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Abstract 

 

In recent years the availability of GPS data has seen as a significant improvement in data 

accuracy, continuity and quality, due to the spread of smartphones and mobile applications 

for self-localization and navigation. GPS datasets provide analysts with geo-referenced 

information about users’ mobility and habits.  

The first part of the thesis consisted of an analysis of the context of bicycle facilities for the 

city of Bologna, Italy, made through experimental measures of cycleway and road usage 

rates, and cycling speed.  

The following part of the study focused on the use of GPS traces datasets, which allow to 

record a wide amount of bike trips. The main advances in the last years’ relevant literature 

have been described. Subsequently, two case studies have been analyzed: GPS traces 

datasets recorded through mobile devices, both for the city of Bologna and for the whole 

Netherlands.  

First, the original dataset of GPS points have been properly filtered in order to exclude 

instrumental errors. The GPS points have then been matched to a high-detail network 

database, in order to obtain the actual routes chosen by cyclists. The considered road 

networks included both attributes of the roadway and attributes of the bicycle facilities, 

when existing.  

The percentage of the trips done on a bicycle facility versus the roadway could thus be 

compared with the results from the first part of the study, and be used as a measure of the 

attractiveness and effectiveness of the bicycle facilities available. Furthermore, the chosen 

routes could be compared with the shortest routes for each origin-destination pair, and 

route choice models could be calibrated, based on different relevant attributes of the 

networks, of users, and of trips.  
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Abstract in italiano 

 

Negli ultimi anni la disponibilità di dati GPS ha visto un deciso miglioramento in termini di 

accuratezza, continuità e qualità del dato, anche grazie al diffondersi di smartphone e 

applicazioni per l’auto-localizzazione e navigazione. I dati GPS forniscono agli analisti 

preziose informazioni geo-referenziate riguardo agli spostamenti e alle abitudini di mobilità 

degli utenti.  

La prima arte del lavoro di tesi è consistita in un’analisi del contesto ciclabile per la città di 

Bologna, attraverso rilievi sperimentali dell’uso delle infrastrutture ciclabili, o della 

carreggiata stradale, nonché delle velocità dei ciclisti. 

Successivamente lo studio si è concentrato sull’uso di dataset di tracce GPS, che 

permettono di registrare una grande quantità di viaggi in bici. Sono stati descritti i princiali 

avanzamenti della letteratura pubblicata sul tema negli ultimi anni. Successivamente, sono 

stati presi in considerazione due casi di studio: le tracce GPS regsitrate tramite applicazioni 

mobile, per la città di Bologna in Italia, e per tutto il territorio dell’ Olanda. 

Per prima cosa, i punti GPS che costituiscono i dataset originali sono stati opportunamente 

filtrat per escludere errori strumentali. I punti GPS sono quindi stati attribuiti ad un modello 

di rete opportunamente dettagliato, ottenendo così i veri  e propri percorsi scelti dai ciclisti. 

I modelli di rete considerati includono sia le caratteristiche delle strade che delle piste 

ciclabili, laddove presenti.  

Le percentuali di utilizzo delle piste ciclabili e della carreggiata stradale hanno così potuto 

essere confrontate con i risultati ottenuti dalla prima parte dello studio, e utilizzate come 

misura dell’attrattività e dell’efficienza delle piste ciclabili disponibili nei due casi di studio. 

Inoltre, i percorsi scelti sono stati confrontati con i percorsi di minima lunghezza calcolati 

per ciascuna coppia OD, e due modelli di scelta del percorso sono stati calibrati, sulla base 

di attributi della rete di trasporto, dei ciclisti e dei viaggi.  
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Introduction 

 

Research background and aims 

 

Over the years, non-motorized travel alternatives, as cycling, have been largely 

underrepresented in transport discussion both from city-administrators and policy makers, 

but also from research. Growing interest in sustainable transportation systems has 

increased the focus on policies and investments that are able to transform cycling in a real 

travel option, for everyday urban trips and for an increasing number of people belonging 

to different population segments. However, such investments are often made without 

being able to carry out a quantitative forecast of the impacts of the investment, thus risking 

to result in ineffective interventions. In this sense, what needs to be investigated in advance 

is the level of usage of existing bicycle infrastructures and travel patterns of existing cyclists. 

By knowing the “state of fact” of cycling mobility in a certain urban context, decision 

makers can effectively intervene for enhancing it. 

The first approaches to the problem were mainly based on measuring the three 

fundamental traffic quantities – speed, volumes and density. The idea was to apply to 

bicycle infrastructures the same approach seen for the determination of the Level of 

Service for road segments. What these studies have determined, is that the same criteria 

adopted for car mode cannot completely be transferred to bicycle mode, as different are 

the factors that influence the quality of a trips as perceived by car travelers and cyclists. 

As research has been demonstrating in the last decades, cyclists consider a variety of 

factors when evaluating the quality of their cycling trips in an urban context. Cyclists’ travel 

decisions are often motivated by perceived travel time – and speed – as well as by 

perceived safety. Both travel time and safety are influenced by the geometric design of the 

facilities (turning radii, slope, lane width) and functional features (proximity to cars, speed 
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of adjacent cars, proximity of car parking stalls, presence of dedicated facility). Moreover, 

other factors intervene, less easy to quantify and measure, as land-use, pleasantness of the 

environment, or perceived quality of a bicycle context.  

Thus, researchers tried to develop synthetic indicators of bikeability, or stress level, or level 

of service, mainly based on stated preference surveys.  Stated preference surveys has been 

largely used for understanding cyclists’ preferences, as they constitute a relatively cheap 

data collection method, and they provide a controlled experimental environment. 

Another consistent part of the literature on the subject has relied on revealed preference 

surveys, where analyst asked participants to describe their travel choices after the travel 

itself. In order to use this more reliable source of data, more information on the network 

is needed, as well as specific methodologies for data analysis. 

Recently, research on cyclists’ preferences has grown thanks to the spread of the Global 

Positioning Systems (GPS) recording devices. On one side, the level of accuracy of GPS 

devices has increased, thanks to the investments on the involved technologies. On the 

other side, people habits and attitude towards the use of smartphone changed very rapidly, 

to the point that nowadays it is absolutely common for people to possess a smartphone, 

keep self-localization devices activated, declare their position in order to make it available 

for a vaste set of applications and services, register, monitor and share with people their 

position, trips and activities. Data availability for investigating cyclists travel choices and 

habits has seen an incredible enhancement. 

In parallel with these changes in technology and society, research followed: several of the 

methodological developments relevant to modelling route choices from GPS-based travel 

surveys are relatively recent.  

 

This work aimed at understanding which are the most critical aspects of cycling in an urban 

context, and individuating what makes a path more attractive of another for cyclists. To do 

so, we started to explore some experimental data from Bologna, an Italian medium-sized 

city that has one of the highest bicycle split rate, considering the Italian context. The first 

measurements of usage rates and speed patterns on cycleway and road segments of the 
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network of Bologna indicated that cyclists often cycle on the road, mixing with motorized 

traffic, even if a bicycle facility next to the roadway is provided. This in mainly due to the 

frequent interruptions that a cyclist encounter along a dedicated bicycle path, and to the 

presence of disturbances. One of the main factors influencing cyclists’ choices are indeed 

his perception of speed and safety. 

The research then moved towards the use of GPS smartphone-based datasets. Such data 

provides a broader point of view on cyclists’ behaviour, as well as more information on the 

cycling patterns of a much wider sample of cyclists on a much wider portion of the network. 

The benefits of the availability of such rich travel datasets comes, of course, with the 

burden of a much more complicated process of data elaboration and analysis. The main 

processing methodologies for modelling route choice from GPS traces recorded from 

smartphone have been described, and can generally fall into three main categories: (1) 

filtering and map-matching procedures, (2) choice set generation and (3) route-choice 

modelling. 

Each of these steps has been considered in this work, and both novel and existing 

methodologies have been applied to real case studies. The first case study considered is, 

again, the city of Bologna. A rich database of GPS traces collected through a smartphone 

application by cyclists, in the framework of the European Cycling Challenge of 2013, has 

been processed and analysed. 

The second GPS-recorded trip dataset available has been collected in the Netherlands, in 

the framework of the Mobile Mobility Panel, using a dedicated smartphone application. 

Participants from all over the Netherlands has been registering their bicycle trips for weeks, 

indicating the trip purpose. The database also comprised personal socio-economical 

information of participants. 

 

 



21 

Thesis outline 

 

This PhD thesis consists of four main parts, which are illustrated in next page scheme. The 

first part of the thesis will present an analysis of the context of bicycle facilities for the city 

of Bologna, Italy. From first Chapter a Journal paper has been published, and the outline of 

the Chapter reflects the main structure of the paper. The aim of this first part of the study 

is to shed light on cyclists’ usage of the bicycle facilities, in order to describe the specific 

context of bicycle facilities in Italy.  

The second part of the work will focus on the use of GPS data coming from smartphone to 

investigate cyclists’ preferences and habits.  The literature background on the subject will 

be descripted in Chapter 2, focusing on the three main phases of the GPS data analysis 

process, i.e. the map-matching of the GPS points to the network database, the choice set 

generation methods, and route choice modelling.  

Further, two applications to two case studies will be described: Chapter 3 will provide detail 

on the case study of the GPS database of cyclists trips collected in Bologna in the framework 

of the European Cycling Challenge. First, the GPS trips database and the network database 

will be described. Subsequently, a novel map-matching procedure will be proposed and 

applied to the case study; from this map-matching phase of the study a second Journal 

paper has been excerpted and published. The last part of Chapter 3 will provide a 

descriptive analysis of the traces obtained as an output of the map-matching algorithm 

previously proposed. 

Chapter 4 focuses on the second case study, the bicycle GPS traces collected in the 

Netherlands for the Mobile Mobility Panel. This second database available for the study 

will be described, the analysis of matched trips will be illustrated and two models for route 

choice will be estimated and discussed. 

Finally, general conclusions from the whole PhD study will be drawn in the final part of the 

document, summarizing the applied methodologies, the main results, and the lessons that 

could be derived, also considering possible future developments to this research.   
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The structure of the PhD thesis. 
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Chapter 1: Quantifying the role of 
disturbances and speeds on separated 
bicycle facilities 

 
Journal Paper 1: The paper presented in Chapter 2 is first-authored by the candidate, co-

authored by Professor Kevin J. Krizek of the University of Colorado Boulder, and co-

authored by Professor Federico Rupi, and is published as: 

 

Bernardi, S., Krizek, K.J., Rupi, F. (2016). Quantifying the role of disturbances and speeds on 

separated bicycle facilities. Journal of Transport and Land Use, 9(2), In Press. 

 
A preliminary version of this paper was presented at the World Symposium of Transport and 

Land Use Research in Delft (NL), in June 2014. The paper was then updated, rewritten and 

accepted for publication from the Journal of Transport and Land Use, scheduled for 

Scheduled for JTLU vol.9 (2), 2016. 
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1.1. Overview 

As cities worldwide aim to spur more bicycling in cities, a key issue revolves around the 

nature and design of specific, bicycling-oriented facilities. What design treatments might 

be necessary to best separate cyclists and pedestrians from traffic? What are associated 

land use constraints? Available guidelines (e.g., see CROW 2007, NACTO 2012, AASHTO 

2012) are usually specific to various countries or contexts and provide differing levels of 

specificity about the degree to which cycling facilities mix with pedestrians. What remains 

unknown is detailed knowledge about how pedestrians mix with or impede cycling 

behavior in different contexts. This research therefore aims to quantify the impact of 

impedances along different types of cycling facilities, focusing on, but certainly not limited 

to, the role of pedestrians.  

Several research efforts address the effectiveness of dedicated bicycle facilities on 

outcomes such as cyclist safety, user satisfaction or other. Using stated preference surveys 

(Abraham et al. 2002, Sener et al. 2009, Stinson and Bhat 2005, Krizek and Roland 2005, 

Tilahun et al. 2007), revealed preference surveys (Broach et al. 2012, Menghini et Al. 2010, 

Hood et Al. 2011), and accident data (Aultman-Hall and Hall 1998, Lusk et al. 2011, 2013, 

2014), the research base generally suggests that dedicated facilities help spur levels of 

cycling (Schweizer and Rupi, 2014), provide safety benefits (perceived and real), and 

advance a more pleasurable cycling experience.  

Cyclists consider a variety of factors when evaluating the utility of a route and more 

specifically, a particular segment of a route. Decisions are often motivated by perceived 

safety and a desire to maintain their ideal cycling speed (i.e., they tend not want to be 

slowed by various obstructions). Safety and speed are influenced by the geometric design 

of the facilities (turning radii, slope, lane width) and functional features (proximity to cars, 

speed of adjacent cars, proximity of car parking stalls, presence of disturbances on the 

facility). But key dimensions that have received less attention in the design and research 
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about bicycle facilities revolve around disturbances: specific obstacles in the facility that 

affect user satisfaction. Disturbances may be stationary (e.g., intersections, utility poles, 

bollards) or non-stationary (e.g., other cyclists or pedestrians).  

For example, intersections that punctuate bicycle facilities have shown to be particularly 

vexing: a body of literature examining intersections along off-street paths is burgeoning 

(Phillips et al. 2011, Schepers et al. 2011, Sorton and Walsh 1994, Strauss and Miranda-

Moreno 2013). In the path/route choice literature, using both SP and RP-based studies 

Broach et al. (2012) and Sener et al. (2009) found that route utility reduced by high-traffic 

crossings, stop signs, and traffic signals. Although the delay of these intersections can vary 

and be modified to favour cyclists, depending on traffic control devices used (signals or 

stop signs), more intersections than fewer are often perceived as a nuisance and 

impedance.  

A different type of disturbances are those that are non-stationary in nature—other cyclists 

or users of other modes. Sometimes, the utility of a separated bicycle facility may be 

undetermined because of the intended or unintended need to mix with other modes. 

Pedestrians are a prime example of such. Little research, however, has focused on the 

extent to which pedestrians mixing with cyclists decrease the speed and therefore lessen 

the utility.  

The most relevant literature we are aware of in this respect refers to “pedestrian 

hindrances.” For example, knowing volumes and speeds of pedestrians and cyclists, Botma 

(1995) initially proposed a model to evaluate the number of passing and meeting events 

on off-street facilities. This work was later adopted and applied to different contexts (Allen 

et al 1998, Virkler et al. 1998, Green et al. 2003, Highway Capacity Manual 2010) to 

demonstrate how hindrances affect functional characteristics of bicycle facilities. The main 

contribution of these studies was the determination of a level of service for shared off-

street facilities based on the number of passing and meeting events. This work, however, 

left issues unanswered, such as the specific impact of hindrances on users speed. Also, 

Botma’s methodology supposes a normal distribution of bicycle speeds and fails to 

consider alternatives such as mixing with traffic.  
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We aim to fill this gap in the literature by systematically analyzing three transportation 

segments in Bologna (Italy). We considered two different environments: off-street bicycle 

facilities and mixed traffic conditions in the roadway. By definition, off-street facilities 

include both separated bicycle facilities (exclusive to cyclists – cycleways – or shared with 

pedestrians) and cycle tracks (, i.e. bicycle-exclusive paths) (European Economic and Social 

Committee, 2012).  

We focus here exclusively on non-stationary disturbances to cyclists: pedestrians and 

bicyclists for the off-street environments and motorized vehicles for roadway environment. 

We compared cycling travel speeds in each environment to quantify speed reductions, 

largely types and amounts of non-stationary disturbances.   

Our results contribute to the literature by quantifying cyclist speed reductions from 

pedestrians (on off-street facilities) and motorized traffic (on the roadway). This work has 

direct implications for developing decay curves that relate travel speed on cycling facilities 

with pedestrian volumes; such decay curves prove useful for the future planning of 

dedicated facilities in urban areas. We describe the context of our research and the 

specifics of the three segments. The following section details our data collection process 

and results. The conclusions discuss implications and future research needs. 

1.2. The specific context of separated cycling facilities 

 

Our research focuses on disturbances, which are a situated in a particular cultural context. 

It is therefore helpful to each as they apply to our study—being situated in Bologna (Italy)—

and some peculiarities relating to bicycle facilities. Structural and functional aspects of 

cycling facilities in Italy are regulated by the Codice della Strada, along with the Decreto 

Ministeriale number 557 from 1999, “Regolamento recante norme per la definizione delle 

caratteristiche tecniche delle piste ciclabili.” These regulations offer guidelines to plan and 

design cycling facilities, stating as their aim, “the achievement of a proper level of safety 

and environmental sustainability” (Decreto Ministeriale number 557 of 1999, Article 1). 
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Different designs for off-street facilities described by the Italian guidelines are shown in 

Figure 1. These guidelines, similar to the situation in many countries, prescribe various 

types of bicycle facilities for different types of traffic situations. There is wide variation in 

the types of facilities and the manner in which they separate cyclists from cars.  

Note at least three factors run in the face of these guidelines. The first is that it is not 

uncommon for a cycling facility to be constructed with design treatments misapplied in a 

given context; alternatively, specific standards might be waived or ignored. Secondly, 

contextual factors (most often lack of space) affect the overall quality of specific design 

elements. For example, in some instances, an “off-street bicycle facility” is comprised of a 

raised treatment (e.g., a curb with accompanying bricks) on one side of the street to 

separate the cyclist from cars. The other side of the cycling lane, however, might merely be 

a painted stripe to separate cyclists from pedestrians. This leads to a third issue: even when 

a facility is designed and rules for its use are specified, regulations are mere suggestions. 

When space for pedestrians is provided in adjacent space or banned from the cycling 

facility altogether, it is not uncommon for pedestrians to encroach on the cycling facility. 

In cases of high pedestrian flows, they merely “spill over” into the cyclist facility. This is 

commonplace not only in Bologna, but also in many cities throughout Europe where it is 

difficult to find space for non-motorized travel in extremely space-constrained situations.   
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a)     b)  

 

c)     d)  

 

Figure 1: Some examples of the off-street facility typologies in Italy, as categorized in 

the Italian regulation: a) separated path non-adjoining the roadway; b) separated path, 

separation obtained by a non-continuous barrier; c) cycle track, obtained from the 

sidewalk, separating pedestrian and bicycle areas with different pavements; d) cycle 

track, obtained from the sidewalk, separating  pedestrian and bicycle areas  by painted 

markings. 

 

1.3. Research approach 

1.3.1. Selection of segments studied and their characteristics 

Our central objective was to quantify how different types of disturbances affect cyclist 

travel speed; we chose three segments of Bologna’s (Italy) cycling network to do so (Figure 
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2)1. Our primary concern was on the interplay between pedestrians and cyclists in off-street 

bicycle facilities—but we aimed to do so, in part, relative to disturbances caused by 

motorized vehicles (cars, buses/trucks, motorcyclists) in mixed traffic. We therefore chose 

study segments with: (a) an off-street bicycle facility adjacent to the roadway, (b) varying 

levels of pedestrian use around them, and (c) varying traffic volumes on the roadway. To 

the extent possible, we chose segments away from key intersections, allowing us to better 

focus on primary characteristics of segments vis-a-vis cyclists travel behaviour. Similarly, 

we aimed to keep speeds of vehicular travel constant as best as possible. The segments 

were defined to be 20 meters long and the location of each is approximately two kilometres 

from the centre of Bologna. Characteristics of each segment are described below with 

locations shown in Figure 2. Summary characteristics are presented in Table 1. 

 

 

 

Figure 2: Map of Bologna and locations of the three segments. 

                                                      
1 We employ the following nomenclature throughout this manuscript to improve 
clarity. Segments are the three areas studied; each segment is approximately 20 meters 
long. These segments contain an off-street bicycle facility (that is separated from traffic via 
a physical means — raised curb, parked cars or median) and an adjacent travel lane where 
the cyclists can mix with motorized traffic, i.e. the roadway. Therefore, each segment has 
two different types of environment. 
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Segments 

Type of 

off-street 

bicycle 

facility 

Width 

of the 

bicycle 

area 

(m) 

Width of 

the 

pedestrian 

area (m) 

Pedestrian 

volumes 

Posted 

speed 

limit of 

adjacent 

roadway 

(km/h) 

Peak bus 

volumes 

on 

adjacent 

roadway 

/hour 

 

(1) 

Ercolani 

Exclusive 

separated 

facility 

1.80 - Low 50 40  

(2) 

Fioravanti 

Cycle track 

on 

pavement 

2.10 1.90 Modest 50 5  

(3) 

Matteotti 

Cycle track 

on 

pavement 

1.90 1.50 High 50 55  

Table 1: Features of the three segments examined. 

 

(1) Ercolani (Figure 3) is along the first ring road of the city. It includes two carriageways 

with 50 km/h traffic that is divided by a median strip. Both sides of the northbound and 

southbound carriageways carry buses: 40 per hour, southbound, during peak times, and 20 

per hour, northbound. The off-street bicycle facility in this section is part of a separated 

facility with bidirectional lanes, reserved only for cyclists2. 

 

 

                                                      
2 The red circled sign with the pedestrian indicates pedestrians are technically 

prohibited from the facility. 
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Figure 3: The off-street facility and roadway layout in Segment 1. 

 

(2) Fioravanti (Figure 4) is along a one-way street that heads toward the city centre 

(southbound). Bus traffic is considerably less than in Segment #1 (5 per hour), but lateral 

parking is permitted on both sides of the roadway. The off-street bicycle facility in this 

section is bi-directional and is separated from a pedestrian zone by a painted stripe. 

Pedestrian volumes are modest. 

 

 

 

 

Figure 4: The off-street facility and roadway layout in Segment 2. 

 

(3) Matteotti (Figure 5) is adjacent to a four lane road close to the central train station; 

three lanes head southbound and one is reserved for northbound traffic. The character of 
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the off-street bicycle facility in this section is similar to that in Segment #2. Being close to 

the central train station, bicycle, pedestrian and motorized volumes are high. On average, 

bus volumes are between 50 and 60 per hour, using all three southbound lanes.  

 

 

 

Figure 5: The off-street facility and roadway layout in Segment 3. 

 

1.3.2 Data collection 

 

For each of the three segments, we studied cyclist travel on the off-street bicycle facility 

and on the immediately adjacent roadway (for a total of six environments). We chose seven 

working days (from 8:30 until 10:30) in April 2012 to be best representative of general 

cycling conditions. We collected data in two different phases. Our first phase counted the 

number of cyclists on each of the six different environments and timed how long each 

cyclist took to travel the 20 meter stretch. We tallied cyclists in all directions according to 

the environment they were cycling in (off-street versus roadway). This data provided us 

with baseline information about speed and also pointed to general patterns of use across 

the different facilities. 

In the second phase we administered our own experiments to collect data relating 

disturbances and speed. One researcher cycled in each environment approximately 100 

times. Employing the typology presented in Table 2, he used his own judgement to record 
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all types of disturbance he encountered. For example, pedestrians encroaching onto the 

off-street bicycle facility were a disturbance; in the mixed traffic, cars or buses that forced 

him to share a lane or otherwise affected his travel were a disturbance . The researcher 

was asked to conform to typical cycling behaviour, and to keep it consistent (e.g., when to 

pass other cyclists). Furthermore, he was encouraged to apply consistency in how each 

type of disturbance was classified. The other researcher timed the cyclist on the 20 meter 

stretch. The research team did this approximately 100 times for each environment, 

totalling almost 600 coupled measures. 

 

 

Off-street Bicycle Facility Roadway 

No pedestrians, bikes in same direction No disturbances or two-wheeled vehicles 

No pedestrians, bikes in opposite direction 1 car or more 

1 – 3 pedestrians 1 bus or more 

4 pedestrians or more Heavy vehicles 

Table 2: Classes of disturbances considered. 

 

1.4. Results and analysis 

1.4.1. Speed and use attributes 

We first aimed to better understand baseline measures for each of the three environments 

and the relative characteristics. Segment #3 had the highest volume of cyclists, recording 

an average of 850 cyclists for the two-hour period; Segment #1 averaged 480 cyclists and 

Segment #2 had 240. These volumes are consistent with the intensity of land uses and 

activities around each segment (e.g., Segment #1 is adjacent to the central station and 
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along a primary corridor headed into town; Segment #2 is in a more peripheral location 

and on a minor road). Using data collected from this phase we calculated average speeds 

for each environment; summary results are shown in Table 3. Average cycling speeds varied 

between 14.6 and 22 km/h, which generally agree with the values reported in Allen et al. 

(1998). Most studies with which we are familiar found bicycle speeds to be normally 

distributed; this varied by facility in our data and distributions for each are shown in Figure 

6. A significance t-test was performed for the two speed samples, comparing off-street 

facility and mixed traffic data, and results revealed a statistically significant difference 

between the two samples for all the three segments. 

Across all segments, average cyclist speed was higher in mixed traffic facility than on the 

off-street bicycle facility. Overall, cyclists’ speeds were highest in Segment #1 (18.9 km/h 

on the off-street bicycle facility and 22 km/h in mixed traffic), largely owing to pedestrians 

being technically forbidden in the off-street facility and cyclists often using the dedicated 

bus lanes in the roadway. 

Figure 7 shows the proportion of cyclists’ using the different environments. Segment #2 

had the highest percentage of cyclists using the off-street facility (73%), followed by 58% 

in Segment #1. In contrast, less than half of the cyclists (47%) used the off-street facility in 

Segment #3. Even in Segment #1, where the off-street facility is not shared with other 

users, 42% of the cyclists chose to mix with traffic. Several factors contribute to these 

patterns and explaining them is clearly beyond the scope of our immediate study. Common 

sense suggests that variations and revealed preferences have to do with the width of the 

adjacent corridor for pedestrians (which lead to disturbances); other matters relate to 

discontinuities of the off-street facility further upstream (or downstream). Still other 

factors may be due to the cyclist’s desire to link origins and destinations along the corridor; 

the specific facility might be out of the way of their needed route. But some of the variation 

is also influenced by intensity of the non-stationary disturbances (particularly pedestrians) 

in affecting speed along the routes. We now turn to quantifying the extent of these non-

stationary disturbances in terms of decreased speed. 
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Segments 

Average # 

of cyclists 

measured 

in 2 hrs 

Statistic 

Off-street 

Bicycle 

Facility 

Roadway 

(1)Ercolani 480 

Mean speed (km/h) 18.90 22.00 

Standard deviation 

(km/h) 
3.16 5.08 

Coeff. of Variation 0.168 0.231 

(2)Fioravanti 240 

Mean Speed (km/h) 14.60  16.8  

Standard deviation 

(km/h) 
3.12 4.24 

Coeff. of Variation 0.213 0.252 

(3)Matteotti 850 

Mean Speed (km/h) 16.00  17.00  

Standard deviation 

(km/h) 
2.97 4.39 

Coeff. of Variation 0.186 0.259 

Table 3: Cyclists’ volumes and average speeds for the three segments. 
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Segment 1 - Ercolani 

  

Segment 2 - Fioravanti 

  

Segment 3 - Matteotti 
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Figure 6: Cyclists’ travel speed distributions: on the horizontal axes speed values are 

divided in ranges; the bars represent the frequency of speeds. In blue, the results for 

separated bicycle facilities, in red those for the roadway. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Cyclist use by facility. 

 

1.4.2. Disturbance analysis 

For each of the approximate 600 coupled observations, we calculated average speeds and 

examined them relative to the type of disturbance. For each recorded disturbance, we 

calculated the speed reduction compared to free flow (undisturbed) travel conditions. We 

also tallied the frequency of the different types of disturbances, reflected as a proportion 

of measurements where a disturbance was recorded. Finally, we calculated the average 

speed weighted by the frequency of each disturbance for both the off-street bicycle facility 

and the roadway. Results are shown in Tables 4 and 5, by segment.  

Average travel speeds reflect the probability of each type of disturbance. The bottom row 

in the tables shows the frequency of measurements where at least one disturbance was 

registered — as a complement to the percentage of measurements where no disturbances 
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were registered3. The cyclist-researcher experienced a disturbance approximately half the 

time. And, when the cyclist-researcher experienced no disturbances, his speeds generally 

agreed with the speeds recorded from phase 1 of the data collection. For Segments #1 and 

#3, disturbances were more frequent on the off-street bicycle facilities (54% and 90% of 

the time) than on the roadway (45% and 58%, respectively). The frequency of disturbances 

was more balanced across the facilities for Segment #2 (58% for separated and 62% for 

mixed).  

The frequency by type of disturbance varied. Pedestrians were most common for the off-

street facilities in Segments #2 and #3; for Segment #3, a cyclist would encounter a 

pedestrian in 90% of the observances. Cyclists in the opposite direction were most common 

in #1. For the roadway, cars were clearly the most common disturbance (24%, 57%, 47% of 

observances).  

In each of the off-street facilities, pedestrians had the largest impact on cyclists’ travel 

speed, affecting a 10 to 27% reduction. Other cyclists were second, slowing speeds by 5%, 

on average. The speed reduction was felt most acutely in Segment #3 — owing to a variety 

of factors — but overall pedestrian volumes were clearly one of them.  

In mixed traffic, we noticed speed reductions from cars and trucks; disturbances from 

motorcycles were negligible. In Segment #1, buses led to speed reductions of 25%; in 

Segment #3, cars and buses led to speed reductions of 32% and 37%. The largest impact 

was associated with heavy vehicles, a 63% speed reduction. In general, cars, buses and 

heavy vehicles, have the greatest impact on reducing cyclist travel speed; pedestrians much 

less. 

Furthermore, we considered weighted average — jointly analysing the average speed 

reduction weighted by frequency of disturbance. For Segments #1 and #2, weighted speed 

reductions are relatively minor, ranging between 2% and 14%. The weighted speed 

                                                      
3 Percentages of observations with no disturbance and at least one disturbance sum to 

100. Some of the observations, however, had more than one disturbance; therefore, the 

sum of the percentages of events for single classes of disturbance exceeds 100.   
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reductions we calculated in Segment #3 were considerable: 20% for the off-street facility 

and 40% for the mixed traffic. This segment is rich in disturbances and has notable speed 

reductions. Our analysis suggests cyclists might be making route choice trade-offs that are 

influenced by two factors: (1) frequent pedestrian disturbances on the off-street facility 

that produce moderate speed reductions, (2) relatively fewer disturbances on the roadway 

that have more severe speed reductions. Most cyclists prefer to travel in the mixed traffic 

— though robustly explaining this phenomena is beyond the scope of this data collection 

exercise.   

Such factors suggest the attractiveness of a bicycle facility is impacted by jointly considering 

the frequency of disturbances and their effects. This joint calculus is a contributing factor 

in a cyclist’s decision to use an off-street facility versus the roadway. In other words, even 

if they know that encountering a heavy vehicle might present a safety hazard, at least on 

segments we studied, the event could be perceived to be rare enough for them to choose 

the mixed traffic condition.  
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 (1)Ercolani (2)Fioravanti (3)Matteotti 

 

Disturbance 

type 

 

Average 

Travel  

Speed 

(km/h) 

% 

Reduction 

Average 

Travel  

Speed 

(km/h) 

% 

Reduction 

Average 

Travel  

Speed 

(km/h) 

% 

Reduction 

No 

disturbance 
16.7 - 15.2 - 15.6 - 

% of events 45.9% 41.9% 9.6% 

Bikes same 

direction 
16.0 4.2% 14.1 6.8% 15.5 0.14% 

% of events 6.6% 13.3% 4.8% 

Bikes opp. 

direction 
16.2 3.1% 14.4 5.0% 14.1 9.0% 

% of events 29.5% 10.7% 1.2% 

1 – 3 

pedestrians 
14.5 13.1% 13.5 10.8% 12.3 20.9% 

% of events 13.1% 33.3% 84.3% 

4 pedestrians 

or more 
n.a. n.a. 13.5 11.1% 11.3 27.2% 

% of events 0.0% 1.3% 18.1% 

Average speed, weighted by disturbance 

 15.6 6.4% 13.9 8.8% 12.5 19.6% 

% of events 54.1% 58.1% 90.4% 

Table 4: Cycling Speeds by Type of Disturbance (Off-street Bicycle Facilities). 
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 (1)Ercolani (2)Fioravanti (3)Matteotti 

 

Disturbance 

type 

 

Average 

Travel 

Speed 

(km/h) 

Reduction% 

Average 

Travel 

Speed 

(km/h) 

Reduction% 

Average 

Travel 

Speed 

(km/h) 

Reduction% 

No 

disturbance 
18.6 - 17.0 - 17.7 - 

% of events 55.2% 37.5% 42.1% 

Two-

wheeled veh. 
18.4 1.1% 17.0 0.26% 17.3 2.2% 

% of events 10.3% 3,1% 5,3% 

1 car or more 

 
17.0 9.0% 16.8 1.15% 12.0 31.7% 

% of events 24.1% 56.3% 47.4% 

1 bus or 

more 

 

13.8 25.8% n.a n.a 11.1 37.2% 

% of events 10.3% 0.0% 21.1% 

Heavy 

vehicles 
n.a n.a 14.9 12.3% 6.6 62.9% 

% of events 0.0% 3.1% 2.6% 

Average speed, weighted by disturbance 

 16.0 14.1% 16.7 1.8% 10.53 40.5% 

% of events 44.8% 62.5% 57.9% 

Table 5: Cycling Speeds by Type of Disturbance (Roadway). 

1.5. Implications and future research 

 

Aim to spur non-motorized travel, transport officials in cities are often challenged by 

finding available space in travel corridors for dedicated cycling facilities. This work informs 

these matters in several respects and also provides springboard to spur future research on 

the issue. We employed a data collection approach to quantify the speed effects of non-
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stationary disturbances — disturbances which often influence cyclists’ route choice 

decisions. Relying on speed as just one of several performance measures, we measured the 

joint effects of disturbance frequency and disturbance impact.  

We learned that motorized disturbances (particularly heavy vehicles) have the strongest 

impact on lowering cyclist’s travel speed. However, these specific disturbances proved to 

be relatively infrequent relative to those encountered on off-street bicycle facilities (where 

pedestrians are more plentiful and contribute to slowing the speed of cyclists). To our 

knowledge, this is the first data collection effort and analysis to point to this trade-off. 

Furthermore, failing proper separation between users, we learned that the presence of 

pedestrians can reduce cyclists speed by up to 30 percent. 

Myriad factors influence a cyclist’s route choice, particularly the decision to use an off-

street bicycle facility or ride in traffic. The probability of disturbances and their impact on 

travel speed are just two of them. Our results suggest that design elements of these 

facilities can play a role in affecting the frequency, type, and severity of disturbances. 

However, it is necessary for future work to better isolate this element (e.g., better 

projecting how wide sidewalks need to be given pedestrian volumes to avoid disturbing the 

bicycle facility). For example, Segment #2 had excess space for pedestrian travel and 

therefore little speed reductions from pedestrians; cyclists can avert pedestrians without 

significantly reducing their speed and, evidently, also pedestrian safety results enhanced. 

Furthermore, wider cycle-tracks (when warranted) benefit cyclist-cyclist interactions 

because it is easier to pass each other going in the same direction.  

Our data collection effort represents a univariate population, which is an 

oversimplification. Different types of cyclists prefer different environments (Larsen and El-

Geneidy 2011, Sener et al. 2009, Wilkinson et al. 1994).  This type investigation could 

benefit from more robustly accounting for demographic, attitudinal or other behavioural 

data which was unfortunately unavailable for this effort. Furthermore, the type of detailed 

GPS data that is now being employed in other bicycle research applications (Broach et al. 

2012, Hood et al. 2011, Menghini et al. 2011) could be adapted to focus specifically on 
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issues we studied here. GPS technology could then be used to focus on the role of trip type 

and broader route choice characteristics.  

A subsequent step would be to integrate these results into a bicycle route choice model 

where frequency of disturbance and its magnitude represent various attributes of the 

utility.  In the current state of the research, the most advanced approach merely considers 

the proportion of the facility that is separated for bicycling (Broach et al. 2012, Hood et al. 

2011, Menghini et al. 2010). Finally, this research documents the frequency and quantifies 

the intensity of disturbances on speed. As future research on this matter evolves, cities 

would benefit from learning about various thresholds of pedestrian volume and 

corresponding cycling speed impacts. This work lays the foundation to create a decay curve 

which could be used to predict travel speed vis-à-vis pedestrian volumes (similar to how 

speed decay curves of vehicle flow are used to determine the level of service of 

infrastructures). Planners would then be able to more robustly estimate cyclist speeds—

and levels of service—for different pedestrian volumes. 

1.6. Summary 

 

When off-street bicycle facilities are poorly designed or placed in less than optimum 

locations (such as in Segment #3), their intended use is less than anticipated. By analysing 

the speed reductions from different types of disturbances we found that frequency of 

disturbance might weigh more heavily than the intensity of the disturbance. Furthermore, 

encountering pedestrians along an off-street bicycle facility lowers average speeds by as 

much as 30 percent, especially in situations where the bicycle facility fails to conform to 

minimum standards. In mixed traffic, the presence of motorized vehicles can produce even 

more severe speed reductions (i.e. in case of heavy vehicles), but these interactions proved 

to be less frequent. 

Most policy officials know they need to heed caution when prescribing off-street bicycle 

facilities adjacent to areas with high pedestrian activity. An outstanding question is how 
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many pedestrians present a problem and the corresponding speed reductions. For 

researchers, this work helps spearhead more robust investigations to establish, for 

example speed decay curves based on pedestrian volumes. For practitioners, our results 

draw attention to the need for physically separating pedestrians from cyclists in facility 

design. Or, where the context suggests less than optimum conditions for an off-street 

facility, it helps quantify when it might be more convenient to better accommodate bicycle 

travel in mixed traffic conditions. 

 

1.7. References  

 

[1] AASHTO. 2012. Guide for the Development of Bicycle Facilities. American Association 

of State Highway and Transportation Officials,  Washington D.C. 

[2] Abraham, J., McMillan, S., Brownlee A., Hunt, J.D., 2002, Investigation of cycling 

sensitivities. Presented at the 81st Annual Meeting of the Transportation Research 

Board, Washington, D.C. 

[3] Allen, D. P., Rouphail, N. M., Hummer, J. E., Milazzo, J. S., 1998., Operational Analysis of 

Uninterrupted Bicycle Facilities.  Transportation Research Record, 163, 29-36. 

[4] Aultman-Hall, L., Hall, F.L., 1998, Ottawa-Carleton commuter cyclist on- and off-road 

incident rates. Accident Analysis and Prevention, 30(1), 29-43. 

[5] Botma, H., 1995, Method to Determine Level of Service for Bicycle Paths and 

Pedestrian-Bicycle Paths. Transportation Research Record, 1502, 38-44. 

[6] Broach, J., Dill, J.,Gliebe, J., 2012, Where do cyclists ride? A route choice model 

developed with revealed preference GPS data.  Transportation Research Part A, 46, 

1730-1740. 

[7] CROW, 2007, Design manual For Bicycle Traffic. National Information and Technology 

Platform for Infrastructure, Traffic, Transport and Public Space, The Netherlands. 

[8] Decreto Legislativo 30 aprile 1992, n. 285. Nuovo Codice della Strada. 



46 

[9] Decreto Ministeriale 30 novembre 1999, n. 557. Regolamento recante norme per la 

definizione delle caratteristiche tecniche delle piste ciclabili. 

[10] European Economic and Social Committee, 2012, European Cycling Lexicon. EUR-

OP. doi:10.2864/10239. 

[11] Green, J. S., Hummer, J. E., Rouphail, N. M, 2003, Using the number of passing and 

meeting events to design pedestrian and bicycles-use paths. Presented at the 2nd Urban 

Street Symposium: Uptown, downtown, or small town: designing urban streets that 

work; July 28-30, 2003. 

[12] Hood, J., Sall, E., Charlton, B., 2011,  A GPS-based bicycle route choice model for San 

Francisco, California. Transportation Letters, 3(1), 63-75. 

[13] Krizek, K.J., Roland, R.W., 2005, What is at the end of the road? Understanding 

Discontinuities of On-street Bicycle Lane in Urban Settings. Transportation Research 

Part D, 10, 55-68. 

[14] Larsen, J., El-Geneidy, A., 2011, A travel behavior analysis of urban cycling facilities 

in Montreal Canada. Transportation Research Part D, 16, 172-177.  

[15] Lusk, A.C., Furth, P.G., Morency, P., Miranda-Moreno, L.F., Willet, W.C., Dennerlein, 

J.T., 2011, Risk of Injury for Bicycling on Cycle Tracks  versus in the   Street. Injury 

Prevention, 17(2), 131-135. 

[16] Lusk, A.C., Morency, P., Miranda-Moreno, L.F., Willett, W.C., Dennerlein, J.T., 2013, 

Bicycle guidelines and crash rates on cycle tracks in the United States. American Journal 

of Public Health, 103(7), 1240-1248. 

[17] Lusk, A.C., Wen, X., Zhou, L., 2014, Gender and used/preferred differences of bicycle 

routes, parking, intersection signals, and bicycle type: Professional middle class 

preferences in Hangzhou, China. Journal of Transport and Health, 1(2), 124-133. 

[18] Menghini, G., Carrasco, N., Schüssler, N., Axhausen, K.W. 2010. Route choice of 

cyclists in Zurich. Transportation Research Part A, 44, 754-765. 

[19] NACTO, 2012, Urban Bikeway Design Guide. National Association of City 

Transportation Officials, Washington D.C. 



47 

[20] Phillips, R. O., Bjørnskau, T., Hagman, R., Sagberg, F., 2011, Reduction in car-bicycle 

conflict at a road–cycle path intersection: Evidence of road user adaptation?. 

Transportation Research Part F, 14, 87-95. 

[21] Schepers, J.P., Kroeze, P.A., Sweers, W., Wüst, J.C., 2011, Road factors and bicycle -

motor vehicle crashes at unsignalized intersection. Accident Analysis and Prevention, 

42, 853-861. 

[22] Schweizer, J., Rupi, F., 2014, Performance evaluation of extreme bicycle scenarios. 

Procedia of Social and Behavioral Sciences, 111, 508-517. 

[23] Sener, I., Eluru, N., Bhat, C., 2009, An analysis of bicycle route choice 

 preferences in Texas, US. Transportation, 36(5), 511-539.  

[24] Sorton, A., Walsh, T., 1994, Stress level as a tool to evaluate urban and suburban 

bicycle compatibility. Transportation Research Record 1438, 17-24. 

[25] Stinson, M.A., Bhat, C.R., 2003, An Analysis of commuter bicyclist route  choice 

using a stated preference survey. Transportation Research Record, 1829, 107-115. 

[26] Strauss, J., Miranda-Moreno, L.F., 2013, Spatial modelling of bicycle activity at 

signalized intersections. Journal of Transport and Land Use, 6(2), 47-58. 

[27] Tilahun, N., Levinson, D.M., Krizek, J.K., 2007, Trails, lanes, or traffic: the value of 

different bicycle facilities using an adaptive stated preference survey. Transportation 

Research Part A, 41, 287.301. 

[28] Transportation Research Board., 2010, Off-street pedestrian and bicycle  facilities. 

In Highway Capacity Manual. Washington, D.C. 

[29] Virkler, M., Balasubramanian, R., 1998, Flow Characteristics on Shared Hiking-

Biking-Jogging Trails. Transportation Research Record, 1636, 43-46. 

[30] Wilkinson, W., Clarke, A., Epperson, B., Knoblauch, R., 1994, The effects  of bicycle 

accommodations on bicycle/motor vehicle safety and  traffic operations. U.S. 

Department of Transportation, Federal  Highway Administration. 

  



48 

  



49 

Chapter 2: The use of GPS data for 
bicycle route choice modelling 

 

2.1. Introduction 

 

As we discussed in the previous sections, understanding the main factors cyclists consider 

when evaluating an available path between an OD pair, is crucial in order to build effective 

infrastructures. The aim, when investing in bicycle infrastructure, is to answer to the 

following questions: Where people want to cycle from? Where to? On which path? Which 

type of facility they would prefer to ride on? And in which environment? When determining 

which path they will take from a certain origin to a certain destination, cyclists consider 

different aspects of the trip: travel time, directness, comfort, safety, are those generally 

indicated by literature. The analysis of cyclists’ choice behaviour has been investigated in 

recent years, through the estimation of route choice models.  

One of the important issues in studying route-choice behaviour in cycling is the availability 

of data and its collection procedure. Information about actual chosen routes cannot be 

collected through conventional household travel-surveys. Thus, one reason for the lack of 

such data is that routes cannot be easily reported in the Computer-Assisted-Telephone-

Interview (CATI) methods used for data collection. In the past decades, route choice models 

could be estimated mainly using stated preference data. In this case, for the data collection, 

the source of data would be surveys where users were asked to state which path they 

would choose between a certain origin and destination. Survey’s participants would have 

to indicate the chosen path on a map or, in alternative, different options could be pre-

selected by researchers and users would have to indicate the one they would consider the 

most convenient. This second option would better allow researchers to control the 
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alternative choice set. Nevertheless, stated preference surveys have been largely criticized, 

as they do not capture the actual choices of users, but only their intentions; indeed, it has 

been verified that what people state they would do, does not always match with their 

actual, observed, behaviour.  

A way to collect data that more reliably describe users’ choices is through revealed 

preference data. Traditionally, information about trips were collected at the destination, 

asking users to declare (and describe) the route they have just chose to reach that specific 

destination. While this data collection method let researchers observe more reliable 

choices, two are the main limitations: the small size of samples, when obtained by surveys 

at a specific location, and the difficulty of observing the routes. 

In recent years, these issues has been significantly overcome by the use of Global 

Positioning System (GPS)-based travel surveys now provides an approach to trace vehicle 

movements and, hence, collect data on the actual routes chosen by cyclists in their trips. 

To date, the literature on empirical modelling of route choices using GPS traces are quite 

limited (see the work of Schussler and Axhausen 2009, Menghini et al. 2010 for the city of 

Zurich, Hood et al., 2010, with an application to the city of San Francisco, Broach et al, 2012, 

for Portland), but undoubtedly expanding. This can be explained considering different 

factors: for example, on one side the level of accuracy of GPS devices has increased, thanks 

to the investments on the involved technologies. On the other side, people habits and 

attitude towards the use of smartphone changed very rapidly, to the point that nowadays 

it is absolutely common for people to possess a smartphone, keep self-localization devices 

activated, declare their position in order to make it available for a burgeoning set of 

applications and services, register, monitor and share with people their position, trips and 

activities.  Further, in parallel with these changes in technology and society, research on 

mobility followed: several of the methodological developments relevant to modelling route 

choices from GPS-based travel surveys are relatively recent.  

In this context, the broad focus of this research is to combine data from GPS-based travel 

surveys and Geographic Information Systems (GIS)-based roadway network databases to 

estimate models for route-choice. For these purpose three are the main macro-areas of 
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research that have seen a significant development in recent years, and they can be 

classified following the three basic steps for any route-choice modelling study using raw 

GPS-data: 

1) Map-matching;  

2) Choice Set Generation;  

3) Route Choice Modelling. 

The map-matching is the process of identifying the specific links of the roadway traversed 

by a vehicle by mapping the points from its GPS trace to an underlying road network 

database. This step is critical as it identifies the fundamental “choice” (i.e., the route) of 

interest. In other words, given the singular GPS points registered during one trip – could be 

one per second, or registered with higher headway, generally up to 20 seconds – the map-

matching procedure provides the sequence of links, belonging to the network database, 

that most likely where used. This means that the network database plays a key-role in the 

accuracy of the results of the map-matching: the more complete is the network 

representation, more likely it is that the process provides the path that was actually taken 

for the single registered trip. Furthermore, map-matching procedure should be easily 

replied for different contexts, and almost completely automated. For this reason, another 

important issue is the efficiency of the algorithms implied in this process, their ability to 

examine a high number of points and links with a reasonable computational effort. 

Once the chosen path has been identified, the next step is to determine which other paths 

were available to the same traveller for moving between the same origin-destination pair. 

This process is called choice-set generation. Contrary to the case of a stated choice 

experiment, in this case there is not a limited choice set built “a priori”, or indicated by the 

respondent. For this reason, researchers (see for example Bovy and Fiorenzo-Catalano, 

2007, Prato and Bekhor, 2007, Rieser-Schüssler et al. 2012, Halldórsdóttir et al. 2014 ) tried 

to develop algorithms and procedures to “generate” plausible alternatives, considering the 

network topology or a various set of network features. The challenge, for choice-set 

generation methodologies, is to build alternatives that are realistic, distinct but also – as 
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for the map-matching step – to maximize the efficiency of the involved procedures, 

especially in terms of computational effort. 

Comparing the chosen routes for all respondents and all origin-destination pairs, and the 

corresponding choice sets, route choice models can be estimated, to describe the aspects 

of route choice behaviour. Considering the research field of route choice models, the 

literature is burgeoning with theoretical approaches and applications. For example, for an 

extensive description of discrete choice models that can be suitable for short-term travel 

decisions, such as route choice decisions, see Ben Akiva and Bierlaire (1999). The various 

models applied to bicycle route choice models will be listed and described further in this 

Chapter, in paragraph 3.2.3. In general, it can be said that the main aspect to considerate, 

when dealing with bicycle route choice deduced by smartphone data are: (1) the 

overlapping of alternatives and (2) the repetition of choices made by the same respondent. 

More in detail, the urban context and the roads on which people usually cycle require a 

small scale approach, and this leads to consider alternatives – paths – that can be very 

similar and highly overlapped. Different approaches and model forms were proposed to 

overcome this issue. Further, route choice models estimated from travel diaries – which is 

generally the case with smartphone data, should account for trip repetitions, between the 

same origin-destination pair, made by the same user. It is very likely that those choices that 

are usual and repeated over the days – systematic trips – present different features if 

compared with the occasional ones.   

Another aspect that differs between the various models proposed in literature is the choice 

of explanatory variables, made by the analyst. This aspect is, of course, connected with the 

availability of data. As highlighted in the previous Chapters of this thesis, and widely 

established by research on bicycle trip mode, many are the aspects that cyclists consider 

when choosing a path over another, and such variety of factors should be captured by route 

choice models. In the last decade, in parallel with the development of the technologies 

connected to trip detecting and recording through portable localization devices, also the 

level of detail and attributes incorporated in network database has significantly increased. 

Thanks to the diffusion of what has been defined “volunteered geographic information”, 
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richer network database are available, compiled by volunteers, both in terms of 

completeness and in terms of attributes describing the network’s elements. As we will see 

in the following Chapter of this thesis, the application to the two case studies has been 

made, in both cases, using network database coming from volunteer cyclists: for the Italian 

case study, the Open Street Map network has been freely obtained and used; for the Dutch 

case study, the network compiled by the volunteers of Fietsersbond (a Dutch cyclists union) 

has been used. The “crowd-sourcing” approach for network database – also applied to 

other relevant information, e.g. land-use – allow to have larger – both in terms of area and 

in terms of detail – and more descriptive networks. Thus, more accurate models can be 

estimated for bicycle route choice, for example including route attributes (such as travel 

time, numbers of turns, and number of intersections, pavement, presence and type of 

bicycle facility, environment, etc.), trip attributes (time of the day, day of the week, trip 

purpose), and traveller attributes (gender, age, experience etc).  

The next paragraphs provide a review of the existing studies in the areas of map matching, 

choice-set generation and route choice modelling. 

 

2.2. Literature Background 

 

2.2.1. Map-matching 

The map-matching process consists of all those operations that transform a stream of GPS 

points to a road-network database to identify the traversed links in the chosen route. 

There are many map-matching algorithms proposed in literature, depending on the input 

data and on the application context. An extended review of map-matching algorithms 

applied to transportation research can be found it Quddus et al. In this review, map-

matching algorithms have been categorized into three typologies: geometrical, topological 

and advanced. The geometrical approach is normally based on the distance between GPS 

points and network elements, edges or nodes (proximity-based algorithms): this approach 
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is rather uncomplicated in terms of implementation, but the accuracy and the stability of 

such algorithms is rather scarce. For example, Spissu et al (2011) implemented a GIS-based 

procedure, using proximity as the main criteria for matching the GPS points to the network:  

a spatial join was used to match the GPS points to the corresponding routes, and afterwards 

a manual inspection corrected the matching errors. The method found routes only for 58% 

of the trips. Unmatched trips were due to missing GPS points, inconsistent activity data and 

missing links in the roadway network. Furthermore, the main drawback of this 

methodology is the need of a manual check of the results. 

Topological approaches, other than the sole distance, also take into consideration the 

sequence of GPS points and the connectivity of network elements. For example, some 

studies have applied the “shortest-path procedure”. Du (2005) proposed a method that 

predicts the chosen route by determining the shortest path satisfying network topology 

such as link location, connectivity, one-ways, and allowable u-turns. The method was 

implemented in ArcGIS and examined against 674 trips collected on 18 known routes of 

Lexington, KY. For a known OD pair, approximately 95% of the routes were constructed 

entirely. However, high computational times and manual interventions were needed.  

Finally, advanced map-matching procedures typically combine geometric and topological 

procedures with additional criteria, parameters, assumptions, probabilistic analysis, or 

optimization. For example, an advanced approach consists of taking into consideration the 

GPS measurement errors and constructing confidence regions around the points, based on 

data quality; then, only the edges within these regions are selected for evaluation. The 

evaluation can be based on a combination of different criteria, such as distance, speed or 

connectivity to the previously matched edges. The challenge for new and advanced map-

matching procedures is to increase the accuracy while maintaining computational 

efficiency. 

Marchal et al. (2005) proposed an algorithm that uses a multiple hypothesis technique 

(MHT).The MHT stores multiple paths during the process and in the end selects a path with 

the best score. The authors starts by calculating a “link score” by determining the distance 

of the link to the GPS point. The algorithm starts with finding a set of links that are closest 
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to the first GPS point. For each link, a new path is created and links are inserted with their 

scores assigned to the respective paths. GPS points are processed in order, based on their 

timestamp, and a path score is updated by adding the score of the last added link to its 

previous score. When the end of a link is reached, a copy of the path is created for each 

outgoing link and then the path is removed from the set of paths. In the end, the path (in 

the set of paths) with the lowest score is selected as the traversed path. The algorithm 

could not produce continuous routes in most cases, which the authors suggest is due to 

irregularities GPS streams caused by tunnels, tree canopies, poor signal, and so forth. As a 

result, a sequence of paths was generated instead of a continuous route. The authors also 

added that algorithm is sensitive to outliers in GPS data. 

Schüssler and Axhausen (2009) modified the original algorithm by Marchal et al. (2005) to 

overcome their limitation of not producing a continuous route. Additionally, a modified 

method was used to calculate a score. First, they subdivided each trip into continuous 

segments depending on the gaps in GPS streams. Afterwards, they created the trip 

segments by using the algorithm by Marchal et al. (2005). Then, a complete trip was 

obtained by connecting trip segments through a shortest path search with a treatment for 

low quality map matching results. The results showed a smaller number of matched routes 

in comparison to the total routes. Further investigation of the results showed three main 

reasons for such low numbers of matched routes: missing links in the roadway network, 

off-network travel, and u-turns.  

In the next Chapter, a novel methodology to map-match the GPS traces collected by 

cyclitsts in Bologna (Italy) will be proposed. The map-matching procedure described in 

Chapter 4 applies some of the concepts introduced by Marchal et al. (2005), such as using 

GPS point proximity to a link to determine its probability of being chosen, and the idea of 

building the complete chosen path maximizing the link score – or, as it will be described, 

minimizing the link weight. The aim is to obtain an efficient algorithm, capable of matching 

a large sample of GPS points to high detail network, with a high accuracy. The accuracy of 

the map-matching methodology will be evaluated based on the difference in length 

between matched route and the polyline obtained by linking the GPS points’ sequence. 
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What should be highlighted is that the application of map-matching methodologies that 

have been consolidated for car trips could present issues when applied to bicycle trips. 

Indeed, bicycle trips registered in urban contexts presents specific issues. Firstly, in dense 

urban streets the partial absence of GPS points in a trip is more likely, due to the loss of 

signal of the geo-localizing device. Secondly, cyclists do not necessarily cycle in roadways 

or on the provided bikeways, but they sometimes use pedestrian paths, prohibited ways, 

or they cross parks and squares. This higher degree of freedom characterizing bicycle trips 

makes GPS recorded data more difficult to match to the available road maps: in case of 

bicycle traces, the quality of the map-matching is particularly sensitive to the accuracy and 

details of the available road network model. 

 

2.2.2. Alternative choice set generation 

 
Once the chosen routes have been determined, the next step is to determine the set of 

alternative paths available for the same trip. Since the revealed preference surveys do not 

directly ask the respondents to provide information on the options available/considered, 

nor a limited set of alternatives are designed by the analysts and submitted to respondents, 

the choice sets have to be determined considering those paths that are topologically 

feasible with the respect to the network model. Clearly, it is unlikely that any traveler, at 

the moment of starting his trip, is aware of all the paths available between the desired 

origin-destination pair. For this reason, to consider as the choice set the complete set of 

possible paths would not be correct, as a “universal” choice set would contain a high 

number of unattractive and unrealistic routes that the traveler would never consider during 

the decision-making process. The inclusion of these unrealistic routes in a choice set would 

result in an incorrect model estimation, as well as representing an incredible burden in 

terms of computational effort. Therefore, a choice set must be limited to those paths that 

actually represent a realistic alternative for the traveler. By definition, the choice set consist 

of the collection of travel options perceived as available by individual travelers in satisfying 
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their travel demand (Bovy, 2009). Another aspect that should be accounted for is the 

overlapping of alternatives: indeed, considering options that could be perceived as too 

similar by the traveler would result in errors in the modelling phase.  

For what concern bicycle route choice applications, choice-set generation approaches 

proposed in literature can be classified into two categories:  

1) Shortest path based methods; 

2) Probabilistic methods.  

 

Shortest-path based methods are the most popular and commonly used methods in the 

literature. Assuming a given generalized cost expression, this method searches for the 

minimum-cost path in the network between the origin and destination under examination.  

Over the years, researchers have introduced several variations to the basic approach of 

minimizing path’s cost, proposing different applications which maintained a fair 

computational efficiency. 

For example, “K-shortest path” algorithms extend the idea of calculating a single shortest 

path to determine k-shortest paths for a given generalized link cost function (Papinski and 

Scott, 2011, Spissu et al., 2011)  

Another approach is to calculate multiple shortest paths considering multiple attributes for 

cost, called “labels” (from which the name “labelling” approach). In other words, the 

labelling approach consists in finding the best path considering more than one attribute at 

a time. Ben-Akiva et al. (1984), who proposed the approach, generated routes using  labels 

that include time, distance, scenic, signals, capacity, hierarchical travel pattern, quality of 

pavement, commercial development, highway distance, and congestion. Routes with only 

two labels, time and distance, replicated 70% of the chosen routes and routes with all labels 

together replicated 90% of the chosen routes. The study found signals not being a 

significant factor and concluded that factors other than time and distance do play a 

significant role in route choice. Prato and Bekhor (2007) applied the same approach, but 

using only distance, free-flow time, delay and traffic lights.  
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Further, “link elimination” approaches (Frejinger and Bierlaire, 2007, Halldórsdóttir et al. 

2014) also start from calculating the minimum-cost path, but subsequently they generate 

multiple alternatives by iteratively removing one or more links from it, and re-calculate the 

new best path. Schüssler et al. (2012) proposed a variation to the approach, called 

“breadth-first search link elimination” (BFS-LE). The algorithm searches for the minimum-

cost path between origin and destination. Consecutively, the links of the shortest path are 

removed one by one and the shortest path for the resulting network is determined. Once 

all links of the original shortest path have been processed, the algorithm proceeds to the 

next level, where two links at a time are eliminated. The algorithm monitors the generated 

networks and only keeps unique and connected routes. The algorithm continues until the 

maximum number of unique routes has been generated, the time abort threshold is met 

or there are not more feasible routes between origin and destination (Halldórsdóttir et al., 

2014). Also the BFS-LE can consider different cost attributes for the determination of the 

minimum-cost path; for example, Halldórsdóttir et al. (2014) considered four different cost 

functions, based on a combination of different attributes: road type (large or small), bicycle 

lane (segregated or not), and land use (scenic roads, or forest roads). 

 

Differently to the deterministic methods, like those that have been just described, where 

an alternative either belongs to a choice set or not, probabilistic methods, consider 

intermediate availabilities by assigning perceived probabilities to routes. This set of 

approaches relies on the assumption that all routes connecting origin and destination 

belong to the choice set to some degree (Dhakar, 2013). 

A fairly recent probabilistic approach, applied to bicycle route choice, is the “doubly 

stochastic generation function” (DSGF) (Bovy and Fiorenzo-Catalano, 2007, Hood et al. 

2011, Halldórsdóttir et al., 2014). In the DSGF method, a shortest path search is carried out 

iteratively using an implementation of the Dijkstra´s algorithm on the network. At each 

iteration, costs for the paths are obtained by randomly drawing the cost of each link from 

a probability distribution and extracting attribute preferences for each traveller from 

another probability distribution. After each iteration, only unique routes not generated in 
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previous ones are added to the route choice set. The algorithm stops when the choice set 

size has reached a pre-determined maximum or, alternatively, a pre-determined time 

threshold has been reached. 

 

In general, almost every choice set generation method has been derived from approaches 

and algorithms that had already been tested for car trips. Once applied to bicycle trips, the 

most important variation made by researchers was to account for various cost attributes, 

not only time or length. This is due to the fact that, as we saw in the first Chapter of this 

thesis, since the first studies on bike as a travel mode, and the first attempts to determine 

a measure of the quality that cyclists attribute to the path they use – being them on the 

roadway or on exclusive facilities – it has been demonstrated that many different factors 

strongly influence cyclists perceptions and behavior, like perceived safety and comfort. 

These perceived safety and comfort cannot be explained only by the speed and directness 

of the path, but also from the presence of dedicated facilities, segregated lanes, 

intersections, signals, and environment. 

 

2.2.3. Bicycle route choice modelling 

 
The random utility discrete-choice models are the most commonly used approach for 

analyzing route-choice decisions (Ben Akiva and Bierlaire 1999). These models assume that 

the utility of an alternative consists of two components, one deterministic and one 

stochastic. In particular, the utility of alternative 𝑖 in the choice set 𝐶𝑛 , as perceived by the 

traveler 𝑛, is given by: 

𝑈𝑖𝑛 =  𝑉𝑖𝑛 + 𝜀𝑖𝑛                                                               (1) 

where 𝑉𝑖𝑛 is the deterministic (observed) component and 𝜀𝑖𝑛 is the stochastic (unobserved) 

component. 
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For choice modeling, logit-based models are most commonly used. Among the family of 

logit models, the Multinomial Logit Model (MNL) is the simplest one. For the MNL model, 

the probability of choosing an alternative 𝑖 in the choice set 𝐶𝑛is given by: 

𝑃(𝑖 𝐶𝑛⁄ ) =  
𝑒𝑉𝑖𝑛

∑ 𝑒𝑉𝑗𝑛
𝑗∈𝐶𝑛

 

(2) 

The MNL model is based on the assumption of Irrelevance of Independent Alternatives 

(IIA), and therefore does not consider the similarities between alternatives. This represents 

a limitation of the MNL model, which can affect the results when dealing with similar 

alternatives in the choice set. As we have already discussed in the previous paragraph, that 

is the case for route-choice models, even more for bicycle route-choice models, where the 

alternative paths can be significantly overlapped. On the other side, researchers have tried 

to maintain the computational benefits of the simple, closed-form MNL model, while 

proposing modifications to capture the similarities among paths. 

Several models have been proposed in literature to overcome the limitations of the MNL 

model. This paragraph will present some of the most common models that proved to be 

suitable for bicycle route- choice behavior. For a deeper review of route-choice modelling 

research, one could refer to Prato (2009). 

Methodologies that modify the deterministic part of the utility function include the C-logit 

and the Path Size Logit (PSL). 

 

C-logit model, firstly developed by Cascetta et al. (1996), introduced a term called 

“commonality factor” in the deterministic part of the utility that measures the physical 

overlap of a route with other routes in the choice set. The commonality factor (CF) reduces 

the utility of a route due to its similarity with other routes. The probability of choosing an 

alternative 𝑖 in the choice set 𝐶𝑛 is given by:  

𝑃(𝑖 𝐶𝑛⁄ ) =  
𝑒𝑉𝑖𝑛+𝐶𝐹𝑖𝑛

∑ 𝑒𝑉𝑗𝑛+𝐶𝐹𝑗𝑛
𝑗∈𝐶𝑛

 

            (3). 
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Cascetta et al. (1996) propose the following specification for the commonality factor: 

𝐶𝐹𝑖𝑛 =  𝛽𝐶𝐹𝑙𝑛 ∑ (
𝐿𝑖𝑗

√𝐿𝑖𝐿𝑗

)

𝛾

𝑗𝜖𝐶𝑛

 

(4) 

where 𝐿𝑖𝑗 is the length of links common to paths 𝑖 and 𝑗, and 𝐿𝑖  and 𝐿𝑗 are the overall length 

of paths 𝑖 and 𝑗, respectively. 𝛽𝐶𝐹 is a coefficient to be estimated. The parameter 𝛾 may be 

estimated or fixed to a convenient value, often 1 or 2. Note that the commonality factor of 

an alternative is not one of its attributes; in other words, it can be viewed as a measure of 

how the alternative is perceived within a choice set. 

 

Ben-Akiva and Bierlaire (1999) proposed the Path-Size Logit (PSL) model and measured the 

similarity using a Path-Size term in the deterministic component. The Path-Size indicates 

the fraction of the path that constitutes a “full” alternative. Also for the PSL model the 

expression of the probability of choosing route k within the alternative paths reflects the 

simple Logit structure: 

𝑃(𝑖 𝐶𝑛⁄ ) =  
𝑒𝑉𝑖𝑛+𝑙𝑛𝑃𝑆𝑖𝑛

∑ 𝑒𝑉𝑗𝑛+𝑙𝑛𝑃𝑆𝑗𝑛
𝑗∈𝐶𝑛

 

(5) 

where the Path-Size factor is defined as: 

𝑃𝑆𝑖𝑛 =  ∑
𝑙𝑎

𝐿𝑖

1

∑ 𝛿𝑎𝑗

𝐿𝐶𝑛

∗

𝐿𝑗
𝑗𝜖𝐶𝑛

𝑎∈𝛤𝑖

 

(6) 

where 𝛤𝑖 is the set of all links in path 𝑖,  𝑙𝑎 is the length of link 𝑎, 𝐿𝑖  is the total length of 

path 𝑖, 𝐶𝑛 is the set of all the alternatives for user 𝑛, 𝐿𝐶𝑛

∗  is the length of the shortest path 

in 𝐶𝑛, 𝐿𝑗  is the total length of path 𝑗; 𝛿𝑎𝑗 is the link-path incidence variable, and equals 1 if 

link 𝑎 is part of path 𝑖 and 0 otherwise. 

Even though C-Logit and PSL have similar functional forms, each model gives a different 

interpretation with respect to the correction term introduced within the utility function. 
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The commonality factor reduces the utility of a path because of its similarity with respect 

to other routes, while the path size indicates the fraction of the path that constitutes a 

“full” alternative. Accordingly, a unique path has a size equal to one and N duplicate paths 

share the size 1 𝑁⁄  (Prato 2009). 

 

Another adaptation of the Logit model that account for similarities in the stochastic part of 

the utility (error correlations) while maintaining a closed-form formula for probabilities is 

called Mixed Logit (Ben-Akiva and Bolduc, 1996; Train, 2003). The defining characteristic of 

the Mixed Logit model (also called “Logit Kernel”) is that the unobserved factors can be 

decomposed into a part that contains correlation and heteroscedasticity, and another part 

that is i.i.d. extreme value. Mixed Logit is a highly flexible model that can approximate any 

random utility model (Train 2003). It resolves the three limitations of standard logit by 

allowing for random taste variation, unrestricted substitution patterns, and correlation in 

unobserved factors over time. Unlike Probit, it is not restricted to normal distributions. 

The most straightforward use Mixed Logit model is based on random coefficients. The 

probability for an individual 𝑛 of choosing route 𝑖 has the same form of the standard Logit, 

but it is conditional on the distribution of the coefficients  : 

𝑃′(𝑖) =  ∫
𝑒𝑉𝑖𝑛(𝛽)

∑ 𝑒𝑉𝑗𝑛(𝛽)
𝑗∈𝐶𝑛

𝑓(𝛽)𝑑𝛽 

(7) 

where 𝑓(𝛽) is a density function. In other words, Mixed Logit probabilities are the integral 

of standard logit probabilities over a density of parameters. Different distributions for the 

coefficient 𝛽 used in the literature include uniform, normal, log-normal, and gamma 

distributions. 

Further, a Mixed Logit model can be used without a random-coefficients interpretation, 

but simply representing error components that create correlations among the utilities for 

different alternatives. 
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The model formulations just described have been recently applied to bicycle route choice, 

using GPS traces as observations (for example by Menghini et al. 2010, Broach et al. 2011, 

Hood et al. 2011, Frejinger and Bierlaire 2007). As explanatory variables, the following were 

used: length, turns, proportion of path with bicycle facilities, slope and traffic lights. 

 

2.3. References  

[31] Ben-Akiva, M.E. and Bierlaire, M., 1999, Discrete choice methods and their 

applications to short-term travel decisions. Handbook of Transportation Science, pp. 5 

-34. 

[32] Ben-Akiva, M.E., Bergman, M.J., Daly, A.J., Ramaswamy, R., 1984, Modeling inter-

urban route choice behaviour, Proceedings of the 9th International Symposium on 

Transportation and Traffic Theory. VNU Science Press, Utrecht, The Netherlands, 1984, 

299-330. 

[33] Ben-Akiva, M.E., Bolduc, D., 1996, Multinomial probit with a logit kernel and a 

general parametric specification of the covariance structure. Working Paper, 

Massachusetts Institute of Technology, Cambridge, USA. 

[34] Bovy, P.H.L., 2009, On modelling route choice sets in transportation networks: a 

synthesis. Transport Reviews, 29(1), 43-68. 

[35] Bovy, P.H.L., Fiorenzo-Catalano, S., 2007, Stochastic route choice set generation: 

behavioral and probabilistic foundations. Transportmetrica, 3(3), 173-189. 

[36] Broach, J., Dill, J., Gliebe, J., 2012, Where do cyclists ride? A route choice model 

developed with revealed preference GPS data. Transportation Research Part A, 46, 

1730- 1740. 

[37] Cascetta, E., Nuzzolo, A., Russo, F., Vitetta, A., 1996, A modified logit route choice 

model overcoming path overlapping problems: specification and some calibration 

results for interurban networks. In: Lesort, J.B. (Ed.), Proceedings of the Thirteenth 



64 

International Symposium on Transportation and Traffic Theory. Pergamon, Lyon, 

France, 697-711. 

[38] Cascetta, E., and A. Papola, 2001, Random utility models with implicit availability 

perception of choice travel for the simulation of travel demand. Transportation 

Research part C, 9(4), 249-263. 

[39] Dhakar, N. S., 2013, Route-choice modeling using GPS-based travel surveys. PhD 

Dissertation submitted at the University of Florida. 

[40] Du, J., 2005, Investigating route choice and driving behavior using GPS-collected 

data. PhD Dissertation submitted at the University of Connecticut. 

[41] Frejinger, E., Bierlaire, M., 2007, Capturing correlation with subnetworks in route 

choice models. Transportation Research Part B, 41, 363-378. 

[42] Frejinger, E., Bierlaire, M., Ben-Akiva, M.E., 2009, Sampling of alternatives for route 

choice modeling. Transportation Research Part B, 43(10), 984-994. 

[43] Griffin, T., Y. Huang, and S. Seals, 2011, Routing-based map matching for extracting 

routes from GPS trajectories. Proceedings of the 2nd International Conference on 

Computing for Geospatial Research & Applications, 24, 1-6. 

[44] Halldórsdóttir, K., Rieser-Schüssler, N., Axhausen, K.W., Nielsen, O.A. and Prato, 

C.G., 2014, Efficiency of choice set generation methods for bicycle routes. European 

Journal of Transport and Infrastructure Research, 14 (4), 332-348. 

[45] Hood, J., Sall, E. and Charlton, B., 2011, A GPS-based bicycle route choice model for 

San Francisco, California. Transportation Letters: The International Journal of Transport 

Research, 3, 63- 75. 

[46] Menghini, G., Carrasco, N., Schüssler, N. and Axhausen, K.W., 2010, Route choice of 

cyclists in Zurich. Transportation Research Part A, 44, 754-765. 

[47] Papinski, D., Scott, D.M., 2011, Modelling home-to-work route choice decisions 

using GPS data: a comparison of two approaches for generating choice Sets. Presented 

at the Transport Research Board Annual Meeting, Washington D.C. 

[48] Prato, C. G., 2009, Route choice modeling: past, present and future research 

directions, Journal of Choice Modelling, 2(1), 65-100. 



65 

[49]  Prato, C.G., Bekhor, S., 2007, Modelling route choice behavior: how relevant is the 

composition of choice set? Transportation Research Record, 2003, 64-73. 

[50] Quddus, M. A., Ochieng, W. Y., Noland, R. B., 2007, Current map-matching 

algorithms for transport applications: State-of-the-art and future research directions. 

Transportation Research Part C, 15(5), 312- 328. 

[51] Rieser-Schüssler, N., Balmer, M. Axhausen, K.W., 2012, Route choice sets for very 

high-resolution data. Transportmetrica, 9, 825-845. 

[52]   Schüssler, N., Axhausen, K.W., 2009, Map-matching of GPS traces on high-

resolution navigation networks using the Multiple Hypothesis Technique (MHT) – 

Working paper.  

[53]   Spissu, E., Meloni, I., Sanjust, B., 2011, Behavioral analysis of choice of daily route with 

data from global positioning system. Transportation Research Record: Journal of the 

Transportation Research Board, 2230, 96-103. 

[54] Train, K.E, 2003, Discrete Choice Methods with Simulation, Cambridge University 

Press. 

 

  



66 

 

  



67 

Chapter 3: Application to the first case 
study: the European Cycling Challenge in 
Bologna (Italy) 

 

3.1. The GPS trips database 

 

The GPS points available for this work have been obtained from the data collection made 

by SRM Bologna Srl and the Administration of Bologna, in the framework of the European 

Project CIVITAS Mimosa. The city of Bologna participated in the European Cycling Challenge 

(www.europeancyclingchalleg.org), along with other 11 cities in Europe, and 270 cyclists 

registered for participating to the challenge. Of these 270 registered cyclists, 150 were 

actually active for the whole data collection period.  Incentives, such prizes, were given to 

the most active city and the most active users. The “scores” obtained by the participant 

cities are shown in Figure 8. 

Participants were asked to register their bicycle trips using the application Endomondo 

(https://www.endomondo.com), during the month of May 2013. As can be seen in Figure 

9, the application, once opened, allows users to declare the start and end of a trip, as well 

as the mode, and provides some information about the distance travelled, duration and 

speed.  

The data was provided by SRM Bologna Srl in the form of a table in .csv format, where each 

row represented a GPS point recorded, and an identification number of the trip was also 

present. For each GPS point the date, time, longitude, latitude and altitude were recorded. 

The original sample contained over 1,050,000 GPS points, covering the entire road network 

of Bologna, and belonging to 9571 separated trips. Unfortunately, no identification number 

for users was provided, so was not possible to automatically individuate trip repetitions, 

http://www.europeancyclingchalleg.org/
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nor to correlate trips with personal features of cyclists (such age, gender or bike 

experience).  

   

 

Figure 8: Results of the European Cycling Challenge for 2013 (Source: 

http://www.europeancyclingchallenge.eu/ecc2013/). 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The Endomondo app, used for the data collection (Source: 

http://www.europeancyclingchallenge.eu/ecc2013/). 
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3.2. The network database 

 
For the application of the algorithm to a real network, an Open Street Map network of 

Bologna has been used ( Figure 10). The network consists of 10435 links with a total  length 

of 1628.2 km of which 105 km are reserved roads for bicycles, see Table 6 and Figure 11. 

The Open Street Map data contains a wide variety of link types, and is compiled by 

volunteers. It represent a rich database, even though there are of course some links 

missing, and some with unknown type description.   

 

 

 

Figure 10: Open Street Map network database of Bologna. 
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Link type km  % of total 

Cycleway 105.00 6% 

Pedestrian 289.74 18% 

Motorway 137.77 8% 

Primary 61.91 4% 

Secondary 86.07 5% 

Tertiary 152.29 9% 

Residential 437.30 27% 

Service 217.01 13% 

Construction 0.57 0% 

Other 13.80 1% 

Unclassified 126.69 8% 

Table 6: Types of link in the Open Street Map of Bologna, in kilometers and percentage. 

 
 

 
Figure 11: Types of link in the Open Street Map of Bologna. 
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3.3. The map-matching methodology 

 
Journal Paper 2: The paper excerpted from this section of the study is first-authored by Dr. 

Joerg Schweizer, co-authored by the candidate, and co-authored by Professor Federico 

Rupi, and is published as: 

 

Schweizer, J., Bernardi, S., Rupi, F. (2016). Map-matching algorithm applied to bicycle GPS 

traces in Bologna. ITE Intelligent Transport Systems, In Press. 

 

A preliminary version of this paper was presented at the XXI Congress of Transport 

Professors and Researchers (SIDT 2015) in Turin (IT), in September 2015. The paper was 

then updated, rewritten and published from the ITE Intelligent Transport Systems, available 

online at http://ietdl.org/t/4Yyj9b.  

  

https://mail.unibo.it/owa/redir.aspx?SURL=hCMj6LTyrYv86k2gUj7ct2_umTv5Fyg2vlj2_rDGxRc7d7GvaFPTCGgAdAB0AHAAOgAvAC8AaQBlAHQAZABsAC4AbwByAGcALwB0AC8ANABZAHkAagA5AGIA&URL=http%3a%2f%2fietdl.org%2ft%2f4Yyj9b
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3.3.1. Introduction 

 

The use of GPS data in transport modeling has attracted considerable research interest in 

recent years. There has been a constant evolution in the use and analyses of geo-

referenced data, e.g. demand models and route-choice models for cycling have been 

calibrated with geo-referenced topological characteristics and RP data from GPS recording 

(Aultman-Hall et al. 1997, Broach et al. 2012). But only the recent diffusion of smartphones 

has brought the data collection to an unprecedented quality level: on the one hand, citizens 

began to record their own commuter trips with the GPS functionality of their cell phones 

and to upload the traces on central databases. On the other hand, volunteers helped to 

expand and refine the geo-referenced maps, on open data platforms. For instance, the 

Open Street Map network provides a large number of link attributes which allow in depth 

analysis regarding the infrastructure usage and the cyclist behavior.  

The combination of bicycle transport supply and transport demand data constitutes very 

valuable information for planners, because it allows to analyze the usage of the network 

and to identify specific criticalities. Such analysis can help the city to plan for an effective 

city-wide cycling network or to prioritize interventions and extensions of the present 

bicycle paths. In a broader context, the identified travel patterns of the population could 

be cross-valued with socio-economic and land-use geographic data in order to generate a 

virtual population and activity type models.  

In order to make GPS data usable for transport modeling applications, a key processing 

operation is called map-matching, consisting of algorithms to identify the traveled road 

segments, called edges, based on a network model. When evaluating the performance of 

a map-matching procedure, most researchers refer to accuracy, meaning the percentage 

of correctly identified road segments. Nevertheless, due to the increase of data collection 
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size and network scale, also the need to evaluate a map-matching procedure in terms of 

computational efficiency arises (Schüssler and Axhausen 2009). The challenge is to make 

algorithms faster, without losing accuracy.  

Furthermore, the application of map-matching methodologies to bicycle trips registered in 

urban contexts presents specific issues. Firstly, in dense urban streets the partial absence 

of GPS points in a trip is more likely, due to the loss of signal of the geo-localizing device. 

The GPS devices only record data when certain requirements are met, in order to ensure 

the accuracy of the collected data (Harvey et al. 2008). Due to the blockage of buildings, 

mountains or vegetation, signals from GPS satellites can experience fading or delays (Costa 

2011).This means performance can be degraded and the availability of high accuracy GPS-

based location reduced. These problems may be particularly critical for urban canyon 

environments (Wang 2007). Secondly, cyclists do not necessarily cycle in roadways or on 

the provided bikeways, but they sometimes use pedestrian paths, prohibited ways, or they 

cross parks and squares. This higher degree of freedom characterizing bicycle trips makes 

GPS recorded data more difficult to match to the available road maps: in case of bicycle 

traces, the quality of the map-matching is particularly sensitive to the accuracy and details 

of the available road network model (Quddus et al. 2007). 

In the present work an advanced map-matching algorithm is presented, based on 

maximizing the likelihood that a route is identical to the real route from where the GPS 

trace has been sampled. So-called buffers which encircle edges are used to determine the 

probability of finding GPS points near edges. For this reason the proposed method shall be 

called a buffer-based method.  This approach takes into account all GPS points measured 

from the start to the end of the trip. Furthermore, the procedure makes use of network 

edge attributes to estimate the route in case of incomplete GPS data. Furthermore, the 

algorithm can identify whether the cyclist used a reserved bikeway, where available.  The 

presented methodology has several important improvement in functionality and precision 

over previously-seen maximum likelihood methods (Marchal et al. 2005, Schüssler and 

Axhausen 2009).  
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The proposed map-matching algorithm has been applied to identify the routes of volunteer 

cyclists in Bologna, who recorded their GPS traces by means of smartphones.  

This Chapter section is organized as follows: Paragraph 4.3.2 consists of a synthetic 

classification of map-matching methodologies which constitute the state of the art. In 

paragraph 4.3.3 a detailed description of the novel map-matching algorithm is provided. 

Paragraph 4.3.4 illustrates the application of the methodology to a real case study, i.e. to 

the GPS traces recorded by cyclists in Bologna: first, the context, the points and the network 

maps available are described; later in the paragraph, the criteria adopted to evaluate the 

results are described, a sensitivity analysis is carried out and a comparison with a reference 

topology-based algorithm is provided, to better enlighten the strength and the limitations 

of our work. In paragraph 4.3.5 some observations about the map-matching procedure 

applications are made and later in the Chapter, in section 4.4, a statistical description of 

the traces obtained from the map-matching process is provided. 

 

3.3.2. Map-matching methods 

 

The purpose of map-matching algorithms is to use GPS data and spatial road network maps 

to provide a positioning output which identifies the correct sequence of road edges (i.e. 

link) on which a vehicle travelled.  

There are many map-matching algorithms proposed in literature, depending on the input 

data and on the application context. For an extended review of map-matching algorithms 

used in transportation research see Quddus et al. (2007). Map-matching algorithms have 

been categorized into three typologies: geometrical, topological and advanced. The 

geometrical approach is normally based on the distance between GPS points and network 

elements, edges or nodes (proximity-based algorithms): this approach is rather 

uncomplicated in terms of implementation, but the accuracy and the stability of such 

algorithms is rather scarce. In case of sparse GPS data, though, geometrical procedures can 

represent the only option (Xu et al. 2007). Topological approaches, other than the sole 
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distance, also take into consideration the sequence of GPS points and the connectivity of 

network elements. Different procedures have been tested (Velaga et al. 2009, Dalumpines 

and Scott 2011, Hudson et al. 2012, Quddus and Washington 2015). Most of them consist 

of a combination of geometrical approaches: first, the initial edge – or node – is found 

based on some geometrical criteria; then a set of likely edges is defined, for example using 

a buffer around the GPS trace; finally, the route is developed by choosing the most likely 

edge out of the set, again using different geometrical criteria. In terms of performance, 

topological approaches are generally better than geometrical ones, for both accuracy and 

computational efficiency. The main reason is that the topological approach evaluates only 

a reduced number of edges for each GPS point. 

Finally, advanced map-matching procedures typically combine geometric and topological 

procedures with additional criteria, parameters, assumptions, probabilistic analysis, or 

optimization (Pyo et al. 2001, Marchal et al. 2005, Newsom and Krumm 2009, Schüssler 

and Axhausen 2009). For example, an advanced approach consists of taking into 

consideration the GPS measurement errors and constructing confidence regions around 

the points, based on data quality; then, only the edges within these regions are selected 

for evaluation. The evaluation can be based on a combination of different criteria, such as 

distance, speed or connectivity to the previously matched edges. The challenge for new 

and advanced map-matching procedures is to increase the accuracy while maintaining 

computational efficiency. 

 

3.3.3. The buffer-based map-matching procedure 

 

Each recorded GPS trace is a sequence of 𝑁 points  𝑃𝑗 = (𝑥𝑗 , 𝑦𝑗 , 𝑡𝑗), 𝑗 = 1 … 𝑁, where 𝑥𝑗 , 𝑦𝑗 

represent the position and 𝑡𝑗 the recording time of point  𝑃𝑗. The considered road  network 

is given by the directed graph 𝐺(𝐴, 𝑉), where 𝐴 is the set of edges and 𝑉 is the set of 

vertexes or nodes. The task of map-matching is to identify the route 𝑅 that correspond to 
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the road links chosen by the cyclist who recorded the trace. Route  𝑅 =

[𝑎1, 𝑎2, … , 𝑎𝑀], 𝑎𝑖 ∈ 𝐴, is a sequence of M consecutive edges.  

The basic concept of this map-matching algorithm is to define buffers 𝐵𝑎 of width 𝑊 

around each network edge 𝑎 ∈ 𝐴 and to count how many GPS points are contained in each 

edge buffer; the matched route  𝑅 is the one that maximizes the number of GPS points, 

contained in the buffers of its edges. In practice, the number of points residing in buffer 𝐵𝑎 

is used to determine the weight attribute 𝑤𝑎 for all  𝑎 ∈ 𝐴. Then a Dijkstra algorithm 

(Dijkstra 1959) is used to find the route 𝑅 from the origin edge to the destination edge that 

minimizes the sum of edge weights ∑ 𝑤𝑎𝑎∈𝑅 .   

In the following the notation 𝑃𝑗 ∈ 𝐵𝑎 is used to express the condition that the respective 

point coordinates (𝑥𝑗 , 𝑦𝑗)  must be within the boundaries of buffer 𝐵𝑎. As edge buffers often 

overlap, a single GPS point may be found in multiple edge buffers, for example at junctions, 

as illustrated in Fig.12. For this reason, a probability measure is used to count the GPS 

points in the edge buffer: if the GPS point  𝑃𝑗 is located within 𝑚𝑗 different edge buffers 𝐵𝑎, 

then the probability to find point 𝑃𝑗 in either of these buffers is  𝑝𝑗 = 1
𝑚𝑗

⁄ . Consequently, 

the count of GPS points associated with edge 𝑎 becomes the weighted sum  ∑
1

𝑚𝑗
𝑃𝑗∈𝐵𝑎

.  

 

 

 

Figure 12: Illustration of edge weight and match error determination. In (a) four GPS 

points (P1-P4)and  three network edges (bold arrows, labeled a,b,c) are shown together 

with their respective buffers(dashed line) .  P1 contributes with 𝒑𝟏 = 𝟏 to the edge 

weight of edge a, P2 contributes with 𝒑𝟐 = 𝟏
𝟑⁄  to edge weights of a,b,c, P3 contributes 

with 𝒑𝟑 = 𝟏
𝟐⁄  to edge weights of b,c, while P4 does not contribute to any weight .  
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As previously mentioned, the GPS traces may be interrupted and  some edge buffers along 

the route may not contain any GPS points and a stable map-matching procedure should 

account for this. A further objective has been to “simulate” a cyclist preference for 

bikeways, when a bikeway edge exist and is adjacent to a roadway edge. The proposed 

method foresees to add  the component 𝑐𝑎 𝐿𝑎 to the edge weight, which is proportional to 

the edge geometrical length  𝐿𝑎, while factor 𝑐𝑎 is given by 

𝑐𝑎 = {
𝐶𝐵𝐶𝐿 𝑖𝑓 𝑎 ∈ 𝐴𝐵

𝐶𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . 

  Parameter 𝐶𝐿 and 𝐶𝐵 are called length factor and bike factor, respectively. Both 

parameters are positive, with values less than unity. 𝐴𝐵 ⊂ 𝐴 is the set of network edges 

reserved for bicycles. This length-proportional element is expected to achieve two effects: 

(i) the routing algorithm will choose the minimum distance in the absence of GPS points, 

and (ii) routes containing reserved ways for bicycles will be preferred by the routing 

algorithm4. The final edge weight is determined by: 

𝑤𝑎 = 𝑐𝑎𝐿𝑎 − ∑
1

𝑚𝑗
𝑃𝑗∈𝐵𝑎

 

 (8). 

Note that the presence of GPS points in edge buffers (1
𝑚𝑗

⁄ ) are counted negatively, while 

the edge length proportional part (𝑐𝑎𝐿𝑎) is counted positively because the routing 

algorithms will minimize the route costs, which is the sum of its edge weights. Let 𝑅𝑎1,𝑎2
 

denote the minimum cost route with consecutive network edges between start edge 𝑎1 

and destination edge 𝑎2 , then the associated minimum route cost becomes: 

                                                      
4 It has been observed, especially for those urban contexts where the bicycle network 

is fragmented, poorly designed or mixed with pedestrian, that a cyclist preference for 
bikeway links cannot be taken for granted: the percentage of cyclists choosing to ride on 
the roadway, mixing with motorized traffic, rather than on a bicycle facility, can be relevant 
(Bernardi and Rupi 2015, Bernardi et al. 2016). Nevertheless, for the aim of the map-
matching algorithm, we believe this assumption is reasonable and the use of the bike factor 
an advantage, as it can be eventually adjusted to observed attitudes in a specific context. 
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𝐺𝑎1,𝑎2
= ∑ 𝑤𝑎

∀𝑎 ∈ 𝑅𝑎1,𝑎2

 

     (9). 

In order to find the initial and destination edges of the GPS trace, the set 𝑂 which contains 

potential start edges and the set 𝐷 which contains potential destination edges are created. 

In practice, 𝑂 is the set with all network edges whose edge buffers contain the first GPS 

point 𝑃0 and  𝐷 is the set with all network edges whose edge buffers that contain the final 

GPS point 𝑃𝑁, hence 

 𝑂 = {𝑎: 𝑃0 ∈ 𝐵𝑎},    𝐷 = {𝑎: 𝑃𝑁 ∈ 𝐵𝑎}      (10). 

The final matched route 𝑅𝑎1
∗ ,𝑎2

∗  can be identified by calculating all minimum cost routs 

𝑅𝑎1,𝑎2
 with costs 𝑊𝑎1,𝑎2

 between all start edges in 𝑂 and all destination edges in 𝐷, and by 

selecting the route with the minimum cost 𝑊𝑎1
∗ ,𝑎2

∗ . 

The flowchart of the map-matching algorithm is straight forward (see Fig. 13) and can be 

divided into 4 steps – repeated for each trace:  

Step 1: Assign the weight 𝑤𝑎, 𝑎 ∈ 𝐴 to each edge of the network according to Eq. (8). 

Step 2: Identify the set of potential start edges 𝑂 and the set of potential destination edges 

𝐷, defined in Eq. (10).  

Step 3: Determine the route/cost set  𝑆 = {(𝑅𝑎1,𝑎2
, 𝑊𝑎1,𝑎2

 ): ∀𝑎1  ∈ O, ∀𝑎2 ∈ D }, which 

are the minimum cost routes  between all edge pairs in set 𝑂 and 𝐷, using the Dijkstra 

algorithm for minimum cost path search (Dijkstra 1959). 

Step 4:  The matched route becomes 𝑅 = 𝑅𝑎1
∗ ,𝑎2

∗  if 𝑊𝑎1
∗ ,𝑎2

∗  is the minimum cost in route set 

S. 

 

Figure 13: Simplified flowchart of algorithm. 
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3.3.4. Application of the map-matching algorithm to the case study of Bologna 

 

For the application of the algorithm to a real network, an Open Street Map network of 

Bologna has been used which has been converted into a SUMO  transport network in XML 

format (Krajzewicz et al. 2012). The unidirectional road network consists of 8484 edges 

with a total  length of 660.61 km of which 72.67 km are reserved roads for bicycles, see Fig. 

14. The Open Street Map data contains a large number of road attributes, such as access 

restriction, level, maximum speed, lanes, width etc., which are also imported by the SUMO 

network.    

The GPS points available for this work have been extracted from a data collection, made by 

SRM Bologna Srl and the Administration of Bologna, in the framework of the European 

Project CIVITAS Mimosa. The city of Bologna participated in the European Cycling Challenge 

(www.europeancyclingchalleg.org) and hundreds of cyclists registered their bicycle trips, 

using the application Endomondo (https://www.endomondo.com), during the month of 

May 2013. For each GPS point the date, time, longitude, latitude and altitude were 

recorded. The original sample contained over 1,050,000 GPS points, covering the entire 

road network of Bologna.  

No identification of the users has been provided. All traces with less than 10 total GPS 

points, a total duration of less than 30s and a total distance of less than 300 m have been 

eliminated in an automated pre-processing phase. In addition, traces with no GPS point 

inside the boundaries of the study area have also been eliminated. Overall, the eliminated 

traces prior to the map-matching correspond to 37% of all 9500 GPS traces provided by the 

complete database. 

All algorithms have been implemented in the Python programming language, using 

excessively the array oriented  Numpy  package.   

 

http://www.europeancyclingchalleg.org/
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Figure 14: Road network (white) and bicycle network (red) of Bologna. 

 

 

Evaluation criteria 

 

The most common quality measure is the average distance error per point between trace 

in a sequence of 𝑁 points  𝑃1, … , 𝑃𝑁 , and the matched route 𝑅: 

𝐸 =
1

𝑁
∑ 𝑑𝑚𝑖𝑛(𝑃𝑖 , 𝜑(𝑅))

𝑁

𝑖=0

 

(11) 

where 𝜑(𝑅) represent the geometrical shapes of the route edges, which is most commonly 

a multi-line or spline interpolation of consecutive points. The concept of the minimum 

distance is illustrated in Fig.15. However, as previously mentioned, the true routes made 

by the cyclists are generally unknown, which means the distance error is false if route 𝑅 

has been matched incorrectly.  

In order to evaluate the credibility of the map-matching results, the length index 𝐼𝐿 has 

been introduced. The length index is determined by dividing the length of the matched 
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route, by the line-interpolated length of the GPS trace. More precisely,  the length index 𝐼𝐿 

can be expressed by the fraction: 

𝐼𝐿 =
∑ 𝐿𝑎∀𝑎∈𝑅

∑ 𝑃𝑗+1, 𝑃𝑗
𝑁−1
𝑗=1

 

(12) 

where 𝑃𝑗+1, 𝑃𝑗  is the Euclidian distance between points 𝑃𝑗+1 and 𝑃𝑗.  The reason behind 𝐼𝐿, 

is that the disturbances of the GPS points are of low noise (almost an offset) and do not 

significantly alter the length of the GPS trace.  

 

 

 

Figure 15: The  GPS points and edges from (a) are shown, indicating the minimum 

geometric distances 𝒅𝒎𝒊𝒏 between points P1…P4 and route R=[a,b]. In this specific case, 

the cumulative distances over both edges equals 𝟐. 𝟓𝒎 + 𝟐. 𝟎𝒎 + 𝟐. 𝟓𝒎 + 𝟓. 𝟓𝒎 =

𝟏𝟐. 𝟓𝒎. The distance error becomes 𝑬 = 𝟏𝟐. 𝟓/𝟒 m per point. 

 

This means that 𝐼𝐿 should be close to unity, otherwise the matched route contains detours 

(𝐼𝐿 > 1) or shortcuts (𝐼𝐿 < 1) with respect to the real route. Surely, the length index is not 

perfect in a sense that 𝐼𝐿 = 1 does not necessarily mean a correct match:  if the matched 

route contained shortcuts which compensate for detours in other parts of the route, then 

the length index would remain at one. Nevertheless, the investigated  map-matching 

algorithms appear to systematically over- or under-estimate the true route length. The 

length index has also been a useful indicator check whether the different parameters of 

the match algorithm produce reasonable results.  

Beside the previous indicators, it is important to monitor the share of route edges whose 

buffers contain GPS points. The hit index 𝐼𝐻 is determined by dividing the number of route 
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edges whose buffers contain at least one GPS point by the total number of edges in the 

route, hence: 

𝐼𝐻 =
𝑁𝐻

𝑀
 

(13) 

where  𝑁𝐻 is the number of non-empty buffers 𝐵𝑎, ∀𝑎 ∈ 𝑅 and 𝑀 is the total number of 

edges in the route 𝑅. A low hit index means that a large part of the map-matching has been 

found by minimizing the route length (with edge weight 𝑤𝑎 = 𝑐𝑎𝐿𝑎) rather than by 

following GPS points. 

The computing speed of map-matching algorithms can be quantified by dividing the 

computing time to match one trace 𝑇𝑀 by the total length of the matched route. This 

specific match time 𝑇𝑠 = 𝑇𝑀(∑ 𝐿𝑎∀𝑎∈𝑅 )−1, given in units of s/m, allows a fair comparison 

of different map-matching algorithms. 

 

Sensitivity analysis  

 

The buffer-based map-matching algorithm has two main parameters: the length constant 

𝐶𝐿 and the buffer width 𝑊. Sensitivity analyses of the bike constant 𝐶𝐵 have not been 

considered in this work. If 𝐶𝐵 has a positive value below 0.5 then links with reserved 

bikeway have almost always been part of the path, even in presence of a parallel ordinary 

road edge. 

 The constant 𝐶𝐿 should be positive, but small as the GPS points count should be dominant 

in the determination of the edge weights (see Eq. 8). The evaluation results are shown in 

Tab. 7 and Fig. 16. With an increasing  𝐶𝐿, the hit index remains almost constant, the length 

index decreases, while the distance error increases. This behavior is expected, as the map-

matching for low 𝐶𝐿 is dominated by GPS points, and detours are not “punished” by a length 

proportional edge weight. The effect is that for low 𝐶𝐿, the matched routes often enter 

side-roads and return immediately. This unrealistic behavior can be seen in an increased 

share of high index length in Fig 16 (a). As  𝐶𝐿 increases such effects vanish and the length 
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index is more concentrated around unity Fig 16 (b). From Fig 16 it can be seen that the 

highest probability is at a value of   𝐼𝐿 = 0.9 instead of one. This is most likely due to the 

disturbances of the GPS signal, which slightly extends the length of the poly-line made of 

GPS points.    

In practice, matched traces with a too high length index or a too low hit index would be 

eliminated.  

The buffer width 𝑊should be large enough to accommodate most GPS points in edge 

buffers. From observations of the Endomondo GPS traces we have seen that most points 

do not deviate more than 30m from the road.  The evaluation results, varying the buffer 

width, with the same traces from the Endomondo database are shown in Tab. 8. 

 

Length 

constant 

𝐶𝐿 [1/m] 

Avg. matched 

road length 

per trip [m] 

Avg. 

matched 

bikeway 

length per 

trip [m] 

Avg. hit 

index 𝐼𝐻 

Avg. length 

index 𝐼𝐿 

Avg. distance 

error per point 

𝐸 [m/pt] 

0.001 4371.5845 874.7982 0.8204 1.4733 56.7835 

0.002 3906.2891 806.1498 0.8258 1.3233 56.0675 

0.003 3585.1108 750.7404 0.8261 1.2160 56.7529 

0.004 3377.0456 718.9130 0.8258 1.1495 57.1653 

0.005 3228.6794 706.5380 0.8235 1.1050 58.1911 

0.006 3137.4078 696.7614 0.8218 1.0768 58.8187 

0.007 3072.7043 691.4565 0.8198 1.0544 59.7312 

0.008 3028.0098 694.9206 0.8178 1.0402 60.4933 

0.009 2989.6779 699.5974 0.8138 1.0279 62.1227 

0.010 2956.4651 701.4289 0.8110 1.0183 63.9251 

Table 7: Sensitivity analyses for length constant 𝑪𝑳. Values are averaged over 6500 

traces from the Endomondo database. 
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(a) (b) 

Figure 16: Histogram of length index 𝑰𝑳  for (a) 𝑪𝑳 = 𝟎. 𝟎𝟎𝟏 and (b) 𝑪𝑳 = 𝟎. 𝟎𝟏. 

 

Buffer width 

𝑊 [m] 
Avg. hit index 𝐼𝐻 

Avg. length index 

𝐼𝐿 

Avg. distance error per 

point 𝐸 [m/pnt] 

10.0 63.6297 1.0133 60.57 

20.0 77.0484 1.0212 61.42 

30.0 81.1366 1.0191 63.43 

40.0 82.9902 1.0112 64.24 

50.0 84.1820 1.0130 66.03 

60.0 85.2123 1.0178 67.91 

Table 8: Sensitivity analyses for buffer width 𝑾. Values are averaged over 6500 traces 

from the Endomondo database. 

 

The main observation is that the hit index increases with an increasing buffer width, which 

is expected, because more GPS points will reside in edge buffers as they become larger.  

The downside is that the distance error increases as well with the buffer width.  The reason 
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is that with larger buffers, more buffer-overlaps at junctions occur, which increases 

ambiguity and the likelihood of  a false route selection. 

 

 

Performance comparison 

 

In this section, the performance of the proposed algorithm is assessed with realistic 

parameters: 𝐶𝐿 = 0.01/𝑚, 𝐶𝐵 = 0.5 and buffer width 𝑊 = 30𝑚. In addition, only the 

matched routes with a length index in the interval 0.8 < 𝐼𝐿 < 1.2 have been considered 

for evaluation. As demonstrated in Fig.16, this condition is satisfied by the vast majority of 

the traces. In addition, valid traces had to show a hit index   𝐼𝐻 > 0.8. The chosen thresholds 

values for 𝐼𝐿 and 𝐼𝐻 are a compromise between obtaining quality results and thenumber of 

traces to considered valid. Clearly, a too severe limit on the quality would drastically reduce 

the number of valid traces.   

In order to compare the performance of the proposed algorithm, the map-matching 

method from Marchal et. al (2005) has been implemented. This algorithm has been devised 

for similar purposes as the present algorithm, such  as the processing of large quantities  of 

GPS traces. The main principle of this topology-based algorithm is to find the route that 

minimizes the distance error  𝐸. The algorithm is iterative, as it starts with the first GPS 

point of the trace and 𝑁𝑅 edges which show the smallest minimum distances to the point. 

These 𝑁𝑅 initial edges constitute the origins of routes that “follow” the successive GPS 

points. While iterating over the GPS points, the routes are branched, according to the 

network topology, but only  𝑁𝑅 routes with the lowest cumulative distance error are kept 

for a successive iteration. After the evaluation of the final GPS point, the route with the 

lowest distance error is selected out of the 𝑁𝑅 final routes. This algorithm, which is 

described in detail in Marchal et al. 2005, has been implemented and tested with different 

values for 𝑁𝑅. For the comparison we use 𝑁𝑅 = 10, as distance errors improve little by 

increasing 𝑁𝑅. 
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A comparison of the proposed and the topology-based algorithm is shown in table 3. Both 

algorithm used the same traces from the Endomondo database and have been applied 

using the same network model. However, the topology-based algorithm requires that the 

GPS traces are without significant gaps. For this reason, each trace has been split in two if 

it contained  successive GPS points with a time difference  greater than 30s, or a distance 

greater than 300m. Due to this procedure, the buffer based algorithm matched  3249 

traces, while the topology-based algorithm matched 6786 shorter traces. 

The distance error is asymmetricly distributed, similar to a log-likelyhood function, with a 

peak at 5m/pnt and 7m/pnt for the buffer and topology based algorithm, respectively.   The 

average and standart deviation of the distance error of both matching algorithms are in the 

range of GPS recording precision.  

 

 

 

 Buffer-based algorithm 
Topology-based 

algorithm 

Average and standard deviation of 

length index 𝐼𝐿 
0.9719±0.0882 

1.8887±0.3521 

 

Average and standard deviation of 

distance error per point  

𝐸 [m/pnt] 

12.1363±5.3859 15.5376±8.4848 

Average match time per matched 

meter 𝑇𝑠 [ms/m] 
1.6628 0.2499 

Computation time for entire 

dataset on an AMD Athlone 3GHz, 

1MB cash, single core processor [h] 

16.6 2.5 

Table 9: Comparison of present and topology-based algorithm on the same database 

and network. 
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Regarding the length index, it is surprising that the topology-based algorithm produces a 

value of  𝐼𝐿 = 1.9 instead of a value close to unity, despite the low distance errors. Note 

that  𝐼𝐿 has a straight  standart deviation interval for the buffer-based algorithm because 

all traces outside 0.8 < 𝐼𝐿 < 1.2 have been eliminated. While for the topology based 

algorithm, no such selection on 𝐼𝐿 has been performed, because doing so, would have 

eliminated almost all matched traces (see averages and deviation of 𝐼𝐿 in Tab. 9). This 

phenomenon shall be investigated further as it reveals a strength of the buffer-based map-

matching algorithm: looking at the matched route of a particular trace one can observe, 

that the route identified by  topology-based algorithm makes  frequently “detours” into 

lateral roads.  Figure 17 shows an example route, matched by the buffer-based and the 

topology-based algorithm.  

The correct identification of routes at junctions appears to be an intrinsic problem for the 

considered topology-based match algorithm. It is beyond the scope of this paper to 

investigate the cause of this deviations, but it is fairly easy to find a rather typical example 

where a route, passing by the deviation into a latheral road, actually minimizes the distance 

error (see in Fig. 18).     

Regarding the computing time, Marchal’s topology-based algorithm has been almost 7 

times faster than the buffer based approach on the same computer. However, this 

computing time does not include the time required to rejoin the GPS traces with gaps 

(those which have been split previously). It has been suggested to perform rejoining with 

minimum distance routing (Marchal et al. 2005). With the buffer-based algorithm, the vast 

majority of computing time is needed to determine the edge weights  w𝑎, because for each 

of the N GPS points,  one needs to verified whether it resides in any of the edge buffers.  
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(a) 

 

(b) 

Figure 17: Map-matching algorithms of an example trace. Road network of a fraction of 

Bologna (gray), matched trace (red), GPS points (yellow). (a) Buffer-based algorithm 

(b) topology-based algorithm. 
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(a) (b) 

Figure 18: Investigating detours at junctionsof the topology-based algorithm. (a) In this 

example, the “deviating” route 𝑹 = [𝒂, 𝒄, 𝒅, 𝒃] has a cumulative distance error of 𝟏𝟎𝒎, 

while the straight rout 𝑹 = [𝒂, 𝒃]e produces a greater cumulative distance error of 

𝟏𝟐. 𝟓𝒎 (see Fig. 12) . (b) Histogram with probability density of the length index using 

the topology-based map-matching, mean value is 1.9. 

 

Furthermore,  because an edge is made of one or several line segments, for computational 

reasons each edge buffer is generally composed of several linear buffers, each 

corrisponding to a line segment. This results in a complexity of order grater than  𝑂(𝑁 ∙

|𝐴| ∙ 𝑁𝑆), where 𝑁𝑆 is the average number of line segments per edge. This means the 

computation time of the buffer based algorithm grows linearly with the number of GPS 

points and network edges  while the routing between start and destination edges is 

relatively fast, as Dijkstra’s algorithm has an order of 𝑂(|𝐴| + |𝑉| log |𝐴|
|𝑉|

log|𝑉|) (Mehlhorn 

and Sanders 2008).  Instead, the computation time of the topology-based  algorithm 

depends on the number of GPS points N per trace and on the number of competing routes 

𝑁𝑅, but not on the number of edges in the network |𝐴|. For this reason,  the topology-

based algorithm is more scalable with respect to the network size,  compared with the 

buffer-based algorithm. 
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 Limitations 

 

The buffer-based map-matching algorithm works well for most traces with the parameters 

𝐶𝐿 = 0.01/𝑚, 𝐶𝐵 = 0.5 and 𝑊 = 30𝑚. However, some of the matched routes have been 

significantly longer than the multi-line interpolation of the GPS points (𝐼𝐿 > 1 ). In most 

cases the reason is an imperfect network: the map-matching algorithm will always find a 

route between start and destination edge, as long as both are connected through the 

network. If, during the trip, some of the edges have no GPS points in their buffers, then the 

Dijkstra algorithms will bridge the missing pieces with the shortest path, no matter how 

many edges are not covered by GPS points. Unfortunately, this can also become a source 

of misinterpretation. In fact, the biggest routing errors occur, when edges are connected 

in reality, but are represented as disconnected in the network model. If a GPS trace runs 

over such disconnected edges, then the router tries to find the shortest connected 

alternative route. Because the routed alternative path can be seen as a “deviation” from 

the real path, the matched route becomes much longer than the real route. In case the 

trace of cyclists go through parks and footpath that are not present in the network model, 

the map-matching will also try to find the shortest route around the missing edges, 

considering only the edges that are present in the network. This means that, especially for 

bicycle trips, the network model used for map-matching must be as detailed as possible, 

including local and service roads as well as “unofficial” paths through parks. Another source 

of errors are strong offsets, which are able to “move” the GPS trace to neighbouring streets 

in a dense urban street grid. Such disturbances will inevitably lead to matching errors. 

Another limitation of the buffer-based map-matching algorithm is the processing time 

using very large networks, such as  metropolitan areas or entire regions. 

 

3.3.5. Summary 

 

In this work a novel, buffer-based map-matching algorithm has been devised and applied 

to GPS traces collected by cyclists, and the road network of Bologna, Italy. Approximately 
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3000 (55%) traces could be reliably matched to the road network. The creation of buffers 

around network edges and the determination of the probability of  GPS points inside the 

buffer, in combination with length – and type – specific edge attribues, has shown 

promising results, in particular in dense street grids and for different road types.   

The reliability of the matched routes has been verified by comparing the length of the 

matched route to the length of the GPS trace. The ratio of both length measures has been 

termed length index, which should be approximately one for a good match. Sensitivity 

analyses for all important algorithm parameters have been conducted. The resulting 

distance errors are in the range of the GPS recording precision. 

The algorithm generally satisfies the set objectives: the computing time is 1.6 milliseconds 

per meter, a 3km trace can be matched in less than 5s; the reliability of the routes has been 

verified even in presence of complex street grids and junctions; the “closing” of gaps caused 

by GPS signals blackouts is part of the algorithm itself and does not need to be performed 

externally; the proposed algorythm does also use edges with reserved bikeways, when 

available.   

The performance of the proposed buffer-based matching algorithm has been compared to 

a topology-based algorithm, using the same traces, network and computer. The  topology-

based algorithm has 7 times faster execution times, but showed a length index of 1.9 due 

to unrealistic detours at junctions. Furthermore the investigated topology-based algorithm 

requires continuous GPS points, while gaps in the trace must be closed by an external 

algorithm. 

Matching errors can also occur due to imperfections in the connectivity of the network. 

The level of detail in modeling cycling networks should follow the increasing level of detail 

that GPS data provides to analysts. There is still ample room for improvement of map-

matching algorithms. In particular, an alternative definition of the edge weights could 

further improve matching reliability.    
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3.4. Descriptive analysis of the results 

 
As it has been described in the previous sections of this Chapter, the database provided by 

the European Cycling Challenge for 2013 in the city of Bologna contained originally 9500 

trips – approximately. The trips were separated and given a unique identification number, 

considering the start point and the end point as declared by users (no trip detection 

algorithm was necessary). Nevertheless, a filtering phase has been necessary prior the 

map-matching process. All traces with less than 10 total GPS points, a total duration of less 

than 30s and a total distance of less than 300 m have been eliminated in an automated pre-

processing phase. In addition, traces with no GPS point inside the boundaries of the study 

area have also been eliminated. Overall, the eliminated traces prior to the map-matching 

correspond to 37% of all 9500 GPS traces provided by the complete database.  

Subsequently, the map-matching procedure, as described in detail in the previous 

paragraph, has been applied to the filtered trip database. This process allowed to obtain 

approximately 3000 trips matched to the network, i.e. constituted by a sequence of links 

belonging to the network database. 

A descriptive analysis of the trips resulting from the map-matching process has been 

performed. 

First, we wanted to answer the question: when were the trips made? Figure 19 shows the 

distribution of the trips by day of the week. As it can be observed, the majority of the trips 

were made from Monday to Friday. 

Figure 20 shows the distribution by hour of day of the trips. Two peak periods can be clearly 

identified: the morning peak from 7 to 9 am (with a strong single-hour peak at 8 am) and 

an evening peak from 5 to 7 pm. 

Further, we analyzed trip durations (Figure 21): the majority of trips lasted less than 30 

minutes, significant statistics are shown in Table 10. In the database, trips that lasted longer 

than 2 hours were 104, i.e. the 4%. 

The distribution of trip length is shown in Figure 22, and significant statistics in Table 11. 
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Figure 19: Distribution of trips by day of the week. 
 

 
Figure 20: Distribution of trips by hour of day. 
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Figure 21: Distribution of trips durations. 
 

Statistic Minutes 

Mean 32 
Standard Deviation 52 

Median 19 

Mode 15 
95th percentile 102 

Table 10: Statistics for trip duration. 

 
 

 

Figure 22: Distribution of trips length. 
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Statistic Kilometers 

Mean 3.00 
Standard Deviation 2.74 

Median 2.29 
Mode 1.62 

95th percentile 6.10 
Table 11: Statistics for trip lenght. 

 
 
From this first analysis we can deduct that the filtering and map-matching phases produced 

reasonable results. The purpose of trip was not declared by cyclists, but the distributions 

of trips by day of the week and hour of day suggest that a majority of trips were commuting 

trips. Nevertheless, we are aware that the database also contains trips made for errands, 

or for leisure: the latter are the most likely trip purpose for what concern longer trips, those 

with duration longer than the average. 

Furthermore, the trips matched to the network database can provide another precious 

information, answering the question: which type of link did cyclists ride on? Indeed, the 

Open Street Map network database, as previously described, provides a classification by 

type of link. Table 12 shows the percentage by trip, on average, of each road typology, 

compared with the percentage of the same road typology offered by the network of 

Bologna. This comparison provides an indication regarding cyclists’ preferences in terms of 

road typology. As can be observed, the most cycled roads are residential roads, which are 

also the most common in the network. Tertiary roads follow, proving to be preferred in 

cyclists’ travels even more they do not represent a big part of the city’s network. For what 

concerns cycleways, their usage results very low If compared to their presence in the 

network, and the same can be said for pedestrian paths. Finally, another interesting note 

should be made regarding unknown links (tagged “unclassified”): even though they 

represent the 8% of the total length of links in the network, they are not very frequently 

cycled by the participants to this study. This could confirm what has often been 

hypothesized, i.e. that for volunteered geographic information and crowd-sourced network 
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database, the missing information are frequently located in remote parts of the territory, 

far from urban centers, and in general belongs for the major part to “unused” areas of the 

network. 

Link type % in chosen routes % in network 

Cycleway 2% 6% 

Pedestrian 3% 18% 

Motorway 2% 8% 

Primary 12% 4% 

Secondary 5% 5% 

Tertiary 17% 9% 

Residential 49% 27% 

Service 1% 13% 

Unclassified 3% 8% 

Table 12: Percentage of type on link, comparing the chosen routes with the network. 

 

Finally, a comparison between chosen routes and shortest routes should be made. Shortest 

routes have been calculated between all origin-destination pairs identified by the chosen 

routes database, using SUMO, considering length as the only parameter of link cost. For 

each trip, the path chosen by the traveler and the shortest option available were compared 

in terms of length, the difference in kilometers was calculated, as well as the difference in 

percentage. Such difference between chosen route and shortest route, in percentage, can 

be referred to as “detour”. Basically, it represent how much further than the “optimum” 

path cyclists travel. 

We made the assumption that if the chosen trip length corresponded to the shortest length 

between the same OD pair, or it was longer by no more than 5%, then I could be said the 

cyclist chose the shortest path for travelling between that specific OD pair. Given this 

assumption, Figure 23 shows the percentage of choice for the shortest path, versus other 

options. 



97 

The distribution of the detour is shown in Figure 24 and 25, as well as significant statistics 

in Table 13. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Percentage of choice, divided by shortest route or other. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24: Distribution of the additional length (detour) in meters. 
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Figure 25: Distribution of the additional length (detour) percentage over the total trip 
length. 

 
 
 

Statistic Detour [m Detour [%] 
Mean 421.99 15% 

Standard Deviation 295.19 13% 

Median 0.00 0% 

Mode 425.70 22% 

95th percentile 1308.53 42% 

Table 13: Statistics for detour. 

 

It should be said, though, that many could be the explanatory factors for the detour: cyclists 

could choose to cycle longer than the optimum – in percentage – in order to cycle on 

specific bicycle facilities (but, given the percentage of kilometers cycled on cycleways, that 

does not appear to be the case). In alternative, the purpose of the trip would be a precious 

information to include in this specific aspect of the analysis: to be more accurate, a 

distinction between commuting trips and leisure trips should be made. Nevertheless, if we 

look at the distribution of percentage of detour along the week, and along the day (Figures 
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26 and 27), detour tends to increase and to variate more for Saturdays and Sundays, as 

well as for non-peak hours of the day (10 am to 4 pm).          

 
 

 
Figure 26: Average detour (in %) by day of the week, and corresponding standard 

deviation. 
 

 
Figure 27: Average detour (in %) by hour of day, and corresponding standard deviation. 
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Figure 28: Difference of trip length and minimum length (shortest path). 
 

 

Finally, Figure 28 shows that the difference between trip length and the corresponding 

shortest path’s length, increases as the trip length increases. This result has also been found 

in other studies (e.g. by Dill and Gliebe 2008), and it can be explained considering that 

longer trips are more likely to be trips made for leisure of physical exercise purposes, and 

in these circumstances it results fairly reasonable the assumption that cyclists do not tend 

to “optimize” their trip, as minimizing travel time is not on the main objective for them.  
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Chapter 4: Application to the second 
case study: the Mobile Mobility Panel in 
the Netherlands 

 

4.1. Description of the database 

 

4.1.1. The GPS trips database 

 

The available database consisted of over 50,000 trips (28 million GPS points) recorded all 

over the Netherlands, for a period of four weeks between April and May 2014. About 600 

respondents were recruited from an existing online panel, the Mobile Mobility Panel, 

providing a true representation of the Dutch population. The respondents were asked to 

register all their trips through a smartphone application specifically elaborated for this data 

collection, called MoveSmarter (for IPhone and Android). A true representation has been 

achieved also by distributing smartphones to those respondents who did not own a 

smartphone with a suitable GPS positioning device. For instance, also an older segment of 

population was included in the panel (Fig. 29).  

During the monitoring period, respondents also participated in a web-based prompted 

recall survey to check and revise trip characteristics, delete or add trips if necessary (Fig. 

30). For each registered trip, also information such as origin, destination, mode and 

purpose has been checked by users and registered; this has been useful to “correct” the 

automatic trip split and mode detection operations following the data collection stage.  



106 

 

 

Figure 29: Age and activity statistics of the population sample of the Dutch Mobile 
Mobility panel (Source: Geurs et al. 2015). 

 

 

 

 

Figure 30: Schematic representation of the data collection process (Source: Geurs et al. 
2015). 
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For more information about the data collection and the automated trip detection see Geurs 

et al. (2015). To the author’s knowledge, this is the first application of a smartphone app 

as a measurement tool for travel surveys for such a large representative sample and over 

such a long period of time. Furthermore, a rich set of socio-economical information was 

available for each participant: sex, age, family composition, home location, activity type 

and location, income etc.   

For the application described in this paper, we selected only the trips made by bike, so the 

size of the database used for this study is approximately 4,000 trips registered by 280 users. 

 

4.1.2. The network database 

 

The network database available for this application is the bicycle network provided by 

Fiersersbond, a Dutch cyclist union which realized different types of bicycle-related study 

and initiative in the Dutch territory and, thanks to volunteers, annually updates a 

representation of the bicycle network throughout the whole country, including roadways  

(only those accessible for cyclists, i.e. motorways are not included) and all types of bicycle 

facility available. A wide range of attributes are associated to each link, including 

geometrical features (length, width), type of facility, type of pavement, quality, beauty of 

the context, illumination etc. If compared with the Open Street Map database for the 

Netherlands, the amount of missing information is lower that for the Open Street Map 

network, both in terms of missing links or connection, and in terms of attributes 

(percentage of unknown/blank of approximately 20%, while this percentage reaches 30% 

in the Open Street Map network database for the Netherlands). Overall, the Fietsersbond 

network consists of more than 1,5 million links, for a total length of over 180,000 km (Figure 31). 

It should be said, though, that also the Open Street Map network database for the 

Netherland was taken into consideration; first, as will be mentioned in the following 

paragraph, the Open Street Map network was used for the map matching. Furthermore, it 

was also used in order to compare the descriptive analysis performed for the Dutch traces 



108 

database and the Italian one – where only the attributes of link type as classified by Open 

Street Map volunteers were available. To attach the attributes of the Fietsersbond network 

database to the Open Street Map links, an ArcGIS model based on the spatial join tool has 

been designed for the purpose. Basically, the model searched iteratively, for every chosen 

link belonging to the Open Street Map network, the corresponding link belonging to the 

Fiestersbond network. The correspondence between two links belonging to the two 

different network datasets was based not only on proximity, but also on other topological 

criteria. 

 

Figure 31: The network database for the whole Dutch territory. 
 



109 

4.1.3. GPS Post-Processing 

 

GPS data as recorded by smartphone applications need a considering amount of post-

processing operation, in order to become available for further analysis of revealed 

preferences. In general, the post-process consists of individual stages accounting for data 

filtering, trip and activities detection, mode stage determination, mode identification, map-

matching (Schuessler and Axhausen, 2009). In this case, such operations were made by 

Mobidot Srl. As for the data filtering, the trip and the mode detection stages, details on 

methodologies and results are available in Thomas et al. (2015). As already pointed out in 

the data collection methodology description, participants also filled out a web-based travel 

diary, so that trips features such as origin, destination, time, purpose and mode as 

automatically detected could be verified by the information provided by participants. 

Finally, the GPS points were matched to the network using the map matching algorithm 

described in Marchal et al (2004). The map-matching was made by Mobidot Srl as part of 

the post-processing phase, using the Open Street Map network. For this study the trips 

were provided as already matched to the network, i.e. in the form of one text file (.csv) for 

each trip, containing the sequence of chosen links. 

4.2. Descriptive analysis of the results 

 

4.2.1. Statistics 

 

Figure 32 shows the percentages of bike trips made in the monitoring period by the 

participants, grouped by purpose: the trips made for work and study related reasons 

constitute a 12% of the total, while a 25% of trips were made for leisure (including in the 

category physical exercise and enjoying the view, as these were other purposes the 

application proposed to participants. Shopping trips were the 11% of the total, while other 

small number of trips were labeled by users with other available purpose categories that 
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can fall into the class of ”errands” (visiting people, bring people somewhere etc.). A 

significant percentage of trips were categorized as “going home”, and it is very likely that 

part of these include going home from work; unfortunately it is not possible for all these 

trips to determine where participants went home from, as only for a few number of these 

trips participants provided a label for the origin location.  

 

 

 

Figure 32: Percentages of bike trips by purpose. 
 

Regarding the number of trips made by user, the majority of participants made up until 30 

bike over the four weeks of data collection (Fig. 33): the sample of respondents includes 

systematic cyclists, commuters who cycle everyday to work and less frequent cyclists. 

Compared to other similar data collected in different contexts – e.g. the Italian database 

analyzed in the previous Chapter – the number of bike trips per person are higher, but this 

could be expected if one consider the high percentage of trips that the Dutch population 

make by bike. 
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Figure 33: Number of trips per users. 
 

Another interesting statistic to describe the cycling habits of a population is the distribution 

of trip lengths as a function of a measure of impedance to travel (typically measured in the 

form of distance) (Taylor 1975; Luoma et al. 1993), i.e. the distance-decay curve. As the 

name implies, distance has a decaying effect on the likelihood of cycling between two 

locations.  

 

Figure 34: Distance-decay curves for different trip purposes. 

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100 More

Fr
eq

u
en

cy

# of trips



112 

 

The relationship between distance and probability to cycle is affected by a vast number of 

factors, connected to both users and to the cycling network, but also to the urban context, 

and the land use. It is fair to expect that the shape of the function vary by the purpose of 

the trips (Krizek et al. 2007). The curves obtained for this application are shown in Figure 34. 

Regarding cyclist preferences, Table 13 and 14 shows the cycled kilometers grouped by 

type of link, whether we considered the link typologies of the Open Street Map network 

(Tab. 13), or those of the Fietsersbond network (Tab. 14).  

 

Link type 
Km cycled on 

type of link 
% 

Km in the 

network 

database 

% 

Cycleway 7450.73 37.40% 33017.7 14.4% 

Unclassified 5452.48 27.40% 77221.4 33.7% 

Residential/Tertiary 3936.39 19.80% 34544.4 15.1% 

Footway/Pedestrian 1048.73 5.30% 17257.7 7.5% 

Secondary 1049.27 5.30% 8140.0 3.6% 

Path 397.72 2.00% 11806.5 5.2% 

Primary 392.04 2.00% 6433.5 2.8% 

Service 140.12 0.70% 13152.7 5.7% 

Motorway 24.36 0.10% 6855.3 3.0% 

Planned/Under 

construction 
4.13 0.02% 615.3 0.27% 

Table 13: Kilometers cycled by link type (OpenStreetMap Network). 

 

The first table gives an interesting result in quantifying the use of bicycle facilities (labeled 

as “cycleway”) by the population sample. Such a high percentage of trip length made on 

cycleways is in line with the well-known bicycle-oriented travelling habits of the Dutch 

context, as well as with the high number of bicycle facilities provided in the Dutch cities: it 
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is fair to assume that a high-level offer of bicycle facilities translates in a high number of 

cyclists using them. Another result to underline is the high percentage of trips made on 

links that are labelled as “unclassified”. As already mentioned previously, the detail of the 

network to which GPS points are matched is a key factor for every analysis coming from 

smartphone travel data, especially in terms of attributes describing the network’s links. The 

higher the number of “unclassified” links, the higher the loss of information for a specific 

trip. 

 

Link type 

Km cycled 

per type of 

link 

% 

Km in the 

network 

database 

% 

Normal roadway 6205.4 36.7% 89880.5 48.3% 

Path along road 3360.6 20.6% 22827.2 12.3% 

Bike lane 1890.0 11.2% 7143.5 3.8% 

Exclusive bike path 1982.7 11.7% 14627.6 7.9% 

Service road 478.1 2.8% 2963.3 2% 

Bicycle boulevard5 134.3 0.8% 172.6 0.1% 

Pedestrian 119.5 0.7% 1836.9 1% 

Unknown 802.7 4.7% 13337.2 7.2% 

Blank 1948.7 11.5% 32633.7 17.5% 

Table 14: Kilometers cycled by link type (Fietsersbond Network). 

 

As we mentioned in the previous paragraph, the network provided by the Fietsersbond 

Dutch Cyclist Union is richer in those attributes describing the perceived quality of bicycle 

                                                      
5 With the expression “bicycle boulevard” the author indicates a road that have been 

optimized for bicycle traffic: this means the road is open to motorized vehicle but their 
posted speed is reduced (normally to 30 km/h), and signals indicate that the right-of-way 
belongs to bicycle. Such type of link is not so frequent in the Italian context, while it is 
diffused in the Netherlands. 
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paths. In Table 15, Table 16 and Table 17 we illustrated the kilometers cycled by 

respondents, grouped in terms of link quality, link beauty and traffic nuisance perceived on 

links. 

 

Link quality 

Km cycled 

per quality 

class 

% 

Km in the 

network 

database 

% 

Good 9593.8 56.7% 87856.4 47.2% 

Fair 4019.7 23.8% 41726.8 22.4% 

Low 270.4 1.6% 5253.9 2.8% 

Unknown 952.1 5.63% 15600.3 8.4% 

Blank 2086.7 12.3% 35639.85 19.1% 

Table 15: Kilometers cycled by link quality level (Fietsersbond Network). 

 

Link beauty 

Km cycled 

per beauty 

class 

% 

Km in the 

network 

database 

% 

Neutral 8317.0 49.1% 77578.1 41.7% 

Beautiful 4935.0 29.2% 51179.4 27.5% 

Picturesque 330.1 1.95% 2707.9 1.5% 

Ugly/boring 303.6 1.79% 3459.1 1.9% 

Very ugly 6.9 0.1% 94.1 0.05% 

Unknown 944.2 5.6% 15419.1 8.3% 

Blank 2086.7 12.3% 35639.9 19.2% 

Table 16: Kilometers cycled by link beauty level (Fietsersbond Network). 
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Link traffic nuisance 

Km cycled 

per nuisance 

class 

% 

Km in the 

network 

database 

% 

Little 6795.0 44.9% 77720.2 41.8% 

Reasonable 3049.0 20.4% 23776.9 12.8% 

Very little 1831.0 10.8% 30347.4 16.3% 

Much 798.3 5.4% 2963.6 1.6% 

Very much 117.2 0.5% 237.4 0.13% 

Unknown 3879.0 5.6% 15392.1 8.3% 

Blank 1098.4 12.3% 35639.9 19.2% 

Table 17: Kilometers cycled by traffic nuisance level (Fietsersbond Network). 

 

 

 

4.2.2. Traveled distance versus shortest distance 

 

A first evaluation of cyclists’ behavior consists in the comparison between the paths that 

result to be chosen by them and the minimum cost path in terms of length. This gives a 

measure of how cyclists’ trips were “optimized”. Shortest paths have been calculated on 

the network model using ArcGIS, considering length, and excluding highways and 

motorways, as they do not represent an available option for cycling. 

Comparing the chosen routes with the shortest paths, on average, by trip, cyclists cycled 

1.37 km longer than the minimum cost path, 15% in percentage of trip length. Figure 35 

and 36 show the distributions of the difference between chosen routes and shortest paths 

length, in meters and as a percentage of trip length.  
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Figure 35: Distribution of the difference between chosen routes and calculated shortest 

routes. 

 

Figure 36: Distribution of the difference between chosen routes and calculated shortest 

routes, in percentage of trip length. 

 

 

The “optimization” in terms of length of cyclists’ trips has also been categorized by purpose: 

one should expect that, for work trips, people tend to choose a shorter path as they would 

do when they are travelling for leisure, or for exercise. Nevertheless, this did not prove to 
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be true for this specific study case, as the percentage of trips done on the shortest path 

varies around 50% and does not show significant deviation for specific trip purposes. 

The choice of a specific path, though, is not only influenced by its length, or purpose, but 

also from other factors such as safety of the path, presence of facilities, amenities, quality 

level etc. For this reason, as it will be shown in the following paragraphs, other relevant 

factors – as type of road, presence of bicycle facility, or personal features – have been 

included in the analysis. 

 

 

Figure 37: Percentages of trips on shortest path by purpose. 

 

 

4.3. Choice set generation 

 

The quality of route choice models strongly depends on the choice set considered, 

especially on its size, its composition, and on how plausible are the generated alternatives. 

Many studies in recent years have focused on the generation of choice sets (e.g. Bekhor et 

al., 2006; Prato and Bekhor, 2007; Bliemer and Bovy, 2008; Bovy and Fiorenzo-Catalano, 
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2007; Broach et al. 2010; Rieser-Schüssler et. Al, 2012; Halldórsdóttir et al., 2014), where 

the main issue is to generate alternatives that are plausible and relevant, i.e. that most 

likely represent the actual routes that users take into consideration. Methods proposed in 

literature, such as the breadth first search on link elimination (BSF-LE) (Rieser-Schüssler et 

al., 2012) or the branch and bound (B&B) (Prato and Bekhor, 2006) propose quite straight-

forward algorithms based on the search for shortest paths, but can generate alternatives 

that do not consider cyclists’ preferences for other factors, like safety and quality of paths. 

Most advanced methodologies try to take into account, further than the geometry and 

topology of the network, other attributes that proved to be relevant for cyclists: doubly 

stochastic generation function (DSGF) methods, as seen in Nielsen (2000), Bovy and 

Fiorenzo-Catalano (2007), Halldórsdóttir et al, (2014)  allow to consider multi-attribute cost 

function. For example, Halldórsdóttir et al. (2014) included in the cost function not only 

length, but also road type, presence of dedicated bicycle paths, and land-use attributes.  

Even so, the risk to include in the choice set routes that are not actually considered by 

cyclists as relevant options, is considerable. When a substantial number of repeated 

observations are available, over a significant period of time, the alternative routes available 

to each participant of the sample population can be directly deducted from the observed 

routes. In other words, if a certain number of repeated trips made by the same user 

between the same origin and destination pair has been registered, and a variety of different 

chosen routes can be observed, it is reasonable to generate the choice set of the user, for 

that specific origin and destination pair, as a selection of those routes. To avoid a too high 

correlation between the different alternatives in the choice set, observed routes can be 

grouped following different criteria of similarity, such as length, percentage of dedicated 

bicycle facility, number of intersections, quality or land-use attributes etc. The choice sets 

thus generated are likely to be smaller than those created by means of a choice set 

generation algorithm, but all the alternatives they consists of are realistic and have been 

considered as available by cyclists. 

For the present study, in order to individuate those trips made by the same user between 

the same OD pair, origins and destination locations where grouped using their 5-digit 
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postcodes. Over the 3502 bicycle trips available, recorded by 262 different participants, 

1442 (41%) where repeated more than once. These trips were then grouped by length, in 

order to define up to 4 groups of registered trips – for each user and each OD pair – which 

represented the four alternatives available to cyclists. The attributes of each alternative 

has been obtained as an average of all the recorded trips belonging to the group. For each 

user and OD pair, one additional alternative has been introduced, represented by the 

shortest path between the OD pair. Thus, each choice set has a minimum size of 1 (i.e. the 

shortest path, calculated for all OD pair) and a maximum size of 5 alternatives (4 generated 

from the observed routes plus the shortest path) (Tab. X). 

Alternative Description Choice rate 

Shortest 
Up to 15% longer than the 

shortest 
 

26.61% 

Alt 1 
16% to 30% longer than the 

shortest 
23.87% 

Alt 2 
31% to 60% longer than the 

shortest 
17.65% 

Alt 3 
61% to 75% longer than the 

shortest 
17.05% 

Alt 4 
More than 75% longer than 

the shortest 
14.82% 

Table 18: Alternatives and their choice rates. 

 

4.4. Model estimation 

4.4.1. Discrete Choice Modelling Framework 

 

When dealing with route choice, the independence of irrelevant alternatives (IIA) property 

of the Multinomial Logit (MNL) model makes it inappropriate for estimating discrete 

choices among similar alternatives, such as different paths available for a cyclist between 
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an OD pair in an urban context. In such case, an overlapping path may not be perceived as 

a distinct alternative. For bicycle route choice modelling this problem has been overcome 

by introducing a similarity measure in the utility function, as done by Ben-Akiva and 

Bierlaire (1999) for the so-called Path Size Logit model. In the route choice context, indeed, 

a path often contains links that are common for several paths. Hence, the size of a path 

with one or more links in common with another may be less than one. Ben-Akiva and 

Bierlaire has included a path-size factor 𝑃𝑆𝑖𝑛in the utility function of a path, i.e.: 

𝑃𝑆𝑖𝑛 =  ∑
𝑙𝑎

𝐿𝑖

1

∑ 𝛿𝑎𝑗

𝐿𝐶𝑛

∗

𝐿𝑗
𝑗𝜖𝐶𝑛

𝑎∈𝛤𝑖

 

           (14) 

where 𝛤𝑖 is the set of all links in path 𝑖,  𝑙𝑎 is the length of link 𝑎, 𝐿𝑖  is the total length of 

path 𝑖, 𝐶𝑛 is the set of all the alternatives for user 𝑛, 𝐿𝐶𝑛

∗  is the length of the shortest path 

in 𝐶𝑛, 𝐿𝑗  is the total length of path 𝑗; 𝛿𝑎𝑗 is the link-path incidence variable, and equals 1 if 

link 𝑎 is part of path 𝑖 and 0 otherwise. 

Thus the corrected utility function is: 

                                                           𝑈𝑖𝑛 = ASC +  𝛽 ∙ 𝑥𝑖𝑛 + 𝜀𝑖𝑛                                                                  (15) 

where 𝑥𝑖𝑛 is the vector of route attributes, 𝛽 is the vector of parameters to estimate and 

𝜀𝑖𝑛 are the error components. 

As for the error component, we referred to the formulation of the Mixed Logit model 

(Train, 2002), in order to account for correlation in unobserved factors over time.   

The model thusly obtained for the probability of choosing path 𝑖 is:   

𝑃(𝑖|𝐶𝑛) =
𝑒𝛽(𝑥𝑖𝑛+𝑙𝑛𝑃𝑆𝑖𝑛)

∑ 𝑒𝛽(𝑥𝑗𝑛+𝑙𝑛𝑃𝑆𝑗𝑛)
𝑗𝜖𝐶𝑛

 

          (16). 
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4.4.2. Binomial logit model 

 

The first model we estimated was a binomial mixed logit model, where the two alternatives 

are represented by the shortest route (Alt0) and the chosen route, when this differed from 

the shortest.  

We made the assumption that if the chosen trip length corresponded to the shortest length 

between the same OD pair, or it was longer by no more than 15%, then it could be said the 

cyclist chose the shortest path for travelling between that specific OD pair. Given this 

assumption, Figure 38 shows the percentage of choice for the shortest path, versus other 

options. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38: Percentage of choice, divided by shortest route or other. 
 

 

The attributes considered were the percentage of link types in the trip (keeping roadway 

as a reference, and considering the different types of bicycle links), the number of traffic 

signals, percentage of good quality links, beautiful links, and low traffic nuisance links in 

the trip. As personal attributes age and sex were considered, and finally trip purpose. For 

all the parameters, the shortest path alternative was considered as reference. The 

parameters were estimated in BIOGEME (Bierlaire 2003). 

27%
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Not all estimated parameters resulted significant; for the significant parameters, results of 

the estimation are shown in Table 19. 

For what concerns the different types of link, only the presence of bike lanes, bicycle 

boulevards and service roads reached the level of significance. Given the negative signs of 

their parameters, all three of these link type proved to be avoided by cyclists (in relation to 

roadway links). Further, the presence of traffic signals resulted to be positively affecting 

the choice of longer paths, with respect to the shortest alternative.  

 

Utility parameter Value T-test 

𝑨𝑺𝑪𝒔𝒉𝒐𝒓𝒕 1 --(fixed) 

𝑨𝑺𝑪𝒏𝒐𝒏_𝒔𝒉𝒐𝒓𝒕 -0.79 -4.82 

𝜷𝒎𝒂𝒍𝒆 (dummy) -0.68 -3.24 

𝜷𝒔𝒊𝒈𝒏𝒂𝒍𝒔 0.07 3.98 

𝜷𝑏𝑖𝑘𝑒_𝑙𝑎𝑛𝑒  -1.13 -2.04 

𝜷𝑏𝑖𝑘𝑒_𝑏𝑜𝑢𝑙𝑒𝑣𝑎𝑟𝑑 -4.87 -2.40 

𝜷𝒔𝒆𝒓𝒗𝒊𝒄𝒆 -1.88 -2.09 

𝜷𝒈𝒐𝒐𝒅_𝒒𝒖𝒂𝒍𝒊𝒕𝒚 6.01 1.52 

𝜷𝒇𝒂𝒊𝒓_𝒒𝒖𝒂𝒍𝒊𝒕𝒚 6.78 1.72 

𝜷𝒍𝒐𝒘_𝒒𝒖𝒂𝒍𝒊𝒕𝒚 7.81 1.9 

𝜻𝒑𝒂𝒏𝒆𝒍_𝒔𝒉𝒐𝒓𝒕𝒆𝒔𝒕 0.79 3.09 

𝜻𝒑𝒂𝒏𝒆𝒍_𝒐𝒕𝒉𝒆𝒓 -0.77 -2.96 

Number of draws 200 

Number of estimated parameters: 25 

Number of observations: 2798 

Initial log-likelihood: -1939.00 

Final log-likelihood: -929.40 

Rho-square: 0.520 

Table 19: Results from the binomial mixed logit model estimate. 



123 

 

Referring to the personal characteristics of cyclists, age did not prove to be significant, 

while sex did: using sex as a dummy variable, and keeping “female” as a reference, male 

cyclists result to perceive longer alternatives as less attractive, if compared to the shortest 

available option. 

As for the “quality-levels” of links, the parameters for the three levels (good, fair and low) 

resulted significant and positive. A positive sign could be expected for the proportion of 

good-quality and fair-quality links in the longer paths (alternative “other”), on the contrary 

a negative sign could be expected for the proportion of low-quality links. Nevertheless, this 

can be explained if we refer to Table 15: in the descriptive analysis, we already highlighted 

that low-quality links represented only the 1.6% of the chosen links, so the choice-sample 

for low-quality links is too small to result in something representative. More in general, it 

could be said that for this context, where the vast majority of links in the network database 

are of good quality, quality itself is not actually determining cyclists’ preferences. 

 

4.4.3. Mixed multinomial Path-Size logit model 

 

For the multinomial Path-Size model, the choice sets described in paragraph 5.3 were used. 

The Path Size formulation expressed in Eq. 14 was considered. The attributes considered 

were the percentage of link types in the trip, the number of traffic signals, percentage of 

good quality links, beautiful links, and low traffic nuisance links in the trip. As personal 

attributes age and sex were considered, and finally trip purpose. Specific parameters for 

the 5 alternatives available were estimated, again using BIOGEME (Bierlaire 2003). 

Not all estimated parameters resulted significant; for the significant parameters, results of 

the estimation are shown in Table 20. 

For what concerns the different types of link, only the presence of an exclusive bicycle 

facility resulted to be somewhat significant, even if the t-test value is still very low. The 

positive sign of the parameter’s value indicates cyclists demonstrated a certain preference 
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for cycling longer when in presence of dedicated bicycle facilities. As seen for the binomial 

logit model, the presence of traffic signals results to be positively affecting the choice of 

longer paths, with respect to the shortest alternative. Referring to the personal 

characteristics of cyclists, age did not prove to be significant, while sex did: using sex as a 

dummy variable, and keeping “female” as a reference, male cyclists result to perceive 

longer path alternatives as less attractive. Nevertheless, the corresponding parameter 

failed to reach significance.  

Utility parameter Value T-test 

𝑨𝑺𝑪𝒂𝒍𝒕𝟏 2.74 4.13 

𝑨𝑺𝑪𝒂𝒍𝒕𝟐 2.92 4.39 

𝑨𝑺𝑪𝒂𝒍𝒕𝟑 2.81 4.19 

𝑨𝑺𝑪𝒂𝒍𝒕𝟒 2.47 3.54 

𝜷𝑀𝑎𝑙𝑒 (𝑑𝑢𝑚𝑚𝑦) -0.26 -1.07 

𝜷𝒆𝒙𝒄𝒍𝒖𝒔𝒊𝒗𝒆_𝒑𝒂𝒕𝒉 0.92 1.36 

𝜷𝒔𝒊𝒈𝒏𝒂𝒍𝒔 0.06 1.56 

𝜷𝑃𝑎𝑡ℎ𝑆𝑖𝑧𝑒_𝐴𝑙𝑡1 0.54 3.29 

𝜷𝑃𝑎𝑡ℎ𝑆𝑖𝑧𝑒_𝐴𝑙𝑡2 0.55 3.51 

𝜷𝑃𝑎𝑡ℎ𝑆𝑖𝑧𝑒_𝐴𝑙𝑡3 0.49 3.34 

𝜷𝑃𝑎𝑡ℎ𝑆𝑖𝑧𝑒_𝐴𝑙𝑡4 0.31 2.38 

𝜷𝐿𝑒𝑖𝑠𝑢𝑟𝑒 (𝑑𝑢𝑚𝑚𝑦) 1.01 3.48 

𝜻𝒑𝒂𝒏𝒆𝒍_𝒔𝒉𝒐𝒓𝒕𝒆𝒔𝒕 0.943 5.75 

Number of draws 200 

Number of estimated parameters: 38 

Number of observations: 2798 

Initial log-likelihood: -1797.26 

Final log-likelihood: -889.87 

Rho-square: 0.505 

Table 20: Results from the mixed multinomial Path-Size logit model estimate. 
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The positive sign of the Path-Size factor, as calculated for all of the alternatives (except for 

the shortest path that is the reference) indicates that if a route is less similar to the 

alternatives, its chances of getting chosen will be high. This positive effect of the Path-Size 

factor was also reported in several past studies on route choice models (e.g. Prato and 

Bekhor, 2006; Prato and Bekhor, 2007). 

Among all possible trip purposes tested, only “leisure” resulted significantly influencing 

cyclists’ route choices, with a significant and positive parameter: this means that for leisure 

trips cyclists choose paths longer than the shortest available option, which represent a 

consistent and expected result. 

Finally, the error component expressing the correlation between choices made by the same 

user (𝜻𝑝𝑎𝑛𝑒𝑙) only resulted significant for the shortest-path alternative, and positive: this 

means that users that repeated multiple times the same choice (same trip, i.e. same origin-

destination pair) showed a tendency to choose the shortest path available. Such a result is 

somewhat expected and intuitive, as frequent cyclists are more likely to optimize their 

trips, especially when these trips are repeated such as commuting trips. 
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Concluding remarks 

 
 
 
 
The satisfaction cyclists experience in their daily trips on a city’s road network lies in a 

combination of factors that researchers tried to investigate and quantify through a wide 

variety of data and assessment methodologies. Undoubtedly, understanding cyclists’ 

behavior in terms of route choice is seen as a way to build a solid framework of knowledge 

to refer to, when investing public resources for developing – or enhancing – a bicycle 

network for a city. If planners and decision-makers knows what makes a bicycle facility, or 

a road, more likely to attract cyclists, they own an instrument to better integrate cycling in 

a city as a convincing mobility option.  

As research has been demonstrating in the last decades, cyclists consider a variety of 

factors when evaluating the quality of their cycling trips in an urban context. Cyclists’ travel 

decisions are often motivated by perceived travel time – and speed – as well as by 

perceived safety. Both travel time and safety are influenced by the geometric design of the 

facilities (turning radii, slope, lane width) and functional features (proximity to cars, speed 

of adjacent cars, proximity of car parking stalls, presence of dedicated facility). Moreover, 

other factors intervene, less easy to quantify and measure, as land-use, pleasantness of the 

environment, or perceived quality of a bicycle context. This latter, for instance, can be 

determined by pavement conditions, illumination, interaction with motorized and non-

motorized traffic components. 

Within this research field, many are the typologies of data that analysts can rely to. The 

first studies tried to develop synthetic indicators of “bikeability”, or stress level, or level of 

service, based on experimental measurements or stated preference surveys. The first are 

mainly based on measuring the three fundamental traffic quantities – speed, volumes and 

density. The idea is to determine threshold of such quantities that define a scale of 

performance for a given road or bicycle facility. 
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Stated preference surveys has been largely used for understanding cyclists’ preferences, as 

they constitute a relatively cheap data collection method, and they provide a controlled 

experimental environment. 

Another consistent part of the literature on the subject has relied on revealed preference 

surveys, where analyst asked participants to describe their travel choices based on actual 

trips they have recently completed. In order to use this more reliable source of data, 

though, more information on the network is needed, as well as specific methodologies for 

data analysis. 

Recently, research on cyclists’ preferences has grown thanks to the spread of the Global 

Positioning Systems (GPS) recording devices, incorporated in smartphones. On one side, 

the level of accuracy of GPS devices has increased, thanks to the investments on the 

involved technologies. On the other side, people habits and attitude towards the use of 

smartphone changed very rapidly, to the point that nowadays it is absolutely common for 

people to possess a smartphone, keep self-localization devices activated, declare their 

position in order to make it available for a burgeoning set of applications and services, 

register, monitor and share with people their position, trips and activities. Data availability 

for investigating cyclists travel choices and habits has seen an unprecedented 

enhancement. 

Furthermore, in parallel with these changes in technology and society, research followed: 

several of the methodological developments relevant to modelling route choice are 

relatively recent, and have been applied to GPS-based travel surveys.  

 

This work aimed at understanding which are the most critical aspects of cycling in an urban 

context, and individuating what makes a path more attractive of another for cyclists. To do 

so, we started to explore some experimental data from Bologna, an Italian medium-sized 

city that has one of the highest bicycle split rate, considering the Italian context. The first 

measurements of usage rates and speed patterns on cycleway and road segments of the 

network of Bologna indicated that cyclists often cycle on the road, mixing with motorized 

traffic, even if a bicycle facility next to the roadway is provided. This in mainly due to the 
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frequent interruptions that a cyclist encounter along a dedicated bicycle path, and to the 

presence of disturbances. One of the main factors influencing cyclists’ choices are indeed 

his perception of speed and safety. 

The research then moved towards the use of GPS smartphone-based datasets. Such data 

provides a broader point of view on cyclists’ behaviour, as well as more information on the 

cycling patterns of a much wider sample of cyclists on a much wider portion of the network. 

The benefits of the availability of such rich travel datasets comes, of course, with the 

burden of a much more complicated process of data elaboration and analysis. The main 

processing methodologies for modelling route choice from GPS traces recorded from 

smartphone have been described, and can generally fall into three main categories: (1) 

filtering and map-matching procedures, (2) choice set generation and (3) route-choice 

modelling. 

The map-matching process consists of all those operations that transform a stream of GPS 

points to a road-network database, in order to identify the traversed links in the chosen 

route. In general, the challenge for new and advanced map-matching procedures is to 

increase the accuracy while maintaining computational efficiency. 

In this work, a novel map-matching methodology have been proposed and applied to a real 

case-study, i.e. the GPS traces recorded by cyclists in the city of Bologna. Approximately 

3000 (55%) traces could be reliably matched to the road network. The creation of buffers 

around network links and the determination of the probability of GPS points inside the 

buffer, in combination with length – and type – specific edge attributes, has shown 

promising results, especially in dense street grids and for different road types. In particular, 

when a cycleway link is adjacent to a road link, the algorithm allowed to match trips giving 

preference to the cycleway link. This is particularly useful for the dense network in urban 

areas, even if we saw from the first part of the study that such an assumption can lead to 

overestimate usage rates for bicycle facilities.  

The trips obtained from the map-matching process have been analysed in terms of length 

distribution, time distribution, and travel duration.  
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Further, the composition of chosen routes in terms of link type has been analysed: results 

confirm the observations derived from the first part of the study, i.e. that cyclists chose 

very unfrequently to cycle on dedicated bicycle facilities, while they tended to choose road 

links. This is undoubtedly related to the scarcity of bicycle facilities (only the 6% of the total 

links in the Open Street Map network), but also to a preference for directness and time 

savings over safety.  

Subsequently, chosen routes has been compared to the shortest paths calculated between 

the same origin-destination pairs. This comparison showed that only the 26% of trips were 

made choosing the shortest option available, while the majority of trips contained 

significant detours (i.e. additional length cycled). The data available did not allow to relate 

this result with trip purpose, as it was unknown, but the distribution of detour along the 

days of the week and the hours of day suggest that the detour is grater for weekends and 

non-peak hours, thus it seems to characterize more non-systematic trips. 

In the final part of this work, a second case study has been considered: the GPS traces 

recorded in the framework of the Mobile Mobility Panel, throughout the whole territory of 

the Netherlands. Approximately 280 bicycle users were asked to register all their trips 

through a smartphone application specifically elaborated for this data collection, called 

MoveSmarter. Furthermore, the recorded trips have been corrected by the users 

themselves, who checked and corrected their travel information daily, on a web web-based 

prompted recall survey.  Finally, the bike trips had already been matched to the Open Street 

Map network, but also a second network database was available, i.e. the Fietsersbond 

network database. This is a specific bicycle network built and updated by a Dutch cyclists 

union, which reaches a surprising level of detail both in terms of link number and in terms 

of information attached to its links.  

From a first descriptive analysis of the Dutch GPS traces, one can clearly spot some main 

differences with the Italian case study, given by the different contexts considered: trip 

lengths and trip distribution over time shows a population sample that is much more used 

to cycle, for longer distances, and more frequently. Furthermore, when considering the 

composition of chosen routes in terms of link type, the usage of cycleway links is much 
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more frequent. Of course, this was an expected result, as the percentage of dedicated 

facilities in the Dutch network is much higher than in the Italian one. 

The level of detail of the datasets involved allowed to test for bicycle route choice models: 

a binomial logit model and a multinomial logit model have been estimated. Path-size logit 

model formulation has proved to be the best model formulation for bicycle route choice, 

as it allows to consider the overlapping of alternatives that characterizes bike trips. 

Furthermore, we referred to the mixed logit model formulation to introduce an error 

component that was capable of capturing the influence of trip repetitions. Indeed, many 

GPS traces from the database consisted of the same trip (origin-destination pair) repeated 

by the same user throughout the monitoring period. The estimation results have shown 

that for repeated trips, the shortest route option tend to be chosen more, suggesting that 

frequent cyclists, on systematic trips, tend to optimize their trip and to prefer shortest 

routes. Nevertheless, in general, the percentage of choice of the shortest route is 

completely comparable with the Italian one, i.e. around 25%.  

Unexpectedly, the available information regarding quality, beauty and traffic nuisance for 

the network links, did not result in significant parameters in the modelling. Nevertheless, 

from the descriptive analysis of the GPS trips, we saw that most trips are made on links that 

present a good-to-very-good level of quality and beauty, and a low-to-very-low level of 

traffic nuisance. This is probably explained keeping into consideration that the general level 

of quality of bicycle links in the Dutch context, especially in urban environments, is rather 

high. 

 

Another important aspect to highlight is the choice set generation methodology. Given the 

high number of trips, frequently repeated, in the Dutch trip datasets, we tried to identify 

the alternatives that compose the choice set based on the observed routes. Choice sets 

obtained in this way are certainly smaller than those obtained by topological or 

probabilistic algorithms we described in the literature review section (Chapter 3), but they 

do represent a more realistic set. In order to build the alternatives, these trips were then 

grouped by length, and 4 groups of registered trips – for each user and each OD pair – 
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where created, which represented the four alternatives available to cyclists. The attributes 

of each alternative has been obtained as an average of all the recorded trips belonging to 

the group. For each user and OD pair, one additional alternative has been introduced, 

represented by the shortest path between the OD pair. Thus, each choice set has a 

minimum size of 1 (i.e. the shortest path, calculated for all OD pair) and a maximum size of 

5 alternatives (4 generated from the observed routes plus the shortest path). 

As future development, it would be interesting to consider other criteria, other than the 

sole length, to group the observed routes and create the alternative sets; for example, 

groups could be made based on the proportion of good-quality links in the path, or based 

on the number of traffic signals. A cluster analysis on multiple parameters could be 

performed, in order to define the alternatives based on actual differences in observed 

routes. Alternatively, the choice set could be enriched by adding to the shortest route, the 

safest route, or the one made entirely by separated cycleway links, or the most scenic, etc., 

as calculated by any GIS routing tool. 

 

Finally, this work shed light on an important aspect regarding the use of GPS traces coming 

from smartphone: such data truly represent a rich source of detailed information on 

cyclists’ behavior and preferences, but in order to be used it needs just as much detail for 

what concerns the network database. As we saw in the map-matching application to the 

Italian case study, the accuracy of the process is greatly affected by the completeness of 

the network model, and this is even truer for bicycle trips, as cyclists frequently move on 

“unofficial” links, such as pavements or park paths. Moreover, in order to estimate accurate 

models, the analysts must include in the explanatory variable set a wide number of 

features, sometimes not only describing the links themselves, but the bike environment. If, 

as we saw, many are the factors influencing bicycle route choice, then greater in the effort 

to capture these factors and properly describe them through georeferenced information. 

In this sense, the diffusion of crowd-sourced information, and volunteered geographic 

information, can represent a positive future development for the research field. 
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