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Abstract 

This PhD research project deals with the synthesis and characterization of supramolecular 

photoresponsive systems based on the azobenzene unit. In particular, three different systems have 

been explored. In Chapter II project on Azobenzene-cyclodextrin inclusion complexes it will be 

introduced. The aim of this study was to obtain relatively simple, water-soluble derivatives, whose 

self-assembly could be reversibly controlled by light. On the basis of previous results, this opens the 

possibility of directly converting light into mechanical energy via osmosis. To this purpose, several 

new azobenzene functionalized cyclodextrins as well as several mixtures containing cyclodextrins 

and azobenzene derivatives have been synthesized, fully characterized and studied The inclusion 

complexes thus formed and their light-driven disassembly were studied by means of several 

complementary techniques including NMR, UV, CD, ICT, mass spectroscopy. The most suitable 

systems were used in experiments, still in progress, of light-to-mechanical energy conversion. In 

Chapter III project on Azobenzene-guanosine hybrids it will be reported. Several novel 

azobenzene-guanosine hybrids were synthesized for the purpose of investigating the effect of cis-

trans photoisomerization on guanosine self-assembly. Lipophilic guanosines in organic solvents can 

form either ribbon-like supramolecular polymers or, in the presence of alkali metal ions, G-quartet 

based supramolecular complexes. These complexes were fully characterized for newly synthesized 

azobenzene-guanosine hybrids. In the absence of ions, the ribbon-like supramolecular polymer 

gives rise to a gel-like system, which on further investigation turned out to be a lyotropic liquid 

crystalline phase. Photoisomerization to the cis form induces the transition to an isotropic solution, 

in a reversible fashion. In addition, the G-quartet structure obtained in the presence of alkali metal 

ions can be disassembled by light. Finally in Chapter IV it will reported results obtained for 

Oligoazobenzenes’s project. While several examples of electron-rich conjugated polymers are 

known and find application e.g. as electron donors in “plastic” photovoltaics, no examples are 

reported on the use of electron-poor conjugated polymers as acceptor counterpart. In particular, no 

polyazobenzenes having the (-C6H4-N=N-) repeat unit have ever been reported. Although no 

polymeric has been obtained yet, we succeeded in synthesizing several homologues up to a 

tetramer. The compounds were subjected to photophysical, photochemical and electrochemical 

characterization as well as to charge mobility studies thanks to a collaborative project. 
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1 Supramolecular Chemistry 

 
1.1  Introduction 

 

“Atoms are letters, molecules are the words, supramolecular entities are the sentences and 

the chapters” 

 

The innovative branch of chemistry that mainly deals with weak  intermolecular interactions and 

self organization is called “Supramolecular Chemistry”. Jean-Marie Lehn was one of the founding 

fathers of Supramolecular Chemistry, and Nobel Prize winner with Pedersen and Donald J. Cram, 

“for their development and use of molecules with structure-specific interactions of high selectivity”. 

He described the supramolecular chemistry as “chemistry beyond the molecule”, whereby a 

“supramolecule” is a specie that is held together by non covalent interactions between two or more 

covalent molecules or ions.  The concept of “Supramolecule” spread so widely, that modern 

supramolecular chemistry has become interdisciplinary among chemistry, biology, physics and 

material science.  Supramolecular chemistry’s main principles can be resumed as follows: 

 

 Molcecular recognition: supramolecular formation complex can be driven by specific 

interactions between host and guest and their geometric complementary. 

 

 Self-Assembly: a large complex molecular system can be formed by weak interactions 

between small and simple building blocks.  

 

 

1.2  Molecular recognition 

 

Molecular recognition is the selective coordination of two different species with complementary 

structures: the host and the guest. One definition of hosts and guests was given by Donald Cram, 

which states: “ the host component is defined as an organic molecule or ion whose binding sites 

converge in the complex… The guest component is any molecule or ion whose binding sites diverge 

in the complex”1. 

                                                 
1 Cram, D.J., Angew. Chem., Int. Ed. Engl. 25, 1986, 1039-1134 
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 The driving force for the recognition between host and guest could be steric and electronic 

interactions. The host must have two basic requirements to coordinate selectively a substrate: 

 

 Complementarity stereochemistry of coordination sites: binding sites receptor must have a 

spatial arrangement corresponding to the binding sites of the substrate, in such a way as to 

achieve the largest number of non covalent interactions and ensure the stability of the 

supramolecular adduct ("lock and key systems"). 

 

 Preorganization of the Ligand: if a host has already, before the coordination, a structural 

conformation similar to the one that it will have in the adduct, the energy required to bring 

the receptor in the final form will be smaller, the adduct formation will be more rapid, and 

the species formed more stable. In general the receptor must have a size, a shape and a 

specific architecture. The more the receptor and substrate are pre-arranged, more selective 

will be the molecular recognition. 

 

The first pioneering work on molecular recognition came from the industrial chemist Charles 

Pedersen, that discovered crown ethers in 1967 by serendipity, analyzing  an unwanted byproduct of 

a failed reaction2.  In 1960, while attempting to synthetize metal deactivators, in order to prevent the 

oxidative degradation of petroleum products and rubber caused by trace of metal ion impurities, he 

isolated some white crystals in a very low yield3. He was interested in the different solubility 

behavior in alcohol, in the presence and in the absence of sodium cations. Pedersen found that  

Sodium cations could be held in the cavity of the macrocycle, thanks to electrostatic ion-dipole 

interactions, and this was the explanation for different solubility properties.  Later the templating 

effect exerted by metal ions was better explained by Green, who suggested that the formation of the 

macrocycle from open chained ligand could involve cations via cation-dipole interactions. The 

templating effect can be illustrated as in Figure 1.  

                                                 
2 C.J.Pedersen, JACS , 89 (26), 1967, 7017 
3 C.J.Pedersen, Org. Synth.6,  1988, 395 
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interactions between molecules9. The chemical energy released in the formation of non-covalent 

interactions is typically in the order of 1-5 kcal/mol  and they generally include: 

 

 Hydrogen Bonds: attractive  interaction between an electronegative atom and a 

hydrogen atom bonded to another electronegative atom. 

 

 Electrostatic Interaction: the attraction of ions or molecules with full permanent charges of 

opposite signs. 

 

 Van der Waals’s forces: electrostatic interactions involving permanent or induced dipoles 

(or multipoles). These include the following: 

 permanent dipole-dipole interactions 

  dipole-induced dipole interactions 

 induced dipole-induced dipole interactions, commonly referred to as London dispersion 

forces 

 

Weak interactions and self-organization enable the construction of relatively large and complex 

molecular systems. In biological systems, there are many kinds of biomolecules such as proteins, 

nucleic acids, polysaccharides, which interact each other via non covalent interactions, to form 

highly ordered structures as cells and tissues.  

These structures form more highly ordered architectures such as bones, flesh, and organs in a 

hierarchical way, through non covalent interactions between the surface of them, and perform 

indispensable functions to maintain life and living organism, such as self-healing themselves from 

external damage, contraction-expansion to produce mechanical work, and transferring genetic codes 

to the subsequent generation. The core concept of formation of these structures is self-assembly via 

molecular recognition. 

The most important and clarifier example of self-assembly is constituted by DNA. When the strands 

are mixed together under appropriate conditions and hydrogen bonds are formed between 

complementary base pairs, the formation of the DNA double helix, from two complementary 

deoxyribonucleic acids, is spontaneous and reversible.  

                                                 
9 Anslyn, Eric, Modern Physical Organic Chemistry. University Science Book, 2004. 
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alcohol copolymer system capable to release insulin in diabetic rats by external ultrasound 

irradiation17.  

 

 Electric and magnetic field 

 
An alternative mechanism of stimulation is the application of electric and magnetic fields. Electro-

magnetic external field as a stimulus represents an enormous advantage, because it can be applied 

or removed instantaneously with a specific direction, which can give rise to anisotropic 

deformation. Electro-magnetic fields represent the most convenient stimuli for signal 

control18,19,20,21, and compared to systems that respond to changes in electrolyte concentration or pH 

or temperature they result faster22. To date, many examples of electro-responsive polymers and gels 

have been used to prepare materials that swell, shrink, or bend after an electric or magnetic field is 

imposed23,24. 

The conversion of electro-magnetic energy into mechanical energy has promising applications in 

biomechanics, artificial muscle actuation, sensing, energy transduction, sound dampening, chemical 

separations, and controlled drug delivery. Most of the examples of electric responsive systems, 

reported in literature, are based on polyelectrolyte hydrogels25, where anisotropic swelling ore de-

swelling is due to charged ions migrating towards the anode or cathode side of the gel. 

 

                                                 
17 Miyazaki, S., Yokouchi, C., and Takada,M, ,J. Pharm. Pharmacol, 40, 1988, 716–717. 
18 M. Zrinyi, Colloid Polym Sci, 278, 2000, 98–103 
19 G. Filipcsei, I. Csetneki, A. Szilagyi, M. Zrinyi, Adv Polym Sci, 206, 2007,  137–189 

20 Bar-Cohen, Electroactive Polymer actuators as artificial muscles: reality, potential, and challanges,2nd 

ed.; 2004, SPIE Press: Bellingham, Wash.  
21 Mohsen,S; Kwang, J.K., 2004, Smart Mater. Struct., 14 (1), 197 
22 M. Zrinyi,  Trends Polym Sci, 5 , 1997,  280–285 
23 G. Filipcsei, J. Feher, M. Zrinyi, J, Mol Struct, 554, 2000, 109–117 

24 T. Shiga, Adv Polym Sci, 134, 1997, 131–163 

25 (a) Kim, S.J., Kim, H.I., Shin, S.R., J. Appl. Polym. Sci., 92, 2004, 915–919. (b) Kim, S.J., Park, 

S.J., Lee, S.M., Lee, Y.M., Kim, H.C., and Kim, S.I. J. Appl.Polym. Sci., 89, 2003, 890–894. (c) 

Kim, S.J., Park, S.J., Shin, M.-S., Kim, S.I. , J. Appl.Polym. Sci., 86, 2002, 2290–2295. (d) Kim, 

S.J., Yoon, S.G., Lee, S.M., Lee,S.H., and Kim, S.I. ,J. Appl. Polym.Sci., 91, 2004,  3613–3617. 
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transitions, that are necessary to induce structural changes. Thus, near UV and visible light, (λ= 

200-750 nm) are more often used as stimuli for photo-responsive systems, that will be deeply 

described in the next chapters.  

 

 

3 Photochromic Molecular Switches. 

 
Photo-responsive systems are constructed using moieties that absorb near UV and/or visible light, 

and this leads to structural changes: 

 photoisomerization  

 photodimerization 

 photoinduced decomposition and other.  

 

Controlling molecular self-assembly by an external light stimulus is advantageous, because 

photochemical reactions occur very rapidly and thereby a fast response can be obtained. Light is 

also advantageous in view of its ready availability as a mild energy source34.   

Various classes of compounds that undergo photo-isomerization were used as photochromic 

molecular switches, such as azobenzenes, diarylethenes, spyropyrans and other. Among the photo-

switching molecules, the most widely used are azobenzene derivatives, because of their photo-

stability, that allow to perform several cycles of photo-isomerization without loss of performance or 

chemical purity.  

                                                 
34 R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, M. Venturi, Acc. Chem. Res. 2001, 34, 445–455 
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isomerization occurs by irradiation with UV light and the process is fast and reversible; in particular 

for unsubstituted azobenzene, photoisomerization results to be faster than thermal isomerization, 

and as consequence the two process are well-separated in time. The trans isomer is 

thermodynamically more stable than the cis isomer, (the energy barrier at room temperature is c.a. 

50KJ/mol), thus cis-to-trans isomerization occurs spontaneously in the dark. Functionalization of 

azobenzene with different substituents results in a change in spectroscopic properties and 

isomerization mechanism. 

 

3.4.1 Azobenzene isomerization mechanism 

 
Structural analyses by X-ray and computational experiments have shown that the trans isomer 

adopts a planar structure with C2h symmetry, while the two phenyl rings are twisted by 30° in the 

gas phase54.   

The low-energy absorption spectrum of trans isomer (Figure 13) displays two bands, a strong band 

in the near UV spectral region, ( λ max ~ 320 nm, ε ~ 22000 L mol-1cm-1 ), associated with 

absorption of the dipole-allowed, π-π* transition, and a weak band in the visible region, ( λ max ~ 

450 nm, ε ~ 400 L mol-1cm-1 ), that refers to n- π* transitions, formally dipole-forbidden.. On the 

other hand cis isomer assumes a non-planar structure with C2 symmetry, and its absorption 

spectrum is characterized by weaker bands in UV region, ( λ max ~ 270 nm, ε ~ 5000 L mol-1cm-1; 

λ max ~ 250 nm, ε ~ 11000 L mol-1cm-1), and another band in the visible region, ( λ max ~ 450 nm, 

ε ~ 1500 L mol-1cm-1 ), that absorb more strongly than for the trans isomer.. 

 

                                                 
54 (a) C. J. Brown, Acta Crystallogr., 1966, 21, 146–152. (b) C. R. Crecca and A. E. Roitberg, J. 

Phys. Chem. A, 2006, 110, 8188–8203. (c) M. Traetteberg, I. Hilmo and K. Hagen, J. Mol. Struct., 

1977, 39, 231–239. 
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with from 7 to 18 molecules of water. About α-CyD it has been reported that α-CyD*6H2O can 

exist in three different crystal forms. α-CyD*6H2O form I consist of two water molecules inside the 

cavity, fixed to each other by hydrogen bonds, and four molecules outside74, α-CyD*6H2O form II 

with one water molecule inside the cavity, whereas the III form, crystallized from an aqueous 

solution of BaCl2, contains 2.57 water molecules inside the cavity. It has been noticed that in γ and 

β-CyDs water molecules inside the cavity are distributed among alternate sides, as in the case of α-

CyD form III, while the fixed location in α-CyD form I and II is unusual. As consequence, in these 

crystalline forms, α-CyD’s ring has not 6-fold symmetry and consequently shows an higher 

conformational strain energy. The strain energy seems to be the energy accompanying the inclusion 

phenomena. 

 

Polarity of the CyDs cavity: 

 
Early studies on CyDs’s cavity date back to 1967 when Van Etten et al75 investigated UV spectra of 

4-tert-butylphenol in an aqueous solution of α-CyD, in order to determine the polarity of the host 

cavity. It was found that UV spectra of the complex in aqueous solution did not differ from the one 

recorded in dioxane. Subsequent studies carried out by the same group, focused just on inclusion 

phenomena of the aromatic chromophore inside the cavity, but did not justify the results obtained 

on the various classes of CyDs in different solvents regarding the polarity. Later a great variety of 

fluorescent molecules and their inclusion complexes have been investigated, because fluorescence 

quantum yield is sensitive to the polarity of the probe’s environment76. 

It was thanks to the studies by Linert et al, that it was possible to determine the polarity of the 

cavity of the cyclodextrins. Linert et al reported that the cavity of β-cyclodextrins was hydrophobic, 

while the one of α-cyclodextrin could not be defined as such. Trough Gibbs energy’s measurements 

(carried out by Connors et al as a function of molar ratio of the co-solvent in a binary mixture 

water-organic solvent) and the affinity constant of the complex in different solvents, it was possible 

to determine the effective polarity of the cavity of CyDs. Results showed that cosolvents could be 

divided in two classes: more or less polar than log P = -0.3, (P = partition coefficient of 1-

                                                 
74 (a) Manor, P. C.; Saenger, W. Nature 1972, 237, 392. (b) Manor, P. C.; Saenger, W. J. Am. 

Chem. Soc, 1974, 96, 3630. 
75 Van Etten, R.L., Sebastian J.F., Clowes, G.A., J.Am.Chem.Soc.,1967, 89,3242. 
76 (a) Turro, N. J.; Okubo, T.; Chung, C. J. J. Am. Chem. Soc 1982, 104, 3953. (b) Cox, G. S.; 

Turro, N. J.; Yang, N. C.; Chen, M. J. J. Am. Chem. Soc 1984, 106, 422. (c)  Hamai, S. J. Phys. 

Chem. 1990, 94, 2595. 
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	ܮܵ  	ܵ ⇆  ܮ₂ܵ	

In which S represents the guest, and L is the host. The binding constant can be obtained as follows: 

 

=₁₁ܭ
[ SL]

ሾܵሿ	ሾܮሿ	
 

 

=₁₂ܭ
[ SL₂]
ሾܵܮሿ	ሾܮሿ	

 

 

=₂₁ܭ
[ S₂L]

ሾܵܮሿሾܵሿ	
 

 

It is also common to define a dissociation constant that is the reciprocal of binding constant. 

Depending on the properties of the guest molecule, it is possible to follow the association process, 

through several methods, such as optical spectroscopy, (UV absorption, Circular Dichroism, 

Fluorescence). Upon the formation of a complex, several chemical and physical properties of the 

guest can change79, for example: 

 

 Chemical shift in NMR spectra; 

 Optical activity induced on a non-chiral guest after complexation, as consequence of 

cyclodextrin chirality; 

 Reactivity of the guest molecule can decrease after the formation of a stable complex; or in 

other cases, cyclodextrins can act as artificial enzymes, increasing the rate of the reactions or 

changing their course; 

 Solubility of the guest molecule can increase in aqueous solution, while diffusion and 

volatility decrease drastically. 

 

In this chapter will be presented the main methods used to confirm the formation of aggregates by 

optical techniques and calorimetric titration.  

 

  

                                                 
79 Freudenberg, K.; Cramer, F.; Plieninger, H. Ger. Patent, 895769, 1953. 
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Figure 28: (a) Structures of crown-appended polymers p6αCD and p3αCD, and azobenzene-C12-modified 

polymer pC12Azo. (b and c) Schematic representations of photoresponsive self-assemblies of polymer 

mixtures p3αCD/pC12Azo and p6αCD/pC12Azo, respectively. 

 

Two water soluble polymers, possessing cyclodextrin pendant groups, consisting of either αCD is 

connected at 3- position of a glucose ring, (p3αCD ) or αCD is connected at 6- position of a glucose 

ring, ( p6αCD ) have been prepared. Another complementary photoresponsive polymer has been 

prepared, containing azobenzene-functionalized dodecamethylene pendants. The mixture of the 

guest and host polymer generate a cross-linked assembly trough the complexation of azobenzene 

moieties on C12polymer and αCD. The steady state viscosity measurements of semidilute solutions 

showed that Z value of p6αCD/pC12Azo had a greater value compared to p3αCD/pC12Azo. These 

results showed the different affinities for the two binary mixtures as function of the local 

interactions mode. By 2D-NMR Dosy experiments, it was observed that for p3αCD/pC12Azo the 

interaction occurred mainly between azobenzene and αCD, whereas  for p6αCD/pC12Azo 

interactions involved C12 and αCD. Viscosity measurements after irradiation with UV light, 

showed an increased Z value for p3αCD/pC12Azo, and a decreased value for p6αCD/pC12Azo. 

Noesy measurements showed that upon irradiation no more interaction occurred between 

azobenzene moiety and αCD for p3αCD/pC12Azo, whereas p6αCD and pC12Azo remained 

interlocked even after trans to cis isomerization.  
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aqueous solution. As reported previously azobenzene undergoes trans to cis isomerization when 

irradiated with light tuned to an appropriate wavelength, (275–340 nm). The reverse cis to trans 

isomerization can be driven by light, (245–265 nm or 350–440 nm) or occurs thermally in the dark, 

Additional substituents on the azobenzene ring system could change the spectroscopic properties 

and isomerization mechanism. Usually, the photo-stationary state is reached under UV irradiation at 

340 nm, and then the back photo-isomerization is carried out under irradiation at 254 nm. 

Unfortunately αCD-azobenzenene derivatives showed low solubility in aqueous solution, probably 

due to the formation of the polymer in the trans state, as confirmed by the higher solubility of the 

cis state. Several techniques, such as two-dimensional NMR, diffusion coefficient measurements, 

electrospray ionization mass spectroscopy (ESI-MS) and Circular Dichroism, have been used to 

characterize the formation of a supramolecular oligomer in aqueous solution and its disaggregation 

upon photo-isomerization. Moreover preliminary study on a model system constituted by 

Azobenzene carboxylate and cyclodextrines in aqueous solution allow us to obtain information 

about the constant of association, aggregation/disaggregation phenomena and results obtained have 

been used to compare data for the linked systems. 
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A = AHG+AG 

 

Following the formation of the complex, after several additions of the host, a change in absorbance 

is what is experimentally recorded, (ΔA), with A0 corresponding to the initial absorbance before 

complex is formed, and A the absorbance recorded after each addition. 

 

ΔA = A - A0 

 

Using Lambert-Beer equation, it is possible to write the previous equation as: 

 

ΔA = εHG[HG]b + εG[G]b - εG[G]0b 

 

where b is the optical path. 

Considering, as before, that [G]0 >> [H]0, it is correct to assume that [G] is equal to [G]0. 

 

ΔA = Δε [HG]b 

 

where Δε is the change in value between εHG and εG. 

The change in concentration as a function of the other component can describe a binding isotherm, 

as in the following equation. 

ሾܩܪሿ 	ൌ 	
ሾܪሿܭሾܩሿ
1  ሿܩሾܭ

  

Substituting the binding isotherm equation into the previous equation, the equilibrium constant Ka 

can be correlated to change in absorbance.  

 

ΔA = bΔε	ሾுሿబೌሾீሿ
ଵାೌሾீሿ

 

And then: 

ଵ


 = 

ଵ

௱ఌሾீሿబሾுሿబೌ
		

ଵ

௱ఌሾுሿబ
 

 

Δε can be obtained from intercept, while Ka can be calculated from the slope. 
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Where c is the concentration of the sample in moles / L and l the optical path in cm. 

The absorption of these components follows the law of Lambert-Beer, and in the CD spectra two 

types of absorption can be obtained, one for component 

 

AL – AR = ΔA = (εL – εR) lc = Δεlc 

 

Where L and R respectively indicate the rotation levorotatory and dextrorotatory, A indicates 

the absorbance and Δε is the molar extinction coefficient differential. 

Δε recorded as a function of the wavelength generates a spectrum with bands associated with the 

electronic transitions of the chromophore. These bands may be positive or negative depending on 

which circularly polarized radiation is absorbed more, so the sign and the intensity of the bands are 

directly related to the structure of the substance examined. 

It should be noticed that Circular dichroism technique opens up the possibility to detect not only 

chiral molecules, but also structures created by non chiral chromophores interacting with other 

chiral molecules. This phenomenon is called induced circular dichroism and results one of the most 

advantageous methods to determine the structure of supramolecular aggregates. A qualitative 

information of assembling phenomena and interaction between cyclodextrins and a guest molecule 

can be obtained from CD spectra.  The incorporation of a photocromic moiety converts 

cyclodextrins into  a spectroscopically active system, changing their optical activity. An induced 

circular dichroism in the absorption region of the chromophore is produced when an achiral azo dye 

forms complexes with cyclodextrins . For cyclodextrin complexes different rules have been 

reported by Kodaka and Harata, to correlate the sign of the induced CD (icd) bands with the 

orientation of the guest chromophore relative to the host. For a chromophore located inside the host 

cavity, according to their theoretical treatment,, a positive Cotton band is produced when the 

electronic transition moment of the guest is nearly parallel to the molecular axis of αCD.. On the 

contrary,a perpendicular transition dipole moment will give rise to a negative band, . These rules are 

inverted in the case of a chromophore located outside the cavity88 (Figure 36). 

                                                 
88 Masato Kodaka et Al. J. Am. Chem. Soc., 1993, 115 (9), pp 3702–3705 
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4  Conclusion 

 

In this device, by means of a reversible supramolecular process, light is directly converted into 

mechanical energy. Given the known photochemical stability of azobenzenes, the process can be 

repeated many times without loss of performance. Experiments are in progress to confirm this point. 

With respect to the molecular system employed in the previous example of direct light-to-

mechanical energy conversion, the present system offers two main advantages: the molecular unit is 

simpler to make and water is used as the solvent in place of organic solvents. From the practical 

standpoint, this broadens the range of suitable, commercially available membranes and, in 

perspective, renders the process more environmental friendly. 
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by square planar G-quartets96. Since then, in the last decades, several guanine-related molecules 

have been synthesized and deeply investigated in different areas, from medicinal chemistry to 

nanotechnology. The use of guanine opens up the possibility to design functional materials with 

tailored physical properties, that can be easily manipulated thanks to the reversible nature of the 

interactions.  

 

1.2  Guanosine architectures in non-polar solvents 

 

Until the early 1990s G-quartets have been studied only in aqueous media. Indeed, Guschlbauer 

reported in his review that “water appears to be an indispensable solvent for the autoassociation of 

guanosine […] organic solvents give rise to poorly organized aggregates”. At that time the 

appropriate conditions to characterize G-quadruplexes in organic media were not yet identified. It 

was just few years later, in 1995, that our group in Bologna97, and in the same years independently 

the Davis’s98 group in Maryland, reported that lipophilic guanosine derivatives could form G-

quartet structures also in organic media, in presence of alkali-metal cations. The possibility to work 

in organic media opened up the possibility to design a great variety of functionalized guanosines, 

both in the sugar hydroxyl groups both in the aromatic base, and unlike in water, it was possible to 

observe not only supramolecular architectures based on the metal-ion template G-quartet motif, but 

also ribbon-like, sheet like and continuous helical architectures.99 In order to study the guanosine 

behavior in absence of H-bonding competitors, like water molecules, our group started to synthesize 

lipophilic derivatives (LGs). In these derivatives the donor and acceptor groups in the nucleobase 

were still present, while aliphatic chains attached to the sugar moiety increased the solubility in 

organic media. Few examples of LG derivatives are reported below. 

                                                 
96 M. Gellert, M. N. Lipsett, D. R. Davies, Proc. Natl. Acad. Sci. USA 1962, 48, 2013. 
97 G. Gottarelli, S. Masiero, G. P. Spada, J. Chem. Soc. Chem. Commun. 1995, 2555.  
98 J. T. Davis, S. Tirumala, J. Jenssen, E. Radler, D. Fabris, J. Org. Chem. 1995, 60, 4167.  

 
99 J. T. Davis, S. Tirumala, J. Jenssen, E. Radler, D. Fabris, J. Org. Chem. 1995, 60, 4167.  
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solvents, which can solvate the dissociated anion more efficiently, favor the formation of larger 

assemblies. In the case of III, for example, 16mers are formed in THF, 24mers in acetone, whereas 

the use of more polar solvents, (i.e. DMSO) resulted in no complexation because they are strongly 

competing solvents for hydrogen bonding. 

 

 

1.4  Methods for studying G-quadruplexes 

 

Circular Dicroism spectroscopy is widely used to study G-quadruplex self-assembly in solution.109 

In CD spectra a diagnostic exciton CD signal arises when two or more chromophores are chirally 

oriented with respect to each other. The exciton coupling is characterized by two opposite signed 

CD bands in the absorption region, while the λ max absorption corresponds, or nearly corresponds, 

to a zero CD intensity110. In the case of G-quadruplexes the chromophores are the guanine moieties 

that exhibit two absorption bands located at around 250 and 290 nm, corresponding to π-π* 

transitions (short axis polarized at ca. 290 nm, long axis polarized at ca. 250 nm). An exciton 

coupling between the transition dipole moments located in near-neighbour guanines is generated by 

the mutual rotation of piled G-tetrads. Homopolar stacking (head-to-tail configuration) or 

heteropolar stacking (head-to-head or tail-to-tail) origin different excitonic bands at the 250 nm 

transition, arising from the relative orientation of the transition moments located in the closest 

guanines in stacked tetrads. The CD signal intensity is related to the rotational strength R0a, which 

is the product of the electric and magnetic transition moments associated to a specific electronic 

transition (from the ground state 0 to the excited state a), therefore to be CD active a transition must 

have both electric and magnetic moment. When two G-tetrads are stacked to each other, the 

magnetic moment arises from the coupling of two non-coplanar electric moments of guanine in 

adjacent quartets (Figure 73a.). Two non-degenerative coupling modes are possible, parallel or 

antiparallel, for the magnetic moment with respect to the electric one, thus, the product of electric 

and magnetic moments gives rise to one positive (parallel mutual orientation) and one negative 

(antiparallel orientation) rotational strength, with the lower energy coupling at higher wavelength. 

                                                 
109 a) Masiero, S.; Trotta, R.; Pieraccini, S.; De Tito, S.; Perone, R.; Randazzo, A.; Spada, G., Organic & 

Biomolecular Chemistry 2010, 8 (12), 2683-2692.  b) Randazzo, A.; Spada, G.; Da Silva, M.; Chaires, J.; 

Graves, D., Quadruplex Nucleic Acids 2013, 330, 67-86. 
110 Superchi, S.; Giorgio, E.; Rosini, C., Chirality 2004, 16 (7), 422-451. 
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Figure 76. Lyotropic liquid crystals from (a) self-assembled guanosines. The symmetry of the (b) cholesteric 

and (c) hexagonal phase. 

Changing different conditions, such as temperature or equivalents of added salts, these aggregates 

can originate viscous gel-like phases or self-correlate to generate mesophases of either cholesteric 

or hexagonal type, as pictured in Figure 76. Not only template aggregates, but also in the absence of 

cations, lipophilic guanosine supramolecular aggregates can form lyotropic mesophases also in 

organic media,118.  

 

 

1.7  Liquid Crystals 
 
 
In this section it will be described general informations about liquid crystals (LCs), useful to better 

understand the behavior of guanosine aggregates, starting from classification to general 

characteristics. The three well-defined states of matter are represented by solids, liquids and gases, 

that differ each others from a different amount of order. The solid state exhibits a rigid arrangement 

of the molecules, that are oriented in a fixed way and highly ordered. In the liquid state molecule 

are not constrained to occupy a specific position, thus are free to diffuse in a random fashion. 

Attractive forces in the liquid state still exist, but result to be weaker than in solids. In gas phase the 

degree of order is therefore much less than in the liquid state, and more molecules move quickly in 

all directions. LCs are matter in a state that has properties intermediate between those of 

conventional liquid and those of solid crystal. For example, LCs can flow like a liquid, but its 

molecule are oriented as in the solid state. To the typical properties of the solid state ( optical 

anisotropy and electric) and of the liquid state ( fluidity and molecular mobility ), are added peculiar 

characteristics of the liquid crystal itself: such as the ability to vary the degree of order by means of 

magnetic and electric fields , or change of color as function of the temperature and so on.This has 

made of the liquid crystal a class of compounds that are now widely used for the construction of 

objects of daily use such as the LCD display.  

                                                 
118 G. Gottarelli, S. Masiero, E. Mezzina, S. Pieraccini, G. P. Spada, P. Mariani Liq. Cryst. 1999, 26, 965.  
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1 Organic solar Cells 

 

1.1  Introduction 

In the last decades materials bearing a delocalized π electron system, which can absorb sunlight, 

create photo-generated charge carriers, and transport these charge carriers, have attracted 

considerable attention not only from academic research, but also from industrial field, as potential 

materials for organic solar cells128,129. Nowadays the chance to use sustainable, clean and secure 

energy source has became more and more a must to ensure a future for coming generations. If we 

consider that a great amount of energy arises from sunlight (4.3x1020 J per 1 h), it is consequential 

to consider solar energy as the most likely possible renewable energy resource130. Recently a huge 

number of systems and materials has been proposed, in order to improve the efficiency or reduce 

the total cost of photovoltaic converters131. One of the most representative examples, the “Gratzel 

cell”, is constituted by a mesoporous n-type TiO2 coated with a photosensitizer dye and a p-type 

conducting electrolyte132,133. In general, dye sensitized solar cells, DSSCs, are regenerative photo-

electrochemical cells based on the sensitization of a nanocrystalline semiconductor with a dye able 

to absorb a wide range of the solar spectrum134. In figure 102a is reported a general scheme of the 

operating principle and energy level diagram of a dye-sensitized solar cell. The first event (1) 

consists of  the photoexcitation of the dye, followed by electron injection from the dye excited state 

into the conduction band of the semiconductor, TiO2, supported onto transparent fluorine-doped tin 

oxide (FTO) conducting glass. An external circuit allows the electrons to flow to the counter 

electrode, where they are transferred to a redox pair present in the electrolyte. Holes created at the 

dye ground state can be regenerated through reduction by the hole-transport material. The most 

common transport material is of I/I3- redox couple: at the counter electrode triiodide is converted to 

iodide. Once the oxidized dye is regenerated by electron donation from the electrolyte, the cycle is 

complete. It is fundamental that sensitizer regeneration of the by a hole transporter occurs faster 

than the recombination of the conduction band electrons with the oxidized sensitizer. In addition, 

                                                 
128 S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 2007, 107, 1324−1338 
129 Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2004, 19, 1924 
130 N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729 
131 M. A. Green, Phys. E 2002, 14, 11. 
132 Hagfeld, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269-277 
133 A. Reynal, E. Palomares Eur. J. Inorg. Chem. 2011, 4509–4526 
134 A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595. 
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acceptor. For efficient photovoltaic devices, transport of the created charges to the appropriate 

electrodes within their lifetime is one of the main steps, as far as the driving force to reach the 

electrodes. Most of the cases in literature, report that the driving force is represented by a gradient 

in the chemical potentials of electrons and holes built up in a donor-acceptor junction, as difference 

between the highest occupied molecular (HOMO) level of the donor and the lowest unoccupied 

molecular orbital (LUMO) level of the acceptor. Another common driving force is dependent on the 

concentration gradients of the respective charges, which leads to a diffusion current. It has to be 

noticed that to improve solar cells performance, interfacial   area   between   donor   and   acceptor 

has to be large, so it is important to reduce the distance between donor-acceptor interfaces to a value 

lower than exciton diffusion length from the absorption site.  

The  architecture in OPV devices can be schematically described as follows: 

 DONOR: it is a p-type hole conducting polymer (usually PPV derivatives); 

 ACCEPTOR: it is a n-type electron conducting compound (usually fullerene derivatives); 

 HOLE TRASPORTER LAYER: it is composed of poly(3,4-ethylendioxythiohene)-

polystyrene-para-sulphonic acid, i.e PEDOT-PSS); 

 ELECTRODES 

Important representatives of hole conducting donor-type semiconducting polymers are: 

 derivatives with phenylenevinylene backbones, such as poly[2-methoxy- 5-(3,7-

dimethyloctyloxy)]-1,4-phenylenevinylene) (MDMOPPV),  

 derivatives of thiophene, such as poly(3- hexylthiophene) (P3HT) 

 derivatives with fluorene backbone, such as (poly(9,9′-dioctylfluorene-co-bis-N,N′-(4- 

butylphenyl-1,4-phenylenediamine) (PFB). 
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By comparing the potential values for oxidation, it can be observed that electron-donor substituents  

shift  the  two  processes  towards  higher  potential  values, whereas  no  effect  is  exerted  on  the  

value  of  reduction potential. Since  the  value referring to the first reduction process is comparable 

with that found for cAZO-3 and PCBM, the  next  step  will  be to  test  this  compound as  an  

electron  acceptor material, when blended with a donor species. 

 

1.9  Conclusions 

 

Conjugation of azobenzene photochromic units leads to the development of rigid molecular 

structures and the structure of these organic compounds resembles that of oligo (p-

phenylenevinylene) (PPV) derivatives and they can be considered their electron poor counterparts. 

In fact, their reduction potential shifts to more positive values upon increasing of azo units and the 

linear trend found for the redox potential and computed LUMO energy levels suggests that the 

addition of more azo units will lower further LUMO energy, thus moving the reduction potential 

towards more positive values. This makes these molecules potential electron acceptor materials in 

the development of organic solar cells. Preliminary tests did not a show a significant reduction of 

donor materials photoluminescence and this can be ascribable to high phase segregation between 

donor and acceptor, due to aggregation of acceptor material. The obtained results suggest that an 

improvement in the design of conjugated oligo-azobenzene has to focus on molecular 

functionalization, in order to avoid phase segregation and to tune the electrochemical properties. 
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