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Abstract

Over the last years, consensus and synchronization problems have been a popular

topic in the systems and control community. This interest is motivated by the fact that,

in several fields of application, a certain number of agents is interacting or has to co-

operate to achieve a certain task. Robotic swarms, sensor networks, power networks,

biological networks are only few outstanding examples where networks of agents dis-

plays behaviors which can be modeled and studied by means of consensus and synchro-

nization techniques. The etymology of consensus and synchronization refers in fact to the

property that systems reach some sort of agreement on a certain parameter or in their

state evolution.

Two main aspects should be considered in dealing with networks problems. First,

how to model the agents forming the network: for instance, one could consider linear or

nonlinear systems, homogeneous or heterogeneous dynamics. Second, how to model the

interaction and exchange of information: usually graph theory tools are exploited. With

this respect several scenario can be considered: for instance, static topology, switching

or time-varying topology, but also dynamical systems as links between the agents, rather

than static couplings.

In this thesis we consider a general class of networked nonlinear systems in different

operating frameworks and design control architecture to force the systems to reach syn-

chronization and consensus on a target behavior. In particular, we consider the case of

homogeneous and heterogeneous nonlinear agents with a static communication topol-

ogy and design a static high-gain-based diffusive coupling and an internal model-based

regulator respectively, to solve the problem of consensus. Then, we analyze the case of

dynamical links and show under which conditions, synchronization for homogeneous

nonlinear systems can be achieved. Depending on the structure of the dynamic links at
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hand, static and dynamic regulators (based on the concept extended state observers) are

proposed. Furthermore, we address the problem of disconnected topology and switch-

ing topology and derive under which conditions agents reach cluster synchronization and

synchronization respectively. Last, we consider the problem of a sampled exchange of

information between the agents and design a triggering rule locally at each agent such

that the overall network reaches synchronization.
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Notation

• We denote with R the set of real numbers. We denote R≥0 = [0,∞) and R>0 =

(0,∞).

• For a real number a ∈ R we denote with |a| its absolute value.

• We denote with C the set of complex numbers. We denote with i the imaginary

unit, i.e. i =
√
−1. Given a complex number c ∈ C we denote with ℜ(c) its real

part, and with ℑ(c) its imaginary part, so that c = ℜ(c) + iℑ(c).

• For a complex number c ∈ C we denote with |c| its absolute value defined as |c| =
√

ℜ(c)2 +ℑ(c)2.

• For a vector x ∈ R
n, we denote with ‖x‖ its Euclidean norm, i.e. ‖x‖ =

√

∑n
i=1 x

2
i .

• For amatrixA ∈ R
n×m we denotewith ‖A‖ its normdefined as ‖A‖ = sup{‖Ax‖;x ∈

R
m with ‖x‖ = 1}.

• We define diag (a1, . . . , an) =









a1 · · · 0
...

. . .
...

0 · · · an









.

• We denote with 0n×m a matrix of dimension n×m whose entries are all zeros.

• We denote with In the identity matrix of dimension n× n. When the dimension is

not ambiguous, it can be also defined simply as I.
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• A triplet S,B,C is said to be in prime form when

S =

(

0(n−1)×1 In−1

0 01×(n−1)

)

, B =

(

0(n−1)×1

1

)

, C =
(

1 01×(n−1)

)

.

Without misunderstanding we use the notation S in prime form, the pair S,B or

the pair S,C in prime form.

• A⊗B denotes the Kronecker product of the two matricesA ∈ R
n×m andB ∈ R

p×q,

namely

A⊗B =









a11B a12B . . . a1mB
...

...

an1B an2B . . . anmB









It has the following properties:

1) A⊗ (B + C) = A⊗B +A⊗ C

2) (A+B)⊗ C = A⊗ C +B ⊗ C

3) (A⊗B)⊗ C = A⊗ (B ⊗ C)

4) if A,B,C,D are matrices of compatible size

(A⊗B)(C ⊗D) = (AC)⊗ (BD)
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[...] I’ll tell you what hermits realize. If you go off

into a far, far forest and get very quiet, you’ll come

to understand that you’re connected with everything.

[...]

Alan Watts

1
Introduction

W
hen I first came into the quote above, I thought it could have been the best

statement to start my thesis with. It summarizes the reasons why the sci-

entific community is paying so much attention to the analysis and under-

standing of networked systems. In the everlasting process of discovery humanity is im-

mersed into, we have realized that in order to understand the complexity of the world

we live in, it is not possible to look at a single part. We have to consider each single

aspect of life in its intrinsic interconnection with its surroundings and to understand

the underlying structure that links us to each other. Friedrich Nietzsche used to say:

"Invisible threads are the strongest ties". Connection is everywhere, whether we look at

the world around us from a material or a spiritual perspective.

In recent years multi-agent systems and networked systems have attracted a lot of

interest from the control community, due to the challenging problems they convey and

the many application areas which they cover. The increasing interest in practical frame-

works concerningmulti-agent systems is becoming a huge motivation to adapt well know

theoretical results to understand and to control the behavior of networks.

In particular, we think about all the possible situations in which a certain number

agents are required to collaborate and to achieve some sort of agreement in order to

fulfill the assigned task. With this respect, synchronization and consensus are a typical
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mathematical representation of such a scenario, in which agents interact and communi-

cate with each other and aims to find an accordance in their behavior. Robotic swarms,

power networks, sensors networks are some outstanding examples where synchroniza-

tion and consensus can play a fundamental role in achieving the desired goal. Further-

more, a mathematical analysis of networks finds a lot more fields of application, not

merely engineering and sometimes even fancy. Usually network analysis tools are ex-

ploited to model complex systems dynamics, such as animal collective behavior, traffic

monitoring, social networks, opinion dynamics, economic modeling and many others.

In the analysis of multi-agent systems, there are essentially two main components to

be considered: the agents dynamics and the communication/interaction through which

the agents are interconnected. The former is deeply interlacedwith the particular frame-

work of the analysis. The latter involves the representation of the exchange of informa-

tion by means of graph theory and is a fundamental tool in the analysis of networked

systems. It is indeed possible to consider consensus and synchronization problems from

different perspective, for instance whether the dynamics of the agents is linear or non-

linear, whether the communication topology is static or dynamically changing, whether

the interaction between the agents is static or dynamic.

The purpose of this thesis is to provide an extensive overview on the topics related

to networks of nonlinear agents. The following summary shows the outline of this thesis

and briefly recaps its main contributions.

Chapter 2: In this chapter we review basic concepts about graph theory and graph

representations. Most of the concepts and results presented in this chap-

ter are available in the literature: the reader is referred to Godsil and Royle

(2004) for a theoretical perspective and to Wieland (2010) for a more en-

gineering point of view. We focus our attention on:

– graph representation and basic definitions

– the use of matrix to represent graphs

– the possibility the represent complex graphs as a connection of smaller

sub-graphs

Chapter 3: In this chapter, we focus our attention on the problem of synchronization

and consensus for nonlinear systems networks. We present novel result

based on Isidori et al. (2014), Isidori et al. (2013). In particular:

– we consider a network of homogeneous nonlinear agents and obtain

sufficient conditions to achieve synchronization

2



Chapter 1. Introduction

– we consider a network of heterogeneous nonlinear agents and by

means of internal model principle, we design a control architecture

capable of inducing consensus in the network

Chapter 4: This chapter is devoted to the analysis of networks with dynamical links.

Conventionally edges between nodes are considered as ideal wires, but in

several applications such as power networks, links are dynamical systems

themselves and modify the structure of the network deeply. The results

presented in this chapter are partly inspired by Casadei et al. (2014a), but

a substantial part is completely novel. In particular:

– we first consider the case of dynamical edges with algebraic connec-

tion between their input and their outputs: this scenario can be seen

as a natural extension of the results in Chapter 3

– then, we consider the case of purely dynamic links connecting the

agents in the network and propose a dynamic control architecture,

including local observers at each node, to achieve of synchronization

Chapter 5: In this chapter we consider the problem of networks with disconnected

topology. In particular:

– we study the behavior of nonlinear systemswhen disconnected topol-

ogy occurs

– then, we define a control architecture capable of enforcing clustered

consensus inside a disconnected network network

– last, we consider the case of switching topology and by means of

hybrid tools, derive sufficient conditions under which agents achieve

synchronization despite time intervals in which the topology is not

connected

The results in this chapter are based on Casadei et al. (2014b) andCasadei et al.

(2015): however, a major section is completely novel.

Chapter 6: In the last chapter we consider the problem of networks in which the

exchange of information is sampled. We define an event triggering rule

locally at each agent through which agents sample their neighbors infor-

mation only when necessary. The results in this chapter are completely

novel.

Supplementary material is provided in the appendices, aiming to make this thesis as

self-contained as possible.
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[...] so the movements of most of the people who live

in cities have lost their connection with the earth; they

hang, as it were, in the air, hover in all directions, and

find no place where they can settle.

Rainer Maria Rilke

2
Graph Theory

I
n the study of synchronization and consensus problems, a network of dynamical

systems is interconnected according to a specific communication topology. The com-

munication topology describes the flow of information between the agents and thus

determines the set of neighbors for each agents. Based on the exchange of information,

we aim to define suitable control laws to achieve synchronization between the agent state

or their outputs.

Communication can be interpreted fromdifferent perspectives: on a higher andmore

general level, communication represents the exchange of information between agents.

However, it is also possible to consider communication from a more physical perspec-

tive, as the exchange of relative sensing or a material connection between the systems

involved. This is especially the case when considering dynamical links: in this scenario,

links are not considered as ideal connection between agents but rather introduces a dy-

namical effect to the whole network.

Nevertheless, the analysis of the network by means of graph theory is a fundamen-

tal step in establishing control architecture to achieve synchronization and consensus

between agents. In this chapter, we introduce basic concepts about graph theory which

will be used all over the thesis. For further details on the topic, the reader is referred to

Godsil and Royle (2004).
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2.1. Basic definitions about graphs

v1 v2

v4

v3

v6v5

Figure 2.1: Example of a directed graph

2.1 Basic definitions about graphs

In general, graphs are composed of nodes (or vertexes) and edges (or arcs) connecting the

nodes. The edges can be directed or undirected, weighted or unweighted. Directed edges

implies that the flow of information is from an agent (the tail of the arc) to a receiver (the

head of the arc): in contrast with oriented edges, which just have an arbitrary representa-

tive orientation, directed edges implies that the flow of information is not bidirectional.

Weighted edges embeds a further information about the information exchange, in the

sense that each edge has a trust/relevance/importance relatively to the other agents.

These different properties about edges generates different families of graphs:

• unweighted graphs: the edges are not directed, in the sense that every connection

between agents has to intended as bidirectional and no weight is applied to the

arcs;

• wighted graphs: weights are applied to the different edges;

• unwighted digraphs: the edges have a precise direction representing the flow of

information from an agent to another;

• weighted digrpahs: the more general family of graphs, in which the edges are both

weighted and directed

In this thesis, we deal with weighted digrpahs so all the results which are given about

graphs can be extended to the other families of graphs without loss of generality. For

the sake of generality, we will give basic definitions about graphs in the time varying

framework: when we consider fixed graphs, the dependence on time will be omitted.

Definition 2.1. A time varying weighted digrpahs is a triplet G(t) = {V, E(t), A(t)} in

which:

• V is a set of N nodes V = {v1, v2, . . . , vN }, one for each of the N agents in the set.

6



Chapter 2. Graph Theory

• E(t) ⊂ V ×V is a set of edges that models the interconnection between nodes, according

to the following convention: (vk, vj) belongs to E(t) if there is a flow of information from

node j to node k.

• the flow of information from node j to node k isweighted by the (k, j)-th entry akj(t) ≥
0 of the adjacency matrix A(t) ∈ R

N×N .

Furthermore, it satisfies the following properties

P1) there are no self-loops, i.e. that (vk, vk) /∈ E .

P2) the elements akj(·) : R → R+, k, j ∈ NN of the adjacency matrix A are non-negative,

piecewise continuous, and bounded functions of time.

In the definition above, vk ∈ V with k ∈ NN , represent one of the N nodes of the

network. The edge (vk, vj) ∈ E(t) represents the connection and thus the flow of infor-

mation from agent k (conventionally the tail) to agent j (conventionally the head).

The elements akj(t) of the adjacency matrix A(t) represents the weight associated to

the edge (vk, vj). The case of un-weighted graphs can be derived from the definition, by

imposing that akj(t) = {0, 1}, meaning that akj(t) = 1when (vk, vj) ∈ E(t) and akj(t) = 0

if there is no connection from agent k to agent j. Property P2) is relevant only in the

case of time varying graphs and basically requires the topology to have a finite number

of discontinuity in a closed intervals of its domain and at the points of discontinuity the

left and right limits exist.

It is worth noticing that the adjacency matrix A(t) depends on the particular num-

bering of the vertexes. However its spectral properties are invariant on the particular

numbering, thus the results given in this chapter do not depend on the chosen number-

ing.

The set of neighbors of node vk is the set Nk(t) = {vj ∈ V : akj(t) 6= 0}. A path

from node vj to node vk is a sequence of r distinct nodes {vℓ1 , . . . , vℓr} with vℓ1 = vk and

vℓr = vj such that (vi, vi+1) ∈ E . Using the concept of path we can also define the set of

descendants of node vk at time t as

D(vk,G(t)) = {vj ∈ V : ∃ a path from vk to vj at time t}

For instance, in the example of Figure 2.1, the neighbors of agent 4 are N4 = {1, 2},
while agent 1 has no neighbors. The path from node 5 to node 1 is the sequence of

(v5, v6) → (v6, v3) → (v3, v2) → (v2, v1).

It comes without saying that, in order to achieve synchronization and consensus be-

tween a set of agents, it is necessary to assume that a certain flow of information is avail-

able to all agents. This consideration involves the so called connectedness of a graph.
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2.1. Basic definitions about graphs

v1 v2

v4

v3

v6v5

v1

v4

Figure 2.2: Example of a directed strongly connected graph

Depending on the particular point of view, it is possible to introduce different defini-

tions of connectedness.

Definition 2.2. A graph G(t) is said to be connected at time t, if there is a node v such that,

for any other node vk ∈ V \ {v}, there is a path from v to vk, and v is the centroid of the

graph. In other words, there exists a node v such that all vk ∈ V \ {v} are descendants of v,

i.e. v ∪ D(v,G(t)) = V .

A graph Ḡ(t) obtained by removing all the edges which do not belong to any of the

paths from node vk to all the others is called spanning tree: the node v is the root of the

spanning tree. So equivalently to Definition 2.2, we can say that a graph G(t) is said to

be connected at time t, if there exists a spanning tree at time t.

A stronger notion of connectedness is now introduced: in particular we consider the

case in which information can be exchanged between each pair of agents in the network.

Definition 2.3. A graph G(t) is said to be strongly connected at time t, if all nodes vk ∈ V
are centroid of the graph. In other words, taken any pair of nodes vi, vj , vi ∈ D(vj ,G(t)) = V ,
vj ∈ D(vi,G(t)) = V .

The example of Figure 2.1 is a connected graph since there exists a path from vertex

v5 to all other vertexes. However, it is not strongly connected, since not all the nodes are

centroids of the graph. Instead the graph depicted in Figure 2.2 is strongly connected,

since from every node there is a path to all the others.

Besides instantaneous connection, it is often interesting to consider connection over a

certain time interval. To this purpose, we introduce the concept of T -averaged adjacency

matrix

AT (t) =
1

T

∫ t+T

t

A(τ)dτ

8



Chapter 2. Graph Theory

with T ∈ R+, and consequently derive the T -averaged graph, conventionally called

union graph, as the triplet GT (t) = {V, ET (t), AT (t)}.

v1 v2

v3

v1

v3

v2

Figure 2.3: Example of a connected union graph

Definition 2.4. A graph G(·) is said to be uniformly connected, if there is a node v ∈ V
and a finite time horizon T ∈ R+, such that v is a centroid of the union graph GT (·) =

{V, ET (·), AT (·)}.

An example of uniform connectivity is presented in Figure 2.3: the union graph of the

two topologies switching between each other over any time interval T > 0 is connected.

Similarly to previous definitions, it would be possible to introduce the concept of uniform

strong connectedness: this definition is a trivial extension of previous definitions, thus it

is omitted.

2.2 Laplacian matrix and its properties

A fundamental tool in order to study connectivity and thus the possibility of inducing

synchronization in a network of agents is the use of matrix to represent the graph. Given

an adjacency matrix, describing the graph G(t) (modulo vertex permutation), it is pos-

sible to define another matrix, the Laplacian matrix, which turns out to be an expressive

description of the connectivity properties of the graph.

Given the degreematrix D(t) ∈ R
N×N as

D(t) = diag(A(t)1N )

the so-called Laplacian matrix L(t) of the graph is defined as

L(t) = D(t)−A(t)

9



2.2. Laplacian matrix and its properties

or, equivalently as

ℓkj(t) =



















−akj(t) for k 6= j

N
∑

j=1

akj(t) for k = j

By definition, the diagonal entries of L are non-negative, the off-diagonal entries

are non-positive and the sum of all entries on each row is zero. A matrix with these

properties is usually referred to as a Metzler matrix (see Luenberger (1979)).

Example 2.1. The Laplacian Matrix L associated to the graph depicted in Figure 2.2 is

the 6× 6matrix

L =

























1 −1 0 0 0 0

0 2 −1 0 0 −1

0 0 1 0 0 −1

0 0 0 1 −1 0

−1 0 0 0 1 0

0 0 0 −1 −1 2

























where, for the sake of simplicity, we dropped the dependence on the weight and consid-

ered all akj = {0, 1} depending on whether the connection between two nodes is present

or not. △

As a consequence, the all-ones N -vector 1N = col(1, 1, . . . , 1) is an eigenvector of

L(t), associated with the eigenvalue λ1 = 0. In the synchronization framework, this

eigenvector describes the consensus subspace, i.e. the subspace where all agents have

reached an agreement on a certain variable. The corresponding eigenvalue λ1 = 0means

that, once synchronization is achieved, the defined coupling input should be zero. Let the

other (possibly nontrivial)N−1 eigenvalues ofL(t) be denoted as λ2(L(t)), . . . , λN (L(t)).

Lemma 2.1. A graph G(t) is connected if and only if its Laplacian matrix L(t) has only one

trivial eigenvalue λ1 = 0 and all other eigenvalues λ2(L(t)), . . . , λN (L(t)) have positive real

parts.

The proof of this result can be found, for instance, in Wieland (2010) (Corollary

2.14). In other words, by ordering the eigenvalues of L(t) in ascending order, a graph

G(t) is connected if and only if ℜ(λ2(L(t))) > 0. It is worth noticing that, even though it

might be considered as the dual of algebraic connectivity for directed graphs,ℜ(λ2(L(t))))
does not have many properties that the former has. For instance, when adding and edge

to an undirected graph, the algebraic connectivity increases, while in the case of directed

graphs ℜ(λ2(L(t))) might decrease.
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Chapter 2. Graph Theory

By means of the Geršgorin Disk Theorem, it is possible to characterize the Laplacian

matrix spectrum and bound its nontrivial eigenvalues. Define the maximum degree of

G(t) as
dmax(t) = max

k∈NN

dkk(t)

with dkk the diagonal entris of D(t). The spectrum of L(t), denoted by σ(L(t)) is thus

bounded as

σ(L(t)) ⊂ {x ∈ C : |x− dmax(t)| ≤ dmax(t)} ⊂ C+

This means that all the eigenvalues of L(t) are contained inside a disk centered in dmax+

j0, with radius dmax and thus in the right-half of the complex plane. The definition

we provided depends explicitly on the time t: however, by recalling P2) in Definition

2.1, since the elements of A(t) are bounded it is possible to derive a worst case bound,

depending on the maximum value the elements of A(t) can take.

2.3 Independent Connected components of a graph

When studying complex networks, i.e. when the number of nodes N is high, it can be

helpful to separate the analysis of the graph into smaller groups of agents. This is often

the case in the model reduction approach to network, where groups of agents subject to

being connect, are considered as a unique system and then coupled to the other groups

(see Ishizaki et al. (2014), Monshizadeh and van der Schaft (2014)). Even in dealingwith

disconnected topology, dividing the graph into sub-graphs subject to being connected

can be really helpful (see Chapter 5.2), in order to conclude something on the behavior

of the whole network.

For this reason in this section, we give basic definitions and tools to analyze the

components of a graph. We start by recalling the definition of an independent strongly

connected component of a di-graph G(t) = {V, E(t), A(t)} presented in (Wieland, 2010).

Definition 2.5. An independent connected component of a di-graph G(t) = {V, E(t), A(t)}
is the maximal subgraph G̃(t) = {Ṽ, Ẽ(t), Ã(t)} that is strongly connected and such that there

is no edge in E with a tail outside Ṽ and the head in Ṽ .

In Figure 2.4, the sub-graphs G̃ = {v1, v2, v3, v4} and G̃ = {v5, v6, v7, v8} are ISCC,

since the nodes are strongly connected and there is no edge with tail outside the ISCC

and head inside it.

However, it is possible to give another and milder definition which asks the compo-

nent to be simply connected.

Definition 2.6. An independent connected component of a di-graph G = {V, E , A} is the

11
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v1 v2

v4v3

v1 v5

v7

v6

v4 v8

v5

Figure 2.4: Example of a graph composed by two ISCC component

maximal subgraph G̃ = {Ṽ , Ẽ , Ã} that is connected and such that there is no edge in E with a

tail outside Ṽ and the head in Ṽ .

In Figure 2.5, beside the ISCC described befor, the sub-graphs G̃ = {v5, v6, v8} is an

ICC, since the nodes are connected (namely, there is a path from node v8 to node v6 and

v5) and there is no edge with tail outside the ICC and head inside it.

Let c ≥ 1 be the number of independent connected components of the di-graph. We

can partition the whole graph in c + 1 subgraphs: the first c subgraphs represent the

independent connected components. The additional one is a "residual graph" (possibly

empty) composed by "residual vertexes" that might have incoming edges from the in-

dependent connected components but without outgoing arcs toward independent con-

nected components.

In the example in Figure 2.5, the sub-graph G̃ = {v7} is a residual component, since

he has incoming edges from the two ICCs, G̃1 = {v1, v2, v3, v4} and G̃2 = {v5, v6, v8}.

v1 v2

v4v3

v1 v5

v7

v6

v4 v8

Figure 2.5: Example of a graph with ICCs and residual component

By relabeling the vertexes of the whole graph, so that the vertexes of independent

connected components are consecutive and the residual subgraph vertexes are confined

at the end, it turns out that the adjacency matrix of a non connected graph can always

12



Chapter 2. Graph Theory

be written as

Ai =

















Ai
1 0 · · · 0 0

0 Ai
2 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · Ai

c 0

⋆ ⋆ · · · ⋆ Ai
res

















where the Ai
j , j = 1, . . . , c, and Ai

res are the adjacency matrices of the subgraphs and

the ⋆ denotes the weight of the incoming edges to the residual sub-graph. Similarly, the

Laplacian matrix takes the form

L =

















L1 0 · · · 0 0

0 L2 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · Lc 0

Γ Lres

















where Γ denotes the matrix of incoming edges to the residual component.

We observe that the eigenvalues of the Laplacians L1, . . ., Lc are one zero and the

rest are positive. It turns out that the eigenvalues of Lres are all positive and thus Lres is

always invertible 1. This fact is a necessary condition for the next lemma, in which N1,

. . ., Nc, and Nres denote the number of vertexes in each of the c independent connected

components.

Lemma 2.2. Let V ∈ R
N×c be the matrix defined as

V =



















1N1×1 0 . . . 0

0 1N2×1 . . . 0

. . . . . . . . . . . .

0 0 . . . 1Nc×1

γ1 γ2 . . . γc



















with [γ1, γ2, . . . , γc] defined as

[γ1, γ2, . . . , γc] = −L−1
resΓ















1N1×1 0 . . . 0

0 1N2×1 . . . 0

. . . . . . . . . . . .

0 0 . . . 1Nc×1















1For the proof, see Wieland (2010) Appendix A.3.2, proof of theorem 2.13.
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2.3. Independent Connected components of a graph

where
(

Γ Lres

)

denotes the matrix obtained by extracting the last Nres rows of L. Then

the following holds:

• dim(Ker(L)) = c;

• the columns of V form a basis ofKer(L) .

Proof. The c vectors columns of V are clearly linearly independent. They are in

the null space of the matrix obtained by extracting the first N1 +N2 + . . .+Nc rows

from the Laplacian L for all possible γi. They are thus in the null space of L if

Γ













1N1×1 0 . . . 0

0 1N2×1 . . . 0

. . . . . . . . . . . .

0 0 . . . 1Nc×1













+ Lres

(

γ1 γ2 . . . γc

)

= 0

from which the result follows using the definition of the ψi, i = 1, . . . , c.

With the previous result in hand, we define the transformation T

T =
(

V T
)

(2.1)

with T ∈ R
N−c×N−c an opportune matrix to be determined.

By applying such a transformation to Lwe obtain L̃ = T−1LT , which has the follow-

ing structure

L̃ =







0c×c L12 0c×Nres

0N−c−Nres×1 L22 0N−c−Nres×Nres

0Nres×c Γ̃ L̃res







for some appropriately defined L12, L22, L̃res, with all the eigenvalues of L22 and L̃res

that are positive.

By opportunely relabeling the vertexes, it turns out thatL12 = blkdiag(L121 , . . . , L12c)

and L22 = blkdiag(L221 , . . . , L22c).

Remark 2.1. It is worth noticing that, under the condition that the spectrum of Lres and

L22 are disjoint, namely

σ(L22) ∩ σ(Lres) = ∅

it is possible to define the transformation T in (2.1) in such a way that Γ̃ = 0 (see Roth

14



Chapter 2. Graph Theory

(1952) for more details). If this is the case, the matrix L̃ would turn out to be

L̃ =









0c×c L12 0c×Nres

0N−c−Nres×1 L22 0N−c−Nres×Nres

0Nres×c 0Nres×N−c−Nres L̃res









Nevertheless, the hypothesis that the spectrum of Lres and L22 are disjoint is often too

restrictive. Hence, for the sake of generality, in the rest of the thesis we will consider the

case in which Γ̃ 6= 0. △
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[...] once the realization is accepted that even between

the closest people infinite distances exist, a marvelous

living side-by-side can grow up for them [...]

Rainer Maria Rilke

3
Synchronization of nonlinear

systems

T
his chapter is devoted to the analysis of networks of homogeneous and heteroge-

neous nonlinear systems. From the seminal result about consensus in Moreau

(2004) and Jadbabaie et al. (2003), which studied the case of integrators net-

work, literature is now covering a huge variety of consensus and synchronization prob-

lems. In the linear framework Wieland (2010) presents an extensive survey both for

graph theory analysis and control of homogeneous and heterogeneous networks. For the

case of homogeneous linear dynamics, it is worthmentioning also Scardovi and Sepulchre

(2009), Seo et al. (2009), while in the heterogeneous networks framework, other major

reference can be found in Kim et al. (2011) and Wieland et al. (2011). For the nonlinear

dynamics framework, extensive coverage of current results can be found in Stan and Sepulchre

(2007), Arcak (2007), Qu et al. (2007), Hale (1997), both for the case of homogeneous

and heterogeneous networks.

Recently, networks of heterogeneous nonlinear agents have attracted a lot of atten-

tion. Heterogeneous systems may differ in parameters, functions and dimension of the

state. This indeed introduces complications in thinking about synchronization and con-

sensus. Since the systems are potentially completely different, how is it possible to de-

17



fine an agreement? Even considering only an output agreement, what is the behavior the

agents can agree on?

In order to solve this problem, in Wieland et al. (2011) the authors proposes an inter-

nal model strategy: once a common and desired behavior is defined, each agent embeds

a copy of this behavior (generally referred to as exosystem) in its regulator and synchro-

nizes its copy with the copies of the other agents. Simultaneously, an internal model

regulator is designed in order to track the reference provided locally by the exosystems.

A different approach, proposed in Panteley and Loria (2015) (see also "A stability-

theory perspective to synchronisation of heterogeneous networks", HDR), is based on

averaging approach. The behavior of the interconnected systems is determined by two

main components: on one hand the stability of an averaged dynamics, relative to an

attractor called emergent dynamic. On the other hand, the synchronization of each sys-

tem in the network relative to this emergent dynamics. With this approach, practical

synchronization can be achieved.

In the first part of this chapter, we consider a network of homogeneous nonlinear

agents and we show that by tuning opportunely a gain parameter, a standard diffusive

coupling between the agents guarantees the achievement of synchronization. In the

second part instead, we consider a network of heterogeneous nonlinear agents: by taking

inspiration from the approach of Wieland et al. (2011), we show that, by exploiting an

internal model strategy, the agents achieves consensus on a particular desired trajectory.

The content of this chapter have been presented in Isidori et al. (2014) and, partially,

in Isidori et al. (2013).

18



Chapter 3. Synchronization of nonlinear systems

3.1 Synchronization of Homogeneous Nonlinear Systems

In this section, in order to achieve synchronization within a network of nonlinear sys-

tems, the synchronizing input is defined locally at each agent, computing only the avail-

able information (i.e. the output) of the neighbors. In contrast with the conventional

approaches proposed in literature, an high gain technique is proposed to deal with the

nonlinearity of the systems.

3.1.1 Problem Formulation

We consider a network of N identical nonlinear systems, whose output can be modeled

as an ordinary differential equation of order d

y∗(d) = φ(y∗, y∗(1), . . . , y∗(d−1)) (3.1)

or in the equivalent state-space form of a d-dimensional system with output

ẇ = s(w) w ∈ R
d

y∗ = c(w)
(3.2)

in which

s(w) = Sw +Bφ(w) , c(w) = Cw (3.3)

and (S,B,C) is a triplet of matrices in prime form, that is S is a shift matrix (all 1’s on

the upper diagonal and all 0’s elsewhere), BT = (0 · · · 0 1) and C = (1 0 · · · 0).
For further details on the systems at hand we refer the reader to Appendix A. This

structure of nonlinear agents will recur often during the thesis thus a deep explanation

of the systems properties has been given in the appendix-form as a possible reference

along the whole thesis.

The communication between the agents is described by a fixed weighted di-graph,

G = {V, E , A}.

Assumption 3.1. The graph G is connected, namely there is a node from which a path to all

other nodes exists. In other words

λ1(L) = 0

ℜ(λi(L)) > 0 ∀ i = 2, . . . , N

The assumption that the graph is connected is reasonable considering that synchro-

nization is expected to be achieved by the whole network: in contrast with other ap-

proaches (see for instance the passivity arguments introduced in Arcak (2007), where
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3.1. Synchronization of Homogeneous Nonlinear Systems

graphs are not directed), we do not ask the graph to be strongly connected. Each of the

N agents is coupled to its neighbor through a control input which processes the output

of the neighbors, namely

vk = K

N
∑

j=1

akj(yj − yk) ∀ k = 1, . . . , N (3.4)

where akj are the elements of the adjacency matrix and K is a design parameter to be

defined. Equivalently, using the Laplacian matrix, (3.4) reads as

vk = K

N
∑

j=1

ℓkj yj ∀ k = 1, . . . , N

Following the definition of the diffusive coupling, each agent in the network reads as

ẇk = Swk +Bφ(wk) +K
∑N

j=1 ℓkjCwj ∀ k = 1, . . . , N

yk = Cwk

(3.5)

Since we are seeking nontrivial consensus trajectories, in what follows we will con-

sider the case in which (3.2) possesses a nontrivial compact invariant set W . Moreover,

we will assume that the function φ(·) is globally Lipschitz. In presence of systems of

the form (3.3) in which the φ(·) is only locally Lipschitz, this assumption can always

be enforced by properly modifying the function outside the compact set W by using

appropriate extension theorems, such as Kirszbraun’s Theorem (see, for instance, The-

orem 2.10.43 in Federer (1996)). This two requirements are specified in the following

assumption.

Assumption 3.2. The function φ(w) in (3.3) is globally Lipschitz and there exists a compact

setW ⊂ R
d invariant for (3.2) such that the system

ẇ = Sw +Bφ(w) + v

is input-to-state stable with respect to v relative toW , namely there exist a class-KL function

β(·, ·) and a class-K function γ(·) such that1

‖w(t, w̄)‖W ≤ max{β(‖w̄‖W , t), γ( sup
τ∈[0,t)

‖v(τ)‖)} .

For details on ISS and its properties for interconnected systems, we refer the reader

1Here and in the following we denote by ‖w‖W = minx∈W ‖w − x‖ the distance of w from W . Further-
more, w(t, w̄) denotes the solution of (3.2) at time t with initial condition w̄ at time t = 0.
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Chapter 3. Synchronization of nonlinear systems

to Appendix B and Isidori (1999).

Remark 3.1. Note that the existence of a compact set W satisfying the property above

for v = 0 is guaranteed by the assumption that the trajectories of (3.2) are ultimately

bounded (see, e.g., Hale and Isidori (2008)). Assumption 3.2, in addition, considers the

effect of a perturbance v for which an ISS property is required. If system (3.2) does

not have the property of ultimate boundedness and W is just a compact invariant set,

the property in question could be achieved by properly modifying the function s(·) in
(3.2) by adding appropriate dissipative terms outside the compact set W of interest.

This is, for instance, the case of an harmonic oscillator with frequency Ω > 0 in which

d = 2, the function φ(w) = −Ω2w1, and the set W is a set of the form W = {w ∈ R
2 :

‖diag(Ω, 1)w‖ ≤ r} with r an upper bound of the amplitude of the oscillations. In this

case a possible modification of the function s(·) in (3.2) could be of the form

(

ẇ1

ẇ2

)

=

(

0 1

−Ω2 0

)(

w1

w2

)

− f(‖diag(Ω, 1)w‖)
‖diag(Ω, 1)w‖

(

w1

w2

)

where f : R≥0 → R≥0 is a smooth function such that f(R) = 0 for R ≤ r, and f(R)

strictly increasing and radially unbounded for R > r. Simple computations show that

the setW is globally asymptotically stable for the previous dynamics with the ISS prop-

erty in Assumption 3.2 that is fulfilled. A similar technique could be used in the case

of nonlinear oscillators, such as the Duffing oscillator. Consider a modification of the

harmonic oscillator in polar coordinates of the form Ṙ = −f(R) and θ̇ = −Ω where

f : R≥0 → R≥0 is a smooth function such that f(R) = 0 forR ≤ r, and strictly increasing

and radially unbounded for R > r. Considering the cartesian coordinates x1 = R
Ω cos θ

and x2 = R sin θ, of the form φ(w) = −Ω2w1 + δ(w1, w2) with δ(·, ·) a globally Lipschitz

function such that δ(w1, w2) = 0 if ‖w‖ ≤ r and δ(w1, w2) = −w2 otherwise. △

3.1.2 Main Result

To the purpose of inducing consensus in the network (3.4)-(3.5), we choose the vectorK

in (3.4) as

K = DgK0 , (3.6)

whereDg = diag(g, g2, . . . , gd), with g a “gain" parameter andK0 a vector to be designed.

Due to Assumption 3.1, it is known that the Laplacian matrix L has only one trivial

eigenvalue and all remaining eigenvalues have positive real part. Hence there exists a
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3.1. Synchronization of Homogeneous Nonlinear Systems

µ > 0 such that

Re[λi(L)] ≥ µ i = 2, . . . , N . (3.7)

With this in mind, let T ∈ R
N×N be defined as

T =

[

1 01×(N−1)

1(N−1)×1 IN−1

]

(3.8)

and note that

L̃ = T−1LT =

[

0 L12

0(N−1)×1 L22

]

in which the eigenvalues of L22 coincide with λ2(L), . . . , λN (L). Then, the following

result holds.

Lemma 3.1. Let P be the unique positive definite symmetric solution of the algebraic Riccati

equation

SP + PST − 2µPCTCP + aI = 0 (3.9)

with a > 0, S and C as in (3.3) and µ as in (3.7). Take K0 as

K0 = PCT . (3.10)

Then, the matrix 2

[(IN−1 ⊗ S)− (L22 ⊗K0C)]

is Hurwitz. ⊳

The proof of this Lemma can be found in Seo et al. (2009) or in Wieland (2010).

Using this, we can now proceed by introducing the main result of this Chapter.

Proposition 3.1. Suppose Assumptions 3.1 and 3.2 hold. Consider the network of N coupled

systems

ẇk = Swk +Bφ(wk) +DgK0

N
∑

j=1

ℓkjCwj

with k = 1, . . . , N . Let K0 be chosen as in (3.10). Then, there exists a number g⋆ > 0 such

that, for all g ≥ g⋆, the compact invariant set

W = {(w1, w2, . . . , wN ) ∈W ×W × · · · ×W : w1 = w2 = · · · = wN} (3.11)

2A⊗B denotes the Kronecker product of the two matrices A and B.
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Chapter 3. Synchronization of nonlinear systems

is globally asymptotically stable. ⊳

Proof. In order to prove the result of Proposition 3.1, set w = col(w1, . . . , wN ) and

accordingly rewrite the entire set of N controlled agents as

ẇ = [(IN ⊗ S)− (L⊗DgK0C)]w + (IN ⊗B)Φ(w)

where

Φ(w) = col(φ(w1), . . . , φ(wN )) .

Consider the change of variables w̃ = (T−1 ⊗ Id)w, in which T is the matrix

introduced in (3.8). The system in the new coordinates reads as

˙̃w = (T−1 ⊗ Id) [(IN ⊗ S)− (L⊗DgK0C)] (T ⊗ Id)w̃

+(T−1 ⊗ Id)(IN ⊗B)Φ((T ⊗ Id)w̃)

=
[

(IN ⊗ S)− (L̃⊗DgK0C)
]

w̃ + (T−1 ⊗B)Φ((T ⊗ Id)w̃) .

By definition of (3.8), observe that

T−1 =

[

1 01×(N−1)

−1(N−1)×1 IN−1

]

and thus, w̃ can be written as

w̃ = col(w1, w2 − w1, . . . , wN − w1)

Consequently, define zk = wk − w1, for k = 2, 3, . . . , N , and

z = col(z2, z3, . . . , zN ) ,

yielding w̃ = col(w1, z). Then, it is readily seen that the system above exhibits a

triangular structure of the form

ẇ1 = Sw1 +Bφ(w1)− (L12 ⊗DgK0C)z

ż = [(IN−1 ⊗ S)− (L22 ⊗DgK0C)] z+∆Φ(w1, z)
(3.12)
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where

∆Φ(w1, z) = (IN−1 ⊗B)













φ(w1 + z2)− φ(w1)

φ(w1 + z3)− φ(w1)

· · ·
φ(w1 + zN )− φ(w1)













.

Note that∆Φ(w1, z) is globally Lipschitz in z uniformly in w1 and∆Φ(w1, 0) ≡ 0 for

all w1 ∈ R
n. Consider now the rescaled state variable

ζ = (IN−1 ⊗D−1
g )z .

and that by definition of S, B, C and Dg,

D−1
g SDg = gS, D−1

g B =
1

gd
B, CDg = gC,

With simple calculations, it follows that the triangular system (3.12) is mapped

into
ẇ1 = Sw1 +Bφ(w1)− (L12 ⊗DgK0C)(IN−1 ⊗Dg)ζ

ζ̇ = g [(IN−1 ⊗ S)− (L22 ⊗K0C)] ζ +
1

gd
∆Φ(w1, (IN−1 ⊗Dg)ζ) .

(3.13)

It is known from Lemma 3.1 that the proposed choice ofK0 guarantees that the ma-

trix [(IN−1 ⊗ S) − (L22 ⊗ K0C)] is Hurwitz. As a consequence, standard high-gain

arguments lead to the conclusion that, if g is chosen sufficiently large, the equilib-

rium ζ = 0 of the lower subsystem is colglobally exponentially stable, uniformly

in w1, and actually with a quadratic Lyapunov function that is independent of w1.

A detailed proof of the global exponential stability of ζ = 0 is developed in Section

3.1.3, where we derive an explicit expression to determine g.

To conclude the proof of Proposition 3.1, consider that the ISS property in As-

sumption 2 guarantees that w1 converges to the invariant setW . Since wk = w1+zk,

k = 2, . . . , N , and zk → 0 as t→ ∞, the result follows.

Remark 3.2. Proposition 3.1 shows that, under Assumption 3.1-3.2, if g is large enough

the set W is globally asymptotically stable. One may wonder under which extra condi-

tions the set in question would also be locally exponentially stable. Standard arguments

show that this is the case if, in Assumption 3.2, the function β(r, t) is bounded – for small

r – by a function of the form Me−αtr for some positive M and α and the function γ(r)

is locally Lipschitz at the origin. △

The following corollary, is a straightforward consequence.

24



Chapter 3. Synchronization of nonlinear systems

Corollary 3.1. Let the hypotheses of the previous Proposition hold and letK0 be chosen as in

(3.10). There is a number g⋆ > 0 such that, if g ≥ g⋆, the states of the N systems (3.5) reach

consensus, i.e. for every wk(0) ∈ R
d, k = 1, . . . , N , there is a function w⋆ : R → R

d such that

lim
t→∞

‖wk(t)−w⋆(t)‖ = 0 for all k = 1, . . . , N . ⊳

3.1.3 A bound for the minimal gain g
⋆ in Proposition 3.1

The proof of Proposition 3.1 shows that, in the proposed setting, consensus is achieved

if the gain parameter g exceeds a minimum value g⋆. One may wonder how the value g⋆

scales with number N of agents. In this respect, it can be shown that the number g⋆ is

not influenced by the number N per se, but rather by parameters related to the Jordan

form of the Laplacian matrix L. More precisely, letM be a matrix such thatML22M
−1

is in Jordan form. Then, parameters which determine the value of g⋆ are: an upper

bound on the dimension of the Jordan blocks of L22, a lower bound on the real parts

of the eigenvalues of L22 (which is positive since the graph is connected), lower and –

respectively - upper bounds on the minimal and – respectively – maximal eigenvalue of

the real part of the HermitianmatrixM∗M . So long as such bounds remain independent

of N , so does the value g⋆.

Proposition 3.2. The control gain parameter g in (3.6) does not depend on the number of

agents in the network N . More precisely, it depends on the Lipschitz constant of the function

φ(·) in (3.3) and on spectral properties of the Laplacian matrix.

Proof. Recall that the crucial step in the proof of Proposition 3.1 is to establish, via

high-gain arguments, the global asymptotic stability of the equilibrium ζ = 0 of the

lower subsystem of (3.13), rewritten here for convenience

ζ̇ = g [IN−1 ⊗ S − L22 ⊗K0C] ζ +
1

gd
∆Φ(w1, (IN−1 ⊗Dg)ζ) . (3.14)

To investigate the influence of N on g⋆, we begin by finding an explicit (quadratic)

Lyapunov function for the linear system

ζ̇ = [(IN−1 ⊗ S)− (L22 ⊗K0C)] ζ , (3.15)

which, for large g, determines the “dominant" part of (3.14).

Suppose, for the time being, that the Laplacian matrix L has a purely diagonal

Jordan form: hence, also L22 has a purely diagonal Jordan form. LetM be a matrix
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that diagonalizes L22, i.e. such that

ML22M
−1 = diag(λ2(L), . . . , λN (L))

(note thatM is in general a matrix of complex numbers) and consider the change of

variables ξ = (M ⊗ Id)ζ . This yields to rewrite (3.15) as

ξ̇ = (M ⊗ Id) [IN ⊗ S − L22 ⊗K0C] (M ⊗ Id)
−1ξ

= (IN ⊗ S −ML22M
−1 ⊗K0C)ξ := Aξ

where we have set

A = diag(A2, . . . , AN ), with Ai = S − λi(L)K0C .

Recall now the definition of P given in Lemma 3.1 and observe that, sinceK0 =

PCT ,

P−1Ai +A∗
iP

−1 = P−1(S − λi(L)PC
TC) + (ST − λ∗i (L)C

TC)P−1

= P−1S + STP−1 − 2ℜ[λi(L)]CTC

= 2(µ −ℜ[λi(L)])CTC − aP−2 .

Since µ ≤ ℜ[λi(L)] and aP−2 is positive definite, we deduce the existence of a num-

ber ā > 0 (possibly depending on P ) such that

(P−1Ai +A∗
iP

−1) < −ā Id

for i = 2, . . . , N . As a consequence

(IN−1 ⊗ P−1)A+A∗(IN−1 ⊗ P−1) < −ā (IN−1 ⊗ Id) .

Consider now, for the full system (3.14), the candidate Laypunov function

V (ζ) = ζT (M∗ ⊗ Id)(IN−1 ⊗ P−1)(M ⊗ Id)ζ = ζT (M∗M ⊗ P−1)ζ ,

The matrixM∗M , which is Hermitian and positive definite, can be expressed as

M∗M = HR + iHI

in which HR = HT
R is positive definite and HI = −HT

I . Hence, also the matrix
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M∗M ⊗ P−1 is Hermitian positive definite and

M∗M ⊗ P−1 = HR ⊗ P−1 + iHI ⊗ P−1 ,

in whichHR⊗P−1 = (HR⊗P−1)T is positive definite andHI⊗P−1 = −(HI⊗P−1)T .

As a consequence

V (ζ) = ζT (HR ⊗ P−1)ζ .

Taking the derivative of V (ζ) along the trajectories of (3.14) yields

V̇ = g 2ζT (HR ⊗ P−1)(IN−1 ⊗ S − L22 ⊗K0C)ζ + 2ζT (HR ⊗ P−1)(IN−1 ⊗B)δφ(ζ)

in which

δφ(ζ) =
1

gd
col(φ(w1 +Dgζ2)− φ(w1), · · · , φ(w1 +DgζN )− φ(w1)) .

As long as the first term is concerned, observe that

2 ζT (HR ⊗ P−1)(IN−1 ⊗ S − L22 ⊗K0C)ζ

= 2ℜ[ζT (M∗M ⊗ P−1)(IN−1 ⊗ S − L22 ⊗K0C)ζ]

= 2ℜ[ζT (M∗ ⊗ Id)(IN−1 ⊗ P−1)A(M ⊗ Id)ζ]

= ζT (M∗ ⊗ Id)[(IN−1 ⊗ P−1)A+A∗(IN−1 ⊗ P−1)](M ⊗ Id)ζ

≤ − ā ζT (M∗ ⊗ Id)(IN−1 ⊗ Id)(M ⊗ Id)ζ

= − ā ζT (M∗M ⊗ Id)ζ = − ā ζT (HR ⊗ Id)ζ .

This yields to

V̇ ≤ −g ā ζT (HR ⊗ Id)ζ + 2ζT (HR ⊗ P−1B)δφ(ζ) . (3.16)

Since HR is positive definite, there exists a unitary matrix Q such that

HR = QTΛQ

where Λ is a diagonal matrix of positive real numbers. Setting

E = (Q⊗ Id)
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and observing that

HR ⊗ Id = ET (Λ⊗ Id)E

we obtain

V̇ ≤ −g ā ζTET (Λ⊗ Id)Eζ + ζTET (Λ⊗ Id)E(IN−1 ⊗ PB)δφ(ζ)

Setting x = Eζ the latter is rewritten as

V̇ ≤ −g ā xT (Λ⊗ Id)x+ xT (Λ⊗ Id)(Q⊗ Id)(IN−1 ⊗ PB)δφ(ζ)

= −g ā xT (Λ⊗ Id)x+ xT (Λ⊗ Id)(Q⊗ PB)δφ(ζ)

Let’s now discuss the two terms separately. Let λi(HR), with i = 1, . . . , N − 1,

be the eigenvalues of HR and, in particular, let λmin(HR) and λmax(HR) denote the

minimal and – respectively – maximal of such eigenvalues. Split x in N − 1 vectors

x1, . . . , xN−1 each of dimension d and observe that

xT (Λ⊗ Id)x =
N−1
∑

i=1

λi(HR)|xi|2

≥ λmin(HR)
∑N−1

i=1 |xi|2

= λmin(HR)|x|2 .

Hence

−g ā xT (Λ⊗ Id)x ≤ −g āλmin|x|2 .

For the second term, set v = (Q⊗PB)δφ(ζ), which we partition inN − 1 vectors

vi, each of dimension d. Then, we have

xT (Λ⊗ Id)v =
N−1
∑

i=1

λi(HR)x
T
i vi ≤

N−1
∑

i=1

λi(HR)|xTi | |vi|

≤ λmax(HR)
N−1
∑

i=1

|xTi | |vi| ≤ λmax(HR)|x| |v|

≤ λmax(HR)|x| |(Q⊗ PB)δφ(ζ)|

≤ λmax(HR)|x||(Q⊗ PB)| |δφ(ζ)| .
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Finally, observe that

|δφ(ζ)|2 ≤ 1

g2d

N
∑

i=2

|(φ(w1 +Dgζi)− φ(w1)|2

≤ 1

g2d

N
∑

i=2

Υ2|Dgζi|2

≤
N
∑

i=2

Υ2|ζi|2 = Υ2|ζ|2

whereΥ is the Lipschitz constant of the function φ(·). Therefore, since ζ = ETx and

E is a unitary matrix, we have

xT (Λ⊗ Id)v ≤ λmax(HR)|x||(Q ⊗ PB)||δφ(ζ)|

≤ λmax(HR)|(Q⊗ PB)|Υ|x|2

It remains to estimate the norm of (Q ⊗ PB). Bearing in mind the fact that

|A| =
√

λmax(ATA) we see that

|(Q⊗ PB)| =
√

λmax((Q⊗ PB)T (Q⊗ PB))

=
√

λmax((QT ⊗ (PB)T )(Q⊗ PB))

=
√

λmax(In ⊗ (PB)TPB))

=
√

λmax(BTPPB)

Putting all these bounds together, it is seen that

V̇ ≤ [−g āλmin(HR) +
√

λmax(BTPPB)Υλmax(HR)]|x|2

from which it is concluded that V̇ is bounded by a negative definite function so long

as g > g⋆, with

g⋆ =
√

λmax(BTPPB)
Υ

ā

λmax(HR)

λmin(HR)

In this formula, Υ is the Lipschitz constant of the function φ(·), P and ā depend

solely on the value of µ, a lower bound on the real part of the eigenvalues of the

Laplacian matrix L, while λmax(HR), λmin(HR) are the maximal and minimal eigen-

values of the matrix HR, the real part of the matrixM∗M , whereM is a matrix that

diagonalizes L22. Thus, this estimate proves the claim in Propostion 3.2. A similar

result can be shown also if the Jordan form of the matrix L22 is not purely diagonal,
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provided that the dimension of the Jordan blocks remain bounded, so long as N varies.

A detailed proof uses arguments pretty similar to those presented above combined

with standard ISS analysis.

3.1.4 Simulation Result

We now present simulation results about the proposed solution: we consider 5 Van Der

Pol oscillators
ẋi1 = xi2

ẋi2 = 2(1− x2i1)xi2 − xi1
yi = xi1 (3.17)

The initial conditions of the agents are w1 = (1, 1)T , w2 = (2, 2)T , w3 = (3, 3), w4 =

(5, 10) and w5 = (10,−7). Furthermore, we chooseK according to (3.10) with g = 4 and

and a = 1. The graph is described by the Laplacian matrix

L =

















0 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1

















Figure 3.1 shows the behavior of the Vand Der Pol oscillators achieving consensus:

on the right column a zoom of the transient is shown. Figure 3.2 instead shows the phase

plot of the oscillators during the synchronization.

We also show simulation results, considering 5 Lorentz oscillators connected on the

same graph. The Lorentz oscillators are described by

ẋk1 = σ(xk2 − xk1)

ẋk2 = xk1(ρ− xk3)− xk2
ẋk3 = xk1xk2 − βxk3

yk = xk1 . (3.18)

for k = 1, . . . , 5. The values of parameters (σ, ρ, β) are σ = 10, ρ = 28 and β = 8/3.

System (3.18) can be embedded into the fourth order system

ẇk1 = wk2

ẇk2 = wk3

ẇk3 = wk4

ẇk4 = Φ(wk1 , wk2 , wk3 , wk4)

(3.19)

fitting into the structure of (3.2) and fulfilling the requested assumption.
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Figure 3.1: Synchronization of the two components of the Van Der Pol oscillators.
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Figure 3.2: Phase plot of the synchronization of the two components of the Van Der Pol
oscillators.

In new coordinates, the agents’ initial conditions arew1 = (1.5; 1; 0; 0), w2 = (1; 5; 5; 5),

w3 = (2; 10; 10; 10), w4 = (0.5; 7; 7; 7) and w5 = (0; 15; 15; 15). K is chosen according to

(3.10) with the gain parameter g = 50 and a = 1.
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Figure 3.3: Synchronization of the three components of the Lorentz oscillators.

Figure 3.3 shows the three component of the Lorentz oscillators in the original coor-

dinate during synchronization: the right column illustrates the zoom of the transient.
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3.2 Synchronization of Hetherogeneous Nonlinear systems

In this section, we show how a network of heterogeneous agents can be controlled in

such a way that their outputs asymptotically track the output of a prescribed nonlinear

exosystem. Following a similar approach to the one ofWieland et al. (2011), the problem

is solved in two steps. In the first step, the problem of achieving consensus among

(identical) nonlinear reference generators is addressed. With respect to this first step,

we refer to the results of Section 3.1. In the second step, the theory of nonlinear output

regulation is applied in a decentralized control framework, to force the output of each

agent of the network to robustly track the (synchronized) output of each local reference

model.

L.R.G.1 L.R.G.2 . . . . . . L.R.G.N

Communcation Network

Agent 1 Agent 2 Agent N

yref1 yref2 yrefN

Figure 3.4: Two steps approach: on a first level the Local Reference Generators agree on a
nontrivial trajectory. Their output becomes the reference for each agent.

The control paradigm is briefly illustrated in Figure 3.4. On the upper layer, a set of

local reference generators achieves synchronization on a nontrivial trajectory by commu-

nicating their outputs through the network. They provide the reference to be tracked

to the lower level, namely the controlled agents. Each agent will locally compute the

reference and generate the control action to track such a reference.

3.2.1 Problem formulation

We consider the problem of inducing consensus between the outputs ofN non-identical

nonlinear systems, which exchange information through a communication graph G. The
control system is decentralized, i.e. there is no leader sending information to each indi-
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vidual system, but rather each system exchanges information only with a set of neighbor-

ing systems, being the information in question only the relative values of the respective

controlled outputs. The N nonlinear agents are described by

ẋk = fk(xk) + gk(xk)uk

yk = hk(xk)
xk ∈ R

nk , uk, yk ∈ R (3.20)

k = 1, . . . , N , where uk and yk are the local control input and output, with the inputs uk

that must be designed in such a way that the outputs yk of theN systems asymptotically

reach consensus on a nontrivial common trajectory y⋆(t). Each agent is controlled by a

local output-feedback controller of the form

ς̇k = Φk(ςk, yk, νk) ςk ∈ R
n̄k , νk ∈ R

p

uk = Γk(ςk, yk, νk)

ϑk = Θk(ςk, yk) ϑk ∈ R
p

(3.21)

in which ϑk and νk are outputs and inputs that characterize the exchange of relative

information between individual (controlled) agents, which takes the form

νk =

N
∑

j=1

akj(ϑj − ϑk) (3.22)

or equivalently, using the Laplacian notation

νk =

N
∑

j=1

ℓkjϑj (3.23)

In general terms, the control problem can be cast as follows. Let Xk ∈ R
nk , k =

1, . . . , N , be fixed compact colsets of admissible conditions for (3.20). The problem

is to find N local controllers of the form (3.21), exchanging information as in (3.22),

and compact sets Σk ∈ R
n̄k , k = 1, . . . , N , of admissible initial conditions for all such

controllers, so that the positive orbit of the set of all admissible initial conditions is

bounded and output consensus is reached, i.e. for each admissible initial condition

(xk(0), ςk(0)) ∈ Xk × Σk, k = 1, . . . , N , there is a function y⋆ : R → R such that

lim
t→∞

|yk(t)− y⋆(t)| = 0 for all k = 1, . . . , N ,

uniformly in the initial conditions.

We expect that the consensus trajectory y⋆(t) can be thought of as generated by a

nonlinear autonomous system, which could be modeled as an ordinary differential equa-
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tion of order d, as (3.1) or in the equivalent state-space form of a d-dimensional system

(3.2)-(3.3).

Since we are seeking nontrivial consensus trajectories, following the same reasoning

of Chapter 3.1, in what follows we will consider the case in which (3.2) possesses a

nontrivial compact invariant set W . Moreover, we will assume that the function φ(·) is
globally Lipschitz. For further details on these assumptions see Section 3.1.1.

3.2.2 Structure of local controllers and communication protocol

Bearing in mind the possibility of modeling all solutions of (3.1) as outputs of the au-

tonomous system (3.2)-(3.3), in what follows, we consider for the local controllers (3.21)

a structure of the form
ẇk = s(wk) +Kνk

η̇k = ϕk(ηk, yk − c(wk))

uk = γk(ηk, yk − c(wk))

ϑk = c(wk)

(3.24)

in which νk =
∑N

j=1 akj(c(wj)− c(wk)). It is readily seen that this structure consists of a

set of N local reference generators

ẇk = s(wk) +Kνk

y ref
k = c(wk) ,

(3.25)

coupled via

νk =
N
∑

j=1

akj(y
ref
j − y ref

k ) , (3.26)

each one of which provides a reference y ref
k to be tracked by a local regulator

η̇k = ϕk(ηk, ek)

uk = γk(ηk, ek)
(3.27)

driven by the local tracking error

ek = yk − y ref
k .

This control structure enables us to solve the problem in two stages. In the first stage,

the colvector K of design parameters is chosen in such a way as to induce consensus

among theN local reference generators (3.25). In the second stage, the local regulators are

designed in such a way that each of the outputs yk tracks its own reference y ref
k . It goes

without saying that in the second step we ought to be able to use – off the shelf – a large
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amount of existing results about the design of output regulators for nonlinear systems

in the presence of exogenous signals generated by a nonlinear exosystem.

ẇ1 = s(w1) +Kν1
y ref
1 = c(w1)

ẇN = s(wN ) +KνN
y ref
N = c(wN )

Communcation Network

... ...

ẋ1 = f1(x1) + g1(x1)u1

y1 = h1(x1)
ẋN = fN (xN) + gN(xN)uN

yN = hN (xN)

η̇1 = ϕ1(η1, e1)
u1 = γ1(η1, e1)

η̇N = ϕN(ηN , eN )
uN = γN(ηN , eN)

yref1 yrefN

e1 eN

u1 uN

Figure 3.5: Control architecture: by exchanging information through the network, the
Local Reference Generators achieve synchronization. They provide an output to be tracked
locally by each agent. The regulators process their respective errors and generates the
control action to track the reference.

3.2.3 Main Result

In this framework, given the results provided in Chapter 3.1 about the synchronization

of the local reference generators, we proceed now with the second step of the design, i.e.

we design local regulators for each agent. In what follows, we assume that the vectorK0

and the values of g have been fixed such that the conclusion of Proposition 3.1 holds, i.e.

such that the synchronization set (3.11) is globally asymptotically stable for the network

(3.5).

In what follows, we assume that each individual agent has a well defined relative
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degree r between input uk and output yk and possesses a globally defined normal form,

see Isidori (1995). To streamline the exposition, we consider the special case in which

r = 1. The case of higher relative degree only entails heavier notation complexity and

no conceptual differences. Thus we assume that the individual agent (3.20) is modeled,

with a mild abuse of notation, by equations of the form

żk = fk(zk, yk)

ẏk = ak(zk, yk) + bk(zk, yk)uk ,
(3.28)

where zk ∈ R
nk−1 and where bk(zk, yk), which is the high-frequency gain of the k-th

agent, is bounded away from zero. In particular, we assume that, for all k = 1, . . . , N ,

there exists b̄k > 0 such that bk(zk, yk) ≥ b̄k for all (zk, yk) ∈ R
nk−1 ×R. Possible static or

dynamic uncertainties affecting the controlled plant can be thought of as embedded in

the zk dynamics. For instance, in presence of constant parametric uncertainties µk affect-

ing the functions fk(·), ak(·), bk(·), the state variable zk can be thought of as partitioned

as zk = col(z′k, µk) governed by the dynamics

ż′k = f ′k(µk, z
′
k, yk)

µ̇k = 0 .

More complex dynamic uncertainties can clearly be included in a similar fashion.

As anticipated, with this system we associate a local tracking error of the form

ek = yk − Cwk .

The problem is to design a robust local regulator, driven by the regulation error ek, to

the purpose of steering ek to zero. In this respect, it should be brought in mind that

wk is a “portion" of the state of the coupled system (3.20)-(3.21) and hence the entire

dynamics of the latter should be taken into account in the analysis. To this end, recall

the arguments used in the proof of Proposition 3.1 to obtain (3.13). Let Tk be a matrix

in which all the elements on the diagonal and those on the k-th column are 1’s, while all

other elements are 0, and consider the change of variables w̃ = (T−1
k ⊗ Id)w. In the new

coordinates, the entire set of the N networked local reference generators can be seen as

a system modeled by equations of the form

ẇk = Swk +Bφ(wk)− (Lk,12 ⊗DgK0C)(IN−1 ⊗Dg)ζk

ζ̇k = g [(IN−1 ⊗ S)− (Lk,22 ⊗K0C)] ζk +
1

gd
∆Φk(wk, (IN−1 ⊗Dg)ζk) .
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in which

ζk = col(w1 −wk, . . . , wk−1 − wk, wk+1 −wk, . . . , wN − wk)

and Lk,12, Lk,22, ∆Φk(·) are suitably defined. These can be written in compact form as

ẇk = s(wk) + Υkζk

ζ̇k = ψ(ζk, wk)
(3.29)

in which ψ(0, wk) = 0. By assumption, the upper subsystem is input-to-state stable, with

respect to the input ζk, to the set W . Moreover, as observed in the proof of Proposition

3.1, the equilibrium ζk = 0 of the lower subsystem is globally exponentially stable. As a

consequence, the set

{(ζk, wk) ∈ R
(N−1)d × R

d : ζk = 0, wk ∈W}

is a globally asymptotically stable compact invariant set of (3.29)Sontag (1995).

In view of this, we can represent the aggregate of (3.28) and of (3.29) as a standard

exosystem-plant interconnection

ζ̇k = ψ(ζk, wk)

ẇk = s(wk) + Υkζk

żk = fk(zk, yk)

ẏk = ak(zk, yk) + bk(zk, yk)uk

ek = yk − Cwk .

(3.30)

As usual, we change variables replacing yk by ek and obtain a system of the form

ζ̇k = ψ(ζk, wk)

ẇk = s(wk) + Υkζk

żk = fk(zk, Cwk + ek)

ėk = qk(wk, zk, ζk, ek) + bk(zk, Cwk + ek)uk

(3.31)

where

qk(wk, zk, ζk, ek) = ak(zk, Cwk + ek)− C[s(wk) + Υkζk] .

This system is ready for the design (under appropriate hypotheses) of a local regulator

of the form (3.27), which will now be written – with a mild abuse of notation – as

η̇k = ϕk(ηk) +Gkvk ηk ∈ R
mk

uk = γk(ηk) + vk

vk = κk(ek) vk ∈ R

(3.32)
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according to the procedures suggested in Byrnes and Isidori (2004) or in Marconi et al.

(2007). The basic assumption needed to make the design possible is that the zero dy-

namics of (3.31) namely, those of

ζ̇k = ψ(ζk, wk)

ẇk = s(wk) + Υkζk

żk = fk(zk, Cwk)

(3.33)

possess a compact invariant set which is asymptotically stable with a domain of attrac-

tion that contains the prescribed set of initial conditions. To make this assumption pre-

cise, letWk be the set of admissible initial conditions ofwk, let Sk be the set of admissible

initial conditions of ζk and Zk the set of admissible initial conditions of zk. Then, the

standing assumption can be formulated as follows.

Assumption 3.3. There exists a (possibly set-valued) map πk : wk ∈ W 7→ πk(wk) ⊂ R
nk−1

such that the set

Ak = {(ζk, wk, zk) : ζk = 0, wk ∈W, zk ∈ πk(wk)}

is an asymptotically stable invariant set for (3.33) with a domain of attraction containing

Sk ×Wk × Zk.

We note that this assumption is the natural formulation, in the current framework of

a networked system, of the (weak) minimum-phase assumption that one would assume

in solving a problem of output regulation for the k-th agent if high-gain arguments were

to be used for stabilization purposes.

We proceed now with the design of the functions (ϕk(·), γk(·), Gk) in (3.32), whose

key properties are captured in the following definition, taken from Marconi and Isidori

(2007).

Definition: The triplet (ϕk(·), γk(·), Gk) is said to have the asymptotic internalmodel

property if there exists a C1 map τk : Rd × R
nk−1 → R

mk such that the following holds:

i) for all (wk, zk) ∈ gr(πk)

∂τk
∂wk

s(wk) +
∂τk
∂zk

fk(zk, Cwk) = ϕk(τk(wk, zk))

−qk(wk, zk, 0, 0)

bk(wk, Cwk)
= γk(τk(wk, zk))
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ii) the set

Sk = {(ζk, wk, zk, ηk) : ζk = 0, (wk, zk) ∈ gr(πk), ηk = τk(wk, zk)}

is locally asymptotically stable for the system

ζ̇k = ψ(ζk, wk)

ẇk = s(wk) + Υkζk

żk = fk(zk, Cwk)

η̇k = ϕk(ηk)−Gk

[

γk(ηk) +
qk(wk, zk, ζk, 0)

bk(wk, Cwk)

]

with a domain of attraction containing Sk×Wk×Zk×Mk, whereMk is the compact

set of initial conditions of (3.32).

If a triplet with the asymptotic internal model property can be designed then the

problem of steering the regulation error ek of the k-th agent to zero is solved as claimed

by the following lemma proved in Marconi et al. (2007).

Lemma 3.2. Let Sk ⊂ R
(N−1)d, Wk ⊂ R

d, Zk ⊂ R
nk−1, Ek ⊂ R and Mk ⊂ R

mk be

compact sets of initial conditions for the closed-loop system (3.31), (3.32). Let the triplet

(ϕk(·), γk(·), Gk) be designed so that it has the asymptotic internal model property. Then there

exists a continuous function κk : R → R such that the trajectories of the closed-loop system

originating from Sk ×Wk × Zk × Ek ×Mk are bounded and limt→∞ ek(t) = 0 uniformly in

the initial conditions.

A triplet having the asymptotic internal model property always exists as detailed in

the next result coming from a slight adaptation of the results presented in Marconi et al.

(2007).

Proposition 3.3. Let mk ≥ 2(d + nk − 1) + 2. Then there exists a λ∗k < 0 and, for almost

colall the possible choices of controllable pairs (Fk, Gk) ∈ R
mk×mk × R

mk×1 such that colall

eigenvalues of Fk have a real part which is less then or equal to λ∗k, there exists a continuous

γk : Rmk → R, such that the triplet (ϕk(·), γk(·), Gk) with ϕk(ηk) = Fkηk + Gkγk(ηk) has

the asymptotic internal model property.

The previous results, although conceptually interesting, is not constructive in the

design of the function γk(·). The reader is referred to Marconi and Praly (2008) for prac-

tical numerical design of the function.

As shown in Byrnes and Isidori (2004), it turns out that a constructive design pro-

cedure can be given if an extra assumption is invoked. In particular, assume that there
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Chapter 3. Synchronization of nonlinear systems

exists amk > 0 and a locally Lipschitz function ̺k : Rmk → R with the property that, for

all (wk(0), zk(0)) ∈ gr(πk), the solution wk(t), zk(t) of

ẇk = s(wk)

żk = fk(zk, Cwk)

is such that the function

ρ(t) = −qk(wk(t), zk(t), 0, 0)

bk(wk(t), Cwk(t))

satisfies

ρ(mk)(t) = ̺k(ρ(t), ρ
(1)(t), . . . , ρ(mk−1)(t)) ∀ t ∈ R .

If this assumption holds then the following result can be proved, by means of a slight

adaptation of the results presented in Marconi and Isidori (2007).

Proposition 3.4. Let (Ak, Bk, Ck) ∈ R
mk×mk × R

mk×1 × R
1×mk be a triplet of matrices

in prime form. Furthermore, let ¯̺k : R
mk → R be a bounded locally Lipschitz function

that agrees with ̺k(·) on BR = {ξ ∈ R
mk : ‖ξ‖ ≤ R}, let Dℓ = diag(ℓ, ℓ2, . . . , ℓmk) with

ℓ a positive design parameter, and let (c0, . . . , cmk−1) be such that the polynomial λmk +

c0λ
mk−1 + . . .+ cmk−1 is Hurwitz. Then there exist R > 0 and ℓ∗ > 0 such that for all ℓ ≥ ℓ∗

the triplet (ϕk(·), γk(·), Gk) defined as

ϕk(ηk) = Akηk +Bk ¯̺k(ηk) , γk(ηk) = Ckηk ,

Gk = Dℓ col(c0, . . . , cmk−1) has the asymptotic internal model property.

Implicit in the proof of Lemma 3.2 above is the fact that the choice of the gain func-

tion κk(·) in the “local" controller of agent k depends on the choice of compact setsWk,

Sk, Zk, Ek, Mk of admissible initial conditions of the various components of (3.31)–

(3.32). In this respect, it should be observed that, while Wk, Zk, Ek, Mk are sets asso-

ciated with the k-th agent and its local controller, the set Sk depends by definition on

all compact sets Wj , j = 1, . . . , N , that is on the sets of admissible initial conditions of

all “local reference generators". If all sets Wj are known a priori, and so is therefore Sk,

then the function κk(·) is determined only by the choice of the sets Wk, Zk, Ek, Mk of

admissible initial conditions of the k-th agent and its local controller. However, if this is

not the case, i.e. if at the time of the design of the “local" controller of agent k the sets Sk

are not directly available, the previous design strategy must be enhanced, for instance

in the following way.

The reason why the knowledge of the compact set Sk is needed for the choice of

κk(·) resides in the high-gain arguments used in the proof of Lemma 3.2. In fact, κk(·)
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3.2. Synchronization of Hetherogeneous Nonlinear systems

is expected to dominate the influence of qk(·) in the dynamics of ek, so as to make the

set Ak × {0} locally asymptotically stable for system (3.31). Since the function qk(·)
depends on ζk, directly through the term CΥζk and “indirectly" through the influence

of ζk on the dynamics of wk, it turns out that the knowledge of Sk is crucial in enforcing

the asymptotic properties of the closed-loop system. In order to avoid the necessity of

knowing Sk, a possibility would be to define a reference signal for the output of the k-th

agent, to the purpose of asymptotically recovering the “true" reference signal Cwk but

that, in the initial transient, is bounded along with its time derivative by a bound not

dependent on the initial conditions of ζk.

By following this intuition, consider a controller of the form (3.25) and (3.32) but

with the error ek defined as

ek = yk − Cξk (3.34)

with ξk generated by

ξ̇k = Sξk +Bφ(ξk)−DhG (Cξk − θs(wk) ) (3.35)

where θs : R
d → R is a smooth bounded function such that, colfor some c̄ > 0,

‖wk‖W ≤ c̄ ⇒ θs(wk) = Cwk ,

G = col(c0, c1, . . . , cd−1) with the ci’s such that the polynomial λd + coλ
d−1 + . . . + cd−1

is Hurwitz, and Dh = diag(h, h2, . . . , hd) with h a positive design parameter. It turns

out that it is possible to choose the design parameters of (3.35) in such a way that Cξk(t)

asymptotically converges to the local reference signal Cwk(t), uniformly with respect to

the initial conditions of ζk. This is detailed in the next proposition, in which by Ξk ⊂ R
d

we denote the compact set of initial conditions for ξk.

Proposition 3.5. There exist a positive h⋆ and, for all h ≥ h⋆, positive constants d1 and d2,

such that for all ξk(0) ∈ Ξk, ζk(0) ∈ R
(N−1)d, wk(0) ∈ R

d, the trajectories of system (3.29)

and (3.35) satisfy ‖ξk(t)‖ ≤ d1, ‖ξ̇k(t)‖ ≤ d2 , and

lim
t→∞

( ξk(t)− wk(t) ) = 0 . (3.36)

Proof. Let ξ̄k = D−1
h ξk and observe that D−1

h SDh = hS, D−1
h B = 1

hdB, CDh = hC .

The rescaled dynamics read as

˙̄ξk = h(S −GC)ξ̄k +
1

hd
Bφ(Dhξ̄k) +Gθs(wk)
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Chapter 3. Synchronization of nonlinear systems

in which (S − GC) is a Hurwitz matrix. From this, the existence of the constants

d1 and d2 follows from standard high-gain arguments by using boundedness of θs(·)
and the fact that φ is globally Lipschitz. To prove (3.36), note that, by Proposition

3.1, there exists a time t⋆ > 0 such that θs(wk(t)) = Cwk(t) for all t ≥ t⋆. By changing

coordinates as ξk 7→ ξ̃k = D−1
h (ξk − wk), system (3.35) for t ≥ t⋆ is described by

˙̃ξk = h(S −GC)ξ̃k +
1

hd
B∆φ(ξ̃k, wk) +D−1

h Υkζk

in which ∆φ(ξ̃k, wk) = φ(Dhξ̃k + wk) − φ(wk). The result then follows by the same

high-gain arguments above, using the fact that ζk converges asymptotically to zero.

Using the reference signal Cξr instead of Cwr in the definition of the error ek guar-

antees that the overall closed loop system in the error coordinates is still written as in

(3.31) but with qk(·) defined as

qk(wk, zk, ξk, ek) = ak(zk, Cξk + ek)− Cξ̇k

= ak(zk, Cξk + ek)− C[s(ξk) +DhG(Cξk − θs(wk))] .

This, in turn, is a locally Lipschitz function with a bound on the Lipschitz constant that

is uniform with respect to the initial condition of ζk. This fact makes it possible to con-

tinue the analysis as we did in the first part of the section and to claim a result similar

to the one of Lemma 3.2, with a gain function κk(·) depending only on the sets of ad-

missible initial conditions of ξk, zk, ek, ηk and not affected by the set of initial conditions

of (wk, ζk). Details are omitted, since the analysis follows, with simple adaptations, the

one presented above.

3.2.4 Simulation Results

In this section, we present simulation results for a network of heterogeneous nonlinear

agents. We consider the case of three uncertain heterogeneous systems described by

ẋk1 = xk2

ẋk2 = ak(µk, xk1, xk2) + uk
yk = xk1 (3.37)

where

ak(µk, xk1, xk2) =











−µk xk1 k = 1

µk (1− x2k1)xk2 − xk1 k = 2

−µk xk1 + x3k1 k = 3
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3.2. Synchronization of Hetherogeneous Nonlinear systems

with states (xk1, xk2) ∈ R × R, control input uk ∈ R, output yk ∈ R, and uncertain

parameter µk ∈ R, k = 1, 2, 3. It is readily seen that the three agents are respectively

given by an uncertain harmonic (k = 1), Van der Pol (k = 2) and Duffing (k = 3)

controlled oscillator. In the following we assume that the uncertainties µk are constant,

i.e. they fulfill µ̇k = 0, and their value ranges in a known compact set Pk, k = 1, 2, 3.

Our goal is to control the three agents so that their outputs achieve a consensus on a

trajectory y⋆(t) generated by an exosystem of the form (3.2) and (3.3) with d = 2 and

φ(w) = 2(1 − w2
1)w2 − w1. The reference output is thus generated by a Van der Pol

oscillator. The controllers exchange information through a connected communication

network described by the Laplacian matrix

L =







0 0 0

−1 1 0

0 −1 1







By following the theory presented in Section 3.1, the three controllers are given by “local

reference generators", which in this case take the form

(

ẇk1

ẇk2

)

=

(

wk2

2(1− w2
k1)wk2 − wk1

)

+K

3
∑

j=1

akj(wj1 − wk1) (3.38)

withK designed according to Lemma 3.1 and Proposition 3.1, and “local regulators" that

process a local regulation error ek = xk1 − wk1. As shown in Section 3.2.3, by changing

coordinates in the appropriate way for each k = 1, 2, 3, the local reference generator

(3.38) can be written as in (3.29) with Υk = (Υk1Υk2)
T a vector of R2 suitably defined

and with ζk an asymptotically vanishing state variable that depends on the state of all

local reference generators.

In order to give the expressions of the local regulators some preliminary steps are

necessary since the three heterogenous systems (3.37) have relative degree 2 from the

input uk to the output yk and thus they are not in the class of systems considered in Sec-

tion 3.2.3. To fit in the class of the relative-degree 1 systems considered above, consider

the change of variables

xk1 7→ ek1 = xk1 − wk1

xk2 7→ ek2 = xk2 − wk2 −Υk1ζk + ek1
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Local Reference Generators Achieveing Synchronization

Figure 3.6: Synchronization of the 3 Local Reference Generators, defined as Van Der Pol
oscillators.

by which the dynamics associated to the k-th agent are given by (3.29), µ̇k = 0, and

ėk1 = −ek1 + ek2

ėk2 = ak(µk, ek1 +wk1, ek2 + wk2 +Υk1ζk + ek1)−
φ(wk)−Υk2ζk −Υk1ψ(ζk, wk) + uk .

It is readily seen that this system is formally equivalent to (3.31) by replacing the state

variables zk and ek in (3.31) respectively with (µk, ek1) and ek2 and with the function

qk(wk, zk, ζk, ek), fk(zk, wk), and bk(zk, wk) in (3.31) taking the form

qk(wk, (µk, ek1), ζk, , ek2) =

ak(µk, ek1 + wk1, ek2 + wk2 +Υk1ζk + ek1)− φ(wk)−
Υk2ζk −Υk1ψ(ζk, wk) .

fk(zk, wk) =
(

0 −ek1 + ek2

)T

and bk(zk, wk) = 1. In particular, we observe that

Assumption 3.2 is fulfilled with W given by the (compact) set consisting of all points

lying on the limit cycle of the Van der Pol oscillator and in its interior, and

πk(wk) = {(µk, ek1) ∈ Pk × R : ek1 = 0} . (3.39)

By following Lemma 3.2 and Proposition 3.3, we thus concentrate on an internal model-

based regulator of the form

η̇k = Fkηk +Gkγk(ηk) +Gkvk

u = γk(ηk) + vk

vk = κk(ek2)

(3.40)
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in which (Fk, Gk) ∈ R
mk×mk × R

mk is a controllable pair with Fk Hurwitz, γk(·) is

a suitably defined nonlinear function designed so that the previous system has the

“asymptotic internal model property", and κk(·) is a suitably defined “high-gain" sta-

bilizer. Since, by definition, ek2 = ėk + ek with ek = xk1 − wk1 the “true" regulation

error, a pure “error feedback" regulator can be always obtained from (3.40) by substitut-

ing ek2 with an estimate êk2 provided by a “dirty derivatives observer" of the form (see

Esfandiari and Khalil (1992))

˙̂ek1 = êk2 + ℓc0(ek1 − êk1)
˙̂ek2 = ℓ2c1(ek1 − êk1)

(3.41)

in which ℓ is a design parameter and the ci’s taken so that the polynomial λ2 + c0λ + c1

is Hurwitz. The simulation results that follows have been thus obtained by considering

local controllers of the form (3.38), (3.40) with ek2 substituted by êk2, and (3.41). The

design parameters of this controller have been fixed in the following way.

The K in (3.38) has been fixed as K = DgK0 with g = 10 and K0 as in Lemma 3.1

with a = 1. The triplet (Fk, Gk, γk(·)) in (3.40) has been fixed so that it has the “asymp-

totic internalmodel property". Since Fk is Hurwitz, by bearing inmind the expression of

πk(wk) in (3.39), it follows that the requirements (i) and (ii) in the definition are fulfilled

if γk(·) is designed so that

γk ◦ τk(wk, µk) = ak(µk, wk1, wk2)− φ(wk)

where τk(·) is the solution of the PDE

∂τ(wk, µk)

∂wk
s(wk) = Fkτk(wk, µk) +Gk(ak(µk, wk1, wk2)− φ(wk))

for all (wk, µk) ∈ W × Pk. By following the results in Marconi et al. (2007), which are

at the basis of Proposition 3.3, a γk(·) and a τk(·) fulfilling the above relations can be

always designed if the dimension mk of (3.38) is taken mk ≥ 6. In the simulation we

have thus chosen mk = 6 with Fk and Gk in prime form with the eigenvalues of Fk

taken as {−1,−2 + j,−2 − j,−3,−4 + 2j,−4 − 2j} for all the agents. The expression of

γk(·) has been then obtained by using the approximated numerical formula presented in

Marconi and Praly (2008). The tuning of the internal model-based regulator (3.40) has

been achieved by taking the stabilizer as κk(s) = −κs with κ that has been fixed, after

a few numerical tests, to κ = 15. Finally, the dirty derivatives observer (3.41) has been

tuned by taking c0 = c1 = 1 and ℓ = 20.

The uncertainties and the initial conditions of the three agents are set as µ1 = 2,
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µ2 = 3, µ3 = 1 and x1 = (5, 5), x2 = (7, 10), x3 = (1, 1) and zero initial conditions for

(3.40) and (3.41). We observe that the value of µ2 has been fixed so that the Van der Pol

dynamics of the system (3.37) with k = 2 is different from the Van der Pol oscillator that

generates the reference output. The local reference generators trajectories are shown in

Figure 3.6. The tracking results instead are shown in Figure 3.7 for each single agent

and for both components. The dot-dashed red lines are the references generated locally,

while the black lines represent the state components of the agents.
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Duffing Oscillator Tracking its Local Reference Generator

Figure 3.7: Tracking of the Local Reference generators for the three agents 3.37.
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We cannot live only for ourselves. A thousand fibers

connect us with our fellow men; and among those

fibers, as sympathetic threads, our actions run as

causes, and they come back to us as effects.

Herman Melville

4
Dynamical Edges

A
n interesting and challenging aspect of consensus and synchronization prob-

lems is to consider dynamical systems as links: the introduction of dynamics

on the links complicates the problem consistently, since the agents are not al-

lowed to communicate directly anymore. The information available at each agents is

filtered by the links and this aspect has to be taken into account carefully.

The problem of dynamical links is motivated by applications in electrical, hydraulic

and transportation networks framework, in which links cannot be considered ideal (see

e.g. Torres et al. (2015), Dhople et al. (2014), for the case of electrical networks and

Trip et al. (2014) for the case of hydraulic networks). Dynamical links can also appear

as the result of a design process aiming to control the edge flow in distribution networks

Bürger and De Persis (2015).

Driven by these motivations, a few other authors have investigated the synchroniza-

tion problem over networks with dynamic links. In Hill and Chen (2006), a set of linear

systems is interconnected via dynamic linear links and the node dynamics is controlled

only through the outputs of edge dynamic systems, while the edge dynamics can not be

directly controlled. In general, most of the results that can be found in literature rely on

passivity arguments, assuring that the interconnection of systems and links preserves an

overall passive (and with certain extent, incremental) property.
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In this chapter we study the problem of synchronization of nonlinear oscillators with

dynamic linear links: in contrast with the passivity arguments used in Hill and Chen

(2006), Torres et al. (2015) and Dhople et al. (2014), the analysis here presented can be

seen as an extension of the results of Section 3.1 to the case of dynamic links. The

passivity assumption are thus substituted by ISS assumptions on the systems at hand

and the synchronization analysis is performed by means of Lyapunov arguments.

As a first step, we consider the problem of dynamic links with algebraic connection

between the their input and their output: this scenario can be seen as an extension of

the results in Section 3.1 in presence of disturbances. In the second part of this chapter,

we consider the case of a generic dynamical link dynamics: we modify consistently the

structure of the control architecture, by introducing a set of local observers to retrieve

the information necessary to achieve synchronization. The first part of this chapter is

inspired by Casadei et al. (2014a), while the second part is totally novel.

In order to facilitate the understanding of the problems at hand and of the proposed

solution, we will often refer to the case of electrical power networks. However, the re-

sults presented in this chapter are purely theoretical and thus can be adapted to all other

possible scenarios.
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4.1 Motivation to the problem

Kron reduction is a well known procedure in classical electrical theory which allows to

simplify the complexity of a network. By separating the nodes into boundary nodes and

interior nodes, it is possible to reduce the network dimension by eliminating the interior

nodes and obtain a reduced model of the network.

In the electrical framework, boundary nodes represents power injection nodes while

interior nodes are passive nodes of the network. The idea is to iteratively simplify the

network eliminating the interior nodes, to obtain an equivalent network representation.

Figure 4.1: Example of Kron reduction and resulting graph representation of the net-
work.

The example in Figure 4.1 (taken from Dörfler and Bullo (2011)) shows how Kron

reduction simplifies the electrical network in the upper left corner towards the one be-

low: on the left side of the figure instead, the graph representation is shown. The red

squares are the boundary nodes while the blue circles are the interior nodes, which are

eliminated to obtain an equivalent reduced model of the network.

The resulting network is a loopy graph, in which self-loop at each boundary node is

allowed. The graph is thus described by a loopy Laplacian matrix Lwhich can be though

as being generated by two components

L = Q+ Ξ

where Q is the conventional Laplacian matrix describing the interconnection between
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the boundary nodes

qkj = −akj for k 6= j

qkj =
N
∑

i=1

aki for k = j ,

while Ξ is a diagonal matrix

Ξ = diag(ξ1, . . . , ξN )

with ξi ∈ R≥0, which describes the self-loop at each node.

Within the electrical network framework, Q describes the interconnection between

power suppliers, while Ξ describes the equivalent load at each boundary node. On one

hand, Q is the medium through which synchronization can be achieved, while Ξ can be

seen as a the input matrix of a disturbance load to be rejected.

Motivated by this representation, we want to address the problem of synchronization

of nonlinear agents connected via dynamical links. The impact of the loads will be

investigated briefly in Section 4.2.4 as an extension of the result presented in Proposition

1 in Section 4.2
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4.2 Synchronization of nonlinear oscillators with Dynamical

Edges

In this section we study the problem of synchronization of nonlinear oscillators con-

nected via dynamical links: first we present the problem and the assumptions under

which the problem is solved. Then we give the main result. Simulations results are

shown to illustrate the behavior of the network.

4.2.1 Preliminaries on the system and problem formulation

The N nonlinear agents are described by

ẋj = Sxj +Bφ(xj) + uj

yj = Cxj
(4.1)

with xj ∈ R
d, where uj is the diffusive coupling control input to be defined, (S,B,C)

is a triplet in prime form and φ(·) : Rd → R is globally Lipschitz, namely there exists a

φ̄ > 0 such that

‖φ(x1)− φ(x2)‖ ≤ φ̄‖x1 − x2‖ ∀x1, x2 ∈ R
d .

All the forthcoming results can be easily adapted to deal with the case in which the

initial state of the agents ranges in a fixed (although arbitrary) compact set. In such a

case the assumption on φ(·) can be weakened by asking that it is just locally Lipschitz.

For further details on the systems at hand, we refer the reader to Appendix A.

Furthermore, as in Section 3.1, it is supposed that system (4.1) is ISS with respect to

the input uj relative to a compact set.

Assumption 4.1. There exists a compact set X ⊂ R
d such that the system

ẋj = Sxj +Bφ(xj) + uj

is input-to-state stable with respect to uj relative toX, namely there exist a class-KL function

β(·, ·) and a class-K function γ(·) such that1

‖xj(t, x̄j)‖X ≤ max{β(‖x̄j‖X , t), γ( sup
τ∈[0,t)

‖uj(τ)‖)} .

1Here we denote by ‖xj‖X = minw∈X ‖x−w‖ the distance of xj fromX. Furthermore, xj(t, x̄j) denotes
the solution of (4.1) at time t with initial condition x̄j at time t = 0.
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y1(t) y2(t)

y3(t)

x1 z1 x2

x3

z
2

Figure 4.2: A simple example of connection of three agents with two dynamic links.

TheM links are described by the linear dynamics

żk = Aℓzk +Bℓ

∑N
j=1 ιjkyj

pk = Cℓzk +Dℓ

∑N
j=1 ιjkyj

(4.2)

for k = 1, . . . ,M , with zk ∈ R
l, pk ∈ R and ιkj element of the incidence matrix I .

We assume that the dynamics in (4.2) are Hurwitz with a well-defined stability mar-

gin. In particular we assume the following.

Assumption 4.2. There exists a matrix Pℓ = P T
ℓ > 0 such that

PℓAℓ +AT
ℓ Pℓ ≤ −aℓI

where aℓ is a positive stability margin.

The stability margin aℓ will play a crucial role in the following stability analysis.

Thinking about the electrical framework, the output of the N agents yj , for j =

1, . . . , N , represents a voltage applied to a link. The difference of voltages applied to a

link, described by the input term
∑N

j=1 ιkjyj , determines the current flowing through the

link, namely the output of the link pk. The outputs of the links are the available quantity

to be processed to construct uj , for j = 1, . . . , N , in such a way that synchronization of

the output of the N agents is achieved.

Figure 4.6 shows an example of possible interconnection of three agents with two

dynamic links: the current z1 flowing from agent 1 to agent 2, depends on the the dif-

ference of the outputs y1 − y2 through the incidence matrix I . Similarly, the current z2

flowing from agent 1 to agent 3, depends on the difference of the outputs y1−y3 through
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the incidence matrix I .
The result presented in the next section relies upon a connectivity assumption of the

graph G precisely formulated in the following.

Assumption 4.3. The graph G is connected, namely there exists a constant µ > 0 such that

µ ≤ λi(L) for all i = 2, . . . , N. (4.3)

Furthermore, it is worth noticing that in this scenario the Laplacian matrix is intrin-

sically symmetric. Thus, it admits a purely diagonal Jordan form.

Our goal is to define the control input uj , for j = 1, . . . , N , in such a way that the

outputs of the N systems achieve synchronization. Namely, the positive orbit of the set

of all admissible initial conditions of (4.1) is bounded and output consensus is reached,

i.e. for each admissible initial condition xj(0) ∈ R
d, j = 1, . . . , N , xℓi(0) ∈ R

l with

i = 1, . . . ,M , there is a function y⋆ : R → R such that

lim
t→∞

|yj(t)− y⋆(t)| = 0 for all j = 1, . . . , N.

4.2.2 Main Result

To achieve synchronization, we chose uj of the form

uj = −K
M
∑

i=1

ιjipi (4.4)

with K a design parameter to be defined and ιji is the ji-th element of the incidence

matrix I .
With an eye to the solution given in Chapter 3.1, the vector K is chosen as

K = D(g)K0 K0 = PCT (4.5)

where D(g) ∈ R
d×d is a diagonal matrix D(g) = diag(g, g2, . . . , gd) with g a design pa-

rameter, and P is solution of the Riccati equation

SP + PST − 2µPCTCP = −aI (4.6)

with µ introduced in Assumption 4.3 and a a positive constant.

By collecting the nodes dynamics and outputs as x = col(x1, . . . , xN ), y = col(y1, . . . , yN )

and the link dynamics and outputs as z = col(z1, . . . , zM ), p = col(p1, . . . , pM ), we can
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4.2. Synchronization of nonlinear oscillators with Dynamical Edges

rewrite the dynamics of the network in compact form as

ẋ = (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (IN ⊗K)Ip

y = (IN ⊗ C)x

ż = (IM ⊗Aℓ)z+ (IM ⊗Bℓ)ITy

p = (IN ⊗ Cℓ)z+ ITy

(4.7)

with x ∈ R
dN , z ∈ R

lM , where, without loss of generality, we considered Dℓ = 1.

It turns out that the resulting closed-loop networked system reaches synchronization

for an appropriate tuning of the parameter g provided that the stability margin of the

link dynamics is sufficiently large in relation to the Lipschitz constant of the nonlinearity

φ(·). This is formalised in the next proposition.

Proposition 4.1. Let Assumptions 4.1-4.3 hold. Consider the networked systems (4.7) con-

trolled by the diffusive coupling control law (4.4) withK chosen as in (4.5) with g = εaℓ with

ε > 0. Then, there exist an ε⋆ ≤ 1 and, for all positive ε ≤ ε⋆, an a⋆ℓ > 0 (dependent on the

Lipschitz constant φ̄ of φ(·)) such that, for all aℓ ≥ a∗ℓ the compact set

X = {(x1, x2, . . . , xN ) ∈ X ×X × · · · ×X

: x1 = x2 = · · · = xN}
(4.8)

is globally asymptotically stable. ⊳

Proof. We consider (4.7) and focus our attention on the dynamics of the nodes.

With some simple mathematical computation we obtain

ẋ = (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (IN ⊗K)I
(

(IM ⊗ Cℓ)z+ ITy
)

= (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (I ⊗KCℓ)z− (IN ⊗K)IITy.

By remembering that, by definition IIT = L

ẋ = (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (I ⊗KCℓ)z− (IN ⊗K)L(IN ⊗ C)x

= (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (I ⊗KCℓ)z− (L⊗KC)x

= [(IN ⊗ S)− (L⊗KC)]x+ (IN ⊗B)Φ(x)− (I ⊗KCℓ)z.

56



Chapter 4. Dynamical Edges

We define the change coordinate

x 7→ χ = (T−1 ⊗ Id)x

with T defined as

T =

[

1 01×(N−1)

1(N−1) IN−1

]

. (4.9)

It turns out that

L̃ = T−1LT =

[

0 L12

0 L22

]

.

Note that, by definition of T , χ = col(x1, x2 − x1, . . . , xN − x1). Thus, we split

the systems into

χ̇1 = Sχ1 + (L12 ⊗KC)χ2 +Bφ(z1) +KI1z

χ̇2 = [(IN−1 ⊗ S) + (L22 ⊗KC)]χ2 +∆Φ(χ1,χ2) + (I2 ⊗KCℓ)z

where χ2 = col(χ2, . . . , χN ) and I1,I2 are such that

T−1I =

[

I1
I2

]

according to the dimensions of χ1 and χ2, and∆Φ(χ1,χ2) is

∆Φ(χ1,χ2) = (IN−1 ⊗B)













φ(χ1 + χ2)− φ(χ1)

φ(χ1 + χ3)− φ(χ1)
...

φ(χ1 + χN )− φ(χ1)













.

Note that there exists a Φ̄ > 0 such that

‖∆Φ(χ1,χ2)‖ ≤ Φ̄‖χ2‖ ∀χ1 ∈ R
d, χ2 ∈ R

(N−1)d .

With simple reasoning, global asymptotic stability of χ2 and the ISS property of

χ1 claimed in Assumption 4.1 would lead to synchronization of the N agents. In

other words, global asymptotic stability of χ2, leads to yk → y⋆ for k = 1, . . . , N .

As far as the dynamics of the links are concerned, global asymptotic stability of
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4.2. Synchronization of nonlinear oscillators with Dynamical Edges

χ2 would mean that, since yk → y⋆ for k = 1, . . . , N ,

ITy = 0.

This and the stability property on the links dynamics claimed in Assumption 4.2

imply z = 0.

The link dynamics are rewritten according to the change of coordinates (4.9) as

ż = (IM ⊗Aℓ)z+ (IM ⊗Bℓ)IT (IN ⊗ C)(T ⊗ Id)χ

= (IM ⊗Aℓ)z+ (ITT ⊗BℓC)χ

and it turns out that the first column of ITT is always zero, meaning that the dy-

namics of the links z do not depend on χ1. We define the matrix Iχ as the matrix

obtained by removing the first column of ITT .

The analysis is thus reduced to the interconnected system

χ̇2 = [(IN−1 ⊗ S) + (L22 ⊗KC)]χ2

+∆Φ(χ1,χ2) + (I2 ⊗KCℓ)z

ż = (IM ⊗Aℓ)z+ (Iχ ⊗BℓC)χ2

We now change coordinates according to

ζ = (IN−1 ⊗D−1
g )χ2

and obtain

ζ̇ = g [(IN−1 ⊗ S) + (L22 ⊗K0C)] ζ + 1
gd
∆Φ(z1, (IN−1 ⊗Dg)ζ)

+(IN−1 ⊗D−1
g )(I2 ⊗KCℓ)z

ż = (IM ⊗Aℓ)z+ (Iχ ⊗BℓC)(IN−1 ⊗Dg)ζ

(4.10)
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Chapter 4. Dynamical Edges

which, after some manipulations, becomes

ζ̇ = g [(IN−1 ⊗ S) + (L22 ⊗K0C)] ζ + 1
gd
∆Φ(z1, (IN−1 ⊗Dg)ζ)

+(I2 ⊗K0Cℓ)z

ż = (IM ⊗Aℓ)z+ (Iχ ⊗ gBℓC)ζ.

Note that there exists a Φ̄
′′

such that

‖∆Φ(z1, (IN−1 ⊗Dg)ζ)‖ ≤ Φ̄
′′‖ζ‖

for all z1 ∈ R
d. This implies that, by properly tuning the parameter g it is possible

to dominate the nonlinear term

1

gd
∆Φ(z1, (IN−1 ⊗Dg)ζ)

with the linear and Hurwitz term

g [(IN−1 ⊗ S) + (L22 ⊗K0C)] ζ.

Consider now a Lyapunov function

V = ζTPζ + zTPℓz

with P = (IN−1 ⊗ P ) and P solution of the Riccati (4.6) and Pℓ = (IM ⊗ Pℓ) and Pℓ

as in Assumption 4.2.

The derivative of V along solution of (4.10) when ∆Φ(·) ≡ 0 becomes

V̇ = gζT (IN−1 ⊗−aId)ζ + 2ζT (I2 ⊗ PK0Cℓ)z

+zT
(

IM ⊗ (AT
ℓ Pℓ + PℓAℓ)

)

z+ 2zT (Iχ ⊗ gBℓC)ζ

which, by remembering Assumption 4.2, can be bounded as

V̇ ≤ −ga‖ζ‖2 − aℓ‖z‖2 + (c1 + gc2)‖ζ‖‖z‖

≤ −(ga− c1
2

− g
ǫc2
2

)‖ζ‖2 − (aℓ −
c1
2

− g
c2
2ǫ

)‖z‖2

for some positive constants c1, c2 and an arbitrary ǫ. Taking ǫ = a/c2, ε ≤ a/c22 and
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4.2. Synchronization of nonlinear oscillators with Dynamical Edges

g = εaℓ, the previous bound can be used to conclude that the derivative of V along

the solutions of (4.10) is

V̇ ≤ −(c3aℓ − c4)‖ζ‖2 − (c5aℓ −
c1
2
)‖z‖2

+2ζT (IN−1 ⊗ P ) 1
gd
∆Φ(z1, (IN−1 ⊗Dg)ζ)

≤ −(c3aℓ − c4)‖ζ‖2 + 2Φ̄
′′‖IN−1 ⊗ P‖‖ζ‖2 − (c5aℓ −

c1
2
)‖z‖2

≤ −(c3aℓ − c6)‖ζ‖2 − (c5aℓ −
c1
2
)‖z‖2

for some positive constants c3, c4, c5 and c6. Hence, the origin of system (4.10) is

globally asymptotically stable if aℓ is sufficiently large. The claim of Proposition 4.1

immediately follows from Assumption 4.1 and the definition of the variables ζ , χ

and x.

4.2.3 Simulation Results

y1(t) y2(t) y4(t)

y5(t)

y3(t)

Figure 4.3: Circuit implemented in the simulation.

Simulation results are presented in this section, to show the behavior of the proposed

solution: we considered 5 Van Der Pol oscillators

ẋi1 = xi2

ẋi2 = 2(1− x2i1)xi2 − xi1
yi = xi1 (4.11)
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Figure 4.4: Synchronization of the 5 Van Der Pol oscillators.

connected according to Figure 4.3 via dynamic links, described by

żi = −10zi +
∑N

j=1 ιjiyj

pi = zi
(4.12)

The initial conditions of the agents are w1 = (1, 1)T , w2 = (−1, 2)T , w3 = (2, 3), w4 =

(−1.5, 3) and w5 = (2, 2). The initial conditions of the links are z1 = 10, z2 = 5, z3 =

0, z4 = −5 and z5 = −10. Furthermore, we choose K according to (4.5)-(4.6) with g = 4

and and a = 1.

The behavior of the oscillators is shown in Figure 4.4: after a transient, influenced

by the different initial conditions on the links and their dynamics, the agents achieves

synchronization.

4.2.4 The problem of synchronization in electrical networks with loads

In this section, we briefly describes how to recast the problem of synchronization of

nonlinear oscillators connected with dynamic links in presence of loads at each agent.

We want to show that, if the current drained from the load is measured, the problem can

be tackled with the same approach described in the previous section.

Figure 4.5 shows an example of possible interconnection of three agents with two
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4.2. Synchronization of nonlinear oscillators with Dynamical Edges

y1(t) y2(t)

y3(t)

x1 z1xload1
x2

x
lo
a
d

2

x3xload3

z
2

Figure 4.5: A simple example of connection of three agents with two dynamic links and
a load at each agent.

dynamic links: the current flowing from agent 1 to agent 2, namely z1, depends on the

the difference of the outputs y1 − y2 (voltage drop) through the incidence matrix I . At
the same time, the current flowing from agent 1 to agent 3, namely z2 depends on the

difference of the outputs y1 − y3 (voltage drop) through the incidence matrix I .
Similarly, the self-loop at each node can be seen as a dynamical link to which the

output of each agent is applied: for the sake of simplicity, in order to maintain the

notation as simple as possible, we model those dynamic links as in (4.2)

żℓk = Aℓz
ℓ
k +Bℓyk

pℓk = Cℓz
ℓ
k

(4.13)

for k = 1, . . . , N , with zℓk ∈ R
l, pℓk ∈ R and ξk element of the self-loop matrix Ξ.

In Figure 4.5, the dynamics (4.13) are represented by the zℓk blocks, with k = 1, 2, 3,

which are directly connected to each node of the network.

These leads to a set of N + M identical links, which are respectively connected to

and connecting the N nodes of the network.

Accordingly, we can rewrite (4.1) by coupling the agents and the loads as an aug-

mented system

ẋk = Sxk +Bφ(xk)− ξkFCℓz
ℓ
k + uk

żℓk = Aℓz
ℓ
k +BℓCxk

yk = Cxk

(4.14)

with F ∈ R
d×1 an opportune matrix which establishes where the disturbance due to the

loads is affecting the agents. The term FξkCℓz
ℓ
k is indeed a disturbance to be compen-

sated by the control.
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Chapter 4. Dynamical Edges

In this framework, the outputs of links and loads are the available information to

construct the control input uk in (4.14) to simultaneously compensate the load request

and to impose synchronization between the agents. In particular we chose uk of the form

uj = ξjFCℓz
ℓ
k −K

M
∑

i=1

ιjipi (4.15)

with K a design parameter to be defined, ξj is the jj-th element of the self-loop matrix

Ξ and ιji is the ji-th element of the incidence matrix I .
By collecting the nodes dynamics and outputs as x = col(x1, . . . , xN ), y = col(y1, . . . , yN ),

the control inputs as u = col(u1, . . . , uN ) and the link dynamics and outputs as z =

col(z1, . . . , zM ), p = col(p1, . . . , pM ), zℓ = col(zℓ1, . . . , z
ℓ
N ), pℓ = col(pℓ1, . . . , p

ℓ
N ), we can

rewrite the dynamics of the network in compact form as

ẋ = (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (Ξ⊗ F )pℓ + u

y = (IN ⊗ C)x

ż = (IM ⊗Aℓ)z+ (IM ⊗Bℓ)ITy

p = (IN ⊗ Cℓ)z+ ITy

żℓ = (IN ⊗Aℓ)z
ℓ + (IN ⊗Bℓ)y

pℓ = (IN ⊗ Cℓ)z
ℓ

(4.16)

where, without loss of generality, we consideredDℓ = 1.

Considering the definition of the control input given in (4.15), which in compact

form reads as

u = (Ξ ⊗ FCℓ)z
ℓ − (IN ⊗K)Ip
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4.2. Synchronization of nonlinear oscillators with Dynamical Edges

the overall system (4.16) becomes

ẋ = (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (IN ⊗K)Ip

y = (IN ⊗ C)x

ż = (IM ⊗Aℓ)z+ (IM ⊗Bℓ)ITy

p = (IM ⊗ Cℓ)z+ ITy

żℓ = (IN ⊗Aℓ)z
ℓ + (IN ⊗Bℓ)y

pℓ = (IN ⊗ Cℓ)z
ℓ

(4.17)

In the electrical framework, the control input (4.15) can be thought as composed by

two terms: the first one is set to provide the required power by the load, the second is

designed to achieve synchronization between the agents. It is worth mentioning, that in

our framework we are not considering any limitation/saturation on the control input:

this ideally means that we have sufficient power to guarantee both that the load request

can be matched and the synchronization can be achieved.

Due to this, the stability analysis of (4.17) is reduced to the stability analysis of (x,z)

dynamics, which thanks to the definition of the input (4.15) are not influenced by the zℓ

dynamics.

Proposition 4.2. Let Assumptions 4.1-4.3 hold. Consider the networked systems (4.16) con-

trolled by the diffusive coupling control law (4.15) with K chosen as in (4.5) with g = εaℓ

with ε > 0. Then, there exist an ε⋆ ≤ 1 and, for all positive ε ≤ ε⋆, an a⋆ℓ > 0 (dependent on

the Lipschitz constant φ̄ of φ(·)) such that, for all aℓ ≥ a⋆ℓ the compact set

X = {(x1, x2, . . . , xN ) ∈ X ×X × · · · ×X : x1 = x2 = · · · = xN} (4.18)

is globally asymptotically stable.

The proof is the same of Proposition 4.1.

Remark 4.1. An interesting case of study could be to consider uncertain loads at the

agents, namely the matrix Ξ is not known a priori. This scenario poses interesting ques-

tions on how to design (4.15) to compensate the unknown load adaptively and simulta-

neously to synchronize the systems. △
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4.3 Dynamic links with no algebraic connection between input

and output

In this section we will introduce a modification to the structure of the network and

consequently of the regulator. In particular, wemodify the link dynamics (4.2) according

to
żi = Aℓzi +Bℓ

∑N
j=1 ιjiyj

pi = Cℓzi
(4.19)

for i = 1, . . . ,M , with zi ∈ R
l, pi ∈ R. In contrast with the previous definition, this

dynamical link has no algebraic connection between the output of the link and the input

applied to the link, namely the output of the agents.

Using the same notation of the previous sections, the node dynamics in compact form

become

ẋ = (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (IN ⊗K)I(IM ⊗ Cℓ)z

y = (IN ⊗ C)x

(4.20)

with x ∈ R
dN , z ∈ R

lM . The absence of a direct connection between the input of the links

and their outputs makes it hard to define the control parameters K in such a way that

the system still achieves synchronization.

In several application, it would make sense to ask the agents to exchange information

between each other directly, despite the filtering of the dynamic links. However, we want

to propose a solution which does not require to add any further information exchange

(physical or virtual).

y1(t) y2(t)

y3(t)

x1 z1 x2

x3

z
2

Figure 4.6: A simple example of connection of three agents with two dynamic links,
with no direct connection between the output of the links and their inputs.
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4.3. Dynamic links with no algebraic connection between input and output

Hence, in order to solve the problem of synchronization,we introduce a dynamic reg-

ulator with the goal to observe the quantity
∑N

j=1 ιjiyj (the voltage drop applied to the

link) from the output pi (the output current of the link). A possible and intuitive design

procedure for such an observer is a dirty derivatives high gain observer (see Teel and Praly

(1995)). Assuming that the relative degree between the input
∑N

j=1 ιjiyj and the output

pi is r, by deriving r times pi, it would be possible to reconstruct the input.

To understand the main idea behind this approach, consider the case of scalar links.

Assumption 4.4. The link dynamic zi ∈ R. This implies that the relative degree r between

the output of the links pi and the input
∑N

k=1 ιji yj is r = 1.

Remark 4.2. It is worth noticing that the extension the case in which zi ∈ R
l and r > 1 is

just a mathematical complication. In order to maintain the concepts as clear as possible,

we avoid heavy notations without loss of generality. In the scalar case, the link dynamics

represents for instance an R-L filter

żi = −R
L
zi +

1
L
(yk − yh)

pi = zi i = 1, . . . ,M

where (yk − yh) is the voltage drop applied to the i-th link and pi is the output current

of the link. △

From Section 3.1, we know that if the input to the agents can be constructed as

uk = K

N
∑

i=1

ℓkiyi (4.21)

with ℓki element of the Laplacian matrix L, synchronization can be achieved with an

opportune tuning of the control gain K. The idea is to construct a dynamic control law

which computes only the available information

N
∑

i=1

ιkipi

such that the information necessary to achieve synchronization is retrieved: in particular

we want to compute the output of the links pi in order to reconstruct the input applied

to the links and consequently (4.21).

In order to illustrate the main idea of the design, consider two agents and a dynamic
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link connecting the two according to (see Figure 4.6)

ż1 = aℓz1 + bℓC(x1 − x2)

p1 = z1

By computing the derivative of the outputs p1 it is possible to reconstruct, at each agent,

the input applied by the others. Both agents x1 and x2 compute ṗ1 to obtain respectively

y2 = Cx2 and y1 = Cx1 and construct the control input as in (4.21).

Following the idea of an high gain extended state observer, we extend the dynamics of

the link to its second derivative, obtaining

z̈1 = aℓż1 + bℓC(ẋ1 − ẋ2)

By defining z1 = [z1, ż1], we can write the extend link dynamic as

ż1 =







0 1

a2ℓ 0






z1 +







0

aℓbℓ






C(x1 − x2) +







0

bℓ






C(ẋ1 − ẋ2)

= Aℓz1 +B
′

ℓC(x1 − x2) +B
′′

ℓ C(ẋ1 − ẋ2)

̺1 = ι11

[

1 0

]

z1 = ι11 Cℓz1

̺2 = ι21

[

1 0

]

z1 = ι21 Cℓz1

(4.22)

We define the extended state observer at each agent of the kind

ζ̇k = Sζk +KoCℓ(ζk − ̺k)

δk = 1
bℓ

[

−aℓ 1
]

ζk
(4.23)

for k = 1, 2, with δk output of the observer which recovers the voltage drop C(x1 − x2)

applied to the link z1. Following this paradigm, the control input of the agents read as

uk = −Kδk

for k = 1, 2, with K defined as in (4.5). If δk in (4.23) recovers (4.22), the control input

just defined matchees (4.21) and thus guarantees synchronization.

4.3.1 Extension to the N-agents case

In the general case of N agents andM links one could think that the proposed control

architecture is difficult to be analyzed. It could seem that each agent has to implement
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4.3. Dynamic links with no algebraic connection between input and output

a set of observers, one for each dynamic link to which it is connected to. In this section

we show that it is possible to consider an equivalent link dynamics which describes the

dynamics of the sum of all incoming/outgoing currents at each node ̺k. We start by

considering that the information available to the k-th agent is indeed

̺k =

M
∑

i=1

ιki pi

so the sum of all the currents injected/drained into/from the node. Following the same

reasoning done before for a single link we extend the dynamics and obtain

˙̺k =
∑M

i=1 ιkiṗi

=
∑M

i=1 ιki

(

aℓzi + bℓ
∑N

j=1 ιji yj

)

= aℓ̺k + bℓ
∑M

i=1 ιki
∑N

j=1 ιji yj

¨̺k = aℓ ˙̺k + bℓ
∑M

i=1 ιki
∑N

j=1 ιji ẏj

= a2ℓ̺k + aℓbℓ
∑M

i=1 ιki
∑N

j=1 ιji yj + bℓ
∑M

i=1 ιki
∑N

j=1 ιji ẏj

(4.24)

This represents an equivalent link, whose dynamic describes the dynamics of the

sum all links connected to each node. Indeed, observing separately all the voltage drops

applied at each link or observing the term

M
∑

i=1

ιki

N
∑

j=1

ιji yj

is equivalent. Furthermore, remembering that L = IIT , we have

M
∑

i=1

ιki

N
∑

j=1

ιji yj =

N
∑

j=1

ℓkjyj (4.25)

which matches exactly the the term (4.21) we are aiming to observe.

With a small abuse of notation we define ̺k = col(̺k, ˙̺k) and consequently obtain

˙̺ k =

[

0 1

a2ℓ 0

]

̺k +

[

0

aℓbℓ

]

∑N
j=1 ℓkjyj +

[

0

bℓ

]

∑N
j=1 ℓkj ẏj

= Aℓ̺k +B
′

ℓ

∑N
j=1 ℓkjyj +B

′′

ℓ

∑N
j=1 ℓkj ẏj

πk =
[

1 0 . . . 0
]

̺k

= Cℓ̺k

(4.26)
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whit πk =
∑M

i=1 ιki pi output of the extended equivalent link.

Remark 4.3. It is worth noticing that (4.26) is a Brunovsky-like canonical form of the

extended link, namely,

Aℓ =















0 1
. . .

1

⋆ ⋆ . . . ⋆















, B
′

ℓ =















0
...

0

⋆















, B
′′

ℓ =















0
...

0

⋆















, Cℓ =
[

⋆ 0 . . . 0
]

(4.27)

The intrinsic structure of Aℓ, B
′

ℓ, B
′′

ℓ in (4.26) will play a fundamental role in the follow-

ings. △

Every agent in the network implements an observer for the ̺k dynamics of the kind

ζ̇k = Aℓζk +KoCℓ(ζk − ̺k)

δk = Γζk
(4.28)

for k = 1, . . . , N , where

Ko = DoKc (4.29)

with Do = diag(do, d
2
o) andKc = PoC

T
ℓ with Po solution of

SPo + PoS
T − PoC

T
ℓ CℓPo = −a1I (4.30)

with a1 > 0 and Γ opportunely defined in such a way that δk recovers (4.25) locally at

each agent.

Then we define the control input, locally at each agents, as

uk = Ksat(δk) (4.31)

where K is K = DgK0, with Dg = diag(g, . . . , gd) andK0 = PCT with P solution of the

Riccati equation

SP + PST − µPCTCP = −a2I

with µ ≤ λ2(L) and a2 > 0 (see Section 3.1 for details on the design). Furthermore

sat(·) : R2 7→ R
2 is defined in such a way that it preserves the direction of the vector to

which it is applied. Taking inspiration from Teel and Praly (1994), we define sat(·) as

satM(·) = min

{

1,
M
‖ · ‖

}

(·)
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4.3. Dynamic links with no algebraic connection between input and output

Letting x = col(x1, . . . , xN ), z = col(z1, . . . , zM ), ̺ = col(̺1, . . . ,̺N ), ζ = col(ζ1, . . . , ζN ),

δ = col(δ1, . . . , δN ) the overall system read as

ẋ = (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (IN ⊗K)δ̂

y = (IN ⊗ C)x

ż = (IM ⊗ aℓ)z+ (IT ⊗ bℓC)x

˙̺ = (IN ⊗Aℓ)̺+ (L⊗B
′

ℓ)y + (L⊗B
′′

ℓ )ẏ

ζ̇ = (IN ⊗Aℓ)ζ + (IN ⊗KoCℓ)(ζ − ̺)

δ = (IN ⊗ Γ)ζ

(4.32)

where δ̂ = col(δ̂1, . . . , δ̂N ) with δ̂k = sat(δk),

Proposition 4.3. Let Assumption 4.1-4.4 hold. Then there exists a d⋆o such that, for every

do > d⋆o there exist a⋆ℓ and g⋆, γ⋆ such that for every aℓ > a⋆ℓ and g > max{g⋆, γ⋆} and for

every x0 ∈ X ⊂ R
dN and z0 ∈ Z ⊂ R

M , the compact set

X = {(x1, x2, . . . , xN ) ∈ X ×X × · · · ×X : x1 = x2 = · · · = xN} (4.33)

is globally asymptotically stable.

Proof. The proof is structured as follows:

• as a first step, we will show that under the assumptions of the framework, all

the dynamics involved are bounded

• in the second part, we will prove that, after a certain time Ts, the observer

error converges to an arbitrary small compact set

• in the third part, we will consider the interconnected systems after Ts and

prove that synchronization is achieved

The first part is indeed instrumental to the second, in the sense that boundedness

of the trajectories allows to conclude that the observer can be designed in such a way

that the estimation error converges to an arbitrary small set. Once the estimation er-

ror is small, it will be possible to consider the stability of the interconnected system.

The proof can be seen as a separation principle applied to the case of networks.
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Chapter 4. Dynamical Edges

Boundedness of solutions

In order to prove boundedness of solutions, we will make use of ISS arguments. The

reader is referred to Appendix B and Isidori (1999) for detailed explanations on the

tools used in the following.

Consider system (4.32). Due to Assumption 4.1 on the agents, we know that

there exists a fixed class K function γx(·) : R → R and a class KL βx(·, ·) → R such

that

‖x(t,x0)‖X ≤ max{βx(‖x0‖, t), γx(supτ∈[0,t)‖δ̂(τ)‖)} (4.34)

Since the input to each agent is saturated, (4.34) becomes

‖x(t,x0)‖X ≤ max{βx(‖x0‖, t), γx(M)} (4.35)

and thus there exists a t1 such that for t > t1

‖x(t1,x0)‖X ≤ γx(M)

The fact that x is bounded and Assumption 4.2 imply that also z and thus ̺ are

bounded. In particular, we can write that

‖̺(t)‖ ≤ max{β̺(‖̺0‖, t), γ̺(‖x‖)} (4.36)

and there exists a time t2 such that, fro t > t2

‖̺(t)‖ ≤ γ̺(‖x‖)

In other words, there exists a time ts such that for t > ts

‖x(t)‖ ≤ γx(M)

‖̺(t)‖ ≤ γ̺ ◦ γx(M)
(4.37)

Last but not the least, boundedness of ̺ implies that also the observer state,

namely ζ, is bounded.

These properties of boundedness are fundamental in order to deal with the tran-

sient behavior of the system towards synchronization. In the following part of the

proof we will show that there exists a time Ts such that, for t > Ts the estimation

error can be arbitrarily bounded.
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4.3. Dynamic links with no algebraic connection between input and output

Observer convergence analysis

By introducing the agents dynamics and output (see (4.32)) into (4.26), ̺ dynamics

reads as

˙̺ = (IN ⊗Aℓ)̺+ (L⊗B
′

ℓ)y + (L⊗B
′′

ℓ )ẏ

= (IN ⊗Aℓ)̺+ (L⊗B
′

ℓ)(IN ⊗ C)x

+(L⊗B
′′

ℓ )(IN ⊗ C)
[

(IN ⊗ S)x+ (IN ⊗B)Φ(x)− (IN ⊗K)δ̂
]

= (IN ⊗Aℓ)̺+
(

L⊗ [B
′

ℓC +B
′′

ℓ CS]
)

x− (L⊗B
′′

ℓ CK)δ̂

= (IN ⊗Aℓ)̺+
(

L⊗ B̄ℓ

)

x− (L⊗B
′′

ℓ CK)δ̂

where we define B̄ℓ ∈ R
2×d

B̄ℓ = [B
′

ℓC +B
′′

ℓ CS]

By defining the observation error as e = ζ − ̺, we get

ė = (IN ⊗Aℓ)e+ (IN ⊗KoCℓ)e−
(

L⊗ B̄ℓ

)

x+ (L⊗B
′′

ℓ CK)δ̂

=
(

IN ⊗ [S +KoCℓ]
)

e+ (IN ⊗ Āℓ)e− (L⊗ B̄ℓ)x+ (L⊗B
′′

ℓ CK)δ̂

where we expressed Aℓ = S + Āℓ, with

Āℓ =

[

0 0

a2ℓ 0

]

We change coordinates according to

ε = (IN ⊗D−1
o )e

and obtain

ε̇ = do

(

IN ⊗ [S +KcCℓ]
)

ε+ (IN ⊗D−1
o ĀℓDo)ε

−(IN ⊗D−1
o )

[

(L⊗ B̄ℓ)x− (L⊗B
′′

ℓ CK)δ̂
]
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Chapter 4. Dynamical Edges

Consider the candidate Lyapunov functionW

W = εTPoε =
N−1
∑

i=1

εTi Poεi

with Po = (IN ⊗ Po), such that

λ‖ε‖2 ≤W ≤ λ̄‖ε‖2

Its derivative with respect to time is

Ẇ ≤ −a1do‖ε‖2 + ‖Āℓ‖‖ε‖2 + 2εT (IN ⊗ PoD
−1
o )

[

−(L⊗ B̄ℓ)x+ (L⊗B
′′

ℓ CK)δ̂
]

and clearly for do sufficiently large, we get

Ẇ ≤ −a1do‖ε̄2‖2 +
1

do

[

p1‖x‖2 + p2M2
]

for some constant p1 and p2.

Due to the fact that (4.32) is bounded in all its dynamics, for t > ts it is possible

to write that

‖ε(t)‖ ≤
√

λ̄

λ
e
−
a1do

2λ̄
t
‖ε(0)‖+ 1

do
max{p1γx(M)2, p2M2}

which leads to the following Lemma.

Lemma 4.1. For all ǫ ∈ R>0 and for all Ts > ts, there exists a d
⋆
o such that, for all do > d⋆o

‖(IN ⊗Do)ε(t)‖ ≤ ǫ

This Lemma allows now to consider the system (4.32) once the estimation error

is small.

Study of the interconnected system

We have proved that for t > Ts,

‖(IN ⊗Do)ε(t)‖ ≤ ǫ
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4.3. Dynamic links with no algebraic connection between input and output

However, since the saturation depends also on the ̺ dynamics, this is not sufficient

to conclude that the saturation is not active. We need to determine an opportune

value ofM such that

M
‖(IN ⊗Do)ε(t) + ̺(t)‖ > 1 for t ≥ TS

For t > Ts, in virtue of (4.37), we can write that

‖(IN ⊗Do)ε(t) + ̺(t)‖ ≤ ‖(IN ⊗Do)ε(t)‖+ ‖̺(t)‖
≤ ǫ+ ‖̺(t)‖
≤ ǫ+ γ̺ ◦ γx(M)

This leads to the following fact.

Fact 4.1. By choosing the saturation bound M such that

M ≥ ǫ+ γ̺ ◦ γx(M) (4.38)

for t ≥ Ts, the saturation is not active.

It is readily seen that (4.38) has a solution if and only if the gains γ̺(·), γx(·)
fulfills a small-gain like condition. Since the agents gain γx(·) is given a priori, it

turns out that (4.38) has a solution if and only if γ̺(·) is sufficiently small which

implies that the stability margin aℓ has to be sufficiently big.

Thus we say, that there exists an a⋆ℓ such that, for all aℓ ≥ a⋆ℓ , (4.38) has a solution

M.

Thus for t > Ts, due to the opportune choice of M the saturation is not active.

Since Γ is defined in such a way that

−(IN ⊗KΓ)̺+ (L⊗KC)x = 0

we can write the x dynamics according to

ẋ = (IN ⊗ S)x+ (IN ⊗B)Φ(x)− (IN ⊗KΓDo)ε− (IN ⊗KΓ)̺± (L⊗KC)x

=
[

(IN ⊗ S)− (L⊗KC)
]

x+ (IN ⊗B)Φ(x)− (IN ⊗KΓDo)ε

(4.39)
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Chapter 4. Dynamical Edges

Furthermore, by inserting (4.39) into the ̺ dynamics we get

˙̺ = (IN ⊗Aℓ)̺+ (L⊗B
′

ℓC)x+ (L⊗B
′′

ℓ C)
[

(IN ⊗ S)− (L⊗KC)
]

x

+(L⊗B
′′

ℓ CKΓDo)ε

The last equation leads also to rewrite the observation error ε according to

ε̇ = do (IN ⊗ [S +KcCℓ]) ε+ (IN ⊗ Āℓ)ε− (L⊗D−1
o B

′′

ℓ CKΓDo)ε

−(L⊗D−1
o B

′

ℓC)x− (L⊗D−1
o B

′′

ℓ C)
[

(IN ⊗ S)− (L⊗KC)
]

x
(4.40)

We are now left with the study of the interconnection between (4.39)-(4.40) and

the set ofM links

z = (IM ⊗ aℓ)z+ (IT ⊗ bℓC)x (4.41)

Thus we can forget about the fictional extended dynamics ̺ and focus on the syn-

chronization of the agents and on the other physical components of the network. In

order to do so, remembering that the Jordan form of the Laplacian is purely diagonal

since the Laplacian is symmetric, we change coordinates according to

x̄ = (T−1
J ⊗ Id)x

ε̄ = (T−1
J ⊗ I2)ε

where TJ is such that

LJ = T−1
J LTJ =

[

0 01×N−1

0N−1×1 LJ−1

]

with LJ−1 = diag(λ2(L), . . . , λN (L)).

Due to the structure of the change of coordinates, it is worth noticing that

x̄ =

[

x1

x̄2

]

ε̄ =

[

ε1

ε̄2

]

For the x̄ subsystem we obtain

ẋ1 = Sx1 +Bφ(x1) +KΓDoε1
˙̄x2 =

[

(IN−1 ⊗ S)− (LJ−1 ⊗KC)
]

x̄2 + (IN ⊗B)Φ(x1, x̄2)− (IN−1 ⊗KΓDo)ε̄2

where ∆Φ(x1, x̄2) satisfies ∆Φ(x1, 0) = 0 uniformly in x1. Furthermore, note that
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4.3. Dynamic links with no algebraic connection between input and output

due to the choice ofK the matrix
[

(IN−1⊗S)−(LJ−1⊗KC)
]

is Hurwitz (see Lemma

3.1 in Section 3.1).

For the ε̄ dynamics, letting Hc = S + KcCℓ be Hurwitz thanks to the choice of

Kc, we obtain

ε̇1 = doHcε1 +Aℓε1

˙̄ε2 = do(IN−1 ⊗Hc)ε̄2 + (IN−1 ⊗ Āℓ)ε̄2 − (LJ−1 ⊗D−1
o B

′′

ℓ CKΓDo)ε̄2

−(LJ−1 ⊗D−1
o B

′

ℓC)x̄2 − (LJ−1 ⊗D−1
o B

′′

ℓ C)
[

(IN ⊗ S)− (L⊗KC)
]

x̄2

The link dynamics instead reads as

ż = (IM ⊗ aℓ)z+ (ITT ⊗ bℓC)x̄

and it turns out that the first column of ITT is always zero, meaning that the dy-

namics of the links z do not depend on x1. We define the matrix Ix̄ as the matrix

obtained by removing the first column of ITT , obtaining

ż = (IM ⊗ aℓ)z+ (Ix̄ ⊗ bℓC)x̄2

Proving that x̄2 is GAS implies that synchronization between the agents is achieved.

This in turn lead to conclude that the links dynamics z are asymptotically stable too.

It is easy to see that for do > d⋆o, ε1 is exponentially stable. This also implies that,

due to the ISS assumption on the agents, x1 converges asymptotically to its invariant

set X (see Assumption 4.1).

We restrict our attention on the interconnection of x̄2, ε̄2, andz. We change coor-

dinate according to

χ2 = (IN−1 ⊗D−1
g )x̄2

and obtain

χ̇2 = g
[

(IN−1 ⊗ S)− (LJ−1 ⊗K0C)
]

χ2 +
1
gd
(IN−1 ⊗B)∆Φ

′

(x1, (IN−1 ⊗Dg)χ2)

+(IN−1 ⊗D−1
g KΓDo)ε̄2

˙̄ε2 = do(IN−1 ⊗Hc)ε̄2 + (IN−1 ⊗ Āℓ)ε̄2 − (LJ−1 ⊗D−1
o B

′′

ℓ CKΓDo)ε̄2

−(LJ−1 ⊗D−1
o B

′

ℓCDg)χ2 − (LJ−1 ⊗D−1
o B

′′

ℓ CDg)
[

(IN ⊗ S)− (L⊗KC)
]

χ2

ż = (IM ⊗ aℓ)z+ (Ix̄ ⊗ bℓCDg)χ2

Now we focus our attention separately on the three dynamics. We define the
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Chapter 4. Dynamical Edges

Lyapunov function V1 as

V1 = ε̄T2 Poε̄2 =
N−1
∑

i=1

ε̄T2iPoε̄2i

with Po = (IN−1 ⊗ Po), satisfying

λ1‖ε̄2‖2 ≤ V1 ≤ λ̄1‖ε̄2‖2

It turns out that

V̇1 ≤ −a1do‖ε̄2‖2 + 2ε̄T2 Po

(

(IN−1 ⊗ Āℓ) + (LJ ⊗D−1
o B

′′

ℓ CKΓDo)
)

ε̄2

+ε̄T2 Po

(

(LJ−1 ⊗D−1
o B

′

ℓCDg)χ2

+(LJ−1 ⊗D−1
o B

′′

ℓ CDg)
[

(IN ⊗ S) + (L⊗KC)
]

χ2

)

which, using the fact that due to the structure of B
′′

ℓ

‖D−1
o B

′′

ℓ CKΓDo‖ ≤ ‖B′′

ℓ CKΓ‖

for any do > d⋆o leads to

V̇1 ≤ −a1do‖ε̄2‖2 + ε̄T2 Po

(

(LJ−1 ⊗D−1
o B

′

ℓCDg)χ2

+(LJ−1 ⊗D−1
o B

′′

ℓ CDg)
[

(IN ⊗ S) + (L⊗KC)
]

χ2

)

For the sake of clarity, remembering the structure of B
′

ℓ, B
′′

ℓ (see (4.27)), in com-

pact form we write

V̇1 ≤ −a1do‖ε̄2‖2 +
1

do
g p1‖ε̄2‖‖χ2‖ (4.42)

with p1 = 2‖Po‖‖LJ−1‖(‖B′

ℓ‖+ ‖B′′

ℓ ).

As far as χ2 is concerned, following Chapter 3.1, when ε̄2 = 0 we can rewrite

χ̇2 = g(IN−1 ⊗ S)χ2 +
1
gd
(IN−1 ⊗B)∆Φ

′

(x1, (IN−1 ⊗Dg)χ2) + g(LJ−1 ⊗K0C)χ2

= g(IN−1 ⊗Hs)χ2 +
1
gd
(IN−1 ⊗B)∆Φ

′

(x1, (IN−1 ⊗Dg)χ2)

with Hs = S +K0C Hurwitz. Standard high-gain arguments lead to conclude that

also χ2 is GAS, via an opportune choice of g > g⋆ (see Section 3.1.3). In particular
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4.3. Dynamic links with no algebraic connection between input and output

there exists a Lyapunov function V2

V2 = χT
2 Pχ2 =

N−1
∑

i=1

χT
2iPχ2i

with P = (IN−1 ⊗ P ). It’s derivative is

V̇2 ≤ −a2g‖χ2‖2 + 2χT
2 P
[

(IN−1 ⊗D−1
g KΓDo)ε̄2

]

which, in compact form can be written as

V̇2 ≤ −a2g‖χ2‖2 + p2‖χ2‖‖Doε̄2‖ (4.43)

with p2 = 2‖P‖‖K0‖.
Furthermore, we define

V3 = z2

By deriving V3, we obtain

V̇3 ≤ −aℓ‖z‖2 + 2z [(Ix̄)⊗ bℓCDg)χ2]

In compact form we write

V̇3 ≤ −aℓ‖z‖2 + gp3‖z‖‖χ2‖

with p3 = ‖Ix̄‖
Consider now

Vtot =
√

V1 + 1 +
√

V2 + 1 + µ
√

V3 + 1

Furthermore, for the sake of simplicity, given a constant c, with c̄ we represent

c̄ =
c

‖Q‖ where Q is Po, P respectively for the ε̄2 and χ2 dynamics.

The derivative of Vtot is

V̇tot

≤
−a1do‖ε̄2‖2 + 1

do
g p1‖ε̄2‖‖χ2‖

√

ε̄T2 Poε̄2 + 1
+

−a2g‖χ2‖2 + p2‖χ2‖‖Doε̄2‖
√

χT
2 Pχ2 + 1

+µ
−aℓ‖z‖2 + gp3‖z‖‖χ2‖√

z2

≤ −ā1do‖ε̄2‖+ 1
do
g p̄1‖χ2‖ − ā2g‖χ2‖+ p̄2‖χ2‖‖Doε̄2‖ − µaℓ‖z‖+ µgp3‖χ2‖
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Now, setting µ =
µ̄

g
, and remembering that for t > Ts, ‖Doε̄‖ ≤ ǫ, we obtain

V̇tot ≤ −ā1do‖ε̄2‖ −
(

g(ā2 − µ̄p3)−
1

do
g p̄1 − ǫp̄2

)

‖χ2‖ − µāℓ‖z‖ (4.44)

From (4.44), by defining

µ̄ <
1

2

ā2
p3

γ⋆ >
2

ā2

( 1

do
g p̄1 + ǫp̄2

)

and setting g ≥ max{g⋆, γ⋆}, the result in Proposition 4.2 follows.
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4.3.2 Simulation Results

y1(t) y2(t) y4(t)

y5(t)

y3(t)

Figure 4.7: Circuit implemented in the simulation.

Simulation results are presented in this section, to show the behavior of the proposed

control architecture: we considered 5 Van Der Pol oscillators

ẋi1 = xi2

ẋi2 = 2(1− x2i1)xi2 − xi1
yi = xi1 (4.45)

connected according to Figure 4.7 via dynamic links, described by

żi = −10zi +
∑N

j=1 ιjiyj

pi = zi
(4.46)

The initial conditions of the agents are w1 = (1, 1)T , w2 = (−1, 2)T , w3 = (2, 3), w4 =

(−1.5, 3) and w5 = (2, 2). The initial conditions of the links are z1 = 4, z2 = 1, z3 =

−1, z4 = 2 and z5 = −2. The observers are designed according to (4.23), with do =

100 and Kc according to (4.29)-(4.30), with a1 = 1. As far as the controller design is

concerned, we chooseK according to (4.5)-(4.6) with g = 2 and and a2 = 1.

Figure 4.8 shows the behavior of the observers: due to the design and the high gain

parameter do, the convergence is really fast but peaking phenomena is present. The peak-

ing is the practical reason that leads to saturate the control input: it guarantees that the

agents are not affected excessively by the transient of the observers.

Figure 4.9 shows the trajectories of the agents. After a transient, which is clearly

influenced by the peaking of the observers, synchronization is achieved.
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Figure 4.8: Observers behavior: convergence of the Extended State Observers to the
desired value.
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Figure 4.9: Synchronization of the 5 Van Der Pol oscillators.
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Just as the wave cannot exist for itself, but is ever a

part of the heaving surface of the ocean, so must I

never live my life for itself, but always in the expe-

rience which is going on around me.

Albert Schweitzer

5
Disconnected and Switching

Topologies

I
n this chapter we consider the scenario of networks on nonlinear oscillators when

communication topologies are disconnected, persistently or just on some time in-

tervals. The problem of disconnected topologies has been studied to understand

if undesired or unstable behaviour might arise. Disconnected topologies typically lead

to the so called clustering behaviour, in which agents achieve different synchronisation

patterns, depending on connected sub-graphs composing the network. In Nabet et al.

(2009), the clustering behaviour has been extensively studied and it is shown that this

behaviour arises naturally in animal packs. A similar behaviour can be noticed also

in opinion dynamics networks, where confidence is a time varying parameter based on

which agents give trust only to a certain number of neighbors (see Morarescu and Girard

(2011)).

Time varying topologies also attracted a lot of interests in the community and sev-

eral results can be found. Among others, in Münz et al. (2011), the problem of switch-

ing network is addressed and consensus is achieved as long as the graph is uniformly

quasi-strongly connected and fulfils a dwell-time condition. For the special case of in-

tegrators network, Moreau (2005) and Olfati-Saber and Murray (2004) give a consensus

result based on the concept of average connectivity of the graph. In Li and Guo (2013)
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andMonshizadeh and van der Schaft (2014), the problem of consensus of linear systems

with switching topology is considered: results are provided respectively by means of a

hybrid control techniques and small gain/passivity arguments. In Jia and Tang (2012),

fully nonlinear agents are considered and sufficient conditions to achieve consensus are

cast in terms of linear matrix inequalities and frequency of switching, taking into ac-

count also the impact of communication delay.

A very general framework proposed in literature to deal with switching networks

is the one based on the notion of joint connectivity. In contrast with the definition of

connected graphs, joint connectivity does not require the graph to be instantaneously

connected. Rather, the union on a certain time interval of all topologies among which

the network is switching is required to be connected. Within this general framework,

in Shi and Hong (2009), Yang et al. (2014a) different consensus results (such as target

aggregation and state agreement) are proved under the assumption that the graph is

jointly strongly connected and that each topology persist for a time period fulfilling a

dwell time condition. The agents dynamics are linear in Yang et al. (2014a) while nonlin-

ear dynamics for “informed agents", fulfilling an attractivity condition to the target set,

are considered in Shi and Hong (2009).

Recently, the analysis developed in Yang et al. (2014a) has been extended in Yang et al.

(2014b) to the case of nonlinear agents. In this work a general class of nonlinear systems

assumed to be “non-expansive" is considered, and strong joint connectivity of the graph

is shown to be sufficient condition for consensus. In the same paper it is shown that

if the nonlinear dynamics just fulfill a globally Lipschitz condition then consensus is

achieved under the assumption that graph is uniformly strongly joint connected and the

Lipschitz constant of the nonlinear dynamics is sufficiently small.

With respect to all these topics, in the first part we show that the high gain design

procedure, proposed in Chapter 3.1, succeed in achieving clustered consensus when

disconnected topologies occur. In the second part of this chapter, we study a network of

nonlinear oscillators when the topology is switching between a set of disconnected and

connected topologies. By a Lyapunov analysis we prove that, if disconnected topologies

last a limited amount of time and the switching law for connected topologies fulfill an

average dwell time condition, synchronization is achieved.

The content of this chapter has been presented partially in Casadei et al. (2014b) and

Casadei et al. (2015). However, most of the result presented are completely novel.
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Chapter 5. Disconnected and Switching Topologies

5.1 Disconnected topology and behavior of the network

In this chapter we study the behavior of a network of nonlinear oscillators with dis-

connected topology. We use the concept and notation of independent connected topology

to group the agents into sub-graphs possessing some stability property. The reader is

referred to Section 2.3 for details on the topic.

Consider a set of the Na nonlinear agents is described by the following dynamics

ẇk = s(wk) + uk wk ∈ R
d

yk = c(wk)
(5.1)

k = 1, . . . , Na, in which uk is the local control input, yk is the local output whose value is

transmitted to the neighbour agents, and

s(wk) = Swk +Bφ(wk) , c(wk) = Cwk (5.2)

where (S,B,C) is a triplet of matrices in prime form (see Appendix A for further details

on the systems at hand), coupled via

uk = K

N
∑

j=1

akj(yj − yk) ∀ k = 1, . . . , N (5.3)

where akj are the elements of the adjacency matrix and K is a design parameter to be

defined. Equivalently, using the Laplacian matrix, (5.3) reads as

uk = K

N
∑

j=1

ℓkj yj ∀ k = 1, . . . , N

withK chosen as illustrated in Section 3.1.

As usual, for the N homogeneous nonlinear systems (5.1) we assume the following.

Assumption 5.1. The function φ(wk) in (5.2) is globally Lipschitz and there exists a compact

setW ⊂ R
d invariant for (5.1) such that the system

ẇk = Swk +Bφ(wk) + vk

is input-to-state stable with respect to vk relative toW , namely there exist a class-KL function
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5.1. Disconnected topology and behavior of the network

β(·, ·) and a class-K function γ(·) such that

‖wk(t, w̄k)‖W ≤ max{β(‖w̄k‖W , t), γ( sup
τ∈[0,t)

‖vk(τ)‖)} .

We start by making this assumption about the generic disconnected topology de-

scribing the flow of information between the agents.

Assumption 5.2. There exists a µ > 0 such that, for allm = 1, . . . , Na such that λm(L) 6= 0,

the following holds

Reλm(L) ≥ µ

Then the following result holds.

Proposition 5.1. For all wk(0) ∈ R
d, k = 1, . . . , Na, the trajectories of the agents are

bounded. Furthermore, agents belonging to a independent connected component achieve con-

sensus, namely there is a function y⋆i : R → R, for i = 1, . . . , c, such that

lim
t→∞

|yk(t)− y⋆i (t)| = 0 ,

for every k such that the k-th agent belongs to the i-th independent connected component.

Proof. The proof is divided in two parts. In the analysis of disconnected topologies,

we will first focus on the independent connected components and show that inside

each one of them consensus is achieved. Second, we will show that agents belonging

to the residual component do not achieve consensus but have bounded trajectories.

Consensus inside independent connected components

By grouping all the agents according to w = col(w1, . . . , wNa) and considering a

fixed disconnected topology, we change coordinate according to z = (T−1 ⊗ Id)w,

where T is defined in (2.1) relatively to a generic topology.

By relabeling the agents so that the agents within the same independent con-

nected component are consecutive and the residual agents are confined at the end,

z turns out to be

z = col (col(z11, z12), . . . , col(zc1, zc2), zres) (5.4)

with zi1 ∈ R
d and zi2 ∈ R

d(Ni−1), for i = 1, . . . , c and zres ∈ R
dNres .
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Chapter 5. Disconnected and Switching Topologies

The agents belonging to the c connected components are described by

żj1 = Szj1 +Bφ(zj1)− (L12j ⊗KC)zj2

żj2 =
(

[INj−1 ⊗ S]− [L22j ⊗KC]
)

zj2 +∆Φj(zj1 , zj2)

for j = 1, . . . , c, zj1 ∈ R
d and zj2 ∈ R

Nj−1, with ∆Φj(zj1 , zj2)

∆Φj(zj1 , zj2) = (INj−1 ⊗B)









φ(zj1 + zj2)− φ(zj1)
...

φ(zj1 + zjNi
)− φ(zj1))









which is globally Lipschitz in zj2 uniformly in zj1 and∆Φj(zj1 , 0) = 0. As proposed

in Isidori et al. (2014), we now rescale the variable zj2 in the following way

χ = (INj−1 ⊗D−1
g )zj2

and obtain

żj1 = Szj1 +Bφ(Z1)− (L12j ⊗DgK0C)(INa−1 ⊗Dg)χ

χ̇j = gHjχj +
1

gd
∆Φ(zj1 , (INa−1 ⊗Dg)χj)

whereHj = [(INj−1⊗S)− (L22j ⊗K0C)]. To show that the origin of the system with

state χj is locally asymptotically stable, we consider the change of variable ζj = Jjχj

with Jj such that H̄j = JjHjJ
−1
j is in Jordan form. We obtain a new system that is

the cascade of system

ζ̇j = gH̄jζj +
1

gd
∆Φ(zj1 , (INa−1 ⊗Dg)J

−1
j ζj) (5.5)

with system

żj1 = Szj1 +Bφ(zj1)− (Li,12 ⊗DgK0C)(INa−1 ⊗Dg)J
−1
i ζj . (5.6)

To prove that consensus is achieved inside each of the c independent connected

components (i.e. j = 1, . . . , c), we now use Lypunov arguments. For the sake of

simplicity in the notation, we drop the dependence on j. Consider the candidate

Lyapunov function

V (ζ) = ζT (D(ℓ)⊗ P−1)ζ (5.7)
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5.1. Disconnected topology and behavior of the network

where P is the solution of the Riccati equation

SP + PST − µPCTCP = −aI

with a > 0 and D(ℓ) = diag(1, ℓ, ℓ2, . . . , ℓNa−2) with ℓ a positive design parameter.

Note that there exist positive constants λ ≤ λ̄, both dependent on ℓ, such that λζT ζ ≤
V ≤ λ̄ζT ζ .

The derivative of V along the solutions of (5.27) can be bounded as

V̇ = 2ζT (D(ℓ)⊗ P−1)[gH̄ζ +
1

gd
∆Φ(z1, (INa−1 ⊗Dg)J

−1
i ζ)]

≤ 2ζT (D(ℓ)⊗ P−1)gH̄ζ +
2

gd
Φ̄‖D(ℓ)⊗ P−1‖‖(INa−1 ⊗Dg)‖‖J−1

i ‖ζT ζ

≤ 2ζT (D(ℓ)⊗ P−1)gH̄ζ + aφζ
T ζ

where aφ is a positive constant not dependent on g (provided that the latter is taken

g ≥ 1).

From Theorem 2.1, we know that that if the graph is connected one eigenvalues

of a Laplacian matrix is zero and the rest are all positive. We recall this crucial result

(see Chapter 3.1.2).

Lemma 5.1. Let Assumption 5.4 hold. Then, for each of the c independent connected

component inside the graph, there exist a positive constants a′c and ℓ⋆ such that for all

ℓ ≥ ℓ⋆

2ζT (D(ℓ)⊗ P−1)H̄ ζ ≤ −a′cζT ζ .

Using the previous lemma and taking g⋆ = (aφ + acλ̄)/a
′
c with ac an arbitrary

positive constant (g⋆ ≥ 1 without loss of generality), it is immediately seen that for

all ℓ ≥ ℓ⋆ and g ≥ g⋆ we have

V̇ ≤ −(ga′c − aφ)ζ
T ζ ≤ −ga

′
c − aφ

λ̄
V ≤ −acV . (5.8)

By this we conclude that consensus is achieved within each cluster. It is worth noting

that if the graph underlying the communication is connected, i.e. c = 1, the previous

analysis shows that synchronization of the whole network is achieved.
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Chapter 5. Disconnected and Switching Topologies

Behavior of the residual agents

The residual subsystem, instead, reads as

żres =
(

[INres ⊗ S]− [L̃res ⊗KC]
)

zres +∆Φres(z11 , . . . , zc1 , zres) + (Γ̃⊗KC)z̃2

with z̃2 = col(z12 , . . . , zc2) and where ∆Φres(z11 , . . . , zc1 , zres) is

(INres ⊗B)









−ψ11
φ(z11)− . . .− ψc1

φ(zc1) + φres1
...

−ψ1Nres
φ(z11)− . . .− ψcNres

φ(zc1) + φresNres









where φres1 , . . . , φresc are defined as

φres1 = φ(ψ11z11 + . . . + ψc1zc1 + zres1)
...

φresc = φ(ψ1Nres
z11 + . . .+ ψcNres

zc1 + zresNres
).

Note that, in general,∆Φres(z11 , . . . , zc1 , 0) 6= 0.

We now change coordinate according to ζres = (INres ⊗D−1
g )zres and obtain

ζ̇res = g
(

[INres ⊗ S]− [L̃res ⊗K0C]
)

ζres +
1
gd
∆Φres(z11 , . . . , zc1 , (INres ⊗Dg)ζres)

+(Γ̃⊗K0C)z̃2

The fact that L̃res has positive eigenvalues leads to conclude that the matrix

[INres ⊗ S]− [L̃res ⊗KC] = Hres

is Hurwitz. Furthermore, by adding and subtracting the term ∆Φres(z11 , . . . , zc1 , 0),

we obtain

ζ̇res = gHresζres +
1
gd
∆Φres(z11 , . . . , zc1 , (INres ⊗Dg)ζres)

± 1
gd
∆Φres(z11 , . . . , zc1 , 0) + (Γ̃⊗K0C)z̃2

= gHresζres +
1
gd
∆Φ̃res(z11 , . . . , zc1 , (INres ⊗Dg)ζres)

+ 1
gd
∆Φres(z11 , . . . , zc1 , 0) + (Γ̃⊗K0C)z̃2
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5.1. Disconnected topology and behavior of the network

where

∆Φ̃(·) = ∆Φres(z11 , . . . , zc1 , (INres ⊗Dg)ζres)−∆Φres(z11 , . . . , zc1 , 0)

It is is easy to see that, ζres = 0 implies ∆Φ̃(z11 , . . . , zc1 , 0) = 0. From this and the

fact that both ∆Φres(z11 , . . . , zc1 , 0) and (Γ̃⊗K0C)z̃2 are bounded since

z11 , z12 , . . . , zc1 , zc2

are all bounded (as shown in the first part of the proof), we can conclude that, for

a sufficiently large g, ζres is bounded and thus zres is bounded too, independently

from the particular topology. However, nothing can be concluded about the partic-

ular asymptotic trajectory of the residual agents: in general it depends on the set of

initial conditions and on the topology.

Following the definition of (2.1), the fact that zres is bounded and that all the

agents belonging to an independent connected components achieve consensus, leads

to conclude that w is bounded too, despite the particular disconnected topology.

5.1.1 Simulation Results

In this sectionwe show simulation results, considering 5 Lorentz oscillators. The Lorentz

oscillators are described by

ẋk1 = σ(xk2 − xk1)

ẋk2 = xk1(ρ− xk3)− xk2
ẋk3 = xk1xk2 − βxk3

yk = xk1 . (5.9)

for k = 1, . . . , 5. The values of parameters (σ, ρ, β) are σ = 10, ρ = 28 and β = 8/3.

System (5.9) can be embedded into the fourth order system

ẇk1 = wk2

ẇk2 = wk3

ẇk3 = wk4

ẇk4 = Φ(wk1 , wk2 , wk3 , wk4)

(5.10)

fitting into the structure of (5.1) and fulfilling the requested assumption.

In new coordinates, the agents’ initial conditions arew1 = (1.5; 1; 0; 0), w2 = (1; 5; 5; 5),

w3 = (2; 10; 10; 10), w4 = (0.5; 7; 7; 7) and w5 = (0; 15; 15; 15). K is chosen as in Section

3.1 with the gain parameter g = 50 and a = 1.
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Figure 5.1: Lorentz Oscillator: behavior of the three components of the Lorentz oscilla-
tors with switching topology.

The fixed disconnected topology considered in this example is given by the Laplacian

matrix

L =

















0 0 0 0 0

−1 1 0 0 0

0 0 0 0 0

0 0 −1 1 0

−1 −1 −1 −1 4

















It is trivially seen that this topology is composed by two ICC: the first one is ICC1 =

{w1, w2}, while the second is ICC2 = {w3, w4}. Agent w5 is the residual component of

the graph and receives information from all the other clusters.

Figure 5.1 shows the behavior of the system in the original coordinates (5.9). As

expected, the agents belonging to the two ICC achieve clustered consensus (the black

line and the green line in the plot), while the residual agent (the red dotted line) is simply

bounded.
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5.2. Cluster Consensus

5.2 Cluster Consensus

In this section we analyze the problem of consensus of homogeneous nonlinear agents

in case of disconnected topology. Specifically, we look for diffusive coupling strategies

able to enforce the so-called cluster consensus within the networked agents. In order to

avoid undesired behaviors of a certain group of agents (referred to as residual agents) not

belonging to any connected components, we modify the conventional diffuse coupling

by means of a time dependent strategy clustering the graph in the minimum number of

connected components within which all the agents reach a consensus. Sufficient condi-

tions for achieving cluster consensus are obtained by means of Lyapunov tools. Simula-

tion results are also presented.

5.2.1 Problem formulation

Each of the Na nonlinear agents is described by (5.1)-(5.2).

In order to achieve clustered-consensus between the agents the control input uk of

the k-th agent is chosen according to a diffusion coupling structure of the form

uk = Kνk with νk =

N
∑

j=1

τkjakj (Cwj(t)− Cwk(t)) (5.11)

for k = 1, . . . , Na, in whichK is a vector (the same for all the agents) and τkj = {0, 1} are

control parameters, all to be designed. The τkj act as "trust design parameters" chosen

by the local k-th controller to use the information coming from the neighbor j-th agent

(in such a case τkj = 1) or to ignore it (τkj = 0). As clarified next, the goal is to choose

such parameters in order to force an empty residual set, by reassigning the agents that

possibly belong to the residual set to one of the c independent connected components.

The role of K, on the other hand, is to force consensus between the agents that belong

to the same independent connect component. The final objective is to cluster all the N

agents in c independent connected component achieving cluster consensus. It is worth

noting that c is the minimum number of independent connected components that can

be enforced with the actual graph topology. The k-th agent is thus coupled to the other

agents via the control input (5.11), as

ẇk = s(wk) +Kνk . (5.12)

In practice, the parameters τkj affect the graph topology by possibly cutting the edge

(vk, vj) ∈ E in the graph if τkj is chosen equal to zero. They thus modify the adjacency

matrix A and, in turn, the laplacian matrix L. The diffusing coupling terms νk in (5.11)
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Chapter 5. Disconnected and Switching Topologies

can be thus rewritten as

νk(t) = −
N
∑

j=1

ℓkj(τkj)Cwj(t) k = 1, . . . , N . (5.13)

where the values ℓkj of the Laplacian matrix depend on the particular choice of τkj .

We conclude this paragraph by noting that, by defining w = col(w1, . . . , wN ), it is

possible to rewrite the network of (5.12) as1

ẇ = (IN ⊗ S)w + (IN ⊗B)Φ(w) + (IN ⊗K)V(w) (5.14)

where V(w) = col(ν1, . . . , νN ), with νk introduced in (5.13), and

Φ(w) = col(φ(w1), . . . , φ(wN ))

Many results can be found in literature proving that consensus can be achieved with

a proper choice of the control parameters if the graph is connected (namely c = 1 and

the residual graph is empty). In such a case, in fact, it has been shown that if the τjk

are chosen all one, there exists a choice of K (based on high-gain arguments) such that

trajectories of the agents are bounded and all the outputs yk reach a consensus on a

common signal y⋆.

Motivated by the result of previous section, the goal is now to design the degree-of-

freedom τkj and K in such a way that the set of residual components is empty and the

outputs of all the agents belonging to one of the c independent connected components

reach a consensus on a common trajectory y⋆i , i = 1, . . . , c.

Problem. DesignK and τkj , k, j = 1, . . . , Na, in such a way that each of theNa agents

belongs to one of the c independent connected components in finite time (namely the set

of residual agents is empty in finite time) and all the outputs of the agents belonging to

a given independent connected components i reach a consensus on a common trajectory

y⋆i , with i = 1, . . . , c.

The result we are aiming to solve is semiglobal, namely we assume the initial con-

ditions of the k-th agents belong to a fixed (although arbitrary) compact set Wk ∈ R
nk ,

k = 1, . . . , Na.

1Here and in what follows, A⊗B denotes the Kronecker product of the two matrices A and B.
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5.2.2 A cluster consensus result

The design of the vector K follows the same paradigm presented in Isidori et al. (2014).

In particular the vectorK takes the form

K = DgK0 , (5.15)

where Dg = diag(g, g2, . . . , gd), with g a “gain" parameter and K0 = PCT with P is

solution of the Riccati equation

PST + SP − 2µPCTCP = −aI (5.16)

with µ ≤ minRe(λi(L)) (without considering λi = 0 for i = 1, . . . , c) and a > 0.

The parameters τjk, on the other hand, are designed in such a way that the agent

k that would belong to a residual component if τkj were chosen equal to 1 for all j =

1, . . . , Na, is indeed associated to one of the c connected components. To achieve this

goal we choose an update rule for τkj of the following: form

τ̇kj = 0

β̇k = −γβk

}

if |Kνk| ≤ βk

τ+kj =

{

1 for j = argminj,j 6=k(‖Cwk − Cwj‖)
0 otherwise

β+k = β0











if |Kνk| > βk

where γ and β0 are positive parameters yet to be fixed. It turns out that there exists a

choice of the parameters γ, β0 and g such that the previous controller asymptotically

force all the agents to belong to one of the c independent connected components and

reach a consensus therein.

Proposition 5.2. For each agent k let τkj , j = 1, . . . , Na, and K be fixed as detailed above

(with K dependent on the parameter g). Furthermore, let the local initial conditions be taken

as τkj(0) = 1, for all j = 1, . . . , Na, βk(0) = β0, wk(0) ∈ Wk ∈ R
nk withWk a fixed compact

set. Then, there exist positive g⋆ and γ⋆ and, for all g ≥ g⋆, a β⋆(g) such that for all g ≥ g⋆,

β0 ≥ β⋆ and positive γ ≤ γ⋆ the following holds:

• there exists a time T ≥ 0 such that the set of residual agents is empty for all t ≥ T ;

• the outputs yk of the agents belonging to independent connected components reach a

consensus. Namely, for each i = 1, . . . c, there exists a y⋆i (t) generated by a solution of
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the system

ẇ = s(w), y = c(w)

such that if the agent k belongs to the i-th independent connected component the follow-

ing holds

lim
t→∞

‖yk(t)− y⋆i (t)‖ = 0 .

Proof. Following the approach of Chapter 3.1, we change coordinates according to

[

w1

ζ

]

=

(

Id 0

0 INa−1 ⊗D−1
g

)

(T−1
J ⊗ Id)w

where TJ is the change of coordinates which puts the Laplacian matrix in Jordan

form and is defined as

TJ =

[

1 01×Na−1

1Na−1 J

]

with J ∈ R
Na−1×Na−1 a properly defined matrix whose inverse T−1

J is

T−1
J =

[

1 01×Na−1

−J−11Na−1 J−1

]

.

For k = 2, . . . , Na, we can write wk as

wk = w1 + (Jk ⊗Dg)ζ

where Jk is the k-th row of J .

From Chapter 3.1.3, we know that, if the graph is connected, there would exist a

g⋆ > 0 such that for all g ≥ g⋆ the Lyapunov function

V (ζ) = ζT (IN−1 ⊗ P−1)ζ

fulfills λ‖ζ‖2 ≤ V (ζ) ≤ λ‖ζ‖2, V̇ (ζ) ≤ −acV (ζ), for some positive ac, λ and λ. Using

the previous relations and the fact that ζ(0) belongs to a fixed compact set, standard

Lyapunov arguments can be used to obtain

‖ζ(t)‖ ≤ β̄ e−γ̄t (5.17)

for some positive β̄ and γ̄. The previous relation, obtained under the assumption

that the graph is connected, can be indeed used also to upper bound the state be-
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havior of the agents belonging to a connected component characterizing a graph that

is not connected. It is thus used in the following to bound the term ‖Kνk(t)‖ of the

agent k, and thus to update τkj. The control input ‖Kνk(t)‖ can be bounded as

‖Kνk(t)‖ ≤ ‖K∑N
j=1 akjC(wj(t)−wk(t))‖

≤ ‖K‖∑N
j=1 |akj|‖wj(t)− wk(t)‖

≤ ‖K‖∑N
j=1 |akj|‖(Jj − Jk)⊗Dg‖‖ζ(t)‖

= Γk‖ζ(t)‖

(5.18)

where Γk is defined as

Γk = ‖K‖
N
∑

j=1

(|akj|‖(Jj − Jk)⊗Dg‖) .

The term ‖Kνk(t)‖ of each agent belonging to an independent connected component

is thus bounded by

‖Kνk(t)‖ ≤ Γkβ̄e
−γ̄t . (5.19)

Setting β⋆ = Γkβ̄ and γ⋆ = γ̄, it follows that the local controller of agents that be-

longs to an independent connected component never switch the values of τkj and

hence reach consensus with the other agents belonging to the same independent

connected component, according to the analysis of Chapter 5.1. On the other hand,

agents possibly belonging to the residual set will exhibit a term ‖Kνk(t)‖ that neces-
sarily overpass the value of βk(t) at a time T , since βk(t) is exponentially decreasing

and νk not asymptotically vanishing (otherwise consensus would be achieved any-

way). The proposed law for τkj guarantee that at time T the agent k cut the edges

with all the neighbor agents except the j-th one that, at time t = T , has the closest

output value. In this way the agent k has a single incoming edge from the agent

j and thus, from t ≥ T , belongs to the independent connected component of the

agent j. The simultaneous reset of the value of βk also guarantees, from the analysis

above, that no further switches of τkj will occur.

5.2.3 Simulation Results

As in Section 5.1.1, we consider 5 Lorentz oscillators with the same initial conditions.

Figure 5.2 shows that, when the hybrid parameters τkj switches, agent w5 belongs to one

of the ICC and achieves synchronization within that subgroup of agents.

In order to show the difference of behavior with respect to the previous case in Sec-

tion 5.1.1, we forced the hybrid parameters τkj to jump at 10 sec (otherwise they would
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have jumped after less then 0.5 sec). As the zoom in 5.2 clearly shows, after this event

agent w5 synchronizes with the nearest ICC.
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Figure 5.2: Lorentz Oscillator: behavior of the three components of the Lorentz oscilla-
tors with switching topology.

97



5.3. Switching networks

5.3 Switching networks

In previous sections, we showed that if the topology is disconnected agents do not

achieve a global consensus: however, if the topology is changing in time, under certain

conditions which involves the average connectedness of the graph it is possible to prove

that synchronization is achieved, despite bounded time intervals in which the topology

is not connected.

In this section, we showprecisely under which conditions consensus is achieved if the

topology switches between a set of connected and disconnected topologies. First we will

define the switching topology conditions and then, give the main result of this section.

We will make extensive use of hybrid systems tools and hybrid Lyapunov analysis: for

further details on this aspects, the reader is referred to Appendix C and Goebel et al.

(2008).

Each of the Na agents is described by the nonlinear dynamics

ẇk = s(wk) + uk xk ∈ R
d

yk = c(wk)
(5.20)

in which, for each k = 1, . . . , Na, uk ∈ R
d is the control input, yk ∈ R is the available

measurement. Note that we deal with homogeneous nonlinear agents, namely f(·) and
h(·) do not depend on k.

We rewrite (5.20) as

ẇk = Swk +Bφ(wk) + uk , yk = Cw (5.21)

with the triplet of matrices (S,B,C) that is in prime form. In the following we assume

that the function φ(wk) is globally Lipschitz, namely there exists a positive constant φ̄

such that ‖φ(w)‖ ≤ φ̄‖w‖ for allw ∈ R
d. Such a globally Lipschitz condition is motivated

by the fact of looking for “global" consensus results. The assumption in question could

be weakened by just asking the previous function to be only locally Lipschitz if just

semiglobal consensus results are of interest.

We look for a decentralized control structure in which the agents exchange only out-

put information and the control law of each agent is taken as

uk = Kνk , νk =

Na
∑

j=1

ℓkjc(wj) (5.22)

withK to be designed in such a way that output consensus is reached among the agents.
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Namely, for each initial condition wk(0) ∈ R
d, there is a function y⋆ : R → R such that

lim
t→∞

|yk(t)− y⋆(t)| = 0 ,

uniformly in the initial conditions, for all k = 1, . . . , Na. It is worth noting that, in

the proposed framework, no leader is considered, and only the neighbor’s information

is available according to the underlying communication topology. Furthermore, local

output of single agents rather than a full state information is assumed to be spread over

the network.

We also assume that agents (5.21) have a robust compact attractor W ⊂ R
d, where

robustness is characterized in terms of Input-to-State Stability. This assumptions indeed

guarantees that the network of (5.21) achieves synchronization on non-trivial trajecto-

ries.

Assumption 5.3. There exists a compact set W ⊂ R
d invariant for (5.21) with u = 0 such

that the system

ẇ = Sw +Bφ(w) + u

is input-to-state stable with respect to u relative toW , namely there exist a class-KL function

β(·, ·) and a class-K function γ(·) such that2

‖w(t, w̄)‖W ≤ max{β(‖w̄‖W , t), γ( sup
τ∈[0,t)

‖u(τ)‖)} .

Finally, we fix a restriction on the communication topologies asking that the real part

of the nontrivial eigenvalues of the Laplacian are uniformly bounded from below by a

known constant µ.

Assumption 5.4. There exists a µ > 0 such that, for allm = 1, . . . , Na such that λm(L) 6= 0,

the following holds

Reλm(L) ≥ µ

5.3.1 Switching topology framework

We denote by T = {T1, . . . ,TNt} the set of Nt possible communication topologies. This

set of topologies T is also characterized by topologies that are not necessarily con-

nected3. For this reason we split the set T in two disjoint sets Tc and Tnc, which fulfill

2Here and in the following we denote by ‖w‖W = minx∈W ‖w − x‖ the distance of w from W . Further-
more, w(t, w̄) denotes the solution of (5.21) at time t with initial condition w̄ at time t = 0.

3We recall that a communication topology is said to be connected if there is a node v from which any
other node vk ∈ V \ {v} can be reached, or equivalently if there is a path from v to all vk. In the previous
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T = Tc ∪ Tnc and Tc ∩Tnc = ∅, collecting topologies that are, respectively, connected and

disconnected.

For all i = 1, . . . , Nt, let Λi = {λ1(Li), . . . , λNa(L
i)} be the eigenvalues of Li (the

Laplacian of the i-th topology), ordered with increasing real part. As a consequence of

Lemma 2.1, the following holds (see also Wieland (2010) and Ren and Beard (2005) for

further details):

• if Ti ∈ Tc then λ1(Li) = 0 and Reλm(Li) > 0 form = 2, . . . Na;

• if Ti ∈ Tnc then there exists a ci ∈ [1, Na] such that λm(Li) = 0 form = 1 . . . , ci and

Reλm(Li) > 0 form = ci + 1 . . . Na.

The different communication topologies alternates in time by forming an ordered

sequence {Ti}∞i=1, with each Ti taken in the set T . We denote by ∆Ti ≥ 0, i = 1, . . . ,∞
the length of the time interval in which the i-th communication topology is active. Note

that time intervals of zero length are allowed in the proposed framework. By this fact,

without loss of generality, we can assume that the topologies alternates in time accord-

ing to the rule that Ti ∈ Tc if i is odd and Ti ∈ Tnc is i is even. As a matter of fact, if two

connected (disconnected) communication topologies occur in a row we can always “sep-

arate" them with a disconnected (connected) topology of zero length without practically

changing the networked system dynamics. Note also that we do not assume that con-

nected communication topologies persist for a guaranteed dwell time, namely connected

topologies can last for arbitrarily small (indeed also of length zero) time interval. The

kind of result we will prove (see next Proposition 5.3) is that consensus is reached if the

intervals of time in which connected topologies govern the communication between the

agents have a sufficiently long (in the average) duration and if the disconnected topolo-

gies duration is bounded.

We formulate now the assumption about the length of the time intervals in which

disconnected topologies are active.

Assumption 5.5. There exists a T0 > 0 such that for all i = 1, . . . , Nt such that Ti ∈ Tnc the
following holds

∆Ti ≤ T0 .

The additional condition under which the main result will be proved asks that the

time intervals in which the network is connected last, in the average, sufficiently long.

More precisely, we asks that there exist positive τ ∈ R≥0 and n0 ∈ N such that, for all

definition a path from node vj to node vk in the i-th topology is a sequence of r distinct nodes {vℓ1 , . . . , vℓr}
with vℓ1 = vj and vℓr = vk such that (vi+1, vi) ∈ Ei
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possible n, i0 ∈ N with i0 odd, we have

i0+2n
∑

i=i0, i=i+2

∆Ti ≥ τ (n− n0) (5.23)

The previous condition can be regarded as a average dwell-time condition (see Hespanha and Morse

(1999)), with the time τ , in particular, that can be seen as an average length of the inter-

vals in which the network is connected, and n0 representing the number of “connected"

intervals of zero duration that can occur in a row. The result formulated in the next

proposition, in fact, claims that consensus is achieved if (5.23) is fulfilled for some n0

and τ with the latter sufficiently large.

We conclude the section by remarking how the framework proposed in this section

to model switching graphs is, from one hand, more restrictive than the one based on

the property of joint connectivity used, for instance, in Shi and Hong (2009), Yang et al.

(2014a). As a matter of fact, joint connectivity does not imply the existence of time inter-

vals in which the graph is connected (as assumed in our framework) since it is the union

of all possible network configurations that is required to have connectivity properties.

On the other hand, all consensus results presented in literature that rely on a uniform

joint connectivity condition ask that the different topologies persist a guaranteed dwell-

time. In this respect the condition above, asking just a dwell-time in the average, is

milder.

Furthermore, it is important to stress that in Shi and Hong (2009), Yang et al. (2014a)

the graph is supposed to be uniformly strongly connected, a fact that implies that all

agents are centroid of the graph, while in our case we simply ask the topolgies to be

connected. In addition, to achieve state synchronization, in Yang et al. (2014a), the graph

is not only asked to be uniformly strongly connected but also to be fixed in the average, a

fact that imposes severe restrictions on the topology switching sequence.

5.3.2 Main Result

We now give the conditions under which the network of nonlinear agents achieve syn-

chronization.

Proposition 5.3. Consider the networked control system (5.20) controlled by (5.22) with K

as in (5.15) under assumption listed in Chapter 5.3.1, with the length of the time interval of

connected topology fulfilling the average dwell-time condition (5.23) for some n0 ≥ 1 and τ .

Then, for all wk(0) ∈ W̄ with k = 1, . . . , Na and W̄ ⊂ W, there exist a τ⋆ and g⋆ such that
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for all τ ≥ τ⋆ and g ≥ g⋆ the compact invariant set

W = {(w1, w2, . . . , wNa) ∈W ×W × · · · ×W : w1 = w2 = · · · = wNa} (5.24)

is asymptotically stable for the closed-loop network system as long as wk ∈ W for k =

1, . . . , Na. ⊳

Remark 5.1. The introduction of the set of initial condition W̄ ⊂ W is due to the fact that

we need to remain inside W to have the uniform observability condition and Lipschitz

condition fulfilled. With this respect, the existence of a g⋆ and τ⋆ should be implied. △

Proof. The proof of Proposition 5.3 is divided in three parts:

• in the first part of the proof we consider the behavior of the network for a a

fixed connected topology. By recalling the results in Isidori et al. (2014) and

in the proof of Proposition 1, we define a common Lyapunov function and we

show that if the topology is connected agents converge towards synchroniza-

tion

• in the second part of the proof, we consider disconnected topology, and ana-

lyze the behavior of the network by Lyapunov arguments

• in the third and final part of the proof, we consider the network under switch-

ing topologies and, by means of hybrid Lyapunov tools, we prove that, under

an average dwell time condition, the agents achieve consensus despite arbi-

trary long time intervals in which the network is not connected

Connected topologies

Consider a generic fixed topology Ti ∈ T and the change of coordinate

M =

(

1 01×(Na−1)

1Na−1 INa−1

)

.

Defining w = col(w1, . . . , wNa) and by bearing in mind the choice of K, the net-

worked system can be compactly rewritten as

ẇ = [(INa ⊗ S)− (Li ⊗DgK0C)]w + (INa ⊗B)Φ(w) (5.25)

where Φ(w) = col(φ(w1), . . . , φ(wNa)).
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Elementary computations show that

L̃i =M−1LiM =

(

0 Li
12

0(Na−1)×1 Li
22

)

(5.26)

where Li
12 = Li

[1,2:Na]
and Li

22 = Li
[2:Na,2:Na]

− 1Na−1 L
i
[1,2:Na]

. We consider now the

change of variables

w 7→
(

̺1

̺

)

= (M−1 ⊗ Id)w ,

with ̺1 ∈ R
d and ̺ ∈ R

(Na−1)d. Note that ̺1 = w1 and

̺ =
(

w2 − w1 w3 − w1 . . . wNa − w1

)T

.

By using (5.26), an easy calculation shows that system (5.25) in the new coordinates

reads as
˙̺1 = S̺1 +Bφ(̺1)− (Li

12 ⊗DgK0C)̺

˙̺ =
[

(INa−1 ⊗ S)− (Li
22 ⊗DgK0C)

]

̺+∆Φ(̺1,̺)

where

∆Φ(̺1,̺) = (IN−1 ⊗B)









φ(̺2 + ̺1)− φ(̺1)
...

φ(̺Na + ̺1)− φ(̺1)









where ̺ = col(̺2, . . . , ̺Na), with ̺i ∈ R
d, i = 2, . . . , Na. Note that ∆Φ(̺1,̺) is

globally Lipschitz in ̺ uniformly in ̺1 and ∆Φ(̺1, 0) = 0 for all ̺1 ∈ R
d. Namely,

there exists a positive Φ̄ such that ‖∆Φ(̺1,̺)‖ ≤ Φ̄‖̺‖ for all ̺1 ∈ R
d and ̺ ∈

R
(Na−1)d.

We now rescale the variable ̺ in the following way

χ = (INa−1 ⊗D−1
g )̺

and obtain

˙̺1 = S̺1 +Bφ(̺1)− (Li
12 ⊗DgK0C)(INa−1 ⊗Dg)χ

χ̇ = gHiχ+
1

gd
∆Φ(z1, (INa−1 ⊗Dg)χ)

where Hi = [(IN−c ⊗ S)− (Li
22 ⊗K0C)]. To show that the origin of the system with

state χ is locally asymptotically stable, we consider the change of variable ζ = Jiχ

with Ji such that H̄i = JiHiJ
−1
i is in Jordan form. We obtain a new system that is
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the cascade of system

ζ̇ = gH̄iζ +
1

gd
∆Φ(z1, (INa−1 ⊗Dg)J

−1
i ζ) (5.27)

with system

ż1 = Sz1 +Bφ(z1)− (Li,12 ⊗DgK0C)(INa−1 ⊗Dg)J
−1
i ζ . (5.28)

We consider the candidate Lyapunov function

V (ζ) = ζT (D(ℓ)⊗ P−1)ζ (5.29)

where P is the solution of (5.16) andD(ℓ) = diag(1, ℓ, ℓ2, . . . , ℓNa−2)with ℓ a positive

design parameter yet to be fixed. Note that there exist positive constants λ ≤ λ̄, both

dependent on ℓ, such that λζT ζ ≤ V ≤ λ̄ζT ζ .

Using the Lemma 5.1 and taking g⋆ = (aφ+acλ̄)/a
′
c with ac an arbitrary positive

constant (g⋆ ≥ 1 without loss of generality), it is immediately seen that for all ℓ ≥ ℓ⋆

and g ≥ g⋆ we have

V̇ ≤ −(ga′c − aφ)ζ
T ζ ≤ −ga

′
c − aφ

λ̄
V ≤ −acV . (5.30)

Hence, (5.30) shows that when connected topologies occur, the Lyapunov function

(5.29) is strictly decreasing along solution of (5.27). The local asymptotic stability

of ζ and the ISS properties of the z1 guarantee that all the agents outputs yk reach

consensus on a common trajectory y⋆.

Disconnected topologies

We consider now time intervals in which Ti ∈ Tnc (i even) and study the behavior

of the common Lyapunov function (5.29). For all i such that Ti ∈ Tnc, it comes

straightforward that the matrix H̄i in (5.27) is not Hurwitz. Hence the result in

Lemma 1 cannot be claimed.

The derivative of (5.29) during time intervals in which the topology is not con-
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nected is

V̇ = 2ζT (D(ℓ)⊗ P−1)[gHiζ +
1

gd
∆Φ(z1, (INa−1 ⊗Dg)ζ)]

≤ g a′nc ζ
T ζ +

2

gd
Φ̄‖D(ℓ)⊗ P−1‖‖(INa−1 ⊗Dg)‖ζT ζ

≤ (g a′nc + aφ)ζ
T ζ = ancV

(5.31)

where a′nc := 2‖(D(ℓ) ⊗ P−1)Hi‖, aφ is the positive constant introduced above, and

anc = (ga′c + aφ)/λ.

Equation (5.31) means that, in general, V (ζ) is increasing when disconnected

topologies occurs.

Hybrid analysis

We now proceed towards the proof of Proposition 5.3. We will consider the whole

network of agents under switching topologies: we will consider the Lyapunov func-

tion (5.29) and analyze the behavior of the agents during connected flows, discon-

nected flows and jumps of topology.

First we estimate the jump in the value of V (ζ) when a change in the topology

occurs, namely when Ti+1 replaces Ti. Denoting by ζ+ and χ+ the “next value" of

the state variables ζ and χ when a jump in the topology occurs, we note that χ+ = χ

and

ζ+ = J+
i χ+ = Ji+1 χ = Ji+1 J

−1
i ζ (5.32)

Hence, by letting

ῡ = max
i,j∈[1,...Nt]

‖Jj J−1
i ‖

we can easily bound the jump of the Lyapunov function when the topology switches

as
V + = ζ+T (D(ℓ)⊗ P−1)ζ+ ≤ λ̄‖ζ+‖2

≤ λ̄ῡ2‖ζ‖2 ≤ λ̄

λ
ῡ2 V := ajV .

(5.33)

We will continue the analysis by considering the closed-loop networked system

as an hybrid system flowing during the time intervals in which the communication

topology is connected (i odd), and ”instantaneously” jumping in the intervals in

which the topology is disconnected. To this end, let i be odd and let ti, ti+1 be,

respectively, the times at which the topology switches from Ti ∈ Tc to Ti+1 ∈ Tnc,
and from Ti+1 to Ti+2 ∈ Tc. By bearing in mind (5.31) and (5.33), we have that the
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jump undergone by the Lyapunov function between two connected topologies can

be estimated as

V (t+i+1) ≤ ajV (ζ(t−i+1)) ≤ aje
ancT0V (ζ(t+i ))

≤ aje
ancT0ajV (ζ(t−i )) = eσjV (ζ(t−i ))

with σj := ancT0 + 2 ln(aj).

We are thus left to study an hybrid system governed by (5.30) during flows and

instantaneously jumping as V + ≤ eσjV , with the length of the flow intervals gov-

erned by an average dwell time of the form (5.23).

The fact that the time intervals satisfy an average dwell-time condition given by

(5.23) allows one to say (see Cai et al. (2008)) that flow and jump times of the hybrid

system can be thought of as governed by a clock variable ς flowing according to the

differential inclusion ς̇ ∈ [0, 1/τ ] when ς ∈ [0, n0] and jumping as ς+ = ς − 1 when

ς ∈ [1, n0]. We thus endow the networked system with the clock variable and study

the resulting hybrid system whose Lyapunov function flows and jumps according to

the following rules

ς̇ ∈ [0, 1/τ ]

V̇ ≤ −acV

}

(ς, V ) ∈ [0, n0]× R

ς+ = ς − 1

V + ≤ eσjV

}

(ς, V ) ∈ [1, n0]× R

Specifically, following Cai et al. (2008), let

W(ς, ζ) = eLςV (ζ)

with L ∈ (σj, τac/2). During flows, by compactly writing (5.27) as ζ̇ = F (ζ, z1), we

have that for all v ∈ col ([0, 1/τ ] , F (ζ, z1))

〈∇W(τ, ζ), v〉 = LeLς ς̇ V (ζ) + eLς〈∇V (ζ), F (ζ, z1)〉
≤ LeLς

1

τ
V (ζ)− ace

LςV (ζ)

≤ −(ac −
L

τ
)W(ς, ζ)

≤ −ac
2
W(ς, ζ)

for all (ς, ζ, z1) ∈ [0, n0]× R
(Na−1)d × R

d. On the other hand, during jumps, we have

106



Chapter 5. Disconnected and Switching Topologies

that
W+ = eLς

+

V (ζ+) ≤ eL(ς−1)eσjV (ζ)

= e−L+σjeLςV (ζ) = e−L+σjW(ς, ζ)

= εW(ς, ζ)

with ε = e−L+σj ∈ (0, 1). The Lyapunov function W(·, ·) is thus decreasing both

during flows and during jumps. This and the fact that W is positive definite with

respect to the set [0, n0]×{0} lead to the conclusion that the set [0, n0]×{0} is globally
asymptotically stable. This, by taking advantage from Assumption 1 and from the

cascade structure of system (5.27)-(5.28), proves the result.

5.3.3 Simulation Results
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Figure 5.3: Lorentz Oscillator: behavior of the three components of the Lorentz oscilla-
tors with switching topology.

Again, we consider 5 Lorentz oscillators with the same initial condition of (5.9). In

order to show simulation results in case of switching topology, we selected ten random

topologies (odd disconnected, even connected), with T0 = 0.3 sec, N0 = 3 and δ = 2 (see

Figure 5.4 for a sample of 4 sec). The control parameter K is chosen as in Section 3.1

with the gain parameter g = 50 and a = 1.
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Figure 5.4: Laplacian Switching signal: a sample of 4 sec of the switching signal govern-
ing the change of topology.

Figure 5.3 shows the three components of the five Lorentz oscillators in the original

coordinates (5.9) achieving synchronization. In the top right corner, the zoom shows the

initial transient towards synchronization.
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No experience has been too unimportant, and the

smallest event unfolds like a fate, and fate itself is

like a wonderful, wide fabric in which every thread

is guided by an infinitely tender hand and laid along-

side another thread and is held and supported by a

hundred others.

Rainer Maria Rilke

6
Event triggered control of networks

O
ne of the main challenges in network control is indeed to design a decentral-

ized control architecture locally at each agent, by just computing the informa-

tion available from neighbors. The recent advances in embedded controllers

allows to easily design such an architecture in practical case: several commercial plat-

forms are now able to compute locally the information from neighbors and calculate a

suitable control input locally. Nevertheless, technological constraints requires to mini-

mize the computational load and the exchange of information.

These aspects motivate the study of event triggered solutions for networked systems,

with the aim to define communication protocols guaranteeing both the achievement of

the desired task and the minimization of computation load and information exchange

through the network.

The issue of event triggered control has been studied first in the case of single feed-

back loops (see Heemels et al. (2012) and all the references therein). With this respect,

seminal results on the topic can be found in Anta and Tabuada (2010), Marzo and Tabuada

(2011), Aström and Bernhardsson (1999) andCarnevale et al. (2007). As far as themulti-

agent scenario is concerned, the challenges are particularly severe. In fact, these systems

are intrinsically decentralized and can compute only their own and neighbors informa-

tion.
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This results in a distributed triggering rule, where each agents determines its sam-

pling time sequence based only on the local information available. Several techniques

and architecture have been proposed in literature, considering event-triggered and self-

triggered solutions (see Liuzza et al. (2014), Demire and Lunze (2012), Dimarogonas et al.

(2012), Gracia and Antsalkis (2013),Nowzari and Cortes (2012), De Persis et al. (2013)).

However, most of the solutions that can be found literature target the case of linear sys-

tems (often single or double integrators dynamic). In the context of nonlinear systems,

Liuzza et al. (2014) targets the problems of linearizable nonlinear systems: the main issue

of the proposed architecture is that it requires the exchange a huge amount of informa-

tion between the agents (full-state information, inputs).

Following the approach suggested in De Persis and Postoyan (2014)-Postoyan and De Persis

(2016), we aim to study the problem for a general class of nonlinear systems which ex-

change only output informationwith their neighbors. In contrastwith Postoyan and De Persis

(2016), we make use of ISS arguments and observability conditions, rather than passiv-

ity based considerations. We propose an event-triggered solution which only requires the

knowledge of the number of the agents in the network and guarantees that the agents

achieve synchronization.

Summarizing, our architectures matches the following requirements:

• the agents exchange only just their outputs

• the agents achieves synchronization by means of a static diffusive coupling: they do

not need to know the control input of the other agents or any other information,

nor to estimate other agents behavior

• the agents do not need to know the initial condition of the other agents

• the solution is event-triggered, namely the agents determine their triggering se-

quence locally

The content of this chapter is completely novel. Since we make extensive use of

hybrid systems tools and hybrid Lyapunov analysis, the reader is referred to Appendix

C and Goebel et al. (2008) for further details on the topic.

6.1 Problem Formulation

Each of the N nonlinear agents is described by the following dynamics

ẇk = s(wk) + uk wk ∈ R
d

yk = c(wk)
(6.1)

110



Chapter 6. Event triggered control of networks

k = 1, . . . , N , in which uk is the local control input, yk is the local output whose value is

transmitted to the neighbour agents, and

s(wk) = Swk +Bφ(wk) , c(wk) = Cwk (6.2)

where (S,B,C) is a triplet of matrices in prime form, that is S is a shift matrix (all 1’s on

the upper diagonal and all 0’s elsewhere), BT = (0 · · · 0 1) and C = (1 0 · · · 0).
Conventionally, in order to achieve consensus between the agents the control input

uk of the k-th agent is chosen according to a diffusive coupling structure of the form

uk = −Kνk with νk =

N
∑

j=1

ℓkj yj (6.3)

for k = 1, . . . , N , with ℓkj elements of the Laplacian matri and K a vector (the same for

all the agents) of control parameters.

However, in this framework the output of the agents is not continuously available.

Instead each agent in the network samples the information from its neighbors only at

certain time instants. We define1 ŷk = col(ŷ1, . . . , ŷN )k as the outputs of the neighbors

of agent k, sampled by agent k. Our goal is to define a control input uk = f(ŷk) such

that synchronization is achieved, namely there exists a y⋆ such that

lim
t→∞

yk − y⋆ = 0

for k = 1, . . . , N .

6.2 Main Result

In order to deal with sampled information, we modify the diffusive coupling (6.3) and

choose a sampled diffusive coupling of the form

uk = −Kν̂k (6.4)

1Here and in the following, we denote by x̂ the sampled value of x(t) at a certain time instant tk.
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with

˙̂νk = 0

β̇k = −γβk











if ‖Kν̂k‖ ≤ βk

ν̂+k = νk

β+k = β0











if ‖Kν̂k‖ > βk

(6.5)

for k = 1, . . . , N , with with γ and β0 design parameters to be defined, where βk ∈ R is a

local clock for the k-th agent.

In (6.5), we correlate the sampling time instants to the behavior of the input: when

the norm of the input ‖Kν̂k‖ is greater than βk, the k-th agent samples the output of its

neighbors. The clock is then reset to a constant value β0 after each event and determine

the following triggering instant when βk is less or equal then a certain value.

For the design of K in (6.5), we follow the approach described in Section 3.1, in

whichK is chosen as

K = DgK0 (6.6)

with Dg = diag(g, . . . , gd) where g an high-gain parameter and K0 = PCT with P solu-

tion of the Riccati equation

SP + PST − 2µPCTCP + acI = 0 (6.7)

With control input defined according to (6.4)-(6.5), each agent (6.1) reads as

ẇk = Swk +Bφ(wk) +Kν̂k

˙̂νk = 0

β̇k = −γβk























if ‖Kν̂k‖ ≤ βk

w+
k = wk

ν̂+k = νk

β+k = β0























if ‖Kν̂k‖ > βk

(6.8)

By letting w = col(w1, . . . , wN ), β = col(β1, . . . , βN ) and ν̂ = col(ν̂1, . . . , ν̂N ), we can

112



Chapter 6. Event triggered control of networks

rewrite the overall networked system as

ẇ = (IN ⊗ S)w + (IN ⊗B)Φ(w) +Kν̂

˙̂ν = 0

β̇ = −γβ























∀ k ∈ [1, . . . , N ], ‖Kν̂k‖ ≤ βk

w+ = w






ν̂+

β+






= G(w, ν̂ ,β)























∃ k ∈ [1, . . . , N ], ‖Kν̂k‖ > βk

(6.9)

with

G(w, ν̂ ,β) = {Gk(w, ν̂,β) : k = 1, . . . , N and ‖Kνk‖ > βk}

and

Gk(w, ν̂,β) = (ŵk
1 , . . . , ŵ

k
i , . . . , ŵ

k
N , β1, . . . , βk = β0, . . . , βN )

for all K = 1, . . . , N where ŵk
j stands for all the sampled values of the neighbors of

agent k. The defined jump map guarantees outer semi-continuity: in particular, when

the triggering condition is met for two different agents, the jump map sequences the

jumps so that the graph of solutions is closed.

Proposition 6.1. Consider the networked control system (6.9) with K chosen according to

(6.6)-(6.7). Then there exists a g⋆ such that, for any g ≥ g⋆ there exist γ⋆, β⋆0 , such that for

any γ ≥ γ⋆, β0 ≥ β⋆0 and for all wk(0) ∈ W ⊂ R
d, the compact invariant set

W = {(w, ν̂ ,β) : w ∈W × · · · ×W,w1 = · · · = wN ,

ν̂1 = . . . = ν̂N = 0,

β1, . . . , βN ∈ [0, β0]}
(6.10)

is asymptotically stable.

Proof. The proof of Proposition 1 is divided in two parts. First we show how to

determine the design parameters for the triggering rule (6.5). Second, we show that

under this triggering rule, the network of nonlinear oscillators reaches synchroniza-

tion.
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Triggering rule design

In order to find the design parameters for the triggering rule, we make a continuous-

time analysis of the network. This analysis allows to define a target behavior of the

nominal input. Then each agent compares its own input to this target behavior and

determines when to trigger the neighbor’s information.

To this end, consider the network of (6.1) controlled by (6.3). We obtain

ẇ = (IN ⊗ S)w + (IN ⊗B)Φ(w) + (L⊗KC)w

We rescale w according to

ς = (IN ⊗D−1
g )w

which component-wise read as

ςk = D−1
g wk

The dynamics of ς is

ς̇ = g [(IN ⊗ S) + (L⊗K0C)] ς +
1

gd
(IN ⊗B)Φ ((IN ⊗Dg)ς)

Then we define the average dynamics

ς̄ =
1

N

N
∑

j=1

ςj

and accordingly the error with respect to this average dynamics as e = col(e1, . . . , eN )

with ek = ςk − ς̄ for k = 1, . . . , N .

We choose the candidate Lyapunov function

V = eT (IN ⊗ P−1)e

with P solution of the Riccati equation (6.7) such that

λ‖e‖2 ≤ V ≤ λ̄‖e‖2

Its derivative is

V̇ =
∑N

k=1 2e
T
k P

−1ς̇k −
∑N

k=1 2e
T
k P

−1 ˙̄ς (6.11)
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By considering the fact that
∑N

k=1 e
T
k = 0, the term

N
∑

k=1

eTk P
−1 ˙̄ς = 0

and thus, by subtracting

N
∑

k=1

eTk P
−1(gSς̄ +

1

gd
Bφ(Dg ς̄)) = 0

we obtain

V̇ =
∑N

k=1 2e
T
k P

−1
[

gSek +
1
gd
B
(

φ(Dgςk)− φ(Dg ς̄)
)

+ gK0
∑N

j=1 ℓkjCςj

]

(6.12)

Using the fact that, due to the zero-row sumproperty of the Laplacian
∑N

j=1 ℓkj ς̄ =

0, (6.12) can be written as

V̇ =
∑N

k=1 2e
T
k P

−1
[

gSek +
1
gd
B
(

φ(Dgςk)− φ(Dg ς̄)
)

+ gK0
∑N

j=1 ℓkjCej

]

= 2geT (IN ⊗ P−1)
(

(IN ⊗ S)− (L⊗K0C)
)

e+
2

gd
e(IN ⊗ P−1)(IN ⊗B)∆Φ(ς, ς̄)

(6.13)

where ∆Φ(ς, ς̄) is

∆Φ(ς, ς̄) =









φ(Dgς1)− φ(Dg ς̄)
...

φ(DgςN )− φ(Dg ς̄)









Remembering that, by assumption, φ(·) is globally Lipschitz

‖φ(ς) − φ(ς̄)‖ ≤ φ̄‖ek‖

with φ̄ being the Lipschitz constant and thus ∆Φ(ς, ς̄) can be bounded as

‖ 1

gd
∆Φ(ς, ς̄)‖ ≤ φ̄‖e‖

By considering this (6.13) becomes

V̇ = 2geT (IN ⊗ P−1)
(

(IN ⊗ S)− (L⊗K0C)
)

e+ 2φ̄ e(IN ⊗ P−1)(IN ⊗B)‖e‖
(6.14)
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which, due to the choice ofK0 and following the arguments of the proof of Proposi-

tion 1 in Isidori et al. (2014), after some computations leads to

V̇ = −g ac‖e‖2 + φ̄‖P−1‖‖e‖2

which, clearly shows that there exist a g⋆ such that, for all g ≥ g⋆

V̇ = −g ac‖e‖2 (6.15)

Remembering that wk(0) ∈ W, we can also conclude that ek(0) ∈ E, where E is

closed subset of Rn. This last relationship,(6.15) and standard Lyapunov arguments

can be used to obtain

‖e‖ ≤
√

λ̄
λ
e−

g ac
2

t‖e(0)‖

≤ β̄ e−gγ̄t

(6.16)

for some positive parameters β̄ and γ̄. Thus, using again the fact that
∑N

j=1 ℓkj ς̄ = 0,

the control input ‖Kνk(t)‖ can be bounded as

‖Kνk(t)‖ ≤ ‖K‖‖∑N
j=1 ℓkjCwj(t)‖

= ‖K‖‖∑N
j=1 ℓkjCDg(ςj(t)− ς̄)‖

≤ g‖K‖∑N
j=1 |ℓkj |‖ej(t)‖

= Γk‖e(t)‖

(6.17)

where Γk, which depends on g, is defined as

Γk = g‖K‖
N
∑

j=1

|ℓkj |‖Dg‖ .

The term ‖Kνk(t)‖ of each agent is thus bounded by

‖Kνk(t)‖ ≤ Γkβ̄e
−gγ̄t . (6.18)

It is readily seen that in the continuous case the input is strictly decreasing in

time. We set β⋆0 ≥ Γ̄β̄, with Γ̄ = maxk=1,...,N Γk and γ⋆ ≥ gγ̄ for the design of (6.5).

Note that, by definition of the jump rule in (6.5), Zeno behaviours are avoided.

Remark 6.1. From the analysis just developed, it is clear that in order to define
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the clock βk it is necessary to know global parameters of the network (namely the

smallest eigenvalue λ2(L) of the Laplacian matrix and Γ̄): it is worth mentioning

that these parameters can be estimated by knowing the number of agents in the

network N . △

Synchronization of nonlinear oscillators under triggering rule

In order to prove that under triggering rule (6.5), we rewrite (6.9) according to the

defintion of ς as

ς̇ = g(IN ⊗ S)ς +
1

gd
(IN ⊗B)Φ(IN ⊗Dg)ς + gKν̂

˙̂ν = 0

β̇ = −γβ



























∀ k ∈ [1, . . . , N ], ‖Kν̂k‖ ≤ βk

ς+ = w






ν̂+

β+






= G(w, ν̂ ,β)























∃ k ∈ [1, . . . , N ], ‖Kν̂k‖ > βk

(6.19)

where we implicitly used the fact that, following (6.3), we can write

ν̂k =
∑N

j=1 ℓkjCŵj

=
∑N

j=1 ℓkjCDg ς̂j

= g
∑N

j=1 ℓkjCς̂j

By also considering the fact that it is always possible to write ν̂k = νk + ∆νk,
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(6.20) can be written as

ς̇ = g(IN ⊗ S)ς +
1

gd
(IN ⊗B)Φ(IN ⊗Dg)ς

+gK(ν +∆ν)

˙̂ν = 0

β̇ = −γβ







































∀ k ∈ [1, . . . , N ], ‖Kν̂k‖ ≤ βk

ς+ = w






ν̂+

β+






= G(w, ν̂ ,β)























∃ k ∈ [1, . . . , N ], ‖Kν̂k‖ > βk

(6.20)

Then, following the same steps in the first part of the proof we define a physical

Lyapunov function

Vp = eT (IN ⊗ P−1)e

with P solution of the Riccati equation (6.7). By performing the same calculation

as before (which are now skipped, for sake of simplicity), during flows of (6.20) we

obtain

V̇ = −g ac‖e‖2 +
∑N

k=1 e
T
k P

−1gK∆νk (6.21)

The perturbation term due to the sampling

N
∑

k=1

eTk P
−1gK∆νk

in (6.21) can potentially compromise the achievement of synchronization.

In order to compensate the unstable effect of this term, we define a cyber Lya-

punov function

Vc =

N
∑

k=1

V k
c

where V k
c is

V k
c =

1

2
(βk − β0)

2
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which during flows of (6.20) leads to

V̇ k
c = −γ2β2k

V k+

c = 0

For the sake of convenience, we rewrite (6.20) as

q̇ = F (q) for q ∈ C, q+ = G(q) for q ∈ D (6.22)

where q := (ς, ν̂,β), C := {q : ‖Kν̂k‖ ≤ βk ∀ k = 1, . . . , N} and D := {q : ‖Kν̂k‖ >
βk for any k = 1, . . . , N}.

Then considering Vtot =
√

Vp + 1 +
√
Vc + 1, during flows we obtain

〈Vtot(q), F (q)〉 ≤ −g ac‖e‖2 +
∑N

k=1 e
T
k P

−1gK∆νk
√

eT (IN ⊗ P−1)e
+

−∑N
k=1 γβ

2
k

√

∑N
k=1

1
2(βk − β0)2 + 1

≤ −λ
λ̄
g ac‖e‖2 +

λ

λ̄
g
∑N

k=1Kνk − γ
∑N

k=1 βk

(6.23)

Now since ‖Kνk‖ ≤ βk (see the first part of the proof) and ‖Kν̂k‖ ≤ βk due to

the definition of (6.5),

‖K∆νk‖ ≤ ‖Kνk −Kν̂k‖

leads to

‖K∆νk‖ ≤ 2βk

Thus, simple computations and the fact that γ ≥ g
λ

λ̄
leads to

λ

λ̄
g

N
∑

k=1

Kνk − γ

N
∑

k=1

βk ≤ −γ
2

N
∑

k=1

βk (6.24)

and by inserting (6.24) in (6.23) we obtain

〈Vtot(q), F (q)〉 ≤ −λ
λ̄
g acγ‖e‖2 −

γ2

2
‖β‖2 (6.25)

Furthermore, Vp(G(q)) = Vp(q), since e does not undergo any jump. Similarly,

Vc(G(q)) ≤ Vc(q) since for q ∈ D there is only one k such that β+k = β0 while all the
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other β+j = βj , for all j = 1, . . . , N and j 6= i. Hence we conclude that

Vtot(G(q)) ≤ Vtot(q)

By applying Theorem 8.2 in Goebel et al. (2008), we also conclude that the solu-

tions of (6.20) asymptotically converge to the largest invariant set contained in

A = {(ς , ν̂,β) : ς1 = · · · = ςN , ‖ν̂1‖, . . . , ‖ν̂N‖ ≤ β0, β1, . . . , βN ∈ [0, β0]}

Then, noting that ς1 = . . . = ςN implies w1 = . . . = wN and ν = ν̂ = 0, the claim of

Proposition 6.1 follows.

6.3 Simulation Results

In order to prove that the result holds in practice, in this section we show simulation

results. We considered 6 Van Der Pol oscillators described by

ẇi1 = wi2

ẇi2 = 2(1 −w2
i1
)wi2 − wi1

yi = wi1 (6.26)

for i = 1, . . . , 6. The initial condition are taken asw1(0) = [−4, 1]T , w2(0) = [−2, 2]T , w3(0) =

[−5, 1]T , w4(0) = [5, 1.5]T , w5(0) = [3.5, 2.5]T , w6(0) = [3,−2]T . The control parameterK

of the diffusive coupling is chosen according to (6.6)-(6.7), with a = 1 and g = 2. The

self-triggering rule is chosen with γ = 50 and β0 = 100.

The Laplacian matrix describing the connection between the agents is

L =























1 0 0 0 0 −1

−1 1 0 0 0 0

0 −1 2 0 0 −1

0 −1 0 1 0 0

0 −1 0 0 2 −1

0 0 0 0 −1 1























Figure 6.1 shows the synchronization of the 6 agents: after approximately 3 sec the

agents have almost reached synchronization, as shown in the zoom.

Figure 6.2 shows a zoom of 1 sec of the triggering rule: it can be seen that each agents

samples independently from the others, every time the norm of its input ‖ui‖ intersects

its bound βi. Note that, due to computational constraints, Figure 6.3 shows that each
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Figure 6.1: Synchronization of the 6 Van Der Pol oscillators.
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Figure 6.2: Sampling events for 1 sec for the 6 agents: as it is shown in the figure, all
the agents have different sampling times which depends on the intersection between the
norm of the control inputs ‖ui‖ (black line) and the bound βi (red line).
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Figure 6.3: Sampling events for the 6 agents: as it is shown in the figure, all the agents
have different sampling times and stop sampling neighbors outputs at different time
instants.

agent stops sampling neighbors output at different time instants: these means that the

error (with respect to the neighbors) has become so small that the triggering condition is

not met anymore.
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Reasoning draws a conclusion, but does not make the

conclusion certain, unless the mind discovers it by the

path of experience.

Roger Bacon

7
Conclusion

W
e have started this thesis by claiming that “we’re connected with everything"

and thus it is not possible to decompose complex problems into separated

sub-problems, neglecting the influence each part of a system has on the

others. This is the reason why in recent years, the scientific community has turned its

attention towards networks and multi-agent systems, using consensus and synchroniza-

tion techniques to model complex and interconnected behaviors.

The objective of this thesis was to consider synchronization and consensus prob-

lems for networks of nonlinear agents in different operating scenarios. In Chapter 3, we

started by considering the classic problem of synchronization over a fixed connected

topology for nonlinear homogeneous and heterogeneous systems. Then, in Chapter 4

we modified the classic framework by introducing dynamical systems as links: this sce-

nario mimics the power networks framework, where the links cannot be considered as

an ideal line through which agents exchange information. In Chapter 5, we also consid-

ered the problem of disconnected topologies and behavior of nonlinear systems when

disconnected topology occurs: we designed a control architecture capable of enforc-

ing cluster-synchronization and studied under which switching conditions agents reach

synchronization over the whole network. Last, in Chapter 6, we considered the practical

problem of sampled information exchange: we studied the impact of sampling over the
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network and designed a triggering rule, locally at each agent, such that each agent sam-

ples the information from the neighbors only when necessary while the overall network

reaches synchronization.

The world of networks offers still a huge number of open problems which have not

been taken into account in this thesis and every day new applications of synchronization

and consensus theory rise on the research horizon. Furthermore, some the problems

addressed in this thesis could be tackled with other techniques, yielding different (yet

difficult to compare) results. For instance, as we pointed out in Chapter 5, the case

of switching topology could be handled with different assumptions on the switching

rule. However, we believe that the overall approach presented in this thesis gives a deep

theoretical understanding of the behavior of networks and could be a reliable starting

point for more in-depth analysis of particular problems.

One of the main challenge in dealing with networks is to consider a general class of

systems from which the results obtained in the theoretical framework can be adapted

to more practical scenarios without loss of generality. In fact, one of the goals of this

thesis was to lay the foundations from which theoretical approaches to synchronization

in the nonlinear framework could be extended to a huge set of practical problems. As en-

gineers, we always have to keep in mind the theoretical results, even sophisticated and

elegant, find their real meaning in the practical applications. With this respect, Chapter

4 and Chapter 6 are essentially motivated by realistic scenarios and the results present

in those chapters can be considered as a novel approach to these problems. It is worth

pointing out that the nonlinear dynamics considered in most of the literature are often

fairly representative of realistic systems. Even though inside this thesis we considered a

general class of nonlinear systems (characterized by an observability property and Lips-

chitz conditions), in most of the cases physical systems do not fulfill the requirements

of such a class. Thus, a possible extension of the theoretical results presented in this

thesis is to consider more application-driven representation of nonlinear systems and to

re-design the control architecture according to the problem at hand.

Another key aspect in networks control is to design fully decentralized structure. As

a matter of fact, most of the results that can be found in literature and the results pre-

sented in this thesis rely on knowledge of the algebraic connectivity, or more in general

the smallest eigenvalue of the Laplacian matrix. It is well known that this parameter

can be estimated by knowing the number of the agents in the network. However there

are some scenarios in which the number of systems can be unknown or time varying:

for instance, in the power-grids framework, the number of users and suppliers cannot

be known a priori. Thus, one of the future challenges is to extend the well known re-

sults about synchronization and consensus towards adaptive solutions, not requiring the

knowledge of any global parameter of the network.
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A
Appendix: Prime Form and

Observability for Nonlinear Systems

This Appendix is devoted to introduce the notion of observability and the observ-

ability canonical forms for nonlinear systems. For the sake of simplicity we considered

the class of single-input single-output nonlinear systems.

By following Gauthier and Kupka (2001), the observability property is introduced

with the notion of canonical flag. When this flag is regular and independent of u it is said

to be uniform. In practice, it define a regularity property of the observation space (see

(Besançon, 2007, Definition 6, Chapter 1))

A.1 Observability and canonical forms

Consider a nonlinear system of the form

ẋ = f(x, u) , y = h(x, u) , (A.1)

where the state x ∈ R
n, the input u ∈ R and the output y ∈ R. The functions f, g, h are

considered smooth enough and f(0, 0) = 0, h(0, 0) = 0. Now let define - recursively - a
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A.1. Observability and canonical forms

sequence of functions ϕi, i = 1, . . . , n, as follows

ϕ1(x, u) := h(x, u) ,

ϕi(x, u) :=
∂ϕi−1

∂x
(x, u)f(x, u) ,

(A.2)

and let define a sequence of i-vector-valued functions Φi(x, u) as follows

Φi(x, u) :=









ϕ1(x, u)
...

ϕi(x, u)









, ∀ i = 1, . . . , n . (A.3)

With these functions we have all the tools necessary to correctly define the so called

“canonical flag” of a system (see (Gauthier and Kupka, 2001, Definition 2.1, Chapter 2).

Definition A.1. The canonical flag of (A.1) is a set consisting of n distribution in R
n,

parametrized by u, defined by

Di(u) : x 7→ ker

[

∂Φi

∂x

]

(x,u)

, ∀ i = 1, . . . , n

with the functions Φi defined by (A.3). The canonical flag is said to be uniform if

(i) all the Di(u), i = 1, . . . , n, have constant dimension n − i for all u ∈ R (“regularity”

condition);

(ii) all the Di(u), i = 1, . . . , n, are independent of u (“u-independence” condition), i.e.

∂uD(u) = 0 .

The notion of canonical flag is useful to characterize the local weak observability of

a nonlinear system. We are not going to develop more along this line because, as already

stressed, we are only interested in the existence of (global) normal forms for which we

are able to design a tunable observer. A uniform canonical flag is in general not enough

to guarantee the existence of global change of coordinates, and only local results can

be achieved (see, for instance, Theorem 2.1 in (Gauthier and Kupka, 2001, Chapter 3)).

Thus, to state stronger properties, we define the mapping Φ : Rn → R
n as

Φ(x) := Φn(x, 0) =















h(x, 0)

Lf(x,0)h(x, 0)
...

Ln−1
f(x,0)

h(x, 0)















. (A.4)

With the notion of uniform canonical flag and the mapping Φ above defined, we have
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Appendix A. Appendix: Prime Form and Observability for Nonlinear Systems

all the ingredients in order to guarantee the existence of a global change of coordinates

in which the system (A.1) as a triangular structure. The following result, is a direct con-

sequence of the local result given in (Gauthier and Kupka, 2001, Theorem 2.1, Chapter

3).

Theorem A.1. Consider the system (A.1) and suppose that its canonical flag is uniform (ac-

cording to Definition A.1) and the mapping Φ(·) defined in (A.4) is a global diffeomorphism.

Then the system (A.1) is globally diffeomorphic, via Φ, to a system of the form

żi = fi(z1, . . . , zi, zi+1, u) , 1 ≤ i ≤ n− 1 ,

żn = fn(z1, . . . , zn, u) ,

y = h(z1, u) ,

(A.5)

with the functions fi, i = 1, . . . , n− 1 and h that fulfil

∂h

∂z1
(z1, u) 6= 0 ,

∂fi
∂zi+1

(z1, . . . , zi, zi+1, u) 6= 0 , i = 1, . . . , n− 1 ,

for any (z, u) ∈ R
n × R.

Proof. See (Marconi et al., 2004, Lemma 2).

Consider now an input-affine single-input single-output nonlinear system of the

form
ẋ = f(x) + g(x)u

y = h(x)
(A.6)

where the state x ∈ R
n, the input u ∈ R and the output y ∈ R. Let the functions ϕi(x, u)

in (A.2), Φi in (A.3) andΦ in (A.4) be defined similarly for the system (A.6). For this class

of system the result of Theorem A.1 can be further specialized, by obtaining a triangular

structure with a well-defined linear part.

Theorem A.2. Consider the system (A.6) and suppose that its canonical flag is uniform (ac-

cording to Definition A.1) and the mapping Φ(·) defined in (A.4) is a global diffeomorphism.

Then the system (A.6) is globally diffeomorphic, via Φ, to a system of the form

ż =





















ż1

ż2
...

żn−1

żn





















=





















z2

z3
...

zn

a(z)





















+





















b1(z1)

b2(z1, z2)
...

bn−1(z1, . . . , zn−1)

bn(z1, . . . , zn)





















u ,

y = z1 .

(A.7)
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A.2. Nonlinear systems in prime form and control of networks

Proof. See (Gauthier and Kupka, 2001, Theorem 4.1, Chapter 3).

In the previous theorem we showed that for input-affine nonlinear systems we can

find a change of coordinates in which the system has a linear part characterized by a sort

of “chain of integrators”. It is not hard to see that, from an observer-design perspective,

the form (A.7) is easier to handle with respect to the form (A.5).

A trivial extension of Theorem (A.2) can be obtained for the class of systems analyzed

in this Thesis. Consider a multi-input single-output nonlinear system of the form

ẋ = f(x) + u

y = h(x)
(A.8)

where the state x ∈ R
n, the input u ∈ R

n and the output y ∈ R.

Theorem A.3. Consider the system (A.6) and suppose that its canonical flag is uniform (ac-

cording to Definition A.1) and the mapping Φ(·) defined in (A.4) is a global diffeomorphism.

Then the system (A.8) is globally diffeomorphic, via Φ, to a system of the form

ż =





















ż1

ż2
...

żn−1

żn





















=





















z2

z3
...

zn

a(z)





















+ v ,

y = z1 .

(A.9)

with

v =
∂Φ(x)

∂x

−1

u

In the next section, we make use of this last result to introduce the structure of the

networked systems considered in this thesis. We will use a slightly different notation,

compatible with the one used in all the chapters of this thesis.

A.2 Nonlinear systems in prime form and control of networks

During the whole thesis we consider the problem of achieving synchronization between

a set of nonlinear systems which could be represented in prime form. Having in mind

the consideration of Appendix A.1, we now show that systems considered are indeed a

general family of nonlinear uniformly observable systems.
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Each of the N agents in the network is described by the nonlinear dynamics

ẋk = f(xk) + uk xk ∈ R
d

ιk = h(xk)
(A.10)

in which, for each k = 1, . . . , N , uk ∈ R
d is the control input, ιk ∈ R is the available

measurement. Note that (A.10) represents homogeneous nonlinear agents, namely f(·)
and h(·) do not depend on k.

In general, we look for a decentralized control structure in which the agents exchange

only output information and the control law of each agent is taken as

uk = K(xk)νk , νk =
N
∑

j=1

ℓkjh(xj) (A.11)

with K(xk) to be designed in such a way that output consensus is reached among the

agents. Namely, for each initial condition xk(0) ∈ R
d, there is a function ι⋆ : R → R such

that

lim
t→∞

|ιk(t)− ι⋆(t)| = 0 ,

uniformly in the initial conditions, for all k = 1, . . . , N . Indeed, only local output of sin-

gle agents (rather than a full state information) is assumed to be spread over the network.

Since the goal is to achieve consensus by only processing the output ιk of each agent,

we ask that systems (A.10) are uniformly observable (see Isidori (1995)) as detailed next.

Assumption A.1. The map Ψ : Rd 7→ R
d defined as

Ψ(xk) =















h(xk)

Lfh(xk)
...

Ld−1
f h(xk)















(A.12)

is a global diffeomorphism.

The requirement of the existence of a global diffeomorphismΨ(·) is motivated by the

fact that we look for consensus results that hold globally, namely without restrictions on

the initial state of the agents. The previous assumption could be weakened by just asking

that the map Ψ(·) is a local diffeomorphism on some given set at the price of obtaining

just semiglobal consensus results, namely by restricting the initial state of the agents

to some prescribed compact set. Details in this direction are omitted since they can be

obtained by using tools that are customary in the literature of stabilization of nonlinear
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A.2. Nonlinear systems in prime form and control of networks

systems.

The existence of such a diffeomorphism allows us to define a change of coordinate

wk = Ψ(xk), which maps system (5.20) to

ẇk = Swk +Bφ(wk) + vk , yk = Cw (A.13)

with

vk =
dΨ(xk)

dxk
uk

and with the triplet of matrices (S,B,C) that is in prime form, that is S is a shift matrix

(all 1’s on the upper diagonal and all 0’s elsewhere),BT = (0 · · · 0 1) and C = (1 0 · · · 0).
In the following we assume that the function

φ(wk) = Ld
f h(xk)|xk=Ψ−1(wk)

is globally Lipschitz, namely there exists a positive constant φ̄ such that ‖φ(w)‖ ≤ φ̄‖w‖
for all w ∈ R

d. Such a globally Lipschitz condition is motivated by the fact of looking

for “global" consensus results. The assumption in question could be weakened by just

asking the previous function to be only locally Lipschitz if just semiglobal consensus

results are of interest.

By bearing in mind the definition of (A.13), we design K(xk) in (A.11) as

K(xk) =
dΨ(xk)

dxk

−1

K (A.14)

and thus obtain

vk = −K
N
∑

j=1

ℓkjCwj k = 1, . . . , N . (A.15)

By collecting all the agents as w = col(w1, . . . , wN ), this allows to represent the net-

work of (A.10) as

ẇ = (IN ⊗ S)w + (IN ⊗B)Φ(w) + (L⊗KC)w

y = (IN ⊗ C)w
(A.16)

where Φ(w) is

Φ(w) =









φ(w1)
...

φ(wN )









Remark A.1. It is worth noticing that the assumption that vk ∈ R
d in (A.13) acts on all
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Appendix A. Appendix: Prime Form and Observability for Nonlinear Systems

components of the state is in general non-restrictive. Consider for instance a system of

the kind
ẇ = Sw +B

(

φ(w) + v
)

y = Cw
(A.17)

with w ∈ R
d and v ∈ R

d. The pair (S,B) is indeed controllable and (S,C) is observable.

Thus it is always possible to define a dynamic regulator of the form of

η̇ = ϕ(η, y)

v = γ(η)
(A.18)

that solve the problem of stabilization of (A.17). In the network scenario, a generic k-th

system would read as

ẇk = Swk +B
(

φ(wk) + vk

)

yk = Cwk

and the dynamic regulator

η̇k = ϕ(ηk,
∑N

i=1 ℓkiCwi)

vk = γ(ηk)

processes the information coming from the neighbors.

For the sake of simplicity, in this Thesis we consider systems of the form (A.13), but

the results presented could be extended to the case of (A.17). △
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B
Appendix: Input-to-State Stability

In this Appendix, we introduce basic concepts about input-to-state stability, which are

extensively used during the thesis. For more details about the topic we refer the reader

to Isidori (1999).

First, we recall some useful concepts about comparison functions.

Definition B.1. A continuous function α : [0, a) → [0,∞) is said to belong to the class K if

it is strictly increasing and α(0) = 0. If a = ∞ and limr→∞ α(r) = ∞, the function is said to

belong to class K∞.

Definition B.2. A continuous function β : [0, a) × [0,∞) → [0,∞) is said to belong to the

class KL if, for each fixed s, the function

α : [0, a) → [0,∞)

r 7→ β(r, s)

belongs to class K and, for each fixed r, the function

ϕ : [0,∞) → [0,∞)

s 7→ β(r, s)

is decreasing and lims→∞ ϕ(s) = 0.
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Class K and KL function have the following properties:

• the composition of two class K (respectively class K∞) functions α1(·) and α2(·)
denoted as α1(α2(·)) or α1 ◦ α2(·), is a class K (respectively class K∞) function

• if α(·) is a class K function defined on [0, a) and b = limr→a α(r), there exists a

unique function α−1 : [0, b) → [0, a) such that

α−1(α(r)) = r, for all r ∈ [0, a)

α(α−1(r)) = r, for all r ∈ [0, b)

Furthermore α−1(·) is a class K function. If α(·) is a class K∞ function, also α−1(·)
belongs to class K∞

• if β(·, ·) is a class KL function, there exists two class K∞ functions γ(·) and θ(·)
such that

β(r, s) ≤ γ(exp−s θ(r))

As far as Lyapunov theory is concerned, comparison functions are useful tools to deter-

mine if a nonlinear system has stability properties with respect to a certain equilibrium.

We can formulate these concepts as follows.

Theorem B.1. Consider a nonlinear system

ẋ = f(x) (B.1)

with x ∈ R
n and f(0) = 0, with f(·) locally Lipschitz. Let V : Bd → R be a C1 function

such that, for all x : ‖x‖ < d, there exists two class K functions ᾱ(·), α(·), defined on [0, d)

for which

α(x) ≤ V (x) ≤ ᾱ(x)

Then

• if
∂V

∂x
f(x) ≤ 0

the equilibrium x = 0 is stable for (B.1)

• if, there exists a class K function α(·) such that

∂V

∂x
f(x) ≤ α(‖x‖)

the equilibrium x = 0 is asymptotically stable for (B.1)
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• if d = ∞ and the functions ᾱ(·), α(·) and α(·) belong to classK∞, the equilibrium x = 0

is globally asymptotically stable for (B.1)

Lemma B.1. The equilibrium x = 0 of system (B.1) is globally asymptotically and locally

exponentially stable if and only if there exists a smooth function V : R
n → R and class K∞

functions ᾱ(·), α(·) and real numbers δ, a, b ∈ R+, such that

α(x) ≤ V (x) ≤ ᾱ(x)

and
∂V

∂x
f(x) ≤ −α(‖x‖)

for all x ∈ R
n and for s ∈ [0, δ]

α(s) = as2, α(s) = bs2

With this concept in mind, we are able to introduce the basic concepts of ISS which

turn out to be crucial in the analysis of interconnected systems. Consider the system

ẋ = f(x, u) (B.2)

with x ∈ R
n, u ∈ R

m, f(0, 0) = 0, with f(x, u) locally Lipschitz. We ask the input u to be

bounded, u ∈ Lm
∞. Namely u : [o∞) → R

m satisfies

‖u(·)‖∞ = sup
t≥0

‖u(t)‖

Definition B.3. System (B.2) is said to be input-to-state table if there exist a class KL func-

tion β(·, ·) and a class K function such that, for any input u ∈ Lm
∞ and any initial condition

x(0), the response of the (B.2) satisfies

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(‖u(·)‖∞) (B.3)

for all t ≥ 0.

Condition (B.3) can be also written in a more expressive form, namely

‖x(t)‖ ≤ max{β(‖x(0)‖, t), γ(‖u(·)‖∞)} (B.4)

which explicitly shows that if (B.2) is ISS, its evolution can be bounded by the maxi-

mum between its free evolution (namely β(‖x(0)‖, t)) and a certain gain function of the
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input term (namely γ(‖u(·)‖∞)). We now move towards the formulation of the previous

definition in terms of Lyapunov analysis.

Definition B.4. A C1 function V : R
n → R is called ISS-Lyapunov function for (B.2) if

there exist class K∞ functions ᾱ(·), α(·) and α(·) and a class K function χ(·) such that

α(x) ≤ V (x) ≤ ᾱ(x) (B.5)

and

‖x‖ ≥ χ(‖u‖) ⇒ ∂V

∂x
f(x, u) ≤ α(‖x‖) (B.6)

This definition of ISS-Lyapunov function is indeed really important in order to un-

derstand the concepts of ISS. First of all, notice that, u(t) = 0 implies global asymptotic

stability of (B.2), or in other words

‖x(t)‖ ≤ β(‖x(0)‖, t)

Consider now the case of nonzero inputs, define

M = ‖u(·)‖∞

and set

c = ᾱ(χ(M))

It is readily seen from (B.5) that the set

Ωc = {x ∈ R
n : V (x) ≤ c}

is such that Bχ(M) ⊂ Ωc. From (B.6) it can be concluded that, as long as x(t) is on the

boundary of Ωc, ‖x(t)‖ ≥ χ(‖u(t)‖) and thus

∂V

∂x
f(x(t), u(t)) < 0

and thus it can be concluded that for any x(0) in the interior of Ωc the solution x(t) of

(B.2) is defined for all t ≥ 0 and x(t) ∈ Ωc. By setting

γ(r) = α−1(ᾱ(χ(r)))

we can easily obtain that, for all t ≥ 0,

‖x(t)‖ ≤ γ(‖u(·)‖∞)
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which confirms (B.3). If instead x(0) does not belong to the interior of Ωc, we observe

that

V (x(t)) > c ⇒ ‖x(t)‖ ≥ χ(‖u(t)‖)

and thus
∂V

∂x
f(x(t), u(t)) ≤ −α(‖x(t)‖) < 0

In other words, as long as V (x(t)) > c, the function V (x(t)) is decreasing, implying

that x(t) is bounded. Furthermore, there exists a time ts such that

V (x(t)) > c, for all 0 ≤ t < ts

V (ts) = c

Suppose that it is not the case, then V (x(t)) > c for all t ≥ 0 and thus

∂V

∂x
f(x(t), u(t)) ≤ −α(ᾱ−1(V (x(t))))

that leads to

‖x(t)‖ ≤ β(‖x(0)‖, t)

which however is in contradictionwith V (x(t)) > c, since x(t) → 0would imply V (x(t)) →
0.

Thus we can conclude that

‖x(t)‖ ≤ β(‖x(0)‖, t) for all 0 ≤ t < ts

‖x(t)‖ ≤ γ(‖u(·)‖∞) for all t ≥ ts

which is indeed (B.4).

These reasoning lead to the following Theorem.

TheoremB.2. System (B.2) is input-to-state stable if and only is there exists an ISS-Lyapunov

function.

An simple way to check if a Lyapunov function is an ISS-Lyapunov function is given

in the following Lemma.

Lemma B.2. Consider system (B.2). A C1 function V : R
n → R is an ISS-Lyapunov for

(B.2) if and only if there exist class K∞ functions ᾱ(·), α(·) and α(·) and a class K function

σ(·) such that (B.5) holds and

∂V

∂x
f(x(t), u(t)) ≤ −α(‖x‖) + σ(‖u‖) (B.7)
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for all x ∈ R
n and u ∈ R

m.

The relationship (B.7) is equivalent to (B.5)-(B.6). To see this suppose that it holds

and define

χ(r) = α−1(kσ(r))

Then, we can write
∂V

∂x
f(x(t), u(t)) ≤ −k − 1

k
α(‖x‖)

which is indeed a relationship of the form of (B.6). Also, (B.6) implies that for ‖x‖ ≥
χ(‖u‖), then (B.7) holds for any σ(·). By defining

ψ(r) = max
‖u‖=r,‖x‖≤χ(r)

{∂V
∂x

f(x, u) + α(χ(‖u‖))}

it turns out that for ‖x‖ ≥ χ(‖u‖),

∂V

∂x
f(x, u) ≤ −α(‖x‖) + ψ(‖u‖)

By defining

σ(r) = max{0, ψ(r)}

the result in Lemma B.2 come straightforward.

As far as the two functions α(·) and σ(·) are concerned, it is seen that infinite pairs

of functions could be defined. The Lemma we introduce allows to construct families of

pairs fulfilling (B.7).

Lemma B.3. Assume {α(·), σ(·)} is an ISS-pair for (B.2), fulfilling (B.7).

i) Let σ̃(·) be a class K function such that σ(r) = O[σ̃(r)] as r → ∞. Then there exists a

class K∞ function α̃(·) such that {α̃(·), σ̃(·)} is an ISS-pair

ii) Let α̃(·) be a class K∞ function such that α(r) = O[α̃(r)] as r → 0+. Then there exists

a class K function σ̃(·) such that {α̃(·), σ̃(·)} is an ISS-pair

Another important formulation of the ISS property (which will be useful in the fol-

lowing), is given in the following Theorem. It derives from the fact that

β(‖x(0)‖, t) ≤ β(‖x(0)‖, 0)

and β(‖x(0)‖, 0) is a class K function. Then, we could reformulate (B.4) as

‖x(t)‖ ≤ max{γ0(‖x(0)‖), γ(‖u‖∞)}
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for some class K function γ0(·) (γ(·) is the same defined before). Furthermore, since

lim
t→∞

β(‖x(0)‖, t) = 0

we can write that

lim
t→∞

sup ‖x(t)‖ ≤ γ(‖u(·)‖∞)

or equivalently

lim
t→∞

sup ‖x(t)‖ ≤ γ( lim
t→∞

sup(‖u(t)‖))

TheoremB.3. System (B.1) is input-to-state stable if and only if there exists classK functions

γ0(·) and γ(·) such that, for any input u ∈ Lm
∞ and x(0) ∈ R

n, the evolution of the system

satisfies

‖x(·)‖∞ ≤ max{γ0(‖x(0)‖), γ(‖u‖∞)}

limt→∞ sup ‖x(t)‖ ≤ γ(limt→∞ sup ‖u(t)‖)

B.1 Input-to-State Stability for Cascade-Systems

ż = g(z, u) ẋ = f(x, z)
u z

Figure B.1: Cascaded nonlinear systems

Consider now the cascade system

ẋ = f(x, z)

ż = g(z, u)
(B.8)

with x ∈ R
n, z ∈ R

m, u ∈ R
p, f(0, 0) = 0, g(0, 0) = 0 and f(·, ·), g(·, ·) locally Lipschitz.

Theorem B.4. Suppose

ẋ = f(x, z) (B.9)

with state x and input z is input-to-state stable and that

ż = g(z, u) (B.10)

with state z and input u is also input-to-state stable. Then (B.11) is input-to-state stable.
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Proof. By assumptions, system (B.9) and (B.10) have ISS-pairs {α(·), σ(·)}, {η(·), ̺(·)}
respectively. Define

η̃(s) =

{

η(s) for small s

σ(s) for large s

Then, by Lemma B.3, there exists a ˜̺ such that {η̃(·), ˜̺(·)} is an ISS-pair for (B.10).

Define also σ̃(·) as
σ̃(s) =

1

2
η̃(s)

Again, by Lemma B.3, there exists a α̃(·) such that {α̃(·), 12 η̃(·)} is an ISS-pair for

(B.9). This implies the existence of two positive definite functions V (x) and W (z)

such that
∂V
∂x
f(x, z) ≤ −α̃(‖x‖) + 1

2 η̃(‖z‖)
∂W
∂z
g(z, u) ≤ −η̃(‖z‖) + ˜̺(‖u‖)

By considering U(x, z) = V (x) +W (z), we obtain

∂V

∂x
f(x, z) +

∂W

∂z
g(z, u) ≤ −α̃(‖x‖) − 1

2
η̃(‖z‖) + ˜̺(‖u‖)

which shows that U(x, z) is an ISS Lyapunov function for (B.11) in the sense of (B.2).

B.2 Small gain theorem

ẋ = f(x, z, u)

ż = g(z, x)

u

xz

Figure B.2: Small Gain Theorem

The Small Gain Theorem concerns nonlinear systems connected in feedback form and

gives an important insight on sufficient conditions to establish global asymptotic stabil-

ity for feedback connected globally asymptotically stable systems. As shown in Figure
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B.2, consider the following interconnection

ẋ = f(x, z, u)

ż = g(z, x)
(B.11)

with x ∈ R
n, z ∈ R

m, u ∈ R
p, f(0, 0, 0) = 0, g(0, 0) = 0. Suppose that both systems are

ISS, namely x is ISS with respect to z, u and z is ISS with respect to x. These assumption

implies that there exist two class K functions γ02(·) and γ2(·) such that

‖z(t)‖ ≤ max{γ02(‖z(0)‖), γ2(‖x(·)‖∞)}

limt→∞ sup ‖z(t)‖ ≤ γ2(limt→∞ sup ‖x(t)‖)
(B.12)

Similarly, there exist class K functions γ01(·), γ1(·) and γu(·) such that

‖x(t)‖ ≤ max{γ01(‖x(0)‖), γ1(‖z(·)‖∞), γu(‖u(·)‖∞)}

limt→∞ sup ‖x(t)‖ ≤ max{γ1(limt→∞ sup ‖z(t)‖), γu(limt→∞ sup ‖u(t)‖)}
(B.13)

Theorem B.5. If

γ1(γ2(r)) < r for all r > 0 (B.14)

system (B.11) with state ζ = (x, z) and input u is input to state stable. Furthermore, the class

K functions

γ0(r) = max{2γ01(r), 2γ02(r), 2γ1 ◦ γ02(r), 2γ2 ◦ γ01(r)}
γ(r) = max{2γ1 ◦ γu(r), 2γu(r)}

are such that ζ(t) with any input u(·) ∈ Lm
∞ can be bounded according to

‖ζ(·)‖∞ = max{γ0(‖ζ(0)‖), γ(‖u(·)‖∞)}

limt→∞ sup ‖ζ(t)‖ = γ(limt→∞ sup ‖u(t)‖)

Proof. The proof of the Theorem can be divided in two parts. First boundednes of

solution for x and z is shown, then the claim of the proposition is proved. In order

to prove boundedness of solutions, consider x(0) ∈ R
n, x(0) ∈ R

m and u ∈ Lp
∞.

Suppose that they are not bounded: this implies that for every R > 0, there exists a

time T > 0 such that trajectories are well defined and

‖x(T )‖ > R or ‖z(T )‖ > R (B.15)
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Then, choose R as

R > max{γ02(‖z(0)‖), γ2 ◦ γ01(‖x(0)‖), γ2 ◦ γu(‖u(·)‖∞)}

R > max{γ01(‖x(0)‖), γ1 ◦ γ02(‖z(0)‖), γu(‖u(·)‖∞)}
(B.16)

and consider T such that (B.15) is true. Consider

x(t)T =

{

x(t) if t ∈ [0, T ]

0 if t > T

which is bounded for every t. The response z̄(t) of the lower system of (B.11) with

initial condition z(0) and input x(·)T is

‖z̄(t)‖ ≤ max{γ02(‖z(0)‖), γ2(‖x(·)T ‖∞)}

for all t. Since z̄(t) = z(t) for t ∈ [0, T ], we also can say that

‖z(·)T ‖∞ = max
t∈[0,T ]

‖z(t)‖ ≤ max{γ02(‖z(0)‖), γ2(‖x(·)T ‖∞)} (B.17)

With the same approach and notation, we can write that

‖x̄(t)‖ ≤ max{γ01(‖x(0)‖), γ2(‖z(·)T ‖∞), γu(‖u(·)‖∞)}

and, since x̄(t) = x(t) for t ∈ [0, T ]

‖x(·)T ‖∞ = max
t∈[0,T ]

‖x(t)‖ ≤ max{γ01(‖x(0)‖), γ1(‖z(·)T ‖∞), γu(‖u(·)‖∞)} (B.18)

By putting (B.18) into (B.17) and remembering that by hypothesis γ1 ◦ γ2(r) < r

we have

‖z(·)T ‖∞ ≤ max{γ02(‖z(0)‖), γ2 ◦ γ01(‖x(0)‖), γ2 ◦ γu(‖u(·)‖∞)}

Similarly one could write that

‖x(·)T ‖∞ ≤ max{γ01(‖x(0)‖), γ1 ◦ γ02(‖z(0)‖), γu(‖u(·)‖∞)}
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Thus, using (B.16), we have

‖z(T )‖ ≤ max{γ02(‖z(0)‖), γ2 ◦ γ01(‖x(0)‖), γ2 ◦ γu(‖u(·)‖∞)} < R

‖x(T )‖ ≤ max{γ01(‖x(0)‖), γ1 ◦ γ02(‖z(0)‖), γu(‖u(·)‖∞)} < R

which clearly contradicts (B.15).

Having shown that the trajectories of (B.11) are bounded for all t ≥ 0, by (B.12)

and (B.13), we know that

‖z(t)‖ ≤ max{γ02(‖z(0)‖), γ2(‖x(·)‖∞)}

‖x(t)‖ ≤ max{γ01(‖x(0)‖), γ1(‖z(·)‖∞), γu(‖u(·)‖∞)}

which yields

‖z(t)‖ ≤ max{γ02(‖z(0)‖), γ2 ◦ γ01(‖x(0)‖), γ2 ◦ γu(‖u(·)‖∞)}

‖x(t)‖ ≤ max{γ01(‖x(0)‖), γ1 ◦ γ02(‖z(0)‖), γu(‖u(·)‖∞)}

Similarly, one could write that

limt→∞ sup ‖z(t)‖ ≤ γ2 ◦ γu(limt→∞ sup ‖u(t)‖)
limt→∞ sup ‖x(t)‖ ≤ γu(limt→∞ sup ‖u(t)‖)

From this, knowing that

‖ζ(·)‖∞ ≤ max{2‖z(·)‖∞, 2‖x(·)‖∞}

it follows that

lim
t→∞

sup ‖ζ(t)‖ ≤ max{2 lim
t→∞

sup ‖z(t)‖, lim
t→∞

sup ‖x(t)‖}

and the result follows easily.
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Appendix: Hybrid Systems

In this Appendix we introduce basic facts about Hybrid systems and give basic nota-

tion to understand the analysis of Hybrid systems. These concepts are extensively used

in Chapter 5 and Chapter 6. For a more exhaustive coverage of the topic the reader is

referred to Goebel et al. (2008).

C.1 Hybrid systems modeling

A general Hybrid systems can be represented by

{

x ∈ C ẋ ∈ F (x)

x ∈ D x+ ∈ G(x)
(C.1)

where C ⊂ R
n is the flow set, F : Rn

⇒ R
n is the flow map, D ⊂ R

n is the jump set and

G : Rn
⇒ R

n is the jump map.

Solutions of hybrid systems are defined on the so called hybrid time domain, which

is introduced in the next definition.
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Definition C.1. A subset E ⊂ R≥0 × N is compact hybrid domain if

E =
J−1
⋃

j=0

([tj , tj+1, j) (C.2)

for some finite sequence of times 0 = t0 ≤ t1 ≤ . . . ≤ tJ . It is a hybrid time domain if for all

(T, J) ∈ E, E ∩ ([0, T ]× {0, 1, . . . , J}) is a compact hybrid domain.

The previous definition simply states that E is a compact hybrid time domain if it is

a union of a finite sequence of time intervals, while E is a hybrid time domain if the last

interval is of the form [tj, T ) with T = ∞. We now introduce the concept of a hybrid arc.

Definition C.2. A function φ : E → R
n is a hybrid arc of E is a hybrid time domain and

if for every j ∈ N, the function t 7→ φ(t, j) is locally absolutely continuous on the interval

Ij = {t : (t, j) ∈ E}.

In the previous definition, the requirement of absolute continuity is only referred

to the intervals Ij which have nonempty interiors. In general these intervals could be

empty or consist of only one point. Given the hybrid system (C,F,D,G), its solution

is a series of hybrid arc satisfying certain conditions on the hybrid time domain. We

formulate this concept in the next definition.

Definition C.3. A hybrid arc φ is a solution for (C,F,D,G) if φ(0, 0) ∈ C̄ ∪D and

• for all j ∈ N such that Ik = {t : (t, j) ∈ domφ} has nonempty interior

φ(t, j) ∈ C for t ∈ intIj

φ̇(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij
(C.3)

• for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ

φ(t, j) ∈ D

φ(t, j + 1) ∈ G(φ(t, j))
(C.4)

Furthermore, a hybrid arc φ is said to be maximal if there does not exist another solution ϕ

such that domφ is a proper subset of domϕ and φ(t, j) = ϕ(t, j) for all (t, j) ∈ domφ.

The existence of nontrivial solutions to hybrid systems can be characterized as fol-

lows

Proposition C.1. Consider the hybrid system H = (C,F,D,G). Let ζ ∈ C̄ ∪ D. If ζ ∈ D

or there exists ε > 0 and absolutely continuous funtion z : [0, ε] → R
n such that z(0) = ζ
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and ż(t) ∈ F (z(t)) for almost all t ∈ [0, ε] and z(t) ∈ C for all t ∈ (0, ε], then there exists a

nontrivial solution φ for H with φ(0, 0) = ζ . Furthermore, if z exists for all ζ ∈ C̄ \D, then

there exist a nontrivial solution from every point of C̄ ∪D and every solution φ satisfies one

of these conditions:

• φ is complete

• domφ is bounded and the interval IJ (with J = supj domφ) has nonempty interior and

is open on the right. Also, there is no absolutely continuous function z : [a, b] → R
n

fulfilling ż(t) ∈ F (z(t)) for almost all tin[a, b], z(t) ∈ C for all tin(a, b) and such that

IJ ⊂ [a, b) and z(t) = φ(t, J) for all t ∈ IJ

• domφ is bounded and φ(T, J) /∈ C̄ ∪D, where (T, J) = supdomφ

Proof. See Goebel et al. (2008).

The existence of unique solution is instead characterized in the following proposi-

tion.

Proposition C.2. Consider the hybrid system H = (C,F,D,G). For every ζ ∈ C̄ ∪D there

exists a unique maximal solution φ with φ(0, 0) = ζ provided that the following holds:

• for every ζ ∈ C̄ \D, T > 0, if two absolutely continuous functions z1, z2 : [0, T ] → R
n

are such that żi ∈ F (zi(t)) for almost all t ∈ [0, T ], zi(t) ∈ C for all t ∈ (0, T ] and

zi(0) = ζ , then necessarily z1(t) = z2(t) for all t ∈ [0, T ]

• for every ζ ∈ C̄∩D, there does not exist an ε > 0 and an absolutely continuous function

z : [0, ε] → R
n such that z(0) = ζ , ż(t) ∈ F (z(t)) for almost all t ∈ [0, ε] and z(t) ∈ C

for all t ∈ (0, ε]

• for every ζ ∈ \D, G(ζ) consists of one point

The condition stated above respectively means that from no point there exist two

flowing solutions, or a flowing solution and a jumping solution, or two jumping solu-

tions.

C.2 Switching signals and hybrid systems

Switching systems are common in engineering and in particular networks application.

A switching system can be represented as

ż = fσ(z) (C.5)
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with σ taking values in Q = {1, 2, . . . , qmax} and for every σ ∈ Q, fσ : Rn → R
n be con-

tinuous. Typically, σ is a piecewise constant function and selects the flow map governing

z(t).

In many cases, the switching signal σ is not a generic piecewise constant signal. The

most common switching signal in networks applications are particular type of signal:

• σ is a dwell-time signal and the solution is a dwell-time solution with dwell time

τD > 0 it ti+1− ti ≥ τD for all i = 1, 2, . . ., that is jumps are separated by at least τD

• σ is apersistent dwell-time signal with persistent dwell time τD > 0 and period of

persistence T > 0 if there exists a subsequence 0 = ti0 , ti1 , . . . of a sequence {ti}
such that tik+1

− tik ≥ τD for k = 1, 2, . . . and tik+1
− tik ≤ T . That is, between two

consecutive intervals of length at least τD passe at most T amount of time

• σ is a weak dwell-time signal with dwell time τD > 0 if there exists a subsequence

0 = ti0 , ti1 , . . . of a sequence {ti} such that tik+1
− tik ≥ τD for k = 1, 2, . . ., that is

there are infinitely many intervals of length τD with no switching

• σ is an average dwell-time signal with dwell-time τD > 0 and offsetN0 ∈ N if, for all

0 ≤ s ≤ t, the number of jumps N(·, ·) in the interval [s, t] satisfies

N(t, s) ≤ 1

τD
(t− s) +N0

C.3 Uniform asymptotic stability and Lyaounov theory for hy-

brid systems

For hybrid systems, when referring to stability properties we in general speak of uniform

global pre-asymptotic stability of a closed set. Simply speaking we ask that the distance of

every possible solution of the hybrid system with respect to the set can be bounded by a

function depending on the initial distance to the set and the elapsed time. The term pre

allows maximal solution not to be complete.

We formulate this concept in the following definition

Definition C.4. Consider a hybrid system H on R
n and a closed set X ⊂ R

n. This set is said

to be:

• uniformly globally stable if there exists a call-K∞ function α such that any solution φ

fulfills |φ(t, j)|X ≤ α(|φ(0, 0)|X for all (t, j) ∈ domφ

• uniformly globally pre-attractive if for each ε > 0 and r > 0 there exists a T > 0 such

that, for any solution |φ(0, 0)|X ≤ r, (t, j) ∈ domφ and t+ j ≥ T imply |φ(0, 0)|X ≤ ε
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• uniformly globally pre-asymptotically stable if it is both uniformly globally stable

and pre-attractive

As for nonlinear systems, Lypunov functions are a powerful tool to analyze stability

properties for hybrid systems. Indeed, by means of Lyapunov functions it is possible to

establish global pre-asymptotic stability of a set.

Definition C.5. A function V : domV → R is a Lyapunov candidate for the hybrid system

H = (C,F,G,D) if:

• C̄ ∪D ∪G(D) ⊂ domV

• V is continuously differentiable on an open set containing C̄

Then, the following theorem gives the conditions under which the candidate Lya-

punov functions guarantees uniform global pre-asymptotic stability.

Theorem C.1. Let H = (C,F,G,D) be a hybrid system and X ⊂ R
n a closed set. If V is a

candidate Lyapunov function and there exist α1, α2 ∈ K∞ and a continuous positive definite

function ρ such that

α1(|x|X ) ≤ V (x) ≤ α2(|x|X ) ∀ x ∈ C ∪D ∪G(D)

〈▽V (x), f〉 ≤ −ρ(|x|X ) ∀ x ∈ C, f ∈ F (x)

V (g)− V (x) ≤ −ρ(|x|X ) ∀ x ∈ D, g ∈ G(D)

(C.6)

then X is uniformly globally pre-asymptotically stable for H.

Previous theorem asks the Lypunov function to decrease both during flows and jumps.

Of course conditions (C.6) can be weakened, for instance by in the case in which flows

are nonincreasing during flows, strictly decreasing during jumps and jumps occur suffi-

ciently often. These weakened Lyapunov condition are shown in the following theorems

(the proof can be found in Goebel et al. (2008)).

Theorem C.2. (Persistent Jumping) Let H = (C,F,G,D) be a hybrid system and X ⊂
R
n a closed set. If V is a candidate Lyapunov function and there exist α1, α2 ∈ K∞ and a

continuous positive definite function ρ such that

α1(|x|X ) ≤ V (x) ≤ α2(|x|X ) ∀ x ∈ C ∪D ∪G(D)

〈▽V (x), f〉 ≤ 0 ∀ x ∈ C, f ∈ F (x)

V (g)− V (x) ≤ −ρ(|x|X ) ∀ x ∈ D, g ∈ G(D)

(C.7)
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If, for each r > 0 there exists a T , γr ∈ K∞ and Nr ≥ 0 such that for every solution φ is

such that |φ(0, 0)|X ∈ (0, r], (t, j) ∈ domφ and t + j ≥ T imply j ≥ γr(T ) − Nr, then X is

uniformly globally pre-asymptotically stable.

Theorem C.3. (Persistent Flowing) Let H = (C,F,G,D) be a hybrid system and X ⊂
R
n a closed set. If V is a candidate Lyapunov function and there exist α1, α2 ∈ K∞ and a

continuous positive definite function ρ such that

α1(|x|X ) ≤ V (x) ≤ α2(|x|X ) ∀ x ∈ C ∪D ∪G(D)

〈▽V (x), f〉 ≤ −ρ(|x|X ) ∀ x ∈ C, f ∈ F (x)

V (g) − V (x) ≤ 0 ∀ x ∈ D, g ∈ G(D)

(C.8)

If, for each r > 0 there exists a T , γr ∈ K∞ and Nr ≥ 0 such that for every solution φ is

such that |φ(0, 0)|X ∈ (0, r], (t, j) ∈ domφ and t + j ≥ T imply t ≥ γr(T ) − Nr, then X is

uniformly globally pre-asymptotically stable.

The following theorem, which is the clear base for Proposition 5.3 and Proposition

6.1, considers the case in which the system might increase during flows or jump: these

increments are though balanced by decrements during jumps or flows respectively.

Theorem C.4. (Increase balanced by decrease) Let H = (C,F,G,D) be a hybrid system

and X ⊂ R
n a closed set. If V is a candidate Lyapunov function and there exist α1, α2 ∈ K∞

and a continuous positive definite function ρ such that

α1(|x|X ) ≤ V (x) ≤ α2(|x|X ) ∀ x ∈ C ∪D ∪G(D)

〈▽V (x), f〉 ≤ λcV (x) ∀ x ∈ C, f ∈ F (x)

V (g) − V (x) ≤ eλdV (x) ∀ x ∈ D, g ∈ G(D)

(C.9)

If, there exists γ > 0 andM > 0 such that, for each solution φ, (t, j) ∈ domφ implies

λct+ λd ≤M − γ(t+ j)

then X is uniformly globally pre-asymptotically stable.
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