For example, during potato sprouting, starch degradation occurs in the tuber 

without an increase in starch degrading amylolitic or phosphotolytic enzymes (Davies and 

Ross, 1984; Davies and Ross, 1987; Davies, 1990), while during cold-sweetening the 

activity of a specific isoform of β-amylase increase, although its contribution in starch 

degradation is unknown (Deiting et al., 1998; Nielsen et al., 1997). A further suggestion of 

several initiation mechanisms comes from the different morphology of the starch granules 

surface (Fig. 6). Indeed, starch degradation in cereals begins from the pitting on the starch 

surface, while none or few pores are present on potato starch (Fig. 6). 

 

 

Figure 6. Enzyme treated starch granules. Common corn starch granules (left panel) and potato starch 

granules (right panel), treated with amyloglucosidase (from Fannon et al., 1992). The enzyme attacks corn 

starch granules in surface patterns resembling those of normal pores distribution, thus indicating that pores 

might be areas of lesser molecular association and major susceptibility. The same enzyme do not produce 

recognizable patterns when degrading root or tuber starches (i.e. potato) and no pores are present on the 

granule surface. 

 

In storage organs other than cereal endosperm, starch is extensively phosphorylated, 

implying a possible role of the enzymes for transient glucan phosphorylation (see 

“Degradation of transitory starch), (phospho)glucan, water dikinases (GWDs and PWD) 

and glucan phosphatases, in controlling degradation. In potato, mung bean seeds and 
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Curcurma zeadoaria, starch phosphate levels are higher than that found in Arabidopsis 

leaf starch and GWD homologues occur in a wide range of species, indicating that the 

enzyme may be ubiquitous in higher plants (Blennow et al., 2000a; Blennow et al., 2002; 

Ritte et al., 2002). For potato tubers, there are indirect evidences that GWD is required 

for normal rates of starch degradation. In fact, transgenic potatoes with greatly reduced 

levels of GWD had very low levels of phosphate in tuber starch and were less prone to 

starch loss and sugar accumulation when stored at low temperatures (cold-induced 

sweetening, see below) implying that mobilization of starch was impaired in these 

conditions (Lorberth et al., 1998). In contrast, even if the genes encoding for starch 

phosphorylation are conserved in cereals, the starch of most cereal endosperms contains 

almost undetectably low levels of phosphate. It is doubtful whether GWD plays a role in 

degradation in these organs (Blennow et al., 2000a; Blennow et al., 2002). 

 

Degradation of transitory starch  

During the day, sucrose and starch are produced simultaneously as result of 

photosynthetic carbon assimilation. The ratio between sucrose and starch synthesis 

depends on plant species and environmental conditions (Upmeyer and Koller, 1973; Stitt 

et al., 1983; Fondy et al., 1989; Zeeman and ap Rees, 1999). Most of the current 

knowledge on leaf starch degradation derives from the model plant Arabidopsis thaliana, 

which typically allocates about the 50% of the newly fixed carbon into starch (Zeeman and 

ap Rees, 1999). Furthermore, Arabidopsis is a skilful model organism for the study of leaf 

starch metabolism due to the availability of a fully sequenced genome and to public 

facilities, such as databanks of mutated seeds that enable to get specific knockout (KO) 

mutants. It was through an exhaustive analysis of several KO mutants impaired in starch 

degrading enzymes that about 10 years ago primary starch degradation pathway was 

discovered (Caspar et al., 1991; Lorberth et al., 1998; Yu et al., 2001; Critchley et al., 2001; 

Scheidig et al., 2002; Niittyla et al.,  2004; Chia et al., 2004; Lu and Sharkey, 2004; Kӧtting 

et al., 2005; Baunsgaard et al., 2005; Kaplan and Guy, 2005; Delatte et al., 2006; Zeeman 

et al., 2007; Kӧtting et al., 2009). Mutants impaired in key enzymes are characterized by 

a starch excess (sex) phenotype (Fig. 7), featured by a high amount of primary starch even 

after a prolonged period of dark (Zeeman et al., 1998). In particular, the analysis of a 

peculiar class of Arabidopsis mutants, named sex1, led to the identification of the 
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(phospho)glucan, water dikinase gene family, composed by three genes coding for the 

three proteins glucan, water dikinase 1 and 2 (GWD1 and 2) and phosphoglucan, water 

dikinase (PWD) (Fig. 7) (Ritte et al., 2002; Baunsgaard et al., 2005; Kӧtting et al., 2005; 

Glaring et al., 2007). 

At the beginning, studies performed on potato plants showed that the lack of a starch 

bound protein of unknown function, originally named R1, caused starch accumulation in 

leaves and reduced levels of sweetening in cold-stored tubers, indicating low rates of 

starch degradation (Lorberth et al., 1998). In the same mutant, the amylopectin 

component of both leaf and tuber starch showed a decrease in the covalently bound 

phosphate groups (Lorberth et al., 1998). Around the same period, Yu group’s discovered 

an Arabidopsis mutant with high starch content in seeds, flowers and root tips, and 

completely unable to degrade leaf starch (Caspar et al.,1991; Trethewey and ap Rees, 

1994; Yu et al., 2001). As for potato R1, also in Arabidopsis mutant the amylopectin 

component was free of phosphate groups (Yu et al., 2001) and further studies led to the 

identification of GWD1 as the enzyme responsible of the phosphorylation in C-6 position 

of glucose units belonging to amylopectin chains (Ritte et al., 2002; Mikkelsen et al., 2004). 

Unlike GWD, PWD phosphorylates  pre-phosphorylated glucan chains in C-3 (Baunsgaard 

et al., 2005; Kӧtting et al, 2005; Ritte et al., 2006). As a consequence, the activity of PWD 

is strictly dependent by the previous action of GWD and lack of PWD brings to a less severe 

sex phenotype (Zeeman et al., 2007). Amylopectin phosphorylation mediated by GWD and 

PWD is required in transitory starch breakdown in both photosynthetic and non-

photosynthetic tissues (Fig. 8) (Lorberth et al., 1998; Yu et al., 2001), mainly because 

phosphate groups positively affect the hydrophilicity of amylopectin, speeding up its 

subsequent hydrolysis (Blennow et al., 2000a; Blennow et al., 2000b; Blennow et al., 

2002). 
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Figure 7. Comparison of wild-type, pwd mutant and sex1 mutants (from Kӧtting et al., 2005). Plants were 

grown in a 12 h light (approximately 100 μmol quanta m-2s-1)/12 h dark cycle. Plants were harvested at the 

end of the light period (12 h L) and at the end of the dark period (12 h D), and chlorophyll was extracted in 

80% ethanol. Starch was visualized by iodine staining. The sex1-3mutant is a GWD knock-out, sex1-1 

contains a mutated form of GWD and approximately 20-30% of starch phosphate compared with wild-type 

(Yu et al., 2001). sex1 plants show high starch content even after the period of dark, whereas pwd plants 

show a milder phenotype. Moreover, sex1-3 showed reduced growth.  

 

Since in cereal endosperm α-amylases can attack the surface of insoluble starch grains, 

releasing soluble and ramified glucans that facilitate the action of other degrading 

enzymes (Beck and Ziegler, 1989; Sun and Henson, 1990), the role of the three chloroplast 

target α-amylases (AMY1, AMY2, AMY3) coded by Arabidopsis genome, was investigated 

(Stanley et al., 2002; Yu et al., 2005). Differently from cereal endosperm, plants lacking of 

AMY1, AMY2 or AMY3 as well as the triple mutant amy1amy2amy3, showed a normal 

starch degradation rate at night, suggesting that α-amylases were not relevant for 

transitory starch breakdown in Arabidopsis (Yu et al., 2005). Similarly, α-glucan 

phosphorylases do not appear to take part in this metabolism (Zeeman et al., 2004). 

Further studies on Arabidopsis and potato transitory starch revealed a progressive 

degradation of the granule by exo-amylolysis and debranching enzymes. The loss of β-

amylase 3 (BAM3) in Arabidopsis or of its homologous PCT BMY1 in potato (Beck and 

Ziegler, 1989; Lao et al., 1999; Scheidig et al., 2002; Kaplan and Guy, 2005; Fulton et al., 

2008), as well as the loss of ISA3 (both in Arabidopsis and potato) led to a reduced rate of 

starch breakdown and to the onset of a sex phenotype, suggesting their involvement 

(Wattebled et al., 2005). In support to this hypothesis, it was observed that in vitro starch 

granules degradation mediated by β-amylases was enhanced in the presence of GWDs, 

and that in turn β-amylolysis caused an increased incorporation of phosphate by GWDs 
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(Edner et al., 2007). The interplay among BAM3, ISA3 and GWD was also confirmed by the 

observation that both BAM3 and ISA3 recombinant proteins have small activity on intact 

starch granules, and a much greater activity on soluble starch, according to the idea that 

they might require a previous phosphorylation of the substrate catalysed by GWD (Edner 

et al., 2007; Kӧtting et al., 2009). Finally, with the aid of ISA3-GFP construct it was 

demonstrated that ISA3 preferentially localizes at the starch granule surface, in 

agreement with its role (Delatte et al., 2006). Currently the proposed model (Fig. 8) 

suggests that BAM3 acts on the outer chains of the branched glucan, and since it is not 

possible for the enzyme to overcome the branched points, it produces on the grain a 

surface of short chains, on which it is not anymore able to act. The short chains could be 

removed by ISA3, uncovering other longer chains that become substrates for BAM3 

(Delatte et al., 2006; Streb and Zeeman, 2012). Since mutations affecting BAM3 and ISA3 

genes do not completely abolish starch breakdown, the involvement or the partial 

compensation of other enzymes has been hypothesized (Delatte et al., 2006). In fact, 

whereas in Arabidopsis plants lacking LDA there was no detectable phenotypic trait, 

plants in which ISA3 and LDA were simultaneously loss, starch breakdown was further 

compromised in respect to the isa3 single mutant, indicating that when ISA3 is missing 

LDA carries out a compensatory function (Delatte et al., 2006). Due to the inability of β-

amylases to work in proximity of phosphate groups (Takeda and Hizukuri, 1981), the 

proposed model seemed uncertain until the discovery in Arabidopsis plants of two 

phosphoglucan phosphatases. Starch Excess 4 (SEX4) and Like Sex Four 2 (LSF2) (Fig. 8) 

are two chloroplast enzymes able to dephosphorylate amylopectin (Gentry et al., 2007; 

Kӧtting et al, 2009; Santelia et al., 2011) in C-3 and C-6 position and in C3 position only, 

respectively (Hejazi et al., 2010; Santelia et al., 2011). As for ISA3 and LDA, the double 

mutant sex4lsf2 displayed a more severe sex phenotype compared to single mutants 

(Santelia et al., 2011; Streb and Zeeman, 2012), and evidence of 

phosphorylation/dephosphorylation cycles derives from in vitro experiments where the 

addition of SEX4 enhanced the release of soluble glucans from the granules in the 

presence of GWD1 and hydrolytic enzymes (Kӧtting et al, 2009). Moreover, SEX4 acts 

preferentially on insoluble granules rather than on phospho-oligosaccharides, confirming 

that phosphorylation and dephosphorylation can occur concurrently on the granule 

surface (Kӧtting et al, 2009; Streb and Zeeman, 2012). 
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The end products of such a model are maltose, maltotriose  and small oligosaccharides, 

made by debranching enzymes (Fig. 8). Disproportionating enzymes (DPEs) metabolize 

maltotriose (Lloyd et al., 2005) transferring an oligosaccharide unit to the C-4 position of 

an acceptor sugar, releasing glucose and a longer glucan chain (Jones and Whelan, 1969; 

Llooyd et al., 2005). Two isoforms of DPEs (Fig. 8) are present in Arabidopsis, namely DPE1 

and DPE2. DPE2 is localized in the cytosol and it is not involved primary starch breakdown 

(Chia et al., 2004; Lu and Sharkey, 2004). Instead, DPE1 is chloroplast-targeted and is 

important for normal starch degradation, given that its absence causes accumulation of 

starch and malto-oligosaccharides (Critchley et al., 2001). Albeit at different extent, the 

final products of primary starch degradation are maltose and glucose (Streb and Zeeman, 

2012), both exported to the cytoplasm through specific membrane transporters according 

to their concentration gradients (Fig. 8) (Weber et al., 2000; Niittylӓ et al., 2004). Maltose 

transporter is called MEX1 (Niittylӓ et al., 2004) and mutations in its locus give rise to the 

characteristic sex phenotype, corroborating the idea that maltose is the main product of 

transitory starch degradation at night (Niittylӓ et al., 2004), while two glucose transporters 

(GLT and GT) are responsible for glucose export and none relevant phenotypic traits were 

observed when mutated (Cho et al., 2011; Flügge et al., 2011). 

Once in the cytosol, maltose is metabolised to glucose by DPE2 (Chia et al., 2004; Lu and 

Sharkey, 2004; Lu et al., 2006). Then, glucose is converted to hexose phosphates through 

the action of hexokinase (HKN) (Fig. 8). The fate of the second glucosidic portion of 

maltose, resulting from hydrolysis by DPE2, is not well understood. However, some 

studies suggest that it might be transferred to a cytosolic carbohydrate, such as a specific 

soluble arabinogalactan, found in leaves of many plant species (Fettke et al., 2005; Fettke 

et al., 2006; Lu et al., 2006).   
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Figure 8. Pathway of hydrolytic leaf starch degradation, adapted from Weise et al., 2006. The products of 

the hydrolytic pathway are maltose and glucose, which are exported to the cytosol to make sucrose. 

Hatched arrows indicate steps that are currently uncertain. pGlcT, glucose transporter (GLT or GT). 

 

Hints on starch metabolism regulation 

As we have seen from the previous paragraphs, starch metabolism in higher plants 

requires the concerted and controlled action of a plethora of enzymes (Fig. 9). The large 

number of enzymes and reactions form a complex network that must be adjusted to meet 

the metabolic needs of the plant (Fig. 9, for an overview of regulation of starch 

metabolism in Arabidopsis chloroplasts). 

Firstly, different protein isoforms are involved in the process and may have slightly 

different role depending on plant tissue, developmental stage, and conditions sensed by 

the plant, within the same plant species but also between different plant species. In 

Arabidopsis leaves carbon is partitioned into starch during the day at a linear rate. Starch 

degradation, that mainly provides carbon for respiration, follows a near-linear rate and 

starch is almost but not completely exhausted at dawn (Geiger and Servaites, 1994; Graf 

et al., 2010; Stitt and Zeeman, 2012). This allows to invest newly fixed carbon into growth, 

minimizing the risk of starvation at the end of the night (Rasse and Tocquin, 2006; Graf 

et al., 2010; Stitt and Zeeman, 2012). 
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Carbon partitioning is affected by developmental and source/sink relationship, by 

environmental factors such as light intensities, CO2 concentrations and photoperiod. 

When carbon is poorly available (e.g. short days, low light), a larger proportion of the 

photosynthates is accumulated as starch in the light and the rate of starch degradation is 

decreased during the subsequent night (Chatterton and Silvius, 1979, 1980; Smith and 

Stitt, 2007; Stitt et al., 2007). It was recently shown that starch degradation is adjusted 

almost immediately to respond to the rapid changes in the light regime (Lu et al., 2005; 

Graf et al., 2010) and temperature (Pyl et al., 2012) and that the circadian clock regulates 

starch breakdown (Graf et al., 2010), although the underlying mechanism is still unknown 

(Graf and Smith, 2011; Scialdone et al., 2013). It was reported that the transcriptional 

levels of many enzymes involved in starch degradation show a diurnal pattern of 

expression in leaves and that the expression of some of them was under the light-

dependent circadian control (Lu et al., 2005). However, when protein levels have been 

analysed, they did not change at the same extent, suggesting that additional post-

translational regulatory mechanisms may occur (Yu et al., 2001; Ritte et al., 2003; Kötting 

et al., 2005; Skeffington et al., 2014). Indeed, the activity of several starch metabolising 

enzymes has been demonstrated to be affected by reducing or oxidising conditions, 

indicating that it can be regulated by the redox potential of the stroma (Glaring et al., 

2012). 

AGPase, the first enzyme of the biosynthetic pathway, has been object of several studies 

and its redox regulation has been treated in the previous paragraph (see Section 

“Mechanisms of AGPase regulation”). In addition to AGPase, other enzymes involved in 

starch metabolism have been reported to be affected by redox regulation (Fig. 9). Among 

them, GWD and SEX4 proteins, both required in the first steps of transitory starch 

degradation, are activated by reducing conditions (see below for more details) (Sokolov 

et al., 2006; Silver et al., 2013), as well as BAM1 and AMY3, two enzymes mainly involved 

in starch degradation under stress condition and in guard cells, known to be active when 

reduced and inactive when oxidized (Sparla et al., 2006; Seung et al., 2013). The redox 

regulation of GWD and SEX4 is somehow counter-intuitive, because during the day when 

photosynthetic process is active, the chloroplast stroma represents a reducing 

environment (Schürmann and Buchanan, 2008). As a consequence, GWD and SEX4 would 

be more active during starch synthesis rather than during starch degradation. However, 
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starch phosphorylation commonly occurs during starch degradation and SEX4 is more 

active in the dark (Kӧtting et al., 2009). For BAM1 and AMY3 it has been suggested that 

they may have different roles in different tissues or under specific growth conditions. 

Indeed, BAM1 was suggested to be involved in stress tolerance, namely in diurnal starch 

degradation in mesophyll cells under osmotic stress conditions (Valerio et al., 2011; 

Zanella et al., 2016), as well as in guard cells under drought stress (Prasch et al., 2015). 

Moreover, BAM1 and AMY3 seem also to have a role in physiological diurnal starch 

degradation in guard cells (Valerio et al., 2011; Horrer et al., 2016).  

Further regulatory mechanisms, including protein phosphorylation and supramolecular 

complexes formation (Fig. 9), are suggested to be involved in starch metabolism (Kötting 

et al., 2010). Phosphorylation is a common post-translational modification able to control 

protein function. Many Arabidopsis proteins have been identified by large-scale 

phosphoproteomic approaches, as phosphorylated in vivo (Fig. 9). Some of them are 

involved in starch metabolism, i.e. PGI, PGM1, AGPase, SS3, GWD1 and GWD2, DPE2, 

AMY3, BAM1 and BAM3, LDA, pGlcT and MEX1 (see Kötting et al., 2010), however the 

specific effect of the phosphorylation is poorly known.  

Multi-enzyme complexes, containing different SSs and BEs isoforms, have been identified 

in wheat and maize endosperm, during grain filling (Tetlow et al., 2004; Hennen-

Bierwagen et al., 2008; Tetlow et al., 2008; Hennen-Bierwagen et al., 2009). Since some 

of the enzymes forming the complexes have been demonstrated to be phosphorylated 

(Tetlow et al., 2004; Tetlow et al., 2008; Hennen-Bierwagen et al., 2009), complex 

formation has been proposed to be dependent on protein phosphorylation. 

Dephosphorylation of complex components by the addition of alkaline phosphatase 

resulted in subunit disassociation. Although, protein kinases and phosphatases 

determining the phosphorylation status of enzymes that form the complexes remain to 

be identified. It is also unknown if the formation of such complexes is functionally 

significant. It is plausible that different combinations of physically associated enzymes 

could produce specific structures within the starch granule that would not be produced 

by the free, soluble enzymes (Kӧtting et al., 2010).  

In Arabidopsis, such protein complexes have never been identified. However, it was 

suggested (Sehnke et al., 2001) that 14-3-3 proteins, which can bind phosphorylated 

proteins mediating protein-protein interaction (Fu et al. 2000; Huber, 2007), could have a 
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role in starch metabolism regulation. Indeed, 14-3-3 proteins seem to associate with 

starch granules and the repression of plastid localized 14-3-3 isoforms changed starch 

properties and content in Arabidopsis leaves (Streb and Zeeman, 2012). In agreement 

with this hypothesis, in barley, among 14-3-3 proteins targets, several endosperm 

enzymes involved in starch metabolism have been identified, such as GBSSI, SSI, SSII, BEIIa, 

α- and β-amylases (Alexander and Morris, 2006) 

In addition, other interesting chloroplast proteins may be involved in supramolecular 

complexes formation in Arabidopsis. Among them, a protein containing a carbohydrate 

binding module (CBM) and a coiled coil domain, by which it can interact with other starch 

related proteins, has been found. This protein lacks of any obvious enzymatic domain and 

could act as a scaffold to recruit other proteins on the starch granule (Lohmeier-Vogel et 

al., 2008).  

LSF1 (Like SEX Four 1), likewise LSF2, is a homolog of SEX4. lsf1 mutants have a sex 

phenotype, albeit milder than that of sex4 (Comparot-Moss et al., 2010), suggesting that 

LSF1 is required for normal starch breakdown. However, the lsf1 mutant leaf extracts 

misses any reduction in phosphoglucan phosphatase activity and lsf1 mutant, unlike sex4, 

does not accumulate phospho-oligosaccharides. Indeed, LSF1 protein seems to lack any 

phosphoglucan phosphatase activity (Comparot-Moss et al., 2010). Consequently, LFS1 

has been proposed to have a regulatory role (Streb and Zeeman, 2012). Interestingly, this 

protein has a CBM, allowing it to bind starch granules, but it also possess a putative PDZ-

type protein-protein interaction domain. Recently it was discovered that LSF1 forms a 

stable complex together with the chloroplastic β-amylase BAM1, which may serve to 

target the β-amylase on the granule surface during starch degradation (Streb and Zeeman, 

2012).  
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Figure 9. Model (Kotting et al., 2010) for the regulation of starch synthesis and degradation in Arabidopsis 

chloroplasts. In the box (a): synthesis. In the box (b): degradation. Potential regulatory mechanisms are 

highlighted with superscript red letters: R (redox), C (complex formation), P (protein phosphorylation). 

Regulation by metabolites: green dotted arrows (stimulation), magenta dotted lines (inhibition). Protein 

names are shown in blue, metabolites in black and cellular compartments and constituents in grey. ADG, 

AGPase; GLT, glucose transporter; MEX, maltose transporter; PGI, phosphoglucoisomerase; PGM, 

phosphoglucomutase; STS, starch synthase. 
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The transport of sugars through the plant 

Between dicot and monocot leaves there are differences in the sucrose phloem loading 

pathway. Because Arabidopsis is a dicot Angiosperm, I will focus my attention only on 

dicots phloem loading. 

Sucrose, resulting from photosynthetic carbon assimilation or from starch breakdown, is 

the primary transported sugar in most plants. From the mesophyll (M) cells, sucrose 

moves cell to cell, until arriving into bundle sheath (BS) cells, neighbouring the veins, and 

then into the vein for long distance transport out of leaf. In dicots, sucrose moves from 

smallest veins to larger veins, until reaching the midvein. Then, sucrose exits the leaf and 

moves into the stem vasculature. In each vein, there are two long distance transport 

tissues, xylem and phloem. Xylem transports water and minerals from the roots to the 

shoots and usually is situated in the inner part of the vein. Phloem usually carries sugars 

and other organic compounds from source (usually photosynthetic tissues) to sink organs 

(usually non-photosythetic tissues). Phloem is composed of three cell types: 

 sieve elements (SEs) that conduct assimilates; 

 companion cells (CCs) that genetically and metabolically support the SEs;  

 the phloem parenchyma (PP) cells; 

SEs are connected end-to-end longitudinally to form a sieve tube (ST), through which 

sucrose is transported (Evert, 1982). Phloem system can be also divided in three 

functional regions (van Bel, 1996):  

 the collection phloem, located in the small veins of source leaves and responsible 

for sucrose entry into the vein (phloem loading);  

 release phloem, located in the sink tissues and responsible for the exit of sucrose 

(phloem unloading) from the phloem into the surrounding tissues for utilization or 

storage;  

 transport phloem, that connects collection and release phloem and represents the 

largest portion of the integrated phloem network in a plant (van Bel., 2003).  

An hydrostatic pressure gradient between source and sink organs drive the flux of solutes 

through the STs (Lalonde et al., 2003; Patrick, 2013). This pressure is osmotically 

generated by sucrose. In source organs, sucrose enters into the collection phloem and 

increases the solute concentration. In response, water from the xylem flows into the STs 
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by osmosis, raising the pressure. In sink tissues, sucrose-unloading decreases the solute 

concentration in the STs and water diffuses out of them, lowering the pressure.  

According to leaf anatomy, there are three possible pathways for phloem loading (van Bel, 

1993; Rennie and Turgeon, 2009; Slewinski and Braun, 2010a): 

 

 symplasmic loading (Fig. 10); 

 apoplasmic loading (Fig. 10); 

 polymer trapping loading; 

 

The symplasmic phloem loading is also passive, because there is no need of energy input 

for sucrose to enter ST. In fact, the entire process, from M cells to ST, is driven only by 

diffusion down a concentration gradient. All the intervening cells are connected through 

plasmodesmata (PD), pores in the cell wall connecting the cytoplasm of adjacent cells, and 

their cytoplasm is joined into a single symplasm (Rennie and Turgeon, 2009; Slewinski and 

Braun, 2010). 

 

Figure 10. Schematic diagram of pathways of phloem loading in source leaves. In the totally symplastic 

pathway, sugars (S, red arrows) move from one cell to another in the plasmodesmata, all the way from the 

mesophyll (M) to the sieve elements (SE). In the partly apoplastic pathway, sugars enter the apoplast at 

some point. For simplicity, sugars are shown here entering the apoplast near the sieve element–companion 

cell complex, but they could also enter the apoplast earlier in the path and then move to the small veins. In 

any case, the sugars are actively loaded into the companion cells (CC) and sieve elements (SE) from the 

apoplast. Sugars loaded into the companion cells (CC) are thought to move through plasmodesmata into 

the sieve elements (SE). BS, bundle sheath. PP, phloem parenchyma. 
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For that reason, sucrose transporter proteins are not required to move sucrose across the 

plasma membrane in order to reach the collection phloem. However, also in symplasmic 

loading species, these transporters are still required for the recovery of sucrose leaking 

out along the transport phloem and are necessary to keep high the osmotic gradient 

(Minchin and Thorpe, 1987; Hafke et al., 2005; Bihmidine et al., 2013). 

In the apoplasmic loading mechanism, sucrose move symplasmically through PD from M 

cells into the BS cell, and then into the PP cell (Russin et al., 1996; Haritatos et al., 2000; 

Ma et al., 2008). Then, sucrose takes the apoplasmic way, going in the extracellular space 

outside the symplasm, probably because of the paucity of PD connecting the CC-SE 

complex to the surrounding cells. Sucrose is exported by SWEET transporters into the BS-

CC cell wall space or across the plasma membrane and is delivered in the apoplasm (Chen 

et al., 2012). Afterwards it is imported again into the plasma membrane of the CC-SE 

complex by sucrose trasporters (SUTs) and it moves again through PD into the ST for long 

distance transport to sink tissues (Slewinski et al., 2012; Baker et al., 2013). The 

importation of sucrose into the CC-SE complex requires energy because sucrose moves 

against its concentration gradient (Giaquinta et al., 1983). The lack of connectivity 

between STs and adjacent cells lead to achieve very high sucrose concentrations in STs, 

avoiding the backward spread of sugars via PD to reach an equilibrium (Rennie and 

Turgeon, 2009). 

In polymer trapping phloem loading species, in addition to sucrose, other larger polymers 

are transported, such as raffinose and stachyose (Rennie and Turgeon, 2009).  These 

molecules are synthesized in specialized CCs, called intermediate cells (ICs). Sucrose 

moves symplasmically from M to ICs, where it is converted into raffinose or stachyose, 

both too large to diffuse back, but still able to move via PD to the SE and to be transported 

long-distance in the ST sap. 

The same plants can use different loading mechanism simultaneously, even within a single 

vein, or shift from one mechanism to another during development and/or in response to 

stress. However, a predominant phloem loading  mechanism might be employed by a  

single plant species, and it could be used as a general reference mechanism for that 

species. For example, Arabidopis thaliana can be defined as an apoplasmic phloem 

loading species and this implies the presence of SWEETs and SUTs. In Arabidopsis SWEETs 

are encoded by a multi-gene family composed of 17 members (Chen et al., 2010). SWEETS 
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are a class of facilitate diffusers, with seven transmembrane domains, which can transport 

sugars across the plasma membrane down a concentration gradient (Chen et al., 2010). 

By subcellular localization studies eight of them have been demonstrated to be effectively 

plasma membrane proteins (Ge et al., 2000; Chu et al., 2006; Guan et al., 2008; Chen et 

al., 2010; Chen et al., 2012; Xuan et al., 2013). AtSWEET11 and AtSWEET12 are two closely 

related genes and are expressed in a subset of PP cells in Arabidopsis leaves (Chen et al., 

2012). They were demonstrated to act as sucrose uniporters that reversibly transport 

sucrose (Chen et al., 2012). While the single mutants for atsweet11 or atsweet12 did not 

show a visible phenotype, the double mutants atsweet11atsweet12 exhibited slower 

growth, mild leaf chlorosis and carbohydrate accumulation in leaves (Chen et al., 2012), 

suggesting a redundancy and confirming the importance of sucrose transport for the 

wellness of the entire plant. 

SUTs possess 12 transmembrane domains and can form a pore that allows the transfer of 

sucrose through the plasma membrane (Lalonde et al., 2004; Sauer, 2007, Ayre, 2001; 

Geiger, 2011). SUTs function as sucrose/proton symporter that use the energy provided 

by the proton gradient generated across the membrane by H+-ATPases to drive sucrose 

movement (Bush, 1990; Bush, 1993; Boorer et al., 1996; Zhou et al., 1997; Carpaneto et 

al., 2005; Gaxiola et al., 2007). Like SWEETs, SUTs are encoded by a multi-gene family (Aoki 

et al., 2003; Lalonde et al., 2004; Sauer, 2007; Braun and Slewinski, 2009; Doidy et al., 

2012; Reinders et al., 2012) and they can be divided by phylogenetic analysis in multiple 

distinct clades (Aoki et al., 2003; Sauer, 2007; Braun and Slewinski, 2009; Reinders et al., 

2012), confirmed by biochemical studies (Chandran et al., 2003; Carpaneto et al., 2005; 

Reinders et al., 2006, 2008, 2012). Apoplasmic phloem loading species, with mutations in 

phloem plasma-membrane SUT showed a stunted phenotype, chlorotic leaves with 

hyperaccumulation of starch and soluble sugars, altered biomass partitioning, and root 

growth and reproductive defects (Riesmeier et al., 1994; Bürkle et al., 1998; Gottwald et 

al., 2000; Hackel et al., 2006; Srivastava et al., 2008; Slewinski et al., 2009).  

Once reached the sink tissues, sucrose and other organic compounds must be unloaded 

from the SE-CC complex. This can be done either symplasmically and/or apoplasmically 

into the surrounding cell wall matrix. Again, in the apoplasmic pathway, two classes of 

sugar transporters are involved in phloem unloading and post-phloem transport: sucrose 

effluxers that export sucrose in the apoplast and sucrose or hexose influxers that uptake 
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sugars in the sink cells, coupled with the H+ gradient established through the activity of 

the plasma membrane H+-ATPase. If sugars must be transported in the vacuole of the sink 

organ they must also cross the tonoplast. Since some transporters seem to be 

bidirectional, some of the transporters described for phloem loading could be involved in 

phloem unloading and the direction of the transport can depend upon the sucrose 

gradient, the pH and the membrane potential (Ayre, 2011). Sucrose can also be partially 

hydrolized in the apoplast, for example it can be converted by invertase (INV) in glucose 

and fructose, that can cross the membrane. 

One of the major sink tissues in plant is developing seed. In Angiosperm seeds, the 

vascular bundles terminate in the maternal seed tissue, where the phloem unloading 

occurs and the filial tissues, namely the embryo and the endosperm, are isolated from the 

maternal tissue by an apoplasmic compartment (Stadler et al., 2005). Before and after 

crossing the apoplasmic compartment, the post-phloem sugar transport operates via a 

symplasmic pathway (Patrick, 1997). Hence, sugars must cross at least two plasma 

membranes during their movement from maternal to filial tissue (Weber et al., 2005), and 

this transition is accomplished by active transporters with an energy cost. 

The plasticity of phloem unloading has been recently highlighted by the discovery of a 

dual switch in phloem unloading during ovule development in Arabidopsis (Werner et al., 

2011). A symplasmic phloem pathway that drives sucrose into ovule primordia is shifted 

to an apoplasmic pathway when integuments are formed prior to flowering and is again 

switched to symplasmic unloading in the integuments following fertilization. The cause of 

the switch is unknown, but this developmental change in cellular route of assimilate 

transport resembles that in developing cotton fibres (Ruan et al., 2001; Ruan et al., 2004; 

Ruan et al., 2005). Overall, these observations suggest that symplasmic connectivity is 

highly regulated and varies not only between different sink types, but also between 

different developmental stages. 

After phloem unloading, carbon can be used for different purposes: it can be accumulated 

in vacuoles as sucrose or exoses or in amyloplasts as starch or it can be used for respiration 

and growth. Sucrose can be either hydrolysed by INV into glucose and fructose, or 

degraded by sucrose synthase (Sus) into uridine-diphosphoglucose (UDP-Glc) and 

fructose. While both INV and Sus play an important signalling role in plant development 

(Ruan, 2012), INVs appear to play regulatory function in plant growth and development 
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(Ruan et al., 2009), whereas Sus is mainly involved in the biosynthesis of sugar polymers, 

including starch and cellulose, and in generation of energy (ATP) (Chourey et al., 1998; 

Coleman et al., 2009). In crop species, i.e. maize, mutation of one Sus, named SH1, 

disrupts endosperm cellularization, probably because of the reduction in the production 

of UDP-glucose required for cellulose biosynthesis, leading to a shrunken seed phenotype; 

whereas, loss of a second Sus, named Sus1, decreases starch accumulation in the 

endosperm (Chourey et al., 1998). In Arabidopsis, however, Sus does not appear to exert 

evident control over plant growth and development (Barratt et al., 2009), although the 

degree of reduction in Sus activity in the mutants analysed remains disputable (Baroja-

Fernández et al., 2012). 

 

The role of starch in Arabidopsis seed development 

Arabidopsis seed development is defined by three phases: histodifferentiation, cell 

expansion and maturation/drying. The embryo sac undergoes a double fertilization event, 

by which a diploid embryo and a triploid endosperm are formed. In the first phase of 

development occurs the early morphogenesis, in which via several cell divisions, the 

embryo acquires the basic plant architecture. In the meanwhile, like in most angiosperms, 

Arabidopsis endosperm develops in two consecutive steps, an initial phase of free nuclear 

divisions without cytokinesis (syncytial phase) and a following cellularization (Costa et al., 

2004), before being almost completely reabsorbed during maturation. 

During this process, endosperm is progressively compartmentalized in three distinct 

domains that are likely to regulate the uptake of nutrients into the developing seed. 

In the second phase of development, embryo cells expand and differentiate, while 

accumulating storage products as proteins, probably serving as nitrogen sources, and 

lipids, such as triacylglycerols (TAGs), glycerol esters and fatty acids, that serve as carbon 

reservoir supporting growth and metabolism of the young plant. In the third phase of 

development, the seed has reached the physiological maturity and, in some species, this 

coincides with rapid water loss to reach the maximum dry weight.  

Fatty acids biosynthetic pathway is well understood in Arabidopsis seeds and involves 

different cellular compartments (Miquel and Browse, 1995). TAGs, are stored in cytosolic 

oily bodies that constitute about the 60% of the cell volume in mature embryo cotyledons 

(Mansfield and Briarty, 1992). Moreover, during maturation there is a preponderance of 

http://dev.biologists.org/content/139/11/2031#ref-10
http://dev.biologists.org/content/139/11/2031#ref-10
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mRNAs codifying for seed storage proteins (Heath et al., 1986; Pang et al., 1988). In 

addition to oils, glucose and fructose are present in the early stages of seed development 

but they gradually fade until seed reach the maturity (Focks and Benning, 1998). Also 

carbohydrates such as starch are transiently accumulated (Eastmond and Rawsthorne, 

2000; Baud et al., 2002; Hills, 2004). Typically starch concentration decreases in the late 

stages of seed development and eventually disappear in mature seeds. In parallel with the 

decrease of starch, protein and oil contents increase (Baud et al., 2002; O’Neill et al., 2003; 

Andriotis et al., 2010).  

Despite starch is not quantitatively relevant in mature seeds, in some developmental 

stages it represents an important fraction of the embryo weight. For example, in rape 

oilseeds the maximum starch content constitutes about the 8-10% of the dry weight (Silva 

et al., 1997; Eastmond and Rawsthorne, 2000) and the rate of accumulation is similar to 

that of seeds which store starch. 

The role of starch in developing embryos of oilseed plants is not yet completely known, 

but there are hypotheses in this regard. First, it has been proposed that starch can serve 

in later stages of seed development as carbon storage for sugars and lipids biosynthesis, 

to feed the oxidative pentose phosphates pathway or to produce stachyose, a sugar that 

accumulates over exsiccation (Norton and Harris, 1975; Leprince et al., 1990). The 

progression of events during the maturation phase of the seed has been portrayed as a 

shift from starch to lipid storage (Eastmond and Rawsthorne, 2000; Schwender et al, 2003; 

Vigeolas et al., 2003; Lin et al., 2006; Musgrave at al., 2008). However, supposing that all 

the starch produced during seed development is degraded to give oil, it would not be 

sufficient to sustain the great overall oil production in the seed. Therefore, carbon and 

reductants necessary to produce oil, cannot entirely derive from starch. However, sucrose 

conversion in starch might be useful to recall other sugars in the seed, transforming the 

seed into a sink organ (Silva et al., 1997). In addition, to facilitate a carbon flux, i.e. from 

starch to lipid reserves, starch degradation and other storage compounds biosynthesis 

should occur at the same time and within the same cells, in the seed or in the embryo 

(Andriotis et al., 2010). Andriotis et al. (2010) demonstrated that, in Arabidopsis seeds, on 

the contrary, starch is accumulated in the testa in early developmental stages, whereas 

oil and proteins are produced in the embryo and later in the development. Moreover, in 

Arabidopsis embryo, the carbon flux that generates starch is greater and occurs over a 
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longer period along the seed axis (root-hypocotyl), rather than in cotyledons, which 

preferentially accumulate lipids. Mature Arabidopsis seed cotyledons contain about the 

60% of the total oil content, whereas the seed axis only the 27% (Li et al., 2006). Thus the 

quantitative and temporal relationship between the flux of carbon to starch and the flux 

to oil were very different in different parts of the embryo. In general, these observations 

are consistent with the idea that starch act as a temporary carbon source in cells that are 

dividing or in the first stages of differentiation, where more energy is required to sustain 

fast metabolic changes rather than contribute to oil production. However, mutations 

affecting starch metabolism in Arabidopsis can lead to reduction in seed lipid content at 

maturity. Indeed, the starchless mutants lacking the plastidial PGM1 contain about the 

40% less lipid than wild-type seeds (Periappuram et al., 2000) and sex1 mutants, lacking 

GWD1 and unable to degrade starch (Yu e al., 2001), show 10 times more starch than wild-

type seeds and 30% less lipid (Andriotis et al., 2010). Although these evidences seem to 

link starch metabolism and lipid accumulation, other observations seem to point in the 

opposite direction. In fact, in Arabidopsis and rape seeds, other disruptions of embryo 

starch metabolism, such as the loss of the sucrose synthases SUS2 and SUS3 or the 

reduction in the activity of ADP-Glc pyrophosphorylase, have no effect on the final lipid 

seed content (Barratt et al., 2009; Angeles-Núñez and Tiessen, 2010). As a consequence, 

the impact on seed oil content of mutation causing starch excess or starchless phenotypes 

can be explained considering the impaired seed lipid accumulation as an indirect effect of 

the altered maternal starch metabolism, rather than of the embryo itself. To assess this 

hypothesis, Andriotis et al. (2012) generated phenotypically wild-type plants bearing 

embryos defective in PGM1 and GWD1 gene and observed that, despite having disrupted 

starch metabolism, these embryos had wild-type lipid content at maturity, confirming that 

seed oil content is dependent on the night-time carbohydrate provision from the maternal 

plant to the reproductive structures. Moreover, the gsl7 mutant lacking the glucan 

synthase-like 7 and defective in the phloem transport in the stem, showed impaired lipid 

accumulation in mature seeds (Andriotis et al., 2012). 

As in leaves, starch synthesis in plastids of oilseed embryos, during the early-intermediate 

of cotyledons development, start from glucose 6-phosphate and pursues through the 

action of PGM, AGPase, SSs and BEs (Andriotis et al., 2010). In addition, starch degradation 

in the Arabidopsis seed seems to follow a pathway similar to that described for leaves at 
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night (Andriotis et al., 2010). Several mutations in enzymes necessary for normal starch 

breakdown in leaves impair seed starch turnover. As previously mentioned, the loss of 

GWD1 (in sex1 mutants) reduces starch degradation rate in the testa and in the embryo 

at 12 DAF (Days After Flowering), when the starch content reach the greatest level 

(Andriotis et al., 2010). Thus, phosphorylation of the granule surface seems to have an 

important role in starch breakdown also in non-photosynthetic tissues as well as in leaves. 

Also the loss of SEX4 reduces the rate of starch loss in the testa, but without affecting 

starch turnover in the embryo (Andriotis et al., 2010). Thus, the importance of the 

phosphorylation/dephosphorylation cycle of starch granules in seeds appears unclear.  

Beta-amylases are essential for normal starch degradation in both testa and embryo 

(Andriotis et al., 2010), whereas loss of the plastidial α-amylase, AMY3, or of the plastidial 

glucan phosphorylase, PHS1, has no effect (Fulton et al., 2008; Zeeman et al., 2004; Yu et 

al., 2005). Comparing mutants lacking of β-amylases, it appears that different the -

amylases have a different role on seed or on leaf starch breakdown. Whereas, mutants 

lacking BAM3 or BAM4 have reduced rate of starch degradation in leaves (Fulton et al., 

2008), only the loss of BAM4 noticeably reduces the rate starch breakdown in seeds 

(Andriotis et al., 2010). Interestingly, BAM4 is reported to lack β-amylase activity, and it 

has been proposed to have a regulatory role through its interaction with other starch-

degrading enzymes (Fulton et al., 2008). To further highlight the differences between 

leaves and seeds starch metabolism, the loss of the debranching enzyme ISA3, that is 

essential for starch degradation in leaves, has no effect on seed starch degradation, 

suggesting a possible role of the other plastidial debranching enzymes (ISA1, ISA2 and 

LDA) (Delatte et al., 2005; Wattebled et al., 2005; Streb et al., 2008). 

 

  



39 
 

Phosphorylation and its effects on starch structure 

Since the early ‘900, potato starch was known to contain a certain amount of mono-

esterified phosphate groups (Fernbach, 1904). Starch from almost all type of plant seems 

to be phosphorylated (Blennow et al., 2000a), and also glycogen (the starch analogous 

found in animals, fungi and bacteria) contains esterified-phosphate groups (Lomako et al., 

1993). This suggests that phosphorylation is a general and well-preserved characteristic 

of reserve polysaccharide in all living organisms, even if phosphorylation levels change 

dramatically among species, organs and tissues. In Arabidopsis, storage starch has an 

intermediate degree of phosphorylation (a phosphorylated glucose unit every 1000) (Yu 

et al., 2001), whereas in cereal starch it is very low (one phosphate group every 10000 

glucose unit) (Tabata et al., 1975; Blennow et al., 2000a) and in potato starch it is very 

high (one phosphorylated residue every 200-300 glucose unit) (Samec, 1914). 

Phosphorylation involves glucose residues belonging to both crystalline and amorphous 

region of starch granule, even if most of the phosphate groups are situated on the 

amylopectin (Samec, 1914; Blennow et al., 2000b). The phosphate groups are prevalently 

linked as monoesters at the C-6 position of the glucose residues (60-70%) while less than 

30-40% of phosphoesterification occurs in C-3 position (Posternak, 1935; Hizukuri et al., 

1970; Tabata and Hizukuri, 1971; Bay-Smidt et al., 1994). It is remarkable that in nature  

phosphorylation at the C-3 position seems to be only present in starch. Starch structure 

affects the phosphorylation process, since phosphate is prevalently found on the longer 

chains of amylopectin (30-100 glucose residues), but not at the reducing ends or close to 

the branch points (within 9 glucose residues from an α-1,6 linkage) (Takeda and Hizukuri, 

1981; Takeda and Hizukuri, 1982; Blennow et al., 1998). The preferential modification of 

the long chains may explain the low phosphate content in secondary starch of cereal 

endosperm, which is mainly formed by low molecular weight chains (Blennow et al., 

2002). However, it was demonstrated that branch points are important for 

phosphorylation, since amylopectin, but not amylose, is phosphorylated in plants 

(Mikkelsen et al., 2004). 

A change in activity of starch synthases (SSs) or branching enzymes (BEs) can change 

amylopectin chain length and influence starch phosphorylation rate (Mikkelsen et al., 

2004). On the contrary, changes in the phosphate content of starch do not modulate the 

activity of starch biosynthetic enzymes. In fact, phosphorylation does not affect the 
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branching pattern nor the chain length composition of amylopectin. Nevertheless, 

phosphorylation has an impact on starch structure: the presence of phosphate groups 

increases the hydration capacity of amylopectin chains and affects the viscosity of the 

jellified starch (Wiesenborn et al., 1994; Viskø-Nielsen et al., 2001). The study of these 

properties is of fundamental importance in exploitation of starch for industrial purposes, 

since its modification (i.e. phosphorylation) prevents crystallization during the processing 

steps and changes the consistency of the final product (Ellis et al., 1998). 

Primary starch phosphorylation occurs both during synthesis that during degradation of 

the granule (Nielsen et al., 1994; Ritte et al., 2002a; Ritte et al., 2004). During synthesis, 

phosphorylation rate is constant, but in the dark, when starch degradation begins, the 

rate of phosphate incorporation increases (Ritte et al., 2002a; Ritte et al., 2004). There is 

not a net increase in starch phosphate content, since the phosphorylation and the 

removal of modified glucose chains cause a fast turnover (Ritte et al., 2002). Probably, 

starch phosphorylation during deposition is aimed to give a correct morphology to the 

granule: this modification can prevent interactions between amylose and amylopectin, 

which would increase structural instability of semi-crystalline regions (Blennow et al., 

2002). It was shown that amylopectin crystalline region is made up by chains that form a 

compact structure of left-handed double helices, stabilized by hydrogen bonds between 

C-6 and C-2 atoms of glucose residues (Imberty et al., 1988). These double helices can 

crystallize in two principal different ways, the A-type (more dense) or B-type (more 

hydrated) crystalline polymorph. The free hydroxyl groups on C-3 and C-6 positions of 

glucose units are both located on the hydrophilic surface of the double helices and the 

phosphate groups can align or protrude from it (Fig. 11). This can affect the stability of the 

helices or their side-by-side packing and compromise the crystallinity of the starch. 
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Figure 11. From Hansen et al. (2009), the structure of double helical amylopectin with an attached 

phosphate group, ignoring the effects of the glucosidic bond, with phosphate in the 3-position (left) and 6-

position (right). The helical protrusion of the two phosphate groups by 5.42 Å and 4.41 Å is indicated on the 

figure. 

 

However, whereas the C-6 phosphate is situated in the double-helix grooves and has a 

low steric hindrance, the C-3 hydroxyl groups protrude from the double-helical surface, 

determining a strong steric hindrance that notably affects the packing of the double 

helices (Blennow et al., 2002; Engelsen et al., 2003). Thus, it seems that the effects of 

phosphorylation on starch granule crystallinity mainly derive from the modification at the 

C-3 position of the glucose units, instead than from the phosphorylation at the C-6 

position (O’Sullivan and Perez, 1999). 
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Starch phosphorylating enzymes 

In 1998, for the first time, a protein (initially named R1) able to bind starch and to 

phosphorylate glycogen was identified in potato (Lorberth et al., 1998). Further analysis 

of R1 primary sequence highlighted a C-terminal sequence homology with bacterial 

phosphoenolpyruvate synthase (PPS; pyruvate, water dikinase; EC 2.7.9.2) and the 

pyruvate phosphate dikinase (PPDK; pyruvate, phosphate dikinase; EC 2.7.9.1) (Mikkelsen 

et al., 2004) The homologous region contains two highly conserved regions: a nucleotide 

binding domain (NBD) and, upstream, a 10-amino acids sequence containing the catalytic 

histidine (Yu et al., 2001). PPSs and PPDKs, acting as dikinases, catalyse the transfer of the 

β-phosphate group from ATP to pyruvate, with the simultaneous phosphorylation (by the 

γ-phosphate) of a molecule of water or phosphate, to generate orthophosphate or 

inorganic pyrophosphate. 

Afterwards, it was demonstrated that the R1 enzyme phosphorylates starch with a 

reaction mechanism similar to that of PPSs and PPDKs and for this reason, in 2004, it was 

renamed GWD (Glucan, Water Dikinase; EC 2.7.9.4). Potato GWD antisense lines showed 

a decrease of about the 90% of starch-bound phosphate and a sex phenotype in leaves, 

as well as a reduction in “cold sweetening” (starch degradation occurring in response to 

low temperatures) of the potato tubers, suggesting that starch phosphorylation mediated 

by GWD was required for normal starch degradation (Lorberth et al., 1998; Viskø-Nielsen 

et al., 2001). Successively, by the means of potato GWD antibodies, homologous proteins 

were recognised in other plant species (Ritte et al., 2000), implying that this enzyme plays 

an important role over almost the entire plant kingdom. 

Thus, according to the substrates and to the products of the reaction, three types of 

dikinases can be distinguished: 

Group A (GWDs): ATP + α-glucan + H2O → AMP + α-glucan-P + Pi 

Group B (PPSs):  ATP + pyruvate + H2O → AMP + PEP + Pi 

Group C (PPDKs): ATP + pyruvate + Pi → AMP + PEP + PPi 

Phylogenetically, dikinases with different functions, group into different clades or 

evolutionary branches (Fig. 12) (Mikkelsen et al., 2004). 
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Figure 12. Phylogenetic tree, created by Mikkelsen et al. (2004) using Clustal X, of GWD family and PEP 

family proteins/ORFs (open reading frames) in the nucleotide-binding region. The consensus of the 1000 

most likely trees created by the neighbour-joining method from bootstrapped data sets is showed. The 

number of bootstrap replicates is indicated next to each branch. The three dikinase clades or subgroups are 

circled. The scale indicates the average substitutions per site. Solid line, plant protein/ORF; dashed line, 

prokaryotic protein/ORF; dotted line, protist protein. The abbreviations and GenBank accession numbers of 

these dikinases are as follows. At -GWD1, Arabidopsis thaliana GWD1 (SEX1), accession no. AAG47821; At -

GWD2, A. thaliana GWD homologue 2, accession no. AAO42141; At -GWD3, A. thaliana GWD homologue 3, 

accession no. NP198009; Cr -GWDa, Chlamydomonas reinhardtii GWD homologue a, accession no. 

BG857380; Cr-GWDb, C. reinhardtii GWD homologue b, accession no BF866967/AW661031; Cr -GWDc, C. 

reinhardtii GWD homologue c, genie 538.9 (C. reinhardtii Genome Release version 1.0, scaffold 538); Cret -

GWD, Citrus reticulata (tangerine) GWD, accession no. AAM18228; Gm-GWD, Glycine max (soybean) GWD, 

accession no. AW133227/BI945390; Hv-GWD, Hordeum vulgare (barley) GWD, accession no. BU993123; 

Les-GWD, Lysopersicon esculentum (tomato) GWD, accession no. BE435569/AI489255; Os-GWD, Oryza 

sativa (rice) GWD, patent no. WO 00/28052A1; St -GWD, Solanum tuberosum (potato) GWD (R1), accession 

no. T07050; Ta-GWD, Triticum aestivum (wheat) GWD, accession no. CAC22583; Zm-GWD, Zea mays (maize) 

GWD, accession no. AY109804; At -PPDK, A. thaliana PPDK homologue, accession no. T01857; Cs-PPDK, 

Clostridium symbiosum PPDK, accession no. P22983; Fb -PPDK, Flaveria bidentis PPDK, accession no. 
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S56650; Os-PPDK, Oryza sativa (rice) PPDK, accession no. BAA22420; Eh-PPDK, Entamoeba histolytica PPDK, 

accession no. AAA18944; Zm-PPDK, Zea mays (maize) PPDK homologue, accession no. P11155; Ca-PPS, 

Clostridium acetobutylicum PPS, accession no. AAK78513; Ce-PPS, Corynebacterium efficiens PPS, accession 

no. NP_737171; Ec -PPS, Escherichia coli PPS, accession no. S20554; Mm-PPS, Methanococcus maripaludis 

PPS, accession no. AAD28736; Nm-PPS, Neisseria meningitidis PPS, accession no. NP_273662; Pa-PPS, 

Pseudomonas aeruginosa PPS, accession no. AAG05159; Sm-PPS, Staphylothermus marinus PPS, accession 

no. S51006. 

 

The three clades shown in the figure 12, represent the three different reaction catalysed 

by the dikinases: the first group (B) is formed only by bacterial and archaea PPSs, the 

second one (C) is composed by PPDKs of plants, protist parasites and prokaryote, and the 

third group (A) includes only plant and algae GWDs. 

Phylogenetic studies and alignments of conserved domains, including the Nucleotide 

Binding Domains (NBDs) and the regions containing the catalytic His, demonstrated that 

these three groups have a common origin and that GWDs family originated after the 

divergence of the plant kingdom. The conserved dikinase domain of GWDs has probably 

undergone to shuffling in the plant genome after the endosymbiotic event that led to the 

formation of chloroplasts from an ancestral cyanobacteria (Mikkelsen et al., 2004). 

Moreover, in the phylogenetic tree the NBD of GWDs seems evolutionary closer to that 

of prokaryotic PPSs than to PPDKs. This proximity based on the sequences is also reflected 

by the similarity in the dikinase catalytical mechanism of the two groups (Mikkelsen et al., 

2004). Indeed, for both PPSs and GWDs, H2O is the final acceptor of the γ-phosphate group 

of the ATP, whereas for PPDKs is Pi (Mikkelsen et al., 2004). 

During PPSs and PPDKs activity, a phosphohistidine intermediate is formed. Initially, ATP 

interacts with the NBD of the enzyme, which get transiently autophosphorylated on the 

conserved His residue (Narindrasorasak and Bridger, 1977). Subsequently, when the 

enzyme interacts with the substrate, the β-phosphate group on the catalytic His is 

transferred to the pyruvate, generating phosphoenol pyruvate (PEP). 

 

E-His + AMP-Pβ-Pγ+ H2O + pyruvate → E-His-Pβ
+ Pi

γ+ AMP + pyruvate 
 

E-His-Pβ
 + Pγ+ AMP + pyruvate → E-His+ Pi

γ+ AMP + Pβ-pyruvate 
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Also for GWDs, the catalytic activity can be divided in two phases: the conserved histidine 

residue at position 992 undergoes autophosphorylation and mediates the 

phosphotransfer to the glucosyl residue, with an overall reaction mechanism that is very 

similar to that of PPSs and PPDKs (Mikkelsen et al., 2004). 

 

GWD-His + ATP + H2O → GWD-His-P + Pi + AMP 
 
GWD-His-P + α-glucan → GWD-His + α-glucan-P 

 
 
The substitution, by site-specific mutagenesis, of the catalytic His with an Alanine, showed 

that this residue plays an essential function, being the mutated enzyme devoid of 

phosphorylating activity (Mikkelsen et al., 2004). Potato GWD shows an optimum of 

activity at 35°C and pH 7 and is catalytically active as homodimer (Mikkelsen et al., 2004). 

The auto-phosphorylation does not affect the ability of the enzyme to dimerize (Mikkelsen 

et al., 2004). Moreover, in vitro studies demonstrated that the enzyme is preferentially 

active on long and ramified glucan chains (30-100 glucose residues) (Mikkelsen et al., 

2004). This settle with the observation that amylopectin, and not amylose, is the main 

target of phosphorylation and that starches from cereal seeds, which have shorter 

amylopectin unit chains, are poorly phosphorylated (Ritte et al., 2000). 

PPDKs have a multi-domain structure and the protein conformation changes during the 

two semi-reactions (Mikkelsen and Blennow, 2005). The coupling between the two 

distinct and separated binding sites (the ATP and the pyruvate binding sites) of PPDK is 

facilitated by the presence of a flexible domain containing the phospho-histidine. This 

flexible domain can be found alternatively in two different conformational states: 

adjacent to the NBD, where it can interact with ATP molecule, or near to the pyruvate-

binding site (on which it can transfer the phosphate group). The auto-phosphorylation of 

the His residue can trigger the protein conformational change (Herzberger et al., 1996; 

Herzberger et al., 2002).  

By proteolytic digestion and subsequent analysis of the fragments, it was demonstrated 

that GWD maintains this multi-domain organization and that possess also the flexible 

portion containing the phospho-histidine residue (Mikkelsen and Blennow, 2005). GWD 

was fragmented by proteolytic digestion and the resulting peptides were analysed by 



46 
 

microsequencing. These analyses highlighted that the protein was constituted by 5 

domains of 37, 24, 21, 36 and 38 kDa (Fig. 13) (Mikkelsen and Blennow, 2005). In 

conjunction, GWD deletion mutants were generated to further investigate domain 

structure-function relationship.  

The catalytic histidine, responsible of transfer of the phosphate group from ATP to starch, 

belongs to the 36 kDa domain, whereas the ATP binding domain is situated at the C-

terminal portion of the 38 kDa domain. The glucan binding site is suggested to be part of 

the other 3 domains (24, 21 and 37 kDa) (Mikkelsen and Blennow, 2005). Interestingly, 

the ATP binding domain and the glucan binding domain are independent from each other, 

since the lack of one of them does not inhibit the activity of the remaining domain, and 

the truncated enzyme is still able to catalyse the corresponding semi-reaction (Mikkelsen 

and Blennow, 2005). The truncated enzyme formed by 36 and 38 kDa domains is still able 

to form the auto-phosphorylated intermediate but loses the ability to phosphorylate 

starch. This auto-phosphorylation, as for PPDKs, triggers the protein conformational 

changes. Thus, the domain containing the phospho-histidine residue is essential for the 

enzyme activity (Mikkelsen and Blennow, 2005) 

 

Figure 13. From Mikkelsen and Blennow (2005), hypothetical model illustrating the GWD catalytic cycle. 

Proteolytic fragments are represented as spatially separated structural domains connected by loops. GWD 

can bind ATP and autophosphorylate without the presence of the glucan substrate, then nucleotide 

substrate is shown to occur before binding of the glucan substrate, but the reverse situation or the 

simultaneous binding could possibly occur in vivo. To bind the ATP, GWD is considered to display the 

catalytic histidine domain spatially close to the ATP-binding site (conformer 1). Catalysis and 
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autophosphorylation induce a major conformational change (conformer 2), here illustrated as a 

rearrangement of the catalytic histidine domain, which allows the phosphohistidine to interact with the 

glucan-binding site. Once the glucan molecule has been bound, the second round of catalysis is initiated 

and the glucan substrate is phosphorylated. The enzyme then reverts to the initial conformational state 

(conformer 1) ready for another nucleotide molecule to bind. The ATP-binding site is shown to be located 

on the 38 kDa domain (white sphere), the catalytic histidine on the 36 kDa domain (black sphere), and the 

glucan-binding sites on the 37 and 24 kDa domains (grey spheres). 

 

Since GWD is a chloroplastic protein involved in starch degradation, and considering that 

primary starch metabolism is highly correlated with photosynthesis, the existence of a 

regulation of the enzyme and of the process of starch phosphorylation linked with 

photosynthesis, can be hypotesized. 

The light-dependent regulation is a mechanism that links the electron transport occurring 

during the photosynthesis with specific enzymatic activities, through the 

ferredoxin/thioredoxin system (Trx). Thioredoxins (Trxs) are small are small and 

ubiquitous disulfide/oxidoreductase proteins that, in the chloroplast, can modulate the 

activity of some enzyme by the reduction of regulatory disulfide bridges (Schürmann and 

Jacquot, 2000). Chloroplasts of higher plants contain four different types of Trxs (Meyer 

et al., 2002; Lemaire et al., 2003; Collin et al., 2004). Two of them, type f (Trx f) and type 

m (Trx m), that have different phylogenetic origins (Hartman et al., 1990), are involved in 

the control of carbon metabolism, with a certain substrate specificity (Schürmann and 

Jacquot, 2000; Baumann and Juttner, 2002; Schürmann, 2003). Mikkelsen and 

collaborators (2005) demonstrated that GWD interacts in vivo with Trxs and that is redox 

regulated. Both reduced Trx f and Trx m, at concentrations 3-fold lower compared to non-

physiological reducing agents, activated GWD, even if Trx f was a more efficient activator 

in comparison to Trx m (Mikkelsen et al., 2005). On the contrary, using oxidised Trx f and 

m it was not possible to oxidize GWD. Therefore, other oxidants or other types of Trxs 

could mediate the in vivo oxidation of the protein. However, the protein oxidation led to 

an almost complete inactivation of the enzyme, which could be reverted by reduction 

(Mikkelsen et al., 2005). A more detailed analysis of the GWD primary sequence revealed 

a consensus sequence (CFATC), downstream the catalytic His residue, for the Trxs 

mediated regulation (Mikkelsen et al., 2005). 
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Many studies suggest that starch phosphorylation occur both during starch synthesis and 

degradation (Nielsen et al., 1994; Ritte et al., 2002; Ritte et al., 2004). However, 

phosphorylation rate is greater during dark period than in the light. How stated in the 

previous section, phosphate incorporation rate is stable during synthesis, but it is 

subjected to a rapid turnover during starch degradation (Ritte et al., 2004). Potato GWD 

is able to reversibly bind starch granules in vitro, and in vivo it can be found in the stroma 

under light conditions and not covalently bound to the starch surface when plant is kept 

in the dark (Ritte et al., 2000a). Thus, GWD can be found in a soluble or granule-bound 

state, depending on whether the plant is exposed to light or dark conditions (Ritte et al., 

2000a; Mikkelsen et al., 2005). Given its redox regulation, GWD seems to be inactive when 

oxidized, condition occurring during darkness in the chloroplast. However, this seems 

counterintuitive since, during the dark period, the protein is found to be associated with 

starch granules and the phosphorylation rate increase.  

 

Arabidopsis thaliana genome encodes three GWDs 

Glucan, water dikinases related proteins are widely distributed in photosynthetic 

eukaryotes. Potato GWD homologous has been found in many plant species, i.e. in sweet 

potato tubers, in corn and barley seeds, banana fruits (Ritte et al., 2000). GWDs are found 

also in algae: in Ostreocuccus tauri there are five dikinase isoenzymes and 

Chlamydomonas reinhardtii genome encodes for four isoforms of GWDs (Fettke et al., 

2009). In Arabidopsis, three genes encode for the same number of enzymes belonging to 

the family of the glucan, water dikinases, named GWD1, GWD2 and PWD (Yu et al., 2001; 

Kӧtting et al, 2005; Baunsgaard et al., 2005; Glaring et al., 2007). The three gene products 

(as for all the other glucan, water dikinases identified till now) have a common structure, 

similar to that previously described for potato GWD: a nucleotide binding domain (NBD) 

at the C-terminal position, a short conserved sequence containing the catalytic histidine 

and a N-terminal starch binding domain (carbohydrate binding module, CBM) (Fettke et 

al., 2009). 

Primary sequence alignments showed that CBM is present both in Arabidopsis α-amylase 

AMY3 and GWDs sequences. This domain, in GWD1 and AMY3, is composed by two 

repeated sequences (SBD1 and SBD2, Starch Binding Domains) of about 90 amino acids, 

with an homology between the two proteins respectively of the 31 and 25% (Yu et al., 
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2005; Mikkelsen et al, 2006). On the contrary, PWD and GWD2 show a single copy of SBD 

(Yu et al., 2005).  

Both GWD1 and PWD, but not GWD2, contain a chloroplast targeting sequence, in 

agreement with the involvement of GWD1 and PWD in chloroplast starch degradation 

(Glaring et al., 2007). Arabidopsis GWD1, as potato GWD, possess a consensus sequence 

that determine the specificity for Trx f mediated regulation and that is essential for Trx 

binding (Mikkelsen et al., 2005). Differently from GWD, the primary sequence of PWD 

does not contain this consensus region, nor does the protein seem to contain any disulfide 

bond, suggesting that it is not target of this type of regulation. As a consequence, PWD 

can presumably phosphorylate starch during the darkness, when Trxs are prevalently 

oxidised (Mikkelsen et al., 2005). 

Unlike GWD1 and PWD, GWD2 seems to be localised in the cytosol (Glaring et al., 2007; 

Orzechowski, 2008). Also the expression of GWD2 gene is spatially and temporally 

different from that of GWD1 and PWD (Glaring et al., 2007). GWD2 is mainly expressed 

during plant senescence and in cells associated with the vascular tissue, consistently with 

the observation that gwd2 mutants do not have a sex phenotype (Streb and Zeeman, 

2012). 

 

Glucan, water dikinase 1 (GWD1) of Arabidopsis thaliana 

The sex1 mutant of Arabidopsis thaliana was firstly isolated by iodine staining of leaves 

harvested after a period of darkness, searching for mutant plants unable to degrade starch 

at night (Caspar et al., 1991). Starch levels in these mutants were 5-folds higher than the 

highest levels observed in wild-type plants, with minor changes during the whole day 

(Tretheway and ap Rees, 1994). Further studies showed that sex1 mutation mapped on 

the chromosome 1 and that the locus sex1 codes for the GWD1 protein, an homologous 

of potato GWD also named R1 (66,3% of identity at nucleotide level; Yu et al., 2001). In 

Arabidopsis GWD1 is a monomer of 1399 amino acids, with a molecular weight of 156,5 

kDa (Lorberth et al., 1998; Yu et al., 2001; Fettke et al., 2007). At the N-terminal part of 

Arabidopsis GWD1, a transit peptide of 75 amino acids targets the enzyme into the stroma 

(Mikkelsen et al., 2005). Like potato GWD, Arabidopsis enzyme has a multi-domain 

structure with a catalytic mechanism similar to that previously described (see Section 
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“Starch phosphorylating enzymes”) and responsible of the phosphorylation in C-6 position 

of amylopectin (Ritte et al., 2006). 

 

Phosphoglucan, water dikinase (PWD) of Arabidopsis thaliana 

A gene on Arabidopsis chromosome 5 encodes for another chloroplastic isoform of GWD 

(Yu et al., 2001). Two groups independently discovered this second dikinase (Baunsgaard 

et al., 2005; Kӧtting et al., 2005). This GWD1 homologous was firstly named GWD3 and 

only later re-named PWD, because of its peculiar substrate specificity (Kӧtting et al., 

2005).  PWD gene encodes for a protein of 1196 amino acids with a monomeric molecular 

weight of 130 kDa and a 30% of sequence identity with Arabidopsis GWD1 (Fettke et al., 

2009). The similarity with GWD1 is more pronounced at the C-terminal domain of the 

enzyme. On the contrary, the N-terminal region contains a single CBM, different from that 

of GWD1 and belonging to the family of CBM20 (Christiansen e al., 2009). 

PWD protein is expressed in all starch containing tissues: roots, rosetta leaves, stems, 

flowers and siliquae (Baunsgaard et al., 2005). 

PWD knockout plants synthesize less starch during the light period and degrade less starch 

during darkness with a consequent minor fluctuation of starch level during the day in 

comparison to wild-type plants (Baunsgaard et al., 2005). However, starch structure and 

distribution of chains of different length in the granule is not different from that of wild-

type (Baunsgaard et al., 2005). As demonstrated both in vivo and in vitro, PWD catalyses 

the phosphorylate starch exclusively at the C-3 position of the glucose units and the 

phosphorylating activity of GWD1 is a fundamental prerequisite for PWD activity 

(Baunsgaard et al., 2015).  

PWD and GWD1 proteins are co-expressed: their transcripts increase during a 8h light 

period, they pike 1h after of darkness and decrease over the dark period. Their 

transcription levels are co-regulated also in plants under different abiotic stress conditions 

(Baunsgaard et al., 2005). The dependence of the activity of PWD on pre-phosphorylated 

starch (Baunsgaard et al., 2005), the parallel transcriptional control of GWD1 and PWD 

genes (Baunsgaard et al., 2005) and the increase in GWD1 and PWD protein amounts 

found associated with the granule surface during starch degradation (Ritte et al., 2000a; 

Kӧtting et al., 2005), suggest the possible formation of enzymatic complexes, as already 

known for other starch metabolism related enzymes (See section “Hints on starch 
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metabolism regulation”). However, PWD does not require a direct interaction with GWD1 

to phosphorylate starch. Then, the already existing phosphate in C-6 position may be a 

tag for the binding of PWD or it may trigger substrate conformational changes that are 

necessary for the activity of PWD (Kӧtting et al., 2005; Fettke et al., 2009). Plants lacking 

of PWD show a sex phenotype, proving that PWD mediated phosphorylation is important 

for starch metabolism and that the lack of PWD cannot be completely compensated by 

other enzymes. Since the PWD activity requires a previous step of starch phosphorylation 

given by GWD1, the absence of GWD1 abolishes also the PWD mediated phosphorylation. 

The sex1 phenotype in GWD1 knockout plants is more severe and it is probably the result 

of the additional suppression of GWD1 and PWD activities (Kӧtting et al., 2005). The 

requirement of two sequential starch phosphorylation events suggests that 

phosphatesterification in C-3 position, and not the one in C-6, is the modification that 

trigger the initial attack of the granule by degrading enzymes. Indeed, starch double 

helices molecular modelling highlight that the phosphate groups bound in position C-3 

protrude from the helices (Fig. 11), whereas the phosphates in C-6 position are buried. 

This can affect the bonds between glucose residues, the interactions of the double helices, 

the packing of the α-glucans and finally the way in which the surface of the granule is 

exposed to degradative enzymes (Hansen et al., 2009). 

 

Glucan, water dikinase 2 (GWD2) of Arabidopsis thaliana 

In Arabidopsis genome, on chromosome 4, was found a third sequence encoding for a 

third isoform of GWD, named GWD2. This protein is 1278 amino acid long; it has a 50% 

homology with GWD1 and a domain-structure more similar to that of GWD1 than that of 

PWD: it has the phospho-histidine conserved domain, the C-terminal NBD and two N- 

terminal tandem repeated SBDs, like GWD1 (Glaring et al., 2007). 

Thanks to the presence of the starch binding domains, that are specific of enzymes 

involved in starch metabolism, it seems possible that GWD2 binds starch granules. 

Biochemical studies demonstrated that GWD2 is able to phosphorylate starch through a 

GWD1-like reaction and that the substrate specificity is similar to that of potato GWD 

(Ritte et al., 2002; Mikkelsen et al., 2004; Glaring et al., 2007). It does not need pre-

phosphorylated starch, it displays a preference for long α-glucans and it exclusively 

phosphorylates on glucose C-6 atoms (Glaring et al., 2007). However, the absence of a 
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chloroplast-targeting signal and the lack of noticeable phenotypic traits in plants depleted 

of GWD2 suggests that GWD2 does not take part in the normal primary starch metabolism 

(Glaring et al., 2007). Moreover, GWD2 displays a precise and narrow expression profile, 

being mainly expressed in vascular tissues of leaves, stems, roots, flowers and siliques or 

in the later phase of plant development, just before the onset of senescence (Glaring et 

al., 2007). An unverified hypothesis suggests that, given the high age-dependency of 

GWD2 expression, the enzyme might be involved in the breakdown of starch or starch-

like structures during the withdrawal of nutrients from the senescing leaf (Glaring et al., 

2007). The existence of cytosolic starch degrading enzymes, such as GWD2 in companion 

cells or BAM5 that localizes in the phloem sieve elements, suggests an alternative 

polysaccharide degradation pathway (Glaring et al., 2007), facilitating the transport and 

availability of sugars through the phloem or preventing the build-up of such polymerized 

polysaccharides, that would impede flow through the sieve-plates (Wang et al., 1995). 

GWD2 can be transferred from the companion cells to the sieve elements via 

plasmodesmata by specific (selective) trafficking. As an alternative, the GWD2 encoding 

mRNA can be transported to the sieve elements, but it is unknown if once there it can give 

rise to any protein.  

However, up to date no evidence has been found for the existence of large α-linked 

polysaccharides, other than starch, in phloem tissues, but cytosolic water-soluble 

heteroglycans (SHGs) have been identified in Arabidopsis (Fettke et al., 2005). SHGs may 

also be present in companion cells and phloem parenchyma cells, but there is no evidence 

supporting the requirement of water dikinase activity for their metabolism.  
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Abstract  

Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into 

granules of different dimensions. The distribution of granule dimension is bimodal, with a 

majority of small spherical B-granules and a smaller amount of large discoidal A-granules 

containing the majority of the starch. Starch granules are semi-crystalline structures with 

characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled 

by different enzymes and are relevant for nutritional value or industrial applications. Here, 

the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the 

barley TILLMore TILLING population to identify 29 new alleles in five genes related to 

starch metabolism known to be expressed in the endosperm during grain filling: BMY1 

(Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI 

(Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines 

carrying missense or nonsense mutations was analysed for granule size, crystallinity and 

amylose/amylopectin content. Seven mutant lines presented starches with different 

features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI 

showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI 

resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was 

associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and 

different type of crystal packing in the granule; (iv) the remaining four missense mutations 

suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-

granules. We demonstrate the feasibility of the TILLING approach to identify new alleles 

in genes related to starch metabolism in barley. Based on their novel physicochemical 
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properties, some of the identified new mutations may have nutritional and/or industrial 

applications. 

 

INTRODUCTION 

 

Barley (Hordeum vulgare L.) is the fourth most important cereal crop both in terms of 

cultivated area and tonnage harvested; global production being mostly used as animal 

feed and for the malting industry (http://faostat.fao.org). Only 5% of the global 

production of barley is used as ingredients in food preparation, but nevertheless barley 

grains are a valuable functional food for the high content of soluble dietary fiber [1]. The 

recent assemblage of the sequence of the 5.1-Gb haploid genome of barley [2] further 

supports the role of barley as a model species for the Triticeae tribe, which includes very 

important crops such as wheat (bread and durum) and rye.  

Mature barley grains typically contain 50–60% starch on a dry weight basis. Starch is 

synthesized and stored in granules composed of two types of D-glucose polymers, 

amylose and amylopectin. Amylose, generally accounting for about 25-30% of starch 

weight in barley, is essentially a linear polymer of D-glucose units linked by alpha-1,4-

glucosidic bonds. The second polymer of starch, amylopectin, is highly branched because 

of the alpha-1,6-glucosidic bonds that connect short alpha-1,4 linear chains [3], [4], [5], 

[6], [7], [8], [9].  

While most plants contain starch granules of similar size, the Triticeae endosperm 

presents two classes of starch granules characterized by different sizes and shapes [10], 

[11]. Most of the starch is stored in large A-granules, but small B-granules prevail in 

number. In barley, the diameter of A-granules ranges from 10 to 40 µm while B-granules 

are smaller than 10 µm [10]. Starch granules contain crystalline lamellae in which double 

helices, composed of parallel linear chains of amylopectin, interact among each other to 

form different types of crystal packing [3]. Crystalline lamellae are interspersed with 

amorphous lamellae in which amylopectin branches are concentrated. The exact location 

of amylose within the semicrystalline architecture of the starch granule is still unknown 

[9], but certainly amylose influences the global structure of starch granules. For example, 

starch granules of different composition are characterized by different types of X-ray 

diffraction patterns [3], [4], [8]. In cereals, the A-type crystal packing is predominant, while 
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the B-type crystallinity, typical of tuber starch, exists in smaller amounts. A third 

diffraction pattern, named V-type, is associated with lipid-amylose complexes and is little 

represented in native starches [3].   

Both amylose/amylopectin ratios and the architecture of starch granules depend in a 

complex way on many different enzymes involved in starch metabolism [4], [5], [8], [9]. 

Biosynthesis of starch polymers in cereal grains strictly depends on the availability of ADP-

glucose as a precursor for both amylose and amylopectin polymerization. Starting from 

ADP-glucose, a single enzyme, the granule-bound starch synthase I (GBSSI), is required for 

the synthesis of amylose. More complex is the biosynthetic pathway leading to 

amylopectin production as different classes of soluble starch synthases (SSs) and starch 

branching and debranching enzymes are required [5], [8], [9].  

Starches with different amylose/amylopectin ratios have different properties that 

influence their possible use for either nutritional purposes or industrial transformations 

[6], [7], [9], [12], [13], [14]. In barley, mutants with 0-10% amylose (waxy) as well as 

mutants containing up to 70% amylose in the endosperm have been described [15], [16], 

[17]. Low-amylose starch displays higher freeze-thaw stability, an interesting property for 

food preparation [6]. On the other hand, high amylose starches have interesting 

nutritional properties due to their positive correlation with resistant starch. This starch 

fraction is highly resistant to human digestion in the small intestine and reaches the large 

bowel where it plays a role similar to dietary fiber. Consumption of high-amylose resistant 

starch is associated with several health benefits, including the prevention of colon cancer, 

type II diabetes, obesity and cardiovascular diseases [18], [19].  

Starch granule size distribution is another important parameter that may affect 

technological properties and end-use of each particular type of starch [20]. Barley grains 

are largely used for malting and large A-granules are more readily attached by hydrolytic 

enzymes than small B-granules [10]. B-granules are apparently protected during malting 

by a heterogeneous matrix deriving from the grain (proteins and cell walls). As a result, a 

significant proportion of B-granules escapes degradation and causes several technological 

problems during beer production [21].  

In a previous work using a TILLING strategy, novel allelic variants in genes involved in 

starch metabolism in barley seeds were identified [22]. Here we describe the starch 

phenotype of nine mutants carrying either missense or nonsense mutations in five starch-



56 
 

related genes known to be expressed in the endosperm during grain filling: BMY1 (beta-

amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch 

Synthase I), SSIIa (Starch Synthase IIa). Seven mutant lines present starches with 

potentially interesting features for nutritional uses and/or industrial applications, 

including an altered amylose/amylopectin ratio or an unusually high percentage of A-

granules or A-granules that are larger than in wild-type starch. 

 

MATERIALS AND METHODS 

 

TILLING analysis and plant materials 

Details on the TILLING-based molecular screening for the five starch metabolism enzymes 

were reported in [22] and will only be summarized here. TILLMore is a chemically (sodium-

azide, NaN3) mutagenized barley population including 4,906 M3:4 families [23]. TILLMore 

was screened using a standard TILLING protocol based on LI-COR vertical gel 

electrophoresis of PCR reactions obtained on 8X bulked genomic DNA samples. Genes 

tilled were Beta-amylase 1 (BMY1), Granule-Bound Starch Synthase I (GBSSI), Limit 

dextrinase 1 (LDA1), Starch Synthase I (SSI) and Starch Synthase IIa (SSIIa) (Table 1). For 

each mutant, plant materials phenotyped in this work were grains (kernels) of M4 lines 

(three generations of selfing after mutation induction), which have been verified to be 

homozygous for the mutation (not shown).  

 

Table 1. List of TILLING mutant lines carrying either missense or nonsense mutations in five genes related 

to starch metabolism in barley grains that have been isolated as described in Bovina et al. [22] and 

phenotypically characterized in this work. 
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Mutant lines and cv. Morex were grown in open field following standard agronomic 

practice in 0.5-m long one-row plots (approx. 12 plants per plot) using a randomized 

design with two replicates. For each line, grains harvested (from all well-grown ears) from 

two replicates were bulked. The same experiment was carried out in two years. Grains 

from separated years constituted the biological replicates. 

  

Starch extraction from barley grains 

Starch was extracted by grinding the grains to a fine powder in a pepper mill. About 5 g of 

seeds, corresponding to about 100 seeds, were used for each line and for each biological 

replicate (except for line 1517-SSIIa for which 2.5 g of seeds were used). Starch grains 

were purified as described in [24]. Briefly, the powder was suspended in 70 ml Extraction 

Buffer (EB: 55 mM Tris-HCl, pH 6.8, 2.6% SDS, 10% glycerol, 2% ß-mercaptoethanol) and 

vigorously shaken for 48 h, replacing the EB solution every 24 h. Following the extraction, 

samples were washed three times in water and filtered through a nylon membrane (cut-

off 100 µm) in order to eliminate debris. Filtered samples were spun down for 1 min at 

10,000 g. Starch grains were resuspended in 25 ml acetone and spun down again. Once 

removed the supernatant, starch grains were air-dried under a chemical hood for about 

48 h at room temperature. 

 

SDS-PAGE analysis of starch granule proteins 

Isolation and electrophoretic separation of starch granule proteins was carried out on 

mature seeds following the method reported by Zhao and Sharp [25] with some 

modifications, as reported by Mohammadkhani et al. [26]. Protein bands were visualized 

by silver staining. 

 

Determination of total starch and amylose content 

Total starch content was determined on whole flours using Megazyme Total Starch Assay 

Kit (Megazyme, Ireland). The relative content of amylose was determined using both the 

Amylose/Amylopectin assay kit (Megazyme, Ireland) following the manufacturer 

instructions, and by an iodometric assay as reported in Sestili et al. [27]. Three technical 

replicas were performed for each mutant and each type of measure. Total starch content 
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and relative amylose content (enzymatic method) were measured on two biological 

replicas.   

 

Starch morphology 

The morphology of starch samples was analyzed using a scanning electron microscopy 

(SEM) Hitachi S-4000. The samples were glued by a carbon type on an aluminum stub and 

gold coated (2 nm thick layer) before observations. For each sample two sets of 10 

pictures at two magnifications (1000x and 2500x) were randomly collected. These two 

magnifications allowed a good estimation of the size of large and small granules. The 

granule size was estimated using the software ImageJ for image processing and analysis. 

The two main axes for each granule were recorded and 200-500 grains were measured 

for each sample. Percentage of granules with major axis lower than 8 µm (B-granules) was 

recorded in 10 pairs of pictures (at different magnification) for each genotype. Statistically 

significant differences between mutants and wild-type mean values were detected by 

Student’s t-test (P< 0.01). The frequency analysis was carried out tacking classes of 2 µm.  

 

Starch crystallinity 

The X-ray powder diffraction patterns were recorded using a Philips X’Celerator 

diffractometer with Cu Ka radiation (l = 1.5418 Å) and equipped with a Ni filter. The 

samples were scanned for 2θ angles between 5º and 30º, with a resolution of 0.02º. The 

degree of crystallinity of samples was quantitatively estimated following the method of 

Nara and Komiya [28]. A smooth curve which connected peak baselines was computer-

plotted on the diffraction patterns. The area above the smooth curve was taken to 

correspond to the crystalline portion, and the lower area between the smooth curve and 

a linear baseline which connected the two points of intensity at 2θ of 30° and 5°. The 

upper diffraction peak area and total diffraction area over the diffraction angle 5°–30° 2θ 

were integrated on X’Pert HighScore Plus software (PANalytical B.V. 2008). The ratio of 

upper area to total diffraction area was taken as the degree of crystallinity. 

In the diffraction patterns only peaks associable to A-type and V-type crystallinities were 

detected. To estimate the relative amount of A-type and V-type crystallinities in the starch 

samples from the diffraction patterns, only well isolated diffraction peaks were 

considered. The one at 15.1° is diagnostic of the A-type crystallinity and the one at 19.7° 

http://www.sciencedirect.com/science/article/pii/S0144861798000071#BIB9
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is diagnostic of the V-type one. These diffraction intensities has been normalized on the 

sum of their intensities.  

 

RESULTS 

 

TILLING molecular analysis 

Molecular details about TILLING for five genes involved in starch metabolism were already 

reported in Bovina et al. [22] and will only be summarized here. TILLING was carried out 

in TILLMore, a TILLING population in the cultivar (cv.) Morex background which was 

chemically mutagenized using NaN3 [23]. The analyses identified an allelic series for each 

of the genes examined with a total number of 29 mutations [22]. Seeds of nine mutant 

lines carrying either missense or nonsense mutations in the five genes analyzed (BMY1 

GBSSI, LDA1, SSI and SSIIa) were phenotypically characterized in this study (Table 1).  

Seeds of the mutant lines did not show any macroscopic differences in respect to Morex 

wild-type (wt) with the exception of the line 1517-SSIIa (Starch Synthase IIa) that showed 

shrunken kernels with an empty cavity inside (Figure 1). These seeds were also lighter 

than wild-type ones (3.60.3 vs. 4.90.1 g/100-kernels).  

 

 

Figure 1. Seed morphology and transverse section of TILLING mutant line 1517-SSIIa (Starch Synthase IIa) 

(right) showing a shrunken phenotype, compared with cv. Morex wild-type (left). From top to bottom: 

adaxial and abaxial seed views, and seed cross section. White bars  = 2 mm. 
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Total starch content  

Total starch content was measured in whole flours obtained from two biological replicates 

for each of the nine mutant lines. The water content of the flours was very similar in all 

samples (≈9%, Table S1). Morex wt contained 43% starch on a fresh weight basis, but this 

value was diminished by one third in mutant 1517-SSIIa (27%, P<0.01; Table 2). In no other 

mutants the total starch content was significantly different to the wild-type value (P<0.05, 

n = 2). 

 

Table 2. Content of starch and amylose in seeds of TILLING mutant lines. 

 

Amylose content 

Whole flours from two biological replicates were also analysed for amylose content by 

enzymatic assay. For comparison, the relative content of amylose was also determined 

colorimetrically with similar results (Table 2). Wild-type starch contained 32% amylose 

and similar values were detected in seven over nine mutants (amylose/amylopectin ratio 

0.47). However, mutant 1090-GBSSI, carrying a missense mutation in Granule Bound 

Starch Synthase I, contained only one third of the normal amylose content in its grain 

starch (9%, P<0.05; amylose/amylopectin ratio 0.10), and mutant 1517-SSIIa, carrying a 

nonsense mutation in Starch Synthase IIa, contained much more amylose than the wild-

type (47%, P<0.05; amylose/amylopectin ratio 0.88; Table 2).  
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SDS-PAGE analysis 

In order to assess whether the nine mutations identified had an effect on the 

electrophoretic protein profile typical of the starch granule proteins of barley, SDS-PAGE 

analysis was performed. With the exception of the lines 1517-SSIIa and 1284-SSI, all the 

mutants showed a profile identical to Morex wt, characterized by three major bands 

corresponding to SSIIa (overlapped with Starch Branching Enzyme II, SBEII), SSI and GBSSI 

[29] (Figure S1). The absence of the SSIIa enzyme was confirmed in the line 1517-SSIIa. 

Notably this mutant appeared to lack also SBEII and SSI isoforms. Moreover, although 

mutant 1284-SSI has no premature stop codon in the SSI gene, a drastic reduction of the 

SSI band was observed in starch granules (Figure 2). 

Figure 2. Electrophoretic separation (SDS–PAGE) of starch granule proteins extract from barley wild-type cv. 

Morex (1) and barley mutants 1284-SSI (2) and 1517-SSIIa (3). The bands corresponding to starch synthase 

II and starch branching enzyme II (SSII+SBEII), starch synthase I (SSI) and granule-bound starch synthase 

(GBSSI) are indicated. In lane 3, the high molecular weight band marked with an asterisk is probably due to 

impurities present in the starch preparation obtained from the shrunken seeds of line 1517-SSIIa. Molecular 

weight standard is schematically reported on the right. 

 

Starch granules morphology    

Starch extracts from wild-type and mutant grains were analysed by Scanning Electron 

Microscopy (SEM). With the exception of 1517-SSIIa, starch granules of all remaining 

samples were quite regularly shaped (Figure 3 and Figure S2). A quantitative analysis of 

granules dimensions was performed by collecting the length of the major and minor axis 

of 200-500 granules for each biological sample from their SEM digital images. Distribution 

of granule dimensions was clearly bimodal in all samples (Figure S2), with a major sub-

population of small spherical granules (major axis <8 µm, B-granules), and a minor sub-

population of larger discoid particles with a major axis varying between 8 and 30 µm (A-
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granules). Distributions based on minor axis were qualitatively identical to those based on 

the major axis (not shown). Differently from all other mutants, starch of 1517-SSIIa 

contained irregularly shaped A-granules typically appearing like deflated spheres (Figure 

3 and Figure S2 in File S1). B-granules were also irregular in shape and agglomerated. 

These features prevented a quantitative determination of A and B-type particles in 1517-

SSIIa samples. 

 

Figure 3. Scanning Electron Microscopy (SEM) analysis of starch granules from barley cv. Morex wild-type 

(A) and mutants 2253-BMY1 (B), 2682-BMY1 (C), 1090-GBSSI (D), 905-LDA1 (E), 1132-SSI (F), 1284-SSI (G), 

5850-SSI (H), 1039-SSIIa (I), 1517-SSIIa (L). Scale bar: 10 µm. 

 

The percentage of B-granules (<8 µm) in wild-type purified starch was 73% (SD). A similar 

value was found in mutants of BMY1, GBSSI and SSIIa (Figure 4). In the four remaining 

mutants the percentage of B-granules differed significantly from the wild-type Morex 
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(P<0.01). B-granules were less abundant in two soluble starch synthase mutants, 1132-SSI 

(57%) and 5850-SSI (62%), but relatively more abundant in mutant 1284-SSI of the same 

gene (85%) and in mutant 905-LDA1 of limit dextrinase I (85%) (Figure 4). All these four 

mutants contained missense mutations (Table 1).  

 

Figure 4. Percentage of B-type granules (diameter <8 µm) in grain starch of barley wild-type cv. Morex and 

mutant lines. Granules size distribution was determined on 10 couples of SEM images randomly collected 

for each genotype. Data shown are means ±SD (n = 10). Statistically significant differences between mutants 

and wild-type mean values were estimated by Student's t-test (P<0.01) and are highlighted by a double 

asterisk (**). 

 

The average size of A- and B-granules in each sample was also analysed. In two mutants 

(5850-SSI and 1039-SSIIa, both missense mutations), A-type granules were significantly 

smaller (-25% major axis) than wt ones (17.1 µm) (Table 3; P<0.01). On the other hand, A-

granules of 1284-SSI mutant were significantly larger (+15%) than wt ones. The average 

diameter of B-particles varied between 2.3 and 3.5 µm in all samples, with no significant 

differences between wt and mutants (Table 3). Interestingly, two missense mutants of SSI 

displayed symmetrical properties in A-granules size and frequency: in mutant 1284-SSI A-

granules were larger but less abundant, while in mutant 5850-SSI they were relatively 

more numerous, but smaller in size (Table 3 and Figure 4).  
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Table 3. Length of major axis in A-type and B-type starch granules. 

 

Crystallinity of starch granules   

Crystallinity of starch granules was evaluated by X-ray powder diffraction. The crystallinity 

of wild-type starch was estimated as 29% and this value ranged between 26 and 33% in 

all mutants (Table 4), with no clear correlation between the degree of crystallinity and 

other phenotypic characters previously recorded. On the contrary, the type of 

crystallinity, as detected from the X-ray diffraction patterns, was more variable. In wild-

type starch we estimated a large predominance of the A-type crystal pattern (81%), with 

a minor contribution of the V-type (Figure 5). No evidence for B-type crystallinity was 

obtained from diffraction patterns of wild-type and mutants. In most of the mutants, the 

type of crystallinity was similar to that observed in wild-type starch, i.e. 78-83% A-type 

and 17-22% V-type. Interestingly, however, in the low-amylose 1090-GBSSI mutant, 

crystallinity was almost exclusively of the A-type (92%) whereas in the high amylose 1517-

SSIIa mutant crystallinity was prevalently of the V-type (76%) (Figure 5 and Table 4). 
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Table 4. Percentage crystallinity and relative intensity of diffraction peaks at 15.1° and 19.7°. 

 

 

Figure 5. X-ray diffraction patterns of native starch extracts from barley wild-type cv. Morex (black) and 

mutants 1090-GBSSI (grey) and 1517-SSIIa (light grey). The characteristic peaks of the A-type and V-type 

polymorphs are indicated. 

 

DISCUSSION 

 

Starch structure and chemical composition are genetically determined by a large set of 

genes [5], [6], [8], [30] and the potential for obtaining different types of starch by 

screening natural or induced genetic variability is huge. TILLING provides a non-transgenic 

approach to explore this potential [7], [12], [22], [31], [32], [33], [34], [35], [36]. We 

exploited TILLING to identify and phenotypically characterize new alleles of five genes 

involved in grain starch metabolism of barley. 
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Granule bound starch synthase (GBSSI)  

Granule-bound starch synthase I (GBSSI) [4] is specifically expressed in the endosperm of 

barley [30] where it is known to exert a tight control on the biosynthesis of amylose [37]. 

GBSSI is coded by the waxy locus and barley cultivars with altered GBSSI activity contain 

altered levels of amylose in grains, ranging between 0 and 41% of total starch [29]. Besides 

amylose, GBSSI is also involved in the synthesis of extra long glucan chains of amylopectin, 

such that also amylopectin may be modified in waxy mutants [38], [39], [40]. Low-amylose 

varieties can be used for food applications because of their peculiar starch features (low 

gelatinization temperature and retrogradation), that confer high freeze-thaw stability and 

anti-stailing properties to processed food [41], [42]. 

Here we report a new allele of GBSSI with a G493E point mutation. Grain starch of this 

mutant (1090-GBSSI) contains less than 10% amylose (vs. 30% of wild-type) and is thus 

defined low-amylose or near-waxy. Crystallinity of 1090-GBSSI starch was found to be 

largely A-type, with a minor contribution of the V-type pattern. A similar profile has been 

previously reported in low amylose barley [43], [44]. 

Plant starch synthases (both granule bound and soluble isoforms) are proteins of about 

60-120 kDa that belong to the glycosyltransferase family GT-5 [4]. They typically contain 

a catalytic domain formed by two Rossman fold domains delimiting a deep cleft where 

the catalytic site is located (Figure 6). In plant starch synthases, the catalytic domain is 

often preceded by an N-terminal sequence of variable length and no clear function. The 

crystal structure of the catalytic domain of rice GBSSI [45] was used as a template to model 

barley GBSSI (the two proteins are 84% identical in amino acid sequence). According to 

the model, glycine-493 belongs to an alpha-helix of the second, C-terminal Rossman fold 

domain at approximately 10 Å from the ADP binding pocket [45] and 6 Å from the 

conserved STGGL motif suspected to be involved in catalysis and/or substrate binding 

[29].  
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Figure 6. Localization of point mutations in the 3D structures of barley GBSSI, SSI and LDA1. A) Barley GBSSI    

was modelled by Swissmodel using the catalytic domain of wild-type rice GBSSI complexed with ADP as a 

template (pdb 3VUF). The two mature proteins are 84% identical in sequence. The main chain of glycine-

493 is represented by blue spheres. In mutant 1090-GBSSI, glycine-493 is substituted by a glutamate 

(G493E). Co-crystallized ADP of the rice GBSSI structure (3VUF) is superimposed to highlight the adenine 

nucleotide binding site. B) Crystal structure of barley SSI, co-crystallized with a molecule of maltopentaose 

(red spheres) (pdb 4HLN). Main chain atoms of mutated residues are represented by coloured spheres: blue 

(G576D in mutant 5850-SSI), green (T522I in mutant 1132-SSI) and yellow (G509E in mutant 1284-SSI). C) 

Crystal structure of barley LDA1 (pdb 2X4B). The carbohydrate binding module CBM48 is coloured yellow. 

Residue no. 270 (blue spheres corresponding to main chain atoms) is part of the CBM48 domain. Mutant 

905-LDA1 carries a V270I mutation. A molecule of betacyclodextrine (red spheres) co-crystallized with the 

protein highlights the putative active site. 

 

Several near-waxy cultivars are known in barley, all carrying a large deletion in the 

promoter region of the GBSSI gene that results in strongly diminished expression of the 

enzyme [29], [46]. Waxy cultivars with no detectable amylose are also known (e.g. cv. CDC 

Alamo and CDC Fibar) but they contain point mutations in the coding sequence that likely 

cause complete inactivation of the enzyme without drastically affecting the protein 

abundance in starch granules [29]. Interestingly, mutation G493E in 1090-GBSSI seems to 
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modulate, rather than inactivate, enzyme activity as demonstrated by the residual 

content of amylose  (10%) detected in its starch. Moreover, this effect is obtained without 

altering protein expression, as suggested by the SDS-PAGE pattern identical to the wild-

type. Indeed, mutation G493E may prove useful for the understanding the little known 

catalytic mechanism of GBSSI. 

 

Limit dextrinase (LDA1) 

Together with isoamylases (ISAs), limit dextrinases (LDAs, also known as pullulanases) 

constitute the set of starch debranching enzymes. The role of ISAs in removing excess 

branches of amylopectin formed by branching enzymes is well known [8]. In the absence 

of isoamylases, starch is synthesized in a highly branched form known as phytoglycogen 

[47]. Barley limit dextrinase is coded by a single gene (LDA1) and is apparently involved 

both in starch biosynthesis and degradation [48]. In vivo, the activity of LDA1 is regulated 

by a proteinaceous inhibitor LDI [49], and antisense transgenic barley with lower 

expression of LDI showed higher LDA1 activity and a lower percentage of B-granules (i.e. 

inhibition of granule initiation) and lower amylose/amylopectin ratio [50]. It was 

suggested that LDA, which is expressed when B-granules are formed, may play a role in 

reducing the amount of primers that allows the nucleation of small B-granules. In our 

study, we have found a mutant of LDA1 (905-LDA1) with a higher percentage of small B-

granules that further supports the role of this enzyme in starch granule initiation. 

The tridimensional structure of barley LDA1 has been solved [51]. The protein is made of 

four domains: the N-terminal domain, the CBM48 domain, the catalytic domain and the 

C-terminal domain. Valine-270 of LDA1, that in mutant 905-LDA1 is substituted by a more 

bulky isoleucine, belongs to the carbohydrate binding module CBM48 and is located close 

to the interface with the catalytic domain (Figure 6). It is plausible that the substitution of 

valine in isoleucine (V270I) in the CBM48 domain may reduce the capability of the protein 

to bind glucans and in turn inhibit, albeit indirectly, its scavenging activity toward primers 

of granules nucleation. Consistently, starch of mutant 905-LDA1 is formed by a larger 

number of granules (predominantly small B-granules) and the role of LDA1 in controlling 

granule nucleation is further supported.  
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Soluble starch synthase I (SSI) 

In plants, soluble starch synthases are divided into four classes with different specificity 

(from SSI to SSIV), and some of them are represented by more than one isoform [4], [8], 

[9]. While SSIV is probably involved in starch granule initiation [52], SSI preferentially 

synthesize short glucan chains using short amylopectin chains as substrate [5], [8]. These 

short amylopectin chains may then be prolonged by SSII and SSIII [5], [8], but individual 

roles and cooperation between different starch synthases in building the starch granule 

are still undefined, in barley at least. Mutants in rice and wheat clearly suggest that the 

activity of the different starch synthases is not necessarily sequential and the lack of SSI 

may be partially compensated in vivo [8], [53], [54]. 

In cereals SSI is represented by a single isoform. We have analysed three missense 

mutations in SSI and all of them showed starch phenotypes consisting in modifications in 

either size or frequency of A- and B-granules. However, our results may appear 

contradictory: in fact two mutants showed a higher % of A-type granules (1132-SSI and 

5850-SSI), while the third mutant had more B-type granules (1284-SSI). Morever, the A-

granules of mutant 5850-SSI were more abundant but smaller in size and, symmetrically, 

the A-granules of mutant 1284-SSI were larger but less frequent. Only in mutant 1132-SSI 

the higher percentage of A-granules was not compensated by a reduction in size.  The 

unexpected phenotypic difference between the three mutant lines may be due to 

currently unknown additional background mutations present in the genome of TILLMore 

mutant lines [23].  

However, some hints could be obtained from the recently solved crystallographic 

structure of barley SSI [55] (Figure 6). The G576D substitution of mutant 5850-SSI is 

localized at the base of a loop involved in the formation of a high affinity binding site for 

maltooligosaccharides. This site is 30 Å away from the putative catalytic site, but is 

believed essential for colocalizing branched glucans and SSI, thereby favoring catalysis. 

Moreover, the starch phenotype associated to the G576D mutation (smaller A-granules) 

may suggest a role of this site in controlling the final size of large starch granules. The 

other two point mutations here described (Figure 6) are localized in regions of the protein 

not yet characterized, providing no suggestions to understand their role. Nevertheless, 

the high percentage of large A-granules in mutant 1132-SSI is interesting because this is a 

desirable trait for malting [10].  
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Initiation of A and B-granules are separated events, although little is known of the genetic 

control of this trait in Triticeae. In barley, A-granules are nucleated at 4–14 days post-

anthesis, during endosperm cell division, while small B-granules are nucleated later, 

during endosperm cell growth [56]. A QTL controlling B-granules initiation was recently 

described in wild wheat Aegilops [10] and in Arabidopsis, SSIV is believed to positively 

regulate granule initiation [52]. Recently the suppression of SSI expression in wheat grains 

using RNAi technology led to the production of lines with a reduced proportion of B-

granules [54]. All three SSI barley mutants analysed in this work showed an abnormal 

distribution between large and small granules. However, because of the complexity of our 

results, any conclusion about a possible role of SSI in granule initiation in barley is 

premature.  

 

Soluble starch synthase IIa (SSIIa) 

SSIIa is the major SS isoform of barley endosperm during grain filling [4]. Mutant sex6 of 

barley cv. Himalaya has no SSIIa activity and produces shrunken kernels containing starch 

made of up to 70% amylose [15], [16]. SSIIa knock-out mutants are particularly interesting 

for industrial applications because of their higher level of amylose and resistant starch in 

the endosperm. Resistant Starch is associated with several human health benefits, 

including the prevention of the colon cancer, type-II diabetes and obesity [13], [19]. In this 

work, we identified a mutant line with A-granule of smaller size carrying a missense 

mutation (1039-SSIIa), and a SSIIa null mutant (1517-SSIIa) characterized by 

small/shrunken seeds and containing less starch with more amylose (48% of grain starch 

is made of amylose in this mutant). The SDS-PAGE analysis of starch extracted from 1517-

SSIIa confirmed the absence of the protein SSIIa, together with SBEII and SSI isoforms. The 

simultaneous absence of SSIIa, SBEII and SSI in the starch granule was already observed in 

SSIIa mutants of barley, bread and durum wheat [14], [57], [58]. 

Starch crystallinity of 1517-SSIIa was largely characterized by a V-type diffraction pattern 

suggesting the formation of lipid-amylose complexes, similarly to those observed in the 

sex6 mutant [15]. In the missense mutant 1039-SSIIa, in spite of the smaller size of A-

granules, no other starch parameters including crystallinity were significantly affected. In 

barley endosperm, SSIIa was shown to extend short amylopectin glucan chains of 3-8 

glucose units to chains of up to 35 units [15]. Consistently, the lack of SSIIa negatively 
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affects amylopectin synthesis, more than amylose synthesis [16], and mutant 1517-SSIIa 

is fully consistent with these results. 

 

CONCLUSIONS 

 

TILLING of five genes encoding enzymes involved in starch metabolism enabled us to 

identify seven new alleles that are associated with new starch phenotypes in terms of 

amylose/amylopectin ratio, or crystal packing, or distribution of A- and B-granules, or size 

of A-granules (Table 1). Our results confirmed the role played by granule-bound starch 

synthase (GBSSI) in controlling amylose biosynthesis and, conversely, the role played by 

soluble starch synthase IIa (SSIIa) in controlling amylopectin synthesis. Starch granule 

initiation appeared to be controlled by limit dextrinase (LDA1), and size of A-granules by 

starch synthases IIa. Thanks to their physical-chemical properties, these new alleles 

deserve further attention in order to investigate their possible interest in nutritional uses 

or industrial applications. 
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SUPPORTING INFORMATION 

 

 

Table S1. Water content in whole flours of TILLING mutant lines. Dry weight was obtained after incubation 

of samples at 80°C for 24h. Data are means ± SD (n=4). 

 

Figure S1. SDS–PAGE separation of starch protein extract from cv. Morex and barley mutants. 
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Figure S2. SEM analysis of starch granules from cv. Morex (A) and barely mutants 2253-BMY1 (B), 2682-

BMY1 (C), 1090-GBSSI (D), 905-LDA1 (E), 1132-SSI (F), 1284-SSI (G), 5850-SSI (H), 1039-SSIIa (I), 1517-SSIIa 

(L). Scale bars: 10, 20, and 30 μm. 
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Abstract 

The genome of Arabidopsis thaliana encodes two glucan, water dikinases, here reported 

as GWD1 and GWD2, and one phosphoglucan, water dikinase, named PWD. From a 

catalytic point of view, both GWDs and PWD destabilize the α-helices of starch granule, 

changing its physicochemical properties through the addition of phosphate groups to the 

amylopectin chains. Their activity is therefore necessary to the correct mobilization of 

transitory starch. Here we report that mutants lacking GWD1, GWD2 or PWD have an 

inefficient starch metabolism that afflicts plants growth and development, albeit to 

different extents. In comparison to wild-type, all mutants have seeds with a higher 

density, mainly ascribable to the decrease of lipids and to an increased accumulation of 

starch or seed coats. Apart from the sex phenotype characteristic of gwd1 and pwd1, only 

gwd1 appears to be clearly different from wild-type plants, in that it requires about 50% 

more time to reach the reproductive phase. As a consequence, the number of rosette 

leaves in gwd1 is about 1.3 fold higher than in wild-type. The growth of mutants in 

continuous light do not fully revert the phenotype, suggesting that they do not suffer 

exclusively from carbon limitation. Considering that in gwd1 the increase in biomass is 

associated with a small reduction of seeds productivity, this mutation could be of 

industrial interest providing plants with both good production of seeds and biomass. 

Moreover, the high accumulation of starch in leaves could increase the value of this raw 

material. 

 

Structured abstract: 

(1) Phosphoesterification of starch granules is of primary relevance in transitory starch 
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degradation. 

(2) Single mutants lacking glucan, water dikinase 1 (GWD1), GWD2 or phosphoglucan, 

water dikinase (PWD) were compared with wild-type plants during their entire life cycle. 

(3) All mutations altered plant development, albeit at different extent. Continuous low 

intensity light did not revert phenotypic traits, but conferred an identical behaviour 

among mutants but different from wild-type. 

(4) Proper starch mobilization is not required for plant nutrition only. We suggest that 

starch accumulation above a threshold value could be integrated by hormone signals to 

drive the correct plant growth in respect to its energetic level.  

 

INTRODUCTION 

 

Atmospheric CO2 is fixed into organic carbon skeletons by photosynthesis. Following the 

initial step of sugars production, sugars are partitioned to the non-photosynthetic tissues. 

Many studies reported that up to 80% of photosynthetic fixed carbon is exported from 

mature leaves to feed the heterotrophic tissues (Kalt-Torres et al. 1987; Komor 2000; Guo 

et al. 2002). Therefore, sink tissues are the primary consumers of newly fixed CO2. 

However, the relationships between source and sink tissues are affected by many 

environmental and developmental factors, and a sink organ (e.g. seeds formation) can 

become a source (e.g. seed germination) depending on the developmental stage of the 

plant.  

Photoassimilates divide into soluble sugars and insoluble starch with plant species 

dependent ratios (Zeeman & ap Rees 1999; Smith & Stitt 2007; Kölling et al. 2015). 

Although not the only one, sucrose is the most abundant sugar transported in the vascular 

system (Roitsch 1999; Braun et al. 2014; Osorio et al. 2014). As a consequence sucrose is 

somehow considered a shuttle molecule supplying sink tissues with carbon skeletons. 

Sucrose derives from a cytosolic pathway, consuming both the products of photosynthesis 

and the products of starch degradation. 

Starch is the major non-structural carbohydrate in plants and usually the terms “storage” 

and “transitory” starch are used to distinguish between long- and short-term 

carbohydrate reservoirs, respectively. Albeit storage and transitory starch have the same 

biosynthetic pathway, their degradation occurs through two different mechanisms: α-
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amylases are generally accepted as the major player in cereal endosperm mobilization 

being able to attack starch granule surface (Fincher 1989); on the contrary leaf starch 

degradation does not require any α-amylase activity (Yu et al. 2005) but an initial 

phosphorylation step is necessary to make starch surface accessible to a plethora of 

enzymes (Blennow et al 2000; Edner et al, 2007; Santelia et al. 2015). GWD1 (At1g10760), 

GWD2 (At4g24450) and PWD (At5g26570) are Arabidopsis genes encoding enzymes that 

catalyse starch phosphorylation. In planta starch phosphoesterification occurs only at the 

hydroxyl groups of the C-3 and C-6 of glucose molecules of the amylopectin (Blennow et 

al. 2002), the branched glucose polymer that constitutes about the 70-90% of starch 

granule (Ong et al. 1994; Roger & Colonna 1996). Phosphorylation at C-3 and C-6 hydroxyl 

groups of the glucose units has considerably different effect: while the C-6 bound 

phosphate does not severely affect starch granule crystallinity, C-3 modification 

significantly changes double-helix packing (O’Sullivan & Perez 1999; Blennow et al. 2002). 

Glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) catalyse the 

formation of glucosyl-phosphate esters by a dikinase mechanism (β-phosphate group of 

ATP is transferred to starch and the γ-phosphate group is transferred to water) (for a deep 

characterization of GWD catalytic mechanism see Hejazi et al. 2012). While GWDs transfer 

glucosyl residues at the C-6 position (Ritte et al. 2002), PWD transfers glucosyl residues at 

the C-3 position of an already phosphorylated amylopectin chain (Baunsgaard et al. 2005; 

Kötting et al. 2005). In Arabidopsis GWD1, GWD2 and PWD form a small protein family. 

Except for GWD2, GWD1 and PWD localize in chloroplast stroma (Ritte et al. 2000; 

Baunsgaard et al. 2005) where transitory starch is accumulated during the day. GWD2 is 

instead a cytosolic enzyme mainly expressed in the vascular tissues in age-dependent 

manner (Glaring et al. 2007). Several experimental evidences underline the requirement 

of GWD1 and PWD to ensure the proper rate of leaf starch degradation: plants lacking 

GWD1 are unable to degrade starch even after a prolonged dark period (Lorberth et al. 

1998), and are therefore characterized by a strong starch excess (sex) phenotype. A less 

severe starch accumulation is typically associated to pwd mutants (Baunsgaard et al. 

2005; Kötting et al. 2005). In agreement with its extra-plastidial localization gwd2 knock 

out mutants do not show a sex phenotype (Glaring et al. 2007). 

Several studies have been conducted on plants with altered expression of genes involved 

in starch metabolism (for a recent review see Lloyd & Kossmann 2015). However, much 
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attention has been placed on mutants strongly affected on their capacity to synthetize 

(i.e. starch-less phenotype, like pgm mutant) or to degrade starch (i.e. high-starch 

phenotype, like sex1 mutant), while little attention has been paid to less severe 

mutations. Moreover, the data are often spotted throughout the literature and cover a 

single developmental stage or a specific organ. The aim of the present work is to study 

the phenotypic traits in single mutants lacking GWD1, GWD2 and PWD genes during the 

entire life cycle and in different organs of Arabidopsis thaliana. While current knowledge 

of gwd1 mutant is extensive, pwd is less characterized and nothing is known about gwd2 

mutant. For these reasons we intended to give an integrated overview of the phenotype 

of mutants.  

 

MATERIALS AND METHODS 

 

Genotype analysis 

T-DNA lines were searched for insertions in At1g10760 (code for GWD1), At4g24450 (code 

for GWD2) and At5g26570 (code for PWD) genes. Stock seeds, were purchased from the 

European Arabidopsis Stock Centre (NASC, Nottingham, UK) (Table 1). Homozygous lines 

were selected by two independent PCR amplifications on genomic DNA extracted from 

3/5 leaves of T3 plants. One PCR reaction was performed utilizing pairs of primers both 

specific for the gene under study, while a second PCR reaction was performed utilizing a 

gene-specific and a T-DNA left border primer (Table 1). Gene-specific primers were 

designed by T-DNA primer Design. PCR amplification was performed on a Biometra T-

gradient thermocycler under the following conditions:  1) 5 min at 94°C, 2) 35 cycles of 30 

sec at 93°C, 30 sec at 58°C and 1 min at 72°C. PCR products were separated on 0,8% TAE-

agarose gel and visualized with ethidium bromide (Fig. 1). Twenty-40 plants were analyzed 

for each T-DNA line (Fig. 1). Seeds were collected only from homozygous lines. All 

experiments were carried out on T4 generation. 
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Table 1 - Index of Arabidopsis T-DNA mutants under study. Homozygous lines were identified through two 

independent PCR reactions performed on genomic DNA. Utilized pairs of primers were LP+RP and LB+RP. 

1LP: gene specific, left border primer; 2RP: gene specific, right border primer; 3LB: T-DNA specific, left border 

primer. 

 

 

Figure 1 - PCR analyses were performed with 400 ng of DNA extracted from 30-day-old plants. Homozygous 

lines were selected using specific primers and 35 amplification cycles. Exclusively in homozygous lines, the 

pairs of primers LB+RP is expected to amplify a band of known length (typically around 300 bp) while on the 

same genome the pair LP+RP is expected unable to amplify. Representative results are reported. 

 

Plant growth conditions 

Wild-type and T-DNA Arabidopsis plants (ecotype Columbia) were grown on soil or on 

half-strength Murashige-Skoog medium (½MS-agar medium) (Micropoli), in a growth 

Gene NASC code Mutant 1LP (5’3’) 2RP (5’3’) 3LB (5’3’) 

At1g10760 SAIL_165_B11 gwd1 CTGTTCTTGACAGAAGCC
GAC 

CAAAGAAATACTTGGAG
GGGC 

GCCTTTTCAGAAATGGAT
AAATAGCCTTGCTTCC 

At5g26570 SALK_110814 pwd GCTAGGGTAGCCACCGT
AAAG 

TCCGATATGTCCTTTTTCT
GG 

GCGTGGACCGCTTGCTG
CAACT 

At4g24450 SALK_152327C gwd2A AGACTCCTCCGTAGAAG
CACC 

GAAACTGGCGTTCTCAG
ATTG 

GCGTGGACCGCTTGCTG
CAACT 

At4g24450 SALK_080260C gwd2B CAAATGTTCCGAATGGA
AGAG 

AGGTTATAAGAGCAGGG
CCAG 

GCGTGGACCGCTTGCTG
CAACT 
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chamber at 22°C either at a light intensity of 110 µmol photon m-2 s-1 for 12 hours per day 

or at a light intensity of 60 µmol photon m-2 s-1 for 24 hours per day. Seeds grown in ½MS-

agar medium were sterilized with chlorine fumes for 5 hours, and then transferred onto 

square Petri dishes. Cold stratification of about 4 days in the dark was applied. 

 

Phenotypic characterization 

Leaves starch content was quantified from entire rosette of 31/35-day-old plants and 

measured as described in Smith & Zeeman (2006). Starch quantification was performed 

at 12 h light and 12 h dark on 4 independent biological replicas. The percentage of 

germination was calculated numbering seeds with radical protrusion after 72h of growth 

in respect to the total sowed seeds. The rate of primary root elongation was evaluated 

measuring the root length at regular intervals in the range of time between 2 and 7 days 

of growth. The flowering time was defined as the time required by the primary 

inflorescence to reach a height of 10 cm. The number of rosette leaves was assayed at the 

flowering time. The number of flowers, siliques and seeds pertain to the primary 

inflorescence only. The seeds density was evaluated by counting seeds able to cross 100%, 

80% or 70% glycerol cushions after 15 min centrifugation at 13,000 rpm.  

 

Quantification of starch, protein and lipids in seeds 

For the quantification of seed proteins and seed starch content, about 30 mg of air-dried 

seeds were homogenized in a mortar at room temperature in the presence of 3 volume 

of Extraction Buffer (50 mM HEPES, 5 mM MgCl2, pH 7.5, 1% Triton X-100, 15% glycerol, 

2% SDS, 1 mM EDTA), carefully transferred into 1.5 ml tubes and centrifuged for 10 min 

at 13,000g. Supernatants were transferred into clean reaction tubes and used for protein 

quantification with bicinchoninic acid reagent (Sigma), according to the manufacturer’s 

instructions. Pellets were washed once with 80% ethanol, three times with water and 

starch was quantified as described in Smith & Zeeman (2006). Total lipid quantification 

was performed gravimetrically as described in Wingenter et al. 2010 on 100 mg of mature 

and air-dried seeds for each genotype. Lipid composition was determined by means of 

silylation and GC-MS analysis as described in Torri et al. 2011. 
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RESULTS 

 

Isolation of homozygous T-DNA lines and leaves starch quantification 

Selection of homozygous lines with T-DNA insertion in GWD1, PWD and GWD2 coding 

sequences were carried out by PCR experiments on genomic DNA. Two PCR amplifications 

with T-DNA and gene specific forward or reverse primers were performed (Tab. 1 and Fig. 

1). Only for GWD2 gene two independent T-DNA mutants were selected and named 

gwd2A and gwd2B. Generically gwd2 will be used to comment on both the mutant lines 

gwd2A and gwd2B, given their similar behaviour. Leaves starch was quantified at the end 

of the day and at the end of the night and compared with that extracted from wild-type 

plants grown under the same conditions (Fig. 2). As expected from the absence of GWD1 

gene (Yu et al. 2001), starch content in gwd1 mutant was 4.5 and 10 times higher than 

those measured in wild-type plants at 12h of light and 12h of dark, respectively. Such a 

severe starch excess (sex) phenotype was not evident in pwd mutant (Baunsgaard et al. 

2005; Kötting et al. 2005), which appeared to be impaired mainly in starch degradation at 

night (Fig. 2). As previously reported (Glaring et al. 2007), the absence of a functionally 

active GWD2 gene did not affect leaf starch content, whose concentrations were not 

statistically different from those of the wild-type (Fig. 2). 

 

Figure 2 - Transitory starch content measured at the end of the light (12h Light) and at the end of the dark 

(12h Dark) period in wild-type and mutant plants, expressed as μmol of Glc equivalents/gram of fresh 

weight. Starch was extracted from entire rosette leaves of 31/35-day-old plants. Data are means ± SE (n = 

4). 
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Seeds morphology and composition 

As part of the phenotypic dissection, the effect on seeds of the T-DNA insertion in GWD1, 

PWD and GWD2 genes, was evaluated weighting pools of 100 seeds collected from 31-52 

different plants and no statistical differences were observed in comparison to wild-type 

seeds (Table 1). Seeds morphology was further analysed measuring length and width of 

103-151 mature seeds collected from 10 different plants for each genotype (Table 2, Fig. 

3). All seeds belonging to mutant genotypes were reduced in length in comparison to wild-

type, while width was reduced in gwd1 and pwd but not in mutants affecting GWD2 gene. 

As a consequence, all mutated seeds were suggested to have a major density than wild-

type. The hypothesis was confirmed measuring the seeds density on glycerol cushions. 

Three different glycerol concentrations were tested: 70%, 80% and 100% corresponding 

to densities of 1.181 g cm-3, 1.208 g cm-3 and 1.261 g cm-3, respectively. After 

centrifugation, the 32.2% of the gwd1 seeds migrated to the bottom of the tube 

containing 100% glycerol while none of the wild-type seeds crossed the glycerol cushion; 

the 84.8% of pwd1 seeds migrated to the bottom of the 80% glycerol cushion versus the 

0.8% of wild-type seeds; and the 45.7% and 42.2% of gwd2A and gwd2B, respectively, 

seeds migrated to the bottom of the 70% glycerol cushion versus the 6.7% of wild-type 

seeds. Since the seed density depends on seed composition, the content of lipids, proteins 

and starch was evaluated in mature seeds of mutants and wild-type lines (Table 2). In 

agreement with the higher seed density of gwd1, pwd and gwd2, total lipids content (the 

lightest micro-components within seed) was statistically lowered in comparison to wild-

type, albeit no differences in fatty acid composition were observed (Fig. 4). On the 

contrary, no statistical difference was observed in total proteins content among mutants 

and wild-type seeds, while only gwd1 seeds showed a 90-fold increase in starch (Table 

2). Taking into account that in pwd and gwd2A mutants none of the seed components 

were increased, we can reasonably assume that their higher density was due to an 

increased seeds coat. 
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●The seed weight is reported as the weight of 100 seeds. 

 

Table 2 - Characterization of mature seeds collected from wild-type and mutant plants. Depending on the 

genotype, 31-52 pools composed of 100 seeds each were used to calculate seed weights. Seed length and 

width were measured on 102-151 seeds (depending on the genotype) collected from 10 single plants; values 

are means ± SE. Lipids, proteins and starch were quantified from mature seeds of wild-type and mutated 

lines; values are means ± SD (n = 3). Statistical analyses were performed using Student’s t-test. **P ≤ 0.01. 

 

 

Figure 3 - Phenotypes of wild-type and T-DNA mutant seeds affected in starch phosphorylating enzymes. 

Batches of mature dry seeds were stereoscopically observed. Scale bar: 500 µm.  

  

 Seed  

dimension 

 Seed composition  

  Weight● Length Width Lipids Proteins Starch 

 (mg) (µm) (µm) (µg seed-1) (µg seed-1) (ng seed-1) 

wild-type 2.04 ± 0.07 511 ± 3.2 296 ± 1.7 4.70 ± 0.07 10.15 ± 1.05 5.06 ± 1.66 

gwd1 1.94 ± 0.04 481 ± 3.9** 284 ± 1.9** 3.36 ± 0.22** 7.99 ± 0.26 434 ± 148** 

pwd 1.80 ± 0.06 488 ± 3.7** 286 ± 1.7** 3.00 ± 0.29** 7.89 ± 0.13 11.58 ± 7.29 

gwd2A 1.82 ± 0.06 483 ± 4.5** 296 ± 1.9 3.40 ± 0.08** 8.35 ± 0.65 7.14 ± 0.89 

gwd2B 2.17 ± 0.10 474 ± 4.3** 291 ± 2.4 4.05 ± 0.14 9.47 ± 0.43 8.68 ± 5.46 

gwd1 pwd 

gwd2A gwd2B 

wild-type 
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Figure 4 - Lipid composition of Arabidopsis seeds collected from wild-type and mutant plants. 

 

Seed viability and rate of growth of primary root 

As early phenotypic traits, seeds viability and rate of growth of primary root were 

evaluated. The former trait was measured as the percentage of seeds showing a radical 

protrusion after 72h of growth in respect to the total number of sowed seeds. The second 

trait was evaluated as the rate of primary root elongation within the range of linear 

growth phase (between 2 and 7 days). In agreement with the hypothesis of thicker coats 

that could make harder the radicle protrusion, the percentage of germination in pwd and 

gwd2A was statistically reduced in comparison to wild-type, while no statistically 

significant difference was observed comparing wild-type and gwd1 samples (Table 3). 

Following germination, the minor lipid content measured in all mutant seeds (Table 2) 

could be responsible of the reduced rate of primary root elongation (Table 3). Moreover, 

the more severe reduction measured in gwd1 mutants in respect to pwd and gwd2A, 

might be explained by the major impairment in transitory starch degrading pathway 

associated to this mutation. As the seedlings grow and acquire photosynthetic capacity, 

the inability to mobilize starch could strengthen the defect. 
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Table 3 - Seed viability and rate of primary root elongation. The percentage of germination was evaluated 

scoring the number of germinated seeds in respect to the number of sowed seeds. Four independent 

biological replicas, each of which composed by 30 mutated and 30 wild-type seeds sown on the same ½MS-

agar plate, were scored. Data are means ± SE. Primary root elongation was obtained fitting data within the 

linear range of growth rate. Data are means ± SE of single seedlings (n = 49 ~ 100). Statistical analyses were 

performed using Student’s t-test. **P ≤ 0.01. 

 

 

Transition from vegetative to reproductive growth-phase and plant fitness 

The effect of mutations on the transition from vegetative to reproductive growth was 

evaluated by measuring the days required to reach the flowering time, assessed when the 

primary inflorescence was 10 cm high. As shown in Table 4, as for wild-type plants about 

70 days were necessary to reach the flowering time in both pwd and gwd2A mutants, 

while more than 100 days were required by gwd1. Once reached the flowering time, 

rosette leaves have been numbered (Table 4). Probably due to the prolonged vegetative 

phase, an increased number of rosette leaves was measured in gwd1 mutant, while pwd 

and gwd2A showed a small but statistically significant decrease (Table 4).  

 

 

 

 

 

  

 Germination  

(%) 

Growth rate  

(µm h-1) 

wild-type    99.0 ± 0.2     175 ± 2 

gwd1    97.9 ± 1.5 76 ± 1** 

pwd 89.5 ± 4.9** 94 ± 3** 

gwd2A 93.6 ± 3.1** 94 ± 3** 

gwd2B 91.7 ± 7.2** 105 ± 3** 
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 Flowering time Rosette leaf  

 (day) (number) 

wild-type     69.6 ± 2.3    21.7 ± 0.8 

gwd1 106.4 ± 2.3** 27.0 ± 0.6** 

pwd     70.7 ± 2.4 18.9 ± 0.6** 

gwd2A     72.6 ± 2.2    19.5 ± 0.5* 

gwd2B     66.7 ± 2.2    20.7 ± 0.5 

 

Table 4 - Time of flowering and number of rosette leaves in wild-type and mutated lines. Plants were grown 

under 12h light/ 12h dark cycle. Rosette growth rate was determined measuring the major diameter of the 

entire rosette, at different time points, during the linear growth phase, between the 13th and the 28th day 

of growth (n > 20). Time of flowering is defined by the length (10 cm) of the primary inflorescence (n > 90). 

The number of rosette leaves was assayed at the flowering time (n > 90). Data are means ± SE. Statistical 

analyses were performed using Student’s t-test. **P ≤ 0.01; *P ≤ 0.05. 

 

Exclusively on the primary inflorescence, the number of flowers, siliques, and seeds in 

gwd1, pwd, gwd2A and wild-type plants have been counted. Compared to wild-type, 

flowers, siliques and total seeds production were reduced in both pwd and gwd2A (Table 

5). Interestingly, gwd1 mutant characterized by most severe sex phenotype, did not show 

a reduced number of flowers and siliques, and the seeds production was less reduced than 

that observed in pwd and gwd2 mutants (20% in gwd1 v.s. 40% in pwd and gwd2) (Table 

3).  
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 Flower Silique Seeds  Seeds per siliqua 

 (number) 

wild-type      34.4 ± 1.4       25.7 ± 1.1       596 ± 30          24 ± 1 

gwd1      32.8 ± 1.1       27.2 ± 0.9 477 ± 25** 18 ± 2** 

pwd 22.9 ± 1.6** 14.5 ± 0.8** 349 ± 25**          23 ± 1 

gwd2A 24.6 ± 1.4** 16.1 ± 0.8** 397 ± 23**          25 ± 3 

gwd2B 28.3 ± 1.4** 17.0 ± 0.9** 355 ± 24 ** 21 ± 1** 

 

Table 5 - Number of flowers, siliques, seeds and seeds per silique in wild-type and mutated lines. Plants 

were grown under 12h light/ 12h dark cycle. Flowers, siliques and seed number pertain to the primary 

inflorescence (n > 90). Data are means ± SE. Statistical analyses were performed using Student’s t-test. **P 

≤ 0.01; *P ≤ 0.05. 

 

Rescue by light 

Some of the above-mentioned phenotypic traits were also analysed growing plants under 

continuous low intensity light. The purpose was to overcome the energy restriction that 

mutants unable to correctly degrade starch during the night might have experienced, 

without altering sugars ratio by the addition of exogenous sucrose. Despite continuous 

light exposure, wild-type plants did not achieve the same starch concentration of gwd1 

mutant, which showed a 7.8-fold higher starch content than wild-type suggesting that 

starch degradation is not solely restricted to dark period (Valerio et al. 2011; Zanella et al. 

2016). Similarly, starch concentration in pwd and gwd2 mutants was about twice to that 

of wild-type plants. As a consequence, gwd2 mutant acquires a sex phenotype, not shown 

under growth condition of 12 hours per day (Fig. 2). Exposure to continuous light confers 

similar phenotypic traits to all mutants, although different from those of wild-type plants 

(Table 6). The rate of primary root elongation was approximately the 70% of wild-type, 

with a clear recovery in respect to those measured at 12 hours light cycle (Table 3). 

Compared to wild-type, the time required to reach the transition to reproductive phase 

was increased of about one week and accompanied by a greater number of rosette leaves 

(Table 4). Concerning the time necessary to the transition to reproductive phase, an 

opposite behaviour was observed in gwd1 in respect to both pwd and gwd2A plants 

grown at 12 or 24 hours light. While continuous light reduces the time required by gwd1 

mutant, partially reverting the phenotype (Table 4 and Table 6), the same condition 
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revealed an unexpected phenotypic trait in pwd and gwd2A, that under 24h light delay 

their entrance in the reproductive phase (Table 4 and Table 6). 

 

 

Figure 5 - Transitory starch content measured in wild-type and mutant plants kept under continuous light 

(24h Light), expressed as μmol of Glc equivalents/gram of dry weight. Starch was extracted from entire 

rosette leaves of 31/35-day-old plants. Data are means ± SE (n = 3). 

 

 

 Root growth 
rate  

Flowering time Rosette leaf 

 (µm h-1) (day) (number) 

wild-type      164 ± 2    48.5 ± 1.2      8.3 ± 0.2 

gwd1 111 ± 6** 54.7 ± 1.4** 11.0 ± 0.3** 

pwd 119 ± 6** 54.6 ± 1.0** 11.8 ± 0.3** 

gwd2A 114 ± 6** 52.8 ± 0.9** 11.8 ± 0.4** 

gwd2B 114 ± 5** 58.8 ± 1.3** 12.1 ± 0.5** 

 
Table 6 - Rescue by light. Effects of the continuous low intensity light (60 µmol photon m-2 s-1) on the rate 

of primary elongation (n = 30) and on the transition from vegetative to reproductive stage (n = 50). Data are 

means ± SE. Statistical analyses were performed using Student’s t-test. **P ≤ 0.01. 

 

DISCUSSION 

 

Starch is a polymer of glucose that despite is simple composition has a tremendous 

relevance in almost all human fields, having both food and non-food applications (Zeeman 
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et al. 2010; Lloyd & Kossmann 2015). Plants accumulate starch in nearly all organs, albeit 

the lifetime of starch granules is very different depending on plant organs, tissues, 

developmental stages and environmental stimuli. Also starch morphology can be 

extremely various according to plant species (from spherical and discoidal in barley to 

polyhedral in rice) (Buléon et al. 1998; Wani et al. 2012; Sparla et al. 2014); nonetheless 

starch granules are always characterized by a strong stability. Presumably as a function of 

starch life time and localization, two main pathways of starch degradation are known: in 

cereal endosperm (long-term and extracellular starch storage) the endoamylolitic activity 

of -amylases is required in its mobilization (Fincher 1989), while phosphoesterification 

at C-3 and C-6 positions of the glucose units is of primary relevance in the mobilization of 

short-life and intracellular starch granules (Blennow et al. 2000). 

To evaluate the relative contribution of the three (phospho)glucan, water dikinases 

encoded by Arabidopsis genome, single mutants were analysed throughout their life cycle 

and compared with wild-type plants grown under the same conditions. As expected, the 

sex phenotype associated to leaves followed the relative contribution of the three 

enzymes to transient starch degradation in chloroplasts (Yu et al. 2001; Baunsgaard et al. 

2005; Kötting et al. 2005; Glaring et al. 2007). In addition to leaves, transient accumulation 

of starch occurs in many other plant organs and tissues (e.g. stems, developing seeds, 

roots, flowers) (Caspar et al. 1991). Albeit Arabidopsis seeds store lipids and proteins up 

to 80% of the dry weight (Baud et al. 2002; O’Neill et al. 2003), small and transitory starch 

deposition occurs during the early phases of Arabidopsis seed development (Focks & 

Benning 1998; Baud et al. 2002; Andriotis et al. 2010). In agreement with previous works, 

wild-type mature seeds accumulated proteins and lipids over the 70% of the seeds weight, 

while in all analysed mutants the same components were only slightly higher than the 

50%. Although the similar decrease in lipids content, only gwd1 mutant showed a relevant 

starch accumulation (~90 fold higher then wild-type), constituting up to 5% of the seed 

weight. The appearance of a sex phenotype exclusively in gwd1 seeds corroborates the 

hypothesis that transitory starch accumulation in seeds does not sustain lipids synthesis, 

rather confirms that an imbalance in the carbohydrate status (e.g. sucrose and glucose) 

might affect the storage pathways (Weber et al. 1997). Despite the different seeds 

composition, the percentage of germination in gwd1 mutant was indistinguishable from 

that of wild-type seeds, being for both close to 100%. On the contrary pwd1 and gwd2 
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showed a statistically relevant reduction in germination. At the present we are not able 

to explain such behaviour and several hypotheses can be postulated: (i) GWD2 and PWD 

may have a predominant role in germination process (albeit not supported by in silico 

data); (ii) an altered carbohydrate status could act as developmental signal (iii) differently 

from gwd1 seeds whose greater density can be ascribable to accumulation of starch, the 

higher density of gwd2 and pwd seeds may reflect a thicker seed coat. For what we know, 

the latter case appears more reasonable considering that cellulose and hemicellulose are 

among the major sinks (Windsor et al. 2000). Therefore, we can assume that in absence 

of GWD1, carbohydrates deriving from mother plant are restrained into starch, while the 

absence of PWD or of GWD2 blocks them into the seed coats. 

The rates of elongation of primary root underline how under a normal light/dark cycle all 

the three genes under study are required in sugars mobilization. While such a role was 

already observed on gwd1 and pwd mutants (Yu et al. 2001; Baunsgaard et al. 2005; 

Kötting et al. 2005), here we show for the first time that also GWD2 is necessary for a 

correct rate of root elongation, at least in the very early phase of growth. Interestingly, 

the reduction of primary root growth was not fully recovered under continuous light. The 

exposure to continuous low intensity light, flattens the phenotypic differences among the 

three mutants, that in any case still display a 30% reduction in the primary root elongation 

in comparison to wild-type. Similarly, the time required to reach the transition to 

reproductive phase and the number of rosette leaves at the flowering time clearly change 

in response to continuous light, conferring phenotypic traits different from those of wild-

type but identical among all mutants. Recently it has been demonstrated that dwarfism 

characteristic of gwd1 can be efficiently reverted by external application of gibberellin 

(GAs) (Paparelli et al. 2013). The Authors demonstrate that plants size depends from the 

synthesis of GAs, which in turn depend from how starch is efficiently mobilized during the 

night (Paparelli et al. 2013). Compared to wild-type, exposure to continuous light led to 

an increase in starch content, with the onset of sex phenotype even in gwd2 mutant. 

Considering that wild-type plants never reach a starch concentration greater than those 

of mutants, an increase in starch turnover (intended as rate of synthesis and degradation) 

can be assumed. As a consequence of a compromised efflux route, mutants start to 

accumulate starch. Somehow perceived, the accumulation of starch could lead to a lower 
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synthesis of GAs or other plant hormones, with a consequent impairment in the 

development. 

Fitness (evaluated as seed number) and plant productivity (evaluated as biomass 

production) are important traits for both agriculture and biotechnology purposes. Hence 

biomass and fitness of mutants were evaluated as number of rosette leaves, flowers, 

siliques and seeds pertaining to the primary inflorescence. Whereas pwd and gwd2 

mutants showed a decreased leaf, flower, silique and seed number, gwd1 plants showed 

a biomass increase, an unchanged number of flowers and siliques but a minor number of 

seeds production with the consequent reduction of seeds per silique, in agreement with 

the previous observation that gwd1 produce silique of smaller size in comparison to wild-

type plants (Andriotis et al. 2012). Curiously plants grown under 12 hours of light require 

the same time to reach the transition to reproductive phase, with the only exception of 

gwd1 mutant. Presumably, the about doubled time of flowering shown by gwd1 is 

ascribable to the major impairment in leaves starch degradation compared to both wild-

type, pwd and gwd2 mutated plants. This prolonged time could be required by gwd1 to 

reach a hypothetical energy threshold that allows the mutant to get into the reproductive 

phase. The gained source tissue (i.e. major leaf number) could properly respond to sink 

demand, as mirrored by the same number of flowers, silique and by the slight decrease in 

seeds production, compared to wild-type. On the contrary the mild or null sex phenotype 

characteristic of pwd and gwd2 mutants, respectively, might allow them to reach the 

energy threshold at the same time of the wild-type plants. However, the minor 

development of the source tissue (i.e. minor leaf number) might not adequately respond 

to the demand of sink, with the consequent lower production of flowers, siliques and 

seeds. The onset of a sex phenotype under continuous low intensity light together with 

the onset of a common delay in the transition to the flowering time, strongly suggests that 

the ratio between starch and soluble sugars may somehow establish this hypothesized 

energy threshold.  

The data presented in this study leads to the conclusion that phosphorylation events that 

drive starch degradation are not solely responsible to feed plants in absence of an active 

photosynthetic activity (i.e. during the night), but rather that a cross talk among starch, 

soluble sugars and hormones is required for a correct plant development. 
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MATERIALS AND METHODS 

 

Lignin and cellulose staining 

Rosette leaves of three 40-days plants from each genotype were harvested. After 

chlorophyll extraction with hot ethanol (80% [v/v]), on three leaves per plant lignin was 

stained with the phloroglucinol solution (1% phloroglucinol [w/v] in 6M HCl) and cellulose 

was stained with Congo-red (aqueous solution 1% [w/v]).  

  

Stomatal aperture measurement  

Analyses were performed on plants at the flowering time after 72 h of continuous light 

exposure. Abaxial epidermal peels were immediately placed on a microscope slide and 

observed with an image analyser-Axioplan microscope (Zeiss, Jena, Germany) connected 

to a Sony CCD-IRIS camera (SSC-M37CE, Sony, Japan). The captured images were then 

processed using ImageJ 1.48 for Windows. Stomata were randomly selected from the 

digital image collection, obtained from a set of leaves of 3-4 independently grown plants 

for both the wild-type and the mutants. Stomata apertures were calculated as the ratio 

between the width and length of the pore (an average of 100 stomatal apertures were 

analysed for each genotype). 

 

Transpiration and carbon assimilation rates 

Gas-exchange measurements were performed as described by Kӧlling et al., 2015, with 

an EGES-1 system (DMP Ltd, Switzerland). Custom-made chambers enclosing the whole 
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rosette were used. Chambers were connected to control unit, to IRGA (LI-7000, LI-COR 

Inc. USA), and to a Linux computer for data acquisition. The flow rate and the partial 

pressure of CO2 and H2O were kept under control both in incoming and outgoing. Gas 

exchange measurements were followed for 72h at flow of 200 µmol s−1, air temperature 

of 20 °C and at a light intensity of 60 μmol photon m-2 s-1. The incoming air was adjusted 

to a CO2 concentration of 380–400 ppm and a relative humidity of 55–65%. The outgoing 

air of each chamber was measured for 360 s before the system switched to the next 

chamber. A dead time of 90 s was introduced after each switch to allow stabilization of 

the measurements. After the dead time, measurements were made every 2.5 s; every 60 s 

the average value was calculated and stored by the LabView application. The values for 

ΔCO2, ΔH2O, flow rate and the final fresh weight of the plant were used to calculate 

photosynthetic parameters. Each data point is the mean of measurements performed on 

four different plants. 

 

RESULTS 

 

Cellulose and lignin content 

Cellulose production is one of the most carbon consuming processes in plants. Recently 

numerous observations support the view that photosynthesis, primary metabolism, and 

carbon sinks (e.g. lignin biosynthesis) are coordinated and that photosynthesis is partially 

regulated by the sink organs. Moreover, Rogers and colleagues (2005) showed that sex1 

mutants lacking of GWD1 exhibit reduced lignin accumulation. Similarly, changes in the 

activity of cellulose biosynthesis reduce the expression of genes involved in starch 

degradation and photosynthesis. In particular, the inhibition of cellulose biosynthesis 

redirects the metabolic flux from cell wall to starch (Wormit et al., 2012). To follow up on 

these observations, the content of lignin and cellulose was qualitatively evaluated in 

gwd1, pwd and gwd2 mutant lines and compared to that of wild-type plants. At a glance, 

with our method, it was not possible to detect any differences between mutants and wild-

type plants (data not shown). Further analysis, by means of more sensitive and 

quantitative methods, are therefore require to better assess lignin and cellulose content.  
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Transpiration rate and photosynthetic rate 

In guard cells, mobilization of starch follows an opposite rhythm with respect to mesophyll 

cells. Namely, starch is present in darkness in almost all guard cells and is degraded during 

the first hours of light, presumably to provide carbon precursors needed for malate 

synthesis or sucrose accumulation (Horrer et al., 2016).  Under standard growth 

conditions, BAM1 and AMY3 normally not required in nighttime starch breakdown in 

mesophyll cells, are involved in guard cell starch degradation (Valerio et al., 2011; Horrer 

et al., 2016). Differently from BAM1 and AMY3, to date there aren’t studies highlighting 

phenotypic traits in guard cell of gwd1, pwd or gwd2 plants. 

To address the possible involvement of GWD1, PWD and GWD2 in stomata opening, 

mutants and wild-type plants were transferred to continuous low intensity light and the 

numbers of open stomata together with the size of pores were evaluated on epidermal 

peels. Albeit preliminary, the obtained data revealed a decreased number of open 

stomata in both pwd and gwd2 mutants (Fig. 6) as well as a reduced size of the pores in 

comparison to wild-type and gwd1 plants (Fig. 6).  

  



104 
 

 

 

Figure 6 - Number of open stomata and stomatal aperture analysis performed on wild-type and mutant 

plants. Plants were grown on soil and transferred at the flowering time under continuous light. Leaves were 

collected after 72 h of light exposure. The number of open stomata was counted (upper graph). Stomatal 

aperture (middle graph) was determined as the ratio between width and length of the stomatal pore. Values 

are means ± SE (n > 150 guard cells). Lower panel, guard cells of wild-type and mutated plants. The same 

magnification was used. Statistical analyses were performed using Student’s t-test. *P ≤ 0.05.  
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To better study the different role of gwd1 and pwd in guard cells, gas exchanges 

experiments were performed in collaboration with Dr. D. Santelia (University of Zurich, 

CH) on pwd, gwd1 and wild-type through the EGES-1 system (Kӧlling et al., 2015). This 

method allowed to calculate the net carbon assimilation/release (Fig. 7 and 8, lower 

panel), and the transpiration rate (Fig. 7 and 8, upper panel) of shoots of eight different 

plants at the same time (four wild-type and four mutants), monitoring for up to 72h plants 

response to continuous light. 

In comparison to wild-type, gwd1 mutants did not show any differences in transpiration 

and photosynthetic rates (Fig. 7), while pwd mutant showed a reduced transpiration (Fig. 

8) rate and a consequent decrease in photosynthetic rate (Fig. 8), suggesting an 

involvement of the PWD protein in guard cell starch mobilization at least under 

continuous low intensity light. 
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Figure 7 - Comparison of gas exchange measurements performed on wild-type (black dots) and gwd1 (white 

dots) plants. Transpiration rate (upper panel) and photosynthetic rate (lower panel) were recorded over the 

72 h of continuous light period.  
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Figure 8 - Comparison of gas exchange measurements of wild-type (black dots) and pwd (white dots) plants 

recorded in parallel. The average measurements for transpiration rate (upper graph) and photosynthetic 

rate (lower graph) of four chambers per genotype are shown over a 72 h Light period. 
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a difference for open stomata compared to wild-type. Indeed, the 70% of guard cells were 

found to be closed and the remaining 30% that were still open showed a significant 

decrease in stomata aperture. Indeed, pwd plants showed reduced transpiration and 

photosynthetic rates compared with wild-type plants, suggesting a role of PWD protein in 

guard cell starch metabolism under continuous light conditions. Further analyses are 

needed to assess the involvement of PWD in stomata starch degradation, such as starch 

quantification in guard cells of pwd mutant lines.  
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Abstract 

During photosynthesis of higher plants, absorbed light energy is converted into chemical 

energy that, in part, is accumulated in the form of transitory starch within chloroplasts. In 

the following night, transitory starch is mobilized to sustain the heterotrophic metabolism 

of the plant. β-amylases are glucan hydrolases that cleave α-1,4-glycosidic bonds of starch 

and release maltose units from the non-reducing end of the polysaccharide chain. In 

Arabidopsis, nocturnal degradation of transitory starch involves mainly β-amylase-3 

(BAM3). A second β-amylase isoform, β-amylase-1 (BAM1), is involved in diurnal starch 

degradation in guard cells, a process that sustains stomata opening. However, BAM1 also 

contributes to diurnal starch turnover in mesophyll cells under osmotic stress. With the 

aim of dissecting the role of β-amylases in osmotic stress responses in Arabidopsis, mutant 

plants lacking either BAM1 or BAM3 were subject to a mild (150mM mannitol) and 

prolonged (up to one week) osmotic stress. We show here that leaves of osmotically-

stressed bam1 plants accumulated more starch and fewer soluble sugars than both wild-

type and bam3 plants during the day. Moreover, bam1 mutants were impaired in proline 

accumulation and suffered from stronger lipid peroxidation, compared with both wild-

type and bam3 plants. Taken together, these data strongly suggest that carbon skeletons 

deriving from BAM1 diurnal degradation of transitory starch support the biosynthesis of 

proline required to face the osmotic stress. We propose the transitory-starch/proline 

interplay as an interesting trait to be tackled by breeding technologies aiming to improve 

drought tolerance in relevant crops.  
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INTRODUCTION 

 

Starch is a polymer of D-glucose and represents a convenient way to store carbohydrates 

as semi-crystalline and osmotically inert granules. The granules are mainly composed of a 

highly branched amylopectin polymer (70–90%), the remaining 10–30% being amylose 

which is much less branched (Denyer et al., 2001; Zeeman et al., 2002; Streb et al., 2012). 

As a consequence of its structure, glucose units embedded in the starch granule may not 

be immediately available to satisfy the different demands of the organism when faced 

with an urgent request. The tight regulation of several enzymes involved in starch 

degradation seems consistent with the need to speed up the use of starch under particular 

conditions, i.e. under stress (Santelia et al., 2015).  

Two kinds of starch, structurally indistinguishable, are found in plants: secondary and 

transitory starch. This physiological distinction is mainly based on different storage organs 

and on different rates of synthesis and degradation (Smith et al., 2005). Because of its 

commercial relevance, secondary starch has been extensively investigated, with the aim 

of creating new starch structures for industrial applications (Jobling, 2004; Santelia and 

Zeeman, 2011; Bahaji et al., 2014). Conversely, the physiology of transitory starch has 

become a major topic of research only recently (Zeeman et al., 2007; Stitt and Zeeman, 

2012), with increasing evidence of the involvement of transitory starch metabolism in 

response to stress (Hummel et al., 2010; Valerio et al., 2011; Prasch et al., 2015; Santelia 

et al., 2015).  

Due to their sessile nature, plants have to cope not only with rapid and daily 

environmental changes, but they must also balance the energy needed for growth with 

the energy required for stress responses. Starch biosynthesis is tightly correlated with 

photosynthesis, another process strongly affected by the environment. In the model plant 

Arabidopsis thaliana, half of the photoassimilates produced by the Calvin–Benson cycle 

during the day are typically exported to the cytosol to supply carbon skeletons for anabolic 

or catabolic processes, whereas the remaining half is retained in the chloroplast for 

transitory starch biosynthesis (Zeeman and ap Rees, 1999). Under normal growth 

conditions, the export of organic carbon is mediated by two different transport 

mechanisms which operate at different times of the diurnal cycle. During the day, 

photoassimilates mainly reach the cytosol via the triose phosphate/phosphate 
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translocator (TPT) (Flügge, 1999) whereas, during the night, β-maltose (the major product 

of starch degradation) and glucose are exported to the cytoplasm via the maltose (MEX1) 

(Nittylä et al., 2004) and glucose (GLT and GT) (Cho et al., 2011; Flügge et al., 2011) 

transporters, respectively.  

β-Amylases are the only enzymes that produce β-maltose, thereby connecting starch 

degradation in chloroplasts with sugar metabolism in the cytoplasm. Several β-amylases 

are encoded by the Arabidopsis genome (Lloyd et al., 2005). BAM3 is a major, catalytically 

active β-amylase that is necessary for nocturnal starch degradation under physiological 

conditions. Conversely, BAM1 is little or not involved in this process (Fulton et al., 2008; 

Kötting et al., 2010). However, in response to drought or salt stress, BAM1 becomes a 

predominant β-amylase of leaves and is required for starch breakdown in mesophyll cells 

(Valerio et al., 2011; Monroe et al., 2014).  

Water stress has severe negative impacts on plant growth and productivity (Cattivelli et 

al., 2008; Rockström and Falkenmark, 2010; Osakabe et al., 2014). A common trait of 

many plants affected by drought or salinity stress is the accumulation of osmoprotectants 

such as proline, glycine betaine, and sugar alcohols (Szabados and Savouré, 2009; Liang et 

al., 2013). Proline accumulation occurs at very high levels when plants experience 

conditions of low water potential. Proline concentration can increase up to 100-fold 

compared with control conditions (Verbruggen and Hermans, 2008; Szabados and 

Savouré, 2009). However, proline not only functions as an osmoprotectant, but it can also 

scavenge reactive oxygen species (ROS) efficiently, thus protecting the cell from oxidative 

damage (Matysik et al., 2002, Bartels and Sunkar, 2005).  

In plants, proline synthesis occurs both in the cytosol and in the chloroplast, whereas 

degradation only occurs in mitochondria. Carbon skeletons for proline biosynthesis are 

provided by primary metabolism through the glutamate pool. Whether starch 

degradation is involved in this process is currently unknown.  

To investigate the possible interplay between transitory starch and proline metabolism 

under drought stress, the response to 150mM mannitol treatments of two single T-DNA 

insertion mutants, bam1 and bam3, and wild-type plants was studied and compared. The 

findings strongly suggest that, in the drought stress response of Arabidopsis, BAM1 and 

not BAM3 is the major player in starch degradation in the light, a metabolic pathway that 
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provides carbon skeletons for the biosynthesis of sucrose and proline to counteract both 

osmotic stress and oxidative damage.  

 

MATERIALS AND METHODS 

 

Plant material and growth conditions 

Wild-type, T-DNAs, and BAM1 promoter::GUS plants of Arabidopsis thaliana (ecotype 

Columbia, Col-0) were hydroponically grown at a constant temperature of 22 °C, under a 

12/12h light/dark cycle with a photosynthetic photon flux density of 110 μmol m−2 s−1, as 

described in Valerio et al. (2011). The GUS line and insertion sites of the T-DNA in bam1 

(SALK_039895) and bam3 (CS92461) mutants had already been analysed (Fulton et al., 

2008; Valerio et al., 2011).  

 

Stress conditions 

To analyse the response of Arabidopsis plants to drought further, previously tested 

conditions (300mM mannitol for up to 8h; Valerio et al., 2011) were changed in order to 

obtain a mild (150mM mannitol) and prolonged (up to 7.5 d) osmotic stress. Mild osmotic 

stress was applied to 28/31-d-old plants (with 3/4 d of stratification time at 4 °C in 

darkness excluded), 1h after switching on the light. Treated plants were transferred to a 

freshly prepared hydroponic medium supplemented with 150mM mannitol. If not 

differently specified, plants were harvested either at the end of the light period (12h light) 

or at the end of the dark period (12h dark), every 12h for a maximum of 7.5d after the 

beginning of the treatment (DAT). Samples were immediately frozen in liquid nitrogen and 

stored at −80 °C for analysis.  

 

GUS staining 

Histochemical GUS staining was performed as described in Valerio et al. (2011). For each 

condition and for each time point, three independent transgenic plants were analysed. 

Control and treated (150mM mannitol) plants were collected every day during the 

experiment, always at the end of the 12h light period. Stained plants were examined by 

bright-field microscopy using a Nikon Eclipse 90-I microscope. The images show 

representative plants and leaves.  
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Determination of water loss 

The loss of water from the leaves was determined as the ratio between the dry weight 

(DW) and the fresh weight (FW), measured on single plants collected after 12h of light 

and 12h of dark, under control or stress conditions, during a 6 d experiment. FW was 

scored immediately after excision and DW was determined after incubation at 80 °C for 

24h. Five independent biological replicates were analysed.  

 

Quantification of starch and soluble sugars 

Quantification of starch and soluble sugars were carried out on whole rosette leaves of 

3–5 plants for each experimental point. Starch was quantified on bleached leaves as 

described in Smith and Zeeman (2006). Quantification of sucrose, glucose, and maltose 

was performed as described in Egli et al. (2010) on freeze-dried supernatants obtained 

after extracting with 80% ethanol for 15min at 80 °C. Three independent biological 

replicas were analysed.  

 

Lipid peroxidation assay 

Oxidative damage was estimated by measuring total lipid peroxidation using the 2-

thiobarbituric acid (TBA) assay, as described in Guidi et al. (1999). Briefly, about 200mg of 

leaves were powdered in liquid nitrogen, before being vigorously mixed with 3 vols of 

0.1% (w/v) trichloroacetic acid (TCA). Samples were centrifuged and 0.5ml of each 

supernatant was transferred into a screw cap tube in the presence of 2.0ml 20% (w/v) 

TCA and 1.5 μl 0.5% (w/v) TBA. Following a 30min incubation at 90 °C, the reaction was 

stopped by placing the tubes in a bath of ice water. Samples were centrifuged and the 

absorbance of the supernatants was monitored at 532nm, subtracting the non-specific 

absorption at 600nm. The amount of MDA–TBA complex was calculated from the 

extinction coefficient 155mM–1 cm–1. Three independent biological replicas were 

analysed.  

 

Proline quantification 

Samples stored at −80 °C were ground in liquid nitrogen and the free proline content was 

measured as described by Bates et al. (1973). Briefly, 1.2ml of 3% 5-sulphosalicylic acid 

was added to 50mg of powdered leaves. Samples were centrifuged and appropriate 
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volumes of supernatant were transferred into clean tubes and brought to a final volume 

of 1ml with water, and then mixed with 1ml of glacial acetic acid and 1ml of 2.5% ninhydrin 

reagent Samples were incubated at 90 °C for 1h, cooled on ice, combined with an equal 

volume of toluene, and mixed vigorously. Following phase partitioning, the absorbance of 

the upper phase was monitored at 520nm. The calibration curve was prepared using 

different proline concentrations as standard. From 3–4 independent biological replicates 

were analysed.  

 

RESULTS 

 

Mild osmotic stress induces BAM1 promoter activity  

To understand the activation of BAM1 in response to mild osmotic stress better, the 

activity of GUS in Arabidopsis plants stably transformed with the BAM1 promoter 

controlling the GUS reporter gene (BAM1promoter::GUS plants) was examined. Adult 

plants were exposed to 150mM mannitol and collected every day for one week.  

As previously reported in Valerio et al. (2011), in the absence of stress, GUS activity of 

BAM1promoter::GUS plants was mainly confined to guard cells (see Supplementary Fig. 

S1) and almost absent from mesophyll cells (Fig. 1, right panel). Under mild osmotic stress, 

a slight increase in the promoter activity of BAM1 had already appeared at the beginning 

of the stress, albeit confined to leaf veins (Fig. 1A, B, left panel). Upon prolonged stress, 

GUS activity spread to mesophyll cells, first in young leaves and then throughout the 

whole rosette (Fig. 1C–E, left panel).  
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Fig. 1. Activity of BAM1promoter::GUS under control conditions and in response to 150mM mannitol 

treatment. Plants were grown under a 12/12h light/dark cycle and osmotic stress was applied 1h after the 

beginning of the light period. Plants were collected at the end of the light period. GUS activity was measured 

at 0.5 DAT (A); 1.5 DAT (B); 3.5 DAT (C); 6.5 DAT (D), and 7.5 DAT (E). Scale bar=1cm. Inset: magnification of 

a single leaf. Scale bar=0.5cm.  

 

Water loss in response to stress 

β-amylase 3 (BAM3) is the major isoform responsible for transitory starch degradation at 

night (Lao et al., 1999; Fulton et al., 2008). To get insights into the role of BAM1 in starch 

degradation in response to osmotic stress, bam3 T-DNA mutant plants were also analysed. 

Dehydration rates of bam1, bam3, and wild-type plants in response to 150mM mannitol 

were determined (see Supplementary Fig. S2). The data obtained did not show statistically 

significant differences among the three genotypes, neither in response to stress nor in 

control conditions (see Supplementary Table S1 at JXB online). The similar decrease in 

water content observed in the three genotypes during the whole experiment, allows a 

comparison between genotypes of data expressed on a FW basis.  
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Starch content at the end of the light period 

To investigate the involvement of BAM3- and BAM1-dependent starch degradation 

pathways in response to drought stress, the starch content was measured in leaves after 

12h light, before and after the mannitol treatment (Fig. 2; see Supplementary Fig. S3).  

 

 

Fig. 2. Starch content in wild-type, bam1, and bam3 plants measured after 12h of light in response to 

drought stress. Twenty-eight/31-d-old hydroponically grown plants were expose to 150mM mannitol 1h 

after switching on the light. Wild-type, bam1, and bam3 plants were collected after 12h of light before and 

after mannitol treatment. Values are the means ±SD (n=3 independent biological replicates).  

 

Consistent with the predominant role of BAM3 in transitory starch degradation (Fulton et 

al., 2008), under control growth conditions bam3 plants showed the well-known starch 

excess (sex) phenotype, characterized by small plants with a high starch content (∼3-fold 

higher compared with wild-type plants) (Fig. 2). Conversely, compared with wild-type 

plants, bam1 mutant plants did not show any significant change in starch concentration 

(Fig. 2; see Supplementary Table S2), again in agreement with the literature (Fulton et al., 

2008).  

In response to osmotic stress, the ratio in starch content between bam3 and wild-type 

samples suddenly decreased from ~3 (in the absence of mannitol) to ~2 (in the presence 

of mannitol), remaining roughly constant throughout the experiment (Fig. 2). On average, 

the amount of starch contained in bam3 plants at the end of the day was reduced by ~50 
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μmol glucose equivalents g–1 FW as a consequence of the stress. Although with different 

timing, an opposite behaviour was observed in bam1 plants. During the first three days of 

the experiment, starch content in bam1 plants remained similar to the wild-type, but 

doubled wild-type levels from the fourth day onwards (Fig. 2). An average increase of ~50 

µmol glucose equivalents g–1 FW was calculated.  

 

Starch content at the end of the night period 

To analyse the involvement of β-amylases on transitory starch turnover in response to 

drought further, the starch concentration was also measured at the end of the night 

period (12h dark), before and after mannitol treatment (Fig. 3). As expected, under 

control condition, wild-type and bam1 plants did not differ in their starch content while 

bam3 plants confirmed the sex phenotype (Fig. 3; see Supplementary Table S3) (Fulton et 

al., 2008).  

 

 

Fig. 3. Starch content in wild-type, bam1, and bam3 plants after 12h of darkness in response to drought 

stress. Twenty-eight/31-d-old hydroponically grown plants were exposed to 150mM mannitol 1h after 

switching on the light. Wild-type, bam1, and bam3 plants were collecte d after 12h of darkness before and 

after mannitol treatment. Values are the means ±SD (n=3 independent biological replicates).  

 

High levels of starch were maintained in bam3 mutants in the first two days of the 

experiment (Fig. 3). Conversely, bam1 plants rapidly responded to 150mM mannitol with 

an increase in starch concentration that, within the first two days of the experiment, made 
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them closer to bam3 than to wild-type plants. Later in the experiment (from 3–6 DAT) no 

significant differences were observed among the three genotypes in response to 150mM 

mannitol (Fig. 3).  

 

Lipid peroxidation 

A common effect of osmotic stress is the accumulation of free oxygen radicals (Aranjuelo 

et al., 2011; Wilhelm and Selmar, 2011) leading to oxidation of unsaturated fatty acids 

and membrane damage (Hernandez et al., 1993; Fadzilla et al., 1997). Lipid peroxidation 

induced by osmotic stress was evaluated as the malondialdehyde (MDA) concentration 

on bam1, bam3, and wild-type plants treated with 150mM mannitol. The exposure to the 

osmotic stress increased the MDA concentration in all genotypes in a time-dependent 

manner (Fig. 4; see Supplementary Table S4). However, only bam1 samples collected at 

4.5 DAT showed a ~2-fold increase in MDA concentration compared with the wild-type, 

suggesting that BAM1 is an essential component of the Arabidopsis response to the 

oxidative damage caused by the osmotic stress.  

 

Fig. 4. Degree of lipid peroxidation in wild-type, bam1, and bam3 plants exposed to osmotic stress. Lipid 

peroxidation was measured using the TBA assay in wild-type, bam1, and bam3 plants before and after the 

150mM mannitol treatment. Plants were collected after 12h light and different lengths of treatment. Values 

are the means ±SD (n=3 independent biological replicates).  
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Proline content 

Proline is considered a compatible osmolyte and its accumulation in response to different 

stresses has been reported in several plant species (Szabados and Savouré, 2009). In order 

to test whether proline accumulation in osmotically stressed Arabidopsis plants might 

depend on the activity of β-amylases, the proline concentration was measured in rosette 

leaves of wild-type, bam1, and bam3 plants subject to 150mM mannitol treatments (Fig. 

5). In the absence of stress, similar proline concentrations (~0.67 μµmol g–1 FW) were 

measured in the three genotypes and no significant differences were observed until 2.5 

DAT (Fig. 5; see Supplementary Table S5). At 3.5 DAT, both bam1 and bam3 mutants 

showed less proline accumulation with respect to the wild-type. However, at later time 

points, only the bam1 mutant showed a limited accumulation of proline, while bam3 

plants recovered the same proline concentration as wild-type plants (Fig. 5).  

Interestingly at 6.5 DAT, the lower proline content of the bam1 mutant with respect to 

the wild-type (and bam3 plants) corresponded to ~37 μmol proline g–1 FW (Fig. 5). 

Considering that the same mutant at the same time point accumulated a surplus of ~48 

μmol glucose equivalents g–1 FW (Fig. 2), it seems reasonable that impaired starch 

degradation was the reason for the failure in proline accumulation.  

 

 

Fig. 5. Proline content in wild-type, bam1, and bam3 plants in response to drought stress. Proline 

concentration was measured in whole rosettes of 28/31-d-old wild-type, bam1, and bam3 plants. Plants 
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were collected after 12h of light before and after 150mM mannitol treatment. Values are the means ±SD 

(n=3–4 independent biological replicates).  

 

Soluble sugars 

Sucrose, maltose, and glucose concentrations were measured in wild-type, bam1, and 

bam3 plants in response to 150mM mannitol both after 12h of light and after 12h of dark 

(Fig. 6; see Supplementary Table S6). Under control conditions, the concentration of 

soluble sugars in all genotypes at the end of the day or at the end of the night, resembled 

the values already reported in the literature (Fulton et al., 2008; Hummel et al., 2010). 

Glucose was higher than sucrose, which was much higher than maltose, and all three 

sugars appeared to be more concentrated at the end of the day than at the end of the 

night.  

 

Fig. 6. Sucrose, glucose, and maltose content in wild-type, bam1, and bam3 plants measured after 12h of 

light and aftert 12h of darkness in response to drought stress. Hydroponically grown Arabidopsis plants 
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were exposed to 150mM mannitol 1h after switching on the light. Whole rosettes of wild-type, bam1, and 

bam3 plants were collected after 12h of light (left panels) and 12h of darkness (right panels) before and 

after 150mM mannitol treatment. Values are the means ±SD (n=3 independent biological replicates).  

 

Similar to what was observed for transitory starch (Fig. 3), during the osmotic stress 

experiment, soluble sugar concentrations measured at the end of the night were 

essentially similar among the genotypes (Fig. 6, right panels), with the only exception 

being maltose in the bam3 mutant at 1 DAT, which was more concentrated than in the 

wild-type (Fulton et al., 2008). By contrast, at the end of the day, bam1 plants showed a 

general decrease in sucrose, glucose, and maltose concentrations with respect to both 

wild-type and bam3 plants (Fig. 6, left panels). By comparison with wild-type plants at 5.5 

DAT, the absence of BAM1 led to a decrease of ~2.8 μmol sucrose g–1 FW, ~5.9 μmol 

glucose g–1 FW, and ~55 nmol of maltose g–1 FW.  

 

DISCUSSION 

 

Plants are sessile organisms with a metabolism that essentially depends on light and 

needs to be continuously adapted to environmental changes. A fundamental aspect of 

this adaptation consists of the circadian cycles of diurnal synthesis and nocturnal 

degradation of transitory starch that allow plants to harmonize with the natural rhythm 

of light availability (Stitt and Zeeman, 2012). Nocturnal degradation of transitory starch 

sustains basal metabolism and the reallocation of organic carbon in the absence of an 

external input of energy. On top of that, under stress conditions, plants need to redirect 

transitory carbon fluxes in order to fuel stress responses, a decision that often implies 

detrimental effects on growth. As far as transitory starch is concerned, its degradation 

and use of the resulting carbon units for stress responses involve a large set of enzymes, 

including β-amylases.  

With the aid of bam3 and bam1 knock-out mutants (Fulton et al., 2008; Valerio et al., 

2011), we have investigated the relative contribution of BAM1 and BAM3 to transitory 

starch degradation in response to mild and prolonged osmotic stress. BAM3 is required 

for nocturnal starch degradation under physiological conditions (Fulton et al., 2008), while 

BAM1 is dispensable for transitory starch degradation in the absence of stress, but is 
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activated by drought stress at the transcriptional level and post-translationally activated 

by reduced thioredoxins (Sparla et al., 2006; Valerio et al., 2011). Under control growth 

conditions, the rosette leaves of bam3 mutants contained high levels of starch during the 

whole day, which were always higher than the wild-type plants. Under osmotic stress, the 

starch levels of bam3 plants suddenly decreased, particularly during the light and became 

closer to wild-type levels. Different from bam3, under control growth conditions, the 

levels of leaf starch in bam1 mutants were similar to the wild-type plants, in agreement 

with the notion that BAM1 is confined to guard cells until plants start to flower (Valerio et 

al., 2011; Prasch et al., 2015). However, in response to osmotic stress, BAM1 also appears 

in mesophyll cells and the starch content in bam1 mutants increased, particularly so at 

the end of the light and after several days of stress. In conclusion, a mild, prolonged 

osmotic stress caused a decrease in daylight starch in plants with no BAM3 and, 

conversely, an increase in daylight starch in plants with no BAM1, suggesting that BAM1 

is involved in daylight starch degradation upon stress. This hypothesis fits with both the 

induction of the BAM1 promoter by the osmotic stress and the redox regulation of BAM1 

that favours its activity in the light (Sparla et al., 2006; Valerio et al., 2011).  

Plants have evolved several different mechanisms to respond to limited water availability 

and proline accumulation has long been reported to be a part of the drought-stress 

response (Szabados and Savouré, 2009). The main pathway of proline biosynthesis derives 

from glutamic acid and it can occur both in the cytosol and the chloroplast. Under stress 

conditions, however, the plastidial pathway of proline biosynthesis may prevail as a result 

of the re-localization of Δ1-pyrroline-5-carboxylate synthetase (P5CS1) into chloroplasts 

(Székely et al., 2008). P5CS1 catalyses the limiting step of proline biosynthesis and its role 

in proline accumulation in water-stressed plants is recognized (Székely et al., 2008). 

Although each of the three genotypes investigated in our study (bam1, bam3, and Col-0) 

accumulated proline under osmotic stress, the proline concentration of bam1 mutants did 

not reach the same levels as those reached by wild-type and bam3 plants. The lack of 

adequate proline accumulation in bam1 mutants correlated with a more severe oxidative 

stress in these plants, as judged by the extent of lipid peroxidation. Moreover, lower 

proline levels in bam1 plants went together with lower concentrations of sucrose, glucose, 

and maltose and, as discussed above, higher levels of starch. Following several days of 

stress, the starch content in bam1 plants at the end of the phototosynthetic period 
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exceeded wild-type levels by about 50 μmol glucose equivalents g–1 FW. To put this value 

into context, proline accumulation in these same plants and under the same conditions 

was lower than in wild-type plants by 37 μmol g–1 FW, while soluble sugars (sucrose and 

glucose) decreased by 12 μmol hexoses g–1 FW. Based on these numbers, the reason why 

bam1 plants had less proline and soluble sugars upon stress may well be that the carbon 

skeletons required to make these osmolytes are stuck into starch granules and, as such, 

are not available. Since BAM1 is suggested to play a role in starch degradation under these 

conditions, it makes sense that its absence has more dramatic effects during the day, 

when BAM1 is redox-activated and P5CS1 is sufficiently concentrated (Hayashi et al., 

2000; Székely et al., 2008) to catalyse the metabolic flux leading to proline.  

Although the whole pathway connecting the degradation of transitory starch with the 

biosynthesis of proline still remains to be discovered, the results presented here strongly 

suggest a link between these two metabolic pathways and suggest a role for BAM1 in this 

context. Our results suggest that a mild osmotic stress stimulates starch turnover in the 

light through the activation of BAM1, both at the transcriptional and post-translational 

level. Indeed, BAM1 activity is strictly redox-regulated and, since it requires thioredoxin f 

to be highly reduced, BAM1 is predicted to be more active under photosynthetic 

conditions (Sparla et al., 2006). Based on correlative observations, we propose that 

maltose derived from BAM1 degradation of starch upon stress sustains the biosynthesis 

of proline (and soluble sugars) thereby alleviating the oxidative stress. Since water 

availability is a major constraint for modern agriculture, the efforts in selecting crops with 

better water use efficiency should take into account this link between starch and proline 

metabolism.  
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SUPPLEMENTARY INFORMATION  
 

 

 

Figure S1: Activity of BAM1promoter::GUS under control conditions and in response to 150 mM mannitol. 

Plants were grown under 12 h light/ 12 h dark cycle and osmotic stress was applied 1 h after the beginning 

of light period. Plants were collected at the end of the light period. GUS activity was measured at 0.5 DAT, 

panel A; 1.5 DAT, panel B; 6.5 DAT, panel C. Scale bar = 100 μm. 
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Figure S2: Loss of water in wild-type, bam1 and bam3 plants exposed to 150 Mm mannitol. Water loss was 

estimated as the percentage of the ratio between dry weight (DW) and fresh weight (FW) of the whole 

rosette of wild-type, bam1 and bam3 plants. Plants were collected at 12 h of light and 12 h of dark under 

control and at increasing time of stress. Values are the means ± SD of five independent biological replicas. 
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Figure S3: Starch content in wild-type, bam1 and bam3 plants qualitatively evaluated with Lugol staining. 

Thirty-d-old plants were collected at the end of the light period (12 h light) under control (left panel) or in 

response to mannitol treatment (right panel). 
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Supplementary Table S1. p-value obtained from Student’s t-tests performed on loss of water, estimated as 

the percentage of the ratio between dry weight and fresh weight of the whole rosette in response to 

drought stress in bam1 and bam3 mutants and compared with wild-type samples (Figure S2). Control 

samples were collected at the end of the light (12 L) and at the end of the dark (12 D) periods. CTR=control; 

DAT=day after treatment. 

 

 

 

Supplementary Table S2. p-value obtained from Student’s t-tests performed on starch concentration 

quantified at 12 h of light in response to drought stress in bam1 and bam3 mutants and compared with 

wild-type samples (Fig. 2). CTR=control; DAT=day after treatment. 
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Supplementary Table S3. p-value obtained from Student’s t-tests performed on starch concentration 

quantified at 12 h of dark in response to drought stress in bam1 and bam3 mutants and compared with 

wild-type samples (Fig. 3). CTR=control; DAT=day after treatment. 

 

 

Supplementary Table S4. p-value obtained from Student’s t-tests performed on degree of lipid peroxidation 

determined at 12 h of light in response to drought stress in bam1 and bam3 mutants and compared with 

wild-type samples (Fig. 4). CTR=control; DAT=day after treatment. 

 

Supplementary Table S5. p-value obtained from Student’s t-tests performed on proline concentration 

quantified at 12 h of light in response to drought stress in bam1 and bam3 mutants and compared with 

wild-type samples (Fig. 5). CTR=control; DAT=day after treatment. 

  



132 
 

 

Supplementary Table S6. p-value obtained from Student’s t-tests performed on sucrose, glucose and 

maltose concentrations quantified at 12 h of light (12 L) and 12 h of dark (12 D) in response to drought stress 

in bam1 and bam3 mutants and compared with wild-type samples (Fig. 6). CTR=control; DAT=day after 

treatment. 
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Arabidopsis starch degradation, are target of glutathionylation 
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Abstract 

Arabidopsis genome encodes for nine β-amylases (BAM1-9) and for three α-amylases 

(AMY1-3), respectively exo- and endo- hydrolases involved in starch degradation. Among 

them only 4 β-amylases (BAM1-4) and one α-amylase (AMY3) are found to be 

chloroplastic (Yu et al., 2005; Zeeman et al., 2010; Glaring et al., 2011). Despite being 

active amylases, plants depleted of AMY3 or BAM1 proteins can degrade starch efficiently 

in standard growth conditions (Yu et al., 2005; Kaplan and Guy, 2005; Kӧtting et al., 2009). 

However, when other starch-degrading enzymes are missing the lack of AMY3 and BAM1 

enhance the starch excess (sex) phenotype, pointing to their involvement in this process 

(Fulton et al., 2008). BAM1 and AMY3 appear to synergistically degrade starch in vitro 

(Seung at al., 2013) and, in vivo, their role in diurnal starch degradation in guard cells has 

been highlighted (Valerio et al., 2011; Prasch et al., 2015; Horrer et al., 2016). In addition,, 

BAM1 is known to be involved in starch degradation in mesophyll cells in response to 

osmotic stress (Valerio et al., 2011; Zanella et al., 2016). Similarly, also the transcriptional 

levels of AMY3 increase during drought stress, suggesting the involvement of both the 

enzymes in the onset to the stress response (Santelia D., personal communication). 

Another behavioral similarity between BAM1 and AMY3 is their thioredoxin-dependent 

redox-regulation. For what we know, BAM1 and AMY3 are the only members of their 

protein family whose activity is inhibited by the formation of a disulfide bridge with a 

midpoint redox potential at pH 7.0 of -302 mV and at pH 7.9 of -329 mV, respectively 

(Sparla et al., 2006; Seung at al., 2013). As a consequence, BAM1 and AMY3 seem to be 

part of a diurnal starch degradation pathway that occurs in specialized cell types, as guard 

cells, or under stress conditions. 
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In the last decade, glutathionylation has emerged as an alternative redox post-

translational modification (PMT) consisting in the formation of a mixed disulfide between 

a protein cysteine residue and a glutathione molecule, occurring prevalently under 

oxidative stress (Zaffagnini et al., 2012b). This reversible modification has been shown to 

have different roles, like the protection of protein thiols from irreversible oxidation, but 

also protein redox regulation and signaling (Zaffagnini et al., 2012b). To analyze the 

susceptibility of Arabidopsis thaliana BAM1 (AtBAM1) and AMY3 (AtAMY3) to 

glutathionylation, both the enzymes have been recombinant expressed, purified and their 

activities have been assayed in presence of hydrogen peroxide (H2O2) with or without 

reduced glutathione (GSH). Both the enzymes were inhibited by the different treatments, 

although the inhibition rates were slower in presence of GSH. Moreover, the addition of 

reduced DTT to oxidized samples fully reverted the enzyme activities only when H2O2 

treatment was performed in presence of GSH, strongly suggesting that both AtBAM1 and 

AtAMY3 were glutathionylated. This hypothesis was confirmed by western blot and mass 

spectrometry analyses. For a better comprehension of the molecular mechanism of 

glutathionylation and to identify target cysteine residues, all the Cys to Ser variants both 

of AtBAM1 and AtAMY3 were incubated with BioGSSG and analysed by western blotting 

using anti-biotin antibodies, without providing an unequivocal result. However, it was 

shown that pre-oxidized AtBAM1 could no more undergo glutathionylation. Thus, 

generation of the disulfide bond in AtBAM1 prevents the formation of mixed disulfide 

with glutathione, probably because of the involvement of the same cysteines residues. 

Assuming so, the opposite mechanism can be hypothesized and glutathionylation might 

interfere with or prevent AtBAM1 switch-off caused by the formation of the intra-

molecular disulfide bond. The same seems not to be true for AtAMY3, since pre-oxidized 

enzyme is still target of glutathionylation.  

Taken together, these data suggest a role of glutathionylation in protecting AtBAM1 and 

AtAMY3 from fast and irreversible oxidation under oxidative stress conditions. 
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INTRODUCTION 

 

Starch is a glucose polymer that accumulates in plastids of higher plants as insoluble and 

crystalline granules. For simplicity, starches can be classified as transitory (or primary) and 

storage (secondary) starch. Despite displaying the same structure and sharing a common 

biosynthetic pathway, transitory starch and storage starch are degraded by a different set 

of enzymes (Smith et al., 2005). As suggested by the name, storage starch is typically found 

in storage organs, such as seeds or tubers, and it is remobilized in response to internal 

stimuli to support specific phases of growth (e.g. germination). In contrast, primary starch 

is transiently stored in chloroplasts of autotrophic tissues and, under normal growth 

conditions, is synthesized during the day and degraded during the following night to 

supply energy for plant metabolism in absence of light. Moreover, primary starch can be 

degraded in the light to cope with abiotic and biotic stress, supplying energy and carbon 

required to meet specific demands of the cells (Valerio et al., 2011; Zanella et al., 2016). 

Primary starch accumulates also in the chloroplasts of specialized cells of the plant, e.g. 

guard cells (Smith et al., 2005; Prasch et al., 2015; Horrer et al., 2015). Through the 

stomatal pore, guard cells exchange gases (i.e. CO2 and H2O) with the external 

environment. In these cells, starch metabolism is reverted, following an opposite rhythm 

compared to mesophyll cells. Starch is mobilized in the light period to produce malate and 

sucrose that contribute to increase guard cell osmolality, turgor and stomatal opening 

(Vavasseur and Raghavendra, 2005; Lawson et al., 2014). 

In higher plants, chloroplasts are the site of oxygenic photosynthesis. During this process, 

electrons ripped from water are donated to ferredoxin (Fdx), which function as a mobile 

electron carrier that distributes electrons to indirectly produce NADPH or to supply other 

specific processes located in the stroma, such as reactions involved in chloroplast redox 

regulation (Schürmann and Buchanan, 2008). In this case, electrons are transferred from 

Fdx to thioredoxyns (Trxs) via Fdx-Trx-reductase (FTR) (Schürmann and Buchanan, 2008). 

Moreover, oxygenic photosynthesis release oxygen. Therefore, in chloroplasts, due to the 

high-energy exposure and to the inevitable leakage of electrons from the electron-

transfer reactions, O2 can undergo a stepwise reduction that lead to production of highly 

reactive oxygen species (ROS) (Foyer and Harbinson, 1994; Foyer, 1997). ROS include free 
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radicals such as superoxide anion (O2
•−), hydroxyl radical (•OH), as well as non-radical 

molecules like hydrogen peroxide (H2O2), singlet oxygen (1O2), and so forth (Sharma et al., 

2012). While at low concentrations ROS play important roles in cell signalling (i.e. H2O2 is 

an essential signal that mediates ABA-induced stomatal closure), at high concentrations 

ROS are extremely harmful molecules that tend to uncontrollably oxidize different types 

of cellular components (Wang and Song, 2008; Sharma et al., 2012). When the level of 

ROS exceeds the defence mechanisms, a cell is said to be in a state of “oxidative stress”. 

The balance by which ROS will act as damaging or signalling molecule is subtle and 

depends on the rate of their production and scavenging. Although ROS are unavoidable 

by-products of photosynthesis, many environmental stresses (drought, salinity, chilling, 

metal toxicity, UV-B radiation, pathogens attack) enhance generation of ROS in plants (for 

reviews see: Cruz de Carvalho, 2008; Sharma et al, 2012; Suzuki et al., 2012). Therefore, 

plants have developed sets of enzymatic and non-enzymatic antioxidative systems to 

detoxify excess ROS, to prevent and repair oxidative damage and maintain redox 

homeostasis (Shigeoka et al., 2002; Mittler et al., 2004; Foyer and Shigeoka, 2011). 

Due to their physicochemical properties, cysteine residues may perceive alterations in 

cellular oxidant levels as well as changes in the redox environment. The oxidative 

modifications of selected protein cysteines, affecting single or double thiol groups, can be 

used in chloroplast metabolic regulation (Geigenberger et al., 2005; Glaring et al., 2012; 

Geigenberger and Fernie, 2014; Santelia et al., 2015). These redox sensitive cysteines are 

often characterized by lower pKa values (Roos et al., 2013) compared to the pKa values of 

insensitive ones (typically ranging between 8–9), which result in their deprotonation 

under physiological pH conditions, generating thiolate anions (-S-) that exhibit much 

higher reactivity than their protonated thiol (-SH) counterparts (Winterbourn and 

Hampton, 2008) (Fig. 1). The reactivity of the thiolate anions also depends on the local 

protein environment, and currently there is no accurate way to predict their reactivity 

(Randall et al., 2013). In the presence of oxidants, thiolate anions rapidly form sulfenic 

acids (-SOH), which are important intermediates in the thiol oxidation process 

(Kettenhofen and Wood, 2010; Lo Conte and Carroll, 2013). Sulfenic acids generally 

rapidly react with nearby thiol groups (Poole et al., 2004) to form intra- or intermolecular 

disulfide bonds (-SS-), or with non-protein thiols such as glutathione (GSH or GSSG) to 

form mixed disulfide bonds (-SSG) (see below) (Fig. 1). Further oxidation of sulfenic acid 
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leads to sulfinic acid (-SO2H) and sulfonic acid (-SO3H) formation, which are typically 

irreversible oxidation processes (Fig. 1) (Santelia et al., 2015). Most oxidative thiol 

modifications are reduced by thioredoxins (Trxs) (Berndt et al., 2007; Lu and Holmgren, 

2014), which use direct thiol-disulfide reactions to reduce back disulfide bonds (Fig.1), 

while glutaredoxins (GRXs) restore enyme activity removing single thiol modification, such 

as S-glutathionylation (Meyer et al., 2012). 

 

 

Figure 1 - From Santelia et al. (2015), schematic overview of major oxidative thiol modifications in redox 

regulated enzymes of chloroplast stroma. Cysteines by low pKa values, namely “reactive cysteines”, at 

physiological pH are prevalently found in the highly reactive thiolate anion form (–S-; yellow oval) rather 

than in their thiol form (–SH). The thiolate anion leads either to the formation of a disulfide bond (S–S; violet 

oval) or in presence of hydrogen peroxide (H2O2), to the formation of sulfenic acid (R–SOH; orange oval). 

The disulfide bond, can be indirectly reduced back by light, through the ferredoxin/thioredoxin system 

(pathway depicted within the yellow box). Alternatively, in the presence of hydrogen peroxide (H2O2) 

sulfenic acid can be further oxidised to to sulfinic (R–SO2H; grey oval) and sulfonic acids (R–SO3H; black oval), 

two hyperoxidized forms that irreversibly damage the enzymes (pathway depicted within the grey box). 

However, in presence of reduced glutathione (GSH), sulfenic acid can also form a mixed disulfide with 

glutathione (S-glut; pink oval), a modification that can be removed by glutaredoxin (Grx), restoring the 
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enzyme activity (pathway depicted within the pink box). Abbreviations: PSI, photosystem I (green square); 

Fdox, oxidized ferredoxin (red circle); Fdrd, reduced ferredoxin (red circle); FTR, ferredoxin:thioredoxin 

reductase (green oval); Trxrd, reduced thioredoxin (blue oval); Trxox, oxidized thioredoxin (blue oval).  

 

Redox control based on thiol-reactivity of the Calvin-Benson cycle enzymes is well 

characterized, and provide an excellent link between the two phases of the 

photosynthesis, the light and the carbon reactions (Schürmann and Buchanan, 2008). In 

most species, including Arabidopsis, about half of the photoassimylates produced during 

the day by photosynthesis are transiently stored in chloroplast as primary starch (Zeeman 

and ap Rees, 1999). The major steps in primary starch metabolism has been elucidated 

and the key genes/proteins identified (Zeeman et al., 2010) (Fig.2).  

 

Figure 2 - Schematic representation of Arabidopsis transitory starch synthesis and degradation pathways 

(Santelia et al., 2015). During the day, photoassimilates are exported to the cytosol as triose phosphates 

(TP), via the triose-phosphate transporter (TPT), to sustain sucrose biosynthesis, while the remaining fixed 

carbon is converted into transitory starch. The first irreversible step of starch biosynthesis is the formation 

of ADP-glucose (ADPGlc) through the bond of an ATP molecule to glucose-1-phosphate (G1P), with the 

concomitant release of inorganic pyrophosphate (PPi), hydrolyzed to inorganic phosphate (Pi). G1P is 

produced by phosphoglucomutase (PGM) from glucose-6-phosphate (G6P), which in turn is the product of 

fructose-6-phosphate (F6P) transformation mediated by phosphoglucose isomerase (PGI). Granule-bound 

starch synthase (GBSS), starch synthases (SS), branching enzymes (BE) and debranching enzymes (DBE) are 

all involved in the correct formation of highly compacted starch granules. During the following night, starch 
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is degraded. Glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) phosphorylate 

external layers of the starch granule (phosphate is represented by yellow circles), making starch accessible 

to hydrolytic enzymes. Phosphate   from starch and glucans oligosaccharides is subsequently removed by 

phosphoglucan phosphatases starch excess 4 (SEX4) and Like SEX4 isoform 2 (LSF2). These phosphorylation 

and dephosphorylation events are necessary for starch remobilization. The hydrolytic action of β-amylases 

(BAM3 and BAM1) on linear polyglucans, shorten the chains releasing β-maltose units that are exported to 

the cytosol via maltose transporter (MEX). Alfa-Amylase 3 (AMY3) specifically hydrolyzes α-1,4 internal 

glicoside linkages in starch. The two DBE isoamylase 3 (ISA3) and limit dextrinase 1 (LDA1) take part in starch 

degradation by removing the branch points which otherwise would limit the activity of β-amylases. The 

disproportionating enzyme (DPE1) releases glucose that can be transported to cytoplasm via glucose 

transporter (GLT). Enzymes target of redox modifications are highlighted in bold.  

 

Moreover, it has been shown that primary starch synthesis and degradation are tightly 

and reciprocally coordinated and correlated with other metabolic pathways of the central 

metabolism, such that early depletion of starch at dusk or abnormal accumulation of 

starch during the day strongly affect metabolism and growth (Gibon et al., 2004; Gibon et 

al., 2009; Graf et al., 2010; Scialdone et al., 2013; Kölling et al., 2015). Indeed, starch 

turnover and carbon allocation for plant growth are dependent of both light-dark cycles 

and the biological clock (Stitt and Zeeman, 2012).   

Recently, redox regulation of enzymes involved in the primary starch metabolism has 

begun to be investigated and the activity of many of them have been demonstrated to be 

affected by reducing or oxidizing conditions, indicating that they may be regulated by the 

redox potential of the plastid stroma. Much research has focused on the control of 

AGPase, the first enzyme on the committed pathway of starch synthesis. AGPase is rapidly 

activated upon illumination by reduction of an intermolecular disulfide bond between the 

Cys residues joining the two small subunits of this heterotetrameric enzyme (Hendriks et 

al., 2003; Thormӓhlen et al., 2013). In addition, redox activation of AGPase is also 

promoted by sugars, regardless of light (Hendriks et al., 2003; Kolbe et al., 2005; 

Thormӓhlen et al., 2013). Reductive activation of AGPase in non-photosynthetic tissues or 

in nocturnal leaves requires alternative systems of electron transfer linked to NADPH 

generated from sugars, rather than to photoreduced Fdx. This can be accomplished by the 

plastid NADPH-dependent thioredoxin reductase (NTRC) (Serrato et al., 2004; Michalska 

et al., 2009). This is a bimodular protein containing both a NADPH dependent thioredoxin 
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reductase (NTR) and a Trx domain on a single polypeptide (Serrato et al., 2004; Pascual et 

al., 2011). Thus, the role of redox regulation spread beyond the mere adjustment of 

metabolic pathways in response to light/dark cycle. In addition to AGPase, reductive 

activation by thiol/disulfide modulation has also been shown, by means of comprehensive 

in vitro studies, for other enzymes involved in the pathway of starch synthesis 

downstream of AGPase, such as SS1, SS3, SBE2, ISA1, ISA2 (Glaring et al., 2012). This 

enables redox regulation mediated by Trxs to coordinate the supply and the use of ADPGlc 

for starch synthesis, linking external factors such as light and sucrose to the activation of 

the whole pathway.  

There are also evidences of redox regulation for starch degrading enzymes. In Arabidopsis, 

leaf starch breakdown begins with a primary event of phosphorylation followed by a 

subsequent dephosphorylation of the starch granule (reviewed by Pérez and Bertoft, 

2010; Silver et al., 2014). Three enzymes involved in this starch phosphate metabolism, 

the (phospho)glucan, water dikinases (GWD and PWD) and the phosphoglucan 

phosphatase SEX4, contain redox sensitive cysteines. However, only GWD and SEX4 seem 

to be affected by the redox potential in vitro, being activated under reducing conditions 

(Mikkelsen et al., 2005; Sokolov et al., 2006; Silver et al., 2014). Given that starch 

degradation was shown to occur during the night and that the chloroplast stroma is 

generally considered to be a more reducing environment during the day (i.e. when  

photosynthetic process is active), such regulation seems counter-intuitive. However, the 

midpoint redox potential of GWD is very high (Em, 7.9 of -310 for GWD of Solanum 

tuberosum), making a strict control of its enzymatic activity by changes in redox potential 

unlikely (Mikkelsen et al., 2005). Moreover, redox regulation of GWD on nocturnal starch 

degradation seems not to play an important role in vivo (Skeffington et al., 2014). On the 

contrary, GWD appears also to be implicated in starch synthesis during the day, and in 

agreement with that, it seems that starch phosphorylation is greater in plants grown 

under continuous light, rather than in a light-dark cycle (Hejazi et al., 2014). SEX4, as other 

members of the protein tyrosine phosphatase (PTP) superfamily, has a conserved catalytic 

cysteine with a very low pKa value (Sokolov et al., 2006; Silver et al., 2014). Then, a 

disulfide bridge, acting as a redox dependent switch between the catalytic cysteine 

(residue 198) and the nearby cysteine (residue 130), is formed (Silver et al., 2014). SEX4 

seems to be more active in the light, given that Trxs can reactivate the oxidized form of 
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the enzyme in vitro, again contrasting with the observed starch excess (sex) phenotype of 

the sex4 mutants (Silver et al., 2013). Given that starch phosphorylation seems to occur 

also during the day, SEX4 may function in light conditions to reduce the excess of bound 

phosphate promoting the elongation of glucan chains (Ritte et al., 2004; Hejazi et al., 

2014; Santelia et al., 2015). 

Also isoamylase 3 (ISA3), limit dextrinase (LDA) and debranching enzymes (DBEs), all 

involved in starch degradation through the removal of branched points from glucan 

polymers, are redox sensitive (Schindler et al., 2001; Delatte et al., 2006; Repellin et al., 

2008; Glaring et al., 2012). LDA is activated upon reduction by thiol compounds such as 

dithiothreitol and GSH, but a specific activation mediated by Trxs has not been 

documented (Schindler et al., 2001). Moreover, spinach LDA1 has an acidic pH optimum 

and no activity above pH 7. GSH mediated activation of LDA1 broadens the pH activity 

curve towards less acidic pH values, but LDA1 still seems more prone to function in 

chloroplast in the dark than in the light (Schindler et al., 2001). Given that GSH 

concentration does not change in function of the light/dark conditions, LDA activity in vivo 

is probably mainly regulated by pH. The following step of starch degradation requires the 

action of amylases, enzymes able to cleave α-1,4 glucose bonds of starch (reviewed by 

Zeeman et al., 2010). Arabidopsis thaliana genome encodes for 9 β-amylases (BAM1-9) 

and 3 α-amylases (AMY1-3) (Zeeman et al., 2010). Only 4 of the 9 β-amylases (BAM1-4) 

and one α-amylase (AMY3) have been found to be chloroplastic proteins (Yu et al., 2005; 

Sparla et al., 2006; Fulton et al., 2008; Glaring et al., 2011). β-amylases are exo-acting 

enzymes able to hydrolyze α-1,4 bonds and are responsible for the release of maltose 

units from the non-reducing end of polyglucans, like starch, in the chloroplast stroma. 

Conversely, α-amylases are endo-acting enzymes that hydrolyses α-1,4 linkages in starch 

to produce small linear and branched soluble glucans.  

In current starch degradation model, BAM3 plays the major role in transitory starch 

degradation at night (Lao et al., 1999; Fulton et al., 2008), whereas BAM1 was shown to 

be involved in diurnal starch degradation in mesophyll cells under osmotic stress 

conditions (Valerio et al., 2011; Prasch et al., 2015; Zanella et al., 2016) and was found to 

be essential, together with AMY3, for diurnal starch breakdown in guard cells, to sustain 

stomatal opening (Valerio et al., 2011; Prasch et al., 2015; Horrer et al., 2016). 

Consistently, inactive BAM1 bears a disulfide bridge (Em,7.0 of -302 mV), presumably 
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between cysteine residues 32 and 470, which is rapidly reduced by Trxs in vitro (Sparla et 

al., 2006). No experimental evidence supports redox regulation of BAM3 activity. 

However, modelling of BAM3 protein does not exclude the possibility of disulfide bridges 

formation (Glaring et al., 2012). In addition to the redox control, BAM1 and BAM3 display 

other different biochemical properties (Monroe et al., 2014). While BAM3 has an acidic 

pH optimum and a preference for lower temperatures, favouring its activity in nighttime 

starch degradation, BAM1 is more active at higher pH and temperature values, justifying 

its predominant role in daytime stress responses (Monroe et al., 2014). Similar to BAM1, 

also AMY3 is redox regulated via a disulfide bridge between cysteine residues 499 and 587 

with a midpoint redox potential at pH 7.9 of -329 mV, and the inactive oxidized form of 

the enzyme can be reactivated by reduced Trx (Seung et al., 2013). The broad pH optimum 

of AMY3 (centred at pH 7.5) and the Trx-mediated regulation suggest that its activity may 

be promoted during the day, similarly to BAM1 (Seung et al., 2013). Although amy3 

mutants have no sex phenotype, the combined loss of AMY3 together with other enzymes 

involved in starch degradation results in a more severe sex phenotype (Kӧtting et al., 

2005; Streb et al., 2012). Moreover, amy3 mutants synthesize the same starch amount 

than wild-type (Yu et al., 2005). Thus, is difficult that the activity of AMY3 can fit in starch 

biosynthetic pathway. In addition, it was demonstrated that AMY3 works synergistically 

with BAM1 in vitro to efficiently degrade starch and that AMY3 expression, like BAM1, is 

increased during stress (Seung et al., 2013). While cysteine 587 is conserved among α-

amylases, cysteine 499 is specific for AMY3 and also cysteine 32 and 499 of BAM1 are not 

conserved in BAM3 or in other β-amylases (Sparla et al., 2006; Seung et al., 2013), 

suggesting that redox sensitivity is not a common feature of endo or exo-amylases, but 

rather a specific additional regulatory trait required in starch metabolism in different 

conditions, tissues or species.  

Glutathione (γ-l-glutamyl-l-cysteinylglycine) is a small tripeptide constituting the major 

thiol-based redox buffer of plant cells. In the cytosol and most organelles, glutathione 

concentration reaches the order of millimolar (Foyer and Noctor, 2005; Rouhier et al., 

2008; Krueger et al., 2009; Queval et al., 2011). In the stroma of chloroplasts, under non-

stress conditions, glutathione is found prevalently in its reduced form (GSH), because the 

levels of the oxidized form (GSSG) are kept to a minimum by NADPH-dependent 

glutathione reductase (Foyer and Noctor, 2011). GSH is involved in detoxification of ROS 
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through the ascorbate–glutathione cycle (Asada, 2006). In addition, glutathione can 

reversibly form a mixed disulfide with reactive and accessible protein cysteines. This post-

translational modification, named protein glutathionylation, has been extensively studied 

in mammalian cells (Mieyal et al., 2008; Shelton and Mieyal, 2008; Dalle-Donne et al., 

2009; Xiong et al., 2011) and is emerging as an important additional mechanism of redox 

regulation in plants. Glutathionylation is generally promoted by ROS (Zaffagnini et al., 

2012b). Indeed, although glutathionylation in vitro can be obtained via direct reaction 

with GSSG, the major mechanism of protein glutathionylation in vivo is based on a primary 

oxidation of protein thiols to sulfenic acids (–SOH) caused by hydrogen peroxide, followed 

by the formation of a mixed disulfide (–SSG) with reduced glutathione (GSH) (Zaffagnini 

et al., 2012b). Thus, glutathionylation may prevent irreversible over-oxidation of cysteine 

residues to sulfinic (–SO2H) and sulfonic forms (–SO3H). While glutathionylation occurs 

through a non-enzymatic mechanism in vivo, the regeneration of reduced thiols (namely 

deglutathionylation) also depends on GSH but requires the involvement of small 

oxidoreductases belonging to the thioredoxin superfamily and known as glutaredoxins 

(GRXs) (Rouhier et al., 2008; Zaffagnini et al., 2012b). Besides protection of protein thiols 

against over-oxidation, gluathionylation is involved in the regeneration mechanisms of 

specific antioxidant enzymes such as peroxiredoxins and methionine sulfoxide reductases 

(Zaffagnini et al., 2012b) and in most cases gluathionylation has a modulatory function on 

the activity of target proteins (Zaffagnini et al., 2012b). From several proteomic analyses, 

many chloroplastic proteins involved in carbon assimilation pathway seem to undergo 

glutathionylation under artificially imposed oxidative stress conditions (Ito et al., 2003; 

Dixon et al., 2005; Zaffagnini et al., 2012a; Michelet et al., 2008; Gao et al., 2009a) 

suggesting a global regulatory role of this modification. 

Given that AMY3 and BAM1 are the only redox regulated amylases in Arabidopsis and that 

they seem to work synergistically in daytime transitory starch breakdown in guard cells or 

during stress responses, they might be part of an alternative starch degradation pathway 

occurring in specialized cells and/or under stress conditions. Moreover, it seems 

reasonable to hypothesize that they may undergo alternative redox post-translational 

modification or protective mechanism, such as glutathionylation, to modulate their 

activity. The purpose of the present work was thus to investigate the behaviour of 

Arabidopsis thaliana BAM1 (AtBAM1) and AMY3 (AtAMY3) enzymes under oxidative 
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conditions in order to assess the relationships between oxidants, gluathionylation and 

enzyme activities. 

 

EXPERIMENTAL PROCEDURES 

 

In silico analysis of α- and β-amylases 

The amino acid sequences of Arabidopsis thaliana β-amylase 1 (At3g23920; AtBAM1), 

Arabidopsis thaliana β-amylase 3 (At4g17090; AtBAM3) and sweet potato (Ipomoea 

batata) β-amylase (IbBMY1) were aligned with Clustal Omega (Sievers et al., 2011). 

Similarly, primary sequences of Arabidopsis thaliana α-amylase 3 (At1g69830; AtAMY3), 

Arabidopsis thaliana α-amylase 1 (At4g25000; AtAMY1) and barley (Hordeum vulgare) α-

amylase type A isozyme (HvAMY1) were compared by alignment with Clustal Omega 

(Sievers et al., 2011). The presence of signal peptides and potential cleavage sites was 

predicted by ChloroP (Emanuelsson et al., 1999) and SignalP (Petersen et al., 2011). The 

three dimensional model of AtBAM1 was made using Swiss-Model workspace 

(http://swissmodel.expasy.org/workspace) based on the known structure of barley 

(Hordeum vulgare) β-amylase (PDB code 1B1Y; Mikami et al., 1999). The structure was 

generated with the Swiss-PDB viewer software. 

 

Cloning, expression, and purification of AtBAM1 and AtAMY3 proteins 

Two different constructs coding for the mature form of AtBAM1 were used. One construct 

was made into the pET28a(+) (Novagen) expression vector putting in frame the cDNA for 

AtBAM1 with an His-Tag and a thrombine cleavage site at the 5’ end of the AtBAM1 coding 

sequence, as described in Sparla et al. 2006. The second construct was kindly provided by 

Dr. Diana Santelia (University of Zurich) and was made into the pET21a(+) (Novagen) 

expression vector. In this second construct the thrombine cleavage site followed by a His-

Tag was put in frame at the 3’ end of the cDNA for AtBAM1. AtBAM1 was expressed and 

purified as described in Sparla et al. (2006). AtAMY3 cloning, expression and purification 

were performed as previously described by Seung et al., 2013. Point mutations in the 

AtBAM1 and AtAMY3 genes were generated according to Sparla et al. (2006) and Seung 

et al. (2013). Commercial IbBMY1 protein was purchased by Sigma-Aldrich. 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1489908/#bib14
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Enzyme activity assays and oxidative treatments 

Redox modulation of wild-type proteins and mutated forms of AtBAM1 and AtAMY3 was 

assayed measuring the enzyme activities after 1 h incubation at 25°C of pure enzymes in 

100 mM Tricine-NaOH, pH 7.9 in absence (control) or in presence (treated samples) of 

different oxidizing agents such as 0.1 mM and 0.5 mM H2O2; 25 μM CuCl2; 20 mM oxidized 

DTT; 1 mM GSSG and 0.5 mM H2O2 plus 2.5 mM GSH. In order to test the reversibility of 

the oxidative treatments, treated samples were incubated for 30 min at 25 °C with 80mM 

reduced DTT. After treatments, the enzyme activities were measured with the artificial 

substrates p-nitrophenyl maltopentaoside (PNPG3) and p-nitrophenyl maltoheptaoside 

(BPNPG7) for β- and α-amylase activities, respectively, diluting the samples and following 

the manufacturer instructions (Megazyme, Ireland). 

The kinetics of inactivation of AtBAM1 and AtAMY3 were performed incubating at 25°C 

the pure recombinant enzymes in 100mM Tricine-NaOH, pH 7.9 in absence (control) or in 

presence (treated samples) of 0.5 mM H2O2 and 0.5 mM H2O2 plus 2.5 mM GSH. At 

different time points, aliquots of incubated samples were diluted and their activities were 

measured as described above.  

 

Biotinylation of GSSG 

Biotinylated oxidized glutathione (BioGSSG) was prepared mixing under mild alkaline 

conditions (50 mM KPi buffer, pH 7.2), the water-soluble biotinylation reagent, EZ-Link 

Sulfo-NHS-Biotin (Thermo Fisher Scientific), with oxidized glutathione. Specifically, 50 µl 

of 48 mM EZ-Link Sulfo-NHS-Biotin were added to 50 μl of 32 mM GSSG. The mixture was 

incubated 1 h at room temperature. After incubation, any remaining biotinylation reagent 

was quenched by the addition of 35 μl of 0.6 M NH4HCO3 buffer.  

 

Biotinylated GSSG assay 

Reduced and oxidized AtBAM1 was obtained incubating pure enzyme in presence of 80 

mM reduced or oxidized DTT for 16-18h at 4° C. Oxidized AtAMY3 was obtained incubating 

the enzyme in presence of 40 mM oxidized DTT for 16-18h at 4° C. Following incubation, 

DTTs were removed by NAP-5 columns (GE-Healthcare) pre-equilibrated in 100 mM 

Tricine-NaOH, pH 7.9. Reduced and oxidized forms of AtBAM1 and AtAMY3, were 

incubated in the presence of 2 mM BioGSSG at 25°C. After 1 h incubation, half of the 
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BioGSSG-treated sample was treated with 80 mM reduced DTT for 30 min to assess the 

reversibility of the reaction, while the second half was transferred into a tube containing 

SDS-loading buffer 1X without reducing agent and in presence of 100 mM iodoacetamide 

(IAM) and 20 mM n-ethilmaleimide (NEM). Control samples were incubated with 100 mM 

IAM and 20 mM NEM for 30 min in the dark at 25°C before of a second incubation at 25°C 

for 1 h in the presence of 2 mM BioGSSG. After incubation, protein samples were further 

divided and loaded on two denaturating non-reducing SDS-PAGE (12,5% poly-acrylamide) 

gels. One gel was analysed by Coomassie staining while the second gel was transferred to 

a nitrocellulose membrane and analysed by Western blot using monoclonal anti-biotin 

antibodies diluted 1:3800. Secondary antibodies diluted 1:2000 and peroxidase-

conjugated were used for the detection by enhanced chemiluminescence (Durrant, 1990) 

 

ESI-ToF mass spectrometry  

Reduced AtBAM1 and AtAMY3 were incubated for 1 h at 25 °C in the presence of 1 mM 

GSSG, and desalted with NAP-5 columns in 100 mM Tricine-NaOH pH 7.9, before being 

analysed by ESI-ToF mass spectrometry (MS) at the Functional Genomics Center Zürich. In 

order to test the reversibility of the treatment, GSSG-treated samples were desalted in 

100 mM Tricine-NaOH pH 7.9 and incubated with 10 mM reduced DTT for additional 2 h 

at 25 °C. After reduction, samples were desalted with NAP-5 columns and then analysed 

by ESI-ToF MS at the Functional Genomics Center Zürich.  

 

Determination of cysteines pka of AtBAM1 and AtAMY3 

Iodoacetamide (IAM) can form covalent adducts with sulfhydryl groups by nucleophilic 

substitution. The reaction is pH-dependent and specific for thiols. Since thiols react with 

IAM in their unprotonated form (-S-), this reagent is most frequently used to identify the 

cysteines pKa, also referred to as “reactive cysteines” (Paulsen and Carroll, 2013). 

Typically, the activity of the protein is inhibited when IAM reacts with catalytic residues.  

The pH-dependence of the inactivation of AtBAM1 and AtAMY3 by IAM was carried out 

as described in Bedhomme et al. (2012). Briefly, the recombinant proteins, respectively in 

10 mM MES (pH 6.5) or in 10 mM Tricine-NaOH (pH 7.9) were incubated with or without 

375 µM IAM (corresponding to a 10-fold excess of akylating reagent over the –SH groups) 

for 20 min in different buffers with a pH range from 4 to 10. After incubation, activities 
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were determined as described above (see Section “Enzyme activity assays and oxidative 

treatments”). The residual activity expressed as a percentage of maximal activity was 

plotted against pH, and the pKa value was calculated by fitting the experimental data to a 

derivation of Henderson–Hasselbalch equation (Bedhomme et al., 2012). 

 

RESULTS 

 

Sequence analysis of Arabidopsis thaliana BAM1 

Multiple sequence alignments indicate that Arabidopsis thaliana BAM1 (AtBAM1) shares 

the 55% of identity with Arabidopsis BAM3 (AtBAM3), the 47% with sweet potato BMY1 

(IbBMY1), the 48,2% with barley (Hordeum vulgare) BMY1 (HvBMY1) and 26,5% of identity 

with Bacillus cereus β-amylase (BcSpoII), in agreement with phylogenetic analysis 

demonstrating that AtBAM1 and AtBAM3 fall in the same β-amylase subfamily, but 

different from that of of the other proteins (Fulton et al., 2008). Arabidopsis BAM1 and 

BAM3 localize in the chloroplast stroma (Sparla et al. 2006; Lao et al., 1999), while IbBMY1 

account for about 5% of the total soluble protein of tuberous roots of sweet potato 

(Nakamura et al., 1991) and does not show transit peptide for plastid localization, rather 

contains a putative signal peptide for secretory pathway, as well as BcSpoII (Fig. 3). 

Reactive cysteine residues are particularly important because of their ability to sense and 

transduce changes in redox status caused by the presence of oxidised thiols and by ROS 

production. AtBAM1 possesses eight cysteine residues, while AtBAM3, IbBMY1, HvBMY1 

and BcSpoII have respectively seven, six, five and three cysteine residues in the mature 

peptide. Only three AtBAM1 cysteine residues (Cys148, 261 and 399) are present also in 

the other proteins (except than Cys261 that is not conserved in BcSpoII) and a fourth one 

(Cys413) is conserved only in AtBAM3 (Fig. 3). 

Differently from many other β-amylases characterized by a monomeric structure, IbBMY1 

was found to be a tetramer, however its tetrameric structure was not relevant for the 

catalysis but rather has a stabilization effect on the overall structure of the enzyme (Balls 

et al., 1984). The structures of IbBMY1, HvBMY1 and BcSpoII have been solved by X-ray 

crystallography (Balls et al., 1948; Cheong et al., 1995; Mikami et al. 1999a; Mikami et al. 

1999b; Oyama et al., 2003) allowing the identification of the substrate binding pocket and 

of the active sites. A reactive cysteine, in its thiolate anion form, can form a disulfide bond 
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with another resolving cysteine, if proximal, or with glutathione, depending on its 

accessibility (Klomsiri et al., 2011). 

Since the crystal structure of AtBAM1 is not available, to determine cysteines accessibility 

and proximity, a homology model based on the deposited barley β-amylase structure 

(Mikami et al., 1999b) was built, since the two enzymes share a greater identity based on 

the primary sequence (Supplementary information, Fig. S1). The N-terminal domain of 

AtBAM1 containing Cys32 is not conserved, but Cys470 seems situated in a flexible C-

terminal loop. Nevertheless, Cys506 seems to be located at the very end of a C-terminal 

loop, and seems to be more accessible and exposed to the solvent than Cys470, making 

Cys506 an alternative candidate for disulfide bond formation. None of these cysteine 

residues (Cys32, 470, 506) of AtBAM1 are conserved in AtBAM3 or IbBMY1.  
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Figure 3 - Multiple alignment of precursors of Arabidopsis thaliana BAM1 (At3g23920, AtBAM1), Arabidopsis 

thaliana BAM3 (At4g17090, AtBAM£), Ipomoea batatas BMY1 (IbBMY1), Hordeum vulgare BMY1 (HvBMY1) 

and Bacillus cereus β-amylase (BcSpoII). Transit peptides of AtBAM1 and AtBAM3 as predicted by ChloroP 

(Emanuelsson et al., 1999), signal peptide of IbBMY1 as predicted by SignalP (Petersen et al., 2011) and 

signal peptide of BcSpoII (Nanmori et al., 1993) are underlined and italics on top of the figure. The cysteines 

are on black field. Catalytic (indicated by an arrow, ▼) and substrate binding conserved amino acids are 

highlighted in grey. The size of the proteins is given in amino acids and numeration for AtBAM1, AtBAM3 

and BcSpoII starts from the first predicted residue of mature proteins. Only residues of AtBAM1 are 

numbered above the alignment. Identical (*), conserved (:) and semiconserved (.) residues are indicated 

below the alignment.  

 

The sensitivity to oxidizing conditions is not a common feature of all β-amylases 

Given that we were not able to obtain recombinant AtBAM3, the redox behaviour of 

AtBAM1 was compared to that of the commercial enzyme IbBMY1. Despite their high 
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amino acidic identity (47%), the effects of the tested oxidizing conditions were completely 

different. Contrary to AtBAM1, the activity of IbBMY1 was totally unaffected by incubation 

with 20 mM oxidized DTT, suggesting the absence of a regulatory disulfide bridge in the 

sweet potato enzyme (Fig. 4). To further investigate the sensibility of the two enzymes to 

oxidative conditions, both AtBAM1 and IbBMY1 were incubated in presence of 0.5 mM 

H2O2 and 25 µM CuCl2, which are respectively a physiologically relevant molecule and 

powerful oxidant. As reported in Fig. 4, IbBMY1 activity was not inhibited by oxidative 

treatments, while the same treatments strongly inhibited AtBAM1 activity. Moreover, 

AtBAM1 activity was inhibited in a time and dose dependent manner by H2O2 

(Supplementary information, Fig. S3). Interestingly, both H2O2- and CuCl2-dependent 

inhibition were fully reverted by reduced DTT, suggesting the transition of the thiol groups 

belonging to catalytically or regulative cysteine residues to the sulfenic form (-SOH), 

instead of the transition to sulfinic (-SO2H) or sulfonic forms (-SO3H), which are known as 

irreversible forms of oxidized cysteine.  

Figure 4 - Sensitivity of AtBAM1 (left panel) and IbBMY1 (right panel) to different oxidant treatments. 

Purified recombinant AtBAM1 and commercially available IbBMY1 were incubated with Tricine buffer as 

control or exposed to 20 mM DTTox, 25 μM CuCl2 or 0,5 mM H2O2 (black bars) for 1 hour at 25°C prior to 

activity assay. Activity was measured with the artificial substrate PNPG3 (Sparla et al., 2006). Activity is given 

as a percentage of the fully active form. The reversibility of the inactivation was assessed by 30 min 

incubation with 80 mM DTTred (stripe pattern bars). Values represent the mean  ± S.D. (n > 3).  

 

Arabidopsis thaliana BAM1 is a possible target of glutathionylation 

Protein glutathionylation has emerged as a novel redox post-translational modification 

with a regulatory and protective role, occurring prevalently under stress conditions 

(Zaffagnini et al., 2012b). Despite its sensitivity to H2O2, AtBAM1 is preferentially involved 

AtBAM1 IbBMY1 
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in starch degradation under stress condition (Valerio et al., 2011). Therefore, a possible 

effect of glutathionylation on AtBAM1 activity was assayed (Fig. 5). To this purpose, the 

kinetic of inhibition of AtBAM1 performed in the presence of 0.5 mM H2O2 plus 2.5 mM 

GSH was compared with that obtained incubating the enzyme with 0.5 mM H2O2 alone. 

Even if GSH can act as a scavenger for H2O2, the kinetic of inhibition of AtBAM1 in presence 

of H2O2 plus GSH was much slower than that obtained by H2O2 alone (Fig. 5), suggesting a 

possible role of glutathionylation in preventing irreversible oxidation of cysteine residues.  

 

 

Figure 5 - Kinetics of inactivation of AtBAM1 by H2O2 and H2O2 plus GSH.  AtBAM1 was incubated with Tricine 

buffer (Ctr), 0,5 mM H2O2 alone or 0,5 mM H2O2 plus 2,5 mM GSH. AtBAM1 activity was measured at 

different time points with the artificial substrate PNPG3 (Sparla et al., 2006). Activity is given as a percentage 

of the fully active form (n =3; data are means ± S.D. < 10% for each data point, not shown).  

 

To better explore this hypothesis, AtBAM1 was incubated for 1 hour in the presence of 1 

mM GSSG (Fig. 6). Interestingly the resulted ~30% of inhibition could have been 

completely reverted by reduced DTT (Fig. 6). Similarly, 1h incubation of AtBAM1 with 0.5 

mM H2O2 plus 2.5 mM GSH resulted in a decrease of protein activity, again fully reverted 

by a subsequent incubation with reduced DTT (Fig. 6). Taken together these results 

strongly suggest that glutathione might react with AtBAM1, probably inducing the 
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formation of a mixed disulfide bridge between a cysteine residue and one molecule of 

glutathione. 

 

Figure 6 - Sensitivity of AtBAM1 to glutathionylation. Purified recombinant AtBAM1 was incubated with 

Tricine buffer as control or exposed to 1 mM GSSG or to 0,5 mM H2O2 plus 2,mM GSH  (black bars) for 1 

hour at 25°C prior to activity assay. The reversibility of the inactivation was assessed by 30 min incubation 

with 80 mM DTTred (stripe pattern bars). Activity was measured with the artificial substrate PNPG3 (Sparla 

et al., 2006). Activity is given as a percentage of the fully active form. Values represent the mean ± S.D. (n = 

4).  

 

Sequence analysis of Arabidopsis thaliana AMY3 

Alfa-amylases can be classified into three subfamilies according to their subcellular 

localization and gene structure (Stanley et al., 2002). Family one of α-amylases are 

characterized by having a signal peptide that targets the protein to the secretory pathway 

(Fig. 7). Cereal grain amylases are classified within this family, and due to their pivotal role 

in the endosperm during mobilization of starch, much work on plant α-amylases has 

focused on this family. Among family one, barley (Hordeum vulgare L.) α-amylase 1 

(HvAMY1) is one of the most thoroughly described and represents one of the few for 

which crystal structure is available (Robert et al., 2003). In Arabidopsis, three genes 

encode α-amylase-like proteins (Yu et al., 2005), one isoform for each family. Arabidopsis 

α-amylase 1 (AtAMY1; At4g25000 gene) belongs to family one of α-amylases and was 

suggested to accumulate in the apoplast of leaves during senescence or after biotic or 

abiotic stress, with the possible function of starch degradation after cell death (Doyle et 

al., 2007). Indeed, AtAMY1 show a signal peptide that allows protein secretion (Fig 7). 

Family two of α-amylases has largely unknown functions and its members have no 
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predicted targeting peptide, therefore they are thought to localize into the cytoplasm. 

Family three of α-amylases has been shown to participate in leaf starch breakdown 

(Kӧtting et al., 2009) and are characterized by a large N-terminal extension, typically 400–

500 amino acids in length, which contains a predicted chloroplast transit peptide and 

tandem carbohydrate-binding modules. Alfa-amylase isozyme 3 from Arabidopsis 

thaliana (AtAMY3) belong to this family and shows these characteristics. In fact, AtAMY3 

has a chloroplast transit peptide and localize in the chloroplast (Yu et al., 2005; Glaring et 

al., 2011) (Fig. 7). Moreover, AtAMY3 has two tandem N-terminal starch-binding domains 

belonging to the carbohydrate-binding module family 45 (CBM45; Cantarel et al., 2009) 

(Fig. 7), with a high sequence similarity to those found in the starch phosphorylating 

enzyme α-glucan, water dikinase (GWD) (Mikkelsen et al., 2006; Glaring et al., 2011), 

which would enable interaction with the starch granule surface (Yu et al., 2005; Glaring et 

al., 2011). The two CBM45 domains in AtAMY3 are separated by a linker of approximately 

50 amino acids (Fig. 7). Each domain contains five aromatic amino acids (Fig. 7) that are 

widely conserved across all species (Glaring et al., 2011).  
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Figure 7 - Sequence alignment of AtAMY3, HvAMY1 and AtAMY1 precursors were created using UniProt 

Knowledgebase Align (http://www.uniprot.org/align). The alignment shows the chloroplast transit peptide 

(italic and underlined) in AtAMY3 and the signal peptides (italic and underlined) in AtAMY1 and HvAMY1. 

The five residues of each of the two N-terminal CBM45 domains of AtAMY3 are highlighted in light grey and 

indicated by an arrow (▼). The size of the proteins is given in amino acids. Beginning of AtAMY3 conserved 

C-terminal domain is announced by a dot (●). The numbering of amino acids includes transit peptide and 

signal peptides. Only residues of AtAMY3 are numbered above the alignment. All cysteines are given in black 

field, while other important residues are shown in dark grey field. Identical (*), conserved (:) and 

semiconserved (.) residues are indicated below the alignment.  

 

AtAMY3 show a 45,7% of sequence identity with HvAMY1 and a slightly lower value 

(43,6%) with AtAMY1 protein (Larkin et al., 2007). In turn, HvAMY1 and AtAMY1 show 

about the 57% of sequence identity (Larkin et al., 2007). However, AtAMY3 C-terminal 

domain, responsible of catalysis, is well conserved. Within the catalytic domain, the 

HvAMY1 aspartic acid residue 204, essential for the activity, is conserved in AtAMY3 

(Asp666), as in AtAMY1 (Asp203) (Seung et al., 2013).  

Arabidopsis AMY3 sequence show 9 cysteine residues. Of these residues, four (Cys118, 

Cys285, Cys310, and Cys363) are located in the N-terminal extension and five (Cys499, 

Cys587, Cys652, Cys743, and Cys832) in the α-amylase domain (Fig. 7).  Seung and 

collaborators (2013) demonstrated that the enzyme was redox regulated at physiological 
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relevant redox potentials via a disulfide exchange. Specifically, the enzyme was found to 

be active when reduced and inactive when oxidized, in concomitance with the formation 

of a disulfide bridge between residues Cys499 and Cys587, that probably alters the tertiary 

structure of the protein in a way that blocks the active site (Brandes et al., 1996; Silver et 

al., 2013). Indeed, Cys587 is highly conserved among α-amylases and in HvAMY1 has been 

previously shown to be important for catalysis (Mori et al., 2001). Moreover, Cys587 is in 

close proximity to the active site and is located two residues away from His585 of AtAMY3, 

which aligns with His117 of HvAMY1 (corresponding to His93 in mature protein) and 

functions as a transition state stabilizer, which substitution causes a sharp decrease in 

protein activity (Søgaard et al., 1993). The close proximity of AtAMY3 Cys587 and of Cys 

499 to the active site may explain why those two site-directed mutants were less active 

or almost completely inactive, respectively (Seung et al., 2013). Other site-directed 

AtAMY3 mutants with low activities included cysteine to serine substitution of residue 

285 or 652, suggesting they may also contribute to the activity or to the stability of the 

protein. Interestingly, Cys499 is generally conserved in AMY3 sequences of other 

organisms (Seung et al, 2013). AMY3 sequences in which Cys499 is not conserved, mostly 

show a leucine residue at this position and another additional cysteine residue 11 amino 

acids upstream, which is not usually present and may be an alternative partner cysteine 

for a disulfide bridge (Seung et al., 2013). HvAMY1 and AtAMY1 do not show any cysteine 

residue corresponding to Cys499 of AtAMY3 nor any upstream additional cysteine, 

suggesting that those proteins are not likely to be redox regulated by the formation of a 

disulfide bridge (Fig. 7).  

 

Oxidative treatments on AtAMY3 

As for AtBAM1, also AtAMY3 displayed an unusually redox behaviour for an enzyme that 

should be involved in transitory starch degradation at night (Seung et al., 2013). AtAMY3 

has been reported to be reversible inactivated by CuCl2 treatment, activated by reduced 

Trxs and able to form a regulatory disulfide bridge with a midpoint redox potential of -329 

mV between cysteine residues 499 and 587 (Seung et al., 2013). Moreover, as for AtBAM1, 

these peculiar redox properties are not found in all α-amylases, since HvAMY1 was 

completely insensitive to redox treatments (Seung et al., 2013). 
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In addition to the similar redox behaviour, it has been demonstrated that AtBAM1 and 

AtAMY3 work synergistically to degrade starch in vitro (Seung et al., 2013) and more 

recently both enzymes have been found in chloroplast stroma of guard cells where 

participating in transitory starch degradation to sustain stomatal aperture (Valerio et al., 

2011; Prasch et al., 2015; Horrer et al., 2016). Also the expression pattern of AtAMY3 is 

different from that expected for a protein involved in nocturnal starch degradation, being 

induced by stress condition such as cold shock (Kaplan and Guy, 2005). Taken together, 

these data strongly suggest a possible “minor” pathway of starch degradation occurring 

in specialized cells and/or under stress conditions, involving AtBAM1 and AtAMY3 that are 

not essential for nighttime transitory starch breakdown under normal growth conditions, 

as witnessed by the absence of a sex phenotype in mutants lacking of AtBAM1 or AtAMY3 

(Yu et al., 2005; Kaplan and Guy, 2005; Kӧtting et al., 2009). 

For this reason, the behaviour of AtAMY3 to H2O2 treatments was studied (Fig. 8 and Fig. 

S4, supplementary information). After one hour of incubation with 0.1 mM and 0.5 mM 

H2O2, AtAMY3 activity was measured by the artificial substrate BPNPG7. As reported in 

Fig. 8, AtAMY3 activity was reversibly inhibited in a dose dependent manner by H2O2.  

 

Figure 8 - Sensitivity of AtAMY3 to different concentrations of H2O2. Purified recombinant AtAMY3 was 

incubated in Tricine buffer (as control) or exposed to 0.1 and 0.5 mM H2O2 (black bars) for 1 hour at 25°C 

prior to assay the activities. Activity is expressed as percentage of control sample. The reversibility of the 

inhibition was assessed by 30 min incubation with 80 mM reduced DTT (stripe pattern bars). Activity was 

measured with the artificial substrate BPNPG7 (Seung et al., 2013). Values represent the mean  ± S.D. (n = 

3). 
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To study the possible involvement of a glutathionylation event on AtAMY3, the effect of 

1 mM GSSG and 0.5 mM H2O2 plus 2.5 mM GSH was tested on the pure enzyme (Fig. 9). 

Interestingly while GSSG treatment caused a 40% inhibition of the enzyme activity, fully 

revertible by reduced DTT, the treatment performed in the presence of H2O2 plus GSH 

was without effect on the enzyme activity (Fig. 9). 

 

 

Figure 9 - Sensitivity of AtAMY3 to glutathionylation. Purified recombinant AtAMY3 was incubated with 

Tricine buffer as control or exposed to 1 mM GSSG or to 0,5 mM H2O2 plus 2,5 mM GSH  (black bars) for 1 

hour at 25°C prior to activity assay. The reversibility of the inactivation was assessed by further 30 min 

incubation with 80 mM DTTred (stripe pattern bars). Activity was measured with the artificial substrate 

BPNPG7 (Seung et al., 2013). Activity is given as a percentage of the fully active form. Values represent the 

mean ± S.D. (n = 3). 

 

To better analyse the effect of H2O2 plus GSH on AtAMY3 activity, a time course 

experiment was performed (Fig. 10). Albeit GSH is a physiological ROS scavenger, able to 

lower the amounts of H2O2 in the sample, with the concomitant production of GSSG, the 

amounts of oxidant in the reaction mixture should be still sufficient to oxidize the enzyme. 

Interestingly, in the presence of GSH the inhibitory effect of H2O2 was completely 

abolished, leaving an enzyme as active as the control sample (Fig. 10).  
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Figure 10 - Kinetics of inactivation of AtAMY3 by H2O2 and H2O2 plus GSH. AtAMY3 was incubated with tricine 

buffer (Ctr), 0,5 mM H2O2 alone or 0,5 mM H2O2 plus 2,5 mM GSH. AtAMY3 activity was measured at 

different time points with the artificial substrate BPNPG7 (Seung et al., 2013). Activity is given as a 

percentage of the fully active form (n =2; data are means ± S.D. < 10% for each data point, not shown).  

 

Actually, the different behaviour of AtAMY3 to GSSG and H2O2 plus GSH treatments is 

difficult to explain. GSSG is also known to promote the formation of disulfide bonds in 

target proteins (Cumming et al., 2004; Chakravarthi et al., 2004). Then, inhibition of 

AtAMY3 measured after GSSG incubation might be due to a dithiol/disulfide exchange, 

whereas the absence of inhibition after incubation with H2O2 plus GSH might be ascribed 

to the glutathionylation of AtAMY3. Further experiments are required to address the 

question.  

 

Both AtBAM1 and AtAMY3 are glutathionylated 

The effect of biotin-conjugated GSSG (BioGSSG) was tested on recombinant proteins 

AtBAM1, AtAMY3 and on the commercial enzyme IbBMY1 (Fig. 11). The glutathionylated 

state of BioGSSG-treated AtBAM1 and AtAMY3 was clearly revealed by the reaction with 

anti-biotin antibodies (Fig. 11). The signal was both reversed by reduced DTT, underlining 

the reversibility and the specificity of the reaction, and prevented by alkylation. On the 

contrary, under the same condition that leads to glutathionylation of AtAMY3 and 

AtBAM1, the lack of signal for IbBMY1 revealed that the protein is not glutathionylated. 

A
ct

iv
it

y 
(%

) 

Time (min) 

0,5 mM H
2
O

2
  

Ctr 

0,5 mM H
2
O

2
 plus 2,5 mM GSH  



160 
 

 

Figure 11 - Analysis of AtBAM1, AtAMY3 and IbBMY1 glutathionylation with biotin-conjugated GSSG 

(BioGSSG). The proteins were incubated with BioGSSG (2 mM, 1h) with or without a pre-incubation with 

100 mM IAM and 20 mM NEM. The reversibility of the reaction was assessed by treatment with 80 mM 

DTTred (30 min for BAM1 and 1h for AMY3) performed on half of the non-alkylated sample incubated with 

BioGSSG. Proteins were separated by non-reducing SDS-PAGE and transferred to nitrocellulose membrane 

for western blotting analysis with anti-biotin antibodies.  

 

In order to confirm the glutathionylated state of AtBAM1 and AtAMY3, MS analysis (ESI-

ToF) was performed on both proteins. The MS spectra of GSSG treated enzymes showed 

two sharp peaks (Fig. 12, left panels): one corresponding to the molecular mass of 

AtBAM1 (60542.0 Da) or AtAMY3 (96813.5 Da) and the second one corresponding to the 

glutathionylated forms (60847.0 Da and 97123.5 Da, for AtBAM1 and AtAMY3, 

respectively). The presence of peaks corresponding to the unmodified proteins, suggest 

that the incubation conditions were not saturating. In addition, AtBAM1 spectrum showed 

another peak corresponding to a mass increase of 610 Da, presumably ascribable to a 

double glutathionylated enzyme (a theoretical increment mass of 305 Da is expected for 

each glutathione molecule bound to the target protein). In agreement with a reversible 

modulation of the enzyme activities and with the BioGSSG assay, in both samples a single 

peak appeared following treatment with reduced DTT (Fig. 12, right panels). These data 

clearly indicate that in the presence of GSSG both enzymes are reversibly 

glutathionylated.  
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Figure 12 - Analysis of AtBAM1 and AtAMY3 glutathionylation by ESI-MS analysis. Mass spectra of GSSG 

treated (1h, 1mM) recombinant AtBAM1 (upper panels) and AtAMY3 (lower panels) were performed before 

(red line) and after (blue line) treatment with 10mM dithiothreitol (DTTred) (2h). Measurement accuracy: 

±5 Da. 

 

Attempt to identify cysteine residues that are target of glutathionylation in AtBAM1 and 

AtAMY3 

AtBAM1 and AtAMY3 contain at least two redox reactive cysteine residues involved in the 

formation of the regulatory disulfide bridge (Sparla et al., 2006; Seung et al., 2013) which 

could be target of glutathionylation. In our hands, AtBAM1 oxidation mediated by 

oxidized DTT prevented BioGSSG dependent glutathionylation (Fig. 13), suggesting that 

the modified cysteine residues may be the ones involved in disulfide bridge formation. 

However, AtBAM1 double mutant C32S C470S, lacking Cys32 and Cys470, that are 

proposed as one of the possible couple of cysteine involved in disulfide bond (Sparla et 

al., 2006), is still glutathionylated in the presence of BioGSSG (Fig. 13). This behaviour 

might be explained by a possible conformational change that could occur in response to 

the formation of the regulatory disulfide bridge between Cys32 and Cys470 and that 

would make inaccessible a third putative cysteine residue. Alternatively to this hypothesis 
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and more simply, the regulatory disulfide bridge could occur between Cys32 and Cys506, 

the second couple of cysteines proposed to be involved in the regulation of AtBAM1 

(Sparla et al., 2006).  

 

 

Figure 13 - Glutathionylation analysis of pre-oxidized and pre-reduced AtBAM1, double mutant AtBAM1 

C32S C470S  and pre-oxidized AtAMY3 with biotin-conjugated GSSG (BioGSSG). AtBAM1 was incubated over 

night with 80 mM DTTox or DTTred at 4°C and then buffer exchanged. AtAMY3 was incubated over night 

with 40 mM DTTox at 4° C and then buffer exchanged.  Subsequently, the analyses were performed as 

described in Fig. 11.  

 

In agreement with ESI-MS analysis that suggested the bond of two GSH molecules, all 

AtBAM1 single mutants were glutathionylated by BioGSSG (Fig. 14). 

 

Figure 14 - Glutathionylation analysis of AtBAM1 mutants with biotin-conjugated GSSG (BioGSSG). All 

AtBAM1 Cys to Ser mutants were analysed as described in Fig. 11.  

 

Differently from AtBAM1, pre-oxidized AtAMY3 still reacted with BioGSSG (Fig. 13), 

suggesting that the modification might occur on a cysteine residue not involved in 

disulfide bridge formation (namely Cys499 and Cys587, Seung et al., 2013) or that the 

protein was not completely oxidated. In order to identify the Cys residue target of 

glutathionylation, considering that ESI-MS analysis showed that glutathionylation 
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occurred on a single cysteine residue (Fig. 13), all Cys to Ser single mutants of AtAMY3 

were analysed by BioGSSG (Fig. 15). Against all odds, all AtAMY3 Cys to Ser variants 

formed a mixed disulfide bridge with BioGSSG (Fig. 15). Such a result is difficult to explain 

without assuming that the mutation of the target cysteine residue in AtAMY3 may change 

the conformation of the protein or modify the molecular environment around a usually 

non-modified cysteine residue, making it more prone to glutathionylation. 

 

 

Figure 15 - Glutathionylation analysis of AtAMY3 mutants with biotin-conjugated GSSG (BioGSSG). All 

AtAMY3 Cys to Ser mutants were analysed as described in Fig. 11.  

 

H2O2-dependent oxidation and sensitivity to glutathionylation of AtBAM1 single 

mutants C32S, C470S, C506S   

Since it is known that, under oxidizing conditions, Cys32 of AtBAM1 can form a disulfide 

bridge with another cysteine residue suggested to be Cys470 or Cys506 (Sparla et al., 

2006), the sensitivity to H2O2 and H2O2 plus GSH was measured in wild-type AtBAM1 and 

in the three single mutants C32S, C470S and C506S (Fig. 16 and Fig. 17), with the aim of 

identify the cysteines target of glutathionylation. Moreover, these three cysteine residues 

are of particular interest because they were the only cysteines to seem solvent accessible 

(supplementary information, Fig. S1) and non-conserved (Fig. 3) in redox-insensitive and 

non-glutathionylated IbBMY1.  
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Figure 16 - Sensitivity of AtBAM1 wild-type and C32S, C470S, C506S to H2O2. Purified recombinant AtBAM1 

single mutant proteins were incubated with tricine buffer as control or exposed to 0,5 mM H2O2 (black bars) 

for 1 hour at 25°C prior to activity assay. The reversibility of the inactivation was assessed by 30 min 

incubation with 80 mM DTTred (stripe pattern bars). Activity was measured with the artificial substrate 

PNPG3 (Sparla et al., 2006). Activity is given as a percentage of the fully active form. Values represent the 

mean ± S.D. (n > 3). 

 

As reported in Fig. 16, H2O2 treatment inhibited AtBAM1 activity at the same extent in 

both wild-type protein and C32S, C470S mutants, while the lack of Cys506 gave rise to an 

enzyme insensitive to H2O2 treatment, suggesting a possible role of Cys506 as a sensor or 

mediator of protein oxidation. C506S mutant also showed a slight decrease in protein 

specific activity compared to wild-type AtBAM1 (Supplementary information, Table S1) 

suggesting a possible involvement of Cys506 in the catalytic mechanism. However, more 

analyses are required to assess this hypothesis.  

Because through BioGSSG was not possible to discriminate without any doubt which 

residues were responsible of AtBAM1 glutathionylation, AtBAM1 C32S, C470S, C506S 

sensitivity to glutathionylation mediated by H2O2 plus GSH was assessed (Fig. 17).  
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Figure 17 - Sensitivity of AtBAM1 wild-type and C32S, C470S, C506S to glutathionylation. Purified 

recombinant AtBAM1 was incubated with Tricine buffer as control or exposed to 0,5 mM H2O2 plus 2,mM 

GSH  (black bars) for 1 hour at 25°C prior to activity assay. The reversibility of the inactivation was assessed 

by 30 min incubation with 80 mM DTTred (stripe pattern bars). Activity was measured with the artificial 

substrate PNPG3 (Sparla et al., 2006). Activity is given as a percentage of the fully active form. Values 

represent the mean ± S.D. (n = 4). 

 

Unlike wild-type protein and C470S mutant, both C32S and C506S were insensitive to 

glutathionylation mediated by H2O2 plus GSH, suggesting that Cys32 and Cys506 might be 

the targets of glutathionylation. This finding is also consistent with both data obtained by 

ESI-MS analysis that suggested multiple glutathionylation sites on AtBAM1 (Fig. 12) and 

with BioGSSG assay performed on single mutants (Fig. 14).  

 

Determination of pKa values for AtBAM1 and AtAMY3 

At present it is unclear what feature better contributes to the sensitivity of a cysteinyl 

residues to S-glutathionylation. The reaction rate of most protein cysteines with ROS 

and/or GSH is too slow to be of physiological relevance. This situation changes drastically 

when cysteine is in its thiolate anion (-S−) form (Dalle-Donne et al., 2007). The pKa value 

of a cysteine represents pH value at which a cysteine residue is in equilibrium between its 

thiol (-SH) and thiolate (-S-) forms. Typically, unreactive cysteines show a pKa value around 

8.5 or 8.6. The formation of a cysteine thiolate anion which can react to form a mixed 

disulfide with GSH or with a second cysteine residue to form a protein disulfide (Rhee et 

al, 2000; Cumming et al., 2004), occurs only in unusual microenvironments in which the 

nearby amino acid residues significantly lower the pKa through electrostatic interactions. 
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Consequently, at pH ∼7, a thiol with a pKa value below 7 will exist mostly in its reactive 

thiolate form.  

IAM is a strong alkylating agent able to bind cysteine residues, inhibiting protein activity 

if these cysteine residues are somehow involved in the catalytic process. Since IAM 

preferentially reacts with thiolate anion, pKa of catalytic relevant cysteines can be 

assessed by measuring the pH dependence of IAM inactivation. Both AtBAM1 and 

AtAMY3 were therefore treated with IAM at different pH value and their activities were 

compared to those measured at the same pH value but in absence of the alkylating 

reagent. The curves obtained plotting the percentage of inhibition in function of pH values 

show sigmoidal trends with a single inflection point corresponding to a pKa 8.3 for AtBAM1 

and of 7.2 for AtAMY3 (Fig. 18).  

 

Figure 18 - Determination of the pKa value of the active-site cysteine residue of AtBAM1 and AtAMY3. 

Enzymes were incubated with 0.375 mM IAM at different pH values for 20 min at room temperature and 

activity was determined. After incubation, the percentage of the remaining activity at each pH was 

determined by comparing the activity of the enzyme incubated with and without IAM. Results are means 

±S.D. < 10% for each data point, not shown (n = 2). The pKa value was obtained by non-linear regression 

using an adaptation of the Henderson–Hasselbalch equation (Bedhomme et al., 2012). 

 

Concerning AtBAM1, the obtained pKa value was too high to suggest that the cysteine 

residues involved in the post translational modifications (both disulfide bridge formation 

and glutathionylation) might be involved even in the catalysis. On the contrary, the pKa 

value measured for AtAMY3 was compatible with the hypothesis that at least one cysteine 

residue might be involved both in the catalysis and in the redox regulation. Indeed, it has 

been demonstrated that Cys587 of AtAMY3, that can form the regulatory disulfide bridge 



167 
 

with Cys499 under oxidizing conditions, is also required for the catalysis (Seung et al., 

2013). Hence, Cys587 is a possible candidate target for glutathionylation, despite seeming 

not particularly accessible or exposed to the solvent (see Supplementary Fig. S2). Although 

low pKa of a protein thiol provides a useful guide to its reactivity, this is not a generalizable 

rule. In fact, in addition to reactivity (which depends in turn on the pKa of the thiol), other 

factors can contribute to the sensitivity of a given cysteinyl residue to protein 

glutathionylation, whether solvent accessibility, but also the microenvironment 

surrounding the target cysteine or a combination of these effects (Winterbourn and 

Hampton, 2008; Reddie and Carrol, 2008; Dalle-Donne et al., 2009). 

 

DISCUSSION 

 

Beside link the photosynthetic electron transport with the Calvin-Benson cycle enzymes 

(Buchanan and Balmer, 2005; Schürmann and Buchanan, 2008; König et al., 2012), 

chloroplast-target thioredoxins can also modulate the activity of several proteins belong 

to different pathways, including enzymes involved in starch metabolism (Santelia et al., 

2015). This fine regulation appears to be essential to modulate enzyme activity in 

response to light condition. Despite their role in transitory starch degradation, typically 

occurring in the dark (i.e. oxidizing condition), AtBAM1 and AtAMY3 are subjected to thiol-

based redox regulation being activated by reduced thioredoxins (Sparla et al., 2006; Seung 

et al., 2013). Till now, AtBAM1 and AtAMY3 are the only members of their protein family 

whose activity is inhibited by the formation of a disulfide bridge with a midpoint redox 

potential at pH 7.0 of -302 mV and at pH 7.9 of -329 mV, respectively (Sparla et al., 2006; 

Seung at al., 2013). As a consequence, AtBAM1 and AtAMY3 appear more reasonably 

belonging to a diurnal starch degradation pathway that occurs in specialized cell types, as 

guard cells, or under stress conditions (Valerio et al., 2011; Seung et al., 2013; Horrer et 

al., 2016; Zanella et al., 2016). In chloroplast stroma, stress conditions are often 

accompanied by the formation of reactive oxygen species (ROS), including H2O2, which can 

oxidize protein cysteine residues damaging also in irreversible manner, enzyme activity 

(Quan et al., 2008). To protect themself from irreversible oxidation, reactive cysteine 

residues can undergo to glutathionylation. As a consequence, glutathionylation has 

emerged as a novel redox post-translational modification occurring under stress 
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conditions and suggested to be mediated by H2O2 (Rouhier et al., 2008; Zaffagnini et al., 

2012b). While glutathionylation is supposed to be a non-enzymatic reaction in vivo, 

deglutathionylation involves NADPH, glutathione reductase, reduced glutathione (GSH) 

and glutaredoxins (GRXs) (Zaffagnini et al., 2012b). 

Proteomic analyses did not detect AtBAM1 and AtAMY3 as target of H2O2–dependent 

oxidation or as target of glutathionylation (Gao et al., 2009b; Muthuramalingam et al., 

2013; Waszczak et al., 2014). This can be due to the low amount of both enzymes under 

experimental tested conditions (Muthuramalingam et al., 2013; Waszczak et al., 2014), to 

the use of dark-grown cells or of different photosynthetic model organisms, such as 

Chlamydomonas reinhardtii (Gao et al., 2009b). 

In order to study the sensibility of AtBAM1 and AtAMY3 to oxidation, both enzymes were 

recombinant expressed and purified before analyse in vitro the effect of H2O2–treatment 

on their activities, measured with the artificial substrates PNPG3 and BPNPG7, 

respectively. Both AtBAM1 and AtAMY3 activities were inhibited by H2O2–treatments in a 

time- and dose-dependent manner (Fig. 4 and S2; Fig. 8 and S3). Interestingly the 

inhibition rates were significantly reduced (for AtBAM1) and even completely suppressed 

(for AtAMY3) when the treatments were performed in the presence of H2O2 plus GSH (Fig. 

5 and 10). Since it has been suggested that in vivo glutathionylation events are mainly 

triggered by a first oxidation of the reactive cysteine residue to sulfenic form, followed by 

the formation of a mixed disulfide with GSH (Zaffagnini et al., 2012b; Fig. 1), the obtained 

data strongly suggest that both AtBAM1 and AtAMY3 might be target of such 

modification. As a consequence of being glutathionylated both AtBAM1 and AtAMY3 

remain active. However, since the simultaneous presence of GSH and H2O2 in the samples 

might lower H2O2 concentration, reducing the effect of the oxidant, oxidative 

susceptibility of AtBAM1 and AtAMY3 was tested with different oxidants, such as CuCl2 

and GSSG (Fig. 4, 6 and 9). All oxidative treatments inhibited both AtBAM1 and AtAMY3 

activities, underlining their propensity to be reversibly oxidized, as demonstrated by the 

recovery of the enzyme activities following the addition of reduced DTT to treated 

samples (Fig. 4, 6, 8 and 9). Taken together these results strongly suggest that both 

AtBAM1 and AtAMY3 are prone to glutathionylation. 

AtBAM1 and AtAMY3 glutathionylation by means of biotinylated GSSG was confirmed 

through western blotting (Fig. 11). Moreover, glutathionylation mediated by GSSG was 
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assessed by ESI mass spectrometry for both AtBAM1 and AtAMY3 (Fig. 12). Albeit the 

enzymes were treated for 1 hour with 1 mM GSSG, both ESI-MS spectra still showed a 

peak corresponding to the unmodified proteins (Fig. 12), suggesting that GSSG-mediated 

glutathionylation is a slow process or that GSSG treatment can be resolved by the 

formation of an inter-molecular disulfide bonds that can not be detected by ESI-MS 

analysis. Further analyses are needed to verify these hypotheses. In addition, ESI-MS 

analysis suggested a possible double glutationylation for AtBAM1 (Fig. 12). In order to 

verify this result, all the Cys to Ser variants of AtBAM1 were incubated with BioGSSG and 

analysed by western blot (Fig 14). As expected, all AtBAM1 single mutants were found to 

be glutathionylated confirming the hypothesis of a double glutathionylation event. On the 

contrary, ESI-MS analysis on GSSG-treated AtAMY3 pointed toward glutathionylation of a 

single cysteine residue. To confirm this result, all the Cys to Ser variants of AtAMY3 were 

incubated with BioGSSG and analysed through western blot using anti-biotin antibodies. 

Surprisingly, all the mutants resulted to form a mixed disulfide bond with BioGSSG. This 

result might be explained assuming that the mutation of the target cysteine residue in 

AtAMY3 may change the conformation of the protein or modify the molecular 

environment around a usually non-modified cysteine residue, making it more prone to 

glutathionylation.  

Sparla and collaborators (2006) reported that the activity of AtBAM1 is regulated through 

the formation of a disulfide bridge between the cysteine residue 32 and a second cysteine. 

Looking at the biochemical behaviour of the single mutants and comparing the primary 

amino acid sequences of redox and non-redox sensitive β-amylases, the Authors 

suggested as possible partners of Cys32 the cysteines 470 or the 506. In silico analysis 

performed to create a structural model of AtBAM1 based on the crystal structure of barley 

β-amylase, confirmed that both Cys470 and Cys506 are accessible and exposed to the 

solvent. (Fig. S1). Since the oxidation of AtBAM1 through the formation of the regulatory 

disulfide bridge prevent BioGSSG-mediated glutathionylation (Fig. 13), and considering 

that BioGSSG signal was still visible in the double mutant C32S C470S (Fig. 13), it appears 

more reasonable to suppose that the Cys506 could be the second regulatory residue. Also 

the activities of the wild-type enzyme and those of the single mutants C32S, C470S and 

C506S measured in presence of H2O2 plus GSH strongly support the hypothesis that Cys32 
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and Cys506 might be the targets of glutathionylation, being the only mutants insensitive 

to glutathionylation (Fig. 17). 

Comparison of the amino acid sequence of bacterial and plant β-amylases revealed a 30% 

homology, with several highly conservative regions (Nomura et al., 1995). Bacillus cereus 

β-amylase has 3 cysteine residues (Cys91, Cys99 and Cys331). Two of these cysteines 

(Cys91 and Cys331) pertain to conserved sequence regions of bacterial and plant β-

amylases and correspond to Arabidopsis BAM1 Cys148 and Cys399 (Fig. 3). In Bacillus 

cereus β-amylase, these two residues are situated in the active cleft of the enzyme, near 

to the substrate binding site (Nomura et al., 1995). However, Cys331 seems to be of 

prominent importance in catalytic activity (Nomura et al., 1995), whereas Cys91 can form 

a structural disulfide bond with Cys99, which is not conserved in AtBAM1 and IbBMY1, 

but is present in AtBAM3. The curve obtained plotting the percentage of AtBAM1 

inhibition mediated by the alkylant agent IAM in function of pH values, shows sigmoidal 

trend with a single inflection point corresponding to a pKa value of 8.3 (Fig. 18). Thus, the 

pKa value obtained for AtBAM1 was too high for a residue involved in redox regulation 

and might be ascribable to Cys399, which is probably involved in the catalytic mechanism. 

On the other hand, Cys32 and Cys506 seem to be involved in redox regulation but not in 

catalysis (Tab. S1), and the lack of Cys506 gave rise to an enzyme insensitive to H2O2 

treatment (Fig. 16), suggesting a possible role of Cys506 as a sensor or mediator of protein 

oxidation. Thus, it is possible to hypotesize a protective role of glutathionylation on Cys32 

and Cys506 aimed to prevent fast or irreversible oxidation of the protein and to modulate 

enzyme activity.  

Unlike AtBAM1, the pKa value measured for AtAMY3 was more acidic (pKa 7.2). Since in 

illuminated chloroplasts the pH value of the stroma is close to 8.0 (Heldt et al., 1973; 

Werdan et al., 1975), it is reasonable to assume that the same cysteine residue of AtAMY3 

might be involved both in the catalysis and in the redox regulation. The finding that Cys499 

and Cys587 are responsible of the regulatory disulfide bridge (Seung et al., 2013) together 

with catalytic role of Cys587 in HvAMY1 (Mori et al., 2001), strongly point toward Cys587 

as target of glutathionylation. However, pre-oxidized AtAMY3, in which disulfide bond 

formation was promoted, was still glutathionylated (Fig. 13), thus reasonably leading to 

exclude Cys499 and Cys587 from being target of this modification. However, is also 

possible that the oxidizing pre-treatment (16-18 h in the presence of 40 mM DTTox) was 
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not sufficient to get a completely oxidised sample, leaving the question unsolved. Then, 

further investigations are needed to determine which cysteine residues undergo 

glutathyionylation in AtAMY3. In any case, glutathionylation seems to prevent protein 

inhibition mediated by H2O2.  

It was shown that both AtBAM1 an AtAMY3 work synergistically in vitro to degrade starch 

(Seung et al., 2013) and that AtBAM1 and AtAMY3 expression seem to be promoted in 

illuminated mesophyll cells of plants under stress conditions (Sparla et al., 2006; Valerio 

et al., 2011; Dr. Santelia, personal comunication). Hence, is possible to imagine that 

AtBAM1 and AtAMY3, which are not required for nighttime transitory starch degradation 

(Yu et al., 2005; Fulton et al., 2008), can be part of a minor pathway of starch breakdown 

occurring by light under stress conditions. In the proposed model (Fig. 19), under oxidative 

stress conditions, H2O2 production could inhibit enzyme activity. However, H2O2 also 

promote glutathionylation of both enzymes preventing their fast and irreversible 

oxidation and allows them to keep on degrading starch. Furthermore, glutathionylation 

can be seen as an additional means to modulate protein activity to prevent premature 

exhaustion of plant starch reserves. Indeed, it is known that plants control the rate of 

storage and consumption of their reserves to avoid the risk of starvation (Gibon et al., 

2004; Gibon et al., 2009; Graf et al., 2010; Scialdone et al., 2013; Kölling et al., 2015). 
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Figure 19 – Schematic model of glutathionylation effects on AtBAM1 or AtAMY3 proteins (represented the 

P letter at the center of different color spheres) and of the role of the modification in illuminated mesophyll 

cells under stress conditions. When stress occurs, both AtBAM1 and AtAMY3 expression is promoted and 

ROS (i.e. H2O2) production increases. In turn, H2O2 production causes oxidation and inactivation (light grey 

sphere, intra-molecular disulfide bond formation; dark grey sphere, sulfenic acid formation; black sphere, 

irreversibly oxidated protein due to the formation of sulfinic or sulfonic acids) of both AtBAM1 and AtAMY3. 

However, the proteins are required to degrade transitory starch. AtBAM1 can produce osmolytes (maltose) 

necessary to counteract the stress through osmotic adjustments. On the other side, H2O2 production can 

promote glutathionylation either increasing the amounts of oxidized glutathione (GSSG) or triggering the 

formation of sulfenic acid forms of cysteine residues that can subsequently react with GSH (that is normally 

present in the chloroplast at millimolar concentration) to form a mixed disulfide bond. Glutathionylated 

proteins are active, albeit AtBAM1 activity seem to be reduced compared with the non-modified form. In 

this way, AtBAM1 and AtAMY3 can still degrade transitory starch. Moreover, glutathionylation can be 

reverted by Trxs or Grxs and proteins can be reactivated. AtBAM1 and AtAMY3 are not required for normal 

transitory starch degradation during the day, then when the stress ceases, protein levels may decrease back 

again. 
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SUPPLEMENTARY INFORMATION 

 

 

 

Figure S1 – Three dimensional model of Arabidopsis thaliana BAM1 (left panel) and accessibility of the cys 

residues (right panel). The model was made using Swiss-Model workspace 

(http://swissmodel.expasy.org/workspace) based on the known structure of barley (Hordeum vulgare) β-

amylase (PDB code 1B1Y; Mikami et al., 1999). The structure was generated with the Swiss-PDB viewer 

software. Red: α-eliches; yellow: β-sheets; grey: loops. The sequence of BAM1 includes eight cysteines 

(Cys32, Cys148, Cys206, Cys261, Cys399, Cys413, Cys470, Cys506). Here, only seven are shown since the 

homology model of BAM1 based on the structure of barley β-amylase started at Gly61. Each cysteine is 

colored by its relative accessibility, from dark blue (completely buried) to red (amino-acids with at least 75% 

of their relative surface accessibility accessible). Cys470 and Cys506 is situated on a loop, proving to be 

easily accessible and exposed.   
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Figure S2 – Three dimensional model of Arabidopsis thaliana AMY3 (left panels) and accessibility of the cys 

residues (right panels). The model was made using Swiss-Model workspace 

(http://swissmodel.expasy.org/workspace) based on the known structure of barley (Hordeum vulgare) α-

amylase isozyme 1 (HvAMY1, PDB code 3BSG; Nielsen et al., 2008). The structure was generated with the 

Swiss-PDB viewer software. Red: α-eliches; yellow: β-sheets; grey: loops. The sequence of AMY3 includes 

nine cysteines. Here, only five (Cys499, Cys587, Cys652, Cys743, Cys832) are shown since the homology 

model of AtAMY3 based on the structure of barley α-amylase started at Glu496. Each cysteine is colored by 

its relative accessibility, from dark blue (completely buried) to red (amino-acids with at least 75% of their 

relative surface accessibility accessible).   
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Figure S3 – Kinetics of inactivation of AtBAM1 performed at different concentrations of H2O2.  AtBAM1 was 

incubated in 100 mM Tricine-NaOH buffer, pH 7.9 in absence (control) or in presence of different H2O2 

concentrations. Activity was measured at different time points with the artificial substrate PNPG3. Activity 

is given as a percentage of the fully active form.  

 

 

 

 

Figure S4 – Kinetics of inactivation of AtAMY3 performed at different concentrations of H2O2.  AtAMY3 was 

incubated in 100 mM Tricine-NaOH buffer in absence (control) or in presence of different H2O2 

concentrations. Activity was measured at different time points with the artificial substrate BPNPG7. Activity 

is given as a percentage of the fully active form. 

 

A
ct

iv
it

y 
(%

) 

Time (min) 

H
2
O

2
 0,1 mM 

H
2
O

2
 0,25 mM 

H
2
O

2
 0,5 mM 

H
2
O

2
 1 mM 

Ctr 

A
ct

iv
it

y 
(%

) 

Time (min) 

H
2
O

2
 0,25 mM 

H
2
O

2
 0,1 mM 

Ctr 

H
2
O

2
 1 mM 

H
2
O

2
 0,5 mM 



184 
 

 

 

 

 

 

 

 

 

 

 

Table S1 – Specific activity of AtBAM1 wild-type protein and mutants C32S, C470S, C506S. Activity was 

measured after 60 min of incubation at 25° C with the artificial substrate B-PNPG3. Data are means ± S.D. 

 

 

 Specific activity 
 

(μmol min-1 μg-1) 

AtBAM1 wild-type 
(n = 5) 

676,5 ± 142,6 
 

AtBAM1 C32S 
(n = 2) 

627,1 ± 0,3 
 

AtBAM1 C470S 
(n = 1) 

975,1 ± n.d 
 

AtBAM1 C506S 
(n = 2) 

550,4 ± 36.1 
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